This repository has been archived by the owner on Oct 16, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathmerge sort.py
91 lines (65 loc) · 2.41 KB
/
merge sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Python program to count inversions in an array
# Function to Use Inversion Count
def mergeSort(arr, n):
# A temp_arr is created to store
# sorted array in merge function
temp_arr = [0] * n
return _mergeSort(arr, temp_arr, 0, n - 1)
# This Function will use MergeSort to count inversions
def _mergeSort(arr, temp_arr, left, right):
# A variable inv_count is used to store
# inversion counts in each recursive call
inv_count = 0
# We will make a recursive call if and only if
# we have more than one elements
if left < right:
# mid is calculated to divide the array into two subarrays
# Floor division is must in case of python
mid = (left + right) // 2
# It will calculate inversion counts in the left subarray
inv_count += _mergeSort(arr, temp_arr, left, mid)
# It will calculate inversion counts in right subarray
inv_count += _mergeSort(arr, temp_arr, mid + 1, right)
# It will merge two subarrays in a sorted subarray
inv_count += merge(arr, temp_arr, left, mid, right)
return inv_count
# This function will merge two subarrays in a single sorted subarray
def merge(arr, temp_arr, left, mid, right):
i = left # Starting index of left subarray
j = mid + 1 # Starting index of right subarray
k = left # Starting index of to be sorted subarray
inv_count = 0
# Conditions are checked to make sure that i and j don't exceed their
# subarray limits.
while i <= mid and j <= right:
# There will be no inversion if arr[i] <= arr[j]
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
k += 1
i += 1
else:
# Inversion will occur.
temp_arr[k] = arr[j]
inv_count += (mid - i + 1)
k += 1
j += 1
# Copy the remaining elements of left subarray into temporary array
while i <= mid:
temp_arr[k] = arr[i]
k += 1
i += 1
# Copy the remaining elements of right subarray into temporary array
while j <= right:
temp_arr[k] = arr[j]
k += 1
j += 1
# Copy the sorted subarray into Original array
for loop_var in range(left, right + 1):
arr[loop_var] = temp_arr[loop_var]
return inv_count
# Driver Code
# Given array is
arr = [1, 20, 6, 4, 5]
n = len(arr)
result = mergeSort(arr, n)
print("Number of inversions are", result)