-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoscars_test.py
386 lines (290 loc) · 11.8 KB
/
oscars_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# coding: utf-8
# Plots inline for notebook
#get_ipython().run_line_magic('matplotlib', 'inline')
# Import the OSCARS SR module
from srxraylib.plot.gol import set_qt
import oscars.sr
from oscars.plots_mpl import *
from oscars.parametric_surfaces import PSCylinder
import numpy
def undulator_spectrum():
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear all existing fields and create an undulator field
osr.clear_bfields()
osr.add_bfield_undulator(bfield=[0, 1, 0], period=[0, 0, 0.050], nperiods=31)
# Define simple electron beam
osr.set_particle_beam(energy_GeV=3, x0=[0, 0, -1], current=0.5)
# Define the start and stop times for the calculation
osr.set_ctstartstop(0, 2)
# Calculate spectrum at 30 [m]
spectrum = osr.calculate_spectrum(obs=[0, 0, 30], energy_range_eV=[100, 2000])
# Optionally import the plotting tools (matplotlib)
# Plot spectrum
plot_spectrum(spectrum)
def undulator_flux():
# # coding: utf-8
#
# # Plots inline for notebook
# # get_ipython().run_line_magic('matplotlib', 'inline')
#
# # Import the OSCARS SR module
# import oscars.sr
#
# # Optionally import the plotting tools (matplotlib)
# from oscars.plots_mpl import *
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear all existing fields and create an undulator field
osr.clear_bfields()
osr.add_bfield_undulator(bfield=[0, 1, 0], period=[0, 0, 0.050], nperiods=31)
# Define simple electron beam
osr.set_particle_beam(energy_GeV=3, x0=[0, 0, -1], current=0.5)
# Define the start and stop times for the calculation
osr.set_ctstartstop(0, 2)
# Calculate spectrum at 30 [m]. Note use of the nthreads argument.
flux = osr.calculate_flux_rectangle(
plane='XY',
energy_eV=143.8,
width=[0.01, 0.01],
npoints=[101, 101],
translation=[0, 0, 30]
)
# Plot flux
plot_flux(flux)
def undulator_power_density():
# # coding: utf-8
#
# # Plots inline for notebook
# get_ipython().run_line_magic('matplotlib', 'inline')
#
# # Import the OSCARS SR module
# import oscars.sr
#
# # Optionally import the plotting tools (matplotlib)
# from oscars.plots_mpl import *
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear all existing fields and create an undulator field
osr.clear_bfields()
osr.add_bfield_undulator(bfield=[0, 1, 0], period=[0, 0, 0.050], nperiods=31)
# Define simple electron beam
osr.set_particle_beam(energy_GeV=3, x0=[0, 0, -1], current=0.5)
# Define the start and stop times for the calculation
osr.set_ctstartstop(0, 2)
# Calculate spectrum at 30 [m]. Note use of the nthreads argument.
power_density = osr.calculate_power_density_rectangle(
plane='XY',
width=[0.05, 0.05],
npoints=[101, 101],
translation=[0, 0, 30]
)
# Plot power density
plot_power_density(power_density)
def undulator_3d_power_density():
# # coding: utf-8
#
# # Plots inline for notebook
# get_ipython().run_line_magic('matplotlib', 'inline')
#
# # Import the OSCARS SR module
# import oscars.sr
#
# # Import the 3D and parametric surfaces utilities
# from oscars.plots3d_mpl import *
# from oscars.parametric_surfaces import *
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear all existing fields and create an undulator field
osr.clear_bfields()
osr.add_bfield_undulator(bfield=[0, 1, 0], period=[0, 0, 0.050], nperiods=31)
# Define simple electron beam
osr.set_particle_beam(energy_GeV=3, x0=[0, 0, -1], current=0.5)
# Define the start and stop times for the calculation
osr.set_ctstartstop(0, 2)
# First create the surface of interest
cylinder = PSCylinder(R=0.020, L=0.010, nu=101, nv=101)
# Run calculation and plotting
pd = power_density_3d(osr, cylinder, rotations=[osr.pi() / 2, 0, 0], translation=[0, 0, 30])
def example_032_undulator_flux():
# # Import the OSCARS SR module
# import oscars.sr
#
# # Import basic plot utilities (matplotlib). You don't need these to run OSCARS, but it's used here for basic plots
# from oscars.plots_mpl import *
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear any existing fields (just good habit in notebook style) and add an undulator field
osr.clear_bfields()
osr.add_bfield_undulator(bfield=[0, 1, 0], period=[0, 0, 0.049], nperiods=21)
# Just to check the field that we added seems visually correct
plot_bfield(osr)
# Setup beam similar to NSLSII
osr.clear_particle_beams()
osr.set_particle_beam(x0=[0, 0, -1], energy_GeV=3, current=0.500)
# Set the start and stop times for the calculation
osr.set_ctstartstop(0, 2)
# Run the particle trajectory calculation
trajectory = osr.calculate_trajectory()
# Plot the trajectory position and velocity
plot_trajectory_position(trajectory)
plot_trajectory_velocity(trajectory)
# Calculate spectrum zoom
spectrum = osr.calculate_spectrum(obs=[0, 0, 30], energy_range_eV=[145, 160], npoints=200)
plot_spectrum(spectrum)
flux = osr.calculate_flux_rectangle(
plane='XY',
energy_eV=153,
width=[0.01, 0.01],
npoints=[101, 101],
translation=[0, 0, 30]
)
plot_flux(flux)
def example_042_undulator_power_density():
# # Import the OSCARS SR module
# import oscars.sr
#
# # Import basic plot utilities (matplotlib). You don't need these to run OSCARS, but it's used here for basic plots
# from oscars.plots_mpl import *
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear any existing fields (just good habit in notebook style) and add an undulator field
osr.clear_bfields()
osr.add_bfield_undulator(bfield=[0, 1, 0], period=[0, 0, 0.049], nperiods=21)
# Just to check the field that we added seems visually correct
plot_bfield(osr)
# Setup beam similar to NSLSII
osr.clear_particle_beams()
osr.set_particle_beam(x0=[0, 0, -1], energy_GeV=3, current=0.500)
# Set the start and stop times for the calculation
osr.set_ctstartstop(0, 2)
# Run the particle trajectory calculation
trajectory = osr.calculate_trajectory()
# Plot the trajectory position and velocity
plot_trajectory_position(trajectory)
plot_trajectory_velocity(trajectory)
power_density = osr.calculate_power_density_rectangle(
plane='XY',
width=[0.05, 0.05],
npoints=[101, 101],
translation=[0, 0, 30]
)
plot_power_density(power_density)
def example_001_dipole_trajectory():
# Import the OSCARS SR module
# import oscars.sr
#
# # Import basic plot utilities. You don't need these to run OSCARS, but it's used here for basic plots
# from oscars.plots_mpl import *
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear any existing fields (just good habit in notebook style) and add an undulator field
osr.clear_bfields()
osr.add_bfield_uniform(bfield=[0, -0.4, 0], width=[0, 0, 1])
# Just to check the field that we added seems visually correct
plot_bfield(osr)
# Setup beam similar to NSLSII
osr.clear_particle_beams()
osr.set_particle_beam(x0=[0, 0, -1], energy_GeV=3, current=0.500)
# Set the start and stop times for the calculation
osr.set_ctstartstop(0, 2)
# Verify input information - print all to screen
osr.print_all()
# Run the particle trajectory calculation
trajectory = osr.calculate_trajectory()
# Plot the trajectory position and velocity
plot_trajectory_position(trajectory)
plot_trajectory_velocity(trajectory)
# Setup beam similar to NSLSII
osr.clear_particle_beams()
osr.set_particle_beam(energy_GeV=3, current=0.500)
# Set the start and stop times for the calculation
osr.set_ctstartstop(-1, 1)
# Run the particle trajectory calculation
trajectory = osr.calculate_trajectory()
# Plot the trajectory position and velocity
plot_trajectory_position(trajectory)
plot_trajectory_velocity(trajectory)
def undulator_radiation_srio():
# # Import the OSCARS SR module
# import oscars.sr
#
# # Import basic plot utilities (matplotlib). You don't need these to run OSCARS, but it's used here for basic plots
# from oscars.plots_mpl import *
# Create a new OSCARS object. Default to 8 threads and always use the GPU if available
osr = oscars.sr.sr(nthreads=8, gpu=1)
# Clear any existing fields (just good habit in notebook style) and add an undulator field
osr.clear_bfields()
osr.add_bfield_undulator(bfield=[0, 0.69, 0], period=[0, 0, 0.038], nperiods=55)
# # Just to check the field that we added seems visually correct
# plot_bfield(osr)
# Setup beam similar to NSLSII
osr.clear_particle_beams()
osr.set_particle_beam(x0=[0, 0, -2], energy_GeV=2.0, current=0.500)
# Set the start and stop times for the calculation
osr.set_ctstartstop(0, 4)
# # Run the particle trajectory calculation
# trajectory = osr.calculate_trajectory()
# # Plot the trajectory position and velocity
# plot_trajectory_position(trajectory)
# plot_trajectory_velocity(trajectory)
# # Calculate spectrum zoom
# spectrum = osr.calculate_spectrum(obs=[0, 0, 10], energy_range_eV=[100, 400], npoints=2000)
# # print(">>>",spectrum)
# plot_spectrum(spectrum)
import time
t0 = time.time()
flux = osr.calculate_flux_rectangle(
plane='XY',
energy_eV=249+6,
width=[0.0025, 0.0025],
npoints=[101, 101],
translation=[0, 0, 10]
)
print(">>>>",time.time()-t0)
plot_flux(flux)
print(">>>", flux,type(flux))
print(numpy.array(flux).shape)
def undulator_radiation_howard():
osr = oscars.sr.sr(nthreads=8, gpu=1)
osr.clear_bfields()
K = 0.6
import scipy.constants as codata
B = K * 2 * numpy.pi * codata.m_e * codata.c / (codata.e * 0.0288 )
osr.add_bfield_undulator(bfield=[0, B, 0], period=[0, 0, 0.0288], nperiods=138)
osr.clear_particle_beams()
osr.set_particle_beam(x0=[0, 0, -138*0.0288], energy_GeV=2.0, current=0.500)
# Set the start and stop times for the calculation
osr.set_ctstartstop(0, 4)
# # Run the particle trajectory calculation
# trajectory = osr.calculate_trajectory()
# # Plot the trajectory position and velocity
# plot_trajectory_position(trajectory)
# plot_trajectory_velocity(trajectory)
# # Calculate spectrum zoom
# spectrum = osr.calculate_spectrum(obs=[0, 0, 10], energy_range_eV=[100, 400], npoints=2000)
# # print(">>>",spectrum)
# plot_spectrum(spectrum)
import time
t0 = time.time()
flux = osr.calculate_flux_rectangle(
plane='XY',
energy_eV=830, #1117.74,
width=[0.006, 0.006],
npoints=[251, 251],
translation=[0, 0, 13]
)
print(">>>>", time.time() - t0)
plot_flux(flux)
print(">>>", flux, type(flux))
print(numpy.array(flux).shape)
if __name__ == "__main__":
set_qt()
# undulator_spectrum()
# undulator_flux()
# undulator_power_density()
# undulator_3d_power_density() #??????????
# example_032_undulator_flux()
# example_042_undulator_power_density()
# example_001_dipole_trajectory()
undulator_radiation_howard()