-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrundplug_example_elettra.py
357 lines (283 loc) · 13 KB
/
srundplug_example_elettra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
try:
from orangecontrib.xoppy.util import srundplug
from srundplug import compare_radiation, compare_flux, compare_power_density
except:
from srundplug import compare_radiation, compare_flux, compare_power_density
__author__ = "Manuel Sanchez del Rio"
__contact__ = "[email protected]"
__copyright__ = "ESRF, 2014-2017"
import numpy
from collections import OrderedDict
import sys
#catch standard optput
try:
from io import StringIO # Python3
except ImportError:
from StringIO import StringIO # Python2
########################################################################################################################
#
# GLOBAL NAMES
#
########################################################################################################################
# #Physical constants (global, by now)
import scipy.constants as codata
codata_mee = (codata.m_e * codata.c**2 / codata.e) * 1e-6 # electron mass energy equivalent in MeV
m2ev = codata.c * codata.h / codata.e # lambda(m) = m2eV / energy(eV)
########################################################################################################################
#
# Beamline parameters
#
########################################################################################################################
def get_beamline(nameBeamline,zero_emittance=False,silent=False):
#
# get the elements
#
ebeam = OrderedDict()
idv = OrderedDict()
drift = OrderedDict()
slit = OrderedDict()
#
# modify elements
#
if nameBeamline == "XRAY_BOOKLET":
if silent == False:
print("Setting inputs for fig 2-5 in X-ray Data Booklet")
ebeam['ElectronBeamDivergenceH'] = 1e-20
ebeam['ElectronBeamDivergenceV'] = 1e-20
ebeam['ElectronBeamSizeH'] = 1e-20
ebeam['ElectronBeamSizeV'] = 1e-20
ebeam['ElectronEnergySpread'] = 1e-20
ebeam['ElectronCurrent'] = 1.0
ebeam['ElectronEnergy'] = 1.3
idv['Kv'] = 1.87
idv['NPeriods'] = 14
idv['PeriodID'] = 0.035
drift['distance'] = 1.0*1e2
slit['gapH'] = 0.002*1e2 #0.001
slit['gapV'] = 0.002*1e2 #0.001
elif nameBeamline == "ESRF_LB_OB":
if silent == False:
print("Setting inputs for ESRF Low Beta after OB")
ebeam['ElectronBeamDivergenceH'] = 106.9e-6
ebeam['ElectronBeamDivergenceV'] = 1.2e-6
ebeam['ElectronBeamSizeH'] = 37.4e-6
ebeam['ElectronBeamSizeV'] = 3.5e-6
ebeam['ElectronEnergySpread'] = 0.001
ebeam['ElectronCurrent'] = 0.2
ebeam['ElectronEnergy'] = 6.04
idv['Kv'] = 1.68
idv['NPeriods'] = int(4.0/0.018)
idv['PeriodID'] = 0.018
drift['distance'] = 30.0
slit['gapH'] = 0.001
slit['gapV'] = 0.001
elif nameBeamline == "ESRF_HB_OB":
if silent == False:
print("Setting inputs for ESRF High Beta after OB")
ebeam['ElectronBeamDivergenceH'] = 10.3e-6
ebeam['ElectronBeamDivergenceV'] = 1.2e-6
ebeam['ElectronBeamSizeH'] = 387.8e-6
ebeam['ElectronBeamSizeV'] = 3.5e-6
ebeam['ElectronEnergySpread'] = 0.001
ebeam['ElectronCurrent'] = 0.2
ebeam['ElectronEnergy'] = 6.04
idv['Kv'] = 1.68
idv['NPeriods'] = int(4.0/0.018)
idv['PeriodID'] = 0.018
drift['distance'] = 30.0
slit['gapH'] = 0.001
slit['gapV'] = 0.001
elif nameBeamline == "ESRF_NEW_OB":
if silent == False:
print("Setting inputs for ESRF New Lattice")
ebeam['ElectronBeamDivergenceH'] = 5.2e-6
ebeam['ElectronBeamDivergenceV'] = 1.4e-6
ebeam['ElectronBeamSizeH'] = 27.2e-6
ebeam['ElectronBeamSizeV'] = 3.4e-6
ebeam['ElectronEnergySpread'] = 0.001
ebeam['ElectronCurrent'] = 0.2
ebeam['ElectronEnergy'] = 6.0
idv['Kv'] = 1.68
idv['NPeriods'] = int(4.0/0.018)
idv['PeriodID'] = 0.018
drift['distance'] = 30.0
slit['gapH'] = 0.001
slit['gapV'] = 0.001
elif nameBeamline == "SHADOW_DEFAULT":
if silent == False:
print("Setting inputs for SHADOW_DEFAULT")
ebeam['ElectronBeamSizeH'] = 0.04e-2
ebeam['ElectronBeamSizeV'] = 0.001e-2
ebeam['ElectronBeamDivergenceH'] = 4e-9 / ebeam['ElectronBeamSizeH']
ebeam['ElectronBeamDivergenceV'] = 4e-11 / ebeam['ElectronBeamSizeV']
ebeam['ElectronEnergySpread'] = 0.001
ebeam['ElectronCurrent'] = 0.2
ebeam['ElectronEnergy'] = 6.04
idv['Kv'] = 0.25
idv['NPeriods'] = 50.0
idv['PeriodID'] = 0.032
drift['distance'] = 10.0
slit['gapH'] = 2.0e-3
slit['gapV'] = 2.0e-3
elif nameBeamline == "ELETTRA":
if silent == False:
print("Setting inputs for Luca")
# emittances from https://www.researchgate.net/profile/Emanuel_Karantzoulis/publication/277300230_EVOLUTION_OF_ELETTRA_TOWARDS_AN_ULTIMATE_LIGHT_SOURCE/links/5565e9ea08aeccd777359b37.pdf?origin=publication_list
ebeam['ElectronBeamSizeH'] = 240e-6
ebeam['ElectronBeamSizeV'] = 14e-6
ebeam['ElectronBeamDivergenceH'] = 7e-9 / ebeam['ElectronBeamSizeH']
ebeam['ElectronBeamDivergenceV'] = 0.01*7e-9 / ebeam['ElectronBeamSizeV']
ebeam['ElectronEnergySpread'] = 0.001
ebeam['ElectronCurrent'] = 0.4
ebeam['ElectronEnergy'] = 2.0
idv['Kv'] = 2.3
idv['PeriodID'] = 0.01 # 0.025
idv['NPeriods'] = int(1.5/idv['PeriodID'])
drift['distance'] = 27.0
slit['gapH'] = 0.0025 #0.001
slit['gapV'] = 0.0025 #0.001
else:
raise Exception("This name (%s) does not correspond at any name for a beamline"%nameBeamline)
if zero_emittance:
ebeam['ElectronBeamDivergenceH'] = 1e-30
ebeam['ElectronBeamDivergenceV'] = 1e-30
ebeam['ElectronBeamSizeH'] = 1e-30
ebeam['ElectronBeamSizeV'] = 1e-30
ebeam['ElectronEnergySpread'] = 1e-30
# build the beamline as a merged dictionary
# TODO: merge elements is dangerous (possible key duplication) and
# does not allow multiple identical elements. Find a better solution...
bl = OrderedDict()
bl.update({'name':nameBeamline})
bl.update(ebeam)
bl.update(idv)
bl.update(drift)
bl.update(slit)
return bl
def beamline_info(bl,photonEnergy=None,distance=None,silent=False):
#init capture standard output
# see http://wrongsideofmemphis.com/2010/03/01/store-standard-output-on-a-variable-in-python/
old_stdout = sys.stdout
result = StringIO()
sys.stdout = result
print("============= Undulator parameters =============================\n")
print("Inputs: \n")
for i,j in bl.items():
print ("%s = %s" % (i,j) )
print("\n\nOutputs (supposing at waist): \n")
print ("Electron beam Emittance H [m.rad]: %e \n"%(bl['ElectronBeamSizeH']*bl['ElectronBeamDivergenceH']))
print ("Electron beam Emittance V [m.rad]: %e \n"%(bl['ElectronBeamSizeV']*bl['ElectronBeamDivergenceV']))
if bl['ElectronBeamDivergenceH'] != 0.0:
print ("Electron Beta H [m]: %e \n"%(bl['ElectronBeamSizeH']/bl['ElectronBeamDivergenceH']))
if bl['ElectronBeamDivergenceV'] != 0.0:
print ("Electron Beta V [m]: %e \n"%(bl['ElectronBeamSizeV']/bl['ElectronBeamDivergenceV']))
l1 = bl['PeriodID']*bl['NPeriods']
print ("Undulator length [m]: %f \n"%(l1))
gamma = bl['ElectronEnergy'] / (codata_mee * 1e-3)
print ("Gamma: %f \n"%(gamma))
resonance_wavelength = (1 + bl['Kv']**2 / 2.0) / 2 / gamma**2 * bl["PeriodID"]
resonance_energy = m2ev / resonance_wavelength
print ("Resonance wavelength [A]: %g \n"%(1e10*resonance_wavelength))
print ("Resonance energy [eV]: %g \n"%(resonance_energy))
#
# energy-dependent parameters
#
if photonEnergy is None:
photonEnergy = [resonance_energy,3*resonance_energy,5*resonance_energy]
if photonEnergy != None:
phE = numpy.array(photonEnergy)
phE.shape = -1
for phEi in phE:
print ("\n\n---------------------- photon energy [eV]: %0.2f \n"%(phEi))
print('\n')
lambda1 = m2ev/phEi
print (" photon wavelength [A]: %f \n"%(lambda1*1e10))
# calculate sizes of the photon undulator beam
# see formulas 25 & 30 in Elleaume (Onaki & Elleaume)
s_phot = 2.740/(4e0*numpy.pi)*numpy.sqrt(l1*lambda1)
sp_phot = 0.69*numpy.sqrt(lambda1/l1)
print('\n')
print(' RMS electon size H/V [um]: '+
repr(bl['ElectronBeamSizeH']*1e6)+ ' / '+
repr(bl['ElectronBeamSizeV']*1e6) )
print(' RMS electon divergence H/V[urad]: '+
repr(bl['ElectronBeamDivergenceH']*1e6)+ ' / '+
repr(bl['ElectronBeamDivergenceV']*1e6) )
print('\n')
print(' RMS radiation size [um]: '+repr(s_phot*1e6))
print(' RMS radiation divergence [urad]: '+repr(sp_phot*1e6))
print('\n')
print(' Photon beam (convolution): ')
photon_h = numpy.sqrt(numpy.power(bl['ElectronBeamSizeH'],2) + numpy.power(s_phot,2) )
photon_v = numpy.sqrt(numpy.power(bl['ElectronBeamSizeV'],2) + numpy.power(s_phot,2) )
photon_hp = numpy.sqrt(numpy.power(bl['ElectronBeamDivergenceH'],2) + numpy.power(sp_phot,2) )
photon_vp = numpy.sqrt(numpy.power(bl['ElectronBeamDivergenceV'],2) + numpy.power(sp_phot,2) )
print(' RMS size H/V [um]: '+ repr(photon_h*1e6) + ' / '+repr(photon_v*1e6))
print(' RMS divergence H/V [um]: '+ repr(photon_hp*1e6) + ' / '+repr(photon_vp*1e6))
print('\n')
cohH = lambda1/4/numpy.pi / photon_h / photon_hp
cohV = lambda1/4/numpy.pi / photon_v / photon_vp
print(' Coherent volume in H phase space: '+ repr(cohH) )
print(' Coherent volume in V phase space: '+ repr(cohV) )
print('\n')
dls = numpy.sqrt(2*l1*lambda1)/4/numpy.pi
print(' RMS diffraction limit source size [um]: '+ repr(dls*1e6) )
print(' FWHM diffraction limit source size [um]: '+ repr(dls*2.35*1e6) )
#
# values that depend on screen distance
#
if distance == None:
distance = bl['distance']
if distance != None:
print('\n')
hRMS = numpy.sqrt( numpy.power(photon_hp*distance,2) + numpy.power(photon_h,2))
vRMS = numpy.sqrt( numpy.power(photon_vp*distance,2) + numpy.power(photon_v,2))
print(' At a screen placed at :%f m from the source:\n'%(distance))
print(' RMS size H/V [mm]: '+ repr(hRMS*1e3) + ' / '+repr(vRMS*1e3))
print(' FWHM size H/V [mm]: '+ repr(hRMS*2.35*1e3) + ' / '+repr(vRMS*2.35*1e3))
print('\n')
print(' FWHM coherence length H [um] : '+ repr(hRMS*cohH*2.35*1e6) )
print(' FWHM coherence length V [um] : '+ repr(vRMS*cohV*2.35*1e6) )
print("=================================================================\n")
sys.stdout = old_stdout
result_string = result.getvalue()
if silent == False:
print(result_string)
return result_string
########################################################################################################################
#
# Main code
#
########################################################################################################################
if __name__ == '__main__':
zero_emittance = False
iplot = True
include_pysru = False # otherwise flux and power_density are extremely slow
#
# open spec file to collect all results
#
fileName = None
if fileName is not None:
scanCounter = 0
f = open(fileName,"w")
f.write("#F "+fileName+"\n")
f.close()
beamline_names = ["ELETTRA"] # "XRAY_BOOKLET","ESRF_NEW_OB","SHADOW_DEFAULT"]
#
# Info
#
for beamline_name in beamline_names:
print(beamline_info(get_beamline(beamline_name,zero_emittance=zero_emittance),distance=20.0))
#
# Radiance
#
for beamline_name in beamline_names:
compare_radiation(get_beamline(beamline_name,zero_emittance=zero_emittance), energy=None,zero_emittance=zero_emittance,iplot=True,show=True)
#
# Flux
#
compare_flux(get_beamline("ELETTRA" ),emin=100, emax=2000, npoints=200,zero_emittance=zero_emittance, USE_PYSRU=include_pysru,iplot=iplot)
#
# Power density
#
compare_power_density(get_beamline("ELETTRA"),include_pysru=include_pysru,zero_emittance=zero_emittance,iplot=iplot)