-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrw_xshundul.py
270 lines (228 loc) · 8.39 KB
/
srw_xshundul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#
# script for running SRW to create a SHADOW source
#
import json
import numpy
import srwlib as sl
import Shadow as sd
import array
import cPickle as pickle
import sys
def ElectronBeam(x=0., y=0., z=0., xp=0., yp=0., e=6.04, Iavg=0.2, sigX=345e-6*1.e-20, sigY=23e-6*1.e-20, mixX=0.0, mixY=0.0, sigXp=4.e-9*1.e-20/345e-6, sigYp=4.e-11*1.e-20/23e-6, sigE = 1.e-4):
el_rest = 0.51099890221e-03
eBeam = sl.SRWLPartBeam()
eBeam.Iavg = Iavg
eBeam.partStatMom1.x = x
eBeam.partStatMom1.y = y
eBeam.partStatMom1.z = z
eBeam.partStatMom1.xp = xp
eBeam.partStatMom1.yp = yp
eBeam.partStatMom1.gamma = e/el_rest
eBeam.partStatMom1.relE0 = 1.0
eBeam.partStatMom1.nq = -1
eBeam.arStatMom2[ 0] = sigX**2 #from here it is not necessary for Single Electron calculation, obviously....
eBeam.arStatMom2[ 1] = mixX
eBeam.arStatMom2[ 2] = sigXp**2
eBeam.arStatMom2[ 3] = sigY**2
eBeam.arStatMom2[ 4] = mixY
eBeam.arStatMom2[ 5] = sigYp**2
eBeam.arStatMom2[10] = sigE**2
return eBeam
def DriftElectronBeam(eBeam, und ):
if isinstance(und, float):
length = und
elif isinstance(und, sl.SRWLMagFldU): # Always defined in (0., 0., 0.) move the electron beam before the magnetic field.
length = 0.0-0.55*und.nPer*und.per-eBeam.partStatMom1.z
elif isinstance(und, sl.SRWLMagFldC):
if isinstance(und.arMagFld[0], sl.SRWLMagFldU):
length = und.arZc[0]-0.55*und.arMagFld[0].nPer*und.arMagFld[0].per-eBeam.partStatMom1.z
else: raise NameError
else: raise NameError
eBeam.partStatMom1.z += length
eBeam.arStatMom2[0] += 2*length*eBeam.arStatMom2[1]+length**2*eBeam.arStatMom2[2]
eBeam.arStatMom2[1] += length*eBeam.arStatMom2[2]
eBeam.arStatMom2[3] += 2*length*eBeam.arStatMom2[4]+length**2*eBeam.arStatMom2[5]
eBeam.arStatMom2[4] += length*eBeam.arStatMom2[5]
eBeam.moved = length
return eBeam
def SimpleUndulator(nPer=72, per=0.0228, B=0.120215, n=1, h_or_v='v'):
harmB = sl.SRWLMagFldH(n, h_or_v, B)
und = sl.SRWLMagFldU([harmB], per, nPer)
return und
def Undulator(nPer=72, per=0.0228, B=[0.120215], n=[1], h_or_v=['v']):
assert (len(B)==len(n)), "Wrong length of input arrays"
assert (len(B)==len(h_or_v)), "Wrong length of input arrays"
harms = [ sl.SRWLMagFldH(n[i], h_or_v[i], B[i]) for i in range(len(B)) ]
und = sl.SRWLMagFldU(harms, per, nPer)
return und
def Undulators(und, Xc, Yc, Zc):#for the moment only one works
cnt = sl.SRWLMagFldC([und], array.array('d', [Xc]), array.array('d', [Yc]), array.array('d', [Zc]))
return cnt
#def SrwSESource(eBeam, cnt, mesh=sl.SRWLRadMesh(12000., 16000., 101, -15.e-6*50*3, 15e-6*50*3, 61, -15e-6*50*3, 15e-6*50*3, 61, 50.), params=[1, 0.01, 0., 0., 20000, 1, 0]):
def SrwSESource(eBeam, cnt, mesh=sl.SRWLRadMesh(14718.4-1, 14718.4+1., 101, -15.e-6*50*3, 15e-6*50*3, 61, -15e-6*50*3, 15e-6*50*3, 61, 50.), params=[1, 0.01, 0., 0., 20000, 1, 0]):
wfr = sl.SRWLWfr()
wfr.mesh = mesh
wfr.partBeam = eBeam
wfr.allocate(mesh.ne, mesh.nx, mesh.ny)
eBeam = DriftElectronBeam(eBeam, cnt)
sl.srwl.CalcElecFieldSR(wfr, 0, cnt, params)
stk = sl.SRWLStokes()
stk.mesh = mesh
stk.allocate(mesh.ne, mesh.nx, mesh.ny)
eBeam = DriftElectronBeam(eBeam, -eBeam.moved)
wfr.calc_stokes(stk)
return stk, eBeam
def SrwMESource(eBeam, und, mesh=sl.SRWLRadMesh(14718.4, 14718.4, 1, -15.e-6*50, 15e-6*50, 81, -15e-6*50, 15e-6*50, 81, 50.), params=[1, 9, 1.5, 1.5, 2]):
#def SrwMESource(eBeam, und, mesh=sl.SRWLRadMesh(1000., 21000., 10001, -15.e-6*50, 15e-6*50, 1, -15e-6*50, 15e-6*50, 1, 50.), params=[1, 21, 1.5, 1.5, 1]):
stk = sl.SRWLStokes()
stk.mesh = mesh
stk.allocate(mesh.ne, mesh.nx, mesh.ny)
sl.srwl.CalcStokesUR(stk, eBeam, und, params)
return stk, eBeam
def save(stk, eBeam, fname="SrwStokes"):
pickle.dump( stk, open(fname+"_stk.dat", "wb") )
pickle.dump( eBeam, open(fname+"_ebeam.dat", "wb") )
def Stokes0ToSpec(stk, fname="srw_xshundul.spec"):
Shape = (4,stk.mesh.ny,stk.mesh.nx,stk.mesh.ne)
data = numpy.ndarray(buffer=stk.arS, shape=Shape,dtype=stk.arS.typecode)
data0 = data[0]
x = numpy.linspace(stk.mesh.xStart,stk.mesh.xFin,stk.mesh.nx)
y = numpy.linspace(stk.mesh.yStart,stk.mesh.yFin,stk.mesh.ny)
e = numpy.linspace(stk.mesh.eStart,stk.mesh.eFin,stk.mesh.ne)
f = open(fname,"w")
for k in range(len(e)):
f.write("#S %d intensity E= %f\n"%(k+1,e[k]))
f.write("#N 3\n")
f.write("#L X[m] Y[m] Intensity\n")
for i in range(len(x)):
for j in range(len(y)):
f.write( "%e %e %e\n"%(x[i], y[j], data0[j,i,k]))
f.close()
sys.stdout.write(' file written: srw_xshundul.spec\n')
if __name__=="__main__":
#
# read inputs from a file created by ShadowVUI ----------------------------
#
inFileTxt = "xshundul.json"
with open(inFileTxt, mode='r') as f1:
h = json.load(f1)
# list all non-empty keywords
print "-----------------------------------------------------"
for i,j in h.items():
if (j != None):
print "%s = %s" % (i,j)
print "-----------------------------------------------------"
print "k: ",h['K']
#lambdau = 0.022888
#k = 0.256
#e_energy = 6.04
#nperiods = 72
#emin = 14705.0
#emax = 14711.0
#intensity = 0.2
#maxangle = 0.015
#sx = 345e-4
#sz = 23e-4
#ex = 4e-7
#ez = 4e-9
#nrays = 5000
lambdau = h['LAMBDAU']
k = h['K']
e_energy = h['E_ENERGY']
nperiods = h['NPERIODS']
emin = h['EMIN']
emax = h['EMAX']
intensity = h['INTENSITY']
maxangle = h['MAXANGLE']
sx = h['SX']
sz = h['SZ']
ex = h['EX']
ez = h['EZ']
nrays = h['NRAYS']
print "lambdau = ",lambdau
print "k = ",k
print "e_energy = ",e_energy
print "nperiods = ",nperiods
print "emin = ",emin
print "emax = ",emax
print "intensity = ",intensity
print "maxangle = ",maxangle
print "sx = ",sx
print "sz = ",sz
print "ex = ",ex
print "ez = ",ez
print "nrays = ",nrays
print "emin = ",emin
print "emax = ",emax
#
# define additional parameters needed by SRW
#
B = k/93.4/lambdau
slit_distance = 50.0
method = "SE" # single-electron "ME" multi-electron
nx = 51
nz = 51
sE = 1e-9 # 0.89e-3
#
# prepare inputs
#
# convert cm to m
sx *= 1.0e-2
sz *= 1.0e-2
ex *= 1.0e-2
ez *= 1.0e-2
sxp = ex/sx
szp = ez/sz
xxp = 0.0
zzp = 0.0
estep = 1.0
# get a reasonable number of rays (estep = 1eV or 10 eV or 100 eV etc.)
ne = 1+(emax-emin)/estep
while ne > 100:
ne = ne/10
ne = int(ne)
print "ne = ",ne
#paramSE = [1, 0.01, 0, 0, 20000, 1, 0]
paramSE = [1, 0.01, 0, 0, 50000, 1, 0]
paramME = [1, 9, 1.5, 1.5, 2]
#
#
if nx==1 and nz==1: paramME[4] = 1
params = paramSE if method=="SE" else paramME
slit_xmin = -maxangle*1.0e-3*slit_distance
slit_xmax = maxangle*1.0e-3*slit_distance
slit_zmin = -maxangle*1.0e-3*slit_distance
slit_zmax = maxangle*1.0e-3*slit_distance
#
# calculations
#
print("nperiods: %d, lambdau: %f, B: %f)"%(nperiods,lambdau,B))
und = SimpleUndulator(nperiods,lambdau,B)
print("e=%f,Iavg=%f,sigX=%f,sigY=%f,mixX=%f,mixY=%f,sigXp=%f,sigYp=%f,sigE=%f"%(e_energy,intensity,sx,sz,xxp,zzp,sxp,szp,sE) )
eBeam = ElectronBeam(e=e_energy,Iavg=intensity,sigX=sx,sigY=sz,mixX=xxp,mixY=zzp,sigXp=sxp,sigYp=szp,sigE=sE)
cnt = Undulators(und, 0., 0., 0.)
sys.stdout.write(' calculating SE...'); sys.stdout.flush()
print("emin=%f,emax=%f,ne=%d,slit_xmin=%f,slit_xmax=%f,nx=%d,slit_zmin=%f,slit_zmax=%f,nz=%d,slit_distance=%f"%(emin,emax,ne,slit_xmin,slit_xmax,nx,slit_zmin,slit_zmax,nz,slit_distance) )
mesh = sl.SRWLRadMesh(emin,emax,ne,slit_xmin,slit_xmax,nx,slit_zmin,slit_zmax,nz,slit_distance)
if (method == 'SE'):
print ("Calculating SE...")
stkSE, eBeam = SrwSESource(eBeam, cnt, mesh, params)
sys.stdout.write(' done\n')
sys.stdout.write(' saving SE Stokes...'); sys.stdout.flush()
Stokes0ToSpec(stkSE)
stk = stkSE
else:
print ("Calculating ME...")
stkME, eBeam = SrwMESource(eBeam, und) # cnt, mesh, params)
sys.stdout.write(' done\n')
sys.stdout.write(' saving SE Stokes...'); sys.stdout.flush()
Stokes0ToSpec(stkME)
stk = stkME
beam, param = sd.ShadowSrw.genShadowBeam( (stk,eBeam,), N=nrays, method=method, energy=None, lim=None, canted=None, distance=slit_distance)
beam.write("begin.dat")
sys.stdout.write(' file written: begin.dat\n')
#eBeam = ElectronBeam()
#print ' calculating ME'
#stkME8, eBeam = SrwMESource(eBeam, und)
#print ' done'
#save(stkME, eBeam, "SrwStokesME")