forked from melodyhappy/tensorcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskirt_length.cfg
66 lines (58 loc) · 1.45 KB
/
skirt_length.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
[env]
exp_dir = PATH_OF_EXPERIMENT_TO_BE_CONFIGURED
data_dir = ${exp_dir}/data
model_dir = ${exp_dir}/model
eval_dir = ${exp_dir}/eval
[data]
dataset_type = FashionaiAttributeDataset
dataset_params = {
"train_data_folder": "PATH_OF_TRAIN_DATA_FOLDER_BE_CONFIGURED",
"test_data_folder": "PATH_OF_TEST_DATA_TO_BE_CONFIGURED",
"attribute": "skirt_length_labels"
}
train_data = PATH_OF_TRAIN_CSV_TO_BE_CONFIGURED
validation_data = PATH_OF_VALIDATION_CSV_TO_BE_CONFIGURED
test_data = test_0222 PATH_OF_TEST_CSV_TO_BE_CONFIGURED
image_height = 224
image_width = 224
image_channels = 3
image_format = jpeg
batch_size = 64
shuffle_buffer_size = 10000
prefetch_batches = 10
num_data_processes = 10
[train]
net = resnet_v2
net_params = {
"size": 50,
"num_classes": 6
}
loss = sparse_softmax_cross_entropy
predictions = softmax
metrics = accuracy
lr_policy = exponential_decay
lr_policy_params = {
"base_lr": 1e-3,
"decay_steps": 5000,
"decay_rate": 0.75
}
optimizer = momentum
optimizer_params = {
"momentum": 0.9
}
summary = normal
max_step = 50000
summary_steps = 100
model_save_steps = 1000
transfer_checkpoint = PATH_OF_PRETRAINED_MODEL_TO_BE_CONFIGURED
transfer_params = {
"skip_variables": [
"dense"
]
}
[evaluate]
model_step = 20000
predict_saver_type = FashionaiAttributePredictSaver
predict_saver_params = {
"attribute": "skirt_length_labels"
}