-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
533 lines (464 loc) · 25.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#!/usr/bin/env python3
import os
import numpy as np
import time
import torch
from torch import optim
# -custom-written libraries
import utils
from utils import checkattr
from data.load import get_context_set
from models import define_models as define
from models.cl.continual_learner import ContinualLearner
from models.cl.memory_buffer import MemoryBuffer
from models.cl import fromp_optimizer
from train.train_task_based import train_cl, train_fromp, train_gen_classifier
from params import options
from params.param_stamp import get_param_stamp, get_param_stamp_from_args, visdom_name
from params.param_values import set_method_options,check_for_errors,set_default_values
from eval import evaluate, callbacks as cb
from visual import visual_plt
## Function for specifying input-options and organizing / checking them
def handle_inputs():
# Set indicator-dictionary for correctly retrieving / checking input options
kwargs = {'main': True}
# Define input options
parser = options.define_args(filename="main", description='Run an individual continual learning experiment '
'using the "academic continual learning setting".')
parser = options.add_general_options(parser, **kwargs)
parser = options.add_eval_options(parser, **kwargs)
parser = options.add_problem_options(parser, **kwargs)
parser = options.add_model_options(parser, **kwargs)
parser = options.add_train_options(parser, **kwargs)
parser = options.add_cl_options(parser, **kwargs)
# Parse, process and check chosen options
args = parser.parse_args()
set_method_options(args) # -if a method's "convenience"-option is chosen, select components
set_default_values(args, also_hyper_params=True) # -set defaults, some are based on chosen scenario / experiment
check_for_errors(args, **kwargs) # -check whether incompatible options are selected
return args
def run(args, verbose=False):
# Create plots- and results-directories if needed
if not os.path.isdir(args.r_dir):
os.mkdir(args.r_dir)
if checkattr(args, 'pdf') and not os.path.isdir(args.p_dir):
os.mkdir(args.p_dir)
# If only want param-stamp, get it printed to screen and exit
if checkattr(args, 'get_stamp'):
print(get_param_stamp_from_args(args=args))
exit()
# Use cuda?
cuda = torch.cuda.is_available() and args.cuda
device = torch.device("cuda" if cuda else "cpu")
# Report whether cuda is used
if verbose:
print("CUDA is {}used".format("" if cuda else "NOT(!!) "))
# Set random seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if cuda:
torch.cuda.manual_seed(args.seed)
#-------------------------------------------------------------------------------------------------#
#----------------#
#----- DATA -----#
#----------------#
# Prepare data for chosen experiment
if verbose:
print("\n\n " +' LOAD DATA '.center(70, '*'))
(train_datasets, test_datasets), config = get_context_set(
name=args.experiment, scenario=args.scenario, contexts=args.contexts, data_dir=args.d_dir,
normalize=checkattr(args, "normalize"), verbose=verbose, exception=(args.seed==0),
singlehead=checkattr(args, 'singlehead'), train_set_per_class=checkattr(args, 'gen_classifier')
)
# The experiments in this script follow the academic continual learning setting,
# the above lines of code therefore load both the 'context set' and the 'data stream'
#-------------------------------------------------------------------------------------------------#
#-----------------------------#
#----- FEATURE EXTRACTOR -----#
#-----------------------------#
# Define the feature extractor
depth = args.depth if hasattr(args, 'depth') else 0
use_feature_extractor = checkattr(args, 'hidden') or (
checkattr(args, 'freeze_convE') and (not args.replay=="generative") and (not checkattr(args, "add_buffer"))
and (not checkattr(args, 'gen_classifier'))
)
#--> when the convolutional layers are frozen, it is faster to put the data through these layers only once at the
# beginning, but this currently does not work with iCaRL or pixel-level generative replay/classification
if use_feature_extractor and depth>0:
if verbose:
print("\n\n " + ' DEFINE FEATURE EXTRACTOR '.center(70, '*'))
feature_extractor = define.define_feature_extractor(args=args, config=config, device=device)
# - initialize (pre-trained) parameters
define.init_params(feature_extractor, args, verbose=verbose)
# - freeze the parameters & set model to eval()-mode
for param in feature_extractor.parameters():
param.requires_grad = False
feature_extractor.eval()
# - print characteristics of feature extractor on the screen
if verbose:
utils.print_model_info(feature_extractor)
# - reset size and # of channels to reflect the extracted features rather than the original images
config = config.copy() # -> make a copy to avoid overwriting info in the original config-file
config['size'] = feature_extractor.conv_out_size
config['channels'] = feature_extractor.conv_out_channels
depth = 0
else:
feature_extractor = None
# Convert original data to features (so this doesn't need to be done at run-time)
if (feature_extractor is not None) and args.depth>0:
if verbose:
print("\n\n " + ' PUT DATA TRHOUGH FEATURE EXTRACTOR '.center(70, '*'))
train_datasets = utils.preprocess(feature_extractor, train_datasets, config, batch=args.batch,
message='<TRAINSET>')
test_datasets = utils.preprocess(feature_extractor, test_datasets, config, batch=args.batch,
message='<TESTSET> ')
#-------------------------------------------------------------------------------------------------#
#----------------------#
#----- CLASSIFIER -----#
#----------------------#
# Define the classifier
if verbose:
print("\n\n " + ' DEFINE THE CLASSIFIER '.center(70, '*'))
model = define.define_classifier(args=args, config=config, device=device, depth=depth)
# Some type of classifiers consist of multiple networks
n_networks = len(train_datasets) if (checkattr(args, 'separate_networks') or
checkattr(args, 'gen_classifier')) else 1
# Go through all networks to ...
for network_id in range(n_networks):
model_to_set = getattr(model, 'context{}'.format(network_id+1)) if checkattr(args, 'separate_networks') else (
getattr(model, 'vae{}'.format(network_id)) if checkattr(args, 'gen_classifier') else model
)
# ... initialize / use pre-trained / freeze model-parameters, and
define.init_params(model_to_set, args)
# ... define optimizer (only include parameters that "requires_grad")
if not checkattr(args, 'fromp'):
model_to_set.optim_list = [{'params': filter(lambda p: p.requires_grad, model_to_set.parameters()),
'lr': args.lr}]
model_to_set.optim_type = args.optimizer
if model_to_set.optim_type in ("adam", "adam_reset"):
model_to_set.optimizer = optim.Adam(model_to_set.optim_list, betas=(0.9, 0.999))
elif model_to_set.optim_type=="sgd":
model_to_set.optimizer = optim.SGD(model_to_set.optim_list,
momentum=args.momentum if hasattr(args, 'momentum') else 0.)
# On what scenario will model be trained? If needed, indicate whether singlehead output / how to set active classes.
model.scenario = args.scenario
model.classes_per_context = config['classes_per_context']
model.singlehead = checkattr(args, 'singlehead')
model.neg_samples = args.neg_samples if hasattr(args, 'neg_samples') else "all"
# Print some model-characteristics on the screen
if verbose:
if checkattr(args, 'gen_classifier') or checkattr(args, 'separate_networks'):
message = '{} copies of:'.format(len(train_datasets))
utils.print_model_info(model.vae0 if checkattr(args, 'gen_classifier') else model.context1, message=message)
else:
utils.print_model_info(model)
# -------------------------------------------------------------------------------------------------#
# ----------------------------------------------------#
# ----- CL-STRATEGY: CONTEXT-SPECIFIC COMPONENTS -----#
# ----------------------------------------------------#
# XdG: create for every context a "mask" for each hidden fully connected layer
if isinstance(model, ContinualLearner) and checkattr(args, 'xdg') and args.gating_prop > 0.:
model.mask_dict = {}
for context_id in range(args.contexts):
model.mask_dict[context_id + 1] = {}
for i in range(model.fcE.layers):
layer = getattr(model.fcE, "fcLayer{}".format(i + 1)).linear
if context_id == 0:
model.excit_buffer_list.append(layer.excit_buffer)
n_units = len(layer.excit_buffer)
gated_units = np.random.choice(n_units, size=int(args.gating_prop * n_units), replace=False)
model.mask_dict[context_id + 1][i] = gated_units
#-------------------------------------------------------------------------------------------------#
#-------------------------------------------------#
#----- CL-STRATEGY: PARAMETER REGULARIZATION -----#
#-------------------------------------------------#
# Options for computing the Fisher Information matrix (e.g., EWC, Online-EWC, KFAC-EWC, NCL)
use_fisher = hasattr(args, 'importance_weighting') and args.importance_weighting=="fisher" and \
(checkattr(args, 'precondition') or checkattr(args, 'weight_penalty'))
if isinstance(model, ContinualLearner) and use_fisher:
# -how to estimate the Fisher Information
model.fisher_n = args.fisher_n if hasattr(args, 'fisher_n') else None
model.fisher_labels = args.fisher_labels if hasattr(args, 'fisher_labels') else 'all'
model.fisher_batch = args.fisher_batch if hasattr(args, 'fisher_batch') else 1
# -options relating to 'Offline EWC' (Kirkpatrick et al., 2017) and 'Online EWC' (Schwarz et al., 2018)
model.offline = checkattr(args, 'offline')
if not model.offline:
model.gamma = args.gamma if hasattr(args, 'gamma') else 1.
# -if requested, initialize Fisher with prior
if checkattr(args, 'fisher_init'):
model.data_size = args.data_size #-> sets how strong the prior is
model.context_count = 1 #-> makes that already on the first context regularization will happen
if model.fisher_kfac:
model.initialize_kfac_fisher()
else:
model.initialize_fisher()
# Parameter regularization by adding a weight penalty (e.g., EWC, SI, NCL, EWC-KFAC)
if isinstance(model, ContinualLearner) and checkattr(args, 'weight_penalty'):
model.weight_penalty = True
model.importance_weighting = args.importance_weighting
model.reg_strength = args.reg_strength
if model.importance_weighting=='si':
model.epsilon = args.epsilon if hasattr(args, 'epsilon') else 0.1
# Parameter regularization through pre-conditioning of the gradient (e.g., OWM, NCL)
if isinstance(model, ContinualLearner) and checkattr(args, 'precondition'):
model.precondition = True
model.importance_weighting = args.importance_weighting
model.alpha = args.alpha
#-------------------------------------------------------------------------------------------------#
#--------------------------------------------------#
#----- CL-STRATEGY: FUNCTIONAL REGULARIZATION -----#
#--------------------------------------------------#
# Should a distillation loss (i.e., soft targets) be used? (e.g., for LwF, but also for BI-R)
if isinstance(model, ContinualLearner) and hasattr(args, 'replay'):
model.replay_targets = "soft" if checkattr(args, 'distill') else "hard"
model.KD_temp = args.temp if hasattr(args, 'temp') else 2.
if args.replay=="current" and model.replay_targets=="soft":
model.lwf_weighting = True
# Should the FROMP-optimizer by used?
if checkattr(args, 'fromp'):
model.optimizer = fromp_optimizer.opt_fromp(model, lr=args.lr, tau=args.tau, betas=(0.9, 0.999))
#-------------------------------------------------------------------------------------------------#
#-------------------------------#
#----- CL-STRATEGY: REPLAY -----#
#-------------------------------#
# DGR: Should a separate generative model be trained to generate the data to be replayed?
train_gen = True if (args.replay=="generative" and not checkattr(args, 'feedback')) else False
if train_gen:
if verbose:
print("\n\n " + ' SEPARATE GENERATIVE MODEL '.center(70, '*'))
# -specify architecture
generator = define.define_vae(args=args, config=config, device=device, depth=depth)
# -initialize parameters
define.init_params(generator, args, verbose=verbose)
# -set optimizer(s)
generator.optim_list = [{'params': filter(lambda p: p.requires_grad, generator.parameters()),
'lr': args.lr_gen}]
generator.optim_type = args.optimizer
if generator.optim_type in ("adam", "adam_reset"):
generator.optimizer = optim.Adam(generator.optim_list, betas=(0.9, 0.999))
elif generator.optim_type == "sgd":
generator.optimizer = optim.SGD(generator.optim_list)
# -print architecture to screen
if verbose:
utils.print_model_info(generator)
else:
generator = None
# Should the model be trained with replay?
if isinstance(model, ContinualLearner) and hasattr(args, 'replay'):
model.replay_mode = args.replay
# A-GEM: How should the gradient of the loss on replayed data be used? (added, as inequality constraint or both?)
if isinstance(model, ContinualLearner) and hasattr(args, 'use_replay'):
model.use_replay = args.use_replay
model.eps_agem = args.eps_agem if hasattr(args, 'eps_agem') else 0.
#-------------------------------------------------------------------------------------------------#
#-------------------------#
#----- MEMORY BUFFER -----#
#-------------------------#
# Should a memory buffer be maintained? (e.g., for experience replay, FROMP or prototype-based classification)
use_memory_buffer = checkattr(args, 'prototypes') or checkattr(args, 'add_buffer') \
or args.replay=="buffer" or checkattr(args, 'fromp')
if isinstance(model, MemoryBuffer) and use_memory_buffer:
model.use_memory_buffer = True
model.budget_per_class = args.budget
model.use_full_capacity = checkattr(args, 'use_full_capacity')
model.sample_selection = args.sample_selection if hasattr(args, 'sample_selection') else 'random'
model.norm_exemplars = (model.sample_selection=="herding")
# Should the memory buffer be added to the training set of the current context?
model.add_buffer = checkattr(args, 'add_buffer')
# Should classification be done using prototypes as class templates?
model.prototypes = checkattr(args, 'prototypes')
# Relevant for iCaRL: whether to use binary distillation loss for previous classes
if model.label=="Classifier":
model.binaryCE = checkattr(args, 'bce')
model.binaryCE_distill = checkattr(args, 'bce_distill')
#-------------------------------------------------------------------------------------------------#
#---------------------------#
#----- PARAMETER STAMP -----#
#---------------------------#
# Get parameter-stamp (and print on screen)
if verbose:
if verbose:
print('\n\n' + ' PARAMETER STAMP '.center(70, '*'))
param_stamp = get_param_stamp(
args, model.name, replay_model_name=generator.name if train_gen else None,
feature_extractor_name= feature_extractor.name if (feature_extractor is not None) else None, verbose=verbose,
)
#-------------------------------------------------------------------------------------------------#
#---------------------#
#----- CALLBACKS -----#
#---------------------#
# Prepare for keeping track of performance during training for plotting in pdf
# print(checkattr(args, 'pdf') or checkattr(args, 'results_dict'))
plotting_dict = evaluate.initiate_plotting_dict(args.contexts) if (
checkattr(args, 'pdf') or checkattr(args, 'results_dict')
) else None
# Setting up Visdom environment
if utils.checkattr(args, 'visdom'):
if verbose:
print('\n\n'+' VISDOM '.center(70, '*'))
from visdom import Visdom
env_name = "{exp}{con}-{sce}".format(exp=args.experiment, con=args.contexts, sce=args.scenario)
visdom = {'env': Visdom(env=env_name), 'graph': visdom_name(args)}
else:
visdom = None
# Callbacks for reporting and visualizing loss
generator_loss_cbs = [
cb._VAE_loss_cb(log=args.loss_log, visdom=visdom, replay=False if args.replay=="none" else True,
model=model if checkattr(args, 'feedback') else generator, contexts=args.contexts,
iters_per_context=args.iters if checkattr(args, 'feedback') else args.g_iters)
] if (train_gen or checkattr(args, 'feedback')) else [None]
loss_cbs = [
cb._gen_classifier_loss_cb(
log=args.loss_log, classes=config['classes'], visdom=visdom if args.loss_log>args.iters else None,
) if checkattr(args, 'gen_classifier') else cb._classifier_loss_cb(
log=args.loss_log, visdom=visdom, model=model, contexts=args.contexts, iters_per_context=args.iters,
)
] if (not checkattr(args, 'feedback')) else generator_loss_cbs
# Callbacks for evaluating and plotting generated / reconstructed samples
no_samples = (checkattr(args, "no_samples") or feature_extractor is not None)
sample_cbs = [
cb._sample_cb(log=args.sample_log, visdom=visdom, config=config, sample_size=args.sample_n,
test_datasets=None if checkattr(args, 'gen_classifier') else test_datasets)
] if (train_gen or checkattr(args, 'feedback') or checkattr(args, 'gen_classifier')) and not no_samples else [None]
# Callbacks for reporting and visualizing accuracy
# -after each [acc_log], for visdom
eval_cbs = [
cb._eval_cb(log=args.acc_log, test_datasets=test_datasets, visdom=visdom, iters_per_context=args.iters,
test_size=args.acc_n)
] if (not checkattr(args, 'prototypes')) and (not checkattr(args, 'gen_classifier')) else [None]
# -after each context, for plotting in pdf (when using prototypes / generative classifier, this is also for visdom)
context_cbs = [
cb._eval_cb(log=args.iters, test_datasets=test_datasets, plotting_dict=plotting_dict,
visdom=visdom if checkattr(args, 'prototypes') or checkattr(args, 'gen_classifier') else None,
iters_per_context=args.iters, test_size=args.acc_n, S=args.eval_s if hasattr(args, 'eval_s') else 1)
]
#-------------------------------------------------------------------------------------------------#
#--------------------#
#----- TRAINING -----#
#--------------------#
# Should a baseline be used (i.e., 'joint training' or 'cummulative training')?
baseline = 'joint' if checkattr(args, 'joint') else ('cummulative' if checkattr(args, 'cummulative') else 'none')
# Train model
if args.train:
if verbose:
print('\n\n' + ' TRAINING '.center(70, '*'))
# -keep track of training-time
if args.time:
start = time.time()
# -select correct training function
train_fn = train_fromp if checkattr(args, 'fromp') else (
train_gen_classifier if checkattr(args, 'gen_classifier') else train_cl
)
# -perform training
train_fn(
args, config, model, train_datasets, test_datasets, iters=args.iters, batch_size=args.batch, baseline=baseline,
sample_cbs=sample_cbs, eval_cbs=eval_cbs, loss_cbs=loss_cbs, context_cbs=context_cbs,
# -if using generative replay with a separate generative model:
generator=generator, gen_iters=args.g_iters if hasattr(args, 'g_iters') else args.iters,
gen_loss_cbs=generator_loss_cbs,
)
# -get total training-time in seconds, write to file and print to screen
if args.time:
training_time = time.time() - start
time_file = open("{}/time-{}.txt".format(args.r_dir, param_stamp), 'w')
time_file.write('{}\n'.format(training_time))
time_file.close()
if verbose and args.time:
print("Total training time = {:.1f} seconds\n".format(training_time))
# -save trained model(s), if requested
if args.save:
save_name = "mM-{}".format(param_stamp) if (
not hasattr(args, 'full_stag') or args.full_stag == "none"
) else "{}-{}".format(model.name, args.full_stag)
utils.save_checkpoint(model, args.m_dir, name=save_name, verbose=verbose)
else:
# Load previously trained model(s) (if goal is to only evaluate previously trained model)
if verbose:
print("\nLoading parameters of previously trained model...")
load_name = "mM-{}".format(param_stamp) if (
not hasattr(args, 'full_ltag') or args.full_ltag == "none"
) else "{}-{}".format(model.name, args.full_ltag)
utils.load_checkpoint(model, args.m_dir, name=load_name, verbose=verbose, strict=False)
#-------------------------------------------------------------------------------------------------#
#----------------------#
#----- EVALUATION -----#
#----------------------#
if verbose:
print('\n\n' + ' EVALUATION '.center(70, '*'))
# Set attributes of model that define how to do classification
if checkattr(args, 'gen_classifier'):
model.S = args.eval_s
# Evaluate accuracy of final model on full test-set
if verbose:
print("\n Accuracy of final model on test-set:")
accs = []
for i in range(args.contexts):
acc = evaluate.test_acc(
model, test_datasets[i], verbose=False, test_size=None, context_id=i, allowed_classes=list(
range(config['classes_per_context']*i, config['classes_per_context']*(i+1))
) if (args.scenario=="task" and not checkattr(args, 'singlehead')) else None,
)
if verbose:
print(" - Context {}: {:.4f}".format(i + 1, acc))
accs.append(acc)
average_accs = sum(accs) / args.contexts
if verbose:
print('=> average accuracy over all {} contexts: {:.4f}\n\n'.format(args.contexts, average_accs))
# -write out to text file
file_name = "{}/acc-{}{}.txt".format(args.r_dir, param_stamp,
"--S{}".format(args.eval_s) if checkattr(args, 'gen_classifier') else "")
output_file = open(file_name, 'w')
output_file.write('{}\n'.format(average_accs))
output_file.close()
# -if requested, also save the results-dict (with accuracy after each task)
if checkattr(args, 'results_dict'):
file_name = "{}/dict-{}--n{}{}".format(args.r_dir, param_stamp, "All" if args.acc_n is None else args.acc_n,
"--S{}".format(args.eval_s) if checkattr(args, 'gen_classifier') else "")
utils.save_object(plotting_dict, file_name)
#-------------------------------------------------------------------------------------------------#
#--------------------#
#----- PLOTTING -----#
#--------------------#
# If requested, generate pdf
if checkattr(args, 'pdf'):
# -open pdf
plot_name = "{}/{}.pdf".format(args.p_dir, param_stamp)
pp = visual_plt.open_pdf(plot_name)
# -show samples and reconstructions (either from main model or from separate generator)
if checkattr(args, 'feedback') or args.replay=="generative" or checkattr(args, 'gen_classifier'):
evaluate.show_samples(
model if checkattr(args, 'feedback') or checkattr(args, 'gen_classifier') else generator, config,
size=args.sample_n, pdf=pp
)
if not checkattr(args, 'gen_classifier'):
for i in range(args.contexts):
evaluate.show_reconstruction(model if checkattr(args, 'feedback') else generator,
test_datasets[i], config, pdf=pp, context=i+1)
figure_list = [] #-> create list to store all figures to be plotted
# -generate all figures (and store them in [figure_list])
plot_list = []
for i in range(args.contexts):
plot_list.append(plotting_dict["acc per context"]["context {}".format(i + 1)])
figure = visual_plt.plot_lines(
plot_list, x_axes=plotting_dict["x_context"],
line_names=['context {}'.format(i + 1) for i in range(args.contexts)]
)
figure_list.append(figure)
figure = visual_plt.plot_lines(
[plotting_dict["average"]], x_axes=plotting_dict["x_context"],
line_names=['average all contexts so far']
)
figure_list.append(figure)
# -add figures to pdf
for figure in figure_list:
pp.savefig(figure)
# -close pdf
pp.close()
# -print name of generated plot on screen
if verbose:
print("\nGenerated plot: {}\n".format(plot_name))
if __name__ == '__main__':
# -load input-arguments
args = handle_inputs()
# -run experiment
run(args, verbose=True)