-
Notifications
You must be signed in to change notification settings - Fork 507
/
Copy pathpoints_lines.cpp
337 lines (286 loc) · 13.1 KB
/
points_lines.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#include <bits/stdc++.h>
using namespace std;
const double INF = 1e9;
const double EPS = 1e-9;
double DEG_to_RAD(double d) { return d*M_PI/180.0; }
double RAD_to_DEG(double r) { return r*180.0/M_PI; }
// struct point_i { int x, y; }; // minimalist mode
struct point_i {
int x, y; // use this if possible
point_i() { x = y = 0; } // default constructor
point_i(int _x, int _y) : x(_x), y(_y) {} // constructor
};
struct point {
double x, y; // if need more precision
point() { x = y = 0.0; } // default constructor
point(double _x, double _y) : x(_x), y(_y) {} // constructor
bool operator < (point other) const { // override < operator
if (fabs(x-other.x) > EPS) // useful for sorting
return x < other.x; // by x-coordinate
return y < other.y; // if tie, by y-coordinate
}
// use EPS (1e-9) when testing equality of two floating points
bool operator == (point other) const {
return (fabs(x-other.x) < EPS && (fabs(y-other.y) < EPS));
}
};
double dist(point p1, point p2) { // Euclidean distance
// hypot(dx, dy) returns sqrt(dx*dx + dy*dy)
return hypot(p1.x-p2.x, p1.y-p2.y); // return double
}
// rotate p by theta degrees CCW w.r.t origin (0, 0)
point rotate(point p, double theta) {
double rad = DEG_to_RAD(theta); // convert to radian
return point(p.x*cos(rad) - p.y*sin(rad),
p.x*sin(rad) + p.y*cos(rad));
}
struct line { double a, b, c; }; // most versatile
// the answer is stored in the third parameter (pass by reference)
void pointsToLine(point p1, point p2, line &l) {
if (fabs(p1.x-p2.x) < EPS) // vertical line is fine
l = {1.0, 0.0, -p1.x}; // default values
else {
double a = -(double)(p1.y-p2.y) / (p1.x-p2.x);
l = {a, 1.0, -(double)(a*p1.x) - p1.y}; // NOTE: b always 1.0
}
}
// not needed since we will use the more robust form: ax + by + c = 0
struct line2 { double m, c; }; // alternative way
int pointsToLine2(point p1, point p2, line2 &l) {
if (p1.x == p2.x) { // vertical line
l.m = INF; // this is to denote a
l.c = p1.x; // line x = x_value
return 0; // differentiate result
}
else {
l.m = (double)(p1.y-p2.y) / (p1.x-p2.x);
l.c = p1.y - l.m*p1.x;
return 1; // standard y = mx + c
}
}
bool areParallel(line l1, line l2) { // check a & b
return (fabs(l1.a-l2.a) < EPS) && (fabs(l1.b-l2.b) < EPS);
}
bool areSame(line l1, line l2) { // also check c
return areParallel(l1 ,l2) && (fabs(l1.c-l2.c) < EPS);
}
// returns true (+ intersection point p) if two lines are intersect
bool areIntersect(line l1, line l2, point &p) {
if (areParallel(l1, l2)) return false; // no intersection
// solve system of 2 linear algebraic equations with 2 unknowns
p.x = (l2.b*l1.c - l1.b*l2.c) / (l2.a*l1.b - l1.a*l2.b);
// special case: test for vertical line to avoid division by zero
if (fabs(l1.b) > EPS) p.y = -(l1.a*p.x + l1.c);
else p.y = -(l2.a*p.x + l2.c);
return true;
}
struct vec { double x, y; // name: `vec' is different from STL vector
vec(double _x, double _y) : x(_x), y(_y) {}
};
vec toVec(const point &a, const point &b) { // convert 2 points
return vec(b.x-a.x, b.y-a.y); // to vector a->b
}
vec scale(const vec &v, double s) { // s = [<1..1..>1]
return vec(v.x*s, v.y*s); // shorter/eq/longer
} // return a new vec
point translate(const point &p, const vec &v) { // translate p
return point(p.x+v.x, p.y+v.y); // according to v
} // return a new point
// convert point and gradient/slope to line
void pointSlopeToLine(point p, double m, line &l) {
l.a = -m; // always -m
l.b = 1; // always 1
l.c = -((l.a * p.x) + (l.b * p.y)); // compute this
}
void closestPoint(line l, point p, point &ans) {
// this line is perpendicular to l and pass through p
line perpendicular;
if (fabs(l.b) < EPS) { // vertical line
ans.x = -(l.c);
ans.y = p.y;
return;
}
if (fabs(l.a) < EPS) { // horizontal line
ans.x = p.x;
ans.y = -(l.c);
return;
}
pointSlopeToLine(p, 1/l.a, perpendicular); // normal line
// intersect line l with this perpendicular line
// the intersection point is the closest point
areIntersect(l, perpendicular, ans);
}
// returns the reflection of point on a line
void reflectionPoint(line l, point p, point &ans) {
point b;
closestPoint(l, p, b); // similar to distToLine
vec v = toVec(p, b); // create a vector
ans = translate(translate(p, v), v); // translate p twice
}
// returns the dot product of two vectors a and b
double dot(vec a, vec b) { return (a.x*b.x + a.y*b.y); }
// returns the squared value of the normalized vector
double norm_sq(vec v) { return v.x*v.x + v.y*v.y; }
double angle(const point &a, const point &o, const point &b) {
vec oa = toVec(o, a), ob = toVec(o, b); // a != o != b
return acos(dot(oa, ob) / sqrt(norm_sq(oa) * norm_sq(ob)));
} // angle aob in rad
// returns the distance from p to the line defined by
// two points a and b (a and b must be different)
// the closest point is stored in the 4th parameter (byref)
double distToLine(point p, point a, point b, point &c) {
vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
// formula: c = a + u*ab
c = translate(a, scale(ab, u)); // translate a to c
return dist(p, c); // Euclidean distance
}
// returns the distance from p to the line segment ab defined by
// two points a and b (technically, a has to be different than b)
// the closest point is stored in the 4th parameter (byref)
double distToLineSegment(point p, point a, point b, point &c) {
vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
if (u < 0.0) { // closer to a
c = point(a.x, a.y);
return dist(p, a); // dist p to a
}
if (u > 1.0) { // closer to b
c = point(b.x, b.y);
return dist(p, b); // dist p to b
}
return distToLine(p, a, b, c); // use distToLine
}
// returns the cross product of two vectors a and b
double cross(vec a, vec b) { return a.x*b.y - a.y*b.x; }
//// another variant
// returns 'twice' the area of this triangle A-B-c
// int area2(point p, point q, point r) {
// return p.x * q.y - p.y * q.x +
// q.x * r.y - q.y * r.x +
// r.x * p.y - r.y * p.x;
// }
// note: to accept collinear points, we have to change the `> 0'
// returns true if point r is on the left side of line pq
bool ccw(point p, point q, point r) {
return cross(toVec(p, q), toVec(p, r)) > -EPS;
}
// returns true if point r is on the same line as the line pq
bool collinear(point p, point q, point r) {
return fabs(cross(toVec(p, q), toVec(p, r))) < EPS;
}
int main() {
vector<point> P;
P.emplace_back(2e-9, 0); // largest
P.push_back({0, 2}); // smallest
P.push_back({1e-9, 1}); // second smallest
sort(P.begin(), P.end());
for (auto &pt : P) // the result is
printf("%.9lf, %.9lf\n", pt.x, pt.y); // unexpected
// change
// const double EPS = 1e-9;
// to
// const double EPS = 1e-10;
// to fix that issue, Rule of Thumb: check the required precision
point P1, P2, P3(0, 1); // note that both P1 and P2 are (0.00, 0.00)
printf("%d\n", P1 == P2); // true
printf("%d\n", P1 == P3); // false
P.clear();
P.push_back(point(2, 2));
P.push_back(point(4, 3));
P.push_back(point(2, 4));
P.push_back(point(6, 6));
P.push_back(point(2, 6));
P.push_back(point(6, 5));
// sorting points demo
sort(P.begin(), P.end());
for (int i = 0; i < (int)P.size(); i++)
printf("(%.2lf, %.2lf)\n", P[i].x, P[i].y);
// rearrange the points as shown in the diagram below
P.clear();
P.push_back(point(2, 2));
P.push_back(point(4, 3));
P.push_back(point(2, 4));
P.push_back(point(6, 6));
P.push_back(point(2, 6));
P.push_back(point(6, 5));
P.push_back(point(8, 6));
/*
// the positions of these 7 points (0-based indexing)
6 P4 P3 P6
5 P5
4 P2
3 P1
2 P0
1
0 1 2 3 4 5 6 7 8
*/
double d = dist(P[0], P[5]);
printf("Euclidean distance between P[0] and P[5] = %.2lf\n", d); // should be 5.000
// line equations
line l1, l2, l3, l4;
pointsToLine(P[0], P[1], l1);
printf("%.2lf * x + %.2lf * y + %.2lf = 0.00\n", l1.a, l1.b, l1.c); // should be -0.50 * x + 1.00 * y - 1.00 = 0.00
pointsToLine(P[0], P[2], l2); // a vertical line, not a problem in "ax + by + c = 0" representation
printf("%.2lf * x + %.2lf * y + %.2lf = 0.00\n", l2.a, l2.b, l2.c); // should be 1.00 * x + 0.00 * y - 2.00 = 0.00
// parallel, same, and line intersection tests
pointsToLine(P[2], P[3], l3);
printf("l1 & l2 are parallel? %d\n", areParallel(l1, l2)); // no
printf("l1 & l3 are parallel? %d\n", areParallel(l1, l3)); // yes, l1 (P[0]-P[1]) and l3 (P[2]-P[3]) are parallel
pointsToLine(P[2], P[4], l4);
printf("l1 & l2 are the same? %d\n", areSame(l1, l2)); // no
printf("l2 & l4 are the same? %d\n", areSame(l2, l4)); // yes, l2 (P[0]-P[2]) and l4 (P[2]-P[4]) are the same line (note, they are two different line segments, but same line)
point p12;
bool res = areIntersect(l1, l2, p12); // yes, l1 (P[0]-P[1]) and l2 (P[0]-P[2]) are intersect at (2.0, 2.0)
printf("l1 & l2 are intersect? %d, at (%.2lf, %.2lf)\n", res, p12.x, p12.y);
// other distances
point ans;
d = distToLine(P[0], P[2], P[3], ans);
printf("Closest point from P[0] to line (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d);
closestPoint(l3, P[0], ans);
printf("Closest point from P[0] to line V2 (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, dist(P[0], ans));
d = distToLineSegment(P[0], P[2], P[3], ans);
printf("Closest point from P[0] to line SEGMENT (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d); // closer to A (or P[2]) = (2.00, 4.00)
d = distToLineSegment(P[1], P[2], P[3], ans);
printf("Closest point from P[1] to line SEGMENT (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d); // closer to midway between AB = (3.20, 4.60)
d = distToLineSegment(P[6], P[2], P[3], ans);
printf("Closest point from P[6] to line SEGMENT (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d); // closer to B (or P[3]) = (6.00, 6.00)
reflectionPoint(l4, P[1], ans);
printf("Reflection point from P[1] to line (P[2]-P[4]): (%.2lf, %.2lf)\n", ans.x, ans.y); // should be (0.00, 3.00)
printf("Angle P[0]-P[4]-P[3] = %.2lf\n", RAD_to_DEG(angle(P[0], P[4], P[3]))); // 90 degrees
printf("Angle P[0]-P[2]-P[1] = %.2lf\n", RAD_to_DEG(angle(P[0], P[2], P[1]))); // 63.43 degrees
printf("Angle P[4]-P[3]-P[6] = %.2lf\n", RAD_to_DEG(angle(P[4], P[3], P[6]))); // 180 degrees
printf("P[0], P[2], P[3] form A left turn? %d\n", ccw(P[0], P[2], P[3])); // no
printf("P[0], P[3], P[2] form A left turn? %d\n", ccw(P[0], P[3], P[2])); // yes
printf("P[0], P[2], P[3] are collinear? %d\n", collinear(P[0], P[2], P[3])); // no
printf("P[0], P[2], P[4] are collinear? %d\n", collinear(P[0], P[2], P[4])); // yes
point p(3, 7), q(11, 13), r(35, 30); // collinear if r(35, 31)
printf("r is on the %s of line p-q (direction p->q)\n", ccw(p, q, r) ? "left" : "right"); // right
/*
// the positions of these 6 points
E<-- 4
3 B D<--
2 A C
1
-4-3-2-1 0 1 2 3 4 5 6
-1
-2
F<-- -3
*/
// translation
point A(2.0, 2.0);
point B(4.0, 3.0);
vec v = toVec(A, B); // imagine there is an arrow from A to B (see the diagram above)
point C(3.0, 2.0);
point D = translate(C, v); // D will be located in coordinate (3.0 + 2.0, 2.0 + 1.0) = (5.0, 3.0)
printf("D = (%.2lf, %.2lf)\n", D.x, D.y);
point E = translate(C, scale(v, 0.5)); // E will be located in coordinate (3.0 + 1/2 * 2.0, 2.0 + 1/2 * 1.0) = (4.0, 2.5)
printf("E = (%.2lf, %.2lf)\n", E.x, E.y);
// rotation
printf("B = (%.2lf, %.2lf)\n", B.x, B.y); // B = (4.0, 3.0)
point F = rotate(B, 90); // rotate B by 90 degrees COUNTER clockwise, F = (-3.0, 4.0)
printf("F = (%.2lf, %.2lf)\n", F.x, F.y);
point G = rotate(B, 180); // rotate B by 180 degrees COUNTER clockwise, G = (-4.0, -3.0)
printf("G = (%.2lf, %.2lf)\n", G.x, G.y);
return 0;
}