-
Notifications
You must be signed in to change notification settings - Fork 507
/
Copy pathtriangles.cpp
205 lines (164 loc) · 7.99 KB
/
triangles.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-9;
double DEG_to_RAD(double d) { return d*M_PI/180.0; }
double RAD_to_DEG(double r) { return r*180.0/M_PI; }
struct point_i {
int x, y; // use this if possible
point_i() { x = y = 0; } // default constructor
point_i(int _x, int _y) : x(_x), y(_y) {} // constructor
};
struct point {
double x, y; // if need more precision
point() { x = y = 0.0; } // default constructor
point(double _x, double _y) : x(_x), y(_y) {} // constructor
};
double dist(point p1, point p2) {
return hypot(p1.x-p2.x, p1.y-p2.y);
}
double perimeter(double ab, double bc, double ca) {
return ab + bc + ca;
}
double perimeter(point a, point b, point c) {
return dist(a, b) + dist(b, c) + dist(c, a);
}
double area(double ab, double bc, double ca) {
// Heron's formula, split sqrt(a*b) into sqrt(a)*sqrt(b)
double s = 0.5 * perimeter(ab, bc, ca);
return sqrt(s) * sqrt(s-ab) * sqrt(s-bc) * sqrt(s-ca);
}
double area(point a, point b, point c) {
return area(dist(a, b), dist(b, c), dist(c, a));
}
//====================================================================
// from points_lines
struct line { double a, b, c; }; // most versatile
// the answer is stored in the third parameter (pass by reference)
void pointsToLine(point p1, point p2, line &l) {
if (fabs(p1.x-p2.x) < EPS) // vertical line is fine
l = {1.0, 0.0, -p1.x}; // default values
else {
double a = -(double)(p1.y-p2.y) / (p1.x-p2.x);
l = {a, 1.0, -(double)(a*p1.x) - p1.y}; // NOTE: b always 1.0
}
}
bool areParallel(line l1, line l2) { // check a & b
return (fabs(l1.a-l2.a) < EPS) && (fabs(l1.b-l2.b) < EPS);
}
// returns true (+ intersection point) if two lines are intersect
bool areIntersect(line l1, line l2, point &p) {
if (areParallel(l1, l2)) return false; // no intersection
// solve system of 2 linear algebraic equations with 2 unknowns
p.x = (l2.b * l1.c - l1.b * l2.c) / (l2.a * l1.b - l1.a * l2.b);
// special case: test for vertical line to avoid division by zero
if (fabs(l1.b) > EPS) p.y = -(l1.a * p.x + l1.c);
else p.y = -(l2.a * p.x + l2.c);
return true;
}
struct vec { double x, y; // name: `vec' is different from STL vector
vec(double _x, double _y) : x(_x), y(_y) {} };
vec toVec(point a, point b) { // convert 2 points to vector a->b
return vec(b.x - a.x, b.y - a.y); }
vec scale(vec v, double s) { // nonnegative s = [<1 .. 1 .. >1]
return vec(v.x * s, v.y * s); } // shorter.same.longer
point translate(point p, vec v) { // translate p according to v
return point(p.x + v.x , p.y + v.y); }
//====================================================================
double rInCircle(double ab, double bc, double ca) {
return area(ab, bc, ca) / (0.5 * perimeter(ab, bc, ca)); }
double rInCircle(point a, point b, point c) {
return rInCircle(dist(a, b), dist(b, c), dist(c, a)); }
// assumption: the required points/lines functions have been written
// returns 1 if there is an inCircle center, returns 0 otherwise
// if this function returns 1, ctr will be the inCircle center
// and r is the same as rInCircle
int inCircle(point p1, point p2, point p3, point &ctr, double &r) {
r = rInCircle(p1, p2, p3);
if (fabs(r) < EPS) return 0; // no inCircle center
line l1, l2; // compute these two angle bisectors
double ratio = dist(p1, p2) / dist(p1, p3);
point p = translate(p2, scale(toVec(p2, p3), ratio / (1 + ratio)));
pointsToLine(p1, p, l1);
ratio = dist(p2, p1) / dist(p2, p3);
p = translate(p1, scale(toVec(p1, p3), ratio / (1 + ratio)));
pointsToLine(p2, p, l2);
areIntersect(l1, l2, ctr); // get their intersection point
return 1; }
double rCircumCircle(double ab, double bc, double ca) {
return ab * bc * ca / (4.0 * area(ab, bc, ca)); }
double rCircumCircle(point a, point b, point c) {
return rCircumCircle(dist(a, b), dist(b, c), dist(c, a)); }
// assumption: the required points/lines functions have been written
// returns 1 if there is a circumCenter center, returns 0 otherwise
// if this function returns 1, ctr will be the circumCircle center
// and r is the same as rCircumCircle
int circumCircle(point p1, point p2, point p3, point &ctr, double &r){
double a = p2.x - p1.x, b = p2.y - p1.y;
double c = p3.x - p1.x, d = p3.y - p1.y;
double e = a * (p1.x + p2.x) + b * (p1.y + p2.y);
double f = c * (p1.x + p3.x) + d * (p1.y + p3.y);
double g = 2.0 * (a * (p3.y - p2.y) - b * (p3.x - p2.x));
if (fabs(g) < EPS) return 0;
ctr.x = (d*e - b*f) / g;
ctr.y = (a*f - c*e) / g;
r = dist(p1, ctr); // r = distance from center to 1 of the 3 points
return 1; }
// returns true if point d is inside the circumCircle defined by a,b,c
int inCircumCircle(point a, point b, point c, point d) {
return (a.x - d.x) * (b.y - d.y) * ((c.x - d.x) * (c.x - d.x) + (c.y - d.y) * (c.y - d.y)) +
(a.y - d.y) * ((b.x - d.x) * (b.x - d.x) + (b.y - d.y) * (b.y - d.y)) * (c.x - d.x) +
((a.x - d.x) * (a.x - d.x) + (a.y - d.y) * (a.y - d.y)) * (b.x - d.x) * (c.y - d.y) -
((a.x - d.x) * (a.x - d.x) + (a.y - d.y) * (a.y - d.y)) * (b.y - d.y) * (c.x - d.x) -
(a.y - d.y) * (b.x - d.x) * ((c.x - d.x) * (c.x - d.x) + (c.y - d.y) * (c.y - d.y)) -
(a.x - d.x) * ((b.x - d.x) * (b.x - d.x) + (b.y - d.y) * (b.y - d.y)) * (c.y - d.y) > 0 ? 1 : 0;
}
bool canFormTriangle(double a, double b, double c) {
return (a+b > c) && (a+c > b) && (b+c > a);
}
int main() {
double base = 4.0, h = 3.0;
double A = 0.5 * base * h;
printf("Area = %.2lf\n", A);
point a; // a right triangle
point b(4.0, 0.0);
point c(4.0, 3.0);
double p = perimeter(a, b, c);
double s = 0.5 * p;
A = area(a, b, c);
printf("Area = %.2lf\n", A); // must be the same as above
double r = rInCircle(a, b, c);
printf("R1 (radius of incircle) = %.2lf\n", r); // 1.00
point ctr;
int res = inCircle(a, b, c, ctr, r);
printf("R1 (radius of incircle) = %.2lf\n", r); // same, 1.00
printf("Center = (%.2lf, %.2lf)\n", ctr.x, ctr.y); // (3.00, 1.00)
printf("R2 (radius of circumcircle) = %.2lf\n", rCircumCircle(a, b, c)); // 2.50
res = circumCircle(a, b, c, ctr, r);
printf("R2 (radius of circumcircle) = %.2lf\n", r); // same, 2.50
printf("Center = (%.2lf, %.2lf)\n", ctr.x, ctr.y); // (2.00, 1.50)
point d(2.0, 1.0); // inside triangle and circumCircle
printf("d inside circumCircle (a, b, c) ? %d\n", inCircumCircle(a, b, c, d));
point e(2.0, 3.9); // outside the triangle but inside circumCircle
printf("e inside circumCircle (a, b, c) ? %d\n", inCircumCircle(a, b, c, e));
point f(2.0, -1.1); // slightly outside
printf("f inside circumCircle (a, b, c) ? %d\n", inCircumCircle(a, b, c, f));
// Law of Cosines
double ab = dist(a, b);
double bc = dist(b, c);
double ca = dist(c, a);
double alpha = RAD_to_DEG(acos((ca * ca + ab * ab - bc * bc) / (2.0 * ca * ab)));
printf("alpha = %.2lf\n", alpha);
double beta = RAD_to_DEG(acos((ab * ab + bc * bc - ca * ca) / (2.0 * ab * bc)));
printf("beta = %.2lf\n", beta);
double gamma = RAD_to_DEG(acos((bc * bc + ca * ca - ab * ab) / (2.0 * bc * ca)));
printf("gamma = %.2lf\n", gamma);
// Law of Sines
printf("%.2lf == %.2lf == %.2lf\n", bc / sin(DEG_to_RAD(alpha)), ca / sin(DEG_to_RAD(beta)), ab / sin(DEG_to_RAD(gamma)));
// Phytagorean Theorem
printf("%.2lf^2 == %.2lf^2 + %.2lf^2\n", ca, ab, bc);
// Triangle Inequality
printf("(%d, %d, %d) => can form triangle? %d\n", 3, 4, 5, canFormTriangle(3, 4, 5)); // yes
printf("(%d, %d, %d) => can form triangle? %d\n", 3, 4, 7, canFormTriangle(3, 4, 7)); // no, actually straight line
printf("(%d, %d, %d) => can form triangle? %d\n", 3, 4, 8, canFormTriangle(3, 4, 8)); // no
return 0;
}