-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMoNAnExampleScript.R
210 lines (158 loc) · 6.13 KB
/
MoNAnExampleScript.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# This script runs a simple example with the data from the MoNAn package
library(MoNAn)
##### create data objects from internal data files,
# which are later combined to the process state #####
# extract number of individuals and organisations from the mobility data
N_ind <- nrow(mobilityEdgelist)
N_org <- length(unique(as.numeric(mobilityEdgelist)))
# Create a process state out of the mobility data objects:
# create objects (which are later combined to the process state)
transfers <- monanDependent(mobilityEdgelist,
nodes = "organisations",
edges = "people")
people <- monanEdges(N_ind)
organisations <- monanNodes(N_org)
sameRegion <- outer(orgRegion, orgRegion, "==") * 1
sameRegion <- dyadicCovar(sameRegion, nodes = "organisations")
region <- monadicCovar(orgRegion, nodes = "organisations")
size <- monadicCovar(orgSize, nodes = "organisations")
sex <- monadicCovar(indSex, edges = "people")
# the following lines create an artificial second origin used for illustration
# in the examples in the manual
other_origin <- sample(1:17, 742, replace = T)
resample <- as.logical(sample(0:1, 742, replace = T, prob = c(0.88, 0.12)))
other_origin[resample] <- transfers$data[resample,2]
second_or <- monadicCovar(other_origin, edges = "people")
# combine created objects to the process state
myState <- monanDataCreate(transfers,
people,
organisations,
sameRegion,
region,
size,
sex,
second_or,
fixedEffectDummies = TRUE)
# inspect the created object
myState
##### create effects object #####
# effects object
myEffects <- createEffects(myState) |>
addEffect(loops) |>
addEffect(concentration_AC, alpha = 4) |>
addEffect(reciprocity_AC, alpha = 4) |>
addEffect(dyadic_covariate, node.attribute = "sameRegion") |>
addEffect(alter_covariate, node.attribute = "size") |>
addEffect(resource_covar_to_node_covar,
node.attribute = "region",
edge.attribute = "sex") |>
addEffect(loops_resource_covar, edge.attribute = "sex")
# inspect the created object
myEffects
# further effects object with fixed effects by location
myEffects_fe <- createEffects(myState) |>
addEffect(loops) |>
addEffect(concentration_AC, alpha = 4) |>
addEffect(reciprocity_AC, alpha = 4) |>
addEffect(dyadic_covariate, node.attribute = "sameRegion") |>
addEffect(resource_covar_to_node_covar,
node.attribute = "region",
edge.attribute = "sex") |>
addEffect(loops_resource_covar, edge.attribute = "sex") |>
addFixedEffects(myState)
myEffects_fe
##### get multinomial statistics to estimate initial parameters using pseudo-likelihood estimation #####
# create statistics object, to be used, e.g., with the mlogit package
myStatisticsFrame <- getMultinomialStatistics(myState, myEffects)
### additional script to get pseudo-likelihood estimates
# library(dfidx)
# library(mlogit)
# my.mlogit.dataframe <- dfidx(myStatisticsFrame,
# shape = "long",
# choice = "choice")
#
# colnames(my.mlogit.dataframe) <- gsub(" ", "_", colnames(my.mlogit.dataframe))
#
# IVs <- (colnames(my.mlogit.dataframe)[2:(ncol(myStatisticsFrame)-2)])
#
# form <- as.formula(paste("choice ~ 1 + ", paste(IVs, collapse = " + "), "| 0"))
#
# my.mlogit.results <- mlogit(formula = eval(form), data = my.mlogit.dataframe, heterosc = FALSE)
#
# summary(my.mlogit.results)
#
# initEst <- my.mlogit.results$coefficients[1:length(IVs)]
##### create algorithm object #####
# define algorithm based on state and effects characteristics
myAlg <- monanAlgorithmCreate(myState, myEffects, nsubN2 = 3,
multinomialProposal = FALSE)
##### estimate mobility network model #####
# mobility network model
myResDN <- monanEstimate(
myState, myEffects, myAlg,
initialParameters = NULL,
# in case a pseudo-likelihood estimation was run, replace with
# initialParameters = initEst,
parallel = TRUE, cpus = 4,
verbose = TRUE,
returnDeps = TRUE,
fish = FALSE
)
# myResDN_fe <- monanEstimate(
# myState, myEffects_fe, myAlg,
# initialParameters = NULL,
# # in case a pseudo-likelihood estimation was run, replace with
# # initialParameters = initEst,
# parallel = TRUE, cpus = 4,
# verbose = TRUE,
# returnDeps = TRUE,
# fish = FALSE
# )
# check convergence
max(abs(myResDN$convergenceStatistics))
myResDN_old <- myResDN
# estimate mobility network model again based on previous results to improve convergence
# with an adjusted algorithm
myAlg <- monanAlgorithmCreate(myState, myEffects, multinomialProposal = TRUE,
initialIterationsN2 = 100, nsubN2 = 1, initGain = 0.05, iterationsN3 = 1000)
# monan07 is an alias for monanEstimate
myResDN <- monan07(
myState, myEffects, myAlg,
prevAns = myResDN,
parallel = TRUE, cpus = 4,
verbose = TRUE,
returnDeps = TRUE,
fish = FALSE
)
# check convergence
max(abs(myResDN$convergenceStatistics))
# view results
myResDN
##### regression diagnostics #####
autoCorrelationTest(myResDN)
traces <- extractTraces(myResDN, myEffects)
plot(traces)
##### test whether other effects should be included #####
myEffects2 <- createEffects(myState) |>
addEffect(transitivity_AC)
test_ME.2 <- scoreTest(myResDN, myEffects2)
test_ME.2
##### goodness of fit #####
myGofIndegree <- monanGOF(ans = myResDN,
gofFunction = getIndegree,
lvls = 1:100)
plot(myGofIndegree, lvls = 20:70)
myGofTieWeight <- monanGOF(ans = myResDN,
gofFunction = getTieWeights,
lvls = 1:30)
plot(myGofTieWeight, lvls = 1:15)
##### simulate mobility network #####
mySimDN <- monanSimulate(myState,
myEffects,
parameters = c(2, 1, 1.5, 0.5, 0.1, -1, -0.5),
allowLoops = TRUE,
burnin = 45000,
thinning = 15000,
nSimulations = 10
)
mySimDN[[1]]