forked from anantzoid/Conditional-PixelCNN-decoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autoencoder.py
55 lines (43 loc) · 2.16 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow as tf
import numpy as np
from utils import *
from models import *
def trainAE(conf, data):
encoder_X = tf.placeholder(tf.float32, shape=[None, conf.img_height, conf.img_width, conf.channel])
decoder_X = tf.placeholder(tf.float32, shape=[None, conf.img_height, conf.img_width, conf.channel])
encoder = ConvolutionalEncoder(encoder_X, conf)
decoder = PixelCNN(decoder_X, conf, encoder.pred)
y = decoder.pred
tf.scalar_summary('loss', decoder.loss)
trainer = tf.train.RMSPropOptimizer(1e-3)
gradients = trainer.compute_gradients(decoder.loss)
clipped_gradients = [(tf.clip_by_value(_[0], -conf.grad_clip, conf.grad_clip), _[1]) for _ in gradients]
optimizer = trainer.apply_gradients(clipped_gradients)
saver = tf.train.Saver(tf.trainable_variables())
with tf.Session() as sess:
merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter(conf.summary_path, sess.graph)
sess.run(tf.initialize_all_variables())
if os.path.exists(conf.ckpt_file):
saver.restore(sess, conf.ckpt_file)
print "Model Restored"
# TODO The training part below and in main.py could be generalized
if conf.epochs > 0:
print "Started Model Training..."
pointer = 0
step = 0
for i in range(conf.epochs):
for j in range(conf.num_batches):
if conf.data == 'mnist':
batch_X = binarize(data.train.next_batch(conf.batch_size)[0].reshape(conf.batch_size, conf.img_height, conf.img_width, conf.channel))
else:
batch_X, pointer = get_batch(data, pointer, conf.batch_size)
_, l, summary = sess.run([optimizer, decoder.loss, merged], feed_dict={encoder_X: batch_X, decoder_X: batch_X})
writer.add_summary(summary, step)
step += 1
print "Epoch: %d, Cost: %f"%(i, l)
if (i+1)%10 == 0:
saver.save(sess, conf.ckpt_file)
generate_ae(sess, encoder_X, decoder_X, y, data, conf, str(i))
writer.close()
generate_ae(sess, encoder_X, decoder_X, y, data, conf, '')