forked from anantzoid/Conditional-PixelCNN-decoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
100 lines (88 loc) · 3.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import tensorflow as tf
import numpy as np
import argparse
from models import PixelCNN
from autoencoder import *
from utils import *
def train(conf, data):
X = tf.placeholder(tf.float32, shape=[None, conf.img_height, conf.img_width, conf.channel])
model = PixelCNN(X, conf)
trainer = tf.train.RMSPropOptimizer(1e-3)
gradients = trainer.compute_gradients(model.loss)
clipped_gradients = [(tf.clip_by_value(_[0], -conf.grad_clip, conf.grad_clip), _[1]) for _ in gradients]
optimizer = trainer.apply_gradients(clipped_gradients)
saver = tf.train.Saver(tf.trainable_variables())
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
if os.path.exists(conf.ckpt_file):
saver.restore(sess, conf.ckpt_file)
print "Model Restored"
if conf.epochs > 0:
print "Started Model Training..."
pointer = 0
for i in range(conf.epochs):
for j in range(conf.num_batches):
if conf.data == "mnist":
batch_X, batch_y = data.train.next_batch(conf.batch_size)
batch_X = binarize(batch_X.reshape([conf.batch_size, \
conf.img_height, conf.img_width, conf.channel]))
batch_y = one_hot(batch_y, conf.num_classes)
else:
batch_X, pointer = get_batch(data, pointer, conf.batch_size)
data_dict = {X:batch_X}
if conf.conditional is True:
data_dict[model.h] = batch_y
_, cost = sess.run([optimizer, model.loss], feed_dict=data_dict)
print "Epoch: %d, Cost: %f"%(i, cost)
if (i+1)%10 == 0:
saver.save(sess, conf.ckpt_file)
generate_samples(sess, X, model.h, model.pred, conf, "")
generate_samples(sess, X, model.h, model.pred, conf, "")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='mnist')
parser.add_argument('--layers', type=int, default=12)
parser.add_argument('--f_map', type=int, default=32)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--grad_clip', type=int, default=1)
parser.add_argument('--model', type=str, default='')
parser.add_argument('--data_path', type=str, default='data')
parser.add_argument('--ckpt_path', type=str, default='ckpts')
parser.add_argument('--samples_path', type=str, default='samples')
parser.add_argument('--summary_path', type=str, default='logs')
conf = parser.parse_args()
if conf.data == 'mnist':
from tensorflow.examples.tutorials.mnist import input_data
if not os.path.exists(conf.data_path):
os.makedirs(conf.data_path)
data = input_data.read_data_sets(conf.data_path)
conf.num_classes = 10
conf.img_height = 28
conf.img_width = 28
conf.channel = 1
conf.num_batches = data.train.num_examples // conf.batch_size
else:
from keras.datasets import cifar10
data = cifar10.load_data()
labels = data[0][1]
data = data[0][0].astype(np.float32)
data[:,0,:,:] -= np.mean(data[:,0,:,:])
data[:,1,:,:] -= np.mean(data[:,1,:,:])
data[:,2,:,:] -= np.mean(data[:,2,:,:])
data = np.transpose(data, (0, 2, 3, 1))
conf.img_height = 32
conf.img_width = 32
conf.channel = 3
conf.num_classes = 10
conf.num_batches = data.shape[0] // conf.batch_size
conf = makepaths(conf)
if conf.model == '':
conf.conditional = False
train(conf, data)
elif conf.model.lower() == 'conditional':
conf.conditional = True
train(conf, data)
elif conf.model.lower() == 'autoencoder':
conf.conditional = True
trainAE(conf, data)