-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUGCVQA_FR_model.py
123 lines (99 loc) · 4.38 KB
/
UGCVQA_FR_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import os,sys
import torch
from torchvision import models,transforms
import torch.nn as nn
import torch.nn.functional as F
def TP(q, tau=12, beta=0.5):
"""subjectively-inspired temporal pooling"""
q = torch.unsqueeze(torch.t(q), 0)
qm = -float('inf')*torch.ones((1, 1, tau-1)).to(q.device)
qp = 10000.0 * torch.ones((1, 1, tau - 1)).to(q.device) #
l = -F.max_pool1d(torch.cat((qm, -q), 2), tau, stride=1)
m = F.avg_pool1d(torch.cat((q * torch.exp(-q), qp * torch.exp(-qp)), 2), tau, stride=1)
n = F.avg_pool1d(torch.cat((torch.exp(-q), torch.exp(-qp)), 2), tau, stride=1)
m = m / n
return beta * m + (1 - beta) * l
class L2pooling(nn.Module):
def __init__(self, filter_size=5, stride=2, channels=None, pad_off=0):
super(L2pooling, self).__init__()
self.padding = (filter_size - 2 )//2
self.stride = stride
self.channels = channels
a = np.hanning(filter_size)[1:-1]
g = torch.Tensor(a[:,None]*a[None,:])
g = g/torch.sum(g)
self.register_buffer('filter', g[None,None,:,:].repeat((self.channels,1,1,1)))
def forward(self, input):
input = input**2
out = F.conv2d(input, self.filter, stride=self.stride, padding=self.padding, groups=input.shape[1])
return (out+1e-12).sqrt()
class ResNet50(torch.nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
resnet_pretrained_features = nn.Sequential(*list(models.resnet50(pretrained=True).children())[:-2])
self.stage1 = torch.nn.Sequential()
self.stage2 = torch.nn.Sequential()
self.stage3 = torch.nn.Sequential()
self.stage4 = torch.nn.Sequential()
self.stage5 = torch.nn.Sequential()
for x in range(0,3):
self.stage1.add_module(str(x), resnet_pretrained_features[x])
for x in range(3,5):
self.stage2.add_module(str(x), resnet_pretrained_features[x])
self.stage3.add_module(str(5), resnet_pretrained_features[5])
self.stage4.add_module(str(6), resnet_pretrained_features[6])
self.stage5.add_module(str(7), resnet_pretrained_features[7])
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1,-1,1,1))
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1,-1,1,1))
self.chns = [3,64,256,512,1024,2048]
self.quality = self.quality_regression(sum(self.chns)*2,128,1)
def forward_once(self, h):
# h = (x-self.mean)/self.std
x = h*self.std + self.mean
h = self.stage1(h)
h_relu1_2 = h
h = self.stage2(h)
h_relu2_2 = h
h = self.stage3(h)
h_relu3_3 = h
h = self.stage4(h)
h_relu4_3 = h
h = self.stage5(h)
h_relu5_3 = h
return [x,h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3]
def quality_regression(self,in_channels,middle_channels,out_channels):
regression_block = nn.Sequential(
nn.Linear(in_channels, middle_channels),
nn.Linear(middle_channels, out_channels),
)
return regression_block
def forward(self, x, y, require_grad=False, batch_average=False):
x_size = x.shape
x = x.view(-1, x_size[2], x_size[3], x_size[4])
y = y.view(-1, x_size[2], x_size[3], x_size[4])
feats0 = self.forward_once(x)
feats1 = self.forward_once(y)
c1 = 1e-6
c2 = 1e-6
S = []
for k in range(len(self.chns)):
x_mean = feats0[k].mean([2,3], keepdim=True)
y_mean = feats1[k].mean([2,3], keepdim=True)
S1 = (2*x_mean*y_mean+c1)/(x_mean**2+y_mean**2+c1)
S.append(S1)
x_var = ((feats0[k]-x_mean)**2).mean([2,3], keepdim=True)
y_var = ((feats1[k]-y_mean)**2).mean([2,3], keepdim=True)
xy_cov = (feats0[k]*feats1[k]).mean([2,3],keepdim=True) - x_mean*y_mean
S2 = (2*xy_cov+c2)/(x_var+y_var+c2)
S.append(S2)
feats = torch.cat(S, dim = 1).squeeze()
qs = self.quality(feats)
qs = qs.view(x_size[0],x_size[1])
score = torch.zeros(x_size[0], device=qs.device) #
for i in range(x_size[0]): #
qi = qs[i, :x_size[1]].unsqueeze(-1)
# print(qi.shape)
qi = TP(qi)
score[i] = torch.mean(qi) # video overall quality
return score