forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigure
executable file
·331 lines (297 loc) · 11.1 KB
/
configure
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env bash
set -e
set -o pipefail
# Find out the absolute path to where ./configure resides
pushd `dirname $0` #> /dev/null
SOURCE_BASE_DIR=`pwd -P`
popd > /dev/null
function bazel_clean_and_fetch() {
bazel clean --expunge
bazel fetch //tensorflow/...
}
## Set up python-related environment settings
while true; do
fromuser=""
if [ -z "$PYTHON_BIN_PATH" ]; then
default_python_bin_path=$(which python || which python3 || true)
read -p "Please specify the location of python. [Default is $default_python_bin_path]: " PYTHON_BIN_PATH
fromuser="1"
if [ -z "$PYTHON_BIN_PATH" ]; then
PYTHON_BIN_PATH=$default_python_bin_path
fi
fi
if [ -e "$PYTHON_BIN_PATH" ]; then
break
fi
echo "Invalid python path. ${PYTHON_BIN_PATH} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
PYTHON_BIN_PATH=""
# Retry
done
while [ "$TF_NEED_GCP" == "" ]; do
read -p "Do you wish to build TensorFlow with "\
"Google Cloud Platform support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "Google Cloud Platform support will be enabled for "\
"TensorFlow"; TF_NEED_GCP=1;;
[Nn]* ) echo "No Google Cloud Platform support will be enabled for "\
"TensorFlow"; TF_NEED_GCP=0;;
"" ) echo "No Google Cloud Platform support will be enabled for "\
"TensorFlow"; TF_NEED_GCP=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
if [ "$TF_NEED_GCP" == "1" ]; then
## Verify that libcurl header files are available.
# Only check Linux, since on MacOS the header files are installed with XCode.
if [[ $(uname -a) =~ Linux ]] && [[ ! -f "/usr/include/curl/curl.h" ]]; then
echo "ERROR: It appears that the development version of libcurl is not "\
"available. Please install the libcurl3-dev package."
exit 1
fi
# Update Bazel build configuration.
perl -pi -e "s,WITH_GCP_SUPPORT = (False|True),WITH_GCP_SUPPORT = True,s" tensorflow/core/platform/default/build_config.bzl
else
# Update Bazel build configuration.
perl -pi -e "s,WITH_GCP_SUPPORT = (False|True),WITH_GCP_SUPPORT = False,s" tensorflow/core/platform/default/build_config.bzl
fi
while [ "$TF_NEED_HDFS" == "" ]; do
read -p "Do you wish to build TensorFlow with "\
"Hadoop File System support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "Hadoop File System support will be enabled for "\
"TensorFlow"; TF_NEED_HDFS=1;;
[Nn]* ) echo "No Hadoop File System support will be enabled for "\
"TensorFlow"; TF_NEED_HDFS=0;;
"" ) echo "No Hadoop File System support will be enabled for "\
"TensorFlow"; TF_NEED_HDFS=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
if [ "$TF_NEED_HDFS" == "1" ]; then
# Update Bazel build configuration.
perl -pi -e "s,WITH_HDFS_SUPPORT = (False|True),WITH_HDFS_SUPPORT = True,s" tensorflow/core/platform/default/build_config.bzl
else
# Update Bazel build configuration.
perl -pi -e "s,WITH_HDFS_SUPPORT = (False|True),WITH_HDFS_SUPPORT = False,s" tensorflow/core/platform/default/build_config.bzl
fi
## Find swig path
if [ -z "$SWIG_PATH" ]; then
SWIG_PATH=`type -p swig 2> /dev/null`
fi
if [[ ! -e "$SWIG_PATH" ]]; then
echo "Can't find swig. Ensure swig is in \$PATH or set \$SWIG_PATH."
exit 1
fi
echo "$SWIG_PATH" > tensorflow/tools/swig/swig_path
# Invoke python_config and set up symlinks to python includes
./util/python/python_config.sh --setup "$PYTHON_BIN_PATH"
# Run the gen_git_source to create links where bazel can track dependencies for
# git hash propagation
GEN_GIT_SOURCE=tensorflow/tools/git/gen_git_source.py
chmod a+x ${GEN_GIT_SOURCE}
${PYTHON_BIN_PATH} ${GEN_GIT_SOURCE} --configure ${SOURCE_BASE_DIR}
## Set up Cuda-related environment settings
while [ "$TF_NEED_CUDA" == "" ]; do
read -p "Do you wish to build TensorFlow with GPU support? [y/N] " INPUT
case $INPUT in
[Yy]* ) echo "GPU support will be enabled for TensorFlow"; TF_NEED_CUDA=1;;
[Nn]* ) echo "No GPU support will be enabled for TensorFlow"; TF_NEED_CUDA=0;;
"" ) echo "No GPU support will be enabled for TensorFlow"; TF_NEED_CUDA=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
export TF_NEED_CUDA
if [ "$TF_NEED_CUDA" == "0" ]; then
echo "Configuration finished"
bazel_clean_and_fetch
exit
fi
# Set up which gcc nvcc should use as the host compiler
while true; do
fromuser=""
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
default_gcc_host_compiler_path=$(which gcc || true)
read -p "Please specify which gcc should be used by nvcc as the host compiler. [Default is $default_gcc_host_compiler_path]: " GCC_HOST_COMPILER_PATH
fromuser="1"
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
GCC_HOST_COMPILER_PATH=$default_gcc_host_compiler_path
fi
fi
if [ -e "$GCC_HOST_COMPILER_PATH" ]; then
export GCC_HOST_COMPILER_PATH
break
fi
echo "Invalid gcc path. ${GCC_HOST_COMPILER_PATH} cannot be found" 1>&2
if [ -z "$fromuser" ]; then
exit 1
fi
GCC_HOST_COMPILER_PATH=""
# Retry
done
# Find out where the CUDA toolkit is installed
OSNAME=`uname -s`
while true; do
# Configure the Cuda SDK version to use.
if [ -z "$TF_CUDA_VERSION" ]; then
read -p "Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: " TF_CUDA_VERSION
fi
fromuser=""
if [ -z "$CUDA_TOOLKIT_PATH" ]; then
default_cuda_path=/usr/local/cuda
read -p "Please specify the location where CUDA $TF_CUDA_VERSION toolkit is installed. Refer to README.md for more details. [Default is $default_cuda_path]: " CUDA_TOOLKIT_PATH
fromuser="1"
if [ -z "$CUDA_TOOLKIT_PATH" ]; then
CUDA_TOOLKIT_PATH=$default_cuda_path
fi
fi
if [[ -z "$TF_CUDA_VERSION" ]]; then
TF_CUDA_EXT=""
else
TF_CUDA_EXT=".$TF_CUDA_VERSION"
fi
if [ "$OSNAME" == "Linux" ]; then
CUDA_RT_LIB_PATH="lib64/libcudart.so${TF_CUDA_EXT}"
elif [ "$OSNAME" == "Darwin" ]; then
CUDA_RT_LIB_PATH="lib/libcudart${TF_CUDA_EXT}.dylib"
fi
if [ -e "${CUDA_TOOLKIT_PATH}/${CUDA_RT_LIB_PATH}" ]; then
export CUDA_TOOLKIT_PATH
export TF_CUDA_VERSION
break
fi
echo "Invalid path to CUDA $TF_CUDA_VERSION toolkit. ${CUDA_TOOLKIT_PATH}/${CUDA_RT_LIB_PATH} cannot be found"
if [ -z "$fromuser" ]; then
exit 1
fi
# Retry
TF_CUDA_VERSION=""
CUDA_TOOLKIT_PATH=""
done
# Find out where the cuDNN library is installed
while true; do
# Configure the Cudnn version to use.
if [ -z "$TF_CUDNN_VERSION" ]; then
read -p "Please specify the Cudnn version you want to use. [Leave empty to use system default]: " TF_CUDNN_VERSION
fi
fromuser=""
if [ -z "$CUDNN_INSTALL_PATH" ]; then
default_cudnn_path=${CUDA_TOOLKIT_PATH}
read -p "Please specify the location where cuDNN $TF_CUDNN_VERSION library is installed. Refer to README.md for more details. [Default is $default_cudnn_path]: " CUDNN_INSTALL_PATH
fromuser="1"
if [ -z "$CUDNN_INSTALL_PATH" ]; then
CUDNN_INSTALL_PATH=$default_cudnn_path
fi
# Result returned from "read" will be used unexpanded. That make "~" unuseable.
# Going through one more level of expansion to handle that.
CUDNN_INSTALL_PATH=`${PYTHON_BIN_PATH} -c "import os; print(os.path.realpath(os.path.expanduser('${CUDNN_INSTALL_PATH}')))"`
fi
if [[ -z "$TF_CUDNN_VERSION" ]]; then
TF_CUDNN_EXT=""
cudnn_lib_path=""
cudnn_alt_lib_path=""
if [ "$OSNAME" == "Linux" ]; then
cudnn_lib_path="${CUDNN_INSTALL_PATH}/lib64/libcudnn.so"
cudnn_alt_lib_path="${CUDNN_INSTALL_PATH}/libcudnn.so"
elif [ "$OSNAME" == "Darwin" ]; then
cudnn_lib_path="${CUDNN_INSTALL_PATH}/lib/libcudnn.dylib"
cudnn_alt_lib_path="${CUDNN_INSTALL_PATH}/libcudnn.dylib"
fi
# Resolve to the SONAME of the symlink. Use readlink without -f
# to resolve exactly once to the SONAME. E.g, libcudnn.so ->
# libcudnn.so.4.
# If the path is not a symlink, readlink will exit with an error code, so
# in that case, we return the path itself.
if [ -f "$cudnn_lib_path" ]; then
REALVAL=`readlink ${cudnn_lib_path} || echo "${cudnn_lib_path}"`
else
REALVAL=`readlink ${cudnn_alt_lib_path} || echo "${cudnn_alt_lib_path}"`
fi
# Extract the version of the SONAME, if it was indeed symlinked to
# the SONAME version of the file.
if [[ "$REALVAL" =~ .so[.]+([0-9]*) ]]; then
TF_CUDNN_EXT="."${BASH_REMATCH[1]}
TF_CUDNN_VERSION=${BASH_REMATCH[1]}
echo "libcudnn.so resolves to libcudnn${TF_CUDNN_EXT}"
elif [[ "$REALVAL" =~ ([0-9]*).dylib ]]; then
TF_CUDNN_EXT=${BASH_REMATCH[1]}".dylib"
TF_CUDNN_VERSION=${BASH_REMATCH[1]}
echo "libcudnn.dylib resolves to libcudnn${TF_CUDNN_EXT}"
fi
else
TF_CUDNN_EXT=".$TF_CUDNN_VERSION"
fi
if [ "$OSNAME" == "Linux" ]; then
CUDA_DNN_LIB_PATH="lib64/libcudnn.so${TF_CUDNN_EXT}"
CUDA_DNN_LIB_ALT_PATH="libcudnn.so${TF_CUDNN_EXT}"
elif [ "$OSNAME" == "Darwin" ]; then
CUDA_DNN_LIB_PATH="lib/libcudnn${TF_CUDNN_EXT}.dylib"
CUDA_DNN_LIB_ALT_PATH="libcudnn${TF_CUDNN_EXT}.dylib"
fi
if [ -e "$CUDNN_INSTALL_PATH/${CUDA_DNN_LIB_ALT_PATH}" -o -e "$CUDNN_INSTALL_PATH/${CUDA_DNN_LIB_PATH}" ]; then
export TF_CUDNN_VERSION
export CUDNN_INSTALL_PATH
break
fi
if [ "$OSNAME" == "Linux" ]; then
CUDNN_PATH_FROM_LDCONFIG="$(ldconfig -p | sed -n 's/.*libcudnn.so .* => \(.*\)/\1/p')"
if [ -e "${CUDNN_PATH_FROM_LDCONFIG}${TF_CUDNN_EXT}" ]; then
export TF_CUDNN_VERSION
export CUDNN_INSTALL_PATH="$(dirname ${CUDNN_PATH_FROM_LDCONFIG})"
break
fi
fi
echo "Invalid path to cuDNN ${CUDNN_VERSION} toolkit. Neither of the following two files can be found:"
echo "${CUDNN_INSTALL_PATH}/${CUDA_DNN_LIB_PATH}"
echo "${CUDNN_INSTALL_PATH}/${CUDA_DNN_LIB_ALT_PATH}"
if [ "$OSNAME" == "Linux" ]; then
echo "${CUDNN_PATH_FROM_LDCONFIG}${TF_CUDNN_EXT}"
fi
if [ -z "$fromuser" ]; then
exit 1
fi
# Retry
TF_CUDNN_VERSION=""
CUDNN_INSTALL_PATH=""
done
# Configure the compute capabilities that TensorFlow builds for.
# Since Cuda toolkit is not backward-compatible, this is not guaranteed to work.
while true; do
fromuser=""
default_cuda_compute_capabilities="3.5,5.2"
if [ -z "$TF_CUDA_COMPUTE_CAPABILITIES" ]; then
cat << EOF
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
EOF
read -p "[Default is: \"3.5,5.2\"]: " TF_CUDA_COMPUTE_CAPABILITIES
fromuser=1
fi
if [ -z "$TF_CUDA_COMPUTE_CAPABILITIES" ]; then
TF_CUDA_COMPUTE_CAPABILITIES=$default_cuda_compute_capabilities
fi
# Check whether all capabilities from the input is valid
COMPUTE_CAPABILITIES=${TF_CUDA_COMPUTE_CAPABILITIES//,/ }
ALL_VALID=1
for CAPABILITY in $COMPUTE_CAPABILITIES; do
if [[ ! "$CAPABILITY" =~ [0-9]+.[0-9]+ ]]; then
echo "Invalid compute capability: " $CAPABILITY
ALL_VALID=0
break
fi
done
if [ "$ALL_VALID" == "0" ]; then
if [ -z "$fromuser" ]; then
exit 1
fi
else
export TF_CUDA_COMPUTE_CAPABILITIES
break
fi
TF_CUDA_COMPUTE_CAPABILITIES=""
done
bazel_clean_and_fetch
echo "Configuration finished"