forked from kvfrans/twitch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
72 lines (57 loc) · 2.25 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import tensorflow as tf
import numpy as np
import os
import json
with open("words.json") as json_file:
jsonfile = json.load(json_file)
wordmap = dict((y,x) for x,y in jsonfile.iteritems())
wordmap[0] = "-"
wordmap[33234] = "<rare word>"
batchsize = 1
numsteps = 1
embedsize = 200
numlayers = 2
vocabsize = 33235
keep_prob = 0.0
input_data = tf.placeholder(tf.int32,[batchsize,numsteps])
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(embedsize)
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * numlayers)
initialstate = cell.zero_state(batchsize, tf.float32)
with tf.variable_scope("rnnlm") as scope:
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [vocabsize, embedsize])
inputs = tf.split(1, numsteps, tf.nn.embedding_lookup(embedding, input_data))
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
softmax_w = tf.get_variable("softmax_w", [embedsize, vocabsize])
softmax_b = tf.get_variable("softmax_b", [vocabsize])
outputs, last_state = tf.nn.seq2seq.rnn_decoder(inputs, initialstate, cell, loop_function=None, scope='rnnlm')
output = tf.reshape(tf.concat(1,outputs), [-1, embedsize])
logits = tf.matmul(output, softmax_w) + softmax_b
final_state = last_state
sess = tf.InteractiveSession()
saver = tf.train.Saver(max_to_keep=3)
saver.restore(sess, tf.train.latest_checkpoint(os.getcwd()+"/training/"))
def predict(starter):
state = cell.zero_state(batchsize, tf.float32).eval()
starterwords = starter.split(" ")
nextword = 0
total = ""
for word in starterwords:
total += " " + word
primer = np.zeros((1,1))
if word in jsonfile:
primer[:,:] = jsonfile[word]
else:
primer[:,:] = 33234
guessed_logits, state = sess.run([logits, final_state], feed_dict={input_data: primer, initialstate: state})
nextword = np.argmax(guessed_logits,1)[0]
for i in xrange(100):
total += " " + wordmap[nextword]
primer = np.zeros((1,1))
primer[:,:] = nextword
guessed_logits, state = sess.run([logits, final_state], feed_dict={input_data: primer, initialstate: state})
nextword = np.argmax(guessed_logits,1)[0]
if nextword == 0:
break
return total
# print predict("this game is")