-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
133 lines (113 loc) · 5.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import sys
sys.path.append('./util')
sys.path.append('./model')
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms
import numpy as np
import cv2
import argparse
import os
import tensorflow as tf
from model import Sal_seq
from data_processing import Dataset, read_dataset, image_selection, loo_split
from glob import glob
parser = argparse.ArgumentParser(description='Autism screening based on eye-tracking data')
parser.add_argument('--img_dir', type=str, default='./saliency4asd/TrainingDataset/TrainingData/Images', help='Directory to images')
parser.add_argument('--anno_dir', type=str, default='./saliency4asd/TrainingDataset/TrainingData', help='Directory to annotation files')
parser.add_argument('--backend', type=str, default='resnet', help='Backend for visual encoder')
parser.add_argument('--lr',type=float,default=1e-4,help='specify learning rate')
parser.add_argument('--checkpoint_path',type=str,default=None,help='Directory for saving checkpoints')
parser.add_argument('--epoch',type=int,default=10,help='Specify maximum number of epoch')
parser.add_argument('--batch_size',type=int,default=12,help='Batch size')
parser.add_argument('--max_len',type=int,default=14,help='Maximum number of fixations for an image')
parser.add_argument('--hidden_size',type=int,default=512,help='Hidden size for RNN')
parser.add_argument('--clip',type=float,default=10,help='Gradient clipping')
parser.add_argument('--select_number',type=int,default=100,help='Number of images selected based on fisher score')
parser.add_argument('--n_fold',type=int,default=28,help='Number of folds used in the K-fold validation, default 28 for leave-one-out')
parser.add_argument('--img_height',type=int,default=600,help='Image Height')
parser.add_argument('--img_width',type=int,default=800,help='Image Width')
args = parser.parse_args()
transform = transforms.Compose([transforms.Resize((args.img_height,args.img_width)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group['params']:
param.grad.data.clamp_(-grad_clip, grad_clip)
def adjust_lr(optimizer, epoch):
"adatively adjust lr based on epoch"
if epoch <= 0 :
lr = args.lr
else :
lr = args.lr * (0.5 ** (float(epoch) / 2))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
tf_summary_writer = tf.summary.create_file_writer(args.checkpoint_path)
anno = read_dataset(args.anno_dir)
overall_acc = []
for fold in range(args.n_fold):
train_data, val_data = loo_split(anno,fold)
valid_id = image_selection(train_data, args.select_number)
train_set = Dataset(args.img_dir,train_data,valid_id,args.max_len,args.img_height,args.img_width,transform)
val_set = Dataset(args.img_dir,val_data,valid_id,args.max_len,args.img_height,args.img_width,transform)
trainloader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=2)
valloader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
model = Sal_seq(backend=args.backend,seq_len=args.max_len,hidden_size=args.hidden_size)
model = model.cuda()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=1e-5) # 5e-4
def train(iteration):
model.train()
avg_loss = 0
for j, (img,target,fix) in enumerate(trainloader):
if len(img) < args.batch_size:
continue
img, target, fix = Variable(img), Variable(target.type(torch.FloatTensor)), Variable(fix,requires_grad=False)
img, target, fix = img.cuda(), target.cuda(), fix.cuda()
optimizer.zero_grad()
pred = model(img,fix)
loss = F.binary_cross_entropy(pred,target)
loss.backward()
if args.clip != -1:
clip_gradient(optimizer,args.clip)
optimizer.step()
avg_loss = (avg_loss*np.maximum(0,j) + loss.data.cpu().numpy())/(j+1)
if j%25 == 0:
with tf_summary_writer.as_default():
tf.summary.scalar('training loss_fold_'+str(fold+1),avg_loss,step=iteration)
iteration += 1
return iteration
def validation_loo(epoch):
model.eval()
avg_pred = []
for _, (img,target,fix) in enumerate(valloader):
img, target, fix = Variable(img), Variable(target.type(torch.FloatTensor)), Variable(fix,requires_grad=False)
img, target, fix = img.cuda(), target.cuda(), fix.cuda()
pred = model(img,fix)
pred = pred.data.cpu().numpy()
target = target.data.cpu().numpy()[0,0]
avg_pred.extend(pred)
# average voting
avg_pred = np.mean(avg_pred)
if not target:
avg_pred = 1-avg_pred
label = 'asd' if target else 'ctrl'
with tf_summary_writer.as_default():
# print confidence of the correct prediction
tf.summary.scalar('validation_acc_subject_' + label + '_' + str(fold+1), avg_pred, step=epoch+1)
return avg_pred
print('Start %d-fold validation for fold %d' %(args.n_fold,fold+1))
iteration = 0
best_acc = 0
for epoch in range(args.epoch):
# adjust_lr(optimizer,epoch)
iteration = train(iteration)
acc = validation_loo(epoch)
if acc > best_acc:
torch.save(model.state_dict(),os.path.join(args.checkpoint_path,'best_model_subj_'+str(fold+1)+'.pth'))
main()