-
Notifications
You must be signed in to change notification settings - Fork 1
/
draft-perrin-tls-tack-01.txt
1232 lines (579 loc) · 35.4 KB
/
draft-perrin-tls-tack-01.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
TLS Working Group M. Marlinspike
Internet-Draft T. Perrin, Ed.
Intended status: Standards Track September 26, 2012
Expires: March 30, 2013
Trust Assertions for Certificate Keys
draft-perrin-tls-tack-01.txt
Abstract
This document defines TACK, a TLS Extension that enables a TLS server
to assert the authenticity of its public key. A "tack" contains a
"TACK key" which is used to sign the public key from the TLS server's
certificate. Hostnames can be "pinned" to a TACK key. TLS
connections to a pinned hostname require the server to present a tack
containing the pinned key and a corresponding signature over the TLS
server's public key.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on March 30, 2013.
Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
Marlinspike & Perrin Expires March 30, 2013 [Page 1]
Internet-Draft Trust Assertions for Certificate Keys September 2012
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Requirements notation . . . . . . . . . . . . . . . . . . . . 4
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1. Tack life cycle . . . . . . . . . . . . . . . . . . . . . 5
3.2. Pin life cycle . . . . . . . . . . . . . . . . . . . . . . 6
4. TACK Extension . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1. Definition of TackExtension . . . . . . . . . . . . . . . 7
4.2. Explanation of TackExtension fields . . . . . . . . . . . 8
4.2.1. Tack fields . . . . . . . . . . . . . . . . . . . . . 8
4.2.2. TackExtension fields . . . . . . . . . . . . . . . . . 8
5. Client processing . . . . . . . . . . . . . . . . . . . . . . 9
5.1. TACK pins . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2. High-level client processing . . . . . . . . . . . . . . . 9
5.3. Client processing details . . . . . . . . . . . . . . . . 10
5.3.1. Check whether the TLS handshake is well-formed . . . . 10
5.3.2. Check tack generations and update min_generations . . 10
5.3.3. Determine the store's status . . . . . . . . . . . . . 11
5.3.4. Pin activation (optional) . . . . . . . . . . . . . . 11
6. Application protocols and TACK . . . . . . . . . . . . . . . . 13
6.1. Pin scope . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2. TLS negotiation . . . . . . . . . . . . . . . . . . . . . 13
6.3. Certificate verification . . . . . . . . . . . . . . . . . 13
7. Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . 14
8. Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1. For server operators . . . . . . . . . . . . . . . . . . . 15
8.2. For client implementers . . . . . . . . . . . . . . . . . 16
9. Security considerations . . . . . . . . . . . . . . . . . . . 17
9.1. For server operators . . . . . . . . . . . . . . . . . . . 17
9.2. For client implementers . . . . . . . . . . . . . . . . . 17
9.3. Note on algorithm agility . . . . . . . . . . . . . . . . 18
10. IANA considerations . . . . . . . . . . . . . . . . . . . . . 19
10.1. New entry for the TLS ExtensionType Registry . . . . . . . 19
11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 20
12. Normative references . . . . . . . . . . . . . . . . . . . . . 21
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 22
Marlinspike & Perrin Expires March 30, 2013 [Page 2]
Internet-Draft Trust Assertions for Certificate Keys September 2012
1. Introduction
Traditionally, a TLS client verifies a TLS server's public key using
a certificate chain issued by some public CA. "Pinning" is a way for
clients to obtain increased certainty in server public keys. Clients
that employ pinning check for some constant "pinned" element of the
TLS connection when contacting a particular TLS host.
Unfortunately, a number of problems arise when attempting to pin
certificate chains: the TLS servers at a given hostname may have
different certificate chains simultaneously deployed and may change
their chains at any time, the "more constant" elements of a chain
(the CAs) may not be trustworthy, and the client may be oblivious to
key compromise events which render the pinned data untrustworthy.
TACK addresses these problems by having the site sign its TLS server
public keys with a "TACK key". This enables clients to "pin" a
hostname to the TACK key without requiring sites to modify their
existing certificate chains, and without limiting a site's
flexibility to deploy different certificate chains on different
servers or change certificate chains at any time. Since TACK pins
are based on TACK keys (instead of CA keys), trust in CAs is not
required. Additionally, the TACK key may be used to revoke
compromised TLS private keys, and TACK key rollovers may be performed
to recover from suspect or compromised TACK keys.
If requested, a compliant server will send a TLS Extension containing
its "tack". Inside the tack is a public key and signature. Once a
client has seen the same (hostname, TACK public key) pair multiple
times, the client will "activate" a pin between the hostname and TACK
key for a period equal to the length of time the pair has been
observed for. This "pin activation" algorithm limits the impact of
bad pins resulting from transient network attacks or operator error.
TACK pins are easily shared between clients. For example, a TACK
client may scan the internet to discover TACK pins, then publish
these pins through some 3rd-party trust infrastructure for other
clients to rely upon.
Marlinspike & Perrin Expires March 30, 2013 [Page 3]
Internet-Draft Trust Assertions for Certificate Keys September 2012
2. Requirements notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
Marlinspike & Perrin Expires March 30, 2013 [Page 4]
Internet-Draft Trust Assertions for Certificate Keys September 2012
3. Overview
3.1. Tack life cycle
A server operator using TACK may perform several processes:
Selection of a TACK key: The server operator first chooses the ECDSA
signing key to use for a set of hostnames. It is safest to use a
different signing key for each hostname, though a signing key may
be reused for closely-related hostnames (such as aliases for the
same host, or hosts sharing the same TLS key).
Creating initial tacks under a TACK key: The TACK private key is
then used to sign the TLS public keys for all servers associated
with those hostnames. The TACK public key and signature are
combined with some metadata into each server's "tack".
Deploying initial tacks: For each hostname, tacks are deployed to
TLS servers in a two-stage process. First, each TLS server
associated with the hostname is given a tack. Once this is
completed, the tacks are activated by setting the "activation
flag" on each server.
Creating new tacks under a TACK key: A tack needs to be replaced
whenever a server changes its TLS public key, or when the tack
expires. Tacks may also need to be replaced with later-generation
tacks if the TACK key's "min_generation" is updated (see next).
Revoking old tacks: If a TLS private key is compromised, the tacks
signing this key can be revoked by publishing a new tack
containing a higher "min_generation".
Deactivating tacks: If a server operator wishes to stop deploying
tacks, all tacks for a hostname can be deactivated via the
activation flag, allowing the server to remove the tacks within 30
days (at most).
Rollover: If a server operator wishes to change the TACK key a
hostname is pinned to, the server can publish a new tack alongside
the old one. This lets clients activate pins for the new TACK key
prior to the server deactivating the older pins.
Marlinspike & Perrin Expires March 30, 2013 [Page 5]
Internet-Draft Trust Assertions for Certificate Keys September 2012
3.2. Pin life cycle
A TACK pin associates a hostname and a TACK key. Pins are grouped
into "pin stores". A client may populate its pin stores by either
performing "pin activation" directly, or by querying some other
party. For example, a client application may have a store for pin
activation as well as a store whose contents are periodically fetched
from a server.
Whenever a client performing "pin activation" sees a hostname and
TACK key combination not represented in the "pin activation" pin
store, an inactive pin is created. Every subsequent time the client
sees the same pin, the pin is "activated" for a period equal to the
timespan between the first time the pin was seen and the most recent
time, up to a maximum period of 30 days.
A pin store may contain up to two pins per hostname. This allows for
"pin rollover", where a server securely transitions from one pin to
another. If both pins are simultaneously active, then the server
must satisfy both of them by presenting a pair of tacks.
In addition to creating and activating pins, a TLS connection can
alter client pin stores by publishing new "min_generation" values in
a tack. Each pin stores the highest "min_generation" value it has
seen from the pinned TACK key, and rejects tacks from earlier
generations.
Marlinspike & Perrin Expires March 30, 2013 [Page 6]
Internet-Draft Trust Assertions for Certificate Keys September 2012
4. TACK Extension
4.1. Definition of TackExtension
A new TLS ExtensionType ("tack") is defined and MAY be included by a
TLS client in the ClientHello message defined in [RFC5246].
enum {tack(TBD), (65535)} ExtensionType;
The "extension_data" field of this ClientHello extension SHALL be
empty. A TLS server which is not resuming a TLS session MAY respond
with an extension of type "tack" in the ServerHello. The
"extension_data" field of this ServerHello extension SHALL contain a
"TackExtension", as defined below using the TLS presentation language
from [RFC5246].
struct {
opaque public_key[64];
uint8 min_generation;
uint8 generation;
uint32 expiration;
opaque target_hash[32];
opaque signature[64];
} Tack; /* 166 bytes */
struct {
Tack tacks<166...332> /* 1 or 2 Tacks */
uint8 activation_flags; /* 0...3 */
} TackExtension;
Marlinspike & Perrin Expires March 30, 2013 [Page 7]
Internet-Draft Trust Assertions for Certificate Keys September 2012
4.2. Explanation of TackExtension fields
4.2.1. Tack fields
public_key: This field specifies the tack's public key. The field
contains a pair of integers (x, y) representing a point on the
elliptic curve P-256 defined in [FIPS186-3]. Each integer is
encoded as a 32-byte octet string using the Integer-to-Octet-
String algorithm from [RFC6090], and these strings are
concatenated with the x value first. (NOTE: This is equivalent to
an uncompressed subjectPublicKey from [RFC5480], except that the
initial 0x04 byte is omitted).
min_generation: This field publishes a min_generation value.
generation: This field assigns each tack a generation. Generations
less than a published min_generation are considered revoked.
expiration: This field specifies a time after which the tack is
considered expired. The time is encoded as the number of minutes,
excluding leap seconds, after midnight UTC, January 1 1970.
target_hash: This field is a hash of the TLS server's
SubjectPublicKeyInfo [RFC5280] using the SHA256 algorithm from
[FIPS180-2]. The SubjectPublicKeyInfo is typically conveyed as
part of the server's X.509 certificate.
signature: This field is an ECDSA signature by the tack's public key
over the 8 byte ASCII string "tack_sig" followed by the contents
of the tack prior to the "signature" field (i.e. the preceding 102
bytes). The field contains a pair of integers (r, s) representing
an ECDSA signature as defined in [FIPS186-3], using curve P-256
and SHA256. Each integer is encoded as a 32-byte octet string
using the Integer-to-Octet-String algorithm from [RFC6090], and
these strings are concatenated with the r value first.
4.2.2. TackExtension fields
tacks: This field provides the server's tack(s). It SHALL contain 1
or 2 tacks.
activation_flags: This field contains "activation flags" for the
extension's tacks. If the low order bit is set, the first tack is
considered active. If the next lowest bit is set, the second tack
is considered active. An active tack MAY be used by the pin
activation algorithm in Section 5.3.4 to create, activate, and
extend the activation of TACK pins.
Marlinspike & Perrin Expires March 30, 2013 [Page 8]
Internet-Draft Trust Assertions for Certificate Keys September 2012
5. Client processing
5.1. TACK pins
A client SHALL have a local store of pins, and MAY have multiple
stores. Each pin store consists of a map associating fully qualified
DNS hostnames with either one or two sets of the following values:
Initial time: A timestamp noting when this pin was created.
End time: A timestamp determining the pin's "active period". If set
to zero or a time in the past, the pin is "inactive". If set to a
future time, the pin is "active" until that time.
TACK public key (or hash): A public key or a cryptographically-
secure, second preimage-resistant hash of a public key.
Min_generation: A single byte used to detect revoked tacks. All
pins within a pin store sharing the same TACK public key SHALL
have the same min_generation.
A hostname along with the above values comprises a "TACK pin". Thus,
each store can hold up to two pins for a hostname (however, those two
pins MUST reference different public keys). A pin "matches" a tack
if they reference the same public key. A pin is "relevant" if its
hostname equals the TLS server's hostname.
5.2. High-level client processing
A TACK client SHALL send the "tack" extension defined previously, and
SHALL send the "server_name" extension from [RFC6066]. If not
resuming a session, the server MAY respond with a TackExtension.
Regardless of whether a TackExtension is returned, the client SHALL
perform the following steps prior to using the connection:
1. Check whether the TLS handshake is "well-formed".
2. For each pin store, do:
A. Check tack generations and update min_generations.
B. Determine the store's status.
C. Perform pin activation (optional).
Marlinspike & Perrin Expires March 30, 2013 [Page 9]
Internet-Draft Trust Assertions for Certificate Keys September 2012
These steps SHALL be performed in order. If there is any error, the
client SHALL send a fatal error alert and close the connection,
skipping the remaining steps (see Section 5.3 for details).
Based on step 2B, each store will report one of three statuses for
the connection: "accepted", "rejected", or "unpinned". A rejected
connection might indicate a network attack. If the connection is
rejected the client SHOULD send a fatal "access_denied" error alert
and close the connection.
A client MAY perform additional verification steps before using an
accepted or unpinned connection. See Section 6.3 for an example.
5.3. Client processing details
5.3.1. Check whether the TLS handshake is well-formed
A TLS handshake is "well-formed" if the following are true. Unless
otherwise specified, if any of the following are false a
"bad_certificate" fatal error alert SHALL be sent.
1. The handshake protocol negotiates a cryptographically secure
ciphersuite and finishes succesfully.
2. If a TackExtension is present then all length fields are correct,
"activation_flags" is <= 3, and the tacks are "well-formed" (see
below).
3. If there are two tacks, they have different "public_key" fields.
A tack is "well-formed" if:
1. "generation" is >= "min_generation".
2. "expiration" specifies a time in the future, otherwise the client
SHALL send a fatal "certificate_expired" error alert.
3. "target_hash" is a correct hash of the SubjectPublicKeyInfo.
4. "signature" is a correct ECDSA signature.
5.3.2. Check tack generations and update min_generations
If a tack has matching pins in the pin store and a generation less
than the stored min_generation, then that tack is revoked and the
client SHALL send a fatal "certificate_revoked" error alert. If a
tack has matching pins and a min_generation greater than the stored
min_generation, the stored value SHALL be set to the tack's value.
Marlinspike & Perrin Expires March 30, 2013 [Page 10]
Internet-Draft Trust Assertions for Certificate Keys September 2012
5.3.3. Determine the store's status
If there is a relevant active pin without a matching tack, then the
connection is "rejected". If the connection is not rejected and
there is a relevant active pin with a matching tack, then the
connection is "accepted". Otherwise, the connection is "unpinned".
5.3.4. Pin activation (optional)
The TLS connection MAY be used to create, delete, and activate pins.
This "pin activation algorithm" is optional; a client MAY rely on an
external source of pins. If the connection was "rejected" by the
previous processing step, then pin activation is skipped.
The first step in pin activation is to evaluate each relevant pin
(there may be one or two):
1. If a pin has no matching tack, its handling will depend on
whether the pin is active. If active, the connection will have
been rejected, skipping pin activation. If inactive, the pin
SHALL be deleted, since it is contradicted by the connection.
2. If a pin has a matching tack, its handling will depend on whether
the tack is active. If inactive, the pin is left unchanged. If
active, the pin SHALL have its "end time" set based on the
current, initial, and end times:
end = current + MIN(30 days, current - initial)
In sum: (1) deletes unmatched pins, provided they are inactive; and
(2) activates matched pins, provided the matching tack is active.
The remaining step in pin activation is to add new inactive pins for
any unmatched active tacks. Each new pin uses the server's hostname,
the tack's public key and min_generation (unless the store has a
higher min_generation for the public key), an "initial time" set to
the current time, and an "end time" of zero.
(Note that there are always sufficient empty "slots" in the pin store
for adding new pins without exceeding two pins per hostname. This is
because the number of matching pins equals the number of matching
tacks, so the number of empty pin slots equals the number of
unmatched tacks.)
The following tables summarize this behavior from the perspective of
a pin. You can follow the lifecycle of a single pin from "New
inactive pin" to "Delete pin".
Marlinspike & Perrin Expires March 30, 2013 [Page 11]
Internet-Draft Trust Assertions for Certificate Keys September 2012
Relevant pin is active:
+--------------------+----------------+--------------------------+
| Pin matches a tack | Tack is active | Result |
+--------------------+----------------+--------------------------+
| Yes | Yes | Extend activation period |
| | | |
| Yes | No | - |
| | | |
| No | - | (Connection rejected) |
+--------------------+----------------+--------------------------+
Relevant pin is inactive:
+--------------------+----------------+--------------+
| Pin matches a tack | Tack is active | Result |
+--------------------+----------------+--------------+
| Yes | Yes | Activate pin |
| | | |
| Yes | No | - |
| | | |
| No | - | Delete pin |
+--------------------+----------------+--------------+
Tack doesn't match any relevant pin:
+--------------------------+------------------+
| Unmatched tack is active | Result |
+--------------------------+------------------+
| Yes | New inactive pin |
| | |
| No | - |
+--------------------------+------------------+
Marlinspike & Perrin Expires March 30, 2013 [Page 12]
Internet-Draft Trust Assertions for Certificate Keys September 2012
6. Application protocols and TACK
6.1. Pin scope
TACK pins are specific to a particular application protocol. In
other words, a pin for HTTPS at "example.com" implies nothing about
POP3 or SMTP at "example.com".
6.2. TLS negotiation
Some application protocols negotiate TLS as an optional feature (e.g.
SMTP using STARTTLS [RFC3207]). If such a server fails to negotiate
TLS and there are relevant active pins, then the connection is
rejected by the pin. If the server fails to negotiate TLS, then any
relevant, inactive pins SHALL be deleted. Note that these steps are
taken despite the absence of a TLS connection.
6.3. Certificate verification
A TACK client MAY choose to perform some form of certificate
verification in addition to TACK processing. When combining
certificate verification and TACK processing, the TACK processing
described in Section 5 SHALL be followed, with the exception that
TACK processing MAY be terminated early (or skipped) if some fatal
certificate error is discovered.
If TACK processing and certificate verification both complete without
a fatal error, the client SHALL apply some policy to decide whether
to accept the connection. The policy is up to the client. An
example policy would be to accept the connection only if it passes
certificate verification and is not rejected by a pin.
Marlinspike & Perrin Expires March 30, 2013 [Page 13]
Internet-Draft Trust Assertions for Certificate Keys September 2012
7. Fingerprints
A "key fingerprint" may be used to represent a TACK public key to
users in a form that is easy to compare and transcribe. A key
fingerprint consists of the first 25 characters from the base32
encoding of SHA256(public_key), split into 5 groups of 5 characters
separated by periods. Base32 encoding is as specified in [RFC4648],
except lowercase is used. Examples:
g5p5x.ov4vi.dgsjv.wxctt.c5iul
quxiz.kpldu.uuedc.j5znm.7mqst
e25zs.cth7k.tscmp.5hxdp.wf47j
Marlinspike & Perrin Expires March 30, 2013 [Page 14]
Internet-Draft Trust Assertions for Certificate Keys September 2012
8. Advice
8.1. For server operators
Key reuse: All servers that are pinned to a single TACK key are able
to impersonate each other, since clients will perceive their tacks
as equivalent. Thus, TACK keys SHOULD NOT be reused with
different hostnames unless these hostnames are closely related.
Examples where it would be safe to reuse a TACK key are hostnames
aliased to the same host, hosts sharing the same TLS key, or
hostnames for a group of near-identical servers.
Aliases: A TLS server may be referenced by multiple hostnames.
Clients may pin any of these hostnames. Server operators should
be careful when using DNS aliases that hostnames are not pinned
inadvertently.
Generations: To revoke older generations of tacks, the server
operator SHOULD first provide all servers with a new generation of
tacks, and only then provide servers with new tacks containing the
new min_generation. Otherwise, a client may receive a
min_generation update from one server but then try to contact an
older-generation server which has not yet been updated.
Tack expiration: When TACK is used in conjunction with certificates
it is recommended to set the tack expiration equal to the end-
entity certificate expiration plus 30 days, allowing the tack and
certificate to both be replaced at the same time. The extra 30
days ensures there is enough time to employ "pin deactivation"
(see below) if the TACK private key is lost. Alternatively,
short-lived tacks may be used so that a compromised TLS private
key has limited value to an attacker.
Tack/pin activation: Tacks should only be activated once all TLS
servers sharing the same hostname have a tack. Otherwise, a
client may activate a pin by contacting one server, then contact a
different server at the same hostname that does not yet have a
tack.
Tack/pin deactivation: If all servers at a hostname deactivate their
tacks (by clearing the activation flags), all existing pins for
the hostname will eventually become inactive. The tacks can be
removed after a time interval equal to the maximum active period
of any affected pins (30 days at most).
Marlinspike & Perrin Expires March 30, 2013 [Page 15]
Internet-Draft Trust Assertions for Certificate Keys September 2012
Pin rollover: When performing a rollover, the old and new tacks
SHOULD be published simultaneously for at least 60 days. This
ensures that a pin activation client who is contacting the server
at least once every 30 days will not have the length of its
activation periods affected by the transition. Example rollover
process: Add new tacks; activate new tacks; wait 30+ days;
deactivate old tacks; wait 30+ days; remove old tacks.
8.2. For client implementers
Sharing pin information: It is possible for a client to maintain a
pin store based entirely on its own TLS connections. However,
such a client runs the risk of creating incorrect pins, failing to
keep its pins active, or failing to receive min_generation
updates. Clients are advised to make use of 3rd-party trust
infrastructure so that pin data can be aggregated and shared.
This will require additional protocols outside the scope of this
document.
Clock synchronization: A client SHOULD take measures to prevent
tacks from being erroneously rejected as expired due to an
inaccurate client clock. Such methods MAY include using time
synchronization protocols such as NTP [RFC5905], or accepting
seemingly-expired tacks as "well-formed" if they expired less than
T minutes ago, where T is a "tolerance bound" set to the client's
maximum expected clock error.
Marlinspike & Perrin Expires March 30, 2013 [Page 16]
Internet-Draft Trust Assertions for Certificate Keys September 2012
9. Security considerations
9.1. For server operators
All servers pinned to the same TACK key can impersonate each other
(see Section 8.1). Think carefully about this risk if using the same
TACK key for multiple hostnames.
Make backup copies of the TACK private key and keep all copies in
secure locations where they can't be compromised.
A TACK private key MUST NOT be used to perform any non-TACK
cryptographic operations. For example, using a TACK key for email
encryption, code-signing, or any other purpose MUST NOT be done.
HTTP cookies [RFC6265] set by a pinned host can be stolen by a
network attacker who can forge web and DNS responses so as to cause a
client to send the cookies to a phony subdomain of the pinned host.
To prevent this, TACK HTTPS Servers SHOULD set the "secure" attribute
and omit the "domain" attribute on all security-sensitive cookies,
such as session cookies. These settings tell the browser that the
cookie should only be presented back to the originating host (not its
subdomains), and should only be sent over HTTPS (not HTTP) [RFC6265].
9.2. For client implementers
A TACK pin store may contain private details of the client's
connection history. An attacker may be able to access this
information by hacking or stealing the client. Some information
about the client's connection history could also be gleaned by
observing whether the client accepts or rejects connections to phony
TLS servers without correct tacks. To mitigate these risks, a TACK
client SHOULD allow the user to edit or clear the pin store.
Aside from rejecting TLS connections, clients SHOULD NOT take any
actions which would reveal to a network observer the state of the
client's pin store, as this would allow an attacker to know in
advance whether a "man-in-the-middle" attack on a particular TLS
connection will succeed or be detected.
An attacker may attempt to flood a client with spurious tacks for
different hostnames, causing the client to delete old pins to make
space for new ones. To defend against this, clients SHOULD NOT
delete active pins to make space for new pins. Clients instead
SHOULD delete inactive pins. If there are no inactive pins to
delete, then the pin store is full and there is no space for new
pins. To select an inactive pin for deletion, the client SHOULD
delete the pin with the oldest "end time".
Marlinspike & Perrin Expires March 30, 2013 [Page 17]
Internet-Draft Trust Assertions for Certificate Keys September 2012
9.3. Note on algorithm agility
If the need arises for tacks using different cryptographic algorithms
(e.g., if SHA256 or ECDSA are shown to be weak), a "v2" version of
tacks could be defined, requiring assignment of a new TLS Extension
number. Tacks as defined in this document would then be known as
"v1" tacks.