-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding.py
238 lines (205 loc) · 6.35 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import pennylane as qml
from pennylane import numpy as np
N_layers = 3
# exp(ixZ) gate
def exp_Z(x, wires, inverse=False):
if inverse == False:
qml.RZ(-2 * x, wires=wires)
elif inverse == True:
qml.RZ(2 * x, wires=wires)
# exp(ixZZ) gate
def exp_ZZ1(x, wires, inverse=False):
if inverse == False:
qml.CNOT(wires=wires)
qml.RZ(-2 * x, wires=wires[1])
qml.CNOT(wires=wires)
elif inverse == True:
qml.CNOT(wires=wires)
qml.RZ(2 * x, wires=wires[1])
qml.CNOT(wires=wires)
# exp(i(pi - x1)(pi - x2)ZZ) gate
def exp_ZZ2(x1, x2, wires, inverse=False):
if inverse == False:
qml.CNOT(wires=wires)
qml.RZ(-2 * (np.pi - x1) * (np.pi - x2), wires=wires[1])
qml.CNOT(wires=wires)
elif inverse == True:
qml.CNOT(wires=wires)
qml.RZ(2 * (np.pi - x1) * (np.pi - x2), wires=wires[1])
qml.CNOT(wires=wires)
# Quantum Embedding 1 for model 1 (Conventional ZZ feature embedding)
def QuantumEmbedding1(input):
for i in range(N_layers):
for j in range(8):
qml.Hadamard(wires=j)
exp_Z(input[j], wires=j)
for k in range(7):
exp_ZZ2(input[k], input[k+1], wires=[k,k+1])
exp_ZZ2(input[7], input[0], wires=[7, 0])
def QuantumEmbedding1_inverse(input):
for i in range(N_layers):
exp_ZZ2(input[7], input[0], wires=[7, 0], inverse=True)
for k in reversed(range(7)):
exp_ZZ2(input[k], input[k+1], wires=[k,k+1], inverse=True)
qml.Barrier()
for j in range(8):
exp_Z(input[j], wires=j, inverse=True)
qml.Hadamard(wires=j)
# Quantum Embedding 2 for model 2
def QuantumEmbedding2(input):
for i in range(N_layers):
for j in range(8):
qml.Hadamard(wires=j)
exp_Z(input[j], wires=j)
for k in range(7):
exp_ZZ1(input[8+k], wires=[k, k+1])
exp_ZZ1(input[15], wires=[7,0])
def QuantumEmbedding2_inverse(input):
for i in range(N_layers):
exp_ZZ1(input[15], wires=[7,0], inverse=True)
for k in reversed(range(7)):
exp_ZZ1(input[k+8], wires=[k,k+1], inverse=True)
qml.Barrier()
for j in range(8):
exp_Z(input[j], wires=j, inverse=True)
qml.Hadamard(wires=j)
# Add 4 qubit embedding for demonstrations
def Four_QuantumEmbedding1(input):
for i in range(N_layers):
for j in range(4):
qml.Hadamard(wires=j)
exp_Z(input[j], wires=j)
for k in range(3):
exp_ZZ2(input[k], input[k+1], wires=[k,k+1])
exp_ZZ2(input[3], input[0], wires=[3, 0])
def Four_QuantumEmbedding1_inverse(input):
for i in range(N_layers):
exp_ZZ2(input[3], input[0], wires=[3, 0], inverse=True)
for k in reversed(range(3)):
exp_ZZ2(input[k], input[k+1], wires=[k,k+1], inverse=True)
qml.Barrier()
for j in range(4):
exp_Z(input[j], wires=j, inverse=True)
qml.Hadamard(wires=j)
def Four_QuantumEmbedding2(input):
for i in range(N_layers):
for j in range(4):
qml.Hadamard(wires=j)
exp_Z(input[j], wires=j)
for k in range(3):
exp_ZZ1(input[4 + k], wires=[k,k+1])
exp_ZZ1(input[7], wires=[3, 0])
def Four_QuantumEmbedding2_inverse(input):
for i in range(N_layers):
exp_ZZ1(input[7], wires=[3, 0], inverse=True)
for k in reversed(range(3)):
exp_ZZ1(input[k+4], wires=[k,k+1], inverse=True)
qml.Barrier()
for j in range(4):
exp_Z(input[j], wires=j, inverse=True)
qml.Hadamard(wires=j)
# Noisy 4 qubit embedding
"""
def Noisy_Four_QuantumEmbedding1(input):
def transform(x):
if x == 0:
X = 13
elif x == 1:
X = 12
elif x == 2:
X = 15
elif x == 3:
X = 18
return X
for j in range(4):
qml.Hadamard(wires=transform(j))
exp_Z(input[j], wires=transform(j))
for k in range(3):
exp_ZZ2(input[k], input[k+1], wires=[transform(k),transform(k+1)])
"""
def Noisy_Four_QuantumEmbedding1(input):
for j in range(4):
qml.Hadamard(wires=j)
exp_Z(input[j], wires=j)
for k in range(3):
exp_ZZ2(input[k], input[k+1], wires=[k,k+1])
def Noisy_Four_QuantumEmbedding1_inverse(input):
for k in reversed(range(3)):
exp_ZZ2(input[k], input[k+1], wires=[k,k+1], inverse=True)
for j in range(4):
exp_Z(input[j], wires=j, inverse=True)
qml.Hadamard(wires=j)
def Noisy_Four_QuantumEmbedding2(input):
for j in range(4):
qml.Hadamard(wires=j)
exp_Z(input[j], wires=j)
for k in range(3):
exp_ZZ1(input[4 + k], wires=[k,k+1])
"""
def Noisy_Four_QuantumEmbedding2(input):
def transform(x):
if x == 0:
X = 13
elif x == 1:
X = 12
elif x == 2:
X = 15
elif x == 3:
X = 18
return X
for j in range(4):
qml.Hadamard(wires=transform(j))
exp_Z(input[j], wires=transform(j))
for k in range(3):
exp_ZZ1(input[4 + k], wires=[transform(k),transform(k+1)])
"""
def Noisy_Four_QuantumEmbedding2_inverse(input):
for k in reversed(range(3)):
exp_ZZ1(input[k+4], wires=[k,k+1], inverse=True)
for j in range(4):
exp_Z(input[j], wires=j, inverse=True)
qml.Hadamard(wires=j)
# Add 4 qubit noisy embedding for demonstrations
def U_SU4(params, wires): # 15 params
qml.U3(params[0], params[1], params[2], wires=wires[0])
qml.U3(params[3], params[4], params[5], wires=wires[1])
qml.CNOT(wires=[wires[0], wires[1]])
qml.RY(params[6], wires=wires[0])
qml.RZ(params[7], wires=wires[1])
qml.CNOT(wires=[wires[1], wires[0]])
qml.RY(params[8], wires=wires[0])
qml.CNOT(wires=[wires[0], wires[1]])
qml.U3(params[9], params[10], params[11], wires=wires[0])
qml.U3(params[12], params[13], params[14], wires=wires[1])
def U_TTN(params, wires): # 2 params
qml.RY(params[0], wires=wires[0])
qml.RY(params[1], wires=wires[1])
qml.CNOT(wires=[wires[0], wires[1]])
def QCNN_four(params, ansatz):
if ansatz == 'SU4':
U = U_SU4
num_params = 15
elif ansatz == 'TTN':
U = U_TTN
num_params = 2
param1 = params[0:num_params]
param2 = params[num_params:2 * num_params]
U(param1, wires=[0, 1])
U(param1, wires=[2, 3])
U(param1, wires=[1, 2])
U(param1, wires=[3, 0])
U(param2, wires=[0, 2])
def Noisy_QCNN_four(params, ansatz):
if ansatz == 'SU4':
U = U_SU4
num_params = 15
elif ansatz == 'TTN':
U = U_TTN
num_params = 2
param1 = params[0:num_params]
param2 = params[num_params:2 * num_params]
U(param1, wires=[0, 1])
U(param1, wires=[2, 3])
U(param1, wires=[1, 2])
#U(param1, wires=[3, 0])
U(param2, wires=[0, 2])