This repository has been archived by the owner on May 27, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
qr_09.py
151 lines (123 loc) · 4.83 KB
/
qr_09.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/python
from warnings import warn
import numpy
from numpy import asarray_chkfinite, complexfloating
import cvxopt
from cvxopt import lapack
# Local imports
from scipy.linalg import special_matrices
from scipy.linalg.blas import get_blas_funcs
from scipy.linalg.lapack import get_lapack_funcs, find_best_lapack_type
from scipy.linalg.misc import _datanotshared
def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting = False):
"""Compute QR decomposition of a matrix.
Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : array, shape (M, N)
Matrix to be decomposed
overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)
lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
mode : {'full', 'r', 'economic'}
Determines what information is to be returned: either both Q and R
('full', default), only R ('r') or both Q and R but computed in
economy-size ('economic', see Notes).
Returns
-------
Q : double or complex ndarray
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned if
``mode='r'``.
R : double or complex ndarray
Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
Raises LinAlgError if decomposition fails
Notes
-----
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
dorgqr, and zungqr.
If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
of (M,M) and (M,N), with ``K=min(M,N)``.
Examples
--------
>>> from scipy import random, linalg, dot
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))
"""
if mode == 'qr':
# 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
# 'qr' are used below, but set to 'full' anyway to be sure
mode = 'full'
if not mode in ['full', 'qr', 'r', 'economic']:
raise ValueError(\
"Mode argument should be one of ['full', 'r', 'economic']")
a1 = asarray_chkfinite(a)
if len(a1.shape) != 2:
raise ValueError("expected 2D array")
M, N = a1.shape
overwrite_a = overwrite_a or (_datanotshared(a1, a))
if pivoting:
qr = cvxopt.matrix(0, a1.shape, tc = 'd')
qr[:, :] = a1
tau = cvxopt.matrix(0, (min(M, N), 1), tc = 'd')
jpvt = cvxopt.matrix(0, (N, 1), tc = 'i')
lapack.geqp3(qr, jpvt, tau)
qr = numpy.asarray(qr)
tau = numpy.asarray(tau)
jpvt = (numpy.asarray(jpvt) - 1).ravel()
else:
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
if lwork is None or lwork == -1:
# get optimal work array
qr, tau, work, info = geqrf(a1, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
qr, tau, work, info = geqrf(a1, lwork=lwork, overwrite_a=overwrite_a)
if info < 0:
raise ValueError("illegal value in %d-th argument of internal geqrf"
% -info)
if not mode == 'economic' or M < N:
R = special_matrices.triu(qr)
else:
R = special_matrices.triu(qr[0:N, 0:N])
if mode == 'r':
return R
if find_best_lapack_type((a1,))[0] == 's' or \
find_best_lapack_type((a1,))[0] == 'd':
gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))
else:
gor_un_gqr, = get_lapack_funcs(('ungqr',), (qr,))
if M < N:
# get optimal work array
Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qr[:,0:M], tau, lwork=lwork, overwrite_a=1)
elif mode == 'economic':
# get optimal work array
Q, work, info = gor_un_gqr(qr, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qr, tau, lwork=lwork, overwrite_a=1)
else:
t = qr.dtype.char
qqr = numpy.empty((M, M), dtype=t)
qqr[:,0:N] = qr
# get optimal work array
Q, work, info = gor_un_gqr(qqr, tau, lwork=-1, overwrite_a=1)
lwork = work[0].real.astype(numpy.int)
Q, work, info = gor_un_gqr(qqr, tau, lwork=lwork, overwrite_a=1)
if info < 0:
raise ValueError("illegal value in %d-th argument of internal gorgqr"
% -info)
if pivoting:
return Q, R, jpvt
return Q, R