This repository has been archived by the owner on May 27, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstepwise.py
358 lines (304 loc) · 11.7 KB
/
stepwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!/usr/bin/python
__all__ = ["stepwisefit"]
import numpy
import numpy as np
import scipy
import scipy.stats
from scipy import linalg
if int(scipy.__version__.split('.')[1]) >= 10:
from scipy.linalg import qr
elif scipy.__version__ == '0.9.0':
from qr_09 import qr
elif scipy.__version__ == '0.7.1':
from qr import qr
else:
try:
from qr import qr
except:
try:
from qr_09 import qr
finally:
print 'It appears as though your scipy version is not supported.'
class LazyDict(dict):
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def stepnext(inmodel, pval, b, penter, premove, keep):
"""
Figure out next step.
"""
swap = -1
p = np.NaN
# Look for terms out that should be in.
termsout = (~inmodel & ~keep).nonzero()[0]
if termsout.size != 0:
kmin = pval[termsout].argmin()
pmin = pval[termsout][kmin]
if pmin < penter:
swap = termsout[kmin]
p = pmin
# Otherwise look for terms that should be out.
if swap == -1:
termsin = (inmodel & ~keep).nonzero()[0]
if termsin.size != 0:
badterms = termsin[np.isnan(pval.ravel()[termsin])]
if badterms.size != 0:
# Apparently we have a perfect fit but it is also
# overdetermined. Terms with NaN coefficients may as well
# be removed.
swap = np.isnan(b[badterms])
if swap.any():
swap = badterms[swap]
swap = swap[0]
else:
# If there are many terms contributing to a perfect fit, we
# may as well remove the term that contributes the least.
# For convenience we'll pick the one with the smallest
# coeff.
swap = badterms[abs(b[badterms]).argmin()]
p = np.NaN
else:
kmax = pval[termsin].argmax()
pmax = pval[termsin][kmax]
if pmax > premove:
if not np.isscalar(kmax):
kmax = kmax.ravel()[0]
swap = termsin[kmax]
p = pmax
return swap, p
def stepcalc(allx, y, inmodel):
"""
Perform fit and other calculations as part of stepwise regression.
"""
N = y.size # Number of independent tests (rows in allx).
P = inmodel.size # Number of independent variables in each test
# (cols in allx).
X = np.concatenate((np.ones((N, 1)), allx[:, inmodel]), 1)
nin = inmodel.sum() + 1
tol = max(N, P + 1) * np.finfo(allx.dtype).eps
x = allx[:, ~inmodel]
sumxsq = (x ** 2).sum(axis = 0)
# Compute b and its standard error.
Q, R, perm = qr(X, mode = "economic", pivoting = True)
Rrank = (abs(np.diag(R)) > tol * abs(R.ravel()[0])).sum()
if Rrank < nin:
R = R[0:Rrank, 0:Rrank]
Q = Q[:, 0:Rrank]
perm = perm[0:Rrank]
# Compute the LS coefficients, filling in zeros in elements corresponding
# to rows of X that were thrown out.
b = np.zeros((nin, 1))
Qb = np.dot(Q.conj().T, y)
Qb[abs(Qb) < tol * max(abs(Qb))] = 0
b[perm] = linalg.solve(R, Qb)
r = y - np.dot(X, b)
dfe = X.shape[0] - Rrank
df0 = Rrank - 1
SStotal = linalg.norm(y - y.mean())
SStotal = np.dot(SStotal, SStotal)
SSresid = linalg.norm(r)
SSresid = np.dot(SSresid, SSresid)
perfectyfit = (dfe == 0) or (SSresid < tol * SStotal)
if perfectyfit:
SSresid = 0
r[:] = 0
rmse = np.sqrt(np.divide(SSresid, dfe))
Rinv = linalg.solve(R, np.eye(max(R.shape))[0:R.shape[0], 0:R.shape[1]])
se = np.zeros((nin, 1))
se[perm] = rmse * np.expand_dims(np.sqrt((Rinv ** 2).sum(axis = 1)), 1)
# Compute separate added-variable coeffs and their standard errors.
xr = x - np.dot(Q, np.dot(Q.conj().T, x))
# remove effect of "in" predictors on "out" predictors
yr = r
# remove effect of "in" predictors on response
xx = (xr ** 2).sum(axis = 0)
perfectxfit = (xx <= tol * sumxsq)
if perfectxfit.any(): # to coef==0 for columns dependent in "in" cols
xr[:, perfectxfit] = 0
xx[perfectxfit] = 1
b2 = np.divide(np.dot(yr.conj().T, xr), xx)
r2 = np.tile(yr, (1, (~inmodel).sum())) - xr * np.tile(b2, (N, 1))
df2 = max(0, dfe - 1)
s2 = np.divide(np.sqrt(np.divide((r2 ** 2).sum(axis = 0), df2)),
np.sqrt(xx))
if len(s2.shape) == 1:
s2 = s2.reshape((1, s2.shape[0]))
# Combine in/out coefficients and standard errors.
B = np.zeros((P, 1))
B[inmodel] = b[1:]
B[~inmodel] = b2.conj().T
SE = np.zeros((P, 1))
SE[inmodel] = se[1:]
SE[~inmodel] = s2.conj().T
#Get P-to-enter or P-to-remove for each term.
PVAL = np.zeros((P, 1))
tstat = np.zeros((P, 1))
if any(inmodel):
tval = np.divide(B[inmodel], SE[inmodel])
ptemp = 2 * scipy.stats.t.cdf(-abs(tval), dfe)
PVAL[inmodel] = ptemp
tstat[inmodel] = tval
if any(~inmodel):
if dfe > 1:
tval = np.divide(B[~inmodel], SE[~inmodel])
ptemp = 2 * scipy.stats.t.cdf(-abs(tval), dfe - 1)
flat_tval = tval.ravel()
flat_ptemp = ptemp.ravel()
for i in xrange(flat_tval.size):
if np.isnan(flat_tval[i]):
flat_ptemp[i] = np.NaN
else:
tval = np.NaN
ptemp = np.NaN
PVAL[~inmodel] = ptemp
tstat[~inmodel] = tval
# Compute some summary statistics.
MSexplained = np.divide(SStotal - SSresid, df0)
fstat = np.divide(MSexplained, np.dot(rmse, rmse))
pval = scipy.stats.f.cdf(1. / fstat, dfe, df0)
# Return summary statistics as a single structure.
stats = LazyDict()
stats.source = "stepwisefit"
stats.dfe = dfe
stats.df0 = df0
stats.SStotal = SStotal
stats.SSresid = SSresid
stats.fstat = fstat
stats.pval = pval
stats.rmse = rmse
stats.xr = xr
stats.yr = yr
stats.B = B
stats.SE = SE
stats.TSTAT = tstat
stats.PVAL = PVAL
stats.intercept = b[0]
return B, SE, PVAL, stats
def stepwisefit(allx, y, inmodel = [], penter = 0.05, premove = 0.10,
display = False, maxiter = np.Inf, keep = [], scale = False):
"""
Original Source for Documentation (and code reference):
stepwisefit.m from the MATrix LABoratory statistics toolbox
Fit regression model using stepwise regression
B=STEPWISEFIT(X,Y)[0] uses stepwise regression to model the response variable
Y as a function of the predictor variables represented by the columns
of the matrix X. The result B is a vector of estimated coefficient values
for all columns of X. The B value for a column not included in the final
model is the coefficient that would be obtained by adding that column to
the model. STEPWISEFIT automatically includes a constant term in all
models.
[B,SE,PVAL,INMODEL,STATS,NEXTSTEP,HISTORY]=STEPWISEFIT(...) returns additional
results. SE is a vector of standard errors for B. PVAL is a vector of
p-values for testing if B is 0. INMODEL is a logical vector indicating
which predictors are in the final model. STATS is a structure containing
additional statistics. NEXTSTEP is the recommended next step -- either
the index of the next predictor to move in or out, or 0 if no further
steps are recommended. HISTORY is a structure containing information
about the history of steps taken.
[...]=STEPWISEFIT(X,Y,PARAM1=val1,PARAM2=val2,...) specifies one or
more of the following name/value pairs:
'inmodel' A logical vector, or a list of column numbers, indicating which
predictors to include in the initial fit (default none)
'penter' Max p-value for a predictor to be added (default 0.05)
'premove' Min p-value for a predictor to be removed (default 0.10)
'display' Either 'on' [True] (default) to display information about each
step or 'off' [False] to omit the display
'maxiter' Maximum number of steps to take (default is no maximum)
'keep' A logical vector, or a list of column numbers, indicating which
predictors to keep in their initial state (default none)
'scale' Either 'on' [True] to scale each column of X by its standard deviation
before fitting, or 'off' [False] (the default) to omit scaling.
Example:
load hald
stepwisefit(ingredients,heat,penter=.08)
Reference code and documentation copyright 1993-2009 The MathWorks, Inc.
$Revision: 1.6.4.10 $ $Date: 2009/11/05 17:03:38 $
[1] Draper, N. R., and H. Smith. Applied Regression Analysis.
Hoboken, NJ: Wiley-Interscience, 1998. pp. 307-312.
"""
old_err_settings = np.seterr(divide = 'ignore')
# Begin Housekeeping
if maxiter < 0:
maxiter = np.Inf
allx = np.asarray(allx)
assert len(allx.shape) == 2
p = allx.shape[1]
y = np.asarray(y)
assert y.size in y.shape
assert allx.shape[0] == y.size
y = y.reshape((y.size, 1))
wasnan = np.isnan(allx).any(axis = 1) | np.isnan(y)
inmodel = np.asarray(inmodel)
if inmodel.size == 0 or inmodel.dtype != bool:
new_inmodel = np.zeros(p, dtype = bool)
if inmodel.size > 0:
new_inmodel[inmodel] = True
inmodel = new_inmodel
else:
assert inmodel.shape == (p,)
assert inmodel.dtype == bool
keep = np.asarray(keep)
if keep.size == 0 or keep.dtype != bool:
new_keep = np.zeros(p, dtype = bool)
if keep.size > 0:
new_keep[keep] = True
keep = new_keep
else:
assert keep.shape == (p,)
assert keep.dtype == bool
assert 0 < penter <= premove < 1
rmse = []
df0 = []
inmat = []
# End Housekeeping
sx = allx.std(axis = 0, ddof = 1)
sx[sx == 0] = 1 # All the values must be equal anyway, so change nothing.
allx = allx / sx # Standardize x values.
sx = sx.reshape((1, ) + sx.shape)
if display:
if not inmodel.any():
coltext = "None"
else:
coltext = repr(list(inmodel.nonzero()[0]))
print "Initial columns included: %s" % coltext
jstep = 0
while True:
# Perform current fit
b, se, pval, stats = stepcalc(allx, y, inmodel)
if not scale:
# Undo scaling if this was not requested.
b = b / sx.conj().T
se = se / sx.conj().T
stats.b = b
stats.se = se
stats.xr = stats.xr * np.tile(sx[:, ~inmodel],
(stats.xr.shape[0], 1))
nextstep, pinout = stepnext(inmodel, pval, b, penter, premove, keep)
if 0 < jstep:
rmse.append(stats.rmse)
df0.append(stats.df0)
inmat.append(inmodel.copy())
if maxiter <= jstep:
break
jstep += 1
if nextstep == -1:
break
elif display:
addremoved = "removed" if inmodel[nextstep] else "added"
print "Step %d, %s column %d, p=%f" % \
(jstep, addremoved, nextstep, pinout)
inmodel[nextstep] = not inmodel[nextstep]
if display:
if not inmodel.any():
coltext = "None"
else:
coltext = repr(list(inmodel.nonzero()[0]))
print "Final columns include: %s" %coltext
# Possibly include more debugging information.
stats.wasnan = wasnan
history = LazyDict()
history.rmse = rmse
history.df0 = df0
history.inmat = inmat
np.seterr(**old_err_settings)
return b, se, pval, inmodel, stats, nextstep, history