-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloadntset.py
74 lines (58 loc) · 2.17 KB
/
loadntset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
from sklearn import preprocessing
import tkfile as x
def predict(t,w):
seed=1
dataset = np.loadtxt(t, delimiter=",") #loading testing data
X=dataset[:,0:3]
print(X.shape)
y=dataset[:,3:]
#Sigmoid Function
def sigmoid (x):
return(1/(1 + np.exp(-x)))
#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
return(x * (1 - x))
X=preprocessing.normalize(X) #normalizing the data
#Variable initialization
epoch=100#Setting training iterations
lr=0.01 #Setting learning rate
inputlayer_neurons = 3 #number of features in data set
hiddenlayer_neurons = 2 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer
batch_size=1
#weight and bias initialization from saved txt files
temp1=np.loadtxt("bh.txt",dtype="float",delimiter=",")
wh=np.loadtxt("wh.txt",dtype="float",delimiter=",")
temp2=np.loadtxt("wout.txt",dtype="float",delimiter=",")
temp3=np.loadtxt("bout.txt",dtype="float",delimiter=",")
bh=np.array([temp1.tolist()])
wout=np.array([[i] for i in temp2.tolist()])
bout=np.array([temp3.tolist()])
## feed forward on testing data
hidden_layer_input1=np.dot(X,wh)
hidden_layer_input=hidden_layer_input1 + bh
hiddenlayer_activations = sigmoid(hidden_layer_input)
output_layer_input1=np.dot(hiddenlayer_activations,wout)
output_layer_input= output_layer_input1+ bout
output = sigmoid(output_layer_input)
E = y-output
l=output.tolist() # l has predicted output values
l2=list() # l2 has rounded values (0,1)
for i in l:
if i[0]>0.55 :
l2.append(1)
## print("1")
else:
l2.append(0)
## print("0")
wordslist=[]
a=open(w,"r")
for i in a: # wordlist is list of the words in the video
wordslist.append(i)
temp5=list(zip(wordslist,l2)) #temp5 is nested list with first index as word and second as predicted value(0,1)
nontrivial=[] #list of all the nontrivial words
for i in temp5:
if i[1]==1:
nontrivial.append(i[0][:len(i[0])-1])
return(nontrivial)