-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDrawSequence.py
177 lines (155 loc) · 6.63 KB
/
DrawSequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# import torch # probably need for indexing
import numpy as np
from Helper_Functions import prepare_directory, clean_val
import matplotlib.pyplot as plt
import math
def process_and_draw(model,seq,target_folder="",into_subfolder=None,\
with_numbers=-1,hyperparams_str="",size=5,gold=None,
reset_main_txt=False,with_colorbar=True):
is_cuda = model.is_cuda()
model.cpu()
full_attn_internals , full_outs, model_output = model.get_distrs_and_outs(seq) # layers X heads X tgt len X src len
# print("model ouput was:",model_output,"\t(",subfolder,", test acc:",last_test_acc(model),")")
full_seq = (model.non_token + seq) if model.add_BOS_to_input else (seq)
if not target_folder:
target_folder = "maps/" + model.lang_name +"/" +full_seq+"/"
if not None is into_subfolder:
target_folder += into_subfolder + "/"
top_target_folder = target_folder
if hyperparams_str:
target_folder += hyperparams_str + "/"
draw_distrs(full_seq,full_attn_internals,target_folder,size,with_numbers,with_colorbar=with_colorbar)
draw_scores(full_seq,full_attn_internals,target_folder,size,with_numbers)
print_extra_info(target_folder,hyperparams_str,seq,model_output,gold,model,filename="in_out.txt",copy_to_terminal=True)
if not (target_folder == top_target_folder):
print_extra_info(top_target_folder,hyperparams_str,seq,model_output,gold,model,
append=not reset_main_txt,filename="ins_outs.txt",copy_to_terminal=False)
if is_cuda:
model.cuda()
def as_str(seq,non_token):
with_bos = seq[0] == non_token
if with_bos:
seq = seq[1:]
tostr = (lambda b:"T" if b else "F") if isinstance(seq[0],bool) else str
as_strs = list(map(tostr,seq))
if with_bos:
as_strs = [str(non_token)] + as_strs
joiner = "" if set(len(s) for s in as_strs)==set([1]) else ", "
return joiner.join(as_strs)
def choose_dims(num_ims,force_even_ncols=False):
nrows = int(math.sqrt(num_ims))
ncols = math.ceil(num_ims/nrows)
if (ncols%2==1) and force_even_ncols:
ncols += 1
nrows = math.ceil(num_ims/ncols)
assert nrows*ncols >= num_ims
return nrows, ncols
def last_test_acc(model):
l = model.metrics["test_accs"]
return l[-1] if l else -1
def doubleprint(*a,file=None,**kw):
print(*a,**kw)
if not None is file:
print(*a,**kw,file=file)
def draw_distrs(full_seq,full_attn_internals,target_folder,size,with_numbers,with_colorbar=True):
full_distrs = {i:full_attn_internals[i].distributions for i in full_attn_internals}
nrows,ncols = choose_dims(len(full_distrs[0]))
draw_distrs_or_scores(full_seq,full_distrs,target_folder+"distributions/",
with_numbers=with_numbers,width=size*ncols,height=size*nrows,probabilities=True,with_colorbar=with_colorbar)
def draw_scores(full_seq,full_attn_internals,target_folder,size,with_numbers):
full_scores = {i:full_attn_internals[i].scores for i in full_attn_internals}
nrows,ncols = choose_dims(len(full_scores[0]))
draw_distrs_or_scores(full_seq,full_scores,target_folder+"scores/",
with_numbers=with_numbers,width=size*ncols,height=size*nrows,probabilities=False)
def print_extra_info(target_folder,hyperparams_str,seq,model_output,gold,model,
append=False,copy_to_terminal=True,filename="in_out.txt"):
def _print_extra_info(f,model_output):
pp = doubleprint if copy_to_terminal else print
pp("========================",file=f)
pp("model with hyperparams:",hyperparams_str,"(num epochs:",len(model.metrics["train_accs"]),")",file=f)
pp("model has test acc:",last_test_acc(model),file=f)
pp("",file=f)
pp("input length:",len(seq),file=f)
pp("input: ",seq,file=f)
if isinstance(seq,str):
model_output = as_str(model_output,model.non_token)
pp("output: ",model_output,file=f)
if not None is gold:
target = gold(seq)
if len(target) == 2 and isinstance(target[1],dict):
# target is actually output seq X attentions
target = target[0]
if isinstance(seq,str):
target = as_str(target,model.non_token)
pp("target: ",target,file=f)
pp("========================",file=f)
if append:
with open(target_folder+"/"+filename,"a") as f:
_print_extra_info(f,model_output)
else:
with open(target_folder+"/"+filename,"w") as f:
_print_extra_info(f,model_output)
def fill_img(ax,data,ylabels=None,xlabels=None,name="",with_numbers=-1,
add_cbar=False,probabilities=False):
# plot drawing copied almost verbatim from https://matplotlib.org/3.1.1/gallery/images_contours_and_fields/image_annotated_heatmap.html
im = ax.imshow(data,aspect='auto')
if not None is xlabels:
# ... and label them with the respective list entries
ax.set_xticks(np.arange(len(xlabels)))
ax.set_xticklabels(list(xlabels))
if not None is ylabels:
ax.set_yticks(np.arange(len(ylabels)))
ax.set_yticklabels(list(ylabels))
# Loop over data dimensions and create text annotations.
if with_numbers>0:
for i in range(data.shape[0]):
for j in range(data.shape[1]):
text = ax.text(j, i, clean_val(data[i][j].tolist(),digits=with_numbers),
ha="center", va="center", color="w")
ax.set_title(name)
# if probabilities:
# im.set_clim(0,1)
if add_cbar:
cbar = ax.figure.colorbar(im, ax=ax)
return im
def draw_heatmaps(matrices,with_numbers,subplot_name_fn,
figsize=None,xlabels=None,ylabels=None,
always_cbar=False,probabilities=False,
with_colorbar=True):
if not isinstance(matrices,dict):
matrices = {i:matrices[i] for i in range(len(matrices))}
nrows,ncols = choose_dims(len(matrices))
if not None is figsize:
fig,axes = plt.subplots(nrows=nrows,ncols=ncols,figsize=figsize)
else:
fig,axes = plt.subplots(nrows=nrows,ncols=ncols)
for i,mat_key in enumerate(sorted(list(matrices.keys()))):
mat = matrices[mat_key]
j = int(i/ncols) # row
k = i - (j*ncols) # column: remainder after div by num columns
if nrows==1 and ncols==1:
a=axes
elif nrows==1:
a = axes[k]
else:
a = axes[j,k]
img = fill_img(a,mat,xlabels=xlabels,ylabels=ylabels,
name=subplot_name_fn(i),with_numbers=with_numbers,
add_cbar=with_colorbar and (always_cbar or (k==(ncols-1))),
probabilities=probabilities)
return fig
def draw_distrs_or_scores(full_seq,full_distrs,target_folder,
with_numbers=-1,width=5,height=5,probabilities=False,with_colorbar=True):
# hs = range(len(full_distrs[0]))
for l in range(len(full_distrs)):
fig = draw_heatmaps(full_distrs[l],with_numbers,lambda i:"head "+str(i),
xlabels=full_seq,ylabels=full_seq,
figsize=(width,height),probabilities=probabilities,
with_colorbar=with_colorbar)
what = "probabilities" if probabilities else "scores"
fig.suptitle(what+" of each token (y axis) over full sequence (x axis)")
fig.tight_layout()
target_file = target_folder+"/layer "+str(l)+".png"
prepare_directory(target_file,includes_filename=True)
plt.savefig(target_file)
plt.close()