-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLoadTransformer.py
53 lines (47 loc) · 2.16 KB
/
LoadTransformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from TransformerClassifier import dummy_telm
from Helper_Functions import things_in_path, load_pytorch_model
def load_any_transformer_for_lang(lang,must_contain=None,must_not_contain=None,loud=False,\
write_lang_name=True,report_folder=False,load_all=False,from_subfolder=None,nested1_too=False):
main_folder = "lms"
if from_subfolder:
main_folder += "/" + from_subfolder
all_folders = things_in_path(main_folder,only_folders=True)
relevant = [main_folder+"/"+f for f in all_folders if f==lang]
if nested1_too:
# as some might have been subfolders containing several langs, check those too:
for f in all_folders:
poss_relevant = things_in_path(main_folder+"/"+f,only_folders=True)
relevant += [main_folder+"/"+f+"/"+pr for pr in poss_relevant if pr==lang]
if loud:
print("for lang:",lang,"got relevant subfolders:",relevant)
transformer_folders = [relevant[0]+"/"+p for p in things_in_path(relevant[0],only_folders=True)]
for r in relevant[1:]:
transformer_folders += [r+"/"+p for p in things_in_path(r,only_folders=True)]
if loud:
print("got relevant transformer folders:\n","\n".join(transformer_folders))
if not None is must_contain:
transformer_folders = [t for t in transformer_folders if must_contain in t]
if loud:
print("filtered for folders containing",must_contain,", now have only transformer folders:\n",transformer_folders)
if not None is must_not_contain:
transformer_folders = [t for t in transformer_folders if not must_not_contain in t]
if loud:
print("filtered for folders not containing",must_not_contain,", now have only transformer folders:\n",transformer_folders)
def get_model(folder):
res = load_pytorch_model(dummy_telm(),folder,quiet=not loud)
if write_lang_name and not None is res: # res can be None if loading from
# a folder during training, in particular before it's managed to store any model
res.lang_name = lang
return res
def get_result(folder):
res = get_model(folder)
if report_folder:
return res, folder
else:
return res
if load_all:
return map(get_result,transformer_folders)
else:
folder = transformer_folders[-1]
print("loading transformer from:",folder)
return get_result(folder)