-
Notifications
You must be signed in to change notification settings - Fork 287
/
Copy pathkeras_topk_word_predictions_layer.py
39 lines (31 loc) · 1.66 KB
/
keras_topk_word_predictions_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Layer
import tensorflow.keras.backend as K
from collections import namedtuple
TopKWordPredictionsLayerResult = namedtuple('TopKWordPredictionsLayerResult', ['words', 'scores'])
class TopKWordPredictionsLayer(Layer):
def __init__(self,
top_k: int,
index_to_word_table: tf.lookup.StaticHashTable,
**kwargs):
kwargs['dtype'] = tf.string
kwargs['trainable'] = False
super(TopKWordPredictionsLayer, self).__init__(**kwargs)
self.top_k = top_k
self.index_to_word_table = index_to_word_table
def build(self, input_shape):
if len(input_shape) < 2:
raise ValueError("Input shape for TopKWordPredictionsLayer should be of >= 2 dimensions.")
if input_shape[-1] < self.top_k:
raise ValueError("Last dimension of input shape for TopKWordPredictionsLayer should be of >= `top_k`.")
super(TopKWordPredictionsLayer, self).build(input_shape)
self.trainable = False
def call(self, y_pred, **kwargs) -> TopKWordPredictionsLayerResult:
top_k_pred_scores, top_k_pred_indices = tf.nn.top_k(y_pred, k=self.top_k, sorted=True)
top_k_pred_indices = tf.cast(top_k_pred_indices, dtype=self.index_to_word_table.key_dtype)
top_k_pred_words = self.index_to_word_table.lookup(top_k_pred_indices)
return TopKWordPredictionsLayerResult(words=top_k_pred_words, scores=top_k_pred_scores)
def compute_output_shape(self, input_shape):
output_shape = tuple(input_shape[:-1]) + (self.top_k, )
return output_shape, output_shape