-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
477 lines (408 loc) · 26.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import tensorflow as tf
import PathContextReader
import numpy as np
import time
import pickle
from common import common, VocabType
class Model:
topk = 10
num_batches_to_log = 100
def __init__(self, config):
self.config = config
self.sess = tf.Session()
self.eval_data_lines = None
self.eval_queue = None
self.predict_queue = None
self.eval_placeholder = None
self.predict_placeholder = None
self.eval_top_words_op, self.eval_top_values_op, self.eval_original_names_op, self.eval_code_vectors = None, None, None, None
self.predict_top_words_op, self.predict_top_values_op, self.predict_original_names_op = None, None, None
if config.TRAIN_PATH:
with open('{}.dict.c2v'.format(config.TRAIN_PATH), 'rb') as file:
word_to_count = pickle.load(file)
path_to_count = pickle.load(file)
target_to_count = pickle.load(file)
num_training_examples = pickle.load(file)
self.config.NUM_EXAMPLES = num_training_examples
print('Dictionaries loaded.')
if config.LOAD_PATH:
self.load_model(sess=None)
else:
self.word_to_index, self.index_to_word, self.word_vocab_size = \
common.load_vocab_from_dict(word_to_count, config.WORDS_VOCAB_SIZE, start_from=1)
print('Loaded word vocab. size: %d' % self.word_vocab_size)
self.target_word_to_index, self.index_to_target_word, self.target_word_vocab_size = \
common.load_vocab_from_dict(target_to_count, config.TARGET_VOCAB_SIZE,
start_from=1)
print('Loaded target word vocab. size: %d' % self.target_word_vocab_size)
self.path_to_index, self.index_to_path, self.path_vocab_size = \
common.load_vocab_from_dict(path_to_count, config.PATHS_VOCAB_SIZE,
start_from=1)
print('Loaded paths vocab. size: %d' % self.path_vocab_size)
self.create_index_to_target_word_map()
def create_index_to_target_word_map(self):
self.index_to_target_word_table = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(list(self.index_to_target_word.keys()),
list(self.index_to_target_word.values()),
key_dtype=tf.int64, value_dtype=tf.string),
default_value=tf.constant(common.noSuchWord, dtype=tf.string))
def close_session(self):
self.sess.close()
def train(self):
print('Starting training')
start_time = time.time()
batch_num = 0
sum_loss = 0
multi_batch_start_time = time.time()
num_batches_to_evaluate = max(int(
self.config.NUM_EXAMPLES / self.config.BATCH_SIZE * self.config.SAVE_EVERY_EPOCHS), 1)
self.queue_thread = PathContextReader.PathContextReader(word_to_index=self.word_to_index,
path_to_index=self.path_to_index,
target_word_to_index=self.target_word_to_index,
config=self.config)
optimizer, train_loss = self.build_training_graph(self.queue_thread.input_tensors())
self.saver = tf.train.Saver(max_to_keep=self.config.MAX_TO_KEEP)
self.initialize_session_variables(self.sess)
print('Initalized variables')
if self.config.LOAD_PATH:
self.load_model(self.sess)
with self.queue_thread.start(self.sess):
time.sleep(1)
print('Started reader...')
try:
while True:
batch_num += 1
_, batch_loss = self.sess.run([optimizer, train_loss])
sum_loss += batch_loss
if batch_num % self.num_batches_to_log == 0:
self.trace(sum_loss, batch_num, multi_batch_start_time)
print('Number of waiting examples in queue: %d' % self.sess.run(
"shuffle_batch/random_shuffle_queue_Size:0"))
sum_loss = 0
multi_batch_start_time = time.time()
if batch_num % num_batches_to_evaluate == 0:
epoch_num = int((batch_num / num_batches_to_evaluate) * self.config.SAVE_EVERY_EPOCHS)
save_target = self.config.SAVE_PATH + '_iter' + str(epoch_num)
self.save_model(self.sess, save_target)
print('Saved after %d epochs in: %s' % (epoch_num, save_target))
results, precision, recall, f1 = self.evaluate()
print('Accuracy after %d epochs: %s' % (epoch_num, results[:5]))
print('After ' + str(epoch_num) + ' epochs: Precision: ' + str(precision) + ', recall: ' + str(
recall) + ', F1: ' + str(f1))
except tf.errors.OutOfRangeError:
print('Done training')
if self.config.SAVE_PATH:
self.save_model(self.sess, self.config.SAVE_PATH)
print('Model saved in file: %s' % self.config.SAVE_PATH)
elapsed = int(time.time() - start_time)
print("Training time: %sH:%sM:%sS\n" % ((elapsed // 60 // 60), (elapsed // 60) % 60, elapsed % 60))
def trace(self, sum_loss, batch_num, multi_batch_start_time):
multi_batch_elapsed = time.time() - multi_batch_start_time
avg_loss = sum_loss / (self.num_batches_to_log * self.config.BATCH_SIZE)
print('Average loss at batch %d: %f, \tthroughput: %d samples/sec' % (batch_num, avg_loss,
self.config.BATCH_SIZE * self.num_batches_to_log / (
multi_batch_elapsed if multi_batch_elapsed > 0 else 1)))
def evaluate(self):
eval_start_time = time.time()
if self.eval_queue is None:
self.eval_queue = PathContextReader.PathContextReader(word_to_index=self.word_to_index,
path_to_index=self.path_to_index,
target_word_to_index=self.target_word_to_index,
config=self.config, is_evaluating=True)
self.eval_placeholder = self.eval_queue.get_input_placeholder()
self.eval_top_words_op, self.eval_top_values_op, self.eval_original_names_op, _, _, _, _, self.eval_code_vectors = \
self.build_test_graph(self.eval_queue.get_filtered_batches())
self.saver = tf.train.Saver()
if self.config.LOAD_PATH and not self.config.TRAIN_PATH:
self.initialize_session_variables(self.sess)
self.load_model(self.sess)
if self.config.RELEASE:
release_name = self.config.LOAD_PATH + '.release'
print('Releasing model, output model: %s' % release_name )
self.saver.save(self.sess, release_name )
return None
if self.eval_data_lines is None:
print('Loading test data from: ' + self.config.TEST_PATH)
self.eval_data_lines = common.load_file_lines(self.config.TEST_PATH)
print('Done loading test data')
with open('log.txt', 'w') as output_file:
if self.config.EXPORT_CODE_VECTORS:
code_vectors_file = open(self.config.TEST_PATH + '.vectors', 'w')
num_correct_predictions = np.zeros(self.topk)
total_predictions = 0
total_prediction_batches = 0
true_positive, false_positive, false_negative = 0, 0, 0
start_time = time.time()
for batch in common.split_to_batches(self.eval_data_lines, self.config.TEST_BATCH_SIZE):
top_words, top_scores, original_names, code_vectors = self.sess.run(
[self.eval_top_words_op, self.eval_top_values_op, self.eval_original_names_op, self.eval_code_vectors],
feed_dict={self.eval_placeholder: batch})
top_words, original_names = common.binary_to_string_matrix(top_words), common.binary_to_string_matrix(
original_names)
# Flatten original names from [[]] to []
original_names = [w for l in original_names for w in l]
num_correct_predictions = self.update_correct_predictions(num_correct_predictions, output_file,
zip(original_names, top_words))
true_positive, false_positive, false_negative = self.update_per_subtoken_statistics(
zip(original_names, top_words),
true_positive, false_positive, false_negative)
total_predictions += len(original_names)
total_prediction_batches += 1
if self.config.EXPORT_CODE_VECTORS:
self.write_code_vectors(code_vectors_file, code_vectors)
if total_prediction_batches % self.num_batches_to_log == 0:
elapsed = time.time() - start_time
# start_time = time.time()
self.trace_evaluation(output_file, num_correct_predictions, total_predictions, elapsed, len(self.eval_data_lines))
print('Done testing, epoch reached')
output_file.write(str(num_correct_predictions / total_predictions) + '\n')
if self.config.EXPORT_CODE_VECTORS:
code_vectors_file.close()
elapsed = int(time.time() - eval_start_time)
precision, recall, f1 = self.calculate_results(true_positive, false_positive, false_negative)
print("Evaluation time: %sH:%sM:%sS" % ((elapsed // 60 // 60), (elapsed // 60) % 60, elapsed % 60))
del self.eval_data_lines
self.eval_data_lines = None
return num_correct_predictions / total_predictions, precision, recall, f1
def write_code_vectors(self, file, code_vectors):
for vec in code_vectors:
file.write(' '.join(map(str, vec)) + '\n')
def update_per_subtoken_statistics(self, results, true_positive, false_positive, false_negative):
for original_name, top_words in results:
prediction = common.filter_impossible_names(top_words)[0]
original_subtokens = common.get_subtokens(original_name)
predicted_subtokens = common.get_subtokens(prediction)
for subtok in predicted_subtokens:
if subtok in original_subtokens:
true_positive += 1
else:
false_positive += 1
for subtok in original_subtokens:
if not subtok in predicted_subtokens:
false_negative += 1
return true_positive, false_positive, false_negative
@staticmethod
def calculate_results(true_positive, false_positive, false_negative):
precision = true_positive / (true_positive + false_positive)
recall = true_positive / (true_positive + false_negative)
f1 = 2 * precision * recall / (precision + recall)
return precision, recall, f1
@staticmethod
def trace_evaluation(output_file, correct_predictions, total_predictions, elapsed, total_examples):
state_message = 'Evaluated %d/%d examples...' % (total_predictions, total_examples)
throughput_message = "Prediction throughput: %d samples/sec" % int(total_predictions / (elapsed if elapsed > 0 else 1))
print(state_message)
print(throughput_message)
def update_correct_predictions(self, num_correct_predictions, output_file, results):
for original_name, top_words in results:
normalized_original_name = common.normalize_word(original_name)
predicted_something = False
for i, predicted_word in enumerate(common.filter_impossible_names(top_words)):
if i == 0:
output_file.write('Original: ' + original_name + ', predicted 1st: ' + predicted_word + '\n')
predicted_something = True
normalized_suggestion = common.normalize_word(predicted_word)
if normalized_original_name == normalized_suggestion:
output_file.write('\t\t predicted correctly at rank: ' + str(i + 1) + '\n')
for j in range(i, self.topk):
num_correct_predictions[j] += 1
break
if not predicted_something:
output_file.write('No results for predicting: ' + original_name)
return num_correct_predictions
def build_training_graph(self, input_tensors):
words_input, source_input, path_input, target_input, valid_mask = input_tensors # (batch, 1), (batch, max_contexts)
with tf.variable_scope('model'):
words_vocab = tf.get_variable('WORDS_VOCAB', shape=(self.word_vocab_size + 1, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0,
mode='FAN_OUT',
uniform=True))
target_words_vocab = tf.get_variable('TARGET_WORDS_VOCAB',
shape=(
self.target_word_vocab_size + 1, self.config.EMBEDDINGS_SIZE * 3),
dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0,
mode='FAN_OUT',
uniform=True))
attention_param = tf.get_variable('ATTENTION',
shape=(self.config.EMBEDDINGS_SIZE * 3, 1), dtype=tf.float32)
paths_vocab = tf.get_variable('PATHS_VOCAB', shape=(self.path_vocab_size + 1, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32,
initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0,
mode='FAN_OUT',
uniform=True))
code_vectors, _ = self.calculate_weighted_contexts(words_vocab, paths_vocab, attention_param,
source_input, path_input, target_input,
valid_mask)
logits = tf.matmul(code_vectors, target_words_vocab, transpose_b=True)
batch_size = tf.to_float(tf.shape(words_input)[0])
loss = tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=tf.reshape(words_input, [-1]),
logits=logits)) / batch_size
optimizer = tf.train.AdamOptimizer().minimize(loss)
return optimizer, loss
def calculate_weighted_contexts(self, words_vocab, paths_vocab, attention_param, source_input, path_input,
target_input, valid_mask, is_evaluating=False):
keep_prob1 = 0.75
max_contexts = self.config.MAX_CONTEXTS
source_word_embed = tf.nn.embedding_lookup(params=words_vocab, ids=source_input) # (batch, max_contexts, dim)
path_embed = tf.nn.embedding_lookup(params=paths_vocab, ids=path_input) # (batch, max_contexts, dim)
target_word_embed = tf.nn.embedding_lookup(params=words_vocab, ids=target_input) # (batch, max_contexts, dim)
context_embed = tf.concat([source_word_embed, path_embed, target_word_embed],
axis=-1) # (batch, max_contexts, dim * 3)
if not is_evaluating:
context_embed = tf.nn.dropout(context_embed, keep_prob1)
flat_embed = tf.reshape(context_embed, [-1, self.config.EMBEDDINGS_SIZE * 3]) # (batch * max_contexts, dim * 3)
transform_param = tf.get_variable('TRANSFORM',
shape=(self.config.EMBEDDINGS_SIZE * 3, self.config.EMBEDDINGS_SIZE * 3),
dtype=tf.float32)
flat_embed = tf.tanh(tf.matmul(flat_embed, transform_param)) # (batch * max_contexts, dim * 3)
contexts_weights = tf.matmul(flat_embed, attention_param) # (batch * max_contexts, 1)
batched_contexts_weights = tf.reshape(contexts_weights,
[-1, max_contexts, 1]) # (batch, max_contexts, 1)
mask = tf.log(valid_mask) # (batch, max_contexts)
mask = tf.expand_dims(mask, axis=2) # (batch, max_contexts, 1)
batched_contexts_weights += mask # (batch, max_contexts, 1)
attention_weights = tf.nn.softmax(batched_contexts_weights, axis=1) # (batch, max_contexts, 1)
batched_embed = tf.reshape(flat_embed, shape=[-1, max_contexts, self.config.EMBEDDINGS_SIZE * 3])
code_vectors = tf.reduce_sum(tf.multiply(batched_embed, attention_weights),
axis=1) # (batch, dim * 3)
return code_vectors, attention_weights
def build_test_graph(self, input_tensors, normalize_scores=False):
with tf.variable_scope('model', reuse=self.get_should_reuse_variables()):
words_vocab = tf.get_variable('WORDS_VOCAB', shape=(self.word_vocab_size + 1, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32, trainable=False)
target_words_vocab = tf.get_variable('TARGET_WORDS_VOCAB',
shape=(
self.target_word_vocab_size + 1, self.config.EMBEDDINGS_SIZE * 3),
dtype=tf.float32, trainable=False)
attention_param = tf.get_variable('ATTENTION',
shape=(self.config.EMBEDDINGS_SIZE * 3, 1),
dtype=tf.float32, trainable=False)
paths_vocab = tf.get_variable('PATHS_VOCAB',
shape=(self.path_vocab_size + 1, self.config.EMBEDDINGS_SIZE),
dtype=tf.float32, trainable=False)
target_words_vocab = tf.transpose(target_words_vocab) # (dim * 3, target_word_vocab+1)
words_input, source_input, path_input, target_input, valid_mask, source_string, path_string, path_target_string = input_tensors # (batch, 1), (batch, max_contexts)
code_vectors, attention_weights = self.calculate_weighted_contexts(words_vocab, paths_vocab,
attention_param,
source_input, path_input,
target_input,
valid_mask, True)
scores = tf.matmul(code_vectors, target_words_vocab) # (batch, target_word_vocab+1)
topk_candidates = tf.nn.top_k(scores, k=tf.minimum(self.topk, self.target_word_vocab_size))
top_indices = tf.to_int64(topk_candidates.indices)
top_words = self.index_to_target_word_table.lookup(top_indices)
original_words = words_input
top_scores = topk_candidates.values
if normalize_scores:
top_scores = tf.nn.softmax(top_scores)
return top_words, top_scores, original_words, attention_weights, source_string, path_string, path_target_string, code_vectors
def predict(self, predict_data_lines):
if self.predict_queue is None:
self.predict_queue = PathContextReader.PathContextReader(word_to_index=self.word_to_index,
path_to_index=self.path_to_index,
target_word_to_index=self.target_word_to_index,
config=self.config, is_evaluating=True)
self.predict_placeholder = self.predict_queue.get_input_placeholder()
self.predict_top_words_op, self.predict_top_values_op, self.predict_original_names_op, \
self.attention_weights_op, self.predict_source_string, self.predict_path_string, self.predict_path_target_string, self.predict_code_vectors = \
self.build_test_graph(self.predict_queue.get_filtered_batches(), normalize_scores=True)
self.initialize_session_variables(self.sess)
self.saver = tf.train.Saver()
self.load_model(self.sess)
code_vectors = []
results = []
for batch in common.split_to_batches(predict_data_lines, 1):
top_words, top_scores, original_names, attention_weights, source_strings, path_strings, target_strings, batch_code_vectors = self.sess.run(
[self.predict_top_words_op, self.predict_top_values_op, self.predict_original_names_op,
self.attention_weights_op, self.predict_source_string, self.predict_path_string,
self.predict_path_target_string, self.predict_code_vectors],
feed_dict={self.predict_placeholder: batch})
top_words, original_names = common.binary_to_string_matrix(top_words), common.binary_to_string_matrix(
original_names)
# Flatten original names from [[]] to []
attention_per_path = self.get_attention_per_path(source_strings, path_strings, target_strings,
attention_weights)
original_names = [w for l in original_names for w in l]
results.append((original_names[0], top_words[0], top_scores[0], attention_per_path))
if self.config.EXPORT_CODE_VECTORS:
code_vectors.append(batch_code_vectors)
if len(code_vectors) > 0:
code_vectors = np.vstack(code_vectors)
return results, code_vectors
def get_attention_per_path(self, source_strings, path_strings, target_strings, attention_weights):
attention_weights = np.squeeze(attention_weights) # (max_contexts, )
attention_per_context = {}
for source, path, target, weight in zip(source_strings, path_strings, target_strings, attention_weights):
string_triplet = (
common.binary_to_string(source), common.binary_to_string(path), common.binary_to_string(target))
attention_per_context[string_triplet] = weight
return attention_per_context
@staticmethod
def get_dictionaries_path(model_file_path):
dictionaries_save_file_name = "dictionaries.bin"
return '/'.join(model_file_path.split('/')[:-1] + [dictionaries_save_file_name])
def save_model(self, sess, path):
self.saver.save(sess, path)
with open(self.get_dictionaries_path(path), 'wb') as file:
pickle.dump(self.word_to_index, file)
pickle.dump(self.index_to_word, file)
pickle.dump(self.word_vocab_size, file)
pickle.dump(self.target_word_to_index, file)
pickle.dump(self.index_to_target_word, file)
pickle.dump(self.target_word_vocab_size, file)
pickle.dump(self.path_to_index, file)
pickle.dump(self.index_to_path, file)
pickle.dump(self.path_vocab_size, file)
def load_model(self, sess):
if not sess is None:
print('Loading model weights from: ' + self.config.LOAD_PATH)
self.saver.restore(sess, self.config.LOAD_PATH)
print('Done')
dictionaries_path = self.get_dictionaries_path(self.config.LOAD_PATH)
# TODO: delete the following line
dictionaries_path = self.config.LOAD_PATH + "/dictionaries.bin"
print(self.config.LOAD_PATH)
with open(dictionaries_path , 'rb') as file:
print('Loading model dictionaries from: %s' % dictionaries_path)
self.word_to_index = pickle.load(file)
self.index_to_word = pickle.load(file)
self.word_vocab_size = pickle.load(file)
self.target_word_to_index = pickle.load(file)
self.index_to_target_word = pickle.load(file)
self.target_word_vocab_size = pickle.load(file)
self.path_to_index = pickle.load(file)
self.index_to_path = pickle.load(file)
self.path_vocab_size = pickle.load(file)
print('Done')
def save_word2vec_format(self, dest, source):
with tf.variable_scope('model', reuse=None):
if source is VocabType.Token:
vocab_size = self.word_vocab_size
embedding_size = self.config.EMBEDDINGS_SIZE
index = self.index_to_word
var_name = 'WORDS_VOCAB'
elif source is VocabType.Target:
vocab_size = self.target_word_vocab_size
embedding_size = self.config.EMBEDDINGS_SIZE * 3
index = self.index_to_target_word
var_name = 'TARGET_WORDS_VOCAB'
else:
raise ValueError('vocab type should be VocabType.Token or VocabType.Target.')
embeddings = tf.get_variable(var_name, shape=(vocab_size + 1, embedding_size), dtype=tf.float32,
trainable=False)
self.saver = tf.train.Saver()
self.load_model(self.sess)
np_embeddings = self.sess.run(embeddings)
with open(dest, 'w') as words_file:
common.save_word2vec_file(words_file, vocab_size, embedding_size, index, np_embeddings)
@staticmethod
def initialize_session_variables(sess):
sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer(), tf.tables_initializer()))
def get_should_reuse_variables(self):
if self.config.TRAIN_PATH:
return True
else:
return None