-
Notifications
You must be signed in to change notification settings - Fork 0
X06 Delta E used equations
$$\bar{C}^{\ast}{ab} = \frac{C^{\ast }{1,ab} + C^{\ast }_{2,ab}}{2}$$
$$G = .5 \times \left ( 1 - \sqrt{\frac{{C^{\ast }{ab}}^{7}}{{C^{\ast }{ab}}^{7} + 25^7}} \right )$$
$${a}'{i} = (1 + G) \times a^{\ast }{i}$$
$${C}'{i} = \sqrt{{{a}'{i}}^2 + {{b}'_{i}}^2}$$
$${h}'{i} = \begin{cases} 0 & \text{ if } b^{\ast}{i} = {a}'{i} = 0 \ \tan^{-1}(b^{\ast}{i}, {a}'_{i}) & \text{ otherwise } \end{cases}$$
$$\Delta {h}' = \begin{cases} 0 & \text{ if } {C}'{1}{C}'{2} = 0 \ {h}'{2} - {h}'{1} & \text{ if } {C}'{1}{C}'{2}\neq0; \left | {h}'{2} - {h}'{1} \right | \leq 180^{\circ} \ \left ( {h}'{2} - {h}'{1} \right ) - 360 & \text{ if } {C}'{1}{C}'{2}\neq0; \left ( {h}'{2} - {h}'{1} \right ) > 180^{\circ} \ \left ( {h}'{2} - {h}'{1} \right ) + 360 & \text{ if } {C}'{1}{C}'{2}\neq0; \left ( {h}'{2} - {h}'{1} \right )< -180^{\circ} \end{cases}$$
$$\Delta {H}' = 2 \times \sqrt{{C}'{1}{C}'{2}} \times \sin{\left ( \frac{\Delta {h}'}{2} \right )}$$
$${\bar{L}}' = \frac{\left( L^{\ast }{1} + L^{\ast }{2} \right )}{2}$$
$${\bar{C}}' = \frac{\left( {C}'{1} + {C}'{2} \right )}{2}$$