-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathmain.swift
56 lines (49 loc) · 2.05 KB
/
main.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import AutoencoderCallback
import Datasets
import Foundation
import ModelSupport
import TensorFlow
import TrainingLoop
let epochCount = 10
let batchSize = 100
let imageHeight = 28
let imageWidth = 28
let dataset = FashionMNIST(
batchSize: batchSize, device: Device.default,
entropy: SystemRandomNumberGenerator(), flattening: true)
// An autoencoder.
var autoencoder = Sequential {
// The encoder.
Dense<Float>(inputSize: imageHeight * imageWidth, outputSize: 128, activation: relu)
Dense<Float>(inputSize: 128, outputSize: 64, activation: relu)
Dense<Float>(inputSize: 64, outputSize: 12, activation: relu)
Dense<Float>(inputSize: 12, outputSize: 3, activation: relu)
// The decoder.
Dense<Float>(inputSize: 3, outputSize: 12, activation: relu)
Dense<Float>(inputSize: 12, outputSize: 64, activation: relu)
Dense<Float>(inputSize: 64, outputSize: 128, activation: relu)
Dense<Float>(inputSize: 128, outputSize: imageHeight * imageWidth, activation: tanh)
}
let optimizer = RMSProp(for: autoencoder)
var trainingLoop = TrainingLoop(
training: dataset.training.map { $0.map { LabeledData(data: $0.data, label: $0.data) } },
validation: dataset.validation.map { LabeledData(data: $0.data, label: $0.data) },
optimizer: optimizer,
lossFunction: meanSquaredError,
callbacks: [
imageSaver(batchSize: batchSize, imageWidth: imageWidth, imageHeight: imageHeight)
])
try! trainingLoop.fit(&autoencoder, epochs: epochCount, on: Device.default)