-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathmain.swift
67 lines (59 loc) · 2.35 KB
/
main.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Datasets
import TensorFlow
let batchSize = 100
let dataset = CIFAR10(batchSize: batchSize)
var model = KerasModel()
let optimizer = RMSProp(for: model, learningRate: 0.0001, decay: 1e-6)
print("Starting training...")
for (epoch, epochBatches) in dataset.training.prefix(100).enumerated() {
Context.local.learningPhase = .training
var trainingLossSum: Float = 0
var trainingBatchCount = 0
for batch in epochBatches {
let (images, labels) = (batch.data, batch.label)
let (loss, gradients) = valueWithGradient(at: model) { model -> Tensor<Float> in
let logits = model(images)
return softmaxCrossEntropy(logits: logits, labels: labels)
}
trainingLossSum += loss.scalarized()
trainingBatchCount += 1
optimizer.update(&model, along: gradients)
}
Context.local.learningPhase = .inference
var testLossSum: Float = 0
var testBatchCount = 0
var correctGuessCount = 0
var totalGuessCount = 0
for batch in dataset.validation {
let (images, labels) = (batch.data, batch.label)
let logits = model(images)
testLossSum += softmaxCrossEntropy(logits: logits, labels: labels).scalarized()
testBatchCount += 1
let correctPredictions = logits.argmax(squeezingAxis: 1) .== labels
correctGuessCount = correctGuessCount
+ Int(
Tensor<Int32>(correctPredictions).sum().scalarized())
totalGuessCount = totalGuessCount + batchSize
}
let accuracy = Float(correctGuessCount) / Float(totalGuessCount)
print(
"""
[Epoch \(epoch)] \
Accuracy: \(correctGuessCount)/\(totalGuessCount) (\(accuracy)) \
Loss: \(testLossSum / Float(testBatchCount))
"""
)
}