-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathJuliaSet.swift
83 lines (70 loc) · 2.76 KB
/
JuliaSet.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import ArgumentParser
import Foundation
import TensorFlow
struct ComplexConstant {
let real: Float
let imaginary: Float
}
func juliaSet(
iterations: Int, constant: ComplexConstant, tolerance: Float, region: ComplexRegion,
imageSize: ImageSize, device: Device
) -> Tensor<Float> {
let xs = Tensor<Float>(
linearSpaceFrom: region.realMinimum, to: region.realMaximum, count: imageSize.width, on: device
).broadcasted(to: [imageSize.width, imageSize.height])
let ys = Tensor<Float>(
linearSpaceFrom: region.imaginaryMaximum, to: region.imaginaryMinimum, count: imageSize.height,
on: device
).expandingShape(at: 1).broadcasted(to: [imageSize.width, imageSize.height])
var Z = ComplexTensor(real: xs, imaginary: ys)
let C = ComplexTensor(
real: Tensor<Float>(repeating: constant.real, shape: xs.shape, on: device),
imaginary: Tensor<Float>(repeating: constant.imaginary, shape: xs.shape, on: device))
var divergence = Tensor<Float>(repeating: Float(iterations), shape: xs.shape, on: device)
// We'll make sure the initialization of these tensors doesn't carry
// into the trace for the first iteration.
LazyTensorBarrier()
let start = Date()
var firstIteration = Date()
for iteration in 0..<iterations {
Z = Z * Z + C
let aboveThreshold = abs(Z) .> tolerance
divergence = divergence.replacing(
with: min(divergence, Float(iteration)), where: aboveThreshold)
// We're cutting the trace to be a single iteration.
LazyTensorBarrier()
if iteration == 1 {
firstIteration = Date()
}
}
print(
"Total calculation time: \(String(format: "%.3f", Date().timeIntervalSince(start))) seconds")
print(
"Time after first iteration: \(String(format: "%.3f", Date().timeIntervalSince(firstIteration))) seconds"
)
return divergence
}
extension ComplexConstant: ExpressibleByArgument {
init?(argument: String) {
let subArguments = argument.split(separator: ",").compactMap { Float(String($0)) }
guard subArguments.count >= 2 else { return nil }
self.real = subArguments[0]
self.imaginary = subArguments[1]
}
var defaultValueDescription: String {
"\(self.real),\(self.imaginary)"
}
}