-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathmain.swift
47 lines (42 loc) · 1.85 KB
/
main.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Datasets
import ImageClassificationModels
import TensorBoard
import TensorFlow
import TrainingLoop
// XLA mode can't load Imagenet, need to use eager mode to limit memory use
let device = Device.defaultTFEager
let dataset = ImageNet(batchSize: 32, outputSize: 224, on: device)
var model = ResNet(classCount: 1000, depth: .resNet50)
// https://github.com/mlcommons/training/blob/4f97c909f3aeaa3351da473d12eba461ace0be76/image_classification/tensorflow/official/resnet/imagenet_main.py#L286
let optimizer = SGD(for: model, learningRate: 0.1, momentum: 0.9)
public func scheduleLearningRate<L: TrainingLoopProtocol>(
_ loop: inout L, event: TrainingLoopEvent
) throws where L.Opt.Scalar == Float {
if event == .epochStart {
guard let epoch = loop.epochIndex else { return }
if epoch > 30 { loop.optimizer.learningRate = 0.01 }
if epoch > 60 { loop.optimizer.learningRate = 0.001 }
if epoch > 80 { loop.optimizer.learningRate = 0.0001 }
}
}
var trainingLoop = TrainingLoop(
training: dataset.training,
validation: dataset.validation,
optimizer: optimizer,
lossFunction: softmaxCrossEntropy,
metrics: [.accuracy],
callbacks: [scheduleLearningRate, tensorBoardStatisticsLogger()])
try! trainingLoop.fit(&model, epochs: 90, on: device)