-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathMLP.swift
46 lines (40 loc) · 1.76 KB
/
MLP.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import TensorFlow
/// MLP is a multi-layer perceptron and is used as a component of the DLRM model
public struct MLP: Layer {
public var blocks: [Dense<Float>] = []
/// Randomly initializes a new multilayer perceptron from the given hyperparameters.
///
/// - Parameter dims: Dims represents the size of the input, hidden layers, and output of the
/// multi-layer perceptron.
/// - Parameter sigmoidLastLayer: if `true`, use a `sigmoid` activation function for the last layer,
/// `relu` otherwise.
init(dims: [Int], sigmoidLastLayer: Bool = false) {
for i in 0..<(dims.count-1) {
if sigmoidLastLayer && i == dims.count - 2 {
blocks.append(Dense(inputSize: dims[i], outputSize: dims[i+1], activation: sigmoid))
} else {
blocks.append(Dense(inputSize: dims[i], outputSize: dims[i+1], activation: relu))
}
}
}
@differentiable
public func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
let blocksReduced = blocks.differentiableReduce(input) { last, layer in
layer(last)
}
return blocksReduced
}
}