-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathHeads.swift
67 lines (60 loc) · 2.18 KB
/
Heads.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Checkpoints
import TensorFlow
public struct PersonlabHeadsResults: Differentiable {
public var heatmap: Tensor<Float>
public var offsets: Tensor<Float>
public var displacementsFwd: Tensor<Float>
public var displacementsBwd: Tensor<Float>
}
public struct PersonlabHeads: Layer {
@noDerivative let ckpt: CheckpointReader
public var heatmap: Conv2D<Float>
public var offsets: Conv2D<Float>
public var displacementsFwd: Conv2D<Float>
public var displacementsBwd: Conv2D<Float>
public init(checkpoint: CheckpointReader) {
self.ckpt = checkpoint
self.heatmap = Conv2D<Float>(
filter: ckpt.load(from: "heatmap_2/weights"),
bias: ckpt.load(from: "heatmap_2/biases"),
padding: .same
)
self.offsets = Conv2D<Float>(
filter: ckpt.load(from: "offset_2/weights"),
bias: ckpt.load(from: "offset_2/biases"),
padding: .same
)
self.displacementsFwd = Conv2D<Float>(
filter: ckpt.load(from: "displacement_fwd_2/weights"),
bias: ckpt.load(from: "displacement_fwd_2/biases"),
padding: .same
)
self.displacementsBwd = Conv2D<Float>(
filter: ckpt.load(from: "displacement_bwd_2/weights"),
bias: ckpt.load(from: "displacement_bwd_2/biases"),
padding: .same
)
}
@differentiable
public func callAsFunction(_ input: Tensor<Float>) -> PersonlabHeadsResults {
return PersonlabHeadsResults(
heatmap: sigmoid(self.heatmap(input)),
offsets: self.offsets(input),
displacementsFwd: self.displacementsFwd(input),
displacementsBwd: self.displacementsBwd(input)
)
}
}