-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathPersonlab.swift
71 lines (61 loc) · 2.28 KB
/
Personlab.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Checkpoints
import Foundation
import ModelSupport
import TensorFlow
public struct PersonLab {
let config: Config
let ckpt: CheckpointReader
let backbone: MobileNetLikeBackbone
let personlabHeads: PersonlabHeads
public init(_ config: Config) {
self.config = config
do {
self.ckpt = try CheckpointReader(
checkpointLocation: config.checkpointPath, modelName: "Personlab"
)
} catch {
print("Error loading checkpoint file: \(config.checkpointPath)")
print(error)
exit(0)
}
self.backbone = MobileNetLikeBackbone(checkpoint: ckpt)
self.personlabHeads = PersonlabHeads(checkpoint: ckpt)
}
public func callAsFunction(_ inputImage: Image) -> [Pose] {
let startTime = Date()
let resizedImage = inputImage.resized(to: config.inputImageSize)
let normalizedImageTensor = resizedImage.tensor * (2.0 / 255.0) - 1.0
let batchedNormalizedImagesTensor = normalizedImageTensor.expandingShape(at: 0)
let preprocessingTime = Date()
let convnetResults = personlabHeads(backbone(batchedNormalizedImagesTensor))
let convnetTime = Date()
let poseDecoder = PoseDecoder(for: convnetResults, with: self.config)
let poses = poseDecoder.decode()
let decoderTime = Date()
if self.config.printProfilingData {
print(
String(
format: "Preprocessing: %.2f ms", preprocessingTime.timeIntervalSince(startTime) * 1000),
"|",
String(
format: "Backbone: %.2f ms", convnetTime.timeIntervalSince(preprocessingTime) * 1000),
"|",
String(format: "Decoder: %.2f ms", decoderTime.timeIntervalSince(convnetTime) * 1000)
)
}
return poses
}
}