-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathmain.swift
75 lines (65 loc) · 2.16 KB
/
main.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import ArgumentParser
import Foundation
import ModelSupport
import TensorFlow
struct Inference: ParsableCommand {
static var configuration = CommandConfiguration(
commandName: "personlab",
abstract: """
Runs human pose estimation on a local image file.
"""
)
@Argument(help: "Path to local image to run pose estimation on")
var imagePath: String
@Option(name: .shortAndLong, help: "Path to checkpoint directory")
var checkpointPath: String?
@Flag(name: .shortAndLong, help: "Print profiling data")
var profiling = false
func run() {
Context.local.learningPhase = .inference
var config = Config(printProfilingData: profiling)
if checkpointPath != nil {
config.checkpointPath = URL(fileURLWithPath: checkpointPath!)
}
let model = PersonLab(config)
let fileManager = FileManager()
if !fileManager.fileExists(atPath: imagePath) {
print("No image found at path: \(imagePath)")
return
}
let image = Image(contentsOf: URL(fileURLWithPath: imagePath))
var poses = [Pose]()
if profiling {
print("Running model 10 times to see how inference time changes.")
for _ in 1...10 {
poses = model(image)
}
} else {
poses = model(image)
}
var drawnTensor = image.tensor
for pose in poses {
draw(pose, on: &drawnTensor)
}
do {
try drawnTensor.saveImage(directory: "./", name: "out")
print("Output image saved to 'out.jpg'")
} catch {
print("Error during final image output: \(error).")
}
}
}
Inference.main()