-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathmodel.js
210 lines (186 loc) · 6.73 KB
/
model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* This file implements the code for a multilayer perceptron based variational
* autoencoder and is a per of this code
* https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
*
* See this tutorial for a description of how autoencoders work.
* https://blog.keras.io/building-autoencoders-in-keras.html
*/
const tf = require('@tensorflow/tfjs');
/**
* The encoder portion of the model.
*
* @param {object} opts encoder configuration, includnig the following fields:
* - originaDim {number} Length of the input flattened image.
* - intermediateDim {number} Number of units of the intermediate (i.e.,
* hidden) dense layer.
* - latentDim {number} Dimensionality of the latent space (i.e,. z-space).
* @param {number} opts.originalDim number of dimensions in the original data.
* @param {number} opts.intermediateDim number of dimensions in the bottleneck.
* @param {number} opts.latentDim number of dimensions in latent space.
* @returns {tf.LayersModel} the encoder model.
*/
function encoder(opts) {
const {originalDim, intermediateDim, latentDim} = opts;
const inputs = tf.input({shape: [originalDim], name: 'encoder_input'});
const x = tf.layers.dense({units: intermediateDim, activation: 'relu'})
.apply(inputs);
const zMean = tf.layers.dense({units: latentDim, name: 'z_mean'}).apply(x);
const zLogVar =
tf.layers.dense({units: latentDim, name: 'z_log_var'}).apply(x);
const z =
new ZLayer({name: 'z', outputShape: [latentDim]}).apply([zMean, zLogVar]);
const enc = tf.model({
inputs: inputs,
outputs: [zMean, zLogVar, z],
name: 'encoder',
});
// console.log('Encoder Summary');
// enc.summary();
return enc;
}
/**
* This layer implements the 'reparameterization trick' described in
* https://blog.keras.io/building-autoencoders-in-keras.html.
*
* The implementation is in the call method.
* Instead of sampling from Q(z|X):
* sample epsilon = N(0,I)
* z = z_mean + sqrt(var) * epsilon
*/
class ZLayer extends tf.layers.Layer {
constructor(config) {
super(config);
}
computeOutputShape(inputShape) {
tf.util.assert(inputShape.length === 2 && Array.isArray(inputShape[0]),
() => `Expected exactly 2 input shapes. But got: ${inputShape}`);
return inputShape[0];
}
/**
* The actual computation performed by an instance of ZLayer.
*
* @param {Tensor[]} inputs this layer takes two input tensors, z_mean and
* z_log_var
* @return A tensor of the same shape as z_mean and z_log_var, equal to
* z_mean + sqrt(exp(z_log_var)) * epsilon, where epsilon is a random
* vector that follows the unit normal distribution (N(0, I)).
*/
call(inputs, kwargs) {
const [zMean, zLogVar] = inputs;
const batch = zMean.shape[0];
const dim = zMean.shape[1];
const mean = 0;
const std = 1.0;
// sample epsilon = N(0, I)
const epsilon = tf.randomNormal([batch, dim], mean, std);
// z = z_mean + sqrt(var) * epsilon
return zMean.add(zLogVar.mul(0.5).exp().mul(epsilon));
}
static get className() {
return 'ZLayer';
}
}
tf.serialization.registerClass(ZLayer);
/**
* The decoder portion of the model.
*
* @param {*} opts decoder configuration
* @param {number} opts.originalDim number of dimensions in the original data
* @param {number} opts.intermediateDim number of dimensions in the bottleneck
* of the encoder
* @param {number} opts.latentDim number of dimensions in latent space
*/
function decoder(opts) {
const {originalDim, intermediateDim, latentDim} = opts;
// The decoder model has a linear topology and hence could be constructed
// with `tf.sequential()`. But we use the functional-model API (i.e.,
// `tf.model()`) here nonetheless, for consistency with the encoder model
// (see `encoder()` above).
const input = tf.input({shape: [latentDim]});
let y = tf.layers.dense({
units: intermediateDim,
activation: 'relu'
}).apply(input);
y = tf.layers.dense({
units: originalDim,
activation: 'sigmoid'
}).apply(y);
const dec = tf.model({inputs: input, outputs: y});
// console.log('Decoder Summary');
// dec.summary();
return dec;
}
/**
* The combined encoder-decoder pipeline.
*
* @param {tf.Model} encoder
* @param {tf.Model} decoder
*
* @returns {tf.Model} the vae.
*/
function vae(encoder, decoder) {
const inputs = encoder.inputs;
const encoderOutputs = encoder.apply(inputs);
const encoded = encoderOutputs[2];
const decoderOutput = decoder.apply(encoded);
const v = tf.model({
inputs: inputs,
outputs: [decoderOutput, ...encoderOutputs],
name: 'vae_mlp',
})
// console.log('VAE Summary');
// v.summary();
return v;
}
/**
* The custom loss function for VAE.
*
* @param {tf.tensor} inputs the encoder inputs a batched image tensor
* @param {[tf.tensor]} outputs the vae outputs, [decoderOutput,
* ...encoderOutputs]
* @param {number} vaeOpts.originalDim number of dimensions in the original data
*/
function vaeLoss(inputs, outputs) {
return tf.tidy(() => {
const originalDim = inputs.shape[1];
const decoderOutput = outputs[0];
const zMean = outputs[1];
const zLogVar = outputs[2];
// First we compute a 'reconstruction loss' terms. The goal of minimizing
// this term is to make the model outputs match the input data.
const reconstructionLoss =
tf.losses.meanSquaredError(inputs, decoderOutput).mul(originalDim);
// binaryCrossEntropy can be used as an alternative loss function
// const reconstructionLoss =
// tf.metrics.binaryCrossentropy(inputs, decoderOutput).mul(originalDim);
// Next we compute the KL-divergence between zLogVar and zMean, minimizing
// this term aims to make the distribution of latent variable more normally
// distributed around the center of the latent space.
let klLoss = zLogVar.add(1).sub(zMean.square()).sub(zLogVar.exp());
klLoss = klLoss.sum(-1).mul(-0.5);
return reconstructionLoss.add(klLoss).mean();
});
}
module.exports = {
vae,
encoder,
decoder,
vaeLoss,
}