-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathmodels_test.js
84 lines (75 loc) · 3.12 KB
/
models_test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs-node';
import {JenaWeatherData} from "./data";
import {buildGRUModel, buildMLPModel, buildSimpleRNNModel, getBaselineMeanAbsoluteError} from "./models";
describe('Model creation', () => {
it('MLP', () => {
const model = buildMLPModel([8, 9]);
const config = model.layers[1].getConfig();
expect(config.kernelRegularizer).toEqual(null);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, 8, 9]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([null, 1]);
});
it('MLP with kernel regularizer', () => {
const model = buildMLPModel([8, 9], tf.regularizers.l2({l2: 5e-2}));
const config = model.layers[1].getConfig();
expect(config.kernelRegularizer.config.l2).toEqual(5e-2);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, 8, 9]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([null, 1]);
});
it('MLP with dropout', () => {
const model = buildMLPModel([8, 9], null, 0.5);
const denseConfig = model.layers[1].getConfig();
expect(denseConfig.kernelRegularize).toEqual(undefined);
const dropoutConfig = model.layers[model.layers.length - 2].getConfig();
expect(dropoutConfig.rate).toEqual(0.5);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, 8, 9]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([null, 1]);
});
});
describe('RNN', () => {
it('simpleRNN', () => {
const model = buildSimpleRNNModel([8, 9]);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, 8, 9]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([null, 1]);
});
it('buildGRUModel', () => {
const model = buildGRUModel([8, 9]);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, 8, 9]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([null, 1]);
});
});
describe('getBaselineMeanAbsoluteError', () => {
it('getBaselineMeanAbsoluteError', async () => {
const dataset = new JenaWeatherData();
await dataset.load();
const baselineMAE = await getBaselineMeanAbsoluteError(
dataset, true, false, 10 * 24 * 6, 6, 24 * 6);
expect(baselineMAE).toBeCloseTo(0.29033);
});
});