-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathindex.js
196 lines (174 loc) · 6.49 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as tfVis from '@tensorflow/tfjs-vis';
import * as loader from './loader';
import * as ui from './ui';
import * as util from './util';
const HOSTED_URLS = {
model:
'https://storage.googleapis.com/tfjs-models/tfjs/mnist_transfer_cnn_v1/model.json',
train:
'https://storage.googleapis.com/tfjs-models/tfjs/mnist_transfer_cnn_v1/gte5.train.json',
test:
'https://storage.googleapis.com/tfjs-models/tfjs/mnist_transfer_cnn_v1/gte5.test.json'
};
const LOCAL_URLS = {
model: 'http://localhost:1235/resources/model.json',
train: 'http://localhost:1235/resources/gte5.train.json',
test: 'http://localhost:1235/resources/gte5.test.json'
};
class MnistTransferCNNPredictor {
/**
* Initializes the MNIST Transfer CNN demo.
*/
async init(urls) {
this.urls = urls;
this.model = await loader.loadHostedPretrainedModel(urls.model);
// Print model summary right after model is loaded.
this.model.summary();
tfVis.show.modelSummary(
{name: 'Model Summary', tab: 'Model Info'}, this.model);
this.imageSize = this.model.layers[0].batchInputShape[1];
this.numClasses = 5;
await this.loadRetrainData();
this.prepTestExamples();
return this;
}
async loadRetrainData() {
ui.status('Loading data for transfer learning...');
this.gte5TrainData =
await loader.loadHostedData(this.urls.train, this.numClasses);
this.gte5TestData =
await loader.loadHostedData(this.urls.test, this.numClasses);
ui.status('Done loading data for transfer learning.');
}
prepTestExamples() {
// Some hard-coded MNIST image examples for interactive testing.
const testExamples = {};
const digitCounts = {5: 0, 6: 0, 7: 0, 8: 0, 9: 0};
const examplesPerDigit = 10;
// Enter one example of each of 5, 6, 7, 8, 9 in `testExamples`.
for (let i = this.gte5TestData.data.length - 1; i >= 0; --i) {
const datum = this.gte5TestData.data[i];
const digit = datum.y + 5;
if (digitCounts[digit] >= examplesPerDigit) {
continue;
}
digitCounts[digit]++;
const key = String(digit) + '_' + String(digitCounts[digit]);
testExamples[key] = [];
for (const row of datum.x) {
testExamples[key] = testExamples[key].concat(row);
}
if (Object.keys(testExamples).length >= 5 * examplesPerDigit) {
break;
}
}
this.testExamples = testExamples;
}
// Perform prediction on the input image using the loaded model.
predict(imageText) {
tf.tidy(() => {
try {
const image = util.textToImageArray(imageText, this.imageSize);
const predictOut = this.model.predict(image);
const winner = predictOut.argMax(1);
ui.setPredictResults(predictOut.dataSync(), winner.dataSync()[0] + 5);
} catch (e) {
ui.setPredictError(e.message);
}
});
}
// Perform retraining on the loaded model.
async retrainModel() {
ui.status(
'Please wait and do NOT click anything while the model retrains...',
'blue');
const trainingMode = ui.getTrainingMode();
if (trainingMode === 'freeze-feature-layers') {
console.log('Freezing feature layers of the model.');
for (let i = 0; i < 7; ++i) {
this.model.layers[i].trainable = false;
}
} else if (trainingMode === 'reinitialize-weights') {
// Make a model with the same topology as before, but with re-initialized
// weight values.
const returnString = false;
this.model = await tf.models.modelFromJSON({
modelTopology: this.model.toJSON(null, returnString)
});
}
this.model.compile({
loss: 'categoricalCrossentropy',
optimizer: tf.train.adam(0.01),
metrics: ['acc'],
});
// Print model summary again after compile(). You should see a number
// of the model's weights have become non-trainable.
this.model.summary();
const batchSize = 128;
const epochs = ui.getEpochs();
const surfaceInfo = {name: trainingMode, tab: 'Transfer Learning'};
console.log('Calling model.fit()');
await this.model.fit(this.gte5TrainData.x, this.gte5TrainData.y, {
batchSize: batchSize,
epochs: epochs,
validationData: [this.gte5TestData.x, this.gte5TestData.y],
callbacks: [
ui.getProgressBarCallbackConfig(epochs),
tfVis.show.fitCallbacks(surfaceInfo, ['val_loss', 'val_acc'], {
zoomToFit: true,
zoomToFitAccuracy: true,
height: 200,
callbacks: ['onEpochEnd'],
}),
]
});
console.log('DONE Calling model.fit()');
}
}
/**
* Loads the pretrained model and metadata, and registers the predict
* and retrain functions with the UI.
*/
async function setupMnistTransferCNN() {
if (await loader.urlExists(HOSTED_URLS.model)) {
ui.status('Model available: ' + HOSTED_URLS.model);
const button = document.getElementById('load-pretrained-remote');
button.addEventListener('click', async () => {
const predictor = await new MnistTransferCNNPredictor().init(HOSTED_URLS);
ui.prepUI(
x => predictor.predict(x), () => predictor.retrainModel(),
predictor.testExamples, predictor.imageSize);
});
button.style.display = 'inline-block';
}
if (await loader.urlExists(LOCAL_URLS.model)) {
ui.status('Model available: ' + LOCAL_URLS.model);
const button = document.getElementById('load-pretrained-local');
button.addEventListener('click', async () => {
const predictor = await new MnistTransferCNNPredictor().init(LOCAL_URLS);
ui.prepUI(
x => predictor.predict(x), () => predictor.retrainModel(),
predictor.testExamples, predictor.imageSize);
});
button.style.display = 'inline-block';
}
ui.status('Standing by. Please load pretrained model first.');
}
setupMnistTransferCNN();