-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathindex.html
88 lines (70 loc) · 2.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
<!--
Copyright 2018 Google LLC. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================
-->
<!doctype html>
<head>
<title>TensorFlow.js: Using a pretrained MobileNet</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="../shared/tfjs-examples.css" />
</head>
<style>
.pred-container {
margin-bottom: 20px;
}
.pred-container > div {
display: inline-block;
margin-right: 20px;
vertical-align: top;
}
.row {
display: table-row;
}
.cell {
display: table-cell;
padding-right: 20px;
}
#file-container {
margin-bottom: 20px;
}
</style>
<body>
<div class="tfjs-example-container">
<section class='title-area'>
<h1>TensorFlow.js: Using a pretrained MobileNet</h1>
</section>
<section>
<p class='section-head'>Description</p>
<p>
This demo uses the pretrained MobileNet_25_224 model from Keras which you can find
<a href="https://github.com/fchollet/deep-learning-models/releases/download/v0.6/mobilenet_2_5_224_tf.h5">here</a>.
It is not trained to recognize human faces. For best performance, upload images of objects
like piano, coffee mugs, bottles, etc. You can see all the objects types it has been trained to recognize in <a
href="https://github.com/tensorflow/tfjs-examples/blob/master/mobilenet/imagenet_classes.js">imagenet_classes.js</a>.
</p>
</section>
<section>
<p class='section-head'>Status</p>
<div id="status"></div>
</section>
<section>
<p class='section-head'>Model Output</p>
<div id="file-container" style="display: none">
Upload an image: <input type="file" id="files" name="files[]" multiple />
</div>
<div id="predictions"></div>
<img style="display: none" id="cat" src="cat.jpg" width=224 height=224 />
</section>
<script type="module" src="index.js"></script>
</div>
</body>