-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathdata.js
50 lines (44 loc) · 1.56 KB
/
data.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
export function generateData(numPoints, coeff, sigma = 0.04) {
return tf.tidy(() => {
const [a, b, c, d] = [
tf.scalar(coeff.a), tf.scalar(coeff.b), tf.scalar(coeff.c),
tf.scalar(coeff.d)
];
const xs = tf.randomUniform([numPoints], -1, 1);
// Generate polynomial data
const three = tf.scalar(3, 'int32');
const ys = a.mul(xs.pow(three))
.add(b.mul(xs.square()))
.add(c.mul(xs))
.add(d)
// Add random noise to the generated data
// to make the problem a bit more interesting
.add(tf.randomNormal([numPoints], 0, sigma));
// Normalize the y values to the range 0 to 1.
const ymin = ys.min();
const ymax = ys.max();
const yrange = ymax.sub(ymin);
const ysNormalized = ys.sub(ymin).div(yrange);
return {
xs,
ys: ysNormalized
};
})
}