-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathtrain.js
248 lines (231 loc) · 8.09 KB
/
train.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import {ArgumentParser} from 'argparse';
import * as fs from 'fs';
import * as path from 'path';
import * as shelljs from 'shelljs';
import {loadData, loadMetadataTemplate} from './data';
import {writeEmbeddingMatrixAndLabels} from './embedding';
/**
* Create a model for IMDB sentiment analysis.
*
* @param {string} modelType Type of the model to be created.
* @param {number} vocabularySize Input vocabulary size.
* @param {number} embeddingSize Embedding vector size, used to
* configure the embedding layer.
* @returns An uncompiled instance of `tf.Model`.
*/
export function buildModel(modelType, maxLen, vocabularySize, embeddingSize) {
// TODO(cais): Bidirectional and dense-only.
const model = tf.sequential();
if (modelType === 'multihot') {
// A 'multihot' model takes a multi-hot encoding of all words in the
// sentence and uses dense layers with relu and sigmoid activation functions
// to classify the sentence.
model.add(tf.layers.dense({
units: 16,
activation: 'relu',
inputShape: [vocabularySize]
}));
model.add(tf.layers.dense({
units: 16,
activation: 'relu'
}));
} else {
// All other model types use word embedding.
model.add(tf.layers.embedding({
inputDim: vocabularySize,
outputDim: embeddingSize,
inputLength: maxLen
}));
if (modelType === 'flatten') {
model.add(tf.layers.flatten());
} else if (modelType === 'cnn') {
model.add(tf.layers.dropout({rate: 0.5}));
model.add(tf.layers.conv1d({
filters: 250,
kernelSize: 5,
strides: 1,
padding: 'valid',
activation: 'relu'
}));
model.add(tf.layers.globalMaxPool1d({}));
model.add(tf.layers.dense({units: 250, activation: 'relu'}));
} else if (modelType === 'simpleRNN') {
model.add(tf.layers.simpleRNN({units: 32}));
} else if (modelType === 'lstm') {
model.add(tf.layers.lstm({units: 32}));
} else if (modelType === 'bidirectionalLSTM') {
model.add(tf.layers.bidirectional(
{layer: tf.layers.lstm({units: 32}), mergeMode: 'concat'}));
} else {
throw new Error(`Unsupported model type: ${modelType}`);
}
}
model.add(tf.layers.dense({units: 1, activation: 'sigmoid'}));
return model;
}
function parseArguments() {
const parser = new ArgumentParser(
{description: 'Train a model for IMDB sentiment analysis'});
parser.addArgument('modelType', {
type: 'string',
optionStrings: [
'multihot', 'flatten', 'cnn', 'simpleRNN', 'lstm', 'bidirectionalLSTM'],
help: 'Model type'
});
parser.addArgument('--numWords', {
type: 'int',
defaultValue: 10000,
help: 'Number of words in the vocabulary'
});
parser.addArgument('--maxLen', {
type: 'int',
defaultValue: 100,
help: 'Maximum sentence length in number of words. ' +
'Shorter sentences will be padded; longers ones will be truncated.'
});
parser.addArgument('--embeddingSize', {
type: 'int',
defaultValue: 128,
help: 'Number of word embedding dimensions'
});
parser.addArgument(
'--gpu', {action: 'storeTrue', help: 'Use GPU for training'});
parser.addArgument('--optimizer', {
type: 'string',
defaultValue: 'adam',
help: 'Optimizer to be used for model training'
});
parser.addArgument(
'--epochs',
{type: 'int', defaultValue: 10, help: 'Number of training epochs'});
parser.addArgument(
'--batchSize',
{type: 'int', defaultValue: 128, help: 'Batch size for training'});
parser.addArgument('--validationSplit', {
type: 'float',
defaultValue: 0.2,
help: 'Validation split for training'
});
parser.addArgument('--modelSaveDir', {
type: 'string',
defaultValue: 'dist/resources',
help: 'Optional path for model saving.'
});
parser.addArgument('--embeddingFilesPrefix', {
type: 'string',
defaultValue: '',
help: 'Optional path prefix for saving embedding files that ' +
'can be loaded in the Embedding Projector ' +
'(https://projector.tensorflow.org/). For example, if this flag ' +
'is configured to the value /tmp/embed, then the embedding vectors ' +
'file will be written to /tmp/embed_vectors.tsv and the labels ' +
'file will be written to /tmp/embed_label.tsv'
});
parser.addArgument('--logDir', {
type: 'string',
help: 'Optional tensorboard log directory, to which the loss and ' +
'accuracy will be logged during model training.'
});
parser.addArgument('--logUpdateFreq', {
type: 'string',
defaultValue: 'batch',
optionStrings: ['batch', 'epoch'],
help: 'Frequency at which the loss and accuracy will be logged to ' +
'tensorboard.'
});
return parser.parseArgs();
}
async function main() {
const args = parseArguments();
let tfn;
if (args.gpu) {
console.log('Using GPU for training');
tfn = require('@tensorflow/tfjs-node-gpu');
} else {
console.log('Using CPU for training');
tfn = require('@tensorflow/tfjs-node');
}
console.log('Loading data...');
const multihot = args.modelType === 'multihot';
const {xTrain, yTrain, xTest, yTest} =
await loadData(args.numWords, args.maxLen, multihot);
console.log('Building model...');
const model = buildModel(
args.modelType, args.maxLen, args.numWords, args.embeddingSize);
model.compile({
loss: 'binaryCrossentropy',
optimizer: args.optimizer,
metrics: ['acc']
});
model.summary();
console.log('Training model...');
await model.fit(xTrain, yTrain, {
epochs: args.epochs,
batchSize: args.batchSize,
validationSplit: args.validationSplit,
callbacks: args.logDir == null ? null : tfn.node.tensorBoard(args.logDir, {
updateFreq: args.logUpdateFreq
})
});
console.log('Evaluating model...');
const [testLoss, testAcc] =
model.evaluate(xTest, yTest, {batchSize: args.batchSize});
console.log(`Evaluation loss: ${(await testLoss.data())[0].toFixed(4)}`);
console.log(`Evaluation accuracy: ${(await testAcc.data())[0].toFixed(4)}`);
// Save model.
let metadata;
if (args.modelSaveDir != null && args.modelSaveDir.length > 0) {
if (multihot) {
console.warn(
'Skipping saving of multihot model, which is not supported.');
} else {
// Create base directory first.
shelljs.mkdir('-p', args.modelSaveDir);
// Load metadata template.
console.log('Loading metadata template...');
metadata = await loadMetadataTemplate();
// Save metadata.
metadata.epochs = args.epochs;
metadata.embedding_size = args.embeddingSize;
metadata.max_len = args.maxLen;
metadata.model_type = args.modelType;
metadata.batch_size = args.batchSize;
metadata.vocabulary_size = args.numWords;
const metadataPath = path.join(args.modelSaveDir, 'metadata.json');
fs.writeFileSync(metadataPath, JSON.stringify(metadata));
console.log(`Saved metadata to ${metadataPath}`);
// Save model artifacts.
await model.save(`file://${args.modelSaveDir}`);
console.log(`Saved model to ${args.modelSaveDir}`);
}
}
if (args.embeddingFilesPrefix != null &&
args.embeddingFilesPrefix.length > 0) {
if (metadata == null) {
metadata = await loadMetadataTemplate();
}
await writeEmbeddingMatrixAndLabels(
model, args.embeddingFilesPrefix, metadata.word_index,
metadata.index_from);
}
}
if (require.main === module) {
main();
}