-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathdqn_test.js
130 lines (115 loc) · 5.38 KB
/
dqn_test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs-node';
import {createDeepQNetwork, copyWeights} from "./dqn";
describe('createDeepQNetwork', () => {
it('createDeepQNetwork', () => {
const h = 9;
const w = 9;
const numActions = 4;
const model = createDeepQNetwork(h, w, numActions);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, h, w, 2]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([null, numActions]);
});
it('Invalid h and/or w leads to Error', () => {
expect(() => createDeepQNetwork(0, 10, 4)).toThrowError(/height/);
expect(() => createDeepQNetwork('10', 10, 4)).toThrowError(/height/);
expect(() => createDeepQNetwork(null, 10, 4)).toThrowError(/height/);
expect(() => createDeepQNetwork(undefined, 10, 4)).toThrowError(/height/);
expect(() => createDeepQNetwork(10.8, 10, 4)).toThrowError(/height/);
expect(() => createDeepQNetwork(10, 0, 4)).toThrowError(/width/);
expect(() => createDeepQNetwork(10, '10', 4)).toThrowError(/width/);
expect(() => createDeepQNetwork(10, null, 4)).toThrowError(/width/);
expect(() => createDeepQNetwork(10, undefined, 4)).toThrowError(/width/);
expect(() => createDeepQNetwork(10, 10.8, 4)).toThrowError(/width/);
});
it('Invali numActions leads to Error', () => {
expect(() => createDeepQNetwork(10, 10, 0)).toThrowError(/numActions/);
expect(() => createDeepQNetwork(10, 10, 1)).toThrowError(/numActions/);
expect(() => createDeepQNetwork(10, 10, '4')).toThrowError(/numActions/);
expect(() => createDeepQNetwork(10, 10, null)).toThrowError(/numActions/);
expect(() => createDeepQNetwork(10, 10, undefined)).toThrowError(/numActions/);
});
});
describe('copyWeights', () => {
it('copyWeights', async () => {
const h = 9;
const w = 9;
const numActions = 4;
const onlineNetwork = createDeepQNetwork(h, w, numActions);
const targetNetwork = createDeepQNetwork(h, w, numActions);
onlineNetwork.compile({
loss: 'meanSquaredError',
optimizer: tf.train.sgd(0.1)
});
// Initially, the two networks should have different values in their
// weights.
const conv1Weights0 = onlineNetwork.layers[0].getWeights();
const conv1Weights1 = targetNetwork.layers[0].getWeights();
expect(conv1Weights0.length).toEqual(conv1Weights1.length);
// The 1st weight is the 1st conv layer's kernel.
expect(conv1Weights0[0].sub(conv1Weights1[0]).abs().mean().arraySync())
.toBeGreaterThan(0);
const conv2Weights0 = onlineNetwork.layers[2].getWeights();
const conv2Weights1 = targetNetwork.layers[2].getWeights();
expect(conv2Weights0.length).toEqual(conv2Weights1.length);
// The 1st weight is the 2nd conv layer's kernel.
expect(conv2Weights0[0].sub(conv2Weights1[0]).abs().mean().arraySync())
.toBeGreaterThan(0);
copyWeights(targetNetwork, onlineNetwork);
// After the copying, all the weights should be equal between the two
// networks.
const onlineWeights1 = onlineNetwork.getWeights();
const targetWeights1 = targetNetwork.getWeights();
expect(onlineWeights1.length).toEqual(targetWeights1.length);
for (let i = 0; i < onlineWeights1.length; ++i) {
expect(onlineWeights1[i].sub(targetWeights1[i]).abs().mean().arraySync())
.toEqual(0);
}
// Modifying source network weight should not change target network weight.
const xs =
tf.randomUniform([4].concat(onlineNetwork.inputs[0].shape.slice(1)));
const ys =
tf.randomUniform([4].concat(onlineNetwork.outputs[0].shape.slice(1)));
await onlineNetwork.fit(xs, ys, {epochs: 1});
const onlineWeights2 = onlineNetwork.getWeights();
const targetWeights2 = targetNetwork.getWeights();
expect(onlineWeights2.length).toEqual(targetWeights2.length);
for (let i = 0; i < onlineWeights1.length; ++i) {
// Verify that the target network's weights haven't changed from before,
// even though the online network's weights have.
expect(onlineWeights2[0].sub(targetWeights2[0]).abs().mean().arraySync())
.toBeGreaterThan(0);
expect(targetWeights2[0].sub(targetWeights1[0]).abs().mean().arraySync())
.toEqual(0);
}
});
it('Copy from trainble source to untrainble dest works', () => {
// Covers https://github.com/tensorflow/tfjs/issues/1807.
const h = 9;
const w = 9;
const numActions = 4;
const srcNetwork = createDeepQNetwork(h, w, numActions);
const destNetwork = createDeepQNetwork(h, w, numActions);
destNetwork.trainable = false;
copyWeights(destNetwork, srcNetwork);
expect(destNetwork.trainable).toEqual(false);
expect(srcNetwork.trainable).toEqual(true);
});
});