-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathindex.js
214 lines (186 loc) · 7.46 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as loader from './loader';
import * as ui from './ui';
const HOSTED_URLS = {
model:
'https://storage.googleapis.com/tfjs-models/tfjs/translation_en_fr_v1/model.json',
metadata:
'https://storage.googleapis.com/tfjs-models/tfjs/translation_en_fr_v1/metadata.json'
};
const LOCAL_URLS = {
model: 'http://localhost:1235/resources/model.json',
metadata: 'http://localhost:1235/resources/metadata.json'
};
class Translator {
/**
* Initializes the Translation demo.
*/
async init(urls) {
this.urls = urls;
const model = await loader.loadHostedPretrainedModel(urls.model);
await this.loadMetadata();
this.prepareEncoderModel(model);
this.prepareDecoderModel(model);
return this;
}
async loadMetadata() {
const translationMetadata =
await loader.loadHostedMetadata(this.urls.metadata);
this.maxDecoderSeqLength = translationMetadata['max_decoder_seq_length'];
this.maxEncoderSeqLength = translationMetadata['max_encoder_seq_length'];
console.log('maxDecoderSeqLength = ' + this.maxDecoderSeqLength);
console.log('maxEncoderSeqLength = ' + this.maxEncoderSeqLength);
this.inputTokenIndex = translationMetadata['input_token_index'];
this.targetTokenIndex = translationMetadata['target_token_index'];
this.reverseTargetCharIndex =
Object.keys(this.targetTokenIndex)
.reduce(
(obj, key) => (obj[this.targetTokenIndex[key]] = key, obj), {});
}
prepareEncoderModel(model) {
this.numEncoderTokens = model.input[0].shape[2];
console.log('numEncoderTokens = ' + this.numEncoderTokens);
const encoderInputs = model.input[0];
const stateH = model.layers[2].output[1];
const stateC = model.layers[2].output[2];
const encoderStates = [stateH, stateC];
this.encoderModel =
tf.model({inputs: encoderInputs, outputs: encoderStates});
}
prepareDecoderModel(model) {
this.numDecoderTokens = model.input[1].shape[2];
console.log('numDecoderTokens = ' + this.numDecoderTokens);
const stateH = model.layers[2].output[1];
const latentDim = stateH.shape[stateH.shape.length - 1];
console.log('latentDim = ' + latentDim);
const decoderStateInputH =
tf.input({shape: [latentDim], name: 'decoder_state_input_h'});
const decoderStateInputC =
tf.input({shape: [latentDim], name: 'decoder_state_input_c'});
const decoderStateInputs = [decoderStateInputH, decoderStateInputC];
const decoderLSTM = model.layers[3];
const decoderInputs = decoderLSTM.input[0];
const applyOutputs =
decoderLSTM.apply(decoderInputs, {initialState: decoderStateInputs});
let decoderOutputs = applyOutputs[0];
const decoderStateH = applyOutputs[1];
const decoderStateC = applyOutputs[2];
const decoderStates = [decoderStateH, decoderStateC];
const decoderDense = model.layers[4];
decoderOutputs = decoderDense.apply(decoderOutputs);
this.decoderModel = tf.model({
inputs: [decoderInputs].concat(decoderStateInputs),
outputs: [decoderOutputs].concat(decoderStates)
});
}
/**
* Encode a string (e.g., a sentence) as a Tensor3D that can be fed directly
* into the TensorFlow.js model.
*/
encodeString(str) {
const strLen = str.length;
const encoded =
tf.buffer([1, this.maxEncoderSeqLength, this.numEncoderTokens]);
for (let i = 0; i < strLen; ++i) {
if (i >= this.maxEncoderSeqLength) {
console.error(
'Input sentence exceeds maximum encoder sequence length: ' +
this.maxEncoderSeqLength);
}
const tokenIndex = this.inputTokenIndex[str[i]];
if (tokenIndex == null) {
console.error(
'Character not found in input token index: "' + tokenIndex + '"');
}
encoded.set(1, 0, i, tokenIndex);
}
return encoded.toTensor();
}
decodeSequence(inputSeq) {
// Encode the inputs state vectors.
let statesValue = this.encoderModel.predict(inputSeq);
// Generate empty target sequence of length 1.
let targetSeq = tf.buffer([1, 1, this.numDecoderTokens]);
// Populate the first character of the target sequence with the start
// character.
targetSeq.set(1, 0, 0, this.targetTokenIndex['\t']);
// Sample loop for a batch of sequences.
// (to simplify, here we assume that a batch of size 1).
let stopCondition = false;
let decodedSentence = '';
while (!stopCondition) {
const predictOutputs =
this.decoderModel.predict([targetSeq.toTensor()].concat(statesValue));
const outputTokens = predictOutputs[0];
const h = predictOutputs[1];
const c = predictOutputs[2];
// Sample a token.
// We know that outputTokens.shape is [1, 1, n], so no need for slicing.
const logits = outputTokens.reshape([outputTokens.shape[2]]);
const sampledTokenIndex = logits.argMax().dataSync()[0];
const sampledChar = this.reverseTargetCharIndex[sampledTokenIndex];
decodedSentence += sampledChar;
// Exit condition: either hit max length or find stop character.
if (sampledChar === '\n' ||
decodedSentence.length > this.maxDecoderSeqLength) {
stopCondition = true;
}
// Update the target sequence (of length 1).
targetSeq = tf.buffer([1, 1, this.numDecoderTokens]);
targetSeq.set(1, 0, 0, sampledTokenIndex);
// Update states.
statesValue = [h, c];
}
return decodedSentence;
}
/** Translate the given English sentence into French. */
translate(inputSentence) {
const inputSeq = this.encodeString(inputSentence);
const decodedSentence = this.decodeSequence(inputSeq);
return decodedSentence;
}
}
/**
* Loads the pretrained model and metadata, and registers the translation
* function with the UI.
*/
async function setupTranslator() {
if (await loader.urlExists(HOSTED_URLS.model)) {
ui.status('Model available: ' + HOSTED_URLS.model);
const button = document.getElementById('load-pretrained-remote');
button.addEventListener('click', async () => {
const translator = await new Translator().init(HOSTED_URLS);
ui.setTranslationFunction(x => translator.translate(x));
ui.setEnglish('Go.', x => translator.translate(x));
});
button.style.display = 'inline-block';
}
if (await loader.urlExists(LOCAL_URLS.model)) {
ui.status('Model available: ' + LOCAL_URLS.model);
const button = document.getElementById('load-pretrained-local');
button.addEventListener('click', async () => {
const translator = await new Translator().init(LOCAL_URLS);
ui.setTranslationFunction(x => translator.translate(x));
ui.setEnglish('Go.', x => translator.translate(x));
});
button.style.display = 'inline-block';
}
ui.status('Standing by.');
}
setupTranslator();