-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathathena_read.py
466 lines (403 loc) · 16.3 KB
/
athena_read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# Various functions to read Athena++ output data files
# Python modules
import re
import warnings
from io import open # Consistent binary I/O from Python 2 and 3
import struct
import matplotlib.colors as colors
import matplotlib.patches as patches
import matplotlib.pyplot as plt
# Other Python modules
import numpy as np
check_nan_flag = False
# Check input NumPy array for the presence of any NaN entries
def check_nan(data):
if np.isnan(data).any():
raise FloatingPointError("NaN encountered")
return
# Wrapper to np.loadtxt() for checks used in regression tests
def error_dat(filename, **kwargs):
data = np.loadtxt(filename,
dtype=np.float64,
ndmin=2, # prevent NumPy from squeezing singleton dim
**kwargs)
if check_nan_flag:
check_nan(data)
return data
# Read .tab files and return dict.
def tab(filename, show_vars=False):
# Parse header
data_dict = {}
with open(filename, 'r') as data_file:
line = data_file.readline()
attributes = re.search(r'time=(\S+)\s+cycle=(\S+)', line)
line = data_file.readline()
headings = line.split()[1:]
headings = headings[1:]
# Go through lines
data_array = []
num_lines = 0
with open(filename, 'r') as data_file:
first_line = True
for line in data_file:
# Skip comments
if line.split()[0][0] == '#':
continue
# Extract cell indices
vals = line.split()
if first_line:
num_entries = len(vals) - 1
first_line = False
# Extract cell values
vals = vals[1:]
data_array.append([float(val) for val in vals])
num_lines += 1
# Reshape array
array_shape = (num_lines, num_entries)
array_transpose = (1, 0)
data_array = np.transpose(np.reshape(data_array, array_shape),
array_transpose)
# Finalize data
for n, heading in enumerate(headings):
if check_nan_flag:
check_nan(data_array[n, ...])
data_dict[heading] = data_array[n, ...]
if show_vars:
return list(data_dict.keys())
data_dict['time'] = float(attributes.group(1))
data_dict['cycle'] = int(attributes.group(2))
return data_dict
# Read .hst files and return dict of 1D arrays.
# Keyword arguments:
# raw -- if True, do not prune file to remove stale data
# from prev runs (default False)
def hst(filename, raw=False):
# Read data
with open(filename, 'r') as data_file:
# Find header
header_found = False
multiple_headers = False
header_location = None
line = data_file.readline()
while len(line) > 0:
if line == '# Athena++ history data\n':
if header_found:
multiple_headers = True
else:
header_found = True
header_location = data_file.tell()
line = data_file.readline()
if multiple_headers:
warnings.warn('Multiple headers found; using most recent data')
if header_location is None:
raise RuntimeError('athena_read.hst: Could not find header')
# Parse header
data_file.seek(header_location)
header = data_file.readline()
data_names = re.findall(r'\[\d+\]=(\S+)', header)
if len(data_names) == 0:
raise RuntimeError('athena_read.hst: Could not parse header')
# Prepare dictionary of results
data = {}
for name in data_names:
data[name] = []
# Read data
for line in data_file:
for name, val in zip(data_names, line.split()):
data[name].append(float(val))
# Finalize data
for key, val in data.items():
data[key] = np.array(val)
if not raw:
if data_names[0] != 'time':
raise AthenaError('Cannot remove spurious data because time '
'column could not be identified')
branches_removed = False
while not branches_removed:
branches_removed = True
for n in range(1, len(data['time'])):
if data['time'][n] <= data['time'][n-1]:
branch_index = np.where((data['time'][:n] >=
data['time'][n]))[0][0]
for key, val in data.items():
data[key] = np.concatenate((val[:branch_index],
val[n:]))
branches_removed = False
break
if check_nan_flag:
for key, val in data.items():
check_nan(val)
return data
# Read .bin files and return dict with numpy array of variables and WCS
# This is a Z-only code ripped from athenak's plot_slice.py
# It returns not only all numpy arrays, but also a few meta-data
# named: 'time', 'xlim', 'ylim'
def bin(filename, show_vars=False, **kwargs):
# Read data
with open(filename, 'rb') as f:
# Get file size
f.seek(0, 2)
file_size = f.tell()
f.seek(0, 0)
# Read header metadata
line = f.readline().decode('ascii')
if line != 'Athena binary output version=1.1\n':
print(line)
raise RuntimeError('Unrecognized data file format.')
next(f)
line = f.readline().decode('ascii')
if line[:7] != ' time=':
raise RuntimeError('Could not read time.')
sim_time = float(line[7:])
next(f)
line = f.readline().decode('ascii')
if line[:19] != ' size of location=':
raise RuntimeError('Could not read location size.')
location_size = int(line[19:])
line = f.readline().decode('ascii')
if line[:19] != ' size of variable=':
raise RuntimeError('Could not read variable size.')
variable_size = int(line[19:])
next(f)
line = f.readline().decode('ascii')
if line[:12] != ' variables:':
raise RuntimeError('Could not read variable names.')
variable_names_base = line[12:].split()
line = f.readline().decode('ascii')
if line[:16] != ' header offset=':
raise RuntimeError('Could not read header offset.')
header_offset = int(line[16:])
# Process header metadata
if location_size not in (4, 8):
raise RuntimeError('Only 4- and 8-byte integer types supported for '
'location data.')
location_format = 'f' if location_size == 4 else 'd'
if variable_size not in (4, 8):
raise RuntimeError('Only 4- and 8-byte integer types supported for cell '
'data.')
variable_format = 'f' if variable_size == 4 else 'd'
num_variables_base = len(variable_names_base)
if show_vars:
return variable_names_base
if True:
variable_name = kwargs['variable']
if variable_name not in variable_names_base:
raise RuntimeError('Variable "{0}" not found; options are {{{1}}}.'
.format(variable_name,
', '.join(variable_names_base)))
variable_names = [variable_name]
variable_ind = 0
while variable_names_base[variable_ind] != variable_name:
variable_ind += 1
variable_inds = [variable_ind]
variable_names_sorted = \
[name for _, name in sorted(zip(variable_inds, variable_names))]
variable_inds_sorted = \
[ind for ind, _ in sorted(zip(variable_inds, variable_names))]
# @todo loop over variables
retval = {}
# Read input file metadata
input_data = {}
start_of_data = f.tell() + header_offset
while f.tell() < start_of_data:
line = f.readline().decode('ascii')
if line[0] == '#':
continue
if line[0] == '<':
section_name = line[1:-2]
input_data[section_name] = {}
continue
key, val = line.split('=', 1)
input_data[section_name][key.strip()] = val.split('#', 1)[0].strip()
# Extract number of ghost cells from input file metadata
try:
num_ghost = int(input_data['mesh']['nghost'])
except: # noqa: E722
raise RuntimeError('Unable to find number of ghost cells in input file.')
# Prepare lists to hold results
max_level_calculated = -1
block_loc_for_level = []
block_ind_for_level = []
num_blocks_used = 0
extents = []
quantities = {}
for name in variable_names_sorted:
quantities[name] = []
# Go through blocks
first_time = True
while f.tell() < file_size:
# Read grid structure data
block_indices = np.array(struct.unpack('@6i', f.read(24))) - num_ghost
block_i, block_j, block_k, block_level = struct.unpack('@4i', f.read(16))
# Process grid structure data
if first_time:
block_nx = block_indices[1] - block_indices[0] + 1
block_ny = block_indices[3] - block_indices[2] + 1
block_nz = block_indices[5] - block_indices[4] + 1
cells_per_block = block_nz * block_ny * block_nx
block_cell_format = '=' + str(cells_per_block) + variable_format
variable_data_size = cells_per_block * variable_size
if True:
# if kwargs['dimension'] == 'z':
if block_nx == 1:
raise RuntimeError('Data in file has no extent in x-direction.')
if block_ny == 1:
raise RuntimeError('Data in file has no extent in y-direction.')
block_nx1 = block_nx
block_nx2 = block_ny
slice_block_n = block_nz
slice_location_min = float(input_data['mesh']['x3min'])
slice_location_max = float(input_data['mesh']['x3max'])
slice_root_blocks = (int(input_data['mesh']['nx3'])
// int(input_data['meshblock']['nx3']))
slice_normalized_coord = (kwargs['location'] - slice_location_min) \
/ (slice_location_max - slice_location_min)
first_time = False
# Determine if block is needed
if block_level > max_level_calculated:
for level in range(max_level_calculated + 1, block_level + 1):
if kwargs['location'] <= slice_location_min:
block_loc_for_level.append(0)
block_ind_for_level.append(0)
elif kwargs['location'] >= slice_location_max:
block_loc_for_level.append(slice_root_blocks - 1)
block_ind_for_level.append(slice_block_n - 1)
else:
slice_mesh_n = slice_block_n * slice_root_blocks * 2 ** level
mesh_ind = int(slice_normalized_coord * slice_mesh_n)
block_loc_for_level.append(mesh_ind // slice_block_n)
block_ind_for_level.append(mesh_ind - slice_block_n
* block_loc_for_level[-1])
max_level_calculated = block_level
# z
if block_k != block_loc_for_level[block_level]:
f.seek(6 * location_size + num_variables_base * variable_data_size, 1)
continue
num_blocks_used += 1
# Read coordinate data
block_lims = struct.unpack('=6' + location_format, f.read(6 * location_size))
# z
extents.append((block_lims[0], block_lims[1], block_lims[2],
block_lims[3]))
# Read cell data
cell_data_start = f.tell()
for ind, name in zip(variable_inds_sorted, variable_names_sorted):
if ind == -1:
# z
quantities[name].append(np.full((block_ny, block_nx),
block_level))
else:
f.seek(cell_data_start + ind * variable_data_size, 0)
cell_data = (np.array(struct.unpack(block_cell_format,
f.read(variable_data_size)))
.reshape(block_nz, block_ny, block_nx))
block_ind = block_ind_for_level[block_level]
# z
quantities[name].append(cell_data[block_ind, :, :])
f.seek((num_variables_base - ind - 1) * variable_data_size, 1)
# Prepare to calculate derived quantity
for name in variable_names_sorted:
quantities[name] = np.array(quantities[name])
# Extract quantity without derivation
quantity = quantities[variable_name]
if kwargs['output_file'] == None:
if num_blocks_used > 1:
raise RuntimeError('too many blocks, mesh and meshblock not the same')
quantities['time'] = sim_time
x1_min = float(input_data['mesh']['x1min'])
x1_max = float(input_data['mesh']['x1max'])
x2_min = float(input_data['mesh']['x2min'])
x2_max = float(input_data['mesh']['x2max'])
quantities['xlim'] = (x1_min,x1_max)
quantities['ylim'] = (x2_min,x2_max)
return quantities
# Calculate colors
if kwargs['vmin'] is None:
vmin = np.nanmin(quantity)
else:
vmin = kwargs['vmin']
if kwargs['vmax'] is None:
vmax = np.nanmax(quantity)
else:
vmax = kwargs['vmax']
# Choose colormap norm
if kwargs['norm'] == 'linear':
norm = colors.Normalize(vmin, vmax)
vmin = None
vmax = None
elif kwargs['norm'] == 'log':
norm = colors.LogNorm(vmin, vmax)
vmin = None
vmax = None
else:
norm = kwargs['norm']
# Prepare figure
plt.figure()
x1_labelpad = 2.0
x2_labelpad = 2.0
dpi = 300
# Plot data
for block_num in range(num_blocks_used):
d = quantity[block_num]
print("block_num:",block_num,d.shape,extents[block_num])
plt.imshow(quantity[block_num], cmap=kwargs['cmap'], norm=norm, vmin=vmin,
vmax=vmax, interpolation='none', origin='lower',
extent=extents[block_num])
# Make colorbar
plt.colorbar()
# Adjust axes
# z
x1_min = float(input_data['mesh']['x1min'])
x1_max = float(input_data['mesh']['x1max'])
x2_min = float(input_data['mesh']['x2min'])
x2_max = float(input_data['mesh']['x2max'])
print("Mesh: X: %g %g Y: %g %g" % (x1_min,x1_max,x2_min,x2_max))
if kwargs['x1_min'] is not None:
x1_min = kwargs['x1_min']
if kwargs['x1_max'] is not None:
x1_max = kwargs['x1_max']
if kwargs['x2_min'] is not None:
x2_min = kwargs['x2_min']
if kwargs['x2_max'] is not None:
x2_max = kwargs['x2_max']
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
# z
plt.xlabel('$x$', labelpad=x1_labelpad)
plt.ylabel('$y$', labelpad=x2_labelpad)
# Adjust layout
plt.tight_layout()
# Save or display figure
if kwargs['output_file'] != 'show':
plt.savefig(kwargs['output_file'], dpi=dpi)
else:
plt.show()
# General exception class for these functions
class AthenaError(RuntimeError):
pass
# testing the bin function
if __name__ == "__main__":
import sys
kwargs = {}
kwargs['variable'] = 'dens'
kwargs['dimension'] = 'z'
kwargs['location'] = 0
kwargs['vmin'] = None
kwargs['vmax'] = None
kwargs['norm'] = 'linear'
kwargs['cmap'] = 'viridis'
kwargs['x1_min'] = None
kwargs['x1_max'] = None
kwargs['x2_min'] = None
kwargs['x2_max'] = None
kwargs['x2_max'] = None
kwargs['output_file'] = 'show'
# kwargs['output_file'] = None
if False:
print(bin(sys.argv[1],True))
d = bin(sys.argv[1],False,**kwargs)
print('data',d)
else:
print(tab(sys.argv[1],True))
d = tab(sys.argv[1],False)
print('data',d)