forked from titu1994/neural-image-assessment
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_nasnet.py
84 lines (71 loc) · 2.62 KB
/
evaluate_nasnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import csv
import numpy as np
from path import Path
from tqdm import tqdm
from multiprocessing.dummy import Pool
from config import weights_file
from nasnet_model import *
from utils.image_utils import preprocess_for_evaluation
from utils.score_utils import mean_score, std_score
parser = argparse.ArgumentParser(
description='Evaluate NIMA(NASNet mobile)')
parser.add_argument('--dir', type=str, default=None,
help='Pass a directory to evaluate the images in it')
parser.add_argument('--img', type=str, default=[None], nargs='+',
help='Pass one or more image paths to evaluate them')
args = parser.parse_args()
# give priority to directory
if args.dir is not None:
print("Loading images from directory : ", args.dir)
imgs = Path(args.dir).files('*.png')
imgs += Path(args.dir).files('*.jpg')
imgs += Path(args.dir).files('*.jpeg')
imgs += Path(args.dir).files('*.bmp')
elif args.img[0] is not None:
print("Loading images from path(s) : ", args.img)
imgs = args.img
else:
raise RuntimeError(
'Either --dir or --img arguments must be passed as argument')
# load model
nima_model = NimaModel()
model = nima_model.model
model.load_weights(weights_file)
def batch(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
batch_size = 512
# calculate scores
scored_images = []
pool = Pool()
for batch in tqdm(batch(imgs, batch_size), total=len(imgs)//batch_size+1):
try:
images = pool.map(preprocess_for_evaluation, batch)
except OSError as e:
images = []
new_batch = []
for img_path in batch:
try:
images.append(preprocess_for_evaluation(img_path))
new_batch.append(img_path)
except OSError as e:
print("Couldn't process {}".format(img_path))
print(e)
continue
batch = new_batch
x = np.array(images)
scores = model.predict(x, batch_size=x.shape[0], verbose=0)
means = mean_score(scores)
stds = std_score(scores)
for mean, std, img_path in zip(means, stds, batch):
scored_images.append((mean, std, img_path))
scored_images = sorted(scored_images, reverse=True)
# write results to csv file
with open('results.csv', 'w', encoding="utf-8") as csvfile:
csvwriter = csv.writer(csvfile, delimiter=';', lineterminator='\n')
csvwriter.writerow(['filename', 'mean', 'std'])
for mean, std, img_path in scored_images:
print("{:.3f} +- ({:.3f}) {}".format(mean, std, img_path))
csvwriter.writerow([img_path, mean, std])