forked from titu1994/neural-image-assessment
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsgdr.py
56 lines (49 loc) · 1.73 KB
/
sgdr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from keras.callbacks import Callback
import numpy as np
from keras import backend as K
class SGDRScheduler(Callback):
def __init__(self,
epochsize,
batchsize,
start_epoch=0,
t_e=10,
t_0=np.pi / 2.,
mult_factor=2,
lr_fac=0.1,
lr_reduction_epochs=[]):
super(SGDRScheduler, self).__init__()
self.epoch = -1
self.batch = 0
self.tt = 0
self.te_next = t_e
self.epochsize = epochsize
self.batchsize = batchsize
self.start_epoch = start_epoch
self.t_e = t_e
self.t_0 = t_0
self.mult_factor = mult_factor
self.lr_fac = lr_fac
self.lr_reduction_epochs = lr_reduction_epochs
self.lr_log = []
def on_train_begin(self, logs={}):
self.lr = K.get_value(self.model.optimizer.lr)
def on_epoch_begin(self, epoch, logs={}):
self.epoch += 1
def on_batch_end(self, batch, logs={}):
self.lr_log.append(K.get_value(self.model.optimizer.lr))
self.batch += 1
if (self.epoch + 1 >= self.start_epoch):
dt = np.pi / self.t_e
self.tt += dt / (self.epochsize / self.batchsize)
if self.tt >= np.pi:
self.tt -= np.pi
cur_t = self.t_0 + self.tt
lr = self.lr * (1. + np.sin(cur_t)) / 2.
K.set_value(self.model.optimizer.lr, lr)
def on_epoch_end(self, epoch, logs={}):
if self.epoch + 1 == self.te_next:
self.tt = 0
self.t_e *= self.mult_factor
self.te_next += self.t_e
if (self.epoch + 1) in self.lr_reduction_epochs:
self.lr *= self.lr_fac