This repository has been archived by the owner on Nov 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLPFinal.py
57 lines (40 loc) · 1.87 KB
/
MLPFinal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 13 14:37:39 2019
@author: thales
"""
#'solver': 'adam', 'learning_rate_init': 0.01
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, mean_absolute_error, precision_score
import pandas as pd
df = pd.read_csv('./testes_outros_algoritmos.csv')
df.loc[df['estilo_de_aprendizagem']=='Indefinido','estilo_de_aprendizagem'] = 0
df.loc[df['estilo_de_aprendizagem']=='Ativo', 'estilo_de_aprendizagem'] = 1
df.loc[df['estilo_de_aprendizagem']=='Teorico', 'estilo_de_aprendizagem'] = 2
df.loc[df['estilo_de_aprendizagem']=='Reflexivo', 'estilo_de_aprendizagem'] = 3
df.loc[df['estilo_de_aprendizagem']=='Pragmatico','estilo_de_aprendizagem'] = 4
df = df.apply(pd.to_numeric)
df_array = df.as_matrix()
X = df_array[:, :14]
y = df_array[:, 14:15]
y = y.ravel()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)
X_train = MinMaxScaler().fit_transform(X_train)
mlp = MLPClassifier(solver='adam', learning_rate_init=0.01,
max_iter=400, verbose=0, random_state=0)
mlp.fit(X_train, y_train)
print("Training set score: %f" % mlp.score(X_train, y_train))
print("Training set loss: %f" % mlp.loss_)
y_pred = mlp.predict(X_test)
'''
https://scikit-learn.org/stable/modules/model_evaluation.html
'''
print("scccuracy_score predicao: %f" % accuracy_score(y_test, y_pred))
matriz_confusao = confusion_matrix(y_test, y_pred)
print('mean_absolute_error: %f: ' % mean_absolute_error(y_test, y_pred))
print('precision_score macro: %f ' % precision_score(y_test, y_pred, average='macro'))
print('precision_score micro: %f ' % precision_score(y_test, y_pred, average='micro'))