-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathSR_datasets.py
121 lines (85 loc) · 3.03 KB
/
SR_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import division
import os
import numpy as np
import h5py
import torch
from torch.utils.data import Dataset
class DatasetFactory(object):
def create_dataset(self, name, root, scale=3):
if name == 'VSRCNN':
return VSRCNN_dataset(root)
elif name == 'VRES':
return VRES_dataset(root)
elif name == 'MFCNN':
return MFCNN_dataset(root)
elif name == 'VRES3D':
return VRES3D_dataset(root)
elif name == 'VRES10':
return VRES10_dataset(root)
elif name == 'VRES5':
return VRES5_dataset(root)
elif name == 'VRES15':
return VRES15_dataset(root)
elif name == 'VRES7':
return VRES7_dataset(root)
else:
raise Exception('Unknown dataset {}'.format(name))
class VRES_dataset(Dataset):
def __init__(self, root):
root = os.path.join(root, 'dataset.h5')
f = h5py.File(root)
self.low_res_imgs = f.get('data')
self.high_res_imgs = f.get('label')
self.low_res_imgs = np.array(self.low_res_imgs)
self.high_res_imgs = np.array(self.high_res_imgs)
def __len__(self):
return self.high_res_imgs.shape[0]
def __getitem__(self, idx):
center = 2
low_res_imgs = self.low_res_imgs[idx]
high_res_imgs = self.high_res_imgs[idx]
# h5 in matlab is (H, W, C)
# h5 in python is (C, W, H)
# we need to transpose to (C, H, W)
low_res_imgs = low_res_imgs.transpose(0, 2, 1)
high_res_imgs = high_res_imgs.transpose(0, 2, 1)
high_res_img = high_res_imgs[center]
high_res_img = high_res_img[np.newaxis, :, :]
low_res_imgs -= 0.5
high_res_img -= 0.5
# transform np image to torch tensor
low_res_imgs = torch.Tensor(low_res_imgs)
high_res_img = torch.Tensor(high_res_img)
return low_res_imgs, high_res_img
class VSRCNN_dataset(VRES_dataset):
def __getitem__(self, idx):
center = 2
low_res_imgs = self.low_res_imgs[idx]
high_res_imgs = self.high_res_imgs[idx]
# h5 in matlab is (H, W, C)
# h5 in python is (C, W, H)
# we need to transpose to (C, H, W)
low_res_imgs = low_res_imgs.transpose(0, 2, 1)
high_res_imgs = high_res_imgs.transpose(0, 2, 1)
low_res_img = low_res_imgs[center]
high_res_img = high_res_imgs[center]
low_res_img = low_res_img[np.newaxis, :, :]
high_res_img = high_res_img[np.newaxis, :, :]
low_res_img -= 0.5
high_res_img -= 0.5
# transform np image to torch tensor
low_res_img = torch.Tensor(low_res_img)
high_res_img = torch.Tensor(high_res_img)
return low_res_img, high_res_img
class MFCNN_dataset(VRES_dataset):
pass
class VRES3D_dataset(VRES_dataset):
pass
class VRES10_dataset(VRES_dataset):
pass
class VRES5_dataset(VRES_dataset):
pass
class VRES15_dataset(VRES_dataset):
pass
class VRES7_dataset(VRES_dataset):
pass