-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmodel.py
143 lines (116 loc) · 4.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class ModelFactory(object):
def create_model(self, model_name):
if model_name == 'VSRCNN':
return VSRCNN()
elif model_name == 'VRES':
return VRES()
elif model_name == 'MFCNN':
return MFCNN()
elif model_name == 'VRES10':
return VRES10()
elif model_name == 'VRES5':
return VRES5()
elif model_name == 'VRES15':
return VRES15()
elif model_name == 'VRES7':
return VRES7()
else:
raise Exception('unknown model {}'.format(model_name))
class VSRCNN(nn.Module):
"""
Model for SRCNN
LR -> Conv1 -> Relu -> Conv2 -> Relu -> Conv3 -> HR
Args:
- C1, C2, C3: num output channels for Conv1, Conv2, and Conv3
- F1, F2, F3: filter size
"""
def __init__(self,
C1=64, C2=32, C3=1,
F1=9, F2=1, F3=5):
super(VSRCNN, self).__init__()
self.name = 'VSRCNN'
self.conv1 = nn.Conv2d(1, C1, F1, padding=4, bias=False)
self.conv2 = nn.Conv2d(C1, C2, F2)
self.conv3 = nn.Conv2d(C2, C3, F3, padding=2, bias=False)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.conv3(x)
return x
class VRES(nn.Module):
def __init__(self):
super(VRES, self).__init__()
self.name = 'VRES'
self.conv_first = nn.Conv2d(5, 64, 3, padding=1, bias=False)
self.conv_next = nn.Conv2d(64, 64, 3, padding=1, bias=False)
self.conv_last = nn.Conv2d(64, 1, 3, padding=1, bias=False)
self.residual_layer = self.make_layer(Conv_ReLU_Block, 18)
self.relu = nn.ReLU(inplace=True)
# xavier initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
def make_layer(self, block, num_of_layer):
layers = []
for _ in range(num_of_layer):
layers.append(block())
return nn.Sequential(*layers)
def forward(self, x):
center = 2
res = x[:, center, :, :]
res = res.unsqueeze(1)
out = self.relu(self.conv_first(x))
out = self.residual_layer(out)
out = self.conv_last(out)
out = torch.add(out, res)
return out
class Conv_ReLU_Block(nn.Module):
def __init__(self):
super(Conv_ReLU_Block, self).__init__()
self.conv = nn.Conv2d(64, 64, 3, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(self.conv(x))
class MFCNN(nn.Module):
def __init__(self):
super(MFCNN, self).__init__()
self.name = 'MFCNN'
self.conv1 = nn.Conv2d(5, 32, 9, padding=4, bias=False)
self.conv2 = nn.Conv2d(32, 32, 5, padding=2, bias=False)
self.conv3 = nn.Conv2d(32, 64, 5, padding=2, bias=False)
self.conv4 = nn.Conv2d(64, 32, 3, padding=1, bias=False)
self.conv5 = nn.Conv2d(32, 16, 3, padding=1, bias=False)
self.conv6 = nn.Conv2d(16, 1, 3, padding=1, bias=False)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x = self.conv6(x)
return x
class VRES10(VRES):
def __init__(self):
super(VRES10, self).__init__()
self.name = 'VRES10'
self.residual_layer = self.make_layer(Conv_ReLU_Block, 8)
class VRES5(VRES):
def __init__(self):
super(VRES5, self).__init__()
self.name = 'VRES5'
self.residual_layer = self.make_layer(Conv_ReLU_Block, 3)
class VRES15(VRES):
def __init__(self):
super(VRES15, self).__init__()
self.name = 'VRES15'
self.residual_layer = self.make_layer(Conv_ReLU_Block, 13)
class VRES7(VRES):
def __init__(self):
super(VRES7, self).__init__()
self.name = 'VRES7'
self.residual_layer = self.make_layer(Conv_ReLU_Block, 5)