-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest.py
91 lines (70 loc) · 3.06 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import os
import cv2
import numpy as np
from SR_datasets import DatasetFactory
from model import ModelFactory
from solver import Solver
description = 'Video Super Resolution pytorch implementation'
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-m', '--model', metavar='M', type=str, default='VRES',
help='network architecture. Default False')
parser.add_argument('--model_path',
default='./check_point/VRES/3x/best_model.pt')
parser.add_argument('-s', '--scale', metavar='S', type=int, default=3,
help='interpolation scale. Default 3')
parser.add_argument('--test-set', metavar='NAME', type=str, default='IndMya',
help='dataset for testing. Default IndMya')
args = parser.parse_args()
def get_full_path(scale, test_set):
"""
Get full path of data based on configs and target path
example: preprocessed_data/test/set5/3x
"""
scale_path = str(scale) + 'x'
return os.path.join('preprocessed_data/test', test_set, scale_path)
def display_config():
print('############################################################')
print('# Video Super Resolution - Pytorch implementation #')
print('# by Thang Vu ([email protected] #')
print('############################################################')
print('')
print('-------YOUR SETTINGS_________')
for arg in vars(args):
print("%15s: %s" % (str(arg), str(getattr(args, arg))))
print('')
def export(scale, model_name, stats, outputs):
path = os.path.join('results', model_name, str(scale) + 'x')
if not os.path.exists(path):
os.makedirs(path)
for i, img in enumerate(outputs):
img_name = os.path.join(path, model_name + '_output%03d.png' % i)
cv2.imwrite(img_name, img)
with open(os.path.join(path, model_name + '.txt'), 'w') as f:
psnrs, ssims, proc_time = stats
f.write('\t\tPSNR\tSSIM\tTime\n')
for i in range(len(psnrs)):
print('Img%d: PSNR: %.3f SSIM: %.3f Time: %.4f'
% (i, psnrs[i], ssims[i], proc_time[i]))
f.write('Img%d:\t%.3f\t%.3f\t%.4f\n'
% (i, psnrs[i], ssims[i], proc_time[i]))
print('Average test psnr: %.3fdB' % np.mean(psnrs))
print('Average test ssim: %.3f' % np.mean(ssims))
print('Finish!!!')
def main():
display_config()
dataset_root = get_full_path(args.scale, args.test_set)
print('Contructing dataset...')
dataset_factory = DatasetFactory()
train_dataset = dataset_factory.create_dataset(args.model,
dataset_root)
model_factory = ModelFactory()
model = model_factory.create_model(args.model)
check_point = os.path.join(
'check_point', model.name, str(args.scale) + 'x')
solver = Solver(model, check_point)
print('Testing...')
stats, outputs = solver.test(train_dataset, args.model_path)
export(args.scale, model.name, stats, outputs)
if __name__ == '__main__':
main()