diff --git a/neuralcvd/preprocessing/ukbb_tabular/0_decode_ukbb.ipynb b/neuralcvd/preprocessing/ukbb_tabular/0_decode_ukbb.ipynb deleted file mode 100644 index 340b5c3..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/0_decode_ukbb.ipynb +++ /dev/null @@ -1,57 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "library(ukbtools)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "my_ukb_data <- ukb_df(\"decoded\", path = \"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data\")\n", - "df_field <- ukb_df_field(\"decoded\", path = \"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data\")" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(my_ukb_data, \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_decoded/ukb_data.feather\")\n", - "arrow::write_feather(df_field, \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_decoded/ukb_data_field.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/1_dataportal_exploration.ipynb b/neuralcvd/preprocessing/ukbb_tabular/1_dataportal_exploration.ipynb deleted file mode 100644 index b048dc7..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/1_dataportal_exploration.ipynb +++ /dev/null @@ -1,6492 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "-- \u001b[1mAttaching packages\u001b[22m --------------------------------------- tidyverse 1.3.0 --\n", - "\n", - "\u001b[32mv\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.2 \u001b[32mv\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", - "\u001b[32mv\u001b[39m \u001b[34mtibble \u001b[39m 3.0.3 \u001b[32mv\u001b[39m \u001b[34mdplyr \u001b[39m 1.0.2\n", - "\u001b[32mv\u001b[39m \u001b[34mtidyr \u001b[39m 1.1.2 \u001b[32mv\u001b[39m \u001b[34mstringr\u001b[39m 1.4.0\n", - "\u001b[32mv\u001b[39m \u001b[34mreadr \u001b[39m 1.3.1 \u001b[32mv\u001b[39m \u001b[34mforcats\u001b[39m 0.5.0\n", - "\n", - "-- \u001b[1mConflicts\u001b[22m ------------------------------------------ tidyverse_conflicts() --\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\n", - "\n", - "Attaching package: 'glue'\n", - "\n", - "\n", - "The following object is masked from 'package:dplyr':\n", - "\n", - " collapse\n", - "\n", - "\n" - ] - } - ], - "source": [ - "library(tidyverse)\n", - "library(glue)" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [], - "source": [ - "base_size = 25\n", - "title_size = 35\n", - "facet_size = 15\n", - "geom_text_size=7\n", - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " #axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size), axis.line = element_line(size = 0.2), axis.ticks=element_line(size=0.2))) " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "dataset_name = \"210212_cvd_gp\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = glue(\"{data_path}/2_datasets_pre/{dataset_name}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 133, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Joining, by = \"eid\"\n", - "\n", - "Joining, by = \"eid\"\n", - "\n" - ] - } - ], - "source": [ - "basics = arrow::read_feather(glue(\"{dataset_path}/temp_basics.feather\"))\n", - "measurements = arrow::read_feather(glue(\"{dataset_path}/temp_measurements.feather\"))\n", - "labs = arrow::read_feather(glue(\"{dataset_path}/temp_labs.feather\"))\n", - "data = basics %>% left_join(measurements, on=\"eid\") %>% left_join(labs, on=\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'eid'
  2. 'age_at_recruitment_f21022_0_0'
  3. 'sex_f31_0_0'
  4. 'ethnic_background_f21000_0_0'
  5. 'townsend_deprivation_index_at_recruitment_f189_0_0'
  6. 'date_of_attending_assessment_centre_f53_0_0'
  7. 'uk_biobank_assessment_centre_f54_0_0'
  8. 'birth_date'
  9. 'body_mass_index_bmi_f21001_0_0'
  10. 'weight_f21002_0_0'
  11. 'pulse_wave_arterial_stiffness_index_f21021_0_0'
  12. 'pulse_wave_reflection_index_f4195_0_0'
  13. 'waist_circumference_f48_0_0'
  14. 'hip_circumference_f49_0_0'
  15. 'standing_height_f50_0_0'
  16. 'trunk_fat_percentage_f23127_0_0'
  17. 'body_fat_percentage_f23099_0_0'
  18. 'basal_metabolic_rate_f23105_0_0'
  19. 'forced_vital_capacity_fvc_best_measure_f20151_0_0'
  20. 'forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0'
  21. 'fev1_fvc_ratio_zscore_f20258_0_0'
  22. 'peak_expiratory_flow_pef_f3064_0_2'
  23. 'peak_expiratory_flow_pef_f3064_0_1'
  24. 'peak_expiratory_flow_pef_f3064_0_0'
  25. 'systolic_blood_pressure_automated_reading_f4080'
  26. 'diastolic_blood_pressure_automated_reading_f4079'
  27. 'pulse_rate_automated_reading_f102'
  28. 'basophill_count_f30160_0_0'
  29. 'basophill_percentage_f30220_0_0'
  30. 'eosinophill_count_f30150_0_0'
  31. 'eosinophill_percentage_f30210_0_0'
  32. 'haematocrit_percentage_f30030_0_0'
  33. 'haemoglobin_concentration_f30020_0_0'
  34. 'high_light_scatter_reticulocyte_count_f30300_0_0'
  35. 'high_light_scatter_reticulocyte_percentage_f30290_0_0'
  36. 'immature_reticulocyte_fraction_f30280_0_0'
  37. 'lymphocyte_count_f30120_0_0'
  38. 'lymphocyte_percentage_f30180_0_0'
  39. 'mean_corpuscular_haemoglobin_f30050_0_0'
  40. 'mean_corpuscular_haemoglobin_concentration_f30060_0_0'
  41. 'mean_corpuscular_volume_f30040_0_0'
  42. 'mean_platelet_thrombocyte_volume_f30100_0_0'
  43. 'mean_reticulocyte_volume_f30260_0_0'
  44. 'mean_sphered_cell_volume_f30270_0_0'
  45. 'monocyte_count_f30130_0_0'
  46. 'monocyte_percentage_f30190_0_0'
  47. 'neutrophill_count_f30140_0_0'
  48. 'neutrophill_percentage_f30200_0_0'
  49. 'nucleated_red_blood_cell_count_f30170_0_0'
  50. 'nucleated_red_blood_cell_percentage_f30230_0_0'
  51. 'platelet_count_f30080_0_0'
  52. 'platelet_crit_f30090_0_0'
  53. 'platelet_distribution_width_f30110_0_0'
  54. 'red_blood_cell_erythrocyte_count_f30010_0_0'
  55. 'red_blood_cell_erythrocyte_distribution_width_f30070_0_0'
  56. 'reticulocyte_count_f30250_0_0'
  57. 'reticulocyte_percentage_f30240_0_0'
  58. 'white_blood_cell_leukocyte_count_f30000_0_0'
  59. 'alanine_aminotransferase_f30620_0_0'
  60. 'albumin_f30600_0_0'
  61. 'alkaline_phosphatase_f30610_0_0'
  62. 'apolipoprotein_a_f30630_0_0'
  63. 'apolipoprotein_b_f30640_0_0'
  64. 'aspartate_aminotransferase_f30650_0_0'
  65. 'creactive_protein_f30710_0_0'
  66. 'calcium_f30680_0_0'
  67. 'cholesterol_f30690_0_0'
  68. 'creatinine_f30700_0_0'
  69. 'cystatin_c_f30720_0_0'
  70. 'direct_bilirubin_f30660_0_0'
  71. 'gamma_glutamyltransferase_f30730_0_0'
  72. 'glucose_f30740_0_0'
  73. 'glycated_haemoglobin_hba1c_f30750_0_0'
  74. 'hdl_cholesterol_f30760_0_0'
  75. 'igf1_f30770_0_0'
  76. 'ldl_direct_f30780_0_0'
  77. 'lipoprotein_a_f30790_0_0'
  78. 'oestradiol_f30800_0_0'
  79. 'phosphate_f30810_0_0'
  80. 'rheumatoid_factor_f30820_0_0'
  81. 'shbg_f30830_0_0'
  82. 'testosterone_f30850_0_0'
  83. 'total_bilirubin_f30840_0_0'
  84. 'total_protein_f30860_0_0'
  85. 'triglycerides_f30870_0_0'
  86. 'urate_f30880_0_0'
  87. 'urea_f30670_0_0'
  88. 'vitamin_d_f30890_0_0'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'eid'\n", - "\\item 'age\\_at\\_recruitment\\_f21022\\_0\\_0'\n", - "\\item 'sex\\_f31\\_0\\_0'\n", - "\\item 'ethnic\\_background\\_f21000\\_0\\_0'\n", - "\\item 'townsend\\_deprivation\\_index\\_at\\_recruitment\\_f189\\_0\\_0'\n", - "\\item 'date\\_of\\_attending\\_assessment\\_centre\\_f53\\_0\\_0'\n", - "\\item 'uk\\_biobank\\_assessment\\_centre\\_f54\\_0\\_0'\n", - "\\item 'birth\\_date'\n", - "\\item 'body\\_mass\\_index\\_bmi\\_f21001\\_0\\_0'\n", - "\\item 'weight\\_f21002\\_0\\_0'\n", - "\\item 'pulse\\_wave\\_arterial\\_stiffness\\_index\\_f21021\\_0\\_0'\n", - "\\item 'pulse\\_wave\\_reflection\\_index\\_f4195\\_0\\_0'\n", - "\\item 'waist\\_circumference\\_f48\\_0\\_0'\n", - "\\item 'hip\\_circumference\\_f49\\_0\\_0'\n", - "\\item 'standing\\_height\\_f50\\_0\\_0'\n", - "\\item 'trunk\\_fat\\_percentage\\_f23127\\_0\\_0'\n", - "\\item 'body\\_fat\\_percentage\\_f23099\\_0\\_0'\n", - "\\item 'basal\\_metabolic\\_rate\\_f23105\\_0\\_0'\n", - "\\item 'forced\\_vital\\_capacity\\_fvc\\_best\\_measure\\_f20151\\_0\\_0'\n", - "\\item 'forced\\_expiratory\\_volume\\_in\\_1second\\_fev1\\_best\\_measure\\_f20150\\_0\\_0'\n", - "\\item 'fev1\\_fvc\\_ratio\\_zscore\\_f20258\\_0\\_0'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef\\_f3064\\_0\\_2'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef\\_f3064\\_0\\_1'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef\\_f3064\\_0\\_0'\n", - "\\item 'systolic\\_blood\\_pressure\\_automated\\_reading\\_f4080'\n", - "\\item 'diastolic\\_blood\\_pressure\\_automated\\_reading\\_f4079'\n", - "\\item 'pulse\\_rate\\_automated\\_reading\\_f102'\n", - "\\item 'basophill\\_count\\_f30160\\_0\\_0'\n", - "\\item 'basophill\\_percentage\\_f30220\\_0\\_0'\n", - "\\item 'eosinophill\\_count\\_f30150\\_0\\_0'\n", - "\\item 'eosinophill\\_percentage\\_f30210\\_0\\_0'\n", - "\\item 'haematocrit\\_percentage\\_f30030\\_0\\_0'\n", - "\\item 'haemoglobin\\_concentration\\_f30020\\_0\\_0'\n", - "\\item 'high\\_light\\_scatter\\_reticulocyte\\_count\\_f30300\\_0\\_0'\n", - "\\item 'high\\_light\\_scatter\\_reticulocyte\\_percentage\\_f30290\\_0\\_0'\n", - "\\item 'immature\\_reticulocyte\\_fraction\\_f30280\\_0\\_0'\n", - "\\item 'lymphocyte\\_count\\_f30120\\_0\\_0'\n", - "\\item 'lymphocyte\\_percentage\\_f30180\\_0\\_0'\n", - "\\item 'mean\\_corpuscular\\_haemoglobin\\_f30050\\_0\\_0'\n", - "\\item 'mean\\_corpuscular\\_haemoglobin\\_concentration\\_f30060\\_0\\_0'\n", - "\\item 'mean\\_corpuscular\\_volume\\_f30040\\_0\\_0'\n", - "\\item 'mean\\_platelet\\_thrombocyte\\_volume\\_f30100\\_0\\_0'\n", - "\\item 'mean\\_reticulocyte\\_volume\\_f30260\\_0\\_0'\n", - "\\item 'mean\\_sphered\\_cell\\_volume\\_f30270\\_0\\_0'\n", - "\\item 'monocyte\\_count\\_f30130\\_0\\_0'\n", - "\\item 'monocyte\\_percentage\\_f30190\\_0\\_0'\n", - "\\item 'neutrophill\\_count\\_f30140\\_0\\_0'\n", - "\\item 'neutrophill\\_percentage\\_f30200\\_0\\_0'\n", - "\\item 'nucleated\\_red\\_blood\\_cell\\_count\\_f30170\\_0\\_0'\n", - "\\item 'nucleated\\_red\\_blood\\_cell\\_percentage\\_f30230\\_0\\_0'\n", - "\\item 'platelet\\_count\\_f30080\\_0\\_0'\n", - "\\item 'platelet\\_crit\\_f30090\\_0\\_0'\n", - "\\item 'platelet\\_distribution\\_width\\_f30110\\_0\\_0'\n", - "\\item 'red\\_blood\\_cell\\_erythrocyte\\_count\\_f30010\\_0\\_0'\n", - "\\item 'red\\_blood\\_cell\\_erythrocyte\\_distribution\\_width\\_f30070\\_0\\_0'\n", - "\\item 'reticulocyte\\_count\\_f30250\\_0\\_0'\n", - "\\item 'reticulocyte\\_percentage\\_f30240\\_0\\_0'\n", - "\\item 'white\\_blood\\_cell\\_leukocyte\\_count\\_f30000\\_0\\_0'\n", - "\\item 'alanine\\_aminotransferase\\_f30620\\_0\\_0'\n", - "\\item 'albumin\\_f30600\\_0\\_0'\n", - "\\item 'alkaline\\_phosphatase\\_f30610\\_0\\_0'\n", - "\\item 'apolipoprotein\\_a\\_f30630\\_0\\_0'\n", - "\\item 'apolipoprotein\\_b\\_f30640\\_0\\_0'\n", - "\\item 'aspartate\\_aminotransferase\\_f30650\\_0\\_0'\n", - "\\item 'creactive\\_protein\\_f30710\\_0\\_0'\n", - "\\item 'calcium\\_f30680\\_0\\_0'\n", - "\\item 'cholesterol\\_f30690\\_0\\_0'\n", - "\\item 'creatinine\\_f30700\\_0\\_0'\n", - "\\item 'cystatin\\_c\\_f30720\\_0\\_0'\n", - "\\item 'direct\\_bilirubin\\_f30660\\_0\\_0'\n", - "\\item 'gamma\\_glutamyltransferase\\_f30730\\_0\\_0'\n", - "\\item 'glucose\\_f30740\\_0\\_0'\n", - "\\item 'glycated\\_haemoglobin\\_hba1c\\_f30750\\_0\\_0'\n", - "\\item 'hdl\\_cholesterol\\_f30760\\_0\\_0'\n", - "\\item 'igf1\\_f30770\\_0\\_0'\n", - "\\item 'ldl\\_direct\\_f30780\\_0\\_0'\n", - "\\item 'lipoprotein\\_a\\_f30790\\_0\\_0'\n", - "\\item 'oestradiol\\_f30800\\_0\\_0'\n", - "\\item 'phosphate\\_f30810\\_0\\_0'\n", - "\\item 'rheumatoid\\_factor\\_f30820\\_0\\_0'\n", - "\\item 'shbg\\_f30830\\_0\\_0'\n", - "\\item 'testosterone\\_f30850\\_0\\_0'\n", - "\\item 'total\\_bilirubin\\_f30840\\_0\\_0'\n", - "\\item 'total\\_protein\\_f30860\\_0\\_0'\n", - "\\item 'triglycerides\\_f30870\\_0\\_0'\n", - "\\item 'urate\\_f30880\\_0\\_0'\n", - "\\item 'urea\\_f30670\\_0\\_0'\n", - "\\item 'vitamin\\_d\\_f30890\\_0\\_0'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'eid'\n", - "2. 'age_at_recruitment_f21022_0_0'\n", - "3. 'sex_f31_0_0'\n", - "4. 'ethnic_background_f21000_0_0'\n", - "5. 'townsend_deprivation_index_at_recruitment_f189_0_0'\n", - "6. 'date_of_attending_assessment_centre_f53_0_0'\n", - "7. 'uk_biobank_assessment_centre_f54_0_0'\n", - "8. 'birth_date'\n", - "9. 'body_mass_index_bmi_f21001_0_0'\n", - "10. 'weight_f21002_0_0'\n", - "11. 'pulse_wave_arterial_stiffness_index_f21021_0_0'\n", - "12. 'pulse_wave_reflection_index_f4195_0_0'\n", - "13. 'waist_circumference_f48_0_0'\n", - "14. 'hip_circumference_f49_0_0'\n", - "15. 'standing_height_f50_0_0'\n", - "16. 'trunk_fat_percentage_f23127_0_0'\n", - "17. 'body_fat_percentage_f23099_0_0'\n", - "18. 'basal_metabolic_rate_f23105_0_0'\n", - "19. 'forced_vital_capacity_fvc_best_measure_f20151_0_0'\n", - "20. 'forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0'\n", - "21. 'fev1_fvc_ratio_zscore_f20258_0_0'\n", - "22. 'peak_expiratory_flow_pef_f3064_0_2'\n", - "23. 'peak_expiratory_flow_pef_f3064_0_1'\n", - "24. 'peak_expiratory_flow_pef_f3064_0_0'\n", - "25. 'systolic_blood_pressure_automated_reading_f4080'\n", - "26. 'diastolic_blood_pressure_automated_reading_f4079'\n", - "27. 'pulse_rate_automated_reading_f102'\n", - "28. 'basophill_count_f30160_0_0'\n", - "29. 'basophill_percentage_f30220_0_0'\n", - "30. 'eosinophill_count_f30150_0_0'\n", - "31. 'eosinophill_percentage_f30210_0_0'\n", - "32. 'haematocrit_percentage_f30030_0_0'\n", - "33. 'haemoglobin_concentration_f30020_0_0'\n", - "34. 'high_light_scatter_reticulocyte_count_f30300_0_0'\n", - "35. 'high_light_scatter_reticulocyte_percentage_f30290_0_0'\n", - "36. 'immature_reticulocyte_fraction_f30280_0_0'\n", - "37. 'lymphocyte_count_f30120_0_0'\n", - "38. 'lymphocyte_percentage_f30180_0_0'\n", - "39. 'mean_corpuscular_haemoglobin_f30050_0_0'\n", - "40. 'mean_corpuscular_haemoglobin_concentration_f30060_0_0'\n", - "41. 'mean_corpuscular_volume_f30040_0_0'\n", - "42. 'mean_platelet_thrombocyte_volume_f30100_0_0'\n", - "43. 'mean_reticulocyte_volume_f30260_0_0'\n", - "44. 'mean_sphered_cell_volume_f30270_0_0'\n", - "45. 'monocyte_count_f30130_0_0'\n", - "46. 'monocyte_percentage_f30190_0_0'\n", - "47. 'neutrophill_count_f30140_0_0'\n", - "48. 'neutrophill_percentage_f30200_0_0'\n", - "49. 'nucleated_red_blood_cell_count_f30170_0_0'\n", - "50. 'nucleated_red_blood_cell_percentage_f30230_0_0'\n", - "51. 'platelet_count_f30080_0_0'\n", - "52. 'platelet_crit_f30090_0_0'\n", - "53. 'platelet_distribution_width_f30110_0_0'\n", - "54. 'red_blood_cell_erythrocyte_count_f30010_0_0'\n", - "55. 'red_blood_cell_erythrocyte_distribution_width_f30070_0_0'\n", - "56. 'reticulocyte_count_f30250_0_0'\n", - "57. 'reticulocyte_percentage_f30240_0_0'\n", - "58. 'white_blood_cell_leukocyte_count_f30000_0_0'\n", - "59. 'alanine_aminotransferase_f30620_0_0'\n", - "60. 'albumin_f30600_0_0'\n", - "61. 'alkaline_phosphatase_f30610_0_0'\n", - "62. 'apolipoprotein_a_f30630_0_0'\n", - "63. 'apolipoprotein_b_f30640_0_0'\n", - "64. 'aspartate_aminotransferase_f30650_0_0'\n", - "65. 'creactive_protein_f30710_0_0'\n", - "66. 'calcium_f30680_0_0'\n", - "67. 'cholesterol_f30690_0_0'\n", - "68. 'creatinine_f30700_0_0'\n", - "69. 'cystatin_c_f30720_0_0'\n", - "70. 'direct_bilirubin_f30660_0_0'\n", - "71. 'gamma_glutamyltransferase_f30730_0_0'\n", - "72. 'glucose_f30740_0_0'\n", - "73. 'glycated_haemoglobin_hba1c_f30750_0_0'\n", - "74. 'hdl_cholesterol_f30760_0_0'\n", - "75. 'igf1_f30770_0_0'\n", - "76. 'ldl_direct_f30780_0_0'\n", - "77. 'lipoprotein_a_f30790_0_0'\n", - "78. 'oestradiol_f30800_0_0'\n", - "79. 'phosphate_f30810_0_0'\n", - "80. 'rheumatoid_factor_f30820_0_0'\n", - "81. 'shbg_f30830_0_0'\n", - "82. 'testosterone_f30850_0_0'\n", - "83. 'total_bilirubin_f30840_0_0'\n", - "84. 'total_protein_f30860_0_0'\n", - "85. 'triglycerides_f30870_0_0'\n", - "86. 'urate_f30880_0_0'\n", - "87. 'urea_f30670_0_0'\n", - "88. 'vitamin_d_f30890_0_0'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"eid\" \n", - " [2] \"age_at_recruitment_f21022_0_0\" \n", - " [3] \"sex_f31_0_0\" \n", - " [4] \"ethnic_background_f21000_0_0\" \n", - " [5] \"townsend_deprivation_index_at_recruitment_f189_0_0\" \n", - " [6] \"date_of_attending_assessment_centre_f53_0_0\" \n", - " [7] \"uk_biobank_assessment_centre_f54_0_0\" \n", - " [8] \"birth_date\" \n", - " [9] \"body_mass_index_bmi_f21001_0_0\" \n", - "[10] \"weight_f21002_0_0\" \n", - "[11] \"pulse_wave_arterial_stiffness_index_f21021_0_0\" \n", - "[12] \"pulse_wave_reflection_index_f4195_0_0\" \n", - "[13] \"waist_circumference_f48_0_0\" \n", - "[14] \"hip_circumference_f49_0_0\" \n", - "[15] \"standing_height_f50_0_0\" \n", - "[16] \"trunk_fat_percentage_f23127_0_0\" \n", - "[17] \"body_fat_percentage_f23099_0_0\" \n", - "[18] \"basal_metabolic_rate_f23105_0_0\" \n", - "[19] \"forced_vital_capacity_fvc_best_measure_f20151_0_0\" \n", - "[20] \"forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0\"\n", - "[21] \"fev1_fvc_ratio_zscore_f20258_0_0\" \n", - "[22] \"peak_expiratory_flow_pef_f3064_0_2\" \n", - "[23] \"peak_expiratory_flow_pef_f3064_0_1\" \n", - "[24] \"peak_expiratory_flow_pef_f3064_0_0\" \n", - "[25] \"systolic_blood_pressure_automated_reading_f4080\" \n", - "[26] \"diastolic_blood_pressure_automated_reading_f4079\" \n", - "[27] \"pulse_rate_automated_reading_f102\" \n", - "[28] \"basophill_count_f30160_0_0\" \n", - "[29] \"basophill_percentage_f30220_0_0\" \n", - "[30] \"eosinophill_count_f30150_0_0\" \n", - "[31] \"eosinophill_percentage_f30210_0_0\" \n", - "[32] \"haematocrit_percentage_f30030_0_0\" \n", - "[33] \"haemoglobin_concentration_f30020_0_0\" \n", - "[34] \"high_light_scatter_reticulocyte_count_f30300_0_0\" \n", - "[35] \"high_light_scatter_reticulocyte_percentage_f30290_0_0\" \n", - "[36] \"immature_reticulocyte_fraction_f30280_0_0\" \n", - "[37] \"lymphocyte_count_f30120_0_0\" \n", - "[38] \"lymphocyte_percentage_f30180_0_0\" \n", - "[39] \"mean_corpuscular_haemoglobin_f30050_0_0\" \n", - "[40] \"mean_corpuscular_haemoglobin_concentration_f30060_0_0\" \n", - "[41] \"mean_corpuscular_volume_f30040_0_0\" \n", - "[42] \"mean_platelet_thrombocyte_volume_f30100_0_0\" \n", - "[43] \"mean_reticulocyte_volume_f30260_0_0\" \n", - "[44] \"mean_sphered_cell_volume_f30270_0_0\" \n", - "[45] \"monocyte_count_f30130_0_0\" \n", - "[46] \"monocyte_percentage_f30190_0_0\" \n", - "[47] \"neutrophill_count_f30140_0_0\" \n", - "[48] \"neutrophill_percentage_f30200_0_0\" \n", - "[49] \"nucleated_red_blood_cell_count_f30170_0_0\" \n", - "[50] \"nucleated_red_blood_cell_percentage_f30230_0_0\" \n", - "[51] \"platelet_count_f30080_0_0\" \n", - "[52] \"platelet_crit_f30090_0_0\" \n", - "[53] \"platelet_distribution_width_f30110_0_0\" \n", - "[54] \"red_blood_cell_erythrocyte_count_f30010_0_0\" \n", - "[55] \"red_blood_cell_erythrocyte_distribution_width_f30070_0_0\" \n", - "[56] \"reticulocyte_count_f30250_0_0\" \n", - "[57] \"reticulocyte_percentage_f30240_0_0\" \n", - "[58] \"white_blood_cell_leukocyte_count_f30000_0_0\" \n", - "[59] \"alanine_aminotransferase_f30620_0_0\" \n", - "[60] \"albumin_f30600_0_0\" \n", - "[61] \"alkaline_phosphatase_f30610_0_0\" \n", - "[62] \"apolipoprotein_a_f30630_0_0\" \n", - "[63] \"apolipoprotein_b_f30640_0_0\" \n", - "[64] \"aspartate_aminotransferase_f30650_0_0\" \n", - "[65] \"creactive_protein_f30710_0_0\" \n", - "[66] \"calcium_f30680_0_0\" \n", - "[67] \"cholesterol_f30690_0_0\" \n", - "[68] \"creatinine_f30700_0_0\" \n", - "[69] \"cystatin_c_f30720_0_0\" \n", - "[70] \"direct_bilirubin_f30660_0_0\" \n", - "[71] \"gamma_glutamyltransferase_f30730_0_0\" \n", - "[72] \"glucose_f30740_0_0\" \n", - "[73] \"glycated_haemoglobin_hba1c_f30750_0_0\" \n", - "[74] \"hdl_cholesterol_f30760_0_0\" \n", - "[75] \"igf1_f30770_0_0\" \n", - "[76] \"ldl_direct_f30780_0_0\" \n", - "[77] \"lipoprotein_a_f30790_0_0\" \n", - "[78] \"oestradiol_f30800_0_0\" \n", - "[79] \"phosphate_f30810_0_0\" \n", - "[80] \"rheumatoid_factor_f30820_0_0\" \n", - "[81] \"shbg_f30830_0_0\" \n", - "[82] \"testosterone_f30850_0_0\" \n", - "[83] \"total_bilirubin_f30840_0_0\" \n", - "[84] \"total_protein_f30860_0_0\" \n", - "[85] \"triglycerides_f30870_0_0\" \n", - "[86] \"urate_f30880_0_0\" \n", - "[87] \"urea_f30670_0_0\" \n", - "[88] \"vitamin_d_f30890_0_0\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "colnames(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [], - "source": [ - "data_long = data %>% pivot_longer(all_of(colnames(data)[9:88]), names_to=\"column\", values_to=\"value\")" - ] - }, - { - "cell_type": "code", - "execution_count": 163, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A tibble: 6 × 5
eidnamemeaningdatevalue
<int><chr><chr><date><dbl>
1000018 2009-11-12 26.5557
1000018O/E - weight1627630072009-11-12 63.8000
1000018 2009-11-12 7.2770
1000018 2009-11-12 80.0000
1000018 2009-11-12 85.0000
1000018 2009-11-12107.0000
\n" - ], - "text/latex": [ - "A tibble: 6 × 5\n", - "\\begin{tabular}{lllll}\n", - " eid & name & meaning & date & value\\\\\n", - " & & & & \\\\\n", - "\\hline\n", - "\t 1000018 & & & 2009-11-12 & 26.5557\\\\\n", - "\t 1000018 & O/E - weight & 162763007 & 2009-11-12 & 63.8000\\\\\n", - "\t 1000018 & & & 2009-11-12 & 7.2770\\\\\n", - "\t 1000018 & & & 2009-11-12 & 80.0000\\\\\n", - "\t 1000018 & & & 2009-11-12 & 85.0000\\\\\n", - "\t 1000018 & & & 2009-11-12 & 107.0000\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A tibble: 6 × 5\n", - "\n", - "| eid <int> | name <chr> | meaning <chr> | date <date> | value <dbl> |\n", - "|---|---|---|---|---|\n", - "| 1000018 | | | 2009-11-12 | 26.5557 |\n", - "| 1000018 | O/E - weight | 162763007 | 2009-11-12 | 63.8000 |\n", - "| 1000018 | | | 2009-11-12 | 7.2770 |\n", - "| 1000018 | | | 2009-11-12 | 80.0000 |\n", - "| 1000018 | | | 2009-11-12 | 85.0000 |\n", - "| 1000018 | | | 2009-11-12 | 107.0000 |\n", - "\n" - ], - "text/plain": [ - " eid name meaning date value \n", - "1 1000018 2009-11-12 26.5557\n", - "2 1000018 O/E - weight 162763007 2009-11-12 63.8000\n", - "3 1000018 2009-11-12 7.2770\n", - "4 1000018 2009-11-12 80.0000\n", - "5 1000018 2009-11-12 85.0000\n", - "6 1000018 2009-11-12 107.0000" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "data_mean = data_long %>% \n", - " #filter(column %in% c(\"weight_f21002_0_0\", 'systolic_blood_pressure_automated_reading_f4080', \"diastolic_blood_pressure_automated_reading_f4079\", 'cholesterol_f30690_0_0',\n", - " # \"hdl_cholesterol_f30760_0_0\", 'ldl_direct_f30780_0_0', \"triglycerides_f30870_0_0\"))\n", - " mutate(name = case_when(column == \"weight_f21002_0_0\" ~ \"O/E - weight\",\n", - " column == 'systolic_blood_pressure_automated_reading_f4080' ~ \"O/E - Systolic BP reading\",\n", - " column == \"diastolic_blood_pressure_automated_reading_f4079\" ~ \"O/E - Dystolic BP reading\",\n", - " column == \"cholesterol_f30690_0_0\" ~ \"Serum cholesterol level\",\n", - " column == \"triglycerides_f30870_0_0\" ~ \"Serum triglycerides level\",\n", - " column == \"hdl_cholesterol_f30760_0_0\" ~ \"Serum high density lipoprotein cholesterol level\",\n", - " column == 'ldl_direct_f30780_0_0' ~ \"Serum low density lipoprotein cholesterol level\",\n", - " TRUE ~ \"\"),\n", - " meaning = case_when(column == \"weight_f21002_0_0\" ~ \"162763007\",\n", - " column == 'systolic_blood_pressure_automated_reading_f4080' ~ \"163030003\",\n", - " column == \"diastolic_blood_pressure_automated_reading_f4079\" ~ \"163031004\",\n", - " column == \"cholesterol_f30690_0_0\" ~ \"1005671000000105\",\n", - " column == \"triglycerides_f30870_0_0\" ~ \"1005691000000109\",\n", - " column == \"hdl_cholesterol_f30760_0_0\" ~ \"1005681000000107\",\n", - " column == 'ldl_direct_f30780_0_0' ~ \"1022191000000100\",\n", - " TRUE ~ \"\")) %>% mutate(date = date_of_attending_assessment_centre_f53_0_0) %>% select(eid, name, meaning, date, value)\n", - "head(data_mean)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "gp_measurements = arrow::read_feather(glue(\"{data_path}/1_decoded/codes_gp_measurements_210120.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "gp_eids = (gp_measurements %>% select(eid) %>% distinct())$eid" - ] - }, - { - "cell_type": "code", - "execution_count": 169, - "metadata": {}, - "outputs": [], - "source": [ - "n=10\n", - "eids = (data %>% select(eid) %>% filter(eid %in% gp_eids) %>% distinct() %>% sample_n(n))$eid" - ] - }, - { - "cell_type": "code", - "execution_count": 171, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Joining, by = \"eid\"\n", - "\n", - "`geom_smooth()` using formula 'y ~ x'\n", - "\n", - "Warning message in qt((1 - level)/2, df):\n", - "\"NaNs produced\"\n", - "Warning message in qt((1 - level)/2, df):\n", - "\"NaNs produced\"\n", - "Warning message in qt((1 - level)/2, df):\n", - "\"NaNs produced\"\n", - "Warning message in qt((1 - level)/2, df):\n", - "\"NaNs produced\"\n", - "Warning message in qt((1 - level)/2, df):\n", - "\"NaNs produced\"\n", - "Warning message in qt((1 - level)/2, df):\n", - "\"NaNs produced\"\n", - "Warning message in qt((1 - level)/2, df):\n", - "\"NaNs produced\"\n", - "Warning message in max(ids, na.rm = TRUE):\n", - "\"no non-missing arguments to max; returning -Inf\"\n", - "Warning message in max(ids, na.rm = TRUE):\n", - "\"no non-missing arguments to max; returning -Inf\"\n", - "Warning message in max(ids, na.rm = TRUE):\n", - "\"no non-missing arguments to max; returning -Inf\"\n", - "Warning message in max(ids, na.rm = TRUE):\n", - "\"no non-missing arguments to max; returning -Inf\"\n", - "Warning message in max(ids, na.rm = TRUE):\n", - "\"no non-missing arguments to max; returning -Inf\"\n", - "Warning message in max(ids, na.rm = TRUE):\n", - "\"no non-missing arguments to max; returning -Inf\"\n", - "Warning message in max(ids, na.rm = TRUE):\n", - "\"no non-missing arguments to max; returning -Inf\"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAu4CAIAAADq3RRSAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde1xVVfr48QfkIjcvqaEcBQ5igKLgLRLHhKPklJqkaFI6mqY5lqY1jZdh\nvmmZaGialKaU6OhkYwfMyyktwDFUvCDiZIYXPKIhAoIXFLkJvz/2b87rzMELN0Xh8/6L85y1\n11p7/7EPaz17r2VWUVEhAAAAAAAAAAAAABoH8/ruAAAAAAAAAAAAAICHhwQhAAAAAAAAAAAA\n0IiQIAQAAAAAAAAAAAAaERKEAAAAAAAAAAAAQCNCghAAAAAAAAAAAABoREgQAgAAAAAAAAAA\nAI0ICUIAAAAAAAAAAACgESFBCAAAAAAAAAAAADQiJAgBAAAAAAAAAACARoQEIQAAAAAAAAAA\nANCIkCAEAAAAAAAAAAAAGhEShAAAAAAAAAAAAEAjQoIQAAAAAAAAAAAAaERIEAIAAAAAAAAA\nAACNCAlCAAAAAAAAAAAAoBEhQQgAAAAAAAAAAAA0IiQIAQAAAAAAAAAAgEaEBCEAAAAAAAAA\nAADQiJAgBAAAAAAAAAAAABoREoQAAAAAAAAAAABAI0KCEAAAAAAAAAAAAGhESBACAAAAAAAA\nAAAAjQgJQgAAAAAAAAAAAKARIUEIAAAAAAAAAAAANCIkCAEAAAAAAAAAAIBGhAQhAAAAAAAA\nAAAA0IiQIAQAAAAAAAAAAAAaERKEAAAAAAAAAAAAQCNCghAAAAAAAAAAAABoREgQAgAAAAAA\nAAAAAI0ICUIAAAAAAAAAAACgESFBCAAAAAAAAAAAADQiJAgBAAAAAAAAAACARoQEIQAAAAAA\nAAAAANCIkCAEAAAAAAAAAAAAGhEShAAAAAAAAAAAAEAjQoIQAAAAAAAAAAAAaERIEAIAAAAA\nAAAAAACNiEV9dwAAAACohqSkpG+//fbo0aOZmZlFRUVNmzZt27atj4/P8OHDAwMD67t3AAAA\nAAAAjwGzioqK+u4DAAAAcH9lZWUzZ86MjY0VETMzs3bt2jVt2jQvL+/atWtKgWHDhkVGRjZp\n0qReuwkAAAAAAPCoY4lRAAAAPB4iIyNjY2OtrKzmz5//22+/HT58ODEx8cSJE0lJSWPGjBGR\nrVu3fvXVV/XdTQAAAAAAgEcdbxACAADg8dCjR4/s7OxZs2ZNnz698rfTp0+PiYlp3779/v37\neYkQAAAAAADgHniDEAAAAI+BkpKS7OxsEenZs+cdC7z33nsrV67cuHGjufn//Iubm5sbHh6u\n0Wg6duzYqVOngICADz/8MC8vz7jM999/r1KpQkJCSktL586d261bN39/fxHZvHmzSqXSaDQm\nbRUXF6tUKpVKlZaWpkR27dql1CAisbGxgwYNcnd39/Hxeeutt5RuX758ec6cOb1793Z1dfX3\n94+MjORBPQAAAAAAUF8s6rsDAAAAwP1ZWVk1a9bs+vXrJ0+e7Nu3b+UCHTp06NChg0nw119/\nffXVV3Nzcx0cHLp3715SUnLq1Kkvvvhi8+bN3377raenp6FyESksLFy1atX69etFxCTLeF+W\nlpZKDdHR0WFhYR4eHu3atTt37tyWLVtOnTq1efPm4ODgnJycjh07lpSUZGRkLFq0yNzc/M03\n36zBpQAAAAAAAKgl3iAEAADA40F5k2/hwoWbNm0qKSm5b/mSkpJJkybl5uaOGTPm8OHDWq12\n27Zthw8fDg4Ozs/Pf+ONN8rKypSSFhYWIlJYWLh+/frZs2cnJSVt3bq1Wn1TasjKylq5cuX2\n7dsTEhISExPXr19vZmamJCk9PDxSUlJ++OGHI0eOKC8aRkdHV/cKAAAAAAAA1AkShAAAAHg8\nhIWFubq63rp16y9/+Yuvr+/06dM3btx4+vTpu63VuWXLloyMDE9Pz/DwcAcHByXo4OCwbNky\nR0fHM2fOJCQkKEFlz8LTp08HBQVNmzbN2dnZxcWlWn0zMzMTkZycnOnTp/fo0UMJajQaHx8f\npebly5fb29uLiIWFxVtvvSUiWVlZJiudAgAAAAAAPBwkCAEAAPB4aNeunU6nmzRpkp2d3bVr\n12JiYmbNmhUQEODj4/P222/v3bvXpHx8fLyIDBkyxGS9UCsrK+VlxMTERJNDhg8fXstODho0\nyPijs7OziPTu3duQoTQEReTq1au1bA4AAAAAAKAG2IMQAAAAj40WLVrMmzdvzpw5P//88759\n+w4cOHDixIm8vDytVqvVav39/VetWtW6dWulcFpamojExMTs27fPpJ4LFy6IyNmzZ03i3t7e\ntemepaVlmzZtjCPW1tYiolKpKgdFpLS0tDbNAQAAAAAA1AwJQgAAADxmrK2tg4KCgoKCROTm\nzZsHDx5U9hfcv3//uHHjtm/frrwyeO3aNRHR6/V6vf6O9Vy/ft2kWltb29p0zN7eXllrtHK8\nNtUCAAAAAADULRKEAAAAeIzZ2dlpNBqNRvP8889PmTIlNTU1Li7uueeek//uC/jRRx+NHz++\nKlVZWVk90K4CAAAAAAA8ItiDEAAAAA3B0KFDXV1dReT48eNKpGXLliKSnZ1d521duXKlzusE\nAAAAAAB4aEgQAgAA4DEQFRUVEhISHh5+jzIWFhYiYmlpqXz09PQUkWPHjtW4UaXCoqIik/jd\n1iwFAODh27lzp0ql8vPzq++OAAAA4HFCghAAAACPgdzc3KSkpHXr1qWlpd2xQGpq6pkzZ0TE\n19dXiQwcOFBEEhMTL1y4YFJ48uTJU6dOTU9Pv3ejyjuIFy9eLCgoMI5//fXXNToJAMDDk5SU\n9M477wQGBj711FPOzs5PPfXUs88+O23atN27d9d31wAAAID6R4IQAAAAj4EpU6Y8+eSTN27c\nGDFiRHR0dE5OjuGrzMzMlStXhoaGikivXr369u2rxIcOHapWq8vLy6dMmWIoX1xcvHDhQp1O\nFx8f36pVq3s36u3tbW5uXlpaunTp0vLychGpqKhYvXp1UlKSra3tAzlPAECtlZWVTZs2LSQk\n5F//+tfp06ebN2/u4uJiYWGRnp4eGxs7ZsyYqVOn3r59u767CQAAANQni/ruAAAAAHB/Tzzx\nxKZNm15//XW9Xh8WFhYWFmZvb29jY3P16tXS0lKlTJ8+faKioszN//8zcFZWVlFRUaGhoamp\nqX5+fr6+vubm5idPnrxy5YqlpeWaNWtatGhx70bbtGkTEhKyefPmqKio7du3t2vXLjMzMz8/\nf926de+8805hYWFFRcWDPW0AQPVFRkbGxsZaWVn97W9/e/nllx0cHJT4+fPnP//8840bN27d\nutXX13fy5Mn1208AAACgHpEgBAAAwOPB09Nz9+7d33333a5du06cOJGTk5Ofn29ra6tWq318\nfIYNGxYYGGhyiJeXV3x8/OrVq+Pi4n755ZeysrK2bdv+8Y9/fOONNzp16lSVRiMiIlQq1Xff\nfff7778XFxd37dp1xowZfn5+NjY2IlJcXFz35wkAqJ0NGzaIyMyZM19//XXjuLOz8+LFi2/d\nuhUTE/PVV19NnDixSZMm9dRHAAAAoJ6Z8dQzAAAAAABoGEpKStRqtYhs3rzZsOi0sQsXLqSk\npHTu3Nnd3d3MzMwQz83N/fLLL3/66aeMjAxzc3OVSjVgwICpU6car0f9/fffT5o0qU+fPps2\nbXr//fd37Nhhb2+/f//+zZs3z5w508PDIyEhwbit4uJiNzc3EYmPj/f09BSRXbt2TZgwoU+f\nPlqtNjY2dvXq1enp6XZ2dv369fv73//u6Oh4+fLlpUuXxsXF5ebmOjk5hYaGvvXWW8b9rGzn\nzp0TJ05s3779wYMHjeOZmZmrVq3as2fPxYsXzczM2rVr179//z//+c8qlUop0L1795ycnG+/\n/dbf399wVGJi4ujRo0Xkiy++GDp0qCF+5syZ/v3729nZnThxwsKCx80BAAAee+xBCAAAAAAA\nGggrK6tmzZqJyMmTJ+9YoEOHDsOGDevUqZNx1u3XX38NCgr67LPPLl682L17dy8vr0uXLn3x\nxRcBAQFpaWnGlYtIYWHhqlWr1q9fn5eXV1hYWK3uWVpaKjVER0dPmzattLS0Xbt2+fn5W7Zs\nGTt27NWrV4ODg2NiYlq3bt28efOMjIxFixatXLmyBtfhwIEDGo0mOjr68uXLvXr16tKlS25u\nbnR09IABA5KTk5Uy/fr1ExGTtOL+/fsNNZhUKCJ9+vQhOwgAANAwkCAEAAAAAAANh0ajEZGF\nCxdu2rSppKTkvuVLSkomTZqUm5s7ZsyYw4cPa7Xabdu2HT58ODg4OD8//4033igrK1NKKrmx\nwsLC9evXz549OykpaevWrdXqm1JDVlbWypUrt2/fnpCQkJiYuH79ejMzs19//fXVV1/18PBI\nSUn54Ycfjhw5EhISIiLR0dHVvQIFBQV//vOfb9y48dJLLx05cuRf//rX1q1bjx49OmTIkIKC\ngqlTpxYVFYnIH/7wBxE5dOiQ8bFJSUmtW7d2dXU1SRwqCcJnn322up0BAADAo4kEIQAAAAAA\naDjCwsJcXV1v3br1l7/8xdfXd/r06Rs3bjx9+vTd9ljZsmVLRkaGp6dneHi4g4ODEnRwcFi2\nbJmjo+OZM2cMC4cqexaePn06KCho2rRpzs7OLi4u1eqb8tpiTk7O9OnTe/TooQQ1Go2Pj49S\n8/Lly+3t7UXEwsLirbfeEpGsrKy8vLxqtRITE5OTk9OqVauIiAhbW1slaGNjs2TJEnt7+8zM\nzB9++EH++wZhSkrK7du3lTJFRUWpqak+Pj4+Pj5paWnXrl0z1EmCEAAAoIEhQQgAAAAAABqO\ndu3a6XS6SZMm2dnZXbt2LSYmZtasWQEBAT4+Pm+//fbevXtNysfHx4vIkCFDzM3/Z5LEyspK\neRkxMTHR5JDhw4fXspODBg0y/ujs7CwivXv3NmQoDUERuXr1arUq3717t4gEBQXZ2NgYxx0c\nHJR9GZWL0K5dOzc3txs3bpw4cUIpkJycXFpa2qNHj+7du1dUVBheLszIyMjKymrbtm2nTp2q\n1RMAAAA8slg4HgAAAAAANCgtWrSYN2/enDlzfv7553379h04cODEiRN5eXlarVar1fr7+69a\ntap169ZKYWWXwZiYmH379pnUc+HCBRE5e/asSdzb27s23bO0tGzTpo1xxNraWkRUKlXloIiU\nlpZWq/7Tp0+LiKenZ+Wv3N3dd+3adebMGeVjv379zp49e+jQoa5du8p/NyDs3bu3nZ2diBw8\neDAoKEh4fRAAAKAhIkEIAAAAAAAaIGtr66CgICXFdfPmzYMHDyr7C+7fv3/cuHHbt29XXhlU\nFtLU6/V6vf6O9Vy/ft2kWsO6nTVjb2+vrDVaOV6bag2UM2rWrFnlr5Q3FA1n9Ic//GH9+vWH\nDh2aOHGiiBw4cMDCwqJHjx6WlpY2NjZKXlBIEAIAADREJAgBAAAAAEADZ2dnp9FoNBrN888/\nP2XKlNTU1Li4uOeee07+uy/gRx99NH78+KpUZWVl9UC7Wnt3zD4qlI0YDYup9u3b19zcXFlK\ntLi4+OjRoz4+PsrCpN27dz906NCtW7eUTKGZmZmyZyEAAAAaBvYgBAAAQMORmJioUqnuuKia\nCZ1Op1Kp/Pz8HmgrAIBHzdChQ11dXUXk+PHjSqRly5Yikp2dXedtXblypc7rrIrmzZvLf98j\nNKEElQLKH127ds3JycnIyEhOTi4pKXnmmWeUr55++umysrIjR45kZWWdP3++c+fOhkVZAQAA\n0ACQIAQAAAAAAA1EVFRUSEhIeHj4PcpYWFiIiKWlpfJReeDj2LFjNW5UqbCoqMgkfrc1Sx80\n5Yx+++23yl+dPHlSRDw8PAyRP/zhDyJy+PDhpKQkETFOEIrIwYMHlTjriwIAADQwJAgBAADQ\nGD377LPx8fGbNm2q744AAOpSbm5uUlLSunXr0tLS7lggNTX1zJkzIuLr66tEBg4cKCKJiYkX\nLlwwKTx58uSpU6emp6ffu1HlHcSLFy8WFBQYx7/++usanURtaTQaEYmLiyssLDSO5+Xl7d+/\nX0QCAwMNQWXh0CNHjhw4cMDc3Lx3795KvGfPnk2aNElOTlYWICVBCAAA0MCQIAQAAEBj5ODg\n4Onp6ebmVt8dAQDUpSlTpjz55JM3btwYMWJEdHR0Tk6O4avMzMyVK1eGhoaKSK9evfr27avE\nhw4dqlary8vLp0yZYihfXFy8cOFCnU4XHx/fqlWrezfq7e1tbm5eWlq6dOnS8vJyEamoqFi9\nenVSUpKtre0DOc97eumll1QqVX5+/qxZs0pKSpRgQUHBjBkziouLPT09BwwYYCj89NNPW1tb\np6SkpKamdu7c2cHBQYnb29t7eXmlpKQcPXrU2tpaeaEQAAAADYZFfXcAAAAAAACgbjzxxBOb\nNm16/fXX9Xp9WFhYWFiYvb29jY3N1atXS0tLlTJ9+vSJiooyN///z0xbWVlFRUWFhoampqb6\n+fn5+vqam5ufPHnyypUrlpaWa9asadGixb0bbdOmTUhIyObNm6OiorZv396uXbvMzMz8/Px1\n69a98847hYWFFRUVD/a0/5etre3q1atfeeWV2NjYhIQELy+voqKiU6dO3bx5s23btqtXr27S\npImhsLW1da9evfbt2ydG64sqnn766ePHjx8/frxfv35NmzZ9mKcAAACAB403CAEAANDQKPOe\n//73v0eOHNm5c2c3NzeNRhMVFWU8P6vT6VQqlZ+fn8mxsbGxQ4YMeeqpp7y8vF5++WVlwrRv\n374qlWrv3r3VbQUA8PB5enru3r17+fLlzz//vIuLy+3bt/Pz85s2bfrUU0+NHDly48aNWq1W\nWRTUwMvLKz4+/s0331Sr1b/88suRI0fs7e1DQ0N/+umn/v37V6XRiIiImTNnqtXqvLy8c+fO\neXp6bt68OTAw0MbGRkSKi4sfyKneXffu3ePj41977bUWLVqkpKScPHmyQ4cO06dPj4+Pd3d3\nNymsbEMoIiY/i4a3BllfFAAAoOExY/4CAAAADUZiYuLo0aMdHR3/9re/zZgxw9HR0dHRMSMj\n48qVKyIyc+bMv/zlL0pJnU43efLk9u3bHzx40HD4J598snTpUhFxcXFxc3M7ffp0VlbWypUr\n//a3v12+fHnbtm09e/asVisAAAAAAACPIN4gBAAAQENTUlIyf/78yMjI5ORknU6Xmpo6atQo\nEVmzZo1hfbnKzp49u3z5chF599139+/fv3HjxqSkpGnTps2ePfvGjRsiYmZmVvtWAAAAAAAA\n6h0JQgAAADQ0V65cefnll4ODg5WPFhYWM2bMEJGbN29euHDhbkdptdrbt2937Nhx5syZSsTc\n3Py9997z9vYuKiqqq1YAAAAAAADqHQlCAAAANEBjxowx/uji4mJhYSEi2dnZdzvk8OHDIqLR\naEzeFPzTn/5Uh60AAAAAAADUOxKEAAAAaGgsLCzat29vEnRwcBCRO74LqFBe++vYsaNJvFev\nXnXYCgAAAAAAQL0jQQgAAICGxsbGpkmTJtU96vr16yLSrFkzk3ibNm1M3imsTSsAAAAAAAD1\njgQhAAAAICJSUVEhInfMBd4xCAAAAAAA8JgiQQgAAACIiNjZ2YnIjRs3TOJ5eXnl5eX10SMA\nAAAAAIAHggQhAAAAICKiUqlE5Pz58ybx5OTk+ugOAOBR4ezsrFKpUlJS6rsjotPpVCqVn59f\nfXcEAAAAjz2L+u4AgIYgKSnp22+/PXr0aGZmZlFRUdOmTdu2bevj4zN8+PDAwMD67h0AAFXi\n4+OTnJz873//e/bs2cbxf/zjH/XVJQAAAACNAXNrAB4+3iAEUCtlZWXTpk0LCQn517/+dfr0\n6ebNm7u4uFhYWKSnp8fGxo4ZM2bq1Km3b9+u724CAHB/w4YNE5FffvklOjpaiZSXly9ZsiQ9\nPd3CgufqAAD179lnn42Pj9+0aZNxMDIyUqVSZWVl1VevAAC1wdwagPpCghBArURGRsbGxlpZ\nWc2fP/+33347fPhwYmLiiRMnkpKSxowZIyJbt2796quv6rubAADcX8+ePUNCQkQkLCysX79+\noaGhfn5+q1atWrZsmbk5/zYDAOqfg4ODp6enm5ubcfBRWPsUAFBjzK0BqC/MdAColQ0bNojI\nzJkzX3/9dQcHB0Pc2dl58eLFI0aMEJGvvvqKB50AAI+FpUuXzpkzx93d/ffff09LS/P19d22\nbZu/v395ebmI8B4hAOARdPTo0fruAgCg5phbA1BfSBACqLmSkpLs7GwR6dmz5x0LvPfeeytX\nrty4caPJixe5ubnh4eEajaZjx46dOnUKCAj48MMP8/LyjMt8//33KpUqJCSktLR07ty53bp1\n8/f3F5HNmzerVCqNRmPSVnFxsUqlUqlUaWlpSmTXrl1KDSISGxs7aNAgd3d3Hx+ft956S+n2\n5cuX58yZ07t3b1dXV39//8jIyIqKirq5NACAetKvX7/MzEzDb4Gx48ePZ2ZmGjbwGDx4cGZm\n5sGDB43LWFhYvPXWW3v27NHr9UePHo2KiurSpUtBQUFZWZmItGzZsrqtAAAeL1qtdvDgwe7u\n7l5eXsOHD9+5c+fdSlZlUGM8JNmzZ8/IkSO7dOmiVqsDAwOjoqJMRh+XL1/+8MMPNRqNu7u7\nWq1+5plnJk6cuGfPHuMyOp1OpVL5+fkpH2fMmKFSqXJzc0WkV69eKpXqgw8+CAkJUalUc+bM\nqdzn69evu7i4qFSqvXv31vQKAQDqEnNrAOoRCUIANWdlZdWsWTMROXny5B0LdOjQYdiwYZ06\ndTIzMzMEf/3116CgoM8+++zixYvdu3f38vK6dOnSF198ERAQYDzTamVlJSKFhYWrVq1av359\nXl5eYWFhtbpnaWmp1BAdHT1t2rTS0tJ27drl5+dv2bJl7NixV69eDQ4OjomJad26dfPmzTMy\nMhYtWrRy5coaXAcAQMOQnZ39zTffrFixwmRM+/PPP4tIy5Yt27dvX09dAwA8DMuWLXv77bdT\nU1Pbtm3bq1eva9euvf766xs2bDAeziiqOKgxDEm0Wu2YMWP0er2rq2uzZs1OnTo1b968Tz75\nxFDy0qVLzz333BdffHH+/HkPD4+ePXuWl5fv3LnzlVdeiYqKuluHfX19Bw4cqPyt0WgGDx7c\nuXPn0NBQEdm2bVtpaalJ+R9//LGsrMzJyUmZIAYA1Dvm1gDUIxKEAGpFedpo4cKFmzZtKikp\nuW/5kpKSSZMm5ebmjhkz5vDhw1qtdtu2bYcPHw4ODs7Pz3/jjTeUVzTkv8u4FRYWrl+/fvbs\n2UlJSVu3bq1W35QasrKyVq5cuX379oSEhMTExPXr15uZmf3666+vvvqqh4dHSkrKDz/8cOTI\nEeVhqOjo6OpeAQBAQzJr1qzFixd/8sknht+j1NTUefPmicioUaMqTxADABqMc+fOLV++XET+\n+te/7t27d8OGDfHx8Rs2bFi8eLHJgyPVHdRkZWV98MEHkZGRycnJOp0uOTlZGX1ERUUZSq5c\nuTI7O/vpp58+evSoTqfTarWHDh1as2aNhYXFwoULr127dsc+jx8/PiIiQvn7448/XrNmTUhI\nyODBgx0cHK5evRoXF2dSfseOHSISEhLC3roA8Ohgbg1AfeE/QgC1EhYW5urqeuvWrb/85S++\nvr7Tp0/fuHHj6dOn77aewJYtWzIyMjw9PcPDww3rqjs4OCxbtszR0fHMmTMJCQlKsEmTJiJy\n+vTpoKCgadOmOTs7u7i4VKtvyjRuTk7O9OnTe/TooQQ1Go2Pj49S8/Lly+3t7eW/C8qJSFZW\nlslqDACAxsPR0fH//u//ROSTTz7x9fUdMmSIv7//0KFDL1686O3t/e6779Z3BwEAD5BWqy0r\nK1Or1dOnTzcEAwMDR48ebbLtU9UHNYYhyYQJE4KDg5WgpaXl7NmzRaSgoOD06dNK8MSJEyIy\nbNgw492nBg8evGDBgrlz5xYVFVX9RJo2baq0pdVqjeM3btxQFiwdOXJk1WsDADxozK0BqC8k\nCAHUSrt27XQ63aRJk+zs7K5duxYTEzNr1qyAgAAfH5+333678s4W8fHxIjJkyBCTR1atrKyU\nB6YSExNNDhk+fHgtOzlo0CDjj87OziLSu3dvk52flT+uXr1ay+YAAI+viRMnarXaF154oUmT\nJv/5z3/y8vK6du06d+7c7777zs7Orr57BwB4gA4dOiQigYGBJu+Lv/DCCyYlazCoMWQHFe3a\ntbOxsRGR/Px8JdK8eXOlZsNrH4qxY8dOmjTJ0dGxWucyevRopTbj0c1PP/1UUlLSs2dPNze3\natUGAHigmFsDUF8s6rsDAB57LVq0mDdv3pw5c37++ed9+/YdOHDgxIkTeXl5Wq1Wq9X6+/uv\nWrWqdevWSmFlJfSYmJh9+/aZ1HPhwgUROXv2rEnc29u7Nt2ztLRs06aNccTa2lpEVCpV5aCI\nVN6oAwDQqPTp06dPnz713QsAwMN2/vx5EXF1dTWJd+rUySRS3UFNkyZNKu9i27Rp01u3bhmW\nkps4cWJcXFxCQkJAQEBISEhAQEC3bt1qvBCor6+vp6dnWlra1q1bx40bpwR1Op2IjBo1qmZ1\nAgAeHObWANQLEoQA6oa1tXVQUFBQUJCI3Lx58+DBg8oa6Pv37x83btz27duVwa2yeYZer9fr\n9Xes5/r16ybV2tra1qZj9vb2d9wySlkAAQAAAADkvyORZs2amcSVAYXxOm/VHdTY2toqezjd\ng7+//5dffvn+++/r9fqIiIiIiIjmzZsPHDhwwoQJvr6+NTid0NDQ999/X6vVKgnCwsLC3bt3\nW1tbv/jiizWoDQDwEDC3BuAhI0EIoO7Z2dlpNBqNRvP8889PmTIlNTU1Li7uueeek/+uXf7R\nRx+NHz++KlVZWVk90K4CAAAAgIgoKcDKGz6Vl5ebBKs7qKmioKAgjUaTmJiovEqYkZERExMT\nExMzY8aM9957r7q1jRgxYsGCBSkpKXq9Xq1WJyQkFBUVvfjii5UzoACARxBza8lvnK8AACAA\nSURBVAAeAvYgBPAADR06VFmi5/jx40qkZcuWIpKdnV3nbV25cqXO6wQAPLKcnZ1VKlVKSkp9\nd0R0Op1KpfLz86vvjgAAakXZa7agoMAkXnmg8eAGNU2aNAkICFiwYMH+/fsTEhJGjhwpIsuX\nL1f2R6yWli1bKvtFbd26VUS2bdsmIkqFAIDHCHNrAB4cEoQAai4qKiokJCQ8PPweZZS1dCwt\nLZWPnp6eInLs2LEaN6pUWFRUZBK/27oKAAAAAHBfzs7OIpKRkWESP3HihEmk9oOaqvDw8Fi+\nfPnAgQNFZM+ePTWoYfTo0SKyY8eOgoKCuLi4J598sn///nXcSwBA7TC3BqAekSAEUHO5ublJ\nSUnr1q1TtkeuLDU19cyZMyJi2DZDGd8mJiYq2yYbmzx58tSpU9PT0+/dqPKc1MWLF02e7f36\n669rdBIAANTKs88+Gx8fv2nTJuNgZGSkSqXKysqqr14BAKqre/fuIpKQkGCyoOh3331nUrL2\ngxoTly5dmjVr1rRp0yp/1aJFC7nTHK6BYVOosrIyk6/69+/v5OT022+/rV69uri4eMSIEU2a\nNKlWxwAADxpzawDqEQlCADU3ZcqUJ5988saNGyNGjIiOjs7JyTF8lZmZuXLlytDQUBHp1atX\n3759lfjQoUPVanV5efmUKVMM5YuLixcuXKjT6eLj41u1anXvRr29vc3NzUtLS5cuXVpeXi4i\nFRUVq1evTkpKquWWywAA1ICDg4Onp6ebm5tx8FFY+xQAUC3Dhw83MzPT6/URERHKQENEvvnm\nm507dzZt2tS4ZO0HNSaaN2+u0+liY2MXL15snAtMSUn58ccfRcTf3/9ux7Zo0ULJERqWnjMw\nNzdX1hSNjIwU1hcFgEcSc2sA6pFFfXcAwGPsiSee2LRp0+uvv67X68PCwsLCwuzt7W1sbK5e\nvVpaWqqU6dOnT1RUlLn5/38cwcrKKioqKjQ0NDU11c/Pz9fX19zc/OTJk1euXLG0tFyzZo3y\nhOw9tGnTJiQkZPPmzVFRUdu3b2/Xrl1mZmZ+fv66deveeeedwsJCkwd+AQB4+I4ePVrfXQAA\nVE+XLl1ee+21tWvXfvrpp19//bVKpbp48WJOTs6SJUsWLVpUVFRkGGjUflBjwsbG5tNPP500\nadKKFSvWrl3r5uZma2ubnZ2tLPUWHBw8YMCAux1raWnp4+OTmpo6ZcoUtVrt6uq6bt06w7ej\nR49esWJFWVlZt27dPDw8anBZAAAPFHNrAOoRbxACqBVPT8/du3cvX778+eefd3FxuX37dn5+\nftOmTZ966qmRI0du3LhRq9UqCxcYeHl5xcfHv/nmm2q1+pdffjly5Ii9vX1oaOhPP/1UxS0x\nIiIiZs6cqVar8/Lyzp075+npuXnz5sDAQBsbGxEpLi5+IKcKAKgnWq128ODB7u7uXl5ew4cP\n37lz591K5ubmhoeHazSajh07durUKSAg4MMPP8zLyzMus2vXLpVKFRISIiJ79uwZOXJkly5d\n1Gp1YGBgVFSUyUj48uXLH374oUajcXd3V6vVzzzzzMSJE002gtLpdCqVys/PT/k4Y8YMlUqV\nm5srIr169VKpVB988EFISIhKpZozZ07lPl+/ft3FxUWlUu3du7emVwgAUDfmz58fHh7epUuX\ngoKC9PR0V1fXr776KjQ01M7OTv53oFH7QY2JAQMG7NixY+zYsW3atNHr9cnJyQUFBQEBAZ9/\n/vlnn31272OXLl3avXt3c3PznJwcR0dH46+cnZ29vb1FZNSoUTXoFQDgIWBuDUB9MeNxAAAA\nADyyli1btmTJEhFRq9VqtfrixYsnT54MDw8PCwsrKyvbvn17jx49lJK//vrrq6++mpub6+Dg\n4O3tXVJScurUqYKCgieeeOLbb7/19PRUiiUkJIwdO9bHx2fChAkzZ850dHR0dHT8/fffL1++\nLCLvvPPOu+++q5S8dOnSCy+8kJ2dbWNj4+HhYWNjc/78+czMTBGZN2/epEmTlGI6nW7y5Mnt\n27c/ePCgiKxbt2737t1xcXEiotFobGxsnnvuOTMzs+nTp7do0SI1NdXS0tL4BLVa7dtvv+3k\n5HTw4EHDQ8EAANSJS5cuPfPMM9bW1snJyQ4ODvXdHQAAADxCmIMAAADAI+rcuXPLly8Xkb/+\n9a979+7dsGFDfHz8hg0bFi9ebPKUW0lJyaRJk3Jzc8eMGXP48GGtVrtt27bDhw8HBwfn5+e/\n8cYbZWVlSkkLCwsRycrK+uCDDyIjI5OTk3U6XXJysvJOYVRUlKHkypUrs7Ozn3766aNHj+p0\nOq1We+jQoTVr1lhYWCxcuPDatWt37PP48eMjIiKUvz/++OM1a9aEhIQMHjzYwcHh6tWrSuLQ\n2I4dO0QkJCSE7CAAoM4tW7astLR01KhRZAcBAABggmkIAAAAPKK0Wm1ZWZlarZ4+fbohGBgY\nOHr06Nu3bxuX3LJlS0ZGhqenZ3h4uGEO1MHBYdmyZY6OjmfOnElISFCCZmZmIpKTkzNhwoTg\n4GAlaGlpOXv2bBEpKCg4ffq0Ejxx4oSIDBs2zHhSdfDgwQsWLJg7d25RUVHVT6Rp06ZKW1qt\n1jh+48YNZcHSkSNHVr02AADuq6KiYs2aNRs3brS1tX3rrbfquzsAAAB45JAgBAAAwCPq0KFD\nIhIYGKhk9QxeeOEFk5Lx8fEiMmTIEJP38KysrDQajYgkJiaaHGLIDiratWun7LeRn5+vRJo3\nb67UbHinUDF27NhJkyaZbPJ0X6NHj1Zqu3r1qiH4008/lZSU9OzZ083NrVq1AQBwN+np6S++\n+GLPnj3nz59vZmb28ccfV/c3CwAAAI2BRX13AAAAALiz8+fPi4irq6tJvFOnTiaRtLQ0EYmJ\nidm3b5/JVxcuXBCRs2fPGgebNGnSvn17k5JNmza9detWSUmJ8nHixIlxcXEJCQkBAQEhISEB\nAQHdunWr8UKgvr6+np6eaWlpW7duHTdunBLU6XQiMmrUqJrVCQBAZWVlZceOHRORrl27vvvu\nu0FBQfXdIwAAADyKSBACAADgEXX9+nURadasmUnc3t7ezMzMeBtCZUdAvV6v1+vvUZWBra2t\nshnhPfj7+3/55Zfvv/++Xq+PiIiIiIho3rz5wIEDJ0yY4OvrW4PTCQ0Nff/997VarZIgLCws\n3L17t7W19YsvvliD2gAAuCMPD4+MjIz67gUAAAAedSwxCgAAgEeUkgI0TgQqysvLTYLKGqQf\nffRR5l1s3769Bh0ICgpKTEz85z//+dprr7m4uFy7di0mJmbw4MERERE1qG3EiBGWlpYpKSlK\nFjMhIaGoqGjQoEGVM6AAAAAAAAAPFAlCAAAAPKLs7OxEpKCgwCR+5coVk0jLli1FJDs7u877\n0KRJk4CAgAULFuzfvz8hIWHkyJEisnz5cmV/xGpp2bLloEGDRGTr1q0ism3bNhFRKgQAAAAA\nAHiYSBACuLPExESVSuXp6VmHde7cuVOlUvn5+dVhnY+axnCOAPDQODs7i0jlddJOnDhhElF+\nsJQtlx4cDw+P5cuXDxw4UET27NlTgxpGjx4tIjt27CgoKIiLi3vyySf79+9fx70EgEav8v/k\nOp2O/9KNcUEA4AGpzQ320Z9TqtbZOTs7q1SqlJSUB90rADVGghAAAACPqO7du4tIQkKCyYKi\n3333nUlJJWmXmJh44cIFk68mT548derU9PT0ajV96dKlWbNmTZs2rfJXLVq0EJGioqK7Haus\ndyoiZWVlJl/179/fycnpt99+W716dXFx8YgRI5o0aVKtjgEAAAAAANQeCUIADU1kZKRKpcrK\nyqrvjgAAamv48OFmZmZ6vT4iIqK8vFwJfvPNNzt37mzatKlxyaFDh6rV6vLy8ilTpuTk5CjB\n4uLihQsX6nS6+Pj4Vq1aVavp5s2b63S62NjYxYsXG+cCU1JSfvzxRxHx9/e/27EtWrRQcoTH\njx83+crc3FxZUzQyMlJYXxQAHpZnn302Pj5+06ZN9d2RulSbgU+DvCAA8OBU/ZbbsG+wDfvs\ngEbIor47AAB1jLULAKDB6NKly2uvvbZ27dpPP/3066+/VqlUFy9ezMnJWbJkyaJFi4qKigxv\nFlpZWUVFRYWGhqampvr5+fn6+pqbm588efLKlSuWlpZr1qxRXvurOhsbm08//XTSpEkrVqxY\nu3atm5ubra1tdna2Xq8XkeDg4AEDBtztWEtLSx8fn9TU1ClTpqjValdX13Xr1hm+HT169IoV\nK8rKyrp16+bh4VGDywIAqC4HB4e63T3hUVCbgU+DvCAA8OBU/ZbbsG+wDfvsgEaINwgBNDRH\njx6t7y4AAOrM/Pnzw8PDu3TpUlBQkJ6e7urq+tVXX4WGhtrZ2YlIcXGxoaSXl1d8fPybb76p\nVqt/+eWXI0eO2Nvbh4aG/vTTTzXb52/AgAE7duwYO3ZsmzZt9Hp9cnJyQUFBQEDA559//tln\nn9372KVLl3bv3t3c3DwnJ8fR0dH4K2dnZ29vbxEZNWpUDXoFAICCgQ8APDTccgE0SCQIgUYq\nOzv7/fff/8Mf/uDm5ubl5fXKK68cPny4cjFlY6R///vfI0eO7Ny5s5ubm0ajiYqKMtkLSkQy\nMzPDwsL69evXsWNHd3f3fv36hYWFZWZmVqUzubm54eHhGo2mY8eOnTp1CggI+PDDD/Py8kyK\nXb58+cMPP9RoNO7u7mq1+plnnpk4ceKePXsMBWbMmKFSqXJzc0WkV69eKpXqgw8+qFYr33//\nvUqlCgkJKS0tnTt3brdu3YxXkKvNOQIAasbc3PxPf/rTjz/+mJ6enpaWtmXLlj/+8Y8isn//\n/szMTJN1Plu1ajV37tyEhIQzZ86cO3fuwIEDS5Ys6dSpk3GZfv36ZWZmpqWlVW7r+PHjmZmZ\ngYGBhkjnzp0XLVq0d+/etLS0jIyMY8eO/fOf/wwODjbsMigigwcPzszMPHjwoHFVnp6eO3bs\n0Ov1J06cWLx4sfFXly5dSktLs7e3DwkJqcWFAQBUg06nU6lUfn5+hkhMTIxKpRo2bJiIbN68\n+YUXXvDw8HjqqaeGDh26ffv2yjVUZSxQ9TprOe6o/cCn8gXZtWuX0iUR2bNnz8iRI7t06aJW\nqwMDA+84AASARuJut9y73ckr32AVsbGxQ4YMeeqpp7y8vF5++eV9+/aJSN++fVUq1d69e+/Y\ndEhIiEqlmjNnTuWvrl+/7uLiYnJsFef6ajM/drez02q1gwcPdnd39/LyGj58+M6dO+92Petq\nDhBAnSBBCDRGqampAwYM+PLLL3NyctRqtYWFxZ49e4KDg1evXm1S0traOiYmZuzYsXq9Xq1W\n29ranjx5ct68eUuXLjUuduDAAY1GEx0dffny5V69enXp0iU3Nzc6OnrAgAHJycn37syvv/4a\nFBT02WefXbx4sXv37l5eXpcuXfriiy8CAgKMZ28vXbr03HPPffHFF+fPn/fw8OjZs2d5efnO\nnTtfeeWVqKgopYyvr+/AgQOVvzUazeDBgzt37lytVqysrESksLBw1apV69evz8vLKywsrP05\nAgBgsGzZstLS0lGjRjk4ONR3XwCg8bK2thaRgoKCyMjImTNn/v77725ubpaWlikpKVOmTFm1\napVx4SqOBapeZy3HHbUf+FRmaWmpdEmr1Y4ZM0av17u6ujZr1uzUqVPz5s375JNPanW5AeCx\ndbdb7j3u5JV98skn06ZNO3r0aOvWrXv27Hnu3LnQ0NAdO3bcuHFDRGxsbO54VGhoqIhs27at\ntLTU5Ksff/yxrKzMycnJ8HxJFef6aj8/VtmyZcvefvvt1NTUtm3b9urV69q1a6+//vqGDRuM\nn6qsVutVmQMEUDcqADQyN2/e7NOnj5OT0+zZs5Xdm8rLy6Ojo52cnDp06HDs2DGl2M8//+zk\n5NSlS5euXbtu2bJFCZaWls6YMcPJyalTp04lJSVK8Pr1676+vk5OTm+++ebNmzeVYGFh4eTJ\nk52cnHr37n3r1i0l+MMPPzg5OT399NOGzhQXFyud+etf/3r9+nVDhVOnTnVycnr22WdLS0uV\n4N///ncnJ6fg4GBDsYqKih07djg7O7u6ul69elWJZGdnOzk5OTk5Xbx4sQat7N6928nJqX//\n/j169FixYkVGRsa5c+dqeY4AACjKy8tXr17t5OTk7u5+6dKl+u4OADRYlf8n37Fjh0nk+++/\nd3Jy8vDw8PDw2LlzpxIsKSl55513nJycXFxcsrKylGDVxwJVr7P2445aDnwqX5A9e/Y4OTn5\n+voaDwBLSkqmT5+unJThWABobO54y73bnbzyDTY9Pb1Dhw5OTk5Lly5VIrdv3/7444+7dOni\n5ubm5OR05MgRJW7y+3Xr1i0PDw8nJ6fvv//epEvjxo1zcnJatGiR8rGKc321nx+rfHZ6vd7Z\n2dnJyWn58uWGYEJCQpcuXZSzNpxdnc8BAqg93iAEGp3Y2NiMjAxnZ+cFCxYoj7iamZmNHz8+\nMDDw9u3bmzdvNi585cqVl19+OTg4WPloYWExY8YMEbl58+aFCxeUYExMTE5OTqtWrSIiImxt\nbZWgjY3NkiVL7O3tMzMzf/jhh7t1ZsuWLRkZGZ6enuHh4YYXKRwcHJYtW+bo6HjmzJmEhAQl\neOLECREZNmyY8fsWgwcPXrBgwdy5c4uKiu5xylVvRVlS9fTp00FBQdOmTXN2dnZxcanlOQIA\nkJ6e/uKLL/bs2XP+/PlmZmYff/yxycaEAICHTHmtoaCg4LXXXhs0aJAStLS0XLhwYYsWLUpL\nSw2LglZ9LFD1Oh/QuKPqA5+7XZCcnJwJEyYYBoCWlpazZ89WTur06dNVvroA0PDd7U5emVar\nvX37dseOHWfOnKlEzM3N33vvPW9v73tPZzVt2lS5IWu1WuP4jRs3lMU2R44cqUSqONdX+/mx\nO55dWVmZWq2ePn26IRgYGDh69Ojbt28bl3w4c4AAqoUEIdDo7N69W0See+455cfeYOnSpXv3\n7p01a5ZJ+TFjxhh/dHFxsbCwEJHs7GzjCoOCgkyWRHBwcOjbt6+I3G0tdRGJj48XkSFDhpib\n/8/tyMrKSqPRiEhiYqISad68uVK+rKzMuOTYsWMnTZp072nWqrdiMHz4cOOPtTlHAADKysqO\nHTuWl5fXtWvX6Ojol156qb57BAD4/0z+87e2tlb+wzes51mDscB967xbyVqOO2ow8KnMkB1U\ntGvXTulMfn7+fY8FgEbI5E5embIRoEajMVly809/+tN9Kx89erSIxMfHX7161RD86aefSkpK\nevbs6ebmpkSqONdX+/mxyg4dOiQigYGBJmf3wgsvmJR8OHOAAKrFor47AOBhO3XqlIi4urqa\nxO/4+2phYdG+fXuToIODw5UrVwwP7ChPknp6elY+3N3dfdeuXWfOnLlbZ5QVxmNiYpTNmY0p\nbyiePXtW+Thx4sS4uLiEhISAgICQkJCAgIBu3bqZ/EtR+1YMvL29jT/W5hwBAPDw8MjIyKjv\nXgAATFlbW3fs2NEkqFarReT3339XPlZ3LFCVOg3qdtxRg4GPiSZNmlQeADZt2vTWrVslJSX3\nPhYAGieTO3llyh248k9Dr1697lu5r6+vp6dnWlra1q1bx40bpwR1Op2IjBo1ylCsinN9tZ8f\nq+z8+fN3bLpTp04mkYczBwigWkgQAo2O8syRvb19VQrb2NiYPHxU2bVr10SkWbNmlb9SlgK4\nfv36vY/V6/V6vf6OBQzH+vv7f/nll++//75er4+IiIiIiGjevPnAgQMnTJjg6+tblR5WpRWF\ntbW1YT0f4xpqdo4AAAAAHk3NmzevPOGo/Id/8+ZN5WN1xwJVqVNR5+OO6g58KrO1tVUWjAEA\nVEXlO3llyr238r29TZs2ZmZmFRUV9z48NDT0/fff12q1SoKwsLBw9+7d1tbWL774oqFMFef6\naj8/drdDKp+dvb29ydk9nDlAANXCv31Ao6MMVouLi+uqQpM1BIwp/wfc4xkf5diPPvpo/Pjx\n920oKChIo9EkJiYqjxFlZGTExMTExMTMmDHjvffeu28Pq9iKiFhZWd2xhju67zkCAAAAeDTd\n8WlI5T98ZQ8nqf5YoCp1Kup83FHdgQ8AoJYq38krU27gd7zDVyVBOGLEiAULFqSkpOj1erVa\nnZCQUFRU9OKLLxrn5Ko411f7+bHKlP5XPovy8nKT4MOZAwRQLcxoA41OixYt5L/PFtUJZWVw\n5TkgE0pQKXBHLVu2FKPtDO+rSZMmAQEBCxYs2L9/f0JCgrIb8/Lly5UVz+uqlcpqc44AABHZ\nuXOnSqXy8/MzRHQ6nUmkkeOCAMDDV1BQUDl448YNEWndurXysbpjgarUeTe1HHfUfuADAKhz\ndnZ28t8fAmN5eXnl5eX3Pbxly5aDBg0Ska1bt4rItm3bRESZEDOo4lzfg/iZUM6u8m/flStX\natl6zeYAAVQLCUKg0VEWAa+8d0V6enpMTExCQkJ1K1R2yPjtt98qf3Xy5EkR8fDwuPexx44d\nq26jSrXLly8fOHCgiOzZs+e+PaxZK8Y11OwcAQAAADyabty4kZWVZRI8d+6ciLRp00b5WN2x\nQFXqvJtajjtqP/ABANQ5lUol/92rz1hycnIVaxg9erSI7Nixo6CgIC4u7sknn+zfv79xgSrO\n9T2InwlnZ2cRqbzh+okTJ0wiD2cOEEC1kCAEGh2NRiMiP/74o8mzS8uWLZs+ffp3331Xswrj\n4uIKCwuN43l5efv37xeRwMDAux2r/LQnJiYq2xEbmzx58tSpU9PT00Xk0qVLs2bNmjZtWuUa\nlIekioqKlI+GFRvKysqq28oDOkcAwB09++yz8fHxmzZtqu+O1KXIyEiVSlV5XrgqGuQFAYBH\nn06nM/5YWlqq/Iffs2dPJVKDscB967ybqrf1gAY+AIDK7njLrTofHx8R+fe//20S/8c//lHF\nGvr37+/k5PTbb7+tXr26uLh4xIgRJstZV3Gu70H8THTv3l1EEhISTBYUrTzBWOdzgABqjwQh\n0Oi89NJLbdu2vXbt2tSpU5VlaioqKr7++mvll3vMmDE1qFClUuXn58+aNaukpEQJFhQUzJgx\no7i42NPTc8CAAXc7dujQoWq1ury8fMqUKTk5OUqwuLh44cKFOp0uPj6+VatWItK8eXOdThcb\nG7t48WLj/wNSUlJ+/PFHEfH391ciLVq0UP5vO378eHVbeUDnCAC4IwcHB09PTzc3t/ruSF1K\nSUmp8bEN8oIAwCPOzs5uxYoVqampysfy8vL58+fn5+fb2toOGTJECVZ3LFCVOu+m6m09oIEP\nAKCyO95yq27YsGEi8ssvv0RHRyuR8vLyJUuWpKenW1hYVKUGc3NzZYHNyMhIqbS+qFR5ru9B\n/EwMHz7czMxMr9dHREQYVkz95ptvdu7c2bRpU+OSdT4HCKD2qnQPAtCQ2NjYREVFvfLKK/Hx\n8d27d3d1dc3Nzc3PzxeRd9555+mnn65uhba2tqtXr37llVdiY2MTEhK8vLyKiopOnTp18+bN\ntm3brl692uSxJmNWVlZRUVGhoaGpqal+fn6+vr7m5uYnT568cuWKpaXlmjVrlIeDbGxsPv30\n00mTJq1YsWLt2rVubm62trbZ2dl6vV5EgoODDeNkS0tLHx+f1NTUKVOmqNVqV1fXdevWVbGV\nB3SOAIDG4+jRo/XdBQBANbRu3XrIkCFDhw719vZu3br1yZMnMzMzRWTevHnKVklS/bFAVeq8\nm6q39YAGPgCAyu54y6364T179gwJCdFqtWFhYWvXrm3fvv2ZM2fy8/M3bNjw6quvVrGS0aNH\nr1ixoqysrFu3bpWXm67iXN+D+Jno0qXLa6+9tnbt2k8//fTrr79WqVQXL17MyclZsmTJokWL\nioqKDG8W1vkcIIDa4w1CoDHq0aNHfHz8mDFjnnzyybNnz5aWlvbr12/Dhg3vvvtuzSrs3r17\nfHz8a6+91qJFi5SUlJMnT3bo0GH69Onx8fHu7u73PtbLyys+Pv7NN99Uq9W//PLLkSNH7O3t\nQ0NDf/rpJ+MV1QcMGLBjx46xY8e2adNGr9cnJycXFBQEBAR8/vnnn332mXGFS5cu7d69u7m5\neU5OjqOjY7VaeUDnCACoTKfTqVQqPz8/QyQmJkalUikP2G7evPmFF17w8PB46qmnhg4dun37\n9so1ZGZmhoWF9evXr2PHju7u7v369QsLC1MmYWtQ5/fff69SqUJCQkpLS+fOndutWzfjR1Pv\n29aMGTNUKlVubq6I9OrVS6VSffDBB4Zvc3Nzw8PDNRpNx44dO3XqFBAQ8OGHH+bl5d37guza\ntUvpkojs2bNn5MiRXbp0UavVgYGBUVFRJmv4AABqoLy8fO7cuYsXLzY3Nz948OC1a9d69+69\nbt06kxnbao0Fqljn3VS9rQc08AEAVHbHW261Dp8zZ467u/vvv/+elpbm6+u7bds2f39/5ZW7\nqrxH6Ozs7O3tLSKjRo26Y4EqzvU9iJ+J+fPnh4eHd+nSpaCgID093dXV9auvvgoNDbWzsxOR\n4uLi6rZe9TlAALVkxswCAAAAHrSdO3dOnDixffv2Bw8eVCI6nW7y5MnGkR07drzxxhseHh4v\nvfTSokWLWrVqpVKpzp8/f/XqVREJCwv785//bKjwwIED48aNu3HjRrNmzbp161ZUVHTy5MmC\nggIHB4eNGzf26tWrunXGxcWNGzfOx8fnj3/84+LFi0WkTZs2ygJxVWlr3bp1u3fvjouLExGN\nRmNjY/Pcc88pub1ff/311Vdfzc3NdXBw8Pb2LikpOXXqVEFBwRNPPPHtt996enre7YIkJCSM\nHTvWx8dnwoQJM2fOdHR0dHR0/P333y9fviwi77zzTo2f7AEAVP5hejTrBAA0VAUFBcpY4MCB\nAx06dLh34UuXLj3zzDPW1tbJyckODg4PpYMAGj7eIAQAAMAjQVk27eLFkxXTnAAAIABJREFU\ni59//vnatWv/85///PDDD6mpqaNHjxaRxYsXX7p0SSlZUFDw5z//+caNGy+99NKRI0f+9a9/\nbd269ejRo0OGDCkoKJg6daphs4qq16k8t1tYWLh+/frZs2cnJSVt3bq16m2NHz8+IiJCqerj\njz9es2aNkh0sKSmZNGlSbm7umDFjDh8+rNVqt23bdvjw4eDg4Pz8/DfeeKOsrOxuF0TpUlZW\n1gcffBAZGZmcnKzT6ZKTk5Wao6Ki7nEsAAAAgEdBdnb2N998s2LFCpMXdX7++WcRadmyZfv2\n7e9bybJly0pLS0eNGkV2EEAdIkEIAACAR4KZmZmIFBQUvPbaa4MGDVKClpaWCxcubNGiRWlp\nqWFR0JiYmJycnFatWkVERNja2ipBGxubJUuW2NvbZ2Zm/vDDD9WtU0klnj59OigoaNq0ac7O\nzi4uLtVq6462bNmSkZHh6ekZHh5uGMw7ODgsW7bM0dHxzJkzCQkJ974gOTk5EyZMCA4ONnR+\n9uzZykmdPn26ylcXAAAAQP2YNWvW4sWLP/nkE8MTfqmpqfPmzRORUaNGKf/2301FRcWaNWs2\nbtxoa2v71ltvPYTeAmg8SBACAADg0TJ8+HDjj9bW1n379hWR5ORkJbJ7924RCQoKsrGxMS7p\n4OCglNy7d29167xbyRq0ZSw+Pl5EhgwZYm7+P/94W1lZaTQaEUlMTLzH4QpDdlDRrl07pTP5\n+fn3PRYAAABAPXJ0dPy///s/Efnkk098fX2HDBni7+8/dOjQixcvent732PXgPT09BdffLFn\nz57z5883MzP7+OOPa7D9IQDcw/13QAUAAAAeGmtr644dO5oE1Wq1iPz+++/KR+XNOcPufcbc\n3d137dp15syZ6tZp4O3tbfyxum2ZSEtLE5GYmJh9+/aZfHXhwgUROXv27D0OF5EmTZpUXnSo\nadOmt27dKikpufexAAAAAOrdxIkTO3fuvHbt2kOHDv3nP/+xsbHp2rXr4MGDJ0yYYPIYorGy\nsrJjx46JSNeuXd99992goKCH2GUAjQIJQgAAADxCmjdvbvKynYgoi3PevHlT+Xjt2jURadas\nWeXDlZLXr1+vbp0Ka2trwzqiNWvLhHK4Xq/X6/V3LHDvw0XE1tZW2YwQAFCH/vjHP2ZmZj76\ndQIAGoY+ffr06dOnWod4eHhkZGQ8oP4AgJAgBAAAwCNF2QvQREVFhYhYW1srH++xS4dS0iQd\nWJU6FVZWVibFqtvWHQ//6KOPxo8ff49iAAAAAAAADxN7EAIAAOARUlBQUDn4/9i794CoyvyP\n488Mw2WAEUZQFBCF0ERNvKBkyoqA5jW0tW01Sl3DXFovtVv60267eSnNX3mpTW3LrK3WRFsV\nIWXIFi94QVHygqk0XhAGccJBuQ3M74/TjyVUHK4Hh/frr5nnPOc5n+MfxTnfeZ6nqKhICOHp\n6Sl9dXNzE/8/Oa8GqVHqUKcx76au16pBq9UKIfLy8mq/CgAAAAAAQHOiQAigqSQlJfn4+ISG\nhsodRIgWFgYAUIuioqKrV6/WaPzpp5+EEO3atZO+SjsCnj59+vbTs7KyhBAPPvhgXce8m7pe\n646nS3uHAABagtTUVB8fnztuLltvreFxozXcIwC0QC3qP78tKgyAhqNACAAAgJYlISGh+tfy\n8vL9+/cLIfr37y+1RERECCGSk5Nv3bpVvWdBQYHUc9iwYXUd826sv1bVYqRms7mqW1RUlBAi\nNTX10qVLNUaeMWNGXFzc+fPnaw8AAAAAAADQ6CgQAgAAoAVxcXFZtWpVRkaG9LWysvKvf/3r\n9evXnZ2dx44dKzVOmDDBx8fn+vXr8+bNKysrkxpNJtPcuXNLS0u7d+8eGRlZ1zHvxvprubu7\nSzXCH374oer0cePG+fv7V1ZWzpw502AwSI2lpaVLlixJSEjQ6XQeHh71/acCALQuq1ev9vHx\nuX1OPAAAAFAPKrkDAAAAAP/l6ek5duzYcePG9erVy9PTMysr68qVK0KIN954Q9rPTwjh7Oy8\ndu3ayZMnb9myJSUlJSgoqKSk5OzZszdv3uzQocPatWvt7OzqOubdWH8te3v74ODgjIyMmTNn\n+vv7d+nSZcOGDQ4ODuvXr580aVJGRkZoaGifPn2USmVWVpbRaLS3t1+3bp27u3uj/xsCAGzS\n0aNH5Y4AAAAA28EMQgAAALQglZWVCxYsePvtt5VK5cGDBwsLCwcMGLBhw4annnqqere+ffvq\ndLpp06a5u7sfPXo0KyurU6dOs2fP1ul0gYGB9Rvzbqy/1ooVK/r27atUKg0Gg5eXl9QYFBSk\n0+mef/55f3//zMzM9PR0V1fXSZMm7d69e+jQoQ34pwIAtC7Hjh2TOwIAAABsBzMIATS3/Pz8\njz76aPfu3Xq9XqlU+vj4REZGxsXFVa2x9tvf/jYtLW3q1KmLFy+uca7BYOjfv39lZWV8fPzD\nDz9s5YAAANmNHDlSmrRXZcyYMTVaJBaLRQgxefLkyZMn1z6mt7f3okWLrLm6NWOGhYXdMU+d\nrtW9e/cdO3bc3u7h4bFgwYIFCxbUcu7t/yC1RKq+iikAoLq8vLwPPvhAp9Pl5OQ4Ojr27dv3\nhRdeGDBgQI1u0vzvPXv2vP/++ydPniwpKenSpcukSZOeffbZqj1lJVeuXPn73//+/fff5+Tk\nKBSKjh07Dh069I9//KOPj889w1j5qHLt2rW///3v33333cWLFysqKry8vHr27PnMM89U/Y5k\n7ty5X3/9tfQ5JCRECPHcc8+99tpr1l9l586dsbGxgwYN+vLLL19//fUdO3a4urpKm+k28B4B\nALLg9RqAhmMGIYBmdfLkyeHDh69ZsyYnJ6dv375BQUG5ubkffvhheHj4mTNnpD7R0dFCiKSk\nJOl9bnU7d+6srKz09vYODQ21fkAAAAAArUFGRkZkZORHH31kMBj8/f1VKtX3338/fvz4tWvX\n1ujp6OgYHx//9NNPZ2dn+/v7Ozs7Z2VlvfHGGytWrKjeLS0tLSIi4pNPPrl27VpISEjPnj3z\n8/M/+eSTyMjII0eO1B7GykeV3NzcESNGfPjhhxcvXnzwwQelN7ZJSUmTJ09ev3691KdPnz5R\nUVHS54iIiDFjxvTo0aNOV3FwcBBC3Lp16+9///unn35aUFBw69atht8jAEAWvF4D0CgoEAJo\nPmVlZbGxsfn5+TExMYcPH968efO2bdsOHz48fvz469evP/fcc2azWQgxduxYlUqVm5t7+xI6\n0rSM6Oho6Ve9Vg4IAAAAwObdunUrLi7OaDQ+88wzmZmZOp3uxIkT0rSJxYsXnzhxonrnsrKy\nv/71r6tXrz5y5EhCQkJGRsbvfvc7IcS6devKy8ulPiaT6Y9//GNRUdGECRPS09P/9a9//fvf\n/z527NjYsWNNJlNcXFxJScndwlj/qPLBBx/k5eUNHDjw2LFjCQkJmzdvPnTo0Lp161Qq1ZIl\nSwoLC4UQU6dOXb58udR/2bJl69atmzhxYp2uolKppH+iTz/9dP78+QcOHPj3v//dwHsEAMiC\n12sAGgsFQgDNZ+vWrXq9vnv37kuXLtVoNFKjRqN59913vby8zp07l5KSIoRo27bt4MGDhRCJ\niYnVTy8oKDh06JAQ4vHHH6/TgAAAAABs3pYtW/R6vZ+f36JFixwdHYUQCoVi6tSpw4YNq6io\n2LRpU/XORqPxySefHD9+vPRVpVLNnTtXCHHz5s1Lly5JjfHx8QaDwcPDY/ny5c7OzlKjWq1+\n5513XF1dr1y5UuOBpTrrH1VOnTolhIiOjq7qJoQYM2bMokWLFixYUHt9zvqrSEuq/vjjj8OH\nD581a5afn1/nzp0beI8AAFnweg1AY6FACKD56HQ6IcTYsWOVyl/9x8fBwSEiIkIIkZqaKrVI\nyyDU+AsmMTGxoqKiW7duVcvpWD8gAAAAANv23XffCSFGjBghFcOqrFixYu/evfPmzavRPyYm\npvrXzp07S9Ps8vLyqg84fPhwtVpdvadGo5Feue7du/duYax/VHFzc5P615if8fTTT8fGxnp5\nedVyy/V4IKp6HdzwewQAyILXawAai0ruAABaEWnV8vj4+H379tU4JP1K98KFC9LX0aNHz58/\nPzs7+8yZM927d5capQUQJkyYUI8BAQAt38iRI69cudLyxwQAtExnz54VQnTp0qVG+x1rbCqV\nytfXt0ajRqMxGo1Vk/Z+/PFHIUTV80h1gYGB33777blz5+4WxvpHlenTpycnJ6ekpISHh0+c\nODE8PLx37941XtE2/CpVevXqVf1rQ+4RACALXq8BaCwUCAE0H2n/jOzs7Ozs7Dt2uHHjhvRB\no9GEh4fv2rUrMTFR+gvGaDQeOHBACFG1ClCdBgQAAABg237++WchhKurqzWd1Wp1jYmGt5Me\nN9q0aXP7IWkFtloeN6x/VHnkkUc++uij119/PTs7e/ny5cuXL3dzc4uKivrDH/7Qp08faxJa\n/0Dk6OhYtY5o9RHqd48AAFnweg1AY6FACKD5SFsfL168eOrUqffsHB0dvWvXrp07d77wwgtC\niKSkJLPZ3L9/fz8/v/oNCAAAAMCGSbPuSktLG2tA6XHjjiwWS9UVaznXykeV4cOHR0REpKam\nSlMJ9Xp9fHx8fHz83LlzX3rppXsmtP6ByMHB4Y4j3NE97xEAIAterwFoLPydB6D5aLVaUW1L\nj9qNGDFCrVafOnVKr9cLIRISEsSvF0Co64AAgBYrNTXVx8fnjuub1VtSUpKPj09oaGgjjtnS\ntIZ7BADrubu7i/+fR9gopN0BpXkVNUiNUoc7quujip2dXXh4+KJFi/bv35+SkvLEE08IId57\n771Dhw7VclbDH4gaco8AAFnweg1AY6FACKD5SG9+jx8/bk1nZ2fnqKgoIcSuXbsKCwtTU1NV\nKtW4cePqPSAAAAAAG9a1a1chxO175p0/fz4+Pj4lJaWuA0qPG6dPn779UFZWlhDiwQcfrP3c\n+j2qPPjgg++99570NPT999/fM2FDHogaco8AAFnweg1AY6FACKD5SH+RpKamSlscVzdjxoy4\nuLjz589Xb4yOjhZC7NmzR6fTmc3msLAwT0/PhgwIAEDjWr16tY+Pz9WrV+UOAgAQERERQohd\nu3YVFRVVb3/33Xdnz579zTff1G/A5OTkW7duVW8vKCjYv3+/EGLYsGF3O9fKR5Xc3Nx58+bN\nmjXr9hGkCZElJSXS16q1QM1mc12v0kT3CACQBa/XADQWCoQAms+4ceP8/f0rKytnzpxpMBik\nxtLS0iVLliQkJOh0Og8Pj+r9IyMjNRpNWlpaUlKS+PX+yfUbEACAxnX06FG5IwAAfjFhwoQO\nHToUFhbGxcVJy2NaLJYvvvhCKg3GxMTUY0AfH5/r16/PmzevrKxMajSZTHPnzi0tLe3evXtk\nZOTdzrXyUcXNzS0hIWHLli1vv/12VS1QCHH06NFdu3YJIR555BGpxd3dXaoR/vDDD3W9ShPd\nIwBAFrxeA9BYVHIHANCKODg4rF+/ftKkSRkZGaGhoX369FEqlVlZWUaj0d7eft26ddKPZKv3\nf/TRRzdv3pyYmOjk5DRq1KgGDggAQOM6duyY3BEAAL9Qq9Xr16+fPHmyTqfr27dvly5d8vPz\nr1+/LoR48cUXBw4cWNcBnZ2d165dO3ny5C1btqSkpAQFBZWUlJw9e/bmzZsdOnRYu3atnZ3d\n3c618lFFrVavXLkyNjZ21apVH3/8cUBAgLOzc15eXnZ2thBi/PjxVfU5e3v74ODgjIyMmTNn\n+vv7d+nSZcOGDQ1/IGrIPQIAZMHrNQCNhRmEAJpVUFCQTqd7/vnn/f39MzMz09PTXV1dJ02a\ntHv37qFDh97eX/pZU2Vl5fDhw11cXBo+IACg+eXl5b3++utDhgwJCAgICgqaPHny4cOHb+8m\nvYLcs2fPE0880aNHj4CAgIiIiPXr11sslho9r1y58sorr4SFhT3wwAOBgYFhYWGvvPLKlStX\nrAmTn5+/dOnSiIiIBx54oGvXruHh4W+++WZBQUGNbteuXXvzzTcjIiICAwP9/f0ffvjh6dOn\nV98Iau7cuT4+Pvn5+UKIkJAQHx+fv/3tb3W6ys6dO318fCZOnFheXr5gwYLevXtXTRNp4D0C\nQKvVr18/nU4XExPTvn37CxculJeXh4WFffbZZ3/+85/rN2Dfvn11Ot20adPc3d2PHj2alZXV\nqVOn2bNn63S6wMDA2s+18lElMjJyx44dTz/9dLt27bKzs48cOWIymcLDw99///01a9ZUH3DF\nihV9+/ZVKpUGg8HLy6tOV2miewQAyILXawAaheL2Fy4AAABAY8nIyIiJiTEajS4uLp06dTIY\nDNJkjtdee+25556T+qSmpv7+97/38vJauHDh3Llzvby8vLy89Hq90WgUQrzwwgt/+ctfqgZM\nS0ubMmVKUVFRmzZtevfuXVJSkpWVZTKZNBrN559/HhISInVLSkqaPn26r6/vwYMHq849efLk\nU089lZ+fr9FoevXqVVZWdvbsWZPJ1LZt26+//rp79+5St9zc3NGjR+fl5anV6gcffFCtVl+8\neFEqzr3xxhuxsbFCiA0bNnz33XfJyclCiIiICLVaPWLEiIkTJ1p/leTk5ClTpgQHB48cOfLt\nt98WQrRr1y4jI6OB9wgAAAAAAHBPFAgBAADQVG7duhUVFaXX65955pk33njD0dHRYrF8+umn\nCxcutLOz27FjR+/evcX/Fwi1Wq1Sqfzb3/4m/b7VbDa/9NJLmzZtcnFxOXnypL29vRDCZDL9\n5je/MRgMEyZMWLZsmbOzsxCiuLh47ty5O3bs8PHx+c9//uPk5CTuVDwrKysLDw/X6/UxMTGv\nvPKKRqORBpw/f/4333wTGBio0+lUKpUQ4rXXXvvHP/4xcODAjRs3St2EEAkJCXFxcUqlMiMj\nw83NTQhhMBj69u0rhDhy5EjHjh3repU9e/Y89dRTXbt2NZlMU6dOjY6OtlgsnTt3bsg9AgAA\nAAAAWIMlRgEAANBUtmzZotfr/fz8Fi1a5OjoKIRQKBRTp04dNmxYRUXFpk2bqnc2Go1PPvmk\nVB0UQqhUqrlz5wohbt68eenSJakxPj7eYDB4eHgsX75cqpwJIdRq9TvvvOPq6nrlypXExMS7\nhdm6dater+/evfvSpUuryn4ajebdd9/18vI6d+5cSkqK1Hjq1CkhRHR0dFU3IcSYMWMWLVq0\nYMGCkpKSWm7Z+qtIS6r++OOPw4cPnzVrlp+fX+fOnRt4jwAAAAAAANagQAgAAICm8t133wkh\nRowYIRXDqqxYsWLv3r3z5s2r0T8mJqb6186dO0uT7fLy8qoPOHz4cLVaXb2nRqMZPHiwEGLv\n3r13C6PT6YQQY8eOVSp/9Tewg4NDRESEECI1NVVqkSYI6nQ6s9lcvefTTz8dGxtbte1TA69S\n5fHHH6/+tSH3CAAAAAAAYA2V3AEAAABgs86ePSuE6NKlS432O9bYVCqVr69vjUaNRmM0Gqsm\n7f34449CiKpt/KoLDAz89ttvz507d7cwZ86cEULEx8fv27evxiFphuKFCxekr9OnT09OTk5J\nSQkPD584cWJ4eHjv3r1rFPwafpUqvXr1qv61IfcIAAAAAABgDQqEAAAAaCo///yzEMLV1dWa\nzmq1usZEw9sVFhYKIdq0aXP7IWk9zxs3btR+bnZ2dnZ29h07VJ37yCOPfPTRR6+//np2dvby\n5cuXL1/u5uYWFRX1hz/8oU+fPtYktOYqEkdHx6p1RKuPUL97BAAAAAAAsAYFQgAAADQVadZd\naWlpYw2oUCjudshisVRdsZZzFy9ePHXq1HteaPjw4REREampqdJUQr1eHx8fHx8fP3fu3Jde\neumeCa28ihDCwcHhjiPc0T3vEQAAAAAAwBq8XAAAAEBTcXd3F/8/j7BRSLsDSnPsapAapQ53\npNVqRbXtDO/Jzs4uPDx80aJF+/fvT0lJeeKJJ4QQ77333qFDh2o5q65XuV1D7hEAAAAAAMAa\nFAgBAADQVLp27SqEuH3PvPPnz8fHx6ekpNR1QGlnvtOnT99+KCsrSwjx4IMP1n7u8ePH63pR\nadj33nsvKipKCPH999/fM2H9rlJ9hPrdIwCgGSQlJfn4+ISGhsodRIgWFgYAAAD3EQqEAAAA\naCoRERFCiF27dhUVFVVvf/fdd2fPnv3NN9/Ub8Dk5ORbt25Vby8oKNi/f78QYtiwYXc7Vyrv\npaamXrp0qcahGTNmxMXFnT9/XgiRm5s7b968WbNm3T6CNCGypKRE+lq1FqjZbK7rVZroHgEA\nAAAAAKxBgRAAAABNZcKECR06dCgsLIyLi5OWx7RYLF988YVUGoyJianHgD4+PtevX583b15Z\nWZnUaDKZ5s6dW1pa2r1798jIyLudO27cOH9//8rKypkzZxoMBqmxtLR0yZIlCQkJOp3Ow8ND\nCOHm5paQkLBly5a33367qhYohDh69OiuXbuEEI888ojU4u7uLtUIf/jhh7pepYnuEQAAAAAA\nwBoquQMAAADAZqnV6vXr10+ePFmn0/Xt27dLly75+fnXr18XQrz44osDBw6s64DOzs5r166d\nPHnyli1bUlJSgoKCSkpKzp49e/PmzQ4dOqxdu9bOzu5u5zo4OKxfv37SpEkZGRmhoaF9+vRR\nKpVZWVlGo9He3n7dunXSBEG1Wr1y5crY2NhVq1Z9/PHHAQEBzs7OeXl52dnZQojx48dX1efs\n7e2Dg4MzMjJmzpzp7+/fpUuXDRs2WHmVJrpHAAAAAAAAazCDEAAAAE2oX79+Op0uJiamffv2\nFy5cKC8vDwsL++yzz/785z/Xb8C+ffvqdLpp06a5u7sfPXo0KyurU6dOs2fP1ul0gYGBtZ8b\nFBSk0+mef/55f3//zMzM9PR0V1fXSZMm7d69e+jQoVXdIiMjd+zY8fTTT7dr1y47O/vIkSMm\nkyk8PPz9999fs2ZN9QFXrFjRt29fpVJpMBi8vLzqdJUmukcAAAAAAIB7UlgsFrkzAAAAAAAA\n3B+SkpKmT5/u6+t78ODB6u35+fkfffTR7t279Xq9Uqn08fGJjIyMi4urWlz6t7/9bVpa2tSp\nUxcvXlxjTIPB0L9//8rKyvj4+IcfftjKAWsJAwAAANSOGYQAAAAAAAANcvLkyeHDh69ZsyYn\nJ6dv375BQUG5ubkffvhheHj4mTNnpD7R0dFCiKSkpNt/q71z587Kykpvb+/Q0FDrBwQAAADq\njQIhAAAAAABA/ZWVlcXGxubn58fExBw+fHjz5s3btm07fPjw+PHjr1+//txzz5nNZiHE2LFj\nVSpVbm7usWPHaoywY8cOIUR0dLRCobB+QAAAAKDeKBACAAAAAADU39atW/V6fffu3ZcuXarR\naKRGjUbz7rvvenl5nTt3LiUlRQjRtm3bwYMHCyESExOrn15QUHDo0CEhxOOPP16nAQEAAIB6\no0AIAAAAAABQfzqdTggxduxYpfJXr1kcHBwiIiKEEKmpqVKLtMpojQJhYmJiRUVFt27devTo\nUdcBAQAAgPpRyR0AAAAAAADgPiZtChgfH79v374ahy5duiSEuHDhgvR19OjR8+fPz87OPnPm\nTPfu3aVGaX3RCRMm1GNAAAAAoH4oEAIAAAAAANRfYWGhECI7Ozs7O/uOHW7cuCF90Gg04eHh\nu3btSkxMlAqERqPxwIEDQojx48fXY0AAAACgfigQAgAAAAAA1J9CoRBCLF68eOrUqffsHB0d\nvWvXrp07d77wwgtCiKSkJLPZ3L9/fz8/v/oNCAAAANQDexACAADgvpeUlOTj4xMaGip3ECFa\nWBgAQDPQarVCiLy8PGs6jxgxQq1Wnzp1Sq/XCyESEhLEr9cXreuAAAAAQD1QIAQAAAAAAKg/\nabHQ48ePW9PZ2dk5KipKCLFr167CwsLU1FSVSjVu3Lh6DwgAAADUAwVCAAAAAACA+pMKfqmp\nqZcuXapxaMaMGXFxcefPn6/eGB0dLYTYs2ePTqczm81hYWGenp4NGRAAAACoKwqEAAAAAAAA\n9Tdu3Dh/f//KysqZM2caDAapsbS0dMmSJQkJCTqdzsPDo3r/yMhIjUaTlpaWlJQkhBg/fnwD\nBwQAAADqSiV3AAAAAAAAgPuYg4PD+vXrJ02alJGRERoa2qdPH6VSmZWVZTQa7e3t161b5+7u\nXqP/o48+unnz5sTERCcnp1GjRjVwQAAAAKCumEEIAAAAm5Wfn7906dKIiIgHHniga9eu4eHh\nb775ZkFBQVWH3/72tz4+PgsXLrz9XIPB0KlTJx8fn7S0NOsHBAC0TkFBQTqd7vnnn/f398/M\nzExPT3d1dZ00adLu3buHDh16e39p1mBlZeXw4cNdXFwaPiAAAABQJwqLxSJ3BgAAAKBBkpKS\npk+f7uvre/DgwarGkydPPvXUU/n5+RqNplevXmVlZWfPnjWZTG3btv3666+7d+8uhNi4ceP/\n/M//dOjQ4ciRIwqFovqYGzZsWLhwobe396FDh6RD1gx4tzAAAAAAAAAtBzMIAQAAYIPKyspi\nY2Pz8/NjYmIOHz68efPmbdu2HT58ePz48devX3/uuefMZrMQYuzYsSqVKjc399ixYzVG2LFj\nhxAiOjpaqg5aOSAAAAAAAEDLR4EQAAAANmjr1q16vb579+5Lly7VaDRSo0ajeffdd728vM6d\nO5eSkiKEaNu27eDBg4UQiYmJ1U8vKCg4dOiQEOLxxx+v04AAAAAAAAAtHwVCAAAA2CCdTieE\nGDt2rFL5q794HRwcIiIihBCpqalSS3R0tLitQJiYmFhRUdGtW7cePXrUdUAAAAAAAIAWTiV3\nAAAAAKDxnTlzRggRHx+/b9++GocuXbokhLhw4YL0dfTo0fPnz8/Ozj5z5kzVPoLS+qITJkyo\nx4AAAAAAAAAtHAVCAAAA2KDCwkIhRHZ2dnZ29h073LhxQ/qg0WjaW0g0AAAgAElEQVTCw8N3\n7dqVmJgoFQiNRuOBAweEEOPHj6/HgAAAAAAAAC0cBUIAAADYIIVCIYRYvHjx1KlT79k5Ojp6\n165dO3fufOGFF4QQSUlJZrO5f//+fn5+9RsQAAAAAACgJWMPQgAAANggrVYrhMjLy7Om84gR\nI9Rq9alTp/R6vRAiISFB/Hp90boOCAAAAAAA0JJRIAQAAIANkhYLPX78uDWdnZ2do6KihBC7\ndu0qLCxMTU1VqVTjxo2r94AAAAAAAAAtGQVCAAAA2CCp4Jeamnrp0qUah2bMmBEXF3f+/Pnq\njdHR0UKIPXv26HQ6s9kcFhbm6enZkAEBAAAAAABaLAqEAAAAsEHjxo3z9/evrKycOXOmwWCQ\nGktLS5csWZKQkKDT6Tw8PKr3j4yM1Gg0aWlpSUlJQojx48c3cEAAAAAAAIAWSyV3AAAAAKDx\nOTg4rF+/ftKkSRkZGaGhoX369FEqlVlZWUaj0d7eft26de7u7jX6P/roo5s3b05MTHRycho1\nalQDBwQAAAAAAGixmEEIAAAA2xQUFKTT6Z5//nl/f//MzMz09HRXV9dJkybt3r176NCht/eX\nZg1WVlYOHz7cxcWl4QMCAAAAAAC0TAqLxSJ3BgAAAAAAAAAAAADNhBmEAAAAAAAAAAAAQCtC\ngRAAAAAAAAAAAABoRSgQAgAAAAAAAAAAAK0IBUIAAAAAAAAAAACgFaFACAAAAAAAAAAAALQi\nFAgBAAAAAAAAAACAVoQCIQAAAAAAAAAAANCKUCAEAAAAAAAAAAAAWhEKhAAAAAAAAAAAAEAr\nQoEQAAAAAAAAAAAAaEUoEAIAAAAAAAAAAACtCAVCAAAAAAAAAAAAoBWhQAgAAAAAAAAAAAC0\nIhQIAQAAAAAAAAAAgFaEAiEAAAAAAAAAAADQilAgBAAAAAAAAAAAAFoRCoQAAAAAAAAAAABA\nK0KBsGU5ePCg0WiUOwXuID09/cyZM3KnAADYPpPJlJ6efvnyZbmDAABsX05OTnp6+o0bN+QO\nAgCwfVlZWenp6RaLRe4gAIBfUCBsWeLj43NycuROgTvYsWNHamqq3CkAALavoKBg+/bt/CoF\nANAMzp49u337doPBIHcQAIDt279///bt2ysrK+UOAgD4BQVCAAAAAAAAAAAAoBVRyR0AuD8E\nBAR4eHjInQIAYPvUanVAQEDbtm3lDgIAsH1arTYgIMDZ2VnuIAAA2+ft7W1nZ6dQKOQOAgD4\nhYJ1n1uUl19+ecqUKT179pQ7CAAAAAAAAAAAAGwTS4wCAAAAAAAAAAAArQgFQgAAAAAAAAAA\nAKAVoUAIAAAAAAAAAAAAtCIquQMALV1FRYXJZCorK1MoFI6Ojq6urkollXUAAAAAAAAAAHC/\nokBYZ1lZWcnJyZmZmQUFBfb29h4eHg888MDw4cN79uwpdzQ0voqKivz8fKPR6OjoKITIy8tr\n3759u3btFAqF3NEAAAAAAAAAAADqgwJhHZjN5vXr1yclJVksFqmltLS0qKhIr9enpKSMGjVq\n5syZ1I1szI0bN4xGo5ubW2FhoVKp1Gq1eXl5arVao9HIHQ0AYJvMZrPJZHJyclKr1XJnAQDY\nuOLi4pKSEldXV3t7e7mzAABsnMlkMpvN7u7uvD4FgBaClRKtZbFYVq5cmZiYaLFYnJycoqKi\nYmNjn3nmmZCQEOn/aomJiV999ZXcMdHIysrKnJychBD/+Mc/tm3bplAonJycysrK5M4FALBZ\nly9fXrly5b59++QOAgCwfQcPHly5cqVer5c7CADA9m3evHnlypWVlZVyBwEA/IIZhNbS6XTf\nf/+9ECIgIOCVV17x9PSsOnT06NElS5aUlZV9/fXXI0eO1Gq18sVEk7NYLPzQCQAAAAAAAAAA\n3L8oEFqlrKzs888/F0I4Ozu/9tprbdu2rX60X79+EydOPH36dKdOnYqKiigQ2hJHR8dr165J\nGxAKISorK4uLi6u+AgAAAAAAAAAA3HcoEFolPT39+vXrQojHHnusRnVQ8vvf/77ZQ6E5tGnT\nprS01GAwDBgwQK1WFxQU+Pr6uri4yJ0LAGCztFptVFSUr6+v3EEAALYvICBApVJ5eHjIHQQA\nYPtCQkK6du3KulwA0HJQILRK1T5AQ4cOlTcJmplSqWzfvr2Li4uPj48QwsnJydnZWe5QAABb\n5ubmNmTIELlTAABaBT8/Pz8/P7lTAABahYceekjuCACAX6FAaJUzZ84IIbRarVQlEkIUFRUZ\nDIbS0lKtVtuhQwdZ06FpKRQKV1dXuVMAAAAAAAAAAAA0DgqE91ZSUpKfny+EkBb7Onny5Fdf\nfXXixAmLxSJ18PT0fPTRR8ePH8/WdAAAAAAAAAAAAGjhlHIHuA/k5uZKtcA2bdokJiYuXLjw\n+PHjVdVBIcS1a9f++c9/zps37+eff5YvJgAAAAAAAAAAAHBvzCC8t1u3bkkfrly5kpaW1rZt\n28mTJ/fs2dPT07OwsPDgwYNfffVVYWHhhQsXli1btnjx4tr32tXr9Xl5eXc7euPGjUZODwAA\nAAAAAAAAAFRDgfDeiouLpQ8//fRThw4dli9f7ubmJrV4enqOGTOmX79+L7744s2bN3/44Ye0\ntLRBgwbVMlpeXt7p06fvdrSoqKgRkwMAAAAAAAAAAAA1UCC8t+qriU6fPr2qOlilY8eOTz75\n5McffyyE0Ol0tRcIBw4cOHDgwLsdPXnyZMPCoqns27fP1dU1ODhY7iAAABtXWFiYmZnp6+vb\npUsXubMAAGzcxYsXL1682LNnT61WK3cWAICNy8zMLCwsfOSRR5RKNr0CgBaB/xzfm1qtlj7Y\n2dmFhITcsc+QIUOkD6dOnWqmWGheycnJhw4dkjsFAMD2GY3G5OTkc+fOyR0EAGD7Lly4kJyc\nXFBQIHcQAIDtO3LkSHJycvWZGAAAeVEgvDdXV1fpg0ajsbOzu2MfT09PR0dHIURRUVF5eXnz\nhQMAAAAAAAAAAADqggLhvXl7e0sz30tKSmrp5uDgIH2oqKhojlgAAAAAAAAAAABA3bEH4b3Z\n29v7+PhcunSppKTEYDC0b9/+9j7l5eU3b96UOjs5OTV7RjS52bNn323+KAAAjcjX13fOnDn8\nOQEAaAahoaHBwcFVq+YAANB0Jk6caDab2YAQAFoO/otslQEDBkgf0tLS7tghKyursrJSCOHv\n7998sdCMtFptmzZt5E4BALB9KpVKq9VWbYEMAEDTUavVWq3W3t5e7iAAANun0Wi0Wq1CoZA7\nCADgFxQIrfKb3/xG+rB169bi4uLbO2zbtk36EBIS0nyxAAAAAAAAAAAAgDqiQGiVgICAwYMH\nCyEKCgreeuutW7duVT8aHx8vzSx0cnIaOXKkPBEBAAAAAAAAAAAAK7AHobVmzJjx448/GgyG\nY8eOxcXFhYeHd+zY8caNGwcPHjx79qzU57nnnnN3d5c3JwAAAAAAAAAAAFALCoTW0mq1b775\n5rJly86fP3/9+vUtW7ZUP+ro6DhjxozIyEi54gEAAAAAAAAAAADWoEBYBx07dnznnXe+//77\n1NRUvV7/888/Ozk5eXl59evXb8yYMW3btpU7IAAAAAAAAAAAAHAPFAjrxs7OLiIiIiIiQu4g\naG7r16/39PScMGGC3EEAADbu6tWr27dvDw4ODg0NlTsLAMDGHTly5OjRo6NGjerUqZPcWQAA\nNm7btm25ubnTp0+3s7OTOwsAQAghlHIHAO4POTk5165dkzsFAMD2lZaW5uTkmEwmuYMAAGxf\nUVFRTk5OaWmp3EEAALavoKAgJydH7hQAgP+iQAgAAAAAAAAAAAC0IiwxCljF29vb09NT7hQA\nANvn6Ojo7e2t0WjkDgIAsH2urq7e3t6Ojo5yBwEA2D4PD4/y8nK5UwAA/kthsVjkzoD/evnl\nl6dMmdKzZ0+5gwAAAAAAAAAAAMA2scQoAAAAAAAAAAAA0IpQIAQAAAAAAAAAAABaEQqEAAAA\nAAAAAAAAQCtCgRAAAAAAAAAAAABoRSgQAgAAAAAAAAAAAK0IBULAKkaj8caNG3KnAADYPrPZ\nbDQai4uL5Q4CALB9xcXFRqOxvLxc7iAAANtnMpmMRqPFYpE7CADgFxQIAausWrXqX//6l9wp\nAAC27/LlyytXrty3b5/cQQAAtu/gwYMrV67U6/VyBwEA2L7NmzevXLmysrJS7iAAgF9QIAQA\nAAAAAAAAAABaEQqEAAAAAAAAAAAAQCuikjsAcH+IiopydXWVOwUAwPZptdqoqChfX1+5gwAA\nbF9AQIBKpfLw8JA7CADA9oWEhHTt2lWhUMgdBADwCwqEgFUGDx4sdwQAQKvg5uY2ZMgQuVMA\nAFoFPz8/Pz8/uVMAAFqFhx56SO4IAIBfYYlRAAAAAAAAAAAAoBWhQAgAAAAAAAAAAAC0IhQI\nAQAAAAAAAAAAgFaEAiEAAAAAAAAAAADQilAgBAAAAAAAAAAAAFoRCoSAVfbt23f8+HG5UwAA\nbF9hYeHevXt/+uknuYMAAGzfxYsX9+7dazQa5Q4CALB9mZmZe/furayslDsIAOAXKrkD3B8y\nMjJee+21e3YLDAz83//932bIg+aXnJzs7e0dHBwsdxAAgI0zGo3JyclDhgzp0qWL3FkAADbu\nwoULe/bs6dChg1arlTsLAMDGHTlyRK/XDxo0SO4gAIBfMIPQKjdv3pQ7AgAAAAAAAAAAANAI\nmEFolaKiIulDSEhI165d79atbdu2zZUIAAAAAAAAAAAAqA8KhFapmkE4ZMiQiIgIecNAFrNn\nz7azs5M7BQDA9vn6+s6ZM8fJyUnuIAAA2xcaGhocHOzq6ip3EACA7Zs4caLZbFYqWdAOAFoK\nCoRWqSoQuri4yJsEcmFPDgBA81CpVPxPBwDQPNRqtVqtljsFAKBV0Gg0ckcAAPwKP9mwStUS\noxQIAQAAAAAAAAAAcF9jBqFVmEEIAAAAAAAAAAAAyZo1a4QQAwcOHDhwoNxZ6oMZhFahQAgA\nAAAAAAAAAADJ0qVLly5dmpqaamX/U6dOjR49etSoUR9//HGTBrMSMwitUlUgVKvVe/bsSU1N\nPXfu3I0bN5ycnNq3b9+nT59Ro0Z16NBB3pAAAAAAAAAAAABogXr06BEcHLxx48bTp08PGjQo\nKChI3jwUCK1StQfh/PnzL126VNV+8+bN7Ozs7Ozsbdu2/f73v//d736nUChkyggAAAAAAAAA\nAIAW6vXXX09LSzt79uysWbMSExPt7e1lDEOB0CpVMwgvXbrk4uIyYMAAPz8/BweHq1evHjx4\n8Nq1axUVFf/85z/Ly8tjYmJqH+rs2bMXL16829Hr1683Zm40nvXr13t6ek6YMEHuIAAAG3f1\n6tXt27cHBweHhobKnQUAYOOOHDly9OjRUaNGderUSe4sAAAbt23bttzc3OnTp9vZ2cmdBQBk\n4+Tk9P77748ZM+b06dPLli1buHChjGEoEFqlqkA4evToZ555xtnZuerQ9OnTP/nkk+3btwsh\nNm3a9PDDDwcGBtYyVElJyY0bN+52tKKiopEio5Hl5OTIHQEA0CqUlpbm5OQEBATIHQQAYPuK\niopycnJKS0vlDgIAsH0FBQW8XgMAIUSPHj0WLFjwxhtvfPjhhyNGjBgwYIBcSSgQWmXjxo0W\ni0WhUFQvDUpUKlVsbGxeXt6hQ4eEEFu3bn3ppZdqGap37969e/e+29G0tLRGCQwAAAAAAAAA\nAIAmlZSUVH1nOmtYLBZ7e/vy8vI5c+bs37+/iYLdEwVCq9xeF6zhySeflAqE6enpUimxWXKh\n+Xh7e3t6esqdAgBg+xwdHb29vTUajdxBAAC2z9XV1dvb29HRUe4gAADb5+HhUV5eLncKAGh8\np06dOnXqVP3O1ev1jRumTigQNo7AwECp3nvr1i2TydSmTRu5E6GRxcbGyh0BANAqdOzYccaM\nGXKnAAC0CiEhISEhIXKnAAC0Co899pjcEQAAv0KBsHEoFApHR0fpVzBlZWVyxwEAAAAAAAAA\nAEDTGjt27H36GwgKhI2jrKzs5s2b0memDwIAAAAAAAAAANi8bt26jRkzRu4U9UGB8N4OHjx4\n5MiR/Pz8oUOHDhs27I59fvjhB4vFIoTw8/NzcHBo3oAAAAAAAAAAAACAtSgQ3tuNGze+/fZb\nIYTBYBg8ePDt9T+LxfL1119Ln0NDQ5s7HwAAAAAAAAAAAGA1pdwB7gO/+c1v3NzchBCXL19e\nsWJFUVFR9aNlZWVr1qw5efKkEEKtVt+nS80CAAAAAAAAAACglWAG4b05OjrOmjVryZIllZWV\nBw4cyMzMDAsL8/b2VigUOTk5Bw4cMBqNQgiFQjF37lyplAjbYzQa7ezs2GASANDUzGazyWRy\ncnJSq9VyZwEA2Lji4uKSkhJXV1d7e3u5swAAbJzJZDKbze7u7gqFQu4sANA42rVrJ4RwcXGR\nO0g9USC0ysCBA+fPn7969WqTyVRUVJSYmFijg5ub25w5c0JCQmSJh2awatUqb2/v2NhYuYMA\nAGzc5cuXN2zYMGTIkKioKLmzAABs3MGDB/fs2RMTExMYGCh3FgCAjdu8ebNer3/11Vft7Ozk\nzgIAjSMjI0PuCA1CgdBaDz/88EMPPaTT6dLT03/66aeioiKFQtGmTZsuXbqEhIRERkY6OjrK\nnREAAAAAAAAAAAC4BwqEdeDi4vLYY4+xyyAAAAAAAAAAAADuXxQIAatERUW5urrKnQIAYPu0\nWm1UVJSvr6/cQQAAti8gIEClUnl4eMgdBABg+0JCQrp27coGhABsUkVFxZEjRzIyMoxGo7u7\n+6BBg4KDg+UOdW8UCAGrDB48WO4IAIBWwc3NbciQIXKnAAC0Cn5+fn5+fnKnAAC0Cg899JDc\nEQCgSRw4cGDevHnnz5+v3vjII4+sXr26Q4cO0tfDhw+vWrXq0KFDJSUlnTp1euyxx+Li4mSf\nkqSU9/IAAAAAAAAAAADAfWfv3r2TJk2qUR0UQuzfv3/ixIkmk0kIsXbt2vHjx6ekpBQVFZnN\n5uzs7JUrV44cOfLq1atyRP4vZhACAAAAAAAAAAAAdVBaWjpnzpzy8nIhRPv27aOiory9vYuK\niv7zn/+cOnUqOzt7zZo1oaGhb7755u3nZmdnx8XFbdmyRca1lykQAgAAAAAAAAAAAHWwdevW\n3NxcIURMTMyiRYvs7e2rDn3yySevvPLKpk2bjh49arFYevfuvWDBguDgYKVSeebMmXfeeSc1\nNfXQoUPfffddRESEXPlZYhQAAAAAAAAAAACoA51OJ4To3bv30qVLq1cHhRDTpk2bOHGiwWDY\nv3+/j4/Ppk2bwsLC2rRp4+rqGhIS8tlnn3Xv3l0I8c0338gTXQhBgRAAAAAAAAAAAACok8zM\nTCHEE088oVTeodYWExMjfZgyZYpGo6l+yN7eXjqanp7e9DHvigIhYJX09PQzZ87InQIAYPtM\nJlN6evrly5flDgIAsH05OTnp6ek3btyQOwgAwPZlZWWlp6dbLBa5gwBAo7l+/boQQpoLeLug\noCDpQ69evW4/Kp2Vn5/fZOnujQIhYJUdO3akpqbKnQIAYPsKCgq2b9/Or1IAAM3g7Nmz27dv\nNxgMcgcBANi+/fv3b9++vbKyUu4gANBoSktLhRBOTk53POro6Ch9uGMHBweHqhHkQoEQAAAA\nAAAAAAAAqANp4VBpHuHtqmYH3nGaoPQrPXd39yZLd28UCAEAAAAAAAAAAIA68PX1FUIcPHjw\njkf37dsnfdDpdLcf3bNnjxAiMDCwqcJZQSXjtYH7yOzZs+3s7OROAQCwfb6+vnPmzLnb8hQA\nADSi0NDQ4OBgV1dXuYMAAGzfxIkTzWazUsl8FQC2Y8CAAZmZmZ9//vnUqVN9fHyqHyopKfng\ngw+USqWXl1d8fPyYMWOioqKqjn733XdfffWVECIsLKy5Q1ejYGPYFuXll1+eMmVKz5495Q4C\nAAAAAAAAAACAOztx4sSoUaOEEN7e3vPmzRs0aFCHDh1KS0szMzOXLFly5MiRPn36hIWFrV69\nWqFQDBo0qGvXrpWVlVlZWYcPH7ZYLI6OjgcOHPDy8pIrPzMIAQAAAAAAAAAAgDro3bv3hAkT\ntm7dmpOTM2fOHCGEnZ1dRUVFVYfY2Nhhw4YlJSX9+OOP+/fv379/f/XTFy5cKGN1ULAHIQAA\nAAAAAAAAAFBXb7311uDBg6u+Vq8OTp48efz48W5ubl9++WX1PkIIFxeXN998c/r06c0X9E6Y\nQQgAAAAAAAAAAADUjaur6xdffPGvf/3ryy+/PHHiREVFhVKp7N2797PPPjthwgSpT8eOHTdt\n2nTs2LFDhw6VlJR06tQpIiLC3d1d3uSCPQhbGvYgBAAAAAAAAAAAuL9UVFSYTCYXFxd7e3u5\ns1iFGYQAAAAAALRGFRUVFRUVKpVKqWT/EQAAAKBB7OzsWsK8QOvxDABY5bPPPtu5c6fcKQAA\nti8vL2/jxo1Hjx6VOwgAwJZVVFQUFBRs3rx52bJlx48f//nnn1leCADQpL799tuNGzdWVlbK\nHQQA8AtmEAJWuXDhQklJidwpAAC2r7i4+MKFC97e3nIHAQDYLIvFYjQaDQaDQqEwGo0mk+nS\npUtCiPvr984AgPtLTk6OXq/n9ygA0HJQIGwQg8Ewa9as4uJiIcRLL70UFhYmdyIAAAAAAGpT\nVlZ2+fLldu3a2dnZCSFUKpWbm9utW7fatGnDWqMAAACAldasWSOEGDhw4MCBA+XOUh/86V9/\nFotl9erVUnUQNs/b29vT01PuFAAA2+fo6Ojt7a3RaOQOAgCwWWazWaVSKRQKZ2dnLy8vBwcH\nlUplMBjMZrPc0QAANsvDw4OFUgDYmKVLly5dujQ1NdXK/qdOnRo9evSoUaM+/vjjJg1mJWYQ\n1l9SUtLx48flToFmEhsbK3cEAECr0LFjxxkzZsidAgBgy5RKZUVFhRAiODg4ODhYCFFRUWGx\nWKQJhQAANIXHHntM7ggAILMePXoEBwdv3Ljx9OnTgwYNCgoKkjcPMwjryWAwfPLJJ0IIDw8P\nubMAAAAAAGAtJyenDh06mEwm6WtlZaXJZPLz86NACAAAADSp119/vVu3buXl5bNmzSovL5c3\nDAXC+rBYLKtWrSopKXFzcxszZozccQAAAAAAsJZCodBqte7u7gaD4fr169euXWvfvr1Wq5U7\nFwAAAGDjnJyc3n//fQcHh9OnTy9btkzeMBQI6yMxMfHEiRNCiGnTpqnVarnjAAAAAABQBw4O\nDu3btw8KCgoICOjRo4enp6dSyfsBAAAAoMn16NFjwYIFQogPP/zw8OHDMiZhD8I6y8vL27Bh\ngxCiX79+ERERCQkJcicCAAAAAKBuFAqFo6Oj3CkAAACA+1tSUtKlS5fqdIrFYrG3ty8vL58z\nZ87+/fubKNg9USCsm6rFRZ2dnf/0pz/JHQcAAAAAAAAAAADyOHXq1KlTp+p3rl6vb9wwdcIS\nInWzc+fOzMxMIcQf/vAHT09PueOg+RQXF5eWlsqdAgBg+yorK4uLi2XfpxoA0BqUl5cXFxdX\nVFTIHQQAYPtKS0uLi4vlTgEA+C9mENZBXl7ep59+KoTo06fPiBEj5I6DZrVs2TJvb+/Y2Fi5\ngwAAbNzFixc3bNgwZMiQqKgoubMAAGzcvn379uzZExMTExgYKHcWAICN++KLL/R6/auvvmpn\nZyd3FgBoTGPHjn3sscfkTlEfFAitVbW4qFqtZnFRAAAAAAAAAACAVq5bt25jxoyRO0V9UCC0\nVkJCgrS46NSpU9u3b1/vcU6cOHHu3Lm7Hc3Pz6/3yAAAAAAAAAAAAMA9USC0Sm5u7saNG4UQ\nDz300MiRIxsylJubm6+v792OOjo6NmRwNJ2oqChXV1e5UwAAbJ9Wq42KiqrlrwUAABpLQECA\nSqXy8PCQOwgAwPaFhIR07dpVoVDIHQQA8AsKhPdmsVhWrlxZUlLi5OQ0e/bsBv5vrHPnzp07\nd77b0c2bNzdkcDSdwYMHyx0BANAquLm5DRkyRO4UAIBWwc/Pz8/PT+4UAIBW4aGHHpI7AgDg\nVygQ3tuOHTtOnjwphJg2bZqXl5fccQAAAAAAAAAAACCndu3aCSFcXFzkDlJPFAjv4dq1a9Li\noh07dmzTps2+fftqdLhw4YL0ISsrS6lUCiG8vb39/f2bOScAAAAAAAAAAACaR0ZGhtwRGoQC\n4T0YDIbS0lIhxNWrV99+++1aem7btm3btm1CiHHjxsXGxjZTPgAAAAAAAAAAAKAulHIHAAAA\nAAAAAAAAANB8mEF4Dz169JDmBd5NQkLC2rVrhRAvvfRSWFhYc+UCAAAAAAAAAACAPBISEoQQ\nvXv37tSpk5WnXLt2zdPTsylD1QEzCAGrpKennzlzRu4UAADbZzKZ0tPTL1++LHcQAIDty8nJ\nSU9Pv3HjhtxBAAC2LysrKz093WKxyB0EABrNjBkzZsyYMWTIkIULF5pMpnv2N5vNffr0iYiI\n+PLLL1vCfw8pEAJW2bFjR2pqqtwpAAC2r6CgYPv27fwqBQDQDM6ePbt9+3aDwSB3EACA7du/\nf//27dsrKyvlDgIAjcxsNm/YsGHEiBEZGRm19zQYDBaLJSsr6y9/+cu0adPKysqaJ+HdUCAE\nAAAAAAAAAAAA6kypVAohLl68OHHixN27d9fSs6ioyMHBQfq8e/fuV199tTny3R0FQgAAAAAA\nAAAAAKDO/vSnP7366qv29vbFxcXPPvtsLTXCbt26/fDDD2+99Zajo6MQ4vPPPz958mQzJq1J\n0RLWOUWVl19+ecqUKT179pQ7CGoyGo12dnZt2rSROwgAwMaZzWaTyeTk5KRWq+XOAgCwccXF\nxSUlJa6urvb29nJnAQDYOJPJZDab3d3dFQqF3FkAoHH4+PgIIV588cU///nP+/btmzp16q1b\ntxwcHL7++uuQkJBaTkxJSXn66aeFEFOmTFmyZEkzxb0NM4X+rjgAACAASURBVAgBq2i1WqqD\nAIBmoFKptFot1UEAQDNQq9VarZbqIACgGWg0Gq1WS3UQgK0aPHjwF198oVary8rKnn322Zyc\nnFo6R0REhIaGCiHS0tKaK+AdUCAEAAAAAAAAAAAA6m/AgAGrV69WKpX5+fnSbMJaOvfr108I\nUXsdsalRIAQAAAAAAAAAAAAaZNSoUQsWLBBCnDx5ctasWbXs8de2bVshRHFxcfOFuw0FQgAA\nAAAAAAAAAKCh/vjHP06cOFEIkZSUVMv+gnq9Xgih0WiaL9ltKBACAAAAAAAAAAAAjWDZsmX9\n+/cXQnzwwQerV6++vcOtW7eSk5OFEAEBAc0drhoKhAAAAAAAAAAAAEAjcHR0/PTTTwMDA4UQ\nb7311qxZs4xGY9XR4uLi+fPn5+bmCiEGDx4sW0ohVDJeG7iPfPbZZx4eHqNHj5Y7CADAxuXl\n5X377be9evWSdqsGAKDpHD9+/Pjx41FRUd7e3nJnAQDYuG+//TYvLy8mJkapZMoKANun1Wq/\n+OKLJ5/8P/buPbyq+k70/9q57SQkhAAKCbcx1hupWkXrUXRqFTs6LY52tGproR6VVmccOs45\nsVr783SmrcI48xR1OqfU6oiiltbbQL013ipQLkYLjJTLGEAk3NmShOyEffv9kT4cqlyCJlm4\n8nr9tbLW2sn7sfVJ3J/9/a4r1qxZ8+STTz777LPnnXfeiBEjdu3a9corr2zYsCEIgsLCwquu\nuirESANC6JLGxsb29vawKwCIvmQy2djY6I1aAHpBIpFobGxsa2sLOwSA6Gtqalq3bl0ulws7\nBKCXDBs27JlnnpkwYcLvf//79vb2Z5999gM33HbbbSNHjgylrZPPawAAAAAAAEB3GjRo0FNP\nPTV58uTS0tK9zw8YMGDq1KmTJk0KK6yTFYTQJdXV1YMHDw67AoDoi8fj1dXV5eXlYYcAEH1l\nZWXV1dXxeDzsEACib9CgQalUKuwKgO40atSoIAgGDBhwgHuKiorq6uq+9a1vvfbaa+vWrYvH\n40cfffRZZ51VXFzcW5n7FbOs+7BSV1c3ceLE2trasEMAAAAAAACIJluMAgAAAAAAQB9iQAgA\nAAAAAAB9iAEhAAAAAAAAfBTZbPbVV1+944475s6de+A7V69evXXr1t6pOigDQgAAAAAAADhk\ny5Ytu+CCC772ta/df//9y5YtO/DN99577ymnnDJp0qRNmzb1Tt4BGBACAAAAAADAoVm6dOmX\nv/zlFStWdH550NWBiUQil8v9+te/vvDCC9etW9fzgQdiQAhdkkwmOzo6wq4AIPqy2WwymUyl\nUmGHABB9qVQqmUxmMpmwQwCIvo6OjmQyGXYFQHdKp9M33HBDW1tbEATl5eVXXHHFhRdeeOCX\njB49ury8PAiCrVu3fvOb38xms70Ruh8GhNAlU6dOnTFjRtgVAETfu+++O2XKlNdeey3sEACi\nb968eVOmTFmzZk3YIQBE36OPPjplyhSfSgGi5Jlnnlm7dm0QBKeccsrcuXP/9V//9bOf/eyB\nX3LrrbcuWLDgzDPPDIJg2bJlL7zwQi907o8BIQAAAAAAAByCF198MQiCeDx+//33Dx48+MM3\nLFq0aNGiRevXr9/75IABA/7t3/6tqKgoCILZs2f3Tuo+GRACAAAAAADAIVi6dGkQBOPGjRs6\ndOg+b7j00ksvvfTSBx988APnhwwZctFFFwVBsGTJkp6OPICCEH82fIKMGzeurKws7AoAoq+y\nsnLcuHHDhw8POwSA6KupqSkoKBg0aFDYIQBE32mnnXbMMcfEYrGwQwC6zY4dO4IgOOGEE/Z5\ndc+myvvcXbmmpiYIgs2bN/dY3cEZEB6CXC63YMGCuXPnrl69OpFIZDKZfv36DR8+/NOf/vQF\nF1xw5JFHhh1IDxo7dmzYCQD0CRUVFWeffXbYFQD0CSNHjhw5cmTYFQD0CSeeeGLYCQDdrL29\nPQiCkpKSfV7dvn1750Eikfjw1f79+wdBkE6ne6zu4AwIu2rjxo1Tp05955139j65c+fOnTt3\nvv3227/61a++9rWvXXbZZWHlAQAAAAAA0DvKy8sTicT+VgG+9957nQdvv/32h682NTUFQVBR\nUdFzeQdlQNgl27Ztq6ur27lzZxAERUVFZ5xxxrBhw0pLS7dt27Z48eKNGzdmMpkZM2YUFBRc\ncsklYccCAAAAAADQg0aNGpVIJH7729/u82p9fX0QBOXl5StWrFi5cuVxxx2351Imk3nxxReD\nIDj66KN7J3Wf8kL82Z8gP/3pTzung8cdd9zPfvaz//2///dXv/rVSy655Lrrrvv3f//38ePH\nd9726KOPtrW1hVoKAAAAAABAzzr99NODIFixYsXjjz/+gUtNTU0PPvhgEARXXXVVEAT/8A//\n0NLS0nkpk8l8//vfX7duXRAEZ555Zq8W/ykDwoNLJBKLFi0KgqCoqOh73/teZWXl3lfz8vKu\nvfbaoUOHBkHQ3t7+X//1X+FUAgAAAAAA0CuuvPLKzoO6uro777xz7dq12Ww2mUz+5je/+fKX\nv9zc3HzUUUf97d/+bTwef+utt84888y//du/vfnmm88555yf//znQRAUFBTs+Q6hsMXowbW2\ntn7uc59rbW0dNmxY53MjPyAvL6+2tnbTpk3BXo+dBAAAAAAAIJKOP/74q6666rHHHstkMvfd\nd999992Xl5eXzWb33PA3f/M3gwYN+va3vz1lypREIvHUU0/t/fKbb755xIgRvV79/xgQHtyI\nESNuvvnmA9+TSqU6D8rKynq+iBA0NDT069fv+OOPDzsEgIhraWlZtWrVkCFDhg8fHnYLABHX\n1NS0cePGY445Zp+fhQWAbrRy5crW1tZTTz01FouF3QLQbX7wgx/s2LHjhRde6Pxy7+ng5Zdf\n3rlA8Kabbmptbf3pT3+aTqc7L5WUlNx888033nhj7wfvzYCwG7S2tr711ltBEOTn53/6058O\nO4ceMWfOnOrqagNCAHra9u3bZ8+effbZZxsQAtDTVq1a9eqrr1599dUGhAD0tPnz569bt+4z\nn/lMfn5+2C0A3aa4uPiBBx6YM2fOzJkzFy9enEwmY7HYCSeccN11111xxRWd98Risdtuu+2a\na65ZsGBBc3PzkCFDzjrrrMPhL3ADwo9r3bp199xzT+fjJb/85S9/4AmFAAAAAAAARNWXvvSl\nL33pS0EQ7Nq1q6ioqLCw8MP3VFVVXXrppb2ediAGhIdsy5Ytc+bMyWQyLS0ta9asWbduXRAE\nRUVFV1xxxeWXXx52HQAAAAAAAL2tX79+YSccglgulwu74RNm+fLl3/nOd/Z8WVpa+oUvfOGy\nyy7rlgWhdXV1EydOrK2t/fjfiu6VSCTy8/MPh2W/AERbOp1uaWkpLi4uKSkJuwWAiEsmk+3t\n7WVlZfv8jDMAdKOWlpZ0Oj1gwADPIASiatGiRUEQjBgxoqqqKuyWLrGC8ONqa2t7+umnFy9e\n/Nd//dfjxo076P2//e1vlyxZsr+r69ev79Y6uo3NYwHoHQUFBX7pANA7SkpKfB4FgN5RXl4e\ndgJAz+rcQbSkpKTziYOH/+chrCD8iLLZ7M6dOzdv3vzGG2/MmTOnra0tCILzzz9/8uTJB37h\n5s2bd+zYsb+r991334033mgFIQAAAAAAwCfFsGHD9hyfeeaZ//Iv/zJq1KgQew7KgLAbbN26\n9dZbb92yZUsQBN/+9rfPO++8j/ytbDEKAAAAAADwydI5IBw1atS6deuCICgtLb3tttu+8Y1v\nHLZLCfPCDoiCI444YtKkSZ3Hc+bMCTcGAAAAAACA3vfd7373Rz/6UWlpaVtb2+2333755Ze/\n++67YUftmwFh9zj55JM7D955551MJhNuDAAAAAAAAL1v4sSJL7300llnnRUEwe9+97vzzz//\noYceOgy38zQgPLglS5Y8+eSTDzzwwPLly/d3T1FRUecq0Vwul0qlerEOAAAAAACAw8XIkSNn\nzZp155139uvXr62t7bbbbvvKV76yfv36sLv+hAHhwS1atOg//uM/nn766Zdffnl/92zcuLFz\n/BuPx4uLi3uxjl7y8MMPP/vss2FXABB9mzdvnjFjxptvvhl2CADRt2TJkhkzZjQ1NYUdAkD0\nvfDCCzNmzMhms2GHAPSSWCw2YcKEl19++c///M+DIJg/f/75558/Y8aMw2cpoQHhwY0ZM6bz\nYO7cuVu2bNnnPfX19Z0Ho0eP7qUseldjY+OGDRvCrgAg+pLJZGNj444dO8IOASD6EolEY2Nj\nW1tb2CEARF9TU1NjY+Ph87Y4QO8YPnz4Y489NnXq1PLy8l27dt16661XXnnle++9F3ZXEBgQ\ndsUpp5wyatSoIAja2tqmTJny4Tfs6uvrn3zyyc7jL3zhC73dBwAAAAAAwGHpa1/72ssvv3zu\nuecGQTB37tzzzz//kUceCTsqKAg74BMgFotNnjz51ltv7ejoWL169aRJk04//fRRo0bF4/FE\nIvHWW2+tW7eu884zzjhj7Nix4dbSQ6qrqwcPHhx2BQDRF4/Hq6ury8vLww4BIPrKysqqq6vj\n8XjYIQBE36BBg1KpVNgVAKGprq6eOXPmrFmzfvjDH27btu2WW26ZM2fOv/zLvwwbNiyspJhl\n3V20evXqu+++e+PGjfu74YILLvjmN79ZVFT0cX5KXV3dxIkTa2trP843AQAAAAAAoOc8+OCD\ne395++23B0Fw1VVXHXjE09LS8tBDD23atCkIgrKyspUrV/Zo5AEYEB6CTCbz+uuvL1y48L//\n+7+bm5t3795dWlo6dOjQ0aNHjxs3rnMb0o/JgBAAAAAAAOAw1y2L/zZs2PDxv8lHY4vRQ5Cf\nn3/uued27hILAAAAAAAAn0QGhAAAAAAAAHAIfvKTn+z95Y033hgEwfXXX3/KKaeEVHRoDAgB\nAAAAAADgEPzVX/3V3l92DghPP/30L37xiyEVHZq8sAMAAAAAAACA3mMFIXRJMpnMy8uLx+Nh\nhwAQcdlstqOjo6CgoLCwMOwWACIulUql0+mioqL8/PywWwCIuI6Ojmw2W1JSEnYIQE+57rrr\ngiA46qijwg7pKgNC6JKpU6dWV1dff/31YYcAEHHvvvvuf/zHf5x99tnjxo0LuwWAiJs3b96r\nr7569dVXf+pTnwq7BYCIe/TRR9etW/e9733Pp1KAqPr+978fdsKhscUoAAAAAAAA9CFWEAIA\nAAAAAMBHkclk3njjjd///veJRGLAgAFnnnnmySefHHbUwRkQQpeMGzeurKws7AoAoq+ysnLc\nuHHDhw8POwSA6KupqSkoKBg0aFDYIQBE32mnnXbMMcfEYrGwQwC62e9+97tbbrnlnXfe2fvk\nWWedde+99w4dOrTzy8WLF99zzz2LFi1qb28fMWLExRdffOONN4Y+cYjlcrlwC9hbXV3dxIkT\na2trww4BAAAAAABgv+bOnXv11VenUqkPXzrqqKOee+658vLyn/70p//4j//44au//OUvq6qq\neiVz36wgBAAAAAAAgEPQ0dExefLkzungkUceOW7cuOrq6tbW1t/+9rfLly9fs2bNfffdd8YZ\nZ/zTP/3Th1+7Zs2aG2+88cknnwxxabUBIQAAAAAAAByCp556atOmTUEQXH311T/4wQ8KCwv3\nXHrwwQdvv/32WbNmvfnmm7lc7qSTTrrttttOPvnkvLy8FStW3H333a+//vqiRYteeeWV8847\nL6z+vLB+MAAAAAAAAHwSvfTSS0EQnHTSSXfeeefe08EgCK655prLLrtsy5Yt8+fPHzZs2KxZ\ns84555z+/fuXlZWddtppDz/88PHHHx8EwdNPPx1OehAEBoQAAAAAAABwSJYtWxYEweWXX56X\nt49Z29VXX915MHHixPLy8r0vFRYWdl5taGjo+cz9MiAEAAAAAACAQ7Bjx44gCDrXAn7YCSec\n0Hnw6U9/+sNXO1+1devWHqs7OANC6JKGhoYVK1aEXQFA9LW0tDQ0NLz33nthhwAQfU1NTQ0N\nDc3NzWGHABB9K1eubGhoyOVyYYcAdJuOjo4gCIqLi/d5NR6Pdx7s84aioqI93yEsBoTQJXPm\nzHn99dfDrgAg+rZv3z579myfSgGgF6xatWr27NlbtmwJOwSA6Js/f/7s2bOz2WzYIQDdpnPj\n0M51hB+2Z3XgPpcJdv4RPmDAgB6rOzgDQgAAAAAAADgEw4cPD4Jg4cKF+7w6b968zoOXXnrp\nw1dfffXVIAg+9alP9VRcFxgQAgAAAAAAwCE4/fTTgyB45JFHNmzY8IFL7e3tP/nJT/Ly8qqq\nqp544on6+vq9r77yyiuPP/54EATnnHNOr9V+WMy+z4eVurq6iRMn1tbWhh3CByUSifz8/P79\n+4cdAkDEpdPplpaW4uLikpKSsFsAiLhkMtne3l5WVlZYWBh2CwAR19LSkk6nBwwYEIvFwm4B\n6B5Lly696KKLgiCorq6+5ZZbzjzzzKFDh3Z0dCxbtuxHP/rRG2+88ZnPfOacc8659957Y7HY\nmWeeecwxx2Sz2ZUrVy5evDiXy8Xj8d/97ndDhgwJq78grB8MnyyVlZVhJwDQJxQUFPilA0Dv\nKCkp8XkUAHpH55O6AKLkpJNOuvTSS5966qmmpqbJkycHQZCfn5/JZPbccP3113/+859//vnn\nV69ePX/+/Pnz5+/98u9+97shTgcDW4wCAAAAAADAobrrrrvGjh2758u9p4Nf/epXL7nkkoqK\niscee2zve4Ig6Nev3z/90z9de+21vRe6L1YQHpp33nnnxRdffPvtt7dt29bR0VFaWjps2LCT\nTjrpggsuCHfSCwAAAAAAQK8pKyt79NFHf/GLXzz22GNLly7NZDJ5eXknnXTSddddd+mll3be\nU1VVNWvWrLfeemvRokXt7e0jRow477zzBgwYEG554BmEXbd79+7p06e/+OKL+7xaUFAwYcKE\nSy655GP+FM8gBAAAAAAA+GTJZDItLS39+vX7pDzh2wrCLsnlcnfdddcbb7zR+WVtbe1xxx3X\nv3//jRs3Llq0KJFIpNPpBx54oLS09Atf+EK4qQAAAAAAAPSm/Pz8w2FdYNcZEHbJiy++2Dkd\nLCoquvXWW8eMGbPn0rXXXjt9+vT6+vogCB566KFzzz23qKgotFAAAAAAAAA4oLywAz4Znnnm\nmc6Da6+9du/pYBAExcXFf/M3f3PEEUcEQdDS0rJs2bIQ+uh5Dz/88LPPPht2BQDRt3nz5hkz\nZrz55pthhwAQfUuWLJkxY0ZTU1PYIQBE3wsvvDBjxoxsNht2CAB/ZEB4cDt37tywYUMQBIWF\nhZ///Oc/fEN+fv6pp57aedx5J9HT2Njof1wAekEymWxsbNyxY0fYIQBEXyKRaGxsbGtrCzsE\ngOhrampqbGzM5XJhhwDwR7YYPbiKioonn3wykUgkk8ni4uJ93lNSUtJ5kEqlejENAAAAAAAA\nDo0BYZfk5+cPHjz4ADds3ry586CqqqpXiuht1dXVB/7/AAB0i3g8Xl1dXV5eHnYIANFXVlZW\nXV0dj8fDDgEg+gYNGmRlBcBhJWZZ98fX0tJyzTXX7N69u6Sk5MEHHywtLf3I36qurm7ixIm1\ntbXdmAcAAAAAAAB7eAZhN5g+ffru3buDILjkkks+znQQAAAAAAAAepoB4cf1i1/84rXXXguC\n4Ljjjrv88svDzgEAAAAAAIAD8QzCj+WRRx6ZNWtWEATDhg373ve+V1Bw8H+eL7744htvvLG/\nq2vXru3GPAAAAAAAAPgAA8KPqKOj48c//vG8efOCIBgxYsT3v//9/v37d+WFZ5xxxgEeMbh5\n8+ZuSwQAAAAAAIAPMSD8KLZu3frDH/6wsbExCILRo0fffvvtZWVlXXxtRUVFRUXF/q7G4/Hu\nSQQAAAAAAIB9MSA8ZMuXL7/zzjt37twZBMH5559/4403FhYWhh1Fj0smk3l5eSa4APS0bDbb\n0dFRUFDgDwwAeloqlUqn00VFRfn5+WG3ABBxHR0d2Wy2pKQk7BAA/igv7IBPmAULFtx+++07\nd+6MxWL/83/+z8mTJ3vzro+YOnXqjBkzwq4AIPrefffdKVOmvPbaa2GHABB98+bNmzJlypo1\na8IOASD6Hn300SlTpmQymbBDAPgjKwgPwYIFCzp/jcXj8f/1v/7XGWecEXYRAAAAAAAAHBoD\nwq5auXLl3XffnclkiouLv//9759wwglhFwEAAAAAAMAhMyDskra2tn/+53/evXt3QUHB7bff\nbjrYB40bN66srCzsCgCir7Kycty4ccOHDw87BIDoq6mpKSgoGDRoUNghAETfaaeddswxx8Ri\nsbBDAPgjA8Iueeihh7Zs2RIEwde//vWTTjop7BxCMHbs2LATAOgTKioqzj777LArAOgTRo4c\nOXLkyLArAOgTTjzxxLATAPgTBoQHt2XLlhdffDEIglgs1tra+thjjx3g5rKysvHjx/dWGgAA\nAAAAABwaA8KDW716dSaTCYIgl8v98pe/PPDNQ4cONSAEAAAAAADgsJUXdgAAAAAAAADQe6wg\nPLixY8f+53/+Z9gVAAAAAAAA0A2sIAQAAAAAAIA+xIAQuqShoWHFihVhVwAQfS0tLQ0NDe+9\n917YIQBEX1NTU0NDQ3Nzc9ghAETfypUrGxoacrlc2CEA/JEBIXTJnDlzXn/99bArAIi+7du3\nz54926dSAOgFq1atmj179pYtW8IOASD65s+fP3v27Gw2G3YIAH9kQAgAAAAAAAB9iAEhAAAA\nAAAA9CEx+z4fVurq6iZOnFhbWxt2CB+USCTy8/P79+8fdggAEZdOp1taWoqLi0tKSsJuASDi\nkslke3t7WVlZYWFh2C0ARFxLS0s6nR4wYEAsFgu7BYAgCIKCsAPgk6GysjLsBAD6hIKCAr90\nAOgdJSUlPo8CQO8oLy8POwGAP2GLUQAAAAAAAOhDDAgBAAAAAACgDzEgBAAAAAAAgD7EMwgB\nAAAAAOgRmUymubm5vb09CILCwsLy8vJ4PB52FAAGhAAAAAAA9IBcLrdt27bt27f369cvFou1\ntLSkUqlBgwYVFRWFnQbQ19liFLrk4YcffvbZZ8OuACD6Nm/ePGPGjDfffDPsEACib8mSJTNm\nzGhqago7BIDIam1t3bJly4ABA+bNm/f000+XlpY2Nzc3NzeH3QWAFYTQNY2NjZ07IQBAj0om\nk42NjdXV1WGHABB9iUSisbGxra0t7BAAIiudTnduKLp58+b33nsvl8sVFxenUqmwuwCwghAA\nAAAAgB4Qi8VyudzeZ7LZbCwWC6sHgD2sIIQuqa6uHjx4cNgVAERfPB6vrq4uLy8POwSA6Csr\nK6uuru5c2AEAPaG4uDiZTJaUlFRWVqZSqVwut2vXroEDB4bdBUDwwU9wEK66urqJEyfW1taG\nHQIAAAAA8HHt3LlzzZo18Xg8Fot1dHR0fgrfIkKA0FlBCAAAAABAj6ioqBg9enR7e3sulysq\nKiopKQm7CIAgMCAEAAAAAKDnFBUVFRUVhV0BwJ/ICzsAAAAAAAAA6D0GhAAAAAAAANCH2GL0\no1i+fPmPf/zjTZs2BUFwyy23jB07NuwiAAAAAAAA6BIDwkOTTqcfeeSRp556KpfLhd1Cr0om\nk3l5efF4POwQAKKsvb29ubm5ra2tsLCwoqKiX79+sVgs7CgAIiuVSqXT6aKiovz8/LBbAIi4\njo6ObDZbUlISdggAf2SL0UOwZs2av//7v3/yySdzuVxBgdlq3zJ16tQZM2aEXQFAlCWTyRUr\nVrz99ts//vGPX3rppcbGxvfffz/sKACibN68eVOmTFmzZk3YIQBE36OPPjplypRMJhN2CAB/\nZMrVVXPmzHnggQfS6XRhYeGECRPWrFnz8ssvhx0FAERELpfbuXNneXl5R0dHfn5+PB6vrKxc\nt25daWmp9esAAAAAdC8rCLvq5ZdfTqfTI0aMuPvuu//qr/4q7BwAIFIymczGjRuLi4v3nMnP\nzy8sLEylUiFWAQAAABBJVhAegosuuujaa68tKioKO4QQjB07tn///mFXABBZnc8azOVy/fv3\n/+xnPzt8+PDOLz2DEICeM2LEiLPPPruysjLsEACi78QTTxwxYoT/wAE4fBgQdtVNN9101FFH\nhV1BaMaNGxd2AgBRlp+fP2zYsEQiUVFRcc455wRBkEqlBg0aZH9RAHrO0UcfffTRR4ddAUCf\ncNppp4WdAMCfMCDsKtNBAKBHVVZWZjKZHTt2FBYWZrPZ9vb2T33qUwUF/loDAAAAoJt5ywkA\n4LBQWFg4ZMiQsrKyVCqVn59fUlJiY3MAAAAAeoIBIQDA4SIvL6+8vDzsCgAAAAAiLi/sAAAA\nAAAAAKD3WEHY22bPnj1v3rz9XX3nnXd6MwYAAAAAAIC+xoCwt40fP378+PH7u1pXV9ebMXRd\nQ0NDv379jj/++LBDAIi4lpaWVatWDRkyZPjw4WG3ABBxTU1NGzduPOaYY/r37x92CwARt3Ll\nytbW1lNPPTUWi4XdAkAQ2GIUumjOnDmvv/562BUARN/27dtnz569YsWKsEMAiL5Vq1bNnj17\ny5YtYYcAEH3z58+fPXt2NpsNOwSAPzIgBAAAAAAAgD7EgBAAAAAAAAD6EM8gPLz83d/93aBB\ng8KuYB+uv/76oqKisCsAiL6qqqpJkyaVlZWFHQJA9I0ZM+bYY4/1H6EA9ILx48fv3r07L896\nFYDDhQHh4WX48OFhJ7Bv1dXVYScA0CfE43G/dADoHeXl5eXl5WFXANAnDB48OOwEAP6Ej2wA\nAAAAAABAH2JACAAAAAAAAH2ILUa7ZPny5UuWLNn7zJo1azoP5s6d++677+45X1xcfOmll/Zq\nHAAAAAAAAHRZLJfLhd3wCfCrX/1qxowZXblzwIABXbwTAAAAAAAAep8tRgEAAAAAAKAPsYIQ\nAAAAAAAA+hArCAEAAAAAAKAPMSAEAAAAAACAPsSAW/B/XAAAIABJREFUEAAAAAAAAPoQA0IA\nAAAAAADoQwwIAQAAAAAAoA8xIAQAAAAAAIA+xIAQAAAAAAAA+hADQgAAAAAAAOhDDAgBAAAA\nAACgDzEgBAAAAAAAgD7EgBAAAAAAAAD6EANCAAAAAAAA6EMMCA8vyWQyk8mEXQHR0dHRkUwm\nw64AIPpyuVwymezo6Ag7BIDoy2QyyWQynU6HHQJA9KVSqWQymc1mww4Bup8B4eHljjvuWLFi\nRdgVEB2PPPLIlClTcrlc2CEARFwmk5kyZcpjjz0WdggA0dfY2DhlypS5c+eGHQJA9L366qtT\npkxZv3592CFA9zMgBAAAAAAAgD7EgBAAAAAAAAD6kJid9w4rdXV1EydOrK2tDTsEIqKjoyOb\nzZaUlIQdAkDE5XK59vb2vLy8eDwedgsAEZfJZHbv3l1YWFhQUBB2CwARl0ql0ul0PB7Py7PW\nCKLGn5JAlHmXFoDeEYvFfB4FgN6Rn5/vlw4AvaOwsLCwsDDsCqBHGPsDAAAAAABAH2JACAAA\nAAAAAH2ILUaByNq9e3d7e3sQBIWFhXbgAQAAAACATgaEQDTt3LlzzZo18Xg8Fot1dHQMGzZs\n0KBBsVgs7C4AAAAAAAiZASEQQe3t7WvWrBk4cGBBQUEQBLlcbuPGjUVFRf379w87DQAAAAAA\nQuYZhEAEJZPJkpKSgoKCF1544ZFHHgmCoKysLJlMht0FQGRlMpnp06fPnj077BAAom/9+vXT\np09vaGgIOwSA6Fu4cOH06dM3btwYdgjQ/QwIgQjK5XKdu4nu2LFj8+bNQRDk5eXlcrmwuwCI\nrFwu19TUtH379rBDAIi+9vb2pqamlpaWsEMAiL7m5uampqbdu3eHHQJ0PwNCIIIKCws/8IdL\ne3t753ajAAAAAADQx3m7HIigfv36HXHEETt27Bg8eHBeXl5ra2v//v09gBCAnhOLxWpqaoYO\nHRp2CADRV1paWlNTU1lZGXYIANE3cODAmpqa4uLisEOA7hez595hpa6ubuLEibW1tWGHwCde\nOp1ubm7u6OjI5XJFRUXl5eXxeDzsKAAAAAAACJ8VhEA0FRQUDBw4MNjreYQAAAAAAEDgGYRA\n5JkOAgAAAADA3gwIAQAAAAAAoA8xIAQAAAAAAIA+xIAQAAAAAAAA+hADQiDKWlpaEolE2BUA\nRF8ul0skEi0tLWGHABB9qVQqkUgkk8mwQwCIvmQymUgk0ul02CFA9zMgBKJs1qxZ06ZNy+Vy\nYYcAEHGZTGbatGlPPPFE2CEARN/atWunTZu2cOHCsEMAiL65c+dOmzZtw4YNYYcA3c+AEAAA\nAAAAAPoQA0IAAAAAAADoQwrCDgDoQWPHjt21a1fYFQBEX15e3vjx48vKysIOASD6jjzyyPHj\nx1dVVYUdAkD0nXDCCQMHDhw4cGDYIUD3MyAEouz4448POwGAPiEvL2/MmDFhVwDQJ1RUVPil\nA0DvGD58+PDhw8OuAHqELUYBAAAAAACgDzEgBAAAAAAAgD7EgBAAAAAAAAD6EANCAAAAAAAA\n6EMMCAEAAAAAAKAPMSAEomzp0qVz587N5XJhhwAQcdlsdu7cucuWLQs7BIDoSyQSc+fOfffd\nd8MOASD61q5dO3fu3J07d4YdAnQ/A0IgyhYvXlxfXx92BQDRl81m6+vrGxoawg4BIPq2bdtW\nX1/f2NgYdggA0bd69er6+vr3338/7BCg+xkQAgAAAAAAQB9iQAgAAAAAAAB9SMyjuQ4rdXV1\nEydOrK2tDTsEIqKjoyObzZaUlIQdAkDE5XK59vb2vLy8eDwedgsAEZfJZHbv3l1YWFhQUBB2\nCwARl0ql0ul0PB7Py7PWCKLGn5JAlHmXFoDeEYvFfB4FgN6Rn5/vlw4AvaOwsLCwsDDsCqBH\nGPsDAAAAAABAH2JACAAAAAAAAH2IASEAAAAAAAD0IZ5BeMhWrlxZX1+/bNmy7du3FxYWDho0\n6Oijj77gggtqa2vDTgMAAAAAAICDMCA8BOl0+mc/+9nzzz+fy+U6z3R0dLS2tq5bt+7ll1++\n6KKLvvWtb8VisXAjAQAAAAAA4AAMCLsql8tNmzbttddeC4KguLj47LPPPuqoozo6OpYvX97Q\n0JDL5Z577rkBAwZcddVVYZcC/88zzzyzefPm66+/3vAegB6VyWR+/vOfV1VVjR8/PuwWACJu\n/fr1zz333JgxY8aMGRN2CwARt3DhwiVLlowfP76qqirsFqCbGRB21UsvvdQ5Haypqbn99tsH\nDx6859Kbb775ox/9aPfu3b/85S8vvPDCysrK8DKBP7Ft27ampqawKwCIvlwu19TUVFRUFHYI\nANHX3t7e1NR07LHHhh0CQPQ1Nzc3NTXt3r077BCg+xkQdsnu3bsfeeSRIAhKS0v/v//v/xs4\ncODeV0899dTLLrvsD3/4w4gRI1pbWw0IAQAAAAAAOGwZEHZJQ0PDjh07giC4+OKLPzAd7HTl\nlVf2ehRwcNXV1YWFhWFXABB9sVispqZm6NChYYcAEH2lpaU1NTU+nQxALxg4cGBNTU1xcXHY\nIUD3MyDsknnz5nUefO5znwu3BDgkF110UdgJAPQJ+fn5EyZMCLsCgD5h2LBhfukA0Ds88hYi\nzICwS1asWBEEQWVl5bBhwzrPtLa2btmypaOjo7Ky0kfFAQAAAAAA+KQwIDy49vb2rVu3BkEw\nfPjwIAjefvvtxx9/fOnSpblcrvOGwYMH/8Vf/MUll1wSj8fDDAUAAAAAAICDyQs74BNg06ZN\nnbPA/v37P/fcc9/97neXLFmyZzoYBMG2bdtmzpx5yy23vP/+++FlAgAAAAAAwMFZQXhwbW1t\nnQcbNmxYsGDBwIEDv/rVr9bW1g4ePHjnzp0LFy58/PHHd+7c2djYOHXq1B/+8IexWCzcYAAA\nAAAAANgfA8KDSyaTnQdr164dOnToP//zP1dUVHSeGTx48Be/+MVTTz315ptv3rVr13/9138t\nWLDgzDPPPMB3mz179rx58/Z39Z133unGcgAAAAAAAPgAA8KD23s30WuvvXbPdHCPqqqqK664\n4oEHHgiC4KWXXjrwgHD8+PHjx4/f39W6urqPFwv8iZaWlnQ6XVlZGXYIABGXy+Xef//9goKC\n8vLysFsAiLhUKtXa2lpcXFxSUhJ2CwARl0wm29vby8vLCwqMEiBqPIPw4Pb8wZ2fn3/aaaft\n856zzz6782D58uW9lAV0waxZs6ZNm7b3mB8AekImk5k2bdoTTzwRdggA0bd27dpp06YtXLgw\n7BAAom/u3LnTpk3bsGFD2CFA9zMgPLiysrLOg/Ly8vz8/H3eM3jw4Hg8HgRBa2trKpXqvTgA\nAAAAAAA4FAaEB1ddXZ2XlxcEQXt7+wFuKyoq6jzIZDK9kQUAAAAAAACHzsbBB1dYWDhs2LD1\n69e3t7dv2bLlyCOP/PA9qVRq165dnTcXFxf3eiOwb2PHju38dxMAelReXt748eP37DwBAD3n\nyCOPHD9+fFVVVdghAETfCSecMHDgwIEDB4YdAnQ/A8IuOf3009evXx8EwYIFCy6++OIP37By\n5cpsNhsEwVFHHdXbccD+HX/88WEnANAn5OXljRkzJuwKAPqEiooKv3QA6B3Dhw8fPnx42BVA\nj7DFaJf8+Z//eefBU089lUwmP3zDf/7nf3YenHbaab2XBQAAAAAAAIfIgLBLampqxo4dGwTB\n9u3b77rrrra2tr2vPvHEEwsWLAiCoLi4+MILLwwnEQAAAAAAgF7x61//+te//nXn9pNdtG3b\ntp7rOVS2GO2qSZMmrV69esuWLW+99daNN9547rnnVlVVNTc3L1y4cNWqVZ33fPOb3xwwYEC4\nnQAAAAAAAPSoSZMmBUFQUFBw9dVXf+c73ykvLz/w/el0+jOf+cyxxx57/fXXX3nllbFYrFcy\n9yuWy+XCLfgE2bhx49SpU995550PX4rH45MmTbrgggs+5o+oq6ubOHFibW3tx/w+AAAAAAAA\n9JBhw4btOR45cuS///u/f+YznznA/U1NTaeffnrn8QUXXDB9+vSioqKeTTwgW4wegqqqqrvv\nvvvb3/72mDFjBg8eXFBQUFZWdvTRR19++eU//elPP/50EAAAAAAAgE+KvLy8IAjefffdyy67\n7De/+c0B7mxtbd0zEfzNb37zve99rzf69s8KwsOLFYTQvZYuXdrc3Dx27NjQ12sDEG3ZbHb+\n/PkVFRUnnnhi2C0ARFwikXj77bdHjhw5cuTIsFsAiLi1a9e+9957J554YkVFRdgtcNjpXEH4\nd3/3dxUVFXfddVcqlSooKLj//vsPsJxs165dTz755B133NHR0REEwYsvvhjiPMgKQiDKFi9e\nXF9fH3YFANGXzWbr6+sbGhrCDgEg+rZt21ZfX9/Y2Bh2CADRt3r16vr6+vfffz/sEDh8FRQU\nfOtb35o5c2ZpaWk6nZ40adIbb7yxv5v79ev39a9//f777+/8cubMmb2VuQ8GhAAAAAAAAPAR\njR079tFHHy0pKdm9e/d1113X1NR0gJvPO++8M844IwiCBQsW9FbgPhgQAgAAAAAAwEd3+umn\n33vvvXl5eVu3bv3GN77R1tZ2gJtPPfXUIAgOPEfsaQUh/myAnnb11Vdns1kPIASgp+Xn599y\nyy2dTyYHgB5VU1Nzyy23FBYWhh0CQPSde+65Z599djweDzsEPhkuuuii22677Qc/+MHbb799\n00033X///ft7a3rgwIFBECSTyd4N/BPewgCiLB6Pl5SUhF0BQPTFYrGSkhL/2QxAL8jPzy8p\nKSko8JlvAHpcYWFhSUmJj0JC191www2XXXZZEATPP//8j370o/3dtm7duiAIysvLe6/sQ/yL\nDQAAAAAAAN1g6tSpY8aMCYLgJz/5yb333vvhG9ra2urr64MgqKmp6e24vRgQAgAAAAAAQDeI\nx+MPPfTQpz71qSAI7rrrrptuuimRSOy5mkwmv/Od72zatCkIgrFjx4ZW6RmEAAAAAAAA0F0q\nKysfffTRK664Ys2aNU8++eSzzz573nnnjRgxYteuXa+88sqGDRuCICgsLLzqqqtCjDQgBAAA\nAAAAgG4zbNiwZ555ZsKECb///e/b29ufffbZD9xw2223jRw5MpS2TrYYBQAAAAAAgO40aNCg\np556avLkyaWlpXufHzBgwNSpUydNmhRWWCcrCIEoe+aZZzZv3nz99dfHYrGwWwCIskwm8/Of\n/7yqqmr8+PFhtwAQcevXr3/uuefGjBkzZsyYsFsAiLiFCxcuWbJk/PjxVVVVYbfAYWfUqFFB\nEAwYMOAA9xQVFdXV1X3rW9967bXX1q1bF4/Hjz766LPOOqu4uLi3MvfLgBCIsm3btjU1NYVd\nAUD05XK5pqamoqKisEMAiL729vampqZjjz027BAAoq+5ubmpqWn37t1hh8DhaP78+V28s3//\n/ofh54ltMQoAAAAAAAB9iBWEQJRVV1cXFhaGXQFA9MVisZqamqFDh4YdAkD0lZaW1tTUVFZW\nhh0CQPQNHDiwpqbmcNgLEeh2sVwuF3YD/09dXd3EiRNra2vDDgEAAAAAACCarCAEAAAAAACA\nQ3DfffcFQfDZz372s5/9bNgtH4VnEAIAAAAAAMAhuPPOO++8887XX3+9i/cvX778L//yLy+6\n6KIHHnigR8O6yIAQAAAAAAAAetDo0aNPPvnkpUuX/uM//uMf/vCHsHMMCAEAAAAAAKCH3XHH\nHccee2wqlbrppptSqVS4MQaEAAAAAAAA0LOKi4v/7d/+raio6A9/+MPUqVPDjTEgBKKspaUl\nkUiEXQFA9OVyuUQi0dLSEnYIANGXSqUSiUQymQw7BIDoSyaTiUQinU6HHQLRMXr06Ntuuy0I\ngv/7f//v4sWLQywpCPFnA/S0WbNmrV+//o477ojFYmG3ABBlmUxm2rRpf/Znf/aNb3wj7BYA\nIm7t2rUzZ84899xzzz333LBbAIi4uXPnzps375prrhk1alTYLXCYev7559evX39IL8nlcoWF\nhalUavLkyfPnz++hsIMyIAQAAAAAAIBDtnz58uXLl3+0165bt657Yw6JLUYBAAAAAACgD7GC\nEIiysWPH7tq1K+wKAKIvLy9v/PjxZWVlYYcAEH1HHnnk+PHjq6qqwg4BIPpOOOGEgQMHDhw4\nMOwQOHx96Utfuvjii8Ou+CgMCIEoO/7448NOAKBPyMvLGzNmTNgVAPQJFRUVfukA0DuGDx8+\nfPjwsCvgsHbsscd+8YtfDLvio7DFKAAAAAAAAPQhBoQAAAAAAADQhxgQAgAAAAAAQB/iGYQA\nAAAAAABwCI444oggCPr16xd2yEdkQAgAAADwyZDNZtva2tLpdF5eXmlpaUGBN3YAAMLx+9//\nPuyEj8XfkUCULV26tLm5eezYsbFYLOwWAKIsm83Onz+/oqLixBNPDLsFgMhKpVLbt29vbGxc\nu3btkCFDRo8eXVFRUVpaGnYXAJG1du3a995778QTT6yoqAi7BehmnkEIRNnixYvr6+vDrgAg\n+rLZbH19fUNDQ9ghAERZIpHYuXNnLpdraGh4//3329vbd+7cmclkwu4CILJWr15dX1///vvv\nhx0CdD8rCAEAAAAOd+l0esOGDUceeeS2bds6z8Tj8W3btllECABw2Eqn08uWLWtsbGxtbS0v\nL6+pqTnxxBPz8/PD7goCA0IAAACAw18ul4vFYh94ekIsFsvlcmElAQDQ0tIyffr05cuX//zn\nP9/7fGtr6z333PPwww83NzfvfX7gwIHXX3/9DTfcUFhY2LulH+TvyMNLXV3dxIkTa2trww6B\niOjo6MhmsyUlJWGHABBxuVyuvb09Ly8vHo+H3QJANOVyuU2bNrW3txcUFKRSqYKCglgstn37\n9tGjRxcVFYVdB0A0pVKpdDodj8fz8jytDPZhxYoVX//615uamvr167dq1ao95zds2PCVr3xl\n7dq1+3vhmDFjZs6cWV5e3huV+2EFIRBl3qUFoHfEYjGfRwGgR8Visf79+2/evLmsrKyoqCid\nTre2to4aNcp0EICeU1hYGPoiJzhs7dq1a8KECU1NTUEQJJPJ7du3Dxo0KAiCdDo9YcKEPdPB\nY4899uSTT66oqHj//ffffPPNxsbGIAgaGhomT578wAMPhJdvQAgAAADwSdCvX7/jjjuutbW1\nczHHEUccUVZWFnYUAEAf9fDDD2/YsCEIgjPOOONf//VfO6eDQRA8/vjjK1asCIJgxIgRP/7x\nj//H//gfe7/qlVde+fu///utW7e+8MILCxcuPOOMM3q/vJN1wQAAAACfDCUlJUcccURVVdWQ\nIUPKy8s/8EhCAAB6zfPPPx8EwZAhQ2bOnPlnf/Zne84//fTTQRCUlpb+4he/+MB0MAiCz3/+\n8zNnziwoKAiC4Fe/+lXv5X6IASEAAAAAAAAcgs6HDv71X//1B5450rl88Morrxw1atQ+X1hb\nW3vhhRcGQbBw4cKez9wvA0IAAAAAAAA4BK2trUEQjBw58gPnd+3aFQTBySeffIDXjhkzJgiC\nzZs391jdwRkQAgAAAAAAwCGoqKgIguD999//wPmqqqogCDo3Ed2fvLy8IAhSqVSP1R2cASEQ\nZc8888z06dNzuVzYIQBEXCaTmT59+uzZs8MOASD61q9fP3369IaGhrBDAIi+hQsXTp8+fePG\njWGHwOGocwfR3/zmNx8437k6cPny5Qd47bJly4IgGDJkSI/VHZwBIRBl27Zta2pqCrsCgOjL\n5XJNTU3bt28POwSA6Gtvb29qamppaQk7BIDoa25ubmpq2r17d9ghcDj6whe+EARBQ0PDzJkz\n9z5/1VVXBUHwxBNPJJPJfb7wv//7vzs/YXzKKaf0fOZ+GRACAAAAAADAIbjqqqsGDBgQBMEt\nt9wyZcqUzkcPBkFw1llnfeUrX9m0adM//MM/pNPpD7xq2bJlX/3qVzs6OoIguOyyy3q5eW8H\n2gIV4JOuurq6sLAw7AoAoi8Wi9XU1AwdOjTsEACir7S0tKamprKyMuwQAKJv4MCBNTU1xcXF\nYYfA4eiII46YOnXqDTfckMlk7rnnnhkzZvzlX/7l5z73ueOPP/7//J//U1pa+tBDD61atWrC\nhAk1NTWpVGrNmjWvvPLKq6++ms1mgyD4i7/4i/POOy/E/phHcx1W6urqJk6cWFtbG3YIAAAA\nAAAAB/Lcc899+9vfbm1t/cD5goKCbDbbOQv8sHPPPfdnP/tZaWlpzwfuly1GAQAAAAAA4JBd\ndNFF8+bNu+aaa/r377/3+XQ6vc/pYFVV1dSpU2fMmBHudDCwgvBwYwUhAAAAAADAJ0sqlfrt\nb3/7xhtv/OEPf1i/fn1LS0vnssJ+/fr179+/pqbmuOOO+9znPnfaaafFYrGwY4PAMwgBAAAA\nAADg4ygsLDz//PPPP//8sEO6yhajAAAAAAAA0IcYEAIAAAAAAEAfYkD4sWzZsuWKK664+OKL\nL7744tdffz3sHOCDWlpaEolE2BUARF8ul0skEi0tLWGHABB9qVQqkUgkk8mwQwCIvmQymUgk\n0ul02CFwWMtms6+++uodd9wxd+7cA9+5evXqrVu39k7VQRkQfnS5XO7ee+/1FzkczmbNmjVt\n2rRcLhd2CAARl8lkpk2b9sQTT4QdAkD0rV27dtq0aQsXLgw7BIDomzt37rRp0zZs2BB2CBy+\nli1bdsEFF3zta1+7//77ly1bduCb77333lNOOWXSpEmbNm3qnbwDMCD86J5//vklS5aEXQEA\nAAAAAEBvW7p06Ze//OUVK1Z0fnnQ1YGJRCKXy/3617++8MIL161b1/OBB2JA+BFt2bLlwQcf\nDIJg0KBBYbcAAAAAAADQe9Lp9A033NDW1hYEQXl5+RVXXHHhhRce+CWjR48uLy8PgmDr1q3f\n/OY3s9lsb4TuhwHhR5HL5e6555729vaKioovfvGLYecA+3X66aePGzcu7AoAoi8vL2/cuHFj\n/n/27jy8qvpe9P93Zw4hkECYQpliW6pYtVBqFezhIHWopdX7OJ5zFalKtU791ZZah9N6PNej\nnt72Unv63Ka2ike0Rx+14FQx1ikogliBouCAxJitjAESMif790d6KUUIBJMsWHm9/trZ67v2\nfj+2uDGfvb5rwoSoQwCIv6KiomnTppWUlEQdAkD8feYzn5k2bVpBQUHUIXAwmj9//rp160II\nX/jCF8rLy3/2s5996Utf6viUH/3oR4sXLz7uuONCCCtXrnzqqad6oHNvMiJ870PXk08+uWLF\nihDCzJkz3YMQDmZHHXVU1AkA9AppaWmTJ0+OugKAXqGwsNCHDgA9Y/To0aNHj466Ag5SCxcu\nDCFkZ2ffeeedRUVFH1+wZMmSEMKwYcNGjBix88mCgoL//M///PKXv9zU1PToo4+eeuqpPRa8\nG1cQdtr69evvvvvuEML48eOnTp0adQ4AAAAAAAA9qv1CsmnTpg0dOnSPC84444wzzjij/XZ1\nuxoyZEj7XHD58uXdHdkBA8LO2bm5aJ8+fa644oqocwAAAAAAAOhpW7ZsCSEcfvjhezza2tq6\n24NdtW8Xv379+m6r2zcDws554oknVq5cGUL41re+tccrRgEAAAAAAIi3hoaGEEJubu4ej27e\nvLn9QXV19ceP9uvXL4TQ0tLSbXX7ZkDYCevXr587d24I4ZhjjjnppJOizgEAAAAAACAC+fn5\nYe9XAX7wwQftD1atWvXxo8lkMoTQv3//bqvbNwPC/bVzc9Hc3FybiwIAAAAAAPRao0aNCiG8\n8MILezxaVlYWQsjPz1+9evWaNWt2PdTa2rpw4cIQwmGHHdb9mXuVEeF7H1oef/zx9s1FL7zw\nwsGDBx/w67zwwgsd3HaysrLygF8Z+LgVK1Zs37590qRJiUQi6hYA4qytre2ll17q37//5z//\n+ahbAIi56urqVatWjRw5cuTIkVG3ABBz69at++CDDz7/+c9He50THJwmTpz4+uuvr169+ve/\n//25556766FkMnnXXXeFEM4777zS0tJrrrnm/vvvb7/isLW19aabbqqoqAghHHfccZGUtzMg\n3C8fffTRPffcE0L4/Oc/f8opp3ySlxo7duygQYP2dnT16tWf5MWB3SxdurSysnLSpElRhwAQ\nc21tbWVlZaNHjzYgBKC7bdq0qaysbMqUKQaEAHS3t99+e9GiRSNGjDAghI8799xzf/Ob34QQ\nZs+e/d5775133nkjR45sbGwsLy+/8cYbt2/fPmbMmCuuuGLu3Ll//vOfjzvuuClTpmRlZS1e\nvLh9OpiRkbHbWLGHGRDuWyqVmjNnTkNDQ05OzlVXXfUJr0MaMmTIkCFD9nY0Ly/vk7w4AAAA\nAAAA3e1zn/vceeedd//997e2tv7yl7/85S9/mZaW1tbWtnPB5ZdfPnDgwO9+97u33XZbdXX1\nI488suvp3/ve90aMGNHj1X/jHoT79thjj7XfQ3LmzJkdzPYAAAAAAADoJf7t3/7t5JNP3vnj\nrtPBs846q/0CwSuvvPLyyy/PyPjbBXu5ubnXX3/91Vdf3ZOpH5dIpVLRFhzkNm3adNlllzU2\nNg4bNuyCCy74+ILXXnvt6aefDiF84xvfOPzww0MIxcXFY8aMObC3mz179owZM8aNG/dJmoGd\nampqWlpaCgsLow4BIOZSqdTWrVszMjLa7ygAAN2nubm5trY2JycnNzc36hYAYq6+vr6hoSE/\nP3/X2Qawm8cee2zevHlLly6tr69PJBKHH374xRdffM455+y65sMPP1y8ePH27duHDBly/PHH\n9+vXL6ranQwI9+GNN9649tprO3XK9OnTL7nkkgN7OwNCAAAAAACAQ86OHTuysrIyMzOjDtkv\nxv4AAAAAAADwieTl5UWd0AkGhPtwxBFHLFiwoIMFjz/++K9//esQwg9+8IMTTjihp7oAAAAA\nAAA4KCxZsiSEMGLEiGHDhkXdsl8MCAEAAAC+9N5sAAAgAElEQVQAAODAnXHGGSGE3Nzc6667\nbubMmYlEIuqifUiLOgAAAAAAAAAOefX19TfeeONZZ51VUVERdcs+GBACAAAAAADAJzVq1KgQ\nwssvvzxt2rS77rorlUpFXbRXBoRAnM2fP7+0tPRg/rcwAPHQ2tpaWlr66KOPRh0CQPxVVlaW\nlpYuW7Ys6hAA4u+VV14pLS398MMPow6BQ8b1119/yy239OnTp66u7oYbbjjrrLPef//9qKP2\nzIDwkzrttNMWLFiwYMGCE044IeoWYHebNm1KJpNRVwAQf6lUKplMbt68OeoQAOKvoaEhmUzW\n1NREHQJA/G3fvj2ZTDY1NUUdAoeSGTNmPPPMM8cff3wI4eWXXz7xxBPnzp17EF7EYkAIAAAA\nAAAAXWPkyJEPPPDAv//7v+fl5dXV1V133XVnn312ZWVl1F1/x4AQiLOioqLi4uKoKwCIv0Qi\nUVxcPHDgwKhDAIi/nJyc4uLi/Pz8qEMAiL9+/foVFxdnZWVFHQKHnkQiccEFF/zpT3/6yle+\nEkJ46aWXTjzxxHvuuefguZQwcfCkEEKYPXv2jBkzxo0bF3UIAAAAAAAA+2X48OEhhNLS0tNO\nO223Q/Pmzbv55pvbt4ifPHny//7f//tTn/pUBIl/zxWEAAAAAAAA0C3++Z//+U9/+tOUKVNC\nCOXl5SeeeOK9994bdZQBIQAAAAAAAHSb4uLiefPm/fznPy8qKqqtrf3hD3947rnnVlVVRZiU\nEeF7AwAAAAAAwCHnrrvu+viTzz777IYNGzo466KLLpo7d+5HH3304osvTp06dc2aNd0WuA8G\nhAAAAAAAANAJN9xww8efvP/++/f/FWpra7sup9NsMQoAAAAAAAC9iCsIgTirqalpaWkpLCyM\nOgSAmEulUlu3bs3IyMjPz4+6BYCYa25urq2tzcnJyc3NjboFgJirr69vaGjIz8/PyDBKgN39\n6le/2vXH73znOyGESy655Atf+EJERZ3jTzUQZw888EBlZeWPf/zjRCIRdQsAcdba2jpnzpzR\no0dfeOGFUbcAEHPr1q2bN2/elClTpkyZEnULADFXXl6+aNGimTNnjho1KuoWOOh885vf3PXH\n9gHhxIkTTzvttIiKOscWowAAAAAAANCLuIIQAAAAAAAADtzFF18cQhgzZkzUIfvLgBCIs4kT\nJ44dOzbqCgDiLy0tbdq0af379486BID4KyoqmjZt2siRI6MOASD+PvOZz+Tm5hYUFEQdAoeA\nm266KeqEzjEgBOLsqKOOijoBgF4hLS1t8uTJUVcA0CsUFhb60AGgZ4wePXr06NFRVwDdwoAQ\nAAAAAAAAPqmmpqb33ntv27ZttbW1iUSib9++ffv2HTlyZF5eXtRpuzMgBAAAAAAAgAP05ptv\nPvLII2VlZe+8805ra+tuRxOJxKc+9akvfvGLp5122tSpU7OzsyOJ3I0BIQAAAAAAAHTaxo0b\nf/zjH8+fP7+DNalUqrKysrKy8pFHHhkyZMjs2bPPOeecRCLRY5F7ZEAIAAAAAAAAnVNRUXHu\nuee+//77O5/Jzc3Ny8vbunVrS0tLCOHwww8vKSnZvHnzW2+9tWXLlhDC+vXrr7nmmkWLFv38\n5z/PyIhySJcW4XsDAAAAAADAIaelpeXb3/52+3Rw6NChP/nJT15++eV33nln+fLl77777m9/\n+9tRo0a9/fbbX/nKVx566KGVK1f+6U9/uuqqq/r27RtCePjhh2+88cZo+w0IgThbsWJFeXl5\nKpWKOgSAmGtraysvL1+5cmXUIQDEX3V1dXl5+a5fVAeAbrJu3bry8vJt27ZFHQIHo0ceeaT9\n9wD/8A//8Pzzz19yySUjR45sP5SRkXHKKac8+uijgwcPvu6665YuXRpCGDt27A9/+MPnnnvu\niCOOCCH813/912uvvRZhvwEhEGdLly4tKyuLugKA+GtraysrK1u2bFnUIQDE36ZNm8rKytau\nXRt1CADx9/bbb5eVlW3dujXqEDgYLViwIIQwePDgX//61+3XBe5m4MCB11xzTWtr689//vOd\nTw4bNuzuu+/Oy8tLpVK///3vey73YwwIAQAAAAAAoBPefPPNEMKZZ56Zn5+/tzVf/vKXQwgv\nvvjirlfiDh8+/Otf/3oI4aWXXur+zL0yIAQAAAAAAIBO2LRpUwhh1KhRHawpLi4OIbS1tX3w\nwQe7Pt++y+hHH33UnYH7kBHhewN0t7PPPrulpSWRSEQdAkDMpaenX3311RkZ/nYNQLcbPXr0\n1VdfnZOTE3UIAPE3efLkL37xix1cHQW9WZ8+fbZt21ZdXd3BmvYhYgihrq5u1+cbGhpCCJmZ\nmd2Xt0+uIATiLD8/v7CwMOoKAOIvkUgUFhb6z2YAekBmZmZhYWFubm7UIQDEX25ubmFhoa9C\nwh6NHDkyhPDUU091sGbhwoXtDwYPHrzr80uWLAn/7/rCqBgQAgAAAAAAQCdMmTIlhPDnP//5\n//7f/7vHBRUVFT/72c9CCEOHDt11J9Lnn3/+2WefDSGMGzeuJ0L3woAQAAAAAAAAOuHCCy9s\n3/X95ptvvuSSS15++eWmpqb2Qx9++OFvfvObr33ta5s3bw4hXHDBBTvP+vnPfz5z5sy2trYQ\nwj/90z9FEf5XLg0GAAAAAACAThg6dOjNN9/8gx/8IITwxBNPPPHEE+np6fn5+U1NTbvecfDI\nI4+cNWvWzh+XLl3a2NgYQjj//PO//OUv93z2Tq4gBAAAAAAAgM75p3/6p5/97Gd9+vRp/7G1\ntXXr1q27TgePO+64e++9d9e7R3/2s5/NzMy8+uqrb7nllp7O/XuJVCoVbQG7mj179owZM6Ld\ndhYAAAAAAID9sXHjxv/6r/965pln3njjjfZdRvv16/elL33p7LPP/trXvpZIJHZd/Pbbb/fv\n33/w4MERxf6NAeHBxYAQutb8+fPXr19/ySWX7PZvYQDoWq2trb/97W+HDRs2ffr0qFsAiLnK\nysonn3xywoQJEyZMiLoFgJh75ZVXli9fPn369GHDhkXdAoeGHTt2ZGRkZGdnRx2yb7YYBeJs\n06ZNyWQy6goA4i+VSiWTyfZ7jwNAt2poaEgmkzU1NVGHABB/27dvTyaT7VdEAfsjLy/vkJgO\nBgNCAAAAAAAA6FUyog4A6EZFRUWtra1RVwAQf4lEori4eODAgVGHABB/OTk5xcXF+fn5UYcA\nEH/9+vUrLi7OysqKOgQOam1tbS+88MKzzz771a9+dfLkyR2sfPvttwsKCgYNGtRjbR1wD8KD\ni3sQAgAAAAAAHBJWrlz53e9+d/Xq1SGEG2644bLLLutg8VVXXfXwww9/7Wtf+9d//dehQ4f2\nVOOe2WIUAAAAAAAAOmfFihX/43/8j/bpYAhh48aNHa+vrq5OpVKPP/74KaecUlFR0f2BHTEg\nBAAAAAAAgE5oaWm57LLL6urqQgj5+fnnnHPOKaec0vEpRxxxRPtG8Rs3bvz2t7/d1tbWE6F7\nYUAIAAAAAAAAnTB//vx169aFEL7whS+Ul5f/7Gc/+9KXvtTxKT/60Y8WL1583HHHhRBWrlz5\n1FNP9UDn3hgQAgAAAAAAQCcsXLgwhJCdnX3nnXcWFRV9fMGSJUuWLFlSWVm565MFBQX/+Z//\nmZWVFUJ49NFHeyZ1jwwIAQAAAAAAoBNWrFgRQpg2bdrQoUP3uOCMM84444wz7rrrrt2eHzJk\nyKmnnhpCWL58eXdHdsCAEIizmpqa6urqqCsAiL9UKlVdXV1TUxN1CADx19zcXF1dXV9fH3UI\nAPFXX19fXV3d0tISdQgcjLZs2RJCOPzww/d4tLW1dbcHuyopKQkhrF+/vtvq9s2AEIizBx54\nYM6cOalUKuoQAGKutbV1zpw5Dz30UNQhAMTfunXr5syZ88orr0QdAkD8lZeXz5kzp6qqKuoQ\nOBg1NDSEEHJzc/d4dPPmze0P9ngFS79+/UII0U7fDQgBAAAAAACgE/Lz88PerwL84IMP2h+s\nWrXq40eTyWQIoX///t1Wt28GhAAAAAAAANAJo0aNCiG88MILezxaVlYWQsjPz1+9evWaNWt2\nPdTa2rpw4cIQwmGHHdb9mXtlQAjE2cSJE6dNmxZ1BQDxl5aWNm3atAkTJkQdAkD8FRUVTZs2\nrf2+NQDQrT7zmc9MmzatoKAg6hA4GE2cODGEsHr16t///ve7HUomk3fddVcI4bzzzgshXHPN\nNTU1Ne2HWltbb7rppoqKihDCcccd16PFfy/h1lwHldmzZ8+YMWPcuHFRhwAAAAAA0KulUqm2\ntrb09PSoQ+BgtHr16hNPPDGEkJ6eftlll5133nkjR45sbGwsLy+/8cYbKysrx4wZM3/+/IkT\nJzY2NhYWFk6ZMiUrK2vx4sXt08GMjIzy8vIRI0ZE1Z8R1RsDAAAAAAAHoba2tm3btjU0NHz0\n0UfDhg3r27dv3759o46Cg8vnPve588477/77729tbf3lL3/5y1/+Mi0tra2tbeeCyy+/fODA\ngd/97ndvu+226urqRx55ZNfTv/e970U4HQy2GAUAAAAAAHa1ZcuWqqqqpqamQYMG1dfXv/vu\nuzs3SAR2+rd/+7eTTz5554+7TgfPOuusc889N4Rw5ZVXXn755RkZf7tgLzc39/rrr7/66qt7\nMvXjbDF6cLHFKAAAAAAAEWpoaFi9enVRUVFa2l8vMWpqasrOzh46dGgikYi2DQ5Cjz322Lx5\n85YuXVpfX59IJA4//PCLL774nHPO2XXNhx9+uHjx4u3btw8ZMuT444/v169fVLU72WIUAAAA\nAAD4q5aWlszMzJ3TwRBCVlbWRx99VFRUlJmZGWEYHJy+/vWvf/3rXw8h7NixIysra49/TIYN\nG3bGGWf0eFpHDAgBAAAAAIC/2u0+aiGE1tbW9ucjKoJDQ15eXtQJneDPMxBnK1asKC8vt5cy\nAN2tra2tvLx85cqVUYcAEH/V1dXl5eXvv/9+1CEAxFZOTs6gQYPq6uoqKyuXLFmyffv22tra\nESNGpKenR50GdBkDQiDOli5dWlZWFnUFAPHX1tZWVla2bNmyqEMAiL9NmzaVlZWtXbs26hAA\nYistLa2goCAvL2/58uVPP/30unXrBg4cWFhYGHUX0JVsMdo577777sKFC1etWrVp06bGxsY+\nffoMHz78qKOO+upXvzpkyJCo6wAAAAAA4JPKyckZPHjwsGHD1q1bN2bMmEGDBiUSiaijgK5k\nQLi/mpqaSktLFy5cuOuTNTU1q1evXr169cMPP3zBBRecfvrpUeUBAAAAAEBXSU9Pz8nJycrK\nysnJMR2E+Em4Ndf+SKVSN99886uvvtr+47hx48aOHduvX78PP/xwyZIl1dXV7c9fccUVJ510\n0id5o9mzZ8+YMWPcuHGftBgIIYRQU1PT0tJiAwQAulsqldq6dWtGRkZ+fn7ULQDEXHNzc21t\nbU5OTm5ubtQtAMRcfX19Q0NDfn5+RoZrjSBu/KneLwsXLmyfDmZlZf3oRz+aMGHCzkMXXXRR\naWlp+03O5s6dO2XKlKysrMhCgb/nt7QA9IxEIuH7KAD0jMzMTB86APSM3Nxc30eBuEqLOuDQ\nMH/+/PYHF1100a7TwRBCTk7O5ZdfPmjQoBBCTU3NypUrI+gDAAAAAACA/WNAuG/btm2rqqoK\nIWRmZv7jP/7jxxekp6ePHz++/XH7SgAAAAAAADg42WJ03/r37//www9XV1fX19fn5OTscc3O\n66ybm5t7MA0AAAAAAAA6x4Bwv6SnpxcVFXWwYP369e0Phg0b1iNFAAAAAAAAcCBsMdoFampq\nli1bFkLIzc095phjos4BAAAAAACAvTIg7AKlpaVNTU0hhNNPP71Pnz5R5wB/8+STT95zzz2p\nVCrqEABirrW19Z577lm4cGHUIQDEX1VV1T333LN8+fKoQwCIv2XLlt1zzz07988D4sQWo5/U\nf//3fz///PMhhLFjx5511ln7XL9t27ba2tq9HW1sbOzKOOj1kslkZWVl1BUAxF8qlVq7dm1b\nW1vUIQDEX11d3dq1a0eOHBl1CADxt2XLlrVr1zY0NEQdAnQ9A8JP5N57733ggQdCCMOHD7/x\nxhszMvb9z/OVV1559dVX93b0ww8/7Mo+AAAAAAAA+HsGhAeosbHx//yf/7No0aIQwogRI266\n6aZ+/frtz4knnXTSSSedtLejs2fP7rJEIISioqLW1taoKwCIv0QiUVxcPHDgwKhDAIi/nJyc\n4uLi/Pz8qEMAiL9+/foVFxdnZWVFHQJ0vYRbcx2AjRs3/q//9b/Wrl0bQjjiiCNuuOGGvn37\ndskrz549e8aMGePGjeuSVwMAAAAAAIDduIKw0954441///d/37ZtWwjhxBNP/M53vpOZmRl1\nFAAAAAAAAOwXA8LOWbx48e23397S0pJIJGbOnHn66adHXQQAAAAAAACdYEDYCYsXL77tttta\nW1uzs7O///3vH3vssVEXAQAAAAAAQOcYEO6vNWvW/PSnP21tbc3JybnpppsOP/zwqIsAAAAA\nAACg09KiDjg01NXV/cd//EdTU1NGRsYNN9xgOggAAAAAAMAhyoBwv8ydO3fDhg0hhPPPP/+o\no46KOgfYX42NjfX19VFXABB/qVSqvr6+sbEx6hAA4q+1tbW+vr6lpSXqEADir7m5ub6+vq2t\nLeoQoOvZYnTfNmzYsHDhwhBCIpGora29//77O1jct2/f6dOn91QasA/33ntvZWXlj3/840Qi\nEXULAHHW2tp62223jR49+sILL4y6BYCYW7t27bx586ZMmTJlypSoWwCIueeee27RokUzZ84c\nNWpU1C1AFzMg3Le33367tbU1hJBKpR588MGOFw8dOtSAEAAAAAAAgIOWLUYBAAAAAACgF3EF\n4b5NmjRpwYIFUVcAB2LixIljx46NugKA+EtLS5s2bVr//v2jDgEg/oqKiqZNmzZy5MioQwCI\nv8985jO5ubkFBQVRhwBdz4AQiLOjjjoq6gQAeoW0tLTJkydHXQFAr1BYWOhDB4CeMXr06NGj\nR0ddAXQLW4wCAAAAAABAL2JACAAAAAAAAL2IASEAAAAAAAD0IgaEAAAAAAAA0IsYEAIAAAAA\nAEAvYkAIxNnq1auXLVuWSqWiDgEg5tra2pYtW7ZmzZqoQwCIv23bti1btiyZTEYdAkD8ffDB\nB8uWLaupqYk6BOh6BoRAnC1atOjRRx+NugKA+Gtra3v00UdffvnlqEMAiL8NGzY8+uijb731\nVtQhAMTfm2+++eijj27ZsiXqEKDrGRACAAAAAABAL2JACAAAAAAAAL1Iwq25DiqzZ8+eMWPG\nuHHjog6BmKipqWlpaSksLIw6BICYS6VSW7duzcjIyM/Pj7oFgJhrbm6ura3NycnJzc2NugWA\nmKuvr29oaMjPz8/IyIi6Behi/lQDcea3tAD0jEQi4fsoAPSMzMxMHzoA9Izc3FzfR4G4ssUo\nAAAAAAAA9CIGhAAAAAAAANCLGBACAAAAAABAL2JACAAAAAAAAL1IRtQBAABwaEulUnV1dc3N\nzYlEIjs7OycnZ5+nNDc379ixo6WlJSMjIy8vLzMzswc6AQAAANoZEAJx9uSTT27cuPH8889P\nJBJRtwAQT6lUatOmTVVVVU899VRRUdGECRNGjx5dUFDQwSl1dXVvvfVWTk5ORkZGS0tLQ0PD\n2LFjc3Nze6wZgENaVVXVM888c/TRRx999NFRtwAQc8uWLVu1atXJJ588ZMiQqFuALmZACMRZ\nMpmsrKyMugKAONu+ffv69esLCws/SG5c9Gbhu82fbny+sX//lqbWjJbWPaxPpVKNjWnbdoxN\nS0v76hfqvnJkfVZW1tatW7Ozs9PS7P8PwL7V1dWtXbt25MiRUYcAEH9btmxZu3ZtQ0ND1CFA\n1zMgBACAA9fQ0JCXl5dIJJpbEisrspLZfUPo2+EZiRD+ugfpkaOaQgg5OTntI8b92ZsUAAAA\n4JMzIATirKioqLV1T5dvAEAXSaVSaWlpiURi0OAhGe8O7NS5rW1/fWArbAD2X05OTnFxcX5+\nftQhAMRfv379iouLs7Kyog4Bup4BIRBn3/zmN6NOACDmMjMzt23blp+ff+bZ57+4ZVAIbTtH\nhu0L8nJD2t+P/1pbW1OpVCKRyM1KhRCampoGDx7sP7kB2E8jRoyYNWtW1BUA9ArHHnvsscce\nG3UF0C0MCAEA4MD169evqalp+/btBX1y7v7/3t+xY8egQYMGDRrUwTWBtbX177zzTp8+fTIz\nM2trm+vq6j796U+7ASEAAADQYwwIAQDgwGVmZg4cODArK6upqSmRSBQUFOTn53e8ZWjfvn0/\n97nP7dixo7W1NT09feTIke4+CAAAAPQkA0IAAPhEsrKyBg7s3N0Hc3JyDAUBAACAqNjICAAA\nAAAAAHoRA0IAAAAAAADoRQwIgThrbGysr6+PugKA+EulUvX19Y2NjVGHABB/ra2t9fX1LS0t\nUYcAEH/Nzc319fVtbW1RhwBdz4AQiLN77733tttuS6VSUYcAEHOtra233Xbb/fffH3UIAPG3\ndu3a2267rby8POoQAOLvueeeu+222yorK6MOAbqeASEAAAAAAAD0IgaEAAAAAAAA0Iuk/+Qn\nP4m6gb/JyMgoKSnp06dP1CEQExkZGcOHDx85cmQikYi6BYCYy8zMHDNmzJAhQ6IOASDm0tLS\n8vPzR48e3b9//6hbAIi59PT0oqKiUaNG5eTkRN0CdLGEW3MBAAAAAABA72GLUQAAAAAAAOhF\nDAgBAAAAAACgFzEgBAAAAAAAgF7EgBAAAAAAAAB6EQNCAAAAAAAA6EUMCAEAAAAAAKAXMSAE\nAAAAAACAXsSAEAAAAAAAAHoRA0IAAAAAAADoRQwIAQAAAAAAoBcxIAQAAAAAAIBexIAQAAAA\nAAAAehEDQgAAAAAAAOhFDAgBAAAAAACgFzEgBAAAAAAAgF7EgBAAAAAAAAB6EQNCAAAAAAAA\n6EUMCAEAAAAAAKAXMSAEAAAAAACAXsSA8OAyZ86ctWvXRtuQSqVKS0v/8Ic/RJsBQG9QVVVV\nWlq6ZMmSqEMAiL+lS5eWlpZWVVVFHQJA/M2fP7+0tDSVSkUdAgB7lRF1wKFnzZo1ZWVlK1eu\n3Lx5c2Zm5sCBAw877LCvfvWr48aN++QvXlVVVV9f/8lf5xNKJpPp6elRVwAQf01NTclk8rDD\nDos6BID4q6mpSSaTjY2NUYcAEH+bN29OJpOpVCqRSETdAgB7ZkDYCS0tLb/5zW/++Mc/7vz6\nT2NjY21tbUVFxZ/+9KdTTz310ksv9akPAAAAAADAwcyAcH+lUqk5c+Y8//zzIYScnJzJkyeP\nGTOmsbHxjTfeWLZsWSqVevLJJwsKCs4777yoSz+pRCJx1lln9enTJ+oQAOJv8ODBZ5111qBB\ng6IOASD+jjzyyCFDhgwePDjqEADi7x//8R/r6upcSADAwcyAcH8988wz7dPBkpKSG264oaio\naOeh11577ZZbbmlqanrwwQdPOeWUwsLC6DK7RpdslwoA+5SXl+dDB4CeMXjwYNNBAHrGmDFj\nok4AgH0wINwvTU1N9957bwihT58+//Iv/zJgwIBdj44fP/7MM8988803R4wYUVtbG4MBIQAA\nAAAAAHFlQLhfli1btmXLlhDCN77xjd2mg+3OPffcHo8CAAAAAACATjMg3C+LFi1qf/AP//AP\n0Zb0gLa2tubm5kQikZmZaat0AAAAAACAmDEg3C+rV68OIRQWFg4fPrz9mdra2g0bNjQ2NhYW\nFg4dOjTSuq5UW1tbU1Ozfv36EMLQoUP79++fm5sbdRQAAAAAAABdxoBw3xoaGjZu3BhC+NSn\nPhVCWLVq1e9///sVK1akUqn2BUVFRSeffPLpp5+enZ0dZegnVl9f/8477xQUFAwePDiEsGPH\njlQqlZGRkZmZGXUaAAAAAAAAXSMt6oBDwEcffdQ+C+zXr9+TTz55/fXXL1++fOd0MISwadOm\nefPm/fCHP9y6dWt0mV2gtrY2Ly8vMzPzxRdffP3113Nzc7dt27Zjx46ouwCIrS1btpSVlb3z\nzjtRhwAQf++++25ZWVn73eUBoFstXbq0rKxs198fAsDBxoBw3+rq6tofVFVVlZaWDhgw4Kqr\nrvr1r3/90EMP/e53v/v2t7/dv3//EMLatWtvv/32Q/qDv7W1tf1iwSVLlrz55pshhPT09NbW\n1qi7AIitbdu2lZeXV1RURB0CQPxVVFSUl5cf6l/rBOCQsHLlyvLy8kP694QAxJ4tRvetvr6+\n/cG6deuGDh36H//xH+0TwRBCUVHRaaedNn78+O9973s7duz4y1/+snjx4uOOO66DV3vhhReW\nL1++t6OVlZVdWN5Z6enpLS0tu24o2tramp6eHmESAAAAAAAAXcuAcN92/bLPRRddtHM6uNOw\nYcPOOeec3/3udyGEZ555puMB4dFHH33YYYft7Wi0e6zl5eVVVVVlZPz1/xUNDQ39+/fPy8uL\nMAkAAAAAAICuZUC4b7m5ue0P0tPTv/jFL+5xzeTJk9sHhG+88UbHr9a/f/+Pjxh3ys7OPtDM\nLtCnT5/DDjustrb2nHPOaf+xf//+u15QCABda9SoUT/84Q93fjcFALrPCSeccNxxx2VlZUUd\nAkD8/fM//3NbW1tamrs7AXDw8vu4fevbt2/7g/z8/L3tt1lUVJSdnd3Y2FhbW9vc3HzoDtXy\n8/P79OlTWFiYSCQyMzP9PQaAbpWWlrbzizgA0K0yMzMP3f9SA+DQEu01AACwP4x/9q24uLh9\nTtbQ0NDBsp1fRG1tbe2JrG6Tnp6ek5OTnZ1tOggAAAAAABA/JkD7lpmZOXz48BBCQ0PDhg0b\n9rimubl5x44d7YtzcnJ6tA8AAAAAAAD2mwHhfpk4cWL7g8WLF+9xwZo1a9ra2kIIY8aM6bks\nAAAAAAAA6CQDwv3yla98pf3BI488Uk7tQtsAACAASURBVF9f//EFCxYsaH/wxS9+seeyAAAA\nAAAAoJMMCPdLSUnJpEmTQgibN2++9dZb6+rqdj360EMPtV9ZmJOTc8opp0STCAAAAAAAAPsh\nI+qAQ8asWbPefvvtDRs2/PnPf/7Od74zZcqUYcOGbd++/ZVXXnnrrbfa13z7298uKCiItvOT\nS6VSv/jFL4YNG3b22WdH3QJAzFVWVj788MMTJ048/vjjo24BIOZefvnlJUuWnHHGGSNHjoy6\nBYCYe/DBB5PJ5JVXXpmW5vIMAA5SBoT7q7Cw8Oabb7799tvffffdLVu2PPzww7sezc7OnjVr\n1oknnhhVXteqrq7u27dv1BUAxF9LS0t1dfUet+8GgK5VX19fXV3d0tISdQgA8VdTU1NdXR11\nBQB0xICwE4YNG/bTn/70+eeff/HFFysqKrZu3ZqTkzNkyJDx48efdtppAwYMiDoQAAAAAAAA\n9sGAsHPS09OnTp06derUqEO6V0lJyaBBg6KuACD+cnNzS0pKfMkGgB4wYMCAkpKS3NzcqEMA\niL/i4uKMjIxEIhF1CADsVSKVSkXdwN/Mnj17xowZ48aNizoEAAAAAACAeHKbXAAAAAAAAOhF\nDAgBAAAAAACgFzEgBAAAAAAAgF7EgBAAAAAAAAB6EQNCAAAAAAAA6EUMCNmDZDK5adOmqCsA\niL/GxsZkMrl9+/aoQwCIv5qammQy2djYGHUIAPG3adOmZDKZSqWiDgGAvTIgZHepVKq0tHT+\n/PlRhwAQf8lksrS0dOnSpVGHABB/S5cuLS0traqqijoEgPhbsGBBaWmpASEABzMDQgAAAAAA\nAOhFDAgBAAAAAACgF8mIOoCDTiKRmD59el5eXtQhAMRfUVHR9OnThw4dGnUIAPE3duzY/v37\nFxUVRR0CQPxNmjTp6KOPTiQSUYcAwF4ZELIHEyZMiDoBgF4hPz/fhw4APWP48OHDhw+PugKA\nXmHs2LFRJwDAPthiFAAAAAAAAHoRA0IAAAAAAADoRQwIAQAAAAAAoBcxIAQAAAAAAIBexIAQ\nAAAAAAAAehEDQnaXSqXKysqWLl0adQgA8bdly5aysrJ33nkn6hAA4u/dd98tKyvbsmVL1CEA\nxN/SpUvLyspSqVTUIQCwVwaE7EF5efmKFSuirgAg/rZt21ZeXl5RURF1CADxV1FRUV5evnXr\n1qhDAIi/lStXlpeXGxACcDAzIAQAAAAAAIBexIAQAAAAAAAAepGES90PKrNnz54xY8a4ceOi\nzaivr09LS8vOzo42A4DYa2tra2xszMjIyMzMjLoFgJhrbm5uaWnJyspKT0+PugWAmGtsbGxr\na8vNzY06BAD2KiPqAA5G/voCQM9IS0vzoQNAz8jMzPR9FAB6hq/dA3Dws8UoAAAAAAAA9CIG\nhAAAAAAAANCLGBACAAAAAABAL2JACAAAAAAAAL2IASEAAAAAAAD0IgaE7C6VSs2ZM+eBBx6I\nOgSA+KusrJwzZ85LL70UdQgA8ffyyy/PmTPn/fffjzoEgPh78MEH58yZ09bWFnUIAOxVRtQB\nHIyqq6v79u0bdQUA8dfS0lJdXV1fXx91CADxV19fX11d3dLSEnUIAPFXU1NTXV0ddQUAdMQV\nhAAAAAAAANCLuIKQPSgpKRk0aFDUFQDEX25ubklJyYABA6IOASD+BgwYUFJSkpubG3UIAPFX\nXFyckZGRSCSiDgGAvUqkUqmoG/ib2bNnz5gxY9y4cVGHAAAAAAAAEE+2GAUAAAAAAIBexBaj\nAAAAAAAA0AmPP/54COGoo44aMWLEfp6yadOmoqKi7ozqBFcQAgAAAAAAQCfMmjVr1qxZkydP\nvv7662tqava5vqWl5Zhjjpk6der9999/MNz+z4AQAAAAAAAAOq2lpeXuu+8+6aSTXn/99Y5X\nbtiwIZVKrVmz5vvf//7MmTObmpp6pnBvDAgBAAAAAACg09LS0kII77///plnnvn00093sLK2\ntjYrK6v98dNPP33jjTf2RN/eGRCyB8lkctOmTVFXABB/jY2NyWRy+/btUYcAEH81NTXJZLKx\nsTHqEADib9OmTclk8mDYPg6A7nbFFVfceOONmZmZ9fX1F198cQczws9+9rN/+ctfbr311uzs\n7BDCvffeu2rVqh4s3Z0BIbtLpVKlpaXz58+POgSA+Esmk6WlpUuXLo06BID4W7p0aWlpaVVV\nVdQhAMTfggULSktLDQgBeoOMjIxLL7103rx5ffr0aWlpmTVr1quvvrq3xXl5eeeff/6dd97Z\n/uO8efN6KnMPDAgBAAAAAADgAE2aNOm+++7Lzc1tamq6+OKLk8lkB4unTp167LHHhhAWL17c\nU4F7YEAIAAAAAAAAB27ixIl33HFHWlraxo0bL7zwwrq6ug4Wjx8/PoTQ8RyxuxkQsrtEIjF9\n+vRJkyZFHQJA/BUVFU2fPv1zn/tc1CEAxN/YsWOnT59eVFQUdQgA8Tdp0qTp06cnEomoQwDo\nUaeeeup1110XQli1atWVV17ZwV7TAwYMCCHU19f3XNzHGBCyBxMmTPC7WgB6QH5+/oQJE4YP\nHx51CADxN3z48AkTJvTr1y/qEADib+zYsRMmTDAgBOiFLrvssjPPPDOE8Mc//vGWW27Z27KK\niooQQn5+fs+VfYwBIQAAAAAAAHSB22+/fcKECSGEX/3qV3fcccfHF9TV1ZWVlYUQSkpKejpu\nFwaEAAAAAAAA0AWys7Pnzp376U9/OoRw6623XnnlldXV1TuP1tfXX3vttR999FEIIdp7vWVE\n+N4AAAAAAAAQJ4WFhffdd98555zz3nvvPfzww0888cTUqVNHjBixY8eOZ599tqqqKoSQmZl5\n3nnnRRhpQAgAAAAAAABdZvjw4fPnz7/gggtef/31hoaGJ554YrcF11133ciRIyNpa2eLUQAA\nAAAAAOhKAwcOfOSRR66++uo+ffrs+nxBQcHtt98+a9asqMLauYKQ3aVSqWeeeaZ///4TJ06M\nugWAmNuyZctrr702evTo9m3ZAaD7vPvuu++999748eMHDBgQdQsAMbd06dJt27adeOKJiUQi\n6hYAusuoUaNCCAUFBR2sycrKmj179qWXXvr8889XVFRkZ2cfdthhxx9/fE5OTk9l7pUBIXtQ\nXl4+YsQIA0IAutu2bdvKy8sTiYQBIQDdraKiory8vKSkxIAQgO62cuXK999/f+rUqQaEADH2\n0ksv7efKfv36TZ8+vVtjDoAtRgEAAAAAAKAXMSAEAAAAAACAXiSRSqWibuBvZs+ePWPGjHHj\nxkWbUV9fn5aWlp2dHW0GALHX1tbW2NiYkZGRmZkZdQsAMdfc3NzS0pKVlZWenh51CwAx19jY\n2NbWlpubG3UIAN3o8ccfDyEcddRRI0aM2M9TNm3aVFRU1J1RneAehOyBv74A0DPS0tJ86ADQ\nMzIzM30fBYCe4Wv3AL3BrFmzQggZGRn/83/+z2uvvTY/P7/j9S0tLcccc8xnP/vZSy655Nxz\nz438PrW2GAUAAAAAAIBOa2lpufvuu0866aTXX3+945UbNmxIpVJr1qz5/ve/P3PmzKampp4p\n3BsDQgAAAAAAAOi0tLS0EML7779/5plnPv300x2srK2tzcrKan/89NNP33jjjT3Rt3cGhAAA\nAAAAANBpV1xxxY033piZmVlfX3/xxRd3MCP87Gc/+5e//OXWW29t34n63nvvXbVqVQ+W7s6A\nEAAAAAAAADotIyPj0ksvnTdvXp8+fVpaWmbNmvXqq6/ubXFeXt75559/5513tv84b968nsrc\nAwPCT2TDhg3nnHPON77xjW984xsvvvhi1DkAAAAAAAD0qEmTJt133325ublNTU0XX3xxMpns\nYPHUqVOPPfbYEMLixYt7KnAPDAgPXCqVuuOOO+rr66MO6WKpVKq0tPQPf/hD1CEAxF9VVVVp\naemSJUuiDgEg/pYuXVpaWlpVVRV1CADxN3/+/NLS0lQqFXUIAD1n4sSJd9xxR1pa2saNGy+8\n8MK6uroOFo8fPz6E0PEcsbsZEB64P/7xj8uXL4+6olskk8nNmzdHXQFA/DU1NSWTyZqamqhD\nAIi/mpqaZDLZ2NgYdQgA8bd58+ZkMmlACNDbnHrqqdddd10IYdWqVVdeeWUHHwQDBgwIIUR7\nBZoB4QHasGHDXXfdFUIYOHBg1C0AAAAAAABE7LLLLjvzzDNDCH/84x9vueWWvS2rqKgIIeTn\n5/dc2ccYEB6IVCr1i1/8oqGhoX///qeddlrUOV2vpKSkuLg46goA4i83N7ekpKT9O1MA0K0G\nDBhQUlKSm5sbdQgA8VdcXFxSUpJIJKIOASACt99++4QJE0IIv/rVr+64446PL6irqysrKwsh\nlJSU9HTcLjIifO9D15NPPrlixYoQwsyZM+N3D8JEInHBBRdEXQFArzB06FAfOgD0jGOOOeaY\nY46JugKAXuGUU06JOgGAyGRnZ8+dO/f0009/5513br311rfeeutf//VfCwsL24/W19dfe+21\nH330UQhh0qRJEXYaEHba+vXr77777hDC+PHjp06d+vjjj0ddBAAAAAAAwEGhsLDwvvvuO+ec\nc957772HH374iSeemDp16ogRI3bs2PHss89WVVWFEDIzM88777wIIw0IO2fn5qJ9+vS54oor\nos4BAAAAAADg4DJ8+PD58+dfcMEFr7/+ekNDwxNPPLHbguuuu27kyJGRtLVzD8LOeeKJJ1au\nXBlC+Na3vlVUVBR1DgAAAAAAAAedgQMHPvLII1dffXWfPn12fb6goOD222+fNWtWVGHtXEHY\nCevXr587d24I4ZhjjjnppJOizgEAAAAAACACo0aNCiEUFBR0sCYrK2v27NmXXnrp888/X1FR\nkZ2dfdhhhx1//PE5OTk9lblXBoT7a+fmorm5uZ9kc9Ft27bV1tbu7WhjY+MBvzIAAAAAAAA9\n4KWXXtrPlf369Zs+fXq3xhwAA8L99fjjj7dvLnrhhRcOHjz4gF/nlVdeefXVV/d29MMPPzzg\nV+5C1dXVGRkZ+fn5UYcAEHPNzc21tbU5OTm5ublRtwAQc/X19Q0NDX379s3MzIy6BYCYq6mp\naWlpKSwsjDoEAPbKgHC/fPTRR/fcc08I4fOf//wpp5zySV7qpJNO6mB70tmzZ3+SF+8SqVRq\nzpw5I0aMuOiii6JuASDmPvjgg7lz555wwgknnnhi1C0AxNzLL7/8wgsvXHDBBSUlJVG3ABBz\nDz744Pvvv/8v//IvaWlpUbcAwJ4ZEO5b+8CsoaEhJyfnqquuSiQSURcBAAAAAABwsEilUqtW\nrVq+fPm6des2bty4Y8eO5ubmzMzMPn36DBw4cNSoUUceeeTRRx+dkXGwDOYOlo6D2WOPPbZq\n1aoQwsyZM4cMGRJ1DgAAAAAAAAeFzZs333nnnQ899FBVVVXHKwcOHPjNb37z4osvHjVqVM+0\ndcCAcB82bdrUvrnosGHD+vXrt2jRot0WrF27tv3BmjVr2jcNKC4uHjNmTA93dqFEIjF9+vS8\nvLyoQwCIv6KiounTpw8dOjTqEADib+zYsf379y8qKoo6BID4mzRp0tFHH20fMoDe4A9/+MP1\n11+/devW/Vm8efPm3/3ud/fdd9+11157ySWXdHdbxxKpVCragoPcG2+8ce2113bqlOnTpx/w\n/66zZ8+eMWPGuHHjDux0AAAAAAAAesB///d/X3PNNe2DtvT09COPPHL8+PGjRo0aMmRITk5O\ndnZ2U1NTQ0PDxo0bP/jgg9dff/21115rbm5uP/e66667/PLLI4x3BSEAAAAAAAB0wocffnj9\n9denUqm0tLSLL774sssuGzx4cMenbN269be//e0vfvGLlpaW22+//bTTThs9enSPxO6BAeE+\nHHHEEQsWLOhgweOPP/7rX/86hPCDH/zghBNO6KkuAAAAAAAAonHXXXfV19eHEH7xi1+cccYZ\n+3NKQUHBNddcc+SRR37rW99qaWm5++67f/KTn3Rv5d6lRfXGAAAAAAAAcCh67rnnQgjHH3/8\nfk4Hdzr55JPbrzdbtGhRd4TtJwNCAAAAAAAA6ITKysoQwuTJkw/g3EmTJoUQqqqquripMwwI\nAQAAAAAAoBMaGhpCCHl5eQdwbn5+fgihrq6ui5s6w4CQPSgvL1++fHnUFQDE39atW8vLyysq\nKqIOASD+KioqysvLt27dGnUIAPG3YsWK8vLyVCoVdQgA3aioqCiEsHbt2gM4t/3qw8LCwi5u\n6gwDwk/qtNNOW7BgwYIFC9p3jI2BVCpVVlb26quvRh0CQPxVV1eXlZW98847UYcAEH/vvvtu\nWVnZli1bog4BIP5effXVsrIyA0KAePvCF74QQnjssceqq6s7dWJDQ8Njjz0WQjjyyCO7pWz/\nGBACAAAAAABAJ5x++ukhhM2bN1944YUbNmzYz7N27Njxne9854MPPgghnHrqqd3Yty8GhAAA\nAAAAANAJX/va14477rgQwquvvjpp0qTrr7/+ueeeq6mp2ePi5ubm11577ac//enxxx//1FNP\nhRA+/elP///s3Xt83HWB7//P5Da5NEkv6YW0tWyoFpvagj3KIlZ3C0UUuwtK4XjwGGFZPCyy\nuojxh+Dxco7rsmcfnk3RBxKUi6uLgIstF2khgEoopYUjbS2lWwrUNkmbXqbNdXKb+f2RFbul\n9zb5hpnn8w8ek5nvTF598EfavOf7nUsvvXRYi/+zmFPdR5Ta2tqamprq6upoM7q7u3NycuLx\neLQZAGS8VCrV09OTl5eXn58fdQsAGa6vr6+/v7+goCA3NzfqFgAyXE9PTyqVKioqijoEgKG1\nb9++yy67bN26dfvfOWbMmIkTJxYWFsbj8d7e3p6ent27d+/cuTOVSr15TGVl5b/927+94x3v\nGPbkP8qL8HszYvnrCwDDIycnxw8dAIZHfn6+96MAMDy87R4gS5SXly9duvTWW2+97bbbksnk\n4J2JROIwn0qYk5Nz6aWXfu1rXxs9evRwZR6cgRAAAAAAAACOWTwev+GGGz73uc899NBDy5Yt\ne+mll/bs2fPWw0pKSmbNmjV//vxLLrlk0qRJw9/5VgZCAAAAAAAAOE6lpaWXX3755ZdfHkJo\na2trbW3t6Ojo7+/Pzc0tLi6uqKgYN25c1I0HMhACAAAAAADASVBWVlZWVhZ1xZHlRB0AAAAA\nAAAADB9nEAIAAAAAAMAwee2111577bUQwnnnnRdVgzMIOVA6na6vr1+yZEnUIQBkvqampvr6\n+lWrVkUdAkDmW716dX19fVNTU9QhAGS+pUuX1tfXp9PpqEMAGKF+8Ytf1NTU1NTURNhgIOQg\nmpubd+/eHXUFAJmvt7e3ubm5vb096hAAMl97e3tzc3NPT0/UIQBkvt27dzc3NxsIARjJDIQA\nAAAAAACQRXwGIQdRVVU1fvz4qCsAyHxFRUVVVVVjx46NOgSAzDd27NiqqqqioqKoQwDIfJWV\nlXl5ebFYLOoQAIZQT09PPB6PuuL4GQg5UCwW+8xnPhN1BQBZYdKkSX7oADA8zjjjjDPOOCPq\nCgCywgUXXBB1AgBDrqqqqqCgoLy8/LTTTps5c+acOXM+9KEPTZgwIequo2UgBAAAAAAAgGPT\n29u7c+fOnTt3rly5MoQQi8VmzZq1cOHCRYsWjfyl0GcQAgAAAAAAwAlJp9Pr1q37+7//+//y\nX/7LlVdeuXr16qiLDscZhAAAAAAAAHAM3njjjY6Ojo6Ojm3btm3atOmVV15ZsWLFpk2bQggD\nAwPLly9fvnz5WWeddcMNN3zgAx+IOvYgDIQAAAAAAABwDPLz88eMGTNmzJipU6eeffbZg3du\n37592bJlDzzwwEsvvRRCeP755xctWnTeeefdfPPN73znOyPtPZBLjAIAAAAAAMCJmjRp0mc/\n+9lHH330qaeeuuyyy/Lz80MIDQ0N55133i233NLb2xt14B8ZCDmIRCLR3t4edQUAma+vry+R\nSHR3d0cdAkDm6+7uTiQSfX19UYcAkPna29sTiUTUFQBEacaMGd/97neff/75z372s3l5ef39\n/YsXLz733HOfe+65qNP+g4GQA6XT6bq6uvvvvz/qEAAy37Zt2+rq6lasWBF1CACZ77nnnqur\nq9u6dWvUIQBkvgceeKCuri6VSkUdAkDEJk6c+O1vf/vpp5++4IILQgivvfbaokWLamtr29ra\nok7zGYQAAABkunQ63fcHUbcAAADZpaqq6kc/+tFTTz118803b9my5ac//WnURSE4gxAAAIDM\n1tfX19raumXLlkQisWnTpl27djmlAwAAGGbz589/+umn//Zv/zYvb0ScvDciIhhRYrHYwoUL\nS0pKog4BIPNVVFQsXLhw0qRJUYcAkLHS6fSePXv27t07d+7cd7zjHaeeeuqOHTtisdi4ceOi\nTgMgY51zzjlz5syJxWJRhwAwssTj8a985St/+Zd/+T//5//ctm1btDGxdDodbQH7q62tramp\nqa6ujjoEAAAgEySTyY0bN44fP/7NewYGBnbt2jV79uzc3NwIwwAAACLkEqMAAABkrIGBgQOG\nwNzc3FgsNjAwEFUSAABA5AyEAAAAZKzc3Nz+/v79r53T398/YcKEEfKxHwAAAJEwEAIAAJCx\n4vH45MmT9+3bN3jKYH9//759+4qLi3Ny/HMYAAA4Cbq7u3/2s58tX7486pBj4y2TAAAAZKxY\nLDZ27NicnJzf//73sVhswoQJU6dOLS8vj7oLAADIBE888cQNN9ywa9euyy+//CMf+cib97e3\nt59xxhllZWXl5eXl5eWDNw74sry8/IMf/GBU5QZCAAAAMllubu64ceNGjx49MDCQl5fn3EEA\nAOCkWLZs2dVXXz14tZKmpqb9H0qn08lkMplMtra2HuYVDnjWcPLvIg6isbFxzZo1UVcAkPn2\n7t3b2Ni4ZcuWqEMAyHzbtm1btWpVW1tb1CEAZL61a9c2Njbu/wm4AGSetra2G264YXAdnD59\n+sUXX7z/o7FYLKKuo+UMQg6UTqcbGhqmTp06Z86cqFsAyHCJRKKhoWHevHnTpk2LugWADLd5\n8+bf/OY3lZWVo0ePjroFgAz3wgsv/P73v//ABz4w8n87DMBxu++++xKJRAjhwgsvXLx4cWFh\n4f6PlpaW1tTU3HPPPTNmzPj5z3/e2dnZ1tbW1ta2b9++tra2hx9++Kmnnooo/D8YCAEAAAAA\nAOAYPP300yGEioqKurq6A9bBQTfeeOODDz64cePGp59++pOf/OT+D23dujXygdAlRgEAAAAA\nAOAYbNiwIYTwsY99rKio6KAHlJaWLliwIITw0EMPDWvZ0XEGIQeKxWJf+cpXcnKMxwAMuWnT\npn3lK1/Jy/MXEgCG3Lx5884+++yCgoKoQwDIfJdffnkqlfLrNYDMtnfv3hBCVVXVYY5517ve\nFUJYu3btMDUdC7+P4yAONXcDwMmVk5Pjhw4AwyM/Pz8/Pz/qCgCyQjwejzoBgCF3NG8EGbz0\n6J49e4Y+55h5GwsAAAAAAAAcgzFjxoQQXn/99cMcs2XLlhBCcXHxMDUdCwMhAAAAAAAAHIOZ\nM2eGEB577LGenp6DHtDX17ds2bIQwpQpU4a17OgYCAEAAAAAAOAYzJ8/P4TQ2tp60003pVKp\ntx7w7W9/u6WlJYQwb9684Y47CgZCAAAAAAAAOAaXXXZZRUVFCOHee+9dtGjRr371q8FTCdPp\n9EsvvXTllVfecccdIYTc3NzPfOYzEbceTF7UAQAAAAAAAPB2UlRU9N3vfrempiadTq9cuXLl\nypU5OTllZWVdXV29vb1vHvZ3f/d3p556anSZh+QMQg6UTqfr6+uXLFkSdQgAma+pqam+vn7V\nqlVRhwCQ+VavXl1fX9/U1BR1CACZb+nSpfX19el0OuoQAIbWueee+4Mf/KCkpGTwy1QqtXfv\n3v3XwWuvvfaLX/ziW584ceLE2bNnz549e5hCD8YZhBxEc3Nzbm5u1BUAZL7e3t7m5ubTTjst\n6hAAMl97e3tzc/PgNX8AYEjt3r27ubk5nU7HYrGoWwAYWh//+Mff//7333HHHcuXL9+8efPg\nnaWlpR/60IeuueaaM88886DP+vSnP/3pT396GDMPwkAIAAAAAAAAx2PChAk33XTTTTfdlEwm\n9+zZE4/Hx4wZk5Mz0i/haSDkIKqqqsaPHx91BQCZr6ioqKqqauzYsVGHAJD5xo4dW1VVVVRU\nFHUIAJmvsrIyLy/P6YMA2aawsLCysjLqiqMVcy3sEaW2trampqa6ujrqEAAAAAAAADLTSD/D\nEQAAAAAAAEam7u7un/3sZ8uXL4865Ni4xCgAEI2BgYHOzs7+/v6cnJzi4uKCgoKoiwAAAADg\nGDzxxBM33HDDrl27Lr/88o985CNv3t/e3n7GGWeUlZWVl5eXl5cP3jjgy/Ly8g9+8INRlRsI\nAYAI9PX17dq1a8+ePfn5+alUKplMTp8+fdSoUdFWpdPpnp6egYGB3NzceDzuI0MAAAAAOJRl\ny5ZdffXVAwMDIYSmpqb9H0qn08lkMplMtra2HuYVDnjWcDIQAgARSCQSbW1tY8aM2dSU/+CK\nUfH8gYJVOaNKUiVFOSGEonjIzws5sVBSFEIIRQUhPy/EYqG0KIQQ4gWhIC+EEEYVhZyckJ8X\nCgv+8OUJLHr9/f179uxpbm7Oy8sbGBg45ZRTxowZk5+ff8J/VgAAAAAyTVtb2w033DC4Dk6f\nPv3iiy/e/9GR/75zAyEAMNwGBgaamprGjx8fQtjZlvfsy0Un8cXzckNxPIQQSopCTizk5vxh\nZYyHvNwQC6G0OIQQCv+wMg5+Gc8P/X09XV2xsWWnnjqxf8aUnkQiEUIYP378yP/7HAAAAADD\n7L777hv89dGFF164ePHiwsLC/R8tLS2tqam55557ZsyY8fOf/7yzs7Otra2trW3fvn1tbW0P\nP/zwU089FVH4fzAQchCJRCIvl2lbpAAAIABJREFUL6+0tDTqEAAyUzqdDiHEYrH+/v69e/em\n+gtz8k7aRtg/ENq6Qgj/8d9jURJCSQjhorM7Tp/aO2rUqObm5vLy8ng8frLaAIhQd3d3Mpkc\nNWqUs8MBGGrt7e39/f1jxoyJOgSAIfT000+HECoqKurq6g5YBwfdeOONDz744MaNG59++ulP\nfvKT+z+0devWyAfCnGi/PSNQOp2uq6u7//77ow4BIGPl5eWdcsopyWSyubn58aU/CPueHVWY\nKixIRd31H/LzQgghFovl5OSkUiOlCoAT9Nxzz9XV1W3dujXqEAAy3wMPPFBXV+dfEwCZbcOG\nDSGEj33sY0VFB3/je2lp6YIFC0IIDz300LCWHR1nEAIAESgvL9++fXtXV1fl2J6FC1pmz173\njne8Y/ANtsne0Nsf0unQ0R1CCD19oac3hBDau/7wZV8IIXQmw0Aq9PeH7t4QQuhKhv6BMJAK\nXckQQujuDX39IfWHF0n2hL6BEEJo6/yPF+ntCyGEju6QSh/YlpebDiGkUqlUKpWX5y9LAAAA\nABxo7969IYSqqqrDHPOud70rhLB27dphajoWfucFAESgqKjo3e9+9/r16/Py8kpKSk477bSS\nkpLBhwoLQmFBCCGUlwxTTG9/SPaGvXv3bn59+6jSstGjcvr7+9va2t7xjne4DB0AAAAAb5WT\nc+SLdA5eenTPnj1Dn3PMDIQcKBaLLVy48M3f0gLAEInH4+985zs/9alPTZo0adSoURGWFOSF\ngrwwqrCsrDh0dXXt2NFSMnHi5MmTy8vLI6wC4OSaMWNGeXl5RUVF1CEAZL5zzjlnzpw5sVgs\n6hAAhtCYMWNaWlpef/31wxyzZcuWEEJxcfFwRR0DAyEHMXfu3KgTAMgKpaWlI+eHTk5OzujR\no8vLy8ePH5+bm3s07wID4G1k8uTJkydPjroCgKwwY8aMqBMAGHIzZ85saWl57LHHvv71r8fj\n8bce0NfXt2zZshDClClThr3uyPzmCwDgj2KxWH5+vnUQAAAAgMOYP39+CKG1tfWmm25KpVJv\nPeDb3/52S0tLCGHevHnDHXcUnEF4bDZv3vz444+vX79+165dPT09xcXFkydPnj179oIFCyZO\nnBh1HQAAAAAAAEPusssu+7//9//u2rXr3nvvff3116+77rqzzz47Ho+n0+k1a9YsXrx4+fLl\nIYTc3NzPfOYzUccehIHwaPX29tbX1z/++OP739ne3v7KK6+88sorDz744Gc+85mLLrooqjwA\nAAAAAACGR1FR0Xe/+92ampp0Or1y5cqVK1fm5OSUlZV1dXX19va+edjf/d3fnXrqqdFlHpKB\n8Kik0+l/+Id/eOGFFwa/rK6unjFjRllZWUtLy6pVqxKJRH9//5133llcXHz++edHmwoAAAAA\nAMBQO/fcc3/wgx9cf/31nZ2dIYRUKrV37979D7j22mu/+MUvvvWJEydOnD179jBVHkIsnU5H\nW/C2sHz58u9///shhIKCghtvvHHu3LlvPpRMJuvr6xsaGkIIpaWld911V0FBwXF/o9ra2pqa\nmurq6hNvBgAAAAAAYEi1trbecccdy5cv37x58+A9paWlH/rQh6655pozzzwz2rbDcAbhUVm6\ndOngjb/6q7/afx0MIRQWFl577bVr1qzZuXNne3v7unXrDjjg7aixsbG0tHTOnDlRhwCQ4fbu\n3fu73/1u6tSp06ZNi7oFgAy3ZcuWrVu3zpo1a/To0VG3AJDh1q5d29bWds4558RisahbABhy\nEyZMuOmmm2666aZkMrlnz554PD5mzJicnJyou45gpPeNBPv27Wtqagoh5Ofn//mf//lbD8jN\nzX3ve987eHvwyLe1dDrd0NDw5vVUAWDoJBKJhoaGV199NeoQADLf5s2bGxoa9uzZE3UIAJnv\nhRdeaGhocOU2gGxTWFhYWVk5bty4kb8OBmcQHo3y8vIHH3wwkUh0d3cXFhYe9JiioqLBG319\nfcOYBgAAAAAAAMfGQHhUcnNzKyoqDnPAjh07Bm+ccsopw1IEAAAAAADAiJBOp9evX79mzZo3\n3nhj586dnZ2dfX19+fn5xcXF48aNmzZt2qxZs+bMmZOXN1KGuZhT3U9ce3v7FVdc0dvbW1RU\ndNdddxUXFx/3S9XW1tbU1FRXV5/EvOPQ3d2dk5MTj8ejzQAg46VSqZ6enry8vPz8/KhbAMhw\nfX19/f39BQUFubm5UbcAkOF6enpSqdSblxwDILPt3r37hz/84b/9278d8UPoxo0b95d/+ZdX\nXXXVtGnThqftMN4GV0Ed+err63t7e0MIF1100YmsgyNHUVGRdRCAYZCTk1NUVGQdBGAY5Ofn\nFxUVWQcBGAbxeNw6CJAllixZ8qEPfWjx4sVHXAdDCLt3777zzjvnz59/xx13DEPb4Y2UMxnf\nvu67775f//rXIYQZM2YsWrQo6hwAAAAAAACG3H333felL31p8FKdubm5s2bNeu973ztt2rSJ\nEycWFhbG4/He3t5kMrlz585t27a99NJL/+///b++vr5kMvmNb3yjt7f32muvjTDeJUZPyE9+\n8pP7778/hDB58uRbbrmlrKzsiE95+OGHn3322UM9umnTpm9961uRX2IUAAAAAACAQ2lpaZk3\nb97gR7ZdddVV11xzzYQJEw7/lL179/7oRz9avHhxf39/Xl7er3/961NPPXVYYg/CGYTHqaen\n55//+Z8Hp76pU6d+85vfPJp1MISwYMGCD3/4w4d69Jvf/OZJSwQAAAAAAGAI3HXXXd3d3SGE\nxYsXX3zxxUfzlNGjR3/pS1+aNWvWlVde2d/ff/fdd3/jG98Y2spDMxAej507d377299+7bXX\nQggzZ868+eabR40adZTPLSwsLCwsPNSjPg8DAAAAAABghPvVr34VQvjABz5wlOvgmz7ykY/M\nmzfvmWeeOcz1JodBToTf+23q5Zdfvv766wfXwXPPPfd//a//dfTrIAAAAAAAAG93W7duDSF8\n8IMfPI7nnnPOOSGEpqamk9x0LAyEx2blypU333zzvn37YrHYlVde+YUvfCE/Pz/qqJMsnU7X\n19cvWbIk6hAAMl9TU1N9ff2qVauiDgEg861evbq+vj7af4EDkCWWLl1aX1+fTqejDgFgCCWT\nyRBCSUnJcTy3tLQ0hNDV1XWSm46FgfAYrFy58pZbbunv74/H41/96lcvuuiiqIuGSnNz8+7d\nu6OuACDz9fb2Njc3t7e3Rx0CQOZrb29vbm7u6emJOgSAzLd79+7m5mYDIUBmq6ioCCEMXm/y\nWA2efThmzJiT3HQsDIRHa+PGjf/0T/80MDBQWFj4rW9966yzzoq6CAAAAAAAgAiceeaZIYRH\nHnkkkUgc0xOTyeQjjzwSQpg1a9aQlB0dA+FR6erq+j//5//09vbm5eXdfPPN7373u6MuGlpV\nVVWVlZVRVwCQ+YqKiqqqqsaOHRt1CACZb+zYsVVVVUVFRVGHAJD5Kisrq6qqYrFY1CEADKHB\ny0zu3r37s5/9bGtr61E+q7Oz82/+5m+2bdsWQvjoRz86hH1HEnOq+9G47bbbHnvssRDCFVdc\ncfHFFw/dN6qtra2pqamurh66bwEAAAAAAMAJuuSSS5577rkQQnFx8aWXXrpgwYK5c+cOfr7g\nAfr6+tatW/fUU0/9y7/8y65du0II06dPf/LJJ/Py8oY7+g8i+8ZvI62trY8//ngIIRaLdXR0\n3HvvvYc5eNSoUQsXLhyuNAAAAAAAACLwox/96LLLLlu3bl1XV9fdd9999913hxDGjBkzceLE\nwsLCeDze29vb09Oze/funTt3plKpN59YWVn5L//yLxGug8FAeDQ2bdo0MDAQQkin0w888MDh\nD540aZKBEAAAAAAAILOVl5cvXbr01ltvve2225LJ5OCdiUTiMJ9KmJOTc+mll37ta18bPXr0\ncGUenIEQAAAAAAAAjlk8Hr/hhhs+97nPPfTQQ8uWLXvppZf27Nnz1sNKSkpmzZo1f/78Sy65\nZNKkScPf+VY+g3Bk8RmEAAAAAAAAb1NtbW2tra0dHR39/f25ubnFxcUVFRXjxo2LuutAziAE\nAAAAAACAk6CsrKysrCzqiiPLiTqAkSiRSLS3t0ddAUDm6+vrSyQS3d3dUYcAkPm6u7sTiURf\nX1/UIQBkvvb29sN8+hQAjAQGQg6UTqfr6uruv//+qEMAyHzbtm2rq6tbsWJF1CEAZL7nnnuu\nrq5u69atUYcAkPkeeOCBurq6VCoVdQgAHJKBEAAAAAAAALKIgRAAAAAAAACySF7UAYw4sVhs\n4cKFJSUlUYcAkPkqKioWLlw4adKkqEMAyHwzZswoLy+vqKiIOgSAzHfOOefMmTMnFotFHQIA\nh2Qg5CDmzp0bdQIAWaG0tNQPHQCGx+TJkydPnhx1BQBZYcaMGVEnAMARuMQoAAAAAAAAZBED\nIQAAAAAAAGQRAyEAAAAAAABkEQMhAAAAAAAAZBEDIQAAAAAAAGQRAyEH0djYuGbNmqgrAMh8\ne/fubWxs3LJlS9QhAGS+LVu2NDY27t27N+oQADLf2rVrGxsb0+l01CEAcEgGQg6UTqcbGhpe\neOGFqEMAyHyJRKKhoeHVV1+NOgSAzLd58+aGhoY9e/ZEHQJA5nvhhRcaGhoMhACMZAZCAAAA\nAAAAyCIGQgAAAAAAAMgiMae6jyi1tbU1NTXV1dXRZnR3d+fk5MTj8WgzAMh4qVSqp6cnLy8v\nPz8/6hYAMlxfX19/f39BQUFubm7ULQBkuJ6enlQqVVRUFHUIABxSXtQBjET++gLA8MjJyfFD\nB4DhkZ+f7/0oAAwPb7sHYORziVEAAAAAAADIIgZCAAAAAAAAyCIGQgAAAAAAAMgiBkIAAAAA\nAADIIgZCAAAAAAAAyCIGQg6UTqfr6+uXLFkSdQgAma+pqam+vn7VqlVRhwCQ+VavXl1fX9/U\n1BR1CACZb+nSpfX19el0OuoQADgkAyEH0dzcvHv37qgrAMh8vb29zc3N7e3tUYcAkPna29ub\nm5t7enqiDgEg8+3evbu5udlACMBIZiAEAAAAAACALJIXdQAjUVVV1fjx46OuACDzFRUVVVVV\njR07NuoQADLf2LFjq6qqioqKog4BIPNVVlbm5eXFYrGoQwDgkGJOdR9Ramtra2pqqqurow4B\nAAAAAAAgM7nEKAAAAAAAAGQRAyEAAAAAAABkEQMhAAAAAAAAZBEDIQAAAAAAAGQRAyEAAAAA\nAABkEQMhB5FIJNrb26OuACDz9fX1JRKJ7u7uqEMAyHzd3d2JRKKvry/qEAAyX3t7eyKRiLoC\nAA7HQMiB0ul0XV3d/fffH3UIAJlv27ZtdXV1K1asiDoEgMz33HPP1dXVbd26NeoQADLfAw88\nUFdXl0qlog4BgEMyEAIAAAAAAEAWMRACAAAAAABAFsmLOoARJxaLLVy4sKSkJOoQADJfRUXF\nwoULJ02aFHUIAJlvxowZ5eXlFRUVUYcAkPnOOeecOXPmxGKxqEMA4JAMhBzE3Llzo04AICuU\nlpb6oQPA8Jg8efLkyZOjrgAgK8yYMSPqBAA4ApcYBQAAAAAAgCziDEIAAAAAgJMgnU53dnb2\n9PSk0+n8/PzS0tKcHGdoADASGQgBAAAAAE6CPXv2NDU1FRUV5eTkJJPJcePGjR8/Pjc3N+ou\nADiQgRAAAAAA4ER1dXVt27Zt3LhxOTk5P1petnNfXkFucsK4vknjcstKQllJKC8JZcWhvCSU\nlYTCgqhzAchuBkIAAAAAgBPV09NTWFg4eE3Rta/HX9+RH0LhoQ4uyP9Pe+H+82H5qP90f3H8\nRMNSqVRfX186nS4oKHDJUwAGGQg5iMbGxtLS0jlz5kQdAkCG27t37+9+97upU6dOmzYt6hYA\nMtyWLVu2bt06a9as0aNHR90CQIbbsGHD7199NZTOCyF2qGN6+8LOvWHn3iO/Wn7ewXfEN78s\n/8ONkoPNkZ2dnW1tba2trSGECRMmlJaWjho16vj/bABkCgMhB0qn0w0NDVOnTjUQAjDUEolE\nQ0PDvHnzDIQADLXNmzf/5je/qaysNBACMEQKCgqSyWRJScmaNWu6tydOqTy7I5nb03eiZ+z1\n9YfdbWF325GPzM05cEccVTjQ09U+bnTBmNJ3vO9dyZ6enh07dpx++umFhYc8tRGALGEgBAAA\nAAA4USUlJZMnT25ubu7t7f3z97T99Wc3VlRUlI8e35HMbe8K+zrDvs7Q1hX2dYQ/ftkZ9naG\nts7Q1hW6kicaMJAKe9rDnvb978sNYdLgrXu+tH3MqILi4uLOzk4DIQAGQgAAAACAk2DcuHGF\nhYXFxcXxeHzy5MllZWW5ublFhWH8UZy+3tcf2rpC2x+Gw7Y/jIjtXWFfxx++7AhtXaGj+5jD\nYrFQVpwOIeTl5Q0MDBz7nwyATBNLp9NRN/BHtbW1NTU11dXV0WYkEom8vLzS0tJoMwDIeH19\nfR0dHYWFhUVFRVG3AJDhuru7k8nkqFGj8vPzo24BIMO1t7f39/ePGTNmiF5/IPXH4XDwxpun\nIQ4uiPuvjIOK46mf/X/bB9sqKirGjRs3RG0AvF04g5CDGLq/vgDA/vLz8/3QAWB4FBUVeT8K\nAMNjqN92n5sTxpaGsaUhTDzCkcme3hd++++x/PJ0rDCE0NPT093dPWrUqCHNA+BtwUAIAAAA\nAJCBCuMF751d1dbWtn17U2trmDRp0sSJE+PxeNRdAETPQAgAAAAAkJmKi4uLiorGjh0bQsjP\nz4/FYlEXATAiGAgBAAAAADJWLBYrKCiIugKAkSUn6gAAAAAAAABg+BgIAQAAAAAAIIsYCDlQ\nOp2ur69fsmRJ1CEAZL6mpqb6+vpVq1ZFHQJA5lu9enV9fX1TU1PUIQBkvqVLl9bX16fT6ahD\nAOCQDIQcRHNz8+7du6OuACDz9fb2Njc3t7e3Rx0CQOZrb29vbm7u6emJOgSAzLd79+7m5mYD\nIQAjmYEQAAAAAAAAskhe1AH8J5MnTy4qKoq6IlRWVo4bNy7qCgAyX0FBQWVlZWlpadQhAGS+\n0tLSysrKeDwedQgAmW/cuHH9/f2xWCzqEAA4pJhT3QEAAAAAACB7uMQoAAAAAAAAZBEDIQAA\nAAAAAGQRAyEAAAAAAABkEQMhAAAAAAAAZBEDIQAAAAAAAGQRAyEAAAAAAABkEQMhAAAAAAAA\nZBEDIQAAAAAAAGQRAyEAAAAAAABkEQMhAAAAAAAAZBEDIQAAAAAAAGQRAyEAAAAAAABkEQMh\nAAAAAAAAZBEDIQAAAAAAAGQRAyEAAAAAAABkEQMhAAAAAAAAZBEDIQAAAAAAAGQRAyEAAAAA\nAABkEQMhAAAAAAAAZBED4cjy9NNP79q1K+qK4/Tqq682NjZ2dnZGHQJA5nvxxReff/75qCsA\nyHw9PT2NjY2vvPJK1CEAZL7W1tbGxsaWlpaoQwDICgbCkeWxxx7bsWNH1BXHacOGDQ0NDR0d\nHVGHAJD5VqxY8etf/zrqCgAyXzKZbGhoWLduXdQhAGS+lpaWhoaGbdu2RR0CQFYwEAIAAAAA\nAEAWyYs6gMxRWVmZTCbj8XjUIQBkvunTp/f29kZdAUDmy8/Pr66unjJlStQhAGS+0aNHV1dX\njx07NuoQALJCLJ1OR93AH9XW1tbU1FRXV0cdAgAAAAAAQGZyBuEJaW1tve6667q7u0MIX/7y\nl+fNmxd1EQAAAAAAAByOzyA8ful0+tZbbx1cBwEAAAAAAOBtwUB4/JYtW7ZmzZqoKwAAAAAA\nAOAYuMTocWptbb3rrrtCCOPGjdu9e3fUORFLpVLt7e3JZDKVSuXn55eWlsbj8aijAAAAAAAA\nOAhnEB6PdDq9ePHiZDJZXl5+4YUXRp0TvT179mzdurWrq6uvry+RSGzYsCGZTEYdBQAAAAAA\nwEEYCI/HY489tnbt2hDCFVdcUVRUFHVOxLq6upqamsaMGdPT07N79+54PD5q1Kh9+/ZF3QVA\nJmttbd2+fXvUFQBkvoGBgebm5kQiEXUIAJmvq6urubm5s7Mz6hAAsoKB8Jjt2LHj7rvvDiG8\n973vnT9/ftQ50evr64vH47FY7Pnnn//JT36SSCTi8fjAwEAqlYo6DYCMdd999/34xz+OugKA\nzNfR0VFfX9/Q0BB1CACZb9OmTfX19S+//HLUIQBkBQPhsXnz4qLFxcWf//zno84ZEWKx2AFb\nYDqdHrw/oiIAAAAAAAAOyUB4bH75y1+uW7cuhHDllVdWVFREnTMiFBYW9vb29vX1vXlPR0dH\nYWGhgRAAAAAAAGAEyos64O1kx44d99xzTwjhjDPOOP/886POGSkKCgpOO+20zZs3n3rqqRUV\nFb29vZMmTSovL4+6C4BMdsEFFwwMDERdAUDmKy4uXrRoUVlZWdQhAGS+adOmLVq06JRTTok6\nBICsYCA8Wm9eXLSoqOhELi6aTCZ7e3sP9ejb9HedpaWlM2fOTCaTqVQqPz+/uLjY6YMADKl3\nvvOdUScAkBXy8/Orq6ujrgAgK4wePXr06NFRVwCQLQyER+vRRx8dvLjoZz/72QkTJhz36zzx\nxBPPPvvsoR594403jvuVo1VQUFBQUBB1BQAAAAAAAEdgIDwq27dv//GPfxxCeM973nPBBRec\nyEstXLhw4cKFh3q0trb2RF4cAAAAAAAADi8n6oC3gXQ6XVdXl0wmCwsL//Zv/9bFMwEAAAAA\nAHj7MhAe2SOPPLJ+/foQwhVXXDFx4sSocwAAAAAAAOD4ucToEezatWvw4qKnnHJKWVnZWz8+\n8LXXXhu8sXHjxpycnBBCZWXln/zJnwxzJwAAAAAAABwNA+ERtLa29vT0hBBaWlpuueWWwxz5\n0EMPPfTQQyGEhQsX/vVf//Uw9Y0kGzZsaGpq+tM//dNRo0ZF3QJAhluxYkVfX9+HP/zhqEMA\nyHDJZLKxsXHChAmzZ8+OugWADNfS0rJ+/frTTz99ypQpUbcAkPlcYpST5tVXX21sbOzs7Iw6\nBIDM9+KLLz7//PNRVwCQ+Xp6ehobGzdu3Bh1CACZr7W1tbGxsaWlJeoQALKCMwiPYObMmYPn\nBR7Ko48+evvtt4cQvvzlL8+bN2+4ugAAAAAAAOB4OIMQAAAAAAAAsogzCDlpFi5cuHDhwqgr\nAMgK1113XdQJAGSF8vLyb3zjG1FXAJAV5syZM2fOnKgrAMgWziAEAAAAAACALGIgBAAAAAAA\ngCziEqMn6sILL7zwwgujrgAAAAAAAICj4gxCAAAAAAAAyCIGQgAAAAAAAMgiBkIAAAAAAADI\nIgZCTponn3yyrq5u165dUYcAkPnuueee22+/PeoKADJfe3t7XV3dL3/5y6hDAMh8GzZsqKur\nW7t2bdQhAGSFvKgDyBxdXV2JRGJgYCDqEAAyX1tbW3d3d9QVAGS+VCqVSCQ6OzujDgEg8/X2\n9iYSiZ6enqhDAMgKziAEAAAAAACALOIMQk6aysrKZDIZj8ejDgEg802fPr23tzfqCgAyX35+\nfnV19ZQpU6IOASDzjR49urq6euzYsVGHAJAVYul0OuoG/qi2trampqa6ujrqEAAAAAAAADKT\nS4wCAAAAAABAFjEQAgAAAAAAQBYxEAIAAAAAAEAWMRACAAAAAABAFjEQAgAAAAAAQBYxEHLS\n7N27t7m5ua+vL+oQADJfa2vr9u3bo64AIPMNDAw0NzcnEomoQwDIfF1dXc3NzZ2dnVGHAJAV\nDIScNM8880x9ff2ePXuiDgEg8913330//vGPo64AIPN1dHTU19c3NDREHQJA5tu0aVN9ff3L\nL78cdQgAWcFACAAAAAAAAFnEQAgAAAAAAABZJC/qADLH3Llzq6qqysvLow4BIPNdcMEFAwMD\nUVcAkPmKi4sXLVpUVlYWdQgAmW/atGmLFi065ZRTog4BICsYCDlpKisrKysro64AICu8853v\njDoBgKyQn59fXV0ddQUAWWH06NGjR4+OugKAbOESowAAAAAAAJBFDIQAAAAAAACQRQyEAAAA\nAAAAkEUMhAAAAAAAAJBFDIQAAAAAAACQRQyEnDQbNmxoaGjo6OiIOgSAzLdixYpf//rXUVcA\nkPmSyWRDQ8PatWujDgEg87W0tDQ0NGzbti3qEACygoGQk+bVV19tbGzs7OyMOgSAzPfiiy8+\n//zzUVcAkPl6enoaGxs3btwYdQgAma+1tbWxsbGlpSXqEACygoEQAAAAAAAAsoiBEAAAAAAA\nALJILJ1OR93AH9XW1tbU1FRXV0cdAgAAAAAAQGZyBiEAAAAAAABkEQMhAAAAAAAAHI9UKvWr\nX/3q61//emNj4+GP3LRp086dO4en6ogMhAAAAAAAAHDM1q1bt2DBgssvv/yHP/zhunXrDn/w\nrbfeeuaZZ1599dXbt28fnrzDMBACAAAAAADAsVm7du0nPvGJV155ZfDLI54dmEgk0un0o48+\nesEFF2zZsmXoAw/HQAgAAAAAAADHoL+//5prrunq6gohlJaWXnbZZRdccMHhnzJz5szS0tIQ\nws6dOz/3uc+lUqnhCD0EAyEAAAAAAAAcg6VLl77xxhshhDPPPLOxsfG73/3u+9///sM/5cYb\nb1y5cuXZZ58dQli3bt3y5cuHofNQDIScNE8++WRdXd2uXbuiDgEg891zzz2333571BUAZL72\n9va6urpf/vKXUYcAkPk2bNhQV1e3du3aqEMAOCqPP/54CCEej//whz+sqKh46wGrVq1atWrV\n1q1b979z9OjR3//+9wsKCkIIDz/88PCkHpSBkJOmq6srkUgMDAxEHQJA5mtra9u3b1/UFQBk\nvlQqlUgkOjs7ow4BIPP19vYmEomenp6oQwA4KoNv6TjvvPMmTZp00AMuvvjiiy+++K677jrg\n/okTJ370ox8NIaxZs2aoIw/DQAgAAAAAAADHYM+ePSGEd7/73Qd99M2TqQ56VlVVVVUIYceO\nHUNWd2R5EX7vt510Or0I+bppAAAgAElEQVRy5crGxsZNmzYNnipXUlIyZcqUWbNmLViwYMKE\nCVEHRqyysjKZTMbj8ahDAMh806dP7+3tjboCgMyXn59fXV09ZcqUqEMAyHyjR4+urq4eO3Zs\n1CEAHJVkMhlCKCoqOuiju3fvHryRSCTe+mhZWVkIob+/f8jqjsxAeLRaWlr+8R//cfPmzfvf\nuW/fvn379q1fv/7nP//55Zdffskll0SVNxLMnTt37ty5UVcAkBUGr8MAAEOtuLh40aJFUVcA\nkBWmTZs2bdq0qCsAOFqlpaWJROJQZwFu27Zt8Mb69evf+mhzc3MIoby8fOjyjshAeFR27dpV\nW1s7+FlHBQUFZ5111uTJk4uLi3ft2rV69eqWlpaBgYEf//jHeXl5F110UdSxAAAAAAAADKFp\n06YlEonf/OY3B320oaEhhFBaWvrKK69s3LhxxowZbz40MDDw+OOPhxBOO+204Uk9KJ9BeFRu\nv/32wXVwxowZd9xxx5e//OX/9t/+20UXXXTVVVfddtttCxcuHDzsX//1X7u6uiItBQAAAAAA\nYGi9733vCyG88sorP/vZzw54qLm5+a677gohfOpTnwohfOlLX2pvbx98aGBg4Jvf/OaWLVtC\nCGefffawFv9nBsIjSyQSq1atCiEUFBR87WtfGzNmzP6P5uTk/NVf/dWkSZNCCMlk8ne/+100\nlQAAAAAAAAyL//pf/+vgjdra2u985ztvvPFGKpXq7u5+4oknPvGJT7S1tf3Jn/zJ5z//+Xg8\n/tvf/vbss8/+/Oc/f/3118+bN+9HP/pRCCEvL+/NV4iES4weWUdHx4c//OGOjo7JkycPfm7k\nAXJycqqrq7dv3x72+9hJAAAAAAAAMtLpp5/+qU996t577x0YGPje9773ve99LycnJ5VKvXnA\ntddeO27cuC9+8Yu33HJLIpH4xS9+sf/Tr7/++qlTpw579R8ZCI9s6tSp119//eGP6evrG7wx\natSooS8CAAAAAAAgSv/7f//vPXv2LF++fPDL/dfBRYsWDZ4geN1113V0dNx+++39/f2DDxUV\nFV1//fV/8zd/M/zB+zMQngQdHR2//e1vQwi5ubmzZs2KOicye/fu7erqGj9+fH5+ftQtAGS4\n1tbWVCo1eIlvABg6AwMDO3bsKCoqOuDDJgDgpOvq6tq7d295eXlJSUnULQAclcLCwjvvvPOR\nRx756U9/unr16u7u7lgs9u53v/uqq6667LLLBo+JxWJf/epXr7jiipUrV7a1tU2cOPEDH/jA\nQS9XOcwMhCdqy5YtixcvHvx4yU984hPZ/I/GZ5555sUXX7zmmmsmTpwYdQsAGe6+++7r7u6u\nra2NOgSADNfR0VFfX19dXb1o0aKoWwDIcJs2bfrFL35x4YUXvu9974u6BYBj8PGPf/zjH/94\nCKGzs7OgoOCg51CdcsopF1988bCnHY6B8Ji1trY+8sgjAwMD7e3tr7/++pYtW0IIBQUFl112\nmX8xAgAAAAAAZKG31yngBsJjtmvXriVLlrz5ZXFx8fnnn3/JJZeMhBNCAQAAAAAA4PAMhCeq\nq6tryZIlq1ev/uQnP3neeecd8fgHHnjg6aefPtSj27ZtO6l1w2ru3LlVVVXl5eVRhwCQ+S64\n4IKBgYGoKwDIfMXFxYsWLfJ+UACGwbRp0xYtWnTKKadEHQJAVoil0+moG96WUqnUvn37duzY\n8cILLzzyyCNdXV0hhHPPPfcLX/jCibxsbW1tTU1NdXX1ScoEAAAAAADgJPve974XQnj/+9//\n/ve/P+qW45ETdcDbVU5OzpgxY04//fRPf/rTt95664QJE0IITz755FNPPRV1GgAAAAAAAEPo\nO9/5zne+851nnnnmKI9/+eWXP/axj330ox+98847hzTsKBkIT4Lx48dfffXVg7cfeeSRaGMA\nAAAAAAAYUWbOnDlnzpy1a9d+61vf2rBhQ9Q5BsKTZM6cOYM3Nm/e7CORAAAAAAAA2N/Xv/71\nd73rXX19fdddd11fX1+0MQbCI1uzZs2DDz545513vvzyy4c6pqCgIBaLhRDS6XTk/1MBAAAA\nAAAYUQoLC7///e8XFBRs2LDhH//xH6ONMRAe2apVq+6+++4lS5Yc5vMFW1pa0ul0CCEejxcW\nFg5jHQAAAAAAAG8DM2fO/OpXvxpC+MEPfrB69eoIS/Ii/N5vF3Pnzn344YdDCI2NjZdeeumE\nCRPeekxDQ8PgjZkzZw5r3EiyYcOGpqamP/3TPx01alTULQBkuBUrVvT19X34wx+OOgSADJdM\nJhsbGydMmDB79uyoWwDIcC0tLevXrz/99NOnTJkSdQsAR2vZsmVbt249pqek0+n8/Py+vr4v\nfOELK1asGKKwIzIQHtmZZ545bdq0LVu2dHV13XLLLTfddNPYsWP3P6ChoeHBBx8cvH3++edH\n0TgivPrqqy+++OJ73vMeAyEAQ+3FF1/s7u42EAIw1Hp6ehobG6urqw2EAAy11tbWxsbG8vJy\nAyHA28jLL798mM+nO7wtW7ac3JhjYiA8slgs9oUvfOHGG2/s6enZtGnT1Vdf/b73vW/atGnx\neDyRSPz2t79983/hWWeddc4550RbCwAAAAAAAIdhIDwq06dP//u///t/+qd/amlp6e3tffbZ\nZ5999tkDjlmwYMHnPve5SPIAAAAAAAAYZh//+Mf/4i/+IuqK4xFLp9NRN7xtDAwMPPPMM88/\n//yrr77a1tbW29tbXFw8adKkmTNnnnfeedOmTTvxb1FbW1tTU1NdXX3iLwUAAAAAAMBQmDx5\ncgjh+uuv/9KXvhR1y/FwBuExyM3N/bM/+7M/+7M/izoEAAAAAAAAjlNO1AEAAAAAAADA8DEQ\nAgAAAAAAQBZxiVEAAAAAAAA4BuPHjw8hlJSURB1ynAyEAAAAAAAAcAxeeumlqBNOiEuMAgAA\nAAAAQBYxEHLSPPnkk3V1dbt27Yo6BIDMd88999x+++1RVwCQ+drb2+vq6n75y19GHQJA5tuw\nYUNdXd3atWujDgEgK7jEKCdNV1dXIpEYGBiIOgSAzNfW1tbd3R11BQCZL5VKJRKJzs7OqEMA\nyHy9vb2JRKKnpyfqEACOyqOPPhpCmD179tSpU4/yKbt27aqoqBjKqGPgDEIAAAAAAAA4Bldf\nffXVV1/9wQ9+8Kabbmpvbz/i8f39/Wecccb8+fPvvffedDo9DIWHZyDkpKmsrKyuro7H41GH\nAJD5pk+fPmPGjKgrAMh8+fn51dXVU6ZMiToEgMw3evTo6urqsWPHRh0CwDHo7++/++67zz//\n/JdeeunwR7a2tqbT6Y0bN95www1XXHFFb2/v8BQeSmwkrJS8qba2tqamprq6OuoQAAAAAAAA\nDm7y5MkhhJycnFQqFUIoKiq67bbbFixYcKjj//3f//0jH/nIm7vgpz/96VtuuWV4Ug/KGYQA\nAAAAAABwzD7/+c9/7Wtfy8/P7+7uvuqqq5544olDHfmud73rd7/73T/8wz8MXojxJz/5yfr1\n64ex9EAGQgAAAAAAADhmeXl5/+N//I+f/vSnxcXF/f39V1999QsvvHCog0tKSv77f//vP/zh\nDwe//OlPfzpcmQdhIAQAAAAAAIDjdM455/zrv/5rUVFRb2/vVVdd1dzcfJiD58+ff9ZZZ4UQ\nVq5cOVyBB2EgBAAAAAAAgOP3vve97/9n787jq6wPfI//TvaQhWDYt1QURcJQFRfQqpUu1w1H\ne8WlWlFH7Wjr2NtOU2vrbWem11an1xaxnTFtXbCtUlut+9K4UCMCSkWQAILgAgmEJQGynKzn\n/hEvWmU3yYPnvN9/neR5TvJp9WWUb57nmTFjRlpa2oYNGy655JKmpqZdnHzkkUeGEHa9I/Y0\nAyEAAAAAAAB8LKeeeur1118fQliyZMk111yTSCR2duYBBxwQQmhubu69uI8wENJt6uvrq6ur\n29raog4BIPnV1tauW7cu6goAklxLS8v69esXLlz4xhtvbNmypbOzM+oiAJJZU1NTdXV1Y2Nj\n1CEA7LurrrrqnHPOCSE8+eSTN954485Oe/vtt0MIBQUFvVf2EQZCus0LL7xQXl6+efPmqEMA\nSH6zZs2aOXNm1BUAJLN4PL506dI1a9bcfffdf/nLX9555x3/sQNAj1qxYkV5eXlVVVXUIQB8\nLDfffPOECRNCCL/85S9nzJjx0ROampoqKipCCKNGjertuA8wEAIAAMCHbdmyJT8/Pz8/Py0t\nLTMzs1+/fmvXro32FkAAAMD+Lzs7++677z744INDCD/5yU+uueaaurq67Uebm5uvu+66rjtj\nHX/88ZFVhpAR4fcGAACA/VBnZ2dHR0d2dnZTU1PXZ9LS0rKzs9va2nJzc6NtAwAA9nP9+vX7\n/e9/f955561evfqBBx54/PHHJ0+ePGLEiMbGxueee27t2rUhhMzMzAsuuCDCSAMh3WbChAmj\nRo3q27dv1CEAJL9TTjmlo6Mj6goAklYsFgshJBKJ3NzcM844o+vRIJ2dnV2fB4CeUFJSMnXq\n1CFDhkQdAkA3GDZs2EMPPXTxxRcvXLgwHo8//vjjHzrh+uuvHzlyZCRtXQyEdJuhQ4cOHTo0\n6goAUsLo0aOjTgAgmcVisezs7C1btvTt2/fQQw8NIbS3t7e2tubk5ESdBkDSKioqKioqiroC\ngG5TXFz84IMP/vznP//Vr361/d4kIYSioqLrr7/+wgsvjLAtGAgBAADgo4qKitrb22tra7Oy\nsjo7O1taWg466KDMzMyouwAAgP1CSUlJCGHXv9uRlZVVVlb2z//8z7Nnz3777bezs7MPOuig\n4447bn/41UMDIQAAAHxYenr6wIED8/Ly2tvb09LScnJysrKyoo4CAAD2F3PmzNnDMwsLC6dM\nmdKjMfvAQAgAAAA7EIvF8vPzo64AAADofmlRBwAAAAAAAAC9xxWEAAAAAAAAsO8SicSSJUte\ne+21t956a8OGDY2NjW1tbZmZmX369CkuLi4pKRk3btynP/3pjIz9ZZjbXzpIAkuXLl27du3E\niRPdhAeAnjZnzpy2traTTjop6hAAklw8Hq+srBw4cOD48eOjbgEgydXU1CxZsmTMmDHDhw+P\nugWAvbBp06Zf//rXf/rTn9auXbvrM4uLi//xH//x8ssvLykp6Z22XXCLUbrNypUrKysrGxsb\now4BIPktWLBg3rx5UVcAkPxaWloqKyuXL18edQgAya+2traysrKmpibqEAD2wp///OcTTzzx\n1ltv3e06GELYtGnTHXfcMXny5F/96le90LZrriAEAAAAAACAvTNr1qxvfetbiUQihJCenj5u\n3LgjjzyypKRk0KBBOTk52dnZra2t8Xh8w4YNa9asWbhw4d/+9re2trZ4PP7DH/6wtbX1a1/7\nWoTxBkIAAAAAAADYCzU1Nd/73vcSiURaWtrll19+1VVXDRw4cNdvqa+v/81vfnPrrbe2t7ff\nfPPNp59++qc+9aleid2BWNewyX6irKxs2rRppaWlUYcAAAAAAACwYzfeeOMvfvGLEMJtt912\n9tln7/kbn3rqqcsuuyyEcMUVV/zwhz/sobzd8gxCAAAAAAAA2AvPP/98COG4447bq3UwhPA/\n/sf/OOGEE0IIL774Yk+E7SEDIQAAAAAAAOyFd999N4Twmc98Zh/ee/zxx4cQ1q5d281Ne8NA\nCAAAAAAAAHshHo+HEPLy8vbhvQUFBSGEpqambm7aGwZCAAAAAAAA2Av9+/cPIaxatWof3tt1\n9WG/fv26uWlvGAgBAAAAAABgLxxxxBEhhEcffbSurm6v3hiPxx999NEQwrhx43qkbM8YCAEA\nAAAAAGAvnHXWWSGETZs2XXLJJbW1tXv4rsbGxquvvnrNmjUhhFNPPbUH+3bHQEi3eeaZZ6ZP\nn75x48aoQwBIfnffffftt98edQUAyW/btm3Tp09//PHHow4BIPktXbp0+vTpixYtijoEgD1y\n2mmnTZo0KYTwyiuvHH/88d/73veef/75bdu27fDktra2v/3tbz/96U+PO+64p556KoRw8MEH\nn3vuub1a/PcyIvzen0Rvvvnm008/vWTJko0bN7a0tPTp02fYsGHjx4//whe+MGjQoKjrItbU\n1FRXV9fR0RF1CADJb+vWrc3NzVFXAJD8Ojs76+rqGhsbow4BIPm1trbW1dW1tLREHQLAnvrN\nb35z3nnnLV68uKmp6a677rrrrrtCCP369Rs0aFBOTk52dnZra2tLS8umTZs2bNjQ2dm5/Y1D\nhw695557MjKiHOkMhHuqtbW1vLz86aef/uAnt23btmzZsmXLlj3wwAMXX3xx1/WkAAAAAAAA\nJLe+ffs+9NBDM2bM+K//+q94PN71ybq6ul08lTAtLe3cc8+94YYbioqKeitzxwyEeySRSPzk\nJz955ZVXuj4sLS099NBDCwsLa2pq5s+fX1dX197efscdd/Tp0+eLX/xitKkRGjp0aDwez87O\njjoEgOR38MEHt7a2Rl0BQPLLzMwsLS0dPnx41CEAJL+ioqLS0tIDDjgg6hAA9kJ2dva//uu/\nfvWrX3344YeffPLJhQsXbt68+aOn5eXljRs3bvLkyeecc87gwYN7v/OjYolEIuqGT4Cnnnrq\nF7/4RQghKyvru9/97oQJE7Yfisfj5eXlFRUVIYSCgoI777wzKytrn79RWVnZtGnTSktLP34z\nAAAAAAAAvWnr1q21tbUNDQ3t7e3p6el9+vTp379/cXFx1F0f5grCPfLQQw91vfinf/qnD66D\nIYScnJyvfe1rr7322oYNG7Zt27Z48eIPnQAAAAAAAEAqKCwsLCwsjLpi99KiDvgE2LJly9q1\na0MImZmZJ5988kdPSE9PP/LII7ted50JAAAAAAAA+ydXEO5e3759H3jggbq6uubm5pycnB2e\nk5ub2/Wira2tF9MAAAAAAACITEdHxyuvvLJw4cK6urqioqJJkyZ9+tOfjjpq9wyEeyQ9Pb1/\n//67OGH9+vVdL4YMGdIrRQAAAAAAAETppZde+s53vvPmm29+8JPHHXfcjBkzBg8e3PXhyy+/\nfOutt86fPz8ej48YMeLMM8+8+uqr8/Pzo+h9n1uMdoNt27YtWLAghJCbm3v44YdHnQMAAAAA\nAEDPqqysvOCCCz60DoYQ5syZc84552zbti2EcPvtt5911lnPPvtsQ0NDe3v76tWrp0+ffsop\np9TU1ESR/D5XEHaD8vLy1tbWEMJZZ53Vp0+fqHMiU19f39TUNGDAgMzMzKhbAEhytbW1nZ2d\n238PCwB6SEdHx/r163Nzc/v16xd1CwBJrqmpqb6+vm/fvnl5eVG3ALB7LS0t1157bdeD5wYO\nHPj5z39+6NChDQ0Nf/3rX6uqqlavXn3bbbcde+yx//Ef//HR965evfrqq69+4IEHYrFYr4e/\nxxWEH9esWbNmz54dQjj00EOnTp0adU6UXnjhhfLy8s2bN0cdAkDymzVr1syZM6OuACD5NTQ0\nlJeXV1RURB0CQPJbsWJFeXl5VVVV1CEA7JEHH3xw3bp1IYSLLrpo/vz5//mf//m//tf/uuGG\nG/7yl7/86Ec/CiH84Q9/+K//+q9EIjF+/Pj77rtv6dKly5cvf+ihh0444YQQwvz585977rkI\n+11B+LH89re//cMf/hBCGDZs2A033JCRsfv/P++///5d/CVfs2ZNd/YBAAAAAADQ3Z555pkQ\nwvjx43/84x+npf3d9XiXXnrpwoUL//jHP9bW1g4bNuwPf/hDQUFB16GjjjrqnnvuOeWUU5Yt\nW/bnP/958uTJEaSHEAyE+6ylpeXnP//5iy++GEIYMWLEv/3bvxUWFu7JG6dOnbqLCw3Lysq6\nLREAAAAAAIAesHjx4hDC1KlTP7QOdrnooov++Mc/hhCmTZu2fR3skpmZedFFF33/+99fsGBB\n76TukIFwX2zYsOH//J//s2rVqhDC2LFjv//97+fn50cdFb3x48cPHTp0D4dSAPg4Tj755I6O\njqgrAEh+ubm5U6ZM8QBCAHrB8OHDp0yZMnLkyKhDANgjXQ9cGzNmzA6PHnbYYV0vxo0b99Gj\nXe/asGFDj9XtnoFwr1VVVf34xz/esmVLCOFzn/vc1VdfnZmZGXXUfqGkpKSkpCTqCgBSwg7/\n1QoAul1WVtaECROirgAgJRQXFxcXF0ddAcCeamlpCSHk5OTs8Gh2dnbXix2ekJWVtf0rRMVA\nuHfmzp178803t7e3x2KxSy+99Kyzzoq6CAAAAAAAgF5VUFBQV1fXdR3hR22/OnCHlwnW1taG\nEIqKinoub7d2cF9Udmbu3Lk33XRTe3t7dnb29ddfbx0EAAAAAABIQcOHDw8hzJs3b4dHX3zx\nxa4XzzzzzEePPv/88yGEgw8+uKfi9oCBcE8tX778pz/9aUdHR05Ozr//+78fe+yxURcBAAAA\nAAAQgaOPPjqE8Nvf/nbt2rUfOhSPx3/5y1+mpaUNGTLkT3/6U0VFxQePPvfcc/fdd18I4YQT\nTui12o9yi9E90tTU9J//+Z+tra0ZGRnf//73tz9bEgAAAAAAgFQzderUO+64Y+vWrWedddZ3\nvvOdSZMmDR48uKWlZfHixTfeeOMbb7xx+OGHn3DCCTNmzLjkkksmTZo0evTozs7O5cuXv/zy\ny4lEIjs7+4ILLoiw30C4R+6+++6uG8J+5StfGT9+fNQ5AAAAAAAARGb8+PFnn332gw8+WF1d\nfe2114YQ0tPTOzo6tp9wxRVXnHzyyU8++eSKFSvmzJkzZ86cD779e9/73qBBg3o7+gMMhLtX\nW1v79NNPhxBisVhDQ8O99967i5Pz8/OnTJnSW2n7l6VLl65du3bixIn5+flRtwCQ5ObMmdPW\n1nbSSSdFHQJAkovH45WVlQMHDvSrogD0tJqamiVLlowZM6broVYA7P9+8pOf1NbWbn/c4AfX\nwS9/+ctnnXVWCOHee++99tprt58TQsjLy7vuuusuu+yyXq79EAPh7q1YsaLrL2oikbj//vt3\nffLgwYNTdiBcuXLlggUL/uEf/sFACEBPW7BgQXNzs4EQgJ7W0tJSWVlZWlpqIASgp9XW1lZW\nVvbt29dACPBJkZ+f//vf/37WrFn33nvvokWLOjo60tLSxo8ff/nll5999tld5wwZMuQPf/jD\nq6++On/+/Hg8PmLEiMmTJxcVFUVbHgyEAAAAAAAAsA8yMjIuvPDCCy+8sKOjY9u2bXl5eZmZ\nmR897YgjjjjiiCN6P28XDIS7d/zxxz/88MNRVwAAAAAAALA/Sk9P3x+uC9xzsUQiEXUD7ysr\nK5s2bVppaWnUIfuira2tvb09Ozs7LS0t6hYAklw8Hg8h5OTkRB0CQJJLJBLxeDw9PT0rKyvq\nFgCSXEdHR2tra2ZmZkaGizoA6HF+2NBtMjMzd3jlLAB0O9MgAL0jFovl5uZGXQFASkhPT/dD\nB4BeYyAEAAAAAACAvXDbbbeFEI455phjjjkm6pZ94VaQAAAAAAAAsBd+/OMf//jHP37hhRf2\n8PyqqqrTTjvt1FNPveOOO3o0bA8ZCAEAAAAAAKAHjR079tOf/vSiRYv+/d//fenSpVHnGAgB\nAAAAAACgh/3gBz845JBD2trarrnmmra2tmhjDIQAAAAAAADQs3Jycn7xi19kZWUtXbr05ptv\njjbGQEi3eeaZZ6ZPn75x48aoQwBIfnffffftt98edQUAyW/btm3Tp09//PHHow4BIPktXbp0\n+vTpixYtijoEgB40duzY66+/PoTw3//93y+//HKEJRkRfm+STFNTU11dXUdHR9QhACS/rVu3\nNjc3R10BQPLr7Oysq6trbGyMOgSA5Nfa2lpXV9fS0hJ1CAB74cknn3z33Xf36i2JRCIzM7Ot\nre3aa6+dM2dOD4XtloEQAAAAAAAA9lpVVVVVVdW+vfftt9/u3pi9YiCk2wwYMGDUqFFZWVlR\nhwCQ/EaMGOH3agHoBRkZGaNGjRo4cGDUIQAkv/z8/FGjRhUWFkYdAkBKiCUSiagbeF9ZWdm0\nadNKS0ujDgEAAAAAAGDHhg0bFkI444wzzjzzzH3+Iqeffnr3Fe0dVxACAAAAAADAXjvkkEMi\nHPk+jrSoAwAAAAAAAIDeYyAEAAAAAACAFGIgBAAAAAAAgBTiGYQAAAAAAACwFwYMGBBCyMvL\nizpkHxkI6Tb19fVNTU0DBgzIzMyMugWAJFdbW9vZ2Tl48OCoQwBIch0dHevXr8/Nze3Xr1/U\nLQAkuaampvr6+r59+35y/6wZIKUsXLgw6oSPxS1G6TYvvPBCeXn55s2bow4BIPnNmjVr5syZ\nUVcAkPwaGhrKy8srKiqiDgEg+a1YsaK8vLyqqirqEABSgoEQAAAAAAAAUohbjAIAAAAAAMDH\n1draunr16i1btjQ0NMRisfz8/Pz8/JEjR+6Ht482ENJtxo8fP3To0MLCwqhDAEh+J598ckdH\nR9QVACS/3NzcKVOmeAAhAL1g+PDhU6ZMGTlyZNQhAOy1pUuXPvjggxUVFStXrvzon1nFYrHh\nw4cfddRRp59++uTJk7OzsyOJ/JBYIpGIuoH3lZWVTZs2rbS0NOoQAAAAAAAAdmXDhg0/+MEP\nHnrooT08f9CgQWVlZeedd14sFuvRsN1yBSEAAAAAAADsnbfffvv8889/5513tn8mNzc3Ly+v\nvr6+vb09hHDYYYeNGjVq06ZNb7zxxubNm0MI69ev/9a3vvXiiy/+7Gc/y8iIcqRLi/B7AwAA\nAAAAwCdOe3v7V7/61a51cPDgwT/84Q9feumllStXvvbaa2+++eZvfvObkpKSFStWnHjiiX/6\n058WL1787LPP/su//Et+fn4I4YEHHrjhhhui7TcQAgAAAAAAwF548MEHFy9eHEI46aSTZs+e\nfcUVV2x/jmxGRsYpp5zyyCOPDBw48Prrr3/55ZdDCIceeuh3vvOd559/fuzYsSGEe+65529/\n+1uE/QZCAAAAAMrIqqoAACAASURBVAAA2AsPP/xwCGHgwIG3335713WBH1JcXPytb32ro6Pj\nZz/72fZPDhky5K677srLy0skEvfdd1/v5X6EgRAAAAAAAAD2wtKlS0MI55xzTkFBwc7OmThx\nYgjhhRde2LJly/ZPDhs27IwzzgghzJkzp+czd8pASLdZunRpRUVFQ0ND1CEAJL85c+bMnj07\n6goAkl88Hq+oqFi0aFHUIQAkv5qamoqKijVr1kQdAsAe2bhxYwihpKRkF+cMHTo0hNDZ2fmh\nf7x33WV03bp1PRm4GwZCus3KlSsrKysbGxujDgEg+S1YsGDevHlRVwCQ/FpaWiorK5cvXx51\nCADJr7a2trKysqamJuoQAPZInz59Qgh1dXW7OKdrRAwhNDU1ffDz8Xg8hJCZmdljdbtnIAQA\nAAAAAIC9MHLkyBDCU089tYtznn766a4XAwcO/ODn58+fH/7/9YVRMRACAJ8kiUSisbGxqamp\nubnZZesAAAAAROKzn/1sCOHVV1/97//+7x2e8Pbbb99yyy0hhMGDB3/wTqSzZ89+7rnnQgil\npaW9EboTsUQiEeG350PKysqmTZsW7d8T+6ytra29vT07OzstzfAMQI9IJBKbNm1au3ZtLBbr\n+nDYsGHFxcVdHwJAt0skEvF4PD09PSsrK+oWAJJcR0dHa2trZmZmRkZG1C0A7N66deuOP/74\nrpuFnnbaaZdddtmECRO6/sOhpqbm0Ucf/fnPf15fXx9CKCsru/baa7ve9bOf/WzGjBktLS0h\nhD/96U8TJ06Mqt8PG7pNZmZmtDfMBSDpNTQ0VFdX9+/ff/tAWF1dnZ2dXVBQEHUaAMkpFovl\n5uZGXQFASkhPT/dDB+ATZPDgwf/xH//x7W9/O4Tw+OOPP/744+np6QUFBa2trR984uC4ceOu\nvPLK7R++/PLLXevgV77ylQjXweAWowDAJ0hLS0ufPn22Xy8Yi8X69OnT9S9VAAAAANCbvvzl\nL99yyy19+vTp+rCjo6O+vv6D6+CkSZN++9vffvD3Pw455JDMzMxrr732xhtv7O3cv+cKQgDg\nEyORSHzobqKxmPulAwAAABCN8847b/Lkyffcc88zzzxTVVXV2toaQigsLDzmmGPOPffc0047\n7UN/lnXhhRdeffXVAwcOjKj3fQZCAOATIysrKx6Pf/C3ruLxeP/+/SNMAgAAACCVDRgw4Jvf\n/OY3v/nNEEJjY2NGRkZ2dvbOTh49enQvpu2KgRAA+MQoKCgoLi7evHlz10bY3Nzcv39/DyAE\nAAAAYH+Ql5cXdcKeMhDui6qqqp///Ofr1q0LIXznO985/vjjoy4CgJSQlpY2YMCAnJycrucO\n9uvXr6CgIC3NM5UBAAAAYC/4A7W9097eftddd333u9/tWgf5oGeeeWb69OkbN26MOgSAZJae\nnl5UVPTkk0/++c9/LioqSk9Pj7oIgGS2bdu26dOnP/7441GHAJD8li5dOn369EWLFkUdAkBK\ncAXhXli9evUtt9zy9ttvhxAyMjLa29ujLtq/NDU11dXVdXR0RB0CQPLbunVrc3Nz1BUAJL/O\nzs66urrGxsaoQwBIfq2trXV1dV23SwGAnmYg3FOPPvroHXfc0d7enpmZefHFF69evfrZZ5+N\nOgoAAAAAAAD2jluM7qlnn322vb19xIgRP/3pT//xH/8x6pz90YABA0aNGpWVlRV1CADJb8SI\nESUlJVFXAJD8MjIyRo0aNXDgwKhDAEh++fn5o0aNKiwsjDoEgJTgCsK9cOqpp/7TP/2TAWxn\nJk6cOHHixKgrAEgJZ511VtQJAKSEvLy8iy++OOoKAFLCQQcddNBBB0VdAUCqMBDuqWuuuebA\nAw+MugIAAAAAAAA+FrcY3VPWQQAAAAAAAJKAgRAAAAAAAABSiIEQAAAAAAAAUoiBEAAAAAAA\nAFJIRtQBKef+++9/7rnndnZ0zZo1vRnTverr65uamgYMGJCZmRl1CwBJrra2trOzc/DgwVGH\nAJDkOjo61q9fn5ub269fv6hbAEhyTU1N9fX1ffv2zcvLi7oFgORnIOxtU6dOnTp16s6OlpWV\n9WZM93rhhRcWLFhw1VVXDRo0KOoWAJLcrFmzmpubP9E/NwH4RGhoaCgvLy8tLd3Ff8cBQLdY\nsWLFgw8+ePrppx999NFRtwCQ/NxiFAAAAAAAAFKIgRAAAAAAAABSiFuM0m3Gjx8/dOjQwsLC\nqEMASH4nn3xyR0dH1BUAJL/c3NwpU6Z4ACEAvWD48OFTpkwZOXJk1CEApAQDId2mpKSkpKQk\n6goAUsK4ceOiTgAgJWRlZU2YMCHqCgBSQnFxcXFxcdQVAKQKtxgFAAAAAACAFGIgBAAAAAAA\ngBRiIAQAAAAAAIAU4hmEe6Sqquq111774GdWr17d9aKysvKdd97Z/vmcnJyzzz67V+MAAAAA\nAABgjxkI90hVVdW99967w0Mvvvjiiy++uP3DoqIiAyEAAAAAAAD7LbcYpdusXLmysrKysbEx\n6hAAkt+CBQvmzZsXdQUAya+lpaWysnLZsmVRhwCQ/GpraysrK2tqaqIOASAluIJwj5xzzjnn\nnHNO1BX7u6VLly5YsGD06NF5eXlRtwCQ5ObMmdPc3HzsscdGHQJAkovH4xUVFaWlpWPGjIm6\nBYAkV1NTU1FRkZ2dPWTIkKhbAEh+riAEAAAAAACAFGIgBAAAAAAAgBQSSyQSUTfwvrKysmnT\nppWWlkYdsi/a2tra29uzs7PT0gzPAPSseDweQsjJyYk6BIAkl0gk4vF4enp6VlZW1C0AJLmO\njo7W1tbMzMyMDI+FAqDH+WFDt8nMzMzMzIy6AoCUYBoEoHfEYrHc3NyoKwBICenp6X7oANBr\nXOkFAAAAAAAAKcRACAAAAAAAACnEQAgAAAAAAAApxEAIAAAAAAAAKcRACAAAAAAAACnEQEi3\n+etf/1peXr5p06aoQwBIfvfdd9/dd98ddQUAya+hoaG8vLyioiLqEACS3xtvvFFeXl5VVRV1\nCAApISPqAJLHli1bqqur29vbow4BIPlt2LChubk56goAkl9HR0d1dXW/fv2iDgEg+TU3N1dX\nVzc2NkYdAkBKcAUhAAAAAAAApBBXENJtBgwYMGrUqKysrKhDAEh+I0aMaGlpiboCgOSXkZEx\natSogQMHRh0CQPLLz88fNWpUYWFh1CEApIRYIpGIuoH3lZWVTZs2rbS0NOoQAAAAAAAAkpNb\njAIAAAAAAEAKMRACAAAAAABACjEQAgAAAAAAQAoxEAIAAAAAAEAKMRACAAAAAEQvkUhEnQBA\nqsiIOoDk0dTU1NLSUlhYmJ6eHnULAEluy5YtiUSiqKgo6hAAklxnZ+eWLVsyMzPz8/OjbgEg\naSUSiYaGhvr6+oaGhry8vAMOOCAvLy8Wi0XdBUAycwUh3eaZZ56ZPn36xo0bow4BIPnNnDmz\nvLw86goAkt+2bdumT5/+xBNPRB0CQDLbsmXL6tWrFy9eXF5e/uqrr7755pvbtm2LOgqAJGcg\nBAAAAACIRnt7++rVq4uKirKystLS0jIzM/v16/fmm292dHREnQZAMjMQAgAAAABEo62tLT09\nPSPj/UdBZWRkpKWltbW1RVgFQNLzDEK6zfjx44cOHVpYWBh1CADJ7+STT/brtAD0gtzc3ClT\npvTr1y/qEACSVlpaWmdnZwhhyJAhX/jCF4YNGxZCSCQSaWku7QCgBxkI6TYlJSUlJSVRVwCQ\nEsaNGxd1AgApISsra8KECVFXAJDMsrKyhgwZsnXr1n79+nX9SkpDQ8OQIUMyMzOjTgMgmRkI\nAQAAAACiEYvFioqKOjs7N23alJGR0dbWNmDAgH79+sVisajTAEhmBkIAAAAAgMhkZ2cPGjSo\noKCgo6MjIyMjNzfX/UUB6GkGQgAAAACAKKWlpeXn50ddAUAK8asoAAAAAAAAkEIMhAAAAAAA\nAJBCDIR0m5UrV1ZWVjY2NkYdAkDyW7Bgwbx586KuACD5tbS0VFZWLlu2LOoQAJJfbW1tZWVl\nTU1N1CEApAQDId1m6dKlFRUVDQ0NUYcAkPzmzJkze/bsqCsASH7xeLyiomLx4sVRhwCQ/Gpq\naioqKtasWRN1CAApwUAIAAAAAAAAKcRACAAAAAAAACkklkgkom7gfc3NzVlZWenp6VGH7Iu2\ntrb29vbs7Oy0NMMzAD0rHo+HEHJycqIOASDJJRKJeDyenp6elZUVdQsASa6jo6O1tTUzMzMj\nIyPqFgCSn4EQAAAAAAAAUogrvQAAAAAAACCFGAgBAAAAAAAghRgIAQAAAAAAIIUYCAEAAAAA\nACCFGAgBAAAAAAAghRgIAQAAAAAAIIUYCAEAAAAAACCFGAgBAAAAAAAghRgIAQAAAAAAIIUY\nCAEAAAAAACCFGAgBAAAAAAAghRgIAQAAAAAAIIUYCAEAAAAAACCFGAgBAAAAAAAghRgIAQAA\nAAAAIIUYCAEAAAAAACCFGAgBAAAAAAAghRgIAQAAAAAAIIUYCPcva9asaW5ujroCoNvU1NRs\n2LAh6goAkl9ra2t1dfWWLVuiDgEg+TU0NFRXV8fj8ahDAEh+mzZtqq6u7uzsjDqEJGQg3L/c\neuutq1atiroCoNvceeedf/zjH6OuACD51dbWlpeXv/TSS1GHAJD8Fi5cWF5e/tZbb0UdAkDy\ne/zxx8vLy9va2qIOIQkZCAEAAAAAACCFGAgB6EE5OTnZ2dlRVwCQ/NLS0nJzczMyMqIOASD5\nZWRk5ObmpqenRx0CQPLLysrKzc2NuoLkFEskElE38L6ysrJp06aVlpZGHQIAAAAAAEBy8gu2\ne2ThwoX/+3//792edvDBB99yyy290AMAAAAAAAD7xi1G90hjY2PUCQAAAAAAANANXEG4Rxoa\nGrpeHHXUUaNHj97ZaQcccEBvFQEAAAAAAMC+MBDuke1XEH7mM5+ZPHlytDEAnwiJRKKpqam1\ntTWEkJ2d3adPn6iLAAAAAAAIwUC4h7YPhHl5edGWAHwiJBKJjRs31tTUZGdnhxDi8fjw4cOL\ni4uj7gIAAAAAwEC4Z7bfYtRACLAntm3btm7duuLi4lgs9sLruZkZHfG26uzs7Pz8/KjTAAAA\nAABSnYFwj7iCEGCvxOPxPn36xGKx8vLyB+cPzxxxeXpa8diS9hM+HSaODWNGhrRY1IkAJJfq\n6up77rlnwoQJn//856NuASDJzZ07d/bs2V/60pdGjx4ddQsASW7WrFlvvfXWN77xja7bdEE3\nMhDuEQMhwN6KxWIhhA11bfXb2gaE0NEZW7w6c/Hq8Ms/h6L8cMxhYeLYMHFsGFgUdSgASaGz\ns7O5ubm9vT3qEACSX3t7e3Nzc0dHR9QhACS/1tbW5ubmqCtITgbCPbJ9IMzNzX3++edfeOGF\nlStXbt26NScnZ+DAgYcffvipp546ePDgaCMB9h+ZmZnxeDwnJ2fjlvSPHq1vCE+/HJ5+OYQQ\nRg0NE8eGiYeFIw8JOVm93QkAAAAAkIIMhHtk+zMIr7vuunfffXf75xsbG1evXr169eqHH374\n/PPPP/fcc7uumAFIcYWFhS0tLXV1dad+dtTnTszrKKh+Y90Br63O2dr44TNXVYdV1eH3FSEr\nMxx+8Htj4ejhwT9NAdgreXl5EyZMGD58eNQhACS/wYMHT5gwoajI7VAA6HGjR48uKipKT9/B\nr+DDxxRLJBJRN3wCTJs2ra6urut1Xl7e0UcfPXLkyKysrJqamnnz5m3cuLHr0LnnnnvRRRd9\nnG9UVlY2bdq00tLSj1sMELX29vZt27a1traGELKzswsKCmKx9KXvhHlVYW5VeO3N0NG50/cW\nF4Zjx4aJY8Oxh4Xiwt5rBgAAAABIBQbCPXLOOed0/Rn3aaeddvHFF/fp02f7ofb29jvvvPOR\nRx7p+vCWW245+OCDd/Glnn766VdeeWVnRxcuXPiDH/zAQAgkvaZ4eHn5e2PhO7U7PS0WC6OH\nv3dZ4eEHh6zMXkwEAAAAAEhSBsI90tTUlEgkYrHYB6fBD/rRj340f/78EMIJJ5zw7W9/exdf\nasuWLdtvWPpRN99885VXXmkgBFJK9cbwUlWYVxVeXh62Ne30tJyscOToMLE0TDwsjBrai30A\nAAAAAMnFMwj3yM52we3OO++8roFwwYIFXVPizs7s27dv3759d3Y0Ozt7nyMBPqGG9g//88Tw\nP08MnZ3h9dXvjYWvvxU6//4epPHWMGdJmLMkhBAGFoWJpWHi2HDMmFCUH0k1AAAAAMAnlYGw\nexx88MGZmZltbW1NTU3btm0rLPTILIC9lpYWxh8Uxh8UvjolbGsKLy8Lc6vC3KpQvenDZ9bW\nh4dfDA+/GNJiYczIMHFsmDg2jD8oZHhgMwAAAADA7hgIu0csFsvOzm5rawshdD2tEICPo6BP\nmHxkmHxkCCG8s/69pfCV5aGp5e9O60yEqrdD1dvhjidCn+xw1KHvjYUjB0VSDQAAAADwCWAg\n7B6tra2NjY1dr10+CLDd6tWrMzMzhw8f/nG+yMhBYeSgcO7Job0jLHrzvbFw2Tuh8++fotvU\nEv66KPx1UQghDC0OE8eGY8eGo8eEwt3cJRqAZBCPx6urqwsLC/v37x91CwBJrr6+fvPmzYMG\nDcrLy4u6BYAkV1NT09zc/KlPfSotLS3qFpKNgXD35s2b98orr2zYsOGkk046+eSTd3jO66+/\nnkgkQggjR47Mysrq3UCA/de9997br1+/q666qlu+WkZ6OPKQcOQh4eqzQn1DmN91D9Ilobb+\nw2dWbwoPvBAeeCGkpYVxn3pvLBx3YEj3r1IASWrjxo0zZ86cOHHiKaecEnULAEnu9ddfr6io\nOP/888eMGRN1CwBJrqKi4s033/zud7+bnZ0ddQvJxkC4e1u3bn3qqadCCLW1tccff/xH979E\nInH//fd3vT722GN7uw8gJRXlhy8eFb54VAghrKoOc5eGuVXhb2+E+N/f5rmzMyxaFRatCuWP\nhoI+4ehD3xsLh7m8BAAAAABIVQbC3TvxxBNnzpy5ZcuWNWvW/N//+3+vueaa/Pz87UdbW1tv\nv/32JUuWhBByc3PPPPPM6EoBUtSooWHU0PDlz4XWtrBw5Xtj4Yo1IfH39yDd1hSefTU8+2oI\nIYwc+P/vQXpo6JMTSTUAAAAAQDRiiQ/96Sk7Mn/+/BtvvLGzszOEkJ+ff8IJJwwdOjQWi1VX\nV7/00kt1dXUhhFgsdt11102aNOnjfKOysrJp06aVlpZ2TzdA1LrlGYT7ZvPW95bCeVVh09ad\nnpaeFj590Htj4WEjg9u5A3xCeQYhAL3GMwgB6DWeQUjPMRDuqblz586YMWPbtm07PNq3b99r\nr732qKOO+pjfxUAI0O0SibBibZi7JMxdGhauDK1tOz2zb1445rAwaWw4dmwY1K8XEwEAAAAA\nepGBcC80NjY+88wzCxYseOuttxoaGmKxWGFh4ac+9amjjjrqc5/7XLc8I9RACNCj4q3hbyvC\n3Kowtyqsqt7VmQcOCRPHholjw5GjQ66HQAMAAAAAScRAuH8xEAL0mtr695bC+UtDfcNOT8vK\nCJ8++L2x8JDhIRbrxUQAAAAAgB6QEXUAAERjYFE487hw5nGhMxGWvfPeWLjozdDe8XentbaH\nl5eFl5eFGQ+EAwrCsWPDsYeFSaWhuDCibgAAAACAj8dACECqS4uFsSVhbEm47NTQ1BJeWR7m\nVYWXqsI76z985uZt4Yl54Yl5IRYLBw8LE8eGYw8LR4wOaaFt69atra2tIYTs7OzCwsKMDD9h\nAQAAAID9lD++BID39ckOJ44PJ44PIYTqTWFeVZhbFV5eFrY2/d1piURYsSasWBPueTpkZ4bS\nks7DhnUcdUgYOaB1y5Ytra2tAwYMSE9Pj+R/AgAAAADArhkIAehBTzzxRJ8+fU466aSoQ/bF\n0OJw9gnh7BNCZ2d4/a33xsLXV4eOzr87raUt/G1l9t9WDvzd7PD98zcfc2jmpk2bcnNz+/bt\nG1E4QCqqq6urrKw88MADx40bF3ULAElu5cqVS5cuPfroowcPHhx1CwBJbu7cuRs2bDj11FPd\nrYpulxZ1AADJ7NVXX62qqoq64uNKSwvjR4Urzgi/KQvP3BJu/ufwP08Mw/p/+LT0tMS4T713\nl9G2trYIQgFSWGNj44IFC9asWRN1CADJb926dQsWLKivr486BIDkt2LFigULFnR0dEQdQhKy\nOQPAXsjPDZOPCJOPCCGEd2vD3Kow+9WW11ZlNremjRnR1ie7M4SQSCRisVjEoQAAAAAAO2Eg\nBIB9NGJgGDEwnDKh9c1Vb9Q2Dg6xtBBCR0dHU1PTsGHDoq4DAAAAANixWCKRiLqB95WVlU2b\nNq20tDTqEAD2VCKR2Lx587vvvpuTkxNCiMfjJSUl/fr1i7oLAAAAAGDHXEEIAB9LLBYrLi7u\n06dPa2trLBbLysrqWgoBAAAAAPZPBkIA6Aa5ubm5ublRVwAAAAAA7F5a1AEAAAAAAABA7zEQ\nAgAAAAAAQAoxEAIAAAAAAEAKMRACAAAAAABACjEQAtCDbrnlljvuuCPqCgCSX3V19U033VRR\nURF1CADJb+7cuTfddNOKFSuiDgEg+c2aNeumm25qaWmJOoQkZCAEoAfF43H/BgNAL+js7Gxu\nbm5vb486BIDk197e3tzc3NHREXUIAMmvtbW1ubk56gqSk4EQAAAAAAAAUkhG1AEAJLMxY8bk\n5+dHXQFA8svNzS0tLR08eHDUIQAkv/79+5eWlhYUFEQdAkDyKykpycnJSUtzrRfdL5ZIJKJu\n4H1lZWXTpk0rLS2NOgQAAAAAAIDkZHYGAAAAAACAFGIgBAAAAAAAgBRiIAQAAAAAAIAUYiAE\nAAAAAACAFGIgBAAAAAAAgBRiIASgB61evXrNmjVRVwCQ/OLx+KpVqzZu3Bh1CADJr76+ftWq\nVY2NjVGHAJD8ampqVq1a1dnZGXUISchACEAPuvfeex955JGoKwBIfhs3bpw5c+Yrr7wSdQgA\nye/111+fOXPmu+++G3UIAMmvoqJi5syZbW1tUYeQhAyEAAAAAAAAkEIMhAAAAAAAAJBCMqIO\nACCZnX322VlZWVFXAJD8iouLp06dWlxcHHUIAMlvzJgx/fr1Gzp0aNQhACS/E0888cgjj8zI\nMOXQ/fxdBUAPOuyww6JOACAl5ObmlpaWRl0BQEro379///79o64AICWUlJREnUDScotRAAAA\nAAAASCEGQgAAAAAAANgXnZ2dzz///A9+8IPKyspdn7lixYoNGzb0TtVuGQgBAAAAAABgry1e\nvPgLX/jChRde+Otf/3rx4sW7PnnGjBlHHHHElVdeuW7dut7J2wUD4cdSW1t73nnnnXnmmWee\neeYLL7wQdQ4AAAAAAAC9YdGiRV/60peWLVvW9eFurw6sq6tLJBKPPfbYKaec8vbbb/d84K4Y\nCPddIpGYMWNGc3Nz1CEAAAAAAAD0nvb29quuuqqpqSmEUFBQcN55551yyim7fsvYsWMLCgpC\nCBs2bPjqV7/a2dnZG6E7YSDcd08++eRrr70WdQXAfu2JJ56YPXt21BUAJL+6urpHHnnk9ddf\njzoEgOS3cuXKRx55ZH+4MxgASW/u3LmPPPJIe3t71CHswEMPPfTWW2+FEI444ojKyspbbrnl\nmGOO2fVbvvvd786dO3fSpEkhhMWLFz/11FO90LkzBsJ9VFtbe+edd4YQiouLo24B2H+9+uqr\nVVVVUVcAkPwaGxsXLFiwZs2aqEMASH7r1q1bsGBBfX191CEAJL8VK1YsWLCgo6Mj6hB24Omn\nnw4hZGdn//rXv+7fv/9HT5g/f/78+fPffffdD36yqKjoF7/4RVZWVgjhkUce6Z3UHTIQ7otE\nInHrrbfG4/G+ffuefvrpUecAAAAAAADQexYtWhRC+PznPz948OAdnnD22WefffbZXRebfdCg\nQYNOPfXUEEK0d6k0EO6LJ554ousv/KWXXpqbmxt1DgAAAAAAAL1n8+bNIYTDDjtsh0e3X/e5\nwwtAR40aFUJYv359j9XtXkaE3/sTav369XfddVcI4cgjj5w8efJjjz0WdRHA/uv666+POgGA\nlDB8+PAf/vCHUVcAkBI+85nPfOYzn4m6AoCU8JWvfCXqBHYqHo+HEHZ2FdmmTZu6XtTV1X30\naGFhYQgh2qdLuoJw72y/uWifPn2+/vWvR50DAAAAAABAbysoKAg7vwpwzZo1XS+WLFny0aPV\n1dUhhL59+/ZY3e4ZCPfO448/vnjx4hDCZZddtsNnTgIAAAAAAJDcSkpKQgh//etfd3i0oqIi\nhFBQULBs2bLly5d/8FBHR8fTTz8dQjjooIN6PnOnDIR7Yf369XfffXcI4fDDD//iF78YdQ4A\nAAAAAAAROProo0MIy5Ytu++++z50qLq6+s477wwhXHDBBSGEb33rW9u2bes61NHR8W//9m9v\nv/12CGHSpEm9Wvz3PINwT22/uWhubq6biwIAAAAAAKSs888//1e/+lUIoaysbPXq1RdccMHI\nkSNbWloqKytvuOGGrVu3HnjggV//+tfvvvvuV199ddKkSZ/97GezsrLmzp3btQ5mZGScf/75\nEfYbCPfUY4891nVz0UsuuWTgwIH7/HXuv//+5557bmdHt9+UFgAAAAAAgP3TmDFjLrjggnvv\nvbejo+O222677bbb0tLSOjs7t5/wta99rbi4+Bvf+MZNN91UV1f34IMPfvDt3/zmN0eMGNHr\n1e8zEO6RdevWzZw5M4TwD//wD6eccsrH+VJTp06dOnXqzo6WlZV9nC8OAAAAAABAL/jRj360\nefPmp556quvDD66DU6dO7bpA8JprrmloaLj99tvb29u7DuXm5n7zm9+8+uqrez/4gwyEu5dI\nJKZPnx6Px3Nycv7lX/4lFotFXQTwiXHLLbcUFRVddtllUYcAkOSqq6vvueeeCRMmfP7zn4+6\nBYAkN3fuCw/dSwAAIABJREFU3NmzZ3/pS18aPXp01C0AJLlZs2a99dZb3/jGN7Kzs6NuYQdy\ncnLuuOOORx999He/+93LL7/c3Nwci8UOO+ywyy+//Lzzzus6JxaLXX/99ZdeeuncuXO3bt06\naNCg4447rrCwMNryYCDcE48++uiSJUtCCJdeeumgQYOizgH4JInH4y0tLVFXAJD8Ojs7m5ub\nt/8+JgD0nPb29ubm5o6OjqhDAEh+ra2tzc3NUVewG2ecccYZZ5wRQmhsbMzKysrMzPzoOUOG\nDDn77LN7PW1XDIS7sXHjxq6biw4ZMqSwsPDFF1/80AmrVq3qerF8+fK0tLQQwtChQw888MBe\n7gQAAAAAACAqeXl5USfsBQPhbtTW1nZd+1JTU3PTTTft4syHH3744YcfDiFMmTLliiuu6KU+\ngP3bmDFj8vPzo64AIPnl5uaWlpYOHjw46hAAkl///v1LS0sLCgqiDgEg+ZWUlOTk5HRdmwTd\ny0AIQA/60pe+FHUCACmhuLh46tSpUVcAkBLGjBkzZsyYqCsASAknnnhi1Ans1GOPPRZCGD9+\n/IgRI/bwLRs3buzfv39PRu0FA+FujB07tuu6wJ157LHHbr/99hDCt7/97RNOOKG3ugAAAAAA\nAIjGlVdeGULIyMi46KKLrrvuut3eXaC9vf3www8/5JBDrrjiivPPPz8Wi/VK5k65LhUAAAAA\nAAD2Wnt7+1133fXFL35x4cKFuz6ztrY2kUgsX778X//1Xy+99NLW1tbeKdwZAyEAAAAAAADs\nta4nRL7zzjvnnHPOX/7yl12c2dDQkJWV1fX6L3/5yw033NAbfTtnIAQAAAAAAIC99vWvf/2G\nG27IzMxsbm6+/PLLd7ERHnLIIa+//vpPfvKT7OzsEMJvf/vbJUuW9GLphxkIAQAAAAAAYK9l\nZGT88z//8+9+97s+ffq0t7dfeeWVr7zyys5OzsvL+8pXvvLrX/+668Pf/e53vZW5AwbCj+v0\n009/+OGHH3744RNOOCHqFoD9zurVq9esWRN1BQDJLx6Pr1q1auPGjVGHAJD86uvrV61a1djY\nGHUIAMmvpqZm1apVnZ2dUYewG8cff/zvf//73Nzc1tbWyy+/vLq6ehcnT548+dhjjw0hzJ07\nt7cCd8BACEAPuvfeex955JGoKwBIfhs3bpw5c+Yufk8TALrL66+/PnPmzHfffTfqEACSX0VF\nxcyZM9va2qIOYfeOPvroGTNmpKWlbdiw4ZJLLmlqatrFyUceeWQIYdc7Yk8zEAIAAAAAAMDH\ncuqpp/4/9u49Lqo68f/4B5iBmeHuIKKCqJii45J5SVcNlULXtdZLeMtbVzZyLbuRYm2XXUut\nLS+7tktesrxkiZcycpWkXFwo7xldNERQAbk4wAAzDHP5/TH9+LIqqHCGg+Pr+eiPM+d8zjlv\nbf5Q33w+n6SkJCFEdnb2vHnz7HZ7YyPbtWsnhDAaja0X7goUhAAAAAAAAAAAAEBLJSQkxMXF\nCSH27Nnz+uuvNzYsLy9PCOHr69t6ya6gkPHdAACXN3HiRE9PT7lTAABcn1arnTx5slarlTsI\nAMD1RUZGBgYGdurUSe4gAADXFx0d3b9/f4WCKudmsmzZstzc3CNHjqxevdrPz2/evHmXDaip\nqUlLSxNCdO/eXY6Av+JbBQBwot69e8sdAQBwS1Cr1TqdTu4UAIBbQlBQUFBQkNwpAAC3hPDw\ncLkj4IZ5eXlt2LBhwoQJv/zyy5IlS06dOvXaa68FBgY6rhqNxgULFhQVFQkhhg0bJmNOCkIA\nAAAAAAAAAABAGoGBgZs3b546dWpubu727dtTU1NjYmLCwsKqq6vT09MvXLgghFAqldOnT5cx\nJAUhAAAAAAAAAAAAIJnOnTvv2rVr9uzZx48fN5lMqamplw1ISkrq0qWLLNkc3GV8NwAAAAAA\nAAAAAOB6tFrtjh07nnrqKY1G0/B8QEDAsmXL4uPj5QrmwAxCAAAAAAAAAAAA4AY4dogMCAho\nYoynp2diYuLjjz/+9ddf5+XleXl5RUREDB06VKVStVbMRlEQAgAAAAAAAAAAADfgv//973WO\n9PPzu++++5waphlaqSC02WwFBQUXL16sqampqakRQmg0Go1GExwc3KlTJw8Pj9aJAQBoZV98\n8YVGoxkxYoTcQQAALk6v12dkZHTr1q1v375yZwEAuLhffvnlxx9/HDRoUEhIiNxZAAAuLisr\nq6SkZOzYsQoF070gMWd9pex2e1ZW1oEDBw4dOnT06NFz585ZLJarJ1AowsLC+vfvP2jQoOjo\n6CFDhri5uTkpFQCglR07diwwMJCCEADgbNXV1UeOHFEqlRSEAABnKyoqOnLkyG233UZBCABw\nttOnT+fk5IwePZqCEJKT/it1/Pjx9957b8eOHYWFhdcz3mKx5Obm5ubmpqSkCCE6duw4ceLE\n+Pj422+/XfJsAAAAAAAAAAAAQAt9/vnnQoioqKiwsLDrvKW0tDQoKMiZoW6Au4TP+uKLL6Kj\no++4447Vq1dfZzt4pcLCwtWrV/fr1y86OnrPnj0SxgMAAAAAAAAAAABaLj4+Pj4+fvjw4YsW\nLTIYDNccb7FY+vXrFxMTs2XLFrvd3goJm+YmSYjjx48/99xzX3755ZWXFApFZGRk165dw8PD\nQ0JC1Gq1RqMRQtTU1BiNxqKiory8vLNnz/70009XXYP0nnvu+dvf/hYVFdXykDeFxMTEOXPm\n6HQ6uYMAAAAAAAAAAADg6jp37lx/3KVLl3fffbdfv35NjC8oKBg0aJDjODY2Njk52dPT07kR\nm9TSJUYtFstf//rXxYsXX1bvDRgwYOLEidHR0QMGDHA0gk2rqak5cuTIgQMHduzYceTIkfrz\naWlpAwcOfOmllxYuXMgauwAAAAAAAAAAAGgj3N3dbTZbfn5+XFzcu+++Gxsb29jIqqoqT09P\ns9kshNi3b99LL720dOnSVkx6uRbNIDx37tz9999/6NCh+jMdO3Z87LHHHn300etfcfWqj12z\nZs17773XcJ3SO++8c9u2bS157E2BGYQAAAAAAAAAAABtnGMG4ZNPPunv779kyZK6ujqFQrFm\nzZomOsLq6urt27e//PLLtbW1Qoi9e/fK2Ac1fw/CzMzMQYMG1beDoaGha9asycvLe/XVV1tY\n44WFhb366qt5eXlr164NDQ11nPz222/vvPPOrKysljwZAAAAAAAAAAAAkIRCoXj88cc3bdqk\n0WgsFkt8fPzhw4cbG+zt7T1r1qw1a9Y4Pm7atKm1Yl5F8wvCUaNGXbx4UQihUqkWL158+vTp\nRx55RKlUSpVMqVQ+/PDDp0+fXrx4sZeXlxCiqKho5MiRUj0fAAAAAAAAAAAAaKFhw4Zt3rxZ\nrVabzeZHH320oKCgicExMTGDBw8WQsg7Ka75BaFj/uPgwYOPHj2alJSkUqmkS/V/VCpVUlLS\nsWPHHL9ZjpcCAAAAAAAAAAAAbcSgQYNWrVrl7u5eUlLy4IMP1tTUNDG4f//+Qoime0Rna35B\nKISYP39+RkZG7969pUrTmN69e2dkZMyfP9/ZLwIAAAAAAAAAAABu1NixY5OSkoQQ2dnZ8+bN\ns9vtjY1s166dEMJoNLZeuCs0vyDctGnTO++8o1AoJEzTBIVC8c4778i7HisA4Ea9/fbb69at\nkzsFAMD1FRQULF26NC0tTe4gAADXl5WVtXTp0tOnT8sdBADg+rZu3bp06VLWVryJJCQkxMXF\nCSH27Nnz+uuvNzYsLy9PCOHr69t6ya7Q/ILwgQcekDBHW34pAKDZTCYTf4IBALQCm81mNBot\nFovcQQAArs9isRiNRqvVKncQAIDrM5vN8k4yQzMsW7ZswIABQojVq1evWrXqygE1NTWOH2/t\n3r17a4droEVLjN6QoqKizMzMvXv3bt++vdVeCgAAAAAAAAAAALQOLy+vDRs29OjRQwixZMmS\nefPm6fX6+qtGo3HBggVFRUVCiGHDhsmWUgjnLhBqNBq3bduWkpJy4MCBhr/+y9ZdTUlJsdls\nkydPdmoYAEDri4yM9PHxkTsFAMD1qdVqnU4XEhIidxAAgOsLCgrS6XTyrgkGALhFhIeHq1Qq\nd/fWm+sFSQQGBm7evHnq1Km5ubnbt29PTU2NiYkJCwurrq5OT0+/cOGCEEKpVE6fPl3GkE4s\nCFNSUp555pn8/PxrjvzHP/6Rnp4+atSojz76KDg42HmRAACtbNKkSXJHAADcErRaLT9xCABo\nHZGRkZGRkXKnAADcEqKjo+WOgGbq3Lnzrl27Zs+effz4cZPJlJqaetmApKSkLl26yJLNwVm1\n85IlS+Li4q6nHaysrMzIyBBCpKenx8TEVFRUOCkSAAAAAAAAAAAA0Aq0Wu2OHTueeuopjUbT\n8HxAQMCyZcvi4+PlCubglBmEH3300cKFC+s/ajSa6OhonU63bt26hguNOhQWFgYHBzsmVGZn\nZz///PPJycnOSAUAAAAAAAAAAAC0XHh4uBAiICCgiTGenp6JiYmPP/74119/nZeX5+XlFRER\nMXToUJVK1VoxG+V22XaALWcwGG677baLFy8KIfz9/RcvXvzwww+r1WohRNeuXfPy8sQVexCa\nTKaZM2empKQIIdzd3c+cOeP4bb0FJSYmzpkzR6fTyR0EAAAAAAAAl7NarUaj0Wq1KhQKtVrN\nplAAAOAmJf0fYnbu3OloBwMCArKysubOnetoB5ugUqk2b97cr18/IYTNZtu4caPkqQAAAAAA\nAICWMJlMxcXFZ8+eLSwsPHPmTHFxcV1dndyhAAAAmkP6gnDXrl2Og9dff/36d2z29PR84YUX\nHMf/+c9/JE8FAAAAAAAANJvNZisvL6+urm7Xrp2fn59Wq62oqLhyMx0AAICbgvR7EGZnZwsh\nPDw8Zs6ceUM3jh8/vuETAAAuoLCwUKFQtG/fXu4gAAAXZzabS0tLvb29/f395c4CAHBNZrP5\n4sWL7du3r66urqqqCggI8PHxKSgoCAwMVCqVcqcDALimsrKy2trakJAQFrVu++x2e3Z29okT\nJ86ePVtSUlJdXV1XV6dUKjUajVarDQ8P79u37+23365QSF/MNY/0OYqLi4UQERERvr6+N3Sj\nWq1u3759SUkJP3sFAC5j/fr1gYGBCQkJcgcBALi44uLiNWvWDBky5He/+53cWQAArslmszn+\ncTY7O/s///nP+PHje/To4TgvdzQAgMtKTU3NyclZuHChl5eX3FnQqLKysjVr1qSkpFy4cKHp\nkVqtdvz48Y8++mh4eHjrZGuC9AWhwWAQQtxoO+jg5+dXUlLSZldvt9vtWVlZGRkZp0+f1uv1\nVqvV29s7NDS0b9++sbGxwcHBcgcEAAAAAACAUyiVSqvVarVa68/U1dUFBwczfRAAgFvZzp07\nFy1aVF5efj2Dy8rK1q1bt3nz5gULFjz22GPOztY06QvCgICAkpKSkpKSG73RbrcXFhYKIYKC\ngiRP1XKFhYXLli3LyclpeLKioqKioiI7O3vbtm0zZsyIi4uTKx4AAAAAAACcR6lUdu3aNT8/\nv66uzmaz1dbWlpeXd+/enTXfAAC4ZW3duvXZZ5+12+1CCA8Pj759+/bv3z88PLxDhw4qlcrL\ny8tsNptMppKSkvPnzx8/fvzo0aN1dXUmk+mVV14xm81z586VMbz0BWFYWFhJSUl+fv758+dD\nQ0Ov/8avv/66pqZGCNGxY0fJU7VQaWlpYmJiRUWFEMLT03Pw4MGdO3fWaDSlpaWHDh0qLCy0\nWq0ffPCBQqGYMGGC3GEBoA2ZOHGip6en3CkAAK5Pq9VOnjxZq9XKHQQA4Mr8/f27deumUCiC\ngoLCwsJCQkJ8fHzkDgUAcGXR0dH9+/dvO7vWoaHCwsJFixbZ7XZ3d/dHH300ISHhmitNlpeX\nr127duXKlRaLZdmyZePGjevatWurhL0K6b9Vw4cPP3r0qBDib3/72zvvvHOdd9nt9ldffdVx\nPGLECMlTtdC//vUvRzvYq1evpKSkwMDA+ksPP/zw2rVrP/vsMyHE5s2bR48erdFoZAsKAG1M\n79695Y4AALglqNVqnU4ndwoAgItzc3Pz9fXt06dP79693dzc5I4DAHB9bWGnOjRm/fr1RqNR\nCLFy5cqJEydezy0BAQHPPvts3759H374YYvF8v7777/yyivOTdk46ddAqP9dWLly5ebNm6/n\nFovF8sc//vGrr75yfPzDH/4geaqW0Ov13377rRDC09PzpZdeatgOCiHc3d0feeSRkJAQIYTJ\nZPr+++/lSQkAAAAAAIBWQTsIAAAcrdbQoUOvsx2sN2bMmLvuuksIcfDgQWcEu07SF4QjR44c\nMmSIEMJms82cOfOhhx768ccfGxtcWVn54YcfRkVFvffee44zI0aMaGszCKuqqkaMGDFw4MCx\nY8f6+fldOcDd3b3+p5XLyspaNx0AAAAAAAAAAABa1blz54QQw4cPb8a9w4YNE0JcuHBB4kw3\nwikL165bt27w4MEGg8Fut7///vvvv/9+9+7dIyIiSkpKHANmz55dUVGRk5Pz888/WyyW+hv9\n/PxWrVrljEgtERYW9swzzzQ9pq6uznHA0vMAAAAAAAAAAACuzWQyCSG8vb2bca+vr68Qoqam\nRuJMN8IpBWHv3r1TUlKmTJlSXl7uOHPmzJkzZ87UD/jwww+vvMvX13fnzp2/+c1vnBHJqaqq\nqo4dOyaE8PDw6Nu3r9xxAAAAAAAAAAAA4ERBQUEFBQUNy6/r55h9eNmWdq1M+iVGHWJjYw8f\nPhwbG3v940+ePDlq1Cgn5XGevLy8l19+2WAwCCEmTZok7/9OAAAAAAAAAAAAONsdd9whhNi9\ne7der7+hG00m0+7du4UQ8k45c8oMQoeIiIi9e/cePnz4gw8+OHDgwMmTJ202W8MBXl5eUVFR\nd91110MPPXQTTbwrLi7evXu31Wo1GAy5ubl5eXlCCE9Pz6lTp06ePFnudADQtqSnp6vVasfe\ntAAAOE9FRcWhQ4fCwsJ69eoldxYAgIs7e/bsL7/8EhUVFRwcLHcWAICLO3r06KVLl0aOHKlQ\nOLHNQfNMmDDh888/Lysre/DBB997773r/INBdXX1vHnzzp8/L4QYO3askzM2xelfqYEDBw4c\nOFAIYTQay8rK9Hp9dXW1r6+vn59fSEiIUql0dgDJlZaW7ty5s/6jRqMZPXp0XFycn5/f9dxu\nMpnMZnNjV61WqwQRAaDNyMzMDAwMpCAEADibwWDIyMgYMmQIBSEAwNnOnz+fkZERGhpKQQgA\ncLbs7OycnJy77rqLgrAN+v3vf//b3/42MzPz8OHDw4YNmzJlSmxs7IABAxz7C16mrq7u5MmT\n+/fv//DDD0tLS4UQPXr0mDJlSqun/j+t95VSq9WhoaGhoaGt9sbWUVNTs3PnzkOHDt1///33\n3HPPNccfOHDg8OHDjV11LDsLAAAAAAAAAACAtmzt2rVTp049efJkTU3N+++///777wshAgMD\nO3TooFKpvLy8zGZzbW1tWVlZSUlJw1U2O3Xq9OGHH8rb+9I537A+ffp8+umnNputoqLi4sWL\nhw8f3r1794ULF1auXJmdnf3UU081ffvo0aNHjx7d2NXExESp8wIAAAAAAAAAAEBi/v7+u3bt\nWrVq1bvvvmsymRwn9Xp9E7sSuru7T5ky5aWXXgoICGitmFfnZrfb5U3gAkpKShYuXFhcXCyE\nmD9/fkxMTLMflZiYOGfOHJ1OJ106AAAAAAAAAAAAOIvBYPj000/37Nlz/PjxS5cuXTnA29u7\nb9++MTExcXFxISEhrZ/wStLPINyzZ0/zbrRarRaLxWw2m0ymWbNmSZvKqdq3bx8fH//Xv/5V\nCLF79+6WFIQAAAAAAAAAAAC4ifj6+s6YMWPGjBlCiMrKyuLi4qqqKovF4uHhodFogoKCtFqt\n3BkvJ31BOHbs2JY/5OYqCIUQt99+u+MgJyfHarV6eHjImwcAAAAAAAAAAACtzM/Pz8/PT+4U\n18YehNd24sSJnJyc8vLyIUOG9OnT56pjPD093dzc7Ha73W6vq6ujIAQAAAAAAAAAAEDbREF4\nbd9+++1nn30mhKipqWmsICwsLHTs5ujl5aVSqVo1HwAAAAAAAAAAAFrR559/LoSIiooKCwu7\nzltKS0uDgoKcGeoGSF8Qrl+//nqG1dbWXrp06fjx42lpaZcuXfL29l6yZMmIESN8fHx8fHwk\nT9USAwYMcBSEGRkZU6ZMCQ4OvnJMWlqa46CxBhEAAAAAAAAAAACuIT4+XgihUChmzpy5YMEC\nX1/fpsdbLJZ+/fr17NnzsccemzZtmpubW6vEbJSbY96bjEwm07/+9a+kpCSTyfTyyy//+c9/\nljfPlex2+5NPPpmXlyeEuO222xYtWtSuXbuGA9LS0v7+97/bbDYhxAsvvDBs2LBmvysxMXHO\nnDk6na6FmQEAAAAAAAAAAOAknTt3rj/u0qXLu+++269fvybGFxQUDBo0yHEcGxubnJzs6enp\n3IhN8njllVdkfL0QQqFQDBkyZMSIEZs3b05LS/Px8Rk6dKi8kS7j5ubWs2fPr776ymq1Xrp0\nKTU1NTc39/z586dPn87MzFy3bt3evXsdPevgwYNnzJjRknft27evX79+V52kCAA3o9WrV586\ndSoqKkruIAAAF1dUVLR27dra2tquXbvKnQUA4OIOHz78ySeftG/f/rKfIAcAQHI7duzYu3dv\n//79PTw85M6Cy7399ttCCHd3d7vdXlFRsWPHjt69e0dERDQ2vrCwcMuWLVarVQhx5syZsrKy\n2NjY1ot7BXcZ393Q8OHDn332WSHEggULfvjhB7njXK5Hjx6vv/56x44dhRBms/ngwYObN29e\nv379zp07HTMLhRCxsbHPP/+8rDEBoM0pLy+vrKyUOwUAwPVZLBa9Xm80GuUOAgBwfSaTSa/X\n19XVyR0EAOD6qqqq9Hq97CtBogl/+tOfXnrpJaVSaTQaH3300X379jU2smfPnt9///2SJUu8\nvLyEEBs3bszOzm7FpJdrKwWhEOKRRx4RQlit1n/+859yZ7mK2267bfXq1c8888ywYcM6dOig\nVqs9PDx8fX1vu+228ePHr1q1at68efLOBgUAAAAAAAAAAECrUSgUjz/++KZNmzQajcViiY+P\nP3z4cGODvb29Z82atWbNGsfHTZs2tVbMq1DI+O7LdOvWTaPR1NTUpKeny53l6jw8PEaOHDly\n5Ei5gwDATSMyMtLHx0fuFAAA16dWq3U6XUhIiNxBAACuLygoSKfT+fr6yh0EAOD6wsPDVSqV\nu3sbmuuFqxo2bNjmzZunT5/umEeYmpraqVOnxgbHxMQMHjz4m2++ycrKas2Ql2lDBaEQwsvL\nq6am5uzZs3IHAQBIY9KkSXJHAADcErRa7eTJk+VOAQC4JURGRkZGRsqdAgBwS4iOjpY7Aq7X\noEGDVq1aFR8fX1JS8uCDD+7cuVOj0TQ2uH///t98801BQUFrJrxMG6qdq6urKyoqhBC1tbVy\nZwEAAAAAAAAAAACu19ixY5OSkoQQ2dnZ8+bNa2LzyHbt2gkhjEZj64W7QhsqCFNTU202mxAi\nICBA7iwAAAAAAAAAAADADUhISIiLixNC7Nmz5/XXX29sWF5enhBC3hXL20pBePjw4SeffNJx\n3KtXL3nDAAAAAAAAAAAAADdq2bJlAwYMEEKsXr161apVVw6oqalJS0sTQnTv3r21wzUg/R6E\na9asuc6RNpvNaDSeP3/+m2++OXjwoGP6oBBi9OjRkqcCAAAAAAAAAAAAnMrLy2vDhg0TJkz4\n5ZdflixZcurUqddeey0wMNBx1Wg0LliwoKioSAgxbNgwGXNKXxA+9thjLbk9ICAgISFBqjAA\nAAAAAAAAAABAqwkMDNy8efPUqVNzc3O3b9+empoaExMTFhZWXV2dnp5+4cIFIYRSqZw+fbqM\nIaUvCFvC19c3JSUlKChI7iAAAGkUFhYqFIr27dvLHQQA4OLMZnNpaam3t7e/v7/cWQAALq6q\nqqqysrJdu3YqlUruLAAAF1dWVlZbWxsSEuLu3lY2jMN16ty5865du2bPnn38+HGTyZSamnrZ\ngKSkpC5dusiSzaGtfKWCgoISEhK+//77mJgYubMAACSzfv36bdu2yZ0CAOD6iouLk5OTMzMz\n5Q4CAHB9x48fT05OPnv2rNxBAACuLzU1NTk5ua6uTu4gaA6tVrtjx46nnnpKo9E0PB8QELBs\n2bL4+Hi5gjlIP4Pws88+u/7Bnp6ePj4+Xbp0CQ0NlTwJAAAAAAAAAAAAILnw8HAhREBAQBNj\nPD09ExMTH3/88a+//jovL8/LyysiImLo0KFtYR0C6QvCe++9V/JnAgAAAAAAAAAAAG3Ef//7\n3+sc6efnd9999zk1TDO0rT0IAQAuZuLEiZ6ennKnAAC4Pq1WO3nyZK1WK3cQAIDri4yMDAwM\n7NSpk9xBAACuLzo6un///goFVQ6kx7cKAOBEvXv3ljsCAOCWoFardTqd3CkAALeEoKCgoKAg\nuVMAAG4JjkUsAWdwlzsAAAAAAAAAAAAAcFMyGo0fffTRv//9b7mD3JjmzyBcsmSJhDkus2DB\nAuc9HAAAAAAAAAAAAGihffv2Pffcc6WlpTNmzBgzZkz9eYPB0K9fPz8/P39/f39/f8fBZR/9\n/f2HDx8uV/LmF4QLFy6UMMdlKAgBAAAAAAAAAADQZu3Zsyc+Pt5qtQohLly40PCS3W43mUwm\nk6m4uLiJJ1x2V2tiiVEAAAAAAAAAAADgBlRWVj733HOOdrBHjx4TJ05seNXNzU2mXNer+TMI\nAQAAAAAAAAAAgFvQ1q1b9Xq9EGLcuHErV65UqVQNr/r6+s6ZM2fDhg29evXatm1bdXV1ZWVl\nZWVlRUVFZWXlZ599tn//fpmC/6r5BeGxY8ckzAEAcEnp6elqtXrIkCFyBwEAuLiKiopDhw6F\nhYXiZErrAAAgAElEQVT16tVL7iwAABd39uzZX375JSoqKjg4WO4sAAAXd/To0UuXLo0cOVKh\nYLpXm5Oeni6ECAoKWrFixWXtoMPChQu3b9/+888/p6en33///Q0vnTt37iYuCPv16ydhDgCA\nS8rMzAwMDKQgBAA4m8FgyMjIGDJkCAUhAMDZzp8/n5GRERoaSkEIAHC27OzsnJycu+66i4Kw\nDfrxxx+FEL///e/VavVVB/j6+sbGxm7fvv3TTz+9rCBsC9rWV+rUqVNmszkkJCQoKEjuLAAA\nAAAAAAAAAMBVlJeXCyG6d+/exJiePXsKIb777rtWynQj3OUO8D9mzZr1m9/85sknn5Q7CAAA\nAAAAAAAAAHB17u7XrtgcS49eunTJ+XFuWNuaQVhVVSWEOHjwoNxBAADSSEpKkjsCAOCWEBoa\n+sorr8idAgBwSxg+fPjw4cPlTgEAuCXMmjVL7ghoVGBgYGFhYW5ubhNj8vLyhBAajaa1Qt2A\ntjKDsKysbMmSJT/88IMQoqioSO44AAAAAAAAAAAAwNX16dNHCPHFF1/U1tZedUBdXd2ePXuE\nEKGhoa2a7Po4cQbhpUuX1q1bl5aWlpubq9frbTZbYyONRmNNTU39Rz8/P+elAgAAAAAAAAAA\nAFoiJibmyy+/LC4uXrRo0bJly65ccXTx4sWFhYVCiLvuukuOgNfgrIJw69at8fHxlZWVzbh3\nzJgxkucBAAAAAAAAAAAAJDF16tR33nmntLR0y5Ytubm58+bN++1vf+vl5WW320+cOLFy5cp/\n//vfQggPD4/Zs2fLHfYqnFIQpqSkTJ8+3W63N+PeqKioN998U/JIAAAAAAAAAAAAgCTUavXb\nb789Z84cu92elZWVlZXl7u7u5+dXU1NjNpvrhz399NNdu3aVL2ajpC8Iq6qq4uPjG7aDYWFh\n7du3VyqV33zzjRAiKCgoIiLCarUWFBQUFBQ4xgwdOnTEiBHDhg0bM2aMQuHEhU8BAAAAAAAA\nAACAFrr77rv/+c9/PvPMM9XV1UIIm81WXl7ecMDcuXPnz59/5Y0dOnSIiopqpZSNuHxF1Jbb\ntGnTpUuXHMdz5849d+5cfn7+kSNHsrKyHCfHjBmTlZV16NChCxcu/PTTT08++aRSqfzuu+/C\nwsJ+//vf0w4CAAAAAAAAAACg7bv33nszMjKeeOKJiIiI+pO+vr7jxo3bvXt3UlKSm5vblXfN\nnDnziy+++OKLL1ox6eWkLwj37t3rOEhISPj73/8eGhraxOBevXqtWLEiMzPTx8fniSeemD59\nusVikTwSAEAuq1ev3rRpk9wpAACur6ioaMWKFV9//bXcQQAAru/w4cMrVqzIycmROwgAwPXt\n2LFjxYoVDderRBsUHBy8aNGiAwcO5OTkHDp06Lvvvvvhhx+Sk5PvuOMOuaM1RfqC8NixY46D\nxMTE67xlwIABe/fuValUW7duTUpKkjwSAEAu5eXllZWVcqcAALg+i8Wi1+uNRqPcQQAArs9k\nMun1+rq6OrmDAABcX1VVlV6vb7inG9oylUrVqVMnrVbr7i59+yY56SOWlpYKIdq1a3dDmy7+\n5je/ef7554UQ77zzzunTpyVPBQAAAAAAAAAAAEAIIf2GfzU1NUIIX1/fxgY4tmq8Unx8/F//\n+leLxbJ27dolS5ZIHgwA0PoiIyN9fHzkTgEAcH1qtVqn04WEhMgdBADg+oKCgnQ6XRP/9gUA\ngFTCw8NVKtVNMR0Ndrs9Ozv7xIkTZ8+eLSkpqa6urqurUyqVGo1Gq9WGh4f37dv39ttvVyik\nL+aaR/ocGo3GYDBcdUE5lUrlWIThqjeGhoZ27949JycnPT1d8lQAAFlMmjRJ7ggAgFuCVqud\nPHmy3CkAALeEyMjIyMhIuVMAAG4J0dHRckfAtZWVla1ZsyYlJeXChQtNj9RqtePHj3/00UfD\nw8NbJ1sTpC8ItVqtwWAoLy+vqKjw9/dveMnPz89kMjXxGxQSEpKTk3Pq1CnJU0klJydn7969\n2dnZpaWltbW1Go2mc+fOUVFRsbGxHTp0kDsdAAAAAAAAAAAAWsnOnTsXLVpUXl5+PYPLysrW\nrVu3efPmBQsWPPbYY87O1jTpC0KdTnf27Fm73f7xxx9f9svr2rVrcXHxL7/8cv78+dDQ0Cvv\nvXjxohCiqqpK8lQtZzabk5OT9+7d2/CkwWD46aeffvrpp+3bt8+ePXvChAlyxQMAAAAAAAAA\nAK7EZrPZ7XYPDw+5g+Dqtm7d+uyzz9rtdiGEh4dH3759+/fvHx4e3qFDB5VK5eXlZTabTSZT\nSUnJ+fPnjx8/fvTo0bq6OpPJ9Morr5jN5rlz58oYXvqCMDo6+vPPPxdCvPjiiwMHDrzjjjvq\nL0VFRX377bdCiLfeemv58uWX3XjmzJnc3FzR5P6FcrHb7UuWLDl8+LDjo06n69Wrl5+fX2Fh\n4bfffqvX6y0Wy7p16zQazejRo+WNCgAAAAAAAAAAbmp1dXUVFRVms/nixYsdO3b08/PTaDRy\nh8L/KCwsXLRokd1ud3d3f/TRRxMSEoKDg5u+pby8fO3atStXrrRYLMuWLRs3blzXrl1bJexV\nSL+z5QMPPKBUKoUQxcXFAwcOHDVq1Pfff++4FBsb6zhYuXLlihUrHJ2qQ1FR0ezZs61WqxCi\nR48ekqdqob179zraQU9Pz5dffvmNN9548MEHJ02aNHfu3H/961/33HOPY9iGDRvMZrOsSQEA\nAAAAAAAAwE3MZrNdunSptLTUarUGBwfX1NScOnXKaDTKnQv/Y/369Y7/KStXrnz55Zev2Q4K\nIQICAp599tnk5GQhhMVief/9950dsgnSF4ShoaHz5893HNtstq+++qqmpsbxcfz48Z06dRJC\n2O32+fPnR0REPPzww/Pnz58wYUKvXr0OHjzoGDZmzBjJU7XQrl27HAePPPLIgAEDGl5SqVRz\n585t3769EMJgMJw8eVKGfAAAAAAAAAAAwCVUV1eXlJT4+fl5eHi4ubmpVCofHx+DwSB3LvyP\nr776SggxdOjQiRMn3tCNY8aMueuuu4QQ9b2YLKQvCIUQixcvvvfee+s/hoSEOA68vLzefPPN\n+vO5ubnr169fsWLFrl27KisrHScDAgLmzZvnjFTNVlFRceHCBSGEUqkcNWrUlQM8PDz69+/v\nOHaMBAA4FBYWlpSUyJ0CAOD6zGZzQUFBRUWF3EEAAK6vqqqqoKDAZDLJHQQA4LKsVqtjpUa9\nXn/x4kWbzebp6WmxWOTOhf9x7tw5IcTw4cObce+wYcOE3I2SUwpCpVK5a9euVatWde/eXTQo\nCIUQDzzwwF/+8hc3N7er3ujr67tt27brmYbZmvz9/bdv375u3brly5erVKqrjlGr1Y6Durq6\nVowGAG3d+vXrt23bJncKAIDrKy4uTk5OzszMlDsIAMD1HT9+PDk5+ezZs3IHAQC4LHd3d5vN\nJoT48ssvN27caLFYbDabu7tTCh00m+Onhby9vZtxr6+vrxCifgFOWTjr++Tu7v6nP/0pJyfn\nl19+8fT0bHjpxRdf3LdvX2xsbMNvs6+v7+zZs48dO3b33Xc7KVJLeHh4BAUFhYWFNTbg4sWL\njoOOHTu2VigAAAAAAAAAAOBq1Gp1QEBAbW2t46PNZjMYDBqNRt5UuExQUJAQ4syZM8241zH7\nMDAwUOJMN0Lh7BdERERcefLuu+++++67q6urz58/X1FRERAQEBER4eHh4ewwTmIwGI4cOSKE\nUKvV/fr1kzsOAAAAAAAAAAC4WSmVSj8/PyFEVVWVyWQqLS2NiIhwzDlD23HHHXcUFBTs3r37\n+eefv6Gqz2Qy7d69WwjRt29fp6W7NqcXhE3w9vbu1auXjAGkkpycbDabhRATJkygwweAhiZO\nnHjZPHIAAJxBq9VOnjxZq9XKHQQA4PoiIyMDAwM7deokdxAAgCvz9vZWqVSTJk0yGAx9+/at\n3+YMbceECRM+//zzsrKyBx988L333rvO7fOqq6vnzZt3/vx5IcTYsWOdnLEpbna7Xdon/vnP\nf545c2bPnj2lfWybtXXr1k2bNgkhevXq9cYbbygU1+hcT506lZ+f39jVjz766Omnn9bpdBKn\nBAAAAAAAAAAAgHTi4uIyMzOFEBqNZsqUKbGxsQMGDLjqXM+6urqTJ0/u37//ww8/LC0tFUL0\n6NHjyy+/vGap5DzSF4Rubm5CiIEDB86cOXPatGkdOnSQ9vltysaNGz/++GMhROfOnZcuXeqY\n89s0CkIAAAAAAAAAAICbXUVFxdSpU0+ePNnwZGBgYIcOHVQqlZeXl9lsrq2tLSsrKykpsdls\n9WM6deqUkpLSpUuXVo/8f5xVEDp4eHjcc889M2bMmDhxoo+Pj7Qvkldtbe3y5csPHjwohAgL\nC3v11Vcd21G2UGJi4pw5cygIAQAAAAAAAAAA2rja2tpVq1a9++67JpPpesa7u7tPmTLlpZde\nCggIcHa2pjm3IKyn0WjGjx8/c+bM0aNHyzhfUiolJSWLFy8+c+aMEKJPnz4vvviiVPUnBSEA\nAAAAAAAAAMBNxGAwfPrpp3v27Dl+/PilS5euHODt7d23b9+YmJi4uLiQkJDWT3gl6QvCTZs2\nffzxx//+979ra2uvvNq+ffupU6fOmDFjyJAh0r631fzwww9vvPFGRUWFEOLuu+9+4oknlEql\nVA+nIAQAAAAAAAAAALhJVVZWFhcXV1VVWSwWDw8PjUYTFBSk1WrlznU56QtCB4PBsGvXro8/\n/njv3r1XbQojIiJmzJgxc+bM2267zRkBnCQrK2vZsmUWi8XNze2hhx6aMGGCtM+nIAQAAAAA\nAAAAAIBTuTvpub6+vjNnzvz000+Li4s/+OCD++67z8vLq+GAnJyc1157rWfPnnfeeefKlSsv\nXrzopCQSysrKWrp0qcVi8fLySkpKkrwdBADXk56enpWVJXcKAIDrq6ioSEtL+/nnn+UOAgBw\nfWfPnk1LSysuLpY7CADA9R09ejQtLc1iscgdBC7IWQVhPT8/v1mzZn366acXL17csGHDvffe\n6+np2XDAoUOHnnrqqc6dO48dO3bjxo3V1dXOjtQ8P//881tvvWW1WlUq1WuvvTZ48GC5EwHA\nTSAzM/PYsWNypwAAuD6DwZCRkZGbmyt3EACA6zt//nxGRsZVtxcCAEBa2dnZGRkZVqtV7iBw\nQU4vCOv5+/vPnj37s88+Ky4u3rBhw7hx4xo2hVardc+ePbNmzQoODp4xY0arpbpONTU1b775\nptlsVigUL774Yu/eveVOBAAAAAAAAAAAADRH6xWE9RxN4e7duy9evPj+++//4Q9/UKvV9Vdr\namo2b97c+qmatmHDBsfCEbNmzYqKipI7DgAAAAAAAAAAANBMbna7Xe4Mwmg0fvXVV++8886+\nffscZ9pCqnrFxcV//OMfrVarm5tbXFycQqFoYrCPj899993X7HclJibOmTNHp9M1+wkAAAAA\nAAAAAABAE5rqulpBeXn53r17U1NT9+3bV1BQIG+Yxpw+fdqxwq/dbv/kk0+aHhwSEtKSghAA\nAAAAAAAAAABwKnkKwoKCgh07dmzfvv3AgQMWi+Wyq15eXrKkAgAAAAAAAAAAAFxeqxaEZ8+e\n3b59e0pKSmZm5pWLiHp4eIwaNWr69OmTJk1qzVTXNGzYsE8//VTuFAAAAAAAAAAAAIAEWqMg\nPHXqVEpKSkpKypEjR6686ubmNmTIkOnTp0+ZMqVDhw6tkAcAAAAAAAAAAAC4ZTmxIDx58qSj\nF/z++++vOiAqKmr69OnTpk3r2rWr82IAAAAAAAAAAAAAqCd9QXjo0CHHOqKnT5++6oAePXpM\nmzZt+vTpffr0kfztAAAAAAAAAAAAAJogfUF45513XvV8p06dpk6dOn369EGDBkn+UgBA27R6\n9Wp/f/8ZM2bIHQQA4OKKioq2bt3ar1+/ESNGyJ0FAODiDh8+fPDgwXvvvTciIkLuLAAAF7dj\nx478/PyEhARPT0+5s8DVOH0PQq1We//990+fPj06Otrd3d3ZrwMAtCnl5eVubm5ypwAAuD6L\nxaLX641Go9xBAACuz2Qy6fX6uro6uYMAAFxfVVWVXq+32+1yB4ELclZB6OPjM378+OnTp48e\nPVqpVDrpLQAAAAAAAAAAAABuiPQF4YQJE6ZPn37fffep1WrJHw4AuLlERkb6+PjInQIA4PrU\narVOpwsJCZE7CADA9QUFBel0Ol9fX7mDAABcX3h4uEqlYnVGOINbs6empqenjxo1Sto0bfOl\nrSkxMXHOnDk6nU7uIAAAAAAAAAAAAHBNza+dR48evWLFCgmjXNOKFStGjx7dmm8EAAAAAAAA\nAAAAXEzzC0KLxTJ//vy4uLiSkhIJA11VcXFxXFzc/PnzLRaLs98FAAAAAAAAAAAAuLDmF4Ru\nbm5CiJSUFJ1Ot3nz5mYvVdo0u92+ZcsWnU6XkpJS/1IAAAAAAAAAAAAAzdP8gvCTTz7x9vYW\nQpSUlMyYMWPw4MHp6enSBRNCiPT09MGDBz/wwAOlpaVCCG9v723btkn7CgAAAAAAAAAAAOCW\n0vyC8P7778/IyOjatavj46FDh2JiYu68884PPvigtra2JZlqa2s//PDDwYMHx8TEHDp0yHGy\nW7duBw8enDRpUkueDAAAAAAAAAAAANziml8QCiH69et34sSJBx98sP7MoUOH5syZExwcPG3a\ntC1btly4cOH6n3bhwoUtW7ZMmzYtODh49uzZ3377bf2lhx566MSJE7fffntL0gIAWl9hYWEr\nbFULAIDZbC4oKKioqJA7CADA9VVVVRUUFJhMJrmDAABcX1lZWUFBgc1mkzsIXJCihff7+fmt\nX78+Li7umWeeOXXqlONkZWXl1q1bt27dKoTo1KlT//79u3XrFh4e3qFDB41Go9FohBA1NTU1\nNTUXL17My8vLzc09evRoQUHBlc+PjIx8++23x44d28KcAABZrF+/PjAwMCEhQe4gAAAXV1xc\nvGbNmiFDhvzud7+TOwsAwMUdP348LS1t2rRpkZGRcmcBALi41NTUnJychQsXenl5yZ0Frqal\nBaHDuHHjxowZk5ycvHTp0vz8/IaXCgoKrtr8XVN4ePgLL7zw2GOPKRTShAQAAAAAAAAAAADQ\noiVGG1IoFE888cSZM2e2bdsWGxvb7FZPqVTGxsZu27YtJycnISGBdhAAAAAAAAAAAACQkMT1\nm4eHx/3333///feXl5d//vnnX3/99TfffJOdnW21Wpu+S6fTDR48eMSIEePGjQsICJA2FQBA\nLhMnTvT09JQ7BQDA9Wm12smTJ2u1WrmDAABcX2RkZGBgYKdOneQOAgBwfdHR0f3792cmFZzB\nzW63O/sddXV1586dO3fuXElJSU1NjdFotNvtarVao9G0b9++S5cuYWFhSqXS2TFuComJiXPm\nzNHpdHIHAQAAAAAAAAAAgGtqjdpZqVR27969e/furfAuAAAAAAAAAAAAAE2QbA9CAAAAAAAA\nAAAAAG0fBSEAAAAAAAAAAABwC3FuQWi1WlNTU7ds2dLYgPPnzyckJKSkpJjNZqcmAQAAAAAA\nAAAAACCcWhB+/PHH3bt3Hzdu3Pr16xsbU1VV9c9//jMuLq5r164bN250XhgAAAAAAAAAAAAA\nwnkF4dNPPz116tT8/HwhRGlp6TXHFxYWzpo16+mnn3ZSHgCALNLT07OysuROAQBwfRUVFWlp\naT///LPcQQAAru/s2bNpaWnFxcVyBwEAuL6jR4+mpaVZLBa5g8AFOaUgXLVq1fLly+s/NlEQ\nurm5Nfy4fPnyf/zjH86IBACQRWZm5rFjx+ROAQBwfQaDISMjIzc3V+4gAADXd/78+YyMjEuX\nLskdBADg+rKzszMyMqxWq9xB4IKkLwjLysoWLlz469Pd3R955JH33nuvscG9evXKz89/8803\n/f39HWcWLlzIH7AAAAAAAAAAAAAAJ5G+IFy7dm11dbUQwtfXd//+/WvWrBkzZkwT48PCwp57\n7rmDBw/6+fkJIQwGw7p16yRPBQAAAMBV2e12o9FYW1trNBpZewcAAAAAgGtys9vt0j7x7rvv\n3r9/vxBi+fLlTz311PXfuHTp0gULFgghYmJivvzyS2lT3SwSExPnzJmj0+nkDgIAAADcHKxW\na1lZWWFhoaenp81ma9eunb+/v0ajkTsXAAAAAABtl/QzCLOzsx0H06ZNu6Ebp06d6jj48ccf\nJc4EAAAAwEWVl5eXlpYGBQXZPQK/+jFszyHFl4dNJ89YL+qFuU7ucAAAAAAAtEkKyZ+o1+uF\nEGq1ukOHDjd0Y3h4uLu7u81mKysrkzwVAAAAANdjs9lqa2t9fHzc3NwK9Yr1+/wuG+CtElp/\nEegjAn1FOz/RzlcE+opAXxHkJwJ8RICvCPQRbm6yZAcAAAAAQDbSF4Te3t5ms7murs5ut7vd\nyF+1jUajzWZzPEHyVAAAAABcj91uv3jxYvv27YUQ5VVXWR+l2iSqTSL/YqNPcHcXgT4iwEe0\n8xNaP9HOVwT4iCD/X7tDR6eo9nLerwAAAAAAABlIXxB26tRJr9dbLJbc3Nzu3btf/40nTpxw\nHISEhEieSlo//PDD8uXLi4qKhBAvvPDCsGHD5E4EAAAA3Io8PDw6duxYU1OjUqkqqpuzgYLN\nJsoqRVmlyClodIzKUwT6Cq2fCGzQGgb4/looOqYkeki/ewMAAAAAAM4ifUHYp08fxzaEH374\n4csvv3z9N77zzjuOg9tvv13yVFKxWCwbN27csWOH3W6XOwsAAAAA4efnV1RUZLfbR0bZ+nWr\nKiw1e3gFWd399AZRVikuVQp9lSirEHqDKK8SZktzXmEyi8IyUdjkTggBPg3qQz8R4CMCfUSQ\nvwj0/XV6op+meb8+AAAAAACkJ31BOH78+E8++UQI8cYbb4wcOXLEiBHXvMVut//lL39x3CWE\nmDx5suSpJJGbm/v222/n5eUJIRQKhcXSrH9dAAAAACAdjUbTs2dPg8FgtVo7Brl1D2vn5+fj\n3sh8viqjKKv8tSysrw8dVWK5QeirRHmVaN6PApZXifIqkdv4AKXi1waxfk/EX6ck+v7/Yx/h\nqbz2i6xWa1VVlcVicXd3V6vVKpWqOXEBAAAAALc26QvCuLi4pKSk/Pz82tra2NjYhISExx9/\nvHfv3lcdXFNTs2/fvrfeeisjI8NxpmfPnuPGjZM8Vcvt3r173bp1FotFqVTOnj07Nzd3//79\ncocCgLZu9erV/v7+M2bMkDsIAMCVaTSaysrKjz/++I477mj6JxR91MJHLcI7NDrAahN6g9Ab\nxCXDr/VhuUGU/v/6sKxCXDIIk7k5IessolgvivVCnGv8F6ISQX6/bn/omH3o+C/ITwT4iABf\n4eNVV1ZWqtfrlUqlzWYzGo3du3f38/NrTiAAQHMdPnz44MGD9957b0REhNxZAAAubseOHfn5\n+QkJCZ6ennJngauRviD08vJ67733xo4da7PZ6urqVq5cuXLlypCQkNtuu61jx44ajUapVNbW\n1ur1+vz8/B9//NFs/r+/Xnt4eCQnJ3t5eUmequX2799vsVjCwsKee+65bt26LV++XO5EAHAT\nKC8vd3NzkzsFAMD1WSyW8vJyo9HYwud4uIsgfxHk39QYk/nX+vCSQZQbRGnFr1MPf52SaBDl\nVcJqa87ba0wi3yTyixsd4O6u9FW1D/Bpf1tn85N/KFer1WfOnOnTpw//WAAArclkMun1+rq6\nOrmDAABcX1VVlV6vZ8szOIP0BaEQYvTo0WvXrn3sscfqF+EsKioqKipq+i6lUrlx48brWZJU\nLmPHjn3kkUf4uzcAAABwK1N5ik5a0Unb1Bi94dfZh44VTR0LmZZW/HpcViGqTc15tc0mKmoU\nFTXCV2MTQigUCk9Pz9raWv6SAgAAAAC4IU4pCIUQDz74YJ8+fRISEo4ePXo943/729+uXLly\n4MCBTsrTcvPmzevWrZvcKQDgJhMZGenj4yN3CgCA61Or1TqdLiQkRO4gv3IsDSo6NjrAbLl6\nfVhe9f9XNzUIc+ObnvtrrM6IDQC4HkFBQTqdztfXV+4gAADXFx4erlKp3BvbZR1oAWcVhEKI\nO++888iRI1999dVHH3305Zdfnjlzxmb7n3V2lEplz549R40aNWXKlLvuust5SSRBOwgAzTBp\n0iS5IwAAbglarXby5Mlyp7gBngoRHCiCA5saU2X8tUGsX7/0QnFNWYXNYPLsHlInhLBarWaz\nmemDANDKIiMjIyMj5U4BALglREdHyx0BLsuJBaHDyJEjR44cKYSora09d+6cwWAwmUwajcbf\n379z585KpdLZAQAAAADgZuSjFj5qEd7h/87U1nr8+OMptVrt6elZU2Otrq4ODw9vm5u4AwAA\nAADaMqcXhPW8vLx69OjRaq8DAAAAABfj5eWl0+kMBoPFYnF3d+/YsaO3t7fcoQAAAAAAN5/W\nKwgBAAAAAC2kVCrbtWsndwoAAAAAwM2NgrC17d279/Dhw41dPXv2bCtmAQAAAAAAAAAAwC2n\n+QXhW2+95Ti444477r777ivPt8Rzzz3X8oe0TdHR0UOGDGns6quvvtqaYQAAAAAAAAAAAHCr\naX5B+PzzzzsO5s6d27AgrD/fEi5cEKpUKpVK1dhVDw+P1gwDAM5WWFioUCjat28vdxAAgIsz\nm82lpaXe3t7+/v5yZwEAuLiqqqrKysp27do18S88AABIoqysrLa2NiQkxN3dXe4scDV8pQAA\nTrR+/fpt27bJnQIA4PqKi4uTk5MzMzPlDgIAcH3Hjx9PTk5mmxgAQCtITU1NTk6uq6uTOwhc\nEAUhAAAAAAAAAAAAcAtp/hKj9T+cGxISctXzAAAAAAAAAAAAANqa5heEQ4YMuaHzuB4zZ84M\nCwuTOwUASGbixImenp5ypwAAuD6tVjt58mStVit3EACA64uMjAwMDOzUqZPcQQAAri86OnNG\nAHQAACAASURBVLp///4KRfOrHKAxfKvalqioKLkjAICUevfuLXcEAMAtQa1W63Q6uVMAAG4J\nQUFBQUFBcqcAANwSwsPD5Y4AlyV9Qfjzzz8bjUYhhFarZTIcAAAAAAAAAAAA0KZIXxAOHTr0\n0qVLQoikpKTFixdL/nxZ/PDDDydOnGh4Jjc313GQkZGRn59ff16lUk2cOLFVwwEAAAAAAAAA\nAADXTfqCsLKy0nHQrl07yR8ulx9++GHLli1XvXTw4MGDBw/WfwwICKAgBAAAAAAAAAAAQJvl\nLvkTO3bs6DgoLS2V/OEAAAAAAAAAAAAAWsLNbrdL+8S5c+euXr1aCNG3b9/vvvvOzc1N2ucD\nAAAAAAAAAAAAaDbpZxD+5S9/iYyMFEJ8//33L7zwguQFJAAAAAAAAAAAAIBmk74gbNeu3Tff\nfPPcc8/5+vq++eabMTEx+/bts1gskr8IAAAAAAAAAAAAwI2SfonRAwcOGAyG6urqsrKybdu2\n7d+/Xwjh6+vbr1+/bt26+fn5eXl5XfMhb731lrSpAAAAAAAAAAAAAAhnFISSbDrIwqQAAAAA\nAAAAAACAM0i/xCgAAAAAAAAAAACANouCEAAAAAAAAAAAALiFKCR/YmZmpkqlUqvVSqVSoVC4\nu9NBAgAAAAAAAAAAAG2F9HsQAgAAAAAAAAAAAGizmN4HAAAAAAAAAAAA3EIoCAEAAAAAAAAA\nAIBbiPR7EDamqKgoNzfXYDBUVVVNmjSp1d4LAAAAAAAAAAAAoJ5zC0Kj0bht27aUlJQDBw7o\n9fr685dtfJiSkmKz2SZPnuzUMAAAAAAAAAAAAADcLuvqJJSSkvLMM8/k5+dfeemyl8bExKSn\np48aNeqjjz4KDg52Uh4AAAAAAAAAAAAAzioIlyxZsnDhwsauNnxpZWVlUFBQXV2dEEKn0x08\neNDf398ZkQAAAAAAAAAAAAC4O+OhH330UcN2UKPR/O53v3v22WcDAwOvHFxYWFg/azA7O/v5\n5593RqSbxZIlS06fPi13Clf2/fffr1ixIjs7W+4gAADXt2fPnhUrVlRUVMgdBADg+tb8P/bu\nPC6qcvHj+DPD7DADyCIqYCpqRKImld40t6y0xbxlZhpWZqbV1V8LqZXd1nu9bTezxfJmabZo\naUZZoqZpZi6YSrnkQii4sAjMsAyz/v44NhEiIpzhwPh5v3r1Osw55zlfSKvxO8/zzJs3f/58\npVMAAALfyZMnX3vttVWrVikdBADQWPIXhDabberUqdJxaGjonDlzCgsLv/nmm5deeslisZx+\nfdeuXQ8cOHDzzTdLX/7vf//LycmRPVVLcfLkSYfDoXSKQFZVVVVcXFxVVaV0EABA4CsvLy8u\nLvZ4PEoHAQAEvpKSEj6SAgBoAm63u7i4uKKiQukgAIDGkr8g/OKLL06cOCGECAsL++mnn+6/\n/36j0Vj3LQaD4aOPPurRo4cQwuPxfPjhh7KnAgAAAAAAAAAAACCE0Mg+4vLly6WDF1544cIL\nL6znXTqd7rHHHhs9erQQYsOGDbKnAiSdO3dOTU2NiopSOggAIPD169evZ8+eISEhSgcBAAS+\nkSNHqlQqpVMAAAJfaGhoamqq2WxWOggAoLHkLwil3d2CgoLGjh17TjcOHz68+giAP1gsllqX\nugUAQHbR0dG+jZYBAPCr9u3bKx0BAHBe0Ol0HTt2VDoFAEAG8i8xmp+fL4To1KnTuX6QxGg0\nSvO6iouLZU8FAAAAAAAAAAAAQPijILTZbEKIhk0zl6Z2OZ1OmTMBAAAAAAAAAAAAEEL4oyAM\nCwsTQhQUFJzrjV6v99ixY0KIyMhI2VMBAAAAAAAAAAAAEP4oCOPi4oQQhw8fzs3NPacbv//+\n+4qKCiFEmzZtZE8FAAAAAAAAAAAAQPijIOzbt6908PLLL9f/Lq/X+/TTT0vH/fv3lz0VAAAA\nAAAAAAAAAOGPgnDEiBHSwezZsz/66KP63OJyuSZOnLhu3TrpyxtvvFH2VIDk8OHD6enphw8f\nVjoIACDwbd++PT09XVogAQAAv8rIyFizZo3SKQAAgc9ms6Wnp+/YsUPpIACAxpK/IBwwYEDv\n3r2FEB6PZ+zYsXfdddeePXvOdLHVal24cGFycvK7774rvdK/f39mEMJ/CgoKMjMzCwsLlQ5y\n/qrjXwgAEGCys7MzMzOrqqqUDgIACHy7du3KyspSOgUAIPDZ7fbMzMycnBylgwAAGkvjj0Hf\ne++9yy+/3Gazeb3e999///333+/YsWOnTp0KCgqkC1JTU0tLSw8ePLhv3z6Xy+W70WKxvP76\n6/6IBEBxVIMAAAAAAAAAADQHfikIExMTP//881tvvbWkpER65dChQ4cOHfJdsHDhwtPvMpvN\nX3zxRbdu3fwRCZBoNBqj0ajR+OVXPmpFLwjgvKXT6YxGo0qlUjoIACDwGQwG3uYAAJqAWq02\nGo1arVbpIACAxlJ5vV4/DX3w4MFJkyatWrWqPhcPGTLk3Xffbd++vZ/CtBRpaWnjxo1LSkpS\nOggggzNVg4mJiU2cBAAAAAAAAAAA+PjxA4adOnXKyMjYtm3bggUL1q9fn5WV5fF4ql+g1+uT\nk5P79et31113XXzxxf5LAqApMWUQAAAAAAAAAIDmzO8rkKSkpKSkpAghKisri4qKiouLy8vL\nzWazxWKJiYlhNjoQSKgGAQAAAAAAAABo/ppuiwKj0RgbGxsbG9tkTwTQNOgFAQAAAAAAAABo\nQdjDHEAD0QsCAAAAAAAAANASURACOGdUgwAAAAAAAAAAtFwUhADqi14QAAAAAAAAAIAA4K+C\n0OVyrVix4ssvv8zKysrNzbXZbA6Ho/632+12PwXDeW7nzp3ffvvt0KFDk5OTlc7SklANAkAD\npKen7969e+LEiWFhYUpnAQAEuDlz5mg0mvvuu0/pIACAAFdUVDRv3rxu3boNGzZM6SwAgEbx\nS0G4d+/eUaNG7dq1yx+DA43hcrkqKytdLpfSQVoGekEAaAyHw1FZWen1epUOAgAIfHa7XaNh\niSAAgN95PJ7Kykqn06l0EABAY8n//qGkpOSqq67Ky8uTfWQATYNeEAAAAAAAAACAACZ/Qfjf\n//63ejsYEhKSmJgYExNjMBjUarXsjwPOSVRUVK9evSIjI5UO0kxRDQKAjDp06KDT6fR6vdJB\nAACBLzk5OSgoSOkUAIDAZzAYevXqFRcXp3QQAEBjyV8Qfv3119KB2Wx+8803R40apdVqZX8K\n0DDx8fHx8fFKp2h26AUBwB8uueSSSy65ROkUAIDzwtVXX610BADAecFsNt9www1KpwAAyED+\ngvDAgQPSwVtvvTVmzBjZxwcgF3pBAAAAAAAAAADOQ/IXhGVlZUKIoKCgv//977IPDqDx6AUB\nAAAAAAAAADifyV8QhoaGFhUVhYWFGY1G2Qc/q61btz777LP1vDgmJuadd96pz5U7duyYOXPm\nWS9LSEh45ZVX6vl0oOlRDQIAAAAAAAAAAPkLwu7du3/33XdWq9Xj8ajVatnHV0R5ebnSEYCG\noxcEAAAAAAAAAAA+8heE995773fffed0Or///vuBAwfKPn7d2rZtO3r06LqvKSsrS09PF0JE\nR0fXc1hp3VQhREpKSufOnc90WatWreo5INAE6AUBAAAAAAAAAMDp5C8Ib7nllu7du+/cuTMt\nLW39+vVNvNBou3btzloQzpkzRwgRFBQ0YcKEeg7rm0HYt2/fQYMGNSYhlGW1WgsLC6Oiosxm\ns9JZ/IVeEACaifz8/LKysri4OK1Wq3QWAECAy8nJUalU8fHxSgcBAAQ4h8ORm5trNpujoqKU\nzgIAaBT5lwANCgr65ptvOnXqtG3btquuumrv3r2yP6IxsrKyVq1aJYS45ZZb2rdvX8+7fAVh\ncHCwv5KhSezfv3/BggX79+9XOoj89vxB6SAAgFM2bNiwYMEC3zoEAAD4z5IlS5YuXap0CgBA\n4CstLV2wYMGPP/6odBAAQGPJP4NQCNGmTZutW7dOmzbt3XffTUpKGjBgwMCBAy+88MLQ0NB6\nfoJ+wIAB/gjmcDjefPNNr9cbExMzcuTI+t/o+6M9CkI0NzSCAAAAAAAAAADgnPilIBRC5Ofn\nCyGCg4PLysq+++6777777pxu93q9/kj16aef5uXlCSHuu+8+nU5X/xuZQYjmhl4QAAAAAAAA\nAAA0jF8KwgULFkyYMMHhcPhj8AY7cuSItOJK7969L7nkknO6l4IwYHTu3Dk1NbXlLpJOLwgA\nLUi/fv169uwZEhKidBAAQOAbOXKkSqVSOgUAIPCFhoampqaazWalgwAAGkv+gjArK2v8+PEu\nl0v2kRtp/vz5brc7KCjozjvvPNd7fQWh0Whct27dhg0bDhw4YLVaDQZDdHR0jx49hg4dGhMT\nI3Ni+IHFYrFYLEqnOGf0ggDQEkVHR0dHRyudAgBwXmjfvr3SEQAA5wWdTtexY0elUwAAZCB/\nQfjf//7X1w4aDIarr766e/fuMTExBoNBrVbL/rh6ysrK2rZtmxBi6NChbdu2PdfbfXsQTps2\n7ciRI77Xy8vLs7Ozs7Ozv/zyy9tuu+3WW2/lM5uQEb0gAAAAAAAAAACQnfwF4fr166WD5OTk\nr776Ki4uTvZHNMCiRYuEEFqtduTIkQ243TeD8MiRI8HBwZdeeml8fLxOpzt27NjmzZsLCwvd\nbveiRYucTufYsWPrHsput9ex+Krb7W5APAQSSkEAAAAAAAAAAOBX8heEvgl2b731VjNpB3fv\n3r17924hxKBBg8LDwxswgq8gHDZsWGpqqslk8p0aP378/Pnz09PThRCLFy/u3bt3QkJCHUOt\nWrVq48aNZzr7+++/NyAeAgC9IAAAAAAAAAAAaBryF4Qej0cIodfre/fuLfvgDbN06VLpYPjw\n4Q0bYcGCBV6vV6VSVa8GJRqNZsKECSdOnNiyZYsQYtmyZY8++mgdQ91www033HDDmc6mpaU1\nLCFaIkpBAAAAAAAAAADQ9OQvCGNiYo4cOWIymRTccbC64uJiaffBrl27xsbGNmyQ03vBGkaN\nGiUVhJmZmVKV2LAH4XxALwgAAAAAAAAAABQkf4c3YMAAIURJSYnVapV98AZYs2aNNKlx0KBB\n/ntKQkKCVqsVQlRUVNhsNv89CI10+PDh9PT0w4cPN/Fz91TTxI8GAChl+/bt6enpFRUVSgcB\nAAS+jIyMNWvWKJ0CABD4bDZbenr6jh07lA4CAGgs+QvCtLQ0lUrl9XoXLVok++AN8MMPP0gH\nl19+uf+eolKp9Hq9dOxwOPz3IDRSQUFBZmZmYWFhEzyLUhAAznPZ2dmZmZlVVVVKBwEABL5d\nu3ZlZWUpnQIAEPjsdntmZmZOTo7SQQAAjSV/QXjxxRf/85//FELMmDFD8fcnRUVFhw4dEkLE\nxcW1atXKfw9yOBzl5eXSscVi8d+D0MxRCgIAAAAAAAAAgGZO/j0IhRAzZ84MDg5+8skn+/bt\n++STT95zzz1hYWH+eNBZ/fzzz9JBcnJygwfZvHnztm3bCgoK+vfvP3DgwFqv+eWXX7xerxAi\nPj5ep9M1+FnwN41GYzQaNRrZfuVTBAIAzkSn0xmNRnYmBgA0AYPBIOPbHAAAzkStVhuNRmmv\nJQBAiyb/+4e1a9eWl5fHx8dPmzZt1qxZjz766BNPPHHJJZckJiaGhYXV8z8e//73v2UJs3//\nfukgPj6+wYNYrdaVK1cKIfLz86+44orT+z+v17tkyRLp2K8LmaLxunfv3r1790YOQikIAKiP\nG2644YYbblA6BQDgvPDAAw8oHQEAcF6IiIh47LHHlE4BAJCB/AXhoEGDarxSVVW1adOmTZs2\n1X8QuQrC33//XTqIi4urz/Xvvfee0+kUQowYMSI6Olp68corr1ywYEFpaWlubu7LL7/84IMP\nhoSE+G5xOBxz58799ddfhRBGo/HGG2+UJXnjSSVWYmKi0kFaPOpAAAAAAAAAAAAQSAJ8BZKj\nR49KB762r27ffvut3W4XQgwYMMB3i16vf/DBB1944QWPx7Np06asrKx+/fq1bdtWpVIdPXp0\n06ZNxcXFQgiVSjV16tTQ0FD/fCsNdKZyi+LwTKgDAQAAAAAAAABAYAvwgrC8vFw6MBqNjRnn\nsssumzZt2uuvv26z2crKyr755psaF4SGhk6ZMiUlJaUxT2lKdddg5099SB0IAAAAAAAAAADO\nN/IXhFu3bjWZTDqdTqvVqtVqlUol+yPqyeFwuFwu6biRBaEQonfv3t26dVuzZk1mZubvv/9e\nVlamUqksFssFF1yQkpIyePBgvV7f6MjNRX1qsxZUItICAgAAAAAAAAAA+Ki8Xq/SGfCntLS0\ncePGJSUlNX6o5tmKyVIrNs9vDfXXgtplAAAAAAAAAAACT4AvMYrmhm4PAAAAAAAAAABAWWql\nAwBNat++ffPmzdu3b5/SQQAAgS89PX3WrFklJSVKBwEABL45c+a8/fbbSqcAAAS+oqKiWbNm\nrVixQukgAIDGYgYhzi8ul6uqqsrtdisdBAAQ+BwOR2VlJcu5AwCagN1u12h4gw8A8DuPx1NZ\nWel0OpUOAgBoLPnfP3z77bcNu9HtdrtcLofDYbfb77jjDnlTAQAAAAAAAAAAABD+KAiHDh3a\n+EEoCOEnrVq1uuiii8LDw5UOcp7yeDxut9vpdGq1WqWzAIDfdejQQafT6fV6pYMAAAJfcnJy\nUFCQ0ikAAIHPYDD06tUrLi5O6SAAgMZSyb7slUqlavwg5+1iXGlpaePGjUtKSmr8UHv27Gn8\nIIBcvF7v8SLH70erwkxVHeMssbGx4eHh/BEGAAAAAAAAAABNjy0KAMisoiqowKotKNVKfy+0\n6fJLtYVWbZVTLYQY2Tv7sp7a/Px8IURkZKTSYQEAAAAAAAAAOO/IXxDOnz+/PpdVVVWdPHly\nx44dq1evPnnyZHBw8L///e/+/fuHhISEhITIngqA7BwudUGpVir/Cqy6Qqs2v1RbYNVWVNU1\nL7DIplerRWhoaG5ursVi0el0TRYYAAAAAAAAAAB5eTye9evXr127dsiQIX379q3jyv3794eF\nhUVFRTVZtjrIXxDeeeed53S93W6fO3fujBkzpkyZ8tRTT82cOVP2SIDE4/E4HA6Px6NWq3U6\nnVqtVjpRy+B0q4qs2gKrttCqqz410FrZkH+BnCwzCGFXqVRBQUFut1v2tAAAAAAAAAAANI2s\nrKypU6fu3btXCBETE1N3Qfj6668vXbp02LBhzzzzTExMTFNlrJ3yS4waDIYpU6b06tVryJAh\nTz31lMlkeuSRR5QOhQDkdDorKioqKirUarXH4zGZTCaTSavVKp2rGfF4VUU2jbQo6J8LhFp1\nxeWaBu8KqlaJsGBnVKjTFFQSE+5uFVLVNrxCiEiv1+t2u9mDEAAAAAAAAADQQu3atevmm2+u\nqKiQviwoKKj7+uLiYq/X+/XXX2/ZsmX58uXt27f3f8YzUr4glPTt2/fhhx9+/vnnp02bNmzY\nsIsuukjpRAgoXq+3srKyqqrKaDRKrzgcDpVKpdFoVCqVstmantcriss1hVZd9W0CC0q1RTaN\nx9vwn4bF5IoOdUZZnFGhzkizIyrUGWVxRpidmiCvEKK8vLy0tNRoNKpUKo+nlc1ma9euHeuL\nAgAAAAAAAABaIpfLNWnSJKkdNJvNw4YNu/baa+u+5aKLLtq6davNZisoKJg4ceKKFSsUXOmw\nuRSEQojx48c///zzbrf77bffnj17ttJxEFDcbndpaanZbJZqqrCwMJPJZLVajUZjYE8itFZo\nCqxa37qg0hqhRVat093wIjDY4I6y/LUIDHVGWRw6TV3TDE0mkxDi5MmTKpWqsLAwNjY2PDy8\nwRkAoEXIz88vKyuLi4sL7P/WAACag5ycHJVKFR8fr3QQAECAczgcubm5ZrO5mWygBQAKWr58\n+e+//y6E6Nmz5/vvvx8ZGXnWW6ZPnz5p0qR77rln06ZNWVlZK1euHDp0qN+DnkEzKgg7dOhg\nMpkqKirWrl2rdBYEGq/XK80UPHLkyMaNG/v27du1a1elQ8mpvCqo+nTAQqs2v1RbUKp1uBr+\n6QOD1iPNAoy0nJoOKDWCJr2nAaOpVKrg4GCDweDxeBITE/mzcgDngw0bNmRlZU2ZMoWPRAAA\n/G3JkiUajWbq1KlKBwEABLjS0tIFCxb07Nlz+PDhSmcBAIVlZGQIIfR6/bx582ptB7ds2SKE\naNOmTVxcnO/FsLCwN954o3fv3g6HIz09nYLwFL1eX1FRITWugIyCgoJCQkLcbrfvFY/H4/V6\nW9weeHanWir/pLmAvnmBFVUNLwK1Gu+pFvCPeYHSl2aj++w3n6OgoKCgoCDaQQAAAAAAAABA\ni7Zr1y4hxFVXXRUTE1PrBSNGjBBCTJw4cebMmdVfb9269dChQ5cvX75z584myHkmzagglNZ+\nFEJUVVUpnQWBRq1WGwyGgoICl8vl8XicTmdFRUVUVJSCy/vWzelSFVhPbQ1YYNVKpWCRTWet\naHijGaT2RpirV4DOKIsjKtQZFuySMTkAAAAAAAAAAAHv5MmTQojExMRaz/omLFWfueTTsWNH\nIcSJEyf8lu7smlFBuGLFCo/HI4QICwtTOgsCkMFgaN26tVarbdWqVURERFhYmF6vVzqUcHtU\nRTZNgVX3x7zAU1MDi8sa/ntTrRZhJmd0qDPSIv3dIZWC4cHO5tqHAkBg6tevX8+ePUNCQpQO\nAgAIfCNHjpR2VQAAwK9CQ0NTU1PNZrPSQQBAeXa7XQhhNBprPVtUVCQdFBcXn37WYrEIIVwu\nJWfvNJeCcNu2bf/4xz+k4wDbHA7Nh06ni4mJOdNsX7/yeEVJmabAqiuotkBooVV7skzraciO\nfqeEBbt8WwP65gVGmJ2aIK982QEADRQdHR0dHa10CgDAeaF9+/ZKRwAAnBd0Op006wUAYDab\ni4uLzzQLMDc3Vzr49ddfTz979OhRIURoaKj/4p2V/AXhvHnz6nmlx+OprKzMzc3dvHnzxo0b\nPX/0JFdffbXsqYAmY63QSHMBpUVBT80LtGld7oZ/njfE4I4OdUaYHdXmBTqjLA6thiIQAAAA\nAAAAAICm1r59++Li4vXr19d6dvXq1UIIs9m8d+/effv2VZ8a53a7MzIyhBCdOnVqmqi1kr8g\nnDBhQmNuDwsLmzRpklxhAP8ptwcVWLV/7BGo++NY53A1vAg06jzVpwP6SkGDrhHTDAEAAAAA\nAAAAgKwuvfTSHTt27N2795NPPrntttuqnzp69Oj8+fOFEKNHj37nnXcefvjhjz/+WFqf2e12\nP/300zk5OUKIPn36KJJc0lyWGJWYzebPP/88MjJS6SDAn+xO9Z8tYOkfOwXadBVVDd/QT6fx\nRlkc1ecCSsfBhlp2KwUAAAAAAAAAAM3Kbbfd9u677woh0tLSsrOzR48eHR8fX1VV9cMPPzz5\n5JNWq7VDhw4PPPDABx988PPPP/fp02fAgAE6ne6nn36S2kGNRlOjVmxizaUgjIyMHDly5LRp\n0+Lj45XOgvOU06X661zAU8e2yqAGj6kJ8rYKcUrTAX1TA6NDnaEmJbceBQAAAAAAAAAAjXHh\nhReOHj36448/drvdc+bMmTNnjlqt9u2mJ4S4//77IyIipk6dOmvWrOLi4mXLllW//aGHHoqL\ni2vy1H+SvyBMT0+v/8U6nS4kJCQ+Pj42Nlb2JECt3B5VkU17+uqgJeUN/+2gVovw4FNFYKTl\nz50Cw0xOdcPnGQIAAAAAAAAAgGbqueeeO3ny5MqVK6Uvq7eDI0eOlCYIPvjgg2VlZXPnznW5\nTk0cMhqNDz300OTJk5s+cHUqr9erbAJUl5aWNm7cuKSkpMYPtWfPnsYP0qJ5PKK4/K9FYKn2\nSO7xY7m/GsK760IaOFc1LNjlKwKleYFRFmeE2Rmk5rdSfSUmJiodAQCawvbt2/Py8gYPHmwy\nmZTOAgAIcBkZGUFBQYMHD1Y6CAAgwNlstnXr1sXFxfXo0UPpLADQXHz11VeLFi3aunVrZWWl\nSqVKTEy85557Ro0aVf2aY8eO/fTTT1artXXr1n/7298sFotSaX2ayxKjQGOUlGtOtYA2nXRQ\nUKotsmndHlWNKyuKisvyMzXGdmctCM1G96kK0OKs3ghqNRSBAIB6yc7OzsrK6tu3LwUhAMDf\ndu3apdFoKAgBAP5mt9szMzM9Hg8FIQD4XH/99ddff70Qory8XKfTabXa069p06bNiBEjmjxa\nXSgI0ZLYKoN8i4IWWrX5pdpCq7bAqnO6ahaB9WfSe6StAU9tE/jHvECD1nP2mwEAAAAAAAAA\nAIQIDg5WOsI5oCBEc2R3qPNL/5wOmF96qhS0Oxq+oZ9O442yOIIMjmK36JVSmpyUK5WCwQa3\njMkBAPDR6XRGo1GlavinWAAAqCeDwaDR8AYfAOB3arXaaDTWOjkGAM5zW7ZsEULExcW1adNG\n6Sz14t89CAsKCnbs2JGTk2Oz2aqqqup/47Rp0/yXqjk73/YgdLpUBVadb5vAglJtkU2XX6ot\nswc1eExNkDfS/JdFQSMtzuhQp8XkkjE5GoM9CAEAAAAAAAAAgaRdu3ZCCKPROGPGjLvuuqv5\nf2TcXx8w3LBhw8yZM7///vuGFZDnbUEYqFxuVZHtL4uCFlq1BVZtSXnDfwWqVd4IsyvS4oyy\nOKQKMCrUGWl2hIW41M399x0AAAAAAAAAAAg0lZWVTz755IoVK15++eX27dsrHacufikI582b\nN3HiRI+HLdzOOx6PKC4/NR2w0KqT6sD8Um1JudbT0KmqKpUIC3ZFWZxRFkf1eYERFpda5cf5\nrwAAAAAAAAAAAPXXvn37nJycTZs2XXXVVTNmzLjzzjub7VRC+QvCAwcOTJo0iXYw4JWUawpK\nT80F/GNeoLbIpnV7Gv5r3WJyR5gd0aGnFgX1zQ7UBlEEAgAAAAAAAACAZu3xxx8vAqw1uAAA\nIABJREFULCx87rnnKioqnnjiia+//vqVV16Jj49XOlct5C8I58yZ43Kd2uwtPDx89OjRl156\naWxsrMlkUqvVsj8Op6uoqHA4HJWVlRqNpvE7Btsqgwr/uk1goU1XYNU6XQ0vAk16jzQL0Dcj\nUKoDDVp6ZQAAAAAAAAAA0FKNGzdu4MCBDz/88I8//rhp06bBgwc/8cQTqampzW0qofwF4bp1\n66SD5OTkNWvWREZGyv4InInX6y0sLDx69KjBYCgtLXU6nRERESaTqT73VlSpC226P1vAPxYI\ntTsbXuvqNJ6o0L/MBZSOg/XuBo8JAAAAAAAAAADQbMXHxy9evHjhwoXPPfdceXn5jBkzvvrq\nq1deeSUuLk7paH+SvyDMycmRDl599VXawSZmtVqPHz8eGRmpUqkMBoNery8qKtJqtdXnETpc\n6r/MBfzjuLwqqMHP1QZ5Iyx/7g4ozQuMCnVajC45vi0AAAAAAAAAAIAWQ6VSpaamDho06NFH\nH12/fv2PP/4oTSW84447mslUQvkLQpvNJoTQaDR9+/aVfXDUzW63h4SESL+2XB71SZvuREnI\nr/mhVnuIb41Qa0XD/6GrVd4IiyvK4ow0O3wtYKTFER7sah6/ns9u3759GzZs6NevX9euXZXO\nAgAIcOnp6bt37544cWJYWJjSWQAAAW7OnDkajea+++5TOggAIMAVFRXNmzevW7duw4YNUzoL\nALQAsbGxH3/88aJFi5599lmbzTZ9+vSvv/765Zdfjo2NVTqaHwpCk8lks9lCQ0N1Op3sg6Nu\nXq9Xagd/+V33xMLLPd4GjqNSifBgV6SlWgtodkSFOiPMLrWqoYM2Dy6Xq6qqyu1mjVMAgN9J\nWwJ7vS37P50AgBbBbrdrNPK/wQcAoAaPx1NZWel0OpUOAgAtyZgxYwYOHPjoo4+uW7fuhx9+\nGDx48JNPPjl27FhlU8n//qFz587bt2+X5hGiiWm12tLSUp1OF2Hx1LMdtJhcfy4K+scaoREW\npzaoGf1pptvtdjgcHo9HrVbr9Xq1uuHbIgIAAAAAAAAAADSltm3bLlq0aPHixc8//3xhYeFj\njz321Vdfvfzyy+3atVMqkvwF4YgRI7Zv3+5wOHbt2pWcnCz7+KhDaGiow+GwWq1hJqNaJap3\nhMF6d/XpgJEWZ3SoMyrUqdN4lMtbL06ns6KioqKiQq1Wezwek8lkMpmq76p4Tlq1anXRRReF\nh4fLGxIAgNN16NBBp9Pp9XqlgwAAAl9ycnJQUMP3lQcAoJ4MBkOvXr3i4uKUDgIAyps/f/7p\nL65duzY/P7+Ou8aPH//BBx8cP358w4YNgwYN2rdvn98CnoVK9mWvCgsL4+PjKysrJ0yY8M47\n78g7eH3s2LFj5syZZ70sISHhlVdeOdfB8/LyVqxY8csvvxQUFNjtdrPZ3KlTp969ew8ePFiW\nN2NpaWnjxo1LSkpq8AhOp9NqtTocjjeWecwmT5tW3tZh7kiLw6Rv7kVgrbxer81mczgcvtVy\nnE6nXq83m83NZBtPNEBiYqLSEQAAAAAAAAAAaDhZJv/l5eU1fpCGkX8GYWRk5Pvvvz969Oj/\n/e9/AwcOHD16tOyPqFt5ebmfRv7ss88WLVpUffu64uLibdu2bdu27Ysvvnjqqadat27tp0fX\nn1arjYiIEEKMGbhH6SwycLlcVqs1JCTE94q0jKrJZGKDDQAAAAAAAAAAgAbwS8Vy6623ut3u\nSZMmjRkzZsOGDWlpaRdccIE/HlSrsrIy6SAlJaVz585nuqxVq1bnNOzy5csXLFggHffo0SM5\nOdloNObn5//www8FBQW5ubnTp09/7bXXzGZzg5OjnlQq+We+AgAAAAAAAAAA1NObb75Z/cvJ\nkycLISZMmNCzZ0+FEp0b+QvCtWvXlpeXazSaadOmPffcc2+99dbcuXOTkpKSk5NbtWql0+nq\nM8hLL73U4AC+GYR9+/YdNGhQg8ep7vjx4wsXLhRCBAUFTZ8+/bLLLvOduv3221988cUtW7YU\nFha+//77Dz74oCxPhCQoKMjr9brdbt8Krm6322w2M30QAAAAAAAAAAAoZfjw4dW/lArCSy+9\n9LrrrlMo0bmRv2U5vZPzeDxZWVlZWVn1H0SWgjA4OLjBg9SwfPlyh8MhhLj11lurt4NCCL1e\n/8gjj0yYMKG0tHTNmjVjx44NDw+X67lQq9VRUVEFBQV6vT4oKMjtdldVVUVHR7MBIQAAAAAA\nAAAAQMOolQ4gP98So3IVhG63e8OGDUIIjUZzww03nH6BwWC49tprhRAej2fdunWyPBQ+BoOh\ndevWJpNJq9WaTKaYmBi9Xq90KAAAAAAAAAAAgFPuueeee+65p0OHDkoHqa8AXKdR9hmE+/fv\nt1qtQoiuXbuGhITUek3Pnj0//fRTIcS2bdtGjBghy3Pho9Pp6rk47VmVlZUVFxe3atVKxgmm\nAADUKj8/v6ysLC4uTqvVKp0FABDgcnJyVCpVfHy80kEAAAHO4XDk5uaazeaoqCilswBA8/L0\n008rHeHcyF8Qbt261WQy6XQ6rVarVqubfilI2QvCgwcPSgddunQ50zUJCQkqlcrr9fouRvOU\nk5Ozbt26gQMHXnTRRUpnAQAEuA0bNmRlZU2ZMoXlxwEA/rZkyRKNRjN16lSlgwAAAlxpaemC\nBQt69uxZY+ctAECLI39BmJKSIvuY58RXEBqNxnXr1m3YsOHAgQNWq9VgMERHR/fo0WPo0KEx\nMTH1H/DEiRPSQXR09Jmu0el0oaGhJSUlFRUVNpvNbDY35lsAAAAAAAAAAABA8+d2u7dt27Zj\nx47i4uKwsLA+ffp0795d6VBnF4BLjPr2IJw2bdqRI0d8r5eXl2dnZ2dnZ3/55Ze33Xbbrbfe\nWs/ZjSUlJdJBWFhYHZeFhYVJV5aUlFAQAgAAAAAAAAAABLZNmzY99thjNVaX/Nvf/vb666/7\n5qpt3bp19uzZW7ZssdvtcXFxN9544+TJk8+0pV2TCcCC0DeD8MiRI8HBwZdeeml8fLxOpzt2\n7NjmzZsLCwvdbveiRYucTufYsWPrM6DdbpcO6t4Gz3fWdz2aofbt2994442tWrWSa8DExERZ\nxtmzZ48s4wAAmo9+/fr17NlT8f/bAwCcD0aOHNn0G3wAAM5DoaGhqampzI4AAMkPP/wwduxY\np9NZ4/Uff/zxlltu+eabb8xm89y5c5955hnfqezs7Ndee+3LL79csmRJmzZtmjbvXwRyQThs\n2LDU1FSTyeQ7NX78+Pnz56enpwshFi9e3Lt374SEhLMO6Ha7pQONpq4fl1arrXF9rXbt2nXg\nwIEznS0oKDhrHjRGSEjIWf+gVq7O75w07KHUigDQnEVHR9exPjkAADJq37690hEAAOcFnU7X\nsWNHpVMAQLNQVVU1ZcoUqR2Mjo6+6qqr2rZtW1ZWtn79+t27d2dnZ8+ZM+fyyy9/9tlnT783\nOzt78uTJS5cuVfBzfgFYEC5YsMDr9apUqurVoESj0UyYMOHEiRNbtmwRQixbtuzRRx8964BB\nQUHSgcvlquMyh8NR4/paGQwGi8Vy1mfB3xRpAWVXn++CEhEAAAAAAAAAAHktW7bs+PHjQoix\nY8c+99xzvllkQoj58+c/8cQTixcv3r59u9frTU5OnjFjRvfu3dVq9d69e1966aUNGzZs2bJl\n7dq1gwYNUip/ABaEp/eCNYwaNUoqCDMzM6Uqse7rjUajdOCrAGvlO1t3gC5dunTp0uVMZzMy\nMuoOgwYIjC6wwer+9qkPAQAAAAAAAAA4V2vWrBFCJCcn/+tf/1Kr1dVP3XXXXTt27Pjss8/y\n8/PbtWu3ePFi3+LMKSkpCxcuvPbaa/fu3fvFF19QEIpXX331888/9335ww8/+O9ZCQkJWq3W\n6XRWVFTYbLY65vNJwsPDpYPi4uI6Ljt58qR0EBYWJktONMx5XgeeqzP9uCgOAQAAAAAAAAA4\nk6ysLCHEyJEja7SDkrFjx3722WdCiHHjxtXYulWr1Y4dO/aJJ57IzMxsmqi1ai4F4cGDBzdu\n3Ng0z1KpVHq9XloWtu5JgRLfLpEnTpw40zVS1yiEsFgswcHBMiVFvdAI+kMdP1W6QwAAAAAA\nAADAeU6aNnbhhRfWetb3Z+wXX3zx6WeluwoKCvyW7uyaS0HYlBwOR3l5uXR81umDQoiEhATp\nYO/evWe6xneqjuVDIRcaQWXV+vOnNQQAAAAAAAAAnD+qqqqEEAaDodazer1eOqj1Ap1O5xtB\nKYFWEG7evHnbtm0FBQX9+/cfOHBgrdf88ssvXq9XCBEfHy/9M6hbx44do6KiCgoK9u/fX1xc\n7FtxtMZzpYPevXs3Ij7OSK5S8PDhwzt37uzevXt8fLwsA0LCUqUAcLrt27fn5eUNHjz4rBsk\nAwDQSBkZGUFBQYMHD1Y6CAAgwNlstnXr1sXFxfXo0UPpLACgMLPZXFxc7Nt+rgbf7MBapwnm\n5+cLpXesay4F4fTp0++5557Gj2O1WleuXCmEyM/Pv+KKK07v/7xe75IlS6Tjyy+/vD5jqlSq\nAQMGLFmyxOPxLFu27O67765xQVFR0XfffSeE0Ov1ffv2bez3gD/4Y6ZgQUFBZmZmu3btKAib\nBtM9AZzPsrOzs7Ky+vbtS0EIAPC3Xbt2aTQaCkIAgL/Z7fbMzEyPx0NBCACxsbHFxcWbN2++\n6qqrTj/r21ZvzZo1119/fY2z69atE9UWsFRELRsnKqJdu3Y9qmnwOFdeeWVoaKgQIjc39+WX\nXy4rK6t+1uFwzJkz59dffxVCGI3GG2+8scbt77333ty5c+fOnSuVtz433nijtLPg8uXL169f\nX/2UzWabNWuWNA/05ptv5k8AGymxGqWzAAAAAAAAAAAA1OLSSy8VQnz44Yd5eXk1Ttnt9jff\nfFOtVrdp0+bzzz9fvXp19bNr16795JNPhBD9+vVrsrSnay4zCOWi1+sffPDBF154wePxbNq0\nKSsrq1+/fm3btlWpVEePHt20aVNxcbEQQqVSTZ06VaoSq/v222/tdrsQYsCAAdHR0b7XQ0ND\n77333v/+979er/ell17KyMhITk42Go15eXkbN24sLS0VQnTu3PmWW25pwu81cDRlF6jRaIxG\no0YTaL/yAQDNkE6nMxqNKpVK6SAAgMBnMBh4mwMAaAJqtdpoNGq1WqWDAIDyRo4c+d5771mt\n1ptuuumxxx7r06dPTExMVVVVVlbWCy+88Ntvv/Xo0aNfv36vv/76nXfe2adPn86dO3s8nn37\n9m3dutXr9er1+tGjRyuYXyXtxhdgfvrpp9dff91ms9V6NjQ0dMqUKSkpKaefuvXWW6WC8MUX\nX+zatWuNs6tWrZo7d67D4Tj9xuTk5OnTp0uzDBsjLS1t3LhxSUlJjRxHNPu935ggCAAAAAAA\nAAAAWq4HHnhg2bJlvi+DgoLcbrfvyzfeeGPgwIHDhw/fv3//6fc+88wz48ePb4qUZxCYHzDs\n3bt3t27d1qxZk5mZ+fvvv5eVlalUKovFcsEFF6SkpAwePFiv1zdg2CFDhvTo0ePrr7/esWPH\niRMnHA5HaGho165d+/fv37t3b9m/i4BELwgAAAAAAAAAAALAv//97/z8fN92g9Xbwdtvv/2m\nm24SQnz88cdTpkzxXSOECA4OnjZt2t13393EaWtQcgZheXl5ZmZmaWlpdHR09+7dDQaDUkma\nj4CcQUgpCAAAAAAAAAAAAo/L5fr0008//vjjXbt2ud1utVqdnJx8zz33jBgxovplP//885Yt\nW+x2e1xc3KBBg8LCwpQK7OPHGYQ//vjj66+/Lq29WeOU3W5/8cUXZ82aVV5eLr1isVjuu+++\nf/7zn0aj0X+R0JToBQEAAAAAAAAAQADTaDRjxowZM2aM2+222WzBwcG1btTas2fPnj17Nn28\nOvilIPR6vf/3f//32muvib9OqJS43e6bb755xYoV1V+0Wq3/+c9/Nm7cuGrVKjrCFo1eEAAA\nAAAAAAAAnFeCgoKaw7zA+lP7Y9B//etfUjsohMjOzq5x9vnnn6/RDvps3Ljx8ccf90ck+Fvi\nH5QOAgAAAAAAAAAAgLrIXxCeOHHiueeek44jIiJuu+226meLiopeeukl6dhgMDz99NMZGRmL\nFi3q3bu39OKcOXOOHTsmeyr4Cb0gAAAAACjO6/V6vV6lUwAAAADno8rKyk8++WTlypVKBzk3\n8i8x+tFHH1VWVgohwsPDf/rpp4SEhOpnFyxYYLPZpOOPP/74pptuko5HjhzZr1+/zZs3O53O\nxYsXT5kyRfZgkFHLbQR37tz57bffDh06NDk5WeksAIAAl56evnv37okTJ7as9SUAAC2Lw+Gw\nWq1z587VaDTjx4+3WCw6nU7pUACAgFVUVDRv3rxu3boNGzZM6SwA0CysWrXqkUceKSwsHDNm\nzDXXXON73Waz9ejRw2KxhIaGhoaGSgc1vgwNDe3bt69SyeUvCL/77jvp4Pnnn6/RDgohPvnk\nE+mgf//+vnZQCKHVap988snrr79eCLF+/XoKwuap5faCPi6Xq7Ky0uVyKR0EABD4HA5HZWUl\n8zkAAP7jcrmKioqsVmtlZWVQUFBRUZHT6YyKitJo5H+zDwCAEMLj8VRWVjqdTqWDAECz8O23\n3957771ut1sIkZeXV/2U1+u12+12uz0/P7+OEWrc1ZTkf8+we/du6eDvf/97jVNFRUXbtm2T\njlNTU2ucHTBggHSwa9cu2VOhMQKgFwQAAACAQGKrEAfyxM79jl8PGXOLIg7+HHLdZVVms7mk\npMRgMISHhysdEAAAAAhwVqv1kUcekdrBhISEESNGVD+rUqkUylVf8heEJ06cEEKEhYW1bt26\nxqm1a9d6PB7p+PRJ6MHBwSEhIWVlZYWFhbKnQgMEZC8YFRXVq1evyMhIpYMAAAJfhw4ddDqd\nXq9XOggAoMXzeEVugdifK347IvbniQO54miRdMYkhEkIYdf07HphqRBCr9czqwMA4D8Gg6FX\nr15xcXFKBwEA5X366afFxcVCiOuuu2727NkGg6H6WbPZPG7cuA8++KBr166fffZZeXm51Wq1\nWq2lpaVWqzU9Pd23HqdS5C8IpQ0IIyIiTj/l+267desWExNz+gURERFlZWW+TQqhiIDsBX3i\n4+Pj4+OVTgEAOC9ccskll1xyidIpAAAtUrld7M899ddvueLgUVFZVdf1hphrEi7KF8Ll8XjU\nanVTxQQAnHfMZvMNN9ygdAoAaBbWrl0rhIiMjHzttddqtIOS6dOnL126dN++fWvXrr355pur\nnzpy5EgAFoRGo7G8vNzhcJx+SvphCSGGDBlS673SXXzQXhGB3QsCAAAAQLPl8Yq8ArE/V+zP\nO9UIHq33wjpqlbddpKtDa5dXCLfbXV5e3qZNG3+GBQAAACCEEHv27BFCDBs2zGg01nqB2Wwe\nMmTI0qVLv/zyyxoFYXMgf0EYHh5eXl5+7Ngxp9Op1Wp9rx88eHDv3r3S8fXXX3/6jU6nU9qq\nMTQ0VPZUOBN6QQAAAABoYhV2cSBP7M8T+46IA7niQJ6oqHOCYHWhwaJrnEiIFZ3bic6xItxY\nciwvR/qgbVFRVfv27YODg/0YHQAAAIAQQoiSkhIhRMeOHeu4pkuXLkKIXbt2NVGmcyF/QZiY\nmJibm+tyub7//vurrrrK9/o777wjHYSHh/fr1+/0G7du3Srt5Vj3TxOyoBcEAAAAgKbh9Yq8\nQvFbrjiQK/bnid+OiKNFwuut171BatG+tUiIFV1iRZdYkRArosNqXBIeZjFJ6/Gw9y0AAADQ\nZOqztr+09OjJkyf9H+ecyV8Q9u3bd9WqVUKIGTNm9O7dOyQkRAixdevW2bNnSxcMHz5co6nl\nuW+//bZ00KtXL9lTwYdqEAAAAAD8qqJKHMgTB3LFviNif544kCcq7PW91xIsusaJzu1EQjvR\nOVZ0ait02rPcotfr6QUBAACAJhYeHn7s2LHs7Ow6rsnJyRFCmEympgp1DuQvCG+77bann37a\n4/Fs3bq1S5cugwcPttls33zzjW9XwsmTJ59+1xtvvLFw4ULpuNYFSNFI9IIAAAAA4A9erzha\ndGrvwAO54rdckVdY3wmCarWIjxZdYkXnWNE5VnSJFdHhfo4LAAAAQA4XXXTRsWPHvvnmm6ee\neqrWT+w5nc5vv/1WCBEbG9vk6c5O/oKwS5cud99997x584QQx44d+/DDD6ufveOOOy699NLq\nr+Tk5Nxxxx0bNmyQvuzWrVv1hUnRSPSCNVit1sLCwqioKLPZrHQWAECAy8/PLysri4uLq74r\nMwAgAFRWiYNHxW+5Yv8ff5XXf4Kg6VQXKP3Vqa3Qy/FfiZycHJVKFR8fL8NYAACcmcPhyM3N\nNZvNUVFRSmcBAIUNGjRozZo1+fn5jz/++H/+85/TVxx9/vnnjx07JoSodd89xclfEAohZs+e\n/fvvv69evbrG61dcccVbb711+vW+dlCv17/33nsqlcofqc43VIO12r9/f3p6+o033njJJZco\nnQUAEOA2bNiQlZU1ZcqU8HAmgwBAy3a0UOzPO9UF/pYr8gqEp94TBOOiRJc40TlWdG4nOseK\nmFZ+SbhkyRKNRjN16lS/jA4AwB9KS0sXLFjQs2fP4cOHK50FABQ2atSoV199tbCw8OOPP87O\nzn7wwQf79Omj1+u9Xu/OnTtnz569cuVKIURQUFBqaqrSYWvhl4LQaDSuXLnygw8++PDDD3fv\n3l1VVXXBBReMGTPmH//4x+mfoG/fvn1kZGRhYWHr1q0/+eSTlJQUf0QCAAAAAKA+7A5x8Kj4\n7YjYn3uqFyyrrO+9ZtOfXWCXWNGxrTDo/JkVAAAAgEKMRuMrr7wybtw4r9f7008//fTTT2q1\n2mKxVFRU+DbdE0L83//93wUXXKBczDPyS0EohFCr1Xfdddddd91Vn4tTU1PbtGkzceJEVn0E\nAAAAADSxY0V/mSCYm1/vCYIqEeubIBgrOrcTbSL8nBUAAABAszF48OC33377oYceKi8vF0J4\nPJ6SkpLqF9x///21rvPRunXr5OTkJkp5BipvPXdObxK//fabw+GIiYmJjIxUOosy0tLSxo0b\nl5SUpHSQgMUehACAJsMehADQPFU5a04QtFXU994Q46kiMCFWdIkVndoKo96fWeuNPQgBAE2D\nPQgB4HT5+fnvvvvuypUrDx48KL1iNpuvvPLKSZMm9ezZU9lsdWheBeHll1++ZcuW0aNHf/TR\nR0pnUQYFIQAAAADI6/jJP7vA/bnicL7weOp1o1ol2kWJLrF/ThBse55+lhUAAADA2dnt9pMn\nT+r1+vDwcLVarXScs/DXEqMNU1ZWJoTYuHGj0kEAAAAAAC2SQ5ogmHuqDtyfK6z1niAYbPiz\nC+wcKzq1E6bmMUEQAAAAQPNnMBjatm2rdIr6ai4FYVFR0bvvvrt7924hxPHjx5WOAwAAAABo\nRiorKysrK91ut0ajCQkJqb56c35xtTowTxw+Idz1myCoUol2kdUmCMaKthFCpfLXtwAAAAAA\nzYcfC8KTJ0++9957q1evzs7OLi4u9px5DZfKysqKij8/0mmxWPyXCgAAAADQslit1kOHDplM\nJo1GU2F3HczLd+k65pzQ7s8T+44Ia3l9xzEZREI70bmd6BInOrcTCe2EyeDP3AAAAADOMw6H\nIzs7u7S0tKysTKVShYSEhISExMfHBwcHKx2tJn8VhJ9++um9995rtVobcO8111wjex4AAAAA\nQEvkcrkOHTrUqlUrjUbz1IcRu7L19Z8g2Dbijy4wVnSJFe0imSAIAAAAQH579uxZtmzZ6tWr\nDxw44Ha7a5xVqVSxsbEpKSnXXXfdoEGD9PpmsZOBXwrCzz//fPTo0V6vtwH3Jicnv/jii7JH\nAgAAAAC0RFVVVRqNRqPRCCG0Qd462kGTXiT80QV2jhUJ7UQwEwQBAAAA+FNBQcFTTz21fPny\nOq7xer1Hjhw5cuTIsmXLWrdunZaWNmrUKJXSn16UvyAsKyu79957q7eDcXFxUVFRWq128+bN\nQojIyMhOnTq53e6jR48ePXpUuuZvf/tb//79r7jiimuuuUZ64wf4w+HDh3fu3Nm9e/f4+Hil\nswBA4NizZ09iYqLSKZqd7du35+XlDR482GQyKZ0FAALEBa2dW377s/RrG/nneqFd4kTbSKE+\nXycIZmRkBAUFDR48WOkgAIAAZ7PZ1q1bFxcX16NHD6WzAIDycnJybrvttsOHD/teMRqNwcHB\nJSUlLpdLCJGYmNixY8eioqLffvvt5MmTQogTJ048/PDDGzdufPXVV5Wtw+R/9qJFi6RvUghx\n//33T5s2LTY2VvpSqkOvueaaDz/8UHpl3759b7755ltvvbVr166xY8cOGzZM8coUga2goCAz\nM7Ndu3YUhAAgrz179kgHNIU+2dnZWVlZffv2pSAEgMbQ6/Uul8vlcmk0muQODmtFRZvw8gvj\ngy7rFm428f7xlF27dmk0GgpCAIC/2e32zMxMj8dDQQgALpdr4sSJUjsYExNz3333XXPNNVL1\n4HK5Vq9e/cwzz+zfv//OO+8cO3asEGLfvn1ffPHFe++9V1ZWtnTp0pCQkH/9618K5lfLPmJG\nRoZ0MGnSpDlz5vjawVp17dr1tdde27RpU0hIyOTJk0ePHi11qgAAoIXa8welgwAAAoRGo+nU\nqdPJkyfLyso6x5SMvfLwFZ3zruhuoh0EAAAAoKBly5ZlZWUJIfr37//9999PmDDBNzFJo9Fc\ne+216enp0dHRM2bM2Lp1qxCia9eujz322Lp16y666CIhxMKFC7dv365gfvkLwp9//lk6SEtL\nq+ctvXr1ysjIMBgMn3766YwZM2SPBPhoNBqj0cgytgDQBGgKdTqd0WhkdQQAaDyz2XzhhRdG\nRkZaLJbWrVsnJSUZDOwu+BcGg4GfCQCgCajVaqPRqNVqlQ4CAMr78ssvhRBUhGHpAAAgAElE\nQVTR0dFz584NCQk5/YKIiIiHH37Y7Xa/+uqrvhfbtGnz/vvvBwcHe73eTz75pOninkZVfbNA\nWVgsFpvN1qpVq6KiopoPU6mEEGPGjPEtMVrdzJkzn332WY1Gs3v37s6dO8ubqqVIS0sbN25c\nUlKS0kEAADgH9W8BWYAUAAAAAAAAASAlJeXYsWOTJ09+/PHHz3TN77//fsUVV6jV6l9++SU0\nNNT3+kMPPfTpp5926NDhhx9+aJKwtZB/BmFFRYUQwmw2n+mC8vLyWl+/9957VSqVy+X63//+\nJ3sqAADQHDCtEAAAAAAAAAGgsLBQCNG+ffs6rmnbtq0QwuPx5ObmVn9dWmX0+PHj/gx4FvIX\nhCaTSQhhtVpPPyUteFJcXFzrjbGxsR07dhRCrF27VvZUAACgWaEpBAAAAAAAQMsl1WFn6rwk\nUoko/phc52O324UQyq7YLH9BGBERIYQoKSkpLS2tccpisQgh8vLyznRvTEyMEOK3336TPRUA\nAGie9lSjdBYAAAAAAACgXuLj44UQK1eurOOajIwM6SA6Orr661u2bBF/zC9UivwFobR/ntfr\nXbx4cY1TF1xwgRDiwIEDNaZS+pw4cUIIUVZWJnsqAADQ/NEUAgAAAAAAoEUYMGCAEOLnn39+\n++23a70gJyfnlVdeEULExMRUX4n0+++/l5bSlAo1pchfEF555ZXSwRNPPPHzzz9XP5WcnCwd\nvPTSS6ffeOjQoezsbFHn/oUAAOB8QFMIAAAAAACA5uzOO++UdtZ79tlnJ0yYsGnTJofDIZ06\nduzYu+++O2zYsKKiIiFEamqq765XX331rrvu8ng8Qojbb79dieCnyF8Q3n777dKqqfn5+Skp\nKQMHDvzll1+kU0OGDJEOZs+e/dprr3m9Xt9dx48fT01NdbvdQoiEhATZUwEAgJaIBUgBAAAA\nAADQDMXExDz77LPS8YoVK2655ZaEhISkpKTOnTunpKT885//LCkpEUJcfPHF9957r++urVu3\nVlVVCSHuuOOO3r17K5JcIn9BGBsbO3XqVOnY4/GsW7fOt/Xi8OHDpQVVvV7v1KlTO3XqdPfd\nd0+dOvWmm27q2rXrxo0bpcuuueYa2VMBkp07d86aNWvXrl1KBwEAnLMWVxamp6fPmjVL+n9B\nAAD8as6cOWda1wgAABkVFRXNmjVrxYoVSgcBgGbh9ttvf+WVV0wmk/Sl2+0uKSnxlWJCiD59\n+nz44YdGo9H3SpcuXbRa7ZQpU1544YWmjvtXGn8M+vzzz+/Zs+err76SvoyJiZEO9Hr9iy++\nOGbMGOnL7OxsaU3R6sLCwh588EF/pAKEEC6Xq7Ky0uVyKR0EANAovo4wMTFR2SR1cDgclZWV\n1ZdMAADAT+x2u0bjlzf4AABU5/F4KisrnU6n0kEAoLkYNWrUoEGDFi5cuGbNmt27d0urjFos\nlssuu+zWW28dNmyYSqWqfv2YMWMmT54cHR2tUN4/+eX9g1arXb58+Ztvvvnqq68eOnTIVxAK\nIW6//fZDhw7NnDmz1j8sM5vNn332mVw/l4MHD2ZkZPz666+FhYVVVVUmk6ldu3bJyclDhgxp\n3br1OQ21Y8eOmTNnnvWyhIQEacNJAADQNKrPJmzOZSEAAAAAAAACUlRU1EMPPfTQQw8JIcrL\nyzUajV6vP9PFnTt3bsJodfHXBwzVavUDDzzwwAMPHDx4UKfTVT/1xBNP9OnTZ9asWWvWrJG2\nYRRCmM3mESNGzJw5s1OnTo1/usPheOeddzIyMqq/aLPZ9u7du3fv3qVLl6ampt500031H7C8\nvLzxqdAchIeHJyUlhYeHKx0EACC/5lYWxsbGejweaW9mAAD8qmvXrmq1/HuIAABQg16vT0pK\nkraRAgCcLjg4WOkI9aVScNmr8vLy3Nzc0tLSsLCwTp06BQUFyTKs1+t99tlnt23bJn2ZlJTU\ntWtXi8Vy7NixLVu2FBcXS68/8MADV199dT3HXLly5RtvvCGESElJqaPdbdWqVSM3UExLSxs3\nblxSUlJjBgEAoIk1800Bm0NZCAAAAAAAADQfSm5REBwc3LVrV9mHzcjIkNpBnU43ffr0Xr16\n+U6NHz/+nXfeWb16tRDigw8+GDBgQI3ZjWfim0HYt2/fQYMGyZ4ZAAD4T4vYsBAAAAAAAAAt\nncPhyM7OLi0tLSsrU6lUISEhISEh8fHxzXBmYQDuYb58+XLpYPz48dXbQSGEwWC4//77d+7c\nWVBQYLPZsrKyalxwJr6CsBn+IwQAAPVUY6YjfSEAAAAAAAAab8+ePcuWLVu9evWBAwfcbneN\nsyqVKjY2NiUl5brrrhs0aFAdOxQ2pUArCEtLS/Py/p+9O4+Pqjz0P/6cZfaZJAPZCCQgoiGm\nAoIoVKy4XUHFq1Wuoq3YTa1ef3otxdra29vaRa3X1uq9LepLW61XllawtIq0CC4IKKkIAqGR\nIgQwC8lkssx+zvn9MTCMSQgJZHKSM5/3H7xOznnmzDdJTZP5zvM8B4QQNpvtwgsv7DpAUZTJ\nkye//vrrQogDBw70siBsb29PHlAQAgBgGYNtz0IAAAAAAAAMLY2NjT/4wQ9SU9e6ZRhGbW1t\nbW3t8uXLi4qKFi5ceP3110uSNGAhu2W1gjA3N/fll18OBALhcNjpdHY7xuVyJQ/i8Xgvb8sM\nQgAArI2y0Hp27tzJtxIAAAAAAGTO3r17b7jhhn379qXOuFwuj8fT0tKSSCSEEBUVFWPHjm1q\navrHP/7R3NwshKivr//Wt761fv36X/ziF6pqZklntYJQCKEoSn5+fg8D6uvrkwcjRozo5T0p\nCAEAyB6sRDoUdfquAQAAAAAAZFQikbjtttuS7WBxcfHtt99+2WWXlZWVJS/97W9/+9GPflRT\nU3PLLbd86UtfEkLs2rVrxYoVzz77bHt7+8svv+z1en/2s5+ZmN+CBWHP2traqqqqhBAul2vS\npEm9fFSqIHS5XOvWrXv77bc//vjj1tZWp9NZWFg4adKk2bNnFxcXZyo0+k9ra+uhQ4cKCgp8\nPp/ZWQAAQ8MJTy5saGhob28vLS212WwZyJXVqAMBoJO9e/dKkpR8MQIAgMyJxWL79+/3+XwF\nBQVmZwEAky1fvnzbtm1CiAsuuOCpp57yer2pS6qqzpo1a+rUqbNmzfrud79bXl4+derU8vLy\n++677+abb7755pt37NjxwgsvzJ07d/LkyWbll816YrM89dRTsVhMCHH11Ve73e5ePiq1B+F3\nvvOdxx577P333w8EApqmdXR07NmzZ/ny5d/85jeXLFliGEamcqOf1NTUPP/88zU1NWYHAQAM\nSTu76GHw22+//fzzz6d+i8AJ69OXHQCy07Jly15++WWzUwAArC8YDD7//PPvvvuu2UEAwHx/\n+tOfhBCFhYWLFi1KbwdThg8f/q1vfUvTtF/84hepkyNGjPjtb3/r8XgMw1i8ePHAxe0iu2YQ\nLlmy5M033xRClJeXz507t/cPTM0grK2t9Xg8U6dOLSsrs9vtn3766aZNmw4dOqRp2osvvhiP\nx5MTRQEAQJZgPdL+RfkHAAAAAACGhOSLGNddd10PCxZOmzZNCPH2228Hg8Hc3NzkyZEjR155\n5ZVLliwx9/0WWVQQ/v73v1+6dKkQYuTIkd///vf7tPdjqiC8/PLLb7755vSph1/72teee+65\nlStXCiGWLl06bdq0cePG9XCrlStXrl+//lhXd+/e3ftUAABgsEnvt/bv33/o0CETwwxmFIEA\nAAAAAGBIS77sM3r06B7GlJSUCCF0Xd+/f3+qIBRCnHHGGUKIurq6DGfsSVYUhNFo9Je//GWy\nlistLf3hD3+Yk5PTpzs8//zzhmFIktR1VVJVVb/xjW/U19e/9957Qojly5d/+9vf7uFWc+bM\nmTNnzrGuLly4sE/B0Fdjx46dO3du8r9JAAAyauLEiWPHjq2tre362172TDSkCASAgTFnzhxZ\nzro9RAAAAy8nJ2fu3Ll5eXlmBwEA87nd7mAwGAgEehiTeu94KBRKPx+JRIQQNpstc/GOy/oF\nYWNj409+8pN//vOfQogzzjjjgQce6HYp2J4dd7fC66+/PlkQVlVVJavEE0uLTPP7/X6/3+wU\nAICsUFRUVFRU1O2lHmqzIdcdUgECwGBQXl5udgQAQFZwOByVlZVmpwCAQaGsrGzbtm2vv/76\nXXfddawxq1evTh4UFhamn082SubOZbJ4Qbhjx46f/exnwWBQCHHxxRffcccdGepjx40bZ7PZ\n4vF4KBRqa2vr6wxFAACApN70bQNQIlL7AQAAAAAA9GDmzJnbtm374IMPfvOb39x+++1dB+zd\nu/exxx4TQhQXF6evRPrmm2+uXbtWCGHuWy6sXBBu3LjxkUceSSQSkiR95StfufrqqzP3XJIk\nORyOeDwuhIjFYpl7IgAAANo7AAAAAAAAc91yyy1PP/10JBJ58MEHq6qqvvrVr06ZMsVutwsh\nPv300z//+c+//OUvW1pahBA333xz6lG/+MUvnnjiCV3XhRA33nijWeGFhQvCjRs3Pvzww5qm\nORyOBQsWnHvuuRl9ulgs1tHRkTxm+iAAAAAAAAAAAICFFRcXP/jgg9/+9reFEK+++uqrr76q\nKIrP54vFYuk7Dn7uc5+79dZbUx++//770WhUCPHlL3952rRpAx87xZoF4a5dux599FFN05xO\n5w9/+MOTXIZr06ZNmzdvbmxsvOCCCy688MJux3z00UeGYQghysrKkv0wAAAAAAAAAAAArOrG\nG29UFOWBBx5INoKapiWnDKZMnz7917/+tcvlSp05/fTT33333TvuuGPBggUDHfezLFgQhkKh\nn//857FYTFXVBx544OQ36WltbX399deFEA0NDeedd17X/s8wjGXLliWPMz1VEQAAAAAAAAAA\nAIPB9ddff9FFF73wwgtr1qzZsWNHchO6nJycc84559/+7d8uv/xySZLSx99000133HFHYWGh\nSXmPsmBB+Lvf/a6hoUEI8eUvf3nChAl9euyzzz6b3EfwmmuuSX17vvCFLzz//PPBYHD//v3/\n/d//fdddd3m93tRDYrHYokWLtm/fLoRwuVxXXXVVv30myIB9+/Z9+OGHEydOLCsrMzsLAMDi\nduzYUV9fP336dKfTaXYWAIDFrV69WlGUiy++2OwgAACLa2trW7duXWlp6aRJk8zOAgCDRUFB\nwb333nvvvfcKITo6OlRVdTgcxxp82mmnDWC0nlitIGxoaFi9erUQQpKk9vb2l156qYfBXq93\nzpw56WdWrVoViUSEEDNnzkwVhA6H46677vrpT3+q6/qGDRu2bdt2/vnnl5SUSJJ08ODBDRs2\nBAKB5DPec889ubm5mfrc0B8aGxurqqpGjhxJQQgAyLT9+/fX1NRMmTKFghAAkGlbt25VVZWC\nEACQaZFIpKqqStd1CkIA6JbH4zE7Qm9ZrSCsqanRNE18dtnPYykuLu5UEB7LOeec853vfOeJ\nJ55oa2trb29/7bXXOg3Izc29++67zz777BOLDQAAAAAAAAAAAAwMqxWEmTNt2rQzzzxzzZo1\nVVVVn3zySXt7uyRJOTk5Y8aMOfvssy+++OIeZowCAAAAAAAAAADAejRN27x585YtWwKBQF5e\n3vTp0ydOnGh2qOOTDMMwOwOOWrhw4fz58ysrK80OAgBAH+zcudPsCEA3KioqzI4AAAAAAACs\nbMOGDffdd9/u3bvTT37+859/4okniouLkx++//77v/rVr957771IJFJaWnrVVVfdcccdXq/X\njLxHyeY+PQAAAAAAAAAAADDkvPPOO/PmzevUDgoh3n333euuu66trU0IsWjRoquvvvqNN95o\nb29PJBJ79ux5/PHHZ82a9emnn5oR+SiWGAUAAAAAAAAAAAD6IBqN3n333fF4XAhRWFh4ySWX\nlJSUtLe3v/XWWzt27NizZ8+TTz557rnnPvjgg10fu2fPnjvuuOPll1+WJGnAgx9GQQgAAAAA\nAAAAAAD0wfLly+vq6oQQX/rSl3784x/bbLbUpeeee+6BBx5YunTp3//+d8MwJkyY8N3vfnfi\nxImyLFdXVz/66KNvv/32e++9t3bt2osuusis/CwxCgAATlwsFguFQvF4nF2NAQAAAAAAkD3W\nrFkjhJgwYcLPfvaz9HZQCPGVr3zluuuua2hoePfdd0eOHLl06dLzzz8/JyfH6/WeffbZL7zw\nwvjx44UQK1asMCe6EIKCEAAAnBhd1w8dOrRjx45//vOf9fX1bW1tiUTC7FAAAAAAAADAQNi2\nbZsQYu7cubLcTdf2pS99KXkwf/58n8+XfslmsyWvVlVVZT7mMbHEKAAAOBEtLS319fX5+fmy\nLLe1tYXDYSGEz+czceV0AAAAAAAAYGA0NzcLIZJzAbuqqKhIHnzuc5/rejX5qMbGxoylOz5m\nECK7fPjhhw8//PDWrVvNDgIAQ5uu65FIxOfzpd4h5XA4Wltbk9syI2nt2rXPPPNMW1ub2UEA\nANb35JNP/uY3vzE7BQDA+pqamh5++OFXX33V7CAAYL5oNCqEcDqd3V51OBzJg24H2O321B3M\nwgxCZJdEIhEOh1kEDwBOkqZp9fX1RUVFQohtnzh+tmSq05Zw2uI+t/C6hNuuuR2626G5HbrL\nrnmcusv+mWM5OyYZxuPxSCTC7owAgAEQiURUlT/wAQAZp+t6OBzmvaEAIITw+XyBQCA5j7Cr\n1OzAbqcJNjQ0CCHy8vIyF++4+PsBAAD0maIoxcXFsVjMZrO1huT2iNoeUYVwiu5/I+rMZf9M\ncZisEpO1osuhedMKxeRVuzrEOjbDMMLhcCgUikaj7e3tLper01bVAAAAAAAAGNJGjRoVCAQ2\nbdp0ySWXdL26fv365MGaNWuuvPLKTlfXrVsnhBg3blyGM/aEghDZxe/3V1ZW+v1+s4MAwNAm\ny7Lb7W5sbMzLy2sP93k+YDgmh2Nyc3tvx6uKkd4gepKFYpdm8fAkRYfudmh9jdSPDMNob29v\na2sbPny4pmnxeLyurq64uJiOcMAYhhGNRmOx2Keffmqz2bxe77GW+wAAyygvL0+t+w0AQOY4\nHI7KysqSkhKzgwCA+aZOnbpt27bf//73t9xyy8iRI9MvRSKR//3f/5Vluaio6I9//OMVV1yR\nXiKuXbt28eLFQojzzz9/oEOnkVj2alBZuHDh/PnzKysrzQ4CAMBxGIbR2tra0dHx5t/Daz50\na8IV0+yhqBKKyqGoEo6Z/Bql+0iJmKwMXXbNnZqwaNc8Tt3t+Mx5m9JvvxHFYrGGhgav15s6\nE4/HHQ5HTk5Ofz0FetbR0dHS0uJwOMrKyqLRaCgUGj9+PB0hAAAAAADoR1u3bp09e7YQoqSk\n5L777ps+fXpxcXE0Gt22bdtPf/rTzZs3T5o06fzzz3/iiSckSZo+ffppp52m6/quXbvef/99\nwzAcDseGDRuSO/iYghmEAADgREiSlJub6/P5rv2XxIRTajrNWjAMEYopoYgciimhqBw+8m9H\n5PC/oWjy0tHzmt6fOxOGokooqvR+vE013J9d19Tj7GZuYvrKqMe6la7rnXaBUlVV13XDMCQp\nO3ZfNFU8Hm9ubvZ6vZIk2Ww2m80my3IwGKQgBAAAAAAA/WjChAnXXHPN8uXLDx48ePfddwsh\nFEXRtKPrWn3jG9+48MILV61aVVNT8+6777777rvpD//e975nYjsoKAgBAMDJkGXZbrd3XdNM\nkoTHoXkcmhC93bs+lpCT9eGR7lA+Mhnx8KzE1L8dUTkcUyL9OkkxnpCCCTUY6u14SRLuI7MP\nOxWHNjlqJFy5XtllS7gcmtOWcKrxHgpF9C9N01RVTe9inU7nwYMH8/PzFaUPnTEAAACAbum6\nLkkSb38EACHEQw891NDQkNpuML0dvPHGG6+++mohxEsvvXT33XenxgghPB7Pd77zna9+9asD\nnLYTCkIAADAo2FXd7tX9ItHL8bohwlGl43BreKRQ/OyExeQUxo7I4WZRN/rtL1jDEB1RpSOq\nCNHbnQXtatq+iUe2TnQ7NLcjfeainvrQZadT7B+6rhcVFfH6BQAAAHCSQqFQW1tb8uVvp9OZ\nm5vLm/AAZDmv1/t///d/S5Yseemll7Zu3appmizLEyZM+PrXv37NNdckx4wYMWLp0qUffPDB\ne++9F4lESktLL7roory8PHOTCwpCAAAwRMmS8Dg1j7MPkxQjcTlVHIZjSseRKrEjcuQ4klYu\nRuVIvD8nKcYSciwht3T09rcvWRKuI9slutMmKXqOtInpq6Emr8oSe0sLm82WSCQ0TUu9VBEK\nhQoKCrrOcwUAAADQe6FQ6B//+IfP51NVuyQZdXV1iUSioKCAt+IByHKqqt5000033XSTpmlt\nbW0ej8dm6+bd5GedddZZZ5018PF6QEEIAACyhdOmO2266MMkRSm5rmlHajPFqJI+TzG1pWLq\nX73/Gjq975MUHbajcxOTWycmjz1OrdP5ZLnotFlwkqKiKIWFhQ0NDaqqtrW1xWKxgoKCwfC+\nPAAAAGAI6YiI+oBoCIiGFlHXLBpbRG2dUhc4I9CuTh8f+X//2pKbm1tXV+fxeDwej9lhAWBQ\nUBRlaL3+QEGI7NLa2nro0KGCggKfz2d2FgDAYCdLhtepeZ2ayO3tQyKxoyud1tW3BFrDrpxR\nkbgjHFNC0aNzFlNbKsYS/flm22hcjsblQK9/wZNlkWoQj85N/Ow8xSNroh6epygPhTcHOxyO\nESNGJBKJwsJCm83m8Xh4UzMAy9u7d68kSWVlZWYHAQAMJe1h0RAQdc2ioUU0tIj6ZtHYIuoC\nor5ZdES6DncIIQw9tueTfU1N8eHDh9vt9kSit++/BAAMNhSEyC41NTUrV6686qqrJk+ebHYW\nAIAFOe26064PEwkhxCcfvbm/pubLX/5yTk7OscYnNCmU3hrGjmymGE3rEdO2VOyI9ucOH7ou\n2iNKe0QRwd5OUnTaDxeHXRvE7rZX1O2qOZMUVVVVVdXv95vy7AAw8JYtW6aq6j333GN2EADA\noNMaEo0toq758HTAT5vEoeDhXjAU7fPdtFhw64b/2zz+lMsuu0zXdVbyB4Chi4IQAADANKpi\n5Li1HLfW+4ekisPUdonpGyi2p696GpXDMSXer5MUIzE5EpMD7b0dryrG4Q0UP7vq6dEtFdMn\nLDp1t11jsh8AAADQVy3th1vAxpbDi4LWBw6ficT64f52myjI1b2OcJ49/HFHQggRjUb9fr/L\n5eqHuwMAzEBBCAAAMJQkZ+n1fnxck9K3TkxuqXh4zmL6xoppA/oxbUKTWkNKa6gP90yvD1Pb\nJaY2UPR8Zs6i7rJrdrX/Nn4EAAAABrHmNtHYIuoDor5ZNAZFfbOoDxxeGjQa74f7O2yiaJgo\nzBNFflHkF/l5oniYKPaLgjzh9wldF01NoY8+2v3H/a3t7e1OpzM3N1dVeXkZAIYqfoIju4wd\nO3bu3LklJSVmBwEAWN/EiRPHjh1r+jtqbYphcydy3H14SEf06KKmqZmIR2vFqNxpQFzrz0l/\nyadoauvteJtipG+dmNou0e3QVZ84bVQ/RgOAwWvOnDks8gYA1tDcKhpa0rYGDIi6wOFeMNYf\nLaDTLoqHicI8Ueg/elDkFwV5Is/b0wNlWS4oKJg8ebLH4/H7/QUFBbSDADCk8UMc2cXv97Md\nEQBgYBQVFRUVFZmd4kR4HJrHoQnR25cfYgnpsw2i0pGcmPjZLRVTV8Ox/nwJO65J8bDaGu7m\n0uRKCkIA2aK8vNzsCACA3jIM0dQqGgKiMfiZtUCTB/FEPzyF2yGKh4n8PFHk/0wdWJAn+vTe\nwa5yc3PPOeecfogIADAbBSEAAABOil017Goit9cvNBiGCMWUUOTooqahaOetEzud1/QTmaTo\nZT8UAAAAmEQ3RFNQ1AdEQ3IV0IBoCIj6gKgPiEPB/mkBPU5RdGQJ0KJUC+gXhX5+EwYAHB8F\nIQAAAAaUJJ3AJEW569aJHUdKxFC085aKkbgshPDxsggAAAD6LhKJRKNRwzBsNpvb7ZakY75Z\nTdfFoVZR13x4CdC6ZnHoyEFTq0ho/RDG5xaFeaJ4mCj0i8LPFoFuZz/cHwCQtSgIAQAAMNjZ\nVd3u1f2it2+01nURjinjy07PaCoAAABYTyAQ2Lt3b3Ir8Wg0WlxcnOfPD7TL9V3WAk22gJre\nD0+a6zmyBGju0a0BC/LEiOHCae+H+wMA0BUFIQAAAKxGloXHqdn4VRcAAAB9EQ6H9+7dO3z4\ncCEpP//DsEOtcmNQDnbIutEPN/f7REGeKPaLoiNFYJH/cB3osPXD/QEA6BNeNQEAAAAAAAAA\nEYlEXC6XoihCiA/32Dsicl/vMMwnCv1H9wJMLgqa7AXttIAAgMGEghDZZd++fR9++OHEiRPL\nysrMzgIAsLgdO3bU19dPnz7d6WRvEABAZq1evVpRlIsvvtjsIAAwtBmGkdpxMD9H67YglCQx\nPEcU+kV+rhgxTBT6RUHekYNc67eAbW1t69atKy0tnTRpktlZAAAnhYIQ2aWxsbGqqmrkyJEU\nhACATNu/f39NTc2UKVMoCAEAmbZ161ZVVSkIAeAk2e32aDTq8XgkSRo7ImFXjTx3dGShrWyE\nszBPFB9pAbN5KftIJFJVVaXrOgUhAAx1Wfz/ZgAAAOgPiUQiFosZhiHLssPhkOU+L8QEAAAA\nDAYej6eoqKixsdHtdv/7FQ2RSCQnJyc/P99m9XmBAIAsREEIAACAExeNRhsaGux2uyRJmqa5\n3W6Px6Oq/JIJAACAoUeSpPz8/OQ8QsMwvF5vTk6OjXoQAGBFkmEYZmfAUQsXLpw/f35lZaXZ\nQQAA6IOdO3eaHQHm0HX9wIEDbrdbUZTkmWg06nK5cnJyzA2WVFFRYXYEAAAAAACAwYgFoAAA\nAHCC4vG4oiipdlAI4XA4gsGgrusmpgIAAAAAAEDPKAgBAAAAAAAAAJNhTAgAACAASURBVACA\nLEJBCAAAgBOkKIqmaenzBePxeG5uriRJJqYCAAAAAABAzygIAQAAcIJUVR0+fHgoFIrFYolE\nIhqNRiIRl8tFQQgAAAAAADCYqWYHAAAAwBDmdrsVRYnH47quK4ricDhUld8wAQAAAAAABjVe\nvgEAAMBJcTgcDofD7BQAAAAAAADoLSsXhAcOHHj11Vc/+uijxsbGSCTi8/lOPfXUadOmXXzx\nxYqiDJ57YiB9+OGHq1atmj179oQJE8zOAgCwuLVr1+7evfv666/3+XxmZwEAWNyTTz6pqurt\nt99udhAAgMU1NTU988wzZ5555uWXX252FgDASbFsQfiHP/zhxRdf1DQtdSYQCGzevHnz5s0r\nVqz4wQ9+UFRUNBjuiQGWSCTC4XAikTA7CADA+uLxeDQaNQzD7CAAAOuLRCKs8AwAGAC6rofD\n4Xg8bnYQAMDJsubfD6+88srzzz+fPJ40adKECRNcLldDQ8M777zT2Ni4f//++++///HHH+/T\n2/kzcU8AAAAAAAAAAABggFmwIKyrq3vhhReEEIqi3H///eecc07q0o033vjzn//8vffeO3To\n0G9/+9u77rrLxHvCFH6/v7Ky0u/3mx0EAGB9xcXFhmEwnwMAMADKy8tlWTY7BQDA+hwOR2Vl\nZUlJidlBAAAnS7LesleLFi36y1/+IoSYN2/evHnzOl2NRCLf+MY3gsGgLMvPPfdcL4uiTNyz\nWwsXLpw/f35lZeUJ3wEAgIG3c+dOsyMMtIqKCrMjHJWFX/9eGlTfJgAAAAAAgMHDam9p1zTt\n7bffFkKoqjpnzpyuA5xO56xZs5YsWaLr+rp166655hpT7gkAAAazoVUs9ZyW+hAAAAAAAACd\nWK0grKmpaW1tFUKUl5d7vd5ux5x11llLliwRQmzevLk3ZV4m7gkAAEw3tFrAE3asT5PiEAAA\nAAAAIGtZrSDcvXt38uD0008/1phx48ZJkmQYRmrwwN8TAAAMmCwpAvuq65eFyhAAAAAAACBL\nWK0grK+vTx4UFhYea4zdbs/NzW1paQmFQm1tbT6fb+DvCQAAMoEu8GRQGQIAAAAAAGQJqxWE\nLS0tyYO8vLwehuXl5SVHtrS0HLfMy8Q9AQDASaILHABUhgAAAAAAAJZktYIwEokkD+x2ew/D\nUldT4wf4njBLKBRqaWnJy8tzu91mZwEA9MFQrAMDgUA4HC4sLFRV6/zGlf6NoCwEgMEjufJN\nUVGR2UEAABaXSCQaGhrcbnfPUykAAIOfdV6uStI0LXnQ8ytxNput0/gBu+eyZcvWrl17rKv7\n9+8/bh6cjJ07d65cufKqq66aPHmy2VkAAMc0FOvArt54441t27bdfffdfr/f7CwZ0enbRF8I\nACZ64YUXVFW95557zA4CALC4QCDw1FNPnXXWWf/6r/9qdhYAwEmxWkGoKEryIJFI9DAsFot1\nGj9g95w7d+7cuXOPdXXhwoXHzQMAgMVYow4EfSEAAAAAAMBQYbWC0OVyJQ9SdV23Uld7s85k\nJu4JAEDWog7MEixGCgAAAAAAMGhZrSBMLeEVCAR6GNbc3Jw86M1i2Zm4J8wyduzYuXPnlpSU\nmB0EALJI1jaC55577vjx4z0ej9lBzEdZCACZNmfOHFmWzU4BALC+nJycuXPn8vonAFiA1QrC\nESNGJA+SO7R3KxQKtbW1CSFycnJ685pdJu4Js/j9fqtuBAUAg0TW1oFdjRo1atSoUWanGHQo\nCwEgE8rLy82OAADICg6Ho7Ky0uwUAIB+YLWCcNy4ccmD6urqY41JXTr99NPNuicAAFZCKYgT\nQ1kIAAAAAABgCqsVhGPHji0oKGhsbKypqQkEAt3OFdu0aVPyYNq0aWbdEwAAAOkoCwEAAAAA\nAAaM1bYokCRp5syZQghd15cvX951QFNT0xtvvCGEcDgcM2bMMOueAAAAOJaKNGZnAQAAAAAA\nsCCrFYRCiKuuuiq5C+Arr7zy1ltvpV9qa2t7+OGHo9GoEOLaa691u92dHvvss88uWrRo0aJF\nDQ0N/XVPAAAAnDCaQgAAAAAAgH5ntSVGhRC5ubm33nrrL3/5S8MwHn300dWrV0+YMMHlch04\ncGD9+vXBYFAIcdppp1133XVdH7tq1apIJCKEmDlzZmFhYb/cEwAAACePNUgBAAAAAAD6iwUL\nQiHEhRdemEgkFi1aFIvFtm7dunXr1vSrEyZMuP/++1W1b597Ju6JgXfgwIGdO3dWVFSMHDnS\n7CwAAIv76KOP6urqzjvvPJfLZXYWq0mVhTSFAJD01ltvybLMnhcAgEzr6OjYsGFDSUnJGWec\nYXYWAMBJsWyhdemll06aNOkvf/nLli1b6uvrY7FYbm5ueXn5BRdcMG3atMFzTwywurq6d955\nZ9iwYRSEAIBM27Vr17Zt26ZMmUJBmDlMKwSApPfee09VVQpCAECmhUKhd95556yzzqIgBICh\nzrIFoRCioKDglltu6dNDli5d2u/3BAAAwABgWiEAAAAAAEAvWbkgBAAAQBZKn1YIAAAAAACA\nriTDMMzOgKMWLlw4f/78yspKs4MAAAAAAAAAAADAmmSzAwAAAAAAAAAAAAAYOBSEAAAAAAAA\nAAAAQBahIAQAAAAAAAAAAACyCAUhAAAAAAAAAAAAkEUoCAEAAAAAAAAAAIAsQkEIAAAAAAAA\nAAAAZBEKQmSXjz766PHHH9++fbvZQQAA1rdq1arHH388GAyaHQQAYH3PPPPMc889Z3YKAID1\nNTc3P/7443/961/NDgIAOFmq2QGAARWNRgOBQDQaNTsIAMD6Ojo6AoGArutmBwEAWF9LS4uq\n8gc+ACDjNE0LBAKhUMjsIACAk8UMQgAAAAAAAAAAACCL8AbDwWXChAk5OTlmp7Ayv99fWVnp\n9/vNDgIAsL5Ro0bpum6z2cwOAgCwvvLyclnmHcAAgIxzOByVlZUlJSVmBwEAnCzJMAyzMwAA\nAAAAAAAAAAAYILzBEAAAAAAAAAAAAMgiFIQAAAAAAAAAAABAFqEgBAAAAAAAAAAAALIIBSEA\nAAAAAAAAAACQRSgIAQAAAAAAAAAAgCxCQQgAAAAAAAAAAABkEQpCAAAAAAAAAAAAIItQEAIA\nAAAAAAAAAABZhIIQAAAAAAAAAAAAyCIUhAAAAAAAAAAAAEAWoSAEAAAAAAAAAAAAsggFIQAA\nAAAAAAAAAJBFKAgBAAAAAAAAAACALEJBCAAAAAAAAAAAAGQRCkIAAAAAAAAAAAAgi1AQAgAA\nAAAAAAAAAFmEghAAAAAAAAAAAADIIhSEAAAAAAAAAAAAQBahIAQAAAAAAAAAAACyCAXh4PLH\nP/7x4MGDZqcABp3W1taVK1d++OGHZgcBAFjfnj17Vq5ceeDAAbODAACs7/3331+5cmU0GjU7\nCADA+latWrVu3TqzUwAYRCgIB5dNmzYFAgGzUwCDTjgcrqqq2rdvn9lBAADW19DQUFVV1dzc\nbHYQAID17d69u6qqKh6Pmx0EAGB9W7Zs2b59u9kpAAwiFIQAAAAAAAAAAABAFlHNDgAAx+fx\neGbMmDFy5EizgwAArK+kpGTGjBkFBQVmBwEAWF9FRUV+fr7NZjM7CADA+qZNm+ZwOMxOAWAQ\noSAEMAR4vd5LLrnE7BQAgKxQWlpaWlpqdgoAQFaYOHGi2REAANli5syZZkcAMLiwxCgAAAAA\nAAAAAACQRSgIAQAAAAAAAAAAgCxCQQgAAAAAAAAAAABkEQpCAAAAAAAAAAAAIItQEAIAAAAA\nAAAAAABZhIIQwBAQiUS2b99+8OBBs4MAAKyvqalp+/btwWDQ7CAAAOurra3dvn17IpEwOwgA\nwPqqq6s//vhjs1MAGEQoCAEMAcFgcNmyZVVVVWYHAQBY38cff7xs2bJ9+/aZHQQAYH3r169f\ntmxZJBIxOwgAwPpWrFjx+uuvm50CwCCimh0AQGbt3LkzeVBRUWFuEgAAAAAAAAAAMBhQEALZ\nItUUCspCAAAAAAAAAACyGAUhkI2GXFk4bNiwW2+91e12mx0EAGB9n/vc50pLS/1+v9lBAADW\n9y//8i9f+MIXXC6X2UEAANZ3yy23yDI7jgE4ioIQyHZDYg1Sm81WUlJidgoAQFbweDwej8fs\nFACArDBs2DCzIwAAskVxcbHZEQAMLhSEAA4bctMKAQAAAAAAAADACaAgBNANykIAAAAAAAAA\nAKyKghDAcVAWAgAAAAAAAABgJRSEAPqAshAAAAAAAAAAgKGOghDACaIsBAAAAAAAAABgKKIg\nBNAP0stCkYG+MBgMrl69+pRTTjn77LP7984AAHRSU1OzZcuWc889t6yszOwsAACLW79+/cGD\nB+fMmeN0Os3OAgCwuBUrVjidzlmzZpkdBMBgQUEIoP/1++TCSCSyfft2/mYGAAyA5ubm7du3\njx8/3uwgAADrq62tra6unj17ttlBAADWV11d7fP5zE4BYBChIASQWaxECgAAAAAAAADAoEJB\nCGDgnHBZqCiK3+93u90ZCAUAwGc4HA6/32+3280OAgCwPq/X6/f7JUkyOwgAwPry8vI8Ho/Z\nKQAMIpJhGGZnwFELFy6cP39+ZWWl2UFgHZ12Bxy0mFwIAAAAAAAAAMDAYAYhgEGhU5FJXwgA\nAAAAAAAAQIZQEAKWZRhGIpHQNE2W5SG3ZA07FwIAAAAAAAAAkCEUhIA1hcPhYDBYV1fX0NCQ\nm5vrdDqH7l5KTC4EAAAAAAAAAKAfURACFhSLxVpaWkKhUGFhYTgcjsViwWBwxIgRqmqF/+S7\n7qpIZQgAAAAAAAAAQO9ZoS0A0ElHR0dra6vP50t+qKqq3W6PRqPWKAi7ojLsR12/mIKvJwAA\nAAAAAABYizXbAiDLJRKJTl2goii6rpuVZ+BRGR5Xt0VgJ7quR6NRXdcDgYDT6XS5XAMQDAAA\nAAAAAACQaRSEgAUpipJIJNLP6Louy7JZeU6Sruuffvrp0qVLKyoqLr74YpvNdgI3ycKJcb2p\nAHug63pbW1soFFIUpaGhIRwOjxkzJi8vr7/iAcCgtWnTptdee+3aa68988wzzc4CALC4xYsX\nV1dXL1iwwOv1mp0FAGBxDz30kM/nu/POO80OAmCwoCAELMjj8ezbt8/hcNjtdiGEpmnRaNTv\n95ud60Romtbe3h4MBuPxeDgcrqurGz58uNvt7peb91yhDeb68CTLv94IhUKRSCQ5a9Dn87lc\nrk8++aSiosLhcGT6qQEAAAAAAAAAGUVBCFiQw+EYN25cW1tbY2Nje3u7z+crKCg4sYl3pkvW\nVE6nU1EUm83m9XqbmprsdvsA7KfY1xLuBArFE+j5dF1PzgfN6JRQwzASiUT6/2ZUVXU4HNFo\nlIIQAAAAAAAAAIY6CkLAmrxer8vlSs4aVBRliK4vahiGpml2u13X9QkTJhQUFEiSpKpq100W\nB4NMz+ozDCMUCjU3Nyc/HDZsmMvlyuh3VpKkzN0cAAatkpKSGTNmFBQUmB0EAGB9FRUV+fn5\nQ/TdnACAoWXatGm87RtAukH3CjuA/qIoSnLWndlB+oHL5Zo6darZKUwWCoWCwaDX65UkyTCM\n1tZWwzAytFWJJEmKooRCodQvjrquR6PR5KK1AGBtpaWlpaWlZqcAAGSFiRMnmh0BAJAtZs6c\naXYEAIPLkJxUBCBLJGuqWCyWOpNc+lJRFBNTmULX9ebmZpfLlZzVJ0mSy+UKBAKJRCJDz+hy\nuZxOZyQSSSQSoVCoqamprKzM6XRm6OkAAAAAAAAAAAOGGYQABjWXy6XrejgcVlVV1/VYLDZ8\n+HBrTIvsE13XRZc1P2VZTp7PBFVVvV6vzWbTNC0vL6+4uNjj8WTouQAAAAAAAAAAA4mCELC4\nDbtyJCHcDt3l0DwO3WXXPE7drmaqVep3qqr6fL5kTSXLcm5ubnaulp7ca9AwjPSOUNf1jO5B\nqCiK2+0WQuTn52fuWQAAAAAAAAAAA4yCELC4F9YVt4U7L8ipKoY7WRYeLg41jzP9Q91l19wO\n3X3kvMtuZqEoy3KypspmsiwPGzastbXV6XQmO8JIJJKXl5eFq60CAAAAAAAAAE4SBSFgcaFo\nNzPMEprUGlJaQ73tlmRJJItDt+Nwcei2a+4jnWKqR3Q79OR5j0Pr108CQgjhcrkMwwgEApIk\nGYaRl5fn8Xg6LToKAAAAAAAAAMBxURACVhaOCk3vhwJJN0RHROmIKEL0dvO/rj1icnXT5L/J\n8+60M7Jk9HC3aDRaW1ubk5NTWFh48p/OECXLstfrTW7KKEmSqvIDHAAyoqmpqa6ubtSoUbm5\nuWZnAQBYXG1tbWtra3l5Ob/eAwAyrbq6WlXVcePGmR0EwGDBL6CAlTls4pH5u8MxJRSVQ1Gl\nPSKHo0royIepfzuicjiqROL9uZtdKCqHonLvC0WnTU9tlHh0nqJDd9s1l0PTwvVv//WNM874\n3AUzRyW7RpvaU6FoYYqisKwoAGTUxx9//Nprr1177bVnnnmm2VkAABa3fv366urqBQsWeL1e\ns7MAACxuxYoVPp+PghBACgUhYGWyLEb4Y70crBtSsjLsiMihmBKKyOGY0nHkTPI4/Nnz/Rg1\nEpcjcVm0d/9DKR6WG6tztxwq/MveU5NnbKrhTtsoMXV8eIai4+h6p8lLDpuZ2ygCAAAAAAAA\nADB4UBACOEyWDK9T8zo10esF1TqiR/vCcOxIj9ilXwxFDw/Q+6+kiyekYEINhno7XpEN92f3\nUDzaIx6Zp5g8SJ532QeoUNR1PRqNapomSZLNZrPb7QPzvAAAAAAAAACArEVBCODEeRyax6EJ\nEe/l+EhMDqX1iOmzEpPnO6JKKHp0HdSEdngDRdXhH37azYrdd8JRNV1qCytt4d7OepQkkb5F\nYmrrxPQe0fXZKYxS33d71DStvb09FAopimIYRiwWGz58uNvt7vONAAD9Z/z48QUFBdm86y0A\nYMDMnDnznHPOcblcZgcBAFjfDTfcwLY1ANJREAIYOE677rTrw3q9uUYsIaVNQLSFIrFwrK4j\nKndElFD08DzFtC0VlVii7x3dMRiG6IgqHVGl99souh1pbaJDdx1d4FRzO3RP2nFymCIb4XA4\nEomkXg6w2+1NTU12u11V+eEMAKbJzc3Nze31bHoAAE5CcXGx2REAANlizJgxZkcAMLjwGjSA\nwcuuGnY1kedJ9HJ8QpOSxWE4enT3xPT1Tg+vgBo93C9GYnI/pg1F5VBUbmrr7XiHTXfZEk5b\nwuXQXHbNZUu47JpNjgw7YMvxSJ4jPWKqU7SrRj+mBQAAAAAAAABkLQpCANahKkaOW8txa70c\nr+ui80aJR7rDzuugRpVQVO6I9uc6DNG4HI3bhejtpoM2xXA5tPTi0OPQXQ7NnbbS6eHJiw7N\n7dCdtgHaRhEAAAAAAAAAMLRQEALIXrIsPE7N4+zDNorpPWJauSgfWQf16H6KyfO60W+rnsY1\nKR5SW0O9HS/LIrmoaWoaYuddFY9Uiam1T/srKgAAAAAAAABgMKMgBIA+cDs0t6MPhWIkLh/Z\nKDHZIx5d4DQcVdrCUltIdESkSMIWjimRmJrQ+23VU10X7RGlPaKIYK/GS5Jw2zX3ke7wcKfo\n0Iry4hUV/RUKAAAAAAAAAGA+CkIAQ4lhGNFoVNM0IYSiKA6HQ5L6bYpeJjhtutOmDxPH3EZR\n1/VIJKJpmizLqqpKirPTRolHOsW0eYpp66DGEv1WKBqG6IgqHVFFCFv6+bFFkf/XX88BAAAA\nAAAAABgEKAgBDAFtbW3vvvvuyJEjR48e3draarPZhBDxeDwnJ8fr9Q7yjrBnsiy73e60E4Zd\nTeS6jzm+E02X0ovDjqiSPkkxdPjk0XVQw7E+F4ouR2/3dAQAa6ipqdmyZcu5555bVlZmdhYA\ngMWtX7/+4MGDc+bMcTqdZmcBAFjcihUrnE7nrFmzzA4CYLCgIAQwBMRisY8//liSJL/f7/F4\nkiftdntbW5vNZsvmv6UV2fC5NJ+rtx2ebojkDMWj8xS79IiHLx3ZT9FtpyAEkF2am5u3b98+\nfvx4s4MAAKyvtra2urp69uzZZgcBAFhfdXW1z+czOwWAQYSCsM927dr1t7/9bdu2bU1NTTab\nbfjw4aeeeuqll15aWVlpdjTA4jRNS84dTLHZbPF4PJsLwr6SJeFxaJ6+bKMYS0hC5GQ0FQAA\nAAAAAABgIFEQ9kEikXj66adXrVplGEbyTDQabW9v37t37xtvvDF79uzbb799SC91CAxakiQ5\nHA5V5UeWCeyqYXYEABhQqqq6XC5FUcwOAgCwPrvd7nK5eCUBADAAnE6nw+EwOwWAQURKdV3o\nmWEYjz322JtvvimEcDqdM2bMOOWUU6LR6I4dO6qqqpJfxnnz5s2bN+9knmXhwoXz589nMiL6\n0c6dO82O0G8ikUhTU1NqiVEhRCgU8vv9LpfLxFTZoKKiwuwIAAAAAAAAAIB+w3Sc3lqzZk2y\nHRw7duwDDzyQn5+fuvT3v//9pz/9aSwWW7Zs2axZs/x+v3kxAStzOBw5OTltbW2qqkqSFI/H\nvV4v64sCAAAAAAAAANAnFIS9EovFfv/73wsh3G73f/7nfw4bNiz96uTJk6+77rqdO3eWlpa2\nt7dTEAIZIkmS1+u12WyJREII4fP5HA4Hq/EAAAAAAAAAAMyi6/pbb721du3aSy+9dMaMGT2M\nrKmpycvLKygoGLBsPaAg7JWqqqrm5mYhxFVXXdWpHUy64YYbBjwUkI0kSWLKIAAAAAAAAABg\nMNi2bds999xTXV0thCguLu65IHziiSdefvnlyy+//Ec/+lFxcfFAZeyebO7TDxXr169PHlxw\nwQXmJgEAAAAAAAAAAIDptm7d+sUvfjHZDgohGhsbex4fCAQMw/jLX/4ya9asvXv3Zj5gT5hB\n2CvJ767f7x85cmTyTHt7e0NDQzQa9fv9pte8ACoqKno5Mh6Pa5qmqqqqnuAPwJ07d57YAwEA\nAAAAAAAA1pBIJL75zW+GQiEhhM/nu/zyy2fNmtXzQ84444z333+/ra2tsbHxtttue/XVV2XZ\ntIl8FITHF4lEkq3vqFGjhBDbt29fvHjx1q1bDcNIDsjPz7/sssuuvvpqh8NhZlDAWnrf+fVS\nIpEIBAIHDhyQJEnX9bKyMr/ffwI/f3sTjBIRAAAAAAAAACzslVde+eSTT4QQZ5111m9/+9v8\n/PzjPuT+++//5je/+fWvf33Dhg3btm17/fXXZ8+enfGgx0BBeHx1dXXJLjAnJ+e1115btGiR\nruvpAw4dOvTiiy9u2LDhv/7rv/Ly8kyKCQw9va8A6+vrf/3rX0+ZMmXOnDkn9lyGYQQCgUOH\nDhUUFCQLwrq6OkmSut1V9OQd61OjOASAwW/Tpk2vvfbatddee+aZZ5qdBQBgcYsXL66url6w\nYIHX6zU7CwDA4h566CGfz3fnnXeaHQSwjtWrVwshHA7HM8880207+N577wkhRowYUVpamjqZ\nl5f3P//zP9OmTYvFYitXrqQgHNSS80OFEAcOHNi4ceOwYcNuvPHGysrK/Pz8YDC4adOmxYsX\nB4PBf/7zn4888shPfvITSZLMDQwMHv0+C/CExWKxAwcOJNtBIYQsyzk5OXv37s3NzVUUZcBi\ndPsFoTUEAAAAAAAAgKFl69atQohLLrnkWPvQXXPNNUKI22677T//8z/TzxcVFc2ePfuVV175\n8MMPByDnsVAQHl84HE4efPLJJ8XFxT//+c9zc3OTZ/Lz86+44orJkyffe++9HR0dH3300caN\nG6dPn97D3ZYtW7Z27dpjXd2/f38/JgcGzOApAo8lue9gen+vKIokSZqmDWRB2K2uXz0qQwAA\nAAAAAAAYzJqbm8WxXxvXNK3TQbqxY8cKIerr6zOW7vgoCI8vtdegEOJrX/taqh1MGTFixPXX\nX//ss88KIdasWdNzQTh37ty5c+ce6+rChQtPLiyQWWYVgS6Xa8qUKWVlZSd8B0VREomEYRip\njlDTNMMwTG8Hu9Xp60xfCAADqbCwcMqUKRlagxoAgHSnnnqqx+Ox2WxmBwEAWN+kSZOcTqfZ\nKQBLiUQiQgiXy9Xt1aampuRBIBDoejUnJ0cIkUgkMpbu+CgIjy/13VUU5eyzz+52zIwZM5IF\n4Y4dOwYuGZAxg21GYE5OzgnvPphkt9tHjhx56NChnJyc5MTBYDA4evTowVkQdsIUQwAYSKec\ncsopp5xidgoAQFaYOnWq2REAANli1qxZZkcArMbn8wUCgWPNAkwtGLl9+/auVw8ePCiE6Doh\nbSBREB5faqtwn893rC4hPz/f4XBEo9H29vZ4PM67/zCEDLYuMEMkSfL7/ZIk7d+/X5IkXddH\njx6dl5dndq4TdAJTDJMTKBVFkWU5Y7kAAAAAAAAAICuMHj06EAi89dZb3V7929/+JoTw+XzV\n1dW7du0qLy9PXdI0bfXq1UKIU089dWCidouC8PhKSkpkWdZ1PTld9Fjsdns0GhVCaJpGQYhB\nKEuKwB6oqpqfn5+bm5vcj1BVrfMDMP2b27Us1HW9o6OjpaVFkiTDMIYNG+Z2u9O3YwQAAAAA\nAAAA9MnUqVO3bNlSXV29ePHiG264If3SwYMHn3vuOSHEvHnznnrqqW9961svvfSSz+cTQmia\n9sMf/nDv3r1CiJ53rMs067w+njk2m23kyJG1tbWRSKShoaGwsLDrmHg83tHRkRzMUs4YVOgF\nO7HZbNau8Dt9x3fs2NHR0dHR0ZH8vx/DMILBoBDC4/GYkw8AAAAAAAAAhr4bbrjh6aefFkIs\nXLhwz5498+bNKysri0aj77zzzve///3W1tZTTjnl3//933/3u9998MEH06dPnzlzpt1u37hx\nY7IdVFW1U604wFhorldSuwJs3Lix2wG7du3SdV0IwY41AAaVsWPHOhyO008/ffTo0UIISZJc\nLldzc3PyRxYAAAAAAAAA4ASMHz9+3rx5QghN05588snzzjtviADXWAAAIABJREFU9OjR48aN\nu+WWW2pra4UQd9555/Dhw++55x4hRCAQWL58+ZIlS5LtoBDi3nvvLS0tNTE/BWGvfOELX0ge\nLF++PBwOdx3wpz/9KXlw9tlnD1wsADgeTdMURUkuKDp69OjRo0ePGTOmsLDwtNNOMzsaAAAA\nAAAAAAxhP/7xjy+77LLUh+mzMubOnZucIHjXXXfdeeed6TteuVyu733ve3ffffdARu2KJUZ7\nZezYseedd9769eubmpoeeuih++67z+12p67+8Y9/TM4sdDqds2bNMi8mYFmRSGT37t1+v7+k\npMTsLEOMoiiJRMIwjNSmg8kPFUXpeedCAMhaTU1NdXV1o0aNys3NNTsLAMDiamtrW1tby8vL\nrbRFOgBgcKqurlZVddy4cWYHASzF6XQ+++yzf/7zn1988cX3338/HA5LklRRUfH1r3/9+uuv\nT46RJOm73/3uV77ylY0bN7a2thYVFX3+85/PyckxN7mgIOy9W2+9taampqGh4YMPPrjjjjtm\nzpw5YsSI1tbWTZs2/eMf/0iOue222/Ly8szNCVhSMBhctmzZlClTKAj7yuFwjBw58tChQz6f\nT5ZlTdNaW1vHjBmjKEr6MMpCAEj5+OOPX3vttWuvvfbMM880OwsAwOLWr19fXV29YMECr9dr\ndhYAgMWtWLHC5/NREAKZcOWVV1555ZVCiI6ODrvdbrPZuo4ZMWLENddcM+DRekJB2Ft+v//B\nBx985JFHdu/e3dzc/PLLL6dfdTgct95668UXX2xWPADoliRJfr9fkqT9+/dLkqTr+ujRo3ue\nE0NZCAAAAAAAAAB95fF4zI7QBxSEfTBixIhHH330zTfffPvtt/fu3dvS0uJ0OouKiiZPnnzF\nFVcMGzbM7IAA0A1VVfPz8/Py8jRNU1W109zBnqWXhQAAAAAAAAAAa5AMwzA7A45auHDh/Pnz\nKysrzQ4CDC6xWGz//v0+n6+goMDsLAAAiwsGg01NTYWFhaz2BgDItLq6ulAoNHr06D69jQ8A\ngBPwySefKIpSWlpqdhDAgsLh8CuvvOL3+y+77DKzs/QBMwgBDAF2u33s2LFmpwAAZIXc3Nye\nl2IGAKC/FBcXmx0BAJAtxowZY3YEwJr++te/Lliw4NChQzfddFN6QdjW1jZp0qScnJzk6wzJ\ng04f5ubmzpgxw6zkFIQAAAAAAAAAAABA36xaterWW2/VNE0IceDAgfRLhmFEIpFIJNLQ0NDD\nHTo9aiDJZj0xAAAAAAAAAAAAMBS1trYuWLAg2Q6OGzfummuuSb8qSZJJuXqLGYQAAAAAAAAA\nAABAHyxZsiQQCAghrrjiil/96ldOpzP9qs/nmz9//u9+97vy8vI//OEPHR0dra2tra2twWCw\ntbV15cqVb7zxhknBD6MgBAAAAAAAAAAAAPpg7dq1Qoj8/PzHH3+8UzuYdP/997/88su7du1a\nu3bttddem36ptrbW9IKQJUYBAAAAAAAAAACAPti5c6cQ4vLLL3e5XN0O8Pl8l156qRDiT3/6\n04Am6x0KQgBDQDAYXLZs2ebNm80OAgCwvpqammXLlu3bt8/sIAAA61u/fv2yZcsikYjZQQAA\n1rdixYpVq1aZnQKwlJaWFiHE2LFjexhz+umnCyG2bt06QJn6goIQwBAQiUS2b9/+6aefmh0E\nAGB9zc3N27dvDwaDZgcBAFhfbW3t9u3bE4mE2UEAANZXXV29e/dus1MAliLLx6/YkkuPNjc3\nZz5On1EQAgAAAAAAAAAAAH3g9/uFEHv27OlhzN69e4UQbrd7gDL1BQUhgCFAlmWXy2Wz2cwO\nAgCwPlVVXS6XoihmBwEAWJ/dbne5XJIkmR0EAGB9TqfT4XCYnQKwlDPOOEMI8dprr0Wj0W4H\nxOPx5NK+o0aNGtBkvaOaHQAAjq+goOC+++4zOwUAICtMmTJlypQpZqcAAGSFL37xi2ZHAABk\ni3vuucfsCIDVXHTRRWvWrGloaPje9773yCOPdF1x9Cc/+Uly26zzzz/fjIDHwQxCAAAAAAAA\nAAAAoA+uv/76/Px8IcRLL700d+7cdevWJacSGoaxZcuWr371q08//bQQQlGUm2++2eSs3WEG\nIQAAAAAAAAAAANAHLpfrsccemz9/vmEYGzdu3LhxoyzLOTk5oVAoFoulhv3Hf/zHmDFjzIt5\nTMwgBAAAAID/z969x8dV1/kf/577mVsmkybpjV5o2dI2hdZGyg9QH8htUayyq1X24dICIisC\nsgu1KqDg47GulHV5sKArIiLkoS7atQoVadEVEGFbIT6KJb1Y2tIrbdI0zW0u55w55/fH1BDS\nNPfkmznzev7VnDlz5j1JoZl5z+f7BQAAAABgcC6++OKHH344FosVvvR9//jx493bwZtuuqnX\nBX4nTpx49tlnn3322WMUtDdKEAQSHx49rFq1asWKFTU1NbKDAAAAAAAAAAAAoB+NjY3f//73\nN2zYsGvXrsKRRCLxgQ984MYbb3zPe94jN1sfKAjHFwpCAAAAAAAAAACAopPNZo8dO2ZZViqV\nUtXxvoQnexACAAAAAAAAAAAAw2Lb9pQpU2SnGKjxXmACgBDiyJEj99xzz7p162QHAQCE36ZN\nm+65554tW7bIDgIACL8nn3zynnvu6ejokB0EABB+995773e+8x3ZKQCMIxSEAAAAAAAAAAAA\nQAlhiVEAAAAAAAAAAABgEL797W8LIZYsWbJkyRLZWYaCghBAEYhEIrW1tdOnT5cdBAAQftXV\n1bW1tRUVFbKDAADCb/bs2bFYzDAM2UEAAOG3aNEi27ZlpwBC5Zvf/KYQ4rbbbhtgQbh169aV\nK1cGQbBs2bLrrrtulNP1j4IQQBEoKytbunSp7BQAgJJw+umnn3766bJTAABKwjnnnCM7AgCg\nVFx++eWyIwClbv78+QsXLqyrq9u2bdt55503b948uXnYgxAAAAAAAAAAAAAYXXffffecOXNc\n173llltc15UbhoIQAAAAAAAAAAAAGF22bX/nO98xTXPbtm333Xef3DAUhAAAAAAAAAAAAMCo\nmz9//h133CGEePjhh1999VWJSdiDEAAAAAAAAAAAABi09evX79+/f1B3CYLAMAzXdW+99dZX\nXnlllIL1i4IQAAAAAAAAAAAAGLStW7du3bp1aPfdu3fvyIYZFApCAEUgm83u2rUrlUpNmTJF\ndhYAQMg1NzcfPnz4tNNOSyaTsrMAAE5p27Zt3b+cN2+erCTDsX///ra2tjPPPFPXeX8GADC6\ntm/fruv6GWecITsIgPGCX0ABFIHW1tY1a9bU1tZSEAIARtubb7757LPPfvzjHz/rrLNkZwEA\nDFSR9oUvv/zy9u3bV65cGY/HZWcBAITcL3/5y0QiQUEIjLiPfOQjH/3oR2WnGAoKQgAAAAAA\nECpF2hcCAACg6MyZM+eKK66QnWIoKAgBAAAAAECY0RcCAAAAPVAQAigCqVRq+fLliURCdhAA\nQPjNnTu3qqqqurpadhAAwGgZP33hhRdeuGTJkkgkIisAAKB0XHXVVZqmyU4BYByhIARQBEzT\nnDVrluwUAICSkEwmk8mk7BQAgLEjsS+cNGnSmD0WAKDEzZw5U3YEAOMLBSEAAAAAAMAJPfpC\nwZKkAAAA6E1VVZUQIhaLyQ4yRBSEAAAAAAAApzR+liTFkNH7AgCAEbd582bZEYaFghAAAAAA\nAGCgqJrGv5N/RgAAAOiBghAAAAAAAGDoqAzlGlQdGARBLpdzXffIkSOGYSQSCcMwRi8bAADA\nuEVBCAAAAAAAMJKoDEfPMKcD0+n08ePHLcvKZDLHjx/P5XITJkwwTXOk4gEAABQLCkIARaCt\nre3FF1+cPn36woULZWcBAITcnj173njjjcWLF0+dOlV2FgBAePRaa3V0dBw+fPiyyy6zLGvs\nI41/I75SqOu6LS0tsVhMURTTNE3TbG9v13W9qqpqZB8IAMah9evX27Z94YUXyg4ChMe3v/1t\nIcSSJUuWLFkiO8tQUBACKAKZTKa+vl4IQUEIABhtjY2N9fX1M2fOpCAEAIy23//+93v27Jky\nZUo0Gu06WIKzhg0NDZ7nCSF0XVdVdfQeyPM8XdcVRek6Ytu267pBEHQ/CAChtHnz5kQiQUEI\njKBvfvObQojbbrttgAXh1q1bV65cGQTBsmXLrrvuulFO1z8KQgAAAAAAgPGij7G5ou4OT/W8\nstlsLpfr6OgQQvi+X1lZGYlERimDoihBEIzSxQEAAPo2f/78hQsX1tXVbdu27bzzzpP+qx0F\nIYAioKpqJBJh63gAwBjQdT0SiWiaJjsIACD8NE0b1MucfpfclPg209CWA3Vdt6mpKRqNxmIx\nIYTv+0ePHp04ceIobQqo67rneb7vd80pdnZ2VldXMz4IoBTYts2K1oB0d99998aNG//yl7/c\ncsstzz77rNx3vCkIARSBqqqqL33pS7JTAABKQm1tbW1trewUAICQ8zwvk8nMnz9//vz5rutm\ns1nbtod/2RHftG+0OY5jmmbX53JUVbUsq3BwNB5O1/XKysqjR4+aptnR0eE4TmVlZXl5+Wg8\nFgCMN//8z/8sOwIAYdv2d77znSuuuGLbtm333XffnXfeKTHMKC7sDgAAAAAAgB6CIEin0+l0\nOpFIJBIJz/OOHj2ay+Vk55Lg5M3/VFX1fX/0HjESiUyaNCmRSFRWVs6YMaO6upplAwAAwFia\nP3/+HXfcIYR4+OGHX331VYlJmCAEAAAAAAAYO47jdHR0RKPRwpeaptm2ncvlSnDlt5PrwHw+\nP9qNnWEYhmFUVFSM6qMAAIASsX79+v379w/qLkEQGIbhuu6tt976yiuvjFKwflEQAgAAAAAA\njB3f93t0YJqm+b5/8jhd6Nm27bpuLpcrrCnquq7jOCVYlAIAgOK1devWrVu3Du2+e/fuHdkw\ng0JBOCyNjY233HJLJpMRQnzxi198//vfLzsRAAAAAAAY1xRFyefz3Y/k83lFURzHUVVV1/XS\nqQlVVY3FYoqitLa2CiGSyWR5ebmu824VAADAqONXrqELguChhx4qtIMAAAAAAAADYZpmLBbr\nGpvzPO/YsWOapuVyOd/3k8lkLBZTVVV2zDGi63pZWVk8HhdClM6zBgAAofGRj3zkox/9qOwU\nQ0FBOHTr169//fXXZacAAAAAAADFRFXVaDRaGJtTFKWjo8O27WQyWRgcTKfTQoh4PF46c4SC\nahAAABStOXPmXHHFFbJTDAW/fg1RY2PjD3/4QyHEhAkTZGcBwq+pqWn16tXr16+XHQQAEH71\n9fWrV68e8v4BAAAMhGEYiUSioaFh3bp1iqKUl5d31YGWZR0/frzHGqQAAAzTAw888Oijj8pO\nAWAcoSAciiAIHnzwwWw2m0wmi7QZBoqL7/uZTMZ1XdlBAADh53leJpPhbVkAGJ/S6XRTU9Ph\nw4fb29sdx5EdZ1gURfF933Xdk4fnFEUJgkBKKgBAWGWz2VwuJzsFgHGEgnAonn322T//+c9C\niGuvvTYSiciOAwAAAABA+LW3t//lL39pbW3N5XKZTObIkSPZbFZ2qOFSVTUIgu51YOFLltwE\nAADAqOLXzUE7cuTI448/LoRYvHjxRRddJDsOUBIikUhtbe306dNlBwEAhF91dXVtbW1FRYXs\nIACAd8nn8+3t7alUKhqNGoZhmmYsFmtqavJ9X3a0oZs+fXpNTU11dXU6nS48kcLqKRUVFZqm\nyU4HAAiVRYsW1dTUyE4BhEpVVVVVVVUsFpMdZIh02QGKTNfiotFo9Oabb5YdBygVZWVlS5cu\nlZ0CAFASTj/99NNPP112CgBAT67rNjU1VVVVCSFcT0k7uhAi67ltaWEY7+rSdDWwjOJoDRcs\nWCCECILANE3Hcdrb2xOJRHl5OYsVAQBG3OWXXy47AhA2mzdvlh1hWCgIB+fXv/71li1bhBDX\nXXddZWWl7DgAAAAAAJSE7tvy/eL/Yj/63TnDuZpt+JrazyZ/hh6Yej/nxOz+96yNWv2co6nC\nNvo5xzYDvb/AmhZYej/NqGX4utbPdUw90LW+rqMIEbP7r2CjVl7p8wRVDez+qlzL6CeMEELX\nAsvo90n5Rn9PHAAAoKRQEA7CkSNHnnjiCSHEokWLLrvsMtlxAAAAAAAoFaZpTpo0qaOjIxqN\nKqLv4ql/WXcAW67kBnChVmOYSSDLIyvF4r+RHQIAAEAeCsKB6lpcNBKJsLgoAAAAAABjSVGU\n8vLyIAhaWlqyOUt2HBQ9dbgtMwAAwLsEQdDQ0PD666+/9dZbTU1NnZ2drusahhGNRidMmDBj\nxowFCxYsXLhQ18dLMTdecox/zzzzTGFx0Wuuuaa6unrI11mzZs3zzz9/qlsPHDgw5CsDAAAA\nABBitm1XVVXFYrHzc8LPH9I0TVFOlDxeXsn1NxTo5hXX6+ccz1eyTj/FUdZV834/56RzWt8n\nCCEyOdUP+rlOZ7afwHlfGdA0JE6iUBACAIAR0tzc/Oijj/785z8/ePBg32dOmDDhYx/72PXX\nXz9jxoyxydYHCsIBOXz4cF1dnRDirLPOGuZursuWLVu2bNmpbl21atVwLg4AAAAAQIjpul5W\nVvb+94hKu583X9DF8RQ331/RmFeybn/NqDOAZtTRRCAymUxnZ6dhGIqi5PN5z/MqKio07URp\nms6pQZ+LxLp5JddfmLzffyXseKrrnfI61eUT+r47AADAQPzyl7+88847jx8/PpCTm5ubH3vs\nsZ/85Cdf/vKXP/vZz452tr5REPYvCIL//M//zGaztm1/4QtfUPiMGTDmHMc5cOBAIpGoqqqS\nnQUAEHKtra3Nzc3V1dXxeFx2FgBAyB09ejSTyUyZMqWrPBsNph6Yer7f08pG6OEcx2lsbIxP\njHft4ug4TiSSTyQSI/QII2PyBApCAKXlrbfe0jRt2rRpsoMAofLTn/709ttvD4JACKFp2oIF\nCxYvXjxjxoyJEyfatm1ZluM42Wy2qanpwIEDmzdv/tOf/uS6bjabveeeexzHuemmmySGpyDs\n369+9auGhgYhxLXXXjtx4kTZcYBS1NLSUldXV1tbu3TpUtlZAAAht3379mefffbjH//4WWed\nJTsLACDk/vjHP+7Zs+faa6+NRqOys4yYfD7fY2cdwzDy+XwQBHzkGgAkevLJJxOJhNw2AgiZ\nt99++8477wyCQFXV66+//sYbb+x3f7rjx4//4Ac/ePDBBz3Pu++++6644oqZM2eOSdheUBD2\n4+jRo4XFRSdPnlxWVvbyyy/3OGH37t2FP+zYsUNVVSHElClTTj/99DHOCQAAAAAAIJ2iKIUP\n0XehGgQAAKH0wx/+MJPJCCEefPDBv/u7vxvIXcrLy2+//fYFCxZcd911nuc9/vjj99xzz+im\nPDUKwn40NjbmcjkhxNtvv7169eo+znz66aeffvppIcTSpUulLx0LAAAAAAAw9nRd9zzP9/3C\np6iFELlcrqysjI4QAACEzAsvvCCEOP/88wfYDnb527/92/e///0vvfTSyTNpY4mCEEARSKVS\ny5cvH29bVgAAQmnu3LlVVVX9rgoCAMDwLVmy5KyzzrIsS3aQkaTrelVVVVNTk2EYiqJ4npdI\nJCKRiOxcAFDqrrrqqlHd8hYoQfv37xdCvO997xvCfS+44IKXXnrp4MGDIx1qECgI+zF//vzC\nXOCpPPPMM9/73veEEF/84hff//73j1UuoLSYpjlr1izZKQAAJSGZTCaTSdkpAAAlobKyUnaE\nUWHb9uTJk13XDYJA0zTTNBkfBADpJO5zBoRVNpsVQsRisSHctzAMk06nRzjTYKgSHxsAAAAA\nAADho+t6JBKJRqOWZdEOAgCAUCp82Gv37t1DuG9h+jCVSo1wpsGgIAQAAAAAAAAAAAAG4T3v\neY8Q4le/+lVLS8ug7pjNZn/1q18JIRYsWDAqyQaGghAAAAAAAAAAAAAYhCuvvFII0dzcfM01\n1zQ2Ng7wXp2dnZ///OcPHDgghPjQhz40ivn6Q0EIAAAAAAAAAAAADMKHP/zh8847Twjx2muv\nXXDBBXfeeecLL7zQ3t7e68mu6/7pT3/61re+df7552/YsEEIccYZZ3zyk58c08TvpgRBIPHh\n0cOqVatWrFhRU1MjOwgAAAAAAOPXtm3bZEdAcZs3b57sCAAAoOi1trZ+6lOf2rJlS/eDqVRq\n4sSJtm1bluU4Ti6Xa25ubmpq8n2/65wpU6b8/Oc/nz59+phHfocu8bEBYIDa2tpefPHF6dOn\nL1y4UHYWAEDI7dmz54033li8ePHUqVNlZwEAhNwbb7zR1NR0wQUXmKY52o81hD6MFhYAwmT9\n+vW2bV944YWygwChkkwmn3rqqYceeui73/1uNpstHGxpaeljV0JVVT/5yU9+9atfLS8vH6uY\nvaMgBFAEMplMfX29EIKCEAAw2hobG+vr62fOnElBCAAYbfv27duzZ8+555472IJwbKbfBvso\nFIoAMJ5t3rw5kUhQEAIjzrKslStX/tM//dPTTz+9fv36zZs3Hzt27OTTYrHYggULLrrook98\n4hOTJk0a+5wnoyAEAAAAAAAYX4pxAcy+M1MfAgCAEEskEp/+9Kc//elPCyHa2toaGxs7Ojo8\nz9M0LRqNVlZWTpgwQXbGnigIARQBVVUjkYhhGLKDAADCT9f1SCSiaZrsIACA8DMMY9q0aXPn\nzo3FYrKzjLpT1YcUhwAwNgrboclOAZSEsrKysrIy2Sn6pwRBIDsD3rFq1aoVK1bU1NTIDgIA\nAAAAwPhVjK3S6A0FOo7jOI6iKKZphuODlQP8+Xqel8/nhRCGYaiqOqiHKMYZTQAAgBHEBCEA\nAAAAAMBIGsvyqaWlZe/evYVe0HXd2bNnJxKJMXv0UdLrN7BHa9jZ2Xns2LHC0H8sFrMsy7bt\nMcoHAAAwPLt37969e7cQ4pJLLpGVgYIQAAAAAABg6CTOonV0dOzbt2/ChAmFnszzvF27ds2d\nOzeUVVn373N7e/uePXvi8biiKEIIz/Pa2tomT56s67zTBQAAisAvfvGL+++/Xwhx8OBBWRn4\ntQkAAAAAAGBAxtu6lOl0Oh6Pd22dW9hJN5PJhLIg7C6TycTj8crKyq4j7e3t1dXVhw8flpgK\nAACgiFAQAgAAAAAA9G68NYI9BEHQ1Q4WqKrq+76sPGPG9/0emw4WnniPn1cx7lUJAAAwNigI\nAQAAAAAAhBj3deDJdF3P5XKmaXYdcV23FJbZ1HXdcZzuT9xxnMJGjN2d/AOlMgQAACMll8tZ\nliU7xdCF/1dGAAAAAACAkxVdHXiyRCKxf/9+TdNs2w6CIJ1OV1RUxONx2blGXSKROHDggKqq\nXU98woQJsVis3zuG4IcOAADGiVmzZpmmmUwmZ8+ePX/+/IULF37gAx+orq6WnWugKAgBFIGm\npqbHHnts4cKFl19+uewsAICQq6+v/+1vf7t06dL58+fLzgIAGGHjrRxau3btzp07b7755oE0\nW70yTXPu3Lmtra2HDh2aOHFiRUVFMpnssehoKFmW1f2JT5gwoUSeOAAM2QMPPBCPx6+//nrZ\nQYBQcRynqampqalp48aNQghFURYsWLB06dJly5aN/6aQghBAEfB9P5PJuK4rOwgAIPw8z8tk\nMvl8XnYQAMAIGG+NYA+O42QymSAIhnMR27Zt266qqhJC9NiWL9xK9okDGGPdlyYe5/+s9C2b\nzZ68FDOAkRUEwZYtW7Zs2bJ69epLLrnkxhtvPOecc2SHOiUKQgAAAAAAEAZF/b7tMJVsQ1ay\nTxyAFKEpCwGMiLfeequjo6Ojo+PAgQM7d+7cvn37K6+8snPnTiFEPp/fsGHDhg0bzj333JUr\nV55//vmyw/aCghBAEYhEIrW1tdOnT5cdBAAQftXV1bW1tRUVFbKDAAD6V+xvzs6ePTsWizHP\nAQDFqKssLJZ/jBYtWmTbtuwUQKgYhpFKpVKp1LRp084777zCwcOHD69fv37NmjWbN28WQmza\ntGnZsmWXXHLJXXfd9Td/8zdS8/akDHMhC4ysVatWrVixoqamRnYQAAAAAAAAACh13acG+1Us\nZSGAMbBjx47vfe97a9euLeycpev65z//+X/5l38xTVMI8R//8R/333+/EOLgwYOyErIOAwAA\nAAAAAAAAw7WtG9lZAEh25pln3n///Zs2bbrmmmt0Xfc878EHH7z44ov/7//+T3a0EygIAQAA\nAAAAAAAYSZSFAIQQEydO/MY3vvH8889ffvnlQojdu3cvW7Zs1apVbW1tsqOxByEAAAAAAAAA\nAKOme0fIMqRACZo1a9YPfvCD3/3ud3fdddfevXt//OMfy04kBBOEAAAAAAAAAACMDSYLgZJ1\n0UUXPf/881/4whd0fVwM742LEAAAAAAAAAAAlBQmC4FSY1nWl770pY997GNf+9rXDhw4IDcM\nBSGAIuA4zoEDBxKJRFVVlewsAICQa21tbW5urq6ujsfjsrMAAELu8OHD6XR6xowZmqbJzgIA\nkGy0y8K33npL07Rp06aN+JXRh8KPlfYXPcydO/dnP/uZ7BQUhACKQUtLS11dXW1t7dKlS2Vn\nAQCE3Pbt25999tmPf/zjZ511luwsAICQe+GFF7Zv375y5Uo+lQIA6K7H6qMjUi89+eSTiUTi\npptuGv6lxhXXddva2hzHEUKYpllWVmYYhsQ8rByLIkJBCAAAAAAAAADAOMVKpKfied7Ro0fb\n2toikYgQorW11XXdqqqqsRzNpxFE8aIgBAAAAAAAAACgCIzGcGHxam9vP378eDKZLHxZVlZ2\n7Ngx27bLy8tH9XEpBVHwzDPPCCHOPvvsgS/ee/To0crKytEMNQgUhACKQCqVWr58eSKRkB0E\nABB+c+fOraqqqq6ulh0EABB+F1544ZIlSwpDDwAADMHAhwuvuuqq8G1567quZVndj1iW5bru\niD8QjSB6dcMNNwghdF3/x3/8xy9/+cv9vn3ted6iRYv3eYpzAAAgAElEQVTmzJnz2c9+9qqr\nrlIUZUxinhIFIYAiYJrmrFmzZKcAAJSEZDLZ9flTAABG1aRJk2RHAACER9/DhTNnzhzTNGNC\nVVXf97sf8X1fVdXhX5lGEAPned7jjz/+u9/97rvf/e6iRYv6OLOxsTEIgh07dqxcuXLDhg2P\nPPKIaZpjlvNkFIQAAAAAAAAAAITKyRVX+NYjtW27s7PTtu1CKZjP59Pp9JQpUwZ7HepADEeh\nqN63b98nPvGJ7373u5deeumpzuzo6DBN03EcIcRvfvObr371q6tXrx7DpD1REAIAAAAAAAAA\n0IsgCKQvAzhSwrd/YTwenzZt2r59+2zbDoIgl8vNmDEjFov1fS/qQIysm2++OZlM3nvvvZlM\n5vrrr3/00UdP1RHOmTPnjTfeWLt27d13353L5X70ox8tX768pqZmjAN3oSAEAAAAAAAAAOAd\nvu+3tbVlMpnW1lZN02zbNgxDdqgR1mtPVnStYUVFRTQaLYxkmaZp23aPE6gDMdp0Xf/c5z53\n1llnXXPNNel0+oYbblizZs173/veXk+OxWJXX3311KlTr776aiHEj3/843/7t38b27zvoCAE\nAAAAAAAAAOCEIAiam5sbGxvj8bjv+47jHD9+fNKkSeHrCE9WjK2hbdu2bVMEQq4LLrjgJz/5\nyT/8wz8U5gh//etf97Ha7UUXXXTuuedu2rRp48aNYxmyBwpCAAAAAAAAAABOyGQyhw4dqqys\nVBRFVVXTNAsHS6Eg7FXf3duY1YdUgBjnzjnnnIceeuiGG25oamq65pprfvnLX0aj0VOdvHjx\n4k2bNh06dGgsE/ZAQQigCLS1tb344ovTp09fuHCh7CwAgJDbs2fPG2+8sXjx4qlTp8rOAgAI\nuVdfffXw4cOXXXaZZVmyswAA3uG6rmVZ3bceNAzD9/2i3o/wD3/4g2maS5YsGfEr09sBXT70\noQ/dcccd//qv/9rQ0HDLLbc8+uijp/qfRkVFhRAik8mMbcB3USU+NgAMUCaTqa+v37dvn+wg\nAIDwa2xsrK+vP3bsmOwgAIDw27VrV319veu6soMAAN5FVVXf97sfCYJAVpiRsm3btjfffFN2\nCiD8brzxxk984hNCiPXr1/exv+DevXuFEIlEYuySnYSCEAAAAAAAAACAE2zbdhzHcZyuI7lc\nzjCM4h0fBDCW7rvvvtraWiHEf/3Xfz300EMnn5BOp3/7298KIWbNmjXW4bqhIARQBFRVjUQi\nJbvOOwBgLOm6HolENE2THQQAEH6maUYiEd5uBoDxxjCMM8444/jx48ePH89msx0dHfF4vI+9\nxIqCZVmFzRQBjDbLsp544okzzjhDCHHvvffecsstLS0tXbdmMpkvf/nLhw8fFkJccMEF0lIK\noYRgODpMVq1atWLFipqaGtlBAAAAAAAAAKB0ua6bzWZ37typaRrjgxiOefPmyY6AUTF16lQh\nxG233Xb77beffOvBgwc/9alP7dmzRwhh2/ZFF100bdq0zs7O559//uDBg0IIwzB+//vfT58+\nfYxjd9FlPTAAAAAAAAAAAOOTYRiGYUQiEdlBABSlqVOnPvXUU8uXL9+8eXM2m/31r3/d44Q7\n7rhDYjsoWGIUAAAAAAAAAAAAGFkTJkz4xS9+ceutt/ZYo7i8vPy+++674YYbZAUrYIIQAAAA\nAAAAAACEn+u6+XxeURRd19l7HsM0Y8YMIUR5eXkf55imuWrVqs997nMvvvji3r17LcuaPXv2\n+eefb9v2WMU8JQpCAAAAAAAAAAAQZkEQdHR0tLa2FnpBz/Oqq6sty5KdC0XslVdeGeCZZWVl\nS5cuHdUwQ8ASowAAAAAAAAAAIMwymUx7e3s8Ho9EIpFIJBqNNjY2ep4nOxcgDQUhAAAAAAAA\nAAAIM9d1u88Lapqm6/qgCsIgCEYhFyANBSGAItDU1LR69er169fLDgIACL/6+vrVq1dv3bpV\ndhAAQPitXbt29erVnZ2dsoMAAMKvrq7uf/7nf2SnkCYIgiAIFEXpflBVVd/3B3L3XC7X1tbW\n2tra2tqayWRoChEOFIQAioDv+5lMxnVd2UEAAOHneV4mk8nn87KDAADCz3Ec3mQEAIyNXC7n\nOI7sFNIoiqJpWo95Qdd1C/sR9i2XyzU2NjqOEwSB53ktLS3pdHrUkgJjh4IQAAAAAAAAAACE\nmW3bhZbU9/18Pp/JZJLJpGmafd8rCIJsNhuNRnVdL7SMkUjk2LFjbF6IENBlBygyu3bteu65\n5xoaGo4ePZrL5aLR6NSpU88+++xLL7104sSJstMBoRWJRGpra6dPny47CAAg/Kqrq2traysq\nKmQHAQCE3+zZs2OxmGEYsoMAAMJv3rx5/ZZh/QqCwHXdfD6vqqphGKpaTANIhmFMmjQpm83m\n83lFUSKRiG3bPRYdPZnv+21tbYlEoutIoSbM5/O6Tr2C4qawkMUAOY7zyCOPPPfcc73equv6\n8uXLr7zyymE+yqpVq1asWFFTUzPM6wAAAAAAAAAAhukXv93blu7ZA2lqYBu97F1n6IGh9XLc\nNn1N7eV9+Kjl99pPRUxfVUbyfXvP8zzPKzRbQ661fN/v6Ohoa2vTdd33/VgsFo1Gi/FjLidv\nRtgH3/cPHjwYj8e736Wzs7Oqqmrgheu8efMGnRIYfVTcAxIEwb333vvaa68VvqypqTnzzDPL\nysrefvvtP/7xjy0tLZ7nPfbYY9Fo9LLLLpMbFQAAAAAAAAAwIn65qbJhX0x2ihOiVv7kXktR\nRNTqpZXUtcAyfCGE7/uFdlAIEQRBxFIts5d67FStZMz2C2e7ruu6qROb9inC1l1VVU3T7FG2\nRa38ye2bqgjb7GWjd10NbLOXBzV139B6OW4ZvVetEesU4S1f9FYFxqyB7jqvqmoqlWpvb49E\nIoUjruvG43HGBxEC/CUekOeee67QDpqm+ZWvfKW2trbrps985jOPPPLIb3/7WyHEE088ceGF\nFw5/UhsAAAAAAAAAIN24WoAvndN6Pd6R7f04BkVVRcTopTjU1MDU877v//U0VVEURVF0zbeM\nXv5+GJpv6O8cV4R4/M5RigwMCwXhgDz11FOFP3zmM5/p3g4KIWzbvummm15//fWmpqb29vYt\nW7b0OAEAAAAAAAAAUIz8YKBrUaLY+b7oPEUFO5wmZWRXiwVGEAVh/1pbWw8ePCiEMAzjgx/8\n4MknaJq2ePHiDRs2CCEOHjxIQQgAAAAAAAAAIXDdxW9nHbXry15n+PxAZJxejud9kel233eO\n55Wc18txx1Pc3o7nXCXv93I866pebytlZl0t/9c1R/P5vO/7hVVAMzlNKEphB74TK4UKEQS9\nP6m8L7LvDh8EgRDC81Wnt5A4FZXvFsYrCsL+JZPJtWvXtrS0ZDIZ27Z7Paf7AsRjGA0AAAAA\nAAAAMFompxzZEYals7Ozvb29+9vamUwmmUxGo9HBXiqXyzU2Ntq2rWlaEAS5XC6ZTMZiJzZo\ndPNKr8Wh4ypuLzsnipyrer0dzzhqcNLUZnCKavZUFayXVx2vl4vnfSXb2/luvvdq9lQVbMbR\n/JPGAoNT9MRCBEJEejsOSEZBOCCaplVWVvZxwpEjRwp/mDx58pgkAkqL4zgHDhxIJBJVVVWy\nswAAQq61tbW5ubm6ujoej8vOAgAIucOHD6fT6RkzZnSNcQAAMLJs2/Y8L5vNNjc3q6qaSqWi\n0eipxmD6ZlnWxIkTs9ms7/uqqva4jqEFhtZLmRazhh4+RObJDgD0gunWEdDe3l5fXy+EiEQi\nixYtkh0HCKGWlpa6urqNGzfKDgIACL/t27fX1dXt2bNHdhAAQPi98MILdXV1mUxGdhAAQGhp\nmhaLxaLR6P/+7/++/PLLsVgsFoupQ1310jTNsrKyZDJZVlYWiUQKK5cCKFJMEI6ARx55xHEc\nIcSVV145hNFsAAAAAAAAAABGg67riUTCtu1IJDIiC6XQCwLhQEE4XD/96U9ffPFFIcSZZ565\nbNmyfs9vbW3t6Og41a25XG4kwwEAAAAAAAAAAADvRkE4LD/60Y9+9rOfCSGmTp361a9+Vdf7\n/35u2rTptddeO9Wtb7/99kjmA8IilUotX748kUjIDgIACL+5c+dWVVVVV1fLDgIACL8LL7xw\nyZIlkUhEdhAAQPh9+MMfZstbAN0pQRDIzlCUcrncAw888PLLLwshpk2b9vWvf72ysnL4l121\natWKFStqamqGfykAAAAAAAAAwHBs27ZNdgQUvXnz5smOAPSCCcKhaGpq+sY3vrF7924hxPz5\n8++6664RWbsZAAAAAAAAAAAAGG0UhIO2devWb37zm62trUKIiy+++POf/7xhGLJDAQAAAAAA\nAACAccR13Xw+39bWZpqmbduy4wDvQkE4OBs3brzvvvs8z1MU5dprr73yyitlJwIAABgvTrX2\nDqupAAAAAABKTWdn57FjxwzDOHToUDabnT59ekVFhexQwDsoCAdh48aNq1evzufzlmWtXLny\n3HPPlZ0IAACgCPS9aQf1IQAAAAAgZHK5XEtLSzweVxSlrKwsHo/v37/fsqxYLCY7GnACBeFA\n7dix41vf+lY+n7dt++tf/zrvZAEAAIwI6kMAAAAAQMi4rmuapqIohS9VVY1Go9lsloIQ4wcF\n4YCk0+l///d/dxxH1/W77rqLN6qAMdbW1vbiiy9Onz594cKFsrMAAMbU2NeHe/bseeONNxYv\nXjx16tQRvzgAAN29+uqrhw8fvuyyyyzLkp0FABByf/jDH0zTXLJkiewgpSIIAlVVux9RVdX3\nfVl5gJNREA7IE0880djYKIS4+uqrzz77bNlxgJKTyWTq6+uFEBSEAIDuRqM+bGxsrK+vnzlz\nJgUhAGC07dq1a/v27R/84AcpCAEAo23btm2xWIyCcMxomua6rq6/U8HkcjnDMCRGAnqgIOxf\nY2Pjc889J4RQFKWjo+O///u/+zg5Ho8vXbp0rKIBAADglPquDwXrlwIAAAAARodt267rZrNZ\nwzA8z0un0xUVFYlEQnYu4B0UhP3buXNnPp8XQgRBsGbNmr5PnjRpEgUhMOJUVY1EInzEBgDG\npyAI0ul04ZWPruvdPyA5zvXaIO7fv7+9vX3v3r2apjmOM3PmTFVVbds2TXNQF8/lcrlcLggC\nwzAikUjXzhPoVT6fT6fT+Xxe1/VIJKJpmuxEADAWTNPk3wgAwNiwLGuwL2owHKqqxuNxXdc9\nzzMMo6qqKplM8koH40rRvH0DoJRVVVV96Utfkp0CANAL3/ebmpqOHDliWVZLS4vneVVVVbZt\ny841dDU1NTU1NUEQtLe3t7W1HT9+3Pf9fp9Xj2HEtra23bt3W5alqmoul5s0aVJlZWWP/SfQ\nJZfLHTt27NixY4UXzxUVFRUVFay2B6AU/P3f/73sCACAUrF8+XK5AbpeNPW71ktoaJoWi8WE\nEJMnT5adBegFBWH/Lrjggqefflp2CgAAgPHo+PHjzc3NEyZMeKvR/MqaOZae17W8ZSgRK9DU\nIGLmNVVEzLyuBbYRGLpvaIFt+poaxCxfVYOI6etaYOl+4aaI6avdbpL4vNLpdGdnZzweL3yZ\nz+ebmpomT558qvnI7i9xPc97++23Y7FYJpMpHNmyZUt5eXk0Gi18ydKm3QVB0NLS0tnZmUql\nCkc6OjpUVa2urmakBgAAABhXRuS1zJAvUjrNIjA2KAgBAAAwREEQZLPZeDyuKIrjKnlfSTu6\nELrIjMz1DS0wdd8yAl0LbCOvaSJq5TUlsE3f0ALLCEzd17UgYvmaEkSsvK6Kwk2m7p+4yfQ1\nNYjafuFeA39erut2n2DTNK0w3DaQBVQdxzEMo/u8oGVZnud1fTnMl7Uh6xcdxzl8+HB1dXXX\nkVgs9vbbb5eXlzNECAAAAIy9cfuK41TBKA6BoaEgBAAAwAjIuSM/7OXmFTevdeYKX43ATrTd\nG8cT0429NY62mXdzMdv0dFVYRl5XfVP3RWC1upFUmaEq/TeOPUbfFEUJgmD4+QtC9urXdd2m\npqbCtOWMGTMKB0f2OwYAAACgV+O2CxyUXp9FyF43AaOBghAAAABDpCiKruudnZ26rk8oy18w\n50g+UDozgWZE3LzmeKqXVzI5NR8o6aya95WsK3kTvpFvHPXA1HzL8HVNdDWOisgrfsa21MJN\nquKbWs6yjPKErmvCNnxD8009sE1fVYKY7StKELV8XQ0sQ+aqqrJomhYEge/7XTOXhR0fDWME\nfkAAAAAAuoSjDhwgWkOgXxSEAAAAGLqysrJDhw4JISYmrWXn7svlcolEorDoaK/nu57i5NWc\no3i+knE031fSuRPdoespOU9xXLVwUz4vMo7m5UXWVb282nVTZ1YNgnfuNbZPt5en43paZ04T\nQry7cSwb2gXNd7ZpFFErX+gONTWwDd8ygsJNqhJErbyqioiZ7xp87Lqp6BpHVVUrKyubm5tt\n2/Y8z/O89vb2008/XdM02dEAAACAIlZSdeAA9fie0BeixFEQAgAAYOhs2547d257e7vneYZh\nRKNR27ZP1Q4KIQw9MPR87MTWcu7wAxQax6yj5n2Rzmndu8NC45hz1byvpHOa77/TOLp51fGU\nrKP6wfhqHB1PdTzRW+M4RD0aR1UJIpbftdRqt1oxr757qVVDCyKWr4ggZue1E5s7+qbe/7Kf\nhZLP931d1w3D6OMvQxfbtquqqnK5nK7rtm1PnDgxFosN/7kDAAAApYM6cAjoC1HiKAgBFIGm\npqbHHnts4cKFl19+uewsAICebNu2bVsIcfz48bF/9L82jnkhxIg0jpv/vPWVVzaee/7F02ac\n0dU4er6Sc9Wcq7j5rlpR8wORdTQ3r+RcJVcYfMypgThxUyanunnF8cLWOFqGr6tBxDoxraip\ngWX4ph4Ymm+bgfBdke/QdSVi5kXgJRNmPGpYxol7RS1fVYOImdc1YRnvNI6KoliWZVnWlClT\nhp8QAIrI2rVrd+7cefPNN/PBCADAYA22EXzggQfi8fj1118/SnlCgL4QpYaCEEAR8H0/k8m4\n7gi87QsAQN9U4QX5TMLOVSfdEWkcu7pDPxCdWc0PlKyjOp7i5tWso3i+knW0wvhj3ldyrup4\niuP1bBy9vMj9dfBx+JGG+XRy4q+NY2uvp1QO6oK24WtqELV9VQn+8TLxDxcPPyMAFA3HcTKZ\nTBD0P58NAMAwZwSz2Sz7fA8KfSFCj4IQAAAAGEWW4VtCnJhxTI5s46h0ZtWuWnEgjWM6p3bt\n+5hzVSevurIbx8KyroXGsbVTbhYAAABgfGHh0PGj+8+CshDhQEEIoAhEIpHa2trp06fLDgIA\nCL+Kior58+cnk0nZQU7p3Y3jQO8VBEE2m3Ucp62trayszDTNrt0is4VtGrNqPlAyOdXzlWxO\ndGS8bM5v7XANM+L5tqIZhZscV815iuspWUfNB0o6p+X9wlKrwnHVnKt4/tBXVbXNId8VAIrS\n7NmzY7EY8xwAgC6j1wguWrSosDcEho/hQoQDBSGAIlBWVrZ06VLZKQAAYdPra+958+Zdeuml\nYxljbF5MZjKZlpYW27YTiYTneR0dHalUKhqNCiFswxddjaMQQRB0dHR0dHRYlqWqqucdy2Qy\n1dXVlmX1/RC5XO7o0aOxWCzran6gZBw9k3VUPWFY0UKt6OXVjKMWphv9v5aRjqtmXcXLK1lX\nmz6RLbgAlJZzzjlHdgQAgHxjMyZ4+eWXj8GjlCaGC1GkKAgBAAAwplgkp4cR/4ac/IrU9/3m\n5uZ4PF4YGdQ0LRqNNjc327atqj0H/jzPa21tjcfjhS91XY9EItls1jTNwt1PxTTNsrKy9vb2\nQpWoGZ2VCTse9zUtM8Dk/N0AAABAKeD33hCjLEQRoSAEAADAyOBV7jhx8g8im83m8/nKysru\nB5uammbPnl1YZaj7C9d8Pq9pWvczdV1va2tLJBJ9F4SKosRiMU3TPM8LgsCyLNu2e1wKAAAA\nKE28XCpB/NAxzlEQAgAAACGnKIrv+0EQdDV8QRAEQdA1Ptj9hWtnZ+eePXsqKiq6jniep+v6\npEmTduzY0fcDqapaWLYUAAAAAP0QgPGMghAAAAAIOdM0p0yZ0tLSkkgkCkc6OjqmTJliGMbJ\nJ9u2PWHChHQ6HYlEhBBBELS3t0+ePFlV1YG8wcEqOgAAAChllIIAigUFIQAAABByiqKkUqkg\nCI4cOaLruuu6kyZNSqVSvS4ZqmlaKpUSQhw9elTTNMdxpk6dWl5ePsDHokQEAABAqSm6UrCw\nvgjbAQAljoIQQBFwHOfAgQOJRKKqqkp2FgBAyLW2tjY3N1dXV8fjcdlZRpJhGNXV1WVlZYX1\nQm3b7mNDQdu2J06cmEwmfd8vnDyyYYruDRQAGCWHDx9Op9MzZszgLVoAKC7F+AvtW2+9pWna\n5MmTW1tbc7nckSNHJk+eHI/HQ/bCB8DAqbIDAED/Wlpa6urqNm7cKDsIACD8tm/fXldXt2fP\nHtlBRp6iKJFIJJFIRCKRPtrBgsJugvF4fMTbQQBAlxdeeKGuri6TycgOAgDo37xuZGcZiief\nfPKpp546duxYY2NjPp+vrq7OZDJvvvlmZ2en7GgA5GCCEAAAAAAAAACAXhRpHdgr13UPHz5c\nWVlZ+NKyrLKysvb29lgsJjcYACmYIAQAAAAAAAAAIOTy+bxpmt2PGIbh+77v+7IiAZCICUIA\nRSCVSi1fvjyRSMgOAgAIv7lz51ZVVVVXV8sOAgAIvwsvvHDJkiWRSER2EABA+F111VWZTCaf\nz3c/WNh0vN8NCACEEgUhgCJgmuasWbNkpwAAlIRkMplMJmWnAACUhEmTJsmOAAAoFTNnzvQ8\nr6mpKZPJFDYa932/vb39tNNOoyAEShMFIQAAAAAAAAAAIafrenl5uRDi6NGjqqq6rnvaaafx\n+UigZFEQAgAAAAAAAAAQfpFIxDTNZDLp+75hGJZlyU4EQBoKQgAAAAAAAAAASoKmadFoVHYK\nAPKpsgMAAAAAAAAAAAAAGDsUhAAAAAAAAAAAAEAJoSAEUATa2trWrVv3+uuvyw4CAAi/PXv2\nrFu37uDBg7KDAADC79VXX123bl0ul5MdBAAQfuvXr3/hhRdkpwAwjlAQAigCmUymvr5+3759\nsoMAAMKvsbGxvr7+2LFjsoMAAMJv165d9fX1ruvKDgIACL/Nmzc3NDTITgFgHKEgBAAAAAAA\nAAAAAEoIBeH4EolENE2TnQIYd1RVjUQihmHIDgIACD9d1/mVDAAwNkzTjEQiiqLIDgIACD/b\nti3Lkp0CwDiiBEEgOwMAAAAAAAAAAACAMcIEIQAAAAAAAAAAAFBCKAgBAAAAAAAAAACAEkJB\nCAAAAAAAAAAAAJQQCkIAAAAAAAAAAACghFAQAgAAAAAAAAAAACWEghAAAAAAAAAAAAAoIRSE\nAAAAAAAAAAAAQAmhIAQAAAAAAAAAAABKCAUhAAAAAAAAAAAAUEIoCAEAAAAAAAAAAIASQkEI\nAAAAAAAAAAAAlBAKQgAAAAAAAAAAAKCEUBACAAAAAAAAAAAAJYSCEAAAAAAAAAAAACghFIQA\nAAAAAAAAAABACaEgBAAAAAAAAAAAAEoIBSEAAAAAAAAAAABQQigIAQAAAAAAAAAAgBJCQQgA\nAAAAAAAAAACUEArC8WXnzp2dnZ2yU4RZW1vb7t2729vbZQcBAIRfY2Pj7t27XdeVHQQAEH57\n9+7dt2+f7BQAgPBzHGf37t1NTU2ygwAAhouCcHz5/ve//9Zbb8lOEWY7d+6sq6vbuXOn7CAA\ngPB76aWX6urqOjo6ZAcBAITfmjVr1q5dKzsFACD8Wltb6+rqXnnlFdlBAADDRUEIAAAAAAAA\nAAAAlBBddgBgTFmWlUqlLMuSHQQAEH6xWCyVSqkqn8cCAIy68vJyTdNkpwAAhJ+maalUKhqN\nyg4CABguJQgC2RnwjlWrVq1YsaKmpkZ2EAAAAAAAAAAAAIQTH2kHAAAAAAAAAAAASggFIQAA\nAAAAAAAAAFBCKAgBAAAAAAAAAACAEkJBCAAAAAAAAAAAAJQQCkIAAAAAAAAAAACghFAQorR4\nnpfJZDzPkx0EABB+juNkMpkgCGQHAQCEXzabzWazslMAAMLP9/1MJuM4juwgAIDhoiBEaXn9\n9ddXr1795z//WXYQAED4rVu3bvXq1cePH5cdBAAQft/+9rcffvhh2SkAAOHX3Ny8evXqZ599\nVnYQAMBwURACpWvbtm2yIwAAAAAAAAAAgLFGQQiUKNpBAAAAAAAAAABKky47ADCmJk2a9L73\nvW/ixImyg0hGOwgAY+DMM89MJpO2bcsOAgAIvyVLlqgqnwAGAIy6aDT6vve9b8qUKbKDAACG\ni4IQpWXq1KlTp06VnUImqkEAGDMLFixYsGCB7BQAgJLwgQ98QHYEAEBJiMVil1xyiewUAIAR\nwAcMgRJCOwgAAAAAAAAAACgIgVJBOwgAAAAAAAAAAAQFIVAiaAcBAAAAAAAAAEABexACIUc1\nCAAAAAAAAAAAumOCEAgz2kEAAAAAAAAAANADBSFKS0tLS0NDQ0tLi+wgY4F2EADkOnDgQEND\ng+M4soMAAMJvx44dO3fulJ0CABB+uVyuoaHh4MGDsoMAAIaLghClZffu3WvWrNmzZ4/sIKNr\n27ZttIMAIN2mTZvWrFnT2dkpOwgAIPzWrVv3zDPPyE4BAAi/tra2NWvWvPbaa7KDAACGi4IQ\nCBuqQQAAAAAAAAAA0AcKQiBUaAcBAAAAAAAAAEDfdNkBgDE1b968yZMnl5eXyw4y8qgGAWC8\nueiii84777xEIiE7CAAg/K6++mrZEQAAJSGVSt1www3RaFR2EADAcFEQorREo9FQ/gZDOwgA\n41AqlUqlUrJTAABKwsSJE2VHAACUBF3Xp0yZIjsFAGAEUBACxY1qEAAAAAAAAAAADAp7EAJF\njHYQAAAAAAAAAAAMFhOEQFGiGgQAAAAAAAAAALNxVL0AACAASURBVEPDBCGKA31Yd3w3AAAA\nAAAAAADAkDFBiKJRaMXmzZsnO4hMA68GgyDwfT8IAk3TFEUZ1VQAAAAAAAAAAKCIUBCiyHQ1\nZENrCnfv3l1fX//e97739NNPH9Fco25QU4Oe56XT6dbWViFEWVmZZVm2bY9aNABA7zZt2rRv\n374PfehD8XhcdhYAQMitW7dOVdUrrrhCdhAAQMi1tbVt2LBh5syZ55xzjuwsAIBhYYlRFKtt\n27YNYaXNlpaWhoaGlpaW0Yg0egb1TH3f7+zszGaziUQikUh4ntfU1JTL5UYvHgCgVwcOHGho\naHBdV3YQAED47dixY+fOnbJTAADCL5fLNTQ0HDp0SHYQAMBwMUGI4jbMgcLxbwglqOM46XQ6\nEokUvtQ0zbbtXC5nWdZIpwMAAAAAAAAAAMWHghAhMcCm0LKsVCpVFFXZEKrBAt/3VfVdw8Ga\npvm+PxKhAACDEIvFUqlUj/8nAwAwGsrLyzVNk50CABB+mqalUqloNCo7CABguJQgCGRnwDtW\nrVq1YsWKmpoa2UHGnSG0ZcU7UzjkarAgm822tLR0TRAKITzPM02zrKzs5JOL97sEAAAAAAAA\nAACGhgnCwWloaHj++ecbGhqOHTuWz+dTqdScOXM++MEPvve975UdDT0V4+qjw6wGC0zTjEaj\njuMYhiGE8H2/sB/h8K8MAAAAAAAAAABCgIJwoNLp9P333//HP/6x+8EjR44cOXLkpZde+n//\n7//ddttttm3Lioc+jP+mcER6wS6qqkajUUVRWltbFUUJgqCysrIoVlUFAAAAAAAAAABjgIJw\nQFzX/drXvvaXv/xFCKFp2nnnnTdnzhxN0958882XX37ZcZyNGzfee++9d999t6IossPilMZh\nUziy1WAXwzB0XY9Go0EQaJrG9lcAAAAAAAAAAKALBeGArF27ttAOplKpr3/96zNnzuy6admy\nZXfffXdTU9Of/vSn3/zmN5dddpm0lBiw7rWclLJwlHrB7hRF0XX+AwcAAAAAAAAAAD3RH/TP\n9/1169YV/nzrrbd2bweFEKeddtpXvvKV22+/PQiCJ5988tJLL2WIsLiMWVk4BqUgAAAAAAAA\nAABAvygI+/fmm2+2tbUJIaZOnbp48eKTTzjjjDNqa2tfe+21o0eP7tixY+7cuWOeESPj5A5v\nOJUhjSAAAAAAAAAAABiHKAj7d+jQocIfzjzzzFOd8573/H/27jw+qvre//j3nDP7ZJIMWSYL\nS4KERVIQFG0UN4wK4kVoUUQtuHu1+sOlxQraa+vS1mu9FZd7qVVrLaJQcAGvYEUQEQmLqGnY\nSYCEhOzJJJl95vz+GG+MEJIJJHMmyev56KOPkznnzLxDayTznu/nO2779u1CiJ07d1IQxrKi\noqINGzZceumlZ555ZiTXU/IBAE7ZihUrCgsL582bZ7fbtc4CAOjjnn32WZ1Od//992sdBADQ\nx1VXV7/00kvjxo275pprtM4CADgtstYBeoGWlpbwgdVqPdk1mZmZ4YMjR45EIxMAAAAAAAAA\nAABwSigIO2c2m8MHrU3hiRRFCR+0LjcEAAAAAAAAAAAAYhAjRjuXkZERPjhw4MDJrikrKwsf\ndFAiIhYkJyePHz8+KSlJ6yAAgL5vxIgRCQkJJpNJ6yAAgL7v3HPPlWU+AQwA6HEWi2XixImt\n75cCAHovCsLODRs2zGKxuFyuI0eOFBUVjR49+rgLgsHgRx99FD52u91RD4gucDgcDodD6xQA\ngH4hNzc3NzdX6xQAgH7hoosu0joCAKBfsFqt+fn5WqcAAHQDCsLO6XS6K6+88t133xVC/OlP\nf3ryySfbNkwej+f5558vLS2VJElV1U6f7eOPP96+ffvJzh46dKg7IgMAAAAAAAAAAADtoyCM\nyKxZszZv3lxZWVlZWXnffffl5+fn5OQoilJcXLxhw4a6urqpU6euWbMmGAy2blh4Muedd96J\naxBbVVZWdnd2AAAAAAAAAAAA4HsUhBGxWCxPPfXUb3/72yNHjng8ntWrV7c9m5+ff8MNN3z4\n4YdCiE4LwoSEhISEhJOdNRqN3RIYAAAAAAAAAAAAaBcFYaRSU1Off/75jz/+eNOmTYcOHfJ4\nPElJSSNHjrziiityc3NLS0vDl7G/HQAAAAAAAAAAAGIZBWEXKIoyZcqUKVOmnHjqyJEj4YPs\n7OzohgIAAAAAAAAAAAC6QNY6QB/x1VdfhQ9GjBihbRJ0zOl0HjhwwOl0ah0EAND3lZWVFRUV\n+Xw+rYMAAPq+vXv37t+/X+sUAIC+z+v1FhUVHT16VOsgAIDTRUHYBY2Nje0+7na7t2zZIoSw\nWq1nnXVWdEOha0pLS9euXVtWVqZ1EABA31dQULB8+fKWlhatgwAA+r5Vq1Z9+OGHWqcAAPR9\nTqdz+fLl27dv1zoIAOB0MWI0Ik8//fTXX3/t9XoXL16clpZ23Nlly5Y1NTUJISZNmqTT8UcK\nAAAAAAAAAACA2MUKwohkZWV5PB5VVZ9//nmv19v21Jo1a1auXCmEsFgss2bN0iggAAAAAAAA\nAAAAEBFJVVWtM/QCLS0t9913X01NjRAiKSnp4osvdjgcLS0tW7du3bNnjxBCluUFCxace+65\np/lC8+fPnzt37ujRo7shdN+ye/fubnkej8fjdDrj4+NNJlO3PGFvN2rUKK0jAECfVV9f73a7\nU1NTGTAAAOhplZWVQgiHw6F1EABAHxcIBKqqqiwWS2JiotZZAACnhberImK1Wv/jP/7jN7/5\nTU1NTW1tbXjJYCubzXbvvfeefjuIKDCZTFSDAIDosNvtdrtd6xQAgH6BahAAEB06nS4jI0Pr\nFACAbkBBGKkhQ4a8/PLLH3300ZYtW0pLS10uV1xcXFpa2o9//OPLL788ISFB64AAAAAAAAAA\nAACIqlAotHHjxvXr119++eUTJ07s4Mr9+/cnJiampKRELVsHKAi7wGQyzZgxY8aMGVoHAQAA\nAAAAAAAAgMYKCwvvv//+8G50aWlpHReEL7zwwsqVK6+66qrf/va3aWlp0crYPlnblwcAAAAA\nAAAAAAB6nW+//fYnP/lJuB0UQlRXV3d8fX19vaqqH3744eTJkw8fPtzzATtCQQgAAAAAAAAA\nAAB0QSAQuPvuu10ulxDCZrPNmjVr8uTJHd9y5pln2mw2IUR1dfVdd90VCoWiEfQkKAiBfsfj\nl3eVWt8rSC6pNGudBQAAAAAAAACA3uf9998/dOiQEGLcuHGbNm167rnnzj333I5veeSRR7Zs\n2ZKXlyeEKCwsXLt2bRRyngx7EKJ/KS0t3bVr1+jRowcOHKh1lqiqb9btK7fsKzcfqLAcqjKG\nVEkI4Q9KV12idTIA6LsKCgqOHDkyZcqUuLg4rbMAAPq4VatWybI8depUrYMAAPo4p9O5du3a\nrKysCRMmaJ0FADT28ccfCyGMRuNf/vKX5OTkEy/YunWrECI9PX3QoEGtDyYmJr700ks//vGP\nfT7fqlWrpkyZErXAx6EgRP/idDoPHDjQ9p/GvioUEmW1xn3llv0V5n3llhqn/sRr9pdboh8M\nAPqPsrKyoqKi/Px8rYMAAPq+vXv36nT8gg8A6HFer7eoqMhgMGgdBAC09+233woh8vPz09LS\n2r1gxowZQoi77rrr17/+ddvHHQ7HlClT3n///W+++SYKOU+G3x+AvsPrlw8eM+0rt+wvN++v\nsLh9ncwQrmrUq6qQpOikAwAAAAAAAACgj6irqxNCjBo1qt2zwWDwuIO2hg4dKoSorKzssXSd\noyBE/2IwGOLj4/vSp5zqmnUHKiz7ys37y7+fHdqBNLtveLpreKY7J92dbvdKUvs/vAAAp89q\ntdrtdllmy2cAQI9LTExUFEXrFACAvk9RFLvdbrEwlQoAhMfjEUKYzeZ2z9bW1oYP6uvrTzwb\nHx8vhAgEAj2WrnMUhOhfcnJycnJytE5xWkKqOBqeHVpu3ldhqW5sZ3ZoW3pFzXJ4ctJdIzLd\nw9Ld8WYtf+IAQL8yefLkyZMna50CANAv3H777VpHAAD0CwMGDJg3b57WKQAgJthstvr6+pOt\nAiwrKwsfFBUVnXi2vLxcCJGQkNBz8TpFQQj0AuHZofsrLPuOmg8cs7i8nSxGiTMFh2e4czJc\nOenuoQ63XqdGJycAAAAAAAAAAP3BkCFD6uvrN27c2O7ZTz75RAhhs9n27Nmzd+/eESNGtJ4K\nBoMff/yxEOKMM86ITtR2URACMaqhRbevPDw71HyoyhTJ7NCcdPfwDNfwjPDs0OjEBAAAAAAA\nAACg35kwYcLXX3+9Z8+et99++/rrr297qry8/PXXXxdCzJ49+89//vNDDz20dOlSm80mhAgG\ng7/5zW8OHz4shMjLy9MkeRgFIRArwrNDw8sEI5kdqlPU7FRPToZreIY7J4PZoQAAAAAAAAAA\nRMn111//yiuvCCHmz59fUlIye/bswYMHe73eTZs2PfbYY06nMzs7+957733jjTd27tyZl5d3\nySWXGAyGLVu2hNtBnU53XK0YZRSEgJZ8AfngMVN4Q8H9FWaXV+n4+jhTMCfDHd5QMCvVbWB2\nKAAAAAAAAAAAUTdy5MjZs2cvXbo0GAy++OKLL774oizLoVCo9YKf//znSUlJ999//x/+8If6\n+vp333237e0PPvjgoEGDop76exSEQLQ1tOj2l5vD40MPV5uCoU6GgToSfcMz3DnpruGZ7gxm\nhwIAAAAAAAAAEAOefPLJurq6tWvXhr9s2w5ee+214QWC9913X3Nz8+LFiwOB76YAms3mBx98\n8J577ol+4LYoCNHvhEIhWZaj+oqqKK8z7i+37C037y83VzUaOr5ep6hZqZ6cdPeITFdOujve\nwuxQAAAAAAAAAABii8lkeu2111avXr1kyZJt27a53W5JkkaNGnX77bfPmjUrfI0kSQsWLLjl\nllu2bNnidDodDsf5558fHx+vbXJBQYj+Q1VVr9f7zTffrFu3Lj8/f8yYMUajUeqx5Xi+gFx8\nzLSvwrLvaESzQ63G4PBM97A01/BM91AHs0MBoC9YsWJFYWHhvHnz7Ha71lkAAH3cs88+q9Pp\n7r//fq2DAAD6uOrq6pdeemncuHHXXHON1lkAIFZcffXVV199tRCipaXFYDDo9foTr0lPT58x\nY0bUo3WEghD9hdvtrqurCwaDBoMhGAzW1tba7XaLxdKNL9Ho0u07at5XYdlfbj5UFdHs0Jx0\n9/AMZocCAAAAQPfYvXv3qFGjtE4BAACA/shqtWodoQsoCNEvhEKh2tpaq9Uqy7IkSbIsWyyW\n2tpao9GoKJ2s7evoaVVRUWfcW27eX27ZF8HsUEVWsx2enHR3ToZrRMYPZoeqqioEDSEAAAAA\nnLrdu3drHQEAAADoHSgI0S8Eg8FwL5iUlDRmzJgBAwZIkiRJUigU6mpB6AtIxZXmfeWW/eXm\n/eXmlghmhw5Ldw/PdA/PcA11eAy6UNuz4cGnPp8vvDOiwWDo0cGnAIBoGjFiREJCgslk0joI\nAKDvO/fcc6O81XoMoh0EgCiwWCwTJ07MyMjQOggA9A6BQKCwsLC4uLi5udlmsw0dOvRHP/rR\n6Sxb6kYUhOgXJElSVVUIkZKSkpKSEn5QVdUIq7hGl25/uXlfuWVfZLNDUxN8wzPcORmu4Rnu\nzAEdzQ71eDy1tbUmk0mW5UAg4HQ6k5KSzGZzpN8YACCG5ebm5ubmap0CANAvXHTRRVpH0BLV\nIABEjdVqzc/P1zoFAMSQpqamP//5z7t27Xr11VfbPt7c3Lxo0aI333zT6XS2fXzAgAF33HHH\n3Xff3e5WhdFEQYh+QVGUxMREl8tlNBrDj3i93oSEhJMV9aoqyuuNe4+aD1RY9pWbKxs6nx2a\nlerJSXcPz3QNz3AntJkd2oFQKFRTUxMefCqECA8+rampyczM5MO/AAAAABAJ2kEAAABoZc+e\nPT/72c/Ky8uP233w6NGj11133aFDh068pa6u7g9/+MMnn3yyZMkSm80WpaDtoSBEvyBJksVi\nUVXV6XQqihIMBuPj4y0WS9sVhN/NDj1q3l9h2V9hbvF0ssjXYgzmpLuHZ7iHZ7iGph0/OzQS\nrYNPWx8Jb5EYDAYpCAEAAACgY1SDAAAA0FBLS8ucOXPKy8uFEG63u7a2NikpSQgRCATmzJnT\n2g4OHz587NixCQkJDQ0NX331VXFxsRBix44d8+bNe+2117SLT0GIfkNRFJvNZjKZwrv96fV6\nSZKcbt2+o+Z95ZYDFebiyohmh+ZkuEdkuHMyXBkDvPLp7RXYOvi0rcgHnwIAAABAv0U7CAAA\nAG29+eabR48eFUKcd955zz33XLgdFEK8/fbbe/bsEUIMGjToT3/6049//OO2d61fv/6BBx6o\nrq5eu3ZtQUHBeeedF/3kYRSE6EckSdLrDeX1xvCGgvvLzcc6mx0qS2pWqmd4pnt4hjsn3ZVo\njWh2aIQURUlISHC73REOPgUAAAAAUA0CAAAgFqxZs0YI4XA4lixZYjabWx9/7733hBAWi+Wd\nd94ZMmTIcXddeumlS5YsueqqqwKBwD/+8Q8KQqAH+QNScaV571HzwWOWveURzQ4dlu4enuEe\ncaqzQyMUHnwqhGhubpZlORQKxcXFHTf4FAAAAADQinYQAAAAMWLfvn1CiJ/+9Kdt20EhRHj5\n4PXXX39iOxg2evToyZMnr169uqCgIAo5T4aCEH2T061rXSZYUmUKBL+r3ILeep+r3GDJUIz2\nttenJPiHZ7jCywQzk053dmjkdDqdzWYzGo3hwacGg4F2EAD6jLKyssbGxpycHIOhkwXrAACc\npr1798qynJOTo3WQHkQ1CACxwOv1HjhwIDExMTMzU+ssAKCx5uZmIcTgwYOPe7ylpUUIMXbs\n2A7uPfvss1evXl1ZWdlz8TpFQYg+QlVFRb1xX7l5f4VlX7n5WH37b8V6m4obDq9KHDItzpQ4\nJNUzPMM9ItM9LM1lj+vO2aFdIklS64jRaFJVNRgMBoNBJpoCQA8pKCgoLCycN28eBSEAoKet\nWrVKp9Pdf//9WgfpKbSDABAjnE7n8uXLx40bR0EIAAkJCXV1dQ0NDcc9np6efvjwYZ2uowJO\nlmUhhN/v78F8naEgRC/mD0glVeZ9/7dSsLnz2aGhzHRXS9B15WUVl0+0GvU9NTs0xqmq6na7\nfT5fU1NTIBAYNGhQYmJixz+tAAAAAEATVIMAAACITUOGDKmrq/vnP/953333tX387LPPPnz4\n8K5du6ZPn36yewsLC4UQDoejx1OeHJUAehmnSzlwzLL3qHl/haWk8vvZoSeTkuDPSXcNz3AP\nz3BlJnl376rcsME11OHpt+2gEMLj8dTV1VksFpvNlpKSUl1dHQqFUlJSmG4KAAAAIKbQDgIA\nACBmXXHFFTt37tyxY8eSJUtuvPHG1sdnz569cuXKFStWPPDAA8dtTxh24MCBVatWCSHGjRsX\nvbgnoCBE77Bpd8LuMuv+cnPFSWaHtpIlNSvVm5Phykl3D884fnboGWeckZKSEh8f35NhY5qq\nql6v12KxhJcwy7IcHx9fUVFhs9na/VEFADhlkyZNysvLs9lsWgcBAPR9P/vZz7SO0M2oBgEg\nNtnt9jvvvNNisWgdBAC0N3v27MWLFzc0NDz88MNlZWX33nuv1WoVQpx//vnXXXfdsmXLHnro\noUWLFh03va+wsPC2227zer1CiJkzZ2oTXQhBQYje4uOv7SWVJ62vLMbQsDRXToZ7eIbrjLSO\nVgeaTCaTydQzGXuHUCjU1NTU9t1qSZL0en0wGNQwFQD0SXa73W63a50CANAvaDubqHtRDQJA\nLNPpdBkZGVqnAICYkJKS8swzz9x9993BYHDRokV/+9vfrrrqqosvvnjkyJGPP/64xWJ54403\n9u3bN2fOnKFDh/r9/pKSkvXr12/YsCEUCgkhrrzyykmTJmmYn4IQvcOITPdxBWFyvH9EhmtY\nunt4hmtgsldmOmZkZFm22WyhUCi8gjAsEAi0/RIAAAAANEE7CAAAgF5k6tSpixcvvv/++5ub\nmxsaGt5666233norfEqn00mStHv37kceeeTEGy+55JIXX3wxumGPR0GI3mF4hvvjneqQVG94\nQ8GcDNeAH84ORYQkSTIYDA0NDWazObzpYFNTk8Ph6OcLKwEAAABNhPuwUaNGaR1Ee5FXg6qq\nsoE6AAAAYsSUKVMmTJjwpz/9acWKFU6ns/XxQKD9CiM9Pf2BBx64/vrrFUWJVsb2SaqqapsA\nbc2fP3/u3LmjR4/WOkgMCQQCbrd71+4DqpDj4/T8Hnj6VFV1uVx1dXWyLCcnJ6enp9vtdoOh\nk80dAQAAAHS741qx/tkURl4Ner1er9cbCoXCGyW0furxOP3zjxEAAADa8vv9Gzdu3L59++7d\nu0tLS5uampqbm4UQVqs1Pj5+6NChI0aMuPjii88555wYqTlYQYiY5na7Gxoa6uvr3a7GYDAo\nQlar1Xrclp7oKkmSrFar0WgMhUIjR440GAwx8vMIAAAA6Of624LCLg0U9Xq9VVVVZrNZUZRg\nMNjS0qKqqtVq7bl4AAAAQOT0ev1ll1122WWXaR0kUhQtiF2hUKihocHtdicmJjY2NgohPB6P\nJEnx8fFaR+sLwj2r0WjUOggAAACAH2itzfpwU9jVvQZVVfV4PGazOfyLjKIoZrO5rq7OYDDo\n9fqeyQgAAAD0ZbLWAYCT8nq91dXVbffGMxqNjY2NwWDwlJ+ztLR07dq1ZWVl3REQAICOFBQU\nLF++PDxNAgCAU7D7/3R65apVqz788MMoRDp9EX5Hx1FV1el0th0nI0mSTqcLhULdmg4A0Amn\n07l8+fJt27ZpHQQAcLpYQYjYdbKd509n40yn03ngwIFBgwadRi4AACJSVlZWVFSUn5+vdRAA\nQK/X6ZrCvXv3xv5eDKfQCx7nuF8SaQcBIPq8Xm9RUZHBYNA6CADEHFVVi4qKvvnmm0OHDlVX\nV7e0tPj9fr1eb7FYkpKShgwZkpubO3bs2Nj5e3us5ABOpNfrg8FgIBBo/QcmGAzGx8criqJt\nMAAAAADQRNuOrbcMID39XlAIIcuy3W5vamoym83hRwKBQFxcHPNFAQAAoLna2tq//OUvK1as\nOHr0aMdXJiUlXXPNNbfffvuQIUOik60DjBhF7NLr9VlZWQ0NDR6PJxQK+Xw+l8tlMpnaXVYY\nIYPBEB8fz6ecAABRYLVa7Xa7LPPXLQBAj2g7gDQxMTEhIUHrRMc7tWmiJ2OxWKxWa3Nzs9vt\ndrlc4c9i8+9ZAIgyRVHsdrvFYtE6CADEivfee++iiy5atGhRp+2gEKK2tva1116bNGnSK6+8\nEoVsHZNOZ1ojut38+fPnzp07evRorYPEClVVW1paWlpaSkpKZFk2Go10e92rt3zoGAAAAOiT\nurE/C4uFv+F3+zfVSlVVv98fCoUkSdLr9SdrB2PhDwEAAAD9wTvvvPPQQw+FizZFUXJzc8eP\nHz9kyBCHw2EymYxGo8/n83g81dXVZWVlX3/99VdffeX3+8P3Lliw4Oc//7mG4RkxipgmSVJc\nXFxcXFxdXZ3WWQAAAAAg1mk1g7TnSsG2JEniM6MAAACIERUVFQsXLlRVVZbl22+//e67705N\nTe34loaGhldffXXRokWBQOCZZ56ZOnVqVlZWVMK2g4IQAAAAAIA+6MTSrnsrw+iUggAAAEBs\nev31191utxBi0aJFM2bMiOSWxMTEhx56KDc399Zbbw0EAn/9618ff/zxnk15chSEXbZ3795P\nPvmksLCwtrZWr9cnJSWdccYZl19+OXNBAQAAAACx7GSVXsfFIUUgAAAAcKINGzYIIc4///wI\n28FWV1555YUXXvj5559/8cUXPZIsMhSEXRAIBF555ZU1a9a0btzo9Xqbm5sPHz786aefTpky\n5d///d8lSdI2JAAAAAAAXUIFCAAAAHRVaWmpEGLixImncO8FF1zw+eefHz16tLtDdQEFYaRU\nVX3++ec/++wzIYTJZJo4cWJ2drbX6921a9eOHTtUVf3oo48SExNnz56tdVIAAAAAAAAAAAD0\nII/HI4SwWq2ncK/NZhNCuFyubs7UFRSEkVq3bl24HRw6dOijjz6anJzceuqrr756+umnfT7f\n8uXLJ0+ebLfbtYsJAAAAAAAAAACAnpWcnFxeXl5cXHwK94ZXH2pbJ8kavnYv4vP5/v73vwsh\nLBbLr3/967btoBBi/PjxM2fOHDdu3FVXXdXc3KxRRkSkqKjopZde2rVrl9ZBAAB934oVKx5/\n/PH6+nqtgwAA+r7XX3/9b3/7m9YpAAB9X3V19eOPP/7+++9rHQQAtDdu3DghxOrVq7v65o/H\n41m9erUQIjc3t0eSRYYVhBHZsWNHXV2dEGLatGkDBgw48YLrr78+6qEAAAAAAAAAAACggenT\np3/44Ye1tbU333zzK6+8kpqaGsldLS0t9913X1lZmRBiypQpPZyxI6wgjMgXX3wRPrj44ou1\nTQIAAAAAAAAAAABtXXXVVXl5eUKI7du3X3DBBQsXLtywYUNTU1O7F/v9/q+++urZZ589//zz\n165dK4QYNmzYddddF9XEP8QKwojs2bNHCGG32zMzM8OPNDc3V1VVeb1eu92elpamaTp0QXJy\n8vjx45OSkrQOIoQQo0aNiuSy3bt393QSAEBPGDFiREJCgslk0joIAKDv+9GPfiTLfAIYANDj\nLBbLxIkTMzIytA4CADHh1VdfnTVrVmFhocvl+utf//rXv/5VCGG32x0Oh8lkMhqNPp/P6/XW\n1tZWV1eHQqHWGzMyMt58802dTsuSjoKwcx6Pp7q6WggxcOBAIURRUdHbb7/97bffqqoaviA5\nOfnKK6+cPn260WjUMigi4HA4HA6HJi8dYR0Y4Y20hgAQ+3Jzc7UdJQ8A6D/OOeccrSMAAPoF\nq9Wan5+vdQoAiBUJCQnvv//+Cy+88N//DWQg4wAAIABJREFU/d8ejyf8YH19fQe7EsqyfN11\n1z322GOJiYnRitk+CsLOHTt2LNwFxsfHf/TRR4sXL25b8wohampqlixZ8uWXXz7++OOa/y+K\nmHLKpWBXn5m+EAAAAAAAAACAKDMajb/4xS/uuuuuDz74YM2aNV9//XVdXd2Jl1mt1tzc3EmT\nJs2cOTNGxlJSEHbO5XKFD44ePbply5YBAwbccMMNo0ePTk5ObmxsLCgoePvttxsbG4uLi595\n5pmnnnpKkiRtA0NzPdcLRvKKlIUAAAAAAAAAAESNzWa78cYbb7zxRiGE0+msqqpqbm4OBAKK\nolgsluTk5BjZ+KwtCsLOud3u8MGhQ4fS0tL+8z//MyEhIfxIcnLy1KlTx48f/+CDD7a0tPzr\nX//asmVLeFPKk9m4ceM333xzsrOlpaXdmBxRFv1esF2UhQAAAAAAAAAAaCI+Pj4+Pl7rFJ2j\nIOxc616DQojbbruttR1slZ6ePmvWrNdee00IsW7duo4LwrFjx55xxhknO3vgwIHTCwttxEg1\neKLWYDSFAAAAAAAAAAAgjIKwc2azOXygKMrJNn6fOHFiuCDctWtXx8+WkJBwYsXYymg0nmpM\naCBme8ET0RQCAAAAAAAAANDtgsHg9u3bv/766/r6+sTExLy8vLFjx2odqnMUhJ2Li4sLH9hs\nNkVR2r0mOTnZaDR6vd7m5ma/36/X66MYEF0QHv6bmpp6mit8e1E1eByaQgCImrKyssbGxpyc\nHIPBoHUWAEAfV1JSIsvykCFDtA4CAOjjvF7vgQMHEhMTMzMztc4CADHhyy+/fPjhhw8ePNj2\nwfPPP/+FF15IS0sLf7lt27ZFixZt3brV4/EMGjRo2rRp99xzT2v3pBVZ25fvFTIyMmRZFkJ4\nPJ4OLmt97y8YDEYjFk5JaWnp2rVry8rKTvkZRo0a1Xvbwbb6zDcCADGroKBg+fLlLS0tWgcB\nAPR9GzZs+Oyzz7ROAQDo+5xO5/Lly7dv3651EACICZs2bZo9e/Zx7aAQYvPmzTNnzmxqahJC\nLF68ePr06Z9++mlzc3MgECgpKXn++ecnT55cUVGhReTvsYKwc3q9PjMzs7S01OPxhBefnXiN\n3+8Pv/2n1+tNJlPUMyIaqNMAAAAAAAAAAIAQwuv1zps3z+/3CyFSU1Pz8/MzMjKam5s3bty4\na9eukpKSF1988bzzznviiSdOvLekpOSee+5ZuXKlJElRD/4dCsKITJgwobS0VAixZcuWadOm\nnXjB3r17Q6GQECI7Ozva4RAVtIMAAAAAAAAAACDs3XffPXbsmBDipptuevLJJ9vuPff6668/\n+uijy5Yt++qrr1RVHTNmzIIFC8aOHSvL8p49e5599tnPP/9869at69evnzRpklb5KQgjctFF\nF61cuVII8e67715++eVms/m4Cz744IPwwTnnnBPtcOiKM844IyUlpUsbEFINAgBOzaRJk/Ly\n8mw2m9ZBAAB9X7ufZO2HPH65ulHPr3AA0HPsdvudd95psVi0DgIA2lu3bp0QYsyYMb/73e/C\nG9W1uuWWW77++ut//OMfVVVVmZmZy5Yta32D6JxzznnzzTcnT568Z8+e9957T8OCkD0IIzJ0\n6NALLrhACFFbW/v73//e5XK1PbtixYotW7YIIUwm0+TJk7WJiMiYTKbU1NQIx8CySx8A4HTY\n7faMjAydjs9jAQB6XFJSUlJSktYpNBAMSUdrjZt2J7y5wfHrpdl3/feIJ5dnhVStYwFA36XT\n6TIyMhITE7UOAgDaKywsFEJce+21x7WDYTfddFP4YO7cucd9fFyv14fP7tixo+djnhTvWEXq\nzjvv3L9/f1VV1c6dO++5555LLrkkPT3d6XQWFBTs27cvfM1dd93Fvx37DKpBAAAAAIg1/oBU\nWmsqPmYqqTQdqjaX1RhC6g92bXF55bIqMdihVUAAAAD0F3V1dUKIkSNHtnu2tWLIzc098Wz4\nrurq6h5L1zkKwkjZ7fYnnnjimWeeOXjwYF1dXXjiaCuj0XjnnXdedtllWsVDN6IaBAAAAIAY\nEQhKR2qMh6rMJZWm4krT0VpjMCR1fMvuIxSEAAAA6HFer1cIcbKBhUajMXzQ7gUGg6H1GbRC\nQdgF6enpzz777Gefffb5558fPny4oaHBZDI5HI7x48dPnTp1wIABWgdEN6AdBAAAAAANhaeG\nFleaiitNh6vMR2qMgWAnjaAQQq+oA5M9Qx2ebIdn3LD0KOQEAABAP2ez2err68PrCE/Uujqw\n3WWCVVVVQghtZ1JSEHaNoiiTJk3ScNNI9ByqQQAAAACIvpAqHa01lFSZD1WaiitNR2pM/kDn\njaAiqwOTvEPTPFmp7uxUz+AUryJ/t/dgqp2CEAAAAD1u4MCB9fX1BQUF+fn5J5794osvwgfr\n1q27+uqrjzu7YcMGIcSwYcN6OGNHKAgBIWgHAQAAACBaQqqoqDeG68CSKvPhKqMvIHd6lyyp\nA5O82Q5P+D+Dkj16RY1CWgAAAKBdEyZMKCws/Pvf/37zzTdnZma2PeXxeF5++WVZlh0Ox4oV\nK6ZOndq2RFy/fv3bb78thLjwwgujHboNCkL0L6Wlpbt27Ro9evTAgQPDj1ANAgB6SEFBwZEj\nR6ZMmRIXF6d1FgBAH7d+/XpZli+++GKtg3wvFAoFg0EhhKIoQpIrGwwllabwMsFDVSaPP4JG\nUBYZdm+2w5Od6s52eAaneAw6GkEA0JjT6Vy7dm1WVtaECRO0zgIAGrv22mtfe+01p9M5ffr0\nhx9+OC8vLy0tzev1FhYWPv300/v27TvrrLMuvPDCF1544eabb87Ly8vJyQmFQnv37t22bZuq\nqkajcfbs2RrmpyBE/+J0Og8cODBo0KDwl7SDAICeU1ZWVlRU1O6UCQAAutehQ4cURdE6xffc\nbs/RGmlfmXK0Ib6i0V5aa/X4O48nSyLN7gvXgdkOz5AUj1EfikJaAEDkvF5vUVGRwWDQOggA\naG/MmDEzZsx49913y8vL582bJ4RQFCX8IbmwO+6449JLL12zZs3+/fs3b968efPmtrcvXLjQ\n4XBEO3QbFITov2gHAQAAAKC7VDfqD1Wbi4+Zio8ZS6pMbl/nbzhIknAk+LIdnqxU91CHJyvV\nYzLQCAIAAKDX+P3vf19VVdW63WDbdvCGG26YPn26EGLp0qXz5s1rvUYIYbVaf/WrX916661R\nTnscCkL0LwaDIT4+fuTIkbSDAICeZrVa7Xa7LHc+Qg0AgNNks9miv4KwrllffMxUUmkK94LN\nnogCpCb4w3VgtsOTleqxGIOd3wMAiBmKotjtdovFonUQAIgJcXFxb7311jvvvLN06dJvv/02\nGAzKsjxmzJjbb799xowZ4WvS09OXLVu2c+fOrVu3ejyeQYMGTZo0KTExUdvkQghJVZngH0Pm\nz58/d+7c0aNHax0k5uzevbu7nopqEAAAAECM6MbfdKKgvllXUmU6VGUO94JOd0SfOR4Q5x04\noCk71T1ysJqd6rGaerwR5Jc+AAAARF8wGGxqarJarXq9XussEWEFIfoXflEEAAAAgAg5XbqS\nKlPxMdOhKnNJlam+OaL3EBKtvsxEZ7bDPSipeXBSS5zJ7/V6bTYby00AAADQhymKEgvrAiNH\nQYj+gmoQAAAAADrW5FZKqswllaaSSlNxpam+OaLPPidaA637CGY7PFaDp6KiwmQyhT867fP5\nTCaT0Wjs4ewAAACAlrZu3SqEGDRoUHp6utZZIkJBiH6BdhAAAAAATtTiVcJ1YLgXrHFG1AjG\nW4Jt9hF0D4gL/PC8Li0tze12NzY2CiESEhLMZnP0t0gEAAAAoim86aDZbF6wYMEtt9wiSZLW\niTpBQYi+j3YQAAAAAMJcXvlQlamkynyo0lRcaapqNERyl9UUzE71DE3zZKW6s1M9yfH+jq/X\n6/V6vT4uLk4IIctyN+QGAAAAegO32/3YY4/97//+7x//+MchQ4ZoHacjFIToy6gGAQAAAPRz\nHr98qMp0qNJUUmUurjRVNhhUtfO7LMZgdqon+//WCKYmdNIItotqEAAAAP3NkCFDDh8+/OWX\nX+bn5y9YsODmm2+O2aWEFITos2gHAQAAAPRDXr98uNp4qMpcXGk6VGmqqDeGImgEzYZQVrgR\nTHVnOzypCb5YfR8DAAAAiF0LFy6sqal58sknXS7Xo48++uGHHz733HODBw/WOlc7KAjRN52s\nHdyxY8eqVaumTZs2fvz4KEcCAPQ3K1asKCwsnDdvnt1u1zoLAKAv8wWk5196s8Flyjrn/xUf\nM5XXG0Ohzu8y6UODUzyt+wim2X0yjSAAoDPV1dUvvfTSuHHjrrnmGq2zAECMmjt37qWXXvrQ\nQw9t3rz5yy+/vOyyyx599NE5c+bE2lJCCkL0QawdBAAAANCH+YNSWY2puNJUUmkqqTSV1Ror\nvrFLku6IOaGDuww6dUiKJyvVne3wDHV40u1eJoACAAAAPWHw4MHLli178803n3zyyZaWlgUL\nFqxevfq5554bNGiQ1tG+R0GIPoVqEAAAAECvoKpqMBgMhUKRbNQXDElltcbiY6bw4NDSGmMw\n1Pmnj/WKOijZE64Ds1LdA5N9shTBsFEAAAAAp02SpDlz5kyaNOmXv/zlxo0bN2/eHF5K+LOf\n/SxGlhJSEKLviKQdTEtLmzhxosPhiEIeAEA/N2LEiISEBJPJpHUQAEDMcblcTqezoqKiuro6\nMTHRbDbrdD/49TykSmU1hkPV5pJKU/ExU2mNyR/s6E0Ea8q5QpJ1ijow6btGMNvhGZjkVWQa\nQQBAd7JYLBMnTszIyNA6CAD0DgMHDly6dOmSJUueeOKJpqamRx555MMPP/zjH/84cOBAraNR\nEKKviHDtYGZmZmZmZk+HAQBACJGbm5ubm6t1CgBAzPF6vfv27YuPj09NTfV4PG63OxQKxcXF\nH2swlVSZwssED1ebfIHOP1asyGpaomugvSkrb+CgpOYU6+dWiyEuLk5RlCh8IwCAfshqtebn\n52udAgB6mRtvvPHSSy/95S9/uWHDhk2bNl122WWPPfbYTTfdpG0qCkL0BUwWBQAAANBbNDU1\nWSwWk8nU0CxvK045UmM9VGWuaIz3+jufNSrLIsPuHZrmyUp1D3V4Uqz1rpaGNqvV9R6PR6fT\nWa3WHv0WYpOqqj6fLxAI1NbW6vX6uLi4SMa3AgAAAFGQkZGxZMmSZcuWPfXUUzU1NQ8//PDq\n1av/+Mc/ariiiYIQvR7tIAAAAIBeJBgMGgwGIcSBCsPfNg7r+GJZEml2b7bDk53qyXa4s1K9\nBl2o9WxTk/+4xYKKooRCoROepl9wuVz19fUGg6G+vt7j8SQnJ6ekpLCYEgAAAD3k9ddfP/HB\n9evXV1VVdXDXbbfd9sYbbxw7duzzzz+fNGnS3r17eyxgJygI0YtRDQIAAADodWRZDgQCBoPh\njHTfiWclSTgSfUMdnqxUd7bDk5XiMRlOWvjJsqyqP9hlMBQK9c9lcz6fr76+3mq1SpJksVgs\nFktdXZ3RaLTb7VpHAwAAQN/06KOPnvjg0qVLI3+G5ubm7ovTZRSE6K1oBwEAAAD0RhaL5ejR\nowaDwR6nS7T6GloMSXGuYen+oWnerFR3VqrHYox0CaDBYKirq9PpdOFSMBQKeb3exMTEnowf\nowKBgF6vl6TvN260WCxer1fDSAAAAEAsoyBEr0Q7CAAAAKCXslqt2dnZJSUliqLMvaA0M0UZ\nEK8zGo2n8FR6vT4lJaW6ujo8SDMYDCYnJ4fnlwIAAADoUS+//HLbL++55x4hxB133DFu3DiN\nEnUNBSF6n9NpB+vr68vLyzMyMpgzAwDoaWVlZY2NjTk5ObxRCwA4TkJCQm5urs/nU9UDiqKc\nzlBQk8mUmZm5f/9+WZaHDh3ab7fcUxTF7/e37Vndbnd8fLyGkQCgT/J6vQcOHEhMTMzMzNQ6\nCwBo7Jprrmn7ZbggnDBhwtSpUzVK1DX9cWcC9GqnuXawuLh4+fLlJSUl3ZUHAICTKSgoWL58\neUtLi9ZBAACxSKfTWSwWvV5/+lsGyrK8efPmL7/8st+2g0IIg8GQmJjY0tLi8/k8Hk9DQ4Pd\nbk9ISNA6FwD0NU6nc/ny5du3b9c6CADgdLGCEL0Jk0UBAAAAACeSJMlqtep0ukAgYLPZBgwY\nYLPZ+nNjCgAAgCi7/fbbhRDZ2dlaB4kUBSF6DdpBAAAAAMDJSJJkMpmEECkpKVpnAQAAQL/z\nm9/8RusIXUNBiN6hu9rBUaNGpaenJyYmdsuzAQDQgUmTJuXl5dlsNq2DAAD6vmnTpmkdAQDQ\nL9jt9jvvvNNisWgdBABwuigI0b9YLBb+BgMAiA673W6327VOAQDoF5KSkrSOAADoF3Q6XUZG\nhtYpACC2BIPB7du3f/311/X19YmJiXl5eWPHjtU6VOcoCAEAAAAAAAAAAIAu+/LLLx9++OGD\nBw+2ffD8889/4YUX0tLSwl9u27Zt0aJFW7du9Xg8gwYNmjZt2j333BMXF6dF3u/J2r48AAAA\nAAAAAAAA0Ots2rRp9uzZx7WDQojNmzfPnDmzqalJCLF48eLp06d/+umnzc3NgUCgpKTk+eef\nnzx5ckVFhRaRv8cKQgAAAAAAAAAAAKALvF7vvHnz/H6/ECI1NTU/Pz8jI6O5uXnjxo27du0q\nKSl58cUXzzvvvCeeeOLEe0tKSu65556VK1dKkhT14N+hIAQAAAAAAAAAAAC64N133z127JgQ\n4qabbnryySf1en3rqddff/3RRx9dtmzZV199parqmDFjFixYMHbsWFmW9+zZ8+yzz37++edb\nt25dv379pEmTtMrPiFEAAAAAAAAAAACgC9atWyeEGDNmzO9+97u27aAQ4pZbbpk5c2ZVVdXm\nzZszMzOXLVt24YUXxsfHx8XFnXPOOW+++ebIkSOFEO+995420YUQFITob4qLi5cvX15SUqJ1\nEABA31dQULB8+fLm5matgwAA+r7169d/9tlnWqcAAPR9Tqdz+fLl27Zt0zoIAGivsLBQCHHt\ntdfKcjtd20033RQ+mDt3rs1ma3tKr9eHz+7YsaPnY54UBSH6l/r6+qKiovr6eq2DAAD6vrKy\nsqKiovAkegAAetShQ4cOHz6sdQoAQN/n9XqLiorKy8u1DgIA2qurqxNChNcCnmjUqFHhg9zc\n3BPPhu+qrq7usXSdoyAEAAAAAAAAAAAAusDr9QohTCZTu2eNRmP4oN0LDAZD6zNohYIQ/YvR\naLTb7a3/ZAIA0HOsVqvdbm93ygQAAN3LZrMdN7YIAICeoCiK3W63WCxaBwEA7YX/Bh5eR3ii\n1tWB7S4TrKqqEkIkJib2WLrO6TR8bSD6cnNz213PCwBAt5s8efLkyZO1TgEA6BdmzpypbYDW\nAUqnZvfu3d2VBADQowYMGDBv3jytUwBATBg4cGB9fX1BQUF+fv6JZ7/44ovwwbp1666++urj\nzm7YsEEIMWzYsB7O2BEKQgAAAAAA0AWnWQdG8oRUhgAAAIhxEyZMKCws/Pvf/37zzTdnZma2\nPeXxeF5++WVZlh0Ox4oVK6ZOndq2RFy/fv3bb78thLjwwgujHboNCkIAAAAAANC5bu8FI3wt\nykIAAADEoGuvvfa1115zOp3Tp09/+OGH8/Ly0tLSvF5vYWHh008/vW/fvrPOOuvCCy984YUX\nbr755ry8vJycnFAotHfv3m3btqmqajQaZ8+erWF+CkIAAAAAAHBS0ewFOw1AWQgAAIAYMWbM\nmBkzZrz77rvl5eXh8cuKogSDwdYL7rjjjksvvXTNmjX79+/fvHnz5s2b296+cOFCh8MR7dBt\nUBACAAAAAIDjad4LtouyEAAAALHj97//fVVVVet2g23bwRtuuGH69OlCiKVLl86bN6/1GiGE\n1Wr91a9+deutt0Y57XEoCLtAVdUtW7Zs2rRp//799fX1wWDQarUOHDgwNzf38ssvT01N1Tog\nAAAAAACnJTZ7wXa1RqUpBAAAgCbi4uLeeuutd955Z+nSpd9++20wGJRlecyYMbfffvuMGTPC\n16Snpy9btmznzp1bt271eDyDBg2aNGlSYmKitsmFEJKqqlpn6B0qKiqeeeaZgwcPtntWUZQb\nb7xx5syZp/kq8+fPnzt37ujRo0/zeQAAAAAAsS+mmq1eVA12YPfu3X3jGwEAAEDvEgwGm5qa\nrFarXq/XOktEWEEYkZqamvnz5zc2NgohDAbDeeedl5mZabFYampqtm3bVlFREQwG//a3v+l0\nuvCKUcSsHTt2rFq1atq0aePHj9c6CwCgj1uxYkVhYeG8efPsdrvWWQAAfdzrr7+uKMqcOXNO\n7fa+1Kj1pe8FAGJQdXX1Sy+9NG7cuGuuuUbrLAAQWxRFiYV1gZGjIIzI4sWLw+3giBEjFixY\n0PZtvltvvfXVV19dtWqVEOKtt9664oorLBaLZkEBAAAAAIgYdRoAAADQP8laB+gF6uvrt27d\nKoQwGAyPPfbYcYsAZFm+7bbb0tLShBAej+df//qXNikBAAAAAIjYqFGjaAcBAACA0+d2u99+\n++21a9dqHaRrWEHYuebm5osvvri5uTkzMzM+Pv7EC2RZHj169LFjx4QQtbW1UQ+ILkhJSTn7\n7LOTk5O1DgIA6Puys7MNBoPRaNQ6CACg7xs+fLiiKBFeTC8IADhlJpPp7LPPHjRokNZBACBW\n/POf//zFL35RU1Nz4403Xnnlla2PNzU1nXXWWfHx8QkJCQkJCeGD475MSEiYOHGiVskpCDs3\naNCgBx98sONr/H5/+CAuLq7nE+HUDR48ePDgwVqnAAD0C+PHj2fLWwBAdFxwwQWRXEY1CAA4\nTTab7d/+7d+0TgEAsWLNmjV33nlnMBgUQhw9erTtKVVVPR6Px+Opqqrq4BmOuyuaKAi7QXNz\n886dO4UQiqLk5uZqHQcAAAAAgB+gGgQAAAC6l9Pp/MUvfhFuB4cNGzZjxoy2ZyVJ0ihXpCgI\nT9fhw4cXLVrU1NQkhPjJT35y3A6FAAAAAABoi3YQAAAA6HbvvPNOfX29EGLq1KmLFi0ymUxt\nz9pstrlz577xxhsjRoz4xz/+0dLS4nQ6nU5nY2Oj0+lctWrVp59+qlHw71AQdllVVdXq1auD\nwWBTU1NJScnhw4eFEAaDYdasWddee63W6QAAAAAA+A7VIAAAANBD1q9fL4RITk5+/vnnj2sH\nwx555JGVK1fu3bt3/fr1P/3pT9ueKi0tpSDsfWpqat57773WLy0WyxVXXDFz5sz4+HgNUwEA\nAAAA0IpqEAAAAOhRu3fvFkJcddVVZrO53QtsNtvll1++cuXKDz744LiCMBZQEJ4ul8v13nvv\nbdu27ac//Wl+fn6n12/cuPGbb7452dnS0tJuTQcAAAAA6HdoBwEAAICe1tDQIIQYOnRoB9cM\nHz5cCPHtt99GKVNXUBB22ZlnnvnBBx+EQqHGxsbKysrt27evXr366NGjixYtKioqmjdvXse3\njxgxIiUl5WRn9+zZ09158QP19fXl5eUZGRnsFgkA6GllZWWNjY05OTkGg0HrLACAPq6kpESW\n5SFDhlANAgB6lNfrPXDgQGJiYmZmptZZAEBjsix3ek149GhdXV3Px+kyCsJTJMuy3W632+0j\nR4688sorH3nkkaqqqnXr1v3oRz+aNGlSBzc6HA6Hw3Gys1artQfC4nvFxcWrVq2aNm0aBSEA\noKcVFBQUFhbOmzePghAA0NM2bNigKMrvfvc7rYMAAPo4p9O5fPnycePGURACgN1ur6ioKCkp\n6eCaw4cPCyEsFku0QnVB5/UmOpWSknLnnXeGj1evXq1tGAAAAABAf5OamtrBR1EBAAAAdLsz\nzzxTCPHRRx95vd52L/D7/WvWrBFCDBw4MKrJIkNB2D3Gjh0bPjh48GAwGNQ2DAAAAACg/2Cs\nKAAAABB94XGSVVVVCxcuDIVCJ17w1FNPVVRUCCEuvPDCaIeLACNGO/fNN98cPHiwoaHhxz/+\ncbgQPpHBYJAkSVVVVVX9fr+iKFEOiQjl5OTMmTOng20gAQDoLhdeeOG4cePi4uK0DgIA6LNa\nq8Frr71WkiRtwwAA+oOEhIQ5c+bYbDatgwCA9mbNmvVf//VfNTU1S5cuLSkpue+++/Ly8oxG\no6qq33zzzaJFi9auXSuEUBRlzpw5WodtBwVh57Zu3bpq1SohhMvlOllBWFFRoaqqEMJoNIb3\nnERsio+Pj4+P1zoFAKBfSE1NTU1N1TqFxnbv3h0+YHULAHS7tj9ahwwZomESAED/YTAYhg4d\nqnUKAIgJZrP5ueeemzt3rqqqW7Zs2bJliyzL8fHxLpfL5/O1XvbAAw9kZWVpF/OkKAg7d/bZ\nZ4cLwk2bNl133XXtvtP3ySefhA9O1iACAAD0ba1dIACgp/GpCwAAACAWXHbZZf/zP//z4IMP\ntrS0CCFCoVBDQ0PbC37+85/ff//9J97ocDjGjBkTpZQnQUHYuXHjxg0ZMuTw4cMul+sPf/jD\nwoULBwwY0PaCTz75ZOXKleHjK664QouMAAAA0UMXCAAaoh0EAAAAYsfVV1997rnnvvLKK2vX\nrj148GD4QZvNdtFFF919993jxo1r966bbrrppptuimLMdkjhwZjo2IEDBx555BGv1yuEMBgM\nEyZMGDJkiNForK+v37lz5+HDh8OXnXfeeQsXLjydF5o/f/7cuXNHjx7dDaEBAMAp6bT96j/v\nzHZjEdh//tAAoEu6+pOWH6cAAABAzPJ4PHV1dUaj0W63y7KsdZxOsIIwIsOGDXv66aefffbZ\niooKn8/3xRdffPHFF8ddc/nll991112axAMAANEUyZu5wWBw8ODBqqrqdDqLxSJJUhSCnZrT\nbwFDoVAwGJQkSVGUWP5OAaBXoxoEAAAAYpzJZMrIyNA6RaQoCCOVk5Pz8ssvf/755wUFBQcO\nHHA6nT6fz2KxpKWlnXnmmfn5+ey2GTfsAAAgAElEQVQJDwAAwrxeb1VVVVVVlSzLfr8/Pj4+\nLi4uwg+Onf77v1Ge/+nxeLxeb1NTk6qqCQkJZrNZr9dHMwAA9Ae0gwAAAAC6FwVhFyiKcskl\nl1xyySVaB8GpKy4u3rFjxznnnJOdna11FgBA3xQMBquqqiwWy549eyorK/Py8lpaWhRFsVqt\nkdzeu7b38/l81dXVFoslLi4u/KWqqnFxcYqiaB0NAPqOSNrBVatWybI8derUKOQBAPRnTqdz\n7dq1WVlZEyZM0DoLAOC0xPoIVKB71dfXFxUV1dfXax0EANBn+f1+nU6nKEp1dXVJSUkgEDAa\njX6/v09u/Oz1eo1GY2sdqNPp3G53eNvmVqqq+v3+5uZmj8ejRUYA6MVGjRoV4drBvXv37t+/\nv6fzAADg9XqLiorKy8u1DgIAOF2sIAQAAOhmx+3D14e35VNV9bjFgrIst61CA4GAy+VyOp2K\novj9/oyMjKSkJNYXAkAkGCsKAAAAoOdQEKJ/0el0ZrNZp+P/+QCAnqIoSiAQEELodDqj0ShJ\nkt/vN5lMva4m9AUkf1D2+uVAULh9SjAkub1yMCR5/LIvIPkCktcvu9xxTS5VkhS3TxdUJa9f\n8frVkDAEQ/pASHJ55WBQdXmVoCr9v2nOiaNdtbW1siwnJydr/c0BQKzrajtoMpn4NQcAEAWy\nLLPvOAD0Dfz+gP5l7NixY8eO1ToFAKAv0+v1iYmJTqczLy/v/PPPDwQCXq/Xbrf39Ot6/HIw\nJLm8sqpKLR45GJK8fjlc8nn8ciAoPD4lGBIurxJShcen+IOS1y/5ArI/KLm9siqkFo8SUkVr\nC9i98bx+SZIkm81WWlpqt9tZRAgAJ3NqCwfvvffebk8CAMCJkpKSHn74Ya1TAAC6AQUhAABA\nN7NareGJmqqq6vV6u91+4gdsXd91cnIoJLl9ciAo+QJyuK7z+OTAd02e5PbKgZDk88tev+QP\nSuEW0O1VgiHh9in+oPD5ZX9Q9gVifXmiNyAJIWRZliQpGAxSEAJAuxgrCgAAACA6KAgBAAA6\n1+JVQiHh9smBoBxeeBcISm6fHFIll/e7/w6GJI9P9gWkQFB2++Rwh/d//y15fLI/KPn8kjcg\nB4Kx3ud1lU5RjbqQUa/qFNVkCCmyajEEJUmVQi1Gg2LUBTOTdEKIQCCQmprKEDwAaBftIAAA\nAICo4d0ZAACAH3jug0HVjXpfQPb6pdYWUOtQ3UynhIw61agP6RRhNgRlWbUYQ4qkmgwhvU41\n6lSDLqRTVLMxJEuqxRjUycJkCOkV1aALtT1lNYZkWTUbQid7oebmZqfTaTKZsrKyfD6/0+nM\nysqS5W6eXwoAvR3VIAAAAIAooyAEAAD4jtfr9Xg8FXXGYw1GrbP8gFEf0smqxRiSJGE1BeVw\nk6eoBl3IqFf1imoyhGRJtZqCkiTMhqBOVk0G1aALtT3l8bg9LTUmo86kDwUCgbi4uLi4uJ7u\n6qxWqyzLPp+vqqoqLS0tKyvLZrP16CsCQK9DOwgAAAAg+igIAQAAhBCisbGxpKTEZDIpUqYQ\nptN5KvN3nVxIllSzMaQLN3k6VaeETIaQThZmY1CRVLMxpMiqUR8y6lS9TjXpQ8p3LaBqMQZ1\nijDqQ3olZNCpp//dBQKBCmdFcqI13AgaDAaXyyXLclxc3Ok/eQckSbJYLGazefjw4YqiSFJf\nW4sJAKeJdhAAAACAJigIAQD4/+zdfXhcdZ3//885c+acMzeZm9xMbtrQpNBCidS2CFuhgltR\n8apWRPwprhJRqa6XLF4udgVhZdebtShei65+F3avVVBUxBugtsCiILJAQYoVaNNSm5u2Kcnk\nPpnMnLk55/z+OCXENs195mRmno/Ly2tuzsx5JVxXks7rvD8fQBiG0dbWVl5erijK8urRoM9S\npIyuKWV+SZLsgGZ55ONDe17F0r2W4hG61/R4hF81PbLQVVPx2Jr3+NCe21/NBHK5nKIo4+cF\nVVXN5XK2beehtJMkiX0HAQAAAAAAFg8+qUFp2b179/bt2zdv3rxu3Tq3swAAFhHDMHRdd0qs\n/299mxDCNE1FUcLh8Kzf83//938PHjz40Y9+NBQKzVvQ2cpPEQgAcMu3vvUtRVE+97nPuR0E\nAFDkenp6vve9761du/a9732v21kAAHOysLvOAAAAFIST+7Miq9MURclms7b9+nRjNptlzU8A\nAAAAAIDSREEIAAAgvF5vOp0+uT9zMdL88nq95eXlo6Oj2Ww2l8ul02ld130+n9u5AAAAAAAA\n4AKWGEVpqaqqOvfccysrK90OAgBYXAKBQE1NTU9PTyAQME0zl8vpuq7r+lzec+nSpV6vV1XV\n+QophFi1atWsX2vb9ujoaCqVsm3b6/UGg0Gv1zuXMC0tLXN5OQBgHq1evbqYrmsBACxauq6f\ne+659fX1bgcBAMyVNP5Kebhu69atzc3NTU1NbgcBAKDkWJY1PDycTqfb2to8Hs/YloT5NJf+\nbzFraWkp1i8NAAAAAACgEDFBCAAAIIQQsixHIhEhRH9//0Kfq9TaslL7egEAAAAAABY5CkIA\nAIAFRDcGAAAAAACAxYaCEAAAYH7QBQIAAAAAAKAgUBACAADMGF0gAAAAAAAAChcFIQAAwBSo\nAwEAAAAAAFBMKAhRWgYGBo4dO1ZXVxeNRt3OAgBYpOarDjx69OjQ0NCKFStUVZ2XNwQA4FQO\nHDggy/KKFSvcDgIAKHLpdPovf/lLJBJZsmSJ21kAAHMiux0AyKvW1tb77ruvra3N7SAAgOL3\n7LPP3nfffaOjo24HAQAUv+3bt+/YscPtFACA4jc8PHzfffc9//zzbgcBAMwVBSEAAAAAAAAA\nAABQQigIAQAAAAAAAAAAgBLCHoQoLStWrLjqqquqqqrcDgIAKH5vectb1q5dGwwG3Q4CACh+\nH/jAByRJcjsFAKD4hcPhq666qqyszO0gAIC5oiBEaQmFQqFQyO0UAICSEIvFYrGY2ykAACVh\n2bJlbkcAAJQEVVWXL1/udgoAwDxgiVEAAAAAAAAAAACghFAQAgAAAAAAAAAAACWEghAAAAAA\nAAAAAAAoIRSEAAAAAAAAAAAAQAlR3A4AAAAAAAAAAMDiks1mTdNUFEVR+BQdQBHiRxtKS2tr\n6+7du9/0pjc1Nja6nQUAUOSeffbZw4cPv+td7woGg25nAQAUue3bt8uyvGnTJreDAACK3PDw\n8COPPNLQ0HDeeee5nWUB5XK5gYGBzs5OSZIsy1q2bFkkEpHl11fja2lpcW6sWrXKpYwAMFcU\nhCgtAwMDe/fuPf300ykIAQAL7ejRo3v37r3kkkvcDgIAKH4HDhxguAEAkAfpdHrv3r2qqrod\nZAHt27cvkUiMjo7qui6EsG37T3/6UyQS8fv94w9z5gsTiYSmaV6v16WwADB7/PsBAAAAAAAA\nADCFdDrd39+fSCQGBweHhobKysrGD9UtfmNjf5PL5XJDQ0NjK8FIkuTz+fr6+nRdz1merCmn\n0lJi1OjqSWqqrGmHM5nM8uXLQ6HQQmYHgPlHQYjSoiiKz+fj0loAQB6oqurz+SRJcjsIAKD4\n6brOP3MAAAsqnU63tLRkMhlFUSzLOnLkSE1NTWVlpSthTq76LMuSJGnCf38l07JlS8m0nDW1\nTFZKZWTTklIZT9aU0lkpnZVNSxo1PDlLymRlIytlsvZQYqmQlHTOk8nJ2ZyUyiqmKdK5E3/V\nVodTb/2bgVwu19raetZZZzkThwBQKCTbtt3OgNdt3bq1ubm5qanJ7SAAAAAAAAAAisc05+dO\nZWRkJJVKjV9cNJFIVFdXL8TqmqYlGVk5nZVyppTKeExLSqXlTE7KmrJT7yXTcjYnZXJyOiun\ns1YiJRnpnCm0bM5jCU8yreRMkc7KmZycNRfwks1oIH3X9X1CiJGRkVgsFo1GF+5cADDvuMAQ\nAAAAAAAAAHBKtm2bpnlCF6goSi6XG3vQyMqmJSUNOWdJRkZO52TTlJJpOWdJqYyczclZU0pl\nZNOUUhlPJidlcpLhtH0ZT86U0lnZyEqmKY2mPW58ibORNY9HlSTmcAAUHgpCAAAAAAAAACha\nhmHkcrlMJuP1escvwmnZInW8nHutq0t7xqb3sqaUSntMS0pl5ExOGk1WpLLOs0rOlLOmnExL\nQlJSaU/OktLZQtqM8FQ0r6XItl+3PJKlKjlZZBWPpSlZv+4N+iTVa3s9tk+zclnDI1K6Kute\nU4gyIYSz8qrb8QFgZvixBQAAAAAAAABFyDTN/v7+zs7O/cfKf/Zko5CUdFYxLTmdlVIZ2bKL\nYcd0v5rzeGzVY2peS/HYmpLRVI9fE5rT56mmx2P7VMvrsb2K5Vctj2z7Ncur2F6PpauvNYKy\nrXutE97ZNE3Lsjwejyz/Vf2Zy+VeffVVTdO8Xm8u50smk1VVVcFgMI9fNADMAwpCAAAAAAAA\nAChCg4ODPT09VVVV+7r8R/tDbsc5zqvYqsfSVcsj2wHdUmRb9Vq69/W7mtdSFcur2AHNkmWn\n3rNUxdZVy+uxddX0emzVa+tec2R40LKs8QVeMpmsqKjQNG3uOT0ej8czwXqniqLU1NQYhmGa\npqIoVVVV4XD4hBIRABY/CkIAAAAAAAAAKDaWZR0+fLiyslKSJM071x3yfKqleGzdayoeS1Us\nn2p7FeFTTa/H1ry26rUU2Q7opke2Na+le23FY/s105nMU72212P5Xpvem/5JV61aNfkBAwMD\nx44di0QiztKphmH4fL6qqqr8LPjp7Ds4ftVWACggFIQAAAAAAAAAUGwsyxJCOJNt0aC1rDKh\nq6YssgGf4teF8tpKm6piaV7LI9tB3Vmi01IVS/HYAWfhTdVSPZZXmWu/OGXVNzvhcDiXy3V2\ndqqqallWRUVFJBLJ23aAVIMAChoF4cx0dnbu3Lnz5Zdf7unpMQyjrKzs9NNPX79+/dve9rYJ\n582x2OzevXv79u2bN29et26d21kAAEXul7/85UsvvXTddddFo1G3swAAity3vvUtRVE+97nP\nuR0EALCIeDyempqadDqtqupZ9Znr331QCJFIJKqrq71e7+zes7+//6c//emqVas2btwoFqz2\nmz5ZlquqqsrKyrLZrCzLuq7zIS0ATBMF4Qz84he/uOeee0zTHHtkYGDg+eeff/755++///4v\nf/nL1dXVLsYDAAAAAAAAAIckScFgMB6Ph0IhZ8DOMIzpD9hNWP719PRUVlYuXbrU9WpwPF3X\ndV13OwUAFBgKwul64IEH7r77buf2mjVrVq9e7fP54vH4//3f//X09Bw9evSGG264/fbby8rK\n3M0JAAAAAAAAAEKIsrKy5cuXJxKJrq4uWZbD4bDP53MWxlxUDR8AIP8oCKelq6vrRz/6kRDC\n4/HccMMN559//thTH/7wh7/5zW8+99xzvb29P/zhD6+99lr3YmJqVVVV5557bmVlpdtBAADF\nr7GxUVVVTdPcDgIAKH6rV69mRTUAwITKysrKyspisZgsy3PfM0/X9XPPPbe+vn5esgEAXCTZ\n9lw3mC0Fd9xxx44dO4QQV1555ZVXXnnCs4ZhXHPNNUNDQ7Is/+AHP5jLPkNbt25tbm5uamqa\nU1wAAAAAAAAAAADgFGS3AxQA0zSffPJJIYSiKO95z3tOPkDX9UsvvVQIYVnW73//+zzHAwAA\nAAAAAAAAAKaPgnBqBw8eHB4eFkKceeaZwWBwwmPWrl3r3Hj++efzlwwAAAAAAAAAAACYIQrC\nqR06dMi5sXLlylMdc8YZZzhLeI8dDAAAAAAAAAAAACxCFIRT6+7udm7EYrFTHaOqajgcFkIk\nk8mRkZE8JQMAAAAAAAAAAABmiIJwaoODg86NSCQyyWFjz44dDwAAAAAAAAAAACw2FIRTMwzD\nuaGq6iSHjT07djwWoeHh4dbWVqY8AQB5EI/HW1tbs9ms20EAAMWvo6Pj8OHDbqcAABS/TCbT\n2tra09PjdhAAwFwpbgcoAKZpOjcUZbJvl9frPeH4CT333HMtLS2nevbYsWMzD4gZOHjw4Pbt\n2zdv3rxu3Tq3swAAityTTz750ksvXXfdddFo1O0sAIAid9999ymK8rnPfc7tIACAIjc0NHT3\n3XevXbv2ve99r9tZAABzQkE4NY/H49zI5XKTHJbJZE44fkLV1dWTPPvMM8/MMB0AAAAAAAAA\nAAAwAxSEU/P5fM6NsQpwQmPP+v3+SQ5btmzZsmXLTvXsL37xi5kHBAAAAAAAAAAAAKaLgnBq\nY8uCDQwMTHJYf3+/cyMSicz6XNdcc01dXd2sX44prVix4qqrrqqqqnI7CACg+L3lLW9Zu3Zt\nMBh0OwgAoPh94AMfkCTJ7RQAgOIXDoevuuqqsrIyt4MAAOaKgnBqtbW1zo3u7u5THZNMJkdG\nRoQQoVAoEAjM+lwrVqyY9WsxHaFQKBQKuZ0CAFASYrFYLBZzOwUAoCRMslANAADzSFXV5cuX\nu50CADAPZLcDFIAzzjjDubF///5THTP21MqVK/ORCQAAAAAAAAAAAJgVCsKpLV++3FmR8uDB\ng6daZfTZZ591bqxfvz5/yQAAAAAAAAAAAIAZoiCcmiRJb33rW4UQlmX9+te/PvmAvr6+xx57\nTAihadqGDRvyHA8AAAAAAAAAAACYPgrCadm8ebOzs+ADDzzwhz/8YfxTIyMj27ZtS6fTQoj3\nv//9fr/fnYgAAAAAAAAAAADANEi2bbudoTA8/vjj//7v/+58u1avXr169Wqfz9fZ2fnUU08N\nDQ0JIVasWLFt2zZFUdxOCgAAAAAAAAAAAJwSBeEMPProo3fccUcmkzn5qdWrV99www3OlCEA\nAAAAAAAAAACwaFEQzkxPT8+OHTv27NnT3d2dyWTC4fCZZ5558cUXr1+/3u1oAAAAAAAAAAAA\nwNQoCAEAAAAAAAAAAIASIrsdAAAAAAAAAAAAAED+UBACAAAAAAAAAAAAJYSCEAAAAAAAAAAA\nACghFIQAAAAAAAAAAABACaEgBAAAAAAAAAAAAEoIBSEAAAAAAAAAAABQQigIAQAAAAAAAAAA\ngBJCQQgAAAAAAAAAAACUEApCAAAAAAAAAAAAoIRQEAIAAAAAAAAAAAAlhIIQAAAAAAAAAAAA\nKCEUhIvL1q1b9+7d63YKAAWgp6fnlltueeCBB9wOAgAofs8999wtt9zy4osvuh0EAFD8fv7z\nn99yyy3Dw8NuBwEAFL9t27Z997vfdTsF4BoKQgAAAAAAAAAAAKCEUBACAAAAAAAAAAAAJUSy\nbdvtDHjd1q1bm5ubm5qa3A4CYLEzTXN4eFhV1UAg4HYWAECRS6fTyWQyEAioqup2FgBAkUsk\nEtlsNhwOyzIXtQMAFtbg4KAkSeFw2O0ggDsUtwMAAGbD4/FEo1G3UwAASoKmaZqmuZ0CAFAS\ngsGg2xEAAKUiEom4HQFwE1djAQAAAAAAAAAAACWEghAAAAAAAAAAAAAoIRSEAAAAAAAAAAAA\nQAlhD8IZO3DgwG9/+9uXXnqpr6/P6/VWVFScfvrpb3/725uamtyOBgAAAAAAAAAAAEyBgnAG\ncrncf/3Xfz388MO2bTuPpNPpRCLR0dHx2GOPvetd7/r0pz8tSZK7IQEAAAAAAAAAAIBJUBBO\nl23bt99++xNPPCGE0HV9w4YNjY2N6XR63759u3fvtm37oYceikQiV155pdtJAZSEwcHBBx98\n8IwzzrjgggvczgIAKHL79+9/7rnnNmzYsHz5crezAACK3BNPPNHR0XHFFVf4/X63swAAity9\n996radpll13mdhDAHRSE0/W73/3OaQeXL19+0003VVZWjj31wgsvfP3rX89kMvfdd9+ll14a\njUbdiwkgf1paWlatWuXW2bPZbGtrazgcdisAAKB0DA8Pt7a2rlmzxu0gAIDi193d3dramsvl\n3A4CACh+7e3tXI+CUkZBOC2ZTObHP/6xEMLv9//zP/9zeXn5+GfXrVt3xRVXtLS01NfXJxIJ\nCkKgdLS0tAghXKwJAQAAAAAAAACYKQrCadm9e3d/f78QYvPmzSe0g44PfehDeQ8FYLFwakKR\n36ZQUZS6urpIJJK3MwIASlYgEKirq/P5fG4HAQAUv2g0WldX5/F43A4CACh+NTU1uq67nQJw\nDQXhtDz11FPOjYsvvtjdJAAWs3wOFEaj0S1btuThRAAANDU1NTU1uZ0CAFAS3v72t7sdAQBQ\nKpqbm92OALiJgnBa9u/fL4SIRqNLlixxHkkkEvF4PJ1OR6PRmpoaV9MBWFxcGSicUjqdNgzD\ntm2v1+v3+yVJcjsRAAAAAAAAAMAdFIRTMwyjp6dHCLF06VIhxN69e3/2s5+9+OKLtm07B1RW\nVr7zne+87LLLNE1zMyiARWbxNIVDQ0NtbW26rkuSlE6na2pqKisrZVl2NxUAAAAAAAAAwBUU\nhFPr6upyusBQKPTQQw/dcccdlmWNP6C3t/eee+555plnbrnlFvYDA3CyfC49ejLDMNra2srL\nyxVFEUIEg8Genh5VVfl5BQAAAAAAAACliYJwaslk0rnR2dm5a9eu8vLyD3/4w01NTZWVlUND\nQ88+++zPfvazoaGh1tbWW2+99Wtf+9rkC/d1d3f39/ef6tnR0dF5Tg9g0XBroNAwDJ/P57SD\nQghJkgKBgGEY+cwAAAAAAAAAAFg8KAinlkqlnBvt7e01NTXf/OY3w+Gw80hlZeWmTZvWrVv3\n+c9/fnR09OWXX961a9eb3/zmSd7twIEDf/7zn0/17CTdIYCikeeBwrH1kMfIsnzygwAAAAAA\nAACAEkFBOLXxH6N/4hOfGGsHx9TW1n7wgx/8n//5HyHE7373u8kLwosuuuiiiy461bNHjhyZ\nW1gABWOOA4WWZaXTaUVRvF7v5Ed6vd50Oh0MBsfmm1OplN/vn8VJAQClKZfLZbNZVVU9Ho/b\nWQAARS6TyZim6Wyg7nYWAECRMwxDkiRN09wOArhDdjtAAfD5fM4Nj8fzpje9acJjNmzY4NzY\nt29fnmIBKBYtr5nRq/r6+rZt27Zz584pjwwEAjU1NYODg5lMJpvNjoyMhEKhUCg027wAgJLz\nwgsvbNu2be/evW4HAQAUv/vvv3/btm0jIyNuBwEAFL/bb7/9zjvvdDsF4BomCKcWDAadG2Vl\nZae6aLqyslLTtHQ6nUgkstnslAM9AHCyBdqkUJKkyspKVVUNw7BtOxgMlpWVqao6j6cAAAAA\nAAAAABQQCsKp1dXVybJsWZZhGJMcpqpqOp0WQpimSUEIYHLpdDqbzdq27fF4dF2X5b+a5573\nTQplWY5EIvP1bouKbdsjIyPOj19VVcvKyk74ZgIAAAAAAAAATkBBODWv17tkyZIjR44YhhGP\nx2Ox2MnHZLPZ0dFR52Bd1/OeEUAhSSaT/f39qqrKsuzs6hQIBBTlxB/Ikw8UBgKBSy65pLq6\nesHjLmK2bff09MTjcWctaMMwKioqYrEYHSEAzK/6+vpLLrmkpqbG7SAAgOK3evXquro6toMC\nAOTBxRdfzKgPShkF4bScd955R44cEULs2rVr8+bNJx9w4MABy7KEEI2NjfkOB6CgZLPZvr6+\nYDAoSZIQQlEUwzBkWS4rKzvVSyZsCv1+/9jupyUrkUh0d3eXl5c730yfz9ff36/rerGOSwKA\nW2pra2tra91OAQAoCWeddZbbEQAApWL9+vVuRwDcxIzFtFx00UXOjV//+tepVOrkAx588EHn\nxpve9Kb8xQJQgEzTVBTFKbQcqqqapmnb9pSvbXnNQgYsJJlMRtf18d9Mn8/nLDcKAAAAAAAA\nADgVCsJpWb58+YUXXiiE6Ovr+8Y3vpFMJsc/+8tf/nLXrl1CCF3XL730UnciAiglNIWnYtv2\n+L4QAAAAAAAAAHAylhidri1bthw8eDAej//pT3/6zGc+89a3vrW2tnZ4ePjZZ5995ZVXnGM+\n9alPsa4dgMkpipLL5SzLGtsnL5PJ+P3+2dVak+9TWPQ0TUulUuO/e6lUqqKiwt1UAAAAAAAA\nALDIURBOVzQa/cpXvnLrrbceOnSov7//V7/61fhnNU3bsmXL2972NrfiASgUiqJUVFT09fWp\nqipJkmmafr/f7/fP8W1LsykMBAJ1dXXHjh3z+XxCCMMwYrHYJLs5AgAAAAAAAAAEBeGM1NbW\nfutb33riiSeefPLJjo6OwcFBXderq6vXrVu3adOm8vJytwMCKAx+v9/r9WYyGdu2PR6Ppmlj\n04RzV1JNoSRJFRUVuq47+w6qqhoMBlliFAAAAAAAAAAmR0E4Mx6PZ+PGjRs3bnQ7CIDC5vV6\nvV7vXN7BMIxDhw5FIpElS5ZMeECJNIWSJAWDwWAw6HYQAChm8Xj8yJEjDQ0NLOMMAFhohw4d\nGhwcPOecc1RVdTsLAKDI7dmzR1GUN7zhDW4HAdwxbzMrAIB8SiaTv//97w8cODDlkS2vyUMq\nAEBRam9v3759e2dnp9tBAADFb/fu3du3bzcMw+0gAIDi98gjjzz++ONupwBcwwQhAJSK8R1h\ncY8VAgAAAAAAAAAmQUEIAKVodguQ2rZtmqYsy/O4aeLiOR0AAAAAAAAAlAjJtm23M+B1W7du\nbW5ubmpqcjsIgKnd8YtXu4e8jTGjIWZUhrJ5PrtpmqOjo16v1+fzzdd7Tl4WjoyMJBKJrq6u\n6upqTdMikYjH45mvU59seHh4dHTUOZ2u6+FweEFPBwCYRDqdTiaTgUCA7aAAAAstkUhks9lw\nOMxlggCAhTY4OChJUjgcdjsI4A4mCAFglp7aH9p3JODcDupmQ8xoiBmN1UZDzIiFMwt9do/H\nEwqF5vc9JxkrHBkZaW1tDYfDsVgsl8sNDg5allVZWSlJ0vxmGDtdW1vb2Om6urpM01y40wEA\nJqdpmqZpbqcAAJSEYDDodgQAQKmIRCJuRwDcREEIALNh26Ijro/dTRielw8HXj58vC/0a8f7\nwoaY0RgzYpGMXFDF1gm7FUfgz3IAACAASURBVNq2nUgkwuGwMziiKEo4HD527FgwGJzH+cUx\neT4dAAAAAAAAAJQaCkIAmI2BEeGRT7lEczLt2XckMDZf6FOtZVVGQ/XxyrA2kp5ksRxn4z1J\nkmRZXgwDcy0tLZZldXZ2lpWVCSGWLVsmhJAkyev15nI5IUQulzNNU1GU+VoC1DTNrq6uWCw2\n9sj40wEAAAAAAAAA5oiCEABmozwkvvepg/0jSnuPrz2uO/8bSEz8QzWVkfd3+vd3+p27mtc6\nrSrdUJVy+sKllRlZOt41ptNpwzCGh4eFEOFw2Ofzeb3e/HxFk5AkqayszLIsWZY7OjqcB0dH\nR5cuXdrb23vkyBFJkmzbXrZsWSQSmftOIbIsV1dX53I5RXn9+2maJnsQAgAAAAAAAMC8oCAE\ngNkrL8uVl42sWz7i3B1KKm3dentcd/6/PzFxt5fOygeP+Q4eO75aplexT6s0GmJGfcVoUB5s\nrLGcWT3DMGzbLisrm3vlNkfOAN/Q0JDff7zjzGQywWCwpaVldHRU13WnIDx27JgkSdFodI6n\nk2VZ1/VXX301Eok4M5Sjo6NVVVW6rk/5WgAAAAAAAADAlCgIAWDehP25NY2JNY0J5+5w0tMe\n18dGDHuGJu4LsznpUJfvUJdPiKgQSxWPXRdNLi1P1FeMVgf7z1qWLQtqefwiJub3+23bHhgY\n8Hg8lmWFQiGv19vb2+t0mUIISZKGh4ePHTu2ZMkSp9FctWrVrE8XiURM0+zs7PR6vaZpxmKx\naDTqelEKAAAAAAAAAMWBghAAFkrIb65uGF3dMOrcHU172ruPL0baFtfjQ6o90SaGOVM63Bs4\n3OvsX7hcluylFemx/QuXVaVVxRJCjIyMPPbYY6eddtratWvz8LVIkhQMBnVdN01TlmVFUbLZ\n7AlrfjrTfs5KpEKIlpYW53HTNJ1XeTyes88+ezqnk2W5qqoqFAo5Z9E0bbG1g5lMxlkEVVVV\nt7MAwILbv3//c889t2HDhuXLl7udBQBQ5J544omOjo4rrrhibP0SAAAWyL333qtp2mWXXeZ2\nEMAdFIQAkCcBzWw6bbTptON9YTItd/Tor+1f6OsaUK2J+kLLlg736od79T/sFUIIWRZ10XRD\nzKjydb7c0q35Qnn8CoSiKGP7AsqybJrm+Gdt23YeH/9IMpns7++XZdm27VAo9NJLL43fWdBx\nqllDTdM0zf3pyRPkcrmBgYHOzk6Px2Oa5pIlS6LR6MlfFAAUk+Hh4dbW1jVr1rgdBABQ/Lq7\nu1tbW3O5nNtBAADFr729netRUMr4QBMA3OHXrFVLk6uWJp27Rlb+S6f8cqsZT5Qf7Q92D/ks\nWzr5VZYljvZpR/u0nJGJ7w3v7l7yeNfpDTGjIZZqiBnLqgy/ZuUnv8fjiUQizh6EQgjbtlOp\nVHl5+fiC0DCMwcHBYDDoDBcahiGECAaDJ4wDjs0anmwu65QukIGBgd7e3qqqKmfnxd7eXiFE\nVVWV27kAAAAAAAAAYLooCAFgUdC91hsarDNqjHS6dWRkJGt6hrPVXcORw32B9m69s18zrb/q\nCyVJUf11kho51q8e61ef3h8SQkiSiIUzjbHj65E2xIyAbp7ihHMlSVIgEBBCDA4OOlVZeXn5\n+KuubNvOZDK6rjvtoBBCVdVEIjGjucBJusMx+SwRM5lMZ2en0w4KISRJCoVCnZ2d4XCYtUYB\nFLFAIFBXV+fz+dwOAgAoftFotK6u7oTtDAAAWAg1NTXOhe9AaZLsCbfAgku2bt3a3Nzc1NTk\ndhAAU5tOdzULlmWZpilJksfjGavWsqZ0tPf45oXtcf1Ir5YzJ5gvPFlVOHu8LKxKNcSMkH/+\n+8JcLmfbtrPF4AlfSGdn59j4oCOVSkWj0UX4t9c0W0bDMF555ZXKysrxD/b29q5YsYLPzQEA\nAAAAAAAUCiYIAWBxkWX5hBU4hRBej91YnWqsTv2tEEII05KO9Gpt3VpHj689rh/p1TO5ifvC\nniFvz5D3jwfLnLvlwWxj9evzhZHAPGzscart95zpulwuN744dLrPuZ903k2z7jVNs6urK5FI\njH0Vtm0nEomT+9EpLcLVUwEAAAAAAACUCApCACg8uaxRrg95IkNr68u8Xq+m+4/16+1xvT2u\nd/T4Onq0dPbEitHRn/D2J7y7Dx3vCyOBnNMXNsaMZVWp8rJ56AvHSJKkadrIyIjP5/N4PM6K\no6FQqKCX4vR4POXl5UNDQz6fz1lY1dl5kRWQAAAAAAAAABQQCkIAKDCZTCYej/t8vmAwaFnW\n8PBw0LLqK8VpVemLmoaEEJYlXh3U2uN6e7feHtfbe3QjM3FfODiq/Kk1+KfWoHM35MuNDRc2\nVBtVoewco+q6XllZmU6nh4eHhRCRSMTv9y/OCcLpc/ZZ7O/vd+6esPMiAAAAAAAAACx+FIQA\nUGAMw/D5fM7CnpIk+Xy+oaEhTdPGJvNkWSwpTy8pT1941pAQwrJFfFB1Ni90/pdMTzzuNpxS\nXuwIvthxvC8M6KYzXOhUhrFwZhbVnq7rmqYFAoEJl04tRJIkBQIBn89nWVbRfFEAAAAAAAAA\nSgoFIQAUEtu2h4aGgsHg+AcVRbEs61QvkSVRE83URDNvPnPYeSQ+pI6VhW3desKYuC8cNTx7\nDwf2Hg44d/2a2RBLN8SMZVWpxmqjOpKRp9cXSpJ0qn0KCxfVIAAAAAAAAIDCVWyf2AJA0QuF\nQqZp2radzWY9Hs/k7eCEYuFMLJw5f8XxvrB32Dt+vnA4OfGvhmTas++If9+R48tp6qq1rOr1\n+cLaaJq+DACKVS6Xy2azqqqy5SoAYKFlMhnTNHVdL/S9CQAAi59hGJIkaZrmdhDAHRSEAFBI\nJEnyer2jo6OZTOaXv/zlypUr3/zmNwcCgbH1RWehMpStDGXPO2PEudufUDrivva47rSGA4mJ\nf1MYGflAp/9A5/G+UFWsZVXphurjfeHSirQs2bOOBABYVF544YWdO3defvnlq1evdjsLAKDI\n3X///fv27fv85z8fCoXczgIAKHK333673++/9tpr3Q4CuIOCEAAKjM/nM02zo6Mjm82m02mv\n1+vz+Wa63KVpmplMxrIsj8ejqur4l5cHc+XBkbXLj/eFQ0mlrfv1+cK+Ee+Eb5jJyQdf9R18\n1efc9Sp2fcXxsrAhZtRXphUPfSEAAAAAAAAALAoUhABQYCRJKisri8ViPp+vrKysrKxspu1g\nNptNJpPJZFKWZcuy/H5/IBA41TaBYX9uTWNiTWPCuTuS8oxtXtjR44sPTdwXZnNSa7evtft4\nX6h47KUV6cbX5gvrKwyvQl8IAAAAAAAAAO6gIASAglRWVnb++efHYrGZtoO2bSeTyWw26/Md\nb+/S6bRTOk5nk48yn3nOstFzlo06d0fTnvZx+xd2D6r2RMVfzpScA5y7smQvrUiPzRcui6VV\nZWbbKAIA8qm2tnbDhg1VVVVuBwEAFL+zzjqrvLyc7aAAAHmwfv16r3fia9+BUiDZE36UC5ds\n3bq1ubm5qanJ7SAAptbS0uJ2hNnIZrPd3d3BYHD8gyMjI7W1tacaIpy+VEbueG3zwva43jWo\nWdMo/mRZ1EbTDTGj0ekLqwxdLf6+cNWqVW5HAAAAAAAAAFCimCAEAMwbn2qdtTR51tKkc9fI\nyod7tI4en7OLYWefatkTDClalujs0zr7tKdawkIIWRLVkUxDzGiIpZwRQ79W/H0hAAAAAAAA\ngML13HPPCSHq6+tra2vdzjItFIQAUFo8Ho9t25Zlja1NappmKBTyeDzzfi7da62sS62sSzl3\nMznpcM/x4cK2uN7Zp5nWRH2hLV4dUF8dUJ85EBJCSJKIhTNj65E2xoyAbs57VAAAAAAAAACY\ntfe9731CCJ/Pd+ONN1599dXT2c7JXRSEAFBaZFmuqqrq7e1VVdXj8ZimmU6nY7FYHn5jqYp9\nRm3qjNrjfWHWlI70au1xvSPua4/rR3q1rDlBBtsW3YNq96D67Csh55GqULah2hirDEO+3EIn\nBwAAAAAAAIAppVKpm2++eefOnbfddtuyZcvcjjMZCkIAKDm6rsdisXQ6bdu2pmnRaNSVDZm9\nHnt5tbG82hBiUAhhWtLRPq39tf0LD/fomdzEnWXPsLdn2PvHg2XO3Wgw2zg2X1htRAL0hQAA\nAAAAAABcsGzZso6OjmeeeeaSSy658cYbP/axjy3aUUIKQgCYGdu2R0ZG0un08PCwx+PRdX0h\nFudcaKqqqqrqdoq/4pHtZVXGsirj4iYhhLBsqbNPfa0v9B3u0YysPOELBxLegYT3hdbjfWEk\nkGsY1xeWB7OTn9eyLMMwTNMUQjj/QccWXwUAAAAAAACA6fvSl77U29v71a9+NZlM3nTTTTt2\n7Pj2t7992mmnuZ1rAhSEADAzfX19r776aiAQiMVimUwmFApVVlbmZwKvpaVl7LZhGIcOHYpE\nIkuWLMnDqfNPluz6ynR9ZfotZw8JISxLdA1qbU5f2K139OipzMQ13uCosqctuKct6NwN+c2x\nvrChKlUV/qu+0LbtRCKRSCScujSbzeZyubKyskV7XQ8AuCIejx85cqShoaGiosLtLACAInfo\n0KHBwcFzzjlnsV3RCAAoPnv27FEU5Q1veIPbQVBsmpub//Zv//Yf//Efn3766WeeeeZtb3vb\nTTfddNVVVy22jxwpCAFgBpLJZGdnZ2VlpfPTXNO04eFhr9dbWVmZh7OvWrVq7HZPT88DDzyw\ndu3a8Q+ebHynWNBkWdSVp+vK0xeeNSRe25hwbD3StrieTE88xzmc9LzYHnixPeDcDWjm+P0L\nw9pwIpHw+/3Os4qijI6OKooy9ggAQAjR3t6+c+fOyy+/nIIQALDQdu/evW/fvhUrVlAQAgAW\n2iOPPOL3+ykIsRBOO+20n//85z/60Y+++tWvjo6O3njjjb/5zW++/e1v19fXux3tdRSEADAD\nmUxG1/Xx13r4fL5MJmPb9mK7AMQxeX0oCrZBlCRRE83URDPrzxx2HokPeTt6fG3dxyvDkdTE\nfeFo2rP3cGDv4eN9oU816yIjy6qS9RWj9RWjVaGU1+t1lhsFAAAAAAAAgNmRJOmqq67auHHj\nF77whT/84Q9PP/20M0r40Y9+dJF8kkxBCAAzIElSLpcbGhpKp9NCCEVRdF33er2L5Gf6LJyq\nQSy44jAWzsbC2fPOON4X9o14x8rC9rg+lJz4910q4zkUjxyKR5y7mmLWRRMNMWPlUrMhZtRF\n02xHCAAAAAAAAGB2li5d+tOf/vSee+75yle+MjIycsMNN+zYseO2225bunSp29GEZNu22xnw\nuq1btzY3Nzc1NbkdBMDEUqnUM888I4QIBoOSJKXTacuyVq5cWVNTk+ckuVwuHo/7/f5IJJK3\nkxZcazhmIKG0vVYWdsR9/YlpXR+jKtayqvTYeqRLKtIeed5+aU453AkAi8fo6OjQ0FA0GvX5\nfG5nAQAUuYGBgVQqVV1d7fFMvCgIAADzpaurS5blWCzmdhAUiSVLlggh7rzzzk2bNp387LFj\nx77whS/8/ve/F0IEg8Gbb775Ix/5SJ4TnoAJQgCYAdM0dV1PJpOZTEYIkc1mVVV1ZXxQUZS6\nuro8n/SETquA+sJoMBcNJtYtTzh3h5OKs3Nhe1xv7dL6ExPvbpLJyQdf9R189fin4V6PvbTy\neFnYGDPqK9OKh4tsAJSEQCAQCATcTgEAKAnRaDQajbqdAgBQEvJ/xT9KWV1d3T333PPzn//8\na1/7Wm9v7z/90z/95je/ue2225xa0RUUhAAwA9lstqKiora21pkdVBTF6/ValuV2LnecPANX\nKJVhyJ9b3ZBY3XC8L+wbMtu6tcO9/iN9gcO9/vjQxH1h1pTaun1t3cf7Qo9s11e+Pl9YX2mo\nCn0hAAAAAAAAUBJ+8IMfnPzg448/Ho/HJ3nVJz7xibvuuqurq+vJJ5/cuHHjgQMHFizgFCgI\nAWAGnGFBTdM0TXMeyWQyhbsB4bwbXxkWSlkohKgIeyrCuTetHBZiWAiRTHucxUidEcP4oGpN\nVPyZluQc5tyVJXtpZeZ4X1iVOq0qrXlLtDkGAAAAAAAAit5NN9108oM//elPp/8OiURi/uLM\nGAUhAMyAruupVMrn8ymKIoSwbTuRSLAAzoQKdz1Sv2aeXT96dv2oc9fIyO09entcb+/W2+P6\nq4PahCOjli0d7tEO92h/2BsWQsiyqI28Nl9YbSyrMnwqfSEAAAAAAACARYGCEABmQNf1xsbG\ntrY2TdNkWTYMo66uLhQKuZ2rABTocKEQQlets5Ykz1qSdO6ms/LhHq29x9fWrbfH9c4+1bIn\nGCG1LNHZr3X2a0/tDwshZElURzJj65E2xIy8fg0AAAAAAAAA5tX3v//98Xc/85nPCCGuueaa\ntWvXupRoZiTbZsOkRWTr1q3Nzc1NTU1uBwEwmUwmYxiGbdter9fv97sdp7AVVll4skxOOtKr\nH1+StFs/2qeZ1tRLzupe6w/flWXWpgUAAAAAAACKwpIlS4QQd95556ZNm9zOMi1MEALAjKmq\nqqqquxkGBwcffPDBM84444ILLnA3yRyNTRYWaFOoKvbpNanTa1LO3ZwpHenVnM0L2+P60V49\na05QA55WlZYlX36TAsDs7d+//7nnntuwYcPy5cvdzgIAKHJPPPFER0fHFVdcwbWYAICFdu+9\n92qadtlll7kdBHAHBSEAFKRsNtva2hoOh90OMm8Kdw3S8RSP3VhtNFYfX0HUtKTOfs3ZvLAt\nrh/u0TI5WQixrColBAUhgIIxPDzc2tq6Zs0at4MAAIpfd3d3a2trLpdzOwgAoPi1t7dzPQrm\n0Sc/+UkhRGNjo9tBpouCEACw6BT6WOEYj2yfVmmcVmlc1CSEEJYtHetX27r1uvKMEOVupwMA\nAAAAAAAwP/7lX/7F7QgzQ0EIAAXJ4/FEo9FAIOB2kIVVHGOFY2TJXlqRXlqRdjsIAMyMpmnR\naNT15bUBAPnR0tIy/u/wPAsEAtFoVJZltwIAAEpHJBLx+VjhCaVLsm3b7Qx43datW5ubm5ua\nmtwOAgCLVxE0heKvu08AAABg8Rj7e5s/WQEAACaxY8cOIcTq1avr6+un+ZLe3t7KysqFDDUD\nTBACAApM0SxACgAAACxmzt/b1IQAAAAT2rJlixBCUZSPfOQjX/ziF8vKyiY/PpfLrVmzZuXK\nlddcc82HPvQhSZLyEvOUWLEBAFCoVr3G7SAAAABA0WppaeHKPAAAgFPJ5XI//OEP3/GOd+zZ\ns2fyI+PxuG3bBw4cuP7666+++upMJpOfhKdCQQgAKHg0hQAAAMCCoiYEAACYkLN38uHDh6+4\n4opHH310kiMTiYSqqs7tRx999Oabb85HvlOjIAQAFA+aQgAAAGDhUBMCAACc4LOf/ezNN9/s\n9XpTqdQnP/nJSTrClStXvvzyy9/4xjc0TRNC/PjHP967d28ek56IghAAUIRoCgEAAIAFQk0I\nAAAwRlGUT3/60/fcc4/f78/lclu2bHn++edPdXAgEPjoRz/63//9387de+65J18xJ0BBCAAF\nybKsVCqVzWbdDrLY0RQCwNzlcrlUKmWapttBAACLyALVhJlMJpVK2bY97+8MAMAJDMNIp9Nu\np0CRuPDCC3/yk5/4fL5MJvPJT37y2LFjkxy8cePGv/mbvxFC7Nq1K18BJ0BBCAAFqa+vb9u2\nbTt37nQ7SMGgJgSAWXvhhRe2bdvm7sonAIDFad5rwvvvv3/btm0jIyPz+J4AAEzo9ttvv/PO\nO91OgeJx3nnnffe735Vluaen52Mf+1gymZzk4HXr1gkhJu8RFxoF4ZzE4/EPfvCDmzdv3rx5\n85NPPul2HADAFBgoBAAAAOYdi44CAAAIId71rnfdeOONQoi9e/dee+21kyyKUF5eLoRIpVL5\nC3cSCsLZs237u9/9rrv//QAAs0NTCAAAAMwvakIAAIC///u/v+KKK4QQDz/88Ne//vVTHdbR\n0SGEKCsry1+ykygunrvQPfzww3/+85/dTgGgRPn9/g0bNtTV1bkdpOCNdYR8lgEAp1JbW7th\nw4aqqiq3gwAACoDzd/WsL8U766yzysvLNU2b11AAAExg/fr1Xq/X7RQoQrfeemtbW9vu3bu/\n//3vh0Kha6+99oQDksnkb3/7WyHE8uXL3Qh4HAXhLMXj8R/84AdCiIqKir6+PrfjACg5gUDg\nkksucTtFUXE+wqAmBICT1dfX19fXu50CAFBIZl0Trl69egHiAAAwgYsvvtjtCChOmqbddddd\nl1122V/+8pdvfOMbr7zyyr/+679Go1Hn2VQq9cUvfrGrq0sIceGFF7qYk4JwNmzb/s53vmMY\nRjgc3rRp09133+12IgDA/GCgEAAAAJgvc5wmBAAAKFDRaPQnP/nJBz/4wba2tl/96lc7d+7c\nuHFjfX396Ojo448/3tnZKYTwer1XXnmliyEpCGfjoYceevHFF4UQV199NXsQAkBRoikEAAAA\n5gU1IQAAKEFLlix54IEHrrrqqj179hiGsXPnzhMOuPHGG0877TRXsjlkF89doLq7u3/4wx8K\nIdatW7dx40a34wAAFtaqVav4LAMAAACYo5aWFq69AwAAJaWiouLXv/71dddd5/f7xz8eiURu\nvfXWLVu2uBXMwQThzIwtLur3+z/72c+6HQcAkCcMFAIAAABzN/bnNBfhAQCAQrds2TIhRCQS\nmeQYVVW3bt366U9/+oknnujo6NA07fTTT7/gggt0Xc9XzFOiIJyZnTt3vvTSS0KIj3/845WV\nlW7HAQDkG00hAAAAMHesOwoAAArd008/Pc0jQ6HQe97zngUNMwssMToD3d3dd911lxBizZo1\n73jHO9yOA6CkpVKp3bt3t7e3ux2kdLH0KIDSEY/Hd+/e3dfX53YQAECxOXnd0UOHDu3evTuT\nybgVCQBQOvbs2fPyyy+7nQJwDROE0zW2uKjP55vL4qIdHR3d3d2nenZ4eHjW7wygpCQSie3b\nt69du7ahocHtLCWNgUIApaC9vX3nzp2XX355RUWF21kAAEVo/DTh7t279+3bt2LFClVV3c4F\nAChyjzzyiN/vf8Mb3uB2EMAdFITTtWPHDmdx0Y997GOxWGzW7zM0NHT06NFTPZtOp2f9zgAA\nFzkfZ1ATAgAAALPD39IAAAD5REE4LV1dXXfffbcQ4pxzzrn00kvn8larV69evXr1qZ7dtWvX\nXN4cAOAuBgoBAACAuejs7Ozt7XU7BQAAwNT+4z/+Qwhx/vnnn3/++W5nmQ0KwqnZtn377bcb\nhqHr+j/8wz9IkuR2IgAQ0Wh0y5Ytfr/f7SCYGAOFAIpJU1PT0qVLo9Go20EAAMXvggsuWLdu\n3eHDhz0eD3t+AwAWVHNzsyzLbqdAAfu3f/s3IcTnP//5aRaE+/btu/76623b/sAHPvDxj398\ngdNNjYJwar/5zW/27t0rhLj66qurq6vdjgMAQgihKEpdXZ3bKTAFBgoBFIdAIBAIBNxOAQAo\nCaFQKBQKObfH/oqmKQQALISamhq3I6C0nH322W984xvvvvvulpaWN7/5za7/hUNBOIXe3l5n\ncdHa2tpQKPTUU0+dcEBra6tz48CBA87lBnV1dY2NjXnOCQBYzBgoBAAAAGbN+UPa9Q/RAAAA\n5ujLX/7yrl27XnnllWuvvfahhx7yer0uhqEgnEI8Hk+n00KIV199ddu2bZMc+eCDDz744INC\niPe85z3XXHNNnvIBAAoHA4UAAADArFETAgCAQqfr+ve+971Nmza1tLTceuutX/rSl1wMwwK7\nAADkGx9qAAAAALPT0tLC9XYAAKBwnX322TfeeKMQ4j//8z//+Mc/upiECcIpnH322c5c4Kns\n2LHjjjvuEEJ84QtfeMtb3pKvXAAAAAAAACWK7QkBAMAi8fDDDx85cmRGL7Ft2+v1ZrPZ6667\n7umnn16gYFOiIAQAAAAAAEBBYt1RAADgrn379u3bt292r+3o6JjfMDPCEqMAUJAGBwfvvvtu\nFy8wAQCUjv379999992tra1uBwEAFL8//vGPDzzwgGEYM3oV644CAGbh3nvvvf/++91OAbiG\nCUIAKEjZbLa1tTUcDrsdBABQ/IaHh1tbW9esWeN2EABA8evr6zt69Ggul5vFa1l3FAAwI+3t\n7X6/3+0UKHjvfve7N2/e7HaK2aAgBAAgr2zbNk1TlmVZZo4fAAAAmH+sOwoAAPJm5cqVmzZt\ncjvFbFAQztWmTZsK9L89gILm8Xii0WggEHA7CGZmZGQkkUh0dXVVV1drmhYOhxWF38UAFjtN\n06LRqKqqbgcBABQ/n88XCoXm5Vo6BgoBAJOLRCI+n8/tFIBr+FASAApSeXn5dddd53YKzEwi\nkXAWho3FYqZpxuNx0zSrqqokSXI7GgBM5o1vfOMb3/hGt1MAAErCxRdfPO/vyUAhAGBCn/rU\np9yOALiJghAAgHywbXtkZCQUCjkjOB6PJxQKdXV1BYNB1rsHAAAAFhoDhQAAAONREAIAkA+W\nZXV1dVVVVY09IkmS1+vN5XIupgIAAABKDQOFAABgXjgf9BXuJlAUhAAA5IMsy9XV1blcbvx+\nKqZpzsv2KgAAAABmhIFCAAAwR3v27HE7wpxQEAIAkA+SJPl8vs7Ozkgk4pSCyWSyoqKC3bAB\nAAAAF9EUAgCA0kRBCABAnoTDYdM0jx496vV6TdOMxWKRSMTj8bidCwAAAABLjwIAgNJCQQgA\nBcmyrHQ6rSiK1+t1OwumS5blysrKsrIyZ6FRTdNYXxRAQcjlctlsVlVVrmkAgKJnWeL/Pbxk\neXVqRV2yIZaWJTvPAbLZrGmamqZJkpTnUzsYKASA0mEYhiRJmqa5HQQFL5VKPfDAA9Fo9J3v\nfKfbWWaAghAAClJfX9/3vve9tWvXvve973U7C2ZG0zT+9ARQWF544YWdO3defvnlq1evdjsL\nAGBhvXJUPL0/9PT+wh1ppwAAIABJREFUkBBC91qn16bOrEutXJI8vSale608BPjd73536NCh\n5ubmYDCYh9NNgqYQAIre7bff7vf7r732WreDoLA9+uij119/fW9v79/93d+NLwhHRkbWrFkT\nCoXC4XA4HHZunHA3HA5v2LDBreQUhAAAAAAAABBCiD1/ef22kZX3Hg7sPRwQQsiS3RBLr6hL\nnrkktbIuGfbnXIuYdzSFAADgVB5++OEtW7aYpimE6OzsHP+UbduGYRiGEY/HJ3mHE16VTxSE\nAAAAAAAAEEKI4aRQFSuTO3ElfMuWWrv11m79kT8JIUR1JLOyLnXmkuSK2mRdecaFoG4YawoF\nZSEAABBieHj4+uuvd9rBM844433ve9/4Z91aL336KAgBoCD5/f4NGzbU1dW5HQRCvHZBUC6X\nUxRF1/XF/+sfAGaktrZ2w4YNVVVVbgcBACy4Le8WFzS+0h7XXznmO9DpP3jMN5ya4LOj7kG1\ne1B9cl9YCBHym2fUJM9cklpRl1xebXjkOW1b2NjYGA6HVVWdy5vkwd69e7PZrBBi1apVRbOD\nQDabTafTQghN09jtHkApWL9+PT/uMBf33nvvwMCAEGLTpk3f+c53dF0f/2xZWVlzc/Ndd911\n5pln/uIXvxgdHR0eHh4eHh4aGhoeHt6+fftjjz3mUvDjJNvO93bTmMTWrVubm5ubmprcDgIA\nmK5sNtvf39/d3a0oSi6Xq66uLi8v5+9LAAAAFKjxc3JCiFcH1IPH/AeO+V855usamKK3UxV7\neU3qzLrkyrrUirqkT83HtoX5l06nDcMYHR2VJCmXy0Wj0UAgcPbZZ7uda04GBwfb29udf8hk\ns1mnqXU7FAAAi9qHP/zhJ554orKycteuXT6f7+QDRkZGzjvvvJGRke985zvvf//7xz912223\nffvb3xYsMQoAQIGybXtgYGBwcLCystJ5ZHBwUJKkqqoq5ggBAABQBGqjmdpo5qKmQSHEcFI5\ncMz3yjH/gU5fR1y37BP/4s3kpP1H/fuP+oUQsiyWlhtnLk2trE2urEuWlxXJtoWmaRqGkc1m\n/X6/EMK27aGhIY/HU9ALkCaTyfb29vLyckVRhBC5XK6trW3lypXO1wjg/2fvzqPjuuv7/3/u\nPvfOaBat1sh7YsmOSxJDnaSNachGGpaTNKUFDsSmZSkp9YGk4AMh+RG2HkxLmgMH6HFa2hwI\ngQTSGoiJE7cs3zQJaYKzIC/yHlkja9fs211+f4wjFFmWZVvS1Yyej8PhWOMr3ZcUJ5bmNe/3\nBwAmVfnb/21ve9uk7aAQoq6u7vrrr3/00Ud/8pOfTCgI5wMKQgAAzl25XE4kEuPX7oVCoUQi\nEY1G5/9aJAAAAOCshC17/YXp9RemhRDFsnzohLm/x+xKWAdPmIXSKccWuuLVwcCrg4EnX4wJ\nIRrD5fZ4rnJyYby+KFftq+nK5XIulxt7HlCSpEAgUCqVxj8zWHVlYS6XCwaDlXZQCKGqajAY\nzOfzFIQAAExhdHRUCLFy5coprmlvbxdCvPzyy3OU6WxQEAIAcO5c15VlefywoCRJsiy7bm0u\nUwIAAAAqDM29aEn2oiVZ8VoXWJks7EpYo9lJnm4aTGmDqcjT+yJCiKDhtLflV7XmOtryK5rz\nmjpjx9+Uy2XHcYQQqqqO1V0zq/IjwPhHJEnyPM/zvEmXiExY2To/+0LP8xRFGf+Ioij8UAMA\nwNQmfEswqcrBhMPDw7Mf56xREAIAcO5UVXUcx3GcsR+nK2/O0pMRAAAAwDwky2J5c2F5c+Gt\nlwohRH9S60pYXQmrq8dMjBjeKfVftqjsPhzafTgkhNAUb0VLoT2ea4/nVrXmTL1cKavOdmO/\n53m5XG54eFjTNM/zbNtuaGiYjQE4RVFs2zYMY+wR27YDgcA0A8/PvlBV1VKpVHkGs6JUKvFD\nDQAAU4vFYr29vUeOHJnimmPHjgkh5udQPn/TAwBw7lRVXb58+fHjx8PhsKqqtm2nUqnly5fz\nszQAAAAWrOZIuTmS3LAmKYRI55WDvdb+HrOr1zrSF7CdiS1a2ZG6EmZXwhSiQZJEU11mecPo\n6sWFNUuKi5vP/Kr8McVicWRkJBQKVYo6z/OGhoZUVZ3xzf+6rtfV1WWzWcMwJElyHKdYLMZi\nsXP7aPOkLwyFQoVCIZ1OVxal5vP5SCRSV1fnSxgAAKrFRRdd1Nvb+/Of//xzn/vc+BcPjSmX\ny48//rgQYvHixXOe7sx4+hIAqlI+n9+zZ09DQ8Py5cv9zrLQRaNRWZZzudyJEycWLVq0dOnS\ncDjsdygAmEn9/f3d3d3Lly9vaGjwOwsAoMrUmc66lel1K9NCiLItHe4z9yesrh7zQK+ZKyoT\nLvY80X287+jh0d8ceoMk67FguaMt396Wb4/nljQUpl7iVS6XK41d5U1JknRdL5fLM14QSpIU\nCoUURSmXy+l0OhKJhMNhTdNm5INP6Asr5qA11DStvr6+MhwphIhGo5FIhFc9Aqh5L774oqqq\nf/AHf+B3EFSra6655r//+7/7+/s/+9nPfvWrXz114+iXv/zl3t5eIcSb3/xmPwKeAX/TA0BV\nymQyP/3pT9etW0dB6DtJkipPCjQ3N084jxAAasPRo0d37Nhxyy23UBACQA1zXTeTydi2ncvl\ndF2fjXJIU72OtlxHW06sF64neoaM/T3WgV5r33FzOHOyYMsNvpAf2WOEVym6PpLVnu3Snu0K\nCyECutserxxbmLtgUUFXJx6Pd+oRgJWjAWf8sxBCyLIcDAY9zwuHw9M5fOg8TdoaipkuDg3D\naG5urpw7OAefFADMBzt37rQsi4IQ5+zd7373P//zPw8ODj700ENHjhzZvHnzH/3RHxmG4Xne\nSy+99PWvf33nzp1CCEVRNm7c6HfYSVAQAgAwAyRJGjuGEAAAAKgu5XJ5cHCwcoBfOp0ulUpN\nTU3jT6SbcbIkljQWlzQWr7tkRAjRM+C8ckR5dTj2VH8xMTLJ9YWS/PLR4MtHg0IIRfaWNxfa\n4/mOttyqeD5s2uK1owHH95q2bc/qt+iSJPn76sDTFYdjzqFBpBoEAGD6TNO89957N23a5Hne\ns88+++yzz8qyHA6Hc7lcqVQau+z222+fnzMeFIQAAAAAAAAL2ujoaCqVqhykZxiGpmkDAwPx\neHzOXgPXUFe+eHHfFe2jDdljB6I966/p6hltOTIYfXUwVLInlnCOKx06YR46Yf78t/VCiNZY\naVU8t6o12xZWJWlU0zTP80qlUigUmtWOc/47Y4N4Rn6diQgAQLW49tpr/+Vf/uWOO+7IZrNC\nCNd1R0dHx1/wsY997BOf+MSp79jS0nLxxRfPUcrTmK1lCzg3W7Zs2bRp09q1a/0OAmC+s227\nv7/fsqxoNOp3FgBAjctms8lkMhaLmabpdxYAwMxzXfell15qbGys1IHHjh0TQuRyuYaGBsMw\n5ixDOp0uviYajRYKhcbGRlUzj/QFunqt/T3mgYSVKZyhsKwzyxc0py9YlF7VmutY4qkK+//n\nFIUigOpy4sQJWZabm5v9DoKq19/ff//99+/cufPQoUOVR+rq6v7kT/7ktttuW7dunb/ZpkBB\nOL9QEAIAAAAAgLnkOM7LL7/c1NRUWS9ZKQjz+XwsFpvLCbzK8YfJZLJydmBDQ4NlWeMv8DyR\nGDG6esyuhNWVsPqT2tQf0NDcCxblO9ry7fHchYvyAX3isYWYcRSEAIAFrlAoDA8PG4YRi8Xm\n/+JuVowCAAAAAAAsXIqixOPxdDo9Vsh5njfhPL85oKpqXV2dZVme5ymKcupzapIk2uqLbfXF\nq98wKoQYyahdCasrYXYlrFcHA+4p9V+xLO/pDu7pDgohZFksbSy0x3Pt8Xx7PBcL2XPyOQEA\ngIUlEAjE43G/U0wXBSEAAAAAAMCCFolEent7HccxDKNcLheLxfr6+jkuCIUQkiRN/6axkH15\ne+ry9pQQolCSD54wDySsfT3moRNmsTyxXHRdcbQ/cLQ/8MSLQgjRHCm3x3Pt8Vx7Wz4eK0os\nIgUAAAsPBSEAAAAAAMCCFggE1qxZk8lkyuVyIBAIh8O6rvsd6iwEdPcPlmb/YGlWCOF60tH+\nQFfC7Oqx9ifMVG6S5776k1p/MvLU3ogQIhRwVsVzHW359tbcipaCqnAWDwAAmDG2bb/yyiuH\nDx/OZDJ1dXUrV658wxveUDn42XcUhAAAAAAAAAudYRiGYQghRkZG/M5yXmTJW9mSX9mS/9N1\nw0KIEyN6V6+1v8c8kLB6RyZpPTMFZffhut2H64QQuuqtaMl3xHPtbflVrXnLcOY6/cypTIK6\nrivLsq7r1dX4AgBQRdLp9LZt2/bs2fNv//Zv4x/PZDJf//rXv/vd76ZSqfGP19fXf/jDH77t\ntts07QwHKs82CkIAAAAAAADUpkWx0qJY6U8uGhVCpPLqgYS5v8fqSphH+wOOO3G1aMmW9vdY\n+3ss8X9ClsTixmJ7PLeqNdfRlm+oK/sR/xwVi8X+/n7DMBRFcRxnZGSkqakpEAj4nQsAgFqz\nb9++W2+9NZFIBIPB8Y/39PT85V/+5dGjR099l+Hh4a1bt+7atevBBx+sq6ubo6CToSAEgKqU\nSqV27ty5fPny9evX+50FAFDjDh48uHv37ssuu2zZsmV+ZwEA1Ljdu3f39/dfddVVs9FmhU37\nTRek33RBWghRsuVDJwL7e6wDvVZXwiyUTjm20BOvDhivDhi7XooJIepD5dWL8xe25la35doa\nivI8PrbQ87xCoWBZVmV9maIoiqIMDAy0tbXJ8sRPEwAWsu3bt+u6fuONN/odBNUqm81u3Lgx\nkUgIIfL5/NDQUENDgxDCtu2NGzeOtYPt7e2XXHJJJBIZHR397W9/e/jwYSHECy+88PGPf/w7\n3/mOf/EpCAGgOhWLxc7OTrbEAADmwPDwcGdnZ0dHh99BAAC1r6+v79ChQ1deeeVs30hX3TWL\nc2sW54QQriu6hwJdCaurx+xKWMOZSZ4uG85oT+/Tnt4XFkJYhrOqNd/elm+P51a25HV1fh1b\n6DhOOp0OhUJjjyiKIkmS4zgUhAAw3r59+yzL8jsFqth3v/vdnp4eIcTll19+7733VtpBIcQP\nfvCDffv2CSGWLFly3333XXHFFePf6xe/+MXtt98+MDCwc+fO3/zmN5dffvncJ6+gIAQAAAAA\nAMDCJctiWVNhWVPh+kuEEGIgpXX1WPsTZlfCSgwb3in1X66ovHQ09NLRkBBCVbwVLYX21lxH\nW/7C1lydOS+OLfRODQ0AAGba448/LoRoaWl58MEHTdMce/y//uu/hBCWZf3whz88dRPP1Vdf\n/eCDD77tbW+zbftHP/oRBSEA4OwoihKLxSbstgYAYDYYhhGLxRhbBwDMAdM0w+Gwv4NuTeFy\nUzh55ZqkECJbULoSZlfC6kqYR/rMsjNxtajtSAcS5oGE+dgLQpJEa6zY0ZZvj+fa47nmiD/H\nFiqKEolEisWipmknQ9p2XV2dqvI0IAC8TjQaHV/qAGerq6tLCPHnf/7nE/4gVcYH3/Oe95zu\nnI61a9f+6Z/+6c9+9rPf/OY3c5DzdPjOAACqUn19/cc//nG/UwAAFoRLLrnkkksu8TsFAGBB\nuOqqq/yO8DrBgLNuZWbdyowQomxLR/rN/T1mV8I6kDCzRWXCxZ4nEsNGYtj4xStRIUQ0aLfH\nc5W+cGljYc5KT0mSTNP0PC+Xy8my7LquZVmWZUnSPD44EQD88Dd/8zd+R0B1y2QyQoilS5dO\neDybzQohpv45+k1vetPPfvazvr6+2Yt3RhSEAAAAAAAAwBloqlcZDRRiyPVEYtjY32NV5gsH\nU9qp149m1ecOhJ87EBZCBHT3wkX5Sl94waK8obmzG1XT6urqdF13XVeWZV3XFWVinQkAAM5T\nJBIZHh4eHR2d8Hhra+uxY8emnt2v7Esol/3ZN1BBQQgAAAAAAACcBVkSixuKixuK1148IoQY\nTqtdCaur19p/3Dw+HHBPqf8KJfl3rwZ/92pQCCFL3rLmQmWysCOeD1v2rCSUZfbmAQAwq5Yt\nWzY8PPzkk09u3rx5/ONvetObjh07tmfPnptvvvl07/vKK68IIVpaWmY95elREAIAAAAAAADn\nrr7OvqIjdUVHSgiRL8kHElZXwtyfsA6fCJTsiatFXU860mce6TMf/229EGJRrNQez3fEcxe2\n5uL1JR/SAwCAc/LWt7519+7dL7zwwoMPPvi+971v7PH3vve9jz766I9//OPbb7990tfrHDx4\n8Kc//akQYt26dXMX9xTKPffc4+PtMcGTTz556aWXNjc3+x0EAAAAAAAsRIODg35HqG6a4rVE\nSxctyf3JRcl3/OHwxcsz8fqSrrrZolosT3IOYaagHBsI/PZw3a6X6v/75foDCXMkq8qSiFiO\nXG2HBjY1NfkdAQCAubNy5cof/OAHhUJh165d5XJ53bp1uq4LIZYsWXL8+PHf/OY3x44du+GG\nG+TXH0T8yiuvbNq0aWRkRAhx1113rVixwp/0Qkie5/l1b5xqy5YtmzZtWrt2rd9BAAAAAADA\nQrR3716/I9SsxLB+oNeqnFzYN6pPfbGuuhcsKnS05Va15lbF86Y+u8cWzog1a9b4HQEAgDn1\n2GOP3XbbbY7jCCGi0ejb3va2q666avXq1U1NTV/96lcfeOCB1atXb9y4ceXKleVy+ciRI7/4\nxS9++ctfuq4rhLjhhhu+853v+BiegnB+oSAEAAAAAAA+oiCcG8mc2pWw9veYBxLW0X7D9aaa\nFpRlsbih0BHPtbfl2+O5+tCsHFt4/igIAQAL0M9//vNPfOITmUxmwuOqqrqu6556NLEQQoi3\nvOUt999/v2VZsx/wtDiDEACq0sDAwDe/+c1169bddNNNfmcBANS45557bseOHbfccsvFF1/s\ndxYAQI17/PHHDx06tGnTplAo5HeW2RWx7PUXptZfmBJCFMryoRPm/h6zK2Ed6jULp2widV3x\n6kDg1YHAky8JIURTpNwez3XE8+3xXLy+KFXbJlIAmCe2bt1qWdbmzZv9DoLqduONN65fv/6+\n++778Y9/nEqlxh637clf0NPa2nr77be/5z3vURRlrjJOjoIQAAAAAAAA8E1Ac9cuya5dkhVC\nuJ50rN+oDBd2JaxkbpLn7gaS2kAy8r97I0KIYMDpiOdXxXPt8dyKloKmsCoMAIC51tjY+KUv\nfelzn/vcr3/96+eff37v3r3d3d3pdLoyVhgMBsPh8MqVKzs6Oq666qo//MM/lObHq3soCAEA\nAAAAAIB5QZa8FS2FFS2FG9YJIUTfqN6VMLsSVlfC7B0xTj0pKFtQfns49NvDISGEpnormvMd\nbfn2eG5VPB80nDmPDwDAwqVp2rXXXnvttdf6HWS6KAgBoCpZlrVhw4Z4PO53EABA7Wttbd2w\nYUNTU5PfQQAAtW/FihWRSETXdb+DzBct0VJLtPTmi5JCiHReOdBr7e+xDiTMw30Bx504fFC2\npa6E1ZWwhGiQJRGvL7bHc+1t+Y54rjFc9iM+AMxrV1xxhaZpfqcAfCN5p770CP7ZsmXLpk2b\n1q5d63cQAAAAAACwEO3du9fvCDizki0dPmHuT1hdCfNAwsqXJh5bOEEsVF7dll/VmutYnF9c\nX5DPcPk5WrNmzax8XAAAqsFzzz0nhFiyZElra6vfWaaFCUIAAAAAAACgmuiqt3pxbvXinBDC\ndcXx4cD+HvNAwtrXY45kJpmGGcloz+zXntkfFkKYuruq9eRk4cpFeV1leAAAgBnwZ3/2Z0II\n0zTvvPPOv/qrv5onBw1OgYIQAAAAAAAAqFayLJY2FpY2Fq6/ZEQIMZjSKmcW7u+xEsOGe0r9\nly/JLx8LvXwsJIRQZG9lS2FVPN/RlrtwUS5scWwhAADnJZ/P33333Tt27Pja1762bNkyv+NM\nhYIQAAAAAAAAqBGN4XJjOPnHq5NCiGxROZAwuxLW/h7zSL9ZtieOMjiudKDXPNBr7nihXggR\nry+tas11tOXa4/mWaMmH9AAAVLlly5YdO3bsmWeeue666+68884PfOAD83aUkIIQAAAAAAAA\nqEFBw7l0RebSFRkhRNmRjvQFDiSsroS1P2FmC8qp1yeG9cSw/qvOqBAiYtmVNaSr4rnlzUVZ\nYhMpAABn9tnPfnZwcPBLX/pSLpe76667HnvssXvvvXfp0qV+55oEBSEAAAAAAADO15o1a+bm\nRnv37p2bG9UYTfHa4/n2eP7tYsjzRGLYqDSFXQlrIDnJsYXJnPp/B+r+70CdECKguRcsyne0\n5dvjuQta8wHNnfP4AABUjU2bNl199dV///d///TTTz/zzDPXXnvtXXfdtXHjxvk2SkhBCABV\nqVgsHjx4MBaLxeNxv7MAAGrc8PBwb29vW1tbNBr1OwsAYNbNWc83qe7u7lQq1d7ermmTVFYV\n55OQcrFCkkRbQ7GtoXj1G0aEECMZtbKGtCthdQ8F3FPqv0JZ7uwOdnYHhRCy5C1vLq6K5zra\n8qtac9GgPff5AWBG7Nu3T1XVCy+80O8gqEFLly59+OGHv/vd737pS1/KZrN33nnnz372s3vv\nvXfJkiV+R/s9CkIAqEqpVOqRRx5Zt27dTTfd5HcWAECNO3jw4I4dO2655RYKQgDAbHvmmWf2\n7Nlzxx13TFEQno8zlosLs0GMhezL21OXt6eEEIWS3JUwD/RaXQnrYG+gZMsTLnY96XBf4HBf\nYOduIYRoiZba4/mOttyq1pyf3TIAnL3t27dblrV582a/g6A2SZK0cePGa6655lOf+tSvf/3r\np59+ujJKeOutt86TUUIKQgAAAAAAAECI0zSIC6o1DOjuxcuzFy/PCiEcVzraH+hKmF0Jq6vH\nTOUneSKxb1TvG9X/356IEOKjo+JDb5/rwAAAzGeLFy9+6KGHHnzwwS9+8YvpdPozn/nMY489\n9rWvfW3x4sV+R6MgBAAAAAAAAE5vwbaGiuxdsCh/waL8jW8cFkL0jugHeq39x82uXuvEiH7q\n9WuXz3VCAACqwvve976rr776U5/61C9/+cunnnrq2muvvfvuu9///vf7m0ryPM/fBNXl0KFD\nTzzxRGdn5+DgYLFYtCyrra3t4osvvv7661taWs7/42/ZsmXTpk1r1649/w8FoLbZtt3f329Z\nFtveAACzLZvNJpPJWCxmmqbfWQAANW5kZCSfz7e0tCiK4neWs7MQ+sLxUjl1/2uThUf7A64n\nybL4xT+LYMDvZAAwbSdOnJBlubm52e8gqBFtbW1CiG3btr397acdqH/44Ye//OUvDw4OCiHe\n/OY3f+1rX6u8ly8oCKerVCpt27btiSeemPR3VVXduHHjzTfffJ53oSAEAAAAAACodguqLyyW\n5UMnzBOj+sf+cpHfWQAAmDv//u//Pv7Nu+66Swjx3ve+d+qKJ51OP/DAAydOnBBChEKh/fv3\nz2rIKbBidFo8z/vKV77y/PPPV95cu3ZtR0dHOBzu7e197rnnRkZGbNv+zne+Y1nWW9/6Vn+j\nAgAAAAAAwF8TtpLWdl9oaO5FS7IXLckKQUEIAFhAKo3gBA899ND0P0Imk5m5OGeNgnBannji\niUo7qOv6Zz7zmTe96U1jv/XBD35w27Ztu3btEkI88MADb3nLW3R9kiXsAAAAAAAAWJjG94W1\nXRYCAIBqQUE4Ldu3b6/84oMf/OD4dlAIEQgEPvaxj7300ksDAwPpdPqVV16ZcAEAAAAAAABQ\nMVYW0hQCAFDVvvWtb41/82//9m+FEB/+8IfXrVvnU6KzQ0F4ZslksqenRwihadrVV1996gWK\norzxjW/cuXOnEKKnp4eCEAAAAAAAAFNjrBAAgKp20003jX+zUhCuX7/+7W9/u0+Jzg4F4ZlF\nIpFHH310ZGQkn88HAoFJrzFNs/KLcrk8h9EAAAAAAABQ9RgrBAAAc4yCcFoURWlsbJzigr6+\nvsovWltb5yQRgIUulUrt3Llz+fLl69ev9zsLAKDGHTx4cPfu3ZdddtmyZcv8zgIAqHFPP/10\nT0/PO97xjrGXYi80NIUAMGe2b9+u6/qNN97odxDUiA996ENCiBUrVvgdZLooCGdAOp1+4YUX\nhBCmaV566aV+xwGwIBSLxc7OTl3X/Q4CAKh9w8PDnZ2dHR0dfgcBANS+48eP79mz54Ybbliw\nBeEYFpACwGzbt2+fZVl+p0Dt+PznP+93hLMj+x2gFmzbtq1UKgkhbr75Zv6DAgAAAAAAgBm0\nZs2a8X0hAADA+WOC8Hz98Ic//NWvfiWE6Ojo+Iu/+Au/4wBYKBRFicViwWDQ7yAAgNpnGEYs\nFmNsHQAwB4LBYCwWk2Ve0T4Jto8CwMyKRqMMrON8PPbYY0KIiy++eMmSJdN8l8HBwanPs5tL\nkud5fmeoYt/73vcefvhhIURbW9vWrVvD4fAZ3+Xll18+ePDg6X73pz/96Sc/+cm1a9fOZEoA\nAAAAAADUnPnWFDLmCABYUNra2oQQqqq+//3v//SnP11XVzf19bZtL1++vL29/cMf/vB73vMe\nSZLmJOZpMUF4jorF4n333fe///u/QoglS5Z8/vOfn047KIQIBAJTXKkoyoxFBAAAAAAAQO1i\nphAAAN/Ztv0f//Ef//M///Ptb3/70ksvneLK/v5+z/P279//yU9+cufOndu2bfN3VQ8F4bkY\nGBj48pe/fPjwYSHERRdddNddd4VCoWm+b3t7e3t7++l+94knnpiZiAAAAAAAAFgYKk0hNSEA\nAHNPlmXXdV999dV3vetd3/72t6+//vrTXZnJZHRdL5VKQognn3zy7rvv3rp16xwmnYiV7mdt\nz549d9xxR6UdvPbaa7/4xS9Ovx0EAAAAAAAAZsOa1/gdBACABeTv/u7v7r77bk3T8vn8hz70\noSeffPJ0V7a3t//ud7/7yle+YhiGEOJ73/teZ2fnHCadiILw7Dz77LN33XVXMpmUJOmv//qv\nP/7xj2ua5nfK59y3AAAgAElEQVQoAAAAAAAA4CS/mkLP8+b4jgAA+E5V1Y9+9KMPPvigZVm2\nbX/kIx95/vnnT3dxMBi89dZb//Vf/7Xy5oMPPjhXMSdBQXgWnn322a1bt9q2bRjGnXfeefPN\nN/udCAAAAAAAAJjc3NSErutms9lkMtnb29vf35/P52f7jgAAzDdXXnnl97//fdM0S6XShz70\noUQiMcXF11xzzeWXXy6EePbZZ+cq4CQoCKdr//79//RP/+Q4TiAQ+MIXvlD5hwcAAAAAAADM\nZ7M6UOh5XjabTaVSjuM4jpNKpfbv318oFGbjXgAAzGfr16//xje+IcvywMDABz7wgVwuN8XF\nb3zjG4UQU/eIs42CcFpyudw//uM/lkolVVXvuusulrkD8N3AwMA999yzfft2v4MAAGrfc889\nd88997z88st+BwEA1L6HH374nnvuSaVSfgepTbNRE5ZKpVQqZZqmLMuKoliWFQwG+ScIoCps\n3br1G9/4ht8pUFNuvPHGO++8UwjR2dm5efPmKZZv19fXCyH8HbunIJyWBx54oL+/Xwhx6623\nXnzxxX7HAQAAAAAAAM7FzNaEjuOoqjr+EcMwbNvmPEIAwMJ02223vetd7xJCPP744//wD/9w\nusuOHTsmhKirq5u7ZKdQz3zJgtff3//EE08IISRJymQyDz300BQXh0Khd77znXMVDQAAAAAA\nADhrYx3h3r17z+fjSJLkuu74R1zXlSRJkqTz+bAAAFSvr371q0eOHHnhhRe+9a1vhcPhzZs3\nT7ggl8vt2rVLCLFy5Uo/Ap5EQXhmBw4ccBxHCOF53iOPPDL1xYsWLaIgBDAHLMvasGFDPB73\nOwgAoPa1trZu2LChqanJ7yAAgNq3evXq+vp6wzD8DrKAVJrCc64JNU2zbdtxHEVRhBCe52Uy\nmWg0OpMRAWB2XHHFFZqm+Z0CNcgwjAceeODmm28+ePDgV77yla6uri984QuxWKzyu/l8/tOf\n/vSJEyeEEFdeeaWPOSkIAaAqBYPB6667zu8UAIAFobm5uaGhYcL2MAAAZgMHu/jlnGtCVVWb\nm5v7+/sVRUkmk6VSqa2tLRKJzEJGAJhhV111ld8RULNisdj3v//9d7/73UeOHHn00Ud37Nhx\nzTXXLFmyJJvN/uIXv+jp6RFCaJr23ve+18eQ/JB/ZldeeeVPfvITv1MAAABg4Zr+s3UzeKSQ\nEMK27ZGRkZ6eHkVRHMdpa2urr6+vzAcAAIDac257Rw3DaGtrK5fLbW1tuq4HAoHZSQcAQDVp\na2vbvn37xo0bX3zxxUKhsGPHjgkX3HnnnUuXLvUlWwUFIQAAAFA7zvaF/1MUip7njYyMDA4O\nNjU1SZLked7g4KAkSY2Njecdc1a4rlsoFBzHUVU1EAhw9BEAAOfsbAcKZVk2DCMcDs9mKAAA\nqkxDQ8N//ud/3nfffffff38ulxt7PBqN3nnnne973/t8zCYoCAEAAICFbIon/mzb7u3traur\nGx0dHXuwWCxGIpF5eFBHqVQaHh7u7+9XVdW27ZaWlvr6+nmYEwCAKnKexxMCAFDbli1bJoSY\n+uRdXde3bNny0Y9+9Fe/+tWxY8cMw7jgggv++I//eD4M3FMQAgAAAPOa54n/76EVAc2VZU9X\nXU3xNMUzNE9RPEN1ZckzDVcIYRmOECJouJIkArqrSJ6uuars6ZqnKa4qe4buKZIX0N1p39c7\ndQhvYGBg7969Z1W8zezW00lVhh1TqdTYdOPo6KgkSc3NzbN9awAAah41IQAAk3r66aeneWU4\nHH7nO985q2HOAQUhAAAAMH/Ztp3NlY/0mTP4MWVJmLojhLACriREQHMURRiaq8ieoXqq4qqK\nF9A8IRy7WBcwtEoBaWq2JzzhBBuzMcsQiuzpqqsqnq56mnqygJQlzzylgDzn5xOn3yyWSqXe\n3t7xdWAoFEokEtFoVNf1c7v7POG6bqlUcl1X0zQGIgEAc8xxnFKpJITQdZ2aEACAGkNBCABV\nqVgsHjx4MBaLxeNxv7MAAGZLKpXKZrPHjg8LsXYGP6zriWxREeLk/wsxRe3UIISwi8PlXK8e\nbFP0qRanjBc0JhaQv28TXysgJckzdVeSfj/76AnP1F1FFpVBya7EUU3xVMUzNFdVhKG5kvAs\nY5IJyHK5PDg4mM/nxz+YyWQ8z5tm4PmpUCiMjo729fXJsuw4ztKlS2OxGGcrAqht3d3dqVSq\nvb2dV0X4Lp1OZzKZgYEBIURTU1NdXV0oFBp7+Q5NIYAasG/fPlVVL7zwQr+DAP6gIASAqpRK\npR555JF169bddNNNfmcBAMyKXC53+PDh+vr6+oaGlc3psiOVysIVuutJhZLsCSlXlOcmSTF5\nMNm9I7biFrN+ugXhtAvIc2QZjiSEabiyJAK6K0uucJcauqTKrq66iuzpiu045aeOpCUpYxmO\nJAnLcMXrC0hVOTkEaWiuLInKoGSl2py+c1igOunu1lM5jjMyMpLNZpuamipv9vT0KIoSiUTO\n9o4AUEWeeeaZPXv23HHHHRSE/srn84cOHYrFYpX13aVS6eDBg6tXrx47MImBQgA1YPv27ZZl\nbd682e8ggD8oCAEAAID5KJfLBYNBVVVDqnv7234nhCgWi6FQKBgMjr+sUsLli7LriUJJdlyp\nZMu2I5Wdk78olCXPk/IlWQiRLVR6O1kSUr4kO64o2XLZkcq2VHZk25GKZdn1RL4oi9/Xe/NR\n7nUFZMVMbmG1DFcSXkB3FVkYmqsqnqa4muqpsmdoriwLS3dFZZzxqaFKAVk5JDKguaoiNMXV\n1ZOHRCqKCGgnG8pyuSy7Wdd1JEnSNC0QCMjyaVveYrE4NDRkWdbYI47j7N2792wLwjk4AxIA\nUHtyuZxlWWM1raZplmVls9mxgrCCmhAAgOpFQQgAAADMR47jqOrrvl2XJOnUnZnBk/s5z27u\nbfpyReV3v3v1V78a3nDVq0uWhypVYtmWbFcqlmXHFfmSLF4bZ8wVFc8T+ZLseVKhLNuOKDty\nyZZsRyrZsuNKhVK1FJCzm9DQHEU6uTpV1yqbV187yvG1AtK2bUXUK4pSKSAN1ZEk17VzzY0h\nSZR1xdU0KRiQFVkEdEcSwgq4QghLd8amEz3PK5fL6XRaVdVAIMBuUgDA9J36fYiqqq47yaJv\nQU0IAEB1oiAEgKoUi8U+8pGPjJ8qAADUGFVVy+WyYRhjj7iuO8XA2SyxDOcNF61cvqQpHA4H\nAsUZ//j5klxZmnpynHF8m1iWXVfkSrIkpOy4ArJQll1XKpalsiNVCkjHkYq27LiiUFI872S9\nlysp8/YIwmJZEULkSrP18QO6q0iepjiy5LztD5NXr+1btGhRQ0PDhKd6AWAeuv766zds2DBh\nXB5zr/J9yPh5wXK5rChTvXSGmXUAVWfTpk1z/xMWMH/w8yEAVCVVVePxuN8pAACzKBQKdXd3\nV2a/li5dms/ng8FgY2Nj7Z3JtHfv3tmbgCyUZMeTiiXJdqWyLZdsyXalUll2XFEoK+5rbWK+\nqHiVtvLkZORYASmVbHl8ASmEyBZkIUS+pLjztYAslCpPcyhCCFktNzU1jY6OyrJcOc4QAOaz\nWCwWi8X8TgERCoVeffXVyvchQohCoRAOh0OhkN+5AGAmLVq0yO8IgJ8oCAEAAID5yDCM9vb2\nVCp14sQJIURra2skEqm9dlDMy4GD6S9JO1lAliW7Ms5Yfl0BKYTIFE4WkPlCIVeUPE8uO0rl\n4kLJkxWj7Krua+OS+dLJQyKFd3K28vw/F031hBChUKinpycajdbkHyEAwIzTdb2joyOZTFa+\nD1m0aFEkEtF13e9cAABgxlAQAgAAAPOUZVmmaTY0NAghVFXlDLk5M4Od5VjXmMvlRkdHx9aD\nO46Ty+Xi8fjU69oKZblse8WScIWazZWGRnKqFiiWZdeTCmXF87xCWQuYZqGkuN7YBKRUtkU6\nW3SF7rhSa70QQlT+8Jzu7CgAAE5lmmYgEOD7EAAAahUFIQAAADB/SZLEyFdVG+saXdcdHBzs\n7e01DMN13VgsVldXN/Wutr179wY0N6CJOlMIUS4GSpozMv5dKqdUhsPhCe/oOE4ikQiFQpIk\nLVu2TAhh27bneZxBCAA4K3wfAgBADePnQwAAAACYdbIsNzc319XVlctlWZYNwzjjU64TBhk9\nzxsYGBgaGgoGg7Isl0qlVCrV3t4+NpVYsXfvXkVR6uvrR0dHA4GA53nlcjmVSq1cuXLqaUUA\nAAAAwMJBQQgAAAAAc8Q0TdM0z+19JUlqaGhQFKVYLPb19bW2tra0tExoB8VrtaLruul0OpfL\nnThxYtGiRcuXL6+rqzvf9AAAAACAWkFBCABVKZVK7dy5c/ny5evXr/c7CwCgxh08eHD37t2X\nXXZZZVklfKQoSkNDg+d5LS0tU48DyrIciUTC4XBzczODgwCqyNNPP93T0/OOd7zjnF9OAQDA\nNG3fvl3X9RtvvNHvIIA/ZL8DAADORbFY7OzsTCQSfgcBANS+4eHhzs7OZDLpdxCcJEnSNDu/\n6V8JAPPE8ePHOzs7y+Wy30EAALVv3759Bw8e9DsF4BsKQgAAAAAAAAAAAGABYcUoAFQlRVFi\nsVgwGPQ7CACg9hmGEYvFdF33OwgAoPYFg8FYLCbLvKIdADDrotEoG62xkEme5/mdAb+3ZcuW\nTZs2rV271u8gAAAAAAAAAABgFpXL5UwmY9u2LMuWZVFYYi4xQQgAAAAAAAAAADCnisXi8PBw\nMpnUNM1xnO7u7hUrVkQiEb9zYaFgYwMAAAAAAAAAAMCcGh0dzWQy4XDYNM1QKFRfX3/kyJFS\nqeR3LiwUFIQAAAAAAAAAAABzx3GcRCIxfqeoqqqaplEQYs6wYhQAAAAAAAAAAABnzfO8TCaT\nz+dd19U0ra6uTtf1qd+lVCql0+lyuSzLcmV6UpKkSa/cu3fv6T7ImjVrzis3KAgBAAAAAAAA\nAADmkqIo8Xg8lUoFg8HKI7Ztl8tlwzD8DXa2hoeHe3p6QqGQLMvJZLK7u3vNmjVTfBbFYnHv\n3r2maRqG4bruiRMnSqXS2BcBc4mCEAAAAAAAAAAAYE5Fo1HXdZPJpKZpjuPkcrkVK1ZomuZ3\nrrOQz+e7u7sbGxtlWRZC6LpeqQmbm5snXDk2C5hOp/P5fD6fr7xZGUDUdb26PvHaQEEIAFVp\nYGDgm9/85rp162666Sa/swAAatxzzz23Y8eOW2655eKLL/Y7CwCgxj388MN79uy54447wuGw\n31kAADVu69atlmVt3rzZrwCGYTQ1NZmmWS6XFUUxTXP8kYRVoTLyWGkHhRDHjh3zPG9wcHBw\ncHDSraGe5zmOM74LlCRJVdUJD2JuUBACAAAAAAAAAADMNVVVo9HoFBeUSqVUKlUul4UQuq5H\nIhFV9bnWGX8uYKFQGBkZGR0dHXvE87zTHSh4VtcIIVxP5IpKtqDkikqmIOeKSq6opHIilRWK\nbP9ttNcwjHA47PsXpHrxhQMAAAAAAAAAAJhfbNseGhpKpVKVycJkMlkul5uamhRFmdX7jq8A\np6aqqm3bruuODRGWSqVQKHS6/s8TUskJDIwUHRHMldRsUckVlWTGlfVooaxl8nL2tUYwW5Rz\nxdN+mmGz9OHyiWQyWSqVmpubx+6Os0JBCABVybKsDRs2xONxv4MAAGpfa2vrhg0bmpqa/A4C\nAKh9q1evrq+vNwzD7yAAgNp3xRVXzPO1lqlUKplMjq3dDofDQ0NDpmlGIpHz/MjTrwCnpqpq\nY2NTd2LUFlaupGYLsic3OX1Wtqjmikq2qGQL8slfnGz+ZqbJy5VUVVVn8AuyMFEQAkBVCgaD\n1113nd8pAAALwpIlS5YsWeJ3CgDAgsB5twCA8+e6rud5Zxyzu+qqq87qw3qe57rubE/vjWfb\n9oQXzRiGUVk3OrWz7f88z/M8b2wOz/NErqhkXtvtmS0q+dd+UXn897VfYao5v9mjyKJkS7rq\nTfMLgklREAIAAAAAAAAAgKpXLpcrayf7+vri8Xg4HK4s55zAtu10Ol0qlYQQhmHU1dVNXfu5\nrptMJvP5fF9f36JFi0Kh0BRbNGeQJEmu605IcvTo0YGBgbP9UJ4nXqv35N+Xf3k5W5RTWS+T\nlzN5qegY+ZKWKym+dH6G5hpqKRRwg4ZTZ4mQ6VqGE6z8L+AGA45lOMJOqSJXZwlV8XR1mRBi\n/HZTnC0KQgAAAAAAAAAAUN0cxxkaGkomk5ZlNTU1pdPp3t7eNWvWTBjCcxxncHBwZGTENE3P\n84aGhhoaGpqamqbomUZGRnp7e8PhcHNzc7FY7O/vX7Fixdjmzxkx6cxfoVAYHBwMBoOVMtLz\nvEwm09LSUvndypxf9rXOLzs28Fc4dbenP3N+huZahlPp/CzDmbTzCxqOJuWzqROhoKEoiud5\nxWLxdBVsoeAMDqYVOSiEJIRwHCeXywUCgbn/1GoDBSEAAAAAAAAAAKhu2Wx2aGgoFotV3rQs\ny3XddDo9oSBMp9PDw8PRaLTypmEYg4ODgUDgdOfYFYvF7u7uxsbGSoOo63o0Gs1kMqFQ6HSd\n4jmf8De+88sWlEyhLpmuHxwtFR0jX1KzBcURVr6szbfOz9KdUOB1nV8o4FqGoyredD5mKpWV\ngoaqqkIISZJM00wmk4Zh6Lo+8e6GEYvFhoeHNU1LJpPFYnHZsmWWZc3857kwUBACAAAAAAAA\nAIC54ziO4ziqqs7gfkjbtjVNG//IpAfUlUqlCTNn4y87tdsrFotDQ0P5fH78g+l0emhoqNJp\nTW3SOb90Xq5s8szk58Wcn6nblm5bum3qtq4UGmNGpQI8585v+jzPSyaToVBo/IOqqk7YrVoh\nSVIwGNR13XGctrY2wzAmtL84KxSEAAAAAAAAAABgLjiOMzIy0t3dLUlSc3OzZVmRSGTq8/ym\nOZCXy+UmzAvatq3r+ujo6PjL0ul0oVAYXyWWSqXR0dHTHewny/IpBwF6+ZI2mA7kSurrdnue\nPORPyRVk3zu/8XN+lZ5v0t2ehexAXej3dWnlSL8z/hOZWeFw2HGc8Xd0XXeKAJqmaZo2syte\nFyYKQgCoSsVi8eDBg7FYLB6P+50FAFDjhoeHe3t729raxpbwAAAwS7q7u1OpVHt7+4QREABA\nbfA8b3h4eGBgoKmpqbu7+8iRI/l8PhaLzciWSF3XS6WSqqqKolTuVSgUJoymCSE0TUulUpqm\nHTt2TFGUtra2UqkUDkcqR/eNzflV6r3K/yczizN5qWDrlUYwX/KhWDE0N2ic7Pled55foNIF\nnsucn+tKadkslUpjf+0WCoWZagfXrFkzzStHRkZ6enpisVjlvoVCwTTNpqam6Qxo4nzw9QWA\nqpRKpR555JF169bddNNNfmcBANS4gwcP7tix45ZbbqEgBADMtmeeeWbPnj133HEHBSEA1KRi\nsdjT09PU1FSpgmRZNk2zVCqZpnn+pZSqqs3NzYVCIZvNCiFs2zFDzaliXSIpT5jzS2YWj6bd\nF3+905VCLW94R9HWfZ/zMw2nbqzzm/3dnmPtXT6fHx0dHRwcVBSlVCpdeOGFDQ0NM7j3dToi\nkYjjOMePH6/sDm1sbIxGo7SDc4AvMQAAAAAAAAAAmHWO42iaNr4LlGU5nU6HQqGzPc8vk5cy\neTlfUnMl9eRuz9fO86tMAZ6x8xtMm7Jq6FnzfD+rcSbs9gyZrqU7lQm/YMA19XJAK4cCbtgS\nwYB7zp3fNIfzHMcpl8uSJGmadrrOzzRNXdcjkYjruqqqTjidcW7IstzY2BgKhWzblmXZMIzK\nDChmGwUhAAAAAAAAAACYdbIs27Y9/pFJz/NL5+Vc6XWdn+/n+Y2t95yw2/O1gb8zz/kVCoVi\nsZhOp0VRSEbYdQJC0cXZrOI8K6lUKpvN9vf3CyFaWloikYhpTl6FKooyIytez5Mv3eQCJ3ne\nTM6l4jxt2bJl06ZNa9eu9TsIgPnOtu3+/n7Lstj2BgCYbdlsNplMxmKx0/08CQDATBkZGcnn\n8y0tLYwOAEBN8jyvv79/dHQ0FApt/YG2+2i9X+f5WYajOr1Bw4vV11cG/ir93wzu9hzf/OVy\nua6urlgsVtmhXTlmr6GhQdf1mfmUXq9yu/r6+spcZuV2jY2NbPDGeEwQAkBVUlU1Ho/7nQIA\nsCAEg8FgMOh3CgDAghCLxWKxmN8pAACzRZKk+vp6SZISiUS+2DKD7aCuuqHAySG/1+32NCs7\nP52xsb/gxM4vdw63O9uxv2w2GwqFxvq5QCCQTCYr6z3P4e7TvN3Y1tax2zFpgPEoCAEAAAAA\nAAAAwFzQNK2pqSkSidQ/lZ76yvG7PS3DqTNdy3BMrewUR6Jh1dJtS7dN3Q4atltOxlubZnA8\nbjr9X7FYHDsz73Qn/I1xHGfCIYuqqjqOc14pz+Z2iqLM3u1QpSgIAQAAAAAAAADAHJEkyTCM\n1YsHS05ybOCvsuTT0p1gwK0M/E2629NxnEQiEQqFJEmqPOJ5XsZ2zljRTXA+J/+5rjs8PHz8\n+HFN0xzHaW5ujkajUx+hp6pquVwePy9o2/bs7dNWFMW27Qm3m1AZAvyBAAAAAAAAAAAAc+qK\njtQVHamzfS9FUerr6ysLMyVJ8jwvn8/X19dPWradTws4hWQy2dfX19jYWGklM5mMEKKpqWmK\nwi8YDFYKxUppl8/nI5HI7B3lEAqFenp6VFWt3C6Xy0WjUU6OwAQUhAAAAAAAAAAAoDpYliWE\nGB4eFkI0NTV1dHREo9HZm8abwHXdfD5fV1c3NrNoWdbAwEBdXd0UDZxpmhdeeGE6ne7r6xNC\nLFq0KBqNzuBO1Klv19raGolEmCDEBPyBAAAAAAAAAAAAc6TSsRUKBUmSdF0fWxZ6OpMOAtq2\n7TiOoihz3Ht5ntfX19fc3Dz+QVVVXded+h1DoZBlWQ0NDUIITdPO+Fmfp8rt6uvrZVlWVXW2\nb4dqREEIAFUplUrt3Llz+fLl69ev9zsLAKDGHTx4cPfu3ZdddtmyZcv8zgIAqHFPP/10T0/P\nO97xDtM0/c4CAJgVxWJxeHh4aGhodHTUtu1wOBwMBhVFOdt1oKqqnmc1uH37dl3Xb7zxxrN6\nL1mWFy1aVCwWx0748zyvVCpNJ4wsy+PPBZxtsiwbhjFnt0PVoSAEgKpULBY7Ozvn8lsKAMCC\nNTw83NnZ2dHR4XcQAEDtO378+J49e2644QYKQgCoSa7rjoyMZDKZ+vr6+vp6IUQ6nY7FYhMG\n8ubGvn37KttKz4okSaFQqL+/PxKJaJrmum46nY7H44FAYDZCArNH9jsAAAAAAAAAAACofaVS\nqa+vb/xZfaFQKJFIlMtlH1Odrbq6upUrVxqG0d/fryhKS0tLfX09OzxRdZggBICqpChKLBab\n4uhjAABmimEYsViMsXUAwBwIBoOxWEyWeUU7ANQm13Un/Ee+0qud8QC/2RCNRs95YL2uri4U\nCjU1NcmyzF9bqFKS53l+Z8DvbdmyZdOmTWvXrvU7CAAAAAAAAAAAM6lcLnd2djY0NCiKUnnE\ntm1VVRctWkTNBswx/pUDAAAAAAAAAACzTtO0ZcuWjY6Olkolx3GKxeLIyEgoFKIdBOYeK0YB\nAAAAAAAAAMBciEajiqLkcrne3t7W1tampibO0AF8QUEIAAAAAAAAAADmgiRJ4XA4HA43Nzcz\nOAj4iH/9AAAAAAAAAADAnKIdBPzFv4EAAAAAAAAAAADAAkJBCAAAAAAAAAAAACwgFIQAUJUG\nBgbuueee7du3+x0EAFD7nnvuuXvuuefll1/2OwgAoPY9/PDD99xzTyqV8jsIAKD2bd269Rvf\n+IbfKQDfUBACAAAAAAAAAAAACwgFIQAAAAAAAAAAALCAqH4HwOu85S1vaWxs9DsFgCpgWdaG\nDRvi8bjfQQAAta+1tXXDhg1NTU1+BwEA1L7Vq1fX19cbhuF3EABA7bviiis0TfM7BeAbyfM8\nvzMAAAAAAAAAAAAAmCOsGAUAAAAAAAAAAAAWEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAW\nEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAWEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAW\nEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAWEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAW\nEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAWEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAW\nEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAWEApCAAAAAAAAAAAAYAGhIAQAAAAAAAAAAAAW\nEArC+eV73/ted3e33ymqw65du370ox/5nQIAUPvK5fIjjzzy61//2u8gAIDal0gkHnnkkX37\n9vkdBABQ+1588cVHHnlkaGjI7yAAAH9QEM4vL7/8ciqV8jtFdTh8+PCePXv8TgEAqH2u63Z2\ndh47dszvIACA2pdKpTo7OwcGBvwOAgCofSdOnOjs7Mzn834HAQD4g4IQAAAAAAAAAAAAWEBU\nvwMA5+iyyy7LZrN+pwAA1D5VVa+77rpoNOp3EABA7WtqarruuuuWL1/udxAAQO1rb28PhUKR\nSMTvIAAAf0ie5/mdAb+3ZcuWTZs2rV271u8gAAAAAAAAAAAAqE2sGAUAAAAAAAAAAAAWEApC\nAAAAAAAAAAAAYAHhDEJUK9u2hRCKokiS5HcWAAAAAAAAAACAqkFBiOpTLBZHR0cTiYQQorW1\nNRwOW5bldygAAAAAAAAAAIDqwIpRVBnbtoeHh1OpVHNzc3Nzcy6X6+rqKhaLfucCAAAAAAAA\nAACoDhSEqDKZTGZ0dDQYDO7Zs+f5558PBAKWZaXTab9zAQBqluM4Tz311O9+9zu/gwAAat/Q\n0NBTTz11/Phxv4MAAGrf4cOHn3rqKZ5VA4AFi4IQVcZxHE3ThBC7d+9+6qmnhBC6rjuO43cu\nAEDNssyoVqgAACAASURBVG17165du3fv9jsIAKD2DQwM7Nq168iRI34HAQDUvq6url27diWT\nSb+DAAD8QUGIKiPL8oQ60LZtWeZPMgAAAAAAAAAAwLRQq6DKWJaVz+dLpVLlTdu2M5mMZVn+\npgIAAAAAAAAAAKgWkud5fmfA723ZsmXTpk1r1671O8i8lslk0un00aNHXdcNBoMrVqyIRCJ+\nhwIA1CzP80ZHR1VVraur8zsLAKDGlcvlTCZjmmYgEPA7CwCgxuVyuWKxWFdXp6qq31kAAD7g\nv/6oPqFQyDTNaDTqeZ6u63wTAwCYVZIkxWIxv1MAABYETdP4SwcAMDcsy2IpFwAsZDQrqEqK\nopim6XcKAAAAAAAAAACA6sMZhAAAAAAAAAAAAMACQkEIAAAAAAAAAAAALCAUhAAAAAAAAAAA\nAMACQkEIAAAAAAAAAAAALCAUhKhWjz766P333+93CgBA7SuXy9u2bXvsscf8DgIAqH1Hjx7d\ntm3biy++6HeQ/5+9O4+vsr4TPf6c5CQkgSQEAoEAImBBhVrFCi64jAladXy13opLVdC6tLbj\n4HSh162dLtob7aVVO31N9VoL1Yu2HbdA68IyFRAEqbbIokiURuAAYthCyHJy7h+ZSxlESBDy\nIyfv918nz5J8XnpePEm++T0PAOnvlVdeeeihhzZs2BA6BIAw4qED4CB98MEHiUQidAUA6a+5\nuXndunW5ubmhQwBIf7t27Vq3bt327dtDhwCQ/rZt27Zu3brGxsbQIQCEYQUhAAAAAAAAdCJW\nENJRFRcXx2Kx0BUApL+MjIzS0tIePXqEDgEg/eXk5JSWlubn54cOASD9FRQUlJaWZmVlhQ4B\nIIxYKpUK3cDfTZo0acKECcOHDw8dAgAAAAAAQHpyi1EAAAAAAADoRAwIAQAAAAAAoBMxIAQA\nAAAAAIBOxIAQAAAAAAAAOpF46ICObePGjbfccktdXV0URd/+9rfPPPPM0EUAAAAAAACwP1YQ\nHrxUKvXggw+2TAdpf9u2baupqQldAUD6S6VSNTU127dvDx0CQPprbGysqanZtWtX6BAA0t/O\nnTtramqamppChwAQhgHhwXv++ef/8pe/hK7ovJ544okHH3wwdAUA6a+hoeH+++9/5plnQocA\nkP5Wr159//33L168OHQIAOnv5Zdfvv/++xOJROgQAMIwIDxIGzdufPTRR6Mo6tmzZ+gWAAAA\nAAAAaC0DwoORSqUeeOCBXbt2FRYWXnTRRaFzAAAAAAAAoLXioQM6pD/+8Y9//etfoyi67rrr\nPIMwlFGjRtXW1oauACD9xePx8vLy7t27hw4BIP316tWrvLz86KOPDh0CQPobOnRot27dCgsL\nQ4cAEIYBYZtt2LDh17/+dRRFI0eOPPfcc2fMmBG6qJM68cQTQycA0ClkZmaOGTMmdAUAnULP\nnj1ddABoH4MHDx48eHDoCgCCcYvRttl9c9G8vLx/+qd/Cp0DAAAAAAAAbWNA2DZ/+MMfli5d\nGkXRl7/85eLi4tA5AAAAAAAA0DYGhG2wYcOGKVOmRFF04oknnnfeeaFzAAAAAAAAoM0MCFtr\n981Fc3Nz3VwUAAAAAACADioeOqDDmDFjRsvNRa+99trevXsf9Od58cUXX3vttY/b+9577x30\nZwYAAAAAAIADMiBslUQiMXXq1CiKPv3pT3/uc5/7JJ9q9OjRw4cP/7i9GzZs+CSfvFNZsWJF\nXV3dyJEjQ4cAkOaSyeQbb7yRn58/dOjQ0C0ApLktW7asXr26X79+ffr0Cd0CQJqrrq7euHHj\nscce27Vr19AtAARgQHhgqVTq/vvv37VrV05Ozj//8z/HYrFP8tkKCwsLCws/bm+XLl0+ySfv\nVObOnZtIJAwIATjcmpqaKisrhwwZYkAIwOGWSCQqKyvLysoMCAE43JYtW7Zw4cKSkhIDQoDO\nyTMID2z69OnLli2Loui6664rKSkJnQMAAAAAAAAHzwrCA/jggw9abi7at2/fgoKC+fPn73VA\nVVVVy4u33norIyMjiqLS0tJBgwa1cycAAAAAAAC0RiyVSoVuOKItX778f/7P/9mmUy6++OIb\nb7zx4L7cpEmTJkyYsJ+HFLLbtm3bkslkUVFR6BAA0lwqldqyZUs8Hs/Pzw/dAkCaa2xs3LFj\nR25ubk5OTugWANLczp076+vr8/Pz43FrSAA6I//601EVFBSETgCgU4jFYv4eBYD2kZWV5aID\nQPvIy8vLy8sLXQFAMAaEB3D88cc/99xz+zlgxowZv/zlL6Mo+va3v33mmWe2VxcAAAAAAAAc\njIzQAQAAAAAAAED7MSAEAAAAAACATsSAEAAAAAAAADoRA0IAAAAAAADoROKhAzq8iy666KKL\nLgpd0RnNmDGjpqbm6quvDh0CQJprbGycNm1a3759x44dG7oFgDRXXV09Z86ckSNHjhgxInQL\nAGlu8eLFK1asuOCCC3r16hW6BYAADAjpqNauXZtIJEJXAJD+mpubq6qqYrFY6BAA0l9tbW1V\nVdWgQYNChwCQ/jZv3lxVVVVfXx86BIAw3GIUAAAAAAAAOhErCOmoiouLLeYAoB1kZGSUlpb2\n6NEjdAgA6S8nJ6e0tDQ/Pz90CADpr6CgoLS0NCsrK3QIAGHEUqlU6Ab+btKkSRMmTBg+fHjo\nEAAAAAAAANKTFYQAAAAAAABw8BYtWhRF0YABA/r27Ru6pVUMCAEAAAAAAODgXXLJJVEU5ebm\n3n777dddd92R/4i0jNABAAAAAAAA0OHV1dXddddd48aNW7NmTeiWAzAgBAAAAAAAgE9q4MCB\nURQtWLCgvLz80UcfTaVSoYs+lgEhAAAAAAAAfFJ33HHHPffck5eXt3PnzjvvvHPcuHF/+9vf\nQkftmwEhHVV9fX1dXV3oCgDSXyqVqqura2hoCB0CQPpLJpN1dXVNTU2hQwBIf42NjXV1dc3N\nzaFDANLNhAkTZs2adfrpp0dRtGDBgrKysilTphyBSwkNCOmopkyZct9994WuACD9NTQ0VFRU\nPPnkk6FDAEh/q1atqqioWLBgQegQANLfrFmzKioq1q1bFzoEIA0dddRRv/3tb3/84x937dp1\n586dt99++2WXXVZdXR26678xIAQAAAAAAIBDJhaLjR8/fvbs2WeddVYURa+88kpZWdnUqVOP\nnKWEBoQAAAAAAABwiPXv33/atGn33ntvfn5+bW3tbbfddsUVV7z//vuhu6LIgJCOa9SoUWVl\nZaErAEh/8Xi8vLz8pJNOCh0CQPrr1atXeXn5oEGDQocAkP6GDh1aXl5eWFgYOgQg/V111VWz\nZ88+55xzoiiaN29eWVnZY489Fjoqih05ixmJomjSpEkTJkwYPnx46BAAAAAAAABapV+/flEU\nPfTQQxdddNHHHfPb3/727rvv/uCDD6IoOvPMM//3//7fLWcFEQ/1hQEAAAAAAKAjevTRRz+6\ncc6cORs3btzPWddff/2UKVMSicTcuXPPPffct95667AFHoABIQAAAAAAALTBnXfe+dGN06ZN\na/1n2LFjx6HLaTPPIAQAAAAAAIBOxApCAAAAAAAAaINf/OIXe374ta99LYqiG2+88aSTTgpU\n1DYGhAAAAAAAANAGn//85/f8sGVAeMopp1x00UWBitrGLUbpqFasWPHnP/85dAUA6S+ZTC5Z\nsuTtt98OHQJA+tuyZcuSJUsSiUToEADSX3V19ZIlS2pra0OHABCGFYR0VHPnzk0kEiNHjgwd\nAkCaa2pqqqysHDJkyNChQ0O3AJDmEolEZWVlWVlZnz59QrcAkOaWLVu2cOHCkpKSrl27hm4B\nSAc33HBDFEWDBg0KHdJaBoQAAAAAAABw8L7//e+HTmgbA0IAAAAAAAA4eIsWLYqiaMCAAX37\n9g3d0iqxVCoVuoG/mzRp0oQJE4YPHx46pAPYtm1bMpksKioKHQJAmkulUlu2bInH4/n5+aFb\nAEhzjY2NO3bsyM3NzcnJCd0CQJrbuXNnfX19fn5+PG4NCcAh0K9fvyiKcnNzb7/99uuuuy4W\ni4UuOoCM0AFwkAoKCkwHAWgHsVisqKjIdBCAdpCVlVVUVGQ6CEA7yMvLKyoqMh0EOLTq6uru\nuuuucePGrVmzJnTLARgQAgAAAAAAwCc1cODAKIoWLFhQXl7+6KOPHsl38TQgBAAAAAAAgE/q\njjvuuOeee/Ly8nbu3HnnnXeOGzfub3/7W+iofTMgBAAAAAAAgENgwoQJs2bNOv3006MoWrBg\nQVlZ2ZQpU47ApYQGhAAAAAAAAHBoHHXUUb/97W9//OMfd+3adefOnbfffvtll11WXV0duuu/\nMSAEAAAAAACAQyYWi40fP3727NlnnXVWFEWvvPJKWVnZ1KlTj5ylhAaEdFQzZsx47LHHQlcA\nkP4aGxunTp360ksvhQ4BIP1VV1dPnTr1zTffDB0CQPpbvHjx1KlTN23aFDoEIJ31799/2rRp\n9957b35+fm1t7W233XbFFVe8//77obuiyICQjmvt2rVVVVWhKwBIf83NzVVVVYlEInQIAOmv\ntra2qqqqpqYmdAgA6W/z5s1VVVX19fWhQwDS31VXXTV79uxzzjkniqJ58+aVlZUdCcufDAgB\nAAAAAADgcCktLX388cd/+tOfFhcX79ix4zvf+c4VV1yxdu3agEnxgF8bPoni4uJYLBa6AoD0\nl5GRUVpa2qNHj9AhAKS/nJyc0tLS/Pz80CEApL+CgoLS0tKsrKzQIQAd1aOPPvrRjXPmzNm4\nceN+zrr++uunTJmSSCTmzp177rnnvvXWW4ct8ABiR87jEImiaNKkSRMmTBg+fHjoEAAAAAAA\nAPatX79+n/yTBFxE6BajAAAAAAAA0Im4xSgAAAAAAAC0wS9+8Ys9P/za174WRdGNN9540kkn\nBSpqGwNCAAAAAAAAaIPPf/7ze37YMiA85ZRTLrrookBFbeMWowAAAAAAANCJWEEIAAAAAAAA\nB++GG26IomjQoEGhQ1rLgLANUqnUwoUL582bt2rVqpqammQy2bVr1/79+48YMWLs2LG9e/cO\nHdi51NfXNzc35+bmhg4BIM2lUqldu3ZlZmZmZ2eHbgEgzSWTyYaGhqysrHjcT+sAHF6NjY1N\nTU1dunTJyHCTOYBD4Pvf/37ohLbxI0drrV+//t577129evWeG7du3bp169Zly5b9/ve/v+qq\nqy699NJQeZ3QlClTEonEd7/73dAhAKS5hoaGioqKIUOGXHPNNaFbAEhzq1ateuKJJ8rKys48\n88zQLQCkuVmzZi1cuPCGG27o379/6BYAAjAgbJUPPvhg0qRJW7dujaIoOzt79OjR/fr1y8vL\n++CDDxYvXrx+/fpkMjl16tR4PP6FL3whdCwAAAAAAADtoa6u7tlnny0qKjr//PNDt7SBAWGr\n/PKXv2yZDg4bNuz2228vKiravevLX/7yI488UllZGUXR//2///e8887Ly8sLFgoAAAAAAEC7\neOmll771rW998MEHV1111Z4Dwu3bt5944okFBQWFhYWFhYUtL/b6sLCwcMyYMaHKDQgPrKam\nZtGiRVEUZWdn33XXXQUFBXvuzcjIuP766xcvXpxIJHbt2vXmm2+OGjUqUGnnMmrUqNra2tAV\nAKS/eDxeXl7evXv30CEApL9evXqVl5cfffTRoUMASH9Dhw7t1q1bYWFh6BCADuz555+/6aab\nkslkFEVr167dc1cqldq1a9euXbs2bty4n8+w11ntyYDwwHbs2HH22Wfv2LGjX79+e00HW2Rk\nZAwfPjyRSERRtHnz5nYP7KROPPHE0AkAdAqZmZkB/5gLgE6lZ8+eLjoAtI/BgwcPHjw4dAVA\nB7Zt27ZvfetbLdPBY4455pJLLtlzbywWC9TVWgaEBzZgwIBvfOMb+z+msbGx5UW3bt0OfxEA\nAAAAAADBPPnkkzU1NVEUXXTRRQ888EBOTs6ee/Pz8ydMmDBlypRhw4b9/ve/r62t3bZt27Zt\n27Zu3bpt27bKysrZs2cHCv8vBoSHwI4dO15//fUoijIzM0eMGBE6BwAAAAAAgMNozpw5URQV\nFxfff//9e00HW9x2221PPfXUW2+9NWfOnC9+8Yt77qqurg4+IMwI++XTwJo1a773ve9t3749\niqL/8T/+R1FRUegiAAAAAAAADqMVK1ZEUXThhRfm5ubu84D8/PyxY8dGUfTcc8+1a1nrWEHY\nZhs3bpw+fXoymdy+ffu77767Zs2aKIqys7Mvv/zycePGha4DAAAAAADg8NqyZUsURft/nuvQ\noUOjKPrrX//aTk1tYUDYZh988MEzzzyz+8O8vLzzzjvv0ksvLSgoCFgFAAAAAABA+8jIOPBN\nOltuPfrhhx8e/pw2MyD8pHbu3PnMM88sXrz4i1/8Ynl5+QGP/93vftdyX9p9ev/99w9pXTpb\nsWJFXV3dyJEjQ4cAkOaSyeQbb7yRn5/f8jdfAHD4bNmyZfXq1f369evTp0/oFgDSXHV19caN\nG4899tiuXbuGbgHokIqKitavX//uu+/u55iWm1Dm5eW1V1QbGBC22fHHH//cc881Nzdv3bp1\nw4YNr7322vTp09euXfvAAw8sW7Zs4sSJ+z993Lhx+7kT6aRJkw51b9qaO3duIpEwIATgcGtq\naqqsrBwyZIgBIQCHWyKRqKysLCsrMyAE4HBbtmzZwoULS0pKDAgBDs7xxx+/fv36P/7xj9/7\n3ve6dOny0QMaGxuff/75KIr69+/f7nUHduD1j+xTRkZGUVHRsccee/XVVz/44IO9e/eOomjW\nrFmzZ88OnQYAAAAAAMBhdO6550ZRtHHjxjvuuKO5ufmjB9x9993r16+PoujMM89s77hWMCA8\nBHr16nXTTTe1vJ4+fXrYGAAAAAAAAA6ryy+/vLi4OIqiadOmjRs37j//8z/r6+ujKEqlUm+8\n8caXv/zlhx9+OIqizMzM8ePHB27dF7cYPTQ+85nPtLxYvXp1MpnMzMwM29MZXHHFFclkMnQF\nAOkvOzt74sSJ8bjvmgA47I4++uivfvWr3bp1Cx0CQPo766yzRo8enZ+fHzoEoKPKzc2dPHny\nhAkTUqnUwoULFy5cmJGRUVBQsHPnzoaGht2H/cu//MvRRx8dLvNj+VXXgf3lL39ZvXr1li1b\nTj311OOPP36fx2RnZ8disVQqlUqlGhsbDQjbQUFBQegEADqFWCxWVFQUugKANNfc3Lxly5Y1\na9ZkZGSsX79+wIABRUVFfrQE4PDJy8vLy8sLXQHQsZWVlf37v//7N77xjdra2uj/f1e/5wFf\n//rXb7311o+eWFJScsIJJ7RT5ccwIDywRYsWVVZWRlG0c+fOjxsQrl+/PpVKRVHUpUuXnJyc\ndu0DAACgg9uyZcu6deuKi4szMzObm5s3btyYSqWKi4tjsVjoNAAA4GP94z/+46hRox5++OEX\nXnhh9erVLRvz8/PPOuusm2+++aSTTtrnWVdfffXVV1/djpn7YEB4YCeffHLLgHDevHmXXXZZ\n7969P3rMzJkzW1583AQRAAAA9imZTK5Zs6ZlOhhFUUZGRmFh4dq1awsKCrp06RK6DgAA2J/e\nvXvfcccdd9xxx65duz788MMuXboUFRVlZGSE7jqAI73vSHDSSScNHDgwiqKdO3dWVFR8+OGH\nex0wc+bMp556quX1eeed1959AAAAdGRNTU2xWGzPG4rGYrF4PO6x6wAA0IHk5OSUlpb27Nnz\nyJ8ORlYQtkYsFps4ceJtt91WX1+/atWqm2666ZRTThk4cGCXLl1qampef/31NWvWtBw5evTo\nM844I2wtAAAAHUtmZmYqlWpubt79e4RUKtXU1OQZhAAAwGFiQNgqxxxzzD333POTn/xk/fr1\nDQ0N8+fPnz9//l7HjB079itf+UqQPAAAADqueDx+1FFHJRKJwsLCjIyMVCq1ffv2fv36ZWdn\nh04DAADaoKGh4d133926deuOHTtisVi3bt26det21FFHde3aNXTa3gwIW+tTn/rUL37xi7lz\n57766qvvvPPOtm3bGhoa8vLy+vTpc/zxx5eXl7fchpR2M2PGjJqamuCP8QQg7TU2Nk6bNq1v\n375jx44N3QJA2ioqKoqiaPHixUuWLBk2bNjZZ59dVFQUi8VCdwGQthYvXrxixYoLLrigV69e\noVsAOrwVK1Y8/fTTM2fOfOeddz76pIBYLNa/f//PfvazF1100bnnnnuEPGjcgLANMjMzzznn\nnHPOOSd0CFEURWvXrk0kEqErAEh/zc3NVVVVfkULwGGVkZHRs2fP/v37z5s3r0ePHn5XC8Dh\ntnnz5qqqqvr6+tAhAB3bpk2bvve97z377LP7OSaVSlVXV1dXVz/99NMlJSWTJk26/PLLg/+u\nyYAQAAAAjgjxeDwej2dlZYUOAQAADmzNmjVXXHHF3/72t91bcnNzu3btumXLlqampiiKjjvu\nuMGDB2/evPntt9/+8MMPoyjasGHDN7/5zfnz5//0pz+Nx0MO6QwI6aiKi4uDD9gB6AwyMjJK\nS0t79OgROgSA9JeTk1NaWpqfnx86BID0V1BQUFpa6q9SAA5aU1PTV77ylZbpYJ8+fb761a+e\nf/75Rx11VMuumTNn/uAHP1i1atW1117b8qy0t95665lnnvnVr361Y8eOp556qlu3bj/+8Y8D\n9sdSqVTAL89eJk2aNGHChOHDh4cOAQAAAAAAYN9+97vf3XrrrVEUnX322Q899FC3bt32OmDz\n5s2f+9znNmzY8B//8R+nnHJKy8b169ePHz9++fLlsVjsueeeGzlyZHt3/38Zob4wAAAAAAAA\ndETPPfdcFEW9e/f+5S9/+dHpYBRFPXv2/OY3v5lMJn/605/u3ti3b99f//rXXbt2TaVSTzzx\nRPvlfoQBIQAAAAAAALTBihUroii69NJL9/OMgFNPPTWKorlz527dunX3xn79+v3jP/5jFEWv\nvPLK4c/8WAaEAAAAAAAA0AYffPBBFEUDBw7czzGlpaVRFDU3N7///vt7bj/++OOjKEokEocz\n8AAMCAEAAAAAAKAN8vLyoiiqqanZzzEtQ8Qoinbu3Lnn9l27dkVRlJWVddjqDsyAEAAAAAAA\nANrgqKOOiqLohRde2M8xL774YsuL3r1777l90aJF0f9fXxiKASEdVX19fV1dXegKANJfKpWq\nq6traGgIHQJA+ksmk3V1dU1NTaFDAEh/jY2NdXV1zc3NoUMAOqpzzjkniqLXX3/93//93/d5\nwJo1ayZPnhxFUZ8+ffa8E+mf/vSnOXPmRFE0fPjw9gj9GAaEdFRTpky57777QlcAkP4aGhoq\nKiqefPLJ0CEApL9Vq1ZVVFQsWLAgdAgA6W/WrFkVFRXr1q0LHQLQUV177bU5OTlRFP3whz+8\n8cYbFyxYsPvvy9evX//www9feOGFmzdvjqJo/Pjxu8/66U9/et1117X8fcaXvvSlEOH/JR7w\nawMAAAAAAECH06dPnx/+8Iff/va3oyj6wx/+8Ic//CEzMzM/P7+hoWHPJw6OGDHipptu2v3h\n4sWL6+vroyi65pprTj311PbP3s0KQgAAAAAAAGibL33pS5MnT87Ly2v5MJlMbtmyZc/p4Gmn\nnfbYY4/l5ubu3jJ06NCsrKyJEyfec8897Z3731lBSEc1atSo2tra0BUApL94PF5eXt69e/fQ\nIQCkv169epWXlx999NGhQwBIf0OHDu3WrVthYWHoEICO7fLLLz/33HN/85vfzJo1a/ny5S13\nGS0oKBg1atRll1124YUXxmKxPY+/6qqrvva1r/Xu3TtQ79/FUqlU6Ab+btKkSRMmTAj7XEoA\nAAAAAADaqra2Nh6Pd+nSJXTIgVlBCAAAAAAAAJ9U165dQye0lmcQAgAAAAAAQCdiBSEAAAAA\nAAAcYk1NTUuXLq2qqtqxY0d+fv7gwYM//elPZ2Zmhu6KIgNCAAAAAAAAOAjbt29/6KGHli9f\n/sgjj+y5fceOHQ888MBvfvObbdu27bm9R48eN954480335yVldW+pXszIAQAAAAAAIC2Wbly\n5TXXXLNu3bq9Hj24du3ayy677L333vvoKR9++GFFRcXMmTMff/zx/Pz8dgrdF88gpKNasWLF\nn//859AVAKS/ZDK5ZMmSt99+O3QIAOlvy5YtS5YsSSQSoUMASH/V1dVLliypra0NHQLQUdXW\n1o4fP37dunVRFNXV1W3evLlle1NT0/jx43dPB4cOHTpu3Lgbbrjh0ksvHTx4cMvGJUuWTJw4\nMUT131lBSEc1d+7cRCIxcuTI0CEApLmmpqbKysohQ4YMHTo0dAsAaS6RSFRWVpaVlfXp0yd0\nCwBpbtmyZQsXLiwpKdlr1QsArfSb3/xm7dq1URSNHj168uTJPXv2bNn+xBNPrFy5MoqiAQMG\n/OxnPzv11FP3PGvOnDn/8i//smnTphdeeOHVV18dPXp0+5e3sIIQAAAAAAAA2uD555+Poqik\npOTxxx8/+uijd29/5plnoijKy8t78skn95oORlH0D//wD48//ng8Ho+i6Pe//3375X6EASEA\nAAAAAAC0QcvzaL74xS/m5ubuub1l+eAVV1wxcODAfZ44fPjwz33uc1EUvfrqq4c/82O5xSgd\n1RVXXJFMJkNXAJD+srOzJ06c2PKHXQBwWA0ZMmTixIl7/X4BAA6Hs846a/To0fn5+aFDADqq\nHTt2RFF01FFH7bW95fGun/nMZ/Zz7sknnzx9+vQNGzYcvrwDsoKQjqqgoKCoqCh0BQDpLxaL\nFRUV+bEZgHaQlZVVVFSUk5MTOgSA9JeXl1dUVORPIQEOWmFhYRRFW7Zs2Wt73759oyja/z+w\nGRkZURQ1NjYetroDMyAEAAAAAACANmi5g+hLL7201/aTTz45iqLly5fv59ylS5dGUVRSUnLY\n6g7MgBAAAAAAAADa4LzzzouiaMmSJY8//vie26+88sooiv7jP/6jrq5unye+8847lZWVURSd\n6LW9EAAAIABJREFUdNJJhz/zYxkQAgAAAAAAQBtceeWV3bt3j6LoO9/5TkVFRcujB6MoOv30\n0y+77LJEIvHNb36zqalpr7OWLl36pS99qb6+PoqiSy+9tJ2b9+Qe0wAAAAAAANAGvXr1uvfe\ne2+++eZkMvnAAw9MnTr1wgsvPPvss4899th//dd/zcvLmzJlyttvvz1+/PjBgwc3Nja+++67\nc+bM+c///M/m5uYois4///xzzz03YH8slUoF/PLsZdKkSRMmTBg+fHjoEAAAAAAAAPbnj3/8\n46233rpjx469tsfj8ebm5pZZ4Eedc845Dz/8cF5e3uEP/FhuMUpHNWPGjMceeyx0BQDpr7Gx\ncerUqR994jQAHHLV1dVTp0598803Q4cAkP4WL148derUTZs2hQ4B6NguuOCC+fPnX3fddQUF\nBXtub2pq2ud0sG/fvvfee+/UqVPDTgcjtxil41q7dm0ikQhdAUD6a25urqqqisVioUMASH+1\ntbVVVVWDBg0KHQJA+tu8eXNVVVXLQ7AA+CSKi4t/9KMffe9733v55Zdfe+21FStWVFdXb9++\nvWVZYdeuXQsKCgYPHjxs2LCzzz77s5/97BHyWyYDQgAAAAAAADh4WVlZZWVlZWVloUNay4CQ\njqq4uPgIGbMDkN4yMjJKS0t79OgROgSA9JeTk1NaWpqfnx86BID0V1BQUFpampWVFToEgDBi\nqVQqdAN/N2nSpAkTJgwfPjx0CAAAAAAAAOnJCkIAAAAAAABoJ1VVVVVVVVEUlZeXh2owIAQA\nAAAAAIB28vTTT0+ePDmKorVr14ZqyAj1hQEAAAAAAID2Z0AIAAAAAAAAnYgBIQAAAAAAALRB\nfX196IRPxDMI6ajq6+ubm5tzc3NDhwCQ5lKp1K5duzIzM7Ozs0O3AJDmkslkQ0NDVlZWPO6n\ndQAOr8bGxqampi5dumRkWEMCcDAGDx6cnZ1dWFg4ZMiQ448//jOf+cxZZ53Vu3fv0F2t5UeO\ntlm9evWLL764bNmyDz74oL6+Pi8vr1+/fieccMLYsWNLSkpC13UuU6ZMSSQS3/3ud0OHAJDm\nGhoaKioqhgwZcs0114RuASDNrVq16oknnigrKzvzzDNDtwCQ5mbNmrVw4cIbbrihf//+oVsA\nOqqGhoZNmzZt2rRp4cKFURTFYrERI0ZcfPHF48aNO/InhQaErdXQ0PDQQw+9+OKLe27cvn37\nypUrV65c+dRTT40fP/4LX/hCqDwAAAAAAABCSaVSS5cuXbp0aUVFRXl5+c0333zKKaeEjvpY\nBoStkkql/tf/+l+vvfZay4fDhw8fNmxYQUHB+vXrFy1aVFNT09TU9Ktf/SovL++8884LmwoA\nAAAAAMBh9d577+3YsWPHjh3vv//+qlWrVq5c+corr6xatSqKomQy+cILL7zwwgujR4/+1re+\ndfrpp4eO3QcDwlZ58cUXW6aD2dnZt91228knn7x71/XXX//QQw/NnDkziqIpU6acc845HlDU\nPkaNGlVbWxu6AoD0F4/Hy8vLu3fvHjoEgPTXq1ev8vLyo48+OnQIAOlv6NCh3bp1KywsDB0C\n0FFlZWUVFRUVFRUNGDDgtNNOa9mYSCSef/753/3ud2+88UYURa+++uq4cePKy8vvvPPOT33q\nU0F79+YJtK3y7LPPtry4/vrr95wORlGUk5Pz9a9/vVevXlEUbd++fenSpQH6OqUTTzzxjDPO\nCF0BQPrLzMwcM2bMiBEjQocAkP569uw5ZswYz4ICoB0MHjx4zJgx+fn5oUMA0kqfPn2uvfba\nGTNmzJ49+/LLL8/KyoqiaObMmeXl5RUVFQ0NDaED/86A8MC2bt26du3aKIqysrL+4R/+4aMH\nZGZmjhw5suV1y5EAAAAAAAB0TsOGDZs8efKrr7567bXXxuPxpqamBx54oKysbMGCBaHT/otb\njB5YYWHhU089VVNTU1dXl5OTs89jcnNzW140Nja2YxoAAAAAAABHopKSkrvvvvv666+/++67\nn3/++aqqqnHjxn3pS1/aPVQKyICwVTIzM4uLi/dzwIYNG1pe9O3bt12KAAAAAAAAONINHjz4\nkUcemT179p133rlmzZrHH388dFEUucXoIbF9+/YlS5ZEUZSbm3viiSeGzgEAAAAAAOAIcu65\n586ZM+ef//mf4/EjYvGeAeEh8NBDD7U8WPILX/hCXl5e6BwAAAAAAACOLF26dPnOd77zwgsv\nnHHGGQMHDhw4cGDAmCNiStmhPfnkk3/605+iKBo2bNi4ceNC53QiK1asqKurGzlyZOgQANJc\nMpl844038vPzhw4dGroFgDS3ZcuW1atX9+vXr0+fPqFbAEhz1dXVGzduPPbYY7t27Rq6BaBz\nOfbYY3/729+GrjAg/GQee+yxlv+L/fr1u+uuu1qzLLSysnL+/Pkft3f16tWHsi+tzZ07N5FI\nGBACcLg1NTVVVlYOGTLEgBCAwy2RSFRWVpaVlRkQAnC4LVu2bOHChSUlJQaEAJ2TAeFBqq+v\n/9nPftYy6hswYMD3v//9goKC1px48cUXX3zxxR+3d9KkSYcsEQAAAAAAAD7CgPBgbNq06e67\n766qqoqi6Pjjj7/zzju7desWOgoAAAAAAIB21dzc/PLLL8+ZM2fs2LFjxozZz5GrVq3q3r17\nr1692q1tPwwI22z58uU//vGPt27dGkVRWVnZ1772taysrNBRndEVV1yRTCZDVwCQ/rKzsydO\nnNiaG4kDwCc0ZMiQiRMn5ubmhg4BIP2dddZZo0ePzs/PDx0C0LEtXbr01ltvXblyZRRFffr0\n2f+A8MEHH3zqqacuvPDCH/zgB8EfK+BXXW2zcOHCe++9t6mpKRaLXXfddV/4whdCF3Verbyn\nKwB8QrFYrKioKHQFAJ1CVlaWiw4A7SMvLy8vLy90BUDH9te//vWLX/zizp07Wz7ctGnT/o+v\nqalJpVIzZsxYtGjRs88+O3DgwMPf+LEyAn7tDmfhwoUVFRVNTU1dunS5/fbbTQcBAAAAAAA6\noaampptvvrllOpifn3/55Zd/7nOf2/8pxx9/fMvS7U2bNn3lK19pbm5uj9CPYUDYWm+99dZP\nfvKTZDKZk5Pzgx/8YPTo0aGLAAAAAAAACODZZ5997733oig66aST5s2bN3ny5FGjRu3/lNtu\nu23hwoWnnXZaFEVLly594YUX2qHz4xgQtsrOnTvvu+++hoaGeDx+5513HnfccaGLAAAAAAAA\nCOPFF1+MoqhLly7/5//8n+Li4o8esGjRokWLFlVXV++5sXv37v/2b/+WnZ0dRVFlZWX7pO6T\nAWGrTJkyZePGjVEUXXPNNSeccELoHAAAAAAAAIL561//GkVReXl5nz599nnAJZdccskllzz6\n6KN7bS8pKbnggguiKPrLX/5yuCP3Ix7wa3cUGzdubJkDx2KxHTt2TJs2bT8Hd+vW7eKLL26v\nNAAAAAAAANrbhx9+GEXRx91yMplM7vViT4MHD46iaMOGDYet7sAMCA9s1apVLf//UqnU7373\nu/0f3KdPHwPC9jFjxoyampqrr746dAgAaa6xsXHatGl9+/YdO3Zs6BYA0lx1dfWcOXNGjhw5\nYsSI0C0ApLnFixevWLHiggsu6NWrV+gWgA5p165dURTl5ubuc+/mzZtbXtTU1Hx0b0FBQRRF\nTU1Nh63uwNxilI5q7dq1VVVVoSsASH/Nzc1VVVWJRCJ0CADpr7a2tqqqap+/QQCAQ2vz5s1V\nVVX19fWhQwA6qvz8/OjjVwG+//77LS+WLVv20b3r1q2LoqiwsPCw1R2YFYQHdsYZZzz33HOh\nKwAAAAAAADgiDBw4sKam5uWXX97n3pkzZ0ZRlJ+fv3LlyrfeemvYsGG7dyWTyZYH2w0ZMqR9\nUvfJCkI6quLi4r59+4auACD9ZWRklJaW9ujRI3QIAOkvJyentLS05S+RAeCwKigoKC0tzcrK\nCh0C0FGdcsopURStXLnyiSee2GvXunXrHn300SiKrrzyyiiKvvnNb27fvr1lVzKZ/P73v79m\nzZooik477bR2Lf7vYqlUKuCXZy+TJk2aMGHC8OHDQ4cAAAAAAACwbytXriwrK4uiKDMz8+ab\nb77yyiuPOuqo+vr6efPm3XXXXdXV1YMGDXr22WdPOeWU+vr6oqKic845Jzs7e+HChS3TwXg8\nPm/evAEDBoTqd4tRAAAAAAAAaINjjz32yiuvnDZtWjKZ/PnPf/7zn/88IyOjubl59wFf//rX\ne/bseeutt1ZUVNTU1Dz99NN7nv6Nb3wj4HQwcotRAAAAAAAAaKsf/ehH559//u4P95wOjhs3\n7oorroii6JZbbvn6178ej/99wV5ubu4dd9wxceLE9kz9KLcYPbK4xSgAAAAAAEBHMX369Mcf\nf3zx4sV1dXWxWOy444674YYbLr/88j2PWb9+/cKFC7dt21ZSUnL66acXFBSEqt3NgPDIYkAI\nAAAAAADQ4dTW1mZnZ2dlZYUOaRXPIAQAAAAAAIBPpGvXrqET2sAzCOmo6uvr6+rqQlcAkP5S\nqVRdXV1DQ0PoEADSXzKZrKura2pqCh0CQPprbGysq6vb83FZAHQqBoR0VFOmTLnvvvtCVwCQ\n/hoaGioqKp588snQIQCkv1WrVlVUVCxYsCB0CADpb9asWRUVFevWrQsdAkAYBoQAAAAAAADQ\niRgQAgAAAAAAQCcSDx0AB+nEE0/cvn176AoA0l9mZuaYMWN69OgROgSA9NezZ88xY8YMGDAg\ndAgA6W/QoEHxeDw/Pz90CABhxFKpVOgG/m7SpEkTJkwYPnx46BAAAAAAAADSk1uMAgAAAAAA\nQCdiQAgAAAAAAACdiAEhAAAAAAAAdCIGhAAAAAAAANCJGBACAAAAAABAJ2JASEe1YsWKP//5\nz6ErAEh/yWRyyZIlb7/9dugQANLfli1blixZkkgkQocAkP6qq6uXLFlSW1sbOgSAMAwI6ajm\nzp07ffr00BUApL+mpqbKyspXX301dAgA6S+RSFRWVq5atSp0CADpb9myZZWVlTU1NaFDAAjD\ngBAAAAAAAAA6EQNCAAAAAAAA6ERiqVQqdAN/N2nSpAkTJgwfPjx0SAewadOmpqamvn37hg4B\nIM01NzcnEokuXbr07NkzdAsAaW7Xrl0ffvhhQUFBt27dQrcAkOa2bt1aW1tbXFycnZ0dugWA\nAOKhA+Ag9erVK3QCAJ1CRkZGaWlp6AoAOoWcnBwXHQDaR2FhYWFhYegKAIJxi1EAAAAAAADo\nRAwIAQAAAAAAoBMxIAQAAAAAAIBOxIAQAAAAAAAAOhEDQgAAAAAAAOhEDAjpqGbMmPHYY4+F\nrgAg/TU2Nk6dOvWll14KHQJA+quurp46deqbb74ZOgSA9Ld48eKpU6du2rQpdAgAYcRDB8BB\nWrt2bSKRCF0BQPprbm6uqqqKxWKhQwBIf7W1tVVVVYMGDQodAkD627x5c1VVVX19fegQAMKw\nghAAAAAAoLNIpVLbtm2rqanZsWPH5s2b6+rqQhcBEIABIR1VQUFBUVFR6AoA0l8sFisqKurW\nrVvoEADSX3Z2dlFRUW5ubugQANLZhx9+uGbNmoyMjG7duu3cufOtt94yIwTohGKpVCp0A383\nadKkCRMmDB8+PHQIAAAAAJBudu3atXLlyuLi4oyM/1o6UldX17Vr1z59+oQNA6CdWUEIAAAA\nANApNDY2Zmdn754ORlGUk5Ozfv36ZDIZsAqA9mdACAAAAADQKcRie99Srrm5uaSkJBaLhUoC\nIAgDQgAAAACATiEnJ6dHjx4NDQ27t9TW1u61phCAziAeOgAAAAAAgPYQj8cLCgpWrVqVnZ2d\nmZnZ0NDQu3fv7t27h+4CoL0ZEAIAAAAAdBZdu3YdPnx4XV1dc3NzVlZWXl6e+4sCdEIGhHRU\n9fX1zc3Nubm5oUMASHOpVGrXrl2ZmZnZ2dmhWwBIc8lksqGhISsrKx730zoAh1FWVlYURU1N\nTV26dDEdBOic3FqajmrKlCn33Xdf6AoA0l9DQ0NFRcWTTz4ZOgSA9Ldq1aqKiooFCxaEDgEg\n/c2aNauiomLdunWhQwAIw98kHozly5f/7Gc/SyQSURR95zvfOeOMM0IXAQAAAAAAQKsYELZN\nU1PTY4899vTTT6dSqdAtAAAAAAAA0GYGhG3w7rvvTp48ec2aNVEUxePxpqam0EWd2oknnrh9\n+/bQFQCkv8zMzDFjxvTo0SN0CADpr2fPnmPGjBkwYEDoEADS36BBg+LxeH5+fugQAMIwIGyt\n6dOn/+pXv2pqasrKyho/fvy77747e/bs0FGd2qhRo0InANApxOPx8vLy0BUAdAq9evVy0QGg\nfQwbNmzYsGGhKwAIJiN0QIcxe/bspqamAQMG/OQnP/n85z8fOgcAAAAAAAAOhhWEbXDBBRdc\nf/312dnZoUMAAAAAAADgIBkQttYtt9wyaNCg0BUAAAAAAADwibjFaGuZDgIAAAAAAJAGrCAE\nANif5ubmpqamWCyWlZUVugUAAAAADgEDQjqqFStW1NXVjRw5MnQIAOls+/btW7dunTt3bl5e\n3mmnnVZYWNilS5fQUQCkrS1btqxevbpfv359+vQJ3QJAmquurt64ceOxxx7btWvX0C0ABOAW\no3RUc+fOnT59eugKANJZbW3t6tWrd+7c+dprr61Zs2bLli01NTXJZDJ0FwBpK5FIVFZWrlq1\nKnQIAOlv2bJllZWVNTU1oUMACMMKwvZWWVk5f/78j9u7evXq9owBAPZjx44d+fn5mZmZLR92\n69Zt8+bNeXl5BQUFYcMAAAAA4JMwIGxvF1988cUXX/xxeydNmtSeMQDAfiSTyaysrObm5t1b\n4vG4FYQAAAAAdHQGhHRUl1xySVNTU+gKANJZZmbmrl27srOzr7766uzs7CiKksnk7gWFAHDI\nHX300TfddJOl6gC0g9NOO+2EE04oLi4OHQJAGAaEdFS9evUKnQBAmuvatWsikSgqKiopKYmi\nqK6urqioKC8vL3QXAGkrJyentLQ0dAUAnUJhYWFhYWHoCgCCMSAEANi3bt26DRw48L333svI\nyEilUiUlJYWFhfG4b58AAAAA6Nj8hgsA4GN17959xIgRjY2NGRkZWVlZGRkZoYsAAAAA4JMy\nIAQA2J94PG7VIAAAAADpxF/BAwAAAAAAQCdiQAgAAAAAAACdiPtltcry5cv/8pe/7Lnl3Xff\nbXkxb968v/3tb7u35+TkXHLJJe0a11nNmDGjpqbm6quvDh0CQJprbGycNm1a3759x44dG7oF\ngDRXXV09Z86ckSNHjhgxInQLAGlu8eLFK1asuOCCC3r16hW6BYAADAhbZfny5dOmTdvnrvnz\n58+fP3/3h927dzcgbB9r165NJBKhKwBIf83NzVVVVbFYLHQIAOmvtra2qqpq0KBBoUMASH+b\nN2+uqqqqr68PHQJAGG4xCgAAAAAAAJ1ILJVKhW7g726//fbNmzcXFRWFDukAVqxYsXPnzpNP\nPrmtJzY0NGRnZx+OJNKJ9wmtEfx90q9fv1tuueWgT583b9706dMPYU+6SiaTr7/+ekFBwdCh\nQ9t0YiqVampqysrKOkxhpI3g/5hw5EulUo2NjWHfJ2edddaFF1540KdPmTJlxYoVh7AnXW3Z\nsuWdd97p379/nz592nRiMplMpVLxuLsEsT9NTU1RFHmfsH/JZDKKoszMzIAN11577bHHHnvQ\np3/3u99taGg4hD3pqrq6esOGDccdd1zXrl3bdKJvX2mNxsbGeDzuZjzs35HwPvnhD3/YaX91\nY0B4ZNm5c6cfmw+3Bx988JP8Pp1OwvuE1gj+PsnLyzvuuOMO+vQNGza8//77h7CHvdTU1MyY\nMcPjctm/bdu2Pf300xMmTAgdwhFt586dTz755HXXXRewoaSkpH///gd9+jvvvLN169ZD2MNe\nFixYEI/HTznllNAhHNEWL17c3Nw8evTo0CEc0V5//fWdO3eeccYZARuOOeaYwsLCgz799ddf\nb25uPoQ97GXKlCmXXHJJQUFB6BCOaI8//vhFF13UvXv30CEc0Z544omxY8f27NkzYMNJJ52U\nkdFJ77Xpr8aOLHl5eQexJI42KSws9B+ZA/I+oTU6+vukpKSkpKQkdEU627Bhw6JFizr0m4R2\nsHnz5rlz53qfsH/btm176aWXOvT75JhjjgmdkObWr1+fnZ3dod8ktIMPPvggmUx6n7B/W7du\n3b59e4d+n5x00kmhE9Lc9OnTP/OZz/To0SN0CEe0F1544dOf/nTv3r1Dh3BEmzVr1ogRI0pL\nS0OHdFKddC4KAAAAAAAAnZMBIQAAAAAAAHQiBoQAAAAAAADQiRgQAgAAAAAAQCdiQAgAAAAA\nAACdiAEhAAAAAAAAdCIGhAAAAAAAANCJGBACAAAAAABAJxJLpVKhG6BdVVdXDxgwIHQFRzrv\nE1rD+4T9a2xs3Lx5c58+fUKHcERramratGlT3759Q4dwREsmkxs2bCgtLQ0dwpFr69atsVis\noKAgdAhHtG3btqVSqcLCwtAhHNG2bdvW3NzcvXv30CEcudatW1dSUpKZmRk6hCPa+vXri4uL\ns7KyQodwREskEj169MjOzg4d0kkZEAIAAAAAAEAn4hajAAAAAAAA0IkYEAIAAAAAAEAnYkAI\nAAAAAAAAnYgBIQAAAAAAAHQiBoQAAAAAAADQiRgQAgAAAAAAQCdiQAgAAAAAAACdSDx0AHwi\nb7zxxne/+90DHnbMMcdMnjx5n7vWrl37hz/84c0339y0adOuXbvy8/OHDBly6qmnlpWVZWZm\nHupejghvvfXWzJkzly5dunnz5qysrJ49ew4ZMmTs2LHDhw/fz1neKmlv8eLFP/zhD1t5cJ8+\nfR566KGPbvc+SW8uOrSVKw775IpDa7jo0FYuOuyTiw6t4aJDW7nosE8uOh1OLJVKhW6Agzd/\n/vyKiooDHvZx38H8/ve/f/zxx5PJ5Ed39e/f/3vf+15JSckhqOSI0dTU9PDDDz///PP7/Kfv\nggsu+OpXvxqLxT66y1ulM/jk38R4n6Q9Fx1azxWH/XDFoTVcdGg9Fx32w0WH1nDRofVcdNgP\nF50Ox4CQju2FF174t3/7tyiKPvvZz37qU5/6uMN69Ohx/vnn77Xx2WeffeSRR1pen3jiiSec\ncEJubu7GjRvnzZu3adOmKIqKi4vvv//+/Pz8w5ZPu0qlUpMnT/7Tn/4URVFOTs6YMWMGDRpU\nX1+/fPnyJUuWtPxjeOWVV1555ZV7neit0kmsXbv25Zdf3v8xO3bsqKysjKLohBNO+NGPfrTn\nLu+TzsBFh1ZyxWH/XHFoDRcdWslFh/1z0aE1XHRoJRcd9s9Fp8MxIKRje+qpp379619HUXTr\nrbeee+65rT8xkUj80z/9U0NDQ2Zm5m233TZq1Kjdu+rr6++7775FixZFUTR27NhbbrnlUFcT\nxsyZMx944IEoigYPHnznnXcWFxfv3vXnP//5nnvuaWhoiMfjjzzySFFR0e5d3irs6ec///mL\nL76YmZn5s5/9bODAgbu3e590Ei46/6+9e4/Nqr7/AH4eaOkFeqGrpaAQcAiTKc6KEyYoCkPU\n6JYpaOZEh9MYl8xl7sKSubFlc9O5zWRjiWYLjkCmohA1bnFcJxKLsW5eEKXcDCgXLS2lLaWl\n9PfHief3rNenLdLLeb3++nC+3/P0+8CXvp/k85xzSJHEoeckDkKHFAkdek7oIHRIkdCh54RO\nnzKotxcAPVJbWxsWQ4cO7dKJzz77bENDQxAE8+fPT/51EwRBRkbG97///by8vCAI1q1bV1lZ\neYoWS29qaGhYvnx5EATZ2dk//elPkz/BBEFQUlJy4403Xnjhhddcc01NTU3ykK1C5K233lqz\nZk0QBDfeeGPyJ5jAPokNoUMqJA49J3EIhA6pETr0nNAhEDqkRujQc0Knr9EgpH+L8qZLn2Ca\nmpo2bdoUBEFaWtp1113XekJmZubcuXODIDh58uTGjRtPwULpbWVlZYcPHw6C4Prrry8oKGg9\n4eabb/75z3/+rW99a/To0dFBW4VIQ0PDn//85+bm5uLi4nnz5iUP2SfxIXRIhcShhyQOIaFD\nKoQOPSR0CAkdUiF06CGh0wdpENK/de8rTuXl5dXV1UEQTJw4cdiwYW3OufDCC8Pitdde69ka\n6RM2b94cFpdffnnqZ9kqRJ588skPPvggCIK77757yJAhyUP2SXwIHVIhceghiUNI6JAKoUMP\nCR1CQodUCB16SOj0QWm9vQDoke59gtm5c2dYTJgwob0548ePTyQSzc3N0WT6tXfffTcIguHD\nh5955pnhkZqamkOHDh0/fnz48OHFxcVtnmWrENq7d++qVauCIJg6dWpJSUmLUfskPoQOqZA4\n9ITEISJ0SIXQoSeEDhGhQyqEDj0hdPomDUL6t+gTTFZW1saNGzdt2rRjx47q6urMzMyioqIv\nfOELV199det8OnjwYFgUFRW198pDhgzJy8urqqqqq6s7evRoTk7Op/QWOA3q6+s/+uijIAjO\nOuusIAi2bt36xBNPvPnmm83NzeGEwsLCq6666qtf/WpGRkbyibYKoaVLlzY1NQ0ePPj2229v\nPWqfxIfQoVMShx6SOESEDp0SOvSQ0CEidOiU0KGHhE7fpEFI/xbdJH3RokV79+6NjtfW1u7e\nvXv37t3PPffczTffPH/+/EQiEY1WVVWFRX5+fgcvnp+fH86sqqryG6dfO3DgQPh5JTc395//\n/Oejjz568uTJ5Akff/zxihUrXnnllcWLFyfvCluFIAjeeuut8N4FV1999ahRo1pPsE/iQ+jQ\nKYlDT0gckgkdOiV06AmhQzKhQ6eEDj0hdPosDUL6t+grTnv37h06dOjFF188ZsyYIUOG7N+/\nf8uWLR9//HFTU9OKFSsaGxu/8Y1vRGfV19eHRYubHbcQjUbz6afq6urC4oMPPigtLS1BkV8Y\nAAAQH0lEQVQoKPj617/++c9/vrCw8MiRI1u2bHniiSeOHDmya9euhx566Fe/+lX0eddWIQiC\nFStWBEGQnp7e4vnJEfskPoQOnZI49ITEIZnQoVNCh54QOiQTOnRK6NATQqfP0iCkf4s+wVxz\nzTULFizIzs6Ohu64446lS5c+//zzQRA89dRTU6dOHT9+fDjU1NQUFmlpHf0XSE9PbzGffurY\nsWNhsWfPnuLi4t/+9rd5eXnhkcLCwmuvvbakpOR73/tebW3t22+/XVpaOm3atHDUVuGdd955\n5513giC48sorhw8f3uYc+yQ+hA6dkjh0m8ShBaFDp4QO3SZ0aEHo0CmhQ7cJnb5sUG8vAHpk\n2bJlf//735944om77747+eNLEARpaWl33nnnF7/4xfCPq1evjoYGDx4cFidOnOjgxRsaGlrM\np5+K7oceBMEdd9wRfYKJjBw58qabbgrrdevWRcdtFcLnJwdB8JWvfKW9OfZJfAgdOiVx6DaJ\nQwtCh04JHbpN6NCC0KFTQoduEzp9mQYh/Vt2dvbQoUNbfHZJFiVTWVlZlGRZWVlhEf1OaVM0\n2sHr0y9E/+KDBw+eMmVKm3OmT58eFuFXWlqcaKvEU2VlZXiH9IkTJ4ZP4W6TfRIfQodOSRy6\nR+LQmtChU0KH7hE6tCZ06JTQoXuETh+nQcgAN378+PDS47q6uqNHj4YHo2uZKysrOzj38OHD\nYdHxw1Hp+4YNGxYWOTk57X3BpLCwMCMjIwiCmpqaxsbG8KCtEnPr1q0Ln7l95ZVXdjDNPiEi\ndJA4dI/EoRuEDkKH7hE6dIPQQejQPUKnj9MgZIBLJBJhMgVJXzEYOXJkWBw8eLC9E6NPPLm5\nuUOHDv2Ul8mna9SoUYMGDQo6e4Bt9Jzb6DbWtkrMvfzyy2FxySWXdDDNPiEidJA4dI/EoRuE\nDkKH7hE6dIPQQejQPUKnj9MgZIBraGiInrScm5sbFtHjlN999932ToyGJkyY8GkukNMhPT39\nzDPPDIKgvr7+0KFDbc5pbGwMt0p6enpmZmZ40FaJs4qKil27dgVBMHr06IKCgg5m2idEhA4S\nh26QOHSP0EHo0A1Ch+4ROggdukHo9H0ahPRjW7ZsWbJkyeLFizds2NDenLfffju8N/qYMWOi\n77CcffbZZ5xxRhAE5eXl7V22vGXLlrCYOnXqKV43veHiiy8Oi9LS0jYnvPfee+EF7+PGjYsO\n2ipx9p///CcsJk+e3PFM+yQmhA4pkjh0lcShNaFDioQOXSV0aE3okCKhQ1cJnb5Pg5B+rLq6\n+sUXX3z99ddXrlzZ5vNLm5ubV65cGdbJVzEnEomZM2cGQXDy5MnVq1e3PrGiomL9+vVBEGRk\nZETP16Vfu+yyy8Ji9erVx44daz3hueeeC4vkJy3bKnFWXl4eFmPGjOl4pn0SE0KHFEkcukri\n0JrQIUVCh64SOrQmdEiR0KGrhE7fp0FIP3bZZZfl5eUFQbBv377f/e53NTU1yaMNDQ1/+tOf\ntm7dGgRBVlbW9ddfnzx6/fXXh7cqfvbZZ1966aXkoaNHjz744IPHjx8PguCGG27Izs7+tN8I\np8HZZ5996aWXBkFQUVHxm9/8pq6uLnn0mWeeCb/9lJmZOXfu3OQhWyW29uzZExajR4/udLJ9\nEgdChxRJHLpK4tCa0CFFQoeuEjq0JnRIkdChq4RO35cILw+HfurVV1994IEHwqvXhw0bNmPG\njFGjRiUSiQ8//PCVV14Jr0dOJBKLFi2aNm1ai3M3bNjwyCOPhP8FJk+ePHny5KysrA8++GDz\n5s1HjhwJguCcc8558MEH09LSTvvb4lNRWVn5gx/8ILxPekFBwcyZM0eOHFldXb1ly5bt27eH\nc+69995Zs2a1ONFWiadbb701/Pf9y1/+UlRU1Ol8+yQOhA4pkjh0icShTUKHFAkdukTo0Cah\nQ4qEDl0idPo+DUL6vdLS0j/+8Y9Hjx5tczQvL+/ee+9NvrA92Zo1ax599NE2758wefLkH//4\nx+HXFhgw9u/f/9BDD+3cubP1UEZGxl133fXlL3+5zRNtlRj62te+duLEiSAIVqxYkZOTk8op\n9kkcCB1SJHFIncShPUKHFAkdUid0aI/QIUVCh9QJnb5Pg5CBoLa2dt26dWVlZXv27KmpqUkk\nErm5uWPHjp0yZcqsWbMyMjI6OPejjz564YUX/vvf/x48eLChoSEvL2/ixImXX365h50OVE1N\nTf/+9783bdr0/vvvV1VVZWZmjhgxoqSk5Nprry0oKOjgRFslVhoaGm688cawXrVqVepfTbJP\n4kDokCKJQyokDh0TOqRI6JAKoUPHhA4pEjqkQuj0CxqEAAAAAAAAECODensBAAAAAAAAwOmj\nQQgAAAAAAAAxokEIAAAAAAAAMaJBCAAAAAAAADGiQQgAAAAAAAAxokEIAAAAAAAAMaJBCAAA\nAAAAADGiQQgAAAAAAAAxokEIAAAAAAAAMaJBCAAAAAAAADGiQQgAAAAAAAAxokEIAAAAAAAA\nMaJBCAAAAAAAADGiQQgAAAAAAAAxokEIAAAQR6WlpYlPPPzww729HAAAAE4fDUIAAAAAAACI\nEQ1CAAAAAAAAiJG03l4AAAAAn4q5c+e++OKLEydOfPfdd1uPFhcXf/vb3w7rCy+88PQuDQAA\ngN6UaG5u7u01AAAAcIo1Nzd/5jOfqaysbK9BCAAAQGy5xSgAAMAAVF5eXllZ2durAAAAoC/S\nIAQAABiAtmzZ0ttLAAAAoI/SIAQAABiANAgBAABojwYhAADAwPH4448nEolEIrFkyZLwyHvv\nvZf4RHFxcTSztLQ0Ov7www8nv8hrr70WDW3YsCE8+M477yxcuHDs2LEZGRnZ2dkTJky46667\ntm7dmnziyZMnn3766auuuuqMM85IT08vKCi45JJLfvnLXx45ciSVxW/cuPG73/3uRRddNGLE\niCFDhhQWFk6aNGnevHnLly8/evRoj/5eAAAASJLW2wsAAACgb8nOzo7q2traIAh+8YtfLF68\nuLm5OTpeXl5eXl6+dOnSxx9//JZbbgmCYP/+/VdfffUbb7wRzamsrHz11VdfffXVRx99dN26\ndRMmTGjvJ27btm3hwoWlpaXJBysqKioqKrZt2/b0008XFxc/8sgjN9100yl8mwAAALGlQQgA\nADBwjBo1atasWUEQlJaWhr297OzsadOmhaMFBQWpvMiQIUOi+tixY7///e9/9rOfBUGQSCTy\n8/Pr6uqOHz8ejp44cWLhwoVTpkwpKiqaMWPGzp07gyBIS0vLzc09cuRIU1NTOG3fvn3z588v\nKysbPHhw6x+3Zs2aG264IfkawbPOOquoqOjo0aO7du0KX+TAgQM333zznj17fvSjH3X5LwUA\nAID/5RajAAAAA8ecOXPWrl27du3asWPHhkdGjx699hNPPfVUKi+Snp4e1du2bfvJT36Sn5+/\nZMmSqqqqw4cP19XVvfzyy+eff344oaGh4Q9/+MOiRYt27txZUlLyr3/9q76+vqKiorq6evny\n5Tk5OeG0N9544x//+Efrn7Vr16758+eH3cFBgwZ95zvf2b179969e8vKyrZv33748OElS5bk\n5+eHkxctWvTMM890868GAACAT7iCEAAAgP8xaND/f5f0wQcfHDx48MaNGy+44IJo9NJLL33h\nhRcmTJhQX18fBMGKFStqa2u/9KUvrV27NisrK5yWnZ19yy23NDc333rrreGR559//rrrrmvx\ns+6+++6qqqogCBKJxLJly8K7lUZyc3PvueeeK664YurUqdXV1UEQ3Hfffddee21mZuan8s4B\nAADiwRWEAAAA/I9EIhHVdXV1999/f9QdjIwePXrOnDlhXVNTk0gk/vrXv0bdwchNN900bNiw\nsE5+PGHo9ddfX7NmTVjfdtttLbqDkXPPPfeBBx4I6/fff3/lypVdfksAAAAk0SAEAACgXUOG\nDLnzzjvbHEruGl5++eWf+9znWs9JT08/99xzw3rfvn0tRv/2t79F9Q9/+MMOlrFw4cLs7Oyw\nXrVqVQoLBwAAoF0ahAAAALSrpKRk+PDhbQ4VFxdH9RVXXNHeK0TTwgcNJnvppZfC4uyzz476\niG3KysqaMWNGi7MAAADoHg1CAAAA2jVp0qT2hpIfBNjm5YMtpjU0NCQfP3bs2JtvvhnWn/3s\nZztdyXnnnRcWhw8fPnDgQKfzAQAAaE9aby8AAACAvis/P7+9oUGDBnV1WrKKioqTJ0+G9ebN\nm8eOHdvxSqqrq6N6z549ydcvAgAA0CUahAAAALQrPT39FE5LVllZGdV1dXXvv/9+6ucmNwsB\nAADoKrcYBQAAoBfU1tZ2+9yamppTuBIAAIC4cQUhAAAAvSAnJyeqb7311mXLlvXiYgAAAGLF\nFYQAAAD0gtzc3Kh2y1AAAIDTSYMQAACAXlBcXJyRkRHWO3bs6N3FAAAAxIoGIQAAAL0gPT19\n8uTJYb19+3YXEQIAAJw2GoQAAAD0jhkzZoRFY2Pjs88+2/Hk9957TxMRAADglNAgBAAAGIAS\niURY1NXV9e5KOnD77bdH9a9//eumpqb2ZtbX18+ePbuwsHDWrFmrVq06HYsDAAAYuDQIAQAA\nBqDMzMywOHDgQE1NTe8upj3nn3/+7Nmzw3rbtm333HNPc3Nz62mNjY0LFizYt29fY2Pj+vXr\nO+gjAgAAkAoNQgAAgAFozJgxYdHY2Hjfffd99NFHTU1Ne/bsqays7N2FtfDYY48NGzYsqmfP\nnv3yyy9HbcL6+vqVK1dOmzZt5cqV4ZGZM2fOmzevd9YKAAAwUGgQAgAADEBz5syJ6scee6yo\nqCgtLW3cuHFlZWW9uKrWxo0bt3r16qhHuH79+hkzZuTk5JxzzjkjRozIzs6eP39+tOZJkyY9\n+eSTvbdYAACAAUKDEAAAYAC67bbbzjvvvN5eRUrCqwanT58eHamtrd2xY8ehQ4eiSwkTicQ3\nv/nNzZs3FxUV9dIyAQAABo603l4AAAAAp15mZuaGDRvuv//+559//sCBA+np6SNHjrzooovG\njRvX20trwwUXXLBp06YNGzY899xzL7300ocffnj48OG0tLT8/PxJkyZNnz59wYIFfXPlAAAA\n/VGizSfAAwAAAAAAAAOSW4wCAAAAAABAjGgQAgAAAAAAQIxoEAIAAAAAAECMaBACAAAAAABA\njGgQAgAAAAAAQIxoEAIAAAAAAECMaBACAAAAAABAjGgQAgAAAAAAQIxoEAIAAAAAAECMaBAC\nAAAAAABAjGgQAgAAAAAAQIxoEAIAAAAAAECMaBACAAAAAABAjGgQAgAAAAAAQIxoEAIAAAAA\nAECMaBACAAAAAABAjGgQAgAAAAAAQIxoEAIAAAAAAECMaBACAAAAAABAjGgQAgAAAAAAQIxo\nEAIAAAAAAECMaBACAAAAAABAjGgQAgAAAAAAQIxoEAIAAAAAAECMaBACAAAAAABAjGgQAgAA\nAAAAQIxoEAIAAAAAAECMaBACAAAAAABAjPwfBR38PLzQX70AAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 1500, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "options(repr.plot.width=20, repr.plot.height=25)\n", - "library(lubridate)\n", - "df = rbind(gp_measurements %>% select(eid, date, meaning, name, value), data_mean) %>% \n", - " filter(eid %in% eids) %>% \n", - " filter(name %in% c(#\"O/E - Systolic BP reading\", \"O/E - Diastolic BP reading\", \n", - " #\"O/E - weight\", \n", - " \"Serum cholesterol level\", \"Serum triglycerides level\",\n", - " \"Serum high density lipoprotein cholesterol level\", \"Serum low density lipoprotein cholesterol level\")) %>%\n", - " filter(as.numeric(value)>0) %>% \n", - " filter(!((name==\"Haemoglobin estimation\")&(value> 50))) %>%\n", - " filter(!((name==\"O/E - Diastolic BP reading\")&(value> 400))) %>%\n", - " filter(!((name==\"O/E - Systolic BP reading\")&(value> 400))) %>%\n", - " filter(!((name==\"O/E - weight\")&(value> 300))) %>%\n", - " filter(!((name==\"Serum cholesterol level\")&(value> 20))) %>%\n", - " filter(!((name==\"Serum creatinine level\")&(value> 1000))) %>%\n", - " filter(!((name==\"Serum high density lipoprotein cholesterol level\")&(value> 100))) %>%\n", - " #filter(!((name==\"Finding of body mass index\")&(value> 50))) %>%\n", - " left_join(data, on=\"eid\") %>% mutate(time = time_length(difftime(date, birth_date), \"years\"))%>% filter(time>0)\n", - "\n", - "ggplot(df, aes(x=time, y=as.numeric(value)), color=as.factor(name))+geom_point(alpha=0.1)+\n", - " facet_grid(eid~name, scales=\"free\", labeller=label_wrap_gen(width = 10, multi_line = TRUE))+\n", - " geom_smooth(method=\"lm\")+\n", - " geom_vline(aes(xintercept=age_at_recruitment_f21022_0_0), linetype=\"24\", alpha=0.5)" - ] - }, - { - "cell_type": "code", - "execution_count": 135, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A tibble: 216 × 97
eiddatecodevalue1value2value3meaningnamevalueage_at_recruitment_f21022_0_0rheumatoid_factor_f30820_0_0shbg_f30830_0_0testosterone_f30850_0_0total_bilirubin_f30840_0_0total_protein_f30860_0_0triglycerides_f30870_0_0urate_f30880_0_0urea_f30670_0_0vitamin_d_f30890_0_0time
<int><date><chr><chr><chr><chr><chr><chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
16593672009-11-3022A..83.000 NANA162763007 O/E - weight 83.0042NANA11.148 8.89 NA1.332276.23.7243.242.24504
16593672009-12-2122A..86.000 NANA162763007 O/E - weight 86.0042NANA11.148 8.89 NA1.332276.23.7243.242.30253
16593672015-08-2722A..96.000 NANA162763007 O/E - weight 96.0042NANA11.148 8.89 NA1.332276.23.7243.247.98357
16593672015-08-272469.122.000NANA163030003 O/E - Systolic BP reading 122.0042NANA11.148 8.89 NA1.332276.23.7243.247.98357
16593672015-08-272469.135.000NANA163030003 O/E - Systolic BP reading 135.0042NANA11.148 8.89 NA1.332276.23.7243.247.98357
16593672015-08-27246A.77.000 NANA163031004 O/E - Diastolic BP reading 77.0042NANA11.148 8.89 NA1.332276.23.7243.247.98357
16593672015-08-27246A.79.000 NANA163031004 O/E - Diastolic BP reading 79.0042NANA11.148 8.89 NA1.332276.23.7243.247.98357
16593672015-08-2744P5.1.100 NANA1005681000000107Serum high density lipoprotein cholesterol level 1.1042NANA11.148 8.89 NA1.332276.23.7243.247.98357
16593672015-08-27XE2eD5.200 NANA1005671000000105Serum cholesterol level 5.2042NANA11.148 8.89 NA1.332276.23.7243.247.98357
16593672015-08-27XE2q92.000 NANA1005691000000109Serum triglycerides level 2.0042NANA11.148 8.89 NA1.332276.23.7243.247.98357
20915732005-04-222469.142.000NANA163030003 O/E - Systolic BP reading 142.0049NA5110.97811.1279.192.321425.14.5281.445.44285
20915732005-04-22246A.82.000 NANA163031004 O/E - Diastolic BP reading 82.0049NA5110.97811.1279.192.321425.14.5281.445.44285
20915732008-01-182469.130.000NANA163030003 O/E - Systolic BP reading 130.0049NA5110.97811.1279.192.321425.14.5281.448.18344
20915732008-01-18246A.84.000 NANA163031004 O/E - Diastolic BP reading 84.0049NA5110.97811.1279.192.321425.14.5281.448.18344
20915732011-12-2144P5.1.200 NANA1005681000000107Serum high density lipoprotein cholesterol level 1.2049NA5110.97811.1279.192.321425.14.5281.452.10678
20915732011-12-2144P6.3.700 NANA1022191000000100Serum low density lipoprotein cholesterol level 3.7049NA5110.97811.1279.192.321425.14.5281.452.10678
20915732011-12-21XE2eD6.300 NANA1005671000000105Serum cholesterol level 6.3049NA5110.97811.1279.192.321425.14.5281.452.10678
20915732011-12-21XE2q93.000 NANA1005691000000109Serum triglycerides level 3.0049NA5110.97811.1279.192.321425.14.5281.452.10678
20915732014-02-1122A..74.000 NANA162763007 O/E - weight 74.0049NA5110.97811.1279.192.321425.14.5281.454.25051
20915732014-02-112469.115.000NANA163030003 O/E - Systolic BP reading 115.0049NA5110.97811.1279.192.321425.14.5281.454.25051
20915732014-02-11246A.65.000 NANA163031004 O/E - Diastolic BP reading 65.0049NA5110.97811.1279.192.321425.14.5281.454.25051
20915732014-02-1144P5.0.770 NANA1005681000000107Serum high density lipoprotein cholesterol level 0.7749NA5110.97811.1279.192.321425.14.5281.454.25051
20915732014-03-2722A..73.180 NANA162763007 O/E - weight 73.1849NA5110.97811.1279.192.321425.14.5281.454.37098
20915732014-04-0844P5.1.100 NANA1005681000000107Serum high density lipoprotein cholesterol level 1.1049NA5110.97811.1279.192.321425.14.5281.454.40383
20915732014-04-0844P6.0.800 NANA1022191000000100Serum low density lipoprotein cholesterol level 0.8049NA5110.97811.1279.192.321425.14.5281.454.40383
20915732014-04-08XE2eD2.200 NANA1005671000000105Serum cholesterol level 2.2049NA5110.97811.1279.192.321425.14.5281.454.40383
20915732014-04-08XE2q90.600 NANA1005691000000109Serum triglycerides level 0.6049NA5110.97811.1279.192.321425.14.5281.454.40383
20915732014-05-1222A..72.000 NANA162763007 O/E - weight 72.0049NA5110.97811.1279.192.321425.14.5281.454.49692
20915732014-05-122469.116.000NANA163030003 O/E - Systolic BP reading 116.0049NA5110.97811.1279.192.321425.14.5281.454.49692
20915732014-05-12246A.73.000 NANA163031004 O/E - Diastolic BP reading 73.0049NA5110.97811.1279.192.321425.14.5281.454.49692
55502372015-09-29246A.75.000 NA NA163031004 O/E - Diastolic BP reading 75.053NANA1.113 7.19NA2.563320.74.1050.360.24641
57086661998-07-2922A..62.100 NA NA162763007 O/E - weight 62.153NANA0.96317.84NA0.864213.62.6135.243.46886
57086661998-07-29246..110.00070.000NA163030003 O/E - Systolic BP reading 110.053NANA0.96317.84NA0.864213.62.6135.243.46886
57086661998-07-29246..110.00070.000NA163031004 O/E - Diastolic BP reading 70.053NANA0.96317.84NA0.864213.62.6135.243.46886
57086662003-11-13246..110.00050.000NA163030003 O/E - Systolic BP reading 110.053NANA0.96317.84NA0.864213.62.6135.248.76112
57086662003-11-13246..110.00050.000NA163031004 O/E - Diastolic BP reading 50.053NANA0.96317.84NA0.864213.62.6135.248.76112
57086662004-06-17246..122.00077.000NA163030003 O/E - Systolic BP reading 122.053NANA0.96317.84NA0.864213.62.6135.249.35524
57086662004-06-17246..122.00077.000NA163031004 O/E - Diastolic BP reading 77.053NANA0.96317.84NA0.864213.62.6135.249.35524
57086662005-04-06246..110.00070.000NA163030003 O/E - Systolic BP reading 110.053NANA0.96317.84NA0.864213.62.6135.250.15743
57086662005-04-06246..110.00070.000NA163031004 O/E - Diastolic BP reading 70.053NANA0.96317.84NA0.864213.62.6135.250.15743
57086662005-06-29246..120.00080.000NA163030003 O/E - Systolic BP reading 120.053NANA0.96317.84NA0.864213.62.6135.250.38741
57086662005-06-29246..120.00080.000NA163031004 O/E - Diastolic BP reading 80.053NANA0.96317.84NA0.864213.62.6135.250.38741
57086662006-01-17246..110.00070.000NA163030003 O/E - Systolic BP reading 110.053NANA0.96317.84NA0.864213.62.6135.250.94045
57086662006-01-17246..110.00070.000NA163031004 O/E - Diastolic BP reading 70.053NANA0.96317.84NA0.864213.62.6135.250.94045
57086662006-11-0822A..63.000 NA NA162763007 O/E - weight 63.053NANA0.96317.84NA0.864213.62.6135.251.74812
57086662006-11-08246..122.00080.000NA163030003 O/E - Systolic BP reading 122.053NANA0.96317.84NA0.864213.62.6135.251.74812
57086662006-11-08246..122.00080.000NA163031004 O/E - Diastolic BP reading 80.053NANA0.96317.84NA0.864213.62.6135.251.74812
57086662013-04-04246..139.00087.000NA163030003 O/E - Systolic BP reading 139.053NANA0.96317.84NA0.864213.62.6135.258.15195
57086662013-04-04246..139.00087.000NA163031004 O/E - Diastolic BP reading 87.053NANA0.96317.84NA0.864213.62.6135.258.15195
57086662015-07-20246..130.00070.000NA163030003 O/E - Systolic BP reading 130.053NANA0.96317.84NA0.864213.62.6135.260.44353
57086662015-07-20246..130.00070.000NA163031004 O/E - Diastolic BP reading 70.053NANA0.96317.84NA0.864213.62.6135.260.44353
57086662015-08-0622A..63.200 NA NA162763007 O/E - weight 63.253NANA0.96317.84NA0.864213.62.6135.260.49008
57086662015-08-06246..131.00084.000NA163030003 O/E - Systolic BP reading 131.053NANA0.96317.84NA0.864213.62.6135.260.49008
57086662015-08-06246..131.00084.000NA163031004 O/E - Diastolic BP reading 84.053NANA0.96317.84NA0.864213.62.6135.260.49008
57086662015-12-10246..110.00070.000NA163030003 O/E - Systolic BP reading 110.053NANA0.96317.84NA0.864213.62.6135.260.83504
57086662015-12-10246..110.00070.000NA163031004 O/E - Diastolic BP reading 70.053NANA0.96317.84NA0.864213.62.6135.260.83504
57086662015-12-14XE2eD5.600 NA NA1005671000000105Serum cholesterol level 5.653NANA0.96317.84NA0.864213.62.6135.260.84600
57086662015-12-1444P5.2.000 NA NA1005681000000107Serum high density lipoprotein cholesterol level 2.053NANA0.96317.84NA0.864213.62.6135.260.84600
57086662015-12-1444P6.3.100 NA NA1022191000000100Serum low density lipoprotein cholesterol level 3.153NANA0.96317.84NA0.864213.62.6135.260.84600
57086662015-12-14XE2q91.100 NA NA1005691000000109Serum triglycerides level 1.153NANA0.96317.84NA0.864213.62.6135.260.84600
\n" - ], - "text/latex": [ - "A tibble: 216 × 97\n", - "\\begin{tabular}{lllllllllllllllllllll}\n", - " eid & date & code & value1 & value2 & value3 & meaning & name & value & age\\_at\\_recruitment\\_f21022\\_0\\_0 & ⋯ & rheumatoid\\_factor\\_f30820\\_0\\_0 & shbg\\_f30830\\_0\\_0 & testosterone\\_f30850\\_0\\_0 & total\\_bilirubin\\_f30840\\_0\\_0 & total\\_protein\\_f30860\\_0\\_0 & triglycerides\\_f30870\\_0\\_0 & urate\\_f30880\\_0\\_0 & urea\\_f30670\\_0\\_0 & vitamin\\_d\\_f30890\\_0\\_0 & time\\\\\n", - " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1659367 & 2009-11-30 & 22A.. & 83.000 & NA & NA & 162763007 & O/E - weight & 83.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 42.24504\\\\\n", - "\t 1659367 & 2009-12-21 & 22A.. & 86.000 & NA & NA & 162763007 & O/E - weight & 86.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 42.30253\\\\\n", - "\t 1659367 & 2015-08-27 & 22A.. & 96.000 & NA & NA & 162763007 & O/E - weight & 96.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 1659367 & 2015-08-27 & 2469. & 122.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 122.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 1659367 & 2015-08-27 & 2469. & 135.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 135.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 1659367 & 2015-08-27 & 246A. & 77.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 77.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 1659367 & 2015-08-27 & 246A. & 79.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 79.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 1659367 & 2015-08-27 & 44P5. & 1.100 & NA & NA & 1005681000000107 & Serum high density lipoprotein cholesterol level & 1.10 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 1659367 & 2015-08-27 & XE2eD & 5.200 & NA & NA & 1005671000000105 & Serum cholesterol level & 5.20 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 1659367 & 2015-08-27 & XE2q9 & 2.000 & NA & NA & 1005691000000109 & Serum triglycerides level & 2.00 & 42 & ⋯ & NA & NA & 11.148 & 8.89 & NA & 1.332 & 276.2 & 3.72 & 43.2 & 47.98357\\\\\n", - "\t 2091573 & 2005-04-22 & 2469. & 142.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 142.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 45.44285\\\\\n", - "\t 2091573 & 2005-04-22 & 246A. & 82.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 82.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 45.44285\\\\\n", - "\t 2091573 & 2008-01-18 & 2469. & 130.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 130.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 48.18344\\\\\n", - "\t 2091573 & 2008-01-18 & 246A. & 84.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 84.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 48.18344\\\\\n", - "\t 2091573 & 2011-12-21 & 44P5. & 1.200 & NA & NA & 1005681000000107 & Serum high density lipoprotein cholesterol level & 1.20 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 52.10678\\\\\n", - "\t 2091573 & 2011-12-21 & 44P6. & 3.700 & NA & NA & 1022191000000100 & Serum low density lipoprotein cholesterol level & 3.70 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 52.10678\\\\\n", - "\t 2091573 & 2011-12-21 & XE2eD & 6.300 & NA & NA & 1005671000000105 & Serum cholesterol level & 6.30 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 52.10678\\\\\n", - "\t 2091573 & 2011-12-21 & XE2q9 & 3.000 & NA & NA & 1005691000000109 & Serum triglycerides level & 3.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 52.10678\\\\\n", - "\t 2091573 & 2014-02-11 & 22A.. & 74.000 & NA & NA & 162763007 & O/E - weight & 74.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.25051\\\\\n", - "\t 2091573 & 2014-02-11 & 2469. & 115.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 115.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.25051\\\\\n", - "\t 2091573 & 2014-02-11 & 246A. & 65.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 65.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.25051\\\\\n", - "\t 2091573 & 2014-02-11 & 44P5. & 0.770 & NA & NA & 1005681000000107 & Serum high density lipoprotein cholesterol level & 0.77 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.25051\\\\\n", - "\t 2091573 & 2014-03-27 & 22A.. & 73.180 & NA & NA & 162763007 & O/E - weight & 73.18 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.37098\\\\\n", - "\t 2091573 & 2014-04-08 & 44P5. & 1.100 & NA & NA & 1005681000000107 & Serum high density lipoprotein cholesterol level & 1.10 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.40383\\\\\n", - "\t 2091573 & 2014-04-08 & 44P6. & 0.800 & NA & NA & 1022191000000100 & Serum low density lipoprotein cholesterol level & 0.80 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.40383\\\\\n", - "\t 2091573 & 2014-04-08 & XE2eD & 2.200 & NA & NA & 1005671000000105 & Serum cholesterol level & 2.20 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.40383\\\\\n", - "\t 2091573 & 2014-04-08 & XE2q9 & 0.600 & NA & NA & 1005691000000109 & Serum triglycerides level & 0.60 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.40383\\\\\n", - "\t 2091573 & 2014-05-12 & 22A.. & 72.000 & NA & NA & 162763007 & O/E - weight & 72.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.49692\\\\\n", - "\t 2091573 & 2014-05-12 & 2469. & 116.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 116.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.49692\\\\\n", - "\t 2091573 & 2014-05-12 & 246A. & 73.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 73.00 & 49 & ⋯ & NA & 51 & 10.978 & 11.12 & 79.19 & 2.321 & 425.1 & 4.52 & 81.4 & 54.49692\\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋱ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 5550237 & 2015-09-29 & 246A. & 75.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 75.0 & 53 & ⋯ & NA & NA & 1.113 & 7.19 & NA & 2.563 & 320.7 & 4.10 & 50.3 & 60.24641\\\\\n", - "\t 5708666 & 1998-07-29 & 22A.. & 62.100 & NA & NA & 162763007 & O/E - weight & 62.1 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 43.46886\\\\\n", - "\t 5708666 & 1998-07-29 & 246.. & 110.000 & 70.000 & NA & 163030003 & O/E - Systolic BP reading & 110.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 43.46886\\\\\n", - "\t 5708666 & 1998-07-29 & 246.. & 110.000 & 70.000 & NA & 163031004 & O/E - Diastolic BP reading & 70.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 43.46886\\\\\n", - "\t 5708666 & 2003-11-13 & 246.. & 110.000 & 50.000 & NA & 163030003 & O/E - Systolic BP reading & 110.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 48.76112\\\\\n", - "\t 5708666 & 2003-11-13 & 246.. & 110.000 & 50.000 & NA & 163031004 & O/E - Diastolic BP reading & 50.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 48.76112\\\\\n", - "\t 5708666 & 2004-06-17 & 246.. & 122.000 & 77.000 & NA & 163030003 & O/E - Systolic BP reading & 122.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 49.35524\\\\\n", - "\t 5708666 & 2004-06-17 & 246.. & 122.000 & 77.000 & NA & 163031004 & O/E - Diastolic BP reading & 77.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 49.35524\\\\\n", - "\t 5708666 & 2005-04-06 & 246.. & 110.000 & 70.000 & NA & 163030003 & O/E - Systolic BP reading & 110.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 50.15743\\\\\n", - "\t 5708666 & 2005-04-06 & 246.. & 110.000 & 70.000 & NA & 163031004 & O/E - Diastolic BP reading & 70.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 50.15743\\\\\n", - "\t 5708666 & 2005-06-29 & 246.. & 120.000 & 80.000 & NA & 163030003 & O/E - Systolic BP reading & 120.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 50.38741\\\\\n", - "\t 5708666 & 2005-06-29 & 246.. & 120.000 & 80.000 & NA & 163031004 & O/E - Diastolic BP reading & 80.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 50.38741\\\\\n", - "\t 5708666 & 2006-01-17 & 246.. & 110.000 & 70.000 & NA & 163030003 & O/E - Systolic BP reading & 110.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 50.94045\\\\\n", - "\t 5708666 & 2006-01-17 & 246.. & 110.000 & 70.000 & NA & 163031004 & O/E - Diastolic BP reading & 70.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 50.94045\\\\\n", - "\t 5708666 & 2006-11-08 & 22A.. & 63.000 & NA & NA & 162763007 & O/E - weight & 63.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 51.74812\\\\\n", - "\t 5708666 & 2006-11-08 & 246.. & 122.000 & 80.000 & NA & 163030003 & O/E - Systolic BP reading & 122.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 51.74812\\\\\n", - "\t 5708666 & 2006-11-08 & 246.. & 122.000 & 80.000 & NA & 163031004 & O/E - Diastolic BP reading & 80.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 51.74812\\\\\n", - "\t 5708666 & 2013-04-04 & 246.. & 139.000 & 87.000 & NA & 163030003 & O/E - Systolic BP reading & 139.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 58.15195\\\\\n", - "\t 5708666 & 2013-04-04 & 246.. & 139.000 & 87.000 & NA & 163031004 & O/E - Diastolic BP reading & 87.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 58.15195\\\\\n", - "\t 5708666 & 2015-07-20 & 246.. & 130.000 & 70.000 & NA & 163030003 & O/E - Systolic BP reading & 130.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.44353\\\\\n", - "\t 5708666 & 2015-07-20 & 246.. & 130.000 & 70.000 & NA & 163031004 & O/E - Diastolic BP reading & 70.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.44353\\\\\n", - "\t 5708666 & 2015-08-06 & 22A.. & 63.200 & NA & NA & 162763007 & O/E - weight & 63.2 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.49008\\\\\n", - "\t 5708666 & 2015-08-06 & 246.. & 131.000 & 84.000 & NA & 163030003 & O/E - Systolic BP reading & 131.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.49008\\\\\n", - "\t 5708666 & 2015-08-06 & 246.. & 131.000 & 84.000 & NA & 163031004 & O/E - Diastolic BP reading & 84.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.49008\\\\\n", - "\t 5708666 & 2015-12-10 & 246.. & 110.000 & 70.000 & NA & 163030003 & O/E - Systolic BP reading & 110.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.83504\\\\\n", - "\t 5708666 & 2015-12-10 & 246.. & 110.000 & 70.000 & NA & 163031004 & O/E - Diastolic BP reading & 70.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.83504\\\\\n", - "\t 5708666 & 2015-12-14 & XE2eD & 5.600 & NA & NA & 1005671000000105 & Serum cholesterol level & 5.6 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.84600\\\\\n", - "\t 5708666 & 2015-12-14 & 44P5. & 2.000 & NA & NA & 1005681000000107 & Serum high density lipoprotein cholesterol level & 2.0 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.84600\\\\\n", - "\t 5708666 & 2015-12-14 & 44P6. & 3.100 & NA & NA & 1022191000000100 & Serum low density lipoprotein cholesterol level & 3.1 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.84600\\\\\n", - "\t 5708666 & 2015-12-14 & XE2q9 & 1.100 & NA & NA & 1005691000000109 & Serum triglycerides level & 1.1 & 53 & ⋯ & NA & NA & 0.963 & 17.84 & NA & 0.864 & 213.6 & 2.61 & 35.2 & 60.84600\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A tibble: 216 × 97\n", - "\n", - "| eid <int> | date <date> | code <chr> | value1 <chr> | value2 <chr> | value3 <chr> | meaning <chr> | name <chr> | value <dbl> | age_at_recruitment_f21022_0_0 <dbl> | ⋯ ⋯ | rheumatoid_factor_f30820_0_0 <dbl> | shbg_f30830_0_0 <dbl> | testosterone_f30850_0_0 <dbl> | total_bilirubin_f30840_0_0 <dbl> | total_protein_f30860_0_0 <dbl> | triglycerides_f30870_0_0 <dbl> | urate_f30880_0_0 <dbl> | urea_f30670_0_0 <dbl> | vitamin_d_f30890_0_0 <dbl> | time <dbl> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 1659367 | 2009-11-30 | 22A.. | 83.000 | NA | NA | 162763007 | O/E - weight | 83.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 42.24504 |\n", - "| 1659367 | 2009-12-21 | 22A.. | 86.000 | NA | NA | 162763007 | O/E - weight | 86.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 42.30253 |\n", - "| 1659367 | 2015-08-27 | 22A.. | 96.000 | NA | NA | 162763007 | O/E - weight | 96.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 1659367 | 2015-08-27 | 2469. | 122.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 122.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 1659367 | 2015-08-27 | 2469. | 135.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 135.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 1659367 | 2015-08-27 | 246A. | 77.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 77.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 1659367 | 2015-08-27 | 246A. | 79.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 79.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 1659367 | 2015-08-27 | 44P5. | 1.100 | NA | NA | 1005681000000107 | Serum high density lipoprotein cholesterol level | 1.10 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 1659367 | 2015-08-27 | XE2eD | 5.200 | NA | NA | 1005671000000105 | Serum cholesterol level | 5.20 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 1659367 | 2015-08-27 | XE2q9 | 2.000 | NA | NA | 1005691000000109 | Serum triglycerides level | 2.00 | 42 | ⋯ | NA | NA | 11.148 | 8.89 | NA | 1.332 | 276.2 | 3.72 | 43.2 | 47.98357 |\n", - "| 2091573 | 2005-04-22 | 2469. | 142.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 142.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 45.44285 |\n", - "| 2091573 | 2005-04-22 | 246A. | 82.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 82.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 45.44285 |\n", - "| 2091573 | 2008-01-18 | 2469. | 130.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 130.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 48.18344 |\n", - "| 2091573 | 2008-01-18 | 246A. | 84.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 84.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 48.18344 |\n", - "| 2091573 | 2011-12-21 | 44P5. | 1.200 | NA | NA | 1005681000000107 | Serum high density lipoprotein cholesterol level | 1.20 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 52.10678 |\n", - "| 2091573 | 2011-12-21 | 44P6. | 3.700 | NA | NA | 1022191000000100 | Serum low density lipoprotein cholesterol level | 3.70 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 52.10678 |\n", - "| 2091573 | 2011-12-21 | XE2eD | 6.300 | NA | NA | 1005671000000105 | Serum cholesterol level | 6.30 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 52.10678 |\n", - "| 2091573 | 2011-12-21 | XE2q9 | 3.000 | NA | NA | 1005691000000109 | Serum triglycerides level | 3.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 52.10678 |\n", - "| 2091573 | 2014-02-11 | 22A.. | 74.000 | NA | NA | 162763007 | O/E - weight | 74.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.25051 |\n", - "| 2091573 | 2014-02-11 | 2469. | 115.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 115.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.25051 |\n", - "| 2091573 | 2014-02-11 | 246A. | 65.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 65.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.25051 |\n", - "| 2091573 | 2014-02-11 | 44P5. | 0.770 | NA | NA | 1005681000000107 | Serum high density lipoprotein cholesterol level | 0.77 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.25051 |\n", - "| 2091573 | 2014-03-27 | 22A.. | 73.180 | NA | NA | 162763007 | O/E - weight | 73.18 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.37098 |\n", - "| 2091573 | 2014-04-08 | 44P5. | 1.100 | NA | NA | 1005681000000107 | Serum high density lipoprotein cholesterol level | 1.10 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.40383 |\n", - "| 2091573 | 2014-04-08 | 44P6. | 0.800 | NA | NA | 1022191000000100 | Serum low density lipoprotein cholesterol level | 0.80 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.40383 |\n", - "| 2091573 | 2014-04-08 | XE2eD | 2.200 | NA | NA | 1005671000000105 | Serum cholesterol level | 2.20 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.40383 |\n", - "| 2091573 | 2014-04-08 | XE2q9 | 0.600 | NA | NA | 1005691000000109 | Serum triglycerides level | 0.60 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.40383 |\n", - "| 2091573 | 2014-05-12 | 22A.. | 72.000 | NA | NA | 162763007 | O/E - weight | 72.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.49692 |\n", - "| 2091573 | 2014-05-12 | 2469. | 116.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 116.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.49692 |\n", - "| 2091573 | 2014-05-12 | 246A. | 73.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 73.00 | 49 | ⋯ | NA | 51 | 10.978 | 11.12 | 79.19 | 2.321 | 425.1 | 4.52 | 81.4 | 54.49692 |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋱ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 5550237 | 2015-09-29 | 246A. | 75.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 75.0 | 53 | ⋯ | NA | NA | 1.113 | 7.19 | NA | 2.563 | 320.7 | 4.10 | 50.3 | 60.24641 |\n", - "| 5708666 | 1998-07-29 | 22A.. | 62.100 | NA | NA | 162763007 | O/E - weight | 62.1 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 43.46886 |\n", - "| 5708666 | 1998-07-29 | 246.. | 110.000 | 70.000 | NA | 163030003 | O/E - Systolic BP reading | 110.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 43.46886 |\n", - "| 5708666 | 1998-07-29 | 246.. | 110.000 | 70.000 | NA | 163031004 | O/E - Diastolic BP reading | 70.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 43.46886 |\n", - "| 5708666 | 2003-11-13 | 246.. | 110.000 | 50.000 | NA | 163030003 | O/E - Systolic BP reading | 110.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 48.76112 |\n", - "| 5708666 | 2003-11-13 | 246.. | 110.000 | 50.000 | NA | 163031004 | O/E - Diastolic BP reading | 50.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 48.76112 |\n", - "| 5708666 | 2004-06-17 | 246.. | 122.000 | 77.000 | NA | 163030003 | O/E - Systolic BP reading | 122.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 49.35524 |\n", - "| 5708666 | 2004-06-17 | 246.. | 122.000 | 77.000 | NA | 163031004 | O/E - Diastolic BP reading | 77.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 49.35524 |\n", - "| 5708666 | 2005-04-06 | 246.. | 110.000 | 70.000 | NA | 163030003 | O/E - Systolic BP reading | 110.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 50.15743 |\n", - "| 5708666 | 2005-04-06 | 246.. | 110.000 | 70.000 | NA | 163031004 | O/E - Diastolic BP reading | 70.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 50.15743 |\n", - "| 5708666 | 2005-06-29 | 246.. | 120.000 | 80.000 | NA | 163030003 | O/E - Systolic BP reading | 120.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 50.38741 |\n", - "| 5708666 | 2005-06-29 | 246.. | 120.000 | 80.000 | NA | 163031004 | O/E - Diastolic BP reading | 80.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 50.38741 |\n", - "| 5708666 | 2006-01-17 | 246.. | 110.000 | 70.000 | NA | 163030003 | O/E - Systolic BP reading | 110.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 50.94045 |\n", - "| 5708666 | 2006-01-17 | 246.. | 110.000 | 70.000 | NA | 163031004 | O/E - Diastolic BP reading | 70.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 50.94045 |\n", - "| 5708666 | 2006-11-08 | 22A.. | 63.000 | NA | NA | 162763007 | O/E - weight | 63.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 51.74812 |\n", - "| 5708666 | 2006-11-08 | 246.. | 122.000 | 80.000 | NA | 163030003 | O/E - Systolic BP reading | 122.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 51.74812 |\n", - "| 5708666 | 2006-11-08 | 246.. | 122.000 | 80.000 | NA | 163031004 | O/E - Diastolic BP reading | 80.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 51.74812 |\n", - "| 5708666 | 2013-04-04 | 246.. | 139.000 | 87.000 | NA | 163030003 | O/E - Systolic BP reading | 139.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 58.15195 |\n", - "| 5708666 | 2013-04-04 | 246.. | 139.000 | 87.000 | NA | 163031004 | O/E - Diastolic BP reading | 87.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 58.15195 |\n", - "| 5708666 | 2015-07-20 | 246.. | 130.000 | 70.000 | NA | 163030003 | O/E - Systolic BP reading | 130.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.44353 |\n", - "| 5708666 | 2015-07-20 | 246.. | 130.000 | 70.000 | NA | 163031004 | O/E - Diastolic BP reading | 70.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.44353 |\n", - "| 5708666 | 2015-08-06 | 22A.. | 63.200 | NA | NA | 162763007 | O/E - weight | 63.2 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.49008 |\n", - "| 5708666 | 2015-08-06 | 246.. | 131.000 | 84.000 | NA | 163030003 | O/E - Systolic BP reading | 131.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.49008 |\n", - "| 5708666 | 2015-08-06 | 246.. | 131.000 | 84.000 | NA | 163031004 | O/E - Diastolic BP reading | 84.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.49008 |\n", - "| 5708666 | 2015-12-10 | 246.. | 110.000 | 70.000 | NA | 163030003 | O/E - Systolic BP reading | 110.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.83504 |\n", - "| 5708666 | 2015-12-10 | 246.. | 110.000 | 70.000 | NA | 163031004 | O/E - Diastolic BP reading | 70.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.83504 |\n", - "| 5708666 | 2015-12-14 | XE2eD | 5.600 | NA | NA | 1005671000000105 | Serum cholesterol level | 5.6 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.84600 |\n", - "| 5708666 | 2015-12-14 | 44P5. | 2.000 | NA | NA | 1005681000000107 | Serum high density lipoprotein cholesterol level | 2.0 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.84600 |\n", - "| 5708666 | 2015-12-14 | 44P6. | 3.100 | NA | NA | 1022191000000100 | Serum low density lipoprotein cholesterol level | 3.1 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.84600 |\n", - "| 5708666 | 2015-12-14 | XE2q9 | 1.100 | NA | NA | 1005691000000109 | Serum triglycerides level | 1.1 | 53 | ⋯ | NA | NA | 0.963 | 17.84 | NA | 0.864 | 213.6 | 2.61 | 35.2 | 60.84600 |\n", - "\n" - ], - "text/plain": [ - " eid date code value1 value2 value3 meaning \n", - "1 1659367 2009-11-30 22A.. 83.000 NA NA 162763007 \n", - "2 1659367 2009-12-21 22A.. 86.000 NA NA 162763007 \n", - "3 1659367 2015-08-27 22A.. 96.000 NA NA 162763007 \n", - "4 1659367 2015-08-27 2469. 122.000 NA NA 163030003 \n", - "5 1659367 2015-08-27 2469. 135.000 NA NA 163030003 \n", - "6 1659367 2015-08-27 246A. 77.000 NA NA 163031004 \n", - "7 1659367 2015-08-27 246A. 79.000 NA NA 163031004 \n", - "8 1659367 2015-08-27 44P5. 1.100 NA NA 1005681000000107\n", - "9 1659367 2015-08-27 XE2eD 5.200 NA NA 1005671000000105\n", - "10 1659367 2015-08-27 XE2q9 2.000 NA NA 1005691000000109\n", - "11 2091573 2005-04-22 2469. 142.000 NA NA 163030003 \n", - "12 2091573 2005-04-22 246A. 82.000 NA NA 163031004 \n", - "13 2091573 2008-01-18 2469. 130.000 NA NA 163030003 \n", - "14 2091573 2008-01-18 246A. 84.000 NA NA 163031004 \n", - "15 2091573 2011-12-21 44P5. 1.200 NA NA 1005681000000107\n", - "16 2091573 2011-12-21 44P6. 3.700 NA NA 1022191000000100\n", - "17 2091573 2011-12-21 XE2eD 6.300 NA NA 1005671000000105\n", - "18 2091573 2011-12-21 XE2q9 3.000 NA NA 1005691000000109\n", - "19 2091573 2014-02-11 22A.. 74.000 NA NA 162763007 \n", - "20 2091573 2014-02-11 2469. 115.000 NA NA 163030003 \n", - "21 2091573 2014-02-11 246A. 65.000 NA NA 163031004 \n", - "22 2091573 2014-02-11 44P5. 0.770 NA NA 1005681000000107\n", - "23 2091573 2014-03-27 22A.. 73.180 NA NA 162763007 \n", - "24 2091573 2014-04-08 44P5. 1.100 NA NA 1005681000000107\n", - "25 2091573 2014-04-08 44P6. 0.800 NA NA 1022191000000100\n", - "26 2091573 2014-04-08 XE2eD 2.200 NA NA 1005671000000105\n", - "27 2091573 2014-04-08 XE2q9 0.600 NA NA 1005691000000109\n", - "28 2091573 2014-05-12 22A.. 72.000 NA NA 162763007 \n", - "29 2091573 2014-05-12 2469. 116.000 NA NA 163030003 \n", - "30 2091573 2014-05-12 246A. 73.000 NA NA 163031004 \n", - " \n", - "187 5550237 2015-09-29 246A. 75.000 NA NA 163031004 \n", - "188 5708666 1998-07-29 22A.. 62.100 NA NA 162763007 \n", - "189 5708666 1998-07-29 246.. 110.000 70.000 NA 163030003 \n", - "190 5708666 1998-07-29 246.. 110.000 70.000 NA 163031004 \n", - "191 5708666 2003-11-13 246.. 110.000 50.000 NA 163030003 \n", - "192 5708666 2003-11-13 246.. 110.000 50.000 NA 163031004 \n", - "193 5708666 2004-06-17 246.. 122.000 77.000 NA 163030003 \n", - "194 5708666 2004-06-17 246.. 122.000 77.000 NA 163031004 \n", - "195 5708666 2005-04-06 246.. 110.000 70.000 NA 163030003 \n", - "196 5708666 2005-04-06 246.. 110.000 70.000 NA 163031004 \n", - "197 5708666 2005-06-29 246.. 120.000 80.000 NA 163030003 \n", - "198 5708666 2005-06-29 246.. 120.000 80.000 NA 163031004 \n", - "199 5708666 2006-01-17 246.. 110.000 70.000 NA 163030003 \n", - "200 5708666 2006-01-17 246.. 110.000 70.000 NA 163031004 \n", - "201 5708666 2006-11-08 22A.. 63.000 NA NA 162763007 \n", - "202 5708666 2006-11-08 246.. 122.000 80.000 NA 163030003 \n", - "203 5708666 2006-11-08 246.. 122.000 80.000 NA 163031004 \n", - "204 5708666 2013-04-04 246.. 139.000 87.000 NA 163030003 \n", - "205 5708666 2013-04-04 246.. 139.000 87.000 NA 163031004 \n", - "206 5708666 2015-07-20 246.. 130.000 70.000 NA 163030003 \n", - "207 5708666 2015-07-20 246.. 130.000 70.000 NA 163031004 \n", - "208 5708666 2015-08-06 22A.. 63.200 NA NA 162763007 \n", - "209 5708666 2015-08-06 246.. 131.000 84.000 NA 163030003 \n", - "210 5708666 2015-08-06 246.. 131.000 84.000 NA 163031004 \n", - "211 5708666 2015-12-10 246.. 110.000 70.000 NA 163030003 \n", - "212 5708666 2015-12-10 246.. 110.000 70.000 NA 163031004 \n", - "213 5708666 2015-12-14 XE2eD 5.600 NA NA 1005671000000105\n", - "214 5708666 2015-12-14 44P5. 2.000 NA NA 1005681000000107\n", - "215 5708666 2015-12-14 44P6. 3.100 NA NA 1022191000000100\n", - "216 5708666 2015-12-14 XE2q9 1.100 NA NA 1005691000000109\n", - " name value \n", - "1 O/E - weight 83.00\n", - "2 O/E - weight 86.00\n", - "3 O/E - weight 96.00\n", - "4 O/E - Systolic BP reading 122.00\n", - "5 O/E - Systolic BP reading 135.00\n", - "6 O/E - Diastolic BP reading 77.00\n", - "7 O/E - Diastolic BP reading 79.00\n", - "8 Serum high density lipoprotein cholesterol level 1.10\n", - "9 Serum cholesterol level 5.20\n", - "10 Serum triglycerides level 2.00\n", - "11 O/E - Systolic BP reading 142.00\n", - "12 O/E - Diastolic BP reading 82.00\n", - "13 O/E - Systolic BP reading 130.00\n", - "14 O/E - Diastolic BP reading 84.00\n", - "15 Serum high density lipoprotein cholesterol level 1.20\n", - "16 Serum low density lipoprotein cholesterol level 3.70\n", - "17 Serum cholesterol level 6.30\n", - "18 Serum triglycerides level 3.00\n", - "19 O/E - weight 74.00\n", - "20 O/E - Systolic BP reading 115.00\n", - "21 O/E - Diastolic BP reading 65.00\n", - "22 Serum high density lipoprotein cholesterol level 0.77\n", - "23 O/E - weight 73.18\n", - "24 Serum high density lipoprotein cholesterol level 1.10\n", - "25 Serum low density lipoprotein cholesterol level 0.80\n", - "26 Serum cholesterol level 2.20\n", - "27 Serum triglycerides level 0.60\n", - "28 O/E - weight 72.00\n", - "29 O/E - Systolic BP reading 116.00\n", - "30 O/E - Diastolic BP reading 73.00\n", - " \n", - "187 O/E - Diastolic BP reading 75.0 \n", - "188 O/E - weight 62.1 \n", - "189 O/E - Systolic BP reading 110.0 \n", - "190 O/E - Diastolic BP reading 70.0 \n", - "191 O/E - Systolic BP reading 110.0 \n", - "192 O/E - Diastolic BP reading 50.0 \n", - "193 O/E - Systolic BP reading 122.0 \n", - "194 O/E - Diastolic BP reading 77.0 \n", - "195 O/E - Systolic BP reading 110.0 \n", - "196 O/E - Diastolic BP reading 70.0 \n", - "197 O/E - Systolic BP reading 120.0 \n", - "198 O/E - Diastolic BP reading 80.0 \n", - "199 O/E - Systolic BP reading 110.0 \n", - "200 O/E - Diastolic BP reading 70.0 \n", - "201 O/E - weight 63.0 \n", - "202 O/E - Systolic BP reading 122.0 \n", - "203 O/E - Diastolic BP reading 80.0 \n", - "204 O/E - Systolic BP reading 139.0 \n", - "205 O/E - Diastolic BP reading 87.0 \n", - "206 O/E - Systolic BP reading 130.0 \n", - "207 O/E - Diastolic BP reading 70.0 \n", - "208 O/E - weight 63.2 \n", - "209 O/E - Systolic BP reading 131.0 \n", - "210 O/E - Diastolic BP reading 84.0 \n", - "211 O/E - Systolic BP reading 110.0 \n", - "212 O/E - Diastolic BP reading 70.0 \n", - "213 Serum cholesterol level 5.6 \n", - "214 Serum high density lipoprotein cholesterol level 2.0 \n", - "215 Serum low density lipoprotein cholesterol level 3.1 \n", - "216 Serum triglycerides level 1.1 \n", - " age_at_recruitment_f21022_0_0 rheumatoid_factor_f30820_0_0\n", - "1 42 NA \n", - "2 42 NA \n", - "3 42 NA \n", - "4 42 NA \n", - "5 42 NA \n", - "6 42 NA \n", - "7 42 NA \n", - "8 42 NA \n", - "9 42 NA \n", - "10 42 NA \n", - "11 49 NA \n", - "12 49 NA \n", - "13 49 NA \n", - "14 49 NA \n", - "15 49 NA \n", - "16 49 NA \n", - "17 49 NA \n", - "18 49 NA \n", - "19 49 NA \n", - "20 49 NA \n", - "21 49 NA \n", - "22 49 NA \n", - "23 49 NA \n", - "24 49 NA \n", - "25 49 NA \n", - "26 49 NA \n", - "27 49 NA \n", - "28 49 NA \n", - "29 49 NA \n", - "30 49 NA \n", - " \n", - "187 53 NA \n", - "188 53 NA \n", - "189 53 NA \n", - "190 53 NA \n", - "191 53 NA \n", - "192 53 NA \n", - "193 53 NA \n", - "194 53 NA \n", - "195 53 NA \n", - "196 53 NA \n", - "197 53 NA \n", - "198 53 NA \n", - "199 53 NA \n", - "200 53 NA \n", - "201 53 NA \n", - "202 53 NA \n", - "203 53 NA \n", - "204 53 NA \n", - "205 53 NA \n", - "206 53 NA \n", - "207 53 NA \n", - "208 53 NA \n", - "209 53 NA \n", - "210 53 NA \n", - "211 53 NA \n", - "212 53 NA \n", - "213 53 NA \n", - "214 53 NA \n", - "215 53 NA \n", - "216 53 NA \n", - " shbg_f30830_0_0 testosterone_f30850_0_0 total_bilirubin_f30840_0_0\n", - "1 NA 11.148 8.89 \n", - "2 NA 11.148 8.89 \n", - "3 NA 11.148 8.89 \n", - "4 NA 11.148 8.89 \n", - "5 NA 11.148 8.89 \n", - "6 NA 11.148 8.89 \n", - "7 NA 11.148 8.89 \n", - "8 NA 11.148 8.89 \n", - "9 NA 11.148 8.89 \n", - "10 NA 11.148 8.89 \n", - "11 51 10.978 11.12 \n", - "12 51 10.978 11.12 \n", - "13 51 10.978 11.12 \n", - "14 51 10.978 11.12 \n", - "15 51 10.978 11.12 \n", - "16 51 10.978 11.12 \n", - "17 51 10.978 11.12 \n", - "18 51 10.978 11.12 \n", - "19 51 10.978 11.12 \n", - "20 51 10.978 11.12 \n", - "21 51 10.978 11.12 \n", - "22 51 10.978 11.12 \n", - "23 51 10.978 11.12 \n", - "24 51 10.978 11.12 \n", - "25 51 10.978 11.12 \n", - "26 51 10.978 11.12 \n", - "27 51 10.978 11.12 \n", - "28 51 10.978 11.12 \n", - "29 51 10.978 11.12 \n", - "30 51 10.978 11.12 \n", - " \n", - "187 NA 1.113 7.19 \n", - "188 NA 0.963 17.84 \n", - "189 NA 0.963 17.84 \n", - "190 NA 0.963 17.84 \n", - "191 NA 0.963 17.84 \n", - "192 NA 0.963 17.84 \n", - "193 NA 0.963 17.84 \n", - "194 NA 0.963 17.84 \n", - "195 NA 0.963 17.84 \n", - "196 NA 0.963 17.84 \n", - "197 NA 0.963 17.84 \n", - "198 NA 0.963 17.84 \n", - "199 NA 0.963 17.84 \n", - "200 NA 0.963 17.84 \n", - "201 NA 0.963 17.84 \n", - "202 NA 0.963 17.84 \n", - "203 NA 0.963 17.84 \n", - "204 NA 0.963 17.84 \n", - "205 NA 0.963 17.84 \n", - "206 NA 0.963 17.84 \n", - "207 NA 0.963 17.84 \n", - "208 NA 0.963 17.84 \n", - "209 NA 0.963 17.84 \n", - "210 NA 0.963 17.84 \n", - "211 NA 0.963 17.84 \n", - "212 NA 0.963 17.84 \n", - "213 NA 0.963 17.84 \n", - "214 NA 0.963 17.84 \n", - "215 NA 0.963 17.84 \n", - "216 NA 0.963 17.84 \n", - " total_protein_f30860_0_0 triglycerides_f30870_0_0 urate_f30880_0_0\n", - "1 NA 1.332 276.2 \n", - "2 NA 1.332 276.2 \n", - "3 NA 1.332 276.2 \n", - "4 NA 1.332 276.2 \n", - "5 NA 1.332 276.2 \n", - "6 NA 1.332 276.2 \n", - "7 NA 1.332 276.2 \n", - "8 NA 1.332 276.2 \n", - "9 NA 1.332 276.2 \n", - "10 NA 1.332 276.2 \n", - "11 79.19 2.321 425.1 \n", - "12 79.19 2.321 425.1 \n", - "13 79.19 2.321 425.1 \n", - "14 79.19 2.321 425.1 \n", - "15 79.19 2.321 425.1 \n", - "16 79.19 2.321 425.1 \n", - "17 79.19 2.321 425.1 \n", - "18 79.19 2.321 425.1 \n", - "19 79.19 2.321 425.1 \n", - "20 79.19 2.321 425.1 \n", - "21 79.19 2.321 425.1 \n", - "22 79.19 2.321 425.1 \n", - "23 79.19 2.321 425.1 \n", - "24 79.19 2.321 425.1 \n", - "25 79.19 2.321 425.1 \n", - "26 79.19 2.321 425.1 \n", - "27 79.19 2.321 425.1 \n", - "28 79.19 2.321 425.1 \n", - "29 79.19 2.321 425.1 \n", - "30 79.19 2.321 425.1 \n", - " \n", - "187 NA 2.563 320.7 \n", - "188 NA 0.864 213.6 \n", - "189 NA 0.864 213.6 \n", - "190 NA 0.864 213.6 \n", - "191 NA 0.864 213.6 \n", - "192 NA 0.864 213.6 \n", - "193 NA 0.864 213.6 \n", - "194 NA 0.864 213.6 \n", - "195 NA 0.864 213.6 \n", - "196 NA 0.864 213.6 \n", - "197 NA 0.864 213.6 \n", - "198 NA 0.864 213.6 \n", - "199 NA 0.864 213.6 \n", - "200 NA 0.864 213.6 \n", - "201 NA 0.864 213.6 \n", - "202 NA 0.864 213.6 \n", - "203 NA 0.864 213.6 \n", - "204 NA 0.864 213.6 \n", - "205 NA 0.864 213.6 \n", - "206 NA 0.864 213.6 \n", - "207 NA 0.864 213.6 \n", - "208 NA 0.864 213.6 \n", - "209 NA 0.864 213.6 \n", - "210 NA 0.864 213.6 \n", - "211 NA 0.864 213.6 \n", - "212 NA 0.864 213.6 \n", - "213 NA 0.864 213.6 \n", - "214 NA 0.864 213.6 \n", - "215 NA 0.864 213.6 \n", - "216 NA 0.864 213.6 \n", - " urea_f30670_0_0 vitamin_d_f30890_0_0 time \n", - "1 3.72 43.2 42.24504\n", - "2 3.72 43.2 42.30253\n", - "3 3.72 43.2 47.98357\n", - "4 3.72 43.2 47.98357\n", - "5 3.72 43.2 47.98357\n", - "6 3.72 43.2 47.98357\n", - "7 3.72 43.2 47.98357\n", - "8 3.72 43.2 47.98357\n", - "9 3.72 43.2 47.98357\n", - "10 3.72 43.2 47.98357\n", - "11 4.52 81.4 45.44285\n", - "12 4.52 81.4 45.44285\n", - "13 4.52 81.4 48.18344\n", - "14 4.52 81.4 48.18344\n", - "15 4.52 81.4 52.10678\n", - "16 4.52 81.4 52.10678\n", - "17 4.52 81.4 52.10678\n", - "18 4.52 81.4 52.10678\n", - "19 4.52 81.4 54.25051\n", - "20 4.52 81.4 54.25051\n", - "21 4.52 81.4 54.25051\n", - "22 4.52 81.4 54.25051\n", - "23 4.52 81.4 54.37098\n", - "24 4.52 81.4 54.40383\n", - "25 4.52 81.4 54.40383\n", - "26 4.52 81.4 54.40383\n", - "27 4.52 81.4 54.40383\n", - "28 4.52 81.4 54.49692\n", - "29 4.52 81.4 54.49692\n", - "30 4.52 81.4 54.49692\n", - " \n", - "187 4.10 50.3 60.24641\n", - "188 2.61 35.2 43.46886\n", - "189 2.61 35.2 43.46886\n", - "190 2.61 35.2 43.46886\n", - "191 2.61 35.2 48.76112\n", - "192 2.61 35.2 48.76112\n", - "193 2.61 35.2 49.35524\n", - "194 2.61 35.2 49.35524\n", - "195 2.61 35.2 50.15743\n", - "196 2.61 35.2 50.15743\n", - "197 2.61 35.2 50.38741\n", - "198 2.61 35.2 50.38741\n", - "199 2.61 35.2 50.94045\n", - "200 2.61 35.2 50.94045\n", - "201 2.61 35.2 51.74812\n", - "202 2.61 35.2 51.74812\n", - "203 2.61 35.2 51.74812\n", - "204 2.61 35.2 58.15195\n", - "205 2.61 35.2 58.15195\n", - "206 2.61 35.2 60.44353\n", - "207 2.61 35.2 60.44353\n", - "208 2.61 35.2 60.49008\n", - "209 2.61 35.2 60.49008\n", - "210 2.61 35.2 60.49008\n", - "211 2.61 35.2 60.83504\n", - "212 2.61 35.2 60.83504\n", - "213 2.61 35.2 60.84600\n", - "214 2.61 35.2 60.84600\n", - "215 2.61 35.2 60.84600\n", - "216 2.61 35.2 60.84600" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=25)\n", - "library(lubridate)\n", - "df = gp_measurements %>% filter(eid %in% eids) %>% filter(name %in% c(\"O/E - Systolic BP reading\", \"O/E - Diastolic BP reading\", \n", - " \"Serum creatinine level\", \"Haemoglobin estimation\",\n", - " \"GFR (glomerular filtration rate) calculated by abbreviated Modification of Diet in Renal Disease Study Group calculation\", \"Serum glucose level\", \t\n", - " \"Total white cell count\", \"O/E - weight\", \"Serum cholesterol level\", \n", - " \"Serum high density lipoprotein cholesterol level\", \"Serum low density lipoprotein cholesterol level\",\n", - " \"Serum triglycerides level\")) %>%\n", - " filter(as.numeric(value1)>0) %>% \n", - " filter(!((name==\"Haemoglobin estimation\")&(value> 50))) %>%\n", - " filter(!((name==\"O/E - Diastolic BP reading\")&(value> 400))) %>%\n", - " filter(!((name==\"O/E - Systolic BP reading\")&(value> 400))) %>%\n", - " filter(!((name==\"O/E - weight\")&(value> 300))) %>%\n", - " filter(!((name==\"Serum cholesterol level\")&(value> 20))) %>%\n", - " filter(!((name==\"Serum creatinine level\")&(value> 1000))) %>%\n", - " filter(!((name==\"Serum high density lipoprotein cholesterol level\")&(value> 100))) %>%\n", - " #filter(!((name==\"Finding of body mass index\")&(value> 50))) %>%\n", - " left_join(data, on=\"eid\") %>% mutate(time = time_length(difftime(date, birth_date), \"years\"))%>% filter(time>0)\n", - "\n", - "ggplot(df, aes(x=time, y=as.numeric(value)), color=as.factor(name))+geom_point(alpha=0.1)+\n", - " facet_grid(eid~name, scales=\"free_y\", labeller=label_wrap_gen(width = 10, multi_line = TRUE))+\n", - " geom_smooth(method=\"lm\")#+\n", - " #geom_vline(aes(xintercept=age_at_recruitment_f21022_0_0))" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A tibble: 16306 × 2
namen
<chr><int>
O/E - Diastolic BP reading 4142442
O/E - Systolic BP reading 3963088
Serum creatinine level 1670214
Haemoglobin estimation 1662102
Total white cell count 1630899
O/E - weight 1588105
Serum sodium level 1587227
Serum potassium level 1582109
Finding of body mass index 1371580
Serum alanine aminotransferase level 1364116
Serum urea level 1349233
Serum albumin level 1344654
Serum alkaline phosphatase level 1314225
Platelet count 1264036
Serum cholesterol level 1248251
Haematocrit - packed cell volume 1247902
MCV - Mean corpuscular volume 1246810
Erythrocyte count 1238243
MCH - Mean corpuscular haemoglobin 1224630
GFR (glomerular filtration rate) calculated by abbreviated Modification of Diet in Renal Disease Study Group calculation1212917
Granulocyte count 1211942
Lymphocyte count 1206974
Monocyte count 1205707
Eosinophil count 1204617
Basophil count 1165935
Serum high density lipoprotein cholesterol level 1059995
Serum triglycerides level 1033506
O/E - height 955235
Review of medication 955104
Serum TSH (thyroid stimulating hormone) level 862321
X-ray of tibia/fibula abnormal 1
X-ray of tibia/fibula normal 1
X-ray pelvimetry abnormal 1
X-ray phalanges of fingers abnormal 1
Xiphoid cartilage sprain 1
Xylose absorption test 1
Zenker's diverticulum 1
Zygomatic complex of bones 1
[D]Abnormal reflex, unspecified 1
[D]Anorexia 1
[D]Bony lytic lesions on X-ray 1
[D]Local superficial swelling, mass or lump 1
[D]Lump on shin 1
[D]Other abdominal or pelvic symptom 1
[D]Swelling, mass and lump of chest 1
[M]Tubular adenoma or adenocarcinoma NOS 1
[SO]Skin of umbilicus 1
[V]Assessment for procedure 1
[V]Bone marrow donor 1
[V]Examination of ears and hearing 1
[V]Fitting or adjustment of hearing aid 1
[V]Kidney donor 1
[V]Parent - child conflict 1
[V]Personal history of malignant neoplasm of male genital organ 1
[V]Plastic surgery used in aftercare 1
[X]Otorhinolaryngological drugs and preparations causing adverse effects in therapeutic use1
[X]Schizophrenia, schizotypal and delusional disorders 1
cups/day 1
von Jaksch's anemia 1
von Willebrand disorder 1
\n" - ], - "text/latex": [ - "A tibble: 16306 × 2\n", - "\\begin{tabular}{ll}\n", - " name & n\\\\\n", - " & \\\\\n", - "\\hline\n", - "\t O/E - Diastolic BP reading & 4142442\\\\\n", - "\t O/E - Systolic BP reading & 3963088\\\\\n", - "\t Serum creatinine level & 1670214\\\\\n", - "\t Haemoglobin estimation & 1662102\\\\\n", - "\t Total white cell count & 1630899\\\\\n", - "\t O/E - weight & 1588105\\\\\n", - "\t Serum sodium level & 1587227\\\\\n", - "\t Serum potassium level & 1582109\\\\\n", - "\t Finding of body mass index & 1371580\\\\\n", - "\t Serum alanine aminotransferase level & 1364116\\\\\n", - "\t Serum urea level & 1349233\\\\\n", - "\t Serum albumin level & 1344654\\\\\n", - "\t Serum alkaline phosphatase level & 1314225\\\\\n", - "\t Platelet count & 1264036\\\\\n", - "\t Serum cholesterol level & 1248251\\\\\n", - "\t Haematocrit - packed cell volume & 1247902\\\\\n", - "\t MCV - Mean corpuscular volume & 1246810\\\\\n", - "\t Erythrocyte count & 1238243\\\\\n", - "\t MCH - Mean corpuscular haemoglobin & 1224630\\\\\n", - "\t GFR (glomerular filtration rate) calculated by abbreviated Modification of Diet in Renal Disease Study Group calculation & 1212917\\\\\n", - "\t Granulocyte count & 1211942\\\\\n", - "\t Lymphocyte count & 1206974\\\\\n", - "\t Monocyte count & 1205707\\\\\n", - "\t Eosinophil count & 1204617\\\\\n", - "\t Basophil count & 1165935\\\\\n", - "\t Serum high density lipoprotein cholesterol level & 1059995\\\\\n", - "\t Serum triglycerides level & 1033506\\\\\n", - "\t O/E - height & 955235\\\\\n", - "\t Review of medication & 955104\\\\\n", - "\t Serum TSH (thyroid stimulating hormone) level & 862321\\\\\n", - "\t ⋮ & ⋮\\\\\n", - "\t X-ray of tibia/fibula abnormal & 1\\\\\n", - "\t X-ray of tibia/fibula normal & 1\\\\\n", - "\t X-ray pelvimetry abnormal & 1\\\\\n", - "\t X-ray phalanges of fingers abnormal & 1\\\\\n", - "\t Xiphoid cartilage sprain & 1\\\\\n", - "\t Xylose absorption test & 1\\\\\n", - "\t Zenker's diverticulum & 1\\\\\n", - "\t Zygomatic complex of bones & 1\\\\\n", - "\t {[}D{]}Abnormal reflex, unspecified & 1\\\\\n", - "\t {[}D{]}Anorexia & 1\\\\\n", - "\t {[}D{]}Bony lytic lesions on X-ray & 1\\\\\n", - "\t {[}D{]}Local superficial swelling, mass or lump & 1\\\\\n", - "\t {[}D{]}Lump on shin & 1\\\\\n", - "\t {[}D{]}Other abdominal or pelvic symptom & 1\\\\\n", - "\t {[}D{]}Swelling, mass and lump of chest & 1\\\\\n", - "\t {[}M{]}Tubular adenoma or adenocarcinoma NOS & 1\\\\\n", - "\t {[}SO{]}Skin of umbilicus & 1\\\\\n", - "\t {[}V{]}Assessment for procedure & 1\\\\\n", - "\t {[}V{]}Bone marrow donor & 1\\\\\n", - "\t {[}V{]}Examination of ears and hearing & 1\\\\\n", - "\t {[}V{]}Fitting or adjustment of hearing aid & 1\\\\\n", - "\t {[}V{]}Kidney donor & 1\\\\\n", - "\t {[}V{]}Parent - child conflict & 1\\\\\n", - "\t {[}V{]}Personal history of malignant neoplasm of male genital organ & 1\\\\\n", - "\t {[}V{]}Plastic surgery used in aftercare & 1\\\\\n", - "\t {[}X{]}Otorhinolaryngological drugs and preparations causing adverse effects in therapeutic use & 1\\\\\n", - "\t {[}X{]}Schizophrenia, schizotypal and delusional disorders & 1\\\\\n", - "\t cups/day & 1\\\\\n", - "\t von Jaksch's anemia & 1\\\\\n", - "\t von Willebrand disorder & 1\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A tibble: 16306 × 2\n", - "\n", - "| name <chr> | n <int> |\n", - "|---|---|\n", - "| O/E - Diastolic BP reading | 4142442 |\n", - "| O/E - Systolic BP reading | 3963088 |\n", - "| Serum creatinine level | 1670214 |\n", - "| Haemoglobin estimation | 1662102 |\n", - "| Total white cell count | 1630899 |\n", - "| O/E - weight | 1588105 |\n", - "| Serum sodium level | 1587227 |\n", - "| Serum potassium level | 1582109 |\n", - "| Finding of body mass index | 1371580 |\n", - "| Serum alanine aminotransferase level | 1364116 |\n", - "| Serum urea level | 1349233 |\n", - "| Serum albumin level | 1344654 |\n", - "| Serum alkaline phosphatase level | 1314225 |\n", - "| Platelet count | 1264036 |\n", - "| Serum cholesterol level | 1248251 |\n", - "| Haematocrit - packed cell volume | 1247902 |\n", - "| MCV - Mean corpuscular volume | 1246810 |\n", - "| Erythrocyte count | 1238243 |\n", - "| MCH - Mean corpuscular haemoglobin | 1224630 |\n", - "| GFR (glomerular filtration rate) calculated by abbreviated Modification of Diet in Renal Disease Study Group calculation | 1212917 |\n", - "| Granulocyte count | 1211942 |\n", - "| Lymphocyte count | 1206974 |\n", - "| Monocyte count | 1205707 |\n", - "| Eosinophil count | 1204617 |\n", - "| Basophil count | 1165935 |\n", - "| Serum high density lipoprotein cholesterol level | 1059995 |\n", - "| Serum triglycerides level | 1033506 |\n", - "| O/E - height | 955235 |\n", - "| Review of medication | 955104 |\n", - "| Serum TSH (thyroid stimulating hormone) level | 862321 |\n", - "| ⋮ | ⋮ |\n", - "| X-ray of tibia/fibula abnormal | 1 |\n", - "| X-ray of tibia/fibula normal | 1 |\n", - "| X-ray pelvimetry abnormal | 1 |\n", - "| X-ray phalanges of fingers abnormal | 1 |\n", - "| Xiphoid cartilage sprain | 1 |\n", - "| Xylose absorption test | 1 |\n", - "| Zenker's diverticulum | 1 |\n", - "| Zygomatic complex of bones | 1 |\n", - "| [D]Abnormal reflex, unspecified | 1 |\n", - "| [D]Anorexia | 1 |\n", - "| [D]Bony lytic lesions on X-ray | 1 |\n", - "| [D]Local superficial swelling, mass or lump | 1 |\n", - "| [D]Lump on shin | 1 |\n", - "| [D]Other abdominal or pelvic symptom | 1 |\n", - "| [D]Swelling, mass and lump of chest | 1 |\n", - "| [M]Tubular adenoma or adenocarcinoma NOS | 1 |\n", - "| [SO]Skin of umbilicus | 1 |\n", - "| [V]Assessment for procedure | 1 |\n", - "| [V]Bone marrow donor | 1 |\n", - "| [V]Examination of ears and hearing | 1 |\n", - "| [V]Fitting or adjustment of hearing aid | 1 |\n", - "| [V]Kidney donor | 1 |\n", - "| [V]Parent - child conflict | 1 |\n", - "| [V]Personal history of malignant neoplasm of male genital organ | 1 |\n", - "| [V]Plastic surgery used in aftercare | 1 |\n", - "| [X]Otorhinolaryngological drugs and preparations causing adverse effects in therapeutic use | 1 |\n", - "| [X]Schizophrenia, schizotypal and delusional disorders | 1 |\n", - "| cups/day | 1 |\n", - "| von Jaksch's anemia | 1 |\n", - "| von Willebrand disorder | 1 |\n", - "\n" - ], - "text/plain": [ - " name \n", - "1 O/E - Diastolic BP reading \n", - "2 O/E - Systolic BP reading \n", - "3 Serum creatinine level \n", - "4 Haemoglobin estimation \n", - "5 Total white cell count \n", - "6 O/E - weight \n", - "7 Serum sodium level \n", - "8 Serum potassium level \n", - "9 Finding of body mass index \n", - "10 Serum alanine aminotransferase level \n", - "11 Serum urea level \n", - "12 Serum albumin level \n", - "13 Serum alkaline phosphatase level \n", - "14 Platelet count \n", - "15 Serum cholesterol level \n", - "16 Haematocrit - packed cell volume \n", - "17 MCV - Mean corpuscular volume \n", - "18 Erythrocyte count \n", - "19 MCH - Mean corpuscular haemoglobin \n", - "20 GFR (glomerular filtration rate) calculated by abbreviated Modification of Diet in Renal Disease Study Group calculation\n", - "21 Granulocyte count \n", - "22 Lymphocyte count \n", - "23 Monocyte count \n", - "24 Eosinophil count \n", - "25 Basophil count \n", - "26 Serum high density lipoprotein cholesterol level \n", - "27 Serum triglycerides level \n", - "28 O/E - height \n", - "29 Review of medication \n", - "30 Serum TSH (thyroid stimulating hormone) level \n", - " \n", - "16277 X-ray of tibia/fibula abnormal \n", - "16278 X-ray of tibia/fibula normal \n", - "16279 X-ray pelvimetry abnormal \n", - "16280 X-ray phalanges of fingers abnormal \n", - "16281 Xiphoid cartilage sprain \n", - "16282 Xylose absorption test \n", - "16283 Zenker's diverticulum \n", - "16284 Zygomatic complex of bones \n", - "16285 [D]Abnormal reflex, unspecified \n", - "16286 [D]Anorexia \n", - "16287 [D]Bony lytic lesions on X-ray \n", - "16288 [D]Local superficial swelling, mass or lump \n", - "16289 [D]Lump on shin \n", - "16290 [D]Other abdominal or pelvic symptom \n", - "16291 [D]Swelling, mass and lump of chest \n", - "16292 [M]Tubular adenoma or adenocarcinoma NOS \n", - "16293 [SO]Skin of umbilicus \n", - "16294 [V]Assessment for procedure \n", - "16295 [V]Bone marrow donor \n", - "16296 [V]Examination of ears and hearing \n", - "16297 [V]Fitting or adjustment of hearing aid \n", - "16298 [V]Kidney donor \n", - "16299 [V]Parent - child conflict \n", - "16300 [V]Personal history of malignant neoplasm of male genital organ \n", - "16301 [V]Plastic surgery used in aftercare \n", - "16302 [X]Otorhinolaryngological drugs and preparations causing adverse effects in therapeutic use \n", - "16303 [X]Schizophrenia, schizotypal and delusional disorders \n", - "16304 cups/day \n", - "16305 von Jaksch's anemia \n", - "16306 von Willebrand disorder \n", - " n \n", - "1 4142442\n", - "2 3963088\n", - "3 1670214\n", - "4 1662102\n", - "5 1630899\n", - "6 1588105\n", - "7 1587227\n", - "8 1582109\n", - "9 1371580\n", - "10 1364116\n", - "11 1349233\n", - "12 1344654\n", - "13 1314225\n", - "14 1264036\n", - "15 1248251\n", - "16 1247902\n", - "17 1246810\n", - "18 1238243\n", - "19 1224630\n", - "20 1212917\n", - "21 1211942\n", - "22 1206974\n", - "23 1205707\n", - "24 1204617\n", - "25 1165935\n", - "26 1059995\n", - "27 1033506\n", - "28 955235\n", - "29 955104\n", - "30 862321\n", - " \n", - "16277 1 \n", - "16278 1 \n", - "16279 1 \n", - "16280 1 \n", - "16281 1 \n", - "16282 1 \n", - "16283 1 \n", - "16284 1 \n", - "16285 1 \n", - "16286 1 \n", - "16287 1 \n", - "16288 1 \n", - "16289 1 \n", - "16290 1 \n", - "16291 1 \n", - "16292 1 \n", - "16293 1 \n", - "16294 1 \n", - "16295 1 \n", - "16296 1 \n", - "16297 1 \n", - "16298 1 \n", - "16299 1 \n", - "16300 1 \n", - "16301 1 \n", - "16302 1 \n", - "16303 1 \n", - "16304 1 \n", - "16305 1 \n", - "16306 1 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_measurements %>% count(name, sort=TRUE)" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A tibble: 3729 × 17
eiddatecodevalue1value2value3meaningnamevalueage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0uk_biobank_assessment_centre_f54_0_0birth_datetime
<int><date><chr><chr><chr><chr><chr><chr><dbl><dbl><fct><fct><dbl><date><chr><date><dbl>
10051941993-06-30246..120.00080.000NA163030003O/E - Systolic BP reading 12065MaleWhite1.805512009-10-23Sheffield1944-10-2348.68446
10051941993-06-30246..120.00080.000NA163031004O/E - Diastolic BP reading 8065MaleWhite1.805512009-10-23Sheffield1944-10-2348.68446
10051941997-07-14246..130.00080.000NA163030003O/E - Systolic BP reading 13065MaleWhite1.805512009-10-23Sheffield1944-10-2352.72279
10051941997-07-14246..130.00080.000NA163031004O/E - Diastolic BP reading 8065MaleWhite1.805512009-10-23Sheffield1944-10-2352.72279
10051941999-01-21246..142.00094.000NA163030003O/E - Systolic BP reading 14265MaleWhite1.805512009-10-23Sheffield1944-10-2354.24504
10051941999-01-21246..142.00094.000NA163031004O/E - Diastolic BP reading 9465MaleWhite1.805512009-10-23Sheffield1944-10-2354.24504
10051941999-01-27246..142.00092.000NA163030003O/E - Systolic BP reading 14265MaleWhite1.805512009-10-23Sheffield1944-10-2354.26146
10051941999-01-27246..142.00092.000NA163031004O/E - Diastolic BP reading 9265MaleWhite1.805512009-10-23Sheffield1944-10-2354.26146
10051941999-10-06246..140.00086.000NA163030003O/E - Systolic BP reading 14065MaleWhite1.805512009-10-23Sheffield1944-10-2354.95140
10051941999-10-06246..140.00086.000NA163031004O/E - Diastolic BP reading 8665MaleWhite1.805512009-10-23Sheffield1944-10-2354.95140
10051941999-12-08246..148.00082.000NA163030003O/E - Systolic BP reading 14865MaleWhite1.805512009-10-23Sheffield1944-10-2355.12389
10051941999-12-08246..148.00082.000NA163031004O/E - Diastolic BP reading 8265MaleWhite1.805512009-10-23Sheffield1944-10-2355.12389
10051942000-06-19246..120.00084.000NA163030003O/E - Systolic BP reading 12065MaleWhite1.805512009-10-23Sheffield1944-10-2355.65503
10051942000-06-19246..120.00084.000NA163031004O/E - Diastolic BP reading 8465MaleWhite1.805512009-10-23Sheffield1944-10-2355.65503
10051942001-01-05246..150.00090.000NA163030003O/E - Systolic BP reading 15065MaleWhite1.805512009-10-23Sheffield1944-10-2356.20260
10051942001-01-05246..150.00090.000NA163031004O/E - Diastolic BP reading 9065MaleWhite1.805512009-10-23Sheffield1944-10-2356.20260
10051942001-02-02246..140.00090.000NA163030003O/E - Systolic BP reading 14065MaleWhite1.805512009-10-23Sheffield1944-10-2356.27926
10051942001-02-02246..140.00090.000NA163031004O/E - Diastolic BP reading 9065MaleWhite1.805512009-10-23Sheffield1944-10-2356.27926
10051942001-07-05246..130.00074.000NA163030003O/E - Systolic BP reading 13065MaleWhite1.805512009-10-23Sheffield1944-10-2356.69815
10051942001-07-05246..130.00074.000NA163031004O/E - Diastolic BP reading 7465MaleWhite1.805512009-10-23Sheffield1944-10-2356.69815
10051942002-05-01246..144.00080.000NA163030003O/E - Systolic BP reading 14465MaleWhite1.805512009-10-23Sheffield1944-10-2357.51951
10051942002-05-01246..144.00080.000NA163031004O/E - Diastolic BP reading 8065MaleWhite1.805512009-10-23Sheffield1944-10-2357.51951
10051942003-03-03246..145.00081.000NA163030003O/E - Systolic BP reading 14565MaleWhite1.805512009-10-23Sheffield1944-10-2358.35729
10051942003-03-03246..145.00081.000NA163031004O/E - Diastolic BP reading 8165MaleWhite1.805512009-10-23Sheffield1944-10-2358.35729
10051942003-03-18246..137.00067.000NA163030003O/E - Systolic BP reading 13765MaleWhite1.805512009-10-23Sheffield1944-10-2358.39836
10051942003-03-18246..137.00067.000NA163031004O/E - Diastolic BP reading 6765MaleWhite1.805512009-10-23Sheffield1944-10-2358.39836
10051942003-03-18246..146.00092.000NA163030003O/E - Systolic BP reading 14665MaleWhite1.805512009-10-23Sheffield1944-10-2358.39836
10051942003-03-18246..146.00092.000NA163031004O/E - Diastolic BP reading 9265MaleWhite1.805512009-10-23Sheffield1944-10-2358.39836
10051942003-03-19246..145.00080.000NA163030003O/E - Systolic BP reading 14565MaleWhite1.805512009-10-23Sheffield1944-10-2358.40110
10051942003-03-19246..145.00080.000NA163031004O/E - Diastolic BP reading 8065MaleWhite1.805512009-10-23Sheffield1944-10-2358.40110
59961982005-09-282469.120.000NANA163030003O/E - Systolic BP reading 12041FemaleWhite-0.2977232009-02-26Oxford1968-02-2637.58795
59961982005-09-28246A.84.000 NANA163031004O/E - Diastolic BP reading 8441FemaleWhite-0.2977232009-02-26Oxford1968-02-2637.58795
59961982006-03-102469.129.000NANA163030003O/E - Systolic BP reading 12941FemaleWhite-0.2977232009-02-26Oxford1968-02-2638.03422
59961982006-03-10246A.89.000 NANA163031004O/E - Diastolic BP reading 8941FemaleWhite-0.2977232009-02-26Oxford1968-02-2638.03422
59961982007-09-192469.126.000NANA163030003O/E - Systolic BP reading 12641FemaleWhite-0.2977232009-02-26Oxford1968-02-2639.56194
59961982007-09-19246A.80.000 NANA163031004O/E - Diastolic BP reading 8041FemaleWhite-0.2977232009-02-26Oxford1968-02-2639.56194
59961982012-08-092469.132.000NANA163030003O/E - Systolic BP reading 13241FemaleWhite-0.2977232009-02-26Oxford1968-02-2644.45175
59961982012-08-09246A.86.000 NANA163031004O/E - Diastolic BP reading 8641FemaleWhite-0.2977232009-02-26Oxford1968-02-2644.45175
59961982012-11-072469.140.000NANA163030003O/E - Systolic BP reading 14041FemaleWhite-0.2977232009-02-26Oxford1968-02-2644.69815
59961982012-11-07246A.68.000 NANA163031004O/E - Diastolic BP reading 6841FemaleWhite-0.2977232009-02-26Oxford1968-02-2644.69815
59961982013-03-062469.139.000NANA163030003O/E - Systolic BP reading 13941FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.02396
59961982013-03-06246A.88.000 NANA163031004O/E - Diastolic BP reading 8841FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.02396
59961982014-01-172469.148.000NANA163030003O/E - Systolic BP reading 14841FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.89185
59961982014-01-17246A.72.000 NANA163031004O/E - Diastolic BP reading 7241FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.89185
59961982014-02-032469.145.000NANA163030003O/E - Systolic BP reading 14541FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.93840
59961982014-02-03246A.98.000 NANA163031004O/E - Diastolic BP reading 9841FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.93840
59961982014-02-072469.137.000NANA163030003O/E - Systolic BP reading 13741FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.94935
59961982014-02-07246A.85.000 NANA163031004O/E - Diastolic BP reading 8541FemaleWhite-0.2977232009-02-26Oxford1968-02-2645.94935
59961982014-03-182469.145.000NANA163030003O/E - Systolic BP reading 14541FemaleWhite-0.2977232009-02-26Oxford1968-02-2646.05613
59961982014-03-18246A.98.000 NANA163031004O/E - Diastolic BP reading 9841FemaleWhite-0.2977232009-02-26Oxford1968-02-2646.05613
59961982014-04-112469.130.000NANA163030003O/E - Systolic BP reading 13041FemaleWhite-0.2977232009-02-26Oxford1968-02-2646.12183
59961982014-04-11246A.60.000 NANA163031004O/E - Diastolic BP reading 6041FemaleWhite-0.2977232009-02-26Oxford1968-02-2646.12183
59961982014-05-142469.132.000NANA163030003O/E - Systolic BP reading 13241FemaleWhite-0.2977232009-02-26Oxford1968-02-2646.21218
59961982014-05-14246A.84.000 NANA163031004O/E - Diastolic BP reading 8441FemaleWhite-0.2977232009-02-26Oxford1968-02-2646.21218
59961982015-09-222469.124.000NANA163030003O/E - Systolic BP reading 12441FemaleWhite-0.2977232009-02-26Oxford1968-02-2647.57016
59961982015-09-22246A.88.000 NANA163031004O/E - Diastolic BP reading 8841FemaleWhite-0.2977232009-02-26Oxford1968-02-2647.57016
59961982015-10-012469.133.000NANA163030003O/E - Systolic BP reading 13341FemaleWhite-0.2977232009-02-26Oxford1968-02-2647.59480
59961982015-10-01246A.95.000 NANA163031004O/E - Diastolic BP reading 9541FemaleWhite-0.2977232009-02-26Oxford1968-02-2647.59480
59961982015-11-122469.134.000NANA163030003O/E - Systolic BP reading 13441FemaleWhite-0.2977232009-02-26Oxford1968-02-2647.70979
59961982015-11-12246A.82.000 NANA163031004O/E - Diastolic BP reading 8241FemaleWhite-0.2977232009-02-26Oxford1968-02-2647.70979
\n" - ], - "text/latex": [ - "A tibble: 3729 × 17\n", - "\\begin{tabular}{lllllllllllllllll}\n", - " eid & date & code & value1 & value2 & value3 & meaning & name & value & age\\_at\\_recruitment\\_f21022\\_0\\_0 & sex\\_f31\\_0\\_0 & ethnic\\_background\\_f21000\\_0\\_0 & townsend\\_deprivation\\_index\\_at\\_recruitment\\_f189\\_0\\_0 & date\\_of\\_attending\\_assessment\\_centre\\_f53\\_0\\_0 & uk\\_biobank\\_assessment\\_centre\\_f54\\_0\\_0 & birth\\_date & time\\\\\n", - " & & & & & & & & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1005194 & 1993-06-30 & 246.. & 120.000 & 80.000 & NA & 163030003 & O/E - Systolic BP reading & 120 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 48.68446\\\\\n", - "\t 1005194 & 1993-06-30 & 246.. & 120.000 & 80.000 & NA & 163031004 & O/E - Diastolic BP reading & 80 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 48.68446\\\\\n", - "\t 1005194 & 1997-07-14 & 246.. & 130.000 & 80.000 & NA & 163030003 & O/E - Systolic BP reading & 130 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 52.72279\\\\\n", - "\t 1005194 & 1997-07-14 & 246.. & 130.000 & 80.000 & NA & 163031004 & O/E - Diastolic BP reading & 80 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 52.72279\\\\\n", - "\t 1005194 & 1999-01-21 & 246.. & 142.000 & 94.000 & NA & 163030003 & O/E - Systolic BP reading & 142 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 54.24504\\\\\n", - "\t 1005194 & 1999-01-21 & 246.. & 142.000 & 94.000 & NA & 163031004 & O/E - Diastolic BP reading & 94 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 54.24504\\\\\n", - "\t 1005194 & 1999-01-27 & 246.. & 142.000 & 92.000 & NA & 163030003 & O/E - Systolic BP reading & 142 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 54.26146\\\\\n", - "\t 1005194 & 1999-01-27 & 246.. & 142.000 & 92.000 & NA & 163031004 & O/E - Diastolic BP reading & 92 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 54.26146\\\\\n", - "\t 1005194 & 1999-10-06 & 246.. & 140.000 & 86.000 & NA & 163030003 & O/E - Systolic BP reading & 140 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 54.95140\\\\\n", - "\t 1005194 & 1999-10-06 & 246.. & 140.000 & 86.000 & NA & 163031004 & O/E - Diastolic BP reading & 86 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 54.95140\\\\\n", - "\t 1005194 & 1999-12-08 & 246.. & 148.000 & 82.000 & NA & 163030003 & O/E - Systolic BP reading & 148 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 55.12389\\\\\n", - "\t 1005194 & 1999-12-08 & 246.. & 148.000 & 82.000 & NA & 163031004 & O/E - Diastolic BP reading & 82 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 55.12389\\\\\n", - "\t 1005194 & 2000-06-19 & 246.. & 120.000 & 84.000 & NA & 163030003 & O/E - Systolic BP reading & 120 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 55.65503\\\\\n", - "\t 1005194 & 2000-06-19 & 246.. & 120.000 & 84.000 & NA & 163031004 & O/E - Diastolic BP reading & 84 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 55.65503\\\\\n", - "\t 1005194 & 2001-01-05 & 246.. & 150.000 & 90.000 & NA & 163030003 & O/E - Systolic BP reading & 150 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 56.20260\\\\\n", - "\t 1005194 & 2001-01-05 & 246.. & 150.000 & 90.000 & NA & 163031004 & O/E - Diastolic BP reading & 90 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 56.20260\\\\\n", - "\t 1005194 & 2001-02-02 & 246.. & 140.000 & 90.000 & NA & 163030003 & O/E - Systolic BP reading & 140 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 56.27926\\\\\n", - "\t 1005194 & 2001-02-02 & 246.. & 140.000 & 90.000 & NA & 163031004 & O/E - Diastolic BP reading & 90 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 56.27926\\\\\n", - "\t 1005194 & 2001-07-05 & 246.. & 130.000 & 74.000 & NA & 163030003 & O/E - Systolic BP reading & 130 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 56.69815\\\\\n", - "\t 1005194 & 2001-07-05 & 246.. & 130.000 & 74.000 & NA & 163031004 & O/E - Diastolic BP reading & 74 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 56.69815\\\\\n", - "\t 1005194 & 2002-05-01 & 246.. & 144.000 & 80.000 & NA & 163030003 & O/E - Systolic BP reading & 144 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 57.51951\\\\\n", - "\t 1005194 & 2002-05-01 & 246.. & 144.000 & 80.000 & NA & 163031004 & O/E - Diastolic BP reading & 80 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 57.51951\\\\\n", - "\t 1005194 & 2003-03-03 & 246.. & 145.000 & 81.000 & NA & 163030003 & O/E - Systolic BP reading & 145 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.35729\\\\\n", - "\t 1005194 & 2003-03-03 & 246.. & 145.000 & 81.000 & NA & 163031004 & O/E - Diastolic BP reading & 81 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.35729\\\\\n", - "\t 1005194 & 2003-03-18 & 246.. & 137.000 & 67.000 & NA & 163030003 & O/E - Systolic BP reading & 137 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.39836\\\\\n", - "\t 1005194 & 2003-03-18 & 246.. & 137.000 & 67.000 & NA & 163031004 & O/E - Diastolic BP reading & 67 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.39836\\\\\n", - "\t 1005194 & 2003-03-18 & 246.. & 146.000 & 92.000 & NA & 163030003 & O/E - Systolic BP reading & 146 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.39836\\\\\n", - "\t 1005194 & 2003-03-18 & 246.. & 146.000 & 92.000 & NA & 163031004 & O/E - Diastolic BP reading & 92 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.39836\\\\\n", - "\t 1005194 & 2003-03-19 & 246.. & 145.000 & 80.000 & NA & 163030003 & O/E - Systolic BP reading & 145 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.40110\\\\\n", - "\t 1005194 & 2003-03-19 & 246.. & 145.000 & 80.000 & NA & 163031004 & O/E - Diastolic BP reading & 80 & 65 & Male & White & 1.80551 & 2009-10-23 & Sheffield & 1944-10-23 & 58.40110\\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 5996198 & 2005-09-28 & 2469. & 120.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 120 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 37.58795\\\\\n", - "\t 5996198 & 2005-09-28 & 246A. & 84.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 84 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 37.58795\\\\\n", - "\t 5996198 & 2006-03-10 & 2469. & 129.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 129 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 38.03422\\\\\n", - "\t 5996198 & 2006-03-10 & 246A. & 89.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 89 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 38.03422\\\\\n", - "\t 5996198 & 2007-09-19 & 2469. & 126.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 126 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 39.56194\\\\\n", - "\t 5996198 & 2007-09-19 & 246A. & 80.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 80 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 39.56194\\\\\n", - "\t 5996198 & 2012-08-09 & 2469. & 132.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 132 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 44.45175\\\\\n", - "\t 5996198 & 2012-08-09 & 246A. & 86.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 86 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 44.45175\\\\\n", - "\t 5996198 & 2012-11-07 & 2469. & 140.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 140 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 44.69815\\\\\n", - "\t 5996198 & 2012-11-07 & 246A. & 68.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 68 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 44.69815\\\\\n", - "\t 5996198 & 2013-03-06 & 2469. & 139.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 139 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.02396\\\\\n", - "\t 5996198 & 2013-03-06 & 246A. & 88.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 88 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.02396\\\\\n", - "\t 5996198 & 2014-01-17 & 2469. & 148.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 148 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.89185\\\\\n", - "\t 5996198 & 2014-01-17 & 246A. & 72.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 72 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.89185\\\\\n", - "\t 5996198 & 2014-02-03 & 2469. & 145.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 145 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.93840\\\\\n", - "\t 5996198 & 2014-02-03 & 246A. & 98.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 98 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.93840\\\\\n", - "\t 5996198 & 2014-02-07 & 2469. & 137.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 137 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.94935\\\\\n", - "\t 5996198 & 2014-02-07 & 246A. & 85.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 85 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 45.94935\\\\\n", - "\t 5996198 & 2014-03-18 & 2469. & 145.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 145 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 46.05613\\\\\n", - "\t 5996198 & 2014-03-18 & 246A. & 98.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 98 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 46.05613\\\\\n", - "\t 5996198 & 2014-04-11 & 2469. & 130.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 130 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 46.12183\\\\\n", - "\t 5996198 & 2014-04-11 & 246A. & 60.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 60 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 46.12183\\\\\n", - "\t 5996198 & 2014-05-14 & 2469. & 132.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 132 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 46.21218\\\\\n", - "\t 5996198 & 2014-05-14 & 246A. & 84.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 84 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 46.21218\\\\\n", - "\t 5996198 & 2015-09-22 & 2469. & 124.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 124 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 47.57016\\\\\n", - "\t 5996198 & 2015-09-22 & 246A. & 88.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 88 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 47.57016\\\\\n", - "\t 5996198 & 2015-10-01 & 2469. & 133.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 133 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 47.59480\\\\\n", - "\t 5996198 & 2015-10-01 & 246A. & 95.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 95 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 47.59480\\\\\n", - "\t 5996198 & 2015-11-12 & 2469. & 134.000 & NA & NA & 163030003 & O/E - Systolic BP reading & 134 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 47.70979\\\\\n", - "\t 5996198 & 2015-11-12 & 246A. & 82.000 & NA & NA & 163031004 & O/E - Diastolic BP reading & 82 & 41 & Female & White & -0.297723 & 2009-02-26 & Oxford & 1968-02-26 & 47.70979\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A tibble: 3729 × 17\n", - "\n", - "| eid <int> | date <date> | code <chr> | value1 <chr> | value2 <chr> | value3 <chr> | meaning <chr> | name <chr> | value <dbl> | age_at_recruitment_f21022_0_0 <dbl> | sex_f31_0_0 <fct> | ethnic_background_f21000_0_0 <fct> | townsend_deprivation_index_at_recruitment_f189_0_0 <dbl> | date_of_attending_assessment_centre_f53_0_0 <date> | uk_biobank_assessment_centre_f54_0_0 <chr> | birth_date <date> | time <dbl> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 1005194 | 1993-06-30 | 246.. | 120.000 | 80.000 | NA | 163030003 | O/E - Systolic BP reading | 120 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 48.68446 |\n", - "| 1005194 | 1993-06-30 | 246.. | 120.000 | 80.000 | NA | 163031004 | O/E - Diastolic BP reading | 80 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 48.68446 |\n", - "| 1005194 | 1997-07-14 | 246.. | 130.000 | 80.000 | NA | 163030003 | O/E - Systolic BP reading | 130 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 52.72279 |\n", - "| 1005194 | 1997-07-14 | 246.. | 130.000 | 80.000 | NA | 163031004 | O/E - Diastolic BP reading | 80 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 52.72279 |\n", - "| 1005194 | 1999-01-21 | 246.. | 142.000 | 94.000 | NA | 163030003 | O/E - Systolic BP reading | 142 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 54.24504 |\n", - "| 1005194 | 1999-01-21 | 246.. | 142.000 | 94.000 | NA | 163031004 | O/E - Diastolic BP reading | 94 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 54.24504 |\n", - "| 1005194 | 1999-01-27 | 246.. | 142.000 | 92.000 | NA | 163030003 | O/E - Systolic BP reading | 142 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 54.26146 |\n", - "| 1005194 | 1999-01-27 | 246.. | 142.000 | 92.000 | NA | 163031004 | O/E - Diastolic BP reading | 92 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 54.26146 |\n", - "| 1005194 | 1999-10-06 | 246.. | 140.000 | 86.000 | NA | 163030003 | O/E - Systolic BP reading | 140 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 54.95140 |\n", - "| 1005194 | 1999-10-06 | 246.. | 140.000 | 86.000 | NA | 163031004 | O/E - Diastolic BP reading | 86 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 54.95140 |\n", - "| 1005194 | 1999-12-08 | 246.. | 148.000 | 82.000 | NA | 163030003 | O/E - Systolic BP reading | 148 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 55.12389 |\n", - "| 1005194 | 1999-12-08 | 246.. | 148.000 | 82.000 | NA | 163031004 | O/E - Diastolic BP reading | 82 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 55.12389 |\n", - "| 1005194 | 2000-06-19 | 246.. | 120.000 | 84.000 | NA | 163030003 | O/E - Systolic BP reading | 120 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 55.65503 |\n", - "| 1005194 | 2000-06-19 | 246.. | 120.000 | 84.000 | NA | 163031004 | O/E - Diastolic BP reading | 84 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 55.65503 |\n", - "| 1005194 | 2001-01-05 | 246.. | 150.000 | 90.000 | NA | 163030003 | O/E - Systolic BP reading | 150 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 56.20260 |\n", - "| 1005194 | 2001-01-05 | 246.. | 150.000 | 90.000 | NA | 163031004 | O/E - Diastolic BP reading | 90 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 56.20260 |\n", - "| 1005194 | 2001-02-02 | 246.. | 140.000 | 90.000 | NA | 163030003 | O/E - Systolic BP reading | 140 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 56.27926 |\n", - "| 1005194 | 2001-02-02 | 246.. | 140.000 | 90.000 | NA | 163031004 | O/E - Diastolic BP reading | 90 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 56.27926 |\n", - "| 1005194 | 2001-07-05 | 246.. | 130.000 | 74.000 | NA | 163030003 | O/E - Systolic BP reading | 130 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 56.69815 |\n", - "| 1005194 | 2001-07-05 | 246.. | 130.000 | 74.000 | NA | 163031004 | O/E - Diastolic BP reading | 74 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 56.69815 |\n", - "| 1005194 | 2002-05-01 | 246.. | 144.000 | 80.000 | NA | 163030003 | O/E - Systolic BP reading | 144 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 57.51951 |\n", - "| 1005194 | 2002-05-01 | 246.. | 144.000 | 80.000 | NA | 163031004 | O/E - Diastolic BP reading | 80 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 57.51951 |\n", - "| 1005194 | 2003-03-03 | 246.. | 145.000 | 81.000 | NA | 163030003 | O/E - Systolic BP reading | 145 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.35729 |\n", - "| 1005194 | 2003-03-03 | 246.. | 145.000 | 81.000 | NA | 163031004 | O/E - Diastolic BP reading | 81 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.35729 |\n", - "| 1005194 | 2003-03-18 | 246.. | 137.000 | 67.000 | NA | 163030003 | O/E - Systolic BP reading | 137 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.39836 |\n", - "| 1005194 | 2003-03-18 | 246.. | 137.000 | 67.000 | NA | 163031004 | O/E - Diastolic BP reading | 67 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.39836 |\n", - "| 1005194 | 2003-03-18 | 246.. | 146.000 | 92.000 | NA | 163030003 | O/E - Systolic BP reading | 146 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.39836 |\n", - "| 1005194 | 2003-03-18 | 246.. | 146.000 | 92.000 | NA | 163031004 | O/E - Diastolic BP reading | 92 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.39836 |\n", - "| 1005194 | 2003-03-19 | 246.. | 145.000 | 80.000 | NA | 163030003 | O/E - Systolic BP reading | 145 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.40110 |\n", - "| 1005194 | 2003-03-19 | 246.. | 145.000 | 80.000 | NA | 163031004 | O/E - Diastolic BP reading | 80 | 65 | Male | White | 1.80551 | 2009-10-23 | Sheffield | 1944-10-23 | 58.40110 |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 5996198 | 2005-09-28 | 2469. | 120.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 120 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 37.58795 |\n", - "| 5996198 | 2005-09-28 | 246A. | 84.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 84 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 37.58795 |\n", - "| 5996198 | 2006-03-10 | 2469. | 129.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 129 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 38.03422 |\n", - "| 5996198 | 2006-03-10 | 246A. | 89.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 89 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 38.03422 |\n", - "| 5996198 | 2007-09-19 | 2469. | 126.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 126 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 39.56194 |\n", - "| 5996198 | 2007-09-19 | 246A. | 80.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 80 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 39.56194 |\n", - "| 5996198 | 2012-08-09 | 2469. | 132.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 132 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 44.45175 |\n", - "| 5996198 | 2012-08-09 | 246A. | 86.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 86 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 44.45175 |\n", - "| 5996198 | 2012-11-07 | 2469. | 140.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 140 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 44.69815 |\n", - "| 5996198 | 2012-11-07 | 246A. | 68.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 68 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 44.69815 |\n", - "| 5996198 | 2013-03-06 | 2469. | 139.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 139 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.02396 |\n", - "| 5996198 | 2013-03-06 | 246A. | 88.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 88 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.02396 |\n", - "| 5996198 | 2014-01-17 | 2469. | 148.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 148 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.89185 |\n", - "| 5996198 | 2014-01-17 | 246A. | 72.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 72 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.89185 |\n", - "| 5996198 | 2014-02-03 | 2469. | 145.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 145 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.93840 |\n", - "| 5996198 | 2014-02-03 | 246A. | 98.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 98 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.93840 |\n", - "| 5996198 | 2014-02-07 | 2469. | 137.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 137 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.94935 |\n", - "| 5996198 | 2014-02-07 | 246A. | 85.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 85 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 45.94935 |\n", - "| 5996198 | 2014-03-18 | 2469. | 145.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 145 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 46.05613 |\n", - "| 5996198 | 2014-03-18 | 246A. | 98.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 98 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 46.05613 |\n", - "| 5996198 | 2014-04-11 | 2469. | 130.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 130 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 46.12183 |\n", - "| 5996198 | 2014-04-11 | 246A. | 60.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 60 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 46.12183 |\n", - "| 5996198 | 2014-05-14 | 2469. | 132.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 132 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 46.21218 |\n", - "| 5996198 | 2014-05-14 | 246A. | 84.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 84 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 46.21218 |\n", - "| 5996198 | 2015-09-22 | 2469. | 124.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 124 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 47.57016 |\n", - "| 5996198 | 2015-09-22 | 246A. | 88.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 88 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 47.57016 |\n", - "| 5996198 | 2015-10-01 | 2469. | 133.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 133 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 47.59480 |\n", - "| 5996198 | 2015-10-01 | 246A. | 95.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 95 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 47.59480 |\n", - "| 5996198 | 2015-11-12 | 2469. | 134.000 | NA | NA | 163030003 | O/E - Systolic BP reading | 134 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 47.70979 |\n", - "| 5996198 | 2015-11-12 | 246A. | 82.000 | NA | NA | 163031004 | O/E - Diastolic BP reading | 82 | 41 | Female | White | -0.297723 | 2009-02-26 | Oxford | 1968-02-26 | 47.70979 |\n", - "\n" - ], - "text/plain": [ - " eid date code value1 value2 value3 meaning \n", - "1 1005194 1993-06-30 246.. 120.000 80.000 NA 163030003\n", - "2 1005194 1993-06-30 246.. 120.000 80.000 NA 163031004\n", - "3 1005194 1997-07-14 246.. 130.000 80.000 NA 163030003\n", - "4 1005194 1997-07-14 246.. 130.000 80.000 NA 163031004\n", - "5 1005194 1999-01-21 246.. 142.000 94.000 NA 163030003\n", - "6 1005194 1999-01-21 246.. 142.000 94.000 NA 163031004\n", - "7 1005194 1999-01-27 246.. 142.000 92.000 NA 163030003\n", - "8 1005194 1999-01-27 246.. 142.000 92.000 NA 163031004\n", - "9 1005194 1999-10-06 246.. 140.000 86.000 NA 163030003\n", - "10 1005194 1999-10-06 246.. 140.000 86.000 NA 163031004\n", - "11 1005194 1999-12-08 246.. 148.000 82.000 NA 163030003\n", - "12 1005194 1999-12-08 246.. 148.000 82.000 NA 163031004\n", - "13 1005194 2000-06-19 246.. 120.000 84.000 NA 163030003\n", - "14 1005194 2000-06-19 246.. 120.000 84.000 NA 163031004\n", - "15 1005194 2001-01-05 246.. 150.000 90.000 NA 163030003\n", - "16 1005194 2001-01-05 246.. 150.000 90.000 NA 163031004\n", - "17 1005194 2001-02-02 246.. 140.000 90.000 NA 163030003\n", - "18 1005194 2001-02-02 246.. 140.000 90.000 NA 163031004\n", - "19 1005194 2001-07-05 246.. 130.000 74.000 NA 163030003\n", - "20 1005194 2001-07-05 246.. 130.000 74.000 NA 163031004\n", - "21 1005194 2002-05-01 246.. 144.000 80.000 NA 163030003\n", - "22 1005194 2002-05-01 246.. 144.000 80.000 NA 163031004\n", - "23 1005194 2003-03-03 246.. 145.000 81.000 NA 163030003\n", - "24 1005194 2003-03-03 246.. 145.000 81.000 NA 163031004\n", - "25 1005194 2003-03-18 246.. 137.000 67.000 NA 163030003\n", - "26 1005194 2003-03-18 246.. 137.000 67.000 NA 163031004\n", - "27 1005194 2003-03-18 246.. 146.000 92.000 NA 163030003\n", - "28 1005194 2003-03-18 246.. 146.000 92.000 NA 163031004\n", - "29 1005194 2003-03-19 246.. 145.000 80.000 NA 163030003\n", - "30 1005194 2003-03-19 246.. 145.000 80.000 NA 163031004\n", - " \n", - "3700 5996198 2005-09-28 2469. 120.000 NA NA 163030003\n", - "3701 5996198 2005-09-28 246A. 84.000 NA NA 163031004\n", - "3702 5996198 2006-03-10 2469. 129.000 NA NA 163030003\n", - "3703 5996198 2006-03-10 246A. 89.000 NA NA 163031004\n", - "3704 5996198 2007-09-19 2469. 126.000 NA NA 163030003\n", - "3705 5996198 2007-09-19 246A. 80.000 NA NA 163031004\n", - "3706 5996198 2012-08-09 2469. 132.000 NA NA 163030003\n", - "3707 5996198 2012-08-09 246A. 86.000 NA NA 163031004\n", - "3708 5996198 2012-11-07 2469. 140.000 NA NA 163030003\n", - "3709 5996198 2012-11-07 246A. 68.000 NA NA 163031004\n", - "3710 5996198 2013-03-06 2469. 139.000 NA NA 163030003\n", - "3711 5996198 2013-03-06 246A. 88.000 NA NA 163031004\n", - "3712 5996198 2014-01-17 2469. 148.000 NA NA 163030003\n", - "3713 5996198 2014-01-17 246A. 72.000 NA NA 163031004\n", - "3714 5996198 2014-02-03 2469. 145.000 NA NA 163030003\n", - "3715 5996198 2014-02-03 246A. 98.000 NA NA 163031004\n", - "3716 5996198 2014-02-07 2469. 137.000 NA NA 163030003\n", - "3717 5996198 2014-02-07 246A. 85.000 NA NA 163031004\n", - "3718 5996198 2014-03-18 2469. 145.000 NA NA 163030003\n", - "3719 5996198 2014-03-18 246A. 98.000 NA NA 163031004\n", - "3720 5996198 2014-04-11 2469. 130.000 NA NA 163030003\n", - "3721 5996198 2014-04-11 246A. 60.000 NA NA 163031004\n", - "3722 5996198 2014-05-14 2469. 132.000 NA NA 163030003\n", - "3723 5996198 2014-05-14 246A. 84.000 NA NA 163031004\n", - "3724 5996198 2015-09-22 2469. 124.000 NA NA 163030003\n", - "3725 5996198 2015-09-22 246A. 88.000 NA NA 163031004\n", - "3726 5996198 2015-10-01 2469. 133.000 NA NA 163030003\n", - "3727 5996198 2015-10-01 246A. 95.000 NA NA 163031004\n", - "3728 5996198 2015-11-12 2469. 134.000 NA NA 163030003\n", - "3729 5996198 2015-11-12 246A. 82.000 NA NA 163031004\n", - " name value age_at_recruitment_f21022_0_0\n", - "1 O/E - Systolic BP reading 120 65 \n", - "2 O/E - Diastolic BP reading 80 65 \n", - "3 O/E - Systolic BP reading 130 65 \n", - "4 O/E - Diastolic BP reading 80 65 \n", - "5 O/E - Systolic BP reading 142 65 \n", - "6 O/E - Diastolic BP reading 94 65 \n", - "7 O/E - Systolic BP reading 142 65 \n", - "8 O/E - Diastolic BP reading 92 65 \n", - "9 O/E - Systolic BP reading 140 65 \n", - "10 O/E - Diastolic BP reading 86 65 \n", - "11 O/E - Systolic BP reading 148 65 \n", - "12 O/E - Diastolic BP reading 82 65 \n", - "13 O/E - Systolic BP reading 120 65 \n", - "14 O/E - Diastolic BP reading 84 65 \n", - "15 O/E - Systolic BP reading 150 65 \n", - "16 O/E - Diastolic BP reading 90 65 \n", - "17 O/E - Systolic BP reading 140 65 \n", - "18 O/E - Diastolic BP reading 90 65 \n", - "19 O/E - Systolic BP reading 130 65 \n", - "20 O/E - Diastolic BP reading 74 65 \n", - "21 O/E - Systolic BP reading 144 65 \n", - "22 O/E - Diastolic BP reading 80 65 \n", - "23 O/E - Systolic BP reading 145 65 \n", - "24 O/E - Diastolic BP reading 81 65 \n", - "25 O/E - Systolic BP reading 137 65 \n", - "26 O/E - Diastolic BP reading 67 65 \n", - "27 O/E - Systolic BP reading 146 65 \n", - "28 O/E - Diastolic BP reading 92 65 \n", - "29 O/E - Systolic BP reading 145 65 \n", - "30 O/E - Diastolic BP reading 80 65 \n", - " \n", - "3700 O/E - Systolic BP reading 120 41 \n", - "3701 O/E - Diastolic BP reading 84 41 \n", - "3702 O/E - Systolic BP reading 129 41 \n", - "3703 O/E - Diastolic BP reading 89 41 \n", - "3704 O/E - Systolic BP reading 126 41 \n", - "3705 O/E - Diastolic BP reading 80 41 \n", - "3706 O/E - Systolic BP reading 132 41 \n", - "3707 O/E - Diastolic BP reading 86 41 \n", - "3708 O/E - Systolic BP reading 140 41 \n", - "3709 O/E - Diastolic BP reading 68 41 \n", - "3710 O/E - Systolic BP reading 139 41 \n", - "3711 O/E - Diastolic BP reading 88 41 \n", - "3712 O/E - Systolic BP reading 148 41 \n", - "3713 O/E - Diastolic BP reading 72 41 \n", - "3714 O/E - Systolic BP reading 145 41 \n", - "3715 O/E - Diastolic BP reading 98 41 \n", - "3716 O/E - Systolic BP reading 137 41 \n", - "3717 O/E - Diastolic BP reading 85 41 \n", - "3718 O/E - Systolic BP reading 145 41 \n", - "3719 O/E - Diastolic BP reading 98 41 \n", - "3720 O/E - Systolic BP reading 130 41 \n", - "3721 O/E - Diastolic BP reading 60 41 \n", - "3722 O/E - Systolic BP reading 132 41 \n", - "3723 O/E - Diastolic BP reading 84 41 \n", - "3724 O/E - Systolic BP reading 124 41 \n", - "3725 O/E - Diastolic BP reading 88 41 \n", - "3726 O/E - Systolic BP reading 133 41 \n", - "3727 O/E - Diastolic BP reading 95 41 \n", - "3728 O/E - Systolic BP reading 134 41 \n", - "3729 O/E - Diastolic BP reading 82 41 \n", - " sex_f31_0_0 ethnic_background_f21000_0_0\n", - "1 Male White \n", - "2 Male White \n", - "3 Male White \n", - "4 Male White \n", - "5 Male White \n", - "6 Male White \n", - "7 Male White \n", - "8 Male White \n", - "9 Male White \n", - "10 Male White \n", - "11 Male White \n", - "12 Male White \n", - "13 Male White \n", - "14 Male White \n", - "15 Male White \n", - "16 Male White \n", - "17 Male White \n", - "18 Male White \n", - "19 Male White \n", - "20 Male White \n", - "21 Male White \n", - "22 Male White \n", - "23 Male White \n", - "24 Male White \n", - "25 Male White \n", - "26 Male White \n", - "27 Male White \n", - "28 Male White \n", - "29 Male White \n", - "30 Male White \n", - " \n", - "3700 Female White \n", - "3701 Female White \n", - "3702 Female White \n", - "3703 Female White \n", - "3704 Female White \n", - "3705 Female White \n", - "3706 Female White \n", - "3707 Female White \n", - "3708 Female White \n", - "3709 Female White \n", - "3710 Female White \n", - "3711 Female White \n", - "3712 Female White \n", - "3713 Female White \n", - "3714 Female White \n", - "3715 Female White \n", - "3716 Female White \n", - "3717 Female White \n", - "3718 Female White \n", - "3719 Female White \n", - "3720 Female White \n", - "3721 Female White \n", - "3722 Female White \n", - "3723 Female White \n", - "3724 Female White \n", - "3725 Female White \n", - "3726 Female White \n", - "3727 Female White \n", - "3728 Female White \n", - "3729 Female White \n", - " townsend_deprivation_index_at_recruitment_f189_0_0\n", - "1 1.80551 \n", - "2 1.80551 \n", - "3 1.80551 \n", - "4 1.80551 \n", - "5 1.80551 \n", - "6 1.80551 \n", - "7 1.80551 \n", - "8 1.80551 \n", - "9 1.80551 \n", - "10 1.80551 \n", - "11 1.80551 \n", - "12 1.80551 \n", - "13 1.80551 \n", - "14 1.80551 \n", - "15 1.80551 \n", - "16 1.80551 \n", - "17 1.80551 \n", - "18 1.80551 \n", - "19 1.80551 \n", - "20 1.80551 \n", - "21 1.80551 \n", - "22 1.80551 \n", - "23 1.80551 \n", - "24 1.80551 \n", - "25 1.80551 \n", - "26 1.80551 \n", - "27 1.80551 \n", - "28 1.80551 \n", - "29 1.80551 \n", - "30 1.80551 \n", - " \n", - "3700 -0.297723 \n", - "3701 -0.297723 \n", - "3702 -0.297723 \n", - "3703 -0.297723 \n", - "3704 -0.297723 \n", - "3705 -0.297723 \n", - "3706 -0.297723 \n", - "3707 -0.297723 \n", - "3708 -0.297723 \n", - "3709 -0.297723 \n", - "3710 -0.297723 \n", - "3711 -0.297723 \n", - "3712 -0.297723 \n", - "3713 -0.297723 \n", - "3714 -0.297723 \n", - "3715 -0.297723 \n", - "3716 -0.297723 \n", - "3717 -0.297723 \n", - "3718 -0.297723 \n", - "3719 -0.297723 \n", - "3720 -0.297723 \n", - "3721 -0.297723 \n", - "3722 -0.297723 \n", - "3723 -0.297723 \n", - "3724 -0.297723 \n", - "3725 -0.297723 \n", - "3726 -0.297723 \n", - "3727 -0.297723 \n", - "3728 -0.297723 \n", - "3729 -0.297723 \n", - " date_of_attending_assessment_centre_f53_0_0\n", - "1 2009-10-23 \n", - "2 2009-10-23 \n", - "3 2009-10-23 \n", - "4 2009-10-23 \n", - "5 2009-10-23 \n", - "6 2009-10-23 \n", - "7 2009-10-23 \n", - "8 2009-10-23 \n", - "9 2009-10-23 \n", - "10 2009-10-23 \n", - "11 2009-10-23 \n", - "12 2009-10-23 \n", - "13 2009-10-23 \n", - "14 2009-10-23 \n", - "15 2009-10-23 \n", - "16 2009-10-23 \n", - "17 2009-10-23 \n", - "18 2009-10-23 \n", - "19 2009-10-23 \n", - "20 2009-10-23 \n", - "21 2009-10-23 \n", - "22 2009-10-23 \n", - "23 2009-10-23 \n", - "24 2009-10-23 \n", - "25 2009-10-23 \n", - "26 2009-10-23 \n", - "27 2009-10-23 \n", - "28 2009-10-23 \n", - "29 2009-10-23 \n", - "30 2009-10-23 \n", - " \n", - "3700 2009-02-26 \n", - "3701 2009-02-26 \n", - "3702 2009-02-26 \n", - "3703 2009-02-26 \n", - "3704 2009-02-26 \n", - "3705 2009-02-26 \n", - "3706 2009-02-26 \n", - "3707 2009-02-26 \n", - "3708 2009-02-26 \n", - "3709 2009-02-26 \n", - "3710 2009-02-26 \n", - "3711 2009-02-26 \n", - "3712 2009-02-26 \n", - "3713 2009-02-26 \n", - "3714 2009-02-26 \n", - "3715 2009-02-26 \n", - "3716 2009-02-26 \n", - "3717 2009-02-26 \n", - "3718 2009-02-26 \n", - "3719 2009-02-26 \n", - "3720 2009-02-26 \n", - "3721 2009-02-26 \n", - "3722 2009-02-26 \n", - "3723 2009-02-26 \n", - "3724 2009-02-26 \n", - "3725 2009-02-26 \n", - "3726 2009-02-26 \n", - "3727 2009-02-26 \n", - "3728 2009-02-26 \n", - "3729 2009-02-26 \n", - " uk_biobank_assessment_centre_f54_0_0 birth_date time \n", - "1 Sheffield 1944-10-23 48.68446\n", - "2 Sheffield 1944-10-23 48.68446\n", - "3 Sheffield 1944-10-23 52.72279\n", - "4 Sheffield 1944-10-23 52.72279\n", - "5 Sheffield 1944-10-23 54.24504\n", - "6 Sheffield 1944-10-23 54.24504\n", - "7 Sheffield 1944-10-23 54.26146\n", - "8 Sheffield 1944-10-23 54.26146\n", - "9 Sheffield 1944-10-23 54.95140\n", - "10 Sheffield 1944-10-23 54.95140\n", - "11 Sheffield 1944-10-23 55.12389\n", - "12 Sheffield 1944-10-23 55.12389\n", - "13 Sheffield 1944-10-23 55.65503\n", - "14 Sheffield 1944-10-23 55.65503\n", - "15 Sheffield 1944-10-23 56.20260\n", - "16 Sheffield 1944-10-23 56.20260\n", - "17 Sheffield 1944-10-23 56.27926\n", - "18 Sheffield 1944-10-23 56.27926\n", - "19 Sheffield 1944-10-23 56.69815\n", - "20 Sheffield 1944-10-23 56.69815\n", - "21 Sheffield 1944-10-23 57.51951\n", - "22 Sheffield 1944-10-23 57.51951\n", - "23 Sheffield 1944-10-23 58.35729\n", - "24 Sheffield 1944-10-23 58.35729\n", - "25 Sheffield 1944-10-23 58.39836\n", - "26 Sheffield 1944-10-23 58.39836\n", - "27 Sheffield 1944-10-23 58.39836\n", - "28 Sheffield 1944-10-23 58.39836\n", - "29 Sheffield 1944-10-23 58.40110\n", - "30 Sheffield 1944-10-23 58.40110\n", - " \n", - "3700 Oxford 1968-02-26 37.58795\n", - "3701 Oxford 1968-02-26 37.58795\n", - "3702 Oxford 1968-02-26 38.03422\n", - "3703 Oxford 1968-02-26 38.03422\n", - "3704 Oxford 1968-02-26 39.56194\n", - "3705 Oxford 1968-02-26 39.56194\n", - "3706 Oxford 1968-02-26 44.45175\n", - "3707 Oxford 1968-02-26 44.45175\n", - "3708 Oxford 1968-02-26 44.69815\n", - "3709 Oxford 1968-02-26 44.69815\n", - "3710 Oxford 1968-02-26 45.02396\n", - "3711 Oxford 1968-02-26 45.02396\n", - "3712 Oxford 1968-02-26 45.89185\n", - "3713 Oxford 1968-02-26 45.89185\n", - "3714 Oxford 1968-02-26 45.93840\n", - "3715 Oxford 1968-02-26 45.93840\n", - "3716 Oxford 1968-02-26 45.94935\n", - "3717 Oxford 1968-02-26 45.94935\n", - "3718 Oxford 1968-02-26 46.05613\n", - "3719 Oxford 1968-02-26 46.05613\n", - "3720 Oxford 1968-02-26 46.12183\n", - "3721 Oxford 1968-02-26 46.12183\n", - "3722 Oxford 1968-02-26 46.21218\n", - "3723 Oxford 1968-02-26 46.21218\n", - "3724 Oxford 1968-02-26 47.57016\n", - "3725 Oxford 1968-02-26 47.57016\n", - "3726 Oxford 1968-02-26 47.59480\n", - "3727 Oxford 1968-02-26 47.59480\n", - "3728 Oxford 1968-02-26 47.70979\n", - "3729 Oxford 1968-02-26 47.70979" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "library(lubridate)\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "163031004 4142442\n", - "163030003 3963088\n", - "1000731000000107 1670214\n", - "1022431000000105 1662102\n", - "1022541000000102 1630899\n", - " ... \n", - "173842008 1\n", - "77329001 1\n", - "265404007 1\n", - "81977006 1\n", - "211427006 1\n", - "Name: meaning, Length: 16366, dtype: int64" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "codes_gp_measurements.meaning.value_counts(normalize=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basics" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "coding10 = pd.read_csv(f\"{path}/mapping/codings/coding10.tsv\", sep=\"\\t\").assign(coding = lambda x: x.coding.astype(\"int\")).rename(columns={\"coding\":\"uk_biobank_assessment_centre_f54_0_0\"})\n", - "coding10[\"uk_biobank_assessment_centre_f54_0_0\"] = coding10[\"uk_biobank_assessment_centre_f54_0_0\"].astype(\"int\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.176411Z", - "start_time": "2020-11-04T12:34:05.891730Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0uk_biobank_assessment_centre_f54_0_0birth_date
0100001849.0FemaleWhite-1.8529302009-11-12Sheffield1960-11-12
1100002059.0MaleWhite0.2042482008-02-19Sheffield1949-02-19
2100003759.0FemaleWhite-3.4988602008-11-11Sheffield1949-11-11
3100004363.0MaleWhite-5.3511502009-06-03Sheffield1946-06-03
4100005151.0FemaleWhite-1.7990802006-06-10Sheffield1955-06-10
\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "\n", - " ethnic_background_f21000_0_0 \\\n", - "0 White \n", - "1 White \n", - "2 White \n", - "3 White \n", - "4 White \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "\n", - " uk_biobank_assessment_centre_f54_0_0 birth_date \n", - "0 Sheffield 1960-11-12 \n", - "1 Sheffield 1949-02-19 \n", - "2 Sheffield 1949-11-11 \n", - "3 Sheffield 1946-06-03 \n", - "4 Sheffield 1955-06-10 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - " \"54\", # assessment center\n", - "]\n", - "\n", - "temp = get_data_fields(fields_basics, data, data_field)\n", - "\n", - "temp[\"sex_f31_0_0\"] = temp[\"sex_f31_0_0\"].cat.set_categories([\"Female\", 'Male'], ordered=False)\n", - "\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"string\")\n", - "\n", - "ethn_bg_def = {\"White\": [\"White\", \"British\", \"Irish\", \"Any other white background\"],\n", - " \"Mixed\": [\"Mixed\", \"White and Black Caribbean\", \"White and Black African\", \"White and Asian\", \"Any other mixed background\"], \n", - " \"Asian\": [\"Asian or Asian British\", \"Indian\", \"Pakistani\", \"Bangladeshi\", \"Any other Asian background\"], \n", - " \"Black\": [\"Black or Black British\", \"Caribbean\", \"African\", \"Any other Black background\"],\n", - " \"Chinese\": [\"Chinese\"], \n", - " np.nan: [\"Other ethnic group\", \"Do not know\", \"Prefer not to answer\"]}\n", - "\n", - "ethn_bg_dict = {}\n", - "for key, values in ethn_bg_def.items(): \n", - " for value in values:\n", - " ethn_bg_dict[value]=key \n", - " \n", - "temp[\"ethnic_background_f21000_0_0\"].replace(ethn_bg_dict, inplace=True)\n", - "temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\")\n", - "\n", - "#\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\").cat.set_categories(['White', 'Black', 'Asien', 'Mixed', 'Chinese'], ordered=False)\n", - "\n", - "basics = temp\n", - "print(len(temp))\n", - "\n", - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "\n", - "basics = basics.assign(birth_date = calc_birth_date)\n", - "basics[\"uk_biobank_assessment_centre_f54_0_0\"] = basics.assign(uk_biobank_assessment_centre_f54_0_0 = lambda x: x.uk_biobank_assessment_centre_f54_0_0.astype(\"int\")).merge(coding10, on=\"uk_biobank_assessment_centre_f54_0_0\")[\"meaning\"]\n", - "\n", - "\n", - "display(basics.head())\n", - "basics.to_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.186613Z", - "start_time": "2020-11-04T12:34:06.178111Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['White', 'Black', NaN, 'Asian', 'Mixed', 'Chinese']\n", - "Categories (5, object): ['White', 'Black', 'Asian', 'Mixed', 'Chinese']\n" - ] - } - ], - "source": [ - " print(temp[\"ethnic_background_f21000_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Questionnaire" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.389467Z", - "start_time": "2020-11-04T12:34:06.188206Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidoverall_health_rating_f2178_0_0smoking_status_f20116_0_0alcohol_intake_frequency_f1558_0_0
01000018FairCurrentOnce or twice a week
11000020GoodCurrentOnce or twice a week
21000037GoodPreviousOnce or twice a week
31000043FairPreviousThree or four times a week
41000051PoorNeverOne to three times a month
\n", - "
" - ], - "text/plain": [ - " eid overall_health_rating_f2178_0_0 smoking_status_f20116_0_0 \\\n", - "0 1000018 Fair Current \n", - "1 1000020 Good Current \n", - "2 1000037 Good Previous \n", - "3 1000043 Fair Previous \n", - "4 1000051 Poor Never \n", - "\n", - " alcohol_intake_frequency_f1558_0_0 \n", - "0 Once or twice a week \n", - "1 Once or twice a week \n", - "2 Once or twice a week \n", - "3 Three or four times a week \n", - "4 One to three times a month " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_questionnaire = [\n", - " \"2178\", # Overall health\n", - " \"20116\", # Smoking status\n", - " \"1558\",\n", - "]\n", - "\n", - "temp = get_data_fields(fields_questionnaire, data, data_field)\n", - "\n", - "temp[\"overall_health_rating_f2178_0_0\"] = temp[\"overall_health_rating_f2178_0_0\"]\\\n", - " .replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan})\\\n", - " .astype(\"category\").cat.set_categories(['Poor', 'Fair', 'Good', 'Excellent'], ordered=True)\n", - "\n", - "\n", - "temp[\"smoking_status_f20116_0_0\"] = temp[\"smoking_status_f20116_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories(['Current', 'Previous', 'Never'], ordered=True)\n", - "\n", - "temp[\"alcohol_intake_frequency_f1558_0_0\"] = temp[\"alcohol_intake_frequency_f1558_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories([\n", - " 'Daily or almost daily', \n", - " 'Three or four times a week', \n", - " 'Once or twice a week',\n", - " 'One to three times a month',\n", - " 'Special occasions only', \n", - " 'Never'], ordered=True)\n", - "\n", - "questionnaire = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "questionnaire.to_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.398168Z", - "start_time": "2020-11-04T12:34:06.391082Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Once or twice a week', 'Three or four times a week', 'One to three times a month', 'Daily or almost daily', 'Special occasions only', 'Never', NaN]\n", - "Categories (6, object): ['Daily or almost daily' < 'Three or four times a week' < 'Once or twice a week' < 'One to three times a month' < 'Special occasions only' < 'Never']\n" - ] - } - ], - "source": [ - "print(temp[\"alcohol_intake_frequency_f1558_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Physical measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.052989Z", - "start_time": "2020-11-04T12:34:06.400858Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbody_mass_index_bmi_f21001_0_0weight_f21002_0_0pulse_wave_arterial_stiffness_index_f21021_0_0pulse_wave_reflection_index_f4195_0_0waist_circumference_f48_0_0hip_circumference_f49_0_0standing_height_f50_0_0trunk_fat_percentage_f23127_0_0body_fat_percentage_f23099_0_0basal_metabolic_rate_f23105_0_0forced_vital_capacity_fvc_best_measure_f20151_0_0forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0fev1_fvc_ratio_zscore_f20258_0_0peak_expiratory_flow_pef_f3064_0_2peak_expiratory_flow_pef_f3064_0_1peak_expiratory_flow_pef_f3064_0_0systolic_blood_pressure_automated_reading_f4080diastolic_blood_pressure_automated_reading_f4079pulse_rate_automated_reading_f102
0100001826.555763.87.277080.085.0107.0155.037.539.55012.03.212.161.978317.0312.0339.0159.588.050.0
1100002022.746570.7NaNNaN87.894.4176.333.428.76171.0NaNNaN1.375301.0496.0504.0133.081.074.0
2100003732.421178.9NaNNaN101.0112.0156.047.548.45397.01.611.270.138NaN185.0208.0118.578.062.5
3100004329.567995.811.111178.098.0104.0180.027.625.68711.04.142.841.096557.0513.0530.0141.593.564.5
4100005141.022292.3NaNNaN123.0129.0150.048.950.46100.0NaNNaN0.518NaNNaNNaN117.081.079.0
\n", - "
" - ], - "text/plain": [ - " eid body_mass_index_bmi_f21001_0_0 weight_f21002_0_0 \\\n", - "0 1000018 26.5557 63.8 \n", - "1 1000020 22.7465 70.7 \n", - "2 1000037 32.4211 78.9 \n", - "3 1000043 29.5679 95.8 \n", - "4 1000051 41.0222 92.3 \n", - "\n", - " pulse_wave_arterial_stiffness_index_f21021_0_0 \\\n", - "0 7.2770 \n", - "1 NaN \n", - "2 NaN \n", - "3 11.1111 \n", - "4 NaN \n", - "\n", - " pulse_wave_reflection_index_f4195_0_0 waist_circumference_f48_0_0 \\\n", - "0 80.0 85.0 \n", - "1 NaN 87.8 \n", - "2 NaN 101.0 \n", - "3 78.0 98.0 \n", - "4 NaN 123.0 \n", - "\n", - " hip_circumference_f49_0_0 standing_height_f50_0_0 \\\n", - "0 107.0 155.0 \n", - "1 94.4 176.3 \n", - "2 112.0 156.0 \n", - "3 104.0 180.0 \n", - "4 129.0 150.0 \n", - "\n", - " trunk_fat_percentage_f23127_0_0 body_fat_percentage_f23099_0_0 \\\n", - "0 37.5 39.5 \n", - "1 33.4 28.7 \n", - "2 47.5 48.4 \n", - "3 27.6 25.6 \n", - "4 48.9 50.4 \n", - "\n", - " basal_metabolic_rate_f23105_0_0 \\\n", - "0 5012.0 \n", - "1 6171.0 \n", - "2 5397.0 \n", - "3 8711.0 \n", - "4 6100.0 \n", - "\n", - " forced_vital_capacity_fvc_best_measure_f20151_0_0 \\\n", - "0 3.21 \n", - "1 NaN \n", - "2 1.61 \n", - "3 4.14 \n", - "4 NaN \n", - "\n", - " forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0 \\\n", - "0 2.16 \n", - "1 NaN \n", - "2 1.27 \n", - "3 2.84 \n", - "4 NaN \n", - "\n", - " fev1_fvc_ratio_zscore_f20258_0_0 peak_expiratory_flow_pef_f3064_0_2 \\\n", - "0 1.978 317.0 \n", - "1 1.375 301.0 \n", - "2 0.138 NaN \n", - "3 1.096 557.0 \n", - "4 0.518 NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_0_1 peak_expiratory_flow_pef_f3064_0_0 \\\n", - "0 312.0 339.0 \n", - "1 496.0 504.0 \n", - "2 185.0 208.0 \n", - "3 513.0 530.0 \n", - "4 NaN NaN \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 \\\n", - "0 159.5 \n", - "1 133.0 \n", - "2 118.5 \n", - "3 141.5 \n", - "4 117.0 \n", - "\n", - " diastolic_blood_pressure_automated_reading_f4079 \\\n", - "0 88.0 \n", - "1 81.0 \n", - "2 78.0 \n", - "3 93.5 \n", - "4 81.0 \n", - "\n", - " pulse_rate_automated_reading_f102 \n", - "0 50.0 \n", - "1 74.0 \n", - "2 62.5 \n", - "3 64.5 \n", - "4 79.0 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from statistics import mean\n", - "\n", - "fields_measurements = [\n", - "# \"100313\", # Walking speed !!! MISSING !!!\n", - " \"21001\", # BMI\n", - " \"21002\", # weight\n", - " \"4080\", # Syst. BP\n", - " \"4079\", # Diast. BP\n", - " \"102\",\n", - " \"21021\",\n", - " \"4195\",\n", - " \"48\",\n", - " \"49\",\n", - " \"50\",\n", - " \"23127\",\n", - " \"23099\",\n", - " \"23105\",\n", - " \"20151\",\n", - " \"20150\",\n", - " \"20258\",\n", - " \"3064\",\n", - " \n", - "]\n", - "temp = get_data_fields(fields_measurements, data, data_field)\n", - "\n", - "sbp_cols = [\"systolic_blood_pressure_automated_reading_f4080_0_0\", \"systolic_blood_pressure_automated_reading_f4080_0_1\"]\n", - "dbp_cols = [\"diastolic_blood_pressure_automated_reading_f4079_0_0\", \"diastolic_blood_pressure_automated_reading_f4079_0_1\"]\n", - "pr_cols = [\"pulse_rate_automated_reading_f102_0_0\", \"pulse_rate_automated_reading_f102_0_1\"]\n", - "\n", - "temp = temp.assign(systolic_blood_pressure_automated_reading_f4080 = temp[sbp_cols].mean(axis=1),\n", - " diastolic_blood_pressure_automated_reading_f4079 = temp[dbp_cols].mean(axis=1),\n", - " pulse_rate_automated_reading_f102 = temp[pr_cols].mean(axis=1))\\\n", - " .drop(sbp_cols + dbp_cols + pr_cols, axis=1)\n", - "\n", - "measurements = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "measurements.to_feather(os.path.join(path, dataset_path, 'temp_measurements.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lab measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.647955Z", - "start_time": "2020-11-04T12:34:07.055242Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbasophill_count_f30160_0_0basophill_percentage_f30220_0_0eosinophill_count_f30150_0_0eosinophill_percentage_f30210_0_0haematocrit_percentage_f30030_0_0haemoglobin_concentration_f30020_0_0high_light_scatter_reticulocyte_count_f30300_0_0high_light_scatter_reticulocyte_percentage_f30290_0_0immature_reticulocyte_fraction_f30280_0_0...phosphate_f30810_0_0rheumatoid_factor_f30820_0_0shbg_f30830_0_0testosterone_f30850_0_0total_bilirubin_f30840_0_0total_protein_f30860_0_0triglycerides_f30870_0_0urate_f30880_0_0urea_f30670_0_0vitamin_d_f30890_0_0
010000180.040.260.251.7539.7913.900.0220.4640.378...1.422NaN70.111.5607.4171.971.247221.35.4870.7
110000200.000.300.302.5045.0015.600.0140.2900.300...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
210000370.040.570.101.4339.4813.580.0310.6860.380...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000430.020.320.111.8044.3114.990.0250.5080.250...0.928NaN31.6311.3988.6569.705.184322.86.6763.6
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 62 columns

\n", - "
" - ], - "text/plain": [ - " eid basophill_count_f30160_0_0 basophill_percentage_f30220_0_0 \\\n", - "0 1000018 0.04 0.26 \n", - "1 1000020 0.00 0.30 \n", - "2 1000037 0.04 0.57 \n", - "3 1000043 0.02 0.32 \n", - "4 1000051 NaN NaN \n", - "\n", - " eosinophill_count_f30150_0_0 eosinophill_percentage_f30210_0_0 \\\n", - "0 0.25 1.75 \n", - "1 0.30 2.50 \n", - "2 0.10 1.43 \n", - "3 0.11 1.80 \n", - "4 NaN NaN \n", - "\n", - " haematocrit_percentage_f30030_0_0 haemoglobin_concentration_f30020_0_0 \\\n", - "0 39.79 13.90 \n", - "1 45.00 15.60 \n", - "2 39.48 13.58 \n", - "3 44.31 14.99 \n", - "4 NaN NaN \n", - "\n", - " high_light_scatter_reticulocyte_count_f30300_0_0 \\\n", - "0 0.022 \n", - "1 0.014 \n", - "2 0.031 \n", - "3 0.025 \n", - "4 NaN \n", - "\n", - " high_light_scatter_reticulocyte_percentage_f30290_0_0 \\\n", - "0 0.464 \n", - "1 0.290 \n", - "2 0.686 \n", - "3 0.508 \n", - "4 NaN \n", - "\n", - " immature_reticulocyte_fraction_f30280_0_0 ... phosphate_f30810_0_0 \\\n", - "0 0.378 ... 1.422 \n", - "1 0.300 ... 1.264 \n", - "2 0.380 ... NaN \n", - "3 0.250 ... 0.928 \n", - "4 NaN ... NaN \n", - "\n", - " rheumatoid_factor_f30820_0_0 shbg_f30830_0_0 testosterone_f30850_0_0 \\\n", - "0 NaN 70.11 1.560 \n", - "1 NaN 55.31 12.237 \n", - "2 NaN NaN NaN \n", - "3 NaN 31.63 11.398 \n", - "4 NaN NaN NaN \n", - "\n", - " total_bilirubin_f30840_0_0 total_protein_f30860_0_0 \\\n", - "0 7.41 71.97 \n", - "1 8.07 78.45 \n", - "2 NaN NaN \n", - "3 8.65 69.70 \n", - "4 NaN NaN \n", - "\n", - " triglycerides_f30870_0_0 urate_f30880_0_0 urea_f30670_0_0 \\\n", - "0 1.247 221.3 5.48 \n", - "1 1.906 374.7 5.28 \n", - "2 NaN NaN NaN \n", - "3 5.184 322.8 6.67 \n", - "4 NaN NaN NaN \n", - "\n", - " vitamin_d_f30890_0_0 \n", - "0 70.7 \n", - "1 35.9 \n", - "2 NaN \n", - "3 63.6 \n", - "4 NaN \n", - "\n", - "[5 rows x 62 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_blood_count = [\n", - " \"30160\", #\tBasophill count\n", - " \"30220\", #\tBasophill percentage\n", - " \"30150\", #\tEosinophill count\n", - " \"30210\", #\tEosinophill percentage\n", - " \"30030\", #\tHaematocrit percentage\n", - " \"30020\", #\tHaemoglobin concentration\n", - " \"30300\", #\tHigh light scatter reticulocyte count\n", - " \"30290\", #\tHigh light scatter reticulocyte percentage\n", - " \"30280\", #\tImmature reticulocyte fraction\n", - " \"30120\", #\tLymphocyte count\n", - " \"30180\", #\tLymphocyte percentage\n", - " \"30050\", #\tMean corpuscular haemoglobin\n", - " \"30060\", #\tMean corpuscular haemoglobin concentration\n", - " \"30040\", #\tMean corpuscular volume\n", - " \"30100\", #\tMean platelet (thrombocyte) volume\n", - " \"30260\", #\tMean reticulocyte volume\n", - " \"30270\", #\tMean sphered cell volume\n", - " \"30130\", #\tMonocyte count\n", - " \"30190\", #\tMonocyte percentage\n", - " \"30140\", #\tNeutrophill count\n", - " \"30200\", #\tNeutrophill percentage\n", - " \"30170\", #\tNucleated red blood cell count\n", - " \"30230\", #\tNucleated red blood cell percentage\n", - " \"30080\", #\tPlatelet count\n", - " \"30090\", #\tPlatelet crit\n", - " \"30110\", #\tPlatelet distribution width\n", - " \"30010\", #\tRed blood cell (erythrocyte) count\n", - " \"30070\", #\tRed blood cell (erythrocyte) distribution width\n", - " \"30250\", #\tReticulocyte count\n", - " \"30240\", #\tReticulocyte percentage\n", - " \"30000\", #\tWhite blood cell (leukocyte) count\n", - "]\n", - "\n", - "fields_blood_biochemistry = [\n", - " \"30620\",#\tAlanine aminotransferase\n", - " \"30600\",#\tAlbumin\n", - " \"30610\",#\tAlkaline phosphatase\n", - " \"30630\",#\tApolipoprotein A\n", - " \"30640\",#\tApolipoprotein B\n", - " \"30650\",#\tAspartate aminotransferase\n", - " \"30710\",#\tC-reactive protein\n", - " \"30680\",#\tCalcium\n", - " \"30690\",#\tCholesterol\n", - " \"30700\",#\tCreatinine\n", - " \"30720\",#\tCystatin C\n", - " \"30660\",#\tDirect bilirubin\n", - " \"30730\",#\tGamma glutamyltransferase\n", - " \"30740\",#\tGlucose\n", - " \"30750\",#\tGlycated haemoglobin (HbA1c)\n", - " \"30760\",#\tHDL cholesterol\n", - " \"30770\",#\tIGF-1\n", - " \"30780\",#\tLDL direct\n", - " \"30790\",#\tLipoprotein A\n", - " \"30800\",#\tOestradiol\n", - " \"30810\",#\tPhosphate\n", - " \"30820\",#\tRheumatoid factor\n", - " \"30830\",#\tSHBG\n", - " \"30850\",#\tTestosterone\n", - " \"30840\",#\tTotal bilirubin\n", - " \"30860\",#\tTotal protein\n", - " \"30870\",#\tTriglycerides\n", - " \"30880\",#\tUrate\n", - " \"30670\",#\tUrea\n", - " \"30890\",#\tVitamin D\n", - "]\n", - "\n", - "fields_blood_infectious = [\n", - " \"23000\", #\t1gG antigen for Herpes Simplex virus-1\n", - " \"23001\", #\t2mgG unique antigen for Herpes Simplex virus-2\n", - " \"23049\", #\tAntigen assay QC indicator\n", - " \"23048\", #\tAntigen assay date\n", - " \"23026\", #\tBK VP1 antigen for Human Polyomavirus BKV\n", - " \"23039\", #\tCagA antigen for Helicobacter pylori\n", - " \"23043\", #\tCatalase antigen for Helicobacter pylori\n", - " \"23018\", #\tCore antigen for Hepatitis C Virus\n", - " \"23030\", #\tE6 antigen for Human Papillomavirus type-16\n", - " \"23031\", #\tE7 antigen for Human Papillomavirus type-16\n", - " \"23006\", #\tEA-D antigen for Epstein-Barr Virus\n", - " \"23004\", #\tEBNA-1 antigen for Epstein-Barr Virus\n", - " \"23042\", #\tGroEL antigen for Helicobacter pylori\n", - " \"23016\", #\tHBc antigen for Hepatitis B Virus\n", - " \"23017\", #\tHBe antigen for Hepatitis B Virus\n", - " \"23025\", #\tHIV-1 env antigen for Human Immunodeficiency Virus\n", - " \"23024\", #\tHIV-1 gag antigen for Human Immunodeficiency Virus\n", - " \"23023\", #\tHTLV-1 env antigen for Human T-Lymphotropic Virus 1\n", - " \"23022\", #\tHTLV-1 gag antigen for Human T-Lymphotropic Virus 1\n", - " \"23010\", #\tIE1A antigen for Human Herpesvirus-6\n", - " \"23011\", #\tIE1B antigen for Human Herpesvirus-6\n", - " \"23027\", #\tJC VP1 antigen for Human Polyomavirus JCV\n", - " \"23015\", #\tK8.1 antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23029\", #\tL1 antigen for Human Papillomavirus type-16\n", - " \"23032\", #\tL1 antigen for Human Papillomavirus type-18\n", - " \"23014\", #\tLANA antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23028\", #\tMC VP1 antigen for Merkel Cell Polyomavirus\n", - " \"23019\", #\tNS3 antigen for Hepatitis C Virus\n", - " \"23041\", #\tOMP antigen for Helicobacter pylori\n", - " \"23037\", #\tPorB antigen for Chlamydia trachomatis\n", - " \"23013\", #\tU14 antigen for Human Herpesvirus-7\n", - " \"23044\", #\tUreA antigen for Helicobacter pylori\n", - " \"23003\", #\tVCA p18 antigen for Epstein-Barr Virus\n", - " \"23040\", #\tVacA antigen for Helicobacter pylori\n", - " \"23005\", #\tZEBRA antigen for Epstein-Barr Virus\n", - " \"23002\", #\tgE / gI antigen for Varicella Zoster Virus\n", - " \"23034\", #\tmomp A antigen for Chlamydia trachomatis\n", - " \"23033\", #\tmomp D antigen for Chlamydia trachomatis\n", - " \"23012\", #\tp101 k antigen for Human Herpesvirus-6\n", - " \"23020\", #\tp22 antigen for Toxoplasma gondii\n", - " \"23038\", #\tpGP3 antigen for Chlamydia trachomatis\n", - " \"23009\", #\tpp 28 antigen for Human Cytomegalovirus\n", - " \"23008\", #\tpp 52 antigen for Human Cytomegalovirus\n", - " \"23007\", #\tpp150 Nter antigen for Human Cytomegalovirus\n", - " \"23021\", #\tsag1 antigen for Toxoplasma gondii\n", - " \"23035\", #\ttarp-D F1 antigen for Chlamydia trachomatis\n", - " \"23036\", #\ttarp-D F2 antigen for Chlamydia trachomatis\n", - "]\n", - "\n", - "labs = temp = get_data_fields(fields_blood_count+fields_blood_biochemistry+fields_blood_infectious, data, data_field)\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "labs.to_feather(os.path.join(path, dataset_path, 'temp_labs.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Family History" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.838958Z", - "start_time": "2020-11-04T12:34:07.649920Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - } - ], - "source": [ - "fh_list=[\"Heart disease\", \"Stroke\", \"High blood pressure\", \"Diabetes\", \"Lung cancer\", \"Severe depression\", \"Parkinson's disease\", \"Alzheimer's disease/dementia\", \"Chronic bronchitis/emphysema\", \"Breast cancer\", \"Bowel cancer\"]\n", - "with open(os.path.join(path, dataset_path, 'fh_list.yaml'), 'w') as file: yaml.dump(fh_list, file, default_flow_style=False)\n", - "\n", - "fields_family_history = [\n", - " \"20107\", # Family history \n", - " \"20110\" # Family history\n", - "]\n", - "\n", - "raw = get_data_fields(fields_family_history, data, data_field)\n", - "temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"family_history\").drop(\"field\", axis=1)\n", - "temp = temp[temp.family_history.isin(fh_list)].assign(family_history=temp[\"family_history\"].str.lower().replace(\" \", \"_\", regex=True))\n", - "\n", - "temp = temp.drop_duplicates().sort_values(\"eid\").reset_index().drop(\"index\", axis=1).assign(n=True)\n", - "temp = pd.pivot_table(temp, index=\"eid\", columns=\"family_history\", values=\"n\", observed=True).add_prefix('fh_')\n", - "family_history = temp = data[[\"eid\"]].copy().merge(temp, how=\"left\", on=\"eid\").fillna(False)\n", - "\n", - "print(len(temp))\n", - "temp.head()\n", - "\n", - "family_history.to_feather(os.path.join(path, dataset_path, 'temp_family_history.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Medications" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.842601Z", - "start_time": "2020-11-04T12:34:25.840607Z" - } - }, - "outputs": [], - "source": [ - "# https://list.essentialmeds.org/?showRemoved=0\n", - "# essential medicines WHO?!" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.471831Z", - "start_time": "2020-11-04T12:34:25.844339Z" - } - }, - "outputs": [], - "source": [ - "atc_mapping = pd.read_csv(f\"{path}/mapping/atc/atc_matched_list.csv\")\n", - "athena_concepts = pd.read_csv(f\"{data_path}/athena_vocabulary/CONCEPT.csv\", sep=\"\\t\").assign(vocabulary_id = lambda x: x.vocabulary_id.astype(\"string\"), concept_class_id = lambda x: x.concept_class_id.astype(\"string\"))\n", - "atc_concepts = athena_concepts[athena_concepts.vocabulary_id==\"ATC\"]\n", - "atc2_concepts = atc_concepts[atc_concepts.concept_class_id==\"ATC 2nd\"].sort_values(\"concept_code\")\n", - "medication_list = dict(zip([x.lower().replace(\" \", \"_\") for x in atc2_concepts.concept_name.to_list()], [[x] for x in atc2_concepts.concept_code.to_list()]))\n", - "medication_list_extra = {\n", - " \"antihypertensives\": [\"C02\"],\n", - " \"statins\": [\"C10A\", \"C10B\"],\n", - " \"ass\": [\"B01\"],\n", - " \"atypical_antipsychotics\" : [\"N05\"],\n", - " \"glucocorticoids\" : [\"H02\"] \n", - "}\n", - "medication_list.update(medication_list_extra)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'medication_list.yaml'), 'w') as file: yaml.dump(medication_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.481137Z", - "start_time": "2020-11-04T12:34:32.473698Z" - } - }, - "outputs": [], - "source": [ - "def had_medication_before(data, data_field, medications, atc_mapping):\n", - " fields = [\"20003\"]\n", - " raw = get_data_fields(fields, data, data_field)\n", - " temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"UKBB_code\").drop(\"field\", axis=1).drop_duplicates()\n", - "\n", - " temp.UKBB_code = temp.UKBB_code.astype(str)\n", - " temp = temp[temp.UKBB_code!=\"None\"].copy()\n", - " temp = temp[temp.UKBB_code!=\"nan\"].copy()\n", - " temp.UKBB_code = temp.UKBB_code.astype(int)\n", - "\n", - " temp_atc = temp.merge(atc_mapping, how=\"left\", on=\"UKBB_code\").sort_values(\"eid\").reset_index(drop=True).dropna(subset=[\"ATC_code\"], axis=0)\n", - " temp_atc.ATC_code = temp_atc.ATC_code.astype(\"string\")\n", - " temp = data[[\"eid\"]].copy()\n", - " for med, med_codes in tqdm(medication_list.items()):\n", - " regex_str = \"^\"+\"|^\".join(med_codes)\n", - " df = temp_atc[temp_atc.ATC_code.str.contains(regex_str, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(medication=True)\n", - " temp[med] = temp.merge(df, how=\"left\", on=\"eid\").fillna(False).medication\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:36:14.425612Z", - "start_time": "2020-11-04T12:34:32.482863Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4ea3a79139e04f94a00e3a35c527fa25", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=98.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - } - ], - "source": [ - "medications = had_medication_before(data, data_field, medication_list, atc_mapping)\n", - "print(len(medications))\n", - "medications.head(10)\n", - "\n", - "medications.to_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.851438Z", - "start_time": "2020-11-04T12:37:14.774599Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = pd.read_csv(f\"{path}/mapping/snomed_core_list.txt\", sep=\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.909023Z", - "start_time": "2020-11-04T12:37:14.853286Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = snomed_core.query(\"SNOMED_CONCEPT_STATUS == 'Current'\").copy()\n", - "new = snomed_core.SNOMED_FSN.str.split(\"(\", n=1, expand=True)\n", - "snomed_core[\"snomed_name\"] = new[0].str.rstrip(' ')\n", - "snomed_core[\"snomed_type\"] = new[1].str.rstrip(')')\n", - "snomed_core_data = snomed_core#.query(\"(snomed_type=='disorder' | snomed_type=='finding') & USAGE>0.01\")" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.914973Z", - "start_time": "2020-11-04T12:37:14.910857Z" - } - }, - "outputs": [], - "source": [ - "snomed_names = snomed_core_data.snomed_name.to_list()\n", - "snomed_names = [str(item).lower().strip().replace(\" \", \"_\").replace(\";\", \"\").replace(\",\", \"\") for item in snomed_names]" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_df = pd.DataFrame.from_dict(phenotype_list_snomed, orient='index').reset_index()\n", - "snomed_df.columns = [\"diagnosis\", \"concept_code\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ancestor_concept_iddescendant_concept_idmin_levels_of_separationmax_levels_of_separation
0375415433574344
17359794107038335
25294114326940633
314196020016436
44418404096781412
...............
63586490458935223541227022
63586491458935224627567811
63586492458935224627568023
63586493458935224627568312
63586494458935224627568423
\n", - "

63586495 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " ancestor_concept_id descendant_concept_id \\\n", - "0 375415 4335743 \n", - "1 735979 41070383 \n", - "2 529411 43269406 \n", - "3 141960 200164 \n", - "4 441840 4096781 \n", - "... ... ... \n", - "63586490 45893522 35412270 \n", - "63586491 45893522 46275678 \n", - "63586492 45893522 46275680 \n", - "63586493 45893522 46275683 \n", - "63586494 45893522 46275684 \n", - "\n", - " min_levels_of_separation max_levels_of_separation \n", - "0 4 4 \n", - "1 3 5 \n", - "2 3 3 \n", - "3 3 6 \n", - "4 4 12 \n", - "... ... ... \n", - "63586490 2 2 \n", - "63586491 1 1 \n", - "63586492 2 3 \n", - "63586493 1 2 \n", - "63586494 2 3 \n", - "\n", - "[63586495 rows x 4 columns]" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "vocab[\"concept_ancestor\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "concept_ids_icd10 = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @concept_ids_icd10) & (relationship_id == 'Mapped from')\")\n", - "concept_mapping = concept_rel.rename(columns={\"concept_id_2\":\"concept_id\"}).merge(concept_ids, on=\"concept_id\").query(\"vocabulary_id == 'ICD10CM'\")[[\"concept_id_1\", \"concept_code\"]].rename(columns={\"concept_id_1\":\"concept_id_desc\",\"concept_code\":\"icd10\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "df_snomed_concept_id = snomed_df.merge(concept_ids[[\"concept_code\", \"concept_id\"]], on=\"concept_code\")" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "#df_desc = df_snomed_concept_id.merge(concept_ancestor.rename(columns={\"ancestor_concept_id\":\"concept_id\"})[[\"concept_id\", \"descendant_concept_id\"]], on=\"concept_id\")\n", - "#df_desc = df_desc[[\"diagnosis\", \"concept_code\", \"concept_id\", \"descendant_concept_id\"]].rename(columns={\"descendant_concept_id\":\"concept_id_desc\"})\n", - "#df_desc_codes = df_desc.merge(concept_ids[[\"concept_id\", \"concept_code\"]].rename(columns={\"concept_id\":\"concept_id_desc\", \"concept_code\":\"concept_codes_desc\"}), on=\"concept_id_desc\").drop_duplicates().sort_values(\"concept_code\")\n", - "#df_desc_icd = df_desc_codes.merge(concept_mapping, on=\"concept_id_desc\")#.rename(columns={\"concept_id\":\"concept_id_desc\", \"concept_code\":\"concept_codes_desc\"}))" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "df_icd = df_snomed_concept_id.merge(concept_mapping.rename(columns={\"concept_id_desc\":\"concept_id\"}), on=\"concept_id\")\n", - "df_mapped = df_icd[[\"diagnosis\", \"concept_code\", \"icd10\"]].drop_duplicates()\n", - "df_mapped[\"icd10\"] = df_mapped[\"icd10\"].str.replace(\".\", \"\")\n", - "df_mapped[\"meaning\"] = [e[:3] for e in df_mapped[\"icd10\"].to_list()]\n", - "icd10_codes = dict(df_mapped[[\"diagnosis\", \"meaning\"]].drop_duplicates().groupby(\"diagnosis\")[\"meaning\"].apply(list).to_dict())#set_index(\"diagnosis\", drop=True).to_dict()[\"meaning\"]#.sort_values(\"diagnosis\")" - ] - }, - { - "cell_type": "raw", - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.342937Z", - "start_time": "2020-11-04T12:37:14.916906Z" - } - }, - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_ids = vocab[\"concept\"].query(\"vocabulary_id == 'SNOMED'\").concept_id.to_list()\n", - "icd10_ids = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "\n", - "ph_to_icd10_mapping = {}\n", - "\n", - "def map_snomed_to_icd10(ph, snomed_code, concept, concept_ancestor, concept_relationship):\n", - " concept_ids = concept.query(\"vocabulary_id == 'SNOMED' & concept_code == @snomed_code\").concept_id.to_list()\n", - " snomed_desc_ids = concept_ancestor.query(\"ancestor_concept_id== @concept_ids\").descendant_concept_id.to_list()\n", - " ph_desc = concept.query(\"concept_id == @snomed_desc_ids\").query(\"vocabulary_id == 'SNOMED'\")\n", - " l_ph_desc_ids = ph_desc.concept_id.to_list()\n", - " ph_icd10_ids = list(concept_relationship.query(\"concept_id_1==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").concept_id_2.unique())\n", - " #ph_icd10_ids = list(concept_relationship.set_index(\"concept_id_1\").query(\"index==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").query(\"relationship_id == 'Mapped from'\").concept_id_2.unique()\n", - " \n", - " #ph_icd10_ids = list(temp.concept_id_2.unique())\n", - " df = concept.query(\"concept_id == @ph_icd10_ids & vocabulary_id == 'ICD10CM'\")\n", - " icd10_list = list(df[~df.concept_code.str.contains(\"OMOP\", na=False)].concept_code.unique())\n", - " icd10_list = sorted(list(set([e[:3] for e in icd10_list])))\n", - " #print(f\"{ph}: {icd10_list}\")\n", - " return {ph: sorted(list(dict.fromkeys([str(e) for e in icd10_list])))}\n", - "\n", - "from joblib import Parallel, delayed\n", - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")\n", - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @vocab_concept_ids) & (relationship_id == 'Mapped from')\")\n", - "icd10_codes = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(map_snomed_to_icd10)(ph, snomed_code, \n", - " concept_ids, concept_ancestor, concept_rel) for ph, snomed_code in tqdm(phenotype_list_snomed.items()))" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.348009Z", - "start_time": "2020-11-04T12:39:55.344704Z" - } - }, - "outputs": [], - "source": [ - "l10_snomed = {}\n", - "for ph in icd10_codes: l10_snomed.update({ph:icd10_codes[ph]})" - ] - }, - { - "cell_type": "raw", - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.468545Z", - "start_time": "2020-11-04T12:39:55.349545Z" - } - }, - "source": [ - "phenotype_list_basic = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"diabetes1\" : [\"Type 1 diabetes\"],\n", - " \"diabetes2\" : [\"Diabetes mellitus\", \"Type 2 diabetes\"],\n", - " \"chronic_kidney_disease\": [\"Chronic kidney disease\", \"chronic renal failure\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"migraine\": [\"Migraine\"],\n", - " \"rheumatoid_arthritis\": [\"Rheumatoid arthritis\"],\n", - " \"systemic_lupus_erythematosus\": [\"Systemic lupus erythematosus\"],\n", - " \"severe_mental_illness\": [\"Schizophrenia\", \"bipolar\", \"Major depressive disorder\"],\n", - " \"erectile_dysfunction\" : [\"Erectile dysfunction\"], \n", - "}\n", - "\n", - "l10_basic = phenotype_children(phecodes, phenotype_list_basic)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "l10_basic = {\n", - " \"myocardial_infarction\": ['I21', 'I22', 'I23', 'I24', 'I25'],\n", - " \"stroke\": ['G45', \"I63\", \"I64\"],\n", - " \"diabetes1\" : ['E10'],\n", - " \"diabetes2\" : ['E11', 'E12', 'E13', 'E14'],\n", - " \"chronic_kidney_disease\": [\"I12\", \"N18\", \"N19\"],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'migraine': ['G43', 'G44'],\n", - " 'rheumatoid_arthritis': ['J99', 'M05', 'M06', 'M08', 'M12', 'M13'],\n", - " \"systemic_lupus_erythematosus\": ['M32'],\n", - " 'severe_mental_illness': ['F20', 'F25', 'F30', 'F31', 'F32', 'F33', 'F44'],\n", - " \"erectile_dysfunction\" : ['F52', 'N48'], \n", - " \"liver_disease\":[\"K70\", \"K71\", \"K72\", \"K73\", \"K74\", \"K75\", \"K76\", \"K77\"],\n", - " \"dementia\":['F00', 'F01', 'F02', 'F03'],\n", - " \"copd\": ['J44']\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25'],\n", - " 'stroke': ['G45', 'I63', 'I64'],\n", - " 'diabetes1': ['E10'],\n", - " 'diabetes2': ['E11', 'E12', 'E13', 'E14'],\n", - " 'chronic_kidney_disease': ['I12', 'N18', 'N19'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'migraine': ['G43', 'G44'],\n", - " 'rheumatoid_arthritis': ['J99', 'M05', 'M06', 'M08', 'M12', 'M13'],\n", - " 'systemic_lupus_erythematosus': ['M32'],\n", - " 'severe_mental_illness': ['F20', 'F25', 'F30', 'F31', 'F32', 'F33', 'F44'],\n", - " 'erectile_dysfunction': ['F52', 'N48'],\n", - " 'liver_disease': ['K70', 'K71', 'K72', 'K73', 'K74', 'K75', 'K76', 'K77'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03'],\n", - " 'copd': ['J44']}" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l10_basic" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.473556Z", - "start_time": "2020-11-04T12:39:55.471051Z" - } - }, - "outputs": [], - "source": [ - "l10_all = l10_basic\n", - "for key, value in l10_snomed.items(): \n", - " if key not in l10_basic: l10_all[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.620916Z", - "start_time": "2020-11-04T12:39:55.475137Z" - } - }, - "outputs": [], - "source": [ - "l10 = {k: v for k, v in l10_all.items() if len(v)!=0}\n", - "\n", - "#phenotype_list = {k: v for k, v in phenotype_list.items() if k in list(l10.keys())}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'phenotype_list.yaml'), 'w') as file: yaml.dump(l10, file, default_flow_style=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Self Reported" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.288198Z", - "start_time": "2020-11-04T12:43:13.264683Z" - } - }, - "outputs": [], - "source": [ - "coding609 = pd.read_csv(f\"{path}/mapping/codings/coding609.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import datetime, timedelta\n", - "\n", - "def datetime_from_dec_year(dec_year):\n", - " start = dec_year\n", - " year = int(start)\n", - " rem = start - year\n", - "\n", - " base = datetime(year, 1, 1)\n", - " result = base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)\n", - " #result.strftime(\"%Y-%m-%d\")\n", - " return result.date()\n", - "\n", - "def extract_map_self_reported(data, data_field, code_map):\n", - " pbar = tqdm(total=16)\n", - " ### codes\n", - " fields = [\"20002\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col = \"noncancer_illness_code_selfreported_f20002\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " codes = temp.rename(columns={col:\"code\"})\\\n", - " .assign(code=lambda x: x.code.astype(str))\\\n", - " .replace(\"None\", np.nan) \\\n", - " .replace(\"nan\", np.nan) \\\n", - " .dropna(subset=[\"code\"], axis=0)\\\n", - " .assign(code=lambda x: x.code.astype(int)) \\\n", - " .merge(code_map, how=\"left\",on=\"code\") \\\n", - " .dropna(subset=[\"meaning\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - " \n", - " ### dates\n", - " fields = [\"20008\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col=\"interpolated_year_when_noncancer_illness_first_diagnosed_f20008\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " dates = temp.rename(columns={col:\"date\"})\\\n", - " .dropna(subset=[\"date\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - "\n", - " dates = dates[dates.date!=-1]; pbar.update(1)\n", - " dates = dates[dates.date!=-3]; pbar.update(1)\n", - " dates.date = dates.date.apply(datetime_from_dec_year); pbar.update(1)\n", - " \n", - " test = codes.merge(dates, how=\"left\", on=[\"eid\", \"instance_index\"]).assign(origin=\"self_reported\").copy(); pbar.update(1)\n", - " \n", - " test[\"instance_index\"] = test[\"instance_index\"].astype(\"string\"); pbar.update(1)\n", - " test[['instance','n']] = test.instance_index.str.split(\"_\",expand=True); pbar.update(1)\n", - " pbar.close()\n", - " \n", - " return test[[\"eid\", \"origin\", 'instance','n', \"code\", \"meaning\", \"date\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "from tqdm.auto import tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:00.098893Z", - "start_time": "2020-11-04T12:43:13.432479Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4a6bf94594574b48b26a251987e4baf0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=16.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "codes_self_reported = extract_map_self_reported(data, data_field, coding609)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load records" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "codes_gp_records = pd.read_feather(f\"{data_path}/1_decoded/codes_gp_diagnoses_210119.feather\").drop(\"level\", axis=1)\n", - "codes_hospital_records = pd.read_feather(f\"{data_path}/1_decoded/codes_hes_diagnoses_210120.feather\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Combine diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:25.115010Z", - "start_time": "2020-11-04T12:46:08.961388Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdatelevel
01000018gp_read301F171F171976-01-01NaN
11000018gp_read302O800O801986-03-23NaN
21000018gp_read303O800O801989-05-25NaN
31000018gp_read304Z824Z821994-09-13NaN
41000018gp_read305Z867Z861994-09-13NaN
\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date level\n", - "0 1000018 gp_read3 0 1 F171 F17 1976-01-01 NaN\n", - "1 1000018 gp_read3 0 2 O800 O80 1986-03-23 NaN\n", - "2 1000018 gp_read3 0 3 O800 O80 1989-05-25 NaN\n", - "3 1000018 gp_read3 0 4 Z824 Z82 1994-09-13 NaN\n", - "4 1000018 gp_read3 0 5 Z867 Z86 1994-09-13 NaN" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes = codes_self_reported.append(codes_hospital_records).append(codes_gp_records).sort_values([\"eid\", \"date\"]).dropna(subset=[\"date\"], axis=0).reset_index(drop=True)\n", - "diagnoses_codes.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes.reset_index(drop=True).assign(eid = lambda x: x.eid.astype(int),\n", - " origin = lambda x: x.origin.astype(str),\n", - " instance = lambda x: x.instance.astype(int),\n", - " n = lambda x: x.n.astype(int),\n", - " code = lambda x: x.code.astype(str), \n", - " meaning = lambda x: x.meaning.astype(str))\\\n", - " .to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdatelevel
01000018gp_read301F171F171976-01-01NaN
11000018gp_read302O800O801986-03-23NaN
21000018gp_read303O800O801989-05-25NaN
31000018gp_read304Z824Z821994-09-13NaN
41000018gp_read305Z867Z861994-09-13NaN
...........................
320756216025198hes_icd10613['R945']R942018-12-092.0
320756226025198hes_icd10614['F171']F172018-12-092.0
320756236025198hes_icd10615['I10']I102018-12-092.0
320756246025198hes_icd10616['E780']E782018-12-092.0
320756256025198hes_icd10617['W802']W802018-12-093.0
\n", - "

32075626 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date \\\n", - "0 1000018 gp_read3 0 1 F171 F17 1976-01-01 \n", - "1 1000018 gp_read3 0 2 O800 O80 1986-03-23 \n", - "2 1000018 gp_read3 0 3 O800 O80 1989-05-25 \n", - "3 1000018 gp_read3 0 4 Z824 Z82 1994-09-13 \n", - "4 1000018 gp_read3 0 5 Z867 Z86 1994-09-13 \n", - "... ... ... ... .. ... ... ... \n", - "32075621 6025198 hes_icd10 6 13 ['R945'] R94 2018-12-09 \n", - "32075622 6025198 hes_icd10 6 14 ['F171'] F17 2018-12-09 \n", - "32075623 6025198 hes_icd10 6 15 ['I10'] I10 2018-12-09 \n", - "32075624 6025198 hes_icd10 6 16 ['E780'] E78 2018-12-09 \n", - "32075625 6025198 hes_icd10 6 17 ['W802'] W80 2018-12-09 \n", - "\n", - " level \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "32075621 2.0 \n", - "32075622 2.0 \n", - "32075623 2.0 \n", - "32075624 2.0 \n", - "32075625 3.0 \n", - "\n", - "[32075626 rows x 8 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:26.189927Z", - "start_time": "2020-11-04T12:46:25.117069Z" - } - }, - "outputs": [], - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=30, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = ph_series\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "phenotypes = l10\n", - "time0 = time0_col\n", - "diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - "\n", - "temp = data[[\"eid\"]].copy()\n", - "df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - "\n", - "df_phs = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)[0:100]))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " for ph, ph_codes in tqdm(phenotypes.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True)\n", - " temp[ph] = temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T13:17:52.922023Z", - "start_time": "2020-11-04T12:46:26.191314Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8041d52f094f4730a924656c994c4820", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2662.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0bccfdff36944622b1a4b624acd2b955", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2662.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarctionstrokediabetes1diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosus...vulvitisvulvodyniavulvovaginitiswaldenström_macroglobulinemiawheezingwhite_blood_cell_disorderworried_wellwound_dehiscencewrist_joint_painxerostomia
01000018FalseFalseFalseFalseTrueFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
11000020FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
21000037FalseFalseFalseFalseFalseFalseTrueTrueFalse...FalseFalseFalseFalseFalseFalseTrueFalseTrueFalse
31000043FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseTrueFalseFalseFalseFalseFalse
41000051FalseFalseFalseTrueFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

5 rows × 2663 columns

\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction stroke diabetes1 diabetes2 \\\n", - "0 1000018 False False False False \n", - "1 1000020 False False False False \n", - "2 1000037 False False False False \n", - "3 1000043 False False False False \n", - "4 1000051 False False False True \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "0 True False False \n", - "1 False False False \n", - "2 False False True \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus ... vulvitis \\\n", - "0 False False ... False \n", - "1 False False ... False \n", - "2 True False ... False \n", - "3 False False ... False \n", - "4 False False ... False \n", - "\n", - " vulvodynia vulvovaginitis waldenström_macroglobulinemia wheezing \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False True \n", - "4 False False False False \n", - "\n", - " white_blood_cell_disorder worried_well wound_dehiscence \\\n", - "0 False True False \n", - "1 False False False \n", - "2 False True False \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " wrist_joint_pain xerostomia \n", - "0 False False \n", - "1 False False \n", - "2 True False \n", - "3 False False \n", - "4 False False \n", - "\n", - "[5 rows x 2663 columns]" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses = had_diagnosis_before(basics, diagnoses_codes, l10, time0=time0_col)\n", - "print(len(diagnoses))\n", - "\n", - "diagnoses.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))\n", - "\n", - "diagnoses.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Add embeddings for Snomed Diagnoses" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get SNOMED - node2vec dict" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "snomed_embeddings = pd.read_csv(\"/data/analysis/ag-reils/steinfej/data/snomed_embeddings/snomed.emb.p1.q1.w20.l40.e200.graph_format.txt\", sep=\" \", header=None, skiprows=1)\n", - "snomed_embeddings.columns = [\"snomed_id\"]+list(snomed_embeddings.columns)[:-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
snomed_id012345678...190191192193194195196197198199
01292650010.0274560.171026-0.178822-0.0386670.2997770.082540-0.2012840.2151640.093241...0.2110300.4884750.082177-0.047102-0.086411-0.012141-0.258416-0.1132950.040249-0.116884
1360224006-0.0901870.086986-0.184378-0.028722-0.0102350.242439-0.0940090.203015-0.097894...0.1127500.333906-0.0181930.020459-0.1702260.277866-0.007079-0.0804190.162456-0.101768
21022720070.5534200.4609470.143925-0.053785-0.8495880.467587-0.654922-0.0107990.510141...0.1873710.2486070.079687-0.3541210.4126020.582461-0.7803650.045450-0.1965510.045745
3399370010.1231580.0198820.0508960.0373640.2004350.312911-0.338977-0.092584-0.167741...0.057770-0.012834-0.1397940.1805720.1907810.104039-0.358235-0.137954-0.236551-0.206458
4235830030.4231930.384338-0.0415030.116848-0.0550290.149064-0.092810-0.0501480.113122...0.162375-0.076505-0.274352-0.099204-0.281887-0.266345-0.020257-0.003843-0.008804-0.286832
\n", - "

5 rows × 201 columns

\n", - "
" - ], - "text/plain": [ - " snomed_id 0 1 2 3 4 5 \\\n", - "0 129265001 0.027456 0.171026 -0.178822 -0.038667 0.299777 0.082540 \n", - "1 360224006 -0.090187 0.086986 -0.184378 -0.028722 -0.010235 0.242439 \n", - "2 102272007 0.553420 0.460947 0.143925 -0.053785 -0.849588 0.467587 \n", - "3 39937001 0.123158 0.019882 0.050896 0.037364 0.200435 0.312911 \n", - "4 23583003 0.423193 0.384338 -0.041503 0.116848 -0.055029 0.149064 \n", - "\n", - " 6 7 8 ... 190 191 192 193 \\\n", - "0 -0.201284 0.215164 0.093241 ... 0.211030 0.488475 0.082177 -0.047102 \n", - "1 -0.094009 0.203015 -0.097894 ... 0.112750 0.333906 -0.018193 0.020459 \n", - "2 -0.654922 -0.010799 0.510141 ... 0.187371 0.248607 0.079687 -0.354121 \n", - "3 -0.338977 -0.092584 -0.167741 ... 0.057770 -0.012834 -0.139794 0.180572 \n", - "4 -0.092810 -0.050148 0.113122 ... 0.162375 -0.076505 -0.274352 -0.099204 \n", - "\n", - " 194 195 196 197 198 199 \n", - "0 -0.086411 -0.012141 -0.258416 -0.113295 0.040249 -0.116884 \n", - "1 -0.170226 0.277866 -0.007079 -0.080419 0.162456 -0.101768 \n", - "2 0.412602 0.582461 -0.780365 0.045450 -0.196551 0.045745 \n", - "3 0.190781 0.104039 -0.358235 -0.137954 -0.236551 -0.206458 \n", - "4 -0.281887 -0.266345 -0.020257 -0.003843 -0.008804 -0.286832 \n", - "\n", - "[5 rows x 201 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_embeddings.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_snomed = diagnoses.columns[13:].to_list()\n", - "diagnoses_snomed_dict = {}\n", - "for d in diagnoses_snomed: diagnoses_snomed_dict[d] = phenotype_list_snomed[d]\n", - " \n", - "snomed_codes_used = list(phenotype_list_snomed.values())\n", - "snomed_codes_emb = snomed_embeddings.snomed_id.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [], - "source": [ - "snomed_id_array = snomed_embeddings[[\"snomed_id\"]].values\n", - "node2vec_array = snomed_embeddings.iloc[:, 1:].values" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "456f56d7481648e48b74e9e76b675f01", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=373286.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "snomed_arrays = {}\n", - "for sid, row in zip(tqdm(snomed_id_array), node2vec_array):\n", - " snomed_arrays[sid[0]] = row" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get Patient -> Snomed dict" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "05ac46541972426da8a5b5f7fe461c6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "diagnoses_array = diagnoses[diagnoses_snomed].values\n", - "eid_array = diagnoses[[\"eid\"]].values\n", - "\n", - "from numba import jit\n", - "import numpy as np\n", - "\n", - "patient_diagnoses = {}\n", - "for eid, row in zip(tqdm(eid_array), diagnoses_array):\n", - " patient_diagnoses[eid[0]] = list(np.argwhere(row==True).flatten())\n", - "\n", - "#diagnoses.query(\"eid==1000092\")[diagnoses_snomed]" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f4c90d91d08e48119abcf8426cddd37e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_diagnoses_sid = {}\n", - "snomed_codes_emb_set = set(snomed_codes_emb)\n", - "for eid, p_d_col in tqdm(patient_diagnoses.items()):\n", - " diagnoses_list = [diagnoses_snomed[i] for i in p_d_col]\n", - " sid_list = [phenotype_list_snomed[i] for i in diagnoses_list]\n", - " sid_list = [sid for sid in sid_list if sid in snomed_codes_emb_set]\n", - " patient_diagnoses_sid[eid] = sid_list" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Get Patient -> node2vec average" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "47e934dc64334c82893d23b458108fbf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3335: RuntimeWarning: Mean of empty slice.\n", - " out=out, **kwargs)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/_methods.py:161: RuntimeWarning: invalid value encountered in double_scalars\n", - " ret = ret.dtype.type(ret / rcount)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_node2vec_dict = {}\n", - "for eid, sids in tqdm(patient_diagnoses_sid.items()):\n", - " array_list = [snomed_arrays[sid] for sid in sids]\n", - " patient_node2vec_dict[eid] = np.mean(array_list, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e1395c2d1bfc41f39697a8925b20d597", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ 0.37033895, 0.13321076, -0.10030267, 0.05625264, -0.08437331,\n", - " 0.11504787, -0.24833219, -0.11936529, 0.25239648, -0.32739932,\n", - " 0.06330914, -0.06493541, -0.28790415, -0.2885537 , 0.02546298,\n", - " -0.06123153, -0.17690672, -0.0867546 , -0.28337599, -0.08474496,\n", - " 0.31454532, -0.24158154, 0.15930864, 0.06124846, 0.07694602,\n", - " -0.13752803, 0.13671128, -0.27988751, -0.03987635, 0.03632156,\n", - " -0.13793361, -0.15857369, -0.16441636, 0.2412931 , 0.20070578,\n", - " -0.11412784, 0.02563965, -0.03560184, 0.17169744, -0.0153383 ,\n", - " 0.00117099, 0.1025362 , -0.06505568, 0.05646065, -0.02705149,\n", - " 0.04416442, -0.15798991, -0.10650637, 0.02082507, -0.21182802,\n", - " 0.13972325, -0.18089307, -0.12731068, 0.02907221, -0.19797107,\n", - " 0.19550177, 0.14941799, 0.21561857, -0.18085379, 0.10768238,\n", - " 0.12968045, 0.2082016 , 0.03561408, -0.01122218, -0.27099816,\n", - " -0.06029919, -0.18787618, 0.10084175, -0.07939234, -0.22951897,\n", - " -0.36536359, -0.01050854, -0.21419807, -0.23562986, 0.02380316,\n", - " 0.1213157 , -0.1601396 , 0.07218057, -0.04362593, -0.22303355,\n", - " -0.23844839, -0.14799905, 0.22346404, 0.14218655, 0.39873181,\n", - " -0.32965129, 0.19102432, -0.08894028, -0.20726567, 0.25343222,\n", - " 0.29939455, 0.20513029, 0.17430424, -0.05073184, 0.05827969,\n", - " 0.31626954, 0.0791522 , -0.21433214, 0.11027244, 0.0805151 ,\n", - " 0.08557279, 0.25260801, -0.00096969, -0.06177831, 0.0544524 ,\n", - " -0.17340027, 0.09731447, 0.09982385, -0.074546 , -0.10350239,\n", - " -0.25798929, 0.01222471, 0.1605315 , 0.00191767, 0.11642527,\n", - " -0.15387604, -0.01520803, 0.03220765, -0.13534233, 0.09154689,\n", - " 0.12562997, -0.01667786, -0.09286805, 0.14670483, -0.13097813,\n", - " -0.38270284, -0.0129984 , -0.06352304, 0.12521014, -0.17354363,\n", - " -0.16399127, 0.11488736, 0.39664734, 0.08557075, -0.24862126,\n", - " -0.05882866, 0.23174289, 0.01765143, -0.10257617, 0.01208248,\n", - " -0.06876405, -0.04180976, 0.07489962, -0.10724381, 0.29349823,\n", - " 0.17342743, -0.32044841, -0.01118798, 0.28508293, 0.16492201,\n", - " 0.03994952, -0.17309702, 0.0365077 , 0.08619365, -0.21749571,\n", - " 0.01038752, -0.21414902, -0.18092813, 0.28433131, -0.12601774,\n", - " -0.02147302, 0.51513453, 0.21506432, -0.12596341, -0.0413009 ,\n", - " 0.12595327, 0.08973215, -0.06285449, -0.03649041, 0.04217289,\n", - " -0.02532634, -0.21734533, -0.08211848, 0.14014083, 0.13635479,\n", - " -0.13163414, -0.08576438, -0.04016334, 0.23952563, -0.14895943,\n", - " 0.08564821, -0.04287149, 0.22135877, -0.06337237, -0.07189574,\n", - " -0.1004494 , 0.01225299, -0.13810014, -0.06814497, -0.16715941,\n", - " 0.07303671, 0.15891015, -0.04757821, -0.05777645, -0.0772216 ,\n", - " 0.16787738, -0.2112512 , -0.10142653, -0.19002809, -0.06400223])" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# create imputation vector\n", - "arrays = [patient_node2vec_dict[key] for key in list(patient_node2vec_dict)]\n", - "arrays_ok = [array for array in tqdm(arrays) if ~np.isnan(array).any()]\n", - "imp_vector = np.mean(arrays_ok, axis=0)\n", - "imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e2dd803c2e2a4cb68e71111979d235c2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "for eid, array in tqdm(patient_node2vec_dict.items()):\n", - " if np.isnan(array).any(): \n", - " patient_node2vec_dict[eid] = imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a82c47a8f87a4df1bc81b78496edee0a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "array_eids = [key for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "510554b8bed8456cbfd694b764286acb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "ind_ok = [np.array([1]) if ~np.isnan(array).any() else np.array([0]) for array in tqdm(arrays)]" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a85aec2f3e7644dc99c40781f999eb3c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "arrays_emb = [patient_node2vec_dict[key] for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "arrays_eids = np.reshape(np.stack(array_eids, axis=0),(-1,1)) \n", - "arrays_ind = np.stack(ind_ok, axis=0)\n", - "arrays_c = np.stack(arrays_emb, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [], - "source": [ - "arrays_complete = np.concatenate([arrays_eids, arrays_ind, arrays_c], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_emb = pd.DataFrame(data=arrays_complete, columns=[\"eid\"]+[\"node2vec_available\"]+[f\"node2vec_{e}\" for e in list(range(0, 200))])" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidnode2vec_availablenode2vec_0node2vec_1node2vec_2node2vec_3node2vec_4node2vec_5node2vec_6node2vec_7...node2vec_190node2vec_191node2vec_192node2vec_193node2vec_194node2vec_195node2vec_196node2vec_197node2vec_198node2vec_199
01000018.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
11000020.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
21000037.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
31000043.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
41000051.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
..................................................................
5024996025150.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025006025165.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025016025173.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025026025182.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025036025198.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
\n", - "

502504 rows × 202 columns

\n", - "
" - ], - "text/plain": [ - " eid node2vec_available node2vec_0 node2vec_1 node2vec_2 \\\n", - "0 1000018.0 0.0 0.370339 0.133211 -0.100303 \n", - "1 1000020.0 0.0 0.370339 0.133211 -0.100303 \n", - "2 1000037.0 0.0 0.370339 0.133211 -0.100303 \n", - "3 1000043.0 0.0 0.370339 0.133211 -0.100303 \n", - "4 1000051.0 0.0 0.370339 0.133211 -0.100303 \n", - "... ... ... ... ... ... \n", - "502499 6025150.0 0.0 0.370339 0.133211 -0.100303 \n", - "502500 6025165.0 0.0 0.370339 0.133211 -0.100303 \n", - "502501 6025173.0 0.0 0.370339 0.133211 -0.100303 \n", - "502502 6025182.0 0.0 0.370339 0.133211 -0.100303 \n", - "502503 6025198.0 0.0 0.370339 0.133211 -0.100303 \n", - "\n", - " node2vec_3 node2vec_4 node2vec_5 node2vec_6 node2vec_7 ... \\\n", - "0 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "1 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "2 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "3 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "4 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "... ... ... ... ... ... ... \n", - "502499 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502500 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502501 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502502 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502503 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "\n", - " node2vec_190 node2vec_191 node2vec_192 node2vec_193 node2vec_194 \\\n", - "0 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "1 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "2 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "3 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "4 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "... ... ... ... ... ... \n", - "502499 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502500 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502501 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502502 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502503 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "\n", - " node2vec_195 node2vec_196 node2vec_197 node2vec_198 node2vec_199 \n", - "0 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "1 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "2 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "3 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "4 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "... ... ... ... ... ... \n", - "502499 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502500 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502501 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502502 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502503 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "\n", - "[502504 rows x 202 columns]" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_emb" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\n", - "diagnoses_emb = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"basics\": pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather')), \n", - " \"questionnaire\": pd.read_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather')), \n", - " \"measurements\": pd.read_feather(os.path.join(path, dataset_path, 'temp_measurements.feather')), \n", - " \"labs\": pd.read_feather(os.path.join(path, dataset_path, 'temp_labs.feather')), \n", - " \"family_history\": pd.read_feather(os.path.join(path, dataset_path, 'temp_family_history.feather')), \n", - " \"diagnoses\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather')),\n", - " # \"diagnoses_emb\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather')), \n", - " \"medications\": pd.read_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))}" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintFalseeidNaN
12age_at_recruitmentfloatFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentfloatFalsebasicsNaN
.....................
28572858surgical_dressingsboolFalsemedicationsNaN
28582859statinsboolFalsemedicationsNaN
28592860assboolFalsemedicationsNaN
28602861atypical_antipsychoticsboolFalsemedicationsNaN
28612862glucocorticoidsboolFalsemedicationsNaN
\n", - "

2862 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid int False \n", - "1 2 age_at_recruitment float False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment float False \n", - "... ... ... ... ... \n", - "2857 2858 surgical_dressings bool False \n", - "2858 2859 statins bool False \n", - "2859 2860 ass bool False \n", - "2860 2861 atypical_antipsychotics bool False \n", - "2861 2862 glucocorticoids bool False \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "2857 medications NaN \n", - "2858 medications NaN \n", - "2859 medications NaN \n", - "2860 medications NaN \n", - "2861 medications NaN \n", - "\n", - "[2862 rows x 6 columns]" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"int\", \"int64\":\"int\", \"float64\":\"float\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"bool\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exclusion Criteria" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline_excl = data_baseline.copy().query(\"myocardial_infarction == False & coronary_heart_disease == False & statins == False\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [], - "source": [ - "feature_dict = {}\n", - "for group in data_baseline_description.based_on.unique(): feature_dict[group] = data_baseline_description.query(\"based_on==@group\").covariate.to_list()\n", - "with open(os.path.join(path, dataset_path, 'feature_list.yaml'), 'w') as file: yaml.dump(feature_dict, file, default_flow_style=False, allow_unicode=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [], - "source": [ - "#feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_covariates.feather'))\n", - "#data_baseline_excl.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_excl.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_covariates_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.3" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/1_preprocessing_dataportal.ipynb b/neuralcvd/preprocessing/ukbb_tabular/1_preprocessing_dataportal.ipynb deleted file mode 100644 index a47d039..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/1_preprocessing_dataportal.ipynb +++ /dev/null @@ -1,5319 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Data Portal Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T09:27:43.184073Z", - "start_time": "2020-12-23T09:27:38.838Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "-- \u001b[1mAttaching packages\u001b[22m --------------------------------------- tidyverse 1.3.0 --\n", - "\n", - "\u001b[32mv\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.2 \u001b[32mv\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", - "\u001b[32mv\u001b[39m \u001b[34mtibble \u001b[39m 3.0.3 \u001b[32mv\u001b[39m \u001b[34mdplyr \u001b[39m 1.0.2\n", - "\u001b[32mv\u001b[39m \u001b[34mtidyr \u001b[39m 1.1.2 \u001b[32mv\u001b[39m \u001b[34mstringr\u001b[39m 1.4.0\n", - "\u001b[32mv\u001b[39m \u001b[34mreadr \u001b[39m 1.3.1 \u001b[32mv\u001b[39m \u001b[34mforcats\u001b[39m 0.5.0\n", - "\n", - "-- \u001b[1mConflicts\u001b[22m ------------------------------------------ tidyverse_conflicts() --\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\n", - "\n", - "Attaching package: 'lubridate'\n", - "\n", - "\n", - "The following objects are masked from 'package:base':\n", - "\n", - " date, intersect, setdiff, union\n", - "\n", - "\n", - "\n", - "Attaching package: 'glue'\n", - "\n", - "\n", - "The following object is masked from 'package:dplyr':\n", - "\n", - " collapse\n", - "\n", - "\n", - "\n", - "Attaching package: 'data.table'\n", - "\n", - "\n", - "The following objects are masked from 'package:lubridate':\n", - "\n", - " hour, isoweek, mday, minute, month, quarter, second, wday, week,\n", - " yday, year\n", - "\n", - "\n", - "The following objects are masked from 'package:dplyr':\n", - "\n", - " between, first, last\n", - "\n", - "\n", - "The following object is masked from 'package:purrr':\n", - "\n", - " transpose\n", - "\n", - "\n", - "\n", - "Attaching package: 'magrittr'\n", - "\n", - "\n", - "The following object is masked from 'package:purrr':\n", - "\n", - " set_names\n", - "\n", - "\n", - "The following object is masked from 'package:tidyr':\n", - "\n", - " extract\n", - "\n", - "\n" - ] - } - ], - "source": [ - "try(library(tidyverse), silent=TRUE)\n", - "library(lubridate)\n", - "library(glue)\n", - "library(data.table)\n", - "library(tidyfast)\n", - "library(\"magrittr\")\n", - "setwd(\"/\")\n", - "path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_decoded\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'death.txt'
  2. 'death_cause.txt'
  3. 'gp_clinical.txt'
  4. 'gp_registrations.txt'
  5. 'gp_scripts.txt'
  6. 'hesin.txt'
  7. 'hesin_critical.txt'
  8. 'hesin_delivery.txt'
  9. 'hesin_diag.txt'
  10. 'hesin_maternity.txt'
  11. 'hesin_oper.txt'
  12. 'hesin_psych.txt'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'death.txt'\n", - "\\item 'death\\_cause.txt'\n", - "\\item 'gp\\_clinical.txt'\n", - "\\item 'gp\\_registrations.txt'\n", - "\\item 'gp\\_scripts.txt'\n", - "\\item 'hesin.txt'\n", - "\\item 'hesin\\_critical.txt'\n", - "\\item 'hesin\\_delivery.txt'\n", - "\\item 'hesin\\_diag.txt'\n", - "\\item 'hesin\\_maternity.txt'\n", - "\\item 'hesin\\_oper.txt'\n", - "\\item 'hesin\\_psych.txt'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'death.txt'\n", - "2. 'death_cause.txt'\n", - "3. 'gp_clinical.txt'\n", - "4. 'gp_registrations.txt'\n", - "5. 'gp_scripts.txt'\n", - "6. 'hesin.txt'\n", - "7. 'hesin_critical.txt'\n", - "8. 'hesin_delivery.txt'\n", - "9. 'hesin_diag.txt'\n", - "10. 'hesin_maternity.txt'\n", - "11. 'hesin_oper.txt'\n", - "12. 'hesin_psych.txt'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"death.txt\" \"death_cause.txt\" \"gp_clinical.txt\" \n", - " [4] \"gp_registrations.txt\" \"gp_scripts.txt\" \"hesin.txt\" \n", - " [7] \"hesin_critical.txt\" \"hesin_delivery.txt\" \"hesin_diag.txt\" \n", - "[10] \"hesin_maternity.txt\" \"hesin_oper.txt\" \"hesin_psych.txt\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "list.files(path = \"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load Athena Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message in fread(glue(\"{vocab_dir}/CONCEPT.csv\"), sep = \"\\t\"):\n", - "\"Found and resolved improper quoting out-of-sample. First healed line 8811: <<2614984\t\"y set\" tubing for peritoneal dialysis\tDevice\tHCPCS\tHCPCS\tS\tA4719\t20020101\t20991231\t>>. If the fields are not quoted (e.g. field separator does not appear within any field), try quote=\"\" to avoid this warning.\"\n" - ] - } - ], - "source": [ - "vocab_dir = glue(\"{data_path}/athena_vocabulary_covid\")\n", - "concept =fread(glue(\"{vocab_dir}/CONCEPT.csv\"), sep='\\t')" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'ABMS'
  2. 'ATC'
  3. 'CDM'
  4. 'CMS Place of Service'
  5. 'Concept Class'
  6. 'Condition Status'
  7. 'Condition Type'
  8. 'Cost'
  9. 'Cost Type'
  10. 'Currency'
  11. 'Death Type'
  12. 'Device Type'
  13. 'Domain'
  14. 'Drug Type'
  15. 'Episode'
  16. 'Ethnicity'
  17. 'Gender'
  18. 'HCPCS'
  19. 'HES Specialty'
  20. 'ICD10CM'
  21. 'ICD9CM'
  22. 'ICD9Proc'
  23. 'Korean Revenue Code'
  24. 'LOINC'
  25. 'Meas Type'
  26. 'Medicare Specialty'
  27. 'Metadata'
  28. 'NDC'
  29. 'NUCC'
  30. 'None'
  31. 'Note Type'
  32. 'OMOP Extension'
  33. 'OPCS4'
  34. 'OSM'
  35. 'Obs Period Type'
  36. 'Observation Type'
  37. 'PHDSC'
  38. 'Plan'
  39. 'Plan Stop Reason'
  40. 'Procedure Type'
  41. 'Race'
  42. 'Read'
  43. 'Relationship'
  44. 'Revenue Code'
  45. 'RxNorm'
  46. 'RxNorm Extension'
  47. 'SNOMED'
  48. 'SPL'
  49. 'Sponsor'
  50. 'Type Concept'
  51. 'UB04 Point of Origin'
  52. 'UB04 Pri Typ of Adm'
  53. 'UB04 Pt dis status'
  54. 'UB04 Typ bill'
  55. 'UCUM'
  56. 'US Census'
  57. 'Visit'
  58. 'Visit Type'
  59. 'Vocabulary'
  60. 'dm+d'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'ABMS'\n", - "\\item 'ATC'\n", - "\\item 'CDM'\n", - "\\item 'CMS Place of Service'\n", - "\\item 'Concept Class'\n", - "\\item 'Condition Status'\n", - "\\item 'Condition Type'\n", - "\\item 'Cost'\n", - "\\item 'Cost Type'\n", - "\\item 'Currency'\n", - "\\item 'Death Type'\n", - "\\item 'Device Type'\n", - "\\item 'Domain'\n", - "\\item 'Drug Type'\n", - "\\item 'Episode'\n", - "\\item 'Ethnicity'\n", - "\\item 'Gender'\n", - "\\item 'HCPCS'\n", - "\\item 'HES Specialty'\n", - "\\item 'ICD10CM'\n", - "\\item 'ICD9CM'\n", - "\\item 'ICD9Proc'\n", - "\\item 'Korean Revenue Code'\n", - "\\item 'LOINC'\n", - "\\item 'Meas Type'\n", - "\\item 'Medicare Specialty'\n", - "\\item 'Metadata'\n", - "\\item 'NDC'\n", - "\\item 'NUCC'\n", - "\\item 'None'\n", - "\\item 'Note Type'\n", - "\\item 'OMOP Extension'\n", - "\\item 'OPCS4'\n", - "\\item 'OSM'\n", - "\\item 'Obs Period Type'\n", - "\\item 'Observation Type'\n", - "\\item 'PHDSC'\n", - "\\item 'Plan'\n", - "\\item 'Plan Stop Reason'\n", - "\\item 'Procedure Type'\n", - "\\item 'Race'\n", - "\\item 'Read'\n", - "\\item 'Relationship'\n", - "\\item 'Revenue Code'\n", - "\\item 'RxNorm'\n", - "\\item 'RxNorm Extension'\n", - "\\item 'SNOMED'\n", - "\\item 'SPL'\n", - "\\item 'Sponsor'\n", - "\\item 'Type Concept'\n", - "\\item 'UB04 Point of Origin'\n", - "\\item 'UB04 Pri Typ of Adm'\n", - "\\item 'UB04 Pt dis status'\n", - "\\item 'UB04 Typ bill'\n", - "\\item 'UCUM'\n", - "\\item 'US Census'\n", - "\\item 'Visit'\n", - "\\item 'Visit Type'\n", - "\\item 'Vocabulary'\n", - "\\item 'dm+d'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'ABMS'\n", - "2. 'ATC'\n", - "3. 'CDM'\n", - "4. 'CMS Place of Service'\n", - "5. 'Concept Class'\n", - "6. 'Condition Status'\n", - "7. 'Condition Type'\n", - "8. 'Cost'\n", - "9. 'Cost Type'\n", - "10. 'Currency'\n", - "11. 'Death Type'\n", - "12. 'Device Type'\n", - "13. 'Domain'\n", - "14. 'Drug Type'\n", - "15. 'Episode'\n", - "16. 'Ethnicity'\n", - "17. 'Gender'\n", - "18. 'HCPCS'\n", - "19. 'HES Specialty'\n", - "20. 'ICD10CM'\n", - "21. 'ICD9CM'\n", - "22. 'ICD9Proc'\n", - "23. 'Korean Revenue Code'\n", - "24. 'LOINC'\n", - "25. 'Meas Type'\n", - "26. 'Medicare Specialty'\n", - "27. 'Metadata'\n", - "28. 'NDC'\n", - "29. 'NUCC'\n", - "30. 'None'\n", - "31. 'Note Type'\n", - "32. 'OMOP Extension'\n", - "33. 'OPCS4'\n", - "34. 'OSM'\n", - "35. 'Obs Period Type'\n", - "36. 'Observation Type'\n", - "37. 'PHDSC'\n", - "38. 'Plan'\n", - "39. 'Plan Stop Reason'\n", - "40. 'Procedure Type'\n", - "41. 'Race'\n", - "42. 'Read'\n", - "43. 'Relationship'\n", - "44. 'Revenue Code'\n", - "45. 'RxNorm'\n", - "46. 'RxNorm Extension'\n", - "47. 'SNOMED'\n", - "48. 'SPL'\n", - "49. 'Sponsor'\n", - "50. 'Type Concept'\n", - "51. 'UB04 Point of Origin'\n", - "52. 'UB04 Pri Typ of Adm'\n", - "53. 'UB04 Pt dis status'\n", - "54. 'UB04 Typ bill'\n", - "55. 'UCUM'\n", - "56. 'US Census'\n", - "57. 'Visit'\n", - "58. 'Visit Type'\n", - "59. 'Vocabulary'\n", - "60. 'dm+d'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"ABMS\" \"ATC\" \"CDM\" \n", - " [4] \"CMS Place of Service\" \"Concept Class\" \"Condition Status\" \n", - " [7] \"Condition Type\" \"Cost\" \"Cost Type\" \n", - "[10] \"Currency\" \"Death Type\" \"Device Type\" \n", - "[13] \"Domain\" \"Drug Type\" \"Episode\" \n", - "[16] \"Ethnicity\" \"Gender\" \"HCPCS\" \n", - "[19] \"HES Specialty\" \"ICD10CM\" \"ICD9CM\" \n", - "[22] \"ICD9Proc\" \"Korean Revenue Code\" \"LOINC\" \n", - "[25] \"Meas Type\" \"Medicare Specialty\" \"Metadata\" \n", - "[28] \"NDC\" \"NUCC\" \"None\" \n", - "[31] \"Note Type\" \"OMOP Extension\" \"OPCS4\" \n", - "[34] \"OSM\" \"Obs Period Type\" \"Observation Type\" \n", - "[37] \"PHDSC\" \"Plan\" \"Plan Stop Reason\" \n", - "[40] \"Procedure Type\" \"Race\" \"Read\" \n", - "[43] \"Relationship\" \"Revenue Code\" \"RxNorm\" \n", - "[46] \"RxNorm Extension\" \"SNOMED\" \"SPL\" \n", - "[49] \"Sponsor\" \"Type Concept\" \"UB04 Point of Origin\"\n", - "[52] \"UB04 Pri Typ of Adm\" \"UB04 Pt dis status\" \"UB04 Typ bill\" \n", - "[55] \"UCUM\" \"US Census\" \"Visit\" \n", - "[58] \"Visit Type\" \"Vocabulary\" \"dm+d\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique(concept$vocabulary_id)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "relationship = fread(glue(\"{vocab_dir}/RELATIONSHIP.csv\"), sep='\\t')" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "vocabulary = fread(glue(\"{vocab_dir}/VOCABULARY.csv\"), sep='\\t')" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "concept_relationship = fread(glue(\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\"), sep='\\t')" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "## Diagnoses" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Hospital Episode Statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "hesin = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/hesin.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "hesin_diag = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/hesin_diag.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "hesin_critical = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/hesin_critical.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "hesin_psych = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/hesin_psych.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "hesin_delivery = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/hesin_delivery.txt\")\n", - "hesin_maternity = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/hesin_maternity.txt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Diagnoses - ICD10" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "## icd9 to icd10 mapping\n", - "icd9to10_df = fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/codings/coding1836.tsv\")\n", - "icd9to10_mapping = split(icd9to10_df$meaning, icd9to10_df$coding)\n", - "hesin_diag_icd9 = hesin_diag %>% filter(diag_icd9!=\"\") %>% rowwise() %>% mutate(diag_icd10 = list(icd9to10_mapping[[diag_icd9]])) %>% drop_na(diag_icd10)\n", - "hesin_diag = rbind(hesin_diag %>% filter(diag_icd9==\"\") %>% mutate(origin=\"hes_icd10\"), hesin_diag_icd9 %>% mutate(origin=\"hes_icd9\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "hes_join = hesin[hesin_diag, on=c(\"eid\", \"ins_index\")]\n", - "hes_join = hes_join[, c(\"eid\", \"origin\",\"ins_index\", \"arr_index\", \"level\", \"epistart\", \"diag_icd10\")][order(eid, ins_index, arr_index),]" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "hes_join_date = hes_join %>% rename(date=\"epistart\") %>% mutate(date = ymd(as.Date(fast_strptime(date, \"%d/%m/%Y\"))))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "hes_diagnoses = hes_join_date %>% drop_na(date) %>% rename(code = \"diag_icd10\") %>% mutate(instance=ins_index) %>% group_by(eid) %>% mutate(n = arr_index)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "hes_diagnoses = hes_diagnoses %>% mutate(meaning=str_sub(code, 1, 3)) %>% select(c(eid, origin, instance, n, level, code, meaning, date))" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "13502606" - ], - "text/latex": [ - "13502606" - ], - "text/markdown": [ - "13502606" - ], - "text/plain": [ - "[1] 13502606" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A grouped_df: 6 × 8
eidorigininstancenlevelcodemeaningdate
<int><chr><int><int><int><list><chr><date>
1003884hes_icd105201E854E852020-09-30
1003884hes_icd105212N084N082020-09-30
1003884hes_icd105222E854E852020-09-30
1003884hes_icd105232K778K772020-09-30
1003884hes_icd105242E854E852020-09-30
1003884hes_icd105252G998G992020-09-30
\n" - ], - "text/latex": [ - "A grouped\\_df: 6 × 8\n", - "\\begin{tabular}{llllllll}\n", - " eid & origin & instance & n & level & code & meaning & date\\\\\n", - " & & & & & & & \\\\\n", - "\\hline\n", - "\t 1003884 & hes\\_icd10 & 52 & 0 & 1 & E854 & E85 & 2020-09-30\\\\\n", - "\t 1003884 & hes\\_icd10 & 52 & 1 & 2 & N084 & N08 & 2020-09-30\\\\\n", - "\t 1003884 & hes\\_icd10 & 52 & 2 & 2 & E854 & E85 & 2020-09-30\\\\\n", - "\t 1003884 & hes\\_icd10 & 52 & 3 & 2 & K778 & K77 & 2020-09-30\\\\\n", - "\t 1003884 & hes\\_icd10 & 52 & 4 & 2 & E854 & E85 & 2020-09-30\\\\\n", - "\t 1003884 & hes\\_icd10 & 52 & 5 & 2 & G998 & G99 & 2020-09-30\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A grouped_df: 6 × 8\n", - "\n", - "| eid <int> | origin <chr> | instance <int> | n <int> | level <int> | code <list> | meaning <chr> | date <date> |\n", - "|---|---|---|---|---|---|---|---|\n", - "| 1003884 | hes_icd10 | 52 | 0 | 1 | E854 | E85 | 2020-09-30 |\n", - "| 1003884 | hes_icd10 | 52 | 1 | 2 | N084 | N08 | 2020-09-30 |\n", - "| 1003884 | hes_icd10 | 52 | 2 | 2 | E854 | E85 | 2020-09-30 |\n", - "| 1003884 | hes_icd10 | 52 | 3 | 2 | K778 | K77 | 2020-09-30 |\n", - "| 1003884 | hes_icd10 | 52 | 4 | 2 | E854 | E85 | 2020-09-30 |\n", - "| 1003884 | hes_icd10 | 52 | 5 | 2 | G998 | G99 | 2020-09-30 |\n", - "\n" - ], - "text/plain": [ - " eid origin instance n level code meaning date \n", - "1 1003884 hes_icd10 52 0 1 E854 E85 2020-09-30\n", - "2 1003884 hes_icd10 52 1 2 N084 N08 2020-09-30\n", - "3 1003884 hes_icd10 52 2 2 E854 E85 2020-09-30\n", - "4 1003884 hes_icd10 52 3 2 K778 K77 2020-09-30\n", - "5 1003884 hes_icd10 52 4 2 E854 E85 2020-09-30\n", - "6 1003884 hes_icd10 52 5 2 G998 G99 2020-09-30" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "nrow(hes_diagnoses)\n", - "head(hes_diagnoses %>% arrange(desc(date)))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(hes_diagnoses, glue(\"{path}/codes_hes_diagnoses_210120.feather\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Procedures - Snomed CT" - ] - }, - { - "cell_type": "code", - "execution_count": 230, - "metadata": {}, - "outputs": [], - "source": [ - "# just do opcs4 for now..., no good opcs3 mapping available => SnomedCT Mapping probably the most reasonable..." - ] - }, - { - "cell_type": "code", - "execution_count": 231, - "metadata": {}, - "outputs": [], - "source": [ - "hesin_oper = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/hesin_oper.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 232, - "metadata": {}, - "outputs": [], - "source": [ - "hesin_oper[hesin_oper == \"\"] <- NA" - ] - }, - { - "cell_type": "code", - "execution_count": 233, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3dC5xcVZUu8EIeIoiMwoAo6Pi4\nKneUq+CMCujV8d5xvNqdQAiBBPIwvAw44SlIoiFEEgYIEQQcAwwiEEBAXhFieDmoAYRoEDCG\nkIAhD0IlTZ7d6aS79q1zalV1n066cnrvr2vtvfP9fz+6Ok3Xrr3OWV/VqfOoLhgiclbQngBR\nDBgkIgAGiQiAQSICYJCIABgkIgAGiQiAQSICYJCIABgkIgAGiQiAQSICYJCIABgkIgAGiQiA\nQSICYJCIABgkIgAGiQiAQSICYJCIABgkIgAGiQiAQSICYJCIABgkIgAGiQiAQSICYJCIABgk\nIgAGiQiAQSICYJCIABgkom14/ZKfPra+D7/PIBFtw4rf/ezkgT9Zl/v3GSQC6etzeH/BzeP3\no4e/nPd3GSQC6etzuM/z6HwlvWmdOOiFnPdgkAioL8/h/cl1Hs9eXrntvHTo8nz3YJAIou/P\n4T7P441vG9P29N+MaT/r+/nuwSARRN+fw72ex9C2daedN+Rnxixqfj7XHRgkguj7c7jX87hw\n/l2Xm5Wn3GXM5dfkugODRBh9fg73dB6lX5x/62Zz48wHvlcyiwdvMc+cnOtuDBJh9Pk53NN5\n3HPuMxde2P6bq9rGXNuxalCHaRvYkeduDBK5snwO93Qe458wHeNvXjLWrD5r5IkPln9wFYMU\nNV+Of1o/h3s6j3vGtpkXzigdt8WUFizNfzcGKVS+HP+0fg73dB4dF5/13LSrzXmv9O1uDFLI\n/Dj+afkc7t88SjOOP+bSFR13nnVtm/nPX/ftvjtSkAAbQ/5sT1WoH/80HZtsn8P9m8f0c+Yv\n+N6xc9PvZ/+kb/fdkYIE2BjyZntKDuBrH/8s3TW4+YK/2j2HezeP4qA1xqw/9uj0qWnRPX27\n844UpARgY8iL7anqAXzr446Y19YZ5yxZclnzzPT7vj6HI0Hm8bsTyl9aJ1023Ga57DBBqj6F\nu2wM+XI+mel2AN/2uCPktXXdUcXy13ubH0r+0dfncCDMPJYNvMt0XHVH6/DbLe68wwSp9hTu\nsDHky/lkidoBfIfjn86vra83tyY39wxc5DSMM9A8Zg4YM2p8u7nlexb33WGC1PUUbn8Sli/n\nkyW6DuDbHHcEvbZ2Dr8jvZ042WUUd6h5vHr/MyVj7ptgcdcdJkjdnsLtTwbz4nyyngfwbY47\nQl5bOzaZRwam+7jmDbUexF15Gq7z6Jxdqn7bvmXlKU9bDLHjBKnrKdx+Y8iL88l6HsC3Oe4I\neG2t7Ci7ZtBz5e+fO9VyEHeVaRi3ecxquqqapP8cNOgBmyF2hCD1fAq32Rjy5Xwys40D+Dbc\nX1srO8oevG7AzW/MP+X3FgNA9xuW7OdRNnfEkGqSNr30ls0InTtCkLZ6CrfYGPLlfLLVr2NO\nJHB+ba3tKHtyTNPQx21GAO83tJ5H2ZpBL1WStMR2HrN2hCBt/RTe940hP84nK00f0PQbxwP4\noNfWbjvKNnbazcSA9xs6zGPUqwuGXNV+918H3G05wNwdIUiIp3A/zie7+6yWNSXjdgAf9Nrq\nuqPMl/2Gneke80mPmgVDhk/tnD7Dcpg18QepY5P7uWCIMRBGP2tM+3/flybZ9gC++2tr5wPJ\nPRx3lAH2G6bzcN1fN3VQW/lmxnSz+YLm2h6Hvg2RRjH2IKU7dV50OwcLMQbGCU+a1WecetKg\np4z9AXz319bfNk1KkuS2owyw37AyD6dpdE4dd9qfy7fPnL95wtT5Q56xGiKNYuxB6nYSlvU5\nWIgxMK44r3TpDFO6Zugm+zHcX1tnTR2cdLDbjjLAfsPKPFymUc7RpmnJE1JxyISpnWaV3RBp\nFCMPUveTsGyfwhFjgLw+6NYLkhk1vWZ1d5frbUR7+b8H5r6YJslpR5njfsPu87CeRpIjM/PC\n5NvTptrtqahFMeYgtQNOwkKMAfRE8ynlzlk4uM3q3i7X21Ssubj85ckVptLBJbsdZYD9hj3m\nYTWNdvOn8eVX9hUDkj3wLfY5qkQx4iAlC9t1pw5iDKhHB148/9lTZ1rd1+l6m4pVQ+T9eNLB\na85eYTUPwH5DwDySVZsOcsZ9FveuaO+KYsRBShe2404dxBgQG5dK5yz+4ZBTH7Mbw+l6m4rS\noJfkuxcHX3yG5b5iwDE5wDxqWXxgeLvN/U2axVoUIw5SZWG77VtCjAFQunVg09ktrqM4XW8j\nJtfez8xpsj3mgjgm5z6PWhbbT7zVchLVLCZRjDhIlYXtuG8JMYa7/zpv6aLTpiXfWZ/DknC5\n3kY8M1BmsMb29Qix3xAyj1oWHx/wrN0I1SwmUYw5SLKwnfYtIcZwtvTYteVn3lHl7xZan8OS\ncrjepurCsyq73qda9W/lWC7iMx7c5pGoZdFcd6flENUslqMYc5BqC9vhJCynMVCfOfTYSeUv\ni49LvrU+h6XK9nqbqpUnTNqcjmN1bzmWm3I7Juc2j1R11RqrExoStSxed2fUQaoubK0xUJ85\ntOTh8pf5o43DKq+xvd6mZsFxF6y1vrMcy005HpNzmkcK0B7VLJZi3bRrm5feOC1sxBjO5zdX\ntoUSc84rvyGw2+FcORBb+d7yeptuXj916AN2x7G6HcsFcJlHBTKLkQbp5qmVW5eF7ToG5Pzm\nrm2hmVOs31h3HYi13FexorwBtema4RfOT/+1+e7hgy6Z8Tebgbody9WcR+cPK6eGALMYaZCe\n+I5847DSXceAfC5C17bQ/VNtc9R1INZyX0Vp7Lh2c8nFD583YLb84KWH7rLeKrI/hoqaR9sr\n4yXIuCxGGqQVR9W2H6xXuusY7uc3t3ffFpo9xnZHb7cDsZb7KpYMH7f0rJLpvK7Z5vzonuyP\n5YLmMfn7P699j8pihEFqm3jxXS8MXag+hvP5zclJLF3bQkusD4ACDsQuGT72R+Wb0uThWyxH\n6Oh2wrr9sVz3eSSWjhrm+kZxqyx6FCTUzuJ1c2ZMPrm5+eTJtz9t/bYWMYbz5yJUD5zLttBf\nLYao7GYAHIhdMvz4ZO/j0qYFVneXz/qpcDiW6zqPsrbr28zykWdvtJ5CaqssehQk6AfUXzzj\nD7f+4A6tMTCfi1A7icV+W0h2MwAOxC4ZfkH5rcCigaut7t39s7kdjqE6z6PsjZEXJEk6xyFJ\n28qiR0FKuH9A/ZZ7xk0tvw28dZrmGKDPRaidxGK7LdTtfG+HA7Gbrhp86YZyB5/x26dO/aXV\nCN0v6VpifQzVfR6p5c5J2lYWfQkS4jPu03HGj39g/DHzzO/HaI4B+syh6oFzy22h9u67GRwO\nxF56yYOjvt1S7uBjb3vRahrdL+lyOMnJcR6vT1xv2pL9CpIkhzOUtpFFX4KE+Iz7xC8uLpnr\nywWuaLY/PuA+Buozh+TAud220JqLu+9msD4Q27bmrJJpOW1MuYOHPWk3jcwlXbYnObnOw6wc\nfeb6SROSJC0dcn6rsX0P0UsWfQmS+2fcJ084xpz1ZJqBJevv1RoD+ZlDcuDcblso2VcB2M0w\nefxV5a9pB1tdyIG6pMt1HmmS5h2fJun2Y8+2WaZpe/SSRV+C5P4Z98kTjjHjbkgyYEb8xWoS\niDGgnznkchJLuq/CfTfD0pEnlN9oJR1s9/qMuqTLdR5lS6pJeuihh2zun7bHK9vOojdBcv+M\n+7TM3zWdWs7AsmMt30kCxsB+5pDLSSyyr8L1fG95L9Bid3077pIu13m0XT7mkoHlJI1bWzzZ\ncnu7W5J6ZtGDICE+4z61JCnz+qbrly4YY/vZ8o5jtIM+c0h2GyYcznGSfRXO53u77SvGXdLl\nOI8rJ3eY17515p9HHX205Ta7tMcr28qiB0FCfMa9qT7hrDcPHNc0xOqF232M5H014jOHqrsN\nK+xPbKvsq3A/39uxgxGXhQHmcdSc8pdlQ8584wnbt67V9li0jSx6ECTEZ9yb2hPOerN5mfXF\nXo5jJO+rEZ85VN1t6ApxPVbKaV8xbhpu8zjpyuTrL44Za/0eq9YeG7bOogdBAu0rrj7huJxl\n5DhG+r4asIOquttwg+X9iy/LM5HDvoraGCmrfcW1v4PnMI1uf0vPeh7i102Plr8+dPfD1iPU\naw/1IMH2Fbs/4biPkb6vdtpBdfPKtpWuuw3/a0DTWVKA7b6K7mNY6/o7ePa7TLr9LT0Hm64Z\nfsF8c03zHZtXnLzYfph67aEcJMy+4vTcEccnHMQYlffVTjuoZow+71bH3YbXn7dy6YjqIUvL\nfRWZMRKdv+37RLr9HTzrXSbdxrCdRtkPJ//q3KMeK80YOGig7f6fJItX1WkP5SBh9hVXzh1x\ne8JBjFF9X+2wg2r94GNWGqddj68OLW8RXjzv+epRS5t9FT3HMJ1TJ/T9fWvt7+DZTqPnGHbT\nMG0rzk6uYRow16z8jdXuz0SaxUG9t4dukJz3FSfXHtfOHbF8wkGNkai+r7beQbV4+tjR5SQ5\n7Hp84Fxjlh532ohBVufRbHuMcgPb7C6Qv4Pn9BkN3cewnMak85Kzj0tTHK5hkiw2n9NreygG\nCfD59KWxc7ufO2L1hIMZY5wkyf3zNNalSbLf9fjnx0zpjBkdpWm2B6W3HsOygWt/B896Htkx\nbKfx2olDK9cw2V9YUMvist7aQy9IkM+nbzNt7a7njiDGWDK8miSnz9PofOA/Hi4lSXpr3vZ/\nuY5kk6zFoW+yY9g2sNPfwdt6DOtpyDVMSwZYX8OUI4t6QQKdzHjJuHbXc0cQY3QlyeFUhPbx\nF143cGo5SccPn2U5j9qHcpgFg21fkWpDVMawauB0DIe/g7f1GHY52vKL86a8LNcwWZ/PYHJk\nUS9IoJMZXxtWS4HqGF1JsnlfXTntfPplJTOlaWqp7Q7r9ze1D+V447RfuQ4hY9xu0cCVMez/\nDt42xrCZhtl84ffvO3fAI+W1M+RWu4MJebOo+B4JdDKjh0nqu8pp58c+b35+1hPNl732B+uB\nKh/KUbr0zMHWf/VHPtejNsZGiwaWMWz/Dt62xrCZhrl1QsmUftL8nMPayZlFxSChTmaspMDt\nigW3MSrnmLon6dLi705eZ34wtMn+JNPKh3KUfvfgSschIGNY/h083Bhjkk3k0g9PcXiey5lF\nzd3fqJMZkxS4fmaKyxjVc0ydkpSeV2y+/Ygx/7HEch9mmmfHD8hJxnjK8TN2fBmj9Pu7vnVZ\n8s2rTeuSJNn9GaScWdQIUuUNAfBkxteGWf4NO8wYtXNMlwy3HaN6XvGQO0zLaMvDHZJnp03U\nyhgPOW3l+jLGpgn/ftmD6bkILw5LnqpX2DXbefmyqBGkyhsCgzjoItaojtF1jql1NdXzimc0\nTxplu5OgmmeXJMkYTmH0ZYypPyqVvzTdtmbxaS7b/b/Jl0WVTbtaktw/xFxf23S3c0xTtfOK\nH59mfTFrLc8ObxirYyx0eM/pyRjFozaZpZc0NzU1HWN7TKPy3ve65jxZ1HmPtKSaJPuDLuUN\n4G77Ve1OZuw6YGI/hlnSfK3b5e0JxKnrXXm2f8NYG8PhPacnY7QMvOnaoy9/6bqTX7NdptX3\nvvcMzpFFjSBV3xCkLE9mTDaAuxay5cmMtQMm9mOUTZ7geHm7QVwrY1w/riK6MWaNuWSBMU+d\nYz1A7b3vphxZbHCQ0pM7axcaOkg3gFvlg9ktTx7p/kHoDiegLGp+1eXydsS1MpUx3PIc0xiV\nY6iJt057ynKMPl5f2dggpSeIIq5llQ3gwclpEdbnsHT/IHS7HLXdknyY5cSpLpe3A66VkTGc\nPq4ipjGqx1DNC3ePsl2m5f7o03vfBr8iJSeIIt4QVDeAzzCWGUg367qOuVi+Hr04ZsC05eav\nA9+0uK/MA3CtTNcY9nmOaYyuY6i3XGp78m/SH33avmz4e6RLxrUj3hB0bQDbZaCyWVfdvWq9\nXVd6+twB01aMv97qzgnAtTIco6euY6jW0v7oy/Zlw4OUnELg+IYg/aMEiXQD2Opkxur5J5Ik\nqzHkw+demHDU+YOtX1sB18pwjJ66HUO1VemPPmxfNn6vXTlJm5zeEMgfJahuAFudzGiqm3WV\nYy42Y3R9+Nziy+z/FB7gWhmO0VP3Y6i2Kv2Rf/uyoUGqPIcnr0l2bwgyF4U7bACn18/Ji5HN\ns1a67xHw4XPpziXHa2UAYyCu2fFljMo+v3zHUOuP0cezKhoZpOpzeJIkm/v3uCjceh5y/Zz1\n+SeVC8tdP3yutnPJ5VoZxBiIa3Z8GaO6zy/XMdTtjNG3/mhkkGrP4bYniCIuCjdd189Zn0qT\nngbsfmJQdeeSy1njgDEA1+z4MkbXPr88x1C3N0af+qORQep6Drc+QRRxYXnX9XPW53snq9r9\n4Htt55JD9wHGAFyz48sY4P2Gfdnsb2SQACd3Ii5lRVw/l6xq5xODunYu2V4rAxkj53UCIYyh\nuN+wkUFCnEAFSZLb9XOpJElOB/BNZueS5bUykDFyXicQxBh6+w0butfO/eROzIXlTtfPiSRJ\nDgffU247l2BjeDINyBjunxdkOUZjjyO5PocnEBeWu1w/V+V0Yblw2rmEG8OTaUDGcNrn5zBG\ngw/Iuj6HJxAXljtcP1djf2F5F/udS9AxPJkGZAzEE5zFGOp/1sUC4sJyBMxl8gSmk6QQg0RU\nj/0+UIcxGCSKjvU+UIcxGCQiAAaJCIBBIgJgkIgAGCQiAAaJCKDBQVrtcjahKL61/d/ZjlLR\n/WBqR9Hpg/lSm4v2lwVWbSq2Oo/RVtzkPMbGovtO5/VFtxMgE2uLjn/cpGxNsc93YZBsMUhZ\nDFIjMUgZDFIWg5QXg5TBIGUxSHkxSBkMUhaDlBeDlMEgZTFIeTFIGQxSFoOUF4OUwSBlMUh5\nMUgZDFIWg5QXg5TBIGUxSHkxSBkMUhaDlBeDlMEgZTFIeTFIGQxSFoOUF4OUwSBlMUh5MUgZ\nDFIWg5QXg5TBIGUxSHkxSBkMUhaDlBeDlMEgZTFIeTFIGQxSFoOUF4OUwSBlMUh5MUgZDFIW\ng5QXg5TBIGUxSHkxSBkMUhaDlBeDlMEgZe2AQVo/dcTQiSv7fDcGKYNBytoBgzTp/MXLLj+9\nz1NmkDIYpKwdL0jF5kXlsgfO6+v9GKQMBilrxwvSnEGl8tcz7qz+e8vmfFatyvmLdRRbnIdo\nL65xHmNTca3zGK3Fdc5jbCyudx5jQ3Gj8xjri63OY6wttjmP8VZxE2CMvL/pGqRZI5Ov46ZX\n/72mSLTjaXEO0qhskNo2pP74HKEd5gdfSkHMA6HS8F1b1ZZBerqyaXdXjx8zSHiI7gOIqBSI\nnomwDNLq5oXlt3UDXmSQ+p12x4iISoEABclMOXPx0ovOLjFI/U67Y0REpUCggrRx2vBhk1t6\n/pRBwtPuGBFRKRCoIG0bg4Sn3THCl1IQ80BgkEKD6D6AiEqBYJBCo90xIqJSIBik0Gh3jPCl\nFMQ8EBik0CC6D8CXUhDzQGCQQoPoPoCISoFgkEKj3TEiolIgGKTQaHeMiKgUCAYpNNodIyIq\nBYJBCo12x4iISoFgkEKj3TEiolIgGKTQaHeMiKgUCAYpNNodI3wpBTEPBAYpNIjuA4ioFAgG\nKTTaHSN8KQUxDwQGKTSI7gOIqBQIBik02h0jfCkFMQ8EBqmREJ3jCS6OLAYpNNodIyIqBYJB\nCo12x4iISoFgkEKj3TEiolIgGKRG0l7bQFwcWQxSaLQ7RkRUCgSDFBrtjhERlQLBIIVGu2NE\nRKVAMEih0e4Y4UspiHkgMEihQXQfQESlQDBIodHuGBFRKRAMUmi0O0ZEVAoEgxQa7Y4REZUC\nwSCFRrtjRESlQDBIodHuGBFRKRAMUmi0O0ZEVAoEgxQa7Y4REZUCwSCFRrtjRESlQDBIodHu\nGBFRKRAMUmi0O0ZEVAoEgxQa7Y4REZUCwSCFRrtjRESlQDBIodHuGOFLKYh5IDBIoUF0H4Av\npSDmgcAgNRKiczzBxZHFIIVGu2OEL6Ug5oHAIIUG0X0AEZUCwSA1kvbaBuLiyGKQQqPdMSKi\nUiAYpNBod4yIqBQIBik02h0jIioFgkFqJO21DcTFkcUghUa7Y0REpUAwSKHR7hgRUSkQDFJo\ntDtGRFQKBIMUGu2OERGVAsEghUa7Y0REpUAwSKHR7hjhSymIeSAwSKFBdB+AL6Ug5oHAIIUG\n0X0AvpSCmAcCgxQaRPcBRFQKBIMUGu2OERGVAsEgNZL22gbi4shikBpJe20DcXFkMUih0e4Y\nEVEpEAxSaLQ7RvhSCmIeCAxSaBDdBxBRKRAMUmi0O0ZEVAoEgxQa7Y4REZUC0U9BatuQYpCy\ntNc2EBdHVqXhW9FB2rwpxSDhaXeMiKgUiErDt6ODJBgkPO2OEb6UgpgHQs/WZ5B8h+g+gIhK\ngWCQQqPdMSKiUiAYpEbSXttAXBxZDFJotDtG+FIKYh4IDFJoEN0HEFEpEAxSaLQ7RvhSCmIe\nCAxSaBDdBxBRKRAMUmi0O0ZEVAoEgxQa7Y4REZUCwSCFRrtjRESlQDBIodHuGOFLKYh5IDBI\noUF0H4AvpSDmgcAghQbRfQARlQLBIIVGu2NERKVAMEih0e4YEVEpEAxSaLQ7RkRUCgSDFBrt\njhERlQLBIIVGu2OEL6Ug5oHAIIUG0X0AEZUCwSCFRrtjhC+lIOaBwCCFBtF9AL6UgpgHAoPU\nSIjO8QQXRxaD1EjaaxuIiyOLQQqNdseIiEqBYJBCo90xwpdSEPNAYJBCg+g+gIhKgWCQQqPd\nMSKiUiAYpNBod4yIqBQIBik02h0jIioFgkEKjXbHiIhKgWCQQqPdMSKiUiAYpNBod4yIqBQI\nBik02h0jfCkFMQ8EBik0iO4DiKgUCAYpNNodI3wpBTEPBAYpNIjuA4ioFAgGKTTaHSMiKgWC\nQQqNdscIX0pBzAOBQQoNovsAIioFgkEKjXbHCF9KQcwDgUEKDaL7AHwpBTEPBAYpNIjuA4io\nFAgGqZG01zYQF0cWgxQa7Y4REZUCwSCFRrtjhC+lIOaBwCCFBtF9AL6UgpgHAoMUGkT3AfhS\nCmIeCAxSaBDdBxBRKRAMUmi0O0ZEVAoEgxQa7Y4REZUCwSCFRrtjRESlQDBIodHuGBFRKRAM\nUmi0O0b4UgpiHggMUmgQ3QcQUSkQDFJotDtGRFQKBIMUGu2OERGVAsEghUa7Y0REpUAwSKHR\n7hjhSymIeSAwSKFBdB+AL6Ug5oHAIIUG0X0AEZUCwSCFRrtjRESlQDBIodHuGBFRKRAMUmi0\nO0b4UgpiHggMUmgQ3QcQUSkQDFJotDtGRFQKhG2QVl9+wrEXLDDmO01lg41ZP3XE0IkrGaT+\np90xwpdSEPNAsA3SWecvWn7FsDYz6sFisbjamEnnL152+emdDFK/Q3QfQESlQFgGad3kJca8\n2fSyOebZ9N/F5kXlV6WB8xikurTXNhAXR5ZlkFLzB7Rsbrp67LcmLzVzBpXKPzjjTgap32l3\njIioFAiHIK0bc5NZc+KVCxZcdOKGWSOTn4ybXv1/G9el5iIWN2Vod4zwpRTEPBAqDb/eIkiv\nn3JdqfJd6+DZs0Zlg7SmmGKQ8BDdBxBRKRCVhm/pe5DmDX2w9v2YGU9XNu3uqv6kVMFNuyzt\ntQ3ExZElHd/nIL10fLrD77UfbzGmbfDjq5sXGrN2wIs9fotBytJe20BcHFk9A5IzSO0n3568\nkrWtGzptxdLJozaZKWcuXnrR2aUev8YgZWmvbSAujizLIM1rSs00i8YPOWHSG8ZsnDZ82OSW\nnr/GIOFpd4yIqBQIyyDlxCDhaXeMiKgUCAYpNNodIyIqBYJBCo12x4iISoFgkBpJe20DcXFk\nMUih0e4YEVEpEAxSaLQ7RkRUCgSDFBrtjhERlQLBIIVGu2OEL6Ug5oHAIIUG0X0AEZUCwSA1\nkvbaBuLiyGKQQqPdMSKiUiAYpNBod4yIqBQIBik02h0jIioFgkEKjXbHiIhKgWCQQqPdMSKi\nUiAYpNBod4yIqBQIBik02h0jIioFgkEKjXbHiIhKgWCQQqPdMcKXUhDzQGCQQoPoPgBfSkHM\nA4FBCg2i+wB8KQUxDwQGKTSI7gPwpRTEPBAYpNAgug8golIgGKTQaHeMiKgUCAYpNNodIyIq\nBYJBCo12x4iISoFgkEKj3TEiolIgGKTQaHeM8KUUxDwQGKTQILoPIKJSIBik0Gh3jIioFAgG\nKTTaHSMiKgWCQQqNdseIiEqBYJBCo90xwpdSEPNAYJBCg+g+AF9KQcwDgUFqJETneIKLI4tB\nCo12x4iISoFgkEKj3THCl1IQ80BgkBoJ0Tme4OLIYpBCo90xIqJSIBik0Gh3jIioFAgGKTTa\nHSMiKgWCQQqNdseIiEqBYJBCo90xIqJSIBik0Gh3jIioFAgGKTTaHSMiKgWCQQqNdscIX0pB\nzAOBQQoNovsAIioFgkEKjXbHiIhKgWCQGkl7bQNxcWQxSI2kvbaBuDiyGKTQaHeMiKgUCAap\nkbTXNhAXRxaDFBrtjhERlQLBIIVGu2NERKVAMEih0e4YEVEpEAxSaLQ7RkRUCgSDFBrtjhER\nlQLBIDWS9toG4uLIYpBCo90xIqJSIBik0Gh3jIioFAgGKTTaHSMiKgWCQQqNdseIiEqBYJBC\no90xIqJSIBik0Gh3jIioFAgGqZG01zYQF0cWgxQa7Y4RvpSCmAcCgxQaRPcBRFQKRD8FaV1L\nai5icVOGdseIiEqBqDT8GnSQBF+R8LQ7RkRUCkTP1meQfKfdMSKiUiAYpNBod4zwpRTEPBAY\npNAgug8golIgGKTQaHeMiKgUCAapkbTXNhAXRxaDFBrtjhG+lIKYBwKD1EiIzvEEF0cWg9RI\n2msbiIsji0EKjXbHiIhKgWCQQqPdMSKiUiAYpNBod4yIqBQIBik02h0jIioFgkEKjXbHiIhK\ngWCQQqPdMSKiUiAYpEbSXttAXBxZDFIjaa9tIC6OLAYpNNodIyIqBYJBCo12x4iISoGoH6SN\ny41pvemKRQwShvbaBuLiyFbak4cAABzHSURBVKobpPn7TTFbPlso7P1HBskb2h0jIioFom6Q\njv7UK+aWwnWvHH4Mg+QN7Y4REZUCUTdI+91mzFGfNOa2gxgkb2h3jIioFIi6QdrtcdPx7u8a\nM3s3Bskb2h0jIioFom6QDrrBzC48bsyNBzBI3tDuGOFLKYh5INQN0uj3XvDBj3SYlYfwPZI/\nEN0H4EspiHkg1A3S8s8X9n3KmCF7P88geQPRfQARlQJRN0jGrN1c/vLsG5Y5YpD6gXbHiIhK\ngdhOkBwxSHjaHSMiKgWibpBWjnjf2wopBskb2h0jfCkFMQ+EukEavMtXR4xOMUjeQHQfQESl\nQNQN0j73WQaIQeo/2h0jfCkFMQ+EukHa400GyTuI7gPwpRTEPBDqBumLTzBI3kF0H4AvpSDm\ngVA3SM/98xwGCQnROZ7g4siqG6QjDirs8cEUgwShvbaBuDiy6gbpi1+tYpC8od0xIqJSIOoG\nyRmDhKfdMSKiUiC2E6RVM6ffMGsdg+QR7Y4REZUCUTdInefsmpzWsOdlDJI/tDtG+FIKYh4I\ndYN0WeGoGx+a+dOvFW5mkLyB6D6AiEqBqBukg8+u3J5yKIPkDe2OEb6UgpgHQt0gvf2xyu2v\n3sEgeQPRfQC+lIKYB0LdIO35YOX2vncySN5AdB9ARKVA1A3SkV9pT27a/vXLDJI3tDtGRFQK\nRN0g/WqnD5w26eKT3/e2Rxgkb2h3jIioFIi6QTL3fiLZ/f2pX1nmiEHqB9odIyIqBaJ+kIxZ\n9gf7T2xgkPqDdseIiEqB2F6Q3DBIWdprG4iLI6v3IH18svl4DYPkDe2OEb6UgpgHQu9B+tw0\n87kaBskbiO4D8KUUxDwQeg8SAoOEh+g+gIhKgagbpMP+Urm9+2AGyRvaHSMiKgWibpAKz6Y3\nWybyr1H4Q7tjhC+lIOaBUCdIhS48adUfiO4DiKgUiDpBmndVYUD66ZAn/eB1Bskb2h0jIioF\nok6QjPnay5Xb9S8zSN7Q7hgRUSkQdYNU9eh7GCRvaHeM8KUUxDwQ6gdp5rAvHnHEEZ/fa18G\nyRuI7gOIqBSIukG6vbDLgYX37V74iu1ZqwwSnnbHCF9KQcwDoW6QDvu3dWbnF7Zc/WXbzxFi\nkPAQ3QcQUSkQdYO010xjdv6zMWeeziB5Q7tjRESlQNQN0u4PG/OuJ4357fsYJG9od4yIqBSI\nukH6zDHt5h/HGXP/ngySN7Q7RkRUCkTdIN1S+Kr5/s4nT3z/4QySN7Q7RkRUCkTdIJnbp5iN\n/7dQOOhZBskb2h0jIioFom6QOtKvC/+y2TJHDFI/0O4YEVEpEHWDdMDZf+otIt9pKhtszPqp\nI4ZOXNl1yyD1N+2OERGVAlE3SJ/fqfCPly7ZZpBGPVgsFlcbM+n8xcsuP72zdssg1aO9toG4\nOLLqBsn87fJ/Kuz05RvXbh2kYypvm4rNi8qvRgPnVW8ZpH6n3TEiolIg6gep7NX/+Gxh92N7\n/nRz09VjvzV5qZkzqFT+1xl3Vm+r/79UwSDhaXeMiKgUCOn43oNU9ssPb/XTNSdeuWDBRSdu\nmDUy+de46dXb2v8vpuYiFjdlaHeMiKgUiErDt/QapI4nTn9f4T0nbyNexrQOnj1rlARpVDZI\nG9elGCQ87Y4RvpSCmAdCpeHXbztIW2afsl9hjyH397b7e8yMpyubdHdVb3v8Ajft8BDdBxBR\nKRA9s5EJ0nsKu3z9lg3bitBrP95iTNvgx1c3LzRm7YAXq7cMUr/T7hgRUSkQdYN05LXFXl6L\n1g2dtmLp5FGbzJQzFy+96OxS7ZZBqkd7bQNxcWTVDdIXer+gb9H4ISdMeqP8Zmja8GGTW7pu\nGaT+pt0xIqJSIOoG6cCpvQYpHwYJT7tjRESlQNQN0v0H32t9mh2D1E+0O0b4UgpiHgh1g/TF\nTxV2e98HEwySNxDdB+BLKYh5INQN0hH/8lXBIHkD0X0AvpSCmAdC3SA5Y5DwEN0H4EspiHkg\nbCdIbX/4ZdFsYZBAEJ3jCS6OrPpBumKvQuEpc+FI2ygxSHjaHSMiKgWibpCmF5r/sxykm3e5\njEHyhnbHiIhKgagbpENOM23lIJnvfYxB8oZ2x4iISoGoG6TdH6kE6de7Mkje0O4Y4UspiHkg\n1A3Sfg9WgvSLdzFI3kB0H0BEpUDUDdL/+d+tSZBWf/JfGSRvaHeMiKgUiLpBemLnj44tfGvE\nu3b9HYPkDe2OERGVAlE3SObRzyR/Qfaff2OZIwapH2h3jIioFIj6QTJm5Z/+tNXFEQySJu2O\nERGVAlE/SBuXG9N60xWLGCR/aHeMiKgUiLpBmr/fFLPls4XC3n9kkKKi3XURqhukoz/1irml\ncN0rhx/DIHlDu2NERKVA1A3SfrcZc9QnjbntIAbJG9odIyIqBaJukHZ73HS8+7vGzN6NQYLQ\nXttAXBxZdYN00A1mduFxY248gEHyhnbHiIhKgagbpNHvveCDH+kwKw/heyR/aHeMiKgUiLpB\nWv75wr5PGTNk7+cZJAjttQ3ExZFVN0jGrE0+RejZNyxzxCD1A+2OERGVArGdIP3tlz+9/oEV\ntjlikPqBdseIiEqBqBuklm8kp9oV3jZ0m5//zSCp0O4YEVEpEHWDdEJh0E0PP3zTcTudwiB5\nQ7tjhC+lIOaBUDdIfze2cjt+HwbJG4juA4ioFIi6QXrHfZXbR/ZgkLyh3TEiolIg6gbpSPn0\noJ8cySBBaK9tIC6OrLpBmvvhezYb0zn7Y1ttATJIarQ7RvhSCmIeCL0H6eMf//gnDiy8/UMf\n2bNw4BcYJG8gug/Al1IQ80DoPUhHdPnCoQySNxDdBxBRKRC9BwmBQcLT7hjhSymIeSDUD9Ir\nD9w2cymD5BVE9wFEVApEvSDd/8n0xIYvWH+IEIPUD7Q7RkRUCkSdIE0t7DHsRzdNO36Pt/0X\ng+QP7Y4RvpSCmAdC70Ga97YjlqffLDt81wUMkjcQ3QfgSymIeSD0HqSR714l361696kMkjcQ\n3QcQUSkQvQfpH06ufXvKRxkkb2h3jPClFMQ8EHoP0tsvr3175TsYJG8gug8golIgeg/SO6fU\nvr10LwYJQnttA3FxZPUepE8Nrn3b9L8YJAjttQ3ExZHVe5C+u+uL8t2ct41nkLyh3THCl1IQ\n80DoPUjL937/w8lt5+3v2WdVz19jkNQgug/Al1IQ80DoPUjm0XcV/uHoEc0HFPadY5kjBqkf\nILoPwJdSEPNAqBMk89qY9xcKhQ+dy08R8gmi+wAiKgWiXpDK1i5db50iBqlfaHeMiKgUiO0E\nyRGDhKfdMSKiUiAYpNBod4zwpRTEPBAYpNAgug/Al1IQ80BgkEKD6D4AX0pBzAOBQQoNovsA\nIioFgkEKjXbHCF9KQcwDgUEKDaL7ACIqBYJBCo12xwhfSkHMA4FBCg2i+wAiKgWCQQqNdseI\niEqBYJBCo90xwpdSEPNAYJBCg+g+AF9KQcwDgUEKDaL7AHwpBTEPBAapkRCd4wkujiwGKTTa\nHSN8KQUxDwQGKTSI7gOIqBQIBik02h0jIioFgkEKjXbHiIhKgeinIG3elGKQ8LQ7RkRUCkSl\n4dvRQWrbkGKQ8LQ7RvhSCmIeCJWGb0UHSTBIeIjuA4ioFIierc8g+U67Y0REpUAwSI2kvbaB\nuDiyGKTQaHeMiKgUCAYpNNodIyIqBYJBCo12x4iISoFgkEKj3TEiolIgGKTQaHeMiKgUCAap\nkbTXNhAXRxaDFBrtjhG+lIKYBwKDFBpE9wFEVAoEgxQa7Y4RvpSCmAcCgxQaRPcBRFQKBIPU\nSNprG4iLI4tBCo12x4iISoFgkBpJe20DcXFkMUih0e4Y4UspiHkgMEihQXQfQESlQDBIodHu\nGOFLKYh5IDBIoUF0H4AvpSDmgcAghQbRfQC+lIKYBwKDFBpE9wH4UgpiHggMUmgQ3QcQUSkQ\nDFJotDtGRFQKBIMUGu2OEb6UgpgHAoPUSIjO8QQXRxaDFBrtjhERlQLBIIVGu2NERKVAMEih\n0e4YEVEpEAxSaLQ7RvhSCmIeCAxSaBDdBxBRKRAMUmi0O0ZEVAoEgxQa7Y4REZUCwSA1kvba\nBuLiyGKQGkl7bQNxcWQxSKHR7hgRUSkQDFJotDtGRFQKBIMUGu2OERGVAsEghUa7Y4QvpSDm\ngcAgNRKiczzBxZHFIIVGu2NERKVAMEih0e4Y4UspiHkgMEihQXQfQESlQDBIodHuGBFRKRAM\nUiNpr20gLo4sBik02h0jfCkFMQ8EBik0iO4D8KUUxDwQGKTQILoPIKJSIBik0Gh3jPClFMQ8\nEBik0CC6DyCiUiAYpNBod4zwpRTEPBAYpNAgug/Al1IQ80BgkEKD6D6AiEqBYJBCo90xIqJS\nIBik0Gh3jIioFAgGKTTaHSN8KQUxDwQGKTSI7gOIqBQIBik02h0jIioFgkEKjXbHiIhKgWCQ\nQqPdMSKiUiAYpNBod4yIqBQIBik02h0jIioFgkFqJO21DcTFkcUghUa7Y4QvpSDmgcAghQbR\nfQARlQLBIIVGu2OEL6Ug5oFgGaQ/N6Vmmu8kN4ONWT91xNCJKxmk/ofoPoCISoGwDNLmYtlL\ng5eYUQ+Wv1ltzKTzFy+7/PROBqku7bUNxMWRZRmk1PgZxhzzbPptsXlR+VVp4DwGqd9pd4yI\nqBQIhyA9OXqL2dx09dhvTV5q5gwqlX9yxp0MUr/T7hgRUSkQ9kHqPO0RY9aceOWCBReduGHW\nyORH46ZX/2fbhhSDhKfdMSKiUiAqDd9qEaQnR3bId62DZ88alQ3SmmJqLmJxR0R7bQNxcWRV\nGr7FIkgTa6kxY2Y8Xdm0u6v6ky2bU3xFwtPuGBFRKRCVht/c9yBtSPcsvPbjLeXtuMGPr25e\naMzaAS/2+CUGKUt7bQNxcWT1zEfuIM1rSo4arRs6bcXSyaM2mSlnLl560dklBqnfaXeMiKgU\nCOsgPdG8JblZNH7ICZPeMGbjtOHDJrf0/CUGCU+7Y0REpUBYBykXBglPu2NERKVAMEih0e4Y\nEVEpEAxSaLQ7RvhSCmIeCAxSIyE6xxNcHFkMUmi0O0ZEVAoEgxQa7Y4REZUCwSCFRrtjhC+l\nIOaBwCCFBtF9ABGVAsEghUa7Y0REpUAwSKHR7hgRUSkQDFJotDtG+FIKYh4IDFJoEN0HEFEp\nEAxSaLQ7RkRUCgSDFBrtjhG+lIKYBwKDFBpE9wFEVAoEgxQa7Y4RvpSCmAcCgxQaRPcBRFQK\nBIMUGu2OERGVAsEghUa7Y0REpUAwSKHR7hjhSymIeSAwSKFBdB9ARKVAMEih0e4YEVEpEAxS\nI2mvbSAujiwGqZG01zYQF0cWgxQa7Y4REZUCwSCFRrtjRESlQDBIodHuGOFLKYh5IDBIoUF0\nH0BEpUAwSKHR7hjhSymIeSAwSKFBdB9ARKVAMEih0e4YEVEpEAxSaLQ7RkRUCgSD1EjaaxuI\niyOLQWok7bUNxMWRxSCFRrtjhC+lIOaBwCCFBtF9ABGVAsEghUa7Y0REpUAwSKHR7hgRUSkQ\nDFJotDtGRFQKBIMUGu2OEb6UgpgHAoMUGkT3AURUCgSD1EjaaxuIiyOLQQqNdseIiEqBYJBC\no90xIqJSIBik0Gh3jIioFAgGKTTaHSN8KQUxDwQGKTSI7gPwpRTEPBAYpNAgug8golIgGKTQ\naHeMiKgUCAYpNNodIyIqBYJBCo12xwhfSkHMA4FBCg2i+wAiKgWCQQqNdseIiEqBYJBCo90x\nIqJSIBikRtJe20BcHFkMUmi0O0ZEVAoEgxQa7Y4REZUCwSCFRrtjRESlQDBIodHuGBFRKRAM\nUmi0O0b4UgpiHggMUmgQ3QcQUSkQDFJotDtGRFQKBIMUGu2OERGVAsEghUa7Y0REpUAwSKHR\n7hgRUSkQDFJotDtG+FIKYh4IDFJoEN0HEFEpEP0UpPVvpeYiFjdlaHeMiKgUiErDr0UHqbMj\nxVckPO2OERGVAlFp+E50kASDhKfdMSKiUiB6tj6D5DvtjhG+lIKYBwKDFBpE9wFEVAoEgxQa\n7Y4REZUCwSCFRrtjhC+lIOaBwCCFBtF9ABGVAsEghUa7Y0REpUAwSKHR7hjhSymIeSAwSKFB\ndB9ARKVAMEih0e4YEVEpEAxSaLQ7RvhSCmIeCAxSaBDdBxBRKRAMUmi0O0ZEVAoEgxQa7Y4R\nEZUCwSCFRrtjRESlQDBIodHuGOFLKYh5IDBIoUF0H0BEpUAwSKHR7hjhSymIeSAwSKFBdB9A\nRKVAMEih0e4YEVEpEAxSaLQ7RkRUCgSDFBrtjhERlQLBIIVGu2NERKVAMEih0e4Y4UspiHkg\nMEihQXQfQESlQDBIodHuGBFRKRAMUiNpr20gLo4sBik02h0jfCkFMQ8EBqmREJ3jCS6OLAYp\nNNodI3wpBTEPBAYpNIjuA4ioFAgGKTTaHSMiKgWCQQqNdseIiEqBYJBCo90xIqJSIBikRtJe\n20BcHFkMUmi0O0ZEVAoEgxQa7Y4RvpSCmAcCgxQaRPcBRFQKBIMUGu2OERGVAsEghUa7Y0RE\npUAwSKHR7hjhSymIeSAwSKFBdB9ARKVAMEiNpL22gbg4shik0Gh3jIioFAgGKTTaHSN8KQUx\nDwQGqZEQneMJLo4sBik02h0jIioFgkEKjXbHiIhKgWCQQqPdMSKiUiAYpNBod4yIqBQIBik0\n2h0jIioFgkFqJO21DcTFkcUgNZL22gbi4shikEKj3TEiolIgGKTQaHeMiKgUCAYpNNodIyIq\nBYJBCo12xwhfSkHMA4FBCg2i+wB8KQUxDwQGKTSI7gOIqBQIBik02h0jIioFgkEKjXbHCF9K\nQcwDgUEKDaL7ACIqBYJBaiTttQ3ExZHFIIVGu2NERKVAMEih0e4YEVEpEAxSaLQ7RkRUCkSf\ng7T0nAHJzfqpI4ZOXLn1LYPU37Q7RkRUCkRfg/Tk8GlpkCadv3jZ5ad3bnXLIPU37Y4REZUC\n0dcgPfbmU0mQis2Lyq9CA+f1vGWQ+p12x4iISoHoa5CMSYM0Z1Cp/PWMO3veMkj9TrtjRESl\nQFgGadbI5Ntx03veVn9p7arUXMTipgztjhG+lIKYB0Kl4d/qc5BGSYB63FZ/aV1LPsVizl+s\nN8YqT8ZY7TzEasA8VkPmgRjDeYiWVYB5rILMI+cvrulrkJ6ubMrd1fN2u/fuYfXqvt5ja8W3\ntv8721EqrnUeo6O43nmMzcUNzmNsKrY6j9FW3OQ8xsbiZucx1he3OI+xtthzF1jfrSn2+S45\ng7S6eWF5igNe7Hnb14djkDIYpKyIg9RSnD2gWGwzU85cvPSis0tb3fYRg5TBIGVFHKTRTYn7\nzcZpw4dNbjFb3fYRg5TBIGVFHCQwBimDQcpikPJikDIYpCwGKS8GKYNBymKQ8mKQMhikLAYp\nLwYpg0HKYpDyYpAyGKQsBikvBimDQcpikPJikDIYpCwGKS8GKYNBymKQ8mKQMhikLAYpLwYp\ng0HKYpDyYpAyGKQsBikvBimDQcpikPJikDIYpCwGKS8GKYNBymKQ8mKQMhikLAYpLwYpg0HK\nYpDyYpAyGKQsBikvBimDQcpikPJikDIYpCwGKS8GKYNBymKQ8mKQMhikLAYpLwYpg0HKYpDy\nYpAyGKQsBimvTvciTUc8Y5Q6+vxZtVGP0dnhPITWGA0OElGcGCQiAAaJCIBBIgJgkIgAGCQi\nAAaJCIBBIgJgkIgAGCQiAAaJCIBBIgJgkIgAGCQiAAaJCIBBIgJgkIgAGCQiAAaJCIBBIgJg\nkIgAGCQiAAaJCIBBIgJgkIgAGCQiAAaJCIBBapDD6tnmPbYUHtnOD3p4rh5UHbRtDFKD5AzS\nYYU/JTcd+xe2lJ5oyQ6x1Q96yBmkwwqFwq7/4/tt+eb92LP5fm9HxyA1SN4g7Tc2uZm5T6Hv\nf+Akb5BGvv76whn7jM036Dd+0ud57JAYpAbJG6Th+7aXbwYPLmxJtuRu+sTu+3+7TW7KP+gs\nzPjXgz/wM2PmHbL7oY8Xns88RN4gnZ58nbKf6Shc/w8jzYohB+zxpbmm+lDyz+oDfWWntx/a\niMUTPAapQfIG6ccfuceYlj3uSoO0aKdHOxZ9erLcJMna+bCV5oY9NnQeNGzt84cVXsg8RJ+C\n9KN3G7PzZ+euM58bsqp13H6t8hjVf1YfyHyQr0i5MEgNkjtIl3zTmOv+7ak0SHMLfyy/XzJy\nkwbpR8a8Wnjx94XFxtxoH6TS8x8ZWQ7SD0157OXGdP7dHbWHqvyz+kAMUk4MUoPkDtKyt68w\nn/tFJUilU3c5fMLLRm7SIP3SmBWFZ2/fuVTevLMM0q577rnbbieuKQfpDmNuL6Qmy2NU/1l9\nIAYpJwapQXIHyXzzsvn7tFeCVH5RuPbru9whN2mQ7k37e8bby7/7gmWQTli48LX0bzsmg91X\nqO6+Sx+j9k95IAYpJwapQfIH6d7PjPt3UwnSljfLPzr9S9WbriA9UVhmzM9c3iMlksFeKjxV\n/m6Rkceo/pNB6iMGqUHyB2nLez84T4J044HPda748mi56Rak9n3HtL70BUSQzL8c/rfN1+2x\nTB6j+s9akA4+x/2PyO8IGKQGyR8kc96hRoLUedFBux0w6i256RYk85tP7nnko4WXMg9hF6QV\nx+691+H/beQxqv+sPdCP3nFgfy+aKDBIDZIzSHltaTdmTmFt5mc5g0T9gUFqEGyQSh8d+dby\nr30p+0MGSRGD1CDgV6Tn/+Wd+x69JPszBkkRg9Qg4CBtC4OkiEFqEAYpbgxSg+QN0qZDr647\nzjnfLPX2v/IGyeEhqDcMUoPkDdKZX09vbirca8yy4/fb60vPGHP6Vw5/ovyzJe8vvynafMjU\n3h4ib5CShzgkORFoT2Pmf3Pfvb/429wPQb1hkBokZ5D+ttsfk5s39n9HOUifPfKPC4fuu+GR\nfzZzP1H+4demJ//rnves7+UhcgYpfYgDr3799deXmdKHT1qz8fvvXJX3Iag3DFKD5AzSBYen\nN4PO3v9es/rov5TbvvCHy04yWwqt5savpv+r9P6f9vIQOYOUPsQev0q/f7Mwx5jlhafzPgT1\nhkFqkJxB+swPkq/3fGjD/vdWfjBn5xXXjDStu3UuPfCJr/3TtPJPTjyml4fIGaTkITYVRn/m\nA0cvMOYLI1avv+hDbXkfgnrDIDVIziDtck/5S8sBs40EafXB3zXPfLT1niPMN6/9t+mtHy0H\n4oqP9/IQOYOUPMSb+5/4zNNf3/8ts+wfC4UD5uZ+COoNg9Qg+YK0pvDf5a8jRxoJ0vyPfrtk\nzORDvvjCz79c2mOZOe1KY372nl4eIl+QKg+RWLfnDe2fPunNNVP2XZ73Iag3DFKD5A3Sk8bM\nfu9qCdKj+1R3VL9x0KLNhQ3m3AnG3OwapCer3x484dc7JbsVPnBV3oeg3jBIDZIvSKVku+u4\n3ffZZ5+d9jra/PbdD1X/x9HlXt/9DXNS+eXiio/18hD5gpQ+xAsntRuzfs+fP5ye93rAVXkf\ngnrDIDVIzvdIn55Qfl/0etnf31Bs/fDE5LsN5R/fcWSnMV+/ffPHnjdmuOPOhuQhVu0zfNFf\njz5o45r3ntTSetnuC/M+BPWGQWqQnEE6/wj5prxp92jl8xN+bEzxAy+Xf/TSZ//nhPIryoGO\nu7/Th/jTV/f+++bF5Zem/7fv3x3xuMn7ENQbBqlBcgbptd3mbWege10PyLo8BPWGQWqQnEEy\nZ36j/jibP+1+ipD9Q1BvGCTPbDr0x3X//3nfcD6jtAEPseNhkIgAGCQiAAaJCIBBIgJgkIgA\nGCQiAAaJCIBBIgJgkIgAGCQiAAaJCIBBIgJgkIgAGCQiAAaJCIBBIgJgkIgA/j8TnnalGdps\njwAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "library(visdat)\n", - "df = hesin_oper %>% sample_n(1000)\n", - "vis_miss(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 234, - "metadata": {}, - "outputs": [], - "source": [ - "hesin_oper_pre = hesin_oper %>% rename(date=\"opdate\", code=\"oper4\") %>% \n", - " mutate(date = ymd(as.Date(fast_strptime(date, \"%d/%m/%Y\")))) %>%\n", - " mutate(origin=\"hes_opcs4\", instance=ins_index) %>% group_by(eid) %>% mutate(n = arr_index) %>% select(eid, origin, instance, n, level, code, date)" - ] - }, - { - "cell_type": "code", - "execution_count": 235, - "metadata": {}, - "outputs": [], - "source": [ - "concept_ids_opcs4 = concept %>% filter(vocabulary_id == \"OPCS4\") %>% mutate(concept_code = str_replace(concept_code, \"\\\\.\", \"\"))\n", - "concept_ids_snomed = concept %>% filter(vocabulary_id == \"SNOMED\" & domain_id==\"Procedure\") \n", - "\n", - "# check necessary opcs4 concept ids\n", - "concept_ids = concept_ids_opcs4 %>% mutate(concept_id_1 = concept_id)\n", - "\n", - "cr_filtered = concept_relationship %>% filter(concept_id_1 %in% concept_ids_opcs4$concept_id) %>% filter(concept_id_2 %in% concept_ids_snomed$concept_id) %>% arrange(concept_id_1)" - ] - }, - { - "cell_type": "code", - "execution_count": 236, - "metadata": {}, - "outputs": [], - "source": [ - "mapping_opcs4_snomed = concept_ids_opcs4 %>% \n", - " left_join(cr_filtered %>% select(concept_id_1, concept_id_2), by=c(\"concept_id\"=\"concept_id_1\")) %>% \n", - " left_join(concept_ids_snomed %>% select(concept_id, concept_code, concept_name), by=c(\"concept_id_2\"=\"concept_id\")) %>% \n", - " mutate(code = concept_code.x, meaning=concept_code.y, name=concept_name.y)" - ] - }, - { - "cell_type": "code", - "execution_count": 237, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "7624501" - ], - "text/latex": [ - "7624501" - ], - "text/markdown": [ - "7624501" - ], - "text/plain": [ - "[1] 7624501" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A grouped_df: 6 × 9
eidorigininstancenleveldatecodemeaningname
<int><chr><int><int><int><date><chr><chr><chr>
1000018hes_opcs45222018-08-29Z942387713003Surgical procedure
1000018hes_opcs45122018-08-29Z501NA NA
1000018hes_opcs44012016-11-08Q10811401008 Dilation and curettage of uterus
1000018hes_opcs40012005-06-02V093178397008Reduction of fracture of zygomatic bone
1000018hes_opcs4201NAX998NA NA
1000018hes_opcs40122005-06-02Z942387713003Surgical procedure
\n" - ], - "text/latex": [ - "A grouped\\_df: 6 × 9\n", - "\\begin{tabular}{lllllllll}\n", - " eid & origin & instance & n & level & date & code & meaning & name\\\\\n", - " & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1000018 & hes\\_opcs4 & 5 & 2 & 2 & 2018-08-29 & Z942 & 387713003 & Surgical procedure \\\\\n", - "\t 1000018 & hes\\_opcs4 & 5 & 1 & 2 & 2018-08-29 & Z501 & NA & NA \\\\\n", - "\t 1000018 & hes\\_opcs4 & 4 & 0 & 1 & 2016-11-08 & Q108 & 11401008 & Dilation and curettage of uterus \\\\\n", - "\t 1000018 & hes\\_opcs4 & 0 & 0 & 1 & 2005-06-02 & V093 & 178397008 & Reduction of fracture of zygomatic bone\\\\\n", - "\t 1000018 & hes\\_opcs4 & 2 & 0 & 1 & NA & X998 & NA & NA \\\\\n", - "\t 1000018 & hes\\_opcs4 & 0 & 1 & 2 & 2005-06-02 & Z942 & 387713003 & Surgical procedure \\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A grouped_df: 6 × 9\n", - "\n", - "| eid <int> | origin <chr> | instance <int> | n <int> | level <int> | date <date> | code <chr> | meaning <chr> | name <chr> |\n", - "|---|---|---|---|---|---|---|---|---|\n", - "| 1000018 | hes_opcs4 | 5 | 2 | 2 | 2018-08-29 | Z942 | 387713003 | Surgical procedure |\n", - "| 1000018 | hes_opcs4 | 5 | 1 | 2 | 2018-08-29 | Z501 | NA | NA |\n", - "| 1000018 | hes_opcs4 | 4 | 0 | 1 | 2016-11-08 | Q108 | 11401008 | Dilation and curettage of uterus |\n", - "| 1000018 | hes_opcs4 | 0 | 0 | 1 | 2005-06-02 | V093 | 178397008 | Reduction of fracture of zygomatic bone |\n", - "| 1000018 | hes_opcs4 | 2 | 0 | 1 | NA | X998 | NA | NA |\n", - "| 1000018 | hes_opcs4 | 0 | 1 | 2 | 2005-06-02 | Z942 | 387713003 | Surgical procedure |\n", - "\n" - ], - "text/plain": [ - " eid origin instance n level date code meaning \n", - "1 1000018 hes_opcs4 5 2 2 2018-08-29 Z942 387713003\n", - "2 1000018 hes_opcs4 5 1 2 2018-08-29 Z501 NA \n", - "3 1000018 hes_opcs4 4 0 1 2016-11-08 Q108 11401008 \n", - "4 1000018 hes_opcs4 0 0 1 2005-06-02 V093 178397008\n", - "5 1000018 hes_opcs4 2 0 1 X998 NA \n", - "6 1000018 hes_opcs4 0 1 2 2005-06-02 Z942 387713003\n", - " name \n", - "1 Surgical procedure \n", - "2 NA \n", - "3 Dilation and curettage of uterus \n", - "4 Reduction of fracture of zygomatic bone\n", - "5 NA \n", - "6 Surgical procedure " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "hes_procedures = hesin_oper_pre %>% left_join(mapping_opcs4_snomed %>% select(code, meaning, name), by=\"code\") %>% select(eid, origin, instance, n, level, date, code, meaning, name)\n", - "nrow(hesin_procedures)\n", - "head(hesin_procedures)" - ] - }, - { - "cell_type": "code", - "execution_count": 238, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(hes_procedures, glue(\"{path}/codes_hes_procedures_210119.feather\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mortality Records - ICD10" - ] - }, - { - "cell_type": "code", - "execution_count": 239, - "metadata": {}, - "outputs": [], - "source": [ - "death = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/death.txt\")\n", - "death_cause = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/death_cause.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 240, - "metadata": {}, - "outputs": [], - "source": [ - "death_join = death[death_cause, on=c(\"eid\", \"ins_index\")]\n", - "death_join = death_join[, c(\"eid\", \"ins_index\", \"arr_index\", \"level\", \"date_of_death\", \"cause_icd10\")][order(eid, ins_index, arr_index),]" - ] - }, - { - "cell_type": "code", - "execution_count": 241, - "metadata": {}, - "outputs": [], - "source": [ - "death_join_date = death_join %>% rename(date=\"date_of_death\") %>% rename(code = \"cause_icd10\") %>% mutate(date = ymd(as.Date(fast_strptime(date, \"%d/%m/%Y\"))))" - ] - }, - { - "cell_type": "code", - "execution_count": 242, - "metadata": {}, - "outputs": [], - "source": [ - "codes_death = death_join_date %>% mutate(instance=0) %>% mutate(origin=\"death_records\") %>% group_by(eid) %>% mutate(n=row_number())\n", - "codes_death = codes_death %>% mutate(meaning=str_sub(code, 1, 3)) %>% select(c(eid, origin, instance, n, level, code, meaning, date))" - ] - }, - { - "cell_type": "code", - "execution_count": 243, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A grouped_df: 6 × 8
eidorigininstancenlevelcodemeaningdate
<int><chr><dbl><int><int><chr><chr><date>
5285138death_records011U071U072020-11-01
5285138death_records022J449J442020-11-01
1206785death_records011G309G302020-10-29
1611467death_records011C260C262020-10-29
1611467death_records022J189J182020-10-29
2449704death_records011U071U072020-10-29
\n" - ], - "text/latex": [ - "A grouped\\_df: 6 × 8\n", - "\\begin{tabular}{llllllll}\n", - " eid & origin & instance & n & level & code & meaning & date\\\\\n", - " & & & & & & & \\\\\n", - "\\hline\n", - "\t 5285138 & death\\_records & 0 & 1 & 1 & U071 & U07 & 2020-11-01\\\\\n", - "\t 5285138 & death\\_records & 0 & 2 & 2 & J449 & J44 & 2020-11-01\\\\\n", - "\t 1206785 & death\\_records & 0 & 1 & 1 & G309 & G30 & 2020-10-29\\\\\n", - "\t 1611467 & death\\_records & 0 & 1 & 1 & C260 & C26 & 2020-10-29\\\\\n", - "\t 1611467 & death\\_records & 0 & 2 & 2 & J189 & J18 & 2020-10-29\\\\\n", - "\t 2449704 & death\\_records & 0 & 1 & 1 & U071 & U07 & 2020-10-29\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A grouped_df: 6 × 8\n", - "\n", - "| eid <int> | origin <chr> | instance <dbl> | n <int> | level <int> | code <chr> | meaning <chr> | date <date> |\n", - "|---|---|---|---|---|---|---|---|\n", - "| 5285138 | death_records | 0 | 1 | 1 | U071 | U07 | 2020-11-01 |\n", - "| 5285138 | death_records | 0 | 2 | 2 | J449 | J44 | 2020-11-01 |\n", - "| 1206785 | death_records | 0 | 1 | 1 | G309 | G30 | 2020-10-29 |\n", - "| 1611467 | death_records | 0 | 1 | 1 | C260 | C26 | 2020-10-29 |\n", - "| 1611467 | death_records | 0 | 2 | 2 | J189 | J18 | 2020-10-29 |\n", - "| 2449704 | death_records | 0 | 1 | 1 | U071 | U07 | 2020-10-29 |\n", - "\n" - ], - "text/plain": [ - " eid origin instance n level code meaning date \n", - "1 5285138 death_records 0 1 1 U071 U07 2020-11-01\n", - "2 5285138 death_records 0 2 2 J449 J44 2020-11-01\n", - "3 1206785 death_records 0 1 1 G309 G30 2020-10-29\n", - "4 1611467 death_records 0 1 1 C260 C26 2020-10-29\n", - "5 1611467 death_records 0 2 2 J189 J18 2020-10-29\n", - "6 2449704 death_records 0 1 1 U071 U07 2020-10-29" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "head(codes_death %>% arrange(desc(date)))" - ] - }, - { - "cell_type": "code", - "execution_count": 244, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(codes_death, glue(\"{path}/codes_death_records_210115.feather\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## GP Records" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T09:27:49.989427Z", - "start_time": "2020-12-23T09:27:48.579Z" - } - }, - "outputs": [], - "source": [ - "gp_registrations = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/gp_registrations.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T11:13:46.064068Z", - "start_time": "2020-12-23T11:11:59.825Z" - } - }, - "outputs": [], - "source": [ - "gp_clinical = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/gp_clinical.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "gp_clinical[gp_clinical == \"\"] <- NA" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "gp_clinical = gp_clinical %>% rename(date=\"event_dt\") %>% mutate(date = ymd(as.Date(fast_strptime(date, \"%d/%m/%Y\"))))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# clean_dates\n", - "# These data are provided in a form which is as close as possible to how they were issued from their source supplier, in order to avoid potential systematic error or bias by attempting to ‘clean’ them by\n", - "# removing or altering invalid or erroneous information. However, to protect individuals, alterations have been made to dates in relation to participant date of birth as follows:\n", - "\n", - "# - where clinical event or prescription date precedes participant date of birth it has been altered to 01/01/1901.\n", - "# - Where the date matches participant date of birth it has been altered to 02/02/1902.\n", - "# - Where the date follows participant date of birth but is in the year of their birth it has been altered to 03/03/1903.\n", - "# - Where the date was in the future this has been changed to 07/07/2037 as these are likely to have been entered as a place-holder or other system default." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "gp_clinical = gp_clinical %>% filter(date!=\"2037-07-07\")" - ] - }, - { - "cell_type": "code", - "execution_count": 190, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dfYBUdb3/x3zIMPOWpmmaPXgr\nf7f8lXZvpdatvL+6/WoXZFmxRRcIHwi5F0VREwoRXQxcCTMr1Mw0UIlQJOPiA4aGmlqYKCIu\n4rI8OYA87vPO955z5mGH5ezM7He/7/nM58z79cfO7AOf+Xw/n8+LM3PmzDkxQwjpNzHpBAiJ\nAhSJEAdQJEIcQJEIcQBFIsQBFIkQB1AkQhxAkQhxAEUixAEUiRAHUCRCHECRCHEARSLEARSJ\nEAdQJEIcQJEIcQBFIsQBFIkQB1AkQhxAkQhxAEUixAEUiRAHUCRCHECRCHEARSLEARSJEAdQ\nJEIcQJEIcQBFIsQBFIkQB1AkQhxAkQhxAEUixAEUqSDW3/Crx3dLJ0FKGIpUEJue/s2Fg36x\nSzoNUrJQpIL5y6ja16VzIKUKRSqArjeCm+YpVS8LZ0JKFYpUAM/PSN523VizUTYTUqpQpALY\n/ANjWp59y5i2y34knQspTShSIdS07Bo9YehvjGmofEk6F1KSUKRCuGbVvBlmy0XzjJlxq3Qu\npCShSLlJPHDVve3mzkULf5gwa6s7zHMXSmdEShKKlJv5Vzx3zTVtT85qGfPzzq1VnaZlUKd0\nSqQUoUi5mbTUdE66u3Gc2XbZiPMf9n4wiyKREChSbuaPazEvj02c22ESq5ukkyGlC0XKQWer\n6bzushdm3mImvCGdCyltKFKvJOZVV179Wuf9l/28xfzyf6SzIaUNReqVOZc3Nk6vXBTcX/IL\n4WRIiUORwmkzu86Oe7cLKh/xv22YL5wPKXEoUig7rjPrK5v9e/MHNUgn0xegH5zip7J6hyKF\nsnVooqv2vuDulDrhXPoE9INT/FRW71CkUBJVr5hHB73o311RI51MX4F+cAoUXO2WNB2bIoVT\nd6sxt1a94N174WLpXAoH+sEpaHC1W9J0bIoUznODGk3itoF3b1510V+kcykc6Aen4J/K0rgl\nzcSmSL1wzWWtxiwbU1HzhHQmfQD6wSn8p7KgH0FGBvdiU6Re2HLe1HbvZm+XdCJ9AvrBKVzw\n1LNGyMYuHRsavOtGitQbq8+9eqd0Dn0G+sEpXPD0s0bExi4TGxq8jSL1yvqLaxa2SCdRMNAP\nTqE/lZV51gjYknbHhganSD3pun5d6l7772urbpjzlmg2BQP94BT8U1mZZ42ALWl3bGRwitSD\nljcmJTLfJF55ZF67YDJ9APrBKfinsrqfNbr/CHJ3bGRwitSDuh/9VjoFC7oaoB+cAgbv+azR\n5cauZ2xkcIrUg6aRw96RzqHPdNVX7YF9cCr+eifwU1k9nzW63NjtFxsYnCJl0zF/Yv0zI8bv\nlc6jj3TVTxz9D9AHpxK/HlhxWQsqeMizRocgY/cMTpGy6Jo0aeGkIY+MuFyXSZ5HrTNTn/Nw\n/sGp2ydsaRq+DBO8q/4R6Gf5cbG3re8ZnCJl8cB1CXP75Xs36jLJ98gsuib5jesPTr1Zs8eY\n61a8tB0QPEgc9ayxa2EnLHZi9sCKJ3sEp0gB66f4R/Betsz3yDSuGaHpk+V/n9RqzKaBmGMy\nF17hvWw8d/TwqmXOQwceGQN61vhUxdROVOzfX7Z9R6JHcIoUsGXUpZ5JE+/wPTLDX9X1kZtg\nd/3YByGx//G4SYyd05mYeY7rjXRX/Q89jzqfnd/of+f8Keni+uqpqT0LzmOPet6Ytj8/2JQd\nnCIlCUx6uuJib1w2OJ+ZYrCwtg0V2n9at73C9bHTHdeM2W3il40YcfbTBvBZ/oUvrkyb5Dz2\necvMtrEXX1D1TFZwipSi0Tfp9orbm1aPcb1/pyi0nX8vMvzqauf/u+wde2Xb5XMSXbNqEP8F\nLNtkkiYl8v9tX7lpQuLGOSZxa01r988oUkDLjDE3DPJMWnhuxdBHpJOx44mBz+OCbx79R/dB\n4yOuvNK72VKBOvOmb9KO8Zucx11fde/V3s2uinXdP6NIm/z/D2+u6zTrvu+Z1L4B9gwJzW33\nu40Xfy1VisSNl1ZDXoGtC/7T+kdNByK4z8rq68bOAcRdWnmRt61bU511THPZi5QY55+Z4ezl\n3pcNQy9VdY4cfw9vFm6fwyR+PahidPJzJImnH97iNHaGLabDbBr9qNOYXdlnfVpegfDImMcG\nXbfq+YsXZf2k7EUyLaalzVxws3/3gSHj9HxuIrWHN0mj8+C/nBDfNGIRJnb89XTeLWNGVi1w\nGrurvqq7hztcb4+2rU/dWXv90Isfz/4NRTLmholt/1PxmHfnkd//STqXvtC9h3fNwN87jr2x\nepcxsx7+a9x97ORBR6lvXl261Wnw4GipzHf1bj0K3ojt5XcUqWX2umET226tvK9904VrpZMp\nGP8JTNYe3tmun8E8VdtpNtX84MKq5c5jZx105Hxjl320VKN/vlynJN+ITQffF4rUWLnCM6l1\nzqCqQS7fb8CelTR4AgPbw7u3KRGvnnRvzb2JxKxzXe98yTroyPnGLvtoKfdb6aw3YvcPTpFM\n3WTjb5O2POn0s7DQE7V1P4EB7OFN3DuoYvz2htvvGud9s6fC9VY6+6Aj1xu7fY6Wcr6Vzn4j\ndr/gFMk0VL4ZmOQ+MupcatlPYNzv4f31hKaG0TONecz/n/2Naqe7X7qWJHAHHRns0VLhb8Sm\nKW+RWu7xT9A0pd54Jj2e96/7DuiUp9mHezvfw9t0zk4v6EhjVlcuSqwf7fbt6cUVs/xZhxx0\nlJjzvSE3+ttmwNFSydhhb8SmKW+RVo4ZOHOjeW3Q28bscBoYeaK2tn2ewDjew9tmHr/Au1l7\nrvflgcqhVY4Pl3px+NBZqVd0zg86mn35qtU/POdFyNFSqdghb8SmKW+RTOLZKwbO3DTpdtdx\ngSdq23HdPk9g3O7h9YI3+m8BrBrlfUk0/dXtfy9e/KpXUiY5P+goXuUlu/ucwS8DjpbKxN7/\njdg0ZSxSxwMTpnnPLl6efPZVbl8IGOiJ2rYOTf6XnnoC4/ZZTDr48gne0Lvdh5FMdOSbq4fO\naptX5/igIy/40+d5t81Tp9fudn20VFtW7P3eiE1TuiKhr2rVfs2PHrxioH94ytrpc51Hx52o\nzb/ijA/kcO908EXTXD9n9LZ1PlMfM6uH1s5Y5vagIz/4hkHzTOes+5pr5zp+P8ALnh27F0pX\nJPRVre6dnDCJX1S+gIkOPFFbXcpMyOHeqeAP1bs+uia1rZsz27RfXTnL8TtfQfBFA8eMnNRm\n7vmh29hB8PyxS1ckH+S1OMYs9r4krr/IdVzkidoC/CvOBLg+3Dsr+JIxro9SS23rnruqfXL9\nqqHPIYK/+dBznk8PTnYbOxk8b+wSFSm91wt1LY6u69dNmO7febPC9TYPeaK2JMEVZwzkI2vp\n4I3uj5pObuviQyfXdxm3x9eZ7q10W8eWi54FBc8du0RFyuz1wlzVyj8v8ZPBcaorh7m+bgv0\nZGoBqSvOYEgFf8154NS2bnQ94kI56a30L6uqFqKC545doiJ17/WCXNUqOC/xbZW/27F2tOMz\nzHS24k6mtrcp/RYM4IozmY82wC5nk9zWbcdccCq1lW59BXGa3GTw3LFLVKSsvV6IS2Ylz0s8\nv7piSNhbAvYk5lVXThgGOplacAhc8r7zK85kf7QBdTmbYmxI5YKXqkhZlxAAXDLLbAzOS9y6\nzvHAzLm8sXF6RS3kZGrpQ+ACXF9xJvt8qrDL2SC2dSWzlS49kfa7hIDj/cett9ZevcpAzqa6\n6+y493VBpX98muuTqWUOgUvh9Ioz+5xP1XHwrA/Eu9+Qls5WuvRE2m+vl+P9x9fX/fGKsx93\nb1KbV+7KZv/e/EEN7k+m1n0IHADg+VSzPxDvfFtXQlvp0hNp/71eLvcft2wanzBdtw180TPJ\n6ZMv/831rtr7gvtT6lxGTpJ1CJz74MiPNmSd8tQ43pCW0la69ESCXjHLTJ3g/weWmFbbYdy+\ngRS8uf7oIP+URGZFjdPQ3QAOgcuAOZ/qPh+Id00pbaVLTaTOVuBFrTzWnV/jC9TkfGKSb67f\nWuUfcvTCxY6Dp3F/CNy+AM6nijzlaSltpUtLJH/38dUrMZcQSNFYe7X3qrFx4DbXgYP3vxO3\nDbx786qL/uI6eAr3h8DtA+R8qj6oU576lMhWurRECnYfVwbv7Ti/hECaxtqxTz1zsduTqfmk\n3v9eNqai5gnnwVO4PwSuG9j5VH1Qpzw1JbOVLh2R2vbdfez8EgIZGmuH3vsqIG76ELi9mPfu\nfQCHwGVAnE/Vv5Ro8mPZgFOepoJjttKZzAvdSpeMSP5er+zdx0AaaxFnOsG8uZ68AloGt4fA\n9QjunOSlRFcYwClPu4NDttKp4H3YSpeMSP5eL+Tu42xAJiHeXE9eAQ0ENLjJXErUOD/laXZw\nyFY6FbwPW+mSESnY64XefZymsRZyMSHEUWo9hr3rKVxwt7FN96VE97g+5ek+wd0fqJ6deaGU\njEjJvV6o3cddC3/yp+5dpF1PbXL5JKz7lQDiKLXG7GHvqp/s9C2Z7OCuY2ddStRt2JIMXjoi\nBXu9QLuP2yZdc9ug+rRJjiem+5WAcfzmuum+Alrqoeonw4K7jn17C+5SoiUYvHRESu31guw+\nnj09YaZVpExyPDFZrwQAZK6A5uM68+zgrmNvHnF1C+xSoiUYvIRESu/1Auw+Pucl89vLllZO\nX/dX9xNj8Xy6D2RfAc155lnBncc2G/15RF1KtPSCl4BImZ2wkM9m3r2lZYu5Mf70hbvMj2sq\nFrqdmCA49Ml61hXQ3M96d3CHsf1Libb4wYJ5dHwp0dINXgIide86Quz1mjNqgr+H7gePGvOT\nxgbH0xgERz1ZD3aQZF0Bba7LzHsEdxc7MW5im5kahGsaelWzo6ilH7wERMoyCbDXa3f1EP+t\ngKH3me2jOhxPYyo45sl6agdJ9xXQ9jrMvGdwh7H9N+ne+F5Q5rnnjHe837t0g5eCSNk7YV3v\n9TJrZ48b5Q37nMqpI/1jPVxOYyY45Ml6agdJl+sroMGDd8/jI484r0rJBi8Bkfbdw+ueXcGw\nPzHT+fnOuoM7frIekNlBssjtFdDwwZPzOHFn/EL3nycr2eCyIvkv7/bdw+uW5Puw/rC/s0JX\ncJO9g0RTcL8q/jw2jBw82PUh9kHFSzS4qEiJcf4RQdl7eN2Sfh9217jv1S5WFTwgvYNEU/Bk\nVd7y5nHPUtcfzUxVvLEkg8tukVpMS1v2Hl53BPvUM+/Dttzn8qweyf31oOAByYOO0jtIELFB\nwdNVeQtxWHC64pBjjvsbXPo10g0T27L28Loj2BOY/T6s69io4D6pg47SO0gQsQ0keHdVnq5w\nfynRTMXn15ZecGmR/Ksgd+/hdYg/7ahXAoFJwNcw6YOOEDtIMgc0AYK3zO6uiuvD67NjL3T9\nvr2D4JIiBU8yPJNaIXt4g33qoFcCyf31sNcwyIOOkLEbK1fAqoKM7SK4oEipJxn+NmmL852w\nqX3qkFcC6f31kOBd16/DHXTkBYce0FQ3GfbiCxrbQXBBkdJPMnyTnAdP7VOfjXglkN5fj3iZ\n4V9wBnbQkR8c9ukDn4bKN1EvvqCxHQQXFCnzJGPdMPevHdP71BcCXmZk9tcDXmYEF5xBfUIg\nCA6K3XKPfx2rKfWIF1/I2K6CC4rU/STD9UXojcHsUy9C7OQFZ0CfEEgGx8ReOWbgzI3mtUFv\nO4+Mje0quKBI0CcZkH3qRYiduuAM5KCjdHBM7MSzVwycuWnS7YDQ0NiOgkvutUN9xDEAsk+9\nCLExF5wpSnDz8uSzr6pGXKMMHNtFcNH3kVAfcfRJQPap42OrNsmsnT5XZez+B5d9QxbzJCOF\n+33qxYnt+oIzRQxexkgf2UBCcHvBmWIGL18oEiEOoEiEOIAiEeIAikSIAygSIQ6gSIQ4gCIR\n4gCKRIgDZEVqdX+tyAyJVsQnwFJ0tuIuFGvaW3GxTRtLHkJ7ayL/H+VEVqT4O7jY7XHI5SGS\nNMeBxzbtjPe3qznYuh0XuyMOvJJmcxz4/8vOeH8tpUhWUKQwKJIUFCkMihQGRcoBRQqDIoVB\nkXJAkcKgSGFQpBxQpDAoUhgUKQcUKQyKFAZFygFFCoMihUGRckCRwqBIYVCkHFCkMChSGBQp\nBxQpDIoUBkXKAUUKgyKFQZFyQJHCoEhhUKQcUKQwKFIYFCkHFCkMihQGRcoBRQqDIoVBkXJA\nkcKgSGFQpBxQpDAoUhgUKQcUKQyKFAZFygFFCoMihUGRckCRwqBIYVCkHFCkMChSGBQpBxQp\nDIoURkRF2l0/vGbKln4+OEUKhSKFEVGRpl61dsOMS/r76BQpDIoURjRFilc2eFulQSv6+egU\nKQyKFEY0RVpe5fd67P39fHSKFAZFCiOaIi0e4X+dODv9/a7tVsS32v27QtiGDb4NF3xrHBd7\nexwYHFryraVY8h39FmnkviLt3JrmVVJsxgJRmziUzLR3P6OyFOnZ5FO7efv/5gUSwmlI1Cau\nlhAjLEXaVrnG2wwNXEmRCgPaVrWJq8WdSGbapWubrh0f8qIY2VW9QNuqNnG1OBRp78zaYXVh\nO4CQXdULtK1qE1eLQ5F6BdlVvUDbKr04a6BVQUKRpIC2VXpx1kCrgoQiSQFtq9rE1UKRpIC2\nVXpx1kCrgoQiSQFtq/TirIFWBQlFkgLaVrWJq4UiRRLkyKhNHApFkgLaVrWJq4UiSQFtq/Ti\nrIFWBQlFkgLaVrWJq4UiSQFtq9rE1UKRpIC2VW3iaqFIkUR6rMoPiiQFtK3Si7MGWhUkFCmS\nSI9V+UGRpIC2VW3iaqFIUkDbKr04a6BVQUKRpIC2VW3iaqFIkQQ5MmoTh0KRpIC2VW3iaqFI\nkQQ5MmoTh0KRIon0WJUfFEkKaFvVJq4WiiQFtK1qE1cLRZIC2lbpxVkDrQoSiiQFtK3Si7MG\nWhUkFCmSSI9V+UGRIon0WJUfFEkKaFvVJq4WihRJpMeq/KBIUkDbqjZxtVAkKaBtlV6cNdCq\nIKFIUkDbqjZxtVAkKaBtlV6cNdCqIKFIkUR6rMoPihRJkCOjNnEoFEkKaFulF2cNtCpIKFIk\nkR6r8oMiSQFtq/TirIFWBQlFkgLaVunFWQOtChKKJAW0rdKLswZaFSQUKZIgR0Zt4tDMKZIU\nakcGCrQqSCiSFNC2qk1cLRRJCmhbpRdnDbQqSCiSFNC2Si/OGmhVkFCkSIIcGbWJQ6FIUkDb\nKr04a6BVQUKRIon0WJUfFEkKaFulF2cNtCpIKJIU0LaqTVwtFCmSIEdGbeJQKJIU0LZKL84a\naFWQUKRIghwZtYlDoUhSQNsqvThroFVBQpGkgLZVenHWQKuChCJJAW2r9OKsgVYFCUWSAtpW\ntYmrhSJJAW2r2sTVQpGkgLZVbeJqoUhSQNuqNnG1UCQpoG2VXpw10KogoUhSQNsqvThroFVB\nQpGkgLZVenHWQKuChCJJAW2r2sTVQpGkgLZVenHWQKuCBCfS7nfSSDenNIG2VW3iaslM+07X\nInV1pkF2lYSCHBnptZUmmWnvci1SN9JrLE2Qs84tUtEJmXuKVBSgbZVenDXQqiChSFJA26o2\ncbVQpEiCHBm1iUOhSFJA2yq9OGugVUFCkSIJcmTUJg6FIkkBbav04qyBVgUJRYokyJFRmzgU\niiQFtK3Si7MGWhUkFEkKaFvVJq4WihRJkCOjNnEoFEkKaFulF2cNtCpIKJIU0LZKL84aaFWQ\nUCQpoG1Vm7haKFIkkR6r8oMiSQFtq/TirIFWBQlFkgLaVunFWQOtChKKJAW0rdKLswZaFSQU\nSQpoW6UXZw20KkgokhTQtqpNXC0UKZIgR0Zt4lAokhTQtqpNXC0USQpoW9UmrhaKJAW0rWoT\nVwtFkgLaVunFWQOtChKKJAW0rWoTVwtFiiTSY1V+UCQpoG2VXpw10KogoUhSQNuqNnG1UKRI\nghwZtYlDoUiRBDkyahOHQpGkgLZVenHWQKuChCJFEuTIqE0cCkWKJNJjVX5QpEiCHBm1iUOh\nSFJA2yq9OGugVUFCkSKJ9FiVHxRJCmhb1SauFookBbSt0ouzBloVJBRJCmhb1SauFooUSZAj\nI7220oQiSYGcdb3DDq0KEooUSaTHqvygSFJA2yq9OGugVUFCkaSAtlVt4mqhSFJA2yq9OGug\nVUFCkaSAtlVt4mqhSJFEeqzKD4okBbStahNXC0WSAtpW6cVZA60KEookBbStahNXC0WSAtpW\ntYmrhSJJAW2r2sTVQpGkgLZVenHWQKuChCJJAW2r9OKsgVYFCUWSAtpW6cVZA60KEooUSZAj\nozZxKBQpkiBHRm3iUCiSFNC2Si/OGmhVkFAkKaBtVZu4WiiSFNC2Si/OGmhVkFCkSCI9VuUH\nRYokyJGRXltpQpGkQM46XyMVHYokBbSt0ouzBloVJP0QaduM8865erUx/1XhUW3M7vrhNVO2\nUKRSADkyahOH0g+RLruqYeNNw1rMyIfj8fg2Y6ZetXbDjEu6KFJhQNsqvThroFVBYi/SrrpG\nY96ueN0MeT74Pl7Z4G2VBq2gSIUBbav04qyBVgWJvUgBqwZub6+4Zdz365rM8qqE94Ox91Ok\nwoC2VW3iaumfSLvG3GV2nH/z6tXXnr9n8Qj/JxNnp3/XsicNsqt6gbZVenHWQKuCJDPtzRYi\nrb/otkTyXnP1ksUj9xVpRzyNdHPKEOmxKj8y07697yKtqHk4c3/MnGeTT+3mpX/S2ZFGeqpK\nE2hb1Saulsy0d/ZZpFe+F7ydu+5nHd7zuOontlWuMWbnwJX7/yGyq3qBtlVt4moJEaRAkdou\nnOtvyVp21czc1FQ3stVMu3Rt07XjExSpMKBtVZu4WuxFWlERsMg0TBp63tTNxuydWTusbnvI\nXyK7SkJBjozaxKHYi1Q40MqTMJAjozZxKBRJCmhbpRdnDbQqSChSJJEeq/KDIkkBbavaxNVC\nkaSAtlVt4mqhSJEEOTLSaytNKJIUyFnXO+zQqiChSFJA2yq9OGugVUFCkaSAtlVt4mqhSFJA\n26o2cbVQpEgiPVblB0WSAtpW6cVZA60KEookBbStahNXC0WSAtpW6cVZA60KEookBbSt0ouz\nBloVJBQpkkiPVflBkaSAtlV6cdZAq4KEIkkBbavaxNVCkaSAtlV6cdZAq4KEIkkBbav04qyB\nVgUJRZIC2la1iauFIkkBbavaxNVCkaSAtlV6cdZAq4KEIkkBbav04qyBVgUJRZIC2lbpxVkD\nrQoSiiQFtK3Si7MGWhUkFEkKaFulF2cNtCpIKFIkQY6M2sShUCQpoG1Vm7haKFIkkR6r8oMi\nSQFtq9rE1UKRpIC2VW3iaqFIkUR6rMoPiiQFtK1qE1cLRZIC2lbpxVkDrQoSihRJpMeq/KBI\nUkDbqjZxtVAkKaBtVZu4WiiSFNC2Si/OGmhVkFAkKaBtlV6cNdCqIKFIkQQ5MtJrswdZFYok\nBbKreocdWhUkFEkKaFulF2cNtCpIKJIU0LaqTVwtFEkKaFulF2cNtCpIKJIU0LaqTVwtFCmS\nSI9V+UGRIglyZKTXZg+yKhRJCmRX+dSu6FAkKaBtVZu4WihSJEGOjNrEoVAkKaBtlV6cNdCq\nIKFIkUR6rMoPiiQFtK1qE1cLRZIC2la1iauFIkkBbav04qyBVgUJRZIC2la1iauFIkkBbav0\n4qyBVgUJRZIC2lbpxVkDrQoSiiQFtK3Si7MGWhUkFCmSIEdGbeLQzCmSFGpHBpq4WihSJEGO\njNrEoVCkSIIcGbWJQ6FIUkDbKr04a6BVQUKRpIC2VW3iasGJ1NqcBtlVvUDbKr04a6BVQZKZ\n9hbXIrW1pJFuTmkCbav04qyBVgVJZtpbXYvUjXRzyhDkyEivzR5kVULmniIVBWRX+Rqp6FAk\nKaBtlV6cNdCqIKFIUkDbqjZxtVAkKaBtVZu4WiiSFNC2qk1cLRRJCmhb1SauFookBbSt0ouz\nBloVJBRJCmhb1SauFooUSaTHqvygSJFEeqzKD4okBbStahNXC0WKJMiRUZs4FIokBbSt0ouz\nBloVJBRJCmhb1SauFookBbSt0ouzBloVJBQpkiBHRm3iUCiSFNC2Si/OGmhVkOQVae9GY5rv\nuqmBIjkG2lbpxVkDrQqSfCKtOnqa6fhCLHbE3yiSW6BtlV6cNdCqIMkn0uDPvmHuid32xulD\nKJJboG2VXpw10KogySfS0b8z5uzPGPO7EyiSW6BtVZu4WvKJdMgTpvP9Vxqz5BCK5BZoW9Um\nrpZ8Ip1wh1kSe8KYO4+lSG6BtlV6cdZAq4Ikn0ijPnT1iZ/oNFtO4WskTUiPVfmRT6SNX4od\n9YwxQ494iSK5BdpW6cVZA60KknwiGbOz3fvy/GZ7jyhSKNC2Si/OGmhVkOQXqf9IN6c0gbZV\nenHWQKuCJJ9IW4Yf965YAEVSBHJk1CYOJZ9I1QedNXxUAEVyC7St0ouzBloVJPlEOvJBe4Eo\nUi6gbVWbuFryiTTgbYqkEOTIqE0cSj6RvrKUImGAtlV6cdZAq4Ikn0gv/NtyigQB2la1iasl\nn0hnnBAbcGIARXILtK3Si7MGWhUk+UT6yllpKJJboG2VXpw10KogySeSC6SbU4YgR0Zt4lDy\ni7R10ew7Fu+iSK6BtlV6cdZAq4Ikn0hdlx/sH9Zw2HSK5BhoW9UmrpZ8Ik2PnX3nI4t+9a3Y\n3RTJLdC2qk1cLflEOnl88vaiUymSIpAjozZxKPlEevfjyds/vociuQXaVunFWQOtCpJ8Ih32\ncPL2wfdSJLdA2yq9OGugVUGST6Qzv97m37R882sUyS3QtkovzhpoVZDkE+mPB3xk9NTrLjzu\nXY9SJLdA26o2cbXkE8ks+LS/+/uzf7T3iCKFAm2r2sTVklckYzb8tV9nbKBI4UDbKr04a6BV\nQVKASP1GujmlCbStahNXS06RPlVnPpWBIrkF2lbpxVkDrQqSnCJ9cab5YgaK5BZoW9Umrpac\nIjkC2VW9QNsqvThroFVBkmvquTkAABoXSURBVE+k015N3v7+ZIrkFmhbpRdnDbQqSPKJFHs+\nuOmYwqtROAbaVunFWQOtCpLcIsW64UGrmkCOjNrEoeQWacWs2MDg7JAX/Hg9RXILtK3Si7MG\nWhUkuUUy5luvJ293v06R3AJtq9rE1ZJPpDSPfYAiuQXaVunFWQOtCpK8Ii0a9pUzzjjjS4cf\nRZEUgRwZtYlDySfS3NhBx8eOOzT29X4ctQqtvFqgbVWbuFryiXTaf+4yB77cccvX+nEeIWRX\nSSjIkVGbOJR8Ih2+yJgD/2HMpZdQJEUgR0Zt4lDyiXTon4x53zJjnjqOIikCOTJqE4dmnk+k\nzw9pM/8y0ZiHDqNIblE7MtDE1ZJPpHtiZ5kfHXjhlA+fTpEUIT1W5Uc+kczcaWbv/4vFTnie\nIrkF2la1iasln0idwdc1r7bbe0SRio/0WJUf+UQ6dvzfe/Pjvyo8qo3ZXT+8ZsqW7luKVBDQ\ntqpNXC35RPrSAbF/ubExVKSRD8fj8W3GTL1q7YYZl3RlbilSQUDbqjZxteQTybw1419jB3zt\nzp37/92Q5MumeGWDtzUatCJ9S5EKA9pWtYmrJa9IHm/+5AuxQ8/p+dP2ilvGfb+uySyvSnjf\njb0/fZv+fUd7GmRXSSjSY1V+ZKa9e29C2NHff/j4fj/dcf7Nq1dfe/6exSP87ybOTt9mfh9P\nIz1VZQhyZNQmDs08M+3bexWpc+klx8U+cGGIXsY0Vy9ZPDIl0sh9RWrZkwaZv17UjgwUaFWQ\nZKa9OVykjiUXHR0bMPSh3nZ/j5nzbPIp3bz07f5/I92c0gTaVunFWQOtCpIQN/YR6QOxg759\nz54whdb9rMPb7FQ/sa1yjTE7B65M31KkwoC2VXpx1kCrgiSfSGf+PN7LtmhXzcxNTXUjW820\nS9c2XTs+kbmlSPIgR0Zt4lDyifTl3j/Q1zBp6HlTNxuzd2btsLrt3bcUqSCgbZVenDXQqiDJ\nJ9Lx9b2KVDDSzSlDpMeq/Mgn0kMnL+jPYXYUqVegbZVenDXQqiDJJ9JXPhs75LgTfSiSW6Bt\nVZu4WvKJdMY3zkpBkdwCbavaxNWSTyQXILuqF2hbpRdnDbQqSPKL1PLXP8RNB0VyDbSt0ouz\nBloVJHlFuunwWOwZc82Ifqgk3ZzSBNpW6cVZA60KknwizY5V/tIT6e6DplMkt0DbKr04a6BV\nQZJPpFNGmxZPJPPDT1IkRUiPVfmRT6RDH02K9D8HUyRFSI9V+ZFPpKMfTor0wPsokiKQI6M2\ncSj5RPqPf2/2Rdr2mW9SJEVIj1X5kU+kpQeeNC72/eHvO/hpiuQWaFvVJq6WfCKZxz7vX0H2\n356094gihQJtq/TirIFWBUlekYzZ8ve/h304giL1D2hbpRdnDbQqSPKKtHejMc133dRAkTSB\nHBm1iUPJJ9Kqo6eZji/EYkf8jSK5BdpW6cVZA60KknwiDf7sG+ae2G1vnD6EIrkF2lbpxVkD\nrQqSfCId/Ttjzv6MMb87gSIpAjkyahOHkk+kQ54wne+/0pglh1AkRSBHRnpt9iCrkk+kE+4w\nS2JPGHPnsRTJLciu8n2kopNPpFEfuvrET3SaLafwNZImpMeq/Mgn0sYvxY56xpihR7xEkdwC\nbavaxNWSTyRjdvpnEXp+s71HFKn4SI9V+ZFfpLf+8KvbF27qh0cUKRRoW6UXZw20KkjyibT9\nO/6hdrF31YSe/5si2QNtq/TirIFWBUk+kc6LVd31pz/dde4BF1Ekt0DbKr04a6BVQZJPpH8a\nl7yddCRFcgu0rWoTV0s+kd7zYPL20QEUyS3QtkovzhpoVZDkE+nM1NmDfnEmRXILtK3Si7MG\nWhUk+UR68ePz243pWvLJFyiSW6BtlV6cNdCqIMkp0qc+9alPHx9798c+cVjs+C9TJLdA2yq9\nOGugVUGSU6QzuvnyqRTJLdC2qk1cLTlFcgSyq3qBtlV6cdZAq4Ikr0hvLPzdoiaKpAzkyKhN\nHJp5HpEe+kxwYMOX+3MSIYoUitqRgSaultwi1ccGDPvpXTO/N+Bdv6ZIjoG2VXpx1kCrgiSn\nSCvedcbG4M6G0w9eTZEUIT1W5UdOkUa8f2vq3tb3X0yR3AJtq9rE1ZJTpI9emLl70UkUyS3Q\ntkovzhpoVZDkFOndMzJ3b34PRXILtK3Si7MGWhUkOUV677TM3RsPp0hugbZVenHWQKuCJKdI\nn63O3K34vxTJLdC2Si/OGmhVkOQU6cqDV6buLX/XJIrkFmhb1SaulpwibTziw3/yb7vmfuDI\nrSF/SZH6AbStahNXS06RzGPvi3108PDKY2NHLbf3iCIVH+mxKj9yi2TWjflwLBb72BU8i5Bz\noG1Vm7ha8ojksbNpd38sokgSSI9V+ZFfpP4jPVVlCHJk1CYOhSJJAW2r9OKsgVYFCUWSAtpW\n6cVZA60KEookBbSt0ouzBloVJBQpkiBHRnpt9iCrQpGkQHZV77BDq4KEIkkBbav04qyBVgUJ\nRZIC2lbpxVkDrQoSiiQFtK3Si7MGWhUkFEkKaFulF2cNtCpIKJIU0LaqTVwtFEkKaFvVJq4W\niiQFtK3Si7MGWhUkFCmSIEdGbeJQKJIU0LZKL84aaFWQUCQpoG1Vm7haKJIU0LZKL84aaFWQ\n4ETq7Egj3ZzSBNpWtYmrJTPtna5F2rMjDbKrJBTpsSo/MtO+y7VI3UhPVWkCbavaxNUSMvcU\nST/IkVGbOBSKFEmQI6M2cSgUSQpoW9UmrhaKJAW0rWoTVwtFiiTSY1V+UKRIIj1W5QdFkgLa\nVunFWQOtChKKJAW0rdKLswZaFSQUKZIgR0Zt4lAokhTQtkovzhpoVZBQpEiCHBm1iUOhSFJA\n26o2cbVQJCmgbZVenDXQqiChSFJA2yq9OGugVUFCkaSAtlV6cdZAq4KEIkUS6bEqPyiSFNC2\nqk1cLRQpkkiPVflBkaSAtlVt4mqhSFJA26o2cbVQJCmgbVWbuFookhTQtqpNXC0UKZIgR0Zt\n4lAokhTQtkovzhpoVZBQpEiCHBm1iUOhSFJA26o2cbVQJCmgbVWbuFookhTQtkovzhpoVZBQ\nJCmgbZVenDXQqiChSFJA26o2cbVQJCmgbVWbuFooUiSRHqvygyJJAW2r2sTVQpEiifRYlR8U\nKZIgR0Zt4lAokhTQtkovzhpoVZBQpEgiPVblB0WSAtpWtYmrhSJFEuTIqE0cCkWSAtpW6cVZ\nA60KEookBbStahNXC0WSAtpW6cVZA60KEooUSaTHqvygSFJA26o2cbVQJCmgbVWbuFookhTQ\ntqpNXC0USQpoW9UmrhaKFEmQIyO9NnuQVaFIUiC7qnfYoVVBQpEiCXJk1CYOhSJJAW2r2sTV\nQpGkgLZVbeJqoUiRBDkyahOHQpEiCXJk1CYOhSJJAW2r9OKsgVYFCUWSAtpWtYmrhSJFEumx\nKj8oUiRBjozaxKFQJCmgbVWbuFooUiSRHqvygyJJAW2r9OKsgVYFCUWSAtpW6cVZA60KEook\nBbStahNXC0WKJMiRUZs4NHOKFEmg80hCsBfpHxUBi8x/+TfVxuyuH14zZQtFKhBoW9UmrhZ7\nkdrjHq9UN5qRD3t3thkz9aq1G2Zc0kWRCgPaVrWJq8VepIBJc4wZ8nxwN17Z4G2VBq2gSCWA\n9FiVH/0TadmoDtNeccu479c1meVVCe8nY++nSIUBbavaxNXSL5G6Rj9qzI7zb169+trz9ywe\n4f9o4uz0L3fE0yC7qhdoW9UmrpbMtG+3EGnZiM7UvebqJYtH7ivS7nfSILuqF2hbpRdnDbQq\nSDLTvtNCpCkZa8yYOc8mn9rN2//PpJtThkiPVfkRokfBIu0J9iys+1mHMS3VT2yrXGPMzoEr\nKVIJID1W5Ud/RFpR4b9rtKtm5qamupGtZtqla5uuHZ+gSIUBbav04qyBVgVJf0RaWtnh3zRM\nGnre1M3G7J1ZO6xue8jfSTenNIG2VXpx1kCrgqQ/IhWKdHNKE2hbpRdnDbQqSCiSFNC2qk1c\nLRRJCmhb1SauFooUSZAjozZxKBRJCmhb1SauFookBbSt0ouzBloVJBQpkiBHRm3iUCiSFNC2\nqk1cLRRJCmhb1SauFooUSZAjI702e5BVoUhSILvKLVLRoUhSQNuqNnG1UCQpoG2VXpw10Kog\noUhSQNsqvThroFVBQpEiCXJk1CYOhSJJAW2r9OKsgVYFCUWSAtpW6cVZA60KEookBbStahNX\nC0WSAtpWtYmrhSJFEumxKj8okhTQtkovzhpoVZBQpEiCHBm1iUOhSFJA2yq9OGugVUFCkaSA\ntlVt4mqhSJFEeqzKD4okBbSt0ouzBloVJBQpkiBHRnptpQlFiiRIkaCorQpFkgLZVe5sKDoU\nKZJIj1X5QZEiCXJkpNdWmlAkKZCzzqd2RYciRRLkyKhNHApFiiTSY1V+UCQpoG1Vm7haKJIU\n0LZKL84aaFWQUKRIghwZtYlDoUhSQNuqNnG1UCQpoG1Vm7haKJIU0LZKL84aaFWQUCQpoG2V\nXpw10KogoUhSQNuqNnG1UCQpoG1Vm7haKJIU0LZKL84aaFWQUKRIghwZtYlDoUhSQNuqNnG1\nUCQpoG1Vm7haKJIU0LaqTVwtFEkKaFulF2cNtCpIKJIU0LZKL84aaFWQUCQpoG1Vm7haKJIU\n0LZKL84aaFWQUCQpoG2VXpw10KogoUhSQNuqNnG1UCQpoG1Vm7haKFIkkR6r8oMiSQFtq9rE\n1UKRpIC2VW3iaqFIkQQ5MmoTh0KRpIC2VW3iaqFIUkDbKr04a6BVQUKRpIC2VW3iaqFIkUR6\nrMoPiiQFtK1qE1cLRZIC2la1iauFIkkBbav04qyBVgUJTqRd29NIN6c0gbZVenHWQKuCJDPt\nO1yL1I10c0oTaFulF2cNtCpIQuaeIukHOTJqE4dCkaSAtlV6cdZAq4KEIkkBbavaxNVCkaSA\ntlVt4mqhSFJA2yq9OGugVUFCkSIJcmTUJg6FIkkBbavaxNVCkaSAtlV6cdZAq4KEIkkBbav0\n4qyBVgUJRYok0mNVflAkKaBtlV6cNdCqIKFIkQQ5MtJrK00okhTIWedeu6JDkaSAtlVt4mqh\nSFJA26o2cbVQJCmgbZVenDXQqiChSFJA26o2cbVQJCmgbZVenDXQqiChSFJA2yq9OGugVUFC\nkSKJ9FiVHxRJCmhbpRdnDbQqSChSJJEeq/KDIkkBbavaxNVCkaSAtlV6cdZAq4KEIkkBbav0\n4qyBVgUJRYokyJFRmzgUihRJpMeq/KBIUkDbqjZxtVAkKaBtlV6cNdCqIKFIkUR6rMoPiiQF\ntK1qE1cLRYok0mNVflAkKaBtlV6cNdCqIKFIkQQ5MmoTh0KRpIC2VXpx1kCrgoQiRRLkyKhN\nHApFkgLaVrWJq4UiRRLkyKhNHApFkgLaVrWJq4UiRRLkyKhNHApFkgLaVrWJq4UiRRLpsSo/\nKFIkQY6M2sShUCQpoG2VXpw10KogoUhSQNsqvThroFVBQpGkgLZVbeJqoUhSQNuqNnG1UCQp\noG1Vm7haKJIU0LZKL84aaFWQUCQpoG2VXpw10KogoUhSQNsqvThroFVBQpGkgLZVenHWQKuC\nhCJJAW2r9OKsgVYFCUWSAtpWtYmrhSJJAW2r9OKsgVYFCUWSAtpW6cVZA60KEookBbSt0ouz\nBloVJBQpkiBHRm3iUCiSFNC2Si/OGmhVkFAkKaBtVZu4WihSJEGOjNrEoVCkSCI9VuUHRZIC\n2la1iauFIkkBbav04qyBVgUJRZIC2lbpxVkDrQoSG5GaLh/o3+yuH14zZcv+txRJHuTIqE0c\nioVIy2pnBiJNvWrthhmXdO13S5EKAtpW6cVZA60KEguRHn/7GV+keGWDtxUatKLnLUUqAaTH\nqvywEMmYQKTlVQnv69j7e95SpMKAtlV6cdZAq4LEXqTFI/y7E2f3vE3/0d5daaSbU5pA26o2\ncbVkpn13n0UamRKox236j3bE06whIdyMRHpx1kCrgiQz7dv7KtKzyady83repv+oq9OK+Ha7\nf1cIrfHduOB74i244DviHbjgW7fhYrfFd+GC74k344LviLdb/bvuvW0FirStco0xOweu7Hmb\n91/nJv5OPwPkoD2+Bxe8Od6GC74znsAF37o9/9/Y0hHfnf+PbGmOt+KC74yH7IDuE/lE2h5f\nMjAebzHTLl3bdO34xH63/YMihUGRwlAu0qgKn4fM3pm1w+q8HvS87R8UKQyKFIZykbBQpDAo\nUhgUKQcUKQyKFAZFygFFCoMihUGRckCRwqBIYVCkHFCkMChSGBQpBxQpDIoUBkXKAUUKgyKF\nQZFyQJHCoEhhUKQcUKQwKFIYFCkHFCkMihQGRcoBRQqDIoVBkXJAkcKgSGFQpBxQpDAoUhgU\nKQcUKQyKFAZFygFFCoMihUGRckCRwqBIYVCkHFCkMChSGBQpBxQpDIoUBkXKAUUKgyKFQZFy\nQJHCoEhhUKQcUKQwKFIYFCkHFCkMihQGRcoBRQqDIoVBkXJAkcKgSGFQpBx09jf9HCQ6geMI\nDd7ViYsNLrnWfva/5LIiERIRKBIhDqBIhDiAIhHiAIpEiAMoEiEOoEiEOIAiEeIAikSIAygS\nIQ6gSIQ4gCIR4gCKRIgDKBIhDqBIhDiAIhHiAIpEiAMoEiEOoEiEOIAiEeIAikSIAygSIQ6g\nSIQ4gCIR4gCKRIgDKBIhDqBIhDiAIhWJ03IR+i86Yo/m+UEPXsiFq3WQcChSkShQpNNif/dv\nOo+JdSSW9rhwxH4/6EGBIp0Wi8UO/ucftRSW9+PPF/Z35Q5FKhKFinT0OP9m0ZGxjj4/RKEi\njVi/fs2cI8cVFvQ7v+hzHmUJRSoShYpUe5R/5aXq6liH/0zurk8feswPWlI33g+6YnO+efJH\nfmPMilMOPfWJ2Ev7PEShIl3if512tOmM3f7REWbT0GMHfPVFk36o1LfpB/r6Ae8+tRjlUQ9F\nKhKFivSzT8w3ZvuAeYFIDQc81tnwubrUjW/WgadtMXcM2NN1wrCdL50We3mfh+iTSD99vzEH\nfuHFXeaLQ7c2Tzy6OfUY6W/TD2RO5BapIChSkShYpBu+a8xt//lMINKLsb95r5dM6iYQ6afG\nvBlb+ZfYWmPutBcp8dInRngiXW+82BuN6fqn+zIPlfw2/UAUqUAoUpEoWKQN795kvvhAUqTE\nxQedPvl1k7oJRPqDMZtiz889MOE9vbMU6eDDDjvkkPN3eCLdZ8zcWEBd6jHS36YfiCIVCEUq\nEgWLZL47fdWRbUmRvI3Cz7990H2pm0CkBcF8z3m397cvW4p03po164JLPfrBHoyld98Fj5H5\nNvVAFKlAKFKRKFykBZ+f+N8mKVLH296PLvlq+qZbpKWxDcb8pj+vkXz8YK/EnvHuNZjUY6S/\npUh9hCIVicJF6vjQiStSIt15/Atdm742KnWTJVLbUWOaX/myC5HMN05/q/22ARtSj5H+NiPS\nyZcDrzwfIShSkShcJDPhVJMSqevaEw45duQ7qZsskcyTnznszMdir+zzEHYibTrniMNP/7NJ\nPUb628wD/fQ9x6NLEwkoUpEoUKRC6WgzZnls5z4/K1AkgoAiFQm3IiVOGvHOxm99dd8fUiRB\nKFKRcLxFeukb7z1qcOO+P6NIglCkIuFYpDAokiAUqUhQpGhDkYpEoSK1nnpLwTEv/24i+9tC\nRerHQ5DeoEhFolCRLv12cHNXbIExG7539OFffS71i9e+eKB/c8nXT1/q3TR+2HuB1H5KffZD\nFCqS/xCn+AcCHWaWJo8I+lnw8zcGf/C9Q97O+RCkNyhSkShQpLcO+Zt/s/mY93gifeHMv62p\nOWpP8Iv7jq31RXr038yLn/ZuvzXb/+H8D+zOeogCRQoe4vhb1q9fv8G0el/XP/Xe4P2o1n+u\neO3ls/4950OQ3qBIRaJAka4+PbipGn/MArNt8Kve2Mf+Gvzk7rcW+CJNv8B0xJrNnWcFP0x8\n+FdZD1GgSMFDDPhj9w/+Y3Jw82ysydsMxV7O9RCkNyhSkShQpM//2P86/2N7jlmQ/MHyAzel\nfhWIdOsI03xIV9PxS7/1rzO9b88fkvUQBYrkP0RrbNTnPzJ4dfD93I+2Bbd/jm0zpuPgu3I9\nBOkNilQkChTpoPnel+3HLjEpkbadfGX6V4FIz53UPP8M892f/+fs5pM8OW76VNZDFCiS/xBv\nH3P+c89++xj/MLrOT96Z/Pmuoy5pa/vxwTflegjSGxSpSBQm0o7Yn72vI0aYlEirTvpBZq9Z\nIJKpO+UrL//2a4kBG8zom435zQeyHqIwkZIP4bPrsDu8r3M/nD47xJMnHXzEj0+aleshSG9Q\npCJRqEjLjFnyoW0pkR47MmtHdVIkj80nNLTH9pgrJnuvnGxEWpa+e7IXwfz//+6O8E5b2yEL\ncj0E6Q2KVCQKEynhP+8699AjjzzygMMHm6fe/0hWhIxIg2cZc+hmc4G3ubjpk1l/UJhIwUO8\nfIH3umj3Yb/13Dk4fbK8jvu8V2MPHxTP9RCkNyhSkSjwNdLnJnuvi/x90h+8I9788Sn+vT3m\njp8as2n9HQeuX+/vir7vzC5jvj23/ZMvGVNrsbPBf4itR9Y2vDb4hL3eRi+2zv+h/xCfO3v9\nsuNGm1wPQXqDIhWJAkW66ozUHe+p3WPpd0uHnmXMicH9mcbEP/K69+tXvvB/Jntbl+Mtdn8H\nD/H3s474YOVa7849BwT77PyHeP3rAz54qf9d7w9BeoMiFYkCRVp3yIo+BF1g84Zsfx6C9AZF\nKhIFimQu/U7hMds/Z3eIkP1DkN6gSCVG66k/K/hvJ3zH6ojSIjxE+UGRCHEARSLEARSJEAdQ\nJEIcQJEIcQBFIsQBFIkQB1AkQhxAkQhxAEUixAEUiRAHUCRCHECRCHEARSLEARSJEAdQJEIc\nQJEIccD/Aij7gl1wHb1gAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "library(visdat)\n", - "df = gp_clinical %>% sample_n(1000)\n", - "vis_miss(df)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Diagnoses - ICD10" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "readv2_icd10 = head(fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/read_v2_icd10.csv\"), -3) %>% rename(read_2=\"read_code\", code =\"icd10_code\") %>% select(read_2, code)\n", - "readv3_icd10 = head(fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/read_ctv3_icd10.csv\"), -3)%>% rename(read_3=\"read_code\", code=\"icd10_code\") %>% select(read_3, code)" - ] - }, - { - "cell_type": "code", - "execution_count": 210, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Joining, by = \"read_2\"\n", - "\n", - "Joining, by = \"read_3\"\n", - "\n" - ] - } - ], - "source": [ - "gp_diagnoses_pre = gp_clinical %>% filter(read_2 %in% readv2_icd10$read_2 | read_3 %in% readv3_icd10$read_3)\n", - "gp_diagnoses_readv2 = gp_diagnoses_pre %>% filter(!is.na(read_2)) %>% left_join(readv2_icd10, on=\"read_2\") %>% drop_na(code) %>% mutate(origin=\"gp_read2\") %>% select(eid, origin, code, date)\n", - "gp_diagnoses_readv3 = gp_diagnoses_pre %>% filter(!is.na(read_3)) %>% left_join(readv3_icd10, on=\"read_3\") %>% drop_na(code) %>% mutate(origin=\"gp_read3\") %>% select(eid, origin, code, date)\n", - "gp_diagnoses_raw = rbind(gp_diagnoses_readv2, gp_diagnoses_readv3)" - ] - }, - { - "cell_type": "code", - "execution_count": 273, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "17781180" - ], - "text/latex": [ - "17781180" - ], - "text/markdown": [ - "17781180" - ], - "text/plain": [ - "[1] 17781180" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A grouped_df: 6 × 8
eidorigininstancenlevelcodemeaningdate
<int><chr><dbl><int><lgl><chr><chr><date>
3375683gp_read30 5NAZ016Z012019-01-01
5397213gp_read3042NAZ016Z012019-01-01
4141959gp_read2054NAL309L302017-09-29
5812168gp_read2024NAH609H602017-09-28
1246037gp_read2026NAB379B372017-09-22
2850667gp_read2012NAL988L982017-09-22
\n" - ], - "text/latex": [ - "A grouped\\_df: 6 × 8\n", - "\\begin{tabular}{llllllll}\n", - " eid & origin & instance & n & level & code & meaning & date\\\\\n", - " & & & & & & & \\\\\n", - "\\hline\n", - "\t 3375683 & gp\\_read3 & 0 & 5 & NA & Z016 & Z01 & 2019-01-01\\\\\n", - "\t 5397213 & gp\\_read3 & 0 & 42 & NA & Z016 & Z01 & 2019-01-01\\\\\n", - "\t 4141959 & gp\\_read2 & 0 & 54 & NA & L309 & L30 & 2017-09-29\\\\\n", - "\t 5812168 & gp\\_read2 & 0 & 24 & NA & H609 & H60 & 2017-09-28\\\\\n", - "\t 1246037 & gp\\_read2 & 0 & 26 & NA & B379 & B37 & 2017-09-22\\\\\n", - "\t 2850667 & gp\\_read2 & 0 & 12 & NA & L988 & L98 & 2017-09-22\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A grouped_df: 6 × 8\n", - "\n", - "| eid <int> | origin <chr> | instance <dbl> | n <int> | level <lgl> | code <chr> | meaning <chr> | date <date> |\n", - "|---|---|---|---|---|---|---|---|\n", - "| 3375683 | gp_read3 | 0 | 5 | NA | Z016 | Z01 | 2019-01-01 |\n", - "| 5397213 | gp_read3 | 0 | 42 | NA | Z016 | Z01 | 2019-01-01 |\n", - "| 4141959 | gp_read2 | 0 | 54 | NA | L309 | L30 | 2017-09-29 |\n", - "| 5812168 | gp_read2 | 0 | 24 | NA | H609 | H60 | 2017-09-28 |\n", - "| 1246037 | gp_read2 | 0 | 26 | NA | B379 | B37 | 2017-09-22 |\n", - "| 2850667 | gp_read2 | 0 | 12 | NA | L988 | L98 | 2017-09-22 |\n", - "\n" - ], - "text/plain": [ - " eid origin instance n level code meaning date \n", - "1 3375683 gp_read3 0 5 NA Z016 Z01 2019-01-01\n", - "2 5397213 gp_read3 0 42 NA Z016 Z01 2019-01-01\n", - "3 4141959 gp_read2 0 54 NA L309 L30 2017-09-29\n", - "4 5812168 gp_read2 0 24 NA H609 H60 2017-09-28\n", - "5 1246037 gp_read2 0 26 NA B379 B37 2017-09-22\n", - "6 2850667 gp_read2 0 12 NA L988 L98 2017-09-22" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_diagnoses = gp_diagnoses_raw %>% mutate(instance=0, level=NA) %>% distinct() %>% group_by(eid) %>% mutate(n = row_number()) %>% mutate(meaning=str_sub(code, 1, 3)) %>% select(c(eid, origin, instance, n, level, code, meaning, date))\n", - "nrow(gp_diagnoses)\n", - "head(gp_diagnoses %>% arrange(desc(date)))" - ] - }, - { - "cell_type": "code", - "execution_count": 212, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(gp_diagnoses, glue(\"{path}/codes_gp_diagnoses_210119.feather\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Procedures - Snomed CT" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "readv2_opcs4 = head(fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/read_v2_opcs4.csv\"), -3) %>% rename(read_2=\"read_code\", code =\"opcs_4.2_code\") %>% select(read_2, code)\n", - "readv3_opcs4 = head(fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/read_ctv3_opcs4.csv\"), -3)%>% rename(read_3=\"read_code\", code=\"opcs4_code\") %>% select(read_3, code)" - ] - }, - { - "cell_type": "code", - "execution_count": 214, - "metadata": {}, - "outputs": [], - "source": [ - "gp_procedures_pre = gp_clinical %>% filter(read_2 %in% readv2_opcs4$read_2 | read_3 %in% readv3_opcs4$read_3)" - ] - }, - { - "cell_type": "code", - "execution_count": 215, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Joining, by = \"read_2\"\n", - "\n", - "Joining, by = \"read_3\"\n", - "\n" - ] - } - ], - "source": [ - "gp_procedures_readv2 = gp_procedures_pre %>% filter(!is.na(read_2)) %>% left_join(readv2_opcs4, on=\"read_2\") %>% drop_na(code) %>% mutate(origin=\"gp_read2\") %>% select(eid, origin, code, date)\n", - "gp_procedures_readv3 = gp_procedures_pre %>% filter(!is.na(read_3)) %>% left_join(readv3_opcs4, on=\"read_3\") %>% drop_na(code) %>% mutate(origin=\"gp_read3\") %>% select(eid, origin, code, date)" - ] - }, - { - "cell_type": "code", - "execution_count": 216, - "metadata": {}, - "outputs": [], - "source": [ - "gp_procedures_raw = rbind(gp_procedures_readv2, gp_procedures_readv3) %>% mutate(instance=0, level=NA) %>% distinct() %>% group_by(eid) %>% mutate(n = row_number()) " - ] - }, - { - "cell_type": "code", - "execution_count": 217, - "metadata": {}, - "outputs": [], - "source": [ - "# opcs4 to snomed mapping\n", - "\n", - "concept_ids_opcs4 = concept %>% filter(vocabulary_id == \"OPCS4\") %>% mutate(concept_code = str_replace(concept_code, \"\\\\.\", \"\"))\n", - "concept_ids_snomed = concept %>% filter(vocabulary_id == \"SNOMED\" & domain_id==\"Procedure\") \n", - "\n", - "# check necessary opcs4 concept ids\n", - "concept_ids = concept_ids_opcs4 %>% mutate(concept_id_1 = concept_id)\n", - "cr_filtered = concept_relationship %>% filter(concept_id_1 %in% concept_ids_opcs4$concept_id) %>% filter(concept_id_2 %in% concept_ids_snomed$concept_id) %>% arrange(concept_id_1)\n", - "\n", - "mapping_opcs4_snomed = concept_ids_opcs4 %>% \n", - " left_join(cr_filtered %>% select(concept_id_1, concept_id_2), by=c(\"concept_id\"=\"concept_id_1\")) %>% \n", - " left_join(concept_ids_snomed %>% select(concept_id, concept_code, concept_name), by=c(\"concept_id_2\"=\"concept_id\")) %>% \n", - " mutate(code = concept_code.x, meaning=concept_code.y, name=concept_name.y)" - ] - }, - { - "cell_type": "code", - "execution_count": 272, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "5689793" - ], - "text/latex": [ - "5689793" - ], - "text/markdown": [ - "5689793" - ], - "text/plain": [ - "[1] 5689793" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A grouped_df: 6 × 9
eidorigininstancenleveldatecodemeaningname
<int><chr><dbl><int><lgl><date><chr><chr><chr>
1124200gp_read2035NA2017-09-20D071172630005Syringing ear to remove wax
1369937gp_read2065NA2017-09-20X36 82078001 Collection of blood specimen for laboratory
1444398gp_read20 6NA2017-09-20U333448489007Removal of ambulatory blood pressure monitor
1494963gp_read2012NA2017-09-20X37876601001 Intramuscular injection
1612512gp_read2011NA2017-09-20X37876601001 Intramuscular injection
1630054gp_read2052NA2017-09-20X37 76601001 Intramuscular injection
\n" - ], - "text/latex": [ - "A grouped\\_df: 6 × 9\n", - "\\begin{tabular}{lllllllll}\n", - " eid & origin & instance & n & level & date & code & meaning & name\\\\\n", - " & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1124200 & gp\\_read2 & 0 & 35 & NA & 2017-09-20 & D071 & 172630005 & Syringing ear to remove wax \\\\\n", - "\t 1369937 & gp\\_read2 & 0 & 65 & NA & 2017-09-20 & X36 & 82078001 & Collection of blood specimen for laboratory \\\\\n", - "\t 1444398 & gp\\_read2 & 0 & 6 & NA & 2017-09-20 & U333 & 448489007 & Removal of ambulatory blood pressure monitor\\\\\n", - "\t 1494963 & gp\\_read2 & 0 & 12 & NA & 2017-09-20 & X378 & 76601001 & Intramuscular injection \\\\\n", - "\t 1612512 & gp\\_read2 & 0 & 11 & NA & 2017-09-20 & X378 & 76601001 & Intramuscular injection \\\\\n", - "\t 1630054 & gp\\_read2 & 0 & 52 & NA & 2017-09-20 & X37 & 76601001 & Intramuscular injection \\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A grouped_df: 6 × 9\n", - "\n", - "| eid <int> | origin <chr> | instance <dbl> | n <int> | level <lgl> | date <date> | code <chr> | meaning <chr> | name <chr> |\n", - "|---|---|---|---|---|---|---|---|---|\n", - "| 1124200 | gp_read2 | 0 | 35 | NA | 2017-09-20 | D071 | 172630005 | Syringing ear to remove wax |\n", - "| 1369937 | gp_read2 | 0 | 65 | NA | 2017-09-20 | X36 | 82078001 | Collection of blood specimen for laboratory |\n", - "| 1444398 | gp_read2 | 0 | 6 | NA | 2017-09-20 | U333 | 448489007 | Removal of ambulatory blood pressure monitor |\n", - "| 1494963 | gp_read2 | 0 | 12 | NA | 2017-09-20 | X378 | 76601001 | Intramuscular injection |\n", - "| 1612512 | gp_read2 | 0 | 11 | NA | 2017-09-20 | X378 | 76601001 | Intramuscular injection |\n", - "| 1630054 | gp_read2 | 0 | 52 | NA | 2017-09-20 | X37 | 76601001 | Intramuscular injection |\n", - "\n" - ], - "text/plain": [ - " eid origin instance n level date code meaning \n", - "1 1124200 gp_read2 0 35 NA 2017-09-20 D071 172630005\n", - "2 1369937 gp_read2 0 65 NA 2017-09-20 X36 82078001 \n", - "3 1444398 gp_read2 0 6 NA 2017-09-20 U333 448489007\n", - "4 1494963 gp_read2 0 12 NA 2017-09-20 X378 76601001 \n", - "5 1612512 gp_read2 0 11 NA 2017-09-20 X378 76601001 \n", - "6 1630054 gp_read2 0 52 NA 2017-09-20 X37 76601001 \n", - " name \n", - "1 Syringing ear to remove wax \n", - "2 Collection of blood specimen for laboratory \n", - "3 Removal of ambulatory blood pressure monitor\n", - "4 Intramuscular injection \n", - "5 Intramuscular injection \n", - "6 Intramuscular injection " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_procedures = gp_procedures_raw %>% left_join(mapping_opcs4_snomed %>% select(code, meaning, name), by=\"code\") %>% select(eid, origin, instance, n, level, date, code, meaning, name) %>% arrange(eid, date)\n", - "nrow(gp_procedures)\n", - "head(gp_procedures %>% arrange(desc(date)))" - ] - }, - { - "cell_type": "code", - "execution_count": 222, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(gp_procedures, glue(\"{path}/codes_gp_procedures_210119.feather\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Measurements - Snomed CT" - ] - }, - { - "cell_type": "code", - "execution_count": 257, - "metadata": {}, - "outputs": [], - "source": [ - "readv2_readv3 = head(fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/read_v2_read_ctv3.csv\"), -3) %>% rename(read_2=\"READV2_CODE\", code =\"READV3_CODE\", name =\"TERMV3_DESC\") %>% select(read_2, code)" - ] - }, - { - "cell_type": "code", - "execution_count": 250, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas = gp_clinical %>% filter(!is.na(value1)) %>% distinct()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas_readv2 = gp_meas %>% filter(!is.na(read_2)) %>% left_join(readv2_readv3, by=\"read_2\")\n", - "gp_meas_readv2 " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas_readv3 = gp_meas %>% filter(!is.na(read_3)) %>% mutate(code=read_3)\n", - "gp_meas_readv3 " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas_all = rbind(gp_meas_readv2, gp_meas_readv3) %>% distinct() %>% group_by(eid) " - ] - }, - { - "cell_type": "code", - "execution_count": 296, - "metadata": {}, - "outputs": [], - "source": [ - "readv3_lkp = head(fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/read_ctv3_lkp.csv\"), -3)%>% rename(code=\"read_code\", name =\"term_description\") %>% select(code, name)\n", - "readv3_sct = fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/CTV3SCTMAP.csv\")%>% rename(SCUI=\"V1\", STUI=\"V2\", TCUI=\"V3\", TTUI=\"V4\")%>% rename(code=\"SCUI\", meaning=\"TCUI\") %>% select(code, meaning)\n", - "#readct_sct = fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/RCTSCTMAP.csv\")%>% rename(SCUI=\"V1\", STUI=\"V2\", TCUI=\"V3\", TTUI=\"V4\")#%>% rename(code=\"read_code\", name =\"term_description\") %>% select(code, name)#" - ] - }, - { - "cell_type": "code", - "execution_count": 266, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas = gp_meas_all %>% left_join(readv3_lkp, by=\"code\")" - ] - }, - { - "cell_type": "code", - "execution_count": 302, - "metadata": {}, - "outputs": [], - "source": [ - "concept_ids_snomed = concept %>% filter(vocabulary_id == \"SNOMED\") %>% rename(name=\"concept_name\", meaning=\"concept_code\") %>% select(meaning, name)" - ] - }, - { - "cell_type": "code", - "execution_count": 309, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas_uncleaned = gp_meas_all %>% left_join(readv3_sct, by=\"code\") %>% left_join(concept_ids_snomed, by=\"meaning\") %>% distinct()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas_cleaned_1 = gp_meas_uncleaned %>% select(eid, date, code, value1, value2, value3, meaning, name) %>% distinct() %>% filter(value1!=0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas_cleaned_2 = gp_meas_cleaned_1 %>% ungroup() %>% filter(!is.na(meaning))" - ] - }, - { - "cell_type": "code", - "execution_count": 376, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message in mask$eval_all_filter(dots, env_filter):\n", - "\"NAs introduced by coercion\"\n", - "Warning message in mask$eval_all_filter(dots, env_filter):\n", - "\"NAs introduced by coercion\"\n" - ] - } - ], - "source": [ - "double_df = gp_meas_cleaned_2 %>% filter(!is.na(as.numeric(value1)) & !is.na(as.numeric(value2))) " - ] - }, - { - "cell_type": "code", - "execution_count": 410, - "metadata": {}, - "outputs": [], - "source": [ - "# clean blood pressure and map to systolic and diastolic\n", - "bp_double_mapped = double_df %>% filter(name %in% c('O/E - blood pressure reading', 'O/E - BP reading normal', 'O/E - BP reading raised',\n", - " 'O/E - BP borderline raised', 'O/E - Systolic BP reading', 'O/E - Diastolic BP reading', 'Sitting blood pressure', \"Average home systolic blood pressure\",\n", - " 'Standing blood pressure','24 hr blood pressure monitoring')) %>% \n", - " #filter(name %in% c('O/E - Systolic BP reading', 'O/E - Diastolic BP reading', \"Average home systolic blood pressure\")) %>%\n", - " filter(as.numeric(value1)>0) %>% \n", - " mutate(value_high = pmax(as.numeric(value1), as.numeric(value2)), value_low = pmin(as.numeric(value1), as.numeric(value2))) %>% \n", - " filter(value_high>40 & value_low>20 & value_high<400 & value_low<300) %>% rename(\"163030003\" = \"value_high\", \"163031004\" = \"value_low\") %>% \n", - " select(-c(meaning, name)) %>% pivot_longer(c(\"163030003\", \"163031004\"), names_to=\"meaning\", values_to=\"value\") %>% left_join(concept_ids_snomed, by=\"meaning\") %>% distinct() %>% arrange(eid) %>%\n", - " select(eid, date, code, value1, value2, value3, meaning, name, value)" - ] - }, - { - "cell_type": "code", - "execution_count": 422, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message in mask$eval_all_filter(dots, env_filter):\n", - "\"NAs introduced by coercion\"\n", - "Warning message in mask$eval_all_filter(dots, env_filter):\n", - "\"NAs introduced by coercion\"\n", - "Warning message:\n", - "\"Problem with `mutate()` input `value`.\n", - "\u001b[34mi\u001b[39m NAs introduced by coercion\n", - "\u001b[34mi\u001b[39m Input `value` is `case_when(...)`.\"\n", - "Warning message in eval_tidy(pair$lhs, env = default_env):\n", - "\"NAs introduced by coercion\"\n", - "Warning message:\n", - "\"Problem with `mutate()` input `value`.\n", - "\u001b[34mi\u001b[39m NAs introduced by coercion\n", - "\u001b[34mi\u001b[39m Input `value` is `case_when(...)`.\"\n", - "Warning message in eval_tidy(pair$rhs, env = default_env):\n", - "\"NAs introduced by coercion\"\n", - "Warning message:\n", - "\"Problem with `mutate()` input `value`.\n", - "\u001b[34mi\u001b[39m NAs introduced by coercion\n", - "\u001b[34mi\u001b[39m Input `value` is `case_when(...)`.\"\n", - "Warning message in eval_tidy(pair$lhs, env = default_env):\n", - "\"NAs introduced by coercion\"\n", - "Warning message:\n", - "\"Problem with `mutate()` input `value`.\n", - "\u001b[34mi\u001b[39m NAs introduced by coercion\n", - "\u001b[34mi\u001b[39m Input `value` is `case_when(...)`.\"\n", - "Warning message in eval_tidy(pair$rhs, env = default_env):\n", - "\"NAs introduced by coercion\"\n" - ] - } - ], - "source": [ - "gp_meas_single = gp_meas_cleaned_2 %>% filter(is.na(as.numeric(value1)) | is.na(as.numeric(value2))) %>%\n", - " mutate(value=case_when(!is.na(as.numeric(value1)) ~ as.numeric(value1), is.na(as.numeric(value1)) ~ as.numeric(value2))) %>% filter(!is.na(value))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gp_meas_cleaned_3 = rbind(gp_meas_single, bp_double_mapped) %>% distinct() %>% arrange(eid, date)\n", - "gp_meas_cleaned_3" - ] - }, - { - "cell_type": "code", - "execution_count": 428, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(gp_meas_cleaned_3, glue(\"{path}/codes_gp_measurements_210120.feather\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Prescriptions - RXNorm" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T09:28:34.328613Z", - "start_time": "2020-12-23T09:27:50.059Z" - } - }, - "outputs": [], - "source": [ - "gp_scripts = fread(\"/data/project/uk_bb/cvd/data/ukb_downloads/updated_showcase_43098/ukb_data/records/gp_scripts.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "gp_scripts[gp_scripts == \"\"] <- NA" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "gp_scripts = gp_scripts %>% mutate(date = ymd(as.Date(fast_strptime(issue_date, \"%d/%m/%Y\"))))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "gp_scripts_names_available = gp_scripts %>% filter(!is.na(drug_name))" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [], - "source": [ - "gp_scripts_read_available = gp_scripts %>% filter(is.na(drug_name))" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "drug_names = (gp_scripts_names_available %>% count(drug_name, sort=TRUE))$drug_name" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "library(jsonlite)\n", - "write_json(drug_names, glue(\"{path}/drug_names.json\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "name_umls_link = arrow::read_feather(glue(\"{path}/drug_names_umls_linked.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "drugs_rxnorm = arrow::read_feather(glue(\"{path}/drug_names_umls_linked_rxnorm.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "rx_mapping = concept %>% filter(vocabulary_id %in% c('RxNorm','RxNorm Extension')) %>% select(concept_code, concept_name) %>% rename(rx_code =\"concept_code\", name=\"concept_name\")" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Joining, by = \"rx_code\"\n", - "\n" - ] - } - ], - "source": [ - "rx_norm_mapping_table = drugs_rxnorm %>% select(drug_name, rx_code) %>% filter(rx_code != \"\") %>% distinct() %>% left_join(rx_mapping, on=\"rx_code\")" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Joining, by = \"drug_name\"\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 56629816 × 5
eiddatedrug_namerx_codename
<int><date><chr><chr><chr>
10000181996-11-30Doxycycline 100mg capsules 3640 doxycycline
10000181997-09-12Propranolol 40mg tablets 8787 propranolol
10000181997-10-10Propranolol 40mg tablets 8787 propranolol
10000181997-10-10Noriday 350microgram tablets (Pfizer Ltd) NA NA
10000181998-01-19Propranolol 40mg tablets 8787 propranolol
10000181998-01-19Propranolol 80mg tablets 8787 propranolol
10000181998-01-19Gamolenic acid 40mg capsules 25605gamma-linolenic acid
10000181998-03-13Propranolol 80mg tablets 8787 propranolol
10000181998-03-25Amoxicillin 250mg capsules 723 amoxicillin
10000181998-04-16Amoxicillin 250mg capsules 723 amoxicillin
10000181998-04-24Metronidazole 200mg tablets 6922 metronidazole
10000181998-06-19Mebeverine 135mg tablets 29410mebeverine
10000181998-06-19Propranolol 80mg tablets 8787 propranolol
10000181998-08-14Gentisone HC ear drops (AMCo) 5492 hydrocortisone
10000181999-01-20Gamolenic acid 40mg capsules 25605gamma-linolenic acid
10000181999-01-20Gentisone HC ear drops (AMCo) 5492 hydrocortisone
10000182001-01-12Aciclovir 200mg dispersible tablets 281 acyclovir
10000182001-01-12Doxycycline 100mg capsules 3640 doxycycline
10000182003-11-17Aciclovir 200mg dispersible tablets 281 acyclovir
10000182003-11-17Doxycycline 100mg capsules 3640 doxycycline
10000182003-11-18Doxycycline 100mg capsules 3640 doxycycline
10000182003-11-24Beclometasone 50micrograms/dose nasal spray1347 beclomethasone
10000182005-06-08Atenolol 50mg tablets 1202 atenolol
10000182005-06-09Atenolol 50mg tablets 1202 atenolol
10000182005-06-23Atenolol 50mg tablets 1202 atenolol
10000182005-06-24Atenolol 50mg tablets 1202 atenolol
10000182005-09-01Atenolol 50mg tablets 1202 atenolol
10000182005-10-07Atenolol 50mg tablets 1202 atenolol
10000182005-11-08Atenolol 50mg tablets 1202 atenolol
10000182005-12-05Atenolol 50mg tablets 1202 atenolol
60251982015-01-23Ramipril 2.5mg capsules 35296ramipril
60251982015-01-23Simvastatin 40mg tablets36567simvastatin
60251982015-01-23Fenbid 5% gel (AMCo) NA NA
60251982015-02-27Ramipril 2.5mg capsules 35296ramipril
60251982015-02-27Simvastatin 40mg tablets36567simvastatin
60251982015-02-27Fenbid 5% gel (AMCo) NA NA
60251982015-05-05Ramipril 2.5mg capsules 35296ramipril
60251982015-05-05Simvastatin 40mg tablets36567simvastatin
60251982015-05-05Fenbid 5% gel (AMCo) NA NA
60251982015-06-24Ramipril 2.5mg capsules 35296ramipril
60251982015-06-24Simvastatin 40mg tablets36567simvastatin
60251982015-06-24Fenbid 5% gel (AMCo) NA NA
60251982015-08-19Ramipril 2.5mg capsules 35296ramipril
60251982015-08-19Simvastatin 40mg tablets36567simvastatin
60251982015-08-19Fenbid 5% gel (AMCo) NA NA
60251982015-10-14Ramipril 2.5mg capsules 35296ramipril
60251982015-10-14Simvastatin 40mg tablets36567simvastatin
60251982015-10-14Fenbid 5% gel (AMCo) NA NA
60251982015-12-10Ramipril 2.5mg capsules 35296ramipril
60251982015-12-10Simvastatin 40mg tablets36567simvastatin
60251982015-12-10Fenbid 5% gel (AMCo) NA NA
60251982016-02-03Ramipril 2.5mg capsules 35296ramipril
60251982016-02-03Simvastatin 40mg tablets36567simvastatin
60251982016-02-03Fenbid 5% gel (AMCo) NA NA
60251982016-04-06Ramipril 2.5mg capsules 35296ramipril
60251982016-04-06Simvastatin 40mg tablets36567simvastatin
60251982016-04-06Fenbid 5% gel (AMCo) NA NA
60251982016-05-25Ramipril 2.5mg capsules 35296ramipril
60251982016-05-25Simvastatin 40mg tablets36567simvastatin
60251982016-05-25Fenbid 5% gel (AMCo) NA NA
\n" - ], - "text/latex": [ - "A data.table: 56629816 × 5\n", - "\\begin{tabular}{lllll}\n", - " eid & date & drug\\_name & rx\\_code & name\\\\\n", - " & & & & \\\\\n", - "\\hline\n", - "\t 1000018 & 1996-11-30 & Doxycycline 100mg capsules & 3640 & doxycycline \\\\\n", - "\t 1000018 & 1997-09-12 & Propranolol 40mg tablets & 8787 & propranolol \\\\\n", - "\t 1000018 & 1997-10-10 & Propranolol 40mg tablets & 8787 & propranolol \\\\\n", - "\t 1000018 & 1997-10-10 & Noriday 350microgram tablets (Pfizer Ltd) & NA & NA \\\\\n", - "\t 1000018 & 1998-01-19 & Propranolol 40mg tablets & 8787 & propranolol \\\\\n", - "\t 1000018 & 1998-01-19 & Propranolol 80mg tablets & 8787 & propranolol \\\\\n", - "\t 1000018 & 1998-01-19 & Gamolenic acid 40mg capsules & 25605 & gamma-linolenic acid\\\\\n", - "\t 1000018 & 1998-03-13 & Propranolol 80mg tablets & 8787 & propranolol \\\\\n", - "\t 1000018 & 1998-03-25 & Amoxicillin 250mg capsules & 723 & amoxicillin \\\\\n", - "\t 1000018 & 1998-04-16 & Amoxicillin 250mg capsules & 723 & amoxicillin \\\\\n", - "\t 1000018 & 1998-04-24 & Metronidazole 200mg tablets & 6922 & metronidazole \\\\\n", - "\t 1000018 & 1998-06-19 & Mebeverine 135mg tablets & 29410 & mebeverine \\\\\n", - "\t 1000018 & 1998-06-19 & Propranolol 80mg tablets & 8787 & propranolol \\\\\n", - "\t 1000018 & 1998-08-14 & Gentisone HC ear drops (AMCo) & 5492 & hydrocortisone \\\\\n", - "\t 1000018 & 1999-01-20 & Gamolenic acid 40mg capsules & 25605 & gamma-linolenic acid\\\\\n", - "\t 1000018 & 1999-01-20 & Gentisone HC ear drops (AMCo) & 5492 & hydrocortisone \\\\\n", - "\t 1000018 & 2001-01-12 & Aciclovir 200mg dispersible tablets & 281 & acyclovir \\\\\n", - "\t 1000018 & 2001-01-12 & Doxycycline 100mg capsules & 3640 & doxycycline \\\\\n", - "\t 1000018 & 2003-11-17 & Aciclovir 200mg dispersible tablets & 281 & acyclovir \\\\\n", - "\t 1000018 & 2003-11-17 & Doxycycline 100mg capsules & 3640 & doxycycline \\\\\n", - "\t 1000018 & 2003-11-18 & Doxycycline 100mg capsules & 3640 & doxycycline \\\\\n", - "\t 1000018 & 2003-11-24 & Beclometasone 50micrograms/dose nasal spray & 1347 & beclomethasone \\\\\n", - "\t 1000018 & 2005-06-08 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t 1000018 & 2005-06-09 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t 1000018 & 2005-06-23 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t 1000018 & 2005-06-24 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t 1000018 & 2005-09-01 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t 1000018 & 2005-10-07 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t 1000018 & 2005-11-08 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t 1000018 & 2005-12-05 & Atenolol 50mg tablets & 1202 & atenolol \\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 6025198 & 2015-01-23 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2015-01-23 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2015-01-23 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2015-02-27 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2015-02-27 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2015-02-27 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2015-05-05 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2015-05-05 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2015-05-05 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2015-06-24 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2015-06-24 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2015-06-24 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2015-08-19 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2015-08-19 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2015-08-19 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2015-10-14 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2015-10-14 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2015-10-14 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2015-12-10 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2015-12-10 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2015-12-10 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2016-02-03 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2016-02-03 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2016-02-03 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2016-04-06 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2016-04-06 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2016-04-06 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\t 6025198 & 2016-05-25 & Ramipril 2.5mg capsules & 35296 & ramipril \\\\\n", - "\t 6025198 & 2016-05-25 & Simvastatin 40mg tablets & 36567 & simvastatin\\\\\n", - "\t 6025198 & 2016-05-25 & Fenbid 5\\% gel (AMCo) & NA & NA \\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 56629816 × 5\n", - "\n", - "| eid <int> | date <date> | drug_name <chr> | rx_code <chr> | name <chr> |\n", - "|---|---|---|---|---|\n", - "| 1000018 | 1996-11-30 | Doxycycline 100mg capsules | 3640 | doxycycline |\n", - "| 1000018 | 1997-09-12 | Propranolol 40mg tablets | 8787 | propranolol |\n", - "| 1000018 | 1997-10-10 | Propranolol 40mg tablets | 8787 | propranolol |\n", - "| 1000018 | 1997-10-10 | Noriday 350microgram tablets (Pfizer Ltd) | NA | NA |\n", - "| 1000018 | 1998-01-19 | Propranolol 40mg tablets | 8787 | propranolol |\n", - "| 1000018 | 1998-01-19 | Propranolol 80mg tablets | 8787 | propranolol |\n", - "| 1000018 | 1998-01-19 | Gamolenic acid 40mg capsules | 25605 | gamma-linolenic acid |\n", - "| 1000018 | 1998-03-13 | Propranolol 80mg tablets | 8787 | propranolol |\n", - "| 1000018 | 1998-03-25 | Amoxicillin 250mg capsules | 723 | amoxicillin |\n", - "| 1000018 | 1998-04-16 | Amoxicillin 250mg capsules | 723 | amoxicillin |\n", - "| 1000018 | 1998-04-24 | Metronidazole 200mg tablets | 6922 | metronidazole |\n", - "| 1000018 | 1998-06-19 | Mebeverine 135mg tablets | 29410 | mebeverine |\n", - "| 1000018 | 1998-06-19 | Propranolol 80mg tablets | 8787 | propranolol |\n", - "| 1000018 | 1998-08-14 | Gentisone HC ear drops (AMCo) | 5492 | hydrocortisone |\n", - "| 1000018 | 1999-01-20 | Gamolenic acid 40mg capsules | 25605 | gamma-linolenic acid |\n", - "| 1000018 | 1999-01-20 | Gentisone HC ear drops (AMCo) | 5492 | hydrocortisone |\n", - "| 1000018 | 2001-01-12 | Aciclovir 200mg dispersible tablets | 281 | acyclovir |\n", - "| 1000018 | 2001-01-12 | Doxycycline 100mg capsules | 3640 | doxycycline |\n", - "| 1000018 | 2003-11-17 | Aciclovir 200mg dispersible tablets | 281 | acyclovir |\n", - "| 1000018 | 2003-11-17 | Doxycycline 100mg capsules | 3640 | doxycycline |\n", - "| 1000018 | 2003-11-18 | Doxycycline 100mg capsules | 3640 | doxycycline |\n", - "| 1000018 | 2003-11-24 | Beclometasone 50micrograms/dose nasal spray | 1347 | beclomethasone |\n", - "| 1000018 | 2005-06-08 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| 1000018 | 2005-06-09 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| 1000018 | 2005-06-23 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| 1000018 | 2005-06-24 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| 1000018 | 2005-09-01 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| 1000018 | 2005-10-07 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| 1000018 | 2005-11-08 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| 1000018 | 2005-12-05 | Atenolol 50mg tablets | 1202 | atenolol |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 6025198 | 2015-01-23 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2015-01-23 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2015-01-23 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2015-02-27 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2015-02-27 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2015-02-27 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2015-05-05 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2015-05-05 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2015-05-05 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2015-06-24 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2015-06-24 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2015-06-24 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2015-08-19 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2015-08-19 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2015-08-19 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2015-10-14 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2015-10-14 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2015-10-14 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2015-12-10 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2015-12-10 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2015-12-10 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2016-02-03 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2016-02-03 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2016-02-03 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2016-04-06 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2016-04-06 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2016-04-06 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "| 6025198 | 2016-05-25 | Ramipril 2.5mg capsules | 35296 | ramipril |\n", - "| 6025198 | 2016-05-25 | Simvastatin 40mg tablets | 36567 | simvastatin |\n", - "| 6025198 | 2016-05-25 | Fenbid 5% gel (AMCo) | NA | NA |\n", - "\n" - ], - "text/plain": [ - " eid date drug_name rx_code\n", - "1 1000018 1996-11-30 Doxycycline 100mg capsules 3640 \n", - "2 1000018 1997-09-12 Propranolol 40mg tablets 8787 \n", - "3 1000018 1997-10-10 Propranolol 40mg tablets 8787 \n", - "4 1000018 1997-10-10 Noriday 350microgram tablets (Pfizer Ltd) NA \n", - "5 1000018 1998-01-19 Propranolol 40mg tablets 8787 \n", - "6 1000018 1998-01-19 Propranolol 80mg tablets 8787 \n", - "7 1000018 1998-01-19 Gamolenic acid 40mg capsules 25605 \n", - "8 1000018 1998-03-13 Propranolol 80mg tablets 8787 \n", - "9 1000018 1998-03-25 Amoxicillin 250mg capsules 723 \n", - "10 1000018 1998-04-16 Amoxicillin 250mg capsules 723 \n", - "11 1000018 1998-04-24 Metronidazole 200mg tablets 6922 \n", - "12 1000018 1998-06-19 Mebeverine 135mg tablets 29410 \n", - "13 1000018 1998-06-19 Propranolol 80mg tablets 8787 \n", - "14 1000018 1998-08-14 Gentisone HC ear drops (AMCo) 5492 \n", - "15 1000018 1999-01-20 Gamolenic acid 40mg capsules 25605 \n", - "16 1000018 1999-01-20 Gentisone HC ear drops (AMCo) 5492 \n", - "17 1000018 2001-01-12 Aciclovir 200mg dispersible tablets 281 \n", - "18 1000018 2001-01-12 Doxycycline 100mg capsules 3640 \n", - "19 1000018 2003-11-17 Aciclovir 200mg dispersible tablets 281 \n", - "20 1000018 2003-11-17 Doxycycline 100mg capsules 3640 \n", - "21 1000018 2003-11-18 Doxycycline 100mg capsules 3640 \n", - "22 1000018 2003-11-24 Beclometasone 50micrograms/dose nasal spray 1347 \n", - "23 1000018 2005-06-08 Atenolol 50mg tablets 1202 \n", - "24 1000018 2005-06-09 Atenolol 50mg tablets 1202 \n", - "25 1000018 2005-06-23 Atenolol 50mg tablets 1202 \n", - "26 1000018 2005-06-24 Atenolol 50mg tablets 1202 \n", - "27 1000018 2005-09-01 Atenolol 50mg tablets 1202 \n", - "28 1000018 2005-10-07 Atenolol 50mg tablets 1202 \n", - "29 1000018 2005-11-08 Atenolol 50mg tablets 1202 \n", - "30 1000018 2005-12-05 Atenolol 50mg tablets 1202 \n", - " \n", - "56629787 6025198 2015-01-23 Ramipril 2.5mg capsules 35296 \n", - "56629788 6025198 2015-01-23 Simvastatin 40mg tablets 36567 \n", - "56629789 6025198 2015-01-23 Fenbid 5% gel (AMCo) NA \n", - "56629790 6025198 2015-02-27 Ramipril 2.5mg capsules 35296 \n", - "56629791 6025198 2015-02-27 Simvastatin 40mg tablets 36567 \n", - "56629792 6025198 2015-02-27 Fenbid 5% gel (AMCo) NA \n", - "56629793 6025198 2015-05-05 Ramipril 2.5mg capsules 35296 \n", - "56629794 6025198 2015-05-05 Simvastatin 40mg tablets 36567 \n", - "56629795 6025198 2015-05-05 Fenbid 5% gel (AMCo) NA \n", - "56629796 6025198 2015-06-24 Ramipril 2.5mg capsules 35296 \n", - "56629797 6025198 2015-06-24 Simvastatin 40mg tablets 36567 \n", - "56629798 6025198 2015-06-24 Fenbid 5% gel (AMCo) NA \n", - "56629799 6025198 2015-08-19 Ramipril 2.5mg capsules 35296 \n", - "56629800 6025198 2015-08-19 Simvastatin 40mg tablets 36567 \n", - "56629801 6025198 2015-08-19 Fenbid 5% gel (AMCo) NA \n", - "56629802 6025198 2015-10-14 Ramipril 2.5mg capsules 35296 \n", - "56629803 6025198 2015-10-14 Simvastatin 40mg tablets 36567 \n", - "56629804 6025198 2015-10-14 Fenbid 5% gel (AMCo) NA \n", - "56629805 6025198 2015-12-10 Ramipril 2.5mg capsules 35296 \n", - "56629806 6025198 2015-12-10 Simvastatin 40mg tablets 36567 \n", - "56629807 6025198 2015-12-10 Fenbid 5% gel (AMCo) NA \n", - "56629808 6025198 2016-02-03 Ramipril 2.5mg capsules 35296 \n", - "56629809 6025198 2016-02-03 Simvastatin 40mg tablets 36567 \n", - "56629810 6025198 2016-02-03 Fenbid 5% gel (AMCo) NA \n", - "56629811 6025198 2016-04-06 Ramipril 2.5mg capsules 35296 \n", - "56629812 6025198 2016-04-06 Simvastatin 40mg tablets 36567 \n", - "56629813 6025198 2016-04-06 Fenbid 5% gel (AMCo) NA \n", - "56629814 6025198 2016-05-25 Ramipril 2.5mg capsules 35296 \n", - "56629815 6025198 2016-05-25 Simvastatin 40mg tablets 36567 \n", - "56629816 6025198 2016-05-25 Fenbid 5% gel (AMCo) NA \n", - " name \n", - "1 doxycycline \n", - "2 propranolol \n", - "3 propranolol \n", - "4 NA \n", - "5 propranolol \n", - "6 propranolol \n", - "7 gamma-linolenic acid\n", - "8 propranolol \n", - "9 amoxicillin \n", - "10 amoxicillin \n", - "11 metronidazole \n", - "12 mebeverine \n", - "13 propranolol \n", - "14 hydrocortisone \n", - "15 gamma-linolenic acid\n", - "16 hydrocortisone \n", - "17 acyclovir \n", - "18 doxycycline \n", - "19 acyclovir \n", - "20 doxycycline \n", - "21 doxycycline \n", - "22 beclomethasone \n", - "23 atenolol \n", - "24 atenolol \n", - "25 atenolol \n", - "26 atenolol \n", - "27 atenolol \n", - "28 atenolol \n", - "29 atenolol \n", - "30 atenolol \n", - " \n", - "56629787 ramipril \n", - "56629788 simvastatin \n", - "56629789 NA \n", - "56629790 ramipril \n", - "56629791 simvastatin \n", - "56629792 NA \n", - "56629793 ramipril \n", - "56629794 simvastatin \n", - "56629795 NA \n", - "56629796 ramipril \n", - "56629797 simvastatin \n", - "56629798 NA \n", - "56629799 ramipril \n", - "56629800 simvastatin \n", - "56629801 NA \n", - "56629802 ramipril \n", - "56629803 simvastatin \n", - "56629804 NA \n", - "56629805 ramipril \n", - "56629806 simvastatin \n", - "56629807 NA \n", - "56629808 ramipril \n", - "56629809 simvastatin \n", - "56629810 NA \n", - "56629811 ramipril \n", - "56629812 simvastatin \n", - "56629813 NA \n", - "56629814 ramipril \n", - "56629815 simvastatin \n", - "56629816 NA " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_scripts_rxnorm = gp_scripts_names_available %>% left_join(rx_norm_mapping_table, on=\"drug_name\") %>% select(eid, date, drug_name, rx_code, name) %>% distinct()\n", - "gp_scripts_rxnorm " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\t
$platform
\n", - "\t\t
'x86_64-conda-linux-gnu'
\n", - "\t
$arch
\n", - "\t\t
'x86_64'
\n", - "\t
$os
\n", - "\t\t
'linux-gnu'
\n", - "\t
$system
\n", - "\t\t
'x86_64, linux-gnu'
\n", - "\t
$status
\n", - "\t\t
''
\n", - "\t
$major
\n", - "\t\t
'4'
\n", - "\t
$minor
\n", - "\t\t
'0.3'
\n", - "\t
$year
\n", - "\t\t
'2020'
\n", - "\t
$month
\n", - "\t\t
'10'
\n", - "\t
$day
\n", - "\t\t
'10'
\n", - "\t
$`svn rev`
\n", - "\t\t
'79318'
\n", - "\t
$language
\n", - "\t\t
'R'
\n", - "\t
$version.string
\n", - "\t\t
'R version 4.0.3 (2020-10-10)'
\n", - "\t
$nickname
\n", - "\t\t
'Bunny-Wunnies Freak Out'
\n", - "
\n" - ], - "text/latex": [ - "\\begin{description}\n", - "\\item[\\$platform] 'x86\\_64-conda-linux-gnu'\n", - "\\item[\\$arch] 'x86\\_64'\n", - "\\item[\\$os] 'linux-gnu'\n", - "\\item[\\$system] 'x86\\_64, linux-gnu'\n", - "\\item[\\$status] ''\n", - "\\item[\\$major] '4'\n", - "\\item[\\$minor] '0.3'\n", - "\\item[\\$year] '2020'\n", - "\\item[\\$month] '10'\n", - "\\item[\\$day] '10'\n", - "\\item[\\$`svn rev`] '79318'\n", - "\\item[\\$language] 'R'\n", - "\\item[\\$version.string] 'R version 4.0.3 (2020-10-10)'\n", - "\\item[\\$nickname] 'Bunny-Wunnies Freak Out'\n", - "\\end{description}\n" - ], - "text/markdown": [ - "$platform\n", - ": 'x86_64-conda-linux-gnu'\n", - "$arch\n", - ": 'x86_64'\n", - "$os\n", - ": 'linux-gnu'\n", - "$system\n", - ": 'x86_64, linux-gnu'\n", - "$status\n", - ": ''\n", - "$major\n", - ": '4'\n", - "$minor\n", - ": '0.3'\n", - "$year\n", - ": '2020'\n", - "$month\n", - ": '10'\n", - "$day\n", - ": '10'\n", - "$`svn rev`\n", - ": '79318'\n", - "$language\n", - ": 'R'\n", - "$version.string\n", - ": 'R version 4.0.3 (2020-10-10)'\n", - "$nickname\n", - ": 'Bunny-Wunnies Freak Out'\n", - "\n", - "\n" - ], - "text/plain": [ - "$platform\n", - "[1] \"x86_64-conda-linux-gnu\"\n", - "\n", - "$arch\n", - "[1] \"x86_64\"\n", - "\n", - "$os\n", - "[1] \"linux-gnu\"\n", - "\n", - "$system\n", - "[1] \"x86_64, linux-gnu\"\n", - "\n", - "$status\n", - "[1] \"\"\n", - "\n", - "$major\n", - "[1] \"4\"\n", - "\n", - "$minor\n", - "[1] \"0.3\"\n", - "\n", - "$year\n", - "[1] \"2020\"\n", - "\n", - "$month\n", - "[1] \"10\"\n", - "\n", - "$day\n", - "[1] \"10\"\n", - "\n", - "$`svn rev`\n", - "[1] \"79318\"\n", - "\n", - "$language\n", - "[1] \"R\"\n", - "\n", - "$version.string\n", - "[1] \"R version 4.0.3 (2020-10-10)\"\n", - "\n", - "$nickname\n", - "[1] \"Bunny-Wunnies Freak Out\"\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "R.Version()" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [], - "source": [ - "arrow::write_feather(gp_scripts_rxnorm, glue(\"{path}/codes_gp_prescription_scispacy_210121.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### OLD NOT WORKING TRASH" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "metadata": {}, - "outputs": [], - "source": [ - "readv2_readv3 = head(fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/read_v2_read_ctv3.csv\"), -3) %>% rename(read_2=\"READV2_CODE\", code =\"READV3_CODE\", name =\"TERMV3_DESC\") %>% select(read_2, code)" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [], - "source": [ - "gp_scripts_read3 = gp_scripts_read_available %>% left_join(readv2_readv3, by=\"read_2\")" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\n", - "
A data.table: 0 × 10
eiddata_providerissue_dateread_2bnf_codedmd_codedrug_namequantitydatecode
<int><int><chr><chr><chr><int64><chr><chr><date><chr>
\n" - ], - "text/latex": [ - "A data.table: 0 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " eid & data\\_provider & issue\\_date & read\\_2 & bnf\\_code & dmd\\_code & drug\\_name & quantity & date & code\\\\\n", - " & & & & & & & & & \\\\\n", - "\\hline\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 0 × 10\n", - "\n", - "| eid <int> | data_provider <int> | issue_date <chr> | read_2 <chr> | bnf_code <chr> | dmd_code <int64> | drug_name <chr> | quantity <chr> | date <date> | code <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "\n" - ], - "text/plain": [ - " eid data_provider issue_date read_2 bnf_code dmd_code drug_name quantity\n", - " date code" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_scripts_read3 %>% drop_na(code)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "bnf_snomed_mapping = fread(\"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/gp_codings/bnf_snomed_mapping.csv\") %>%\n", - " rename(bnf_code=\"BNF Code\", sct_code =\"SNOMED Code\") %>% \n", - " filter(`VMP / VMPP/ AMP / AMPP`==\"VMP\") %>% \n", - " filter(bnf_code != \"\") %>% mutate(bnf_map = str_sub(bnf_code, 1, 7))" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "gp_test = gp_scripts %>% sample_n(1000) %>% filter(bnf_code != \"\") %>% mutate(bnf_code =str_replace_all(bnf_code, \"\\\\.\", \"\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 58742 × 11
eiddata_providerissue_dateread_2bnf_codedmd_codedrug_namequantitydatebnf_mapsct_code
<int><int><chr><chr><chr><int64><chr><chr><date><chr><int64>
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-250602010 374294006
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-250602010 374295007
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-250602010 374296008
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-250602010 325315001
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-250602010 325316000
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584011000001100
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584111000001104
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584211000001105
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584411000001109
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584511000001108
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584611000001107
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584711000001103
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584311000001102
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584811000001106
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108584911000001101
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585011000001101
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585111000001100
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108586611000001103
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108586711000001107
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585211000001106
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585411000001105
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585311000001103
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585511000001109
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585811000001107
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585611000001108
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585911000001102
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108585711000001104
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108586811000001104
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108586011000001105
5157903325/05/2010NA0602010000NALevothyroxine sodium 100microgram tablets56 tablet(s) - 100 micrograms2010-05-2506020108586111000001106
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701012301811000001104
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701013004211000001106
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701013004111000001100
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701013004311000001103
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701013892911000001107
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701013892811000001102
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701013893011000001104
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701013893811000001105
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701016073011000001100
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701016665611000001108
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701016757111000001108
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701017853711000001103
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701018084511000001109
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701018595211000001106
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701018615611000001103
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701019200211000001107
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701019230711000001108
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701019805611000001105
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701021636411000001107
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701024014911000001102
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701024580811000001103
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701032637711000001103
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701033568211000001100
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701034625311000001101
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701034878611000001106
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701036441411000001100
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701036752911000001107
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701038063911000001100
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701038555311000001107
1918594327/10/2004NA0407010200NACo-codamol 8mg/500mg tablets200 tablet(s)2004-10-27040701038555211000001104
\n" - ], - "text/latex": [ - "A data.table: 58742 × 11\n", - "\\begin{tabular}{lllllllllll}\n", - " eid & data\\_provider & issue\\_date & read\\_2 & bnf\\_code & dmd\\_code & drug\\_name & quantity & date & bnf\\_map & sct\\_code\\\\\n", - " & & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 374294006\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 374295007\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 374296008\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 325315001\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 325316000\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584011000001100\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584111000001104\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584211000001105\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584411000001109\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584511000001108\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584611000001107\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584711000001103\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584311000001102\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584811000001106\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8584911000001101\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585011000001101\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585111000001100\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8586611000001103\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8586711000001107\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585211000001106\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585411000001105\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585311000001103\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585511000001109\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585811000001107\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585611000001108\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585911000001102\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8585711000001104\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8586811000001104\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8586011000001105\\\\\n", - "\t 5157903 & 3 & 25/05/2010 & NA & 0602010000 & NA & Levothyroxine sodium 100microgram tablets & 56 tablet(s) - 100 micrograms & 2010-05-25 & 0602010 & 8586111000001106\\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 12301811000001104\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 13004211000001106\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 13004111000001100\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 13004311000001103\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 13892911000001107\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 13892811000001102\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 13893011000001104\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 13893811000001105\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 16073011000001100\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 16665611000001108\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 16757111000001108\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 17853711000001103\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 18084511000001109\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 18595211000001106\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 18615611000001103\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 19200211000001107\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 19230711000001108\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 19805611000001105\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 21636411000001107\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 24014911000001102\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 24580811000001103\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 32637711000001103\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 33568211000001100\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 34625311000001101\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 34878611000001106\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 36441411000001100\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 36752911000001107\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 38063911000001100\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 38555311000001107\\\\\n", - "\t 1918594 & 3 & 27/10/2004 & NA & 0407010200 & NA & Co-codamol 8mg/500mg tablets & 200 tablet(s) & 2004-10-27 & 0407010 & 38555211000001104\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 58742 × 11\n", - "\n", - "| eid <int> | data_provider <int> | issue_date <chr> | read_2 <chr> | bnf_code <chr> | dmd_code <int64> | drug_name <chr> | quantity <chr> | date <date> | bnf_map <chr> | sct_code <int64> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 374294006 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 374295007 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 374296008 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 325315001 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 325316000 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584011000001100 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584111000001104 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584211000001105 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584411000001109 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584511000001108 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584611000001107 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584711000001103 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584311000001102 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584811000001106 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8584911000001101 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585011000001101 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585111000001100 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8586611000001103 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8586711000001107 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585211000001106 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585411000001105 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585311000001103 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585511000001109 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585811000001107 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585611000001108 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585911000001102 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8585711000001104 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8586811000001104 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8586011000001105 |\n", - "| 5157903 | 3 | 25/05/2010 | NA | 0602010000 | NA | Levothyroxine sodium 100microgram tablets | 56 tablet(s) - 100 micrograms | 2010-05-25 | 0602010 | 8586111000001106 |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 12301811000001104 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 13004211000001106 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 13004111000001100 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 13004311000001103 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 13892911000001107 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 13892811000001102 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 13893011000001104 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 13893811000001105 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 16073011000001100 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 16665611000001108 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 16757111000001108 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 17853711000001103 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 18084511000001109 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 18595211000001106 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 18615611000001103 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 19200211000001107 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 19230711000001108 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 19805611000001105 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 21636411000001107 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 24014911000001102 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 24580811000001103 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 32637711000001103 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 33568211000001100 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 34625311000001101 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 34878611000001106 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 36441411000001100 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 36752911000001107 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 38063911000001100 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 38555311000001107 |\n", - "| 1918594 | 3 | 27/10/2004 | NA | 0407010200 | NA | Co-codamol 8mg/500mg tablets | 200 tablet(s) | 2004-10-27 | 0407010 | 38555211000001104 |\n", - "\n" - ], - "text/plain": [ - " eid data_provider issue_date read_2 bnf_code dmd_code\n", - "1 5157903 3 25/05/2010 NA 0602010000 NA \n", - "2 5157903 3 25/05/2010 NA 0602010000 NA \n", - "3 5157903 3 25/05/2010 NA 0602010000 NA \n", - "4 5157903 3 25/05/2010 NA 0602010000 NA \n", - "5 5157903 3 25/05/2010 NA 0602010000 NA \n", - "6 5157903 3 25/05/2010 NA 0602010000 NA \n", - "7 5157903 3 25/05/2010 NA 0602010000 NA \n", - "8 5157903 3 25/05/2010 NA 0602010000 NA \n", - "9 5157903 3 25/05/2010 NA 0602010000 NA \n", - "10 5157903 3 25/05/2010 NA 0602010000 NA \n", - "11 5157903 3 25/05/2010 NA 0602010000 NA \n", - "12 5157903 3 25/05/2010 NA 0602010000 NA \n", - "13 5157903 3 25/05/2010 NA 0602010000 NA \n", - "14 5157903 3 25/05/2010 NA 0602010000 NA \n", - "15 5157903 3 25/05/2010 NA 0602010000 NA \n", - "16 5157903 3 25/05/2010 NA 0602010000 NA \n", - "17 5157903 3 25/05/2010 NA 0602010000 NA \n", - "18 5157903 3 25/05/2010 NA 0602010000 NA \n", - "19 5157903 3 25/05/2010 NA 0602010000 NA \n", - "20 5157903 3 25/05/2010 NA 0602010000 NA \n", - "21 5157903 3 25/05/2010 NA 0602010000 NA \n", - "22 5157903 3 25/05/2010 NA 0602010000 NA \n", - "23 5157903 3 25/05/2010 NA 0602010000 NA \n", - "24 5157903 3 25/05/2010 NA 0602010000 NA \n", - "25 5157903 3 25/05/2010 NA 0602010000 NA \n", - "26 5157903 3 25/05/2010 NA 0602010000 NA \n", - "27 5157903 3 25/05/2010 NA 0602010000 NA \n", - "28 5157903 3 25/05/2010 NA 0602010000 NA \n", - "29 5157903 3 25/05/2010 NA 0602010000 NA \n", - "30 5157903 3 25/05/2010 NA 0602010000 NA \n", - " \n", - "58713 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58714 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58715 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58716 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58717 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58718 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58719 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58720 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58721 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58722 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58723 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58724 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58725 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58726 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58727 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58728 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58729 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58730 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58731 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58732 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58733 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58734 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58735 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58736 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58737 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58738 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58739 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58740 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58741 1918594 3 27/10/2004 NA 0407010200 NA \n", - "58742 1918594 3 27/10/2004 NA 0407010200 NA \n", - " drug_name quantity \n", - "1 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "2 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "3 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "4 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "5 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "6 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "7 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "8 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "9 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "10 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "11 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "12 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "13 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "14 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "15 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "16 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "17 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "18 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "19 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "20 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "21 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "22 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "23 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "24 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "25 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "26 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "27 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "28 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "29 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - "30 Levothyroxine sodium 100microgram tablets 56 tablet(s) - 100 micrograms\n", - " \n", - "58713 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58714 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58715 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58716 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58717 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58718 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58719 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58720 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58721 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58722 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58723 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58724 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58725 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58726 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58727 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58728 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58729 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58730 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58731 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58732 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58733 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58734 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58735 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58736 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58737 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58738 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58739 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58740 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58741 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - "58742 Co-codamol 8mg/500mg tablets 200 tablet(s) \n", - " date bnf_map sct_code \n", - "1 2010-05-25 0602010 374294006 \n", - "2 2010-05-25 0602010 374295007 \n", - "3 2010-05-25 0602010 374296008 \n", - "4 2010-05-25 0602010 325315001 \n", - "5 2010-05-25 0602010 325316000 \n", - "6 2010-05-25 0602010 8584011000001100 \n", - "7 2010-05-25 0602010 8584111000001104 \n", - "8 2010-05-25 0602010 8584211000001105 \n", - "9 2010-05-25 0602010 8584411000001109 \n", - "10 2010-05-25 0602010 8584511000001108 \n", - "11 2010-05-25 0602010 8584611000001107 \n", - "12 2010-05-25 0602010 8584711000001103 \n", - "13 2010-05-25 0602010 8584311000001102 \n", - "14 2010-05-25 0602010 8584811000001106 \n", - "15 2010-05-25 0602010 8584911000001101 \n", - "16 2010-05-25 0602010 8585011000001101 \n", - "17 2010-05-25 0602010 8585111000001100 \n", - "18 2010-05-25 0602010 8586611000001103 \n", - "19 2010-05-25 0602010 8586711000001107 \n", - "20 2010-05-25 0602010 8585211000001106 \n", - "21 2010-05-25 0602010 8585411000001105 \n", - "22 2010-05-25 0602010 8585311000001103 \n", - "23 2010-05-25 0602010 8585511000001109 \n", - "24 2010-05-25 0602010 8585811000001107 \n", - "25 2010-05-25 0602010 8585611000001108 \n", - "26 2010-05-25 0602010 8585911000001102 \n", - "27 2010-05-25 0602010 8585711000001104 \n", - "28 2010-05-25 0602010 8586811000001104 \n", - "29 2010-05-25 0602010 8586011000001105 \n", - "30 2010-05-25 0602010 8586111000001106 \n", - " \n", - "58713 2004-10-27 0407010 12301811000001104\n", - "58714 2004-10-27 0407010 13004211000001106\n", - "58715 2004-10-27 0407010 13004111000001100\n", - "58716 2004-10-27 0407010 13004311000001103\n", - "58717 2004-10-27 0407010 13892911000001107\n", - "58718 2004-10-27 0407010 13892811000001102\n", - "58719 2004-10-27 0407010 13893011000001104\n", - "58720 2004-10-27 0407010 13893811000001105\n", - "58721 2004-10-27 0407010 16073011000001100\n", - "58722 2004-10-27 0407010 16665611000001108\n", - "58723 2004-10-27 0407010 16757111000001108\n", - "58724 2004-10-27 0407010 17853711000001103\n", - "58725 2004-10-27 0407010 18084511000001109\n", - "58726 2004-10-27 0407010 18595211000001106\n", - "58727 2004-10-27 0407010 18615611000001103\n", - "58728 2004-10-27 0407010 19200211000001107\n", - "58729 2004-10-27 0407010 19230711000001108\n", - "58730 2004-10-27 0407010 19805611000001105\n", - "58731 2004-10-27 0407010 21636411000001107\n", - "58732 2004-10-27 0407010 24014911000001102\n", - "58733 2004-10-27 0407010 24580811000001103\n", - "58734 2004-10-27 0407010 32637711000001103\n", - "58735 2004-10-27 0407010 33568211000001100\n", - "58736 2004-10-27 0407010 34625311000001101\n", - "58737 2004-10-27 0407010 34878611000001106\n", - "58738 2004-10-27 0407010 36441411000001100\n", - "58739 2004-10-27 0407010 36752911000001107\n", - "58740 2004-10-27 0407010 38063911000001100\n", - "58741 2004-10-27 0407010 38555311000001107\n", - "58742 2004-10-27 0407010 38555211000001104" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_scripts_pre = gp_test %>% mutate(bnf_map = str_sub(bnf_code, 1, 7)) %>% left_join(bnf_snomed_mapping %>% select(bnf_map, sct_code), by=\"bnf_map\") %>% distinct() %>% drop_na(sct_code)\n", - "gp_scripts_pre " - ] - }, - { - "cell_type": "code", - "execution_count": 180, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 5842014 × 10
concept_idconcept_namedomain_idvocabulary_idconcept_class_idstandard_conceptconcept_codevalid_start_datevalid_end_dateinvalid_reason
<int><chr><chr><chr><chr><chr><chr><int><int><chr>
45756805Pediatric Cardiology ProviderABMSPhysician SpecialtySOMOP48219381970010120991231
45756804Pediatric Anesthesiology ProviderABMSPhysician SpecialtySOMOP48219391970010120991231
45756803Pathology-Anatomic/Pathology-Clinical ProviderABMSPhysician SpecialtySOMOP48219401970010120991231
45756802Pathology - Pediatric ProviderABMSPhysician SpecialtySOMOP48219411970010120991231
45756801Pathology - Molecular Genetic ProviderABMSPhysician SpecialtySOMOP48219421970010120991231
45756800Microbiology ProviderABMSPhysician SpecialtySOMOP48219431970010120991231
45756799Pathology - Hematology ProviderABMSPhysician SpecialtySOMOP48219441970010120991231
45756798Pathology - Forensic ProviderABMSPhysician SpecialtySOMOP48219451970010120991231
45756797Pathology - Clinical ProviderABMSPhysician SpecialtySOMOP48219461970010120991231
45756796Pathology - Chemical ProviderABMSPhysician SpecialtySOMOP48219471970010120991231
45756795Pathology - Anatomic ProviderABMSPhysician SpecialtySOMOP48219481970010120991231
45756794Orthopaedic Sports Medicine ProviderABMSPhysician SpecialtySOMOP48219491970010120991231
45756793Nuclear Radiology ProviderABMSPhysician SpecialtySOMOP48219501970010120991231
45756792Neurotology ProviderABMSPhysician SpecialtySOMOP48219511970010120991231
45756791Neuroradiology ProviderABMSPhysician SpecialtySOMOP48219521970010120991231
45756790Neuropathology ProviderABMSPhysician SpecialtySOMOP48219531970010120991231
45756789Neuromuscular Medicine ProviderABMSPhysician SpecialtySOMOP48219541970010120991231
45756788Neurology with Special Qualification in Child NeurologyProviderABMSPhysician SpecialtySOMOP48219551970010120991231
45756787Neurodevelopmental Disabilities ProviderABMSPhysician SpecialtySOMOP48219561970010120991231
45756786Neonatal-Perinatal Medicine ProviderABMSPhysician SpecialtySOMOP48219571970010120991231
45756785Molecular Genetic Pathology ProviderABMSPhysician Specialty OMOP48219581970010120991231
45756784Medical Toxicology ProviderABMSPhysician Specialty OMOP48219591970010120991231
45756783Medical Physics ProviderABMSPhysician SpecialtySOMOP48219601970010120991231
45756782Medical Genetics and Genomics ProviderABMSPhysician Specialty OMOP48219611970010120991231
45756781Medical Biochemical Genetics ProviderABMSPhysician SpecialtySOMOP48219621970010120991231
45756780Maternal and Fetal Medicine ProviderABMSPhysician SpecialtySOMOP48219631970010120991231
45756779Interventional Cardiology ProviderABMSPhysician Specialty OMOP48219641970010120991231
45756778Internal Medicine - Critical Care Medicine ProviderABMSPhysician SpecialtySOMOP48219651970010120991231
45756777Hospice and Palliative Medicine ProviderABMSPhysician SpecialtySOMOP48219661970010120991231
45756776Geriatric Psychiatry ProviderABMSPhysician SpecialtySOMOP48219671970010120991231
36080587Ruxience Drugdm+dBrand NameOMOP49770611970010120991231
36081833Uropyrine Drugdm+dBrand NameOMOP49770621970010120991231
36081455Thyrotardin-Inject Drugdm+dBrand NameOMOP49770631970010120991231
36070943Adynovi Drugdm+dBrand NameOMOP49770641970010120991231
36073151Combiprasal Drugdm+dBrand NameOMOP49770651970010120991231
36046146PulmoClear Drugdm+dBrand NameOMOP49770661970010120991231
36071153Ambelina Drugdm+dBrand NameOMOP49770671970010120991231
36046221AlfacalEss Drugdm+dBrand NameOMOP49770681970010120991231
36081267TauriDose Drugdm+dBrand NameOMOP49770691970010120991231
36046222UroFlush Drugdm+dBrand NameOMOP49770701970010120991231
36076935IroFate Drugdm+dBrand NameOMOP49770711970010120991231
36080331RestorD3 Drugdm+dBrand NameOMOP49770721970010120991231
36081270Tavlesse Drugdm+dBrand NameOMOP49770731970010120991231
36077754MagnaLac Drugdm+dBrand NameOMOP49770741970010120991231
36068497Dutrozen Drugdm+dBrand NameOMOP49770751970010120991231
36080621Scenesse Drugdm+dBrand NameOMOP49770761970010120991231
36077757MagnaTrate Drugdm+dBrand NameOMOP49770771970010120991231
36076553Gonasi Drugdm+dBrand NameOMOP49770781970010120991231
36077330Lenzetto Drugdm+dBrand NameOMOP49770791970010120991231
36071438Aspire Allergy ReliefDrugdm+dBrand NameOMOP49770801970010120991231
36078445Myloxifin Drugdm+dBrand NameOMOP49770811970010120991231
36070312Polivy Drugdm+dBrand NameOMOP49770821970010120991231
36078737Norditropin Flexpro Drugdm+dBrand NameOMOP49770831970010120991231
36079462PF Drugdm+dBrand NameOMOP49770841970010120991231
36082335Zirabev Drugdm+dBrand NameOMOP49770851970010120991231
36080079Quest L-Lysine Drugdm+dBrand NameOMOP49770861970010120991231
36076118FoliSol Drugdm+dBrand NameOMOP49770871970010120991231
36049404Munuza Drugdm+dBrand NameOMOP49770881970010120991231
36076134FORTUM MONO Drugdm+dBrand NameOMOP49770891970010120991231
36076588Hashmats Health A-Z Drugdm+dBrand NameOMOP49770901970010120991231
\n" - ], - "text/latex": [ - "A data.table: 5842014 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " concept\\_id & concept\\_name & domain\\_id & vocabulary\\_id & concept\\_class\\_id & standard\\_concept & concept\\_code & valid\\_start\\_date & valid\\_end\\_date & invalid\\_reason\\\\\n", - " & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 45756805 & Pediatric Cardiology & Provider & ABMS & Physician Specialty & S & OMOP4821938 & 19700101 & 20991231 & \\\\\n", - "\t 45756804 & Pediatric Anesthesiology & Provider & ABMS & Physician Specialty & S & OMOP4821939 & 19700101 & 20991231 & \\\\\n", - "\t 45756803 & Pathology-Anatomic/Pathology-Clinical & Provider & ABMS & Physician Specialty & S & OMOP4821940 & 19700101 & 20991231 & \\\\\n", - "\t 45756802 & Pathology - Pediatric & Provider & ABMS & Physician Specialty & S & OMOP4821941 & 19700101 & 20991231 & \\\\\n", - "\t 45756801 & Pathology - Molecular Genetic & Provider & ABMS & Physician Specialty & S & OMOP4821942 & 19700101 & 20991231 & \\\\\n", - "\t 45756800 & Microbiology & Provider & ABMS & Physician Specialty & S & OMOP4821943 & 19700101 & 20991231 & \\\\\n", - "\t 45756799 & Pathology - Hematology & Provider & ABMS & Physician Specialty & S & OMOP4821944 & 19700101 & 20991231 & \\\\\n", - "\t 45756798 & Pathology - Forensic & Provider & ABMS & Physician Specialty & S & OMOP4821945 & 19700101 & 20991231 & \\\\\n", - "\t 45756797 & Pathology - Clinical & Provider & ABMS & Physician Specialty & S & OMOP4821946 & 19700101 & 20991231 & \\\\\n", - "\t 45756796 & Pathology - Chemical & Provider & ABMS & Physician Specialty & S & OMOP4821947 & 19700101 & 20991231 & \\\\\n", - "\t 45756795 & Pathology - Anatomic & Provider & ABMS & Physician Specialty & S & OMOP4821948 & 19700101 & 20991231 & \\\\\n", - "\t 45756794 & Orthopaedic Sports Medicine & Provider & ABMS & Physician Specialty & S & OMOP4821949 & 19700101 & 20991231 & \\\\\n", - "\t 45756793 & Nuclear Radiology & Provider & ABMS & Physician Specialty & S & OMOP4821950 & 19700101 & 20991231 & \\\\\n", - "\t 45756792 & Neurotology & Provider & ABMS & Physician Specialty & S & OMOP4821951 & 19700101 & 20991231 & \\\\\n", - "\t 45756791 & Neuroradiology & Provider & ABMS & Physician Specialty & S & OMOP4821952 & 19700101 & 20991231 & \\\\\n", - "\t 45756790 & Neuropathology & Provider & ABMS & Physician Specialty & S & OMOP4821953 & 19700101 & 20991231 & \\\\\n", - "\t 45756789 & Neuromuscular Medicine & Provider & ABMS & Physician Specialty & S & OMOP4821954 & 19700101 & 20991231 & \\\\\n", - "\t 45756788 & Neurology with Special Qualification in Child Neurology & Provider & ABMS & Physician Specialty & S & OMOP4821955 & 19700101 & 20991231 & \\\\\n", - "\t 45756787 & Neurodevelopmental Disabilities & Provider & ABMS & Physician Specialty & S & OMOP4821956 & 19700101 & 20991231 & \\\\\n", - "\t 45756786 & Neonatal-Perinatal Medicine & Provider & ABMS & Physician Specialty & S & OMOP4821957 & 19700101 & 20991231 & \\\\\n", - "\t 45756785 & Molecular Genetic Pathology & Provider & ABMS & Physician Specialty & & OMOP4821958 & 19700101 & 20991231 & \\\\\n", - "\t 45756784 & Medical Toxicology & Provider & ABMS & Physician Specialty & & OMOP4821959 & 19700101 & 20991231 & \\\\\n", - "\t 45756783 & Medical Physics & Provider & ABMS & Physician Specialty & S & OMOP4821960 & 19700101 & 20991231 & \\\\\n", - "\t 45756782 & Medical Genetics and Genomics & Provider & ABMS & Physician Specialty & & OMOP4821961 & 19700101 & 20991231 & \\\\\n", - "\t 45756781 & Medical Biochemical Genetics & Provider & ABMS & Physician Specialty & S & OMOP4821962 & 19700101 & 20991231 & \\\\\n", - "\t 45756780 & Maternal and Fetal Medicine & Provider & ABMS & Physician Specialty & S & OMOP4821963 & 19700101 & 20991231 & \\\\\n", - "\t 45756779 & Interventional Cardiology & Provider & ABMS & Physician Specialty & & OMOP4821964 & 19700101 & 20991231 & \\\\\n", - "\t 45756778 & Internal Medicine - Critical Care Medicine & Provider & ABMS & Physician Specialty & S & OMOP4821965 & 19700101 & 20991231 & \\\\\n", - "\t 45756777 & Hospice and Palliative Medicine & Provider & ABMS & Physician Specialty & S & OMOP4821966 & 19700101 & 20991231 & \\\\\n", - "\t 45756776 & Geriatric Psychiatry & Provider & ABMS & Physician Specialty & S & OMOP4821967 & 19700101 & 20991231 & \\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 36080587 & Ruxience & Drug & dm+d & Brand Name & & OMOP4977061 & 19700101 & 20991231 & \\\\\n", - "\t 36081833 & Uropyrine & Drug & dm+d & Brand Name & & OMOP4977062 & 19700101 & 20991231 & \\\\\n", - "\t 36081455 & Thyrotardin-Inject & Drug & dm+d & Brand Name & & OMOP4977063 & 19700101 & 20991231 & \\\\\n", - "\t 36070943 & Adynovi & Drug & dm+d & Brand Name & & OMOP4977064 & 19700101 & 20991231 & \\\\\n", - "\t 36073151 & Combiprasal & Drug & dm+d & Brand Name & & OMOP4977065 & 19700101 & 20991231 & \\\\\n", - "\t 36046146 & PulmoClear & Drug & dm+d & Brand Name & & OMOP4977066 & 19700101 & 20991231 & \\\\\n", - "\t 36071153 & Ambelina & Drug & dm+d & Brand Name & & OMOP4977067 & 19700101 & 20991231 & \\\\\n", - "\t 36046221 & AlfacalEss & Drug & dm+d & Brand Name & & OMOP4977068 & 19700101 & 20991231 & \\\\\n", - "\t 36081267 & TauriDose & Drug & dm+d & Brand Name & & OMOP4977069 & 19700101 & 20991231 & \\\\\n", - "\t 36046222 & UroFlush & Drug & dm+d & Brand Name & & OMOP4977070 & 19700101 & 20991231 & \\\\\n", - "\t 36076935 & IroFate & Drug & dm+d & Brand Name & & OMOP4977071 & 19700101 & 20991231 & \\\\\n", - "\t 36080331 & RestorD3 & Drug & dm+d & Brand Name & & OMOP4977072 & 19700101 & 20991231 & \\\\\n", - "\t 36081270 & Tavlesse & Drug & dm+d & Brand Name & & OMOP4977073 & 19700101 & 20991231 & \\\\\n", - "\t 36077754 & MagnaLac & Drug & dm+d & Brand Name & & OMOP4977074 & 19700101 & 20991231 & \\\\\n", - "\t 36068497 & Dutrozen & Drug & dm+d & Brand Name & & OMOP4977075 & 19700101 & 20991231 & \\\\\n", - "\t 36080621 & Scenesse & Drug & dm+d & Brand Name & & OMOP4977076 & 19700101 & 20991231 & \\\\\n", - "\t 36077757 & MagnaTrate & Drug & dm+d & Brand Name & & OMOP4977077 & 19700101 & 20991231 & \\\\\n", - "\t 36076553 & Gonasi & Drug & dm+d & Brand Name & & OMOP4977078 & 19700101 & 20991231 & \\\\\n", - "\t 36077330 & Lenzetto & Drug & dm+d & Brand Name & & OMOP4977079 & 19700101 & 20991231 & \\\\\n", - "\t 36071438 & Aspire Allergy Relief & Drug & dm+d & Brand Name & & OMOP4977080 & 19700101 & 20991231 & \\\\\n", - "\t 36078445 & Myloxifin & Drug & dm+d & Brand Name & & OMOP4977081 & 19700101 & 20991231 & \\\\\n", - "\t 36070312 & Polivy & Drug & dm+d & Brand Name & & OMOP4977082 & 19700101 & 20991231 & \\\\\n", - "\t 36078737 & Norditropin Flexpro & Drug & dm+d & Brand Name & & OMOP4977083 & 19700101 & 20991231 & \\\\\n", - "\t 36079462 & PF & Drug & dm+d & Brand Name & & OMOP4977084 & 19700101 & 20991231 & \\\\\n", - "\t 36082335 & Zirabev & Drug & dm+d & Brand Name & & OMOP4977085 & 19700101 & 20991231 & \\\\\n", - "\t 36080079 & Quest L-Lysine & Drug & dm+d & Brand Name & & OMOP4977086 & 19700101 & 20991231 & \\\\\n", - "\t 36076118 & FoliSol & Drug & dm+d & Brand Name & & OMOP4977087 & 19700101 & 20991231 & \\\\\n", - "\t 36049404 & Munuza & Drug & dm+d & Brand Name & & OMOP4977088 & 19700101 & 20991231 & \\\\\n", - "\t 36076134 & FORTUM MONO & Drug & dm+d & Brand Name & & OMOP4977089 & 19700101 & 20991231 & \\\\\n", - "\t 36076588 & Hashmats Health A-Z & Drug & dm+d & Brand Name & & OMOP4977090 & 19700101 & 20991231 & \\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 5842014 × 10\n", - "\n", - "| concept_id <int> | concept_name <chr> | domain_id <chr> | vocabulary_id <chr> | concept_class_id <chr> | standard_concept <chr> | concept_code <chr> | valid_start_date <int> | valid_end_date <int> | invalid_reason <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| 45756805 | Pediatric Cardiology | Provider | ABMS | Physician Specialty | S | OMOP4821938 | 19700101 | 20991231 | |\n", - "| 45756804 | Pediatric Anesthesiology | Provider | ABMS | Physician Specialty | S | OMOP4821939 | 19700101 | 20991231 | |\n", - "| 45756803 | Pathology-Anatomic/Pathology-Clinical | Provider | ABMS | Physician Specialty | S | OMOP4821940 | 19700101 | 20991231 | |\n", - "| 45756802 | Pathology - Pediatric | Provider | ABMS | Physician Specialty | S | OMOP4821941 | 19700101 | 20991231 | |\n", - "| 45756801 | Pathology - Molecular Genetic | Provider | ABMS | Physician Specialty | S | OMOP4821942 | 19700101 | 20991231 | |\n", - "| 45756800 | Microbiology | Provider | ABMS | Physician Specialty | S | OMOP4821943 | 19700101 | 20991231 | |\n", - "| 45756799 | Pathology - Hematology | Provider | ABMS | Physician Specialty | S | OMOP4821944 | 19700101 | 20991231 | |\n", - "| 45756798 | Pathology - Forensic | Provider | ABMS | Physician Specialty | S | OMOP4821945 | 19700101 | 20991231 | |\n", - "| 45756797 | Pathology - Clinical | Provider | ABMS | Physician Specialty | S | OMOP4821946 | 19700101 | 20991231 | |\n", - "| 45756796 | Pathology - Chemical | Provider | ABMS | Physician Specialty | S | OMOP4821947 | 19700101 | 20991231 | |\n", - "| 45756795 | Pathology - Anatomic | Provider | ABMS | Physician Specialty | S | OMOP4821948 | 19700101 | 20991231 | |\n", - "| 45756794 | Orthopaedic Sports Medicine | Provider | ABMS | Physician Specialty | S | OMOP4821949 | 19700101 | 20991231 | |\n", - "| 45756793 | Nuclear Radiology | Provider | ABMS | Physician Specialty | S | OMOP4821950 | 19700101 | 20991231 | |\n", - "| 45756792 | Neurotology | Provider | ABMS | Physician Specialty | S | OMOP4821951 | 19700101 | 20991231 | |\n", - "| 45756791 | Neuroradiology | Provider | ABMS | Physician Specialty | S | OMOP4821952 | 19700101 | 20991231 | |\n", - "| 45756790 | Neuropathology | Provider | ABMS | Physician Specialty | S | OMOP4821953 | 19700101 | 20991231 | |\n", - "| 45756789 | Neuromuscular Medicine | Provider | ABMS | Physician Specialty | S | OMOP4821954 | 19700101 | 20991231 | |\n", - "| 45756788 | Neurology with Special Qualification in Child Neurology | Provider | ABMS | Physician Specialty | S | OMOP4821955 | 19700101 | 20991231 | |\n", - "| 45756787 | Neurodevelopmental Disabilities | Provider | ABMS | Physician Specialty | S | OMOP4821956 | 19700101 | 20991231 | |\n", - "| 45756786 | Neonatal-Perinatal Medicine | Provider | ABMS | Physician Specialty | S | OMOP4821957 | 19700101 | 20991231 | |\n", - "| 45756785 | Molecular Genetic Pathology | Provider | ABMS | Physician Specialty | | OMOP4821958 | 19700101 | 20991231 | |\n", - "| 45756784 | Medical Toxicology | Provider | ABMS | Physician Specialty | | OMOP4821959 | 19700101 | 20991231 | |\n", - "| 45756783 | Medical Physics | Provider | ABMS | Physician Specialty | S | OMOP4821960 | 19700101 | 20991231 | |\n", - "| 45756782 | Medical Genetics and Genomics | Provider | ABMS | Physician Specialty | | OMOP4821961 | 19700101 | 20991231 | |\n", - "| 45756781 | Medical Biochemical Genetics | Provider | ABMS | Physician Specialty | S | OMOP4821962 | 19700101 | 20991231 | |\n", - "| 45756780 | Maternal and Fetal Medicine | Provider | ABMS | Physician Specialty | S | OMOP4821963 | 19700101 | 20991231 | |\n", - "| 45756779 | Interventional Cardiology | Provider | ABMS | Physician Specialty | | OMOP4821964 | 19700101 | 20991231 | |\n", - "| 45756778 | Internal Medicine - Critical Care Medicine | Provider | ABMS | Physician Specialty | S | OMOP4821965 | 19700101 | 20991231 | |\n", - "| 45756777 | Hospice and Palliative Medicine | Provider | ABMS | Physician Specialty | S | OMOP4821966 | 19700101 | 20991231 | |\n", - "| 45756776 | Geriatric Psychiatry | Provider | ABMS | Physician Specialty | S | OMOP4821967 | 19700101 | 20991231 | |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 36080587 | Ruxience | Drug | dm+d | Brand Name | | OMOP4977061 | 19700101 | 20991231 | |\n", - "| 36081833 | Uropyrine | Drug | dm+d | Brand Name | | OMOP4977062 | 19700101 | 20991231 | |\n", - "| 36081455 | Thyrotardin-Inject | Drug | dm+d | Brand Name | | OMOP4977063 | 19700101 | 20991231 | |\n", - "| 36070943 | Adynovi | Drug | dm+d | Brand Name | | OMOP4977064 | 19700101 | 20991231 | |\n", - "| 36073151 | Combiprasal | Drug | dm+d | Brand Name | | OMOP4977065 | 19700101 | 20991231 | |\n", - "| 36046146 | PulmoClear | Drug | dm+d | Brand Name | | OMOP4977066 | 19700101 | 20991231 | |\n", - "| 36071153 | Ambelina | Drug | dm+d | Brand Name | | OMOP4977067 | 19700101 | 20991231 | |\n", - "| 36046221 | AlfacalEss | Drug | dm+d | Brand Name | | OMOP4977068 | 19700101 | 20991231 | |\n", - "| 36081267 | TauriDose | Drug | dm+d | Brand Name | | OMOP4977069 | 19700101 | 20991231 | |\n", - "| 36046222 | UroFlush | Drug | dm+d | Brand Name | | OMOP4977070 | 19700101 | 20991231 | |\n", - "| 36076935 | IroFate | Drug | dm+d | Brand Name | | OMOP4977071 | 19700101 | 20991231 | |\n", - "| 36080331 | RestorD3 | Drug | dm+d | Brand Name | | OMOP4977072 | 19700101 | 20991231 | |\n", - "| 36081270 | Tavlesse | Drug | dm+d | Brand Name | | OMOP4977073 | 19700101 | 20991231 | |\n", - "| 36077754 | MagnaLac | Drug | dm+d | Brand Name | | OMOP4977074 | 19700101 | 20991231 | |\n", - "| 36068497 | Dutrozen | Drug | dm+d | Brand Name | | OMOP4977075 | 19700101 | 20991231 | |\n", - "| 36080621 | Scenesse | Drug | dm+d | Brand Name | | OMOP4977076 | 19700101 | 20991231 | |\n", - "| 36077757 | MagnaTrate | Drug | dm+d | Brand Name | | OMOP4977077 | 19700101 | 20991231 | |\n", - "| 36076553 | Gonasi | Drug | dm+d | Brand Name | | OMOP4977078 | 19700101 | 20991231 | |\n", - "| 36077330 | Lenzetto | Drug | dm+d | Brand Name | | OMOP4977079 | 19700101 | 20991231 | |\n", - "| 36071438 | Aspire Allergy Relief | Drug | dm+d | Brand Name | | OMOP4977080 | 19700101 | 20991231 | |\n", - "| 36078445 | Myloxifin | Drug | dm+d | Brand Name | | OMOP4977081 | 19700101 | 20991231 | |\n", - "| 36070312 | Polivy | Drug | dm+d | Brand Name | | OMOP4977082 | 19700101 | 20991231 | |\n", - "| 36078737 | Norditropin Flexpro | Drug | dm+d | Brand Name | | OMOP4977083 | 19700101 | 20991231 | |\n", - "| 36079462 | PF | Drug | dm+d | Brand Name | | OMOP4977084 | 19700101 | 20991231 | |\n", - "| 36082335 | Zirabev | Drug | dm+d | Brand Name | | OMOP4977085 | 19700101 | 20991231 | |\n", - "| 36080079 | Quest L-Lysine | Drug | dm+d | Brand Name | | OMOP4977086 | 19700101 | 20991231 | |\n", - "| 36076118 | FoliSol | Drug | dm+d | Brand Name | | OMOP4977087 | 19700101 | 20991231 | |\n", - "| 36049404 | Munuza | Drug | dm+d | Brand Name | | OMOP4977088 | 19700101 | 20991231 | |\n", - "| 36076134 | FORTUM MONO | Drug | dm+d | Brand Name | | OMOP4977089 | 19700101 | 20991231 | |\n", - "| 36076588 | Hashmats Health A-Z | Drug | dm+d | Brand Name | | OMOP4977090 | 19700101 | 20991231 | |\n", - "\n" - ], - "text/plain": [ - " concept_id concept_name \n", - "1 45756805 Pediatric Cardiology \n", - "2 45756804 Pediatric Anesthesiology \n", - "3 45756803 Pathology-Anatomic/Pathology-Clinical \n", - "4 45756802 Pathology - Pediatric \n", - "5 45756801 Pathology - Molecular Genetic \n", - "6 45756800 Microbiology \n", - "7 45756799 Pathology - Hematology \n", - "8 45756798 Pathology - Forensic \n", - "9 45756797 Pathology - Clinical \n", - "10 45756796 Pathology - Chemical \n", - "11 45756795 Pathology - Anatomic \n", - "12 45756794 Orthopaedic Sports Medicine \n", - "13 45756793 Nuclear Radiology \n", - "14 45756792 Neurotology \n", - "15 45756791 Neuroradiology \n", - "16 45756790 Neuropathology \n", - "17 45756789 Neuromuscular Medicine \n", - "18 45756788 Neurology with Special Qualification in Child Neurology\n", - "19 45756787 Neurodevelopmental Disabilities \n", - "20 45756786 Neonatal-Perinatal Medicine \n", - "21 45756785 Molecular Genetic Pathology \n", - "22 45756784 Medical Toxicology \n", - "23 45756783 Medical Physics \n", - "24 45756782 Medical Genetics and Genomics \n", - "25 45756781 Medical Biochemical Genetics \n", - "26 45756780 Maternal and Fetal Medicine \n", - "27 45756779 Interventional Cardiology \n", - "28 45756778 Internal Medicine - Critical Care Medicine \n", - "29 45756777 Hospice and Palliative Medicine \n", - "30 45756776 Geriatric Psychiatry \n", - " \n", - "5841985 36080587 Ruxience \n", - "5841986 36081833 Uropyrine \n", - "5841987 36081455 Thyrotardin-Inject \n", - "5841988 36070943 Adynovi \n", - "5841989 36073151 Combiprasal \n", - "5841990 36046146 PulmoClear \n", - "5841991 36071153 Ambelina \n", - "5841992 36046221 AlfacalEss \n", - "5841993 36081267 TauriDose \n", - "5841994 36046222 UroFlush \n", - "5841995 36076935 IroFate \n", - "5841996 36080331 RestorD3 \n", - "5841997 36081270 Tavlesse \n", - "5841998 36077754 MagnaLac \n", - "5841999 36068497 Dutrozen \n", - "5842000 36080621 Scenesse \n", - "5842001 36077757 MagnaTrate \n", - "5842002 36076553 Gonasi \n", - "5842003 36077330 Lenzetto \n", - "5842004 36071438 Aspire Allergy Relief \n", - "5842005 36078445 Myloxifin \n", - "5842006 36070312 Polivy \n", - "5842007 36078737 Norditropin Flexpro \n", - "5842008 36079462 PF \n", - "5842009 36082335 Zirabev \n", - "5842010 36080079 Quest L-Lysine \n", - "5842011 36076118 FoliSol \n", - "5842012 36049404 Munuza \n", - "5842013 36076134 FORTUM MONO \n", - "5842014 36076588 Hashmats Health A-Z \n", - " domain_id vocabulary_id concept_class_id standard_concept\n", - "1 Provider ABMS Physician Specialty S \n", - "2 Provider ABMS Physician Specialty S \n", - "3 Provider ABMS Physician Specialty S \n", - "4 Provider ABMS Physician Specialty S \n", - "5 Provider ABMS Physician Specialty S \n", - "6 Provider ABMS Physician Specialty S \n", - "7 Provider ABMS Physician Specialty S \n", - "8 Provider ABMS Physician Specialty S \n", - "9 Provider ABMS Physician Specialty S \n", - "10 Provider ABMS Physician Specialty S \n", - "11 Provider ABMS Physician Specialty S \n", - "12 Provider ABMS Physician Specialty S \n", - "13 Provider ABMS Physician Specialty S \n", - "14 Provider ABMS Physician Specialty S \n", - "15 Provider ABMS Physician Specialty S \n", - "16 Provider ABMS Physician Specialty S \n", - "17 Provider ABMS Physician Specialty S \n", - "18 Provider ABMS Physician Specialty S \n", - "19 Provider ABMS Physician Specialty S \n", - "20 Provider ABMS Physician Specialty S \n", - "21 Provider ABMS Physician Specialty \n", - "22 Provider ABMS Physician Specialty \n", - "23 Provider ABMS Physician Specialty S \n", - "24 Provider ABMS Physician Specialty \n", - "25 Provider ABMS Physician Specialty S \n", - "26 Provider ABMS Physician Specialty S \n", - "27 Provider ABMS Physician Specialty \n", - "28 Provider ABMS Physician Specialty S \n", - "29 Provider ABMS Physician Specialty S \n", - "30 Provider ABMS Physician Specialty S \n", - " \n", - "5841985 Drug dm+d Brand Name \n", - "5841986 Drug dm+d Brand Name \n", - "5841987 Drug dm+d Brand Name \n", - "5841988 Drug dm+d Brand Name \n", - "5841989 Drug dm+d Brand Name \n", - "5841990 Drug dm+d Brand Name \n", - "5841991 Drug dm+d Brand Name \n", - "5841992 Drug dm+d Brand Name \n", - "5841993 Drug dm+d Brand Name \n", - "5841994 Drug dm+d Brand Name \n", - "5841995 Drug dm+d Brand Name \n", - "5841996 Drug dm+d Brand Name \n", - "5841997 Drug dm+d Brand Name \n", - "5841998 Drug dm+d Brand Name \n", - "5841999 Drug dm+d Brand Name \n", - "5842000 Drug dm+d Brand Name \n", - "5842001 Drug dm+d Brand Name \n", - "5842002 Drug dm+d Brand Name \n", - "5842003 Drug dm+d Brand Name \n", - "5842004 Drug dm+d Brand Name \n", - "5842005 Drug dm+d Brand Name \n", - "5842006 Drug dm+d Brand Name \n", - "5842007 Drug dm+d Brand Name \n", - "5842008 Drug dm+d Brand Name \n", - "5842009 Drug dm+d Brand Name \n", - "5842010 Drug dm+d Brand Name \n", - "5842011 Drug dm+d Brand Name \n", - "5842012 Drug dm+d Brand Name \n", - "5842013 Drug dm+d Brand Name \n", - "5842014 Drug dm+d Brand Name \n", - " concept_code valid_start_date valid_end_date invalid_reason\n", - "1 OMOP4821938 19700101 20991231 \n", - "2 OMOP4821939 19700101 20991231 \n", - "3 OMOP4821940 19700101 20991231 \n", - "4 OMOP4821941 19700101 20991231 \n", - "5 OMOP4821942 19700101 20991231 \n", - "6 OMOP4821943 19700101 20991231 \n", - "7 OMOP4821944 19700101 20991231 \n", - "8 OMOP4821945 19700101 20991231 \n", - "9 OMOP4821946 19700101 20991231 \n", - "10 OMOP4821947 19700101 20991231 \n", - "11 OMOP4821948 19700101 20991231 \n", - "12 OMOP4821949 19700101 20991231 \n", - "13 OMOP4821950 19700101 20991231 \n", - "14 OMOP4821951 19700101 20991231 \n", - "15 OMOP4821952 19700101 20991231 \n", - "16 OMOP4821953 19700101 20991231 \n", - "17 OMOP4821954 19700101 20991231 \n", - "18 OMOP4821955 19700101 20991231 \n", - "19 OMOP4821956 19700101 20991231 \n", - "20 OMOP4821957 19700101 20991231 \n", - "21 OMOP4821958 19700101 20991231 \n", - "22 OMOP4821959 19700101 20991231 \n", - "23 OMOP4821960 19700101 20991231 \n", - "24 OMOP4821961 19700101 20991231 \n", - "25 OMOP4821962 19700101 20991231 \n", - "26 OMOP4821963 19700101 20991231 \n", - "27 OMOP4821964 19700101 20991231 \n", - "28 OMOP4821965 19700101 20991231 \n", - "29 OMOP4821966 19700101 20991231 \n", - "30 OMOP4821967 19700101 20991231 \n", - " \n", - "5841985 OMOP4977061 19700101 20991231 \n", - "5841986 OMOP4977062 19700101 20991231 \n", - "5841987 OMOP4977063 19700101 20991231 \n", - "5841988 OMOP4977064 19700101 20991231 \n", - "5841989 OMOP4977065 19700101 20991231 \n", - "5841990 OMOP4977066 19700101 20991231 \n", - "5841991 OMOP4977067 19700101 20991231 \n", - "5841992 OMOP4977068 19700101 20991231 \n", - "5841993 OMOP4977069 19700101 20991231 \n", - "5841994 OMOP4977070 19700101 20991231 \n", - "5841995 OMOP4977071 19700101 20991231 \n", - "5841996 OMOP4977072 19700101 20991231 \n", - "5841997 OMOP4977073 19700101 20991231 \n", - "5841998 OMOP4977074 19700101 20991231 \n", - "5841999 OMOP4977075 19700101 20991231 \n", - "5842000 OMOP4977076 19700101 20991231 \n", - "5842001 OMOP4977077 19700101 20991231 \n", - "5842002 OMOP4977078 19700101 20991231 \n", - "5842003 OMOP4977079 19700101 20991231 \n", - "5842004 OMOP4977080 19700101 20991231 \n", - "5842005 OMOP4977081 19700101 20991231 \n", - "5842006 OMOP4977082 19700101 20991231 \n", - "5842007 OMOP4977083 19700101 20991231 \n", - "5842008 OMOP4977084 19700101 20991231 \n", - "5842009 OMOP4977085 19700101 20991231 \n", - "5842010 OMOP4977086 19700101 20991231 \n", - "5842011 OMOP4977087 19700101 20991231 \n", - "5842012 OMOP4977088 19700101 20991231 \n", - "5842013 OMOP4977089 19700101 20991231 \n", - "5842014 OMOP4977090 19700101 20991231 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "concept" - ] - }, - { - "cell_type": "code", - "execution_count": 185, - "metadata": {}, - "outputs": [], - "source": [ - "# opcs4 to snomed mapping\n", - "bnf_map = bnf_snomed_mapping %>% select(bnf_map, sct_code) %>% mutate(sct_code = as.character(sct_code)) %>% distinct()\n", - "concept_ids_snomed_input = concept %>% filter(vocabulary_id == \"SNOMED\" & concept_code %in% unique(bnf_map$sct_code)) %>% mutate(concept_code = str_replace(concept_code, \"\\\\.\", \"\"))\n", - "concept_ids_snomed_substance = concept %>% filter(vocabulary_id == \"SNOMED\" & domain_id ==\"Drug\", concept_class_id==\"Substance\") %>% mutate(concept_code = str_replace(concept_code, \"\\\\.\", \"\"))\n", - "#concept_ids_snomed_ingred = concept %>% filter(vocabulary_id == \"SNOMED\" & domain_id==\"Procedure\") " - ] - }, - { - "cell_type": "code", - "execution_count": 191, - "metadata": {}, - "outputs": [], - "source": [ - "# check necessary opcs4 concept ids\n", - "#concept_ids = unique(concept_ids_snomed_input %>% mutate(concept_id_1 = concept_id))$concept_id_1\n", - "cr_filtered = concept_relationship %>% \n", - " filter(concept_id_1 %in% concept_ids_snomed_input$concept_id) %>% \n", - " filter(concept_id_2 %in% concept_ids_snomed_substance$concept_id) %>% \n", - " filter(relationship_id %in% c(\"Has active ing\")) %>%\n", - " arrange(concept_id_1) " - ] - }, - { - "cell_type": "code", - "execution_count": 196, - "metadata": {}, - "outputs": [], - "source": [ - "mapping_snomed_substance = concept_ids_snomed_input %>% \n", - " left_join(cr_filtered %>% select(concept_id_1, concept_id_2), by=c(\"concept_id\"=\"concept_id_1\")) %>% \n", - " left_join(concept_ids_snomed_substance %>% select(concept_id, concept_code, concept_name), by=c(\"concept_id_2\"=\"concept_id\")) %>% \n", - " mutate(code = concept_code.x, meaning=concept_code.y, name=concept_name.y) %>% select(code, meaning, name)" - ] - }, - { - "cell_type": "code", - "execution_count": 201, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 5859 × 6
eidbnf_codedrug_namedatemeaningname
<int><chr><chr><date><chr><chr>
51579030602010000Levothyroxine sodium 100microgram tablets 2010-05-25710809001Levothyroxine
51579030602010000Levothyroxine sodium 100microgram tablets 2010-05-2561275002 Liothyronine
51579030602010000Levothyroxine sodium 100microgram tablets 2010-05-25NA NA
30393020310000000Pseudoephedrine hydrochloride 60mg tablets2004-12-03372900003Pseudoephedrine
30393020310000000Pseudoephedrine hydrochloride 60mg tablets2004-12-03NA NA
30393020310000000Pseudoephedrine hydrochloride 60mg tablets2004-12-03387517004Paracetamol
30393020310000000Pseudoephedrine hydrochloride 60mg tablets2004-12-03372771005Phenylephrine
30393020310000000Pseudoephedrine hydrochloride 60mg tablets2004-12-03387464001Phenylpropanolamine
30393020310000000Pseudoephedrine hydrochloride 60mg tablets2004-12-03387207008Ibuprofen
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21372754009Verapamil
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21386864001Amlodipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21NA NA
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21395764001Lacidipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21395986007Lercanidipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21372502001Nicardipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21387490003Nifedipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21386862002Isradipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21386861009Nisoldipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21387502003Nimodipine
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21372793000Diltiazem
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21386876001Valsartan
48656310206020000Felodipine 10mg modified-release tablets 2003-07-21386863007Felodipine
31648120407020000Tramadol 50mg capsules 2014-04-24387322000Dihydrocodeine
31648120407020000Tramadol 50mg capsules 2014-04-24386858008Tramadol
31648120407020000Tramadol 50mg capsules 2014-04-24387298007Meperidine
31648120407020000Tramadol 50mg capsules 2014-04-24387494007Codeine
31648120407020000Tramadol 50mg capsules 2014-04-24387173000Buprenorphine
31648120407020000Tramadol 50mg capsules 2014-04-24373529000Morphine
31648120407020000Tramadol 50mg capsules 2014-04-24NA NA
31648120407020000Tramadol 50mg capsules 2014-04-24387341002Diamorphine
20861451001040100diclofenac sodium EC tablets 50mg 2006-05-12387135004Allopurinol
20861451001040100diclofenac sodium EC tablets 50mg 2006-05-12NA NA
20861451001040100diclofenac sodium EC tablets 50mg 2006-05-12387108008Sulfinpyrazone
20861451001040100diclofenac sodium EC tablets 50mg 2006-05-12387365004Probenecid
20861451001040100diclofenac sodium EC tablets 50mg 2006-05-12395858003Rasburicase
20861451001040100diclofenac sodium EC tablets 50mg 2006-05-12441743008Febuxostat
20861451001040100diclofenac sodium EC tablets 50mg 2006-05-12698025001Benzbromarone
34485431306020100Erythromycin 250mg gastro-resistant tablets2007-09-21126097006Ethinylestradiol
34485431306020100Erythromycin 250mg gastro-resistant tablets2007-09-21126119006Cyproterone
34485431306020100Erythromycin 250mg gastro-resistant tablets2007-09-21NA NA
49916350202030000Spironolactone 25mg tablets 2014-12-12387503008Amiloride
49916350202030000Spironolactone 25mg tablets 2014-12-12387078006Spironolactone
49916350202030000Spironolactone 25mg tablets 2014-12-12387053007Triamterene
49916350202030000Spironolactone 25mg tablets 2014-12-12407010008Eplerenone
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27387517004Paracetamol
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27387322000Dihydrocodeine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27387494007Codeine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27387458008Aspirin
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27NA NA
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27419768004Nefopam
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27387302004Isometheptene
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27372771005Phenylephrine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27372682005Diphenhydramine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27372900003Pseudoephedrine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-2787174009 Guaifenesin
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27255641001Caffeine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27387358007Ephedrine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-2743706004 Ascorbic acid
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27396486005Pholcodine
19185940407010200Co-codamol 8mg/500mg tablets 2004-10-27387207008Ibuprofen
\n" - ], - "text/latex": [ - "A data.table: 5859 × 6\n", - "\\begin{tabular}{llllll}\n", - " eid & bnf\\_code & drug\\_name & date & meaning & name\\\\\n", - " & & & & & \\\\\n", - "\\hline\n", - "\t 5157903 & 0602010000 & Levothyroxine sodium 100microgram tablets & 2010-05-25 & 710809001 & Levothyroxine \\\\\n", - "\t 5157903 & 0602010000 & Levothyroxine sodium 100microgram tablets & 2010-05-25 & 61275002 & Liothyronine \\\\\n", - "\t 5157903 & 0602010000 & Levothyroxine sodium 100microgram tablets & 2010-05-25 & NA & NA \\\\\n", - "\t 3039302 & 0310000000 & Pseudoephedrine hydrochloride 60mg tablets & 2004-12-03 & 372900003 & Pseudoephedrine \\\\\n", - "\t 3039302 & 0310000000 & Pseudoephedrine hydrochloride 60mg tablets & 2004-12-03 & NA & NA \\\\\n", - "\t 3039302 & 0310000000 & Pseudoephedrine hydrochloride 60mg tablets & 2004-12-03 & 387517004 & Paracetamol \\\\\n", - "\t 3039302 & 0310000000 & Pseudoephedrine hydrochloride 60mg tablets & 2004-12-03 & 372771005 & Phenylephrine \\\\\n", - "\t 3039302 & 0310000000 & Pseudoephedrine hydrochloride 60mg tablets & 2004-12-03 & 387464001 & Phenylpropanolamine\\\\\n", - "\t 3039302 & 0310000000 & Pseudoephedrine hydrochloride 60mg tablets & 2004-12-03 & 387207008 & Ibuprofen \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 372754009 & Verapamil \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 386864001 & Amlodipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & NA & NA \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 395764001 & Lacidipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 395986007 & Lercanidipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 372502001 & Nicardipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 387490003 & Nifedipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 386862002 & Isradipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 386861009 & Nisoldipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 387502003 & Nimodipine \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 372793000 & Diltiazem \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 386876001 & Valsartan \\\\\n", - "\t 4865631 & 0206020000 & Felodipine 10mg modified-release tablets & 2003-07-21 & 386863007 & Felodipine \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & 387322000 & Dihydrocodeine \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & 386858008 & Tramadol \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & 387298007 & Meperidine \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & 387494007 & Codeine \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & 387173000 & Buprenorphine \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & 373529000 & Morphine \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & NA & NA \\\\\n", - "\t 3164812 & 0407020000 & Tramadol 50mg capsules & 2014-04-24 & 387341002 & Diamorphine \\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 2086145 & 1001040100 & diclofenac sodium EC tablets 50mg & 2006-05-12 & 387135004 & Allopurinol \\\\\n", - "\t 2086145 & 1001040100 & diclofenac sodium EC tablets 50mg & 2006-05-12 & NA & NA \\\\\n", - "\t 2086145 & 1001040100 & diclofenac sodium EC tablets 50mg & 2006-05-12 & 387108008 & Sulfinpyrazone \\\\\n", - "\t 2086145 & 1001040100 & diclofenac sodium EC tablets 50mg & 2006-05-12 & 387365004 & Probenecid \\\\\n", - "\t 2086145 & 1001040100 & diclofenac sodium EC tablets 50mg & 2006-05-12 & 395858003 & Rasburicase \\\\\n", - "\t 2086145 & 1001040100 & diclofenac sodium EC tablets 50mg & 2006-05-12 & 441743008 & Febuxostat \\\\\n", - "\t 2086145 & 1001040100 & diclofenac sodium EC tablets 50mg & 2006-05-12 & 698025001 & Benzbromarone \\\\\n", - "\t 3448543 & 1306020100 & Erythromycin 250mg gastro-resistant tablets & 2007-09-21 & 126097006 & Ethinylestradiol\\\\\n", - "\t 3448543 & 1306020100 & Erythromycin 250mg gastro-resistant tablets & 2007-09-21 & 126119006 & Cyproterone \\\\\n", - "\t 3448543 & 1306020100 & Erythromycin 250mg gastro-resistant tablets & 2007-09-21 & NA & NA \\\\\n", - "\t 4991635 & 0202030000 & Spironolactone 25mg tablets & 2014-12-12 & 387503008 & Amiloride \\\\\n", - "\t 4991635 & 0202030000 & Spironolactone 25mg tablets & 2014-12-12 & 387078006 & Spironolactone \\\\\n", - "\t 4991635 & 0202030000 & Spironolactone 25mg tablets & 2014-12-12 & 387053007 & Triamterene \\\\\n", - "\t 4991635 & 0202030000 & Spironolactone 25mg tablets & 2014-12-12 & 407010008 & Eplerenone \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 387517004 & Paracetamol \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 387322000 & Dihydrocodeine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 387494007 & Codeine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 387458008 & Aspirin \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & NA & NA \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 419768004 & Nefopam \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 387302004 & Isometheptene \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 372771005 & Phenylephrine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 372682005 & Diphenhydramine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 372900003 & Pseudoephedrine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 87174009 & Guaifenesin \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 255641001 & Caffeine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 387358007 & Ephedrine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 43706004 & Ascorbic acid \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 396486005 & Pholcodine \\\\\n", - "\t 1918594 & 0407010200 & Co-codamol 8mg/500mg tablets & 2004-10-27 & 387207008 & Ibuprofen \\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 5859 × 6\n", - "\n", - "| eid <int> | bnf_code <chr> | drug_name <chr> | date <date> | meaning <chr> | name <chr> |\n", - "|---|---|---|---|---|---|\n", - "| 5157903 | 0602010000 | Levothyroxine sodium 100microgram tablets | 2010-05-25 | 710809001 | Levothyroxine |\n", - "| 5157903 | 0602010000 | Levothyroxine sodium 100microgram tablets | 2010-05-25 | 61275002 | Liothyronine |\n", - "| 5157903 | 0602010000 | Levothyroxine sodium 100microgram tablets | 2010-05-25 | NA | NA |\n", - "| 3039302 | 0310000000 | Pseudoephedrine hydrochloride 60mg tablets | 2004-12-03 | 372900003 | Pseudoephedrine |\n", - "| 3039302 | 0310000000 | Pseudoephedrine hydrochloride 60mg tablets | 2004-12-03 | NA | NA |\n", - "| 3039302 | 0310000000 | Pseudoephedrine hydrochloride 60mg tablets | 2004-12-03 | 387517004 | Paracetamol |\n", - "| 3039302 | 0310000000 | Pseudoephedrine hydrochloride 60mg tablets | 2004-12-03 | 372771005 | Phenylephrine |\n", - "| 3039302 | 0310000000 | Pseudoephedrine hydrochloride 60mg tablets | 2004-12-03 | 387464001 | Phenylpropanolamine |\n", - "| 3039302 | 0310000000 | Pseudoephedrine hydrochloride 60mg tablets | 2004-12-03 | 387207008 | Ibuprofen |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 372754009 | Verapamil |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 386864001 | Amlodipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | NA | NA |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 395764001 | Lacidipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 395986007 | Lercanidipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 372502001 | Nicardipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 387490003 | Nifedipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 386862002 | Isradipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 386861009 | Nisoldipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 387502003 | Nimodipine |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 372793000 | Diltiazem |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 386876001 | Valsartan |\n", - "| 4865631 | 0206020000 | Felodipine 10mg modified-release tablets | 2003-07-21 | 386863007 | Felodipine |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | 387322000 | Dihydrocodeine |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | 386858008 | Tramadol |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | 387298007 | Meperidine |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | 387494007 | Codeine |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | 387173000 | Buprenorphine |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | 373529000 | Morphine |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | NA | NA |\n", - "| 3164812 | 0407020000 | Tramadol 50mg capsules | 2014-04-24 | 387341002 | Diamorphine |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 2086145 | 1001040100 | diclofenac sodium EC tablets 50mg | 2006-05-12 | 387135004 | Allopurinol |\n", - "| 2086145 | 1001040100 | diclofenac sodium EC tablets 50mg | 2006-05-12 | NA | NA |\n", - "| 2086145 | 1001040100 | diclofenac sodium EC tablets 50mg | 2006-05-12 | 387108008 | Sulfinpyrazone |\n", - "| 2086145 | 1001040100 | diclofenac sodium EC tablets 50mg | 2006-05-12 | 387365004 | Probenecid |\n", - "| 2086145 | 1001040100 | diclofenac sodium EC tablets 50mg | 2006-05-12 | 395858003 | Rasburicase |\n", - "| 2086145 | 1001040100 | diclofenac sodium EC tablets 50mg | 2006-05-12 | 441743008 | Febuxostat |\n", - "| 2086145 | 1001040100 | diclofenac sodium EC tablets 50mg | 2006-05-12 | 698025001 | Benzbromarone |\n", - "| 3448543 | 1306020100 | Erythromycin 250mg gastro-resistant tablets | 2007-09-21 | 126097006 | Ethinylestradiol |\n", - "| 3448543 | 1306020100 | Erythromycin 250mg gastro-resistant tablets | 2007-09-21 | 126119006 | Cyproterone |\n", - "| 3448543 | 1306020100 | Erythromycin 250mg gastro-resistant tablets | 2007-09-21 | NA | NA |\n", - "| 4991635 | 0202030000 | Spironolactone 25mg tablets | 2014-12-12 | 387503008 | Amiloride |\n", - "| 4991635 | 0202030000 | Spironolactone 25mg tablets | 2014-12-12 | 387078006 | Spironolactone |\n", - "| 4991635 | 0202030000 | Spironolactone 25mg tablets | 2014-12-12 | 387053007 | Triamterene |\n", - "| 4991635 | 0202030000 | Spironolactone 25mg tablets | 2014-12-12 | 407010008 | Eplerenone |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 387517004 | Paracetamol |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 387322000 | Dihydrocodeine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 387494007 | Codeine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 387458008 | Aspirin |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | NA | NA |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 419768004 | Nefopam |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 387302004 | Isometheptene |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 372771005 | Phenylephrine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 372682005 | Diphenhydramine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 372900003 | Pseudoephedrine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 87174009 | Guaifenesin |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 255641001 | Caffeine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 387358007 | Ephedrine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 43706004 | Ascorbic acid |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 396486005 | Pholcodine |\n", - "| 1918594 | 0407010200 | Co-codamol 8mg/500mg tablets | 2004-10-27 | 387207008 | Ibuprofen |\n", - "\n" - ], - "text/plain": [ - " eid bnf_code drug_name \n", - "1 5157903 0602010000 Levothyroxine sodium 100microgram tablets \n", - "2 5157903 0602010000 Levothyroxine sodium 100microgram tablets \n", - "3 5157903 0602010000 Levothyroxine sodium 100microgram tablets \n", - "4 3039302 0310000000 Pseudoephedrine hydrochloride 60mg tablets \n", - "5 3039302 0310000000 Pseudoephedrine hydrochloride 60mg tablets \n", - "6 3039302 0310000000 Pseudoephedrine hydrochloride 60mg tablets \n", - "7 3039302 0310000000 Pseudoephedrine hydrochloride 60mg tablets \n", - "8 3039302 0310000000 Pseudoephedrine hydrochloride 60mg tablets \n", - "9 3039302 0310000000 Pseudoephedrine hydrochloride 60mg tablets \n", - "10 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "11 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "12 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "13 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "14 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "15 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "16 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "17 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "18 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "19 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "20 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "21 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "22 4865631 0206020000 Felodipine 10mg modified-release tablets \n", - "23 3164812 0407020000 Tramadol 50mg capsules \n", - "24 3164812 0407020000 Tramadol 50mg capsules \n", - "25 3164812 0407020000 Tramadol 50mg capsules \n", - "26 3164812 0407020000 Tramadol 50mg capsules \n", - "27 3164812 0407020000 Tramadol 50mg capsules \n", - "28 3164812 0407020000 Tramadol 50mg capsules \n", - "29 3164812 0407020000 Tramadol 50mg capsules \n", - "30 3164812 0407020000 Tramadol 50mg capsules \n", - " \n", - "5830 2086145 1001040100 diclofenac sodium EC tablets 50mg \n", - "5831 2086145 1001040100 diclofenac sodium EC tablets 50mg \n", - "5832 2086145 1001040100 diclofenac sodium EC tablets 50mg \n", - "5833 2086145 1001040100 diclofenac sodium EC tablets 50mg \n", - "5834 2086145 1001040100 diclofenac sodium EC tablets 50mg \n", - "5835 2086145 1001040100 diclofenac sodium EC tablets 50mg \n", - "5836 2086145 1001040100 diclofenac sodium EC tablets 50mg \n", - "5837 3448543 1306020100 Erythromycin 250mg gastro-resistant tablets\n", - "5838 3448543 1306020100 Erythromycin 250mg gastro-resistant tablets\n", - "5839 3448543 1306020100 Erythromycin 250mg gastro-resistant tablets\n", - "5840 4991635 0202030000 Spironolactone 25mg tablets \n", - "5841 4991635 0202030000 Spironolactone 25mg tablets \n", - "5842 4991635 0202030000 Spironolactone 25mg tablets \n", - "5843 4991635 0202030000 Spironolactone 25mg tablets \n", - "5844 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5845 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5846 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5847 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5848 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5849 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5850 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5851 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5852 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5853 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5854 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5855 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5856 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5857 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5858 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - "5859 1918594 0407010200 Co-codamol 8mg/500mg tablets \n", - " date meaning name \n", - "1 2010-05-25 710809001 Levothyroxine \n", - "2 2010-05-25 61275002 Liothyronine \n", - "3 2010-05-25 NA NA \n", - "4 2004-12-03 372900003 Pseudoephedrine \n", - "5 2004-12-03 NA NA \n", - "6 2004-12-03 387517004 Paracetamol \n", - "7 2004-12-03 372771005 Phenylephrine \n", - "8 2004-12-03 387464001 Phenylpropanolamine\n", - "9 2004-12-03 387207008 Ibuprofen \n", - "10 2003-07-21 372754009 Verapamil \n", - "11 2003-07-21 386864001 Amlodipine \n", - "12 2003-07-21 NA NA \n", - "13 2003-07-21 395764001 Lacidipine \n", - "14 2003-07-21 395986007 Lercanidipine \n", - "15 2003-07-21 372502001 Nicardipine \n", - "16 2003-07-21 387490003 Nifedipine \n", - "17 2003-07-21 386862002 Isradipine \n", - "18 2003-07-21 386861009 Nisoldipine \n", - "19 2003-07-21 387502003 Nimodipine \n", - "20 2003-07-21 372793000 Diltiazem \n", - "21 2003-07-21 386876001 Valsartan \n", - "22 2003-07-21 386863007 Felodipine \n", - "23 2014-04-24 387322000 Dihydrocodeine \n", - "24 2014-04-24 386858008 Tramadol \n", - "25 2014-04-24 387298007 Meperidine \n", - "26 2014-04-24 387494007 Codeine \n", - "27 2014-04-24 387173000 Buprenorphine \n", - "28 2014-04-24 373529000 Morphine \n", - "29 2014-04-24 NA NA \n", - "30 2014-04-24 387341002 Diamorphine \n", - " \n", - "5830 2006-05-12 387135004 Allopurinol \n", - "5831 2006-05-12 NA NA \n", - "5832 2006-05-12 387108008 Sulfinpyrazone \n", - "5833 2006-05-12 387365004 Probenecid \n", - "5834 2006-05-12 395858003 Rasburicase \n", - "5835 2006-05-12 441743008 Febuxostat \n", - "5836 2006-05-12 698025001 Benzbromarone \n", - "5837 2007-09-21 126097006 Ethinylestradiol \n", - "5838 2007-09-21 126119006 Cyproterone \n", - "5839 2007-09-21 NA NA \n", - "5840 2014-12-12 387503008 Amiloride \n", - "5841 2014-12-12 387078006 Spironolactone \n", - "5842 2014-12-12 387053007 Triamterene \n", - "5843 2014-12-12 407010008 Eplerenone \n", - "5844 2004-10-27 387517004 Paracetamol \n", - "5845 2004-10-27 387322000 Dihydrocodeine \n", - "5846 2004-10-27 387494007 Codeine \n", - "5847 2004-10-27 387458008 Aspirin \n", - "5848 2004-10-27 NA NA \n", - "5849 2004-10-27 419768004 Nefopam \n", - "5850 2004-10-27 387302004 Isometheptene \n", - "5851 2004-10-27 372771005 Phenylephrine \n", - "5852 2004-10-27 372682005 Diphenhydramine \n", - "5853 2004-10-27 372900003 Pseudoephedrine \n", - "5854 2004-10-27 87174009 Guaifenesin \n", - "5855 2004-10-27 255641001 Caffeine \n", - "5856 2004-10-27 387358007 Ephedrine \n", - "5857 2004-10-27 43706004 Ascorbic acid \n", - "5858 2004-10-27 396486005 Pholcodine \n", - "5859 2004-10-27 387207008 Ibuprofen " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_scripts_pre %>% mutate(sct_code=as.character(sct_code)) %>% left_join(mapping_snomed_substance, by=c(\"sct_code\"=\"code\")) %>% select(eid, bnf_code, drug_name, date, meaning, name) %>% distinct()" - ] - }, - { - "cell_type": "code", - "execution_count": 197, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 17239 × 3
codemeaningname
<chr><chr><chr>
10050811000001105NA NA
10051011000001108NA NA
10051911000001107NA NA
10052111000001104385544005Pegfilgrastim
10063711000001101391852006Bismuth subnitrate
10063811000001109126189002Desmopressin
10063911000001104126189002Desmopressin
10064111000001100NA NA
10064211000001106NA NA
10064311000001103NA NA
10064511000001109NA NA
10064611000001108372672009Cromolyn
10064711000001104387458008Aspirin
10075311000001106NA NA
10075411000001104NA NA
10075511000001100373529000Morphine
10075611000001101372515005Salmeterol
10097111000001108NA NA
10097211000001102411530000Insulin glulisine
1014071100000110843706004 Ascorbic acid
10140811000001100396065004Folinic acid
10140911000001105406439009Daptomycin
10141011000001102NA NA
10141211000001107NA NA
10141311000001104NA NA
10141411000001106NA NA
10141511000001105NA NA
10141611000001109NA NA
10142111000001106421924006Rotigotine
10143511000001109421924006Rotigotine
9864911000001103NA NA
9865011000001103NA NA
9865111000001102NA NA
9865211000001108424967004Lumiracoxib
9865311000001100424967004Lumiracoxib
9865411000001107NA NA
9865511000001106NA NA
9865611000001105NA NA
9865711000001101NA NA
9865811000001109NA NA
9865911000001104NA NA
986611100000110837237003 Vitamin E and vitamin E derivative
9866211000001102NA NA
9866311000001105NA NA
98707110000011018631001 Potassium chloride
9884211000001109NA NA
9884311000001101NA NA
9884411000001108NA NA
9884511000001107NA NA
9884611000001106NA NA
9884711000001102NA NA
9884811000001105387162007Senna
9884811000001105387128007Cascara
9889211000001108NA NA
9904311000001107NA NA
9904411000001100412374001Haemophilus influenzae type b vaccine
9904411000001100424891007Meningococcus vaccine
9904511000001101387107003Prilocaine
9904511000001101387480006Lidocaine
9992611000001108NA NA
\n" - ], - "text/latex": [ - "A data.table: 17239 × 3\n", - "\\begin{tabular}{lll}\n", - " code & meaning & name\\\\\n", - " & & \\\\\n", - "\\hline\n", - "\t 10050811000001105 & NA & NA \\\\\n", - "\t 10051011000001108 & NA & NA \\\\\n", - "\t 10051911000001107 & NA & NA \\\\\n", - "\t 10052111000001104 & 385544005 & Pegfilgrastim \\\\\n", - "\t 10063711000001101 & 391852006 & Bismuth subnitrate\\\\\n", - "\t 10063811000001109 & 126189002 & Desmopressin \\\\\n", - "\t 10063911000001104 & 126189002 & Desmopressin \\\\\n", - "\t 10064111000001100 & NA & NA \\\\\n", - "\t 10064211000001106 & NA & NA \\\\\n", - "\t 10064311000001103 & NA & NA \\\\\n", - "\t 10064511000001109 & NA & NA \\\\\n", - "\t 10064611000001108 & 372672009 & Cromolyn \\\\\n", - "\t 10064711000001104 & 387458008 & Aspirin \\\\\n", - "\t 10075311000001106 & NA & NA \\\\\n", - "\t 10075411000001104 & NA & NA \\\\\n", - "\t 10075511000001100 & 373529000 & Morphine \\\\\n", - "\t 10075611000001101 & 372515005 & Salmeterol \\\\\n", - "\t 10097111000001108 & NA & NA \\\\\n", - "\t 10097211000001102 & 411530000 & Insulin glulisine \\\\\n", - "\t 10140711000001108 & 43706004 & Ascorbic acid \\\\\n", - "\t 10140811000001100 & 396065004 & Folinic acid \\\\\n", - "\t 10140911000001105 & 406439009 & Daptomycin \\\\\n", - "\t 10141011000001102 & NA & NA \\\\\n", - "\t 10141211000001107 & NA & NA \\\\\n", - "\t 10141311000001104 & NA & NA \\\\\n", - "\t 10141411000001106 & NA & NA \\\\\n", - "\t 10141511000001105 & NA & NA \\\\\n", - "\t 10141611000001109 & NA & NA \\\\\n", - "\t 10142111000001106 & 421924006 & Rotigotine \\\\\n", - "\t 10143511000001109 & 421924006 & Rotigotine \\\\\n", - "\t ⋮ & ⋮ & ⋮\\\\\n", - "\t 9864911000001103 & NA & NA \\\\\n", - "\t 9865011000001103 & NA & NA \\\\\n", - "\t 9865111000001102 & NA & NA \\\\\n", - "\t 9865211000001108 & 424967004 & Lumiracoxib \\\\\n", - "\t 9865311000001100 & 424967004 & Lumiracoxib \\\\\n", - "\t 9865411000001107 & NA & NA \\\\\n", - "\t 9865511000001106 & NA & NA \\\\\n", - "\t 9865611000001105 & NA & NA \\\\\n", - "\t 9865711000001101 & NA & NA \\\\\n", - "\t 9865811000001109 & NA & NA \\\\\n", - "\t 9865911000001104 & NA & NA \\\\\n", - "\t 9866111000001108 & 37237003 & Vitamin E and vitamin E derivative \\\\\n", - "\t 9866211000001102 & NA & NA \\\\\n", - "\t 9866311000001105 & NA & NA \\\\\n", - "\t 9870711000001101 & 8631001 & Potassium chloride \\\\\n", - "\t 9884211000001109 & NA & NA \\\\\n", - "\t 9884311000001101 & NA & NA \\\\\n", - "\t 9884411000001108 & NA & NA \\\\\n", - "\t 9884511000001107 & NA & NA \\\\\n", - "\t 9884611000001106 & NA & NA \\\\\n", - "\t 9884711000001102 & NA & NA \\\\\n", - "\t 9884811000001105 & 387162007 & Senna \\\\\n", - "\t 9884811000001105 & 387128007 & Cascara \\\\\n", - "\t 9889211000001108 & NA & NA \\\\\n", - "\t 9904311000001107 & NA & NA \\\\\n", - "\t 9904411000001100 & 412374001 & Haemophilus influenzae type b vaccine\\\\\n", - "\t 9904411000001100 & 424891007 & Meningococcus vaccine \\\\\n", - "\t 9904511000001101 & 387107003 & Prilocaine \\\\\n", - "\t 9904511000001101 & 387480006 & Lidocaine \\\\\n", - "\t 9992611000001108 & NA & NA \\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 17239 × 3\n", - "\n", - "| code <chr> | meaning <chr> | name <chr> |\n", - "|---|---|---|\n", - "| 10050811000001105 | NA | NA |\n", - "| 10051011000001108 | NA | NA |\n", - "| 10051911000001107 | NA | NA |\n", - "| 10052111000001104 | 385544005 | Pegfilgrastim |\n", - "| 10063711000001101 | 391852006 | Bismuth subnitrate |\n", - "| 10063811000001109 | 126189002 | Desmopressin |\n", - "| 10063911000001104 | 126189002 | Desmopressin |\n", - "| 10064111000001100 | NA | NA |\n", - "| 10064211000001106 | NA | NA |\n", - "| 10064311000001103 | NA | NA |\n", - "| 10064511000001109 | NA | NA |\n", - "| 10064611000001108 | 372672009 | Cromolyn |\n", - "| 10064711000001104 | 387458008 | Aspirin |\n", - "| 10075311000001106 | NA | NA |\n", - "| 10075411000001104 | NA | NA |\n", - "| 10075511000001100 | 373529000 | Morphine |\n", - "| 10075611000001101 | 372515005 | Salmeterol |\n", - "| 10097111000001108 | NA | NA |\n", - "| 10097211000001102 | 411530000 | Insulin glulisine |\n", - "| 10140711000001108 | 43706004 | Ascorbic acid |\n", - "| 10140811000001100 | 396065004 | Folinic acid |\n", - "| 10140911000001105 | 406439009 | Daptomycin |\n", - "| 10141011000001102 | NA | NA |\n", - "| 10141211000001107 | NA | NA |\n", - "| 10141311000001104 | NA | NA |\n", - "| 10141411000001106 | NA | NA |\n", - "| 10141511000001105 | NA | NA |\n", - "| 10141611000001109 | NA | NA |\n", - "| 10142111000001106 | 421924006 | Rotigotine |\n", - "| 10143511000001109 | 421924006 | Rotigotine |\n", - "| ⋮ | ⋮ | ⋮ |\n", - "| 9864911000001103 | NA | NA |\n", - "| 9865011000001103 | NA | NA |\n", - "| 9865111000001102 | NA | NA |\n", - "| 9865211000001108 | 424967004 | Lumiracoxib |\n", - "| 9865311000001100 | 424967004 | Lumiracoxib |\n", - "| 9865411000001107 | NA | NA |\n", - "| 9865511000001106 | NA | NA |\n", - "| 9865611000001105 | NA | NA |\n", - "| 9865711000001101 | NA | NA |\n", - "| 9865811000001109 | NA | NA |\n", - "| 9865911000001104 | NA | NA |\n", - "| 9866111000001108 | 37237003 | Vitamin E and vitamin E derivative |\n", - "| 9866211000001102 | NA | NA |\n", - "| 9866311000001105 | NA | NA |\n", - "| 9870711000001101 | 8631001 | Potassium chloride |\n", - "| 9884211000001109 | NA | NA |\n", - "| 9884311000001101 | NA | NA |\n", - "| 9884411000001108 | NA | NA |\n", - "| 9884511000001107 | NA | NA |\n", - "| 9884611000001106 | NA | NA |\n", - "| 9884711000001102 | NA | NA |\n", - "| 9884811000001105 | 387162007 | Senna |\n", - "| 9884811000001105 | 387128007 | Cascara |\n", - "| 9889211000001108 | NA | NA |\n", - "| 9904311000001107 | NA | NA |\n", - "| 9904411000001100 | 412374001 | Haemophilus influenzae type b vaccine |\n", - "| 9904411000001100 | 424891007 | Meningococcus vaccine |\n", - "| 9904511000001101 | 387107003 | Prilocaine |\n", - "| 9904511000001101 | 387480006 | Lidocaine |\n", - "| 9992611000001108 | NA | NA |\n", - "\n" - ], - "text/plain": [ - " code meaning name \n", - "1 10050811000001105 NA NA \n", - "2 10051011000001108 NA NA \n", - "3 10051911000001107 NA NA \n", - "4 10052111000001104 385544005 Pegfilgrastim \n", - "5 10063711000001101 391852006 Bismuth subnitrate \n", - "6 10063811000001109 126189002 Desmopressin \n", - "7 10063911000001104 126189002 Desmopressin \n", - "8 10064111000001100 NA NA \n", - "9 10064211000001106 NA NA \n", - "10 10064311000001103 NA NA \n", - "11 10064511000001109 NA NA \n", - "12 10064611000001108 372672009 Cromolyn \n", - "13 10064711000001104 387458008 Aspirin \n", - "14 10075311000001106 NA NA \n", - "15 10075411000001104 NA NA \n", - "16 10075511000001100 373529000 Morphine \n", - "17 10075611000001101 372515005 Salmeterol \n", - "18 10097111000001108 NA NA \n", - "19 10097211000001102 411530000 Insulin glulisine \n", - "20 10140711000001108 43706004 Ascorbic acid \n", - "21 10140811000001100 396065004 Folinic acid \n", - "22 10140911000001105 406439009 Daptomycin \n", - "23 10141011000001102 NA NA \n", - "24 10141211000001107 NA NA \n", - "25 10141311000001104 NA NA \n", - "26 10141411000001106 NA NA \n", - "27 10141511000001105 NA NA \n", - "28 10141611000001109 NA NA \n", - "29 10142111000001106 421924006 Rotigotine \n", - "30 10143511000001109 421924006 Rotigotine \n", - " \n", - "17210 9864911000001103 NA NA \n", - "17211 9865011000001103 NA NA \n", - "17212 9865111000001102 NA NA \n", - "17213 9865211000001108 424967004 Lumiracoxib \n", - "17214 9865311000001100 424967004 Lumiracoxib \n", - "17215 9865411000001107 NA NA \n", - "17216 9865511000001106 NA NA \n", - "17217 9865611000001105 NA NA \n", - "17218 9865711000001101 NA NA \n", - "17219 9865811000001109 NA NA \n", - "17220 9865911000001104 NA NA \n", - "17221 9866111000001108 37237003 Vitamin E and vitamin E derivative \n", - "17222 9866211000001102 NA NA \n", - "17223 9866311000001105 NA NA \n", - "17224 9870711000001101 8631001 Potassium chloride \n", - "17225 9884211000001109 NA NA \n", - "17226 9884311000001101 NA NA \n", - "17227 9884411000001108 NA NA \n", - "17228 9884511000001107 NA NA \n", - "17229 9884611000001106 NA NA \n", - "17230 9884711000001102 NA NA \n", - "17231 9884811000001105 387162007 Senna \n", - "17232 9884811000001105 387128007 Cascara \n", - "17233 9889211000001108 NA NA \n", - "17234 9904311000001107 NA NA \n", - "17235 9904411000001100 412374001 Haemophilus influenzae type b vaccine\n", - "17236 9904411000001100 424891007 Meningococcus vaccine \n", - "17237 9904511000001101 387107003 Prilocaine \n", - "17238 9904511000001101 387480006 Lidocaine \n", - "17239 9992611000001108 NA NA " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "mapping_snomed_substance " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 14898465 × 10
eiddata_providerissue_dateread_2bnf_codedmd_codedrug_namequantitydatecode
<int><int><chr><chr><chr><int64><chr><chr><date><chr>
1000020206/10/2016dher.04065400NAProchlorperazine 5mg tablets28.0002016-10-06NA
1000360417/09/1993a23y.NA NANA NA 1993-09-17NA
1000360415/07/1996j28B.NA NANA NA 1996-07-15NA
1000360412/06/1997j28B.NA NANA NA 1997-06-12NA
1000360426/06/1998c8o1.NA NANA NA 1998-06-26NA
1000360426/06/1998l81z.NA NANA NA 1998-06-26NA
1000360401/09/1998l81z.NA NANA NA 1998-09-01NA
1000360419/11/1998l81z.NA NANA NA 1998-11-19NA
1000360419/05/1999aj1t.NA NANA NA 1999-05-19NA
1000360415/12/1999aj1t.NA NANA NA 1999-12-15NA
1000360415/12/1999l881.NA NANA NA 1999-12-15NA
1000360407/06/2000l881.NA NANA NA 2000-06-07NA
1000360404/07/2000l881.NA NANA NA 2000-07-04NA
1000360404/10/2000l881.NA NANA NA 2000-10-04NA
1000360408/11/2000l881.NA NANA NA 2000-11-08NA
1000360403/01/2001l881.NA NANA NA 2001-01-03NA
1000360414/02/2001l881.NA NANA NA 2001-02-14NA
1000360419/04/2001l881.NA NANA NA 2001-04-19NA
1000360416/07/2001dher.NA NANA NA 2001-07-16NA
1000360419/08/2002da91.NA NANA NA 2002-08-19NA
1000360410/09/2002da91.NA NANA NA 2002-09-10NA
1000360407/10/2002da91.NA NANA NA 2002-10-07NA
1000360405/11/2002da91.NA NANA NA 2002-11-05NA
1000360405/12/2002da91.NA NANA NA 2002-12-05NA
1000360430/12/2002da91.NA NANA NA 2002-12-30NA
1000360430/01/2003da91.NA NANA NA 2003-01-30NA
1000360418/03/2003da91.NA NANA NA 2003-03-18NA
1000360417/04/2003da91.NA NANA NA 2003-04-17NA
1000360413/05/2003da91.NA NANA NA 2003-05-13NA
1000360409/06/2003da91.NA NANA NA 2003-06-09NA
6025042412/01/2016bxd5.NANANANA2016-01-12NA
6025042409/02/2016bxd5.NANANANA2016-02-09NA
6025042408/03/2016bxd5.NANANANA2016-03-08NA
6025042405/04/2016bxd5.NANANANA2016-04-05NA
6025042402/06/2016d1d3.NANANANA2016-06-02NA
6025042402/06/2016dnj2.NANANANA2016-06-02NA
6025042402/06/2016dnj2.NANANANA2016-06-02NA
6025042423/06/2016d1d3.NANANANA2016-06-23NA
6025042407/07/2016dnj2.NANANANA2016-07-07NA
6025042405/08/2016dnj2.NANANANA2016-08-05NA
6025042431/08/2016dnj2.NANANANA2016-08-31NA
6025042430/09/2016dnj2.NANANANA2016-09-30NA
6025042426/10/2016dnj2.NANANANA2016-10-26NA
6025042422/11/2016dnj2.NANANANA2016-11-22NA
6025042420/12/2016dnj2.NANANANA2016-12-20NA
6025042425/01/2017dnj2.NANANANA2017-01-25NA
6025042417/02/2017dnj2.NANANANA2017-02-17NA
6025042408/03/2017a4ez.NANANANA2017-03-08NA
6025042420/03/2017dnj2.NANANANA2017-03-20NA
6025042431/03/2017dia2.NANANANA2017-03-31NA
6025042431/03/2017dia2.NANANANA2017-03-31NA
6025042431/03/2017dnj2.NANANANA2017-03-31NA
6025042406/04/2017dia2.NANANANA2017-04-06NA
6025042411/05/2017dnj2.NANANANA2017-05-11NA
6025042405/06/2017dnj2.NANANANA2017-06-05NA
6025042405/06/2017m412.NANANANA2017-06-05NA
6025042412/07/2017dnj2.NANANANA2017-07-12NA
6025042418/07/2017m272.NANANANA2017-07-18NA
6025042409/08/2017dnj2.NANANANA2017-08-09NA
6025042413/09/2017dnj2.NANANANA2017-09-13NA
\n" - ], - "text/latex": [ - "A data.table: 14898465 × 10\n", - "\\begin{tabular}{llllllllll}\n", - " eid & data\\_provider & issue\\_date & read\\_2 & bnf\\_code & dmd\\_code & drug\\_name & quantity & date & code\\\\\n", - " & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1000020 & 2 & 06/10/2016 & dher. & 04065400 & NA & Prochlorperazine 5mg tablets & 28.000 & 2016-10-06 & NA\\\\\n", - "\t 1000360 & 4 & 17/09/1993 & a23y. & NA & NA & NA & NA & 1993-09-17 & NA\\\\\n", - "\t 1000360 & 4 & 15/07/1996 & j28B. & NA & NA & NA & NA & 1996-07-15 & NA\\\\\n", - "\t 1000360 & 4 & 12/06/1997 & j28B. & NA & NA & NA & NA & 1997-06-12 & NA\\\\\n", - "\t 1000360 & 4 & 26/06/1998 & c8o1. & NA & NA & NA & NA & 1998-06-26 & NA\\\\\n", - "\t 1000360 & 4 & 26/06/1998 & l81z. & NA & NA & NA & NA & 1998-06-26 & NA\\\\\n", - "\t 1000360 & 4 & 01/09/1998 & l81z. & NA & NA & NA & NA & 1998-09-01 & NA\\\\\n", - "\t 1000360 & 4 & 19/11/1998 & l81z. & NA & NA & NA & NA & 1998-11-19 & NA\\\\\n", - "\t 1000360 & 4 & 19/05/1999 & aj1t. & NA & NA & NA & NA & 1999-05-19 & NA\\\\\n", - "\t 1000360 & 4 & 15/12/1999 & aj1t. & NA & NA & NA & NA & 1999-12-15 & NA\\\\\n", - "\t 1000360 & 4 & 15/12/1999 & l881. & NA & NA & NA & NA & 1999-12-15 & NA\\\\\n", - "\t 1000360 & 4 & 07/06/2000 & l881. & NA & NA & NA & NA & 2000-06-07 & NA\\\\\n", - "\t 1000360 & 4 & 04/07/2000 & l881. & NA & NA & NA & NA & 2000-07-04 & NA\\\\\n", - "\t 1000360 & 4 & 04/10/2000 & l881. & NA & NA & NA & NA & 2000-10-04 & NA\\\\\n", - "\t 1000360 & 4 & 08/11/2000 & l881. & NA & NA & NA & NA & 2000-11-08 & NA\\\\\n", - "\t 1000360 & 4 & 03/01/2001 & l881. & NA & NA & NA & NA & 2001-01-03 & NA\\\\\n", - "\t 1000360 & 4 & 14/02/2001 & l881. & NA & NA & NA & NA & 2001-02-14 & NA\\\\\n", - "\t 1000360 & 4 & 19/04/2001 & l881. & NA & NA & NA & NA & 2001-04-19 & NA\\\\\n", - "\t 1000360 & 4 & 16/07/2001 & dher. & NA & NA & NA & NA & 2001-07-16 & NA\\\\\n", - "\t 1000360 & 4 & 19/08/2002 & da91. & NA & NA & NA & NA & 2002-08-19 & NA\\\\\n", - "\t 1000360 & 4 & 10/09/2002 & da91. & NA & NA & NA & NA & 2002-09-10 & NA\\\\\n", - "\t 1000360 & 4 & 07/10/2002 & da91. & NA & NA & NA & NA & 2002-10-07 & NA\\\\\n", - "\t 1000360 & 4 & 05/11/2002 & da91. & NA & NA & NA & NA & 2002-11-05 & NA\\\\\n", - "\t 1000360 & 4 & 05/12/2002 & da91. & NA & NA & NA & NA & 2002-12-05 & NA\\\\\n", - "\t 1000360 & 4 & 30/12/2002 & da91. & NA & NA & NA & NA & 2002-12-30 & NA\\\\\n", - "\t 1000360 & 4 & 30/01/2003 & da91. & NA & NA & NA & NA & 2003-01-30 & NA\\\\\n", - "\t 1000360 & 4 & 18/03/2003 & da91. & NA & NA & NA & NA & 2003-03-18 & NA\\\\\n", - "\t 1000360 & 4 & 17/04/2003 & da91. & NA & NA & NA & NA & 2003-04-17 & NA\\\\\n", - "\t 1000360 & 4 & 13/05/2003 & da91. & NA & NA & NA & NA & 2003-05-13 & NA\\\\\n", - "\t 1000360 & 4 & 09/06/2003 & da91. & NA & NA & NA & NA & 2003-06-09 & NA\\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 6025042 & 4 & 12/01/2016 & bxd5. & NA & NA & NA & NA & 2016-01-12 & NA\\\\\n", - "\t 6025042 & 4 & 09/02/2016 & bxd5. & NA & NA & NA & NA & 2016-02-09 & NA\\\\\n", - "\t 6025042 & 4 & 08/03/2016 & bxd5. & NA & NA & NA & NA & 2016-03-08 & NA\\\\\n", - "\t 6025042 & 4 & 05/04/2016 & bxd5. & NA & NA & NA & NA & 2016-04-05 & NA\\\\\n", - "\t 6025042 & 4 & 02/06/2016 & d1d3. & NA & NA & NA & NA & 2016-06-02 & NA\\\\\n", - "\t 6025042 & 4 & 02/06/2016 & dnj2. & NA & NA & NA & NA & 2016-06-02 & NA\\\\\n", - "\t 6025042 & 4 & 02/06/2016 & dnj2. & NA & NA & NA & NA & 2016-06-02 & NA\\\\\n", - "\t 6025042 & 4 & 23/06/2016 & d1d3. & NA & NA & NA & NA & 2016-06-23 & NA\\\\\n", - "\t 6025042 & 4 & 07/07/2016 & dnj2. & NA & NA & NA & NA & 2016-07-07 & NA\\\\\n", - "\t 6025042 & 4 & 05/08/2016 & dnj2. & NA & NA & NA & NA & 2016-08-05 & NA\\\\\n", - "\t 6025042 & 4 & 31/08/2016 & dnj2. & NA & NA & NA & NA & 2016-08-31 & NA\\\\\n", - "\t 6025042 & 4 & 30/09/2016 & dnj2. & NA & NA & NA & NA & 2016-09-30 & NA\\\\\n", - "\t 6025042 & 4 & 26/10/2016 & dnj2. & NA & NA & NA & NA & 2016-10-26 & NA\\\\\n", - "\t 6025042 & 4 & 22/11/2016 & dnj2. & NA & NA & NA & NA & 2016-11-22 & NA\\\\\n", - "\t 6025042 & 4 & 20/12/2016 & dnj2. & NA & NA & NA & NA & 2016-12-20 & NA\\\\\n", - "\t 6025042 & 4 & 25/01/2017 & dnj2. & NA & NA & NA & NA & 2017-01-25 & NA\\\\\n", - "\t 6025042 & 4 & 17/02/2017 & dnj2. & NA & NA & NA & NA & 2017-02-17 & NA\\\\\n", - "\t 6025042 & 4 & 08/03/2017 & a4ez. & NA & NA & NA & NA & 2017-03-08 & NA\\\\\n", - "\t 6025042 & 4 & 20/03/2017 & dnj2. & NA & NA & NA & NA & 2017-03-20 & NA\\\\\n", - "\t 6025042 & 4 & 31/03/2017 & dia2. & NA & NA & NA & NA & 2017-03-31 & NA\\\\\n", - "\t 6025042 & 4 & 31/03/2017 & dia2. & NA & NA & NA & NA & 2017-03-31 & NA\\\\\n", - "\t 6025042 & 4 & 31/03/2017 & dnj2. & NA & NA & NA & NA & 2017-03-31 & NA\\\\\n", - "\t 6025042 & 4 & 06/04/2017 & dia2. & NA & NA & NA & NA & 2017-04-06 & NA\\\\\n", - "\t 6025042 & 4 & 11/05/2017 & dnj2. & NA & NA & NA & NA & 2017-05-11 & NA\\\\\n", - "\t 6025042 & 4 & 05/06/2017 & dnj2. & NA & NA & NA & NA & 2017-06-05 & NA\\\\\n", - "\t 6025042 & 4 & 05/06/2017 & m412. & NA & NA & NA & NA & 2017-06-05 & NA\\\\\n", - "\t 6025042 & 4 & 12/07/2017 & dnj2. & NA & NA & NA & NA & 2017-07-12 & NA\\\\\n", - "\t 6025042 & 4 & 18/07/2017 & m272. & NA & NA & NA & NA & 2017-07-18 & NA\\\\\n", - "\t 6025042 & 4 & 09/08/2017 & dnj2. & NA & NA & NA & NA & 2017-08-09 & NA\\\\\n", - "\t 6025042 & 4 & 13/09/2017 & dnj2. & NA & NA & NA & NA & 2017-09-13 & NA\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 14898465 × 10\n", - "\n", - "| eid <int> | data_provider <int> | issue_date <chr> | read_2 <chr> | bnf_code <chr> | dmd_code <int64> | drug_name <chr> | quantity <chr> | date <date> | code <chr> |\n", - "|---|---|---|---|---|---|---|---|---|---|\n", - "| 1000020 | 2 | 06/10/2016 | dher. | 04065400 | NA | Prochlorperazine 5mg tablets | 28.000 | 2016-10-06 | NA |\n", - "| 1000360 | 4 | 17/09/1993 | a23y. | NA | NA | NA | NA | 1993-09-17 | NA |\n", - "| 1000360 | 4 | 15/07/1996 | j28B. | NA | NA | NA | NA | 1996-07-15 | NA |\n", - "| 1000360 | 4 | 12/06/1997 | j28B. | NA | NA | NA | NA | 1997-06-12 | NA |\n", - "| 1000360 | 4 | 26/06/1998 | c8o1. | NA | NA | NA | NA | 1998-06-26 | NA |\n", - "| 1000360 | 4 | 26/06/1998 | l81z. | NA | NA | NA | NA | 1998-06-26 | NA |\n", - "| 1000360 | 4 | 01/09/1998 | l81z. | NA | NA | NA | NA | 1998-09-01 | NA |\n", - "| 1000360 | 4 | 19/11/1998 | l81z. | NA | NA | NA | NA | 1998-11-19 | NA |\n", - "| 1000360 | 4 | 19/05/1999 | aj1t. | NA | NA | NA | NA | 1999-05-19 | NA |\n", - "| 1000360 | 4 | 15/12/1999 | aj1t. | NA | NA | NA | NA | 1999-12-15 | NA |\n", - "| 1000360 | 4 | 15/12/1999 | l881. | NA | NA | NA | NA | 1999-12-15 | NA |\n", - "| 1000360 | 4 | 07/06/2000 | l881. | NA | NA | NA | NA | 2000-06-07 | NA |\n", - "| 1000360 | 4 | 04/07/2000 | l881. | NA | NA | NA | NA | 2000-07-04 | NA |\n", - "| 1000360 | 4 | 04/10/2000 | l881. | NA | NA | NA | NA | 2000-10-04 | NA |\n", - "| 1000360 | 4 | 08/11/2000 | l881. | NA | NA | NA | NA | 2000-11-08 | NA |\n", - "| 1000360 | 4 | 03/01/2001 | l881. | NA | NA | NA | NA | 2001-01-03 | NA |\n", - "| 1000360 | 4 | 14/02/2001 | l881. | NA | NA | NA | NA | 2001-02-14 | NA |\n", - "| 1000360 | 4 | 19/04/2001 | l881. | NA | NA | NA | NA | 2001-04-19 | NA |\n", - "| 1000360 | 4 | 16/07/2001 | dher. | NA | NA | NA | NA | 2001-07-16 | NA |\n", - "| 1000360 | 4 | 19/08/2002 | da91. | NA | NA | NA | NA | 2002-08-19 | NA |\n", - "| 1000360 | 4 | 10/09/2002 | da91. | NA | NA | NA | NA | 2002-09-10 | NA |\n", - "| 1000360 | 4 | 07/10/2002 | da91. | NA | NA | NA | NA | 2002-10-07 | NA |\n", - "| 1000360 | 4 | 05/11/2002 | da91. | NA | NA | NA | NA | 2002-11-05 | NA |\n", - "| 1000360 | 4 | 05/12/2002 | da91. | NA | NA | NA | NA | 2002-12-05 | NA |\n", - "| 1000360 | 4 | 30/12/2002 | da91. | NA | NA | NA | NA | 2002-12-30 | NA |\n", - "| 1000360 | 4 | 30/01/2003 | da91. | NA | NA | NA | NA | 2003-01-30 | NA |\n", - "| 1000360 | 4 | 18/03/2003 | da91. | NA | NA | NA | NA | 2003-03-18 | NA |\n", - "| 1000360 | 4 | 17/04/2003 | da91. | NA | NA | NA | NA | 2003-04-17 | NA |\n", - "| 1000360 | 4 | 13/05/2003 | da91. | NA | NA | NA | NA | 2003-05-13 | NA |\n", - "| 1000360 | 4 | 09/06/2003 | da91. | NA | NA | NA | NA | 2003-06-09 | NA |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 6025042 | 4 | 12/01/2016 | bxd5. | NA | NA | NA | NA | 2016-01-12 | NA |\n", - "| 6025042 | 4 | 09/02/2016 | bxd5. | NA | NA | NA | NA | 2016-02-09 | NA |\n", - "| 6025042 | 4 | 08/03/2016 | bxd5. | NA | NA | NA | NA | 2016-03-08 | NA |\n", - "| 6025042 | 4 | 05/04/2016 | bxd5. | NA | NA | NA | NA | 2016-04-05 | NA |\n", - "| 6025042 | 4 | 02/06/2016 | d1d3. | NA | NA | NA | NA | 2016-06-02 | NA |\n", - "| 6025042 | 4 | 02/06/2016 | dnj2. | NA | NA | NA | NA | 2016-06-02 | NA |\n", - "| 6025042 | 4 | 02/06/2016 | dnj2. | NA | NA | NA | NA | 2016-06-02 | NA |\n", - "| 6025042 | 4 | 23/06/2016 | d1d3. | NA | NA | NA | NA | 2016-06-23 | NA |\n", - "| 6025042 | 4 | 07/07/2016 | dnj2. | NA | NA | NA | NA | 2016-07-07 | NA |\n", - "| 6025042 | 4 | 05/08/2016 | dnj2. | NA | NA | NA | NA | 2016-08-05 | NA |\n", - "| 6025042 | 4 | 31/08/2016 | dnj2. | NA | NA | NA | NA | 2016-08-31 | NA |\n", - "| 6025042 | 4 | 30/09/2016 | dnj2. | NA | NA | NA | NA | 2016-09-30 | NA |\n", - "| 6025042 | 4 | 26/10/2016 | dnj2. | NA | NA | NA | NA | 2016-10-26 | NA |\n", - "| 6025042 | 4 | 22/11/2016 | dnj2. | NA | NA | NA | NA | 2016-11-22 | NA |\n", - "| 6025042 | 4 | 20/12/2016 | dnj2. | NA | NA | NA | NA | 2016-12-20 | NA |\n", - "| 6025042 | 4 | 25/01/2017 | dnj2. | NA | NA | NA | NA | 2017-01-25 | NA |\n", - "| 6025042 | 4 | 17/02/2017 | dnj2. | NA | NA | NA | NA | 2017-02-17 | NA |\n", - "| 6025042 | 4 | 08/03/2017 | a4ez. | NA | NA | NA | NA | 2017-03-08 | NA |\n", - "| 6025042 | 4 | 20/03/2017 | dnj2. | NA | NA | NA | NA | 2017-03-20 | NA |\n", - "| 6025042 | 4 | 31/03/2017 | dia2. | NA | NA | NA | NA | 2017-03-31 | NA |\n", - "| 6025042 | 4 | 31/03/2017 | dia2. | NA | NA | NA | NA | 2017-03-31 | NA |\n", - "| 6025042 | 4 | 31/03/2017 | dnj2. | NA | NA | NA | NA | 2017-03-31 | NA |\n", - "| 6025042 | 4 | 06/04/2017 | dia2. | NA | NA | NA | NA | 2017-04-06 | NA |\n", - "| 6025042 | 4 | 11/05/2017 | dnj2. | NA | NA | NA | NA | 2017-05-11 | NA |\n", - "| 6025042 | 4 | 05/06/2017 | dnj2. | NA | NA | NA | NA | 2017-06-05 | NA |\n", - "| 6025042 | 4 | 05/06/2017 | m412. | NA | NA | NA | NA | 2017-06-05 | NA |\n", - "| 6025042 | 4 | 12/07/2017 | dnj2. | NA | NA | NA | NA | 2017-07-12 | NA |\n", - "| 6025042 | 4 | 18/07/2017 | m272. | NA | NA | NA | NA | 2017-07-18 | NA |\n", - "| 6025042 | 4 | 09/08/2017 | dnj2. | NA | NA | NA | NA | 2017-08-09 | NA |\n", - "| 6025042 | 4 | 13/09/2017 | dnj2. | NA | NA | NA | NA | 2017-09-13 | NA |\n", - "\n" - ], - "text/plain": [ - " eid data_provider issue_date read_2 bnf_code dmd_code\n", - "1 1000020 2 06/10/2016 dher. 04065400 NA \n", - "2 1000360 4 17/09/1993 a23y. NA NA \n", - "3 1000360 4 15/07/1996 j28B. NA NA \n", - "4 1000360 4 12/06/1997 j28B. NA NA \n", - "5 1000360 4 26/06/1998 c8o1. NA NA \n", - "6 1000360 4 26/06/1998 l81z. NA NA \n", - "7 1000360 4 01/09/1998 l81z. NA NA \n", - "8 1000360 4 19/11/1998 l81z. NA NA \n", - "9 1000360 4 19/05/1999 aj1t. NA NA \n", - "10 1000360 4 15/12/1999 aj1t. NA NA \n", - "11 1000360 4 15/12/1999 l881. NA NA \n", - "12 1000360 4 07/06/2000 l881. NA NA \n", - "13 1000360 4 04/07/2000 l881. NA NA \n", - "14 1000360 4 04/10/2000 l881. NA NA \n", - "15 1000360 4 08/11/2000 l881. NA NA \n", - "16 1000360 4 03/01/2001 l881. NA NA \n", - "17 1000360 4 14/02/2001 l881. NA NA \n", - "18 1000360 4 19/04/2001 l881. NA NA \n", - "19 1000360 4 16/07/2001 dher. NA NA \n", - "20 1000360 4 19/08/2002 da91. NA NA \n", - "21 1000360 4 10/09/2002 da91. NA NA \n", - "22 1000360 4 07/10/2002 da91. NA NA \n", - "23 1000360 4 05/11/2002 da91. NA NA \n", - "24 1000360 4 05/12/2002 da91. NA NA \n", - "25 1000360 4 30/12/2002 da91. NA NA \n", - "26 1000360 4 30/01/2003 da91. NA NA \n", - "27 1000360 4 18/03/2003 da91. NA NA \n", - "28 1000360 4 17/04/2003 da91. NA NA \n", - "29 1000360 4 13/05/2003 da91. NA NA \n", - "30 1000360 4 09/06/2003 da91. NA NA \n", - " \n", - "14898436 6025042 4 12/01/2016 bxd5. NA NA \n", - "14898437 6025042 4 09/02/2016 bxd5. NA NA \n", - "14898438 6025042 4 08/03/2016 bxd5. NA NA \n", - "14898439 6025042 4 05/04/2016 bxd5. NA NA \n", - "14898440 6025042 4 02/06/2016 d1d3. NA NA \n", - "14898441 6025042 4 02/06/2016 dnj2. NA NA \n", - "14898442 6025042 4 02/06/2016 dnj2. NA NA \n", - "14898443 6025042 4 23/06/2016 d1d3. NA NA \n", - "14898444 6025042 4 07/07/2016 dnj2. NA NA \n", - "14898445 6025042 4 05/08/2016 dnj2. NA NA \n", - "14898446 6025042 4 31/08/2016 dnj2. NA NA \n", - "14898447 6025042 4 30/09/2016 dnj2. NA NA \n", - "14898448 6025042 4 26/10/2016 dnj2. NA NA \n", - "14898449 6025042 4 22/11/2016 dnj2. NA NA \n", - "14898450 6025042 4 20/12/2016 dnj2. NA NA \n", - "14898451 6025042 4 25/01/2017 dnj2. NA NA \n", - "14898452 6025042 4 17/02/2017 dnj2. NA NA \n", - "14898453 6025042 4 08/03/2017 a4ez. NA NA \n", - "14898454 6025042 4 20/03/2017 dnj2. NA NA \n", - "14898455 6025042 4 31/03/2017 dia2. NA NA \n", - "14898456 6025042 4 31/03/2017 dia2. NA NA \n", - "14898457 6025042 4 31/03/2017 dnj2. NA NA \n", - "14898458 6025042 4 06/04/2017 dia2. NA NA \n", - "14898459 6025042 4 11/05/2017 dnj2. NA NA \n", - "14898460 6025042 4 05/06/2017 dnj2. NA NA \n", - "14898461 6025042 4 05/06/2017 m412. NA NA \n", - "14898462 6025042 4 12/07/2017 dnj2. NA NA \n", - "14898463 6025042 4 18/07/2017 m272. NA NA \n", - "14898464 6025042 4 09/08/2017 dnj2. NA NA \n", - "14898465 6025042 4 13/09/2017 dnj2. NA NA \n", - " drug_name quantity date code \n", - "1 Prochlorperazine 5mg tablets 28.000 2016-10-06 NA \n", - "2 NA NA 1993-09-17 NA \n", - "3 NA NA 1996-07-15 NA \n", - "4 NA NA 1997-06-12 NA \n", - "5 NA NA 1998-06-26 NA \n", - "6 NA NA 1998-06-26 NA \n", - "7 NA NA 1998-09-01 NA \n", - "8 NA NA 1998-11-19 NA \n", - "9 NA NA 1999-05-19 NA \n", - "10 NA NA 1999-12-15 NA \n", - "11 NA NA 1999-12-15 NA \n", - "12 NA NA 2000-06-07 NA \n", - "13 NA NA 2000-07-04 NA \n", - "14 NA NA 2000-10-04 NA \n", - "15 NA NA 2000-11-08 NA \n", - "16 NA NA 2001-01-03 NA \n", - "17 NA NA 2001-02-14 NA \n", - "18 NA NA 2001-04-19 NA \n", - "19 NA NA 2001-07-16 NA \n", - "20 NA NA 2002-08-19 NA \n", - "21 NA NA 2002-09-10 NA \n", - "22 NA NA 2002-10-07 NA \n", - "23 NA NA 2002-11-05 NA \n", - "24 NA NA 2002-12-05 NA \n", - "25 NA NA 2002-12-30 NA \n", - "26 NA NA 2003-01-30 NA \n", - "27 NA NA 2003-03-18 NA \n", - "28 NA NA 2003-04-17 NA \n", - "29 NA NA 2003-05-13 NA \n", - "30 NA NA 2003-06-09 NA \n", - " \n", - "14898436 NA NA 2016-01-12 NA \n", - "14898437 NA NA 2016-02-09 NA \n", - "14898438 NA NA 2016-03-08 NA \n", - "14898439 NA NA 2016-04-05 NA \n", - "14898440 NA NA 2016-06-02 NA \n", - "14898441 NA NA 2016-06-02 NA \n", - "14898442 NA NA 2016-06-02 NA \n", - "14898443 NA NA 2016-06-23 NA \n", - "14898444 NA NA 2016-07-07 NA \n", - "14898445 NA NA 2016-08-05 NA \n", - "14898446 NA NA 2016-08-31 NA \n", - "14898447 NA NA 2016-09-30 NA \n", - "14898448 NA NA 2016-10-26 NA \n", - "14898449 NA NA 2016-11-22 NA \n", - "14898450 NA NA 2016-12-20 NA \n", - "14898451 NA NA 2017-01-25 NA \n", - "14898452 NA NA 2017-02-17 NA \n", - "14898453 NA NA 2017-03-08 NA \n", - "14898454 NA NA 2017-03-20 NA \n", - "14898455 NA NA 2017-03-31 NA \n", - "14898456 NA NA 2017-03-31 NA \n", - "14898457 NA NA 2017-03-31 NA \n", - "14898458 NA NA 2017-04-06 NA \n", - "14898459 NA NA 2017-05-11 NA \n", - "14898460 NA NA 2017-06-05 NA \n", - "14898461 NA NA 2017-06-05 NA \n", - "14898462 NA NA 2017-07-12 NA \n", - "14898463 NA NA 2017-07-18 NA \n", - "14898464 NA NA 2017-08-09 NA \n", - "14898465 NA NA 2017-09-13 NA " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_scripts_read2 = gp_scripts %>% filter(!is.na(read_2)) %>% arrange(eid)\n", - "gp_scripts_read3 = gp_scripts_read2 %>% left_join(readv2_readv3, by=\"read_2\")\n", - "gp_scripts_read3" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 57704542 × 9
eiddata_providerissue_dateread_2bnf_codedmd_codedrug_namequantitydate
<int><int><chr><chr><chr><int64><chr><chr><date>
1000018330/11/1996NA13.06.02.01.00NADoxycycline 100mg capsules 8 capsule(s) - 100 mg 1996-11-30
1000018312/09/1997NA02.03.02.02.00NAPropranolol 40mg tablets 56 tablet(s) - 40 mg 1997-09-12
1000018310/10/1997NA02.03.02.02.00NAPropranolol 40mg tablets 168 tablet(s) - 40 mg 1997-10-10
1000018310/10/1997NA07.03.02.01.00NANoriday 350microgram tablets (Pfizer Ltd) 168 tablet(s) - 350 micrograms 1997-10-10
1000018319/01/1998NA02.03.02.02.00NAPropranolol 40mg tablets 168 tablet(s) - 40 mg 1998-01-19
1000018319/01/1998NA02.03.02.02.00NAPropranolol 80mg tablets 112 tablet(s) - 80 mg 1998-01-19
1000018319/01/1998NA06.07.02.00.00NAGamolenic acid 40mg capsules 336 capsule(s) - 40 mg 1998-01-19
1000018313/03/1998NA02.03.02.02.00NAPropranolol 80mg tablets 112 tablet(s) - 80 mg 1998-03-13
1000018325/03/1998NA05.01.01.03.00NAAmoxicillin 250mg capsules 15 capsule(s) - 250 mg 1998-03-25
1000018316/04/1998NA05.01.01.03.00NAAmoxicillin 250mg capsules 15 capsule(s) - 250 mg 1998-04-16
1000018324/04/1998NA05.04.03.00.00NAMetronidazole 200mg tablets 15 tablet(s) - 200 mg 1998-04-24
1000018319/06/1998NA01.02.02.00.00NAMebeverine 135mg tablets 84 tablet(s) - 135 mg 1998-06-19
1000018319/06/1998NA02.03.02.02.00NAPropranolol 80mg tablets 112 tablet(s) - 80 mg 1998-06-19
1000018314/08/1998NA12.01.01.02.00NAGentisone HC ear drops (AMCo) 10 millilitre 1998-08-14
1000018320/01/1999NA06.07.02.00.00NAGamolenic acid 40mg capsules 336 capsule(s) - 40 mg 1999-01-20
1000018320/01/1999NA12.01.01.02.00NAGentisone HC ear drops (AMCo) 10 millilitre 1999-01-20
1000018312/01/2001NA05.03.02.01.00NAAciclovir 200mg dispersible tablets 35 tablet(s) - 200 mg 2001-01-12
1000018312/01/2001NA13.06.02.01.00NADoxycycline 100mg capsules 10 capsule(s) - 100 mg 2001-01-12
1000018317/11/2003NA05.03.02.01.00NAAciclovir 200mg dispersible tablets 35 tablet(s) - 200 mg 2003-11-17
1000018317/11/2003NA13.06.02.01.00NADoxycycline 100mg capsules 8 capsule(s) - 100 mg 2003-11-17
1000018318/11/2003NA13.06.02.01.00NADoxycycline 100mg capsules 8 capsule(s) - 100 mg 2003-11-18
1000018324/11/2003NA12.02.01.00.00NABeclometasone 50micrograms/dose nasal spray1 spray(s) - 50 micrograms/dose2003-11-24
1000018308/06/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-06-08
1000018309/06/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-06-09
1000018323/06/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-06-23
1000018324/06/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-06-24
1000018301/09/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-09-01
1000018307/10/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-10-07
1000018308/11/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-11-08
1000018305/12/2005NA02.04.00.00.00NAAtenolol 50mg tablets 28 tablet(s) - 50 mg 2005-12-05
6025198323/01/2015NA02.05.05.01.00NARamipril 2.5mg capsules 2*28 capsule2015-01-23
6025198323/01/2015NA02.12.04.00.00NASimvastatin 40mg tablets2*28 tablet 2015-01-23
6025198323/01/2015NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2015-01-23
6025198327/02/2015NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2015-02-27
6025198327/02/2015NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2015-02-27
6025198327/02/2015NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2015-02-27
6025198305/05/2015NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2015-05-05
6025198305/05/2015NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2015-05-05
6025198305/05/2015NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2015-05-05
6025198324/06/2015NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2015-06-24
6025198324/06/2015NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2015-06-24
6025198324/06/2015NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2015-06-24
6025198319/08/2015NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2015-08-19
6025198319/08/2015NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2015-08-19
6025198319/08/2015NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2015-08-19
6025198314/10/2015NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2015-10-14
6025198314/10/2015NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2015-10-14
6025198314/10/2015NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2015-10-14
6025198310/12/2015NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2015-12-10
6025198310/12/2015NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2015-12-10
6025198310/12/2015NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2015-12-10
6025198303/02/2016NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2016-02-03
6025198303/02/2016NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2016-02-03
6025198303/02/2016NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2016-02-03
6025198306/04/2016NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2016-04-06
6025198306/04/2016NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2016-04-06
6025198306/04/2016NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2016-04-06
6025198325/05/2016NA02.05.05.01.00NARamipril 2.5mg capsules 56 capsule 2016-05-25
6025198325/05/2016NA02.12.04.00.00NASimvastatin 40mg tablets56 tablet 2016-05-25
6025198325/05/2016NA10.03.02.01.00NAFenbid 5% gel (AMCo) 100 gram 2016-05-25
\n" - ], - "text/latex": [ - "A data.table: 57704542 × 9\n", - "\\begin{tabular}{lllllllll}\n", - " eid & data\\_provider & issue\\_date & read\\_2 & bnf\\_code & dmd\\_code & drug\\_name & quantity & date\\\\\n", - " & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1000018 & 3 & 30/11/1996 & NA & 13.06.02.01.00 & NA & Doxycycline 100mg capsules & 8 capsule(s) - 100 mg & 1996-11-30\\\\\n", - "\t 1000018 & 3 & 12/09/1997 & NA & 02.03.02.02.00 & NA & Propranolol 40mg tablets & 56 tablet(s) - 40 mg & 1997-09-12\\\\\n", - "\t 1000018 & 3 & 10/10/1997 & NA & 02.03.02.02.00 & NA & Propranolol 40mg tablets & 168 tablet(s) - 40 mg & 1997-10-10\\\\\n", - "\t 1000018 & 3 & 10/10/1997 & NA & 07.03.02.01.00 & NA & Noriday 350microgram tablets (Pfizer Ltd) & 168 tablet(s) - 350 micrograms & 1997-10-10\\\\\n", - "\t 1000018 & 3 & 19/01/1998 & NA & 02.03.02.02.00 & NA & Propranolol 40mg tablets & 168 tablet(s) - 40 mg & 1998-01-19\\\\\n", - "\t 1000018 & 3 & 19/01/1998 & NA & 02.03.02.02.00 & NA & Propranolol 80mg tablets & 112 tablet(s) - 80 mg & 1998-01-19\\\\\n", - "\t 1000018 & 3 & 19/01/1998 & NA & 06.07.02.00.00 & NA & Gamolenic acid 40mg capsules & 336 capsule(s) - 40 mg & 1998-01-19\\\\\n", - "\t 1000018 & 3 & 13/03/1998 & NA & 02.03.02.02.00 & NA & Propranolol 80mg tablets & 112 tablet(s) - 80 mg & 1998-03-13\\\\\n", - "\t 1000018 & 3 & 25/03/1998 & NA & 05.01.01.03.00 & NA & Amoxicillin 250mg capsules & 15 capsule(s) - 250 mg & 1998-03-25\\\\\n", - "\t 1000018 & 3 & 16/04/1998 & NA & 05.01.01.03.00 & NA & Amoxicillin 250mg capsules & 15 capsule(s) - 250 mg & 1998-04-16\\\\\n", - "\t 1000018 & 3 & 24/04/1998 & NA & 05.04.03.00.00 & NA & Metronidazole 200mg tablets & 15 tablet(s) - 200 mg & 1998-04-24\\\\\n", - "\t 1000018 & 3 & 19/06/1998 & NA & 01.02.02.00.00 & NA & Mebeverine 135mg tablets & 84 tablet(s) - 135 mg & 1998-06-19\\\\\n", - "\t 1000018 & 3 & 19/06/1998 & NA & 02.03.02.02.00 & NA & Propranolol 80mg tablets & 112 tablet(s) - 80 mg & 1998-06-19\\\\\n", - "\t 1000018 & 3 & 14/08/1998 & NA & 12.01.01.02.00 & NA & Gentisone HC ear drops (AMCo) & 10 millilitre & 1998-08-14\\\\\n", - "\t 1000018 & 3 & 20/01/1999 & NA & 06.07.02.00.00 & NA & Gamolenic acid 40mg capsules & 336 capsule(s) - 40 mg & 1999-01-20\\\\\n", - "\t 1000018 & 3 & 20/01/1999 & NA & 12.01.01.02.00 & NA & Gentisone HC ear drops (AMCo) & 10 millilitre & 1999-01-20\\\\\n", - "\t 1000018 & 3 & 12/01/2001 & NA & 05.03.02.01.00 & NA & Aciclovir 200mg dispersible tablets & 35 tablet(s) - 200 mg & 2001-01-12\\\\\n", - "\t 1000018 & 3 & 12/01/2001 & NA & 13.06.02.01.00 & NA & Doxycycline 100mg capsules & 10 capsule(s) - 100 mg & 2001-01-12\\\\\n", - "\t 1000018 & 3 & 17/11/2003 & NA & 05.03.02.01.00 & NA & Aciclovir 200mg dispersible tablets & 35 tablet(s) - 200 mg & 2003-11-17\\\\\n", - "\t 1000018 & 3 & 17/11/2003 & NA & 13.06.02.01.00 & NA & Doxycycline 100mg capsules & 8 capsule(s) - 100 mg & 2003-11-17\\\\\n", - "\t 1000018 & 3 & 18/11/2003 & NA & 13.06.02.01.00 & NA & Doxycycline 100mg capsules & 8 capsule(s) - 100 mg & 2003-11-18\\\\\n", - "\t 1000018 & 3 & 24/11/2003 & NA & 12.02.01.00.00 & NA & Beclometasone 50micrograms/dose nasal spray & 1 spray(s) - 50 micrograms/dose & 2003-11-24\\\\\n", - "\t 1000018 & 3 & 08/06/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-06-08\\\\\n", - "\t 1000018 & 3 & 09/06/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-06-09\\\\\n", - "\t 1000018 & 3 & 23/06/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-06-23\\\\\n", - "\t 1000018 & 3 & 24/06/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-06-24\\\\\n", - "\t 1000018 & 3 & 01/09/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-09-01\\\\\n", - "\t 1000018 & 3 & 07/10/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-10-07\\\\\n", - "\t 1000018 & 3 & 08/11/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-11-08\\\\\n", - "\t 1000018 & 3 & 05/12/2005 & NA & 02.04.00.00.00 & NA & Atenolol 50mg tablets & 28 tablet(s) - 50 mg & 2005-12-05\\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 6025198 & 3 & 23/01/2015 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 2*28 capsule & 2015-01-23\\\\\n", - "\t 6025198 & 3 & 23/01/2015 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 2*28 tablet & 2015-01-23\\\\\n", - "\t 6025198 & 3 & 23/01/2015 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2015-01-23\\\\\n", - "\t 6025198 & 3 & 27/02/2015 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2015-02-27\\\\\n", - "\t 6025198 & 3 & 27/02/2015 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2015-02-27\\\\\n", - "\t 6025198 & 3 & 27/02/2015 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2015-02-27\\\\\n", - "\t 6025198 & 3 & 05/05/2015 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2015-05-05\\\\\n", - "\t 6025198 & 3 & 05/05/2015 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2015-05-05\\\\\n", - "\t 6025198 & 3 & 05/05/2015 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2015-05-05\\\\\n", - "\t 6025198 & 3 & 24/06/2015 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2015-06-24\\\\\n", - "\t 6025198 & 3 & 24/06/2015 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2015-06-24\\\\\n", - "\t 6025198 & 3 & 24/06/2015 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2015-06-24\\\\\n", - "\t 6025198 & 3 & 19/08/2015 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2015-08-19\\\\\n", - "\t 6025198 & 3 & 19/08/2015 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2015-08-19\\\\\n", - "\t 6025198 & 3 & 19/08/2015 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2015-08-19\\\\\n", - "\t 6025198 & 3 & 14/10/2015 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2015-10-14\\\\\n", - "\t 6025198 & 3 & 14/10/2015 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2015-10-14\\\\\n", - "\t 6025198 & 3 & 14/10/2015 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2015-10-14\\\\\n", - "\t 6025198 & 3 & 10/12/2015 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2015-12-10\\\\\n", - "\t 6025198 & 3 & 10/12/2015 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2015-12-10\\\\\n", - "\t 6025198 & 3 & 10/12/2015 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2015-12-10\\\\\n", - "\t 6025198 & 3 & 03/02/2016 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2016-02-03\\\\\n", - "\t 6025198 & 3 & 03/02/2016 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2016-02-03\\\\\n", - "\t 6025198 & 3 & 03/02/2016 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2016-02-03\\\\\n", - "\t 6025198 & 3 & 06/04/2016 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2016-04-06\\\\\n", - "\t 6025198 & 3 & 06/04/2016 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2016-04-06\\\\\n", - "\t 6025198 & 3 & 06/04/2016 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2016-04-06\\\\\n", - "\t 6025198 & 3 & 25/05/2016 & NA & 02.05.05.01.00 & NA & Ramipril 2.5mg capsules & 56 capsule & 2016-05-25\\\\\n", - "\t 6025198 & 3 & 25/05/2016 & NA & 02.12.04.00.00 & NA & Simvastatin 40mg tablets & 56 tablet & 2016-05-25\\\\\n", - "\t 6025198 & 3 & 25/05/2016 & NA & 10.03.02.01.00 & NA & Fenbid 5\\% gel (AMCo) & 100 gram & 2016-05-25\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 57704542 × 9\n", - "\n", - "| eid <int> | data_provider <int> | issue_date <chr> | read_2 <chr> | bnf_code <chr> | dmd_code <int64> | drug_name <chr> | quantity <chr> | date <date> |\n", - "|---|---|---|---|---|---|---|---|---|\n", - "| 1000018 | 3 | 30/11/1996 | NA | 13.06.02.01.00 | NA | Doxycycline 100mg capsules | 8 capsule(s) - 100 mg | 1996-11-30 |\n", - "| 1000018 | 3 | 12/09/1997 | NA | 02.03.02.02.00 | NA | Propranolol 40mg tablets | 56 tablet(s) - 40 mg | 1997-09-12 |\n", - "| 1000018 | 3 | 10/10/1997 | NA | 02.03.02.02.00 | NA | Propranolol 40mg tablets | 168 tablet(s) - 40 mg | 1997-10-10 |\n", - "| 1000018 | 3 | 10/10/1997 | NA | 07.03.02.01.00 | NA | Noriday 350microgram tablets (Pfizer Ltd) | 168 tablet(s) - 350 micrograms | 1997-10-10 |\n", - "| 1000018 | 3 | 19/01/1998 | NA | 02.03.02.02.00 | NA | Propranolol 40mg tablets | 168 tablet(s) - 40 mg | 1998-01-19 |\n", - "| 1000018 | 3 | 19/01/1998 | NA | 02.03.02.02.00 | NA | Propranolol 80mg tablets | 112 tablet(s) - 80 mg | 1998-01-19 |\n", - "| 1000018 | 3 | 19/01/1998 | NA | 06.07.02.00.00 | NA | Gamolenic acid 40mg capsules | 336 capsule(s) - 40 mg | 1998-01-19 |\n", - "| 1000018 | 3 | 13/03/1998 | NA | 02.03.02.02.00 | NA | Propranolol 80mg tablets | 112 tablet(s) - 80 mg | 1998-03-13 |\n", - "| 1000018 | 3 | 25/03/1998 | NA | 05.01.01.03.00 | NA | Amoxicillin 250mg capsules | 15 capsule(s) - 250 mg | 1998-03-25 |\n", - "| 1000018 | 3 | 16/04/1998 | NA | 05.01.01.03.00 | NA | Amoxicillin 250mg capsules | 15 capsule(s) - 250 mg | 1998-04-16 |\n", - "| 1000018 | 3 | 24/04/1998 | NA | 05.04.03.00.00 | NA | Metronidazole 200mg tablets | 15 tablet(s) - 200 mg | 1998-04-24 |\n", - "| 1000018 | 3 | 19/06/1998 | NA | 01.02.02.00.00 | NA | Mebeverine 135mg tablets | 84 tablet(s) - 135 mg | 1998-06-19 |\n", - "| 1000018 | 3 | 19/06/1998 | NA | 02.03.02.02.00 | NA | Propranolol 80mg tablets | 112 tablet(s) - 80 mg | 1998-06-19 |\n", - "| 1000018 | 3 | 14/08/1998 | NA | 12.01.01.02.00 | NA | Gentisone HC ear drops (AMCo) | 10 millilitre | 1998-08-14 |\n", - "| 1000018 | 3 | 20/01/1999 | NA | 06.07.02.00.00 | NA | Gamolenic acid 40mg capsules | 336 capsule(s) - 40 mg | 1999-01-20 |\n", - "| 1000018 | 3 | 20/01/1999 | NA | 12.01.01.02.00 | NA | Gentisone HC ear drops (AMCo) | 10 millilitre | 1999-01-20 |\n", - "| 1000018 | 3 | 12/01/2001 | NA | 05.03.02.01.00 | NA | Aciclovir 200mg dispersible tablets | 35 tablet(s) - 200 mg | 2001-01-12 |\n", - "| 1000018 | 3 | 12/01/2001 | NA | 13.06.02.01.00 | NA | Doxycycline 100mg capsules | 10 capsule(s) - 100 mg | 2001-01-12 |\n", - "| 1000018 | 3 | 17/11/2003 | NA | 05.03.02.01.00 | NA | Aciclovir 200mg dispersible tablets | 35 tablet(s) - 200 mg | 2003-11-17 |\n", - "| 1000018 | 3 | 17/11/2003 | NA | 13.06.02.01.00 | NA | Doxycycline 100mg capsules | 8 capsule(s) - 100 mg | 2003-11-17 |\n", - "| 1000018 | 3 | 18/11/2003 | NA | 13.06.02.01.00 | NA | Doxycycline 100mg capsules | 8 capsule(s) - 100 mg | 2003-11-18 |\n", - "| 1000018 | 3 | 24/11/2003 | NA | 12.02.01.00.00 | NA | Beclometasone 50micrograms/dose nasal spray | 1 spray(s) - 50 micrograms/dose | 2003-11-24 |\n", - "| 1000018 | 3 | 08/06/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-06-08 |\n", - "| 1000018 | 3 | 09/06/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-06-09 |\n", - "| 1000018 | 3 | 23/06/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-06-23 |\n", - "| 1000018 | 3 | 24/06/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-06-24 |\n", - "| 1000018 | 3 | 01/09/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-09-01 |\n", - "| 1000018 | 3 | 07/10/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-10-07 |\n", - "| 1000018 | 3 | 08/11/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-11-08 |\n", - "| 1000018 | 3 | 05/12/2005 | NA | 02.04.00.00.00 | NA | Atenolol 50mg tablets | 28 tablet(s) - 50 mg | 2005-12-05 |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 6025198 | 3 | 23/01/2015 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 2*28 capsule | 2015-01-23 |\n", - "| 6025198 | 3 | 23/01/2015 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 2*28 tablet | 2015-01-23 |\n", - "| 6025198 | 3 | 23/01/2015 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2015-01-23 |\n", - "| 6025198 | 3 | 27/02/2015 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2015-02-27 |\n", - "| 6025198 | 3 | 27/02/2015 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2015-02-27 |\n", - "| 6025198 | 3 | 27/02/2015 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2015-02-27 |\n", - "| 6025198 | 3 | 05/05/2015 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2015-05-05 |\n", - "| 6025198 | 3 | 05/05/2015 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2015-05-05 |\n", - "| 6025198 | 3 | 05/05/2015 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2015-05-05 |\n", - "| 6025198 | 3 | 24/06/2015 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2015-06-24 |\n", - "| 6025198 | 3 | 24/06/2015 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2015-06-24 |\n", - "| 6025198 | 3 | 24/06/2015 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2015-06-24 |\n", - "| 6025198 | 3 | 19/08/2015 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2015-08-19 |\n", - "| 6025198 | 3 | 19/08/2015 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2015-08-19 |\n", - "| 6025198 | 3 | 19/08/2015 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2015-08-19 |\n", - "| 6025198 | 3 | 14/10/2015 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2015-10-14 |\n", - "| 6025198 | 3 | 14/10/2015 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2015-10-14 |\n", - "| 6025198 | 3 | 14/10/2015 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2015-10-14 |\n", - "| 6025198 | 3 | 10/12/2015 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2015-12-10 |\n", - "| 6025198 | 3 | 10/12/2015 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2015-12-10 |\n", - "| 6025198 | 3 | 10/12/2015 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2015-12-10 |\n", - "| 6025198 | 3 | 03/02/2016 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2016-02-03 |\n", - "| 6025198 | 3 | 03/02/2016 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2016-02-03 |\n", - "| 6025198 | 3 | 03/02/2016 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2016-02-03 |\n", - "| 6025198 | 3 | 06/04/2016 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2016-04-06 |\n", - "| 6025198 | 3 | 06/04/2016 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2016-04-06 |\n", - "| 6025198 | 3 | 06/04/2016 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2016-04-06 |\n", - "| 6025198 | 3 | 25/05/2016 | NA | 02.05.05.01.00 | NA | Ramipril 2.5mg capsules | 56 capsule | 2016-05-25 |\n", - "| 6025198 | 3 | 25/05/2016 | NA | 02.12.04.00.00 | NA | Simvastatin 40mg tablets | 56 tablet | 2016-05-25 |\n", - "| 6025198 | 3 | 25/05/2016 | NA | 10.03.02.01.00 | NA | Fenbid 5% gel (AMCo) | 100 gram | 2016-05-25 |\n", - "\n" - ], - "text/plain": [ - " eid data_provider issue_date read_2 bnf_code dmd_code\n", - "1 1000018 3 30/11/1996 NA 13.06.02.01.00 NA \n", - "2 1000018 3 12/09/1997 NA 02.03.02.02.00 NA \n", - "3 1000018 3 10/10/1997 NA 02.03.02.02.00 NA \n", - "4 1000018 3 10/10/1997 NA 07.03.02.01.00 NA \n", - "5 1000018 3 19/01/1998 NA 02.03.02.02.00 NA \n", - "6 1000018 3 19/01/1998 NA 02.03.02.02.00 NA \n", - "7 1000018 3 19/01/1998 NA 06.07.02.00.00 NA \n", - "8 1000018 3 13/03/1998 NA 02.03.02.02.00 NA \n", - "9 1000018 3 25/03/1998 NA 05.01.01.03.00 NA \n", - "10 1000018 3 16/04/1998 NA 05.01.01.03.00 NA \n", - "11 1000018 3 24/04/1998 NA 05.04.03.00.00 NA \n", - "12 1000018 3 19/06/1998 NA 01.02.02.00.00 NA \n", - "13 1000018 3 19/06/1998 NA 02.03.02.02.00 NA \n", - "14 1000018 3 14/08/1998 NA 12.01.01.02.00 NA \n", - "15 1000018 3 20/01/1999 NA 06.07.02.00.00 NA \n", - "16 1000018 3 20/01/1999 NA 12.01.01.02.00 NA \n", - "17 1000018 3 12/01/2001 NA 05.03.02.01.00 NA \n", - "18 1000018 3 12/01/2001 NA 13.06.02.01.00 NA \n", - "19 1000018 3 17/11/2003 NA 05.03.02.01.00 NA \n", - "20 1000018 3 17/11/2003 NA 13.06.02.01.00 NA \n", - "21 1000018 3 18/11/2003 NA 13.06.02.01.00 NA \n", - "22 1000018 3 24/11/2003 NA 12.02.01.00.00 NA \n", - "23 1000018 3 08/06/2005 NA 02.04.00.00.00 NA \n", - "24 1000018 3 09/06/2005 NA 02.04.00.00.00 NA \n", - "25 1000018 3 23/06/2005 NA 02.04.00.00.00 NA \n", - "26 1000018 3 24/06/2005 NA 02.04.00.00.00 NA \n", - "27 1000018 3 01/09/2005 NA 02.04.00.00.00 NA \n", - "28 1000018 3 07/10/2005 NA 02.04.00.00.00 NA \n", - "29 1000018 3 08/11/2005 NA 02.04.00.00.00 NA \n", - "30 1000018 3 05/12/2005 NA 02.04.00.00.00 NA \n", - " \n", - "57704513 6025198 3 23/01/2015 NA 02.05.05.01.00 NA \n", - "57704514 6025198 3 23/01/2015 NA 02.12.04.00.00 NA \n", - "57704515 6025198 3 23/01/2015 NA 10.03.02.01.00 NA \n", - "57704516 6025198 3 27/02/2015 NA 02.05.05.01.00 NA \n", - "57704517 6025198 3 27/02/2015 NA 02.12.04.00.00 NA \n", - "57704518 6025198 3 27/02/2015 NA 10.03.02.01.00 NA \n", - "57704519 6025198 3 05/05/2015 NA 02.05.05.01.00 NA \n", - "57704520 6025198 3 05/05/2015 NA 02.12.04.00.00 NA \n", - "57704521 6025198 3 05/05/2015 NA 10.03.02.01.00 NA \n", - "57704522 6025198 3 24/06/2015 NA 02.05.05.01.00 NA \n", - "57704523 6025198 3 24/06/2015 NA 02.12.04.00.00 NA \n", - "57704524 6025198 3 24/06/2015 NA 10.03.02.01.00 NA \n", - "57704525 6025198 3 19/08/2015 NA 02.05.05.01.00 NA \n", - "57704526 6025198 3 19/08/2015 NA 02.12.04.00.00 NA \n", - "57704527 6025198 3 19/08/2015 NA 10.03.02.01.00 NA \n", - "57704528 6025198 3 14/10/2015 NA 02.05.05.01.00 NA \n", - "57704529 6025198 3 14/10/2015 NA 02.12.04.00.00 NA \n", - "57704530 6025198 3 14/10/2015 NA 10.03.02.01.00 NA \n", - "57704531 6025198 3 10/12/2015 NA 02.05.05.01.00 NA \n", - "57704532 6025198 3 10/12/2015 NA 02.12.04.00.00 NA \n", - "57704533 6025198 3 10/12/2015 NA 10.03.02.01.00 NA \n", - "57704534 6025198 3 03/02/2016 NA 02.05.05.01.00 NA \n", - "57704535 6025198 3 03/02/2016 NA 02.12.04.00.00 NA \n", - "57704536 6025198 3 03/02/2016 NA 10.03.02.01.00 NA \n", - "57704537 6025198 3 06/04/2016 NA 02.05.05.01.00 NA \n", - "57704538 6025198 3 06/04/2016 NA 02.12.04.00.00 NA \n", - "57704539 6025198 3 06/04/2016 NA 10.03.02.01.00 NA \n", - "57704540 6025198 3 25/05/2016 NA 02.05.05.01.00 NA \n", - "57704541 6025198 3 25/05/2016 NA 02.12.04.00.00 NA \n", - "57704542 6025198 3 25/05/2016 NA 10.03.02.01.00 NA \n", - " drug_name \n", - "1 Doxycycline 100mg capsules \n", - "2 Propranolol 40mg tablets \n", - "3 Propranolol 40mg tablets \n", - "4 Noriday 350microgram tablets (Pfizer Ltd) \n", - "5 Propranolol 40mg tablets \n", - "6 Propranolol 80mg tablets \n", - "7 Gamolenic acid 40mg capsules \n", - "8 Propranolol 80mg tablets \n", - "9 Amoxicillin 250mg capsules \n", - "10 Amoxicillin 250mg capsules \n", - "11 Metronidazole 200mg tablets \n", - "12 Mebeverine 135mg tablets \n", - "13 Propranolol 80mg tablets \n", - "14 Gentisone HC ear drops (AMCo) \n", - "15 Gamolenic acid 40mg capsules \n", - "16 Gentisone HC ear drops (AMCo) \n", - "17 Aciclovir 200mg dispersible tablets \n", - "18 Doxycycline 100mg capsules \n", - "19 Aciclovir 200mg dispersible tablets \n", - "20 Doxycycline 100mg capsules \n", - "21 Doxycycline 100mg capsules \n", - "22 Beclometasone 50micrograms/dose nasal spray\n", - "23 Atenolol 50mg tablets \n", - "24 Atenolol 50mg tablets \n", - "25 Atenolol 50mg tablets \n", - "26 Atenolol 50mg tablets \n", - "27 Atenolol 50mg tablets \n", - "28 Atenolol 50mg tablets \n", - "29 Atenolol 50mg tablets \n", - "30 Atenolol 50mg tablets \n", - " \n", - "57704513 Ramipril 2.5mg capsules \n", - "57704514 Simvastatin 40mg tablets \n", - "57704515 Fenbid 5% gel (AMCo) \n", - "57704516 Ramipril 2.5mg capsules \n", - "57704517 Simvastatin 40mg tablets \n", - "57704518 Fenbid 5% gel (AMCo) \n", - "57704519 Ramipril 2.5mg capsules \n", - "57704520 Simvastatin 40mg tablets \n", - "57704521 Fenbid 5% gel (AMCo) \n", - "57704522 Ramipril 2.5mg capsules \n", - "57704523 Simvastatin 40mg tablets \n", - "57704524 Fenbid 5% gel (AMCo) \n", - "57704525 Ramipril 2.5mg capsules \n", - "57704526 Simvastatin 40mg tablets \n", - "57704527 Fenbid 5% gel (AMCo) \n", - "57704528 Ramipril 2.5mg capsules \n", - "57704529 Simvastatin 40mg tablets \n", - "57704530 Fenbid 5% gel (AMCo) \n", - "57704531 Ramipril 2.5mg capsules \n", - "57704532 Simvastatin 40mg tablets \n", - "57704533 Fenbid 5% gel (AMCo) \n", - "57704534 Ramipril 2.5mg capsules \n", - "57704535 Simvastatin 40mg tablets \n", - "57704536 Fenbid 5% gel (AMCo) \n", - "57704537 Ramipril 2.5mg capsules \n", - "57704538 Simvastatin 40mg tablets \n", - "57704539 Fenbid 5% gel (AMCo) \n", - "57704540 Ramipril 2.5mg capsules \n", - "57704541 Simvastatin 40mg tablets \n", - "57704542 Fenbid 5% gel (AMCo) \n", - " quantity date \n", - "1 8 capsule(s) - 100 mg 1996-11-30\n", - "2 56 tablet(s) - 40 mg 1997-09-12\n", - "3 168 tablet(s) - 40 mg 1997-10-10\n", - "4 168 tablet(s) - 350 micrograms 1997-10-10\n", - "5 168 tablet(s) - 40 mg 1998-01-19\n", - "6 112 tablet(s) - 80 mg 1998-01-19\n", - "7 336 capsule(s) - 40 mg 1998-01-19\n", - "8 112 tablet(s) - 80 mg 1998-03-13\n", - "9 15 capsule(s) - 250 mg 1998-03-25\n", - "10 15 capsule(s) - 250 mg 1998-04-16\n", - "11 15 tablet(s) - 200 mg 1998-04-24\n", - "12 84 tablet(s) - 135 mg 1998-06-19\n", - "13 112 tablet(s) - 80 mg 1998-06-19\n", - "14 10 millilitre 1998-08-14\n", - "15 336 capsule(s) - 40 mg 1999-01-20\n", - "16 10 millilitre 1999-01-20\n", - "17 35 tablet(s) - 200 mg 2001-01-12\n", - "18 10 capsule(s) - 100 mg 2001-01-12\n", - "19 35 tablet(s) - 200 mg 2003-11-17\n", - "20 8 capsule(s) - 100 mg 2003-11-17\n", - "21 8 capsule(s) - 100 mg 2003-11-18\n", - "22 1 spray(s) - 50 micrograms/dose 2003-11-24\n", - "23 28 tablet(s) - 50 mg 2005-06-08\n", - "24 28 tablet(s) - 50 mg 2005-06-09\n", - "25 28 tablet(s) - 50 mg 2005-06-23\n", - "26 28 tablet(s) - 50 mg 2005-06-24\n", - "27 28 tablet(s) - 50 mg 2005-09-01\n", - "28 28 tablet(s) - 50 mg 2005-10-07\n", - "29 28 tablet(s) - 50 mg 2005-11-08\n", - "30 28 tablet(s) - 50 mg 2005-12-05\n", - " \n", - "57704513 2*28 capsule 2015-01-23\n", - "57704514 2*28 tablet 2015-01-23\n", - "57704515 100 gram 2015-01-23\n", - "57704516 56 capsule 2015-02-27\n", - "57704517 56 tablet 2015-02-27\n", - "57704518 100 gram 2015-02-27\n", - "57704519 56 capsule 2015-05-05\n", - "57704520 56 tablet 2015-05-05\n", - "57704521 100 gram 2015-05-05\n", - "57704522 56 capsule 2015-06-24\n", - "57704523 56 tablet 2015-06-24\n", - "57704524 100 gram 2015-06-24\n", - "57704525 56 capsule 2015-08-19\n", - "57704526 56 tablet 2015-08-19\n", - "57704527 100 gram 2015-08-19\n", - "57704528 56 capsule 2015-10-14\n", - "57704529 56 tablet 2015-10-14\n", - "57704530 100 gram 2015-10-14\n", - "57704531 56 capsule 2015-12-10\n", - "57704532 56 tablet 2015-12-10\n", - "57704533 100 gram 2015-12-10\n", - "57704534 56 capsule 2016-02-03\n", - "57704535 56 tablet 2016-02-03\n", - "57704536 100 gram 2016-02-03\n", - "57704537 56 capsule 2016-04-06\n", - "57704538 56 tablet 2016-04-06\n", - "57704539 100 gram 2016-04-06\n", - "57704540 56 capsule 2016-05-25\n", - "57704541 56 tablet 2016-05-25\n", - "57704542 100 gram 2016-05-25" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_scripts %>% filter(!is.na(read_2) | !is.na(dmd_code)) %>% arrange(eid)" - ] - }, - { - "cell_type": "code", - "execution_count": 137, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 6350891 × 8
eiddata_providerissue_dateread_2bnf_codedmd_codedrug_namequantity
<int><int><chr><chr><chr><int64><chr><chr>
1000614122/04/2004djiG.00 322637009Tramadol modified release capsule 100mg 30.000
1000614123/09/2004e311. 323509004Amoxicillin capsules 250mg 21.000
1000614128/10/2005c13J.00 320139002Salbutamol cfc free inhaler 100micrograms/inhalation 2.000
1000614128/10/2005e311. 323509004Amoxicillin capsules 250mg 15.000
1000614128/10/2005k32w.00 330295009Chloramphenicol ophthalmic ointment 1% 4.000
1000614111/11/2005c61t.00 320531008Beclometasone 250micrograms/dose inhaler 2.000
1000614128/11/2005fe6j.00 325444003Prednisolone sodium phosphate soluble tablet 5mg 30.000
1000614108/12/2005ecc2.00 324431001Trimethoprim tablets 200mg 14.000
1000614127/10/2006e311. 323509004Amoxicillin capsules 250mg 21.000
1000614129/12/2006e311. 323509004Amoxicillin capsules 250mg 21.000
1000614103/01/2007n45n.00 7374311000001101Revaxis adsorbed vaccine - 1.000
1000614103/01/2007n45n.00 7374311000001101Revaxis adsorbed vaccine - 1.000
1000614121/05/2007e311. 323509004Amoxicillin capsules 250mg 21.000
1000614118/07/2007c13T.00 34015001000027103Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd)2.000
1000614130/07/2007c8p3.00 320828002Fexofenadine tablets 180mg 30.000
1000614130/07/2007m313.00 14608811000001105Calamine lotion - 200.000
1000614103/09/2008dher. 784511000001103Prochlorperazine tablets 5mg 84.000
1000614112/11/2008e311. 323509004Amoxicillin capsules 250mg 21.000
1000614115/12/2008da91.00 321987003Citalopram tablets 20mg 28.000
1000614112/01/2009da91.00 321987003Citalopram 20mg tablets 56.000
1000614112/01/2009da91.00 321987003Citalopram tablets 20mg 56.000
1000614112/01/2009diaU.00136665001000027109Paracetamol with codeine phosphate tablets 500mg + 15mg 100.000
1000614103/02/2009e312. 323510009Amoxicillin capsules 500mg 21.000
1000614102/10/2009c61t.00 320531008BECLOMETASONE inh 250micrograms/actuation 2.000
1000614102/10/2009c61t.00 320531008Beclometasone 250micrograms/dose inhaler 2.000
1000614102/10/2009da91.00 321987003CITALOPRAM tabs 20mg 56.000
1000614126/11/2009c61t.00 320531008BECLOMETASONE inh 250micrograms/actuation 2.000
1000614126/11/2009da91.00 321987003CITALOPRAM tabs 20mg 56.000
1000614102/12/2009c13T.00 34015001000027103Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd)2.000
1000614110/02/2010da91.00 321987003CITALOPRAM tabs 20mg 56.000
6024123116/11/2016d73u.00 321785001Clomipramine 10mg capsules 56.000
6024123116/11/2016d73u.00 321785001Clomipramine 10mg capsules 56.000
6024123116/11/2016diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123116/11/2016diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123116/11/2016ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
6024123116/11/2016ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
6024123114/12/2016diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123110/01/2017a6b1.00 317291008Omeprazole 20mg gastro-resistant capsules56.000
6024123110/01/2017d73u.00 321785001Clomipramine 10mg capsules 56.000
6024123110/01/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123110/01/2017ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
6024123107/02/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123107/02/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123103/03/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123103/03/2017ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
6024123128/03/2017a6b1.00 317291008Omeprazole 20mg gastro-resistant capsules56.000
6024123128/03/2017d73u.00 321785001Clomipramine 10mg capsules 56.000
6024123128/03/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123128/03/2017ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
6024123128/03/2017ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
6024123102/05/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123102/05/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123116/05/2017a6b1.00 317291008Omeprazole 20mg gastro-resistant capsules56.000
6024123116/05/2017a6b1.00 317291008Omeprazole 20mg gastro-resistant capsules56.000
6024123116/05/2017d73u.00 321785001Clomipramine 10mg capsules 56.000
6024123116/05/2017d73u.00 321785001Clomipramine 10mg capsules 56.000
6024123116/05/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123116/05/2017diaq.00 322344006Co-codamol 8mg/500mg capsules 132.000
6024123116/05/2017ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
6024123116/05/2017ja18.00439911000001107Algesal cream (Thornton & Ross Ltd) 50.000
\n" - ], - "text/latex": [ - "A data.table: 6350891 × 8\n", - "\\begin{tabular}{llllllll}\n", - " eid & data\\_provider & issue\\_date & read\\_2 & bnf\\_code & dmd\\_code & drug\\_name & quantity\\\\\n", - " & & & & & & & \\\\\n", - "\\hline\n", - "\t 1000614 & 1 & 22/04/2004 & djiG.00 & & 322637009 & Tramadol modified release capsule 100mg & 30.000 \\\\\n", - "\t 1000614 & 1 & 23/09/2004 & e311. & & 323509004 & Amoxicillin capsules 250mg & 21.000 \\\\\n", - "\t 1000614 & 1 & 28/10/2005 & c13J.00 & & 320139002 & Salbutamol cfc free inhaler 100micrograms/inhalation & 2.000 \\\\\n", - "\t 1000614 & 1 & 28/10/2005 & e311. & & 323509004 & Amoxicillin capsules 250mg & 15.000 \\\\\n", - "\t 1000614 & 1 & 28/10/2005 & k32w.00 & & 330295009 & Chloramphenicol ophthalmic ointment 1\\% & 4.000 \\\\\n", - "\t 1000614 & 1 & 11/11/2005 & c61t.00 & & 320531008 & Beclometasone 250micrograms/dose inhaler & 2.000 \\\\\n", - "\t 1000614 & 1 & 28/11/2005 & fe6j.00 & & 325444003 & Prednisolone sodium phosphate soluble tablet 5mg & 30.000 \\\\\n", - "\t 1000614 & 1 & 08/12/2005 & ecc2.00 & & 324431001 & Trimethoprim tablets 200mg & 14.000 \\\\\n", - "\t 1000614 & 1 & 27/10/2006 & e311. & & 323509004 & Amoxicillin capsules 250mg & 21.000 \\\\\n", - "\t 1000614 & 1 & 29/12/2006 & e311. & & 323509004 & Amoxicillin capsules 250mg & 21.000 \\\\\n", - "\t 1000614 & 1 & 03/01/2007 & n45n.00 & & 7374311000001101 & Revaxis adsorbed vaccine - & 1.000 \\\\\n", - "\t 1000614 & 1 & 03/01/2007 & n45n.00 & & 7374311000001101 & Revaxis adsorbed vaccine - & 1.000 \\\\\n", - "\t 1000614 & 1 & 21/05/2007 & e311. & & 323509004 & Amoxicillin capsules 250mg & 21.000 \\\\\n", - "\t 1000614 & 1 & 18/07/2007 & c13T.00 & & 34015001000027103 & Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd) & 2.000 \\\\\n", - "\t 1000614 & 1 & 30/07/2007 & c8p3.00 & & 320828002 & Fexofenadine tablets 180mg & 30.000 \\\\\n", - "\t 1000614 & 1 & 30/07/2007 & m313.00 & & 14608811000001105 & Calamine lotion - & 200.000\\\\\n", - "\t 1000614 & 1 & 03/09/2008 & dher. & & 784511000001103 & Prochlorperazine tablets 5mg & 84.000 \\\\\n", - "\t 1000614 & 1 & 12/11/2008 & e311. & & 323509004 & Amoxicillin capsules 250mg & 21.000 \\\\\n", - "\t 1000614 & 1 & 15/12/2008 & da91.00 & & 321987003 & Citalopram tablets 20mg & 28.000 \\\\\n", - "\t 1000614 & 1 & 12/01/2009 & da91.00 & & 321987003 & Citalopram 20mg tablets & 56.000 \\\\\n", - "\t 1000614 & 1 & 12/01/2009 & da91.00 & & 321987003 & Citalopram tablets 20mg & 56.000 \\\\\n", - "\t 1000614 & 1 & 12/01/2009 & diaU.00 & & 136665001000027109 & Paracetamol with codeine phosphate tablets 500mg + 15mg & 100.000\\\\\n", - "\t 1000614 & 1 & 03/02/2009 & e312. & & 323510009 & Amoxicillin capsules 500mg & 21.000 \\\\\n", - "\t 1000614 & 1 & 02/10/2009 & c61t.00 & & 320531008 & BECLOMETASONE inh 250micrograms/actuation & 2.000 \\\\\n", - "\t 1000614 & 1 & 02/10/2009 & c61t.00 & & 320531008 & Beclometasone 250micrograms/dose inhaler & 2.000 \\\\\n", - "\t 1000614 & 1 & 02/10/2009 & da91.00 & & 321987003 & CITALOPRAM tabs 20mg & 56.000 \\\\\n", - "\t 1000614 & 1 & 26/11/2009 & c61t.00 & & 320531008 & BECLOMETASONE inh 250micrograms/actuation & 2.000 \\\\\n", - "\t 1000614 & 1 & 26/11/2009 & da91.00 & & 321987003 & CITALOPRAM tabs 20mg & 56.000 \\\\\n", - "\t 1000614 & 1 & 02/12/2009 & c13T.00 & & 34015001000027103 & Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd) & 2.000 \\\\\n", - "\t 1000614 & 1 & 10/02/2010 & da91.00 & & 321987003 & CITALOPRAM tabs 20mg & 56.000 \\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 6024123 & 1 & 16/11/2016 & d73u.00 & & 321785001 & Clomipramine 10mg capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 16/11/2016 & d73u.00 & & 321785001 & Clomipramine 10mg capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 16/11/2016 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 16/11/2016 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 16/11/2016 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\t 6024123 & 1 & 16/11/2016 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\t 6024123 & 1 & 14/12/2016 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 10/01/2017 & a6b1.00 & & 317291008 & Omeprazole 20mg gastro-resistant capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 10/01/2017 & d73u.00 & & 321785001 & Clomipramine 10mg capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 10/01/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 10/01/2017 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\t 6024123 & 1 & 07/02/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 07/02/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 03/03/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 03/03/2017 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\t 6024123 & 1 & 28/03/2017 & a6b1.00 & & 317291008 & Omeprazole 20mg gastro-resistant capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 28/03/2017 & d73u.00 & & 321785001 & Clomipramine 10mg capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 28/03/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 28/03/2017 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\t 6024123 & 1 & 28/03/2017 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\t 6024123 & 1 & 02/05/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 02/05/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 16/05/2017 & a6b1.00 & & 317291008 & Omeprazole 20mg gastro-resistant capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 16/05/2017 & a6b1.00 & & 317291008 & Omeprazole 20mg gastro-resistant capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 16/05/2017 & d73u.00 & & 321785001 & Clomipramine 10mg capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 16/05/2017 & d73u.00 & & 321785001 & Clomipramine 10mg capsules & 56.000 \\\\\n", - "\t 6024123 & 1 & 16/05/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 16/05/2017 & diaq.00 & & 322344006 & Co-codamol 8mg/500mg capsules & 132.000\\\\\n", - "\t 6024123 & 1 & 16/05/2017 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\t 6024123 & 1 & 16/05/2017 & ja18.00 & & 439911000001107 & Algesal cream (Thornton \\& Ross Ltd) & 50.000 \\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 6350891 × 8\n", - "\n", - "| eid <int> | data_provider <int> | issue_date <chr> | read_2 <chr> | bnf_code <chr> | dmd_code <int64> | drug_name <chr> | quantity <chr> |\n", - "|---|---|---|---|---|---|---|---|\n", - "| 1000614 | 1 | 22/04/2004 | djiG.00 | | 322637009 | Tramadol modified release capsule 100mg | 30.000 |\n", - "| 1000614 | 1 | 23/09/2004 | e311. | | 323509004 | Amoxicillin capsules 250mg | 21.000 |\n", - "| 1000614 | 1 | 28/10/2005 | c13J.00 | | 320139002 | Salbutamol cfc free inhaler 100micrograms/inhalation | 2.000 |\n", - "| 1000614 | 1 | 28/10/2005 | e311. | | 323509004 | Amoxicillin capsules 250mg | 15.000 |\n", - "| 1000614 | 1 | 28/10/2005 | k32w.00 | | 330295009 | Chloramphenicol ophthalmic ointment 1% | 4.000 |\n", - "| 1000614 | 1 | 11/11/2005 | c61t.00 | | 320531008 | Beclometasone 250micrograms/dose inhaler | 2.000 |\n", - "| 1000614 | 1 | 28/11/2005 | fe6j.00 | | 325444003 | Prednisolone sodium phosphate soluble tablet 5mg | 30.000 |\n", - "| 1000614 | 1 | 08/12/2005 | ecc2.00 | | 324431001 | Trimethoprim tablets 200mg | 14.000 |\n", - "| 1000614 | 1 | 27/10/2006 | e311. | | 323509004 | Amoxicillin capsules 250mg | 21.000 |\n", - "| 1000614 | 1 | 29/12/2006 | e311. | | 323509004 | Amoxicillin capsules 250mg | 21.000 |\n", - "| 1000614 | 1 | 03/01/2007 | n45n.00 | | 7374311000001101 | Revaxis adsorbed vaccine - | 1.000 |\n", - "| 1000614 | 1 | 03/01/2007 | n45n.00 | | 7374311000001101 | Revaxis adsorbed vaccine - | 1.000 |\n", - "| 1000614 | 1 | 21/05/2007 | e311. | | 323509004 | Amoxicillin capsules 250mg | 21.000 |\n", - "| 1000614 | 1 | 18/07/2007 | c13T.00 | | 34015001000027103 | Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd) | 2.000 |\n", - "| 1000614 | 1 | 30/07/2007 | c8p3.00 | | 320828002 | Fexofenadine tablets 180mg | 30.000 |\n", - "| 1000614 | 1 | 30/07/2007 | m313.00 | | 14608811000001105 | Calamine lotion - | 200.000 |\n", - "| 1000614 | 1 | 03/09/2008 | dher. | | 784511000001103 | Prochlorperazine tablets 5mg | 84.000 |\n", - "| 1000614 | 1 | 12/11/2008 | e311. | | 323509004 | Amoxicillin capsules 250mg | 21.000 |\n", - "| 1000614 | 1 | 15/12/2008 | da91.00 | | 321987003 | Citalopram tablets 20mg | 28.000 |\n", - "| 1000614 | 1 | 12/01/2009 | da91.00 | | 321987003 | Citalopram 20mg tablets | 56.000 |\n", - "| 1000614 | 1 | 12/01/2009 | da91.00 | | 321987003 | Citalopram tablets 20mg | 56.000 |\n", - "| 1000614 | 1 | 12/01/2009 | diaU.00 | | 136665001000027109 | Paracetamol with codeine phosphate tablets 500mg + 15mg | 100.000 |\n", - "| 1000614 | 1 | 03/02/2009 | e312. | | 323510009 | Amoxicillin capsules 500mg | 21.000 |\n", - "| 1000614 | 1 | 02/10/2009 | c61t.00 | | 320531008 | BECLOMETASONE inh 250micrograms/actuation | 2.000 |\n", - "| 1000614 | 1 | 02/10/2009 | c61t.00 | | 320531008 | Beclometasone 250micrograms/dose inhaler | 2.000 |\n", - "| 1000614 | 1 | 02/10/2009 | da91.00 | | 321987003 | CITALOPRAM tabs 20mg | 56.000 |\n", - "| 1000614 | 1 | 26/11/2009 | c61t.00 | | 320531008 | BECLOMETASONE inh 250micrograms/actuation | 2.000 |\n", - "| 1000614 | 1 | 26/11/2009 | da91.00 | | 321987003 | CITALOPRAM tabs 20mg | 56.000 |\n", - "| 1000614 | 1 | 02/12/2009 | c13T.00 | | 34015001000027103 | Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd) | 2.000 |\n", - "| 1000614 | 1 | 10/02/2010 | da91.00 | | 321987003 | CITALOPRAM tabs 20mg | 56.000 |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 6024123 | 1 | 16/11/2016 | d73u.00 | | 321785001 | Clomipramine 10mg capsules | 56.000 |\n", - "| 6024123 | 1 | 16/11/2016 | d73u.00 | | 321785001 | Clomipramine 10mg capsules | 56.000 |\n", - "| 6024123 | 1 | 16/11/2016 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 16/11/2016 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 16/11/2016 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "| 6024123 | 1 | 16/11/2016 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "| 6024123 | 1 | 14/12/2016 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 10/01/2017 | a6b1.00 | | 317291008 | Omeprazole 20mg gastro-resistant capsules | 56.000 |\n", - "| 6024123 | 1 | 10/01/2017 | d73u.00 | | 321785001 | Clomipramine 10mg capsules | 56.000 |\n", - "| 6024123 | 1 | 10/01/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 10/01/2017 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "| 6024123 | 1 | 07/02/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 07/02/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 03/03/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 03/03/2017 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "| 6024123 | 1 | 28/03/2017 | a6b1.00 | | 317291008 | Omeprazole 20mg gastro-resistant capsules | 56.000 |\n", - "| 6024123 | 1 | 28/03/2017 | d73u.00 | | 321785001 | Clomipramine 10mg capsules | 56.000 |\n", - "| 6024123 | 1 | 28/03/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 28/03/2017 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "| 6024123 | 1 | 28/03/2017 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "| 6024123 | 1 | 02/05/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 02/05/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 16/05/2017 | a6b1.00 | | 317291008 | Omeprazole 20mg gastro-resistant capsules | 56.000 |\n", - "| 6024123 | 1 | 16/05/2017 | a6b1.00 | | 317291008 | Omeprazole 20mg gastro-resistant capsules | 56.000 |\n", - "| 6024123 | 1 | 16/05/2017 | d73u.00 | | 321785001 | Clomipramine 10mg capsules | 56.000 |\n", - "| 6024123 | 1 | 16/05/2017 | d73u.00 | | 321785001 | Clomipramine 10mg capsules | 56.000 |\n", - "| 6024123 | 1 | 16/05/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 16/05/2017 | diaq.00 | | 322344006 | Co-codamol 8mg/500mg capsules | 132.000 |\n", - "| 6024123 | 1 | 16/05/2017 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "| 6024123 | 1 | 16/05/2017 | ja18.00 | | 439911000001107 | Algesal cream (Thornton & Ross Ltd) | 50.000 |\n", - "\n" - ], - "text/plain": [ - " eid data_provider issue_date read_2 bnf_code dmd_code \n", - "1 1000614 1 22/04/2004 djiG.00 322637009\n", - "2 1000614 1 23/09/2004 e311. 323509004\n", - "3 1000614 1 28/10/2005 c13J.00 320139002\n", - "4 1000614 1 28/10/2005 e311. 323509004\n", - "5 1000614 1 28/10/2005 k32w.00 330295009\n", - "6 1000614 1 11/11/2005 c61t.00 320531008\n", - "7 1000614 1 28/11/2005 fe6j.00 325444003\n", - "8 1000614 1 08/12/2005 ecc2.00 324431001\n", - "9 1000614 1 27/10/2006 e311. 323509004\n", - "10 1000614 1 29/12/2006 e311. 323509004\n", - "11 1000614 1 03/01/2007 n45n.00 7374311000001101\n", - "12 1000614 1 03/01/2007 n45n.00 7374311000001101\n", - "13 1000614 1 21/05/2007 e311. 323509004\n", - "14 1000614 1 18/07/2007 c13T.00 34015001000027103\n", - "15 1000614 1 30/07/2007 c8p3.00 320828002\n", - "16 1000614 1 30/07/2007 m313.00 14608811000001105\n", - "17 1000614 1 03/09/2008 dher. 784511000001103\n", - "18 1000614 1 12/11/2008 e311. 323509004\n", - "19 1000614 1 15/12/2008 da91.00 321987003\n", - "20 1000614 1 12/01/2009 da91.00 321987003\n", - "21 1000614 1 12/01/2009 da91.00 321987003\n", - "22 1000614 1 12/01/2009 diaU.00 136665001000027109\n", - "23 1000614 1 03/02/2009 e312. 323510009\n", - "24 1000614 1 02/10/2009 c61t.00 320531008\n", - "25 1000614 1 02/10/2009 c61t.00 320531008\n", - "26 1000614 1 02/10/2009 da91.00 321987003\n", - "27 1000614 1 26/11/2009 c61t.00 320531008\n", - "28 1000614 1 26/11/2009 da91.00 321987003\n", - "29 1000614 1 02/12/2009 c13T.00 34015001000027103\n", - "30 1000614 1 10/02/2010 da91.00 321987003\n", - " \n", - "6350862 6024123 1 16/11/2016 d73u.00 321785001 \n", - "6350863 6024123 1 16/11/2016 d73u.00 321785001 \n", - "6350864 6024123 1 16/11/2016 diaq.00 322344006 \n", - "6350865 6024123 1 16/11/2016 diaq.00 322344006 \n", - "6350866 6024123 1 16/11/2016 ja18.00 439911000001107 \n", - "6350867 6024123 1 16/11/2016 ja18.00 439911000001107 \n", - "6350868 6024123 1 14/12/2016 diaq.00 322344006 \n", - "6350869 6024123 1 10/01/2017 a6b1.00 317291008 \n", - "6350870 6024123 1 10/01/2017 d73u.00 321785001 \n", - "6350871 6024123 1 10/01/2017 diaq.00 322344006 \n", - "6350872 6024123 1 10/01/2017 ja18.00 439911000001107 \n", - "6350873 6024123 1 07/02/2017 diaq.00 322344006 \n", - "6350874 6024123 1 07/02/2017 diaq.00 322344006 \n", - "6350875 6024123 1 03/03/2017 diaq.00 322344006 \n", - "6350876 6024123 1 03/03/2017 ja18.00 439911000001107 \n", - "6350877 6024123 1 28/03/2017 a6b1.00 317291008 \n", - "6350878 6024123 1 28/03/2017 d73u.00 321785001 \n", - "6350879 6024123 1 28/03/2017 diaq.00 322344006 \n", - "6350880 6024123 1 28/03/2017 ja18.00 439911000001107 \n", - "6350881 6024123 1 28/03/2017 ja18.00 439911000001107 \n", - "6350882 6024123 1 02/05/2017 diaq.00 322344006 \n", - "6350883 6024123 1 02/05/2017 diaq.00 322344006 \n", - "6350884 6024123 1 16/05/2017 a6b1.00 317291008 \n", - "6350885 6024123 1 16/05/2017 a6b1.00 317291008 \n", - "6350886 6024123 1 16/05/2017 d73u.00 321785001 \n", - "6350887 6024123 1 16/05/2017 d73u.00 321785001 \n", - "6350888 6024123 1 16/05/2017 diaq.00 322344006 \n", - "6350889 6024123 1 16/05/2017 diaq.00 322344006 \n", - "6350890 6024123 1 16/05/2017 ja18.00 439911000001107 \n", - "6350891 6024123 1 16/05/2017 ja18.00 439911000001107 \n", - " drug_name \n", - "1 Tramadol modified release capsule 100mg \n", - "2 Amoxicillin capsules 250mg \n", - "3 Salbutamol cfc free inhaler 100micrograms/inhalation \n", - "4 Amoxicillin capsules 250mg \n", - "5 Chloramphenicol ophthalmic ointment 1% \n", - "6 Beclometasone 250micrograms/dose inhaler \n", - "7 Prednisolone sodium phosphate soluble tablet 5mg \n", - "8 Trimethoprim tablets 200mg \n", - "9 Amoxicillin capsules 250mg \n", - "10 Amoxicillin capsules 250mg \n", - "11 Revaxis adsorbed vaccine - \n", - "12 Revaxis adsorbed vaccine - \n", - "13 Amoxicillin capsules 250mg \n", - "14 Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd)\n", - "15 Fexofenadine tablets 180mg \n", - "16 Calamine lotion - \n", - "17 Prochlorperazine tablets 5mg \n", - "18 Amoxicillin capsules 250mg \n", - "19 Citalopram tablets 20mg \n", - "20 Citalopram 20mg tablets \n", - "21 Citalopram tablets 20mg \n", - "22 Paracetamol with codeine phosphate tablets 500mg + 15mg \n", - "23 Amoxicillin capsules 500mg \n", - "24 BECLOMETASONE inh 250micrograms/actuation \n", - "25 Beclometasone 250micrograms/dose inhaler \n", - "26 CITALOPRAM tabs 20mg \n", - "27 BECLOMETASONE inh 250micrograms/actuation \n", - "28 CITALOPRAM tabs 20mg \n", - "29 Ventolin evohaler 100 100microgram/inhalation Pressurised inhalation (Glaxo Wellcome UK Ltd)\n", - "30 CITALOPRAM tabs 20mg \n", - " \n", - "6350862 Clomipramine 10mg capsules \n", - "6350863 Clomipramine 10mg capsules \n", - "6350864 Co-codamol 8mg/500mg capsules \n", - "6350865 Co-codamol 8mg/500mg capsules \n", - "6350866 Algesal cream (Thornton & Ross Ltd) \n", - "6350867 Algesal cream (Thornton & Ross Ltd) \n", - "6350868 Co-codamol 8mg/500mg capsules \n", - "6350869 Omeprazole 20mg gastro-resistant capsules \n", - "6350870 Clomipramine 10mg capsules \n", - "6350871 Co-codamol 8mg/500mg capsules \n", - "6350872 Algesal cream (Thornton & Ross Ltd) \n", - "6350873 Co-codamol 8mg/500mg capsules \n", - "6350874 Co-codamol 8mg/500mg capsules \n", - "6350875 Co-codamol 8mg/500mg capsules \n", - "6350876 Algesal cream (Thornton & Ross Ltd) \n", - "6350877 Omeprazole 20mg gastro-resistant capsules \n", - "6350878 Clomipramine 10mg capsules \n", - "6350879 Co-codamol 8mg/500mg capsules \n", - "6350880 Algesal cream (Thornton & Ross Ltd) \n", - "6350881 Algesal cream (Thornton & Ross Ltd) \n", - "6350882 Co-codamol 8mg/500mg capsules \n", - "6350883 Co-codamol 8mg/500mg capsules \n", - "6350884 Omeprazole 20mg gastro-resistant capsules \n", - "6350885 Omeprazole 20mg gastro-resistant capsules \n", - "6350886 Clomipramine 10mg capsules \n", - "6350887 Clomipramine 10mg capsules \n", - "6350888 Co-codamol 8mg/500mg capsules \n", - "6350889 Co-codamol 8mg/500mg capsules \n", - "6350890 Algesal cream (Thornton & Ross Ltd) \n", - "6350891 Algesal cream (Thornton & Ross Ltd) \n", - " quantity\n", - "1 30.000 \n", - "2 21.000 \n", - "3 2.000 \n", - "4 15.000 \n", - "5 4.000 \n", - "6 2.000 \n", - "7 30.000 \n", - "8 14.000 \n", - "9 21.000 \n", - "10 21.000 \n", - "11 1.000 \n", - "12 1.000 \n", - "13 21.000 \n", - "14 2.000 \n", - "15 30.000 \n", - "16 200.000 \n", - "17 84.000 \n", - "18 21.000 \n", - "19 28.000 \n", - "20 56.000 \n", - "21 56.000 \n", - "22 100.000 \n", - "23 21.000 \n", - "24 2.000 \n", - "25 2.000 \n", - "26 56.000 \n", - "27 2.000 \n", - "28 56.000 \n", - "29 2.000 \n", - "30 56.000 \n", - " \n", - "6350862 56.000 \n", - "6350863 56.000 \n", - "6350864 132.000 \n", - "6350865 132.000 \n", - "6350866 50.000 \n", - "6350867 50.000 \n", - "6350868 132.000 \n", - "6350869 56.000 \n", - "6350870 56.000 \n", - "6350871 132.000 \n", - "6350872 50.000 \n", - "6350873 132.000 \n", - "6350874 132.000 \n", - "6350875 132.000 \n", - "6350876 50.000 \n", - "6350877 56.000 \n", - "6350878 56.000 \n", - "6350879 132.000 \n", - "6350880 50.000 \n", - "6350881 50.000 \n", - "6350882 132.000 \n", - "6350883 132.000 \n", - "6350884 56.000 \n", - "6350885 56.000 \n", - "6350886 56.000 \n", - "6350887 56.000 \n", - "6350888 132.000 \n", - "6350889 132.000 \n", - "6350890 50.000 \n", - "6350891 50.000 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "gp_scripts %>% filter(!is.na(dmd_code))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T10:02:40.116702Z", - "start_time": "2020-12-23T10:02:38.610Z" - } - }, - "outputs": [], - "source": [ - "bnf_map = fread(\"data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/bnf_codings.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T10:31:07.600869Z", - "start_time": "2020-12-23T10:31:06.168Z" - } - }, - "outputs": [], - "source": [ - "bnf_map_clean = bnf_map %>% mutate(code=str_sub(BNF_Presentation_Code, 1, 6)) %>% \n", - " distinct() %>% \n", - " mutate(label=case_when(str_detect(BNF_Paragraph, \"DUMMY\")~BNF_Section, TRUE ~ BNF_Paragraph)) %>%\n", - " select(code, label, BNF_Subparagraph, BNF_Paragraph, BNF_Section, BNF_Chapter) %>% distinct()" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T11:07:06.205751Z", - "start_time": "2020-12-23T11:06:09.173Z" - } - }, - "outputs": [], - "source": [ - "test = gp_scripts %>% mutate(code=str_replace_all(bnf_code, \".\", \"\"))#%>% mutate(code=str_sub(str_remove_all(bnf_code, \".\"), 1, 6))" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T11:11:36.597661Z", - "start_time": "2020-12-23T11:11:36.527Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Classes 'data.table' and 'data.frame':\t47242673 obs. of 9 variables:\n", - " $ eid : int 1000018 1000018 1000018 1000018 1000018 1000018 1000018 1000018 1000018 1000018 ...\n", - " $ data_provider: int 3 3 3 3 3 3 3 3 3 3 ...\n", - " $ issue_date : chr \"30/11/1996\" \"12/09/1997\" \"10/10/1997\" \"10/10/1997\" ...\n", - " $ read_2 : chr \"\" \"\" \"\" \"\" ...\n", - " $ bnf_code : chr \"13.06.02.01.00\" \"02.03.02.02.00\" \"02.03.02.02.00\" \"07.03.02.01.00\" ...\n", - " $ dmd_code :integer64 NA NA NA NA NA NA NA NA ... \n", - " $ drug_name : chr \"Doxycycline 100mg capsules\" \"Propranolol 40mg tablets\" \"Propranolol 40mg tablets\" \"Noriday 350microgram tablets (Pfizer Ltd)\" ...\n", - " $ quantity : chr \"8 capsule(s) - 100 mg\" \"56 tablet(s) - 40 mg\" \"168 tablet(s) - 40 mg\" \"168 tablet(s) - 350 micrograms\" ...\n", - " $ code : chr \"\" \"\" \"\" \"\" ...\n", - " - attr(*, \".internal.selfref\")= \n" - ] - } - ], - "source": [ - "str(test)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T09:33:59.219590Z", - "start_time": "2020-12-23T09:33:57.816Z" - } - }, - "outputs": [], - "source": [ - "library(visdat)\n", - "library(naniar)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T09:32:17.589534Z", - "start_time": "2020-12-23T09:32:16.261Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Classes 'data.table' and 'data.frame':\t47242673 obs. of 8 variables:\n", - " $ eid : int 1000018 1000018 1000018 1000018 1000018 1000018 1000018 1000018 1000018 1000018 ...\n", - " $ data_provider: int 3 3 3 3 3 3 3 3 3 3 ...\n", - " $ issue_date : chr \"30/11/1996\" \"12/09/1997\" \"10/10/1997\" \"10/10/1997\" ...\n", - " $ read_2 : chr \"\" \"\" \"\" \"\" ...\n", - " $ bnf_code : chr \"13.06.02.01.00\" \"02.03.02.02.00\" \"02.03.02.02.00\" \"07.03.02.01.00\" ...\n", - " $ dmd_code :integer64 NA NA NA NA NA NA NA NA ... \n", - " $ drug_name : chr \"Doxycycline 100mg capsules\" \"Propranolol 40mg tablets\" \"Propranolol 40mg tablets\" \"Noriday 350microgram tablets (Pfizer Ltd)\" ...\n", - " $ quantity : chr \"8 capsule(s) - 100 mg\" \"56 tablet(s) - 40 mg\" \"168 tablet(s) - 40 mg\" \"168 tablet(s) - 350 micrograms\" ...\n", - " - attr(*, \".internal.selfref\")= \n" - ] - } - ], - "source": [ - "library(Hmisc)\n", - "str(gp_scripts)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T09:34:08.262982Z", - "start_time": "2020-12-23T09:34:01.976Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAC/VBMVEUAAAAAujgBAQECAgID\nAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQV\nFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQmJiYnJyco\nKCgpKSkrKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7\nOzs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlLS0tNTU1OTk5P\nT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBh\nYWFhnP9iYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFy\ncnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OE\nhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWW\nlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eo\nqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6\nurq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vM\nzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e\n3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w\n8PDx8fHy8vLz8/P09PT19fX29vb39/f4dm34+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+mXCKp\nAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3de3xcdZ3/8fODyq2IiCCIK+u6Kirw\n+3lZL1RdL7uubtICLdUWelkqiIW1WEVcWhewkCJYqqCwchERaBFEuRSo5broFhRZiqBsgdYa\n05Y4bXpJ2/zapsn3sWduOUmaTzOfOZ/M+2Q+7+cfTQrpcajvV2ZyMjkTBSJKLULfAKJ6wJCI\nDDAkIgMMicgAQyIywJCIDDAkIgMMicgAQyIywJCIDDAkIgMMicgAQyIywJCIDDAkIgMMicgA\nQyIywJCIDDAkIgMMicgAQyIywJCIDDAkIgMMicgAQyIywJCIDDAkIgMMicgAQyIywJCIDDAk\nIgMMicgAQyIywJCo5rouXoW+CeYYEtVax8uzu9G3wRxDolpr+saP0TfBHkOiWmuZOnED+jaY\nY0hUc2umzNyKvg3WGBLVUueds+atikv6Sr2VxJCohrpmz75n9thldVgSQ6Ka+PNF7fGvt3+z\nO1yXb2jNlF+gb5EthkQ10TrtnLikLz9e6Kh5S9iMvkHGGBLVRqGkWdcX7o8m/wF9a8wxJKqR\n5rikXzV8Ie5o9cl19gVSYEhUIx2XT79kzDnt1zVc17J8+r3oW2OPIeEVTwnXr7U74l+uaNoV\nVp12Tvs9n20Yfz/6Fg0BhgRXPiVcr7pnPB3/esLS+JfV489p37l6B/oWDQWGBNdzSrhedYSO\nHeHzV+TfvX3sjA70zRkamQ6p3h/zFCWnhOvWJbN2/KLhofid+3/6APq2DJEsh1Tvj3lK6veU\ncEnHtasmztrxvcbbdq49fWXag2X1k2uWQ6r7xzzxxuZPvuk/6/aUcElz47K4pO0Lxpw05s60\nx8rsJ9eMhnRTa0erh8c83226ffyFV9frKeGypgtC/j6p9bE/pT5UZj+5ZjSkBdPOvaX+H/OE\ncG5XaJ50wZ11ekq4bEXjHwslpTpI8cl6mf3kmtGQ2seNbQ31+23woh0/nnd+/CYuaWt9nhKO\nddy8Jv71onkhLunhVEcqPlkvs59cMxrSymtnTGsNdftt8KJvfnVmQ35ccUld6NsyVJ6fPnr+\nmvA/Y/4SwsaUhyqUlNlPrhkNKYTN+ZKy9m1wy1NGHbl/6+6+4YRfx+82/9zomBnU/eRXR89f\nO/s6g0Pln6yX2U+umQyp655vPdCdL2nDU5l6zGN6yqhp9g3xrz8qlFSvOm8/d+6L4bkLTjhv\nXOrvw5aerJe5T64lWQxpx+zzrx4zLy7pc5MWo29LWeFLXdNTRi1TpuZ/JqeeS9p5/jfu+uro\nB+NH6pctTH2w8pP1QjafY5TFkK69rDvMbZjX3XHb4+ib0qPwAN32lNGaKeflP03/6DaTo2XR\nLRd0h+5rGn9rcrCeJ+uZHM1ctkIqnuI8+dnw4y8/2njZqt+gb08v+ZLMThkVHrvGJX3d4Iln\nHdekP8YQmZ5/QNF98RkmB8v4k/WyFVLxFOeluV+dvjn8+4SGe9C3p7f4S93FRqeMSo9dbUpa\nPTqD3+cvOvey/K9/bEj7Y+WFL7Uy/mS9bIVUKil8MX5c/a3mFehb00vxS935NqeMyo9d45Ie\nTH/T5l2Q/hj28tf3fqyw/ecnpjy5X/pSy+jJekMkYyEVT3GG8beFtmmd6NvSW+lL3QUmp4yS\nx64WlwD58+hmg6MYK17f++rGWzeuPDPt9YJKX2o9ZfJkvaGSrZDKpzgXNM6Zel+qI21tsb1O\ne/lL3TaLU0Zmj107bsk3dNmV6W+StdL1ve8c1zB2Udpj9XypZfFkvaGSrZB6TnE+Mv/JNMfp\nvmVMw8w2q1uVZ/ylrsVj15taOx4+u/GiZ0PzSWmfNGCvfH3v7avS/4VZfak1pLIVktUpzh+e\n27LizPkWt6jM7Evd7d8dd+mW9I9d1+4oPrH3dxc3znjy4lvT3ipT27836esvGF3fu+vBa35n\n9KXW0MpWSEaf91tO3hTC0qkWtyiUvz1v9aXupZfcO/WLbWkfu+avg1B4Ym8Ir9wwftzETH2L\n8uKm+756wsMmVyXe8Y1zr1pv9KXW0MpWSEaf9x/+fPzLys9a3KKec0bdJl/qdmz8cndoO3N6\nW8rHrvnrIPxP4Ym9+fcXnfJY2htmp2PtzO7QdfXopy1Kuvniwpe6Jl9qDa1shWT0eb85H+IL\n0+JfDM449Hx73uJL3abZ341/zZeU+lCXzNqxuVRSuOWy1IczM+fc/GPq7rmTOg2u7z1jaeFN\nq8WXWkMrYyHZfN4vWHpuCBtnrk19HNNvz7dMOSV/YiAuKdUw8j9AnP9JucITe5eF8NDXTG6d\niVWnTsifFWhpeNHg+t6zvlM45ITUBxpyGQsp2J3iXDQ3bDx7Qfrj2J4zKj3eaUv3QKVwnqFY\nUv6JvbsuyNLZhuZJ+edrNI9eb3CsXzcsiX9ddqbBoYZY5kIyc/e89B0NwTkjk6/Bi+cZ8iUV\nntjbsSBT37xunnT2L5/4gs3PWN3YePPm1V98yORYQyp7IXX90uY4S6an7mhIzhlZlFT8AeL0\n10EYIs2Txt9i9bPgi8Y1jM3Ucy4FWQipz8+dds27YFeVxyk+d7ysuSH147qhOWdk8hpbm0sl\npbsOwlBpnmRXeMfLmfux8oFkIKQ+P3cad7Sz2gOVnvFa9j8pb9eQnTNK+9VW4Xu6xfMM2XtK\nQ1Gqkvp+QhwmMhBS7587TdPRbiWlfpBods6o43uWt6v4Pd1M/QDxbpon3VL1n+33f+PwkIGQ\nev3cabqOys8dL0nxILHE7JzR5jPtblfP93Sz9APEu+m6I0OfEGshAyElP3easqPyc8eL0kaZ\nZ3POqGP+6V9uMLtdht/TtVT8od+e36X7ZGH8CbEWwCF1XNfR61JlC9NNrOe543nV73V1rx+2\nMzlnND++Xcunpr5dJUbf0zVW/qHfonT/kfafEGsAHNIr+R+27rlU2dZ0f2O9nzte/V//rmm9\ny7E4Z1S4TtDqcSlvV17h077N93SN9fzQb17K7Rt9Qqwt9EO7wmULjC5V1uu54yn++jc3Ptph\n+MVHfJ972lX5d64ed87WlLMofdpP/50o0/NihRc86H3BmrTbt/mEWGPIkDryf0WFklJfqqzw\nqbrXc8fTPEj8wdgZV6e7Nb3F97n3NuQfLN62ePK3Uj54LX/aT12S6XmxwvOVev3Qb+rt23xC\nrDFkSHMKf0kt48/blvZIpU/VyXPH0zxI3Dqx8dnkd6lPGcWfKb7b+NOdr5yee7JxS7oHrz2f\n9u9O+z1dy5JKPxfV80O/qT5Z5F8w6n6bT4i1hQzp5c8V/poWnjwz7bfBS5+qu0yeO/7SDd8d\n+7vyb9KdMird5553beO4MXeFP41JeXog+bSf+hm0zXYllZ6v1PNDv6k+WRReMGq+ySfE2oKF\n1P1fd6wrlnT//am/Pur5VL3I5Lnj3T0lpXxo0XOf+9IvXgo756R5xJg/v2l2nbK+58VSKzxf\nKf0Fa/KKLxh1U5avFzQwVEjbL/jSZZvj+6RZm3Knt6Q+mt0lJYuXVCiXlPYheq/73BWnn3J5\nmudoF85vmlzrIfQ7L5ZO8oIH81P+0G/vF4xqyfD1ggaGCmned7pD2LZ9xdQTTzR5vr3VJSWL\nT78plZTyXPXFq0Jyn7tuyfPpblnhrIzFtR6C5XW0TV/wYDi/YBQopNwJ20PLJY3jfrvl0ZdT\nHqr43HGbS0r2PP0mLun2tN9WLFwi0eY+Nzm/aXCthx2WFxczfMGD4f2CUaCQ2sbc+P0TL//9\n1WenPlLpueM2j9B7Pf2mO8Upo8K3aUqXSDS5z7U7v1m41oPJRWYsX/Cg+Bc2rF8wChFS/jzD\n4umXLA/hia+kPlj5ueNpP1UX9H36TdWnjAonl8uXSEx/n2t5frP004AGF5mxfMGD4l/YsH7B\nKEBIxfMMeRvOfCL10axfs8jk6TeFYRhdIjF+zHPlZrPzm6FYksVFZixf8KD0FzaMXzCqtiEV\nzhmVzjOE53461eAUp8lrFuVv1/bvTTr/BZtLKpS+TWN0rLDujBntRuc3C19QFu6TDC4yY/mC\nB6W/MIsXjMKoaUiFc0Y95xluvjTtC/vkz4tZvMx194x4WZd884FzRy8xWX/52zQmJXV8e/qc\n+GAmX2uVvqA0udaD3Qse9P4LG7Yl1fYeKX/OyO48Q/G8mMXLXDdPmtXy5fz1QRt/bXFJhZ5v\n01hcnmFe6WAWX2uVv6C0uNaD1Qse9DmWyQtGQdT6a6RLZu0wO89QOi9m8dzx5kkz8j9W3t00\nqdPgsobJt2nSH6t7zJPB7LVTe76gNLjWg+Vrulr+hYHUOqTyowqL8wzl82IWL3PdPOlzxeuD\nLk99KOPXgDmtcOGIhSdZLNbsRXCD7X9kxl8fthI1P2tXKMnmPIPdebFQvj7oijEW1wc1fbnT\nXxQuHHH/QotnmVp8QVlm+R+Z8deHrUTtT3/nS0p/nqHI6rxYXvH6oD8zOZbpy51+v3FhfLAV\nrdPOSX+K3+ILyjLL/8hsvz5sJQDfR7K8PqhtSSffmvL5cGWGrwVQONiJ+YO1XmnwMwVGP4yc\nZ/kfafoXBoF4ZoPl9UFNLlta0jzR7kfMTV/utPXRVWbHsviCsszyPzLLrw9bCchz7SyvD2p5\nmidbF7ii4QR98ROiusCQiAwwJCIDDInIAEMiMsCQiAwwJCIDkB817x78Y3isITqYh2MhIEJa\nZ/iNzw05u2Ntztm9Ds+2nN0TCHbkDK55UrIrZ3j5/NwGu2O1rbM7FgJDSjAkJYaUYEgJhqTE\nkBIMKcGQlBhSgiElGJISQ0owpARDUmJICYaUYEhKDCnBkBIMSYkhJRhSgiEpMaQEQ0owJCWG\nlGBICYakxJASDCnBkJQYUoIhJRiSEkNKMKQEQ1JiSAmGlGBISgwpwZASDEmJISUYUoIhKTGk\nBENKMCQlhpRgSAmGpMSQEgwpwZCUGFKCISUYkhJDSjCkBENSYkgJhpRgSEoMKcGQEgxJiSEl\nGFKCISkxpARDSjAkJYaUYEgJhqTEkBLVhtQ+b/KEi1qr+7MMSYchDQPVhjTnvJWrLz+rq6o/\ny5B0GNIwUGVIucYV8b3SmGVV/WGGpMOQhoEqQ1p6Uv5VOM7+SVV/mCHpMKRhoMqQFk/J/zrr\n2vLvO7Yo5NZpPnrP1ufsjtWWazc71sbcJrNjbcptNDtWe26D2bG25NbbHWud6v/IDpv1G6o2\npKn5X5OQNuaIamejyfgtVRnSk8WHdneUf9+5s+j/E87/yagLDJV21mk0fztVhrS+8aUQNo1+\nvv8/R2/JNXQwEsuQ0u59yFR7+nvuOStbLpy52+t+orfkGjoYCUPag63zJ01s2v3sG3pLrqGD\nkTAkPfSWXEMHI2FIeugtuYYORsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MJJ/MWQ7V0MM\nqX6gg5HwHkkPvSXX0MFIeI+kh96Sa+hgJLxH0kNvyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgY\nkh56S66hg5HwZIMeekuuoYORMCQ99JZcQwcj4UM7PfSWXEMHI2FIeugtuYYORsKQ9NBbcg0d\njIRfI+mht+QaOhgJ75H00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l\n19DBSHjWTg+9JdfQwUh4j6SH3pJr6GAkDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh6\n6C25hg5GwpD00FtyDR2MhCHpobfkGjoYCb+PpIfekmvoYCS8R9JDb8k1dDAShqSH3pJr6GAk\nDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoY\nCUPSQ2/JNXQwEoakh96Sa+hgJHyKkB56S66hg5HwHkkPvSXX0MFIGJIeekuuoYORMCQ99JZc\nQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l\n19DBSBiSHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNv\nyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66hg5EwJD30llxDByNhSHroLbmGDkbCkPTQ\nW3INHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAkDEkPvSXX0MFIGJIeekuuoYORMCQ9\n9JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJ\nD70l19DBSBhS5XZ1FqG35Bo6GIllSKWd7bKZrSGjkLZsLEJvyTV0MBLLkEo722IzW0N8aFc/\n0MFILEOynashhlQ/0MFIGJIeekuuoYORMCQ99JZcQwcj+RdDtnM1xJDqBzoYCe+R9NBbcg0d\njIQh6aG35Bo6GAlD0kNvyTV0MBJ+jaSH3pJr6GAkvEfSQ2/JNXQwEoakh96Sa+hgJAxJD70l\n19DBSBiSHnpLrqGDkfBkgx56S66hg5HwHkkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh6\n6C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEn4fSQ+9JdfQwUh4j6SH3pJr6GAk\nDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoY\nCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSPgUIT30llxDByNhSHroLbmGDkbCh3Z66C25\nhg5GwnskPfSWXEMHI+E9kh56S66hg5EwJD30llxDByNhSHroLbmGDkbCkPTQW3INHYyEIemh\nt+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAkDEkPvSXX0MFIGJIeekuuoYOR8JkNeugtuYYORsJ7\nJD30llxDByNhSHroLbmGDkbCkPTQW3INHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAk\nDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoY\nCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSBiSHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYO\nRsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66h\ng5EwJD30llxDByNhSHroLbmGDkbCkPTQW3INHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr\n6GAkDKmX9ZefcvLXl4fwrw2xcSG0z5s84aLW3T4MvSXX0MFIGFIvXz5vxZpvT+wIU+/N5XLr\nQ5hz3srVl5/V1f/D0FtyDR2MhCElNjc1h/CXhhfD2KcKv881rojvlcYs6/9x6C25hg5GwpD6\neWF0286GK2ec1tQSlp7UHf+Ds3/S/0PQW3INHYyEL33Z1+bpN4aNp16xfPmFp25ZPCX/T2Zd\nW/53WzcXobfkGjoYieU9UmlnW+1LSKnykP58xtXdxfe2jVuyeGr+nSSkjbki9JZcQwcjsQyp\ntLONthUYqDikZRPu7Xl/+oIniw/t7ij/k+4S9JZcQwcjsQypPDTbCgxUGtLvP/fb/JtVV3WG\n0DHukfWNL4WwafTz/T8MvSXX0MFILEMyHb+lCkPacfrC/D1qx+YJ89e2NE3dHuaes7Llwpm7\nfWJAb8k1dDAShpRY1lCwKKyYPf6UOa+EsHX+pIlNbbt9HHpLrqGDkTAkPfSWXEMHI2FIeugt\nuYYORsKQ9NBbcg0djIQh6aG35Bo6GAmf2aCH3pJr6GAkDEkPvSXX0MFI+NBOD70l19DBSBiS\nHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBJ+\nH0kPvSXX0MFIGJIeekuuoYOR8KGdHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKQ9NBbcg0d\njIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66hg5EwJD30llxD\nByNhSHroLbmGDkbCkPTQW3INHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAkDEkPvSXX\n0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/J\nNXQwEl6OSw+9JdfQwUh4j6SH3pJr6GAkDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh6\n6C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEn5DVg+9JdfQwUgYkh56S66hg5Hw\noZ0eekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCc/a6aG35Bo6\nGAnvkfTQW3INHYyE90h66C25hg5GwpD00FtyDR2MhA/t9NBbcg0djIQh6aG35Bo6GAlD0kNv\nyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66hg5EwJD30llxDByNhSHroLbmGDkbCkPTQ\nW3INHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAkDEkPvSXX0MFIGJIeekuuoYORMCQ9\n9JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoZUuZ3bi9Bbcg0d\njMQypNLOdtrM1pBRSNvai9Bbcg0djMQypNLOttnM1hAf2tUPdDASy5Bs52qIIdUPdDAShqSH\n3pJr6GAkDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHp\nobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJHyhMT30llxDByPhPZIeekuuoYORMCQ99JZcQwcj\nqXFIX4jKPmA77j1iSPUDHYykxiE9etVVV30pOin+9Q7bce8RQ6of6GAkNQ4p79Fovu2wB8WQ\n6gc6GAkspFGH7sj/5u8P2/meDz78dwccMnVj/LvH/uGgA959g+3sA0OqJ+hgJLCQboh+Gv+6\ndu8vhQ+9/n3/lbt5nxNCeGjER+9dcmb0bdvdM6R6gg5GAgup/dUN8a9XRU+HUdHj8XvToubw\n7rdtjd9rPKjDdvgMqY6gg5HAQgpTX9UawkeOiR/kHdgd//am6P7WaEZH7D+i39gOnyHVEXQw\nEsAzG0oh/TKaF1bvdVkc0t/mf7souvGZ8qnxn9kOnyHVEXQwElxI4e3Hhe+MWFMO6a7opmei\n054oyNkOnyHVEXQwEtxDuzA3ev79n47fjjpgV/zrD6LF66PJtosvY0j1Ax2MBBjSmhETooXx\n21HR/fGvY/ZrC+8/eEP83k2zOm2Hz5DqCDoYCTCk8M/Ra/IXkxx11NuvefCr0aQQHtvnuJt+\nMXufKba7Z0j1BB2MBBnSndHn829GveO3Hx15yOnt8bu//MeD9nn7ZdZ3SAypjqCDkQBC6nFP\n9Ov8m1FH2+58dwypfqCDkQDO2pXtfN8HC29rHdLWNSFsu/HbK6o+HHpLrqGDkcDukZrv/vSI\n4jdeaxzSC4fPDZ3vi6KD/7vaw6G35Bo6GAkspBv2est9xfdqHNKJx74cbo6ufvn4sdUeDr0l\n19DBSGAh1VKfkA6/NYQTjgnh1qOqPRx6S66hg5H4C2nfR8KuQ74WwpJ9qz0cekuuoYOR+Avp\nqOvDkuiR+LHlkdUeDr0l19DBSPyFNO0NX3/zW3eF1uP4NdJwhA5G4i+kNR+MDnsihPEHP1vt\n4dBbcg0djAT4faTa6fcN2U35l4t+6pWqD4fekmvoYCT+7pHSQ2/JNXQwkhqHtMe/I9u599In\npNbJb9y7+POD1R6uRpOhgaCDkfgLadyrPjl5WkG1h6vRZGgg6GAk/kI69K60h6vRZGgg6GAk\n/kIa+Ze0h6vRZGgg6GAk/kL6yKNpD1ejydBA0MFIanz6e49/R2kHLuoT0m/fvzTl4Wo0GRoI\nOhiJv3ukUUdFI99cUO3hajQZGgg6GIm/kD7yybJqD1ejydBA0MFIMh3SiJ9Xu/W++A3Z+oEO\nRpLpr5EqCenhpwb/mH4hrVt07fWLN1dwawU1mgwNBB2MZNjfI/3zNYN/TJ+Qur6yT/5pDQde\nVsHNHViNJkMDQQcjyWZIfx5z4BFf3BpGXP+p/Y74cQjP/eMhB3/qpbAruu5vppR/U/qYj++1\n33vC2vFHjvzo06V/P1hIl0Un3HD/oh/8U3QTQxqG0MFIshnS341b8+K7zgojjvvV5vNHtoej\nJ23ZdNLx8T3U+57e3POb0se8Ob5H+sD4ddtmHb6t+O8HC+mdM4tvz3gPQxqG0MFIMhnSM9HL\nIfz3ojDi0hBWRM+Ftq0h3LlPdxhxcfwvS78pf0wc0tPRmvgR22tvK/77AfQJab+Hi2/vO6DK\njhgSEjoYSSZDumOvrsLbEXeGsDZ6Kjz88SOOeG3UGUbcFv/D0m/KHxOHtLD4ZO6m4r8fQJ+Q\nDry3+PauV6sLquQ/goYWOhhJJkP66V67Cm/zJxvikF7ar6kj3JUPKf59+Tflj4lDuisqvcSf\ndHKiT0gf/njhxWs7PvUxbUAV/UfQ0EIHI8lkSMvih3Ph11eVQ1o4YmcIXy+FVP5N+WPikH4f\nPRH/oRUVhnTfXn995pxvnv7GvR9kSMMQOhhJJkMKH/jUyuX/74vlkJ6IHt++4KPRnwq/7/lN\n6WPe+ZUN4RPH/2nn1SNXVxZS+Pk78g8Ej72v2o4YEhI6GEk2Q/rL6JGvP2NLOaRw7iGvm9b2\n3tf+sRBK+Telj/nOAW8Ka08++KDj/7PCe6TY6t+kuGIDQ4JCByPJ9DMbrPApQvUDHYwkm/dI\nxpKQjm4KR/eo9nA1mgwNBB2MxFlIH5gfPtCj2sPVaDI0EHQwEmchmajRZGgg6GAk/kJ67x+K\nb3/6zmoPV6PJ0EDQwR9kPvQAABaaSURBVEj8hRQVf+6i8yK+GsVwhA5G4i2kKMEnrQ5H6GAk\n3kJa9t1odOHqkJ//9z9Xe7gaTYYGgg5G4i2kEP7pxeLb9herPVyNJkMDQQcjqXFIe7wt1Q57\nUAOetXvoddUeDr0l12rUhZrDkBZN/MioUaM+eNBh1R4OvSXXatSFmr+QFkavelP0xv2jj1f9\nrFX0llyrURdq/kJ676c3hxHPdV75saqvI4Tekms16kLNX0gHLQphxO9COOesag+H3pJrNepC\nzV9I+z8QwmseD+GXb6z2cOgtuVajLtT8hfTusTvCu2aFcPeB1R4OvSXXatSFmr+Qbo4+Gb4x\n4vSL/ur4ag+H3pJrNepCzV9IYeHcsPUfo+ioCq51PDD0llyrURdqmQypM6r6wiQD6hNS8eJD\nL/1hZ9WHQ2/JtRp1oVbjHzXf423p+ajuR9t63q/kIvmD6RPSkTOfkT7uXxti40Jonzd5wkWt\nydt+0FtyrUZdqGXyHqm3Si6SP5g+IX1wr+hdlzYP+HFT783lcutDmHPeytWXn9XV87Yf9JZc\nq1EXapkMKX5o1xUt+NQ7//pHofdF8sOy4/Z/zyPRs4NeNH+PIYU/Xf530V4fu2HT7h83tnjv\nl2tcEd8bjVlWfsuQMqRGXahlNaQw4r2t4fqRW3pfJL/rqImbnn1v9NygF83fc0ixP37rfdH+\nJ/f/pzsbrpxxWlNLWHpSd/y7s39SfsuQMqRGXahlN6TvxHuPnu99kfz/ilaGcEP03KAXzR80\npNjP/na3f7rx1CuWL7/w1C2LC3dzs64tvy3/+/YNRegtuVajLtQsQyrtrN0mpJ8VLw7Z6yL5\nC0d0Fy5nPOhF8wcLadejZ70xet3pA37stnFLFk8thTS1b0ib1hWht+RajbpQswyptLMBvvio\nJqSf94RUvkj+gv3iX56Lnhv0ovl7DKlzyRmHRyPH3y2d/p6+4MniQ7o7ym/7fwR6S67VqAs1\ny5AqmPQeb0uy9b4hlS+S/2i0OoQfRc8NetH8PYb0uuhVn7l5y0AftuqqzhA6xj2yvvGl+O5n\n9PPltwwpQ2rUhVrmQ+p1kfwdh03f9vsPRc8NetH8PYb04e/nhA/bPGH+2pamqdvD3HNWtlw4\ns7vnLUPKjhp1oZb5kHpfJP+xYw788EPR7we9aP4eQ/qQ/AN9K2aPP2XOKyFsnT9pYlNb8pYh\nZUeNulDLZEiSzh0hLI329DXYwPqE9KZ56j/fD3pLrtWoC7XhFFL326ZsWPNPH9Uvv09Id7/z\n59U/za4AvSXXatSF2nAKKTz7iVcfduLAz+7Zoz4hfeTYaN83vjlPf6Ai9JZcq1EXasMqpGr1\nCWnUJz5ZUu3h0FtyrUZdqPkLKT30llyrURdqHkPq+M3PcqGz+sOht+RajbpQcxjStw+KoifC\n+VOqTgm9Jddq1IWav5CujRr/Iw7pplddVu3h0FtyrUZdqPkL6bgzQ0f+OUb/9vZqD4fekms1\n6kKtxiGl/VH16vS9rt2DxZB+sU+1h0NvyTV0MBJ/IR1+bzGk219T7eHQW3INHYzEX0j/8Pfb\n8iGtP+ZT1R4OvSXX0MFI/IX06Ii3zYhOm/yafX5V7eHQW3INHYzEX0jhoXfnf772/Y9VfTj0\nllxDByPZ47KVKthgFkIKofWZZ3b/4YjKobfkGjoYicN7pK1rQth247dXVH049JZcQwcj8RfS\nC4fPDZ3vi6KD/7vaw6G35Bo6GIm/kE489uVwc3T1y8ePrfZw6C25hg5GssdlK1Wwwcr+/JBe\nRP/wW0M44ZgQbj2q2sOht+QaOhhJJu+RdBfR//5b9j323sJ7N0YDX8ShT0j7PhJ2HfK1EJbs\nW8HtHRB6S66hg5FkMqTeBr2I/o1vWLTqirfmL+TwyhEHVBDSUdeHJdEjIdxwZAW3d0DoLbmG\nDkaSyZBUF9F/64/Kf+ykmUdUENK0N3z9zW/dFVqP49dIwxE6GMkel61UwQYrDqnii+i3RD86\nbuT7l8Z/6s63bKkkpDUfjA57IoTxBz/LkIYhdDCS7IZU4UX0n4z+/oX1M177l9B25JJQSUgh\nbMpfReipV6rtiCEhoYORZPWhXcUX0X8yf4Zv5yE3hilTQoUh/elnP7junrVVd8SQkNDBSLIb\nUoUX0W+O8qf13tW05A3rKwup7Z8LGe49YcDrf1cCvSXX0MFIhkNIe7yI/q4jrwxh20ELP7v/\noYceutdBJw4a0inRSTc+8MCNn93rDIY0DKGDkWQ+pEEvoj/3sCXN047csv7PsddfP+AF8vuE\n9NoZxbezD2VIwxA6GEnmQxr0Ivq7/u2IfT/6h+IfrOSh3QF3Fd8+OLKaiPLQW3INHYwkkyFJ\nTC6i/+HS1YOu+bD6OCXoLbmGDkYynEKyuYj+0397584Qupa8/bf6AxWht+QaOhjJcArJ4CL6\nRx999DveFO33lrceGL3pQ/oDFaG35Bo6GMkel61UwQbT/vnqJCGNSnzoPdUeDr0l19DBSIbV\nPVK1eBH9+oEORuIwpJfvuXVRS5rDobfkGjoYibuQ7j6m8MSGDz1W/eHQW3INHYxkj8tWqmCD\n8JDmRSMnfufG+Z8bufcPqz4cekuuoYOROLtHWrb3qDWFd1Yfv8/yag+H3pJr6GAkNQ4p7Z+v\nThLSlEPWld5bd8gXqj0cekuuoYOROAvpb07vefeMt1V7OPSWXEMHI3EW0n6X97x7xQHVHg69\nJdfQwUichfTquT3vXnpQtYdDb8k1dDASZyEdO67n3Yb/W+3h0FtyDR2MxFlIX9vn+dJ7S/ee\nXe3h0FtyDR2MxFlIaw7+qwfyb7sWvu7QdeLHDwK9JdfQwUichRQeek30NydObjwyOmxp1YdD\nb8k1dDASbyGFVdP/Koqit3yVVxEantDBSLIZ0nv3fzH/5l2FyxW37vumXdWvPq//de1a2lMd\nDr0l19DBSDIa0qEfz78phnTJJw+/K9Xw+WMUdQQdjCSjIV38uhtCKaSuN//wS59Jt3yGVD/Q\nwUgyGtL3fnhIaymkew9sf2bvP6ZaPkOqH+hgJBkN6arwic+WQvrM1BDefX6q5TOk+oEORpLZ\nkF7a/75CSCv3/lUIVx2xM83yGVL9QAcjqfEP9lUeUmj66/Zj4pDOiw4++OBXR7enWT5Dqh/o\nYCSZvUcKncfOePc1YcfrL/hjbOwn0yyfIdUPdDCS7IYUfr3P668Jt+5buJr3f+71YorlM6T6\ngQ5GkuGQwpeia8KHP1v8J+/4SorlM6T6gQ5Gks2vkYwxpPqBDkaSzXskYwypfqCDkTAkPfSW\nXEMHI+FDOz30llxDByPhPZIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHp\nobfkGjoYCc/a6aG35Bo6GEmN75EwGFL9QAcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoY\nCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSBiSHnpLrqGDkTAkPfSWXEMHI2FIldu+rQi9\nJdfQwUgsQyrtbLvNbA0ZhbSjowi9JdfQwUgsQyrtbIfNbA3xoV39QAcjqfGTVjEYUv1AByOx\nvEeynashhlQ/0MFIGJIeekuuoYOR8KGdHnpLrqGDkfAeSQ+9JdfQwUgYkh56S66hg5HwoZ0e\nekuuoYOR8B5JD70l19DBSBiSHnpLrqGDkTAkPfSWXEMHI+HXSHroLbmGDkbCeyQ99JZcQwcj\nYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCU826KG35Bo6GAnvkfTQW3INHYyEIemht+Qa\nOhgJH9rpobfkGjoYCe+R9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvoYCQMSQ+9\nJdfQwUgYkh56S66hg5EwJD30llxDByNhSHroLbmGDkbCkPTQW3INHYyEIemht+QaOhgJQ9JD\nb8k1dDAShqSH3pJr6GAkDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD0\n0FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJLz4iR56S66hg5HwHkkPvSXX0MFI\nGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQw\nEoakh96Sa+hgJAxJD70l19DBSBiSHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKQ9NBbcg0d\njIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66hg5EwJD30llxD\nByNhSHroLbmGDkbCkPTQW3INHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAkDEkPvSXX\n0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD00FtyDR2MhK9GoYfekmvoYCQMSQ+9\nJdfQwUj40E4PvSXX0MFIGJIeekuuoYOR8KGdHnpLrqGDkTAkPfSWXEMHI+FDu8TvGgoWhX/N\nvxkXQvu8yRMuat3t49Bbcg0djIQhJXbmYr8f1xym3hu/sz6EOeetXH35WV39Pw69JdfQwUgY\nUj+zF4Qw9qnCu7nGFfG90phl/T8EvSXX0MFIGFJfj0/rDDsbrpxxWlNLWHpSd/xPzv5J/49B\nb8k1dDAShtRH15kPhrDx1CuWL7/w1C2Lp+T/0axry/9yY64IvSXX0MFILEMq7WzjEKSQTuUh\nPT5lV+m9beOWLJ6afycJqX1DEXpLrqGDkViGVNpZu2kEFioP6aKeasL0BU8WH9rd0f+D0Fty\nDR2MxDIkk9EPhYpD2lI4s7Dqqs4QOsY9sr7xpRA2jX6+/0eht+QaOhgJQ+ptWUP+u0abJ8xf\n29I0dXuYe87Klgtndvf/KPSWXEMHI2FIvT3a2Jl/s2L2+FPmvBLC1vmTJja17fZR6C25hg5G\nwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSBiSHnpLrqGD\nkTAkPfSWXEMHI2FIeugtuYYORsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvo\nYCQMSQ+9JdfQwUgYkh56S66hg5EwJD30llxDByNhSHroLbmGDkbCkPTQW3INHYyEIemht+Qa\nOhgJQ9JDb8k1dDAShqSH3pJr6GAkDEkPvSXX0MFIGJIeekuuoYORMCQ99JZcQwcjYUh66C25\nhg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSBiSHnpL\nrqGDkTAkPfSWXEMHI2FIeugtuYYORsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfe\nkmvoYCQMSQ+9JdfQwUgYkh56S66hg5H8iyHbuRpiSPUDHYyE90h66C25hg5GwpD00FtyDR2M\nhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSBiSHnpLrqGDkTAkPfSWXEMH\nI2FIeugtuYYORsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvoYCR89rceekuu\noYOR8B5JD70l19DBSBiSHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKTDXroLbmGDkbCeyQ9\n9JZcQwcjYUh66C25hg5GwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJ\nD70l19DBSBiSHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKnCOmht+QaOhgJ75H00FtyDR2M\nhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSBiSHnpLrqGDkTAkPfSWXEMH\nI2FIldvWXoTekmvoYCSWIZV2ts1mtoaMQurcWYTekmvoYCSWIZV21mkzW0N8aFc/0MFILEOy\nnashhlQ/0MFIGJIeekuuoYOR8EmreugtuYYORsJ7JD30llxDByNhSHroLbmGDkbCkPTQW3IN\nHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAkDEkPvSXX0MFI+H0kPfSWXEMHI+E9kh56\nS66hg5EwJD30llxDByPhQzs99JZcQwcj4T2SHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKQ\n9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66hg5Ew\nJD30llxDByNhSHroLbmGDkbCkPTQW3INHYyEIemht+QaOhgJQ9JDb8k1dDAShqSH3pJr6GAk\nDEkPvSXX0MFIGJIeekuuoYOR8Cdk9dBbcg0djIT3SHroLbmGDkbCkPTQW3INHYyED+300Fty\nDR2MhPdIeugtuYYORsJ7JD30llxDByPhPZIeekuuoYORMCQ99JZcQwcjYUh66C25hg5GwpD0\n0FtyDR2MhCcb9NBbcg0djIT3SHroLbmGDkbCeyQ99JZcQwcjYUh66C25hg5Gwod2eugtuYYO\nRsKQ9NBbcg0djIQh6aG35Bo6GAlD0kNvyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66h\ng5EwJD30llxDByNhSHroLbmGDkbCkPTQW3INHYyETxHSQ2/JNXQwEt4j6aG35Bo6GAlD0kNv\nyTV0MBKGpIfekmvoYCQMSQ+9JdfQwUgYkh56S66hg5HwrJ0eekuuoYOR8B5JD70l19DBSBiS\nHnpLrqGDkTAkPfSWXEMHI2FIeugtuYYORsKTDXroLbmGDkbCeyQ99JZcQwcjYUh66C25hg5G\nwpD00FtyDR2MhCHpobfkGjoYCUPSQ2/JNXQwEoakh96Sa+hgJAxJD70l19DBSBiSHnpLrqGD\nkTCkvJavjM6/aZ83ecJFrbu/7Qe9JdfQwUgYUuzxSfMLIc05b+Xqy8/q2u1tP+gtuYYORsKQ\nYg//5Yl8SLnGFfG90Jhl/d/2/3D0llxDByNhSAWFkJae1B3/evZP+r8tf1DXriL0llxDByOx\nDKm0s90eCsFVGNLiKfl3Z13b/235gzbmitBbcg0djMQypNLONg5NDSlUGtLU/LtxQP3elj9o\n62aF3DrNR+/ZupzdsdbnNpkda0Nuo9mxNuY2mB1rU67N7FjA/yO3DkEK6VQY0pPFh3J39H9b\n1f/muraq/tiANuTsjrU5t8vsWNtyO8yOtSO3zexYu3LtZscKuQ12x2pbZ3cshApDWt/4Ugib\nRj/f/21V/5sMSYchDQODhdSWWzI6l+sIc89Z2XLhzO7d3laDIekwpGFgsJCmNeTdHbbOnzSx\nKQ6g/9tqMCQdhjQMGD9FqCIMSYchDQMMKcGQlBhSgiElGJISQ0owpARDUmJICYaUYEhKDCnB\nkBIMSYkhJRhSgiEpMaQEQ0owJCWGlGBICYakxJASDCnBkJQYUoIhJRiSEkNKMKQEQ1JiSAmG\nlGBISgwpwZASDEmJISUYUoIhKTGkBENKMCQlhpRgSAmGpMSQEgwpwZCUGFKCISUYkhJDSjCk\nBENSYkgJhpRgSEoMKcGQEgxJiSElGFKCISkxpARDSjAkJYaUYEgJhqTEkBIMKcGQlBhSgiEl\nGJISQ0ogQtpg+DJRmwyj3NJmF1JH206zY+1s6zA71q62LWbHCm2b7Y610TBKBERIRHWHIREZ\nYEhEBhgSkQGGRGSAIREZYEhEBhgSkQGGRGTgfwEvyjBRp87jnAAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "library(visdat)\n", - "df = gp_scripts %>% sample_n(1000)\n", - "vis_dat(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-12-23T09:34:22.373844Z", - "start_time": "2020-12-23T09:34:20.650Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAC/VBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQWFhYX\nFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgp\nKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7\nOzs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExN\nTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5f\nX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBx\ncXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKD\ng4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSV\nlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqan\np6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5\nubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrL\ny8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd\n3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v\n7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///9lp2mH\nAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deXxU5f3o8bEutdrWuv1qq7Xbre1t\n623VXxe1vV3u7XLbBBQiChqCiEW0PxBFrGCRIsGCiLhgi1q1KliRulGluOBPW8SqLdatiKEY\nAiEORAiQyTrP655zZkkC35wz38nzzGT5vP/gTEI4MxPmM+fMM885EzMAeixW7BsA9AeEBFhA\nSIAFhARYQEiABYQEWEBIgAWEBFhASIAFhARYQEiABYQEWEBIgAWEBFhASIAFhARYQEiABYQE\nWEBIgAWEBFhASIAFhARYQEiABYQEWEBIgAWEBFhASIAFhARYQEiABYQEWEBIgAWEBFhASIAF\nhJSTjTN/+9TOYt8I9GKElJPav9w5ZvAtDcW+GQNIX3vqIqSc/XV0+VvFvg0DR1976iKkHLS/\nHSwapw95tci3ZGDpS09dhJSDF+eklu3XDN9c3FsyUPS9py5CysGWC4xJrH7HmOaLryz2bRkY\n+t5TFyHlYniiYeykYXcaU1X6SrFvy4DQ9566CCkXV7y5ZI6pO3+JMXNuKvZtGRj63FMXIYVL\n3j/5nhZz+7JHfpE068tazQtjin2LBoY+99RFSOGWXvrCFVc0PzM/Me7mtq1D2kxicFuxb1I/\n10efuggp3NSVpm3qXdXjzbaLK8551PvGfEJyq48+dRFSuKXjE+bVi5Jntprk2ppi35gBwd1T\nl9PJEoQUoq3JtP3q4pfm3WAmvV3s2zJAJB0+dTmdLEFI3UouKSu9/F9tf7j45oT5zZ+trrqv\nTSQrmPa5j7l96nI2WYKQurXokurq2aXLgssrbrG66r42kaxQ2udO8XYCXDx1OZ8sQUiyZtNw\nWtxbPlj6mP9l1VLr19CXJpIVSNBRmuWnLueTJQhJtP1XZmNpo39p6eAqR9fRhyaSFUb73F94\nHbWtXlptHDx1OZ4sQUiircOS7eX3BRenV9peeXonow9NJCuM1ivG7TTxiysqTvuLi9W7nSxB\nSKLkkNfNE4Nf9i+uGW575ZmdjL4zkaxAdl90WfMli5Lt84c3O1i728kShCSr9H7XNw15ybv0\n0s9srzu7k9FnJpIVSrzissu8RV2J3XHvQkyWICTZC4OrTXLBoLu2vHn+X62vPLuT0VcmkhXM\nhmH+2M4/h7daXWshJksQUjeuuNh74fvsuJLhTztYd3Yno49MJDMFe+urzrSa2rFP2F1pIeZ5\nEVI36s6e0eItdrdbXeueOxl9ZCKZcfvWV3LRWUOvqU1dTowbNeRBmytvayrIPC9C6s7aMy/f\nYX2le+5k9K05sK7e+lp4yZtrf3FGMLRTbd5YudXiqoPpKa8XYJ4XIXVr48+GP5KwvM69djL6\nCKfTAuJDthuz84zTvVWvG/SA3XWnpqc87GayRGeEtKf2qzekL7U8UD5k5qJ37K26ramvTiZ3\nOi3gL2d7fzTOmF3uvQZbuMjqqrtMT7E+WaIzQtpD4u2pyewXydcfW9Jia83+XsakEX1zMrnT\naQGbBi8xbfPvayxfbHnFzV2npziY59WBkPZQeeXvHa052MsoKXe+k+GEs2kB8X81m2WDxo2a\n2mzu/oXVNfvzvNxNT9lzFJOQ9lAzasR7TlbceS/D6U6GE46mBSR/N7hk7A7z74df8HYDHppm\ncc0mmOflbnrKnqOYhNRZ69Ipc5+vmLjb+oqbTZe9DKc7GZY5nRbwm0nx2orgSJXm1rrzV1tc\ns0nN83I2PcXXeRSTkDppnzr1kalDH6u4xHZJ3k6Gs70M1++UupsW0Gw2l3lP6fMf/Zu3rf7N\nkCGPWFpvlj/Py830lL1HMQmpk/t/lTS3XrJ7s/WS/J0MV3sZrg8SdDYtwHt2ea68zdQOv2DM\nkFWm6XX7e9T+PC8301P2HsUkpMDG6f6T+sXP+h2Z6nUVlgcDgp0Mh3sZzg4SdDktwHt2iZdN\nvWf4Pcnk/DNdTPdOz/OyPj3FSKOYhBSoGz3BK2nKbX5HZuQb1p/f/Z0Md5NgXb1T6nZagP/s\nUnXrHeO9i7tK1tteeyA9z8uBvUYxCSklKOkvJT/zOtp0hv3BhtROhoO9DKcHCTqeFhA8uzx5\nhffH22W2p5CkOZnn5dtrFJOQ0qr9km4tubVm7TgXU3fSOxnW9zJcHiToelpA8OyytnRZcuPY\nx6yvPM3+PK9uRjEJKZCYM27mYK+kR84sGebkP9XVToazgwT3GLB3MmIfPLvcXzpsiO2nLv9t\njPREL+vzvLoZxSSkWv917nWVbWbDuV5JLZvcvOx1tpPh6CBBlwP2Walnl5q/bbe83tTbGGvS\nX1md59XtKOaADyk53h+UPm2V98emYRMcviHjYjK5cXaQoMsB+w6Onl3Sb2M4WLPp9iTWAz4k\nkzCJZnPedf7F+4eOt/5Q79jLsL2T4fQgQdcD9mlunl0yb2Pssr7m7k9iTUjGzJzS/OeSJ70L\njz3wuO11d9nLsLuT4fYgQdcD9mnWX8L4sm9j2F1t6EmsCSmxcMOIKc03ld7XUjvG/rsZDvcy\n3B4k6GzA3nQZC7D+Esbn6m2MsJNYE1J16RqvpKZFg4cMdjAw5Wovw/2ZCFwN2O85FmBZYt7I\nu9ocvI3RbMJPYk1IpnKa8bdJdc9Y3sG4qy5R52gvoxBnInAyYB9MxXI6FjC/8v5hV7VYfxvD\nH8UMPYk1IZmq0n8HJdle76LRk+5xtJdRkDMRuBhSCyaQuBsL8ExqN9Xl01psv43hj2KGvh0w\nsENK3O3Pq5k+13glPWV75TvLhtYZJ5MlCnQmAhdDan5JrsYCvP2v38/1Zxz5JVleczCKGfZ2\nwMAO6bVxg+ZtNv8a/K637ba+8vULx4/2SrK+l+H6TATuBux91aMnLHc2pfFXl04s8Z8QvZJs\nv7ILRjFD3g4Y2CGZ5OpLB82rnXqrm7U3BCVZ3stweiYC43TAPjMVa56bKY2J+C+SydtPe8G7\nWG31HJO+YBQz5O2AARxS6/2TZr1lzKvTTptsf/Jx+yO/fjwZlPSe5eEpp2ciMI6HAtJTsRY5\nmdJYOfV27887g5LsS41idvt2QO8NyfUh1C1XXPnQpYP8s0yvn237PFCmeeoVCwbP9Us6q3y5\n3VW7OxNB16MbnQwFZKZi1buY0lhTMco/kMxRSZlRzG7eDui9Ibk+hPqeaUmTvKX0JcurTT0a\nF85OmlklXkmJ+561fAXuzkSwx9GNVted5m4qlm9zxWR/vXfe52LlEaOYvTckn8vPWR3nbymS\nV59vebWpR+MZr5jfX7yydPaGv1levXF5JgLHRzd63E3FCnalN1dc7qLQRGpgNHQUs5eGlDnw\n09XnrLZfvWHSbP/Cv0tsb/OCR+M18b+MaTC/HF5i/cw4xuGZCJwe3Zh6SepoKlZmV9pNSZsG\npV7nho1i9tKQsgd+uvmcVf+8xM8ET46vjbD+cAwejeYC79XXr6udfJCzq4MEnR7dmH5JmnQz\nFSu7K725wvJnKwXmTktf6H4Us5eG1HHgp5PPWQ3OS7yg9N7t68fanheQeTQOu8/Uj7b7wXO7\na9JnJXd0GI/ToxuzL0mtT8XydexKO3lRvXFQddSP9NKQOh346eJzVlPnJV5aVjJ0me1VZx6N\ni0pnjPqTzRUn7xlcMrE+ddnNYTxOj2509JI0zd2udOIev6HZN0T9XG8NqePATyefs7o5OC9x\n0waHj8an59k9A+/vJtVUjZ2X/sLJYTxOh9RcvST1/hfnl12zy82u9F11iacuKp3+iqkeEjXz\npfeFtOeBn7Y/Z7XppvLL3zT2z6aa5urRWHOGtze3alT2aweH8bgbUnviln86e0lqrpn56KgL\n6u3vStc2p+Yd//Pq0vGrr7434qd7X0h7Hfhp+XNWr67806WnPeWsJFePxqfO8/5Yf6bltWYF\nY2quhtSunHTjNkcvSU1i+8VJUz923M3Wd6XHv5yed2y23D6sbETEy8beF9LeB37aPIQ6UTsx\nadoXDHrZK8nN8QeOHo3Vfplvjvb+SEb9aB5SY2or3Ayp3X11cJOdvCQ1lVPne396JS21vCvt\nn8zjX6l5x97lZWc/E/7TvS8ktwd+zpjkv8xIzipvNY4mTTga4A2smmTM9om19lecGVNzMqQ2\nflWwqHPxktTUVJztv3zxSrK/8plTmhvSJZl7Zof/bG8Lqa2pm7O0WLLhnOF+QDUlzmZMGDcD\nvIFls8z2i+x+ymqK0zG1Kdf7f25wdFKv9D56veWNnX98s3+4Z2be8ZOXhf987wopOIT6NacH\nflaX++99Vw/a5mb1bj08101HDsfUPC+UrPD+XDPWxbqNcfRqNxhnSJXkzztumxYx2tC7Qup0\nmhZnB35Wl1/03PM/s368SkGsGOegI7djar47Su9u2HTBk07WbRyVlBpn8EsK5h0nFkWMCPae\nkPY4TYu7T4esLh92j5OpzR3an3Oz3uoS+x05HVNLW1ZWMtTFrMM0F+NG6eObcz6ZR68JKfI0\nLfZUl1s/00mXM7WZ9rnTbA00po7KyPqXpdV24mhMresNT7zt6EjBFNt7pMF7vA3pknI7mUev\nCSnyNC0WWS+p65navI6svVWaOirDJUdjau5vuEOp93hT4ww5nsyj14QUeZoWm6rL77G6vi6H\nZ9vsaK8HpP2dRldjam5LStzk7reSeY+3XnN8c68JKfI0LT2SOu4r+9VztXZn13Q+PNtuR5mj\nMtIs7jRmOBtT63rDLT8BNIx191vJvsdbrzi+ufeEFHWalp7IHPeVYvf3nrg10fnwbMsdZY7K\nSLEdacDNmNpeN9zmQz0xb8zFJc5+K3m9x9t7Qoo6TUtPZI/78ln+vW+puDzR6fDsxXb/U7PH\nCPns3fJNnQ9/czKm5uiGp8zzVr52lKOV5/ceby8KKeI0LT3R+RQK1n/v/uHNHYdn77a78s7H\nCNm75W2ju4TjYkzNzQ3PrNw/T9CmMhcrD14E5PHOVC8IKTtQ6uTAz+BU9p2O+7L7e0/46/JL\ncvXhs52OyrB4yxtKVyasn92oKzc33OftS597o39hQdmE3bZXnn4RoC+pF4TUMbzj4sDPYKpH\nxykULP/eZwRrqxk2udH+4dnBc2OnozJs7jT+duj4BZ2vyv4byB033Pb2yNuXfrTE3zW9b/nI\nX9velc68CFC/x9sLQupUkoMDP9OHlGSO+7L8e3/7rGB9i8+YaP0sB+nnxo6jMmzuNO4e0fkA\nfutDASPvaus4nMTyrzzYA5hf+kDLljHx1aW7LO9KZ18EaD9ToTeE1Hmg1PqBn+mpHplTKNj8\nvSf/umRrqqTHHrO/W5d+bmx3clTGutvnD/1n5gvbm4zURxRlDyex+lBP70tPXlhaNvgh885g\n2zsweZ/8oReE1HWg1L7UVA/bp1Awpmnaf81u8LZJU3bExzj4xLzsc+MyJ0dlJLMlWR8KSH9E\nkZPDSbL70uv+vM60zFgQ+Q8U/Dcy8j6PWnFDqvV3iLoMlNrl7lT2nrnXJ41pbKoadfrpLuaS\nOzzHZDCVLFOS7Vfrzj6iKNBpX7pqzNlzrJ6kYUtwdsk8T/5Q1JD8w+JdngXK4ansjYmf1mRq\nZpaWvbRrpaMPn3R2jsnUVLJUSba3Rw4/osg/P67p2JfeuuI1y+sPztOa53nUirtFSphEs5vz\n7gRj6i5PZW/qB99x8+lzXl9wkfU1ZyaTOzjHpC87lSw5/36bQwH+r9zVRxQF/53++XGNq33p\n7BsZeb4IKPZrpJlTmp2cdycYCXR4KvvkX5fcO27mWmOev8T6ujOTya2fYzKlYyqZP9PD3lCA\n/yt39RFFwX9ncH5cY9zsS3e8kZHfvy92SP6BU07Ou+P/6t29zEgNNHjeG/u87XV3TCa3P0Di\nc3a6EO9XvtbVRxT5/52p8+MaY39fOnFDQ0/fyChmSMEOjFdSk5MR3mBM3f7LjGB8JDPQ8OoD\no1wcyOvms778W950U/kVbzo6XUjwK3/L1UcU+f+dqfPjOrD1/PE7e/hGRhFDSu/A+Nsk+wOl\n6TF16y8zUuMjmYGGCddYHwz0X1A7+ayv5PgpzWbmrx6fNGiFm9OFpH7lbzn5YJX0f6ejG37t\nuBneynv24quIIWV2YHI+LF4jPaa+0PrLjGB8xN1AQ/CC2s1nfVWXT6m52D87ZukLTh6Q6V+5\nk5Iyb5E4ueFz0yvv0YuvIoaU3YHJ9bB4jcyY+iP2X2bM9Lpf7mqgIfWC2s1nfVWXj/ePhk1W\nlre6OF1I5lf+loOPKMq+ReLghicHr06vvCcvvooYUscOTI6HxWs4/GSF7BbUxUBD+gW1m8nk\n1eVnpc6OudbFaWazv/K4w3UnHNzwc4OD7RcP6dE7mUUMqW9+WKnJlORooCH9gtrFZ31lzo5Z\nNdjJ2TFd/spdrttbuX+w/WOLe3SSiWKO2jn6sNIUR+eyDwQl3W1/oCHg7ANnfKmzY/7Rzcpd\n/spdrtvcXLrYW3lV3egJ+Y+TFvV9JFdHw/lcnsvezfhIhuOSzrjX9syaDJe/cqf/nd7KT/dX\nXndD/u9OF/cNWTc7MGnuzmWf+2kD8+LqA2cC1SMcHhrr8lfuct2mbuWG6B8KVeyZDX2Vg/GR\nDo4+cCal3uXKBy5CAiwgJMACQgIsICTAAkICLCAkwAJCAiwgJMCC4obU5OSUTSnJJvvnDclq\na3LzscWBliZ36zbN/MoFLU3J6B8KVdyQ4u+5W3dL3O6R2l00xh3ObdoR7+n/aoitDmc2tMYd\nfkZfY9zh88uOeE8rJaS8EJKEkIqFkCSEJCGkEIQkISQJIYUgJAkhSQgpBCFJCElCSCEISUJI\nEkIKQUgSQpIQUghCkhCShJBCEJKEkCSEFIKQJIQkIaQQhCQhJAkhhSAkCSFJCCkEIUkISUJI\nIQhJQkgSQgpBSBJCkhBSCEKSEJKEkEIQkoSQJIQUgpAkhCQhpBCEJCEkCSGFICQJIUkIKQQh\nSQhJQkghCElCSJJ+GtLOuSOHT6/r4ZUTkoiQJP00pBmT12+ac2FPr52QJIQk6Z8hxUurvK3S\n4J5+rjchSQhJ0j9DWjXE/7++6A89vHZCkhCSpH+GtLzC/3PKwszXDfV5iW/N79/lYpvblW9z\nt/KtcXfrro87XLnTX/nW3vgr7/hM7nxDGtU1pB1bM94A+rvso71jjyrPkFandu2W7P03L6E/\nOdGlYt+5vAlF5BnSttJ13mZo0GuE1M8RksReSGbWhPU1V00UXhQX+z7CKkKSWAxp97zyEZXS\nAFCx7yOsIiSJxZC6Vez7CKsISUJIUCIkCSFBiZAkhARYQEiABYQEJXbtJIQEWEBIUGKLJCEk\nKBGShJCgREgSQoISIUkICUqEJCEkKBGShJCgREgSQoISIUkICUqEJCEkKBGShJCgREgSQoIS\nIUkICUqEJCEkKBGShJCgREgSQoISIUkICUqEJCEkKBGShJCgREgSQoISIUkICUqEJCEkKBGS\nhJCgREgSQoISIUkICUqEJCEkKBGShJCgREgSQgIsICQosUWSEBKUCElCSFAiJAkhQYmQJIQE\nJUKSEBKUCElCSFAiJAkhQYmQJIQEJUKSEBKUCElCSFAiJAkhQYmQJIQEJUKSEBKUCElCSFAi\nJAkhQYmQJIQEJUKSEBKUCElCSFAiJAkhQYmQJIQEJUKSEBKUCElCSIAFhAQltkgSQoISIUkI\nCUqEJCEkKBGShJCgREgSQoISIUkICUqEJCEkKBGSxF1IO9/LKPZ9hFWEJMk+2nfYDqm9LaPY\n9xFWEZIk+2hvtx1Sh2LfR1hFSBLhcU9ICENIEkKCEiFJCAlKhCQhJMACQoISWyQJIUGJkCSE\nBCVCkhASlAhJQkhQIiQJIUGJkCSEBCVCkhASlAhJQkhQIiQJIQEWEBJgASFBiV07CSFBiZAk\nhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJI\nUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQl\nQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIk\nCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSEBFhASlNgiSQgJ\nSoQkISQoEZKEkAALCAlKbJEkhAQlQpIQEpQISdKDkLbNOfuMy9ca8/MST5kxO+eOHD69jpD6\nO0KS9CCkiydXbb52RMKMejQej28zZsbk9ZvmXNhOSP0cIUnyD6mhstqYd0veMkNfDL6Ol1Z5\nW6XBawgJA1D+IQXeHFTfUnLD+HMra8yqIUnvGxf9gZD6ObZIkp6F1DDuDrP9nOvWrr3qnF3L\nK/zvTFmY+bvEroxi30dYRUiS7KO9MY+QNp6/IJm61Fi2YvmoriFtj2cU+z7CKkKSZB/t9fqQ\n1gx/NHt53KLVqV27JZnvtLVmFPs+wipCkmQf7W3qkF4/K9gx3HBjq7cfV/b0ttJ1xuwY9Nre\nP1js+wirCEkiBJJjSM1jFvtbskTD8Hm1NZWjmsysCetrrpqYJKR+jpAk+Ye0piSwzFRNHXb2\njC3G7J5XPqKyXvjJYt9HwLn8Q8pdse8jrGKLJCEkKBGShJCgREgSQoISIUkICUqEJCEkKBGS\nhJCgREgSQoISIUkICbCAkKDEFklCSFAiJAkhQYmQJIQEJUKSEBKUCElCSIAFhARYQEhQYtdO\nQkhQIiQJIUGJkCSEBCVCkhASlAhJQkiABYQEJbZIEkKCEiFJCAlKhCQhJCgRkoSQoERIEkKC\nEiFJCAlKhCQhJCgRkoSQoERIEkKCEiFJCAmwgJCgxBZJQkhQIiQJIUGJkCSEBCVCkhASlAhJ\nQkhQIiQJIUGJkCSEBCVCkhASlAhJQkhQIiQJIQEWEBKU2CJJCAlKhCQhJCgRkoSQoERIEkKC\nEiFJCAlKhCQhJCgRkoSQoERIEkKCEiFJCAlKhCQhJCgRkoSQAAsICUpskSSEBCVCkhASlAhJ\nQkhQIiQJIUGJkCSEBCVCkhASlAhJQkhQIiQJIUGJkCSEBCVCkrgLqakxo9j3EVYRkiT7aE/Y\nDqk5kVHs+wirCEmSfbQ32Q6pQ7HvI6wiJInwuCckhCEkCSFBiZAkhAQlQpIQEpQISUJIUCIk\nCSFBiZAkhAQlQpIQEmABIUGJLZKEkKBESBJCghIhSQgJSoQkISQoEZKEkKBESBJCghIhSQgJ\nSoQkISQoEZIkMqTdm41pvOPaKkJCCiFJokJ688hZpvWkWOyQvxMSAoQkiQrp9C+/be6OLXj7\n5KGEhAAhSaJCOvJeY077kjH3HkNIQLeiQjrgadN26GXGrDiAkBBgiySJCumY28yK2NPG3H4U\nIQHdigpp9EcvP/YzbabueF4jIYUtkiQqpM3fiB3xvDHDDnmFkBAgJElUSMbsaPH+eHFL/h0R\nUv9CSJLokHqu2PcRVhGSJCqkupEfe18sQEgIEJIkKqSy/b4/cnSAkBAgJElUSIc/lH9AhNQv\nEZIkKqSD3iUkIFJUSN9aSUjogi2SJCqkl762ipDQGSFJokI65ZjYQccGCAkBQpJEhfSt72cQ\nEgKEJIkKyYZi30fAueiQti5beNvyBkICQkSF1H7J/v60hoNnExJS2LWTRIU0O3ba7Y8t++0P\nY3cREgKEJIkK6QsTU8vzTyAkBAhJEhXS+59KLf/0AUJCgJAkUSEd/Ghq+dAHCQnoVlRIp363\n2V8kfvAdQkKALZIkKqQ/7fOJsTN+NeZj73uCkBAgJElUSObBz/vD31/+U/4dEVL/QkiSyJCM\n2fS3Hp2xgZD6GUKS5BBSjxX7PgLOhYZ0XKU5LouQEGCLJAkN6evzzNezCAkBQpKEhmRJse8j\nrCIkSVRIJ76RWj7wBUJCgJAkUSHFXgwWrdP5NAqge+EhxTowaRUpbJEk4SGtmR8bFJwd8rxf\nbiQkBAhJEh6SMT98K7Xc+RYhIUBIkqiQMp48jJAQICRJZEjLRnzrlFNO+caHjiAkBAhJEhXS\n4th+R8c+dmDsuz2YtVrs+wirCEkSFdKJP2ow+77aesN3enAeoWLfR1hFSJKokD60zJh9/2nM\nhAsJCQFCkkSFdODjxnz4WWOe+xghIUBIkqiQvjq02XxxijEPH0xIQLeiQro79n1z5b5jpn/8\nZEJCgC2SJCoks3iW2f1/Y7FjXiQkBAhJEhVSW/Dnujda8u+IkPoXQpJEhXTUxH9018fPSzxl\nxuycO3L49LqOJSH1b4QkiQrpG/vEvnhNtRjSqEfj8fg2Y2ZMXr9pzoXt2SUh9W+EJIkKybwz\n5z9j+3zn9h17/9zQ1MumeGmVtzUavCazJKR+jpAkkSF5/v3rk2IHnrHnd1tKbhh/bmWNWTUk\n6X110R8yy8zft7ZkFPs+wipCkmQf7R2jCdLs7z9+eq/vbj/nurVrrzpn1/IK/6spCzPL7N/H\nM4p9H2EVIUmyj/b6bkNqW3nhx2KHjRHyMqaxbMXyUemQRnUNKbEro9j3EVYRkiT7aG+UQ2pd\ncf6RsYOGPdzd8Pe4RatTu3RLMsu9f6bY9xFWEZJEaKNLSIfF9vvx3bukhDbc2Optdsqe3la6\nzpgdg17LLAmpnyMkSVRIp94c72Zb1DB8Xm1N5agmM2vC+pqrJiazS0Lq3whJEhXSN7s/oK9q\n6rCzZ2wxZve88hGV9R1LQurfCEkSFdLRc7sNKWfFvo+wipAkUSE9/IUHezLNjpD6H0KSRIX0\nrS/HDvjYsT5CQoCQJFEhnfK976cREgKEJIkKyYZi30dYRUiS6JASf/tj3LQSEtIISRIZ0rUf\nisWeN1dU9CClYt9HwLmokBbGSn/jhXTXfrMJCQG2SJKokI4faxJeSOYXnyMkBAhJEhXSgU+k\nQvrz/oSEACFJokI68tFUSPd/mJAQICRJVEj/5383+iFt+9IPCAkBQpJEhbRy38+Oj5078sP7\n/4WQgG5FhWSe/Kr/CfLDynQAABBLSURBVLJfeyb/jgipf2GLJIkMyZi6f/xDOjiCkAYoQpJE\nhrR7szGNd1xbRUhIISRJVEhvHjnLtJ4Uix3yd0JCgJAkUSGd/uW3zd2xBW+fPJSQECAkSVRI\nR95rzGlfMubeYwgJAUKSRIV0wNOm7dDLjFlxACEhQEiSqJCOuc2siD1tzO1HERIChCSJCmn0\nRy8/9jNtpu54XiMhhZAkUSFt/kbsiOeNGXbIK4SEACFJokIyZod/FqEXt+TfESH1L4QkiQ7p\nnT/+9tZHanvQESH1L4QkiQqp/if+VLvY+4aL5/8mpAGIkCRRIZ0dG3LH44/fceY+5xMSAoQk\niQrpI+NTy6mHExIChCSJCukDD6WWTxxESAgQkiQqpFPTZw+65VRCAroVFdLLn17aYkz7is9J\nP0lIAxFbJEloSMcdd9znj469/1OfOTh29DcJCQFCkoSGdEqHb55ASAgQkiQ0JEuKfR9hFSFJ\nIkN6+5F7l9UQErIISRIR0sNfCiY2fLMnJxEipP6FkCThIc2NHTTi+jvmnXXQ+35HSEghJElo\nSGved8rm4MKmk/dfS0gIEJIkNKSKQ7emL2099GeEhAAhSUJD+uSY7MXzP0tICBCSJDSk98/J\nXrzuA4SEACFJQkP64KzsxWs+REgIEJIkNKQvl2UvlvwvQkKAkCShIV22/2vpS6veN5WQECAk\nSWhImw/5+OP+sn3xYYdvFX6SkAYiQpKEhmSe/HDsk6ePLD0qdsSq/DsipP6FkCThIZkN4z4e\ni8U+dSlnEUIGIUkiQvLsqNnZk4oICQNBdEg9V+z7CKvYIkkICbCAkKDEFklCSFAiJAkhQYmQ\nJIQEJUKSEBKUCElCSFAiJAkhQYmQJIQEJUKSEBKUCElCSFAiJAkhQYmQJIQEJUKSEBKUCElC\nSFAiJAkhARa4C6mtNaPY9xFWsUWSZB/tbbZD2rU9o9j3EVYRkiT7aG+wHVKHYt9HWEVIEuFx\nT0gIQ0gSQoISIUkICUqEJCEkKBGShJCgREgSQoISIUkICbCAkKDEFklCSFAiJAkhQYmQJIQE\nJUKSEBKUCElCSFAiJAkhARYQEpTYIkkICbCAkKDEFklCSIAFhAQltkgSQoISIUkICUqEJCEk\nKBGShJCgREgSQoISIUkICUqEJCEkKBGShJCgREgSQoISIUkICUqEJCEkwAJCAiwgJCixaych\nJCgRkoSQoERIEkICLCAkwAJCghK7dhJCghIhSQgJSoQkISQoEZKEkKBESBJCghIhSQgJSoQk\nISQoEZKEkKBESBJCghIhSQgJSoQkISQoEZKEkKBESBJCghIhSQgJSoQkISQoEZKEkKBESBJC\nghIhSQgJSoQkISQoEZKEkKBESBJCghIhSQgJSoQkISQoEZKEkKBESBJCghIhSQgJSoQkISQo\nEZKEkKBESJL8Q/pnSWCZ+bm/KDNm59yRw6fXEVJ/R0iS/ENqiXteL6s2ox71LmwzZsbk9Zvm\nXNhOSP0cIUnyDykwdZExQ18MLsZLq7yt0uA1hNTPEZKkZyE9O7rVtJTcMP7cyhqzakjS+85F\nfyCkfo6QJD0KqX3sE8ZsP+e6tWuvOmfX8gr/W1MWZv5yezyj2PcRVhGSJPtor88jpGcr2tKX\nGstWLB/VNaSd72UU+z7CKkKSZB/tO/IIaXq2GjNu0erUrt2SvX+s2PcRVhGSRMgj55B2BSML\nG25sNSZR9vS20nXG7Bj0GiH1c4Qk6UlIa0r8d40ahs+rrakc1WRmTVhfc9XEJCH1c4Qk6UlI\nK0tb/UXV1GFnz9hizO555SMq64WfK/Z9hFWEJOlJSLkq9n2EVYQkISQoEZKEkKBESBJCghIh\nSQgJSoQkISQoEZKEkKBESBJCghIhSQgJSoQkISQoEZKEkKBESBJCghIhSQgJsICQoMQWSUJI\nUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQl\nQpIQEmABIUGJLZKEkAALCAlKbJEkhAQlQpIQEpQISUJIUCIkCSEBFhASlNgiSQgJSoQkISQo\nEZKEkKBESBJCAiwgJCixRZIQEpQISUJIgAWEBCW2SBJCghIhSQgJSoQkISQoEZKEkKBESBJC\nAiwgJCixRZIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQISUJIUCIkCSFBiZAkhAQlQpIQEpQI\nSUJIUCIkCSFBiZAkhARYQEhQYoskISQoEZKEkAALCAlKbJEkhARYQEhQYoskcRdSQ31Gse8j\nrCIkSfbRvt12SB2KfR9hFSFJhMc9ISEMIUkICUqEJCEkKBGShJCgREgSQoISIUkICUqEJCEk\nKBGShJCgREgSQoISIUkICUqEJCEkKBGShJAACwgJSmyRJIQEJUKSEBKUCElCSFAiJAkhQYmQ\nJIQEJUKSEBKUCElCSFAiJAkhQYmQJIQEJUKSEBKUCElCSIAFhAQltkgSQoISIUkICUqEJCEk\nKBGShJCgREgSQgIsICQosUWSEBJgASFBiS2ShJCgREgSQoISIUkICUqEJCEkKBGShJCgREgS\nQoISIUkICbCAkKDEFklCSIAFhAQltkgSQoISIUkICUqEJCEkKBGShJCgREgSQoISIUkICUqE\nJCEkKBGShJCgREgSQoISIUkICUqEJCEkKBGShJCgREgSQoISIUkICUqEJCEkKBGShJCgREgS\nQoISIUkICUqEJCEkKBGShJCgREgSQgIsICQosUWS5BNSzSWD/MXOuSOHT6/be0lI/RshSfII\n6dnyeUFIMyav3zTnwva9loTUvxGSJI+Qnnr3eT+keGmVtxUavGbPJSH1c4QkySMkY4KQVg1J\nen9e9Ic9l4TUzxGSJP+Qllf4F6cs3HOZ+aHdDRnFvo+wipAk2Uf7TnVIo9IB7bHM/ND2eMY6\n9CfXuVTsO5e37KO9XhvS6tSu3JI9l5kfam/LS7w+v3+Xi6b4Tncr3xVPuFv59niru5Vv3eZu\n3c3xBncr3xVvdLfy7fGWvP5dx2hbjiFtK11nzI5Br+25jPzX4eLv9XAFIVriu9ytvDHe7G7l\nO+JJdyvfWh/9M/lqje+M/qF8Ncab3K18R1wYgFaJCqk+vmJQPJ4wsyasr7lqYnKvZc8QkoSQ\nJH08pNElvofN7nnlIyq9/4M9lz1DSBJCkvTxkNwiJAkhSQgpBCFJCElCSCEISUJIEkIKQUgS\nQpIQUghCkhCShJBCEJKEkCSEFIKQJIQkIaQQhCQhJAkhhSAkCSFJCCkEIUkISUJIIQhJQkgS\nQgpBSBJCkhBSCEKSEJKEkEIQkoSQJIQUgpAkhCQhpBCEJCEkCSGFICQJIUkIKQQhSQhJQkgh\nCElCSBJCCkFIEkKSEFIIQpIQkoSQQhCShJAkhBSCkCSEJCGkEIQkISQJIYVo6+nND5Fsc/hw\ndLry9jZ363b8K++r/589/5UXNySgnyAkwAJCAiwgJMACQgIsICTAAkICLCAkwAJCAiwgJMAC\nQgIsICTAAkICLCAkwAJCAiwgJMACQgIsICTAAkICLCAkwAJCAiwgJMACQgIsICTAAkICLCAk\nwAJCAiwgpAI5MYz4L1pjT0R8Yw8vhbF1PyAjpALJMaQTY//wF23/EWtNrtzjgyP2+sYecgzp\nxFgstv//uDKR2+1+6sXcfm6gI6QCyTWkI8f7i2WHx1rVV5FrSBUbN65bdPj43Fb6k1vUt2NA\nIqQCyTWk8iP8T14qK4u1+ntyd3z+wP+4IJFeeN9ojy36wRc+cacxa44/8ISnY690uYpcQ7rQ\n/3PWkaYtdusnK0ztsKMO+vbLJnNV6S8zV/Tdfd5/QiF+PX0eIRVIriHd+JmlxtQftCQIqWqf\nJ9uqvlKZXvhl7XtinbntoF3tx4zY8cqJsVe7XIUqpOsPNWbfk15uMF8ftrVxypGN6evIfJm5\nInMsW6ScEFKB5BzSzJ8as+BHzwchvRz7u/d6yaQXQUjXG/Pv2Gt/ja035vb8Q0q+8pkKL6Sr\njbfuzca0f+S+7FWlvsxcESHliJAKJOeQNr2/1nz9/lRIyZ/td/K0t0x6EYT0R2NqYy8u3jfp\n7d7lGdL+Bx98wAHnbPdCus+YxbFAZfo6Ml9mroiQckRIBZJzSOans988vDkVkrdRuPnH+92X\nXgQhPRg8vhe93/vZV/MM6ex16zYEH/Xor+yhWGb4LriO7JfpKyKkHBFSgeQe0oNfnfJfJhVS\n67vety78dmbREdLK2CZj7uzJaySfv7LXY897l6pM+joyXxKSEiEVSO4htX702DXpkG4/+qX2\n2u+MTi86hdR8xLjG179pIyTzvZPfaVlw0Kb0dWS+zIb0hUscfvJ8P0JIBZJ7SGbSCSYdUvtV\nxxxw1Kj30otOIZlnvnTwqU/GXu9yFfmFVHvGIR86+b9N+joyX2av6PoPHO36V9MvEFKB5BhS\nrlqbjVkV29HlezmGBBcIqUDshpT8bMV7m3/47a7fJKQiIqQCsbxFeuV7Hzzi9Oqu3yOkIiKk\nArEckoSQioiQCoSQ+jdCKpBcQ2o64Yac13nJT5Odv8w1pB5cBbpDSAWSa0gTfuz98a+v7xt8\nkVl6Np115Ie+/YIxF3735JXel9Uf914gtRw/t/NV5BqSfxVv/vSIQ771XMfSl7kcchXoDiEV\nSI4hvXPA342576jyIKDM0nfSqX9fN/yIXU98zbz8ee/LHy70v7n0sJ2driLHkPyrSH76vO27\nr/zg1szS/37mcthVoDuEVCA5hnT5yd4fd73zYBBQZunZdvobXgKxv80+z7TGGs3t3w++m/z4\nbztdRY4h+VfxbmyVMZtjqzNL//uZy2FXge4QUoHkGNJXfxksMgFlQwqs2rf2pgrTeEB7zdEr\nf/if87zvnDO001/nGFJwFd8cuW3nVZ9KZJem43thV4HuEFKB5BjSfkuDhRjSti9cZl74bOPS\nU8xPb/7RwsbPenFce1ynv88xpOAqNn0xFjvq5Y6l6fhe2FWgO4RUILmFtD3238FSCunNz16Q\nNKby+G+9+vvvJA/aZMZeZ8ydh3W6itxCCq6i+Svnvbt91hGbM0v/L7KXQ64C3SGkAsk1pGeD\npRDSk4dnBq23HFPVEttlLp3mvYrKJyTvKv68jz+E8In5maX/F50vd3cV6A4hFUhuISW73bV7\n7tDHMhdP9x7rB24x53mbi2s/1+kqcgspuIrHg/muR83PLP2/6Hy5u6tAdwipQHJ8jfSVad4f\ntRtv23fjxp3Z5W3Xm8ZPT9/o2eX97X2nthvz48Utn3vFmPI8Bhv8q9j+0fPqG2cfuC6z9K8i\neznkKtAdQiqQHEOafIr3x7HBeRPmZZfDvm+eTJ1L4UZj4p94y/uR10/6n9O8rcvReQx/B1fx\n6v874iOnPN2x9K4ieznkKtAdQiqQHEPacMAaxUofzOcN2Z5cBbpDSAWSY0hmwk9yX2fLV/Kb\nIpT/VaA7hNTLNJ1wY84/O+knec0oLcBVDDyEBFhASIAFhARYQEiABYQEWEBIgAWEBFhASIAF\nhARYQEiABYQEWEBIgAWEBFhASIAFhARYQEiABYQEWPD/AXdHpww1DRetAAAAAElFTkSuQmCC\n", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "library(naniar)\n", - "df = gp_scripts %>% sample_n(1000)\n", - "vis_miss(df)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb/mapping/bnf_codings.csv" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "nrow(gp_registrations)\n", - "head(gp_registrations)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "nrow(gp_clinical)\n", - "head(gp_clinical)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "str(gp_clinical)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "hide_input": false, - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/1_preprocessing_dataportal_spacy.ipynb b/neuralcvd/preprocessing/ukbb_tabular/1_preprocessing_dataportal_spacy.ipynb deleted file mode 100644 index 1063a03..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/1_preprocessing_dataportal_spacy.ipynb +++ /dev/null @@ -1,997 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Data Portal Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from scispacy.linking import EntityLinker\n", - "import spacy\n", - "import scispacy" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from tqdm.auto import tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_decoded\"" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "nlp = spacy.load(\"en_core_sci_lg\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "linker_umls = EntityLinker(name=\"umls\", threshold=0.85)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#linker_rxnorm = EntityLinker(resolve_abbreviations=True, name=\"rxnorm\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "nlp.add_pipe(linker_umls)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "with open(f\"{path}/drug_names.json\") as f:\n", - " drug_names = json.load(f)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from tqdm.auto import tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "71eef9cdf3894f378b58a7ecd6518dbc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80681.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/scispacy/candidate_generation.py:284: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", - " extended_neighbors[empty_vectors_boolean_flags] = numpy.array(neighbors)[:-1]\n", - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/scispacy/candidate_generation.py:285: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", - " extended_distances[empty_vectors_boolean_flags] = numpy.array(distances)[:-1]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
drug_indexdrug_nameCUITUIname
0999.0Simvastatin 40mg tabletsC0074554[T109, T121]simvastatin
1999.0Simvastatin 40mg tabletsC0039225[T122]Tablet Dosage Form
2999.0Simvastatin 40mg tabletsC0993159[T122]Oral Tablet
3999.0Bendroflumethiazide 2.5mg tabletsC0992038[T200]Bendroflumethiazide 2.5 MG
4999.0Bendroflumethiazide 2.5mg tabletsC0004975[T109, T121]bendroflumethiazide
..................
261724999.0zinc oxide with icthammol, salicylic acid and ...C0036079[T109, T121]salicylic acid
261725999.0zinc oxide with icthammol, salicylic acid and ...C0073983[T109, T121]salsalate
261726999.0zinc oxide with icthammol, salicylic acid and ...C0004057[T109, T121]aspirin
261727999.0zinc oxide with icthammol, salicylic acid and ...C3547570[T044]salicylic acid binding
261728999.0zyban 150mg tabC0751626[T109, T121]Zyban
\n", - "

261729 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " drug_index drug_name \\\n", - "0 999.0 Simvastatin 40mg tablets \n", - "1 999.0 Simvastatin 40mg tablets \n", - "2 999.0 Simvastatin 40mg tablets \n", - "3 999.0 Bendroflumethiazide 2.5mg tablets \n", - "4 999.0 Bendroflumethiazide 2.5mg tablets \n", - "... ... ... \n", - "261724 999.0 zinc oxide with icthammol, salicylic acid and ... \n", - "261725 999.0 zinc oxide with icthammol, salicylic acid and ... \n", - "261726 999.0 zinc oxide with icthammol, salicylic acid and ... \n", - "261727 999.0 zinc oxide with icthammol, salicylic acid and ... \n", - "261728 999.0 zyban 150mg tab \n", - "\n", - " CUI TUI name \n", - "0 C0074554 [T109, T121] simvastatin \n", - "1 C0039225 [T122] Tablet Dosage Form \n", - "2 C0993159 [T122] Oral Tablet \n", - "3 C0992038 [T200] Bendroflumethiazide 2.5 MG \n", - "4 C0004975 [T109, T121] bendroflumethiazide \n", - "... ... ... ... \n", - "261724 C0036079 [T109, T121] salicylic acid \n", - "261725 C0073983 [T109, T121] salsalate \n", - "261726 C0004057 [T109, T121] aspirin \n", - "261727 C3547570 [T044] salicylic acid binding \n", - "261728 C0751626 [T109, T121] Zyban \n", - "\n", - "[261729 rows x 5 columns]" - ] - }, - "execution_count": 178, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def extract_umls_cuis(drug_name, nlp, linker):\n", - " rows=[]\n", - " doc=nlp(drug_name)\n", - " entities = doc.ents\n", - " if len(entities)>0: \n", - " #entity = entities[0]._.kb_ents ### loop through all and do the filter for types later -> get all substances linked to name!\n", - " for entity in entities:\n", - " if len(entity)>0:\n", - " for ent in entity._.kb_ents:\n", - " link = linker_umls.kb.cui_to_entity[ent[0]]\n", - " rows.append({\"drug_index\": index, \"drug_name\": drug_name, \"CUI\":link.concept_id, \"TUI\":link.types, \"name\": link.canonical_name})\n", - " return rows\n", - "\n", - "from joblib import Parallel, delayed\n", - "rows = Parallel(n_jobs=1)(delayed(extract_umls_cuis)(drug_name, nlp, linker_umls) for drug_name in tqdm(drug_names))\n", - " \n", - "drugs_umls = pd.DataFrame({\"drug_index\": [],\"drug_name\": [], \"CUI\":[], \"TUI\": [],\"name\": []}).append([item for sublist in rows for item in sublist], ignore_index=True)\n", - "drugs_umls" - ] - }, - { - "cell_type": "code", - "execution_count": 184, - "metadata": {}, - "outputs": [], - "source": [ - "drugs_umls_cleaned = drugs_umls[drugs_umls.TUI.str.join(\" \").str.contains(\"T109\") | \n", - " drugs_umls.TUI.str.join(\" \").str.contains(\"T121\") | \n", - " drugs_umls.TUI.str.join(\" \").str.contains(\"T116\") |\n", - " drugs_umls.TUI.str.join(\" \").str.contains(\"127\") ][[\"drug_name\", \"CUI\", \"TUI\", \"name\"]].reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "drugs_umls_cleaned = pd.read_feather(f\"{path}/drug_names_umls_linked.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "\"\"\" UTS (UMLS Terminology Services) API client \"\"\"\n", - "import json\n", - "from pathlib import Path\n", - "import requests\n", - "from lxml.html import fromstring\n", - "\n", - "\n", - "class UtsClient:\n", - " \"\"\"All the UTS REST API requests are handled through this client\"\"\"\n", - " def __init__(self, apikey=None):\n", - " if apikey is None:\n", - " file_key = Path(__file__).resolve().parents[1] / 'uts-api-key.txt'\n", - " self.apikey = open(file_key).read().rstrip()\n", - " self.apikey = '47669881-3e07-4acb-b087-d9b767b02ce8'\n", - " else:\n", - " self.apikey = apikey\n", - " self.service = \"http://umlsks.nlm.nih.gov\"\n", - " self.headers = {\n", - " \"Content-type\": \"application/x-www-form-urlencoded\",\n", - " \"Accept\": \"text/plain\",\n", - " \"User-Agent\": \"python\"\n", - " }\n", - " self.tgt = None\n", - " self.base_uri = \"https://uts-ws.nlm.nih.gov\"\n", - " self.version = \"current\"\n", - "\n", - " def gettgt(self):\n", - " \"\"\"Retrieve a ticket granting ticket\"\"\"\n", - " auth_uri = \"https://utslogin.nlm.nih.gov\"\n", - " params = {\"apikey\": self.apikey}\n", - " auth_endpoint = \"/cas/v1/api-key\"\n", - " r = requests.post(auth_uri + auth_endpoint, data=params,\n", - " headers=self.headers)\n", - " response = fromstring(r.text)\n", - " # extract the entire URL needed from the HTML form (action attribute)\n", - " # returned - looks similar to\n", - " # https://utslogin.nlm.nih.gov/cas/v1/tickets/TGT-36471-aYqNLN2rFIJPXKzxwdTNC5ZT7z3B3cTAKfSc5ndHQcUxeaDOLN-cas\n", - " # we make a POST call to this URL in the getst method\n", - " self.tgt = response.xpath('//form/@action')[0]\n", - "\n", - " def getst(self):\n", - " \"\"\"Request a single-use service ticket\"\"\"\n", - " if self.tgt is None:\n", - " self.gettgt()\n", - " params = {\"service\": self.service}\n", - " r = requests.post(self.tgt, data=params, headers=self.headers)\n", - " return r.text\n", - "\n", - " def query_get(self, endpoint, query):\n", - " r = requests.get(self.base_uri+endpoint, params=query)\n", - " if r.status_code == 404:\n", - " return\n", - " return json.loads(r.text)\n", - " \n", - " def get_concept_rxnorm_atoms(self, cui, tok):\n", - " endpoint = f\"/rest/content/{self.version}/CUI/{cui}/atoms\"\n", - " query = {\"ticket\": self.getst(), \"sabs\": \"RXNORM\"}\n", - " rst = self.query_get(endpoint, query)\n", - " # If MSH term can't be found by CUI, use the defining word to search\n", - " if rst is None:\n", - " endpoint = f\"/rest/search/{self.version}\"\n", - " query = {\"ticket\": self.getst(),\n", - " \"string\": tok, \"searchType\": \"exact\"}\n", - " rst = self.query_get(endpoint, query)\n", - " if rst is not None:\n", - " search_max = 5\n", - " for rec in rst['result']['results']:\n", - " # search MSH until found\n", - " endpoint = (f\"/rest/content/{self.version}\"\n", - " f\"/CUI/{rec['ui']}/atoms\")\n", - " query = {\"ticket\": self.getst(), \"sabs\": \"RXNORM\"}\n", - " rst = self.query_get(endpoint, query)\n", - " if rst is not None:\n", - " return rst\n", - " else:\n", - " search_max -= 1\n", - " if search_max == 0:\n", - " return None\n", - " return rst" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "umls_client = UtsClient(apikey=\"47669881-3e07-4acb-b087-d9b767b02ce8\")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5826a0aad9b041d993e70ab753c1cf90", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=67624.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
drug_nameCUITUInamerx_code
0Simvastatin 40mg tabletsC0074554[T109, T121]simvastatin[36567]
1Bendroflumethiazide 2.5mg tabletsC0004975[T109, T121]bendroflumethiazide[1369]
2Aspirin 75mg dispersible tabletsC0004057[T109, T121]aspirin[1191]
3Omeprazole 20mg gastro-resistant capsulesC0028978[T109, T121]omeprazole[7646]
4Omeprazole 20mg gastro-resistant capsulesC0771315[T109, T121]omeprazole sodium[1792108]
..................
67619zinc oxide with icthammol, salicylic acid and ...C0043491[T121, T197]zinc oxide[]
67620zinc oxide with icthammol, salicylic acid and ...C0036079[T109, T121]salicylic acid[]
67621zinc oxide with icthammol, salicylic acid and ...C0073983[T109, T121]salsalate[]
67622zinc oxide with icthammol, salicylic acid and ...C0004057[T109, T121]aspirin[]
67623zyban 150mg tabC0751626[T109, T121]Zyban[]
\n", - "

67624 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " drug_name CUI \\\n", - "0 Simvastatin 40mg tablets C0074554 \n", - "1 Bendroflumethiazide 2.5mg tablets C0004975 \n", - "2 Aspirin 75mg dispersible tablets C0004057 \n", - "3 Omeprazole 20mg gastro-resistant capsules C0028978 \n", - "4 Omeprazole 20mg gastro-resistant capsules C0771315 \n", - "... ... ... \n", - "67619 zinc oxide with icthammol, salicylic acid and ... C0043491 \n", - "67620 zinc oxide with icthammol, salicylic acid and ... C0036079 \n", - "67621 zinc oxide with icthammol, salicylic acid and ... C0073983 \n", - "67622 zinc oxide with icthammol, salicylic acid and ... C0004057 \n", - "67623 zyban 150mg tab C0751626 \n", - "\n", - " TUI name rx_code \n", - "0 [T109, T121] simvastatin [36567] \n", - "1 [T109, T121] bendroflumethiazide [1369] \n", - "2 [T109, T121] aspirin [1191] \n", - "3 [T109, T121] omeprazole [7646] \n", - "4 [T109, T121] omeprazole sodium [1792108] \n", - "... ... ... ... \n", - "67619 [T121, T197] zinc oxide [] \n", - "67620 [T109, T121] salicylic acid [] \n", - "67621 [T109, T121] salsalate [] \n", - "67622 [T109, T121] aspirin [] \n", - "67623 [T109, T121] Zyban [] \n", - "\n", - "[67624 rows x 5 columns]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_cui_to_rxnorm = drugs_umls_cleaned.copy()\n", - "\n", - "def map_cui_to_rxnorm(i, cui, toks, umls_client):\n", - " i_codes = []\n", - " for tok in toks:\n", - " req = umls_client.get_concept_rxnorm_atoms(cui=cui, tok=tok)\n", - " try: code = req[\"result\"][0][\"code\"].rsplit(\"/\",1)[1]\n", - " except: code = \"\"\n", - " i_codes.append(code)\n", - " return list(set(i_codes))\n", - " \n", - "from joblib import Parallel, delayed\n", - "drug_rx_codes = Parallel(n_jobs=40)(delayed(map_cui_to_rxnorm)(i, df_cui_to_rxnorm.iloc[i, 1], df_cui_to_rxnorm.iloc[i, 2], umls_client) for i in tqdm(range(len(df_cui_to_rxnorm))))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "drug_rx_codes_cleaned = [\"\".join([x for x in drug if x]) for drug in drug_rx_codes]" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
drug_nameCUITUInamerx_code
0Simvastatin 40mg tabletsC0074554[T109, T121]simvastatin36567
1Bendroflumethiazide 2.5mg tabletsC0004975[T109, T121]bendroflumethiazide1369
2Aspirin 75mg dispersible tabletsC0004057[T109, T121]aspirin1191
3Omeprazole 20mg gastro-resistant capsulesC0028978[T109, T121]omeprazole7646
4Omeprazole 20mg gastro-resistant capsulesC0771315[T109, T121]omeprazole sodium1792108
..................
67619zinc oxide with icthammol, salicylic acid and ...C0043491[T121, T197]zinc oxide
67620zinc oxide with icthammol, salicylic acid and ...C0036079[T109, T121]salicylic acid
67621zinc oxide with icthammol, salicylic acid and ...C0073983[T109, T121]salsalate
67622zinc oxide with icthammol, salicylic acid and ...C0004057[T109, T121]aspirin
67623zyban 150mg tabC0751626[T109, T121]Zyban
\n", - "

67624 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " drug_name CUI \\\n", - "0 Simvastatin 40mg tablets C0074554 \n", - "1 Bendroflumethiazide 2.5mg tablets C0004975 \n", - "2 Aspirin 75mg dispersible tablets C0004057 \n", - "3 Omeprazole 20mg gastro-resistant capsules C0028978 \n", - "4 Omeprazole 20mg gastro-resistant capsules C0771315 \n", - "... ... ... \n", - "67619 zinc oxide with icthammol, salicylic acid and ... C0043491 \n", - "67620 zinc oxide with icthammol, salicylic acid and ... C0036079 \n", - "67621 zinc oxide with icthammol, salicylic acid and ... C0073983 \n", - "67622 zinc oxide with icthammol, salicylic acid and ... C0004057 \n", - "67623 zyban 150mg tab C0751626 \n", - "\n", - " TUI name rx_code \n", - "0 [T109, T121] simvastatin 36567 \n", - "1 [T109, T121] bendroflumethiazide 1369 \n", - "2 [T109, T121] aspirin 1191 \n", - "3 [T109, T121] omeprazole 7646 \n", - "4 [T109, T121] omeprazole sodium 1792108 \n", - "... ... ... ... \n", - "67619 [T121, T197] zinc oxide \n", - "67620 [T109, T121] salicylic acid \n", - "67621 [T109, T121] salsalate \n", - "67622 [T109, T121] aspirin \n", - "67623 [T109, T121] Zyban \n", - "\n", - "[67624 rows x 5 columns]" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_cui_to_rxnorm[\"rx_code\"] = drug_rx_codes_cleaned\n", - "df_cui_to_rxnorm" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "df_cui_to_rxnorm.to_feather(f\"{path}/drug_names_umls_linked_rxnorm.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
drug_nameCUITUInamerx_code
0Simvastatin 40mg tabletsC0074554[T109, T121]simvastatin[36567]
1Bendroflumethiazide 2.5mg tabletsC0004975[T109, T121]bendroflumethiazide[1369]
2Aspirin 75mg dispersible tabletsC0004057[T109, T121]aspirin[1191]
3Omeprazole 20mg gastro-resistant capsulesC0028978[T109, T121]omeprazole[7646]
4Omeprazole 20mg gastro-resistant capsulesC0771315[T109, T121]omeprazole sodium[1792108]
5Levothyroxine sodium 100microgram tabletsC0079691[T116, T121, T125]levothyroxine sodium[40144]
6Levothyroxine sodium 100microgram tabletsC0040165[T116, T121, T125]levothyroxine[10582]
7Levothyroxine sodium 100microgram tabletsC1881373[T109, T121]Synthetic Levothyroxine[]
8Amlodipine 5mg tabletsC0051696[T109, T121]amlodipine[17767]
9Paracetamol 500mg tabletsC0000970[T109, T121]acetaminophen[161]
\n", - "
" - ], - "text/plain": [ - " drug_name CUI TUI \\\n", - "0 Simvastatin 40mg tablets C0074554 [T109, T121] \n", - "1 Bendroflumethiazide 2.5mg tablets C0004975 [T109, T121] \n", - "2 Aspirin 75mg dispersible tablets C0004057 [T109, T121] \n", - "3 Omeprazole 20mg gastro-resistant capsules C0028978 [T109, T121] \n", - "4 Omeprazole 20mg gastro-resistant capsules C0771315 [T109, T121] \n", - "5 Levothyroxine sodium 100microgram tablets C0079691 [T116, T121, T125] \n", - "6 Levothyroxine sodium 100microgram tablets C0040165 [T116, T121, T125] \n", - "7 Levothyroxine sodium 100microgram tablets C1881373 [T109, T121] \n", - "8 Amlodipine 5mg tablets C0051696 [T109, T121] \n", - "9 Paracetamol 500mg tablets C0000970 [T109, T121] \n", - "\n", - " name rx_code \n", - "0 simvastatin [36567] \n", - "1 bendroflumethiazide [1369] \n", - "2 aspirin [1191] \n", - "3 omeprazole [7646] \n", - "4 omeprazole sodium [1792108] \n", - "5 levothyroxine sodium [40144] \n", - "6 levothyroxine [10582] \n", - "7 Synthetic Levothyroxine [] \n", - "8 amlodipine [17767] \n", - "9 acetaminophen [161] " - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_cui_to_rxnorm" - ] - } - ], - "metadata": { - "hide_input": false, - "kernelspec": { - "display_name": "Python [conda env:miniconda3-pl1.x]", - "language": "python", - "name": "conda-env-miniconda3-pl1.x-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical-interactions.ipynb b/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical-interactions.ipynb deleted file mode 100644 index 9338687..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical-interactions.ipynb +++ /dev/null @@ -1,5692 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import os\n", - "import yaml\n", - "from tqdm.notebook import trange, tqdm\n", - "dataset_name = \"cvd_interactions\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.895222Z", - "start_time": "2020-11-04T12:31:49.891332Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "Path(dataset_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:33:14.171198Z", - "start_time": "2020-11-04T12:31:50.204540Z" - } - }, - "outputs": [], - "source": [ - "data = pd.read_feather(f\"{data_path}/1_decoded/ukb_data.feather\")\n", - "data_field = pd.read_feather(f\"{data_path}/1_decoded/ukb_data_field.feather\")\n", - "data_columns = data.columns.to_list()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mappings + Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.867152Z", - "start_time": "2020-11-04T12:33:16.878773Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502505\n", - "502504\n" - ] - } - ], - "source": [ - "# Drop obviouse missing data\n", - "print(len(data))\n", - "data = data.dropna(subset=[\"sex_f31_0_0\"], axis=0)\n", - "print(len(data))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Starting information" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.872216Z", - "start_time": "2020-11-04T12:34:05.869505Z" - } - }, - "outputs": [], - "source": [ - "time0_col=\"birth_date\"\n", - "# time0_col=\"date_of_attending_assessment_centre_f53_0_0\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Baseline covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.889725Z", - "start_time": "2020-11-04T12:34:05.874587Z" - } - }, - "outputs": [], - "source": [ - "def get_fields(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields) & data_field[\"field.tab\"].str.contains(\"f\\\\.\\\\d+\\\\.0\\\\.\\\\d\")].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_fields_all(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields)].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_data_fields(fields, data, data_field):\n", - " f = get_fields(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()\n", - "\n", - "def get_data_fields_all(fields, data, data_field):\n", - " f = get_fields_all(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basics" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.176411Z", - "start_time": "2020-11-04T12:34:05.891730Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0
0100001849.0FemaleWhite-1.8529302009-11-12
1100002059.0MaleWhite0.2042482008-02-19
2100003759.0FemaleWhite-3.4988602008-11-11
3100004363.0MaleWhite-5.3511502009-06-03
4100005151.0FemaleWhite-1.7990802006-06-10
\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "\n", - " ethnic_background_f21000_0_0 \\\n", - "0 White \n", - "1 White \n", - "2 White \n", - "3 White \n", - "4 White \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - "]\n", - "\n", - "temp = get_data_fields(fields_basics, data, data_field)\n", - "\n", - "temp[\"sex_f31_0_0\"] = temp[\"sex_f31_0_0\"].cat.set_categories([\"Female\", 'Male'], ordered=False)\n", - "\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"string\")\n", - "\n", - "ethn_bg_def = {\"White\": [\"White\", \"British\", \"Irish\", \"Any other white background\"],\n", - " \"Mixed\": [\"Mixed\", \"White and Black Caribbean\", \"White and Black African\", \"White and Asian\", \"Any other mixed background\"], \n", - " \"Asian\": [\"Asian or Asian British\", \"Indian\", \"Pakistani\", \"Bangladeshi\", \"Any other Asian background\"], \n", - " \"Black\": [\"Black or Black British\", \"Caribbean\", \"African\", \"Any other Black background\"],\n", - " \"Chinese\": [\"Chinese\"], \n", - " np.nan: [\"Other ethnic group\", \"Do not know\", \"Prefer not to answer\"]}\n", - "\n", - "ethn_bg_dict = {}\n", - "for key, values in ethn_bg_def.items(): \n", - " for value in values:\n", - " ethn_bg_dict[value]=key \n", - " \n", - "temp[\"ethnic_background_f21000_0_0\"].replace(ethn_bg_dict, inplace=True)\n", - "temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\")\n", - "\n", - "#\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\").cat.set_categories(['White', 'Black', 'Asien', 'Mixed', 'Chinese'], ordered=False)\n", - "\n", - "basics = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "basics = basics.assign(birth_date = calc_birth_date)\n", - "\n", - "\n", - "basics.to_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.186613Z", - "start_time": "2020-11-04T12:34:06.178111Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[White, Black, NaN, Asian, Mixed, Chinese]\n", - "Categories (5, object): [White, Black, Asian, Mixed, Chinese]\n" - ] - } - ], - "source": [ - " print(temp[\"ethnic_background_f21000_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Questionnaire" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.389467Z", - "start_time": "2020-11-04T12:34:06.188206Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidoverall_health_rating_f2178_0_0smoking_status_f20116_0_0alcohol_intake_frequency_f1558_0_0
01000018FairCurrentOnce or twice a week
11000020GoodCurrentOnce or twice a week
21000037GoodPreviousOnce or twice a week
31000043FairPreviousThree or four times a week
41000051PoorNeverOne to three times a month
\n", - "
" - ], - "text/plain": [ - " eid overall_health_rating_f2178_0_0 smoking_status_f20116_0_0 \\\n", - "0 1000018 Fair Current \n", - "1 1000020 Good Current \n", - "2 1000037 Good Previous \n", - "3 1000043 Fair Previous \n", - "4 1000051 Poor Never \n", - "\n", - " alcohol_intake_frequency_f1558_0_0 \n", - "0 Once or twice a week \n", - "1 Once or twice a week \n", - "2 Once or twice a week \n", - "3 Three or four times a week \n", - "4 One to three times a month " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_questionnaire = [\n", - " \"2178\", # Overall health\n", - " \"20116\", # Smoking status\n", - " \"1558\",\n", - "]\n", - "\n", - "temp = get_data_fields(fields_questionnaire, data, data_field)\n", - "\n", - "temp[\"overall_health_rating_f2178_0_0\"] = temp[\"overall_health_rating_f2178_0_0\"]\\\n", - " .replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan})\\\n", - " .astype(\"category\").cat.set_categories(['Poor', 'Fair', 'Good', 'Excellent'], ordered=True)\n", - "\n", - "\n", - "temp[\"smoking_status_f20116_0_0\"] = temp[\"smoking_status_f20116_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories(['Current', 'Previous', 'Never'], ordered=True)\n", - "\n", - "temp[\"alcohol_intake_frequency_f1558_0_0\"] = temp[\"alcohol_intake_frequency_f1558_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories([\n", - " 'Daily or almost daily', \n", - " 'Three or four times a week', \n", - " 'Once or twice a week',\n", - " 'One to three times a month',\n", - " 'Special occasions only', \n", - " 'Never'], ordered=True)\n", - "\n", - "questionnaire = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "questionnaire.to_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.398168Z", - "start_time": "2020-11-04T12:34:06.391082Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Once or twice a week, Three or four times a week, One to three times a month, Daily or almost daily, Special occasions only, Never, NaN]\n", - "Categories (6, object): [Daily or almost daily < Three or four times a week < Once or twice a week < One to three times a month < Special occasions only < Never]\n" - ] - } - ], - "source": [ - "print(temp[\"alcohol_intake_frequency_f1558_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Physical measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.052989Z", - "start_time": "2020-11-04T12:34:06.400858Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbody_mass_index_bmi_f21001_0_0weight_f21002_0_0pulse_wave_arterial_stiffness_index_f21021_0_0pulse_wave_reflection_index_f4195_0_0waist_circumference_f48_0_0hip_circumference_f49_0_0standing_height_f50_0_0trunk_fat_percentage_f23127_0_0body_fat_percentage_f23099_0_0basal_metabolic_rate_f23105_0_0forced_vital_capacity_fvc_best_measure_f20151_0_0forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0fev1_fvc_ratio_zscore_f20258_0_0peak_expiratory_flow_pef_f3064_0_2peak_expiratory_flow_pef_f3064_0_1peak_expiratory_flow_pef_f3064_0_0systolic_blood_pressure_automated_reading_f4080diastolic_blood_pressure_automated_reading_f4079pulse_rate_automated_reading_f102
0100001826.555763.87.277080.085.0107.0155.037.539.55012.03.212.161.978317.0312.0339.0159.588.050.0
1100002022.746570.7NaNNaN87.894.4176.333.428.76171.0NaNNaN1.375301.0496.0504.0133.081.074.0
2100003732.421178.9NaNNaN101.0112.0156.047.548.45397.01.611.270.138NaN185.0208.0118.578.062.5
3100004329.567995.811.111178.098.0104.0180.027.625.68711.04.142.841.096557.0513.0530.0141.593.564.5
4100005141.022292.3NaNNaN123.0129.0150.048.950.46100.0NaNNaN0.518NaNNaNNaN117.081.079.0
\n", - "
" - ], - "text/plain": [ - " eid body_mass_index_bmi_f21001_0_0 weight_f21002_0_0 \\\n", - "0 1000018 26.5557 63.8 \n", - "1 1000020 22.7465 70.7 \n", - "2 1000037 32.4211 78.9 \n", - "3 1000043 29.5679 95.8 \n", - "4 1000051 41.0222 92.3 \n", - "\n", - " pulse_wave_arterial_stiffness_index_f21021_0_0 \\\n", - "0 7.2770 \n", - "1 NaN \n", - "2 NaN \n", - "3 11.1111 \n", - "4 NaN \n", - "\n", - " pulse_wave_reflection_index_f4195_0_0 waist_circumference_f48_0_0 \\\n", - "0 80.0 85.0 \n", - "1 NaN 87.8 \n", - "2 NaN 101.0 \n", - "3 78.0 98.0 \n", - "4 NaN 123.0 \n", - "\n", - " hip_circumference_f49_0_0 standing_height_f50_0_0 \\\n", - "0 107.0 155.0 \n", - "1 94.4 176.3 \n", - "2 112.0 156.0 \n", - "3 104.0 180.0 \n", - "4 129.0 150.0 \n", - "\n", - " trunk_fat_percentage_f23127_0_0 body_fat_percentage_f23099_0_0 \\\n", - "0 37.5 39.5 \n", - "1 33.4 28.7 \n", - "2 47.5 48.4 \n", - "3 27.6 25.6 \n", - "4 48.9 50.4 \n", - "\n", - " basal_metabolic_rate_f23105_0_0 \\\n", - "0 5012.0 \n", - "1 6171.0 \n", - "2 5397.0 \n", - "3 8711.0 \n", - "4 6100.0 \n", - "\n", - " forced_vital_capacity_fvc_best_measure_f20151_0_0 \\\n", - "0 3.21 \n", - "1 NaN \n", - "2 1.61 \n", - "3 4.14 \n", - "4 NaN \n", - "\n", - " forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0 \\\n", - "0 2.16 \n", - "1 NaN \n", - "2 1.27 \n", - "3 2.84 \n", - "4 NaN \n", - "\n", - " fev1_fvc_ratio_zscore_f20258_0_0 peak_expiratory_flow_pef_f3064_0_2 \\\n", - "0 1.978 317.0 \n", - "1 1.375 301.0 \n", - "2 0.138 NaN \n", - "3 1.096 557.0 \n", - "4 0.518 NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_0_1 peak_expiratory_flow_pef_f3064_0_0 \\\n", - "0 312.0 339.0 \n", - "1 496.0 504.0 \n", - "2 185.0 208.0 \n", - "3 513.0 530.0 \n", - "4 NaN NaN \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 \\\n", - "0 159.5 \n", - "1 133.0 \n", - "2 118.5 \n", - "3 141.5 \n", - "4 117.0 \n", - "\n", - " diastolic_blood_pressure_automated_reading_f4079 \\\n", - "0 88.0 \n", - "1 81.0 \n", - "2 78.0 \n", - "3 93.5 \n", - "4 81.0 \n", - "\n", - " pulse_rate_automated_reading_f102 \n", - "0 50.0 \n", - "1 74.0 \n", - "2 62.5 \n", - "3 64.5 \n", - "4 79.0 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from statistics import mean\n", - "\n", - "fields_measurements = [\n", - "# \"100313\", # Walking speed !!! MISSING !!!\n", - " \"21001\", # BMI\n", - " \"21002\", # weight\n", - " \"4080\", # Syst. BP\n", - " \"4079\", # Diast. BP\n", - " \"102\",\n", - " \"21021\",\n", - " \"4195\",\n", - " \"48\",\n", - " \"49\",\n", - " \"50\",\n", - " \"23127\",\n", - " \"23099\",\n", - " \"23105\",\n", - " \"20151\",\n", - " \"20150\",\n", - " \"20258\",\n", - " \"3064\",\n", - " \n", - "]\n", - "temp = get_data_fields(fields_measurements, data, data_field)\n", - "\n", - "sbp_cols = [\"systolic_blood_pressure_automated_reading_f4080_0_0\", \"systolic_blood_pressure_automated_reading_f4080_0_1\"]\n", - "dbp_cols = [\"diastolic_blood_pressure_automated_reading_f4079_0_0\", \"diastolic_blood_pressure_automated_reading_f4079_0_1\"]\n", - "pr_cols = [\"pulse_rate_automated_reading_f102_0_0\", \"pulse_rate_automated_reading_f102_0_1\"]\n", - "\n", - "temp = temp.assign(systolic_blood_pressure_automated_reading_f4080 = temp[sbp_cols].mean(axis=1),\n", - " diastolic_blood_pressure_automated_reading_f4079 = temp[dbp_cols].mean(axis=1),\n", - " pulse_rate_automated_reading_f102 = temp[pr_cols].mean(axis=1))\\\n", - " .drop(sbp_cols + dbp_cols + pr_cols, axis=1)\n", - "\n", - "measurements = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "measurements.to_feather(os.path.join(path, dataset_path, 'temp_measurements.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lab measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.647955Z", - "start_time": "2020-11-04T12:34:07.055242Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbasophill_count_f30160_0_0basophill_percentage_f30220_0_0eosinophill_count_f30150_0_0eosinophill_percentage_f30210_0_0haematocrit_percentage_f30030_0_0haemoglobin_concentration_f30020_0_0high_light_scatter_reticulocyte_count_f30300_0_0high_light_scatter_reticulocyte_percentage_f30290_0_0immature_reticulocyte_fraction_f30280_0_0...phosphate_f30810_0_0rheumatoid_factor_f30820_0_0shbg_f30830_0_0testosterone_f30850_0_0total_bilirubin_f30840_0_0total_protein_f30860_0_0triglycerides_f30870_0_0urate_f30880_0_0urea_f30670_0_0vitamin_d_f30890_0_0
010000180.040.260.251.7539.7913.900.0220.4640.378...1.422NaN70.111.5607.4171.971.247221.35.4870.7
110000200.000.300.302.5045.0015.600.0140.2900.300...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
210000370.040.570.101.4339.4813.580.0310.6860.380...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000430.020.320.111.8044.3114.990.0250.5080.250...0.928NaN31.6311.3988.6569.705.184322.86.6763.6
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 62 columns

\n", - "
" - ], - "text/plain": [ - " eid basophill_count_f30160_0_0 basophill_percentage_f30220_0_0 \\\n", - "0 1000018 0.04 0.26 \n", - "1 1000020 0.00 0.30 \n", - "2 1000037 0.04 0.57 \n", - "3 1000043 0.02 0.32 \n", - "4 1000051 NaN NaN \n", - "\n", - " eosinophill_count_f30150_0_0 eosinophill_percentage_f30210_0_0 \\\n", - "0 0.25 1.75 \n", - "1 0.30 2.50 \n", - "2 0.10 1.43 \n", - "3 0.11 1.80 \n", - "4 NaN NaN \n", - "\n", - " haematocrit_percentage_f30030_0_0 haemoglobin_concentration_f30020_0_0 \\\n", - "0 39.79 13.90 \n", - "1 45.00 15.60 \n", - "2 39.48 13.58 \n", - "3 44.31 14.99 \n", - "4 NaN NaN \n", - "\n", - " high_light_scatter_reticulocyte_count_f30300_0_0 \\\n", - "0 0.022 \n", - "1 0.014 \n", - "2 0.031 \n", - "3 0.025 \n", - "4 NaN \n", - "\n", - " high_light_scatter_reticulocyte_percentage_f30290_0_0 \\\n", - "0 0.464 \n", - "1 0.290 \n", - "2 0.686 \n", - "3 0.508 \n", - "4 NaN \n", - "\n", - " immature_reticulocyte_fraction_f30280_0_0 ... phosphate_f30810_0_0 \\\n", - "0 0.378 ... 1.422 \n", - "1 0.300 ... 1.264 \n", - "2 0.380 ... NaN \n", - "3 0.250 ... 0.928 \n", - "4 NaN ... NaN \n", - "\n", - " rheumatoid_factor_f30820_0_0 shbg_f30830_0_0 testosterone_f30850_0_0 \\\n", - "0 NaN 70.11 1.560 \n", - "1 NaN 55.31 12.237 \n", - "2 NaN NaN NaN \n", - "3 NaN 31.63 11.398 \n", - "4 NaN NaN NaN \n", - "\n", - " total_bilirubin_f30840_0_0 total_protein_f30860_0_0 \\\n", - "0 7.41 71.97 \n", - "1 8.07 78.45 \n", - "2 NaN NaN \n", - "3 8.65 69.70 \n", - "4 NaN NaN \n", - "\n", - " triglycerides_f30870_0_0 urate_f30880_0_0 urea_f30670_0_0 \\\n", - "0 1.247 221.3 5.48 \n", - "1 1.906 374.7 5.28 \n", - "2 NaN NaN NaN \n", - "3 5.184 322.8 6.67 \n", - "4 NaN NaN NaN \n", - "\n", - " vitamin_d_f30890_0_0 \n", - "0 70.7 \n", - "1 35.9 \n", - "2 NaN \n", - "3 63.6 \n", - "4 NaN \n", - "\n", - "[5 rows x 62 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_blood_count = [\n", - " \"30160\", #\tBasophill count\n", - " \"30220\", #\tBasophill percentage\n", - " \"30150\", #\tEosinophill count\n", - " \"30210\", #\tEosinophill percentage\n", - " \"30030\", #\tHaematocrit percentage\n", - " \"30020\", #\tHaemoglobin concentration\n", - " \"30300\", #\tHigh light scatter reticulocyte count\n", - " \"30290\", #\tHigh light scatter reticulocyte percentage\n", - " \"30280\", #\tImmature reticulocyte fraction\n", - " \"30120\", #\tLymphocyte count\n", - " \"30180\", #\tLymphocyte percentage\n", - " \"30050\", #\tMean corpuscular haemoglobin\n", - " \"30060\", #\tMean corpuscular haemoglobin concentration\n", - " \"30040\", #\tMean corpuscular volume\n", - " \"30100\", #\tMean platelet (thrombocyte) volume\n", - " \"30260\", #\tMean reticulocyte volume\n", - " \"30270\", #\tMean sphered cell volume\n", - " \"30130\", #\tMonocyte count\n", - " \"30190\", #\tMonocyte percentage\n", - " \"30140\", #\tNeutrophill count\n", - " \"30200\", #\tNeutrophill percentage\n", - " \"30170\", #\tNucleated red blood cell count\n", - " \"30230\", #\tNucleated red blood cell percentage\n", - " \"30080\", #\tPlatelet count\n", - " \"30090\", #\tPlatelet crit\n", - " \"30110\", #\tPlatelet distribution width\n", - " \"30010\", #\tRed blood cell (erythrocyte) count\n", - " \"30070\", #\tRed blood cell (erythrocyte) distribution width\n", - " \"30250\", #\tReticulocyte count\n", - " \"30240\", #\tReticulocyte percentage\n", - " \"30000\", #\tWhite blood cell (leukocyte) count\n", - "]\n", - "\n", - "fields_blood_biochemistry = [\n", - " \"30620\",#\tAlanine aminotransferase\n", - " \"30600\",#\tAlbumin\n", - " \"30610\",#\tAlkaline phosphatase\n", - " \"30630\",#\tApolipoprotein A\n", - " \"30640\",#\tApolipoprotein B\n", - " \"30650\",#\tAspartate aminotransferase\n", - " \"30710\",#\tC-reactive protein\n", - " \"30680\",#\tCalcium\n", - " \"30690\",#\tCholesterol\n", - " \"30700\",#\tCreatinine\n", - " \"30720\",#\tCystatin C\n", - " \"30660\",#\tDirect bilirubin\n", - " \"30730\",#\tGamma glutamyltransferase\n", - " \"30740\",#\tGlucose\n", - " \"30750\",#\tGlycated haemoglobin (HbA1c)\n", - " \"30760\",#\tHDL cholesterol\n", - " \"30770\",#\tIGF-1\n", - " \"30780\",#\tLDL direct\n", - " \"30790\",#\tLipoprotein A\n", - " \"30800\",#\tOestradiol\n", - " \"30810\",#\tPhosphate\n", - " \"30820\",#\tRheumatoid factor\n", - " \"30830\",#\tSHBG\n", - " \"30850\",#\tTestosterone\n", - " \"30840\",#\tTotal bilirubin\n", - " \"30860\",#\tTotal protein\n", - " \"30870\",#\tTriglycerides\n", - " \"30880\",#\tUrate\n", - " \"30670\",#\tUrea\n", - " \"30890\",#\tVitamin D\n", - "]\n", - "\n", - "fields_blood_infectious = [\n", - " \"23000\", #\t1gG antigen for Herpes Simplex virus-1\n", - " \"23001\", #\t2mgG unique antigen for Herpes Simplex virus-2\n", - " \"23049\", #\tAntigen assay QC indicator\n", - " \"23048\", #\tAntigen assay date\n", - " \"23026\", #\tBK VP1 antigen for Human Polyomavirus BKV\n", - " \"23039\", #\tCagA antigen for Helicobacter pylori\n", - " \"23043\", #\tCatalase antigen for Helicobacter pylori\n", - " \"23018\", #\tCore antigen for Hepatitis C Virus\n", - " \"23030\", #\tE6 antigen for Human Papillomavirus type-16\n", - " \"23031\", #\tE7 antigen for Human Papillomavirus type-16\n", - " \"23006\", #\tEA-D antigen for Epstein-Barr Virus\n", - " \"23004\", #\tEBNA-1 antigen for Epstein-Barr Virus\n", - " \"23042\", #\tGroEL antigen for Helicobacter pylori\n", - " \"23016\", #\tHBc antigen for Hepatitis B Virus\n", - " \"23017\", #\tHBe antigen for Hepatitis B Virus\n", - " \"23025\", #\tHIV-1 env antigen for Human Immunodeficiency Virus\n", - " \"23024\", #\tHIV-1 gag antigen for Human Immunodeficiency Virus\n", - " \"23023\", #\tHTLV-1 env antigen for Human T-Lymphotropic Virus 1\n", - " \"23022\", #\tHTLV-1 gag antigen for Human T-Lymphotropic Virus 1\n", - " \"23010\", #\tIE1A antigen for Human Herpesvirus-6\n", - " \"23011\", #\tIE1B antigen for Human Herpesvirus-6\n", - " \"23027\", #\tJC VP1 antigen for Human Polyomavirus JCV\n", - " \"23015\", #\tK8.1 antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23029\", #\tL1 antigen for Human Papillomavirus type-16\n", - " \"23032\", #\tL1 antigen for Human Papillomavirus type-18\n", - " \"23014\", #\tLANA antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23028\", #\tMC VP1 antigen for Merkel Cell Polyomavirus\n", - " \"23019\", #\tNS3 antigen for Hepatitis C Virus\n", - " \"23041\", #\tOMP antigen for Helicobacter pylori\n", - " \"23037\", #\tPorB antigen for Chlamydia trachomatis\n", - " \"23013\", #\tU14 antigen for Human Herpesvirus-7\n", - " \"23044\", #\tUreA antigen for Helicobacter pylori\n", - " \"23003\", #\tVCA p18 antigen for Epstein-Barr Virus\n", - " \"23040\", #\tVacA antigen for Helicobacter pylori\n", - " \"23005\", #\tZEBRA antigen for Epstein-Barr Virus\n", - " \"23002\", #\tgE / gI antigen for Varicella Zoster Virus\n", - " \"23034\", #\tmomp A antigen for Chlamydia trachomatis\n", - " \"23033\", #\tmomp D antigen for Chlamydia trachomatis\n", - " \"23012\", #\tp101 k antigen for Human Herpesvirus-6\n", - " \"23020\", #\tp22 antigen for Toxoplasma gondii\n", - " \"23038\", #\tpGP3 antigen for Chlamydia trachomatis\n", - " \"23009\", #\tpp 28 antigen for Human Cytomegalovirus\n", - " \"23008\", #\tpp 52 antigen for Human Cytomegalovirus\n", - " \"23007\", #\tpp150 Nter antigen for Human Cytomegalovirus\n", - " \"23021\", #\tsag1 antigen for Toxoplasma gondii\n", - " \"23035\", #\ttarp-D F1 antigen for Chlamydia trachomatis\n", - " \"23036\", #\ttarp-D F2 antigen for Chlamydia trachomatis\n", - "]\n", - "\n", - "labs = temp = get_data_fields(fields_blood_count+fields_blood_biochemistry+fields_blood_infectious, data, data_field)\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "labs.to_feather(os.path.join(path, dataset_path, 'temp_labs.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Family History" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.838958Z", - "start_time": "2020-11-04T12:34:07.649920Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - } - ], - "source": [ - "fh_list=[\"Heart disease\", \"Stroke\", \"High blood pressure\", \"Diabetes\", \"Lung cancer\", \"Severe depression\", \"Parkinson's disease\", \"Alzheimer's disease/dementia\", \"Chronic bronchitis/emphysema\", \"Breast cancer\", \"Bowel cancer\"]\n", - "with open(os.path.join(path, dataset_path, 'fh_list.yaml'), 'w') as file: yaml.dump(fh_list, file, default_flow_style=False)\n", - "\n", - "fields_family_history = [\n", - " \"20107\", # Family history \n", - " \"20110\" # Family history\n", - "]\n", - "\n", - "raw = get_data_fields(fields_family_history, data, data_field)\n", - "temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"family_history\").drop(\"field\", axis=1)\n", - "temp = temp[temp.family_history.isin(fh_list)].assign(family_history=temp[\"family_history\"].str.lower().replace(\" \", \"_\", regex=True))\n", - "\n", - "temp = temp.drop_duplicates().sort_values(\"eid\").reset_index().drop(\"index\", axis=1).assign(n=True)\n", - "temp = pd.pivot_table(temp, index=\"eid\", columns=\"family_history\", values=\"n\", observed=True).add_prefix('fh_')\n", - "family_history = temp = data[[\"eid\"]].copy().merge(temp, how=\"left\", on=\"eid\").fillna(False)\n", - "\n", - "print(len(temp))\n", - "temp.head()\n", - "\n", - "family_history.to_feather(os.path.join(path, dataset_path, 'temp_family_history.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Medications" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.842601Z", - "start_time": "2020-11-04T12:34:25.840607Z" - } - }, - "outputs": [], - "source": [ - "# https://list.essentialmeds.org/?showRemoved=0\n", - "# essential medicines WHO?!" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.471831Z", - "start_time": "2020-11-04T12:34:25.844339Z" - } - }, - "outputs": [], - "source": [ - "atc_mapping = pd.read_csv(f\"{path}/mapping/atc/atc_matched_list.csv\")\n", - "athena_concepts = pd.read_csv(f\"{data_path}/athena_vocabulary/CONCEPT.csv\", sep=\"\\t\").assign(vocabulary_id = lambda x: x.vocabulary_id.astype(\"string\"), concept_class_id = lambda x: x.concept_class_id.astype(\"string\"))\n", - "atc_concepts = athena_concepts[athena_concepts.vocabulary_id==\"ATC\"]\n", - "atc2_concepts = atc_concepts[atc_concepts.concept_class_id==\"ATC 2nd\"].sort_values(\"concept_code\")\n", - "medication_list = dict(zip([x.lower().replace(\" \", \"_\") for x in atc2_concepts.concept_name.to_list()], [[x] for x in atc2_concepts.concept_code.to_list()]))\n", - "medication_list_extra = {\n", - " \"antihypertensives\": [\"C02\"],\n", - " \"statins\": [\"C10A\", \"C10B\"],\n", - " \"ass\": [\"B01\"],\n", - " \"atypical_antipsychotics\" : [\"N05\"],\n", - " \"glucocorticoids\" : [\"H02\"] \n", - "}\n", - "medication_list.update(medication_list_extra)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'medication_list.yaml'), 'w') as file: yaml.dump(medication_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def had_medication_before(data, data_field, medications, atc_mapping):\n", - " fields = [\"20003\"]\n", - " raw = get_data_fields(fields, data, data_field)\n", - " temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"UKBB_code\").drop(\"field\", axis=1).drop_duplicates()\n", - "\n", - " temp.UKBB_code = temp.UKBB_code.astype(str)\n", - " temp = temp[temp.UKBB_code!=\"None\"].copy()\n", - " temp.UKBB_code = temp.UKBB_code.astype(int)\n", - "\n", - " temp_atc = temp.merge(atc_mapping, how=\"left\", on=\"UKBB_code\").sort_values(\"eid\").reset_index(drop=True).dropna(subset=[\"ATC_code\"], axis=0)\n", - " temp_atc.ATC_code = temp_atc.ATC_code.astype(\"string\")\n", - " temp = data[[\"eid\"]].copy()\n", - " for med, med_codes in tqdm(medication_list.items()):\n", - " regex_str = \"^\"+\"|^\".join(med_codes)\n", - " df = temp_atc[temp_atc.ATC_code.str.contains(regex_str, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(medication=True)\n", - " temp[med] = temp.merge(df, how=\"left\", on=\"eid\").fillna(False).medication\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.481137Z", - "start_time": "2020-11-04T12:34:32.473698Z" - } - }, - "outputs": [], - "source": [ - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:36:14.425612Z", - "start_time": "2020-11-04T12:34:32.482863Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "13ef8609a6b64b219928981b7752c608", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=98.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - } - ], - "source": [ - "medications = had_medication_before(data, data_field, medication_list, atc_mapping)\n", - "print(len(medications))\n", - "medications.head(100)\n", - "\n", - "medications.to_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3072: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3072: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.851438Z", - "start_time": "2020-11-04T12:37:14.774599Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = pd.read_csv(f\"{path}/mapping/snomed_core_list.txt\", sep=\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.909023Z", - "start_time": "2020-11-04T12:37:14.853286Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = snomed_core.query(\"SNOMED_CONCEPT_STATUS == 'Current'\").copy()\n", - "new = snomed_core.SNOMED_FSN.str.split(\"(\", n=1, expand=True)\n", - "snomed_core[\"snomed_name\"] = new[0].str.rstrip(' ')\n", - "snomed_core[\"snomed_type\"] = new[1].str.rstrip(')')\n", - "snomed_core_data = snomed_core#.query(\"(snomed_type=='disorder' | snomed_type=='finding') & USAGE>0.01\")" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.914973Z", - "start_time": "2020-11-04T12:37:14.910857Z" - } - }, - "outputs": [], - "source": [ - "snomed_names = snomed_core_data.snomed_name.to_list()\n", - "snomed_names = [str(item).lower().strip().replace(\" \", \"_\").replace(\";\", \"\").replace(\",\", \"\") for item in snomed_names]" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.342937Z", - "start_time": "2020-11-04T12:37:14.916906Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "989d1908f8624958a92da3602ad125f1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=6181.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_ids = vocab[\"concept\"].query(\"vocabulary_id == 'SNOMED'\").concept_id.to_list()\n", - "icd10_ids = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "\n", - "ph_to_icd10_mapping = {}\n", - "\n", - "def map_snomed_to_icd10(ph, snomed_code, concept, concept_ancestor, concept_relationship):\n", - " concept_ids = concept.query(\"vocabulary_id == 'SNOMED' & concept_code == @snomed_code\").concept_id.to_list()\n", - " snomed_desc_ids = concept_ancestor.query(\"ancestor_concept_id== @concept_ids\").descendant_concept_id.to_list()\n", - " ph_desc = concept.query(\"concept_id == @snomed_desc_ids\").query(\"vocabulary_id == 'SNOMED'\")\n", - " l_ph_desc_ids = ph_desc.concept_id.to_list()\n", - " ph_icd10_ids = list(concept_relationship.query(\"concept_id_1==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").concept_id_2.unique())\n", - " #ph_icd10_ids = list(concept_relationship.set_index(\"concept_id_1\").query(\"index==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").query(\"relationship_id == 'Mapped from'\").concept_id_2.unique()\n", - " \n", - " #ph_icd10_ids = list(temp.concept_id_2.unique())\n", - " df = concept.query(\"concept_id == @ph_icd10_ids & vocabulary_id == 'ICD10CM'\")\n", - " icd10_list = list(df[~df.concept_code.str.contains(\"OMOP\", na=False)].concept_code.unique())\n", - " icd10_list = sorted(list(set([e[:3] for e in icd10_list])))\n", - " #print(f\"{ph}: {icd10_list}\")\n", - " return {ph: sorted(list(dict.fromkeys([str(e) for e in icd10_list])))}\n", - "\n", - "from joblib import Parallel, delayed\n", - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")\n", - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @vocab_concept_ids) & (relationship_id == 'Mapped from')\")\n", - "icd10_codes = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(map_snomed_to_icd10)(ph, snomed_code, \n", - " concept_ids, concept_ancestor, concept_rel) for ph, snomed_code in tqdm(phenotype_list_snomed.items()))" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.348009Z", - "start_time": "2020-11-04T12:39:55.344704Z" - } - }, - "outputs": [], - "source": [ - "l10_snomed = {}\n", - "for ph in icd10_codes: l10_snomed.update(ph)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.468545Z", - "start_time": "2020-11-04T12:39:55.349545Z" - } - }, - "outputs": [], - "source": [ - "phenotype_list_basic = {\n", - " \"coronary_heart_disease\": [\"Ischemic heart disease\"],\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"diabetes1\" : [\"Type 1 diabetes\"],\n", - " \"diabetes2\" : [\"Diabetes mellitus\", \"Type 2 diabetes\"],\n", - " \"chronic_kidney_disease\": [\"Chronic kidney disease\", \"chronic renal failure\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"migraine\": [\"Migraine\"],\n", - " \"rheumatoid_arthritis\": [\"Rheumatoid arthritis\"],\n", - " \"systemic_lupus_erythematosus\": [\"Systemic lupus erythematosus\"],\n", - " \"severe_mental_illness\": [\"Schizophrenia\", \"bipolar\", \"Major depressive disorder\"],\n", - " \"erectile_dysfunction\" : [\"Erectile dysfunction\"], \n", - "}\n", - "\n", - "l10_basic = phenotype_children(phecodes, phenotype_list_basic)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.473556Z", - "start_time": "2020-11-04T12:39:55.471051Z" - } - }, - "outputs": [], - "source": [ - "l10_all = l10_basic\n", - "for key, value in l10_snomed.items(): \n", - " if key not in l10_basic: l10_all[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.620916Z", - "start_time": "2020-11-04T12:39:55.475137Z" - } - }, - "outputs": [], - "source": [ - "l10 = {k: v for k, v in l10_all.items() if len(v)!=0}\n", - "\n", - "#phenotype_list = {k: v for k, v in phenotype_list.items() if k in list(l10.keys())}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'phenotype_list.yaml'), 'w') as file: yaml.dump(l10, file, default_flow_style=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Self Reported" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.288198Z", - "start_time": "2020-11-04T12:43:13.264683Z" - } - }, - "outputs": [], - "source": [ - "coding609 = pd.read_csv(f\"{path}/mapping/codings/coding609.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.304423Z", - "start_time": "2020-11-04T12:43:13.289982Z" - } - }, - "outputs": [], - "source": [ - "from datetime import datetime, timedelta\n", - "\n", - "def datetime_from_dec_year(dec_year):\n", - " start = dec_year\n", - " year = int(start)\n", - " rem = start - year\n", - "\n", - " base = datetime(year, 1, 1)\n", - " result = base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)\n", - " #result.strftime(\"%Y-%m-%d\")\n", - " return result.date()\n", - "\n", - "def extract_map_self_reported(data, data_field, code_map):\n", - " pbar = tqdm(total=16)\n", - " ### codes\n", - " fields = [\"20002\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col = \"noncancer_illness_code_selfreported_f20002\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " codes = temp.rename(columns={col:\"code\"})\\\n", - " .assign(code=lambda x: x.code.astype(str))\\\n", - " .replace(\"None\", np.nan) \\\n", - " .dropna(subset=[\"code\"], axis=0)\\\n", - " .assign(code=lambda x: x.code.astype(int)) \\\n", - " .merge(code_map, how=\"left\",on=\"code\") \\\n", - " .dropna(subset=[\"meaning\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - " \n", - " ### dates\n", - " fields = [\"20008\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col=\"interpolated_year_when_noncancer_illness_first_diagnosed_f20008\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " dates = temp.rename(columns={col:\"date\"})\\\n", - " .dropna(subset=[\"date\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - "\n", - " dates = dates[dates.date!=-1]; pbar.update(1)\n", - " dates = dates[dates.date!=-3]; pbar.update(1)\n", - " dates.date = dates.date.apply(datetime_from_dec_year); pbar.update(1)\n", - " \n", - " test = codes.merge(dates, how=\"left\", on=[\"eid\", \"instance_index\"]).assign(origin=\"self_reported\").copy(); pbar.update(1)\n", - " \n", - " test[\"instance_index\"] = test[\"instance_index\"].astype(\"string\"); pbar.update(1)\n", - " test[['instance','n']] = test.instance_index.str.split(\"_\",expand=True); pbar.update(1)\n", - " pbar.close()\n", - " \n", - " return test[[\"eid\", \"origin\", 'instance','n', \"code\", \"meaning\", \"date\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:00.098893Z", - "start_time": "2020-11-04T12:43:13.432479Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7af3e55ecb424d5fbbd303f1f5b67a66", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=16.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "codes_self_reported = extract_map_self_reported(data, data_field, coding609)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Primary Care" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "# 2. Primary Care\n", - "fields = c(\n", - " 42040 # GP clinical event records\n", - ")\n", - "# extract covariates at baseline (Instance 0)\n", - "def = data_field %>% filter((field.showcase %in% fields),ignore.case = TRUE)\n", - "diagnoses_primary_care = data[, append(\"eid\", def$col.name)]\n", - "head(diagnoses_primary_care)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Hospital episode statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:08.959617Z", - "start_time": "2020-11-04T12:46:00.100618Z" - } - }, - "outputs": [], - "source": [ - "codes_hospital_records = pd.read_feather(f\"{data_path}/1_decoded/codes_hospital_records.feather\").drop(\"level\", axis=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Combine diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:25.115010Z", - "start_time": "2020-11-04T12:46:08.961388Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdate
01000018hes_icd1001S0240S022005-06-02
11000018hes_icd1002W188W182005-06-02
21000018hes_icd1003K37K371998-05-11
31000018hes_icd1004K37K371998-05-16
41000018hes_icd1005K37K371998-06-01
\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date\n", - "0 1000018 hes_icd10 0 1 S0240 S02 2005-06-02\n", - "1 1000018 hes_icd10 0 2 W188 W18 2005-06-02\n", - "2 1000018 hes_icd10 0 3 K37 K37 1998-05-11\n", - "3 1000018 hes_icd10 0 4 K37 K37 1998-05-16\n", - "4 1000018 hes_icd10 0 5 K37 K37 1998-06-01" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes = codes_self_reported.append(codes_hospital_records).sort_values([\"eid\", \"instance\", \"n\"]).dropna(subset=[\"date\"], axis=0)\n", - "diagnoses_codes.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 13339466 entries, 0 to 13339465\n", - "Data columns (total 7 columns):\n", - " # Column Dtype \n", - "--- ------ ----- \n", - " 0 eid int64 \n", - " 1 origin object\n", - " 2 instance object\n", - " 3 n object\n", - " 4 code object\n", - " 5 meaning object\n", - " 6 date object\n", - "dtypes: int64(1), object(6)\n", - "memory usage: 712.4+ MB\n" - ] - } - ], - "source": [ - "diagnoses_codes.reset_index(drop=True).info()" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 12547626 entries, 0 to 12547625\n", - "Data columns (total 7 columns):\n", - " # Column Dtype \n", - "--- ------ ----- \n", - " 0 eid int32 \n", - " 1 origin object \n", - " 2 instance float64\n", - " 3 n int32 \n", - " 4 code object \n", - " 5 meaning object \n", - " 6 date object \n", - "dtypes: float64(1), int32(2), object(4)\n", - "memory usage: 574.4+ MB\n" - ] - } - ], - "source": [ - "codes_hospital_records.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes.reset_index(drop=True).assign(eid = lambda x: x.eid.astype(int),\n", - " origin = lambda x: x.origin.astype(str),\n", - " instance = lambda x: x.instance.astype(int),\n", - " n = lambda x: x.n.astype(int),\n", - " code = lambda x: x.code.astype(str), \n", - " meaning = lambda x: x.meaning.astype(str))\\\n", - " .to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:26.189927Z", - "start_time": "2020-11-04T12:46:25.117069Z" - } - }, - "outputs": [], - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=30, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = ph_series\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "phenotypes = l10\n", - "time0 = time0_col\n", - "diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - "\n", - "temp = data[[\"eid\"]].copy()\n", - "df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - "\n", - "df_phs = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)[0:100]))" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " for ph, ph_codes in tqdm(phenotypes.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True)\n", - " temp[ph] = temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T13:17:52.922023Z", - "start_time": "2020-11-04T12:46:26.191314Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6bea6215cd7a462ea5e12e755d4a70ed", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "30afdcb70eb84793aea68e13921cb0c4", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidcoronary_heart_diseasemyocardial_infarctionstrokediabetes1diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritis...sleep_terror_disorderacute_frontal_sinusitisbenign_neoplasm_of_pancreasprimary_malignant_neoplasm_of_soft_tissues_of_lower_limbneoplasm_of_uncertain_behavior_of_neckinjury_of_peroneal_nervedupuytren's_diseasestem_cell_donorendemic_goiterdiplegic_cerebral_palsy
01000018FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
11000020FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
21000037FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
31000043FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
41000051FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

5 rows × 3522 columns

\n", - "
" - ], - "text/plain": [ - " eid coronary_heart_disease myocardial_infarction stroke diabetes1 \\\n", - "0 1000018 False False False False \n", - "1 1000020 False False False False \n", - "2 1000037 False False False False \n", - "3 1000043 False False False False \n", - "4 1000051 False False False False \n", - "\n", - " diabetes2 chronic_kidney_disease atrial_fibrillation migraine \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False False \n", - "4 False False False False \n", - "\n", - " rheumatoid_arthritis ... sleep_terror_disorder acute_frontal_sinusitis \\\n", - "0 False ... False False \n", - "1 False ... False False \n", - "2 False ... False False \n", - "3 False ... False False \n", - "4 False ... False False \n", - "\n", - " benign_neoplasm_of_pancreas \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " primary_malignant_neoplasm_of_soft_tissues_of_lower_limb \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " neoplasm_of_uncertain_behavior_of_neck injury_of_peroneal_nerve \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 False False \n", - "4 False False \n", - "\n", - " dupuytren's_disease stem_cell_donor endemic_goiter \\\n", - "0 False False False \n", - "1 False False False \n", - "2 False False False \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " diplegic_cerebral_palsy \n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - "[5 rows x 3522 columns]" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses = had_diagnosis_before(basics, diagnoses_codes, l10, time0=time0_col)\n", - "print(len(diagnoses))\n", - "\n", - "diagnoses.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))\n", - "\n", - "diagnoses.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "# Add embeddings for Snomed Diagnoses" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get SNOMED - node2vec dict" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_embeddings = pd.read_csv(\"/data/analysis/ag-reils/steinfej/data/snomed_embeddings/snomed.emb.p1.q1.w20.l40.e200.graph_format.txt\", sep=\" \", header=None, skiprows=1)\n", - "snomed_embeddings.columns = [\"snomed_id\"]+list(snomed_embeddings.columns)[:-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
snomed_id012345678...190191192193194195196197198199
01292650010.0274560.171026-0.178822-0.0386670.2997770.082540-0.2012840.2151640.093241...0.2110300.4884750.082177-0.047102-0.086411-0.012141-0.258416-0.1132950.040249-0.116884
1360224006-0.0901870.086986-0.184378-0.028722-0.0102350.242439-0.0940090.203015-0.097894...0.1127500.333906-0.0181930.020459-0.1702260.277866-0.007079-0.0804190.162456-0.101768
21022720070.5534200.4609470.143925-0.053785-0.8495880.467587-0.654922-0.0107990.510141...0.1873710.2486070.079687-0.3541210.4126020.582461-0.7803650.045450-0.1965510.045745
3399370010.1231580.0198820.0508960.0373640.2004350.312911-0.338977-0.092584-0.167741...0.057770-0.012834-0.1397940.1805720.1907810.104039-0.358235-0.137954-0.236551-0.206458
4235830030.4231930.384338-0.0415030.116848-0.0550290.149064-0.092810-0.0501480.113122...0.162375-0.076505-0.274352-0.099204-0.281887-0.266345-0.020257-0.003843-0.008804-0.286832
\n", - "

5 rows × 201 columns

\n", - "
" - ], - "text/plain": [ - " snomed_id 0 1 2 3 4 5 \\\n", - "0 129265001 0.027456 0.171026 -0.178822 -0.038667 0.299777 0.082540 \n", - "1 360224006 -0.090187 0.086986 -0.184378 -0.028722 -0.010235 0.242439 \n", - "2 102272007 0.553420 0.460947 0.143925 -0.053785 -0.849588 0.467587 \n", - "3 39937001 0.123158 0.019882 0.050896 0.037364 0.200435 0.312911 \n", - "4 23583003 0.423193 0.384338 -0.041503 0.116848 -0.055029 0.149064 \n", - "\n", - " 6 7 8 ... 190 191 192 193 \\\n", - "0 -0.201284 0.215164 0.093241 ... 0.211030 0.488475 0.082177 -0.047102 \n", - "1 -0.094009 0.203015 -0.097894 ... 0.112750 0.333906 -0.018193 0.020459 \n", - "2 -0.654922 -0.010799 0.510141 ... 0.187371 0.248607 0.079687 -0.354121 \n", - "3 -0.338977 -0.092584 -0.167741 ... 0.057770 -0.012834 -0.139794 0.180572 \n", - "4 -0.092810 -0.050148 0.113122 ... 0.162375 -0.076505 -0.274352 -0.099204 \n", - "\n", - " 194 195 196 197 198 199 \n", - "0 -0.086411 -0.012141 -0.258416 -0.113295 0.040249 -0.116884 \n", - "1 -0.170226 0.277866 -0.007079 -0.080419 0.162456 -0.101768 \n", - "2 0.412602 0.582461 -0.780365 0.045450 -0.196551 0.045745 \n", - "3 0.190781 0.104039 -0.358235 -0.137954 -0.236551 -0.206458 \n", - "4 -0.281887 -0.266345 -0.020257 -0.003843 -0.008804 -0.286832 \n", - "\n", - "[5 rows x 201 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_embeddings.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_snomed = diagnoses.columns[13:].to_list()\n", - "diagnoses_snomed_dict = {}\n", - "for d in diagnoses_snomed: diagnoses_snomed_dict[d] = phenotype_list_snomed[d]\n", - " \n", - "snomed_codes_used = list(phenotype_list_snomed.values())\n", - "snomed_codes_emb = snomed_embeddings.snomed_id.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_id_array = snomed_embeddings[[\"snomed_id\"]].values\n", - "node2vec_array = snomed_embeddings.iloc[:, 1:].values" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "456f56d7481648e48b74e9e76b675f01", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=373286.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "snomed_arrays = {}\n", - "for sid, row in zip(tqdm(snomed_id_array), node2vec_array):\n", - " snomed_arrays[sid[0]] = row" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> Snomed dict" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "05ac46541972426da8a5b5f7fe461c6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "diagnoses_array = diagnoses[diagnoses_snomed].values\n", - "eid_array = diagnoses[[\"eid\"]].values\n", - "\n", - "from numba import jit\n", - "import numpy as np\n", - "\n", - "patient_diagnoses = {}\n", - "for eid, row in zip(tqdm(eid_array), diagnoses_array):\n", - " patient_diagnoses[eid[0]] = list(np.argwhere(row==True).flatten())\n", - "\n", - "#diagnoses.query(\"eid==1000092\")[diagnoses_snomed]" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f4c90d91d08e48119abcf8426cddd37e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_diagnoses_sid = {}\n", - "snomed_codes_emb_set = set(snomed_codes_emb)\n", - "for eid, p_d_col in tqdm(patient_diagnoses.items()):\n", - " diagnoses_list = [diagnoses_snomed[i] for i in p_d_col]\n", - " sid_list = [phenotype_list_snomed[i] for i in diagnoses_list]\n", - " sid_list = [sid for sid in sid_list if sid in snomed_codes_emb_set]\n", - " patient_diagnoses_sid[eid] = sid_list" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> node2vec average" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "47e934dc64334c82893d23b458108fbf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3335: RuntimeWarning: Mean of empty slice.\n", - " out=out, **kwargs)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/_methods.py:161: RuntimeWarning: invalid value encountered in double_scalars\n", - " ret = ret.dtype.type(ret / rcount)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_node2vec_dict = {}\n", - "for eid, sids in tqdm(patient_diagnoses_sid.items()):\n", - " array_list = [snomed_arrays[sid] for sid in sids]\n", - " patient_node2vec_dict[eid] = np.mean(array_list, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e1395c2d1bfc41f39697a8925b20d597", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ 0.37033895, 0.13321076, -0.10030267, 0.05625264, -0.08437331,\n", - " 0.11504787, -0.24833219, -0.11936529, 0.25239648, -0.32739932,\n", - " 0.06330914, -0.06493541, -0.28790415, -0.2885537 , 0.02546298,\n", - " -0.06123153, -0.17690672, -0.0867546 , -0.28337599, -0.08474496,\n", - " 0.31454532, -0.24158154, 0.15930864, 0.06124846, 0.07694602,\n", - " -0.13752803, 0.13671128, -0.27988751, -0.03987635, 0.03632156,\n", - " -0.13793361, -0.15857369, -0.16441636, 0.2412931 , 0.20070578,\n", - " -0.11412784, 0.02563965, -0.03560184, 0.17169744, -0.0153383 ,\n", - " 0.00117099, 0.1025362 , -0.06505568, 0.05646065, -0.02705149,\n", - " 0.04416442, -0.15798991, -0.10650637, 0.02082507, -0.21182802,\n", - " 0.13972325, -0.18089307, -0.12731068, 0.02907221, -0.19797107,\n", - " 0.19550177, 0.14941799, 0.21561857, -0.18085379, 0.10768238,\n", - " 0.12968045, 0.2082016 , 0.03561408, -0.01122218, -0.27099816,\n", - " -0.06029919, -0.18787618, 0.10084175, -0.07939234, -0.22951897,\n", - " -0.36536359, -0.01050854, -0.21419807, -0.23562986, 0.02380316,\n", - " 0.1213157 , -0.1601396 , 0.07218057, -0.04362593, -0.22303355,\n", - " -0.23844839, -0.14799905, 0.22346404, 0.14218655, 0.39873181,\n", - " -0.32965129, 0.19102432, -0.08894028, -0.20726567, 0.25343222,\n", - " 0.29939455, 0.20513029, 0.17430424, -0.05073184, 0.05827969,\n", - " 0.31626954, 0.0791522 , -0.21433214, 0.11027244, 0.0805151 ,\n", - " 0.08557279, 0.25260801, -0.00096969, -0.06177831, 0.0544524 ,\n", - " -0.17340027, 0.09731447, 0.09982385, -0.074546 , -0.10350239,\n", - " -0.25798929, 0.01222471, 0.1605315 , 0.00191767, 0.11642527,\n", - " -0.15387604, -0.01520803, 0.03220765, -0.13534233, 0.09154689,\n", - " 0.12562997, -0.01667786, -0.09286805, 0.14670483, -0.13097813,\n", - " -0.38270284, -0.0129984 , -0.06352304, 0.12521014, -0.17354363,\n", - " -0.16399127, 0.11488736, 0.39664734, 0.08557075, -0.24862126,\n", - " -0.05882866, 0.23174289, 0.01765143, -0.10257617, 0.01208248,\n", - " -0.06876405, -0.04180976, 0.07489962, -0.10724381, 0.29349823,\n", - " 0.17342743, -0.32044841, -0.01118798, 0.28508293, 0.16492201,\n", - " 0.03994952, -0.17309702, 0.0365077 , 0.08619365, -0.21749571,\n", - " 0.01038752, -0.21414902, -0.18092813, 0.28433131, -0.12601774,\n", - " -0.02147302, 0.51513453, 0.21506432, -0.12596341, -0.0413009 ,\n", - " 0.12595327, 0.08973215, -0.06285449, -0.03649041, 0.04217289,\n", - " -0.02532634, -0.21734533, -0.08211848, 0.14014083, 0.13635479,\n", - " -0.13163414, -0.08576438, -0.04016334, 0.23952563, -0.14895943,\n", - " 0.08564821, -0.04287149, 0.22135877, -0.06337237, -0.07189574,\n", - " -0.1004494 , 0.01225299, -0.13810014, -0.06814497, -0.16715941,\n", - " 0.07303671, 0.15891015, -0.04757821, -0.05777645, -0.0772216 ,\n", - " 0.16787738, -0.2112512 , -0.10142653, -0.19002809, -0.06400223])" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# create imputation vector\n", - "arrays = [patient_node2vec_dict[key] for key in list(patient_node2vec_dict)]\n", - "arrays_ok = [array for array in tqdm(arrays) if ~np.isnan(array).any()]\n", - "imp_vector = np.mean(arrays_ok, axis=0)\n", - "imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e2dd803c2e2a4cb68e71111979d235c2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "for eid, array in tqdm(patient_node2vec_dict.items()):\n", - " if np.isnan(array).any(): \n", - " patient_node2vec_dict[eid] = imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a82c47a8f87a4df1bc81b78496edee0a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "array_eids = [key for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "510554b8bed8456cbfd694b764286acb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "ind_ok = [np.array([1]) if ~np.isnan(array).any() else np.array([0]) for array in tqdm(arrays)]" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a85aec2f3e7644dc99c40781f999eb3c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "arrays_emb = [patient_node2vec_dict[key] for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_eids = np.reshape(np.stack(array_eids, axis=0),(-1,1)) \n", - "arrays_ind = np.stack(ind_ok, axis=0)\n", - "arrays_c = np.stack(arrays_emb, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_complete = np.concatenate([arrays_eids, arrays_ind, arrays_c], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_emb = pd.DataFrame(data=arrays_complete, columns=[\"eid\"]+[\"node2vec_available\"]+[f\"node2vec_{e}\" for e in list(range(0, 200))])" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidnode2vec_availablenode2vec_0node2vec_1node2vec_2node2vec_3node2vec_4node2vec_5node2vec_6node2vec_7...node2vec_190node2vec_191node2vec_192node2vec_193node2vec_194node2vec_195node2vec_196node2vec_197node2vec_198node2vec_199
01000018.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
11000020.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
21000037.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
31000043.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
41000051.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
..................................................................
5024996025150.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025006025165.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025016025173.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025026025182.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025036025198.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
\n", - "

502504 rows × 202 columns

\n", - "
" - ], - "text/plain": [ - " eid node2vec_available node2vec_0 node2vec_1 node2vec_2 \\\n", - "0 1000018.0 0.0 0.370339 0.133211 -0.100303 \n", - "1 1000020.0 0.0 0.370339 0.133211 -0.100303 \n", - "2 1000037.0 0.0 0.370339 0.133211 -0.100303 \n", - "3 1000043.0 0.0 0.370339 0.133211 -0.100303 \n", - "4 1000051.0 0.0 0.370339 0.133211 -0.100303 \n", - "... ... ... ... ... ... \n", - "502499 6025150.0 0.0 0.370339 0.133211 -0.100303 \n", - "502500 6025165.0 0.0 0.370339 0.133211 -0.100303 \n", - "502501 6025173.0 0.0 0.370339 0.133211 -0.100303 \n", - "502502 6025182.0 0.0 0.370339 0.133211 -0.100303 \n", - "502503 6025198.0 0.0 0.370339 0.133211 -0.100303 \n", - "\n", - " node2vec_3 node2vec_4 node2vec_5 node2vec_6 node2vec_7 ... \\\n", - "0 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "1 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "2 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "3 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "4 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "... ... ... ... ... ... ... \n", - "502499 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502500 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502501 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502502 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502503 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "\n", - " node2vec_190 node2vec_191 node2vec_192 node2vec_193 node2vec_194 \\\n", - "0 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "1 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "2 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "3 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "4 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "... ... ... ... ... ... \n", - "502499 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502500 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502501 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502502 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502503 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "\n", - " node2vec_195 node2vec_196 node2vec_197 node2vec_198 node2vec_199 \n", - "0 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "1 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "2 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "3 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "4 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "... ... ... ... ... ... \n", - "502499 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502500 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502501 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502502 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502503 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "\n", - "[502504 rows x 202 columns]" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_emb" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdiagnoses_emb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_feather\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'temp_diagnoses_emb.feather'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pandas/io/feather_format.py\u001b[0m in \u001b[0;36mread_feather\u001b[0;34m(path, columns, use_threads)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mpath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstringify_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfeather\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_feather\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muse_threads\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0muse_threads\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001b[0m in \u001b[0;36mread_feather\u001b[0;34m(source, columns, use_threads, memory_map)\u001b[0m\n\u001b[1;32m 212\u001b[0m \"\"\"\n\u001b[1;32m 213\u001b[0m \u001b[0m_check_pandas_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 214\u001b[0;31m return (read_table(source, columns=columns, memory_map=memory_map)\n\u001b[0m\u001b[1;32m 215\u001b[0m .to_pandas(use_threads=use_threads))\n\u001b[1;32m 216\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001b[0m in \u001b[0;36mread_table\u001b[0;34m(source, columns, memory_map)\u001b[0m\n\u001b[1;32m 234\u001b[0m \"\"\"\n\u001b[1;32m 235\u001b[0m \u001b[0mreader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mFeatherReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 236\u001b[0;31m \u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msource\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muse_memory_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmemory_map\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 238\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcolumns\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.FeatherReader.open\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.get_reader\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib._get_native_file\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.memory_map\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.MemoryMappedFile._open\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.pyarrow_internal_check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory" - ] - } - ], - "source": [ - "diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\n", - "diagnoses_emb = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "1+1" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.628580Z", - "start_time": "2020-11-04T12:33:33.036Z" - } - }, - "outputs": [], - "source": [ - "### define in snomed and get icd codes from there" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Hospital admissions" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.629459Z", - "start_time": "2020-11-04T12:33:34.764Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25', 'I51'],\n", - " 'stroke': ['G45', 'G46', 'I60', 'I67', 'I68', 'I69'],\n", - " 'cancer_breast': ['C50'],\n", - " 'diabetes': ['E10', 'E11', 'E12', 'E13', 'E14'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'copd': ['J44'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03', 'F09', 'G31', 'R54']}" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoint_list = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"cancer_breast\" : [\"Breast Cancer\"],\n", - " \"diabetes\" : [\"Diabetes\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"copd\": [\"COPD\"],\n", - " \"dementia\":[\"dementia\"]\n", - "}\n", - "\n", - "endpoint_list = phenotype_children(phecodes, endpoint_list)\n", - "endpoint_list[\"cancer_breast\"] = [\"C50\"]\n", - "endpoint_list[\"copd\"] = [\"J44\"]\n", - "endpoint_list[\"diabetes\"] = [\"E10\", \"E11\", \"E12\", \"E13\", \"E14\"]\n", - "endpoint_list[\"atrial_fibrillation\"] = [\"I47\", \"I48\"]\n", - "\n", - "\n", - "with open(os.path.join(path, dataset_path, 'endpoint_list.yaml'), 'w') as file: yaml.dump(endpoint_list, file, default_flow_style=False)\n", - "endpoint_list" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "from dateutil.relativedelta import relativedelta\n", - "\n", - "def extract_endpoints_tte(data, diagnoses_codes, endpoint_list, time0_col, level=None):\n", - " if level is not None: diagnoses_codes = diagnoses_codes.query(\"level==@level\")\n", - " diagnoses_codes_time0 = diagnoses_codes.merge(data[[\"eid\", time0_col]], how=\"left\", on=\"eid\")\n", - " \n", - " cens_time_right = min(diagnoses_codes.sort_values('date').groupby('origin').tail(1).date.to_list())\n", - " print(f\"t_0: {time0_col}\")\n", - " print(f\"t_cens: {cens_time_right}\")\n", - " \n", - " df_interval = diagnoses_codes_time0[(diagnoses_codes_time0.date > diagnoses_codes_time0[time0_col]) & \n", - " (diagnoses_codes_time0.date < cens_time_right)]\n", - " \n", - " temp = data[[\"eid\", time0_col]].copy()\n", - " for ph, ph_codes in tqdm(endpoint_list.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " ph_df = df_interval[df_interval.meaning.str.contains(regex, case=False)] \\\n", - " .sort_values('date').groupby('eid').head(1).assign(phenotype=1, date=lambda x: x.date)\n", - " temp_ph = temp.merge(ph_df, how=\"left\", on=\"eid\").fillna(0)\n", - " temp[ph+\"_event\"], temp[ph+\"_event_date\"] = temp_ph.phenotype, temp_ph.date\n", - " \n", - " fill_date = {ph+\"_event_date\" : lambda x: [cens_time_right if event==0 else event_date for event, event_date in zip(x[ph+\"_event\"], x[ph+\"_event_date\"])]}\n", - " calc_tte = {ph+\"_event_time\" : lambda x: [(event_date-time0).days/365.25 for time0, event_date in zip(x[time0_col], x[ph+\"_event_date\"])]}\n", - " \n", - " temp = temp.assign(**fill_date).assign(**calc_tte).drop([ph+\"_event_date\"], axis=1)\n", - " \n", - " temp = temp.drop([time0_col], axis=1) \n", - " \n", - " return temp.drop_duplicates()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6a02ec6d409c4e998c0f1deb9032b535", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=7.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timecancer_breast_eventcancer_breast_event_timediabetes_eventdiabetes_event_timeatrial_fibrillation_eventatrial_fibrillation_event_timecopd_eventcopd_event_timedementia_eventdementia_event_time
010000180.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.334702
110000200.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.063655
210000370.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.338125
310000431.068.1232030.073.7796030.073.7796030.073.7796030.073.7796031.063.2936340.073.779603
410000510.064.7611230.064.7611230.064.7611231.045.0622860.064.7611231.021.0622860.064.761123
\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event myocardial_infarction_event_time \\\n", - "0 1000018 0.0 59.334702 \n", - "1 1000020 0.0 71.063655 \n", - "2 1000037 0.0 70.338125 \n", - "3 1000043 1.0 68.123203 \n", - "4 1000051 0.0 64.761123 \n", - "\n", - " stroke_event stroke_event_time cancer_breast_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 0.0 \n", - "4 0.0 64.761123 0.0 \n", - "\n", - " cancer_breast_event_time diabetes_event diabetes_event_time \\\n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 73.779603 0.0 73.779603 \n", - "4 64.761123 1.0 45.062286 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_event_time copd_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 1.0 \n", - "4 0.0 64.761123 1.0 \n", - "\n", - " copd_event_time dementia_event dementia_event_time \n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 63.293634 0.0 73.779603 \n", - "4 21.062286 0.0 64.761123 " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoints_hospital = extract_endpoints_tte(basics, diagnoses_codes, endpoint_list, time0_col)\n", - "print(len(endpoints_hospital))\n", - "endpoints_hospital.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Death registry" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "death_list = {\n", - " \"death_allcause\":[],\n", - " \"death_cvd\":['I{:02}'.format(ID+1) for ID in range(0, 98)],\n", - "}\n", - "\n", - "death_codes = pd.read_feather(f\"{data_path}/1_decoded/codes_death_records.feather\")#.drop(\"level\", axis=1)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'death_list.yaml'), 'w') as file: yaml.dump(death_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9ca18723f9984f399b46bce781a3f2dd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_death = extract_endpoints_tte(basics, death_codes, death_list, time0_col, level=\"1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SCORES" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list = {\n", - " \"SCORE\":['I{:02}'.format(ID) for ID in [10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 44, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]],\n", - " \"ASCVD\":['I{:02}'.format(ID) for ID in [20, 21, 22, 23, 24, 25, 63]],\n", - " \"QRISK3\":[\"G45\", \"I20\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"],\n", - " \"MACE\":[\"G45\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"], \n", - "}\n", - "with open(os.path.join(path, dataset_path, 'scores_list.yaml'), 'w') as file: yaml.dump(scores_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list_hospital = {}\n", - "scores_list_death = {}\n", - "for score, score_codes in scores_list.items():\n", - " scores_list_hospital[\"hospital_\"+score] = score_codes\n", - " scores_list_death[\"death_\"+score] = score_codes" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "17ed4f235a6e4cc08cdc2789bfc62d73", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2bd6de2f761a464da6f8c6c8ba22a1d8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_scores = {\n", - " \"hospital\": extract_endpoints_tte(basics, diagnoses_codes, scores_list_hospital, time0_col=time0_col),\n", - " \"death\": extract_endpoints_tte(basics, death_codes, scores_list_death, time0_col=time0_col, level=1)}" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_scores_all = endpoints_scores[\"hospital\"].merge(endpoints_scores[\"death\"], on=\"eid\", how=\"left\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ESC SCORE (Conroy 2003)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5323\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_time
4510004631.074.165640
8310008411.076.005476
10210010311.075.537303
12210012371.050.132786
17610017771.072.238193
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time\n", - "45 1000463 1.0 74.165640\n", - "83 1000841 1.0 76.005476\n", - "102 1001031 1.0 75.537303\n", - "122 1001237 1.0 50.132786\n", - "176 1001777 1.0 72.238193" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"SCORE\"\n", - "\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score).rename(columns={\"death_SCORE_event\":\"SCORE_event\", \"death_SCORE_event_time\":\"SCORE_event_time\"})\n", - "score_SCORE = temp = temp[[\"eid\", \"SCORE_event\", \"SCORE_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ASCVD (Goff 2014)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "61785\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidASCVD_eventASCVD_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid ASCVD_event ASCVD_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"ASCVD\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_ASCVD = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### UK QRISK3 (2017)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "69344\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidQRISK3_eventQRISK3_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid QRISK3_event QRISK3_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"QRISK3\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_QRISK3 = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MACE (2020)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62097\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidMACE_eventMACE_event_time
31000043168.123203
221000233168.673511
301000319156.922656
451000463174.069815
531000548150.255989
\n", - "
" - ], - "text/plain": [ - " eid MACE_event MACE_event_time\n", - "3 1000043 1 68.123203\n", - "22 1000233 1 68.673511\n", - "30 1000319 1 56.922656\n", - "45 1000463 1 74.069815\n", - "53 1000548 1 50.255989" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"MACE\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_MACE = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"basics\": pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather')), \n", - " \"questionnaire\": pd.read_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather')), \n", - " \"measurements\": pd.read_feather(os.path.join(path, dataset_path, 'temp_measurements.feather')), \n", - " \"labs\": pd.read_feather(os.path.join(path, dataset_path, 'temp_labs.feather')), \n", - " \"family_history\": pd.read_feather(os.path.join(path, dataset_path, 'temp_family_history.feather')), \n", - " \"diagnoses\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather')),\n", - " # \"diagnoses_emb\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather')), \n", - " \"medications\": pd.read_feather(os.path.join(path, dataset_path, 'temp_medications.feather')), \n", - " \"endpoints_hospital\":endpoints_hospital, \n", - " \"endpoints_death\":endpoints_death, \n", - " \"score_SCORE\":score_SCORE, \n", - " \"score_ASCVD\":score_ASCVD, \n", - " \"score_QRISK3\":score_QRISK3,\n", - " \"score_MACE\":score_MACE}" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100005151.0FemaleWhite-1.7990802006-06-101955-06-10PoorNeverOne to three times a month...065.051335065.051335064.761123064.761123064.761123
\n", - "

5 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000051 51.0 Female White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2006-06-10 1955-06-10 Poor \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never One to three times a month ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 65.051335 0 65.051335 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 64.761123 0 64.761123 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 64.761123 \n", - "\n", - "[5 rows x 3746 columns]" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintegerFalseeidNaN
12age_at_recruitmentnumericFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentnumericFalsebasicsNaN
.....................
37413742ASCVD_event_timenumericTruescore_ASCVDNaN
37423743QRISK3_eventintegerTruescore_QRISK3NaN
37433744QRISK3_event_timenumericTruescore_QRISK3NaN
37443745MACE_eventintegerTruescore_MACENaN
37453746MACE_event_timenumericTruescore_MACENaN
\n", - "

3746 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid integer False \n", - "1 2 age_at_recruitment numeric False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment numeric False \n", - "... ... ... ... ... \n", - "3741 3742 ASCVD_event_time numeric True \n", - "3742 3743 QRISK3_event integer True \n", - "3743 3744 QRISK3_event_time numeric True \n", - "3744 3745 MACE_event integer True \n", - "3745 3746 MACE_event_time numeric True \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "3741 score_ASCVD NaN \n", - "3742 score_QRISK3 NaN \n", - "3743 score_QRISK3 NaN \n", - "3744 score_MACE NaN \n", - "3745 score_MACE NaN \n", - "\n", - "[3746 rows x 6 columns]" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"integer\", \"int64\":\"integer\", \"float64\":\"numeric\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"logical\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exclusion Criteria" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline_excl = data_baseline.query(\"myocardial_infarction == False & coronary_heart_disease == False & statins == False\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100007960.0FemaleWhite-2.7080402008-03-181948-03-18FairNeverOnce or twice a week...072.279261072.279261161.054073161.054073071.989049
..................................................................
402296602515043.0FemaleWhite0.0467812007-06-301964-06-30ExcellentNeverThree or four times a week...055.994524055.994524055.704312055.704312055.704312
402297602516545.0FemaleWhite-2.1070402008-09-021963-09-02GoodNeverThree or four times a week...056.821355056.821355056.531143056.531143056.531143
402298602517357.0MaleWhite-1.8272202008-09-171951-09-17GoodNeverNever...068.780287068.780287068.490075068.490075068.490075
402299602518256.0MaleWhite-0.0107642010-07-011954-07-01ExcellentPreviousDaily or almost daily...065.993155065.993155065.702943065.702943065.702943
402300602519867.0MaleWhite-1.9306502010-01-261943-01-26GoodCurrentDaily or almost daily...077.420945077.420945077.130732077.130732077.130732
\n", - "

402301 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000079 60.0 Female White \n", - "... ... ... ... ... \n", - "402296 6025150 43.0 Female White \n", - "402297 6025165 45.0 Female White \n", - "402298 6025173 57.0 Male White \n", - "402299 6025182 56.0 Male White \n", - "402300 6025198 67.0 Male White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -2.708040 \n", - "... ... \n", - "402296 0.046781 \n", - "402297 -2.107040 \n", - "402298 -1.827220 \n", - "402299 -0.010764 \n", - "402300 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2008-03-18 1948-03-18 Fair \n", - "... ... ... ... \n", - "402296 2007-06-30 1964-06-30 Excellent \n", - "402297 2008-09-02 1963-09-02 Good \n", - "402298 2008-09-17 1951-09-17 Good \n", - "402299 2010-07-01 1954-07-01 Excellent \n", - "402300 2010-01-26 1943-01-26 Good \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never Once or twice a week ... 0 \n", - "... ... ... ... ... \n", - "402296 Never Three or four times a week ... 0 \n", - "402297 Never Three or four times a week ... 0 \n", - "402298 Never Never ... 0 \n", - "402299 Previous Daily or almost daily ... 0 \n", - "402300 Current Daily or almost daily ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 72.279261 0 72.279261 1 \n", - "... ... ... ... ... \n", - "402296 55.994524 0 55.994524 0 \n", - "402297 56.821355 0 56.821355 0 \n", - "402298 68.780287 0 68.780287 0 \n", - "402299 65.993155 0 65.993155 0 \n", - "402300 77.420945 0 77.420945 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 61.054073 1 61.054073 0 \n", - "... ... ... ... ... \n", - "402296 55.704312 0 55.704312 0 \n", - "402297 56.531143 0 56.531143 0 \n", - "402298 68.490075 0 68.490075 0 \n", - "402299 65.702943 0 65.702943 0 \n", - "402300 77.130732 0 77.130732 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 71.989049 \n", - "... ... \n", - "402296 55.704312 \n", - "402297 56.531143 \n", - "402298 68.490075 \n", - "402299 65.702943 \n", - "402300 77.130732 \n", - "\n", - "[402301 rows x 3746 columns]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline_excl" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "feature_dict = {}\n", - "for group in data_baseline_description.based_on.unique(): feature_dict[group] = data_baseline_description.query(\"based_on==@group\").covariate.to_list()\n", - "with open(os.path.join(path, dataset_path, 'feature_list.yaml'), 'w') as file: yaml.dump(feature_dict, file, default_flow_style=False, allow_unicode=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "#feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_clinical.feather'))\n", - "data_baseline_excl.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_excl.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:python]", - "language": "python", - "name": "conda-env-python-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical.ipynb b/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical.ipynb deleted file mode 100644 index ad4d691..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical.ipynb +++ /dev/null @@ -1,5250 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import os\n", - "import yaml\n", - "from tqdm.notebook import trange, tqdm\n", - "dataset_name = \"cvd_interactions\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.895222Z", - "start_time": "2020-11-04T12:31:49.891332Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "Path(dataset_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:33:14.171198Z", - "start_time": "2020-11-04T12:31:50.204540Z" - } - }, - "outputs": [], - "source": [ - "data = pd.read_feather(f\"{data_path}/1_decoded/ukb_data.feather\")\n", - "data_field = pd.read_feather(f\"{data_path}/1_decoded/ukb_data_field.feather\")\n", - "data_columns = data.columns.to_list()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mappings + Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.867152Z", - "start_time": "2020-11-04T12:33:16.878773Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502505\n", - "502504\n" - ] - } - ], - "source": [ - "# Drop obviouse missing data\n", - "print(len(data))\n", - "data = data.dropna(subset=[\"sex_f31_0_0\"], axis=0)\n", - "print(len(data))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Starting information" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.872216Z", - "start_time": "2020-11-04T12:34:05.869505Z" - } - }, - "outputs": [], - "source": [ - "time0_col=\"birth_date\"\n", - "# time0_col=\"date_of_attending_assessment_centre_f53_0_0\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Baseline covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.889725Z", - "start_time": "2020-11-04T12:34:05.874587Z" - } - }, - "outputs": [], - "source": [ - "def get_fields(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields) & data_field[\"field.tab\"].str.contains(\"f\\\\.\\\\d+\\\\.0\\\\.\\\\d\")].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_fields_all(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields)].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_data_fields(fields, data, data_field):\n", - " f = get_fields(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()\n", - "\n", - "def get_data_fields_all(fields, data, data_field):\n", - " f = get_fields_all(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basics" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.176411Z", - "start_time": "2020-11-04T12:34:05.891730Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0
0100001849.0FemaleWhite-1.8529302009-11-12
1100002059.0MaleWhite0.2042482008-02-19
2100003759.0FemaleWhite-3.4988602008-11-11
3100004363.0MaleWhite-5.3511502009-06-03
4100005151.0FemaleWhite-1.7990802006-06-10
\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "\n", - " ethnic_background_f21000_0_0 \\\n", - "0 White \n", - "1 White \n", - "2 White \n", - "3 White \n", - "4 White \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - "]\n", - "\n", - "temp = get_data_fields(fields_basics, data, data_field)\n", - "\n", - "temp[\"sex_f31_0_0\"] = temp[\"sex_f31_0_0\"].cat.set_categories([\"Female\", 'Male'], ordered=False)\n", - "\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"string\")\n", - "\n", - "ethn_bg_def = {\"White\": [\"White\", \"British\", \"Irish\", \"Any other white background\"],\n", - " \"Mixed\": [\"Mixed\", \"White and Black Caribbean\", \"White and Black African\", \"White and Asian\", \"Any other mixed background\"], \n", - " \"Asian\": [\"Asian or Asian British\", \"Indian\", \"Pakistani\", \"Bangladeshi\", \"Any other Asian background\"], \n", - " \"Black\": [\"Black or Black British\", \"Caribbean\", \"African\", \"Any other Black background\"],\n", - " \"Chinese\": [\"Chinese\"], \n", - " np.nan: [\"Other ethnic group\", \"Do not know\", \"Prefer not to answer\"]}\n", - "\n", - "ethn_bg_dict = {}\n", - "for key, values in ethn_bg_def.items(): \n", - " for value in values:\n", - " ethn_bg_dict[value]=key \n", - " \n", - "temp[\"ethnic_background_f21000_0_0\"].replace(ethn_bg_dict, inplace=True)\n", - "temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\")\n", - "\n", - "#\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\").cat.set_categories(['White', 'Black', 'Asien', 'Mixed', 'Chinese'], ordered=False)\n", - "\n", - "basics = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "basics = basics.assign(birth_date = calc_birth_date)\n", - "\n", - "\n", - "basics.to_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.186613Z", - "start_time": "2020-11-04T12:34:06.178111Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[White, Black, NaN, Asian, Mixed, Chinese]\n", - "Categories (5, object): [White, Black, Asian, Mixed, Chinese]\n" - ] - } - ], - "source": [ - " print(temp[\"ethnic_background_f21000_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Questionnaire" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.389467Z", - "start_time": "2020-11-04T12:34:06.188206Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidoverall_health_rating_f2178_0_0smoking_status_f20116_0_0alcohol_intake_frequency_f1558_0_0
01000018FairCurrentOnce or twice a week
11000020GoodCurrentOnce or twice a week
21000037GoodPreviousOnce or twice a week
31000043FairPreviousThree or four times a week
41000051PoorNeverOne to three times a month
\n", - "
" - ], - "text/plain": [ - " eid overall_health_rating_f2178_0_0 smoking_status_f20116_0_0 \\\n", - "0 1000018 Fair Current \n", - "1 1000020 Good Current \n", - "2 1000037 Good Previous \n", - "3 1000043 Fair Previous \n", - "4 1000051 Poor Never \n", - "\n", - " alcohol_intake_frequency_f1558_0_0 \n", - "0 Once or twice a week \n", - "1 Once or twice a week \n", - "2 Once or twice a week \n", - "3 Three or four times a week \n", - "4 One to three times a month " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_questionnaire = [\n", - " \"2178\", # Overall health\n", - " \"20116\", # Smoking status\n", - " \"1558\",\n", - "]\n", - "\n", - "temp = get_data_fields(fields_questionnaire, data, data_field)\n", - "\n", - "temp[\"overall_health_rating_f2178_0_0\"] = temp[\"overall_health_rating_f2178_0_0\"]\\\n", - " .replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan})\\\n", - " .astype(\"category\").cat.set_categories(['Poor', 'Fair', 'Good', 'Excellent'], ordered=True)\n", - "\n", - "\n", - "temp[\"smoking_status_f20116_0_0\"] = temp[\"smoking_status_f20116_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories(['Current', 'Previous', 'Never'], ordered=True)\n", - "\n", - "temp[\"alcohol_intake_frequency_f1558_0_0\"] = temp[\"alcohol_intake_frequency_f1558_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories([\n", - " 'Daily or almost daily', \n", - " 'Three or four times a week', \n", - " 'Once or twice a week',\n", - " 'One to three times a month',\n", - " 'Special occasions only', \n", - " 'Never'], ordered=True)\n", - "\n", - "questionnaire = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "questionnaire.to_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.398168Z", - "start_time": "2020-11-04T12:34:06.391082Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Once or twice a week, Three or four times a week, One to three times a month, Daily or almost daily, Special occasions only, Never, NaN]\n", - "Categories (6, object): [Daily or almost daily < Three or four times a week < Once or twice a week < One to three times a month < Special occasions only < Never]\n" - ] - } - ], - "source": [ - "print(temp[\"alcohol_intake_frequency_f1558_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Physical measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.052989Z", - "start_time": "2020-11-04T12:34:06.400858Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbody_mass_index_bmi_f21001_0_0weight_f21002_0_0pulse_wave_arterial_stiffness_index_f21021_0_0pulse_wave_reflection_index_f4195_0_0waist_circumference_f48_0_0hip_circumference_f49_0_0standing_height_f50_0_0trunk_fat_percentage_f23127_0_0body_fat_percentage_f23099_0_0basal_metabolic_rate_f23105_0_0forced_vital_capacity_fvc_best_measure_f20151_0_0forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0fev1_fvc_ratio_zscore_f20258_0_0peak_expiratory_flow_pef_f3064_0_2peak_expiratory_flow_pef_f3064_0_1peak_expiratory_flow_pef_f3064_0_0systolic_blood_pressure_automated_reading_f4080diastolic_blood_pressure_automated_reading_f4079pulse_rate_automated_reading_f102
0100001826.555763.87.277080.085.0107.0155.037.539.55012.03.212.161.978317.0312.0339.0159.588.050.0
1100002022.746570.7NaNNaN87.894.4176.333.428.76171.0NaNNaN1.375301.0496.0504.0133.081.074.0
2100003732.421178.9NaNNaN101.0112.0156.047.548.45397.01.611.270.138NaN185.0208.0118.578.062.5
3100004329.567995.811.111178.098.0104.0180.027.625.68711.04.142.841.096557.0513.0530.0141.593.564.5
4100005141.022292.3NaNNaN123.0129.0150.048.950.46100.0NaNNaN0.518NaNNaNNaN117.081.079.0
\n", - "
" - ], - "text/plain": [ - " eid body_mass_index_bmi_f21001_0_0 weight_f21002_0_0 \\\n", - "0 1000018 26.5557 63.8 \n", - "1 1000020 22.7465 70.7 \n", - "2 1000037 32.4211 78.9 \n", - "3 1000043 29.5679 95.8 \n", - "4 1000051 41.0222 92.3 \n", - "\n", - " pulse_wave_arterial_stiffness_index_f21021_0_0 \\\n", - "0 7.2770 \n", - "1 NaN \n", - "2 NaN \n", - "3 11.1111 \n", - "4 NaN \n", - "\n", - " pulse_wave_reflection_index_f4195_0_0 waist_circumference_f48_0_0 \\\n", - "0 80.0 85.0 \n", - "1 NaN 87.8 \n", - "2 NaN 101.0 \n", - "3 78.0 98.0 \n", - "4 NaN 123.0 \n", - "\n", - " hip_circumference_f49_0_0 standing_height_f50_0_0 \\\n", - "0 107.0 155.0 \n", - "1 94.4 176.3 \n", - "2 112.0 156.0 \n", - "3 104.0 180.0 \n", - "4 129.0 150.0 \n", - "\n", - " trunk_fat_percentage_f23127_0_0 body_fat_percentage_f23099_0_0 \\\n", - "0 37.5 39.5 \n", - "1 33.4 28.7 \n", - "2 47.5 48.4 \n", - "3 27.6 25.6 \n", - "4 48.9 50.4 \n", - "\n", - " basal_metabolic_rate_f23105_0_0 \\\n", - "0 5012.0 \n", - "1 6171.0 \n", - "2 5397.0 \n", - "3 8711.0 \n", - "4 6100.0 \n", - "\n", - " forced_vital_capacity_fvc_best_measure_f20151_0_0 \\\n", - "0 3.21 \n", - "1 NaN \n", - "2 1.61 \n", - "3 4.14 \n", - "4 NaN \n", - "\n", - " forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0 \\\n", - "0 2.16 \n", - "1 NaN \n", - "2 1.27 \n", - "3 2.84 \n", - "4 NaN \n", - "\n", - " fev1_fvc_ratio_zscore_f20258_0_0 peak_expiratory_flow_pef_f3064_0_2 \\\n", - "0 1.978 317.0 \n", - "1 1.375 301.0 \n", - "2 0.138 NaN \n", - "3 1.096 557.0 \n", - "4 0.518 NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_0_1 peak_expiratory_flow_pef_f3064_0_0 \\\n", - "0 312.0 339.0 \n", - "1 496.0 504.0 \n", - "2 185.0 208.0 \n", - "3 513.0 530.0 \n", - "4 NaN NaN \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 \\\n", - "0 159.5 \n", - "1 133.0 \n", - "2 118.5 \n", - "3 141.5 \n", - "4 117.0 \n", - "\n", - " diastolic_blood_pressure_automated_reading_f4079 \\\n", - "0 88.0 \n", - "1 81.0 \n", - "2 78.0 \n", - "3 93.5 \n", - "4 81.0 \n", - "\n", - " pulse_rate_automated_reading_f102 \n", - "0 50.0 \n", - "1 74.0 \n", - "2 62.5 \n", - "3 64.5 \n", - "4 79.0 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from statistics import mean\n", - "\n", - "fields_measurements = [\n", - "# \"100313\", # Walking speed !!! MISSING !!!\n", - " \"21001\", # BMI\n", - " \"21002\", # weight\n", - " \"4080\", # Syst. BP\n", - " \"4079\", # Diast. BP\n", - " \"102\",\n", - " \"21021\",\n", - " \"4195\",\n", - " \"48\",\n", - " \"49\",\n", - " \"50\",\n", - " \"23127\",\n", - " \"23099\",\n", - " \"23105\",\n", - " \"20151\",\n", - " \"20150\",\n", - " \"20258\",\n", - " \"3064\",\n", - " \n", - "]\n", - "temp = get_data_fields(fields_measurements, data, data_field)\n", - "\n", - "sbp_cols = [\"systolic_blood_pressure_automated_reading_f4080_0_0\", \"systolic_blood_pressure_automated_reading_f4080_0_1\"]\n", - "dbp_cols = [\"diastolic_blood_pressure_automated_reading_f4079_0_0\", \"diastolic_blood_pressure_automated_reading_f4079_0_1\"]\n", - "pr_cols = [\"pulse_rate_automated_reading_f102_0_0\", \"pulse_rate_automated_reading_f102_0_1\"]\n", - "\n", - "temp = temp.assign(systolic_blood_pressure_automated_reading_f4080 = temp[sbp_cols].mean(axis=1),\n", - " diastolic_blood_pressure_automated_reading_f4079 = temp[dbp_cols].mean(axis=1),\n", - " pulse_rate_automated_reading_f102 = temp[pr_cols].mean(axis=1))\\\n", - " .drop(sbp_cols + dbp_cols + pr_cols, axis=1)\n", - "\n", - "measurements = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "measurements.to_feather(os.path.join(path, dataset_path, 'temp_measurements.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lab measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.647955Z", - "start_time": "2020-11-04T12:34:07.055242Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbasophill_count_f30160_0_0basophill_percentage_f30220_0_0eosinophill_count_f30150_0_0eosinophill_percentage_f30210_0_0haematocrit_percentage_f30030_0_0haemoglobin_concentration_f30020_0_0high_light_scatter_reticulocyte_count_f30300_0_0high_light_scatter_reticulocyte_percentage_f30290_0_0immature_reticulocyte_fraction_f30280_0_0...phosphate_f30810_0_0rheumatoid_factor_f30820_0_0shbg_f30830_0_0testosterone_f30850_0_0total_bilirubin_f30840_0_0total_protein_f30860_0_0triglycerides_f30870_0_0urate_f30880_0_0urea_f30670_0_0vitamin_d_f30890_0_0
010000180.040.260.251.7539.7913.900.0220.4640.378...1.422NaN70.111.5607.4171.971.247221.35.4870.7
110000200.000.300.302.5045.0015.600.0140.2900.300...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
210000370.040.570.101.4339.4813.580.0310.6860.380...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000430.020.320.111.8044.3114.990.0250.5080.250...0.928NaN31.6311.3988.6569.705.184322.86.6763.6
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 62 columns

\n", - "
" - ], - "text/plain": [ - " eid basophill_count_f30160_0_0 basophill_percentage_f30220_0_0 \\\n", - "0 1000018 0.04 0.26 \n", - "1 1000020 0.00 0.30 \n", - "2 1000037 0.04 0.57 \n", - "3 1000043 0.02 0.32 \n", - "4 1000051 NaN NaN \n", - "\n", - " eosinophill_count_f30150_0_0 eosinophill_percentage_f30210_0_0 \\\n", - "0 0.25 1.75 \n", - "1 0.30 2.50 \n", - "2 0.10 1.43 \n", - "3 0.11 1.80 \n", - "4 NaN NaN \n", - "\n", - " haematocrit_percentage_f30030_0_0 haemoglobin_concentration_f30020_0_0 \\\n", - "0 39.79 13.90 \n", - "1 45.00 15.60 \n", - "2 39.48 13.58 \n", - "3 44.31 14.99 \n", - "4 NaN NaN \n", - "\n", - " high_light_scatter_reticulocyte_count_f30300_0_0 \\\n", - "0 0.022 \n", - "1 0.014 \n", - "2 0.031 \n", - "3 0.025 \n", - "4 NaN \n", - "\n", - " high_light_scatter_reticulocyte_percentage_f30290_0_0 \\\n", - "0 0.464 \n", - "1 0.290 \n", - "2 0.686 \n", - "3 0.508 \n", - "4 NaN \n", - "\n", - " immature_reticulocyte_fraction_f30280_0_0 ... phosphate_f30810_0_0 \\\n", - "0 0.378 ... 1.422 \n", - "1 0.300 ... 1.264 \n", - "2 0.380 ... NaN \n", - "3 0.250 ... 0.928 \n", - "4 NaN ... NaN \n", - "\n", - " rheumatoid_factor_f30820_0_0 shbg_f30830_0_0 testosterone_f30850_0_0 \\\n", - "0 NaN 70.11 1.560 \n", - "1 NaN 55.31 12.237 \n", - "2 NaN NaN NaN \n", - "3 NaN 31.63 11.398 \n", - "4 NaN NaN NaN \n", - "\n", - " total_bilirubin_f30840_0_0 total_protein_f30860_0_0 \\\n", - "0 7.41 71.97 \n", - "1 8.07 78.45 \n", - "2 NaN NaN \n", - "3 8.65 69.70 \n", - "4 NaN NaN \n", - "\n", - " triglycerides_f30870_0_0 urate_f30880_0_0 urea_f30670_0_0 \\\n", - "0 1.247 221.3 5.48 \n", - "1 1.906 374.7 5.28 \n", - "2 NaN NaN NaN \n", - "3 5.184 322.8 6.67 \n", - "4 NaN NaN NaN \n", - "\n", - " vitamin_d_f30890_0_0 \n", - "0 70.7 \n", - "1 35.9 \n", - "2 NaN \n", - "3 63.6 \n", - "4 NaN \n", - "\n", - "[5 rows x 62 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_blood_count = [\n", - " \"30160\", #\tBasophill count\n", - " \"30220\", #\tBasophill percentage\n", - " \"30150\", #\tEosinophill count\n", - " \"30210\", #\tEosinophill percentage\n", - " \"30030\", #\tHaematocrit percentage\n", - " \"30020\", #\tHaemoglobin concentration\n", - " \"30300\", #\tHigh light scatter reticulocyte count\n", - " \"30290\", #\tHigh light scatter reticulocyte percentage\n", - " \"30280\", #\tImmature reticulocyte fraction\n", - " \"30120\", #\tLymphocyte count\n", - " \"30180\", #\tLymphocyte percentage\n", - " \"30050\", #\tMean corpuscular haemoglobin\n", - " \"30060\", #\tMean corpuscular haemoglobin concentration\n", - " \"30040\", #\tMean corpuscular volume\n", - " \"30100\", #\tMean platelet (thrombocyte) volume\n", - " \"30260\", #\tMean reticulocyte volume\n", - " \"30270\", #\tMean sphered cell volume\n", - " \"30130\", #\tMonocyte count\n", - " \"30190\", #\tMonocyte percentage\n", - " \"30140\", #\tNeutrophill count\n", - " \"30200\", #\tNeutrophill percentage\n", - " \"30170\", #\tNucleated red blood cell count\n", - " \"30230\", #\tNucleated red blood cell percentage\n", - " \"30080\", #\tPlatelet count\n", - " \"30090\", #\tPlatelet crit\n", - " \"30110\", #\tPlatelet distribution width\n", - " \"30010\", #\tRed blood cell (erythrocyte) count\n", - " \"30070\", #\tRed blood cell (erythrocyte) distribution width\n", - " \"30250\", #\tReticulocyte count\n", - " \"30240\", #\tReticulocyte percentage\n", - " \"30000\", #\tWhite blood cell (leukocyte) count\n", - "]\n", - "\n", - "fields_blood_biochemistry = [\n", - " \"30620\",#\tAlanine aminotransferase\n", - " \"30600\",#\tAlbumin\n", - " \"30610\",#\tAlkaline phosphatase\n", - " \"30630\",#\tApolipoprotein A\n", - " \"30640\",#\tApolipoprotein B\n", - " \"30650\",#\tAspartate aminotransferase\n", - " \"30710\",#\tC-reactive protein\n", - " \"30680\",#\tCalcium\n", - " \"30690\",#\tCholesterol\n", - " \"30700\",#\tCreatinine\n", - " \"30720\",#\tCystatin C\n", - " \"30660\",#\tDirect bilirubin\n", - " \"30730\",#\tGamma glutamyltransferase\n", - " \"30740\",#\tGlucose\n", - " \"30750\",#\tGlycated haemoglobin (HbA1c)\n", - " \"30760\",#\tHDL cholesterol\n", - " \"30770\",#\tIGF-1\n", - " \"30780\",#\tLDL direct\n", - " \"30790\",#\tLipoprotein A\n", - " \"30800\",#\tOestradiol\n", - " \"30810\",#\tPhosphate\n", - " \"30820\",#\tRheumatoid factor\n", - " \"30830\",#\tSHBG\n", - " \"30850\",#\tTestosterone\n", - " \"30840\",#\tTotal bilirubin\n", - " \"30860\",#\tTotal protein\n", - " \"30870\",#\tTriglycerides\n", - " \"30880\",#\tUrate\n", - " \"30670\",#\tUrea\n", - " \"30890\",#\tVitamin D\n", - "]\n", - "\n", - "fields_blood_infectious = [\n", - " \"23000\", #\t1gG antigen for Herpes Simplex virus-1\n", - " \"23001\", #\t2mgG unique antigen for Herpes Simplex virus-2\n", - " \"23049\", #\tAntigen assay QC indicator\n", - " \"23048\", #\tAntigen assay date\n", - " \"23026\", #\tBK VP1 antigen for Human Polyomavirus BKV\n", - " \"23039\", #\tCagA antigen for Helicobacter pylori\n", - " \"23043\", #\tCatalase antigen for Helicobacter pylori\n", - " \"23018\", #\tCore antigen for Hepatitis C Virus\n", - " \"23030\", #\tE6 antigen for Human Papillomavirus type-16\n", - " \"23031\", #\tE7 antigen for Human Papillomavirus type-16\n", - " \"23006\", #\tEA-D antigen for Epstein-Barr Virus\n", - " \"23004\", #\tEBNA-1 antigen for Epstein-Barr Virus\n", - " \"23042\", #\tGroEL antigen for Helicobacter pylori\n", - " \"23016\", #\tHBc antigen for Hepatitis B Virus\n", - " \"23017\", #\tHBe antigen for Hepatitis B Virus\n", - " \"23025\", #\tHIV-1 env antigen for Human Immunodeficiency Virus\n", - " \"23024\", #\tHIV-1 gag antigen for Human Immunodeficiency Virus\n", - " \"23023\", #\tHTLV-1 env antigen for Human T-Lymphotropic Virus 1\n", - " \"23022\", #\tHTLV-1 gag antigen for Human T-Lymphotropic Virus 1\n", - " \"23010\", #\tIE1A antigen for Human Herpesvirus-6\n", - " \"23011\", #\tIE1B antigen for Human Herpesvirus-6\n", - " \"23027\", #\tJC VP1 antigen for Human Polyomavirus JCV\n", - " \"23015\", #\tK8.1 antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23029\", #\tL1 antigen for Human Papillomavirus type-16\n", - " \"23032\", #\tL1 antigen for Human Papillomavirus type-18\n", - " \"23014\", #\tLANA antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23028\", #\tMC VP1 antigen for Merkel Cell Polyomavirus\n", - " \"23019\", #\tNS3 antigen for Hepatitis C Virus\n", - " \"23041\", #\tOMP antigen for Helicobacter pylori\n", - " \"23037\", #\tPorB antigen for Chlamydia trachomatis\n", - " \"23013\", #\tU14 antigen for Human Herpesvirus-7\n", - " \"23044\", #\tUreA antigen for Helicobacter pylori\n", - " \"23003\", #\tVCA p18 antigen for Epstein-Barr Virus\n", - " \"23040\", #\tVacA antigen for Helicobacter pylori\n", - " \"23005\", #\tZEBRA antigen for Epstein-Barr Virus\n", - " \"23002\", #\tgE / gI antigen for Varicella Zoster Virus\n", - " \"23034\", #\tmomp A antigen for Chlamydia trachomatis\n", - " \"23033\", #\tmomp D antigen for Chlamydia trachomatis\n", - " \"23012\", #\tp101 k antigen for Human Herpesvirus-6\n", - " \"23020\", #\tp22 antigen for Toxoplasma gondii\n", - " \"23038\", #\tpGP3 antigen for Chlamydia trachomatis\n", - " \"23009\", #\tpp 28 antigen for Human Cytomegalovirus\n", - " \"23008\", #\tpp 52 antigen for Human Cytomegalovirus\n", - " \"23007\", #\tpp150 Nter antigen for Human Cytomegalovirus\n", - " \"23021\", #\tsag1 antigen for Toxoplasma gondii\n", - " \"23035\", #\ttarp-D F1 antigen for Chlamydia trachomatis\n", - " \"23036\", #\ttarp-D F2 antigen for Chlamydia trachomatis\n", - "]\n", - "\n", - "labs = temp = get_data_fields(fields_blood_count+fields_blood_biochemistry+fields_blood_infectious, data, data_field)\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "labs.to_feather(os.path.join(path, dataset_path, 'temp_labs.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Family History" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.838958Z", - "start_time": "2020-11-04T12:34:07.649920Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - } - ], - "source": [ - "fh_list=[\"Heart disease\", \"Stroke\", \"High blood pressure\", \"Diabetes\", \"Lung cancer\", \"Severe depression\", \"Parkinson's disease\", \"Alzheimer's disease/dementia\", \"Chronic bronchitis/emphysema\", \"Breast cancer\", \"Bowel cancer\"]\n", - "with open(os.path.join(path, dataset_path, 'fh_list.yaml'), 'w') as file: yaml.dump(fh_list, file, default_flow_style=False)\n", - "\n", - "fields_family_history = [\n", - " \"20107\", # Family history \n", - " \"20110\" # Family history\n", - "]\n", - "\n", - "raw = get_data_fields(fields_family_history, data, data_field)\n", - "temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"family_history\").drop(\"field\", axis=1)\n", - "temp = temp[temp.family_history.isin(fh_list)].assign(family_history=temp[\"family_history\"].str.lower().replace(\" \", \"_\", regex=True))\n", - "\n", - "temp = temp.drop_duplicates().sort_values(\"eid\").reset_index().drop(\"index\", axis=1).assign(n=True)\n", - "temp = pd.pivot_table(temp, index=\"eid\", columns=\"family_history\", values=\"n\", observed=True).add_prefix('fh_')\n", - "family_history = temp = data[[\"eid\"]].copy().merge(temp, how=\"left\", on=\"eid\").fillna(False)\n", - "\n", - "print(len(temp))\n", - "temp.head()\n", - "\n", - "family_history.to_feather(os.path.join(path, dataset_path, 'temp_family_history.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Medications" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.842601Z", - "start_time": "2020-11-04T12:34:25.840607Z" - } - }, - "outputs": [], - "source": [ - "# https://list.essentialmeds.org/?showRemoved=0\n", - "# essential medicines WHO?!" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.471831Z", - "start_time": "2020-11-04T12:34:25.844339Z" - } - }, - "outputs": [], - "source": [ - "atc_mapping = pd.read_csv(f\"{path}/mapping/atc/atc_matched_list.csv\")\n", - "athena_concepts = pd.read_csv(f\"{data_path}/athena_vocabulary/CONCEPT.csv\", sep=\"\\t\").assign(vocabulary_id = lambda x: x.vocabulary_id.astype(\"string\"), concept_class_id = lambda x: x.concept_class_id.astype(\"string\"))\n", - "atc_concepts = athena_concepts[athena_concepts.vocabulary_id==\"ATC\"]\n", - "atc2_concepts = atc_concepts[atc_concepts.concept_class_id==\"ATC 2nd\"].sort_values(\"concept_code\")\n", - "medication_list = dict(zip([x.lower().replace(\" \", \"_\") for x in atc2_concepts.concept_name.to_list()], [[x] for x in atc2_concepts.concept_code.to_list()]))\n", - "medication_list_extra = {\n", - " \"antihypertensives\": [\"C02\"],\n", - " \"statins\": [\"C10A\", \"C10B\"],\n", - " \"ass\": [\"B01\"],\n", - " \"atypical_antipsychotics\" : [\"N05\"],\n", - " \"glucocorticoids\" : [\"H02\"] \n", - "}\n", - "medication_list.update(medication_list_extra)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'medication_list.yaml'), 'w') as file: yaml.dump(medication_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.481137Z", - "start_time": "2020-11-04T12:34:32.473698Z" - } - }, - "outputs": [], - "source": [ - "def had_medication_before(data, data_field, medications, atc_mapping):\n", - " fields = [\"20003\"]\n", - " raw = get_data_fields(fields, data, data_field)\n", - " temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"UKBB_code\").drop(\"field\", axis=1).drop_duplicates()\n", - "\n", - " temp.UKBB_code = temp.UKBB_code.astype(str)\n", - " temp = temp[temp.UKBB_code!=\"None\"].copy()\n", - " temp.UKBB_code = temp.UKBB_code.astype(int)\n", - "\n", - " temp_atc = temp.merge(atc_mapping, how=\"left\", on=\"UKBB_code\").sort_values(\"eid\").reset_index(drop=True).dropna(subset=[\"ATC_code\"], axis=0)\n", - " temp_atc.ATC_code = temp_atc.ATC_code.astype(\"string\")\n", - " temp = data[[\"eid\"]].copy()\n", - " for med, med_codes in tqdm(medication_list.items()):\n", - " regex_str = \"^\"+\"|^\".join(med_codes)\n", - " df = temp_atc[temp_atc.ATC_code.str.contains(regex_str, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(medication=True)\n", - " temp[med] = temp.merge(df, how=\"left\", on=\"eid\").fillna(False).medication\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:36:14.425612Z", - "start_time": "2020-11-04T12:34:32.482863Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "13ef8609a6b64b219928981b7752c608", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=98.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - } - ], - "source": [ - "medications = had_medication_before(data, data_field, medication_list, atc_mapping)\n", - "print(len(medications))\n", - "medications.head(100)\n", - "\n", - "medications.to_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3072: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3072: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.851438Z", - "start_time": "2020-11-04T12:37:14.774599Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = pd.read_csv(f\"{path}/mapping/snomed_core_list.txt\", sep=\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.909023Z", - "start_time": "2020-11-04T12:37:14.853286Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = snomed_core.query(\"SNOMED_CONCEPT_STATUS == 'Current'\").copy()\n", - "new = snomed_core.SNOMED_FSN.str.split(\"(\", n=1, expand=True)\n", - "snomed_core[\"snomed_name\"] = new[0].str.rstrip(' ')\n", - "snomed_core[\"snomed_type\"] = new[1].str.rstrip(')')\n", - "snomed_core_data = snomed_core#.query(\"(snomed_type=='disorder' | snomed_type=='finding') & USAGE>0.01\")" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.914973Z", - "start_time": "2020-11-04T12:37:14.910857Z" - } - }, - "outputs": [], - "source": [ - "snomed_names = snomed_core_data.snomed_name.to_list()\n", - "snomed_names = [str(item).lower().strip().replace(\" \", \"_\").replace(\";\", \"\").replace(\",\", \"\") for item in snomed_names]" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.342937Z", - "start_time": "2020-11-04T12:37:14.916906Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "989d1908f8624958a92da3602ad125f1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=6181.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_ids = vocab[\"concept\"].query(\"vocabulary_id == 'SNOMED'\").concept_id.to_list()\n", - "icd10_ids = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "\n", - "ph_to_icd10_mapping = {}\n", - "\n", - "def map_snomed_to_icd10(ph, snomed_code, concept, concept_ancestor, concept_relationship):\n", - " concept_ids = concept.query(\"vocabulary_id == 'SNOMED' & concept_code == @snomed_code\").concept_id.to_list()\n", - " snomed_desc_ids = concept_ancestor.query(\"ancestor_concept_id== @concept_ids\").descendant_concept_id.to_list()\n", - " ph_desc = concept.query(\"concept_id == @snomed_desc_ids\").query(\"vocabulary_id == 'SNOMED'\")\n", - " l_ph_desc_ids = ph_desc.concept_id.to_list()\n", - " ph_icd10_ids = list(concept_relationship.query(\"concept_id_1==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").concept_id_2.unique())\n", - " #ph_icd10_ids = list(concept_relationship.set_index(\"concept_id_1\").query(\"index==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").query(\"relationship_id == 'Mapped from'\").concept_id_2.unique()\n", - " \n", - " #ph_icd10_ids = list(temp.concept_id_2.unique())\n", - " df = concept.query(\"concept_id == @ph_icd10_ids & vocabulary_id == 'ICD10CM'\")\n", - " icd10_list = list(df[~df.concept_code.str.contains(\"OMOP\", na=False)].concept_code.unique())\n", - " icd10_list = sorted(list(set([e[:3] for e in icd10_list])))\n", - " #print(f\"{ph}: {icd10_list}\")\n", - " return {ph: sorted(list(dict.fromkeys([str(e) for e in icd10_list])))}\n", - "\n", - "from joblib import Parallel, delayed\n", - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")\n", - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @vocab_concept_ids) & (relationship_id == 'Mapped from')\")\n", - "icd10_codes = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(map_snomed_to_icd10)(ph, snomed_code, \n", - " concept_ids, concept_ancestor, concept_rel) for ph, snomed_code in tqdm(phenotype_list_snomed.items()))" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.348009Z", - "start_time": "2020-11-04T12:39:55.344704Z" - } - }, - "outputs": [], - "source": [ - "l10_snomed = {}\n", - "for ph in icd10_codes: l10_snomed.update(ph)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.468545Z", - "start_time": "2020-11-04T12:39:55.349545Z" - } - }, - "outputs": [], - "source": [ - "phenotype_list_basic = {\n", - " \"coronary_heart_disease\": [\"Ischemic heart disease\"],\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"diabetes1\" : [\"Type 1 diabetes\"],\n", - " \"diabetes2\" : [\"Diabetes mellitus\", \"Type 2 diabetes\"],\n", - " \"chronic_kidney_disease\": [\"Chronic kidney disease\", \"chronic renal failure\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"migraine\": [\"Migraine\"],\n", - " \"rheumatoid_arthritis\": [\"Rheumatoid arthritis\"],\n", - " \"systemic_lupus_erythematosus\": [\"Systemic lupus erythematosus\"],\n", - " \"severe_mental_illness\": [\"Schizophrenia\", \"bipolar\", \"Major depressive disorder\"],\n", - " \"erectile_dysfunction\" : [\"Erectile dysfunction\"], \n", - "}\n", - "\n", - "l10_basic = phenotype_children(phecodes, phenotype_list_basic)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.473556Z", - "start_time": "2020-11-04T12:39:55.471051Z" - } - }, - "outputs": [], - "source": [ - "l10_all = l10_basic\n", - "for key, value in l10_snomed.items(): \n", - " if key not in l10_basic: l10_all[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.620916Z", - "start_time": "2020-11-04T12:39:55.475137Z" - } - }, - "outputs": [], - "source": [ - "l10 = {k: v for k, v in l10_all.items() if len(v)!=0}\n", - "\n", - "#phenotype_list = {k: v for k, v in phenotype_list.items() if k in list(l10.keys())}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'phenotype_list.yaml'), 'w') as file: yaml.dump(l10, file, default_flow_style=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Self Reported" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.288198Z", - "start_time": "2020-11-04T12:43:13.264683Z" - } - }, - "outputs": [], - "source": [ - "coding609 = pd.read_csv(f\"{path}/mapping/codings/coding609.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.304423Z", - "start_time": "2020-11-04T12:43:13.289982Z" - } - }, - "outputs": [], - "source": [ - "from datetime import datetime, timedelta\n", - "\n", - "def datetime_from_dec_year(dec_year):\n", - " start = dec_year\n", - " year = int(start)\n", - " rem = start - year\n", - "\n", - " base = datetime(year, 1, 1)\n", - " result = base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)\n", - " #result.strftime(\"%Y-%m-%d\")\n", - " return result.date()\n", - "\n", - "def extract_map_self_reported(data, data_field, code_map):\n", - " pbar = tqdm(total=16)\n", - " ### codes\n", - " fields = [\"20002\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col = \"noncancer_illness_code_selfreported_f20002\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " codes = temp.rename(columns={col:\"code\"})\\\n", - " .assign(code=lambda x: x.code.astype(str))\\\n", - " .replace(\"None\", np.nan) \\\n", - " .dropna(subset=[\"code\"], axis=0)\\\n", - " .assign(code=lambda x: x.code.astype(int)) \\\n", - " .merge(code_map, how=\"left\",on=\"code\") \\\n", - " .dropna(subset=[\"meaning\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - " \n", - " ### dates\n", - " fields = [\"20008\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col=\"interpolated_year_when_noncancer_illness_first_diagnosed_f20008\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " dates = temp.rename(columns={col:\"date\"})\\\n", - " .dropna(subset=[\"date\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - "\n", - " dates = dates[dates.date!=-1]; pbar.update(1)\n", - " dates = dates[dates.date!=-3]; pbar.update(1)\n", - " dates.date = dates.date.apply(datetime_from_dec_year); pbar.update(1)\n", - " \n", - " test = codes.merge(dates, how=\"left\", on=[\"eid\", \"instance_index\"]).assign(origin=\"self_reported\").copy(); pbar.update(1)\n", - " \n", - " test[\"instance_index\"] = test[\"instance_index\"].astype(\"string\"); pbar.update(1)\n", - " test[['instance','n']] = test.instance_index.str.split(\"_\",expand=True); pbar.update(1)\n", - " pbar.close()\n", - " \n", - " return test[[\"eid\", \"origin\", 'instance','n', \"code\", \"meaning\", \"date\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:00.098893Z", - "start_time": "2020-11-04T12:43:13.432479Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7af3e55ecb424d5fbbd303f1f5b67a66", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=16.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "codes_self_reported = extract_map_self_reported(data, data_field, coding609)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 2. Primary Care" - ] - }, - { - "cell_type": "raw", - "metadata": { - "pycharm": { - "name": "#%% raw\n" - } - }, - "source": [ - "# 2. Primary Care\n", - "fields = c(\n", - " 42040 # GP clinical event records\n", - ")\n", - "# extract covariates at baseline (Instance 0)\n", - "def = data_field %>% filter((field.showcase %in% fields),ignore.case = TRUE)\n", - "diagnoses_primary_care = data[, append(\"eid\", def$col.name)]\n", - "head(diagnoses_primary_care)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Hospital episode statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:08.959617Z", - "start_time": "2020-11-04T12:46:00.100618Z" - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "codes_hospital_records = pd.read_feather(f\"{data_path}/1_decoded/codes_hospital_records.feather\").drop(\"level\", axis=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Combine diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:25.115010Z", - "start_time": "2020-11-04T12:46:08.961388Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdate
01000018hes_icd1001S0240S022005-06-02
11000018hes_icd1002W188W182005-06-02
21000018hes_icd1003K37K371998-05-11
31000018hes_icd1004K37K371998-05-16
41000018hes_icd1005K37K371998-06-01
\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date\n", - "0 1000018 hes_icd10 0 1 S0240 S02 2005-06-02\n", - "1 1000018 hes_icd10 0 2 W188 W18 2005-06-02\n", - "2 1000018 hes_icd10 0 3 K37 K37 1998-05-11\n", - "3 1000018 hes_icd10 0 4 K37 K37 1998-05-16\n", - "4 1000018 hes_icd10 0 5 K37 K37 1998-06-01" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes = codes_self_reported.append(codes_hospital_records).sort_values([\"eid\", \"instance\", \"n\"]).dropna(subset=[\"date\"], axis=0)\n", - "diagnoses_codes.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 13339466 entries, 0 to 13339465\n", - "Data columns (total 7 columns):\n", - " # Column Dtype \n", - "--- ------ ----- \n", - " 0 eid int64 \n", - " 1 origin object\n", - " 2 instance object\n", - " 3 n object\n", - " 4 code object\n", - " 5 meaning object\n", - " 6 date object\n", - "dtypes: int64(1), object(6)\n", - "memory usage: 712.4+ MB\n" - ] - } - ], - "source": [ - "diagnoses_codes.reset_index(drop=True).info()" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 12547626 entries, 0 to 12547625\n", - "Data columns (total 7 columns):\n", - " # Column Dtype \n", - "--- ------ ----- \n", - " 0 eid int32 \n", - " 1 origin object \n", - " 2 instance float64\n", - " 3 n int32 \n", - " 4 code object \n", - " 5 meaning object \n", - " 6 date object \n", - "dtypes: float64(1), int32(2), object(4)\n", - "memory usage: 574.4+ MB\n" - ] - } - ], - "source": [ - "codes_hospital_records.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes.reset_index(drop=True).assign(eid = lambda x: x.eid.astype(int),\n", - " origin = lambda x: x.origin.astype(str),\n", - " instance = lambda x: x.instance.astype(int),\n", - " n = lambda x: x.n.astype(int),\n", - " code = lambda x: x.code.astype(str), \n", - " meaning = lambda x: x.meaning.astype(str))\\\n", - " .to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:26.189927Z", - "start_time": "2020-11-04T12:46:25.117069Z" - } - }, - "outputs": [], - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=30, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = ph_series\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "phenotypes = l10\n", - "time0 = time0_col\n", - "diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - "\n", - "temp = data[[\"eid\"]].copy()\n", - "df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - "\n", - "df_phs = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)[0:100]))" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " for ph, ph_codes in tqdm(phenotypes.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True)\n", - " temp[ph] = temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T13:17:52.922023Z", - "start_time": "2020-11-04T12:46:26.191314Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6bea6215cd7a462ea5e12e755d4a70ed", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "30afdcb70eb84793aea68e13921cb0c4", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidcoronary_heart_diseasemyocardial_infarctionstrokediabetes1diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritis...sleep_terror_disorderacute_frontal_sinusitisbenign_neoplasm_of_pancreasprimary_malignant_neoplasm_of_soft_tissues_of_lower_limbneoplasm_of_uncertain_behavior_of_neckinjury_of_peroneal_nervedupuytren's_diseasestem_cell_donorendemic_goiterdiplegic_cerebral_palsy
01000018FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
11000020FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
21000037FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
31000043FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
41000051FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

5 rows × 3522 columns

\n", - "
" - ], - "text/plain": [ - " eid coronary_heart_disease myocardial_infarction stroke diabetes1 \\\n", - "0 1000018 False False False False \n", - "1 1000020 False False False False \n", - "2 1000037 False False False False \n", - "3 1000043 False False False False \n", - "4 1000051 False False False False \n", - "\n", - " diabetes2 chronic_kidney_disease atrial_fibrillation migraine \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False False \n", - "4 False False False False \n", - "\n", - " rheumatoid_arthritis ... sleep_terror_disorder acute_frontal_sinusitis \\\n", - "0 False ... False False \n", - "1 False ... False False \n", - "2 False ... False False \n", - "3 False ... False False \n", - "4 False ... False False \n", - "\n", - " benign_neoplasm_of_pancreas \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " primary_malignant_neoplasm_of_soft_tissues_of_lower_limb \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " neoplasm_of_uncertain_behavior_of_neck injury_of_peroneal_nerve \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 False False \n", - "4 False False \n", - "\n", - " dupuytren's_disease stem_cell_donor endemic_goiter \\\n", - "0 False False False \n", - "1 False False False \n", - "2 False False False \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " diplegic_cerebral_palsy \n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - "[5 rows x 3522 columns]" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses = had_diagnosis_before(basics, diagnoses_codes, l10, time0=time0_col)\n", - "print(len(diagnoses))\n", - "\n", - "diagnoses.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))\n", - "\n", - "diagnoses.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "# Add embeddings for Snomed Diagnoses" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get SNOMED - node2vec dict" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_embeddings = pd.read_csv(\"/data/analysis/ag-reils/steinfej/data/snomed_embeddings/snomed.emb.p1.q1.w20.l40.e200.graph_format.txt\", sep=\" \", header=None, skiprows=1)\n", - "snomed_embeddings.columns = [\"snomed_id\"]+list(snomed_embeddings.columns)[:-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
snomed_id012345678...190191192193194195196197198199
01292650010.0274560.171026-0.178822-0.0386670.2997770.082540-0.2012840.2151640.093241...0.2110300.4884750.082177-0.047102-0.086411-0.012141-0.258416-0.1132950.040249-0.116884
1360224006-0.0901870.086986-0.184378-0.028722-0.0102350.242439-0.0940090.203015-0.097894...0.1127500.333906-0.0181930.020459-0.1702260.277866-0.007079-0.0804190.162456-0.101768
21022720070.5534200.4609470.143925-0.053785-0.8495880.467587-0.654922-0.0107990.510141...0.1873710.2486070.079687-0.3541210.4126020.582461-0.7803650.045450-0.1965510.045745
3399370010.1231580.0198820.0508960.0373640.2004350.312911-0.338977-0.092584-0.167741...0.057770-0.012834-0.1397940.1805720.1907810.104039-0.358235-0.137954-0.236551-0.206458
4235830030.4231930.384338-0.0415030.116848-0.0550290.149064-0.092810-0.0501480.113122...0.162375-0.076505-0.274352-0.099204-0.281887-0.266345-0.020257-0.003843-0.008804-0.286832
\n", - "

5 rows × 201 columns

\n", - "
" - ], - "text/plain": [ - " snomed_id 0 1 2 3 4 5 \\\n", - "0 129265001 0.027456 0.171026 -0.178822 -0.038667 0.299777 0.082540 \n", - "1 360224006 -0.090187 0.086986 -0.184378 -0.028722 -0.010235 0.242439 \n", - "2 102272007 0.553420 0.460947 0.143925 -0.053785 -0.849588 0.467587 \n", - "3 39937001 0.123158 0.019882 0.050896 0.037364 0.200435 0.312911 \n", - "4 23583003 0.423193 0.384338 -0.041503 0.116848 -0.055029 0.149064 \n", - "\n", - " 6 7 8 ... 190 191 192 193 \\\n", - "0 -0.201284 0.215164 0.093241 ... 0.211030 0.488475 0.082177 -0.047102 \n", - "1 -0.094009 0.203015 -0.097894 ... 0.112750 0.333906 -0.018193 0.020459 \n", - "2 -0.654922 -0.010799 0.510141 ... 0.187371 0.248607 0.079687 -0.354121 \n", - "3 -0.338977 -0.092584 -0.167741 ... 0.057770 -0.012834 -0.139794 0.180572 \n", - "4 -0.092810 -0.050148 0.113122 ... 0.162375 -0.076505 -0.274352 -0.099204 \n", - "\n", - " 194 195 196 197 198 199 \n", - "0 -0.086411 -0.012141 -0.258416 -0.113295 0.040249 -0.116884 \n", - "1 -0.170226 0.277866 -0.007079 -0.080419 0.162456 -0.101768 \n", - "2 0.412602 0.582461 -0.780365 0.045450 -0.196551 0.045745 \n", - "3 0.190781 0.104039 -0.358235 -0.137954 -0.236551 -0.206458 \n", - "4 -0.281887 -0.266345 -0.020257 -0.003843 -0.008804 -0.286832 \n", - "\n", - "[5 rows x 201 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_embeddings.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_snomed = diagnoses.columns[13:].to_list()\n", - "diagnoses_snomed_dict = {}\n", - "for d in diagnoses_snomed: diagnoses_snomed_dict[d] = phenotype_list_snomed[d]\n", - " \n", - "snomed_codes_used = list(phenotype_list_snomed.values())\n", - "snomed_codes_emb = snomed_embeddings.snomed_id.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_id_array = snomed_embeddings[[\"snomed_id\"]].values\n", - "node2vec_array = snomed_embeddings.iloc[:, 1:].values" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "456f56d7481648e48b74e9e76b675f01", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=373286.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "snomed_arrays = {}\n", - "for sid, row in zip(tqdm(snomed_id_array), node2vec_array):\n", - " snomed_arrays[sid[0]] = row" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> Snomed dict" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "05ac46541972426da8a5b5f7fe461c6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "diagnoses_array = diagnoses[diagnoses_snomed].values\n", - "eid_array = diagnoses[[\"eid\"]].values\n", - "\n", - "from numba import jit\n", - "import numpy as np\n", - "\n", - "patient_diagnoses = {}\n", - "for eid, row in zip(tqdm(eid_array), diagnoses_array):\n", - " patient_diagnoses[eid[0]] = list(np.argwhere(row==True).flatten())\n", - "\n", - "#diagnoses.query(\"eid==1000092\")[diagnoses_snomed]" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f4c90d91d08e48119abcf8426cddd37e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_diagnoses_sid = {}\n", - "snomed_codes_emb_set = set(snomed_codes_emb)\n", - "for eid, p_d_col in tqdm(patient_diagnoses.items()):\n", - " diagnoses_list = [diagnoses_snomed[i] for i in p_d_col]\n", - " sid_list = [phenotype_list_snomed[i] for i in diagnoses_list]\n", - " sid_list = [sid for sid in sid_list if sid in snomed_codes_emb_set]\n", - " patient_diagnoses_sid[eid] = sid_list" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> node2vec average" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "47e934dc64334c82893d23b458108fbf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3335: RuntimeWarning: Mean of empty slice.\n", - " out=out, **kwargs)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/_methods.py:161: RuntimeWarning: invalid value encountered in double_scalars\n", - " ret = ret.dtype.type(ret / rcount)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_node2vec_dict = {}\n", - "for eid, sids in tqdm(patient_diagnoses_sid.items()):\n", - " array_list = [snomed_arrays[sid] for sid in sids]\n", - " patient_node2vec_dict[eid] = np.mean(array_list, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e1395c2d1bfc41f39697a8925b20d597", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ 0.37033895, 0.13321076, -0.10030267, 0.05625264, -0.08437331,\n", - " 0.11504787, -0.24833219, -0.11936529, 0.25239648, -0.32739932,\n", - " 0.06330914, -0.06493541, -0.28790415, -0.2885537 , 0.02546298,\n", - " -0.06123153, -0.17690672, -0.0867546 , -0.28337599, -0.08474496,\n", - " 0.31454532, -0.24158154, 0.15930864, 0.06124846, 0.07694602,\n", - " -0.13752803, 0.13671128, -0.27988751, -0.03987635, 0.03632156,\n", - " -0.13793361, -0.15857369, -0.16441636, 0.2412931 , 0.20070578,\n", - " -0.11412784, 0.02563965, -0.03560184, 0.17169744, -0.0153383 ,\n", - " 0.00117099, 0.1025362 , -0.06505568, 0.05646065, -0.02705149,\n", - " 0.04416442, -0.15798991, -0.10650637, 0.02082507, -0.21182802,\n", - " 0.13972325, -0.18089307, -0.12731068, 0.02907221, -0.19797107,\n", - " 0.19550177, 0.14941799, 0.21561857, -0.18085379, 0.10768238,\n", - " 0.12968045, 0.2082016 , 0.03561408, -0.01122218, -0.27099816,\n", - " -0.06029919, -0.18787618, 0.10084175, -0.07939234, -0.22951897,\n", - " -0.36536359, -0.01050854, -0.21419807, -0.23562986, 0.02380316,\n", - " 0.1213157 , -0.1601396 , 0.07218057, -0.04362593, -0.22303355,\n", - " -0.23844839, -0.14799905, 0.22346404, 0.14218655, 0.39873181,\n", - " -0.32965129, 0.19102432, -0.08894028, -0.20726567, 0.25343222,\n", - " 0.29939455, 0.20513029, 0.17430424, -0.05073184, 0.05827969,\n", - " 0.31626954, 0.0791522 , -0.21433214, 0.11027244, 0.0805151 ,\n", - " 0.08557279, 0.25260801, -0.00096969, -0.06177831, 0.0544524 ,\n", - " -0.17340027, 0.09731447, 0.09982385, -0.074546 , -0.10350239,\n", - " -0.25798929, 0.01222471, 0.1605315 , 0.00191767, 0.11642527,\n", - " -0.15387604, -0.01520803, 0.03220765, -0.13534233, 0.09154689,\n", - " 0.12562997, -0.01667786, -0.09286805, 0.14670483, -0.13097813,\n", - " -0.38270284, -0.0129984 , -0.06352304, 0.12521014, -0.17354363,\n", - " -0.16399127, 0.11488736, 0.39664734, 0.08557075, -0.24862126,\n", - " -0.05882866, 0.23174289, 0.01765143, -0.10257617, 0.01208248,\n", - " -0.06876405, -0.04180976, 0.07489962, -0.10724381, 0.29349823,\n", - " 0.17342743, -0.32044841, -0.01118798, 0.28508293, 0.16492201,\n", - " 0.03994952, -0.17309702, 0.0365077 , 0.08619365, -0.21749571,\n", - " 0.01038752, -0.21414902, -0.18092813, 0.28433131, -0.12601774,\n", - " -0.02147302, 0.51513453, 0.21506432, -0.12596341, -0.0413009 ,\n", - " 0.12595327, 0.08973215, -0.06285449, -0.03649041, 0.04217289,\n", - " -0.02532634, -0.21734533, -0.08211848, 0.14014083, 0.13635479,\n", - " -0.13163414, -0.08576438, -0.04016334, 0.23952563, -0.14895943,\n", - " 0.08564821, -0.04287149, 0.22135877, -0.06337237, -0.07189574,\n", - " -0.1004494 , 0.01225299, -0.13810014, -0.06814497, -0.16715941,\n", - " 0.07303671, 0.15891015, -0.04757821, -0.05777645, -0.0772216 ,\n", - " 0.16787738, -0.2112512 , -0.10142653, -0.19002809, -0.06400223])" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# create imputation vector\n", - "arrays = [patient_node2vec_dict[key] for key in list(patient_node2vec_dict)]\n", - "arrays_ok = [array for array in tqdm(arrays) if ~np.isnan(array).any()]\n", - "imp_vector = np.mean(arrays_ok, axis=0)\n", - "imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e2dd803c2e2a4cb68e71111979d235c2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "for eid, array in tqdm(patient_node2vec_dict.items()):\n", - " if np.isnan(array).any(): \n", - " patient_node2vec_dict[eid] = imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a82c47a8f87a4df1bc81b78496edee0a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "array_eids = [key for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "510554b8bed8456cbfd694b764286acb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "ind_ok = [np.array([1]) if ~np.isnan(array).any() else np.array([0]) for array in tqdm(arrays)]" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a85aec2f3e7644dc99c40781f999eb3c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "arrays_emb = [patient_node2vec_dict[key] for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_eids = np.reshape(np.stack(array_eids, axis=0),(-1,1)) \n", - "arrays_ind = np.stack(ind_ok, axis=0)\n", - "arrays_c = np.stack(arrays_emb, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_complete = np.concatenate([arrays_eids, arrays_ind, arrays_c], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_emb = pd.DataFrame(data=arrays_complete, columns=[\"eid\"]+[\"node2vec_available\"]+[f\"node2vec_{e}\" for e in list(range(0, 200))])" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidnode2vec_availablenode2vec_0node2vec_1node2vec_2node2vec_3node2vec_4node2vec_5node2vec_6node2vec_7...node2vec_190node2vec_191node2vec_192node2vec_193node2vec_194node2vec_195node2vec_196node2vec_197node2vec_198node2vec_199
01000018.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
11000020.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
21000037.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
31000043.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
41000051.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
..................................................................
5024996025150.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025006025165.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025016025173.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025026025182.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025036025198.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
\n", - "

502504 rows × 202 columns

\n", - "
" - ], - "text/plain": [ - " eid node2vec_available node2vec_0 node2vec_1 node2vec_2 \\\n", - "0 1000018.0 0.0 0.370339 0.133211 -0.100303 \n", - "1 1000020.0 0.0 0.370339 0.133211 -0.100303 \n", - "2 1000037.0 0.0 0.370339 0.133211 -0.100303 \n", - "3 1000043.0 0.0 0.370339 0.133211 -0.100303 \n", - "4 1000051.0 0.0 0.370339 0.133211 -0.100303 \n", - "... ... ... ... ... ... \n", - "502499 6025150.0 0.0 0.370339 0.133211 -0.100303 \n", - "502500 6025165.0 0.0 0.370339 0.133211 -0.100303 \n", - "502501 6025173.0 0.0 0.370339 0.133211 -0.100303 \n", - "502502 6025182.0 0.0 0.370339 0.133211 -0.100303 \n", - "502503 6025198.0 0.0 0.370339 0.133211 -0.100303 \n", - "\n", - " node2vec_3 node2vec_4 node2vec_5 node2vec_6 node2vec_7 ... \\\n", - "0 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "1 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "2 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "3 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "4 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "... ... ... ... ... ... ... \n", - "502499 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502500 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502501 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502502 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502503 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "\n", - " node2vec_190 node2vec_191 node2vec_192 node2vec_193 node2vec_194 \\\n", - "0 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "1 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "2 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "3 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "4 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "... ... ... ... ... ... \n", - "502499 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502500 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502501 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502502 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502503 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "\n", - " node2vec_195 node2vec_196 node2vec_197 node2vec_198 node2vec_199 \n", - "0 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "1 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "2 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "3 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "4 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "... ... ... ... ... ... \n", - "502499 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502500 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502501 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502502 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502503 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "\n", - "[502504 rows x 202 columns]" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_emb" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mFileNotFoundError\u001B[0m Traceback (most recent call last)", - "\u001B[0;32m\u001B[0m in \u001B[0;36m\u001B[0;34m\u001B[0m\n\u001B[1;32m 1\u001B[0m \u001B[0;31m#diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m----> 2\u001B[0;31m \u001B[0mdiagnoses_emb\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mpd\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mread_feather\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mos\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mpath\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mjoin\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mpath\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mdataset_path\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0;34m'temp_diagnoses_emb.feather'\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pandas/io/feather_format.py\u001B[0m in \u001B[0;36mread_feather\u001B[0;34m(path, columns, use_threads)\u001B[0m\n\u001B[1;32m 101\u001B[0m \u001B[0mpath\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mstringify_path\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mpath\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 102\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 103\u001B[0;31m \u001B[0;32mreturn\u001B[0m \u001B[0mfeather\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mread_feather\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0mpath\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mcolumns\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0mcolumns\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0muse_threads\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0muse_threads\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001B[0m in \u001B[0;36mread_feather\u001B[0;34m(source, columns, use_threads, memory_map)\u001B[0m\n\u001B[1;32m 212\u001B[0m \"\"\"\n\u001B[1;32m 213\u001B[0m \u001B[0m_check_pandas_version\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 214\u001B[0;31m return (read_table(source, columns=columns, memory_map=memory_map)\n\u001B[0m\u001B[1;32m 215\u001B[0m .to_pandas(use_threads=use_threads))\n\u001B[1;32m 216\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001B[0m in \u001B[0;36mread_table\u001B[0;34m(source, columns, memory_map)\u001B[0m\n\u001B[1;32m 234\u001B[0m \"\"\"\n\u001B[1;32m 235\u001B[0m \u001B[0mreader\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0mext\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mFeatherReader\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0;32m--> 236\u001B[0;31m \u001B[0mreader\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mopen\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0msource\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0muse_memory_map\u001B[0m\u001B[0;34m=\u001B[0m\u001B[0mmemory_map\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n\u001B[0m\u001B[1;32m 237\u001B[0m \u001B[0;34m\u001B[0m\u001B[0m\n\u001B[1;32m 238\u001B[0m \u001B[0;32mif\u001B[0m \u001B[0mcolumns\u001B[0m \u001B[0;32mis\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m:\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.pxi\u001B[0m in \u001B[0;36mpyarrow.lib.FeatherReader.open\u001B[0;34m()\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001B[0m in \u001B[0;36mpyarrow.lib.get_reader\u001B[0;34m()\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001B[0m in \u001B[0;36mpyarrow.lib._get_native_file\u001B[0;34m()\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001B[0m in \u001B[0;36mpyarrow.lib.memory_map\u001B[0;34m()\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001B[0m in \u001B[0;36mpyarrow.lib.MemoryMappedFile._open\u001B[0;34m()\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001B[0m in \u001B[0;36mpyarrow.lib.pyarrow_internal_check_status\u001B[0;34m()\u001B[0m\n", - "\u001B[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001B[0m in \u001B[0;36mpyarrow.lib.check_status\u001B[0;34m()\u001B[0m\n", - "\u001B[0;31mFileNotFoundError\u001B[0m: [Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory" - ] - } - ], - "source": [ - "diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\n", - "diagnoses_emb = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "1+1" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.628580Z", - "start_time": "2020-11-04T12:33:33.036Z" - } - }, - "outputs": [], - "source": [ - "### define in snomed and get icd codes from there" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Hospital admissions" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.629459Z", - "start_time": "2020-11-04T12:33:34.764Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25', 'I51'],\n", - " 'stroke': ['G45', 'G46', 'I60', 'I67', 'I68', 'I69'],\n", - " 'cancer_breast': ['C50'],\n", - " 'diabetes': ['E10', 'E11', 'E12', 'E13', 'E14'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'copd': ['J44'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03', 'F09', 'G31', 'R54']}" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoint_list = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"cancer_breast\" : [\"Breast Cancer\"],\n", - " \"diabetes\" : [\"Diabetes\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"copd\": [\"COPD\"],\n", - " \"dementia\":[\"dementia\"]\n", - "}\n", - "\n", - "endpoint_list = phenotype_children(phecodes, endpoint_list)\n", - "endpoint_list[\"cancer_breast\"] = [\"C50\"]\n", - "endpoint_list[\"copd\"] = [\"J44\"]\n", - "endpoint_list[\"diabetes\"] = [\"E10\", \"E11\", \"E12\", \"E13\", \"E14\"]\n", - "endpoint_list[\"atrial_fibrillation\"] = [\"I47\", \"I48\"]\n", - "\n", - "\n", - "with open(os.path.join(path, dataset_path, 'endpoint_list.yaml'), 'w') as file: yaml.dump(endpoint_list, file, default_flow_style=False)\n", - "endpoint_list" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "from dateutil.relativedelta import relativedelta\n", - "\n", - "def extract_endpoints_tte(data, diagnoses_codes, endpoint_list, time0_col, level=None):\n", - " if level is not None: diagnoses_codes = diagnoses_codes.query(\"level==@level\")\n", - " diagnoses_codes_time0 = diagnoses_codes.merge(data[[\"eid\", time0_col]], how=\"left\", on=\"eid\")\n", - " \n", - " cens_time_right = min(diagnoses_codes.sort_values('date').groupby('origin').tail(1).date.to_list())\n", - " print(f\"t_0: {time0_col}\")\n", - " print(f\"t_cens: {cens_time_right}\")\n", - " \n", - " df_interval = diagnoses_codes_time0[(diagnoses_codes_time0.date > diagnoses_codes_time0[time0_col]) & \n", - " (diagnoses_codes_time0.date < cens_time_right)]\n", - " \n", - " temp = data[[\"eid\", time0_col]].copy()\n", - " for ph, ph_codes in tqdm(endpoint_list.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " ph_df = df_interval[df_interval.meaning.str.contains(regex, case=False)] \\\n", - " .sort_values('date').groupby('eid').head(1).assign(phenotype=1, date=lambda x: x.date)\n", - " temp_ph = temp.merge(ph_df, how=\"left\", on=\"eid\").fillna(0)\n", - " temp[ph+\"_event\"], temp[ph+\"_event_date\"] = temp_ph.phenotype, temp_ph.date\n", - " \n", - " fill_date = {ph+\"_event_date\" : lambda x: [cens_time_right if event==0 else event_date for event, event_date in zip(x[ph+\"_event\"], x[ph+\"_event_date\"])]}\n", - " calc_tte = {ph+\"_event_time\" : lambda x: [(event_date-time0).days/365.25 for time0, event_date in zip(x[time0_col], x[ph+\"_event_date\"])]}\n", - " \n", - " temp = temp.assign(**fill_date).assign(**calc_tte).drop([ph+\"_event_date\"], axis=1)\n", - " \n", - " temp = temp.drop([time0_col], axis=1) \n", - " \n", - " return temp.drop_duplicates()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6a02ec6d409c4e998c0f1deb9032b535", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=7.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timecancer_breast_eventcancer_breast_event_timediabetes_eventdiabetes_event_timeatrial_fibrillation_eventatrial_fibrillation_event_timecopd_eventcopd_event_timedementia_eventdementia_event_time
010000180.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.334702
110000200.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.063655
210000370.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.338125
310000431.068.1232030.073.7796030.073.7796030.073.7796030.073.7796031.063.2936340.073.779603
410000510.064.7611230.064.7611230.064.7611231.045.0622860.064.7611231.021.0622860.064.761123
\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event myocardial_infarction_event_time \\\n", - "0 1000018 0.0 59.334702 \n", - "1 1000020 0.0 71.063655 \n", - "2 1000037 0.0 70.338125 \n", - "3 1000043 1.0 68.123203 \n", - "4 1000051 0.0 64.761123 \n", - "\n", - " stroke_event stroke_event_time cancer_breast_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 0.0 \n", - "4 0.0 64.761123 0.0 \n", - "\n", - " cancer_breast_event_time diabetes_event diabetes_event_time \\\n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 73.779603 0.0 73.779603 \n", - "4 64.761123 1.0 45.062286 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_event_time copd_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 1.0 \n", - "4 0.0 64.761123 1.0 \n", - "\n", - " copd_event_time dementia_event dementia_event_time \n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 63.293634 0.0 73.779603 \n", - "4 21.062286 0.0 64.761123 " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoints_hospital = extract_endpoints_tte(basics, diagnoses_codes, endpoint_list, time0_col)\n", - "print(len(endpoints_hospital))\n", - "endpoints_hospital.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Death registry" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "death_list = {\n", - " \"death_allcause\":[],\n", - " \"death_cvd\":['I{:02}'.format(ID+1) for ID in range(0, 98)],\n", - "}\n", - "\n", - "death_codes = pd.read_feather(f\"{data_path}/1_decoded/codes_death_records.feather\")#.drop(\"level\", axis=1)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'death_list.yaml'), 'w') as file: yaml.dump(death_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9ca18723f9984f399b46bce781a3f2dd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_death = extract_endpoints_tte(basics, death_codes, death_list, time0_col, level=\"1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SCORES" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list = {\n", - " \"SCORE\":['I{:02}'.format(ID) for ID in [10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 44, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]],\n", - " \"ASCVD\":['I{:02}'.format(ID) for ID in [20, 21, 22, 23, 24, 25, 63]],\n", - " \"QRISK3\":[\"G45\", \"I20\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"],\n", - " \"MACE\":[\"G45\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"], \n", - "}\n", - "with open(os.path.join(path, dataset_path, 'scores_list.yaml'), 'w') as file: yaml.dump(scores_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list_hospital = {}\n", - "scores_list_death = {}\n", - "for score, score_codes in scores_list.items():\n", - " scores_list_hospital[\"hospital_\"+score] = score_codes\n", - " scores_list_death[\"death_\"+score] = score_codes" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "17ed4f235a6e4cc08cdc2789bfc62d73", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2bd6de2f761a464da6f8c6c8ba22a1d8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_scores = {\n", - " \"hospital\": extract_endpoints_tte(basics, diagnoses_codes, scores_list_hospital, time0_col=time0_col),\n", - " \"death\": extract_endpoints_tte(basics, death_codes, scores_list_death, time0_col=time0_col, level=1)}" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_scores_all = endpoints_scores[\"hospital\"].merge(endpoints_scores[\"death\"], on=\"eid\", how=\"left\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ESC SCORE (Conroy 2003)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5323\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_time
4510004631.074.165640
8310008411.076.005476
10210010311.075.537303
12210012371.050.132786
17610017771.072.238193
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time\n", - "45 1000463 1.0 74.165640\n", - "83 1000841 1.0 76.005476\n", - "102 1001031 1.0 75.537303\n", - "122 1001237 1.0 50.132786\n", - "176 1001777 1.0 72.238193" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"SCORE\"\n", - "\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score).rename(columns={\"death_SCORE_event\":\"SCORE_event\", \"death_SCORE_event_time\":\"SCORE_event_time\"})\n", - "score_SCORE = temp = temp[[\"eid\", \"SCORE_event\", \"SCORE_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ASCVD (Goff 2014)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "61785\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidASCVD_eventASCVD_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid ASCVD_event ASCVD_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"ASCVD\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_ASCVD = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### UK QRISK3 (2017)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "69344\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidQRISK3_eventQRISK3_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid QRISK3_event QRISK3_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"QRISK3\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_QRISK3 = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MACE (2020)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62097\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidMACE_eventMACE_event_time
31000043168.123203
221000233168.673511
301000319156.922656
451000463174.069815
531000548150.255989
\n", - "
" - ], - "text/plain": [ - " eid MACE_event MACE_event_time\n", - "3 1000043 1 68.123203\n", - "22 1000233 1 68.673511\n", - "30 1000319 1 56.922656\n", - "45 1000463 1 74.069815\n", - "53 1000548 1 50.255989" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"MACE\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_MACE = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"basics\": pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather')), \n", - " \"questionnaire\": pd.read_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather')), \n", - " \"measurements\": pd.read_feather(os.path.join(path, dataset_path, 'temp_measurements.feather')), \n", - " \"labs\": pd.read_feather(os.path.join(path, dataset_path, 'temp_labs.feather')), \n", - " \"family_history\": pd.read_feather(os.path.join(path, dataset_path, 'temp_family_history.feather')), \n", - " \"diagnoses\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather')),\n", - " # \"diagnoses_emb\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather')), \n", - " \"medications\": pd.read_feather(os.path.join(path, dataset_path, 'temp_medications.feather')), \n", - " \"endpoints_hospital\":endpoints_hospital, \n", - " \"endpoints_death\":endpoints_death, \n", - " \"score_SCORE\":score_SCORE, \n", - " \"score_ASCVD\":score_ASCVD, \n", - " \"score_QRISK3\":score_QRISK3,\n", - " \"score_MACE\":score_MACE}" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100005151.0FemaleWhite-1.7990802006-06-101955-06-10PoorNeverOne to three times a month...065.051335065.051335064.761123064.761123064.761123
\n", - "

5 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000051 51.0 Female White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2006-06-10 1955-06-10 Poor \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never One to three times a month ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 65.051335 0 65.051335 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 64.761123 0 64.761123 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 64.761123 \n", - "\n", - "[5 rows x 3746 columns]" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintegerFalseeidNaN
12age_at_recruitmentnumericFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentnumericFalsebasicsNaN
.....................
37413742ASCVD_event_timenumericTruescore_ASCVDNaN
37423743QRISK3_eventintegerTruescore_QRISK3NaN
37433744QRISK3_event_timenumericTruescore_QRISK3NaN
37443745MACE_eventintegerTruescore_MACENaN
37453746MACE_event_timenumericTruescore_MACENaN
\n", - "

3746 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid integer False \n", - "1 2 age_at_recruitment numeric False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment numeric False \n", - "... ... ... ... ... \n", - "3741 3742 ASCVD_event_time numeric True \n", - "3742 3743 QRISK3_event integer True \n", - "3743 3744 QRISK3_event_time numeric True \n", - "3744 3745 MACE_event integer True \n", - "3745 3746 MACE_event_time numeric True \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "3741 score_ASCVD NaN \n", - "3742 score_QRISK3 NaN \n", - "3743 score_QRISK3 NaN \n", - "3744 score_MACE NaN \n", - "3745 score_MACE NaN \n", - "\n", - "[3746 rows x 6 columns]" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"integer\", \"int64\":\"integer\", \"float64\":\"numeric\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"logical\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# Exclusion Criteria" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "data_baseline_excl = data_baseline.query(\"myocardial_infarction == False & coronary_heart_disease == False & statins == False\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline_excl" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_clinical.feather'))\n", - "data_baseline_excl.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_excl.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:python]", - "language": "python", - "name": "conda-env-python-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_covariates.ipynb b/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_covariates.ipynb deleted file mode 100644 index a6ddee5..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_covariates.ipynb +++ /dev/null @@ -1,4439 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import os\n", - "import yaml\n", - "from tqdm.notebook import trange, tqdm\n", - "dataset_name = \"210212_cvd_gp\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.895222Z", - "start_time": "2020-11-04T12:31:49.891332Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "Path(dataset_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:33:14.171198Z", - "start_time": "2020-11-04T12:31:50.204540Z" - } - }, - "outputs": [], - "source": [ - "data = pd.read_feather(f\"{data_path}/1_decoded/ukb_data.feather\")\n", - "data_field = pd.read_feather(f\"{data_path}/1_decoded/ukb_data_field.feather\")\n", - "data_columns = data.columns.to_list()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mappings + Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.867152Z", - "start_time": "2020-11-04T12:33:16.878773Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502505\n", - "502504\n" - ] - } - ], - "source": [ - "# Drop obviouse missing data\n", - "print(len(data))\n", - "data = data.dropna(subset=[\"sex_f31_0_0\"], axis=0)\n", - "print(len(data))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Starting information" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.872216Z", - "start_time": "2020-11-04T12:34:05.869505Z" - } - }, - "outputs": [], - "source": [ - "#time0_col=\"birth_date\"\n", - "time0_col=\"date_of_attending_assessment_centre_f53_0_0\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Baseline covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.889725Z", - "start_time": "2020-11-04T12:34:05.874587Z" - } - }, - "outputs": [], - "source": [ - "def get_fields(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields) & data_field[\"field.tab\"].str.contains(\"f\\\\.\\\\d+\\\\.0\\\\.\\\\d\")].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_fields_all(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields)].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_data_fields(fields, data, data_field):\n", - " f = get_fields(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()\n", - "\n", - "def get_data_fields_all(fields, data, data_field):\n", - " f = get_fields_all(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basics" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "coding10 = pd.read_csv(f\"{path}/mapping/codings/coding10.tsv\", sep=\"\\t\").assign(coding = lambda x: x.coding.astype(\"int\")).rename(columns={\"coding\":\"uk_biobank_assessment_centre_f54_0_0\"})\n", - "coding10[\"uk_biobank_assessment_centre_f54_0_0\"] = coding10[\"uk_biobank_assessment_centre_f54_0_0\"].astype(\"int\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.176411Z", - "start_time": "2020-11-04T12:34:05.891730Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0uk_biobank_assessment_centre_f54_0_0birth_date
0100001849.0FemaleWhite-1.8529302009-11-12Sheffield1960-11-12
1100002059.0MaleWhite0.2042482008-02-19Sheffield1949-02-19
2100003759.0FemaleWhite-3.4988602008-11-11Sheffield1949-11-11
3100004363.0MaleWhite-5.3511502009-06-03Sheffield1946-06-03
4100005151.0FemaleWhite-1.7990802006-06-10Sheffield1955-06-10
\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "\n", - " ethnic_background_f21000_0_0 \\\n", - "0 White \n", - "1 White \n", - "2 White \n", - "3 White \n", - "4 White \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "\n", - " uk_biobank_assessment_centre_f54_0_0 birth_date \n", - "0 Sheffield 1960-11-12 \n", - "1 Sheffield 1949-02-19 \n", - "2 Sheffield 1949-11-11 \n", - "3 Sheffield 1946-06-03 \n", - "4 Sheffield 1955-06-10 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - " \"54\", # assessment center\n", - "]\n", - "\n", - "temp = get_data_fields(fields_basics, data, data_field)\n", - "\n", - "temp[\"sex_f31_0_0\"] = temp[\"sex_f31_0_0\"].cat.set_categories([\"Female\", 'Male'], ordered=False)\n", - "\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"string\")\n", - "\n", - "ethn_bg_def = {\"White\": [\"White\", \"British\", \"Irish\", \"Any other white background\"],\n", - " \"Mixed\": [\"Mixed\", \"White and Black Caribbean\", \"White and Black African\", \"White and Asian\", \"Any other mixed background\"], \n", - " \"Asian\": [\"Asian or Asian British\", \"Indian\", \"Pakistani\", \"Bangladeshi\", \"Any other Asian background\"], \n", - " \"Black\": [\"Black or Black British\", \"Caribbean\", \"African\", \"Any other Black background\"],\n", - " \"Chinese\": [\"Chinese\"], \n", - " np.nan: [\"Other ethnic group\", \"Do not know\", \"Prefer not to answer\"]}\n", - "\n", - "ethn_bg_dict = {}\n", - "for key, values in ethn_bg_def.items(): \n", - " for value in values:\n", - " ethn_bg_dict[value]=key \n", - " \n", - "temp[\"ethnic_background_f21000_0_0\"].replace(ethn_bg_dict, inplace=True)\n", - "temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\")\n", - "\n", - "#\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\").cat.set_categories(['White', 'Black', 'Asien', 'Mixed', 'Chinese'], ordered=False)\n", - "\n", - "basics = temp\n", - "print(len(temp))\n", - "\n", - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "\n", - "basics = basics.assign(birth_date = calc_birth_date)\n", - "basics[\"uk_biobank_assessment_centre_f54_0_0\"] = basics.assign(uk_biobank_assessment_centre_f54_0_0 = lambda x: x.uk_biobank_assessment_centre_f54_0_0.astype(\"int\")).merge(coding10, on=\"uk_biobank_assessment_centre_f54_0_0\")[\"meaning\"]\n", - "\n", - "\n", - "display(basics.head())\n", - "basics.to_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.186613Z", - "start_time": "2020-11-04T12:34:06.178111Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['White', 'Black', NaN, 'Asian', 'Mixed', 'Chinese']\n", - "Categories (5, object): ['White', 'Black', 'Asian', 'Mixed', 'Chinese']\n" - ] - } - ], - "source": [ - " print(temp[\"ethnic_background_f21000_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Questionnaire" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.389467Z", - "start_time": "2020-11-04T12:34:06.188206Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidoverall_health_rating_f2178_0_0smoking_status_f20116_0_0alcohol_intake_frequency_f1558_0_0
01000018FairCurrentOnce or twice a week
11000020GoodCurrentOnce or twice a week
21000037GoodPreviousOnce or twice a week
31000043FairPreviousThree or four times a week
41000051PoorNeverOne to three times a month
\n", - "
" - ], - "text/plain": [ - " eid overall_health_rating_f2178_0_0 smoking_status_f20116_0_0 \\\n", - "0 1000018 Fair Current \n", - "1 1000020 Good Current \n", - "2 1000037 Good Previous \n", - "3 1000043 Fair Previous \n", - "4 1000051 Poor Never \n", - "\n", - " alcohol_intake_frequency_f1558_0_0 \n", - "0 Once or twice a week \n", - "1 Once or twice a week \n", - "2 Once or twice a week \n", - "3 Three or four times a week \n", - "4 One to three times a month " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_questionnaire = [\n", - " \"2178\", # Overall health\n", - " \"20116\", # Smoking status\n", - " \"1558\",\n", - "]\n", - "\n", - "temp = get_data_fields(fields_questionnaire, data, data_field)\n", - "\n", - "temp[\"overall_health_rating_f2178_0_0\"] = temp[\"overall_health_rating_f2178_0_0\"]\\\n", - " .replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan})\\\n", - " .astype(\"category\").cat.set_categories(['Poor', 'Fair', 'Good', 'Excellent'], ordered=True)\n", - "\n", - "\n", - "temp[\"smoking_status_f20116_0_0\"] = temp[\"smoking_status_f20116_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories(['Current', 'Previous', 'Never'], ordered=True)\n", - "\n", - "temp[\"alcohol_intake_frequency_f1558_0_0\"] = temp[\"alcohol_intake_frequency_f1558_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories([\n", - " 'Daily or almost daily', \n", - " 'Three or four times a week', \n", - " 'Once or twice a week',\n", - " 'One to three times a month',\n", - " 'Special occasions only', \n", - " 'Never'], ordered=True)\n", - "\n", - "questionnaire = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "questionnaire.to_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.398168Z", - "start_time": "2020-11-04T12:34:06.391082Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Once or twice a week', 'Three or four times a week', 'One to three times a month', 'Daily or almost daily', 'Special occasions only', 'Never', NaN]\n", - "Categories (6, object): ['Daily or almost daily' < 'Three or four times a week' < 'Once or twice a week' < 'One to three times a month' < 'Special occasions only' < 'Never']\n" - ] - } - ], - "source": [ - "print(temp[\"alcohol_intake_frequency_f1558_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Physical measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.052989Z", - "start_time": "2020-11-04T12:34:06.400858Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbody_mass_index_bmi_f21001_0_0weight_f21002_0_0pulse_wave_arterial_stiffness_index_f21021_0_0pulse_wave_reflection_index_f4195_0_0waist_circumference_f48_0_0hip_circumference_f49_0_0standing_height_f50_0_0trunk_fat_percentage_f23127_0_0body_fat_percentage_f23099_0_0basal_metabolic_rate_f23105_0_0forced_vital_capacity_fvc_best_measure_f20151_0_0forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0fev1_fvc_ratio_zscore_f20258_0_0peak_expiratory_flow_pef_f3064_0_2peak_expiratory_flow_pef_f3064_0_1peak_expiratory_flow_pef_f3064_0_0systolic_blood_pressure_automated_reading_f4080diastolic_blood_pressure_automated_reading_f4079pulse_rate_automated_reading_f102
0100001826.555763.87.277080.085.0107.0155.037.539.55012.03.212.161.978317.0312.0339.0159.588.050.0
1100002022.746570.7NaNNaN87.894.4176.333.428.76171.0NaNNaN1.375301.0496.0504.0133.081.074.0
2100003732.421178.9NaNNaN101.0112.0156.047.548.45397.01.611.270.138NaN185.0208.0118.578.062.5
3100004329.567995.811.111178.098.0104.0180.027.625.68711.04.142.841.096557.0513.0530.0141.593.564.5
4100005141.022292.3NaNNaN123.0129.0150.048.950.46100.0NaNNaN0.518NaNNaNNaN117.081.079.0
\n", - "
" - ], - "text/plain": [ - " eid body_mass_index_bmi_f21001_0_0 weight_f21002_0_0 \\\n", - "0 1000018 26.5557 63.8 \n", - "1 1000020 22.7465 70.7 \n", - "2 1000037 32.4211 78.9 \n", - "3 1000043 29.5679 95.8 \n", - "4 1000051 41.0222 92.3 \n", - "\n", - " pulse_wave_arterial_stiffness_index_f21021_0_0 \\\n", - "0 7.2770 \n", - "1 NaN \n", - "2 NaN \n", - "3 11.1111 \n", - "4 NaN \n", - "\n", - " pulse_wave_reflection_index_f4195_0_0 waist_circumference_f48_0_0 \\\n", - "0 80.0 85.0 \n", - "1 NaN 87.8 \n", - "2 NaN 101.0 \n", - "3 78.0 98.0 \n", - "4 NaN 123.0 \n", - "\n", - " hip_circumference_f49_0_0 standing_height_f50_0_0 \\\n", - "0 107.0 155.0 \n", - "1 94.4 176.3 \n", - "2 112.0 156.0 \n", - "3 104.0 180.0 \n", - "4 129.0 150.0 \n", - "\n", - " trunk_fat_percentage_f23127_0_0 body_fat_percentage_f23099_0_0 \\\n", - "0 37.5 39.5 \n", - "1 33.4 28.7 \n", - "2 47.5 48.4 \n", - "3 27.6 25.6 \n", - "4 48.9 50.4 \n", - "\n", - " basal_metabolic_rate_f23105_0_0 \\\n", - "0 5012.0 \n", - "1 6171.0 \n", - "2 5397.0 \n", - "3 8711.0 \n", - "4 6100.0 \n", - "\n", - " forced_vital_capacity_fvc_best_measure_f20151_0_0 \\\n", - "0 3.21 \n", - "1 NaN \n", - "2 1.61 \n", - "3 4.14 \n", - "4 NaN \n", - "\n", - " forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0 \\\n", - "0 2.16 \n", - "1 NaN \n", - "2 1.27 \n", - "3 2.84 \n", - "4 NaN \n", - "\n", - " fev1_fvc_ratio_zscore_f20258_0_0 peak_expiratory_flow_pef_f3064_0_2 \\\n", - "0 1.978 317.0 \n", - "1 1.375 301.0 \n", - "2 0.138 NaN \n", - "3 1.096 557.0 \n", - "4 0.518 NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_0_1 peak_expiratory_flow_pef_f3064_0_0 \\\n", - "0 312.0 339.0 \n", - "1 496.0 504.0 \n", - "2 185.0 208.0 \n", - "3 513.0 530.0 \n", - "4 NaN NaN \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 \\\n", - "0 159.5 \n", - "1 133.0 \n", - "2 118.5 \n", - "3 141.5 \n", - "4 117.0 \n", - "\n", - " diastolic_blood_pressure_automated_reading_f4079 \\\n", - "0 88.0 \n", - "1 81.0 \n", - "2 78.0 \n", - "3 93.5 \n", - "4 81.0 \n", - "\n", - " pulse_rate_automated_reading_f102 \n", - "0 50.0 \n", - "1 74.0 \n", - "2 62.5 \n", - "3 64.5 \n", - "4 79.0 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from statistics import mean\n", - "\n", - "fields_measurements = [\n", - "# \"100313\", # Walking speed !!! MISSING !!!\n", - " \"21001\", # BMI\n", - " \"21002\", # weight\n", - " \"4080\", # Syst. BP\n", - " \"4079\", # Diast. BP\n", - " \"102\",\n", - " \"21021\",\n", - " \"4195\",\n", - " \"48\",\n", - " \"49\",\n", - " \"50\",\n", - " \"23127\",\n", - " \"23099\",\n", - " \"23105\",\n", - " \"20151\",\n", - " \"20150\",\n", - " \"20258\",\n", - " \"3064\",\n", - " \n", - "]\n", - "temp = get_data_fields(fields_measurements, data, data_field)\n", - "\n", - "sbp_cols = [\"systolic_blood_pressure_automated_reading_f4080_0_0\", \"systolic_blood_pressure_automated_reading_f4080_0_1\"]\n", - "dbp_cols = [\"diastolic_blood_pressure_automated_reading_f4079_0_0\", \"diastolic_blood_pressure_automated_reading_f4079_0_1\"]\n", - "pr_cols = [\"pulse_rate_automated_reading_f102_0_0\", \"pulse_rate_automated_reading_f102_0_1\"]\n", - "\n", - "temp = temp.assign(systolic_blood_pressure_automated_reading_f4080 = temp[sbp_cols].mean(axis=1),\n", - " diastolic_blood_pressure_automated_reading_f4079 = temp[dbp_cols].mean(axis=1),\n", - " pulse_rate_automated_reading_f102 = temp[pr_cols].mean(axis=1))\\\n", - " .drop(sbp_cols + dbp_cols + pr_cols, axis=1)\n", - "\n", - "measurements = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "measurements.to_feather(os.path.join(path, dataset_path, 'temp_measurements.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lab measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.647955Z", - "start_time": "2020-11-04T12:34:07.055242Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbasophill_count_f30160_0_0basophill_percentage_f30220_0_0eosinophill_count_f30150_0_0eosinophill_percentage_f30210_0_0haematocrit_percentage_f30030_0_0haemoglobin_concentration_f30020_0_0high_light_scatter_reticulocyte_count_f30300_0_0high_light_scatter_reticulocyte_percentage_f30290_0_0immature_reticulocyte_fraction_f30280_0_0...phosphate_f30810_0_0rheumatoid_factor_f30820_0_0shbg_f30830_0_0testosterone_f30850_0_0total_bilirubin_f30840_0_0total_protein_f30860_0_0triglycerides_f30870_0_0urate_f30880_0_0urea_f30670_0_0vitamin_d_f30890_0_0
010000180.040.260.251.7539.7913.900.0220.4640.378...1.422NaN70.111.5607.4171.971.247221.35.4870.7
110000200.000.300.302.5045.0015.600.0140.2900.300...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
210000370.040.570.101.4339.4813.580.0310.6860.380...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000430.020.320.111.8044.3114.990.0250.5080.250...0.928NaN31.6311.3988.6569.705.184322.86.6763.6
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 62 columns

\n", - "
" - ], - "text/plain": [ - " eid basophill_count_f30160_0_0 basophill_percentage_f30220_0_0 \\\n", - "0 1000018 0.04 0.26 \n", - "1 1000020 0.00 0.30 \n", - "2 1000037 0.04 0.57 \n", - "3 1000043 0.02 0.32 \n", - "4 1000051 NaN NaN \n", - "\n", - " eosinophill_count_f30150_0_0 eosinophill_percentage_f30210_0_0 \\\n", - "0 0.25 1.75 \n", - "1 0.30 2.50 \n", - "2 0.10 1.43 \n", - "3 0.11 1.80 \n", - "4 NaN NaN \n", - "\n", - " haematocrit_percentage_f30030_0_0 haemoglobin_concentration_f30020_0_0 \\\n", - "0 39.79 13.90 \n", - "1 45.00 15.60 \n", - "2 39.48 13.58 \n", - "3 44.31 14.99 \n", - "4 NaN NaN \n", - "\n", - " high_light_scatter_reticulocyte_count_f30300_0_0 \\\n", - "0 0.022 \n", - "1 0.014 \n", - "2 0.031 \n", - "3 0.025 \n", - "4 NaN \n", - "\n", - " high_light_scatter_reticulocyte_percentage_f30290_0_0 \\\n", - "0 0.464 \n", - "1 0.290 \n", - "2 0.686 \n", - "3 0.508 \n", - "4 NaN \n", - "\n", - " immature_reticulocyte_fraction_f30280_0_0 ... phosphate_f30810_0_0 \\\n", - "0 0.378 ... 1.422 \n", - "1 0.300 ... 1.264 \n", - "2 0.380 ... NaN \n", - "3 0.250 ... 0.928 \n", - "4 NaN ... NaN \n", - "\n", - " rheumatoid_factor_f30820_0_0 shbg_f30830_0_0 testosterone_f30850_0_0 \\\n", - "0 NaN 70.11 1.560 \n", - "1 NaN 55.31 12.237 \n", - "2 NaN NaN NaN \n", - "3 NaN 31.63 11.398 \n", - "4 NaN NaN NaN \n", - "\n", - " total_bilirubin_f30840_0_0 total_protein_f30860_0_0 \\\n", - "0 7.41 71.97 \n", - "1 8.07 78.45 \n", - "2 NaN NaN \n", - "3 8.65 69.70 \n", - "4 NaN NaN \n", - "\n", - " triglycerides_f30870_0_0 urate_f30880_0_0 urea_f30670_0_0 \\\n", - "0 1.247 221.3 5.48 \n", - "1 1.906 374.7 5.28 \n", - "2 NaN NaN NaN \n", - "3 5.184 322.8 6.67 \n", - "4 NaN NaN NaN \n", - "\n", - " vitamin_d_f30890_0_0 \n", - "0 70.7 \n", - "1 35.9 \n", - "2 NaN \n", - "3 63.6 \n", - "4 NaN \n", - "\n", - "[5 rows x 62 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_blood_count = [\n", - " \"30160\", #\tBasophill count\n", - " \"30220\", #\tBasophill percentage\n", - " \"30150\", #\tEosinophill count\n", - " \"30210\", #\tEosinophill percentage\n", - " \"30030\", #\tHaematocrit percentage\n", - " \"30020\", #\tHaemoglobin concentration\n", - " \"30300\", #\tHigh light scatter reticulocyte count\n", - " \"30290\", #\tHigh light scatter reticulocyte percentage\n", - " \"30280\", #\tImmature reticulocyte fraction\n", - " \"30120\", #\tLymphocyte count\n", - " \"30180\", #\tLymphocyte percentage\n", - " \"30050\", #\tMean corpuscular haemoglobin\n", - " \"30060\", #\tMean corpuscular haemoglobin concentration\n", - " \"30040\", #\tMean corpuscular volume\n", - " \"30100\", #\tMean platelet (thrombocyte) volume\n", - " \"30260\", #\tMean reticulocyte volume\n", - " \"30270\", #\tMean sphered cell volume\n", - " \"30130\", #\tMonocyte count\n", - " \"30190\", #\tMonocyte percentage\n", - " \"30140\", #\tNeutrophill count\n", - " \"30200\", #\tNeutrophill percentage\n", - " \"30170\", #\tNucleated red blood cell count\n", - " \"30230\", #\tNucleated red blood cell percentage\n", - " \"30080\", #\tPlatelet count\n", - " \"30090\", #\tPlatelet crit\n", - " \"30110\", #\tPlatelet distribution width\n", - " \"30010\", #\tRed blood cell (erythrocyte) count\n", - " \"30070\", #\tRed blood cell (erythrocyte) distribution width\n", - " \"30250\", #\tReticulocyte count\n", - " \"30240\", #\tReticulocyte percentage\n", - " \"30000\", #\tWhite blood cell (leukocyte) count\n", - "]\n", - "\n", - "fields_blood_biochemistry = [\n", - " \"30620\",#\tAlanine aminotransferase\n", - " \"30600\",#\tAlbumin\n", - " \"30610\",#\tAlkaline phosphatase\n", - " \"30630\",#\tApolipoprotein A\n", - " \"30640\",#\tApolipoprotein B\n", - " \"30650\",#\tAspartate aminotransferase\n", - " \"30710\",#\tC-reactive protein\n", - " \"30680\",#\tCalcium\n", - " \"30690\",#\tCholesterol\n", - " \"30700\",#\tCreatinine\n", - " \"30720\",#\tCystatin C\n", - " \"30660\",#\tDirect bilirubin\n", - " \"30730\",#\tGamma glutamyltransferase\n", - " \"30740\",#\tGlucose\n", - " \"30750\",#\tGlycated haemoglobin (HbA1c)\n", - " \"30760\",#\tHDL cholesterol\n", - " \"30770\",#\tIGF-1\n", - " \"30780\",#\tLDL direct\n", - " \"30790\",#\tLipoprotein A\n", - " \"30800\",#\tOestradiol\n", - " \"30810\",#\tPhosphate\n", - " \"30820\",#\tRheumatoid factor\n", - " \"30830\",#\tSHBG\n", - " \"30850\",#\tTestosterone\n", - " \"30840\",#\tTotal bilirubin\n", - " \"30860\",#\tTotal protein\n", - " \"30870\",#\tTriglycerides\n", - " \"30880\",#\tUrate\n", - " \"30670\",#\tUrea\n", - " \"30890\",#\tVitamin D\n", - "]\n", - "\n", - "fields_blood_infectious = [\n", - " \"23000\", #\t1gG antigen for Herpes Simplex virus-1\n", - " \"23001\", #\t2mgG unique antigen for Herpes Simplex virus-2\n", - " \"23049\", #\tAntigen assay QC indicator\n", - " \"23048\", #\tAntigen assay date\n", - " \"23026\", #\tBK VP1 antigen for Human Polyomavirus BKV\n", - " \"23039\", #\tCagA antigen for Helicobacter pylori\n", - " \"23043\", #\tCatalase antigen for Helicobacter pylori\n", - " \"23018\", #\tCore antigen for Hepatitis C Virus\n", - " \"23030\", #\tE6 antigen for Human Papillomavirus type-16\n", - " \"23031\", #\tE7 antigen for Human Papillomavirus type-16\n", - " \"23006\", #\tEA-D antigen for Epstein-Barr Virus\n", - " \"23004\", #\tEBNA-1 antigen for Epstein-Barr Virus\n", - " \"23042\", #\tGroEL antigen for Helicobacter pylori\n", - " \"23016\", #\tHBc antigen for Hepatitis B Virus\n", - " \"23017\", #\tHBe antigen for Hepatitis B Virus\n", - " \"23025\", #\tHIV-1 env antigen for Human Immunodeficiency Virus\n", - " \"23024\", #\tHIV-1 gag antigen for Human Immunodeficiency Virus\n", - " \"23023\", #\tHTLV-1 env antigen for Human T-Lymphotropic Virus 1\n", - " \"23022\", #\tHTLV-1 gag antigen for Human T-Lymphotropic Virus 1\n", - " \"23010\", #\tIE1A antigen for Human Herpesvirus-6\n", - " \"23011\", #\tIE1B antigen for Human Herpesvirus-6\n", - " \"23027\", #\tJC VP1 antigen for Human Polyomavirus JCV\n", - " \"23015\", #\tK8.1 antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23029\", #\tL1 antigen for Human Papillomavirus type-16\n", - " \"23032\", #\tL1 antigen for Human Papillomavirus type-18\n", - " \"23014\", #\tLANA antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23028\", #\tMC VP1 antigen for Merkel Cell Polyomavirus\n", - " \"23019\", #\tNS3 antigen for Hepatitis C Virus\n", - " \"23041\", #\tOMP antigen for Helicobacter pylori\n", - " \"23037\", #\tPorB antigen for Chlamydia trachomatis\n", - " \"23013\", #\tU14 antigen for Human Herpesvirus-7\n", - " \"23044\", #\tUreA antigen for Helicobacter pylori\n", - " \"23003\", #\tVCA p18 antigen for Epstein-Barr Virus\n", - " \"23040\", #\tVacA antigen for Helicobacter pylori\n", - " \"23005\", #\tZEBRA antigen for Epstein-Barr Virus\n", - " \"23002\", #\tgE / gI antigen for Varicella Zoster Virus\n", - " \"23034\", #\tmomp A antigen for Chlamydia trachomatis\n", - " \"23033\", #\tmomp D antigen for Chlamydia trachomatis\n", - " \"23012\", #\tp101 k antigen for Human Herpesvirus-6\n", - " \"23020\", #\tp22 antigen for Toxoplasma gondii\n", - " \"23038\", #\tpGP3 antigen for Chlamydia trachomatis\n", - " \"23009\", #\tpp 28 antigen for Human Cytomegalovirus\n", - " \"23008\", #\tpp 52 antigen for Human Cytomegalovirus\n", - " \"23007\", #\tpp150 Nter antigen for Human Cytomegalovirus\n", - " \"23021\", #\tsag1 antigen for Toxoplasma gondii\n", - " \"23035\", #\ttarp-D F1 antigen for Chlamydia trachomatis\n", - " \"23036\", #\ttarp-D F2 antigen for Chlamydia trachomatis\n", - "]\n", - "\n", - "labs = temp = get_data_fields(fields_blood_count+fields_blood_biochemistry+fields_blood_infectious, data, data_field)\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "labs.to_feather(os.path.join(path, dataset_path, 'temp_labs.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Family History" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.838958Z", - "start_time": "2020-11-04T12:34:07.649920Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - } - ], - "source": [ - "fh_list=[\"Heart disease\", \"Stroke\", \"High blood pressure\", \"Diabetes\", \"Lung cancer\", \"Severe depression\", \"Parkinson's disease\", \"Alzheimer's disease/dementia\", \"Chronic bronchitis/emphysema\", \"Breast cancer\", \"Bowel cancer\"]\n", - "with open(os.path.join(path, dataset_path, 'fh_list.yaml'), 'w') as file: yaml.dump(fh_list, file, default_flow_style=False)\n", - "\n", - "fields_family_history = [\n", - " \"20107\", # Family history \n", - " \"20110\" # Family history\n", - "]\n", - "\n", - "raw = get_data_fields(fields_family_history, data, data_field)\n", - "temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"family_history\").drop(\"field\", axis=1)\n", - "temp = temp[temp.family_history.isin(fh_list)].assign(family_history=temp[\"family_history\"].str.lower().replace(\" \", \"_\", regex=True))\n", - "\n", - "temp = temp.drop_duplicates().sort_values(\"eid\").reset_index().drop(\"index\", axis=1).assign(n=True)\n", - "temp = pd.pivot_table(temp, index=\"eid\", columns=\"family_history\", values=\"n\", observed=True).add_prefix('fh_')\n", - "family_history = temp = data[[\"eid\"]].copy().merge(temp, how=\"left\", on=\"eid\").fillna(False)\n", - "\n", - "print(len(temp))\n", - "temp.head()\n", - "\n", - "family_history.to_feather(os.path.join(path, dataset_path, 'temp_family_history.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Medications" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.842601Z", - "start_time": "2020-11-04T12:34:25.840607Z" - } - }, - "outputs": [], - "source": [ - "# https://list.essentialmeds.org/?showRemoved=0\n", - "# essential medicines WHO?!" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.471831Z", - "start_time": "2020-11-04T12:34:25.844339Z" - } - }, - "outputs": [], - "source": [ - "atc_mapping = pd.read_csv(f\"{path}/mapping/atc/atc_matched_list.csv\")\n", - "athena_concepts = pd.read_csv(f\"{data_path}/athena_vocabulary/CONCEPT.csv\", sep=\"\\t\").assign(vocabulary_id = lambda x: x.vocabulary_id.astype(\"string\"), concept_class_id = lambda x: x.concept_class_id.astype(\"string\"))\n", - "atc_concepts = athena_concepts[athena_concepts.vocabulary_id==\"ATC\"]\n", - "atc2_concepts = atc_concepts[atc_concepts.concept_class_id==\"ATC 2nd\"].sort_values(\"concept_code\")\n", - "medication_list = dict(zip([x.lower().replace(\" \", \"_\") for x in atc2_concepts.concept_name.to_list()], [[x] for x in atc2_concepts.concept_code.to_list()]))\n", - "medication_list_extra = {\n", - " \"antihypertensives\": [\"C02\"],\n", - " \"statins\": [\"C10A\", \"C10B\"],\n", - " \"ass\": [\"B01\"],\n", - " \"atypical_antipsychotics\" : [\"N05\"],\n", - " \"glucocorticoids\" : [\"H02\"] \n", - "}\n", - "medication_list.update(medication_list_extra)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'medication_list.yaml'), 'w') as file: yaml.dump(medication_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.481137Z", - "start_time": "2020-11-04T12:34:32.473698Z" - } - }, - "outputs": [], - "source": [ - "def had_medication_before(data, data_field, medications, atc_mapping):\n", - " fields = [\"20003\"]\n", - " raw = get_data_fields(fields, data, data_field)\n", - " temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"UKBB_code\").drop(\"field\", axis=1).drop_duplicates()\n", - "\n", - " temp.UKBB_code = temp.UKBB_code.astype(str)\n", - " temp = temp[temp.UKBB_code!=\"None\"].copy()\n", - " temp = temp[temp.UKBB_code!=\"nan\"].copy()\n", - " temp.UKBB_code = temp.UKBB_code.astype(int)\n", - "\n", - " temp_atc = temp.merge(atc_mapping, how=\"left\", on=\"UKBB_code\").sort_values(\"eid\").reset_index(drop=True).dropna(subset=[\"ATC_code\"], axis=0)\n", - " temp_atc.ATC_code = temp_atc.ATC_code.astype(\"string\")\n", - " temp = data[[\"eid\"]].copy()\n", - " for med, med_codes in tqdm(medication_list.items()):\n", - " regex_str = \"^\"+\"|^\".join(med_codes)\n", - " df = temp_atc[temp_atc.ATC_code.str.contains(regex_str, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(medication=True)\n", - " temp[med] = temp.merge(df, how=\"left\", on=\"eid\").fillna(False).medication\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:36:14.425612Z", - "start_time": "2020-11-04T12:34:32.482863Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4ea3a79139e04f94a00e3a35c527fa25", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=98.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - } - ], - "source": [ - "medications = had_medication_before(data, data_field, medication_list, atc_mapping)\n", - "print(len(medications))\n", - "medications.head(10)\n", - "\n", - "medications.to_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.851438Z", - "start_time": "2020-11-04T12:37:14.774599Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = pd.read_csv(f\"{path}/mapping/snomed_core_list.txt\", sep=\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.909023Z", - "start_time": "2020-11-04T12:37:14.853286Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = snomed_core.query(\"SNOMED_CONCEPT_STATUS == 'Current'\").copy()\n", - "new = snomed_core.SNOMED_FSN.str.split(\"(\", n=1, expand=True)\n", - "snomed_core[\"snomed_name\"] = new[0].str.rstrip(' ')\n", - "snomed_core[\"snomed_type\"] = new[1].str.rstrip(')')\n", - "snomed_core_data = snomed_core#.query(\"(snomed_type=='disorder' | snomed_type=='finding') & USAGE>0.01\")" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.914973Z", - "start_time": "2020-11-04T12:37:14.910857Z" - } - }, - "outputs": [], - "source": [ - "snomed_names = snomed_core_data.snomed_name.to_list()\n", - "snomed_names = [str(item).lower().strip().replace(\" \", \"_\").replace(\";\", \"\").replace(\",\", \"\") for item in snomed_names]" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_df = pd.DataFrame.from_dict(phenotype_list_snomed, orient='index').reset_index()\n", - "snomed_df.columns = [\"diagnosis\", \"concept_code\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ancestor_concept_iddescendant_concept_idmin_levels_of_separationmax_levels_of_separation
0375415433574344
17359794107038335
25294114326940633
314196020016436
44418404096781412
...............
63586490458935223541227022
63586491458935224627567811
63586492458935224627568023
63586493458935224627568312
63586494458935224627568423
\n", - "

63586495 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " ancestor_concept_id descendant_concept_id \\\n", - "0 375415 4335743 \n", - "1 735979 41070383 \n", - "2 529411 43269406 \n", - "3 141960 200164 \n", - "4 441840 4096781 \n", - "... ... ... \n", - "63586490 45893522 35412270 \n", - "63586491 45893522 46275678 \n", - "63586492 45893522 46275680 \n", - "63586493 45893522 46275683 \n", - "63586494 45893522 46275684 \n", - "\n", - " min_levels_of_separation max_levels_of_separation \n", - "0 4 4 \n", - "1 3 5 \n", - "2 3 3 \n", - "3 3 6 \n", - "4 4 12 \n", - "... ... ... \n", - "63586490 2 2 \n", - "63586491 1 1 \n", - "63586492 2 3 \n", - "63586493 1 2 \n", - "63586494 2 3 \n", - "\n", - "[63586495 rows x 4 columns]" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "vocab[\"concept_ancestor\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "concept_ids_icd10 = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @concept_ids_icd10) & (relationship_id == 'Mapped from')\")\n", - "concept_mapping = concept_rel.rename(columns={\"concept_id_2\":\"concept_id\"}).merge(concept_ids, on=\"concept_id\").query(\"vocabulary_id == 'ICD10CM'\")[[\"concept_id_1\", \"concept_code\"]].rename(columns={\"concept_id_1\":\"concept_id_desc\",\"concept_code\":\"icd10\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "df_snomed_concept_id = snomed_df.merge(concept_ids[[\"concept_code\", \"concept_id\"]], on=\"concept_code\")" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "#df_desc = df_snomed_concept_id.merge(concept_ancestor.rename(columns={\"ancestor_concept_id\":\"concept_id\"})[[\"concept_id\", \"descendant_concept_id\"]], on=\"concept_id\")\n", - "#df_desc = df_desc[[\"diagnosis\", \"concept_code\", \"concept_id\", \"descendant_concept_id\"]].rename(columns={\"descendant_concept_id\":\"concept_id_desc\"})\n", - "#df_desc_codes = df_desc.merge(concept_ids[[\"concept_id\", \"concept_code\"]].rename(columns={\"concept_id\":\"concept_id_desc\", \"concept_code\":\"concept_codes_desc\"}), on=\"concept_id_desc\").drop_duplicates().sort_values(\"concept_code\")\n", - "#df_desc_icd = df_desc_codes.merge(concept_mapping, on=\"concept_id_desc\")#.rename(columns={\"concept_id\":\"concept_id_desc\", \"concept_code\":\"concept_codes_desc\"}))" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "df_icd = df_snomed_concept_id.merge(concept_mapping.rename(columns={\"concept_id_desc\":\"concept_id\"}), on=\"concept_id\")\n", - "df_mapped = df_icd[[\"diagnosis\", \"concept_code\", \"icd10\"]].drop_duplicates()\n", - "df_mapped[\"icd10\"] = df_mapped[\"icd10\"].str.replace(\".\", \"\")\n", - "df_mapped[\"meaning\"] = [e[:3] for e in df_mapped[\"icd10\"].to_list()]\n", - "icd10_codes = dict(df_mapped[[\"diagnosis\", \"meaning\"]].drop_duplicates().groupby(\"diagnosis\")[\"meaning\"].apply(list).to_dict())#set_index(\"diagnosis\", drop=True).to_dict()[\"meaning\"]#.sort_values(\"diagnosis\")" - ] - }, - { - "cell_type": "raw", - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.342937Z", - "start_time": "2020-11-04T12:37:14.916906Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_ids = vocab[\"concept\"].query(\"vocabulary_id == 'SNOMED'\").concept_id.to_list()\n", - "icd10_ids = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "\n", - "ph_to_icd10_mapping = {}\n", - "\n", - "def map_snomed_to_icd10(ph, snomed_code, concept, concept_ancestor, concept_relationship):\n", - " concept_ids = concept.query(\"vocabulary_id == 'SNOMED' & concept_code == @snomed_code\").concept_id.to_list()\n", - " snomed_desc_ids = concept_ancestor.query(\"ancestor_concept_id== @concept_ids\").descendant_concept_id.to_list()\n", - " ph_desc = concept.query(\"concept_id == @snomed_desc_ids\").query(\"vocabulary_id == 'SNOMED'\")\n", - " l_ph_desc_ids = ph_desc.concept_id.to_list()\n", - " ph_icd10_ids = list(concept_relationship.query(\"concept_id_1==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").concept_id_2.unique())\n", - " #ph_icd10_ids = list(concept_relationship.set_index(\"concept_id_1\").query(\"index==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").query(\"relationship_id == 'Mapped from'\").concept_id_2.unique()\n", - " \n", - " #ph_icd10_ids = list(temp.concept_id_2.unique())\n", - " df = concept.query(\"concept_id == @ph_icd10_ids & vocabulary_id == 'ICD10CM'\")\n", - " icd10_list = list(df[~df.concept_code.str.contains(\"OMOP\", na=False)].concept_code.unique())\n", - " icd10_list = sorted(list(set([e[:3] for e in icd10_list])))\n", - " #print(f\"{ph}: {icd10_list}\")\n", - " return {ph: sorted(list(dict.fromkeys([str(e) for e in icd10_list])))}\n", - "\n", - "from joblib import Parallel, delayed\n", - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")\n", - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @vocab_concept_ids) & (relationship_id == 'Mapped from')\")\n", - "icd10_codes = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(map_snomed_to_icd10)(ph, snomed_code, \n", - " concept_ids, concept_ancestor, concept_rel) for ph, snomed_code in tqdm(phenotype_list_snomed.items()))" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.348009Z", - "start_time": "2020-11-04T12:39:55.344704Z" - } - }, - "outputs": [], - "source": [ - "l10_snomed = {}\n", - "for ph in icd10_codes: l10_snomed.update({ph:icd10_codes[ph]})" - ] - }, - { - "cell_type": "raw", - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.468545Z", - "start_time": "2020-11-04T12:39:55.349545Z" - } - }, - "source": [ - "phenotype_list_basic = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"diabetes1\" : [\"Type 1 diabetes\"],\n", - " \"diabetes2\" : [\"Diabetes mellitus\", \"Type 2 diabetes\"],\n", - " \"chronic_kidney_disease\": [\"Chronic kidney disease\", \"chronic renal failure\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"migraine\": [\"Migraine\"],\n", - " \"rheumatoid_arthritis\": [\"Rheumatoid arthritis\"],\n", - " \"systemic_lupus_erythematosus\": [\"Systemic lupus erythematosus\"],\n", - " \"severe_mental_illness\": [\"Schizophrenia\", \"bipolar\", \"Major depressive disorder\"],\n", - " \"erectile_dysfunction\" : [\"Erectile dysfunction\"], \n", - "}\n", - "\n", - "l10_basic = phenotype_children(phecodes, phenotype_list_basic)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "l10_basic = {\n", - " \"myocardial_infarction\": ['I21', 'I22', 'I23', 'I24', 'I25'],\n", - " \"stroke\": ['G45', \"I63\", \"I64\"],\n", - " \"diabetes1\" : ['E10'],\n", - " \"diabetes2\" : ['E11', 'E12', 'E13', 'E14'],\n", - " \"chronic_kidney_disease\": [\"I12\", \"N18\", \"N19\"],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'migraine': ['G43', 'G44'],\n", - " 'rheumatoid_arthritis': ['J99', 'M05', 'M06', 'M08', 'M12', 'M13'],\n", - " \"systemic_lupus_erythematosus\": ['M32'],\n", - " 'severe_mental_illness': ['F20', 'F25', 'F30', 'F31', 'F32', 'F33', 'F44'],\n", - " \"erectile_dysfunction\" : ['F52', 'N48'], \n", - " \"liver_disease\":[\"K70\", \"K71\", \"K72\", \"K73\", \"K74\", \"K75\", \"K76\", \"K77\"],\n", - " \"dementia\":['F00', 'F01', 'F02', 'F03'],\n", - " \"copd\": ['J44']\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25'],\n", - " 'stroke': ['G45', 'I63', 'I64'],\n", - " 'diabetes1': ['E10'],\n", - " 'diabetes2': ['E11', 'E12', 'E13', 'E14'],\n", - " 'chronic_kidney_disease': ['I12', 'N18', 'N19'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'migraine': ['G43', 'G44'],\n", - " 'rheumatoid_arthritis': ['J99', 'M05', 'M06', 'M08', 'M12', 'M13'],\n", - " 'systemic_lupus_erythematosus': ['M32'],\n", - " 'severe_mental_illness': ['F20', 'F25', 'F30', 'F31', 'F32', 'F33', 'F44'],\n", - " 'erectile_dysfunction': ['F52', 'N48'],\n", - " 'liver_disease': ['K70', 'K71', 'K72', 'K73', 'K74', 'K75', 'K76', 'K77'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03'],\n", - " 'copd': ['J44']}" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "l10_basic" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.473556Z", - "start_time": "2020-11-04T12:39:55.471051Z" - } - }, - "outputs": [], - "source": [ - "l10_all = l10_basic\n", - "for key, value in l10_snomed.items(): \n", - " if key not in l10_basic: l10_all[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.620916Z", - "start_time": "2020-11-04T12:39:55.475137Z" - } - }, - "outputs": [], - "source": [ - "l10 = {k: v for k, v in l10_all.items() if len(v)!=0}\n", - "\n", - "#phenotype_list = {k: v for k, v in phenotype_list.items() if k in list(l10.keys())}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'phenotype_list.yaml'), 'w') as file: yaml.dump(l10, file, default_flow_style=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Self Reported" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.288198Z", - "start_time": "2020-11-04T12:43:13.264683Z" - } - }, - "outputs": [], - "source": [ - "coding609 = pd.read_csv(f\"{path}/mapping/codings/coding609.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import datetime, timedelta\n", - "\n", - "def datetime_from_dec_year(dec_year):\n", - " start = dec_year\n", - " year = int(start)\n", - " rem = start - year\n", - "\n", - " base = datetime(year, 1, 1)\n", - " result = base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)\n", - " #result.strftime(\"%Y-%m-%d\")\n", - " return result.date()\n", - "\n", - "def extract_map_self_reported(data, data_field, code_map):\n", - " pbar = tqdm(total=16)\n", - " ### codes\n", - " fields = [\"20002\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col = \"noncancer_illness_code_selfreported_f20002\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " codes = temp.rename(columns={col:\"code\"})\\\n", - " .assign(code=lambda x: x.code.astype(str))\\\n", - " .replace(\"None\", np.nan) \\\n", - " .replace(\"nan\", np.nan) \\\n", - " .dropna(subset=[\"code\"], axis=0)\\\n", - " .assign(code=lambda x: x.code.astype(int)) \\\n", - " .merge(code_map, how=\"left\",on=\"code\") \\\n", - " .dropna(subset=[\"meaning\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - " \n", - " ### dates\n", - " fields = [\"20008\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col=\"interpolated_year_when_noncancer_illness_first_diagnosed_f20008\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " dates = temp.rename(columns={col:\"date\"})\\\n", - " .dropna(subset=[\"date\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - "\n", - " dates = dates[dates.date!=-1]; pbar.update(1)\n", - " dates = dates[dates.date!=-3]; pbar.update(1)\n", - " dates.date = dates.date.apply(datetime_from_dec_year); pbar.update(1)\n", - " \n", - " test = codes.merge(dates, how=\"left\", on=[\"eid\", \"instance_index\"]).assign(origin=\"self_reported\").copy(); pbar.update(1)\n", - " \n", - " test[\"instance_index\"] = test[\"instance_index\"].astype(\"string\"); pbar.update(1)\n", - " test[['instance','n']] = test.instance_index.str.split(\"_\",expand=True); pbar.update(1)\n", - " pbar.close()\n", - " \n", - " return test[[\"eid\", \"origin\", 'instance','n', \"code\", \"meaning\", \"date\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "from tqdm.auto import tqdm" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:00.098893Z", - "start_time": "2020-11-04T12:43:13.432479Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4a6bf94594574b48b26a251987e4baf0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=16.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "codes_self_reported = extract_map_self_reported(data, data_field, coding609)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load records" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "codes_gp_records = pd.read_feather(f\"{data_path}/1_decoded/codes_gp_diagnoses_210119.feather\").drop(\"level\", axis=1)\n", - "codes_hospital_records = pd.read_feather(f\"{data_path}/1_decoded/codes_hes_diagnoses_210120.feather\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Combine diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:25.115010Z", - "start_time": "2020-11-04T12:46:08.961388Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdatelevel
01000018gp_read301F171F171976-01-01NaN
11000018gp_read302O800O801986-03-23NaN
21000018gp_read303O800O801989-05-25NaN
31000018gp_read304Z824Z821994-09-13NaN
41000018gp_read305Z867Z861994-09-13NaN
\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date level\n", - "0 1000018 gp_read3 0 1 F171 F17 1976-01-01 NaN\n", - "1 1000018 gp_read3 0 2 O800 O80 1986-03-23 NaN\n", - "2 1000018 gp_read3 0 3 O800 O80 1989-05-25 NaN\n", - "3 1000018 gp_read3 0 4 Z824 Z82 1994-09-13 NaN\n", - "4 1000018 gp_read3 0 5 Z867 Z86 1994-09-13 NaN" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes = codes_self_reported.append(codes_hospital_records).append(codes_gp_records).sort_values([\"eid\", \"date\"]).dropna(subset=[\"date\"], axis=0).reset_index(drop=True)\n", - "diagnoses_codes.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes.reset_index(drop=True).assign(eid = lambda x: x.eid.astype(int),\n", - " origin = lambda x: x.origin.astype(str),\n", - " instance = lambda x: x.instance.astype(int),\n", - " n = lambda x: x.n.astype(int),\n", - " code = lambda x: x.code.astype(str), \n", - " meaning = lambda x: x.meaning.astype(str))\\\n", - " .to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdatelevel
01000018gp_read301F171F171976-01-01NaN
11000018gp_read302O800O801986-03-23NaN
21000018gp_read303O800O801989-05-25NaN
31000018gp_read304Z824Z821994-09-13NaN
41000018gp_read305Z867Z861994-09-13NaN
...........................
320756216025198hes_icd10613['R945']R942018-12-092.0
320756226025198hes_icd10614['F171']F172018-12-092.0
320756236025198hes_icd10615['I10']I102018-12-092.0
320756246025198hes_icd10616['E780']E782018-12-092.0
320756256025198hes_icd10617['W802']W802018-12-093.0
\n", - "

32075626 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date \\\n", - "0 1000018 gp_read3 0 1 F171 F17 1976-01-01 \n", - "1 1000018 gp_read3 0 2 O800 O80 1986-03-23 \n", - "2 1000018 gp_read3 0 3 O800 O80 1989-05-25 \n", - "3 1000018 gp_read3 0 4 Z824 Z82 1994-09-13 \n", - "4 1000018 gp_read3 0 5 Z867 Z86 1994-09-13 \n", - "... ... ... ... .. ... ... ... \n", - "32075621 6025198 hes_icd10 6 13 ['R945'] R94 2018-12-09 \n", - "32075622 6025198 hes_icd10 6 14 ['F171'] F17 2018-12-09 \n", - "32075623 6025198 hes_icd10 6 15 ['I10'] I10 2018-12-09 \n", - "32075624 6025198 hes_icd10 6 16 ['E780'] E78 2018-12-09 \n", - "32075625 6025198 hes_icd10 6 17 ['W802'] W80 2018-12-09 \n", - "\n", - " level \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "32075621 2.0 \n", - "32075622 2.0 \n", - "32075623 2.0 \n", - "32075624 2.0 \n", - "32075625 3.0 \n", - "\n", - "[32075626 rows x 8 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:26.189927Z", - "start_time": "2020-11-04T12:46:25.117069Z" - } - }, - "outputs": [], - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=30, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = ph_series\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "phenotypes = l10\n", - "time0 = time0_col\n", - "diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - "\n", - "temp = data[[\"eid\"]].copy()\n", - "df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - "\n", - "df_phs = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)[0:100]))" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " for ph, ph_codes in tqdm(phenotypes.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True)\n", - " temp[ph] = temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T13:17:52.922023Z", - "start_time": "2020-11-04T12:46:26.191314Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8041d52f094f4730a924656c994c4820", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2662.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0bccfdff36944622b1a4b624acd2b955", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2662.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarctionstrokediabetes1diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosus...vulvitisvulvodyniavulvovaginitiswaldenström_macroglobulinemiawheezingwhite_blood_cell_disorderworried_wellwound_dehiscencewrist_joint_painxerostomia
01000018FalseFalseFalseFalseTrueFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseTrueFalseFalseFalse
11000020FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
21000037FalseFalseFalseFalseFalseFalseTrueTrueFalse...FalseFalseFalseFalseFalseFalseTrueFalseTrueFalse
31000043FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseTrueFalseFalseFalseFalseFalse
41000051FalseFalseFalseTrueFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

5 rows × 2663 columns

\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction stroke diabetes1 diabetes2 \\\n", - "0 1000018 False False False False \n", - "1 1000020 False False False False \n", - "2 1000037 False False False False \n", - "3 1000043 False False False False \n", - "4 1000051 False False False True \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "0 True False False \n", - "1 False False False \n", - "2 False False True \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus ... vulvitis \\\n", - "0 False False ... False \n", - "1 False False ... False \n", - "2 True False ... False \n", - "3 False False ... False \n", - "4 False False ... False \n", - "\n", - " vulvodynia vulvovaginitis waldenström_macroglobulinemia wheezing \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False True \n", - "4 False False False False \n", - "\n", - " white_blood_cell_disorder worried_well wound_dehiscence \\\n", - "0 False True False \n", - "1 False False False \n", - "2 False True False \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " wrist_joint_pain xerostomia \n", - "0 False False \n", - "1 False False \n", - "2 True False \n", - "3 False False \n", - "4 False False \n", - "\n", - "[5 rows x 2663 columns]" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses = had_diagnosis_before(basics, diagnoses_codes, l10, time0=time0_col)\n", - "print(len(diagnoses))\n", - "\n", - "diagnoses.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))\n", - "\n", - "diagnoses.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "# Add embeddings for Snomed Diagnoses" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get SNOMED - node2vec dict" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_embeddings = pd.read_csv(\"/data/analysis/ag-reils/steinfej/data/snomed_embeddings/snomed.emb.p1.q1.w20.l40.e200.graph_format.txt\", sep=\" \", header=None, skiprows=1)\n", - "snomed_embeddings.columns = [\"snomed_id\"]+list(snomed_embeddings.columns)[:-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
snomed_id012345678...190191192193194195196197198199
01292650010.0274560.171026-0.178822-0.0386670.2997770.082540-0.2012840.2151640.093241...0.2110300.4884750.082177-0.047102-0.086411-0.012141-0.258416-0.1132950.040249-0.116884
1360224006-0.0901870.086986-0.184378-0.028722-0.0102350.242439-0.0940090.203015-0.097894...0.1127500.333906-0.0181930.020459-0.1702260.277866-0.007079-0.0804190.162456-0.101768
21022720070.5534200.4609470.143925-0.053785-0.8495880.467587-0.654922-0.0107990.510141...0.1873710.2486070.079687-0.3541210.4126020.582461-0.7803650.045450-0.1965510.045745
3399370010.1231580.0198820.0508960.0373640.2004350.312911-0.338977-0.092584-0.167741...0.057770-0.012834-0.1397940.1805720.1907810.104039-0.358235-0.137954-0.236551-0.206458
4235830030.4231930.384338-0.0415030.116848-0.0550290.149064-0.092810-0.0501480.113122...0.162375-0.076505-0.274352-0.099204-0.281887-0.266345-0.020257-0.003843-0.008804-0.286832
\n", - "

5 rows × 201 columns

\n", - "
" - ], - "text/plain": [ - " snomed_id 0 1 2 3 4 5 \\\n", - "0 129265001 0.027456 0.171026 -0.178822 -0.038667 0.299777 0.082540 \n", - "1 360224006 -0.090187 0.086986 -0.184378 -0.028722 -0.010235 0.242439 \n", - "2 102272007 0.553420 0.460947 0.143925 -0.053785 -0.849588 0.467587 \n", - "3 39937001 0.123158 0.019882 0.050896 0.037364 0.200435 0.312911 \n", - "4 23583003 0.423193 0.384338 -0.041503 0.116848 -0.055029 0.149064 \n", - "\n", - " 6 7 8 ... 190 191 192 193 \\\n", - "0 -0.201284 0.215164 0.093241 ... 0.211030 0.488475 0.082177 -0.047102 \n", - "1 -0.094009 0.203015 -0.097894 ... 0.112750 0.333906 -0.018193 0.020459 \n", - "2 -0.654922 -0.010799 0.510141 ... 0.187371 0.248607 0.079687 -0.354121 \n", - "3 -0.338977 -0.092584 -0.167741 ... 0.057770 -0.012834 -0.139794 0.180572 \n", - "4 -0.092810 -0.050148 0.113122 ... 0.162375 -0.076505 -0.274352 -0.099204 \n", - "\n", - " 194 195 196 197 198 199 \n", - "0 -0.086411 -0.012141 -0.258416 -0.113295 0.040249 -0.116884 \n", - "1 -0.170226 0.277866 -0.007079 -0.080419 0.162456 -0.101768 \n", - "2 0.412602 0.582461 -0.780365 0.045450 -0.196551 0.045745 \n", - "3 0.190781 0.104039 -0.358235 -0.137954 -0.236551 -0.206458 \n", - "4 -0.281887 -0.266345 -0.020257 -0.003843 -0.008804 -0.286832 \n", - "\n", - "[5 rows x 201 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_embeddings.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_snomed = diagnoses.columns[13:].to_list()\n", - "diagnoses_snomed_dict = {}\n", - "for d in diagnoses_snomed: diagnoses_snomed_dict[d] = phenotype_list_snomed[d]\n", - " \n", - "snomed_codes_used = list(phenotype_list_snomed.values())\n", - "snomed_codes_emb = snomed_embeddings.snomed_id.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_id_array = snomed_embeddings[[\"snomed_id\"]].values\n", - "node2vec_array = snomed_embeddings.iloc[:, 1:].values" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "456f56d7481648e48b74e9e76b675f01", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=373286.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "snomed_arrays = {}\n", - "for sid, row in zip(tqdm(snomed_id_array), node2vec_array):\n", - " snomed_arrays[sid[0]] = row" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> Snomed dict" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "05ac46541972426da8a5b5f7fe461c6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "diagnoses_array = diagnoses[diagnoses_snomed].values\n", - "eid_array = diagnoses[[\"eid\"]].values\n", - "\n", - "from numba import jit\n", - "import numpy as np\n", - "\n", - "patient_diagnoses = {}\n", - "for eid, row in zip(tqdm(eid_array), diagnoses_array):\n", - " patient_diagnoses[eid[0]] = list(np.argwhere(row==True).flatten())\n", - "\n", - "#diagnoses.query(\"eid==1000092\")[diagnoses_snomed]" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f4c90d91d08e48119abcf8426cddd37e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_diagnoses_sid = {}\n", - "snomed_codes_emb_set = set(snomed_codes_emb)\n", - "for eid, p_d_col in tqdm(patient_diagnoses.items()):\n", - " diagnoses_list = [diagnoses_snomed[i] for i in p_d_col]\n", - " sid_list = [phenotype_list_snomed[i] for i in diagnoses_list]\n", - " sid_list = [sid for sid in sid_list if sid in snomed_codes_emb_set]\n", - " patient_diagnoses_sid[eid] = sid_list" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> node2vec average" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "47e934dc64334c82893d23b458108fbf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3335: RuntimeWarning: Mean of empty slice.\n", - " out=out, **kwargs)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/_methods.py:161: RuntimeWarning: invalid value encountered in double_scalars\n", - " ret = ret.dtype.type(ret / rcount)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_node2vec_dict = {}\n", - "for eid, sids in tqdm(patient_diagnoses_sid.items()):\n", - " array_list = [snomed_arrays[sid] for sid in sids]\n", - " patient_node2vec_dict[eid] = np.mean(array_list, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e1395c2d1bfc41f39697a8925b20d597", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ 0.37033895, 0.13321076, -0.10030267, 0.05625264, -0.08437331,\n", - " 0.11504787, -0.24833219, -0.11936529, 0.25239648, -0.32739932,\n", - " 0.06330914, -0.06493541, -0.28790415, -0.2885537 , 0.02546298,\n", - " -0.06123153, -0.17690672, -0.0867546 , -0.28337599, -0.08474496,\n", - " 0.31454532, -0.24158154, 0.15930864, 0.06124846, 0.07694602,\n", - " -0.13752803, 0.13671128, -0.27988751, -0.03987635, 0.03632156,\n", - " -0.13793361, -0.15857369, -0.16441636, 0.2412931 , 0.20070578,\n", - " -0.11412784, 0.02563965, -0.03560184, 0.17169744, -0.0153383 ,\n", - " 0.00117099, 0.1025362 , -0.06505568, 0.05646065, -0.02705149,\n", - " 0.04416442, -0.15798991, -0.10650637, 0.02082507, -0.21182802,\n", - " 0.13972325, -0.18089307, -0.12731068, 0.02907221, -0.19797107,\n", - " 0.19550177, 0.14941799, 0.21561857, -0.18085379, 0.10768238,\n", - " 0.12968045, 0.2082016 , 0.03561408, -0.01122218, -0.27099816,\n", - " -0.06029919, -0.18787618, 0.10084175, -0.07939234, -0.22951897,\n", - " -0.36536359, -0.01050854, -0.21419807, -0.23562986, 0.02380316,\n", - " 0.1213157 , -0.1601396 , 0.07218057, -0.04362593, -0.22303355,\n", - " -0.23844839, -0.14799905, 0.22346404, 0.14218655, 0.39873181,\n", - " -0.32965129, 0.19102432, -0.08894028, -0.20726567, 0.25343222,\n", - " 0.29939455, 0.20513029, 0.17430424, -0.05073184, 0.05827969,\n", - " 0.31626954, 0.0791522 , -0.21433214, 0.11027244, 0.0805151 ,\n", - " 0.08557279, 0.25260801, -0.00096969, -0.06177831, 0.0544524 ,\n", - " -0.17340027, 0.09731447, 0.09982385, -0.074546 , -0.10350239,\n", - " -0.25798929, 0.01222471, 0.1605315 , 0.00191767, 0.11642527,\n", - " -0.15387604, -0.01520803, 0.03220765, -0.13534233, 0.09154689,\n", - " 0.12562997, -0.01667786, -0.09286805, 0.14670483, -0.13097813,\n", - " -0.38270284, -0.0129984 , -0.06352304, 0.12521014, -0.17354363,\n", - " -0.16399127, 0.11488736, 0.39664734, 0.08557075, -0.24862126,\n", - " -0.05882866, 0.23174289, 0.01765143, -0.10257617, 0.01208248,\n", - " -0.06876405, -0.04180976, 0.07489962, -0.10724381, 0.29349823,\n", - " 0.17342743, -0.32044841, -0.01118798, 0.28508293, 0.16492201,\n", - " 0.03994952, -0.17309702, 0.0365077 , 0.08619365, -0.21749571,\n", - " 0.01038752, -0.21414902, -0.18092813, 0.28433131, -0.12601774,\n", - " -0.02147302, 0.51513453, 0.21506432, -0.12596341, -0.0413009 ,\n", - " 0.12595327, 0.08973215, -0.06285449, -0.03649041, 0.04217289,\n", - " -0.02532634, -0.21734533, -0.08211848, 0.14014083, 0.13635479,\n", - " -0.13163414, -0.08576438, -0.04016334, 0.23952563, -0.14895943,\n", - " 0.08564821, -0.04287149, 0.22135877, -0.06337237, -0.07189574,\n", - " -0.1004494 , 0.01225299, -0.13810014, -0.06814497, -0.16715941,\n", - " 0.07303671, 0.15891015, -0.04757821, -0.05777645, -0.0772216 ,\n", - " 0.16787738, -0.2112512 , -0.10142653, -0.19002809, -0.06400223])" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# create imputation vector\n", - "arrays = [patient_node2vec_dict[key] for key in list(patient_node2vec_dict)]\n", - "arrays_ok = [array for array in tqdm(arrays) if ~np.isnan(array).any()]\n", - "imp_vector = np.mean(arrays_ok, axis=0)\n", - "imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e2dd803c2e2a4cb68e71111979d235c2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "for eid, array in tqdm(patient_node2vec_dict.items()):\n", - " if np.isnan(array).any(): \n", - " patient_node2vec_dict[eid] = imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a82c47a8f87a4df1bc81b78496edee0a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "array_eids = [key for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "510554b8bed8456cbfd694b764286acb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "ind_ok = [np.array([1]) if ~np.isnan(array).any() else np.array([0]) for array in tqdm(arrays)]" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a85aec2f3e7644dc99c40781f999eb3c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "arrays_emb = [patient_node2vec_dict[key] for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_eids = np.reshape(np.stack(array_eids, axis=0),(-1,1)) \n", - "arrays_ind = np.stack(ind_ok, axis=0)\n", - "arrays_c = np.stack(arrays_emb, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_complete = np.concatenate([arrays_eids, arrays_ind, arrays_c], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_emb = pd.DataFrame(data=arrays_complete, columns=[\"eid\"]+[\"node2vec_available\"]+[f\"node2vec_{e}\" for e in list(range(0, 200))])" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidnode2vec_availablenode2vec_0node2vec_1node2vec_2node2vec_3node2vec_4node2vec_5node2vec_6node2vec_7...node2vec_190node2vec_191node2vec_192node2vec_193node2vec_194node2vec_195node2vec_196node2vec_197node2vec_198node2vec_199
01000018.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
11000020.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
21000037.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
31000043.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
41000051.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
..................................................................
5024996025150.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025006025165.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025016025173.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025026025182.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025036025198.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
\n", - "

502504 rows × 202 columns

\n", - "
" - ], - "text/plain": [ - " eid node2vec_available node2vec_0 node2vec_1 node2vec_2 \\\n", - "0 1000018.0 0.0 0.370339 0.133211 -0.100303 \n", - "1 1000020.0 0.0 0.370339 0.133211 -0.100303 \n", - "2 1000037.0 0.0 0.370339 0.133211 -0.100303 \n", - "3 1000043.0 0.0 0.370339 0.133211 -0.100303 \n", - "4 1000051.0 0.0 0.370339 0.133211 -0.100303 \n", - "... ... ... ... ... ... \n", - "502499 6025150.0 0.0 0.370339 0.133211 -0.100303 \n", - "502500 6025165.0 0.0 0.370339 0.133211 -0.100303 \n", - "502501 6025173.0 0.0 0.370339 0.133211 -0.100303 \n", - "502502 6025182.0 0.0 0.370339 0.133211 -0.100303 \n", - "502503 6025198.0 0.0 0.370339 0.133211 -0.100303 \n", - "\n", - " node2vec_3 node2vec_4 node2vec_5 node2vec_6 node2vec_7 ... \\\n", - "0 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "1 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "2 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "3 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "4 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "... ... ... ... ... ... ... \n", - "502499 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502500 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502501 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502502 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502503 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "\n", - " node2vec_190 node2vec_191 node2vec_192 node2vec_193 node2vec_194 \\\n", - "0 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "1 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "2 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "3 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "4 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "... ... ... ... ... ... \n", - "502499 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502500 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502501 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502502 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502503 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "\n", - " node2vec_195 node2vec_196 node2vec_197 node2vec_198 node2vec_199 \n", - "0 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "1 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "2 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "3 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "4 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "... ... ... ... ... ... \n", - "502499 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502500 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502501 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502502 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502503 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "\n", - "[502504 rows x 202 columns]" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_emb" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\n", - "diagnoses_emb = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"basics\": pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather')), \n", - " \"questionnaire\": pd.read_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather')), \n", - " \"measurements\": pd.read_feather(os.path.join(path, dataset_path, 'temp_measurements.feather')), \n", - " \"labs\": pd.read_feather(os.path.join(path, dataset_path, 'temp_labs.feather')), \n", - " \"family_history\": pd.read_feather(os.path.join(path, dataset_path, 'temp_family_history.feather')), \n", - " \"diagnoses\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather')),\n", - " # \"diagnoses_emb\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather')), \n", - " \"medications\": pd.read_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))}" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintFalseeidNaN
12age_at_recruitmentfloatFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentfloatFalsebasicsNaN
.....................
28572858surgical_dressingsboolFalsemedicationsNaN
28582859statinsboolFalsemedicationsNaN
28592860assboolFalsemedicationsNaN
28602861atypical_antipsychoticsboolFalsemedicationsNaN
28612862glucocorticoidsboolFalsemedicationsNaN
\n", - "

2862 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid int False \n", - "1 2 age_at_recruitment float False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment float False \n", - "... ... ... ... ... \n", - "2857 2858 surgical_dressings bool False \n", - "2858 2859 statins bool False \n", - "2859 2860 ass bool False \n", - "2860 2861 atypical_antipsychotics bool False \n", - "2861 2862 glucocorticoids bool False \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "2857 medications NaN \n", - "2858 medications NaN \n", - "2859 medications NaN \n", - "2860 medications NaN \n", - "2861 medications NaN \n", - "\n", - "[2862 rows x 6 columns]" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"int\", \"int64\":\"int\", \"float64\":\"float\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"bool\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exclusion Criteria" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline_excl = data_baseline.copy().query(\"myocardial_infarction == False & coronary_heart_disease == False & statins == False\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [], - "source": [ - "feature_dict = {}\n", - "for group in data_baseline_description.based_on.unique(): feature_dict[group] = data_baseline_description.query(\"based_on==@group\").covariate.to_list()\n", - "with open(os.path.join(path, dataset_path, 'feature_list.yaml'), 'w') as file: yaml.dump(feature_dict, file, default_flow_style=False, allow_unicode=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [], - "source": [ - "#feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_covariates.feather'))\n", - "#data_baseline_excl.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_excl.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_covariates_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:miniconda3-pl1.x]", - "language": "python", - "name": "conda-env-miniconda3-pl1.x-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_endpoints.ipynb b/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_endpoints.ipynb deleted file mode 100644 index 1d47044..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_endpoints.ipynb +++ /dev/null @@ -1,3022 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import os\n", - "import yaml\n", - "from tqdm.notebook import trange, tqdm\n", - "dataset_name = \"210212_cvd_gp\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.895222Z", - "start_time": "2020-11-04T12:31:49.891332Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "Path(dataset_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:33:14.171198Z", - "start_time": "2020-11-04T12:31:50.204540Z" - } - }, - "outputs": [], - "source": [ - "data = pd.read_feather(f\"{data_path}/1_decoded/ukb_data.feather\")\n", - "data_field = pd.read_feather(f\"{data_path}/1_decoded/ukb_data_field.feather\")\n", - "data_columns = data.columns.to_list()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mappings + Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.867152Z", - "start_time": "2020-11-04T12:33:16.878773Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502505\n", - "502504\n" - ] - } - ], - "source": [ - "# Drop obviouse missing data\n", - "print(len(data))\n", - "data = data.dropna(subset=[\"sex_f31_0_0\"], axis=0)\n", - "print(len(data))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Starting information" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.872216Z", - "start_time": "2020-11-04T12:34:05.869505Z" - } - }, - "outputs": [], - "source": [ - "#time0_col=\"birth_date\"\n", - "time0_col=\"date_of_attending_assessment_centre_f53_0_0\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Baseline covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.889725Z", - "start_time": "2020-11-04T12:34:05.874587Z" - } - }, - "outputs": [], - "source": [ - "def get_fields(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields) & data_field[\"field.tab\"].str.contains(\"f\\\\.\\\\d+\\\\.0\\\\.\\\\d\")].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_fields_all(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields)].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_data_fields(fields, data, data_field):\n", - " f = get_fields(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()\n", - "\n", - "def get_data_fields_all(fields, data, data_field):\n", - " f = get_fields_all(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather')).drop(\"level\", axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "death_codes = pd.read_feather(f\"{data_path}/1_decoded/codes_death_records_210115.feather\").query(\"level==1\").drop(\"level\", axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "endpoint_codes = pd.concat([diagnoses_codes, death_codes[diagnoses_codes.columns]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.628580Z", - "start_time": "2020-11-04T12:33:33.036Z" - } - }, - "outputs": [], - "source": [ - "### define in snomed and get icd codes from there" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Hospital admissions" - ] - }, - { - "cell_type": "raw", - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.629459Z", - "start_time": "2020-11-04T12:33:34.764Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "endpoint_list = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"cancer_breast\" : [\"Breast Cancer\"],\n", - " \"diabetes\" : [\"Diabetes\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"copd\": [\"COPD\"],\n", - " \"dementia\":[\"dementia\"]\n", - "}\n", - "\n", - "endpoint_list = phenotype_children(phecodes, endpoint_list)\n", - "\n", - "\n", - "\n", - "endpoint_list[\"cancer_breast\"] = [\"C50\"]\n", - "endpoint_list[\"copd\"] = [\"J44\"]\n", - "endpoint_list[\"diabetes\"] = [\"E10\", \"E11\", \"E12\", \"E13\", \"E14\"]\n", - "endpoint_list[\"atrial_fibrillation\"] = [\"I47\", \"I48\"]\n", - "\n", - "\n", - "with open(os.path.join(path, dataset_path, 'endpoint_list.yaml'), 'w') as file: yaml.dump(endpoint_list, file, default_flow_style=False)\n", - "endpoint_list" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25'],\n", - " 'stroke': ['G45', 'I63', 'I64'],\n", - " 'diabetes': ['E10', 'E11', 'E12', 'E13', 'E14'],\n", - " 'diabetes1': ['E10'],\n", - " 'diabetes2': ['E11', 'E12', 'E13', 'E14'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'migraine': ['G43', 'G44'],\n", - " 'rheumatoid_arthritis': ['J99', 'M05', 'M06', 'M08', 'M12', 'M13'],\n", - " 'systemic_lupus_erythematosus': ['M32'],\n", - " 'severe_mental_illness': ['F20', 'F25', 'F30', 'F31', 'F32', 'F33', 'F44'],\n", - " 'erectile_dysfunction': ['F52', 'N48'],\n", - " 'chronic_kidney_disease': ['I12', 'N18', 'N19'],\n", - " 'liver_disease': ['K70', 'K71', 'K72', 'K73', 'K74', 'K75', 'K76', 'K77'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03'],\n", - " 'copd': ['J44']}" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoint_list = {\n", - " \"myocardial_infarction\": ['I21', 'I22', 'I23', 'I24', 'I25'],\n", - " \"stroke\": ['G45', \"I63\", \"I64\"],\n", - " \"diabetes\" : ['E10', 'E11', 'E12', 'E13', 'E14'],\n", - " \"diabetes1\" : ['E10'],\n", - " \"diabetes2\" : ['E11', 'E12', 'E13', 'E14'],\n", - " \"atrial_fibrillation\": ['I47', 'I48'],\n", - " 'migraine': ['G43', 'G44'],\n", - " 'rheumatoid_arthritis': ['J99', 'M05', 'M06', 'M08', 'M12', 'M13'],\n", - " \"systemic_lupus_erythematosus\": ['M32'],\n", - " 'severe_mental_illness': ['F20', 'F25', 'F30', 'F31', 'F32', 'F33', 'F44'],\n", - " \"erectile_dysfunction\" : ['F52', 'N48'], \n", - " \"chronic_kidney_disease\": [\"I12\", \"N18\", \"N19\"],\n", - " \"liver_disease\":[\"K70\", \"K71\", \"K72\", \"K73\", \"K74\", \"K75\", \"K76\", \"K77\"],\n", - " \"dementia\":['F00', 'F01', 'F02', 'F03'],\n", - " \"copd\": ['J44']}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'endpoint_list.yaml'), 'w') as file: yaml.dump(endpoint_list, file, default_flow_style=False)\n", - "endpoint_list" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "from dateutil.relativedelta import relativedelta\n", - "import datetime\n", - "\n", - "def extract_endpoints_tte(data, diagnoses_codes, endpoint_list, time0_col, level=None):\n", - " if level is not None: diagnoses_codes = diagnoses_codes.query(\"level==@level\")\n", - " diagnoses_codes_time0 = diagnoses_codes.merge(data[[\"eid\", time0_col]], how=\"left\", on=\"eid\")\n", - " \n", - " #cens_time_right = max(diagnoses_codes.sort_values('date').groupby('origin').tail(1).date.to_list())\n", - " cens_time_right = datetime.date(2020, 9, 30)\n", - " print(f\"t_0: {time0_col}\")\n", - " print(f\"t_cens: {cens_time_right}\")\n", - " \n", - " df_interval = diagnoses_codes_time0[(diagnoses_codes_time0.date > diagnoses_codes_time0[time0_col]) & \n", - " (diagnoses_codes_time0.date < cens_time_right)]\n", - " \n", - " temp = data[[\"eid\", time0_col]].copy()\n", - " for ph, ph_codes in tqdm(endpoint_list.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " ph_df = df_interval[df_interval.meaning.str.contains(regex, case=False)] \\\n", - " .sort_values('date').groupby('eid').head(1).assign(phenotype=1, date=lambda x: x.date)\n", - " temp_ph = temp.merge(ph_df, how=\"left\", on=\"eid\").fillna(0)\n", - " temp[ph+\"_event\"], temp[ph+\"_event_date\"] = temp_ph.phenotype, temp_ph.date\n", - " \n", - " fill_date = {ph+\"_event_date\" : lambda x: [cens_time_right if event==0 else event_date for event, event_date in zip(x[ph+\"_event\"], x[ph+\"_event_date\"])]}\n", - " calc_tte = {ph+\"_event_time\" : lambda x: [(event_date-time0).days/365.25 for time0, event_date in zip(x[time0_col], x[ph+\"_event_date\"])]}\n", - " \n", - " temp = temp.assign(**fill_date).assign(**calc_tte).drop([ph+\"_event_date\"], axis=1)\n", - " \n", - " temp = temp.drop([time0_col], axis=1) \n", - " \n", - " return temp.drop_duplicates()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: date_of_attending_assessment_centre_f53_0_0\n", - "t_cens: 2020-09-30\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "18bf96a8c26844d3ae00147005bacfc3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=15.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timediabetes_eventdiabetes_event_timediabetes1_eventdiabetes1_event_timediabetes2_event...erectile_dysfunction_eventerectile_dysfunction_event_timechronic_kidney_disease_eventchronic_kidney_disease_event_timeliver_disease_eventliver_disease_event_timedementia_eventdementia_event_timecopd_eventcopd_event_time
010000180.010.8829570.010.8829570.010.8829570.010.8829570.0...0.010.8829570.010.8829570.010.8829571.01.3059550.010.882957
110000200.012.6132790.012.6132790.012.6132790.012.6132790.0...0.012.6132790.012.6132790.012.6132790.012.6132790.012.613279
210000370.011.8850100.011.8850100.011.8850100.011.8850100.0...0.011.8850100.011.8850100.011.8850100.011.8850100.011.885010
310000431.05.1225190.011.3264890.011.3264890.011.3264890.0...0.011.3264890.011.3264890.011.3264890.011.3264891.00.292950
410000510.014.3080080.014.3080081.04.7227930.014.3080081.0...0.014.3080081.04.7227930.014.3080080.014.3080081.04.840520
\n", - "

5 rows × 31 columns

\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event myocardial_infarction_event_time \\\n", - "0 1000018 0.0 10.882957 \n", - "1 1000020 0.0 12.613279 \n", - "2 1000037 0.0 11.885010 \n", - "3 1000043 1.0 5.122519 \n", - "4 1000051 0.0 14.308008 \n", - "\n", - " stroke_event stroke_event_time diabetes_event diabetes_event_time \\\n", - "0 0.0 10.882957 0.0 10.882957 \n", - "1 0.0 12.613279 0.0 12.613279 \n", - "2 0.0 11.885010 0.0 11.885010 \n", - "3 0.0 11.326489 0.0 11.326489 \n", - "4 0.0 14.308008 1.0 4.722793 \n", - "\n", - " diabetes1_event diabetes1_event_time diabetes2_event ... \\\n", - "0 0.0 10.882957 0.0 ... \n", - "1 0.0 12.613279 0.0 ... \n", - "2 0.0 11.885010 0.0 ... \n", - "3 0.0 11.326489 0.0 ... \n", - "4 0.0 14.308008 1.0 ... \n", - "\n", - " erectile_dysfunction_event erectile_dysfunction_event_time \\\n", - "0 0.0 10.882957 \n", - "1 0.0 12.613279 \n", - "2 0.0 11.885010 \n", - "3 0.0 11.326489 \n", - "4 0.0 14.308008 \n", - "\n", - " chronic_kidney_disease_event chronic_kidney_disease_event_time \\\n", - "0 0.0 10.882957 \n", - "1 0.0 12.613279 \n", - "2 0.0 11.885010 \n", - "3 0.0 11.326489 \n", - "4 1.0 4.722793 \n", - "\n", - " liver_disease_event liver_disease_event_time dementia_event \\\n", - "0 0.0 10.882957 1.0 \n", - "1 0.0 12.613279 0.0 \n", - "2 0.0 11.885010 0.0 \n", - "3 0.0 11.326489 0.0 \n", - "4 0.0 14.308008 0.0 \n", - "\n", - " dementia_event_time copd_event copd_event_time \n", - "0 1.305955 0.0 10.882957 \n", - "1 12.613279 0.0 12.613279 \n", - "2 11.885010 0.0 11.885010 \n", - "3 11.326489 1.0 0.292950 \n", - "4 14.308008 1.0 4.840520 \n", - "\n", - "[5 rows x 31 columns]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "basics = pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))\n", - "endpoints_diagnoses = extract_endpoints_tte(basics, endpoint_codes, endpoint_list, time0_col)\n", - "print(len(endpoints_diagnoses))\n", - "endpoints_diagnoses.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Death registry" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "death_list = {\n", - " \"death_allcause\":[],\n", - " \"death_cvd\":['I{:02}'.format(ID+1) for ID in range(0, 98)],\n", - "}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'death_list.yaml'), 'w') as file: yaml.dump(death_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: date_of_attending_assessment_centre_f53_0_0\n", - "t_cens: 2020-09-30\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1f3a468059214c8d83558a52ab31f2c3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_death = extract_endpoints_tte(basics, death_codes, death_list, time0_col)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SCORES" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list = {\n", - " \"SCORE\":['I{:02}'.format(ID) for ID in [10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 44, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]],\n", - " \"ASCVD\":['I{:02}'.format(ID) for ID in [20, 21, 22, 23, 24, 25, 63]],\n", - " \"QRISK3\":[\"G45\", \"I20\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"],\n", - " \"MACE\":[\"G45\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"], \n", - "}\n", - "with open(os.path.join(path, dataset_path, 'scores_list.yaml'), 'w') as file: yaml.dump(scores_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: date_of_attending_assessment_centre_f53_0_0\n", - "t_cens: 2020-09-30\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b97320f9aebb49f281e716a58eb5ff37", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "t_0: date_of_attending_assessment_centre_f53_0_0\n", - "t_cens: 2020-09-30\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "265cac92d16046638a27ae9a295848f6", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "death_scores = extract_endpoints_tte(basics, death_codes, scores_list, time0_col=time0_col)\n", - "endpoint_scores = extract_endpoints_tte(basics, endpoint_codes, scores_list, time0_col=time0_col)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_scores_all = death_scores[[\"eid\", \"SCORE_event\", \"SCORE_event_time\"]].merge(endpoint_scores[[\"eid\", \"ASCVD_event\", \"ASCVD_event_time\", \"QRISK3_event\", \"QRISK3_event_time\", \"MACE_event\", \"MACE_event_time\"]], on=\"eid\")\n", - "endpoints_scores_all.to_feather(os.path.join(path, dataset_path, 'temp_endpoints_scores_all.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ESC SCORE (Conroy 2003)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5540\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
4510004631.06.1656401.06.0698151.06.0698151.06.069815
8310008411.011.0034220.012.0766601.010.9787821.010.978782
10210010311.06.5352501.05.4017801.05.4017801.05.401780
12210012371.02.1327861.02.1327861.02.1327861.02.132786
17610017771.07.2388771.07.2224501.07.2224500.011.364819
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time ASCVD_event ASCVD_event_time \\\n", - "45 1000463 1.0 6.165640 1.0 6.069815 \n", - "83 1000841 1.0 11.003422 0.0 12.076660 \n", - "102 1001031 1.0 6.535250 1.0 5.401780 \n", - "122 1001237 1.0 2.132786 1.0 2.132786 \n", - "176 1001777 1.0 7.238877 1.0 7.222450 \n", - "\n", - " QRISK3_event QRISK3_event_time MACE_event MACE_event_time \n", - "45 1.0 6.069815 1.0 6.069815 \n", - "83 1.0 10.978782 1.0 10.978782 \n", - "102 1.0 5.401780 1.0 5.401780 \n", - "122 1.0 2.132786 1.0 2.132786 \n", - "176 1.0 7.222450 0.0 11.364819 " - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"SCORE\"\n", - "print(len(endpoints_scores_all.query(score+\"_event==1\")))\n", - "endpoints_scores_all.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ASCVD (Goff 2014)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62937\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
210000370.011.8850101.07.9698841.07.9698840.011.885010
310000430.011.3264891.05.1225191.05.1225191.05.122519
610000790.012.5366191.01.0540731.01.0540730.012.536619
2210002330.012.1533201.03.6714581.03.6714581.03.671458
3010003190.010.7953461.010.2039701.010.2039701.010.203970
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time ASCVD_event ASCVD_event_time \\\n", - "2 1000037 0.0 11.885010 1.0 7.969884 \n", - "3 1000043 0.0 11.326489 1.0 5.122519 \n", - "6 1000079 0.0 12.536619 1.0 1.054073 \n", - "22 1000233 0.0 12.153320 1.0 3.671458 \n", - "30 1000319 0.0 10.795346 1.0 10.203970 \n", - "\n", - " QRISK3_event QRISK3_event_time MACE_event MACE_event_time \n", - "2 1.0 7.969884 0.0 11.885010 \n", - "3 1.0 5.122519 1.0 5.122519 \n", - "6 1.0 1.054073 0.0 12.536619 \n", - "22 1.0 3.671458 1.0 3.671458 \n", - "30 1.0 10.203970 1.0 10.203970 " - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"ASCVD\"\n", - "print(len(endpoints_scores_all.query(score+\"_event==1\")))\n", - "endpoints_scores_all.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### UK QRISK3 (2017)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "68413\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
210000370.011.8850101.07.9698841.07.9698840.011.885010
310000430.011.3264891.05.1225191.05.1225191.05.122519
610000790.012.5366191.01.0540731.01.0540730.012.536619
2210002330.012.1533201.03.6714581.03.6714581.03.671458
3010003190.010.7953461.010.2039701.010.2039701.010.203970
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time ASCVD_event ASCVD_event_time \\\n", - "2 1000037 0.0 11.885010 1.0 7.969884 \n", - "3 1000043 0.0 11.326489 1.0 5.122519 \n", - "6 1000079 0.0 12.536619 1.0 1.054073 \n", - "22 1000233 0.0 12.153320 1.0 3.671458 \n", - "30 1000319 0.0 10.795346 1.0 10.203970 \n", - "\n", - " QRISK3_event QRISK3_event_time MACE_event MACE_event_time \n", - "2 1.0 7.969884 0.0 11.885010 \n", - "3 1.0 5.122519 1.0 5.122519 \n", - "6 1.0 1.054073 0.0 12.536619 \n", - "22 1.0 3.671458 1.0 3.671458 \n", - "30 1.0 10.203970 1.0 10.203970 " - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"QRISK3\"\n", - "print(len(endpoints_scores_all.query(score+\"_event==1\")))\n", - "endpoints_scores_all.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MACE (2020)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "57869\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
310000430.011.3264891.05.1225191.05.1225191.05.122519
2210002330.012.1533201.03.6714581.03.6714581.03.671458
3010003190.010.7953461.010.2039701.010.2039701.010.203970
4510004631.06.1656401.06.0698151.06.0698151.06.069815
7210007310.011.3210131.011.2498291.011.2498291.011.249829
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time ASCVD_event ASCVD_event_time \\\n", - "3 1000043 0.0 11.326489 1.0 5.122519 \n", - "22 1000233 0.0 12.153320 1.0 3.671458 \n", - "30 1000319 0.0 10.795346 1.0 10.203970 \n", - "45 1000463 1.0 6.165640 1.0 6.069815 \n", - "72 1000731 0.0 11.321013 1.0 11.249829 \n", - "\n", - " QRISK3_event QRISK3_event_time MACE_event MACE_event_time \n", - "3 1.0 5.122519 1.0 5.122519 \n", - "22 1.0 3.671458 1.0 3.671458 \n", - "30 1.0 10.203970 1.0 10.203970 \n", - "45 1.0 6.069815 1.0 6.069815 \n", - "72 1.0 11.249829 1.0 11.249829 " - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"MACE\"\n", - "print(len(endpoints_scores_all.query(score+\"_event==1\")))\n", - "endpoints_scores_all.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"endpoints_diagnoses\":endpoints_diagnoses, \n", - " \"endpoints_death\":endpoints_death, \n", - " \"endpoints_scores_all\":endpoints_scores_all}" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['myocardial_infarction', 'stroke', 'diabetes', 'diabetes1', 'diabetes2', 'atrial_fibrillation', 'migraine', 'rheumatoid_arthritis', 'systemic_lupus_erythematosus', 'severe_mental_illness', 'erectile_dysfunction', 'chronic_kidney_disease', 'liver_disease', 'dementia', 'copd', 'death_allcause', 'death_cvd', 'SCORE', 'ASCVD', 'QRISK3', 'MACE']\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))\n", - "endpoint_columns = [c[:-11] for c in data_baseline.columns.tolist() if \"_event_time\" in c]\n", - "print(endpoint_columns)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Competing Events" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2b97c16289c6405c87f89134f7e1f106", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=21.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# endpoint < death -> 1\n", - "# death < endpoint -> 2\n", - "# time min(endpoint_time, death_time) -> time\n", - "def event_calc(endpoint, endpoint_time, death, death_time):\n", - " endpoint = int(endpoint)\n", - " death = int(death)\n", - " if (endpoint==0) and (death==0): \n", - " return 0.0\n", - " if (endpoint==1) and (death==0): \n", - " return 1.0\n", - " elif (endpoint==0) and (death==1): \n", - " return 2.0\n", - " elif (endpoint==1) and (death==1) and (endpoint_time<=death_time):\n", - " return float(1)\n", - " elif (endpoint==1) and (death==1) and (death_time\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ASCVD_eventASCVD_comp_eventMACE_eventMACE_comp_eventQRISK3_eventQRISK3_comp_eventSCORE_eventSCORE_comp_eventatrial_fibrillation_eventatrial_fibrillation_comp_event...myocardial_infarction_eventmyocardial_infarction_comp_eventrheumatoid_arthritis_eventrheumatoid_arthritis_comp_eventsevere_mental_illness_eventsevere_mental_illness_comp_eventstroke_eventstroke_comp_eventsystemic_lupus_erythematosus_eventsystemic_lupus_erythematosus_comp_event
00.00.00.00.00.00.00.00.00.00.0...0.00.00.00.01.01.00.00.00.00.0
10.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
21.01.00.00.01.01.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
31.01.01.01.01.01.00.00.00.00.0...1.01.00.00.00.00.00.00.00.00.0
40.00.00.00.00.00.00.00.00.00.0...0.00.01.01.00.00.00.00.00.00.0
..................................................................
5024990.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
5025000.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
5025010.00.00.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
5025020.00.00.00.00.00.00.00.00.00.0...0.00.01.01.00.00.00.00.00.00.0
5025030.02.00.02.00.02.00.02.00.02.0...0.02.00.02.00.02.00.02.00.02.0
\n", - "

502504 rows × 41 columns

\n", - "" - ], - "text/plain": [ - " ASCVD_event ASCVD_comp_event MACE_event MACE_comp_event \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 1.0 1.0 0.0 0.0 \n", - "3 1.0 1.0 1.0 1.0 \n", - "4 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... \n", - "502499 0.0 0.0 0.0 0.0 \n", - "502500 0.0 0.0 0.0 0.0 \n", - "502501 0.0 0.0 0.0 0.0 \n", - "502502 0.0 0.0 0.0 0.0 \n", - "502503 0.0 2.0 0.0 2.0 \n", - "\n", - " QRISK3_event QRISK3_comp_event SCORE_event SCORE_comp_event \\\n", - "0 0.0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 0.0 \n", - "2 1.0 1.0 0.0 0.0 \n", - "3 1.0 1.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 0.0 \n", - "... ... ... ... ... \n", - "502499 0.0 0.0 0.0 0.0 \n", - "502500 0.0 0.0 0.0 0.0 \n", - "502501 0.0 0.0 0.0 0.0 \n", - "502502 0.0 0.0 0.0 0.0 \n", - "502503 0.0 2.0 0.0 2.0 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_comp_event ... \\\n", - "0 0.0 0.0 ... \n", - "1 0.0 0.0 ... \n", - "2 0.0 0.0 ... \n", - "3 0.0 0.0 ... \n", - "4 0.0 0.0 ... \n", - "... ... ... ... \n", - "502499 0.0 0.0 ... \n", - "502500 0.0 0.0 ... \n", - "502501 0.0 0.0 ... \n", - "502502 0.0 0.0 ... \n", - "502503 0.0 2.0 ... \n", - "\n", - " myocardial_infarction_event myocardial_infarction_comp_event \\\n", - "0 0.0 0.0 \n", - "1 0.0 0.0 \n", - "2 0.0 0.0 \n", - "3 1.0 1.0 \n", - "4 0.0 0.0 \n", - "... ... ... \n", - "502499 0.0 0.0 \n", - "502500 0.0 0.0 \n", - "502501 0.0 0.0 \n", - "502502 0.0 0.0 \n", - "502503 0.0 2.0 \n", - "\n", - " rheumatoid_arthritis_event rheumatoid_arthritis_comp_event \\\n", - "0 0.0 0.0 \n", - "1 0.0 0.0 \n", - "2 0.0 0.0 \n", - "3 0.0 0.0 \n", - "4 1.0 1.0 \n", - "... ... ... \n", - "502499 0.0 0.0 \n", - "502500 0.0 0.0 \n", - "502501 0.0 0.0 \n", - "502502 1.0 1.0 \n", - "502503 0.0 2.0 \n", - "\n", - " severe_mental_illness_event severe_mental_illness_comp_event \\\n", - "0 1.0 1.0 \n", - "1 0.0 0.0 \n", - "2 0.0 0.0 \n", - "3 0.0 0.0 \n", - "4 0.0 0.0 \n", - "... ... ... \n", - "502499 0.0 0.0 \n", - "502500 0.0 0.0 \n", - "502501 0.0 0.0 \n", - "502502 0.0 0.0 \n", - "502503 0.0 2.0 \n", - "\n", - " stroke_event stroke_comp_event systemic_lupus_erythematosus_event \\\n", - "0 0.0 0.0 0.0 \n", - "1 0.0 0.0 0.0 \n", - "2 0.0 0.0 0.0 \n", - "3 0.0 0.0 0.0 \n", - "4 0.0 0.0 0.0 \n", - "... ... ... ... \n", - "502499 0.0 0.0 0.0 \n", - "502500 0.0 0.0 0.0 \n", - "502501 0.0 0.0 0.0 \n", - "502502 0.0 0.0 0.0 \n", - "502503 0.0 2.0 0.0 \n", - "\n", - " systemic_lupus_erythematosus_comp_event \n", - "0 0.0 \n", - "1 0.0 \n", - "2 0.0 \n", - "3 0.0 \n", - "4 0.0 \n", - "... ... \n", - "502499 0.0 \n", - "502500 0.0 \n", - "502501 0.0 \n", - "502502 0.0 \n", - "502503 2.0 \n", - "\n", - "[502504 rows x 41 columns]" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline[[f\"{c}_event\" for c in sorted([c[:-11] for c in data_baseline.columns.tolist() if \"_event_time\" in c])]]" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidMACE_eventMACE_event_timeMACE_comp_eventMACE_comp_event_time
1310001440.012.0410682.03.523614
2110002210.010.9486652.06.891170
4910005000.014.4503762.012.279261
5910006080.011.4770702.02.507871
6710006860.013.0540732.010.318960
..................
50243060244680.011.5400412.07.252567
50244060245660.010.6584532.02.329911
50244560246110.010.3244352.00.577687
50245060246670.010.3162222.02.431211
50250360251980.010.6776182.08.867899
\n", - "

21407 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " eid MACE_event MACE_event_time MACE_comp_event \\\n", - "13 1000144 0.0 12.041068 2.0 \n", - "21 1000221 0.0 10.948665 2.0 \n", - "49 1000500 0.0 14.450376 2.0 \n", - "59 1000608 0.0 11.477070 2.0 \n", - "67 1000686 0.0 13.054073 2.0 \n", - "... ... ... ... ... \n", - "502430 6024468 0.0 11.540041 2.0 \n", - "502440 6024566 0.0 10.658453 2.0 \n", - "502445 6024611 0.0 10.324435 2.0 \n", - "502450 6024667 0.0 10.316222 2.0 \n", - "502503 6025198 0.0 10.677618 2.0 \n", - "\n", - " MACE_comp_event_time \n", - "13 3.523614 \n", - "21 6.891170 \n", - "49 12.279261 \n", - "59 2.507871 \n", - "67 10.318960 \n", - "... ... \n", - "502430 7.252567 \n", - "502440 2.329911 \n", - "502445 0.577687 \n", - "502450 2.431211 \n", - "502503 8.867899 \n", - "\n", - "[21407 rows x 5 columns]" - ] - }, - "execution_count": 127, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline[data_baseline.death_allcause_event==1][[\"eid\", \"MACE_event\", \"MACE_event_time\", \"MACE_comp_event\", \"MACE_comp_event_time\"]].query(\"MACE_event==0\")" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timediabetes_eventdiabetes_event_timediabetes1_eventdiabetes1_event_timediabetes2_event...death_cvd_comp_eventdeath_cvd_comp_event_timeSCORE_comp_eventSCORE_comp_event_timeASCVD_comp_eventASCVD_comp_event_timeQRISK3_comp_eventQRISK3_comp_event_timeMACE_comp_eventMACE_comp_event_time
count5.025040e+05502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000...502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000502504.000000
mean3.512606e+060.09286511.0950970.03039411.5043500.08811111.0481870.01978111.5257290.086529...0.11470811.3903890.11687911.3903890.21027710.6418070.21865110.5676880.20036710.747562
std1.450653e+060.2902432.2745760.1716681.4501340.2834562.4306260.1392471.4802950.281143...0.4506241.5998840.4572441.5998840.5010942.8310190.5033432.9140480.4954082.669474
min1.000018e+060.0000000.0027380.0000000.0027380.0000000.0027380.0000000.0027380.000000...0.0000000.0109510.0000000.0109510.0000000.0027380.0000000.0027380.0000000.002738
25%2.256298e+060.00000010.7898700.00000010.9240250.00000010.8008210.00000010.9431900.000000...0.00000010.8665300.00000010.8665300.00000010.5325120.00000010.5051330.00000010.559890
50%3.512620e+060.00000011.5564680.00000011.6331280.00000011.5619440.00000011.6522930.000000...0.00000011.5920600.00000011.5920600.00000011.4277890.00000011.4058860.00000011.444216
75%4.768908e+060.00000012.2902120.00000012.3367560.00000012.2956880.00000012.3449690.000000...0.00000012.3039010.00000012.3039010.00000012.2190280.00000012.2080770.00000012.221766
max6.025198e+061.00000014.5516771.00000014.5516771.00000014.5516771.00000014.5516771.000000...2.00000014.5516772.00000014.5516772.00000014.5516772.00000014.5516772.00000014.551677
\n", - "

8 rows × 83 columns

\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event \\\n", - "count 5.025040e+05 502504.000000 \n", - "mean 3.512606e+06 0.092865 \n", - "std 1.450653e+06 0.290243 \n", - "min 1.000018e+06 0.000000 \n", - "25% 2.256298e+06 0.000000 \n", - "50% 3.512620e+06 0.000000 \n", - "75% 4.768908e+06 0.000000 \n", - "max 6.025198e+06 1.000000 \n", - "\n", - " myocardial_infarction_event_time stroke_event stroke_event_time \\\n", - "count 502504.000000 502504.000000 502504.000000 \n", - "mean 11.095097 0.030394 11.504350 \n", - "std 2.274576 0.171668 1.450134 \n", - "min 0.002738 0.000000 0.002738 \n", - "25% 10.789870 0.000000 10.924025 \n", - "50% 11.556468 0.000000 11.633128 \n", - "75% 12.290212 0.000000 12.336756 \n", - "max 14.551677 1.000000 14.551677 \n", - "\n", - " diabetes_event diabetes_event_time diabetes1_event \\\n", - "count 502504.000000 502504.000000 502504.000000 \n", - "mean 0.088111 11.048187 0.019781 \n", - "std 0.283456 2.430626 0.139247 \n", - "min 0.000000 0.002738 0.000000 \n", - "25% 0.000000 10.800821 0.000000 \n", - "50% 0.000000 11.561944 0.000000 \n", - "75% 0.000000 12.295688 0.000000 \n", - "max 1.000000 14.551677 1.000000 \n", - "\n", - " diabetes1_event_time diabetes2_event ... death_cvd_comp_event \\\n", - "count 502504.000000 502504.000000 ... 502504.000000 \n", - "mean 11.525729 0.086529 ... 0.114708 \n", - "std 1.480295 0.281143 ... 0.450624 \n", - "min 0.002738 0.000000 ... 0.000000 \n", - "25% 10.943190 0.000000 ... 0.000000 \n", - "50% 11.652293 0.000000 ... 0.000000 \n", - "75% 12.344969 0.000000 ... 0.000000 \n", - "max 14.551677 1.000000 ... 2.000000 \n", - "\n", - " death_cvd_comp_event_time SCORE_comp_event SCORE_comp_event_time \\\n", - "count 502504.000000 502504.000000 502504.000000 \n", - "mean 11.390389 0.116879 11.390389 \n", - "std 1.599884 0.457244 1.599884 \n", - "min 0.010951 0.000000 0.010951 \n", - "25% 10.866530 0.000000 10.866530 \n", - "50% 11.592060 0.000000 11.592060 \n", - "75% 12.303901 0.000000 12.303901 \n", - "max 14.551677 2.000000 14.551677 \n", - "\n", - " ASCVD_comp_event ASCVD_comp_event_time QRISK3_comp_event \\\n", - "count 502504.000000 502504.000000 502504.000000 \n", - "mean 0.210277 10.641807 0.218651 \n", - "std 0.501094 2.831019 0.503343 \n", - "min 0.000000 0.002738 0.000000 \n", - "25% 0.000000 10.532512 0.000000 \n", - "50% 0.000000 11.427789 0.000000 \n", - "75% 0.000000 12.219028 0.000000 \n", - "max 2.000000 14.551677 2.000000 \n", - "\n", - " QRISK3_comp_event_time MACE_comp_event MACE_comp_event_time \n", - "count 502504.000000 502504.000000 502504.000000 \n", - "mean 10.567688 0.200367 10.747562 \n", - "std 2.914048 0.495408 2.669474 \n", - "min 0.002738 0.000000 0.002738 \n", - "25% 10.505133 0.000000 10.559890 \n", - "50% 11.405886 0.000000 11.444216 \n", - "75% 12.208077 0.000000 12.221766 \n", - "max 14.551677 2.000000 14.551677 \n", - "\n", - "[8 rows x 83 columns]" - ] - }, - "execution_count": 128, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline.describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 129, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 131, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timediabetes_eventdiabetes_event_timediabetes1_eventdiabetes1_event_timediabetes2_event...death_cvd_comp_eventdeath_cvd_comp_event_timeSCORE_comp_eventSCORE_comp_event_timeASCVD_comp_eventASCVD_comp_event_timeQRISK3_comp_eventQRISK3_comp_event_timeMACE_comp_eventMACE_comp_event_time
01000018010.882957010.882957010.882957010.8829570...010.882957010.882957010.882957010.882957010.882957
11000020012.613279012.613279012.613279012.6132790...012.613279012.613279012.613279012.613279012.613279
21000037011.885010011.885010011.885010011.8850100...011.885010011.88501017.96988417.969884011.885010
3100004315.122519011.326489011.326489011.3264890...011.326489011.32648915.12251915.12251915.122519
41000051014.308008014.30800814.722793014.3080081...014.308008014.308008014.308008014.308008014.308008
\n", - "

5 rows × 83 columns

\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event myocardial_infarction_event_time \\\n", - "0 1000018 0 10.882957 \n", - "1 1000020 0 12.613279 \n", - "2 1000037 0 11.885010 \n", - "3 1000043 1 5.122519 \n", - "4 1000051 0 14.308008 \n", - "\n", - " stroke_event stroke_event_time diabetes_event diabetes_event_time \\\n", - "0 0 10.882957 0 10.882957 \n", - "1 0 12.613279 0 12.613279 \n", - "2 0 11.885010 0 11.885010 \n", - "3 0 11.326489 0 11.326489 \n", - "4 0 14.308008 1 4.722793 \n", - "\n", - " diabetes1_event diabetes1_event_time diabetes2_event ... \\\n", - "0 0 10.882957 0 ... \n", - "1 0 12.613279 0 ... \n", - "2 0 11.885010 0 ... \n", - "3 0 11.326489 0 ... \n", - "4 0 14.308008 1 ... \n", - "\n", - " death_cvd_comp_event death_cvd_comp_event_time SCORE_comp_event \\\n", - "0 0 10.882957 0 \n", - "1 0 12.613279 0 \n", - "2 0 11.885010 0 \n", - "3 0 11.326489 0 \n", - "4 0 14.308008 0 \n", - "\n", - " SCORE_comp_event_time ASCVD_comp_event ASCVD_comp_event_time \\\n", - "0 10.882957 0 10.882957 \n", - "1 12.613279 0 12.613279 \n", - "2 11.885010 1 7.969884 \n", - "3 11.326489 1 5.122519 \n", - "4 14.308008 0 14.308008 \n", - "\n", - " QRISK3_comp_event QRISK3_comp_event_time MACE_comp_event \\\n", - "0 0 10.882957 0 \n", - "1 0 12.613279 0 \n", - "2 1 7.969884 0 \n", - "3 1 5.122519 1 \n", - "4 0 14.308008 0 \n", - "\n", - " MACE_comp_event_time \n", - "0 10.882957 \n", - "1 12.613279 \n", - "2 11.885010 \n", - "3 5.122519 \n", - "4 14.308008 \n", - "\n", - "[5 rows x 83 columns]" - ] - }, - "execution_count": 132, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 133, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 134, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [], - "source": [ - "for c in [c for c in data_baseline.columns.tolist() if \"comp\" in c]:\n", - " data_cols_single.update({c:\"endpoints_competing\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintFalseeidNaN
12myocardial_infarction_eventintTrueendpoints_diagnosesNaN
23myocardial_infarction_event_timefloatTrueendpoints_diagnosesNaN
34stroke_eventintTrueendpoints_diagnosesNaN
45stroke_event_timefloatTrueendpoints_diagnosesNaN
.....................
7879ASCVD_comp_event_timefloatTrueendpoints_competingNaN
7980QRISK3_comp_eventintTrueendpoints_competingNaN
8081QRISK3_comp_event_timefloatTrueendpoints_competingNaN
8182MACE_comp_eventintTrueendpoints_competingNaN
8283MACE_comp_event_timefloatTrueendpoints_competingNaN
\n", - "

83 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid int False \n", - "1 2 myocardial_infarction_event int True \n", - "2 3 myocardial_infarction_event_time float True \n", - "3 4 stroke_event int True \n", - "4 5 stroke_event_time float True \n", - ".. .. ... ... ... \n", - "78 79 ASCVD_comp_event_time float True \n", - "79 80 QRISK3_comp_event int True \n", - "80 81 QRISK3_comp_event_time float True \n", - "81 82 MACE_comp_event int True \n", - "82 83 MACE_comp_event_time float True \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 endpoints_diagnoses NaN \n", - "2 endpoints_diagnoses NaN \n", - "3 endpoints_diagnoses NaN \n", - "4 endpoints_diagnoses NaN \n", - ".. ... ... \n", - "78 endpoints_competing NaN \n", - "79 endpoints_competing NaN \n", - "80 endpoints_competing NaN \n", - "81 endpoints_competing NaN \n", - "82 endpoints_competing NaN \n", - "\n", - "[83 rows x 6 columns]" - ] - }, - "execution_count": 151, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"int\", \"int64\":\"int\", \"float64\":\"float\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"bool\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [], - "source": [ - "#feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 153, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 154, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_endpoints.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_endpoints_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:miniconda3-pl1.x]", - "language": "python", - "name": "conda-env-miniconda3-pl1.x-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth.ipynb b/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth.ipynb deleted file mode 100644 index 29e9830..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth.ipynb +++ /dev/null @@ -1,5692 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import os\n", - "import yaml\n", - "from tqdm.notebook import trange, tqdm\n", - "dataset_name = \"cvd_interactions\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.895222Z", - "start_time": "2020-11-04T12:31:49.891332Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "Path(dataset_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:33:14.171198Z", - "start_time": "2020-11-04T12:31:50.204540Z" - } - }, - "outputs": [], - "source": [ - "data = pd.read_feather(f\"{data_path}/1_decoded/ukb_data.feather\")\n", - "data_field = pd.read_feather(f\"{data_path}/1_decoded/ukb_data_field.feather\")\n", - "data_columns = data.columns.to_list()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mappings + Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.867152Z", - "start_time": "2020-11-04T12:33:16.878773Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502505\n", - "502504\n" - ] - } - ], - "source": [ - "# Drop obviouse missing data\n", - "print(len(data))\n", - "data = data.dropna(subset=[\"sex_f31_0_0\"], axis=0)\n", - "print(len(data))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Starting information" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.872216Z", - "start_time": "2020-11-04T12:34:05.869505Z" - } - }, - "outputs": [], - "source": [ - "time0_col=\"birth_date\"\n", - "# time0_col=\"date_of_attending_assessment_centre_f53_0_0\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Baseline covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.889725Z", - "start_time": "2020-11-04T12:34:05.874587Z" - } - }, - "outputs": [], - "source": [ - "def get_fields(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields) & data_field[\"field.tab\"].str.contains(\"f\\\\.\\\\d+\\\\.0\\\\.\\\\d\")].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_fields_all(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields)].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_data_fields(fields, data, data_field):\n", - " f = get_fields(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()\n", - "\n", - "def get_data_fields_all(fields, data, data_field):\n", - " f = get_fields_all(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basics" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.176411Z", - "start_time": "2020-11-04T12:34:05.891730Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0
0100001849.0FemaleWhite-1.8529302009-11-12
1100002059.0MaleWhite0.2042482008-02-19
2100003759.0FemaleWhite-3.4988602008-11-11
3100004363.0MaleWhite-5.3511502009-06-03
4100005151.0FemaleWhite-1.7990802006-06-10
\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "\n", - " ethnic_background_f21000_0_0 \\\n", - "0 White \n", - "1 White \n", - "2 White \n", - "3 White \n", - "4 White \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - "]\n", - "\n", - "temp = get_data_fields(fields_basics, data, data_field)\n", - "\n", - "temp[\"sex_f31_0_0\"] = temp[\"sex_f31_0_0\"].cat.set_categories([\"Female\", 'Male'], ordered=False)\n", - "\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"string\")\n", - "\n", - "ethn_bg_def = {\"White\": [\"White\", \"British\", \"Irish\", \"Any other white background\"],\n", - " \"Mixed\": [\"Mixed\", \"White and Black Caribbean\", \"White and Black African\", \"White and Asian\", \"Any other mixed background\"], \n", - " \"Asian\": [\"Asian or Asian British\", \"Indian\", \"Pakistani\", \"Bangladeshi\", \"Any other Asian background\"], \n", - " \"Black\": [\"Black or Black British\", \"Caribbean\", \"African\", \"Any other Black background\"],\n", - " \"Chinese\": [\"Chinese\"], \n", - " np.nan: [\"Other ethnic group\", \"Do not know\", \"Prefer not to answer\"]}\n", - "\n", - "ethn_bg_dict = {}\n", - "for key, values in ethn_bg_def.items(): \n", - " for value in values:\n", - " ethn_bg_dict[value]=key \n", - " \n", - "temp[\"ethnic_background_f21000_0_0\"].replace(ethn_bg_dict, inplace=True)\n", - "temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\")\n", - "\n", - "#\n", - "#temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\").cat.set_categories(['White', 'Black', 'Asien', 'Mixed', 'Chinese'], ordered=False)\n", - "\n", - "basics = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "basics = basics.assign(birth_date = calc_birth_date)\n", - "\n", - "\n", - "basics.to_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.186613Z", - "start_time": "2020-11-04T12:34:06.178111Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[White, Black, NaN, Asian, Mixed, Chinese]\n", - "Categories (5, object): [White, Black, Asian, Mixed, Chinese]\n" - ] - } - ], - "source": [ - " print(temp[\"ethnic_background_f21000_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Questionnaire" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.389467Z", - "start_time": "2020-11-04T12:34:06.188206Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidoverall_health_rating_f2178_0_0smoking_status_f20116_0_0alcohol_intake_frequency_f1558_0_0
01000018FairCurrentOnce or twice a week
11000020GoodCurrentOnce or twice a week
21000037GoodPreviousOnce or twice a week
31000043FairPreviousThree or four times a week
41000051PoorNeverOne to three times a month
\n", - "
" - ], - "text/plain": [ - " eid overall_health_rating_f2178_0_0 smoking_status_f20116_0_0 \\\n", - "0 1000018 Fair Current \n", - "1 1000020 Good Current \n", - "2 1000037 Good Previous \n", - "3 1000043 Fair Previous \n", - "4 1000051 Poor Never \n", - "\n", - " alcohol_intake_frequency_f1558_0_0 \n", - "0 Once or twice a week \n", - "1 Once or twice a week \n", - "2 Once or twice a week \n", - "3 Three or four times a week \n", - "4 One to three times a month " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_questionnaire = [\n", - " \"2178\", # Overall health\n", - " \"20116\", # Smoking status\n", - " \"1558\",\n", - "]\n", - "\n", - "temp = get_data_fields(fields_questionnaire, data, data_field)\n", - "\n", - "temp[\"overall_health_rating_f2178_0_0\"] = temp[\"overall_health_rating_f2178_0_0\"]\\\n", - " .replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan})\\\n", - " .astype(\"category\").cat.set_categories(['Poor', 'Fair', 'Good', 'Excellent'], ordered=True)\n", - "\n", - "\n", - "temp[\"smoking_status_f20116_0_0\"] = temp[\"smoking_status_f20116_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories(['Current', 'Previous', 'Never'], ordered=True)\n", - "\n", - "temp[\"alcohol_intake_frequency_f1558_0_0\"] = temp[\"alcohol_intake_frequency_f1558_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories([\n", - " 'Daily or almost daily', \n", - " 'Three or four times a week', \n", - " 'Once or twice a week',\n", - " 'One to three times a month',\n", - " 'Special occasions only', \n", - " 'Never'], ordered=True)\n", - "\n", - "questionnaire = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "questionnaire.to_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.398168Z", - "start_time": "2020-11-04T12:34:06.391082Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Once or twice a week, Three or four times a week, One to three times a month, Daily or almost daily, Special occasions only, Never, NaN]\n", - "Categories (6, object): [Daily or almost daily < Three or four times a week < Once or twice a week < One to three times a month < Special occasions only < Never]\n" - ] - } - ], - "source": [ - "print(temp[\"alcohol_intake_frequency_f1558_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Physical measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.052989Z", - "start_time": "2020-11-04T12:34:06.400858Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbody_mass_index_bmi_f21001_0_0weight_f21002_0_0pulse_wave_arterial_stiffness_index_f21021_0_0pulse_wave_reflection_index_f4195_0_0waist_circumference_f48_0_0hip_circumference_f49_0_0standing_height_f50_0_0trunk_fat_percentage_f23127_0_0body_fat_percentage_f23099_0_0basal_metabolic_rate_f23105_0_0forced_vital_capacity_fvc_best_measure_f20151_0_0forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0fev1_fvc_ratio_zscore_f20258_0_0peak_expiratory_flow_pef_f3064_0_2peak_expiratory_flow_pef_f3064_0_1peak_expiratory_flow_pef_f3064_0_0systolic_blood_pressure_automated_reading_f4080diastolic_blood_pressure_automated_reading_f4079pulse_rate_automated_reading_f102
0100001826.555763.87.277080.085.0107.0155.037.539.55012.03.212.161.978317.0312.0339.0159.588.050.0
1100002022.746570.7NaNNaN87.894.4176.333.428.76171.0NaNNaN1.375301.0496.0504.0133.081.074.0
2100003732.421178.9NaNNaN101.0112.0156.047.548.45397.01.611.270.138NaN185.0208.0118.578.062.5
3100004329.567995.811.111178.098.0104.0180.027.625.68711.04.142.841.096557.0513.0530.0141.593.564.5
4100005141.022292.3NaNNaN123.0129.0150.048.950.46100.0NaNNaN0.518NaNNaNNaN117.081.079.0
\n", - "
" - ], - "text/plain": [ - " eid body_mass_index_bmi_f21001_0_0 weight_f21002_0_0 \\\n", - "0 1000018 26.5557 63.8 \n", - "1 1000020 22.7465 70.7 \n", - "2 1000037 32.4211 78.9 \n", - "3 1000043 29.5679 95.8 \n", - "4 1000051 41.0222 92.3 \n", - "\n", - " pulse_wave_arterial_stiffness_index_f21021_0_0 \\\n", - "0 7.2770 \n", - "1 NaN \n", - "2 NaN \n", - "3 11.1111 \n", - "4 NaN \n", - "\n", - " pulse_wave_reflection_index_f4195_0_0 waist_circumference_f48_0_0 \\\n", - "0 80.0 85.0 \n", - "1 NaN 87.8 \n", - "2 NaN 101.0 \n", - "3 78.0 98.0 \n", - "4 NaN 123.0 \n", - "\n", - " hip_circumference_f49_0_0 standing_height_f50_0_0 \\\n", - "0 107.0 155.0 \n", - "1 94.4 176.3 \n", - "2 112.0 156.0 \n", - "3 104.0 180.0 \n", - "4 129.0 150.0 \n", - "\n", - " trunk_fat_percentage_f23127_0_0 body_fat_percentage_f23099_0_0 \\\n", - "0 37.5 39.5 \n", - "1 33.4 28.7 \n", - "2 47.5 48.4 \n", - "3 27.6 25.6 \n", - "4 48.9 50.4 \n", - "\n", - " basal_metabolic_rate_f23105_0_0 \\\n", - "0 5012.0 \n", - "1 6171.0 \n", - "2 5397.0 \n", - "3 8711.0 \n", - "4 6100.0 \n", - "\n", - " forced_vital_capacity_fvc_best_measure_f20151_0_0 \\\n", - "0 3.21 \n", - "1 NaN \n", - "2 1.61 \n", - "3 4.14 \n", - "4 NaN \n", - "\n", - " forced_expiratory_volume_in_1second_fev1_best_measure_f20150_0_0 \\\n", - "0 2.16 \n", - "1 NaN \n", - "2 1.27 \n", - "3 2.84 \n", - "4 NaN \n", - "\n", - " fev1_fvc_ratio_zscore_f20258_0_0 peak_expiratory_flow_pef_f3064_0_2 \\\n", - "0 1.978 317.0 \n", - "1 1.375 301.0 \n", - "2 0.138 NaN \n", - "3 1.096 557.0 \n", - "4 0.518 NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_0_1 peak_expiratory_flow_pef_f3064_0_0 \\\n", - "0 312.0 339.0 \n", - "1 496.0 504.0 \n", - "2 185.0 208.0 \n", - "3 513.0 530.0 \n", - "4 NaN NaN \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 \\\n", - "0 159.5 \n", - "1 133.0 \n", - "2 118.5 \n", - "3 141.5 \n", - "4 117.0 \n", - "\n", - " diastolic_blood_pressure_automated_reading_f4079 \\\n", - "0 88.0 \n", - "1 81.0 \n", - "2 78.0 \n", - "3 93.5 \n", - "4 81.0 \n", - "\n", - " pulse_rate_automated_reading_f102 \n", - "0 50.0 \n", - "1 74.0 \n", - "2 62.5 \n", - "3 64.5 \n", - "4 79.0 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from statistics import mean\n", - "\n", - "fields_measurements = [\n", - "# \"100313\", # Walking speed !!! MISSING !!!\n", - " \"21001\", # BMI\n", - " \"21002\", # weight\n", - " \"4080\", # Syst. BP\n", - " \"4079\", # Diast. BP\n", - " \"102\",\n", - " \"21021\",\n", - " \"4195\",\n", - " \"48\",\n", - " \"49\",\n", - " \"50\",\n", - " \"23127\",\n", - " \"23099\",\n", - " \"23105\",\n", - " \"20151\",\n", - " \"20150\",\n", - " \"20258\",\n", - " \"3064\",\n", - " \n", - "]\n", - "temp = get_data_fields(fields_measurements, data, data_field)\n", - "\n", - "sbp_cols = [\"systolic_blood_pressure_automated_reading_f4080_0_0\", \"systolic_blood_pressure_automated_reading_f4080_0_1\"]\n", - "dbp_cols = [\"diastolic_blood_pressure_automated_reading_f4079_0_0\", \"diastolic_blood_pressure_automated_reading_f4079_0_1\"]\n", - "pr_cols = [\"pulse_rate_automated_reading_f102_0_0\", \"pulse_rate_automated_reading_f102_0_1\"]\n", - "\n", - "temp = temp.assign(systolic_blood_pressure_automated_reading_f4080 = temp[sbp_cols].mean(axis=1),\n", - " diastolic_blood_pressure_automated_reading_f4079 = temp[dbp_cols].mean(axis=1),\n", - " pulse_rate_automated_reading_f102 = temp[pr_cols].mean(axis=1))\\\n", - " .drop(sbp_cols + dbp_cols + pr_cols, axis=1)\n", - "\n", - "measurements = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "measurements.to_feather(os.path.join(path, dataset_path, 'temp_measurements.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lab measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.647955Z", - "start_time": "2020-11-04T12:34:07.055242Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbasophill_count_f30160_0_0basophill_percentage_f30220_0_0eosinophill_count_f30150_0_0eosinophill_percentage_f30210_0_0haematocrit_percentage_f30030_0_0haemoglobin_concentration_f30020_0_0high_light_scatter_reticulocyte_count_f30300_0_0high_light_scatter_reticulocyte_percentage_f30290_0_0immature_reticulocyte_fraction_f30280_0_0...phosphate_f30810_0_0rheumatoid_factor_f30820_0_0shbg_f30830_0_0testosterone_f30850_0_0total_bilirubin_f30840_0_0total_protein_f30860_0_0triglycerides_f30870_0_0urate_f30880_0_0urea_f30670_0_0vitamin_d_f30890_0_0
010000180.040.260.251.7539.7913.900.0220.4640.378...1.422NaN70.111.5607.4171.971.247221.35.4870.7
110000200.000.300.302.5045.0015.600.0140.2900.300...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
210000370.040.570.101.4339.4813.580.0310.6860.380...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000430.020.320.111.8044.3114.990.0250.5080.250...0.928NaN31.6311.3988.6569.705.184322.86.6763.6
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 62 columns

\n", - "
" - ], - "text/plain": [ - " eid basophill_count_f30160_0_0 basophill_percentage_f30220_0_0 \\\n", - "0 1000018 0.04 0.26 \n", - "1 1000020 0.00 0.30 \n", - "2 1000037 0.04 0.57 \n", - "3 1000043 0.02 0.32 \n", - "4 1000051 NaN NaN \n", - "\n", - " eosinophill_count_f30150_0_0 eosinophill_percentage_f30210_0_0 \\\n", - "0 0.25 1.75 \n", - "1 0.30 2.50 \n", - "2 0.10 1.43 \n", - "3 0.11 1.80 \n", - "4 NaN NaN \n", - "\n", - " haematocrit_percentage_f30030_0_0 haemoglobin_concentration_f30020_0_0 \\\n", - "0 39.79 13.90 \n", - "1 45.00 15.60 \n", - "2 39.48 13.58 \n", - "3 44.31 14.99 \n", - "4 NaN NaN \n", - "\n", - " high_light_scatter_reticulocyte_count_f30300_0_0 \\\n", - "0 0.022 \n", - "1 0.014 \n", - "2 0.031 \n", - "3 0.025 \n", - "4 NaN \n", - "\n", - " high_light_scatter_reticulocyte_percentage_f30290_0_0 \\\n", - "0 0.464 \n", - "1 0.290 \n", - "2 0.686 \n", - "3 0.508 \n", - "4 NaN \n", - "\n", - " immature_reticulocyte_fraction_f30280_0_0 ... phosphate_f30810_0_0 \\\n", - "0 0.378 ... 1.422 \n", - "1 0.300 ... 1.264 \n", - "2 0.380 ... NaN \n", - "3 0.250 ... 0.928 \n", - "4 NaN ... NaN \n", - "\n", - " rheumatoid_factor_f30820_0_0 shbg_f30830_0_0 testosterone_f30850_0_0 \\\n", - "0 NaN 70.11 1.560 \n", - "1 NaN 55.31 12.237 \n", - "2 NaN NaN NaN \n", - "3 NaN 31.63 11.398 \n", - "4 NaN NaN NaN \n", - "\n", - " total_bilirubin_f30840_0_0 total_protein_f30860_0_0 \\\n", - "0 7.41 71.97 \n", - "1 8.07 78.45 \n", - "2 NaN NaN \n", - "3 8.65 69.70 \n", - "4 NaN NaN \n", - "\n", - " triglycerides_f30870_0_0 urate_f30880_0_0 urea_f30670_0_0 \\\n", - "0 1.247 221.3 5.48 \n", - "1 1.906 374.7 5.28 \n", - "2 NaN NaN NaN \n", - "3 5.184 322.8 6.67 \n", - "4 NaN NaN NaN \n", - "\n", - " vitamin_d_f30890_0_0 \n", - "0 70.7 \n", - "1 35.9 \n", - "2 NaN \n", - "3 63.6 \n", - "4 NaN \n", - "\n", - "[5 rows x 62 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_blood_count = [\n", - " \"30160\", #\tBasophill count\n", - " \"30220\", #\tBasophill percentage\n", - " \"30150\", #\tEosinophill count\n", - " \"30210\", #\tEosinophill percentage\n", - " \"30030\", #\tHaematocrit percentage\n", - " \"30020\", #\tHaemoglobin concentration\n", - " \"30300\", #\tHigh light scatter reticulocyte count\n", - " \"30290\", #\tHigh light scatter reticulocyte percentage\n", - " \"30280\", #\tImmature reticulocyte fraction\n", - " \"30120\", #\tLymphocyte count\n", - " \"30180\", #\tLymphocyte percentage\n", - " \"30050\", #\tMean corpuscular haemoglobin\n", - " \"30060\", #\tMean corpuscular haemoglobin concentration\n", - " \"30040\", #\tMean corpuscular volume\n", - " \"30100\", #\tMean platelet (thrombocyte) volume\n", - " \"30260\", #\tMean reticulocyte volume\n", - " \"30270\", #\tMean sphered cell volume\n", - " \"30130\", #\tMonocyte count\n", - " \"30190\", #\tMonocyte percentage\n", - " \"30140\", #\tNeutrophill count\n", - " \"30200\", #\tNeutrophill percentage\n", - " \"30170\", #\tNucleated red blood cell count\n", - " \"30230\", #\tNucleated red blood cell percentage\n", - " \"30080\", #\tPlatelet count\n", - " \"30090\", #\tPlatelet crit\n", - " \"30110\", #\tPlatelet distribution width\n", - " \"30010\", #\tRed blood cell (erythrocyte) count\n", - " \"30070\", #\tRed blood cell (erythrocyte) distribution width\n", - " \"30250\", #\tReticulocyte count\n", - " \"30240\", #\tReticulocyte percentage\n", - " \"30000\", #\tWhite blood cell (leukocyte) count\n", - "]\n", - "\n", - "fields_blood_biochemistry = [\n", - " \"30620\",#\tAlanine aminotransferase\n", - " \"30600\",#\tAlbumin\n", - " \"30610\",#\tAlkaline phosphatase\n", - " \"30630\",#\tApolipoprotein A\n", - " \"30640\",#\tApolipoprotein B\n", - " \"30650\",#\tAspartate aminotransferase\n", - " \"30710\",#\tC-reactive protein\n", - " \"30680\",#\tCalcium\n", - " \"30690\",#\tCholesterol\n", - " \"30700\",#\tCreatinine\n", - " \"30720\",#\tCystatin C\n", - " \"30660\",#\tDirect bilirubin\n", - " \"30730\",#\tGamma glutamyltransferase\n", - " \"30740\",#\tGlucose\n", - " \"30750\",#\tGlycated haemoglobin (HbA1c)\n", - " \"30760\",#\tHDL cholesterol\n", - " \"30770\",#\tIGF-1\n", - " \"30780\",#\tLDL direct\n", - " \"30790\",#\tLipoprotein A\n", - " \"30800\",#\tOestradiol\n", - " \"30810\",#\tPhosphate\n", - " \"30820\",#\tRheumatoid factor\n", - " \"30830\",#\tSHBG\n", - " \"30850\",#\tTestosterone\n", - " \"30840\",#\tTotal bilirubin\n", - " \"30860\",#\tTotal protein\n", - " \"30870\",#\tTriglycerides\n", - " \"30880\",#\tUrate\n", - " \"30670\",#\tUrea\n", - " \"30890\",#\tVitamin D\n", - "]\n", - "\n", - "fields_blood_infectious = [\n", - " \"23000\", #\t1gG antigen for Herpes Simplex virus-1\n", - " \"23001\", #\t2mgG unique antigen for Herpes Simplex virus-2\n", - " \"23049\", #\tAntigen assay QC indicator\n", - " \"23048\", #\tAntigen assay date\n", - " \"23026\", #\tBK VP1 antigen for Human Polyomavirus BKV\n", - " \"23039\", #\tCagA antigen for Helicobacter pylori\n", - " \"23043\", #\tCatalase antigen for Helicobacter pylori\n", - " \"23018\", #\tCore antigen for Hepatitis C Virus\n", - " \"23030\", #\tE6 antigen for Human Papillomavirus type-16\n", - " \"23031\", #\tE7 antigen for Human Papillomavirus type-16\n", - " \"23006\", #\tEA-D antigen for Epstein-Barr Virus\n", - " \"23004\", #\tEBNA-1 antigen for Epstein-Barr Virus\n", - " \"23042\", #\tGroEL antigen for Helicobacter pylori\n", - " \"23016\", #\tHBc antigen for Hepatitis B Virus\n", - " \"23017\", #\tHBe antigen for Hepatitis B Virus\n", - " \"23025\", #\tHIV-1 env antigen for Human Immunodeficiency Virus\n", - " \"23024\", #\tHIV-1 gag antigen for Human Immunodeficiency Virus\n", - " \"23023\", #\tHTLV-1 env antigen for Human T-Lymphotropic Virus 1\n", - " \"23022\", #\tHTLV-1 gag antigen for Human T-Lymphotropic Virus 1\n", - " \"23010\", #\tIE1A antigen for Human Herpesvirus-6\n", - " \"23011\", #\tIE1B antigen for Human Herpesvirus-6\n", - " \"23027\", #\tJC VP1 antigen for Human Polyomavirus JCV\n", - " \"23015\", #\tK8.1 antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23029\", #\tL1 antigen for Human Papillomavirus type-16\n", - " \"23032\", #\tL1 antigen for Human Papillomavirus type-18\n", - " \"23014\", #\tLANA antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23028\", #\tMC VP1 antigen for Merkel Cell Polyomavirus\n", - " \"23019\", #\tNS3 antigen for Hepatitis C Virus\n", - " \"23041\", #\tOMP antigen for Helicobacter pylori\n", - " \"23037\", #\tPorB antigen for Chlamydia trachomatis\n", - " \"23013\", #\tU14 antigen for Human Herpesvirus-7\n", - " \"23044\", #\tUreA antigen for Helicobacter pylori\n", - " \"23003\", #\tVCA p18 antigen for Epstein-Barr Virus\n", - " \"23040\", #\tVacA antigen for Helicobacter pylori\n", - " \"23005\", #\tZEBRA antigen for Epstein-Barr Virus\n", - " \"23002\", #\tgE / gI antigen for Varicella Zoster Virus\n", - " \"23034\", #\tmomp A antigen for Chlamydia trachomatis\n", - " \"23033\", #\tmomp D antigen for Chlamydia trachomatis\n", - " \"23012\", #\tp101 k antigen for Human Herpesvirus-6\n", - " \"23020\", #\tp22 antigen for Toxoplasma gondii\n", - " \"23038\", #\tpGP3 antigen for Chlamydia trachomatis\n", - " \"23009\", #\tpp 28 antigen for Human Cytomegalovirus\n", - " \"23008\", #\tpp 52 antigen for Human Cytomegalovirus\n", - " \"23007\", #\tpp150 Nter antigen for Human Cytomegalovirus\n", - " \"23021\", #\tsag1 antigen for Toxoplasma gondii\n", - " \"23035\", #\ttarp-D F1 antigen for Chlamydia trachomatis\n", - " \"23036\", #\ttarp-D F2 antigen for Chlamydia trachomatis\n", - "]\n", - "\n", - "labs = temp = get_data_fields(fields_blood_count+fields_blood_biochemistry+fields_blood_infectious, data, data_field)\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "labs.to_feather(os.path.join(path, dataset_path, 'temp_labs.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Family History" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.838958Z", - "start_time": "2020-11-04T12:34:07.649920Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - } - ], - "source": [ - "fh_list=[\"Heart disease\", \"Stroke\", \"High blood pressure\", \"Diabetes\", \"Lung cancer\", \"Severe depression\", \"Parkinson's disease\", \"Alzheimer's disease/dementia\", \"Chronic bronchitis/emphysema\", \"Breast cancer\", \"Bowel cancer\"]\n", - "with open(os.path.join(path, dataset_path, 'fh_list.yaml'), 'w') as file: yaml.dump(fh_list, file, default_flow_style=False)\n", - "\n", - "fields_family_history = [\n", - " \"20107\", # Family history \n", - " \"20110\" # Family history\n", - "]\n", - "\n", - "raw = get_data_fields(fields_family_history, data, data_field)\n", - "temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"family_history\").drop(\"field\", axis=1)\n", - "temp = temp[temp.family_history.isin(fh_list)].assign(family_history=temp[\"family_history\"].str.lower().replace(\" \", \"_\", regex=True))\n", - "\n", - "temp = temp.drop_duplicates().sort_values(\"eid\").reset_index().drop(\"index\", axis=1).assign(n=True)\n", - "temp = pd.pivot_table(temp, index=\"eid\", columns=\"family_history\", values=\"n\", observed=True).add_prefix('fh_')\n", - "family_history = temp = data[[\"eid\"]].copy().merge(temp, how=\"left\", on=\"eid\").fillna(False)\n", - "\n", - "print(len(temp))\n", - "temp.head()\n", - "\n", - "family_history.to_feather(os.path.join(path, dataset_path, 'temp_family_history.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Medications" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.842601Z", - "start_time": "2020-11-04T12:34:25.840607Z" - } - }, - "outputs": [], - "source": [ - "# https://list.essentialmeds.org/?showRemoved=0\n", - "# essential medicines WHO?!" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.471831Z", - "start_time": "2020-11-04T12:34:25.844339Z" - } - }, - "outputs": [], - "source": [ - "atc_mapping = pd.read_csv(f\"{path}/mapping/atc/atc_matched_list.csv\")\n", - "athena_concepts = pd.read_csv(f\"{data_path}/athena_vocabulary/CONCEPT.csv\", sep=\"\\t\").assign(vocabulary_id = lambda x: x.vocabulary_id.astype(\"string\"), concept_class_id = lambda x: x.concept_class_id.astype(\"string\"))\n", - "atc_concepts = athena_concepts[athena_concepts.vocabulary_id==\"ATC\"]\n", - "atc2_concepts = atc_concepts[atc_concepts.concept_class_id==\"ATC 2nd\"].sort_values(\"concept_code\")\n", - "medication_list = dict(zip([x.lower().replace(\" \", \"_\") for x in atc2_concepts.concept_name.to_list()], [[x] for x in atc2_concepts.concept_code.to_list()]))\n", - "medication_list_extra = {\n", - " \"antihypertensives\": [\"C02\"],\n", - " \"statins\": [\"C10A\", \"C10B\"],\n", - " \"ass\": [\"B01\"],\n", - " \"atypical_antipsychotics\" : [\"N05\"],\n", - " \"glucocorticoids\" : [\"H02\"] \n", - "}\n", - "medication_list.update(medication_list_extra)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'medication_list.yaml'), 'w') as file: yaml.dump(medication_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def had_medication_before(data, data_field, medications, atc_mapping):\n", - " fields = [\"20003\"]\n", - " raw = get_data_fields(fields, data, data_field)\n", - " temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"UKBB_code\").drop(\"field\", axis=1).drop_duplicates()\n", - "\n", - " temp.UKBB_code = temp.UKBB_code.astype(str)\n", - " temp = temp[temp.UKBB_code!=\"None\"].copy()\n", - " temp.UKBB_code = temp.UKBB_code.astype(int)\n", - "\n", - " temp_atc = temp.merge(atc_mapping, how=\"left\", on=\"UKBB_code\").sort_values(\"eid\").reset_index(drop=True).dropna(subset=[\"ATC_code\"], axis=0)\n", - " temp_atc.ATC_code = temp_atc.ATC_code.astype(\"string\")\n", - " temp = data[[\"eid\"]].copy()\n", - " for med, med_codes in tqdm(medication_list.items()):\n", - " regex_str = \"^\"+\"|^\".join(med_codes)\n", - " df = temp_atc[temp_atc.ATC_code.str.contains(regex_str, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(medication=True)\n", - " temp[med] = temp.merge(df, how=\"left\", on=\"eid\").fillna(False).medication\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.481137Z", - "start_time": "2020-11-04T12:34:32.473698Z" - } - }, - "outputs": [], - "source": [ - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:36:14.425612Z", - "start_time": "2020-11-04T12:34:32.482863Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "13ef8609a6b64b219928981b7752c608", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=98.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - } - ], - "source": [ - "medications = had_medication_before(data, data_field, medication_list, atc_mapping)\n", - "print(len(medications))\n", - "medications.head(100)\n", - "\n", - "medications.to_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3072: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3072: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.851438Z", - "start_time": "2020-11-04T12:37:14.774599Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = pd.read_csv(f\"{path}/mapping/snomed_core_list.txt\", sep=\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.909023Z", - "start_time": "2020-11-04T12:37:14.853286Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = snomed_core.query(\"SNOMED_CONCEPT_STATUS == 'Current'\").copy()\n", - "new = snomed_core.SNOMED_FSN.str.split(\"(\", n=1, expand=True)\n", - "snomed_core[\"snomed_name\"] = new[0].str.rstrip(' ')\n", - "snomed_core[\"snomed_type\"] = new[1].str.rstrip(')')\n", - "snomed_core_data = snomed_core#.query(\"(snomed_type=='disorder' | snomed_type=='finding') & USAGE>0.01\")" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.914973Z", - "start_time": "2020-11-04T12:37:14.910857Z" - } - }, - "outputs": [], - "source": [ - "snomed_names = snomed_core_data.snomed_name.to_list()\n", - "snomed_names = [str(item).lower().strip().replace(\" \", \"_\").replace(\";\", \"\").replace(\",\", \"\") for item in snomed_names]" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.342937Z", - "start_time": "2020-11-04T12:37:14.916906Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "989d1908f8624958a92da3602ad125f1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=6181.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_ids = vocab[\"concept\"].query(\"vocabulary_id == 'SNOMED'\").concept_id.to_list()\n", - "icd10_ids = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "\n", - "ph_to_icd10_mapping = {}\n", - "\n", - "def map_snomed_to_icd10(ph, snomed_code, concept, concept_ancestor, concept_relationship):\n", - " concept_ids = concept.query(\"vocabulary_id == 'SNOMED' & concept_code == @snomed_code\").concept_id.to_list()\n", - " snomed_desc_ids = concept_ancestor.query(\"ancestor_concept_id== @concept_ids\").descendant_concept_id.to_list()\n", - " ph_desc = concept.query(\"concept_id == @snomed_desc_ids\").query(\"vocabulary_id == 'SNOMED'\")\n", - " l_ph_desc_ids = ph_desc.concept_id.to_list()\n", - " ph_icd10_ids = list(concept_relationship.query(\"concept_id_1==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").concept_id_2.unique())\n", - " #ph_icd10_ids = list(concept_relationship.set_index(\"concept_id_1\").query(\"index==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").query(\"relationship_id == 'Mapped from'\").concept_id_2.unique()\n", - " \n", - " #ph_icd10_ids = list(temp.concept_id_2.unique())\n", - " df = concept.query(\"concept_id == @ph_icd10_ids & vocabulary_id == 'ICD10CM'\")\n", - " icd10_list = list(df[~df.concept_code.str.contains(\"OMOP\", na=False)].concept_code.unique())\n", - " icd10_list = sorted(list(set([e[:3] for e in icd10_list])))\n", - " #print(f\"{ph}: {icd10_list}\")\n", - " return {ph: sorted(list(dict.fromkeys([str(e) for e in icd10_list])))}\n", - "\n", - "from joblib import Parallel, delayed\n", - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")\n", - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @vocab_concept_ids) & (relationship_id == 'Mapped from')\")\n", - "icd10_codes = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(map_snomed_to_icd10)(ph, snomed_code, \n", - " concept_ids, concept_ancestor, concept_rel) for ph, snomed_code in tqdm(phenotype_list_snomed.items()))" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.348009Z", - "start_time": "2020-11-04T12:39:55.344704Z" - } - }, - "outputs": [], - "source": [ - "l10_snomed = {}\n", - "for ph in icd10_codes: l10_snomed.update(ph)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.468545Z", - "start_time": "2020-11-04T12:39:55.349545Z" - } - }, - "outputs": [], - "source": [ - "phenotype_list_basic = {\n", - " \"coronary_heart_disease\": [\"Ischemic heart disease\"],\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"diabetes1\" : [\"Type 1 diabetes\"],\n", - " \"diabetes2\" : [\"Diabetes mellitus\", \"Type 2 diabetes\"],\n", - " \"chronic_kidney_disease\": [\"Chronic kidney disease\", \"chronic renal failure\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"migraine\": [\"Migraine\"],\n", - " \"rheumatoid_arthritis\": [\"Rheumatoid arthritis\"],\n", - " \"systemic_lupus_erythematosus\": [\"Systemic lupus erythematosus\"],\n", - " \"severe_mental_illness\": [\"Schizophrenia\", \"bipolar\", \"Major depressive disorder\"],\n", - " \"erectile_dysfunction\" : [\"Erectile dysfunction\"], \n", - "}\n", - "\n", - "l10_basic = phenotype_children(phecodes, phenotype_list_basic)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.473556Z", - "start_time": "2020-11-04T12:39:55.471051Z" - } - }, - "outputs": [], - "source": [ - "l10_all = l10_basic\n", - "for key, value in l10_snomed.items(): \n", - " if key not in l10_basic: l10_all[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.620916Z", - "start_time": "2020-11-04T12:39:55.475137Z" - } - }, - "outputs": [], - "source": [ - "l10 = {k: v for k, v in l10_all.items() if len(v)!=0}\n", - "\n", - "#phenotype_list = {k: v for k, v in phenotype_list.items() if k in list(l10.keys())}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'phenotype_list.yaml'), 'w') as file: yaml.dump(l10, file, default_flow_style=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Self Reported" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.288198Z", - "start_time": "2020-11-04T12:43:13.264683Z" - } - }, - "outputs": [], - "source": [ - "coding609 = pd.read_csv(f\"{path}/mapping/codings/coding609.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.304423Z", - "start_time": "2020-11-04T12:43:13.289982Z" - } - }, - "outputs": [], - "source": [ - "from datetime import datetime, timedelta\n", - "\n", - "def datetime_from_dec_year(dec_year):\n", - " start = dec_year\n", - " year = int(start)\n", - " rem = start - year\n", - "\n", - " base = datetime(year, 1, 1)\n", - " result = base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)\n", - " #result.strftime(\"%Y-%m-%d\")\n", - " return result.date()\n", - "\n", - "def extract_map_self_reported(data, data_field, code_map):\n", - " pbar = tqdm(total=16)\n", - " ### codes\n", - " fields = [\"20002\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col = \"noncancer_illness_code_selfreported_f20002\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " codes = temp.rename(columns={col:\"code\"})\\\n", - " .assign(code=lambda x: x.code.astype(str))\\\n", - " .replace(\"None\", np.nan) \\\n", - " .dropna(subset=[\"code\"], axis=0)\\\n", - " .assign(code=lambda x: x.code.astype(int)) \\\n", - " .merge(code_map, how=\"left\",on=\"code\") \\\n", - " .dropna(subset=[\"meaning\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - " \n", - " ### dates\n", - " fields = [\"20008\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col=\"interpolated_year_when_noncancer_illness_first_diagnosed_f20008\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " dates = temp.rename(columns={col:\"date\"})\\\n", - " .dropna(subset=[\"date\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - "\n", - " dates = dates[dates.date!=-1]; pbar.update(1)\n", - " dates = dates[dates.date!=-3]; pbar.update(1)\n", - " dates.date = dates.date.apply(datetime_from_dec_year); pbar.update(1)\n", - " \n", - " test = codes.merge(dates, how=\"left\", on=[\"eid\", \"instance_index\"]).assign(origin=\"self_reported\").copy(); pbar.update(1)\n", - " \n", - " test[\"instance_index\"] = test[\"instance_index\"].astype(\"string\"); pbar.update(1)\n", - " test[['instance','n']] = test.instance_index.str.split(\"_\",expand=True); pbar.update(1)\n", - " pbar.close()\n", - " \n", - " return test[[\"eid\", \"origin\", 'instance','n', \"code\", \"meaning\", \"date\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:00.098893Z", - "start_time": "2020-11-04T12:43:13.432479Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7af3e55ecb424d5fbbd303f1f5b67a66", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=16.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "codes_self_reported = extract_map_self_reported(data, data_field, coding609)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Primary Care" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "# 2. Primary Care\n", - "fields = c(\n", - " 42040 # GP clinical event records\n", - ")\n", - "# extract covariates at baseline (Instance 0)\n", - "def = data_field %>% filter((field.showcase %in% fields),ignore.case = TRUE)\n", - "diagnoses_primary_care = data[, append(\"eid\", def$col.name)]\n", - "head(diagnoses_primary_care)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Hospital episode statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:08.959617Z", - "start_time": "2020-11-04T12:46:00.100618Z" - } - }, - "outputs": [], - "source": [ - "codes_hospital_records = pd.read_feather(f\"{data_path}/1_decoded/codes_hospital_records.feather\").drop(\"level\", axis=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Combine diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:25.115010Z", - "start_time": "2020-11-04T12:46:08.961388Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdate
01000018hes_icd1001S0240S022005-06-02
11000018hes_icd1002W188W182005-06-02
21000018hes_icd1003K37K371998-05-11
31000018hes_icd1004K37K371998-05-16
41000018hes_icd1005K37K371998-06-01
\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date\n", - "0 1000018 hes_icd10 0 1 S0240 S02 2005-06-02\n", - "1 1000018 hes_icd10 0 2 W188 W18 2005-06-02\n", - "2 1000018 hes_icd10 0 3 K37 K37 1998-05-11\n", - "3 1000018 hes_icd10 0 4 K37 K37 1998-05-16\n", - "4 1000018 hes_icd10 0 5 K37 K37 1998-06-01" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes = codes_self_reported.append(codes_hospital_records).sort_values([\"eid\", \"instance\", \"n\"]).dropna(subset=[\"date\"], axis=0)\n", - "diagnoses_codes.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 13339466 entries, 0 to 13339465\n", - "Data columns (total 7 columns):\n", - " # Column Dtype \n", - "--- ------ ----- \n", - " 0 eid int64 \n", - " 1 origin object\n", - " 2 instance object\n", - " 3 n object\n", - " 4 code object\n", - " 5 meaning object\n", - " 6 date object\n", - "dtypes: int64(1), object(6)\n", - "memory usage: 712.4+ MB\n" - ] - } - ], - "source": [ - "diagnoses_codes.reset_index(drop=True).info()" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 12547626 entries, 0 to 12547625\n", - "Data columns (total 7 columns):\n", - " # Column Dtype \n", - "--- ------ ----- \n", - " 0 eid int32 \n", - " 1 origin object \n", - " 2 instance float64\n", - " 3 n int32 \n", - " 4 code object \n", - " 5 meaning object \n", - " 6 date object \n", - "dtypes: float64(1), int32(2), object(4)\n", - "memory usage: 574.4+ MB\n" - ] - } - ], - "source": [ - "codes_hospital_records.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes.reset_index(drop=True).assign(eid = lambda x: x.eid.astype(int),\n", - " origin = lambda x: x.origin.astype(str),\n", - " instance = lambda x: x.instance.astype(int),\n", - " n = lambda x: x.n.astype(int),\n", - " code = lambda x: x.code.astype(str), \n", - " meaning = lambda x: x.meaning.astype(str))\\\n", - " .to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_codes = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:26.189927Z", - "start_time": "2020-11-04T12:46:25.117069Z" - } - }, - "outputs": [], - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=30, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = ph_series\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "phenotypes = l10\n", - "time0 = time0_col\n", - "diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - "\n", - "temp = data[[\"eid\"]].copy()\n", - "df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - "\n", - "df_phs = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)[0:100]))" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " for ph, ph_codes in tqdm(phenotypes.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True)\n", - " temp[ph] = temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T13:17:52.922023Z", - "start_time": "2020-11-04T12:46:26.191314Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6bea6215cd7a462ea5e12e755d4a70ed", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "30afdcb70eb84793aea68e13921cb0c4", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidcoronary_heart_diseasemyocardial_infarctionstrokediabetes1diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritis...sleep_terror_disorderacute_frontal_sinusitisbenign_neoplasm_of_pancreasprimary_malignant_neoplasm_of_soft_tissues_of_lower_limbneoplasm_of_uncertain_behavior_of_neckinjury_of_peroneal_nervedupuytren's_diseasestem_cell_donorendemic_goiterdiplegic_cerebral_palsy
01000018FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
11000020FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
21000037FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
31000043FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
41000051FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

5 rows × 3522 columns

\n", - "
" - ], - "text/plain": [ - " eid coronary_heart_disease myocardial_infarction stroke diabetes1 \\\n", - "0 1000018 False False False False \n", - "1 1000020 False False False False \n", - "2 1000037 False False False False \n", - "3 1000043 False False False False \n", - "4 1000051 False False False False \n", - "\n", - " diabetes2 chronic_kidney_disease atrial_fibrillation migraine \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False False \n", - "4 False False False False \n", - "\n", - " rheumatoid_arthritis ... sleep_terror_disorder acute_frontal_sinusitis \\\n", - "0 False ... False False \n", - "1 False ... False False \n", - "2 False ... False False \n", - "3 False ... False False \n", - "4 False ... False False \n", - "\n", - " benign_neoplasm_of_pancreas \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " primary_malignant_neoplasm_of_soft_tissues_of_lower_limb \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " neoplasm_of_uncertain_behavior_of_neck injury_of_peroneal_nerve \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 False False \n", - "4 False False \n", - "\n", - " dupuytren's_disease stem_cell_donor endemic_goiter \\\n", - "0 False False False \n", - "1 False False False \n", - "2 False False False \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " diplegic_cerebral_palsy \n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - "[5 rows x 3522 columns]" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses = had_diagnosis_before(basics, diagnoses_codes, l10, time0=time0_col)\n", - "print(len(diagnoses))\n", - "\n", - "diagnoses.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))\n", - "\n", - "diagnoses.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "# Add embeddings for Snomed Diagnoses" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get SNOMED - node2vec dict" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_embeddings = pd.read_csv(\"/data/analysis/ag-reils/steinfej/data/snomed_embeddings/snomed.emb.p1.q1.w20.l40.e200.graph_format.txt\", sep=\" \", header=None, skiprows=1)\n", - "snomed_embeddings.columns = [\"snomed_id\"]+list(snomed_embeddings.columns)[:-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
snomed_id012345678...190191192193194195196197198199
01292650010.0274560.171026-0.178822-0.0386670.2997770.082540-0.2012840.2151640.093241...0.2110300.4884750.082177-0.047102-0.086411-0.012141-0.258416-0.1132950.040249-0.116884
1360224006-0.0901870.086986-0.184378-0.028722-0.0102350.242439-0.0940090.203015-0.097894...0.1127500.333906-0.0181930.020459-0.1702260.277866-0.007079-0.0804190.162456-0.101768
21022720070.5534200.4609470.143925-0.053785-0.8495880.467587-0.654922-0.0107990.510141...0.1873710.2486070.079687-0.3541210.4126020.582461-0.7803650.045450-0.1965510.045745
3399370010.1231580.0198820.0508960.0373640.2004350.312911-0.338977-0.092584-0.167741...0.057770-0.012834-0.1397940.1805720.1907810.104039-0.358235-0.137954-0.236551-0.206458
4235830030.4231930.384338-0.0415030.116848-0.0550290.149064-0.092810-0.0501480.113122...0.162375-0.076505-0.274352-0.099204-0.281887-0.266345-0.020257-0.003843-0.008804-0.286832
\n", - "

5 rows × 201 columns

\n", - "
" - ], - "text/plain": [ - " snomed_id 0 1 2 3 4 5 \\\n", - "0 129265001 0.027456 0.171026 -0.178822 -0.038667 0.299777 0.082540 \n", - "1 360224006 -0.090187 0.086986 -0.184378 -0.028722 -0.010235 0.242439 \n", - "2 102272007 0.553420 0.460947 0.143925 -0.053785 -0.849588 0.467587 \n", - "3 39937001 0.123158 0.019882 0.050896 0.037364 0.200435 0.312911 \n", - "4 23583003 0.423193 0.384338 -0.041503 0.116848 -0.055029 0.149064 \n", - "\n", - " 6 7 8 ... 190 191 192 193 \\\n", - "0 -0.201284 0.215164 0.093241 ... 0.211030 0.488475 0.082177 -0.047102 \n", - "1 -0.094009 0.203015 -0.097894 ... 0.112750 0.333906 -0.018193 0.020459 \n", - "2 -0.654922 -0.010799 0.510141 ... 0.187371 0.248607 0.079687 -0.354121 \n", - "3 -0.338977 -0.092584 -0.167741 ... 0.057770 -0.012834 -0.139794 0.180572 \n", - "4 -0.092810 -0.050148 0.113122 ... 0.162375 -0.076505 -0.274352 -0.099204 \n", - "\n", - " 194 195 196 197 198 199 \n", - "0 -0.086411 -0.012141 -0.258416 -0.113295 0.040249 -0.116884 \n", - "1 -0.170226 0.277866 -0.007079 -0.080419 0.162456 -0.101768 \n", - "2 0.412602 0.582461 -0.780365 0.045450 -0.196551 0.045745 \n", - "3 0.190781 0.104039 -0.358235 -0.137954 -0.236551 -0.206458 \n", - "4 -0.281887 -0.266345 -0.020257 -0.003843 -0.008804 -0.286832 \n", - "\n", - "[5 rows x 201 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_embeddings.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_snomed = diagnoses.columns[13:].to_list()\n", - "diagnoses_snomed_dict = {}\n", - "for d in diagnoses_snomed: diagnoses_snomed_dict[d] = phenotype_list_snomed[d]\n", - " \n", - "snomed_codes_used = list(phenotype_list_snomed.values())\n", - "snomed_codes_emb = snomed_embeddings.snomed_id.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_id_array = snomed_embeddings[[\"snomed_id\"]].values\n", - "node2vec_array = snomed_embeddings.iloc[:, 1:].values" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "456f56d7481648e48b74e9e76b675f01", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=373286.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "snomed_arrays = {}\n", - "for sid, row in zip(tqdm(snomed_id_array), node2vec_array):\n", - " snomed_arrays[sid[0]] = row" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> Snomed dict" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "05ac46541972426da8a5b5f7fe461c6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "diagnoses_array = diagnoses[diagnoses_snomed].values\n", - "eid_array = diagnoses[[\"eid\"]].values\n", - "\n", - "from numba import jit\n", - "import numpy as np\n", - "\n", - "patient_diagnoses = {}\n", - "for eid, row in zip(tqdm(eid_array), diagnoses_array):\n", - " patient_diagnoses[eid[0]] = list(np.argwhere(row==True).flatten())\n", - "\n", - "#diagnoses.query(\"eid==1000092\")[diagnoses_snomed]" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f4c90d91d08e48119abcf8426cddd37e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_diagnoses_sid = {}\n", - "snomed_codes_emb_set = set(snomed_codes_emb)\n", - "for eid, p_d_col in tqdm(patient_diagnoses.items()):\n", - " diagnoses_list = [diagnoses_snomed[i] for i in p_d_col]\n", - " sid_list = [phenotype_list_snomed[i] for i in diagnoses_list]\n", - " sid_list = [sid for sid in sid_list if sid in snomed_codes_emb_set]\n", - " patient_diagnoses_sid[eid] = sid_list" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> node2vec average" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "47e934dc64334c82893d23b458108fbf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3335: RuntimeWarning: Mean of empty slice.\n", - " out=out, **kwargs)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/_methods.py:161: RuntimeWarning: invalid value encountered in double_scalars\n", - " ret = ret.dtype.type(ret / rcount)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_node2vec_dict = {}\n", - "for eid, sids in tqdm(patient_diagnoses_sid.items()):\n", - " array_list = [snomed_arrays[sid] for sid in sids]\n", - " patient_node2vec_dict[eid] = np.mean(array_list, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e1395c2d1bfc41f39697a8925b20d597", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ 0.37033895, 0.13321076, -0.10030267, 0.05625264, -0.08437331,\n", - " 0.11504787, -0.24833219, -0.11936529, 0.25239648, -0.32739932,\n", - " 0.06330914, -0.06493541, -0.28790415, -0.2885537 , 0.02546298,\n", - " -0.06123153, -0.17690672, -0.0867546 , -0.28337599, -0.08474496,\n", - " 0.31454532, -0.24158154, 0.15930864, 0.06124846, 0.07694602,\n", - " -0.13752803, 0.13671128, -0.27988751, -0.03987635, 0.03632156,\n", - " -0.13793361, -0.15857369, -0.16441636, 0.2412931 , 0.20070578,\n", - " -0.11412784, 0.02563965, -0.03560184, 0.17169744, -0.0153383 ,\n", - " 0.00117099, 0.1025362 , -0.06505568, 0.05646065, -0.02705149,\n", - " 0.04416442, -0.15798991, -0.10650637, 0.02082507, -0.21182802,\n", - " 0.13972325, -0.18089307, -0.12731068, 0.02907221, -0.19797107,\n", - " 0.19550177, 0.14941799, 0.21561857, -0.18085379, 0.10768238,\n", - " 0.12968045, 0.2082016 , 0.03561408, -0.01122218, -0.27099816,\n", - " -0.06029919, -0.18787618, 0.10084175, -0.07939234, -0.22951897,\n", - " -0.36536359, -0.01050854, -0.21419807, -0.23562986, 0.02380316,\n", - " 0.1213157 , -0.1601396 , 0.07218057, -0.04362593, -0.22303355,\n", - " -0.23844839, -0.14799905, 0.22346404, 0.14218655, 0.39873181,\n", - " -0.32965129, 0.19102432, -0.08894028, -0.20726567, 0.25343222,\n", - " 0.29939455, 0.20513029, 0.17430424, -0.05073184, 0.05827969,\n", - " 0.31626954, 0.0791522 , -0.21433214, 0.11027244, 0.0805151 ,\n", - " 0.08557279, 0.25260801, -0.00096969, -0.06177831, 0.0544524 ,\n", - " -0.17340027, 0.09731447, 0.09982385, -0.074546 , -0.10350239,\n", - " -0.25798929, 0.01222471, 0.1605315 , 0.00191767, 0.11642527,\n", - " -0.15387604, -0.01520803, 0.03220765, -0.13534233, 0.09154689,\n", - " 0.12562997, -0.01667786, -0.09286805, 0.14670483, -0.13097813,\n", - " -0.38270284, -0.0129984 , -0.06352304, 0.12521014, -0.17354363,\n", - " -0.16399127, 0.11488736, 0.39664734, 0.08557075, -0.24862126,\n", - " -0.05882866, 0.23174289, 0.01765143, -0.10257617, 0.01208248,\n", - " -0.06876405, -0.04180976, 0.07489962, -0.10724381, 0.29349823,\n", - " 0.17342743, -0.32044841, -0.01118798, 0.28508293, 0.16492201,\n", - " 0.03994952, -0.17309702, 0.0365077 , 0.08619365, -0.21749571,\n", - " 0.01038752, -0.21414902, -0.18092813, 0.28433131, -0.12601774,\n", - " -0.02147302, 0.51513453, 0.21506432, -0.12596341, -0.0413009 ,\n", - " 0.12595327, 0.08973215, -0.06285449, -0.03649041, 0.04217289,\n", - " -0.02532634, -0.21734533, -0.08211848, 0.14014083, 0.13635479,\n", - " -0.13163414, -0.08576438, -0.04016334, 0.23952563, -0.14895943,\n", - " 0.08564821, -0.04287149, 0.22135877, -0.06337237, -0.07189574,\n", - " -0.1004494 , 0.01225299, -0.13810014, -0.06814497, -0.16715941,\n", - " 0.07303671, 0.15891015, -0.04757821, -0.05777645, -0.0772216 ,\n", - " 0.16787738, -0.2112512 , -0.10142653, -0.19002809, -0.06400223])" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# create imputation vector\n", - "arrays = [patient_node2vec_dict[key] for key in list(patient_node2vec_dict)]\n", - "arrays_ok = [array for array in tqdm(arrays) if ~np.isnan(array).any()]\n", - "imp_vector = np.mean(arrays_ok, axis=0)\n", - "imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e2dd803c2e2a4cb68e71111979d235c2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "for eid, array in tqdm(patient_node2vec_dict.items()):\n", - " if np.isnan(array).any(): \n", - " patient_node2vec_dict[eid] = imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a82c47a8f87a4df1bc81b78496edee0a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "array_eids = [key for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "510554b8bed8456cbfd694b764286acb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "ind_ok = [np.array([1]) if ~np.isnan(array).any() else np.array([0]) for array in tqdm(arrays)]" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a85aec2f3e7644dc99c40781f999eb3c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "arrays_emb = [patient_node2vec_dict[key] for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_eids = np.reshape(np.stack(array_eids, axis=0),(-1,1)) \n", - "arrays_ind = np.stack(ind_ok, axis=0)\n", - "arrays_c = np.stack(arrays_emb, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_complete = np.concatenate([arrays_eids, arrays_ind, arrays_c], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_emb = pd.DataFrame(data=arrays_complete, columns=[\"eid\"]+[\"node2vec_available\"]+[f\"node2vec_{e}\" for e in list(range(0, 200))])" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidnode2vec_availablenode2vec_0node2vec_1node2vec_2node2vec_3node2vec_4node2vec_5node2vec_6node2vec_7...node2vec_190node2vec_191node2vec_192node2vec_193node2vec_194node2vec_195node2vec_196node2vec_197node2vec_198node2vec_199
01000018.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
11000020.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
21000037.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
31000043.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
41000051.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
..................................................................
5024996025150.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025006025165.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025016025173.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025026025182.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025036025198.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
\n", - "

502504 rows × 202 columns

\n", - "
" - ], - "text/plain": [ - " eid node2vec_available node2vec_0 node2vec_1 node2vec_2 \\\n", - "0 1000018.0 0.0 0.370339 0.133211 -0.100303 \n", - "1 1000020.0 0.0 0.370339 0.133211 -0.100303 \n", - "2 1000037.0 0.0 0.370339 0.133211 -0.100303 \n", - "3 1000043.0 0.0 0.370339 0.133211 -0.100303 \n", - "4 1000051.0 0.0 0.370339 0.133211 -0.100303 \n", - "... ... ... ... ... ... \n", - "502499 6025150.0 0.0 0.370339 0.133211 -0.100303 \n", - "502500 6025165.0 0.0 0.370339 0.133211 -0.100303 \n", - "502501 6025173.0 0.0 0.370339 0.133211 -0.100303 \n", - "502502 6025182.0 0.0 0.370339 0.133211 -0.100303 \n", - "502503 6025198.0 0.0 0.370339 0.133211 -0.100303 \n", - "\n", - " node2vec_3 node2vec_4 node2vec_5 node2vec_6 node2vec_7 ... \\\n", - "0 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "1 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "2 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "3 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "4 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "... ... ... ... ... ... ... \n", - "502499 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502500 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502501 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502502 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502503 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "\n", - " node2vec_190 node2vec_191 node2vec_192 node2vec_193 node2vec_194 \\\n", - "0 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "1 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "2 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "3 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "4 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "... ... ... ... ... ... \n", - "502499 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502500 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502501 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502502 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502503 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "\n", - " node2vec_195 node2vec_196 node2vec_197 node2vec_198 node2vec_199 \n", - "0 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "1 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "2 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "3 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "4 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "... ... ... ... ... ... \n", - "502499 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502500 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502501 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502502 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502503 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "\n", - "[502504 rows x 202 columns]" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_emb" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdiagnoses_emb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_feather\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'temp_diagnoses_emb.feather'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pandas/io/feather_format.py\u001b[0m in \u001b[0;36mread_feather\u001b[0;34m(path, columns, use_threads)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mpath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstringify_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfeather\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_feather\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muse_threads\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0muse_threads\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001b[0m in \u001b[0;36mread_feather\u001b[0;34m(source, columns, use_threads, memory_map)\u001b[0m\n\u001b[1;32m 212\u001b[0m \"\"\"\n\u001b[1;32m 213\u001b[0m \u001b[0m_check_pandas_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 214\u001b[0;31m return (read_table(source, columns=columns, memory_map=memory_map)\n\u001b[0m\u001b[1;32m 215\u001b[0m .to_pandas(use_threads=use_threads))\n\u001b[1;32m 216\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001b[0m in \u001b[0;36mread_table\u001b[0;34m(source, columns, memory_map)\u001b[0m\n\u001b[1;32m 234\u001b[0m \"\"\"\n\u001b[1;32m 235\u001b[0m \u001b[0mreader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mFeatherReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 236\u001b[0;31m \u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msource\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muse_memory_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmemory_map\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 238\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcolumns\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.FeatherReader.open\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.get_reader\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib._get_native_file\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.memory_map\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.MemoryMappedFile._open\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.pyarrow_internal_check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory" - ] - } - ], - "source": [ - "diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\n", - "diagnoses_emb = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "1+1" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.628580Z", - "start_time": "2020-11-04T12:33:33.036Z" - } - }, - "outputs": [], - "source": [ - "### define in snomed and get icd codes from there" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Hospital admissions" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.629459Z", - "start_time": "2020-11-04T12:33:34.764Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25', 'I51'],\n", - " 'stroke': ['G45', 'G46', 'I60', 'I67', 'I68', 'I69'],\n", - " 'cancer_breast': ['C50'],\n", - " 'diabetes': ['E10', 'E11', 'E12', 'E13', 'E14'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'copd': ['J44'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03', 'F09', 'G31', 'R54']}" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoint_list = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"cancer_breast\" : [\"Breast Cancer\"],\n", - " \"diabetes\" : [\"Diabetes\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"copd\": [\"COPD\"],\n", - " \"dementia\":[\"dementia\"]\n", - "}\n", - "\n", - "endpoint_list = phenotype_children(phecodes, endpoint_list)\n", - "endpoint_list[\"cancer_breast\"] = [\"C50\"]\n", - "endpoint_list[\"copd\"] = [\"J44\"]\n", - "endpoint_list[\"diabetes\"] = [\"E10\", \"E11\", \"E12\", \"E13\", \"E14\"]\n", - "endpoint_list[\"atrial_fibrillation\"] = [\"I47\", \"I48\"]\n", - "\n", - "\n", - "with open(os.path.join(path, dataset_path, 'endpoint_list.yaml'), 'w') as file: yaml.dump(endpoint_list, file, default_flow_style=False)\n", - "endpoint_list" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "from dateutil.relativedelta import relativedelta\n", - "\n", - "def extract_endpoints_tte(data, diagnoses_codes, endpoint_list, time0_col, level=None):\n", - " if level is not None: diagnoses_codes = diagnoses_codes.query(\"level==@level\")\n", - " diagnoses_codes_time0 = diagnoses_codes.merge(data[[\"eid\", time0_col]], how=\"left\", on=\"eid\")\n", - " \n", - " cens_time_right = min(diagnoses_codes.sort_values('date').groupby('origin').tail(1).date.to_list())\n", - " print(f\"t_0: {time0_col}\")\n", - " print(f\"t_cens: {cens_time_right}\")\n", - " \n", - " df_interval = diagnoses_codes_time0[(diagnoses_codes_time0.date > diagnoses_codes_time0[time0_col]) & \n", - " (diagnoses_codes_time0.date < cens_time_right)]\n", - " \n", - " temp = data[[\"eid\", time0_col]].copy()\n", - " for ph, ph_codes in tqdm(endpoint_list.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " ph_df = df_interval[df_interval.meaning.str.contains(regex, case=False)] \\\n", - " .sort_values('date').groupby('eid').head(1).assign(phenotype=1, date=lambda x: x.date)\n", - " temp_ph = temp.merge(ph_df, how=\"left\", on=\"eid\").fillna(0)\n", - " temp[ph+\"_event\"], temp[ph+\"_event_date\"] = temp_ph.phenotype, temp_ph.date\n", - " \n", - " fill_date = {ph+\"_event_date\" : lambda x: [cens_time_right if event==0 else event_date for event, event_date in zip(x[ph+\"_event\"], x[ph+\"_event_date\"])]}\n", - " calc_tte = {ph+\"_event_time\" : lambda x: [(event_date-time0).days/365.25 for time0, event_date in zip(x[time0_col], x[ph+\"_event_date\"])]}\n", - " \n", - " temp = temp.assign(**fill_date).assign(**calc_tte).drop([ph+\"_event_date\"], axis=1)\n", - " \n", - " temp = temp.drop([time0_col], axis=1) \n", - " \n", - " return temp.drop_duplicates()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6a02ec6d409c4e998c0f1deb9032b535", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=7.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timecancer_breast_eventcancer_breast_event_timediabetes_eventdiabetes_event_timeatrial_fibrillation_eventatrial_fibrillation_event_timecopd_eventcopd_event_timedementia_eventdementia_event_time
010000180.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.334702
110000200.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.063655
210000370.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.338125
310000431.068.1232030.073.7796030.073.7796030.073.7796030.073.7796031.063.2936340.073.779603
410000510.064.7611230.064.7611230.064.7611231.045.0622860.064.7611231.021.0622860.064.761123
\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event myocardial_infarction_event_time \\\n", - "0 1000018 0.0 59.334702 \n", - "1 1000020 0.0 71.063655 \n", - "2 1000037 0.0 70.338125 \n", - "3 1000043 1.0 68.123203 \n", - "4 1000051 0.0 64.761123 \n", - "\n", - " stroke_event stroke_event_time cancer_breast_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 0.0 \n", - "4 0.0 64.761123 0.0 \n", - "\n", - " cancer_breast_event_time diabetes_event diabetes_event_time \\\n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 73.779603 0.0 73.779603 \n", - "4 64.761123 1.0 45.062286 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_event_time copd_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 1.0 \n", - "4 0.0 64.761123 1.0 \n", - "\n", - " copd_event_time dementia_event dementia_event_time \n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 63.293634 0.0 73.779603 \n", - "4 21.062286 0.0 64.761123 " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoints_hospital = extract_endpoints_tte(basics, diagnoses_codes, endpoint_list, time0_col)\n", - "print(len(endpoints_hospital))\n", - "endpoints_hospital.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Death registry" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "death_list = {\n", - " \"death_allcause\":[],\n", - " \"death_cvd\":['I{:02}'.format(ID+1) for ID in range(0, 98)],\n", - "}\n", - "\n", - "death_codes = pd.read_feather(f\"{data_path}/1_decoded/codes_death_records.feather\")#.drop(\"level\", axis=1)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'death_list.yaml'), 'w') as file: yaml.dump(death_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9ca18723f9984f399b46bce781a3f2dd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_death = extract_endpoints_tte(basics, death_codes, death_list, time0_col, level=\"1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SCORES" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list = {\n", - " \"SCORE\":['I{:02}'.format(ID) for ID in [10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 44, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]],\n", - " \"ASCVD\":['I{:02}'.format(ID) for ID in [20, 21, 22, 23, 24, 25, 63]],\n", - " \"QRISK3\":[\"G45\", \"I20\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"],\n", - " \"MACE\":[\"G45\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"], \n", - "}\n", - "with open(os.path.join(path, dataset_path, 'scores_list.yaml'), 'w') as file: yaml.dump(scores_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list_hospital = {}\n", - "scores_list_death = {}\n", - "for score, score_codes in scores_list.items():\n", - " scores_list_hospital[\"hospital_\"+score] = score_codes\n", - " scores_list_death[\"death_\"+score] = score_codes" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "17ed4f235a6e4cc08cdc2789bfc62d73", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2bd6de2f761a464da6f8c6c8ba22a1d8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_scores = {\n", - " \"hospital\": extract_endpoints_tte(basics, diagnoses_codes, scores_list_hospital, time0_col=time0_col),\n", - " \"death\": extract_endpoints_tte(basics, death_codes, scores_list_death, time0_col=time0_col, level=1)}" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_scores_all = endpoints_scores[\"hospital\"].merge(endpoints_scores[\"death\"], on=\"eid\", how=\"left\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ESC SCORE (Conroy 2003)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5323\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_time
4510004631.074.165640
8310008411.076.005476
10210010311.075.537303
12210012371.050.132786
17610017771.072.238193
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time\n", - "45 1000463 1.0 74.165640\n", - "83 1000841 1.0 76.005476\n", - "102 1001031 1.0 75.537303\n", - "122 1001237 1.0 50.132786\n", - "176 1001777 1.0 72.238193" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"SCORE\"\n", - "\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score).rename(columns={\"death_SCORE_event\":\"SCORE_event\", \"death_SCORE_event_time\":\"SCORE_event_time\"})\n", - "score_SCORE = temp = temp[[\"eid\", \"SCORE_event\", \"SCORE_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ASCVD (Goff 2014)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "61785\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidASCVD_eventASCVD_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid ASCVD_event ASCVD_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"ASCVD\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_ASCVD = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### UK QRISK3 (2017)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "69344\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidQRISK3_eventQRISK3_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid QRISK3_event QRISK3_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"QRISK3\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_QRISK3 = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MACE (2020)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62097\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidMACE_eventMACE_event_time
31000043168.123203
221000233168.673511
301000319156.922656
451000463174.069815
531000548150.255989
\n", - "
" - ], - "text/plain": [ - " eid MACE_event MACE_event_time\n", - "3 1000043 1 68.123203\n", - "22 1000233 1 68.673511\n", - "30 1000319 1 56.922656\n", - "45 1000463 1 74.069815\n", - "53 1000548 1 50.255989" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"MACE\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_MACE = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"basics\": pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather')), \n", - " \"questionnaire\": pd.read_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather')), \n", - " \"measurements\": pd.read_feather(os.path.join(path, dataset_path, 'temp_measurements.feather')), \n", - " \"labs\": pd.read_feather(os.path.join(path, dataset_path, 'temp_labs.feather')), \n", - " \"family_history\": pd.read_feather(os.path.join(path, dataset_path, 'temp_family_history.feather')), \n", - " \"diagnoses\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather')),\n", - " # \"diagnoses_emb\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather')), \n", - " \"medications\": pd.read_feather(os.path.join(path, dataset_path, 'temp_medications.feather')), \n", - " \"endpoints_hospital\":endpoints_hospital, \n", - " \"endpoints_death\":endpoints_death, \n", - " \"score_SCORE\":score_SCORE, \n", - " \"score_ASCVD\":score_ASCVD, \n", - " \"score_QRISK3\":score_QRISK3,\n", - " \"score_MACE\":score_MACE}" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100005151.0FemaleWhite-1.7990802006-06-101955-06-10PoorNeverOne to three times a month...065.051335065.051335064.761123064.761123064.761123
\n", - "

5 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000051 51.0 Female White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2006-06-10 1955-06-10 Poor \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never One to three times a month ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 65.051335 0 65.051335 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 64.761123 0 64.761123 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 64.761123 \n", - "\n", - "[5 rows x 3746 columns]" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintegerFalseeidNaN
12age_at_recruitmentnumericFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentnumericFalsebasicsNaN
.....................
37413742ASCVD_event_timenumericTruescore_ASCVDNaN
37423743QRISK3_eventintegerTruescore_QRISK3NaN
37433744QRISK3_event_timenumericTruescore_QRISK3NaN
37443745MACE_eventintegerTruescore_MACENaN
37453746MACE_event_timenumericTruescore_MACENaN
\n", - "

3746 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid integer False \n", - "1 2 age_at_recruitment numeric False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment numeric False \n", - "... ... ... ... ... \n", - "3741 3742 ASCVD_event_time numeric True \n", - "3742 3743 QRISK3_event integer True \n", - "3743 3744 QRISK3_event_time numeric True \n", - "3744 3745 MACE_event integer True \n", - "3745 3746 MACE_event_time numeric True \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "3741 score_ASCVD NaN \n", - "3742 score_QRISK3 NaN \n", - "3743 score_QRISK3 NaN \n", - "3744 score_MACE NaN \n", - "3745 score_MACE NaN \n", - "\n", - "[3746 rows x 6 columns]" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"integer\", \"int64\":\"integer\", \"float64\":\"numeric\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"logical\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exclusion Criteria" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline_excl = data_baseline.query(\"myocardial_infarction == False & coronary_heart_disease == False & statins == False\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100007960.0FemaleWhite-2.7080402008-03-181948-03-18FairNeverOnce or twice a week...072.279261072.279261161.054073161.054073071.989049
..................................................................
402296602515043.0FemaleWhite0.0467812007-06-301964-06-30ExcellentNeverThree or four times a week...055.994524055.994524055.704312055.704312055.704312
402297602516545.0FemaleWhite-2.1070402008-09-021963-09-02GoodNeverThree or four times a week...056.821355056.821355056.531143056.531143056.531143
402298602517357.0MaleWhite-1.8272202008-09-171951-09-17GoodNeverNever...068.780287068.780287068.490075068.490075068.490075
402299602518256.0MaleWhite-0.0107642010-07-011954-07-01ExcellentPreviousDaily or almost daily...065.993155065.993155065.702943065.702943065.702943
402300602519867.0MaleWhite-1.9306502010-01-261943-01-26GoodCurrentDaily or almost daily...077.420945077.420945077.130732077.130732077.130732
\n", - "

402301 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000079 60.0 Female White \n", - "... ... ... ... ... \n", - "402296 6025150 43.0 Female White \n", - "402297 6025165 45.0 Female White \n", - "402298 6025173 57.0 Male White \n", - "402299 6025182 56.0 Male White \n", - "402300 6025198 67.0 Male White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -2.708040 \n", - "... ... \n", - "402296 0.046781 \n", - "402297 -2.107040 \n", - "402298 -1.827220 \n", - "402299 -0.010764 \n", - "402300 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2008-03-18 1948-03-18 Fair \n", - "... ... ... ... \n", - "402296 2007-06-30 1964-06-30 Excellent \n", - "402297 2008-09-02 1963-09-02 Good \n", - "402298 2008-09-17 1951-09-17 Good \n", - "402299 2010-07-01 1954-07-01 Excellent \n", - "402300 2010-01-26 1943-01-26 Good \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never Once or twice a week ... 0 \n", - "... ... ... ... ... \n", - "402296 Never Three or four times a week ... 0 \n", - "402297 Never Three or four times a week ... 0 \n", - "402298 Never Never ... 0 \n", - "402299 Previous Daily or almost daily ... 0 \n", - "402300 Current Daily or almost daily ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 72.279261 0 72.279261 1 \n", - "... ... ... ... ... \n", - "402296 55.994524 0 55.994524 0 \n", - "402297 56.821355 0 56.821355 0 \n", - "402298 68.780287 0 68.780287 0 \n", - "402299 65.993155 0 65.993155 0 \n", - "402300 77.420945 0 77.420945 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 61.054073 1 61.054073 0 \n", - "... ... ... ... ... \n", - "402296 55.704312 0 55.704312 0 \n", - "402297 56.531143 0 56.531143 0 \n", - "402298 68.490075 0 68.490075 0 \n", - "402299 65.702943 0 65.702943 0 \n", - "402300 77.130732 0 77.130732 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 71.989049 \n", - "... ... \n", - "402296 55.704312 \n", - "402297 56.531143 \n", - "402298 68.490075 \n", - "402299 65.702943 \n", - "402300 77.130732 \n", - "\n", - "[402301 rows x 3746 columns]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline_excl" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "feature_dict = {}\n", - "for group in data_baseline_description.based_on.unique(): feature_dict[group] = data_baseline_description.query(\"based_on==@group\").covariate.to_list()\n", - "with open(os.path.join(path, dataset_path, 'feature_list.yaml'), 'w') as file: yaml.dump(feature_dict, file, default_flow_style=False, allow_unicode=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "#feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_clinical.feather'))\n", - "data_baseline_excl.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_excl.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:python]", - "language": "python", - "name": "conda-env-python-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth_PxMxT.ipynb b/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth_PxMxT.ipynb deleted file mode 100644 index bb5e7e3..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth_PxMxT.ipynb +++ /dev/null @@ -1,10333 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import os\n", - "import yaml\n", - "from tqdm.notebook import trange, tqdm\n", - "dataset_name = \"cvd_lifetime_time_series\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.895222Z", - "start_time": "2020-11-04T12:31:49.891332Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "Path(dataset_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:33:14.171198Z", - "start_time": "2020-11-04T12:31:50.204540Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 39.3 s, sys: 1min 12s, total: 1min 52s\n", - "Wall time: 1min 17s\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "data = pd.read_feather(f\"{data_path}/1_decoded/ukb_data.feather\")\n", - "data_field = pd.read_feather(f\"{data_path}/1_decoded/ukb_data_field.feather\")\n", - "data_columns = data.columns.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidweight_method_f21_0_0weight_method_f21_1_0weight_method_f21_2_0weight_method_f21_3_0spirometry_method_f23_0_0spirometry_method_f23_1_0spirometry_method_f23_2_0spirometry_method_f23_3_0sex_f31_0_0...source_of_report_of_i85_oesophageal_varices_f131407_0_0source_of_report_of_i89_other_noninfective_disorders_of_lymphatic_vessels_and_lymph_nodes_f131415_0_0date_i95_first_reported_hypotension_f131416_0_0source_of_report_of_i95_hypotension_f131417_0_0date_i97_first_reported_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131418_0_0source_of_report_of_i97_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131419_0_0date_i98_first_reported_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131420_0_0source_of_report_of_i98_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131421_0_0date_i99_first_reported_other_and_unspecified_disorders_of_circulatory_system_f131422_0_0source_of_report_of_i99_other_and_unspecified_disorders_of_circulatory_system_f131423_0_0
01000018Direct entryNaNNaNNaNDirect entryNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
11000020Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
21000037Direct entryNaNNaNNaNDirect entryNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
31000043Direct entryNaNDirect entryNaNDirect entryNaNDirect entryNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
41000051Direct entryNaNNaNNaNNaNNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
..................................................................
5025006025165Direct entryNaNNaNNaNDirect entryNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
5025016025173Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
5025026025182Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaN2012-08-16Primary care only
5025036025198Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
5025046025200NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
\n", - "

502505 rows × 7162 columns

\n", - "
" - ], - "text/plain": [ - " eid weight_method_f21_0_0 weight_method_f21_1_0 \\\n", - "0 1000018 Direct entry NaN \n", - "1 1000020 Direct entry NaN \n", - "2 1000037 Direct entry NaN \n", - "3 1000043 Direct entry NaN \n", - "4 1000051 Direct entry NaN \n", - "... ... ... ... \n", - "502500 6025165 Direct entry NaN \n", - "502501 6025173 Direct entry NaN \n", - "502502 6025182 Direct entry NaN \n", - "502503 6025198 Direct entry NaN \n", - "502504 6025200 NaN NaN \n", - "\n", - " weight_method_f21_2_0 weight_method_f21_3_0 spirometry_method_f23_0_0 \\\n", - "0 NaN NaN Direct entry \n", - "1 NaN NaN Direct entry \n", - "2 NaN NaN Direct entry \n", - "3 Direct entry NaN Direct entry \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "502500 NaN NaN Direct entry \n", - "502501 NaN NaN Direct entry \n", - "502502 NaN NaN Direct entry \n", - "502503 NaN NaN Direct entry \n", - "502504 NaN NaN NaN \n", - "\n", - " spirometry_method_f23_1_0 spirometry_method_f23_2_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 NaN Direct entry \n", - "4 NaN NaN \n", - "... ... ... \n", - "502500 NaN NaN \n", - "502501 NaN NaN \n", - "502502 NaN NaN \n", - "502503 NaN NaN \n", - "502504 NaN NaN \n", - "\n", - " spirometry_method_f23_3_0 sex_f31_0_0 ... \\\n", - "0 NaN Female ... \n", - "1 NaN Male ... \n", - "2 NaN Female ... \n", - "3 NaN Male ... \n", - "4 NaN Female ... \n", - "... ... ... ... \n", - "502500 NaN Female ... \n", - "502501 NaN Male ... \n", - "502502 NaN Male ... \n", - "502503 NaN Male ... \n", - "502504 NaN NaN ... \n", - "\n", - " source_of_report_of_i85_oesophageal_varices_f131407_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " source_of_report_of_i89_other_noninfective_disorders_of_lymphatic_vessels_and_lymph_nodes_f131415_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i95_first_reported_hypotension_f131416_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i95_hypotension_f131417_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i97_first_reported_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131418_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i97_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131419_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i98_first_reported_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131420_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i98_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131421_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i99_first_reported_other_and_unspecified_disorders_of_circulatory_system_f131422_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 2012-08-16 \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i99_other_and_unspecified_disorders_of_circulatory_system_f131423_0_0 \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 Primary care only \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - "[502505 rows x 7162 columns]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mappings + Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.867152Z", - "start_time": "2020-11-04T12:33:16.878773Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n", - "502504\n" - ] - } - ], - "source": [ - "# Drop obviouse missing data\n", - "print(len(data))\n", - "data = data.dropna(subset=[\"sex_f31_0_0\"], axis=0)\n", - "print(len(data))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Starting information" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.872216Z", - "start_time": "2020-11-04T12:34:05.869505Z" - } - }, - "outputs": [], - "source": [ - "time0_col=\"birthdate\"\n", - "# time0_col=\"date_of_attending_assessment_centre_f53_0_0\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Basic Covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.889725Z", - "start_time": "2020-11-04T12:34:05.874587Z" - } - }, - "outputs": [], - "source": [ - "def get_fields(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields) & data_field[\"field.tab\"].str.contains(\"f\\\\.\\\\d+\\\\.0\\\\.\\\\d\")].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_fields_all(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields)].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_data_fields(fields, data, data_field):\n", - " f = get_fields(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()\n", - "\n", - "def get_data_fields_all(fields, data, data_field):\n", - " f = get_fields_all(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - "]\n", - "\n", - "temp = get_data_fields_all(fields_basics, data, data_field)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basics" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.176411Z", - "start_time": "2020-11-04T12:34:05.891730Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0ethnic_background_f21000_1_0ethnic_background_f21000_2_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0date_of_attending_assessment_centre_f53_1_0date_of_attending_assessment_centre_f53_2_0date_of_attending_assessment_centre_f53_3_0
0100001849.0FemaleBritishNaNNaN-1.8529302009-11-12NoneNoneNone
1100002059.0MaleBritishNaNNaN0.2042482008-02-19NoneNoneNone
2100003759.0FemaleBritishNaNNaN-3.4988602008-11-11NoneNoneNone
3100004363.0MaleBritishNaNNaN-5.3511502009-06-03None2018-06-08None
4100005151.0FemaleBritishNaNNaN-1.7990802006-06-10None2019-09-15None
\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "\n", - " ethnic_background_f21000_0_0 ethnic_background_f21000_1_0 \\\n", - "0 British NaN \n", - "1 British NaN \n", - "2 British NaN \n", - "3 British NaN \n", - "4 British NaN \n", - "\n", - " ethnic_background_f21000_2_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "\n", - " date_of_attending_assessment_centre_f53_1_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "\n", - " date_of_attending_assessment_centre_f53_2_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 2018-06-08 \n", - "4 2019-09-15 \n", - "\n", - " date_of_attending_assessment_centre_f53_3_0 \n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - "]\n", - "\n", - "temp = get_data_fields_all(fields_basics, data, data_field)\n", - "\n", - "temp[\"sex_f31_0_0\"] = temp[\"sex_f31_0_0\"].cat.set_categories([\"Female\", 'Male'], ordered=False)\n", - "temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].astype(\"category\")\n", - "\n", - "basics = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "#basics = basics.assign(birth_date = calc_birth_date)\n", - "\n", - "\n", - "basics.to_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "#basics[\"t\"] = (basics.date_of_attending_assessment_centre_f53_0_0-basics.birth_date).dt.days/365.2425" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.186613Z", - "start_time": "2020-11-04T12:34:06.178111Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['British', 'Caribbean', 'Other ethnic group', 'Irish', 'Indian', ..., 'White and Black African', 'Any other Black background', 'Asian or Asian British', 'Mixed', 'Black or Black British']\n", - "Length: 23\n", - "Categories (22, object): ['Prefer not to answer' < 'Do not know' < 'White' < 'Mixed' ... 'Any other Asian background' < 'Caribbean' < 'African' < 'Any other Black background']\n" - ] - } - ], - "source": [ - " print(temp[\"ethnic_background_f21000_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Questionnaire" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.389467Z", - "start_time": "2020-11-04T12:34:06.188206Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidoverall_health_rating_f2178_0_0overall_health_rating_f2178_1_0overall_health_rating_f2178_2_0overall_health_rating_f2178_3_0smoking_status_f20116_0_0smoking_status_f20116_1_0smoking_status_f20116_2_0smoking_status_f20116_3_0alcohol_intake_frequency_f1558_0_0alcohol_intake_frequency_f1558_1_0alcohol_intake_frequency_f1558_2_0alcohol_intake_frequency_f1558_3_0
01000018FairNaNNaNNaNCurrentNaNNaNNaNOnce or twice a weekNaNNaNNaN
11000020GoodNaNNaNNaNCurrentNaNNaNNaNOnce or twice a weekNaNNaNNaN
21000037GoodNaNNaNNaNPreviousNaNNaNNaNOnce or twice a weekNaNNaNNaN
31000043FairNaNFairNaNPreviousNaNPreviousNaNThree or four times a weekNaNThree or four times a weekNaN
41000051PoorNaNFairNaNNeverNaNNeverNaNOne to three times a monthNaNOne to three times a monthNaN
\n", - "
" - ], - "text/plain": [ - " eid overall_health_rating_f2178_0_0 overall_health_rating_f2178_1_0 \\\n", - "0 1000018 Fair NaN \n", - "1 1000020 Good NaN \n", - "2 1000037 Good NaN \n", - "3 1000043 Fair NaN \n", - "4 1000051 Poor NaN \n", - "\n", - " overall_health_rating_f2178_2_0 overall_health_rating_f2178_3_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 Fair NaN \n", - "4 Fair NaN \n", - "\n", - " smoking_status_f20116_0_0 smoking_status_f20116_1_0 \\\n", - "0 Current NaN \n", - "1 Current NaN \n", - "2 Previous NaN \n", - "3 Previous NaN \n", - "4 Never NaN \n", - "\n", - " smoking_status_f20116_2_0 smoking_status_f20116_3_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 Previous NaN \n", - "4 Never NaN \n", - "\n", - " alcohol_intake_frequency_f1558_0_0 alcohol_intake_frequency_f1558_1_0 \\\n", - "0 Once or twice a week NaN \n", - "1 Once or twice a week NaN \n", - "2 Once or twice a week NaN \n", - "3 Three or four times a week NaN \n", - "4 One to three times a month NaN \n", - "\n", - " alcohol_intake_frequency_f1558_2_0 alcohol_intake_frequency_f1558_3_0 \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 Three or four times a week NaN \n", - "4 One to three times a month NaN " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_questionnaire = [\n", - " \"2178\", # Overall health\n", - " \"20116\", # Smoking status\n", - " \"1558\",\n", - "]\n", - "\n", - "temp = get_data_fields_all(fields_questionnaire, data, data_field)\n", - "\n", - "temp[\"overall_health_rating_f2178_0_0\"] = temp[\"overall_health_rating_f2178_0_0\"]\\\n", - " .replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan})\\\n", - " .astype(\"category\").cat.set_categories(['Poor', 'Fair', 'Good', 'Excellent'], ordered=True)\n", - "\n", - "\n", - "temp[\"smoking_status_f20116_0_0\"] = temp[\"smoking_status_f20116_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories(['Current', 'Previous', 'Never'], ordered=True)\n", - "\n", - "temp[\"alcohol_intake_frequency_f1558_0_0\"] = temp[\"alcohol_intake_frequency_f1558_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories([\n", - " 'Daily or almost daily', \n", - " 'Three or four times a week', \n", - " 'Once or twice a week',\n", - " 'One to three times a month',\n", - " 'Special occasions only', \n", - " 'Never'], ordered=True)\n", - "\n", - "questionnaire = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "questionnaire.to_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.398168Z", - "start_time": "2020-11-04T12:34:06.391082Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Once or twice a week', 'Three or four times a week', 'One to three times a month', 'Daily or almost daily', 'Special occasions only', 'Never', NaN]\n", - "Categories (6, object): ['Daily or almost daily' < 'Three or four times a week' < 'Once or twice a week' < 'One to three times a month' < 'Special occasions only' < 'Never']\n" - ] - } - ], - "source": [ - "print(temp[\"alcohol_intake_frequency_f1558_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Physical measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.052989Z", - "start_time": "2020-11-04T12:34:06.400858Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbody_mass_index_bmi_f21001_2_0body_mass_index_bmi_f21001_3_0body_mass_index_bmi_f21001_0_0body_mass_index_bmi_f21001_1_0weight_f21002_3_0weight_f21002_2_0weight_f21002_1_0weight_f21002_0_0systolic_blood_pressure_automated_reading_f4080_3_0...peak_expiratory_flow_pef_f3064_2_0peak_expiratory_flow_pef_f3064_1_2peak_expiratory_flow_pef_f3064_1_1peak_expiratory_flow_pef_f3064_1_0peak_expiratory_flow_pef_f3064_0_2peak_expiratory_flow_pef_f3064_0_1peak_expiratory_flow_pef_f3064_3_0peak_expiratory_flow_pef_f3064_3_1peak_expiratory_flow_pef_f3064_2_2peak_expiratory_flow_pef_f3064_3_2
01000018NaNNaN26.5557NaNNaNNaNNaN63.8NaN...NaNNaNNaNNaN317.0312.0NaNNaNNaNNaN
11000020NaNNaN22.7465NaNNaNNaNNaN70.7NaN...NaNNaNNaNNaN301.0496.0NaNNaNNaNNaN
21000037NaNNaN32.4211NaNNaNNaNNaN78.9NaN...NaNNaNNaNNaNNaN185.0NaNNaNNaNNaN
3100004328.4349NaN29.5679NaNNaN90.6NaN95.8NaN...476.0NaNNaNNaN557.0513.0NaNNaN390.0NaN
41000051NaNNaN41.0222NaNNaNNaNNaN92.3NaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 80 columns

\n", - "
" - ], - "text/plain": [ - " eid body_mass_index_bmi_f21001_2_0 body_mass_index_bmi_f21001_3_0 \\\n", - "0 1000018 NaN NaN \n", - "1 1000020 NaN NaN \n", - "2 1000037 NaN NaN \n", - "3 1000043 28.4349 NaN \n", - "4 1000051 NaN NaN \n", - "\n", - " body_mass_index_bmi_f21001_0_0 body_mass_index_bmi_f21001_1_0 \\\n", - "0 26.5557 NaN \n", - "1 22.7465 NaN \n", - "2 32.4211 NaN \n", - "3 29.5679 NaN \n", - "4 41.0222 NaN \n", - "\n", - " weight_f21002_3_0 weight_f21002_2_0 weight_f21002_1_0 weight_f21002_0_0 \\\n", - "0 NaN NaN NaN 63.8 \n", - "1 NaN NaN NaN 70.7 \n", - "2 NaN NaN NaN 78.9 \n", - "3 NaN 90.6 NaN 95.8 \n", - "4 NaN NaN NaN 92.3 \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080_3_0 ... \\\n", - "0 NaN ... \n", - "1 NaN ... \n", - "2 NaN ... \n", - "3 NaN ... \n", - "4 NaN ... \n", - "\n", - " peak_expiratory_flow_pef_f3064_2_0 peak_expiratory_flow_pef_f3064_1_2 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 476.0 NaN \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_1_1 peak_expiratory_flow_pef_f3064_1_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 NaN NaN \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_0_2 peak_expiratory_flow_pef_f3064_0_1 \\\n", - "0 317.0 312.0 \n", - "1 301.0 496.0 \n", - "2 NaN 185.0 \n", - "3 557.0 513.0 \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_3_0 peak_expiratory_flow_pef_f3064_3_1 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 NaN NaN \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_2_2 peak_expiratory_flow_pef_f3064_3_2 \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 390.0 NaN \n", - "4 NaN NaN \n", - "\n", - "[5 rows x 80 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from statistics import mean\n", - "\n", - "fields_measurements = [\n", - "# \"100313\", # Walking speed !!! MISSING !!!\n", - " \"21001\", # BMI\n", - " \"21002\", # weight\n", - " \"4080\", # Syst. BP\n", - " \"4079\", # Diast. BP\n", - " \"102\",\n", - " \"21021\",\n", - " \"4195\",\n", - " \"48\",\n", - " \"49\",\n", - " \"50\",\n", - " \"23127\",\n", - " \"23099\",\n", - " \"23105\",\n", - " \"20151\",\n", - " \"20150\",\n", - " \"20258\",\n", - " \"3064\",\n", - " \n", - "]\n", - "temp = get_data_fields_all(fields_measurements, data, data_field)\n", - "\n", - "#sbp_cols = [\"systolic_blood_pressure_automated_reading_f4080_0_0\", \"systolic_blood_pressure_automated_reading_f4080_0_1\"]\n", - "#dbp_cols = [\"diastolic_blood_pressure_automated_reading_f4079_0_0\", \"diastolic_blood_pressure_automated_reading_f4079_0_1\"]\n", - "#pr_cols = [\"pulse_rate_automated_reading_f102_0_0\", \"pulse_rate_automated_reading_f102_0_1\"]\n", - "\n", - "#temp = temp.assign(systolic_blood_pressure_automated_reading_f4080 = temp[sbp_cols].mean(axis=1),\n", - "# diastolic_blood_pressure_automated_reading_f4079 = temp[dbp_cols].mean(axis=1),\n", - "# pulse_rate_automated_reading_f102 = temp[pr_cols].mean(axis=1))\\\n", - "# .drop(sbp_cols + dbp_cols + pr_cols, axis=1)\n", - "\n", - "measurements = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "measurements.to_feather(os.path.join(path, dataset_path, 'temp_measurements.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lab measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.647955Z", - "start_time": "2020-11-04T12:34:07.055242Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbasophill_count_f30160_2_0basophill_count_f30160_1_0basophill_count_f30160_0_0basophill_percentage_f30220_2_0basophill_percentage_f30220_0_0basophill_percentage_f30220_1_0eosinophill_count_f30150_0_0eosinophill_count_f30150_1_0eosinophill_count_f30150_2_0...total_protein_f30860_0_0total_protein_f30860_1_0triglycerides_f30870_0_0triglycerides_f30870_1_0urate_f30880_0_0urate_f30880_1_0urea_f30670_1_0urea_f30670_0_0vitamin_d_f30890_0_0vitamin_d_f30890_1_0
01000018NaNNaN0.04NaN0.26NaN0.25NaNNaN...71.97NaN1.247NaN221.3NaNNaN5.4870.7NaN
11000020NaNNaN0.00NaN0.30NaN0.30NaNNaN...78.45NaN1.906NaN374.7NaNNaN5.2835.9NaN
21000037NaNNaN0.04NaN0.57NaN0.10NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
31000043NaNNaN0.02NaN0.32NaN0.11NaNNaN...69.70NaN5.184NaN322.8NaNNaN6.6763.6NaN
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 154 columns

\n", - "
" - ], - "text/plain": [ - " eid basophill_count_f30160_2_0 basophill_count_f30160_1_0 \\\n", - "0 1000018 NaN NaN \n", - "1 1000020 NaN NaN \n", - "2 1000037 NaN NaN \n", - "3 1000043 NaN NaN \n", - "4 1000051 NaN NaN \n", - "\n", - " basophill_count_f30160_0_0 basophill_percentage_f30220_2_0 \\\n", - "0 0.04 NaN \n", - "1 0.00 NaN \n", - "2 0.04 NaN \n", - "3 0.02 NaN \n", - "4 NaN NaN \n", - "\n", - " basophill_percentage_f30220_0_0 basophill_percentage_f30220_1_0 \\\n", - "0 0.26 NaN \n", - "1 0.30 NaN \n", - "2 0.57 NaN \n", - "3 0.32 NaN \n", - "4 NaN NaN \n", - "\n", - " eosinophill_count_f30150_0_0 eosinophill_count_f30150_1_0 \\\n", - "0 0.25 NaN \n", - "1 0.30 NaN \n", - "2 0.10 NaN \n", - "3 0.11 NaN \n", - "4 NaN NaN \n", - "\n", - " eosinophill_count_f30150_2_0 ... total_protein_f30860_0_0 \\\n", - "0 NaN ... 71.97 \n", - "1 NaN ... 78.45 \n", - "2 NaN ... NaN \n", - "3 NaN ... 69.70 \n", - "4 NaN ... NaN \n", - "\n", - " total_protein_f30860_1_0 triglycerides_f30870_0_0 \\\n", - "0 NaN 1.247 \n", - "1 NaN 1.906 \n", - "2 NaN NaN \n", - "3 NaN 5.184 \n", - "4 NaN NaN \n", - "\n", - " triglycerides_f30870_1_0 urate_f30880_0_0 urate_f30880_1_0 \\\n", - "0 NaN 221.3 NaN \n", - "1 NaN 374.7 NaN \n", - "2 NaN NaN NaN \n", - "3 NaN 322.8 NaN \n", - "4 NaN NaN NaN \n", - "\n", - " urea_f30670_1_0 urea_f30670_0_0 vitamin_d_f30890_0_0 \\\n", - "0 NaN 5.48 70.7 \n", - "1 NaN 5.28 35.9 \n", - "2 NaN NaN NaN \n", - "3 NaN 6.67 63.6 \n", - "4 NaN NaN NaN \n", - "\n", - " vitamin_d_f30890_1_0 \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "\n", - "[5 rows x 154 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_blood_count = [\n", - " \"30160\", #\tBasophill count\n", - " \"30220\", #\tBasophill percentage\n", - " \"30150\", #\tEosinophill count\n", - " \"30210\", #\tEosinophill percentage\n", - " \"30030\", #\tHaematocrit percentage\n", - " \"30020\", #\tHaemoglobin concentration\n", - " \"30300\", #\tHigh light scatter reticulocyte count\n", - " \"30290\", #\tHigh light scatter reticulocyte percentage\n", - " \"30280\", #\tImmature reticulocyte fraction\n", - " \"30120\", #\tLymphocyte count\n", - " \"30180\", #\tLymphocyte percentage\n", - " \"30050\", #\tMean corpuscular haemoglobin\n", - " \"30060\", #\tMean corpuscular haemoglobin concentration\n", - " \"30040\", #\tMean corpuscular volume\n", - " \"30100\", #\tMean platelet (thrombocyte) volume\n", - " \"30260\", #\tMean reticulocyte volume\n", - " \"30270\", #\tMean sphered cell volume\n", - " \"30130\", #\tMonocyte count\n", - " \"30190\", #\tMonocyte percentage\n", - " \"30140\", #\tNeutrophill count\n", - " \"30200\", #\tNeutrophill percentage\n", - " \"30170\", #\tNucleated red blood cell count\n", - " \"30230\", #\tNucleated red blood cell percentage\n", - " \"30080\", #\tPlatelet count\n", - " \"30090\", #\tPlatelet crit\n", - " \"30110\", #\tPlatelet distribution width\n", - " \"30010\", #\tRed blood cell (erythrocyte) count\n", - " \"30070\", #\tRed blood cell (erythrocyte) distribution width\n", - " \"30250\", #\tReticulocyte count\n", - " \"30240\", #\tReticulocyte percentage\n", - " \"30000\", #\tWhite blood cell (leukocyte) count\n", - "]\n", - "\n", - "fields_blood_biochemistry = [\n", - " \"30620\",#\tAlanine aminotransferase\n", - " \"30600\",#\tAlbumin\n", - " \"30610\",#\tAlkaline phosphatase\n", - " \"30630\",#\tApolipoprotein A\n", - " \"30640\",#\tApolipoprotein B\n", - " \"30650\",#\tAspartate aminotransferase\n", - " \"30710\",#\tC-reactive protein\n", - " \"30680\",#\tCalcium\n", - " \"30690\",#\tCholesterol\n", - " \"30700\",#\tCreatinine\n", - " \"30720\",#\tCystatin C\n", - " \"30660\",#\tDirect bilirubin\n", - " \"30730\",#\tGamma glutamyltransferase\n", - " \"30740\",#\tGlucose\n", - " \"30750\",#\tGlycated haemoglobin (HbA1c)\n", - " \"30760\",#\tHDL cholesterol\n", - " \"30770\",#\tIGF-1\n", - " \"30780\",#\tLDL direct\n", - " \"30790\",#\tLipoprotein A\n", - " \"30800\",#\tOestradiol\n", - " \"30810\",#\tPhosphate\n", - " \"30820\",#\tRheumatoid factor\n", - " \"30830\",#\tSHBG\n", - " \"30850\",#\tTestosterone\n", - " \"30840\",#\tTotal bilirubin\n", - " \"30860\",#\tTotal protein\n", - " \"30870\",#\tTriglycerides\n", - " \"30880\",#\tUrate\n", - " \"30670\",#\tUrea\n", - " \"30890\",#\tVitamin D\n", - "]\n", - "\n", - "fields_blood_infectious = [\n", - " \"23000\", #\t1gG antigen for Herpes Simplex virus-1\n", - " \"23001\", #\t2mgG unique antigen for Herpes Simplex virus-2\n", - " \"23049\", #\tAntigen assay QC indicator\n", - " \"23048\", #\tAntigen assay date\n", - " \"23026\", #\tBK VP1 antigen for Human Polyomavirus BKV\n", - " \"23039\", #\tCagA antigen for Helicobacter pylori\n", - " \"23043\", #\tCatalase antigen for Helicobacter pylori\n", - " \"23018\", #\tCore antigen for Hepatitis C Virus\n", - " \"23030\", #\tE6 antigen for Human Papillomavirus type-16\n", - " \"23031\", #\tE7 antigen for Human Papillomavirus type-16\n", - " \"23006\", #\tEA-D antigen for Epstein-Barr Virus\n", - " \"23004\", #\tEBNA-1 antigen for Epstein-Barr Virus\n", - " \"23042\", #\tGroEL antigen for Helicobacter pylori\n", - " \"23016\", #\tHBc antigen for Hepatitis B Virus\n", - " \"23017\", #\tHBe antigen for Hepatitis B Virus\n", - " \"23025\", #\tHIV-1 env antigen for Human Immunodeficiency Virus\n", - " \"23024\", #\tHIV-1 gag antigen for Human Immunodeficiency Virus\n", - " \"23023\", #\tHTLV-1 env antigen for Human T-Lymphotropic Virus 1\n", - " \"23022\", #\tHTLV-1 gag antigen for Human T-Lymphotropic Virus 1\n", - " \"23010\", #\tIE1A antigen for Human Herpesvirus-6\n", - " \"23011\", #\tIE1B antigen for Human Herpesvirus-6\n", - " \"23027\", #\tJC VP1 antigen for Human Polyomavirus JCV\n", - " \"23015\", #\tK8.1 antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23029\", #\tL1 antigen for Human Papillomavirus type-16\n", - " \"23032\", #\tL1 antigen for Human Papillomavirus type-18\n", - " \"23014\", #\tLANA antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23028\", #\tMC VP1 antigen for Merkel Cell Polyomavirus\n", - " \"23019\", #\tNS3 antigen for Hepatitis C Virus\n", - " \"23041\", #\tOMP antigen for Helicobacter pylori\n", - " \"23037\", #\tPorB antigen for Chlamydia trachomatis\n", - " \"23013\", #\tU14 antigen for Human Herpesvirus-7\n", - " \"23044\", #\tUreA antigen for Helicobacter pylori\n", - " \"23003\", #\tVCA p18 antigen for Epstein-Barr Virus\n", - " \"23040\", #\tVacA antigen for Helicobacter pylori\n", - " \"23005\", #\tZEBRA antigen for Epstein-Barr Virus\n", - " \"23002\", #\tgE / gI antigen for Varicella Zoster Virus\n", - " \"23034\", #\tmomp A antigen for Chlamydia trachomatis\n", - " \"23033\", #\tmomp D antigen for Chlamydia trachomatis\n", - " \"23012\", #\tp101 k antigen for Human Herpesvirus-6\n", - " \"23020\", #\tp22 antigen for Toxoplasma gondii\n", - " \"23038\", #\tpGP3 antigen for Chlamydia trachomatis\n", - " \"23009\", #\tpp 28 antigen for Human Cytomegalovirus\n", - " \"23008\", #\tpp 52 antigen for Human Cytomegalovirus\n", - " \"23007\", #\tpp150 Nter antigen for Human Cytomegalovirus\n", - " \"23021\", #\tsag1 antigen for Toxoplasma gondii\n", - " \"23035\", #\ttarp-D F1 antigen for Chlamydia trachomatis\n", - " \"23036\", #\ttarp-D F2 antigen for Chlamydia trachomatis\n", - "]\n", - "\n", - "labs = temp = get_data_fields_all(fields_blood_count+fields_blood_biochemistry+fields_blood_infectious, data, data_field)\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "labs.to_feather(os.path.join(path, dataset_path, 'temp_labs.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Get Demographic Data with times" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "standard = pd.concat([basics.set_index(\"eid\"), questionnaire.set_index(\"eid\"), measurements.set_index(\"eid\"), labs.set_index(\"eid\")], axis=1).reset_index()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "cols_raw = [c[:-4] for c in standard.drop(\"eid\", axis=1).columns.to_list()]\n", - "cols = list(dict.fromkeys(cols_raw))" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0ethnic_background_f21000_1_0ethnic_background_f21000_2_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0date_of_attending_assessment_centre_f53_1_0date_of_attending_assessment_centre_f53_2_0...total_protein_f30860_0_0total_protein_f30860_1_0triglycerides_f30870_0_0triglycerides_f30870_1_0urate_f30880_0_0urate_f30880_1_0urea_f30670_1_0urea_f30670_0_0vitamin_d_f30890_0_0vitamin_d_f30890_1_0
0100001849.0FemaleBritishNaNNaN-1.8529302009-11-12NoneNone...71.97NaN1.247NaN221.3NaNNaN5.4870.7NaN
1100002059.0MaleBritishNaNNaN0.2042482008-02-19NoneNone...78.45NaN1.906NaN374.7NaNNaN5.2835.9NaN
2100003759.0FemaleBritishNaNNaN-3.4988602008-11-11NoneNone...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3100004363.0MaleBritishNaNNaN-5.3511502009-06-03None2018-06-08...69.70NaN5.184NaN322.8NaNNaN6.6763.6NaN
4100005151.0FemaleBritishNaNNaN-1.7990802006-06-10None2019-09-15...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
502499602515043.0FemaleBritishBritishNaN0.0467812007-06-302012-11-172017-08-12...72.10NaN0.7302.285298.8356.15.654.2141.617.9
502500602516545.0FemaleBritishNaNNaN-2.1070402008-09-02NoneNone...74.20NaN1.442NaN220.2NaNNaN4.0172.7NaN
502501602517357.0MaleBritishNaNNaN-1.8272202008-09-17NoneNone...72.03NaN1.136NaN255.5NaNNaN5.2541.6NaN
502502602518256.0MaleBritishNaNNaN-0.0107642010-07-01NoneNone...70.65NaN5.756NaN353.6NaNNaN4.4245.9NaN
502503602519867.0MaleBritishNaNNaN-1.9306502010-01-26NoneNone...70.62NaN2.327NaN454.8NaNNaN5.1420.2NaN
\n", - "

502504 rows × 255 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "... ... ... ... \n", - "502499 6025150 43.0 Female \n", - "502500 6025165 45.0 Female \n", - "502501 6025173 57.0 Male \n", - "502502 6025182 56.0 Male \n", - "502503 6025198 67.0 Male \n", - "\n", - " ethnic_background_f21000_0_0 ethnic_background_f21000_1_0 \\\n", - "0 British NaN \n", - "1 British NaN \n", - "2 British NaN \n", - "3 British NaN \n", - "4 British NaN \n", - "... ... ... \n", - "502499 British British \n", - "502500 British NaN \n", - "502501 British NaN \n", - "502502 British NaN \n", - "502503 British NaN \n", - "\n", - " ethnic_background_f21000_2_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502499 NaN \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "... ... \n", - "502499 0.046781 \n", - "502500 -2.107040 \n", - "502501 -1.827220 \n", - "502502 -0.010764 \n", - "502503 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "... ... \n", - "502499 2007-06-30 \n", - "502500 2008-09-02 \n", - "502501 2008-09-17 \n", - "502502 2010-07-01 \n", - "502503 2010-01-26 \n", - "\n", - " date_of_attending_assessment_centre_f53_1_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502499 2012-11-17 \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "\n", - " date_of_attending_assessment_centre_f53_2_0 ... \\\n", - "0 None ... \n", - "1 None ... \n", - "2 None ... \n", - "3 2018-06-08 ... \n", - "4 2019-09-15 ... \n", - "... ... ... \n", - "502499 2017-08-12 ... \n", - "502500 None ... \n", - "502501 None ... \n", - "502502 None ... \n", - "502503 None ... \n", - "\n", - " total_protein_f30860_0_0 total_protein_f30860_1_0 \\\n", - "0 71.97 NaN \n", - "1 78.45 NaN \n", - "2 NaN NaN \n", - "3 69.70 NaN \n", - "4 NaN NaN \n", - "... ... ... \n", - "502499 72.10 NaN \n", - "502500 74.20 NaN \n", - "502501 72.03 NaN \n", - "502502 70.65 NaN \n", - "502503 70.62 NaN \n", - "\n", - " triglycerides_f30870_0_0 triglycerides_f30870_1_0 urate_f30880_0_0 \\\n", - "0 1.247 NaN 221.3 \n", - "1 1.906 NaN 374.7 \n", - "2 NaN NaN NaN \n", - "3 5.184 NaN 322.8 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "502499 0.730 2.285 298.8 \n", - "502500 1.442 NaN 220.2 \n", - "502501 1.136 NaN 255.5 \n", - "502502 5.756 NaN 353.6 \n", - "502503 2.327 NaN 454.8 \n", - "\n", - " urate_f30880_1_0 urea_f30670_1_0 urea_f30670_0_0 vitamin_d_f30890_0_0 \\\n", - "0 NaN NaN 5.48 70.7 \n", - "1 NaN NaN 5.28 35.9 \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN 6.67 63.6 \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "502499 356.1 5.65 4.21 41.6 \n", - "502500 NaN NaN 4.01 72.7 \n", - "502501 NaN NaN 5.25 41.6 \n", - "502502 NaN NaN 4.42 45.9 \n", - "502503 NaN NaN 5.14 20.2 \n", - "\n", - " vitamin_d_f30890_1_0 \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502499 17.9 \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "\n", - "[502504 rows x 255 columns]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "standard" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2+2" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'cudf'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mcudf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'cudf'" - ] - } - ], - "source": [ - "import cudf" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d3b78428eda44d26b055c31254877601", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=51.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "TerminatedWorkerError", - "evalue": "A worker process managed by the executor was unexpectedly terminated. This could be caused by a segmentation fault while calling the function or by an excessive memory usage causing the Operating System to kill the worker.\n\nThe exit codes of the workers are {SIGKILL(-9)}", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTerminatedWorkerError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mlist_df\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mdf_input\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdf_input\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0mdf_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mParallel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelayed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf_wide_to_long\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist_df\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0mdf_concat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1060\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieval_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1061\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1062\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1063\u001b[0m \u001b[0melapsed_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start_time\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 938\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 939\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'supports_timeout'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 940\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 941\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 942\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mwrap_future_result\u001b[0;34m(future, timeout)\u001b[0m\n\u001b[1;32m 540\u001b[0m AsyncResults.get from multiprocessing.\"\"\"\n\u001b[1;32m 541\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 542\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 543\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mCfTimeoutError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 433\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mCancelledError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 434\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_state\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mFINISHED\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 435\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__get_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 436\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 437\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\u001b[0m in \u001b[0;36m__get_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 382\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__get_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exception\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 384\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 385\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 386\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_result\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTerminatedWorkerError\u001b[0m: A worker process managed by the executor was unexpectedly terminated. This could be caused by a segmentation fault while calling the function or by an excessive memory usage causing the Operating System to kill the worker.\n\nThe exit codes of the workers are {SIGKILL(-9)}" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "from joblib import Parallel, delayed\n", - "\n", - "def df_wide_to_long(df): return pd.wide_to_long(standard, cols, i=\"eid\", j=\"t\", sep=\"_\", suffix='\\w+').reset_index()\n", - "\n", - "df_input = standard\n", - "n = 10000 \n", - "list_df = [df_input[i:i+n] for i in range(0,df_input.shape[0],n)]\n", - "\n", - "df_list = Parallel(n_jobs=10)(delayed(df_wide_to_long)(df) for df in tqdm(list_df))\n", - "df_concat = pd.concat(df_list, axis=0).reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ee25fa009d6e4e858f160756345d9518", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=503.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 939\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'supports_timeout'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 940\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 941\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mwrap_future_result\u001b[0;34m(future, timeout)\u001b[0m\n\u001b[1;32m 541\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 542\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 543\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mCfTimeoutError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 430\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_condition\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 431\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 296\u001b[0;31m \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 297\u001b[0m \u001b[0mgotit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mjoblib\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mParallel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdelayed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mParallel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelayed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf_wide_to_long\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist_df\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1060\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieval_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1061\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1062\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1063\u001b[0m \u001b[0melapsed_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start_time\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 960\u001b[0m \u001b[0;31m# scheduling.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 961\u001b[0m \u001b[0mensure_ready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_managed_backend\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 962\u001b[0;31m \u001b[0mbackend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabort_everything\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 963\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mabort_everything\u001b[0;34m(self, ensure_ready)\u001b[0m\n\u001b[1;32m 559\u001b[0m \"\"\"Shutdown the workers and restart a new one with the same parameters\n\u001b[1;32m 560\u001b[0m \"\"\"\n\u001b[0;32m--> 561\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_workers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mterminate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 562\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_workers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/executor.py\u001b[0m in \u001b[0;36mterminate\u001b[0;34m(self, kill_workers)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mterminate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshutdown\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkill_workers\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;31m# When workers are killed in such a brutal manner, they cannot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\u001b[0m in \u001b[0;36mshutdown\u001b[0;34m(self, wait, kill_workers)\u001b[0m\n\u001b[1;32m 1169\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1170\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mexecutor_manager_thread\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mwait\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1171\u001b[0;31m \u001b[0mexecutor_manager_thread\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1172\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1173\u001b[0m \u001b[0;31m# To reduce the risk of opening too many files, remove references to\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36mjoin\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 1042\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1043\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1044\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_wait_for_tstate_lock\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1045\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1046\u001b[0m \u001b[0;31m# the behavior of a negative timeout isn't documented, but\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36m_wait_for_tstate_lock\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m 1058\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlock\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# already determined that the C code is done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_is_stopped\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1060\u001b[0;31m \u001b[0;32melif\u001b[0m \u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblock\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1061\u001b[0m \u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1062\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "from joblib import Parallel, delayed\n", - "df_list = Parallel(n_jobs=50)(delayed(df_wide_to_long)(df) for df in tqdm(list_df))" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 37min 49s, sys: 6min 53s, total: 44min 43s\n", - "Wall time: 45min 6s\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "standard_long = pd.wide_to_long(standard, cols, i=\"eid\", j=\"t\", sep=\"_\", suffix='\\w+').reset_index()#.set_index(\"eid\")\n", - "standard_long = standard_long.dropna(how=\"all\", subset=cols, axis=0).reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 297, - "metadata": {}, - "outputs": [], - "source": [ - "def split_ukb_index(df, idx_col=\"t\"):\n", - " new = df[idx_col].str.split(\"_\", n = 1, expand = True) \n", - " df[\"visit\"] = new[0]\n", - " df[\"measurement\"]= new[1]\n", - " return df.drop(columns =[idx_col]) \n", - "df_raw = split_ukb_index(standard_long, idx_col=\"t\")" - ] - }, - { - "cell_type": "code", - "execution_count": 298, - "metadata": {}, - "outputs": [], - "source": [ - "def process_multiple_measurements(df):\n", - " df_nonfloat = df.set_index([\"eid\", \"visit\"]).select_dtypes(exclude=np.number)\n", - " nonfloat_columns = [c for c in df_nonfloat.columns if c not in [\"measurement\"]]\n", - " df_nonfloat = df_nonfloat.dropna(subset=nonfloat_columns, how=\"all\")[nonfloat_columns]\n", - " df_float = df.set_index([\"eid\", \"visit\"]).select_dtypes(include=np.number).groupby([\"eid\", \"visit\"]).mean(numeric_only=True)\n", - " df_complete = pd.concat([df_nonfloat, df_float], axis=1).reset_index()\n", - " return df_complete\n", - "\n", - "def df_sort_cols(df, cols): return df[start_cols+[c for c in df.columns.to_list() if c not in start_cols]]\n", - "\n", - "start_cols = [\"eid\", \"visit\", \"date_of_attending_assessment_centre_f53\", \"age_at_recruitment_f21022\", \"sex_f31\", \"ethnic_background_f21000\"]\n", - "df_agg_measurement = df_sort_cols(process_multiple_measurements(df_raw), start_cols)" - ] - }, - { - "cell_type": "code", - "execution_count": 299, - "metadata": {}, - "outputs": [], - "source": [ - "def get_birthdate(df_complete):\n", - " from dateutil.relativedelta import relativedelta\n", - " df = df_complete[df_complete.visit==\"0\"].copy()#.reset_index()\n", - " df[\"birthdate\"] = [date - relativedelta(years=age) for date, age in zip(df.date_of_attending_assessment_centre_f53, df.age_at_recruitment_f21022)]\n", - " df_birthdate = df.set_index(\"eid\")[[\"birthdate\"]]\n", - " return df_birthdate\n", - "\n", - "def convert_dates_to_timedelta(df_birthdate, df_complete):\n", - " df_complete_bd = pd.concat([df_birthdate, df_complete.set_index([\"eid\"])], axis=1).reset_index()\n", - "\n", - " start_cols = [\"eid\", \"birthdate\", \"sex_f31\", \"ethnic_background_f21000\", \"visit\", \"date_of_attending_assessment_centre_f53\"]\n", - " df_complete_bd = df_complete_bd[start_cols+[c for c in df_complete_bd.columns.to_list() if c not in start_cols]]\n", - "\n", - " df_complete_bd = df_complete_bd.rename(columns={\"visit\":\"t\"}).assign(t= lambda x: (x.date_of_attending_assessment_centre_f53-x.birthdate).dt.days/365.2425)\n", - " df_complete_bd = df_complete_bd.set_index([\"eid\", \"t\"]).drop([\"date_of_attending_assessment_centre_f53\", \"age_at_recruitment_f21022\"], axis=1)\n", - " return df_complete_bd.reset_index()" - ] - }, - { - "cell_type": "code", - "execution_count": 312, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
birthdate
eid
10000181960-11-12
10000201949-02-19
10000371949-11-11
10000431946-06-03
10000511955-06-10
......
60251501964-06-30
60251651963-09-02
60251731951-09-17
60251821954-07-01
60251981943-01-26
\n", - "

502504 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " birthdate\n", - "eid \n", - "1000018 1960-11-12\n", - "1000020 1949-02-19\n", - "1000037 1949-11-11\n", - "1000043 1946-06-03\n", - "1000051 1955-06-10\n", - "... ...\n", - "6025150 1964-06-30\n", - "6025165 1963-09-02\n", - "6025173 1951-09-17\n", - "6025182 1954-07-01\n", - "6025198 1943-01-26\n", - "\n", - "[502504 rows x 1 columns]" - ] - }, - "execution_count": 312, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_birthdate" - ] - }, - { - "cell_type": "code", - "execution_count": 300, - "metadata": {}, - "outputs": [], - "source": [ - "df_birthdate = get_birthdate(df_agg_measurement)\n", - "df_baseline_time = convert_dates_to_timedelta(df_birthdate, df_agg_measurement)" - ] - }, - { - "cell_type": "code", - "execution_count": 301, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtbirthdatesex_f31ethnic_background_f21000overall_health_rating_f2178smoking_status_f20116alcohol_intake_frequency_f1558townsend_deprivation_index_at_recruitment_f189body_mass_index_bmi_f21001...phosphate_f30810rheumatoid_factor_f30820shbg_f30830testosterone_f30850total_bilirubin_f30840total_protein_f30860triglycerides_f30870urate_f30880urea_f30670vitamin_d_f30890
0100001849.0003221960-11-12FemaleBritishFairCurrentOnce or twice a week-1.85293026.5557...1.422NaN70.111.5607.4171.971.247221.35.4870.7
1100002058.9991581949-02-19MaleBritishGoodCurrentOnce or twice a week0.20424822.7465...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
2100003759.0018961949-11-11FemaleBritishGoodPreviousOnce or twice a week-3.49886032.4211...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3100004363.0019781946-06-03MaleBritishFairPreviousThree or four times a week-5.35115029.5679...0.928NaN31.6311.3988.6569.705.184322.86.6763.6
4100004372.0151681946-06-03NaNNaNFairPreviousThree or four times a weekNaN28.4349...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
575055602515055.3057221964-06-30NaNNaNGoodNeverThree or four times a weekNaN33.5072...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
575056602516545.0029771963-09-02FemaleBritishGoodNeverThree or four times a week-2.10704024.2275...0.996NaN73.380.65211.1974.201.442220.24.0172.7
575057602517357.0032241951-09-17MaleBritishGoodNeverNever-1.82722025.9504...1.119NaN50.1313.5176.3172.031.136255.55.2541.6
575058602518256.0011501954-07-01MaleBritishExcellentPreviousDaily or almost daily-0.01076429.1425...0.986NaN24.4810.9519.9570.655.756353.64.4245.9
575059602519867.0020601943-01-26MaleBritishGoodCurrentDaily or almost daily-1.93065029.5988...1.163NaN45.0915.03011.8570.622.327454.85.1420.2
\n", - "

575060 rows × 87 columns

\n", - "
" - ], - "text/plain": [ - " eid t birthdate sex_f31 ethnic_background_f21000 \\\n", - "0 1000018 49.000322 1960-11-12 Female British \n", - "1 1000020 58.999158 1949-02-19 Male British \n", - "2 1000037 59.001896 1949-11-11 Female British \n", - "3 1000043 63.001978 1946-06-03 Male British \n", - "4 1000043 72.015168 1946-06-03 NaN NaN \n", - "... ... ... ... ... ... \n", - "575055 6025150 55.305722 1964-06-30 NaN NaN \n", - "575056 6025165 45.002977 1963-09-02 Female British \n", - "575057 6025173 57.003224 1951-09-17 Male British \n", - "575058 6025182 56.001150 1954-07-01 Male British \n", - "575059 6025198 67.002060 1943-01-26 Male British \n", - "\n", - " overall_health_rating_f2178 smoking_status_f20116 \\\n", - "0 Fair Current \n", - "1 Good Current \n", - "2 Good Previous \n", - "3 Fair Previous \n", - "4 Fair Previous \n", - "... ... ... \n", - "575055 Good Never \n", - "575056 Good Never \n", - "575057 Good Never \n", - "575058 Excellent Previous \n", - "575059 Good Current \n", - "\n", - " alcohol_intake_frequency_f1558 \\\n", - "0 Once or twice a week \n", - "1 Once or twice a week \n", - "2 Once or twice a week \n", - "3 Three or four times a week \n", - "4 Three or four times a week \n", - "... ... \n", - "575055 Three or four times a week \n", - "575056 Three or four times a week \n", - "575057 Never \n", - "575058 Daily or almost daily \n", - "575059 Daily or almost daily \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 NaN \n", - "... ... \n", - "575055 NaN \n", - "575056 -2.107040 \n", - "575057 -1.827220 \n", - "575058 -0.010764 \n", - "575059 -1.930650 \n", - "\n", - " body_mass_index_bmi_f21001 ... phosphate_f30810 \\\n", - "0 26.5557 ... 1.422 \n", - "1 22.7465 ... 1.264 \n", - "2 32.4211 ... NaN \n", - "3 29.5679 ... 0.928 \n", - "4 28.4349 ... NaN \n", - "... ... ... ... \n", - "575055 33.5072 ... NaN \n", - "575056 24.2275 ... 0.996 \n", - "575057 25.9504 ... 1.119 \n", - "575058 29.1425 ... 0.986 \n", - "575059 29.5988 ... 1.163 \n", - "\n", - " rheumatoid_factor_f30820 shbg_f30830 testosterone_f30850 \\\n", - "0 NaN 70.11 1.560 \n", - "1 NaN 55.31 12.237 \n", - "2 NaN NaN NaN \n", - "3 NaN 31.63 11.398 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "575055 NaN NaN NaN \n", - "575056 NaN 73.38 0.652 \n", - "575057 NaN 50.13 13.517 \n", - "575058 NaN 24.48 10.951 \n", - "575059 NaN 45.09 15.030 \n", - "\n", - " total_bilirubin_f30840 total_protein_f30860 triglycerides_f30870 \\\n", - "0 7.41 71.97 1.247 \n", - "1 8.07 78.45 1.906 \n", - "2 NaN NaN NaN \n", - "3 8.65 69.70 5.184 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "575055 NaN NaN NaN \n", - "575056 11.19 74.20 1.442 \n", - "575057 6.31 72.03 1.136 \n", - "575058 9.95 70.65 5.756 \n", - "575059 11.85 70.62 2.327 \n", - "\n", - " urate_f30880 urea_f30670 vitamin_d_f30890 \n", - "0 221.3 5.48 70.7 \n", - "1 374.7 5.28 35.9 \n", - "2 NaN NaN NaN \n", - "3 322.8 6.67 63.6 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "575055 NaN NaN NaN \n", - "575056 220.2 4.01 72.7 \n", - "575057 255.5 5.25 41.6 \n", - "575058 353.6 4.42 45.9 \n", - "575059 454.8 5.14 20.2 \n", - "\n", - "[575060 rows x 87 columns]" - ] - }, - "execution_count": 301, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_baseline_time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Medications" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.842601Z", - "start_time": "2020-11-04T12:34:25.840607Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "# https://list.essentialmeds.org/?showRemoved=0\n", - "# essential medicines WHO?!" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.471831Z", - "start_time": "2020-11-04T12:34:25.844339Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "atc_mapping = pd.read_csv(f\"{path}/mapping/atc/atc_matched_list.csv\")\n", - "athena_concepts = pd.read_csv(f\"{data_path}/athena_vocabulary/CONCEPT.csv\", sep=\"\\t\").assign(vocabulary_id = lambda x: x.vocabulary_id.astype(\"string\"), concept_class_id = lambda x: x.concept_class_id.astype(\"string\"))\n", - "atc_concepts = athena_concepts[athena_concepts.vocabulary_id==\"ATC\"]\n", - "atc2_concepts = atc_concepts[atc_concepts.concept_class_id==\"ATC 2nd\"].sort_values(\"concept_code\")\n", - "medication_list = dict(zip([x.lower().replace(\" \", \"_\") for x in atc2_concepts.concept_name.to_list()], [[x] for x in atc2_concepts.concept_code.to_list()]))\n", - "medication_list_extra = {\n", - " \"antihypertensives\": [\"C02\"],\n", - " \"statins\": [\"C10A\", \"C10B\"],\n", - " \"ass\": [\"B01\"],\n", - " \"atypical_antipsychotics\" : [\"N05\"],\n", - " \"glucocorticoids\" : [\"H02\"] \n", - "}\n", - "medication_list.update(medication_list_extra)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'medication_list.yaml'), 'w') as file: yaml.dump(medication_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "def had_medication_before(data, data_field, medications, atc_mapping):\n", - " fields = [\"20003\"]\n", - " raw = get_data_fields(fields, data, data_field)\n", - " temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"UKBB_code\").drop(\"field\", axis=1).drop_duplicates()\n", - "\n", - " temp.UKBB_code = temp.UKBB_code.astype(str)\n", - " temp = temp[temp.UKBB_code!=\"None\"].copy()\n", - " temp.UKBB_code = temp.UKBB_code.astype(int)\n", - "\n", - " temp_atc = temp.merge(atc_mapping, how=\"left\", on=\"UKBB_code\").sort_values(\"eid\").reset_index(drop=True).dropna(subset=[\"ATC_code\"], axis=0)\n", - " temp_atc.ATC_code = temp_atc.ATC_code.astype(\"string\")\n", - " temp = data[[\"eid\"]].copy()\n", - " for med, med_codes in tqdm(medication_list.items()):\n", - " regex_str = \"^\"+\"|^\".join(med_codes)\n", - " df = temp_atc[temp_atc.ATC_code.str.contains(regex_str, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(medication=True)\n", - " temp[med] = temp.merge(df, how=\"left\", on=\"eid\").fillna(False).medication\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.481137Z", - "start_time": "2020-11-04T12:34:32.473698Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:36:14.425612Z", - "start_time": "2020-11-04T12:34:32.482863Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "13ef8609a6b64b219928981b7752c608", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=98.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - } - ], - "source": [ - "medications = had_medication_before(data, data_field, medication_list, atc_mapping)\n", - "print(len(medications))\n", - "medications.head(100)\n", - "\n", - "medications.to_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.851438Z", - "start_time": "2020-11-04T12:37:14.774599Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = pd.read_csv(f\"{path}/mapping/snomed_core_list.txt\", sep=\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 279, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.909023Z", - "start_time": "2020-11-04T12:37:14.853286Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = snomed_core.query(\"SNOMED_CONCEPT_STATUS == 'Current'\").copy()\n", - "new = snomed_core.SNOMED_FSN.str.split(\"(\", n=1, expand=True)\n", - "snomed_core[\"snomed_name\"] = new[0].str.rstrip(' ')\n", - "snomed_core[\"snomed_type\"] = new[1].str.rstrip(')')\n", - "snomed_core_data = snomed_core.query(\"(snomed_type=='disorder' | snomed_type=='finding') & USAGE>0.01\").head(1000).reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 280, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SNOMED_CIDSNOMED_FSNSNOMED_CONCEPT_STATUSUMLS_CUIOCCURRENCEUSAGEFIRST_IN_SUBSETIS_RETIRED_FROM_SUBSETLAST_IN_SUBSETREPLACED_BY_SNOMED_CIDsnomed_namesnomed_type
038341003Hypertensive disorder, systemic arterial (diso...CurrentC00205388.03.2242200907FalseNaNNaNHypertensive disorder, systemic arterialdisorder
155822004Hyperlipidemia (disorder)CurrentC00204738.02.1369200907FalseNaNNaNHyperlipidemiadisorder
235489007Depressive disorder (disorder)CurrentC00115818.01.5077200907FalseNaNNaNDepressive disorderdisorder
3235595009Gastroesophageal reflux disease (disorder)CurrentC00171688.01.3691200907FalseNaNNaNGastroesophageal reflux diseasedisorder
444054006Diabetes mellitus type 2 (disorder)CurrentC00118608.01.0432200907FalseNaNNaNDiabetes mellitus type 2disorder
.......................................
995191187006Alpha trait thalassemia (disorder)CurrentC04727622.00.0104200907FalseNaNNaNAlpha trait thalassemiadisorder
996429305003Nonvenomous insect bite (disorder)CurrentC03328151.00.0104200907FalseNaNNaNNonvenomous insect bitedisorder
997444613000Adult attention deficit hyperactivity disorder...CurrentC08654241.00.0104201008FalseNaNNaNAdult attention deficit hyperactivity disorderdisorder
998274152003Spondylolisthesis (disorder)CurrentC00380165.00.0103200907FalseNaNNaNSpondylolisthesisdisorder
999363402007Malignant tumor of esophagus (disorder)CurrentC05468375.00.0103200907FalseNaNNaNMalignant tumor of esophagusdisorder
\n", - "

1000 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " SNOMED_CID SNOMED_FSN \\\n", - "0 38341003 Hypertensive disorder, systemic arterial (diso... \n", - "1 55822004 Hyperlipidemia (disorder) \n", - "2 35489007 Depressive disorder (disorder) \n", - "3 235595009 Gastroesophageal reflux disease (disorder) \n", - "4 44054006 Diabetes mellitus type 2 (disorder) \n", - ".. ... ... \n", - "995 191187006 Alpha trait thalassemia (disorder) \n", - "996 429305003 Nonvenomous insect bite (disorder) \n", - "997 444613000 Adult attention deficit hyperactivity disorder... \n", - "998 274152003 Spondylolisthesis (disorder) \n", - "999 363402007 Malignant tumor of esophagus (disorder) \n", - "\n", - " SNOMED_CONCEPT_STATUS UMLS_CUI OCCURRENCE USAGE FIRST_IN_SUBSET \\\n", - "0 Current C0020538 8.0 3.2242 200907 \n", - "1 Current C0020473 8.0 2.1369 200907 \n", - "2 Current C0011581 8.0 1.5077 200907 \n", - "3 Current C0017168 8.0 1.3691 200907 \n", - "4 Current C0011860 8.0 1.0432 200907 \n", - ".. ... ... ... ... ... \n", - "995 Current C0472762 2.0 0.0104 200907 \n", - "996 Current C0332815 1.0 0.0104 200907 \n", - "997 Current C0865424 1.0 0.0104 201008 \n", - "998 Current C0038016 5.0 0.0103 200907 \n", - "999 Current C0546837 5.0 0.0103 200907 \n", - "\n", - " IS_RETIRED_FROM_SUBSET LAST_IN_SUBSET REPLACED_BY_SNOMED_CID \\\n", - "0 False NaN NaN \n", - "1 False NaN NaN \n", - "2 False NaN NaN \n", - "3 False NaN NaN \n", - "4 False NaN NaN \n", - ".. ... ... ... \n", - "995 False NaN NaN \n", - "996 False NaN NaN \n", - "997 False NaN NaN \n", - "998 False NaN NaN \n", - "999 False NaN NaN \n", - "\n", - " snomed_name snomed_type \n", - "0 Hypertensive disorder, systemic arterial disorder \n", - "1 Hyperlipidemia disorder \n", - "2 Depressive disorder disorder \n", - "3 Gastroesophageal reflux disease disorder \n", - "4 Diabetes mellitus type 2 disorder \n", - ".. ... ... \n", - "995 Alpha trait thalassemia disorder \n", - "996 Nonvenomous insect bite disorder \n", - "997 Adult attention deficit hyperactivity disorder disorder \n", - "998 Spondylolisthesis disorder \n", - "999 Malignant tumor of esophagus disorder \n", - "\n", - "[1000 rows x 12 columns]" - ] - }, - "execution_count": 280, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_core_data" - ] - }, - { - "cell_type": "code", - "execution_count": 281, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.914973Z", - "start_time": "2020-11-04T12:37:14.910857Z" - } - }, - "outputs": [], - "source": [ - "snomed_names = snomed_core_data.snomed_name.to_list()\n", - "snomed_names = [str(item).lower().strip().replace(\" \", \"_\").replace(\";\", \"\").replace(\",\", \"\") for item in snomed_names]" - ] - }, - { - "cell_type": "code", - "execution_count": 282, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.342937Z", - "start_time": "2020-11-04T12:37:14.916906Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "154e9b5dcc614db88b9db1ac8fc646e1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1000.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_ids = vocab[\"concept\"].query(\"vocabulary_id == 'SNOMED'\").concept_id.to_list()\n", - "icd10_ids = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "\n", - "ph_to_icd10_mapping = {}\n", - "\n", - "def map_snomed_to_icd10(ph, snomed_code, concept, concept_ancestor, concept_relationship):\n", - " concept_ids = concept.query(\"vocabulary_id == 'SNOMED' & concept_code == @snomed_code\").concept_id.to_list()\n", - " snomed_desc_ids = concept_ancestor.query(\"ancestor_concept_id== @concept_ids\").descendant_concept_id.to_list()\n", - " ph_desc = concept.query(\"concept_id == @snomed_desc_ids\").query(\"vocabulary_id == 'SNOMED'\")\n", - " l_ph_desc_ids = ph_desc.concept_id.to_list()\n", - " ph_icd10_ids = list(concept_relationship.query(\"concept_id_1==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").concept_id_2.unique())\n", - " #ph_icd10_ids = list(concept_relationship.set_index(\"concept_id_1\").query(\"index==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").query(\"relationship_id == 'Mapped from'\").concept_id_2.unique()\n", - " \n", - " #ph_icd10_ids = list(temp.concept_id_2.unique())\n", - " df = concept.query(\"concept_id == @ph_icd10_ids & vocabulary_id == 'ICD10CM'\")\n", - " icd10_list = list(df[~df.concept_code.str.contains(\"OMOP\", na=False)].concept_code.unique())\n", - " icd10_list = sorted(list(set([e[:3] for e in icd10_list])))\n", - " #print(f\"{ph}: {icd10_list}\")\n", - " return {ph: sorted(list(dict.fromkeys([str(e) for e in icd10_list])))}\n", - "\n", - "from joblib import Parallel, delayed\n", - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")\n", - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @vocab_concept_ids) & (relationship_id == 'Mapped from')\")\n", - "icd10_codes = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(map_snomed_to_icd10)(ph, snomed_code, \n", - " concept_ids, concept_ancestor, concept_rel) for ph, snomed_code in tqdm(phenotype_list_snomed.items()))" - ] - }, - { - "cell_type": "code", - "execution_count": 283, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.348009Z", - "start_time": "2020-11-04T12:39:55.344704Z" - } - }, - "outputs": [], - "source": [ - "l10_snomed = {}\n", - "for ph in icd10_codes: l10_snomed.update(ph)" - ] - }, - { - "cell_type": "raw", - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.468545Z", - "start_time": "2020-11-04T12:39:55.349545Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "phenotype_list_basic = {\n", - " \"coronary_heart_disease\": [\"Ischemic heart disease\"],\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"diabetes1\" : [\"Type 1 diabetes\"],\n", - " \"diabetes2\" : [\"Diabetes mellitus\", \"Type 2 diabetes\"],\n", - " \"chronic_kidney_disease\": [\"Chronic kidney disease\", \"chronic renal failure\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"migraine\": [\"Migraine\"],\n", - " \"rheumatoid_arthritis\": [\"Rheumatoid arthritis\"],\n", - " \"systemic_lupus_erythematosus\": [\"Systemic lupus erythematosus\"],\n", - " \"severe_mental_illness\": [\"Schizophrenia\", \"bipolar\", \"Major depressive disorder\"],\n", - " \"erectile_dysfunction\" : [\"Erectile dysfunction\"], \n", - "}\n", - "\n", - "l10_basic = phenotype_children(phecodes, phenotype_list_basic)\n", - "l10_all = l10_basic\n", - "for key, value in l10_snomed.items(): \n", - " if key not in l10_basic: l10_all[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 284, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.620916Z", - "start_time": "2020-11-04T12:39:55.475137Z" - } - }, - "outputs": [], - "source": [ - "l10 = {k: v for k, v in l10_snomed.items() if len(v)!=0}\n", - "\n", - "#phenotype_list = {k: v for k, v in phenotype_list.items() if k in list(l10.keys())}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'phenotype_list.yaml'), 'w') as file: yaml.dump(l10, file, default_flow_style=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "### 1. Self Reported" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.288198Z", - "start_time": "2020-11-04T12:43:13.264683Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "coding609 = pd.read_csv(f\"{path}/mapping/codings/coding609.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.304423Z", - "start_time": "2020-11-04T12:43:13.289982Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "from datetime import datetime, timedelta\n", - "\n", - "def datetime_from_dec_year(dec_year):\n", - " start = dec_year\n", - " year = int(start)\n", - " rem = start - year\n", - "\n", - " base = datetime(year, 1, 1)\n", - " result = base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)\n", - " #result.strftime(\"%Y-%m-%d\")\n", - " return result.date()\n", - "\n", - "def extract_map_self_reported(data, data_field, code_map):\n", - " pbar = tqdm(total=16)\n", - " ### codes\n", - " fields = [\"20002\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col = \"noncancer_illness_code_selfreported_f20002\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " codes = temp.rename(columns={col:\"code\"})\\\n", - " .assign(code=lambda x: x.code.astype(str))\\\n", - " .replace(\"None\", np.nan) \\\n", - " .dropna(subset=[\"code\"], axis=0)\\\n", - " .assign(code=lambda x: x.code.astype(int)) \\\n", - " .merge(code_map, how=\"left\",on=\"code\") \\\n", - " .dropna(subset=[\"meaning\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - " \n", - " ### dates\n", - " fields = [\"20008\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col=\"interpolated_year_when_noncancer_illness_first_diagnosed_f20008\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " dates = temp.rename(columns={col:\"date\"})\\\n", - " .dropna(subset=[\"date\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - "\n", - " dates = dates[dates.date!=-1]; pbar.update(1)\n", - " dates = dates[dates.date!=-3]; pbar.update(1)\n", - " dates.date = dates.date.apply(datetime_from_dec_year); pbar.update(1)\n", - " \n", - " test = codes.merge(dates, how=\"left\", on=[\"eid\", \"instance_index\"]).assign(origin=\"self_reported\").copy(); pbar.update(1)\n", - " \n", - " test[\"instance_index\"] = test[\"instance_index\"].astype(\"string\"); pbar.update(1)\n", - " test[['instance','n']] = test.instance_index.str.split(\"_\",expand=True); pbar.update(1)\n", - " pbar.close()\n", - " \n", - " return test[[\"eid\", \"origin\", 'instance','n', \"code\", \"meaning\", \"date\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:00.098893Z", - "start_time": "2020-11-04T12:43:13.432479Z" - }, - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "aaecac4f22c148f09d00f7036aef37ff", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=16.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "ValueError", - "evalue": "invalid literal for int() with base 10: 'nan'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcodes_self_reported\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mextract_map_self_reported\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata_field\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoding609\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mextract_map_self_reported\u001b[0;34m(data, data_field, code_map)\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mreplace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"None\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode_map\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"left\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"meaning\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36massign\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 3693\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3694\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3695\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3696\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3697\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/common.py\u001b[0m in \u001b[0;36mapply_if_callable\u001b[0;34m(maybe_callable, obj, **kwargs)\u001b[0m\n\u001b[1;32m 339\u001b[0m \"\"\"\n\u001b[1;32m 340\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmaybe_callable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 341\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mmaybe_callable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 342\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mmaybe_callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mreplace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"None\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode_map\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"left\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"meaning\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 5544\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5545\u001b[0m \u001b[0;31m# else, only a single dtype is given\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5546\u001b[0;31m \u001b[0mnew_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5547\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5548\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 594\u001b[0m ) -> \"BlockManager\":\n\u001b[0;32m--> 595\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 596\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 597\u001b[0m def convert(\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, align_keys, **kwargs)\u001b[0m\n\u001b[1;32m 404\u001b[0m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 405\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 406\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 407\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_extend_blocks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[0mvals1d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 595\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_nansafe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvals1d\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 596\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 597\u001b[0m \u001b[0;31m# e.g. astype_nansafe can fail on object-dtype of strings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/dtypes/cast.py\u001b[0m in \u001b[0;36mastype_nansafe\u001b[0;34m(arr, dtype, copy, skipna)\u001b[0m\n\u001b[1;32m 970\u001b[0m \u001b[0;31m# work around NumPy brokenness, #1987\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 971\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0missubdtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteger\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 972\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype_intsafe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 973\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 974\u001b[0m \u001b[0;31m# if we have a datetime/timedelta array of objects\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.astype_intsafe\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'nan'" - ] - } - ], - "source": [ - "codes_self_reported = extract_map_self_reported(data, data_field, coding609)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Primary Care" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "# 2. Primary Care\n", - "fields = c(\n", - " 42040 # GP clinical event records\n", - ")\n", - "# extract covariates at baseline (Instance 0)\n", - "def = data_field %>% filter((field.showcase %in% fields),ignore.case = TRUE)\n", - "diagnoses_primary_care = data[, append(\"eid\", def$col.name)]\n", - "head(diagnoses_primary_care)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Hospital episode statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 325, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:08.959617Z", - "start_time": "2020-11-04T12:46:00.100618Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdate
01000018hes_icd100.01S0240S022005-06-02
11000018hes_icd100.02W188W182005-06-02
21000018hes_icd100.03K37K371998-05-11
31000018hes_icd100.04K37K371998-05-16
41000018hes_icd100.05K37K371998-06-01
\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date\n", - "0 1000018 hes_icd10 0.0 1 S0240 S02 2005-06-02\n", - "1 1000018 hes_icd10 0.0 2 W188 W18 2005-06-02\n", - "2 1000018 hes_icd10 0.0 3 K37 K37 1998-05-11\n", - "3 1000018 hes_icd10 0.0 4 K37 K37 1998-05-16\n", - "4 1000018 hes_icd10 0.0 5 K37 K37 1998-06-01" - ] - }, - "execution_count": 325, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "codes_hospital_records = pd.read_feather(f\"{data_path}/1_decoded/codes_hospital_records.feather\").drop(\"level\", axis=1)\n", - "# self reported bypass\n", - "diagnoses_codes = codes_hospital_records \n", - "diagnoses_codes.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Combine diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:25.115010Z", - "start_time": "2020-11-04T12:46:08.961388Z" - } - }, - "outputs": [], - "source": [ - "#diagnoses_codes = codes_self_reported.append(codes_hospital_records).sort_values([\"eid\", \"instance\", \"n\"]).dropna(subset=[\"date\"], axis=0)\n", - "#diagnoses_codes.head()\n", - "#diagnoses_codes.reset_index(drop=True).info()" - ] - }, - { - "cell_type": "code", - "execution_count": 326, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fa4a11bb545e4a65b22151769f697ba2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1167.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "l_test = l10\n", - "icd_list = [item for sublist in l_test.values() for item in sublist]\n", - "icd_list = sorted(list(dict.fromkeys(icd_list)))\n", - "\n", - "icd_dict = {}\n", - "for code in tqdm(icd_list):\n", - " diag_list = []\n", - " for key in l_test:\n", - " if code in l_test[key]: diag_list.append(key)\n", - " icd_dict[code] = diag_list" - ] - }, - { - "cell_type": "code", - "execution_count": 327, - "metadata": {}, - "outputs": [], - "source": [ - "time0=time0_col\n", - "diagnoses_codes_eid = diagnoses_codes[diagnoses_codes.eid.isin(df_birthdate.reset_index().eid.to_list())].reset_index(drop=True)\n", - "diagnoses_codes_eid_icd = diagnoses_codes_eid[diagnoses_codes_eid.meaning.isin(icd_dict)]\n", - "diagnoses_codes_time = diagnoses_codes_eid_icd.merge(df_birthdate.reset_index()[[\"eid\", time0]], how=\"left\", on=\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 328, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdatebirthdate
01000018hes_icd100.01S0240S022005-06-021960-11-12
11000018hes_icd100.03K37K371998-05-111960-11-12
21000018hes_icd100.04K37K371998-05-161960-11-12
31000018hes_icd100.05K37K371998-06-011960-11-12
41000018hes_icd100.06N950N952016-11-081960-11-12
...........................
94385516025198hes_icd100.077D649D642018-12-091943-01-26
94385526025198hes_icd100.078R945R942018-12-091943-01-26
94385536025198hes_icd100.079F171F172018-12-091943-01-26
94385546025198hes_icd100.080I10I102018-12-091943-01-26
94385556025198hes_icd100.081E780E782018-12-091943-01-26
\n", - "

9438556 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date \\\n", - "0 1000018 hes_icd10 0.0 1 S0240 S02 2005-06-02 \n", - "1 1000018 hes_icd10 0.0 3 K37 K37 1998-05-11 \n", - "2 1000018 hes_icd10 0.0 4 K37 K37 1998-05-16 \n", - "3 1000018 hes_icd10 0.0 5 K37 K37 1998-06-01 \n", - "4 1000018 hes_icd10 0.0 6 N950 N95 2016-11-08 \n", - "... ... ... ... .. ... ... ... \n", - "9438551 6025198 hes_icd10 0.0 77 D649 D64 2018-12-09 \n", - "9438552 6025198 hes_icd10 0.0 78 R945 R94 2018-12-09 \n", - "9438553 6025198 hes_icd10 0.0 79 F171 F17 2018-12-09 \n", - "9438554 6025198 hes_icd10 0.0 80 I10 I10 2018-12-09 \n", - "9438555 6025198 hes_icd10 0.0 81 E780 E78 2018-12-09 \n", - "\n", - " birthdate \n", - "0 1960-11-12 \n", - "1 1960-11-12 \n", - "2 1960-11-12 \n", - "3 1960-11-12 \n", - "4 1960-11-12 \n", - "... ... \n", - "9438551 1943-01-26 \n", - "9438552 1943-01-26 \n", - "9438553 1943-01-26 \n", - "9438554 1943-01-26 \n", - "9438555 1943-01-26 \n", - "\n", - "[9438556 rows x 8 columns]" - ] - }, - "execution_count": 328, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_codes_time" - ] - }, - { - "cell_type": "code", - "execution_count": 329, - "metadata": {}, - "outputs": [], - "source": [ - "dct_simple = diagnoses_codes_time.assign(t= lambda x: (x.date-x.birthdate).dt.days/365.2425)[[\"eid\", \"t\", \"meaning\"]]\n", - "dct_simple.t= dct_simple.t.round(1)\n", - "dct_simple[\"diagnosis\"] = [icd_dict[code] for code in dct_simple.meaning]" - ] - }, - { - "cell_type": "code", - "execution_count": 330, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtmeaningdiagnosis
0100001844.6S02[injury_of_head, fracture_of_bone]
1100001837.5K37[appendicitis]
2100001837.5K37[appendicitis]
3100001837.6K37[appendicitis]
4100001856.0N95[vaginitis, postmenopausal_bleeding, bleeding_...
...............
9438551602519875.9D64[anemia]
9438552602519875.9R94[liver_function_tests_abnormal]
9438553602519875.9F17[tobacco_dependence_syndrome, tobacco_user, sm...
9438554602519875.9I10[hypertensive_disorder_systemic_arterial, esse...
9438555602519875.9E78[hyperlipidemia, hypercholesterolemia, arthrit...
\n", - "

9438556 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " eid t meaning \\\n", - "0 1000018 44.6 S02 \n", - "1 1000018 37.5 K37 \n", - "2 1000018 37.5 K37 \n", - "3 1000018 37.6 K37 \n", - "4 1000018 56.0 N95 \n", - "... ... ... ... \n", - "9438551 6025198 75.9 D64 \n", - "9438552 6025198 75.9 R94 \n", - "9438553 6025198 75.9 F17 \n", - "9438554 6025198 75.9 I10 \n", - "9438555 6025198 75.9 E78 \n", - "\n", - " diagnosis \n", - "0 [injury_of_head, fracture_of_bone] \n", - "1 [appendicitis] \n", - "2 [appendicitis] \n", - "3 [appendicitis] \n", - "4 [vaginitis, postmenopausal_bleeding, bleeding_... \n", - "... ... \n", - "9438551 [anemia] \n", - "9438552 [liver_function_tests_abnormal] \n", - "9438553 [tobacco_dependence_syndrome, tobacco_user, sm... \n", - "9438554 [hypertensive_disorder_systemic_arterial, esse... \n", - "9438555 [hyperlipidemia, hypercholesterolemia, arthrit... \n", - "\n", - "[9438556 rows x 4 columns]" - ] - }, - "execution_count": 330, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct_simple" - ] - }, - { - "cell_type": "code", - "execution_count": 331, - "metadata": {}, - "outputs": [], - "source": [ - "#for col in list(l10.keys()): dct_simple[col]=False" - ] - }, - { - "cell_type": "code", - "execution_count": 332, - "metadata": {}, - "outputs": [], - "source": [ - "dct_simple_eids = df_birthdate.reset_index()[[\"eid\"]].merge(dct_simple, how=\"left\", on=\"eid\").drop([\"meaning\"], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 333, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtdiagnosis
0100001844.6[injury_of_head, fracture_of_bone]
1100001837.5[appendicitis]
2100001837.5[appendicitis]
3100001837.6[appendicitis]
4100001856.0[vaginitis, postmenopausal_bleeding, bleeding_...
............
9517540602519875.9[anemia]
9517541602519875.9[liver_function_tests_abnormal]
9517542602519875.9[tobacco_dependence_syndrome, tobacco_user, sm...
9517543602519875.9[hypertensive_disorder_systemic_arterial, esse...
9517544602519875.9[hyperlipidemia, hypercholesterolemia, arthrit...
\n", - "

9517545 rows × 3 columns

\n", - "
" - ], - "text/plain": [ - " eid t diagnosis\n", - "0 1000018 44.6 [injury_of_head, fracture_of_bone]\n", - "1 1000018 37.5 [appendicitis]\n", - "2 1000018 37.5 [appendicitis]\n", - "3 1000018 37.6 [appendicitis]\n", - "4 1000018 56.0 [vaginitis, postmenopausal_bleeding, bleeding_...\n", - "... ... ... ...\n", - "9517540 6025198 75.9 [anemia]\n", - "9517541 6025198 75.9 [liver_function_tests_abnormal]\n", - "9517542 6025198 75.9 [tobacco_dependence_syndrome, tobacco_user, sm...\n", - "9517543 6025198 75.9 [hypertensive_disorder_systemic_arterial, esse...\n", - "9517544 6025198 75.9 [hyperlipidemia, hypercholesterolemia, arthrit...\n", - "\n", - "[9517545 rows x 3 columns]" - ] - }, - "execution_count": 333, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct_simple_eids" - ] - }, - { - "cell_type": "code", - "execution_count": 334, - "metadata": {}, - "outputs": [], - "source": [ - "dct = dct_simple_eids.groupby([\"eid\", \"t\"]).agg({'diagnosis': \"sum\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 335, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
diagnosis
eidt
100001837.5[appendicitis, appendicitis]
37.6[appendicitis]
44.6[injury_of_head, fracture_of_bone]
56.0[vaginitis, postmenopausal_bleeding, bleeding_...
58.3[melanocytic_nevus, hypertensive_disorder_syst...
.........
602517366.5[neutropenic_disorder, leukopenia]
602518244.2[urinary_tract_infectious_disease, urinary_inc...
50.3[headache, pain]
602519875.8[sepsis, methicillin_resistant_staphylococcus_...
75.9[cardiac_arrest, chronic_obstructive_lung_dise...
\n", - "

2413496 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " diagnosis\n", - "eid t \n", - "1000018 37.5 [appendicitis, appendicitis]\n", - " 37.6 [appendicitis]\n", - " 44.6 [injury_of_head, fracture_of_bone]\n", - " 56.0 [vaginitis, postmenopausal_bleeding, bleeding_...\n", - " 58.3 [melanocytic_nevus, hypertensive_disorder_syst...\n", - "... ...\n", - "6025173 66.5 [neutropenic_disorder, leukopenia]\n", - "6025182 44.2 [urinary_tract_infectious_disease, urinary_inc...\n", - " 50.3 [headache, pain]\n", - "6025198 75.8 [sepsis, methicillin_resistant_staphylococcus_...\n", - " 75.9 [cardiac_arrest, chronic_obstructive_lung_dise...\n", - "\n", - "[2413496 rows x 1 columns]" - ] - }, - "execution_count": 335, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct" - ] - }, - { - "cell_type": "code", - "execution_count": 336, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "aa7a9a7015a64772b9997990b5232e50", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2413496.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mdss_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdct\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"diagnosis\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdss_list\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;32mTrue\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mFalse\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ml10\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mdss_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdct\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"diagnosis\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdss_list\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;32mTrue\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mFalse\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ml10\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "dss_list = []\n", - "for d_list in tqdm(dct[\"diagnosis\"].values):\n", - " dss_list.append([True if e in d_list else False for e in list(l10.keys())])" - ] - }, - { - "cell_type": "code", - "execution_count": 348, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext Cython" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_list(d_list, keys): \n", - " return [True if e in d_list else False for e in list(keys)]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_diagnoses_wide(diagnoses_array, keys): \n", - " dss_list = []\n", - " for d_list in diagnoses_array:\n", - " dss_list.append([True if e in d_list else False for e in keys]) \n", - " return dss_list" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_array = dct[\"diagnosis\"].values\n", - "keys = list(l10.keys())\n", - "dss_list = get_diagnoses_wide(diagnoses_array, keys)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_array" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "2+2" - ] - }, - { - "cell_type": "code", - "execution_count": 350, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "037ae435dd7f42819666e382865da845", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2413496.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "ERROR:root:Internal Python error in the inspect module.\n", - "Below is the traceback from this internal error.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3417, in run_code\n", - " exec(code_obj, self.user_global_ns, self.user_ns)\n", - " File \"\", line 4, in \n", - " dss_list = [get_list(d_list, keys) for d_list in tqdm(dct[\"diagnosis\"].values)]\n", - " File \"\", line 4, in \n", - " dss_list = [get_list(d_list, keys) for d_list in tqdm(dct[\"diagnosis\"].values)]\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/tqdm/notebook.py\", line 234, in __iter__\n", - " for obj in super(tqdm_notebook, self).__iter__(*args, **kwargs):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/tqdm/std.py\", line 1190, in __iter__\n", - " self.refresh(lock_args=self.lock_args)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/tqdm/std.py\", line 1386, in refresh\n", - " self.display()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/tqdm/notebook.py\", line 152, in display\n", - " pbar.value = self.n\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/traitlets/traitlets.py\", line 604, in __set__\n", - " self.set(obj, value)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/traitlets/traitlets.py\", line 593, in set\n", - " obj._notify_trait(self.name, old_value, new_value)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/traitlets/traitlets.py\", line 1222, in _notify_trait\n", - " type='change',\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/ipywidgets/widgets/widget.py\", line 605, in notify_change\n", - " self.send_state(key=name)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/ipywidgets/widgets/widget.py\", line 489, in send_state\n", - " self._send(msg, buffers=buffers)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/ipywidgets/widgets/widget.py\", line 737, in _send\n", - " self.comm.send(data=msg, buffers=buffers)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/ipykernel/comm/comm.py\", line 123, in send\n", - " data=data, metadata=metadata, buffers=buffers,\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/ipykernel/comm/comm.py\", line 71, in _publish_msg\n", - " buffers=buffers,\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/jupyter_client/session.py\", line 740, in send\n", - " to_send = self.serialize(msg, ident)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/jupyter_client/session.py\", line 653, in serialize\n", - " signature = self.sign(real_message)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/jupyter_client/session.py\", line 598, in sign\n", - " h.update(m)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/hmac.py\", line 102, in update\n", - " self.inner.update(msg)\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1169, in get_records\n", - " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 316, in wrapped\n", - " return f(*args, **kwargs)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 350, in _fixed_getinnerframes\n", - " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 1502, in getinnerframes\n", - " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 1460, in getframeinfo\n", - " filename = getsourcefile(frame) or getfile(frame)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 696, in getsourcefile\n", - " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 742, in getmodule\n", - " os.path.realpath(f)] = module.__name__\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\", line 395, in realpath\n", - " path, ok = _joinrealpath(filename[:0], filename, {})\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\", line 429, in _joinrealpath\n", - " if not islink(newpath):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\", line 171, in islink\n", - " st = os.lstat(path)\n", - "KeyboardInterrupt\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "KeyboardInterrupt\n", - "\n" - ] - } - ], - "source": [ - "#def get_list(d_list, keys): return [True if e in d_list else False for e in list(keys)]\n", - "\n", - "keys = list(l10.keys())\n", - "dss_list = [get_list(d_list, keys) for d_list in tqdm(dct[\"diagnosis\"].values)]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "terminate()" - ] - }, - { - "cell_type": "code", - "execution_count": 342, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "353ed425b015405c951725db4d9ed20a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2413496.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Exception ignored in: \n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/logging/__init__.py\", line 221, in _releaseLock\n", - " def _releaseLock():\n", - "KeyboardInterrupt\n", - "ERROR:root:Internal Python error in the inspect module.\n", - "Below is the traceback from this internal error.\n", - "\n", - "ERROR:root:Internal Python error in the inspect module.\n", - "Below is the traceback from this internal error.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "joblib.externals.loky.process_executor._RemoteTraceback: \n", - "\"\"\"\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\", line 404, in _process_worker\n", - " call_item = call_queue.get(block=True, timeout=timeout)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/multiprocessing/queues.py\", line 99, in get\n", - " if not self._rlock.acquire(block, timeout):\n", - "KeyboardInterrupt\n", - "\"\"\"\n", - "\n", - "The above exception was the direct cause of the following exception:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\", line 940, in retrieve\n", - " self._output.extend(job.get(timeout=self.timeout))\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\", line 542, in wrap_future_result\n", - " return future.result(timeout=timeout)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\", line 435, in result\n", - " return self.__get_result()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\", line 384, in __get_result\n", - " raise self._exception\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/_base.py\", line 625, in _invoke_callbacks\n", - " callback(self)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\", line 366, in __call__\n", - " self.parallel.dispatch_next()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\", line 799, in dispatch_next\n", - " if not self.dispatch_one_batch(self._original_iterator):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\", line 866, in dispatch_one_batch\n", - " self._dispatch(tasks)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\", line 784, in _dispatch\n", - " job = self._backend.apply_async(batch, callback=cb)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\", line 531, in apply_async\n", - " future = self._workers.submit(SafeFunction(func))\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/reusable_executor.py\", line 178, in submit\n", - " fn, *args, **kwargs)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\", line 1102, in submit\n", - " raise self._flags.broken\n", - "joblib.externals.loky.process_executor.BrokenProcessPool: A task has failed to un-serialize. Please ensure that the arguments of the function are all picklable.\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3417, in run_code\n", - " exec(code_obj, self.user_global_ns, self.user_ns)\n", - " File \"\", line 2, in \n", - " dss_list = Parallel(n_jobs=10)(delayed(get_list)(d_list, l10.keys()) for d_list in tqdm(dct[\"diagnosis\"].values))\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\", line 1061, in __call__\n", - " self.retrieve()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\", line 962, in retrieve\n", - " backend.abort_everything(ensure_ready=ensure_ready)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\", line 561, in abort_everything\n", - " self._workers.terminate(kill_workers=True)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/executor.py\", line 74, in terminate\n", - " self.shutdown(kill_workers=kill_workers)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\", line 1171, in shutdown\n", - " executor_manager_thread.join()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\", line 1044, in join\n", - " self._wait_for_tstate_lock()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\", line 1060, in _wait_for_tstate_lock\n", - " elif lock.acquire(block, timeout):\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1169, in get_records\n", - " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 316, in wrapped\n", - " return f(*args, **kwargs)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 350, in _fixed_getinnerframes\n", - " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 1502, in getinnerframes\n", - " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 1460, in getframeinfo\n", - " filename = getsourcefile(frame) or getfile(frame)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 696, in getsourcefile\n", - " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 742, in getmodule\n", - " os.path.realpath(f)] = module.__name__\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\", line 395, in realpath\n", - " path, ok = _joinrealpath(filename[:0], filename, {})\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\", line 428, in _joinrealpath\n", - " newpath = join(path, name)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\", line 86, in join\n", - " for b in map(os.fspath, p):\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2047, in showtraceback\n", - " value, tb, tb_offset=tb_offset)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1436, in structured_traceback\n", - " self, etype, value, tb, tb_offset, number_of_lines_of_context)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1336, in structured_traceback\n", - " self, etype, value, tb, tb_offset, number_of_lines_of_context\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1193, in structured_traceback\n", - " tb_offset)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1147, in format_exception_as_a_whole\n", - " records = self.get_records(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1184, in get_records\n", - " traceback.print_exc(file=self.ostream)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 163, in print_exc\n", - " print_exception(*sys.exc_info(), limit=limit, file=file, chain=chain)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 104, in print_exception\n", - " type(value), value, tb, limit=limit).format(chain=chain):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 508, in __init__\n", - " capture_locals=capture_locals)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 363, in extract\n", - " f.line\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 285, in line\n", - " self._line = linecache.getline(self.filename, self.lineno).strip()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 16, in getline\n", - " lines = getlines(filename, module_globals)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 47, in getlines\n", - " return updatecache(filename, module_globals)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 136, in updatecache\n", - " with tokenize.open(fullname) as fp:\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\", line 449, in open\n", - " encoding, lines = detect_encoding(buffer.readline)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\", line 418, in detect_encoding\n", - " first = read_or_stop()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\", line 376, in read_or_stop\n", - " return readline()\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3337, in run_ast_nodes\n", - " if (await self.run_code(code, result, async_=asy)):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3434, in run_code\n", - " self.showtraceback(running_compiled_code=True)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2059, in showtraceback\n", - " print('\\n' + self.get_exception_only(), file=sys.stderr)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2004, in get_exception_only\n", - " msg = traceback.format_exception_only(etype, value)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 140, in format_exception_only\n", - " return list(TracebackException(etype, value, None).format_exception_only())\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 521, in __init__\n", - " self._load_lines()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 533, in _load_lines\n", - " self.__context__._load_lines()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 531, in _load_lines\n", - " frame.line\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\", line 285, in line\n", - " self._line = linecache.getline(self.filename, self.lineno).strip()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 16, in getline\n", - " lines = getlines(filename, module_globals)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 47, in getlines\n", - " return updatecache(filename, module_globals)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 136, in updatecache\n", - " with tokenize.open(fullname) as fp:\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\", line 449, in open\n", - " encoding, lines = detect_encoding(buffer.readline)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\", line 418, in detect_encoding\n", - " first = read_or_stop()\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\", line 376, in read_or_stop\n", - " return readline()\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1169, in get_records\n", - " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 316, in wrapped\n", - " return f(*args, **kwargs)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 350, in _fixed_getinnerframes\n", - " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 1502, in getinnerframes\n", - " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\", line 1464, in getframeinfo\n", - " lines, lnum = findsource(frame)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 182, in findsource\n", - " lines = linecache.getlines(file, globals_dict)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 47, in getlines\n", - " return updatecache(filename, module_globals)\n", - " File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\", line 137, in updatecache\n", - " lines = fp.readlines()\n", - "KeyboardInterrupt\n" - ] - }, - { - "ename": "TypeError", - "evalue": "object of type 'NoneType' has no len()", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31m_RemoteTraceback\u001b[0m Traceback (most recent call last)", - "\u001b[0;31m_RemoteTraceback\u001b[0m: \n\"\"\"\nTraceback (most recent call last):\n File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\", line 404, in _process_worker\n call_item = call_queue.get(block=True, timeout=timeout)\n File \"/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/multiprocessing/queues.py\", line 99, in get\n if not self._rlock.acquire(block, timeout):\nKeyboardInterrupt\n\"\"\"", - "\nThe above exception was the direct cause of the following exception:\n", - "\u001b[0;31mBrokenProcessPool\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 939\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'supports_timeout'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 940\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 941\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mwrap_future_result\u001b[0;34m(future, timeout)\u001b[0m\n\u001b[1;32m 541\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 542\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 543\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mCfTimeoutError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 434\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_state\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mFINISHED\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 435\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__get_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 436\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\u001b[0m in \u001b[0;36m__get_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exception\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 384\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 385\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/_base.py\u001b[0m in \u001b[0;36m_invoke_callbacks\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 624\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 625\u001b[0;31m \u001b[0mcallback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 626\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mBaseException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, out)\u001b[0m\n\u001b[1;32m 365\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparallel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_original_iterator\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 366\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparallel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_next\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 367\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mdispatch_next\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 798\u001b[0m \"\"\"\n\u001b[0;32m--> 799\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdispatch_one_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_original_iterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 800\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iterating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mdispatch_one_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 865\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 866\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dispatch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtasks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 867\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m_dispatch\u001b[0;34m(self, batch)\u001b[0m\n\u001b[1;32m 783\u001b[0m \u001b[0mjob_idx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jobs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 784\u001b[0;31m \u001b[0mjob\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_async\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 785\u001b[0m \u001b[0;31m# A job can complete so quickly than its callback is\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mapply_async\u001b[0;34m(self, func, callback)\u001b[0m\n\u001b[1;32m 530\u001b[0m \u001b[0;34m\"\"\"Schedule a func to be run\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 531\u001b[0;31m \u001b[0mfuture\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_workers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubmit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mSafeFunction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 532\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunctools\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpartial\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrap_future_result\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/reusable_executor.py\u001b[0m in \u001b[0;36msubmit\u001b[0;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 177\u001b[0m return super(_ReusablePoolExecutor, self).submit(\n\u001b[0;32m--> 178\u001b[0;31m fn, *args, **kwargs)\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\u001b[0m in \u001b[0;36msubmit\u001b[0;34m(self, fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1101\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flags\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbroken\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1102\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flags\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbroken\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1103\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flags\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshutdown\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mBrokenProcessPool\u001b[0m: A task has failed to un-serialize. Please ensure that the arguments of the function are all picklable.", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - " \u001b[0;31m[... skipping hidden 1 frame]\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_list\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;32mTrue\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mFalse\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdss_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mParallel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelayed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_list\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md_list\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ml10\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdct\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"diagnosis\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1060\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieval_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1061\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1062\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 961\u001b[0m \u001b[0mensure_ready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_managed_backend\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 962\u001b[0;31m \u001b[0mbackend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabort_everything\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 963\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mabort_everything\u001b[0;34m(self, ensure_ready)\u001b[0m\n\u001b[1;32m 560\u001b[0m \"\"\"\n\u001b[0;32m--> 561\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_workers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mterminate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 562\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_workers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/executor.py\u001b[0m in \u001b[0;36mterminate\u001b[0;34m(self, kill_workers)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mterminate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshutdown\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkill_workers\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\u001b[0m in \u001b[0;36mshutdown\u001b[0;34m(self, wait, kill_workers)\u001b[0m\n\u001b[1;32m 1170\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mexecutor_manager_thread\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mwait\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1171\u001b[0;31m \u001b[0mexecutor_manager_thread\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1172\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36mjoin\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 1043\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1044\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_wait_for_tstate_lock\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1045\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36m_wait_for_tstate_lock\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_is_stopped\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1060\u001b[0;31m \u001b[0;32melif\u001b[0m \u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblock\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1061\u001b[0m \u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2043\u001b[0m \u001b[0;31m# in the engines. This should return a list of strings.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2044\u001b[0;31m \u001b[0mstb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_render_traceback_\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2045\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: 'KeyboardInterrupt' object has no attribute '_render_traceback_'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mget_records\u001b[0;34m(self, etb, number_of_lines_of_context, tb_offset)\u001b[0m\n\u001b[1;32m 1168\u001b[0m \u001b[0;31m# (5 blanks lines) where none should be returned.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1169\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_fixed_getinnerframes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumber_of_lines_of_context\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb_offset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1170\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mUnicodeDecodeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mwrapped\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 315\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 316\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 317\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36m_fixed_getinnerframes\u001b[0;34m(etb, context, tb_offset)\u001b[0m\n\u001b[1;32m 349\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 350\u001b[0;31m \u001b[0mrecords\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfix_frame_records_filenames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minspect\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetinnerframes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 351\u001b[0m \u001b[0;31m# If the error is at the console, don't build any context, since it would\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\u001b[0m in \u001b[0;36mgetinnerframes\u001b[0;34m(tb, context)\u001b[0m\n\u001b[1;32m 1501\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1502\u001b[0;31m \u001b[0mframeinfo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtb_frame\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mgetframeinfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1503\u001b[0m \u001b[0mframelist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFrameInfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mframeinfo\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\u001b[0m in \u001b[0;36mgetframeinfo\u001b[0;34m(frame, context)\u001b[0m\n\u001b[1;32m 1459\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1460\u001b[0;31m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetsourcefile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mgetfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1461\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcontext\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\u001b[0m in \u001b[0;36mgetsourcefile\u001b[0;34m(object)\u001b[0m\n\u001b[1;32m 695\u001b[0m \u001b[0;31m# only return a non-existent filename if the module has a PEP 302 loader\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 696\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgetmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__loader__'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 697\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/inspect.py\u001b[0m in \u001b[0;36mgetmodule\u001b[0;34m(object, _filename)\u001b[0m\n\u001b[1;32m 741\u001b[0m modulesbyfile[f] = modulesbyfile[\n\u001b[0;32m--> 742\u001b[0;31m os.path.realpath(f)] = module.__name__\n\u001b[0m\u001b[1;32m 743\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfile\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmodulesbyfile\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\u001b[0m in \u001b[0;36mrealpath\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 394\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 395\u001b[0;31m \u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mok\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_joinrealpath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 396\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mabspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\u001b[0m in \u001b[0;36m_joinrealpath\u001b[0;34m(path, rest, seen)\u001b[0m\n\u001b[1;32m 427\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 428\u001b[0;31m \u001b[0mnewpath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 429\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mislink\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnewpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/posixpath.py\u001b[0m in \u001b[0;36mjoin\u001b[0;34m(a, *p)\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0msep\u001b[0m \u001b[0;31m#23780: Ensure compatible data type even if p is null.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 86\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mb\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfspath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 87\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2046\u001b[0m stb = self.InteractiveTB.structured_traceback(etype,\n\u001b[0;32m-> 2047\u001b[0;31m value, tb, tb_offset=tb_offset)\n\u001b[0m\u001b[1;32m 2048\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1435\u001b[0m return FormattedTB.structured_traceback(\n\u001b[0;32m-> 1436\u001b[0;31m self, etype, value, tb, tb_offset, number_of_lines_of_context)\n\u001b[0m\u001b[1;32m 1437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1335\u001b[0m return VerboseTB.structured_traceback(\n\u001b[0;32m-> 1336\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb_offset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumber_of_lines_of_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1337\u001b[0m )\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, evalue, etb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1192\u001b[0m formatted_exception = self.format_exception_as_a_whole(etype, evalue, etb, number_of_lines_of_context,\n\u001b[0;32m-> 1193\u001b[0;31m tb_offset)\n\u001b[0m\u001b[1;32m 1194\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mformat_exception_as_a_whole\u001b[0;34m(self, etype, evalue, etb, number_of_lines_of_context, tb_offset)\u001b[0m\n\u001b[1;32m 1146\u001b[0m \u001b[0mhead\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_header\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlong_header\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1147\u001b[0;31m \u001b[0mrecords\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_records\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumber_of_lines_of_context\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb_offset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1148\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mget_records\u001b[0;34m(self, etb, number_of_lines_of_context, tb_offset)\u001b[0m\n\u001b[1;32m 1183\u001b[0m \u001b[0minspect_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1184\u001b[0;31m \u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_exc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mostream\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1185\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\nUnfortunately, your original traceback can not be constructed.\\n'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36mprint_exc\u001b[0;34m(limit, file, chain)\u001b[0m\n\u001b[1;32m 162\u001b[0m \u001b[0;34m\"\"\"Shorthand for 'print_exception(*sys.exc_info(), limit, file)'.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 163\u001b[0;31m \u001b[0mprint_exception\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlimit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlimit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchain\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchain\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 164\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36mprint_exception\u001b[0;34m(etype, value, tb, limit, file, chain)\u001b[0m\n\u001b[1;32m 103\u001b[0m for line in TracebackException(\n\u001b[0;32m--> 104\u001b[0;31m type(value), value, tb, limit=limit).format(chain=chain):\n\u001b[0m\u001b[1;32m 105\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, exc_type, exc_value, exc_traceback, limit, lookup_lines, capture_locals, _seen)\u001b[0m\n\u001b[1;32m 507\u001b[0m \u001b[0mwalk_tb\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexc_traceback\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlimit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlimit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlookup_lines\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlookup_lines\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 508\u001b[0;31m capture_locals=capture_locals)\n\u001b[0m\u001b[1;32m 509\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexc_type\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mexc_type\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36mextract\u001b[0;34m(klass, frame_gen, limit, lookup_lines, capture_locals)\u001b[0m\n\u001b[1;32m 362\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 363\u001b[0;31m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 364\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36mline\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_line\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 285\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_line\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlinecache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlineno\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 286\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_line\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\u001b[0m in \u001b[0;36mgetline\u001b[0;34m(filename, lineno, module_globals)\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgetline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlineno\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_globals\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetlines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_globals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0mlineno\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlines\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\u001b[0m in \u001b[0;36mgetlines\u001b[0;34m(filename, module_globals)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 47\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mupdatecache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_globals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 48\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mMemoryError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\u001b[0m in \u001b[0;36mupdatecache\u001b[0;34m(filename, module_globals)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 136\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mtokenize\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfullname\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 137\u001b[0m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreadlines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mencoding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdetect_encoding\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbuffer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreadline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0mbuffer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseek\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\u001b[0m in \u001b[0;36mdetect_encoding\u001b[0;34m(readline)\u001b[0m\n\u001b[1;32m 417\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 418\u001b[0;31m \u001b[0mfirst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mread_or_stop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 419\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfirst\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBOM_UTF8\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\u001b[0m in \u001b[0;36mread_or_stop\u001b[0;34m()\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mreadline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mrun_ast_nodes\u001b[0;34m(self, nodelist, cell_name, interactivity, compiler, result)\u001b[0m\n\u001b[1;32m 3336\u001b[0m \u001b[0masy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3337\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;32mawait\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_code\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0masync_\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0masy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3338\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - " \u001b[0;31m[... skipping hidden 1 frame]\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2058\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2059\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\n'\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_exception_only\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstderr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2060\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mget_exception_only\u001b[0;34m(self, exc_tuple)\u001b[0m\n\u001b[1;32m 2003\u001b[0m \u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_exc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexc_tuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2004\u001b[0;31m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_exception_only\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2005\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m''\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36mformat_exception_only\u001b[0;34m(etype, value)\u001b[0m\n\u001b[1;32m 139\u001b[0m \"\"\"\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTracebackException\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_exception_only\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, exc_type, exc_value, exc_traceback, limit, lookup_lines, capture_locals, _seen)\u001b[0m\n\u001b[1;32m 520\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlookup_lines\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 521\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_load_lines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 522\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36m_load_lines\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 532\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__context__\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 533\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__context__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_load_lines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 534\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__cause__\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36m_load_lines\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 530\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mframe\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 531\u001b[0;31m \u001b[0mframe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 532\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__context__\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/traceback.py\u001b[0m in \u001b[0;36mline\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_line\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 285\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_line\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlinecache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlineno\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 286\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_line\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\u001b[0m in \u001b[0;36mgetline\u001b[0;34m(filename, lineno, module_globals)\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgetline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlineno\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_globals\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetlines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_globals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0mlineno\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlines\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\u001b[0m in \u001b[0;36mgetlines\u001b[0;34m(filename, module_globals)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 47\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mupdatecache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_globals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 48\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mMemoryError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/linecache.py\u001b[0m in \u001b[0;36mupdatecache\u001b[0;34m(filename, module_globals)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 136\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mtokenize\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfullname\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 137\u001b[0m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreadlines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mencoding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdetect_encoding\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbuffer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreadline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0mbuffer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseek\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\u001b[0m in \u001b[0;36mdetect_encoding\u001b[0;34m(readline)\u001b[0m\n\u001b[1;32m 417\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 418\u001b[0;31m \u001b[0mfirst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mread_or_stop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 419\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfirst\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBOM_UTF8\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/tokenize.py\u001b[0m in \u001b[0;36mread_or_stop\u001b[0;34m()\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mreadline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2043\u001b[0m \u001b[0;31m# in the engines. This should return a list of strings.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2044\u001b[0;31m \u001b[0mstb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_render_traceback_\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2045\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: 'KeyboardInterrupt' object has no attribute '_render_traceback_'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/async_helpers.py\u001b[0m in \u001b[0;36m_pseudo_sync_runner\u001b[0;34m(coro)\u001b[0m\n\u001b[1;32m 66\u001b[0m \"\"\"\n\u001b[1;32m 67\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 68\u001b[0;31m \u001b[0mcoro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 69\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mexc\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mexc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mrun_cell_async\u001b[0;34m(self, raw_cell, store_history, silent, shell_futures, transformed_cell, preprocessing_exc_tuple)\u001b[0m\n\u001b[1;32m 3144\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3145\u001b[0m has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n\u001b[0;32m-> 3146\u001b[0;31m interactivity=interactivity, compiler=compiler, result=result)\n\u001b[0m\u001b[1;32m 3147\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3148\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlast_execution_succeeded\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_raised\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mrun_ast_nodes\u001b[0;34m(self, nodelist, cell_name, interactivity, compiler, result)\u001b[0m\n\u001b[1;32m 3354\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3355\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merror_before_exec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3356\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshowtraceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3357\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3358\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2045\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2046\u001b[0m stb = self.InteractiveTB.structured_traceback(etype,\n\u001b[0;32m-> 2047\u001b[0;31m value, tb, tb_offset=tb_offset)\n\u001b[0m\u001b[1;32m 2048\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2049\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_showtraceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1434\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1435\u001b[0m return FormattedTB.structured_traceback(\n\u001b[0;32m-> 1436\u001b[0;31m self, etype, value, tb, tb_offset, number_of_lines_of_context)\n\u001b[0m\u001b[1;32m 1437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1438\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1334\u001b[0m \u001b[0;31m# Verbose modes need a full traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1335\u001b[0m return VerboseTB.structured_traceback(\n\u001b[0;32m-> 1336\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb_offset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumber_of_lines_of_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1337\u001b[0m )\n\u001b[1;32m 1338\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'Minimal'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, evalue, etb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1191\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1192\u001b[0m formatted_exception = self.format_exception_as_a_whole(etype, evalue, etb, number_of_lines_of_context,\n\u001b[0;32m-> 1193\u001b[0;31m tb_offset)\n\u001b[0m\u001b[1;32m 1194\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1195\u001b[0m \u001b[0mcolors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mColors\u001b[0m \u001b[0;31m# just a shorthand + quicker name lookup\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mformat_exception_as_a_whole\u001b[0;34m(self, etype, evalue, etb, number_of_lines_of_context, tb_offset)\u001b[0m\n\u001b[1;32m 1148\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1149\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1150\u001b[0;31m \u001b[0mlast_unique\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecursion_repeat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfind_recursion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0morig_etype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mevalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1152\u001b[0m \u001b[0mframes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_records\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlast_unique\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecursion_repeat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mfind_recursion\u001b[0;34m(etype, value, records)\u001b[0m\n\u001b[1;32m 449\u001b[0m \u001b[0;31m# first frame (from in to out) that looks different.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_recursion_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 451\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 452\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;31m# Select filename, lineno, func_name to track frames with\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: object of type 'NoneType' has no len()" - ] - } - ], - "source": [ - "\n", - "dss_list = Parallel(n_jobs=10)(delayed(get_list)(d_list, l10.keys()) for d_list in tqdm(dct[\"diagnosis\"].values))" - ] - }, - { - "cell_type": "code", - "execution_count": 309, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_df = pd.DataFrame(data=np.array(dss_list), columns=list(l10.keys()))" - ] - }, - { - "cell_type": "code", - "execution_count": 310, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.concat([dct.reset_index(), diagnoses_df], axis=1).set_index([\"eid\", \"t\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 311, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
diagnosishypertensive_disorder_systemic_arterialhyperlipidemiadepressive_disordergastroesophageal_reflux_diseasediabetes_mellitus_type_2essential_hypertensionobesitydiabetes_mellitusasthma...chronic_tonsillitisacute_duodenal_ulcer_with_hemorrhagehammer_toemalignant_tumor_of_cervixprolapsed_lumbar_intervertebral_dischematemesisperianal_abscessnonvenomous_insect_bitespondylolisthesismalignant_tumor_of_esophagus
eidt
100001856.0[hypertensive_disorder_systemic_arterial, esse...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
58.3[hypertensive_disorder_systemic_arterial, esse...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
58.9[disorder_of_the_peripheral_nervous_system, vi...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
100003753.3[osteoarthritis, arthritis, degenerative_joint...FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
54.3[osteoarthritis, arthritis, degenerative_joint...FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
.....................................................................
109999654.3[cataract, injury_of_head, disorder_of_the_per...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
55.2[headache, pain, urinary_incontinence, hyperte...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
55.3[disorder_of_the_peripheral_nervous_system, my...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
110000955.5[abdominal_pain, epigastric_pain, pain_in_pelv...FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
66.3[urinary_tract_infectious_disease, urinary_inc...FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

37467 rows × 791 columns

\n", - "
" - ], - "text/plain": [ - " diagnosis \\\n", - "eid t \n", - "1000018 56.0 [hypertensive_disorder_systemic_arterial, esse... \n", - " 58.3 [hypertensive_disorder_systemic_arterial, esse... \n", - " 58.9 [disorder_of_the_peripheral_nervous_system, vi... \n", - "1000037 53.3 [osteoarthritis, arthritis, degenerative_joint... \n", - " 54.3 [osteoarthritis, arthritis, degenerative_joint... \n", - "... ... \n", - "1099996 54.3 [cataract, injury_of_head, disorder_of_the_per... \n", - " 55.2 [headache, pain, urinary_incontinence, hyperte... \n", - " 55.3 [disorder_of_the_peripheral_nervous_system, my... \n", - "1100009 55.5 [abdominal_pain, epigastric_pain, pain_in_pelv... \n", - " 66.3 [urinary_tract_infectious_disease, urinary_inc... \n", - "\n", - " hypertensive_disorder_systemic_arterial hyperlipidemia \\\n", - "eid t \n", - "1000018 56.0 True False \n", - " 58.3 True False \n", - " 58.9 True False \n", - "1000037 53.3 False False \n", - " 54.3 False False \n", - "... ... ... \n", - "1099996 54.3 True False \n", - " 55.2 True False \n", - " 55.3 True False \n", - "1100009 55.5 False False \n", - " 66.3 False False \n", - "\n", - " depressive_disorder gastroesophageal_reflux_disease \\\n", - "eid t \n", - "1000018 56.0 False False \n", - " 58.3 False False \n", - " 58.9 False False \n", - "1000037 53.3 False False \n", - " 54.3 False False \n", - "... ... ... \n", - "1099996 54.3 False False \n", - " 55.2 False False \n", - " 55.3 False False \n", - "1100009 55.5 False False \n", - " 66.3 False False \n", - "\n", - " diabetes_mellitus_type_2 essential_hypertension obesity \\\n", - "eid t \n", - "1000018 56.0 False True False \n", - " 58.3 False True False \n", - " 58.9 False True False \n", - "1000037 53.3 False False False \n", - " 54.3 False False False \n", - "... ... ... ... \n", - "1099996 54.3 False True False \n", - " 55.2 False True False \n", - " 55.3 False True False \n", - "1100009 55.5 False False False \n", - " 66.3 False False False \n", - "\n", - " diabetes_mellitus asthma ... chronic_tonsillitis \\\n", - "eid t ... \n", - "1000018 56.0 False False ... False \n", - " 58.3 False False ... False \n", - " 58.9 False False ... False \n", - "1000037 53.3 False False ... False \n", - " 54.3 False False ... False \n", - "... ... ... ... ... \n", - "1099996 54.3 False False ... False \n", - " 55.2 False False ... False \n", - " 55.3 False False ... False \n", - "1100009 55.5 False False ... False \n", - " 66.3 False False ... False \n", - "\n", - " acute_duodenal_ulcer_with_hemorrhage hammer_toe \\\n", - "eid t \n", - "1000018 56.0 False False \n", - " 58.3 False False \n", - " 58.9 False False \n", - "1000037 53.3 False False \n", - " 54.3 False False \n", - "... ... ... \n", - "1099996 54.3 False False \n", - " 55.2 False False \n", - " 55.3 False False \n", - "1100009 55.5 False False \n", - " 66.3 False False \n", - "\n", - " malignant_tumor_of_cervix prolapsed_lumbar_intervertebral_disc \\\n", - "eid t \n", - "1000018 56.0 False False \n", - " 58.3 False False \n", - " 58.9 False False \n", - "1000037 53.3 False False \n", - " 54.3 False False \n", - "... ... ... \n", - "1099996 54.3 False False \n", - " 55.2 False False \n", - " 55.3 False False \n", - "1100009 55.5 False False \n", - " 66.3 False False \n", - "\n", - " hematemesis perianal_abscess nonvenomous_insect_bite \\\n", - "eid t \n", - "1000018 56.0 False False False \n", - " 58.3 False False False \n", - " 58.9 False False False \n", - "1000037 53.3 False False False \n", - " 54.3 False False False \n", - "... ... ... ... \n", - "1099996 54.3 False False False \n", - " 55.2 False False False \n", - " 55.3 False False False \n", - "1100009 55.5 False False False \n", - " 66.3 False False False \n", - "\n", - " spondylolisthesis malignant_tumor_of_esophagus \n", - "eid t \n", - "1000018 56.0 False False \n", - " 58.3 False False \n", - " 58.9 False False \n", - "1000037 53.3 False False \n", - " 54.3 False False \n", - "... ... ... \n", - "1099996 54.3 False False \n", - " 55.2 False False \n", - " 55.3 False False \n", - "1100009 55.5 False False \n", - " 66.3 False False \n", - "\n", - "[37467 rows x 791 columns]" - ] - }, - "execution_count": 311, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses" - ] - }, - { - "cell_type": "code", - "execution_count": 169, - "metadata": {}, - "outputs": [], - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes = diagnoses_codes[diagnoses_codes.eid.isin(data.eid.to_list())].reset_index(drop=True)\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " display(diagnoses_codes_time)\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "code", - "execution_count": 170, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdatebirthdate
01000018hes_icd100.01S0240S022005-06-021960-11-12
11000018hes_icd100.02W188W182005-06-021960-11-12
21000018hes_icd100.03K37K371998-05-111960-11-12
31000018hes_icd100.04K37K371998-05-161960-11-12
41000018hes_icd100.05K37K371998-06-011960-11-12
...........................
2526071100009hes_icd100.07N393N392015-02-111948-11-05
2526081100009hes_icd100.08G403G402015-02-111948-11-05
2526091100009hes_icd100.09R945R942015-02-111948-11-05
2526101100009hes_icd100.010K140K142015-03-051948-11-05
2526111100009hes_icd100.011K137K132015-03-051948-11-05
\n", - "

252612 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date \\\n", - "0 1000018 hes_icd10 0.0 1 S0240 S02 2005-06-02 \n", - "1 1000018 hes_icd10 0.0 2 W188 W18 2005-06-02 \n", - "2 1000018 hes_icd10 0.0 3 K37 K37 1998-05-11 \n", - "3 1000018 hes_icd10 0.0 4 K37 K37 1998-05-16 \n", - "4 1000018 hes_icd10 0.0 5 K37 K37 1998-06-01 \n", - "... ... ... ... .. ... ... ... \n", - "252607 1100009 hes_icd10 0.0 7 N393 N39 2015-02-11 \n", - "252608 1100009 hes_icd10 0.0 8 G403 G40 2015-02-11 \n", - "252609 1100009 hes_icd10 0.0 9 R945 R94 2015-02-11 \n", - "252610 1100009 hes_icd10 0.0 10 K140 K14 2015-03-05 \n", - "252611 1100009 hes_icd10 0.0 11 K137 K13 2015-03-05 \n", - "\n", - " birthdate \n", - "0 1960-11-12 \n", - "1 1960-11-12 \n", - "2 1960-11-12 \n", - "3 1960-11-12 \n", - "4 1960-11-12 \n", - "... ... \n", - "252607 1948-11-05 \n", - "252608 1948-11-05 \n", - "252609 1948-11-05 \n", - "252610 1948-11-05 \n", - "252611 1948-11-05 \n", - "\n", - "[252612 rows x 8 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b1699bdaa55b471a828e92deea2e0965", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=90.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "086fd4b15e4e43c28017662d82b2be51", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=90.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "diagnoses = had_diagnosis_before(df_birthdate.reset_index(), diagnoses_codes, l10, time0=time0_col)" - ] - }, - { - "cell_type": "code", - "execution_count": 168, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidhypertensive_disorder_systemic_arterialhyperlipidemiadepressive_disordergastroesophageal_reflux_diseasediabetes_mellitus_type_2essential_hypertensionobesitydiabetes_mellitusasthma...feverosteoarthritis_of_kneeactinic_keratosisurinary_incontinencehemorrhoidsseizurelaceration_-_injuryglaucomabody_mass_index_30+_-_obesitybreast_lump
01000018FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
11000020FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
21000037FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
31000043FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
41000051FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
..................................................................
99951099964FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
99961099977FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
99971099988FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
99981099996FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
99991100009FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

10000 rows × 91 columns

\n", - "
" - ], - "text/plain": [ - " eid hypertensive_disorder_systemic_arterial hyperlipidemia \\\n", - "0 1000018 False False \n", - "1 1000020 False False \n", - "2 1000037 False False \n", - "3 1000043 False False \n", - "4 1000051 False False \n", - "... ... ... ... \n", - "9995 1099964 False False \n", - "9996 1099977 False False \n", - "9997 1099988 False False \n", - "9998 1099996 False False \n", - "9999 1100009 False False \n", - "\n", - " depressive_disorder gastroesophageal_reflux_disease \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 False False \n", - "4 False False \n", - "... ... ... \n", - "9995 False False \n", - "9996 False False \n", - "9997 False False \n", - "9998 False False \n", - "9999 False False \n", - "\n", - " diabetes_mellitus_type_2 essential_hypertension obesity \\\n", - "0 False False False \n", - "1 False False False \n", - "2 False False False \n", - "3 False False False \n", - "4 False False False \n", - "... ... ... ... \n", - "9995 False False False \n", - "9996 False False False \n", - "9997 False False False \n", - "9998 False False False \n", - "9999 False False False \n", - "\n", - " diabetes_mellitus asthma ... fever osteoarthritis_of_knee \\\n", - "0 False False ... False False \n", - "1 False False ... False False \n", - "2 False False ... False False \n", - "3 False False ... False False \n", - "4 False False ... False False \n", - "... ... ... ... ... ... \n", - "9995 False False ... False False \n", - "9996 False False ... False False \n", - "9997 False False ... False False \n", - "9998 False False ... False False \n", - "9999 False False ... False False \n", - "\n", - " actinic_keratosis urinary_incontinence hemorrhoids seizure \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False False \n", - "4 False False False False \n", - "... ... ... ... ... \n", - "9995 False False False False \n", - "9996 False False False False \n", - "9997 False False False False \n", - "9998 False False False False \n", - "9999 False False False False \n", - "\n", - " laceration_-_injury glaucoma body_mass_index_30+_-_obesity \\\n", - "0 False False False \n", - "1 False False False \n", - "2 False False False \n", - "3 False False False \n", - "4 False False False \n", - "... ... ... ... \n", - "9995 False False False \n", - "9996 False False False \n", - "9997 False False False \n", - "9998 False False False \n", - "9999 False False False \n", - "\n", - " breast_lump \n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "... ... \n", - "9995 False \n", - "9996 False \n", - "9997 False \n", - "9998 False \n", - "9999 False \n", - "\n", - "[10000 rows x 91 columns]" - ] - }, - "execution_count": 168, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_codes.reset_index(drop=True).assign(eid = lambda x: x.eid.astype(int),\n", - " origin = lambda x: x.origin.astype(str),\n", - " instance = lambda x: x.instance.astype(int),\n", - " n = lambda x: x.n.astype(int),\n", - " code = lambda x: x.code.astype(str), \n", - " meaning = lambda x: x.meaning.astype(str))\\\n", - " .to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_codes = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_codes.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:26.189927Z", - "start_time": "2020-11-04T12:46:25.117069Z" - }, - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "from joblib import Parallel, delayed\n", - "from functools import reduce\n", - "from numba import jit\n", - "\n", - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=30, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = ph_series\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "phenotypes = l10\n", - "time0 = time0_col\n", - "diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - "\n", - "temp = data[[\"eid\"]].copy()\n", - "df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - "\n", - "df_phs = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)[0:100]))" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " for ph, ph_codes in tqdm(phenotypes.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True)\n", - " temp[ph] = temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T13:17:52.922023Z", - "start_time": "2020-11-04T12:46:26.191314Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6bea6215cd7a462ea5e12e755d4a70ed", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "30afdcb70eb84793aea68e13921cb0c4", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=3521.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidcoronary_heart_diseasemyocardial_infarctionstrokediabetes1diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritis...sleep_terror_disorderacute_frontal_sinusitisbenign_neoplasm_of_pancreasprimary_malignant_neoplasm_of_soft_tissues_of_lower_limbneoplasm_of_uncertain_behavior_of_neckinjury_of_peroneal_nervedupuytren's_diseasestem_cell_donorendemic_goiterdiplegic_cerebral_palsy
01000018FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
11000020FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
21000037FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
31000043FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
41000051FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

5 rows × 3522 columns

\n", - "
" - ], - "text/plain": [ - " eid coronary_heart_disease myocardial_infarction stroke diabetes1 \\\n", - "0 1000018 False False False False \n", - "1 1000020 False False False False \n", - "2 1000037 False False False False \n", - "3 1000043 False False False False \n", - "4 1000051 False False False False \n", - "\n", - " diabetes2 chronic_kidney_disease atrial_fibrillation migraine \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False False \n", - "4 False False False False \n", - "\n", - " rheumatoid_arthritis ... sleep_terror_disorder acute_frontal_sinusitis \\\n", - "0 False ... False False \n", - "1 False ... False False \n", - "2 False ... False False \n", - "3 False ... False False \n", - "4 False ... False False \n", - "\n", - " benign_neoplasm_of_pancreas \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " primary_malignant_neoplasm_of_soft_tissues_of_lower_limb \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - " neoplasm_of_uncertain_behavior_of_neck injury_of_peroneal_nerve \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 False False \n", - "4 False False \n", - "\n", - " dupuytren's_disease stem_cell_donor endemic_goiter \\\n", - "0 False False False \n", - "1 False False False \n", - "2 False False False \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " diplegic_cerebral_palsy \n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - "[5 rows x 3522 columns]" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses = had_diagnosis_before(basics, diagnoses_codes, l10, time0=time0_col)\n", - "print(len(diagnoses))\n", - "\n", - "diagnoses.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))\n", - "\n", - "diagnoses.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "# Add embeddings for Snomed Diagnoses" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get SNOMED - node2vec dict" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_embeddings = pd.read_csv(\"/data/analysis/ag-reils/steinfej/data/snomed_embeddings/snomed.emb.p1.q1.w20.l40.e200.graph_format.txt\", sep=\" \", header=None, skiprows=1)\n", - "snomed_embeddings.columns = [\"snomed_id\"]+list(snomed_embeddings.columns)[:-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
snomed_id012345678...190191192193194195196197198199
01292650010.0274560.171026-0.178822-0.0386670.2997770.082540-0.2012840.2151640.093241...0.2110300.4884750.082177-0.047102-0.086411-0.012141-0.258416-0.1132950.040249-0.116884
1360224006-0.0901870.086986-0.184378-0.028722-0.0102350.242439-0.0940090.203015-0.097894...0.1127500.333906-0.0181930.020459-0.1702260.277866-0.007079-0.0804190.162456-0.101768
21022720070.5534200.4609470.143925-0.053785-0.8495880.467587-0.654922-0.0107990.510141...0.1873710.2486070.079687-0.3541210.4126020.582461-0.7803650.045450-0.1965510.045745
3399370010.1231580.0198820.0508960.0373640.2004350.312911-0.338977-0.092584-0.167741...0.057770-0.012834-0.1397940.1805720.1907810.104039-0.358235-0.137954-0.236551-0.206458
4235830030.4231930.384338-0.0415030.116848-0.0550290.149064-0.092810-0.0501480.113122...0.162375-0.076505-0.274352-0.099204-0.281887-0.266345-0.020257-0.003843-0.008804-0.286832
\n", - "

5 rows × 201 columns

\n", - "
" - ], - "text/plain": [ - " snomed_id 0 1 2 3 4 5 \\\n", - "0 129265001 0.027456 0.171026 -0.178822 -0.038667 0.299777 0.082540 \n", - "1 360224006 -0.090187 0.086986 -0.184378 -0.028722 -0.010235 0.242439 \n", - "2 102272007 0.553420 0.460947 0.143925 -0.053785 -0.849588 0.467587 \n", - "3 39937001 0.123158 0.019882 0.050896 0.037364 0.200435 0.312911 \n", - "4 23583003 0.423193 0.384338 -0.041503 0.116848 -0.055029 0.149064 \n", - "\n", - " 6 7 8 ... 190 191 192 193 \\\n", - "0 -0.201284 0.215164 0.093241 ... 0.211030 0.488475 0.082177 -0.047102 \n", - "1 -0.094009 0.203015 -0.097894 ... 0.112750 0.333906 -0.018193 0.020459 \n", - "2 -0.654922 -0.010799 0.510141 ... 0.187371 0.248607 0.079687 -0.354121 \n", - "3 -0.338977 -0.092584 -0.167741 ... 0.057770 -0.012834 -0.139794 0.180572 \n", - "4 -0.092810 -0.050148 0.113122 ... 0.162375 -0.076505 -0.274352 -0.099204 \n", - "\n", - " 194 195 196 197 198 199 \n", - "0 -0.086411 -0.012141 -0.258416 -0.113295 0.040249 -0.116884 \n", - "1 -0.170226 0.277866 -0.007079 -0.080419 0.162456 -0.101768 \n", - "2 0.412602 0.582461 -0.780365 0.045450 -0.196551 0.045745 \n", - "3 0.190781 0.104039 -0.358235 -0.137954 -0.236551 -0.206458 \n", - "4 -0.281887 -0.266345 -0.020257 -0.003843 -0.008804 -0.286832 \n", - "\n", - "[5 rows x 201 columns]" - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_embeddings.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_snomed = diagnoses.columns[13:].to_list()\n", - "diagnoses_snomed_dict = {}\n", - "for d in diagnoses_snomed: diagnoses_snomed_dict[d] = phenotype_list_snomed[d]\n", - " \n", - "snomed_codes_used = list(phenotype_list_snomed.values())\n", - "snomed_codes_emb = snomed_embeddings.snomed_id.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "snomed_id_array = snomed_embeddings[[\"snomed_id\"]].values\n", - "node2vec_array = snomed_embeddings.iloc[:, 1:].values" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "456f56d7481648e48b74e9e76b675f01", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=373286.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "snomed_arrays = {}\n", - "for sid, row in zip(tqdm(snomed_id_array), node2vec_array):\n", - " snomed_arrays[sid[0]] = row" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> Snomed dict" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "05ac46541972426da8a5b5f7fe461c6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "diagnoses_array = diagnoses[diagnoses_snomed].values\n", - "eid_array = diagnoses[[\"eid\"]].values\n", - "\n", - "from numba import jit\n", - "import numpy as np\n", - "\n", - "patient_diagnoses = {}\n", - "for eid, row in zip(tqdm(eid_array), diagnoses_array):\n", - " patient_diagnoses[eid[0]] = list(np.argwhere(row==True).flatten())\n", - "\n", - "#diagnoses.query(\"eid==1000092\")[diagnoses_snomed]" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f4c90d91d08e48119abcf8426cddd37e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_diagnoses_sid = {}\n", - "snomed_codes_emb_set = set(snomed_codes_emb)\n", - "for eid, p_d_col in tqdm(patient_diagnoses.items()):\n", - " diagnoses_list = [diagnoses_snomed[i] for i in p_d_col]\n", - " sid_list = [phenotype_list_snomed[i] for i in diagnoses_list]\n", - " sid_list = [sid for sid in sid_list if sid in snomed_codes_emb_set]\n", - " patient_diagnoses_sid[eid] = sid_list" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "#### Get Patient -> node2vec average" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "47e934dc64334c82893d23b458108fbf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/fromnumeric.py:3335: RuntimeWarning: Mean of empty slice.\n", - " out=out, **kwargs)\n", - "/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/_methods.py:161: RuntimeWarning: invalid value encountered in double_scalars\n", - " ret = ret.dtype.type(ret / rcount)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "patient_node2vec_dict = {}\n", - "for eid, sids in tqdm(patient_diagnoses_sid.items()):\n", - " array_list = [snomed_arrays[sid] for sid in sids]\n", - " patient_node2vec_dict[eid] = np.mean(array_list, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e1395c2d1bfc41f39697a8925b20d597", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ 0.37033895, 0.13321076, -0.10030267, 0.05625264, -0.08437331,\n", - " 0.11504787, -0.24833219, -0.11936529, 0.25239648, -0.32739932,\n", - " 0.06330914, -0.06493541, -0.28790415, -0.2885537 , 0.02546298,\n", - " -0.06123153, -0.17690672, -0.0867546 , -0.28337599, -0.08474496,\n", - " 0.31454532, -0.24158154, 0.15930864, 0.06124846, 0.07694602,\n", - " -0.13752803, 0.13671128, -0.27988751, -0.03987635, 0.03632156,\n", - " -0.13793361, -0.15857369, -0.16441636, 0.2412931 , 0.20070578,\n", - " -0.11412784, 0.02563965, -0.03560184, 0.17169744, -0.0153383 ,\n", - " 0.00117099, 0.1025362 , -0.06505568, 0.05646065, -0.02705149,\n", - " 0.04416442, -0.15798991, -0.10650637, 0.02082507, -0.21182802,\n", - " 0.13972325, -0.18089307, -0.12731068, 0.02907221, -0.19797107,\n", - " 0.19550177, 0.14941799, 0.21561857, -0.18085379, 0.10768238,\n", - " 0.12968045, 0.2082016 , 0.03561408, -0.01122218, -0.27099816,\n", - " -0.06029919, -0.18787618, 0.10084175, -0.07939234, -0.22951897,\n", - " -0.36536359, -0.01050854, -0.21419807, -0.23562986, 0.02380316,\n", - " 0.1213157 , -0.1601396 , 0.07218057, -0.04362593, -0.22303355,\n", - " -0.23844839, -0.14799905, 0.22346404, 0.14218655, 0.39873181,\n", - " -0.32965129, 0.19102432, -0.08894028, -0.20726567, 0.25343222,\n", - " 0.29939455, 0.20513029, 0.17430424, -0.05073184, 0.05827969,\n", - " 0.31626954, 0.0791522 , -0.21433214, 0.11027244, 0.0805151 ,\n", - " 0.08557279, 0.25260801, -0.00096969, -0.06177831, 0.0544524 ,\n", - " -0.17340027, 0.09731447, 0.09982385, -0.074546 , -0.10350239,\n", - " -0.25798929, 0.01222471, 0.1605315 , 0.00191767, 0.11642527,\n", - " -0.15387604, -0.01520803, 0.03220765, -0.13534233, 0.09154689,\n", - " 0.12562997, -0.01667786, -0.09286805, 0.14670483, -0.13097813,\n", - " -0.38270284, -0.0129984 , -0.06352304, 0.12521014, -0.17354363,\n", - " -0.16399127, 0.11488736, 0.39664734, 0.08557075, -0.24862126,\n", - " -0.05882866, 0.23174289, 0.01765143, -0.10257617, 0.01208248,\n", - " -0.06876405, -0.04180976, 0.07489962, -0.10724381, 0.29349823,\n", - " 0.17342743, -0.32044841, -0.01118798, 0.28508293, 0.16492201,\n", - " 0.03994952, -0.17309702, 0.0365077 , 0.08619365, -0.21749571,\n", - " 0.01038752, -0.21414902, -0.18092813, 0.28433131, -0.12601774,\n", - " -0.02147302, 0.51513453, 0.21506432, -0.12596341, -0.0413009 ,\n", - " 0.12595327, 0.08973215, -0.06285449, -0.03649041, 0.04217289,\n", - " -0.02532634, -0.21734533, -0.08211848, 0.14014083, 0.13635479,\n", - " -0.13163414, -0.08576438, -0.04016334, 0.23952563, -0.14895943,\n", - " 0.08564821, -0.04287149, 0.22135877, -0.06337237, -0.07189574,\n", - " -0.1004494 , 0.01225299, -0.13810014, -0.06814497, -0.16715941,\n", - " 0.07303671, 0.15891015, -0.04757821, -0.05777645, -0.0772216 ,\n", - " 0.16787738, -0.2112512 , -0.10142653, -0.19002809, -0.06400223])" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# create imputation vector\n", - "arrays = [patient_node2vec_dict[key] for key in list(patient_node2vec_dict)]\n", - "arrays_ok = [array for array in tqdm(arrays) if ~np.isnan(array).any()]\n", - "imp_vector = np.mean(arrays_ok, axis=0)\n", - "imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e2dd803c2e2a4cb68e71111979d235c2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "for eid, array in tqdm(patient_node2vec_dict.items()):\n", - " if np.isnan(array).any(): \n", - " patient_node2vec_dict[eid] = imp_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a82c47a8f87a4df1bc81b78496edee0a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "array_eids = [key for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "510554b8bed8456cbfd694b764286acb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "ind_ok = [np.array([1]) if ~np.isnan(array).any() else np.array([0]) for array in tqdm(arrays)]" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a85aec2f3e7644dc99c40781f999eb3c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=502504.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "arrays_emb = [patient_node2vec_dict[key] for key in tqdm(list(patient_node2vec_dict))]" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_eids = np.reshape(np.stack(array_eids, axis=0),(-1,1)) \n", - "arrays_ind = np.stack(ind_ok, axis=0)\n", - "arrays_c = np.stack(arrays_emb, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "arrays_complete = np.concatenate([arrays_eids, arrays_ind, arrays_c], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "diagnoses_emb = pd.DataFrame(data=arrays_complete, columns=[\"eid\"]+[\"node2vec_available\"]+[f\"node2vec_{e}\" for e in list(range(0, 200))])" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidnode2vec_availablenode2vec_0node2vec_1node2vec_2node2vec_3node2vec_4node2vec_5node2vec_6node2vec_7...node2vec_190node2vec_191node2vec_192node2vec_193node2vec_194node2vec_195node2vec_196node2vec_197node2vec_198node2vec_199
01000018.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
11000020.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
21000037.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
31000043.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
41000051.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
..................................................................
5024996025150.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025006025165.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025016025173.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025026025182.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
5025036025198.00.00.3703390.133211-0.1003030.056253-0.0843730.115048-0.248332-0.119365...0.0730370.15891-0.047578-0.057776-0.0772220.167877-0.211251-0.101427-0.190028-0.064002
\n", - "

502504 rows × 202 columns

\n", - "
" - ], - "text/plain": [ - " eid node2vec_available node2vec_0 node2vec_1 node2vec_2 \\\n", - "0 1000018.0 0.0 0.370339 0.133211 -0.100303 \n", - "1 1000020.0 0.0 0.370339 0.133211 -0.100303 \n", - "2 1000037.0 0.0 0.370339 0.133211 -0.100303 \n", - "3 1000043.0 0.0 0.370339 0.133211 -0.100303 \n", - "4 1000051.0 0.0 0.370339 0.133211 -0.100303 \n", - "... ... ... ... ... ... \n", - "502499 6025150.0 0.0 0.370339 0.133211 -0.100303 \n", - "502500 6025165.0 0.0 0.370339 0.133211 -0.100303 \n", - "502501 6025173.0 0.0 0.370339 0.133211 -0.100303 \n", - "502502 6025182.0 0.0 0.370339 0.133211 -0.100303 \n", - "502503 6025198.0 0.0 0.370339 0.133211 -0.100303 \n", - "\n", - " node2vec_3 node2vec_4 node2vec_5 node2vec_6 node2vec_7 ... \\\n", - "0 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "1 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "2 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "3 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "4 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "... ... ... ... ... ... ... \n", - "502499 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502500 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502501 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502502 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "502503 0.056253 -0.084373 0.115048 -0.248332 -0.119365 ... \n", - "\n", - " node2vec_190 node2vec_191 node2vec_192 node2vec_193 node2vec_194 \\\n", - "0 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "1 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "2 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "3 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "4 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "... ... ... ... ... ... \n", - "502499 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502500 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502501 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502502 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "502503 0.073037 0.15891 -0.047578 -0.057776 -0.077222 \n", - "\n", - " node2vec_195 node2vec_196 node2vec_197 node2vec_198 node2vec_199 \n", - "0 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "1 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "2 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "3 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "4 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "... ... ... ... ... ... \n", - "502499 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502500 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502501 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502502 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "502503 0.167877 -0.211251 -0.101427 -0.190028 -0.064002 \n", - "\n", - "[502504 rows x 202 columns]" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses_emb" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdiagnoses_emb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_feather\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'temp_diagnoses_emb.feather'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pandas/io/feather_format.py\u001b[0m in \u001b[0;36mread_feather\u001b[0;34m(path, columns, use_threads)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mpath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstringify_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfeather\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_feather\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muse_threads\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0muse_threads\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001b[0m in \u001b[0;36mread_feather\u001b[0;34m(source, columns, use_threads, memory_map)\u001b[0m\n\u001b[1;32m 212\u001b[0m \"\"\"\n\u001b[1;32m 213\u001b[0m \u001b[0m_check_pandas_version\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 214\u001b[0;31m return (read_table(source, columns=columns, memory_map=memory_map)\n\u001b[0m\u001b[1;32m 215\u001b[0m .to_pandas(use_threads=use_threads))\n\u001b[1;32m 216\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.py\u001b[0m in \u001b[0;36mread_table\u001b[0;34m(source, columns, memory_map)\u001b[0m\n\u001b[1;32m 234\u001b[0m \"\"\"\n\u001b[1;32m 235\u001b[0m \u001b[0mreader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mFeatherReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 236\u001b[0;31m \u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msource\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muse_memory_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmemory_map\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 238\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcolumns\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/feather.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.FeatherReader.open\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.get_reader\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib._get_native_file\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.memory_map\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/io.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.MemoryMappedFile._open\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.pyarrow_internal_check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] Failed to open local file '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/temp_diagnoses_emb.feather'. Detail: [errno 2] No such file or directory" - ] - } - ], - "source": [ - "diagnoses_emb.to_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))\n", - "diagnoses_emb = pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "1+1" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.628580Z", - "start_time": "2020-11-04T12:33:33.036Z" - } - }, - "outputs": [], - "source": [ - "### define in snomed and get icd codes from there" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Hospital admissions" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.629459Z", - "start_time": "2020-11-04T12:33:34.764Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25', 'I51'],\n", - " 'stroke': ['G45', 'G46', 'I60', 'I67', 'I68', 'I69'],\n", - " 'cancer_breast': ['C50'],\n", - " 'diabetes': ['E10', 'E11', 'E12', 'E13', 'E14'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'copd': ['J44'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03', 'F09', 'G31', 'R54']}" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoint_list = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"cancer_breast\" : [\"Breast Cancer\"],\n", - " \"diabetes\" : [\"Diabetes\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"copd\": [\"COPD\"],\n", - " \"dementia\":[\"dementia\"]\n", - "}\n", - "\n", - "endpoint_list = phenotype_children(phecodes, endpoint_list)\n", - "endpoint_list[\"cancer_breast\"] = [\"C50\"]\n", - "endpoint_list[\"copd\"] = [\"J44\"]\n", - "endpoint_list[\"diabetes\"] = [\"E10\", \"E11\", \"E12\", \"E13\", \"E14\"]\n", - "endpoint_list[\"atrial_fibrillation\"] = [\"I47\", \"I48\"]\n", - "\n", - "\n", - "with open(os.path.join(path, dataset_path, 'endpoint_list.yaml'), 'w') as file: yaml.dump(endpoint_list, file, default_flow_style=False)\n", - "endpoint_list" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "from dateutil.relativedelta import relativedelta\n", - "\n", - "def extract_endpoints_tte(data, diagnoses_codes, endpoint_list, time0_col, level=None):\n", - " if level is not None: diagnoses_codes = diagnoses_codes.query(\"level==@level\")\n", - " diagnoses_codes_time0 = diagnoses_codes.merge(data[[\"eid\", time0_col]], how=\"left\", on=\"eid\")\n", - " \n", - " cens_time_right = min(diagnoses_codes.sort_values('date').groupby('origin').tail(1).date.to_list())\n", - " print(f\"t_0: {time0_col}\")\n", - " print(f\"t_cens: {cens_time_right}\")\n", - " \n", - " df_interval = diagnoses_codes_time0[(diagnoses_codes_time0.date > diagnoses_codes_time0[time0_col]) & \n", - " (diagnoses_codes_time0.date < cens_time_right)]\n", - " \n", - " temp = data[[\"eid\", time0_col]].copy()\n", - " for ph, ph_codes in tqdm(endpoint_list.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " ph_df = df_interval[df_interval.meaning.str.contains(regex, case=False)] \\\n", - " .sort_values('date').groupby('eid').head(1).assign(phenotype=1, date=lambda x: x.date)\n", - " temp_ph = temp.merge(ph_df, how=\"left\", on=\"eid\").fillna(0)\n", - " temp[ph+\"_event\"], temp[ph+\"_event_date\"] = temp_ph.phenotype, temp_ph.date\n", - " \n", - " fill_date = {ph+\"_event_date\" : lambda x: [cens_time_right if event==0 else event_date for event, event_date in zip(x[ph+\"_event\"], x[ph+\"_event_date\"])]}\n", - " calc_tte = {ph+\"_event_time\" : lambda x: [(event_date-time0).days/365.25 for time0, event_date in zip(x[time0_col], x[ph+\"_event_date\"])]}\n", - " \n", - " temp = temp.assign(**fill_date).assign(**calc_tte).drop([ph+\"_event_date\"], axis=1)\n", - " \n", - " temp = temp.drop([time0_col], axis=1) \n", - " \n", - " return temp.drop_duplicates()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6a02ec6d409c4e998c0f1deb9032b535", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=7.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timecancer_breast_eventcancer_breast_event_timediabetes_eventdiabetes_event_timeatrial_fibrillation_eventatrial_fibrillation_event_timecopd_eventcopd_event_timedementia_eventdementia_event_time
010000180.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.3347020.059.334702
110000200.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.0636550.071.063655
210000370.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.3381250.070.338125
310000431.068.1232030.073.7796030.073.7796030.073.7796030.073.7796031.063.2936340.073.779603
410000510.064.7611230.064.7611230.064.7611231.045.0622860.064.7611231.021.0622860.064.761123
\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event myocardial_infarction_event_time \\\n", - "0 1000018 0.0 59.334702 \n", - "1 1000020 0.0 71.063655 \n", - "2 1000037 0.0 70.338125 \n", - "3 1000043 1.0 68.123203 \n", - "4 1000051 0.0 64.761123 \n", - "\n", - " stroke_event stroke_event_time cancer_breast_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 0.0 \n", - "4 0.0 64.761123 0.0 \n", - "\n", - " cancer_breast_event_time diabetes_event diabetes_event_time \\\n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 73.779603 0.0 73.779603 \n", - "4 64.761123 1.0 45.062286 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_event_time copd_event \\\n", - "0 0.0 59.334702 0.0 \n", - "1 0.0 71.063655 0.0 \n", - "2 0.0 70.338125 0.0 \n", - "3 0.0 73.779603 1.0 \n", - "4 0.0 64.761123 1.0 \n", - "\n", - " copd_event_time dementia_event dementia_event_time \n", - "0 59.334702 0.0 59.334702 \n", - "1 71.063655 0.0 71.063655 \n", - "2 70.338125 0.0 70.338125 \n", - "3 63.293634 0.0 73.779603 \n", - "4 21.062286 0.0 64.761123 " - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoints_hospital = extract_endpoints_tte(basics, diagnoses_codes, endpoint_list, time0_col)\n", - "print(len(endpoints_hospital))\n", - "endpoints_hospital.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Death registry" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "death_list = {\n", - " \"death_allcause\":[],\n", - " \"death_cvd\":['I{:02}'.format(ID+1) for ID in range(0, 98)],\n", - "}\n", - "\n", - "death_codes = pd.read_feather(f\"{data_path}/1_decoded/codes_death_records.feather\")#.drop(\"level\", axis=1)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'death_list.yaml'), 'w') as file: yaml.dump(death_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9ca18723f9984f399b46bce781a3f2dd", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_death = extract_endpoints_tte(basics, death_codes, death_list, time0_col, level=\"1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SCORES" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list = {\n", - " \"SCORE\":['I{:02}'.format(ID) for ID in [10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 44, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]],\n", - " \"ASCVD\":['I{:02}'.format(ID) for ID in [20, 21, 22, 23, 24, 25, 63]],\n", - " \"QRISK3\":[\"G45\", \"I20\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"],\n", - " \"MACE\":[\"G45\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"], \n", - "}\n", - "with open(os.path.join(path, dataset_path, 'scores_list.yaml'), 'w') as file: yaml.dump(scores_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list_hospital = {}\n", - "scores_list_death = {}\n", - "for score, score_codes in scores_list.items():\n", - " scores_list_hospital[\"hospital_\"+score] = score_codes\n", - " scores_list_death[\"death_\"+score] = score_codes" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birth_date\n", - "t_cens: 2020-03-14\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "17ed4f235a6e4cc08cdc2789bfc62d73", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "t_0: birth_date\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2bd6de2f761a464da6f8c6c8ba22a1d8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_scores = {\n", - " \"hospital\": extract_endpoints_tte(basics, diagnoses_codes, scores_list_hospital, time0_col=time0_col),\n", - " \"death\": extract_endpoints_tte(basics, death_codes, scores_list_death, time0_col=time0_col, level=1)}" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_scores_all = endpoints_scores[\"hospital\"].merge(endpoints_scores[\"death\"], on=\"eid\", how=\"left\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ESC SCORE (Conroy 2003)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5323\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_time
4510004631.074.165640
8310008411.076.005476
10210010311.075.537303
12210012371.050.132786
17610017771.072.238193
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time\n", - "45 1000463 1.0 74.165640\n", - "83 1000841 1.0 76.005476\n", - "102 1001031 1.0 75.537303\n", - "122 1001237 1.0 50.132786\n", - "176 1001777 1.0 72.238193" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"SCORE\"\n", - "\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score).rename(columns={\"death_SCORE_event\":\"SCORE_event\", \"death_SCORE_event_time\":\"SCORE_event_time\"})\n", - "score_SCORE = temp = temp[[\"eid\", \"SCORE_event\", \"SCORE_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ASCVD (Goff 2014)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "61785\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidASCVD_eventASCVD_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid ASCVD_event ASCVD_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"ASCVD\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_ASCVD = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### UK QRISK3 (2017)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "69344\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidQRISK3_eventQRISK3_event_time
21000037166.970568
31000043168.123203
51000066160.944559
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid QRISK3_event QRISK3_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 60.944559\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"QRISK3\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_QRISK3 = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MACE (2020)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62097\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidMACE_eventMACE_event_time
31000043168.123203
221000233168.673511
301000319156.922656
451000463174.069815
531000548150.255989
\n", - "
" - ], - "text/plain": [ - " eid MACE_event MACE_event_time\n", - "3 1000043 1 68.123203\n", - "22 1000233 1 68.673511\n", - "30 1000319 1 56.922656\n", - "45 1000463 1 74.069815\n", - "53 1000548 1 50.255989" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"MACE\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_MACE = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"basics\": pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather')), \n", - " \"questionnaire\": pd.read_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather')), \n", - " \"measurements\": pd.read_feather(os.path.join(path, dataset_path, 'temp_measurements.feather')), \n", - " \"labs\": pd.read_feather(os.path.join(path, dataset_path, 'temp_labs.feather')), \n", - " \"family_history\": pd.read_feather(os.path.join(path, dataset_path, 'temp_family_history.feather')), \n", - " \"diagnoses\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather')),\n", - " # \"diagnoses_emb\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather')), \n", - " \"medications\": pd.read_feather(os.path.join(path, dataset_path, 'temp_medications.feather')), \n", - " \"endpoints_hospital\":endpoints_hospital, \n", - " \"endpoints_death\":endpoints_death, \n", - " \"score_SCORE\":score_SCORE, \n", - " \"score_ASCVD\":score_ASCVD, \n", - " \"score_QRISK3\":score_QRISK3,\n", - " \"score_MACE\":score_MACE}" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100005151.0FemaleWhite-1.7990802006-06-101955-06-10PoorNeverOne to three times a month...065.051335065.051335064.761123064.761123064.761123
\n", - "

5 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000051 51.0 Female White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2006-06-10 1955-06-10 Poor \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never One to three times a month ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 65.051335 0 65.051335 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 64.761123 0 64.761123 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 64.761123 \n", - "\n", - "[5 rows x 3746 columns]" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintegerFalseeidNaN
12age_at_recruitmentnumericFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentnumericFalsebasicsNaN
.....................
37413742ASCVD_event_timenumericTruescore_ASCVDNaN
37423743QRISK3_eventintegerTruescore_QRISK3NaN
37433744QRISK3_event_timenumericTruescore_QRISK3NaN
37443745MACE_eventintegerTruescore_MACENaN
37453746MACE_event_timenumericTruescore_MACENaN
\n", - "

3746 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid integer False \n", - "1 2 age_at_recruitment numeric False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment numeric False \n", - "... ... ... ... ... \n", - "3741 3742 ASCVD_event_time numeric True \n", - "3742 3743 QRISK3_event integer True \n", - "3743 3744 QRISK3_event_time numeric True \n", - "3744 3745 MACE_event integer True \n", - "3745 3746 MACE_event_time numeric True \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "3741 score_ASCVD NaN \n", - "3742 score_QRISK3 NaN \n", - "3743 score_QRISK3 NaN \n", - "3744 score_MACE NaN \n", - "3745 score_MACE NaN \n", - "\n", - "[3746 rows x 6 columns]" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"integer\", \"int64\":\"integer\", \"float64\":\"numeric\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"logical\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exclusion Criteria" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline_excl = data_baseline.query(\"myocardial_infarction == False & coronary_heart_disease == False & statins == False\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100007960.0FemaleWhite-2.7080402008-03-181948-03-18FairNeverOnce or twice a week...072.279261072.279261161.054073161.054073071.989049
..................................................................
402296602515043.0FemaleWhite0.0467812007-06-301964-06-30ExcellentNeverThree or four times a week...055.994524055.994524055.704312055.704312055.704312
402297602516545.0FemaleWhite-2.1070402008-09-021963-09-02GoodNeverThree or four times a week...056.821355056.821355056.531143056.531143056.531143
402298602517357.0MaleWhite-1.8272202008-09-171951-09-17GoodNeverNever...068.780287068.780287068.490075068.490075068.490075
402299602518256.0MaleWhite-0.0107642010-07-011954-07-01ExcellentPreviousDaily or almost daily...065.993155065.993155065.702943065.702943065.702943
402300602519867.0MaleWhite-1.9306502010-01-261943-01-26GoodCurrentDaily or almost daily...077.420945077.420945077.130732077.130732077.130732
\n", - "

402301 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000079 60.0 Female White \n", - "... ... ... ... ... \n", - "402296 6025150 43.0 Female White \n", - "402297 6025165 45.0 Female White \n", - "402298 6025173 57.0 Male White \n", - "402299 6025182 56.0 Male White \n", - "402300 6025198 67.0 Male White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -2.708040 \n", - "... ... \n", - "402296 0.046781 \n", - "402297 -2.107040 \n", - "402298 -1.827220 \n", - "402299 -0.010764 \n", - "402300 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2008-03-18 1948-03-18 Fair \n", - "... ... ... ... \n", - "402296 2007-06-30 1964-06-30 Excellent \n", - "402297 2008-09-02 1963-09-02 Good \n", - "402298 2008-09-17 1951-09-17 Good \n", - "402299 2010-07-01 1954-07-01 Excellent \n", - "402300 2010-01-26 1943-01-26 Good \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never Once or twice a week ... 0 \n", - "... ... ... ... ... \n", - "402296 Never Three or four times a week ... 0 \n", - "402297 Never Three or four times a week ... 0 \n", - "402298 Never Never ... 0 \n", - "402299 Previous Daily or almost daily ... 0 \n", - "402300 Current Daily or almost daily ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 72.279261 0 72.279261 1 \n", - "... ... ... ... ... \n", - "402296 55.994524 0 55.994524 0 \n", - "402297 56.821355 0 56.821355 0 \n", - "402298 68.780287 0 68.780287 0 \n", - "402299 65.993155 0 65.993155 0 \n", - "402300 77.420945 0 77.420945 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 61.054073 1 61.054073 0 \n", - "... ... ... ... ... \n", - "402296 55.704312 0 55.704312 0 \n", - "402297 56.531143 0 56.531143 0 \n", - "402298 68.490075 0 68.490075 0 \n", - "402299 65.702943 0 65.702943 0 \n", - "402300 77.130732 0 77.130732 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 71.989049 \n", - "... ... \n", - "402296 55.704312 \n", - "402297 56.531143 \n", - "402298 68.490075 \n", - "402299 65.702943 \n", - "402300 77.130732 \n", - "\n", - "[402301 rows x 3746 columns]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline_excl" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "feature_dict = {}\n", - "for group in data_baseline_description.based_on.unique(): feature_dict[group] = data_baseline_description.query(\"based_on==@group\").covariate.to_list()\n", - "with open(os.path.join(path, dataset_path, 'feature_list.yaml'), 'w') as file: yaml.dump(feature_dict, file, default_flow_style=False, allow_unicode=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "#feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_clinical.feather'))\n", - "data_baseline_excl.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_excl.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:miniconda3-pl1.x]", - "language": "python", - "name": "conda-env-miniconda3-pl1.x-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth_PxMxT_cudf.ipynb b/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth_PxMxT_cudf.ipynb deleted file mode 100644 index efd4d8e..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/2_preprocessing_clinical_from_birth_PxMxT_cudf.ipynb +++ /dev/null @@ -1,15079 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.436340Z", - "start_time": "2020-11-04T12:31:48.732042Z" - } - }, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import os\n", - "import yaml\n", - "from tqdm.notebook import trange, tqdm\n", - "dataset_name = \"cvd_lifetime_time_series\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:31:49.895222Z", - "start_time": "2020-11-04T12:31:49.891332Z" - } - }, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "Path(dataset_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:33:14.171198Z", - "start_time": "2020-11-04T12:31:50.204540Z" - } - }, - "outputs": [], - "source": [ - "%%time\n", - "\n", - "data = pd.read_feather(f\"{data_path}/1_decoded/ukb_data.feather\")\n", - "data_field = pd.read_feather(f\"{data_path}/1_decoded/ukb_data_field.feather\")\n", - "data_columns = data.columns.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidweight_method_f21_0_0weight_method_f21_1_0weight_method_f21_2_0weight_method_f21_3_0spirometry_method_f23_0_0spirometry_method_f23_1_0spirometry_method_f23_2_0spirometry_method_f23_3_0sex_f31_0_0...source_of_report_of_i85_oesophageal_varices_f131407_0_0source_of_report_of_i89_other_noninfective_disorders_of_lymphatic_vessels_and_lymph_nodes_f131415_0_0date_i95_first_reported_hypotension_f131416_0_0source_of_report_of_i95_hypotension_f131417_0_0date_i97_first_reported_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131418_0_0source_of_report_of_i97_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131419_0_0date_i98_first_reported_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131420_0_0source_of_report_of_i98_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131421_0_0date_i99_first_reported_other_and_unspecified_disorders_of_circulatory_system_f131422_0_0source_of_report_of_i99_other_and_unspecified_disorders_of_circulatory_system_f131423_0_0
01000018Direct entryNaNNaNNaNDirect entryNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
11000020Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
21000037Direct entryNaNNaNNaNDirect entryNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
31000043Direct entryNaNDirect entryNaNDirect entryNaNDirect entryNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
41000051Direct entryNaNNaNNaNNaNNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
..................................................................
5025006025165Direct entryNaNNaNNaNDirect entryNaNNaNNaNFemale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
5025016025173Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
5025026025182Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaN2012-08-16Primary care only
5025036025198Direct entryNaNNaNNaNDirect entryNaNNaNNaNMale...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
5025046025200NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNoneNaNNoneNaNNoneNaNNoneNaN
\n", - "

502505 rows × 7162 columns

\n", - "
" - ], - "text/plain": [ - " eid weight_method_f21_0_0 weight_method_f21_1_0 \\\n", - "0 1000018 Direct entry NaN \n", - "1 1000020 Direct entry NaN \n", - "2 1000037 Direct entry NaN \n", - "3 1000043 Direct entry NaN \n", - "4 1000051 Direct entry NaN \n", - "... ... ... ... \n", - "502500 6025165 Direct entry NaN \n", - "502501 6025173 Direct entry NaN \n", - "502502 6025182 Direct entry NaN \n", - "502503 6025198 Direct entry NaN \n", - "502504 6025200 NaN NaN \n", - "\n", - " weight_method_f21_2_0 weight_method_f21_3_0 spirometry_method_f23_0_0 \\\n", - "0 NaN NaN Direct entry \n", - "1 NaN NaN Direct entry \n", - "2 NaN NaN Direct entry \n", - "3 Direct entry NaN Direct entry \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "502500 NaN NaN Direct entry \n", - "502501 NaN NaN Direct entry \n", - "502502 NaN NaN Direct entry \n", - "502503 NaN NaN Direct entry \n", - "502504 NaN NaN NaN \n", - "\n", - " spirometry_method_f23_1_0 spirometry_method_f23_2_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 NaN Direct entry \n", - "4 NaN NaN \n", - "... ... ... \n", - "502500 NaN NaN \n", - "502501 NaN NaN \n", - "502502 NaN NaN \n", - "502503 NaN NaN \n", - "502504 NaN NaN \n", - "\n", - " spirometry_method_f23_3_0 sex_f31_0_0 ... \\\n", - "0 NaN Female ... \n", - "1 NaN Male ... \n", - "2 NaN Female ... \n", - "3 NaN Male ... \n", - "4 NaN Female ... \n", - "... ... ... ... \n", - "502500 NaN Female ... \n", - "502501 NaN Male ... \n", - "502502 NaN Male ... \n", - "502503 NaN Male ... \n", - "502504 NaN NaN ... \n", - "\n", - " source_of_report_of_i85_oesophageal_varices_f131407_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " source_of_report_of_i89_other_noninfective_disorders_of_lymphatic_vessels_and_lymph_nodes_f131415_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i95_first_reported_hypotension_f131416_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i95_hypotension_f131417_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i97_first_reported_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131418_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i97_postprocedural_disorders_of_circulatory_system_not_elsewhere_classified_f131419_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i98_first_reported_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131420_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i98_other_disorders_of_circulatory_system_in_diseases_classified_elsewhere_f131421_0_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - " date_i99_first_reported_other_and_unspecified_disorders_of_circulatory_system_f131422_0_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502500 None \n", - "502501 None \n", - "502502 2012-08-16 \n", - "502503 None \n", - "502504 None \n", - "\n", - " source_of_report_of_i99_other_and_unspecified_disorders_of_circulatory_system_f131423_0_0 \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 Primary care only \n", - "502503 NaN \n", - "502504 NaN \n", - "\n", - "[502505 rows x 7162 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mappings + Vocabulary" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.867152Z", - "start_time": "2020-11-04T12:33:16.878773Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502505\n", - "502504\n" - ] - } - ], - "source": [ - "# Drop obviouse missing data\n", - "print(len(data))\n", - "data = data.dropna(subset=[\"sex_f31_0_0\"], axis=0)\n", - "print(len(data))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Starting information" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.872216Z", - "start_time": "2020-11-04T12:34:05.869505Z" - } - }, - "outputs": [], - "source": [ - "time0_col=\"birthdate\"\n", - "# time0_col=\"date_of_attending_assessment_centre_f53_0_0\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Basic Covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:05.889725Z", - "start_time": "2020-11-04T12:34:05.874587Z" - } - }, - "outputs": [], - "source": [ - "def get_fields(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields) & data_field[\"field.tab\"].str.contains(\"f\\\\.\\\\d+\\\\.0\\\\.\\\\d\")].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_fields_all(fields, data, data_field):\n", - " f = data_field[data_field[\"field.showcase\"].isin(fields)].copy()\n", - " f[\"field\"] = pd.Categorical(f[\"field.showcase\"], categories=fields, ordered=True)\n", - " f = f.sort_values(\"field\").reset_index().drop(\"field\", axis=1)\n", - " return f\n", - "\n", - "def get_data_fields(fields, data, data_field):\n", - " f = get_fields(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()\n", - "\n", - "def get_data_fields_all(fields, data, data_field):\n", - " f = get_fields_all(fields, data, data_field)\n", - " return data[[\"eid\"]+f[\"col.name\"].to_list()].copy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basics" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.176411Z", - "start_time": "2020-11-04T12:34:05.891730Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0ethnic_background_f21000_1_0ethnic_background_f21000_2_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0date_of_attending_assessment_centre_f53_1_0date_of_attending_assessment_centre_f53_2_0date_of_attending_assessment_centre_f53_3_0
0100001849.0FemaleBritishNaNNaN-1.8529302009-11-12NoneNoneNone
1100002059.0MaleBritishNaNNaN0.2042482008-02-19NoneNoneNone
2100003759.0FemaleBritishNaNNaN-3.4988602008-11-11NoneNoneNone
3100004363.0MaleBritishNaNNaN-5.3511502009-06-03None2018-06-08None
4100005151.0FemaleBritishNaNNaN-1.7990802006-06-10None2019-09-15None
\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "\n", - " ethnic_background_f21000_0_0 ethnic_background_f21000_1_0 \\\n", - "0 British NaN \n", - "1 British NaN \n", - "2 British NaN \n", - "3 British NaN \n", - "4 British NaN \n", - "\n", - " ethnic_background_f21000_2_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "\n", - " date_of_attending_assessment_centre_f53_1_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "\n", - " date_of_attending_assessment_centre_f53_2_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 2018-06-08 \n", - "4 2019-09-15 \n", - "\n", - " date_of_attending_assessment_centre_f53_3_0 \n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_basics = [\n", - " \"21022\", # age at recruitment\n", - " \"31\", # sex\n", - " \"21000\", # ethnicity\n", - " \"189\", # Townsend index\n", - " \"53\", # date of baseline assessment\n", - "]\n", - "\n", - "temp = get_data_fields_all(fields_basics, data, data_field)\n", - "\n", - "temp[\"sex_f31_0_0\"] = temp[\"sex_f31_0_0\"].cat.set_categories([\"Female\", 'Male'], ordered=False)\n", - "temp[\"ethnic_background_f21000_0_0\"] = temp[\"ethnic_background_f21000_0_0\"].replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan}).astype(\"category\")\n", - "\n", - "basics = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "#basics = basics.assign(birth_date = calc_birth_date)\n", - "\n", - "\n", - "basics.to_feather(os.path.join(path, dataset_path, 'temp_basics.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "#basics[\"t\"] = (basics.date_of_attending_assessment_centre_f53_0_0-basics.birth_date).dt.days/365.2425" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.186613Z", - "start_time": "2020-11-04T12:34:06.178111Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['British', 'Caribbean', 'Other ethnic group', 'Irish', 'Indian', ..., 'White and Black African', 'Any other Black background', 'Asian or Asian British', 'Mixed', 'Black or Black British']\n", - "Length: 21\n", - "Categories (20, object): ['British', 'Caribbean', 'Other ethnic group', 'Irish', ..., 'Any other Black background', 'Asian or Asian British', 'Mixed', 'Black or Black British']\n" - ] - } - ], - "source": [ - "print(temp[\"ethnic_background_f21000_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Questionnaire" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.389467Z", - "start_time": "2020-11-04T12:34:06.188206Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidoverall_health_rating_f2178_0_0overall_health_rating_f2178_1_0overall_health_rating_f2178_2_0overall_health_rating_f2178_3_0smoking_status_f20116_0_0smoking_status_f20116_1_0smoking_status_f20116_2_0smoking_status_f20116_3_0alcohol_intake_frequency_f1558_0_0alcohol_intake_frequency_f1558_1_0alcohol_intake_frequency_f1558_2_0alcohol_intake_frequency_f1558_3_0
01000018FairNaNNaNNaNCurrentNaNNaNNaNOnce or twice a weekNaNNaNNaN
11000020GoodNaNNaNNaNCurrentNaNNaNNaNOnce or twice a weekNaNNaNNaN
21000037GoodNaNNaNNaNPreviousNaNNaNNaNOnce or twice a weekNaNNaNNaN
31000043FairNaNFairNaNPreviousNaNPreviousNaNThree or four times a weekNaNThree or four times a weekNaN
41000051PoorNaNFairNaNNeverNaNNeverNaNOne to three times a monthNaNOne to three times a monthNaN
\n", - "
" - ], - "text/plain": [ - " eid overall_health_rating_f2178_0_0 overall_health_rating_f2178_1_0 \\\n", - "0 1000018 Fair NaN \n", - "1 1000020 Good NaN \n", - "2 1000037 Good NaN \n", - "3 1000043 Fair NaN \n", - "4 1000051 Poor NaN \n", - "\n", - " overall_health_rating_f2178_2_0 overall_health_rating_f2178_3_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 Fair NaN \n", - "4 Fair NaN \n", - "\n", - " smoking_status_f20116_0_0 smoking_status_f20116_1_0 \\\n", - "0 Current NaN \n", - "1 Current NaN \n", - "2 Previous NaN \n", - "3 Previous NaN \n", - "4 Never NaN \n", - "\n", - " smoking_status_f20116_2_0 smoking_status_f20116_3_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 Previous NaN \n", - "4 Never NaN \n", - "\n", - " alcohol_intake_frequency_f1558_0_0 alcohol_intake_frequency_f1558_1_0 \\\n", - "0 Once or twice a week NaN \n", - "1 Once or twice a week NaN \n", - "2 Once or twice a week NaN \n", - "3 Three or four times a week NaN \n", - "4 One to three times a month NaN \n", - "\n", - " alcohol_intake_frequency_f1558_2_0 alcohol_intake_frequency_f1558_3_0 \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 Three or four times a week NaN \n", - "4 One to three times a month NaN " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_questionnaire = [\n", - " \"2178\", # Overall health\n", - " \"20116\", # Smoking status\n", - " \"1558\",\n", - "]\n", - "\n", - "temp = get_data_fields_all(fields_questionnaire, data, data_field)\n", - "\n", - "temp[\"overall_health_rating_f2178_0_0\"] = temp[\"overall_health_rating_f2178_0_0\"]\\\n", - " .replace({\"Do not know\": np.nan, \"Prefer not to answer\": np.nan})\\\n", - " .astype(\"category\").cat.set_categories(['Poor', 'Fair', 'Good', 'Excellent'], ordered=True)\n", - "\n", - "\n", - "temp[\"smoking_status_f20116_0_0\"] = temp[\"smoking_status_f20116_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories(['Current', 'Previous', 'Never'], ordered=True)\n", - "\n", - "temp[\"alcohol_intake_frequency_f1558_0_0\"] = temp[\"alcohol_intake_frequency_f1558_0_0\"]\\\n", - " .replace({\"Prefer not to answer\": np.nan}, inplace=False)\\\n", - " .astype(\"category\").cat.set_categories([\n", - " 'Daily or almost daily', \n", - " 'Three or four times a week', \n", - " 'Once or twice a week',\n", - " 'One to three times a month',\n", - " 'Special occasions only', \n", - " 'Never'], ordered=True)\n", - "\n", - "questionnaire = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "questionnaire.to_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:06.398168Z", - "start_time": "2020-11-04T12:34:06.391082Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Once or twice a week', 'Three or four times a week', 'One to three times a month', 'Daily or almost daily', 'Special occasions only', 'Never', NaN]\n", - "Categories (6, object): ['Daily or almost daily' < 'Three or four times a week' < 'Once or twice a week' < 'One to three times a month' < 'Special occasions only' < 'Never']\n" - ] - } - ], - "source": [ - "print(temp[\"alcohol_intake_frequency_f1558_0_0\"].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Physical measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.052989Z", - "start_time": "2020-11-04T12:34:06.400858Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbody_mass_index_bmi_f21001_2_0body_mass_index_bmi_f21001_3_0body_mass_index_bmi_f21001_0_0body_mass_index_bmi_f21001_1_0weight_f21002_3_0weight_f21002_2_0weight_f21002_1_0weight_f21002_0_0systolic_blood_pressure_automated_reading_f4080_3_0...peak_expiratory_flow_pef_f3064_2_0peak_expiratory_flow_pef_f3064_1_2peak_expiratory_flow_pef_f3064_1_1peak_expiratory_flow_pef_f3064_1_0peak_expiratory_flow_pef_f3064_0_2peak_expiratory_flow_pef_f3064_0_1peak_expiratory_flow_pef_f3064_3_0peak_expiratory_flow_pef_f3064_3_1peak_expiratory_flow_pef_f3064_2_2peak_expiratory_flow_pef_f3064_3_2
01000018NaNNaN26.5557NaNNaNNaNNaN63.8NaN...NaNNaNNaNNaN317.0312.0NaNNaNNaNNaN
11000020NaNNaN22.7465NaNNaNNaNNaN70.7NaN...NaNNaNNaNNaN301.0496.0NaNNaNNaNNaN
21000037NaNNaN32.4211NaNNaNNaNNaN78.9NaN...NaNNaNNaNNaNNaN185.0NaNNaNNaNNaN
3100004328.4349NaN29.5679NaNNaN90.6NaN95.8NaN...476.0NaNNaNNaN557.0513.0NaNNaN390.0NaN
41000051NaNNaN41.0222NaNNaNNaNNaN92.3NaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 80 columns

\n", - "
" - ], - "text/plain": [ - " eid body_mass_index_bmi_f21001_2_0 body_mass_index_bmi_f21001_3_0 \\\n", - "0 1000018 NaN NaN \n", - "1 1000020 NaN NaN \n", - "2 1000037 NaN NaN \n", - "3 1000043 28.4349 NaN \n", - "4 1000051 NaN NaN \n", - "\n", - " body_mass_index_bmi_f21001_0_0 body_mass_index_bmi_f21001_1_0 \\\n", - "0 26.5557 NaN \n", - "1 22.7465 NaN \n", - "2 32.4211 NaN \n", - "3 29.5679 NaN \n", - "4 41.0222 NaN \n", - "\n", - " weight_f21002_3_0 weight_f21002_2_0 weight_f21002_1_0 weight_f21002_0_0 \\\n", - "0 NaN NaN NaN 63.8 \n", - "1 NaN NaN NaN 70.7 \n", - "2 NaN NaN NaN 78.9 \n", - "3 NaN 90.6 NaN 95.8 \n", - "4 NaN NaN NaN 92.3 \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080_3_0 ... \\\n", - "0 NaN ... \n", - "1 NaN ... \n", - "2 NaN ... \n", - "3 NaN ... \n", - "4 NaN ... \n", - "\n", - " peak_expiratory_flow_pef_f3064_2_0 peak_expiratory_flow_pef_f3064_1_2 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 476.0 NaN \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_1_1 peak_expiratory_flow_pef_f3064_1_0 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 NaN NaN \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_0_2 peak_expiratory_flow_pef_f3064_0_1 \\\n", - "0 317.0 312.0 \n", - "1 301.0 496.0 \n", - "2 NaN 185.0 \n", - "3 557.0 513.0 \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_3_0 peak_expiratory_flow_pef_f3064_3_1 \\\n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 NaN NaN \n", - "4 NaN NaN \n", - "\n", - " peak_expiratory_flow_pef_f3064_2_2 peak_expiratory_flow_pef_f3064_3_2 \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 390.0 NaN \n", - "4 NaN NaN \n", - "\n", - "[5 rows x 80 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from statistics import mean\n", - "\n", - "fields_measurements = [\n", - "# \"100313\", # Walking speed !!! MISSING !!!\n", - " \"21001\", # BMI\n", - " \"21002\", # weight\n", - " \"4080\", # Syst. BP\n", - " \"4079\", # Diast. BP\n", - " \"102\",\n", - " \"21021\",\n", - " \"4195\",\n", - " \"48\",\n", - " \"49\",\n", - " \"50\",\n", - " \"23127\",\n", - " \"23099\",\n", - " \"23105\",\n", - " \"20151\",\n", - " \"20150\",\n", - " \"20258\",\n", - " \"3064\",\n", - " \n", - "]\n", - "temp = get_data_fields_all(fields_measurements, data, data_field)\n", - "\n", - "#sbp_cols = [\"systolic_blood_pressure_automated_reading_f4080_0_0\", \"systolic_blood_pressure_automated_reading_f4080_0_1\"]\n", - "#dbp_cols = [\"diastolic_blood_pressure_automated_reading_f4079_0_0\", \"diastolic_blood_pressure_automated_reading_f4079_0_1\"]\n", - "#pr_cols = [\"pulse_rate_automated_reading_f102_0_0\", \"pulse_rate_automated_reading_f102_0_1\"]\n", - "\n", - "#temp = temp.assign(systolic_blood_pressure_automated_reading_f4080 = temp[sbp_cols].mean(axis=1),\n", - "# diastolic_blood_pressure_automated_reading_f4079 = temp[dbp_cols].mean(axis=1),\n", - "# pulse_rate_automated_reading_f102 = temp[pr_cols].mean(axis=1))\\\n", - "# .drop(sbp_cols + dbp_cols + pr_cols, axis=1)\n", - "\n", - "measurements = temp\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "measurements.to_feather(os.path.join(path, dataset_path, 'temp_measurements.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lab measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:07.647955Z", - "start_time": "2020-11-04T12:34:07.055242Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidbasophill_count_f30160_2_0basophill_count_f30160_1_0basophill_count_f30160_0_0basophill_percentage_f30220_2_0basophill_percentage_f30220_0_0basophill_percentage_f30220_1_0eosinophill_count_f30150_0_0eosinophill_count_f30150_1_0eosinophill_count_f30150_2_0...total_protein_f30860_0_0total_protein_f30860_1_0triglycerides_f30870_0_0triglycerides_f30870_1_0urate_f30880_0_0urate_f30880_1_0urea_f30670_1_0urea_f30670_0_0vitamin_d_f30890_0_0vitamin_d_f30890_1_0
01000018NaNNaN0.04NaN0.26NaN0.25NaNNaN...71.97NaN1.247NaN221.3NaNNaN5.4870.7NaN
11000020NaNNaN0.00NaN0.30NaN0.30NaNNaN...78.45NaN1.906NaN374.7NaNNaN5.2835.9NaN
21000037NaNNaN0.04NaN0.57NaN0.10NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
31000043NaNNaN0.02NaN0.32NaN0.11NaNNaN...69.70NaN5.184NaN322.8NaNNaN6.6763.6NaN
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows × 154 columns

\n", - "
" - ], - "text/plain": [ - " eid basophill_count_f30160_2_0 basophill_count_f30160_1_0 \\\n", - "0 1000018 NaN NaN \n", - "1 1000020 NaN NaN \n", - "2 1000037 NaN NaN \n", - "3 1000043 NaN NaN \n", - "4 1000051 NaN NaN \n", - "\n", - " basophill_count_f30160_0_0 basophill_percentage_f30220_2_0 \\\n", - "0 0.04 NaN \n", - "1 0.00 NaN \n", - "2 0.04 NaN \n", - "3 0.02 NaN \n", - "4 NaN NaN \n", - "\n", - " basophill_percentage_f30220_0_0 basophill_percentage_f30220_1_0 \\\n", - "0 0.26 NaN \n", - "1 0.30 NaN \n", - "2 0.57 NaN \n", - "3 0.32 NaN \n", - "4 NaN NaN \n", - "\n", - " eosinophill_count_f30150_0_0 eosinophill_count_f30150_1_0 \\\n", - "0 0.25 NaN \n", - "1 0.30 NaN \n", - "2 0.10 NaN \n", - "3 0.11 NaN \n", - "4 NaN NaN \n", - "\n", - " eosinophill_count_f30150_2_0 ... total_protein_f30860_0_0 \\\n", - "0 NaN ... 71.97 \n", - "1 NaN ... 78.45 \n", - "2 NaN ... NaN \n", - "3 NaN ... 69.70 \n", - "4 NaN ... NaN \n", - "\n", - " total_protein_f30860_1_0 triglycerides_f30870_0_0 \\\n", - "0 NaN 1.247 \n", - "1 NaN 1.906 \n", - "2 NaN NaN \n", - "3 NaN 5.184 \n", - "4 NaN NaN \n", - "\n", - " triglycerides_f30870_1_0 urate_f30880_0_0 urate_f30880_1_0 \\\n", - "0 NaN 221.3 NaN \n", - "1 NaN 374.7 NaN \n", - "2 NaN NaN NaN \n", - "3 NaN 322.8 NaN \n", - "4 NaN NaN NaN \n", - "\n", - " urea_f30670_1_0 urea_f30670_0_0 vitamin_d_f30890_0_0 \\\n", - "0 NaN 5.48 70.7 \n", - "1 NaN 5.28 35.9 \n", - "2 NaN NaN NaN \n", - "3 NaN 6.67 63.6 \n", - "4 NaN NaN NaN \n", - "\n", - " vitamin_d_f30890_1_0 \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "\n", - "[5 rows x 154 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fields_blood_count = [\n", - " \"30160\", #\tBasophill count\n", - " \"30220\", #\tBasophill percentage\n", - " \"30150\", #\tEosinophill count\n", - " \"30210\", #\tEosinophill percentage\n", - " \"30030\", #\tHaematocrit percentage\n", - " \"30020\", #\tHaemoglobin concentration\n", - " \"30300\", #\tHigh light scatter reticulocyte count\n", - " \"30290\", #\tHigh light scatter reticulocyte percentage\n", - " \"30280\", #\tImmature reticulocyte fraction\n", - " \"30120\", #\tLymphocyte count\n", - " \"30180\", #\tLymphocyte percentage\n", - " \"30050\", #\tMean corpuscular haemoglobin\n", - " \"30060\", #\tMean corpuscular haemoglobin concentration\n", - " \"30040\", #\tMean corpuscular volume\n", - " \"30100\", #\tMean platelet (thrombocyte) volume\n", - " \"30260\", #\tMean reticulocyte volume\n", - " \"30270\", #\tMean sphered cell volume\n", - " \"30130\", #\tMonocyte count\n", - " \"30190\", #\tMonocyte percentage\n", - " \"30140\", #\tNeutrophill count\n", - " \"30200\", #\tNeutrophill percentage\n", - " \"30170\", #\tNucleated red blood cell count\n", - " \"30230\", #\tNucleated red blood cell percentage\n", - " \"30080\", #\tPlatelet count\n", - " \"30090\", #\tPlatelet crit\n", - " \"30110\", #\tPlatelet distribution width\n", - " \"30010\", #\tRed blood cell (erythrocyte) count\n", - " \"30070\", #\tRed blood cell (erythrocyte) distribution width\n", - " \"30250\", #\tReticulocyte count\n", - " \"30240\", #\tReticulocyte percentage\n", - " \"30000\", #\tWhite blood cell (leukocyte) count\n", - "]\n", - "\n", - "fields_blood_biochemistry = [\n", - " \"30620\",#\tAlanine aminotransferase\n", - " \"30600\",#\tAlbumin\n", - " \"30610\",#\tAlkaline phosphatase\n", - " \"30630\",#\tApolipoprotein A\n", - " \"30640\",#\tApolipoprotein B\n", - " \"30650\",#\tAspartate aminotransferase\n", - " \"30710\",#\tC-reactive protein\n", - " \"30680\",#\tCalcium\n", - " \"30690\",#\tCholesterol\n", - " \"30700\",#\tCreatinine\n", - " \"30720\",#\tCystatin C\n", - " \"30660\",#\tDirect bilirubin\n", - " \"30730\",#\tGamma glutamyltransferase\n", - " \"30740\",#\tGlucose\n", - " \"30750\",#\tGlycated haemoglobin (HbA1c)\n", - " \"30760\",#\tHDL cholesterol\n", - " \"30770\",#\tIGF-1\n", - " \"30780\",#\tLDL direct\n", - " \"30790\",#\tLipoprotein A\n", - " \"30800\",#\tOestradiol\n", - " \"30810\",#\tPhosphate\n", - " \"30820\",#\tRheumatoid factor\n", - " \"30830\",#\tSHBG\n", - " \"30850\",#\tTestosterone\n", - " \"30840\",#\tTotal bilirubin\n", - " \"30860\",#\tTotal protein\n", - " \"30870\",#\tTriglycerides\n", - " \"30880\",#\tUrate\n", - " \"30670\",#\tUrea\n", - " \"30890\",#\tVitamin D\n", - "]\n", - "\n", - "fields_blood_infectious = [\n", - " \"23000\", #\t1gG antigen for Herpes Simplex virus-1\n", - " \"23001\", #\t2mgG unique antigen for Herpes Simplex virus-2\n", - " \"23049\", #\tAntigen assay QC indicator\n", - " \"23048\", #\tAntigen assay date\n", - " \"23026\", #\tBK VP1 antigen for Human Polyomavirus BKV\n", - " \"23039\", #\tCagA antigen for Helicobacter pylori\n", - " \"23043\", #\tCatalase antigen for Helicobacter pylori\n", - " \"23018\", #\tCore antigen for Hepatitis C Virus\n", - " \"23030\", #\tE6 antigen for Human Papillomavirus type-16\n", - " \"23031\", #\tE7 antigen for Human Papillomavirus type-16\n", - " \"23006\", #\tEA-D antigen for Epstein-Barr Virus\n", - " \"23004\", #\tEBNA-1 antigen for Epstein-Barr Virus\n", - " \"23042\", #\tGroEL antigen for Helicobacter pylori\n", - " \"23016\", #\tHBc antigen for Hepatitis B Virus\n", - " \"23017\", #\tHBe antigen for Hepatitis B Virus\n", - " \"23025\", #\tHIV-1 env antigen for Human Immunodeficiency Virus\n", - " \"23024\", #\tHIV-1 gag antigen for Human Immunodeficiency Virus\n", - " \"23023\", #\tHTLV-1 env antigen for Human T-Lymphotropic Virus 1\n", - " \"23022\", #\tHTLV-1 gag antigen for Human T-Lymphotropic Virus 1\n", - " \"23010\", #\tIE1A antigen for Human Herpesvirus-6\n", - " \"23011\", #\tIE1B antigen for Human Herpesvirus-6\n", - " \"23027\", #\tJC VP1 antigen for Human Polyomavirus JCV\n", - " \"23015\", #\tK8.1 antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23029\", #\tL1 antigen for Human Papillomavirus type-16\n", - " \"23032\", #\tL1 antigen for Human Papillomavirus type-18\n", - " \"23014\", #\tLANA antigen for Kaposi's Sarcoma-Associated Herpesvirus\n", - " \"23028\", #\tMC VP1 antigen for Merkel Cell Polyomavirus\n", - " \"23019\", #\tNS3 antigen for Hepatitis C Virus\n", - " \"23041\", #\tOMP antigen for Helicobacter pylori\n", - " \"23037\", #\tPorB antigen for Chlamydia trachomatis\n", - " \"23013\", #\tU14 antigen for Human Herpesvirus-7\n", - " \"23044\", #\tUreA antigen for Helicobacter pylori\n", - " \"23003\", #\tVCA p18 antigen for Epstein-Barr Virus\n", - " \"23040\", #\tVacA antigen for Helicobacter pylori\n", - " \"23005\", #\tZEBRA antigen for Epstein-Barr Virus\n", - " \"23002\", #\tgE / gI antigen for Varicella Zoster Virus\n", - " \"23034\", #\tmomp A antigen for Chlamydia trachomatis\n", - " \"23033\", #\tmomp D antigen for Chlamydia trachomatis\n", - " \"23012\", #\tp101 k antigen for Human Herpesvirus-6\n", - " \"23020\", #\tp22 antigen for Toxoplasma gondii\n", - " \"23038\", #\tpGP3 antigen for Chlamydia trachomatis\n", - " \"23009\", #\tpp 28 antigen for Human Cytomegalovirus\n", - " \"23008\", #\tpp 52 antigen for Human Cytomegalovirus\n", - " \"23007\", #\tpp150 Nter antigen for Human Cytomegalovirus\n", - " \"23021\", #\tsag1 antigen for Toxoplasma gondii\n", - " \"23035\", #\ttarp-D F1 antigen for Chlamydia trachomatis\n", - " \"23036\", #\ttarp-D F2 antigen for Chlamydia trachomatis\n", - "]\n", - "\n", - "labs = temp = get_data_fields_all(fields_blood_count+fields_blood_biochemistry+fields_blood_infectious, data, data_field)\n", - "print(len(temp))\n", - "display(temp.head())\n", - "\n", - "labs.to_feather(os.path.join(path, dataset_path, 'temp_labs.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Get Demographic Data with times" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "standard = pd.concat([basics.set_index(\"eid\"), questionnaire.set_index(\"eid\"), measurements.set_index(\"eid\"), labs.set_index(\"eid\")], axis=1).reset_index()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "cols_raw = [c[:-4] for c in standard.drop(\"eid\", axis=1).columns.to_list()]\n", - "cols = list(dict.fromkeys(cols_raw))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0ethnic_background_f21000_1_0ethnic_background_f21000_2_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0date_of_attending_assessment_centre_f53_1_0date_of_attending_assessment_centre_f53_2_0...total_protein_f30860_0_0total_protein_f30860_1_0triglycerides_f30870_0_0triglycerides_f30870_1_0urate_f30880_0_0urate_f30880_1_0urea_f30670_1_0urea_f30670_0_0vitamin_d_f30890_0_0vitamin_d_f30890_1_0
0100001849.0FemaleBritishNaNNaN-1.8529302009-11-12NoneNone...71.97NaN1.247NaN221.3NaNNaN5.4870.7NaN
1100002059.0MaleBritishNaNNaN0.2042482008-02-19NoneNone...78.45NaN1.906NaN374.7NaNNaN5.2835.9NaN
2100003759.0FemaleBritishNaNNaN-3.4988602008-11-11NoneNone...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3100004363.0MaleBritishNaNNaN-5.3511502009-06-03None2018-06-08...69.70NaN5.184NaN322.8NaNNaN6.6763.6NaN
4100005151.0FemaleBritishNaNNaN-1.7990802006-06-10None2019-09-15...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
502499602515043.0FemaleBritishBritishNaN0.0467812007-06-302012-11-172017-08-12...72.10NaN0.7302.285298.8356.15.654.2141.617.9
502500602516545.0FemaleBritishNaNNaN-2.1070402008-09-02NoneNone...74.20NaN1.442NaN220.2NaNNaN4.0172.7NaN
502501602517357.0MaleBritishNaNNaN-1.8272202008-09-17NoneNone...72.03NaN1.136NaN255.5NaNNaN5.2541.6NaN
502502602518256.0MaleBritishNaNNaN-0.0107642010-07-01NoneNone...70.65NaN5.756NaN353.6NaNNaN4.4245.9NaN
502503602519867.0MaleBritishNaNNaN-1.9306502010-01-26NoneNone...70.62NaN2.327NaN454.8NaNNaN5.1420.2NaN
\n", - "

502504 rows × 255 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "... ... ... ... \n", - "502499 6025150 43.0 Female \n", - "502500 6025165 45.0 Female \n", - "502501 6025173 57.0 Male \n", - "502502 6025182 56.0 Male \n", - "502503 6025198 67.0 Male \n", - "\n", - " ethnic_background_f21000_0_0 ethnic_background_f21000_1_0 \\\n", - "0 British NaN \n", - "1 British NaN \n", - "2 British NaN \n", - "3 British NaN \n", - "4 British NaN \n", - "... ... ... \n", - "502499 British British \n", - "502500 British NaN \n", - "502501 British NaN \n", - "502502 British NaN \n", - "502503 British NaN \n", - "\n", - " ethnic_background_f21000_2_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502499 NaN \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "... ... \n", - "502499 0.046781 \n", - "502500 -2.107040 \n", - "502501 -1.827220 \n", - "502502 -0.010764 \n", - "502503 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "... ... \n", - "502499 2007-06-30 \n", - "502500 2008-09-02 \n", - "502501 2008-09-17 \n", - "502502 2010-07-01 \n", - "502503 2010-01-26 \n", - "\n", - " date_of_attending_assessment_centre_f53_1_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502499 2012-11-17 \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "\n", - " date_of_attending_assessment_centre_f53_2_0 ... \\\n", - "0 None ... \n", - "1 None ... \n", - "2 None ... \n", - "3 2018-06-08 ... \n", - "4 2019-09-15 ... \n", - "... ... ... \n", - "502499 2017-08-12 ... \n", - "502500 None ... \n", - "502501 None ... \n", - "502502 None ... \n", - "502503 None ... \n", - "\n", - " total_protein_f30860_0_0 total_protein_f30860_1_0 \\\n", - "0 71.97 NaN \n", - "1 78.45 NaN \n", - "2 NaN NaN \n", - "3 69.70 NaN \n", - "4 NaN NaN \n", - "... ... ... \n", - "502499 72.10 NaN \n", - "502500 74.20 NaN \n", - "502501 72.03 NaN \n", - "502502 70.65 NaN \n", - "502503 70.62 NaN \n", - "\n", - " triglycerides_f30870_0_0 triglycerides_f30870_1_0 urate_f30880_0_0 \\\n", - "0 1.247 NaN 221.3 \n", - "1 1.906 NaN 374.7 \n", - "2 NaN NaN NaN \n", - "3 5.184 NaN 322.8 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "502499 0.730 2.285 298.8 \n", - "502500 1.442 NaN 220.2 \n", - "502501 1.136 NaN 255.5 \n", - "502502 5.756 NaN 353.6 \n", - "502503 2.327 NaN 454.8 \n", - "\n", - " urate_f30880_1_0 urea_f30670_1_0 urea_f30670_0_0 vitamin_d_f30890_0_0 \\\n", - "0 NaN NaN 5.48 70.7 \n", - "1 NaN NaN 5.28 35.9 \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN 6.67 63.6 \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "502499 356.1 5.65 4.21 41.6 \n", - "502500 NaN NaN 4.01 72.7 \n", - "502501 NaN NaN 5.25 41.6 \n", - "502502 NaN NaN 4.42 45.9 \n", - "502503 NaN NaN 5.14 20.2 \n", - "\n", - " vitamin_d_f30890_1_0 \n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502499 17.9 \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "\n", - "[502504 rows x 255 columns]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "standard" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "df = standard.copy()" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "df_long = df.set_index([\"eid\"]).stack().reset_index()" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "df_long.columns = [\"eid\", \"column\", \"value\"]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def split_ukb_column(df, idx_col=\"column\"):\n", - " column = df[\"column\"].to_list()\n", - " df[\"column\"] = [e[:-4] for e in column]\n", - " df[\"t\"]= [e[-3:] for e in column]\n", - " return df\n", - "\n", - "def split_ukb_index(df, idx_col=\"t\"):\n", - " new = df[idx_col].str.split(\"_\", n = 1, expand = True) \n", - " df[\"visit\"] = new[0]\n", - " df[\"measurement\"]= new[1]\n", - " return df.drop(columns =[idx_col]) " - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "df_long_split = split_ukb_column(df_long, idx_col=\"column\")" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "def df_sort_cols(df, cols): return df[start_cols+[c for c in df.columns.to_list() if c not in start_cols]]\n", - "\n", - "start_cols = [\"eid\", \"t\", \"column\", \"value\"]\n", - "df_long_split = df_sort_cols(df_long_split, start_cols)" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "df_test = df_long_split.set_index([\"eid\", \"t\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [], - "source": [ - "df_test2 = df_test.set_index([\"column\"], append=True).unstack(level=-1).reset_index()" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [], - "source": [ - "mi = df_test2.columns.to_flat_index().to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['eid', 't', 'age_at_recruitment_f21022',\n", - " 'alanine_aminotransferase_f30620', 'albumin_f30600',\n", - " 'alcohol_intake_frequency_f1558', 'alkaline_phosphatase_f30610',\n", - " 'apolipoprotein_a_f30630', 'apolipoprotein_b_f30640',\n", - " 'aspartate_aminotransferase_f30650',\n", - " ...\n", - " 'total_protein_f30860',\n", - " 'townsend_deprivation_index_at_recruitment_f189',\n", - " 'triglycerides_f30870', 'trunk_fat_percentage_f23127', 'urate_f30880',\n", - " 'urea_f30670', 'vitamin_d_f30890', 'waist_circumference_f48',\n", - " 'weight_f21002', 'white_blood_cell_leukocyte_count_f30000'],\n", - " dtype='object', length=260)" - ] - }, - "execution_count": 91, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ind = pd.Index([e[1] if e[1] != \"\" else e[0] for e in mi])\n", - "df_test2.columns = ind" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [], - "source": [ - "df_test2.columns = ind" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "metadata": {}, - "outputs": [], - "source": [ - "start_cols = [\"eid\", \"t\"]+cols\n", - "df_test2 = df_sort_cols(df_test2, start_cols)" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtage_at_recruitment_f21022age_at_recruitment_f21022age_at_recruitment_f21022sex_f31sex_f31sex_f31ethnic_background_f21000ethnic_background_f21000...triglycerides_f30870urate_f30880urate_f30880urate_f30880urea_f30670urea_f30670urea_f30670vitamin_d_f30890vitamin_d_f30890vitamin_d_f30890
010000180_04900Female00British0...0221.3005.480070.700
110000180_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
210000180_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000200_05900Male00British0...0374.7005.280035.900
410000200_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
152192960251820_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193060251820_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193160251980_06700Male00British0...0454.8005.140020.200
152193260251980_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193360251980_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

1521934 rows × 260 columns

\n", - "
" - ], - "text/plain": [ - " eid t age_at_recruitment_f21022 age_at_recruitment_f21022 \\\n", - "0 1000018 0_0 49 0 \n", - "1 1000018 0_1 NaN NaN \n", - "2 1000018 0_2 NaN NaN \n", - "3 1000020 0_0 59 0 \n", - "4 1000020 0_1 NaN NaN \n", - "... ... ... ... ... \n", - "1521929 6025182 0_1 NaN NaN \n", - "1521930 6025182 0_2 NaN NaN \n", - "1521931 6025198 0_0 67 0 \n", - "1521932 6025198 0_1 NaN NaN \n", - "1521933 6025198 0_2 NaN NaN \n", - "\n", - " age_at_recruitment_f21022 sex_f31 sex_f31 sex_f31 \\\n", - "0 0 Female 0 0 \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 0 Male 0 0 \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "1521929 NaN NaN NaN NaN \n", - "1521930 NaN NaN NaN NaN \n", - "1521931 0 Male 0 0 \n", - "1521932 NaN NaN NaN NaN \n", - "1521933 NaN NaN NaN NaN \n", - "\n", - " ethnic_background_f21000 ethnic_background_f21000 ... \\\n", - "0 British 0 ... \n", - "1 NaN NaN ... \n", - "2 NaN NaN ... \n", - "3 British 0 ... \n", - "4 NaN NaN ... \n", - "... ... ... ... \n", - "1521929 NaN NaN ... \n", - "1521930 NaN NaN ... \n", - "1521931 British 0 ... \n", - "1521932 NaN NaN ... \n", - "1521933 NaN NaN ... \n", - "\n", - " triglycerides_f30870 urate_f30880 urate_f30880 urate_f30880 \\\n", - "0 0 221.3 0 0 \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 0 374.7 0 0 \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "1521929 NaN NaN NaN NaN \n", - "1521930 NaN NaN NaN NaN \n", - "1521931 0 454.8 0 0 \n", - "1521932 NaN NaN NaN NaN \n", - "1521933 NaN NaN NaN NaN \n", - "\n", - " urea_f30670 urea_f30670 urea_f30670 vitamin_d_f30890 vitamin_d_f30890 \\\n", - "0 5.48 0 0 70.7 0 \n", - "1 NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN \n", - "3 5.28 0 0 35.9 0 \n", - "4 NaN NaN NaN NaN NaN \n", - "... ... ... ... ... ... \n", - "1521929 NaN NaN NaN NaN NaN \n", - "1521930 NaN NaN NaN NaN NaN \n", - "1521931 5.14 0 0 20.2 0 \n", - "1521932 NaN NaN NaN NaN NaN \n", - "1521933 NaN NaN NaN NaN NaN \n", - "\n", - " vitamin_d_f30890 \n", - "0 0 \n", - "1 NaN \n", - "2 NaN \n", - "3 0 \n", - "4 NaN \n", - "... ... \n", - "1521929 NaN \n", - "1521930 NaN \n", - "1521931 0 \n", - "1521932 NaN \n", - "1521933 NaN \n", - "\n", - "[1521934 rows x 260 columns]" - ] - }, - "execution_count": 100, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_test2" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtage_at_recruitment_f21022sex_f31ethnic_background_f21000townsend_deprivation_index_at_recruitment_f189date_of_attending_assessment_centre_f53overall_health_rating_f2178smoking_status_f20116alcohol_intake_frequency_f1558...phosphate_f30810rheumatoid_factor_f30820shbg_f30830testosterone_f30850total_bilirubin_f30840total_protein_f30860triglycerides_f30870urate_f30880urea_f30670vitamin_d_f30890
010000180_049.0FemaleBritish-1.8529302009-11-12FairCurrentOnce or twice a week...1.422NaN70.111.5607.4171.971.247221.35.4870.7
110000180_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
210000180_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000200_059.0MaleBritish0.2042482008-02-19GoodCurrentOnce or twice a week...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
410000200_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
152192960251820_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193060251820_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193160251980_067.0MaleBritish-1.9306502010-01-26GoodCurrentDaily or almost daily...1.163NaN45.0915.03011.8570.622.327454.85.1420.2
152193260251980_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193360251980_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

1521934 rows × 88 columns

\n", - "
" - ], - "text/plain": [ - " eid t age_at_recruitment_f21022 sex_f31 \\\n", - "0 1000018 0_0 49.0 Female \n", - "1 1000018 0_1 NaN NaN \n", - "2 1000018 0_2 NaN NaN \n", - "3 1000020 0_0 59.0 Male \n", - "4 1000020 0_1 NaN NaN \n", - "... ... ... ... ... \n", - "1521929 6025182 0_1 NaN NaN \n", - "1521930 6025182 0_2 NaN NaN \n", - "1521931 6025198 0_0 67.0 Male \n", - "1521932 6025198 0_1 NaN NaN \n", - "1521933 6025198 0_2 NaN NaN \n", - "\n", - " ethnic_background_f21000 \\\n", - "0 British \n", - "1 NaN \n", - "2 NaN \n", - "3 British \n", - "4 NaN \n", - "... ... \n", - "1521929 NaN \n", - "1521930 NaN \n", - "1521931 British \n", - "1521932 NaN \n", - "1521933 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189 \\\n", - "0 -1.852930 \n", - "1 NaN \n", - "2 NaN \n", - "3 0.204248 \n", - "4 NaN \n", - "... ... \n", - "1521929 NaN \n", - "1521930 NaN \n", - "1521931 -1.930650 \n", - "1521932 NaN \n", - "1521933 NaN \n", - "\n", - " date_of_attending_assessment_centre_f53 overall_health_rating_f2178 \\\n", - "0 2009-11-12 Fair \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 2008-02-19 Good \n", - "4 NaN NaN \n", - "... ... ... \n", - "1521929 NaN NaN \n", - "1521930 NaN NaN \n", - "1521931 2010-01-26 Good \n", - "1521932 NaN NaN \n", - "1521933 NaN NaN \n", - "\n", - " smoking_status_f20116 alcohol_intake_frequency_f1558 ... \\\n", - "0 Current Once or twice a week ... \n", - "1 NaN NaN ... \n", - "2 NaN NaN ... \n", - "3 Current Once or twice a week ... \n", - "4 NaN NaN ... \n", - "... ... ... ... \n", - "1521929 NaN NaN ... \n", - "1521930 NaN NaN ... \n", - "1521931 Current Daily or almost daily ... \n", - "1521932 NaN NaN ... \n", - "1521933 NaN NaN ... \n", - "\n", - " phosphate_f30810 rheumatoid_factor_f30820 shbg_f30830 \\\n", - "0 1.422 NaN 70.11 \n", - "1 NaN NaN NaN \n", - "2 NaN NaN NaN \n", - "3 1.264 NaN 55.31 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "1521929 NaN NaN NaN \n", - "1521930 NaN NaN NaN \n", - "1521931 1.163 NaN 45.09 \n", - "1521932 NaN NaN NaN \n", - "1521933 NaN NaN NaN \n", - "\n", - " testosterone_f30850 total_bilirubin_f30840 total_protein_f30860 \\\n", - "0 1.560 7.41 71.97 \n", - "1 NaN NaN NaN \n", - "2 NaN NaN NaN \n", - "3 12.237 8.07 78.45 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "1521929 NaN NaN NaN \n", - "1521930 NaN NaN NaN \n", - "1521931 15.030 11.85 70.62 \n", - "1521932 NaN NaN NaN \n", - "1521933 NaN NaN NaN \n", - "\n", - " triglycerides_f30870 urate_f30880 urea_f30670 vitamin_d_f30890 \n", - "0 1.247 221.3 5.48 70.7 \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 1.906 374.7 5.28 35.9 \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "1521929 NaN NaN NaN NaN \n", - "1521930 NaN NaN NaN NaN \n", - "1521931 2.327 454.8 5.14 20.2 \n", - "1521932 NaN NaN NaN NaN \n", - "1521933 NaN NaN NaN NaN \n", - "\n", - "[1521934 rows x 88 columns]" - ] - }, - "execution_count": 98, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "standard_long" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtage_at_recruitment_f21022sex_f31ethnic_background_f21000townsend_deprivation_index_at_recruitment_f189date_of_attending_assessment_centre_f53overall_health_rating_f2178smoking_status_f20116alcohol_intake_frequency_f1558...phosphate_f30810rheumatoid_factor_f30820shbg_f30830testosterone_f30850total_bilirubin_f30840total_protein_f30860triglycerides_f30870urate_f30880urea_f30670vitamin_d_f30890
010000180_049.0FemaleBritish-1.8529302009-11-12FairCurrentOnce or twice a week...1.422NaN70.111.5607.4171.971.247221.35.4870.7
110000180_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
210000180_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
310000200_059.0MaleBritish0.2042482008-02-19GoodCurrentOnce or twice a week...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
410000200_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
152192960251820_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193060251820_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193160251980_067.0MaleBritish-1.9306502010-01-26GoodCurrentDaily or almost daily...1.163NaN45.0915.03011.8570.622.327454.85.1420.2
152193260251980_1NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
152193360251980_2NaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

1521934 rows × 88 columns

\n", - "
" - ], - "text/plain": [ - " eid t age_at_recruitment_f21022 sex_f31 \\\n", - "0 1000018 0_0 49.0 Female \n", - "1 1000018 0_1 NaN NaN \n", - "2 1000018 0_2 NaN NaN \n", - "3 1000020 0_0 59.0 Male \n", - "4 1000020 0_1 NaN NaN \n", - "... ... ... ... ... \n", - "1521929 6025182 0_1 NaN NaN \n", - "1521930 6025182 0_2 NaN NaN \n", - "1521931 6025198 0_0 67.0 Male \n", - "1521932 6025198 0_1 NaN NaN \n", - "1521933 6025198 0_2 NaN NaN \n", - "\n", - " ethnic_background_f21000 \\\n", - "0 British \n", - "1 NaN \n", - "2 NaN \n", - "3 British \n", - "4 NaN \n", - "... ... \n", - "1521929 NaN \n", - "1521930 NaN \n", - "1521931 British \n", - "1521932 NaN \n", - "1521933 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189 \\\n", - "0 -1.852930 \n", - "1 NaN \n", - "2 NaN \n", - "3 0.204248 \n", - "4 NaN \n", - "... ... \n", - "1521929 NaN \n", - "1521930 NaN \n", - "1521931 -1.930650 \n", - "1521932 NaN \n", - "1521933 NaN \n", - "\n", - " date_of_attending_assessment_centre_f53 overall_health_rating_f2178 \\\n", - "0 2009-11-12 Fair \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 2008-02-19 Good \n", - "4 NaN NaN \n", - "... ... ... \n", - "1521929 NaN NaN \n", - "1521930 NaN NaN \n", - "1521931 2010-01-26 Good \n", - "1521932 NaN NaN \n", - "1521933 NaN NaN \n", - "\n", - " smoking_status_f20116 alcohol_intake_frequency_f1558 ... \\\n", - "0 Current Once or twice a week ... \n", - "1 NaN NaN ... \n", - "2 NaN NaN ... \n", - "3 Current Once or twice a week ... \n", - "4 NaN NaN ... \n", - "... ... ... ... \n", - "1521929 NaN NaN ... \n", - "1521930 NaN NaN ... \n", - "1521931 Current Daily or almost daily ... \n", - "1521932 NaN NaN ... \n", - "1521933 NaN NaN ... \n", - "\n", - " phosphate_f30810 rheumatoid_factor_f30820 shbg_f30830 \\\n", - "0 1.422 NaN 70.11 \n", - "1 NaN NaN NaN \n", - "2 NaN NaN NaN \n", - "3 1.264 NaN 55.31 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "1521929 NaN NaN NaN \n", - "1521930 NaN NaN NaN \n", - "1521931 1.163 NaN 45.09 \n", - "1521932 NaN NaN NaN \n", - "1521933 NaN NaN NaN \n", - "\n", - " testosterone_f30850 total_bilirubin_f30840 total_protein_f30860 \\\n", - "0 1.560 7.41 71.97 \n", - "1 NaN NaN NaN \n", - "2 NaN NaN NaN \n", - "3 12.237 8.07 78.45 \n", - "4 NaN NaN NaN \n", - "... ... ... ... \n", - "1521929 NaN NaN NaN \n", - "1521930 NaN NaN NaN \n", - "1521931 15.030 11.85 70.62 \n", - "1521932 NaN NaN NaN \n", - "1521933 NaN NaN NaN \n", - "\n", - " triglycerides_f30870 urate_f30880 urea_f30670 vitamin_d_f30890 \n", - "0 1.247 221.3 5.48 70.7 \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 1.906 374.7 5.28 35.9 \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "1521929 NaN NaN NaN NaN \n", - "1521930 NaN NaN NaN NaN \n", - "1521931 2.327 454.8 5.14 20.2 \n", - "1521932 NaN NaN NaN NaN \n", - "1521933 NaN NaN NaN NaN \n", - "\n", - "[1521934 rows x 88 columns]" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "standard_long" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "df_raw = split_ukb_index(df_long_split, idx_col=\"t\")" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [], - "source": [ - "def df_sort_cols(df, cols): return df[start_cols+[c for c in df.columns.to_list() if c not in start_cols]]\n", - "\n", - "start_cols = [\"eid\", \"visit\", \"measurement\", \"column\", \"value\"]\n", - "df_raw = df_sort_cols(df_raw, start_cols)" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
columnvalue
eidvisitmeasurement
100001800age_at_recruitment_f2102249
0sex_f31Female
0ethnic_background_f21000British
0townsend_deprivation_index_at_recruitment_f189-1.85293
0date_of_attending_assessment_centre_f532009-11-12
...............
602519800total_protein_f3086070.62
0triglycerides_f308702.327
0urate_f30880454.8
0urea_f306705.14
0vitamin_d_f3089020.2
\n", - "

43659996 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " column \\\n", - "eid visit measurement \n", - "1000018 0 0 age_at_recruitment_f21022 \n", - " 0 sex_f31 \n", - " 0 ethnic_background_f21000 \n", - " 0 townsend_deprivation_index_at_recruitment_f189 \n", - " 0 date_of_attending_assessment_centre_f53 \n", - "... ... \n", - "6025198 0 0 total_protein_f30860 \n", - " 0 triglycerides_f30870 \n", - " 0 urate_f30880 \n", - " 0 urea_f30670 \n", - " 0 vitamin_d_f30890 \n", - "\n", - " value \n", - "eid visit measurement \n", - "1000018 0 0 49 \n", - " 0 Female \n", - " 0 British \n", - " 0 -1.85293 \n", - " 0 2009-11-12 \n", - "... ... \n", - "6025198 0 0 70.62 \n", - " 0 2.327 \n", - " 0 454.8 \n", - " 0 5.14 \n", - " 0 20.2 \n", - "\n", - "[43659996 rows x 2 columns]" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_raw.set_index([\"eid\", \"visit\", \"measurement\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/magics/execution.py\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1320\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1321\u001b[0;31m \u001b[0mexec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1322\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2884\u001b[0m \u001b[0;31m# to a slice for partial-string date indexing\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2885\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2886\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_slice\u001b[0;34m(self, slobj, axis)\u001b[0m\n\u001b[1;32m 3558\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_block_manager_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3559\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_slice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3560\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mget_slice\u001b[0;34m(self, slobj, axis)\u001b[0m\n\u001b[1;32m 762\u001b[0m \u001b[0mslicer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mslice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mslobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 763\u001b[0;31m \u001b[0mnew_blocks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mblk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetitem_block\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslicer\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mblk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mblocks\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 764\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 762\u001b[0m \u001b[0mslicer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mslice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mslobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 763\u001b[0;31m \u001b[0mnew_blocks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mblk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetitem_block\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslicer\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mblk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mblocks\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 764\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mgetitem_block\u001b[0;34m(self, slicer, new_mgr_locs)\u001b[0m\n\u001b[1;32m 303\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 304\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslicer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 305\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36m_slice\u001b[0;34m(self, slicer)\u001b[0m\n\u001b[1;32m 1774\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1775\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mslicer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1776\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/arrays/categorical.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1973\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1974\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfastpath\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1975\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/arrays/categorical.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, values, categories, ordered, dtype, fastpath)\u001b[0m\n\u001b[1;32m 314\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfastpath\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 315\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_codes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcoerce_indexer_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcategories\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 316\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dtype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_cell_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'time'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m''\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'\\nfrom joblib import Parallel, delayed\\n\\ndef df_wide_to_long(df): return pd.wide_to_long(standard, cols, i=\"eid\", j=\"t\", sep=\"_\", suffix=\\'\\\\w+\\').reset_index()\\n\\ndf_input = standard\\nn = 10 \\nlist_df = [df_input[i:i+n] for i in range(0,df_input.shape[0],n)]\\n\\ndf_list = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(df_wide_to_long)(df) for df in tqdm(list_df))\\ndf_concat = pd.concat(df_list, axis=0).reset_index(drop=True)\\n'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mrun_cell_magic\u001b[0;34m(self, magic_name, line, cell)\u001b[0m\n\u001b[1;32m 2379\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2380\u001b[0m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mmagic_arg_s\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcell\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2381\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2382\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2383\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/magic.py\u001b[0m in \u001b[0;36m\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/magics/execution.py\u001b[0m in \u001b[0;36mtime\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 1319\u001b[0m \u001b[0mst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclock2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1320\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1321\u001b[0;31m \u001b[0mexec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mglob\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlocal_ns\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1322\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1323\u001b[0m \u001b[0;31m# multi-line %%time case\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "%%time\n", - "\n", - "from joblib import Parallel, delayed\n", - "\n", - "def df_wide_to_long(df): return pd.wide_to_long(standard, cols, i=\"eid\", j=\"t\", sep=\"_\", suffix='\\w+').reset_index()\n", - "\n", - "df_input = standard\n", - "n = 100\n", - "list_df = [df_input[i:i+n] for i in range(0,df_input.shape[0],n)]\n", - "\n", - "df_list = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(df_wide_to_long)(df) for df in tqdm(list_df))\n", - "df_concat = pd.concat(df_list, axis=0).reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ee25fa009d6e4e858f160756345d9518", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=503.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 939\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'supports_timeout'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 940\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 941\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mwrap_future_result\u001b[0;34m(future, timeout)\u001b[0m\n\u001b[1;32m 541\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 542\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 543\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mCfTimeoutError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/concurrent/futures/_base.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 430\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_condition\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 431\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 296\u001b[0;31m \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 297\u001b[0m \u001b[0mgotit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mjoblib\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mParallel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdelayed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mParallel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelayed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf_wide_to_long\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist_df\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1060\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieval_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1061\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1062\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1063\u001b[0m \u001b[0melapsed_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start_time\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 960\u001b[0m \u001b[0;31m# scheduling.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 961\u001b[0m \u001b[0mensure_ready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_managed_backend\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 962\u001b[0;31m \u001b[0mbackend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabort_everything\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mensure_ready\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 963\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mabort_everything\u001b[0;34m(self, ensure_ready)\u001b[0m\n\u001b[1;32m 559\u001b[0m \"\"\"Shutdown the workers and restart a new one with the same parameters\n\u001b[1;32m 560\u001b[0m \"\"\"\n\u001b[0;32m--> 561\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_workers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mterminate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 562\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_workers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/executor.py\u001b[0m in \u001b[0;36mterminate\u001b[0;34m(self, kill_workers)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mterminate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 74\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshutdown\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkill_workers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 75\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkill_workers\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;31m# When workers are killed in such a brutal manner, they cannot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py\u001b[0m in \u001b[0;36mshutdown\u001b[0;34m(self, wait, kill_workers)\u001b[0m\n\u001b[1;32m 1169\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1170\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mexecutor_manager_thread\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mwait\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1171\u001b[0;31m \u001b[0mexecutor_manager_thread\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1172\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1173\u001b[0m \u001b[0;31m# To reduce the risk of opening too many files, remove references to\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36mjoin\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 1042\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1043\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1044\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_wait_for_tstate_lock\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1045\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1046\u001b[0m \u001b[0;31m# the behavior of a negative timeout isn't documented, but\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/threading.py\u001b[0m in \u001b[0;36m_wait_for_tstate_lock\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m 1058\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlock\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# already determined that the C code is done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_is_stopped\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1060\u001b[0;31m \u001b[0;32melif\u001b[0m \u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblock\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1061\u001b[0m \u001b[0mlock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrelease\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1062\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_stop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "from joblib import Parallel, delayed\n", - "df_list = Parallel(n_jobs=50)(delayed(df_wide_to_long)(df) for df in tqdm(list_df))" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 42min 7s, sys: 6min 58s, total: 49min 6s\n", - "Wall time: 50min 49s\n" - ] - } - ], - "source": [ - "%%time\n", - "\n", - "standard_long = pd.wide_to_long(standard, cols, i=\"eid\", j=\"t\", sep=\"_\", suffix='\\w+').reset_index()#.set_index(\"eid\")\n", - "standard_long = standard_long.dropna(how=\"all\", subset=cols, axis=0).reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "def split_ukb_index(df, idx_col=\"t\"):\n", - " new = df[idx_col].str.split(\"_\", n = 1, expand = True) \n", - " df[\"visit\"] = new[0]\n", - " df[\"measurement\"]= new[1]\n", - " return df.drop(columns =[idx_col]) \n", - "df_raw = split_ukb_index(standard_long, idx_col=\"t\")" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "def process_multiple_measurements(df):\n", - " df_nonfloat = df.set_index([\"eid\", \"visit\"]).select_dtypes(exclude=np.number)\n", - " nonfloat_columns = [c for c in df_nonfloat.columns if c not in [\"measurement\"]]\n", - " df_nonfloat = df_nonfloat.dropna(subset=nonfloat_columns, how=\"all\")[nonfloat_columns]\n", - " df_float = df.set_index([\"eid\", \"visit\"]).select_dtypes(include=np.number).groupby([\"eid\", \"visit\"]).mean(numeric_only=True)\n", - " df_complete = pd.concat([df_nonfloat, df_float], axis=1).reset_index()\n", - " return df_complete\n", - "\n", - "def df_sort_cols(df, cols): return df[start_cols+[c for c in df.columns.to_list() if c not in start_cols]]\n", - "\n", - "start_cols = [\"eid\", \"visit\", \"date_of_attending_assessment_centre_f53\", \"age_at_recruitment_f21022\", \"sex_f31\", \"ethnic_background_f21000\"]\n", - "df_agg_measurement = df_sort_cols(process_multiple_measurements(df_raw), start_cols)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "def get_birthdate(df_complete):\n", - " from dateutil.relativedelta import relativedelta\n", - " df = df_complete[df_complete.visit==\"0\"].copy()#.reset_index()\n", - " df[\"birthdate\"] = [date - relativedelta(years=age) for date, age in zip(df.date_of_attending_assessment_centre_f53, df.age_at_recruitment_f21022)]\n", - " df_birthdate = df.set_index(\"eid\")[[\"birthdate\"]]\n", - " return df_birthdate\n", - "\n", - "def convert_dates_to_timedelta(df_birthdate, df_complete):\n", - " df_complete_bd = pd.concat([df_birthdate, df_complete.set_index([\"eid\"])], axis=1).reset_index()\n", - "\n", - " start_cols = [\"eid\", \"birthdate\", \"sex_f31\", \"ethnic_background_f21000\", \"visit\", \"date_of_attending_assessment_centre_f53\"]\n", - " df_complete_bd = df_complete_bd[start_cols+[c for c in df_complete_bd.columns.to_list() if c not in start_cols]]\n", - "\n", - " df_complete_bd = df_complete_bd.rename(columns={\"visit\":\"t\"}).assign(t= lambda x: (x.date_of_attending_assessment_centre_f53-x.birthdate).dt.days/365.2425)\n", - " df_complete_bd = df_complete_bd.set_index([\"eid\", \"t\"]).drop([\"date_of_attending_assessment_centre_f53\", \"age_at_recruitment_f21022\"], axis=1)\n", - " return df_complete_bd.reset_index()" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "df_birthdate = get_birthdate(df_agg_measurement)\n", - "df_baseline_time = convert_dates_to_timedelta(df_birthdate, df_agg_measurement)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Medications" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:25.842601Z", - "start_time": "2020-11-04T12:34:25.840607Z" - } - }, - "outputs": [], - "source": [ - "# https://list.essentialmeds.org/?showRemoved=0\n", - "# essential medicines WHO?!" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.471831Z", - "start_time": "2020-11-04T12:34:25.844339Z" - } - }, - "outputs": [], - "source": [ - "atc_mapping = pd.read_csv(f\"{path}/mapping/atc/atc_matched_list.csv\")\n", - "athena_concepts = pd.read_csv(f\"{data_path}/athena_vocabulary/CONCEPT.csv\", sep=\"\\t\").assign(vocabulary_id = lambda x: x.vocabulary_id.astype(\"string\"), concept_class_id = lambda x: x.concept_class_id.astype(\"string\"))\n", - "atc_concepts = athena_concepts[athena_concepts.vocabulary_id==\"ATC\"]\n", - "atc2_concepts = atc_concepts[atc_concepts.concept_class_id==\"ATC 2nd\"].sort_values(\"concept_code\")\n", - "medication_list = dict(zip([x.lower().replace(\" \", \"_\") for x in atc2_concepts.concept_name.to_list()], [[x] for x in atc2_concepts.concept_code.to_list()]))\n", - "medication_list_extra = {\n", - " \"antihypertensives\": [\"C02\"],\n", - " \"statins\": [\"C10A\", \"C10B\"],\n", - " \"ass\": [\"B01\"],\n", - " \"atypical_antipsychotics\" : [\"N05\"],\n", - " \"glucocorticoids\" : [\"H02\"] \n", - "}\n", - "medication_list.update(medication_list_extra)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'medication_list.yaml'), 'w') as file: yaml.dump(medication_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def had_medication_before(data, data_field, medications, atc_mapping):\n", - " fields = [\"20003\"]\n", - " raw = get_data_fields(fields, data, data_field)\n", - " temp = pd.melt(raw, id_vars=[\"eid\"], value_vars=raw.drop(\"eid\", axis=1).columns.to_list(), var_name = \"field\", value_name=\"UKBB_code\").drop(\"field\", axis=1).drop_duplicates()\n", - "\n", - " temp.UKBB_code = temp.UKBB_code.astype(str)\n", - " temp = temp[temp.UKBB_code!=\"None\"].copy()\n", - " temp.UKBB_code = temp.UKBB_code.astype(int)\n", - "\n", - " temp_atc = temp.merge(atc_mapping, how=\"left\", on=\"UKBB_code\").sort_values(\"eid\").reset_index(drop=True).dropna(subset=[\"ATC_code\"], axis=0)\n", - " temp_atc.ATC_code = temp_atc.ATC_code.astype(\"string\")\n", - " temp = data[[\"eid\"]].copy()\n", - " for med, med_codes in tqdm(medication_list.items()):\n", - " regex_str = \"^\"+\"|^\".join(med_codes)\n", - " df = temp_atc[temp_atc.ATC_code.str.contains(regex_str, case=False)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(medication=True)\n", - " temp[med] = temp.merge(df, how=\"left\", on=\"eid\").fillna(False).medication\n", - " \n", - " return temp.sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:34:32.481137Z", - "start_time": "2020-11-04T12:34:32.473698Z" - } - }, - "outputs": [], - "source": [ - "def had_diagnosis_before_per_ph(df_before, ph, ph_codes, temp):\n", - " # regex = \"|\".join(ph_codes)\n", - " #df_ph = df_before.set_index(\"meaning\").loc[ph_codes][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " df_ph = df_before[df_before.meaning.isin(ph_codes)][[\"eid\"]]\\\n", - " .drop_duplicates(subset=[\"eid\"])\\\n", - " .assign(phenotype=True) \n", - " #df_ph = df_before[df_before.meaning.str.contains(regex, case=False)][[\"eid\"]]\\\n", - " # .drop_duplicates(subset=[\"eid\"])\\\n", - " # .assign(phenotype=True) \n", - " return temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - "\n", - "def had_diagnosis_before(data, diagnoses_codes, phenotypes, time0=time0_col):\n", - " diagnoses_codes_time = diagnoses_codes.merge(data[[\"eid\", time0]], how=\"left\", on=\"eid\")\n", - " \n", - " temp = data[[\"eid\"]].copy()\n", - " df_before = diagnoses_codes_time[diagnoses_codes_time.date < diagnoses_codes_time[time0]]\n", - " \n", - " df_phs = Parallel(n_jobs=20, require=\"sharedmem\")(delayed(had_diagnosis_before_per_ph)(df_before, ph, phenotypes[ph], temp) for ph in tqdm(list(phenotypes)))\n", - " for ph, df_ph_series in zip(tqdm(list(phenotypes)), df_phs): temp[ph] = df_ph_series#temp.merge(df_ph, how=\"left\", on=\"eid\").fillna(False).phenotype\n", - " \n", - " return temp.sort_values(\"eid\") #reduce(lambda left,right: pd.merge(left,right,on=['eid'], how='left'), df_phs)." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:36:14.425612Z", - "start_time": "2020-11-04T12:34:32.482863Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "13ef8609a6b64b219928981b7752c608", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=98.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - } - ], - "source": [ - "medications = had_medication_before(data, data_field, medication_list, atc_mapping)\n", - "print(len(medications))\n", - "medications.head(100)\n", - "\n", - "medications.to_feather(os.path.join(path, dataset_path, 'temp_medications.feather'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Diagnoses and events" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.667281Z", - "start_time": "2020-11-04T12:36:14.427693Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (5,6,9) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n", - "/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (11) have mixed types.Specify dtype option on import or set low_memory=False.\n", - " interactivity=interactivity, compiler=compiler, result=result)\n" - ] - } - ], - "source": [ - "vocab_dir = f\"{data_path}/athena_vocabulary_covid\"\n", - "vocab = {\n", - " \"concept\": pd.read_csv(f\"{vocab_dir}/CONCEPT.csv\", sep='\\t'),\n", - " \"domain\": pd.read_csv(f\"{vocab_dir}/DOMAIN.csv\", sep='\\t'),\n", - " \"class\": pd.read_csv(f\"{vocab_dir}/CONCEPT_CLASS.csv\", sep='\\t'),\n", - " \"relationship\": pd.read_csv(f\"{vocab_dir}/RELATIONSHIP.csv\", sep='\\t'),\n", - " \"drug_strength\": pd.read_csv(f\"{vocab_dir}/DRUG_STRENGTH.csv\", sep='\\t'),\n", - " \"vocabulary\": pd.read_csv(f\"{vocab_dir}/VOCABULARY.csv\", sep='\\t'),\n", - " \"concept_synonym\": pd.read_csv(f\"{vocab_dir}/CONCEPT_SYNONYM.csv\", sep='\\t'),\n", - " \"concept_ancestor\": pd.read_csv(f\"{vocab_dir}/CONCEPT_ANCESTOR.csv\", sep='\\t'),\n", - " \"concept_relationship\": pd.read_csv(f\"{vocab_dir}/CONCEPT_RELATIONSHIP.csv\", sep='\\t') \n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.772869Z", - "start_time": "2020-11-04T12:37:14.669541Z" - } - }, - "outputs": [], - "source": [ - "coding1836 = pd.read_csv(f\"{path}/mapping/codings/coding1836.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})\n", - "phecodes = pd.read_csv(f\"{path}/mapping/phecodes/phecode_icd10.csv\")\n", - "def phenotype_children(phecodes, phenotype_list):\n", - " l={}\n", - " phecodes = phecodes.dropna(subset=[\"Phenotype\"], axis=0)\n", - " for ph, ph_names in phenotype_list.items():\n", - " regex = \"|\".join(ph_names)\n", - " l[ph] = list(phecodes[phecodes.Phenotype.str.contains(regex, case=False)].ICD10.str.replace(\"\\\\.\", \"\").str.slice(0, 3).unique())\n", - " return l" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.851438Z", - "start_time": "2020-11-04T12:37:14.774599Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = pd.read_csv(f\"{path}/mapping/snomed_core_list.txt\", sep=\"|\")" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.909023Z", - "start_time": "2020-11-04T12:37:14.853286Z" - } - }, - "outputs": [], - "source": [ - "snomed_core = snomed_core.query(\"SNOMED_CONCEPT_STATUS == 'Current'\").copy()\n", - "new = snomed_core.SNOMED_FSN.str.split(\"(\", n=1, expand=True)\n", - "snomed_core[\"snomed_name\"] = new[0].str.rstrip(' ')\n", - "snomed_core[\"snomed_type\"] = new[1].str.rstrip(')')\n", - "snomed_core_data = snomed_core.query(\"(snomed_type=='disorder' | snomed_type=='finding') & USAGE>0.01\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SNOMED_CIDSNOMED_FSNSNOMED_CONCEPT_STATUSUMLS_CUIOCCURRENCEUSAGEFIRST_IN_SUBSETIS_RETIRED_FROM_SUBSETLAST_IN_SUBSETREPLACED_BY_SNOMED_CIDsnomed_namesnomed_type
038341003Hypertensive disorder, systemic arterial (diso...CurrentC00205388.03.2242200907FalseNaNNaNHypertensive disorder, systemic arterialdisorder
155822004Hyperlipidemia (disorder)CurrentC00204738.02.1369200907FalseNaNNaNHyperlipidemiadisorder
235489007Depressive disorder (disorder)CurrentC00115818.01.5077200907FalseNaNNaNDepressive disorderdisorder
3235595009Gastroesophageal reflux disease (disorder)CurrentC00171688.01.3691200907FalseNaNNaNGastroesophageal reflux diseasedisorder
444054006Diabetes mellitus type 2 (disorder)CurrentC00118608.01.0432200907FalseNaNNaNDiabetes mellitus type 2disorder
.......................................
1013125601008Injury of knee (disorder)CurrentC00227444.00.0101200907FalseNaNNaNInjury of kneedisorder
1014127295002Traumatic brain injury (disorder)CurrentC08769263.00.0101200907FalseNaNNaNTraumatic brain injurydisorder
1015373623009Osteoarthritis of glenohumeral joint (disorder)CurrentC04099392.00.0101200907FalseNaNNaNOsteoarthritis of glenohumeral jointdisorder
1016206002004Fetal or neonatal effect of maternal medical p...CurrentC04111751.00.0101200907FalseNaNNaNFetal or neonatal effect of maternal medical p...disorder
1017271857006Loin pain (finding)CurrentC02356321.00.0101200907FalseNaNNaNLoin painfinding
\n", - "

1018 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " SNOMED_CID SNOMED_FSN \\\n", - "0 38341003 Hypertensive disorder, systemic arterial (diso... \n", - "1 55822004 Hyperlipidemia (disorder) \n", - "2 35489007 Depressive disorder (disorder) \n", - "3 235595009 Gastroesophageal reflux disease (disorder) \n", - "4 44054006 Diabetes mellitus type 2 (disorder) \n", - "... ... ... \n", - "1013 125601008 Injury of knee (disorder) \n", - "1014 127295002 Traumatic brain injury (disorder) \n", - "1015 373623009 Osteoarthritis of glenohumeral joint (disorder) \n", - "1016 206002004 Fetal or neonatal effect of maternal medical p... \n", - "1017 271857006 Loin pain (finding) \n", - "\n", - " SNOMED_CONCEPT_STATUS UMLS_CUI OCCURRENCE USAGE FIRST_IN_SUBSET \\\n", - "0 Current C0020538 8.0 3.2242 200907 \n", - "1 Current C0020473 8.0 2.1369 200907 \n", - "2 Current C0011581 8.0 1.5077 200907 \n", - "3 Current C0017168 8.0 1.3691 200907 \n", - "4 Current C0011860 8.0 1.0432 200907 \n", - "... ... ... ... ... ... \n", - "1013 Current C0022744 4.0 0.0101 200907 \n", - "1014 Current C0876926 3.0 0.0101 200907 \n", - "1015 Current C0409939 2.0 0.0101 200907 \n", - "1016 Current C0411175 1.0 0.0101 200907 \n", - "1017 Current C0235632 1.0 0.0101 200907 \n", - "\n", - " IS_RETIRED_FROM_SUBSET LAST_IN_SUBSET REPLACED_BY_SNOMED_CID \\\n", - "0 False NaN NaN \n", - "1 False NaN NaN \n", - "2 False NaN NaN \n", - "3 False NaN NaN \n", - "4 False NaN NaN \n", - "... ... ... ... \n", - "1013 False NaN NaN \n", - "1014 False NaN NaN \n", - "1015 False NaN NaN \n", - "1016 False NaN NaN \n", - "1017 False NaN NaN \n", - "\n", - " snomed_name snomed_type \n", - "0 Hypertensive disorder, systemic arterial disorder \n", - "1 Hyperlipidemia disorder \n", - "2 Depressive disorder disorder \n", - "3 Gastroesophageal reflux disease disorder \n", - "4 Diabetes mellitus type 2 disorder \n", - "... ... ... \n", - "1013 Injury of knee disorder \n", - "1014 Traumatic brain injury disorder \n", - "1015 Osteoarthritis of glenohumeral joint disorder \n", - "1016 Fetal or neonatal effect of maternal medical p... disorder \n", - "1017 Loin pain finding \n", - "\n", - "[1018 rows x 12 columns]" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "snomed_core_data" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:37:14.914973Z", - "start_time": "2020-11-04T12:37:14.910857Z" - } - }, - "outputs": [], - "source": [ - "snomed_names = snomed_core_data.snomed_name.to_list()\n", - "snomed_names = [str(item).lower().strip().replace(\" \", \"_\").replace(\";\", \"\").replace(\",\", \"\") for item in snomed_names]" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.342937Z", - "start_time": "2020-11-04T12:37:14.916906Z" - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "479499b40d1d4a1ebd67751ca0dfc88a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1018.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "phenotype_list_snomed = dict(zip(snomed_names, snomed_core_data.SNOMED_CID.to_list()))\n", - "snomed_ids = vocab[\"concept\"].query(\"vocabulary_id == 'SNOMED'\").concept_id.to_list()\n", - "icd10_ids = vocab[\"concept\"].query(\"vocabulary_id == 'ICD10CM'\").concept_id.to_list()\n", - "\n", - "ph_to_icd10_mapping = {}\n", - "\n", - "def map_snomed_to_icd10(ph, snomed_code, concept, concept_ancestor, concept_relationship):\n", - " concept_ids = concept.query(\"vocabulary_id == 'SNOMED' & concept_code == @snomed_code\").concept_id.to_list()\n", - " snomed_desc_ids = concept_ancestor.query(\"ancestor_concept_id== @concept_ids\").descendant_concept_id.to_list()\n", - " ph_desc = concept.query(\"concept_id == @snomed_desc_ids\").query(\"vocabulary_id == 'SNOMED'\")\n", - " l_ph_desc_ids = ph_desc.concept_id.to_list()\n", - " ph_icd10_ids = list(concept_relationship.query(\"concept_id_1==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").concept_id_2.unique())\n", - " #ph_icd10_ids = list(concept_relationship.set_index(\"concept_id_1\").query(\"index==@l_ph_desc_ids\").query(\"concept_id_2 == @icd10_ids\").query(\"relationship_id == 'Mapped from'\").concept_id_2.unique()\n", - " \n", - " #ph_icd10_ids = list(temp.concept_id_2.unique())\n", - " df = concept.query(\"concept_id == @ph_icd10_ids & vocabulary_id == 'ICD10CM'\")\n", - " icd10_list = list(df[~df.concept_code.str.contains(\"OMOP\", na=False)].concept_code.unique())\n", - " icd10_list = sorted(list(set([e[:3] for e in icd10_list])))\n", - " #print(f\"{ph}: {icd10_list}\")\n", - " return {ph: sorted(list(dict.fromkeys([str(e) for e in icd10_list])))}\n", - "\n", - "from joblib import Parallel, delayed\n", - "concept_ids = vocab[\"concept\"].query(\"(vocabulary_id == 'SNOMED') | (vocabulary_id == 'ICD10CM')\")\n", - "vocab_concept_ids = concept_ids.concept_id.to_list()\n", - "concept_ancestor = vocab[\"concept_ancestor\"][[\"ancestor_concept_id\", \"descendant_concept_id\"]].query(\"ancestor_concept_id == @vocab_concept_ids\")\n", - "concept_rel = vocab[\"concept_relationship\"][[\"concept_id_1\", \"concept_id_2\", \"relationship_id\"]].query(\"(concept_id_1 == @vocab_concept_ids) & (concept_id_2 == @vocab_concept_ids) & (relationship_id == 'Mapped from')\")\n", - "icd10_codes = Parallel(n_jobs=10, require=\"sharedmem\")(delayed(map_snomed_to_icd10)(ph, snomed_code, \n", - " concept_ids, concept_ancestor, concept_rel) for ph, snomed_code in tqdm(phenotype_list_snomed.items()))" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.348009Z", - "start_time": "2020-11-04T12:39:55.344704Z" - } - }, - "outputs": [], - "source": [ - "l10_snomed = {}\n", - "for ph in icd10_codes: l10_snomed.update(ph)" - ] - }, - { - "cell_type": "raw", - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.468545Z", - "start_time": "2020-11-04T12:39:55.349545Z" - } - }, - "source": [ - "phenotype_list_basic = {\n", - " \"coronary_heart_disease\": [\"Ischemic heart disease\"],\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"diabetes1\" : [\"Type 1 diabetes\"],\n", - " \"diabetes2\" : [\"Diabetes mellitus\", \"Type 2 diabetes\"],\n", - " \"chronic_kidney_disease\": [\"Chronic kidney disease\", \"chronic renal failure\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"migraine\": [\"Migraine\"],\n", - " \"rheumatoid_arthritis\": [\"Rheumatoid arthritis\"],\n", - " \"systemic_lupus_erythematosus\": [\"Systemic lupus erythematosus\"],\n", - " \"severe_mental_illness\": [\"Schizophrenia\", \"bipolar\", \"Major depressive disorder\"],\n", - " \"erectile_dysfunction\" : [\"Erectile dysfunction\"], \n", - "}\n", - "\n", - "l10_basic = phenotype_children(phecodes, phenotype_list_basic)\n", - "l10_all = l10_basic\n", - "for key, value in l10_snomed.items(): \n", - " if key not in l10_basic: l10_all[key] = value" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.620916Z", - "start_time": "2020-11-04T12:39:55.475137Z" - } - }, - "outputs": [], - "source": [ - "l10 = {k: v for k, v in l10_snomed.items() if len(v)!=0}\n", - "\n", - "#phenotype_list = {k: v for k, v in phenotype_list.items() if k in list(l10.keys())}\n", - "\n", - "with open(os.path.join(path, dataset_path, 'phenotype_list.yaml'), 'w') as file: yaml.dump(l10, file, default_flow_style=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Self Reported" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.288198Z", - "start_time": "2020-11-04T12:43:13.264683Z" - } - }, - "outputs": [], - "source": [ - "coding609 = pd.read_csv(f\"{path}/mapping/codings/coding609.tsv\", sep=\"\\t\").rename(columns={\"coding\":\"code\"})" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:43:13.304423Z", - "start_time": "2020-11-04T12:43:13.289982Z" - } - }, - "outputs": [], - "source": [ - "from datetime import datetime, timedelta\n", - "\n", - "def datetime_from_dec_year(dec_year):\n", - " start = dec_year\n", - " year = int(start)\n", - " rem = start - year\n", - "\n", - " base = datetime(year, 1, 1)\n", - " result = base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)\n", - " #result.strftime(\"%Y-%m-%d\")\n", - " return result.date()\n", - "\n", - "def extract_map_self_reported(data, data_field, code_map):\n", - " pbar = tqdm(total=16)\n", - " ### codes\n", - " fields = [\"20002\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col = \"noncancer_illness_code_selfreported_f20002\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " codes = temp.rename(columns={col:\"code\"})\\\n", - " .assign(code=lambda x: x.code.astype(str))\\\n", - " .replace(\"None\", np.nan) \\\n", - " .dropna(subset=[\"code\"], axis=0)\\\n", - " .assign(code=lambda x: x.code.astype(int)) \\\n", - " .merge(code_map, how=\"left\",on=\"code\") \\\n", - " .dropna(subset=[\"meaning\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - " \n", - " ### dates\n", - " fields = [\"20008\"]; pbar.update(1)\n", - " raw = get_data_fields_all(fields, data, data_field); pbar.update(1)\n", - " col=\"interpolated_year_when_noncancer_illness_first_diagnosed_f20008\"; pbar.update(1)\n", - " temp = pd.wide_to_long(raw, stubnames=[col], i=\"eid\", j=\"instance_index\", sep=\"_\", suffix=\"\\w+\").reset_index(); pbar.update(1)\n", - " dates = temp.rename(columns={col:\"date\"})\\\n", - " .dropna(subset=[\"date\"], axis=0)\\\n", - " .sort_values([\"eid\", \"instance_index\"]) \\\n", - " .reset_index(drop=True); pbar.update(1)\n", - "\n", - " dates = dates[dates.date!=-1]; pbar.update(1)\n", - " dates = dates[dates.date!=-3]; pbar.update(1)\n", - " dates.date = dates.date.apply(datetime_from_dec_year); pbar.update(1)\n", - " \n", - " test = codes.merge(dates, how=\"left\", on=[\"eid\", \"instance_index\"]).assign(origin=\"self_reported\").copy(); pbar.update(1)\n", - " \n", - " test[\"instance_index\"] = test[\"instance_index\"].astype(\"string\"); pbar.update(1)\n", - " test[['instance','n']] = test.instance_index.str.split(\"_\",expand=True); pbar.update(1)\n", - " pbar.close()\n", - " \n", - " return test[[\"eid\", \"origin\", 'instance','n', \"code\", \"meaning\", \"date\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:00.098893Z", - "start_time": "2020-11-04T12:43:13.432479Z" - }, - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "aaecac4f22c148f09d00f7036aef37ff", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=16.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "ename": "ValueError", - "evalue": "invalid literal for int() with base 10: 'nan'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcodes_self_reported\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mextract_map_self_reported\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata_field\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoding609\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mextract_map_self_reported\u001b[0;34m(data, data_field, code_map)\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mreplace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"None\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode_map\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"left\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"meaning\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36massign\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 3693\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3694\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3695\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3696\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3697\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/common.py\u001b[0m in \u001b[0;36mapply_if_callable\u001b[0;34m(maybe_callable, obj, **kwargs)\u001b[0m\n\u001b[1;32m 339\u001b[0m \"\"\"\n\u001b[1;32m 340\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmaybe_callable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 341\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mmaybe_callable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 342\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mmaybe_callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mreplace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"None\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode_map\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"left\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"code\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"meaning\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 5544\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5545\u001b[0m \u001b[0;31m# else, only a single dtype is given\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5546\u001b[0;31m \u001b[0mnew_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5547\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5548\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 594\u001b[0m ) -> \"BlockManager\":\n\u001b[0;32m--> 595\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"astype\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 596\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 597\u001b[0m def convert(\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/managers.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, f, align_keys, **kwargs)\u001b[0m\n\u001b[1;32m 404\u001b[0m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 405\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 406\u001b[0;31m \u001b[0mapplied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 407\u001b[0m \u001b[0mresult_blocks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_extend_blocks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult_blocks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/internals/blocks.py\u001b[0m in \u001b[0;36mastype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[0mvals1d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 595\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mastype_nansafe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvals1d\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 596\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 597\u001b[0m \u001b[0;31m# e.g. astype_nansafe can fail on object-dtype of strings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/dtypes/cast.py\u001b[0m in \u001b[0;36mastype_nansafe\u001b[0;34m(arr, dtype, copy, skipna)\u001b[0m\n\u001b[1;32m 970\u001b[0m \u001b[0;31m# work around NumPy brokenness, #1987\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 971\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0missubdtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minteger\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 972\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype_intsafe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 973\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 974\u001b[0m \u001b[0;31m# if we have a datetime/timedelta array of objects\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.astype_intsafe\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'nan'" - ] - } - ], - "source": [ - "codes_self_reported = extract_map_self_reported(data, data_field, coding609)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Primary Care" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "# 2. Primary Care\n", - "fields = c(\n", - " 42040 # GP clinical event records\n", - ")\n", - "# extract covariates at baseline (Instance 0)\n", - "def = data_field %>% filter((field.showcase %in% fields),ignore.case = TRUE)\n", - "diagnoses_primary_care = data[, append(\"eid\", def$col.name)]\n", - "head(diagnoses_primary_care)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Hospital episode statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:08.959617Z", - "start_time": "2020-11-04T12:46:00.100618Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidorigininstancencodemeaningdate
01000018hes_icd100.01S0240S022005-06-02
11000018hes_icd100.02W188W182005-06-02
21000018hes_icd100.03K37K371998-05-11
31000018hes_icd100.04K37K371998-05-16
41000018hes_icd100.05K37K371998-06-01
\n", - "
" - ], - "text/plain": [ - " eid origin instance n code meaning date\n", - "0 1000018 hes_icd10 0.0 1 S0240 S02 2005-06-02\n", - "1 1000018 hes_icd10 0.0 2 W188 W18 2005-06-02\n", - "2 1000018 hes_icd10 0.0 3 K37 K37 1998-05-11\n", - "3 1000018 hes_icd10 0.0 4 K37 K37 1998-05-16\n", - "4 1000018 hes_icd10 0.0 5 K37 K37 1998-06-01" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "codes_hospital_records = pd.read_feather(f\"{data_path}/1_decoded/codes_hospital_records.feather\").drop(\"level\", axis=1)\n", - "# self reported bypass\n", - "diagnoses_codes = codes_hospital_records \n", - "diagnoses_codes.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Combine Basics and Diagnosis" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:46:25.115010Z", - "start_time": "2020-11-04T12:46:08.961388Z" - } - }, - "outputs": [], - "source": [ - "#diagnoses_codes = codes_self_reported.append(codes_hospital_records).sort_values([\"eid\", \"instance\", \"n\"]).dropna(subset=[\"date\"], axis=0)\n", - "#diagnoses_codes.head()\n", - "#diagnoses_codes.reset_index(drop=True).info()" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d42e575a8af7490da42d1af0164795c9", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=1168.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "l_test = l10\n", - "icd_list = [item for sublist in l_test.values() for item in sublist]\n", - "icd_list = sorted(list(dict.fromkeys(icd_list)))\n", - "\n", - "icd_dict = {}\n", - "for code in tqdm(icd_list):\n", - " diag_list = []\n", - " for key in l_test:\n", - " if code in l_test[key]: diag_list.append(key)\n", - " icd_dict[code] = diag_list" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "time0=time0_col\n", - "diagnoses_codes_eid = diagnoses_codes[diagnoses_codes.eid.isin(df_birthdate.reset_index().eid.to_list())].reset_index(drop=True)\n", - "diagnoses_codes_eid_icd = diagnoses_codes_eid[diagnoses_codes_eid.meaning.isin(icd_dict)]\n", - "diagnoses_codes_time = diagnoses_codes_eid_icd.merge(df_birthdate.reset_index()[[\"eid\", time0]], how=\"left\", on=\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "dct_simple = diagnoses_codes_time.assign(t= lambda x: (x.date-x.birthdate).dt.days/365.2425)[[\"eid\", \"t\", \"meaning\"]]\n", - "dct_simple.t= dct_simple.t.round(1)\n", - "dct_simple[\"diagnosis\"] = [icd_dict[code] for code in dct_simple.meaning]" - ] - }, - { - "cell_type": "code", - "execution_count": 331, - "metadata": {}, - "outputs": [], - "source": [ - "#for col in list(l10.keys()): dct_simple[col]=False" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "dct_simple_eids = df_birthdate.reset_index()[[\"eid\"]].merge(dct_simple, how=\"left\", on=\"eid\").drop([\"meaning\"], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtdiagnosis
0100001844.6[injury_of_head, fracture_of_bone]
1100001837.5[appendicitis]
2100001837.5[appendicitis]
3100001837.6[appendicitis]
4100001856.0[vaginitis, postmenopausal_bleeding, bleeding_...
............
9517540602519875.9[anemia]
9517541602519875.9[liver_function_tests_abnormal]
9517542602519875.9[tobacco_dependence_syndrome, tobacco_user, sm...
9517543602519875.9[hypertensive_disorder_systemic_arterial, esse...
9517544602519875.9[hyperlipidemia, hypercholesterolemia, arthrit...
\n", - "

9517545 rows × 3 columns

\n", - "
" - ], - "text/plain": [ - " eid t diagnosis\n", - "0 1000018 44.6 [injury_of_head, fracture_of_bone]\n", - "1 1000018 37.5 [appendicitis]\n", - "2 1000018 37.5 [appendicitis]\n", - "3 1000018 37.6 [appendicitis]\n", - "4 1000018 56.0 [vaginitis, postmenopausal_bleeding, bleeding_...\n", - "... ... ... ...\n", - "9517540 6025198 75.9 [anemia]\n", - "9517541 6025198 75.9 [liver_function_tests_abnormal]\n", - "9517542 6025198 75.9 [tobacco_dependence_syndrome, tobacco_user, sm...\n", - "9517543 6025198 75.9 [hypertensive_disorder_systemic_arterial, esse...\n", - "9517544 6025198 75.9 [hyperlipidemia, hypercholesterolemia, arthrit...\n", - "\n", - "[9517545 rows x 3 columns]" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct_simple_eids" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "dct = dct_simple_eids.groupby([\"eid\", \"t\"]).agg({'diagnosis': \"sum\"})" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
diagnosis
eidt
100001837.5[appendicitis, appendicitis]
37.6[appendicitis]
44.6[injury_of_head, fracture_of_bone]
56.0[vaginitis, postmenopausal_bleeding, bleeding_...
58.3[melanocytic_nevus, hypertensive_disorder_syst...
.........
602517366.5[neutropenic_disorder, leukopenia]
602518244.2[urinary_tract_infectious_disease, urinary_inc...
50.3[headache, pain]
602519875.8[sepsis, methicillin_resistant_staphylococcus_...
75.9[cardiac_arrest, chronic_obstructive_lung_dise...
\n", - "

2413496 rows × 1 columns

\n", - "
" - ], - "text/plain": [ - " diagnosis\n", - "eid t \n", - "1000018 37.5 [appendicitis, appendicitis]\n", - " 37.6 [appendicitis]\n", - " 44.6 [injury_of_head, fracture_of_bone]\n", - " 56.0 [vaginitis, postmenopausal_bleeding, bleeding_...\n", - " 58.3 [melanocytic_nevus, hypertensive_disorder_syst...\n", - "... ...\n", - "6025173 66.5 [neutropenic_disorder, leukopenia]\n", - "6025182 44.2 [urinary_tract_infectious_disease, urinary_inc...\n", - " 50.3 [headache, pain]\n", - "6025198 75.8 [sepsis, methicillin_resistant_staphylococcus_...\n", - " 75.9 [cardiac_arrest, chronic_obstructive_lung_dise...\n", - "\n", - "[2413496 rows x 1 columns]" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dct" - ] - }, - { - "cell_type": "code", - "execution_count": 336, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "aa7a9a7015a64772b9997990b5232e50", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2413496.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mdss_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdct\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"diagnosis\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdss_list\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;32mTrue\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mFalse\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ml10\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mdss_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdct\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"diagnosis\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdss_list\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;32mTrue\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0md_list\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mFalse\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ml10\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "dss_list = []\n", - "keys = list(l10.keys())\n", - "for d_list in tqdm(dct[\"diagnosis\"].values):\n", - " dss_list.append([True if e in d_list else False for e in list(l10.keys())])" - ] - }, - { - "cell_type": "code", - "execution_count": 348, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext Cython" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_list(d_list, keys): \n", - " return [True if e in d_list else False for e in list(keys)]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_diagnoses_wide(diagnoses_array, keys): \n", - " dss_list = []\n", - " for d_list in diagnoses_array:\n", - " dss_list.append([True if e in d_list else False for e in keys]) \n", - " return dss_list" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_array = dct[\"diagnosis\"].values\n", - "keys = list(l10.keys())\n", - "dss_list = get_diagnoses_wide(diagnoses_array, keys)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_array" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2+2" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "50da22a83855421e860f0e19dee0b8da", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2413496.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "def get_list(d_list, keys): return [True if e in d_list else False for e in keys]\n", - "\n", - "keys = list(l10.keys())\n", - "dss_list = [get_list(d_list, keys) for d_list in tqdm(dct[\"diagnosis\"].values)]" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses_df = pd.DataFrame(data=np.array(dss_list), columns=list(l10.keys()))" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "diagnoses = pd.concat([dct.reset_index(), diagnoses_df], axis=1).set_index([\"eid\", \"t\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
diagnosishypertensive_disorder_systemic_arterialhyperlipidemiadepressive_disordergastroesophageal_reflux_diseasediabetes_mellitus_type_2essential_hypertensionobesitydiabetes_mellitusasthma...nonvenomous_insect_bitespondylolisthesismalignant_tumor_of_esophagusaphthous_ulcer_of_mouthventricular_septal_defectoropharyngeal_dysphagiainjury_of_kneetraumatic_brain_injuryosteoarthritis_of_glenohumeral_jointfetal_or_neonatal_effect_of_maternal_medical_problem
eidt
100001837.5[appendicitis, appendicitis]FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
37.6[appendicitis]FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
44.6[injury_of_head, fracture_of_bone]FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
56.0[vaginitis, postmenopausal_bleeding, bleeding_...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
58.3[melanocytic_nevus, hypertensive_disorder_syst...TrueFalseFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
.....................................................................
602517366.5[neutropenic_disorder, leukopenia]FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
602518244.2[urinary_tract_infectious_disease, urinary_inc...FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
50.3[headache, pain]FalseFalseFalseFalseFalseFalseFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
602519875.8[sepsis, methicillin_resistant_staphylococcus_...TrueTrueFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
75.9[cardiac_arrest, chronic_obstructive_lung_dise...TrueTrueFalseFalseFalseTrueFalseFalseFalse...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

2413496 rows × 798 columns

\n", - "
" - ], - "text/plain": [ - " diagnosis \\\n", - "eid t \n", - "1000018 37.5 [appendicitis, appendicitis] \n", - " 37.6 [appendicitis] \n", - " 44.6 [injury_of_head, fracture_of_bone] \n", - " 56.0 [vaginitis, postmenopausal_bleeding, bleeding_... \n", - " 58.3 [melanocytic_nevus, hypertensive_disorder_syst... \n", - "... ... \n", - "6025173 66.5 [neutropenic_disorder, leukopenia] \n", - "6025182 44.2 [urinary_tract_infectious_disease, urinary_inc... \n", - " 50.3 [headache, pain] \n", - "6025198 75.8 [sepsis, methicillin_resistant_staphylococcus_... \n", - " 75.9 [cardiac_arrest, chronic_obstructive_lung_dise... \n", - "\n", - " hypertensive_disorder_systemic_arterial hyperlipidemia \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 56.0 True False \n", - " 58.3 True False \n", - "... ... ... \n", - "6025173 66.5 False False \n", - "6025182 44.2 False False \n", - " 50.3 False False \n", - "6025198 75.8 True True \n", - " 75.9 True True \n", - "\n", - " depressive_disorder gastroesophageal_reflux_disease \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 56.0 False False \n", - " 58.3 False False \n", - "... ... ... \n", - "6025173 66.5 False False \n", - "6025182 44.2 False False \n", - " 50.3 False False \n", - "6025198 75.8 False False \n", - " 75.9 False False \n", - "\n", - " diabetes_mellitus_type_2 essential_hypertension obesity \\\n", - "eid t \n", - "1000018 37.5 False False False \n", - " 37.6 False False False \n", - " 44.6 False False False \n", - " 56.0 False True False \n", - " 58.3 False True False \n", - "... ... ... ... \n", - "6025173 66.5 False False False \n", - "6025182 44.2 False False False \n", - " 50.3 False False False \n", - "6025198 75.8 False True False \n", - " 75.9 False True False \n", - "\n", - " diabetes_mellitus asthma ... nonvenomous_insect_bite \\\n", - "eid t ... \n", - "1000018 37.5 False False ... False \n", - " 37.6 False False ... False \n", - " 44.6 False False ... False \n", - " 56.0 False False ... False \n", - " 58.3 False False ... False \n", - "... ... ... ... ... \n", - "6025173 66.5 False False ... False \n", - "6025182 44.2 False False ... False \n", - " 50.3 False False ... False \n", - "6025198 75.8 False False ... False \n", - " 75.9 False False ... False \n", - "\n", - " spondylolisthesis malignant_tumor_of_esophagus \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 56.0 False False \n", - " 58.3 False False \n", - "... ... ... \n", - "6025173 66.5 False False \n", - "6025182 44.2 False False \n", - " 50.3 False False \n", - "6025198 75.8 False False \n", - " 75.9 False False \n", - "\n", - " aphthous_ulcer_of_mouth ventricular_septal_defect \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 56.0 False False \n", - " 58.3 False False \n", - "... ... ... \n", - "6025173 66.5 False False \n", - "6025182 44.2 False False \n", - " 50.3 False False \n", - "6025198 75.8 False False \n", - " 75.9 False False \n", - "\n", - " oropharyngeal_dysphagia injury_of_knee traumatic_brain_injury \\\n", - "eid t \n", - "1000018 37.5 False False False \n", - " 37.6 False False False \n", - " 44.6 False False False \n", - " 56.0 False False False \n", - " 58.3 False False False \n", - "... ... ... ... \n", - "6025173 66.5 False False False \n", - "6025182 44.2 False False False \n", - " 50.3 False False False \n", - "6025198 75.8 False False False \n", - " 75.9 False False False \n", - "\n", - " osteoarthritis_of_glenohumeral_joint \\\n", - "eid t \n", - "1000018 37.5 False \n", - " 37.6 False \n", - " 44.6 False \n", - " 56.0 False \n", - " 58.3 False \n", - "... ... \n", - "6025173 66.5 False \n", - "6025182 44.2 False \n", - " 50.3 False \n", - "6025198 75.8 False \n", - " 75.9 False \n", - "\n", - " fetal_or_neonatal_effect_of_maternal_medical_problem \n", - "eid t \n", - "1000018 37.5 False \n", - " 37.6 False \n", - " 44.6 False \n", - " 56.0 False \n", - " 58.3 False \n", - "... ... \n", - "6025173 66.5 False \n", - "6025182 44.2 False \n", - " 50.3 False \n", - "6025198 75.8 False \n", - " 75.9 False \n", - "\n", - "[2413496 rows x 798 columns]" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "diagnoses" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_baseline_time.t= df_baseline_time.t.round(1)\n", - "df_baseline_time = df_baseline_time.set_index([\"eid\", \"t\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 102, - "metadata": {}, - "outputs": [], - "source": [ - "na_cols = df_baseline_time.columns.to_list()[1:]\n", - "df_baseline_time = df_baseline_time.dropna(how=\"all\", subset=na_cols, axis=0)#.reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 103, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
birthdatesex_f31ethnic_background_f21000overall_health_rating_f2178smoking_status_f20116alcohol_intake_frequency_f1558townsend_deprivation_index_at_recruitment_f189body_mass_index_bmi_f21001weight_f21002systolic_blood_pressure_automated_reading_f4080...phosphate_f30810rheumatoid_factor_f30820shbg_f30830testosterone_f30850total_bilirubin_f30840total_protein_f30860triglycerides_f30870urate_f30880urea_f30670vitamin_d_f30890
eidt
100001849.01960-11-12FemaleBritishFairCurrentOnce or twice a week-1.85293026.555763.8159.5...1.422NaN70.111.5607.4171.971.247221.35.4870.7
100002059.01949-02-19MaleBritishGoodCurrentOnce or twice a week0.20424822.746570.7133.0...1.264NaN55.3112.2378.0778.451.906374.75.2835.9
100003759.01949-11-11FemaleBritishGoodPreviousOnce or twice a week-3.49886032.421178.9118.5...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
100004363.01946-06-03MaleBritishFairPreviousThree or four times a week-5.35115029.567995.8141.5...0.928NaN31.6311.3988.6569.705.184322.86.6763.6
72.01946-06-03NaNNaNFairPreviousThree or four times a weekNaN28.434990.6NaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
.....................................................................
602515055.31964-06-30NaNNaNGoodNeverThree or four times a weekNaN33.507295.7131.0...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
602516545.01963-09-02FemaleBritishGoodNeverThree or four times a week-2.10704024.227562.8152.5...0.996NaN73.380.65211.1974.201.442220.24.0172.7
602517357.01951-09-17MaleBritishGoodNeverNever-1.82722025.950481.3131.0...1.119NaN50.1313.5176.3172.031.136255.55.2541.6
602518256.01954-07-01MaleBritishExcellentPreviousDaily or almost daily-0.01076429.1425104.1127.5...0.986NaN24.4810.9519.9570.655.756353.64.4245.9
602519867.01943-01-26MaleBritishGoodCurrentDaily or almost daily-1.93065029.5988102.4156.5...1.163NaN45.0915.03011.8570.622.327454.85.1420.2
\n", - "

574976 rows × 85 columns

\n", - "
" - ], - "text/plain": [ - " birthdate sex_f31 ethnic_background_f21000 \\\n", - "eid t \n", - "1000018 49.0 1960-11-12 Female British \n", - "1000020 59.0 1949-02-19 Male British \n", - "1000037 59.0 1949-11-11 Female British \n", - "1000043 63.0 1946-06-03 Male British \n", - " 72.0 1946-06-03 NaN NaN \n", - "... ... ... ... \n", - "6025150 55.3 1964-06-30 NaN NaN \n", - "6025165 45.0 1963-09-02 Female British \n", - "6025173 57.0 1951-09-17 Male British \n", - "6025182 56.0 1954-07-01 Male British \n", - "6025198 67.0 1943-01-26 Male British \n", - "\n", - " overall_health_rating_f2178 smoking_status_f20116 \\\n", - "eid t \n", - "1000018 49.0 Fair Current \n", - "1000020 59.0 Good Current \n", - "1000037 59.0 Good Previous \n", - "1000043 63.0 Fair Previous \n", - " 72.0 Fair Previous \n", - "... ... ... \n", - "6025150 55.3 Good Never \n", - "6025165 45.0 Good Never \n", - "6025173 57.0 Good Never \n", - "6025182 56.0 Excellent Previous \n", - "6025198 67.0 Good Current \n", - "\n", - " alcohol_intake_frequency_f1558 \\\n", - "eid t \n", - "1000018 49.0 Once or twice a week \n", - "1000020 59.0 Once or twice a week \n", - "1000037 59.0 Once or twice a week \n", - "1000043 63.0 Three or four times a week \n", - " 72.0 Three or four times a week \n", - "... ... \n", - "6025150 55.3 Three or four times a week \n", - "6025165 45.0 Three or four times a week \n", - "6025173 57.0 Never \n", - "6025182 56.0 Daily or almost daily \n", - "6025198 67.0 Daily or almost daily \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189 \\\n", - "eid t \n", - "1000018 49.0 -1.852930 \n", - "1000020 59.0 0.204248 \n", - "1000037 59.0 -3.498860 \n", - "1000043 63.0 -5.351150 \n", - " 72.0 NaN \n", - "... ... \n", - "6025150 55.3 NaN \n", - "6025165 45.0 -2.107040 \n", - "6025173 57.0 -1.827220 \n", - "6025182 56.0 -0.010764 \n", - "6025198 67.0 -1.930650 \n", - "\n", - " body_mass_index_bmi_f21001 weight_f21002 \\\n", - "eid t \n", - "1000018 49.0 26.5557 63.8 \n", - "1000020 59.0 22.7465 70.7 \n", - "1000037 59.0 32.4211 78.9 \n", - "1000043 63.0 29.5679 95.8 \n", - " 72.0 28.4349 90.6 \n", - "... ... ... \n", - "6025150 55.3 33.5072 95.7 \n", - "6025165 45.0 24.2275 62.8 \n", - "6025173 57.0 25.9504 81.3 \n", - "6025182 56.0 29.1425 104.1 \n", - "6025198 67.0 29.5988 102.4 \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 ... \\\n", - "eid t ... \n", - "1000018 49.0 159.5 ... \n", - "1000020 59.0 133.0 ... \n", - "1000037 59.0 118.5 ... \n", - "1000043 63.0 141.5 ... \n", - " 72.0 NaN ... \n", - "... ... ... \n", - "6025150 55.3 131.0 ... \n", - "6025165 45.0 152.5 ... \n", - "6025173 57.0 131.0 ... \n", - "6025182 56.0 127.5 ... \n", - "6025198 67.0 156.5 ... \n", - "\n", - " phosphate_f30810 rheumatoid_factor_f30820 shbg_f30830 \\\n", - "eid t \n", - "1000018 49.0 1.422 NaN 70.11 \n", - "1000020 59.0 1.264 NaN 55.31 \n", - "1000037 59.0 NaN NaN NaN \n", - "1000043 63.0 0.928 NaN 31.63 \n", - " 72.0 NaN NaN NaN \n", - "... ... ... ... \n", - "6025150 55.3 NaN NaN NaN \n", - "6025165 45.0 0.996 NaN 73.38 \n", - "6025173 57.0 1.119 NaN 50.13 \n", - "6025182 56.0 0.986 NaN 24.48 \n", - "6025198 67.0 1.163 NaN 45.09 \n", - "\n", - " testosterone_f30850 total_bilirubin_f30840 \\\n", - "eid t \n", - "1000018 49.0 1.560 7.41 \n", - "1000020 59.0 12.237 8.07 \n", - "1000037 59.0 NaN NaN \n", - "1000043 63.0 11.398 8.65 \n", - " 72.0 NaN NaN \n", - "... ... ... \n", - "6025150 55.3 NaN NaN \n", - "6025165 45.0 0.652 11.19 \n", - "6025173 57.0 13.517 6.31 \n", - "6025182 56.0 10.951 9.95 \n", - "6025198 67.0 15.030 11.85 \n", - "\n", - " total_protein_f30860 triglycerides_f30870 urate_f30880 \\\n", - "eid t \n", - "1000018 49.0 71.97 1.247 221.3 \n", - "1000020 59.0 78.45 1.906 374.7 \n", - "1000037 59.0 NaN NaN NaN \n", - "1000043 63.0 69.70 5.184 322.8 \n", - " 72.0 NaN NaN NaN \n", - "... ... ... ... \n", - "6025150 55.3 NaN NaN NaN \n", - "6025165 45.0 74.20 1.442 220.2 \n", - "6025173 57.0 72.03 1.136 255.5 \n", - "6025182 56.0 70.65 5.756 353.6 \n", - "6025198 67.0 70.62 2.327 454.8 \n", - "\n", - " urea_f30670 vitamin_d_f30890 \n", - "eid t \n", - "1000018 49.0 5.48 70.7 \n", - "1000020 59.0 5.28 35.9 \n", - "1000037 59.0 NaN NaN \n", - "1000043 63.0 6.67 63.6 \n", - " 72.0 NaN NaN \n", - "... ... ... \n", - "6025150 55.3 NaN NaN \n", - "6025165 45.0 4.01 72.7 \n", - "6025173 57.0 5.25 41.6 \n", - "6025182 56.0 4.42 45.9 \n", - "6025198 67.0 5.14 20.2 \n", - "\n", - "[574976 rows x 85 columns]" - ] - }, - "execution_count": 103, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_baseline_time" - ] - }, - { - "cell_type": "code", - "execution_count": 104, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 3min 26s, sys: 1min 11s, total: 4min 37s\n", - "Wall time: 4min 36s\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
birthdatesex_f31ethnic_background_f21000overall_health_rating_f2178smoking_status_f20116alcohol_intake_frequency_f1558townsend_deprivation_index_at_recruitment_f189body_mass_index_bmi_f21001weight_f21002systolic_blood_pressure_automated_reading_f4080...nonvenomous_insect_bitespondylolisthesismalignant_tumor_of_esophagusaphthous_ulcer_of_mouthventricular_septal_defectoropharyngeal_dysphagiainjury_of_kneetraumatic_brain_injuryosteoarthritis_of_glenohumeral_jointfetal_or_neonatal_effect_of_maternal_medical_problem
eidt
100001837.5NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
37.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
44.6NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
49.01960-11-12FemaleBritishFairCurrentOnce or twice a week-1.85293026.555763.8159.5...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
56.0NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
.....................................................................
602518250.3NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
56.01954-07-01MaleBritishExcellentPreviousDaily or almost daily-0.01076429.1425104.1127.5...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
602519867.01943-01-26MaleBritishGoodCurrentDaily or almost daily-1.93065029.5988102.4156.5...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
75.8NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
75.9NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

2979355 rows × 883 columns

\n", - "
" - ], - "text/plain": [ - " birthdate sex_f31 ethnic_background_f21000 \\\n", - "eid t \n", - "1000018 37.5 NaN NaN NaN \n", - " 37.6 NaN NaN NaN \n", - " 44.6 NaN NaN NaN \n", - " 49.0 1960-11-12 Female British \n", - " 56.0 NaN NaN NaN \n", - "... ... ... ... \n", - "6025182 50.3 NaN NaN NaN \n", - " 56.0 1954-07-01 Male British \n", - "6025198 67.0 1943-01-26 Male British \n", - " 75.8 NaN NaN NaN \n", - " 75.9 NaN NaN NaN \n", - "\n", - " overall_health_rating_f2178 smoking_status_f20116 \\\n", - "eid t \n", - "1000018 37.5 NaN NaN \n", - " 37.6 NaN NaN \n", - " 44.6 NaN NaN \n", - " 49.0 Fair Current \n", - " 56.0 NaN NaN \n", - "... ... ... \n", - "6025182 50.3 NaN NaN \n", - " 56.0 Excellent Previous \n", - "6025198 67.0 Good Current \n", - " 75.8 NaN NaN \n", - " 75.9 NaN NaN \n", - "\n", - " alcohol_intake_frequency_f1558 \\\n", - "eid t \n", - "1000018 37.5 NaN \n", - " 37.6 NaN \n", - " 44.6 NaN \n", - " 49.0 Once or twice a week \n", - " 56.0 NaN \n", - "... ... \n", - "6025182 50.3 NaN \n", - " 56.0 Daily or almost daily \n", - "6025198 67.0 Daily or almost daily \n", - " 75.8 NaN \n", - " 75.9 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189 \\\n", - "eid t \n", - "1000018 37.5 NaN \n", - " 37.6 NaN \n", - " 44.6 NaN \n", - " 49.0 -1.852930 \n", - " 56.0 NaN \n", - "... ... \n", - "6025182 50.3 NaN \n", - " 56.0 -0.010764 \n", - "6025198 67.0 -1.930650 \n", - " 75.8 NaN \n", - " 75.9 NaN \n", - "\n", - " body_mass_index_bmi_f21001 weight_f21002 \\\n", - "eid t \n", - "1000018 37.5 NaN NaN \n", - " 37.6 NaN NaN \n", - " 44.6 NaN NaN \n", - " 49.0 26.5557 63.8 \n", - " 56.0 NaN NaN \n", - "... ... ... \n", - "6025182 50.3 NaN NaN \n", - " 56.0 29.1425 104.1 \n", - "6025198 67.0 29.5988 102.4 \n", - " 75.8 NaN NaN \n", - " 75.9 NaN NaN \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 ... \\\n", - "eid t ... \n", - "1000018 37.5 NaN ... \n", - " 37.6 NaN ... \n", - " 44.6 NaN ... \n", - " 49.0 159.5 ... \n", - " 56.0 NaN ... \n", - "... ... ... \n", - "6025182 50.3 NaN ... \n", - " 56.0 127.5 ... \n", - "6025198 67.0 156.5 ... \n", - " 75.8 NaN ... \n", - " 75.9 NaN ... \n", - "\n", - " nonvenomous_insect_bite spondylolisthesis \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 NaN NaN \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 NaN NaN \n", - "6025198 67.0 NaN NaN \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " malignant_tumor_of_esophagus aphthous_ulcer_of_mouth \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 NaN NaN \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 NaN NaN \n", - "6025198 67.0 NaN NaN \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " ventricular_septal_defect oropharyngeal_dysphagia \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 NaN NaN \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 NaN NaN \n", - "6025198 67.0 NaN NaN \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " injury_of_knee traumatic_brain_injury \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 NaN NaN \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 NaN NaN \n", - "6025198 67.0 NaN NaN \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " osteoarthritis_of_glenohumeral_joint \\\n", - "eid t \n", - "1000018 37.5 False \n", - " 37.6 False \n", - " 44.6 False \n", - " 49.0 NaN \n", - " 56.0 False \n", - "... ... \n", - "6025182 50.3 False \n", - " 56.0 NaN \n", - "6025198 67.0 NaN \n", - " 75.8 False \n", - " 75.9 False \n", - "\n", - " fetal_or_neonatal_effect_of_maternal_medical_problem \n", - "eid t \n", - "1000018 37.5 False \n", - " 37.6 False \n", - " 44.6 False \n", - " 49.0 NaN \n", - " 56.0 False \n", - "... ... \n", - "6025182 50.3 False \n", - " 56.0 NaN \n", - "6025198 67.0 NaN \n", - " 75.8 False \n", - " 75.9 False \n", - "\n", - "[2979355 rows x 883 columns]" - ] - }, - "execution_count": 104, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "\n", - "df_baseline_diagnoses= pd.concat([df_baseline_time, diagnoses], axis=1)\n", - "df_baseline_diagnoses" - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [], - "source": [ - "df_baseline_diagnoses.reset_index().to_feather(os.path.join(path, dataset_path, 'baseline_diagnoses_times.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "MultiIndex: 2979355 entries, (1000018, 37.5) to (6025198, 75.9)\n", - "Columns: 883 entries, birthdate to fetal_or_neonatal_effect_of_maternal_medical_problem\n", - "dtypes: float64(79), object(804)\n", - "memory usage: 19.6+ GB\n" - ] - } - ], - "source": [ - "df_baseline_diagnoses.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "df_baseline_diagnoses = pd.read_feather(os.path.join(path, dataset_path, 'baseline_diagnoses_times.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidtbirthdatesex_f31ethnic_background_f21000overall_health_rating_f2178smoking_status_f20116alcohol_intake_frequency_f1558townsend_deprivation_index_at_recruitment_f189body_mass_index_bmi_f21001...nonvenomous_insect_bitespondylolisthesismalignant_tumor_of_esophagusaphthous_ulcer_of_mouthventricular_septal_defectoropharyngeal_dysphagiainjury_of_kneetraumatic_brain_injuryosteoarthritis_of_glenohumeral_jointfetal_or_neonatal_effect_of_maternal_medical_problem
0100001837.5NoneNoneNoneNoneNoneNoneNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1100001837.6NoneNoneNoneNoneNoneNoneNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
2100001844.6NoneNoneNoneNoneNoneNoneNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
3100001849.01960-11-12FemaleBritishFairCurrentOnce or twice a week-1.85293026.5557...NoneNoneNoneNoneNoneNoneNoneNoneNoneNone
4100001856.0NoneNoneNoneNoneNoneNoneNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
..................................................................
2979350602518250.3NoneNoneNoneNoneNoneNoneNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
2979351602518256.01954-07-01MaleBritishExcellentPreviousDaily or almost daily-0.01076429.1425...NoneNoneNoneNoneNoneNoneNoneNoneNoneNone
2979352602519867.01943-01-26MaleBritishGoodCurrentDaily or almost daily-1.93065029.5988...NoneNoneNoneNoneNoneNoneNoneNoneNoneNone
2979353602519875.8NoneNoneNoneNoneNoneNoneNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
2979354602519875.9NoneNoneNoneNoneNoneNoneNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

2979355 rows × 885 columns

\n", - "
" - ], - "text/plain": [ - " eid t birthdate sex_f31 ethnic_background_f21000 \\\n", - "0 1000018 37.5 None None None \n", - "1 1000018 37.6 None None None \n", - "2 1000018 44.6 None None None \n", - "3 1000018 49.0 1960-11-12 Female British \n", - "4 1000018 56.0 None None None \n", - "... ... ... ... ... ... \n", - "2979350 6025182 50.3 None None None \n", - "2979351 6025182 56.0 1954-07-01 Male British \n", - "2979352 6025198 67.0 1943-01-26 Male British \n", - "2979353 6025198 75.8 None None None \n", - "2979354 6025198 75.9 None None None \n", - "\n", - " overall_health_rating_f2178 smoking_status_f20116 \\\n", - "0 None None \n", - "1 None None \n", - "2 None None \n", - "3 Fair Current \n", - "4 None None \n", - "... ... ... \n", - "2979350 None None \n", - "2979351 Excellent Previous \n", - "2979352 Good Current \n", - "2979353 None None \n", - "2979354 None None \n", - "\n", - " alcohol_intake_frequency_f1558 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 Once or twice a week \n", - "4 None \n", - "... ... \n", - "2979350 None \n", - "2979351 Daily or almost daily \n", - "2979352 Daily or almost daily \n", - "2979353 None \n", - "2979354 None \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 -1.852930 \n", - "4 NaN \n", - "... ... \n", - "2979350 NaN \n", - "2979351 -0.010764 \n", - "2979352 -1.930650 \n", - "2979353 NaN \n", - "2979354 NaN \n", - "\n", - " body_mass_index_bmi_f21001 ... nonvenomous_insect_bite \\\n", - "0 NaN ... False \n", - "1 NaN ... False \n", - "2 NaN ... False \n", - "3 26.5557 ... None \n", - "4 NaN ... False \n", - "... ... ... ... \n", - "2979350 NaN ... False \n", - "2979351 29.1425 ... None \n", - "2979352 29.5988 ... None \n", - "2979353 NaN ... False \n", - "2979354 NaN ... False \n", - "\n", - " spondylolisthesis malignant_tumor_of_esophagus \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 None None \n", - "4 False False \n", - "... ... ... \n", - "2979350 False False \n", - "2979351 None None \n", - "2979352 None None \n", - "2979353 False False \n", - "2979354 False False \n", - "\n", - " aphthous_ulcer_of_mouth ventricular_septal_defect \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 None None \n", - "4 False False \n", - "... ... ... \n", - "2979350 False False \n", - "2979351 None None \n", - "2979352 None None \n", - "2979353 False False \n", - "2979354 False False \n", - "\n", - " oropharyngeal_dysphagia injury_of_knee traumatic_brain_injury \\\n", - "0 False False False \n", - "1 False False False \n", - "2 False False False \n", - "3 None None None \n", - "4 False False False \n", - "... ... ... ... \n", - "2979350 False False False \n", - "2979351 None None None \n", - "2979352 None None None \n", - "2979353 False False False \n", - "2979354 False False False \n", - "\n", - " osteoarthritis_of_glenohumeral_joint \\\n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 None \n", - "4 False \n", - "... ... \n", - "2979350 False \n", - "2979351 None \n", - "2979352 None \n", - "2979353 False \n", - "2979354 False \n", - "\n", - " fetal_or_neonatal_effect_of_maternal_medical_problem \n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 None \n", - "4 False \n", - "... ... \n", - "2979350 False \n", - "2979351 None \n", - "2979352 None \n", - "2979353 False \n", - "2979354 False \n", - "\n", - "[2979355 rows x 885 columns]" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_baseline_diagnoses" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "basic_data = pd.concat([basics_birthdate.set_index(\"eid\")[[\"birthdate\"]], df_baseline_diagnoses.set_index([\"eid\"]).drop(columns=\"birthdate\")], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "basic_data.reset_index().to_feather(os.path.join(path, dataset_path, 'basic_data.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "basic_data = pd.read_feather(os.path.join(path, dataset_path, 'basic_data.feather')).set_index([\"eid\", \"t\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
birthdatesex_f31ethnic_background_f21000overall_health_rating_f2178smoking_status_f20116alcohol_intake_frequency_f1558townsend_deprivation_index_at_recruitment_f189body_mass_index_bmi_f21001weight_f21002systolic_blood_pressure_automated_reading_f4080...nonvenomous_insect_bitespondylolisthesismalignant_tumor_of_esophagusaphthous_ulcer_of_mouthventricular_septal_defectoropharyngeal_dysphagiainjury_of_kneetraumatic_brain_injuryosteoarthritis_of_glenohumeral_jointfetal_or_neonatal_effect_of_maternal_medical_problem
eidt
100001837.51960-11-12NoneNoneNoneNoneNoneNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
37.61960-11-12NoneNoneNoneNoneNoneNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
44.61960-11-12NoneNoneNoneNoneNoneNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
49.01960-11-12FemaleBritishFairCurrentOnce or twice a week-1.85293026.555763.8159.5...NoneNoneNoneNoneNoneNoneNoneNoneNoneNone
56.01960-11-12NoneNoneNoneNoneNoneNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
.....................................................................
602518250.31954-07-01NoneNoneNoneNoneNoneNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
56.01954-07-01MaleBritishExcellentPreviousDaily or almost daily-0.01076429.1425104.1127.5...NoneNoneNoneNoneNoneNoneNoneNoneNoneNone
602519867.01943-01-26MaleBritishGoodCurrentDaily or almost daily-1.93065029.5988102.4156.5...NoneNoneNoneNoneNoneNoneNoneNoneNoneNone
75.81943-01-26NoneNoneNoneNoneNoneNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
75.91943-01-26NoneNoneNoneNoneNoneNaNNaNNaNNaN...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
\n", - "

2979355 rows × 883 columns

\n", - "
" - ], - "text/plain": [ - " birthdate sex_f31 ethnic_background_f21000 \\\n", - "eid t \n", - "1000018 37.5 1960-11-12 None None \n", - " 37.6 1960-11-12 None None \n", - " 44.6 1960-11-12 None None \n", - " 49.0 1960-11-12 Female British \n", - " 56.0 1960-11-12 None None \n", - "... ... ... ... \n", - "6025182 50.3 1954-07-01 None None \n", - " 56.0 1954-07-01 Male British \n", - "6025198 67.0 1943-01-26 Male British \n", - " 75.8 1943-01-26 None None \n", - " 75.9 1943-01-26 None None \n", - "\n", - " overall_health_rating_f2178 smoking_status_f20116 \\\n", - "eid t \n", - "1000018 37.5 None None \n", - " 37.6 None None \n", - " 44.6 None None \n", - " 49.0 Fair Current \n", - " 56.0 None None \n", - "... ... ... \n", - "6025182 50.3 None None \n", - " 56.0 Excellent Previous \n", - "6025198 67.0 Good Current \n", - " 75.8 None None \n", - " 75.9 None None \n", - "\n", - " alcohol_intake_frequency_f1558 \\\n", - "eid t \n", - "1000018 37.5 None \n", - " 37.6 None \n", - " 44.6 None \n", - " 49.0 Once or twice a week \n", - " 56.0 None \n", - "... ... \n", - "6025182 50.3 None \n", - " 56.0 Daily or almost daily \n", - "6025198 67.0 Daily or almost daily \n", - " 75.8 None \n", - " 75.9 None \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189 \\\n", - "eid t \n", - "1000018 37.5 NaN \n", - " 37.6 NaN \n", - " 44.6 NaN \n", - " 49.0 -1.852930 \n", - " 56.0 NaN \n", - "... ... \n", - "6025182 50.3 NaN \n", - " 56.0 -0.010764 \n", - "6025198 67.0 -1.930650 \n", - " 75.8 NaN \n", - " 75.9 NaN \n", - "\n", - " body_mass_index_bmi_f21001 weight_f21002 \\\n", - "eid t \n", - "1000018 37.5 NaN NaN \n", - " 37.6 NaN NaN \n", - " 44.6 NaN NaN \n", - " 49.0 26.5557 63.8 \n", - " 56.0 NaN NaN \n", - "... ... ... \n", - "6025182 50.3 NaN NaN \n", - " 56.0 29.1425 104.1 \n", - "6025198 67.0 29.5988 102.4 \n", - " 75.8 NaN NaN \n", - " 75.9 NaN NaN \n", - "\n", - " systolic_blood_pressure_automated_reading_f4080 ... \\\n", - "eid t ... \n", - "1000018 37.5 NaN ... \n", - " 37.6 NaN ... \n", - " 44.6 NaN ... \n", - " 49.0 159.5 ... \n", - " 56.0 NaN ... \n", - "... ... ... \n", - "6025182 50.3 NaN ... \n", - " 56.0 127.5 ... \n", - "6025198 67.0 156.5 ... \n", - " 75.8 NaN ... \n", - " 75.9 NaN ... \n", - "\n", - " nonvenomous_insect_bite spondylolisthesis \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 None None \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 None None \n", - "6025198 67.0 None None \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " malignant_tumor_of_esophagus aphthous_ulcer_of_mouth \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 None None \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 None None \n", - "6025198 67.0 None None \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " ventricular_septal_defect oropharyngeal_dysphagia \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 None None \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 None None \n", - "6025198 67.0 None None \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " injury_of_knee traumatic_brain_injury \\\n", - "eid t \n", - "1000018 37.5 False False \n", - " 37.6 False False \n", - " 44.6 False False \n", - " 49.0 None None \n", - " 56.0 False False \n", - "... ... ... \n", - "6025182 50.3 False False \n", - " 56.0 None None \n", - "6025198 67.0 None None \n", - " 75.8 False False \n", - " 75.9 False False \n", - "\n", - " osteoarthritis_of_glenohumeral_joint \\\n", - "eid t \n", - "1000018 37.5 False \n", - " 37.6 False \n", - " 44.6 False \n", - " 49.0 None \n", - " 56.0 False \n", - "... ... \n", - "6025182 50.3 False \n", - " 56.0 None \n", - "6025198 67.0 None \n", - " 75.8 False \n", - " 75.9 False \n", - "\n", - " fetal_or_neonatal_effect_of_maternal_medical_problem \n", - "eid t \n", - "1000018 37.5 False \n", - " 37.6 False \n", - " 44.6 False \n", - " 49.0 None \n", - " 56.0 False \n", - "... ... \n", - "6025182 50.3 False \n", - " 56.0 None \n", - "6025198 67.0 None \n", - " 75.8 False \n", - " 75.9 False \n", - "\n", - "[2979355 rows x 883 columns]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "basic_data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import xarray as xa\n", - "x_data = basic_data.to_xarray()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset>\n",
-       "Dimensions:                                                                  (index: 2979355)\n",
-       "Coordinates:\n",
-       "  * index                                                                    (index) int64 ...\n",
-       "Data variables:\n",
-       "    eid                                                                      (index) int64 ...\n",
-       "    birthdate                                                                (index) object ...\n",
-       "    t                                                                        (index) float64 ...\n",
-       "    sex_f31                                                                  (index) object ...\n",
-       "    ethnic_background_f21000                                                 (index) object ...\n",
-       "    overall_health_rating_f2178                                              (index) object ...\n",
-       "    smoking_status_f20116                                                    (index) object ...\n",
-       "    alcohol_intake_frequency_f1558                                           (index) object ...\n",
-       "    townsend_deprivation_index_at_recruitment_f189                           (index) float64 ...\n",
-       "    body_mass_index_bmi_f21001                                               (index) float64 ...\n",
-       "    weight_f21002                                                            (index) float64 ...\n",
-       "    systolic_blood_pressure_automated_reading_f4080                          (index) float64 ...\n",
-       "    diastolic_blood_pressure_automated_reading_f4079                         (index) float64 ...\n",
-       "    pulse_rate_automated_reading_f102                                        (index) float64 ...\n",
-       "    pulse_wave_arterial_stiffness_index_f21021                               (index) float64 ...\n",
-       "    pulse_wave_reflection_index_f4195                                        (index) float64 ...\n",
-       "    waist_circumference_f48                                                  (index) float64 ...\n",
-       "    hip_circumference_f49                                                    (index) float64 ...\n",
-       "    standing_height_f50                                                      (index) float64 ...\n",
-       "    trunk_fat_percentage_f23127                                              (index) float64 ...\n",
-       "    body_fat_percentage_f23099                                               (index) float64 ...\n",
-       "    basal_metabolic_rate_f23105                                              (index) float64 ...\n",
-       "    forced_vital_capacity_fvc_best_measure_f20151                            (index) float64 ...\n",
-       "    forced_expiratory_volume_in_1second_fev1_best_measure_f20150             (index) float64 ...\n",
-       "    fev1_fvc_ratio_zscore_f20258                                             (index) float64 ...\n",
-       "    peak_expiratory_flow_pef_f3064                                           (index) float64 ...\n",
-       "    basophill_count_f30160                                                   (index) float64 ...\n",
-       "    basophill_percentage_f30220                                              (index) float64 ...\n",
-       "    eosinophill_count_f30150                                                 (index) float64 ...\n",
-       "    eosinophill_percentage_f30210                                            (index) float64 ...\n",
-       "    haematocrit_percentage_f30030                                            (index) float64 ...\n",
-       "    haemoglobin_concentration_f30020                                         (index) float64 ...\n",
-       "    high_light_scatter_reticulocyte_count_f30300                             (index) float64 ...\n",
-       "    high_light_scatter_reticulocyte_percentage_f30290                        (index) float64 ...\n",
-       "    immature_reticulocyte_fraction_f30280                                    (index) float64 ...\n",
-       "    lymphocyte_count_f30120                                                  (index) float64 ...\n",
-       "    lymphocyte_percentage_f30180                                             (index) float64 ...\n",
-       "    mean_corpuscular_haemoglobin_f30050                                      (index) float64 ...\n",
-       "    mean_corpuscular_haemoglobin_concentration_f30060                        (index) float64 ...\n",
-       "    mean_corpuscular_volume_f30040                                           (index) float64 ...\n",
-       "    mean_platelet_thrombocyte_volume_f30100                                  (index) float64 ...\n",
-       "    mean_reticulocyte_volume_f30260                                          (index) float64 ...\n",
-       "    mean_sphered_cell_volume_f30270                                          (index) float64 ...\n",
-       "    monocyte_count_f30130                                                    (index) float64 ...\n",
-       "    monocyte_percentage_f30190                                               (index) float64 ...\n",
-       "    neutrophill_count_f30140                                                 (index) float64 ...\n",
-       "    neutrophill_percentage_f30200                                            (index) float64 ...\n",
-       "    nucleated_red_blood_cell_count_f30170                                    (index) float64 ...\n",
-       "    nucleated_red_blood_cell_percentage_f30230                               (index) float64 ...\n",
-       "    platelet_count_f30080                                                    (index) float64 ...\n",
-       "    platelet_crit_f30090                                                     (index) float64 ...\n",
-       "    platelet_distribution_width_f30110                                       (index) float64 ...\n",
-       "    red_blood_cell_erythrocyte_count_f30010                                  (index) float64 ...\n",
-       "    red_blood_cell_erythrocyte_distribution_width_f30070                     (index) float64 ...\n",
-       "    reticulocyte_count_f30250                                                (index) float64 ...\n",
-       "    reticulocyte_percentage_f30240                                           (index) float64 ...\n",
-       "    white_blood_cell_leukocyte_count_f30000                                  (index) float64 ...\n",
-       "    alanine_aminotransferase_f30620                                          (index) float64 ...\n",
-       "    albumin_f30600                                                           (index) float64 ...\n",
-       "    alkaline_phosphatase_f30610                                              (index) float64 ...\n",
-       "    apolipoprotein_a_f30630                                                  (index) float64 ...\n",
-       "    apolipoprotein_b_f30640                                                  (index) float64 ...\n",
-       "    aspartate_aminotransferase_f30650                                        (index) float64 ...\n",
-       "    creactive_protein_f30710                                                 (index) float64 ...\n",
-       "    calcium_f30680                                                           (index) float64 ...\n",
-       "    cholesterol_f30690                                                       (index) float64 ...\n",
-       "    creatinine_f30700                                                        (index) float64 ...\n",
-       "    cystatin_c_f30720                                                        (index) float64 ...\n",
-       "    direct_bilirubin_f30660                                                  (index) float64 ...\n",
-       "    gamma_glutamyltransferase_f30730                                         (index) float64 ...\n",
-       "    glucose_f30740                                                           (index) float64 ...\n",
-       "    glycated_haemoglobin_hba1c_f30750                                        (index) float64 ...\n",
-       "    hdl_cholesterol_f30760                                                   (index) float64 ...\n",
-       "    igf1_f30770                                                              (index) float64 ...\n",
-       "    ldl_direct_f30780                                                        (index) float64 ...\n",
-       "    lipoprotein_a_f30790                                                     (index) float64 ...\n",
-       "    oestradiol_f30800                                                        (index) float64 ...\n",
-       "    phosphate_f30810                                                         (index) float64 ...\n",
-       "    rheumatoid_factor_f30820                                                 (index) float64 ...\n",
-       "    shbg_f30830                                                              (index) float64 ...\n",
-       "    testosterone_f30850                                                      (index) float64 ...\n",
-       "    total_bilirubin_f30840                                                   (index) float64 ...\n",
-       "    total_protein_f30860                                                     (index) float64 ...\n",
-       "    triglycerides_f30870                                                     (index) float64 ...\n",
-       "    urate_f30880                                                             (index) float64 ...\n",
-       "    urea_f30670                                                              (index) float64 ...\n",
-       "    vitamin_d_f30890                                                         (index) float64 ...\n",
-       "    diagnosis                                                                (index) object ...\n",
-       "    hypertensive_disorder_systemic_arterial                                  (index) object ...\n",
-       "    hyperlipidemia                                                           (index) object ...\n",
-       "    depressive_disorder                                                      (index) object ...\n",
-       "    gastroesophageal_reflux_disease                                          (index) object ...\n",
-       "    diabetes_mellitus_type_2                                                 (index) object ...\n",
-       "    essential_hypertension                                                   (index) object ...\n",
-       "    obesity                                                                  (index) object ...\n",
-       "    diabetes_mellitus                                                        (index) object ...\n",
-       "    asthma                                                                   (index) object ...\n",
-       "    coronary_arteriosclerosis                                                (index) object ...\n",
-       "    allergic_rhinitis                                                        (index) object ...\n",
-       "    hypothyroidism                                                           (index) object ...\n",
-       "    upper_respiratory_infection                                              (index) object ...\n",
-       "    hypercholesterolemia                                                     (index) object ...\n",
-       "    backache                                                                 (index) object ...\n",
-       "    abdominal_pain                                                           (index) object ...\n",
-       "    osteoarthritis                                                           (index) object ...\n",
-       "    low_back_pain                                                            (index) object ...\n",
-       "    anemia                                                                   (index) object ...\n",
-       "    anxiety                                                                  (index) object ...\n",
-       "    urinary_tract_infectious_disease                                         (index) object ...\n",
-       "    chronic_obstructive_lung_disease                                         (index) object ...\n",
-       "    atrial_fibrillation                                                      (index) object ...\n",
-       "    pneumonia                                                                (index) object ...\n",
-       "    chest_pain                                                               (index) object ...\n",
-       "    congestive_heart_failure                                                 (index) object ...\n",
-       "    headache                                                                 (index) object ...\n",
-       "    migraine                                                                 (index) object ...\n",
-       "    pregnant                                                                 (index) object ...\n",
-       "    knee_pain                                                                (index) object ...\n",
-       "    osteoporosis                                                             (index) object ...\n",
-       "    polyp_of_colon                                                           (index) object ...\n",
-       "    otitis_media                                                             (index) object ...\n",
-       "    sinusitis                                                                (index) object ...\n",
-       "    cough                                                                    (index) object ...\n",
-       "    sleep_apnea                                                              (index) object ...\n",
-       "    insomnia                                                                 (index) object ...\n",
-       "    inflammatory_disorder_due_to_increased_blood_urate_level                 (index) object ...\n",
-       "    tobacco_dependence_syndrome                                              (index) object ...\n",
-       "    malignant_tumor_of_prostate                                              (index) object ...\n",
-       "    constipation                                                             (index) object ...\n",
-       "    hearing_loss                                                             (index) object ...\n",
-       "    fatigue                                                                  (index) object ...\n",
-       "    obstructive_sleep_apnea_syndrome                                         (index) object ...\n",
-       "    malignant_neoplasm_of_breast                                             (index) object ...\n",
-       "    delivery_normal                                                          (index) object ...\n",
-       "    irritable_bowel_syndrome                                                 (index) object ...\n",
-       "    tobacco_user                                                             (index) object ...\n",
-       "    neck_pain                                                                (index) object ...\n",
-       "    cerebrovascular_accident                                                 (index) object ...\n",
-       "    asthenia                                                                 (index) object ...\n",
-       "    shoulder_pain                                                            (index) object ...\n",
-       "    acne_vulgaris                                                            (index) object ...\n",
-       "    benign_prostatic_hyperplasia                                             (index) object ...\n",
-       "    dyspnea                                                                  (index) object ...\n",
-       "    carpal_tunnel_syndrome                                                   (index) object ...\n",
-       "    bronchitis                                                               (index) object ...\n",
-       "    pharyngitis                                                              (index) object ...\n",
-       "    arthritis                                                                (index) object ...\n",
-       "    diarrhea                                                                 (index) object ...\n",
-       "    dizziness                                                                (index) object ...\n",
-       "    alcohol_abuse                                                            (index) object ...\n",
-       "    dementia                                                                 (index) object ...\n",
-       "    eczema                                                                   (index) object ...\n",
-       "    syncope                                                                  (index) object ...\n",
-       "    acute_sinusitis                                                          (index) object ...\n",
-       "    iron_deficiency_anemia                                                   (index) object ...\n",
-       "    allergic_rhinitis_caused_by_pollen                                       (index) object ...\n",
-       "    gastritis                                                                (index) object ...\n",
-       "    cataract                                                                 (index) object ...\n",
-       "    hematuria_syndrome                                                       (index) object ...\n",
-       "    disorder_of_the_peripheral_nervous_system                                (index) object ...\n",
-       "    viral_hepatitis_type_c                                                   (index) object ...\n",
-       "    palpitations                                                             (index) object ...\n",
-       "    eruption_of_skin                                                         (index) object ...\n",
-       "    diabetes_mellitus_type_1                                                 (index) object ...\n",
-       "    renal_failure_syndrome                                                   (index) object ...\n",
-       "    peripheral_vascular_disease                                              (index) object ...\n",
-       "    hyperglycemia                                                            (index) object ...\n",
-       "    seizure_disorder                                                         (index) object ...\n",
-       "    fever                                                                    (index) object ...\n",
-       "    osteoarthritis_of_knee                                                   (index) object ...\n",
-       "    actinic_keratosis                                                        (index) object ...\n",
-       "    urinary_incontinence                                                     (index) object ...\n",
-       "    hemorrhoids                                                              (index) object ...\n",
-       "    seizure                                                                  (index) object ...\n",
-       "    laceration_-_injury                                                      (index) object ...\n",
-       "    glaucoma                                                                 (index) object ...\n",
-       "    body_mass_index_30+_-_obesity                                            (index) object ...\n",
-       "    breast_lump                                                              (index) object ...\n",
-       "    viral_disease                                                            (index) object ...\n",
-       "    abnormal_cervical_smear                                                  (index) object ...\n",
-       "    cellulitis                                                               (index) object ...\n",
-       "    rheumatoid_arthritis                                                     (index) object ...\n",
-       "    senile_hyperkeratosis                                                    (index) object ...\n",
-       "    anxiety_disorder                                                         (index) object ...\n",
-       "    vertigo                                                                  (index) object ...\n",
-       "    chronic_kidney_disease                                                   (index) object ...\n",
-       "    dysphagia                                                                (index) object ...\n",
-       "    edema                                                                    (index) object ...\n",
-       "    malignant_neoplasm_of_colon                                              (index) object ...\n",
-       "    hip_pain                                                                 (index) object ...\n",
-       "    posttraumatic_stress_disorder                                            (index) object ...\n",
-       "    inflammatory_dermatosis                                                  (index) object ...\n",
-       "    psoriasis                                                                (index) object ...\n",
-       "    myopia                                                                   (index) object ...\n",
-       "    senile_cataract                                                          (index) object ...\n",
-       "    heart_murmur                                                             (index) object ...\n",
-       "    liver_function_tests_abnormal                                            (index) object ...\n",
-       "    angina                                                                   (index) object ...\n",
-       "    impaired_fasting_glycemia                                                (index) object ...\n",
-       "    chronic_ischemic_heart_disease                                           (index) object ...\n",
-       "    chronic_sinusitis                                                        (index) object ...\n",
-       "    menopause_present                                                        (index) object ...\n",
-       "    basal_cell_carcinoma_of_skin                                             (index) object ...\n",
-       "    raised_prostate_specific_antigen                                         (index) object ...\n",
-       "    impaired_glucose_tolerance                                               (index) object ...\n",
-       "    smoker                                                                   (index) object ...\n",
-       "    hypertriglyceridemia                                                     (index) object ...\n",
-       "    irregular_periods                                                        (index) object ...\n",
-       "    herpes_zoster                                                            (index) object ...\n",
-       "    sensorineural_hearing_loss                                               (index) object ...\n",
-       "    rectal_hemorrhage                                                        (index) object ...\n",
-       "    peptic_ulcer                                                             (index) object ...\n",
-       "    tinnitus                                                                 (index) object ...\n",
-       "    bipolar_disorder                                                         (index) object ...\n",
-       "    vitamin_d_deficiency                                                     (index) object ...\n",
-       "    transient_ischemic_attack                                                (index) object ...\n",
-       "    streptococcal_sore_throat                                                (index) object ...\n",
-       "    onychomycosis                                                            (index) object ...\n",
-       "    deep_venous_thrombosis                                                   (index) object ...\n",
-       "    presbyopia                                                               (index) object ...\n",
-       "    neonatal_jaundice                                                        (index) object ...\n",
-       "    bacterial_vaginosis                                                      (index) object ...\n",
-       "    impacted_cerumen                                                         (index) object ...\n",
-       "    foot_pain                                                                (index) object ...\n",
-       "    sciatica                                                                 (index) object ...\n",
-       "    vomiting                                                                 (index) object ...\n",
-       "    benign_prostatic_hypertrophy_with_outflow_obstruction                    (index) object ...\n",
-       "    type_ii_diabetes_mellitus_without_complication                           (index) object ...\n",
-       "    calculus_in_biliary_tract                                                (index) object ...\n",
-       "    epigastric_pain                                                          (index) object ...\n",
-       "    late_effects_of_cerebrovascular_disease                                  (index) object ...\n",
-       "    gastroenteritis                                                          (index) object ...\n",
-       "    pulmonary_embolism                                                       (index) object ...\n",
-       "    inguinal_hernia                                                          (index) object ...\n",
-       "    verruca_vulgaris                                                         (index) object ...\n",
-       "    sepsis                                                                   (index) object ...\n",
-       "    disorder_of_kidney_due_to_diabetes_mellitus                              (index) object ...\n",
-       "    nausea_and_vomiting                                                      (index) object ...\n",
-       "    hyperthyroidism                                                          (index) object ...\n",
-       "    abscess                                                                  (index) object ...\n",
-       "    dental_caries                                                            (index) object ...\n",
-       "    gastrointestinal_hemorrhage                                              (index) object ...\n",
-       "    rosacea                                                                  (index) object ...\n",
-       "    parkinson's_disease                                                      (index) object ...\n",
-       "    menorrhagia                                                              (index) object ...\n",
-       "    malignant_tumor_of_lung                                                  (index) object ...\n",
-       "    joint_pain                                                               (index) object ...\n",
-       "    morbid_obesity                                                           (index) object ...\n",
-       "    hiatal_hernia                                                            (index) object ...\n",
-       "    arthralgia_of_the_ankle_and/or_foot                                      (index) object ...\n",
-       "    restless_legs                                                            (index) object ...\n",
-       "    thrombocytopenic_disorder                                                (index) object ...\n",
-       "    old_myocardial_infarction                                                (index) object ...\n",
-       "    neuropathy                                                               (index) object ...\n",
-       "    cardiomyopathy                                                           (index) object ...\n",
-       "    atopic_dermatitis                                                        (index) object ...\n",
-       "    pain_in_pelvis                                                           (index) object ...\n",
-       "    contact_dermatitis                                                       (index) object ...\n",
-       "    indigestion                                                              (index) object ...\n",
-       "    nicotine_dependence                                                      (index) object ...\n",
-       "    sprain_of_ankle                                                          (index) object ...\n",
-       "    degenerative_disorder_of_macula                                          (index) object ...\n",
-       "    exacerbation_of_asthma                                                   (index) object ...\n",
-       "    alcohol_dependence                                                       (index) object ...\n",
-       "    hypokalemia                                                              (index) object ...\n",
-       "    mitral_valve_regurgitation                                               (index) object ...\n",
-       "    hyponatremia                                                             (index) object ...\n",
-       "    abdominal_aortic_aneurysm                                                (index) object ...\n",
-       "    cyst_of_ovary                                                            (index) object ...\n",
-       "    otitis_externa                                                           (index) object ...\n",
-       "    threatened_abortion                                                      (index) object ...\n",
-       "    scoliosis_deformity_of_spine                                             (index) object ...\n",
-       "    seborrheic_dermatitis                                                    (index) object ...\n",
-       "    spinal_stenosis                                                          (index) object ...\n",
-       "    dysmenorrhea                                                             (index) object ...\n",
-       "    acute_otitis_media                                                       (index) object ...\n",
-       "    alzheimer's_disease                                                      (index) object ...\n",
-       "    neuropathy_due_to_diabetes_mellitus                                      (index) object ...\n",
-       "    acute_pharyngitis                                                        (index) object ...\n",
-       "    degeneration_of_intervertebral_disc                                      (index) object ...\n",
-       "    attention_deficit_hyperactivity_disorder_predominantly_inattentive_type  (index) object ...\n",
-       "    unplanned_pregnancy                                                      (index) object ...\n",
-       "    secondary_erectile_dysfunction                                           (index) object ...\n",
-       "    spinal_stenosis_of_lumbar_region                                         (index) object ...\n",
-       "    proteinuria                                                              (index) object ...\n",
-       "    urticaria                                                                (index) object ...\n",
-       "    genital_herpes_simplex                                                   (index) object ...\n",
-       "    malignant_neoplasm_of_female_breast                                      (index) object ...\n",
-       "    nausea                                                                   (index) object ...\n",
-       "    chronic_rhinitis                                                         (index) object ...\n",
-       "    multiple_sclerosis                                                       (index) object ...\n",
-       "    chronic_kidney_disease_stage_3                                           (index) object ...\n",
-       "    panic_disorder                                                           (index) object ...\n",
-       "    attention_deficit_hyperactivity_disorder                                 (index) object ...\n",
-       "    amnesia                                                                  (index) object ...\n",
-       "    otalgia                                                                  (index) object ...\n",
-       "    tremor                                                                   (index) object ...\n",
-       "    retention_of_urine                                                       (index) object ...\n",
-       "    non-hodgkin's_lymphoma                                                   (index) object ...\n",
-       "    alcoholism                                                               (index) object ...\n",
-       "    dysuria                                                                  (index) object ...\n",
-       "    generalized_anxiety_disorder                                             (index) object ...\n",
-       "    paroxysmal_atrial_fibrillation                                           (index) object ...\n",
-       "    peripheral_venous_insufficiency                                          (index) object ...\n",
-       "    nonproliferative_retinopathy_due_to_diabetes_mellitus                    (index) object ...\n",
-       "    shoulder_joint_pain                                                      (index) object ...\n",
-       "    moderate_recurrent_major_depression                                      (index) object ...\n",
-       "    diverticulitis                                                           (index) object ...\n",
-       "    solitary_nodule_of_lung                                                  (index) object ...\n",
-       "    hyperkalemia                                                             (index) object ...\n",
-       "    recurrent_major_depressive_episodes                                      (index) object ...\n",
-       "    multiple_myeloma                                                         (index) object ...\n",
-       "    regular_astigmatism                                                      (index) object ...\n",
-       "    secondary_malignant_neoplasm_of_liver                                    (index) object ...\n",
-       "    ulcerative_colitis                                                       (index) object ...\n",
-       "    vaginitis                                                                (index) object ...\n",
-       "    acute_renal_failure_syndrome                                             (index) object ...\n",
-       "    amenorrhea                                                               (index) object ...\n",
-       "    tendinitis                                                               (index) object ...\n",
-       "    rhinitis                                                                 (index) object ...\n",
-       "    bleeding_from_nose                                                       (index) object ...\n",
-       "    crohn's_disease                                                          (index) object ...\n",
-       "    nuclear_senile_cataract                                                  (index) object ...\n",
-       "    muscle_pain                                                              (index) object ...\n",
-       "    epidermoid_cyst                                                          (index) object ...\n",
-       "    impaired_cognition                                                       (index) object ...\n",
-       "    acute_exacerbation_of_chronic_obstructive_airways_disease                (index) object ...\n",
-       "    eustachian_tube_disorder                                                 (index) object ...\n",
-       "    internal_hemorrhoids                                                     (index) object ...\n",
-       "    substance_abuse                                                          (index) object ...\n",
-       "    melanocytic_nevus                                                        (index) object ...\n",
-       "    pain                                                                     (index) object ...\n",
-       "    barrett's_esophagus                                                      (index) object ...\n",
-       "    cerebrovascular_disease                                                  (index) object ...\n",
-       "    malignant_melanoma                                                       (index) object ...\n",
-       "    folliculitis                                                             (index) object ...\n",
-       "    mitral_valve_prolapse                                                    (index) object ...\n",
-       "    chronic_hepatitis_c                                                      (index) object ...\n",
-       "    hypermetropia                                                            (index) object ...\n",
-       "    endometriosis                                                            (index) object ...\n",
-       "    gestational_diabetes_mellitus                                            (index) object ...\n",
-       "    cirrhosis_of_liver                                                       (index) object ...\n",
-       "    injury_of_head                                                           (index) object ...\n",
-       "    dehydration                                                              (index) object ...\n",
-       "    herpes_simplex                                                           (index) object ...\n",
-       "    fracture_of_bone                                                         (index) object ...\n",
-       "    overweight                                                               (index) object ...\n",
-       "    right_inguinal_hernia                                                    (index) object ...\n",
-       "    adjustment_disorder                                                      (index) object ...\n",
-       "    tinea_pedis                                                              (index) object ...\n",
-       "    aortic_valve_stenosis                                                    (index) object ...\n",
-       "    viral_hepatitis_type_b                                                   (index) object ...\n",
-       "    umbilical_hernia                                                         (index) object ...\n",
-       "    ingrowing_nail                                                           (index) object ...\n",
-       "    postmenopausal_bleeding                                                  (index) object ...\n",
-       "    goiter                                                                   (index) object ...\n",
-       "    secondary_malignant_neoplasm_of_bone                                     (index) object ...\n",
-       "    pulmonary_emphysema                                                      (index) object ...\n",
-       "    left_inguinal_hernia                                                     (index) object ...\n",
-       "    snoring                                                                  (index) object ...\n",
-       "    myocardial_infarction                                                    (index) object ...\n",
-       "    polycystic_ovary_syndrome                                                (index) object ...\n",
-       "    polycystic_ovary                                                         (index) object ...\n",
-       "    microscopic_hematuria                                                    (index) object ...\n",
-       "    pain_in_wrist                                                            (index) object ...\n",
-       "    pleural_effusion                                                         (index) object ...\n",
-       "    false_labor                                                              (index) object ...\n",
-       "    bleeding_from_vagina                                                     (index) object ...\n",
-       "    acquired_hypothyroidism                                                  (index) object ...\n",
-       "    premature_rupture_of_membranes                                           (index) object ...\n",
-       "    human_immunodeficiency_virus_infection                                   (index) object ...\n",
-       "    contusion                                                                (index) object ...\n",
-       "    secondary_malignant_neoplasm_of_lung                                     (index) object ...\n",
-       "    problem_situation_relating_to_social_and_personal_history                (index) object ...\n",
-       "    hypercalcemia                                                            (index) object ...\n",
-       "    occlusion_of_carotid_artery                                              (index) object ...\n",
-       "    prolonged_second_stage_of_labor                                          (index) object ...\n",
-       "    lipoma                                                                   (index) object ...\n",
-       "    poisoning_caused_by_drug_and/or_medicinal_substance                      (index) object ...\n",
-       "    paranoid_schizophrenia                                                   (index) object ...\n",
-       "    hypersensitivity_reaction                                                (index) object ...\n",
-       "    dysthymia                                                                (index) object ...\n",
-       "    fetal_or_neonatal_effect_of_maternal_premature_rupture_of_membrane       (index) object ...\n",
-       "    noncompliance_with_treatment                                             (index) object ...\n",
-       "    falls                                                                    (index) object ...\n",
-       "    muscle_strain                                                            (index) object ...\n",
-       "    schizophrenia                                                            (index) object ...\n",
-       "    left_bundle_branch_block                                                 (index) object ...\n",
-       "    disorder_of_nervous_system_due_to_type_2_diabetes_mellitus               (index) object ...\n",
-       "    preinfarction_syndrome                                                   (index) object ...\n",
-       "    conduction_disorder_of_the_heart                                         (index) object ...\n",
-       "    lateral_epicondylitis                                                    (index) object ...\n",
-       "    burn                                                                     (index) object ...\n",
-       "    pyelonephritis                                                           (index) object ...\n",
-       "    intermittent_claudication                                                (index) object ...\n",
-       "    varicose_veins_of_lower_extremity                                        (index) object ...\n",
-       "    hemiplegia                                                               (index) object ...\n",
-       "    chronic_pain                                                             (index) object ...\n",
-       "    bronchiolitis                                                            (index) object ...\n",
-       "    mild_persistent_asthma                                                   (index) object ...\n",
-       "    secondary_malignant_neoplasm_of_lymph_node                               (index) object ...\n",
-       "    mixed_hyperlipidemia                                                     (index) object ...\n",
-       "    female_urinary_stress_incontinence                                       (index) object ...\n",
-       "    localized_primary_osteoarthritis_of_the_ankle_and/or_foot                (index) object ...\n",
-       "    hypesthesia                                                              (index) object ...\n",
-       "    hand_pain                                                                (index) object ...\n",
-       "    psychotic_disorder                                                       (index) object ...\n",
-       "    menopausal_syndrome                                                      (index) object ...\n",
-       "    acute_myocardial_infarction_of_anterior_wall                             (index) object ...\n",
-       "    bronchiectasis                                                           (index) object ...\n",
-       "    lumbar_radiculopathy                                                     (index) object ...\n",
-       "    osteoarthritis_of_hip                                                    (index) object ...\n",
-       "    deviated_nasal_septum                                                    (index) object ...\n",
-       "    paresthesia                                                              (index) object ...\n",
-       "    hypoglycemia                                                             (index) object ...\n",
-       "    deep_venous_thrombosis_of_lower_extremity                                (index) object ...\n",
-       "    complication_of_surgical_procedure                                       (index) object ...\n",
-       "    mild_intermittent_asthma                                                 (index) object ...\n",
-       "    systemic_lupus_erythematosus                                             (index) object ...\n",
-       "    generalized_ischemic_myocardial_dysfunction                              (index) object ...\n",
-       "    lumbar_spondylosis                                                       (index) object ...\n",
-       "    acute_tonsillitis                                                        (index) object ...\n",
-       "    esophagitis                                                              (index) object ...\n",
-       "    aortic_valve_regurgitation                                               (index) object ...\n",
-       "    malignant_neoplasm_of_skin                                               (index) object ...\n",
-       "    altered_mental_status                                                    (index) object ...\n",
-       "    atrial_flutter                                                           (index) object ...\n",
-       "    alopecia                                                                 (index) object ...\n",
-       "    high_risk_pregnancy                                                      (index) object ...\n",
-       "    missed_abortion                                                          (index) object ...\n",
-       "    malignant_tumor_of_urinary_bladder                                       (index) object ...\n",
-       "    pulmonary_hypertension                                                   (index) object ...\n",
-       "    nasal_congestion                                                         (index) object ...\n",
-       "    hemoptysis                                                               (index) object ...\n",
-       "    viral_gastroenteritis                                                    (index) object ...\n",
-       "    right_upper_quadrant_pain                                                (index) object ...\n",
-       "    primary_open_angle_glaucoma                                              (index) object ...\n",
-       "    malignant_tumor_of_ovary                                                 (index) object ...\n",
-       "    incomplete_emptying_of_bladder                                           (index) object ...\n",
-       "    pruritic_disorder                                                        (index) object ...\n",
-       "    fibrocystic_breast_changes                                               (index) object ...\n",
-       "    tinea_corporis                                                           (index) object ...\n",
-       "    acute_pancreatitis                                                       (index) object ...\n",
-       "    acute_myocardial_infarction                                              (index) object ...\n",
-       "    cerebral_hemorrhage                                                      (index) object ...\n",
-       "    urge_incontinence_of_urine                                               (index) object ...\n",
-       "    megaloblastic_anemia_due_to_vitamin_b>12<_deficiency                     (index) object ...\n",
-       "    chronic_lymphoid_leukemia_disease                                        (index) object ...\n",
-       "    disorder_of_lymphatic_system                                             (index) object ...\n",
-       "    diverticular_disease                                                     (index) object ...\n",
-       "    tonsillitis                                                              (index) object ...\n",
-       "    tear_film_insufficiency                                                  (index) object ...\n",
-       "    abnormal_gait                                                            (index) object ...\n",
-       "    orthostatic_hypotension                                                  (index) object ...\n",
-       "    pancreatitis                                                             (index) object ...\n",
-       "    closed_fracture_of_distal_end_of_radius                                  (index) object ...\n",
-       "    first_degree_perineal_laceration                                         (index) object ...\n",
-       "    not_for_resuscitation                                                    (index) object ...\n",
-       "    gastroesophageal_reflux_disease_with_esophagitis                         (index) object ...\n",
-       "    intracranial_injury                                                      (index) object ...\n",
-       "    bell's_palsy                                                             (index) object ...\n",
-       "    bradycardia                                                              (index) object ...\n",
-       "    polymyalgia_rheumatica                                                   (index) object ...\n",
-       "    dysplasia_of_cervix                                                      (index) object ...\n",
-       "    serous_otitis_media                                                      (index) object ...\n",
-       "    angioedema                                                               (index) object ...\n",
-       "    venous_varices                                                           (index) object ...\n",
-       "    spasm                                                                    (index) object ...\n",
-       "    sleep_disorder                                                           (index) object ...\n",
-       "    pain_of_breast                                                           (index) object ...\n",
-       "    malabsorption_syndrome_due_to_intolerance_to_lactose                     (index) object ...\n",
-       "    tachycardia                                                              (index) object ...\n",
-       "    acute_conjunctivitis                                                     (index) object ...\n",
-       "    malignant_lymphoma                                                       (index) object ...\n",
-       "    supraventricular_tachycardia                                             (index) object ...\n",
-       "    hyperparathyroidism                                                      (index) object ...\n",
-       "    periodontitis                                                            (index) object ...\n",
-       "    renal_disorder_due_to_type_2_diabetes_mellitus                           (index) object ...\n",
-       "    nerve_root_disorder                                                      (index) object ...\n",
-       "    nonexudative_age-related_macular_degeneration                            (index) object ...\n",
-       "    tension-type_headache                                                    (index) object ...\n",
-       "    chronic_pain_syndrome                                                    (index) object ...\n",
-       "    abnormal_weight_loss                                                     (index) object ...\n",
-       "    pure_hypercholesterolemia                                                (index) object ...\n",
-       "    acute_upper_respiratory_infection                                        (index) object ...\n",
-       "    inflammatory_disease_of_liver                                            (index) object ...\n",
-       "    colitis                                                                  (index) object ...\n",
-       "    prolonged_pregnancy                                                      (index) object ...\n",
-       "    major_depression_single_episode                                          (index) object ...\n",
-       "    croup                                                                    (index) object ...\n",
-       "    skin_tag                                                                 (index) object ...\n",
-       "    metabolic_syndrome_x                                                     (index) object ...\n",
-       "    adverse_reaction_caused_by_drug                                          (index) object ...\n",
-       "    retinopathy_due_to_diabetes_mellitus                                     (index) object ...\n",
-       "    female_infertility                                                       (index) object ...\n",
-       "    open-angle_glaucoma                                                      (index) object ...\n",
-       "    tietze's_disease                                                         (index) object ...\n",
-       "    gallbladder_calculus                                                     (index) object ...\n",
-       "    sarcoidosis                                                              (index) object ...\n",
-       "    neurogenic_bladder                                                       (index) object ...\n",
-       "    tobacco_dependence_in_remission                                          (index) object ...\n",
-       "    wheezing                                                                 (index) object ...\n",
-       "    elevated_levels_of_transaminase_&_lactic_acid_dehydrogenase              (index) object ...\n",
-       "    ascites                                                                  (index) object ...\n",
-       "    low_blood_pressure                                                       (index) object ...\n",
-       "    bursitis                                                                 (index) object ...\n",
-       "    miscarriage                                                              (index) object ...\n",
-       "    methicillin_resistant_staphylococcus_aureus_carrier                      (index) object ...\n",
-       "    urethritis                                                               (index) object ...\n",
-       "    noninfectious_gastroenteritis                                            (index) object ...\n",
-       "    malignant_tumor_of_thyroid_gland                                         (index) object ...\n",
-       "    pressure_ulcer                                                           (index) object ...\n",
-       "    verruca_plantaris                                                        (index) object ...\n",
-       "    anemia_of_chronic_disorder                                               (index) object ...\n",
-       "    hernia_of_anterior_abdominal_wall                                        (index) object ...\n",
-       "    degeneration_of_lumbar_intervertebral_disc                               (index) object ...\n",
-       "    right_lower_quadrant_pain                                                (index) object ...\n",
-       "    infertile                                                                (index) object ...\n",
-       "    hernia_of_abdominal_wall                                                 (index) object ...\n",
-       "    benign_paroxysmal_positional_vertigo                                     (index) object ...\n",
-       "    pityriasis_versicolor                                                    (index) object ...\n",
-       "    injury_of_lower_leg                                                      (index) object ...\n",
-       "    dry_skin                                                                 (index) object ...\n",
-       "    impacted_tooth                                                           (index) object ...\n",
-       "    acquired_trigger_finger                                                  (index) object ...\n",
-       "    chronic_osteoarthritis                                                   (index) object ...\n",
-       "    acute_stress_disorder                                                    (index) object ...\n",
-       "    peripheral_circulatory_disorder_due_to_type_2_diabetes_mellitus          (index) object ...\n",
-       "    respiratory_failure                                                      (index) object ...\n",
-       "    allergic_disposition                                                     (index) object ...\n",
-       "    stress                                                                   (index) object ...\n",
-       "    atrophic_vaginitis                                                       (index) object ...\n",
-       "    degeneration_of_lumbosacral_intervertebral_disc                          (index) object ...\n",
-       "    astigmatism                                                              (index) object ...\n",
-       "    sick_sinus_syndrome                                                      (index) object ...\n",
-       "    cocaine_abuse                                                            (index) object ...\n",
-       "    intermittent_asthma                                                      (index) object ...\n",
-       "    cervical_radiculopathy                                                   (index) object ...\n",
-       "    atherosclerosis_of_coronary_artery                                       (index) object ...\n",
-       "    methicillin_resistant_staphylococcus_aureus_infection                    (index) object ...\n",
-       "    female_pelvic_inflammatory_disease                                       (index) object ...\n",
-       "    pain_in_eye                                                              (index) object ...\n",
-       "    cervical_spondylosis                                                     (index) object ...\n",
-       "    prematurity_of_infant                                                    (index) object ...\n",
-       "    postmature_infancy                                                       (index) object ...\n",
-       "    temporomandibular_joint_disorder                                         (index) object ...\n",
-       "    nocturia                                                                 (index) object ...\n",
-       "    adjustment_disorder_with_depressed_mood                                  (index) object ...\n",
-       "    visual_impairment                                                        (index) object ...\n",
-       "    male_hypogonadism                                                        (index) object ...\n",
-       "    closed_intertrochanteric_fracture                                        (index) object ...\n",
-       "    pain_in_limb                                                             (index) object ...\n",
-       "    complication_occurring_during_pregnancy                                  (index) object ...\n",
-       "    sprain_of_knee                                                           (index) object ...\n",
-       "    fracture_of_ankle                                                        (index) object ...\n",
-       "    injury_of_hand                                                           (index) object ...\n",
-       "    postoperative_wound_infection                                            (index) object ...\n",
-       "    congestive_cardiomyopathy                                                (index) object ...\n",
-       "    nocturnal_enuresis                                                       (index) object ...\n",
-       "    proliferative_retinopathy_due_to_diabetes_mellitus                       (index) object ...\n",
-       "    major_depressive_disorder                                                (index) object ...\n",
-       "    chronic_bronchitis                                                       (index) object ...\n",
-       "    advanced_maternal_age_gravida                                            (index) object ...\n",
-       "    recurrent_major_depression_in_full_remission                             (index) object ...\n",
-       "    pregnancy-induced_hypertension                                           (index) object ...\n",
-       "    epididymitis                                                             (index) object ...\n",
-       "    impetigo                                                                 (index) object ...\n",
-       "    schizoaffective_disorder                                                 (index) object ...\n",
-       "    candidiasis_of_mouth                                                     (index) object ...\n",
-       "    mild_recurrent_major_depression                                          (index) object ...\n",
-       "    cerebral_palsy                                                           (index) object ...\n",
-       "    squamous_cell_carcinoma_of_skin                                          (index) object ...\n",
-       "    hypogonadism                                                             (index) object ...\n",
-       "    greater_trochanteric_pain_syndrome                                       (index) object ...\n",
-       "    graves'_disease                                                          (index) object ...\n",
-       "    malignant_neoplastic_disease                                             (index) object ...\n",
-       "    moderate_persistent_asthma                                               (index) object ...\n",
-       "    steatosis_of_liver                                                       (index) object ...\n",
-       "    obsessive-compulsive_disorder                                            (index) object ...\n",
-       "    mood_disorder                                                            (index) object ...\n",
-       "    degeneration_of_cervical_intervertebral_disc                             (index) object ...\n",
-       "    corneal_abrasion                                                         (index) object ...\n",
-       "    anal_fissure                                                             (index) object ...\n",
-       "    heart_failure                                                            (index) object ...\n",
-       "    adjustment_disorder_with_mixed_emotional_features                        (index) object ...\n",
-       "    febrile_convulsion                                                       (index) object ...\n",
-       "    degenerative_joint_disease_of_hand                                       (index) object ...\n",
-       "    chronic_type_b_viral_hepatitis                                           (index) object ...\n",
-       "    blepharitis                                                              (index) object ...\n",
-       "    cyst                                                                     (index) object ...\n",
-       "    heartburn                                                                (index) object ...\n",
-       "    intellectual_disability                                                  (index) object ...\n",
-       "    exudative_age-related_macular_degeneration                               (index) object ...\n",
-       "    hypoxia                                                                  (index) object ...\n",
-       "    influenza                                                                (index) object ...\n",
-       "    intervertebral_disc_prolapse                                             (index) object ...\n",
-       "    swelling_of_first_metatarsophalangeal_joint_of_hallux                    (index) object ...\n",
-       "    genuine_stress_incontinence                                              (index) object ...\n",
-       "    opioid_dependence                                                        (index) object ...\n",
-       "    antepartum_hemorrhage                                                    (index) object ...\n",
-       "    pneumothorax                                                             (index) object ...\n",
-       "    kidney_disease                                                           (index) object ...\n",
-       "    atopic_conjunctivitis                                                    (index) object ...\n",
-       "    dermatophytosis                                                          (index) object ...\n",
-       "    influenza_caused_by_influenza_a_virus                                    (index) object ...\n",
-       "    cystitis                                                                 (index) object ...\n",
-       "    moderate_major_depression_single_episode                                 (index) object ...\n",
-       "    furuncle                                                                 (index) object ...\n",
-       "    cannabis_abuse                                                           (index) object ...\n",
-       "    conductive_hearing_loss                                                  (index) object ...\n",
-       "    neutropenic_disorder                                                     (index) object ...\n",
-       "    injury_of_finger                                                         (index) object ...\n",
-       "    intestinal_obstruction                                                   (index) object ...\n",
-       "    lymphadenopathy                                                          (index) object ...\n",
-       "    mass_of_pelvic_structure                                                 (index) object ...\n",
-       "    myelodysplastic_syndrome                                                 (index) object ...\n",
-       "    jaundice                                                                 (index) object ...\n",
-       "    severe_recurrent_major_depression_without_psychotic_features             (index) object ...\n",
-       "    inflammation_of_cervix                                                   (index) object ...\n",
-       "    sickle_cell_trait                                                        (index) object ...\n",
-       "    squamous_cell_carcinoma                                                  (index) object ...\n",
-       "    small_bowel_obstruction                                                  (index) object ...\n",
-       "    compression_fracture                                                     (index) object ...\n",
-       "    premenstrual_tension_syndrome                                            (index) object ...\n",
-       "    fracture_of_proximal_end_of_femur                                        (index) object ...\n",
-       "    developmental_delay                                                      (index) object ...\n",
-       "    drug_abuse                                                               (index) object ...\n",
-       "    left_lower_quadrant_pain                                                 (index) object ...\n",
-       "    hordeolum                                                                (index) object ...\n",
-       "    disorder_of_lung                                                         (index) object ...\n",
-       "    migraine_without_aura                                                    (index) object ...\n",
-       "    open-angle_glaucoma_-_borderline                                         (index) object ...\n",
-       "    disorder_of_refraction                                                   (index) object ...\n",
-       "    acute_appendicitis                                                       (index) object ...\n",
-       "    amyloidosis                                                              (index) object ...\n",
-       "    hodgkin's_disease                                                        (index) object ...\n",
-       "    hydrocele_of_testis                                                      (index) object ...\n",
-       "    cellulitis_of_foot                                                       (index) object ...\n",
-       "    pancytopenia                                                             (index) object ...\n",
-       "    pain_in_elbow                                                            (index) object ...\n",
-       "    peripheral_nerve_disease                                                 (index) object ...\n",
-       "    eating_disorder                                                          (index) object ...\n",
-       "    hernia_of_abdominal_cavity                                               (index) object ...\n",
-       "    secondary_malignant_neoplasm_of_brain                                    (index) object ...\n",
-       "    late_effects_of_respiratory_tuberculosis                                 (index) object ...\n",
-       "    alcohol_intoxication                                                     (index) object ...\n",
-       "    abrasion                                                                 (index) object ...\n",
-       "    breech_presentation                                                      (index) object ...\n",
-       "    premature_labor                                                          (index) object ...\n",
-       "    raynaud's_phenomenon                                                     (index) object ...\n",
-       "    posterior_rhinorrhea                                                     (index) object ...\n",
-       "    acute_gastritis                                                          (index) object ...\n",
-       "    polyp_of_nasal_cavity                                                    (index) object ...\n",
-       "    essential_tremor                                                         (index) object ...\n",
-       "    candidiasis                                                              (index) object ...\n",
-       "    ocular_hypertension                                                      (index) object ...\n",
-       "    aortic_valve_disorder                                                    (index) object ...\n",
-       "    diaper_rash                                                              (index) object ...\n",
-       "    cholangitis                                                              (index) object ...\n",
-       "    primary_malignant_neoplasm_of_lung                                       (index) object ...\n",
-       "    impingement_syndrome_of_shoulder_region                                  (index) object ...\n",
-       "    idiopathic_urticaria                                                     (index) object ...\n",
-       "    arthritis_of_knee                                                        (index) object ...\n",
-       "    ulcer_of_duodenum                                                        (index) object ...\n",
-       "    peripheral_neuropathy_due_to_diabetes_mellitus                           (index) object ...\n",
-       "    hypervolemia                                                             (index) object ...\n",
-       "    cholecystitis                                                            (index) object ...\n",
-       "    deficiency_of_glucose-6-phosphate_dehydrogenase                          (index) object ...\n",
-       "    acute_pyelonephritis                                                     (index) object ...\n",
-       "    musculoskeletal_chest_pain                                               (index) object ...\n",
-       "    melena                                                                   (index) object ...\n",
-       "    cigarette_smoker                                                         (index) object ...\n",
-       "    infectious_mononucleosis                                                 (index) object ...\n",
-       "    hypertensive_renal_failure                                               (index) object ...\n",
-       "    cocaine_dependence                                                       (index) object ...\n",
-       "    abdominal_aortic_aneurysm_without_rupture                                (index) object ...\n",
-       "    right_bundle_branch_block                                                (index) object ...\n",
-       "    alcoholic_cirrhosis                                                      (index) object ...\n",
-       "    fibrosis_of_lung                                                         (index) object ...\n",
-       "    neoplasm_of_uncertain_behavior_of_skin                                   (index) object ...\n",
-       "    malignant_melanoma_of_skin                                               (index) object ...\n",
-       "    urgent_desire_to_urinate                                                 (index) object ...\n",
-       "    bursitis_of_hip                                                          (index) object ...\n",
-       "    chronic_alcoholism_in_remission                                          (index) object ...\n",
-       "    chronic_pancreatitis                                                     (index) object ...\n",
-       "    gastroparesis                                                            (index) object ...\n",
-       "    ectopic_pregnancy                                                        (index) object ...\n",
-       "    muscle_weakness                                                          (index) object ...\n",
-       "    recurrent_major_depression                                               (index) object ...\n",
-       "    pilonidal_cyst                                                           (index) object ...\n",
-       "    pain_in_toe                                                              (index) object ...\n",
-       "    pulmonary_tuberculosis                                                   (index) object ...\n",
-       "    celiac_disease                                                           (index) object ...\n",
-       "    cramp_in_lower_leg                                                       (index) object ...\n",
-       "    secondary_malignant_neoplasm_of_pleura                                   (index) object ...\n",
-       "    fracture_of_hand                                                         (index) object ...\n",
-       "    cyst_of_breast                                                           (index) object ...\n",
-       "    nephrotic_syndrome                                                       (index) object ...\n",
-       "    polyp_of_nasal_sinus                                                     (index) object ...\n",
-       "    chondromalacia_of_patella                                                (index) object ...\n",
-       "    spinal_stenosis_in_cervical_region                                       (index) object ...\n",
-       "    disorder_of_artery                                                       (index) object ...\n",
-       "    vitiligo                                                                 (index) object ...\n",
-       "    female_cystocele                                                         (index) object ...\n",
-       "    dysphasia                                                                (index) object ...\n",
-       "    retinal_disorder                                                         (index) object ...\n",
-       "    epiretinal_membrane                                                      (index) object ...\n",
-       "    recurrent_major_depression_in_partial_remission                          (index) object ...\n",
-       "    infection_caused_by_trichomonas                                          (index) object ...\n",
-       "    osteomyelitis                                                            (index) object ...\n",
-       "    polyp_of_nasal_cavity_and/or_nasal_sinus                                 (index) object ...\n",
-       "    mass_of_neck                                                             (index) object ...\n",
-       "    idiopathic_thrombocytopenic_purpura                                      (index) object ...\n",
-       "    complete_miscarriage                                                     (index) object ...\n",
-       "    gastric_ulcer                                                            (index) object ...\n",
-       "    papilloma_of_skin                                                        (index) object ...\n",
-       "    fetal_or_neonatal_effect_of_breech_delivery_and_extraction               (index) object ...\n",
-       "    secondary_malignant_neoplastic_disease                                   (index) object ...\n",
-       "    hypoxemia                                                                (index) object ...\n",
-       "    paraplegia                                                               (index) object ...\n",
-       "    perforation_of_tympanic_membrane                                         (index) object ...\n",
-       "    ventricular_tachycardia                                                  (index) object ...\n",
-       "    mixed_incontinence                                                       (index) object ...\n",
-       "    disorder_of_eye_due_to_type_2_diabetes_mellitus                          (index) object ...\n",
-       "    trigeminal_neuralgia                                                     (index) object ...\n",
-       "    retinal_detachment                                                       (index) object ...\n",
-       "    leukopenia                                                               (index) object ...\n",
-       "    vitreous_hemorrhage                                                      (index) object ...\n",
-       "    ischemic_ulcer                                                           (index) object ...\n",
-       "    intramural_leiomyoma_of_uterus                                           (index) object ...\n",
-       "    viral_hepatitis_type_a                                                   (index) object ...\n",
-       "    ménière's_disease                                                        (index) object ...\n",
-       "    fracture_of_phalanx_of_hand                                              (index) object ...\n",
-       "    muscle_atrophy                                                           (index) object ...\n",
-       "    incontinence_of_feces                                                    (index) object ...\n",
-       "    mitral_valve_disorder                                                    (index) object ...\n",
-       "    atherosclerosis_of_arteries_of_the_extremities                           (index) object ...\n",
-       "    spondylosis                                                              (index) object ...\n",
-       "    pterygium                                                                (index) object ...\n",
-       "    ulnar_neuropathy                                                         (index) object ...\n",
-       "    lung_mass                                                                (index) object ...\n",
-       "    foreign_body_in_respiratory_tract                                        (index) object ...\n",
-       "    chronic_kidney_disease_stage_4                                           (index) object ...\n",
-       "    myocardial_ischemia                                                      (index) object ...\n",
-       "    non-toxic_multinodular_goiter                                            (index) object ...\n",
-       "    pain_in_finger                                                           (index) object ...\n",
-       "    cervical_spondylosis_without_myelopathy                                  (index) object ...\n",
-       "    body_mass_index_25-29_-_overweight                                       (index) object ...\n",
-       "    clouded_consciousness                                                    (index) object ...\n",
-       "    mixed_conductive_and_sensorineural_hearing_loss                          (index) object ...\n",
-       "    tooth_eruption_disorder                                                  (index) object ...\n",
-       "    hyperuricemia                                                            (index) object ...\n",
-       "    closed_fracture_of_neck_of_femur                                         (index) object ...\n",
-       "    bipolar_ii_disorder                                                      (index) object ...\n",
-       "    disturbance_in_sleep_behavior                                            (index) object ...\n",
-       "    relationship_problems                                                    (index) object ...\n",
-       "    sprain_of_wrist                                                          (index) object ...\n",
-       "    personality_disorder                                                     (index) object ...\n",
-       "    external_hemorrhoids                                                     (index) object ...\n",
-       "    abnormal_vision                                                          (index) object ...\n",
-       "    hyperprolactinemia                                                       (index) object ...\n",
-       "    hemochromatosis                                                          (index) object ...\n",
-       "    lumbosacral_radiculopathy                                                (index) object ...\n",
-       "    heart_valve_disorder                                                     (index) object ...\n",
-       "    cardiac_arrest                                                           (index) object ...\n",
-       "    infection_caused_by_molluscum_contagiosum                                (index) object ...\n",
-       "    chronic_kidney_disease_stage_2                                           (index) object ...\n",
-       "    secondary_malignant_neoplasm_of_peritoneum                               (index) object ...\n",
-       "    thoracic_back_pain                                                       (index) object ...\n",
-       "    blood_in_urine                                                           (index) object ...\n",
-       "    adhesive_capsulitis_of_shoulder                                          (index) object ...\n",
-       "    diplopia                                                                 (index) object ...\n",
-       "    sjögren's_syndrome                                                       (index) object ...\n",
-       "    ureteric_stone                                                           (index) object ...\n",
-       "    bronchospasm                                                             (index) object ...\n",
-       "    chronic_fatigue_syndrome                                                 (index) object ...\n",
-       "    cannabis_dependence                                                      (index) object ...\n",
-       "    neck_sprain                                                              (index) object ...\n",
-       "    multinodular_goiter                                                      (index) object ...\n",
-       "    ptosis_of_eyelid                                                         (index) object ...\n",
-       "    failure_to_thrive                                                        (index) object ...\n",
-       "    torticollis                                                              (index) object ...\n",
-       "    acute_bronchiolitis                                                      (index) object ...\n",
-       "    viral_exanthem                                                           (index) object ...\n",
-       "    talipes_planus                                                           (index) object ...\n",
-       "    idiopathic_peripheral_neuropathy                                         (index) object ...\n",
-       "    foreign_body_in_pharynx                                                  (index) object ...\n",
-       "    jaw_pain                                                                 (index) object ...\n",
-       "    renal_impairment                                                         (index) object ...\n",
-       "    ataxia                                                                   (index) object ...\n",
-       "    age-related_macular_degeneration                                         (index) object ...\n",
-       "    uterine_prolapse                                                         (index) object ...\n",
-       "    renal_mass                                                               (index) object ...\n",
-       "    pneumonitis                                                              (index) object ...\n",
-       "    coordination_problem                                                     (index) object ...\n",
-       "    blindness_-_both_eyes                                                    (index) object ...\n",
-       "    primary_hyperparathyroidism                                              (index) object ...\n",
-       "    musculoskeletal_pain                                                     (index) object ...\n",
-       "    mycosis                                                                  (index) object ...\n",
-       "    primigravida                                                             (index) object ...\n",
-       "    urethral_stricture                                                       (index) object ...\n",
-       "    leukocytosis                                                             (index) object ...\n",
-       "    ventricular_premature_complex                                            (index) object ...\n",
-       "    ulcer_of_foot_due_to_diabetes_mellitus                                   (index) object ...\n",
-       "    chronic_headache_disorder                                                (index) object ...\n",
-       "    hemangioma                                                               (index) object ...\n",
-       "    lymphedema                                                               (index) object ...\n",
-       "    postmenopausal_state                                                     (index) object ...\n",
-       "    chronic_ulcer_of_skin                                                    (index) object ...\n",
-       "    left_heart_failure                                                       (index) object ...\n",
-       "    excessive_and_frequent_menstruation                                      (index) object ...\n",
-       "    thrombocytosis                                                           (index) object ...\n",
-       "    disorder_of_liver                                                        (index) object ...\n",
-       "    disorder_of_carotid_artery                                               (index) object ...\n",
-       "    altered_bowel_function                                                   (index) object ...\n",
-       "    abscess_of_foot                                                          (index) object ...\n",
-       "    malignant_tumor_of_head_and/or_neck                                      (index) object ...\n",
-       "    streptococcus_group_b_infection_of_the_infant                            (index) object ...\n",
-       "    concussion_injury_of_brain                                               (index) object ...\n",
-       "    feeding_problems_in_newborn                                              (index) object ...\n",
-       "    bipolar_i_disorder                                                       (index) object ...\n",
-       "    viral_pharyngitis                                                        (index) object ...\n",
-       "    lower_respiratory_tract_infection                                        (index) object ...\n",
-       "    hydronephrosis                                                           (index) object ...\n",
-       "    borderline_personality_disorder                                          (index) object ...\n",
-       "    esophageal_varices                                                       (index) object ...\n",
-       "    hypersomnia                                                              (index) object ...\n",
-       "    sensorineural_hearing_loss_bilateral                                     (index) object ...\n",
-       "    varicocele                                                               (index) object ...\n",
-       "    subarachnoid_intracranial_hemorrhage                                     (index) object ...\n",
-       "    incisional_hernia                                                        (index) object ...\n",
-       "    varicella                                                                (index) object ...\n",
-       "    pain_in_testicle                                                         (index) object ...\n",
-       "    transplant_follow-up                                                     (index) object ...\n",
-       "    tinea_cruris                                                             (index) object ...\n",
-       "    laryngitis                                                               (index) object ...\n",
-       "    hypertrophy_of_nail                                                      (index) object ...\n",
-       "    amblyopia                                                                (index) object ...\n",
-       "    polyp_of_cervix                                                          (index) object ...\n",
-       "    cyst_of_kidney                                                           (index) object ...\n",
-       "    hepatic_encephalopathy                                                   (index) object ...\n",
-       "    blood_glucose_abnormal                                                   (index) object ...\n",
-       "    postherpetic_neuralgia                                                   (index) object ...\n",
-       "    frank_hematuria                                                          (index) object ...\n",
-       "    cramp                                                                    (index) object ...\n",
-       "    interstitial_lung_disease                                                (index) object ...\n",
-       "    complete_atrioventricular_block                                          (index) object ...\n",
-       "    malignant_tumor_of_kidney                                                (index) object ...\n",
-       "    otitis                                                                   (index) object ...\n",
-       "    septic_shock                                                             (index) object ...\n",
-       "    disorder_of_thyroid_gland                                                (index) object ...\n",
-       "    hypertrophic_cardiomyopathy                                              (index) object ...\n",
-       "    respiratory_distress_syndrome_in_the_newborn                             (index) object ...\n",
-       "    infectious_gastroenteritis                                               (index) object ...\n",
-       "    subdural_intracranial_hemorrhage                                         (index) object ...\n",
-       "    hepatitis_b_carrier                                                      (index) object ...\n",
-       "    manic_bipolar_i_disorder                                                 (index) object ...\n",
-       "    secondary_pulmonary_hypertension                                         (index) object ...\n",
-       "    gonorrhea                                                                (index) object ...\n",
-       "    derangement_of_knee                                                      (index) object ...\n",
-       "    appendicitis                                                             (index) object ...\n",
-       "    polyneuropathy_due_to_diabetes_mellitus                                  (index) object ...\n",
-       "    neonatal_hypoglycemia                                                    (index) object ...\n",
-       "    prolonged_rupture_of_membranes                                           (index) object ...\n",
-       "    vasomotor_rhinitis                                                       (index) object ...\n",
-       "    renal_disorder_due_to_type_1_diabetes_mellitus                           (index) object ...\n",
-       "    tuberculosis                                                             (index) object ...\n",
-       "    feeding_problem                                                          (index) object ...\n",
-       "    chronic_tonsillitis                                                      (index) object ...\n",
-       "    acute_duodenal_ulcer_with_hemorrhage                                     (index) object ...\n",
-       "    hammer_toe                                                               (index) object ...\n",
-       "    malignant_tumor_of_cervix                                                (index) object ...\n",
-       "    prolapsed_lumbar_intervertebral_disc                                     (index) object ...\n",
-       "    hematemesis                                                              (index) object ...\n",
-       "    perianal_abscess                                                         (index) object ...\n",
-       "    nonvenomous_insect_bite                                                  (index) object ...\n",
-       "    spondylolisthesis                                                        (index) object ...\n",
-       "    malignant_tumor_of_esophagus                                             (index) object ...\n",
-       "    aphthous_ulcer_of_mouth                                                  (index) object ...\n",
-       "    ventricular_septal_defect                                                (index) object ...\n",
-       "    oropharyngeal_dysphagia                                                  (index) object ...\n",
-       "    injury_of_knee                                                           (index) object ...\n",
-       "    traumatic_brain_injury                                                   (index) object ...\n",
-       "    osteoarthritis_of_glenohumeral_joint                                     (index) object ...\n",
-       "    fetal_or_neonatal_effect_of_maternal_medical_problem                     (index) object ...
" - ], - "text/plain": [ - "\n", - "Dimensions: (index: 2979355)\n", - "Coordinates:\n", - " * index (index) int64 ...\n", - "Data variables:\n", - " eid (index) int64 ...\n", - " birthdate (index) object ...\n", - " t (index) float64 ...\n", - " sex_f31 (index) object ...\n", - " ethnic_background_f21000 (index) object ...\n", - " overall_health_rating_f2178 (index) object ...\n", - " smoking_status_f20116 (index) object ...\n", - " alcohol_intake_frequency_f1558 (index) object ...\n", - " townsend_deprivation_index_at_recruitment_f189 (index) float64 ...\n", - " body_mass_index_bmi_f21001 (index) float64 ...\n", - " weight_f21002 (index) float64 ...\n", - " systolic_blood_pressure_automated_reading_f4080 (index) float64 ...\n", - " diastolic_blood_pressure_automated_reading_f4079 (index) float64 ...\n", - " pulse_rate_automated_reading_f102 (index) float64 ...\n", - " pulse_wave_arterial_stiffness_index_f21021 (index) float64 ...\n", - " pulse_wave_reflection_index_f4195 (index) float64 ...\n", - " waist_circumference_f48 (index) float64 ...\n", - " hip_circumference_f49 (index) float64 ...\n", - " standing_height_f50 (index) float64 ...\n", - " trunk_fat_percentage_f23127 (index) float64 ...\n", - " body_fat_percentage_f23099 (index) float64 ...\n", - " basal_metabolic_rate_f23105 (index) float64 ...\n", - " forced_vital_capacity_fvc_best_measure_f20151 (index) float64 ...\n", - " forced_expiratory_volume_in_1second_fev1_best_measure_f20150 (index) float64 ...\n", - " fev1_fvc_ratio_zscore_f20258 (index) float64 ...\n", - " peak_expiratory_flow_pef_f3064 (index) float64 ...\n", - " basophill_count_f30160 (index) float64 ...\n", - " basophill_percentage_f30220 (index) float64 ...\n", - " eosinophill_count_f30150 (index) float64 ...\n", - " eosinophill_percentage_f30210 (index) float64 ...\n", - " haematocrit_percentage_f30030 (index) float64 ...\n", - " haemoglobin_concentration_f30020 (index) float64 ...\n", - " high_light_scatter_reticulocyte_count_f30300 (index) float64 ...\n", - " high_light_scatter_reticulocyte_percentage_f30290 (index) float64 ...\n", - " immature_reticulocyte_fraction_f30280 (index) float64 ...\n", - " lymphocyte_count_f30120 (index) float64 ...\n", - " lymphocyte_percentage_f30180 (index) float64 ...\n", - " mean_corpuscular_haemoglobin_f30050 (index) float64 ...\n", - " mean_corpuscular_haemoglobin_concentration_f30060 (index) float64 ...\n", - " mean_corpuscular_volume_f30040 (index) float64 ...\n", - " mean_platelet_thrombocyte_volume_f30100 (index) float64 ...\n", - " mean_reticulocyte_volume_f30260 (index) float64 ...\n", - " mean_sphered_cell_volume_f30270 (index) float64 ...\n", - " monocyte_count_f30130 (index) float64 ...\n", - " monocyte_percentage_f30190 (index) float64 ...\n", - " neutrophill_count_f30140 (index) float64 ...\n", - " neutrophill_percentage_f30200 (index) float64 ...\n", - " nucleated_red_blood_cell_count_f30170 (index) float64 ...\n", - " nucleated_red_blood_cell_percentage_f30230 (index) float64 ...\n", - " platelet_count_f30080 (index) float64 ...\n", - " platelet_crit_f30090 (index) float64 ...\n", - " platelet_distribution_width_f30110 (index) float64 ...\n", - " red_blood_cell_erythrocyte_count_f30010 (index) float64 ...\n", - " red_blood_cell_erythrocyte_distribution_width_f30070 (index) float64 ...\n", - " reticulocyte_count_f30250 (index) float64 ...\n", - " reticulocyte_percentage_f30240 (index) float64 ...\n", - " white_blood_cell_leukocyte_count_f30000 (index) float64 ...\n", - " alanine_aminotransferase_f30620 (index) float64 ...\n", - " albumin_f30600 (index) float64 ...\n", - " alkaline_phosphatase_f30610 (index) float64 ...\n", - " apolipoprotein_a_f30630 (index) float64 ...\n", - " apolipoprotein_b_f30640 (index) float64 ...\n", - " aspartate_aminotransferase_f30650 (index) float64 ...\n", - " creactive_protein_f30710 (index) float64 ...\n", - " calcium_f30680 (index) float64 ...\n", - " cholesterol_f30690 (index) float64 ...\n", - " creatinine_f30700 (index) float64 ...\n", - " cystatin_c_f30720 (index) float64 ...\n", - " direct_bilirubin_f30660 (index) float64 ...\n", - " gamma_glutamyltransferase_f30730 (index) float64 ...\n", - " glucose_f30740 (index) float64 ...\n", - " glycated_haemoglobin_hba1c_f30750 (index) float64 ...\n", - " hdl_cholesterol_f30760 (index) float64 ...\n", - " igf1_f30770 (index) float64 ...\n", - " ldl_direct_f30780 (index) float64 ...\n", - " lipoprotein_a_f30790 (index) float64 ...\n", - " oestradiol_f30800 (index) float64 ...\n", - " phosphate_f30810 (index) float64 ...\n", - " rheumatoid_factor_f30820 (index) float64 ...\n", - " shbg_f30830 (index) float64 ...\n", - " testosterone_f30850 (index) float64 ...\n", - " total_bilirubin_f30840 (index) float64 ...\n", - " total_protein_f30860 (index) float64 ...\n", - " triglycerides_f30870 (index) float64 ...\n", - " urate_f30880 (index) float64 ...\n", - " urea_f30670 (index) float64 ...\n", - " vitamin_d_f30890 (index) float64 ...\n", - " diagnosis (index) object ...\n", - " hypertensive_disorder_systemic_arterial (index) object ...\n", - " hyperlipidemia (index) object ...\n", - " depressive_disorder (index) object ...\n", - " gastroesophageal_reflux_disease (index) object ...\n", - " diabetes_mellitus_type_2 (index) object ...\n", - " essential_hypertension (index) object ...\n", - " obesity (index) object ...\n", - " diabetes_mellitus (index) object ...\n", - " asthma (index) object ...\n", - " coronary_arteriosclerosis (index) object ...\n", - " allergic_rhinitis (index) object ...\n", - " hypothyroidism (index) object ...\n", - " upper_respiratory_infection (index) object ...\n", - " hypercholesterolemia (index) object ...\n", - " backache (index) object ...\n", - " abdominal_pain (index) object ...\n", - " osteoarthritis (index) object ...\n", - " low_back_pain (index) object ...\n", - " anemia (index) object ...\n", - " anxiety (index) object ...\n", - " urinary_tract_infectious_disease (index) object ...\n", - " chronic_obstructive_lung_disease (index) object ...\n", - " atrial_fibrillation (index) object ...\n", - " pneumonia (index) object ...\n", - " chest_pain (index) object ...\n", - " congestive_heart_failure (index) object ...\n", - " headache (index) object ...\n", - " migraine (index) object ...\n", - " pregnant (index) object ...\n", - " knee_pain (index) object ...\n", - " osteoporosis (index) object ...\n", - " polyp_of_colon (index) object ...\n", - " otitis_media (index) object ...\n", - " sinusitis (index) object ...\n", - " cough (index) object ...\n", - " sleep_apnea (index) object ...\n", - " insomnia (index) object ...\n", - " inflammatory_disorder_due_to_increased_blood_urate_level (index) object ...\n", - " tobacco_dependence_syndrome (index) object ...\n", - " malignant_tumor_of_prostate (index) object ...\n", - " constipation (index) object ...\n", - " hearing_loss (index) object ...\n", - " fatigue (index) object ...\n", - " obstructive_sleep_apnea_syndrome (index) object ...\n", - " malignant_neoplasm_of_breast (index) object ...\n", - " delivery_normal (index) object ...\n", - " irritable_bowel_syndrome (index) object ...\n", - " tobacco_user (index) object ...\n", - " neck_pain (index) object ...\n", - " cerebrovascular_accident (index) object ...\n", - " asthenia (index) object ...\n", - " shoulder_pain (index) object ...\n", - " acne_vulgaris (index) object ...\n", - " benign_prostatic_hyperplasia (index) object ...\n", - " dyspnea (index) object ...\n", - " carpal_tunnel_syndrome (index) object ...\n", - " bronchitis (index) object ...\n", - " pharyngitis (index) object ...\n", - " arthritis (index) object ...\n", - " diarrhea (index) object ...\n", - " dizziness (index) object ...\n", - " alcohol_abuse (index) object ...\n", - " dementia (index) object ...\n", - " eczema (index) object ...\n", - " syncope (index) object ...\n", - " acute_sinusitis (index) object ...\n", - " iron_deficiency_anemia (index) object ...\n", - " allergic_rhinitis_caused_by_pollen (index) object ...\n", - " gastritis (index) object ...\n", - " cataract (index) object ...\n", - " hematuria_syndrome (index) object ...\n", - " disorder_of_the_peripheral_nervous_system (index) object ...\n", - " viral_hepatitis_type_c (index) object ...\n", - " palpitations (index) object ...\n", - " eruption_of_skin (index) object ...\n", - " diabetes_mellitus_type_1 (index) object ...\n", - " renal_failure_syndrome (index) object ...\n", - " peripheral_vascular_disease (index) object ...\n", - " hyperglycemia (index) object ...\n", - " seizure_disorder (index) object ...\n", - " fever (index) object ...\n", - " osteoarthritis_of_knee (index) object ...\n", - " actinic_keratosis (index) object ...\n", - " urinary_incontinence (index) object ...\n", - " hemorrhoids (index) object ...\n", - " seizure (index) object ...\n", - " laceration_-_injury (index) object ...\n", - " glaucoma (index) object ...\n", - " body_mass_index_30+_-_obesity (index) object ...\n", - " breast_lump (index) object ...\n", - " viral_disease (index) object ...\n", - " abnormal_cervical_smear (index) object ...\n", - " cellulitis (index) object ...\n", - " rheumatoid_arthritis (index) object ...\n", - " senile_hyperkeratosis (index) object ...\n", - " anxiety_disorder (index) object ...\n", - " vertigo (index) object ...\n", - " chronic_kidney_disease (index) object ...\n", - " dysphagia (index) object ...\n", - " edema (index) object ...\n", - " malignant_neoplasm_of_colon (index) object ...\n", - " hip_pain (index) object ...\n", - " posttraumatic_stress_disorder (index) object ...\n", - " inflammatory_dermatosis (index) object ...\n", - " psoriasis (index) object ...\n", - " myopia (index) object ...\n", - " senile_cataract (index) object ...\n", - " heart_murmur (index) object ...\n", - " liver_function_tests_abnormal (index) object ...\n", - " angina (index) object ...\n", - " impaired_fasting_glycemia (index) object ...\n", - " chronic_ischemic_heart_disease (index) object ...\n", - " chronic_sinusitis (index) object ...\n", - " menopause_present (index) object ...\n", - " basal_cell_carcinoma_of_skin (index) object ...\n", - " raised_prostate_specific_antigen (index) object ...\n", - " impaired_glucose_tolerance (index) object ...\n", - " smoker (index) object ...\n", - " hypertriglyceridemia (index) object ...\n", - " irregular_periods (index) object ...\n", - " herpes_zoster (index) object ...\n", - " sensorineural_hearing_loss (index) object ...\n", - " rectal_hemorrhage (index) object ...\n", - " peptic_ulcer (index) object ...\n", - " tinnitus (index) object ...\n", - " bipolar_disorder (index) object ...\n", - " vitamin_d_deficiency (index) object ...\n", - " transient_ischemic_attack (index) object ...\n", - " streptococcal_sore_throat (index) object ...\n", - " onychomycosis (index) object ...\n", - " deep_venous_thrombosis (index) object ...\n", - " presbyopia (index) object ...\n", - " neonatal_jaundice (index) object ...\n", - " bacterial_vaginosis (index) object ...\n", - " impacted_cerumen (index) object ...\n", - " foot_pain (index) object ...\n", - " sciatica (index) object ...\n", - " vomiting (index) object ...\n", - " benign_prostatic_hypertrophy_with_outflow_obstruction (index) object ...\n", - " type_ii_diabetes_mellitus_without_complication (index) object ...\n", - " calculus_in_biliary_tract (index) object ...\n", - " epigastric_pain (index) object ...\n", - " late_effects_of_cerebrovascular_disease (index) object ...\n", - " gastroenteritis (index) object ...\n", - " pulmonary_embolism (index) object ...\n", - " inguinal_hernia (index) object ...\n", - " verruca_vulgaris (index) object ...\n", - " sepsis (index) object ...\n", - " disorder_of_kidney_due_to_diabetes_mellitus (index) object ...\n", - " nausea_and_vomiting (index) object ...\n", - " hyperthyroidism (index) object ...\n", - " abscess (index) object ...\n", - " dental_caries (index) object ...\n", - " gastrointestinal_hemorrhage (index) object ...\n", - " rosacea (index) object ...\n", - " parkinson's_disease (index) object ...\n", - " menorrhagia (index) object ...\n", - " malignant_tumor_of_lung (index) object ...\n", - " joint_pain (index) object ...\n", - " morbid_obesity (index) object ...\n", - " hiatal_hernia (index) object ...\n", - " arthralgia_of_the_ankle_and/or_foot (index) object ...\n", - " restless_legs (index) object ...\n", - " thrombocytopenic_disorder (index) object ...\n", - " old_myocardial_infarction (index) object ...\n", - " neuropathy (index) object ...\n", - " cardiomyopathy (index) object ...\n", - " atopic_dermatitis (index) object ...\n", - " pain_in_pelvis (index) object ...\n", - " contact_dermatitis (index) object ...\n", - " indigestion (index) object ...\n", - " nicotine_dependence (index) object ...\n", - " sprain_of_ankle (index) object ...\n", - " degenerative_disorder_of_macula (index) object ...\n", - " exacerbation_of_asthma (index) object ...\n", - " alcohol_dependence (index) object ...\n", - " hypokalemia (index) object ...\n", - " mitral_valve_regurgitation (index) object ...\n", - " hyponatremia (index) object ...\n", - " abdominal_aortic_aneurysm (index) object ...\n", - " cyst_of_ovary (index) object ...\n", - " otitis_externa (index) object ...\n", - " threatened_abortion (index) object ...\n", - " scoliosis_deformity_of_spine (index) object ...\n", - " seborrheic_dermatitis (index) object ...\n", - " spinal_stenosis (index) object ...\n", - " dysmenorrhea (index) object ...\n", - " acute_otitis_media (index) object ...\n", - " alzheimer's_disease (index) object ...\n", - " neuropathy_due_to_diabetes_mellitus (index) object ...\n", - " acute_pharyngitis (index) object ...\n", - " degeneration_of_intervertebral_disc (index) object ...\n", - " attention_deficit_hyperactivity_disorder_predominantly_inattentive_type (index) object ...\n", - " unplanned_pregnancy (index) object ...\n", - " secondary_erectile_dysfunction (index) object ...\n", - " spinal_stenosis_of_lumbar_region (index) object ...\n", - " proteinuria (index) object ...\n", - " urticaria (index) object ...\n", - " genital_herpes_simplex (index) object ...\n", - " malignant_neoplasm_of_female_breast (index) object ...\n", - " nausea (index) object ...\n", - " chronic_rhinitis (index) object ...\n", - " multiple_sclerosis (index) object ...\n", - " chronic_kidney_disease_stage_3 (index) object ...\n", - " panic_disorder (index) object ...\n", - " attention_deficit_hyperactivity_disorder (index) object ...\n", - " amnesia (index) object ...\n", - " otalgia (index) object ...\n", - " tremor (index) object ...\n", - " retention_of_urine (index) object ...\n", - " non-hodgkin's_lymphoma (index) object ...\n", - " alcoholism (index) object ...\n", - " dysuria (index) object ...\n", - " generalized_anxiety_disorder (index) object ...\n", - " paroxysmal_atrial_fibrillation (index) object ...\n", - " peripheral_venous_insufficiency (index) object ...\n", - " nonproliferative_retinopathy_due_to_diabetes_mellitus (index) object ...\n", - " shoulder_joint_pain (index) object ...\n", - " moderate_recurrent_major_depression (index) object ...\n", - " diverticulitis (index) object ...\n", - " solitary_nodule_of_lung (index) object ...\n", - " hyperkalemia (index) object ...\n", - " recurrent_major_depressive_episodes (index) object ...\n", - " multiple_myeloma (index) object ...\n", - " regular_astigmatism (index) object ...\n", - " secondary_malignant_neoplasm_of_liver (index) object ...\n", - " ulcerative_colitis (index) object ...\n", - " vaginitis (index) object ...\n", - " acute_renal_failure_syndrome (index) object ...\n", - " amenorrhea (index) object ...\n", - " tendinitis (index) object ...\n", - " rhinitis (index) object ...\n", - " bleeding_from_nose (index) object ...\n", - " crohn's_disease (index) object ...\n", - " nuclear_senile_cataract (index) object ...\n", - " muscle_pain (index) object ...\n", - " epidermoid_cyst (index) object ...\n", - " impaired_cognition (index) object ...\n", - " acute_exacerbation_of_chronic_obstructive_airways_disease (index) object ...\n", - " eustachian_tube_disorder (index) object ...\n", - " internal_hemorrhoids (index) object ...\n", - " substance_abuse (index) object ...\n", - " melanocytic_nevus (index) object ...\n", - " pain (index) object ...\n", - " barrett's_esophagus (index) object ...\n", - " cerebrovascular_disease (index) object ...\n", - " malignant_melanoma (index) object ...\n", - " folliculitis (index) object ...\n", - " mitral_valve_prolapse (index) object ...\n", - " chronic_hepatitis_c (index) object ...\n", - " hypermetropia (index) object ...\n", - " endometriosis (index) object ...\n", - " gestational_diabetes_mellitus (index) object ...\n", - " cirrhosis_of_liver (index) object ...\n", - " injury_of_head (index) object ...\n", - " dehydration (index) object ...\n", - " herpes_simplex (index) object ...\n", - " fracture_of_bone (index) object ...\n", - " overweight (index) object ...\n", - " right_inguinal_hernia (index) object ...\n", - " adjustment_disorder (index) object ...\n", - " tinea_pedis (index) object ...\n", - " aortic_valve_stenosis (index) object ...\n", - " viral_hepatitis_type_b (index) object ...\n", - " umbilical_hernia (index) object ...\n", - " ingrowing_nail (index) object ...\n", - " postmenopausal_bleeding (index) object ...\n", - " goiter (index) object ...\n", - " secondary_malignant_neoplasm_of_bone (index) object ...\n", - " pulmonary_emphysema (index) object ...\n", - " left_inguinal_hernia (index) object ...\n", - " snoring (index) object ...\n", - " myocardial_infarction (index) object ...\n", - " polycystic_ovary_syndrome (index) object ...\n", - " polycystic_ovary (index) object ...\n", - " microscopic_hematuria (index) object ...\n", - " pain_in_wrist (index) object ...\n", - " pleural_effusion (index) object ...\n", - " false_labor (index) object ...\n", - " bleeding_from_vagina (index) object ...\n", - " acquired_hypothyroidism (index) object ...\n", - " premature_rupture_of_membranes (index) object ...\n", - " human_immunodeficiency_virus_infection (index) object ...\n", - " contusion (index) object ...\n", - " secondary_malignant_neoplasm_of_lung (index) object ...\n", - " problem_situation_relating_to_social_and_personal_history (index) object ...\n", - " hypercalcemia (index) object ...\n", - " occlusion_of_carotid_artery (index) object ...\n", - " prolonged_second_stage_of_labor (index) object ...\n", - " lipoma (index) object ...\n", - " poisoning_caused_by_drug_and/or_medicinal_substance (index) object ...\n", - " paranoid_schizophrenia (index) object ...\n", - " hypersensitivity_reaction (index) object ...\n", - " dysthymia (index) object ...\n", - " fetal_or_neonatal_effect_of_maternal_premature_rupture_of_membrane (index) object ...\n", - " noncompliance_with_treatment (index) object ...\n", - " falls (index) object ...\n", - " muscle_strain (index) object ...\n", - " schizophrenia (index) object ...\n", - " left_bundle_branch_block (index) object ...\n", - " disorder_of_nervous_system_due_to_type_2_diabetes_mellitus (index) object ...\n", - " preinfarction_syndrome (index) object ...\n", - " conduction_disorder_of_the_heart (index) object ...\n", - " lateral_epicondylitis (index) object ...\n", - " burn (index) object ...\n", - " pyelonephritis (index) object ...\n", - " intermittent_claudication (index) object ...\n", - " varicose_veins_of_lower_extremity (index) object ...\n", - " hemiplegia (index) object ...\n", - " chronic_pain (index) object ...\n", - " bronchiolitis (index) object ...\n", - " mild_persistent_asthma (index) object ...\n", - " secondary_malignant_neoplasm_of_lymph_node (index) object ...\n", - " mixed_hyperlipidemia (index) object ...\n", - " female_urinary_stress_incontinence (index) object ...\n", - " localized_primary_osteoarthritis_of_the_ankle_and/or_foot (index) object ...\n", - " hypesthesia (index) object ...\n", - " hand_pain (index) object ...\n", - " psychotic_disorder (index) object ...\n", - " menopausal_syndrome (index) object ...\n", - " acute_myocardial_infarction_of_anterior_wall (index) object ...\n", - " bronchiectasis (index) object ...\n", - " lumbar_radiculopathy (index) object ...\n", - " osteoarthritis_of_hip (index) object ...\n", - " deviated_nasal_septum (index) object ...\n", - " paresthesia (index) object ...\n", - " hypoglycemia (index) object ...\n", - " deep_venous_thrombosis_of_lower_extremity (index) object ...\n", - " complication_of_surgical_procedure (index) object ...\n", - " mild_intermittent_asthma (index) object ...\n", - " systemic_lupus_erythematosus (index) object ...\n", - " generalized_ischemic_myocardial_dysfunction (index) object ...\n", - " lumbar_spondylosis (index) object ...\n", - " acute_tonsillitis (index) object ...\n", - " esophagitis (index) object ...\n", - " aortic_valve_regurgitation (index) object ...\n", - " malignant_neoplasm_of_skin (index) object ...\n", - " altered_mental_status (index) object ...\n", - " atrial_flutter (index) object ...\n", - " alopecia (index) object ...\n", - " high_risk_pregnancy (index) object ...\n", - " missed_abortion (index) object ...\n", - " malignant_tumor_of_urinary_bladder (index) object ...\n", - " pulmonary_hypertension (index) object ...\n", - " nasal_congestion (index) object ...\n", - " hemoptysis (index) object ...\n", - " viral_gastroenteritis (index) object ...\n", - " right_upper_quadrant_pain (index) object ...\n", - " primary_open_angle_glaucoma (index) object ...\n", - " malignant_tumor_of_ovary (index) object ...\n", - " incomplete_emptying_of_bladder (index) object ...\n", - " pruritic_disorder (index) object ...\n", - " fibrocystic_breast_changes (index) object ...\n", - " tinea_corporis (index) object ...\n", - " acute_pancreatitis (index) object ...\n", - " acute_myocardial_infarction (index) object ...\n", - " cerebral_hemorrhage (index) object ...\n", - " urge_incontinence_of_urine (index) object ...\n", - " megaloblastic_anemia_due_to_vitamin_b>12<_deficiency (index) object ...\n", - " chronic_lymphoid_leukemia_disease (index) object ...\n", - " disorder_of_lymphatic_system (index) object ...\n", - " diverticular_disease (index) object ...\n", - " tonsillitis (index) object ...\n", - " tear_film_insufficiency (index) object ...\n", - " abnormal_gait (index) object ...\n", - " orthostatic_hypotension (index) object ...\n", - " pancreatitis (index) object ...\n", - " closed_fracture_of_distal_end_of_radius (index) object ...\n", - " first_degree_perineal_laceration (index) object ...\n", - " not_for_resuscitation (index) object ...\n", - " gastroesophageal_reflux_disease_with_esophagitis (index) object ...\n", - " intracranial_injury (index) object ...\n", - " bell's_palsy (index) object ...\n", - " bradycardia (index) object ...\n", - " polymyalgia_rheumatica (index) object ...\n", - " dysplasia_of_cervix (index) object ...\n", - " serous_otitis_media (index) object ...\n", - " angioedema (index) object ...\n", - " venous_varices (index) object ...\n", - " spasm (index) object ...\n", - " sleep_disorder (index) object ...\n", - " pain_of_breast (index) object ...\n", - " malabsorption_syndrome_due_to_intolerance_to_lactose (index) object ...\n", - " tachycardia (index) object ...\n", - " acute_conjunctivitis (index) object ...\n", - " malignant_lymphoma (index) object ...\n", - " supraventricular_tachycardia (index) object ...\n", - " hyperparathyroidism (index) object ...\n", - " periodontitis (index) object ...\n", - " renal_disorder_due_to_type_2_diabetes_mellitus (index) object ...\n", - " nerve_root_disorder (index) object ...\n", - " nonexudative_age-related_macular_degeneration (index) object ...\n", - " tension-type_headache (index) object ...\n", - " chronic_pain_syndrome (index) object ...\n", - " abnormal_weight_loss (index) object ...\n", - " pure_hypercholesterolemia (index) object ...\n", - " acute_upper_respiratory_infection (index) object ...\n", - " inflammatory_disease_of_liver (index) object ...\n", - " colitis (index) object ...\n", - " prolonged_pregnancy (index) object ...\n", - " major_depression_single_episode (index) object ...\n", - " croup (index) object ...\n", - " skin_tag (index) object ...\n", - " metabolic_syndrome_x (index) object ...\n", - " adverse_reaction_caused_by_drug (index) object ...\n", - " retinopathy_due_to_diabetes_mellitus (index) object ...\n", - " female_infertility (index) object ...\n", - " open-angle_glaucoma (index) object ...\n", - " tietze's_disease (index) object ...\n", - " gallbladder_calculus (index) object ...\n", - " sarcoidosis (index) object ...\n", - " neurogenic_bladder (index) object ...\n", - " tobacco_dependence_in_remission (index) object ...\n", - " wheezing (index) object ...\n", - " elevated_levels_of_transaminase_&_lactic_acid_dehydrogenase (index) object ...\n", - " ascites (index) object ...\n", - " low_blood_pressure (index) object ...\n", - " bursitis (index) object ...\n", - " miscarriage (index) object ...\n", - " methicillin_resistant_staphylococcus_aureus_carrier (index) object ...\n", - " urethritis (index) object ...\n", - " noninfectious_gastroenteritis (index) object ...\n", - " malignant_tumor_of_thyroid_gland (index) object ...\n", - " pressure_ulcer (index) object ...\n", - " verruca_plantaris (index) object ...\n", - " anemia_of_chronic_disorder (index) object ...\n", - " hernia_of_anterior_abdominal_wall (index) object ...\n", - " degeneration_of_lumbar_intervertebral_disc (index) object ...\n", - " right_lower_quadrant_pain (index) object ...\n", - " infertile (index) object ...\n", - " hernia_of_abdominal_wall (index) object ...\n", - " benign_paroxysmal_positional_vertigo (index) object ...\n", - " pityriasis_versicolor (index) object ...\n", - " injury_of_lower_leg (index) object ...\n", - " dry_skin (index) object ...\n", - " impacted_tooth (index) object ...\n", - " acquired_trigger_finger (index) object ...\n", - " chronic_osteoarthritis (index) object ...\n", - " acute_stress_disorder (index) object ...\n", - " peripheral_circulatory_disorder_due_to_type_2_diabetes_mellitus (index) object ...\n", - " respiratory_failure (index) object ...\n", - " allergic_disposition (index) object ...\n", - " stress (index) object ...\n", - " atrophic_vaginitis (index) object ...\n", - " degeneration_of_lumbosacral_intervertebral_disc (index) object ...\n", - " astigmatism (index) object ...\n", - " sick_sinus_syndrome (index) object ...\n", - " cocaine_abuse (index) object ...\n", - " intermittent_asthma (index) object ...\n", - " cervical_radiculopathy (index) object ...\n", - " atherosclerosis_of_coronary_artery (index) object ...\n", - " methicillin_resistant_staphylococcus_aureus_infection (index) object ...\n", - " female_pelvic_inflammatory_disease (index) object ...\n", - " pain_in_eye (index) object ...\n", - " cervical_spondylosis (index) object ...\n", - " prematurity_of_infant (index) object ...\n", - " postmature_infancy (index) object ...\n", - " temporomandibular_joint_disorder (index) object ...\n", - " nocturia (index) object ...\n", - " adjustment_disorder_with_depressed_mood (index) object ...\n", - " visual_impairment (index) object ...\n", - " male_hypogonadism (index) object ...\n", - " closed_intertrochanteric_fracture (index) object ...\n", - " pain_in_limb (index) object ...\n", - " complication_occurring_during_pregnancy (index) object ...\n", - " sprain_of_knee (index) object ...\n", - " fracture_of_ankle (index) object ...\n", - " injury_of_hand (index) object ...\n", - " postoperative_wound_infection (index) object ...\n", - " congestive_cardiomyopathy (index) object ...\n", - " nocturnal_enuresis (index) object ...\n", - " proliferative_retinopathy_due_to_diabetes_mellitus (index) object ...\n", - " major_depressive_disorder (index) object ...\n", - " chronic_bronchitis (index) object ...\n", - " advanced_maternal_age_gravida (index) object ...\n", - " recurrent_major_depression_in_full_remission (index) object ...\n", - " pregnancy-induced_hypertension (index) object ...\n", - " epididymitis (index) object ...\n", - " impetigo (index) object ...\n", - " schizoaffective_disorder (index) object ...\n", - " candidiasis_of_mouth (index) object ...\n", - " mild_recurrent_major_depression (index) object ...\n", - " cerebral_palsy (index) object ...\n", - " squamous_cell_carcinoma_of_skin (index) object ...\n", - " hypogonadism (index) object ...\n", - " greater_trochanteric_pain_syndrome (index) object ...\n", - " graves'_disease (index) object ...\n", - " malignant_neoplastic_disease (index) object ...\n", - " moderate_persistent_asthma (index) object ...\n", - " steatosis_of_liver (index) object ...\n", - " obsessive-compulsive_disorder (index) object ...\n", - " mood_disorder (index) object ...\n", - " degeneration_of_cervical_intervertebral_disc (index) object ...\n", - " corneal_abrasion (index) object ...\n", - " anal_fissure (index) object ...\n", - " heart_failure (index) object ...\n", - " adjustment_disorder_with_mixed_emotional_features (index) object ...\n", - " febrile_convulsion (index) object ...\n", - " degenerative_joint_disease_of_hand (index) object ...\n", - " chronic_type_b_viral_hepatitis (index) object ...\n", - " blepharitis (index) object ...\n", - " cyst (index) object ...\n", - " heartburn (index) object ...\n", - " intellectual_disability (index) object ...\n", - " exudative_age-related_macular_degeneration (index) object ...\n", - " hypoxia (index) object ...\n", - " influenza (index) object ...\n", - " intervertebral_disc_prolapse (index) object ...\n", - " swelling_of_first_metatarsophalangeal_joint_of_hallux (index) object ...\n", - " genuine_stress_incontinence (index) object ...\n", - " opioid_dependence (index) object ...\n", - " antepartum_hemorrhage (index) object ...\n", - " pneumothorax (index) object ...\n", - " kidney_disease (index) object ...\n", - " atopic_conjunctivitis (index) object ...\n", - " dermatophytosis (index) object ...\n", - " influenza_caused_by_influenza_a_virus (index) object ...\n", - " cystitis (index) object ...\n", - " moderate_major_depression_single_episode (index) object ...\n", - " furuncle (index) object ...\n", - " cannabis_abuse (index) object ...\n", - " conductive_hearing_loss (index) object ...\n", - " neutropenic_disorder (index) object ...\n", - " injury_of_finger (index) object ...\n", - " intestinal_obstruction (index) object ...\n", - " lymphadenopathy (index) object ...\n", - " mass_of_pelvic_structure (index) object ...\n", - " myelodysplastic_syndrome (index) object ...\n", - " jaundice (index) object ...\n", - " severe_recurrent_major_depression_without_psychotic_features (index) object ...\n", - " inflammation_of_cervix (index) object ...\n", - " sickle_cell_trait (index) object ...\n", - " squamous_cell_carcinoma (index) object ...\n", - " small_bowel_obstruction (index) object ...\n", - " compression_fracture (index) object ...\n", - " premenstrual_tension_syndrome (index) object ...\n", - " fracture_of_proximal_end_of_femur (index) object ...\n", - " developmental_delay (index) object ...\n", - " drug_abuse (index) object ...\n", - " left_lower_quadrant_pain (index) object ...\n", - " hordeolum (index) object ...\n", - " disorder_of_lung (index) object ...\n", - " migraine_without_aura (index) object ...\n", - " open-angle_glaucoma_-_borderline (index) object ...\n", - " disorder_of_refraction (index) object ...\n", - " acute_appendicitis (index) object ...\n", - " amyloidosis (index) object ...\n", - " hodgkin's_disease (index) object ...\n", - " hydrocele_of_testis (index) object ...\n", - " cellulitis_of_foot (index) object ...\n", - " pancytopenia (index) object ...\n", - " pain_in_elbow (index) object ...\n", - " peripheral_nerve_disease (index) object ...\n", - " eating_disorder (index) object ...\n", - " hernia_of_abdominal_cavity (index) object ...\n", - " secondary_malignant_neoplasm_of_brain (index) object ...\n", - " late_effects_of_respiratory_tuberculosis (index) object ...\n", - " alcohol_intoxication (index) object ...\n", - " abrasion (index) object ...\n", - " breech_presentation (index) object ...\n", - " premature_labor (index) object ...\n", - " raynaud's_phenomenon (index) object ...\n", - " posterior_rhinorrhea (index) object ...\n", - " acute_gastritis (index) object ...\n", - " polyp_of_nasal_cavity (index) object ...\n", - " essential_tremor (index) object ...\n", - " candidiasis (index) object ...\n", - " ocular_hypertension (index) object ...\n", - " aortic_valve_disorder (index) object ...\n", - " diaper_rash (index) object ...\n", - " cholangitis (index) object ...\n", - " primary_malignant_neoplasm_of_lung (index) object ...\n", - " impingement_syndrome_of_shoulder_region (index) object ...\n", - " idiopathic_urticaria (index) object ...\n", - " arthritis_of_knee (index) object ...\n", - " ulcer_of_duodenum (index) object ...\n", - " peripheral_neuropathy_due_to_diabetes_mellitus (index) object ...\n", - " hypervolemia (index) object ...\n", - " cholecystitis (index) object ...\n", - " deficiency_of_glucose-6-phosphate_dehydrogenase (index) object ...\n", - " acute_pyelonephritis (index) object ...\n", - " musculoskeletal_chest_pain (index) object ...\n", - " melena (index) object ...\n", - " cigarette_smoker (index) object ...\n", - " infectious_mononucleosis (index) object ...\n", - " hypertensive_renal_failure (index) object ...\n", - " cocaine_dependence (index) object ...\n", - " abdominal_aortic_aneurysm_without_rupture (index) object ...\n", - " right_bundle_branch_block (index) object ...\n", - " alcoholic_cirrhosis (index) object ...\n", - " fibrosis_of_lung (index) object ...\n", - " neoplasm_of_uncertain_behavior_of_skin (index) object ...\n", - " malignant_melanoma_of_skin (index) object ...\n", - " urgent_desire_to_urinate (index) object ...\n", - " bursitis_of_hip (index) object ...\n", - " chronic_alcoholism_in_remission (index) object ...\n", - " chronic_pancreatitis (index) object ...\n", - " gastroparesis (index) object ...\n", - " ectopic_pregnancy (index) object ...\n", - " muscle_weakness (index) object ...\n", - " recurrent_major_depression (index) object ...\n", - " pilonidal_cyst (index) object ...\n", - " pain_in_toe (index) object ...\n", - " pulmonary_tuberculosis (index) object ...\n", - " celiac_disease (index) object ...\n", - " cramp_in_lower_leg (index) object ...\n", - " secondary_malignant_neoplasm_of_pleura (index) object ...\n", - " fracture_of_hand (index) object ...\n", - " cyst_of_breast (index) object ...\n", - " nephrotic_syndrome (index) object ...\n", - " polyp_of_nasal_sinus (index) object ...\n", - " chondromalacia_of_patella (index) object ...\n", - " spinal_stenosis_in_cervical_region (index) object ...\n", - " disorder_of_artery (index) object ...\n", - " vitiligo (index) object ...\n", - " female_cystocele (index) object ...\n", - " dysphasia (index) object ...\n", - " retinal_disorder (index) object ...\n", - " epiretinal_membrane (index) object ...\n", - " recurrent_major_depression_in_partial_remission (index) object ...\n", - " infection_caused_by_trichomonas (index) object ...\n", - " osteomyelitis (index) object ...\n", - " polyp_of_nasal_cavity_and/or_nasal_sinus (index) object ...\n", - " mass_of_neck (index) object ...\n", - " idiopathic_thrombocytopenic_purpura (index) object ...\n", - " complete_miscarriage (index) object ...\n", - " gastric_ulcer (index) object ...\n", - " papilloma_of_skin (index) object ...\n", - " fetal_or_neonatal_effect_of_breech_delivery_and_extraction (index) object ...\n", - " secondary_malignant_neoplastic_disease (index) object ...\n", - " hypoxemia (index) object ...\n", - " paraplegia (index) object ...\n", - " perforation_of_tympanic_membrane (index) object ...\n", - " ventricular_tachycardia (index) object ...\n", - " mixed_incontinence (index) object ...\n", - " disorder_of_eye_due_to_type_2_diabetes_mellitus (index) object ...\n", - " trigeminal_neuralgia (index) object ...\n", - " retinal_detachment (index) object ...\n", - " leukopenia (index) object ...\n", - " vitreous_hemorrhage (index) object ...\n", - " ischemic_ulcer (index) object ...\n", - " intramural_leiomyoma_of_uterus (index) object ...\n", - " viral_hepatitis_type_a (index) object ...\n", - " ménière's_disease (index) object ...\n", - " fracture_of_phalanx_of_hand (index) object ...\n", - " muscle_atrophy (index) object ...\n", - " incontinence_of_feces (index) object ...\n", - " mitral_valve_disorder (index) object ...\n", - " atherosclerosis_of_arteries_of_the_extremities (index) object ...\n", - " spondylosis (index) object ...\n", - " pterygium (index) object ...\n", - " ulnar_neuropathy (index) object ...\n", - " lung_mass (index) object ...\n", - " foreign_body_in_respiratory_tract (index) object ...\n", - " chronic_kidney_disease_stage_4 (index) object ...\n", - " myocardial_ischemia (index) object ...\n", - " non-toxic_multinodular_goiter (index) object ...\n", - " pain_in_finger (index) object ...\n", - " cervical_spondylosis_without_myelopathy (index) object ...\n", - " body_mass_index_25-29_-_overweight (index) object ...\n", - " clouded_consciousness (index) object ...\n", - " mixed_conductive_and_sensorineural_hearing_loss (index) object ...\n", - " tooth_eruption_disorder (index) object ...\n", - " hyperuricemia (index) object ...\n", - " closed_fracture_of_neck_of_femur (index) object ...\n", - " bipolar_ii_disorder (index) object ...\n", - " disturbance_in_sleep_behavior (index) object ...\n", - " relationship_problems (index) object ...\n", - " sprain_of_wrist (index) object ...\n", - " personality_disorder (index) object ...\n", - " external_hemorrhoids (index) object ...\n", - " abnormal_vision (index) object ...\n", - " hyperprolactinemia (index) object ...\n", - " hemochromatosis (index) object ...\n", - " lumbosacral_radiculopathy (index) object ...\n", - " heart_valve_disorder (index) object ...\n", - " cardiac_arrest (index) object ...\n", - " infection_caused_by_molluscum_contagiosum (index) object ...\n", - " chronic_kidney_disease_stage_2 (index) object ...\n", - " secondary_malignant_neoplasm_of_peritoneum (index) object ...\n", - " thoracic_back_pain (index) object ...\n", - " blood_in_urine (index) object ...\n", - " adhesive_capsulitis_of_shoulder (index) object ...\n", - " diplopia (index) object ...\n", - " sjögren's_syndrome (index) object ...\n", - " ureteric_stone (index) object ...\n", - " bronchospasm (index) object ...\n", - " chronic_fatigue_syndrome (index) object ...\n", - " cannabis_dependence (index) object ...\n", - " neck_sprain (index) object ...\n", - " multinodular_goiter (index) object ...\n", - " ptosis_of_eyelid (index) object ...\n", - " failure_to_thrive (index) object ...\n", - " torticollis (index) object ...\n", - " acute_bronchiolitis (index) object ...\n", - " viral_exanthem (index) object ...\n", - " talipes_planus (index) object ...\n", - " idiopathic_peripheral_neuropathy (index) object ...\n", - " foreign_body_in_pharynx (index) object ...\n", - " jaw_pain (index) object ...\n", - " renal_impairment (index) object ...\n", - " ataxia (index) object ...\n", - " age-related_macular_degeneration (index) object ...\n", - " uterine_prolapse (index) object ...\n", - " renal_mass (index) object ...\n", - " pneumonitis (index) object ...\n", - " coordination_problem (index) object ...\n", - " blindness_-_both_eyes (index) object ...\n", - " primary_hyperparathyroidism (index) object ...\n", - " musculoskeletal_pain (index) object ...\n", - " mycosis (index) object ...\n", - " primigravida (index) object ...\n", - " urethral_stricture (index) object ...\n", - " leukocytosis (index) object ...\n", - " ventricular_premature_complex (index) object ...\n", - " ulcer_of_foot_due_to_diabetes_mellitus (index) object ...\n", - " chronic_headache_disorder (index) object ...\n", - " hemangioma (index) object ...\n", - " lymphedema (index) object ...\n", - " postmenopausal_state (index) object ...\n", - " chronic_ulcer_of_skin (index) object ...\n", - " left_heart_failure (index) object ...\n", - " excessive_and_frequent_menstruation (index) object ...\n", - " thrombocytosis (index) object ...\n", - " disorder_of_liver (index) object ...\n", - " disorder_of_carotid_artery (index) object ...\n", - " altered_bowel_function (index) object ...\n", - " abscess_of_foot (index) object ...\n", - " malignant_tumor_of_head_and/or_neck (index) object ...\n", - " streptococcus_group_b_infection_of_the_infant (index) object ...\n", - " concussion_injury_of_brain (index) object ...\n", - " feeding_problems_in_newborn (index) object ...\n", - " bipolar_i_disorder (index) object ...\n", - " viral_pharyngitis (index) object ...\n", - " lower_respiratory_tract_infection (index) object ...\n", - " hydronephrosis (index) object ...\n", - " borderline_personality_disorder (index) object ...\n", - " esophageal_varices (index) object ...\n", - " hypersomnia (index) object ...\n", - " sensorineural_hearing_loss_bilateral (index) object ...\n", - " varicocele (index) object ...\n", - " subarachnoid_intracranial_hemorrhage (index) object ...\n", - " incisional_hernia (index) object ...\n", - " varicella (index) object ...\n", - " pain_in_testicle (index) object ...\n", - " transplant_follow-up (index) object ...\n", - " tinea_cruris (index) object ...\n", - " laryngitis (index) object ...\n", - " hypertrophy_of_nail (index) object ...\n", - " amblyopia (index) object ...\n", - " polyp_of_cervix (index) object ...\n", - " cyst_of_kidney (index) object ...\n", - " hepatic_encephalopathy (index) object ...\n", - " blood_glucose_abnormal (index) object ...\n", - " postherpetic_neuralgia (index) object ...\n", - " frank_hematuria (index) object ...\n", - " cramp (index) object ...\n", - " interstitial_lung_disease (index) object ...\n", - " complete_atrioventricular_block (index) object ...\n", - " malignant_tumor_of_kidney (index) object ...\n", - " otitis (index) object ...\n", - " septic_shock (index) object ...\n", - " disorder_of_thyroid_gland (index) object ...\n", - " hypertrophic_cardiomyopathy (index) object ...\n", - " respiratory_distress_syndrome_in_the_newborn (index) object ...\n", - " infectious_gastroenteritis (index) object ...\n", - " subdural_intracranial_hemorrhage (index) object ...\n", - " hepatitis_b_carrier (index) object ...\n", - " manic_bipolar_i_disorder (index) object ...\n", - " secondary_pulmonary_hypertension (index) object ...\n", - " gonorrhea (index) object ...\n", - " derangement_of_knee (index) object ...\n", - " appendicitis (index) object ...\n", - " polyneuropathy_due_to_diabetes_mellitus (index) object ...\n", - " neonatal_hypoglycemia (index) object ...\n", - " prolonged_rupture_of_membranes (index) object ...\n", - " vasomotor_rhinitis (index) object ...\n", - " renal_disorder_due_to_type_1_diabetes_mellitus (index) object ...\n", - " tuberculosis (index) object ...\n", - " feeding_problem (index) object ...\n", - " chronic_tonsillitis (index) object ...\n", - " acute_duodenal_ulcer_with_hemorrhage (index) object ...\n", - " hammer_toe (index) object ...\n", - " malignant_tumor_of_cervix (index) object ...\n", - " prolapsed_lumbar_intervertebral_disc (index) object ...\n", - " hematemesis (index) object ...\n", - " perianal_abscess (index) object ...\n", - " nonvenomous_insect_bite (index) object ...\n", - " spondylolisthesis (index) object ...\n", - " malignant_tumor_of_esophagus (index) object ...\n", - " aphthous_ulcer_of_mouth (index) object ...\n", - " ventricular_septal_defect (index) object ...\n", - " oropharyngeal_dysphagia (index) object ...\n", - " injury_of_knee (index) object ...\n", - " traumatic_brain_injury (index) object ...\n", - " osteoarthritis_of_glenohumeral_joint (index) object ...\n", - " fetal_or_neonatal_effect_of_maternal_medical_problem (index) object ..." - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x_data" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "basic_data_cols = basic_data.drop(columns=\"birthdate\").columns.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['t',\n", - " 'sex_f31',\n", - " 'ethnic_background_f21000',\n", - " 'overall_health_rating_f2178',\n", - " 'smoking_status_f20116',\n", - " 'alcohol_intake_frequency_f1558',\n", - " 'townsend_deprivation_index_at_recruitment_f189',\n", - " 'body_mass_index_bmi_f21001',\n", - " 'weight_f21002',\n", - " 'systolic_blood_pressure_automated_reading_f4080',\n", - " 'diastolic_blood_pressure_automated_reading_f4079',\n", - " 'pulse_rate_automated_reading_f102',\n", - " 'pulse_wave_arterial_stiffness_index_f21021',\n", - " 'pulse_wave_reflection_index_f4195',\n", - " 'waist_circumference_f48',\n", - " 'hip_circumference_f49',\n", - " 'standing_height_f50',\n", - " 'trunk_fat_percentage_f23127',\n", - " 'body_fat_percentage_f23099',\n", - " 'basal_metabolic_rate_f23105',\n", - " 'forced_vital_capacity_fvc_best_measure_f20151',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure_f20150',\n", - " 'fev1_fvc_ratio_zscore_f20258',\n", - " 'peak_expiratory_flow_pef_f3064',\n", - " 'basophill_count_f30160',\n", - " 'basophill_percentage_f30220',\n", - " 'eosinophill_count_f30150',\n", - " 'eosinophill_percentage_f30210',\n", - " 'haematocrit_percentage_f30030',\n", - " 'haemoglobin_concentration_f30020',\n", - " 'high_light_scatter_reticulocyte_count_f30300',\n", - " 'high_light_scatter_reticulocyte_percentage_f30290',\n", - " 'immature_reticulocyte_fraction_f30280',\n", - " 'lymphocyte_count_f30120',\n", - " 'lymphocyte_percentage_f30180',\n", - " 'mean_corpuscular_haemoglobin_f30050',\n", - " 'mean_corpuscular_haemoglobin_concentration_f30060',\n", - " 'mean_corpuscular_volume_f30040',\n", - " 'mean_platelet_thrombocyte_volume_f30100',\n", - " 'mean_reticulocyte_volume_f30260',\n", - " 'mean_sphered_cell_volume_f30270',\n", - " 'monocyte_count_f30130',\n", - " 'monocyte_percentage_f30190',\n", - " 'neutrophill_count_f30140',\n", - " 'neutrophill_percentage_f30200',\n", - " 'nucleated_red_blood_cell_count_f30170',\n", - " 'nucleated_red_blood_cell_percentage_f30230',\n", - " 'platelet_count_f30080',\n", - " 'platelet_crit_f30090',\n", - " 'platelet_distribution_width_f30110',\n", - " 'red_blood_cell_erythrocyte_count_f30010',\n", - " 'red_blood_cell_erythrocyte_distribution_width_f30070',\n", - " 'reticulocyte_count_f30250',\n", - " 'reticulocyte_percentage_f30240',\n", - " 'white_blood_cell_leukocyte_count_f30000',\n", - " 'alanine_aminotransferase_f30620',\n", - " 'albumin_f30600',\n", - " 'alkaline_phosphatase_f30610',\n", - " 'apolipoprotein_a_f30630',\n", - " 'apolipoprotein_b_f30640',\n", - " 'aspartate_aminotransferase_f30650',\n", - " 'creactive_protein_f30710',\n", - " 'calcium_f30680',\n", - " 'cholesterol_f30690',\n", - " 'creatinine_f30700',\n", - " 'cystatin_c_f30720',\n", - " 'direct_bilirubin_f30660',\n", - " 'gamma_glutamyltransferase_f30730',\n", - " 'glucose_f30740',\n", - " 'glycated_haemoglobin_hba1c_f30750',\n", - " 'hdl_cholesterol_f30760',\n", - " 'igf1_f30770',\n", - " 'ldl_direct_f30780',\n", - " 'lipoprotein_a_f30790',\n", - " 'oestradiol_f30800',\n", - " 'phosphate_f30810',\n", - " 'rheumatoid_factor_f30820',\n", - " 'shbg_f30830',\n", - " 'testosterone_f30850',\n", - " 'total_bilirubin_f30840',\n", - " 'total_protein_f30860',\n", - " 'triglycerides_f30870',\n", - " 'urate_f30880',\n", - " 'urea_f30670',\n", - " 'vitamin_d_f30890',\n", - " 'diagnosis',\n", - " 'hypertensive_disorder_systemic_arterial',\n", - " 'hyperlipidemia',\n", - " 'depressive_disorder',\n", - " 'gastroesophageal_reflux_disease',\n", - " 'diabetes_mellitus_type_2',\n", - " 'essential_hypertension',\n", - " 'obesity',\n", - " 'diabetes_mellitus',\n", - " 'asthma',\n", - " 'coronary_arteriosclerosis',\n", - " 'allergic_rhinitis',\n", - " 'hypothyroidism',\n", - " 'upper_respiratory_infection',\n", - " 'hypercholesterolemia',\n", - " 'backache',\n", - " 'abdominal_pain',\n", - " 'osteoarthritis',\n", - " 'low_back_pain',\n", - " 'anemia',\n", - " 'anxiety',\n", - " 'urinary_tract_infectious_disease',\n", - " 'chronic_obstructive_lung_disease',\n", - " 'atrial_fibrillation',\n", - " 'pneumonia',\n", - " 'chest_pain',\n", - " 'congestive_heart_failure',\n", - " 'headache',\n", - " 'migraine',\n", - " 'pregnant',\n", - " 'knee_pain',\n", - " 'osteoporosis',\n", - " 'polyp_of_colon',\n", - " 'otitis_media',\n", - " 'sinusitis',\n", - " 'cough',\n", - " 'sleep_apnea',\n", - " 'insomnia',\n", - " 'inflammatory_disorder_due_to_increased_blood_urate_level',\n", - " 'tobacco_dependence_syndrome',\n", - " 'malignant_tumor_of_prostate',\n", - " 'constipation',\n", - " 'hearing_loss',\n", - " 'fatigue',\n", - " 'obstructive_sleep_apnea_syndrome',\n", - " 'malignant_neoplasm_of_breast',\n", - " 'delivery_normal',\n", - " 'irritable_bowel_syndrome',\n", - " 'tobacco_user',\n", - " 'neck_pain',\n", - " 'cerebrovascular_accident',\n", - " 'asthenia',\n", - " 'shoulder_pain',\n", - " 'acne_vulgaris',\n", - " 'benign_prostatic_hyperplasia',\n", - " 'dyspnea',\n", - " 'carpal_tunnel_syndrome',\n", - " 'bronchitis',\n", - " 'pharyngitis',\n", - " 'arthritis',\n", - " 'diarrhea',\n", - " 'dizziness',\n", - " 'alcohol_abuse',\n", - " 'dementia',\n", - " 'eczema',\n", - " 'syncope',\n", - " 'acute_sinusitis',\n", - " 'iron_deficiency_anemia',\n", - " 'allergic_rhinitis_caused_by_pollen',\n", - " 'gastritis',\n", - " 'cataract',\n", - " 'hematuria_syndrome',\n", - " 'disorder_of_the_peripheral_nervous_system',\n", - " 'viral_hepatitis_type_c',\n", - " 'palpitations',\n", - " 'eruption_of_skin',\n", - " 'diabetes_mellitus_type_1',\n", - " 'renal_failure_syndrome',\n", - " 'peripheral_vascular_disease',\n", - " 'hyperglycemia',\n", - " 'seizure_disorder',\n", - " 'fever',\n", - " 'osteoarthritis_of_knee',\n", - " 'actinic_keratosis',\n", - " 'urinary_incontinence',\n", - " 'hemorrhoids',\n", - " 'seizure',\n", - " 'laceration_-_injury',\n", - " 'glaucoma',\n", - " 'body_mass_index_30+_-_obesity',\n", - " 'breast_lump',\n", - " 'viral_disease',\n", - " 'abnormal_cervical_smear',\n", - " 'cellulitis',\n", - " 'rheumatoid_arthritis',\n", - " 'senile_hyperkeratosis',\n", - " 'anxiety_disorder',\n", - " 'vertigo',\n", - " 'chronic_kidney_disease',\n", - " 'dysphagia',\n", - " 'edema',\n", - " 'malignant_neoplasm_of_colon',\n", - " 'hip_pain',\n", - " 'posttraumatic_stress_disorder',\n", - " 'inflammatory_dermatosis',\n", - " 'psoriasis',\n", - " 'myopia',\n", - " 'senile_cataract',\n", - " 'heart_murmur',\n", - " 'liver_function_tests_abnormal',\n", - " 'angina',\n", - " 'impaired_fasting_glycemia',\n", - " 'chronic_ischemic_heart_disease',\n", - " 'chronic_sinusitis',\n", - " 'menopause_present',\n", - " 'basal_cell_carcinoma_of_skin',\n", - " 'raised_prostate_specific_antigen',\n", - " 'impaired_glucose_tolerance',\n", - " 'smoker',\n", - " 'hypertriglyceridemia',\n", - " 'irregular_periods',\n", - " 'herpes_zoster',\n", - " 'sensorineural_hearing_loss',\n", - " 'rectal_hemorrhage',\n", - " 'peptic_ulcer',\n", - " 'tinnitus',\n", - " 'bipolar_disorder',\n", - " 'vitamin_d_deficiency',\n", - " 'transient_ischemic_attack',\n", - " 'streptococcal_sore_throat',\n", - " 'onychomycosis',\n", - " 'deep_venous_thrombosis',\n", - " 'presbyopia',\n", - " 'neonatal_jaundice',\n", - " 'bacterial_vaginosis',\n", - " 'impacted_cerumen',\n", - " 'foot_pain',\n", - " 'sciatica',\n", - " 'vomiting',\n", - " 'benign_prostatic_hypertrophy_with_outflow_obstruction',\n", - " 'type_ii_diabetes_mellitus_without_complication',\n", - " 'calculus_in_biliary_tract',\n", - " 'epigastric_pain',\n", - " 'late_effects_of_cerebrovascular_disease',\n", - " 'gastroenteritis',\n", - " 'pulmonary_embolism',\n", - " 'inguinal_hernia',\n", - " 'verruca_vulgaris',\n", - " 'sepsis',\n", - " 'disorder_of_kidney_due_to_diabetes_mellitus',\n", - " 'nausea_and_vomiting',\n", - " 'hyperthyroidism',\n", - " 'abscess',\n", - " 'dental_caries',\n", - " 'gastrointestinal_hemorrhage',\n", - " 'rosacea',\n", - " \"parkinson's_disease\",\n", - " 'menorrhagia',\n", - " 'malignant_tumor_of_lung',\n", - " 'joint_pain',\n", - " 'morbid_obesity',\n", - " 'hiatal_hernia',\n", - " 'arthralgia_of_the_ankle_and/or_foot',\n", - " 'restless_legs',\n", - " 'thrombocytopenic_disorder',\n", - " 'old_myocardial_infarction',\n", - " 'neuropathy',\n", - " 'cardiomyopathy',\n", - " 'atopic_dermatitis',\n", - " 'pain_in_pelvis',\n", - " 'contact_dermatitis',\n", - " 'indigestion',\n", - " 'nicotine_dependence',\n", - " 'sprain_of_ankle',\n", - " 'degenerative_disorder_of_macula',\n", - " 'exacerbation_of_asthma',\n", - " 'alcohol_dependence',\n", - " 'hypokalemia',\n", - " 'mitral_valve_regurgitation',\n", - " 'hyponatremia',\n", - " 'abdominal_aortic_aneurysm',\n", - " 'cyst_of_ovary',\n", - " 'otitis_externa',\n", - " 'threatened_abortion',\n", - " 'scoliosis_deformity_of_spine',\n", - " 'seborrheic_dermatitis',\n", - " 'spinal_stenosis',\n", - " 'dysmenorrhea',\n", - " 'acute_otitis_media',\n", - " \"alzheimer's_disease\",\n", - " 'neuropathy_due_to_diabetes_mellitus',\n", - " 'acute_pharyngitis',\n", - " 'degeneration_of_intervertebral_disc',\n", - " 'attention_deficit_hyperactivity_disorder_predominantly_inattentive_type',\n", - " 'unplanned_pregnancy',\n", - " 'secondary_erectile_dysfunction',\n", - " 'spinal_stenosis_of_lumbar_region',\n", - " 'proteinuria',\n", - " 'urticaria',\n", - " 'genital_herpes_simplex',\n", - " 'malignant_neoplasm_of_female_breast',\n", - " 'nausea',\n", - " 'chronic_rhinitis',\n", - " 'multiple_sclerosis',\n", - " 'chronic_kidney_disease_stage_3',\n", - " 'panic_disorder',\n", - " 'attention_deficit_hyperactivity_disorder',\n", - " 'amnesia',\n", - " 'otalgia',\n", - " 'tremor',\n", - " 'retention_of_urine',\n", - " \"non-hodgkin's_lymphoma\",\n", - " 'alcoholism',\n", - " 'dysuria',\n", - " 'generalized_anxiety_disorder',\n", - " 'paroxysmal_atrial_fibrillation',\n", - " 'peripheral_venous_insufficiency',\n", - " 'nonproliferative_retinopathy_due_to_diabetes_mellitus',\n", - " 'shoulder_joint_pain',\n", - " 'moderate_recurrent_major_depression',\n", - " 'diverticulitis',\n", - " 'solitary_nodule_of_lung',\n", - " 'hyperkalemia',\n", - " 'recurrent_major_depressive_episodes',\n", - " 'multiple_myeloma',\n", - " 'regular_astigmatism',\n", - " 'secondary_malignant_neoplasm_of_liver',\n", - " 'ulcerative_colitis',\n", - " 'vaginitis',\n", - " 'acute_renal_failure_syndrome',\n", - " 'amenorrhea',\n", - " 'tendinitis',\n", - " 'rhinitis',\n", - " 'bleeding_from_nose',\n", - " \"crohn's_disease\",\n", - " 'nuclear_senile_cataract',\n", - " 'muscle_pain',\n", - " 'epidermoid_cyst',\n", - " 'impaired_cognition',\n", - " 'acute_exacerbation_of_chronic_obstructive_airways_disease',\n", - " 'eustachian_tube_disorder',\n", - " 'internal_hemorrhoids',\n", - " 'substance_abuse',\n", - " 'melanocytic_nevus',\n", - " 'pain',\n", - " \"barrett's_esophagus\",\n", - " 'cerebrovascular_disease',\n", - " 'malignant_melanoma',\n", - " 'folliculitis',\n", - " 'mitral_valve_prolapse',\n", - " 'chronic_hepatitis_c',\n", - " 'hypermetropia',\n", - " 'endometriosis',\n", - " 'gestational_diabetes_mellitus',\n", - " 'cirrhosis_of_liver',\n", - " 'injury_of_head',\n", - " 'dehydration',\n", - " 'herpes_simplex',\n", - " 'fracture_of_bone',\n", - " 'overweight',\n", - " 'right_inguinal_hernia',\n", - " 'adjustment_disorder',\n", - " 'tinea_pedis',\n", - " 'aortic_valve_stenosis',\n", - " 'viral_hepatitis_type_b',\n", - " 'umbilical_hernia',\n", - " 'ingrowing_nail',\n", - " 'postmenopausal_bleeding',\n", - " 'goiter',\n", - " 'secondary_malignant_neoplasm_of_bone',\n", - " 'pulmonary_emphysema',\n", - " 'left_inguinal_hernia',\n", - " 'snoring',\n", - " 'myocardial_infarction',\n", - " 'polycystic_ovary_syndrome',\n", - " 'polycystic_ovary',\n", - " 'microscopic_hematuria',\n", - " 'pain_in_wrist',\n", - " 'pleural_effusion',\n", - " 'false_labor',\n", - " 'bleeding_from_vagina',\n", - " 'acquired_hypothyroidism',\n", - " 'premature_rupture_of_membranes',\n", - " 'human_immunodeficiency_virus_infection',\n", - " 'contusion',\n", - " 'secondary_malignant_neoplasm_of_lung',\n", - " 'problem_situation_relating_to_social_and_personal_history',\n", - " 'hypercalcemia',\n", - " 'occlusion_of_carotid_artery',\n", - " 'prolonged_second_stage_of_labor',\n", - " 'lipoma',\n", - " 'poisoning_caused_by_drug_and/or_medicinal_substance',\n", - " 'paranoid_schizophrenia',\n", - " 'hypersensitivity_reaction',\n", - " 'dysthymia',\n", - " 'fetal_or_neonatal_effect_of_maternal_premature_rupture_of_membrane',\n", - " 'noncompliance_with_treatment',\n", - " 'falls',\n", - " 'muscle_strain',\n", - " 'schizophrenia',\n", - " 'left_bundle_branch_block',\n", - " 'disorder_of_nervous_system_due_to_type_2_diabetes_mellitus',\n", - " 'preinfarction_syndrome',\n", - " 'conduction_disorder_of_the_heart',\n", - " 'lateral_epicondylitis',\n", - " 'burn',\n", - " 'pyelonephritis',\n", - " 'intermittent_claudication',\n", - " 'varicose_veins_of_lower_extremity',\n", - " 'hemiplegia',\n", - " 'chronic_pain',\n", - " 'bronchiolitis',\n", - " 'mild_persistent_asthma',\n", - " 'secondary_malignant_neoplasm_of_lymph_node',\n", - " 'mixed_hyperlipidemia',\n", - " 'female_urinary_stress_incontinence',\n", - " 'localized_primary_osteoarthritis_of_the_ankle_and/or_foot',\n", - " 'hypesthesia',\n", - " 'hand_pain',\n", - " 'psychotic_disorder',\n", - " 'menopausal_syndrome',\n", - " 'acute_myocardial_infarction_of_anterior_wall',\n", - " 'bronchiectasis',\n", - " 'lumbar_radiculopathy',\n", - " 'osteoarthritis_of_hip',\n", - " 'deviated_nasal_septum',\n", - " 'paresthesia',\n", - " 'hypoglycemia',\n", - " 'deep_venous_thrombosis_of_lower_extremity',\n", - " 'complication_of_surgical_procedure',\n", - " 'mild_intermittent_asthma',\n", - " 'systemic_lupus_erythematosus',\n", - " 'generalized_ischemic_myocardial_dysfunction',\n", - " 'lumbar_spondylosis',\n", - " 'acute_tonsillitis',\n", - " 'esophagitis',\n", - " 'aortic_valve_regurgitation',\n", - " 'malignant_neoplasm_of_skin',\n", - " 'altered_mental_status',\n", - " 'atrial_flutter',\n", - " 'alopecia',\n", - " 'high_risk_pregnancy',\n", - " 'missed_abortion',\n", - " 'malignant_tumor_of_urinary_bladder',\n", - " 'pulmonary_hypertension',\n", - " 'nasal_congestion',\n", - " 'hemoptysis',\n", - " 'viral_gastroenteritis',\n", - " 'right_upper_quadrant_pain',\n", - " 'primary_open_angle_glaucoma',\n", - " 'malignant_tumor_of_ovary',\n", - " 'incomplete_emptying_of_bladder',\n", - " 'pruritic_disorder',\n", - " 'fibrocystic_breast_changes',\n", - " 'tinea_corporis',\n", - " 'acute_pancreatitis',\n", - " 'acute_myocardial_infarction',\n", - " 'cerebral_hemorrhage',\n", - " 'urge_incontinence_of_urine',\n", - " 'megaloblastic_anemia_due_to_vitamin_b>12<_deficiency',\n", - " 'chronic_lymphoid_leukemia_disease',\n", - " 'disorder_of_lymphatic_system',\n", - " 'diverticular_disease',\n", - " 'tonsillitis',\n", - " 'tear_film_insufficiency',\n", - " 'abnormal_gait',\n", - " 'orthostatic_hypotension',\n", - " 'pancreatitis',\n", - " 'closed_fracture_of_distal_end_of_radius',\n", - " 'first_degree_perineal_laceration',\n", - " 'not_for_resuscitation',\n", - " 'gastroesophageal_reflux_disease_with_esophagitis',\n", - " 'intracranial_injury',\n", - " \"bell's_palsy\",\n", - " 'bradycardia',\n", - " 'polymyalgia_rheumatica',\n", - " 'dysplasia_of_cervix',\n", - " 'serous_otitis_media',\n", - " 'angioedema',\n", - " 'venous_varices',\n", - " 'spasm',\n", - " 'sleep_disorder',\n", - " 'pain_of_breast',\n", - " 'malabsorption_syndrome_due_to_intolerance_to_lactose',\n", - " 'tachycardia',\n", - " 'acute_conjunctivitis',\n", - " 'malignant_lymphoma',\n", - " 'supraventricular_tachycardia',\n", - " 'hyperparathyroidism',\n", - " 'periodontitis',\n", - " 'renal_disorder_due_to_type_2_diabetes_mellitus',\n", - " 'nerve_root_disorder',\n", - " 'nonexudative_age-related_macular_degeneration',\n", - " 'tension-type_headache',\n", - " 'chronic_pain_syndrome',\n", - " 'abnormal_weight_loss',\n", - " 'pure_hypercholesterolemia',\n", - " 'acute_upper_respiratory_infection',\n", - " 'inflammatory_disease_of_liver',\n", - " 'colitis',\n", - " 'prolonged_pregnancy',\n", - " 'major_depression_single_episode',\n", - " 'croup',\n", - " 'skin_tag',\n", - " 'metabolic_syndrome_x',\n", - " 'adverse_reaction_caused_by_drug',\n", - " 'retinopathy_due_to_diabetes_mellitus',\n", - " 'female_infertility',\n", - " 'open-angle_glaucoma',\n", - " \"tietze's_disease\",\n", - " 'gallbladder_calculus',\n", - " 'sarcoidosis',\n", - " 'neurogenic_bladder',\n", - " 'tobacco_dependence_in_remission',\n", - " 'wheezing',\n", - " 'elevated_levels_of_transaminase_&_lactic_acid_dehydrogenase',\n", - " 'ascites',\n", - " 'low_blood_pressure',\n", - " 'bursitis',\n", - " 'miscarriage',\n", - " 'methicillin_resistant_staphylococcus_aureus_carrier',\n", - " 'urethritis',\n", - " 'noninfectious_gastroenteritis',\n", - " 'malignant_tumor_of_thyroid_gland',\n", - " 'pressure_ulcer',\n", - " 'verruca_plantaris',\n", - " 'anemia_of_chronic_disorder',\n", - " 'hernia_of_anterior_abdominal_wall',\n", - " 'degeneration_of_lumbar_intervertebral_disc',\n", - " 'right_lower_quadrant_pain',\n", - " 'infertile',\n", - " 'hernia_of_abdominal_wall',\n", - " 'benign_paroxysmal_positional_vertigo',\n", - " 'pityriasis_versicolor',\n", - " 'injury_of_lower_leg',\n", - " 'dry_skin',\n", - " 'impacted_tooth',\n", - " 'acquired_trigger_finger',\n", - " 'chronic_osteoarthritis',\n", - " 'acute_stress_disorder',\n", - " 'peripheral_circulatory_disorder_due_to_type_2_diabetes_mellitus',\n", - " 'respiratory_failure',\n", - " 'allergic_disposition',\n", - " 'stress',\n", - " 'atrophic_vaginitis',\n", - " 'degeneration_of_lumbosacral_intervertebral_disc',\n", - " 'astigmatism',\n", - " 'sick_sinus_syndrome',\n", - " 'cocaine_abuse',\n", - " 'intermittent_asthma',\n", - " 'cervical_radiculopathy',\n", - " 'atherosclerosis_of_coronary_artery',\n", - " 'methicillin_resistant_staphylococcus_aureus_infection',\n", - " 'female_pelvic_inflammatory_disease',\n", - " 'pain_in_eye',\n", - " 'cervical_spondylosis',\n", - " 'prematurity_of_infant',\n", - " 'postmature_infancy',\n", - " 'temporomandibular_joint_disorder',\n", - " 'nocturia',\n", - " 'adjustment_disorder_with_depressed_mood',\n", - " 'visual_impairment',\n", - " 'male_hypogonadism',\n", - " 'closed_intertrochanteric_fracture',\n", - " 'pain_in_limb',\n", - " 'complication_occurring_during_pregnancy',\n", - " 'sprain_of_knee',\n", - " 'fracture_of_ankle',\n", - " 'injury_of_hand',\n", - " 'postoperative_wound_infection',\n", - " 'congestive_cardiomyopathy',\n", - " 'nocturnal_enuresis',\n", - " 'proliferative_retinopathy_due_to_diabetes_mellitus',\n", - " 'major_depressive_disorder',\n", - " 'chronic_bronchitis',\n", - " 'advanced_maternal_age_gravida',\n", - " 'recurrent_major_depression_in_full_remission',\n", - " 'pregnancy-induced_hypertension',\n", - " 'epididymitis',\n", - " 'impetigo',\n", - " 'schizoaffective_disorder',\n", - " 'candidiasis_of_mouth',\n", - " 'mild_recurrent_major_depression',\n", - " 'cerebral_palsy',\n", - " 'squamous_cell_carcinoma_of_skin',\n", - " 'hypogonadism',\n", - " 'greater_trochanteric_pain_syndrome',\n", - " \"graves'_disease\",\n", - " 'malignant_neoplastic_disease',\n", - " 'moderate_persistent_asthma',\n", - " 'steatosis_of_liver',\n", - " 'obsessive-compulsive_disorder',\n", - " 'mood_disorder',\n", - " 'degeneration_of_cervical_intervertebral_disc',\n", - " 'corneal_abrasion',\n", - " 'anal_fissure',\n", - " 'heart_failure',\n", - " 'adjustment_disorder_with_mixed_emotional_features',\n", - " 'febrile_convulsion',\n", - " 'degenerative_joint_disease_of_hand',\n", - " 'chronic_type_b_viral_hepatitis',\n", - " 'blepharitis',\n", - " 'cyst',\n", - " 'heartburn',\n", - " 'intellectual_disability',\n", - " 'exudative_age-related_macular_degeneration',\n", - " 'hypoxia',\n", - " 'influenza',\n", - " 'intervertebral_disc_prolapse',\n", - " 'swelling_of_first_metatarsophalangeal_joint_of_hallux',\n", - " 'genuine_stress_incontinence',\n", - " 'opioid_dependence',\n", - " 'antepartum_hemorrhage',\n", - " 'pneumothorax',\n", - " 'kidney_disease',\n", - " 'atopic_conjunctivitis',\n", - " 'dermatophytosis',\n", - " 'influenza_caused_by_influenza_a_virus',\n", - " 'cystitis',\n", - " 'moderate_major_depression_single_episode',\n", - " 'furuncle',\n", - " 'cannabis_abuse',\n", - " 'conductive_hearing_loss',\n", - " 'neutropenic_disorder',\n", - " 'injury_of_finger',\n", - " 'intestinal_obstruction',\n", - " 'lymphadenopathy',\n", - " 'mass_of_pelvic_structure',\n", - " 'myelodysplastic_syndrome',\n", - " 'jaundice',\n", - " 'severe_recurrent_major_depression_without_psychotic_features',\n", - " 'inflammation_of_cervix',\n", - " 'sickle_cell_trait',\n", - " 'squamous_cell_carcinoma',\n", - " 'small_bowel_obstruction',\n", - " 'compression_fracture',\n", - " 'premenstrual_tension_syndrome',\n", - " 'fracture_of_proximal_end_of_femur',\n", - " 'developmental_delay',\n", - " 'drug_abuse',\n", - " 'left_lower_quadrant_pain',\n", - " 'hordeolum',\n", - " 'disorder_of_lung',\n", - " 'migraine_without_aura',\n", - " 'open-angle_glaucoma_-_borderline',\n", - " 'disorder_of_refraction',\n", - " 'acute_appendicitis',\n", - " 'amyloidosis',\n", - " \"hodgkin's_disease\",\n", - " 'hydrocele_of_testis',\n", - " 'cellulitis_of_foot',\n", - " 'pancytopenia',\n", - " 'pain_in_elbow',\n", - " 'peripheral_nerve_disease',\n", - " 'eating_disorder',\n", - " 'hernia_of_abdominal_cavity',\n", - " 'secondary_malignant_neoplasm_of_brain',\n", - " 'late_effects_of_respiratory_tuberculosis',\n", - " 'alcohol_intoxication',\n", - " 'abrasion',\n", - " 'breech_presentation',\n", - " 'premature_labor',\n", - " \"raynaud's_phenomenon\",\n", - " 'posterior_rhinorrhea',\n", - " 'acute_gastritis',\n", - " 'polyp_of_nasal_cavity',\n", - " 'essential_tremor',\n", - " 'candidiasis',\n", - " 'ocular_hypertension',\n", - " 'aortic_valve_disorder',\n", - " 'diaper_rash',\n", - " 'cholangitis',\n", - " 'primary_malignant_neoplasm_of_lung',\n", - " 'impingement_syndrome_of_shoulder_region',\n", - " 'idiopathic_urticaria',\n", - " 'arthritis_of_knee',\n", - " 'ulcer_of_duodenum',\n", - " 'peripheral_neuropathy_due_to_diabetes_mellitus',\n", - " 'hypervolemia',\n", - " 'cholecystitis',\n", - " 'deficiency_of_glucose-6-phosphate_dehydrogenase',\n", - " 'acute_pyelonephritis',\n", - " 'musculoskeletal_chest_pain',\n", - " 'melena',\n", - " 'cigarette_smoker',\n", - " 'infectious_mononucleosis',\n", - " 'hypertensive_renal_failure',\n", - " 'cocaine_dependence',\n", - " 'abdominal_aortic_aneurysm_without_rupture',\n", - " 'right_bundle_branch_block',\n", - " 'alcoholic_cirrhosis',\n", - " 'fibrosis_of_lung',\n", - " 'neoplasm_of_uncertain_behavior_of_skin',\n", - " 'malignant_melanoma_of_skin',\n", - " 'urgent_desire_to_urinate',\n", - " 'bursitis_of_hip',\n", - " 'chronic_alcoholism_in_remission',\n", - " 'chronic_pancreatitis',\n", - " 'gastroparesis',\n", - " 'ectopic_pregnancy',\n", - " 'muscle_weakness',\n", - " 'recurrent_major_depression',\n", - " 'pilonidal_cyst',\n", - " 'pain_in_toe',\n", - " 'pulmonary_tuberculosis',\n", - " 'celiac_disease',\n", - " 'cramp_in_lower_leg',\n", - " 'secondary_malignant_neoplasm_of_pleura',\n", - " 'fracture_of_hand',\n", - " 'cyst_of_breast',\n", - " 'nephrotic_syndrome',\n", - " 'polyp_of_nasal_sinus',\n", - " 'chondromalacia_of_patella',\n", - " 'spinal_stenosis_in_cervical_region',\n", - " 'disorder_of_artery',\n", - " 'vitiligo',\n", - " 'female_cystocele',\n", - " 'dysphasia',\n", - " 'retinal_disorder',\n", - " 'epiretinal_membrane',\n", - " 'recurrent_major_depression_in_partial_remission',\n", - " 'infection_caused_by_trichomonas',\n", - " 'osteomyelitis',\n", - " 'polyp_of_nasal_cavity_and/or_nasal_sinus',\n", - " 'mass_of_neck',\n", - " 'idiopathic_thrombocytopenic_purpura',\n", - " 'complete_miscarriage',\n", - " 'gastric_ulcer',\n", - " 'papilloma_of_skin',\n", - " 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction',\n", - " 'secondary_malignant_neoplastic_disease',\n", - " 'hypoxemia',\n", - " 'paraplegia',\n", - " 'perforation_of_tympanic_membrane',\n", - " 'ventricular_tachycardia',\n", - " 'mixed_incontinence',\n", - " 'disorder_of_eye_due_to_type_2_diabetes_mellitus',\n", - " 'trigeminal_neuralgia',\n", - " 'retinal_detachment',\n", - " 'leukopenia',\n", - " 'vitreous_hemorrhage',\n", - " 'ischemic_ulcer',\n", - " 'intramural_leiomyoma_of_uterus',\n", - " 'viral_hepatitis_type_a',\n", - " \"ménière's_disease\",\n", - " 'fracture_of_phalanx_of_hand',\n", - " 'muscle_atrophy',\n", - " 'incontinence_of_feces',\n", - " 'mitral_valve_disorder',\n", - " 'atherosclerosis_of_arteries_of_the_extremities',\n", - " 'spondylosis',\n", - " 'pterygium',\n", - " 'ulnar_neuropathy',\n", - " 'lung_mass',\n", - " 'foreign_body_in_respiratory_tract',\n", - " 'chronic_kidney_disease_stage_4',\n", - " 'myocardial_ischemia',\n", - " 'non-toxic_multinodular_goiter',\n", - " 'pain_in_finger',\n", - " 'cervical_spondylosis_without_myelopathy',\n", - " 'body_mass_index_25-29_-_overweight',\n", - " 'clouded_consciousness',\n", - " 'mixed_conductive_and_sensorineural_hearing_loss',\n", - " 'tooth_eruption_disorder',\n", - " 'hyperuricemia',\n", - " 'closed_fracture_of_neck_of_femur',\n", - " 'bipolar_ii_disorder',\n", - " 'disturbance_in_sleep_behavior',\n", - " 'relationship_problems',\n", - " 'sprain_of_wrist',\n", - " 'personality_disorder',\n", - " 'external_hemorrhoids',\n", - " 'abnormal_vision',\n", - " 'hyperprolactinemia',\n", - " 'hemochromatosis',\n", - " 'lumbosacral_radiculopathy',\n", - " 'heart_valve_disorder',\n", - " 'cardiac_arrest',\n", - " 'infection_caused_by_molluscum_contagiosum',\n", - " 'chronic_kidney_disease_stage_2',\n", - " 'secondary_malignant_neoplasm_of_peritoneum',\n", - " 'thoracic_back_pain',\n", - " 'blood_in_urine',\n", - " 'adhesive_capsulitis_of_shoulder',\n", - " 'diplopia',\n", - " \"sjögren's_syndrome\",\n", - " 'ureteric_stone',\n", - " 'bronchospasm',\n", - " 'chronic_fatigue_syndrome',\n", - " 'cannabis_dependence',\n", - " 'neck_sprain',\n", - " 'multinodular_goiter',\n", - " 'ptosis_of_eyelid',\n", - " 'failure_to_thrive',\n", - " 'torticollis',\n", - " 'acute_bronchiolitis',\n", - " 'viral_exanthem',\n", - " 'talipes_planus',\n", - " 'idiopathic_peripheral_neuropathy',\n", - " 'foreign_body_in_pharynx',\n", - " 'jaw_pain',\n", - " 'renal_impairment',\n", - " 'ataxia',\n", - " 'age-related_macular_degeneration',\n", - " 'uterine_prolapse',\n", - " 'renal_mass',\n", - " 'pneumonitis',\n", - " 'coordination_problem',\n", - " 'blindness_-_both_eyes',\n", - " 'primary_hyperparathyroidism',\n", - " 'musculoskeletal_pain',\n", - " 'mycosis',\n", - " 'primigravida',\n", - " 'urethral_stricture',\n", - " 'leukocytosis',\n", - " 'ventricular_premature_complex',\n", - " 'ulcer_of_foot_due_to_diabetes_mellitus',\n", - " 'chronic_headache_disorder',\n", - " 'hemangioma',\n", - " 'lymphedema',\n", - " 'postmenopausal_state',\n", - " 'chronic_ulcer_of_skin',\n", - " 'left_heart_failure',\n", - " 'excessive_and_frequent_menstruation',\n", - " 'thrombocytosis',\n", - " 'disorder_of_liver',\n", - " 'disorder_of_carotid_artery',\n", - " 'altered_bowel_function',\n", - " 'abscess_of_foot',\n", - " 'malignant_tumor_of_head_and/or_neck',\n", - " 'streptococcus_group_b_infection_of_the_infant',\n", - " 'concussion_injury_of_brain',\n", - " 'feeding_problems_in_newborn',\n", - " 'bipolar_i_disorder',\n", - " 'viral_pharyngitis',\n", - " 'lower_respiratory_tract_infection',\n", - " 'hydronephrosis',\n", - " 'borderline_personality_disorder',\n", - " 'esophageal_varices',\n", - " 'hypersomnia',\n", - " 'sensorineural_hearing_loss_bilateral',\n", - " 'varicocele',\n", - " 'subarachnoid_intracranial_hemorrhage',\n", - " 'incisional_hernia',\n", - " 'varicella',\n", - " 'pain_in_testicle',\n", - " 'transplant_follow-up',\n", - " 'tinea_cruris',\n", - " 'laryngitis',\n", - " 'hypertrophy_of_nail',\n", - " 'amblyopia',\n", - " 'polyp_of_cervix',\n", - " 'cyst_of_kidney',\n", - " 'hepatic_encephalopathy',\n", - " 'blood_glucose_abnormal',\n", - " 'postherpetic_neuralgia',\n", - " 'frank_hematuria',\n", - " 'cramp',\n", - " 'interstitial_lung_disease',\n", - " 'complete_atrioventricular_block',\n", - " 'malignant_tumor_of_kidney',\n", - " 'otitis',\n", - " 'septic_shock',\n", - " 'disorder_of_thyroid_gland',\n", - " 'hypertrophic_cardiomyopathy',\n", - " 'respiratory_distress_syndrome_in_the_newborn',\n", - " 'infectious_gastroenteritis',\n", - " 'subdural_intracranial_hemorrhage',\n", - " 'hepatitis_b_carrier',\n", - " 'manic_bipolar_i_disorder',\n", - " 'secondary_pulmonary_hypertension',\n", - " 'gonorrhea',\n", - " 'derangement_of_knee',\n", - " 'appendicitis',\n", - " 'polyneuropathy_due_to_diabetes_mellitus',\n", - " 'neonatal_hypoglycemia',\n", - " 'prolonged_rupture_of_membranes',\n", - " 'vasomotor_rhinitis',\n", - " 'renal_disorder_due_to_type_1_diabetes_mellitus',\n", - " 'tuberculosis',\n", - " 'feeding_problem',\n", - " 'chronic_tonsillitis',\n", - " 'acute_duodenal_ulcer_with_hemorrhage',\n", - " 'hammer_toe',\n", - " 'malignant_tumor_of_cervix',\n", - " 'prolapsed_lumbar_intervertebral_disc',\n", - " 'hematemesis',\n", - " 'perianal_abscess',\n", - " 'nonvenomous_insect_bite',\n", - " 'spondylolisthesis',\n", - " 'malignant_tumor_of_esophagus',\n", - " 'aphthous_ulcer_of_mouth',\n", - " 'ventricular_septal_defect',\n", - " 'oropharyngeal_dysphagia',\n", - " 'injury_of_knee',\n", - " 'traumatic_brain_injury',\n", - " 'osteoarthritis_of_glenohumeral_joint',\n", - " 'fetal_or_neonatal_effect_of_maternal_medical_problem']" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "basic_data_cols" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.628580Z", - "start_time": "2020-11-04T12:33:33.036Z" - } - }, - "outputs": [], - "source": [ - "### define in snomed and get icd codes from there" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Hospital admissions" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T12:39:55.629459Z", - "start_time": "2020-11-04T12:33:34.764Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'myocardial_infarction': ['I21', 'I22', 'I23', 'I24', 'I25', 'I51'],\n", - " 'stroke': ['G45', 'G46', 'I60', 'I67', 'I68', 'I69'],\n", - " 'cancer_breast': ['C50'],\n", - " 'diabetes': ['E10', 'E11', 'E12', 'E13', 'E14'],\n", - " 'atrial_fibrillation': ['I47', 'I48'],\n", - " 'copd': ['J44'],\n", - " 'dementia': ['F00', 'F01', 'F02', 'F03', 'F09', 'G31', 'R54']}" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoint_list = {\n", - " \"myocardial_infarction\": [\"Myocardial infarction\"],\n", - " \"stroke\": [\"Cerebrovascular disease\"],\n", - " \"cancer_breast\" : [\"Breast Cancer\"],\n", - " \"diabetes\" : [\"Diabetes\"],\n", - " \"atrial_fibrillation\": [\"Atrial fibrillation\", \"Atrial flutter\", \"paroxysmal tachycardia\"],\n", - " \"copd\": [\"COPD\"],\n", - " \"dementia\":[\"dementia\"]\n", - "}\n", - "\n", - "endpoint_list = phenotype_children(phecodes, endpoint_list)\n", - "endpoint_list[\"cancer_breast\"] = [\"C50\"]\n", - "endpoint_list[\"copd\"] = [\"J44\"]\n", - "endpoint_list[\"diabetes\"] = [\"E10\", \"E11\", \"E12\", \"E13\", \"E14\"]\n", - "endpoint_list[\"atrial_fibrillation\"] = [\"I47\", \"I48\"]\n", - "\n", - "\n", - "with open(os.path.join(path, dataset_path, 'endpoint_list.yaml'), 'w') as file: yaml.dump(endpoint_list, file, default_flow_style=False)\n", - "endpoint_list" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "from dateutil.relativedelta import relativedelta\n", - "\n", - "def extract_endpoints_tte(data, diagnoses_codes, endpoint_list, time0_col, level=None):\n", - " if level is not None: diagnoses_codes = diagnoses_codes.query(\"level==@level\")\n", - " diagnoses_codes_time0 = diagnoses_codes.merge(data[[\"eid\", time0_col]], how=\"left\", on=\"eid\")\n", - " \n", - " cens_time_right = min(diagnoses_codes.sort_values('date').groupby('origin').tail(1).date.to_list())\n", - " print(f\"t_0: {time0_col}\")\n", - " print(f\"t_cens: {cens_time_right}\")\n", - " \n", - " df_interval = diagnoses_codes_time0[(diagnoses_codes_time0.date > diagnoses_codes_time0[time0_col]) & \n", - " (diagnoses_codes_time0.date < cens_time_right)]\n", - " \n", - " temp = data[[\"eid\", time0_col]].copy()\n", - " for ph, ph_codes in tqdm(endpoint_list.items()):\n", - " regex = \"|\".join(ph_codes)\n", - " ph_df = df_interval[df_interval.meaning.str.contains(regex, case=False)] \\\n", - " .sort_values('date').groupby('eid').head(1).assign(phenotype=1, date=lambda x: x.date)\n", - " temp_ph = temp.merge(ph_df, how=\"left\", on=\"eid\").fillna(0)\n", - " temp[ph+\"_event\"], temp[ph+\"_event_date\"] = temp_ph.phenotype, temp_ph.date\n", - " \n", - " fill_date = {ph+\"_event_date\" : lambda x: [cens_time_right if event==0 else event_date for event, event_date in zip(x[ph+\"_event\"], x[ph+\"_event_date\"])]}\n", - " calc_tte = {ph+\"_event_time\" : lambda x: [(event_date-time0).days/365.25 for time0, event_date in zip(x[time0_col], x[ph+\"_event_date\"])]}\n", - " \n", - " temp = temp.assign(**fill_date).assign(**calc_tte).drop([ph+\"_event_date\"], axis=1)\n", - " \n", - " temp = temp.drop([time0_col], axis=1) \n", - " \n", - " return temp.drop_duplicates()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0ethnic_background_f21000_1_0ethnic_background_f21000_2_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0date_of_attending_assessment_centre_f53_1_0date_of_attending_assessment_centre_f53_2_0date_of_attending_assessment_centre_f53_3_0
0100001849.0FemaleBritishNaNNaN-1.8529302009-11-12NoneNoneNone
1100002059.0MaleBritishNaNNaN0.2042482008-02-19NoneNoneNone
2100003759.0FemaleBritishNaNNaN-3.4988602008-11-11NoneNoneNone
3100004363.0MaleBritishNaNNaN-5.3511502009-06-03None2018-06-08None
4100005151.0FemaleBritishNaNNaN-1.7990802006-06-10None2019-09-15None
....................................
502499602515043.0FemaleBritishBritishNaN0.0467812007-06-302012-11-172017-08-122019-10-20
502500602516545.0FemaleBritishNaNNaN-2.1070402008-09-02NoneNoneNone
502501602517357.0MaleBritishNaNNaN-1.8272202008-09-17NoneNoneNone
502502602518256.0MaleBritishNaNNaN-0.0107642010-07-01NoneNoneNone
502503602519867.0MaleBritishNaNNaN-1.9306502010-01-26NoneNoneNone
\n", - "

502504 rows × 11 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "... ... ... ... \n", - "502499 6025150 43.0 Female \n", - "502500 6025165 45.0 Female \n", - "502501 6025173 57.0 Male \n", - "502502 6025182 56.0 Male \n", - "502503 6025198 67.0 Male \n", - "\n", - " ethnic_background_f21000_0_0 ethnic_background_f21000_1_0 \\\n", - "0 British NaN \n", - "1 British NaN \n", - "2 British NaN \n", - "3 British NaN \n", - "4 British NaN \n", - "... ... ... \n", - "502499 British British \n", - "502500 British NaN \n", - "502501 British NaN \n", - "502502 British NaN \n", - "502503 British NaN \n", - "\n", - " ethnic_background_f21000_2_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502499 NaN \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "... ... \n", - "502499 0.046781 \n", - "502500 -2.107040 \n", - "502501 -1.827220 \n", - "502502 -0.010764 \n", - "502503 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "... ... \n", - "502499 2007-06-30 \n", - "502500 2008-09-02 \n", - "502501 2008-09-17 \n", - "502502 2010-07-01 \n", - "502503 2010-01-26 \n", - "\n", - " date_of_attending_assessment_centre_f53_1_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502499 2012-11-17 \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "\n", - " date_of_attending_assessment_centre_f53_2_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 2018-06-08 \n", - "4 2019-09-15 \n", - "... ... \n", - "502499 2017-08-12 \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "\n", - " date_of_attending_assessment_centre_f53_3_0 \n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502499 2019-10-20 \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "\n", - "[502504 rows x 11 columns]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "basics" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitment_f21022_0_0sex_f31_0_0ethnic_background_f21000_0_0ethnic_background_f21000_1_0ethnic_background_f21000_2_0townsend_deprivation_index_at_recruitment_f189_0_0date_of_attending_assessment_centre_f53_0_0date_of_attending_assessment_centre_f53_1_0date_of_attending_assessment_centre_f53_2_0date_of_attending_assessment_centre_f53_3_0birth_date
0100001849.0FemaleBritishNaNNaN-1.8529302009-11-12NoneNoneNone1960-11-12
1100002059.0MaleBritishNaNNaN0.2042482008-02-19NoneNoneNone1949-02-19
2100003759.0FemaleBritishNaNNaN-3.4988602008-11-11NoneNoneNone1949-11-11
3100004363.0MaleBritishNaNNaN-5.3511502009-06-03None2018-06-08None1946-06-03
4100005151.0FemaleBritishNaNNaN-1.7990802006-06-10None2019-09-15None1955-06-10
.......................................
502499602515043.0FemaleBritishBritishNaN0.0467812007-06-302012-11-172017-08-122019-10-201964-06-30
502500602516545.0FemaleBritishNaNNaN-2.1070402008-09-02NoneNoneNone1963-09-02
502501602517357.0MaleBritishNaNNaN-1.8272202008-09-17NoneNoneNone1951-09-17
502502602518256.0MaleBritishNaNNaN-0.0107642010-07-01NoneNoneNone1954-07-01
502503602519867.0MaleBritishNaNNaN-1.9306502010-01-26NoneNoneNone1943-01-26
\n", - "

502504 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment_f21022_0_0 sex_f31_0_0 \\\n", - "0 1000018 49.0 Female \n", - "1 1000020 59.0 Male \n", - "2 1000037 59.0 Female \n", - "3 1000043 63.0 Male \n", - "4 1000051 51.0 Female \n", - "... ... ... ... \n", - "502499 6025150 43.0 Female \n", - "502500 6025165 45.0 Female \n", - "502501 6025173 57.0 Male \n", - "502502 6025182 56.0 Male \n", - "502503 6025198 67.0 Male \n", - "\n", - " ethnic_background_f21000_0_0 ethnic_background_f21000_1_0 \\\n", - "0 British NaN \n", - "1 British NaN \n", - "2 British NaN \n", - "3 British NaN \n", - "4 British NaN \n", - "... ... ... \n", - "502499 British British \n", - "502500 British NaN \n", - "502501 British NaN \n", - "502502 British NaN \n", - "502503 British NaN \n", - "\n", - " ethnic_background_f21000_2_0 \\\n", - "0 NaN \n", - "1 NaN \n", - "2 NaN \n", - "3 NaN \n", - "4 NaN \n", - "... ... \n", - "502499 NaN \n", - "502500 NaN \n", - "502501 NaN \n", - "502502 NaN \n", - "502503 NaN \n", - "\n", - " townsend_deprivation_index_at_recruitment_f189_0_0 \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "... ... \n", - "502499 0.046781 \n", - "502500 -2.107040 \n", - "502501 -1.827220 \n", - "502502 -0.010764 \n", - "502503 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre_f53_0_0 \\\n", - "0 2009-11-12 \n", - "1 2008-02-19 \n", - "2 2008-11-11 \n", - "3 2009-06-03 \n", - "4 2006-06-10 \n", - "... ... \n", - "502499 2007-06-30 \n", - "502500 2008-09-02 \n", - "502501 2008-09-17 \n", - "502502 2010-07-01 \n", - "502503 2010-01-26 \n", - "\n", - " date_of_attending_assessment_centre_f53_1_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 None \n", - "4 None \n", - "... ... \n", - "502499 2012-11-17 \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "\n", - " date_of_attending_assessment_centre_f53_2_0 \\\n", - "0 None \n", - "1 None \n", - "2 None \n", - "3 2018-06-08 \n", - "4 2019-09-15 \n", - "... ... \n", - "502499 2017-08-12 \n", - "502500 None \n", - "502501 None \n", - "502502 None \n", - "502503 None \n", - "\n", - " date_of_attending_assessment_centre_f53_3_0 birth_date \n", - "0 None 1960-11-12 \n", - "1 None 1949-02-19 \n", - "2 None 1949-11-11 \n", - "3 None 1946-06-03 \n", - "4 None 1955-06-10 \n", - "... ... ... \n", - "502499 2019-10-20 1964-06-30 \n", - "502500 None 1963-09-02 \n", - "502501 None 1951-09-17 \n", - "502502 None 1954-07-01 \n", - "502503 None 1943-01-26 \n", - "\n", - "[502504 rows x 12 columns]" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "basics_birthdate" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birthdate\n", - "t_cens: 2020-03-31\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "20dd3eaec2c44ae99de7ee70c073218d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=7.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "502504\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidmyocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timecancer_breast_eventcancer_breast_event_timediabetes_eventdiabetes_event_timeatrial_fibrillation_eventatrial_fibrillation_event_timecopd_eventcopd_event_timedementia_eventdementia_event_time
010000180.059.3812460.059.3812460.059.3812460.059.3812460.059.3812460.059.3812460.059.381246
110000200.071.1101980.071.1101980.071.1101980.071.1101980.071.1101980.071.1101980.071.110198
210000370.070.3846680.070.3846680.070.3846680.070.3846680.070.3846680.070.3846680.070.384668
310000431.068.1232030.073.8261460.073.8261460.073.8261460.073.8261461.063.2936340.073.826146
410000510.064.8076660.064.8076660.064.8076661.055.7234770.064.8076661.055.8412050.064.807666
\n", - "
" - ], - "text/plain": [ - " eid myocardial_infarction_event myocardial_infarction_event_time \\\n", - "0 1000018 0.0 59.381246 \n", - "1 1000020 0.0 71.110198 \n", - "2 1000037 0.0 70.384668 \n", - "3 1000043 1.0 68.123203 \n", - "4 1000051 0.0 64.807666 \n", - "\n", - " stroke_event stroke_event_time cancer_breast_event \\\n", - "0 0.0 59.381246 0.0 \n", - "1 0.0 71.110198 0.0 \n", - "2 0.0 70.384668 0.0 \n", - "3 0.0 73.826146 0.0 \n", - "4 0.0 64.807666 0.0 \n", - "\n", - " cancer_breast_event_time diabetes_event diabetes_event_time \\\n", - "0 59.381246 0.0 59.381246 \n", - "1 71.110198 0.0 71.110198 \n", - "2 70.384668 0.0 70.384668 \n", - "3 73.826146 0.0 73.826146 \n", - "4 64.807666 1.0 55.723477 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_event_time copd_event \\\n", - "0 0.0 59.381246 0.0 \n", - "1 0.0 71.110198 0.0 \n", - "2 0.0 70.384668 0.0 \n", - "3 0.0 73.826146 1.0 \n", - "4 0.0 64.807666 1.0 \n", - "\n", - " copd_event_time dementia_event dementia_event_time \n", - "0 59.381246 0.0 59.381246 \n", - "1 71.110198 0.0 71.110198 \n", - "2 70.384668 0.0 70.384668 \n", - "3 63.293634 0.0 73.826146 \n", - "4 55.841205 0.0 64.807666 " - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from dateutil.relativedelta import relativedelta\n", - "calc_birth_date = [date_of_attending_assessment_centre - relativedelta(years=age_at_recruitment) \n", - " for date_of_attending_assessment_centre, age_at_recruitment \n", - " in zip(basics[\"date_of_attending_assessment_centre_f53_0_0\"], basics[\"age_at_recruitment_f21022_0_0\"])]\n", - "basics_birthdate = basics.assign(birthdate = calc_birth_date)\n", - "endpoints_hospital = extract_endpoints_tte(basics_birthdate, diagnoses_codes, endpoint_list, time0_col)\n", - "print(len(endpoints_hospital))\n", - "endpoints_hospital.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Death registry" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "death_list = {\n", - " \"death_allcause\":[],\n", - " \"death_cvd\":['I{:02}'.format(ID+1) for ID in range(0, 98)],\n", - "}\n", - "\n", - "death_codes = pd.read_feather(f\"{data_path}/1_decoded/codes_death_records.feather\")#.drop(\"level\", axis=1)\n", - "\n", - "with open(os.path.join(path, dataset_path, 'death_list.yaml'), 'w') as file: yaml.dump(death_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birthdate\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b38bd4ceed9a44709826266bc2f93860", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=2.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_death = extract_endpoints_tte(basics_birthdate, death_codes, death_list, time0_col, level=\"1\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SCORES" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list = {\n", - " \"SCORE\":['I{:02}'.format(ID) for ID in [10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 44, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]],\n", - " \"ASCVD\":['I{:02}'.format(ID) for ID in [20, 21, 22, 23, 24, 25, 63]],\n", - " \"QRISK3\":[\"G45\", \"I20\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"],\n", - " \"MACE\":[\"G45\", \"I21\", \"I22\", \"I23\", \"I24\", \"I25\", \"I63\", \"I64\"], \n", - "}\n", - "with open(os.path.join(path, dataset_path, 'scores_list.yaml'), 'w') as file: yaml.dump(scores_list, file, default_flow_style=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "scores_list_hospital = {}\n", - "scores_list_death = {}\n", - "for score, score_codes in scores_list.items():\n", - " scores_list_hospital[\"hospital_\"+score] = score_codes\n", - " scores_list_death[\"death_\"+score] = score_codes" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "t_0: birthdate\n", - "t_cens: 2020-03-31\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c2ba870f3b654ffdb85c9127ca23e24f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "t_0: birthdate\n", - "t_cens: 2020-06-28\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "713e4fb88e1149fb95e28fdd6398e1ad", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=4.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "endpoints_scores = {\n", - " \"hospital\": extract_endpoints_tte(basics_birthdate, diagnoses_codes, scores_list_hospital, time0_col=time0_col),\n", - " \"death\": extract_endpoints_tte(basics_birthdate, death_codes, scores_list_death, time0_col=time0_col, level=1)}" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_scores_all = endpoints_scores[\"hospital\"].merge(endpoints_scores[\"death\"], on=\"eid\", how=\"left\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ESC SCORE (Conroy 2003)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5323\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidSCORE_eventSCORE_event_time
4510004631.074.165640
8310008411.076.005476
10210010311.075.537303
12210012371.050.132786
17610017771.072.238193
\n", - "
" - ], - "text/plain": [ - " eid SCORE_event SCORE_event_time\n", - "45 1000463 1.0 74.165640\n", - "83 1000841 1.0 76.005476\n", - "102 1001031 1.0 75.537303\n", - "122 1001237 1.0 50.132786\n", - "176 1001777 1.0 72.238193" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"SCORE\"\n", - "\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score).rename(columns={\"death_SCORE_event\":\"SCORE_event\", \"death_SCORE_event_time\":\"SCORE_event_time\"})\n", - "score_SCORE = temp = temp[[\"eid\", \"SCORE_event\", \"SCORE_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ASCVD (Goff 2014)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "58893\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidASCVD_eventASCVD_event_time
21000037166.970568
31000043168.123203
51000066165.051335
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid ASCVD_event ASCVD_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 65.051335\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"ASCVD\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_ASCVD = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### UK QRISK3 (2017)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "62625\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidQRISK3_eventQRISK3_event_time
21000037166.970568
31000043168.123203
51000066165.051335
61000079161.054073
221000233168.673511
\n", - "
" - ], - "text/plain": [ - " eid QRISK3_event QRISK3_event_time\n", - "2 1000037 1 66.970568\n", - "3 1000043 1 68.123203\n", - "5 1000066 1 65.051335\n", - "6 1000079 1 61.054073\n", - "22 1000233 1 68.673511" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"QRISK3\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_QRISK3 = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MACE (2020)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "57031\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidMACE_eventMACE_event_time
31000043168.123203
221000233168.673511
301000319156.922656
451000463174.069815
831000841175.980835
\n", - "
" - ], - "text/plain": [ - " eid MACE_event MACE_event_time\n", - "3 1000043 1 68.123203\n", - "22 1000233 1 68.673511\n", - "30 1000319 1 56.922656\n", - "45 1000463 1 74.069815\n", - "83 1000841 1 75.980835" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score = \"MACE\"\n", - "temp = endpoints_scores_all.filter(regex=\"eid|\"+score)\n", - "\n", - "aggr_event = {score +\"_event\" : lambda x: [1 if (hospital_event==1) | (death_event == 1) else 0 \n", - " for hospital_event, death_event in zip(x[\"hospital_\"+score+\"_event\"], x[\"death_\"+score+\"_event\"])]}\n", - "aggr_date = {score +\"_event_time\" : lambda x: [min(hospital_event_time, death_event_time)\n", - " for hospital_event_time, death_event_time in zip(x[\"hospital_\"+score+\"_event_time\"], x[\"death_\"+score+\"_event_time\"])]}\n", - "\n", - "score_MACE = temp = temp.assign(**aggr_event).assign(**aggr_date)[[\"eid\", score +\"_event\", score +\"_event_time\"]]\n", - "print(len(temp.query(score+\"_event==1\")))\n", - "temp.query(score+\"_event==1\").head()" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_all_list = [df.set_index(\"eid\") for df in [endpoints_hospital, endpoints_death, score_SCORE, score_ASCVD, score_QRISK3, score_MACE]]\n", - "endpoints_all = pd.concat(endpoints_all_list, axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
myocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timecancer_breast_eventcancer_breast_event_timediabetes_eventdiabetes_event_timeatrial_fibrillation_eventatrial_fibrillation_event_time...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
eid
10000180.059.3812460.059.3812460.059.3812460.059.3812460.059.381246...0.059.6249140.059.624914059.381246059.381246059.381246
10000200.071.1101980.071.1101980.071.1101980.071.1101980.071.110198...0.071.3538670.071.353867071.110198071.110198071.110198
10000370.070.3846680.070.3846680.070.3846680.070.3846680.070.384668...0.070.6283370.070.628337166.970568166.970568070.384668
10000431.068.1232030.073.8261460.073.8261460.073.8261460.073.826146...0.074.0698150.074.069815168.123203168.123203168.123203
10000510.064.8076660.064.8076660.064.8076661.055.7234770.064.807666...0.065.0513350.065.051335064.807666064.807666064.807666
..................................................................
60251500.055.7508560.055.7508560.055.7508560.055.7508560.055.750856...0.055.9945240.055.994524055.750856055.750856055.750856
60251650.056.5776870.056.5776870.056.5776870.056.5776870.056.577687...0.056.8213550.056.821355056.577687056.577687056.577687
60251730.068.5366190.068.5366190.068.5366190.068.5366190.068.536619...0.068.7802870.068.780287068.536619068.536619068.536619
60251820.065.7494870.065.7494870.065.7494870.065.7494870.065.749487...0.065.9931550.065.993155065.749487065.749487065.749487
60251980.077.1772760.077.1772760.077.1772760.077.1772760.077.177276...0.077.4209450.077.420945077.177276077.177276077.177276
\n", - "

502504 rows × 26 columns

\n", - "
" - ], - "text/plain": [ - " myocardial_infarction_event myocardial_infarction_event_time \\\n", - "eid \n", - "1000018 0.0 59.381246 \n", - "1000020 0.0 71.110198 \n", - "1000037 0.0 70.384668 \n", - "1000043 1.0 68.123203 \n", - "1000051 0.0 64.807666 \n", - "... ... ... \n", - "6025150 0.0 55.750856 \n", - "6025165 0.0 56.577687 \n", - "6025173 0.0 68.536619 \n", - "6025182 0.0 65.749487 \n", - "6025198 0.0 77.177276 \n", - "\n", - " stroke_event stroke_event_time cancer_breast_event \\\n", - "eid \n", - "1000018 0.0 59.381246 0.0 \n", - "1000020 0.0 71.110198 0.0 \n", - "1000037 0.0 70.384668 0.0 \n", - "1000043 0.0 73.826146 0.0 \n", - "1000051 0.0 64.807666 0.0 \n", - "... ... ... ... \n", - "6025150 0.0 55.750856 0.0 \n", - "6025165 0.0 56.577687 0.0 \n", - "6025173 0.0 68.536619 0.0 \n", - "6025182 0.0 65.749487 0.0 \n", - "6025198 0.0 77.177276 0.0 \n", - "\n", - " cancer_breast_event_time diabetes_event diabetes_event_time \\\n", - "eid \n", - "1000018 59.381246 0.0 59.381246 \n", - "1000020 71.110198 0.0 71.110198 \n", - "1000037 70.384668 0.0 70.384668 \n", - "1000043 73.826146 0.0 73.826146 \n", - "1000051 64.807666 1.0 55.723477 \n", - "... ... ... ... \n", - "6025150 55.750856 0.0 55.750856 \n", - "6025165 56.577687 0.0 56.577687 \n", - "6025173 68.536619 0.0 68.536619 \n", - "6025182 65.749487 0.0 65.749487 \n", - "6025198 77.177276 0.0 77.177276 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_event_time ... \\\n", - "eid ... \n", - "1000018 0.0 59.381246 ... \n", - "1000020 0.0 71.110198 ... \n", - "1000037 0.0 70.384668 ... \n", - "1000043 0.0 73.826146 ... \n", - "1000051 0.0 64.807666 ... \n", - "... ... ... ... \n", - "6025150 0.0 55.750856 ... \n", - "6025165 0.0 56.577687 ... \n", - "6025173 0.0 68.536619 ... \n", - "6025182 0.0 65.749487 ... \n", - "6025198 0.0 77.177276 ... \n", - "\n", - " death_cvd_event death_cvd_event_time SCORE_event SCORE_event_time \\\n", - "eid \n", - "1000018 0.0 59.624914 0.0 59.624914 \n", - "1000020 0.0 71.353867 0.0 71.353867 \n", - "1000037 0.0 70.628337 0.0 70.628337 \n", - "1000043 0.0 74.069815 0.0 74.069815 \n", - "1000051 0.0 65.051335 0.0 65.051335 \n", - "... ... ... ... ... \n", - "6025150 0.0 55.994524 0.0 55.994524 \n", - "6025165 0.0 56.821355 0.0 56.821355 \n", - "6025173 0.0 68.780287 0.0 68.780287 \n", - "6025182 0.0 65.993155 0.0 65.993155 \n", - "6025198 0.0 77.420945 0.0 77.420945 \n", - "\n", - " ASCVD_event ASCVD_event_time QRISK3_event QRISK3_event_time \\\n", - "eid \n", - "1000018 0 59.381246 0 59.381246 \n", - "1000020 0 71.110198 0 71.110198 \n", - "1000037 1 66.970568 1 66.970568 \n", - "1000043 1 68.123203 1 68.123203 \n", - "1000051 0 64.807666 0 64.807666 \n", - "... ... ... ... ... \n", - "6025150 0 55.750856 0 55.750856 \n", - "6025165 0 56.577687 0 56.577687 \n", - "6025173 0 68.536619 0 68.536619 \n", - "6025182 0 65.749487 0 65.749487 \n", - "6025198 0 77.177276 0 77.177276 \n", - "\n", - " MACE_event MACE_event_time \n", - "eid \n", - "1000018 0 59.381246 \n", - "1000020 0 71.110198 \n", - "1000037 0 70.384668 \n", - "1000043 1 68.123203 \n", - "1000051 0 64.807666 \n", - "... ... ... \n", - "6025150 0 55.750856 \n", - "6025165 0 56.577687 \n", - "6025173 0 68.536619 \n", - "6025182 0 65.749487 \n", - "6025198 0 77.177276 \n", - "\n", - "[502504 rows x 26 columns]" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoints_all " - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "endpoints_all.reset_index().to_feather(os.path.join(path, dataset_path, 'endpoints_all.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
myocardial_infarction_eventmyocardial_infarction_event_timestroke_eventstroke_event_timecancer_breast_eventcancer_breast_event_timediabetes_eventdiabetes_event_timeatrial_fibrillation_eventatrial_fibrillation_event_time...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
eid
10000180.059.3812460.059.3812460.059.3812460.059.3812460.059.381246...0.059.6249140.059.624914059.381246059.381246059.381246
10000200.071.1101980.071.1101980.071.1101980.071.1101980.071.110198...0.071.3538670.071.353867071.110198071.110198071.110198
10000370.070.3846680.070.3846680.070.3846680.070.3846680.070.384668...0.070.6283370.070.628337166.970568166.970568070.384668
10000431.068.1232030.073.8261460.073.8261460.073.8261460.073.826146...0.074.0698150.074.069815168.123203168.123203168.123203
10000510.064.8076660.064.8076660.064.8076661.055.7234770.064.807666...0.065.0513350.065.051335064.807666064.807666064.807666
..................................................................
60251500.055.7508560.055.7508560.055.7508560.055.7508560.055.750856...0.055.9945240.055.994524055.750856055.750856055.750856
60251650.056.5776870.056.5776870.056.5776870.056.5776870.056.577687...0.056.8213550.056.821355056.577687056.577687056.577687
60251730.068.5366190.068.5366190.068.5366190.068.5366190.068.536619...0.068.7802870.068.780287068.536619068.536619068.536619
60251820.065.7494870.065.7494870.065.7494870.065.7494870.065.749487...0.065.9931550.065.993155065.749487065.749487065.749487
60251980.077.1772760.077.1772760.077.1772760.077.1772760.077.177276...0.077.4209450.077.420945077.177276077.177276077.177276
\n", - "

502504 rows × 26 columns

\n", - "
" - ], - "text/plain": [ - " myocardial_infarction_event myocardial_infarction_event_time \\\n", - "eid \n", - "1000018 0.0 59.381246 \n", - "1000020 0.0 71.110198 \n", - "1000037 0.0 70.384668 \n", - "1000043 1.0 68.123203 \n", - "1000051 0.0 64.807666 \n", - "... ... ... \n", - "6025150 0.0 55.750856 \n", - "6025165 0.0 56.577687 \n", - "6025173 0.0 68.536619 \n", - "6025182 0.0 65.749487 \n", - "6025198 0.0 77.177276 \n", - "\n", - " stroke_event stroke_event_time cancer_breast_event \\\n", - "eid \n", - "1000018 0.0 59.381246 0.0 \n", - "1000020 0.0 71.110198 0.0 \n", - "1000037 0.0 70.384668 0.0 \n", - "1000043 0.0 73.826146 0.0 \n", - "1000051 0.0 64.807666 0.0 \n", - "... ... ... ... \n", - "6025150 0.0 55.750856 0.0 \n", - "6025165 0.0 56.577687 0.0 \n", - "6025173 0.0 68.536619 0.0 \n", - "6025182 0.0 65.749487 0.0 \n", - "6025198 0.0 77.177276 0.0 \n", - "\n", - " cancer_breast_event_time diabetes_event diabetes_event_time \\\n", - "eid \n", - "1000018 59.381246 0.0 59.381246 \n", - "1000020 71.110198 0.0 71.110198 \n", - "1000037 70.384668 0.0 70.384668 \n", - "1000043 73.826146 0.0 73.826146 \n", - "1000051 64.807666 1.0 55.723477 \n", - "... ... ... ... \n", - "6025150 55.750856 0.0 55.750856 \n", - "6025165 56.577687 0.0 56.577687 \n", - "6025173 68.536619 0.0 68.536619 \n", - "6025182 65.749487 0.0 65.749487 \n", - "6025198 77.177276 0.0 77.177276 \n", - "\n", - " atrial_fibrillation_event atrial_fibrillation_event_time ... \\\n", - "eid ... \n", - "1000018 0.0 59.381246 ... \n", - "1000020 0.0 71.110198 ... \n", - "1000037 0.0 70.384668 ... \n", - "1000043 0.0 73.826146 ... \n", - "1000051 0.0 64.807666 ... \n", - "... ... ... ... \n", - "6025150 0.0 55.750856 ... \n", - "6025165 0.0 56.577687 ... \n", - "6025173 0.0 68.536619 ... \n", - "6025182 0.0 65.749487 ... \n", - "6025198 0.0 77.177276 ... \n", - "\n", - " death_cvd_event death_cvd_event_time SCORE_event SCORE_event_time \\\n", - "eid \n", - "1000018 0.0 59.624914 0.0 59.624914 \n", - "1000020 0.0 71.353867 0.0 71.353867 \n", - "1000037 0.0 70.628337 0.0 70.628337 \n", - "1000043 0.0 74.069815 0.0 74.069815 \n", - "1000051 0.0 65.051335 0.0 65.051335 \n", - "... ... ... ... ... \n", - "6025150 0.0 55.994524 0.0 55.994524 \n", - "6025165 0.0 56.821355 0.0 56.821355 \n", - "6025173 0.0 68.780287 0.0 68.780287 \n", - "6025182 0.0 65.993155 0.0 65.993155 \n", - "6025198 0.0 77.420945 0.0 77.420945 \n", - "\n", - " ASCVD_event ASCVD_event_time QRISK3_event QRISK3_event_time \\\n", - "eid \n", - "1000018 0 59.381246 0 59.381246 \n", - "1000020 0 71.110198 0 71.110198 \n", - "1000037 1 66.970568 1 66.970568 \n", - "1000043 1 68.123203 1 68.123203 \n", - "1000051 0 64.807666 0 64.807666 \n", - "... ... ... ... ... \n", - "6025150 0 55.750856 0 55.750856 \n", - "6025165 0 56.577687 0 56.577687 \n", - "6025173 0 68.536619 0 68.536619 \n", - "6025182 0 65.749487 0 65.749487 \n", - "6025198 0 77.177276 0 77.177276 \n", - "\n", - " MACE_event MACE_event_time \n", - "eid \n", - "1000018 0 59.381246 \n", - "1000020 0 71.110198 \n", - "1000037 0 70.384668 \n", - "1000043 1 68.123203 \n", - "1000051 0 64.807666 \n", - "... ... ... \n", - "6025150 0 55.750856 \n", - "6025165 0 56.577687 \n", - "6025173 0 68.536619 \n", - "6025182 0 65.749487 \n", - "6025198 0 77.177276 \n", - "\n", - "[502504 rows x 26 columns]" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "endpoints_all" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Everything" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "data_dfs_dict = {\"basics\": pd.read_feather(os.path.join(path, dataset_path, 'temp_basics.feather')), \n", - " \"questionnaire\": pd.read_feather(os.path.join(path, dataset_path, 'temp_questionnaire.feather')), \n", - " \"measurements\": pd.read_feather(os.path.join(path, dataset_path, 'temp_measurements.feather')), \n", - " \"labs\": pd.read_feather(os.path.join(path, dataset_path, 'temp_labs.feather')), \n", - " \"family_history\": pd.read_feather(os.path.join(path, dataset_path, 'temp_family_history.feather')), \n", - " \"diagnoses\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses.feather')),\n", - " # \"diagnoses_emb\": pd.read_feather(os.path.join(path, dataset_path, 'temp_diagnoses_emb.feather')), \n", - " \"medications\": pd.read_feather(os.path.join(path, dataset_path, 'temp_medications.feather')), \n", - " \"endpoints_hospital\":endpoints_hospital, \n", - " \"endpoints_death\":endpoints_death, \n", - " \"score_SCORE\":score_SCORE, \n", - " \"score_ASCVD\":score_ASCVD, \n", - " \"score_QRISK3\":score_QRISK3,\n", - " \"score_MACE\":score_MACE}" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def get_cols_clean(df):\n", - " df.columns = df.columns.str.replace(r'_0_0$', '').str.replace(r'_f[0-9]+$', '').str.replace(\"_automated_reading\", '')\n", - " return df.columns\n", - "\n", - "def clean_df(df):\n", - " df.columns = get_cols_clean(df)\n", - " return df" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "from functools import reduce\n", - "\n", - "data_baseline = reduce(lambda x, y: pd.merge(x, y, on = 'eid'), list(data_dfs_dict.values()))" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline = clean_df(data_baseline)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "for col in [col for col in list(data_baseline.columns) if (\"_event\" in col) & (\"_time\" not in col)]:\n", - " data_baseline[col] = data_baseline[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "covariates = [col for col in list(data_baseline.columns) if not \"_event\" in col]\n", - "targets = [col for col in list(data_baseline.columns) if \"_event\" in col]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exporting" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100005151.0FemaleWhite-1.7990802006-06-101955-06-10PoorNeverOne to three times a month...065.051335065.051335064.761123064.761123064.761123
\n", - "

5 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000051 51.0 Female White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2006-06-10 1955-06-10 Poor \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never One to three times a month ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 65.051335 0 65.051335 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 64.761123 0 64.761123 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 64.761123 \n", - "\n", - "[5 rows x 3746 columns]" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols = {}\n", - "for topic, df in data_dfs_dict.items(): \n", - " data_cols[\"eid\"] = [\"admin\"]\n", - " data_cols[topic]=list(get_cols_clean(df))[1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "data_cols_single = {}\n", - "for topic, columns in data_cols.items():\n", - " for col in columns:\n", - " data_cols_single[col] = topic" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintegerFalseeidNaN
12age_at_recruitmentnumericFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentnumericFalsebasicsNaN
.....................
37413742ASCVD_event_timenumericTruescore_ASCVDNaN
37423743QRISK3_eventintegerTruescore_QRISK3NaN
37433744QRISK3_event_timenumericTruescore_QRISK3NaN
37443745MACE_eventintegerTruescore_MACENaN
37453746MACE_event_timenumericTruescore_MACENaN
\n", - "

3746 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid integer False \n", - "1 2 age_at_recruitment numeric False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment numeric False \n", - "... ... ... ... ... \n", - "3741 3742 ASCVD_event_time numeric True \n", - "3742 3743 QRISK3_event integer True \n", - "3743 3744 QRISK3_event_time numeric True \n", - "3744 3745 MACE_event integer True \n", - "3745 3746 MACE_event_time numeric True \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "3741 score_ASCVD NaN \n", - "3742 score_QRISK3 NaN \n", - "3743 score_QRISK3 NaN \n", - "3744 score_MACE NaN \n", - "3745 score_MACE NaN \n", - "\n", - "[3746 rows x 6 columns]" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"integer\", \"int64\":\"integer\", \"float64\":\"numeric\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"logical\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_baseline.columns.to_list())+1)] , \n", - " \"covariate\": data_baseline.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_baseline.dtypes.to_list()], \n", - " \"isTarget\":[True if col in targets else False for col in data_baseline.columns.to_list()],\n", - " \"based_on\":[topic for col, topic in data_cols_single.items()],\n", - " \"aggr_fn\": [np.nan for col in data_baseline.columns.to_list()]}\n", - "data_baseline_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_baseline_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exclusion Criteria" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline_excl = data_baseline.query(\"myocardial_infarction == False & coronary_heart_disease == False & statins == False\").reset_index(drop=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centrebirth_dateoverall_health_ratingsmoking_statusalcohol_intake_frequency...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
0100001849.0FemaleWhite-1.8529302009-11-121960-11-12FairCurrentOnce or twice a week...059.624914059.624914059.334702059.334702059.334702
1100002059.0MaleWhite0.2042482008-02-191949-02-19GoodCurrentOnce or twice a week...071.353867071.353867071.063655071.063655071.063655
2100003759.0FemaleWhite-3.4988602008-11-111949-11-11GoodPreviousOnce or twice a week...070.628337070.628337166.970568166.970568070.338125
3100004363.0MaleWhite-5.3511502009-06-031946-06-03FairPreviousThree or four times a week...074.069815074.069815168.123203168.123203168.123203
4100007960.0FemaleWhite-2.7080402008-03-181948-03-18FairNeverOnce or twice a week...072.279261072.279261161.054073161.054073071.989049
..................................................................
402296602515043.0FemaleWhite0.0467812007-06-301964-06-30ExcellentNeverThree or four times a week...055.994524055.994524055.704312055.704312055.704312
402297602516545.0FemaleWhite-2.1070402008-09-021963-09-02GoodNeverThree or four times a week...056.821355056.821355056.531143056.531143056.531143
402298602517357.0MaleWhite-1.8272202008-09-171951-09-17GoodNeverNever...068.780287068.780287068.490075068.490075068.490075
402299602518256.0MaleWhite-0.0107642010-07-011954-07-01ExcellentPreviousDaily or almost daily...065.993155065.993155065.702943065.702943065.702943
402300602519867.0MaleWhite-1.9306502010-01-261943-01-26GoodCurrentDaily or almost daily...077.420945077.420945077.130732077.130732077.130732
\n", - "

402301 rows × 3746 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000079 60.0 Female White \n", - "... ... ... ... ... \n", - "402296 6025150 43.0 Female White \n", - "402297 6025165 45.0 Female White \n", - "402298 6025173 57.0 Male White \n", - "402299 6025182 56.0 Male White \n", - "402300 6025198 67.0 Male White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -2.708040 \n", - "... ... \n", - "402296 0.046781 \n", - "402297 -2.107040 \n", - "402298 -1.827220 \n", - "402299 -0.010764 \n", - "402300 -1.930650 \n", - "\n", - " date_of_attending_assessment_centre birth_date overall_health_rating \\\n", - "0 2009-11-12 1960-11-12 Fair \n", - "1 2008-02-19 1949-02-19 Good \n", - "2 2008-11-11 1949-11-11 Good \n", - "3 2009-06-03 1946-06-03 Fair \n", - "4 2008-03-18 1948-03-18 Fair \n", - "... ... ... ... \n", - "402296 2007-06-30 1964-06-30 Excellent \n", - "402297 2008-09-02 1963-09-02 Good \n", - "402298 2008-09-17 1951-09-17 Good \n", - "402299 2010-07-01 1954-07-01 Excellent \n", - "402300 2010-01-26 1943-01-26 Good \n", - "\n", - " smoking_status alcohol_intake_frequency ... death_cvd_event \\\n", - "0 Current Once or twice a week ... 0 \n", - "1 Current Once or twice a week ... 0 \n", - "2 Previous Once or twice a week ... 0 \n", - "3 Previous Three or four times a week ... 0 \n", - "4 Never Once or twice a week ... 0 \n", - "... ... ... ... ... \n", - "402296 Never Three or four times a week ... 0 \n", - "402297 Never Three or four times a week ... 0 \n", - "402298 Never Never ... 0 \n", - "402299 Previous Daily or almost daily ... 0 \n", - "402300 Current Daily or almost daily ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 59.624914 0 59.624914 0 \n", - "1 71.353867 0 71.353867 0 \n", - "2 70.628337 0 70.628337 1 \n", - "3 74.069815 0 74.069815 1 \n", - "4 72.279261 0 72.279261 1 \n", - "... ... ... ... ... \n", - "402296 55.994524 0 55.994524 0 \n", - "402297 56.821355 0 56.821355 0 \n", - "402298 68.780287 0 68.780287 0 \n", - "402299 65.993155 0 65.993155 0 \n", - "402300 77.420945 0 77.420945 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 59.334702 0 59.334702 0 \n", - "1 71.063655 0 71.063655 0 \n", - "2 66.970568 1 66.970568 0 \n", - "3 68.123203 1 68.123203 1 \n", - "4 61.054073 1 61.054073 0 \n", - "... ... ... ... ... \n", - "402296 55.704312 0 55.704312 0 \n", - "402297 56.531143 0 56.531143 0 \n", - "402298 68.490075 0 68.490075 0 \n", - "402299 65.702943 0 65.702943 0 \n", - "402300 77.130732 0 77.130732 0 \n", - "\n", - " MACE_event_time \n", - "0 59.334702 \n", - "1 71.063655 \n", - "2 70.338125 \n", - "3 68.123203 \n", - "4 71.989049 \n", - "... ... \n", - "402296 55.704312 \n", - "402297 56.531143 \n", - "402298 68.490075 \n", - "402299 65.702943 \n", - "402300 77.130732 \n", - "\n", - "[402301 rows x 3746 columns]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_baseline_excl" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "feature_dict = {}\n", - "for group in data_baseline_description.based_on.unique(): feature_dict[group] = data_baseline_description.query(\"based_on==@group\").covariate.to_list()\n", - "with open(os.path.join(path, dataset_path, 'feature_list.yaml'), 'w') as file: yaml.dump(feature_dict, file, default_flow_style=False, allow_unicode=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "#feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "### WRITE FEATURES IN YAML!!!" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "data_baseline.to_feather(os.path.join(path, dataset_path, 'baseline_clinical.feather'))\n", - "data_baseline_excl.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_excl.feather'))\n", - "data_baseline_description.to_feather(os.path.join(path, dataset_path, 'baseline_clinical_description.feather'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#data_baseline.to_csv(os.path.join(path, dataset_path, 'baseline_clinical.csv'), index=False)\n", - "#data_baseline_description.to_csv(os.path.join(path, dataset_path, 'baseline_clinical_description.csv'), index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# !!! REMEMBER IMPUTATION !!!" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:miniconda3-pl1.x]", - "language": "python", - "name": "conda-env-miniconda3-pl1.x-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": false - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/3_preprocessing_pgs.ipynb b/neuralcvd/preprocessing/ukbb_tabular/3_preprocessing_pgs.ipynb deleted file mode 100644 index 160d750..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/3_preprocessing_pgs.ipynb +++ /dev/null @@ -1,3682 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Preprocessing - Polygenic Risk Scores" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "from tqdm.auto import tqdm\n", - "\n", - "import numpy as np\n", - "import pandas as pd\n", - "import lifelines\n", - "\n", - "from joblib import Parallel, delayed\n", - "from tqdm.notebook import tqdm\n", - "import neptune\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "import shutil\n", - "import pathlib\n", - "\n", - "dataset_name = \"210212_cvd_gp\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centreuk_biobank_assessment_centrebirth_dateoverall_health_ratingsmoking_status...general_nutrientsall_other_non-therapeutic_productscontrast_mediadiagnostic_radiopharmaceuticalstherapeutic_radiopharmaceuticalssurgical_dressingsstatinsassatypical_antipsychoticsglucocorticoids
0100001849.0FemaleWhite-1.8529302009-11-12Sheffield1960-11-12FairCurrent...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
1100002059.0MaleWhite0.2042482008-02-19Sheffield1949-02-19GoodCurrent...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
2100003759.0FemaleWhite-3.4988602008-11-11Sheffield1949-11-11GoodPrevious...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
3100004363.0MaleWhite-5.3511502009-06-03Sheffield1946-06-03FairPrevious...FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
4100005151.0FemaleWhite-1.7990802006-06-10Sheffield1955-06-10PoorNever...FalseFalseFalseFalseFalseFalseTrueFalseTrueFalse
\n", - "

5 rows × 2862 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 Female White \n", - "1 1000020 59.0 Male White \n", - "2 1000037 59.0 Female White \n", - "3 1000043 63.0 Male White \n", - "4 1000051 51.0 Female White \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.852930 \n", - "1 0.204248 \n", - "2 -3.498860 \n", - "3 -5.351150 \n", - "4 -1.799080 \n", - "\n", - " date_of_attending_assessment_centre uk_biobank_assessment_centre \\\n", - "0 2009-11-12 Sheffield \n", - "1 2008-02-19 Sheffield \n", - "2 2008-11-11 Sheffield \n", - "3 2009-06-03 Sheffield \n", - "4 2006-06-10 Sheffield \n", - "\n", - " birth_date overall_health_rating smoking_status ... general_nutrients \\\n", - "0 1960-11-12 Fair Current ... False \n", - "1 1949-02-19 Good Current ... False \n", - "2 1949-11-11 Good Previous ... False \n", - "3 1946-06-03 Fair Previous ... False \n", - "4 1955-06-10 Poor Never ... False \n", - "\n", - " all_other_non-therapeutic_products contrast_media \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 False False \n", - "4 False False \n", - "\n", - " diagnostic_radiopharmaceuticals therapeutic_radiopharmaceuticals \\\n", - "0 False False \n", - "1 False False \n", - "2 False False \n", - "3 False False \n", - "4 False False \n", - "\n", - " surgical_dressings statins ass atypical_antipsychotics \\\n", - "0 False False False False \n", - "1 False False False False \n", - "2 False False False False \n", - "3 False False False False \n", - "4 False True False True \n", - "\n", - " glucocorticoids \n", - "0 False \n", - "1 False \n", - "2 False \n", - "3 False \n", - "4 False \n", - "\n", - "[5 rows x 2862 columns]" - ] - }, - "execution_count": 120, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = pd.read_feather(f\"{dataset_path}/baseline_covariates.feather\")\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 603, - "metadata": {}, - "outputs": [], - "source": [ - "data_fp = f\"/data/analysis/ag-reils/steinfej/data/3_datasets_post/210212_cvd_gp/partition_0/train/data_imputed_normalized.feather\"\n", - "data = pd.read_feather(data_fp)#.dropna()\n", - "description = pd.read_feather(f\"{pathlib.Path(data_fp).parents[2]}/description.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 640, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "14" - ] - }, - "execution_count": 640, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mult = int(1/(len(data[data.MACE_event==True])/len(data)))\n", - "mult" - ] - }, - { - "cell_type": "code", - "execution_count": 638, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "284931" - ] - }, - "execution_count": 638, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 642, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centreuk_biobank_assessment_centrebirth_dateoverall_health_ratingsmoking_status...overall_health_rating_3.0smoking_status_0.0smoking_status_1.0smoking_status_2.0alcohol_intake_frequency_0.0alcohol_intake_frequency_1.0alcohol_intake_frequency_2.0alcohol_intake_frequency_3.0alcohol_intake_frequency_4.0alcohol_intake_frequency_5.0
01000018-0.7865450.00.0-0.1632632009-11-120.01960-11-120.00.0...0100100000
110000200.4480441.00.00.5092072008-02-190.01949-02-191.00.0...0100100000
210000430.9418801.00.0-1.3067952009-06-030.01946-06-030.01.0...0010010000
310000790.5715030.00.0-0.4427902008-03-180.01948-03-180.02.0...0001100000
41000084-1.5272991.00.02.9157212007-10-180.01964-10-180.02.0...0001100000
..................................................................
28480555210550.8184210.00.0-0.5592742009-11-2417.01947-11-241.02.0...0001100000
28481555211730.4480441.00.0-0.8332302008-02-2817.01949-02-281.02.0...0001010000
2848325521549-1.7742171.00.0-1.2352232009-01-1917.01968-01-191.02.0...0001100000
28485455218450.0776680.00.0-0.8470052007-10-3017.01951-10-301.02.0...0001100000
28487855222431.4357160.00.0-0.5386902007-09-0617.01940-09-060.02.0...0001001000
\n", - "

568039 rows × 2996 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 -0.786545 0.0 0.0 \n", - "1 1000020 0.448044 1.0 0.0 \n", - "2 1000043 0.941880 1.0 0.0 \n", - "3 1000079 0.571503 0.0 0.0 \n", - "4 1000084 -1.527299 1.0 0.0 \n", - "... ... ... ... ... \n", - "284805 5521055 0.818421 0.0 0.0 \n", - "284815 5521173 0.448044 1.0 0.0 \n", - "284832 5521549 -1.774217 1.0 0.0 \n", - "284854 5521845 0.077668 0.0 0.0 \n", - "284878 5522243 1.435716 0.0 0.0 \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -0.163263 \n", - "1 0.509207 \n", - "2 -1.306795 \n", - "3 -0.442790 \n", - "4 2.915721 \n", - "... ... \n", - "284805 -0.559274 \n", - "284815 -0.833230 \n", - "284832 -1.235223 \n", - "284854 -0.847005 \n", - "284878 -0.538690 \n", - "\n", - " date_of_attending_assessment_centre uk_biobank_assessment_centre \\\n", - "0 2009-11-12 0.0 \n", - "1 2008-02-19 0.0 \n", - "2 2009-06-03 0.0 \n", - "3 2008-03-18 0.0 \n", - "4 2007-10-18 0.0 \n", - "... ... ... \n", - "284805 2009-11-24 17.0 \n", - "284815 2008-02-28 17.0 \n", - "284832 2009-01-19 17.0 \n", - "284854 2007-10-30 17.0 \n", - "284878 2007-09-06 17.0 \n", - "\n", - " birth_date overall_health_rating smoking_status ... \\\n", - "0 1960-11-12 0.0 0.0 ... \n", - "1 1949-02-19 1.0 0.0 ... \n", - "2 1946-06-03 0.0 1.0 ... \n", - "3 1948-03-18 0.0 2.0 ... \n", - "4 1964-10-18 0.0 2.0 ... \n", - "... ... ... ... ... \n", - "284805 1947-11-24 1.0 2.0 ... \n", - "284815 1949-02-28 1.0 2.0 ... \n", - "284832 1968-01-19 1.0 2.0 ... \n", - "284854 1951-10-30 1.0 2.0 ... \n", - "284878 1940-09-06 0.0 2.0 ... \n", - "\n", - " overall_health_rating_3.0 smoking_status_0.0 smoking_status_1.0 \\\n", - "0 0 1 0 \n", - "1 0 1 0 \n", - "2 0 0 1 \n", - "3 0 0 0 \n", - "4 0 0 0 \n", - "... ... ... ... \n", - "284805 0 0 0 \n", - "284815 0 0 0 \n", - "284832 0 0 0 \n", - "284854 0 0 0 \n", - "284878 0 0 0 \n", - "\n", - " smoking_status_2.0 alcohol_intake_frequency_0.0 \\\n", - "0 0 1 \n", - "1 0 1 \n", - "2 0 0 \n", - "3 1 1 \n", - "4 1 1 \n", - "... ... ... \n", - "284805 1 1 \n", - "284815 1 0 \n", - "284832 1 1 \n", - "284854 1 1 \n", - "284878 1 0 \n", - "\n", - " alcohol_intake_frequency_1.0 alcohol_intake_frequency_2.0 \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 1 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "284805 0 0 \n", - "284815 1 0 \n", - "284832 0 0 \n", - "284854 0 0 \n", - "284878 0 1 \n", - "\n", - " alcohol_intake_frequency_3.0 alcohol_intake_frequency_4.0 \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "284805 0 0 \n", - "284815 0 0 \n", - "284832 0 0 \n", - "284854 0 0 \n", - "284878 0 0 \n", - "\n", - " alcohol_intake_frequency_5.0 \n", - "0 0 \n", - "1 0 \n", - "2 0 \n", - "3 0 \n", - "4 0 \n", - "... ... \n", - "284805 0 \n", - "284815 0 \n", - "284832 0 \n", - "284854 0 \n", - "284878 0 \n", - "\n", - "[568039 rows x 2996 columns]" - ] - }, - "execution_count": 642, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 621, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - " basics = [\n", - " 'age_at_recruitment',\n", - " 'ethnic_background_0.0',\n", - " 'ethnic_background_1.0',\n", - " 'ethnic_background_5.0',#na 2 -> 5\n", - " 'ethnic_background_3.0',\n", - " 'ethnic_background_4.0',\n", - " 'townsend_deprivation_index_at_recruitment',\n", - " 'sex'\n", - " ]\n", - " questionnaire = [\n", - " 'overall_health_rating_0.0',\n", - " 'overall_health_rating_1.0',\n", - " 'overall_health_rating_2.0',\n", - " 'overall_health_rating_3.0',\n", - " 'smoking_status_0.0',\n", - " 'smoking_status_1.0',\n", - " 'smoking_status_2.0',\n", - " ]\n", - "measurements = [\n", - " 'body_mass_index_bmi',\n", - " 'weight',\n", - " \"standing_height\",\n", - " 'systolic_blood_pressure',\n", - " 'diastolic_blood_pressure',\n", - "]\n", - "\n", - "labs = [\n", - " \"cholesterol\",\n", - " \"hdl_cholesterol\",\n", - " \"ldl_direct\",\n", - " \"triglycerides\"\n", - "]\n", - "\n", - "family_history = [\n", - " 'fh_heart_disease',\n", - "]\n", - "\n", - "diagnoses = [\n", - " 'diabetes1',\n", - " 'diabetes2',\n", - " 'chronic_kidney_disease',\n", - " 'atrial_fibrillation',\n", - " 'migraine',\n", - " 'rheumatoid_arthritis',\n", - " 'systemic_lupus_erythematosus',\n", - " 'severe_mental_illness',\n", - " 'erectile_dysfunction',\n", - "]\n", - "\n", - "medications = [\n", - " \"statins\",\n", - " \"antihypertensives\",\n", - " \"ass\",\n", - " \"atypical_antipsychotics\",\n", - " \"glucocorticoids\"\n", - "]\n", - "\n", - "pgs = [\n", - " 'PGS000011',\n", - " 'PGS000057',\n", - " 'PGS000058',\n", - " 'PGS000059']\n", - "\n", - "feature_dict = {\n", - " \"pgs\": pgs,\n", - " \"basics\": basics,\n", - " \"questionnaire\": questionnaire,\n", - " \"measurements\": measurements,\n", - " \"labs\": labs,\n", - " \"family_history\": family_history,\n", - " \"medications\": medications,\n", - " \"diagnoses\": diagnoses\n", - "}\n", - "\n", - "features = [f for group_list in feature_dict.values() for f in group_list]\n", - "target = \"MACE_event\"" - ] - }, - { - "cell_type": "code", - "execution_count": 613, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting imbalanced_databases\n", - " Downloading imbalanced_databases-0.1.1-py3-none-any.whl (4.3 MB)\n", - "\u001b[K |████████████████████████████████| 4.3 MB 4.6 MB/s eta 0:00:01\n", - "\u001b[?25hRequirement already satisfied: numpy in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from imbalanced_databases) (1.19.1)\n", - "Requirement already satisfied: scipy in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from imbalanced_databases) (1.5.2)\n", - "Requirement already satisfied: sklearn in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from imbalanced_databases) (0.0)\n", - "Requirement already satisfied: pandas in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from imbalanced_databases) (1.1.3)\n", - "Requirement already satisfied: scikit-learn in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from sklearn->imbalanced_databases) (0.23.2)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from pandas->imbalanced_databases) (2.8.1)\n", - "Requirement already satisfied: pytz>=2017.2 in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from pandas->imbalanced_databases) (2020.1)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from scikit-learn->sklearn->imbalanced_databases) (2.1.0)\n", - "Requirement already satisfied: joblib>=0.11 in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from scikit-learn->sklearn->imbalanced_databases) (0.17.0)\n", - "Requirement already satisfied: six>=1.5 in /data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas->imbalanced_databases) (1.15.0)\n", - "Installing collected packages: imbalanced-databases\n", - "Successfully installed imbalanced-databases-0.1.1\n" - ] - } - ], - "source": [ - "!pip install imbalanced_databases" - ] - }, - { - "cell_type": "code", - "execution_count": 624, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(150, 4)" - ] - }, - "execution_count": 624, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import imbalanced_databases as imbd\n", - "dataset= imbd.load_iris0()\n", - "dataset[\"data\"].shape" - ] - }, - { - "cell_type": "code", - "execution_count": 604, - "metadata": {}, - "outputs": [], - "source": [ - "import smote_variants as sv\n", - "\n", - "oversampler= sv.polynom_fit_SMOTE()" - ] - }, - { - "cell_type": "code", - "execution_count": 629, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2021-02-16 22:54:55,131:INFO:polynom_fit_SMOTE: Running sampling via ('polynom_fit_SMOTE', \"{'proportion': 1.0, 'topology': 'star', 'random_state': None}\")\n" - ] - } - ], - "source": [ - "smote_df = data.sample(10000)\n", - "for c in smote_df.columns:\n", - " if smote_df[c].dtype==\"bool\":\n", - " #print(smote_df[c].dtype)\n", - " smote_df[c] = smote_df[c].astype(float)\n", - "X_samp, y_samp = oversampler.sample(smote_df[features].values, smote_df[target].values)" - ] - }, - { - "cell_type": "code", - "execution_count": 631, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1.78882453, 0.77797397, 0.12463653, ..., 0. ,\n", - " 0. , 0. ],\n", - " [-0.77867311, -1.34328462, -0.38160009, ..., 0. ,\n", - " 0. , 0. ],\n", - " [ 0.2802518 , -0.21876199, -0.43298506, ..., 0. ,\n", - " 0. , 0. ],\n", - " ...,\n", - " [ 0.04400338, 0.01484893, 0.49036118, ..., 0.00221043,\n", - " 0.10831123, 0.03868258],\n", - " [ 0.0634923 , 0.03054282, 0.35859966, ..., 0.00243148,\n", - " 0.11914235, 0.04255084],\n", - " [ 0.08298123, 0.04623672, 0.22683815, ..., 0.00265252,\n", - " 0.12997347, 0.0464191 ]])" - ] - }, - "execution_count": 631, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_samp" - ] - }, - { - "cell_type": "code", - "execution_count": 572, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
indexiddtypeisTargetbased_onaggr_fnmapping
covariate
death_cvd_comp_event73.074.0intTrueendpoints_competingNaNNone
death_cvd_comp_event_time74.075.0floatTrueendpoints_competingNaNNone
SCORE_comp_event75.076.0intTrueendpoints_competingNaNNone
SCORE_comp_event_time76.077.0floatTrueendpoints_competingNaNNone
ASCVD_comp_event77.078.0intTrueendpoints_competingNaNNone
ASCVD_comp_event_time78.079.0floatTrueendpoints_competingNaNNone
QRISK3_comp_event79.080.0intTrueendpoints_competingNaNNone
QRISK3_comp_event_time80.081.0floatTrueendpoints_competingNaNNone
MACE_comp_event81.082.0intTrueendpoints_competingNaNNone
MACE_comp_event_time82.083.0floatTrueendpoints_competingNaNNone
ethnic_background_0.0NaNNaNboolFalsebasicsNaN{'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ...
ethnic_background_1.0NaNNaNboolFalsebasicsNaN{'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ...
ethnic_background_3.0NaNNaNboolFalsebasicsNaN{'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ...
ethnic_background_4.0NaNNaNboolFalsebasicsNaN{'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ...
ethnic_background_5.0NaNNaNboolFalsebasicsNaN{'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ...
uk_biobank_assessment_centre_0.0NaNNaNboolFalsebasicsNaN{'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '...
uk_biobank_assessment_centre_1.0NaNNaNboolFalsebasicsNaN{'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '...
uk_biobank_assessment_centre_2.0NaNNaNboolFalsebasicsNaN{'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '...
uk_biobank_assessment_centre_3.0NaNNaNboolFalsebasicsNaN{'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '...
uk_biobank_assessment_centre_4.0NaNNaNboolFalsebasicsNaN{'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '...
\n", - "
" - ], - "text/plain": [ - " index id dtype isTarget \\\n", - "covariate \n", - "death_cvd_comp_event 73.0 74.0 int True \n", - "death_cvd_comp_event_time 74.0 75.0 float True \n", - "SCORE_comp_event 75.0 76.0 int True \n", - "SCORE_comp_event_time 76.0 77.0 float True \n", - "ASCVD_comp_event 77.0 78.0 int True \n", - "ASCVD_comp_event_time 78.0 79.0 float True \n", - "QRISK3_comp_event 79.0 80.0 int True \n", - "QRISK3_comp_event_time 80.0 81.0 float True \n", - "MACE_comp_event 81.0 82.0 int True \n", - "MACE_comp_event_time 82.0 83.0 float True \n", - "ethnic_background_0.0 NaN NaN bool False \n", - "ethnic_background_1.0 NaN NaN bool False \n", - "ethnic_background_3.0 NaN NaN bool False \n", - "ethnic_background_4.0 NaN NaN bool False \n", - "ethnic_background_5.0 NaN NaN bool False \n", - "uk_biobank_assessment_centre_0.0 NaN NaN bool False \n", - "uk_biobank_assessment_centre_1.0 NaN NaN bool False \n", - "uk_biobank_assessment_centre_2.0 NaN NaN bool False \n", - "uk_biobank_assessment_centre_3.0 NaN NaN bool False \n", - "uk_biobank_assessment_centre_4.0 NaN NaN bool False \n", - "\n", - " based_on aggr_fn \\\n", - "covariate \n", - "death_cvd_comp_event endpoints_competing NaN \n", - "death_cvd_comp_event_time endpoints_competing NaN \n", - "SCORE_comp_event endpoints_competing NaN \n", - "SCORE_comp_event_time endpoints_competing NaN \n", - "ASCVD_comp_event endpoints_competing NaN \n", - "ASCVD_comp_event_time endpoints_competing NaN \n", - "QRISK3_comp_event endpoints_competing NaN \n", - "QRISK3_comp_event_time endpoints_competing NaN \n", - "MACE_comp_event endpoints_competing NaN \n", - "MACE_comp_event_time endpoints_competing NaN \n", - "ethnic_background_0.0 basics NaN \n", - "ethnic_background_1.0 basics NaN \n", - "ethnic_background_3.0 basics NaN \n", - "ethnic_background_4.0 basics NaN \n", - "ethnic_background_5.0 basics NaN \n", - "uk_biobank_assessment_centre_0.0 basics NaN \n", - "uk_biobank_assessment_centre_1.0 basics NaN \n", - "uk_biobank_assessment_centre_2.0 basics NaN \n", - "uk_biobank_assessment_centre_3.0 basics NaN \n", - "uk_biobank_assessment_centre_4.0 basics NaN \n", - "\n", - " mapping \n", - "covariate \n", - "death_cvd_comp_event None \n", - "death_cvd_comp_event_time None \n", - "SCORE_comp_event None \n", - "SCORE_comp_event_time None \n", - "ASCVD_comp_event None \n", - "ASCVD_comp_event_time None \n", - "QRISK3_comp_event None \n", - "QRISK3_comp_event_time None \n", - "MACE_comp_event None \n", - "MACE_comp_event_time None \n", - "ethnic_background_0.0 {'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ... \n", - "ethnic_background_1.0 {'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ... \n", - "ethnic_background_3.0 {'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ... \n", - "ethnic_background_4.0 {'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ... \n", - "ethnic_background_5.0 {'White': 0, 'Black': 1, nan: -2, 'Asian': 3, ... \n", - "uk_biobank_assessment_centre_0.0 {'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '... \n", - "uk_biobank_assessment_centre_1.0 {'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '... \n", - "uk_biobank_assessment_centre_2.0 {'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '... \n", - "uk_biobank_assessment_centre_3.0 {'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '... \n", - "uk_biobank_assessment_centre_4.0 {'Sheffield': 0, 'Edinburgh': 1, 'Leeds': 2, '... " - ] - }, - "execution_count": 572, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "description.set_index(\"covariate\")[-50:-30]" - ] - }, - { - "cell_type": "code", - "execution_count": 557, - "metadata": {}, - "outputs": [], - "source": [ - "#from sklearn.preprocessing import OrdinalEncoder\n", - "from category_encoders.ordinal import OrdinalEncoder\n", - "cat_cols = [c for c in description.set_index(\"dtype\").loc[[\"category\"]].covariate.to_list() if \"date\" not in c]" - ] - }, - { - "cell_type": "code", - "execution_count": 587, - "metadata": {}, - "outputs": [], - "source": [ - "mapping = [{\"col\": c, \"mapping\": {e: i for i, e in enumerate([v for v in data[c].unique().tolist() if v==v])}} for c in cat_cols]\n", - "for i, c in enumerate(cat_cols): mapping[i][\"mapping\"].update({np.nan: -2})" - ] - }, - { - "cell_type": "code", - "execution_count": 586, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "module 'pandas' has no attribute 'nan'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m[\u001b[0m\u001b[0mv\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munique\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtolist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/__init__.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(name)\u001b[0m\n\u001b[1;32m 256\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_SparseArray\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 257\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 258\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"module 'pandas' has no attribute '{name}'\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 259\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 260\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: module 'pandas' has no attribute 'nan'" - ] - } - ], - "source": [ - "[v for v in data[c].unique().tolist() if v is not np.nan][6]==pd.nan" - ] - }, - { - "cell_type": "code", - "execution_count": 588, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'col': 'sex', 'mapping': {0.0: 0, 1.0: 1, nan: -2}},\n", - " {'col': 'ethnic_background',\n", - " 'mapping': {0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2}},\n", - " {'col': 'uk_biobank_assessment_centre',\n", - " 'mapping': {0.0: 0,\n", - " 1.0: 1,\n", - " 2.0: 2,\n", - " 3.0: 3,\n", - " 4.0: 4,\n", - " 5.0: 5,\n", - " 6.0: 6,\n", - " 7.0: 7,\n", - " 8.0: 8,\n", - " 9.0: 9,\n", - " 10.0: 10,\n", - " 11.0: 11,\n", - " 12.0: 12,\n", - " 13.0: 13,\n", - " 14.0: 14,\n", - " 15.0: 15,\n", - " 16.0: 16,\n", - " 17.0: 17,\n", - " nan: -2}},\n", - " {'col': 'overall_health_rating',\n", - " 'mapping': {0.0: 0, 1.0: 1, 2.0: 2, 3.0: 3, nan: -2}},\n", - " {'col': 'smoking_status', 'mapping': {0.0: 0, 1.0: 1, 2.0: 2, nan: -2}},\n", - " {'col': 'alcohol_intake_frequency',\n", - " 'mapping': {0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, 2.0: 5, nan: -2}}]" - ] - }, - "execution_count": 588, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mapping" - ] - }, - { - "cell_type": "code", - "execution_count": 558, - "metadata": {}, - "outputs": [], - "source": [ - "from category_encoders.ordinal import OrdinalEncoder\n", - "cat_cols = [c for c in description.set_index(\"dtype\").loc[[\"category\"]].covariate.to_list() if \"date\" not in c]\n", - "\n", - "mapping = [{\"col\": c, \"mapping\": {e:i for i, e in enumerate(data[c].unique().tolist())}} for c in cat_cols]\n", - "for i, c in enumerate(cat_cols): mapping[i][\"mapping\"].update({np.nan:-2})\n", - "\n", - "enc = OrdinalEncoder(cols=cat_cols, mapping=mapping, handle_missing=\"return_nan\")\n", - "data = enc.fit_transform(data)\n", - "\n", - "description[\"mapping\"] = np.nan\n", - "for i, c in enumerate(cat_cols):\n", - " description.loc[description.covariate == c, 'mapping'] = str(enc.mapping[i][\"mapping\"])\n", - " if data[c].nunique()>2: \n", - " ohe_encoded = pd.get_dummies(data[c], prefix=c)\n", - " data[ohe_encoded.columns] = ohe_encoded\n", - " for col in ohe_encoded.columns:\n", - " description = description.append(\n", - " {\"covariate\": col, \"dtype\": \"bool\", \"isTarget\": False, \"based_on\": description.loc[description.covariate == c, \"based_on\"].iloc[0], \n", - " \"aggr_fn\": np.nan, \"mapping\":str(enc.mapping[i][\"mapping\"])}, ignore_index=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 559, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centreuk_biobank_assessment_centrebirth_dateoverall_health_ratingsmoking_status...smoking_status_0.0smoking_status_1.0smoking_status_2.0alcohol_intake_frequency_0.0alcohol_intake_frequency_1.0alcohol_intake_frequency_2.0alcohol_intake_frequency_3.0alcohol_intake_frequency_4.0alcohol_intake_frequency_5.0ethnic_background_2.0
0100001849.00.00.0-1.852932009-11-120.01960-11-120.00.0...1001000000
1100003759.00.00.0-3.498862008-11-110.01949-11-111.01.0...0101000000
2100004363.01.00.0-5.351152009-06-030.01946-06-030.01.0...0100100000
3100008443.01.00.07.566102007-10-180.01964-10-180.02.0...0011000000
4100009250.00.01.07.664182009-06-160.01959-06-162.00.0...1000010000
..................................................................
28366145027042.00.01.01.225162007-08-021.01965-08-021.02.0...0010000010
28367145028560.00.00.0-3.282442008-01-191.01948-01-191.02.0...0010000100
28368145030167.01.00.0-3.455442010-03-161.01943-03-161.01.0...0100000010
28369145033453.00.00.05.851412009-06-301.01956-06-301.01.0...0100010000
28370145034260.01.00.05.460872008-10-111.01948-10-111.02.0...0011000000
\n", - "

28371 rows × 2978 columns

\n", - "
" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background \\\n", - "0 1000018 49.0 0.0 0.0 \n", - "1 1000037 59.0 0.0 0.0 \n", - "2 1000043 63.0 1.0 0.0 \n", - "3 1000084 43.0 1.0 0.0 \n", - "4 1000092 50.0 0.0 1.0 \n", - "... ... ... ... ... \n", - "28366 1450270 42.0 0.0 1.0 \n", - "28367 1450285 60.0 0.0 0.0 \n", - "28368 1450301 67.0 1.0 0.0 \n", - "28369 1450334 53.0 0.0 0.0 \n", - "28370 1450342 60.0 1.0 0.0 \n", - "\n", - " townsend_deprivation_index_at_recruitment \\\n", - "0 -1.85293 \n", - "1 -3.49886 \n", - "2 -5.35115 \n", - "3 7.56610 \n", - "4 7.66418 \n", - "... ... \n", - "28366 1.22516 \n", - "28367 -3.28244 \n", - "28368 -3.45544 \n", - "28369 5.85141 \n", - "28370 5.46087 \n", - "\n", - " date_of_attending_assessment_centre uk_biobank_assessment_centre \\\n", - "0 2009-11-12 0.0 \n", - "1 2008-11-11 0.0 \n", - "2 2009-06-03 0.0 \n", - "3 2007-10-18 0.0 \n", - "4 2009-06-16 0.0 \n", - "... ... ... \n", - "28366 2007-08-02 1.0 \n", - "28367 2008-01-19 1.0 \n", - "28368 2010-03-16 1.0 \n", - "28369 2009-06-30 1.0 \n", - "28370 2008-10-11 1.0 \n", - "\n", - " birth_date overall_health_rating smoking_status ... \\\n", - "0 1960-11-12 0.0 0.0 ... \n", - "1 1949-11-11 1.0 1.0 ... \n", - "2 1946-06-03 0.0 1.0 ... \n", - "3 1964-10-18 0.0 2.0 ... \n", - "4 1959-06-16 2.0 0.0 ... \n", - "... ... ... ... ... \n", - "28366 1965-08-02 1.0 2.0 ... \n", - "28367 1948-01-19 1.0 2.0 ... \n", - "28368 1943-03-16 1.0 1.0 ... \n", - "28369 1956-06-30 1.0 1.0 ... \n", - "28370 1948-10-11 1.0 2.0 ... \n", - "\n", - " smoking_status_0.0 smoking_status_1.0 smoking_status_2.0 \\\n", - "0 1 0 0 \n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 0 1 \n", - "4 1 0 0 \n", - "... ... ... ... \n", - "28366 0 0 1 \n", - "28367 0 0 1 \n", - "28368 0 1 0 \n", - "28369 0 1 0 \n", - "28370 0 0 1 \n", - "\n", - " alcohol_intake_frequency_0.0 alcohol_intake_frequency_1.0 \\\n", - "0 1 0 \n", - "1 1 0 \n", - "2 0 1 \n", - "3 1 0 \n", - "4 0 0 \n", - "... ... ... \n", - "28366 0 0 \n", - "28367 0 0 \n", - "28368 0 0 \n", - "28369 0 0 \n", - "28370 1 0 \n", - "\n", - " alcohol_intake_frequency_2.0 alcohol_intake_frequency_3.0 \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 1 0 \n", - "... ... ... \n", - "28366 0 0 \n", - "28367 0 0 \n", - "28368 0 0 \n", - "28369 1 0 \n", - "28370 0 0 \n", - "\n", - " alcohol_intake_frequency_4.0 alcohol_intake_frequency_5.0 \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "28366 0 1 \n", - "28367 1 0 \n", - "28368 0 1 \n", - "28369 0 0 \n", - "28370 0 0 \n", - "\n", - " ethnic_background_2.0 \n", - "0 0 \n", - "1 0 \n", - "2 0 \n", - "3 0 \n", - "4 0 \n", - "... ... \n", - "28366 0 \n", - "28367 0 \n", - "28368 0 \n", - "28369 0 \n", - "28370 0 \n", - "\n", - "[28371 rows x 2978 columns]" - ] - }, - "execution_count": 559, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data" - ] - }, - { - "cell_type": "code", - "execution_count": 560, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
indexiddtypeisTargetbased_onaggr_fnmapping
covariate
copd_comp_event71.072.0intTrueendpoints_competingNaNNaN
copd_comp_event_time72.073.0floatTrueendpoints_competingNaNNaN
death_cvd_comp_event73.074.0intTrueendpoints_competingNaNNaN
death_cvd_comp_event_time74.075.0floatTrueendpoints_competingNaNNaN
SCORE_comp_event75.076.0intTrueendpoints_competingNaNNaN
SCORE_comp_event_time76.077.0floatTrueendpoints_competingNaNNaN
ASCVD_comp_event77.078.0intTrueendpoints_competingNaNNaN
ASCVD_comp_event_time78.079.0floatTrueendpoints_competingNaNNaN
QRISK3_comp_event79.080.0intTrueendpoints_competingNaNNaN
QRISK3_comp_event_time80.081.0floatTrueendpoints_competingNaNNaN
MACE_comp_event81.082.0intTrueendpoints_competingNaNNaN
MACE_comp_event_time82.083.0floatTrueendpoints_competingNaNNaN
ethnic_background_0.0NaNNaNboolFalsebasicsNaN{0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2}
ethnic_background_1.0NaNNaNboolFalsebasicsNaN{0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2}
ethnic_background_2.0NaNNaNboolFalsebasicsNaN{0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2}
ethnic_background_3.0NaNNaNboolFalsebasicsNaN{0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2}
ethnic_background_4.0NaNNaNboolFalsebasicsNaN{0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2}
overall_health_rating_0.0NaNNaNboolFalsequestionnaireNaN{0.0: 0, 1.0: 1, 2.0: 2, 3.0: 3, nan: -2}
overall_health_rating_1.0NaNNaNboolFalsequestionnaireNaN{0.0: 0, 1.0: 1, 2.0: 2, 3.0: 3, nan: -2}
overall_health_rating_2.0NaNNaNboolFalsequestionnaireNaN{0.0: 0, 1.0: 1, 2.0: 2, 3.0: 3, nan: -2}
\n", - "
" - ], - "text/plain": [ - " index id dtype isTarget based_on \\\n", - "covariate \n", - "copd_comp_event 71.0 72.0 int True endpoints_competing \n", - "copd_comp_event_time 72.0 73.0 float True endpoints_competing \n", - "death_cvd_comp_event 73.0 74.0 int True endpoints_competing \n", - "death_cvd_comp_event_time 74.0 75.0 float True endpoints_competing \n", - "SCORE_comp_event 75.0 76.0 int True endpoints_competing \n", - "SCORE_comp_event_time 76.0 77.0 float True endpoints_competing \n", - "ASCVD_comp_event 77.0 78.0 int True endpoints_competing \n", - "ASCVD_comp_event_time 78.0 79.0 float True endpoints_competing \n", - "QRISK3_comp_event 79.0 80.0 int True endpoints_competing \n", - "QRISK3_comp_event_time 80.0 81.0 float True endpoints_competing \n", - "MACE_comp_event 81.0 82.0 int True endpoints_competing \n", - "MACE_comp_event_time 82.0 83.0 float True endpoints_competing \n", - "ethnic_background_0.0 NaN NaN bool False basics \n", - "ethnic_background_1.0 NaN NaN bool False basics \n", - "ethnic_background_2.0 NaN NaN bool False basics \n", - "ethnic_background_3.0 NaN NaN bool False basics \n", - "ethnic_background_4.0 NaN NaN bool False basics \n", - "overall_health_rating_0.0 NaN NaN bool False questionnaire \n", - "overall_health_rating_1.0 NaN NaN bool False questionnaire \n", - "overall_health_rating_2.0 NaN NaN bool False questionnaire \n", - "\n", - " aggr_fn \\\n", - "covariate \n", - "copd_comp_event NaN \n", - "copd_comp_event_time NaN \n", - "death_cvd_comp_event NaN \n", - "death_cvd_comp_event_time NaN \n", - "SCORE_comp_event NaN \n", - "SCORE_comp_event_time NaN \n", - "ASCVD_comp_event NaN \n", - "ASCVD_comp_event_time NaN \n", - "QRISK3_comp_event NaN \n", - "QRISK3_comp_event_time NaN \n", - "MACE_comp_event NaN \n", - "MACE_comp_event_time NaN \n", - "ethnic_background_0.0 NaN \n", - "ethnic_background_1.0 NaN \n", - "ethnic_background_2.0 NaN \n", - "ethnic_background_3.0 NaN \n", - "ethnic_background_4.0 NaN \n", - "overall_health_rating_0.0 NaN \n", - "overall_health_rating_1.0 NaN \n", - "overall_health_rating_2.0 NaN \n", - "\n", - " mapping \n", - "covariate \n", - "copd_comp_event NaN \n", - "copd_comp_event_time NaN \n", - "death_cvd_comp_event NaN \n", - "death_cvd_comp_event_time NaN \n", - "SCORE_comp_event NaN \n", - "SCORE_comp_event_time NaN \n", - "ASCVD_comp_event NaN \n", - "ASCVD_comp_event_time NaN \n", - "QRISK3_comp_event NaN \n", - "QRISK3_comp_event_time NaN \n", - "MACE_comp_event NaN \n", - "MACE_comp_event_time NaN \n", - "ethnic_background_0.0 {0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2} \n", - "ethnic_background_1.0 {0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2} \n", - "ethnic_background_2.0 {0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2} \n", - "ethnic_background_3.0 {0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2} \n", - "ethnic_background_4.0 {0.0: 0, 1.0: 1, 3.0: 2, 4.0: 3, 5.0: 4, nan: -2} \n", - "overall_health_rating_0.0 {0.0: 0, 1.0: 1, 2.0: 2, 3.0: 3, nan: -2} \n", - "overall_health_rating_1.0 {0.0: 0, 1.0: 1, 2.0: 2, 3.0: 3, nan: -2} \n", - "overall_health_rating_2.0 {0.0: 0, 1.0: 1, 2.0: 2, 3.0: 3, nan: -2} " - ] - }, - "execution_count": 560, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "description.set_index(\"covariate\")[-30:-10]" - ] - }, - { - "cell_type": "code", - "execution_count": 467, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
indexiddtypeisTargetbased_onaggr_fnmapping
covariate
sex23categoryFalsebasicsNaN{'Female': 0, 'Male': 1, nan: -2}
\n", - "
" - ], - "text/plain": [ - " index id dtype isTarget based_on aggr_fn \\\n", - "covariate \n", - "sex 2 3 category False basics NaN \n", - "\n", - " mapping \n", - "covariate \n", - "sex {'Female': 0, 'Male': 1, nan: -2} " - ] - }, - "execution_count": 467, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "description" - ] - }, - { - "cell_type": "code", - "execution_count": 448, - "metadata": {}, - "outputs": [], - "source": [ - "description = description.set_index(\"covariate\")" - ] - }, - { - "cell_type": "code", - "execution_count": 454, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
indexiddtypeisTargetbased_onaggr_fnmapping
covariate
ethnic_background34categoryFalsebasicsNaNtest
\n", - "
" - ], - "text/plain": [ - " index id dtype isTarget based_on aggr_fn mapping\n", - "covariate \n", - "ethnic_background 3 4 category False basics NaN test" - ] - }, - "execution_count": 454, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "description" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "enc.mapping" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data[data.columns[1:20]]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "enc.mapping[5][\"mapping\"].loc" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "description[1:20]" - ] - }, - { - "cell_type": "code", - "execution_count": 220, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'OrdinalEncoder' object has no attribute 'categories_'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0menc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcategories_\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m: 'OrdinalEncoder' object has no attribute 'categories_'" - ] - } - ], - "source": [ - "enc.categories_" - ] - }, - { - "cell_type": "code", - "execution_count": 187, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'OrdinalEncoder' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcat_cols\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0menc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mOrdinalEncoder\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m>\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mohe_encoded\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_dummies\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprefix\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'OrdinalEncoder' is not defined" - ] - } - ], - "source": [ - "from sklearn.preprocessing import OrdinalEncoder\n", - " for c in cat_cols:\n", - " enc = OrdinalEncoder()\n", - " if data[c]==2: data[c] = enc.fit_transform(data[c])\n", - " if data[c]>2: \n", - " ohe_encoded = pd.get_dummies(data[c], prefix=c)\n", - " data[ohe_encoded.columns] = ohe_encoded\n", - " for col in ohe_encoded.columns:\n", - " description = description.append(\n", - " {\"covariate\": col, \"dtype\": \"bool\", \"isTarget\": False, \"based_on\": np.nan, \"aggr_fn\": np.nan},\n", - " ignore_index=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 186, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['age_at_recruitment', 'townsend_deprivation_index_at_recruitment',\n", - " 'body_mass_index_bmi', 'weight',\n", - " 'pulse_wave_arterial_stiffness_index',\n", - " 'pulse_wave_reflection_index', 'waist_circumference',\n", - " 'hip_circumference', 'standing_height', 'trunk_fat_percentage',\n", - " 'body_fat_percentage', 'basal_metabolic_rate',\n", - " 'forced_vital_capacity_fvc_best_measure',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure',\n", - " 'fev1_fvc_ratio_zscore', 'peak_expiratory_flow_pef_f3064_0_2',\n", - " 'peak_expiratory_flow_pef_f3064_0_1', 'peak_expiratory_flow_pef',\n", - " 'systolic_blood_pressure', 'diastolic_blood_pressure',\n", - " 'pulse_rate', 'basophill_count', 'basophill_percentage',\n", - " 'eosinophill_count', 'eosinophill_percentage',\n", - " 'haematocrit_percentage', 'haemoglobin_concentration',\n", - " 'high_light_scatter_reticulocyte_count',\n", - " 'high_light_scatter_reticulocyte_percentage',\n", - " 'immature_reticulocyte_fraction', 'lymphocyte_count',\n", - " 'lymphocyte_percentage', 'mean_corpuscular_haemoglobin',\n", - " 'mean_corpuscular_haemoglobin_concentration',\n", - " 'mean_corpuscular_volume', 'mean_platelet_thrombocyte_volume',\n", - " 'mean_reticulocyte_volume', 'mean_sphered_cell_volume',\n", - " 'monocyte_count', 'monocyte_percentage', 'neutrophill_count',\n", - " 'neutrophill_percentage', 'nucleated_red_blood_cell_count',\n", - " 'nucleated_red_blood_cell_percentage', 'platelet_count',\n", - " 'platelet_crit', 'platelet_distribution_width',\n", - " 'red_blood_cell_erythrocyte_count',\n", - " 'red_blood_cell_erythrocyte_distribution_width',\n", - " 'reticulocyte_count', 'reticulocyte_percentage',\n", - " 'white_blood_cell_leukocyte_count', 'alanine_aminotransferase',\n", - " 'albumin', 'alkaline_phosphatase', 'apolipoprotein_a',\n", - " 'apolipoprotein_b', 'aspartate_aminotransferase',\n", - " 'creactive_protein', 'calcium', 'cholesterol', 'creatinine',\n", - " 'cystatin_c', 'direct_bilirubin', 'gamma_glutamyltransferase',\n", - " 'glucose', 'glycated_haemoglobin_hba1c', 'hdl_cholesterol', 'igf1',\n", - " 'ldl_direct', 'lipoprotein_a', 'oestradiol', 'phosphate',\n", - " 'rheumatoid_factor', 'shbg', 'testosterone', 'total_bilirubin',\n", - " 'total_protein', 'triglycerides', 'urate', 'urea', 'vitamin_d',\n", - " 'PGS000011', 'PGS000013', 'PGS000016', 'PGS000018', 'PGS000039',\n", - " 'PGS000057', 'PGS000058', 'PGS000059', 'PGS000116', 'PGS000117',\n", - " 'PGS000192', 'PGS000296'], dtype=object)" - ] - }, - "execution_count": 186, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "description \\\n", - " .set_index('dtype').loc[['int', \"float\"]] \\\n", - " .query(\"(isTarget == False) & (based_on != 'diagnoses_emb') & (based_on != 'eid')\")['covariate'].values" - ] - }, - { - "cell_type": "code", - "execution_count": 105, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
level_0indexidcovariatedtypeisTargetbased_onaggr_fn
0001eidintegerFalseeidNaN
1112age_at_recruitmentnumericFalsebasicsNaN
2223sexcategoryFalsebasicsNaN
3334ethnic_backgroundcategoryFalsebasicsNaN
4445townsend_deprivation_index_at_recruitmentnumericFalsebasicsNaN
...........................
295129517879ASCVD_comp_event_timenumericTrueendpoints_competingNaN
295229527980QRISK3_comp_eventintegerTrueendpoints_competingNaN
295329538081QRISK3_comp_event_timenumericTrueendpoints_competingNaN
295429548182MACE_comp_eventintegerTrueendpoints_competingNaN
295529558283MACE_comp_event_timenumericTrueendpoints_competingNaN
\n", - "

2956 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " level_0 index id covariate dtype \\\n", - "0 0 0 1 eid integer \n", - "1 1 1 2 age_at_recruitment numeric \n", - "2 2 2 3 sex category \n", - "3 3 3 4 ethnic_background category \n", - "4 4 4 5 townsend_deprivation_index_at_recruitment numeric \n", - "... ... ... .. ... ... \n", - "2951 2951 78 79 ASCVD_comp_event_time numeric \n", - "2952 2952 79 80 QRISK3_comp_event integer \n", - "2953 2953 80 81 QRISK3_comp_event_time numeric \n", - "2954 2954 81 82 MACE_comp_event integer \n", - "2955 2955 82 83 MACE_comp_event_time numeric \n", - "\n", - " isTarget based_on aggr_fn \n", - "0 False eid NaN \n", - "1 False basics NaN \n", - "2 False basics NaN \n", - "3 False basics NaN \n", - "4 False basics NaN \n", - "... ... ... ... \n", - "2951 True endpoints_competing NaN \n", - "2952 True endpoints_competing NaN \n", - "2953 True endpoints_competing NaN \n", - "2954 True endpoints_competing NaN \n", - "2955 True endpoints_competing NaN \n", - "\n", - "[2956 rows x 8 columns]" - ] - }, - "execution_count": 105, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.column" - ] - }, - { - "cell_type": "code", - "execution_count": 139, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
covariatedtype
1age_at_recruitmentnumeric
17standing_heightnumeric
102myocardial_infarctionlogical
\n", - "
" - ], - "text/plain": [ - " covariate dtype\n", - "1 age_at_recruitment numeric\n", - "17 standing_height numeric\n", - "102 myocardial_infarction logical" - ] - }, - "execution_count": 139, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "description.query(\"covariate ==@features\")[[\"covariate\", \"dtype\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [], - "source": [ - "features = [\"standing_height\", \"age_at_recruitment\", \"myocardial_infarction\", \"ethnicity\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [], - "source": [ - "continuous = description.query(\"covariate ==@features\").query(\"dtype in ['integer', 'numeric']\").covariate.values" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[1, 17]" - ] - }, - "execution_count": 124, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[data.columns.to_list().index(v) for v in continuous]" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "37" - ] - }, - "execution_count": 127, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.iloc[:,1].nunique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Score Weights" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "PGS Catalogue searched for [\"Atrial Fibrillation\", \"Coronary Artery Disease\", \"Coronary Heart Disease\", \"Stroke\"] " - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [], - "source": [ - "pgs_planned = sorted([p.absolute() for p in list(pathlib.Path(f\"{data_path}/1_genetics/pgs_weights/raw\").rglob('*.txt'))])\n", - "pgs_planned_list = [p.name[:-4] for p in pgs_planned]\n", - "pgs_planned_dict = dict(zip(pgs_planned_list, pgs_planned))" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'PGS000010': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000010.txt'),\n", - " 'PGS000011': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000011.txt'),\n", - " 'PGS000012': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000012.txt'),\n", - " 'PGS000013': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000013.txt'),\n", - " 'PGS000016': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000016.txt'),\n", - " 'PGS000018': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000018.txt'),\n", - " 'PGS000019': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000019.txt'),\n", - " 'PGS000035': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000035.txt'),\n", - " 'PGS000038': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000038.txt'),\n", - " 'PGS000039': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000039.txt'),\n", - " 'PGS000057': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000057.txt'),\n", - " 'PGS000058': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000058.txt'),\n", - " 'PGS000059': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000059.txt'),\n", - " 'PGS000116': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000116.txt'),\n", - " 'PGS000117': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000117.txt'),\n", - " 'PGS000192': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000192.txt'),\n", - " 'PGS000200': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000200.txt'),\n", - " 'PGS000296': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000296.txt'),\n", - " 'PGS000329': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000329.txt'),\n", - " 'PGS000331': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_weights/raw/PGS000331.txt')}" - ] - }, - "execution_count": 89, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pgs_planned_dict" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "from IPython.display import display\n", - "\n", - "pgs_weights = {}\n", - "for pgs_name, pgs_path in tqdm(pgs_planned_dict.items()):\n", - " pgs_weights[pgs_name]=pd.read_csv(pgs_path, sep='\\t', comment='#')\n", - " print(pgs_name + \": \" + str(len(pgs_weights[pgs_name])))\n", - " display(pgs_weights[pgs_name].head())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Get Scores" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [], - "source": [ - "pgs_finished = sorted([p.parent.absolute() for p in list(pathlib.Path(f\"{data_path}/1_genetics\").rglob('*distribution_plot.png'))])\n", - "pgs_list = [p.name for p in pgs_finished]\n", - "pgs_dict = dict(zip(pgs_list, pgs_finished))" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'PGS000011': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000011'),\n", - " 'PGS000013': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000013'),\n", - " 'PGS000016': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000016'),\n", - " 'PGS000018': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000018'),\n", - " 'PGS000039': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000039'),\n", - " 'PGS000057': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000057'),\n", - " 'PGS000058': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000058'),\n", - " 'PGS000059': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000059'),\n", - " 'PGS000116': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000116'),\n", - " 'PGS000117': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000117'),\n", - " 'PGS000192': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000192'),\n", - " 'PGS000296': PosixPath('/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/1_genetics/pgs_calculated/PGS000296')}" - ] - }, - "execution_count": 91, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pgs_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "12" - ] - }, - "execution_count": 92, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(pgs_dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['PGS000011',\n", - " 'PGS000013',\n", - " 'PGS000016',\n", - " 'PGS000018',\n", - " 'PGS000039',\n", - " 'PGS000057',\n", - " 'PGS000058',\n", - " 'PGS000059',\n", - " 'PGS000116',\n", - " 'PGS000117',\n", - " 'PGS000192',\n", - " 'PGS000296']" - ] - }, - "execution_count": 93, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(pgs_dict.keys())" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "metadata": {}, - "outputs": [], - "source": [ - "# PGS00039: Cardiovascular Disease\n", - "# PGS000117: Stroke" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [], - "source": [ - "data_pgs = data[[\"eid\"]]\n", - "for pgs, pgs_path in pgs_dict.items():\n", - " temp = pd.read_csv(str(pgs_path)+\"/PRSice.all_score\", delim_whitespace=True)\n", - " temp = temp[temp.columns[-2:]]\n", - " temp.columns = [\"eid\", pgs]\n", - " data_pgs = data_pgs.merge(temp, on=\"eid\", how=\"left\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD4CAYAAADmWv3KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAx1klEQVR4nO3deZRcd3Xg8e99tfWmllrqVmu3pJbkBRtvso1jJiRmMU4mBAjJwCQZQibxLGRCYDIBkjmEzEmGwCQMM4FAPJDEk7ANBkzMvtixwataXmTLsq1Wa196Vav3Wt6788erqq5qtaSuqn6vlr6fc3Rqr/dTddWtW/d33++JqmKMMabxONUegDHGmGBYgDfGmAZlAd4YYxqUBXhjjGlQFuCNMaZBRas9gEKdnZ26devWag/DGGPqxt69e4dVtWuh22oqwG/dupXe3t5qD8MYY+qGiBy90G2BlWhE5HIReabg37iI/F5Q2zPGGFMssAxeVV8CrgMQkQhwEvh6UNszxhhTLKxJ1tcCh1T1gj8ljDHGLK2wAvzbgS8udIOI3CUivSLSOzQ0FNJwjDGm8QUe4EUkDrwJ+MpCt6vq3aq6W1V3d3UtOBFsjDGmDGFk8HcCT6nqQAjbMsYYkxVGgH8HFyjPGGOMCU6gAV5EWoDXA18LcjvGGFMP9pzZw+Fzh0PbXqA7OqnqNLAmyG0YY0y9+M3v/SYAz73zuVC2Z2vRGGNMg7IAb4wxDcoC/HL2nffD4YerPQpjTEAswC9Xbgae+Azc8wvVHokxJiAW4JcrN1XtERhjAmYBfrlSr9ojMMYEzAL8cmUB3piGZwF+ubIAb0zDswC/bGm1B2CMCZgF+OVKLcAb0+gswC9XVqIxpuFZgF+uLMAb0/AswC9XFuCNaXgW4JcrC/DGNDwL8MuVBXhjGp4F+OXKArwxDc8C/HJlAd6YhmcBfrmyAG9Mw7MAv1zZjk7GNDwL8MuVZfDGNLxAA7yIrBKRe0XkRRE5ICK3Brk9UwIL8MY0vGjAz/+/gO+q6ttEJA60BLw9s1gW4I1peIEFeBFpB34a+A0AVU0BdhihWmEB3piGF2SJZjswBPydiDwtIp8Vkdb5dxKRu0SkV0R6h4aGAhyOKWKTrMY0vCADfBS4Afi0ql4PTAEfmH8nVb1bVXer6u6urq4Ah2OKWAZvTMMLMsCfAE6o6hPZy/fiB3xTCyzAGxMqrcKv5sACvKqeAY6LyOXZq14LvBDU9kyJLMAbEyqtwlHUgu6i+U/A57MdNP3AuwLenlksq8EbE6pqZPCBBnhVfQbYHeQ2TJksgzcmVNXI4G1P1uXKArwxoWqoGrypcRbgjQmVZfAmPBbgjQmVBXgTHgvwxoTKSjQmPBbgjQmVV4XPnAX45coCvDENzwL8cmUB3phQWQ3ehMd2dDImVFaDN+GxDN6YUHlYDd6ExjJ4Y8JkGbwJj2XwxjQ8C/DLlQV4Y0JlbZImPDbJakyorIvGhMgCvDFhshq8CY9l8MaEyjJ4Ex6rwRsTKsvgTYgsgzcmTJbBm/BYicaYUFkGb0JkAd6YMFkGb8JjGbwxoWq4g26LyBFgAnCBjKraAbiNMctSNTL4QAN81s+q6nAI2zGlsAzemFAVBnhVRUQC36aVaJYra5M0JlSFSxWElc0HHeAV+L6I7BWRuxa6g4jcJSK9ItI7NDQU8HDMHMvgjQlVwUcurHp80AH+NlW9AbgTeLeI/PT8O6jq3aq6W1V3d3V1BTwck2clGmNCVVSiaYQMXlVPZU8Hga8DNwe5PVMKC/DGhKmhSjQi0ioiK3LngTcAzwe1PVMiy+CNCVVRUA/p4xdkF0038PXsTHEU+IKqfjfA7ZmSWIA3JkzVKNEEFuBVtR+4NqjnNxWyDN6YcBUl8HVeojG1zgK8MWEqqsE3SBeNqVUV9sEPHh1nbHB6iQZjTONruC4aU8MqzCC+8pFePv+hx5doMMY0vvl7sobBAvyyZSUaY8JkywWb8NgkqzGhshKNCZEFeGPCVJjBeyGtBWUBfrmyDN6YUFkGb+pCNWqJxtS7ws+NTbKaYFXwE9HzLMAbUyo7ZJ8JTwUZhFqAN6ZklsGbEFUS4JdwGMYsE1aDN+GpJIO3GrwxJWuo5YJNrbMSzbLnebD3Hsikqj2SZcdKNCZYFWXwSzgOUz37vwb3/y48/D+qPZJlwUo0JkSWwS97qSn/dPxUdcexTIS1c1MhC/DLVQVvNsvgG4TYxz9M1kVjwmOTrCbP/p5hsBKNCZGVaJY9/3CapgosgzfBKnyDlfhmswS+wdgfNBTWJmlCVEGA98KvJZogWAYfpoY84IeIRETkaRH5ZtDbMiUoeoOVmsEXvFGtXNMA7G8YhqLPTQNl8O8BDoSwHVOSwgy+tI6awrvbsgXGLE7DTbKKyCbg54HPBrkdU4aKavCFBy6w7M+YxWjENslPAH8AXDDPE5G7RKRXRHqHhoYCHo7Jq6REU5TBW4CvW7kuGvuSDkXNZvAi8lUR+XmRxe8ZISL/EhhU1b0Xu5+q3q2qu1V1d1dX12Kf3lSsghJNUSayVOMxocv98axdMhRFWXtIn5vFBuxPA/8aOCgify4iVyziMbcBbxKRI8CXgNtF5B/LG6ZZcktUorEMvhFYgA9DzWbwqvpDVf1V4AbgCPADEXlURN4lIrELPOaDqrpJVbcCbwceUNVfW6Jxm4ot0SSrpfB1zP52YarpLhoRWQP8BvBbwNPA/8IP+D8IZGQmWEvWJrlE4zHhsz9eqKrRBx9dzJ1E5GvAFcA/AL+gqqezN31ZRHov9XhV/Wfgn8scowlE+SWawmOyWommjnmuf2o1+FBUI4NfVIAHPquq3y68QkQSqppU1d0BjMsErZJm9oL3ph2Au46pW+0RLCsetbtUwZ8ucN1jSzkQE7KK2iRtqYKG4FmJJlTlf+TKdtEMXkTWARuBZhG5nrnp9nagJeCxmUAtVRfNUo3HhM4y+FAVZu1hHfzjUiWaO/AnVjcBHy+4fgL4w4DGZMJQSZuk7ejUGLxM9ozV4MNQjdUkLxrgVfUe4B4R+SVV/WooIzIhKf/3oleFXa5NAPKTrNUdxnJRjT74S5Vofk1V/xHYKiLvm3+7qn58gYeZelCUwZf4c9EWG2sMVqIJVS22SbZmT9uCHogJWwVtkpbBN4b8JKul8KGowkflUiWav8me/kk4wzGhWaIuGmuTrGOWwYeqZo/oJCIfE5F2EYmJyI9EZFhEbNmBelZJiabooRbg61auBm9LFoSilo/o9AZVHQf+JXAC2AX8l8BGZUKwRHuyWmyoX7kvduuHD0XNLjYG5BYU+zngi6o6GtB4TFgsgze5Eo2VakJRy0sV3C8iLwIzwH8UkS5gNrhhmeBV0CZpa9E0hnwGbwE+DEVBvZbWg1fVDwC3ArtVNQ1MAb8Y5MBMwJZqPXir0dSvXGC3XtdQ1HIGD3Alfj984WP+7xKPx4RmiY7oZLGhfuX+jlaiCUUt9sEDICL/APQAzwCFU+8W4OvVEh2T1Q66Xcdygd1KNKGo5Qx+N3CV2u/xxlF8WKYSH2s1+IaQew/YxzoU1VhsbLFdNM8D64IciAlbJW2SBQ+1Ek398qyLJkzVyI8Xm8F3Ai+IyJNAMnelqr4pkFGZ4C3VIfss+6tf1kUTqppbbKzAh4MchKmGSg66bSWahpAv0ViAD0NhWaZW1oMHQFUfEpHLgJ2q+kMRaQEiwQ7NBKqiNsmC81aiqV9qbZLVUlNLFYjIbwP3An+TvWojcN8lHtMkIk+KyLMisl9EbMGymmKLjS17uSBjJZpQVKOLZrGTrO8GbgPGAVT1ILD2Eo9JArer6rXAdcAbReRVZY7TLLUK0vDi5N8CfN2yHZ1CVXTQ7VrK4IGkqqZyF7I7O110hOqbzF6MZf9ZNKgVtierydfgLcCHofCzUhjsg7TYAP+QiPwh/sG3Xw98Bbj/Ug8SkYiIPAMMAj9Q1ScWuM9dItIrIr1DQ0MlDN1UZqkmWZdqPCZ0tqNTqGp5ueAPAEPAc8C/A74N/NdLPUhVXVW9Dv+g3TeLyNUL3OduVd2tqru7uroWPXBToYraJAvOWw2+flkXTdXU1FIFquqJyH3AfapacpqtqmMi8s/AG/F3mjJVV0GJxrMSTUOwGnyoau6ITuL7sIgMAy8CL4nIkIh86FJPLCJdIrIqe74ZeF32OUwtqGiS1Uo0DcF2dApVUQ2+RpYq+D387pmbVHWNqq4GbgFuE5H3XuKx64EHRWQfsAe/Bv/NSgdslsoSLTZmJZr6ZZOsoarFPVn/DfB6VR3OXaGq/dnjsX4f+J8XeqCq7gOuX5JRmqW3VF00FuDrl2XwVVMrk6yxwuCek63Dxxa4v6kXFawmWcF3g6klVoMPVc3V4IFUmbeZmrc0e7JaBl/HrIsmVNVYLvhSJZprRWR8gesFaApgPCYsSzXJail8/fIy2VML8GGouQN+qKotKNawKmmTnDtvk6x1zM3+CLcSTShqeUcn02iWaD14W3yijmWyh3awAB+KWl5szDScypYqcBwBKs/gVZXx8X1W6qmGXAZvJZpQ1PIh+0yjqXA9eCfiB/hKJ1lHR3/Mnt63cPr0vRU9jymDZfChsgzehKeoTbL0SdalCvDj4/sAmJh8oaLnMSVKz8DIQf+8ddGEopaXCzYNrfRJVnEEpPI+eNed8p/TsshwDR+cO28lmnBU4TgKFuCXqwr3ZBVHEJGKM/iM6x8ywHOnK3oeU6JU9lANnZdbBh+Sohp8ja0HbxpOZZOsIiBO5ZlIJjPhn1qAD1cua4/EbXfkkBTtyWoZvAlUhevBiyM4IngVJiK5AJ8r1ZiQ5LL2SMxKNCGpxmJjFuCXrcrWgxcRxJElyOD9UoHrzlT0PKZEub1YI3Er0YSkGnuAW4BfriquwYNI5V00bjaD9yzAhyv30ysSszbJKrA+eBOwytaDz2fwlZZospOsrjdb2ROZ0mhBDd5KNKEIK6gXsgC/XPm9jnPnS3lorovGqbyLxnX9wO5ZgA+XlWhCZ3uymvD4M6Vz50t9qPgTrV6FtUTP8/emzAV6ExKvYJIVrJMmBDbJakKkINnFQstqkxREgAozeM9LZU+TFT2PKVFhiQasTBOGgo+KZfAmWIUZfBmrSYojOI5UFN9VPVRzAd4y+FB58wK8lWkCZzV4E6IKSjRetkRT4Z6snpcGwHGaUM3g5erCJni5AB/NBvi0dTEFraFq8CKyWUQeFJEDIrJfRN4T1LZMGfwlIbPny51kraxNMleWiUVXZi9bFh+aXMbeebl/OmiLvQWt0WrwGeA/q+qVwKuAd4vIVQFuz5QkO1OaO1/KI3NLFYhUNDeXC/DRWHvRZROC3K+ljsv809lz1RvLMlG4c1PdZ/CqelpVn8qenwAOABuD2p4pkRZOspaxHvwStEnmA3w+g7cAH5pciSbW4p9m7LUPWlhZe6FQavAishW4HnhigdvuEpFeEekdGhoKYzgGKivReH72v1QBPhbzA7y1SoYo9zfPBfjc0Z1MYDz1ECR/PgyBB3gRaQO+Cvyeqo7Pv11V71bV3aq6u6urK+jhmLzCLpoSH6mK44DjVHbIvrkMPleisQAfmlwGH89l8PbaB81Tj0j2V3NDrEUjIjH84P55Vf1akNsyJSoq0ZSWTXiFSxUsRQ3eAnz4cjX4aFPxZRMoJ5tU1f0kq4gI8DnggKp+PKjtmHKV3yZJ4QE/KojwuZ2cYtkAbyWaEOm8PVltR6fAeeoRcRong78N+HXgdhF5Jvvv5wLcnilFRTs65frgl6ZNMhqzSdbQ5Xd0SvintqJk4ApLNGEd0Ska1BOr6k8AueQdTZWoX0SH8pYqiDpL2EWzInvZJvpCk9/RKRvgrUQTOEUbKoM3tUy9Ctokc5OsS1ODj0WtDz50VqIJXdEka73X4E2Nq6BNMjfJylKVaCzAh89zAQEn+yPe1qIJnKrOTbJaBm+CpcxV0MqbZHUcqahN0rUAXz1exv+CzwV4K9EETpkL8A3TB29qlGpB9lZakPZySxVUeEQnzdbc52rwFuBDo65fosuV6So9erq5JE89ouJ/5qxEY4KlXvmTrMrcEZ0qapO0DL5qPNf/gs+/B6xEEzRPPSvRmJAUTrKWtdiYVNwm6eYz+DZA8iUbEwLPnZuDkYiVaEKgWtBFYxm8CVRRiaacDJ4l2ZNVJIZIBMdJWAYfJnXn9oNwotZFEwJFG28tGlOj1Cvooik3g69sktXzkjiO34dtAT5kuRIN+O8Dy+ADlyvROOJYBm8Cpt7cB7zUhxZ00VSSwvsB3j+ikAX4kOW6aMAv0dierIHLddEIlc1dlcIC/HKlXsFaNOUcdNtfqqCS5gvPS1kGXy25LhrIZvBWoglariwjIpbBm4BVUqLRgtUkl7REY0sVhMbzrEQTstyOToJYDd4ErKhEU/pSBflJ1ooDvF+iiVgGHy4vM9ciKRFrkwyBh9XgTViK1qIptUSTy+Ar6+ctzuDjeK4F+NBYiSZ0qn4XjdXgTfAKM/gyFhvLrwdfUQ3eumiqprAP3tokQ5Hroqn0OAqlsAC/XGmFywXnliqoMIOP5AJ8xAJ8qAozeHGsRBMCDy+fwYe1HrwF+OWqkj1Zs0sVOFL5MVktg68Sz7MMPmzKXA3eMngTqEpKNLkdnSrek7W4TdKWKghR0Z6s1kUTBk89/3ODtUmaoBW1SZa5VIEsdZtk/QX4qacGGL5nP16yzgLk/Bq8lWgCl+uisRp8HfBSdd6zXUmbZGEGX1GAT9X1nqyadjn7lZeZPTDK9FOD1R5OabzM3N9frIsmDPkuGrE++Jo28vd/z8s33cx0b2+1h1K+SvZkzXXROBWuJunO4kTqd0en2YNj+e/GmeeGqzqWkhW1SToW4EOQK9E4NEAfvIj8rYgMisjzQW2jGpL9/Qz++UfRZJLhu++u9nDKV1SiKf2hc1005Q+h3ks06TNTALTdtoHk4XN4M3VUppk/yWolmsDl16JpkBLN3wNvDPD5q2L8m9+CSISVv/gmph97HHdyqtpDKk+lJZp8H3x5b1RVxfNmcZwmwN+TVTWN1lGgyQxOE1kZJ7GzA3Qu4NeFwklWWw8+FKqKg9MYk6yq+jAwGtTzV0vy4MvEt2xh1dvehqbTTD36SLWHVB7Vsvdk9TzFccT/ZV9mJqKaBnSuDz57eqkyjXoe3/nUx/n6R/+E5PR0WdteKumhGaJrW4itb/Uv11OAtx2dQpfvollONXgRuUtEekWkd2hoqNrDuaRk3yESO3povvZaiEaZ3f9CtYdUnjIXG8tl7E6ksj1Zc+WYXAY/F+BnL/q4vj2P88LDD9D/1B5+/IW/L2/jS0A9JTM4TWxtC5H2ONIUra8Ab0sVhC6/Fk2IYbfqAV5V71bV3aq6u6urq9rDuShNpUgdO0a8pweJx4lvvYzkwYPVHlZ5ypxkze3YlD8ma5klGtf1A7kzL4O/VC/841/7Mh0bNnHlq3+GFx95CM+tTmByzyXRtEd0bQsiQmx9C+kz1f1FUZKiQ/bZnqxhyHXRIHZEp5qUOnoUXJdEzw4Amnbtqt8Aj/ozpQil1OBzAd5x/GOyQnkLjuUz+Mi8Es0FFhzbf+ocf3V/L4NHDnHN7W+gZ/erSE5Pcbrv5ZK3vRQyg34wj3W1+KfdraQH6ijAF2XwUavBh8BVd+6AH/Veg29EyUOHAEj0bPdPd+4kffw4XpVrwWXJZfD+kpCLf5hbUKJxJPtU5QT4eRl8JFeiOT/AP3t8jLf+9aPc/70fA7D+imu47JrrEHE48uxTJW97KaQHZwCIrm32T9c0o7MZvOl0VcZTsqIuGivRhMFTj4gTwRGn/jN4Efki8BhwuYicEJF/G9S2wpLsOwQixLdtA/wAD3OBv67kA7xUVKLJPVWpcoE8cl4N/vwA/5mHDtEcj/DW7hlmnQSPjMZpamtj3Y6dHH3u6dI3vgQyQ9M4LVEibf6OWtE1/v8jM3LxOYSaMf+g21aiCVzGyxCRSP7A22EIsovmHaq6XlVjqrpJVT8X1LbCkjzUR2zTJpxmP2tL7NrlX/9ydcoEFcnX4Ess0bhzJRrHyR0hvvQM3p2fwV8gwA9OzPL9Fwb4VzdtJjZ8hLH2zdz/3BkANuy6kqHD/biZ8MsL6cFpomtb8pejnf57IjMyE/pYylJ40G2xHZ3CULhccN1n8I0odaifRE9P/nJs0yYkkfAz+3qTC/Al/jwv7KLJJSJllWjcC3XRFAf4xw6N4HrKG3euYuzMKbq27eDx/hHGplLMNK9gekUHA0cPl7z9SuU6aHKiHU0gkBmulwBfcNBta5MMhaceUYk2Romm0WgmQ+rwYRI75gK8OA7xbdtI9tdzgI+V9OEuLNHkMvhyWuHnT7JGLtAH/3j/CCuaoqxJjQBw3XWvIOMp33jwMZ7Yf4Bk92a+8c1vkk6nC5472AksdzKFN50h2jUX4CXmEGlP1FmJprAGb5OsQct4GRzHISIR3JBKYhbgFyl1/DiaThPf3lN0fWL7dlL94WeQFclF5HwGv/iJQc8t7oOH8jL4XInmUjX4x/tHuWXbaoaP9gNwy+5r6Ey49D/9EzZt2kTb6BkGzp7j0UcfBWDPkVGu/NB36T0S3D52mewEayw7wZoTXdNURyWagklWOyZrKDz1iEiEqBPFDekXkwX4RUrlOmh2FAf4+PbtpE+cwJutk8wN5mZFxYFIDNzFB3gtbJOsqIsmV6KJF50WBvgz52Y5PDzFq7avYfDwIVpWrqJ9zRpuaxnEc13e8pa3sLW7i1Y3xU9+8hOmpqa4/9lTJDMe39x3uuQxLVZ6yO+aKqzBg1+Hr5sAP3+S1Uo0gXPVzQf4jIbzi8kC/CIlD/kZ5PkZ/DZQ9Xvk60U+wEvJPdC5DF6K+uBLH4KX39Hpwhn8E4f9skwuwK/d1sNffu8A3zi7nn3pbtLRVtb17IRjfaTTafbu3cvxUT/4njgbXOtqZnDaL8msTBRdH13TjDeVqY9Fx4qWKrBJ1jDk+uAjEiETUknMAvwiJQ/1EV2/nkhba9H18e1+T3yqnlolcx/mfA2+hABfMMnqRLJdNG7pE0bn9cEvsCfr4/2jrGiKsrOzmZGTx1m7dTtfeML/Ij3kdvJY/zDdPTtxZqfZuK6bvXv3cuqc/7wD4xfeI3YymaloNb9cB03uF0xOtDPbKlkPE61eGiL+r6Zy2iQfHBnnD146zgdfPsHBqTr69VpFuRJNxIlYiabWpPoOFXXQ5MS3bQPHIdnXV4VRlSkX0J0YRErL4AtLNNGY//bJpEsP8K6bLXNE/S/MSMSvZ3vuXOb9RP8It2xbzdjJY3iuS/e2nvxkairSzKN9I34GD6xtaeLcuXMMnPMff2Z84aDTPzTJ1X/8PT7zUH/JY87JDM4UddDk1FWrpJv2//5Q8mqSf95/mnfs6+e+wbN88fQIt+95ifsGzgY00MbhqkvEiRCVqE2y1hL1PJL9/fk9WAs5iQTxy+psTZp8gI/6/0qowReWaCIx/ye+W0aAz7hTiMQKMvhmwCHj+gt2DYzP0p+tvw8c9n8dxVavZSLjv2VXtyZ49NAIbR1raO1YjTM2ghOJMjbjf3CGJ5NkFvhl8dDL/oJ2//h4eSU1L5nBPZfM78FaKLq6uX5aJd20P/8CJbXK/nh0gk8cHeAd61fz/G1Xs+fWq7ixvYX3vHiMZ8brcI/uELleQQ3eSjS1I33qFDo7S3yBDB78PVqTL9dTgM9+mJ1oRSWaaDybwafKyOAzU0QiBW2GIkSjrWQyk4DfHgnZ+vuRfuLNLTx7+DS55vtoRDg5NsPx0RnW9exk6HAf67dfAcArNrSjCkOT55dpjgz7XyDTqfI+YPkOmq7zM/hcXb4+AnyqIMAvbpI16Xl88OAJtjbH+cjOTcQdh654jM9dvY3OWJR//8IRZsoo1y0XRTV4m2StHbnyS2LHjgVvT+zaRerYMbyZOvhgw1xbpBMpuQc6V28vLtGU/nPTdaeIRornMyKRNtx8gPfr71eub2fwcB9dW7fz5H7/77CuvYmZlL/NRw8N0719B2dPnWDN+ssA2NLmP9/QxPkB/uSYX7o5O53m7FTphwjMLSgW7T4/wINfpknXeoD3XEDnavCLXE3yM8eG6JtO8mc7N9EUmQsda+JRPnHFFo7MpPjfRwcCGnT9S7tp4pG4tUnWmlz55YIBfudOUM132tS8whJNiW2SbsYP8JFYhGjcL9GUU4PPuFNEosUBPhpt41svreb99+7j8UPD3LJtNYLH0LEjtK7fzImzfvZ9/ZZVnJ1O0dkW57H+Edb1+EtGzM76/6/mpJ/9Dy4w0XpqbC74Hh0tvaSQHpyCqBBdc36JBrKtksOzoR2SrSxu9ostt1TBIjL4YzNJPnH0DD/ftZLXrmk/7/Z/sXoFb+vu4JPHBumfrq9DL4Yh42XIaIZEJOFPsloNvnYkDx4k2t1NpP38NzYULDpWL3X4XICPxEpuk8zV26Mxh0g2g3fLKdG400QWyOA/9cQ1fLn3OIdHpnnV9jWMnjxBJplkIppgBr9ef93mVXgKN2zp4NFDI3Rv80tnR0/4a9Rkho4AC5doTp2b4cbLOgA4ebb0TDszME2s6/wOmpxoZ3ZVyckaXlUy94We76K59K+4D/WdRET4bzs2Xvg+PRtIOMIf951cqpE2jFT2SzURSRAVq8HXlGRfXz6ILyR+2RYkHq+jAF9+DT6XrUeiTmUlmszkeSWapLeq6PKrtq/hzKGDKHBydJRoexdtiSjbu/wazM61bQxNJDmVjLBybTcnBvy9V1e448D5GfxUMsPYdJqbtq4GirP5HFXlT+7fz717Tyw47vTA9AXLM8Dc4ftO1/DRnfIBvqAGr+4Fd2j4/vA5vjs8zvsu62ZjU/yCT7s2EeO9W9fxg5FxfjQyvtSjrmvJ7NpL8UiciGN98DXDS6VIHezLrxy5EIlESOzYweyBOjl8X75EU3oNPp/Bx52KSjSuO31eiebkxLr8+WhEuHJ9O2cOHcRZ1cnU1DTSsoru9gTd7X4mv7HDL5P86MAg3T27GDg7SXtTlO41q2h2PIYmi1slT5/zA/oV61bQlohycoEA33v0LH/3yBF+/yvPnteF4yUzuGNJYhcJ8PF6CPDevAB/kWPzTrsef3TwJLtamrhr86WPuPbbmzrpaU7woYMnSXk24ZqTC/BNkSa/Bm8lmtow+/zzaDpNyw3XX/R+zdddx8yz+9AqLF1bsgpq8PkMPuYQS/iBIT1b+ps1k5k4r0RzbKLTf25HaI1HiTjCqRf3E9mwmVgsxrTGWbeyiXXt/g5FrsI1G1fy7edOs65nJ2NpobM1xg033EBCZzkxPFH0/LkJ1o0dzWxc1cyJBUo0zx4fy59/8Uzx41Mn/Ang2Ia2C/6/nJYYkZUJUqcnF/lKVEG+Bp/L4LNhYIE6/F8dHeD4bIqP7NpI3Ll0uIg7Dn+ycyOHZpJ87sTwUo247hVl8GI7OtWM6b17AWi+4YaL3q/lpt3o9DSzBw6EMazK5AJ6GSUat6BEk2iO4kSE6YnSu1FS6bPEY6uLrjs2torm6Cyup8ymXSbPjjJ4/BgTTowrrriCockU3e1NrGlLEHGEwfFZfu6a9Tx74hxO12amI82scDJcd911tEiGo/N2vsmVZNavbGJjR/OCJZrnT57Ln3/qWPHjU8f8skNi84qL/t9iG1pJn6jhAJ/J/r2i2aUWcpOt894HfdOzfOrYIG/r7uC2jov/nwu9bk07r1vTzl8cOcOJ2dLfG41oNuMnF4lIwvrga8nM3qeIb99OdPXqi96v+cYbAZh+8skwhlWZohp8aSWaXL09GncQR2hpjzM9vvgPsaqSSk/jeTPE5gX4o2NtbGw7hYNLMuPxVO8zpNtXk3E9brjxRgbGZ+lubyLiCF1tCc6cm+Xnr1kPQO9kK9ORVhLJcdra2ljf0cLQZIrpgsMpHh+dJuoI61f6GfxCJZrnTp7jdVeuZXVrnP0ni+vIycPjRNe24LTELvp/TGxfSWZ4hsy5Gu0mSWW/fOLZXyL5Es1cVumq8t4Dx2mJOHyoZ0PJm/jvOzeiwB+8dLy2O4pCMpPx32stsRbrg68VXjLJ9JNP0nLTTZe8b2ztWhJXXMHEgw+GMLIKZbMJIvHySzTZPuj2zmZGFpmtTiUzvPqjD/KmTz5GxnOIx+cCvKpy+GwTG9tOccVaP9A8+cxLuJ3rWLt2La2r15HxNF+e6W5PMDCRZMuaFq7ZuJL7XxhhMrYCho6hnseV2zYxrdH8MsIAx0an2djRTMQRNqxq5txMmslkpmh8/cNTXL1xJVetb2f/6bls3ku5JPvHaNrVwcsDE+dl94USPasASPaNLep1CV0+wGdLZFH/NSUz94X0qWOD7Bmf4k93bmRt4uJfaAvZ0pzgD7ev54HRCb58Jrilm+vFyIzfuru6aTXxSJx0CZ+5SliAv4ipRx7Bm55mxetfv6j7r7j9dmaeeprMaI2/odPZrDbe5pdo3MVn4KmZDPHmaL5N8LKr1zB0bILxRay/8q19pzk5NsOLA7M8cXo38fjcpN2Z8VkmksKmttP8wtX+2/KZE2fJxJu49dZbOZ5dHXJTdmJ1Y0dzfuXIt924iedPjZPBoXXiDEeff5ae9avxcPjnx59ibGwMgONnZ9jc0ZJ/PBS3Sr5wehzN1vVfsaGdl89Mks5OtCZfPgsZxdm5il/97BO89a8fZf+puS+AQrF1rTit0RoO8NkJ4FwGn8ieJv05h0fPTvLRw6d589pV/FJ3R9mbedfGTm5d1cr7Xz7BnnM1POkcMNdz+bMn/gyAzuZO2mJtTKYnQzmqkwX4ixi796tEVq2i9ZabF3X/FXe8ATyPc1/7WsAjq1D+A94CTe2QXHxLW3IqQ1NrNH95x41rAejbO3jJx3659zjbu1rZuFJ59NTNNDdvyd+274QfLLe0n+Bnd7qsiCmDzd2sXrWSa6+9lpfO+Fnnrm6/Frxz7QqOjkwxm3b5VzdtpiNbNumOu+z91n35+426Cb7xjW+Qzrj0DUywvcvPWnNfFMcKdnZ65tgY4Af4qza0k3I9+gb97U4+cRpnRZxvjJzL7yH7yQcWXmBOHKFp12pmXhjBS9XgMrzzM/hcoE9N8sjZCX79uX62NSf42OWb8wd1KUdEhM++YhsbEjHe+Vw/+yaW51o1+4b3MTTjr4HU0dTBivgKFGU6HfzrEWiAF5E3ishLItInIh8IcltLbeqxx5h84AE6fu3XkNjifqI2XX45rT91KyN/+3ekBy8d8Kom98aKtUDzapgZW/RiU7PTaRIFNej2zmY61rdy/AX/V8uhockFlwDoG5xg79GzvP2mzbxuxzAvnd3B6Gxn/vbvv3AGUDa3nURnDtCWHmNEVvCmN78Fx3F44fQ5WuMRNq7yA/Pl61bgqd/p0hSL8FM7/OeKbujhyDN7aR45AkD3rus5fPgwn/nifUylXK7dtAqAK9e1E3WkqNTyxOERtnW2sra9iVdm79d7ZJSZ/SMkD47R9FPr+PRD/dx4WQf/4Wd6+N7+MxwbOf9D+vSxs/xglcN0MsPUk2cW9bqGajr7C7M5m50n2khLhP99ZpZfefYQGxIx7r1uB+3RSMWbWhOP8oVX9tDsOLz56T7uOTlc1kHa69ljpx4D4M6tdxJzYqyI+8nHRGriYg9bEoEFeBGJAJ8C7gSuAt4hIlcFtb2l4iWTjH//+5x87/uI9/Sw5jffVdLj137gA3gzMxz/rd9mZt8+tBZ7gaey7WvNHdCyGlA/yC/C+PAsrauKD3Sx5arVHOob4z1feJrX/uVDvPqjD/ClJ4/lJ9dUlb9+8BDxiMObr9vI7s4foTj84xOnyLgeD744wH1PnSIRERKRbl588X42RCcZ0VYyLZ2kXY8fHRjkVdvX5I8De/O21UQc4TvPn0ZVGRyfpaMlxpfGNzDb2sXDf/0xNjQrz52NcPvtt/PAS/7/uXVmgPHxcRJR4ZWbVvLDFwZwPWVgfJaHDw7z0zv9L4qta1rY3tnKvY8cZfgrLxFb38q9ToZT52b53dfu5Dd+aisRR/jMw3PHAXA95VMP9vHWTz/K+x98mX8bm+HJ7/Yx1XsGzZZ6VJXjo9PsOTLKqbGZ6kxAnjtO2olzMtLOAyPj/On4Sl518xf572dj3Nm5km/duIt1ZdTdL2RbS4Jv3biLG1a08P6XT/CaJ1/kI/2n+eHIOGeS6YYP+I+ceoSr11zNx17zMQBWxlcCMDobfClXgnqDicitwIdV9Y7s5Q8CqOpHLvSY3bt3a29vb8nbOvzWX/IPmacKnoei4PnnUfU/RLq4y97MDLgu8R09bP7kJ4lv3bqoMXx17wk+/dAhVBVvZob0wKD//CIQiYAIiuQWQwTwLwNFfwEpvk4L7uskEjgFyyXkb9PcZZ13ee72bXqcj7p/QTOzrGeYYVZxR+Sz3KT7+Iz33xiig3H8n+y/In+BKxFSsy7qKS6Z/PN5CArE8IiKf8lVYZYYoFwpZxjVVs6wktboFC2xGZJunPFUO3dseYBf2nk/kYjLJx79XZ6b3EELSVwcksR4bexlbr3sEbZtf5qzM5fxocd+h4w6JCIZJlLN/P4t3+TOa3fRs/29ALz780/xredO09mWYHgyyQfuvILtx6dpf36YlvQU94vH/4lG6FBlDNjiTPCziZcAcFQ4lunkh+5WmkmTwcFD+NVYHx3i/wJ53l3Nj9wNtJAGPKZJsMEZ57bEcURgn7uRF5OraHMyRB1lxnVIaoQrmie5vGWKH51dw5QXYRUuEolzLiZ4aQ915/7iEhUk6vh/dlng/TDfBZZI0Itc8q/y5q5V8GQutxOgxZ1hVWaCVrK/5Fq75mrz85RftIHxjMtYxmXW8+YODSzgIORegsU+/2Lv13XreqKtF//C+sK129l0kb10S/HO77yT4ZlhUl6KlJtidHaU9934Pt51tZ8snpo8xR1fvYP2eDtdzf481MrESu65856yticie1V190K3RRe6colsBI4XXD4B3DL/TiJyF3AXwJYtW+bfvCjxnh40k/brheJk3zFy/mXHAcTfsUMovpy9vzQ303zNNbS95jVIdPEvT0drjMuzdV+kHd28GndwEHdiAk2lkeyXSe7DJ/lTik6LXpt594muiJLY0Vl031yJVLLX5i/n7+SfWZVWpk7t4KzTzFGnmZfab+XOletAu/nhwBnWzRzMb+gXtm5AJcKZw+OkZzKMJQcARQRc12PWgQwOGRVUlURqkiZNs8sbYhWzKDC55Sz905tIenFi4rJpzQA3tr7AwKmdzEyv5IbZMVoixxjRVmIOXNU8xbUrlI2rf5lN619Nt3eEj7Tt4QeHNjGbiXLjhiFefVmERHxt/v/+0be9kp61bZwem+GVm1byq7dcxuz+YSY1wshUkteMjJKcmqLfUzrU446MkvE2M+HMkpQMnSRJyCmO0kIE5RXOGF2aAc8PftfoKCppjmkLoKyUGba3QyTqZ2CvW5HhikyS41P+a9Ec8djVnuYVKwWRNq7fmOQngzEmUnE02soRXGJRh9aWGE1NEWZnXaamUmQy6n8564XeB3Oc1li+Ln6p+85dVpgcBBH/fSJCtKmd5ngzLRGHjliU6Gg/TBdMhK6JQcv5ve968a+fRcuoMpZ2mXQ9ZlyPjCqeKh7+x+RCW9EFzl3K9rYETZdobY1VMNcw37aV2+hu7SbuxIlH4qxMrOTtV7w9f/uGtg380S1/xJ4ze/KvZ3t84XWuKhVkBv/LwB2q+lvZy78O3Kyq/+lCjyk3gzfGmOXqYhl8kJOsJ4DNBZc3AacC3J4xxpgCQQb4PcBOEdkmInHg7cA/Bbg9Y4wxBQKrwatqRkR+B/geEAH+VlX3B7U9Y4wxxYKcZEVVvw18O8htGGOMWZjtyWqMMQ3KArwxxjQoC/DGGNOgLMAbY0yDCmxHp3KIyBBwNMBNdAK1fhwxG2Plan18YGNcKjZGuExVFzxgbk0F+KCJSO+F9viqFTbGytX6+MDGuFRsjBdnJRpjjGlQFuCNMaZBLbcAf3e1B7AINsbK1fr4wMa4VGyMF7GsavDGGLOcLLcM3hhjlg0L8MYY06AaPsCLyC+LyH4R8URk97zbPpg9IPhLInJHtcZYSEQ+LCInReSZ7L+fq/aYcurhIOoickREnsu+djVx9BgR+VsRGRSR5wuuWy0iPxCRg9nTjhocY029F0Vks4g8KCIHsp/p92Svr5nX8iJjrMpr2fA1eBG5EvCAvwF+X1V7s9dfBXwRuBnYAPwQ2KWqbrXGmh3Xh4FJVf2Lao5jvuxB1F8GXo9/MJc9wDtU9YWqDmweETkC7FbVmtn5RUR+GpgE/q+qXp297mPAqKr+efbLskNV319jY/wwNfReFJH1wHpVfUpEVgB7gTcDv0GNvJYXGeOvUIXXsuEzeFU9oKovLXDTLwJfUtWkqh4G+vCDvVnYzUCfqvaragr4Ev5raC5BVR8GRudd/YtA7ijL9+AHgaq5wBhriqqeVtWnsucngAP4x36umdfyImOsioYP8Bex0EHBq/aHmOd3RGRf9mdzVX+6F6jl16uQAt8Xkb3ZA7rXqm5VPQ1+UADWXuL+1VKL70VEZCtwPfAENfpazhsjVOG1bIgALyI/FJHnF/h3sQxzocOoh1KvusR4Pw30ANcBp4G/DGNMi1C116tEt6nqDcCdwLuzpQdTnpp8L4pIG/BV4PdUdbza41nIAmOsymsZ6BGdwqKqryvjYVU7KPhixysi/wf4ZsDDWay6OIi6qp7Kng6KyNfxS0sPV3dUCxoQkfWqejpbtx2s9oDmU9WB3PlaeS+KSAw/cH5eVb+WvbqmXsuFxlit17IhMvgy/RPwdhFJiMg2YCfwZJXHlJukyXkL8PyF7huymj+Iuoi0Zie2EJFW4A3Uzus33z8B78yefyfwjSqOZUG19l4UEQE+BxxQ1Y8X3FQzr+WFxlit13I5dNG8BfgroAsYA55R1Tuyt/0R8JtABv+n1HeqNc4cEfkH/J9xChwB/l2uvlht2dauTzB3EPU/q+6IionIduDr2YtR4Au1MEYR+SLwM/jLxg4AfwzcB/w/YAtwDPhlVa3aJOcFxvgz1NB7UUReDfwYeA6/Mw7gD/Fr3DXxWl5kjO+gCq9lwwd4Y4xZrpZzicYYYxqaBXhjjGlQFuCNMaZBWYA3xpgGZQHeGGMalAV4Y4xpUBbgjTGmQf1/5NgJcTVMV9AAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "for pgs in pgs_dict.keys():\n", - " data_pgs[pgs].plot.kde()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plotting" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'sklearn_pandas'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpreprocessing\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStandardScaler\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mLabelEncoder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpreprocessing\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mOneHotEncoder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn_pandas\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDataFrameMapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mleave_eid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcol\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m\"eid\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'sklearn_pandas'" - ] - } - ], - "source": [ - "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", - "from sklearn.preprocessing import OneHotEncoder\n", - "from sklearn_pandas import DataFrameMapper\n", - " \n", - "leave_eid = [(col, None) for col in [\"eid\"]]\n", - "standardize = [([col], StandardScaler()) for col in list(pgs_dict.keys())]\n", - "\n", - "mapper = DataFrameMapper(leave_eid + standardize, df_out=True)\n", - "data_pgs_tf = mapper.fit_transform(data_pgs)" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidPGS000011PGS000013PGS000016PGS000018PGS000039PGS000057PGS000058PGS000059PGS000116PGS000117PGS000192PGS000296
010000183.17077014.18216125.478597-7.9100040.1960993.6902758.5132304.0602352.54309715.8507813.0-1.531660
110000203.93556514.20360925.508855-7.3382070.3820544.1700008.6655293.6400002.57501416.1971774.0-1.529472
210000374.22365414.24817625.549722-7.5330610.1899884.2886278.5409085.5414512.44125516.0682027.0-1.549326
310000433.52957514.17650225.394145-7.7686480.2893884.1300008.5154474.2610982.74058916.8601809.0-1.565533
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..........................................
50249960251504.18180014.05358925.402026-7.4991640.2729564.4700008.4254114.6602352.41916616.6508133.0-1.504692
50250060251654.31574314.13147725.417482-7.7364210.2751033.9009418.0469614.0001962.72175316.6015982.0-1.582081
50250160251733.09667114.18622525.488755-8.0798150.3529183.5078047.9946973.6907062.68785317.4127225.0-1.682143
50250260251823.69964614.13469325.439013-7.9629280.3438604.0200008.1512773.9600002.69252616.2565424.0-1.611761
50250360251983.66378914.32534025.449361-7.4299060.2083673.7400008.7433724.1100002.42841815.5002912.0-1.539847
\n", - "

502504 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " eid PGS000011 PGS000013 PGS000016 PGS000018 PGS000039 \\\n", - "0 1000018 3.170770 14.182161 25.478597 -7.910004 0.196099 \n", - "1 1000020 3.935565 14.203609 25.508855 -7.338207 0.382054 \n", - "2 1000037 4.223654 14.248176 25.549722 -7.533061 0.189988 \n", - "3 1000043 3.529575 14.176502 25.394145 -7.768648 0.289388 \n", - "4 1000051 NaN NaN NaN NaN NaN \n", - "... ... ... ... ... ... ... \n", - "502499 6025150 4.181800 14.053589 25.402026 -7.499164 0.272956 \n", - "502500 6025165 4.315743 14.131477 25.417482 -7.736421 0.275103 \n", - "502501 6025173 3.096671 14.186225 25.488755 -8.079815 0.352918 \n", - "502502 6025182 3.699646 14.134693 25.439013 -7.962928 0.343860 \n", - "502503 6025198 3.663789 14.325340 25.449361 -7.429906 0.208367 \n", - "\n", - " PGS000057 PGS000058 PGS000059 PGS000116 PGS000117 PGS000192 \\\n", - "0 3.690275 8.513230 4.060235 2.543097 15.850781 3.0 \n", - "1 4.170000 8.665529 3.640000 2.575014 16.197177 4.0 \n", - "2 4.288627 8.540908 5.541451 2.441255 16.068202 7.0 \n", - "3 4.130000 8.515447 4.261098 2.740589 16.860180 9.0 \n", - "4 NaN NaN NaN NaN NaN NaN \n", - "... ... ... ... ... ... ... \n", - "502499 4.470000 8.425411 4.660235 2.419166 16.650813 3.0 \n", - "502500 3.900941 8.046961 4.000196 2.721753 16.601598 2.0 \n", - "502501 3.507804 7.994697 3.690706 2.687853 17.412722 5.0 \n", - "502502 4.020000 8.151277 3.960000 2.692526 16.256542 4.0 \n", - "502503 3.740000 8.743372 4.110000 2.428418 15.500291 2.0 \n", - "\n", - " PGS000296 \n", - "0 -1.531660 \n", - "1 -1.529472 \n", - "2 -1.549326 \n", - "3 -1.565533 \n", - "4 NaN \n", - "... ... \n", - "502499 -1.504692 \n", - "502500 -1.582081 \n", - "502501 -1.682143 \n", - "502502 -1.611761 \n", - "502503 -1.539847 \n", - "\n", - "[502504 rows x 13 columns]" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_pgs" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for pgs in pgs_dict.keys():\n", - " data_pgs_tf[pgs].plot.kde()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy.stats import pearsonr\n", - "import matplotlib.pyplot as plt \n", - "\n", - "def corrfunc(x,y, ax=None, **kws):\n", - " \"\"\"Plot the correlation coefficient in the top left hand corner of a plot.\"\"\"\n", - " r, _ = pearsonr(x, y)\n", - " ax = ax or plt.gca()\n", - " # Unicode for lowercase rho (ρ)\n", - " rho = '\\u03C1'\n", - " ax.annotate(f'{rho} = {r:.2f}', xy=(.1, .9), xycoords=ax.transAxes)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - " \n", - "# Basic correlogram\n", - "g = sns.pairplot(data_pgs_tf[list(pgs_dict.keys())])\n", - "g.map_lower(corrfunc)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Write to disk" - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintFalseeidNaN
12PGS000011floatFalsePGSNaN
23PGS000013floatFalsePGSNaN
34PGS000016floatFalsePGSNaN
45PGS000018floatFalsePGSNaN
56PGS000039floatFalsePGSNaN
67PGS000057floatFalsePGSNaN
78PGS000058floatFalsePGSNaN
89PGS000059floatFalsePGSNaN
910PGS000116floatFalsePGSNaN
1011PGS000117floatFalsePGSNaN
1112PGS000192floatFalsePGSNaN
1213PGS000296floatFalsePGSNaN
\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget based_on aggr_fn\n", - "0 1 eid int False eid NaN\n", - "1 2 PGS000011 float False PGS NaN\n", - "2 3 PGS000013 float False PGS NaN\n", - "3 4 PGS000016 float False PGS NaN\n", - "4 5 PGS000018 float False PGS NaN\n", - "5 6 PGS000039 float False PGS NaN\n", - "6 7 PGS000057 float False PGS NaN\n", - "7 8 PGS000058 float False PGS NaN\n", - "8 9 PGS000059 float False PGS NaN\n", - "9 10 PGS000116 float False PGS NaN\n", - "10 11 PGS000117 float False PGS NaN\n", - "11 12 PGS000192 float False PGS NaN\n", - "12 13 PGS000296 float False PGS NaN" - ] - }, - "execution_count": 149, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dtypes = {\"int32\":\"int\", \"int64\":\"int\", \"float64\":\"float\", \"category\":\"category\", \"object\":\"category\", \"bool\":\"bool\"}\n", - "desc_dict = {\"id\": [*range(1, len(data_pgs.columns.to_list())+1)] , \n", - " \"covariate\": data_pgs.columns.to_list(), \n", - " \"dtype\":[dtypes[str(col)] for col in data_pgs.dtypes.to_list()], \n", - " \"isTarget\":[False for col in data_pgs.columns.to_list()],\n", - " \"based_on\":[\"PGS\" if col!=\"eid\" else \"eid\" for col in data_pgs.columns.to_list()],\n", - " \"aggr_fn\": [np.nan for col in data_pgs.columns.to_list()]}\n", - "data_pgs_description = pd.DataFrame.from_dict(desc_dict)\n", - "data_pgs_description" - ] - }, - { - "cell_type": "code", - "execution_count": 150, - "metadata": {}, - "outputs": [], - "source": [ - "data_pgs.to_feather(f\"{dataset_path}/baseline_pgs.feather\")\n", - "data_pgs_description.to_feather(f\"{dataset_path}/baseline_pgs_description.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:miniconda3-pl1.x]", - "language": "python", - "name": "conda-env-miniconda3-pl1.x-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - }, - "toc-autonumbering": true, - "toc-showcode": true, - "toc-showmarkdowntxt": true - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/4_preprocessing_merge.ipynb b/neuralcvd/preprocessing/ukbb_tabular/4_preprocessing_merge.ipynb deleted file mode 100644 index fa3eb10..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/4_preprocessing_merge.ipynb +++ /dev/null @@ -1,379 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Preprocessing: Merge Clinical + PGS" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "from tqdm.auto import tqdm\n", - "import pathlib\n", - "\n", - "import numpy as np\n", - "import pandas as pd\n", - "import lifelines\n", - "from lifelines import CoxPHFitter\n", - "from sklearn.model_selection import StratifiedKFold\n", - "\n", - "from joblib import Parallel, delayed\n", - "from tqdm.notebook import tqdm\n", - "import neptune\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "import shutil\n", - "\n", - "dataset_name = \"cvd_massive_excl_emb\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Read PRS data" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "data_pgs = pd.read_feather(f\"{dataset_path}/baseline_pgs.feather\")\n", - "data_pgs_description = pd.read_feather(f\"{dataset_path}/baseline_pgs_description.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintegerFalseadminNaN
12PGS000011numericFalsePGSNaN
23PGS000013numericFalsePGSNaN
34PGS000016numericFalsePGSNaN
45PGS000018numericFalsePGSNaN
56PGS000039numericFalsePGSNaN
67PGS000057numericFalsePGSNaN
78PGS000058numericFalsePGSNaN
89PGS000059numericFalsePGSNaN
910PGS000116numericFalsePGSNaN
1011PGS000117numericFalsePGSNaN
1112PGS000192numericFalsePGSNaN
1213PGS000296numericFalsePGSNaN
\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget based_on aggr_fn\n", - "0 1 eid integer False admin NaN\n", - "1 2 PGS000011 numeric False PGS NaN\n", - "2 3 PGS000013 numeric False PGS NaN\n", - "3 4 PGS000016 numeric False PGS NaN\n", - "4 5 PGS000018 numeric False PGS NaN\n", - "5 6 PGS000039 numeric False PGS NaN\n", - "6 7 PGS000057 numeric False PGS NaN\n", - "7 8 PGS000058 numeric False PGS NaN\n", - "8 9 PGS000059 numeric False PGS NaN\n", - "9 10 PGS000116 numeric False PGS NaN\n", - "10 11 PGS000117 numeric False PGS NaN\n", - "11 12 PGS000192 numeric False PGS NaN\n", - "12 13 PGS000296 numeric False PGS NaN" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_pgs_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Read Clinical data" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "data_cv = pd.read_feather(f\"{dataset_path}/baseline_clinical.feather\")\n", - "data_cv_description = pd.read_feather(f\"{dataset_path}/baseline_clinical_description.feather\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Merge Genetics + Clinical" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "data = data_pgs.merge(data_cv, on=\"eid\")\n", - "data_description = pd.concat([data_pgs_description, data_cv_description.tail(-1)]).reset_index()\n", - "data_description = data_description.drop(\"index\", axis=1)\n", - "data_description = data_description.drop(\"id\", axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "covariate object\n", - "dtype object\n", - "isTarget bool\n", - "based_on object\n", - "aggr_fn float64\n", - "dtype: object" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_description.dtypes" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "covariate_paths = {\n", - " \"clinical\":(\"baseline_pgs.feather\", \"baseline_pgs_description.feather\"),\n", - " \"pgs\":(\"baseline_clinical.feather\", \"baseline_clinical_description.feather\"),\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "baseline_pgs.feather\n", - "baseline_clinical.feather\n" - ] - } - ], - "source": [ - "for paths in covariate_paths:\n", - " print(covariate_paths[paths][0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Write to disk" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "data.to_feather(f\"{dataset_path}/baseline.feather\")\n", - "data_description.to_feather(f\"{dataset_path}/baseline_description.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:python]", - "language": "python", - "name": "conda-env-python-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization-template.ipynb b/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization-template.ipynb deleted file mode 100644 index 223b581..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization-template.ipynb +++ /dev/null @@ -1,4430 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Exploration" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:53.068218Z", - "start_time": "2020-11-04T14:16:47.983Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "-- \u001b[1mAttaching packages\u001b[22m --------------------------------------- tidyverse 1.3.0 --\n", - "\n", - "\u001b[32mv\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.2 \u001b[32mv\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", - "\u001b[32mv\u001b[39m \u001b[34mtibble \u001b[39m 3.0.3 \u001b[32mv\u001b[39m \u001b[34mdplyr \u001b[39m 1.0.2\n", - "\u001b[32mv\u001b[39m \u001b[34mtidyr \u001b[39m 1.1.2 \u001b[32mv\u001b[39m \u001b[34mstringr\u001b[39m 1.4.0\n", - "\u001b[32mv\u001b[39m \u001b[34mreadr \u001b[39m 1.3.1 \u001b[32mv\u001b[39m \u001b[34mforcats\u001b[39m 0.5.0\n", - "\n", - "-- \u001b[1mConflicts\u001b[22m ------------------------------------------ tidyverse_conflicts() --\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31mx\u001b[39m \u001b[34mpurrr\u001b[39m::\u001b[32mflatten()\u001b[39m masks \u001b[34mjsonlite\u001b[39m::flatten()\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\n", - "\n", - "Attaching package: 'lubridate'\n", - "\n", - "\n", - "The following objects are masked from 'package:base':\n", - "\n", - " date, intersect, setdiff, union\n", - "\n", - "\n", - "\n", - "Attaching package: 'glue'\n", - "\n", - "\n", - "The following object is masked from 'package:dplyr':\n", - "\n", - " collapse\n", - "\n", - "\n", - "\n", - "Attaching package: 'cowplot'\n", - "\n", - "\n", - "The following object is masked from 'package:lubridate':\n", - "\n", - " stamp\n", - "\n", - "\n", - "Loading required package: ggpubr\n", - "\n", - "\n", - "Attaching package: 'ggpubr'\n", - "\n", - "\n", - "The following object is masked from 'package:cowplot':\n", - "\n", - " get_legend\n", - "\n", - "\n", - "\n", - "Attaching package: 'arsenal'\n", - "\n", - "\n", - "The following object is masked from 'package:lubridate':\n", - "\n", - " is.Date\n", - "\n", - "\n" - ] - } - ], - "source": [ - "try(library(tidyverse), silent=TRUE)\n", - "library(lubridate)\n", - "library(glue)\n", - "library(cowplot)\n", - "library(survminer)\n", - "library(survival)\n", - "library(ggsci)\n", - "library(arsenal)\n", - "library(yaml)\n", - "\n", - "#setwd(\"/\")\n", - "#path = \"/home/steinfej/projects/uk_biobank/\"\n", - "#dataset_path = \"data/datasets/cvd_big_excl\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:53.090072Z", - "start_time": "2020-11-04T14:16:48.270Z" - } - }, - "outputs": [], - "source": [ - "dataset_name = \"cvd_massive_excl\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = glue(\"{data_path}/2_datasets_pre/{dataset_name}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:57.477187Z", - "start_time": "2020-11-04T14:16:49.046Z" - } - }, - "outputs": [], - "source": [ - "data = arrow::read_feather(glue(\"{dataset_path}/baseline.feather\")) \n", - "data_description = arrow::read_feather(glue(\"{dataset_path}/baseline_description.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:57.520779Z", - "start_time": "2020-11-04T14:16:50.668Z" - } - }, - "outputs": [], - "source": [ - "phenotypes = names(read_yaml(glue(\"{dataset_path}/phenotype_list.yaml\")))\n", - "family_history = names(read_yaml(glue(\"{dataset_path}/fh_list.yaml\")))\n", - "medications = names(read_yaml(glue(\"{dataset_path}/medication_list.yaml\")))\n", - "endpoints_ph = names(read_yaml(glue(\"{dataset_path}/endpoint_list.yaml\")))\n", - "endpoints_death = names(read_yaml(glue(\"{dataset_path}/death_list.yaml\")))\n", - "endpoints_scores = names(read_yaml(glue(\"{dataset_path}/scores_list.yaml\")))\n", - "endpoints = c(endpoints_ph, endpoints_death, endpoints_scores)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:58.275310Z", - "start_time": "2020-11-04T14:16:57.351Z" - } - }, - "outputs": [], - "source": [ - "covariates = (data_description %>% filter(isTarget==FALSE) %>% filter(based_on!=\"PGS\"))$covariate[-1]\n", - "targets = (data_description %>% filter(isTarget==TRUE))$covariate[-1]\n", - "pgs = (data_description %>% filter(isTarget==FALSE) %>% filter(based_on==\"PGS\") %>% filter(!dtype==\"Date\"))$covariate" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:58.756284Z", - "start_time": "2020-11-04T14:16:57.831Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'age_at_recruitment'
  2. 'sex'
  3. 'ethnic_background'
  4. 'townsend_deprivation_index_at_recruitment'
  5. 'overall_health_rating'
  6. 'smoking_status'
  7. 'alcohol_intake_frequency'
  8. 'body_mass_index_bmi'
  9. 'weight'
  10. 'pulse_wave_arterial_stiffness_index'
  11. 'pulse_wave_reflection_index'
  12. 'waist_circumference'
  13. 'hip_circumference'
  14. 'standing_height'
  15. 'trunk_fat_percentage'
  16. 'body_fat_percentage'
  17. 'basal_metabolic_rate'
  18. 'forced_vital_capacity_fvc_best_measure'
  19. 'forced_expiratory_volume_in_1second_fev1_best_measure'
  20. 'fev1_fvc_ratio_zscore'
  21. 'peak_expiratory_flow_pef_f3064_0_2'
  22. 'peak_expiratory_flow_pef_f3064_0_1'
  23. 'peak_expiratory_flow_pef'
  24. 'systolic_blood_pressure'
  25. 'diastolic_blood_pressure'
  26. 'pulse_rate'
  27. 'basophill_count'
  28. 'basophill_percentage'
  29. 'eosinophill_count'
  30. 'eosinophill_percentage'
  31. 'haematocrit_percentage'
  32. 'haemoglobin_concentration'
  33. 'high_light_scatter_reticulocyte_count'
  34. 'high_light_scatter_reticulocyte_percentage'
  35. 'immature_reticulocyte_fraction'
  36. 'lymphocyte_count'
  37. 'lymphocyte_percentage'
  38. 'mean_corpuscular_haemoglobin'
  39. 'mean_corpuscular_haemoglobin_concentration'
  40. 'mean_corpuscular_volume'
  41. 'mean_platelet_thrombocyte_volume'
  42. 'mean_reticulocyte_volume'
  43. 'mean_sphered_cell_volume'
  44. 'monocyte_count'
  45. 'monocyte_percentage'
  46. 'neutrophill_count'
  47. 'neutrophill_percentage'
  48. 'nucleated_red_blood_cell_count'
  49. 'nucleated_red_blood_cell_percentage'
  50. 'platelet_count'
  51. 'platelet_crit'
  52. 'platelet_distribution_width'
  53. 'red_blood_cell_erythrocyte_count'
  54. 'red_blood_cell_erythrocyte_distribution_width'
  55. 'reticulocyte_count'
  56. 'reticulocyte_percentage'
  57. 'white_blood_cell_leukocyte_count'
  58. 'alanine_aminotransferase'
  59. 'albumin'
  60. 'alkaline_phosphatase'
  61. 'apolipoprotein_a'
  62. 'apolipoprotein_b'
  63. 'aspartate_aminotransferase'
  64. 'creactive_protein'
  65. 'calcium'
  66. 'cholesterol'
  67. 'creatinine'
  68. 'cystatin_c'
  69. 'direct_bilirubin'
  70. 'gamma_glutamyltransferase'
  71. 'glucose'
  72. 'glycated_haemoglobin_hba1c'
  73. 'hdl_cholesterol'
  74. 'igf1'
  75. 'ldl_direct'
  76. 'lipoprotein_a'
  77. 'oestradiol'
  78. 'phosphate'
  79. 'rheumatoid_factor'
  80. 'shbg'
  81. 'testosterone'
  82. 'total_bilirubin'
  83. 'total_protein'
  84. 'triglycerides'
  85. 'urate'
  86. 'urea'
  87. 'vitamin_d'
  88. 'fh_alzheimer\\'s_disease/dementia'
  89. 'fh_bowel_cancer'
  90. 'fh_breast_cancer'
  91. 'fh_chronic_bronchitis/emphysema'
  92. 'fh_diabetes'
  93. 'fh_heart_disease'
  94. 'fh_high_blood_pressure'
  95. 'fh_lung_cancer'
  96. 'fh_parkinson\\'s_disease'
  97. 'fh_severe_depression'
  98. 'fh_stroke'
  99. 'coronary_heart_disease'
  100. 'myocardial_infarction'
  101. 'stroke'
  102. 'diabetes1'
  103. 'diabetes2'
  104. 'chronic_kidney_disease'
  105. 'atrial_fibrillation'
  106. 'migraine'
  107. 'rheumatoid_arthritis'
  108. 'systemic_lupus_erythematosus'
  109. 'severe_mental_illness'
  110. 'erectile_dysfunction'
  111. 'hypertensive_disorder_systemic_arterial'
  112. 'hyperlipidemia'
  113. 'depressive_disorder'
  114. 'gastroesophageal_reflux_disease'
  115. 'diabetes_mellitus_type_2'
  116. 'essential_hypertension'
  117. 'obesity'
  118. 'diabetes_mellitus'
  119. 'asthma'
  120. 'coronary_arteriosclerosis'
  121. 'allergic_rhinitis'
  122. 'hypothyroidism'
  123. 'upper_respiratory_infection'
  124. 'hypercholesterolemia'
  125. 'backache'
  126. 'abdominal_pain'
  127. 'osteoarthritis'
  128. 'low_back_pain'
  129. 'anemia'
  130. 'anxiety'
  131. 'urinary_tract_infectious_disease'
  132. 'chronic_obstructive_lung_disease'
  133. 'pneumonia'
  134. 'chest_pain'
  135. 'congestive_heart_failure'
  136. 'headache'
  137. 'pregnant'
  138. 'knee_pain'
  139. 'osteoporosis'
  140. 'polyp_of_colon'
  141. 'otitis_media'
  142. 'sinusitis'
  143. 'cough'
  144. 'sleep_apnea'
  145. 'insomnia'
  146. 'inflammatory_disorder_due_to_increased_blood_urate_level'
  147. 'tobacco_dependence_syndrome'
  148. 'malignant_tumor_of_prostate'
  149. 'constipation'
  150. 'hearing_loss'
  151. 'fatigue'
  152. 'obstructive_sleep_apnea_syndrome'
  153. 'malignant_neoplasm_of_breast'
  154. 'delivery_normal'
  155. 'irritable_bowel_syndrome'
  156. 'tobacco_user'
  157. 'neck_pain'
  158. 'cerebrovascular_accident'
  159. 'asthenia'
  160. 'shoulder_pain'
  161. 'acne_vulgaris'
  162. 'benign_prostatic_hyperplasia'
  163. 'dyspnea'
  164. 'carpal_tunnel_syndrome'
  165. 'bronchitis'
  166. 'pharyngitis'
  167. 'arthritis'
  168. 'diarrhea'
  169. 'dizziness'
  170. 'alcohol_abuse'
  171. 'dementia'
  172. 'eczema'
  173. 'syncope'
  174. 'acute_sinusitis'
  175. 'iron_deficiency_anemia'
  176. 'allergic_rhinitis_caused_by_pollen'
  177. 'gastritis'
  178. 'cataract'
  179. 'hematuria_syndrome'
  180. 'disorder_of_the_peripheral_nervous_system'
  181. 'viral_hepatitis_type_c'
  182. 'palpitations'
  183. 'eruption_of_skin'
  184. 'diabetes_mellitus_type_1'
  185. 'renal_failure_syndrome'
  186. 'peripheral_vascular_disease'
  187. 'hyperglycemia'
  188. 'seizure_disorder'
  189. 'fever'
  190. 'osteoarthritis_of_knee'
  191. 'actinic_keratosis'
  192. 'urinary_incontinence'
  193. 'hemorrhoids'
  194. 'seizure'
  195. 'laceration_-_injury'
  196. 'glaucoma'
  197. 'body_mass_index_30+_-_obesity'
  198. 'breast_lump'
  199. 'viral_disease'
  200. 'abnormal_cervical_smear'
  201. 'viral_exanthem'
  202. 'talipes_planus'
  203. 'idiopathic_peripheral_neuropathy'
  204. 'foreign_body_in_pharynx'
  205. 'jaw_pain'
  206. 'renal_impairment'
  207. 'ataxia'
  208. 'age-related_macular_degeneration'
  209. 'uterine_prolapse'
  210. 'renal_mass'
  211. 'pneumonitis'
  212. 'coordination_problem'
  213. 'blindness_-_both_eyes'
  214. 'primary_hyperparathyroidism'
  215. 'musculoskeletal_pain'
  216. 'mycosis'
  217. 'primigravida'
  218. 'urethral_stricture'
  219. 'leukocytosis'
  220. 'ventricular_premature_complex'
  221. 'ulcer_of_foot_due_to_diabetes_mellitus'
  222. 'chronic_headache_disorder'
  223. 'hemangioma'
  224. 'lymphedema'
  225. 'postmenopausal_state'
  226. 'chronic_ulcer_of_skin'
  227. 'left_heart_failure'
  228. 'excessive_and_frequent_menstruation'
  229. 'thrombocytosis'
  230. 'disorder_of_liver'
  231. 'disorder_of_carotid_artery'
  232. 'altered_bowel_function'
  233. 'abscess_of_foot'
  234. 'malignant_tumor_of_head_and/or_neck'
  235. 'streptococcus_group_b_infection_of_the_infant'
  236. 'concussion_injury_of_brain'
  237. 'feeding_problems_in_newborn'
  238. 'bipolar_i_disorder'
  239. 'viral_pharyngitis'
  240. 'lower_respiratory_tract_infection'
  241. 'hydronephrosis'
  242. 'borderline_personality_disorder'
  243. 'esophageal_varices'
  244. 'hypersomnia'
  245. 'sensorineural_hearing_loss_bilateral'
  246. 'varicocele'
  247. 'subarachnoid_intracranial_hemorrhage'
  248. 'incisional_hernia'
  249. 'varicella'
  250. 'pain_in_testicle'
  251. 'transplant_follow-up'
  252. 'tinea_cruris'
  253. 'laryngitis'
  254. 'hypertrophy_of_nail'
  255. 'amblyopia'
  256. 'polyp_of_cervix'
  257. 'cyst_of_kidney'
  258. 'hepatic_encephalopathy'
  259. 'blood_glucose_abnormal'
  260. 'postherpetic_neuralgia'
  261. 'frank_hematuria'
  262. 'cramp'
  263. 'interstitial_lung_disease'
  264. 'complete_atrioventricular_block'
  265. 'malignant_tumor_of_kidney'
  266. 'otitis'
  267. 'septic_shock'
  268. 'disorder_of_thyroid_gland'
  269. 'hypertrophic_cardiomyopathy'
  270. 'respiratory_distress_syndrome_in_the_newborn'
  271. 'infectious_gastroenteritis'
  272. 'subdural_intracranial_hemorrhage'
  273. 'hepatitis_b_carrier'
  274. 'manic_bipolar_i_disorder'
  275. 'secondary_pulmonary_hypertension'
  276. 'gonorrhea'
  277. 'derangement_of_knee'
  278. 'appendicitis'
  279. 'polyneuropathy_due_to_diabetes_mellitus'
  280. 'neonatal_hypoglycemia'
  281. 'prolonged_rupture_of_membranes'
  282. 'vasomotor_rhinitis'
  283. 'renal_disorder_due_to_type_1_diabetes_mellitus'
  284. 'tuberculosis'
  285. 'feeding_problem'
  286. 'chronic_tonsillitis'
  287. 'acute_duodenal_ulcer_with_hemorrhage'
  288. 'hammer_toe'
  289. 'malignant_tumor_of_cervix'
  290. 'prolapsed_lumbar_intervertebral_disc'
  291. 'hematemesis'
  292. 'perianal_abscess'
  293. 'nonvenomous_insect_bite'
  294. 'spondylolisthesis'
  295. 'malignant_tumor_of_esophagus'
  296. 'aphthous_ulcer_of_mouth'
  297. 'ventricular_septal_defect'
  298. 'oropharyngeal_dysphagia'
  299. 'injury_of_knee'
  300. 'traumatic_brain_injury'
  301. 'osteoarthritis_of_glenohumeral_joint'
  302. 'fetal_or_neonatal_effect_of_maternal_medical_problem'
  303. 'stomatological_preparations'
  304. 'drugs_for_acid_related_disorders'
  305. 'drugs_for_functional_gastrointestinal_disorders'
  306. 'antiemetics_and_antinauseants'
  307. 'bile_and_liver_therapy'
  308. 'drugs_for_constipation'
  309. 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents'
  310. 'antiobesity_preparations,_excl._diet_products'
  311. 'digestives,_incl._enzymes'
  312. 'drugs_used_in_diabetes'
  313. 'vitamins'
  314. 'mineral_supplements'
  315. 'tonics'
  316. 'anabolic_agents_for_systemic_use'
  317. 'appetite_stimulants'
  318. 'other_alimentary_tract_and_metabolism_products'
  319. 'antithrombotic_agents'
  320. 'antihemorrhagics'
  321. 'antianemic_preparations'
  322. 'blood_substitutes_and_perfusion_solutions'
  323. 'other_hematological_agents'
  324. 'cardiac_therapy'
  325. 'antihypertensives'
  326. 'diuretics'
  327. 'peripheral_vasodilators'
  328. 'vasoprotectives'
  329. 'beta_blocking_agents'
  330. 'calcium_channel_blockers'
  331. 'agents_acting_on_the_renin-angiotensin_system'
  332. 'lipid_modifying_agents'
  333. 'antifungals_for_dermatological_use'
  334. 'emollients_and_protectives'
  335. 'preparations_for_treatment_of_wounds_and_ulcers'
  336. 'antipruritics,_incl._antihistamines,_anesthetics,_etc.'
  337. 'antipsoriatics'
  338. 'antibiotics_and_chemotherapeutics_for_dermatological_use'
  339. 'corticosteroids,_dermatological_preparations'
  340. 'antiseptics_and_disinfectants'
  341. 'medicated_dressings'
  342. 'anti-acne_preparations'
  343. 'other_dermatological_preparations'
  344. 'gynecological_antiinfectives_and_antiseptics'
  345. 'other_gynecologicals'
  346. 'sex_hormones_and_modulators_of_the_genital_system'
  347. 'urologicals'
  348. 'pituitary_and_hypothalamic_hormones_and_analogues'
  349. 'corticosteroids_for_systemic_use'
  350. 'thyroid_therapy'
  351. 'pancreatic_hormones'
  352. 'calcium_homeostasis'
  353. 'antibacterials_for_systemic_use'
  354. 'antimycotics_for_systemic_use'
  355. 'antimycobacterials'
  356. 'antivirals_for_systemic_use'
  357. 'immune_sera_and_immunoglobulins'
  358. 'vaccines'
  359. 'antineoplastic_agents'
  360. 'endocrine_therapy'
  361. 'immunostimulants'
  362. 'immunosuppressants'
  363. 'antiinflammatory_and_antirheumatic_products'
  364. 'topical_products_for_joint_and_muscular_pain'
  365. 'muscle_relaxants'
  366. 'antigout_preparations'
  367. 'drugs_for_treatment_of_bone_diseases'
  368. 'other_drugs_for_disorders_of_the_musculo-skeletal_system'
  369. 'anesthetics'
  370. 'analgesics'
  371. 'antiepileptics'
  372. 'anti-parkinson_drugs'
  373. 'psycholeptics'
  374. 'psychoanaleptics'
  375. 'other_nervous_system_drugs'
  376. 'antiprotozoals'
  377. 'anthelmintics'
  378. 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents'
  379. 'nasal_preparations'
  380. 'throat_preparations'
  381. 'drugs_for_obstructive_airway_diseases'
  382. 'cough_and_cold_preparations'
  383. 'antihistamines_for_systemic_use'
  384. 'other_respiratory_system_products'
  385. 'ophthalmologicals'
  386. 'otologicals'
  387. 'ophthalmological_and_otological_preparations'
  388. 'allergens'
  389. 'all_other_therapeutic_products'
  390. 'diagnostic_agents'
  391. 'general_nutrients'
  392. 'all_other_non-therapeutic_products'
  393. 'contrast_media'
  394. 'diagnostic_radiopharmaceuticals'
  395. 'therapeutic_radiopharmaceuticals'
  396. 'surgical_dressings'
  397. 'statins'
  398. 'ass'
  399. 'atypical_antipsychotics'
  400. 'glucocorticoids'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'age\\_at\\_recruitment'\n", - "\\item 'sex'\n", - "\\item 'ethnic\\_background'\n", - "\\item 'townsend\\_deprivation\\_index\\_at\\_recruitment'\n", - "\\item 'overall\\_health\\_rating'\n", - "\\item 'smoking\\_status'\n", - "\\item 'alcohol\\_intake\\_frequency'\n", - "\\item 'body\\_mass\\_index\\_bmi'\n", - "\\item 'weight'\n", - "\\item 'pulse\\_wave\\_arterial\\_stiffness\\_index'\n", - "\\item 'pulse\\_wave\\_reflection\\_index'\n", - "\\item 'waist\\_circumference'\n", - "\\item 'hip\\_circumference'\n", - "\\item 'standing\\_height'\n", - "\\item 'trunk\\_fat\\_percentage'\n", - "\\item 'body\\_fat\\_percentage'\n", - "\\item 'basal\\_metabolic\\_rate'\n", - "\\item 'forced\\_vital\\_capacity\\_fvc\\_best\\_measure'\n", - "\\item 'forced\\_expiratory\\_volume\\_in\\_1second\\_fev1\\_best\\_measure'\n", - "\\item 'fev1\\_fvc\\_ratio\\_zscore'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef\\_f3064\\_0\\_2'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef\\_f3064\\_0\\_1'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef'\n", - "\\item 'systolic\\_blood\\_pressure'\n", - "\\item 'diastolic\\_blood\\_pressure'\n", - "\\item 'pulse\\_rate'\n", - "\\item 'basophill\\_count'\n", - "\\item 'basophill\\_percentage'\n", - "\\item 'eosinophill\\_count'\n", - "\\item 'eosinophill\\_percentage'\n", - "\\item 'haematocrit\\_percentage'\n", - "\\item 'haemoglobin\\_concentration'\n", - "\\item 'high\\_light\\_scatter\\_reticulocyte\\_count'\n", - "\\item 'high\\_light\\_scatter\\_reticulocyte\\_percentage'\n", - "\\item 'immature\\_reticulocyte\\_fraction'\n", - "\\item 'lymphocyte\\_count'\n", - "\\item 'lymphocyte\\_percentage'\n", - "\\item 'mean\\_corpuscular\\_haemoglobin'\n", - "\\item 'mean\\_corpuscular\\_haemoglobin\\_concentration'\n", - "\\item 'mean\\_corpuscular\\_volume'\n", - "\\item 'mean\\_platelet\\_thrombocyte\\_volume'\n", - "\\item 'mean\\_reticulocyte\\_volume'\n", - "\\item 'mean\\_sphered\\_cell\\_volume'\n", - "\\item 'monocyte\\_count'\n", - "\\item 'monocyte\\_percentage'\n", - "\\item 'neutrophill\\_count'\n", - "\\item 'neutrophill\\_percentage'\n", - "\\item 'nucleated\\_red\\_blood\\_cell\\_count'\n", - "\\item 'nucleated\\_red\\_blood\\_cell\\_percentage'\n", - "\\item 'platelet\\_count'\n", - "\\item 'platelet\\_crit'\n", - "\\item 'platelet\\_distribution\\_width'\n", - "\\item 'red\\_blood\\_cell\\_erythrocyte\\_count'\n", - "\\item 'red\\_blood\\_cell\\_erythrocyte\\_distribution\\_width'\n", - "\\item 'reticulocyte\\_count'\n", - "\\item 'reticulocyte\\_percentage'\n", - "\\item 'white\\_blood\\_cell\\_leukocyte\\_count'\n", - "\\item 'alanine\\_aminotransferase'\n", - "\\item 'albumin'\n", - "\\item 'alkaline\\_phosphatase'\n", - "\\item 'apolipoprotein\\_a'\n", - "\\item 'apolipoprotein\\_b'\n", - "\\item 'aspartate\\_aminotransferase'\n", - "\\item 'creactive\\_protein'\n", - "\\item 'calcium'\n", - "\\item 'cholesterol'\n", - "\\item 'creatinine'\n", - "\\item 'cystatin\\_c'\n", - "\\item 'direct\\_bilirubin'\n", - "\\item 'gamma\\_glutamyltransferase'\n", - "\\item 'glucose'\n", - "\\item 'glycated\\_haemoglobin\\_hba1c'\n", - "\\item 'hdl\\_cholesterol'\n", - "\\item 'igf1'\n", - "\\item 'ldl\\_direct'\n", - "\\item 'lipoprotein\\_a'\n", - "\\item 'oestradiol'\n", - "\\item 'phosphate'\n", - "\\item 'rheumatoid\\_factor'\n", - "\\item 'shbg'\n", - "\\item 'testosterone'\n", - "\\item 'total\\_bilirubin'\n", - "\\item 'total\\_protein'\n", - "\\item 'triglycerides'\n", - "\\item 'urate'\n", - "\\item 'urea'\n", - "\\item 'vitamin\\_d'\n", - "\\item 'fh\\_alzheimer\\textbackslash{}'s\\_disease/dementia'\n", - "\\item 'fh\\_bowel\\_cancer'\n", - "\\item 'fh\\_breast\\_cancer'\n", - "\\item 'fh\\_chronic\\_bronchitis/emphysema'\n", - "\\item 'fh\\_diabetes'\n", - "\\item 'fh\\_heart\\_disease'\n", - "\\item 'fh\\_high\\_blood\\_pressure'\n", - "\\item 'fh\\_lung\\_cancer'\n", - "\\item 'fh\\_parkinson\\textbackslash{}'s\\_disease'\n", - "\\item 'fh\\_severe\\_depression'\n", - "\\item 'fh\\_stroke'\n", - "\\item 'coronary\\_heart\\_disease'\n", - "\\item 'myocardial\\_infarction'\n", - "\\item 'stroke'\n", - "\\item 'diabetes1'\n", - "\\item 'diabetes2'\n", - "\\item 'chronic\\_kidney\\_disease'\n", - "\\item 'atrial\\_fibrillation'\n", - "\\item 'migraine'\n", - "\\item 'rheumatoid\\_arthritis'\n", - "\\item 'systemic\\_lupus\\_erythematosus'\n", - "\\item 'severe\\_mental\\_illness'\n", - "\\item 'erectile\\_dysfunction'\n", - "\\item 'hypertensive\\_disorder\\_systemic\\_arterial'\n", - "\\item 'hyperlipidemia'\n", - "\\item 'depressive\\_disorder'\n", - "\\item 'gastroesophageal\\_reflux\\_disease'\n", - "\\item 'diabetes\\_mellitus\\_type\\_2'\n", - "\\item 'essential\\_hypertension'\n", - "\\item 'obesity'\n", - "\\item 'diabetes\\_mellitus'\n", - "\\item 'asthma'\n", - "\\item 'coronary\\_arteriosclerosis'\n", - "\\item 'allergic\\_rhinitis'\n", - "\\item 'hypothyroidism'\n", - "\\item 'upper\\_respiratory\\_infection'\n", - "\\item 'hypercholesterolemia'\n", - "\\item 'backache'\n", - "\\item 'abdominal\\_pain'\n", - "\\item 'osteoarthritis'\n", - "\\item 'low\\_back\\_pain'\n", - "\\item 'anemia'\n", - "\\item 'anxiety'\n", - "\\item 'urinary\\_tract\\_infectious\\_disease'\n", - "\\item 'chronic\\_obstructive\\_lung\\_disease'\n", - "\\item 'pneumonia'\n", - "\\item 'chest\\_pain'\n", - "\\item 'congestive\\_heart\\_failure'\n", - "\\item 'headache'\n", - "\\item 'pregnant'\n", - "\\item 'knee\\_pain'\n", - "\\item 'osteoporosis'\n", - "\\item 'polyp\\_of\\_colon'\n", - "\\item 'otitis\\_media'\n", - "\\item 'sinusitis'\n", - "\\item 'cough'\n", - "\\item 'sleep\\_apnea'\n", - "\\item 'insomnia'\n", - "\\item 'inflammatory\\_disorder\\_due\\_to\\_increased\\_blood\\_urate\\_level'\n", - "\\item 'tobacco\\_dependence\\_syndrome'\n", - "\\item 'malignant\\_tumor\\_of\\_prostate'\n", - "\\item 'constipation'\n", - "\\item 'hearing\\_loss'\n", - "\\item 'fatigue'\n", - "\\item 'obstructive\\_sleep\\_apnea\\_syndrome'\n", - "\\item 'malignant\\_neoplasm\\_of\\_breast'\n", - "\\item 'delivery\\_normal'\n", - "\\item 'irritable\\_bowel\\_syndrome'\n", - "\\item 'tobacco\\_user'\n", - "\\item 'neck\\_pain'\n", - "\\item 'cerebrovascular\\_accident'\n", - "\\item 'asthenia'\n", - "\\item 'shoulder\\_pain'\n", - "\\item 'acne\\_vulgaris'\n", - "\\item 'benign\\_prostatic\\_hyperplasia'\n", - "\\item 'dyspnea'\n", - "\\item 'carpal\\_tunnel\\_syndrome'\n", - "\\item 'bronchitis'\n", - "\\item 'pharyngitis'\n", - "\\item 'arthritis'\n", - "\\item 'diarrhea'\n", - "\\item 'dizziness'\n", - "\\item 'alcohol\\_abuse'\n", - "\\item 'dementia'\n", - "\\item 'eczema'\n", - "\\item 'syncope'\n", - "\\item 'acute\\_sinusitis'\n", - "\\item 'iron\\_deficiency\\_anemia'\n", - "\\item 'allergic\\_rhinitis\\_caused\\_by\\_pollen'\n", - "\\item 'gastritis'\n", - "\\item 'cataract'\n", - "\\item 'hematuria\\_syndrome'\n", - "\\item 'disorder\\_of\\_the\\_peripheral\\_nervous\\_system'\n", - "\\item 'viral\\_hepatitis\\_type\\_c'\n", - "\\item 'palpitations'\n", - "\\item 'eruption\\_of\\_skin'\n", - "\\item 'diabetes\\_mellitus\\_type\\_1'\n", - "\\item 'renal\\_failure\\_syndrome'\n", - "\\item 'peripheral\\_vascular\\_disease'\n", - "\\item 'hyperglycemia'\n", - "\\item 'seizure\\_disorder'\n", - "\\item 'fever'\n", - "\\item 'osteoarthritis\\_of\\_knee'\n", - "\\item 'actinic\\_keratosis'\n", - "\\item 'urinary\\_incontinence'\n", - "\\item 'hemorrhoids'\n", - "\\item 'seizure'\n", - "\\item 'laceration\\_-\\_injury'\n", - "\\item 'glaucoma'\n", - "\\item 'body\\_mass\\_index\\_30+\\_-\\_obesity'\n", - "\\item 'breast\\_lump'\n", - "\\item 'viral\\_disease'\n", - "\\item 'abnormal\\_cervical\\_smear'\n", - "\\item ⋯\n", - "\\item 'viral\\_exanthem'\n", - "\\item 'talipes\\_planus'\n", - "\\item 'idiopathic\\_peripheral\\_neuropathy'\n", - "\\item 'foreign\\_body\\_in\\_pharynx'\n", - "\\item 'jaw\\_pain'\n", - "\\item 'renal\\_impairment'\n", - "\\item 'ataxia'\n", - "\\item 'age-related\\_macular\\_degeneration'\n", - "\\item 'uterine\\_prolapse'\n", - "\\item 'renal\\_mass'\n", - "\\item 'pneumonitis'\n", - "\\item 'coordination\\_problem'\n", - "\\item 'blindness\\_-\\_both\\_eyes'\n", - "\\item 'primary\\_hyperparathyroidism'\n", - "\\item 'musculoskeletal\\_pain'\n", - "\\item 'mycosis'\n", - "\\item 'primigravida'\n", - "\\item 'urethral\\_stricture'\n", - "\\item 'leukocytosis'\n", - "\\item 'ventricular\\_premature\\_complex'\n", - "\\item 'ulcer\\_of\\_foot\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'chronic\\_headache\\_disorder'\n", - "\\item 'hemangioma'\n", - "\\item 'lymphedema'\n", - "\\item 'postmenopausal\\_state'\n", - "\\item 'chronic\\_ulcer\\_of\\_skin'\n", - "\\item 'left\\_heart\\_failure'\n", - "\\item 'excessive\\_and\\_frequent\\_menstruation'\n", - "\\item 'thrombocytosis'\n", - "\\item 'disorder\\_of\\_liver'\n", - "\\item 'disorder\\_of\\_carotid\\_artery'\n", - "\\item 'altered\\_bowel\\_function'\n", - "\\item 'abscess\\_of\\_foot'\n", - "\\item 'malignant\\_tumor\\_of\\_head\\_and/or\\_neck'\n", - "\\item 'streptococcus\\_group\\_b\\_infection\\_of\\_the\\_infant'\n", - "\\item 'concussion\\_injury\\_of\\_brain'\n", - "\\item 'feeding\\_problems\\_in\\_newborn'\n", - "\\item 'bipolar\\_i\\_disorder'\n", - "\\item 'viral\\_pharyngitis'\n", - "\\item 'lower\\_respiratory\\_tract\\_infection'\n", - "\\item 'hydronephrosis'\n", - "\\item 'borderline\\_personality\\_disorder'\n", - "\\item 'esophageal\\_varices'\n", - "\\item 'hypersomnia'\n", - "\\item 'sensorineural\\_hearing\\_loss\\_bilateral'\n", - "\\item 'varicocele'\n", - "\\item 'subarachnoid\\_intracranial\\_hemorrhage'\n", - "\\item 'incisional\\_hernia'\n", - "\\item 'varicella'\n", - "\\item 'pain\\_in\\_testicle'\n", - "\\item 'transplant\\_follow-up'\n", - "\\item 'tinea\\_cruris'\n", - "\\item 'laryngitis'\n", - "\\item 'hypertrophy\\_of\\_nail'\n", - "\\item 'amblyopia'\n", - "\\item 'polyp\\_of\\_cervix'\n", - "\\item 'cyst\\_of\\_kidney'\n", - "\\item 'hepatic\\_encephalopathy'\n", - "\\item 'blood\\_glucose\\_abnormal'\n", - "\\item 'postherpetic\\_neuralgia'\n", - "\\item 'frank\\_hematuria'\n", - "\\item 'cramp'\n", - "\\item 'interstitial\\_lung\\_disease'\n", - "\\item 'complete\\_atrioventricular\\_block'\n", - "\\item 'malignant\\_tumor\\_of\\_kidney'\n", - "\\item 'otitis'\n", - "\\item 'septic\\_shock'\n", - "\\item 'disorder\\_of\\_thyroid\\_gland'\n", - "\\item 'hypertrophic\\_cardiomyopathy'\n", - "\\item 'respiratory\\_distress\\_syndrome\\_in\\_the\\_newborn'\n", - "\\item 'infectious\\_gastroenteritis'\n", - "\\item 'subdural\\_intracranial\\_hemorrhage'\n", - "\\item 'hepatitis\\_b\\_carrier'\n", - "\\item 'manic\\_bipolar\\_i\\_disorder'\n", - "\\item 'secondary\\_pulmonary\\_hypertension'\n", - "\\item 'gonorrhea'\n", - "\\item 'derangement\\_of\\_knee'\n", - "\\item 'appendicitis'\n", - "\\item 'polyneuropathy\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'neonatal\\_hypoglycemia'\n", - "\\item 'prolonged\\_rupture\\_of\\_membranes'\n", - "\\item 'vasomotor\\_rhinitis'\n", - "\\item 'renal\\_disorder\\_due\\_to\\_type\\_1\\_diabetes\\_mellitus'\n", - "\\item 'tuberculosis'\n", - "\\item 'feeding\\_problem'\n", - "\\item 'chronic\\_tonsillitis'\n", - "\\item 'acute\\_duodenal\\_ulcer\\_with\\_hemorrhage'\n", - "\\item 'hammer\\_toe'\n", - "\\item 'malignant\\_tumor\\_of\\_cervix'\n", - "\\item 'prolapsed\\_lumbar\\_intervertebral\\_disc'\n", - "\\item 'hematemesis'\n", - "\\item 'perianal\\_abscess'\n", - "\\item 'nonvenomous\\_insect\\_bite'\n", - "\\item 'spondylolisthesis'\n", - "\\item 'malignant\\_tumor\\_of\\_esophagus'\n", - "\\item 'aphthous\\_ulcer\\_of\\_mouth'\n", - "\\item 'ventricular\\_septal\\_defect'\n", - "\\item 'oropharyngeal\\_dysphagia'\n", - "\\item 'injury\\_of\\_knee'\n", - "\\item 'traumatic\\_brain\\_injury'\n", - "\\item 'osteoarthritis\\_of\\_glenohumeral\\_joint'\n", - "\\item 'fetal\\_or\\_neonatal\\_effect\\_of\\_maternal\\_medical\\_problem'\n", - "\\item 'stomatological\\_preparations'\n", - "\\item 'drugs\\_for\\_acid\\_related\\_disorders'\n", - "\\item 'drugs\\_for\\_functional\\_gastrointestinal\\_disorders'\n", - "\\item 'antiemetics\\_and\\_antinauseants'\n", - "\\item 'bile\\_and\\_liver\\_therapy'\n", - "\\item 'drugs\\_for\\_constipation'\n", - "\\item 'antidiarrheals,\\_intestinal\\_antiinflammatory/antiinfective\\_agents'\n", - "\\item 'antiobesity\\_preparations,\\_excl.\\_diet\\_products'\n", - "\\item 'digestives,\\_incl.\\_enzymes'\n", - "\\item 'drugs\\_used\\_in\\_diabetes'\n", - "\\item 'vitamins'\n", - "\\item 'mineral\\_supplements'\n", - "\\item 'tonics'\n", - "\\item 'anabolic\\_agents\\_for\\_systemic\\_use'\n", - "\\item 'appetite\\_stimulants'\n", - "\\item 'other\\_alimentary\\_tract\\_and\\_metabolism\\_products'\n", - "\\item 'antithrombotic\\_agents'\n", - "\\item 'antihemorrhagics'\n", - "\\item 'antianemic\\_preparations'\n", - "\\item 'blood\\_substitutes\\_and\\_perfusion\\_solutions'\n", - "\\item 'other\\_hematological\\_agents'\n", - "\\item 'cardiac\\_therapy'\n", - "\\item 'antihypertensives'\n", - "\\item 'diuretics'\n", - "\\item 'peripheral\\_vasodilators'\n", - "\\item 'vasoprotectives'\n", - "\\item 'beta\\_blocking\\_agents'\n", - "\\item 'calcium\\_channel\\_blockers'\n", - "\\item 'agents\\_acting\\_on\\_the\\_renin-angiotensin\\_system'\n", - "\\item 'lipid\\_modifying\\_agents'\n", - "\\item 'antifungals\\_for\\_dermatological\\_use'\n", - "\\item 'emollients\\_and\\_protectives'\n", - "\\item 'preparations\\_for\\_treatment\\_of\\_wounds\\_and\\_ulcers'\n", - "\\item 'antipruritics,\\_incl.\\_antihistamines,\\_anesthetics,\\_etc.'\n", - "\\item 'antipsoriatics'\n", - "\\item 'antibiotics\\_and\\_chemotherapeutics\\_for\\_dermatological\\_use'\n", - "\\item 'corticosteroids,\\_dermatological\\_preparations'\n", - "\\item 'antiseptics\\_and\\_disinfectants'\n", - "\\item 'medicated\\_dressings'\n", - "\\item 'anti-acne\\_preparations'\n", - "\\item 'other\\_dermatological\\_preparations'\n", - "\\item 'gynecological\\_antiinfectives\\_and\\_antiseptics'\n", - "\\item 'other\\_gynecologicals'\n", - "\\item 'sex\\_hormones\\_and\\_modulators\\_of\\_the\\_genital\\_system'\n", - "\\item 'urologicals'\n", - "\\item 'pituitary\\_and\\_hypothalamic\\_hormones\\_and\\_analogues'\n", - "\\item 'corticosteroids\\_for\\_systemic\\_use'\n", - "\\item 'thyroid\\_therapy'\n", - "\\item 'pancreatic\\_hormones'\n", - "\\item 'calcium\\_homeostasis'\n", - "\\item 'antibacterials\\_for\\_systemic\\_use'\n", - "\\item 'antimycotics\\_for\\_systemic\\_use'\n", - "\\item 'antimycobacterials'\n", - "\\item 'antivirals\\_for\\_systemic\\_use'\n", - "\\item 'immune\\_sera\\_and\\_immunoglobulins'\n", - "\\item 'vaccines'\n", - "\\item 'antineoplastic\\_agents'\n", - "\\item 'endocrine\\_therapy'\n", - "\\item 'immunostimulants'\n", - "\\item 'immunosuppressants'\n", - "\\item 'antiinflammatory\\_and\\_antirheumatic\\_products'\n", - "\\item 'topical\\_products\\_for\\_joint\\_and\\_muscular\\_pain'\n", - "\\item 'muscle\\_relaxants'\n", - "\\item 'antigout\\_preparations'\n", - "\\item 'drugs\\_for\\_treatment\\_of\\_bone\\_diseases'\n", - "\\item 'other\\_drugs\\_for\\_disorders\\_of\\_the\\_musculo-skeletal\\_system'\n", - "\\item 'anesthetics'\n", - "\\item 'analgesics'\n", - "\\item 'antiepileptics'\n", - "\\item 'anti-parkinson\\_drugs'\n", - "\\item 'psycholeptics'\n", - "\\item 'psychoanaleptics'\n", - "\\item 'other\\_nervous\\_system\\_drugs'\n", - "\\item 'antiprotozoals'\n", - "\\item 'anthelmintics'\n", - "\\item 'ectoparasiticides,\\_incl.\\_scabicides,\\_insecticides\\_and\\_repellents'\n", - "\\item 'nasal\\_preparations'\n", - "\\item 'throat\\_preparations'\n", - "\\item 'drugs\\_for\\_obstructive\\_airway\\_diseases'\n", - "\\item 'cough\\_and\\_cold\\_preparations'\n", - "\\item 'antihistamines\\_for\\_systemic\\_use'\n", - "\\item 'other\\_respiratory\\_system\\_products'\n", - "\\item 'ophthalmologicals'\n", - "\\item 'otologicals'\n", - "\\item 'ophthalmological\\_and\\_otological\\_preparations'\n", - "\\item 'allergens'\n", - "\\item 'all\\_other\\_therapeutic\\_products'\n", - "\\item 'diagnostic\\_agents'\n", - "\\item 'general\\_nutrients'\n", - "\\item 'all\\_other\\_non-therapeutic\\_products'\n", - "\\item 'contrast\\_media'\n", - "\\item 'diagnostic\\_radiopharmaceuticals'\n", - "\\item 'therapeutic\\_radiopharmaceuticals'\n", - "\\item 'surgical\\_dressings'\n", - "\\item 'statins'\n", - "\\item 'ass'\n", - "\\item 'atypical\\_antipsychotics'\n", - "\\item 'glucocorticoids'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'age_at_recruitment'\n", - "2. 'sex'\n", - "3. 'ethnic_background'\n", - "4. 'townsend_deprivation_index_at_recruitment'\n", - "5. 'overall_health_rating'\n", - "6. 'smoking_status'\n", - "7. 'alcohol_intake_frequency'\n", - "8. 'body_mass_index_bmi'\n", - "9. 'weight'\n", - "10. 'pulse_wave_arterial_stiffness_index'\n", - "11. 'pulse_wave_reflection_index'\n", - "12. 'waist_circumference'\n", - "13. 'hip_circumference'\n", - "14. 'standing_height'\n", - "15. 'trunk_fat_percentage'\n", - "16. 'body_fat_percentage'\n", - "17. 'basal_metabolic_rate'\n", - "18. 'forced_vital_capacity_fvc_best_measure'\n", - "19. 'forced_expiratory_volume_in_1second_fev1_best_measure'\n", - "20. 'fev1_fvc_ratio_zscore'\n", - "21. 'peak_expiratory_flow_pef_f3064_0_2'\n", - "22. 'peak_expiratory_flow_pef_f3064_0_1'\n", - "23. 'peak_expiratory_flow_pef'\n", - "24. 'systolic_blood_pressure'\n", - "25. 'diastolic_blood_pressure'\n", - "26. 'pulse_rate'\n", - "27. 'basophill_count'\n", - "28. 'basophill_percentage'\n", - "29. 'eosinophill_count'\n", - "30. 'eosinophill_percentage'\n", - "31. 'haematocrit_percentage'\n", - "32. 'haemoglobin_concentration'\n", - "33. 'high_light_scatter_reticulocyte_count'\n", - "34. 'high_light_scatter_reticulocyte_percentage'\n", - "35. 'immature_reticulocyte_fraction'\n", - "36. 'lymphocyte_count'\n", - "37. 'lymphocyte_percentage'\n", - "38. 'mean_corpuscular_haemoglobin'\n", - "39. 'mean_corpuscular_haemoglobin_concentration'\n", - "40. 'mean_corpuscular_volume'\n", - "41. 'mean_platelet_thrombocyte_volume'\n", - "42. 'mean_reticulocyte_volume'\n", - "43. 'mean_sphered_cell_volume'\n", - "44. 'monocyte_count'\n", - "45. 'monocyte_percentage'\n", - "46. 'neutrophill_count'\n", - "47. 'neutrophill_percentage'\n", - "48. 'nucleated_red_blood_cell_count'\n", - "49. 'nucleated_red_blood_cell_percentage'\n", - "50. 'platelet_count'\n", - "51. 'platelet_crit'\n", - "52. 'platelet_distribution_width'\n", - "53. 'red_blood_cell_erythrocyte_count'\n", - "54. 'red_blood_cell_erythrocyte_distribution_width'\n", - "55. 'reticulocyte_count'\n", - "56. 'reticulocyte_percentage'\n", - "57. 'white_blood_cell_leukocyte_count'\n", - "58. 'alanine_aminotransferase'\n", - "59. 'albumin'\n", - "60. 'alkaline_phosphatase'\n", - "61. 'apolipoprotein_a'\n", - "62. 'apolipoprotein_b'\n", - "63. 'aspartate_aminotransferase'\n", - "64. 'creactive_protein'\n", - "65. 'calcium'\n", - "66. 'cholesterol'\n", - "67. 'creatinine'\n", - "68. 'cystatin_c'\n", - "69. 'direct_bilirubin'\n", - "70. 'gamma_glutamyltransferase'\n", - "71. 'glucose'\n", - "72. 'glycated_haemoglobin_hba1c'\n", - "73. 'hdl_cholesterol'\n", - "74. 'igf1'\n", - "75. 'ldl_direct'\n", - "76. 'lipoprotein_a'\n", - "77. 'oestradiol'\n", - "78. 'phosphate'\n", - "79. 'rheumatoid_factor'\n", - "80. 'shbg'\n", - "81. 'testosterone'\n", - "82. 'total_bilirubin'\n", - "83. 'total_protein'\n", - "84. 'triglycerides'\n", - "85. 'urate'\n", - "86. 'urea'\n", - "87. 'vitamin_d'\n", - "88. 'fh_alzheimer\\'s_disease/dementia'\n", - "89. 'fh_bowel_cancer'\n", - "90. 'fh_breast_cancer'\n", - "91. 'fh_chronic_bronchitis/emphysema'\n", - "92. 'fh_diabetes'\n", - "93. 'fh_heart_disease'\n", - "94. 'fh_high_blood_pressure'\n", - "95. 'fh_lung_cancer'\n", - "96. 'fh_parkinson\\'s_disease'\n", - "97. 'fh_severe_depression'\n", - "98. 'fh_stroke'\n", - "99. 'coronary_heart_disease'\n", - "100. 'myocardial_infarction'\n", - "101. 'stroke'\n", - "102. 'diabetes1'\n", - "103. 'diabetes2'\n", - "104. 'chronic_kidney_disease'\n", - "105. 'atrial_fibrillation'\n", - "106. 'migraine'\n", - "107. 'rheumatoid_arthritis'\n", - "108. 'systemic_lupus_erythematosus'\n", - "109. 'severe_mental_illness'\n", - "110. 'erectile_dysfunction'\n", - "111. 'hypertensive_disorder_systemic_arterial'\n", - "112. 'hyperlipidemia'\n", - "113. 'depressive_disorder'\n", - "114. 'gastroesophageal_reflux_disease'\n", - "115. 'diabetes_mellitus_type_2'\n", - "116. 'essential_hypertension'\n", - "117. 'obesity'\n", - "118. 'diabetes_mellitus'\n", - "119. 'asthma'\n", - "120. 'coronary_arteriosclerosis'\n", - "121. 'allergic_rhinitis'\n", - "122. 'hypothyroidism'\n", - "123. 'upper_respiratory_infection'\n", - "124. 'hypercholesterolemia'\n", - "125. 'backache'\n", - "126. 'abdominal_pain'\n", - "127. 'osteoarthritis'\n", - "128. 'low_back_pain'\n", - "129. 'anemia'\n", - "130. 'anxiety'\n", - "131. 'urinary_tract_infectious_disease'\n", - "132. 'chronic_obstructive_lung_disease'\n", - "133. 'pneumonia'\n", - "134. 'chest_pain'\n", - "135. 'congestive_heart_failure'\n", - "136. 'headache'\n", - "137. 'pregnant'\n", - "138. 'knee_pain'\n", - "139. 'osteoporosis'\n", - "140. 'polyp_of_colon'\n", - "141. 'otitis_media'\n", - "142. 'sinusitis'\n", - "143. 'cough'\n", - "144. 'sleep_apnea'\n", - "145. 'insomnia'\n", - "146. 'inflammatory_disorder_due_to_increased_blood_urate_level'\n", - "147. 'tobacco_dependence_syndrome'\n", - "148. 'malignant_tumor_of_prostate'\n", - "149. 'constipation'\n", - "150. 'hearing_loss'\n", - "151. 'fatigue'\n", - "152. 'obstructive_sleep_apnea_syndrome'\n", - "153. 'malignant_neoplasm_of_breast'\n", - "154. 'delivery_normal'\n", - "155. 'irritable_bowel_syndrome'\n", - "156. 'tobacco_user'\n", - "157. 'neck_pain'\n", - "158. 'cerebrovascular_accident'\n", - "159. 'asthenia'\n", - "160. 'shoulder_pain'\n", - "161. 'acne_vulgaris'\n", - "162. 'benign_prostatic_hyperplasia'\n", - "163. 'dyspnea'\n", - "164. 'carpal_tunnel_syndrome'\n", - "165. 'bronchitis'\n", - "166. 'pharyngitis'\n", - "167. 'arthritis'\n", - "168. 'diarrhea'\n", - "169. 'dizziness'\n", - "170. 'alcohol_abuse'\n", - "171. 'dementia'\n", - "172. 'eczema'\n", - "173. 'syncope'\n", - "174. 'acute_sinusitis'\n", - "175. 'iron_deficiency_anemia'\n", - "176. 'allergic_rhinitis_caused_by_pollen'\n", - "177. 'gastritis'\n", - "178. 'cataract'\n", - "179. 'hematuria_syndrome'\n", - "180. 'disorder_of_the_peripheral_nervous_system'\n", - "181. 'viral_hepatitis_type_c'\n", - "182. 'palpitations'\n", - "183. 'eruption_of_skin'\n", - "184. 'diabetes_mellitus_type_1'\n", - "185. 'renal_failure_syndrome'\n", - "186. 'peripheral_vascular_disease'\n", - "187. 'hyperglycemia'\n", - "188. 'seizure_disorder'\n", - "189. 'fever'\n", - "190. 'osteoarthritis_of_knee'\n", - "191. 'actinic_keratosis'\n", - "192. 'urinary_incontinence'\n", - "193. 'hemorrhoids'\n", - "194. 'seizure'\n", - "195. 'laceration_-_injury'\n", - "196. 'glaucoma'\n", - "197. 'body_mass_index_30+_-_obesity'\n", - "198. 'breast_lump'\n", - "199. 'viral_disease'\n", - "200. 'abnormal_cervical_smear'\n", - "201. ⋯\n", - "202. 'viral_exanthem'\n", - "203. 'talipes_planus'\n", - "204. 'idiopathic_peripheral_neuropathy'\n", - "205. 'foreign_body_in_pharynx'\n", - "206. 'jaw_pain'\n", - "207. 'renal_impairment'\n", - "208. 'ataxia'\n", - "209. 'age-related_macular_degeneration'\n", - "210. 'uterine_prolapse'\n", - "211. 'renal_mass'\n", - "212. 'pneumonitis'\n", - "213. 'coordination_problem'\n", - "214. 'blindness_-_both_eyes'\n", - "215. 'primary_hyperparathyroidism'\n", - "216. 'musculoskeletal_pain'\n", - "217. 'mycosis'\n", - "218. 'primigravida'\n", - "219. 'urethral_stricture'\n", - "220. 'leukocytosis'\n", - "221. 'ventricular_premature_complex'\n", - "222. 'ulcer_of_foot_due_to_diabetes_mellitus'\n", - "223. 'chronic_headache_disorder'\n", - "224. 'hemangioma'\n", - "225. 'lymphedema'\n", - "226. 'postmenopausal_state'\n", - "227. 'chronic_ulcer_of_skin'\n", - "228. 'left_heart_failure'\n", - "229. 'excessive_and_frequent_menstruation'\n", - "230. 'thrombocytosis'\n", - "231. 'disorder_of_liver'\n", - "232. 'disorder_of_carotid_artery'\n", - "233. 'altered_bowel_function'\n", - "234. 'abscess_of_foot'\n", - "235. 'malignant_tumor_of_head_and/or_neck'\n", - "236. 'streptococcus_group_b_infection_of_the_infant'\n", - "237. 'concussion_injury_of_brain'\n", - "238. 'feeding_problems_in_newborn'\n", - "239. 'bipolar_i_disorder'\n", - "240. 'viral_pharyngitis'\n", - "241. 'lower_respiratory_tract_infection'\n", - "242. 'hydronephrosis'\n", - "243. 'borderline_personality_disorder'\n", - "244. 'esophageal_varices'\n", - "245. 'hypersomnia'\n", - "246. 'sensorineural_hearing_loss_bilateral'\n", - "247. 'varicocele'\n", - "248. 'subarachnoid_intracranial_hemorrhage'\n", - "249. 'incisional_hernia'\n", - "250. 'varicella'\n", - "251. 'pain_in_testicle'\n", - "252. 'transplant_follow-up'\n", - "253. 'tinea_cruris'\n", - "254. 'laryngitis'\n", - "255. 'hypertrophy_of_nail'\n", - "256. 'amblyopia'\n", - "257. 'polyp_of_cervix'\n", - "258. 'cyst_of_kidney'\n", - "259. 'hepatic_encephalopathy'\n", - "260. 'blood_glucose_abnormal'\n", - "261. 'postherpetic_neuralgia'\n", - "262. 'frank_hematuria'\n", - "263. 'cramp'\n", - "264. 'interstitial_lung_disease'\n", - "265. 'complete_atrioventricular_block'\n", - "266. 'malignant_tumor_of_kidney'\n", - "267. 'otitis'\n", - "268. 'septic_shock'\n", - "269. 'disorder_of_thyroid_gland'\n", - "270. 'hypertrophic_cardiomyopathy'\n", - "271. 'respiratory_distress_syndrome_in_the_newborn'\n", - "272. 'infectious_gastroenteritis'\n", - "273. 'subdural_intracranial_hemorrhage'\n", - "274. 'hepatitis_b_carrier'\n", - "275. 'manic_bipolar_i_disorder'\n", - "276. 'secondary_pulmonary_hypertension'\n", - "277. 'gonorrhea'\n", - "278. 'derangement_of_knee'\n", - "279. 'appendicitis'\n", - "280. 'polyneuropathy_due_to_diabetes_mellitus'\n", - "281. 'neonatal_hypoglycemia'\n", - "282. 'prolonged_rupture_of_membranes'\n", - "283. 'vasomotor_rhinitis'\n", - "284. 'renal_disorder_due_to_type_1_diabetes_mellitus'\n", - "285. 'tuberculosis'\n", - "286. 'feeding_problem'\n", - "287. 'chronic_tonsillitis'\n", - "288. 'acute_duodenal_ulcer_with_hemorrhage'\n", - "289. 'hammer_toe'\n", - "290. 'malignant_tumor_of_cervix'\n", - "291. 'prolapsed_lumbar_intervertebral_disc'\n", - "292. 'hematemesis'\n", - "293. 'perianal_abscess'\n", - "294. 'nonvenomous_insect_bite'\n", - "295. 'spondylolisthesis'\n", - "296. 'malignant_tumor_of_esophagus'\n", - "297. 'aphthous_ulcer_of_mouth'\n", - "298. 'ventricular_septal_defect'\n", - "299. 'oropharyngeal_dysphagia'\n", - "300. 'injury_of_knee'\n", - "301. 'traumatic_brain_injury'\n", - "302. 'osteoarthritis_of_glenohumeral_joint'\n", - "303. 'fetal_or_neonatal_effect_of_maternal_medical_problem'\n", - "304. 'stomatological_preparations'\n", - "305. 'drugs_for_acid_related_disorders'\n", - "306. 'drugs_for_functional_gastrointestinal_disorders'\n", - "307. 'antiemetics_and_antinauseants'\n", - "308. 'bile_and_liver_therapy'\n", - "309. 'drugs_for_constipation'\n", - "310. 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents'\n", - "311. 'antiobesity_preparations,_excl._diet_products'\n", - "312. 'digestives,_incl._enzymes'\n", - "313. 'drugs_used_in_diabetes'\n", - "314. 'vitamins'\n", - "315. 'mineral_supplements'\n", - "316. 'tonics'\n", - "317. 'anabolic_agents_for_systemic_use'\n", - "318. 'appetite_stimulants'\n", - "319. 'other_alimentary_tract_and_metabolism_products'\n", - "320. 'antithrombotic_agents'\n", - "321. 'antihemorrhagics'\n", - "322. 'antianemic_preparations'\n", - "323. 'blood_substitutes_and_perfusion_solutions'\n", - "324. 'other_hematological_agents'\n", - "325. 'cardiac_therapy'\n", - "326. 'antihypertensives'\n", - "327. 'diuretics'\n", - "328. 'peripheral_vasodilators'\n", - "329. 'vasoprotectives'\n", - "330. 'beta_blocking_agents'\n", - "331. 'calcium_channel_blockers'\n", - "332. 'agents_acting_on_the_renin-angiotensin_system'\n", - "333. 'lipid_modifying_agents'\n", - "334. 'antifungals_for_dermatological_use'\n", - "335. 'emollients_and_protectives'\n", - "336. 'preparations_for_treatment_of_wounds_and_ulcers'\n", - "337. 'antipruritics,_incl._antihistamines,_anesthetics,_etc.'\n", - "338. 'antipsoriatics'\n", - "339. 'antibiotics_and_chemotherapeutics_for_dermatological_use'\n", - "340. 'corticosteroids,_dermatological_preparations'\n", - "341. 'antiseptics_and_disinfectants'\n", - "342. 'medicated_dressings'\n", - "343. 'anti-acne_preparations'\n", - "344. 'other_dermatological_preparations'\n", - "345. 'gynecological_antiinfectives_and_antiseptics'\n", - "346. 'other_gynecologicals'\n", - "347. 'sex_hormones_and_modulators_of_the_genital_system'\n", - "348. 'urologicals'\n", - "349. 'pituitary_and_hypothalamic_hormones_and_analogues'\n", - "350. 'corticosteroids_for_systemic_use'\n", - "351. 'thyroid_therapy'\n", - "352. 'pancreatic_hormones'\n", - "353. 'calcium_homeostasis'\n", - "354. 'antibacterials_for_systemic_use'\n", - "355. 'antimycotics_for_systemic_use'\n", - "356. 'antimycobacterials'\n", - "357. 'antivirals_for_systemic_use'\n", - "358. 'immune_sera_and_immunoglobulins'\n", - "359. 'vaccines'\n", - "360. 'antineoplastic_agents'\n", - "361. 'endocrine_therapy'\n", - "362. 'immunostimulants'\n", - "363. 'immunosuppressants'\n", - "364. 'antiinflammatory_and_antirheumatic_products'\n", - "365. 'topical_products_for_joint_and_muscular_pain'\n", - "366. 'muscle_relaxants'\n", - "367. 'antigout_preparations'\n", - "368. 'drugs_for_treatment_of_bone_diseases'\n", - "369. 'other_drugs_for_disorders_of_the_musculo-skeletal_system'\n", - "370. 'anesthetics'\n", - "371. 'analgesics'\n", - "372. 'antiepileptics'\n", - "373. 'anti-parkinson_drugs'\n", - "374. 'psycholeptics'\n", - "375. 'psychoanaleptics'\n", - "376. 'other_nervous_system_drugs'\n", - "377. 'antiprotozoals'\n", - "378. 'anthelmintics'\n", - "379. 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents'\n", - "380. 'nasal_preparations'\n", - "381. 'throat_preparations'\n", - "382. 'drugs_for_obstructive_airway_diseases'\n", - "383. 'cough_and_cold_preparations'\n", - "384. 'antihistamines_for_systemic_use'\n", - "385. 'other_respiratory_system_products'\n", - "386. 'ophthalmologicals'\n", - "387. 'otologicals'\n", - "388. 'ophthalmological_and_otological_preparations'\n", - "389. 'allergens'\n", - "390. 'all_other_therapeutic_products'\n", - "391. 'diagnostic_agents'\n", - "392. 'general_nutrients'\n", - "393. 'all_other_non-therapeutic_products'\n", - "394. 'contrast_media'\n", - "395. 'diagnostic_radiopharmaceuticals'\n", - "396. 'therapeutic_radiopharmaceuticals'\n", - "397. 'surgical_dressings'\n", - "398. 'statins'\n", - "399. 'ass'\n", - "400. 'atypical_antipsychotics'\n", - "401. 'glucocorticoids'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"age_at_recruitment\" \n", - " [2] \"sex\" \n", - " [3] \"ethnic_background\" \n", - " [4] \"townsend_deprivation_index_at_recruitment\" \n", - " [5] \"overall_health_rating\" \n", - " [6] \"smoking_status\" \n", - " [7] \"alcohol_intake_frequency\" \n", - " [8] \"body_mass_index_bmi\" \n", - " [9] \"weight\" \n", - " [10] \"pulse_wave_arterial_stiffness_index\" \n", - " [11] \"pulse_wave_reflection_index\" \n", - " [12] \"waist_circumference\" \n", - " [13] \"hip_circumference\" \n", - " [14] \"standing_height\" \n", - " [15] \"trunk_fat_percentage\" \n", - " [16] \"body_fat_percentage\" \n", - " [17] \"basal_metabolic_rate\" \n", - " [18] \"forced_vital_capacity_fvc_best_measure\" \n", - " [19] \"forced_expiratory_volume_in_1second_fev1_best_measure\" \n", - " [20] \"fev1_fvc_ratio_zscore\" \n", - " [21] \"peak_expiratory_flow_pef_f3064_0_2\" \n", - " [22] \"peak_expiratory_flow_pef_f3064_0_1\" \n", - " [23] \"peak_expiratory_flow_pef\" \n", - " [24] \"systolic_blood_pressure\" \n", - " [25] \"diastolic_blood_pressure\" \n", - " [26] \"pulse_rate\" \n", - " [27] \"basophill_count\" \n", - " [28] \"basophill_percentage\" \n", - " [29] \"eosinophill_count\" \n", - " [30] \"eosinophill_percentage\" \n", - " [31] \"haematocrit_percentage\" \n", - " [32] \"haemoglobin_concentration\" \n", - " [33] \"high_light_scatter_reticulocyte_count\" \n", - " [34] \"high_light_scatter_reticulocyte_percentage\" \n", - " [35] \"immature_reticulocyte_fraction\" \n", - " [36] \"lymphocyte_count\" \n", - " [37] \"lymphocyte_percentage\" \n", - " [38] \"mean_corpuscular_haemoglobin\" \n", - " [39] \"mean_corpuscular_haemoglobin_concentration\" \n", - " [40] \"mean_corpuscular_volume\" \n", - " [41] \"mean_platelet_thrombocyte_volume\" \n", - " [42] \"mean_reticulocyte_volume\" \n", - " [43] \"mean_sphered_cell_volume\" \n", - " [44] \"monocyte_count\" \n", - " [45] \"monocyte_percentage\" \n", - " [46] \"neutrophill_count\" \n", - " [47] \"neutrophill_percentage\" \n", - " [48] \"nucleated_red_blood_cell_count\" \n", - " [49] \"nucleated_red_blood_cell_percentage\" \n", - " [50] \"platelet_count\" \n", - " [51] \"platelet_crit\" \n", - " [52] \"platelet_distribution_width\" \n", - " [53] \"red_blood_cell_erythrocyte_count\" \n", - " [54] \"red_blood_cell_erythrocyte_distribution_width\" \n", - " [55] \"reticulocyte_count\" \n", - " [56] \"reticulocyte_percentage\" \n", - " [57] \"white_blood_cell_leukocyte_count\" \n", - " [58] \"alanine_aminotransferase\" \n", - " [59] \"albumin\" \n", - " [60] \"alkaline_phosphatase\" \n", - " [61] \"apolipoprotein_a\" \n", - " [62] \"apolipoprotein_b\" \n", - " [63] \"aspartate_aminotransferase\" \n", - " [64] \"creactive_protein\" \n", - " [65] \"calcium\" \n", - " [66] \"cholesterol\" \n", - " [67] \"creatinine\" \n", - " [68] \"cystatin_c\" \n", - " [69] \"direct_bilirubin\" \n", - " [70] \"gamma_glutamyltransferase\" \n", - " [71] \"glucose\" \n", - " [72] \"glycated_haemoglobin_hba1c\" \n", - " [73] \"hdl_cholesterol\" \n", - " [74] \"igf1\" \n", - " [75] \"ldl_direct\" \n", - " [76] \"lipoprotein_a\" \n", - " [77] \"oestradiol\" \n", - " [78] \"phosphate\" \n", - " [79] \"rheumatoid_factor\" \n", - " [80] \"shbg\" \n", - " [81] \"testosterone\" \n", - " [82] \"total_bilirubin\" \n", - " [83] \"total_protein\" \n", - " [84] \"triglycerides\" \n", - " [85] \"urate\" \n", - " [86] \"urea\" \n", - " [87] \"vitamin_d\" \n", - " [88] \"fh_alzheimer's_disease/dementia\" \n", - " [89] \"fh_bowel_cancer\" \n", - " [90] \"fh_breast_cancer\" \n", - " [91] \"fh_chronic_bronchitis/emphysema\" \n", - " [92] \"fh_diabetes\" \n", - " [93] \"fh_heart_disease\" \n", - " [94] \"fh_high_blood_pressure\" \n", - " [95] \"fh_lung_cancer\" \n", - " [96] \"fh_parkinson's_disease\" \n", - " [97] \"fh_severe_depression\" \n", - " [98] \"fh_stroke\" \n", - " [99] \"coronary_heart_disease\" \n", - "[100] \"myocardial_infarction\" \n", - "[101] \"stroke\" \n", - "[102] \"diabetes1\" \n", - "[103] \"diabetes2\" \n", - "[104] \"chronic_kidney_disease\" \n", - "[105] \"atrial_fibrillation\" \n", - "[106] \"migraine\" \n", - "[107] \"rheumatoid_arthritis\" \n", - "[108] \"systemic_lupus_erythematosus\" \n", - "[109] \"severe_mental_illness\" \n", - "[110] \"erectile_dysfunction\" \n", - "[111] \"hypertensive_disorder_systemic_arterial\" \n", - "[112] \"hyperlipidemia\" \n", - "[113] \"depressive_disorder\" \n", - "[114] \"gastroesophageal_reflux_disease\" \n", - "[115] \"diabetes_mellitus_type_2\" \n", - "[116] \"essential_hypertension\" \n", - "[117] \"obesity\" \n", - "[118] \"diabetes_mellitus\" \n", - "[119] \"asthma\" \n", - "[120] \"coronary_arteriosclerosis\" \n", - "[121] \"allergic_rhinitis\" \n", - "[122] \"hypothyroidism\" \n", - "[123] \"upper_respiratory_infection\" \n", - "[124] \"hypercholesterolemia\" \n", - "[125] \"backache\" \n", - "[126] \"abdominal_pain\" \n", - "[127] \"osteoarthritis\" \n", - "[128] \"low_back_pain\" \n", - "[129] \"anemia\" \n", - "[130] \"anxiety\" \n", - "[131] \"urinary_tract_infectious_disease\" \n", - "[132] \"chronic_obstructive_lung_disease\" \n", - "[133] \"pneumonia\" \n", - "[134] \"chest_pain\" \n", - "[135] \"congestive_heart_failure\" \n", - "[136] \"headache\" \n", - "[137] \"pregnant\" \n", - "[138] \"knee_pain\" \n", - "[139] \"osteoporosis\" \n", - "[140] \"polyp_of_colon\" \n", - "[141] \"otitis_media\" \n", - "[142] \"sinusitis\" \n", - "[143] \"cough\" \n", - "[144] \"sleep_apnea\" \n", - "[145] \"insomnia\" \n", - "[146] \"inflammatory_disorder_due_to_increased_blood_urate_level\" \n", - "[147] \"tobacco_dependence_syndrome\" \n", - "[148] \"malignant_tumor_of_prostate\" \n", - "[149] \"constipation\" \n", - "[150] \"hearing_loss\" \n", - "[151] \"fatigue\" \n", - "[152] \"obstructive_sleep_apnea_syndrome\" \n", - "[153] \"malignant_neoplasm_of_breast\" \n", - "[154] \"delivery_normal\" \n", - "[155] \"irritable_bowel_syndrome\" \n", - "[156] \"tobacco_user\" \n", - "[157] \"neck_pain\" \n", - "[158] \"cerebrovascular_accident\" \n", - "[159] \"asthenia\" \n", - "[160] \"shoulder_pain\" \n", - "[161] \"acne_vulgaris\" \n", - "[162] \"benign_prostatic_hyperplasia\" \n", - "[163] \"dyspnea\" \n", - "[164] \"carpal_tunnel_syndrome\" \n", - "[165] \"bronchitis\" \n", - "[166] \"pharyngitis\" \n", - "[167] \"arthritis\" \n", - "[168] \"diarrhea\" \n", - "[169] \"dizziness\" \n", - "[170] \"alcohol_abuse\" \n", - "[171] \"dementia\" \n", - "[172] \"eczema\" \n", - "[173] \"syncope\" \n", - "[174] \"acute_sinusitis\" \n", - "[175] \"iron_deficiency_anemia\" \n", - "[176] \"allergic_rhinitis_caused_by_pollen\" \n", - "[177] \"gastritis\" \n", - "[178] \"cataract\" \n", - "[179] \"hematuria_syndrome\" \n", - "[180] \"disorder_of_the_peripheral_nervous_system\" \n", - "[181] \"viral_hepatitis_type_c\" \n", - "[182] \"palpitations\" \n", - "[183] \"eruption_of_skin\" \n", - "[184] \"diabetes_mellitus_type_1\" \n", - "[185] \"renal_failure_syndrome\" \n", - "[186] \"peripheral_vascular_disease\" \n", - "[187] \"hyperglycemia\" \n", - "[188] \"seizure_disorder\" \n", - "[189] \"fever\" \n", - "[190] \"osteoarthritis_of_knee\" \n", - "[191] \"actinic_keratosis\" \n", - "[192] \"urinary_incontinence\" \n", - "[193] \"hemorrhoids\" \n", - "[194] \"seizure\" \n", - "[195] \"laceration_-_injury\" \n", - "[196] \"glaucoma\" \n", - "[197] \"body_mass_index_30+_-_obesity\" \n", - "[198] \"breast_lump\" \n", - "[199] \"viral_disease\" \n", - "[200] \"abnormal_cervical_smear\" \n", - "[201] \"cellulitis\" \n", - "[202] \"senile_hyperkeratosis\" \n", - "[203] \"anxiety_disorder\" \n", - "[204] \"vertigo\" \n", - "[205] \"dysphagia\" \n", - "[206] \"edema\" \n", - "[207] \"malignant_neoplasm_of_colon\" \n", - "[208] \"hip_pain\" \n", - "[209] \"posttraumatic_stress_disorder\" \n", - "[210] \"inflammatory_dermatosis\" \n", - "[211] \"psoriasis\" \n", - "[212] \"myopia\" \n", - "[213] \"senile_cataract\" \n", - "[214] \"heart_murmur\" \n", - "[215] \"liver_function_tests_abnormal\" \n", - "[216] \"angina\" \n", - "[217] \"impaired_fasting_glycemia\" \n", - "[218] \"chronic_ischemic_heart_disease\" \n", - "[219] \"chronic_sinusitis\" \n", - "[220] \"menopause_present\" \n", - "[221] \"basal_cell_carcinoma_of_skin\" \n", - "[222] \"raised_prostate_specific_antigen\" \n", - "[223] \"impaired_glucose_tolerance\" \n", - "[224] \"smoker\" \n", - "[225] \"hypertriglyceridemia\" \n", - "[226] \"irregular_periods\" \n", - "[227] \"herpes_zoster\" \n", - "[228] \"sensorineural_hearing_loss\" \n", - "[229] \"rectal_hemorrhage\" \n", - "[230] \"peptic_ulcer\" \n", - "[231] \"tinnitus\" \n", - "[232] \"bipolar_disorder\" \n", - "[233] \"vitamin_d_deficiency\" \n", - "[234] \"transient_ischemic_attack\" \n", - "[235] \"streptococcal_sore_throat\" \n", - "[236] \"onychomycosis\" \n", - "[237] \"deep_venous_thrombosis\" \n", - "[238] \"presbyopia\" \n", - "[239] \"neonatal_jaundice\" \n", - "[240] \"bacterial_vaginosis\" \n", - "[241] \"impacted_cerumen\" \n", - "[242] \"foot_pain\" \n", - "[243] \"sciatica\" \n", - "[244] \"vomiting\" \n", - "[245] \"benign_prostatic_hypertrophy_with_outflow_obstruction\" \n", - "[246] \"type_ii_diabetes_mellitus_without_complication\" \n", - "[247] \"calculus_in_biliary_tract\" \n", - "[248] \"epigastric_pain\" \n", - "[249] \"late_effects_of_cerebrovascular_disease\" \n", - "[250] \"gastroenteritis\" \n", - "[251] \"pulmonary_embolism\" \n", - "[252] \"inguinal_hernia\" \n", - "[253] \"verruca_vulgaris\" \n", - "[254] \"sepsis\" \n", - "[255] \"disorder_of_kidney_due_to_diabetes_mellitus\" \n", - "[256] \"nausea_and_vomiting\" \n", - "[257] \"hyperthyroidism\" \n", - "[258] \"abscess\" \n", - "[259] \"dental_caries\" \n", - "[260] \"gastrointestinal_hemorrhage\" \n", - "[261] \"rosacea\" \n", - "[262] \"parkinson's_disease\" \n", - "[263] \"menorrhagia\" \n", - "[264] \"malignant_tumor_of_lung\" \n", - "[265] \"joint_pain\" \n", - "[266] \"morbid_obesity\" \n", - "[267] \"hiatal_hernia\" \n", - "[268] \"arthralgia_of_the_ankle_and/or_foot\" \n", - "[269] \"restless_legs\" \n", - "[270] \"thrombocytopenic_disorder\" \n", - "[271] \"old_myocardial_infarction\" \n", - "[272] \"neuropathy\" \n", - "[273] \"cardiomyopathy\" \n", - "[274] \"atopic_dermatitis\" \n", - "[275] \"pain_in_pelvis\" \n", - "[276] \"contact_dermatitis\" \n", - "[277] \"indigestion\" \n", - "[278] \"nicotine_dependence\" \n", - "[279] \"sprain_of_ankle\" \n", - "[280] \"degenerative_disorder_of_macula\" \n", - "[281] \"exacerbation_of_asthma\" \n", - "[282] \"alcohol_dependence\" \n", - "[283] \"hypokalemia\" \n", - "[284] \"mitral_valve_regurgitation\" \n", - "[285] \"hyponatremia\" \n", - "[286] \"abdominal_aortic_aneurysm\" \n", - "[287] \"cyst_of_ovary\" \n", - "[288] \"otitis_externa\" \n", - "[289] \"threatened_abortion\" \n", - "[290] \"scoliosis_deformity_of_spine\" \n", - "[291] \"seborrheic_dermatitis\" \n", - "[292] \"spinal_stenosis\" \n", - "[293] \"dysmenorrhea\" \n", - "[294] \"acute_otitis_media\" \n", - "[295] \"alzheimer's_disease\" \n", - "[296] \"neuropathy_due_to_diabetes_mellitus\" \n", - "[297] \"acute_pharyngitis\" \n", - "[298] \"degeneration_of_intervertebral_disc\" \n", - "[299] \"attention_deficit_hyperactivity_disorder_predominantly_inattentive_type\"\n", - "[300] \"unplanned_pregnancy\" \n", - "[301] \"secondary_erectile_dysfunction\" \n", - "[302] \"spinal_stenosis_of_lumbar_region\" \n", - "[303] \"proteinuria\" \n", - "[304] \"urticaria\" \n", - "[305] \"genital_herpes_simplex\" \n", - "[306] \"malignant_neoplasm_of_female_breast\" \n", - "[307] \"nausea\" \n", - "[308] \"chronic_rhinitis\" \n", - "[309] \"multiple_sclerosis\" \n", - "[310] \"chronic_kidney_disease_stage_3\" \n", - "[311] \"panic_disorder\" \n", - "[312] \"attention_deficit_hyperactivity_disorder\" \n", - "[313] \"amnesia\" \n", - "[314] \"otalgia\" \n", - "[315] \"tremor\" \n", - "[316] \"retention_of_urine\" \n", - "[317] \"non-hodgkin's_lymphoma\" \n", - "[318] \"alcoholism\" \n", - "[319] \"dysuria\" \n", - "[320] \"generalized_anxiety_disorder\" \n", - "[321] \"paroxysmal_atrial_fibrillation\" \n", - "[322] \"peripheral_venous_insufficiency\" \n", - "[323] \"nonproliferative_retinopathy_due_to_diabetes_mellitus\" \n", - "[324] \"shoulder_joint_pain\" \n", - "[325] \"moderate_recurrent_major_depression\" \n", - "[326] \"diverticulitis\" \n", - "[327] \"solitary_nodule_of_lung\" \n", - "[328] \"hyperkalemia\" \n", - "[329] \"recurrent_major_depressive_episodes\" \n", - "[330] \"multiple_myeloma\" \n", - "[331] \"regular_astigmatism\" \n", - "[332] \"secondary_malignant_neoplasm_of_liver\" \n", - "[333] \"ulcerative_colitis\" \n", - "[334] \"vaginitis\" \n", - "[335] \"acute_renal_failure_syndrome\" \n", - "[336] \"amenorrhea\" \n", - "[337] \"tendinitis\" \n", - "[338] \"rhinitis\" \n", - "[339] \"bleeding_from_nose\" \n", - "[340] \"crohn's_disease\" \n", - "[341] \"nuclear_senile_cataract\" \n", - "[342] \"muscle_pain\" \n", - "[343] \"epidermoid_cyst\" \n", - "[344] \"impaired_cognition\" \n", - "[345] \"acute_exacerbation_of_chronic_obstructive_airways_disease\" \n", - "[346] \"eustachian_tube_disorder\" \n", - "[347] \"internal_hemorrhoids\" \n", - "[348] \"substance_abuse\" \n", - "[349] \"melanocytic_nevus\" \n", - "[350] \"pain\" \n", - "[351] \"barrett's_esophagus\" \n", - "[352] \"cerebrovascular_disease\" \n", - "[353] \"malignant_melanoma\" \n", - "[354] \"folliculitis\" \n", - "[355] \"mitral_valve_prolapse\" \n", - "[356] \"chronic_hepatitis_c\" \n", - "[357] \"hypermetropia\" \n", - "[358] \"endometriosis\" \n", - "[359] \"gestational_diabetes_mellitus\" \n", - "[360] \"cirrhosis_of_liver\" \n", - "[361] \"injury_of_head\" \n", - "[362] \"dehydration\" \n", - "[363] \"herpes_simplex\" \n", - "[364] \"fracture_of_bone\" \n", - "[365] \"overweight\" \n", - "[366] \"right_inguinal_hernia\" \n", - "[367] \"adjustment_disorder\" \n", - "[368] \"tinea_pedis\" \n", - "[369] \"aortic_valve_stenosis\" \n", - "[370] \"viral_hepatitis_type_b\" \n", - "[371] \"umbilical_hernia\" \n", - "[372] \"ingrowing_nail\" \n", - "[373] \"postmenopausal_bleeding\" \n", - "[374] \"goiter\" \n", - "[375] \"secondary_malignant_neoplasm_of_bone\" \n", - "[376] \"pulmonary_emphysema\" \n", - "[377] \"left_inguinal_hernia\" \n", - "[378] \"snoring\" \n", - "[379] \"polycystic_ovary_syndrome\" \n", - "[380] \"polycystic_ovary\" \n", - "[381] \"microscopic_hematuria\" \n", - "[382] \"pain_in_wrist\" \n", - "[383] \"pleural_effusion\" \n", - "[384] \"false_labor\" \n", - "[385] \"bleeding_from_vagina\" \n", - "[386] \"acquired_hypothyroidism\" \n", - "[387] \"premature_rupture_of_membranes\" \n", - "[388] \"human_immunodeficiency_virus_infection\" \n", - "[389] \"contusion\" \n", - "[390] \"secondary_malignant_neoplasm_of_lung\" \n", - "[391] \"problem_situation_relating_to_social_and_personal_history\" \n", - "[392] \"hypercalcemia\" \n", - "[393] \"occlusion_of_carotid_artery\" \n", - "[394] \"prolonged_second_stage_of_labor\" \n", - "[395] \"lipoma\" \n", - "[396] \"poisoning_caused_by_drug_and/or_medicinal_substance\" \n", - "[397] \"paranoid_schizophrenia\" \n", - "[398] \"hypersensitivity_reaction\" \n", - "[399] \"dysthymia\" \n", - "[400] \"fetal_or_neonatal_effect_of_maternal_premature_rupture_of_membrane\" \n", - "[401] \"noncompliance_with_treatment\" \n", - "[402] \"falls\" \n", - "[403] \"muscle_strain\" \n", - "[404] \"schizophrenia\" \n", - "[405] \"left_bundle_branch_block\" \n", - "[406] \"disorder_of_nervous_system_due_to_type_2_diabetes_mellitus\" \n", - "[407] \"preinfarction_syndrome\" \n", - "[408] \"conduction_disorder_of_the_heart\" \n", - "[409] \"lateral_epicondylitis\" \n", - "[410] \"burn\" \n", - "[411] \"pyelonephritis\" \n", - "[412] \"intermittent_claudication\" \n", - "[413] \"varicose_veins_of_lower_extremity\" \n", - "[414] \"hemiplegia\" \n", - "[415] \"chronic_pain\" \n", - "[416] \"bronchiolitis\" \n", - "[417] \"mild_persistent_asthma\" \n", - "[418] \"secondary_malignant_neoplasm_of_lymph_node\" \n", - "[419] \"mixed_hyperlipidemia\" \n", - "[420] \"female_urinary_stress_incontinence\" \n", - "[421] \"localized_primary_osteoarthritis_of_the_ankle_and/or_foot\" \n", - "[422] \"hypesthesia\" \n", - "[423] \"hand_pain\" \n", - "[424] \"psychotic_disorder\" \n", - "[425] \"menopausal_syndrome\" \n", - "[426] \"acute_myocardial_infarction_of_anterior_wall\" \n", - "[427] \"bronchiectasis\" \n", - "[428] \"lumbar_radiculopathy\" \n", - "[429] \"osteoarthritis_of_hip\" \n", - "[430] \"deviated_nasal_septum\" \n", - "[431] \"paresthesia\" \n", - "[432] \"hypoglycemia\" \n", - "[433] \"deep_venous_thrombosis_of_lower_extremity\" \n", - "[434] \"complication_of_surgical_procedure\" \n", - "[435] \"mild_intermittent_asthma\" \n", - "[436] \"generalized_ischemic_myocardial_dysfunction\" \n", - "[437] \"lumbar_spondylosis\" \n", - "[438] \"acute_tonsillitis\" \n", - "[439] \"esophagitis\" \n", - "[440] \"aortic_valve_regurgitation\" \n", - "[441] \"malignant_neoplasm_of_skin\" \n", - "[442] \"altered_mental_status\" \n", - "[443] \"atrial_flutter\" \n", - "[444] \"alopecia\" \n", - "[445] \"high_risk_pregnancy\" \n", - "[446] \"missed_abortion\" \n", - "[447] \"malignant_tumor_of_urinary_bladder\" \n", - "[448] \"pulmonary_hypertension\" \n", - "[449] \"nasal_congestion\" \n", - "[450] \"hemoptysis\" \n", - "[451] \"viral_gastroenteritis\" \n", - "[452] \"right_upper_quadrant_pain\" \n", - "[453] \"primary_open_angle_glaucoma\" \n", - "[454] \"malignant_tumor_of_ovary\" \n", - "[455] \"incomplete_emptying_of_bladder\" \n", - "[456] \"pruritic_disorder\" \n", - "[457] \"fibrocystic_breast_changes\" \n", - "[458] \"tinea_corporis\" \n", - "[459] \"acute_pancreatitis\" \n", - "[460] \"acute_myocardial_infarction\" \n", - "[461] \"cerebral_hemorrhage\" \n", - "[462] \"urge_incontinence_of_urine\" \n", - "[463] \"megaloblastic_anemia_due_to_vitamin_b>12<_deficiency\" \n", - "[464] \"chronic_lymphoid_leukemia_disease\" \n", - "[465] \"disorder_of_lymphatic_system\" \n", - "[466] \"diverticular_disease\" \n", - "[467] \"tonsillitis\" \n", - "[468] \"tear_film_insufficiency\" \n", - "[469] \"abnormal_gait\" \n", - "[470] \"orthostatic_hypotension\" \n", - "[471] \"pancreatitis\" \n", - "[472] \"closed_fracture_of_distal_end_of_radius\" \n", - "[473] \"first_degree_perineal_laceration\" \n", - "[474] \"not_for_resuscitation\" \n", - "[475] \"gastroesophageal_reflux_disease_with_esophagitis\" \n", - "[476] \"intracranial_injury\" \n", - "[477] \"bell's_palsy\" \n", - "[478] \"bradycardia\" \n", - "[479] \"polymyalgia_rheumatica\" \n", - "[480] \"dysplasia_of_cervix\" \n", - "[481] \"serous_otitis_media\" \n", - "[482] \"angioedema\" \n", - "[483] \"venous_varices\" \n", - "[484] \"spasm\" \n", - "[485] \"sleep_disorder\" \n", - "[486] \"pain_of_breast\" \n", - "[487] \"malabsorption_syndrome_due_to_intolerance_to_lactose\" \n", - "[488] \"tachycardia\" \n", - "[489] \"acute_conjunctivitis\" \n", - "[490] \"malignant_lymphoma\" \n", - "[491] \"supraventricular_tachycardia\" \n", - "[492] \"hyperparathyroidism\" \n", - "[493] \"periodontitis\" \n", - "[494] \"renal_disorder_due_to_type_2_diabetes_mellitus\" \n", - "[495] \"nerve_root_disorder\" \n", - "[496] \"nonexudative_age-related_macular_degeneration\" \n", - "[497] \"tension-type_headache\" \n", - "[498] \"chronic_pain_syndrome\" \n", - "[499] \"abnormal_weight_loss\" \n", - "[500] \"pure_hypercholesterolemia\" \n", - "[501] \"acute_upper_respiratory_infection\" \n", - "[502] \"inflammatory_disease_of_liver\" \n", - "[503] \"colitis\" \n", - "[504] \"prolonged_pregnancy\" \n", - "[505] \"major_depression_single_episode\" \n", - "[506] \"croup\" \n", - "[507] \"skin_tag\" \n", - "[508] \"metabolic_syndrome_x\" \n", - "[509] \"adverse_reaction_caused_by_drug\" \n", - "[510] \"retinopathy_due_to_diabetes_mellitus\" \n", - "[511] \"female_infertility\" \n", - "[512] \"open-angle_glaucoma\" \n", - "[513] \"tietze's_disease\" \n", - "[514] \"gallbladder_calculus\" \n", - "[515] \"sarcoidosis\" \n", - "[516] \"neurogenic_bladder\" \n", - "[517] \"tobacco_dependence_in_remission\" \n", - "[518] \"wheezing\" \n", - "[519] \"elevated_levels_of_transaminase_&_lactic_acid_dehydrogenase\" \n", - "[520] \"ascites\" \n", - "[521] \"low_blood_pressure\" \n", - "[522] \"bursitis\" \n", - "[523] \"miscarriage\" \n", - "[524] \"methicillin_resistant_staphylococcus_aureus_carrier\" \n", - "[525] \"urethritis\" \n", - "[526] \"noninfectious_gastroenteritis\" \n", - "[527] \"malignant_tumor_of_thyroid_gland\" \n", - "[528] \"pressure_ulcer\" \n", - "[529] \"verruca_plantaris\" \n", - "[530] \"anemia_of_chronic_disorder\" \n", - "[531] \"hernia_of_anterior_abdominal_wall\" \n", - "[532] \"degeneration_of_lumbar_intervertebral_disc\" \n", - "[533] \"right_lower_quadrant_pain\" \n", - "[534] \"infertile\" \n", - "[535] \"hernia_of_abdominal_wall\" \n", - "[536] \"benign_paroxysmal_positional_vertigo\" \n", - "[537] \"pityriasis_versicolor\" \n", - "[538] \"injury_of_lower_leg\" \n", - "[539] \"dry_skin\" \n", - "[540] \"impacted_tooth\" \n", - "[541] \"acquired_trigger_finger\" \n", - "[542] \"chronic_osteoarthritis\" \n", - "[543] \"acute_stress_disorder\" \n", - "[544] \"peripheral_circulatory_disorder_due_to_type_2_diabetes_mellitus\" \n", - "[545] \"respiratory_failure\" \n", - "[546] \"allergic_disposition\" \n", - "[547] \"stress\" \n", - "[548] \"atrophic_vaginitis\" \n", - "[549] \"degeneration_of_lumbosacral_intervertebral_disc\" \n", - "[550] \"astigmatism\" \n", - "[551] \"sick_sinus_syndrome\" \n", - "[552] \"cocaine_abuse\" \n", - "[553] \"intermittent_asthma\" \n", - "[554] \"cervical_radiculopathy\" \n", - "[555] \"atherosclerosis_of_coronary_artery\" \n", - "[556] \"methicillin_resistant_staphylococcus_aureus_infection\" \n", - "[557] \"female_pelvic_inflammatory_disease\" \n", - "[558] \"pain_in_eye\" \n", - "[559] \"cervical_spondylosis\" \n", - "[560] \"prematurity_of_infant\" \n", - "[561] \"postmature_infancy\" \n", - "[562] \"temporomandibular_joint_disorder\" \n", - "[563] \"nocturia\" \n", - "[564] \"adjustment_disorder_with_depressed_mood\" \n", - "[565] \"visual_impairment\" \n", - "[566] \"male_hypogonadism\" \n", - "[567] \"closed_intertrochanteric_fracture\" \n", - "[568] \"pain_in_limb\" \n", - "[569] \"complication_occurring_during_pregnancy\" \n", - "[570] \"sprain_of_knee\" \n", - "[571] \"fracture_of_ankle\" \n", - "[572] \"injury_of_hand\" \n", - "[573] \"postoperative_wound_infection\" \n", - "[574] \"congestive_cardiomyopathy\" \n", - "[575] \"nocturnal_enuresis\" \n", - "[576] \"proliferative_retinopathy_due_to_diabetes_mellitus\" \n", - "[577] \"major_depressive_disorder\" \n", - "[578] \"chronic_bronchitis\" \n", - "[579] \"advanced_maternal_age_gravida\" \n", - "[580] \"recurrent_major_depression_in_full_remission\" \n", - "[581] \"pregnancy-induced_hypertension\" \n", - "[582] \"epididymitis\" \n", - "[583] \"impetigo\" \n", - "[584] \"schizoaffective_disorder\" \n", - "[585] \"candidiasis_of_mouth\" \n", - "[586] \"mild_recurrent_major_depression\" \n", - "[587] \"cerebral_palsy\" \n", - "[588] \"squamous_cell_carcinoma_of_skin\" \n", - "[589] \"hypogonadism\" \n", - "[590] \"greater_trochanteric_pain_syndrome\" \n", - "[591] \"graves'_disease\" \n", - "[592] \"malignant_neoplastic_disease\" \n", - "[593] \"moderate_persistent_asthma\" \n", - "[594] \"steatosis_of_liver\" \n", - "[595] \"obsessive-compulsive_disorder\" \n", - "[596] \"mood_disorder\" \n", - "[597] \"degeneration_of_cervical_intervertebral_disc\" \n", - "[598] \"corneal_abrasion\" \n", - "[599] \"anal_fissure\" \n", - "[600] \"heart_failure\" \n", - "[601] \"adjustment_disorder_with_mixed_emotional_features\" \n", - "[602] \"febrile_convulsion\" \n", - "[603] \"degenerative_joint_disease_of_hand\" \n", - "[604] \"chronic_type_b_viral_hepatitis\" \n", - "[605] \"blepharitis\" \n", - "[606] \"cyst\" \n", - "[607] \"heartburn\" \n", - "[608] \"intellectual_disability\" \n", - "[609] \"exudative_age-related_macular_degeneration\" \n", - "[610] \"hypoxia\" \n", - "[611] \"influenza\" \n", - "[612] \"intervertebral_disc_prolapse\" \n", - "[613] \"swelling_of_first_metatarsophalangeal_joint_of_hallux\" \n", - "[614] \"genuine_stress_incontinence\" \n", - "[615] \"opioid_dependence\" \n", - "[616] \"antepartum_hemorrhage\" \n", - "[617] \"pneumothorax\" \n", - "[618] \"kidney_disease\" \n", - "[619] \"atopic_conjunctivitis\" \n", - "[620] \"dermatophytosis\" \n", - "[621] \"influenza_caused_by_influenza_a_virus\" \n", - "[622] \"cystitis\" \n", - "[623] \"moderate_major_depression_single_episode\" \n", - "[624] \"furuncle\" \n", - "[625] \"cannabis_abuse\" \n", - "[626] \"conductive_hearing_loss\" \n", - "[627] \"neutropenic_disorder\" \n", - "[628] \"injury_of_finger\" \n", - "[629] \"intestinal_obstruction\" \n", - "[630] \"lymphadenopathy\" \n", - "[631] \"mass_of_pelvic_structure\" \n", - "[632] \"myelodysplastic_syndrome\" \n", - "[633] \"jaundice\" \n", - "[634] \"severe_recurrent_major_depression_without_psychotic_features\" \n", - "[635] \"inflammation_of_cervix\" \n", - "[636] \"sickle_cell_trait\" \n", - "[637] \"squamous_cell_carcinoma\" \n", - "[638] \"small_bowel_obstruction\" \n", - "[639] \"compression_fracture\" \n", - "[640] \"premenstrual_tension_syndrome\" \n", - "[641] \"fracture_of_proximal_end_of_femur\" \n", - "[642] \"developmental_delay\" \n", - "[643] \"drug_abuse\" \n", - "[644] \"left_lower_quadrant_pain\" \n", - "[645] \"hordeolum\" \n", - "[646] \"disorder_of_lung\" \n", - "[647] \"migraine_without_aura\" \n", - "[648] \"open-angle_glaucoma_-_borderline\" \n", - "[649] \"disorder_of_refraction\" \n", - "[650] \"acute_appendicitis\" \n", - "[651] \"amyloidosis\" \n", - "[652] \"hodgkin's_disease\" \n", - "[653] \"hydrocele_of_testis\" \n", - "[654] \"cellulitis_of_foot\" \n", - "[655] \"pancytopenia\" \n", - "[656] \"pain_in_elbow\" \n", - "[657] \"peripheral_nerve_disease\" \n", - "[658] \"eating_disorder\" \n", - "[659] \"hernia_of_abdominal_cavity\" \n", - "[660] \"secondary_malignant_neoplasm_of_brain\" \n", - "[661] \"late_effects_of_respiratory_tuberculosis\" \n", - "[662] \"alcohol_intoxication\" \n", - "[663] \"abrasion\" \n", - "[664] \"breech_presentation\" \n", - "[665] \"premature_labor\" \n", - "[666] \"raynaud's_phenomenon\" \n", - "[667] \"posterior_rhinorrhea\" \n", - "[668] \"acute_gastritis\" \n", - "[669] \"polyp_of_nasal_cavity\" \n", - "[670] \"essential_tremor\" \n", - "[671] \"candidiasis\" \n", - "[672] \"ocular_hypertension\" \n", - "[673] \"aortic_valve_disorder\" \n", - "[674] \"diaper_rash\" \n", - "[675] \"cholangitis\" \n", - "[676] \"primary_malignant_neoplasm_of_lung\" \n", - "[677] \"impingement_syndrome_of_shoulder_region\" \n", - "[678] \"idiopathic_urticaria\" \n", - "[679] \"arthritis_of_knee\" \n", - "[680] \"ulcer_of_duodenum\" \n", - "[681] \"peripheral_neuropathy_due_to_diabetes_mellitus\" \n", - "[682] \"hypervolemia\" \n", - "[683] \"cholecystitis\" \n", - "[684] \"deficiency_of_glucose-6-phosphate_dehydrogenase\" \n", - "[685] \"acute_pyelonephritis\" \n", - "[686] \"musculoskeletal_chest_pain\" \n", - "[687] \"melena\" \n", - "[688] \"cigarette_smoker\" \n", - "[689] \"infectious_mononucleosis\" \n", - "[690] \"hypertensive_renal_failure\" \n", - "[691] \"cocaine_dependence\" \n", - "[692] \"abdominal_aortic_aneurysm_without_rupture\" \n", - "[693] \"right_bundle_branch_block\" \n", - "[694] \"alcoholic_cirrhosis\" \n", - "[695] \"fibrosis_of_lung\" \n", - "[696] \"neoplasm_of_uncertain_behavior_of_skin\" \n", - "[697] \"malignant_melanoma_of_skin\" \n", - "[698] \"urgent_desire_to_urinate\" \n", - "[699] \"bursitis_of_hip\" \n", - "[700] \"chronic_alcoholism_in_remission\" \n", - "[701] \"chronic_pancreatitis\" \n", - "[702] \"gastroparesis\" \n", - "[703] \"ectopic_pregnancy\" \n", - "[704] \"muscle_weakness\" \n", - "[705] \"recurrent_major_depression\" \n", - "[706] \"pilonidal_cyst\" \n", - "[707] \"pain_in_toe\" \n", - "[708] \"pulmonary_tuberculosis\" \n", - "[709] \"celiac_disease\" \n", - "[710] \"cramp_in_lower_leg\" \n", - "[711] \"secondary_malignant_neoplasm_of_pleura\" \n", - "[712] \"fracture_of_hand\" \n", - "[713] \"cyst_of_breast\" \n", - "[714] \"nephrotic_syndrome\" \n", - "[715] \"polyp_of_nasal_sinus\" \n", - "[716] \"chondromalacia_of_patella\" \n", - "[717] \"spinal_stenosis_in_cervical_region\" \n", - "[718] \"disorder_of_artery\" \n", - "[719] \"vitiligo\" \n", - "[720] \"female_cystocele\" \n", - "[721] \"dysphasia\" \n", - "[722] \"retinal_disorder\" \n", - "[723] \"epiretinal_membrane\" \n", - "[724] \"recurrent_major_depression_in_partial_remission\" \n", - "[725] \"infection_caused_by_trichomonas\" \n", - "[726] \"osteomyelitis\" \n", - "[727] \"polyp_of_nasal_cavity_and/or_nasal_sinus\" \n", - "[728] \"mass_of_neck\" \n", - "[729] \"idiopathic_thrombocytopenic_purpura\" \n", - "[730] \"complete_miscarriage\" \n", - "[731] \"gastric_ulcer\" \n", - "[732] \"papilloma_of_skin\" \n", - "[733] \"fetal_or_neonatal_effect_of_breech_delivery_and_extraction\" \n", - "[734] \"secondary_malignant_neoplastic_disease\" \n", - "[735] \"hypoxemia\" \n", - "[736] \"paraplegia\" \n", - "[737] \"perforation_of_tympanic_membrane\" \n", - "[738] \"ventricular_tachycardia\" \n", - "[739] \"mixed_incontinence\" \n", - "[740] \"disorder_of_eye_due_to_type_2_diabetes_mellitus\" \n", - "[741] \"trigeminal_neuralgia\" \n", - "[742] \"retinal_detachment\" \n", - "[743] \"leukopenia\" \n", - "[744] \"vitreous_hemorrhage\" \n", - "[745] \"ischemic_ulcer\" \n", - "[746] \"intramural_leiomyoma_of_uterus\" \n", - "[747] \"viral_hepatitis_type_a\" \n", - "[748] \"mnire's_disease\" \n", - "[749] \"fracture_of_phalanx_of_hand\" \n", - "[750] \"muscle_atrophy\" \n", - "[751] \"incontinence_of_feces\" \n", - "[752] \"mitral_valve_disorder\" \n", - "[753] \"atherosclerosis_of_arteries_of_the_extremities\" \n", - "[754] \"spondylosis\" \n", - "[755] \"pterygium\" \n", - "[756] \"ulnar_neuropathy\" \n", - "[757] \"lung_mass\" \n", - "[758] \"foreign_body_in_respiratory_tract\" \n", - "[759] \"chronic_kidney_disease_stage_4\" \n", - "[760] \"myocardial_ischemia\" \n", - "[761] \"non-toxic_multinodular_goiter\" \n", - "[762] \"pain_in_finger\" \n", - "[763] \"cervical_spondylosis_without_myelopathy\" \n", - "[764] \"body_mass_index_25-29_-_overweight\" \n", - "[765] \"clouded_consciousness\" \n", - "[766] \"mixed_conductive_and_sensorineural_hearing_loss\" \n", - "[767] \"tooth_eruption_disorder\" \n", - "[768] \"hyperuricemia\" \n", - "[769] \"closed_fracture_of_neck_of_femur\" \n", - "[770] \"bipolar_ii_disorder\" \n", - "[771] \"disturbance_in_sleep_behavior\" \n", - "[772] \"relationship_problems\" \n", - "[773] \"sprain_of_wrist\" \n", - "[774] \"personality_disorder\" \n", - "[775] \"external_hemorrhoids\" \n", - "[776] \"abnormal_vision\" \n", - "[777] \"hyperprolactinemia\" \n", - "[778] \"hemochromatosis\" \n", - "[779] \"lumbosacral_radiculopathy\" \n", - "[780] \"heart_valve_disorder\" \n", - "[781] \"cardiac_arrest\" \n", - "[782] \"infection_caused_by_molluscum_contagiosum\" \n", - "[783] \"chronic_kidney_disease_stage_2\" \n", - "[784] \"secondary_malignant_neoplasm_of_peritoneum\" \n", - "[785] \"thoracic_back_pain\" \n", - "[786] \"blood_in_urine\" \n", - "[787] \"adhesive_capsulitis_of_shoulder\" \n", - "[788] \"diplopia\" \n", - "[789] \"sjgren's_syndrome\" \n", - "[790] \"ureteric_stone\" \n", - "[791] \"bronchospasm\" \n", - "[792] \"chronic_fatigue_syndrome\" \n", - "[793] \"cannabis_dependence\" \n", - "[794] \"neck_sprain\" \n", - "[795] \"multinodular_goiter\" \n", - "[796] \"ptosis_of_eyelid\" \n", - "[797] \"failure_to_thrive\" \n", - "[798] \"torticollis\" \n", - "[799] \"acute_bronchiolitis\" \n", - "[800] \"viral_exanthem\" \n", - "[801] \"talipes_planus\" \n", - "[802] \"idiopathic_peripheral_neuropathy\" \n", - "[803] \"foreign_body_in_pharynx\" \n", - "[804] \"jaw_pain\" \n", - "[805] \"renal_impairment\" \n", - "[806] \"ataxia\" \n", - "[807] \"age-related_macular_degeneration\" \n", - "[808] \"uterine_prolapse\" \n", - "[809] \"renal_mass\" \n", - "[810] \"pneumonitis\" \n", - "[811] \"coordination_problem\" \n", - "[812] \"blindness_-_both_eyes\" \n", - "[813] \"primary_hyperparathyroidism\" \n", - "[814] \"musculoskeletal_pain\" \n", - "[815] \"mycosis\" \n", - "[816] \"primigravida\" \n", - "[817] \"urethral_stricture\" \n", - "[818] \"leukocytosis\" \n", - "[819] \"ventricular_premature_complex\" \n", - "[820] \"ulcer_of_foot_due_to_diabetes_mellitus\" \n", - "[821] \"chronic_headache_disorder\" \n", - "[822] \"hemangioma\" \n", - "[823] \"lymphedema\" \n", - "[824] \"postmenopausal_state\" \n", - "[825] \"chronic_ulcer_of_skin\" \n", - "[826] \"left_heart_failure\" \n", - "[827] \"excessive_and_frequent_menstruation\" \n", - "[828] \"thrombocytosis\" \n", - "[829] \"disorder_of_liver\" \n", - "[830] \"disorder_of_carotid_artery\" \n", - "[831] \"altered_bowel_function\" \n", - "[832] \"abscess_of_foot\" \n", - "[833] \"malignant_tumor_of_head_and/or_neck\" \n", - "[834] \"streptococcus_group_b_infection_of_the_infant\" \n", - "[835] \"concussion_injury_of_brain\" \n", - "[836] \"feeding_problems_in_newborn\" \n", - "[837] \"bipolar_i_disorder\" \n", - "[838] \"viral_pharyngitis\" \n", - "[839] \"lower_respiratory_tract_infection\" \n", - "[840] \"hydronephrosis\" \n", - "[841] \"borderline_personality_disorder\" \n", - "[842] \"esophageal_varices\" \n", - "[843] \"hypersomnia\" \n", - "[844] \"sensorineural_hearing_loss_bilateral\" \n", - "[845] \"varicocele\" \n", - "[846] \"subarachnoid_intracranial_hemorrhage\" \n", - "[847] \"incisional_hernia\" \n", - "[848] \"varicella\" \n", - "[849] \"pain_in_testicle\" \n", - "[850] \"transplant_follow-up\" \n", - "[851] \"tinea_cruris\" \n", - "[852] \"laryngitis\" \n", - "[853] \"hypertrophy_of_nail\" \n", - "[854] \"amblyopia\" \n", - "[855] \"polyp_of_cervix\" \n", - "[856] \"cyst_of_kidney\" \n", - "[857] \"hepatic_encephalopathy\" \n", - "[858] \"blood_glucose_abnormal\" \n", - "[859] \"postherpetic_neuralgia\" \n", - "[860] \"frank_hematuria\" \n", - "[861] \"cramp\" \n", - "[862] \"interstitial_lung_disease\" \n", - "[863] \"complete_atrioventricular_block\" \n", - "[864] \"malignant_tumor_of_kidney\" \n", - "[865] \"otitis\" \n", - "[866] \"septic_shock\" \n", - "[867] \"disorder_of_thyroid_gland\" \n", - "[868] \"hypertrophic_cardiomyopathy\" \n", - "[869] \"respiratory_distress_syndrome_in_the_newborn\" \n", - "[870] \"infectious_gastroenteritis\" \n", - "[871] \"subdural_intracranial_hemorrhage\" \n", - "[872] \"hepatitis_b_carrier\" \n", - "[873] \"manic_bipolar_i_disorder\" \n", - "[874] \"secondary_pulmonary_hypertension\" \n", - "[875] \"gonorrhea\" \n", - "[876] \"derangement_of_knee\" \n", - "[877] \"appendicitis\" \n", - "[878] \"polyneuropathy_due_to_diabetes_mellitus\" \n", - "[879] \"neonatal_hypoglycemia\" \n", - "[880] \"prolonged_rupture_of_membranes\" \n", - "[881] \"vasomotor_rhinitis\" \n", - "[882] \"renal_disorder_due_to_type_1_diabetes_mellitus\" \n", - "[883] \"tuberculosis\" \n", - "[884] \"feeding_problem\" \n", - "[885] \"chronic_tonsillitis\" \n", - "[886] \"acute_duodenal_ulcer_with_hemorrhage\" \n", - "[887] \"hammer_toe\" \n", - "[888] \"malignant_tumor_of_cervix\" \n", - "[889] \"prolapsed_lumbar_intervertebral_disc\" \n", - "[890] \"hematemesis\" \n", - "[891] \"perianal_abscess\" \n", - "[892] \"nonvenomous_insect_bite\" \n", - "[893] \"spondylolisthesis\" \n", - "[894] \"malignant_tumor_of_esophagus\" \n", - "[895] \"aphthous_ulcer_of_mouth\" \n", - "[896] \"ventricular_septal_defect\" \n", - "[897] \"oropharyngeal_dysphagia\" \n", - "[898] \"injury_of_knee\" \n", - "[899] \"traumatic_brain_injury\" \n", - "[900] \"osteoarthritis_of_glenohumeral_joint\" \n", - "[901] \"fetal_or_neonatal_effect_of_maternal_medical_problem\" \n", - "[902] \"stomatological_preparations\" \n", - "[903] \"drugs_for_acid_related_disorders\" \n", - "[904] \"drugs_for_functional_gastrointestinal_disorders\" \n", - "[905] \"antiemetics_and_antinauseants\" \n", - "[906] \"bile_and_liver_therapy\" \n", - "[907] \"drugs_for_constipation\" \n", - "[908] \"antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents\" \n", - "[909] \"antiobesity_preparations,_excl._diet_products\" \n", - "[910] \"digestives,_incl._enzymes\" \n", - "[911] \"drugs_used_in_diabetes\" \n", - "[912] \"vitamins\" \n", - "[913] \"mineral_supplements\" \n", - "[914] \"tonics\" \n", - "[915] \"anabolic_agents_for_systemic_use\" \n", - "[916] \"appetite_stimulants\" \n", - "[917] \"other_alimentary_tract_and_metabolism_products\" \n", - "[918] \"antithrombotic_agents\" \n", - "[919] \"antihemorrhagics\" \n", - "[920] \"antianemic_preparations\" \n", - "[921] \"blood_substitutes_and_perfusion_solutions\" \n", - "[922] \"other_hematological_agents\" \n", - "[923] \"cardiac_therapy\" \n", - "[924] \"antihypertensives\" \n", - "[925] \"diuretics\" \n", - "[926] \"peripheral_vasodilators\" \n", - "[927] \"vasoprotectives\" \n", - "[928] \"beta_blocking_agents\" \n", - "[929] \"calcium_channel_blockers\" \n", - "[930] \"agents_acting_on_the_renin-angiotensin_system\" \n", - "[931] \"lipid_modifying_agents\" \n", - "[932] \"antifungals_for_dermatological_use\" \n", - "[933] \"emollients_and_protectives\" \n", - "[934] \"preparations_for_treatment_of_wounds_and_ulcers\" \n", - "[935] \"antipruritics,_incl._antihistamines,_anesthetics,_etc.\" \n", - "[936] \"antipsoriatics\" \n", - "[937] \"antibiotics_and_chemotherapeutics_for_dermatological_use\" \n", - "[938] \"corticosteroids,_dermatological_preparations\" \n", - "[939] \"antiseptics_and_disinfectants\" \n", - "[940] \"medicated_dressings\" \n", - "[941] \"anti-acne_preparations\" \n", - "[942] \"other_dermatological_preparations\" \n", - "[943] \"gynecological_antiinfectives_and_antiseptics\" \n", - "[944] \"other_gynecologicals\" \n", - "[945] \"sex_hormones_and_modulators_of_the_genital_system\" \n", - "[946] \"urologicals\" \n", - "[947] \"pituitary_and_hypothalamic_hormones_and_analogues\" \n", - "[948] \"corticosteroids_for_systemic_use\" \n", - "[949] \"thyroid_therapy\" \n", - "[950] \"pancreatic_hormones\" \n", - "[951] \"calcium_homeostasis\" \n", - "[952] \"antibacterials_for_systemic_use\" \n", - "[953] \"antimycotics_for_systemic_use\" \n", - "[954] \"antimycobacterials\" \n", - "[955] \"antivirals_for_systemic_use\" \n", - "[956] \"immune_sera_and_immunoglobulins\" \n", - "[957] \"vaccines\" \n", - "[958] \"antineoplastic_agents\" \n", - "[959] \"endocrine_therapy\" \n", - "[960] \"immunostimulants\" \n", - "[961] \"immunosuppressants\" \n", - "[962] \"antiinflammatory_and_antirheumatic_products\" \n", - "[963] \"topical_products_for_joint_and_muscular_pain\" \n", - "[964] \"muscle_relaxants\" \n", - "[965] \"antigout_preparations\" \n", - "[966] \"drugs_for_treatment_of_bone_diseases\" \n", - "[967] \"other_drugs_for_disorders_of_the_musculo-skeletal_system\" \n", - "[968] \"anesthetics\" \n", - "[969] \"analgesics\" \n", - "[970] \"antiepileptics\" \n", - "[971] \"anti-parkinson_drugs\" \n", - "[972] \"psycholeptics\" \n", - "[973] \"psychoanaleptics\" \n", - "[974] \"other_nervous_system_drugs\" \n", - "[975] \"antiprotozoals\" \n", - "[976] \"anthelmintics\" \n", - "[977] \"ectoparasiticides,_incl._scabicides,_insecticides_and_repellents\" \n", - "[978] \"nasal_preparations\" \n", - "[979] \"throat_preparations\" \n", - "[980] \"drugs_for_obstructive_airway_diseases\" \n", - "[981] \"cough_and_cold_preparations\" \n", - "[982] \"antihistamines_for_systemic_use\" \n", - "[983] \"other_respiratory_system_products\" \n", - "[984] \"ophthalmologicals\" \n", - "[985] \"otologicals\" \n", - "[986] \"ophthalmological_and_otological_preparations\" \n", - "[987] \"allergens\" \n", - "[988] \"all_other_therapeutic_products\" \n", - "[989] \"diagnostic_agents\" \n", - "[990] \"general_nutrients\" \n", - "[991] \"all_other_non-therapeutic_products\" \n", - "[992] \"contrast_media\" \n", - "[993] \"diagnostic_radiopharmaceuticals\" \n", - "[994] \"therapeutic_radiopharmaceuticals\" \n", - "[995] \"surgical_dressings\" \n", - "[996] \"statins\" \n", - "[997] \"ass\" \n", - "[998] \"atypical_antipsychotics\" \n", - "[999] \"glucocorticoids\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:59.684813Z", - "start_time": "2020-11-04T14:16:58.773Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'chronic_alcoholism_in_remission'
  2. 'chronic_pancreatitis'
  3. 'gastroparesis'
  4. 'ectopic_pregnancy'
  5. 'muscle_weakness'
  6. 'recurrent_major_depression'
  7. 'pilonidal_cyst'
  8. 'pain_in_toe'
  9. 'pulmonary_tuberculosis'
  10. 'celiac_disease'
  11. 'cramp_in_lower_leg'
  12. 'secondary_malignant_neoplasm_of_pleura'
  13. 'fracture_of_hand'
  14. 'cyst_of_breast'
  15. 'nephrotic_syndrome'
  16. 'polyp_of_nasal_sinus'
  17. 'chondromalacia_of_patella'
  18. 'spinal_stenosis_in_cervical_region'
  19. 'disorder_of_artery'
  20. 'vitiligo'
  21. 'female_cystocele'
  22. 'dysphasia'
  23. 'retinal_disorder'
  24. 'epiretinal_membrane'
  25. 'recurrent_major_depression_in_partial_remission'
  26. 'infection_caused_by_trichomonas'
  27. 'osteomyelitis'
  28. 'polyp_of_nasal_cavity_and/or_nasal_sinus'
  29. 'mass_of_neck'
  30. 'idiopathic_thrombocytopenic_purpura'
  31. 'complete_miscarriage'
  32. 'gastric_ulcer'
  33. 'papilloma_of_skin'
  34. 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction'
  35. 'secondary_malignant_neoplastic_disease'
  36. 'hypoxemia'
  37. 'paraplegia'
  38. 'perforation_of_tympanic_membrane'
  39. 'ventricular_tachycardia'
  40. 'mixed_incontinence'
  41. 'disorder_of_eye_due_to_type_2_diabetes_mellitus'
  42. 'trigeminal_neuralgia'
  43. 'retinal_detachment'
  44. 'leukopenia'
  45. 'vitreous_hemorrhage'
  46. 'ischemic_ulcer'
  47. 'intramural_leiomyoma_of_uterus'
  48. 'viral_hepatitis_type_a'
  49. 'm\\u00e9ni\\u00e8re\\'s_disease'
  50. 'fracture_of_phalanx_of_hand'
  51. 'muscle_atrophy'
  52. 'incontinence_of_feces'
  53. 'mitral_valve_disorder'
  54. 'atherosclerosis_of_arteries_of_the_extremities'
  55. 'spondylosis'
  56. 'pterygium'
  57. 'ulnar_neuropathy'
  58. 'lung_mass'
  59. 'foreign_body_in_respiratory_tract'
  60. 'chronic_kidney_disease_stage_4'
  61. 'myocardial_ischemia'
  62. 'non-toxic_multinodular_goiter'
  63. 'pain_in_finger'
  64. 'cervical_spondylosis_without_myelopathy'
  65. 'body_mass_index_25-29_-_overweight'
  66. 'clouded_consciousness'
  67. 'mixed_conductive_and_sensorineural_hearing_loss'
  68. 'tooth_eruption_disorder'
  69. 'hyperuricemia'
  70. 'closed_fracture_of_neck_of_femur'
  71. 'bipolar_ii_disorder'
  72. 'disturbance_in_sleep_behavior'
  73. 'relationship_problems'
  74. 'sprain_of_wrist'
  75. 'personality_disorder'
  76. 'external_hemorrhoids'
  77. 'abnormal_vision'
  78. 'hyperprolactinemia'
  79. 'hemochromatosis'
  80. 'lumbosacral_radiculopathy'
  81. 'heart_valve_disorder'
  82. 'cardiac_arrest'
  83. 'infection_caused_by_molluscum_contagiosum'
  84. 'chronic_kidney_disease_stage_2'
  85. 'secondary_malignant_neoplasm_of_peritoneum'
  86. 'thoracic_back_pain'
  87. 'blood_in_urine'
  88. 'adhesive_capsulitis_of_shoulder'
  89. 'diplopia'
  90. 'sj\\u00f6gren\\'s_syndrome'
  91. 'ureteric_stone'
  92. 'bronchospasm'
  93. 'chronic_fatigue_syndrome'
  94. 'cannabis_dependence'
  95. 'neck_sprain'
  96. 'multinodular_goiter'
  97. 'ptosis_of_eyelid'
  98. 'failure_to_thrive'
  99. 'torticollis'
  100. 'acute_bronchiolitis'
  101. 'viral_exanthem'
  102. 'talipes_planus'
  103. 'idiopathic_peripheral_neuropathy'
  104. 'foreign_body_in_pharynx'
  105. 'jaw_pain'
  106. 'renal_impairment'
  107. 'ataxia'
  108. 'age-related_macular_degeneration'
  109. 'uterine_prolapse'
  110. 'renal_mass'
  111. 'pneumonitis'
  112. 'coordination_problem'
  113. 'blindness_-_both_eyes'
  114. 'primary_hyperparathyroidism'
  115. 'musculoskeletal_pain'
  116. 'mycosis'
  117. 'primigravida'
  118. 'urethral_stricture'
  119. 'leukocytosis'
  120. 'ventricular_premature_complex'
  121. 'ulcer_of_foot_due_to_diabetes_mellitus'
  122. 'chronic_headache_disorder'
  123. 'hemangioma'
  124. 'lymphedema'
  125. 'postmenopausal_state'
  126. 'chronic_ulcer_of_skin'
  127. 'left_heart_failure'
  128. 'excessive_and_frequent_menstruation'
  129. 'thrombocytosis'
  130. 'disorder_of_liver'
  131. 'disorder_of_carotid_artery'
  132. 'altered_bowel_function'
  133. 'abscess_of_foot'
  134. 'malignant_tumor_of_head_and/or_neck'
  135. 'streptococcus_group_b_infection_of_the_infant'
  136. 'concussion_injury_of_brain'
  137. 'feeding_problems_in_newborn'
  138. 'bipolar_i_disorder'
  139. 'viral_pharyngitis'
  140. 'lower_respiratory_tract_infection'
  141. 'hydronephrosis'
  142. 'borderline_personality_disorder'
  143. 'esophageal_varices'
  144. 'hypersomnia'
  145. 'sensorineural_hearing_loss_bilateral'
  146. 'varicocele'
  147. 'subarachnoid_intracranial_hemorrhage'
  148. 'incisional_hernia'
  149. 'varicella'
  150. 'pain_in_testicle'
  151. 'transplant_follow-up'
  152. 'tinea_cruris'
  153. 'laryngitis'
  154. 'hypertrophy_of_nail'
  155. 'amblyopia'
  156. 'polyp_of_cervix'
  157. 'cyst_of_kidney'
  158. 'hepatic_encephalopathy'
  159. 'blood_glucose_abnormal'
  160. 'postherpetic_neuralgia'
  161. 'frank_hematuria'
  162. 'cramp'
  163. 'interstitial_lung_disease'
  164. 'complete_atrioventricular_block'
  165. 'malignant_tumor_of_kidney'
  166. 'otitis'
  167. 'septic_shock'
  168. 'disorder_of_thyroid_gland'
  169. 'hypertrophic_cardiomyopathy'
  170. 'respiratory_distress_syndrome_in_the_newborn'
  171. 'infectious_gastroenteritis'
  172. 'subdural_intracranial_hemorrhage'
  173. 'hepatitis_b_carrier'
  174. 'manic_bipolar_i_disorder'
  175. 'secondary_pulmonary_hypertension'
  176. 'gonorrhea'
  177. 'derangement_of_knee'
  178. 'appendicitis'
  179. 'polyneuropathy_due_to_diabetes_mellitus'
  180. 'neonatal_hypoglycemia'
  181. 'prolonged_rupture_of_membranes'
  182. 'vasomotor_rhinitis'
  183. 'renal_disorder_due_to_type_1_diabetes_mellitus'
  184. 'tuberculosis'
  185. 'feeding_problem'
  186. 'chronic_tonsillitis'
  187. 'acute_duodenal_ulcer_with_hemorrhage'
  188. 'hammer_toe'
  189. 'malignant_tumor_of_cervix'
  190. 'prolapsed_lumbar_intervertebral_disc'
  191. 'hematemesis'
  192. 'perianal_abscess'
  193. 'nonvenomous_insect_bite'
  194. 'spondylolisthesis'
  195. 'malignant_tumor_of_esophagus'
  196. 'aphthous_ulcer_of_mouth'
  197. 'ventricular_septal_defect'
  198. 'oropharyngeal_dysphagia'
  199. 'injury_of_knee'
  200. 'traumatic_brain_injury'
  201. 'osteoarthritis_of_glenohumeral_joint'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'chronic\\_alcoholism\\_in\\_remission'\n", - "\\item 'chronic\\_pancreatitis'\n", - "\\item 'gastroparesis'\n", - "\\item 'ectopic\\_pregnancy'\n", - "\\item 'muscle\\_weakness'\n", - "\\item 'recurrent\\_major\\_depression'\n", - "\\item 'pilonidal\\_cyst'\n", - "\\item 'pain\\_in\\_toe'\n", - "\\item 'pulmonary\\_tuberculosis'\n", - "\\item 'celiac\\_disease'\n", - "\\item 'cramp\\_in\\_lower\\_leg'\n", - "\\item 'secondary\\_malignant\\_neoplasm\\_of\\_pleura'\n", - "\\item 'fracture\\_of\\_hand'\n", - "\\item 'cyst\\_of\\_breast'\n", - "\\item 'nephrotic\\_syndrome'\n", - "\\item 'polyp\\_of\\_nasal\\_sinus'\n", - "\\item 'chondromalacia\\_of\\_patella'\n", - "\\item 'spinal\\_stenosis\\_in\\_cervical\\_region'\n", - "\\item 'disorder\\_of\\_artery'\n", - "\\item 'vitiligo'\n", - "\\item 'female\\_cystocele'\n", - "\\item 'dysphasia'\n", - "\\item 'retinal\\_disorder'\n", - "\\item 'epiretinal\\_membrane'\n", - "\\item 'recurrent\\_major\\_depression\\_in\\_partial\\_remission'\n", - "\\item 'infection\\_caused\\_by\\_trichomonas'\n", - "\\item 'osteomyelitis'\n", - "\\item 'polyp\\_of\\_nasal\\_cavity\\_and/or\\_nasal\\_sinus'\n", - "\\item 'mass\\_of\\_neck'\n", - "\\item 'idiopathic\\_thrombocytopenic\\_purpura'\n", - "\\item 'complete\\_miscarriage'\n", - "\\item 'gastric\\_ulcer'\n", - "\\item 'papilloma\\_of\\_skin'\n", - "\\item 'fetal\\_or\\_neonatal\\_effect\\_of\\_breech\\_delivery\\_and\\_extraction'\n", - "\\item 'secondary\\_malignant\\_neoplastic\\_disease'\n", - "\\item 'hypoxemia'\n", - "\\item 'paraplegia'\n", - "\\item 'perforation\\_of\\_tympanic\\_membrane'\n", - "\\item 'ventricular\\_tachycardia'\n", - "\\item 'mixed\\_incontinence'\n", - "\\item 'disorder\\_of\\_eye\\_due\\_to\\_type\\_2\\_diabetes\\_mellitus'\n", - "\\item 'trigeminal\\_neuralgia'\n", - "\\item 'retinal\\_detachment'\n", - "\\item 'leukopenia'\n", - "\\item 'vitreous\\_hemorrhage'\n", - "\\item 'ischemic\\_ulcer'\n", - "\\item 'intramural\\_leiomyoma\\_of\\_uterus'\n", - "\\item 'viral\\_hepatitis\\_type\\_a'\n", - "\\item 'm\\textbackslash{}u00e9ni\\textbackslash{}u00e8re\\textbackslash{}'s\\_disease'\n", - "\\item 'fracture\\_of\\_phalanx\\_of\\_hand'\n", - "\\item 'muscle\\_atrophy'\n", - "\\item 'incontinence\\_of\\_feces'\n", - "\\item 'mitral\\_valve\\_disorder'\n", - "\\item 'atherosclerosis\\_of\\_arteries\\_of\\_the\\_extremities'\n", - "\\item 'spondylosis'\n", - "\\item 'pterygium'\n", - "\\item 'ulnar\\_neuropathy'\n", - "\\item 'lung\\_mass'\n", - "\\item 'foreign\\_body\\_in\\_respiratory\\_tract'\n", - "\\item 'chronic\\_kidney\\_disease\\_stage\\_4'\n", - "\\item 'myocardial\\_ischemia'\n", - "\\item 'non-toxic\\_multinodular\\_goiter'\n", - "\\item 'pain\\_in\\_finger'\n", - "\\item 'cervical\\_spondylosis\\_without\\_myelopathy'\n", - "\\item 'body\\_mass\\_index\\_25-29\\_-\\_overweight'\n", - "\\item 'clouded\\_consciousness'\n", - "\\item 'mixed\\_conductive\\_and\\_sensorineural\\_hearing\\_loss'\n", - "\\item 'tooth\\_eruption\\_disorder'\n", - "\\item 'hyperuricemia'\n", - "\\item 'closed\\_fracture\\_of\\_neck\\_of\\_femur'\n", - "\\item 'bipolar\\_ii\\_disorder'\n", - "\\item 'disturbance\\_in\\_sleep\\_behavior'\n", - "\\item 'relationship\\_problems'\n", - "\\item 'sprain\\_of\\_wrist'\n", - "\\item 'personality\\_disorder'\n", - "\\item 'external\\_hemorrhoids'\n", - "\\item 'abnormal\\_vision'\n", - "\\item 'hyperprolactinemia'\n", - "\\item 'hemochromatosis'\n", - "\\item 'lumbosacral\\_radiculopathy'\n", - "\\item 'heart\\_valve\\_disorder'\n", - "\\item 'cardiac\\_arrest'\n", - "\\item 'infection\\_caused\\_by\\_molluscum\\_contagiosum'\n", - "\\item 'chronic\\_kidney\\_disease\\_stage\\_2'\n", - "\\item 'secondary\\_malignant\\_neoplasm\\_of\\_peritoneum'\n", - "\\item 'thoracic\\_back\\_pain'\n", - "\\item 'blood\\_in\\_urine'\n", - "\\item 'adhesive\\_capsulitis\\_of\\_shoulder'\n", - "\\item 'diplopia'\n", - "\\item 'sj\\textbackslash{}u00f6gren\\textbackslash{}'s\\_syndrome'\n", - "\\item 'ureteric\\_stone'\n", - "\\item 'bronchospasm'\n", - "\\item 'chronic\\_fatigue\\_syndrome'\n", - "\\item 'cannabis\\_dependence'\n", - "\\item 'neck\\_sprain'\n", - "\\item 'multinodular\\_goiter'\n", - "\\item 'ptosis\\_of\\_eyelid'\n", - "\\item 'failure\\_to\\_thrive'\n", - "\\item 'torticollis'\n", - "\\item 'acute\\_bronchiolitis'\n", - "\\item 'viral\\_exanthem'\n", - "\\item 'talipes\\_planus'\n", - "\\item 'idiopathic\\_peripheral\\_neuropathy'\n", - "\\item 'foreign\\_body\\_in\\_pharynx'\n", - "\\item 'jaw\\_pain'\n", - "\\item 'renal\\_impairment'\n", - "\\item 'ataxia'\n", - "\\item 'age-related\\_macular\\_degeneration'\n", - "\\item 'uterine\\_prolapse'\n", - "\\item 'renal\\_mass'\n", - "\\item 'pneumonitis'\n", - "\\item 'coordination\\_problem'\n", - "\\item 'blindness\\_-\\_both\\_eyes'\n", - "\\item 'primary\\_hyperparathyroidism'\n", - "\\item 'musculoskeletal\\_pain'\n", - "\\item 'mycosis'\n", - "\\item 'primigravida'\n", - "\\item 'urethral\\_stricture'\n", - "\\item 'leukocytosis'\n", - "\\item 'ventricular\\_premature\\_complex'\n", - "\\item 'ulcer\\_of\\_foot\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'chronic\\_headache\\_disorder'\n", - "\\item 'hemangioma'\n", - "\\item 'lymphedema'\n", - "\\item 'postmenopausal\\_state'\n", - "\\item 'chronic\\_ulcer\\_of\\_skin'\n", - "\\item 'left\\_heart\\_failure'\n", - "\\item 'excessive\\_and\\_frequent\\_menstruation'\n", - "\\item 'thrombocytosis'\n", - "\\item 'disorder\\_of\\_liver'\n", - "\\item 'disorder\\_of\\_carotid\\_artery'\n", - "\\item 'altered\\_bowel\\_function'\n", - "\\item 'abscess\\_of\\_foot'\n", - "\\item 'malignant\\_tumor\\_of\\_head\\_and/or\\_neck'\n", - "\\item 'streptococcus\\_group\\_b\\_infection\\_of\\_the\\_infant'\n", - "\\item 'concussion\\_injury\\_of\\_brain'\n", - "\\item 'feeding\\_problems\\_in\\_newborn'\n", - "\\item 'bipolar\\_i\\_disorder'\n", - "\\item 'viral\\_pharyngitis'\n", - "\\item 'lower\\_respiratory\\_tract\\_infection'\n", - "\\item 'hydronephrosis'\n", - "\\item 'borderline\\_personality\\_disorder'\n", - "\\item 'esophageal\\_varices'\n", - "\\item 'hypersomnia'\n", - "\\item 'sensorineural\\_hearing\\_loss\\_bilateral'\n", - "\\item 'varicocele'\n", - "\\item 'subarachnoid\\_intracranial\\_hemorrhage'\n", - "\\item 'incisional\\_hernia'\n", - "\\item 'varicella'\n", - "\\item 'pain\\_in\\_testicle'\n", - "\\item 'transplant\\_follow-up'\n", - "\\item 'tinea\\_cruris'\n", - "\\item 'laryngitis'\n", - "\\item 'hypertrophy\\_of\\_nail'\n", - "\\item 'amblyopia'\n", - "\\item 'polyp\\_of\\_cervix'\n", - "\\item 'cyst\\_of\\_kidney'\n", - "\\item 'hepatic\\_encephalopathy'\n", - "\\item 'blood\\_glucose\\_abnormal'\n", - "\\item 'postherpetic\\_neuralgia'\n", - "\\item 'frank\\_hematuria'\n", - "\\item 'cramp'\n", - "\\item 'interstitial\\_lung\\_disease'\n", - "\\item 'complete\\_atrioventricular\\_block'\n", - "\\item 'malignant\\_tumor\\_of\\_kidney'\n", - "\\item 'otitis'\n", - "\\item 'septic\\_shock'\n", - "\\item 'disorder\\_of\\_thyroid\\_gland'\n", - "\\item 'hypertrophic\\_cardiomyopathy'\n", - "\\item 'respiratory\\_distress\\_syndrome\\_in\\_the\\_newborn'\n", - "\\item 'infectious\\_gastroenteritis'\n", - "\\item 'subdural\\_intracranial\\_hemorrhage'\n", - "\\item 'hepatitis\\_b\\_carrier'\n", - "\\item 'manic\\_bipolar\\_i\\_disorder'\n", - "\\item 'secondary\\_pulmonary\\_hypertension'\n", - "\\item 'gonorrhea'\n", - "\\item 'derangement\\_of\\_knee'\n", - "\\item 'appendicitis'\n", - "\\item 'polyneuropathy\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'neonatal\\_hypoglycemia'\n", - "\\item 'prolonged\\_rupture\\_of\\_membranes'\n", - "\\item 'vasomotor\\_rhinitis'\n", - "\\item 'renal\\_disorder\\_due\\_to\\_type\\_1\\_diabetes\\_mellitus'\n", - "\\item 'tuberculosis'\n", - "\\item 'feeding\\_problem'\n", - "\\item 'chronic\\_tonsillitis'\n", - "\\item 'acute\\_duodenal\\_ulcer\\_with\\_hemorrhage'\n", - "\\item 'hammer\\_toe'\n", - "\\item 'malignant\\_tumor\\_of\\_cervix'\n", - "\\item 'prolapsed\\_lumbar\\_intervertebral\\_disc'\n", - "\\item 'hematemesis'\n", - "\\item 'perianal\\_abscess'\n", - "\\item 'nonvenomous\\_insect\\_bite'\n", - "\\item 'spondylolisthesis'\n", - "\\item 'malignant\\_tumor\\_of\\_esophagus'\n", - "\\item 'aphthous\\_ulcer\\_of\\_mouth'\n", - "\\item 'ventricular\\_septal\\_defect'\n", - "\\item 'oropharyngeal\\_dysphagia'\n", - "\\item 'injury\\_of\\_knee'\n", - "\\item 'traumatic\\_brain\\_injury'\n", - "\\item 'osteoarthritis\\_of\\_glenohumeral\\_joint'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'chronic_alcoholism_in_remission'\n", - "2. 'chronic_pancreatitis'\n", - "3. 'gastroparesis'\n", - "4. 'ectopic_pregnancy'\n", - "5. 'muscle_weakness'\n", - "6. 'recurrent_major_depression'\n", - "7. 'pilonidal_cyst'\n", - "8. 'pain_in_toe'\n", - "9. 'pulmonary_tuberculosis'\n", - "10. 'celiac_disease'\n", - "11. 'cramp_in_lower_leg'\n", - "12. 'secondary_malignant_neoplasm_of_pleura'\n", - "13. 'fracture_of_hand'\n", - "14. 'cyst_of_breast'\n", - "15. 'nephrotic_syndrome'\n", - "16. 'polyp_of_nasal_sinus'\n", - "17. 'chondromalacia_of_patella'\n", - "18. 'spinal_stenosis_in_cervical_region'\n", - "19. 'disorder_of_artery'\n", - "20. 'vitiligo'\n", - "21. 'female_cystocele'\n", - "22. 'dysphasia'\n", - "23. 'retinal_disorder'\n", - "24. 'epiretinal_membrane'\n", - "25. 'recurrent_major_depression_in_partial_remission'\n", - "26. 'infection_caused_by_trichomonas'\n", - "27. 'osteomyelitis'\n", - "28. 'polyp_of_nasal_cavity_and/or_nasal_sinus'\n", - "29. 'mass_of_neck'\n", - "30. 'idiopathic_thrombocytopenic_purpura'\n", - "31. 'complete_miscarriage'\n", - "32. 'gastric_ulcer'\n", - "33. 'papilloma_of_skin'\n", - "34. 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction'\n", - "35. 'secondary_malignant_neoplastic_disease'\n", - "36. 'hypoxemia'\n", - "37. 'paraplegia'\n", - "38. 'perforation_of_tympanic_membrane'\n", - "39. 'ventricular_tachycardia'\n", - "40. 'mixed_incontinence'\n", - "41. 'disorder_of_eye_due_to_type_2_diabetes_mellitus'\n", - "42. 'trigeminal_neuralgia'\n", - "43. 'retinal_detachment'\n", - "44. 'leukopenia'\n", - "45. 'vitreous_hemorrhage'\n", - "46. 'ischemic_ulcer'\n", - "47. 'intramural_leiomyoma_of_uterus'\n", - "48. 'viral_hepatitis_type_a'\n", - "49. 'm\\u00e9ni\\u00e8re\\'s_disease'\n", - "50. 'fracture_of_phalanx_of_hand'\n", - "51. 'muscle_atrophy'\n", - "52. 'incontinence_of_feces'\n", - "53. 'mitral_valve_disorder'\n", - "54. 'atherosclerosis_of_arteries_of_the_extremities'\n", - "55. 'spondylosis'\n", - "56. 'pterygium'\n", - "57. 'ulnar_neuropathy'\n", - "58. 'lung_mass'\n", - "59. 'foreign_body_in_respiratory_tract'\n", - "60. 'chronic_kidney_disease_stage_4'\n", - "61. 'myocardial_ischemia'\n", - "62. 'non-toxic_multinodular_goiter'\n", - "63. 'pain_in_finger'\n", - "64. 'cervical_spondylosis_without_myelopathy'\n", - "65. 'body_mass_index_25-29_-_overweight'\n", - "66. 'clouded_consciousness'\n", - "67. 'mixed_conductive_and_sensorineural_hearing_loss'\n", - "68. 'tooth_eruption_disorder'\n", - "69. 'hyperuricemia'\n", - "70. 'closed_fracture_of_neck_of_femur'\n", - "71. 'bipolar_ii_disorder'\n", - "72. 'disturbance_in_sleep_behavior'\n", - "73. 'relationship_problems'\n", - "74. 'sprain_of_wrist'\n", - "75. 'personality_disorder'\n", - "76. 'external_hemorrhoids'\n", - "77. 'abnormal_vision'\n", - "78. 'hyperprolactinemia'\n", - "79. 'hemochromatosis'\n", - "80. 'lumbosacral_radiculopathy'\n", - "81. 'heart_valve_disorder'\n", - "82. 'cardiac_arrest'\n", - "83. 'infection_caused_by_molluscum_contagiosum'\n", - "84. 'chronic_kidney_disease_stage_2'\n", - "85. 'secondary_malignant_neoplasm_of_peritoneum'\n", - "86. 'thoracic_back_pain'\n", - "87. 'blood_in_urine'\n", - "88. 'adhesive_capsulitis_of_shoulder'\n", - "89. 'diplopia'\n", - "90. 'sj\\u00f6gren\\'s_syndrome'\n", - "91. 'ureteric_stone'\n", - "92. 'bronchospasm'\n", - "93. 'chronic_fatigue_syndrome'\n", - "94. 'cannabis_dependence'\n", - "95. 'neck_sprain'\n", - "96. 'multinodular_goiter'\n", - "97. 'ptosis_of_eyelid'\n", - "98. 'failure_to_thrive'\n", - "99. 'torticollis'\n", - "100. 'acute_bronchiolitis'\n", - "101. 'viral_exanthem'\n", - "102. 'talipes_planus'\n", - "103. 'idiopathic_peripheral_neuropathy'\n", - "104. 'foreign_body_in_pharynx'\n", - "105. 'jaw_pain'\n", - "106. 'renal_impairment'\n", - "107. 'ataxia'\n", - "108. 'age-related_macular_degeneration'\n", - "109. 'uterine_prolapse'\n", - "110. 'renal_mass'\n", - "111. 'pneumonitis'\n", - "112. 'coordination_problem'\n", - "113. 'blindness_-_both_eyes'\n", - "114. 'primary_hyperparathyroidism'\n", - "115. 'musculoskeletal_pain'\n", - "116. 'mycosis'\n", - "117. 'primigravida'\n", - "118. 'urethral_stricture'\n", - "119. 'leukocytosis'\n", - "120. 'ventricular_premature_complex'\n", - "121. 'ulcer_of_foot_due_to_diabetes_mellitus'\n", - "122. 'chronic_headache_disorder'\n", - "123. 'hemangioma'\n", - "124. 'lymphedema'\n", - "125. 'postmenopausal_state'\n", - "126. 'chronic_ulcer_of_skin'\n", - "127. 'left_heart_failure'\n", - "128. 'excessive_and_frequent_menstruation'\n", - "129. 'thrombocytosis'\n", - "130. 'disorder_of_liver'\n", - "131. 'disorder_of_carotid_artery'\n", - "132. 'altered_bowel_function'\n", - "133. 'abscess_of_foot'\n", - "134. 'malignant_tumor_of_head_and/or_neck'\n", - "135. 'streptococcus_group_b_infection_of_the_infant'\n", - "136. 'concussion_injury_of_brain'\n", - "137. 'feeding_problems_in_newborn'\n", - "138. 'bipolar_i_disorder'\n", - "139. 'viral_pharyngitis'\n", - "140. 'lower_respiratory_tract_infection'\n", - "141. 'hydronephrosis'\n", - "142. 'borderline_personality_disorder'\n", - "143. 'esophageal_varices'\n", - "144. 'hypersomnia'\n", - "145. 'sensorineural_hearing_loss_bilateral'\n", - "146. 'varicocele'\n", - "147. 'subarachnoid_intracranial_hemorrhage'\n", - "148. 'incisional_hernia'\n", - "149. 'varicella'\n", - "150. 'pain_in_testicle'\n", - "151. 'transplant_follow-up'\n", - "152. 'tinea_cruris'\n", - "153. 'laryngitis'\n", - "154. 'hypertrophy_of_nail'\n", - "155. 'amblyopia'\n", - "156. 'polyp_of_cervix'\n", - "157. 'cyst_of_kidney'\n", - "158. 'hepatic_encephalopathy'\n", - "159. 'blood_glucose_abnormal'\n", - "160. 'postherpetic_neuralgia'\n", - "161. 'frank_hematuria'\n", - "162. 'cramp'\n", - "163. 'interstitial_lung_disease'\n", - "164. 'complete_atrioventricular_block'\n", - "165. 'malignant_tumor_of_kidney'\n", - "166. 'otitis'\n", - "167. 'septic_shock'\n", - "168. 'disorder_of_thyroid_gland'\n", - "169. 'hypertrophic_cardiomyopathy'\n", - "170. 'respiratory_distress_syndrome_in_the_newborn'\n", - "171. 'infectious_gastroenteritis'\n", - "172. 'subdural_intracranial_hemorrhage'\n", - "173. 'hepatitis_b_carrier'\n", - "174. 'manic_bipolar_i_disorder'\n", - "175. 'secondary_pulmonary_hypertension'\n", - "176. 'gonorrhea'\n", - "177. 'derangement_of_knee'\n", - "178. 'appendicitis'\n", - "179. 'polyneuropathy_due_to_diabetes_mellitus'\n", - "180. 'neonatal_hypoglycemia'\n", - "181. 'prolonged_rupture_of_membranes'\n", - "182. 'vasomotor_rhinitis'\n", - "183. 'renal_disorder_due_to_type_1_diabetes_mellitus'\n", - "184. 'tuberculosis'\n", - "185. 'feeding_problem'\n", - "186. 'chronic_tonsillitis'\n", - "187. 'acute_duodenal_ulcer_with_hemorrhage'\n", - "188. 'hammer_toe'\n", - "189. 'malignant_tumor_of_cervix'\n", - "190. 'prolapsed_lumbar_intervertebral_disc'\n", - "191. 'hematemesis'\n", - "192. 'perianal_abscess'\n", - "193. 'nonvenomous_insect_bite'\n", - "194. 'spondylolisthesis'\n", - "195. 'malignant_tumor_of_esophagus'\n", - "196. 'aphthous_ulcer_of_mouth'\n", - "197. 'ventricular_septal_defect'\n", - "198. 'oropharyngeal_dysphagia'\n", - "199. 'injury_of_knee'\n", - "200. 'traumatic_brain_injury'\n", - "201. 'osteoarthritis_of_glenohumeral_joint'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"chronic_alcoholism_in_remission\" \n", - " [2] \"chronic_pancreatitis\" \n", - " [3] \"gastroparesis\" \n", - " [4] \"ectopic_pregnancy\" \n", - " [5] \"muscle_weakness\" \n", - " [6] \"recurrent_major_depression\" \n", - " [7] \"pilonidal_cyst\" \n", - " [8] \"pain_in_toe\" \n", - " [9] \"pulmonary_tuberculosis\" \n", - " [10] \"celiac_disease\" \n", - " [11] \"cramp_in_lower_leg\" \n", - " [12] \"secondary_malignant_neoplasm_of_pleura\" \n", - " [13] \"fracture_of_hand\" \n", - " [14] \"cyst_of_breast\" \n", - " [15] \"nephrotic_syndrome\" \n", - " [16] \"polyp_of_nasal_sinus\" \n", - " [17] \"chondromalacia_of_patella\" \n", - " [18] \"spinal_stenosis_in_cervical_region\" \n", - " [19] \"disorder_of_artery\" \n", - " [20] \"vitiligo\" \n", - " [21] \"female_cystocele\" \n", - " [22] \"dysphasia\" \n", - " [23] \"retinal_disorder\" \n", - " [24] \"epiretinal_membrane\" \n", - " [25] \"recurrent_major_depression_in_partial_remission\" \n", - " [26] \"infection_caused_by_trichomonas\" \n", - " [27] \"osteomyelitis\" \n", - " [28] \"polyp_of_nasal_cavity_and/or_nasal_sinus\" \n", - " [29] \"mass_of_neck\" \n", - " [30] \"idiopathic_thrombocytopenic_purpura\" \n", - " [31] \"complete_miscarriage\" \n", - " [32] \"gastric_ulcer\" \n", - " [33] \"papilloma_of_skin\" \n", - " [34] \"fetal_or_neonatal_effect_of_breech_delivery_and_extraction\"\n", - " [35] \"secondary_malignant_neoplastic_disease\" \n", - " [36] \"hypoxemia\" \n", - " [37] \"paraplegia\" \n", - " [38] \"perforation_of_tympanic_membrane\" \n", - " [39] \"ventricular_tachycardia\" \n", - " [40] \"mixed_incontinence\" \n", - " [41] \"disorder_of_eye_due_to_type_2_diabetes_mellitus\" \n", - " [42] \"trigeminal_neuralgia\" \n", - " [43] \"retinal_detachment\" \n", - " [44] \"leukopenia\" \n", - " [45] \"vitreous_hemorrhage\" \n", - " [46] \"ischemic_ulcer\" \n", - " [47] \"intramural_leiomyoma_of_uterus\" \n", - " [48] \"viral_hepatitis_type_a\" \n", - " [49] \"mnire's_disease\" \n", - " [50] \"fracture_of_phalanx_of_hand\" \n", - " [51] \"muscle_atrophy\" \n", - " [52] \"incontinence_of_feces\" \n", - " [53] \"mitral_valve_disorder\" \n", - " [54] \"atherosclerosis_of_arteries_of_the_extremities\" \n", - " [55] \"spondylosis\" \n", - " [56] \"pterygium\" \n", - " [57] \"ulnar_neuropathy\" \n", - " [58] \"lung_mass\" \n", - " [59] \"foreign_body_in_respiratory_tract\" \n", - " [60] \"chronic_kidney_disease_stage_4\" \n", - " [61] \"myocardial_ischemia\" \n", - " [62] \"non-toxic_multinodular_goiter\" \n", - " [63] \"pain_in_finger\" \n", - " [64] \"cervical_spondylosis_without_myelopathy\" \n", - " [65] \"body_mass_index_25-29_-_overweight\" \n", - " [66] \"clouded_consciousness\" \n", - " [67] \"mixed_conductive_and_sensorineural_hearing_loss\" \n", - " [68] \"tooth_eruption_disorder\" \n", - " [69] \"hyperuricemia\" \n", - " [70] \"closed_fracture_of_neck_of_femur\" \n", - " [71] \"bipolar_ii_disorder\" \n", - " [72] \"disturbance_in_sleep_behavior\" \n", - " [73] \"relationship_problems\" \n", - " [74] \"sprain_of_wrist\" \n", - " [75] \"personality_disorder\" \n", - " [76] \"external_hemorrhoids\" \n", - " [77] \"abnormal_vision\" \n", - " [78] \"hyperprolactinemia\" \n", - " [79] \"hemochromatosis\" \n", - " [80] \"lumbosacral_radiculopathy\" \n", - " [81] \"heart_valve_disorder\" \n", - " [82] \"cardiac_arrest\" \n", - " [83] \"infection_caused_by_molluscum_contagiosum\" \n", - " [84] \"chronic_kidney_disease_stage_2\" \n", - " [85] \"secondary_malignant_neoplasm_of_peritoneum\" \n", - " [86] \"thoracic_back_pain\" \n", - " [87] \"blood_in_urine\" \n", - " [88] \"adhesive_capsulitis_of_shoulder\" \n", - " [89] \"diplopia\" \n", - " [90] \"sjgren's_syndrome\" \n", - " [91] \"ureteric_stone\" \n", - " [92] \"bronchospasm\" \n", - " [93] \"chronic_fatigue_syndrome\" \n", - " [94] \"cannabis_dependence\" \n", - " [95] \"neck_sprain\" \n", - " [96] \"multinodular_goiter\" \n", - " [97] \"ptosis_of_eyelid\" \n", - " [98] \"failure_to_thrive\" \n", - " [99] \"torticollis\" \n", - "[100] \"acute_bronchiolitis\" \n", - "[101] \"viral_exanthem\" \n", - "[102] \"talipes_planus\" \n", - "[103] \"idiopathic_peripheral_neuropathy\" \n", - "[104] \"foreign_body_in_pharynx\" \n", - "[105] \"jaw_pain\" \n", - "[106] \"renal_impairment\" \n", - "[107] \"ataxia\" \n", - "[108] \"age-related_macular_degeneration\" \n", - "[109] \"uterine_prolapse\" \n", - "[110] \"renal_mass\" \n", - "[111] \"pneumonitis\" \n", - "[112] \"coordination_problem\" \n", - "[113] \"blindness_-_both_eyes\" \n", - "[114] \"primary_hyperparathyroidism\" \n", - "[115] \"musculoskeletal_pain\" \n", - "[116] \"mycosis\" \n", - "[117] \"primigravida\" \n", - "[118] \"urethral_stricture\" \n", - "[119] \"leukocytosis\" \n", - "[120] \"ventricular_premature_complex\" \n", - "[121] \"ulcer_of_foot_due_to_diabetes_mellitus\" \n", - "[122] \"chronic_headache_disorder\" \n", - "[123] \"hemangioma\" \n", - "[124] \"lymphedema\" \n", - "[125] \"postmenopausal_state\" \n", - "[126] \"chronic_ulcer_of_skin\" \n", - "[127] \"left_heart_failure\" \n", - "[128] \"excessive_and_frequent_menstruation\" \n", - "[129] \"thrombocytosis\" \n", - "[130] \"disorder_of_liver\" \n", - "[131] \"disorder_of_carotid_artery\" \n", - "[132] \"altered_bowel_function\" \n", - "[133] \"abscess_of_foot\" \n", - "[134] \"malignant_tumor_of_head_and/or_neck\" \n", - "[135] \"streptococcus_group_b_infection_of_the_infant\" \n", - "[136] \"concussion_injury_of_brain\" \n", - "[137] \"feeding_problems_in_newborn\" \n", - "[138] \"bipolar_i_disorder\" \n", - "[139] \"viral_pharyngitis\" \n", - "[140] \"lower_respiratory_tract_infection\" \n", - "[141] \"hydronephrosis\" \n", - "[142] \"borderline_personality_disorder\" \n", - "[143] \"esophageal_varices\" \n", - "[144] \"hypersomnia\" \n", - "[145] \"sensorineural_hearing_loss_bilateral\" \n", - "[146] \"varicocele\" \n", - "[147] \"subarachnoid_intracranial_hemorrhage\" \n", - "[148] \"incisional_hernia\" \n", - "[149] \"varicella\" \n", - "[150] \"pain_in_testicle\" \n", - "[151] \"transplant_follow-up\" \n", - "[152] \"tinea_cruris\" \n", - "[153] \"laryngitis\" \n", - "[154] \"hypertrophy_of_nail\" \n", - "[155] \"amblyopia\" \n", - "[156] \"polyp_of_cervix\" \n", - "[157] \"cyst_of_kidney\" \n", - "[158] \"hepatic_encephalopathy\" \n", - "[159] \"blood_glucose_abnormal\" \n", - "[160] \"postherpetic_neuralgia\" \n", - "[161] \"frank_hematuria\" \n", - "[162] \"cramp\" \n", - "[163] \"interstitial_lung_disease\" \n", - "[164] \"complete_atrioventricular_block\" \n", - "[165] \"malignant_tumor_of_kidney\" \n", - "[166] \"otitis\" \n", - "[167] \"septic_shock\" \n", - "[168] \"disorder_of_thyroid_gland\" \n", - "[169] \"hypertrophic_cardiomyopathy\" \n", - "[170] \"respiratory_distress_syndrome_in_the_newborn\" \n", - "[171] \"infectious_gastroenteritis\" \n", - "[172] \"subdural_intracranial_hemorrhage\" \n", - "[173] \"hepatitis_b_carrier\" \n", - "[174] \"manic_bipolar_i_disorder\" \n", - "[175] \"secondary_pulmonary_hypertension\" \n", - "[176] \"gonorrhea\" \n", - "[177] \"derangement_of_knee\" \n", - "[178] \"appendicitis\" \n", - "[179] \"polyneuropathy_due_to_diabetes_mellitus\" \n", - "[180] \"neonatal_hypoglycemia\" \n", - "[181] \"prolonged_rupture_of_membranes\" \n", - "[182] \"vasomotor_rhinitis\" \n", - "[183] \"renal_disorder_due_to_type_1_diabetes_mellitus\" \n", - "[184] \"tuberculosis\" \n", - "[185] \"feeding_problem\" \n", - "[186] \"chronic_tonsillitis\" \n", - "[187] \"acute_duodenal_ulcer_with_hemorrhage\" \n", - "[188] \"hammer_toe\" \n", - "[189] \"malignant_tumor_of_cervix\" \n", - "[190] \"prolapsed_lumbar_intervertebral_disc\" \n", - "[191] \"hematemesis\" \n", - "[192] \"perianal_abscess\" \n", - "[193] \"nonvenomous_insect_bite\" \n", - "[194] \"spondylolisthesis\" \n", - "[195] \"malignant_tumor_of_esophagus\" \n", - "[196] \"aphthous_ulcer_of_mouth\" \n", - "[197] \"ventricular_septal_defect\" \n", - "[198] \"oropharyngeal_dysphagia\" \n", - "[199] \"injury_of_knee\" \n", - "[200] \"traumatic_brain_injury\" \n", - "[201] \"osteoarthritis_of_glenohumeral_joint\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "covariates[700:900]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:01.632846Z", - "start_time": "2020-11-04T14:17:00.584Z" - } - }, - "outputs": [], - "source": [ - "data = data %>% mutate_at(c(\"sex\", \"overall_health_rating\", \"smoking_status\", \"ethnic_background\"), as.factor)\n", - "data = data %>% mutate(sex=fct_relevel(sex, c(\"Male\", \"Female\")),\n", - " overall_health_rating=fct_relevel(overall_health_rating, c(\"Excellent\", \"Good\", \"Fair\", \"Poor\")),\n", - " smoking_status=fct_relevel(smoking_status, c(\"Current\", \"Previous\", \"Never\")))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Missing values" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "#na_count <-data.frame(sapply(data %>% as.data.frame(), function(y) sum(length(which(is.na(y))))))\n", - "#na_count %>% filter(sapply(data %>% as.data.frame(), function(y) sum(length(which(is.na(y)))))>0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Covariates BIG" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Table 1" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "mycontrols <- tableby.control(test=FALSE, total=TRUE,\n", - " numeric.test=\"kwt\", cat.test=\"chisq\",\n", - " numeric.stats=c(\"meansd\"), numeric.simplify=TRUE,\n", - " cat.stats=c(\"countpct\"), digits = 2L,cat.simplify = TRUE,\n", - " stats.labels=list(N='N', meansd='Median', Nmiss=\"Missing\"))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(arsenal)\n", - "table_one = tableby(sex~., control=mycontrols, data=data %>% select(all_of(c(covariates, targets))))\n", - "write2html(table_one, glue(\"{dataset_path}/table1_big.html\"));\n", - "#summary(table_one, text=TRUE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# BASELINE" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "base_size = 25\n", - "title_size = 30\n", - "facet_size = 22\n", - "geom_text_size=7" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size)))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(pgs))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\")\n", - "plot_pgs = ggplot(temp, aes(x=value)) + ggtitle(\"Polygenic Scores\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=6, scales = \"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(covariates))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\")\n", - "plot_cont = ggplot(temp, aes(x=value)) + ggtitle(\"Measurements\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=4, scales = \"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(covariates))) %>% select_if(is.factor) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\",values_ptypes=list(value=\"character\"))%>% \n", - " group_by(parameter, value, .drop = TRUE) %>% summarise(count=n(), ratio=round((100*n()/502504), 1)) %>% ungroup()\n", - "plot_cat = ggplot(temp, aes(x=value, y=ratio)) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " geom_text(aes(label=paste0(ratio, \" %\")), vjust=-1, size = geom_text_size) + \n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + \n", - " facet_grid(~parameter, scales = \"free\", space=\"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(forcats)\n", - "library(ggrepel)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "options(repr.plot.width=40, repr.plot.height=8)\n", - "\n", - "plot_cat = ggplot(temp, aes(x=parameter, y=ratio, fill=factor(parameter))) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=\"fill\", fill=\"gray70\", aes(alpha=ratio)) + coord_flip()+# #, fill=\"gray70\", width=0.5) #+\n", - " geom_text_repel(aes(label=ifelse(is.na(value), \"\", paste0(ratio*100, \" %\")), vjust=1), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " geom_text_repel(aes(label=value, vjust=-0.5), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " scale_y_continuous(limits=c(-0.05, 1.05))+ xlab(\"\") +\n", - " theme_void(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), legend.position = \"None\")\n", - "\n", - "plot_cat " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "\n", - "plot_cat = ggplot(temp, aes(x=parameter, y=ratio, fill=fct_rev(value))) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=\"fill\", alpha=0.5) + coord_flip()+# #, fill=\"gray70\", width=0.5) #+\n", - " geom_text(aes(label=paste0(ratio*100, \" %\"), vjust=1), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " geom_text(aes(label=value, vjust=-0.5), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " scale_y_continuous(limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + facet_grid(~parameter, cols=1)+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), legend.position = \"None\")+\n", - " scale_fill_d3() + theme(axis.line=element_blank(),\n", - " axis.text.x=element_blank(),\n", - " axis.text.y=element_blank(),\n", - " axis.ticks=element_blank(),\n", - " legend.position=\"none\",\n", - " panel.background=element_blank(),\n", - " panel.border=element_blank(),\n", - " panel.grid.major=element_blank(),\n", - " panel.grid.minor=element_blank(),\n", - " plot.background=element_blank())\n", - "plot_cat " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(c(any_of(phenotypes))) %>% \n", - " pivot_longer(everything(),names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_conditions = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Conditions\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5))#, strip.text.x = element_text(size = 16))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(c(any_of(medications))) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_medications = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Medications\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "outputs_hidden": true - } - }, - "source": [ - "options(repr.plot.width=30, repr.plot.height=100)\n", - "plot_1 = plot_grid(plot_pgs, plot_cat, plot_cont, ncol=1, rel_heights=c(1,0.7,10), align=\"v\")\n", - "plot_2 = plot_grid(plot_conditions, plot_medications, ncol=2, rel_widths=c(3,2.5), align=\"h\")\n", - "plot_grid(plot_1, plot_2, ncol=1, rel_heights=c(5,1.5), align=\"v\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Covariates Union" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:04.842258Z", - "start_time": "2020-11-04T14:17:03.935Z" - } - }, - "outputs": [], - "source": [ - "mycontrols <- tableby.control(test=FALSE, total=TRUE,\n", - " numeric.test=\"kwt\", cat.test=\"chisq\",\n", - " numeric.stats=c(\"meansd\"), numeric.simplify=TRUE,\n", - " cat.stats=c(\"countpct\"), digits = 2L,cat.simplify = TRUE,\n", - " stats.labels=list(N='N', meansd='Median', Nmiss=\"Missing\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:05.316730Z", - "start_time": "2020-11-04T14:17:04.385Z" - } - }, - "outputs": [], - "source": [ - "f = list()\n", - "f$pgs = c('PGS000011', 'PGS000057', 'PGS000058', 'PGS000059')\n", - "f$basics = c('age_at_recruitment','sex', 'ethnic_background',\"townsend_deprivation_index_at_recruitment\")\n", - "f$questionnaire = c('overall_health_rating','smoking_status')\n", - "f$measurements = c('body_mass_index_bmi','weight',\"standing_height\",'systolic_blood_pressure','diastolic_blood_pressure')\n", - "f$labs = c(\"cholesterol\", \"hdl_cholesterol\", \"ldl_direct\",\"triglycerides\")\n", - "f$family_history = c('fh_heart_disease')\n", - "f$diagnoses = c(\"stroke\", \"diabetes1\", \"diabetes2\", \"chronic_kidney_disease\", \"atrial_fibrillation\", \"migraine\", \n", - " \"rheumatoid_arthritis\", \"systemic_lupus_erythematosus\", \"severe_mental_illness\", \"erectile_dysfunction\")\n", - "f$medications = c(\"antihypertensives\", \"ass\", \"atypical_antipsychotics\", \"glucocorticoids\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.758624Z", - "start_time": "2020-11-04T14:17:04.775Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "processing file: table1_union.html.Rmd\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " |......................................................................| 100%\n", - " ordinary text without R code\n", - "\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "output file: table1_union.html.knit.md\n", - "\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/bin/pandoc +RTS -K512m -RTS table1_union.html.utf8.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_excl/table1_union.html --lua-filter /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmarkdown/lua/latex-div.lua --email-obfuscation none --self-contained --standalone --section-divs --template /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable 'theme:bootstrap' --include-in-header /tmp/RtmpRfvefu/rmarkdown-str11963d037f4.html --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "Output created: /data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_excl/table1_union.html\n", - "\n" - ] - } - ], - "source": [ - "library(arsenal)\n", - "table_one = tableby(sex~., control=mycontrols, data=data %>% select(all_of(c(f$pgs, f$basics, f$questionnaire, f$measurements, f$labs, f$family_history, f$medications, f$diagnoses))))\n", - "write2html(table_one, glue(\"{dataset_path}/table1_union.html\"));\n", - "#summary(table_one, text=TRUE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# BASELINE" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.778888Z", - "start_time": "2020-11-04T14:17:08.887Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.814098Z", - "start_time": "2020-11-04T14:17:09.367Z" - } - }, - "outputs": [], - "source": [ - "base_size = 25\n", - "title_size = 35\n", - "facet_size = 25\n", - "geom_text_size=7\n", - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size))) " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:12.517888Z", - "start_time": "2020-11-04T14:17:11.602Z" - } - }, - "outputs": [], - "source": [ - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size))) " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:12.887887Z", - "start_time": "2020-11-04T14:17:11.969Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. White
  2. Black
  3. <NA>
  4. Asian
  5. Mixed
  6. Chinese
\n", - "\n", - "
\n", - "\t\n", - "\t\tLevels:\n", - "\t\n", - "\t\n", - "\t
  1. 'Asian'
  2. 'Black'
  3. 'Chinese'
  4. 'Mixed'
  5. 'White'
\n", - "
" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item White\n", - "\\item Black\n", - "\\item \n", - "\\item Asian\n", - "\\item Mixed\n", - "\\item Chinese\n", - "\\end{enumerate*}\n", - "\n", - "\\emph{Levels}: \\begin{enumerate*}\n", - "\\item 'Asian'\n", - "\\item 'Black'\n", - "\\item 'Chinese'\n", - "\\item 'Mixed'\n", - "\\item 'White'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. White\n", - "2. Black\n", - "3. <NA>\n", - "4. Asian\n", - "5. Mixed\n", - "6. Chinese\n", - "\n", - "\n", - "\n", - "**Levels**: 1. 'Asian'\n", - "2. 'Black'\n", - "3. 'Chinese'\n", - "4. 'Mixed'\n", - "5. 'White'\n", - "\n", - "\n" - ], - "text/plain": [ - "[1] White Black Asian Mixed Chinese\n", - "Levels: Asian Black Chinese Mixed White" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique(data$ethnic_background)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basic Information" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:13.873348Z", - "start_time": "2020-11-04T14:17:12.784Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(all_of(c(f$basics, f$questionnaire))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "labels = c(age_at_recruitment = \"age\", townsend_deprivation_index_at_recruitment=\"townsend\")\n", - "plot_age_te = ggplot(temp, aes(x=value)) + \n", - " geom_density(adjust=1.5, fill=\"gray70\")+ facet_wrap(~parameter, ncol=1, scales = \"free\", labeller=labeller(parameter=labels))+\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") " - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:14.547997Z", - "start_time": "2020-11-04T14:17:13.377Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`summarise()` regrouping output by 'parameter' (override with `.groups` argument)\n", - "\n" - ] - } - ], - "source": [ - "temp = data %>% select(all_of(c(f$basics, f$questionnaire))) %>% select_if(is.factor) %>% select_if(is.factor) %>% drop_na() %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\",values_ptypes=list(value=\"character\")) %>% \n", - " group_by(parameter, value, .drop = TRUE) %>% summarise(count=n(), ratio=round((100*n()/502504), 1)) %>% ungroup() %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_seth = ggplot(temp, aes(x=value, y=ratio, fill=parameter))+ \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " geom_text(aes(label=paste0(ratio, \" %\")), vjust=-1, size = geom_text_size) + \n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + \n", - " #theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + \n", - " facet_grid(~parameter, scales = \"free\", space=\"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:16.659027Z", - "start_time": "2020-11-04T14:17:14.329Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Removed 516 rows containing non-finite values (stat_density).\"\n" - ] - } - ], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "plot_title = ggplot(temp, aes(x=value)) + ggtitle(\"Basic Information\")\n", - "title <- ggdraw(get_title(plot_title))\n", - "plot_basics_raw = plot_grid(plot_age_te, plot_seth, ncol=2, rel_widths=c(1, 4), align=\"h\", axis=\"lr\")\n", - "plot_basics = plot_grid(title, plot_basics_raw , ncol=1, rel_heights=c(0.1, 0.9), align=\"v\", axis=\"lr\") " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:18.391317Z", - "start_time": "2020-11-04T14:17:17.305Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "temp = data %>% select(all_of(f$pgs)) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_pgs = ggplot(temp, aes(x=value)) + ggtitle(\"Polygenic Scores\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=4, scales = \"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:19.147957Z", - "start_time": "2020-11-04T14:17:17.792Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "temp = data %>% select(all_of(c(f$measurements, f$labs))) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_meas = ggplot(temp, aes(x=value)) + ggtitle(\"Measurements\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=5, scales = \"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:19.829906Z", - "start_time": "2020-11-04T14:17:18.264Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(c(any_of(f$diagnoses))) %>% \n", - " pivot_longer(everything(),names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_conditions = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Conditions\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()+\n", - " theme_classic(base_size = base_size)+ theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35))#, strip.text.x = element_text(size = 16))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:20.135005Z", - "start_time": "2020-11-04T14:17:18.560Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(c(any_of(f$medications))) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_medications = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Medications\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35)) + \n", - " scale_x_discrete()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:28.906077Z", - "start_time": "2020-11-04T14:17:19.409Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Removed 48868 rows containing non-finite values (stat_density).\"\n", - "Warning message:\n", - "\"Removed 192399 rows containing non-finite values (stat_density).\"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAA4QCAMAAAD1Fs8TAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd6DUVNrH8efSRREplg1durqK\nBVGsgIhtwEIRu2tF7F0sWFZFERULgr0XsHLtbe2urm0tr4oFu6C4CohwKTdvkmmZmWTKTSZn\nJvl+/riTnGSSk5wzmd/NzCSiAwAAwFeiugIAAABhQ8ACAADwGQELQMP8LKalQa3uq7O3WLdp\ny79t805QKyxNwHsDQKUjYAFomGAjxdUtJK42oBWWiIAFIAMBCwilNyVDo1Z/67PHKXcv8HMV\nXiLFYeZTNyzhCbekNoWABaAaELCAUMoKWAmNd3jSv1UEGbD+aEPAAlBVCFhAKDkHLMOgn/1a\nxbzGpmUNem6pAesuq+4bzvryq1d9q79nUyZOfCo14mVvAAghAhYQSq4BS7p8prpueukB6yhz\n/nX/V74KNcCiGpETVFcCQKUiYAGhFA9YJ16VMOWCE3Ztn0hYG9eprlzpAWuwOf/J5atPQ/xL\nCFgAXBGwgFCKB6w37UUrXxgUT1j/VFWptFID1qbm/HeUrz4NMZmABcAdAQsIJYeAZTjbKu2m\npEYZSg1YfSrw6+37ErAAuCNgAaHkHLDiH7WJ+mt1lhqwepvzP1V4viD1IGABcEfAAkLJJWA9\nbBXfr6JGGUIQsP6oIWABcEfAAkLJJWD9YhVfmV287N17b7js4uvufsv5MgPfP3nzVRddPu3R\nz1YWXG/9RzOv+udVd76xPP9s7gHr58evu3jyzU8vzCx1CVjfP3nXVZdMn/XKErf1LKy96uKb\nv80sq3vjxkmXTHvetoY/nrv+4im3v+24da675gUpImAVrKDbBgOodgQsIJRcAlZ9I7P40oyy\nxTdt3yR5DYdmg+7PjkZvjVsndYmHtcY+m57gcGnND49cOzHn6nu/mq96mQFrvjm2gzn00LY1\n8ec3Sl0S9aOsy0ykvon15fF9UtXecYo9wnxnlg0xtvaSVubQZPsqFp7eNv6c5mO/SqxgVLN4\nSZsJv2dV023XfJ9Zpeec94Z7BfNuMIBQIGABoeQSsJZZxTfZi+79W2Za2OB9+9R5o7PyzcAv\nk5NyIsXvh9fY59wtzyVBMwPWYnNsM13/dZj9+QfHLyfhErB+PbpJRvF619enlv6rWbCVro+L\nT5psW8X7HdNPafWMMaH+n43TJd2/yqil664pJmDlq2DeDQYQCgQsIJRcAtanVvHbtpLTJVsz\n21mqud1zJrdOLjQ7UnzVJ2vOtf/rWr3MgLXSHOul/7pB5vMPtCY6B6yve+ZU7NDUR3x/xpf+\nWGLC5PQqPmtjf0arObp+UsYyetpPQbnvmiICVt4K5t1gAKFAwAJCySVgXWOWtluRLrgq/tbe\ndo/jzz332O2aWiNrpq71vnIzq6DpdkdPnHTGodvGP0pbL3FmKitSzOsWX9TGw/8xZhPrk0hZ\n+0vdRdZ3sMzZO64aYvxdfdhhxx20WeKkkpWlvtzE0NwcXd8c2uQVs/Cr9awZmgw885pbrxjX\nOz776OTiVpljXfRkfJmcWsXyTURqBhx83P694lP20u82Y9PQI8aPTJysOr+oXTPfqId13db2\nVpX+nbs38lcw7wYDCAUCFhBKzgFrmRWCTk0XfLeaFRtuS0Sun/9hPW3P5OTp5ljNqb8lRn87\n14pYxyRmzowU8auYHjXXGvn2EGtsu/SnYpmyApaZn9pfJ7LOjfHFfROznj40NUPWl9xXbWdN\n3yf5id4TPazxu5LTzfyynvkt9O2nzHrg2pdTq7hcZPf4c55tZ23ah22l8SnWN69WzbA+0euY\nqnGBXaOfYI6mv+SeuTcKVbDgBgOodgQsIJQcA9aKMdZZlwXpkjOt0yyvpQuOtZ73f4mx7c2R\ni2xLeMZMIc3+sIYzI8XtVmC5OzXnP62pbheEyApYZpZpvpZs+GOyYKW15kbzk+NZAWuqtfCT\n0sv72ZqhXXLLWpgjh0qrx9NzWKtoLeOT4y9ai+goje9LllyZucsK7Jr8AatQBQtuMIBqR8AC\nQskpYL28hVnW9GlbkXViZV9bwZ+tzZLEdRxWmp9ctfjTvoyTzckzrcGMSFFvLcl2bix+RmuA\nS/WyAtbq1qLa/JieIV7/1A/rMgPWSuub6tvYT4+9ZX2/fkpiLJ5fap6xzRBfxYD0c7a1CmxV\nrrN+XjgtOZp/1+QPWAUrWHCDAVQ7AhYQSvH360tmJTxw8+SD4t9Xbz3bNteijdZuJHKP/YkH\nmDPtHR/+yRzukbHczw8679YXf7UGMyLFk+bw6r/Z5nzWmvydc/UcA9YM+xwdzJJJybHMgFVr\nzf5uxhKtk3MbZyzvUPv0eNEb6YL4KbY1F6dLRpoFxyZGCuya/AGryArm2WAA1Y6ABYRSPGDl\naLTv11kzrvzp/YxrXF5tzrZ1fNi6ntRabqvIiBSHm8MHZSx4DWm63kbPOj3TOWC1y7iI1K5m\nUeoztsyAZV06ol/mEuM/GfzYtjz5xD7dKtrAVhC/qP1htpJzzIIxti3Is2vyB6ziKphvgwFU\nOwIWEEqOAatmz/cLPvFec8Ze8eEV1o/bHnaZMyNSdDaHb8+Y/mOei5M7BayMeKYfYxYdnhzL\nDFjWB3CZV0vVl7Y0C2+wLa9vxnSr6BRbwTtW9WfaSmaYBbu7V9q+a/IHrOIqmG+DAVQ7AhYQ\nSi5nsKTf5QW+Rz3bnKtLYmRLc2RNly8G2SPFz7mnjPJyCljTMuY4zSwamxzLCFjWddAl+0rx\nA83CI23LOyZjslVk/8Tv/6yl2C8kcZdZsKN7pTN2Tb6AVWQF820wgGpHwAJCyS1gibT654p8\nT6y1p4jb40/Z7XGna4zbI8Ur1vBih7mcOQWsZzLmOM8sSn1elxGwnrZW9pue6WCzcJBteddl\nTLaKbL8J1L+2lmK/w+Ass2AH90pn7Jp8AavICubbYADVjoAFhFL2rwhXLfz+xam7xK8UulPm\nLffq/3vF/lt1WNN2x5hUiqjfI1Gw5oir31uVtQp7pLCSmOu3tXI5Bay3MuaY6B6wbjNHWmYv\n0voGVW/b8p7ImGwVfWQrmGsWNLfPkhuw8uyafAGryArm22AA1Y6ABYSS84VGv49fLXOnlemi\nZTesLzm6JKcu2jVd2GbkTb/aF2aPFNZ1nzoWXz2ngPVRxhx5Apb1ZfNO2YucYpa2sy3v9YzJ\nVtEXtgIrYLW2z5IdsPLvmjwBq8gK5ttgANWOgAWEksutcvTrrfLLUuOf9c3NELYUoa+avKat\nvMnOs9LXdrJHikvMwcwLOuTlKWBdYI70zl7kNLO0pW15mV/oLz1gFdg1eQJWkRUkYAFhRsAC\nQsktYOkHWudRkt+WejcZn9r2GbjHGNN2mQFL1xdclnET536pCy/YI4WVDjJ/tpeXp4Bl3YR5\nAz3LjWZpU9fllRywCu2aPAGrQRUkYAHhQsACQsk1YH1mTXggPrIwfvHRTpPTP6bL/CZ33Jyr\ndmqWSlg15yVK7ZHiMnOwW/HV8xSwJpgjvfQs1rm51V2XV2rAKrhr8gSsBlWQgAWECwELCCXX\ngKX3Mickrrd0ojXXGPuv/5wClmHJEydtlIxYibvF2COF9fHXusVXz1PAsq7BnvOFr8lm6dqu\nyys1YBXcNXkCVoMqSMACwoWABYSSe8AaYk4YYg3WtTKHt8m4bMNM54Blmjupk7XU5nOtUXuk\nuMccbLLS8WlOPAUs67O2FtmLPNO2SO8Bq/CuyROwGlRBAhYQLgQsIJTcA9Zu5oRNrcH41ate\nzJh8lXvA0vVlp1jPONkasUeK+OpcbjzowFPAil9mKvuCqfuZhcNcl1diwCq8awpeB6vEChKw\ngHAhYAGh5B6wNjcnbGUN3mAOtqnPmLx3voCl60eZk+M/kLNHisU15vAzrk/L5ilgfWut+IWs\nRfYzC09yXV6JAavwrskTsBpUQQIWEC4ELCCUXAPW0jXMCXtbwxeZg3/PmLywVf6AZd3/ubEV\nPDLuvtfNHD4rY9anJxuyU0aCp4Clr2eOTcxc4h9NzMJ7XZdXYsAqvGvy3YuwIRUkYAHhQsAC\nQsk1YFkpQi6whq3rNQ3MmHyxZAasb7Jvf2PdsvgvcygjUli3Kt4oY07r3nvXOlfPW8A6yBzr\nk7lE6+rpNT+5Lq/EgFV41+QLWA2pIAELCBcCFhBKbgFrSfzqA+9aI9eYg+vbJ39mvfNLB2vk\n69OGtM1OSCsaGZNbWYMZkeJla+R525w/WjeY+cC5et4C1kvWyjKv1L6jWbSd+/JKDFgFdo2e\nCFjHpSZn7I2GVJCABYQLAQsIJZeAtWio2E7NPGaNzE1PnrehWJ+DtbA+A/zJDFOd/sxYwLPm\n5H7WYEakqLc+I9x4aXpO65xW5odsad4Clr6BObql/RtSj1iVucd9eSUGrAK7xnCSOXZganrG\n3mhIBQlYQLgQsIBQcgxYC2/ubBU3/zA+vsD6avrBqen/7S5iXYtAPrHGrZMuu/9lW8Kfm5hF\nF1nDmZEi/rwxy5Jz3mYt+xaX6nkMWHdaKzs5Pff/Wd966pu8qoL3gFVo1+j6edYaUzNk7o0G\nVJCABYQLAQsIpXjAOvGqlEnnHDKwqcRNTc5lXRNLToqfpPr0uMYi++rtzaLDrJJXrcl9Zi5P\nzF7/tHVmZo3vrbHMSBFPY7L5s9Zpmy8Otca2WOVSPY8BSx9uLX7sD/GxlbdblW78Sp7llXqh\n0QK7Rtdvsma40Rxclbs3Sq8gAQsIFwIWEEpviqtGqXylPxcvaTPy1ONHb2gOdf89fjECGXja\nsbW6fnR8+hpDxp178fknjFgnPjo9/uSsSPFzj/hUbdDYvfpY539k7S9y6pXgNWDN62itoMWw\nC2bcNOmADtZIzTX5lldqwCq0a/SP4zNssPduG2+XuzdKryABCwgXAhYQSu4Bq9fTttnGZ07r\n9LWuP5McuUrXV45yWMCliedmRQr9265ZM677tmv1vAYs/Yvu2dVqdnd6qh83ey6wa3S9f2ra\nAIe9UXIFCVhAuBCwgFByC1j9Z2Tc/WXFOPvEYdbFx4+yp4hr1sxaQN9UPsuOFPrCcTUZS/vZ\nvXqeA5b++6EZK5Nt7N838yNgFdw1/2menOgUsEquIAELCBcCFhBKOQGradtu2x8z/ducGZ/a\nLpEDmuz6ZKLo7kFtG7fqstu/rJGFU7ZtklpIq5EPp/NZTqTQ9bf3a5WYc/URr+h5eA9Yuv7J\n8b2S9Wo/6smMSX4ErMK75tU+idWP0B33RmkVJGAB4ULAAqJuwWPTLr5sxr8Wus6w+J2Z1112\n4RU3PvxFves8SSveuXvKRVfe+UqdnzV09d3jt02+9MaH3y9cr4YpsGtWvXH9RZfc8NQC9wWU\nu4IAKhYBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADw\nGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsA\nAMBnBCwAAACfEbAAAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcE\nLAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADwGQELAADAZwQsAAAA\nnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAA\nAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxG\nwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA\n8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADwGQEL\nAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBn\nBCwAAACfEbBQzX7SNO2Coud+15j7hlJX8bHxpGtLfZLvi/DPc0ZlHlBdiaqXatJCbVtaDy20\nNt+X7K5BLxZEhGOPpMvkIGChmhGwSkbA8gMBC1FGwCoOAQvVjIBVMgKWHwhYiDICVnEIWKg+\n+2nbJYZKe5P5bsKECa+WujICFnIpC1gN7ftFSi++QS8WRIRjtw+ky6R7qJdZgkLAQtWp71ve\nN5lMBCzkUhWwytz3bYsH3Ck7pBXRQyupExOwUHW+0ghYDUfA8oOqgFXmvm9bPOBO2SGtiB5a\nSZ2YgIWqM4uA5QEByw+qAlaZ+/6sCnpvQgVTdkgroodWUicmYKHqTCBgeUDA8oOqgFXmvj+h\ngt6bUMGUHdKK6KGV1ImjGLB+nnbQgN6dem99xN1L7MXPj9+2V9eBp3yg638YnWd6qvyN84Zt\n3HnDHY54cHHgNUXu7n9AS9pEj7/JXGQ8XLrHZl022vmf3yee9IFR/Lqu/37Nbr07bzDsgm8T\nxRm/cln+yFGDN+jSb/S03/NXwDyUXGc8TBz69y6bjbrZ3gtcelLOkjOORs921LQB8+PDDn3u\nHWPgTf33cwd0+fuX8ZlWPnn64I079x146K2/JpdhhqR7Uuszd8mLeTbbUP/EEVut33fQCa9H\nIWDl7LBDjU3+wDbDQ8b45MRw7ss7twUc2rmkgOXQQ13WnX9tRfV9F0VsVebiUy8W917lesys\nNt9cvV//np16bX3wLQvsxdnts2KIpnVMd6SpxjafFWg9vcndykTTfn7Sll3W3+a0z8yiVY+P\n3ahz392uXmR7osMRyPGQ5nuXya5xZg81FejELgdKx51RFtELWCv+2TnVBBs9nSqePzZZeEn9\nN8bfOxLlc/ZIzd3vMTU1jrLc3Z/7JnOpPmv9RFG3WfGnfW4MP6fXdk8Ud74/XmwPWK8MSC6n\nx615q2AeSqatPCM59xZvJCe49CSHJduPRv/tYcz9lTXo2OfMeZ9ftINZ+rE118vbp9bSY/LK\n+EJcjhsum22saWRyEWMXhT5g5e6w2eYuts1xiDEebwKnl3d2Czi2c0kBy6GHuqw7/9qK6vsu\nitgql4Dl3qtcjpnVZtmZHdM95vr6ZLFD+3xk7LNdViWmf2/ska3+VFDfhnHaynjTXtkh0bIP\nGW26U2KWzb9KPdPpCOR4SPO5y+TWODtgFezEbgHLpcn9F7mAVX+wtVN79+9jPnR4PFG8eIg5\n2nOHrY2+dtonxuC98fKXe1mdbdg2nczH65RVO6Icdv9Lo0cbr+fuo0ePPlKPv8lc9ZDRaF36\nWq+Yjm9az5trDNY+apR02cB6BXZ8yyq2BaxZ1hI7dbN6w8R8dTAPJTPONA8Tfa0DUc8P4+Uu\nPclpybaj0ff9jFf0+9agc5/70hiYfaH1ZOuN8H5rcVsM266L+Xj4CuupLscNl83WF1tHzb47\n7WAc8YY/rYU7YDnssKU9NW2b9ByLu2rartaQ48s7qwWc27mkgOXQQ90OLXnXVlTfd1HEVmUu\nPvVice1VLsfMalNvvel33mLr3hkHA8f2mWwM3paYwdiDHd7IXVyFctxKq2lnGNvRt6tZ2OXL\nP7Y25tnA2uKdElHK+QjkeEjzt8s41DizhxbRiV0OlC5NXgaRC1i3G/tz47vMz27mnm62zR/x\nYvMNdJNao+/8dEYHbUrqLegbo+U6nvudMbTodrMRH3ddLsrAZfcPyvweysTuHU78qF5f/q/B\nxsgIq/h78+Xfu8Opn+j68lfNF/VIqzgdsN43Xvddp3yzSp9/Y0/znSdPJcxDydFap7M+qdfr\nnh5ojOwc/4fHpSc5LTl9NFpk1L1z4iy1c5+z/q/rpe1w8Q2X/mCMvmcc3Tpe8JMx9NcDmxiT\nrrCe6nLccNlsfaJ5gHzeOGDW1fbX9tVCHbAcd9ixxsCnqVkeNMZuMgec+1dWCzi3c0kBy6GH\nuvXtAmsrou+7KGqr7ItPvVjcepXLMbPqmC+f3V4xc8P8W8yWeMcqdW6fFca/Kr3jn+8/axSe\nrajKDeC4lWbTXrl+n9sX6aveNnvQ6adrw15eqf/1kBkun40/0fkI5HhI87fLOLeLrYcW0Yld\nDpTOiy6HyAUsI6F3/CgxPCH1fvujEc57JI7AN2mdUy1vvBl1eCgx9xwj7W65LNjaRpzL7s96\nk1m/w4Pxkd82NOa3jn4/GsU9kk9d0Ncotj5oTwesYcZBIfHf52vGP1r9k/+tOfjY+u/o0cQq\n+hsjT1mDzj3Jccmpo9GKUcaiEh/luPS5H4yBUdoFibPW9YNsR6EvjF3QxTzkux03XDZ7vvHv\nae+vEztsM6163wqL4LzDnk+9MZiM/3s7/WIOOPevzBZwaeeSApZDD3Xr2wXWVkTfd1HUVjkG\nLJde5XbMrDqjNa1f8pO+ucZuPMYacmmfj40NHW8OLB2gaVv/FXRdG85xK82m7d7zE6vwx26a\n1rPD8KXWiPk/yGnWkMsRyPGQ5m+XcW4Xe8Aq3IldDpTOiy6HqAUs8/+4fZIj5hFqP2toumb7\nksbBqbegD42BE1PPvc0Yy/89B/jKbfdnvcloZyRnMc/U/CtVfHqy+Cxj5GVzIHUAeMMYOCc5\n+WRj5AX3WlgBa3xyzDzyWC9Hl57kuOTU0egEY2BaYqJLn7Oqvk/yffA1Y+SAVFWuN//hNAdc\njhsum32rMTApWfpouAOW8w5bsYGmDU4WLuqaaCyX/pXZAi7tXFLAcuihLusutLYi+n6+ehTa\nKseA5dKrXPpv9emnacelRqbvcsRU89H10H+FMfia8XipkRr+HWg9vXHcSqtpr08Umt9M7PhF\nfHhFT03bzRpyOQI5HtL87TKONbb30CI6scuB0nnR5RC1gKXXff9e+rOCLTRtW2tgjLHn5yZL\nP061/LnGwJzU3Eu7a9o/gqon3Hd/1ptMx9Tvp8xfh92VLO6Q+u3KA8lXWeoAYH5l/fPk5H9t\nPnTMI+61sLpD6qdDK4xa9LWGnHuS45KTRyPzpPjE5ESXPmcdm15Klp+UEf4WdNK0Hc2BPAHL\nYbP3Mwa+SJau3LB63wqL4LLDzE8Qkt/anZV8t3TpX5kt4NLOJQUshx7q1rcLrK2Ivp+nHgW3\nyjVgOfQql/5bffpq2qE5ha6HfvNDwu2W61900bTzgqqhHxy30mzaLokP1vTLtdRHebq+m6Zt\nag24vKAcD2n+dhnHGmecwSrciV0OlM6LLofIBawMwzTt79bARpq2Rbp4cLLlh2ra1rbZjTeq\nDYKsXtS57f6sN5mdU3OY/23NSBanzljorxhjN5oDqQPANunf+RZkHgj6pUdHGaPzcmZK9STH\nJSeORuY7+zGpX6y49Dmz6j1XJIu317SuK9Jz7Wq8pZo/R84TsBw22/h/beP0Mo6u3rfCIrjs\nMPPE4jWJMuNf5+7W5wMu/SuzBTKl2rmkgOXQQ4s6tOSurYi+n6ceBbfKNWA59CqX/lt9djZC\nxvvZhe7tY35IONU8DGyzNJj6+cNxK82m3SM5Yn6j6arkiPEi6WUNuLygHA9p/nYZxxpnBKwM\njp3Y5UDpvOhyiHbA2l3TNjQfFxk7ft908emJll/aMaNYv8Aoz/c1B/jKdfdnvckcn5rjP8n3\nIbP42Nzi5AGgzljynsVW4+P0uWfTaVr8I4JMyZ7kvOT40egN45/eMaljlUufs6q+V7J0ibG4\nnWwLOt6Y+K6eN2DlbvZC43F4ehlXVe9bYWFuO2zVppq2S7zI/ITQ+pDXrX9ltECWZDuXFrBy\ne2hxh5bctRXR9/PUo+BWuQas3F7l1n+rj/nB1fqXfpNRlq99phizTzVyxtuB1dAPTltpNe3J\nyZH7jJHa5MiRRq4yH91eUE6HNJ+7jGON3QOWYyd2OVA6L7ocIhiw6mpP3X2T5MVj4m0yx97P\n4lHebHmzm3TfMq1vonMhEK67P+tNJn2m/l17wDontzh5ADB/RXxUsdUwDyUT0qNT0ochh57k\nvGTraDSnj6YNTV9R0qXPZb5tmouzfyptnsU3v2KfJ2DlbvYXxuOResbcVfpWWJjbDrO+omR9\nO9f6p9v6zMOtf2UGF92xnUsLWLk9NM+hJe/aiuj7eepRcKtcA1Zur3Lrv9VnxQhrD2x/1uN/\npMryHfpXDLXmP19NbRvKaSutzUxth3lgeDk5cnQiYLm9oJwOaT53GccaZwWsQp3Y5UDpvOhy\niF7AenhTzc5qE/PCs+emZ3k00fKfarleclksfOe6+7PeZNK3C8kIWA7FyQPAR5r9G6wFmIeS\nSenRacZo/Lp5Tj3JecnmIiaalx/dMn19ZJc+Z1U99etv86u2x9kWdJ0W//pQnoCVu9nmmk5I\nL6O2et8KC3PbYfr7WvITtIM07e/WP91u/SujBXTndm7orXKSbeJ+aMm/tiL6fp56FNwq14Dl\n3Kuc+m8VWnJcYid0GnFr4g0376H/E/P3b9tW1QeEuuNWWk17cXIG8zCSuq5XMmC5vaCcDml+\ndxmnGmcGrIKd2O1Co46LLofIBayrrd06YMQhxxo2SrTJvzXrphNJyWtdv+vwKntCUb0jyHX3\new5Y5m1DTiu2GuahxPYrk5uN0TvNAcee5LxkcxHxKwenfw/s0ucyq/5W1uJuSqy8pID178yF\nhPpCo247TNcHJj4nXdQlGTTc+lfWPf4c29lrwHLt2wXW5i1gFdyqEgKWW/+tSu8f3zvRCL2v\nsq7YkvfQv2RzY+xAdbVtqJytLCJgub2gnA5p/neZ3BpnBKzCndj9VjkOiy6HqAWsV82LcU/4\nITGW/Nj2PS3jaq6zEy3/mZZ1Vh1Bct39ngPWJ6U0rHkoSV9DyTqDZf4L59yTnJds/WBG23A7\nzXadD5c+l1l184TYsbYFXWOMmxc+KilgmSdvbGewHq7qt8IC3HaYrl+maR3MHyeYnxDGP+xx\n61+Ze9G5nb0GLLd1F1qbXwHLZT0lBCy3/lulVrx6/uD4++2B5gWv8h76z7bmezDA2vklayuL\nCFhuLyinQ1o5ukx2je09tEVWGTIAACAASURBVIhO7B6wHBZdDlELWOZlrG9Mje2aaBPzhPDp\n6ZnuSrS8ebm0gH7NiVyuu99zwPrOeDyk2Gp8nLEs6ztY5v+yzj3JecnW0WjbuZ9107ReyW9W\nuvS5zKp/m7ULJmnxCyxnHjfuyh+wzBuD2b6DdUeVvxXm5bbD4nvhNuPxwNTPw9z6V+ZedG5n\nrwHLbd2F1uZXwHJZTwkBy63/VrH59+xpvlCv1vMf+t803tf7a1rfKv29k20riwhYbi8op0Na\nubqMvcb2HlpEJ3Y5UDovuhwiFrDM30Rslb6146aJNpmX+bZ4TqLlV3TVtEFBVxFJrrvfc8Ba\n0VnThhZbDfNQYvveuvkrwv+49iTnJZuL2ON3Xb/FeNw98aMblz6XWfWlnTRtiG1BxxgTzVsh\nmseN9EWPrskfsH7RMn5FODEEb4Wu3HaYYYimjYp/Qjg5XuDWvzL2oks7ew1YLusuuDafApbb\nekoIWG79t7o9YQSGHn/lPfT/NVDTYj/31rSDg6yYr5JbWUTAcntBOR3SythlUjW29dBiOrHL\ngdJ50eUQsYBl3vH0pNTYV1qiTeq7Z7ychiVbfjdN67xIhyJuu99zwDKX0CX9JdUvv/jiJ/da\nmIcSW+cYaYz+7tqTnJecen88QEt9Yd6tz2VWfbCxuOV6zuhLWuJuepaj8wcsvU/GdbBGheOt\n0IXLDjNca/SmhfpMLX3FUZf+lbEX3drZY8ByWXfBtfkUsNzWU0LAcuu/Ve5KYzvMm2a7H/rP\nM6Z8ap0Hrt7beiS3snDAcntBOR3SytllkjW29dBiOrHLgdJ50eUQsYBlfh0l/cvmiak22VnT\nOv4vWWx+mBBv+fMzX0VfErYC5bb7vQesCcbAM8nJ5scBqTuO5LJOhv+YHFtuHCQ21917kuOS\nU0ejX/5udLTEi9mlz2VW3bww/LOpMfMeqjFzwLyyzIXJ0mUbFghY5m+SU1dyX1TFd40rgssO\n0+Of3s7WD03eAkR37V8Ze9Gtnb0GLOd1F1ybTwHLbT0lBCy3/luFfvghPfxyov+4Hvrf7mgF\nivqYpvXJveBwBXPayiIClssLyvGQ5nOXcaqxrYcW04ldDpTOiy6HiAUsM+amPlH+qIsx1t0a\nvNAYuj1ZfmSq5c0PjXdI/cRg2eadR/EjwgC57f7B6QsCNzBgmb9n2Ts5+QZj5HH3WlgBK+NW\nfmfq7j3Jccnp90fzlPUWC61Blz6XWXXze6Hpa/NdrNluBZRai/nDnrwB6yr7YXRqNb8VFuay\nw0zGW+IJS9fXtJuTBS79K2MvurWz14DlvO6Cayui7xdTD7f12Bdf6N3Spf9WnfM3sl+A9RFj\nO97T3Y89S7fRtIHmd6I/7VxVvyR03soiApbLC8rxkOZrl3Gusa2HFtOJnQ+ULosuh4gFrJW9\nNK134suJn23aY7ixa61E/bYxsNmv8fK7tF6pljdvnnR64mPeFWaPqM1ZJMrHZffvqmmdE/dC\nb2DAMv//TF574fPemtbPdhI8mxWwuie+yLNwoDFi3uPVrSc5Ltn2JnymlvzGuUufy/o5vbm4\n5Lc03zUOIhvGr+u3kfG/YKJKb3XvUSBgzemgaT0+ixe+16N63wqL4rLDdOvrIpu+oGmdfknN\n69y/MvaiWzt7DVjO6y64tiL6fjH1cFuPffGF3i3djpnVxvwv6LbkyApjV/S2flPmcuwxz2y9\nag1dUlVb7LyVRQQslxeU4yHN1y7j0i7pHlpMJ3Y+ULosuhwiFrCsK/2PMH/1MO/K9bXbLk31\nkr2NoUFvGq+n+ed26HxDquW/7WkMjnrLKF9Wu4tmu3c3guCy+w83j30LVn73R4MDlv6B+UHZ\nuPeW1n93vXk5lHzfpvivMX0/rc+d5nHlvZ2NkbFWsVtPclqy7Wi0dActeaFS5z6XFbA+72Yc\nIf5pZoJFN5lHpMSpNvPEfb/Hlxi76LJuHc1Lcz2fZ7P1o4yhje43NuC7q3toJ1XVG0PJXHaY\n4ZdOxv/imrZ/el7n/pW5F13a2XPAcl53obUV0feLqodb77UtvtC7pdsxs9os3sSo+vHvmF/U\nXvKC+S79T6vYuX3e6Zi65MnSrY035p8VVbpkzltZTMByfkE5HtJ87TIu7WLroUV0YucDpcui\nyyFqAWuu+bLptM2e2xgvlBPrn9fMBt/9KyMBW1cd23CoWT7txXTLv2LOr/UYuLF5yQ1tx1/V\n1j5ynHe/+Wtb0ysND1j67PhV8uJ/05/kOzCfdPfJxj9F2+5svi61TeJ3iXfrSU5Ltr8Jm+ey\ne35tDjn3uayApT9unvvusPUuW1sLTF7x9Htrx3Ts2934O9n8OOPpPJut/7y5VZk+xqFSG21e\nm/m+YnZ+lXLeYaYx1l6wX7/IsX9l7kWXdvYcsJzXXWhtRfT9ourh1nttiy/4bul2zKw2r3c1\nt6PTplv2sjZ9ROI3Kk7ts2x74z+V3xLPM79AfYCiOpfOcSuLCVjOLyjHQ5q/Xca5XWw9tIhO\n7HKgdGnyMohawNJfSl6/tdPlur5iiDX4qVH+1haJ8u536PaW/2RPLanDSQtV1jySHHf/ssGF\n3mQKByz99YHJBfe6LW8V3jRmeXTFqcm5d/g0Ue7WkxyWnPEmbF6pdFfrh82OfS47YOn/HpTa\nBf3Tn1C/nFr7tda1anI/3LK/5X4xJLmIAxabc9+Zd4urnPMO0+N3s9W6L7EXOfWvrBZwbmfv\nAcu5bxdYWxF9v6h6uPVe2+ILvlu6HjOrzfs7phpC6zwx9Wbr0D4Xafaz3eO1avpXxWkriwpY\nji8ox0Oaz13GsV1sPbSITuxyoHRrcv9FLmDp8yft0rtT72EXWr/Vnnf0hp03PWqBObjoxr37\nde69y6Sfdd3Mwg+lnvD6xGH9unTfdMyUbxXVONqcdv9vZ2zWqdtWR3zjJWDpy2YftX2fLv1G\nTfs9fwVe0KwP7j88Z6eNumw29u661AS3npS75IyjUf2o1FHNqc/lBCx91ROn7Lhh5w22P/5h\n+zfFFkyObdi5+w4TvzMGk4d997fcFTMP7t+tz44nvh6/p/2Nepg57zBdX2j+3zo+a+bc/pXd\nAo7t7EPAcu7b+ddWRN8vqh6uvTe9+MLvlu7HzCpT/+JZu2/SrVPvrQ+ZkfHDwOz2eb+Tpo1O\nT/61r6b1/lGvFg5bWVzAcnpBOR7S/O4yju2S7qFFdGLd+UDp3uR+i17AKoL5s4LnVFcCkUKf\nQzWj/6JEkegyBCwH12vJ25UBwaDPoZrRf1GiSHQZAlbCyq/TZwoP0bROS/LMC/iBPodqRv9F\niSLXZQhYls937KIdnRyZ39l2tWegPOhzqGb0X5Qogl2GgGVZsZGmdX4lMXygZr8DN1AW9DlU\nM/ovShTBLkPAiptu/nL0yvm6vvLNvYzBHcp2ZVdUpun7OZtWxlXS50JDQfdRXg/6L0rk0GUq\n5ZVTJgSsuFUHW5fE6LXF+ubDBp8WfgZC5QTN2bHlWyV9LjwUdB/l9aD/okQOXaZSXjllQsBK\nWHF+51Tb7jFXdW0QNBWvc/pcaFTK20Sg9aD/okS5XaZSXjllQsBK+e7qMZt267LxsLNfU10T\nRAV9DtWM/osSRazLELAAAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAA\nwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbB8s+x/lsWq6wEAAFQjYPnl1nZS\n037tRtL4yN9VVwUAAKhFwPJH3UHSYuwdtbX3H99BuvxHdW0AAIBSBCxfLI/J+jfVWh4ZWdPy\nMdX1AQAAKhGwfHGw/H1WbdJZzZrMUl0hAACgEAHLD1Ok+8zatEtaNH1adZUAAIA6BCwfvNm0\n9W21dhc1bfWB6koBAABlCFje/dm95sLaTKfWdPlFdbUAAIAqBCzvjpPhtdlGy5CVqusFAAAU\nIWB59lajvz2YE7Bmbybnqa4YAABQhIDl1aot5KKcfFVbe0/7Ri+orhoAAFCDgOXVTbKtQ76q\nrb2sUYcFqusGAACUIGB5tGjdZrc4BqzasbKP6soBAAAlCFgenS2jnfNV7aO95XbVtQMAACoQ\nsLz5seVaM10CVu2MFq2/VV0/AACgAAHLmyNlnFu+qq09RgbXq64gAAAIHgHLk8+b/O0R94A1\nezO5RnUNAQBA8AhYnoyS09zzVW3t7Wu0nKO6igAAIHAELC/erek2O1/Aqj1ZtuaC7gAARA4B\ny4td5Ly8+aq2dqBcrLqSAAAgaAQsD16WvgXyVe09bZq9q7qaAAAgYAQsD7aRSwsFrNpzZYO/\nVNcTAAAEi4DVcI/JFgXzVW3tLnKM6ooCAIBgEbAabEXfmmuLCFizOtQ8prqqAAAgUASsBpsh\nQ4rIV7W1Vzdt973qugIAgCARsBpq0brNbisqYNUeLtuuUF1bAAAQIAJWQ53pepfnbLMHyGmq\nawsAAAJEwGqgz5u3nVVkwKq9b92aB1XXFwAABIeA1UBD5ZRi81Vt7dTmrT5WXWEAABAYAlbD\n3C0b579JTqZTpcdvqqsMAACCQsBqkPntm00vIV/V1u4lO9aprjQAAAgIAatBRsghJeWr2sf6\nyyH1qmsNAACCQcBqiOnS97HSAlbtrPVloupqAwCAYBCwGuC9FqvfUmK+qq29o73MUF1xAAAQ\nCAJW6eZ3qTm75HxVW3v9Go0fUl11AAAQBAJWyf4cIGMakK9qay9v3vwF1ZUHAAABIGCVatnO\nsl0pV2iwmdik1Vuqqw8AAMqPgFWiJcNks0calq9qa0+rafeh6g0AAABlR8Aqza8Dpd9DDc1X\ntbXja/72hepNAAAA5UbAKsn73WSbhxuer2prD5Wu36veCAAAUGYErBLUT1utZmQDv3+VNFr6\n/qJ6OwAAQHkRsIr3zTBZ/Sxv8cqwh2yxSPWWAACAsiJgFWvpxavLxrd6zle1s3eUIctUbwwA\nACgnAlZxlt/SWVod6/HjwbhHNpd9V6neHgAAUEYErGIsvrabNBl+rx/xyjCrt5yieosAAEAZ\nEbAKe/PoNaXpLqXffdDVPZpcp3qjAABA+RCw8lv6/MndRNqMucO/eGWYsWbjJ1VvGQAAKBsC\nlrtvH5mwYwuR5tue0+BLt7uZ1HTN/1O9eUBSrWQYYJv0+WoiT+U84a0j+67ZtP22E3Mu6vby\nHu2adjl2XrrgLmn8TjmqDAAVjoDlZMnbNx0/qK3xTlPTaffzHvQ7XZlOlJ7/U72VQIJ7wFo1\nUHID1pIDk3O2vDlzygONZfDBPaTrr8mCX9rJ6WWsOABULAJWllUfXH/wRk3M9451Bow9755y\nhCvLCNmNnxKiQnw+Me0okVHpKVMkN2CtGmqU7XjGpCM6G/+CPGSfsriNXKbry7eRw5IlY6Tn\n0vLWHQAqEwHL7vOpsbWM945mvXYZd9n9ZctWlkc3lvNUby6Qa6Ss9nVqZM5qsl5OwLpOpOVz\n5kDdPiKd7f8n3C5r1RkPj0jLJfGCx6Tm5TLXFwAqEwEracULJ3Q3wlX7QeOmPlrebBV3d/tG\nz6jeZiDbbJFLUiOrtpGOE3ICVg+RO+NDv68t8oZtyhEyzHyYJ/K6Nf6HJseUtbYAULEIWJbF\nDx7QRqT5luNuDCJbxV3RZO0fVG83kGlxJ9lgeWpsisgDF2UHrB9rpG3ytNVYkdttk4YkPhts\nlig9XDpxXygAEUXA0vVvbtithUibXSY+FFy6Mv1DdlipetuBDMdJzSupkTmryV56TsDS675N\n/QT2KJHptin95TjrcS25xnx4sUa4HAmAqIp6wFr8xEkbikjHkZN9uQ1OSWb3lwtVbz9g924j\nOSQ1smpbafOzQ8CyGSryvG10y8Qngq3kWuPvku5yYJnqCQAVL8oBa0Ht6Vs1EWna7/AZgYcr\nyz1tm7xRuJpAYAbJaunPra+0vmuVL2D90ETWrrOND5X9zYfljeQu4+EkWfc3fc7JOwwY+1jZ\nKgwAlSqiAWv5O9MO7lMj0qj7XufPUpOuTBfVdF+selcAKY+LTEiNzFlNdtfzB6zhIlfax8fL\nlubDJyL/0fW3Gsks/anm1vWy+Ko7gMiJXsD67ZXrj9jCPOo332jUeWW+FkNBI+Rw1fsDSNlC\n1khd/3bVttLaPJuVJ2CdITI442uEM6XJfONhsrSt0+s2kr30hevIiO+WTK+R2WWsNQBUoggF\nrOWfz77iqEHrmv9PN+6607irA7kYQwEPdZZa1fsFSHhW5OTUyFUit5iPrgGr/kSRTRZmFNV1\nlL2X6P9tJ2fo+kRp85M+Q9Yw5xgrQ8pXawCoSNEIWN8/ev4+fZpan1W06zf8uCsD/rlgHlc3\nWW+B6r0DxO0sjb5LDn/RUna2BtwC1sI9RDadl1X4XHNp2bVGNvlT/6iZ3Krr+8hws/g+abKs\nXJUGgMoU+oC16v2rR2pmsmrRffv9T7tqpupElW1/2Vf1LgIs3zaSnZLD9dtJq2+tIZeA9dUG\nIjvlXuTqnT3bNetxxh/6yi1lqDHaxzyXpevvi7xXnjoDQKUKdcCq//javc1bNq/Zf+zZNwd/\nGYaiPNpDHiq8JUD5XZC6QruuXy2SuI+zc8B6qZ3IuBXuy7pC1vjGeFhbJptj34s852tVAaDi\nhTZgrXhn6sh1jHDVdsdjp6sOUXld22RdPiREJdhQGiW/4v59S+k1K25fkbNnzfo0c9YHm0qT\nG/Is6suW8UuNJh7mizxSjhoDQOUKZcCae/8p27Y0wlXrbcfdoDo/FbZ//NpBgFrfSvwiC6ZX\nJctFGbM+3FjWzHcnzfpBso11N522coX58L3I0+WoMgBUrrAFrFXvTtlzPeP9oKbjkOOmqY5O\nxXlkfX7DjgowQ+T05HD+gPVmC1nzP/kX1fwza6C7nG0+fGBdGAsAoiRUAev3e/ZtZ7wXrDXg\nwItUX+CqFFObdPhD9a4DjrB9Bcsm9ztYf3SR1V7Lt6QfWssl8aGYjDIf7pfGS3ypIwBUjfAE\nrMV37tZMpM2gE25UHZhKNlqOUL33gAEibzsUpwPWiePHW/fRGSfxb1a5ismmie+/Xy3tzOsz\nHCjb+1hRAKgGIQlYq57Zv6VIl32vrtDfCub3cKeaF1TvQUReW5Hsy1qZ0gGrucj7xsPcptL4\n7IkpN+U8415p8n5icEFrOWmV/mwTmVmuWgNAhQpFwJpzdieRdUZfrzooNdjkmvX/VL0TEXWN\nRZw+x8sJWLMyv501IPsJv65tu6HhPY1kvd4iY8tUZwCoWNUfsBbcMFCkxZBLqvLcVdIIOUH1\nfkTELRJp5FRecsDaT/rYLtv+4tDWLfpduzJ7JgAIuyoPWP+7Y49mUrPRCbNUJySPZv2t0euq\n9yUAAPBLNQesOVOHNhXpdOAtquORDy6u6bNU9f4EAAA+qdaA9fWdh3UTka5jr1UdjXyya/oa\nRAAAoMpVX8Cq+2jmObubN8Fp0f/om1XHIv/MXKfxm6p3LQAA8EcVBaz5b957yZE7rd/Y/GJt\nmwGHXP6o6kzkr3/W9PlL9S4GAAC+qIqA9eszkw7YvFX8N0uteg8++LzbVaehcthVTlK9owEA\ngC8qPmB9d/shvcxg1aTDFnscNmFqNd0Cp0Sz1mv0L9V7GwAA+KGiA9by50/ua37ZauORp097\nRHX+Kb/LGnXhnoQAAIRB5QasxQ/s21qkWb9DpoTsy1buRsoBqvc6AADwQYUGrMX37NlCpN2u\n5z2oOvQE6ZH15V7Vex4AAHhXiQFrxewxLUW0kVOq+u43DTGteeu5qvc+AADwrPIC1menrCuy\n7qipqsOOEsfI1stVNwAAAPCqwgLWyocG18jqu1weuXNXSQPlTNVtAAAAvKqogLVkajeRDU5+\nSHXKUei+dRo9q7oZAACARxUUsBZfurY0HXqN6oij2OWN1/1ZdUsAAABvKiZgrbhuHWk58k7V\n+Ua9g2XwKtWNAQAAPKmUgPXaRtJ85L2qw00lmL25XKi6NQAAgCeVEbDqTm5UM/gO1dGmQtzd\ntvErqhsEAAB4UREB64ctZb1LVOeaynFJTaf/qW4SAADgQSUErE86ynYzVaeaSjJaRqluEwAA\n4EEFBKxP15EDInvdK0eP9pa7VbcKAABoOPUBa14XOVx1oqk005u3+Ul1uwAAgAZTHrCWbyej\nVeeZynO47KO6YQAAQIMpD1jnyAA+H8zxWC+pVd0yiDYv/Vd13QFAPdUB6z+N29/nVyoJk6mN\n11+quGkQbV66r+q6A4B6igPWqs3kfL8ySbjE5FK1TYOI89J7VdcdANRTHLBukW39SiQhc+/q\nrReobRtEm5feq7ruAKCe2oC1rFPTW/xKJGFzsJyptG0QcV46r+q6A4B6agPW9RLzK4+EzqzW\na3AKC+p46byq6w4A6ikNWCu6NuUGhK4OlokqGwcR56Xvqq47AKinNGDNlGF+pZEQemD19n+p\nbB1Em5e+q7ruAKCe0oC1Tc31fqWRMNpLblTZOog2L11Xdd0BQD2VAetD2divLBJKtzTqp7B1\nEHFeuq7qugOAeioD1rFyhl9ZJJz6y78VNg+izUvPVV13AFBPYcBa1rbVI35FkXA6R45U1zyI\nOC89V3XdAUA9hQHrQa7RUMCjbVrzNXco4qXnqq47AKinMGDtI1P8SiJhNUIeUNc+iDYvHVd1\n3QFAPXUBa1GLv/mVQ0LrStlTWfsg4rx0XNV1BwD11AWs+2SUXzkkvLQWi5Q1EKLNS79VXXcA\nUE9dwBopV/oVQ8JrlNyvrIEQbV76req6A4B6ygLWsjXWnu1XDAmvK2WMqgZCxHnpt6rrDgDq\nKQtYT/AbwiLMbr9mnaoWQrR56beq6w4A6ikLWMfIRX6lkDDbTZ5V1UKINi/dVnXdAUA9ZQGr\na4uH/QohYXaenKSqhRBtXrqt6roDgHqqAtYnspVfGSTUHmzWW1ELIeK8dFvVdQcA9VQFrCtl\nvF8ZJNw2k68VNRGizUuvVV13AFBPVcAaJjf7FUHC7R8yQ1ETIdq89FrVdQcA9RQFrKWrdfAr\ngYTcdTJSTRMh4rz0WtV1BwD1FAWsF2R3vxJIyM1u226VmjZCtHnptarrDgDqKQpYZ8nZfiWQ\nsNtR3lfTRog2L51Wdd0BQD1FAWtAo/v9CiBhd7xMUdNGiDYvnVZ13QFAPTUBa2GTHn7lj9C7\nSWJK2ggR56XTqq47AKinJmA9Lnv5lT/Cr30bvoSF4Hnps6rrDgDqqQlYp8lEv+JH+O0oHyhp\nJESblz6ruu4AoJ6agMVXsEowXq5V0kiINi99VnXdAUA9JQFrcVO+glW862RfFY2EiPPSZ1XX\nHQDUUxKwnpERfqWPCJi9RkcVjYSI89JnVdcdANRTErDOlbP8Sh9R0F++VdFKiDYvXVZ13QFA\nPSUBa8eau/0KH1FwoNynopUQbV66rOq6A4B6KgLW8pbciLAUF8vxCloJEeely6quOwCopyJg\nvSVD/coekTCrcX8FrYSI89JlVdcdANRTEbCmyAl+ZY9oWL/pXwqaCdHmpceqrjsAqKciYI2U\n6X5Fj2jYTV5X0EyINi89VnXdAUA9FQFLW3O2X9EjGk7kfs8InJceq7ruAKCegoA1V7b0K3lE\nxA0yOvhmQsR56bGq6w4A6ikIWPfKwX4lj4iYvXqX4JsJEeelx6quOwCopyBgHSuX+pU8oqKf\nzAu+nRBtXjqs6roDgHoKAtbmTR70K3hExWiZHXw7Idq8dFjVdQcA9YIPWH824U7PpTpHzg28\nnRBxXjqs6roDgHrBB6yXZQ+/ckdk3CHDAm8nRJyXDqu67gCgXvABa5Kc6lfuiI727eoDbyhE\nm5f+qrruAKBe8AFrT7nJr9gRHVvLl4E3FKLNS39VXXcAUC/4gLVea79SR4QcJPcF3lCINi/9\nVXXdAUC9wAPW1zLAr9QRIRfJyUE3FCLOS39VXXcAUC/wgHW/HORX6oiQ+2u2C7qhEHFe+qvq\nugOAeoEHrBPlYr9SR5R0WGNl0C2FaPPSXVXXHQDUCzxgbdVopl+hI0p2kI+DbilEm5fuqrru\nAKBe0AFrWfOufmWOSDlcbg+4pRBxXrqr6roDgHpBB6x/yy5+ZY5IuUzGB9xSiDgv3VV13QFA\nvaAD1tVyvF+ZI1JmNRoQcEsh4rx0V9V1BwD1gg5YY2SaX5kjWro2rwu4qRBtXnqr6roDgHpB\nB6yuq8/2K3JEy07ybsBNhWjz0ltV1x0A1As4YP0km/mVOCJmnEwPtqkQcV56q+q6A4B6AQes\nh2WsX4kjYq6Uw4JtKkScl96quu4AoF7AAes0ucCvxBExjzTdONimQsR56a2q6w4A6gUcsLar\nuc+vxBE1vZr8GWxbIdq8dFbVdQcA9YINWMtbdvIrb0TO7vJKoG2FiPPSWVXXHQDUCzZgvS1D\n/cobkXOSTA60rRBxXjqr6roDgHrBBqxr5Di/8kbk3CCjA20rRJyXzqq67gCgXrABa1+53q+8\nETmzV+8SaFsh4rx0VtV1BwD1gg1YnbnMaMP1kx8DbSxEm5e+qrruAKBeoAHrB9nCr7QRQWPk\n0SAbCxHnpa+qrjsAqBdowHpADvArbUTQeTIhyMZCxHnpq6rrDgDqBRqwjpeL/UobEXRPzaAg\nGwsR56Wvqq47AKgXaMDatPEsv9JGFGmrrwiytRBtXrqq6roDgHpBBqxFTXr6lTUiaZB8EGBr\nIeK8dFXVdQcA9YIMWM/KCL+yRiSNk+sDbC1EnJeuqrruAKBekAHrXDnbr6wRSdfI/gG2FiLO\nS1dVXXcAUC/IgLVjzT1+ZY1IeqxltwBbCxHnpauqrjsAqBdgwFrWgjs9e7O5/BBccyHivPRU\n1XUHAPUCDFgvyW5+JY2IOlDuC665EHFeeqrqugOAegEGrAvldL+SRkRNknHBNRcizktPVV13\nAFAvwIA1uOZOv5JGRD3UbIPgmgsR56Wnqq47AKgXXMBaulpnv4JGZP29Zl5g7YWI89JRVdcd\nANQLLmC9IHv4lTMiknXoUwAAIABJREFUaz+ZGVh7IeK8dFTVdQcA9YILWGfJBL9yRmRdKkcH\n1l6IOC8dVXXdAUC94ALWFo3u8ytnRNYjLXoG1l6IOC8dVXXdAUC9wALWgka9/YoZEbaZfBtU\ngyHivPRT1XUHAPUCC1j3yVi/UkaEHSY3BtVgiDgv/VR13QFAvcAC1iFyhV8pI8Kuk5FBNRgi\nzks/VV13AFAvqIBVv16rx/xKGVHWfq3lAbUYIs5LN1VddwBQL6iA9Zbs6FfGiLRd5MWAWgwR\n56Wbqq47AKgXVMCaKKf6lTEi7Vw5OaAWQ8R56aaq6w4A6gUVsDZpwkUa/PBg8+4BtRgizks3\nVV13AFAvoIA1V/r5FTEibiv5bzBNhojz0ktV1x0A1AsoYF0u4/xKGBF3spwbTJMh4rz0UtV1\nBwD1AgpYmzW6y6+EEXEzm/EZIYLgpZeqrjsAqBdMwPqMTwh9M1DeCqTNEHFeOqnqugOAesEE\nrLPlRL/yReSdLeMDaTNEnJdOqrruAKBeIAFrVefmM/3KF5H3SOs2S4JoNEScl06quu4AoF4g\nAetJGeJXvEDt3nJLEI2GiPPSR1XXHQDUCyRgDZfL/UoXqL2xZtMgGg0R56WPqq47AKgXRMD6\nqvH6foULGAbICwG0GiLOSxdVXXcAUC+IgDVeTvArW8AwSQYH0GqIOC9dVHXdAUC9AALWT6u1\nf8SvbAHTRvJS+ZsNEeelh6quOwCoF0DAOlaO8itZwHKZbLmq/O2GaPPSQ1XXHQDUK3/A+qTp\nOg/7lSwQt7XMKHu7IeK8dFDVdQcA9coesFZtJ2f6lSuQcEuLNeeWu+EQcV46qOq6A4B6ZQ9Y\nk6W/X7ECKeNlwNJytxyizUv/VF13AFCv3AHrxaat7/ArVSBtexmzssxNh2jz0j1V1x0A1Ctz\nwPpP68YX+5UpYPNgb9m/rrxth2jz0j1V1x0A1CtvwHpszRru8lwe9/WUgV+VtfEQbV56p+q6\nA4B65QxYcw+QZqf4lCeQbdbWstqZP5ex+RBtXjqn6roDgHoeA9aFo9zs2l+rkdX7bYuy6dlU\nGv1t0532dm0Dkz/dBNFDwAIALzwGrJ0Elc2fboLoIWABgBcBB6wmXbp06ViWIJGtnbGmVkGs\nyNykDkGsSNoba1qj1Cf5000QPQQsAPAi4IDVbPPNN9+k1IzQIF2NNa0dxIqaGyvaOIgVSTdj\nTe1LfZI/3QTRQ8ACAC88vgE/PqM0U4yMsE2Jz2mYscaaTghiRZcbK9o+iBXNGG2s6eRSn+RP\nN0H0ELAAwIuAz3D8bGSEIYGsaaKxpllBrOg7Y0W7BLEifYKxpkcDWRNAwAIATwhYXhGwEEoE\nLADwgoDlFQELoUTAAgAvCFheEbAQSgQsAPCCgOUVAQuhRMACAC8IWF4RsBBKBCwA8IKA5RUB\nC6FEwAIALwIOWL+NGzfutEDWdIexppeDWNEvxorOCmJF+i3Gml4PZE0AAQsAPOFK3wAcELAA\nwAsCFgAHBCwA8IKABcABAQsAvCBgAXBAwKoIn68m8lRq7NV/9GzZ5u+H/ruomeNe3qNd0y7H\nzksX3CWN3/G9mgByEbAAOCBgVYJVAyWdmZYdLglnFJ454YHGMvjgHtL112TBL+3k9HLVFoAd\nAQuAAwJWJZgi6cy0ah+RNQ+fesnQGpGrC82csLiNXKbry7eRw5IlY6Tn0jJWGEAKAQuAAwJW\nBZizmqyXykzTRLb80Rx4qLGssajAzAm3y1p1xsMj0nJJvOAxqQnk8jUACFgAnBCw1Fu1jXSc\nkMxMS9aRdvPj5afueso3+WdOOkKGmQ/zROKX0PtDk2PKWWMAaYEFrPmjY7FXUmM/3Hj82L0O\nuuCZlf6t4P2YzUllXJHls+uOGjn22Ks+Tpf4v6a3YxmOKNuKgFwELPWmiDxwUTIz3S9ycdEz\nJw1JfDbYTG63Hg+XTg7nvgCUQ1ABq/6cmC1gzdozERrGzcv3pJK85hSwyrEiw4ppwxPLnVZf\nvjU5B6wybRKQiYCl3JzVZC89lZlGiXxd9MxJ/eU463EtucZ8eLFGnixPXQHkCCpgPRmzBaxH\njeFzZz1+6z9isUN9+3fq6VjsgnuTni7jioy0eEUsNmrq7FkXGDHr3vKt6Yd7026Mxc4u24qA\nXAQs1VZtK21+TmemTtLR+Pvbe685xqysmZO2THwi2EquNf4u6S4HlrXKAGwCCljzR8UOSQWs\nn/eJ7fmWObDsoljsGr9W8VAs9kJWUXlWpOvPxWInWL96fnef2F7/K+eaUq6N7flNICsC4ghY\nql0pcqeeykwLRXbSXxxUIyKdL19WYOaUobK/+bC8kdxlPJwk6/6mzzl5hwFjHwug/kDUBROw\n6s+OHTArFbCmp877LD0gNuJ/Pq3jzlgs+/J75VmRXndwbMxv8cH7zrvpuzKuKeXD4bG79SBW\nBCQQsBSbs5rsrqcz0wciY6c2SlwHa+vf88+cMl62NB8+EfmPrr/VSGbpTzW3lsBX3YGyCyZg\nPRGLvfB4MmCt3D+21+LEhLtjsYd9Wse0WOyjzJIyrUh/Ixa7J5g1JdUdHTuiLogVAUkELLVW\nbSutf9DTmekVkU0ad739y2XfXNlGZHj+mVNmShPzl4eTpW2dXreR7KUvXEdGfLdkeo3MDmYz\ngAgLJGDNGxWbqKcC1qex2JnJKZ/EYhN8WsnkWCzruwllWpG5ph+CWVPSnbHYu4GsCEgiYKl1\nlcgt5mMyMz0hIn3iZ84/Xl3kX3lnTqnrKHsv0f/bzrz2+0Rp85M+Q9ZYaJSPlSFl3wIg6oII\nWPUTYmN+TQcsY+DW5KS64bExPq3l/FhsfmZJmVakHxY7yPi7+Kv/+7nca0r4bs/YxYGsCEgh\nYCn1RUvZ2RqwB6xkeJoocmjemdOeay4tu9bIJn/qHzUT4+CxT/zk133SJPd7XNUm99aLDjdj\nfEpsslIl92lEeQURsIxU8IyeDli3xGKPp6YdGIv59Fu404wl/evCg/bc9/hbE8GnTCtaOjw2\nQf/4HPNCDYfev6yca0q6ILbnj3oQKwJSCFgq1W8nrb61hpKZ6WWRFslr330k0jPvzDbv7Nmu\nWY8z/tBXbilDjdE+8fsYvi/yXjnrH4TcWy863YzxPveAxX0aUWYBBKx5o2Ln6raANSUWey01\n8bhY7Dt/VjMuFjsmcYWoPe+vL+OK5sZik54ckVjVCb+XcU0JH8ZiMxKD5V0RkEbAUulqkZvj\nQ8nM9KFIh+TU5SJr5J3ZwRWyhvlD5LVlsjn2vchzvlc6YLm3XnS4GaN+g8jwiUl32Kdwn0bf\nFXVO0fDWkX3XbNp+24nfZ08I2znF8ges+gmx0eZnd6mAdXEs9nZq6imx2Bx/1nOQEXf2nTLr\nsemHGgN3lXFFn8Rix+156HM/Lf/18QNisbPqy7emhDNieyd/LljeFQFpBCyFvm8pvWbF7Sty\n9qxZn+pLG0nr1PTG0jzvzLm+bBm/1GjiYb7II+XdhLLLvfWi080Y9UtF7ndeAPdp9Ftx5xT1\nJQcmzyi2vDlzSujOKZY/YNXGYta1g1MB68JYLH1y+sxYzOlo0AD7xGI3WK+TFTcaCeuL8q3o\nHfOq6n9Ygz/tG4u9Ub41xRmB7rrkcFlXBNgQsBR6VbJcpOu9RJL/8P9qO5vlPHO2+kGyzSpz\noK1cYT58L/J02beirHJvveh4M0b9DNct5T6NfivunOKqoUbZjmdMOqKzSM1D9inhO6dY9oD1\n86jYBOsDO+czWCf7dhZmyZ9LkoMXxWKXl29F/4mlr7j1SCx2UfnWFGdsTepEallXBNgQsBRy\nykwniST/03pUrKte5Zk52wxp/pk10F2sW0J8YF0Yq5rl3nrR8WaM+lEi2RdITOA+jT4r8pzi\ndSItrc+n6/YR6bzKNiV85xTLHbDqz4yNin+gmgpYV9q/R3RsziUPfDAnFhtTX7YVfRyL7Zn8\nsumvsdhYvbyb9L8RsVNTI+Xfd0AcAasypCLDOyJdEu87O4lcn3/mLD+0lkviQzEZZT7cL42X\nOM1YNXJvveh8M0Z9jMhnzovgPo3+KvacYg/rpgOm39cWecM2JXznFMsdsGYnPiC0BazbYrH0\nAXi/WOxP31dav3cstrBsK/omFkvfz2tkLLa8vJs0K7UH9SD2HRBHwKoM6ciwl8ge5mWG688V\naWddb/jE8eN/cJk5U0w2XREfulramT99PlC2L1uNg5B760WXmzHqw0TmZT87jvs0+qvIc4o/\n1kjb5GmrsZI4exgXvnOKZQ5Yv46MHfla3DWx2E2vmfcpfToWS32zbUkstn8ZVjs2Fvu1bCta\nPiI2KjVihJyl5d2kE2Kx31IjAew7wELAqgzpN6gfOol0OmvGRZuK1MRv4tBc5H2XmTPcK02S\n8y1oLSet0p9tIjPLV+UA5N560eVmjPoAkUW377Zu0zabnflt5hTu0+iros8p1n37f8nBo0Sm\n26aE75ximQPWJ7EsN+r6l7H0Z17vxmIX+L/WuuGxWF35VnRM+pKmRtjaWy/rJi2IxWwnScu/\n74A4AlZlsL1Bfb5J4ktWrRK/iysyYP26tqRv+nBPI1mvt8jYMlU3GLm3XnS7GaPeWxr1Sey2\nZlMypnCfRj8Vf07RZqjI87bR8J1TVBCw6v+RvkvxNOsapH7493UTX0wOG9FjvF6uFVmf0yX/\nx/koFjuljGsyPBeL2SJ+GVcEZCBgVQb7G9TyW3bu0Kxt//OS/+AVGbD2kz62y7a/OLR1i37X\nrsydrXrk3nrR9WaM+rpGYmp70KVXHfM3Y+BS+xTu0+in4s8ppv3QRNaus42H75xiMDd7NqW+\ng2XeWe+W+NCCkbGRPn3V8tlYbFyiqerPjMXuLNuKdP2rWOyQv+KDF8di95VxTboVo+xnScu3\nIiADAQuVKvfWi643YzRD6AnWF9b+Olykkf3CNtyn0UclnFNMGy5ypX08fOcUVQSsP/aNDbd+\ne7notEQ+8cGyA2KxS6zXUd01sdjoP8q2IsOkWOw8K9s8GIuN+r2ca9L102Oxj2yj5VsRkIGA\nhQqVe+vFPDdj/P33hYmh+sEiR9onhfk+jQEr5ZxiyhkigzPOpIbvnKKKgKW/ODwWO/uB2TcY\nmejkFX4t/60RsdjYaY8+dsNBsdjwN8q4Il3/32Gx2MG3PT3zlFgs9nxZ16TrB2Tdw7psKwIy\nELBQmXJvvZj3Zoxpz4p0ySgI730ag1bKOcWE+hNFNlmYURS+c4pKApb+7D6Jr2Sd7eN1Bt7c\nL/lFrwNSl9Ary4p0/acTE4sd+WyZ16TvlX1H53KtCMhAwEJlyr31YlE3Y9T1v0QaOX73LHz3\naQxYSecU4xbuIbJp9gU0QndOUU3A0n+57YR99z500pu+ruHPx847aO99Dr3gCVtblGVFur7y\nhfMP3WvsiXemL6BQpjXVGUkq60RVmTYJyEDAQkXKvfViUTdjNNQ3EnG68Ur47tMYsAacU/xq\nA5Gdci9yFbZzisEFLABVhICFipR7Z6Bi7hVkMpLT6g7F4btPY9BKP6f4UjuRcXm+4xKWc4oE\nLAAOCFioSKUFrEePGHZPcvg+kW0dFhi++zQGrPRzig82lSY35FliaM4pErAAOCBgodLlnh3J\nKblJZMPEd0aWbyZyee5CwnefxqCVfE7x4cayZr6LOIbnnCIBC4ADAhYqXb6AlbhP45/tRMZY\nV+1ZPEak/UI9R+ju0xi4UgPWmy1kzbznCMNzTpGABcABAQuVLl/ASl7l/uFGRq4af9WVR7UX\nafJs9hLCeJ9GlYo4p6j/0UVWey3fQkJ0TpGABcABAQuVrpiApT/YNnkapcNLuYsI330alSri\nnKI+TuLfrHIVonOKBCwADghYqHRFBSz9tylD12u+WqfhNzpdSyl092lUq4gWmdtUGp89MeWm\nnGWE6ZwiAQuAAwIWgNIUEbBmZX47a0D2IkJ1TpGABcABAQtAaXwIWKE6p0jAAuCAgAUAXhCw\nADggYAGAFwQsAA4IWADgBQELgAMCFgB4QcAC4ICABQBeELAAOCBgAYAXBCwADghYAOAFAQuA\nAwIWAHhBwALggIAFAF4QsAA4IGBVHFoEqCoELAAOCFgVhxYBqgoBC4ADAlbFoUWAqkLAAuCA\ngFVxaBGgqhCwADggYFUcWgSoKgQsAA4IWBWHFgGqCgELgAMCVsWhRYCqQsAC4ICAVXFoEaCq\nELAAOCBgVRxaBKgqBCwADghYFYcWAaoKAQuAAwJWxaFFgKpCwALggIBVcWgRoKoQsAA4IGBV\nHFrEFbsGlYiABcCBh7cs3rPKgxZxxa5BJSJgAXDg4S2L96zyoEVcsWsqjYcWCVGTELAAOOAA\nWXFoEVfsmkrjoUVC1CQELAAOOEBWHFrEFbum0nhokRA1CQELgAMOkBWHFnHFrqk0HlokRE1C\nwALggANkxaFFXLFrKo2HFglRkxCwADjgAFlxaBFX7JpK46FFQtQkBCwADjhAVhxaxBW7ptJ4\naJEQNQkBC4ADDpAVhxZxxa6pNB5aJERNQsAC4IADZMWhRVyxayqNhxYJUZMQsAA44ABZcWgR\nV+yaSuOhRULUJAQsAA44QFYcWsQVu6bSeGiREDUJAQuAAw6QFYcWccWuqTQeWiRETULAAuCA\nA2TFoUVcsWsqjYcWCVGTELAAOOAAWXFoEVfsmkrjoUVC1CQELAAOOEBWHFrEFbum0nhokRA1\nCQELgAMOkBWHFnHFrqk0HlokRE1CwALggANkxaFFXLFrKo2HFglRkxCwyu05TdMeUF0JoFQc\nICsOLeKKXVNpPLRIiJqEgFVuBCxUJQ6QFYcWccWuqTQeWiRETULAKjcCFqoSB8iKQ4u4YtdU\nGg8tEqImqeKAtZ+2neoqFIOAharEAbLi0CKu2DWVxkOLhKhJqjdg1fclYAFlwwGy4tAirtg1\nlcZDi4SoSao3YH2lEbCAsuEAWXFoEVfB7JqVs0avv1qzdXe48Hv3krS3juy7ZtP2207MmfTy\nHu2adjl2XrrgLmn8TkmbWwU8tEiIemv1BqxZBCygfDhAVhxaxFUgu+bTv0tC86vcSlKWHJic\n1PLmzCkPNJbBB/eQrr8mC35pJ6c3cLsrl4cWCVFvrd6ANYGABZQPB8iKQ4u4CmLXfNPOCEv7\nT5xyfFcjNd3oXJKyaqhRtOMZk47oLFLzkH3K4jZyma4v30YOS5aMkZ5LvW1+BfLQIiHqrVUa\nsB7QkjZJlKx88vTBG3fuO/DQW+P/F9RvqGmHJ2f/q7Mx51fJsUma1vF3/QOj6HVd//2a3Xp3\n3mDYBd+mF/7N1fv179mp19YH37LAvs43zhu2cecNdzjiwcXJEvdF1D9xxFbr9x10wusELFQp\nDpAVhxZxFcSu2V1ku1/MgeWHi7Rb7liScp0RvZ4zB+r2Eem8yjbldlmrznh4RFouiRc8JjUv\ne9n2yuShRULUW8MSsF7ePlXSY/JKs+QoTft7cvaXzfK7k2MjNG03Xf/cKHpOr+2eeFbn+xNT\nl53ZMb2o6+uTT5qzR6q032OJMrdF6PNHJucdu4iAharEAbLi0CKuAtg1P9bI6v+LD9ZpIq85\nlaT1ELkzPvT72iJv2KYcIcPMh3kir1vjf2hyTEM3u4J5aJEQ9dYqDVgvjR7dQ9O6jx49+khr\n/P5OZprZYth2XczHw1cYRfcYA18mZr/ULD0uMbLUmGeSrs81imofNcJUlw3M81tax7esqfVj\nray0xda9rYA0MfGkl3uZY5sP28Za0XXxQpdF6It3Msf67rSDEb2GP03AQjXiAFlxaBFXAeya\nTw7Y7dTk8EiRmU4lKUb2aps8bTVW5HbbpCGJzwabJUoPl06LGrDFlc5Di4Sot1ZpwDIMsn0H\n6z0j9nS84Cdj6K8HNjECzRXG0PfG4z2J6Xto3bbQtkiMvGpM+Hd8+rW9O5z6ia4vf3WIMTLS\nmmqeG9vtFTOhzb+ljzEc/3HHN8Zgx3O/M4YW3W6WPm6VuixCn2iGvedXGv/W1PbX9iVgoRpx\ngKw4tIirgHdNTOS5/CV13/5fcvAokem2Kf0l/r/+WnKN+fBijTzZkCpUOg8tEqLeGoqAVT/I\nFmK+6K1pXcwoNFDTjo8X/dlZ2+NwTfsuPna5pvUyAtSP5keAHRLfPlzQV9M6WN+4Gq1p/f5M\nLGruhpoWP3lrpKTkrPocYwVbLjOHXBYxv6um9f46XvrTZhoBC9WIA2TFoUVcBbtr5q0haywu\nUJI2VOR52+iWiU8EW8m1xt8l3eXABtSg8nlokRD11lAErNeMDHNAasL1xtiVxuOZmrZVvOQF\nTTtnqqbNio/tpWmHGA8/mckn9ePYs4wR64uG/dKfJer69F2OmGo+fmhMPTFVepuWWJbLIm7V\nrM8g4x4lYKEqcYCsOLSIq0B3zbsbi0wuUJL2QxNZu842PlT2Nx+WN5K7jIeTZN3f9Dkn7zBg\n7GPOT69WHlokRL01FAHrJCPDvJCasKCTpu1oPD5hlP5slVykaQ+9rGknWyPLumrabXo8HXVI\n/fDvgeQHin017dCcdZ1rTJ2TGlvaXdP+obsvYj9j4Itk6coNCVioRhwgKw4t4iqoXTPnlBP2\n7yOy+tQ8JVmGi1xpHx8vW5oPn4j8R9ffaiSz9KeaW9fLCtdX3T20SIh6aygC1vaa1nVFesqu\nmtZxia4vNILWo8mCbxd21AZaI68bgWeuHk9Hg1PPecUYs65jsrOmdXk/e11DNW1r26iRoDbQ\n3RfRT9M2Ts98NAEL1YgDZMWhRVwFtWueM5NQ6zN+z1eS6QyRwSvtBTOlyXzjYbK0rdPrNpK9\n9IXryIjvlkyvkdmlbXNl89AiIeqtYQhYSzpq2k62KccbkeZd43F3TTvLHF/USdtM13fSNOve\nBFckPjk009Gxqef8x/y+ujkw3RhY/9JvMla11FjBvrbxC4x55rsuYqHxODw981UELFQjDpAV\nhxZxFdSueS5+cfa+9+Ypsas/UWSThRlFdR1l7yX6f9vJGbo+Udr8pM+QNcw5xsqQkje7gnlo\nkRD11jAELPNqCf+wTbncGH9Kty4oap1fek7Txuv62YnzWfskvjZlpqNzUs95NxmwVoywLs+w\n/VmP/5GaaM7afcu0vokE57yIL4zHI9O1eYCAhWrEAbLi0CKugts1K3567Yw1RE7OV5KycA+R\nTedlFT7XXFp2rZFN/tQ/aia3Gm9JYv1Dfp80WVZiXSqZhxYJUW8NQ8D6ULN/MV3Xr0t8Cf0N\nTetgpqTzNe0uXZ+taWcaI3XdNO0Jcy4zHV2Qek4qYOlLjktcI7TTiFsTGetTLddLroswr+9+\nQro2tQQsVCMOkBWHFnEV7K75fF2RxwuUmL7aQGSn3ItcvbNnu2Y9zvhDX7mlDDVG+5jnsnT9\nfZH3GlCXSuWhRULUW8MQsN4yIsz/s3ceYFJTax9/t9FEQBDLqmDhKtderr3r5eq93iwLSG+i\noCJIs6DiJyoqSBEURcBCU0AREaxX7B1RsfeGFUSlKMICu/mSSWYmM3NOdmZOck6S+f8eHiaT\nZPO2c878J5OcXObYcpfx3pxEd0src6L12GVVX+j66vLyU/WY6rKmdeMJLKOhD9rPVlH7TdwW\n35jO49xDvJHqDiYaBaEEA2TgQEW4SE7NLLKmY3dbo+svNCPqvzV9bZLx1NC8GKW5dQPi9xlz\na4UagYpEqLVGQWB9kHIplK7fZrx/yFzoUV5+g66v29265vzY8t1+0/UJ8Quk+AJL17e+fO1p\nlo7qaZ60/bQ8MaVWCuxDrEg9g/UwBBYIIxggAwcqwkVyan4kalLbGv2hMiq90+UgXzawphq1\nX1YTLcrHl4AiUJEItdYoCKyV5alTK4wx3j9tLkwvL9d0/Un7kqgh5eVP6PrZ5eUTYnu5CSyT\n1fdXmgprkm5NKJo5dwPvEJ+lXoM1CwILhBEMkIEDFeEiITVLxw5LPFJwLVFd1honD5dQo/+5\nHK/mVDo+9jSdpmQ+esQ8g/VUtr6EAIGKRKi1RkFgbdqjvNx5/8VFhqR531z4pLy8xSZzEqt7\nzXfzzCcLbtk7/vSb2gSWweN7lZe3+kvXt+5p/byYDvsQv6TeRTgSAguEEQyQgQMV4SIhNQOJ\nLowvv0nUgrXGwev1qNFyt+NNo7qfxhb2oRHmy7uxibEig0BFItRaoyCw9NPKy1tuSW5Jvj20\nvPw18+0n5puvy8v/ZV4g1dqalCQLgaXfYqx93Xj9j6HUGM/j5Byidco8WB0hsEAYwQAZOFAR\nLhJS8xhRE/txa/qFRN1Ya5Ksa0n1X3E73A+N6SZrSaOO5st8KtmYrS8hQKAiEWqtkRBYw+O/\nCcYwH8GsWYsXl5dPWrtb+f41sXeHlO+x4dby8n7WNp7A+uGHpI0X7QNfW5540I7JlxtcD2FO\n9JCYyX1DCwgsEEYwQAYOVISLhNRs+zvRMbEpF2omFRE9y1qj60MGDIh9gvQn68oqLhodZl//\nPomamZf69qST8ok8qAhUJEKtNbwC67Ty8n/Yi++UOycCvbE8Ni2DyYLy8p5PJK6f6lde/nzP\nxDa2Orr2wPJ2SRuLjLXmnbPmPA0nJ2bj3XxEi45uMz2YU4veGF97azkEFggjGCADByrCRUZq\nltUnatB51Ngh+xFRb/YavS6R+SSQb8qoZMTIBHdlHGwulcafGPJrYxparT9dSg8KJiFQCFQk\nQq01vALr3+XlLf60l7Vy+zGABm+3LC8/wH6u+ary8oOvtR9go+t3l5fffHB5uX1Ol62O7iy3\nnlQYY2tFefl+sbnfOhurL6+x155vvHmUfwj9893Ky1tZv67r77SCwAKhBANk4EBFuEhJzRt7\nk03RoC2cNbbAWkApHJ1+qDXN6arEm/uLaRdDonUVS0HAEKhIhFpreAVWX1Pz/LrtO3My0M/2\nKi/f/YZfjKUNd+1rrE/M+HZKefmx9hXvsekcTjD+2ZvY6uiPQ8wpGd4yz91ufNbQV+Y8DwYr\n/2YsdlxmSKzVzYPrAAAgAElEQVTNj55pLHZwOYSuX2AsHTjfEHnfTWpVPhQCC4QRDJCBAxXh\nIic1W2Z22LNhabNjLvuUuyZLgdWNWjumbX+uTeN6h07elr5TqBGoSIRaa3gF1hx7xs+XzDeP\ntTSWdjv2zGN3N1cln2t+TWy6ULvhVsfmDx1hb+Koo1f3NHfa47Cj9o0dve0ma/tLpsIqb3Xc\nwbuZr6escTuE/vMRsb9tbci+8k7mPPPz/EkBAP6BATJwoCJckJqgIVCRCJUkvAJr82kOgaW/\ncWpijvUjHeV5xlzRI/6ue7njanieOlpxSuJI5S1Gborv8FFlYu1uQ9e7H0L/4vT4vj3+MGfp\nmu1p5ABIAANk4EBFuCA1QUOgIhEqSXgFlv7b8MP32OuYft9a76ofv+SUA1rsf9Kghx0TNuh/\nmvfw3R5/Z15wnrhui6uOap678qxD9tpjv2PPmZbylM5XR55xaMt9Dus8YaVe2yH0rQ/2PnKv\n1qcMeVXXN5QnLgIDIDxggAwcqAgXpCZoCFQkQiUJscACAPgHBsjAgYpwQWqChkBFIlQSCCwA\nAAMMkIEDFeGC1AQNgYpEqCQQWAAABhggAwcqwgWpCRoCFYlQSSCwAAAMMEAGDlSEC1ITNAQq\nEqGSQGABABhggAwcqAgXpCZoCFQkQiWBwAIAMMAAGThQES5ITdAQqEiESgKBBQBggAEycKAi\nXJCaoCFQkQiVBAILAMAAA2TgQEW4IDVBQ6AiESoJBBYAgAEGyMCBinBBaoKGQEUiVBIILAAA\nAwyQgQMV4YLUBA2BikSoJBBYAAAGGCADByrCBakJGgIViVBJILAAAAwwQAYOVIQLUhM0BCoS\noZJAYAEAGGCADByoCBekJmgIVCRCJYHAAgAwwAAZOFARLkhN0BCoSIRKAoEFAGCAATJwoCJc\nkJqgIVCRCJUEAgsAwAADZOBARbggNUFDoCIRKgkEFgCAAQbIwIGKcEFqgoZARSJUEggsAAAD\nDJCBAxXhgtQEDYGKRKgkEFgAAAYYIAMHKsIFqQkaAhWJUEkgsAAADDBABg5UhAtSEzQEKhKh\nkkBgAQAYYIAMHKgIF0WpETAb9ZIgNSZBE1hb3hhz/vnnn3nmmeefP/gr1c4AULhggAwcqAgX\nRakRMBv1kiA1JgESWOufm9TvmPpEtMe/B157Ta89qdEjql0CoGDBABk4UBEuilIjYDbqJUFq\nTIIisDbfdUKJoa2K92gzdKaV4yUD65TMVe0WAIUKBsjAgYpwUZQaAbNRL4mk1Cw7/++NynY8\nYeT31tsnycHpaftuW9Bp7/p1dj75+u/Tj/Lif5uVtRy4KrliDpW8lXvMmQREYL2wDxW1ajt0\n0kJnlm+uX/asascAKFDw2RE4UBEuilIjYDbqJZGSmo0942Kqwd2xFfNcBNYnB8U31J2YuuWB\nEjqtdyvac018xS/N6PL8Q3cQDIF1Z0nxv+/OTPMNpc1/UO0aAIWJlAES5AIqwkVRagTMRr0k\nMlJT3cZQS6cMH9OvBVHRQnPNnUQVI+PMStn522aGDOs+csKgPY0/mu7c8scOdLOubzmezouv\n6Ux/2yQYv0UgBNZdRdvfxMzzedSmRrVzABQkMgZIkBOoCBdFqREwG/WSyEjN7YZkWmouVHUg\nalFtLIwmms/Z+SyiE38xF7b0JWq2xbFlJjWpMl4WUYON1orFVPRiPjFnEgSB9VLZ9pPZeV5y\nKN2t2jsAChIZAyTICVSEi6LUCJiNeklkpKYV0WxraW1zoteM1+FET7H3/bGItvvdWqwqJ3rF\nsakfnWG+rCJ6NfZ+XTldlHO8bAIgsNbtUXwDL9H31G32m2r/AChEZAyQICdQES6KUiNgNuol\nkZAaQzM1rbaXuxLNNF4uIHqDvfNHPf5zaXz5bKIHHZtOt38brBM7hK73pT025BYslwAIrAF0\nNj/TPWmQav8AKEQkDJAgN1ARLopSI2A26iWRkZqqlR/HFw1lNVU3L56iT2v/O41oqePtkXRx\n7LUJ3Wa+PFdET2TrQW2oF1gfle66kJ/phc3rfK3aQwAKEBkDJMgJVISLotQImI16SSSnpg3R\nM8bLGUSrat13VUNq+Ifj/VH2L4Lb02Tj/437UM88HGCjXmC1oyvdUj2E+qj2EIACRPIACWoH\nFeGiKDUCZqNeErmp+aGUmpsXqh9NtGHmf3Yu2+HwK1by9n37YKJxzhVtqLv5sqWY5hgvQ2nn\n3/TPh518dNfFufuRjnKB9W7RPkvcUr14t1I8MgcA6cgdIEEWoCJcFKVGwGzUSyI3NRVEt5iv\n+1Fxa3uyqzoTMnf7/JLB3Y3t292asnYAHWW+fES0XNeXFdMC/cm6sUOIX+quXGD1oBHuuR5K\n56v2EYDCQ+4ACbIAFeGiKDUCZqNeEqmpGU502jZzYWdDFjXtNXriRbsaC6Mz9ltqyqbGw9em\nrn2QSlcbL+OoaZVedSC109fvRG2/2zi1iJbkFboD1QLrx7LdXE9gPfroIzvV/VmxkwAUHlIH\nSJANqAgXRakRMBv1kkhMTc0QokPWxxbrEg2OXV71V1+i4k/S91xqndz6e+pD+Kp2p/Yb9fea\n0XBdH0k7/KRPo4bm4bpmPGwnZ1QLrGvpgtqSfT5dpdhJAAoPiQMkyA5UhIui1AiYjXpJ5KVm\n/X+JDrMvbV+7dr29tuY0Yv34tfWnV4Y3JBqWsnJpXWqwZxEd8qf+QR26V9c7UIW5eh6Vbs41\n7DQUC6xtu9ebX1uyFzRstlGtlwAUHvIGSJAlqAgXRakRMBv1kkhLzVf7E/2TMW/V00Qt2X/x\n2c5Ej6WseauyWZ1Ww9fp246iNsbb1ua5LF1fQfROTq5kolhgPUmn157t9jRNrZcAFB7SBkiQ\nLagIF0WpETAb9ZLISs0LzYj6b2Vs+IuoeBv7b2aRNXd7BuOp4bfGS3PrLsPvU6fLygfFAqsL\njak92/cUH6zWSwAKD1kDJMgaVISLotQImI16SSSl5qEyKr2TuaWmmIjzxOYfiZqw1n/ZwJpq\n1H5ZTbQoB1dYqBVYGxrsXMsl7jGOppeUuglA4SFpgATZg4pwUZQaAbNRL4mc1DxcQo3+x95k\nyKPtHG+Xjh32Wnx5LVFdxl/UnErHxx6905TGmy/fcx9smDVqBdYc6pRNuq+jbkrdBKDwkDNA\nghxARbgoSo2A2aiXREpqXq9HjZY73j/S74z748vziE5wbBpIdGF8+U2iFoyjTaO61nN29qER\n5su7sYmxhFArsCpocjbpXrJr3TVK/QSg4JAyQIJcQEW4KEqNgNmol0RGata1pPqvOFfcRXSA\nfePflsOJxjo2PUbU5Dt7+UJinbP5oTHdZC1p1NF8mU8lovfXKRVYG+rull2+exNjUlYAgH/I\nGCBBTqAiXBSlRsBs1EsiIzX9ybpYKsGfzYg6rzOX/uhMtGNsyoYhAwb8YLxs+zvRMbHJHGom\nFRE9m3k0jQ6zL5afRM1MmdaTTsordAdKBdYD1DG7fM8p3V+lnwAUHjIGSJATqAgXRakRMBv1\nkkhIzTdlVDJiZIK7jFUPFxu6asDEWy7Ykaj06dhedYlWmK/L6hM16Dxq7JD9iKh35tHmUukK\ne/HXxjS0Wn+6lB4UzYJSgdWNJmSZ8GPpdZWOAlBwSBggQW6gIlwUpUbAbNRLIiE1CyiFo811\nDzWNv93tBWuvuMDS39g7vqlo0JaMg61p7pjR/P5i2sXQYV3FUqCrFVhbmzbN5h5Ck2uon0JH\nASg8JAyQIDdQES6KUiNgNuolkZAalsDSf5vQZpe69feomB6fhD0hsPQtMzvs2bC02TGXfco4\nWDdq7Zi2/bk2jesdOpkzjVYOqBRYL9G/sk34Izs0wmzuAEhEwgAJcgMV4aIoNQJmo14SpMZE\npcAaTldlnfH2NEehpwAUHBggAwcqwkVRagTMRr0kSI2JSoF1SOkDWWd8ivhzrQEA2YMBMnCg\nIlwUpUbAbNRLgtSYKBRYPxUdmEPK/1a8Up2rABQcGCADByrCRVFqBMxGvSRIjYlCgTWLeuWQ\n8gvic4ABACSAATJwoCJcFKVGwGzUS4LUmCgUWD3olhxSfn9pa3WuAlBwYIAMHKgIF0WpETAb\n9ZIgNSbqBFbNrttnO0lDjGPoTWW+AlBwYIAMHKgIF0WpETAb9ZIgNSbqBNZHdFxOOb+SLlbm\nKwAFBwbIwIGKcFGUGgGzUS8JUmOiTmDdThfmlPOHG+6UOfsqAMAfMEAGDlSEi6LUCJiNekmQ\nGhN1AqsDTckt6WdShPIOQMDBABk4UBEuilIjYDbqJUFqTJQJrJrmO+R0Cdajj46lzqqcBaDg\nwAAZOFARLopSI2A26iVBakyUCawP6YQck75k1/rrVXkLQKGBATJwoCJcFKVGwGzUS4LUmCgT\nWFOof65Z70L3qvIWgEIDA2TgQEW4KEqNgNmolwSpMVEmsLrS7blmfSqdpspbAAoNDJCBAxXh\noig1AmajXhKkxkSZwNo9t1mwYuxX/J0qdwEoMDBABg5UhIui1AiYjXpJkBoTVQLrazoq97Rf\nQGMUuQtAoYEBMnCgIlwUpUbAbNRLgtSYqBJYs+mc3NN+X+kBitwFoNDAABk4UBEuilIjYDbq\nJUFqTFQJrAtpbB55P5LeVuQvAAUGBsjAgYpwUZQaAbNRLwlSY6JKYB1UtjCPvA+nIYr8BaDA\nwAAZOFARLopSI2A26iVBakwUCaz1xa3zyfvC7XbeqsZhAAoMDJCBAxXhoig1AmajXhKkxkSR\nwHqa2uWV+DPoMTUOA1BgYIAMHKgIF0WpETAb9ZIgNSaKBNYouiKvxN9MndQ4DECBgQEycKAi\nXBSlRsBs1EuC1JgoElj/oRl5JX7JrvV+V+MxAIUFBsjAgYpwUZQaAbNRLwlSY6JGYNXs2DTP\nzHenqUo8BqDAwAAZOFARLopSI2A26iVRlJqAVUSNwPqCjs0zBfcUHavEYwAKjICNVAACywVF\nqREwG/WSKEpNwCqiRmDdT73zzcHB9IkSlwEoLAI2UgEILBcUpUbAbNRLoig1AauIGoE1mG7M\nNwfD6HIlLgNQWARspAIQWC4oSo2A2aiXRFFqAlYRNQLr2KIH883BQw12xVRYAPhOwEYqAIHl\ngqLUCJiNekkUpSZgFVEisLbUa5F/Es6kxSp8BqCwCNhIBSCwXFCUGgGzUS+JotQErCJKBNbb\ndHr+SRhPFSp8BqCwCNhIBSCwXFCUGgGzUS+JotQErCJKBNY06i+QhT1Lf1ThNAAFRcBGKgCB\n5YKi1AiYjXpJFKUmYBVRIrD60QSBLJxPN6pwGoCCImAjFYDAckFRagTMRr0kilITsIooEViH\nlT4skIV5dfaqVuE1AIVEwEYqAIHlgqLUCJiNekkUpSZgFVEhsDaV7SOShUdPpccVeA1AQRGw\nkQpAYLmgKDUCZqNeEkWpCVhFVAisN+kMkSw8OhaXuQPgNwEbqQAElguKUiNgNuolUZSagFVE\nhcC6kwaIZOHRR/cu+VaB2wAUEgEbqQAElguKUiNgNuolUZSagFVEhcDqS7eIZOHRRwfQlQrc\nBqCQCNhIBSCwXFCUGgGzUS+JotQErCIqBNbhQte4GyzYbsdNCvwGoIAI2EgFILBcUJQaAbNR\nL4mi1ASsIgoEVlWdvUWSYNKWZsj3G4BCImAjFYDAckFRagTMRr0kilITsIooEFhvUxuRJJhM\nLzpUvt8AFBIBG6kABJYLilIjYDbqJVGUmoBVRIHAuktoHneLo+k5+Y4DUEAEbKQCEFguKEqN\ngNmol0RRagJWEQUCqz+NF0lCjNF0lnzHASggAjZSAQgsFxSlRsBs1EuiKDUBq4gCgXVM8UMi\nSbD4W9GH8j0HoHAI2EgFILBcUJQaAbNRL4mi1ASsIvIF1rYGLURyYDOcekv3HIACImAjFYDA\nckFRagTMRr0kilITsIrIF1gf0qkiObBZXF62UrrrABQOARupAASWC4pSI2A26iVRlJqAVUS+\nwJpD54rkIM5AGiDddQAKh4CNVDbPtyB6Mn3lZ/UZK/mbXvxvs7KWA1clV8yhkrc89NE3AlmR\nYKAoNQJmo14SRakJWEXkC6xhdKNIDuIs2rHej9J9B6BgCNhIFWPTsCLKFEzVxzFW8jc9UEKn\n9W5Fe66Jr/ilGV1ei+EcdN2y8//eqGzHE0Z+n75BXNcFsCJBQVFqBMxGvSSKUhOwisgXWKfR\nXJEcJLiQLpbuOwAFQ8BGKpN3DiCqkylqJhBXYDE2/bED3azrW46n8+JrOtPf3J8MkYOu29iT\nbBrcnbolH12XRvAqEhgUpUbAbNRLoig1AauIfIHVtLlICpIs3LFexndEAIBHBGykMriljOpN\n7pwhaj6vT7twBBZr00xqUmW8LKIGG60Vi6noRVe7Oei66jbGulOGj+nXgqhooXNLHroug8BV\nJDgoSo2A2aiXRFFqAlYR6QJrJR0tkgIHF9EFsp0HoGAI2EhlcAgd9KGeIbCqj6fdr2ILLOam\nfnSG+bKK6NXY+3XldJGr2Vx03e1EDZaaC1UdiFpUO7bkrusyCVxFgoOi1AiYjXpJFKUmYBWR\nLrAWUxeRFDhYtEvZF7K9B6BQCNhIZXDowE16psCaQPTAKLbAYm463T6HVIdmxl770h4bXM3m\noutaEc22ltY2J3rNsSVnXccgcBUJDopSI2A26iVRlJqAVUS6wLqOrhJJgZNh1Fm29wAUCgEb\nqQzeNf9LVzqf16d2OltgsTcdaV+82YRuM1+eK6In3M3moOt+LKKm8dNWXclWcBY56zoGgatI\ncFCUGgGzUS+JotQErCLSBVY7ulskBU6W7FX0pmz3ASgQAjZSxUlTOtUn0A4/swUWZ9NR9pmj\n7Wmy8f/GfahnLRZz0XVVKz+OL15ANNWxJWddxyCYFQkEilIjYDbqJVGUmoBVRLrA2nu7JSIp\nSOF6OlG2+wAUCCI900e30pTOLbHf5JgCi7OpDXU3X7YU0xzjZSjt/Jv++bCTj+66OBezLrou\naYeecbzNWdcxCGZFAoGi1AiYjXpJFKUmYBWRLbDWFR0okoE0jqCHJPsPQIEg0jF9dCtV6Xxe\nP/bYd5bS4W0aQEeZLx8RLdf1ZcW0QH+ybmxeBddLorLXdTY/lFLzKsf7/HRdKsGsSCBQlBoB\ns1EviaLUBKwisgXWS6SJZCCNKSV753ijMwAgK0Q6po9upSid6hOo8Q86U+lwNz1IpauNl3HU\ntEqvOpDa6et3orbfbZxaREuyNeum6+JUEN3ifJ+frkslmBUJBIpSI2A26iVRlJqAVUS2wJpM\ng0QykM5/6QbJAQBQGIj0Sx/dSlE6E4nuMV8ZSoe7qWp3ar9Rf68ZDdf1kbTDT/o0arheNy9K\nPz1bsy66Ls5wotO2OVfkp+tSCWZFAoGi1AiYjXpJFKUmYBWRLbD60kSRDKQzd/vtvpMcAQAF\ngUi/9NEtp9L5ogH9K7aQqXRcNi2tSw32LKJD/tQ/qEP36noHqjBXz6PSzdmZddN1FjVDiA5Z\nn7IqP12XSjArEggUpUbAbNRLoig1AauIbIH1j5KFIhnIYAB1lBwBAAWBSLf00S2H0qk5kbZf\nGVvKUDoum3T9rcpmdVoNX6dvO4raGG9bm5pH11cQvZOVWTfxZrH+v0SHrUpbmZeuSyWYFQkE\nilIjYDbqJVGUmoBVRLLA2lq/hUgCMlnSip6WGwIABYFIt/TRLYfSmURkP+8vQ+m4bEoynhp+\na7w0p3Hmu++JlmZl1lW8mXy1P9E/Mye5ykfXpRLMigQCRakRMBv1kihKTcAqIllgfUSniCSA\nwYSifbP+AggAyBaRXumjW0ml830D2neBRReiEQsWfJLYyWVTki8bWFNS2S+riRZlY7ZW8fZC\nM6L+W/mHykXXpRLMigQCRakRMBv1kihKTcAqIllgzaU+IglgcSaNkhsDAIWASKf00a2k0nmZ\n0kgOBC6bEtScSsfHZl1vSuPNF0PpPJWN2drE20NlVHqnSwA56bpUglmRQKAoNQJmo14SRakJ\nWEUkC6zhdL1IAljMbVz/S7lBAFAAiHRKH93yTGBNo7qfxhb2oRHmy7uxCRSEzJo8XEKN/ufi\nf266LpVgViQQKEqNgNmol0RRagJWEckC60yaI5IAJsPsK04BAN4h0id9dCvjoYAmLhda8Tb9\n0JhuspY060aZ+VSyMRuz7gLr9XrUyEWn5arrUglmRQKBotQImI16SRSlJmAVkSywdt1BJH42\nSw6muXKjACD6iPRJH92qRWANGTDgB86mVDQ6zL5OahI1My/j7Ekn5W82zrqWVP8Vl8PkqutS\nCWZFAoGi1AiYjXpJFKUmYBWRK7BW0+Ei8XOYWrbz71LDACD6iHRJXxx6eaTJAUTdzdfJzk1J\npVOXaIXO3pTCXCqN7/drYxparT9dSg+6GM9S1/Un68oqLjnqulSCVpEAoSg1AmajXhJFqQlY\nReQKrKepvUj8PLpRP6lhABB9RHqkLw6NTvlhbj/nppwF1prmdFXizf3FtMt+RF3ZZnPRdd+U\nUcmIkQnuyjhYrroulaBVJEAoSo2A2aiXRFFqAlYRuQJrHF0iEj+Ph/coelFqHABEHpEe6YtD\nXgqsbtTaMbvLc20a1zt08rbM3XI1uyD16qyj04+Vg65jEbSKBAhFqREwG/WSKEpNwCoiV2D1\npNtF4udyc9F+eOgzAF4i0iFV++4lXgqsHHQdC1SEi6LUCJiNekkUpSZgFZErsA4ue0Qkfj7/\ntu7IAQB4hEh/VO17REFFuChKjYDZqJdEUWoCVhGpAquqbB+R8F2Y37TsPZmRABB1RPqjat8j\nCirCRVFqBMxGvSSKUhOwikgVWCvonyLhuzGCjnR5OAUAIEdEuqNq3yMKKsJFUWoEzEa9JIpS\nE7CKSBVYM6mfSPiunEA3ywwFgIgj0htV+x5RUBEuilIjYDbqJVGUmoBVRKrAGko3ioTvyn2N\n6rEe6AoAyAuR3qja94iCinBRlBoBs1EviaLUBKwiUgXWaTRXJHx3LqNjcrgfBwDgikhnVO17\nREFFuChKjYDZqJdEUWoCVhGpAqtpc5Hoa+M4Gi0zGAAijUhfVO17REFFuChKjYDZqJdEUWoC\nVhGZAus7Okok+tq4r3GdFbU7AQDIBpG+qNr3iIKKcFGUGgGzUS+JotQErCIyBdYS6iISfa1c\nTQf8JTEcAKKMSFdU7XtEQUW4KEqNgNmol0RRagJWEZkCaxRdKRJ97ZxB/SWGA0CUEemJqn2P\nKKgIF0WpETAb9ZIoSk3AKiJTYJ1N00Wir50Fu9MCifEAEGFEeqJq3yMKKsJFUWoEzEa9JIpS\nE7CKyBRYreovEYk+C26r0+gziQEBEF1EOqJq3yMKKsJFUWoEzEa9JIpSE7CKSBRYG4r/LhJ8\nVgym/TfIiwiA6CLSD1X7HlFQES6KUiNgNuolUZSagFVEosB6hc4SCT47/k1nYTYsAMQR6Yaq\nfY8oqAgXRakRMBv1kihKTcAqIlFg3U4XiwSfHYsOwoXuAHiASDdU7XtEQUW4KEqNgNmol0RR\nagJWEYkCqy/dIhJ8lszbg66WFxMAUUWkF6r2PaKgIlwUpUbArO8lqV7Sde+GdXY+9aZVrK3P\ntyB6MnP1i/9tVtZyoOMv5lDJW3mZV5SagFVEosA6omShSPDZMmMnul5eUABEFJFOqNr3iIKK\ncFGUGgGzfpfku2PJpsH0jI2bhhURS2A9UEKn9W5Fe66Jr/ilGV2en31FqQlYReQJrC119xSJ\nPXum70jDa6SFBUA0EemDqn2PKKgIF0WpETDrc0nWtSI65M5Xli3sXUw0I23jOwcQ1WEIrD92\noJuNj+rj6bz4ms70t035OaAoNQGriDyB9R6dKhJ7Dty9C3XPs1EAACxEuqBq3yMKKsJFUWoE\nzPpckiuI/rMltvQAUdONKdtuKaN6kzszBNZMalJlvCyiBvYfLKaiF/N0QFFqAlYReQJrFvUV\niT0XZreio7+XFhgAUUSkB6r2PaKgIlwUpUbArM8l2Yco/mjeQ4geS9l2CB30oc4SWP3oDPNl\nFdGrsffryumifB1QlJqAVUSewBpMo0Viz4mHTqDmT0mLDIAIItIBVfseUVARLopSI2DW55KU\nUHGVvdidaHLKtkMHbtKZAut0+7fBOjQz9tqX9sh7XklFqQlYReQJrBOLHhCJPTeWnFtaNGyz\ntNgAiBwi/U+17xEFFeGiKDUCZn0uyfZUFL9OxhBY96Rse9f8jyWwjqSLY69N6Dbz5bkieiJv\nBxSlJmAVkSawqhuVi4SeM+N3oYNW1O4WAICJSO+Dj75QWNHmhKLUCJj1uST/jv/Mp+uHURHj\nCXIsgXWU/Yvg9rFTXhv3oZ75O6AoNQGriDSB9RmdKBJ67jzwT6pzw1ZZ4QEQMUQ6X8R9VJUa\nRWbDQPgq4nNJXiQ69s/Y0v1EHRk7sARWG+puvmwppjnGy1Da+Tf982EnH911cR4OKEpNwCoi\nTWDNpXNEQs+Hq5vQkR/Jig+AaCHS9SLuo6rUKDIbBsJXEb9LMppon1uee+2hnsV02C+M7SyB\nNYCOMl8+Ilqu68uKaYH+ZN3YVFp5XOquKDUBq4g0gXUp3SASel7cfwLVG4dHEwKQByI9L+I+\nqkqNIrNhIHwV8b0kj55qzTPacsR61maWwHqQSlcbL+OoaZVedSC109fvRG2/2zi1iJbkbl5N\nagJWEWkC69SieSKh58nljeg4xs/PAIBaEOl3EfdRVWoUmQ0D4auI3yVZe+kulsAqO5lpiiWw\nqnan9hv195rRcF0fSTv8pE+jhqY660qn52xfUWoCVhFZAqum8S4ikefN7KOpwcRqSUECEB1E\nul3EfVSVGkVmw0D4KuJzSb7bm4rOe31D1bfT9yIawdiBJbD0pXWpwZ5FdMif+gd16F5d70AV\n5up5VJrzPfmKUhOwisgSWJ/RCSKRCzBsezoBJ7EAyBGRThdxH1WlRpHZMBC+ivhckhOI7rKW\n1h5AtInECnMAACAASURBVDRzB6bA0t+qbFan1fB1+rajqI3xtrV5LkvXVxC9k6sDilITsIrI\nElj3Ux+RyEWYdTTVH4PbCQHICZE+F3EfVaVGkdkwEL6K+FuSV4iOjC8/THRW5h5sgRVnPDX8\n1nhpTuPMd98zJZo7ilITsIrIElhD6UaRyMW4tBEdtlxSoABEA5EeF3EfVaVGkdkwEL6K+FuS\nm4gGx5dXEu2QuYerwPqygTXVqP2ymmhRrh4oSk3AKiJLYB1fNF8kckHuO5lKLl4nKVQAooBI\nh4u4j6pSo8hsGAhfRfwtyWVE18aX1xEVZ+7hJrBqTqXjY1cuN6Xx5sv3RDk/ek5RagJWEUkC\na2uD3UUCF+e6XWmXOTVyggUgAoh0t4j7qCo1isyGgfBVxPczWOfEl98l2jFzDzeBNY3qfhpb\n2Me6Pv7d2MRYuaEoNQGriCSBtYJOEwncAxZ2qUMnvisnWgDCj0hvi7iPqlKjyGwYCF9F/C3J\nUqI941NA3pbrNVg/NKabrCXNmgR+PpVszNUDRakJWEUkCazpdKFI4J4w/R9UcuEaOfECEHZE\n+lrEfVSVGkVmw0D4KuJvSbbsTTTU+snm02ZEC82FIQMG/JDcw0VgaXSYfVfYJGpmzs/Qk07K\n2QNFqQlYRSQJrHPpFpHAPeKaXWmH23E/IQBZINLTIu6jqtQoMhsGwlcRn0vyTBnR0Xc89/ri\nIQ2JKmNSqy7RCvP15ZEmBxB1N18nZ/zpXCpdYS/+2piGVutPl9KDOTugKDUBq4gkgbV/nUUi\ngXvFw73r0cEvyQkZgFAj0tEi7qOq1CgyGwbCVxG/S/K/XSlO379ia+ICazQ52S/9D9c0p6sS\nb+4vpl32I+qau31FqQlYReQIrLXF+4vE7SGzTikq6vmzlKABCDMi3SziPqpKjSKzYSB8FfG9\nJH/dVdlyu9Idjxz6gb0iS4HVjVo7pm1/rk3jeodOzuOJvopSE7CKyBFYT1J7kbg9Zcye1OQO\nPDwHAHdEOlnEfVSVGkVmw0D4KhL1kihKTcAqIkdgXUMjROL2lkf61qcjc574H4DCQqSPRdxH\nValRZDYMhK8iUS+JotQErCJyBNY/aY5I3F4z8zgqHbJBSuQAhBSRHhZxH1WlRpHZMBC+ikS9\nJIpSE7CKSBFYWxvuJhK2D4zcmXZ/SEboAIQUkf4VcR9VpUaR2TAQvopEvSSKUhOwikgRWG9S\nG5Gw/eChs0vpzC9kBA9AKBHpXhH3UVVqFJkNA+GrSNRLoig1AauIFIE1gYaIhO0PdxxIdUfk\nPD0tAAWCSOeKuI+qUqPIbBgIX0WiXhJFqQlYRaQILI2mi4TtE0uGNaU95uP5hACwEOlbEfdR\nVWoUmQ0D4atI1EuiKDUBq4gMgbWt8Y4iUfvHA+1K6aQVtQcAQOEh0rMi7qOq1CgyGwbCV5Go\nl0RRagJWERkCa7nyJz1zufMIKrkAzycEIAORfhVxH1WlRpHZMBC+ikS9JIpSE7CKyBBYo4N4\nCVac/yunHe7IY55aAKKNSK+KuI+qUqPIbBgIX0WiXhJFqQlYRWQIrNNppkjUPmM+n/CwVyWk\nAYAwIdKpIu6jqtQoMhsGwleRqJdEUWoCVhEJAmtjvT1EgvafmSdRUZ9f/E8EACFCpEtF3EdV\nqZFtdtn5f29UtuMJI79PW/+k81l2p6due/G/zcpaDlyVXDGHSt7Ky3pOhK8iEFi+pCZgFZEg\nsB6jtiJBy+DGPfA7IQApiHSoiPuoKjVyzW7sGddQDe5O3TKPL7AeKKHTereiPRMXtv7SjC7P\nJ9YcCV9FILB8SU3AKiJBYA2g60WClsKic+vRoS/5nwsAwoJIf4q4j6pSI9VsdRtDPZ0yfEy/\nFkRFC1M23UlUMTLOLOeWP3agm3V9y/F0XnxNZ/rbpjzDzYXwVQQCy5fUBKwiEgTWXvUeFgla\nEjNPKio6G1O7A2Aj0psi7qOq1Eg1eztRg6XmQlUHohbVzk2jieaz/2gmNakyXhZRA3sO58VU\n9GLutnMnfBWBwPIlNQGriP8C6z06ViRmeYxpRWX90682AKBAEelLEfdRVWqkmm1FNNtaWtuc\n6DXnpuFET7H/qB+dYb6sIrLuG1pXThflbjoPwlcRCCxfUhOwivgvsEYFeZKGFJYM24nqXvC5\n7xkBIASIdKWI+6gqNTLN/lhETeOnrboSzXRuu4DoDfZfnW7/NljH/oO+tMeGnE3nQ/gqAoHl\nS2oCVhH/BdahJXNFYpbKoot2ouK2z+DxOQCIdKSI+6gqNVLNVq38OL5oCKqpzk2diT5l/9GR\ndHHstQndZr48V0RP5G45H8JXEQgsX1ITsIr4LrC+oENFQpbNomF7E+03HpM21MbzLYie5G79\nrH7mVkX3b4M8EelGEfdRVWoUmdXbED3jfH8G0Sr2nkfZvwhuT5ON/zfuQz2FDGdP+CoCgeVL\nagJWEd8F1ii6WCRkBYw+sZTqdHgcsza4sGlYEbkIrOrjMrd6dP82T9htW9Bp7/p1dj75+oyr\n6CDs8kOkD0XcR1WpUWT2h1JqXuVccTTRhpn/2blsh8OvWJm6axvqbr5sKaY5xstQ2vk3/fNh\nJx/ddbGI/WwIX0UgsHxJTcAq4rvAal02TyRkJczpszvRblfiaiwe7xxAVMdFYE2gDIHlzf3b\nXGH3yUHxaXnqTkzdompintAj0oMi7qOq1CgyW0F0S8qK/ai4td3d6kxI2TKAjjJfPiJaruvL\nimmB/mTd2H5+X+oevopAYPmSmoBVxG+B9TodJxKxMsa2qU9FJ8780+f0hJNbyqje5M58gfV5\nfdolfasn929zhd23zYgadB85YdCexlg+3blF2cQ8oUek+0TcR1WpUWN2ONFpqefzdzZ6WdNe\noydetKuxMNq55UEqXW28jKOmVXrVgdROX78Ttf1u49QiWiLgQRaEryIQWL6kJmAV8Vtg9aVr\nRCJWyIIhBxRRowvf8TlBYeQQOuhDnS+wqo+n3a9K3+rF/dt8YXcW0Ymx6+a29CVqtsWxRdnE\nPKFHpPNE3EdVqVFhtmYI0SHrU9fVJRr8h7nwl9Hdij9xbKnandpv1N9rRsN1fSTt8JM+jRqa\nf9w1/Yk6XhO+ikBg+ZKagFXEZ4G1brtmj4hErJapZ+9AdNTsqtrjLCwOHbhJdxFYE4geGJW+\n1Yv7t7nC7sci2u53a7GqnOgVxyZlE/OEHpGeE3EfVaVGgdn1/yU6LP2K9rVr44qr5jSi852b\nltalBnsW0SF/6h/UoXt1vQNVmKvnUenmfF3IivBVJAydRJHZMPZNDj4LrEnUXSRg5Sy66rAi\n2vXGtf5mKWy8a/7HFVif16d2eobA8uL+ba6w+6jHfy6NL59N9KBjk7KJeTzg00EHN6lTrs1M\nv99CzrN2RfpNXgbD46Oq1Mg3+9X+RP906zBPE7VMWfFWZbM6rYav07cdRW2Mt63Nc1m6voLI\n398CwleRMHQSRWbD2Dc5+Cuwtu1dNksk4CAw9b/1qNGI333NUxjhCazqE2iHnzMFlhf3b7sL\nOxuNaKnjrScT8/CUjr83L95QYmuoQ35M3SDnWbsinSY/i6HxUVVqpJt9oRlR/61ue/xFVMy8\n4Xo8NfzWeGlO48x336f2Su8JX0XC0EkUmQ1j3+Tgr8B6kE4XiTcgzOvRiJrctNHXTIUPntC5\nJfaEjQyB5dn927UIrFUNqeEfjvdeCDuu0vH15sWxREVnjbl9aDnRvqk3W8h51q5Il8nPYmh8\nVJUa2WYfKqPSO913qSkmYjWwLxtY32jsl9VEi/JyIVvCV5EwdBJFZsPYNzn4KrBqDi+6QyTe\nwLCg53a0+2xM8O6EI3Q+r09n6QyB5dn92+4C6+2DyfrKHMcDYcdXOn7evPhlPaob+9K/4V9E\nl6ZskvOsXZEOk6fJsPioKjWSzT5cQo3+V8s+hnLajrG65lQ6PvagnaY03nz5nvv0Qo8IX0XC\n0EkUmQ1j3+Tgq8B6jI4RCTdIzG1XRke97meywgZb6FSfQI1/0BkCy7P7t/nXfl0yuHtrY7i/\nNWWtuLBzUTp+3rx4EZkSzeS3RlQ/5TIYOc/aFeku+doMiY+qUiPX7Ov1qNFy1oZH+p1xf3x5\nHtEJjF2mUV3rYTr70Ajz5d1Y//OR8FUkDJ1Ekdkw9k0OfgqsmiOLJomEGyymH0tFPdN/Iipg\n2EJnItE95muGwPLs/m2uwFpqyqbGw9NuSBAXdnyl4+fNi1ua0XbxnzoHk3k/VhI5z9oV6Sz5\n2gyJj6pSI9XsupZU/xXmlruIDrDvCdxyONHYzD1+aEw3WUsadTRf5lOJv9dYhK8iYegkisyG\nsW9y8FNgPUJHi0QbOG5sSQ1v+MvHhIUKptD5ogH9K7aQIbA8u3/bXWAR/X1uylphYeeidPy8\nefEVsiSayZNEZzu3yXnWrkhXydtoOHxUlRqpZvuT1YgcDBkwwDw9/Wczos7rzBV/GE1xx/WZ\nf6vRYfal8ZOomdm/e9JJuXuQC+GrSBg6iSKzYeybHHwUWNUHFU0WiTZ4PNJ/e9pjZrV/KQsT\nLKFTcyJtbz2cLFNgeXX/tss1WFt/emV4Q6JhKStFhZ2b0nHg9c2Lk8n6bcXkV6K9ndvkPGtX\npKfkbzUUPqpKjUyz35RRyYjErRQj7zLX1SVaYb4+XGzoqgETb7lgR6LSpzP/di6VrrAXf21M\nQ6v1p0tTvn74QPgqEoZOoshsGPsmBx8F1n10kkiwgWRe21I6aDGudtfZQmcS0d3WEkNgxRG8\nf7uWuwg/25nosZQ1gsLOTekk8fzmxaHOq+YbUonzVng5z9oV6Sd5mMsLRT6qSo1MswsohaPN\ndXGBpT/UNL5+txcy/3RNc7oq8eb+YtplP6KueYacLeGrSBg6iSKzYeybHPwTWFv2Lp0mEmxA\nueukIjpiCSQWS+h834D2XWDRxZAlCxZ8wvg70fu3a5sHa5bjjFMKeQo7N6WTwPubF3s487I3\n0WrHNjnP2hXpJblbyw9FPqpKjUyzrgJL/21Cm13q1t+jYjrrNHA3au1Y/VybxvUOnczsNh4S\nvoqEoZMoMhvGvsnBP4E1hc4UiTW43HZ0ER063+8BI/AwhM7LlMaozD8Tvn+7NoH1I1ET1vp8\nhZ2b0jHx6ebFSmeY+xN97dgm51m7In0kZ2N5oshHValRZDYMhK8iYegkisyGsW9y8E1gbdqt\nzgyRWIPMrccV0T53FPjMo3kKLOH7t1kCa+nYYa/Fl9cS1WX8Wd7Czk3pxGz7c/Pif4meTbw5\njOgzxzY5z9oV6SE5G8sTRT6qSo0is2EgfBUJQydRZDaMfZODbwJrErUVCTXgTDm9lHa8+me/\nkhcG3M8k8a7BEr9/m2V3INGF8eU3iVow/ixvYeemdEx8unkxRdf9PVXXyXnWrkj/yNVWvijy\nUVVqFJkNA+GrSBg6iSKzYeybHPwSWJvK684WCTXwzOywHdU9Z0XtmYgqKULHvn87CU9gid+/\nzRJYjxE1+c5evpCoW+Zf5S/s3JSOhS83L/YkejjxpiXRr+zdfHzWrkjvyNVWvijyUVVqFJkN\nA+GrSBg6iSKzYeybHPwSWJMjfQIrxoP9diE65eHCm7Xh5dh92wcQdTdfzbvkHFe/2nAElgf3\nb7OE3TZD+BwTm7mgZlKR84xTgvyFXXZKx/ObFy8jmhJfrqlLZZxm5uOzdkX6Rq628kWRj6pS\no8hsGAhfRcLQSRSZDWPf5OCTwNrSos4skUjDwZKrDiTaa/za2vMRKUanXGe1n7kqS4Eldv+2\ni7BbVp+oQedRY4cYB6TemX8qIOyyVDpe37w4jeiy+PJKotac3Xx81q5Iz8jVVr4o8lFVahSZ\nDQPhq0gYOokis2Hsmxx8Eliz6N8igYaHW08vo+36s6YjiC75Cyyx+7fd7L6xd3x90aAtGX8p\nIuyyVDpe37z4NtGJ8eV5RL04u/n4rF2RbpGrrXxR5KOq1CgyGwbCV5EwdBJFZsPYNzn4I7Bq\nDiqeLhJomLivR1MqOuMJzIzlO67CbsvMDns2LG12zGWsh8iICDsXpePnzYs1LajOmoT7KapM\n0rN2RTpFrrbyRZGPqlKjyGwYCF9FwtBJFJkNY9/k4I/AeoqOE4kzZCy6dD/j8/6OP31JJVCM\ni9Lx8+ZF/SqKn3X7qox2dJ6Vk/SsXZEukautfFHko6rUKDIbBsJXkTB0EkVmw9g3OfgjsM6k\nsSJxho/xJ5XSDpd/V3tmQOjgKx0/b17UVzehkoXmws+HUex5O7KftSvSH3I2lieKfFSVGkVm\nw0D4KhKGTqLIbBj7JgdfBNYnRfuKhBlKZpy9PZV2fq325ICQwVc6ft68qOuzjUP+68aJFzQl\nOtW6sl7us3ZFekPOxvJEkY+qUqPIbBgIX0XC0EkUmQ1j3+Tgi8AaQJeKhBlSHhqwB9FR91X5\nkVGgEL7S8fHmRYPp9e3Lzc6yf32W+6xdkb6Qu7X8UOSjqtQoMhsGwleRMHQSRWbD2Dc5+CGw\n1m/fdJFImKFlybVHFNEuI3/yIadAIXyl49/NiybfXnpw47otuyTm15L7rF2RnpC7tfxQ5KOq\n1CgyGwbCV5EwdBJFZsPYNzn4IbBupy4iUYaaqWfVp7JOz+GewkjBVzq+3byoHpFuEHEfVaVG\nkdkwEL6KhKGTKDIbxr7JwQ+BdUDJTJEoQ84D5+9G1HrCLz4kFgB5iHSCiPuoKjWKzIaB8FUk\nDJ1Ekdkw9k0OPgisFwpqjgYGS248oZTqtF+Mq7FAiBHpAhH3UVVqFJkNA+GrSBg6iSKzYeyb\nHHwQWJ3pBpEgI8GcPrsTNe339Fbv0wuAFETaf8R9VJUaRWbDQPgqEoZOoshsGPsmB+8F1s91\ndlsiEmRUGH9WY0Nj9VzAmKYIgOAj0vgj7qOq1CgyGwbCV5EwdBJFZsPYNzl4L7Cup74iMUaI\nR0ad2YSo7NSxH3qeZAD8RqTpR9xHValRZDYMhK8iYegkisyGsW9y8Fxgbd2t3nyRGKPFknEd\n9yKilv0f+8vrRAPgKyLtPuI+qkqNIrNhIHwVCUMnUWQ2jH2Tg+cC60E6QyTECDJj4LH1iBpo\n0370OtcA+IdIm4+4j6pSo8hsGAhfRcLQSRSZDWPf5OC5wBpcNFkkxGiy6Ia2uxIVHXHNm9Ve\n5xsAfxBp8BH3UVVqFJkNA+GrSBg6iSKzYeybHDwXWOtvFYkwwtx57oElRDv1nPer1ykHwAdE\nGnvEfVSVGkVmw0D4KhKGTqLIbBj7JgfvL3IXCTDizLvslEZEJceMegczvYOgI9LSI+6jqtSE\nz2wYWoIis0iNL3YVmeUBgSWXJeO77ltEtMeAZ8LzzBRQkIg084j7qCo14TMbhpagyCxS44td\nRWZ5QGDJ575hJzQgat7/RVyQBYKLSBOPuI+qUhM+s2FoCYrMIjW+2FVklgcElhIevrbN9kQt\nrvjY8/QD4A0i7TviPqpKTfjMhqElKDKL1PhiV5FZHhBYqlg08tR6REfd8bvnFQDAA0Qad8R9\nVJWa8JkNQ0tQZBap8cWuIrM8ILAUsmDoIUVUt+PjuBwLBA+Rlh1xH1WlJnxmw9ASFJlFanyx\nq8gsDwgstczoWU5Ufjl+KgRBQ6RZR9xHVakJn9kwtARFZpEaX+wqMssDAks1S25uU5/oH7et\n8bwSEhCIW7XroBZEGnXEfVSVmvCZDUNLUGQWqfHFriKzPCCwAsBDww4torKz7tvgeTH8RiDo\nEJotLASSHIbPjjAO4uEzG4aWoMgsUuOLXUVmeUBgBYMZvVsS1auY8Yvn9fAVgYhDaLawEEhy\nGD47wjiIh89sGFqCIrNIjS92FZnlAYEVGCZ3KicqPmrEs395XhPfEAg3hGYLC4Ekh+GzI4yD\nePjMhqElKDKL1PhiV5FZHhBYQWJyz9bFRHWOHjT7g62eF8YPBGINodnCQiDJYfjsCOMgHj6z\nYWgJiswiNb7YVWSWBwRWwJh3lba3IbKo7mFdRz3wznrPy+MtAoGG0GxhIZDkMHx2hHEQD5/Z\nMLQERWaRGl/sKjLLQ1Bgff5WBhOBKDcPaPuP8hIyabL/aV0HX3/HvCdezsx0VuRR1Krsjy4Q\nZJ7xqDSrCIFoRcKVYvYTVgNcFSwfA2M2hN0te7t/MBpCjRQf88iIF2azt8u8+eltGT7mkxIP\nzAa+b/6U9YepoMD6J4Fgk0dRv1ftMygYjmI1wHGqvQLyeZnRELapdioYPMvqJCWqvSpkrs/6\nw1SmwKrfoEGDYr9CzqDIsFZfmjUqNczVlWeujmGuNJsd8yiqNwIraw+9RXId4hTLbW0JDLMN\niuSbrWeY9WSE91FgKUpNXa9Skxtlhtky+WZLPOtu/gkshamp58mR/BNYZmrqeHGg3PAuNTlh\nSoIGnhwpmALroCOOOEJeWusa1g6WZo2aGeb2lmeupWFup2x2zKOo3gisrD30lh0Ns3vJN1vf\nMHugfLN0mGFXgYzdzzDbyIsD+SiwDjV8VPC5+jfDbBP5ZnczzJbLN9vEMPs3T47kn8AqN3zc\nzZMj5URjw+y+nhzJP4G1q+Hj7l4cKDcaGWb3k2+2xDB7uCdHkiaw+h8Bgk0eRV2t2mdQMPRi\nNcA5qr0C8lnBaAjVqp0KBm+yOsmRqr0qZO7K+sPU+7sI+fzb8GylNGs/GtbaSLOmP26Yu0ye\nuRsNc/fLM5cHNxgezpVvdpFhdoR8s58bZivlm9WPNewquNW0n2H2Vflmc+Ikw8df5Zs1v3O+\nKN/sHYbZKfLNPm+YHSDfbE5MM3y8Tb7ZVwyz58s3mxP3GD5OkG/2DcPsufLN/mGYPVqyTQgs\nj4DASgMCSwYQWFwgsCQAgcUFAosLBJYvQGB5BwQWBwgsGUBgcYHAChoQWFwgsPwGAssjILDS\ngMCSAQQWFwgsCUBgcYHA4gKB5QsQWN4BgcUBAksGEFhcILCCBgQWFwgsv4HA8ggIrDQgsGQA\ngcUFAksCEFhcILC4QGD5AgSWd0BgcYDAkgEEFhcIrKABgcUFAstvILA8AgIrDQgsGUBgcYHA\nkgAEFhcILC4QWL7wxccff1wlzVqVYe1zadb0dYa5H+SZ+8kw95s8c3mgyMO1htkf5ZvdbJj9\nUr5Z/VPD7jb5Zr81zP4p32xOfGb4uFW+2ZWGWebTef1ltWH2F/lmNxhm5X1pzo9fDB9Xyzf7\nRwhSs0ZNav40zH4r32y1YZb5dHkfkSmwAAAAAAAKAggsAAAAAACPgcACAAAAAPAYCCwAAAAA\nAI+BwAIAAAAA8BgILAAAAAAAj4HAAj5xuaZ9L8POlZqW7S2/Oeyayg2a9lHaKlnhZZCf4Qma\n9qYHxoOUiOyx6553+QUIVnY8agWRQ0LLUNH4ABOZfVKmwFqhORjqr60fpg/q2q7Xdf+TMUeQ\nvLg+6qdprzhXyAwznUuMaN1m/vK+Gb8bT3JllwE3L91sr/VcYG1bPn1on/Ydeg6/+4P4Ktm6\nwoy04ybnmh/NuKvyN5zdR+tITZuVfHeepj2dePNXpaZ9JTMR72rp5D1jjx8CK8M99hR/XmVn\n29v3XHJex8quF415TGD21NwFVjLMtt0uvuOD2v/AZ7JMe47k0zLc+qhHJvKAMXjJw0zJWMf7\nhzXtJe8tCDfHqAqsV+QJrAWVtpn+q3y1E0NWXFtnVGipAktqmGl8Zdq9x2WHSYMGeTyHXerg\n2mO5tdZrgfVs36SNwbaaYOgK78NzEIt0qXPN7MTgnZ/h7D5aH9O0QYk3PxgWxyTevaFpvWvc\nEnGHtiB3t1xQLbBqiSfLT3qPmskz/ZKGKm/NeyJTEYEV40oFk5m6+aNYYPH6qEcmcoc1eHkN\nv2PEUvJW8r2fAkugOfo6dKchU2A9pWnXzY3zlJ+WHjFy/38LHrv3XE3r4/+sypLi+nqgprVL\nEVhyw0zjdk3rpnXbItOk0bu6xZI8+/ZhhtZs+2FsrbcCq2qs2XH7jrlzyo29jIWKJbG1DF3h\nK0akFdrljhU1fYwVIh8m2X20rjbs/h5/s8SIv2t1/N0UTZvsmojB3gusbvek8Ee+h8pLYNUS\nT4Z7Pp5F3jzGbJT9Rk+ZNmGI+SXr3J/zPFBeAsvqc3NnTTzfNK34+RH+pD1PgZVLH5UhsNiD\nl9fwO0ZM/py3OfHeF4EVqOZYKzIF1kJNe1aKoZ87aJXLzIXNozTN/6dQyYnr0XZa+0cmOgWW\n5DBT+aujNnCGpr0g06bRuy6ML39tfKW3RjdPBVbNdUavHfWVtfzmRcab581FBQJrSMoPsCs0\nbYAEgaUbET8TX75W66xpiUdLGPl+3S0Rmyu9F1gX1r5XVuQjsGqLx0P3aqP6avNcov3YlbWz\n2mraRXk+AygvgZUM8zWjQdycn2Wv8CfteQqsXPqoBIHFGbw8xqVjGCnprWn3Jt77IrAC1Rxr\nRabAmq1pb0gxNFXT7McMb+qhtf3dfWdx5MQ1VLvoaz1FYEkOM5UnNG3+F5p2hUybKb3L/LYU\n+67kqcB60Pje90ji3ab/07RO63QlAmtGhTYzuWK8dt51MgTWjORFFFvO1qZWxluY/pOmtdvk\nlogPtWgJrNrikSiw5mhapeO3qPc7Jjp+rggKLH2Z0T3W5mfaIwIlsHLpoxIEFmfw8hiXjmGk\nZGFPrfKr+HufBVYAmmOtyBRYUzRNyoV327pr7eK/JtynaQ/7bU9OXEOnGF3XKbBkh5nKIE37\nSe/vvFqw+oWb+nVs23nQVPuhx4lLCTc/cV2fsyu7D58f7+3GWFOtf31rn8qOA2fkMgKk9K6t\nhsD6xT7at2w7Bh9MvqDj2Rfc/lXCsD3IGULiYsbTijd0dH4B0/U/e2jdX9djuuIT/atJ/Tp0\nGjj7j5Tw2LF8M+3izu16X7Ew8cNtenJY+6RGuvASrVfi97mNHbTpVzsvcl/fU6uIn1waq2lT\neIdcPfWCDl0Gzvo1249WY/TsVpPw4bUh2qX2hsc07f9cEjHXvihiZK2hZQ3ro5QddmqRGfYz\nhDtV1AAAIABJREFUBBZjh9QqpsaTrXuMNmg3k+FaRc2m6T3azc8q9FR+b5/2kfbswHvejy+/\nP7l/58qel85Zk9ycuSrXVuAgLczkXTZZGBYJOkt/4jAL+vbIPh363WY++v3D0X3bdb8ukTTW\niMRpGa6ecPuoRyZygzd4DdC0eEUMAfip+eqoTGqRxDqGkZLFL2raMHsEcQqs1AOP1LTktTRX\nx8+0pRtntB92c3SLgWEqeZF7eotlpIo1dOeATIE1TtO+lmHnE8eJlY807Sq/7cmJK2bCKbBk\nh5mCYfyy2I+jd8fX/DY4cemhtS7ejL/oE1/fzR7hjDa/6Ym21rpzcrjcMKV3bdK0trF7eOIj\nV6YdfeMN9poK6964xCBnyIV+rFN+8zWtT8qvL++/HxtAjeN88YR9R8G5vzjDY8WydUrCk1c4\nyWHskxbp/IWOD8OnNO3jK1LuIjS+vA20Lj9524hlE+eQyztaK7p/mOVH67au8XFFv1fT1k7T\n2toy6npNW+KSCOe46x5a1jA/ShlhpxeZYT9NYGXukFHFPAVWZhu0m4kxsm++SnO/K4THHMNS\nNXvTX6Pi9tov5q/KuRU4SAtzlNUMsjMsEnSW/lgwC/rXLHvVt/oDdgN52dqYWSV+y3D1hNtH\nPTKRG7zBi6EaHJVxFkm0Y7xrfhMYaTcR3SGw0g/8vPV1Lca6ttbNmJnGGe2H3RzdYmCYin8y\nZbZYRqoyh+6ckCmwrhW4DygXHnMI+aoKrbPf9mTFpacKLNlhpnBL7Aaa3yuTl7kP17Shj779\n/ktTjNH8UXOF3YzXdTc3LH9/6RBN62TdYW603We1fgtef2VWJ027MXujqT/Aa9qVsQV75GLY\nqTY63XlzX3zq1kr7N5X4IPdahdaLed/lJZr2AGu98Rm+MObxDMPjUbojPFYsYzWt1wNvf7ns\n1rZa22Xs5DD2SYt07i8V2k3x95dp59UMT52mYaJ9WqOqn1bxMeeQq842hPcrX34wv1uv67L8\naB2b+PlpoNZff1XTrA+lrR3NM5b8RGz4ydBj9/700++1hpY17HMVGWFnFJlhP01gZe6QUUVn\nPNm7x2iDdrWMMeIZrf3wqxflkQhjhOf8WbXRJno/9OFXy6cYwT/OW5VHK0iSFub11kGzMywS\ndJb+WDAL+rg2YumyxecaWuA1bdgTy54y0tgjps0ZVeK3DFdPuH3UIxO5wRu8GKrBURlnkUQ7\nhpGSeealwZ1sewmBlX7gTR21yvh5qsc1bSJrH2b7YTdHtxgYpuw+yWixzJN96UN3TsgUWJdp\n2obnr+9V2WXQvfneBZMV92jaY4k3PQ2jfhrT5cWlpwos2WE62dDB+tYxKnEd5TeaNtjSWt91\n0nqZ54jtZmx85bkitqFmTFwRGn/VeVRs3Qea1pbxSx0HZ+/6qrdWaekKe+Ri2HlC0y6NneR4\nv1KrXJ3c9ZMOWlfm9RCbjJ7GPBFs6IpO18eGzk8qtLaxTNvhMWIxvjMNsoqxvK3WexMzOZn7\npEc61/heVmn/vvCD+fbyVIG1sY/WwWxuxvd06zoQxiEnaNoNsdP1P/fQsvxoNY5ySWzhN02b\nqm+o0G6NvXvfTj0/EQviv2PVElrWsAVWRtgZRWbYTxVYjB0YVVyQxzVYjDaYbCaXDM3vMsmN\nFZq2kr3pEU3rbzWRNzSt4++cVXm0giRpYfbVtOVZGxYIOlt/YnAKGjuhuaq9VtFjnBn+pj6a\n9q65ilElfstw9YTbRz0ykRPcwYuhGhyVcSwKd4xYSswdbrDexwVW5oHHa9r/7D+6wioL23h6\n+2E3R9cYMk3ZfZLRYjNTlTl054ZMgdVf0y6yT7ZVzs/d1ayZ4LwS/GJN+84/UzFkxaWnCizZ\nYTpZZN+2uCzxM+VLmjbb3rj0/qXmKGM344UjB9tf1D4x2mpswfiU7r7RWjcwl+vXjN7VY7HJ\nwhlXVWidX7PW2iMXw06/xGUPkzRtfmLXH7ppHT/JOLjJt5rWjvljjOFxD9tj4zvpZ3oyPEYs\nF2kV8Vrcat2Ul5mczH3SI51r/pX93W2WVrE6XWDp71Zo1+j6ykptoPW7QOYhq87WKmzJ/1S2\nH62GpKqIDVBLY7duDNXOia2eaZ+o5yciMe7WElrWcK62SQ87o8gM+6kCi7EDo4r5CCxGG0w2\nk3Z5nub+StM6sEeVmvNsyWBwk6YtZK/KpxUkSQ3zbcOXTdkaFgk6S38s2AW9wOrJI40PT+s7\n3D12f2JUid8yXD3h9lGPTOQEd/BiCCxHZRyLwh3DEljbjD2tsTkusDIPvFwze7HJbxXaOTVc\n4+nth9kc3WPINGX1SVaLzUxV5tCdGzIFljk1R5cJCxZPNX+fnuOfnRudo8glmva5f6ZiyIpL\nTxVYssN0cqF9//62XnFhtyz+i1GCjPly/9S0nrEFoz/cZa8blzY1vSvOWebaTkm7gjnTjvHl\nY6C9auUzb/4Q33VtX63d22wDxre0XswNNyR/jjV07TJHeJmx/KAlZ8d5X4v9hJCRHMY+6ZHO\n1bd0tf2v6aON0DMElnkX6Qs1w7V2X/MO+X58cNf1v9pl+9F6mT0ojtUq/4qdKIqdPRmkae+5\nJyI+7tYWWtZkTClpt6bUsDOKzLKfIrBYOzBaZD4CK0mirSebyehsA8801Ie9xZBe58al1yvW\nVx3GqrxagdN6MswPe2ja9KwNiwSdnT8WnILav3RPT9wX+7+UxxSYJKrEbxmunnD7qEcmcoI7\neLEFVrwyyUXxjmEJLPPk9jkxVWYLLMaBt/WI/3C3WNNm8I2ntx9mc3SPIcOU3SdZLTYzVZmf\na7khU2B10LQ7Y3nfajR67Qvf7Fyvae8k3lzhmMrHJ2TFpacKLNlhOnhP0y6ylmbGO+AGIwsT\nvnHulCKwtm3888+1mn2h2A3xK3tid2BmP4dY6kdu91nWCfYUgeW0s9T+cT+JueumIYmLXTMw\nvuz0Y24wPH41zePkJ2daLEsTd7cZn2iadr7OSA5jn/RI58akROwckfFF7TmGwNp8gdZjYWK0\nYxzyMUcCBmb70fqg9Uc13eKfzuY39N8rtE7b3BMRH3drCy1reAIrI+zUIrPspwgs1g6MFpmF\nwEphQmJLSltPNpN8Z318w/GZ8nbCnHlV7v8cM+2vMgzWMFfl1QoSmGeNF8SYP22oYXfgpqwN\niwTt5k962jkFtU8h3Zeo40tJsaCnVYnfMlw94fZRj0zkBHfwYguseGWSi+IdwxZY5q5TzVdb\nYLEOPDU+C/6l1lc4jvH09sNsjrXEkG7K7pOsFpuZqszPtdzwW2C9fpuFGeHGPzfGV49KfWaR\nt6Sc2hnm/6kdWXHpLmewJITpYEzixPiPmtbNGlKWmlNMXzjl5fXxnRJC4P1bB3SrsIbDhMCK\n3+c3NZfT5ImvLzXrvn5qkNG7YrYSAivdzn0Z31iNXb8aaZ8NZvGREQ1zg+Hxh2keJz8502KZ\nn/oJ0M7clJ4c1j5pkc6Nfce6w3w3Vuu0mSGw9E/M23suq+YecpYjAddn+9H6tRa71OAz6/e2\nrR1j9+A8G/+KyE9EfNytLbSsMSdtnuMknryUsDOKzLKfIrBYOzBaZH4CK6OtJ5tJvjMCOc9M\npAqs++xv5CY1xrqNzFV5tYIEaWGOip0LyM6wSNDZ+mOmnVNQe762uZr2pLX0in2+g1Elfstw\n9YTbRz0ykRPcwYstsOKVSS6Kd4y4wNrYS6swZactsFgH/sS+EXG1fX6VYzy9/TCbYy0xpJuy\n+ySrxTJSlfG5lht+C6w5dqRppxI+txWjL9zi/NlpoPsTiT3G17j0VIGlLsy1lYlLO81TZ89b\nS+9dFqt0xVUvWRmwP1o23eRo8AmBFZ+tMj+BZVI93r5rz/70zLRzV8ZdNcauw42tV/NK9L3h\nPvO6U4bHyU/OtC33pPZxLXapUFpymPukRmqOVIO1zlWxCXYm6yyBpU/TkpfeMQ45zRJJMcZm\n/dHax3yosz7P/mZ+rdahKnah6NJaEhEfd2sLLWv4v8E5w84oMst+isBi7cAIKwuB1WWqA/Pb\nPaOtJ5vJe3llQddXalpl/FbdldbX1UstgTXdUV/zPPoa5qr8WoEjTJuKLgOm2GfJszMsErSb\nP+lp5xTUnm1kbuIa57jAYlSJ3zJcPeH2UY9M5AR38GILrHhlkoviHSMusMyThRdvSwgsZtD9\ntEpzBpiFVlPmGU9vP8zmWEsM6absPslqsax5sNI/13JDkcCqaa9peUrC2pnhvJ+ym6Zlf5ua\nML7GpacKLHVhPpDaiIfH1382Z2jsS9tlMfVlf7TcrGmd5n251uhuVZ4KLPNhPZo5iaD96Zlp\nx+hs96Ue4ErTu46cu5kNtp2taStYG3IRWPcarf19B/aplpTkcPZxRmqOVI/F1OuT1s+/mQJr\ni3lvRXyQYBxyqmMIGZ31R+sdmvaQacWacHSxpr2t1/SIP6KwdoFVW2hZwxVYKWFnFJllP0Vg\nsXbIT2BluMdo65nNJFe2dsj4+X8xW2D9ylyVXyuIw6xCdoZ9ef4Bwx9OQbkCi1Elfstw9YTb\nRz0ykRPcwYstsOKVSS6Kd4yEwDInTliYEFjMoO+zDjfE/q5ei3GHBcag4B5DuimOwPqVnSo9\n/XMtN2Reg+WkazISz3nKMSXYRk3r7pcdFn7GpacKLGVhmrdfpOC4f3HDK+Mq7UlPrWb8raad\nbV8itclbgaWPsE6rWCMXw848++x9EmPXige/bh+f4CET45C3p67ZzPOYK7Dmc2dWTCaHv08i\nUnOk+qO9ufelVtSZAssQF70SD6ZgHHKm48eh/8v6o3WZOTPfX5X2BQrfmYf9RtOGWhtrF1i1\nhZY1XIGVEnZGkVn2038izNjBG4HFauviAku/KsNhW2Dd75gJr9roh5uYq/JrBXGYVcjOsCyB\nxSkoT2CxqsRvGa6e8PqoVyZygzd4OVTDSDeBJd4xkgJr9dna2T+bN5u/xDmweTn6dbEncF2X\njXGHBVeBlY0pu0+yWiwjVRaOz7XcUCSwqlweOy7Ml1riAR/mRQvX+WWHga9x6akCS1mYyzWt\nz2MJRiaubLBZ2dO6TsdqxkYfu9Xe8K3HAsv4jmE+ecsauRh2ns+YxfTKmCRbomnn/qEzeULT\nOqRMvPJFp6m/sD3mCqwX3O47sZPjuo+eHKnGahW//2QPaBkC6+MKbeR37bUB1u9HjEM+omm3\nxJf7Zv3RurmD1mHrW4mPpXO0IWbG7IGzdoFVW2hZwxNYqWFnFJllP0VgsXbwRmCx2roHAsv4\nJtUltb3aAutpx21oRivpyl6VXyuIw6xCdoZlCSxOQXkCi1Ulfstw9YTXR70ykRu8wWtgciLs\nwW4CS7xjJAWW+XvcNebZvZc4BzZngKn80/wx5KVsjDssuAqsbEzZfZLVYhmpShD/XMsNiQLr\njdtHPhdfNgTBAN8M1ZybfPTxlOQsY34hLS49VWBJDjPJ9c5zq/oXRttM1ZTzrRlQrWZ8T/Ip\nifM9FlgXatoLuuPihnQ732laT/tn8+9uu21JYlczAM790Zu7adq1jp/aNw20roTMRWAZnbUL\n/9IKKznu+yRHqhVGXRdoFb/aBlME1ubztY6rzTM4M2J/wjik0Rovthd/rcj+o/VaI6TZ9oMe\nzdml2m4cnbg5tnaBVVtoWcMRWGlhZxSZZT9FYLF28EZgsdq6BwKrqkf6rTOLLIH1jab1jjfW\n563Zfhir8mwFNswqZGdYlsDiFJQnsFhV4rcMV094fdQrE7nBG7yGJm6zNuci5Qss8Y7hEFjb\nLjZG56WWpmEH/Yi5cVDsCrbajTssuAqsbEzZfZLVYhmpSjLfObN3tkgUWIZi7G9HWHNFcvou\nH5idOE/469na2RvddxZGXlypAktymAl+qdAqf3O8H2LeoFwz65px8RXG8P+0Hm/GsxM/UPxm\n9P+OsSVvBNaHmqaZEyhaIxfLzoWxuTJNZlsTlNkftOt7xR+NkIFRTG3Ctvi7DZdq2nkb2R5z\nBZb53Sf+eNH3z59uGGQkJ2OfjEhjI1XNedqYy+3nfqULrKmxe5O3DdAqLAcyD/lnpVbxo7XG\nvLsm249W43vngqu0/vY74zvh2z0TIsZVYM3n+JEfHIGVHnZGkRn2UycaZezA/hxxfUgxwz1W\nG/RAYJmXDGt3Oj453+hsCaya8zXtLXvd1dbNcoxVebYCG2YVsjMsS2BxCsoTWKwq8VuGqye8\nPuqViRzhDF7GF6YXrVWG0HARWOIdwyGw9M8qtB7/s08aMYP+vUKb+LM9YXWtxh0WXAVWVqbs\niUYZLTYjVYyhOzckCqzNxhexm2Knuqtu07ROeVwwli3rumgVsTxtuMx8OJLPyIsrTWDJDTPB\nnLQfZZ6Ize12RWJCq82DrKuyrGZsfDhcFOvzay4e3F3TYnnyRGC9a6T9WnPBGrlYdp7StD6x\nM75fdNAqk1osNht4h2/YNiYYHWvg8ti1kdWv9jPq+QXHY77AMr4OdbZO+KzqZz29IjM5mfuk\nR2qNVPdr3SrtmWjSBNZ7Fdql5ofupxX2Q48Zh7xe00bGkvJZx7bZf7SuNhLbMfG777oKbULy\nFw9+Ip6I38lSS2hZwx5LM8LOKDLDfsajctJ3YIT1RMadObW6x2qDXggs/U6jUQ5915JYVcvN\nx9r2X2P7eL413hifrT03cVbl1wps2FXIzrAsgcUuKE9gsarEbxmunvD6qFcmcoU9eBly74rY\nuk86dnYVWMIdwymwzEZ7QfJROYygr9Z6PJJ8kIe7cYcFd4GVjankiJXeYjNTlTl054bMa7CW\nGd2765RHFt/ZS9MqXvPT0nMVmjbigSV3Gp/Bw/w6IZtESlwfzTUxajzGfLVOQMsN08acvD1l\nInTzbr6V+odGEq55fNn7r913nj2Bm9WMNxlf4Ua8tfK9GZ3afzNc0+74do2QwOoWS8Pcu8eZ\nd5L1jn3KWCMXy06N8VHU5e5nn5hUmfawZ/PC3/6bmTaqp5iX7Xe7bvKUUeaT23pZ92/lJLDM\nacLaT33z41end7IvO81MTuY+6ZFaI9Vqo8RdrauNUgXWX+dp7azuPi1+gMxDfmXYHfLE8pdu\nb9dnUg4frQO0ttYzvmIM1iqTs4vyE2G43G7Osw/W1BZa1pjVvieFJaywM4rMsJ/2sOfMHRhh\nJePhupc+1LPaoCcCq2a22Si733DHXeOu7GAuTrDOV9cY37z7PPLJl6+Nr9Davs1blWcr4IaZ\ntWFZAotdUJ7AYlWJ3zJcPeH1Ua9M5Ap78Fpp+HfF0rdfuq1y2FRXgSXcMVIE1kbzCSf2ZU/M\noJ/RtHO18xLHcTXusOAusLIxZfdJRovNTBVj6M4JqRe5v94tft9Zj+W17y3C0x1sQyNkTF4g\nI64FKfftWU9fkBymhTFMnZfauW6NDVwvdUx4NzqmXexmvKydtbLzB+ZvT7FH9AoILCf/Z93w\nYY9cDDv6plH2rhWznLsaKvGS5EmZdF69IGGhYuJaa11uAmvb7RXxA0y37sPOSA5jn7RI7ZHq\nantS5HSBdVtij03n2qe6GYd8ttJa0f2TGfHng2WBsa/WbpPzXWX8B2h+Iqqt53Fuqy20rMmY\nyd28k5ERdnqRGfbTBFbmDoywkvFw3csY6hlt0BOBZVgblkxDxdWJx3duGh1f2W05f1V+rcA2\nzP6hNivD0gQWs6DcaRoYVeK3DFdPuH3UIxO5wxq8EtPqDPx1pn0ahyOwRDtGisAy8x0XWMyg\nN5qfXslHy7kad1ioRWBlYSp+kQWjEWemKnPozgm5dxH+ufiaXu079Lnu8Tw8zY1fZgzu0r7P\nmNf9tmMhIS6mwJIcZoyrM6aR+kzTuhjDytoFI85p37bLoDvsth5vxl+N61159qD564y2P6tP\n+wte8kJgtetx2d3xuYHiI1emHYO3J/Tr2OH8279O3VXXf+6U+LU9g21vTx/ap32Hc655MPGk\n0dwEluHLtIFdKrsMuStxjUV6clj7pEZqj1QvJq4vTxFYb2nagPhJy+Wa1nsD55Df3da3Q+cB\nM9aYd/W8wIk3A/PqtuQdyWbWR9SeCP2Xm3q0P2dkTW2hZQ1LYLHDTi0yw36awMrcgVVFRzwc\n9zKH+sw26JHA0vWP77uiX6e2nS8aszTlIoQPb72wY7teVy/a6LYqr1ZgwZ0sIwvD0gQWs6Bc\ngcWoEr9luHrC7aMemcgDxuCl629d37Py7MFLNpn6ISYlOAJLtGOkCizzNu/EVOysoMdoqdNj\nuxh3WKhFYGVhKjnRTWYjzkgVa+jOAVXzYAEAAAAARBYILAAAAAAAj4HAAgAAAADwGAgsAAAA\nAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACP\ngcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcAC\nAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAA\nAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAY\nCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwA\nAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAA\nAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+B\nwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIA\nAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA\n8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgI\nLAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAA\nAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAA\nj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HA\nAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAA\nAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAl7Vksla1GwY/xzzZ\npNoNAADIEggsAACXiAmsqg8fvnviDTeMnb7onb+8cQsAADhAYAEQSV6ndBq1PLTTbe/kdpQo\nCaw3rjq4JJmNkn9c94FnzgEAQAYQWABEkkyBZbH/tFzO3URHYD19dGYuKt7z0EEAAEgBAguA\nSMITWET7LMv+KMERWKtKTDbn+debezBTUTbVUx8BACAJBBYAkYQvsKj0nqyPEhyBJcQfx8Rj\nb3706W3/fdJexfH3N6p2DQAQVSCwAIgklsAaMjHBmCt7HWjripInsj1KRARWTyvuNrN+slf8\n9Xiv0tiq4qxTAQAAOQGBBUAksQTW66krv7+mfmx149+yPEo0BNbCWBS7P5ey8rPDY2v33qLI\nKQBAxIHAAiCSMAWWrn/eKrZ+eJZHiYbA+ocZxI5fp63dZP1uOE2JSwCAyAOBBUAk4Qgs/esm\n5vrtsrwdLxIC6/tYEHdkro+dzvuHAo8AAAUABBYAkYQnsPQxsQ3/y+4okRBYi2LXnf2euWFo\n7CqslfI9AgAUABBYAEQSrsBaU2RuuDRt7fdPzJl409QFL21MXZ2zwPr1yTtuGj39VZfpFNYv\nnT1x1IRZr/zJ3+Xnx26/cdzdT62v1VrNBw9OvGHi7Nfcr6OaHLsCi7Hh/VMG3b0sLeJajsnJ\nU5L1j0688e4UzeYe8PdP3D1x1Ngpj3y6zTUGAEDogMACIJJwBZZ+kLmhg3PNl4Nax6ctqHPK\nBKd2SAqsjuyf04abq/eNv3vsJPs+xcYXfm+8fdxc7Orc/efrj4jPpl52yuytji2rzXUnm0sL\nTyiy9ig+2XGLH2Oi0ffPb24fa7v2L7ukYry5S0uXHbI9Jj9P35nrTjfU2U3bm0vjsgjYZFn/\nneIHpCZdn87ORQBAOIDAAiCS8AXWv80NJyXfr7mwlJzsckdNYltSYC2NLX2YfrC9zbWjreXf\nuzuO0uAeXZ9hLlyQ3HnrdQ1SLO37fHLbH+aKww1vznDu0bsqvj1DYK3tW+Tc8z8/c1Nxt7k9\nqzlKXY/plqc15opjdL2/tSkusNwC1vVVnSiV477MwkcAQEiAwAIgkvAFVidbyth8/TdKp0/i\n56qkwKrZx1xK/2VxeUy7WLNL/XFY6lFu0ieaL0MTO/92Qrqh4vGJjdtiAkRfs3/qHj3j29MF\n1let047VnPvcm6dj26fXnjPXY7rm6U/z7QH6YnvDuCwC1r/ZJ+OAjVn1AgCEEwgsACIJX2C1\nMTe0ib/7apfYjqXHXXHbveP772d90HeKb3VcgzXaXNol7Uqhy8yVZ8UWa860/nbPAWNuu/wQ\nc2nR9eb/iRkhbAFWdPzlU+4Ze05La+9bE4cyf1zcvfp04//tzjjv4l6H27+sPWpvThNYq/ay\nNh9ccW7nQ6zfJZvzzv/8ETvz1Pyj2lLmekz3PFWb71rqcXU4LouAt1nzcJWdeOHIMcP7nFAn\n9m4X/nk4AEDIgMACIJLwBda+5obu9pvqE2P7dfjKfv+4NU/WHPutQ2CtKjMXH0891p7muodj\ni/NiuzabZ214+QCinQeba0bE9+0S2+H/2bvvwCiq7Q/gZzcVQgiEvqG30Am9I70XUYrRhLMU\nAAAgAElEQVRSRGlKERAFBGmKFOlF6UjvJSFrf+pTLE98v2cXuyBWLCi9JvnNzGY3u5utycyc\nKd/PHzJls7n3zHH3ZMq9fbJLloxDNnE1wnWOKEZYK/40UclNjirqdG9yrwS9Cqz20ur9p6SV\nH+6V1trkXLLz1N9RLB32szuU9wwSJ6k8LP2a8J+2yw8dWPtmCB3eIBVfjziHfP1rtlRijQvS\nRgDQDRRYAIbkt8ByVCrLs9dWS2sPue2WTs4U+9Ox5v4U4Z3i4gCP93pPKlyk5+1uST9X6CPn\nrkuthTX3Aus56a3muv0m6YLcbc5VcVCqmCJU+2fnhlttxf3Ws+7NdhZY26XqZLfrvZ6U9u73\nE4uPs2+eanP4up9XBH3PIHHKihVX7qP453JeEaTDUu/mu/3+l8VWRv8ToIUAoCcosAAMyW+B\nJV23o08dK7fKiiut3E/9nLC4FWDuBdZL4mKMx3BSU8RNU6RFx41O63P2nS/rqGqcBVY9cWWY\n+09/IZ60ImdJEie9uujPOfsdXch+ktCjwMqUzh+53xAmnX1q5i8Y8ylb/MCNX/l5TcD3DBan\n7PLQ4j68WOAO3xIvgcZ6DN0gRfOgvz4AgM6gwAIwJH8F1umi4vbk7DW79Kr/ebxikLipnmPZ\nvcDKlG5Rch8QPbO8uMXxZKF0OdDmfoboqEeB9Ya4nPC7x28aJ24bnL3iKLA8Jq5JErcsdix7\nFFgviMtx7hMqOuq7M/6i8RDlKNlvxX99DDoV8D2DxSm79fe57Q7S4V/Exaoee7+6Z86zr//h\nrwsAoDMosAAMyU+B9ZN0XsV175D0RGGK50scj8I5yiaPgUala2ZN3V75rtsG6Rm7Bz3eKNm9\nwBojLo/2/E2fitsKZ4+fIJUoxTwGupIGlMi+LOdRYI0Sl+9xf+mtQhRVuo7/kaR2FSN38d1W\nn/J6RcD3DBan7ALL/T76IB2WRs4q4re9AKB7KLAADMlngXXxGUed0dB5Bke68rXI80VXpbGb\nHBf7PAqsX6RbmU7mvHJSzjknaZwCSvd4o6fcC6xy4rL3BD3SxuzxPONyFTiOEz6jHMseBZZ0\n5my7x2t/DjLu+4UnE8lTnYUeI9QHfM9gcXK0vmauvvnv8E3pKcmjgRsNADqGAgvAkBwF1ozN\nLusXP9zOcZ6FSjincpGGTyfvEctbihvHSIueU+XcLq5Mc70uUyw7CjqKkA+lF/7o8T6fuBVY\nv0nLP2d56idu3OBYltq2zmO3NAhE9kjw7gXWr7lOF4Xi/JZuUZ4lVqHJP7n2BnzPoHFytN79\nEcCgHW4qLhZ+IQsADAoFFoAh/Yf8Kn3C+SLpvnX6y+tHh4sb20uLngWWdJuSzXX/0lviavZd\n3AfF5egMj/fJcHuK8FUf+7OyHhW3Zl9XjMt9xmeOuGmQY9m9wDouLV8MJxwOf+8fV8djrPb4\nbc5dAd8zaJwcrX/abWfQDm93tKDHc4GebAQA/UKBBWBI/gusNr+4XiTNZVPQ+0dniVsdt8F7\nFlgZ0mU010mXB8W1fzuWpQmVK3u9UfOcAmu7/3qvj+PFUolywuPn5/opsKQ3y+v9S+fSpzZ3\nm/Pm8ezNAd8zaJwcrXcfJCxohzN7Za8W7rvqA+9CDAD0DwUWgCH5K7CaHHN70SpxSznvH10u\nbi0mLXoWWFmPu1U8WRniwJmVs0cuWCzuqef1Rj1yCqwl/uuNdo4XSyXKpx4/76/AkgalKpuH\noDhdenlyVeev35sV/D2DxsnR+nfcdgbv8IXuOZuK9t+MxwcBDAYFFoAh5S6wCpSt32/NSY8X\nSQVTsvePrhO3Os7XeBVYP0mDN2WvviHuejJ7z2xxxXscqsE5Bdbj/uuNRo4Xh1FgLRQXPYc4\nCN/r2fVNwj/B3zNonByt/9D7RwJ2OCtjaWG3rZFdDvkbiR4A9AgFFoAh+Z8qx8008TW1vLdu\nErdGSYteBVaWNH1N9oNz4jN+Vudt7dI7tfV6o5E5BdZc//VGDceLwyiwpO0ej+zlyUHpMcDs\nhwMDvmfQOOVuffAOC/58ymN66RT/w0wAgO6gwAIwpJAKrJnia6p7b31G3BonLXoXWNKAm44T\nVRmlhMVuzh1SPdHK640G5BRY0uW0XBfZ3IVRYEnjP1QK3LVQvCjd8N44+HsGjVPu1gfvsMPX\nKztFuyosy5wwewAA2oUCC8CQQiqwpKFDc914tFTcWkJa9C6wHFPGfCkuvi4uuSZ2keqTBl5v\n1DmnwNoiLga8Lz2MAku6NlcqcNdCIo07Yb0Q9D2Dxil364N32OXy8w/VcZZYK8JqPwBoGAos\nAEMKqcCSLnLFem+VxhKoLS16F1iOkRPmiUtjhYViriEGnvZ1AqhuToF1SFyMuBmgLWEUWHvE\nxUgf092Ea7/0pl8Hfc+gccrd+uAd9nBqsTQGKcWcCr31AKBpKLAADCmkAssxvtNZr63Sveld\npcVcBdYZKzluVbpZQliY5Nou1ROxnndpX4rIKbDel97I8xZ7T2EUWI6++Z14MHQnpDc6EfQ9\ng8Ypd+uDd9jLtYeln5gS+k8AgKahwAIwpJAKrB+kF73mtTVF3OiYAjBXgeUYekGoJF4U//3Y\ntfkjH/WJdBExu8C6Jt1odCBAW8IosC5K9055T0Pjz4V/Lx1Y9Xefu6TJFOmroO8ZNE65Wx+8\nw7ncL/5ErmcVAUCnUGABGFJIBVZWafFFcz23/SMNw+kYHip3gZUmbpidlTWEcsYbEFyW6pP9\nHm80yq3AymooLt8boClhFFhZlcTlGR6vfWmpwLsEEn0gtewZn79zr/SmF4O/Z7A4+Wh90A7n\nIs3/HIGxGgAMAgUWgCGFVmDdI76ohuc2adhyi2O499wF1i2bdJrlcpxX1SKNNzDS/X3+iXMv\nsB4Sl4td8/xVn7pddQunwJJmga7j8VppYsC1PrqYWUbcU8HnhDTS1ICVQ3jPYHHy0fqgHc46\n7T0xjzRsxBVfDQUA/UGBBWBIoRVYb0ivesdjWztxUxvHcu4CyzFBzEfiuZ9Y9+1TxM3Zg3Y6\nPEDuBdZn0spKj990q7q12ZMfZa+EU2C9Ka286vbSn6X7vT7K8mGy9OLxPvackM5BTQ3hPYPF\nyUfrA3f4+6kdE73rwZvi/W3xvroAADqEAgvAkEIrsLJqia9q6n5ZKlX6wT2OFR8F1mmxDJgp\njjg62H2z44Yrt0ts6RaPAstxOqjYafefWSBucg7/Hk6BlSldz6t3Neel0vmnuj67+FshR9Ny\nzff3lfTgnuWjUN4zSJx8tT5gh38Ro1jukscPvCLuTfHZBwDQHxRYAIYUYoG1U3qZ26NrJ6Xb\njWpmjy/go8DK6ipsqRztdbYnK7O+VK3scK7vi6aCvdwLrH9JBVctt2tkm6Utadlr4RRYWQel\ntUGuC3DbpLfa6ruPixyVXtv3PLZeWxcvbR7q3BDwPYPEyVfrA3dYOv/V0/164CUpgvN99wEA\ndAcFFoAhhVhgZfWRXnf3T461W9uLi6sRx7P3+iqwjjjqFaroeTt2umNr/1evZ2Vdf0F82HDp\n/e4FluOEEJXcn12TfHO3tN7FuTusAstRn1CjV6Q2fHOftNY41zkqh8yB2S1u8tTbjq5kfJ/6\nQCnHtuSczgV8z8Bx8tX6wB1+S1qpcfCGs5EvSSfJCv2YBQDGgAILwJBCLbB+k8Zmp9iuj2/c\nvHhokrRiWePc66vAulnaUZrM83qn4dlljLWETbp5qV+mZ4F1qYFjf4l7Hlu54IFGjpVyrvET\nwiuwfq3q+Hlb+7v71XBcjCzxjb8+Xu1DLglJyVVL50xOU9NtZImA7xk4Tj4LrMAdzr5FrVDH\nsbMXzJvUt6RjdYO/PgCA3qDAAjCkUAusrG+qkJfo3a6dvgqsrBmO6uK01xvd6O7xLgOvZnkW\nWFl/tfb+TVTjlGtveAVW1g8Vvd6q1Pv++5i5IDLXr5YMc78rP/B7BoyTzwIrcIdvDfDRnkX+\n+wAAOoMCC8CQQi6wsv6+z+LxJd/K7Yd8FljfSa/vnOuNMlbG5ZQm4r1LUoE1K+cFN54o4PGb\nIh+6kLMzzAIr6/xYj2Z3/TVgJ7+/N3eJZenytterAr5noDj5LrACdzhrTWGvBtV8KWAfAEBX\nUGABGFLoBVZW1ucTqzu/44sPeMF9j88CK6uNuHGfjzf6a3u/2sUji9Qctl8adkq6aLjA/QVn\nn6jtKieqz/3BfVe4BVZW1vuD47PfKq7v8axgzm7pW9ytmClw26Jvfbwq4Hv6j5OfAitgh4V6\nbnnrnLIvvv/RkGcuBAAdQIEFAFlZZ57btnTRpqMfhjKO+LViYoVxLfgL+4qFg/cY6mdf3rh4\n/spnX/ozL830cvP/di+fv2LncZ+jiPrwx/E9G5Y9sWD5sy985beYCfye4cQpW8AOX/y/g08/\n9cSyTUe/wQjuAAaDAgsAwiMNYT4thBc2FV+4V/H2AABoEAosAAhLZj2hbLJ+F/yF12PEAivA\nvecAAMaFAgsAwiKNuTnQx46f39jmsf6idK/TDR+vBAAwPBRYABCO36VhsP7nvflM/Tjvm+p7\nii/soF7LAAA0BAUWAIThWgexbBqQe0d5cXtrt3vHD0gPx+1Xr2kAABqCAgsAQvd7R7FqivUe\nZFSwRKqn+l90ru+XhoAqj6EHAMCcUGABQChu/Xz1wsdPJJKvoRdEV6pJu0rNe+985pVvdtwm\nrVlfUb2dAACagAILAELxa84gnUN9vuDzIs79OSOez1e5kQAAWoECCwBCkVNgDfFz2e/zyuQp\nZrO6TQQA0A4UWAAQCmeBVWhFhr+XXH480a28ihzymZrtAwDQFBRYABCKc5UjKMLWaukvgV50\nPW3ibeUKRxSu0GjUtp/UahkAgAahwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIA\nAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAA\nAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQ\nGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmh\nwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQos\nAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIA\nAACQGQosAAAAAJmhwAIAAACQmZEKrJm2HGVrNB+2+rtcLzm7e1K3+pXKVU/pOXn3b947Mz9a\nObJd7YrlkxvdMc1+wXPfe090Tylfq920l27Jvzkr67seQpO/ydVaP5tBNXpMqRk2T3dKW1vY\ncvkrvFiALIyTUqKrBya0qVm+RotRm5FNXIyVUbeem9KudvmU7otOhh4BDTNqgSVJGvqjxwu+\nHlfWfe99n3rsfamj+89WW3Q1Z9dPd7q2t/tE5s2C7VXEjbkqKT+bQT16TKnxXk1GgaUpxkkp\nwa6arm2VFt7Ib2ggTwyVUa/mfFBN9Sr2dMnQBZbNlvxuzu6bs8t67S23NNO1N3O29892+cO5\n73SK2+aqJ2TdLPx1McSxzauS8rMZ1KTHlBrq9UtRYGmKcVIqK3OKuFK2RacW5cWF26/IHy0I\nzkAZlbUxyW1j90uyx0p1RiuwNn3m8OHrGweIxyr5e+fev/tLB639E7tfPP7ytmnNpbVprh9e\nKR3RTf/35/Wbf3/0rHhtznZHhmPX9Q7CSsttX537Ib2fsFT3dxk3Z2U9V1v4jGpp866k/GwG\nVekxpfrYbJ0+c3NK2vr1Zx5ut9l6ZigaOvDNOCmVtUl4SZ3dF4WlK6lNhOVHFAwb+GWgjHpZ\nbHvftDPnTq5MFpbuUTJs6jBagfWi2/p/GwobRmav3JJOVA753LX3eGdxw7PZa7+Us9nK78/5\n2UPi32QHHcvPiD/o+Ossc66wPEXGzVmThOWG7y72rqT8bAZ16TGl2tlsQ4P16zWhaV8E7z7I\nzzgpdVX4Dkw+lb1yNkX4g/B06GEA2Rgno240Fl6x2LH8cyth+bVw4qBJRi6wsr4QsiXprGN5\nkbAzaYv73psThE2VfnasrBaWn3Lfu1nY0MHxuvo2W4rzcvCtnkJC/ibb5qwsIcFH/J2Vq5Ly\nsxnUpceUamCzjQvSrcvNXJ9joDLjpNRLwi9f5FoTv0k3hhQBkJdxMuqQ8MuHOVdOVbLZuoQW\nAQ0zdIGVNU7YckBaOl3OrWzPdrObzdbgsGN5rLDb4++vW02Smt0rZYb4OfK0a/vLwtozsm0W\nKqnKO4T/5i6wfG8GdekxparYbI8G6Zbwp2SLa0FeA8owTko943GK4b829ytPoB7jZNT9wv6P\nXWviCa/cD0TqjLELrJ3CliWufYO9f+D7Da7LJOKFas9b6n64mL3wsLDrF9fmW8k2W1/ZNmdl\ndflS/G+uSsrPZlCXDlPqpi3o2alPyhnh5LtOGSelxLMfOTdTfy6sTfbZY1CWcTKqsc2WkrP2\nifCiNb46rCfGLrDswpbZ4sKVKh61cW4jhP2f+N7VxmZr6bY63GarcF2uzVlZjv/mqqT8bAZ1\n6TCl/hB+7bqAnbrV1WYbEfAVoBzjpNQR13kS0evC2qoAbQelGCejKthsA3LWblW12e4N0HZd\nMHaBtUvYskxceEtY6BHoZ8W/xoZ5j/8puZZks411W18mvPIzmTa7+KmkUGAx02FKfSf8u1vc\ncMvfRcDNNlulH/3sA6UZJ6V+L2+zjXatLfL/VQ2KMkxGXRe23ue23tazOtMlYxdYDwlbjooL\nS21e9/J5+1F8euJuX0/BfO11NlO8Ee85mTa7oMDSJh2m1IfCv/YrO4fWSrJV67rQxz0M52vb\nbE8GajgoyUApNcPZcMGnVX1ciwI1GCejKtps/d1e3cVmK6f30WsNXWCdrWKzlf1TXBou7Hol\n4A+Lpbyt3D37f/Le8Y6w3f0pjDeE9W0ybXZBgaVNOkwp8d/pdW3Zyj2ca/TH+TZbrfMBGw4K\nMlBKXepmsyVNfPvczfMfLhQ60ezXIF0HRRgno5rYbPXdXi0OUfpHlr4ZucD6Qxw2bby02FtY\n+irwT28q5zjajcdt/9x9CMbnbK6BQST/E9ZXyrTZBQWWNukwpdJtnjr949moX4U/E9cH6zco\nxkgpdXFyziDhSWP0/l2oV8bJKPEpwo9cLz4p7tH70GpGLbBunjuxuI6wXuMHabWNsJhrkksv\nHwx2He/k0Qf+dm4Wb+U85vayT23SWU9ZNrugwNImHaaUeP+FrfLMd8/eOPvSPeLy3ZlZ7uYK\nPTDAFBS6ZayUerFpdmPqbdf7xRzdMk5GHbC539Yunn6z6X3KZ6MVWF6qve3Y1UhYdrss0sbt\nJf/K2fzZwpwdVR7Nrp29b5f6QlifL9NmFxRY2qTDlHpa+PfO7GEEs1LLe70q6++q7qNDguqM\nlFIn+wjLSfVbp4hnQVLcT1WAeoyTUdfrC0urHVtvzpHao/f5JoxdYPX6NnuXOCGS24NTfhJN\n8Oux2d3KO3ZUdIzPdtTmswiXZbMLCixt0mFKXT579mzOY0Ebha093Vuz0marcDbsOIBsDJRS\nb1ex2epsFmeXu5DewesTDVRjoIwSX28b/Nq5m2f2drAliaewct0bpjMGLrCaTX7LtUuckMnt\nGWL/iSa6fPzJttKureLaCzb30V4cIxavkmmzCwosbdJxSjncFP6GTfozZz2jMcbA4mWclDpb\n22Zr4vz6vjZUePHrIUcB5GOcjHKM3p4t6Rnx6++fXK/WF6MVWNu+cfj2t+vuu8Z5HujX0hwW\n+kw00dti7V9BLJ/fFRY2ue15TVjfKdNmFxRY2qTjlMomPkrvNmr7v23ej3SDuoyTUuI1nDdd\nW89Vsdl6Bes8KMA4GSXYmpxdX9V+Rdxc/mYoEdAwoxVYfr48tgq7Hsm9+XW/iZZ1pZfNcTbz\ne5vn7VJ7hPWXZdrsggJLm3ScUtm22Dye47nfZqul988sfTNOSqXYbC3cNo8RNuPiMwPjZJTo\nz40Dm9doMvTQ1aysATZbO9+t1A+TFFjiRFn1rufaHCDRsk4I++4Q/r1Z3vOiyhOOokeWzS4o\nsLRJxymVTXxeZ69r7XoVn7PYg3oMk1JnhX8ecNu8Ulj/t59mgoIMk1He6nkOA69LJimwMpoJ\n+w7l2hwo0a4n2WxtxIXOHjNQZvWx2ZIz5NrshAJLm3ScUtlWCe15yaN1+/20DlRhmJT6Svhn\nitvmdcJ6up9mgoIMk1FexHGwdD9in0kKrKxNwr7GucavdibazYOP9fKesumKsK+LuCDed5cz\nWNsFoSYfJttmJxRY2qTDlDr/+SvujzaLT+J86VqbZXOf3B4YGCalfrZ5zhy3AGeweBgmo7ys\nELae8tMv3TBLgXWptrBztPeslnuclXwLYeFdz31vCptGigv/ERaecG0Wr2ofkG2zEwosbdJf\nSn1i85gT7q8qNlu9nNUONlvDgB0GpRkmpW5UFJLJbRDbIcLLvs0C1Rkmo7Iyf3lr+1/OrVfq\n2WxdA3ZcD8xSYEkPjNruu+q+6ebq8s5EE2f5bvGn+87r4nwD0tWUzDY2W7JzONwLTWy2Gldk\n2+yEAkub9JdSGSk2W9mPXb9zmvArZ7nWbgitGxRG90F+xkmpgTb3gRnOCs1sEHIUQD7GySjx\nIUPX3NRPeJ+F0CXTFFjS1RFb01TXFeCLe1qJW/pdkFbEeSWbHc959ff9xHOrjilFDguLvRzj\ncVwZJiyvyZJvczYUWNqkw5QS72donH2+PVNcqZAzVt/nHuUWcDBOSokTyjV3Pjd4QxwHa0X4\n4YB8M05G3axvs1XOPqO2Tdja2cf9WjpjngIrY56YV7a6k3Y89+4bR5ffXUlafeSaY+/7FcW1\nzste/Pz0j1+9uWmIOIlphTcc+zIHCSuN1n/62xfbxdzsfEPGzd9+JnlEbLpj8UaAzaAyHabU\nNXGwwErT//3D2S92dRFbsCOnweJAye6T24P6jJNSmXcIiyk7xDmer/6ru1htXZA7WBAC42RU\n1rPCYpW5H/7126tivV415ySXbpmnwMrK2lvD5qVFzhCM76Z476z1hnPfhR5um9uelXNze+/f\n6ritz89mUJkeU+p0U7ettqQlbs31GhQLGBgopc51kNbrt2kszbKSknM3M6jIQBmVeY/b1vJG\nmBjATAVW1j8Lq7of1j6H3Idc/OsJj53Js//O2Xfh4bLO7Q/8IetmFFiapseUyjo30bXV1uYV\n99aKQxU9H14EQGZGSqlrcyu5Npcd7fYuoCIjZdSNaUnOrV0+DzsSGmSqAisr63L6jD4NKpet\nktJr8t5c00heeXnOoGY1yleo3Xzg4y94jc52clGP+uXrdp3/kcybUWBpmh5TSnBm1eDGVcvX\n7/ToS57PDz0udOeNLOBkrJT6c8volrXKJzcdvOr7wH0CxRgro754vEet8jXaT3rN+9FHfTJS\ngQUAAACgCSiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiw\nAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsA\nAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwnH44\ndNDpPe62gEl85ky5D7hbAkbnzDX7Te6WgC58kZ0wb3A3RM9QYEkyj3WyEBVv1Llbu2pRRA0O\nZXK3CIzvmzssVCClS+eUAkQdUdWDgn4dbKW4Rt06VrVQTaQaBHXpwQgq3KJbm5JETd/hbox+\nocASvZJClDxmq11yeFYzC7X4mLtNYHC3FsdSlelHxZRLnVmHLPf+yd0iMKzni1PF6alirm3u\nZInawN0c0LqTyVRmWpqYMEuakXXCZe726BUKrKysPwaRpdUqu5t1TSlqcQZ3u8DIfmlHCVPS\nXSk3vwKVfo67TWBQqyOiRhxzptq8eHqSu0GgbW8kUI8jzoRZYKOaOOGQNyiwst62UdXldi+z\nilDv89wtA+N6tww12eWecalDIi0P4/YYUMACKrLMLdXWF6dl3E0CLXulQMREt4Q53J0KbOdu\nkz6hwNoXYx2c5l1f2e276lC9X7jbBka1N9ZyT7pXyq0sQx3PcTcMjGcNFd/gkWmbEi17uRsF\n2vVmgchZnp9NjxakCfjrLw9MX2BttRaYm7u8Es8odKKqZ7hbB8a0xFJgTu6U29+IaiLlQGbH\nIhI2eGXa6tjYE9zNAq36qHDEY96fTevL4q+/vDB7gXUwolCuy4PZ0vtRtV+52wcGlPkIJa72\nlXLHelCF77lbB8ZyMj56aa5Mm2Upe5a7YaBNP9osD/n+6+80d9P0x+QF1n9iY5flziWnvpSC\n+7BAbhn3U5ktflJuEFX6mbt9YCSXa5GPr0v7YOp4i7tpoEWXGtAwn3/99aSkz7kbpzvmLrB+\ntVlm+cqlbOkdqRsuPIO8Mu6lijv95twAqouiHuQzkrr5/GxrRLO5mwYalDmQOvj5bBpGJT/h\nbp7emLrAyuhAQwPUV3Z7agpN4W4kGEvGcKq8N0DOdaGeGCAE5HKUKhzxmWd7iltf5W4caM9S\nqu47YQRjLCW/5G6fzpi6wFpEjbyf5PKyrwzt524lGEnm/YHrK3tqPZrD3Ugwit9LRK31k2hL\nIsrgNizwcjwyYZv/D6dRVAG3JYfFzAXWR9FFdgeur+z2p2Piv+ZuJxjIdKqwJ3DK7SlufY27\nlWAQ/Wm430QbSj0xIxh4+CPJ8mSgD6eB1OQqdxt1xcQF1s2GFOgGrGyTqNF17paCYaymMjuC\npdxT1rJ/c7cTDCGVqh3zm2fH6tDT3A0ETcnsQ3cH/GxKb0v3cjdSV0xcYD1FbdFic9wAACAA\nSURBVIPXV3Z7W3qMu6VgFMciEjYFT7lBNJy7oWAEF8pGrg2QZ9viCnzB3UTQkvVU239BLjlc\nmbZxt1JPzFtgfV8wPugFQtH+4pEYkw9k8amvIYlyS61EL3I3FQxgEg0ImGiPUFM8JQ0uXxWM\n2xrsw2ljwULfcLdTR8xbYPWgSaHUV3b745Y6uEgIMvinGj0cUsqttFbC9PWQXx9FlvL7QJhD\na1rM3UjQjFvNaUrwD6fJ1AIjqIXMtAVWKtUK8gShSyeaz91aMIIB1DfElOtLj3I3FvQuszXN\nDpJnuxNiv+JuJmjFEmoRyodTC1rO3VL9MGuBdaVixNoQv+zsexNicVIU8m0zJaeGmHIHE6Mx\n4Azkz15qHDTRHqF2eJIQJF/EFg7pppmd8XGnuNuqG2YtsOZR7xC/6wRTqCd3e0H3vo8vEMIN\n7tmmUjfu9oK+XSkf6T3Hsw8NaQd3Q0ETMlrS1NA+nCZSD+7G6oZJC6zTBRP2h/xlZ0+vRc9x\ntxh0LrMjTQg95ex1KJ27xaBrC0O6IL0putQ/3C0FLVhDzUL9PqxNR7lbqxcmLbAG0fgwvuzs\nqy01bnA3GfRtG6WEetOfaI216jXuJoOO/ZFQKOCMAU530SPcTQUNOF0oLugIfU5rIype4W6v\nTpizwHrLUiWcLzu7vTM9w91m0LVzJWI2h5Vy3Wkpd5tBxybTfSHl2aHi0d9ytxX4dQ/nnENv\nPPcVIlMWWBmNaVFYX3b2HTGlLnC3GvRsAg0JL+X2xCVgqjjIqzMxxYMM0eA0hfpzNxbY7aU6\nYZxz2Fc47mfuFuuDKQusHdQyvC87cQ6mx7lbDTp2MrJ0iN93LqNoDHerQbdGh3xCIr2q5T/c\nrQVm50pFhfBERI4H6D7uJuuDGQusy2WjwrtaI9gfX/hP7naDfvWi6eGmXGpSxMfczQad+j6q\nTKhDgtjnUzvu5gKz0TQ4rA+ntLLWj7jbrAtmLLCepNvD/bKz24fTDO52g24dpxrh3fQnmkUd\nudsNOjU61HkqRCn0Mnd7gdXblrJHw/1w6srdaF0wYYH1e+H4feElk+hQQvwf3C0HvWod7k1/\nknp0jLvhoEtnokunhZ5nyy1NMdqomd2sa1kY7odTLXqNu9l6YMIC60EaEW4yiUbQTO6Wg069\nTA3zknJrLMkYHQTyYEJ4w9A0w6BrpraCOoT94bSEUJWHwHwF1vfRJcK93VhyKKHwOe62gz61\npGV5STl7Z3qau+mgQ78XLB7WFZ/Vlob4sjSvXwrH7Qr/w6kZRhsNgfkKrKE0OfxkEt2DBwkh\nT/4VwqRwPu2ILXGeu/GgP7NpZHiJ1pLSuNsMbIbRmDx8OK211Mngbrn2ma7A+iyi3LE8ZJPg\nQFyxi9ytBz26LY8nsOz2u+kx7saD7lxKLHQwvDxbY2mAU1hm9a6lYhg37OW4jfZyN137TFdg\n3Ukz8pJMooG0nLv1oENvU/28ptzBhLhfuJsPerOWBoSbaC3wPIVZZTajJ/P04bQhIvkWd+M1\nz2wF1qfWyuE/L59tb2zSde72g/70pAV5TTn7GBrP3XzQmYwqkSHPKue02tKYu9nAY1/Ikzx7\n60g7uRuveWYrsO6gWXnMJkFP2sbdftCdjy3JeU+5oyWjT3F3APQljdqHn2jN6AXudgOH65Ui\n1ufxw2lTRHWcwgrCZAXWZ/k4gWW3b4mogdv6IExDaGbeU84+kUZxdwD0pT2tCj/PVlBL7nYD\nh7XUPc8fTh1pF3fztc5kBdagfH3Z2VvT89w9AJ05HZWUj5renlYm6hR3F0BPPqU6eUm0RvQ6\nd8tBfZdLR4d9Pdllo7UmzjgEZq4C66uI8vn5srMvpw7cXQCdmUwT8pNy9kn0AHcXQE/G0KN5\nybOnMDGTGS2jO/Lx4dSODnJ3QOPMVWCNoin5yCZBbfqAuw+gK3/HF8nTuLYuqSVj8SAhhOzv\ngsXz9NC9vQ69x912UNvlUrG78/Hh9IwlBcN7BGSqAuuXmJJ5++xxmUXDuDsBurKYhuUv5ez3\n03TuToB+rMhrws2jftxtB7Wtojvz9eHUAjfNBGaqAuvRPI1Y6y69TPTP3L0AHblui92bz5w7\nFF/kAnc3QC8yq0fuzONnW2XrSe7Wg7qul4vOwyQ5bpZTG+4+aJuZCqyLReMP5Sub7OLpBAyt\nDaHbTr3ym3L2u2gVdzdAL/5FbfOaZ1NpBHfrQV3bqWc+P5zq0zvcndA0MxVYa2hgPrPJbj8U\nV/wKdz9ANzLrWTflO+d2RFbBszoQmv60MK95llYqBqfnTSWzbr4/nuZTH+5eaJqJCqyMquEP\ncJzb7bSVuyOgG69Qy/ynnL092bk7AvrwW1TZvD8nPYZmcrcf1PQytcr3h1NVCy4sB2CiAutY\nXgY4zmWrtQ53R0A3utISGXJuOXXj7gjow2Iakfc8O1So2GXuDoCKusvw8TSVRnJ3Q8tMVGB1\nohX5zia7OKfEce6egE58mp9ZctxUs37D3RXQg8xqUXvykWd30gbuHoB6vrJUy/9nU1rJmF+5\nO6Jh5imwTlpq5D+b7OJF54HcXQGdGEHTZcm5yTSNuyugB//O+y3uou2RyRjWyDwm5ndYSMlo\nmsXdEQ0zT4E1gR6RIZvs9vSyUbgVFELxW0zJY7Lk3OG4kte5OwM6MJTm5yvRWtO/uLsAarmY\nkHBUhg8nXFgOxDQF1sWEIqkyZJNdHKlhLndnQBdm0yh5Us7emw5wdwa07+8CJfM1FZh9Ed3O\n3QdQy0YaIMuHU39az90V7TJNgbVBhjEaHA7EJt3k7g3owJUScQdlyrm11Jm7N6B962hwPhOt\nYsQZ7k6AShpYtsry4bQNF5b9M02B1cAqTzYJutER7t6ADmyifnKlnL269Xvu7oDmNcn3V+Y4\nms3dCVDHCWosy0eT3d4W8+X4ZZYC6wQ1kSmb7PbV1IW7O6B9mbUjZKvp7eNpDnd/QOs+o5T8\n5tmBWBtOz5vDaJolxyeTYBm+EP0yS4F1H82RKZvs4umE77j7A5r3ErWWL+UOxJS9xd0h0LhH\nZHiOpxulcXcD1HCxUGKaDB9MkhqWL7i7o1UmKbD+iSsuz/Nckok0g7tDoHk9ZBlk1Kk9nu+C\nwG6WjjuS7zxbQb24+wFq2CrbTcniYKPjubujVSYpsNbR3bJlk91+qEDpG9w9Ao372lpVxpSz\nL6Ch3D0CbXuOusqQaJUifuLuCKigpSX/s6Q6pSYWOs/dH40ySYHV0PqsbNlkF8+jp3L3CDTu\nQVlG8XNJL1kQn2EQyABZTpmOoYXcHQHlnaR6MiSL0920hrtDGmWOAut/1EjGbMJ5dAjqQuEi\ncozil+Mu2sLdJ9Cyc7G2/A2C5bA3qhoeuje+qbL+/bcjsgaSxidzFFjjaIaM2SSoFInR3CGQ\nNXSXvCm3xdKWu0+gZetpqCyJ1pre5u4KKO1mmYKHZckWV9K8yt0lbTJFgXWlaIJMo7g7jaEF\n3J0CTasVsU3elLPXsuDZVfCvuUzjRs6l0dxdAaU9T11kSRanBdSfu0vaZIoCa7eMIz464Dw6\nBPQGtZI55ewTMEUT+PelXDfVpCUmXOHuDChsoKyPOEsz9P7K3SdNMkWB1YHWyZpNdvGU6HHu\nXoGGDaIn5U65/dGVUdSDP4/RZJkSrR/t4+4MKEum+/XcjKJF3J3SJDMUWN9bk+VNJsE8Gsnd\nLdCu36KTZP4AE7Sht7j7BVqVUT72kEx5toZ6cvcGlLWehsiULE578eefT2YosObQeJmzyW4/\nllj4Mne/QLMW00jZU84+BzfHgD+vUXvZEq1i5Fnu7oCimls2y5Yt2W7Dbe6+mKDAyqgQs1/u\nbLLb76Rd3B0DrcqsEr1X/pRLK1LkKnfPQKOG03zZEu1ejGpkbF9THdmSxWkB3cXdLS0yQYH1\nLxn/tsuxjjpxdwy06lVqq0DK2fvSQe6egTZdipdxLrBtlmbc/QElzaaJsiWLU3qZ2L+4+6VB\nJiiwhsh/v7GouvUH7p6BRt1FC5RIuVXUm7tnoE07qb+MiVaPvubuECgns3K0Atd0htJa7o5p\nkPELrPMFS8p/v7FgLIbCAt/+ii2jSMrZy0f9zt030KROsj4o/SDN4+4QKOe4IifYt1kbcndM\ng4xfYG2SdZ7nHHujquOxCfBlDQ1TJOXsw3FzDPhyxlpdzjzbF1Wdu0egnDE0V85scWpIH3P3\nTHuMX2C1lnHWcA8t6T/cfQNNamDdrkzKbbM04e4baNFCekDWRGtB/+XuEijlWtGENFmzJdtU\nmsLdNe0xfIH1jUX+ByYcZtNY7s6BFn0k89TiburTF9y9Aw2qESnvU6vT6WHuLoFSjlAfWZPF\n6UhcqZvcfdMcwxdYsxR4YMIhNaHoNe7egQZNpukKpZx9Mj3G3TvQnveopbx5dqSgLYO7U6CQ\nfrRC3mxx6krPcfdNc4xeYGVUiD2oTDbhqXnw6UbJQkeUSrmDMRVx4x94G0ezZE609vQmd6dA\nGedikmROFqenaBB35zTH6AXW64oMguWwGlNKQG526q5Yytnb4osPvF1LTEiVOc/m0gPcvQJl\nbJR9mhyn9NIF/uHundYYvcCSc4DjXCpGYgZx8NafliqXcvMwXQ54O0y95c6z1PgSuJ/GmNrK\nP02O0120lbt3WmPwAutSoeLKjEgkGUlLuTsIWnMuxqZcxonT5eDGP/DUm1bJnmjd6EXuboES\nfrDUlD1ZnDZSe+7uaY3BC6wdsg5w7G13ZG3uDoLWKHcGXtKHDnP3ELTlbFR5+fNsIQ3n7hco\nYRGNlT9bnJKtZ7j7pzEGL7DkHeA4l2b0PncPQWNaK3cGXrSCbufuIWjLSrpX/jxLT0zAzOJG\nVCdyj/zZ4jSGnuLun8YYu8D60VpVuWQSzMRQWODptKW2oilnLx/9J3cfQVMaWHcokGd9KJW7\nYyC/j6iJAsnitDuyLncHNcbYBdZiGqNgNklDYeHPPHA3n8YrmnL2YbSeu4+gJZ9SQyXybCnd\nxd0zkN9UmqpEtjg1xnQ5noxdYNWO3K1kNolDYe3j7iNoSo0oecfUzmWrpRV3H0FLptHDSuRZ\nesm4y9xdA7lllI09pES2OD1Mj3J3UVsMXWB9oOjpUNFa6szdSdCS/1ILhVPOXtvyHXcvQTsy\nyhZQ5ivzDjrA3TeQ278VHBdSdCi2PEZCdmfoAush5eYscapq/YG7l6Ahk2mG0ik3gZ7g7iVo\nx6vUUZk8W0F3cvcN5Daa5imTLU5t6Th3HzXFyAXWrTJxis1Z4jSWHufuJmjHrdLKp9y+qOrc\n3QTtuFepoZTTSxe4yN05kNf1xIQ0ZbLFaQ7dz91JTTFygfUSdVE2mQT7YypiVlRwepk6K55y\n9pZ0grufoBVXCiceUyjP+tNe7t6BvNKop0LJ4pRauNh17l5qiZELrGG0UOFssouzov6Lu5+g\nGffQAuVTbiY9yN1P0Ir91E+pPFuNIdeMZhAtUSpbnHpQOncvtcTABZay0+Q4LcQM4uCk4OkE\nN6nxJW5w9xQ0og+tVizRbLHnubsHcrpQsKTiX4lPYXgPdwYusPbSHUonkyDdFv07d09BI/ap\nknL2bvQ8d09BG/6MLqdcng2kXdz9AzntogHKZUu29JIFL3D3U0MMXGD1UvBvOzfDaSV3T0Ej\netEaNVJuMd3N3VPQhvU0VLk8W0t9uPsHcupOTyuXLU4DaCd3PzXEuAXWX0r+bedmZ2Qd7q6C\nNvwRVUGVlEsvhT8SQdLWsknBREuK+Ye7gyCfP6IqKpgsTs9QV+6OaohxC6x1NEyFbLKLMz7/\nh7uvoAnraLg6KTeItnH3FbTgR2uyknl2F05GGMl6ukfJbHGqFPkbd0+1w7gFVhvLFjWySRz5\nYyR3X0ETWlqeVSflNlAH7r6CFixVdrLVtdSbu4cgH5W+Eu+lNdw91Q7DFlhnrDXVSCbBseKF\ncMEGsrK+s9RRKeXs1a1nuHsLGtDYukPRPCuLa4TGofDpTpdtlmbcXdUOwxZYS5T9287dINrE\n3VvQgCdoglopdz8t5O4t8PuG6imbZ7hGaCDL1PpKrGf5mruvmmHYAquhdZc62WS3b0HFDoLq\nUfvUSrk9kTW4ewv8nqAHlc0zPEdoIA0typ7udHmQ5nL3VTOMWmB9RSnqJJMohT7h7i+wO0Et\n1Uu5ZvQ+d3+BXe3IvQrnWVIMxho1iK+ovsLJ4rQ/umomd2+1wqgF1uM0UaVsEkylydz9BXYP\n0kz1Um4mTeDuL3D7lJoonWcDaTd3L0EeKn4ltsaD9U5GLbBqRap2ucZuPxpf7Bp3h4HZjRLx\nR9VLOcypClmP0RSl82wN9eXuJcijluKnO11m0Xju3mqFQQusj6mpWskk6k0HuHsMzOzUTd2U\nO8LdY2BWNfqg4nlmi8Uj0obwoYpfiamFi+PPPweDFlgz6WHVssku/p2HwWvNToWJ6t2txBBF\nZvd/atz0N5D2cvcT5DCNpiqfLU496Bh3fzXCoAVWFRX+tnNXJeJH7i4Dq38KlFZ8onoPFSN/\n5e4zsHqEHlU+zVbTHdz9BBlkVow5pHy2OC2l/twd1ghjFljvq/lAl+h+WsDdZ2C1le5SN+VG\n0hLuPgOnzPKxh1XIszIFLnL3FPLvHWqrQrI4pZeJPcfdY20wZoH1CE1XMZsEe6Oq4cFUU2tH\nG9VNud2RNbn7DJzeodvUyLP+uL/UCB6kWWpki9Ng2sjdY20wZIGl0t927lrTW9y9BkanVZqG\nwk0Lepe718DoQZqtRpqtoIHcPYV8u1U6TsVnnO32zZZW3F3WBkMWWO9SGzWTSTSXRnP3Ghgt\noLFqp9wcGsXda+Bzq4w6X5npJQtd4e4r5Ne/qLMayZKjtuVb7j5rgiELrMk0Q91sstvTEhPw\nMWRiNdQbZMbpWLF43B1jXq9RJ3XyrB8d5e4r5NcImq9OtjiNx3Q5EiMWWJllCxxRN5vs4scQ\nHmc2rxPUQvWMsw+krdz9Bjaj1PrKXEpDuPsK+XStaJFj6mSL0/7oyrgrOcuYBZZKd396Wkvd\nufsNbCaoOU2O0yZLc+5+A5friQlp6qRZevHCmKdC59KotzrJkqMNHefutRYYscCaRI+pnU2C\nShiXyLSuF49PZUi5evQpd8+BSRr1UivN+lA6d28hfwbSMrWyxQm3iEoMWGBllC2o/hVCu30E\nreTuOTBJox4MGWefShO5ew5MVJw4YDEN5+4t5MvFgqXUHQVZkFYUdyVnGbLAeovaq51Moh3W\nxtw9ByZ3qP8Houho4aL4DDOni3ElVfvKTE8sgpnldG03DVArWXLcTvu4+60BBiywJqo7pJpL\nCp3k7jqw+CsmiSXjhM+wXdx9Bxa7qL96adaDXuDuL+RHT1qrXrY4rcFdyVlGLLAykliuENrt\nD9Fj3H0HFs/QUJaMs6+3tOXuO7DooeZX5gIayd1fyIc/oyqolyw5MFtqlhELrOM8Vwjt9oMx\nFfBgqik1t2zlSTl7bZw1NaXfoyqqmGXHEord5O4x5N16GqZitriMpGXcPednvAKL6wqh+GDq\n29ydBwZfUl2mjLNPoSncvQcGa+leNdOsG73C3WPIuzaWLWpmi9OuiDrcPednuAIrI6mgqpMu\nuZlF47l7Dwweo0lMGWc/El8MYxSZUDPLNjXTbD7dz91jyLMz1hpqJkuOxvQhd9/ZGa7AYnqG\nUJQaXwJn0s0no0LMQa6Us/fGozom9BXVUzXLUuNL3uLuM+TVUzRG1WxxmUYPcfedneEKrEls\nVwjFM+l42sZ8XqN2bBlnX0sduPsPqptNE9VNs870OnefIa9SInapmy1OR+JK3uDuPDejFVhM\no4w6LKR7uPsPqruXHmfLOLs92fINdwBAZZmVog+om2XzaBx3pyGPPqeG6iZLjq5k5+49N6MV\nWG9znk5ILxaPgR/N5nJ8osrzqHqYSI9yRwBUdpzaqpxlqYVK4xqhTs2iySpni8tTNIC799yM\nVmBNZpmH0KkvHeIOAKhsN93JmHH2QwVLm/40vNmMprlqp1lHeoO715AnmVXUPt2ZI71M7Dnu\n/jMzWIGVWbYA3xVCu30F3ckdAVBZV3qaMePEG//SuEMAqrpapEia2lk2B09I69R71FrtZMkx\nmDZw95+ZwQos1iuEAlvsP9whAFX9HFGZNeOEor43dwxAVfvpdtWzLDW+FK4R6tIkmql6trhs\ntrTi7j8zgxVYvFcI7fZBtIM7BKCqJTSKNePs9kqRP3MHAdTUk1arn2Ud6d/c/YY8uFUmjvOa\nTh2zP4NjrAIrsxzrFUK7fR11444BqKou1zPQLqNpEXcQQEW/Rao5TY7THDxHqEuvUieGbHGZ\nSHO4I8DLWAUW9xVCcYLLs9xBABV9QE2YM86+N6o65sA0kRU0giHLcI1Qn0bQfIZscTlg9gl6\njVVgcV8htNuH0zruIICKHqLpzBlnt7eit7jDAOpJidjJkWUdMdaoDl1PTFD9gQgPt9Gb3DFg\nZagCi/kZQtFWSxvuKIB6bpZmvcPBYS6N4I4DqOZTasySZfPoAe6uQ9iOUS+WbHF5wuQfToYq\nsPivENrtNSynuMMAqnmBunInnN1+rHihi9yBALVMYTpnmhpfHDOt6s7dtIQlW1yOFYu/zB0E\nToYqsPivENrtY2gJdxhANXfTIu6EE/THs6umwXfOtAu9wt15CNPlQiXSebLF5U7azR0FTkYq\nsDL4rxDa7bsiUrjjAGo5X7Ak9+eXaD21544EqOQ56saUZfNpJHfnIUz7eaeZEK2jztxR4GSk\nAus4tefOJkED+ow7EKCSZ2kQd7pJkq2nuEMB6hhAS5mS7FiRote5ew/huZ1jyDQv1axnuMPA\nyEgF1oM0izuZBA/RY9yBAJW0pw3c6SYZR/O5QwGqOBdrYztn2pPs3N2HsPwTm8SVLDkeoAXc\ncWBkoAIro0zcUe5kEhyMqWjukT/M44w1mTvbHPZFV0POmcJ6GsqWZYtpKHf3ISzb6S62bHEx\n9zh9Biqw3qAO3LkkaYthiUxiEd3PnWzZWtM73MEANbSwbGVLsvTi8Ve4+w/h6Ebr2LIlRysz\nfzgZqMAaS3O4U0kyh+7nDgWoolbkHu5ky4acM4evqB5jlvWjQ9wBgDD8Eck8Eb3DHBrDHQk+\nximwbpaMT+VOJUlqQtFr3MEAFfyPmnHnmlNa0QScXDCBmTSZMctW0J3cAYAwbKB7GLPFRfhw\nMu9QWMYpsF6hLtyZlK03HeYOBqhgsgamyXHqS/u5wwGKyygfe4gzy8oUuMAdAghdO9rEmS0u\n/Uw8FJZxCqyRvLNaullJfbiDAcq7pYVpcpxWUw/ueIDiXmW+zXQQRrTVkZ+t1VmzxWUddeSO\nBRvDFFjXixY5xp1IThWifucOByjuRc2cMhVVjPyVOyCgtGG0gDXJ1lE37hBAyFbRKNZsyWHi\ncfoMU2Clc89q6eY+WskdDlDcUFrInWhuRtBy7oCAwi7EcU8cUDESfzrqRjPLdt5scRlH87iD\nwcUwBRb7rJZudkTU5w4HKO0S/zRf7pBzxsc/ccBwWscdBAjRKUsd5mxx2R9dyaxDYRmlwLoU\np6Wvuyb0f9wBAYXtpv7caeahEX3EHRJQ1m2WjcxJttXShjsIEKLFNJY5W3K0o9e4w8HEKAXW\nXk193c2g8dwBAYV1o2e408zDVHqYOySgqO8sNbmTzF7T1BPL6Uq9iN3c2eLypGknATBKgdWL\n1nAnkZvUhKIYlsjYftXGIH45jsSVvskdFFDSHJrAnWT2MbSEOwwQkpPUkDtZcqSXKvA3d0B4\nGKTA+jOqHHcOeTDzyB/msIpGcCeZl270HHdQQEEZFWMOcOeYfZe1AXccICSzWcek9TaEnuEO\nCA+DFFjraBh3CnlYb2nLHRJQVGPrDu4k87KEBnAHBRT0GrXjTjFBCn3BHQgIRdVo/nI8xzZr\nQ+6A8DBIgdXGsoU7hTzVseBzyMi+pBTuFPOWnhTzF3dYQDnD6EnuFBNMorncgYAQnKCW3Kni\noRF9wB0SFsYosE5r4PZPTw/TZO6ggIK0dQLeYZhZT8ObwvmC3INgSfZHV+OOBIRgIs3gThUP\nj5r0uS9jFFgLaRx3Ank5mlDEvBNcGl9mZU2dgHfYZmnMHRdQzCa6izvBJC3pfe5QQFA3S2lo\nHi9Rqkm/EI1RYNWO3MudQN760TbuqIBi3qE23AnmQwp9yh0YUEoLy2bu/JI8Sg9xhwKCeok6\ncyeKl37mnMfSEAXWB9SUO31y2WRpwh0WUMxYmsOdYD48gqGwDOsk1eVOL4cjBW23uIMBwQzT\n1Dxeog2W1txB4WCIAmsKTedOn9wa0QnuuIBCrhcrnMqdXz4ciSt1gzs0oIypNIU7vbJ1pFe5\ngwFBXCpUXAs37HmoQye5w8LACAXWrTIau94smUPDuAMDCkmjntzp5VM3SuMODSjiZumCh7mz\nK9sTNJI7GhDELk1NbOIw1ZTPfRmhwHpZc9ebRelJ0b9yRwaU0Z+WcaeXT8uoD3doQBHHqBt3\ncjkdK1LkGnc4ILDOGpvHS3S0cKIJpzcxQoE1jBZwJ48vo+hx7siAIv6OtWnuBLxD+UgU9YbU\nh5Zz55ZLbzrKHQ4I6KeIKtxJ4oMpb3M3QIF1MU5715tF+2NLX+eODShhEw3mTi4/RmKqOEP6\nJbIid2rlWIYpAzRuMY3hThIfNlhacgdGfQYosHZq8HqzpJcZK3YzaGvZxJ1bfuyOrMEdHFDA\nYhrNnVo50ssUOM8dEAikZuQe7iTxpR59zB0Z1RmgwOqiwevNko2WFO7YgAJOaW7egByt6G3u\n8IDsMqtFaWmgv0G0nTsiEMB71II7RXyaTmO5Q6M6/RdYv2jyerOkGb3GHR2Q33zNzRuQYx7d\nyx0ekN0b1Jo7sdyto87cEYEAxtAs7hTxKbVo/AXu2KhN/wXWMhrFnTj+LKKe3NEB+SVr6nSC\np2PF43D5xnCG0RPcieWhcgSepdCuK0WKaHGUPsFd9DR3cNSm/wIrJWInnmrFqwAAIABJREFU\nd974Vd3yOXd4QG7/0dg89Z7uog3cAQKZ/V1AE/M85xhBK7ljAn7toju4E8SP7RG1MrmjozLd\nF1ifUCPutPFvOt3HHR+Q2wM0mzuvAnjW2og7QCCztTSEO6087bBiWnHtakfruRPEn5ammwVA\n9wXWVHqEO2v8O1Ym+ifuAIG8rhZN0OgJeIdG9D/uEIG8UqzbuLPKSwp9wR0U8OMbDT+Ds5Bu\n5w6PyvReYN2yFdDKFBK+jKVHuCME8jpAfbmzKqAZ9AB3iEBW71MT7qTyNplmcUcF/JhOk7jT\nw7+KEae446MuvRdYL1Mn7pwJ5EjR+L+5QwSy6kGrubMqoNTE+IvcMQI5jdLeQ2EHYyqY7WYa\nvbhZJu4Qd3r4N4GmcgdIXXovsIZqc5ocF6F93CECOf0cUZk7p4IYSJu4gwQyuhifmMadU7m0\npePccQGfDlMP7uQI4Eh84mXuCKlK5wWWVqfJcdlXoKQJZ7g0sIWanIXC3bNWjG9rJBtpIHdK\n5TaHxnDHBXzqou0z7P1pPXeEVKXzAmsHDeDOmCD6mW/oDyPLTNbmLBTuGtMJ7jCBfJpYtnBn\nVG5pRYpc5Q4M+PCtNZk7NwLaFlnDVBeXdV5gdaJ13BkTxI6oije4owSyeYtacWdUULMxOIiB\nfEgp3AnlS186wB0Z8GEaTeROjcDa0nPcMVKTvgusH61VufMlqG6YuMtA7qN53AkV1LGSBc5x\nxwnkMpYe5U4oX56mHtyRgdyulYjT8lP1ghXUgTtIatJ3gbVI8zfE2O2bI2pkcMcJZHI+rvgx\n7oQKbhgt5w4UyORygkbnPakc+Qt3bCCXPdSbOzGCqU0fcEdJRfousGpq/4YYu709HeKOE8hk\nPd3NnU4h2B1dBTW9QTxL/bnTybdR9BR3bCCXVvQMd2IEM4uGckdJRbousE5QC+5sCcEzlgam\nuq3PyBpZtnKnUyja0/PckQJ5NLds4s4m33ZH1uSODXj7mOpx50VQ6UlRP3DHST26LrDGam8E\nPl9amOu2PgP7Py1PfOlmGXXjDhXI4iNt3uIuakH/4Y4OeBmjzRv2PI2nh7jjpB49F1hanxXO\naSU15w4VyGK0Pip6u7265UvuWIEcxmn3G3MOjeaODnj6O66Y9sakzeVIERNNb6LnAmu/xmeF\nc2lEr3DHCmTwTyE9fH6JHqZx3MECGVwqXFSzf0OmJRa+xB0f8LCShnBnRSiGmWh6Ez0XWF1p\nLXeqhGYJteWOFchgLQ3mTqUQpRYv+Cd3tCD/Nmt5IOX+tJU7PuAuo2rkTu6kCMW+AqVMM72J\njgusM9Yq3JkSqvr0Jne0IP9qR2znzqRQDaPF3NGC/NPkKO5Omyy49UFTXqDbuHMiNCaa3kTH\nBdZ8eoA7UUK1kDpxRwvy7d/UkjuRQrY3JgkTCOje/1FD7kQKpB59wh0hcNODlnGnRGi2m2d6\nE/0WWBmVo/dxJ0rIatO73PGC/LqTFnDnUeh60E7ueEF+jaLHuPMokGk0gTtCkONrazXujAhV\nF9N8Oum3wPoXteNOk9DNx8QSuvdDZPl07jwK3UZrXYy+pnP/xBXX9EMVqQkJuM1dOybSQ9wZ\nEaqN1lomGQpZvwXWQFrInSZhSKb/cgcM8mc6jefOonC0pBe4Iwb5s0brD1X0p83cMQKn84WL\nHOVOiJC1paPc8VKHbguss9FJOjqfYJ9HfbgjBvlyOTFe49OoelqOR1d1LrNWxA7uLApsq7UB\nd5DAaRXdxZ0PoVtracQdL3XotsB6ikZwJ0lYqlnMNMWlAa3X6qRw/tSnd7hjBvmhg4cqmuDe\nUq3IqBKp8XLcQzOTnGDXa4GVUSVKB/M8u5lN/bhjBvmQkRy5jTuHwjOfenIHDfJjgPYfqphH\nd3NHCRzSqT13NoRjBbXijpgq9FpgvaCvdBJUtXzMHTTIu3S9jDGTIxknTfXsp6hymr8JIt0W\n/Qt3nEDSgVZxZ0NYGtLr3CFTg14LrD60hDtDwjSTBnAHDfLuNlrJnUHhmk13cEcN8m4O3c+d\nQcGNpjnccQLRx1SHOxfCs4Tac8dMDTotsE5FVOROkHClV7J+xh02yKsTVI87gcKWXtmCgSB1\n63rpAge4Myi4AwVLXuWOFAjuoxncuRCmevQWd9BUoNMCaxpN4M6PsM2gQdxhg7y6k+Zx50/4\ncNJUx3ZTL+78CUVfTEioBb/FlDrGnQphWkhduKOmAn0WWJcTC+nqkXlJegXrSe7AQd58aa2o\n+fthckuvbMV9f3rV1LKBO39CscVaGwPa8ptDo7gzIWymmN5EnwXWRrqDOzvyYDoeudGrEfQI\nd/bkxWN4dFWv3qVG3NkTmlYmed5e066UKKiD68le5lM37rgpT5cFVmbtiK3c2ZEH6eUjvuAO\nHeTFD9Fl9HYCXpJexfI/7thBnvSn+dzZE5oV1IE7VrCRbufOgzyoSf/hDpzidFlgvUStuXMj\nT6bREO7QQV48qK9ZcnLMwRyY+nQqUvtjNGSrg1nAuGXW0OUZhydMcApLlwVWF1rKnRt5kl4u\n4ivu2EH4fi1QXD+zfHmqieHcdWkyPcidOqGaQ/25o2V2dmrLnQV5UpPe4w6d0vRYYH1iqcmd\nGXk0lYZyBw/C9zCN4c6cvFpA7bijB+H7O77IEe7UCVV6ReuX3PEyuXb6G6RPMp+6codOaXos\nsIbrbsgPp2NlI/BZpDu/FUzUzbddLin0Enf8IGwLaRh34oRuKg3njpe5/VeHg/Q51DL8CXYd\nFlhnom26vONY9AgN4w4fhOthHT4C7bLC0iCDO4AQpiulCuzjTpzQHUuK/J47YqY2gOZw50Ae\nPUmduIOnMB0WWA/p9Y5ju3QXFk5h6cyvBYvq9wSW+Bj9Xu4IQpieoX7caROOyTSKO2Jm9m1E\nBb08EJFLHTrOHT5l6a/A+jNOz993U2kwdwAhPJP0eweWaENElevcIYSw3KgQtYM7bcKRVjrq\nFHfMTOwBeog7A/JsMbXlDp+y9FdgzaHh3FmRD+nlrZ9zRxDC8VNscR0X9ILutIY7hhCWLdSd\nO2nCMxGnsPj8GlsilTsB8q4BvcwdQEXprsC6UDROf2PWuplOA7lDCOF4gMZx50z+7Igt8Q93\nECEMNypH6mxUo9QyUd9xR820pun6DPtySxNDT7WkuwJrMd3FnRP5kl7Z+hF3DCF030WV0vHf\nh5K76FHuKEIYtlJX7pQJ12S6hztqZnUuPkF/8/K6aU5HuEOoJL0VWJdLxe7lTon8mU29uIMI\noRuq4xscsh0qWuAH7jBCyK5X0tsJLLv9WLkI3PnAYy7dw3308+UZa61b3DFUkN4KrBV0J3dG\n5FN6suHH/jCQj63ldTsmiMsETNGkI8/o7Q4s0XRMK87jfNG4/dwHP3860FbuICpIZwXWldIx\nu7kTIr8WGP3BCSPpSbO48yX/jlW0GH5KCsO4bIvezp0w4UuvihRj8aTOb5mx27dGlbvCHUXl\n6KzAWqGvAWJ8a0DPc8cRQvMm6XVWJg/zqbmh7yQ1koV0B3e65MV8uo07cmZ0PjFOR0PS+taX\nFnKHUTn6KrAul47ZxZ0O+bfKUtfIV50NJLM5LebOFlk0o93csYSQ/JFQSJ83mTag57hjZ0Lz\ndX8Cy27fG5fwO3ccFaOvAmuZEU5g2e230bPckYRQHKSm3Lkij41RSRe5gwmheJDu406WvFlt\nqY0/G9X2dxH9n8Cy20fQOO5AKkZXBdbFkrG6vwNLtCXadok7lhDc9SoR67hzRSb9MVSDLnwV\nVVKvw9p2oA3c0TOdmTSE+7DL4GiZyM+4I6kUXRVYC6k/dy7Ioz/N4o4lBLeSunFnilwOFYvG\nJJg60JumcqdKXm2LKXWeO3wm81tcwkHuwy6HGcad81lPBdY/iQX1eXtCLvuLxGL+ec37K7GA\nAe74yzbNuJ9hBvIy1dDtvL32QTSdO34mM4FGcR90edQz7Gijeiqw5tBg7kSQy0S6nTuaEMwk\nGsadJzJKob3cAYUgbtSyrODOk7w7lBiDCXPU9E10yaPcB10ez0SWN+hNMzoqsH6PL6zrWQjd\npSfTC9zxhMC+0O/tML5siCp9jjukENhy6sSdJvkxme7gjqCp9Kcp3IdcLv3oEe5oKkNHBdZk\nGsGdBvJZZa1s4NHVDKE7TefOElndTaO4QwoB/VI4TtfXpNOr0evcMTSRdyxV9Xs92cuh4pHG\nnKJXPwXW6ZjiRjqh0Ac3LGhbOtU2zMeX5Gg5y7+5gwqB3E1juJMkf5Za6t7kDqJpZDalhdwH\nXD6zqYkhR/nQT4F1Lz3InQRyOlg88gPukIJ/V6tYV3PniMyWWKpe5g4r+PcqVU7jzpF86kir\nuaNoGjupOffhllNreoo7okrQTYH1aURZvX/6eJpD9W9wBxX8epx6cmeI7HrTJO6wgl/XqluW\ncmdIfu0oWOQsdxxN4qItahP34ZbT7sKxn3PHVAG6KbB60UzuFJBZB5rNHVTw57sCCQYYItnL\noTLWN7kDC/7Mpu7cCZJ/I+le7jiaxHSjDArpNJ0aG/CMg14KrNf1PECMb/uKRZ7gDiv40Z0m\nc+eHAhZZKl/gjiz49ll04n7u/Mi/1AqWt7gjaQpfRhc7xH2wZdbWiGccdFJgZTSmp7iPv+zm\nWaphgjht2k91jFbPS/rRfdyhBZ8ymtOj3Nkhh0W4z10VnfU75L8/+4pHvs0dVtnppMDaRS25\nD78CetEI7sCCL3+VilrPnRyKOFKRDnEHF3xZSS24k0MeHWgJdyxNYD/V4z7Q8ltgqfg3d2Dl\npo8C60r5SEPd0JdN+Lrbxx1a8GG4IeZQ9WVtdNEfuKMLuX1TsNAO7tyQx+74uFPc0TS887ZI\nI/4F2J8GcEdWbvoosOZTX+5jr4h1MYW/5o4t5PI8VUzlTg2l3E+tcAlHczJa00PcmSGXidSd\nO5yGN54Gch9mJaQm0wbu0MpMFwXWT4XijfdIl2QSpVzlji54+btshI5nhAsivTlGuNWepdSU\nOzFkk14Hs14q7D/WMkYadDvHlrgCH3MHV166KLCG0FjuI6+UjjSSO7rg5R5j/nmYbV9Ji507\nwuDpk9jCO7nzQj4bokv+wR1RQ7texzKf+yArZAYlG+s5Zz0UWG9ZKh7jPvBKOVyRNnPHFzwc\nokqGvUAoWhFV9HvuGIO7q/VoBndWyOkeups7pIY2jzpyH2LF9Ka7uMMrKx0UWDfrWxZxH3bl\nbIyLwWhYWvJjYvTT3EmhrLHUEBONa8lEg31hplWlo9wxNbBPohMNeseM4Gg1epo7wHLSQYG1\ngtpxH3UlzbaU+407xOByqx2N5k4JpXWg4dxhhhzHLDaDjRm5NrLk79xRNawbDekx7gOsoK3x\nhjrjoP0C60x8nIHuT/DhbmpznTvI4PQ4NTbkEKPuDlemtdxxBqfTiVEruTNCbsPoDu6wGtZc\nuo378CpqjqW8gW7h036B1ce4d7g7pDej+7mDDNlejyi2mzshlLc1PuoN7kiDw7WmdD93Psgu\nLZm2cwfWoN6PTNzLfXiVNYg63+KOsmw0X2Dtp5pGP6NwsAKt4Q4zSH4uHWHg+/1yPBlR4jR3\nrEEyhtpwZ4MCNsbGf8sdWUO6lGyZx31wFZbe0EAjyWi9wDpbImod9wFX3ObCES9yBxoE11vR\ncO5kUMcoSrnEHW0QrKcKBrsBy2EiNcGNDwoYTb24D63i9payGGaGE60XWP1M8Y23OLLwJ9yR\nhqysB6il0U+XOnWifhnc4Yas16LijTgJmKANPcQdXAM6QBWMOcSoh7WxBf/HHWmZaLzAepZq\nGHYILHcPWcr9xB1rWE/lDnJnglqO1qQZ3PGGk0Ujn+TOBIXsL2PBWA1y+7aw0ceQcZhhKWuQ\n70NtF1hfx8ca9O87b4OpruEmEtebVw17NsGX3SVxHzK3nyrQg9x5oJjV0QmYaFVeV1IMnC8e\nhlIDY4zorukC62oDmsx9pNXSlVpd5o63uX1WJHIBdxao6Zm46Ne5Y25uf9amu7izQEGTqJYx\nviQ1Y7jBRqT1L70jdTbEPXyaLrBGU3vuA62aYy2o6zXugJvZT+VpIncSqOuJyCKfckfdzM41\nou7cOaCo7tQb9/nJaDVVNsENWA6pDWigEQZr0HKBtZEqGvIBG9+ONqCeqLDYnKtLd3OngNom\nWZJ+4I67ef3ViNob+5GK1Lr0MHeUDeRfkYW3ch9S9RxKpvsMUJ5ruMB6I6qQiW6JsdsP16Pu\nmCOOycUW1I07AdQ3lJLPckferH6tR+2N/gDP3jK0jjvOhnGySORC7gOqpn2VaYT+KyztFlhf\nJEY8wX2M1XU4hdrgTncWl9tTa6N/2/nSm+qf4469OX1dhTobP+M2xEekcUfaIH6paLZbGPZU\nortvcIc9vzRbYP1YgcZzH2G1HW1Gdc5wB96MLnekJqncR59DeidqhAqLwdvF6Q5jXx90WBJd\n4Dh3rA3hn/o0kPtgqm1vdep2kTvw+aTVAutsTUM/YONHWjcqY6SpxHXiYjtqfJT72PM41p4a\nGGhqVb3YEWsdw33o1TErIuH/uKNtAJdbUyczFOSeDqVQw5+5Q58/Gi2wztal3txHl8W9ltit\n3ME3m7+aUxOT1ldChdWRauKsqbpuTKSCc7gPvFqmWIpjlor8utKRWqRxH0kGqR0oSd/1uTYL\nrB9rUjfz1euS2QXpPgyIpaYfa1MbU14fdEjvSWU/5j4GpvJjK0oy/gSrLmMtJTEaSP5cam/W\nU+zpQy0FdnOHPz80WWB9UYF6mbS+sts3VKSaH3IfARP5uBz1MG2ySYZY4p/jPgomYi9OLQ5w\nH3M1jbGU+Ig76LomnmI3zQBY3mbE0pSb3Ecg77RYYL1VjAZxH1ZGR7pT9EIdp5S+PF/YMoT7\niHObEmVdkMl9IEziygRL5CiTFfT3W4q+yx13Hfu+JrU28Sn2tWWo3W/cxyDPNFhg7YqxjuU+\nqLxmJVBTnFVXQ+biiKgp3Ieb39JE6vMX97EwhRM1KGkl9+FW3URrHM6R5tXxEtTL+AN6BLC/\nCdne5D4KeaW5AuvWNCpgmhtA/dndmqJnXeU+FMb3z51UdAn3wdaCHbWpPB6nV9zV6ZGW7iaa\nncJlRlQkRhzNm7VR1lHch49Z+jBr5JM6HXNUawXWn12p9NPcB1QDZiZS1Re5D4bRvVeFamzn\nPtLakDbQEjEdMzUp681kKm6ywZOdFsXTWENM3quyv/tTvElTxt2CotRRn+M1aKzA+m9FStnL\nfTQ1YX9PC91xmvt4GNmNuZGW2018b4OXhSWozn+5j4mR/THCYulhqrvb3W0qR81OcR8C3Xmt\nHCWbaP5B/3Y1pOKHuY9GXmirwHo6xtLf1Jeb3a2oTgXnYXJCpbxfnxIf5z7GWrK/E0U+ghFC\nFJKxsRiVf4r7GDM62JoSdnIfBX25MM5iHYg/ASXpI6Pobh0OiaylAuvcnVRoNveB1JD0BxOo\n/G483qWEv8ZaqT3OlXqaV5IqYOo4RbzViGKHm/y7cnwM9fqB+0DoSFo5SsIdoi5rq1CJnbr7\nNtRQgYXTobnsvz2SGuJWLNldX5VINtzakMuh2yOo2+fcR8d4vhtoodbbuI8uu421KG4Bnt0J\nzXe9KaK/aUe/8iXtnmhqq7chIjVTYF2cgNOhPmxqZaGWz+uubte0jF2VqcBwc46MHMzaOhQ5\nEqcZZPXrhGiqsoj7yGpB+vh4Kv/sLe4DogMXZ8ZSzbXcx0trNjWiiBE/ch+bsGilwEqrQDac\nDvVlRWOiuptxb4xcbu2pSRHddnIfVs2aYaPokV9wHyXj+HlyQSo5xWRDi/q1t28kVduG5wkD\nu7mhNBWdjJzJbXYSxU7+hfv4hEEbBdYnXSmi32Hug6dVK1paqci497gPkiFcXl+VrO03ch9S\nLUt9sAxZOh/Cl6AcPrwvhhLH4Gxpji2dIqnsUxjW1r+MPdUoesBB7gOlTanjilHsA19zH6OQ\naaHA+mywleqs5T5yWra1fwJR1cf+x32k9O6HGcUoshPKqyDSpiaTUBa8ivma8uf8lhZEpcei\nvPK0pUcMFRx5gvvoaNSNHTUpojNu2PPryP0lyNrDrpMLzewFVuYrvSxUYRb3UdO61Fkto4nK\nj7Nf5D5gunXrub4RFHcHPrpCsbq3UNIXG37kEvdR063Lh/oXIEu9GRh2Jrc9w4oT1Vn6E/cx\n0p7fF5WliPYbuA+QtqVOqUpkm6qL+92ZC6zTTwqhqjoDV5tDcGBqqwJEUa1mvXSe96Dp0keP\nlCGqON6M85TkTdoTXYQaK7bb099zHzodOru1r/D/aum7NnEfRa06NqtpBFnbrPiO+0hpyXX7\ngBiK6Y6kCW5ZZ+H/r6pT39T8SXbOAuu7FS0tFNV2MffB0o/U+f0qWYgi6o7e/LHmU0s7Mt6f\nWYOoYGc8RRGeY0/dUZaIaj78Msa7Dd2t9x5vZiUqc+dy7uOnbbtGJwufZckTj/3NfcQ04fe9\nQ4oQ2UZgcL7QHJ7aPJoood/aTzX9jD1XgXX55UdqE1lqjUU+hWnvY7fXiBK+9uLaTNn3DdPR\n05MvNw8uSRTVdCoeosiLTaMbCNkW23H+WxjAKLgb/13VL1H4XKtxDyZUDcG2BxoKX5IR9cfv\n/pb7yHHKOLl9bB2h2EzsuQTXcsJwaGaX4sI3YdEe857/lfsY+sNRYP14dGor4f+rqJQHMNNu\n3qQuG9M+ySLmVseHd36Abz7frn6499GuwtcdFb5tmmnngJPB4bm9ywlRjGkxaecnN7gPqlZd\n/fL55aObxApxSuzwyB7uQ6YfR+YPqBkpRK14t5kHvzTfWfnz72wY27KQ0P+o2kOWoboK3/qx\nbcUii0p1mrzh3xqcD1rdAuu3t7c83KWkEA5LxT5zcDtM/ux/cnhLMZZkrdx13NKD75y5puqx\n1K7rp97as3BMp0pWMTjFW41ajQ+ufNsxtUdFMZ7Rte6YtuGlk7j3XZLx26ev7Vk1896eKaVJ\n+j+xQucHcYNy2I4surd5MTF+0XXuFLPLDIP+3Tz16vrJXSuIvbYktR35FMZsz7ttMwY2SpT+\nB4yr23fy6vSPz3Ef3RzBCqznD+bfttXzp44e0LFBuRgpCIWqtBoweTrIYtJdHevbCpBDnC25\n0W09Bwwf+9DsBcuf2bZfhmOXB68EzqgbivzSA1tXL3h0/LDet6WUT8iORoGkeu0HPsh9gAzk\nocEd6pSKcga3VqvuA0ZMfPTxp9Zu3qbIIXXzfuCU+l3p3+9u94alcx8aObBbq9rlEizZqUYR\nCWVrt+o9/GHuQ6RjEwbcVrNUZPYHWbm6bXoNGTvt8eXrdyh0GIOMpPS1Ar/ywLanl8ydOnZY\nvw6NqyVaHf8bVWjUddgU7tAbwqQhXZtWK5adQDFJddr0GjZ++vyVG3cpcCR9+91XIgUrsCoT\nQFhSAmfUee72ge7cFzil3uBuH+jOqsAptYq7faA7b/hKpDALrNiiRYsW5Gm+pIjw+618vz5G\n+PVxfL+eEoTfH8H366OFX18o6Ks0V2BxJ20uUUKD4rkb4c4qNKgIdyM8iP+ju84PqV9gRQq/\n/v/Zuw84qYk9DuBzHFVEFBV9gaN3UEBEBVGKIoKG3qUIYgURUGkiRUQRqdJBRAERqXJrr49n\n7/3ZBbEi+JReDm5fJtuyu6m7s/lnd3/fz0fJJnfJTKb9b5NMThG+VyG8V1YRp0WVmqeUjRk5\nnAVYucpvl2VuKGarjxXBvW6xtHKkEq4cqYxypKKuHEknEhERYJ3VpEmTSq5kQF9D5fjF6Q5/\nhnL4qnSHZw2U45ey/rFUKaccvrrlT3kuwKKutHHKKgmqRZ0IreJKghpSJyJKYyVFkZ7S9QCr\ntHL4esL3KoT3yipCSVoTwr9/zZyrJE07yDsLsEopv93AlXSeqhyppitHOls5Up4rR6qiHOlM\nV45URzmSO3+66kQiCQVY/S+Pcomy22aX02mqHL8N3eGzPPuXKoe/yPKnbjSvUQddSGi0Fkqy\nm7t+VBOtlARdSJ0IrTZKgppSJyLK+VE1/UHzKvWp8MO3Vg5/gfC9CnGZkrTzqROhjyetCXUi\nDJwf03VuNq9Sm6N/u7VrDcReHysC7xYvduVIzZUjXeLKkS5UjtTSlSPx+nRZ9KpP9SqSw6cI\nH1d2O83Zrwh1uXJ8wndpb1YOP4Hu8H5ZOT7h3MfPKYe/ne7wiVqtJPt+6kRovakk6HrqRGj9\nxgdG6kRE4X/KEL4Q+Avl8D3pDm9ml5K01tSJ0HeCB1gefUn4FUrSEn81z/fKb3cUmBpjryhH\nutWVIz2iHGmmK0earBxpvStHGqQcyZ2XXPKQe5eNn0OA5QQCLARYAiDAsoQAywgCrIQgwIqF\nACsZCLBSAQEWAiwBEGBZQoBlBAFWQhBgxUKAlQwEWKmAAAsBlgAIsCwhwDKCACshCLBiIcBK\nBgKsVECAhQBLAARYlhBgGUGAlRAEWLEQYCUDAVYqIMBCgCUAAixLCLCMIMBKCAKsWAiwkoEA\nKxUQYCHAEgABliUEWEYQYCUEAVYsBFjJQICVCgiwEGAJgADLEgIsIwiwEoIAKxYCrGSkKMA6\nunfv3sMJJUiMfcrxT9Adnmf/EN3h/ftps39MOXwavumeutLGKfDaeTyhJGgfdSKi8IZeSHf4\n48rhD9Ad3oz3yipiL22pmUmu6+Qnfb/A1Bhzr29wr1s8pBzJnbj7oHKk464cyW4k4jDAAgAA\nAAArCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAII5CrC+XzS0\nV+e+d67+I1WpMVf41ozru3fpN3aNnQm+UmVXT1n+D8FxP5Y1RhIkwO//esGN3fsMm/MFycET\n5YlKE4+qGsXxQL3SQVfV3pOjeGo+WKU2vz/rhh5KbV73P+qU6Phi/k09uw2Z8T51OjS+vF6W\n39Cu+GXZ8D5dBkx5wdFkSa6Ne253VqnvhdztXlzpNpz1EA4CrKO71e66AAAgAElEQVTzQ/vs\nsiW5JCbmtxGh43feQHF8VeEEmWZkfIN6ICxY1DF49EUenUtQjycqTTyyahSHvF7poKxqng6w\ndo8OpatbPnVaYh2cGkrbNK/M6luwktcjbYC1oXMwjTfbD5bcG/fc7qxc6IXc7F5c6jZSFWAV\nTlH2NnblpgUDlH9fSDKRCdjdT+lWZjy+ZfkNyvFJIjzuWZloZHxelqesDXne/eMXzpTlHvPy\nN0xRKvFa9w+fIG9Umnhk1SgOdb3SQVrVflkbsUyW73L7+GYOKrV42NOfffXWAiVOeJo6NdGO\n3a6EBQ9syZ/dTZYneeMvsB+HKTFRVID1lNLq7t7w9CODZXmQ3dnw3Rv3XO+sXOiFXOxe3Oo2\nnPUQ9gMs5VR1+4AvHJ4ny33df+PUvbJ8h/rF+AklVz2I3jSyq4d8Lc3IuEmWXyE4bNhLsnzb\nbr7wYTe5ixcvUOjyRKWJR1eN4lDXKx2eqWrz5c47CA8f5zEldglc2/qwo9zDW+/LWSfLA7bz\nhZ8Hk/z9Hc/XRe761BxtgPV7N7mz+qa6I1Nl+SGbu3Fv3HO7s3KjF3Kxe6HoNqx7CPsB1s2y\n/Gxg6bjShD5IIlUJ+V9HudvewOKJ62XZnTc6xiq8S+63gWZkXCXL7xAcNuToQLlX8OW7T0xc\nvpMwJU54otLEI6xGcYjrlQ7PVLXPOspr6I6uQ6nC3wQXx8jyv0nTEuPENbL8YWDxu47yIC98\nhTVSvuVHf1SAtST81cbhfnInm2Owa+Oe252VK72Qe90LRbdho4ewHWD901HuGrq2vkCWtyae\nqsTsnDXl4dDy3HCdd9kzSjz+NM3IuEiWPyc4bMhbsvw44eET5IlKE4+wGsUhrlc6vFLVjt4k\nX+/+F/VmOslyqAteKMvrSNMS4xtZvim0PEWWv6JMS9DIRUrpaQOs49fIXUJvbF4jy5tt7cW9\ncc/tzsqVXsi97oWg27DTQ9j/Buv47nBUuEKWNyaaKBEeJBqc/ughT/ITjYxKnn8kOKzm8L8Q\nHl4AqkoTj7IaxSGuVzq8UtVWhb+T8Yqeshy6cLTQU7cU+v2vyfKc0HK+N+7SVKu1NsD6SpbH\nhpa/lOXx9nZDMu650Fm50wu5170QdBt2eoiE5sG6T5bfTOT3BNnfV+5McWtG4Xi5126qkXGy\nLFNONHCdPED5//4f/vs7YSKSQVVp4pFWozjE9UqHR6razs7yNNIExJsiy58GF8dGrhZ6glKd\nl4WWP5Tl6ZRp0dIGWEoaHwktH+0o93K8M9fGPRc6K5d6Ife6F/e7DVs9RCIB1r5uck/C+4V3\njJLlVRQHflq9e5NoZLxTlve9ds+Azr2HP0Iw8BzuqPzB98UE/hjsoHVH3D9+0sgqTTzSahSH\ntl7p8EpVmyJ3/pXu6Lr+K8sjAx3vex3lCcSJifaK5husT2R5OGVatLQB1grto5f9lXrvcF+u\njXtudFYu9UKudS8E3YatHiKRAGsm2VfAu1YsmzVMlrutpzj4Hz3ku/1kI+PNsnxLaJKUda7f\nQ7pd+aP02U7B49/2t9uHTwpppYlHW43i0NYrHR6pap/J8lKqYxvaLMuDN370xRtzOslD91An\nJspXsjw0tKxU7eso06KlDbBmaW94v1WWnd4I7ca451Zn5VYv5Fr34n63Ya+HSCDAWifLdxQ4\n/zURvuRnr9eKvRTHLhwv9+TfdhKNjHwWlt6zNmxdMkhZWO320ZUTf2vnQS/9dmz30/1keZwX\nBmLbKCtNPOJqFIe2XunwSFUbI3f1xhXlKO+PD4wgg1YdoE5KtIJeshycQPv4UFnuS5uaCG2A\nNU2W3wtvuF2Wv3W2K1fGPZc6K9d6Ide6F/e7DXs9hPMAa7Us30Q1WH0Z6F5ueong2L7ggx1E\nI2M3WV6sfj9dsEw5A9+5fPQP+JS1/6iLv/WW5bdcPnxSKCtNPOJqFIe2XunwRlVTKs0CmiOb\nObhyQKAyd7zdE5VH4xFZHqLOjn54eseO3gyw7pHlj8Ibxjp91NGdcc+lzsq1Xsi17sX1bsNm\nD+E0wDoyXZZv2Z1IgsQ48b+vVit/LM11/cC/95DHq2Ex0ch48ED48v9UWZ7h8tHflyPzmWyR\n5akuHz5JZJUmHnU1ikNbr3R4o6op5+JnmiOb2HOjLM/576GC3a/cIsuLqFMT7eAQWe6x9NVt\nKwfKSzp78xJh1DdYo5x9g+XeuOdGZ+VeL+Ra9+J6t2Gzh3AYYP15myyP2W/9cyn153Xuzz5d\nOFbuEXh9Ff3I+K0s93L5yskXstw59H7U3bLcx92ji0BRaeJ5qRrFIahXOjxR1f7XSb6D5MCm\nxofv0j5yh+eqz66hwRtg5u2T5WHUqQnRBliztfdgDXP0VL/L416KOyuaXii13Yvb3YbdHsJZ\ngPVlPyW0PpZQgkR61/3X0uaHZ36jHxkLu8qyyxdpd8hy//CH7rJMXwccI6g08bxUjeIQ1Csd\nnqhqG7wzK23EN5qn8z6T5dsp06Lj+LPj+3a9ftbn/p0e+opbG2CtlGVfeENfWbZ/G5vr415q\nOyuaXii13Yvb3YbdHsJRgPV2F7mjF6a3OyLLHY9b/5hAu7vLN7wR8JAsL3/jDdLJGfvIsstX\naY91knuEP/SNTCidRtyvNPG8VY3iuF+vdHiiqt0my39RHNfUJlleGVo+5IHabOQN2TuvGNIG\nWM/Lcniq9IOyfI3tnbg/7qW0s6LqhVLavbjdbdjtIZwEWG93lruTvbfsk00rvgwtF3Z0u98N\n3nsYscz6d1LmqJJ9t9/hcUtkwjilKnd1+eiJoq008TxVjeJQ1CsdHqhqe2T5ForjmntM83qc\nE52cz+PkFmXUfp86DSHaAOt7OXJV50NZnmJ3Hy6Ne651VkS9UIq7F3e7Dds9hIMA6+tuco//\nJpie5C2T5fmh5V9lubu7RycfGd9ZMOnV0PKHmjln3LIy8hquz713dcIIbaWJR16N4lDXKx0e\nqGovyfISiuOa26SpzbtkuRP9/XJR/gn+e6iv3JtoGp942gCrcHDkDc+L1Hk2bXFr3HOts3Kx\nF3Kxe3G327DdQ9gPsA5eJ3f51PrHUkUpnl6hCFX5U24iWUJobp55UZZvDob/hWMJJiX/QZav\nPRRYnCbLT7h9+AR5ptLE88g9WNT1SocHqtoiL96Cxe+7GhiKXF6VPXYX/rQeHYNTdT/qgb8b\nwrQBFn933IrA0p7ucnebk7K7Nu5RdFap7oVc7F7c7TZs9xD2A6xFdt8/nhqFw2R5VOCq50ud\ntK3GbTQj45F+snyf+hjL0Ydkuec/Vj8v3HSlyatd0kZZ7pEuU7l7ptLE80iARV6vdNBXtdGy\n/DnFcc0dv1GWFwW+ttp1rf1vYNzxuCyPVd9Q8lxHuRf9oxIhUQHWP73ljtv4wr477Q/Bro17\nFJ1VqnshN7sXV7sN2z2E7QBrV2e546q1YfkJJy1R33WX5W7Tn9i8QqmH8r2uHz6MaGR8V2lz\nfRY9tXXxAFnuSDD74v+uU/5+Xvn8+tuVs/+y+4dPkFcqTTyPBFjk9UoHfVXr57k3YKs+6yzL\nI32fff3eyt6yfJe37nE/MEiWr1357AYldOn0LnViuC/VcWq4LE/n/wZipFc7KuftyfzFSvmO\nsnkV08Vxj6CzSnkv5GL34mq3YbuHsB1gvRF92fb6hJOWsG9vCB/9IcJ7calGxrf7hnLfj+QW\n0t9GBA/f/UWKwyfII5UmnlcCLPJ6pYO8qnXx6B3knwwM1+aZh6gTE2PHoGDK+nojTN8QNV4F\nH+F/sVvw811252hwc9xzv7NKfS/kYvfiZrdhu4dIowDLf/y16UN6du476uEdBAcPIxsZD2yd\nOKBrt0FTnnHnXeFxjr8yeVCXPiNWee/5dTPeqDTxPBNgkdcrHcRV7ajSwXnmNu0oR1+877oe\nnfuOWPoDdUriHd48uk+na27f4InLzAYBlv/Plbf17jpo+tu2d+PquOd6Z+VCL+Ri9+Jet2G/\nh0jgZc8AAAAAYAYBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABA\nMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYA\nCwAAAEAwBFgAAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEA\nAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAA\nwRBgAQAAAAiGAAsAAABAMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgC\nLAAAAADBEGABAAAACIYACwAAAEAwBFgAAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUA\nAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAA\nBEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAI\nsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgAAAAAgiHAAgAAABAMARYA\nAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAA\nEAwBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAIIh\nwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgA\nAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAA\nQDAEWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAABEOABZCV3maqnB8Ntq8ObG/iaqIAADIG\nAiyArBQMsNgkg+1tEWABACQBARZAVgoFWFUKdTf/UgQBlmOzJk16jjoNAOAVCLAAslIowGKv\n6m6ezhBgObUvh7HbqBMBAF6BAAsgK4UDrAG6m+shwHLsNYYACwDCEGABZCU1wKql/Fd6v87W\n95QNpc5GgOXIgwiwACACARZAVlIDrFv4/1bobB2mrG9/OgIsR3ojwAKACARYAFlJDbCmnKP8\n75L4jcd4bPVQCQRYjtRAgAUAEQiwALKSGmCNG8///33cxs3qatyD5cg/OQiwACACARZAVlID\nrNvf5f+fELexs7K2/mH9AGvvS6vmTJ312BsH9Pd75MO1ix+YtmDNu0d0N//87MNzps5Y9NTX\nxxNL9l7fnGkP/+QgPYqjby2bft+il/dG1vzz0sJpsx59Tz8N1jv0//70gmkPPvz83qiVrzC9\nACvZDANAukKABZCV1ABrWGEF5f+VYqfC2lNMWTt+r06A9fs9TXKDzxcWa7WqIHan+5dfWjT0\ndGLx1uuOxWx+9+byoa3s1D4vxiSmbPQPX8bXLQ8s7+TLl/n9hfeV4UsP2kjPLr6upbKwd3S5\nwA+U6PNDYNPnPYoH1pw2/u/YHNjYoX9Ti5zATxRp+Wxw488syktWGQaAzIcACyArqTHNDf5b\n+T8vx2x7iK/84K+4AKtgyklRcUSt16J/b+2/ouOMeh9rt/7RM3orax6+NmkVYO3myxf5/TcH\nfjEUYJmlZz9fcZ7f/3HFyPYyLygbCu/Njayp/kPUMe3scHc77U8MPKpu1A2wTDIMAJkPARZA\nVlJjmsH+N/g/18RsO19ZV9P/J9+kDbD+ahETMLAiM7W/Njp2Myuu+dJme/W4zWXf1ibGJMA6\nwJfr+7cGf+9BG+k5rgZI/q9P024v863fPzLqN2oetpvB4A5314v+if7qRr0AyyzDAJD5EGAB\nZCU1prnWX1hN+adU9M1E/+Wb7vH/wf/RBFj7G6tBQs7FoxetmHFt5UDIMC+yfU5gTbmrh999\n97BLiqkfTvk6tPX4eeqKYpfcNGn6mEEtAhfpzv5dkxiTAOsEX64cnv30QTvp4e/6qXisofID\nFw689Zpagc1d/GuU/xdve/3Q7sFv2ybbzqC6wxM8WaXbXXfrgPOCX4T5+LZdDRs2PIN/OqMh\n945VhgEg8yHAAshKakwz0O+fooljgsbwKGO7//eYAKu3GiJ0DF7mOrFB4h9zPw1t3llKjahW\nBu9b+n2w+uOdQ5uXqLHLHX8FP/51txpx3KJJjEmApQY3Z/O7yC+dteHJ+dvspIdPMnHGDMau\nClwFfPF0NQGflWO5t6t3Xp1Yqt4uVjFyA5qdHS5grPyywLdeO2T159uGtt/GP0VucjfNMABk\nPgRYAFkpFGDt4DdsN9duOcFvfG/ljw2wnlbDiUmRn/u9Dl/RMvRxLP9U9I3I9mHqL/w3+OlS\n/mGq5jAv8Pim+D+RxJgFWCWV5dMHsTJPR7ZbpYfHeyXKsqGhz6+qP1+R5T4RWjNbXRO+amdr\nh6ey+r+GVhxX81RkV/BjTIBlmmEAyHwIsACyUijA8rfmC99qtrzAV6yMC7DO5R/7a3fxFf9O\nh4ViHj7NJuut2XygLF8zO/DhOL+gVjJq5oNRfPP6SGLMAqxAcJPzgma7VXpKq/HShZEvqII3\nWN0RXnFUfbxwkbMdnvZrZHvgfY6hJwmjAyzzDANA5kOABZCVwgHWKr4wXrPlGuXzSftjA6x/\nqzHQn1H7UN+00zewvK/BmUUYe1y7uR/f3DWw/BtfrhH1298MmPjIq7sjiTELsALBzSDNZqv0\nBH/lrcjWe9UVp2hevdidrxjmbIdLtdv5d31sevBDdIBlnmEAyHwIsACyUjjAOsinlqp4Irxh\n30nBL3KiA6wb+Kfro/fxuRqxhGcUPf7bx1F3y8/lm5sFltWZrE41TYx1gPWlZrNletRfqafZ\nqk5Pz67TrJnAV/RytMPTtU8d+tvzVSODH6IDLPMMA0DmQ4AFkJXCAZZfvRs9cvFtBf/IZ8aK\nDrDyon9Ks/J1o0Os5VtrBZYL1GfuNpslxjLAqht3aLP0qL9yu2bjByz2Et1SvuIqRzscELVZ\n/YZrSPBDdIBlnmEAyHwIsACyUiTA+g9f6hPe0FL5lMe/0IoKsNQ5G9ivMTvpwlcuMTpEPt9a\nOfjhAvXLoGf1f9JegKV9As86PeqvaC9ZqrNPRL14cTVf0crRDhdFbb5Te+pibnI3zTAAZD4E\nWABZKRJgqbenlww93badP1Wo3pIVFWC9zD8UPxGzE/XJwVuNDuHTBliPqgEM6/D0UaPEWAZY\nCzRbrdOj/ormoUb/j2oCtK9I3MBXtHS0w+ivuCbyVaFrjDEBlmmGASDzIcACyEqaAGuq9nso\ndV4sdXrQqAArGC7o6RjZaeGnM6+5qMIpmnfRhAOswquDK07pNPej2DjGXoD1jGardXrUX/lc\n8yvb+YoS2kNoAyybO3w3Ko2TTAIs0wwDQOZDgAWQlTQB1k4+jedFwfU1wstRAdYM4/ijVWiX\nRxZXi99aObR1X/vIytO6L496ms5egPWmZqt1etRf+U7zK9vjDqINsGzuUBuxmQdYphkGgMyH\nAAsgK2kCrEAs85W6qL6bcLG6GBVgTTGOP0I/8nVdva2Vw0c88eApmvVFr9gQmaLKXoClfXW0\ndXocBlg2d+ggwDLLMABkPgRYAFlJG2CpN3uPURevV5ZK/E9djAqwJhnHH3UCP/FhKJooV6f5\n1b24S6IDLL9/zwN1tL/YKPwqaHsBlja4sU6PwwDL5g6dBFgmGQaAzIcACyAraQOsQzw2ko4r\nS4dPVZZ6BNZGBViz+Ic8k/3tra7GEHkPRh7Ti7rJPejbOZcXDwccORO1iXEUYFmmx2mAZXOH\nzgIsv1GGASDzIcACyEraAMs/hH/gMwqs4wvBm8mjAqyH+QezeTNHqBFEL8086boBluLgMyMb\nhCKO2ZrEOAqwLNPjNMCyuUPHAZZfN8MAkPkQYAFkpagAS73zir9HsIPy71kFgZVRAZYai+QW\nGO7uKJ8Pnl0c9QPr9QMsbvt0dQpPVmJ7JDExAVYz0wDLKj2OAyybO0wkwFIPHp1hAMh8CLAA\nslJUgOWvqXw4+Yh/T1EWmf08KsB6Tw0P/mu4O3W2UvZq1Lo5xgGW33/kdvU3RkUSExNg1TYN\nsKzS4zjAsrnDRAOsmAwDQOZDgAWQlaIDLPVFyC/4H+H/fBZcFxVgHVFvJHrScHeL+ebToh+T\n62oWYPn9N/LNtdXFd/hi8aitBSeZBlhW6XEcYNncYeIBVlSGASDzIcACyErRAZY6FdZIfyfl\n/41D66LfRXge/3St4e7UyUrPiVq1t4x5gKW+DjlXjcnUlyqzY9qt7zPTAMsqPY4DLJs7TCbA\n0mQYADIfAiyArBQdYPnbKp/qH+ExxNzQqugAayT/dPqR6J18viu0pE4j1Txq4zQWHWDt2O+P\npn5HdUjdxGKjIf9oiwDLIj3OAyx7O3QSYJlkGAAyHwIsgKwUE2A9zj+uUv4r+mdoVXSA9YUa\n8MyJ2sfxWkUuvPcTdfEhvrWaduPXakDCKqgffrzzsnJsfnQKCvi3ZmXUxYP8BYhso2bjvjMs\nAiyL9DgPsOzt0CrACr2Y0SLDAJD5EGABZKWYAOtQWeUjn4o98mbB6ADL31z9hmeHdh/qd1QX\nqotb1fBke2TbH/WZeomwpHpJ7DceW+QdiErBi3xzo8Ayf0EPu0az8XpmEWBZpMd5gGVvhyYB\nlvoVWP/gB6sMA0DGQ4AFkJViAqxQRMM2hdfEBFgvqd8y1dNcM1uurnlKXd6TE72/T6szpk7T\nwL5UP7fii1dpL48daMhXTQ186MOXcyPvwpnKWHm+alnws05wY56eBAIsWzs0CbAm8g91Q5ss\nMgwAGQ8BFkBWig2w3grEV+WOhtfEBFj+W9QfKL8uOFfUd2pQxK4IblXnBWUjA9/ZfHVrLp9X\nS73Md5265nV1c531oRvZC5+vx1ec/HPgoy+w72cDn764SvnRCXzNkuCP6wQ3FulxHmDZ2qFJ\ngLWchUPCE5YZBoCMhwALICvFBliBeafY0MiK2ADrQONADHbmgLvmTLupSeBDXuiWrZcCn0/r\nfsfwnvX5UvW/A/M0sOZ3DvP5/TcFtp982c13T5t8W6fygY+hAOp44Oisas9hI6/hVyqLvf8A\n//xQcLtegGWengQCLDs7NAmwAjdxsXpdO5x7id8qwwCQ8RBgAWSluADrPjUAeC+yIjbA8v/V\ngsWqsz28dWj0lrwf/f4XQh/mKCFUj7hfZuz+8G+/WzRqQ84q/0L+78zgZr0AyyI9zgMsOzs0\nCbD8TcO/xW/bssgwAGQ6BFgAWSkuwPqF35ZdV7MiLsDyH7unVFS4UHTkvsjGgpu1m9qptzLd\nGAmw/P6HTomJNuo+r9n382U1W8pu9vsf4wvTglt1Ayzz9CQQYNnYoVmA9X4JbYBllWEAyHAI\nsACyUlyA5W+nrJiu+RwfYPn9u+6pHw4Xak36KXrjc5fkBOOS9sGbqfxrWpfLLVO5w2vqh72z\nWkS+pyrTfXP0i/9+Hh6KR866k1+W28IXJwQ36gdYpulJJMCy3qFZgOV/vU7wNzv5bWQYADIb\nAiwAcGLXC0unT53zyPN7dLbt2bpo2gNLX9tr+Mv7P1i/4IF7Zi7b/J3OhObHP149b+rMxz4+\nLiw9CUlihyfeWjj1vsXPaX7TNMMAkMkQYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEAwB\nFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAIIhwAIA\nAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgAAAAA\ngiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAAQDAE\nWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsA\nAABAMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAA\nCIYACwAAAEAwBFgAAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQ\nYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEMxJgPWFJEnzEzzOS8rvPpng71L4UEnvYts/\nLTJ3iZ9lZ2nOYFYn4jdl+xTXUgPmwo1HbP11VsioMlHCnVBCZWLQhSUzfoSl20CSoBQ1igiU\nsDsQYOlDgJXGMFqmEwRY3oPhlxgCrAyBAEsfAqw0htEynSDA8h4Mv8QQYGUIBFj6do4fP/51\n2z/tjQDLWZozmNWJMBwt+0qXpChJGUnM6Qo3HrH111lIlF1VxjLR4U4ooTLB8Ju0ZBsFStgj\nEGCJ4I0AC2wyGi0L66bjaElG0OlKUdcg9junjKoy1olOrhPC8Ju0JLOJEvYKBFgiIMBKK0aj\n5Q9SGo6WdASdrrQOsNKyylgnGsMvsSSziRL2CgRYIiDASitGo+WGdBwt6Qg6XWkdYKVllbFO\nNIZfYklmEyXsFQiwRECAlVaMRsvx6Tha0hF0utI6wErLKmOdaAy/xJLMJkrYK5wGWAuUfya1\nPafyeT0e3q/ZdPzZ0W3OrVS3+aBHdmvWFj5z/UXV6ra+7c3wWeuv/POZ5ideUz5PNDzgJ8pW\n5Xe/GXlB5WoX3/k1X3Xi6T4NKtXtMHef5sd+XzTgwtp5tZtdv+agZu2OuX2b1syr1Wzgij0W\nK/WEn60IpuHvhzrUrlSv3ZSfzHIX9NbEdudWqt/y+o3BM1RwmSRV/CS8eZ7yw+OMj2xwlm2c\ni4x7irCwviQNCX04VEnJ3g+hT9OVU/p3YDH2dMeciJeHtvTnVlMAACAASURBVKhVpfntyvn/\nR1m9hK/io+VU5Z/7rz6vcoMr7v1Z/bknpZCGKc9YGoptOfGnS6cZOms8NtqcXmka0C3koPSv\nMrHFYdyxWhecTuet/4zZsS03tqlXuVHPRX+bJ86gC4safvVHDNsDiSGe8X/7/e8Mb9Ogyvk9\nVoWO/YGy+m3/33dfWPmc74Or4iuBztkyWMlT8Xh4Oz+lrzo5iiGTRsHZG+lQwsFVXihhpwHW\nouNjQqV3/lvhLdsuDZdpjQePh9bu6h5a2Wdf8Kw9o/xzt2aXo2L6hWjfKFtf8s+uENhJpU3K\nLi8P7rFJeKgtuLdS+OANng+tPTK2YiRJCwtNVuoLV7tAGnzVg79WaZ1J7lTfXh0+RqOtgVWf\nKym88kRw+8/Kri46YHxkg7Ns41xkXIDlv1GSzgktb+NZXRP61EmSOqgLOqdbeyJ29Qltva9w\nh/L/x/hKPlre799QLbil6ga+EgGWifiWE3u6dJuhs8Zjo83plaYB3UJWpX+ViS8Oo47VuuB0\nO2/d4fc/F4Z/7hHT5Bl0YdrhV3/EsD+QGHpH2b41cuwL348c++V9LfmqL9QVepXA/qhhMPza\nO4qJ+GxqCsDuSIcSVle4X8J6qXUaYC0dq/yvUl11nK8ZCo3W5alnud0llfm/QwoCa/erAUDd\ny1sqHWXH5wNnraCBUjcKwnssqCdJrY0PuF35Jd9SSapQtwrfVeXv/2mmHLyeerTLg4VTOFDN\nXO2mdfg/FZ4OrlU7yUrnN6utbp1kvNJAuNqpaXhKKYDK9dTqXfFd49xx22rx9U3aXaymckFg\n5YPK4srgnpX0VnjLb8zgLNs4F5kXYD2u5Cj0h8L9PKe3Bj8cVmradL6ge7ojJ2L/ZeopbNlM\nOZV3fqksruVr+Wg5Z5OyqnJdtWVVfFtZ+e+ePWtIUvWePXve4GYW04JOy4k5XfrN0FnjsW5z\nuqVpQLeQufSvMjrFYdCxWhecfuetN/xuUH8wr6p152nQhWmGX/0Rw8FAYuhjZfvjE5X/Vamr\nJrTmV+rq75XF/HvUNerAqFsJ7I8aBsOvraOYMWkU9kc6lLDhuU9tCeul1mmAdZOUN+7LQv/R\n55srH64IBHsfKTuvOOU3ZenQkw2V1TMDPz6Jn8mXlbH/qK+p1Dt41viJCQff/leVTwuND/iz\nsnl2tTqP7vOfeK+Nsjx6tNRu23H/oU08Vy8GfuZRZfHc1fwbze2jefX7J3xCOvyHF9+uFbw+\nfmC40kC42vE0zK9d4Y4v/f5jr/O+t7tJ7vz+HcqOK969U1na9yg/RqAZFCgVqPYudfFFZeVd\nCZxlG+ci8wKsnzW1/Gqp6vnS+cEPrysb3vEbne7IieB9QEOfUuS/jakgzQqVEh8tJ1WvMOLz\nQv+x1/jJ7BTYa+t0vKHGDfotR3u69Juhs8Zj2eb0S9OAUSFnQJXRKw79jtW64PQ7b53h92Ml\n1q0ya8cJ/65lNfkoY5I+gy4sMvwajBhOBhIjnyrbb5Xypnyn/BWW31T50EY9tvpVZC2p5bTF\n9//iN6oE9kcNg+HX1lHMmDQKJyMdSpikhPVS6zTAkio8FfjwF8/ac3ypsLXmjHynRIGV+QH9\nu6ooleDHwNrfzpOCP/Nf5d/rwnscqSTvD+MD/qr8cPWaXwaWlbi6ZoWOh9UPG5UNdwZ+ppmy\ni8+DPz8+XFd6SlKj0GW47fUl6RbDlQbC1Y6noUaFTYG1e5SYucIe49z5/UrtCP2w/1vlXFxw\nJHDqlLo7lC8cvlCSmh0yObDRWbZxLjIvwPIrbXd4YOlAJenqIZK0M/BphiTV4i1C/3RHCk/5\nO6lG4A8c/3Kpkna0rFZhY2D9X0pNqBAIfhFgGdBvOdrTpd8MnTUeqzZnUJoGjAo5A6qMXnHo\nd6yWBWfQeesMv+2UP/KD37y/UVGSmkau+sQx6MLCOzU4qKOBxPTYoVDmz0ah5V+UhR7SlNBt\nIfqVwP6oYTD82jqKGZNG4WSkQwmTlLBeah0HWENDn/jAriblDWWhX/iHFiqfZvOFR6TgVRzu\nqfBZ46X4v+DaAqXv7GNyQN6rhb/hulZZrvhd8Bdrhm7B4RFlN+3P91WXGkWuJvn9S668fp7h\nSgPhaqemYXRo9TjlwzaT3H2mLIwI72Sl8il468dMZfENv3qhq8I7Jsc1PMs2zkUGBlhjJemi\nwNIrkjRhXvh0dpGka/2Gpzt8IpYoC/eFNg8Ml5J6LseE1vM/n15TlxBgGdBvOZrTZdAMnTUe\nqzZnUJoGDAo5E6qMbnHodqyWBWfQeccPv28pCxNCP8fv8HrFOH0GXVh4pwYHdTaQ2Dr2euXD\n9XxBLb9uoXHRoBLYHzUMhl9bR7FDp1E4GelQwiQlrJdaxwFW+Gm4guqSVJcvjIwqiz15ktSK\nL/RVVn8XWnu8fuis8ZMZuoFOGTSlTX5jPDeV/wl+mCGFLxX4/R0kqXFg6ejPH30V/oXzJamF\nuqB0MIPidqe70kBUZ18h/BzTk6HTbpC7u5WFb8M7OaycosGBRX6R8JJj/u8qmz01qTI4yzbO\nRQYGWPze3d/VpalKVdkmSaPUD0eqBO5pMzjd4RPRS1nYHtr8RdRoWTH8WNkm5dNqdQkBlgH9\nlqM9XfrN0FnjsWpzBqVpwKCQM6HK6BaHbsdqWXAGnXf88MtvKv4m9HOvNWnba4tx+gy6sPBO\nDQ7qbCAxO/ZHoU9HlWPX4Y8XqQPjv0OrDSqB/VHDbPi1OoodOo3CyUiHEiYpYb3UOg2wNHfK\n91A+8q+hL5WkKpHbK/3tlZ6IP0SqxIXnRtbeFDpr/yhjY/vgyhGSVMvschnPzdWhD/wS9JzQ\nB+VPy1o6v9Au9NTZFUo08nHsVt2VBqI6+zbh1f9RPi3jCwa5aytJzTR7UWpOveAiv0g4j5+z\ni3XLIcLgLNs4FxkYYO1V2mDgi2ilWv20t6LUXP3wZnAUNDjd4RPRQArftaVoox0trwiv5n9W\nLVWXEGAZ0G85hqcr3AydNR6rNmdQmgYMCjkTqoxuceh2rJYFZ9B5xw+/Fzt4VNKgCwvv1OCg\nzgYSk2OfF/nYTfnIb5bh5VczvHODSmB/1DAZfi2PYkt8o4hmPtKhhElKWI/TAKtv5OOdknrV\n62BFSbpc81PDldUfKkOj8k/HyNo54bN2YzhQ5l9kj/Cb4LkZFfrwhPLBF/pwg1JSOr9wlSTV\nVxf4F/3V7t8RvVV3pYGozn5YePX7wRpkkLvDyrnordnLFGX9ruDyLOXg85Qa9Z7FkfXPsp1z\nkYEBFi9Rdc6wfXm8UV0eaMf8giu/cmh0ukMnYp8UtX20drQcHl4dKlMEWIb0W47h6Qo3Q0eN\nx6rNGZWmAf1Czogqo18ceh2rVcEZdN7xw+9R5Qc7202fQRcW2qnBQZ0OJMbHvjb62G/6A+XX\nJbTSqBLYHzVMhl/Lo9gS3yiimY90KGGSEtbjNMAaH/k4KzDK82eqtV998stXz/n93yn/aB5e\nfjJ81vgDLveqS/yLbLMJC9TcTNbuYVvow02aAOuo746rGoYmqAlWu4JO6odLxz39T2R3uisN\nRHX2E6JW8xpkkDv+w9UviKgbrM3q0duqR5/st6B/lu2ci0wMsKYHv8t4Sb3sflfw+6xugVt0\njE536ER8qw1KA9/7hUfLyIXaUJkiwDKk33KiT5deM3TUeKzanFFpGtAv5IyoMvrFodexWhWc\nQecdP/zyH7zRbvoMurDQTg0O6nQgMT62ZkIwfmw+CVJUgGxUCeyPGibDr+VRbIlvFH4HIx1K\nmKSE9VLrNMCaHvm4SPm4LnCj162an1ogqTeU8dmYb4us9YXP2okmktRYfUDhNkm6wHS2T56B\naaEPT0qacEwTYG1uLGkFqp3/4K3Bz3mdHgmfNt2V+qI6+ylRq3kNMsjdV1K88AXbL/kjSS0s\nLhAanWU75yITA6y3JKkCL6rJ6k0v+ZI0VvlwtKokPeM3Pt2hE/FJdFN8StKMlvFligDLmG7L\niTpdus3QUeOx0+b0StOA/k4yo8roFodux2pRcAadd/zw+7lkcbVBy6ALC+3U4KBOBxLjY8+K\nfFysfHzCHyi/8Ow4ht207VHDZPi1Pood8Y3C0UiHEqYoYb3UOg2wNE/ePax8XOX3vyuFp0xQ\nLQ+sfid6tWb2sOlS4BGcgjpRhaTDToA1V83ahZ2uHaZoEK52fv/Hw2sH8117znHTlXosOnuD\n3H2oU67PhH7ooNIBSv1NM8zpn+VsDbCO1eCTeqvXyb/z+3cFpk9Uoq48/n4go9MdOhG8lKZG\n9hWeIthbo2V60Gk52tOl3wwdNR47bU6vNA3o7yRTqoxeR6bfsZoWnEHnHT/8fhDzg6YMurDQ\nTg0O6nggMTz2Q/HHjio/k27a5qhhMvzaOYo1nYlGnYx0KGGKEtZLrdMAa2bkIw9bNwQi32Ga\nn3pI+bwxMN+qJizdHDlr/ItC/pQl/yL7B78ZG0HF63wi2fG/BFdfpal2Skfz+uQ2gZz3P2K+\nMp5FZ2+Qu68l7Z0aMe5Sj7rRNMd+o7OcrQGWv5963eOfioHbIJtJFf5SvxVWr9kbne7QifhI\nipqQOF/y6GiZHuJajuZ0GTRDR43Hqs0ZlaYB/Z1kTpWJ78iMOlaTgjPovOOH3y/NerZYBl1Y\naKcGB3U8kNg99np/TPmZdtO2Rg07w6/pUazENwpHIx1K2Csl7DTA0rxRnl/8VKLCn6Topxz5\n31EvBt4nprmw+pjmrHWRpBqH1VvcrvabshFU8Glfl4V/oX1UteN2Pd6Zn7S51iujWXT2Brn7\nVTKeCeJtpYE0laS6Vvc56p/lrA2wlkmS7Pc/FzzdIyTpWb+/e/A7YqPTHToR/Cvc0ZHVq707\nWqaLqJajOV0GzdBR47Fqc0alaUB/J5lVZWI6MpOO1aDgDDrv+OF3pxR1Z7E5gy4stFODgzof\nSGwem89DGVV+Zt20ynLUiB5+V+sOv5ZHMRPfKByNdChhr5Sw0wBLcxscv33/fb//cJ4kXab5\nqVsk9TWjf0pRjwZM0py1deopOVLL/GWtfjtBBX8u4aLIfVyN46qd4pmqSr8TOxuE7koNi87e\nIHcFVQzfrXiouRIp/F5bkgYaH1Slf5azNsBSRrxKh/mEI+ocP0/w7xeOVQu+zsDodIdOxB/R\nfcYEb4+WaSLScqIfVdJrho4aj1WbMypNA/o7ybgqo+3IzDtWvYIz6Lzjh9+CSpLU1m6aDLqw\n0E4NDup8ILF5bN5XRJWfSTcdZj5q8OF3dXj1Q7rDr52jGIprFM5GOpSwV0rYaYCl2V935SN/\nM1IbSap8LLI69LFO1OQWPTRn7UANPvmqT/m5v80PaB1U8Hcvjgz//A+SXrXzz1ZWv21rZYRF\nZ2+Uuw5KOLBPd4cTlS1fqdG5xXS+Bmc5WwMsPknKW7xSqZPs/chnI3pHkuoELpQbnO7QiSis\nHnUq23l+tEwL4ZYTOV1GzdBZ47Foc0alacDg2BlXZTQdmUXHqlNwRp13/CxJyu9Ujjyg8/13\n3/1mnCSDLiy8U4ODOh5IbBybz5K02x9bfsbddITpqPFv5d/l4bU36Q6/to5iJK5ROBvpUMJe\nKWHHM7n/Gvp0TOmKmvAFPgPsi+Ef4i9qlfkCf/YxPD3rvqg3h42QpOqHrpOkIRYHtA4q+OXb\nyNPTkyLV7pdfwmv920IJ1F2pzyrAMsjd5OgA6vvw2X+vonrjaaGsBAcmb1/0G57lrA2wbpWk\nuX9XkOoF/nprKOXtmxd8OYLh6Q6fiCskqWLo9SHqN9FeHy29SrflRE6XUTN01nis2pxBaRow\n2ElGVBmjjiy+Y7UoOKPOO374Ha8svBD6OX5tJPzeoHgGXVh4pwYHdT6QWB6bv0cs3H1Gys+o\nm7Y9avCJ0O4JrTxSX3/4NRwMrMU3CmcjHUqYooT1OA6wot4ZxJ+ZV+8LjUy3NU0KfrU2RxsR\nzIvqDvljA2uraN/+rs86qOCRfPgq6OeVlU/V+dLkBpHZwPz+LZI6tb7uSiNWnb1B7vgtHC3D\nzyYcaVKpR+DZhcMXS1JzfvPcV5WsniQ0OMtZG2BtUE7Ys+FSvl6SXusf/vLW4HSHT8Q9ysKj\noc03WI6WbaJm8YYQg5YTOV0GzdBh47FqcwalacBgJxlQZYw7stiO1bLgjDrv+OGX77pr6Of4\no/FPGyfQoAsL79TgoM4HEqNjPxD6tFUKTmsWXX76lcDBqPGb9mzwh+H0hl+jwcCG+EbhZKRD\nCdOUsF5qHQdY1T8LfNjbXPkQeG2xLEXuB/tQKfr6+/nStxUkqcbXgbUf1Yg+a8rv1pOkBppZ\n83VZBxXHa0lS7eBt4183rtFR+Rn+5yevHitDP1ugrK19xGClEavO3ih3/FVmo4OXygt4/xyY\ncJ2Huq+rS/dZVB+js5y1AdYfknTu5PD9nQ8rbetcSdoZ3Kh/usMn4j1l4bzdgc2rpVpWo2V7\nSap0wA+xDFpO5HQZNEOHjceqzRmUpgGjQk7/KmPSkcV0rJYFZ9R5xw+//Lv30JP539SWpEaa\nSz2xDLqw8E4NDprAQGJx7H0XScGrQNHlp18JnIwaDSSpYvAg71avoT/8Gg0GJowbhZORDiVM\nU8J6qXUSYH2q7K2vVGcVPykfXSEFX9iulEZVJS33/smzu5z3SMHIl7+6ocE65Yd3zq0hjYw6\na2qUqpms2YCNoILPtt+Jz3L/x+xq0sr7gwW8v6GyMPwD3s8cfIXXxXuNVhqx6uyNcvdTTWWx\nx7vKOT/iu1IKvf/8g4rhB1EPN1NK8HeTIxuc5awNsPytJKlZ4MZMv/qkb4vQe079Rqc7ciK6\nKkut31Y277q7QqXFVqPlEN5c9hzfaT3Rf3YxaDma06XfDB02Hss2p1+aBox2kv5VxqQji+lY\nrQvOoPOOH379n/BLNzd/dLhw50I+Z5DZlRGDLiwy/BqMGM4HknhfaI99Wbh8YwZG3UrgZNTg\nF7saPX1Q2dMDVSvyqZhetnsUUyaNwsFIhxKmKWG91DoJsHhRrBmlxMYtruBpkhr+FNzwNP/G\nskKzK5tV5KtDE5D93kRt7XWUcyr15JO4PhHe02/qD34Sd4QYNoKK7TyHeRd3vljZ44jCl/lu\nW1/1g//NKnwpr/EFtdQ0dFJv3tNdaZJX087eKHf/4QmSajQ/l09bIrVS/xY+cqlSf/4K7oLf\nPdfP4sg6Zzl7A6yJ/CzUDn4Re0KdEC48l67u6daciK/VH6/fllePRa9ajZarpYD/uJKvNKLf\ncjSny6AZOms8lm1OvzQNGO0kA6qMcUcW27FaFpxB560z/Prz1R+QAv+P3A6kw6ALiwy/BiOG\n84EkHj/Islsixz4ncLdOzMCoXwkcjBo/q79fsW515f8P8itFz9s+ihmTRuFkpEMJk5SwXmqd\nBFhvK/t4quCOYNlJLb8Kb3mndWil1DTyNeh3l4VW9tvPp8BYFdlVX/77lge0EVT4/x2agjVv\nht9fEDiikrCPW4VTJFWaFOyBdFfqs+zsDXP3ZefwMSqM3Kuumipp/x4Yal6BDM5y9gZYal8S\nDkmv4Z80TyfonG7tiXj3/ODG6o/5LUfLI8Gp5hBgxdJtOdrTpd8MnTUe6zanW5oGDHeSAVXG\nuCPrK0V3rJYFp9956w2//jebh36u1krT5Bl0YZrh12DEcD6QxOEHWXJsROgXWgWvPMUOjLqV\nwMmosS1c4eer8zv57B/FRHw2IwXgZKRDCVOUsF5qnQRYfIbgV/3+zyZc3qDyeX3WHNVsOvHM\n7a3qV6p36fDN2gu3BesHNq1ap9WINwNvqY9Mk6bemjbfb8VOgOXfNf3K2nm1292jzl38x031\nKzW+cY+yVPjquKsaVs2r3ezapZGn9nRX6rLu7I1z9+akdo0qV2/ca1bwG76P85S4PLLr3XUl\nqfavfiMGZzl7A6wD/JvrBaFP/CJI9F0vsac7+kTsW9a1UaXaV07/PRCpbeLrDMv0rzHn5VW9\n6PrYd9ODfsvRni7dZuis8dhoc3qlacB4JxlQZQw7sriO1bLgdDtv3eHXfyT/xkvrVG7UY5HF\n9DoGXZh2+DUYMRwPJHH4QRYq497ktudUadr7ydDdaXEDo14lcDRq7HlQrl+pestJO5VFKfgH\ntM2jGDNpFM5GOpSw3xsl7CTAEmidMkpaTWkOIBR/QOQl6kSAIK6UZtpVmazvWL+IjTAhw6RX\nCRMFWB0kaTDNkSFrLVRa5ofUiQBBXCnNtKsyWd+xptfwC86lVwnTBFhvKefoTZIjQ3Y5/mPk\nO99rJSnvIGFaIFmulGY6Vxl0rOk1/IJz6VXCJAFWQVtJupLiwJBdvmlVWbop9GFXJUnqQJka\nSI4rpZnWVQYda5oNv+BcepUwRYBVOEo5Rf8mODBkmYIGklQp+IBXQX9J+350SDuulGY6Vxl0\nrOk2/IJz6VXCBAHW572VM3Rd5POSvvoWpT4pdIcmzHQ2WaJUteqzd/n9x9/uoiy2NJm7HzxP\npzTFt6P0rTKxHWuKUXZhxsdOr+HX21DCyXM7wBrRUJ3Nq5nmMdDbJH3DUp8aukMTZjqbnBio\nntVa51fj/9T7yvo3wLt0SlN8O0rTKqPTsaYYZRdmfOz0Gn69DSWcPLcDrGHqWWqjnQYKAZbL\ndTebFEyuFD63V2+nTg0kJ740U9CO0rPK6HSsKYbhN9OhhJPndoA1ubJU+6qHrd7yDCDKzrm9\nGletfG67u96gTgkkz5XSTMcqg441IL2GX3AuvUqYaB4sAAAAgMyFAAsAAABAMARYAAAAAIIh\nwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgA\nAAAAgiHAAgAAABDMawHW+0u5j6mTAanw8tIg3zHqpEA2+41Xwk+oU5FB9iwLtOtC6oQAlSOb\nQr37L9RJ8RKPBVgPF8tp0r95zkmvUScEhNvfk7GanQb2aFaWsbPv3kWdHMha/9RnjS7LOeVD\n6nRkjO+rsArdezfKYZdjcM1Ox2aVZ6xci54D25dnZbdSp8ZDvBVgrckpM8Xn843LLfcTdVJA\nsL/OY7Xm+Lj8Ge1PYqVG7qFOEWSpnuzKfN+onMr/o05IhthdnXV9SmnYixux8q9TJwYIfNeY\nlew4V+3dt95YPHcNdXq8w1MB1qelTgoU0g3scuq0gFhHLmatt/hC1g85nZV7jDpNkJU2slq8\nJnZnfalTkiE6si6BZp0/uEiJJ6hTA677pDxrtSbcuc8oXewV6hR5hpcCrILz2LhgQ23E1lGn\nBoQaxppv9WlsGliS9T9CnSrIPgcqFl3Ia+CW6uwZ6rRkhDWsfrhpTy5ZZCF1esBlO87KuUHb\nt08reiYuFQd5KcBazC4NFdGSolWPUicHBHopp8IGX7Rl1VirA9TpgqwzOfR9y7zcqoeoE5MB\n9p1dfGmkVc8+JWcudYrAVcfOZ4Oju/brWFs87hDgoQDr0FklVoaLqD1bTJ0eEOdIzZyZvlgb\nm7LW+A4L3LW7TJl1wQoos6nUqckAE1hPbatecGrOMuokgZsmRL4Y8YWvQKEOBHgowJoX+suS\nW1msagF1gkCY2ax9XHzl821pyvrgLx1w1Th2baj+PVHm5N+pk5P2dp9c9smoVj2/TO7T1IkC\n9/y3+OnrYnv2FSVPw2PiKu8EWMerFlulKaIr2ePUKQJR9p9eak1sG1S/w6rJ7qNOG2SVvWXL\nRK5V38Buok5P2hsTe33I90CxU76iThW4pgMbHd+zD2aDqNPlDd4JsPJZG20JLck5nzpFIMr0\n6KsIEY+Vy32ZOnGQTeawPpHqt+VfRb+lTlCa+1+ZsrE3V/pGsAa4uS1bbGN1dTr2LXlF3qdO\nmSd4J8DqyGZFFVFT9hZ1kkCMw2eXXKsfYPmm556FqzTgmhPVi63WVL/bMVVDku5h/eNbdVs2\ngjpd4JI27H69jn0ya0WdMk/wTID1R7HKsSXUnzpNIMZy1skgvvL5BrLLT1CnD7LGK6yltvbl\nVyryJXWS0tqhM0vF3YDj8204uwj+Os4Ob7Nz9Dv2RuxZ6rR5gWcCrHmxl/LzzyqJmZYzwzlF\nVhgGWPmN2QPU6YOs0Y/dG1X9xrDe1ElKa4u1TyZF3JvT6Dh10sAN3dgU/Y59bk5jPMDkoQCr\nWc4jMSV0DcOUdRnhNdbMML7y+VaVLY53e4M7DpU5Iz86vq9cBDdkJ+5EzaIrdVv1pWwpddrA\nBTtyq+TrVgCfrwXbRJ06D/BKgLUzp15sAa3MuYA6VSBCLzbNJMDyTWANj1EnEbLDpriL1aNZ\nP+pEpbHNrLV+o15Z/GxMIpwFxrKhRv36wpyG+ArLMwHWPHZ9XAmdy76hThYk7/diFY3+yAlo\nze6hTiNkh37swZjKl5+XiwcJE3Yxm2fQqLtjApYscLR86bhnSMMuZlup00fPKwFWGxZ/m85w\nNpk6WZC8+9l1pvGVb23Zkt9RJxKywfEzysbF+rezgdTJSlvvsIZGjfqJ0uX2UScPUm0D62Dc\nr8/LuYg6ffQ8EmD9XayaThstWp86XZC0wprFHjcPsHyjWAfqVEI2eFvnitbWCpgLK1G92GTD\nRt0bX2Flvg6G32By57H/UCeQnEcCrCdZL50CasL+S50wSNY2dolFfOXLr8ueo04mZIGp7I74\n2ncn5sJK0M6iecYX/58oVf4gdQIhtX7N1fleJOJe1pk6heQ8EmANYPHvAubXCKdRJwySNZDd\nYxVg+WbnNMRkWJBybdhj8ZUvv0oRPMaakNHGdzgrurIF1AmE1HpQ585prapFfqBOIjVvBFiF\n/yqj96fQ2tym1CmDJO0rfYb5Le6qS9ha6oRCxjtSqqJe5ZvI2lKnLC0dLFdmo0mbfqxodcyF\nldka5a42qQD8nUmjqJNIzRsB1sfsUt0CapDzC3XSIDkrdC/+xlpSpC6+woIUe4NdqVv7zmHP\nUyctHT3Mupo26svYRuokQip9yZqYd+ubTjk12y8TaFLBtwAAIABJREFUeyPAeoCN0C2gwWwZ\nddIgOZfmLLURYPlasQ3UKYVMN4ON0q18s3POwXctzjXOedi0Tc9nLaiTCKl0l0F7iujKHqFO\nJDFvBFhtmf58wItYR+qkQVJ+zNF713q8BTnnUycVMl1ntky/9rXK+nEgAe+wphaNuiH7gDqR\nkEI1ij9pUQOW5VxInUhingiwDuvfG6E4u/QR6sRBMqayWyzaYFBT9m/qtEKGO+tUg8q3olje\nYerEpZ1BbKJFm56AKcYy2QesuWW33pB9Qp1MWp4IsF5lVxmUz1XsBerEQTJqF1tr2QhV01gn\n6rRCZvuJXWBU+zqxmdSpSzf7Sp+x1aJN559dcjd1MiFlxrA7Lbv10ew26mTS8kSANZGNMyif\nSWwEdeIgCe+bvuc5StXc7dSphYy2kV1jVPnWlDoD8447s4z1tmzTg9gD1MmElKlWwvg1OSGb\ny5xxlDqdpDwRYF2as8agfDYVr0udOEjCKDbGsg0GDWNjqFMLGW2MybzjvdgU6uSlmYstbnHn\nHi9eDQ8HZyo7Vwj5NahN1Akl5YUA61CJyobl05jtoE4eJOxEhVKbbDRC1cbSZ+J+O0ihy5nx\nO5vWlTnlT+r0pZXvchrYaNSt8YqGjDWWjbZRA2Zn+a0fXgiwthneguXzDWFLqJMHCfuPzrvf\nDMnscer0QiY7/UyT2jeYDaNOX1qZxIbbaNMPsC7UCYUUqVHc+gqhIq9YVt+H54UAa6pJKLyI\ndaVOHiRsGLvbThsMWMhaUacXMtgOdpFJ7dtUvtiX1ClMJ7WKPWFveP2NOqWQEh/bvL12IFtI\nnVRKXgiw2um9ISzkzFOOUacPEnSiwkmbbTXCgLo531KnGDLXFuN73LmxrFUhdRLTx4fsQltt\negibTp1USIkJ7HZbNeCRnGbUSaXkgQDr+Clnm5RPO7aNOoGQoLdYS1ttMGgEbnOH1Jlo8XVq\nE9yNYJ+dR/S5x4vWRtiakeoWs5plNKhBTja/8dkDAdbHpjfqjGPjqRMICRrNxtprgwEbTjq7\ngDrJkLE6skdMq98jJ5X+hjqNaaO6vRtwfL6L2RvUaYUU+MJyHv+QW9i91Ikl5IEAayG72aR4\nnix6HnUCIUG1i6232QgDrmRbqZMMGatKGYvqN4o1wnzu9nxk6xF9biK7jjqxkAJT2G02a8Da\novWpE0vIAwFWf/aQWfnUz/mdOoWQkG/Y+TbbYNCsLH+kF1Lo75xzrOpfG3YzdSrTxN2Wr/kN\neapcmYPUqQXxGubafEUHfwvaZ9SppeOBAKtmKdNXLgxgj1KnEBIyx/SrST1ViiKYhtTYxjpa\nVb8NeVk+K6Jt5xZdZ7dNd2FrqFMLwn3PGtvu1W9nd1Enlw59gPWXxV+W81hP6iRCQq5g1nM9\nRxuMV8JBisy3MXHT/OKnI8K3YQdraLtNL2DtqJMLwj3AhtquAeuL16BOLh36AOs51t20ePLL\nnYZbn9PRoZIVbbfBoNVZfbkeUukGNtu6Ag7GxJh2zGfX22/U1XIxFVbGuSBntf0a0Jx9QJ1e\nMvQB1mQ23rx42rL/UKcREvACk+23waAL2bvUyYbM1KzIRuv6l1+bbaZOaBpoz5bbb9ND2Czq\n9IJgO3PqO+jVx7DR1AkmQx9gXcVWmhfPODaOOo2QgDvYRAeNMOAudgt1siEjFZ5cwU4FXFA0\nbz91Uj3vQMk8B216TS6eA88089gQBzVgQ4mqWTsZGn2AVb6cRfGsK9qQOo2QgMZFnU3SwG0p\nWw5vfIYU+IFdbKsGdmOjqJPqeT7WxUmjPo/hJUQZpmXOCic1oAV7jzrFVMgDrB3W71w4J+cX\n6lSCY38VqeOkDQZ1ZOupEw6Z6CnW11YF3FC+6MfUafW6oWyqkzY9EnNFZ5g/c2s46tXHsDuo\nk0yFPMDayPpZFc8gtpw6leDYFtbDUSMMmMc6UCccMtG9bJy9GjiRNT1OnViPq1HSyStGfeuz\n+ApRZnqY9XfUq28sWSVbawB5gDWWTbYqngWsK3UqwbGRzv7MDamKqbAgBXqzJTZrYAvclG3u\nB6cTCF/C3qROM4h0FVvsrAZk7zVC8gDrcrbGsnjKn4wbc9LO+bk231YWbQimwoIUqF/CdDpj\njdVlSm+nTq2nLXYySQM3gd1KnWYQaH9JWw+MaIxhd1Inmgh1gFV4+pnWxdOevUycTHBqf9Ga\nDhthwOrcc6mTDpnnaDH7d40MxxubTHVjC5216c0nn4Wrrhlkg8XUlfGy9zlC6gBrO2tmXTwT\nsvceubT1IuvssBEGnc9wkzGI9hm7zHYNzK/DXqJOr4edKHe60zbdlr1AnWoQpx+b6bQGZO01\nQuoAy8Y97kr8WwwTfKebyXZvKo41Gs/Jg3CPs8H2q+DMnPOz9O9tOz5grZ226XvZIOpUgzAF\np52W77QGZO1zhNQB1njre9wVjdhPxOkEh65gjzpthAGbSp+FVyOBYOPYFAd18CL2DHWCvWsG\nG+G0TW8tdyruos0Yr7B2TiuAb2PJvOz8m4U6wLqS2Xmn0WC2jDid4MyJU8s7boRBbdnz1KmH\nTCM7ivfnsEuoE+xd7dgjjtu0zJ6iTjaIMoLd7bgC+C5hb1OnmwR1gFX+dDulsxATNaSZL9ml\nzhthwH2sH3XqIdNULeOoDp6bxa+ntXDs5H85b9MzWG/qdIMoNYvbeKtnrHFsBHW6SRAHWD+z\nC2wVzxllcdkorax09LKqKPlnlj5AnXzILPtzGjiqgxPYtdRJ9qo32RUJtOnyaNOZ4iubY3a0\nTaUqnKBOOQXiAGsr62OreNpiqrr0chObkUArDOjO1lAnHzLL26yDoyqYX77UX9Rp9qhp7PYE\n2nQ39iR1wkGMmWxoAhXA15pto045BeIAazKbYKt0xrC7aRMKzjQpuimRVqhawK6kTj5klofZ\nzc7qYH82hzrNHnUFW5lAm56LmzwyResE7sHz8VdQ3UKdcgrEAVYnm4W1NudC2oSCI0eKV0uk\nEQZVK/oHdQYgo4xg051VwVVF61Kn2ZsKErkFSyGV3EuddBBhb7GqCVWALWXOzMbbfIgDrDy7\n957WzMVX9mnkvQSe5I0YzOZSZwAyymXsCYd1sDn7D3WiPekd1jahNt2TraZOOoiwifVIqAL4\nrmTPUaedAG2AtZs1st0+N5KmFBxZlNh1+qBHc5pSZwAySvkznNbBe1h/6kR7UgKzYKnms6up\nkw4iXM/uT6gC+KaxAdRpJ0AbYL1g+6VG97GbSFMKjgxmcxNrhQEN2dfUOYAMsos1cVoF888u\nuYc62V50NXs4sTZdsfjf1GkHAfJKb0msAuSffsoh6sS7jzbAeoDdabN0tpSsQZpScKRhsQRb\nYcBteKYBBHqFdXVcBweyB6mT7UEnTnP8XWBQH7aSOvGQvC9Z8wQrgK8LW0+devfRBli92WK7\npdOEbSdNKjhwpFiNRFuh6skSVbLzxQqQEnPZSMd1cE2xmqiDcT5jrRJs04tYB+rEQ/LmJH7z\nx2zWhTr17qMNsGqVtP3WyMFsOWlSwYH3k7rH3cdfrPAGdR4gcwxJ5Ip1S7yyKd5CdkuibbpS\nMTynlP6uZCsSrQC+CiWz7yoxaYC1v0hd24XzEF62kD6WJt4NB0xkN1PnATLHhUUSmJVtBpOp\n0+09fdiCRNt0X1wjTH9HTpISLX+fr3cW1gDSAOtNB/Mr5596ZlZOtZ+WbmQzE2+G3Jaypx+l\nzgRkisKTKyZSCasV+ZE65Z5TsYztaw6xcI0wA7zi8JUIURazK6jT7zrSAGsBG2a/dC5ln1Cm\nFRxoWiSB14FGuYptpc4EZIof2MWJ1MHh7E7qlHvNdtY08TZdCc8Rpr1xbHziFcBXreif1Blw\nG2mANYTNtl84w9lMyrSCfQWlKiXRClUPsp7UuYBM8RTrm0gd3Fjm9Cx8rtzUajYw8Tbdlz1K\nnX5I0gVFnM7YqzWALabOgNtIA6ymuQ5ujViBN9Sli89Z6yRaoSr/7FJ4tQaIMZWNS6gSds7C\ne0bM3cQeSLxNL8Rco+nu79zaiZe/z7eMtabOgdsoAyyHX3T8qzRuy0kPq9ngZJqhqhcGNxCk\nF1uaUB1cijegxjinWOLvcPf58kr8Q50BSMoW1jOJ8vf5auRm21tmKQOsL53NqXIl20aYWLBv\nFJuWVDPkFmXhDZGQGvVKJHhndiP2KXXaPeVvB4996+jNVlHnAJJya5I9+7VsEXUWXEYZYK1l\n1zopnLGY3jtNtGGPJ9UMVdWy7o8dSI0jRWsmWAfHsFupE+8pzyYwI77GfNaROgeQlPrFk/kG\n0+dbztpQZ8FllAHWaHaPk8JZm9OcMLFg3+mJvk5DayBbSJ0PyAgfs7YJ1sHNZTBbiNYENiGp\nNl2hJG6sTGe/55ybVPnz5wh3U2fCXZQBVnu2ylHh1CiK5pkOdrILkmyG3MM5l1JnBDLCKjYk\n0Uoos43UqfeS1jlrkmrTvdga6ixAEtaya5Iqf5+vH1tBnQl3UQZY0qnOCqcbyydMLdiVz3on\n2QxVtYv8Sp0TyASj2dRE6+Ac1ok69R5SULpCck36IZzOtDaEzUiuAvgWZduTpIQB1m7W2Fnh\n3MNuo0st2DY5qcnowq5j86lzApmgPVudcCXMK44X6IV9wC5Lsk3jGmFaq1FyS5IVQKkB+6hz\n4SrCAOtl1sVZ2WwqXp8utWBbF/Zwss2QW5HTkjonkAnyyiZeCfuxpdTJ946HnLx5Q1dPXCNM\nYzvZeUmWv8/XnW2gzoarCAOsuWykw8I5NwcXjdJA1dIJv68sSs3cXdRZgfT3TzJ35i7PaUWd\nfu/oxRYl2aRxjTCdPZbMPP5BM1k/6my4ijDAuo7Nc1g4AzCPShr4O+ecpJthsLiXUecF0t/r\nTE6iEtbCnYBhlU5O+i8nXCNMY4PYzGTL35df7rRj1PlwE2GA5ehFOapZ7Fq65IJN25Ia0DSW\nsPbUeYH0tzipC1uD2UPUGfCKX1iTpNt0L/yNnL6qlnoq6Qrga8deoc6Hm+gCrBOl85yWzdaT\nK5IlF+yaw0Yk3wxVFUtk1w2RkApD2YNJ1MFHclpQZ8Ar1if9kD6fa/Qq6mxAgrYLCLB9vonZ\n9agaXYD1PWvhuHAuYl+TpRdsGuT40q+R7mw9dWYg7bXMWZ9MJayDa4RBIxOf7iIir/j/qPMB\niVnp7M0rBjaVqE6dETfRBVhbEvh76CbM7u19jYom/Sxv0IOsP3VmIO2dXj6pSojZQkIuKpJU\npBpwTbbNNJk5BrLZyZe/z3ch+5I6Jy6iC7CmJjBb0mLWlSy9YM/R4tVENEMu/9RyBdTZgTT3\nK2uaVCXEbCFBh0tUFdCml7C21BmBxFQ+aauACuC7lU2nzomL6AKsXmyp88I549TjZAkGWz5K\nejbCiMvZ69TZgTT3AuueXCWsgdlCVG+wDiLadLXc36lzAon4Mcm/VEIey7mEOisuoguw6hdP\nIB5uzT4gSzDYsoLdIKQdcuPYOOrsQJqbzW5PrhIOYMup8+AJMx3PW6hrEB7LTE8r2GAR5c//\nYsmityOQBVhHi1dPoGxGZtXXi2npVjZdTDtUrC96LnV2IM0NZg8lVwmz7vVpBrolcskh3sqc\nZtQ5gUT0Z3NElL/P1zebpvMnC7C+YG0SaZ24gu91LXKeFNMOuYbsJ+r8QHq7IHdzkpWwAmYL\n4aRTxLygoUHOD9RZgQRUKi3kFiyfbzbrQ50X95AFWOvYoEQKp8JJR6hSDHacOFkS0wxVg9kS\n6gxBWis8uWKylbALe4o6Fx7wk6BbcHxD2VTqvIBz37ILxZQ/n8w9e55dIguw7maTEimcDuw1\nqhSDHd8kML2ZscVMps4QpLUf2cXJVsL72fXUufCAday/iBbt860tVoc6L+DcMjZETPn7fFew\nbdS5cQ1ZgNWVrUikbMaxCVQpBjvWCXghqMbZpfGNJSTBx/okWwefKl2xkDob9G5j00Q0aEUz\n9h51ZsCx3sneyxhxFxtDnRvXkAVYtUsldEX/iSIXUaUY7BgtYrrniKvYi9Q5gnQ2nY1JuhK2\nYJ9SZ4Ne0yIbBLRnbhwbTp0ZcKrw7DJibsFTrC/WgDo7rqEKsI4UrZ1Y4dQs+jdRksGOy9nj\notohN5GNoM4RpLN+bFHSlXA4e5A6G+QOi5s/eHOZM49RZwcc+i9rLqr8fb5G7Efq/LiFKsD6\nhLVNrGy6sy1ESQY7Tj9TXDtUbCxemzpHkM4aC3hxE55d9vvfFDPNqKoDnhpIOwvZTcLK33c9\nW0CdH7dQBVhr2XWJlc29bBhRksGGHewice2Qa8K+p84TpK/jpSoJqIR5JQ9TZ4SaoGlGVTPx\nxrO0050tFFb+vmWsPXV+3EIVYN3FJidWNpvwlYaXbU7gFd6mbsDEz5C474Q81Ho1e5k6I9S6\nsWUCTmRQXvE/qfMDjhSeUVbYLViKiiX2U+fIJVQBVhf2SIJl05jtIEozWLsrsdk3jD3MrqTO\nE6SvrayvgEo4gY2lzgi1CoKmGVUNZHOp8wOOfMouEVf8fGq5rdQ5cglVgFXzpETb6yC8GszD\n2rPHRDZEH788c4A6U5C27hfwEKHPt67IBdQZIbZD1DSjqseKnEOdIXBkLhsqsPx992XN1HJE\nAdbh3AQfIvT55rOeNGkGG84qJ7Idctnzxw6I11/MrSM1iu6lzgktYdOMBjRhH1HnCJzoKOZF\nlCFPnfyvLJlajijA+ohdkWjZ5Jc77ThNosHSz+wCke2Qu4/dQJ0rSFtNBDxE6ONR/tPUOaEl\nbppR1Rg8qpRWjp92hsji9/kuZe9T58kdRAHW6iTm3W/D3qVJNFjaynoLbIWqLaUrZMkfOyDc\nidJJv4lQNYndQZ0VWhcIm2ZUtfmUcln/XGY6+YC1Fln8Pt8dbBJ1ntxBFGCNTWK+7zvYFJpE\ng6WJbILAVhhwSbb8sQPC/ShoesT1uU2ps0LqkLhpRgM6sieo8wT2zWC3iS3/J3LPo86TO4gC\nLDmJe6Efz2lGk2iwdDV7VGArDLiD3U2dLUhTz7BeYiphrdx/qPNC6XWB04yq5rMrqPME9nVI\n7M3BJhrk/EydKVcQBVjVTk6ibGrn7qFJNVj516nCWmDYE0UbUmcL0tRMdoeYStg1u2/CmsFG\niTmPYTWKYLadtFFQ5izBxe8bzBZS58oVNAHWgSL1kiibPmwtSarByq9CH+YOyaI3V4FY17F5\nYurgRHYndV4odRY5zajqZtzokT7eZpcLLn7fUtaOOleuoAmw3mPtkyibmawfSarBik/UFZko\nN7I51BmD9NQ8Z6OYOvhkds+EVV74N9PrilfDsyvp4n7hX2D6fHklsmLmE5oA6xF2YxJFk1/2\nzBMkyQYLU9hdwhpgxMqcS6gzBumpXHlRlbBmNs+E9R1rJuo8hl3KXqPOFth0BVspvPy7s/XU\n2XIDTYA1it2XTNm0Zu+QJBssdEz4BUimahX5jTpnkI7+YE1E1cGsvgnrUTZY1HkMu4cNpM4W\n2HO09L+EF7/vQXYNdb7cQBNgtWWPJ1M2o/FcmTflnSKq+UW5li2izhmko3+zzqLq4CR2O3Vu\n6NzAHhR1HsPyzzg5W174m+7eYO2EF78vv9ypR6kz5gKaAEtK7oUq64o2Jkk2mPuTNRLU+qIt\nZ22oswbpaDEbJqoOrs9tQp0bOvWLbxZ1HiN6skep8wW2TBX1LG6UK9nL1BlzAUmAtSfZgfic\nLJlEI808z7qLaXuxauTuos4bpKHhbIawOlgn93/U2aHyV5H6wk5jxBLWmjpjYMtlScxaaWxy\nVrwuiSTAei3Zb+6vY4sp0g3m7mNjxLS9WANxjRAS0JatFVYHe7It1Nmh4kvNH061MRVWWjh6\nUoVUFP/mk7LhHWgkAdb8ZCfeX8LaU6QbzHUXPltO0CM5l1LnDdJQXllxdXBaVvzBrWssmyju\nPEbcxO6lzhnYsI1dmYriz453oJEEWDewOUmWTcUS+ygSDqaql84X0vLi1SmykzpzkHb25zQQ\nVwU3Fa9DnR8qLXLEfRGosbZobeqcgQ1T2J2pKH7fnewu6qylHkmA1bxIstP/dWMbKRIOZv4W\nOZ5Fu4HNoM4dpJ33hf7p3YhlaZB/pGQVgadRoxl7jzpvYK1VzqqUFP+TRetTZy31KAKswjJJ\nX9OdwfoTJBxMvcY6imh3elYXwXOj4NQqNkRgHbyWPUKdIRrC3/QcMo7dSp03sHS4ZF5qit/X\nhH1LnbmUowiwfmAXJ1s0+eVOPUaQcjAzm40U0ex0ncc+p84epJtx7B6BVXAu60udIRrTUnSJ\nyLelzJnoxT3vVXZVaorfN5Q9QJ25lKMIsJ5ifZMumyvZSwQpBzMD2PzkG52B29kY6uxBuuki\n9MUCWfuGrvYpeFFKwJXMR505sHI3G5ui4l+V04w6cylHEWCJeGPdZHYLQcrBzDnFtghodfo2\nlKyYnaMbJK52SaEPXVzKPqLOEYXjp5wl8ixqzWA9qXMHVi7OSeq1K2bqFvmVOnepRhFg9RDw\nNP+W0hIGXG85XKyGgDZnpE1WzPsLAh0tWlNoFRzBplNnicIH7DKhp1Ej/18l/6HOHpg7WDxF\njzgoBmf+fJYUAZaQPyxbszcIkg7GPmBtky9WQ/eyAdQZhPTymeDIYFVOVr6xaRYbLvQ0avVh\ny6mzB+ZeYJ1SVvzLWDvq7KUaQYB1MLeOgLKZwEa4n3QwsZzdJKBcjeSfWRrvhgUnnmQDxdbB\nKsUPUOeJQMdUTR+sWJZzCXX2wNyY1MwyG1C5WKa/f4ogwHpPyOw0m0rlZcFE++lkqMAXv+no\nyVZS5xDSymQ2QWwV7Myeoc6T+06cdrrYsxilbs4P1BkEU01zn0xd8fdmj1PnL8UIAqyH2c0i\nyqYle9P9tIOxi3PWiyhXI0tyWlLnENJKD7ZcbBWcnI3fmn/MWoo9i1GGscnUGQQzf+fWTmHx\nz2U9qDOYYgQB1q3sARFlc1c29nYedqKMJKJYjeGPXXCkntiHCH2+jcWyYOrpWHPZMLFnMcq6\n4lVxIcLLNrOeKSz+/PInH6bOYWoRBFiX5Aj5znFz6X8ddz/xYORb1kJEsRobyiZR5xHSyDHx\nT7Wem/Mbda5c15ktFX0atVqy16hzCCZuYdNSWfwdWT51DlPL/QCr8NSzxZRNG7bN9cSDoQ2s\nv5hyNbKuRBXMzAG2fS5+eoH+bDV1rtx24vRyos9ilKl4OtjTapbYnMriv58Nps5harkfYG1n\nzcSUzSR2s+uJB0N3pfJpE1Ur9ip1JiF9rGODRNfAWexa6ly57WN2qeizGCW//El7qfMIhnaw\n81Ja/FvLnpHZ16HcD7CeYn3ElM2WMmcWuJ56MHJ1yl6oEXIv3vAN9t3FJouugVtLV6LOldvm\npPQWLB+fCivjJ5tMY8vZ4NQWf9sMv0TsfoA1WcCLcgKuzManpj2rQhlBxWoo/6xSmPcZ7OqU\ngoj/QvYddbZc1jG1t2D5fCtyzqfOIxjqkcL3y6omsuHUeUwp9wOszmyFoLK5D99oeMce1lBQ\nsRrrjXmfwbbqpcXXwBvYEupsuev4qWeIP4vRzsvOVzymhePlygl+EjdWps9n6X6AVbW0qCLL\nP+Pkg64nH/S9zLoIKlZjy7Pg7esgyP4i9cTXwPnZ9nbi91kb8Wcx2jjcS+tZb6XuPZQhLdi7\n1LlMJdcDrH9yGggrm65srdvJBwOz2Chh5WroHPYVdT4hTbzD2ouvgPlly2f039txZrDbxJ/F\naFvKldlHnU3QN4ndmeriH83GUOcylVwPsP7NOgorm3nsareTDwb6swXCytXQKDaaOp+QJpay\nW1JQA1uwL6gz5qoOwm7oMNYz2667po8LiqxNdemvL16TOpep5HqANZuNEFc4VYrucjv9oO/c\nYlvElauRjaXPPkadUUgPt7AHU1ADb2bzqTPmpmNl/pWCkxhjRZGG1PkEXX8WSeV7coIuZJ9R\n5zOFXA+wBrCHxJXNwOzq7jzsSLFq4orVWHu2mTqnkB5aiHlhRIz/s3ffAU5U2x/AT7ayLL2T\nZelSFAFBUIooIIro0JsoIAiogIigUkQQAcFGESkiRarIAgsb6+9Zn+1ZnwV7x2fBLoj03d8k\nu8kmm5nNJJl7z8zk+/lDsnGz99x77p05Saaspv7cHZPpFbpIwCCWdA69xN1R0LKRrhCf/Rsd\nfYcO6QWWqZ90bHCdIzt+0PQOXWheWvUtoUu4ewq2kF/RpBtGlFC1SiLdTmCe+GNwPN6ruSfY\nqQN2MYSWis/+9pTTufspkOwC64i5NwhrSZ9K7gBoWkfjzMyrrkZJ33B3FezgS+ooZAJ2pbe5\nuyZRN9cmIaMYKi879TvunkK445VEX6TBp52Tj2uUXWC9Tj3NzM1kulVyB0DTJFpoZl51XUe3\ncXcV7GCXoG83JtG93F2T50iZbCGDWNJ1NJ27qxDuWXN31nom02zunooju8BaRRPMzE1OmbqJ\n9Im9dXVxbTczr7oezXDjMHeIbA7NEjIB1yXSl9TP0mVCBrGknPJV/ubuK4SZQrfJyP721Gbc\nPRVHdoE1lhabmpyu9IzkHoAGUUe8hLuEdnB3Fmygj6jrC9Qud4y7b9LcSjPFDGJJg3C2kgU1\nSt8lJfvn0H+5uyqM7AKrTYq5OVtAV0ruAWj4nDqZmlZ9K1znc3cWbCBb1K0xeybQKW8dkh4R\nNIolbExteIK7s1DCB3SunOzf7ODLG0ousI6mmXw2f16NsrgBML+ddKW5edXXgt7j7i1Y3q/U\nWtD8m+bos8pDHEwx9Yyk0vSgrdy9hRLmmXnJytI4+UAfyQXWm6ZfV+UKWiW3C6BhFs02Oa+6\nZtBo7t6C5f0fDRQ0/7a5OnF3TpbHqL+gQQyzOqlFYt2DyAbaJG2VlP2u9AJ3Z0WRXGCtMv3+\nFetdbeR2ATRcShtNzquuvTXK/MTdXbC6u8RdwKlh6l/cvZNkCt0uahDDnIdLCFvMN64zZSV/\nrnPfNEsusEbTErOT05bektsHCFe7stlp1TcI62JpAAAgAElEQVQGV2qASIbQalHzrz/t5e6d\nJK1TckQNYpjlrrPwEZal3EfXyEr+3ioVDnN3VxDJBdaZaabfsW4mjZPbBwjzA51tdlr17cis\ninO6oXSNygq7ROI8up67d3L8nHSGqDHU0JH2cHcYgnVybZCW/H60mbu7gsgtsP5ONv/mkXuq\nlEuUj+wt63EabHpe9Q2mxdwdBmv7U+DXG7vSmnJ3T45H6XJhgxhuuauVY490tqPvk5rJS/4K\n6sbdX0HkFlgvirhw3VB6QGonIMxcmmF+XnVtSc86yt1jsLRnqa+4+XcWfcvdPymuoUXiBjFc\nZ3qUu8dQ7AEaLTH5TV1fcndYDLkF1j00xfzcPJzcHN/e8+ot6qqO2hRayd1jsLRFIm9SPJoe\n4u6fFI3LmH48R2lWJTXFtbCs43yXzG369TSTu8NiyC2wBgo59LQzPS21F1BSVkUBadX3cGrd\nxLmaNsRgAK0RN/2W02Du/snwDbUVN4ZaLkyQwtUWfkxqIjP3ORm1nXkLNLkFVt1yIg49vTuR\nbg9mRT/K3hT3wsXPoDT1hGxoiuRVqXySu4MSrJf6HZFqfVqdf7g7DUXkfkPovQVaDneXhZBa\nYP1AbYQkp4lrn8xuQAkeqce4qzak1TnC3Wmwrp+EXcfd50J6hbuHEgyjZSIHUUMfupu701Ck\ni9RvCD2eZQ49zF1qgbVb0Gkp02ikzG5ACbNplpC86lNoGXenwbryxFb80xLhSmz5NSsI/BRQ\n09bMyr9zdxt8vk8y/3z/0jV3fczdaRGkFli30FwhudlbO/Ubmf2AUJfQw0Lyqm9Tei1cCwv0\n3Cq24t+W1I67h+K9R51FjqGm4Q6+66+93E9XS879TTSRu9MiSC2wznMJujn7RBovsx8QqnoV\nMWktxQC6k7vXYFkX0mahs69Z0gHuLgp3H00UOoZacipnfMfdb/CSeZXRQrmVy//J3WsBZBZY\nxzOyRSWnejoWJpsv6FxBedW3LbPyH9z9Bos6VamG2Nl3pWMvPF3sElordhC1XEdjuPsNqv2u\n06Xnfpgjrx8ts8B6nXqISs54fITFZxuNFJVXfVc49cIpELd91EXs5FtKl3P3UbSjmbXFjqGm\nXHfKJ9w9h4KCe+XdhzBgc2pDB56cK7PAWkqTRCUnt0ba1xJ7AsFuoAWi8qovp2LmD9wdB2ta\nI3r3kFe1stOvifks9RI7htpupoHcPYeCgnZJm+Tnvjvt5O63+WQWWINppbDkTKKrJPYEgp2b\ntENYXvWNw4eWoG0ULRY8+S6iF7k7Kdh0mil4DDXlNXS9wd11+JxaMuR+uasjd8fNJ7PAcpcX\nd97vnqzkDyV2BYodSW8gLK2lyK2Z+jl318GSThN+j5db6SbuTgrWJmW74DHUdjtdyN11mM9w\ngoPHe5PPl7l7bjqJBdZX1F5gcqZTH3ldgSCv0CUC86pvamLcsQSi9bNL+PvvnLSm3L0U6yfX\nGaLHUMeZ9C/uzie8M1K2caR+HvXm7rnpJBZYm+kqgcnJa0IvyesLFLuXbhSY11Iy3tD1H+6+\ngwXl0hDhk68dfcrdTaE20XDhY6jtXlfbU9y9T3DvUzue3Dd2vc/dd7NJLLCuobtEJmchnZsv\nrzMQ0JceFJlXffOoM3ffwYKm0h3C595Eh9/V5XJaInwMdXSiLdy9T3AzaCpP6mfQUO6+m01i\ngXVG6m6h2TmHHpHXGfDLr1FJaFpL0daJp51AvNoliz/pYpMTD8gtdrJqJdn3yQl4MKUebjTK\nKb9+eg5P6vOyk512vxx5BdZvor/VX51SDzdjl+8T6ig2r/pWJjfEphhKOJRymoS51yzpe+6O\nCvQadZMwhjoUWsDd/4T2Cp3HlfqbHXeBOXkF1l4aJDg7vWmutN6A31oaIziv+i7DphhKeor6\nSph6o2kFd0cFmkW3SBhDHdvKl/sf9wAksvF0G1fq8+olvcfdfXPJK7BuotsFZ2d7xYyvpXUH\nioygpYLzqm9bhcxvufsPFjND7J2eizxE3bk7KlBrpos0FLqOhnAPQAI7Xq286Kuc6JtFvbj7\nby55BVb7pEdFZ+d6B57maXn1M/eKzqu+ibg4B5TQQdQt5UM1TnbuDZ/3i7/QRWn2NqKnuIcg\nce3luYZ/keb0LPcAmEpagXUwpbHw5OQ1x1HPsn1NZwvPaykZb0q53CMAlnIotaGUqTeSHuTu\nqjAP0NVSxlDP4qT6B7nHIGENonsYU3+vq7Wj7kgorcB6UsaREQ+k1P5NVofAZz2NEp9XfctT\n3H9wDwFYyRPUT8rMe8jVjburwlxEa6SMoa5+dC33GCSq39LdbCeQep1Pq7mHwEzSCqzpUo6c\nu8J5F9KwuOHC7/tWuqE0knsIwEpuojlyZt5pyT9y91WQP9LqyhlCXbvquB7nHoUEtYLtErOF\nNpSp5qQPSaQVWB2SZBwZkduYNsvqEXhllWM8BMub8fq0m3sMwELapEi69fhoWsbdV0E201A5\nQ6hvcUpNp5avFne2az1v6ofTddxjYCJZBZaMQ7C8Vpcp7+x7WFjMR3xXwSqyPLUqTuoGv5+T\nmkuaeBtc53J3VpB+tEzSGOobSRfijjkM3qM2zJnf7U56k3sUzCOrwHqM+stJz4105mFJfYKC\ngmV0nZy86htD5zvqsEiIx3a6XNbEa+H6kru3QhzMqC1rCPXltaE53AORiCbQNO7Uz6WznbNB\nl1VgTRF+FSy/i2iYpD5BQcFl3IfDqpvi9jSdexjAKq6mu2VNvIk0j7u3QmwTfkloI7ZUS3qC\neyQSz98VK/FdBMuvEz3APQ6mkVVgnZki6/ZGu5rQvZI6BUcyLfBmd1sNF67VAIWyM/fImneP\npDbl7q0QvS3wDaHq3pTKX3APRcJZQwO58+7xPJxR8QfugTCLpALrR1cLaenZUCn5aTm9gv+j\ny6TlVd/itApOu0coxOZDmccEdqA3uPsrwG9p2fKGsDQTqAWuhiVZq6R13GlXjaXB3ANhFkkF\n1iaZ537elVL5czndSng3yDonvnSTqcnv3EMBVrCYJsibdjNpInd/BVhFV8obwlL1JAUHukv1\nHJ3DnXSvvY3JKVfpkFRgDaMlEvMzgU7/S06/El2j9F0S86qvN/U4wT0WYAEXksR34LkVqhzl\n7rD5OrrWyhvCUuW2oJu4RyOxXEYLuZPusySp/t/cY2EOOQXWyWqVpF4dthddhrc+EnxojTc8\nHs+e1o78MAGidChd6iUyFdrB3WPTfSbxaI5IttZ28P2ILGifS87FlCLrRzdwD4Y55BRYr1B3\nqelR3/rcIqVjCW4BTZKaV33b69By7tEAdrtlXQ2m0DK6mLvHpptOk2UOYelWlU/BqYTyjOC/\nRkORnbWTXuIeDVPIKbCm0XS5+dlWi9ZJ6Vlia5u0RW5e9a2pkOyUr+0hZqNokdRZ1zjpa+4u\nm+x47bKyzvc2YmFqOQddddLivkipw3tbjiALXY0OcY+HGeQUWM1TJd2+ImBlZur/SelaIvvK\ndabktJbirtTy73APCPA6WaO83D3ERJrB3WeT7aRLpI5gJNNcNT7jHpNEMYKmcKe7WB9n3GRW\nSoH1EbWVnp/5KeXx1kewRfyXcQ9ys8v9LfeIAKsXJR+K4MnJrHGEu9Pm6m6Ni2AVG0MNcVdC\nKfYlZ1vmAyyPZ1cDeph7REwgpcCaz3Gozk2uau/L6FwCOytps/y86htBpzvpPuwQtUl0m+Q5\n18dhhyJ86JJ1K0fDBlLLP7iHJSEoNIM718FWl814i3tI4ielwGqZvJUhQde5qr8no3cJax+d\nxZDWUvSiDg45uRdicapOhuyrhqxNOt1R5yuPo1skj2BEeT2oE24vK96/qJnUU/0jmunK+h/3\noMRNRoH1AcM3hF7jXJWdcSaCRU2z0lf2Xns7UQ8HXpgIDHqRukqfc+eRk27T9HNGdWl3GjJs\nbwfqeYx7ZBzvRAvXvdyZLuFKOtP214+WUWDN4NoRT0ous0lC/xLUCWudb+SV24Z6OeyYGDDu\nGob7CtzvOiufu9/mmUWjpY9gZLtbU5/j3EPjdIupG3eew/SkDna/WZKEAutknTJcO+LZGXTt\nP+J7mJj2Uk+mtOrb1YouwreECeqfSpUYPn7pSDu5O26aPyuVl326tyE7W1AffIYl1LflMjdx\npznM3s7U2eYVloQC6wm6kC1DK7Op+aviu5iQetJitrzq2tWG2h/gHhlgsYX6Mcy4FUlNHXOX\nprk0jGEEDchpQT3xxkmkS2XexNOw3A7Uwd5nOEgosPrQ3XwZyunpSpqIGxMK8FlSE7606svt\nQvVwPayE1Nm1kmPG9aD7uXtukt8qZW7nGEEDclrTuT9zj4+DPUwtrHWEe5HcTtTG1nkXX2B9\nm1KfNUXza5PbOR/iW8d4qx3iXiRvsCtjDffggHz/JZ7L3m7KqOyQz0xvoeEsI2jE7vOo4Yfc\nA+RY+yuVWcOdYW17u1Gz/dzDEwfxBdY07s8edw1OoT7fC+9ngvm5bNVc3rzqmpFJfX/iHh+Q\nbTjN5Jlvo2k4d99N8U2ZKlY7ayVI3gCqsId7iBzq1AWWumR0iLzLqO5H3AMUO+EF1qHK5Xdy\n52hFM6r4oIPO9bGCWy15vlGhtc2p6sPId2L5JtXN9CXHngbkiDsSD7bMrdu1TU5zTXPM4W6W\nMo/aWvILwkJXUFX7HkctvMBaTEO4E6RWwddk0Hk2LoOt55cKFSz8bnfv6DQ6H9fxTyjX8JUH\nS1Lcv3J3P37/osYW3st6LalBHb7iHiYHei65yhbu3JZmfFLGLu4xipXoAutI7XRL5G792ZQ2\nzRG357aGqTSKO6WlWtOWkq/F94SJ47PUmnxfWQ8jxfYfmP5zmuUuNBnmkY5UYS33QDnO/prJ\nd3JntnS3piXdxT1KMRJdYC2hPtzZKTK9Krk3OOq2Foy+Sq/G/sVvBLfWpnJzcP5oouhLU/nm\n2t4WtIh7AOI1lS7jG0DDJpahnl9zD5WzHGpj4aM9itxbmYba8+MRwQXWX9XKWOZ+wDkDU6nl\nHtu/07SEPjSZO50R5Y6pQFXvxl3MEsJT1ITz+62NVZJtfhjW80k1Lfydf7G1LSnzblzW3TzH\ne1nwEu5hNpxGzd/lHqpYCC6wbqLLuVMTZG0XF7Vch0u7x22P1e4Lqu3RyzPIvQpbY+c71CCJ\n96q3d6dW+IB7EOLxc1bSItYBNCzv+vJ0+v9xj5djnBxKrax6Oniw3b0obYENT3EQW2DtS6tm\nrbdF93d2UcWxL+Cbwrj86k5Zzp1JY7b2S6NGm05yDxgINob9SITJVNfGl4I50d2q13DXsKWH\niy7FNbFMcWwQNbXk3ZHCzapIrV7hHq+oCS2wTpxLM7jTUtKa/pWIsqd/IrLfDpffz0Zb4w0X\nJ1PTtbgDtKNtpbq7uCfaUGpp35t6XG/p8/TDLG5OySM+5x40B/jjQmpq1Yv3h9lyAbmG2i3r\nQgus26kjd1I07Lm9axmizuv/FNl1J7uXmjPcVDdma7onU9VJr+PgO8d6I6PMCu5Z5snrQR3s\nemPauyjrEe7xi0rejDqUPPAFrOn4fNCE2lrrK6bS3VmfUkfu4x61qIgssJ5IqrqVOyXacm5s\n4aL0S5a9h+8Ko+dJrriBO4HRWdevPFH2NXvsuv+DUn1Y3WWFD8r3dqJzf+Mei5gsd1V+iHv0\norV3aj2ihtNexBGWMct/IIN62+mtslpYT8ki14W7bXQslsAC660KqfdwJ0Tfg0PrEFHFnvP/\nfVTcEDjR82XT7uJOXtR2zzivLFFK5zkv4BQHp3mrBl3DPb98cjtTs8+4RyMG810VH+Aeuxjk\nzTsvjSizx7x/H+MeQVva14Uyp3EnMWp7pzUjypr1NffoGSWuwHqjqmsqdzZKt2b8BTXUIqvM\nBbOftu/RE7I9VjblVu7ExSR3wYCGLqK0Djds3mejd0AQwaOZrnHcc6vI3kupwlq7fW11+Eqq\nyv8Fa2xyZvR0q1vwshff867dhp3b/65NobNt9k1EkaUXZ1DSRdvtcVytsAJrR6aL+SbPhmy4\nuVe2utt1Neo3Y+N/7PkBv0z5dyenMt1S1wxbpl1aP8lbU5899oGX8YWhA/w5ltIt9Db8hjLU\n+T/cYxKV15pRQ3vuZ4tsvLlnlrqkaw5Z8R7OFjbqw3HpVMsK36vHZseE04gqXf2kDWosQQXW\nr6MpzULbvdJtmdmvRSZ5VT3nijmbXzsgZkwc4NNuVNF+3w+G2nHn6AvqJqvJdjXsPW39K0i2\njR17sBbVXc49o4KtPZuo1wvc42LY16OSXJewn4AZt3WTzquorujMjuNXPf8j95ha3sGHz3dR\n9evscPUrfcv7VCIq22N27mfW/jpCSIH18x2Vqd5y7hREZ/3ccZeeVSvJV2dltrhs/MJN/3r/\nB3y5H+yza1KpzUbuRJli1+KJl55Rzpfsci0uu27+w0++/xNOeLCZD2a5KW2o1cqDec2JWi61\nwzWxTj49OIWy53MPmDnyHriua5bLu6DLn9X/pgee+NgGn25w+GPbwAyiM262d3nltXfepd7v\nhym1yWU3rX3dqt9HmF9gffHgpWmUOWI39/jHJHf1nHHK2dlpVKR8/XMvG3XTvEUPPvho7rP/\n/TqBr+zw+QPq256aN3MnyFQb5l3buzjZybVadB02ad6a3Jc++h73MLS2Y+88dFU9ojKXreee\nQxruPDeJXGdNfuQTK7+3/nzD8GpE2ZPtdRZZBDn3TuzXrk5q4Xqu1b7/9fPXP/bmdziLqci3\nnls7pagDM3g1d6LMsnHWFV0al/Vm21Wvx9g5yzfn/uvNz36x0vF4kQqs8xsa1KB+dlatapXK\ner98SSlfo5a91ahaqUJmRnpaShKFSkpOTU1Pz8jILFehYqUqVavVrFU7q052dr36qrrZ2YWP\nGhgdNLEuLD21Jwz9kQb16tSuXpjW1Io1ufMiRI2qlSuUy0hPTXYFJdqVlJSSmpZelOgq1apV\nr1mzZm1VVpY34b48C85facaUntvPGEMTqH69bHfNqhUzU72ZcqVbdj5WL++r2l1pZStWqV5L\nnS9RzZU7S8/tU/ENoXcEK2R4t2tJGVW4B0qM6lUqlstISy7eaKekZ5TNLF+hQqVKlb1LuVpN\ndbPtXcjZ2XUlr+Ltped2ldntqSsmq3bNalUqls9I823eUstV5U6P6WpUqVA2LXhPnZyWUa5i\n5arVvVtstzfNhTtoswe3hNe1MhqpwGpIYFdNS0/tce74IHZK6bndxx0fxO6m0nO7izs+iN2a\n0nN7J3d8EDvNQy/lFVi1mzdvXtm0vxavCmo02dxBBCSp0TQz/a+KL7C8Oa0S/5+JWrKQ8TKg\nhtpwdY6Gm6kNB79HYy2wvKNQTWgLOhqpDacztJuutttIWmtMBVZltZO1Bf1tv4ZqG2XENpGp\nNlFfbBNUR22jQkyvNF5geftRz6R4SyVjwOQ2VFZmQw0CPzEXWPXbtm3Lsm/SVFmNpjF3EAHJ\najRtTP+r4gusemrcNeL/M1FLUds9i6FdylIbdnM0rLbb1jIFVh01GNG7Yk0t1IYzGNrNUNtt\nIa01pgKrhtpJ0Xv0M9Q2yoptooLaRFOxTVAjtY3Y3lgaL7Bk9ENuQ+XVhqS8LZbWUDm1oeaB\nn2IqsD54yyyT1GDuMe2vxWuVGs1o7iACXlKjaW/6X41w06b8+Fu4QY377vj/TNT+rbZ7DkO7\nb92qNjyHo+F2asMvB/0c4Z6n/wgNZoYazO1CW9DRU214L0O7uWq7vaS19l3puf1DULP3qp28\nXtDf9rtUbWO32Ca2qE0MEtvEW1erbayM6ZW/lJ7bH4t/c6PaxlCT4i2VjAGT29A2taEBMhp6\nRG2of+AnzRMZhd7sOcRcNZhHpbUWydNqNDdyBxFwyFswcAcRg3lq3I8wtPuX2m4HhnYLlqsN\nr+Zo2FtgHeZoWMtSNZgIb8XF6KM2HKG0FOJTtd1+DO1K9ajaybmC2xigtvGx2CZeV5sYJbaJ\ngqlqG08KbuNVtY0Ip7KYQ8aA+byhNnSVjIbeUhsaIaOhd9SGriz9V1BgWQEKrOigwGKFAsuJ\nUGAZhgIrFiiwhEKBpQ8FVnRQYLFCgeVEKLAMQ4EVCxRYQqHA0ocCKzoosFihwHIiFFiGocCK\nBQosoVBg6UOBFR0UWKxQYDkRCizDUGDFAgWWUCiw9KHAig4KLFYosJwIBZZhKLBigQJLKBRY\n+lBgRQcFFisUWE6EAsswFFixQIEl1DP333//e9Jai+QzNRoPdxABx9RoVnAHEYNnmXJ6hGu8\nXlEb/g9Hw8vVho9zNKzlZTUYzRtvibZRbfhXhnZ/UdvdxNCuVO+pnXxGcBub1TYOiG1iv9pE\njtgmCh5T2/hUcBvfqm3sFNyGj4wB8/lObWiHjIb+pzYk5bOc79WGItxdUl6BBQAAAJAgUGAB\nAAAAmAwFFgAAAIDJUGABAAAAmAwFFgAAAIDJUGABAAAAmAwFFgAAAIDJUGABAAAAmExsgfXF\nyglD+g67efNPxU/9b82ky/uNmPv0SaENl+LAYEX5tyXC+eSBawZePnHJvuJn2Acnkv8qQQJX\nwhcb9odjFeXl4Cc0mhMSQWjD0rpubNFImyoWGX4/8cu3ZLv5b943blC/K6dv/734Ocsv1Ehk\nZFX4+pGxUkq2IXQzkP/q3WMHqlNtS9DFWAVNNVk7n33Lrx08YMzdbwY9ZW5DYTNZVNER23QW\nWWAdW+4PoF+u/7mcvkVPXfdTaS8VJ3+WErSFZgznxMreRW2vzOePxqCXtaaV0LBPbPAOU/AK\n0mhORAQlG5bUdYOLRtZUsczwFxG+fMPa/eUWf0IG5AlsVyoZWRW+fmSslPA2RG4Gfpjs/8N9\nA5dWFzPVZO18Ds/z92jBEf9zpjYUNpNFFR2xTmeBBVb+XLWl6Rt2PTBC/ffpwuf2qA9vy3ls\n/WhFGXVQXNOleMLbf/8WmjGc/HsVZdCyvJy5at62sUdj1FOKMneb31OFzwkN+6uJ6koJWUEa\nzYmIIKxhOV03uGhkTRXrDH8R0cs3rN3D4xRl4mPvf/zqA+rG8zFh7UolI6vC14+MlaLRhsDN\nwC9XqkX83VtzH1KnnJJr6p8uQdbO5/hUtVa8Kzdv8QBFmZMvoKGwWSaq6Ih5OgsssNQQBrzl\nfXBkmaIMO+Z99OMApa/vJmZH1cr2fnFN6zswSLkqsIXmDOdfinLDL94Hbw9Q+v3OHY1RuxTl\n2RJPCQ3b00/pv2dJ8MTWaE5EBOENy+m6sUUja6pYaPgLiV6+4e1uVHcNhR/4v91bGXRQULtS\nyciq+PUjY6VotCFwMzBfUW7y7QlOrVHrn8Nm/ukSZO18tivKiK+9D74b7S93TG0ofJYJKjpi\nn84CC6zrFOWJwkcn1eH19Xp1oGA+cqXS53e9V4qTf6tyZU5gC80YzrGRypDfCh8+Mvuh/czR\nGLZJUUre61ho2Dcq478qCJnYGs2JiCC8YTldN7ZoZE0VCw2/j/DlG97uWEXx39Z3mqK8IKhd\nqWRkVfz6kbFSNNoQtxn4vbcy4K/Ch6fUWfe6iX+6BFk7n1NXKMrbhQ8/762Myje9ofBZJqjo\niH06iyuw/uyt9Pd/7/qAouxV/zl5hdLvUNFTWxRlt7C2dT2u1p2P+bfQnOG8qihbQ5/hHxwD\nVirKB6HPiA37xpXqm5Dgia3RnJAIwhqW03Vji0baVLHQ8PsIX77h7fZRFH9CVijKdkHtSiUj\nq8LXj4yVotGGwM3A/vvmrvU/XlpYJwiaarJ2Pp8qyrX+x3MV5WPTGwqbZaKKjtins8BPsE7+\nst//cJ2i7FT/+VhRpvuf+lBRZoprW8dPg5Q5BYEtNGc49yjK/0KfYR8cI9Swvwp9RmzYvsaC\nJ7ZGc0IiCGtYUtcNLRppU8VCw+8lfvmGtztYUQ4XPVxReGSMLRZqaWRkVfz6kbFSwtuQtBm4\np3CSC5pqsnY+zyvKEv/jvMKPd8xtKHyWCSo6Yp/Ocq6DdaeivKL+o24b1/ufOtZbGSKl7SD5\nM5UhvxRvoTnDuVoZof730Jcf/eh/hntwDLldUQ6EPiMh7OCJrdGcuAhCVpT0rusvGrlTxRrD\nXyBv+Ya0q77zfq/o4fTCbwttsVAjkpFVWetHxkopakPOZuDQMKXv72L+tJesnY/6V9f4H7+t\nKIvENKRxqKaP6UVHTNNZSoF1cIAy2Ps2cF3gPBzVcEWRfQbOY74j7QJbaMZwjvRWK9x9s7xn\nfo7afpQ7GuNuVuN6/o4RfYdOWl+0OCWEHTyxNZoTF0HIipLd9VIWjdypYo3hL5C3fEPa/UhR\nbiz8COuN3sosoe1KJSOrktaPjJXib0PKZuCbKYqyScyf9pK283k26BOsdxVlkpiGdAos84uO\nmKazlALr3qKjv+4LjvB6Rdmv+wohfhqk3FYQtIVmDOdrtZ5/ok/RRTNu+IM5GuOuU5Tx/ku1\nbPcdtCgh7OCJrdGcuAhKHj4pteulLBq5U8Uawy9x+Ya2u1tRRu98Z9/LS/ooE34V2q5UMrIq\naf3IWCn+NkRvBg6sW3PfREUZsKPA9D8dIG3n87GiTPA/Vpft1WIa0imwzC86YprOMgqs7Ypy\n0wnvgwWK8kbg2amK8pmExovlz1QGez/VC2yhGcP5UFGu7zvqXz8c/+WxKxVlRj5vNMZ5ry4y\n9L6cvatHqQ82e5+REHbwxNZoTlwEIStKctdLWzRyp4o1hl/i8i2xxX5zZuF2dNSmv8W2K5WM\nrMpZPzJWSqAN0ZuBD70zbci6orMJxUw1aTufE0MUpehS8ScnKMowMQ1pF1gCio6YprOEAmuz\nolxbOGHuUJR3Ak9PLzytQB5P0RmcgS00YzhvqVkZ+6fv4Q9DFeVV3miMG6Aoq3yflJ9Yo/bg\n8wIpYQdPbI3mxEUQsqLkdr3URSN3qlhj+CUu39B2D28YUVhg9Z7KvtkwkYysSlk/MlZKcRui\nNwMfFs61a//l+0nMVJO381mvKGN817JqChoAACAASURBVDQ/sqh3b1+BJaAhzQJLRNER03QW\nXmAdXaQo438pfBxS402R/N7vx0HKTN9HedpvgeWG86ZSfBmNXEWZxxuNcYf/9p9SVTBPUe4u\nkBK27pvtKeHvUk2NIGRFyex6hEUjd6pYY/glLt+Qdn+9RlGWfPTPiV+eHa8oK4W2K5WMrEpY\nPzJWSnAb4jcDp37/ePMQRVlaYP6fLiJv53N4jKIMevC5FzeMVFb39X1FKKAhjQJLTNER03QW\nXWD9fIOiTPNfHWJxcIQTw84VFSp/ujKo8AZBgS00Yzj7FKWv/4aQvyjK5bzRxOQzRRmSLyXs\n4Imt0Zy4CPTOTxHd9UiLRu5UscTwy1y+IWmfGTh09ehNhS3bbaFqk5FV8etHxkoJaSOYuM3A\nz1cXXidczFSTuPM5MKHoOKVlBxVlopiGwmeZoKIjpuksuMD68Eq1Fj/u/2mDongC/2uYovwt\ntvEQeYFLvAa20IzhfKMowwM/DFSU47yDE4v8/oryl5Swgye2RnPiItBbUYK7HnHRyJ0qlhh+\nmcs3uN1PC09+8nlfUaaKbFcqGVkVvn5krJTQNoIJ3Ay8XngDYTFTTebO5+QTM4f1H3vfBwX7\nCz8qE9BQ2CwTVXTENJ3FFliv9VN65xb/+JSiBK5Ve1hRrhDadqhfBirjXi50v6I89PLLX7GG\nc7yPMijwwzDfxaIZo4nN5Yryi5Swgye2RnPiItBbUWK7HnnRyJ0qVhh+qcs3uMO7FGWD//E/\nitL7pA0XqiYZWRW9fmSslBJthBC3GTgqcqqx7HxeVpQtBUIaKjnLhBUdMU1noQXWa32VgcE3\n7PlCUW7yP35bUeaKbLuEooMHi61hDadgfPF1ytT53r+AN5pYHOutKMekhB08sTWaExeB3ooS\n2nUDi0buVLHC8EtdvsEd3lh4exyfU318F7ex20LVJiOrgtePjJVSso1gJm8G3t217kP/4/ze\nvrpH0FTj2Pmo74veFNNQiVkmruiIaTqLLLA+GaAM+ij4ifzRxTdbXOm/vbYcWltoxnC8nyfu\nLXr4QeE3D5zRGPWfB+Y853/8duFFTiSEHXIsTnhz4iIIblhW140sGrlTxQrDL3X5lvgEa7n/\n8QFF6ZNvj4UamYysil0/MlZKWBsCNwNrgqba94oy0MQ/XYLEnc+fRf/+M0wZekJMQ6F1j8Ci\nI6bpLLDAOny10u+90Kc2Kcq6wke/DlQGHg5/jQyBgzg4w/lSUa76p/DhAkV5hDkao/5PUa47\nVvgwf3rR1YbFhx2ygjSaExZBcMOSum5s0UidKpYY/mLil29wu+8rysgTRY+fK3qLaoOFGpmM\nrApdPzJWSngbAjcD6n56iP+DpY2KMtvEP12CtJ3PgkG9iy5z/rD/rjnmNxR6cp/AoiOm6Syw\nwFoZfuvqP4cqvV/0Pjh4c1FiGRRvoTnDWaQuIV8OdirKoD+4ozHo6JWKcqfv9Ixj9yvKYN/b\nE/Fhh6wgjeaERRDcsKSuG1s0UqeKJYa/mPjlG9zuyWsUZaXv8hAFB64qeltqg4UamYysCl0/\nMlZKeBsCNwP5ExVlym++h//qUzRygqaarJ3PVkWZ7rsXz5O9lSGFl6Uyv6GQmSyy6IhpOosr\nsA70VXpv2haQ53vyud6KcuujeavU8KaciPAHRCneQnOG8/vV6nvjDU/tmKooyjPs0Rj1urry\nL1+5Z++qEYrS+9XC5wSG/aFv6kxSlEXef3frNWd+BBoNS+m60UUjZ6pYafgDRC5fjXbf76so\nN3re/+SNDUPVxk6KaVcqGVkVv35krBStNgRuBj4fqCgDFj2ye51aaSnzTf3TJcja+fw9SlGu\n2vBEjlpw9Hm9wPSGwmeZoKIjjuksrsB6OfSgibGFz/7fgKKfb2U7uzloC80Zzg+Ti5oe+H8W\niMao14b5E3rlm/7nxIWdEzKFhus2Z3oEWg3L6LrhRSNlqlhq+P1ELl+tdt8dGXji3n8EtSuV\njKyKXz8yVopmGwI3A5+NC7R1/zFz/3QJsnY+34wq+qPDXg08Z15D4bNMUNERx3SWXWAV/Lzh\nhqH9Ry16TVi7EQVvoTnDOfns7aP6XT5502/FT/EPTkR/7509ov+AUXMfP1r8nLCwtXe0Gs2Z\nHYFmwxK6bnzRyJgq1hr+IiKXr2a7x/7vzqsH9R02+cEvi3/RBgtVl4ysil8/MlaKdhsCNwMn\nn180ZnDfYVPWfmP6ny7ZkqSdz5Hdt1ze54qpOX8GPWdaQ0YLrLhbjGM6y7jZMwAAAEBCQYEF\nAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAA\nAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAA\nYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAm\nQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIU\nWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EF\nAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAA\nAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAms12B9YPb7Z5r+Lf3qb+9XGA01m2c\ni6H8/Ev9pUe9D2IaIkwBm9EZhRhnQeBlb6sPVpkUIsQkUgpEzX+ddgNTA8AaUGCJk5B7VxRY\nlmncMlBgORUKLIDSoMASJyH3riiwLNO4ZaDAcioUWAClQYGlZZj7vOhfZFbj9uaUAgtTwDyC\nCqz9M2fOfCne2MzJs9PpjVKkFIia/zrtosACi0GBpSG/OfausXJIgYUpYCJBBZYZTMqzw8U8\nSpLnPwossBgUWBq+dGPvGiuHFFiYAiaycIFlUp4dLuZRQoEFiQ0FloYc7F1j5pACC1PARBYu\nsEzKs8PFPEoosCCxocDSMBN715g5pMDCFDCRhQssk/LscDGPEgosSGxWL7CO517T7fR6rQev\n/KPoCe/edZ76z8LL2tRrcdH874J+9+QTt3RrWbd5x1Hrf/E/FbrAX519ccu6Z5w/duehoFd9\ns3RYu9Oym3QYue5X38+Puv1a6b/uLfV/v1bwx23n1DvzC4ONJwj9/OQ/Pvbchs273vBKlLtW\nTAG7Cx6FGGeB1ssCp5KFp0I7zyWnkkaeIUzoKIWOdcjZfM9M6Nykfsep7xYU/Kk+vdr7VFFm\nh6v/vB/0J59Xf55d+DBsdftEWm7B7WpNDZ0/UhC+1gFEsniB9e9z/Iu78frCZ7x714UFOQ2L\nnm6QE/jdF7sEtgSN7zlZ+FzwpvuzywL/v/Ve/4uOTq9T/KoV+QUaW12t13n/7jMHz/c+t89Q\n4wlDNz8HBvoH6PKD0exaMQVsL2gUYpwFmi8L7GXDUqGZ5/CphALLiNBRCh3roELnwOX+X7sz\n/xv1vxsLCgKZfVz957agPznF7S+4wld3gZHlFtyu1tTQ+SMaax1AJGsXWDnZ3pWQ3cC3IOb4\nnvLuXZfsynK76zX3rZU6rxX97nbf75598Xn1vP+OOeF7MmjT/WIT7/NtL+7k+70HCp/M920V\n6p7doWmgiRcGD27sdjcaPHjwOP3XfaE+zLvDHdikR2o8cejl59CF3p+aX3h+I7e791Nuw7tW\nTAH7Kx6FGGeB9ssCe9mSqdDMl8ZUKpln0BI6SqFjXVzoHOrufeq08zuo6/LmD9WH27zPFmX2\nRAu3u8WJwF88cbrb3dX3SGN1G1puQe1qTg3jax1AJEsXWP+t63bXv++bUwUH1pzmXV/e57x7\n1zmNsiZ/kF9w/Plu6g99Cn/3HXUh1Zn7g/ron0dbqU/f63u2eNP9TTP1/9+2X3108GH1ofsx\n37Ped2e9/u1d+gfWeZ99y/ds16BDDrRf53uL1sR9/oJVC/9noPEEopefOd7q45mTBQXHPO3c\nQw3vWjEFHKB4FGKcBdovC+xlS6RCO1+aUykkz6AnaJRCx7q40JmuPmrlUZfRD9Oy3PeVzOxs\n9d+nAn/uOfWnFd4HmikxstyK29WeGlGtdQBhLF1gXay+23i18OHLddzudt7vXbx714ZZOwuf\n/e0MtzvrgPdRftfiNy8Fn6tvUOp5F1fQpltde1m7iv7/Z+r/b3/U+2iw293676Jnv1b/2Hjf\no+Ctrvbr/qf+3UHuuUWfMUdsPIHo5OdAfbe76VdFv9LGbXjXiingAIFRiHEW6LwssJcNTYVO\nvjSnEgosQ4JGKXSsAyn4vp7b3fjjwicfctctmdmP1H+vDvy5G9Xi5yfvA82UGFlugXZ1pkZU\nax1AGCsXWK+qy2WW/wfv1/bPFhTuXd3T/M963788733wsvrgysArV6g/LfY+CGy631cfTA78\n/w3qT74jd1q73dcHnl3dc+wy34Og7YnO63xRDPBv0SM1nkh08rNefbDI/+wew7tWTAEnCIxC\njLNA52WBvWxoKnTypTmVUGAZEjRKoWMdSMFq9cGd/l8fGZ5Zbyn1e9H/PtHc7b7c+0AzJYaW\nW6BdnakR1VoHEMbKBdY0dV186v/h+bY9huQWFC60OoETx3apP232PrjRv8X0+TXb7b7A+yCw\nwG9TH3wW+P9HGrndo70P1KU+KrzhoO2Jzut8y/0F/9ORGk8kOvkZpj743P/syTOM7loxBZwg\nMAoxzgKdl4UWWIFU6ORLcyqhwDKkZIEVGOtACoaoD772P7svvMDyFkL+o9ifVR/7Pl3STImh\n5RZoV2dqRLXWAYSxcoHVSevsHu9Cuyjwk/eDgwe9D7q43fWLj6IsuETdBR8uCFrgPdzuDkF/\nRV2Xp3v/vcjtrvffsDaCtic6r/NGcVqgvUiNJxKd/KjvHVsW/9K1RnetmAJOEBiFGGeBzstC\nCqziVOjkS3MqocAypESBVTzWgRS0cLvPLv79bmGZ/bO+231J0f+d7HY3+cf7QDMlhpZboF2d\nqRHVWgcQxsIF1rE6bnffsGe9C21S4Kc3ixbwYfV3Lwz6rUnq828XFC/wI+r/Hxr0/+eqz3sP\n3PF+st1w4Tcl2ijenui9zhtFP/+TkRpPKNr5+Uv9t3fxLy0xuGvFFHCEffHNAr2XhRRYgVTo\n5Et7KqHAMqREgRUY60AKDrpDBv2W8MxeE/i0yvsNoe/rO82UGFpugXZ1pkZ0ax1AGAsXWF+r\nq+GasGe9C2124Ke3ixaw93dHB/3W3erPTxYUL3Dvqxq1L9a8aAd4oo/3k2d3lxmP/Rn06uLt\nid7rQvbxkRpPKNr5+Vz9N+hU+EcN7loxBRxhX3yzQO9lIQVWIBU6+dKeSiiwDClRYBW/u/Gn\n4DP13ynFv/9weGa9Zw7O9z3yfkPoO7JdMyWGllugXZ2pEd1aBxDGwgXWB+7gAxX9Qu+T4t+7\neg9qvD7otx5wFx7W6F/gH7vD+b7QP3x90U/ZfdYHFl3x9kTvdd4obvX/eqTGE4p2ft5V/72h\n+Jc8BnetmAKO4B+FGGeB3stCCqxAKnTypT2VUGAZUqLACox1IAXeFAVdSXRPeGZPtXW7z/Kd\nJXiD293ed7C6ZkoMLbeQdjWmRnRrHUAYCxdY3psj3Bz2rPbe9fUSv/uQ+vOmguIF/rbGinu8\n8Ff/O6lp0RNNlxRdf7t4e6L3upAoIjWeULTz85/QITJ6iUlMAUfwj0KMs0DvZSEFViAVOvnS\nnkoosAwpUWCFLj5vCrwpmlf8+1rX6F/kLjzb90Qz/3l/mikxtNxC2tWYGtGtdQBhLFxgeS8H\nPCnsWe29q/fN0MSg37pf/dl7oST/Av9E828VOfHS7d0K19zwwivmFG9P9F4XEkWkxhOKdn7+\n6w55p7nb4K4VU8AR9sU3C/Repl1g6eRLeyqhwDIkYoH1jjvkuuh5Gpn1fiE4oaDwG8Ivfc9o\npsTQcgu0qzM1olvrAMJYuMDary6Bq8Ke1d67fusOPQHX+3bp/wqKF/j37ggn6B7Y2te75Jb6\nfijenui9LiSKSI0nFO38fOoOOVZio8FdK6aAI+yLbxbovUy7wNLJl/ZUQoFlSMQCy/ud3C3F\nv79ZK7P93O7GR3znf1xW+IRmSgwtt0C7OlMjurUOIIyFC6wTdd3uHmHPau9dj2S73d2Dfmu8\nu/Buov4FfqK+/+5X+h5voG4BfKcPF29P9F4XEkWkxhOKdn5+doec7TPH4K4VU8AR9sU3C/Re\npl1g6eRLeyqhwDIkYoH1U2itNEsrs9vd3jvWHG1SdB9onZQYWm6BdnWmRnRrHUAYCxdY3mVd\n70jgpy8+/9x7pzftvav3yiv1jhe/1P9jYIH3crvrHozQ3mL1l18rati/PdF5XWgUkRpPJDr5\naRZyvZpBBnetmAKOsC/OWaDzMu0CSy9fmlMJBZYhEQus/EYhFc3FWpn9u7HbPdZ7HHq9P4r/\nbHhKDC23QOp1pkZUax1AGCsXWDPVFfC0/wfvp77e26Po7F2nFX0nU+g79SfF+yCwwG93F90t\nodAX/tX3v/8VP/mi/28EbU90XhcaRaTGE4lOfrznRweuuHww7F5lejAFnGBfnLNA52U6BZZO\nvjSnEgosQyIWWN5LeNbx3wrH98WdRmYnu92N/rna7R7jf0IzJYaWW6BdnakR1VoHEMbKBZb3\nFJH+/h9WuQtvia6zd/UeZVl8abkF7qLbpwQWuPcggfMDZ40cbVt3kPeskttbBF28riBX/Z13\nvA+6FV+WWPt1JaKI1Hgi0cmP9xKAC/zPLtPeAGvAFHCCfXHOAp2X6RRYOvnSnErBeQZdQaOk\nU+jcoT542P/sOO3MejOwrb7b/VTwE2EpMbTcAu3qTI2o1jqAMFYusPIVdQkU3Y/z06Zud2vv\nly46e9cC7+9u9T9bz+0+45D3UfEC994s65aie4We8G4BPAWFi3qD/2+d6O12N/WdV3KJ213X\nf9N1zdeViCJi4wlEJz+fZbndjT8pfPKdxoZ3rZgCTrAvzlmg8zKdAksnX5pTKSTPoCdolHQK\nnTfUB21+KXxys7uJdmY7ut2nu90tAje80U6JkeUWaFdnakS11gGEsXKBVfCu9yPf6945kr9/\nRVN30F3VtfaunzZwu+vM/1l9dPChJv73p0EL/NvT1IeDXlfX3FFPT/XhAO+Th1qpjya95V3x\nh59VF1zRtYbHeFfnryf3/6n3upKb9EiNJxC9/HhvldFiu1p17F/a2H2j0V0rpoAT7It3Fmi/\nTK/A0s6X5lQKyTPoCRolnUKnoL/6qOtr6pgfuC2r7irtzPo+YXLPKv67mikxstyK29WeGlGt\ndQBhLF1gFeTV8S3Jwv8W3h1Fb+9a8Fg99XFWh54dfL9d9L4oaIH/27vk3I07tszy/ntB4but\nV+p7f8g+q30TXxN9Cg+53Owu9G/d15XYpEdsPHHo5efHtr4hbabWIe7B3gufP+J9NvIQYQrY\nX/EoxDgLtF+mV2Bp50tzKoXmGXQEjZJeofOJ7/qdZ/TopA7vyufcmgXWD76hfzfoD2ulxMhy\nK25Xe2pEtdYBhLF2gVXwSseipe1usqHwGd29a8F/uvp/193OU/Rc8AL/sG/g/2fd+FfRk/+9\nIPCku+6cogV3tFvwVlfrdSU36REbTxi6+fm8u3+ArjzkvWyU90LnRoYIU8D2gkYhxlmg+TLd\nAks7z1pTqUSeQVvQKOkVOgWvn100to02FugUWAXD1B/PD/nLGikxstyC2tWcGjp/RHutAwhj\n8QKr4GjeNV2a1Ws9aKX/1F79vWvBqcenXnBG3dO7TNodOGE+dIG/Mufi1vUanTXkvm+LG8h/\nbsalrRpkN+1w1YM/BZ78bVqb7Abnjv1G93Vhm/TIjScI/fyc2DGyXYNmF0x+paDgoPr0Gu9z\nRoYIU8Du9sU/C7Repl9gaedZYyqF5Rk0FY+SbqFTcHBN/9Z1m/Zc9GNBwTPq07u8z5XI7N7w\nRGukpCDycgtuV2tq6PwRnbUOIIrVCywAALAT7wl6/9J4frvbXfeA9GgA2KDAAgAA86xQC6y3\nNZ7v5XaPlh4MAB8UWAAAEJ+TXxV/53aV2519OPxXXlXrrlckhgTADQUWAADE49ML6rmv9f9w\noK7b3Sv8d070cLt7ygwKgBsKLAAAiMeJFm533aJTMU8MdxdfdLdY/hT16RckxwXACgUWsFs9\nTNtK7sBAIswCO1vtvUDD4gMFBSdf6+e9GEPYNdI/GKo+fTVHaABsUGABuxvc2iZyBwYSYRbY\n2amRhVezOruh95/TPw79v5Nb+S7t2eEP7RcDOBQKLGCHXStgFtjcidvrBlJ22dcl/udE39Pd\nvucIDIAPCiwAAIjX/qVDzmpQr+XFt74c9r9ur+dueunaExovAnAyFFgAAAAAJkOBBQAAAGAy\nFFgAAAAAJkOBBQAAAGAyFFgAAAAAJkOBBQAAAGAyFFgAAAAAJkOBBQAAAGAyFFgAAAAAJkOB\nBQAAAGAyFFgAAAAAJkOBBQAAAGAyOxdYPykNa9Wq1fCCT7kDgWjtbulNXa1G805yRwLSbWzu\nS37ju05xR5IIvj1L3Ubewh0FQEKycYH1WX06c8G2uzpQ5de5Q4GoHBlFKT3v2rZ6dCXqcZA7\nGJDr5DhK77/kkdUjy9Olh7iDSQA9aPCSLNrMHQZAIrJvgfVtNg3O86gmuKp8yR0MROH3zlT/\nAW/mPNvaUOfD3OGATPkjqf4aX/K3tKROqLBEe5pa5XlWp9X4gzsQgARk2wLrYAu6wlPoGmp7\nnDscMOzX1tRxZ1HqcjvQwHzugECiedTwEX/yO9JFWLiC9aB71KEeRrO5AwFIQLYtsAbRRR6/\nLjSfOxww6lA76r43kLpdzWgxd0Qgz4tJVTYGkp/bhq7hDsjh9ic19Y70o+Ur4bt4AOnsWmCt\noaa5gQ31toplv+UOCIw5eQmdn+cptqFC+gfcMYEsh+q7FgYl/9G69BB3SM52D43zjfRgWsEd\nCkDisWmB9W35suuCNtQTaCR3RGDMNGqZ6wk2g9rjVMJEMYX6hST/wcyM97ljcrROrk2F72OS\nW3CHApB4bFpgDaAJwdvpPVnJn3CHBEY85aq5zROqE95cJ4oPUmrkhCZfrbePckflYH+lNi4a\n6Pb0JncwAAnHngXWC9QkL2Q7fRON4o4JDPgzK/m+EvWVZ2OZKr9yxwVSXEQzSma/O93GHZWD\n7aaBReM8kyZwBwOQcOxZYHWiu0I303trpX3PHRRENokGl9zDejwj6AbuuECGp6lFWPK3V0n7\niDsu57qB5heNc275Gie4owFINLYssF6gtiW30+NoFndUENEnKTV3hRdYu6qnfcUdGYiX39YV\n9vGl90vCC7kDc672yYGvZC+i/+OOBiDR2LLAupQWltxM78iseYw7LIhkMN0cvof1eCbTcO7I\nQLzd1FEr+y3pMe7InOqf1IaBYZ5H47jDAUg0diywvkhqHL6ZvpQe5Y4LIvgkqX5eeOY8nr3Z\nyfiayPHyW7ke0Mr+MldL3JRQjJfo0sAw7ylfA2frAshlxwLrZrohfDO9nC7ijgsiGKv9AZb3\na6Kh3LGBaHupk3b2z6Md3LE51LLgLWUPeoE7HoAEY8MC63jNTI0DeTyNk7/jjgxK9VvZ6nu0\nd7F59ZLwEZbTneNapp39la5WuF2SEFdR0JDfRjdyxwOQYGxYYO2hnlqb6WtoEXdkUKolNEJ7\nD+vx3EJXckcHYr0YfmaKXyd6gjs6ZzorJeiivrvKNOKOByDB2LDAGuy7fWmYLcmtuCODUp2Z\nvElvF7s3K+UL7vBAqL60QC/79+JEQiGOpzUIHuZz6UPuiAASi/0KrIMZtTSPlPa0oY+5Y4NS\nvEXn6O1hvScS4hwnR/syuaF+9pvTPu74nGgfdQ0e5Un4jB9ALvsVWNu0rlVZuP2Yxx0blGIq\nTdPfxebWSP+BO0AQ6CatM1P8bqZrueNzohwaHjzKG12duSMCSCz2K7D6k86xsttS8B2hheXX\nydA6N8FvHN3CHSGIc6Rq+VKyn1ul/CHuCB1oLt0aMsyNk3/jDgkgodiuwDpctrbeZro14YLg\n1vUqXVBKfeXZWbHiX9whgjBbqU9p2R9Ma7gjdKChtDpklIfQdu6QABKK7QqsvdRXbyt9LS3l\njg50TaGZpe1iPcPoXu4QQZhutLK05K91ncMdoQO1Tg29LMo9NJI7JICEYrsCa6z+yUgbXF25\nowNdDdNL+4bQ49mSVhd3o3Wqb5Kalpp8Tysc5m66/PLZoYO8t3wtXHAMQCLbFVh1MnO1N9Gq\n+qn4lsmq9pV2DqHPxfgCw7EW0HWlJ38qDsEz3Q9hS64LvcMdFEAisVuB9YHe/Ta8BtJO7vhA\nx0KaFKHAWuHqyB0kCHJGyrbSk78zIws3JDTZv8OOpphMC7mDAkgkdiuw7qXr9bfSi+hq7vhA\nR2eX7lVG/VrTW9xRghAfULtIye9Oz3JH6TTrwj423ISDKABksluBdQmt099I78nM5o4PtP2e\n0jjSLtYzi0ZxhwlC3EZTIiX/DhrDHaXTzKB5JUe5fhouhwEgj80KrOPldC/S4NURh8pa1A4a\nErHA2lsjA9fpcaTTU7dHSv6eSpWPcYfpMINpbclR7k953FEBJBCbFViv0MWlbaUn0GLuCEHT\nGLo7YoHlGY70OdJHkb8h9Hh60WPccTpM+6Sw84Hm0fXcUQEkEJsVWAvpptI20mupF3eEoKlu\n5p7SEldoU0oznEbuQHdGPMFBtZBGcMfpMDWqhw3y7vQm3FEBJBCbFVi9aEOpW+namfiewYo+\npg6Rd7EeT2d6kTtSMN+5rs2Rc59XuRLWrpkOu1qEj3Jb3O0CQB57FVgnK9YofSvdE3toS1oe\n6TpIhebRFdyRgul+SmpuJPm9N8F3ywAAIABJREFU6EnuSB3lQ+oePshX04PccQEkDnsVWO9S\n19I30tNpNneMoKFPibui6cirWQaHuTvOehphJPnzaCx3pI7yBA0NH+QHaAB3XACJw14F1qpI\nH4Rsc3XijhHCnawUfjiIpuG0jDtWMNsAWm4k93vK18S1Rk20SuvIt7wqlU9yBwaQMOxVYI2g\nZRG20o1ScaEX63lD69sKLRuTW3LHCiY7XsFgdd2NXuKO1Ulm0HyNQe5O/+EODCBh2KvAOq1M\npHPR+tET3EFCmLvoRmP7WE97ep07WDDXC9TTWO5n0lTuWJ1khObX8lPpDu7AABKGrQqsX7XO\niwk1h27mjhLC9Ixw8mexWTSOO1gw1zSaaSz3OWmnccfqJBdQjsYgb3adxx0YQMKwVYH1JA2I\ntJHekdyWO0oo6Xi5WgbrK8+eKuXxHa+ztE551GDy29FH3ME6SOPymoPcIOUv7sgAEoWtCqw5\nNCPiRrpp8u/cYUIJr1EPowWWZxCt4w4XzPRj5I+d/SbSQu5onSM/o77mIPenvdyhASQKWxVY\nkS4z6jWYcrnDhBLuinyv34A1rnO5wwUzbaThRnO/ydWRO1rn+Fnn/kTzaCJ3aACJwlYFVo0q\nkTfS82gSd5hQwqW0znCB5WlN73PHCya6ghYbzn3TpAPc4TrGf3XOLdiVhrvlAEhipwLrazon\n8jZ6Z+qZ3HFCqFNGr4LlMw3vsJ0kv1b5PMO5H04buON1jMfpCu1BPou+4Y4NIEHYqcDaYejL\nhjNceBdsLf+NdP39ELkVKx3mjhhM8y6dZzz3y6k/d7yOsUbvDtujaQ13bAAJwk4F1jSaa2Aj\nPZR2cAcKIe6n8cb3sR7PAFrPHTGY5h69/bymmplHuAN2itvpdu0xXk6DuGMDSBB2KrC6ubYZ\n2EbfSeO5A4UQQ+iBKPaxnjWu9twRg2kuiub4O49Cj3MH7BTX6t31Iq9KFdwtB0AKGxVY+ZVq\nGtlG705rxh0phMiK4igcr7Pobe6QwSRHy2ZFk/p5dC13xE6h0BadQe6KuyUAyGGjAusz6mRo\nI92KvucOFYJ8o3O+uK4ZuJq7YzxLl0aT+txMdz53yA7RNkXvbc0UmscdHEBisFGBtY1GGtpI\nX0lbuUOFINtoRDT7WO/V3MvhYtMOMYNujSr359Fb3CE7RFY1vTHe5OrCHRxAYrBRgXUjLTC0\njb6bxnCHCkEm0sKo9rHe8xRWcgcN5jg7eXtUqZ9Ks7lDdoaTKU10B7lB6kHu8AASgo0KrC4u\nY9vq3DKNuEOFIG1Sdka1j/V4NiS14g4aTPF7crPoUr89Bak3xY/UXneQcbccADnsU2CdKm/0\ncNk2uJKehRxOaRzdPlbVnl7jDhvMkENDokx9S/qaO2hHeJcu1h3jeTSBOzyAhGCfAmsfdTG4\njb4K14O2kBfpsij3sR7PbBrNHTaY4Zqovx4eS8u4g3aEJ2mo7hjvSsfdcgBksE+B9TCNMbiN\nXkwjuIOFgLtoapT7WI9nb7XMP7njBhM0KpMbZerXUXfuoB1hI12rP8ht8DEhgAz2KbAm0F1G\nd8+Z2dzBQkA/WhPlPlZ1Oa3ijhvi9xWdHXXqG6T+zh22E9xFM/THGHfLAZDCPgXWOUk5RrfR\n7ekL7mjBz10husuM+qxzteWOG+K3xvCnzsUup83cYTvBZLpbf4xxtxwAKWxTYB0rU8/wNvpq\neog7XCiyP4YPMTzeq7m/xx05xG0wLY8688toAHfYTjCstA+O86pUxt1yAMSzTYH1BvUwvI1e\nSldwhwtFdtIVUe9jVTfTZO7IIV6nqleK4dPLWmUPcwfuAN2otA/8u+FuOQAS2KbAWkETDG+i\n88rX5g4XitxCt0e/j/V4dpWrcZw7dIjTO3R+DKnvQ3ncgTvAGWVKG+MpNJ87QIAEYJsCaxQt\nMb6NPoc+5Y4XCnV1bYthJ+vx9KI93KFDnO6hG2LI/EIaxR24A1SvWdoY4245ADLYpsA6Iy2K\nE77H4iwZizhVoVYM+1jVvdSPO3aI08W0LobM761Y9QR35LZ3MqlpqYNcP+0Qd4gAzmeXAutg\nUvMottHLcBCWRXxE58Wwj/XKSvuNO3iIy7FMd0yZ70HPcYduez/SOaWOcT96jDtEAOezS4H1\nHPWOYhOdVy6LO2Dw2UyjY9rJejzDccdnm3uResWU+dl0PXfotvdBhHOC5tIk7hABnM8uBdai\n6K4Hfg6uhGUNk6K+V4rfOldH7uAhLnNoWkyZ352Rnc8du909S4NKHeNdac25QwRwPrsUWFFe\nD3w0bkdoDZ1cO2LayapauFAk29p5rq2xZf48eoM7drvbGukSr61oP3eMAI5nlwIrq3xUV9S5\nD2ciWcLJstmx7WNV19Nc7vAhDofTG8SY+VtoBnfwdreMbip9jEfiLSiAcDYpsP5HbaPaRO/J\naMQdMhR4DwXpGuNO1uPZntqEO3yIw9PUJ8bM70htxh283c2keaWP8VIaxh0jgOPZpMDaTZdH\nt40+i77njhkKCjbGcDO6gI643LSdTadZsWa+HX3EHb3NjaX7Sx/ivIrVT3EHCeB0NimwptOc\n6DbRV9AO7pghnmPcVTNxppOdnZu0PdbMT6IF3NHbXD/aGGGMu9A73EECOJ1NCqxutCW6TfSd\nNJE7Zigo6Bz7Me4ez+7MmrjipG0dSm0Uc+a3JLXjDt/mOrkiXZd5Mi3iDhLA6exRYEV/PfCd\nKa25g4aCU+WyYt3Hel1ET3L3AGL1FPWNPfMtXN9xx29vTTIjDfEmV3fuIAGczh4FVgzXA2+a\n/Bd31PAxdYltB1voThrO3QOI1YzYD8HyeMbQCu747a1q7YhjXD/9b+4oARzOHgXWw3R1tJvo\nvvQUd9SwJebruPvkVcvEPsCuOsR4l2+fddSDO35bO+GKfGcx3C0HQDR7FFgTaFG0m+gZNJs7\naphK82Pav/oNoG3cXYDY/J3aMJ7M10/9g7sHdvZThFsRes3DHYkABLNHgdU+OSfaLfRmwiEG\n7C6gOD7F8Hhv2n0ZdxcgNs9EdfPQMENRWsdjX4RbEXrtSm/MHSaAw9miwDoWyzWha2fiFDRm\n+VWqx7BvDVY39VfuTkBMZtOMeBK/mC7n7oGdPUcDI49xO/qMO04AZ7NFgfWWgfdjYbrTW9xx\nJ7qv6dzo8xZiBK3i7gTEpKsrygurhMqrUuk4dxdsbIeRgx+vpaXccQI4my0KrFU0PvpN9ERa\nxh13osulYdHnLcQ6V2fuTkAsjmXEfhNKn570HHcfbGwlTY48xGvpYu44AZzNFgXWGFoc/RZ6\nBQ3hjjvRzY7nTP1Cp7u+5u4FxOAV6hlf4mfTjdx9sLG5hu58kZ1+kDtQAEezRYF1Vsru6LfQ\neeWyueNOdL1pffR5C3Ud3cndC4jBIpoSX+J3puFW37G7ge41MMYDKJc7UABHs0OBdSS2m260\no2+5I09wdcvHkrcQW1JacPcCYnBp3LU1DsGOwxW0xsAQL6TR3IECOJodCqzXY/u6YQRt5Y48\nsf1KrWLJW6iz6T3ufkDUTlWK9/xRz3W0hLsX9nURGbnR9t4KNU5yRwrgZHYosFbRhFi20Atp\nPHfkie0Z6hdL3kJNpenc/YCovUsXxJt4XMw9Dm1T8oyMcTd6hTtSACezQ4E1NpZj3D2eXakt\nuSNPbPfEexyOV06ZuvncHYFoLY/tPVGI7PRD3N2wrXqVDQ3xDLqFO1IAJ7NDgdUmZVdMW+hm\nSbjdBqfhtDymvIXqQi9zdwSiNYRWxJ34frSXuxu2Va6uoSHOwZkEACLZoMA6lh7jXc360xPc\nsSe0Fqm5sSUuxG00gbsjEK2s8oa+oirVArqWuxt2dYRaGBvj9rSPO1YAB7NBgfVOLNdx95pF\nM7hjT2RHUxvHlrdQueVr4J5HNvMltTch8Rn1ufthV99RR2NjfAPN5Y4VwMFsUGCtpWtj20Jv\nw2XAOb0da2FcwsX0JHdXIDob6SoTEn8OfcTdEZt61+h519uSW3PHCuBgNiiwJtA9MW6h66cd\n5g4+ga2jcTHmLdQCGsHdFYjO2JiXbLDxtJi7Izb1DA02OMat6AvuYAGcywYFVseknBi30Aru\nZ8ZoEi2MMW+h8qpW+Ie7LxCVZmlmHH23gS7i7ohNGbrXs891dA93sADOZf0C62RmzLeNnU6z\nuaNPYF1cRi52aEBf2sHdF4jGLy6Dx1hHkF3mb+6u2NMqI/d69tno6sAdLIBzWb/A+pDOj3UD\nvcV1Pnf0iSu/Uq1Y81bCYurH3RmIRi4NMSXxfekx7q7Y0zyabXSMT3ft544WwLGsX2BtoVEx\nb6HrpePLJS5fGT2TKbKstN+4ewNRuJluNyXv82gid1fs6Ubjx8CNoWXc0QI4lvULrKk0L+Yt\ntELPcIefsPbQsJjzVsIweoi7NxCFDiZ9Oby7TEPurtjTlfSg0THegE/5AYSxfoHVjbbFvIWe\nRTO5w09Yt9OtMeethAepK3dvwLh/0hqYlPh29Al3Z2ypVxTbzMbJB7jDBXAqyxdY+VWqx76B\n3p50Dnf8CasfrY09cSWclvQ/7u6AYf+mXibl/Tpawt0ZWzrHZfxC+iPw8TCAKJYvsL6mc+LY\nQp+WjNsRMmmQGf/dUvzG4mRyG7mTppqU93XUg7szttSogvExXk29uMMFcCrLF1i76Io4ttCD\nKJe7AwnqT5NO1ffZnNyKuz9g2GW0zqzE10s/yN0bO6qcFcUYZ6f/xR0vgENZvsC6jWbFsYFe\nQOO5O5CgXiQljryV1Jbe5+4QGJRftappeR9Iu7m7Y0MnXM2jGOPB9Ah3wAAOZfkC6zLaEMcG\nend6E+4OJKhldEMceSvpJrqFu0Ng0Id0nml5X0hXc3fHhn6mdlGM8WIawh0wgENZvsByV4xr\nC30Wfc3dg8Q0mpbGlbhQOzOyTnL3CIxZS2NNy/ue8rVOcffHfj6h7lGMcV61Cke5IwZwJqsX\nWD9R27i20KNpLXcXEtNZKbvjSlwJ3elp7h6BMaNpsXl5P5/+w90f+3mZ+kYzxgo9wR0xgDNZ\nvcB6wvB94bUto6HcXUhIx9Prx5W3khbQldxdAmOamnKn5yI3063c/bGfPBoe3doaxx0xgDNZ\nvcCaT9Pj2kDnVayO7xgYvE9d48pbWB5rZOJ8Mlsw607PhbannMndIfvZQBOiGeM95WtiGwkg\ngtULrP7xXq6yC73D3YdEtImuji9vJQ2hddx9AiM8NMjMvLemL7l7ZDv30bSoxrgrvcIdMoAj\nWb3Aql8uzstVTsI1KjlMoQXx5a2kB11duPsERsyg2Wbm/TpazN0j25lJ86Ma4xk4RxdACIsX\nWL9Sqzg30OuoJ3cnElH3OO4gqe101+fcnQIDLnBtNTPtG1BYR20c3R/VGO9Mb8wdMoAjWbzA\nepoGxLuFrp15jLsXCahqtXjzVtIkHO5sBycyo7mKuAGn4WbE0RoU7bUD29OH3DEDOJHFC6w7\nozyaQENPeom7F4lnP7WPN28l7SiTjUNxre+tqK7BZMBIWsPdJ7vpRjnRjfEkms8dM4ATWbzA\n6k8PxbuBvoXmcvci8eTR0HjzFqY7PcXdLYhoeXRnsEW2Gt/xR6tVWpRjvCXpbO6YAZzI4gVW\nvXiPcVc3Hq7zuXuReO6gGfHmLcwiGszdLYjoclphct7rpv7O3SmbqVM12jFu4fqWO2gAB7J2\ngfUztY5/A10v/TB3PxKOCZ88hsnLSv+Vu18QSf3MuN8SlTCUNnN3ymYyor7I71hayh00gANZ\nu8B63Ixr6lxGz3D3I+E0MH036/EejbOEu18QwffUxuy0L6e+3L2yl3/ozGjHeD3O1QQQwNoF\n1lwzvmmagdPPZPvD1Kt5+21MbsHdMYhgF11uet7dGYe4u2Ur31GnqMe4adIP3GEDOI+1C6ze\ntC7+7fM2V0fufiSaF6h3/HkLdw69xt0zKN1UusP0tA+kR7m7ZSvv0cVRj/EoWsEdNoDzWLvA\nql3RjA10gxTcxk6upTTZjMSVdBtdzd0zKF0H13bT076YBnF3y1aeo4FRj/Fa1wXcYQM4j6UL\nrO+onRkb6D44v1+ykVFeStqgPVXL/cXdNSjNkfSoj6+OLK9GuX+4O2YnOTQ6+kE+LRnfEQKY\nzdIF1m5zDui4jaZx9yTBtEzNNSNxYYbQau6uQWleol4C0t6PdnN3zE4epBuiH+PRtIw7bgDH\nsXSBZdJ9Y7cntefuSWI5mtrIjLyFW+fCBREt7S6aIiDt99Aw7o7ZyQKaFf0Yb3Sdyx03gONY\nusDqTltM2UA3Tv6DuysJ5S3qYUrewrWlt7k7B6VQaK2ArOdVK3+Eu2c2MpXuimGQW7i+4A4c\nwGmsXGDlV6phzgZ6AHm4+5JQHqJrzElcmJk0jrtzoC+/WhUhab+UHuPumo2MpFUxjPEE3FIM\nwGxWLrA+ps7mbJ/n0o3cfUko4+lucxIXZk+V8jgj1Lo+MWvFlrCARnN3zUZ6x/TB//a00/K5\nIwdwGCsXWJtiORtGy86Ultx9SSgdXTnmJC7cUFrF3TvQ9RCNE5L1vRWrnuDum310dO2JZZA7\n08vckQM4jJULrIm00KQNdAvXT9ydSSCnMrNMylu49Umola1rJC0Vk/aLcLsr45plxjTGc3CV\nOQCTWbnAapdk1gchV9BW7s4kkE+oi0l503AOvcLdP9DTsOxeMVm/ncZz980+qtWOaYz3ViuH\nr98BTGXhAuuoeRctvJeu4u5NAnmERpmVuHC305Xc/QMd31FbQVnPzXSf4u6dXeSnnBbbIA+m\ntdyxAziLhQus/9BFZm2f92TW4e5NArmZ5pmVuHB5tdN/5u4gaNtCI0Sl/QJ8cGnUH7GWuQ+5\ncL1AAFNZuMBaRtebtn3uRB9wdydxXEjbTEtcuNG0gLuDoG2csLNHPTNoCnfv7OILuiDGQT6L\n3uEOHsBRLFxgXUHLTds+X0/3cncncVStblreNGxLr4szyqypSbqYOySpdpapj4sIGPMfUmIc\n5Bm4yhyAqSxcYDUpY94RsxuoG3d3EsY31MG0vGm5iHZxdxG0/ECtxWW9M73F3T+beIKGxTjG\ne6qU+5M7egAnsW6B9ZurpYnb5/qp2HRIkktXmJi4cPfT+dxdBC1baLi4rN9C07n7ZxObY7+P\nwjBayh09gJNYt8B6kgaauH0eSDu5O5QoZtNtJiZOQwt6l7uPoOFqcYdgeTw5aY25+2cTS+nm\nWAd5Y8ppOFkTwDzWLbBup5kmbp/vopHcHUoUl9EGExOnYQaN4u4jaGiQIewQLFUHHIFtzKw4\nTuK9AHdtBTCRdQusS2ijiZvnvRWrneTuUYLIqmhi3jRzWbPMAe5OQpgvqZ3IrN+M7wiNuS6O\ny+kvpu7c4QM4iGULrPyq1UzcOns83elF7i4lhp+EXW0yYAzN4e4lhHmQxohMek56A5xHaMRg\nWh/7KJ+Or98BzGPZAutT6mzexlk1iyZzdykxPEGDTU2chkfL1jjC3U0oaSA9IDTrnek17i7a\nQjeK4w5jM2k4d/wAzmHZAmsTjTZv26zaVaYe3gDLMJ9mmJo4LX1pDXc3oYSTVSrnCU36TLqe\nu4+20CotjkHOy0rdz90BAMewbIE1nu4ybdPs05ne4O5TQuhPa81NnIb1yc1wtpPFvE7dxCZ9\nd7kauMKsAVlxHVsxAZ/0A5jGsgVW65RdZm2ZC02jW7j7lBDqlhP7QYZPF9rL3U8IdQdNFZz0\nnjjFzYgyDeIZ5N1VMn/h7gGAU1i1wPo71lvC68JBslL8Sq1MTpyWpdSZu6MQqpNri+Ck302D\nuDtpA3/HuQBH0W3cXQBwCqsWWM/HfEMtXThIVoanaYDZidNyFr3E3VMI9kdKY9E5z8tK/5W7\nm9b3TZxnB+0oX/kgdx8AHMKqBdaC2C9HrOdWmsTdqwRwJ00zO3FaFlAv7p5CsB00RHjSR+JO\nLpG9Rb3iG+XLaRF3HwAcwqoF1qXmXw58VyYOkhVvAK0xO3GamrhwYW8rGS3yPjlFNiafwd1N\n63uKhsY3ytvK1DzM3QkAZ7BogZVftaopm+QQPegp7n45Xz0Zx7h7vNc1G8DdVSiWX7vcHvFJ\n74AvhiPaQuPiHOX++KAQwBwWLbA+Mvkyoz4L6Erufjnez9Ta/MRpyWuQtI+7sxDwNp0nIel3\n0DDujlrekrgPrtiUlnWUuxcAjmDRAushGmvKFjlEXvXMQ9wdc7onaaD5idM0g4ZwdxYC7qAb\nJeQ8z52Ou1BGcGsc93ouotBK7l4AOIJFC6yraLEZG+QSBtPD3B1zujskXMe9UF79pPe5ewt+\nHYRfpMFnDN3B3VOru4aWxTvKD6dl4yMsABNYtMBqnCHiiI7V1JW7Y07Xm9YJSJymmdSPu7dQ\n5JfkplJyvr2M+xh3Xy1ugAmnB11GD3B3A8AJrFlg/SDoSJ5mSV9zd83halcUkjgteY1db3J3\nFwptpivkJL0XbeHuq8V1ofhvgbExrfbf3P0AcABrFljb6UoTNsbhxtNc7q45235qJyRxmm6n\nHtz9hUJDaamcnK9ync3dV4s7PcOEYR5A87n7AeAA1iywxtNCE7YS4ban4XY5Qu2U9UmGTwt6\nhrvD4HWiUhU5F+fweM6mf3P31tpq1DRhlB8pX/4n7o4A2J81C6wz0ky+07NfF3qOu2+Odgvd\nLiZxmu51tUW9bAUv0MWycj6f+nL31tJOJTcxY5jH0CjungDYnyULrAOuFmZsJDTMo+HcnXO0\n813bBGVOU0fayt1jUN1Es6TlvEHS59zdtbKfzfmSPjfb9TJ3VwBsz5IFVg5dbsZGQkNe9bJ/\ncffOwU5kZglKnLYHU+od4e4zFBQ0S8uRlvMpNJ67u1b2IV1oyjAvcLXA+ZoAcbJkgXWdoEOw\nVENpDXfvHOy/1F1U4rQptJC7z1DwGbWVl/LcamV/5u6whT1PA8wZ5+44IQggXpYssE5L323O\nRiLcWlcH7t452Eq6TlTitG0rVwEH47JbLDXto2k2d4ctbAeNNmeYt1VK+4C7MwA2Z8UCaz+d\nZc42QktL+pC7f841PP6rSEdpDI3l7jR0dcV/bUvjHs2shos06Vph2j2LZtDZJ7h7A2BvViyw\n1tFVJm0jNEylqdz9c65GGXvFZU5Tblby29y9TnS/pzSUmvOBtIy7y9Y1x7zzeLvQPO7eANib\nFQusoSI/B9lVrgYO3hTkJ0EX4C/NbOqMSzXw2kpDpaZ8U1rd49x9tqzxtMSscd5aKQ13+wSI\nhwULrFPVKoq8auGllMPdQ6faRcMEJk5HO9rE3e8EN8S8fboxvWg9d58taxCtN22cb6U2+JIQ\nIA4WLLDeoK6mbSI0LKOLuXvoVJNpnsjMaVuTWutP7o4ntGMVqsm6jHuRtSmnneTutVWZcSvC\ngPPpDu7+ANiZBQus2+km8zYRGk5zfcHdRYc6O1ne5ZCKDaXruTue0J6kS2WnvDtt5u61VTXN\nNHGct+FLQoB4WLDAOjdpq4nbiHCTaAZ3F53prxRT7tIRrV21k9/g7noiGyf/c8sHk5riIyxt\nFU291O8MaoPD3QBiZr0C6+ek5mZuIsLlZFY/yt1JR3qc+onNnI47qDUOFWFzsmb5XOkp70Yb\nufttTUfI3LuMdcHlRgFiZ70C62EabuomItyltJ27k450C80WnDkdF9Cd3H1PXC/Kvnq/15qU\nRvhkRcs31NnUgd5WJRWXQQGIlfUKrAF0v6mbiHArqAt3Jx2pfdJ2wZnTsbVimY+5O5+wrmcp\nq3vSKu6OW9LrpJg70LNdp//z/+zdeWDUZP7H8adQQAEFQcVz9eex6qqrq6vub3dd12v96e63\nlKOUG1FQBKSAByweFVFBEBFFBBQBD0QQOUQ8EA8WD0RWRbxR8UIQFUSQqzS/JJOZycxkppk2\nx7R9v/7oZJJMnuRJnuTTmcwzYW8UUF3lXMDa1nh/37+TdIJ6N+zNrIE21g3lFizDNerP3JMT\njt0HNfLtd60ymFL/QLpzdzDP8/f//0/1CXujgOoq5wLW0+pfHp8hUg1WPcLezBporiryfc+l\n87/qjrA3v5Z6WZ0Tyh5vrW4Je9Nz0SR1pccVPevgvLlhbxVQTeVcwOqpbvH4DJFq7n57bgh7\nO2uevmH0gmV5aC8+JAxHL1Uayh5/bK+9+JnvVMPUDV7X9Nh6zb4Ke7OA6inXAtbuFnvN9foM\nkao7Heh575j6HnZxmK1r1Ol8kzAEO5o3Cf47hKYe6vKwNz4HefhLOTGXqT/zjQKgMnItYC0J\n5BOHGXvuz52bHvtC/SGAPZfWX/k+eRjmBd/LqGXOQXW5kzJFKzXN+6r+s+of9nYB1VKuBawS\n79/idlKo7g17S2uaieqSIPZcOo82q/dW2FVQC7VSd4S1x69Xfw9763PPGXXmeV/TMw5Sj4W9\nYUB1lGMBa/chDQP5nGlqvd/sCHtba5iWanwQey6t0rzjtoZdB7XO9/UPDW+P/4H+7FIc2syP\nmh63R0P+ewGyl2MBa6k6y48TRKoL1YSwt7Vm2d54/2D2XFoXqd5hV0KtM0p1D2+H35d/8Oaw\nKyDH7K53lC9V/e+8g74Me9uA6ifHAlY/db0vJ4gUU+ofwl1YXnpeXRTMnkvriUP4PnnAyn+b\n/0iIe7xI9Qu7BnLMenW6P1XdTR27PuyNA6qd3ApYZQcF8wnhU8ZdWPy8ipf6qZsC2nNpja3X\njH+zA/WcOjPMHT77wDqvhV0FueVt9X8+1bWoE0lYQJZyK2AtDu53zaY33ntt2Jtbk/zPHiF2\n0mC5TJ3Bz3gHSdSIUHf4sLzjtoVdBznladXJp6qef4E6ju6wgOzkVsC6VN3s0/kh1WWqS9ib\nW4O8o/4c2J5L76+qZ9gVUZt8UufIkHf4BWpA2JWQUyaofn5V9XxRh7wX9vYB1UtOBaxfmzTz\n4UvGacw9PO/FsDe45ihVAwPbc+nNOlyNDbsmapErQt/pMw/Mey7sWsgl1/n5awqd85ouDnsD\ngWolpwLWY6rQv9NDipETmaftAAAgAElEQVR5R3Ofu1d+n/9YgLsurfub1OVG96Cs22PfkHpx\nj7sjvwWf9Md1Vff5WNkl+fUfDXsLgeokpwLWP9Q9Pp4eUlykBoe9xTXFx+qUIPdceiPr77kk\n7MqoLa5VPcPe3cavXp3J77jEnK1m+VnZQ/fMGxX2JgLVSC4FrC/r+NOJSzqP75u/IuxtriFu\nVVcGuuvSu75uE3ZqIDY0bvpE2Hv7qafm/0n1DbsmcsdRe/lb23ftowaWh72RQLWRSwHrBtXb\n39NDslJ1Ev/9euLE/OnB7rr0+ufty724Qbg2zE5G42Ycoh4IuypyRfke/+Nzbd9/kOrMb2AA\nLuVQwNp50B4zfT49JDuHXwj2xCr1x4D3XAZX5LX4IOwKqQXWNsqFN7B0ExrVfyXsysgR3/nV\nz2jcI0ep8zaFvZ1ANZFDAWt68H2BT29Wf2XYm10TDAn962R2PdQBJCzf9c2FO7BMQ+vu+1nY\ntZEbXlPie23POkWduCbsDQWqhxwKWKfnBf9rwdepU3eFvd3VX/lhe/h6b222LlEt+JTQZ6vr\n7/9k2Ps56jJ13Maw6yMnPKJ6+F/bc/+hWvBFEsCN3AlYL6rT/D85pPibujnsDa/+XlJ/D2HX\nZdAjr/mbYVdKDVeUS29aXqTO42ZK3bBgfsr10jr1RnKrO1Cx3AlYZ6vbgzg5JJnerN5bYW95\ntdfNz+4NK+WKvL3ogNJPr+YdMT/snRw391R1MVd8TeseUD83tzRR5/G7OUCFciZgLVYnBXJu\nSFaa99tfwt72au7nRvvl0MU24pr8eveHXS812O7T1K1h72K7mUeoIWHXSQ74u7/dYMVNO1nt\nfR+RFqhArgSs8j+qkcGcG5KJ6hD2xldz41XHcHZdJrc2Uv24vc4vD+TET0/aTGuh7gi7UsJ3\naNOg6nv+FXuqMz8Me3uBHJcrAWtKaGfsJ49WI8Pe+urtxDpTQtp3mdx3sPobv6Lijw37Npgc\n9v5NMnGfvHFhV0vYfsk7IbgKf/A01WAoXWIBmeRIwNrYov79wZ0bEk3Zp870sLe/OntF/Sms\nXZfRjNPUAS+EXTk1U2fVLey9m2Lc3nl3h10vIVuu/i/IGr+2qTr2+bC3GchlORKwLlMdgjw1\nJLpzj3qzw66AaqyVuiW8fZfJ/G516wzif2zvzVf/E/qvPKe6p4m6NeyaCdfDQfTSYPPYP/LU\nP14Pe6uB3JUbAWtx3iFhdqpzW4P8aWFXQbX1SR2/f56j8kbur076b9gVVOOsa5E/Nuw962R8\nM1WyO+zKCdMQdVPAVT76eKX+voC73QFnORGwNv2mzqiAzwyJRjTKGxF2JVRXl+ZSh0jJZpyr\n8gf/GnYV1Sxl56muYe9XZ5MPVoVbwq6eEBWq4O+MG/Z7pY67f1vYmw7kpJwIWO1VUeAnhkR3\nN1O9+M5ZZXxW/8C5Ie+8jG7cV/3P/LArqUYZpE7NuV45LNN/p05aHXb9hOfwvcLYMXf+ra7a\n9xq+UQikyoWANUkdFfotHZMPVf/3c9gVUR11USVh77vMZkodddHHYVdTzTFZtZge9j5N68nz\nVNPHw66hsPwYUleCT00ubKzU729YzkeFQKIcCFjL92g0KZwTg92Mk9Txn4RdFdXPijqHzgt7\n11Vk7HGq/sCfwq6pGmJOfqN7w96hmfSprzqsD7uSwvGCahVWrT8x8JR8pQ7pz69iAHbhB6y1\nh+QF8gNaFZlzkdqb7hqytPvPgd9XWwnzr95X7TOiNt+d45k59RuMCHt3ZnbvkWqfu2rld0dH\nqGtCrPcZ15y5p1LHj/gy7GoAckfoAevnP6hOIZ4W7EoaqKJ1YddH9XKvOiPsvebKE10aqn1v\nYudW1YP5DXLtZydTzO2+hzp80vawqyp4/wzhHvcEs/99Rr7KO33YG9zOCpjCDlhbzlLn5Mwt\ns/f9Vu0zrizkGqlOPmrUKBc7cXcyvV0jVb/4WfZuFez+t2o0POwd6cJDF+Wrg27fFHZ1Bays\nyf5hV/xTTz1y+fF5SjU+/6aXamHCBZKFHLA2nqnOCP0G97h5l+6pTnw23CqpRracmMtdNCSb\n0eMgpQ4seZVbcStp/T/U/uPC3ovuTJEGaq+BtevTqrfU2WFXu+mRq847UCnV8J+Tvgu7SoCQ\nhRuwPvmd+lMO5SvdtLPz1FmLQq2UamNXgbog7P2VlfnDz2uk1MG9ntoadtVVR3NbqJMfDXsX\nuja9U1OV3/6NsCstQKU59N/OtEEX6SGrzmlDFn4bdrUAIQo1YD3cRF2Uc50o3XmyUifcVUu/\niJSNXR3VCWH2v18ps4ecpWesBucMX8aHhVn5ukjld8mZD/PdmN3nEKVOve/HsGsuKCfnPxZ2\nlSeYcPFxdZRSTU8tunbi4q/Crh0gDCEGrE8uUg2uDPss4GTU/9ZRdf/xAF/sz+jnf6qjZoS9\nqypjzrDC3+gn/iZyx5vcjOvSxusbqaNy8vdxMplfemqeqn/h+M/Drr4gvKdODru+Uzx2fdFp\nB+YrQ+PTLh27hJ4GUcuEFrC+uLyeOn5C2GeANKZdcoTSz8z3rw2rdnLf8mPU76tlvjJNHXDu\nfvpZv9HZ1839OuyazH2fX9NENemd8/2dOZnc2QjTR1w8+cOafuvdFWpQ2JXtbO4Dt17Z9n8P\nrqvvh7z/uaDXzRPnvrqaz+hRO4QTsMqea5uvWlydy584TOikn5nzTugz7b2doVRRblt/ZX6e\n5Nbdc1m7v/+5Bxv/W+933sAHXqs1HyRl7bNxZ9VRe3eZGfbuqrQJPf64h/FR1fn/nvlRzX3L\ncs0ezXO7PT55V4mcsJeyNPqfP/6j3WXXDr9v5kur1tf07IvaK4SAtXFerwOV+k2/nLv7Ktl9\n3U6sp58L6h/fdsjUpbyZFbfiikaqRTXoYLRij97Y4bTm5hl/n1NalYx6+IVV34dduTmkbNXk\ni4/Q6+bYK58Ie0dVzdw7e5y5v7GX6/9OSsbMfnNtjbuk775Q9Qu7lt2YftcNJV1bnnXCoU3q\nqpj8A0++sOvAW+6dOvP5V9/7mg6BUXNUFLCWLvLOkw+MuKrT3w7NU2qPP1w6rFoo7XHhydZN\nBA0OO+0fHXpdc/Md4x+a42Gl+OjVzLu2vDLLfG7KkAI9Hu91YWnYu8Y7Qy6RPx3dLHrCz29+\nxB/+dlHbzj1KBt10+/jJD82es8DrHeOBtzPv2y1VXPwTE4de/s/f7WlEkt/+86qwd5A3Bnc5\n/8QD61k7ef/f/e+F7S8beOMovTU/78ke8U4Fv9i13uElC/6hjrg57ArO0vVX9bm0U+sL/3bK\nMQfb05a+c5oceMTRJ59y5tn/bN2+xxX9+19/w023jxw/4aGHHp+jezrw/eGlbyq43qKGqShg\nHaFQXR2TedfuDHv9UHmSed+uCnv9UHlXZ963s8NeP1TepAqut6hhKg5Ye+uCOvzq6mU1Dqqw\nenphewZVWAO9sAZBFbanXli9kANWY30d6vi4/Dy/j0vjWGzkZwFVOv7cBax8v7chxvfaiqkT\n2DkiuJKMgzl2e5L7gLWH/rL6gaygoZFeWt2KZ/OI0bzzgiosuKOXgFXLVBiw8k7VBXWkN9TL\nOj6gslQzvbAjgyrsYL2wg4Iq7Ei9sGYhB6wT9HXwM77WMY5LH5fv/7HYXC+g0m8QuwtYe+lF\nHOvV+mbUSC/pd4GUtKde0gmBlFRfL+mkQErK10v6Q+yZ64B1qP6yAwJZQcOxeml7VTybR4zm\n7ec/aAmCO3oJWLVMRQGr4FRUV60z79pdYa8fKq9/5n37Wdjrh8obk3nfvhj2+qHy5lRwvUUN\nU+G3CHcah0VQvV5/dGqFscA7T+uFXRNUYeP0wu4LqrCBemFh/6Ki6OvwmY/L32Yclz4uX3tf\nX36RnwUs0Au41s8CNO1NvYiL/S3CskovqV0gJRnZsYL37zyyVi/pvEBK2qiX9JfsX3a7/rJp\n3q9NGl310t4KrLQ/6qX9GlRhvrd11FYErGAQsDxGwHKBgFUVBKwEBCwgWwSsYBCwPEbAcoGA\nVRUErAQELCBbBKxgELA8RsBygYBVFQSsBAQsIFsErGAQsDxGwHKBgFUVBKwEBCwgWwSsYBCw\nPEbAcoGAVRUErAQELCBbBKxgELA8RsBygYBVFQSsBAQsIFsErGAQsDxGwHKBgFUVBKwEBCwg\nWxUGrPJvdEH9+PwOvax1AZWlbdUL+zGown7WC/s5qMJ+0AvbGlRhaXynr8NOH5dvHpc+Lt88\nFtf7WUAAx992v7chxvfaitmpl/RdICWV6SWtDaSk3XpJ32b/so36yzZ7vzZprNdL2x5YaUFe\ndgI8elHLVBiwAAAAkB0CFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeqyBg\nfTOpX4dWXYc+F1RPo5q2vp3IEv+LKV8++rKiVp0Hz/jJz1Le7ymy1D5i9fg+xYUdr3nYj86+\nUgrTPhp3edsOfces8qGwSqyNl/ysR0P5ayN7ttUPj0f87R3H64M9U3P1timn3QFvi82AqhZT\nwdK826Y3JUHPbNYiCymtogp7LNBzc0ANIibIU9eqe3q1a9Nj5PIgykItkzlgzSq0zipXBNX9\nZ/n1EkTA2nBt9HzZZr5vheyaUiAJ59Md90RLbTXH98K0XeMLrNLGB9ZjX/q18ZKf9Wha2z9a\nQOEsXwqI8Ppgz9RcPW3KGXbAUk8DVualebhNGQOWV9uU2iqqsMcCPTcH1CCigjx1bR0W3bRb\nt/ldFmqdjAFrrn7U3TBrwYOXiHQPqMfgheLtNcfZ1stE+i5Y+eFr4/Sz1AKfCvm8r379sZ9P\ny4fq2zZ4yuxxXfXH53wuTCu/Q6Ro7PxZQ/Vz1XRvC6vE2njJz3o0beisB++Rj865Xz9MxJ8I\nZ/L4YM/UXD1typl2wLMiQ6dHVfn3mjIuzctt+mZ63CSR69yvhXupraIKeyzQc3NQDcIS5Klr\n51V6aLx9zvw724iUBv6PKGq6TAHruzZSuMwY2K6H/LsDWZ31RXJxAAFrmt6YIu+sryiQIn/O\nT0+1ktZzx9jPp/p5uo35Y17bxop03OFvYdoikZINxsCKNtLK1w9C3ayNl3ysx4hbRK42a2y3\nfq0t8u1Hhzw+2DM1V2+bcqYdMFtkcVWX725pvp2e7pHCNa7Xwr3UVlGFPRbsuTmgBhEV5Klr\nhkjXL4yBry/x57811GqZAtaE2P8P2zpLyyCu0eXXSedZAQSsniIfW4ODRF72pYwB0vtzLeF8\neoXIwshQmd6YPf3d1NTCdnSTYuuX7h678f6vvCysEmvjKR/r0fRTgbSxfjdyt36kLPO8gAiv\nD/ZMzdXbppxpBzwk8kYVF+9yaX6dnlYWyCPu18K91FZRhT0W6Lk5oAYRFeSpa3cnkRWRwU8L\npDtvYcFbGQJWWSdp9Ys1/IjIkwGszdP6v4oLAghYLUWin7ffKzLDlzIGjNf/tbefTzcVSOto\nqeNE5vlamPaayKNellC1tfGSn/Vo+mr00Aeiw3fFsoTnPD7YMzVXb5tyxh0wXuS9qi3e5dL8\nOj3t6CU9k94V9WabUlpFFfZYsOfmgBpEVJCnro9FekWHh4p8GFS5qCUyBKwPRQZHh98XGeL/\nyqwrklItiIDVTiT6Pve9ft1U8LnxJyFllG2I/Tc2WeQJfwsbJfKNlyVUbW085WM9phjl29Ho\n9cGeqbl63JQz7QC9wj6v4uLdLc2v09NDsbc03KxFFlJaRRX2WPDn5ij/GoS9iMBOXS+JjIkO\nzw/+ZlXUdBkCln7yfzA6vKNAin1fl/IhUrwhkICl/6/yrjU4OP5poQ/SpYzbRF71t7BLpav+\n95fPPvjO83IqsTZ+8aUebX7pKIX+fP7i+cGeqbn615RTdsBNIh5+kz/D0nzapq8K5dYs1iJb\n9lZRhT0W+Lk5yr8GERfkqUuvyEnR4RUiI/wvEbVKhoA12f4Fuy4ivn9XZYF5l2EQAesDkQGR\nt7DeLJDrfSwoTcrY3EbaeX+rqL2wbQX6v7Wrrje+7dx9xnbPi8pybfziTz3GrRko8pA/i/b8\nYM/UXH1ryqk74Bp96S/d3LWwfb8HPbg+ZliaT9s0VAq/zWItsmVvFVXYY4Gfmy0+NoiYQE9d\ni23vYL0j0s/n4lDbZAhYo+1XyCtF/L5Rel2R3KAFE7C0J0UueeK/q5aOaSl9fvCxnDQp4w5f\n3oy2F/aF/t/YwpZWBy8lG70vLKu18Ys/9WhaP3nS6L4ibWb6s3jvD/ZMzdW3ppy6A64Q6R3t\nMmlGle8ZzrA0f7ZppcjEbNYiW/ZWUYU9FvS5WfO9QcQFeur6UKRPdFhvjJf6WxpqnQwB61aR\nN2NPrhL5xN81KR8i7Yw34gMJWNryIZEG3P2hLX4W45wyZohcvcvfwt4XubKw+6K1Ozcs6Czy\n7xC+HRNAwPKpHk3vG0dH8eSf/Vm6Dwd7pubqV1N22AFG11jtR8+aN6G7PvBwVQvIsDR/tmmQ\ntE79BMzDbbK3iirssYDPzQZ/G0RiQcGdunYVi1jdxZf1Eenoa2GofTIErJtF/ht7Mtj3b1g8\nZX09JZCAtXVK10jAKrjK18IcU8bDIr38OE/ZC3vL6I56kzm4tr3Iaz4Ul8Xa+MOvejS9Hzk+\nei3yZek+HOyZmqtPTdlpB7QRuc/80HDXJL36Pq1iCRmW5ss26Xt9XFZrkS17q6jCHgv43Gzw\nt0HYBHvqelCkh9kV/rYRBQUELHjM7TtYA/3+L+m7Ihli/rMSRMD64XKRMR/8umvD4t4i430s\nyCFlbB8h0nuD34Utl3jfPXNEhvlRnvu18YN/9WjZ/dOHD+v/397lw6L9ONgzNVdfmrLzDti6\nJXZP1jCRkVUsI8PSfNkmvZCvs1qLbKV9Byu7PRbsudniY4OwC/bUtbWHSNHEF1+Z0k0mFPIR\nITyWIWDdab9C9vX5q7Plg6Uo8ptaQQSsIbF7RLdf7WtxqSnj+xKRQb84z+1hYatECqO/ArtB\npIMvBbpeGx/4WI/2Ui71tGNyiy8He6bm6kdTrngHfCJS7N0HPMlL82ObfmopV2e3Ftmyt4oq\n7LFAz812/jSIBAGfutb3sW73GrtZpK/PhaG2yRCwpog8FXvSUcTXm5Xmx/qvCyBgfWz7ushK\nkav8KyklZbzfWf8XcKf/ha0R6RKb0FbEpyJdro33/KxHu2Ue/GJxCl8O9kzN1Yem7GIHlLcW\n8e4j3OSl+XF6mlVhL5pV3SZ7q6jCHgv03JzAlwaRIOhTV9nCIR1b9xz9nvZVKO/0o0bLELCe\nFYn137tVpJOfq7GhrVy2NOJukfuXLvWws8JUs0WmRId/FSkoyzBv1SSnjNdbSYFvP5ZqL2xn\nSymKTegY77g+OL4GLF/r0W67D4eHPwd7pubqfVN2tQM6iHj4GW7S0vw4PZWI/JjdWmTL3iqq\nsMeCPDcn8qNBJArt1LVUkn8jCaiiDAFrtcTfL18hMtTP1bDuoIybVPFrKm+a7edxdrf0sxeZ\npJTxeqG09fCX2jIV1jveOaJ+xmrtW6Hu1sZj/tbjO7Mnvx8dLi/w/gzvz8Geqbl63pRd7YAd\net1591PcyUvz4fT0g0jvLNciW/ZWUYU9FuS52f8GkSSsU5f+387ywApD7ZAhYJVfEv8V0fE+\n/9J4sAFrtsg90eH1Ii39+yZwYsr4qI0UfeBbWYmFTYn/SNx7vn4K6mptvOVzPU6yHR7firT1\nevn+HOyZmqvXTTn9DnhjXOmL0eEVtj6GKifT0nw4PS0SmZDlWmTL3iqqsMeCPDf73yCSBHzq\n2mQ9/tpR2vvV6QtqqwwBy/hVrsmRoR/aSls/e8y2C+AerJUi3aJN6UWp6L7WqkhIGVsvlVbv\nZpjZ08I+E7n418jgrSKP+Vism7XxlN/1qF9Ei6P/Qk8TudHHorw82DM1V2+bcoYd8LzIFdY7\nPOWDq9zrd8aleX96Gu98C5aX25TQKqqwxwI9NwfYIAyBnrpuLSqweuef6vO/9aiNMgWsTe2l\n4BVjYPM1AV6iAwhYZZeLjI+8bbX+Yl///0s4n473+WfvEyPNCP1MaJ54nxApCqErd/8Clt/1\nWN5XZGDkXpxFLf39LqSXB7tTc508YcL6dNMqz2kHWCVt7yxym/ndwh13i7TblPLarDguzZ9t\nMlwr8p79uQ/blNAqqrDHAj03B9ggTEGeuh4VGWz+Hs8zBVLsfy+qqGUyBSztxQKR6x6ff59+\nghkY2JunQXTTsLJQZMBTKz96c0p7fQt9uWfz/emGfiIjjEfjerS+UAoemh4z39fCNO2nS0W6\nTXl25lUi8oKHZVVubTzkYz1aPm0r0mbEY09O1i8scov3y4/z9GB3aK5FIh+lm1ZpjjsgWtIy\n/QrcYfzcefd1FSmocieRTkvzZZtMnZN+1NnTbXJqFVXYY4Gem4NrEKYgT11buotcPGXhLD2n\ntlzmc1mofTIGLO35NtZdItcF9z3gQHpyf6db7AaYO371pYRZCXfZGN87Xpp4401PXwvTre1v\nPW/7vIdFVXZtvONjPUZ9clls8Xd7d5u2A28P9tTmGrtce9mUHXdArKTXO0YndPbglmGHpfmy\nTaZWSd938XSbHFtFFfZYoOfmwBpERJCnrjXdrbI6hvBzF6jpMgcs7fspJe1bdx/xejArYwrm\ntwh3PH/bpUWFHftP/MynAsIPWFrZ4pu6t+rQ/6GKvnnuteofsLSyl0b0aFfYceADa/xYepzH\nB3tKc41frj1sypkDlrZl3o1dW7fpPvTp7VUvymlpvmyTYYe+MQlvBnm6Tc6togp7LNBzc1AN\nIlpcgKeubU9e26Flp6tmVfHjbMBBBQELAAAA2SJgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4j\nYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAA\neIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAF\nAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAx\nAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAA\ngMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhY\nAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAe\nI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEA\nAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyA\nBQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADg\nMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYA\nAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAaghuinddZHh74xhtc15xowT\nAcALBCwAPtn+ztx7Rw4bff+sd3cEUh4BC0DuIGAB8MOnt/65gYrKP+mGFf4XScACkDsIWAC8\n98r/qWRnLPC7UAIWgNxBwALgtbVFKfHKcO63/hZrD1jr6hq2x6aNLi19JvYkeSIAeI6ABcBj\nL7ZwzFdKNXvB13LtASvJ5jylSnwtHAASELAAeOuJelae+v3geR9s2PLdh3MGHW+N2XORnwVn\nCFgvKQIWgEARsAB46rm6kTD11zdsI18/z0pY7/lYcoaANYqABSBYBCwAXvq8qZmk9n40afyj\nDSPvavl451OGgNWegAUgWAQsAF46x8xRzZenTHhrb3PKzf4VnSFgHUXAAhAsAhYAD80wU1Qj\np08CF9UxJu2z2bey0wesTXkELADBImAB8M7u48yANc5xYl9jUtNnE0d+vfDhMbdNmLVka/qF\nfrdg3K2jHnj2Z4dJG5+dMuL2SS//Yj5JH7AWKxcBq2pr8vXCB8YMGzl+7kdlFRQDoHYgYAHw\nzjNmvjqr3HHij4326jw/4VdzVvc7NtqFQ/2/j7Ynm/Xmcoyh2X/Ni8xR56yFSQt87iLrC4sN\nWr6mpeto9OvEriIWaY4djVZtTZZdsX+sgKYdnndRUQBqOgIWAO9EehhdnGbq24mdp2/olZ+Q\nfQ64Nx7MfjFGnKLPc4F9jm72ePZzV9uUvD67tIsrHbCqtibr2iUWof68ulKVB6AmIWAB8MyO\nxka++K3zG1jJPj9aJese+3ytzFyQtuF3iTN0ib98+1mJkwp3X1rZgFW1NfniyJRXN3m9khUI\noMYgYAHwzItmvBjpat7PDjBnzv/z4LsfvOOKYyLJpF1ssnFH/CG7z9X/Nrrg0iu7nmL1rvVU\nbIaOkRG/H3TPA8M77qsPlV7hGLDWn3TSScZkte9Jhje0lIBVtTUpO8V8Wu/MXqUjBnX/a33z\n2QHfVboOAdQMBCwAnhlupovULhoc7D7TnLfNZ9bzp48ynz8cnd7AiETjlNp/UiQIrRFz+vnR\n6a9Egox1M9SOUQ1V/QscA5ahxHgSv8k9cWIV12SC8STv6h+tpz/eYEas3m7qAEANRsAC4Jli\nI1s02Olm1rFmShkQH/Gd+dZR8x+sp3saS2qqjo/9QHTZ34zpddZbT88wnjVaGXv54j0jbyxl\nH7CquCbmk2G2LXvOuJ+r/iY3lQCg5iJgAfDMH42w8Sc3c5YdYsz6F/vdWsvM7+iNtp41MmPP\nPt/Gp79ujrHesnpX2Wc23F7JgFXFNSkzPjHcY4t92wYaU2e6qQUANRcBC4BnDjSiRZGbOZ8y\nM8qKhHHm+1+/t10p2a4AACAASURBVJ5EYs1E+/SDjTEjIsM3GcPN7Llmx2GVC1hVXJO1xuBR\nCa/+uOuND764oYIKAFDDEbAAeMa8/egyN3OaPRucnDhunplkVkWemLGmeUK/DhfaPsoz7yzv\nkvDyaysXsKq4Jl8Zg03dbDKAWoWABcAr5WYuudbNrObncsMTx20zfw/6vsgTM9Z0TZje2xjV\nwxwsM6PcQwmTX69cwKrimuwyv1T4pJttBlCbELAAeGWnGVxKXcxpdo+u/pM09s+2N8DMWDM+\nYfI1xqgO5uBH5uvfTZi8o35lAlZV10Q73RjeO7mTeQC1HQELgGfqJAaZ9J41Y82PSWPN37o5\nOzJsxprnEibfaIwqNgfnmK9P+k3AYyoTsKq6JtpUcwHqogU7NACIIWAB8IyZRbpUPJ82xZix\nYfLY642xx9gWtSxhcmk81pidT+2d9PJzKxOwqromWvm/IglL7d3yrv/urnDLAdQSBCwAnjF/\nNOafLma8y5jx0OSxo42xzSPDZqx5L2GyLdbcYQwelPTytpUJWFVdE03bfKGK2aft/Xx9EICB\ngAXAM+bPAx7mYsahtneI4sbb3k3KHGtuMgaPTHp5p8oErKquiW73qL3jEUvl/2OWu99iBFCj\nEbAAeKaXGTG+qXhGs0uF3yWPnWSMrRcZzhxrzNcfl/TyLpUJWFVdE9MPtx9ri1jq5OczbjyA\n2oCABcAz95n54vGKZxxizPfb5LH3GmMbRYYzx5obnN7Bal+ZgFXVNYn6ZMx59WMJK+/G9JsO\noHYgYAHwzPtmvGhf8Yy3GPMdkjx2lDF2v8hw5lgzwhg8OOnlF1YmYFV1TWy2Pj3ghGjEujPN\nhgOoLQhYALxj/oZMve/STZ73kzVgfgS3R/LkwcbY4yPDmWPNOGMw+VuEf6xMwKrqmiT5YsSh\n5sIbfOE0FUDtQcAC4B0zyaib0kz9KH/vGzeZQ5Hep9YnTe9ojLwgMpw51kw3X7858eX7ViZg\nVXVNUmy/ylziQOepAGoLAhYA77xthou9vnScWH6+Pq2p+eHZl+Z8i5NmONkYaf3YYOZYs8J8\n/aqEyebPLmcdsKq6Jg4uN6amfDERQO1CwALgofPMvHKe47Q7zWm3mcMHGIOlidM35Rsjp0ee\nZI41W/KM4cTfInyoUgGrqmviwPz957r01QDUbgQsAB56NS/th4TPmKnlkF/NJ12N4WMTZzA7\nVc9bG3lSQaw5whi+JGFym8oFrKquiaat+SVpS82fiv7VoQoA1B4ELABe6m6GF/XvlAnPmUEl\n75nIs5fNuV5NmOPvxqgzrScVxJrexnCzLbapaxpUELCujM2aMLFqa/L5Nec2U/ckbuku4ycZ\n90qpAAC1CgELgJc2HRVJWMWJXyXcPcZ8/yr+NtLvjGen2z9Hi/yA86PWswoC1iJz5tG2qcUq\nfcAaYDyJ/0Zi4sQqrclaI0wduiVh6vPG1JOTKwZA7ULAAuCplU0iSWevUfFPzsoX/TEy8qKd\n0VGRO6Zs37X7wLwZ6rhd1tMKAtYuszeEPZbHJt6sVN20AetGc9GxeRMnVm1NzDe7/mn/PHDL\nScaoYWkrCECtQMAC4K03or/M17h4wtI1P3y9cvZVR1tjztkWn63AHNPB+l2dsqlmJwt1l0Qn\nV3Tn05RIinsgktg+bKkX1yttwLrffDbJGNydMrFqa/If88XHzowmx/JnzXfEGn+dXaUBqGkI\nWAA89n40TyW7YodtrnWHmOP2uGDoxPtHdDZ7KFV5d8cmVxSwdp8eWeY+hb37tT/GGBp9q/F3\ncGRyYoZaFZn3d60v+v2ZKROruCa9rDR57hU33HpTScv9I08nVKUCAdQABCwAXtvcp45DvDpo\nRuJcnx6ZPEf9R+JTK/zu3vqjEl9cVH638WB91JeUoU6LzXZG6sSqrUlZkcO2Dq9MtQGoSQhY\nALz3TuvkiNX8xi3JM23snpcwy19et02suPepL8+2v7jXLm2q8XhFZGJShlreIFPAquKa3L23\nSnTcs9nUFYAaiYAFwA9fjThzj1ji2L/VzB1OM73f77fRWfYtWpgwyU33ng/91Ypx9f9l3DH1\njDFofVcwOUP951irnJYOE6u6Jj+P/mt+bFv3avvkLg1ArUfAAuCT7e/OuXfkzWOmzP88w0xf\nLZgyavikJ9+uXMfn6xdMHj58wovJPX062P3avcNuu++ZH3xak1/emjnu9pvvmPTkp/TgDsBA\nwAIAAPAYAQsAAMBjBCwAAACPEbAAAAA8RsACAADwGAELAADAYwQsAAAAjxGwAAAAPEbAAgAA\n8BgBCwAAwGMELAAAAI8RsAAAADxGwAIAAPAYAQsAAMBjBCwAAACPEbAAAAA8RsACAADwGAEL\nAADAYwQsAAAAjxGwAAAAPEbAAgAA8BgBCwAAwGMELAAAAI8RsAAAADxGwAIAAPAYAQsAAMBj\nBCwAAACPEbAAAAA8RsACAADwGAELAADAYwQsAAAAjxGwAAAAPEbAgnvbi3RhrwQAALmPgAX3\ntipd2CsBAEDu43IJ9whYAAC4wuUS7hGwAABwhcsl3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCA\nK1wu4R4BCwAAV7hcwj0CFgAArnC5hHsELAAAXOFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA\n4AqXS7hHwAIAwBUul3CPgAUAgCtcLuEeAQsAAFe4XMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgA\nALjC5RLuEbAAAHCFyyXcI2ABAOAKl0u4R8ACAMAVLpdwzwxYTwEAghP2mR+VRMCCewQsAAha\n2Gd+VBIBC+4RsAAgaGGf+VFJBKxq4t8ia5ynXCvydXyG9PN5gIAFAEHz7ZQOfxGwqgkCFgDU\nSonn4f9ccnTDfU7s/kbKCbpsVrsj9qzf4qybv7ZGvPKv5vUO67suPsfDqu5bvl0fkIKAlUvu\nlVnpJqUPTnf167deI2ABQM1kPwtv76Esg5LOzx+eGJ3SYIw54vG66pxuR6nDN0Tn+L65uta3\nywNSEbBySUllAlbiDAQsAKhRbCfh3W2U2rvH2NvOz1PqroTT85rmSjXsVDq63+H6aXqSPuKX\nfdTtmrbzL+rS6CzF6uhtvl0ekIqAlUO2FxKwAAAJbCfh8Uqd/q0xMLuuarzZfnr+p1Jnfm8M\n7OyhVPOdmjZVNd2hP52jGm6NzDFP5b3i29UBDghYOWSVELAAAAls5+D9VfP1kcGrL7zKfq7/\nNk81+ikyuOMgpZZqWk91gfFsnVKvmqM3HaR6+3ZxgJMaGLB2v3xbz6KWxf0mrI6N+mLilcWt\nug2eHcn7pSLPxiZdL/KSwzyaNkgKyrdN6txqhuNUB3q02a2tKO3epufdxj8Yq4b3aNVp6Mo0\n62DN/vnY7oVFfadsMkZMl4hS48n2hUO7ty3sNGjGpvjs2dzknrJ0561IqSuHyrMhYAFA0OLn\n4BlK3ep8IXi/80VXR4fbKjVT0861Phusr6aajz3UoRkuYPBBzQtYP5ZI1AORMbvGR0d0XGo8\nf0nkhujcm1pK0TaHeczktX2I/nyy41QHem77dZo11xrt8chQwX+c18GcfdvClpFxFxv/ktgD\n1qfdY7NbES3LgJWydMd1SKmr1MpLQMACgKDFz8FFSn2e9hoUI0ot0rTT1JXms6bqbuPhxTy1\nsOKXwks1L2ANEhnw1IqVS8YXiUSOy5EiXR9fsXrZ2JbScpn+fFuRFEaD/NMiY5zm0bSbRF6Q\n1oOun+M41cFQkaflukXL5l2ih6TXZODCZc/qcaVzmeM6mLMvlp6zXl86rZ2I8T/J5rUPijy4\ndu1PeuzrZGzE8pWL+ou0+8GcPcuAlbJ0x3VIqavUyktAwAKAoMXPwYeqQ/S/P/53aaaYta6x\navyLpp1ufSK4l7rHOHsfqbpkeA38UOMC1hciJTvNoa/aSddyzXzDql8kTy1vKd2Mt6vuEHnO\nmn2wyDuO82jDRK4aEPlI22GqA/0FxdOMgXWtpaDzKKPobd0ji0+z/OJh5pq+J9JyizEwK3oP\n1nSRweak8hF65jJHZRmwHJaeug4pdZVaeYkIWAAQtNgp+GelztNePDtPPxH/ZuT2NJeiFb9X\napT+eL7qZDzdWUc9rD8MUC1+1D4ZeNYZHealeR08V+MC1hKRh6zBRY8uMr5D0VsKvrLGjBV5\nQX9YLnJjZMSPBXJxueM82i0irazP1hymOtBfcPluc6hUpMjMNNpkkTlplqDP3sn6bkdfkfeM\nx1jAml1aYr1R9qEeecyBLAOWw9JT1yGlrlIrL+K/t0YMPew3BCwACFTsVPyOUh3G1rF6u/rf\njSlXg0+uKul0rFKNxhpP+qjTjYf3lVquacvqqFnaMw3MF3Kre1BqXMBaJjIsYcQ3IrGu1VaK\n3KY/lHWOfkY4T2SK8zxGRBmedglO9BdMjwxNEhkZGXpOZFr65d9vjRolYt4UNSv1W4RbRCJv\n62YfsJKW7rAOKXWVMsIy+9SoUwhYABCo2Kl4iVIn1T186urta+7cR6mClFP1IiM/NRkUSV4z\nVb7xHsEo1WyHtuME1Ur7eX/V8qutE/LUfOdrCbxW4wLW5jYio7+wjVgkMj46/KvIZcbjBJFF\n5oirRb5MM48eUeanX4ID/QXW206PxILSkkjOSbN86wZ4bbzIYuMxKWCVbd2yZaNIsfkk+4CV\ntHSHdUipq5QRFgIWAIQldip+Ws9Px/5oDq5qpNRLyafqRZH3to4z/9ffcYhqvVV7t7nR5Xup\n2metNlE1/lkf30Gd63wtgddqXMDSFhWISK/x//nZej5DErQyxn1odYaw3voAzmkePaIsSb8E\nB/oL3o8MTRd5JjK0VGRS+uVH+3CYYH1qaAtYK8f26VgQmbuyAStp6U7rkFxXqSMiCFgAEJbY\nqdgIWNbFRc9Mqnvq9WDX2qWDGis10DyfN1AND89TJ23R3quvHtS0NpH3vB5T+elu34K3al7A\n0t69JtJBwpAl5l3akxODhewyRvaUwl/0h9ki89LNo0eUdyMLdFxCKv0FH0WGpsduorcCVprl\nW3ksNWBtu802c2UDVtLSHbciqa4cRpg+nx3x2L77ErAAIFCxU/ErSu1RZg2/p9TRzteEj1so\ntcAYeKuwef2jBm3Syk5X5+tPj438fOHbSv3X+YXwWA0MWPrh9fAA892fa4wuNh8UGbPSxrwP\n/ZFI6OgvhWYvnE7zxCOK4xJSZQhYmZefGrBuF2n32OqNekPa4VnASrMVCXXlOMKGbxECQNBi\np+CVSh0cHd6pVGPna4I2TUU6cY+6QzU2Lgv7mV8u1L42e8lCAGpkwNJtXjqqUGSIZn40Njll\n8jciQzVtrfk3zTzxiOK4hFQZAlbm5acErDUiba00tc2zgJV+K+J1lW5EFAELAIIWOwVvq6Oa\nxJ7UVQ2cT+nat0o1tT1d3TDS1aj1sF6pOWleCG/V1ICl+7KLyCpNe9nxm3EDpHCL0dt65DYr\np3niEcV5CSkyBKzMy08JWHNExlqT1ngWsDJuhVVXGUaYCFgAELT4Ofi3Sn1tDW6wvZulWzRy\n4GvR4Y3Knr3Kz1Z/MT+xaKbuMB6+VupZDUGowQHLeM9mgfk2VfvUu6bmGtmqnxRH+npymice\nUZyXkCJDwMq8/JSANVnkyfg2eBSwMm9FpK4yjTAQsAAgaPFz8AClxlmDc5X6p+3s3FepXtHh\nN5X6TXzKRNUgcmk6Ul1nPLxjdoyFANS0gFU+7cZR0eE5Is/rDyXx33ZeedkkK6X8VCBjvhO5\n25rgMI8tojguIUWGgFXB8m0By/xp6YcivWfpfuwoUmQOVTlgpa5DSl05VF4iAhYABC1+Dn5L\nqcOsLqTPU+pe29l5gVJNo11J91KqY2zCN02U1XmjKPNqMkPV3ep8MYHHalrAMn77ZnFkaHs/\nEeN4e0mk+FNzzLqeIqut+a6XznOtLs6d57FFFOclJMsUsDIvPxqBFlo/jLhEpLf5TZENV5Z0\nEjG+7+hBwEpdh5S6Sq28RAQsAAia7STcSql/GZeE8huUam5eG/r36fON/lB2nFJ/WmeMKL8r\nT6nFsVeI+oP12cVdqrnRP0MX9Tfnawm8VuMC1qqWIjc+vWzla49cKjLCHDVCpPWENz94dVI7\nkei7q9oLIpfIpbG+CFLnsUUU5yUkyxSwMi8/GoHeEWn18OKZ5ds6ilz31pfvTmnX+otBIveu\n2eBFwEpdh5S6cqi8BAQsAAia7ST8zaFKHfrvicP+oFRe5E6SBkq9bTwu21OphsXDRvY/Rj9N\nd4u9YLrKf9sa/KGJGrBbez5fzUx3FYO3alzA0pYUxbp6Gh7pTa1snNVlpxRMinWxsLWN/vzh\n2KtS57EHLMclJMsYsDIuPxqBdvc25yjTlrWyusB6T1tgPE71JGClrkNKXaVWXgICFgAEzX4W\n/vgk66cI95oRGRENWNobR1hTVF6/ndHZN+yn4l8If7SOOkCPXx3SXcTgsZoXsLSNs667uHXL\n9v3ujeUj7bOJfdsXtu9/vz2ijNBDxDe258nz2AOW8xKSZAxYGZcfi0Df39a59cWl5frMo7oV\ntu03Y5OeiqZ1b335Ek8ClsNWpNSVQ+XZELAAIGgJp+Gdk/9xcP1mp9243noeC1jazqltDm+c\n3/xP13wUn7ujOtb2v/KL5zfZ4+R7yjQEowYGLPiGgAUAQQv7zI9KImDBPQIWAAQt7DM/KomA\nBfcIWAAQtLDP/KgkAhbcI2ABQNDCPvOjkghYlbB1Q4qfanK58RUwAlagJQIAUC1xuayE6ZKi\nS00uN4aABQCAK1wuK4GABQAAMuFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hHwAIA\nwBUul3CPgAUAgCtcLuEeAQsAAFe4XMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgAALjC5RLuEbAA\nAHCFyyXcI2ABAOAKl0u4R8ACAMAVLpdwj4AFAIArXC7hHgELAABXuFzCPQIWAACucLmEewQs\nAABc4XIJ9whYAAC4wuUS7hGwAABwhcsl3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCAK1wu4R4B\nCwAAV7hcwj0CFgAArnC5hHsELAAAXOFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hH\nwAIAwBUul3DPDFhPATCF3SAB5DICFtwjYAE2YTdIALmMgAX3CFiATdgNEkAuI2BVW9eKfB3k\n6zQCFpCgku0IQK1AwKq2CFhAuOyNo2xWuyP2rN/irJuTW9czyuZcc9Qr/2pe77C+6+LzPKzq\nvlXJRgkgVxGwqq27+vVbH+TrNAIWkMDWNj48MZqhGoxJbDWPpQSsx+uqc7odpQ7fEJ3l++bq\n2kq2SQA5i4AF9whYgE28aaxprlTDTqWj+x2uN5FJCa3mPqUKSqOm6SN+2Ufdrmk7/6Iujc5S\nrI7eFlQjBhAUAhbcI2ABNvGm8U+lzvzeGNjZQ6nmO+2tZrhSMxKa0VTVdIf+MEc13BoZMU/l\nveJvywUQAgIW3CNgATaxlvFtnmr0U2Rwx0FKLbW3mkFKPZvQjHqqC4yHdUq9aj7fdJDq7Wu7\nBRAKAlZO+7fIbm1Fafc2Pe/+Vn+6aniPVp2GroxMi92s/v3kK4qKS2Zv1WaJvGSMGCQF5dsm\ndW5l/t+8feHQ7m0LOw2asUlLeJ256M/Hdi8s6jtlU6zALyZeWdyq2+DZmx1Xh4AF2MRaxvud\nL7o6OtxWqZn2VnO5Um8kNKNzrc8G66up5mMPdahzewNQrRGwclqpyK/TxNRxjfZ4ZKjgP+a0\naMB6s11k9OXfPihi/kt8vcj2IfqYyfrwp93F0jExmOmL3rawZWTSxdZd77vGx2ZemrIuGgEL\nSODYaEWpRfbnxUp9lDDDaepK87Gputt4eDFPLcz+1AAg5xGwctpQkaflukXL5l0iUvqaDFy4\n7NkSkc5lxjQrKH3VRuSqlz5+c6T0vkfkTWPKTSIvSOtB18/RtE2dRAY8tXzlov4i7X7QbK/T\nF71Yes56fek0PaDdGilupEjXx1esXja2pbRc5rA6BCzAxqnNrmusGv9iH3GBUusS5jjd+kRw\nL3WP0aiOVF0qfYIAkMMIWDltmEix8b0jbV1rKeg8qlwf2tZd5B1jlBWURogM3W08f17aWAFL\nf9VVAyJ3hEwXGWzecVuuz/egZnudsehh5qT3RFpuMQZeEukX+axieUvp5vC1JgIWYOPQZFf8\nXqlRCWPOUGrz1Ita1NvnlMFfmiPOV52Mh5111MP6wwDV4kftk4FnndFhXuVOEgByFAErp90i\ncrmZnoxP9IrMFKRNFpljPEaC0jY9eX0XmXmkWAFLf1Ur60O/2aUl1ltRH4qUaPHXGTN1sr7E\n1FfkPeOxtxR8ZRU8VuSF+Go8VxAhJxxPwAKiElvrJ1eVdDpWqUZjE0cfo+oca/WCVX+0MaKP\nOt14eF+p5Zq2rI6apT3TwJzMre5AjULAyml6CpoeGZokMjIy9JyI+aZWJCi9LTLAmvlTW8Aa\nnrKoLSKRTyLiAet+a9IoEeOWq29EYr0drhS5Lf7a2adGnULAAqISm9giIyQ1GbQxqeW10Mc2\n6zp8TO8D9QGjYc5U+cb/P6NUsx3ajhNUK+3n/VXLr7ZOyFPzszw/AMhlBKycpqcg6w2oR0Rm\nRYaWWMkoEpQWiIyLzt05HrASz9RlW7ds2ShSrMVfZ8z0H2vyeJHF+sMikfHRV/wqcln89QQs\nwEFia10UeZvquOmJoxsoVWLelPVrD6XqfKhpOw5Rrbdq7zZXgzStVO2zVpuoGv+sT+9g/ZAO\ngJqBgJXT9BT0fmRousgzkaGlImZP0ZGgNE0k1ovh9fGAtSS2iJVj+3QsiHw1MDlgWV8r1CZE\nPg+cIQlaxVeDgAU4SG6vu9YuHdRYqYEJIzdu/NkaKj9HKeP/lkUNVMPD89RJW7T36qsHNa2N\nKjAmP6byt1fuPAEgFxGwcpqegqxveOsB67nIUGLAmiQyNzr37fGA9a41attttsiUHLCs7BYN\nWJMTA5bsiq3Gxg8i/tuwIQELiHJqsx+3UGpBmvb8vFKHGY9vFTavf9SgTVrZ6ep8/emxxntZ\nmva2Uv/N6vQAIKcRsHJaxQFrgu3jwFHxgBXNTnrmavfY6o1lmrajwoD1oMiYlTa7U1aHbxEC\nNo6NdpqK9NTu4Fel6pTZnt+hGq/RH/aLfO/w66QOtABUbwSsnFZxwJoSuzfL/KZhUsBaI9J2\nTWRwW4UBa0aka9IMCFiAjWMr+VappmkaUHkdpWzdn6xuGOlq1HpYr9SczA0QQHVCwMppFQes\n2dYzQ/eUgDVHJPqd8TUVBqyXRYZlXh0CFmATaxmLRg58LTq8UakGaRqQHqEaxZ+Vn63+Yr5N\n3EzdYTx8nfyjhQCqNQJWTqs4YL0mcp0181eSErAmizxpTZ1RYcBaK9I+ft+VEwIWYBNrGX2V\n6hUdflOp39gazdyeFzwaHX5Mqb/Gp0xUDSKt+0hltuF3zI6xANQUBKycVnHA+lGktfVLsWNT\nA9ZDVp9Z+nwdRYq0+OscApZWIhL9D3rlZZPWpK4OAQuwibWMBUo1jXbS20upjrZGc79Sx1tf\nDtx5ilIjYxO+aaKsvuZEmU1zhqq71c1ZAUD1QMDKaRUHLO2qaEdYrxS0TwlYS0R6mzfVbriy\npJPIL7bXOQSsl0SKPzXHrOspsjp1dQhYgE2sZZQdp9SfzF8cLL8rTymjWzmtf58+3+gPW5or\nVbzJGPFLsVL7/hx7jag/WG8Y36WaGxGsi/pbpc4SAHITASunuQhYb4nILW+sXnFnweAxKQFr\nW0eR69768t0p7Vp/MUjk3jUbMgUs43cNW09484NXJ7WzdV9qQ8ACbOJNY9meSjUsHjay/zF6\nE+lmjmqg1NvG45N19FzVZ8ydl++rVP7zsVdMV/lvW4M/NFEDdmvP56uZVTpbAMgtBKyc5iJg\naY9b3YhetTk1YGnLWlldYL1n9PkuMjVjwCobZy1LCialdtJAwAIS2NrGG0dYvzeo8vqZv6Ee\nC1jaE82ikw5+OTb/hv3UkNiTR+uoA/Rk1qGy5wkAuYiAldPcBCxt1YiLC9td80KZdqfIW9ar\notlJ+2xUt8K2/WZs0tPTtO6tL1+SMWDps0/s276wff/7HW7A0ghYQAJ749g5tc3hjfOb/+ka\nq8XGA5b24+jzD2iw56EFk2wdtXdUx9qevXh+kz1OvsfeRRaAao+AVYPcKvKhrwUQsAAbX1sb\ngGqOgFWD9BLZ4GsBBCzAxtfWBqCaI2BVdwtGllgf9X0p0t3fsghYgI2/zQ1A9UbAqu4mi1xt\n/vrGtmtFpvtbFgELsPG3uQGo3ghY1d3GziI9n1z+9pzL9Eef+yk0A5a/RQAAUBNwuaz2Putu\nda0gvdf6XBQBCwAAV7hcVn/bF1zfpbBN91sW+/4tbwIWAACucLmEewQsAABc4XIJ9whYAAC4\nwuUS7hGwAABwhcsl3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCAK1wu4R4BCwAAV7hcwj0CFgAA\nrnC5hHsELAAAXOFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hHwAIAwBUul3CPgAUA\ngCtcLuEeAQsAAFe4XMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgAALjC5RLuEbAAAHCFyyXcI2AB\nAOAKl0u4R8ACAMAVLpdwj4AFAIArXC7hHgELAABXuFzCPQIWAACucLmEewQsAABc4XIJ9whY\nAAC4wuUS7hGwAABwhcsl3CNgAQDgCpdLuGcGrKcAt8I+YgEgNAQsuEfAQnbCPmIBIDQErFtE\n3g97Ha4V+TpxzGiRN6u2zMzblVxi6ho4IWAhO1U7hgGgGiNgEbCc18AJAQvZsR89yy47bu96\n+/61NPlAe0bZnGuOeuVfzesd1nddfJ6HVd23Kj4+ASCHELACC1j3yqx0k+7q12994pjKB6xo\nMZm3K1piJzlTPAAAIABJREFUdO7UNXBCwEJ2bMdOl2iGavhA4lH1WErAeryuOqfbUerwDdFZ\nvm+urnV3+ANAriBgBRawStIHrFSVD1glrgJWpVaKgIUsxQ6d3efrh87fB43o+Rul8mYnHFX3\nKVVQGjVNH/HLPup2Tdv5F3VpdJZidfS2LI5TAMgBBKygAtb2wkACVqwYV9uV3UoRsJCl2KEz\nTqmGi4yBHW2U+s1u+1E1XKkZCYfZVNV0h/4wRzXcGhkxT+W9ksVhCgC5gIAVVMBaJYEErFgx\nrrYru5UiYCFLsUPnKKUeigxt3E+p1+xH1SClnk04zHqqC4yHdUq9aj7fdJDqncVRCgA5oZYG\nrEFSUL5tUudWM8wg8qH22V0927Tr+9AvsRm+mHhlcatug2dvtp73EYneEDJU5CPj8d8iu7UV\npd3b9Lz7W/3pquE9WnUaujK6gO0Lh3ZvW9hp0IxN5tPpElFqPlt5zxXFhV2ufji6yNgt5usn\nXN6mfd9pP2QOWEnLtm2OrRiH7bJttVmibe7oGux++baeRS2L+01Y7VQwAQvZiR453+apZtG3\nrTooNdV+VF2u1BsJh9m51meD9a35eqhDN2sAUM3U0oB1vcj2IXq0mGwGkU8XFkaSxiXfRybv\nGm9FD+m4NDLGIWCVivw6zZprjfZ4ZKjgP5GZPu0eW4KZuewB69dh0Wmt50Xmjsab5UWR8Z1W\nZQpYycu2bU5iwEreLttWpwlYP5ZEFy0POJRMwEJ2YofOji8/iA7qgWqC/agqVuqjhMPsNHWl\n+dhU3W08vJinFqZrCwCQs2ppwLpJ5AVpPej6OWYQmS09Z72+dEo7kWGRySNFuj6+YvWysS2l\n5TJzjEPA0h+flusWLZt3iR5RXpOBC5c9q8eTzmXGtE2dRAY8tXzlov4i7X7QR2xe+6DIg2vX\n/qRpuweJdHti1WfLx+vx52lzkVa8WddWZMjS1e/N6Nh1aPqAlbJs2+bYinHYLttWmyXa5rbW\nYJCx6BUrl4zXk55DH0YELGTH6QA+X6kX7M8vUGpdwgynW58I7qXuMQ66I1WXNE0BAHJYLQ1Y\nw0SuGvCTOagHkXY3G/fUah8WSEvzo4iXRPpFPpNY3lK6mV9fcghY+jKKje88aetaS0HnUeX6\n0LbuIu8Yo6aLDN5pDJSP0COM+bJZ0dud5opcEfls7w2RInMlrHgzWuQWYzHad50lfcByWLZt\nc2bZ7sFK3i7bbFaJsbkjz78QKTEXrX3VTrqWpxRNwEJ2HI7fb/LVfjvsI85QavPUi1rU2+eU\nwV+aI85XnYyHnXXUw/rDANXiR+2TgWed0WFemhYBALmolgYsPX20Wh8b7Gx9Wam/yMfGY28p\n+MqacayI+d+2Q8DSX3h55LaSUj0obTGHJovMMR5nl5ZE3vnSPtQzizkQzTLll1ohTHebiPmN\n9Ui82dFWCr6LTHg2Q8ByWLZtc+wBK3m7bLM5B6wlItadyNqiRxfFr4I7fo5YV7cuAQtZcDh+\nC5S6M2HEMarOsVYvWPVHm41NnW48vK/Uck1bVkfN0p5pYE7mVncA1UjtDVjD44MPWoOjRYzo\n8o1IrFfDlSK3GY/OAWt6ZMwkkZGRoedEpiWWtEUk8gFHNMt8JnJJ9L2hpSKDjcdIvFkZzUua\n9msrN98ijC3btjn2gJW0XfbZnAPWstiHpIlmnxp1CgELWUg9lgYpdU5ZwpgWenRq1nX4mN4H\n6gPGATpT5Rv/B4xSzXZoO05QrbSf91ctv9o6IU/Nr7BNAECuqL0Ba3588FVrcLzIYv1hkcj4\n6Iy/ilxmPDoHLOudpEdinR0sEbk/XkrZ1i1bNooUm0+iWUbPYCOiM6zTJxphKxJvFoiMiU7p\nW1HASli2bXPsAStpu+yzOQeszW1ERn+RWhgBC5WTfCSV91fqpJ8TxzVQqsT8nuuvPZSq86Gm\n7ThEtd6qvdtcDdK0UrXPWm2iamy8poP1QzoAUB3U3oC1JD64yhqcEPk8cIYkaGVMcg5YVkdT\n00WeiQwtFZkUGVo5tk/HgsgCEgOWnsamRFejXJ9qfIwXiTfTbG9/3ZwpYKUs27Y59oCVtF32\n2ZwDlrbIWGyv8f9JugQSsFA5SUfuz/9S6g/rkkZu3Bg93MrPUcr4f2ZRA9Xw8Dx10hbtvfrq\nQU1rowqMyY+p/O1pGwUA5JjaG7DejQ9GO+S0gsjkxIAlu7R0Acv6drkesJ6LDEUD1rbbbK9P\nDFiTROL9VreJLDYSbybapoxMH7Aclm3bnFkOHY3aAlZ0tjQBS3v3mkhvE0OW2G9xJ2ChchIP\n3c9+p9R5mbq0el6pw4zHtwqb1z9q0Cat7HR1vv70WOO9LE17W6n/ZngxAOSU2huw3k8dtILI\ngyJjVtoYd7JnGbBuF2n32OqNZZq2o6KAZXS0EIk3E2xThqcPWA7Ltm1DBQErOipdwNK0jx8e\nYL47dk20F1MbvkWI7CQcPi83V+qKXWkOa9OvStWx36B1h2q8Rn/YT40ynn2t1KJMrwaAXELA\nSg0iM8yuOBPZAlZpxQFrjUjbNZEx25ID1qPxm8+13XqQMXqBiMSbqbaPCG9IG7Cclu1lwNJt\nXjqqUGRIatkELGTHfvQ8UU/l3+d8UEeV11HK9qvOqxtGuhq1HtYrNSfz6wEgdxCwUoPIyw7f\npesrYnVwoJVUHLDmiIy15l6THLCet76XaFgr0sF4jMSbuSKx76/3SBuwnJbtccDSfdklfgtX\nHAEL2bEdPE/WVXs/53xMx+gRqlH8WfnZ6i9mRyjN1B3Gw9fJP1oIADmMgJUaRPTY0z75g4wB\nItG3jQorDliTRZ60XjgjOWB9IdIten/TSyI3Go+ReLNC5Eprwg8FaQOW07K9D1jGsheklE3A\nQnbix87re6i9lzsd0HN7XvBodPgxpf4anzJRNYi0sCPVdcbDO2bHWABQPRCwHIJIiUj0P+WV\nl00yg9VNIq9ExsyVigPWQ7EP+37sKFJkDs2y7rAqv0zkLWvp11tfP4zEmy2FUvBtZMKM9B2N\nOi07MWDNSLddjgFrRvx5+bQbR0WLmSPyfErZBCxkJ3bobDpM7bnU8YC+X6njrS8H7jxFqZGx\nCd80UdZ7vaLM43yGqrvVuVEAQO4hYDkEkZdEij81x6zrKbLaGNBjzWDz04oPi4orDlhLRHqb\n9+puuLKkk4jZyc/CaC9X+sBlkRvInxfpYt5xYsWdm0VKzZd9XNQybcByWrZtG2LFuApYsbkj\nzwdbHWZp2vZ+ItHe7OMIWMhO7NC5QkXuo7Lp36fPN/rDluZKFZsN4pdipfaN9xAi6g/WG8l3\nqeZGBOui/ubcJgAgBxGwHIKINkKk9YQ3P3h1UjuRceaYLwv0hLVoxZK7CwdOqDhgbesoct1b\nX747pV3rLwaJ3Ltmg6a9I9Lq4cUzy7Xy60W6z/1w9Wt3FEjLFebLrLjzmR6r+i9cvmRcq+53\npQ1YTsu2bUOsGFcBKzZ35PkqfQVufHrZytceudTWHWocAQvZiR45X9RTda8rjTF7422g1NvG\n45N19FzVZ8ydl++rVH78bdPpKv9ta/CHJmrAbu35fDUzTXsGgNxDwHIKWGXjrH48pWBS5OcG\ntcetEX1/mCrynvXCtN00LGtldVP1ntE/u8hUTdvd2xxTpkek4dFerDpat5RE74BaXBgZ3+nD\nKSKvpVl3h2XbtiFWjKuAFZvber6kKNbD1nCHPh0JWMhO9MiZpRKcYYyLBiztiWbR8Qe/HDvW\nNuyn4t9jfbSOOuAYpTqkaRIAkIMIWE4BS9M+m9i3fWH7/vevib3krZu7FLYtmb/NiFrLrRem\nDVjaZ6O6FbbtN2OTHtamdW99udGB+ve3dW59cal5f/uqsb2KWnW9fk70jpLYLeZf3d2jTXGf\nKRu02SLxa02S1GXbtiFWjKuAFZs7+nzjrOsubt2yfb9739ccELCQneiRkzFgaT+OPv+ABnse\nWjDJFuo7qmNtz148v8keJ9+T+BuGAJDTamnAQqUQsJCdsI9YAAgNAQvuEbCQnbCPWAAIDQEL\n7hGwkJ2wj1gACA0BC+4RsJCdsI9YAAgNASuHbd2Q4qdwV8gIWKGuAQAA1QKXyxw2XVJ0CXWF\nCFgAALjC5TKHEbAAAKieuFzCPQIWAACucLmEewQsAABc4XIJ9whYAAC4wuUS7hGwAABwhcsl\n3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCAK1wu4R4BCwAAV7hcwj0CFgAArnC5hHsELAAAXOFy\nCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hHwAIAwBUul3CPgAUAgCtcLuEeAQsAAFe4\nXMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgAALjC5RLuEbAAAHCFyyXcI2ABAOAKl0u4R8ACAMAV\nLpdwj4AFAIArXC7hHgELAABXuFzCPQIWAACucLmEewQsAABc4XIJ9whYAAC4wuUS7hGwAABw\nhcsl3DMD1lPwRth7EwDgIwIW3CNgeSnsvQkA8BEBC+4RsLwU9t4EAPiIgJWbRou8aTxeK/K1\n8xz/FlkT5BoZCFheCnrvAQACRMDKTWEFrNXj+xQXdrzm4XWOUwlYXkqs25d+o9QzKTX+jLI5\n1xz1yr+a1zusr20HPazqvuXZAQAA8AYBKzdFA9Zd/fqtd57DZcC6V2a5L3XHPWJpNcdpOgHL\nS/aa3TYwTzkFrMdSAtbjddU53Y5Sh2+IzvJ9c3Wt+10MAAgGASs3RQNWei4DVkkWAat8qB6t\nBk+ZPa6r/vicwwwELC/ZKva/xytV3ylg3adUQWnUNH3EL/uo2zVt51/UpdFZitXR21zvYgBA\nQAhYucmrgLW9MIuA9axIG/PDpm1jRTruSJ2BgOWleL3eWU/tcU+xU8AartSMhBFTVVNjx8xR\nDbdGRsxTea+43sMAgKAQsHKTVwFrlWQRsK4QWRgZKrtExOG+HgKWl+L1epI6cZXmGLAGKfVs\nwoie6gLjYZ1Sr5rPNx2kervewQCAwBCwcsr6CZe3ad932g+pN7lvXzi0e9vCToNmbLJm1QPW\nl9qyW7q36jjoqbLYAr6YeGVxq26DZ282n0237qgqdZim2/3ybT2LWhb3m7DafLqpQFpHP2wa\nJzIvdfUIWF6K1+vJfbdpzgHrcqXeSBhxrvXZYH011XzsoQ7dnPIqAEDoCFi5ZHlRJBB1WpUc\nsD7tHr39vOPKyLx6wPrqXmtcyS+RcbvGx+Zaajy3B6zkaZr2Y0l0jDxgjijb8FV0TSaLPJG6\nfgQsL8Xr9R3jj2PA0kd+lDDiNHWl+dhU3W08vJinFmZzhAEAAkLAyiHr2ooMWbr6vRkduw5N\nDFibOokMeGr5ykX9Rdr9YM6sB6yp0mvWa/+Z2FpkaGQBI0W6Pr5i9bKxLaXlMv355rUPijy4\ndu1PDtM0bZCxzBUrl4zXY11yp0y3ibyauoIELC8lVa5jwLpAqcQeM063PhHcS91j7JAjVZcs\nDjAAQGAIWDlktMgt5cbAd50lMWBNFxm803hePkJPTObMesAqHGZ+NvhBocgHxsBLIv0inxct\nbyndzE/7ZkXvwUqd9oVIiblM7at20rU8YU02t5F2W1NXkIDlpaTKdQxYZyi1eepFLertc8rg\nL80R56tOxsPOOuph/WGAavGj9snAs87o4PCBLgAgRASs3LGjrRR8Fxl8NilgzS4tibzrpH2o\nxyJzQA9YxdbdN/eITDAee0tB9DO+sSIvGI+xgJU6bYnIQ9aYRf/P3p1GWVHdfd//MwhKTFDR\nJLdJ1CeaaIYrarJi1nN7JXmMt8mL5N8TNA3NJEFQARmMBkUuiWKAiArIcAMOgCi0EoIjIi0O\nLZogoNigaAQZJAgCMgg2IN37qfGMdbp3Nz2chu/nhVWn9q5du6pZ7t+qqrPPY6XJ3xm8R3Vu\nwscdy31lX/sqAavepPz5IwPWhdLyomAWrDb3uhsGyGXu4l2RFcYsbynzzfNtvWJedQeArELA\nyh7lYXYy5ov8TDO5H1D1Hwo5AWt8sG2l6kBnsVU1NuOk09ZodxkGrIiy5aqjMvSkRPWmLxM+\nL/hZ6KcErHqTctEjA9Y3nOh0Rs8x4/v/L2dljLPhCWntzjw7Ts44bA7/WPLNvq9L7paD01rI\n05n/ZQEAGh0BK3s8G49MZmBUwDp68MCBPapF3gcnYIVf4N+lml9pTKnq1LDqF6r93GUYsCLK\n9ndUvXdjVEfmqF63L3EDAashpFz1yIDVVsT/BsMX14i0XGfM4W9LwUHzTgcZZsxIOX2bmS6n\nun+rrsEP6QAAsgMBK3vMVp0drt+ZGrDKJw4ozvG/8hcLWMH3CU2VU7Dfu++UKN8tCgNWVFmp\n2951U19LylLGHBqr2n9n0iYCVkNI+fNHBqw9e8K/TtVvRNxcXNpW2p3XQi4+YNa0kYeN6Sg5\nbvE8aX2odv/cAAANiYCVPaarxmbtvjs5YFWMTkhHsYD1YVi7k+qn3tQKSdyHfGHAiioz79zs\nrecML0t4xf3TwarDPk/u2WvX+/p973sErHqT8uePDFgJloic6y5X5nVoc8GwveboZXKV8/Ei\n916WMW+LvGX/Tw0A0NAIWNljWkLAGpMcsP6m2nne+j1HjTmcELA+CmsXqu405mHV8eUJKk08\nYEWVOT6YM9S7LXZzOH2pebe76oQjGXrItwjrU8rFrSlgfSHS8mjC53vkVHcq/7NknPvpY5HS\n6vYGADQuAlb2mJXwiPB/kgLWJtVOwe/iVCQErPeCyu4jwgPeY8CHUttMeESYVubbv2xcnurw\n4NM/8zVnYcYeErDqU8rFrSlgVbUUSfhV5/Xt/KlGg8UOkcx/NwBAoyNgZY8nVe8L169JClgL\nVScGBZsSAlb4I7+7VQurjHkl4muBYcCKKovZ3EN1rbf2zzzt9K+M9QhY9Srl4tYUsJwI9ZX4\np6or5HLvNuQZco+7+Dj1RwsBAE2KgJU9VqneEKzuykkKWA+p/iMoKUkIWA/GdxzqLLapdvnS\nJAsDVlRZnNPos+7y/Y5a+F7GWgSs+pVycaMC1pN9f/dYuD5P5L/jJdOlrf8bOufLbe5itTcx\nFgAgWxCwsseBPM35j79akjzR6COxh4e7i1ULvTUnYF0dvCs1RXWmuxwcn7mhvN8M75ni/PC9\nrrSyqtm3jwuPvFB1ibM42Efz36muhwSs+pRycaMC1gMiPwq+HHjkpyJ3xwq2tpfR/pqK9++h\nRFpFTL0PAGgqBKwscqfqSO815g8Kc5MCVplqf69g5w2Du6l63/G7NfYbzRsKNMd73/1l1SL/\nm4Xb+6qud1cWhXNrpZfdorrUP+6hQaruNO9T4zfKohGw6lPKxU0KWEMGDNjqLA50ECnyvoDw\nuVN8ZnxCDZVLgxuSE6SDG8F6yK/s/pEBABoFASuLbHBi1ZBFK8om5/eekBSwKopVb1u5+Z2Z\nnQs2DlOdsmmnVzJNR5Z9uG5+UWyC0rGqBdPefO/1GZ1VJ3tbVqvmz1n6RFVE2VrnaLc/t7z8\njUf7qI51NuzI05xH5sZEzAxOwKpPscv62kjXj0S6uUv3R5zdCUbfdpf/aOnkqgHj77v2TJHW\nS2J7zJXWbweru9rL0EqzpLU8Uc//GgEAx4KAlU2W5vmzVHVbN1P1DXdLME3D8vxgCqw17nzv\nqrOMuUl1z/hgVqvhwWOko5ODuUg1Z4Y/EUNlf+/j0aiyssLYtFhj3AaWJU+V1Te9fwSs+hS7\nrGMk0YXupjBgmb+fEW7/1iuxHXaeJcNjHx5rKd+8UKRr/f0zBAAcOwJWVtly/zUdiwbM3GkW\nqHrjaTiT+4ZxvfI6DSrZ6wSl2b0Lri0z5gZ3ttA37uydX3zrC/F5QjdMH9glr8uQBzaFGz4d\n3b3g6pFVkWV75t92dUFul0FT3vU+ErAaV+yyVhewzO57r/pm21O+kzMjYaL2Yrko4dNLV7U/\n+ZJJiVNkAQCaHAEL9ghY9amp/5oAgAZEwII9AlZ9auq/JgCgARGwYI+AVZ+a+q8JAGhABCzY\nI2DVp6b+awIAGhABC/a8gNXUnQAAIPsxXMIeAQsAACsMl7BHwAIAwArDJewRsAAAsMJwCXsE\nLAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgELAAArDJewR8AC\nAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewRsAAAsMJwCXsELAAA\nrDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgELAAArDJewR8ACAMAK\nwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewRsAAAsMJwCXsELAAArDBc\nwh4BCwAAKwyXsEfAAgDACsMl7HkB65kTR1NfbwBAs0XAgj0CFgAAVghYsEfAAgDACgGrYf1Z\n9ePokltVN2Xa69WbO+d1Kw93rq6mSalUfd0aulQjAhYAAFYIWA2rTgFrsbr+ScBqasln//I5\nIs9HX5jkolf/0OGkcwdujxfPkVYr63jJAQDNEwGrHk3R+ambJgwatCO6cjVRqL/qrUuX7Qh3\nrj40JVeqpm7Yu8xdqtGJHLAqbmwhGQJWStHjreQ3vS6Q83aGGz7tIH+u4xUHADRTBKx6NDg9\nYGWWOQpV5Wv+Aaua6ZWqqVur3kU7gQPWWz8SaRMdsFKKPj9d/mbMkculT1ihSL5XcayXHgDQ\nvBCw6s+hvPoJWBWqve1qplfKXLd2vYt24gas+06SkycVRQas1KJZctphZ7FQ2h30NzwlLV49\n1isPAGhmCFj1Z63WW8DqY1czvVLmurXrXbQTN2BdLP+11kQHrNSivvI7d7Fd5HXv896zpf+x\nXngAQHNDwKqzQ4vu6N0pr9uwkr3ex7nqG2nMMM2pqpjRPb8k4Y3ylNqZo9CsoJ2kl9w3m+V3\n9c4vHvbMUb9S+hFSA1bm3sVfci+fdH1RXo+b5oQvCzk7V5qPJvbOKxw4c6+JcOIGrEsGVpgM\nASu16Mrg2WAbmeUtr5Hv7M/0bwgAcLwiYNXVh73DJFRc7n5OiDAjVA8Nd1YfiqeZ1Nq1DFhb\npgQbB3/uVUo/QkrAqqZ3YZe+GBVWKXjKP/RI1YpFuf62q6NehD9xA9Zq9z/RASu16Odyg7c8\nTe53Fy+1kEU1/FMCABx/CFh1tLeb6tBnVpSXDlHtvMvZsH/bw6oPb9v2mTF/UX1RC4aNWBhL\nM2m1Mwes/ds2OvFm27ZtFQnZaZZeN/+N16YXqN7hVUo/QnLAqq53wQ6Vw1R7/X3thhVT81Sf\n81q9Q3Wp9p3/z2WzO6v+NaJvJ27A8kQHrNSiy4Ingl+VSe4lO196WPxzAgAcZwhYdTRX9ZYj\n7krVWCe5eJvmh285jVL909DPvNUgzUTUtngHK56d8kZ5zwbfc7LQe9FHSA5Y1fUu2OFJ1ev9\n54D/Ui38LGi1aJS32xrV3MQvMgYIWBYB6yrp5i6OtJQ5zmKofGO3+feNv/5F16cy7AoAOB4R\nsOpowcjBy/21daqDvZVYhLlLNT94whakmYjatQpYRcFbPJNUp0UfITlgVdc7f4eqPqqrgwOO\nVl0QtNot+ObbQNU18R6tvd9377e+RcCKlFA0QC5zF++KrDBmeUuZb55v6wZTXnUHgBMJAeuY\nHVD1HwIlBqwxQWHatOmx2rUKWOODopWqA6OPkOlbhOm983fYoPrHqqDOMtVbglYfCDaNU10W\nb2TBz0I/JWBFSih6Qlq72XecnHHYHP6x5Jt9X5fcLQentZCnM+wMADj+ELCOydGDBw7sUS3y\nPiQGrHAsTQpYSbVrFbAWB0W7VPMrI48QFbCie+fv8ILq2LDedqdOld/qa8GmqapL4z0iYHns\nAtbhb0vBQfNOBxlmzEg5fZuZLqfuc7Z3lSsz7AwAOP4QsOqsfOKA4hz/K3fpAassqBQLWGm1\naxWwgm8emiqnif2RR0gNWJl75+/wqOrM8IBVTqWDfqvhgaapvhjvEQHLYxewTGlbaXdeC7n4\ngFnTRh42pqPkuJvnSetDGfYGABx3CFh1VDFa49ID1jtBtSD+RNSuVcD6MCzrpPpp5BGSA1Z1\nvfN3mKFaEjtiR9WdfqvvBluSAxbvYHksA5ZZmdehzQXD9pqjl8lVzseL3HtZxrwt8laGvQEA\nxx0CVh39TbXzvPV7jhpzOCpghUEliD8RtWsVsD4KywrTolBkwKqud9EBa5epJmCF+BahVcAK\n3SOnun+Ms2Sc++ljkdIMewMAjjsErLrZpNopyEcVNQesqNq1CljvBUXuI8IDUUdIDljV9s7f\n4bFw+gZHpapWGAJWmpTTr2XAWt/On2o0WOwQWZhhbwDAcYeAVTcLVScGq5tqDlhRtWsVsMIf\nC96tWlgVdYTkgFVt7/wdlqiODg+4TbVrSr8JWK6U069dwKq6Qi53v5BgzpB73MXHIovT9gMA\nHKcIWHXzkOo/gtWSmgNWVO1aBawHg6JVqkMjj5AcsKrtnb/DRtVe4TQNL6ventIqAcuVcvq1\nC1jTpe373sr5cpu7WO1NjAUAODEQsOrmEdXZ/truYtVCb21++FpTWvyJql2rgHX1Eb9oSvDd\nvxoCVrW9CyYa7ae6MmhihOrzKa0SsFwpp1+rgLW1vQS3CFW8v0CJtDqYYW8AwHGHgFU3Zar9\nvV+v2XnD4G6q3k8wLwonBE2LP1G1axWwgltYGwo056PIIyQHrGp7F+zgfO7n/1TOEtUeFSmt\nErBcKaeflKKGDBiwNUORR+XSL/21CdLBnZ+hh/wq+u8NADgOEbDqpqJY9baVm9+Z2blg4zDV\nKZt2GrNaNX/O0ieq0uNPVG37gOUspunIsg/XzS/KGOGSA1a1vQt2qBqh2vvJdevfuCdHc1el\ntkrAcsVO/LWRrh+JdHOX7o84m7Yib2cocs2V1m8Hq7vay9BKs6S1PFGbf2EAgGaNgFVHy/OD\nSaawRcvfAAAgAElEQVTWmGfd5SxjKvt7W45GxJ+I2vYB6ybVPeODOa2G+3NV1jRNQ3W9C+c+\nrRgTTpRVHLwbRMBKETvxMZLoQndTGLAiihw7z5Lhsb0faynfvFCkq+U/LQDAcYCAVVcbxvXK\n6zSoZK8xR2f3LrjWnVj909HdC64eGXEHK6q2fcC6QfVL88advfOLb30heC+9poBVXe/iv96z\nduJ1hfk9RywMXw0iYKWInXitA1axXJQwbftLV7U/+ZJJR6v/BwUAOJ4QsGDvhA1YAADUDgEL\n9ghYAABYIWDBHgELAAArBCzYI2ABAGCFgNWUDu5M81lT96k6XsBq6k4AAJD9GC6b0lxN06Op\n+1QdAhYAAFYYLpsSAQsAgOMSwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArD\nJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzC\nHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewR\nsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgEL\nAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJex5AeuZ\nBtbUJwkAwLEjYMEeAQsAACsELNgjYAEAYIWAdeK6VXVT7fYgYAEAYIWAdeJqBgHr/UE/Oa3N\n2TrraIYOfXCKyPP+6qt/6HDSuQO3x8vmSKuVtTs9AADqCwHreDRF51vUyv6AdVcr8V38n8j+\nVP5vCQPW463kN70ukPN2hmWfdpA/1+7sAACoNwSs49Hg4yNg3S3S4vdjJw89W+T7B6L6c6+E\nAevz0+Vvxhy5XPqEZUXyvYranR0AAPWGgHUcOpR3XASs9SdL21J3Zf9vRW6K6M6/T5FvBgFr\nlpx22FkslHYH/bKnpMWrtTs5AADqDwHrOLRWj4uA1V/cu1Ku3V+TU/an9abycvn28CBg9ZXf\nuYvtIq97ZXvPlv61OzcAAOoRAes4UPnK6L6FuUWDpq13P81V30hjhmlOVcWM7vklXrXySdcX\n5fW4aU74mlI8YM1UvcF/Brdx+g1F+b1uWZAeZ1yNGrCOdJCvfB6sDxZ5OK0394o8PioIWFcG\nzwbbyCxveY18J/oUAABoDASs5m/3YA09aJIC1gjVQ8Od1YeczV+MCisVPOXvFwtYz6r2/cxd\n+XJqWKd4WdSRGjVgLRP/rpTreZFOqZ359ymSb8KA9XO5wdt4mtzvLl5qIYvq4coCAFBHBKzm\nb5jq0GdWlZdNLVR14sn+bQ+rPrxtmxOZ/qL6ohYMG7HQmEqnVq+/r92wYmqe6nPefmHAeiNH\ne/rTG9yt2vPxVeuXT8zV3OURR2rUgDVJ5LZwfZfId1P6UvnfcvonsYB1WfBE8Ksyye3n+dKj\n/q4vAAC1RsBq9jaqDj7irW3prD2rnOX88B2sUap/GurdmzJPql6/11v7l2qhty0IWOs6alf/\nTtbLqoP8B2srcrVXxHfwGjVgDRWZETvyqdIqZS6s+0QeMbGAdZV0cxdHWsocb9dv7Db/vvHX\nv+j61LFdWwAA6oaA1eyVqT4SrJY+Vup+ly4WsO5Szd/hrVX1UV0d1BqtusBd+gFra7EWrvML\n+mvOlqDORNUX44d47Xpfv+99r/ECVneRhbEefFdkR9JZ//sU+b2JB6wBcpm7eFdkhTHLW8p8\n83xbbwYtXnUHADQFAlazt1x1VPKWxIA1xt+0QfWPVUHxMtVb3KUXsPZco/mr/O1bVWNTc5ar\njo43uOBnoZ82XsDKi03S7vihyEeJp1j539J+q4kHrCektRvAxskZh83hH0u+2fd1yd1ycFoL\nefoYLi0AAHVEwGr29ndUvXdj4pbEgBXkixdUx4bF21WL3LDlBqyKIZrzWrC9VHVqWOcL1X7x\nBpskYP1BZGmsB5eKfJB4iuNF3Df3YwHr8Lel4KB5p4MMM2aknL7NTJdT9znbu8qVdb+yAADU\nFQGr+SvNUdXrpr62L9yQGLDK/E2Pqs4Mi6uc6u50nE7A2jAyeFzoKtEk+fEjNP0drB8k38H6\nsJ381lsJA5YpbSvtzmshFx8wa9q4Uzp0lBx38zxpfeiYLzAAALVFwDoOvHOzl4hyhpf5TwET\nA9Y7fpUZqiWx+h1V3bmwnIA1zNltRPjo8KHkgKVfxnbYsdxX9rWvNl7A6iHyj1gPzhXZFT/h\nql/KVzd7a7GAZVbmdWhzwbC95uhlcpXz8SL3XpYxb4u8VS/XGACA2iBgHRc+mDPUvY2lN3tf\nFEwMWO/6FVIDlptWbnX3KFR9PNj8sOr48gSVaYdp1G8R3iwSe2JZ1VZOSujOBJEH/bVRibe5\nPPfIqe53Is+Sce6nj0VK63ZJAQA4BgSs48X+ZePyVIe7qxEB6zHV2FTolU6ucudgcAJWzhMf\nFWjee/72En9G0mo0asCaLnJzuL5Z5KJ4Nz5uJ9+f7+sictv8+eviZevb+VONBosdiV9FBACg\nsRCwjiObe6iuNZEBa0nCtwK3qXZ1l07AKjXmadU/+r9I80ra1xFTNWrAWiXyy3B9nkjPeDde\nkxTxblddIZd7t7rOkHvcxccii+tyKQEAOCYErONJieqzJjJgbVTtFb5r9bLq7e4ymGj0zjB7\nOcGry5emOo0asKrOkTbhzyYWJ92IqiZgTZe273sr5/vTwK/2JsYCAKCREbCau6rZt48L1xeq\nLjFewPJfuIoHrKp+qiuDWiNUvfeWgoC1r2f42zmDVcPbPeX9ZmxKP1ajBiwzXGS4v7bhJDnz\nSOTZp7yDtbW9BDfqVArdRYm0Omh5IQEAqD8ErGbvFtVgvqhDg1TdqdgXqY73NsQDlrutn/9T\nOUtUe3g/gxP+FuHqHO240V15WbXoQ6/O9r6q69MP1bgBa8dp0sqbQ+KTS8X7iUFjhgwYsDWp\nRykBS+XS4B7cBOngzs/QQ35Vh0sKAMAxImA1e2tzVW9/bnn5G4/2CWYTXa2aP2fpE1WJAatq\nhGrvJ9etf+OeHM31p24PA5aZpXq9N1vUWNWCaW++9/qMzqqTIw7VuAHLPNJC5Ld/HX/tGSJX\n+N8hbCvydlKPkgPWXGkdFu9qL0MrzZLW8sQxXl4AAOqAgNX8lRXGpq4a4+Wkyv7eh6OJActU\njAkrFQdvJcUC1tE/qU70VibnBHVyZqRP0tDoAcvMOCV4yer3B/wN1QesnWeFzxQdj7WUb14o\n0rXu1xUAgDojYB0H9sy/7eqC3C6DpoRp6tPR3QuuHpl0B8uxduJ1hfk9RywMX0qKBSzzSWfV\nV721DdMHdsnrMuSBiBewTOMHLLPppp+0b3tul2fDz9UHrGK5KGHa9peuan/yJZOO1uZCAgBQ\nTwhYsNfoAQsAgOaJgAV7BCwAAKwQsGCPgAUAgBUCFuwRsAAAsELAgj0vYDV1JwAAyH4Ml7BH\nwAIAwArDJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQs\nAACsMFzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIA\nwArDJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACs\nMFzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArD\nJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJe17AeqYumrrn\nAAA0KgIW7BGwAACwQsCCPQIWAABWCFjH6M+qHzuLW1U31WX3e1XftK376s2d87qV1+UoSYIe\n1wUBCwAAKwSsY9R4AWuxuv5Zl6MkafqA9f6gn5zW5myddTT9CMv7/eBrJ5353yPDHr76hw4n\nnTtwe7zCHGm1so69BwCg0RCw6miKzveWEwYN2mEaJWD1V7116bIddTmKJ6XHdVE/AeuuVuK7\n+D+p7fcISqTdg96Gx1vJb3pdIOftDGt82kH+XMfOAwDQeAhYdTQ4iCuBhg9YVfmaf6Auhwil\n9Lgu6iVg3S3S4vdjJw89W+T7ySdUeZXT/P83bGzfc5wqC5wNn58ufzPmyOXSJ6xSJN+rONaz\nAACgwRGw6uZQXmMHrArV3nU5Qii1x3VRHwFr/cnSttRd2f9bkZuSmp8s0s4rOtxR5JxKY2bJ\naYedjwul3UG/xlPS4tVjPQkAABoeAatu1moTBKw+NdfKLLXHdVEfAau/uHelXLu/JqfsT2z+\nApFH/LU9Z4m8YUxf+Z37abvI697mvWdL/2M9BwAAGsEJG7A2Tr+hKL/XLQvCEX6Y5lRVzOie\nXxJZ6lgz6drCTtdO3uCuz1XfyIiX3CN2Tbdj2rUduwycvSsIWCNUX4iVjVF93llUvjK6b2Fu\n0aBp692Ns4Ij6j/NANXwlaQ7VN83/tErzUcTe+cVDpy517LHjvJJ1xfl9bhpTthcdDMJ6iFg\nHekgX/k8WB8s8nBC6/9pIWdUButdRWYZc2XwbLCN+8FxjXyn2ssKAECWOEED1pdTw8BSvMzf\n4mScQ8Odzw9FlpqDdwVbcmab6gJWxK4RVhT6dbqt9QNWmerNYVlFR+140Jjdg8OG1H3fu/qA\nNVK1YlGuX+HqHXY9Nl+MCtsseMrfJaqZJPUQsJaJf1fK9bxIp8TmD29+L1y9VmSaMT+XG7xP\np8n97uKlFrIo80UFACB7nKAB627Vno+vWr98Yq7mLve2/EX1RS0YNmJhZGmlk736zH118cQ8\n1bnG7N/2sOrD27Z9lhaw0neNsL2T6vBl69eUFPe8wwtYXxarbg0KX1EdZ9w7ajr0mVXlZVOd\nLPaMe8SNTujZtm1bRVTAcpZLte/8fy6b3Vn1r3Y9rnSO0OvvazesmOrUeM5kaCZZPQSsSSK3\nheu7RL6b4RJdJfKiMZcFTwS/KpPco58vPTJdUgAAssqJGbBeVh3kP2takau9vK+ljVL909DP\nMpUuUr3JWynP0zz33s788I2m5IAVsWuEe1XvqnJXPumu/jtYD6jOCgqdjrxljBOnBh/xPm/p\nrD3dyrF3sCIClrNP0Siv+hrV3ANWPX5S9Xr/OeC/VAs/y9BMsnoIWENFZsQ+nCqtIubCcmxt\nLWcddmNWN/fTkZYyx9v1G7vNv2/89S+6PpXhwgIAkCVOzIDVX3O2BKsTVV90l3ep5u/IWNo3\n9orVBFX3Na0MASti13SHO2nOJ/7q4iBgbVbt6b9+dLBAe1d5Dw2D971N6WOl7lfpqgtYTue7\nBd+zG6i6xqbHVX1UVwfNjFZdkKEZ34KfhX56rAGru8jC2IfvikRPyZUjcp97qnKZ++ldkRXG\nLG8p883zbb1psnjVHQCQ3U7IgLVVNTZbZbnqaHfphIsxGUs3qg4Mtmx+8U33YV50wIpqOJ1T\nMjhY/SI/+Bbhn1RXeFte9JPVctVRyXvVELAeCDaNU11m0+MNqn+sCmosU70luplAPQasPJHn\nYx9+KPJR1BUaJvIb99bWE9LaDWDj5IzD5vCPJd/s+7rkbjk4rYU8HX1pAQDIDidkwCpVnRqu\nf6Haz1064eLpjKXOpvHJTUQHrKiG0z2b0NrAIGC9EMaxkaru/Ob7O6reuzFxrxoC1mvBpqmq\nS2167BxwbFi0XbWoKrKZQD0GrD+IxBu+VOSD9OtTNUTk4n3u2uFvS8FB804HGeZcGDl9m5ku\np7oFXeXK6EsLAEB2OCEDVokmyXe3OeGiLGPpo6qzk5uIDlhRDaebndDanUHAqijUPDc67M8L\n7oGV5jgNXDf1tX1hzRoCVvgj0NP8J5M19tipMDMsqnIOdTCymUBD3cH6QdQdrH1OBrs0+PXB\n0rbS7rwWcvEBs6aNO6VDR8lxN8+T1oeiry0AAFnhhAxYDyXnIP3SeOHinYylD6g+ntxEdMCK\najjddP+lKM/d4USj96u6r24vVl3il7xzsz/JwvAy/0leDQHr3WBTkIxq7PGMhE6Yjn6T6c0E\nDu/zbW/V6lgDVg+Rf8Q+nCuyK/XqbPihyP+JzXa1Mq9DmwuG7TVHL5OrnI8XufeyjHlb5K3I\nSwsAQHY4IQPWw6rjyxO4r5fHw0VEqROcHk1uIjpgRTWcblpCthkTBqx1qu6cTyO00xdh2Qdz\nhrq3sfRm78t+tQtYNfY4NWDtimwmRT18i/BmkdhT1Kq2clLqJXqlg8j16cH0HjnVfWf/LHGn\nsDAfi5Sm9w4AgKxxQgasEn8+0STxcBFROk91SvKWjI8I0xpONyvh8d3/xH4qZ4Dbwme5el9i\n1f3LxuWpDndXowLWyIwBq8YeP6Yam0W90klxFZHNpKiHgDVdJDan6maRi1KO8PeTpPX/TT/w\n+nb+VKPBYkfiVxEBAMg+J2TAeiXtK3qJ4SKi9OW0eTejA1ZUw+me1HiKuiYWsJytc8zC2IPK\nmM09VNeahIA1UDWc22BwxoBVY4+XJHzJcZtq1+hmUtRDwFol8stwfZ5Iz+QD/KOVfO0Fk6bq\nCrncu9V1htzjLj4WWZxeCwCArHFCBiwnUHRJfQoVDxcRpVtUewRzGmy5/37324bRASuq4XSr\n/KeBrl05sYC1P1/7mSHapyq1eonqsyYhYA2NzXBVkZcxYNXY442qvcJDOWns9uhmUtRDwKo6\nR9qEN+CKU29E/fNk+dqKiCs2Xdp652nO96eBX+1NjAUAQNY6IQOWe+cnvANS3m+GF1cSwkVE\n6XWq//K3POLeaPLiiv8KU/JEoxG7pjuQpzn/8VdLNBawzFhVJ+k85q1Xzb59XFh9of/eeyxg\n/UX1Vb/kSc0YsGrscVU/1ZXBPiP8n5dulIBlhosM99c2nCRnHklsfu+5ckrULzhubS/B3TaV\nQu+ySauDEfUAAMgWJ2bAcoJM0Yfe2va+quvdlYRwEVG6WLW391zuw46a587CviicZyrtp3JS\nd41wp+pI7ydiPijMjQest1S7xqZ4vyU2D9WhQaru7PCxgOUEplu852XrCosyB6wae+x87uf/\nVM4S1R4VGZpJVh8Ba8dp0sqbN/6TS8X7iUFjhgwY4P0S4/Xiv2KVSuXS4L7gBOngzs/QQ36V\n4dICAJAVTsyA5d4tKpj25nuvz+isOtnbkhAuIkqrhqt2eXDpogn+Tycbs1o1f87SJ6pSf+w5\nfdcIG5xYNWTRirLJ+b0nxAOW++M1emvwYa1T5fbnlpe/8WifYEbQWMDanOMkrNJVZffn3Tgt\nc8CqscdVI5wI9uS69W/ck6O5q1KvQcMFLPNIC5Hf/nX8tWeIXOF/h7CtyNvOYuNJ0uq2kTHh\npPJmrrR+O1jd1V6GVpolreWJTNcWAIBscIIGrKOTc4KpqnJm+IN8YsBKLzUVo8It/hcAK/t7\nn46mBqyIXSMszfPrdFs3U/WNcOs8TZg+vawwNpvWGG9SzVjAMo8H2wfumhX8YmBUMqqpx6Zi\nTHiA4uCFpsYJWGbGKeL7ffB70kHAmi9JfhFU33lW+EzR8VhL+eaFIl0zXloAALLBCRqwjNkw\nfWCXvC5DHgjfk0oMWOmljlX39i3s2G9yOPP4p6O7F1w9Mu0OVuSu6bbcf03HogEzd5oFqq+E\nG3fmaGFFrMqe+bddXZDbZdCUoFvxgGVW3tkjr9PgpyvcqLUipfMJyaj6HjvWTryuML/niIXh\n+0yNFLDMppt+0r7tuV2eDT9XH7CK5aKEadtfuqr9yZdMOlrdxQUAoMmdsAErC21RndTUfahe\nPQUsAACOdwSs7DFZdUNT96F6BCwAAKwQsLLGljy9ran7UAMCFgAAVghY2WJP/+ArgVnMC1hN\n3QkAALIfw2WDOrgzzWdR9VavKClWndbY3astAhYAAFYYLhvUXE3TI6peD7fkrpp/ZaeJEbAA\nALDCcNmgbANWf+00dHHarxBmHQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgAAFhhuIQ9\nAhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhguYY+ABQCAFYZL2CNg\nAQBgheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgAAFhhuIQ9AhYA\nAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhguYY+ABQCAFYZL2CNgAQBg\nheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgAAFhhuIQ9L2A9U42m\n7iAAANmBgAV7BCwAAKwQsGCPgAUAgJVmGLD+rPqxZdVbVTc1aF+OwV2q7zZ1H2qLgAUAgBUC\nVlM57gPW+4N+clqbs3XW0aiWXj5H5PnYp1f/0OGkcwdujxfPkVYrG+gcAABoBE0ZsKbo/Lrs\nNmHQoB2WVbMxYIVn3TABq47X1FJtAtZdrcR38X/S2qm4sYUkBKzHW8lvel0g5+0MN3zaQf7c\ngKcBAEBDa8qANbhBw4ArGwPW4AYNWA17TWsRsO4WafH7sZOHni3y/QMpzbz1I5E28YD1+eny\nN2OOXC59wgpF8r2KBjwNAAAaWhMGrEN5J2LAip11gwSsBr6m9gFr/cnSttRd2f9bkZuSW7nv\nJDl5UlE8YM2S0w47i4XS7qC/4Slp8WoDngUAAA2uCQPWWj0RA1bsrBskYDXwNbUPWP3FvSvl\n2v01OWV/UisXy3+tNQkBq6/8zl1sF3nd+7z3bOnfgCcBAEDDq7eAVfnK6L6FuUWDpq13P41Q\nfSFWNEb1+bQac9U30quycfoNRfm9blkQjsROMqo0q0b27tj3fvcNnrVjrsnvdke5XxZ/yX3N\npGsLO107eUPGTgUBa4Bq+HrPHarvu8vBqkfNP++4Or/7sEXBW9gRtVL6nElq74dpTlXFjO75\nJWmXIeGsnYC1zmyY0Ldj54GPfJ6xqeouhDGHFt3Ru1Net2Ele036NS2fdH1RXo+b5sTebEo9\nmdqfsHXAOtJBvhKe1GCRh5NauWRghUkMWFcGzwbbyCxveY18JzmRAQDQ3NRXwNo9WEMPOh/L\nVG8Oiyo6aseDaTUSw8CXU8OS4mX+PiNVv5gdbNpkHvfXcl7zysKAdfCuYKec2Zl6lTlg3aS6\nb3Kw/5/8d4QiaqX0OVp6751cdWi48/mhtMuQHLA+XJTnf/zjp5maqu5CmA97x6p7mSvxmn4x\nKiwreCryT1SXE7YOWMvEvyvlel6kU1Irq93/JASsn8sN3vI0ud9dvNRCFmW82AAANAv1FbCG\nqQ59ZlV52dRCVWeY/bJYdWtQ9IrquPQa+7c9rPrwtm2fOUV3q/Z8fNX65RNzNXe5t48z4D+n\nt5Uuf+qPTlx4Q29ctHyxM/R39+41BQGr0okwfea+uniiE1LmZuhV5oDl9OYxvWHhv8r+b77q\nHV5RdK3EPkdL7/1fVF/UgmEjFqZdhoSzdgLWAu07/5/LZnZWHZWpqeouxN5ubvdWlJcOUe28\nyyRd00qn673+vnbDiqnO5Xku6k9UlxO2DliTRG4L13eJfDe9qYSAdVnwRPCrMsk9xvnSI9Ol\nBgCgmaingLVRdfARb21LZ+1ZZcwDqrOCslGqb0XUMPPD94VeVh3kPxNakau9KoJ9irz7UtsL\nNKf7OLd6RW9V795HELAWqd7k1S3P07wM8zZkDlhOSd5YL6ascRLIGhNZK73PEaJ7/6ehbnJM\nvwzxs3YCVuc73Ze7zboczd1fhwsxV/UWr3tVY51c5e0Xa/1J1ev954b/Ui38LPJkan/C1gFr\nqMiM2F6nSqv0ubASAtZV0s1dHGkpc7xdv7Hb/PvGX/+i61PRFxwAgOxXTwGrTPWRYLX0sVIn\nNmxW7VnpfT5YoL2rImrEw0B/zdkSFE1UfdFdOunjWn/3kU4+8B/hPaS60F0GAatv7AX2Caol\n0d2qNmB1Dl70uV91qomsld7nCNG9z/cjX9plSApY3YNvzQ1R/aAOF2LByMH+bS6zzglG3krY\nelWfIIQ5RqsuiDwZ+xPe857vrXbt7AJWd5GFsb2/K5IegBMC1gC5zF28K7LCmOUtZb55vq03\ngxavugMAmqt6CljLY0+5Qn9SXeGtvOgP2uk1wjCwVTU2q2S56mh3eVfssd8M1bv9tRdUvXs5\nfsDaqDow2Gnzi29uNZGqDVjjg00rVL2RPL1Wep/TZej9mAyXISlghe9+36u6vA4XIu6Aqv9Y\nLWx9g+ofwxtQy1RviTwZ+xNe8LPQT+0CVl7iPO0/FPkorcmEgPWEtHYD2Dg547A5/GPJN/u+\nLrlbDk5rIU9HdQYAgOxXTwFrf0fVezcmbnkhSAjunZf/RNYIw0BpcAfJ9YVqP3d5lx85HI/G\nJh4oU33AXfoBqzSekDKrNmAtDjZ9pppfGVkrvc/pMvQ+jAaplyEpYL0eVJqqurQOF8J39OCB\nA3tUi0xi685hx4YVtjuFVVEnY3/CtQ5YfxBZGtv7UpEP0ppMCFiHvy0FB807HWSYc5nk9G1m\nupy6z9neVa5M7woAAM1Bfb3kXpqjqtdNfW1fuKGiUPPcD/vzgtsyaTXCMFCiSfLdbfFJoub6\nczwY706M916PH7AeTbuNE6HagBVOdlDldGxfdK20PqfL0PuyTJchMWCtDSpN858H1vZCGFM+\ncUBxjl87OWA5V2dm2MMqp/Rg1MnYn/Cx3cH6QQ13sExpW2l3Xgu5+IBZ08ad0qGj5Lib50nr\nQ9EXHQCALFdv82C9c7M/g8DwsuDR1P2q7lvKi1WXRNcIw8BDyblCvzRervDnZXJzRTCVVHLA\nekD18Ro7VW3A+jCsVai6I7pW+lmlydD7d8Ly1MswP2Ki0SBg1fZCVIxOqJwcsGYkvpbWMbKL\nONUAACAASURBVDix1JOxP+EXcnz64x/ZBaweIv+I7X2uyK6065YYsMzKvA5tLhi21xy9TK5y\nPl7k3ssy5m2RtzJcdQAAsls9zuT+wZyh3t2Um/1vr61Tdac3GqGdvoiuEYaBh1XHlydwH9fV\nHLCcNPJojV2qNmDF7qp08ouj8kbaWaXJ0PvYJO2pl6GagFXbC/E31c7z1u85aszhmgLWrqiT\nqf0JW3+L8GaR2NPOqrZyUmVaU0kBK3SPnOr+vc4Sd14P87FIaXofAABoBur3p3L2LxuXpzrc\n/zDATTef5ep9GWokPCJ8KLWhmgPWPNUpNfYnPWCNjAes94JN7iPCz6NrRZxVqgy9j/8KTspl\nqCZg1fJCbFLtFHyPsiI1YD0Wf4PeVDppKf7TyQknU/sTtg5Y00ViM6xuFrkovamogLW+nT/V\naLDYkfhVRAAAmpN6/y3CzT3Cd4ueVJ1jFiY8LUupEYaBVyK+ulZzwHpZ9a81diYIWAP9Z4Cu\nwfGAFf6e8GdOUDHRtSLOKlWG3scDVsplqCZg1fJCOG1ODGptSg1YS8J36x3bVLtGnkztT9g6\nYK0S+WW4Pk+kZ1pLUQGr6gq53LvVdYbc4y4+Flmcth8AAM1B/f/Yc4nqs97K/nztZ4Zon7S3\nl4IaYRhwAkCXL1Oq1Bywtqj2CFrecv/9Gb7PHwSsobEpsyry4gErvFu0KphEKqJWxFmlytD7\neMBKuQzVBKxaXoiHVMP3nEpSA9ZG1V7hdXei6O2RJ1P7E7YOWFXnSJvw7lhx5I2oiIA1Xdr6\nnTjfnwZ+tTcxFgAAzVD9BKyq2bePC9cXxt5qH6vqDO6PZaoxP3xPaHB8yoTyfjO8Mb/mgGWu\nU/2XX/CIe48oUhCw/hK7XfWkxgNWb3/OcjMleJyWViv6rFJF9z4esJIuQ8JZpwesWl6IR2Lf\no9xdrFqY1HpVP9WVQVMjvK8fRpxM7U/YOmCZ4SLBI8YNJ8mZR9IvW3rA2tpegrtuKt7ZlEir\ng+k7AgDQDNTTHaxb/JmcHIcGqQbTkb+l2lVzPslUY1E4k5UTP4r8r/Rt76u63l2xCFiLnYjk\nPeH6sKPmfRLdrSBgOVHkFu/Z07rConjAyvF/zvjDfM3x3ndPrxV5Vqmie58QsJIuQ/ysIwJW\n7S5EmWp/7ydodt4wuJv/Glm8dWeln/+W+hLVHhWRJ1P7E7YPWDtOk1bu/PHmk0vF+4lBY4YM\nGJAwH2x6wFK5NLh/N0E6uPMz9JBfpfUAAIBmoZ4C1tpc1dufW17+xqN94lNcur/XordmrLFa\nNX/O0ieqvHs8BdPefO/1GZ1VJ3u1LQJW1XDVLg8uXTSh5h973pzjRInSVWX35904LR6wpurI\nsg/fLSnU4P3z9FqRZ5UmsvcJASvpMsTPOiJg1e5CVBSr3rZy8zszOxdsHKY6ZdPOhNarRjj5\n88l169+4J0dzV0X/AWp/wvYByzzSQuS3fx1/7RkiV/jfIWwr8ra7fG2k60ci3dzlpHCHudL6\n7WB1V3sZWmmWtJYnMl1zAACyW329g1VWGJuRaUxsdsh5GrsjElGjsr/34agxRycHs2Vqzgx/\nMLYIWKZiVLhTxhlHg4BlHg9qDtw1K/hlZ6dky7hg6/Cgw+m1Is8qVWTvEwJW8mWInXVUwKrd\nhVieH0yBtcY86y5nJV7TijFhz4tXZPoT1fqEaxGwzIxTxPd7/xcUYwFrjCS6MKi+8yyJf23x\nsZbyzQtFkt/NBwCg+ai3l9z3zL/t6oLcLoOmJESLnTlaWJG5xqejuxdcPdJ7F3vD9IFd8roM\neSB46doqYBmz6t6+hR37TU6fJjwUBiyz8s4eeZ0GP13hZooVQckW8/qo3vndblkcews/rVbk\nWaWL6H1i/eTLEJ51VMCq3YUwG8b1yus0qGSvk8xm9y64tswkXdO1E68rzO85YmHsPab0k6nt\nCdcmYJlNN/2kfdtzu8Rela8+YBXLRQmJ7qWr2p98yaSjUX0AAKAZqP9vESbYojqp5lpNIha9\nGkEWX4ZaqlXAAgDgxNWgAWuy6oaGbP8YNGbAyuLLUEsELAAArDRkwNqSp7c1YPPHpBEDVjZf\nhloiYAEAYKUBA9ae/mmzV2aPxgtYWX0ZaomABQCAlYYKWKtXlBSrTmug1tMd3Jnms+rq1yVg\n1fYYpvEvQwPzAlZTdwIAgOzXUMNlD/eb/nel/vBLw5mraXpUV78uAau2xzCNfxkaGAELAAAr\nDTVc9tdOQxen/Qphw8nSgNXYl6GBEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArD\nJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzC\nHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewR\nsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgEL\nAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewRsAAA\nsMJwCXtewHoms6buHwAAWYKABXsELAAArBCwYI+ABQCAFQJWdrpX9U13+WfVj6Nr3Kq6qTF7\n5CJgAQBghYCVnZouYL3bV3VZhrLaBKz3B/3ktDZn66yjUQ29fI7I87FPr/6hw0nnDtweL54j\nrVYe+5kAANBkCFjZKQxYEwYN2hFdwzJgTdH5tTnulzNztF4C1l2txHfxf9KaqbixhSQErMdb\nyW96XSDn7Qw3fNpB/lybTgMAkG0IWNkpDFiZWQaswbUKWB8NVM2vj4B1t0iL34+dPPRske8f\nSGnlrR+JtIkHrM9Pl78Zc+Ry6RNWKJLvVdSi0wAAZB0CVnaqr4B1KK82AeuZfC14cnw9BKz1\nJ0vbUndl/29Fbkpu5L6T5ORJRfGANUtOO+wsFkq7g/6Gp6TFq/Z9BgAgCxGwslN9Bay1WpuA\nNVT7f2TqI2D1F/eulGv31+SU/UmNXCz/tdYkBKy+8jt3sV3kde/z3rOlv32XAQDIRgSsrLJj\n2rUduwycvSv9JfdDi+7o3Smv27CSvUFVJ2BtNsvv6p1fPOyZ+IvkG6ffUJTf65YFfqaZq76R\nEWWOyldG9y3MLRo0bX2wYejUw6Y+AtaRDvKVz4P1wSIPJzVyycAKkxiwrgyeDbaRWd7yGvlO\nciIDAKDZIWBlkxWFfiDqtjY1YH3YO8hKWlzu13UC1pYpwbbBQZr5cmqslpeREgNWapkxuweH\nW/RBf8tH7n/qIWAtE/+ulOt5kU5Jjax2/5MQsH4uN3jL0+R+d/FSC1lU2+sGAECWIWBlke2d\nVIcvW7+mpLjnHckBa2831aHPrCgvHaLaeZdX2QlYs/S6+W+8Nr1A9Q6/gbtVez6+av3yibma\nu9z5vH/bw6oPb9v2WUSZMcPcNleVl011Yl3C++n1ELAmidwWru8S+W56SwkB67LgieBXZZJ7\niPOlR60vHAAAWYaAlUXuVb2ryl35pLsmB6y5qrcccT9XjXUSk1fZCVh5o7xng+/lqb7nrrys\nOsh/urYiV3t5X8SbH76DlV62UXWw16bZ0ll7VsV6UQ8Ba6jIjNhOp0qr9LmwEgLWVdLNXRxp\nKXO8Xb+x2/z7xl//outTVtcMAIBsRMDKHoc7ac4n/urilIC1YORg/66TWefEIm/FCVhFwbtK\nk1Snucv+mrMlaGui6ovuMhaw0svKVB8JtpQ+Vno41o2IgPXRAt+8M8+0CljdRRbGdv6uSPpU\nXgkBa4Bc5i7eFVlhzPKWMt8839abQYtX3QEAzRYBK3uUh9nJmC/yM83kfkDVf4TmBKzxwbaV\nqgOdxVbV2PycTluj3WUYsCLKlquOiupGRMBa8LPQT60CVl7iPO0/FPko7SAJAesJae0GsHFy\nxmFz+MeSb/Z9XXK3HJzWQp6OvEwAAGQ/Alb2eDYemczAqIB19OCBA3tUi7wPTsBaHGzfpZpf\naUyp6tSw6heq/dxlGLAiyvZ3VL13Y3o36iFg/UFkaWznS0U+SDtIQsA6/G0pOGje6SDDjBkp\np28z0+XUfc72rnJl5msFAEBWI2Blj9mqs8P1O1MDVvnEAcU5/lf+YgEr+D6hqXIK9htTokny\n3aIwYEWVlbrtXTf1tX3J3ajvO1g/qOEOliltK+3OayEXHzBr2rhTOnSUHHfzPGl9qDaXDwCA\n7EHAyh7TVUvC9buTA1bF6IR0FAtYH4a1O6l+asxDySFKvzTxgBVVZt652VvPGV5WldCNiID1\n1l99d5x7jlXA6iHyj9jO54rsSjvXxIBlVuZ1aHPBsL3m6GVylfPxIvdeljFvi7xVyysIAECW\nIGBlj2kJAWtMcsD6m2rneev3HDXmcELAit0YKlTdaczDquPLE1SaeMCKKnN8MGeod1vs5r2x\nXtTHtwhvFok9kKxqKydVprWUFLBC98ip7uT0Z8k499PHIqU1XDEAALIUASt7zEp4RPg/SQFr\nk2qn4HdxKhIC1ntBZfcR4QHvMeBDqW0mPCJMK/PtXzYuT3V4fEM9BKzpIjeH65tFLkpvKSpg\nrW/nTzUaLHYkfhURAIBmhYCVPZ5UvS9cvyYpYC1UnRgUbEoIWOFPIu9WLawy5pWIrwWGASuq\nLGZzD9W1sU/1ELBWifwyXJ8n0jO9pYiAVXWFXO7d6jpD7nEXH4ssTtsPAIBmgYCVPVap3hCs\n7spJClgPqYbvNJUkBKwH4zsOdRbbVLt8mdJmGLCiyuKcRp+NfaiHgFV1jrTZGawXR96IighY\n06Xt+97K+f408Ku9ibEAAGiOCFjZ40Ce5vzHXy1Jnmj0kdjDw93FqoXemhOwrvYnYjdTVGe6\ny8HxmRvK+83wninOD9/rSiurmn37uPDIC1WXxLpRDwHLDBcJHjpuOEnOPJLeUnrA2tpeRvtr\nKt4Zlkirgxn6AQBAliNgZZE7VUd6vyrzQWFuUsAqU+3vFey8YXA3Ve+nnW+N/UbzhgLN8d53\nf1m1yP9m4fa+quvdlUXh3FrpZbeoBpNVHRqkGk7zXj8Ba8dp0mqBu/LJpeL9xKAxQwYM2Bpv\nKT1gqVwa3GKbIB3c+Rl6yK9sLhoAAFmIgJVFNjixasiiFWWT83tPSApYFcWqt63c/M7MzgUb\nh6lO2bTTK5mmI8s+XDe/KDZB6VjVgmlvvvf6jM6qk70tq1Xz5yx9oiqibK1ztNufW17+xqN9\nVMe6W96d63LS1lh3+Y/0DloHLPNIC5Hf/nX8tWeIXOF/h7CtyNvu8rWRrh+JdHOXk8Id5krr\nt4PVXe1laKVZ0lqeqNerCwBA4yFgZZOlef4sVd3WzVR9w90STNOwPD+YAmuNO9+76ixjblLd\nMz6Y1Wp4MCPn0cnBXKSaM8OPNZX9vY9Ho8rKCmPTYo3xGpifNFVWj/T+2QcsM+MU8f3+gL8h\nDFhjJNGFQfWdZ0n8i4yPtZRvXijStb4uKwAAjY2AlVW23H9Nx6IBM3eaBaqvuBvCmdw3jOuV\n12lQyV4nKM3uXXBtmTE3uLOFvnFn7/ziW1+IzxO6YfrALnldhjywKdzw6ejuBVePrIos2zP/\ntqsLcrsMmvKu/7k+A5bZdNNP2rc9t0vs5fnqA1axXJQwbftLV7U/+ZJJR+t2DQEAaHoELNir\nTcACAOAERsCCPQIWAABWCFiwR8ACAMAKAQv2CFgAAFghYMGeF7CauhMAAGQ/hkvYI2ABAGCF\n4RL2CFgAAFhhuIQ9AhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhgu\nYY+ABQCAFYZL2CNgAQBgheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2\nCFgAAFhhuIQ9AhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhguYY+A\nBQCAFYZL2CNgAQBgheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgA\nAFhhuIQ9AhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0vYD2Trqn7BQBAliFg\nwR4BCwAAKwQs2CNgAQBg5TgJWHepvnusbfxZ9WPLqreqbqph33tV3zzWHmUUNl6LLtcLAhYA\nAFYIWDEErBrZBKz3B/3ktDZn66yjUQ28fI7I87FPr/6hw0nnDtweL54jrVY2UNcBAGhMBKyY\nCYMG7bCsmhaw0vdtlIBViy7XC4uAdVcr8V38n7TdK25sIQkB6/FW8pteF8h5O8MNn3aQPzfs\nCQAA0DgIWHWRFrDSNUrAamw1B6y7RVr8fuzkoWeLfP9Ayt5v/UikTTxgfX66/M2YI5dLn7BC\nkXyvouFPAgCAhkfAqgsCVoaAtf5kaVvqruz/rchNyTvfd5KcPKkoHrBmyWmHncVCaXfQ3/CU\ntHi1EU4CAICGR8CqCwJWhoDVX9y7Uq7dX5NT9iftfLH811qTELD6yu/cxXaR173Pe8+W/g1/\nCgAANIZmG7DWTLq2sNO1kzf4n5yAtc5smNC3Y+eBj3zubxqmOVUVM7rnl3ifyiddX5TX46Y5\n4fs+TkSqNB9N7J1XOHDmXn9T/I3x5LYjxAPWTNUbDiTsu2PatR27DJy9K5aBIg7k2Dj9hqL8\nXrcs8CPICNUXYkVjVOOvgSdLazw8bOUro/sW5hYNmrY+wxFchxbd0btTXrdhJbFuWO2WqKaA\ndaSDfCW4/GawyMNJO18ysMIkBqwrg2eDbWSWt7xGvhN9VAAAmp1mGrAOOonKkzPb++x8/HBR\nnr/pj596m5zUcmi48/EhZ/2LUUF1LXjKb2CkasWiXH/b1f6L4mFaSW07QixgPava97OEfVcU\n+rt2WxtmoIgDmS+nht0pXuZ+LlO9OWy6oqN2PBh91PTGg8PuHhy2pw9GH8HxYe/YpnJ/i9Vu\nyZe9hoC1TPy7Uq7nRTol7bza/U9CwPq53OAtT5P73cVLLWRR9HkDANDsNM+AVekkpz5zX108\n0clUc90NTiZaoH3n/3PZzM6qo7w6f1F9UQuGjVjoVB+m2uvvazesmOrUf84rvUN1qbfDbGeH\nv3qbgrSS1naEMGC9kaM9tyfsu72T6vBl69eUFPe8I8hAEQcyd6v2fHzV+uUTczV3ufP5y2LV\nrUHTr6iOiz5oROPBYZ3TG/rMqvKyqU4CeybyCMbs7eZWWlFeOkS18y5vk81uyWoKWJNEbgvX\nd4l8N72FhIB1WfBE8KsyyW36fOmR4WoDANDsNM+AtUj1Ju/7ZuV5mufeFnICVuc73Vemzboc\nzfWeNI1S/dPQz7zqT6pe7z8X+5dq4WdBadGoI+7aGtVc7/tuQVpJaztCELDWddSu/p2sYN97\nVe+qcj9/0l2DDBRxoJdVB/kPw1bkai/3WA+ozgqaduq/FX3QiMb9w25UHewdwWzprD2rIo9g\n5qre4lWqGqvqPbuz2i1ZTQFrqMiMWOVTpVX6XFgJAesq6eYujrSUOd6u39ht/n3jr3/R9ano\n0wcAoBlpngGrb+wdqAmq7ktWTsDqHjxYG6L6gfE35fv5qKqP6upgz9GqC4LSbsEOA1XXuMsg\nJKW1HcEPWFuLtXCdv8Hf93AnzfnE37A4zEARB+qvOVuChiaqvugsNqv2rPQ2HCzQ3lWRx4xq\n3D9smeojQaXSx0oPRx7BLBg5OLgntc4JVu7Sajff8mG+m777/1QbsLqLLIzt9F2R9HyaELAG\nyGXu4l2RFc4RWsp883xbbwYtXnUHADR7zTJgbVQdGKxufvFN9+HaXcFdGePd6PGShLNpjL9l\ng+ofw9CyTPWWoPSBYNM4Ve+Fo9jtoJS2I3gBa881mr8q2ODvWx5EF8cX+fGAlXKgraqx6TSd\nPUa7yz+prvA2vBhPPSmiGvcPuzx8KhqKOkLcAVXvYVwtdlvws9BPqw1YeYnztP9Q5KO0s0gI\nWE9IazeAjZMzDpvDP5Z8s+/rkrvl4LQW8nT0FQAAoNlolgGrVHV88hYnxrwerE5VXRpsCgbq\nF1THhhW3qxZV+aWvpezgp5X0tiO4AatiiOaETQT7Ppuw78B4wEo5kHOEqWGtL1T7BV3088xI\n1fQZ0D1RjfuH3d9R9d6NCVWjjuA7evDAgT3OJXDXa7GbbcD6g8jS2E6XinyQdhYJAevwt6Xg\noHmngwxzTltO32amy6n7nO1d5croKwAAQLPRLAPWo6opX/BzYszaYHVa8HDL2VQWqz4zrFil\nqgf90vKUHfy0kt52BCdgbRgZPGw08X1nJ+x7ZzxgpRyoRJPku0UVhZrnhov9eZrpx2KiGg+e\napbmOO1cN/W1fUFx1BGMKZ84oDjH3+IFLMvdXHW6g/WDGu5gmdK20u68FnLxAbOmjTulQ0fJ\ncTfPk9aHMlwDAACaiWYZsB5QfTx5S8JEowkB6x1/y4zEd6k6qu6M3sFPK+ltR3AC1jAngoyI\nvS3l7zs94UB3xwNWyoEeSs4x+qVbdr+q+3L3YtUlGY4Z1Xg4O8Q7N/vzSgwv83oUdYSK0Qkb\n/IBls5vvowW+eWeeWW3A6iHyj9hO54rsSjuLxIBlVuZ1aHPBsL3m6GVylfPxIvdeljFvi2R4\nzR8AgOaiWQYsJwk8mrwlOmAFm1ID1q7oHfy0kt52hFvd/FGYEMX8faclHGhMxoD1sOr48gTe\n2+3rVN1ZoUZopy8yHDOq8fjcqB/MGerdnbp5b4Yj/E2187z1e44aczgWsCx2S1bTtwhvFok9\nZKxqKyelt5AUsEL3yKnu9wrOEm+Cio9FSjNcAwAAmolmGbDmqU5J3lJtwHos/ga8qXTSREX0\nDn5aSW87ghOwcp74qEDz3gs2+PvOSniK9z8ZA1aJP/lpigHue/Of5ep9mY4Z1Xg8YDn2LxuX\npzo8+gibVDsFX46sSAhYNe2WoqaANV0kNmPqZpGL0luICljr2/lTjQaLHYlfRQQAoFlqlgHr\n5diUnaFqA9aShG/EbVPtmmEHP62ktx3BCVilxjyt+sfgh2H8fZ/UeD66JmPAeiX123seZ985\nZmHssWZkhbTGkwKWY3MP7120iCM4LU8MVjclB6xqd0tRU8BaJfLLcH2eSM/0FiICVtUVcrl3\nq+sMucddfCyyuPpuAACQ7ZplwNqi2iN4/WnL/fe73xWsNmBtVO0Vvi3l5KfbTfQOflpJbztC\nMNHonbHk5u+7yn/O59qVkzFgORmvy5epLZr9+drPDNE+0ZNgmejGUwOWexPq2cgjPKT6j3id\nlICVebcUNQWsqnOkTfhrj8WRN6IiAtZ0afu+t3K+Pw38am9iLAAAmrNmGbDMdar/8tcecW/8\n1BCwqvqprgxKRwQ/pZwxYKW3HSEIWPt6hr+84+97IE9zgkkWSjRjwDKDVcNbNOX9ZgQP7sxY\nVSf9PZbxnKMa9w5bNfv22I/rLPRfkk8/wiOxB4y7i1UL3atis1uKmgKWGS4y3F/bcJKceSS9\nhfSAtbW9BClVpdA7O2mV4ccYAQBoLppnwFqs2tubJfzDjprnTm9ebcByf/2mn/9TOUtUe1SY\n6B2CgJXWdoTwtwhX52jHjQn73qk60vt5mA8KczMHLCdHFX3obdneV3V9UPqWatfYXO1RIhr3\nD3tLMJGXMYcGqW6JPEKZan9v5503DO6m6j7ZtNktRY0Ba8dp0sqbvOKTS8X7iUFjhgwYkDBd\na3rAUrk0uG02QTq48zP0kF9lvggAADQLzTNgVQ1X7fLg0kUTEn7suZqAVTXCCU1Prlv/xj05\nmutPvp45YKW1HSEMWO6b59cfiu+7wUk+QxatKJuc33tC5oDl3qwqmPbme6/P6Kw6OXZOfVT1\n1mpOOqJx/7BrnYLbn1te/sajfcIpVdOOUFGsetvKze/M7FywcZjqlE07rXZLUWPAMo+0EPnt\nX8dfe4bIFf53CNuKvO0uXxvp+pFIN3c5KdxhrrR+O1jd1V6GVpolreWJaq4CAADNQfMMWKZi\nVDBXU47/4Kv6gGUqxoRzOxUHr/dkDlhpbUeIBayjf/JfHg/3XZrn79pt3UzVNzIcyBydnBMe\nYkZ8JoN5GrulFC298eCwZYWxuavGHMpwhOX5wRRYa9w54b0fl7bZLVnNAcvMOEV8vz/gbwgD\n1hhJdGFQfedZ4TNFx2Mt5ZsXinSt7iIAANAcNNOAZcyqe/sWduw3OZgrvIaAZczaidcV5vcc\nsTB8u6eagJXadoRYwDKfdFZ9NWHfLfdf07FowMydZoHqKxkO5NgwfWCXvC5DHkh8z2lnjhZW\nVHvOaY2Hh90z/7arC3K7DJoSP+O0I2wY1yuv06CSvU6Mmt274Noyy92SWAQss+mmn7Rve26X\nZ8PP1QesYrkoYdr2l65qf/Ilk45WexEAAGgGmm3AOv5sUZ1Uc60mZROwAAAAASt7TFbd0NR9\nqAEBCwAAKwSsbLElT29r6j7UhIAFAIAVAlaW2NNf9f2m7kRNCFgAAFghYFXv4M40n9X/UVav\nKClWnda4B60DL2A1dScAAMh+DJfVm6tpetT/UXq47d4V+5maxjloHRCwAACwwnBZvcbJOv21\n09DF8V8hJGABANC8MVzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsA\nACsMl7BHwAIAwArDJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACw\nwnAJewQsAACsMFzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMKeF7D6AQCA\nuA+ihkwCFux5AQsAACR4JWrIJGDB3hfFXb/1rab+d4w6a/+tb33rq03dCdRVS+fPd3ZTdwJ1\ndprz9zu1qTuBumrl/Pn+VzXlBCwco4qfORrtHzTq27edP191/4tAVmvt/PkubepOpQARDgAA\nIABJREFUoM7Ocf5+32jqTqCuTnL+fJdUU07AwjHyAtZYNFddnT9fr6buBOrqTufPd1lTdwJ1\n1tn5+/2xqTuBuhrp/Pn+32rKt0QNmQQs2PMCVlN3AnV2n/Pne7CpO4G62uv8+f53U3cCdTbG\n+fvNaepOoK52OH++K2q7EwEL9ghYzRsBq1kjYDVvBKxmjYCF/5+9O4GTojr3Pv4MqyKKgtv1\nxmjUuOa6JdHcGJMYr/FN4jMMy4CsggYXQBCXgGgkBAUUERUkilE2RZQgLogILhFxQVwBRSPI\noiIIKKvDMky9tXd1d/VwZrpnmhl+389H+tSpU6dOQ3fX36rq01WMgFWzEbBqNAJWzUbAqtEI\nWKhiBKyajYBVoxGwajYCVo1GwEIVI2DVbASsGo2AVbMRsGo0AhaqGAGrZiNg1WgErJqNgFWj\nEbBQxQhYNRsBq0YjYNVsBKwajYCFKra9oy3fg0ClPWr/8z2V70Ggsjbb/3xd8z0IVNpY+9/v\nuXwPApW13v7nu6KiGxGwAAAAcoyABQAAkGMELAAAgBwjYAEAAOQYAQsAACDHCFgAAAA5RsAC\nAADIMQIWAABAjhGwYOrLMb3ateg88IXSfA8ElbJkdI+2Re1vmLg63wNBpa1pozon34NApXwy\n6orW7XqOWJTvcaASyuYPv7y4Rcd+k7+t2HYELBiaUqSeqzhC10DbR/r/fNpiWr7Hgkoqu1kJ\nWDXTztGF/vtvdFm+x4KKWvuX4NOz1TMV2pCABTNP2S+uv06Z/vClql035XswqKiygfa/X7+x\nU0d1th9fyPdoUDkzlIBVM5XdqVp8zzNTBtoxa1K+B4MK2nq5as/pCxa/MapIdXpFtiRgwcjX\nrbRonlPYNkj13nyPBhU10/5/r3ecQsk9qu2353s4qIw1xdqFgFUjzVbtvdYpvNtKW1TwMhPy\nbbzqAO/OmHcLtbgi5xcIWDByf/g/XiUdtTmfEDXNVaozvFLpparv5HcwqJSym7TjFAJWTbT9\nEm273is+dsuDK/M7GFRUN9VP/WJf1X9XYEsCFkyUdtAWm/3yI6pP5nUwqLANhdqyxC+PUn06\nr4NB5Tyn+tJ0AlZN9Ibqo/keAyqtuWrw6Xmf6uQKbEnAgonFqv2C8keq/fM5FlRC6drwf5sf\nUv1XPoeCylldrAMsAlaNNEz1y3yPAZXWRnWrX7QDVkW+JETAggn7c/3hoLy9UNvmcyzIzmDV\n1/M9BlRYWX9tu5aAVTNdpp3tPzcv/fjrfI8ElTBQ9UO/2C9xtdAEAQsmHop+eaKTKt8jrLE2\ntdI2W3ffDHuY6e63PwlYNVFJofa3Ft3sTNTQdfK2fI8GFfWxah/vM/PtQr25IlsSsGBiuOrc\ncOFqVW7TrLHu5HviNdHqYv2rRcCqmZapDp3R3J9Jqfd3+R4OKupJ1Uv/9d6iuSOaa491FdmQ\ngAUTt6m+HS5cp/qfPI4F2Zisev3OfA8CFVXWX9ussQhYNdNHqlcXdZ29asfa6R1Vb2Sm0Rpn\nfn8vHXedsKVC2xGwYOLvqu+FC/1UF+dxLMjCRNUrN+Z7EKiwZ/1pNghYNdE79qG52wa3uOpi\n1TfyPBxU1Naxnb2AVXhdxd5+BCyYSDqDdS1nsGqobUNVu6/N9yhQYV8Xa3/3vAcBqyaabx+a\n3/LL01QH5XUwqLB1V6iO+Pj7nWtf6q46uiJbErBg4q7oPVg9+c5xzfRNb9W+m3ffDnuYsn5a\n7P0CKAGrJlqkWlTql9eqtsvrYFBh/cPveG27vmJvQAIWTIxVfTZcaK9asQvR2CN81FH17h35\nHgUq7plwHn4CVk20XLVTuNBalTdhjfKpaq+gvED1ugpsSsCCiZmq/wzKW1U75HMsqJw3W2hh\nRebIw55ibWu9fK7nXtUH5879PN8jQoXsaK7F4UL7xLTgqBGmqo4Nyt+rFpaW0zYFAQsmlqhe\nH5TfVR2Yz7GgUt4s0tZv7b4Z9jwfaYox+R4RKqa76hq/aIetlnkdCypqfOTncXY1r9AskAQs\nmCi7NPELz6PdGQ9Rs3zSSos/zvcgUCkErJpubOL3PxdW7BoT8m+q6sigvEa1eQWm2SBgwcgE\n1Ye80rrW2pqZwGuarZdpiw933wx7OO7BqpGWqnb53ivepvpYfgeDClqgekkwd+DLkWs5BghY\nMLLhYi181SlsuoEPiBpotOqT+R4DskfAqpmGqt7i/m/pv1SLmcq9Zim9QnW0d9pqTZeKXb8h\nYMHMy4WqNz3+zD86ql7LTOA1zZoiLZwwKfRMvseDSiJg1UzfXqZ6ydiZT1ynqi/mezCooAVF\nqn2eXfDJ22Mvto+CFbjHnYAFU7Na+TeA3MQcDTXO3OR7eLrlezyoJAJWDbXqGv+913pWvoeC\nCvvgkvCz887vK7IhAQumvhnb++KWXYe+me9xoOIIWLUEAaumKn3pb11btLtmwvp8DwSVsH3W\n4MuKi9pf88DSim1HwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAA\nIMcIWAAAADlGwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcI\nWAAAADlGwAKAvHtfRIZU3+7etHc3zLBtifheMWreym99WaUHB9QOBCwAyDsCFlDbELAAIFYP\nSahz4I/+dOunVbevPTxgHd/cttBZWtbrpEaNftJ3dVKTtYdInbf88u1O03oELICABQCxogHL\nVfDH5VW1r2oOWMt69OjxomFbJ2DdFCw838j7qzj4nWiT9iJ9krZpQsACCFgAECstYIkc8O8q\n2lc1B6yKiAaslftLwWVPP91O5IebEi2eEzlma9I2BCyAgAUA8ZyAddf7nnnPD/9dgb3c5D9V\ns68aErCuFPmr89hFZGjYYNORIimnwwhYAAELAOI5AWtaZPn1/7YrWlTNvmpGwNrRRPZ1z1x9\nKnJy2OCq9DRFwAIIWAAQLzVgWQvqiRSsqpJ91YyAZY/yt17pByLf+etfK5D/+i5lGwIWQMAC\ngHhpActqZ9eMdQpv2IVXrfW9jm5wyCf+uld6n3lo/WYntZ7o35zU3G4yP7LtI/byLV7xyzsu\nOvqAugcc23rMlmBtcsBK7cuy5tvrX7as9YN/3qRe0zOv+zzS8fZJbX7StMHh59+xPjrU9C6i\nwm8RltNvIBKwJohc7pXOE5njrz4h9W/JImABFgELADJID1j/EP8eJCcPTd94knPf+/vumo9/\nEd4If/hkt+Zxu9gvsm2hvezO87DjL/XDtgc/5a+NBqz0vizrI3vhWesJ/zt8Uv/hsN/ZRweN\n9xsZVsZ1ERUGrMz9hiIB6y6Rm71S2/Cvpp9Icdo2BCyAgAUA8dID1hN2TS+n8IldePx6CQPW\nrP2d4g/O/HFd59G9//v7xiI/Tmy6qaHIz5xCmXrfR/zhge7MD1O81ZGAFdOXZX1mF594rI5I\ng6b1nOo6r/n9TnBb1d3H7fQaq5wuosKAlbHfhEjAGihyq1fqIjLBG3g9abombRsCFkDAAoB4\n6QHrAbtmgFNYahdG7y8n9R124wpn0Q5LdXots0sb73Ny07+cNh3swoJw04n20t1O4T67cOj9\nzuW8z65wvpb4rbs6EbBi+7KWO+ubFPz5A8va/uKp9sJ5Xrfz6os0/NuSXdbXdzV2Ql85XUSF\nAStTvxGRgPV3kUFeqbPIROdx55ki49P/6ghYAAELAOKlB6yuds2jTmGFXfidXFfm118gUvCI\nX/74AJGjSuzC9CCNuVSkrjv9+TF2+HkvsgdvQvVEwIrty1rpXAIM6r85yG7zjVu08029V7za\nl+qI/LA0cxdRYcDK1G9EJGDdLXKjV2ot8rTzOETk/1nWhgFn7L/PcVctC7chYAEELACIlxaw\nVjWyw5EbQL5wLqf9JshX79oLXcJWo8S7fLajqchPgsqNDUUudArOua/fBrVON25tImDF9+Xt\n8Iqguru9MMspvGIXrg5qL7UXnsvcRVQYsDL0GxUJWI+JXOKVfiEyz374zz7SeIW15IfeHVyN\nXg62IWABBCwAiJcasNacZVe0d4tuLnkhWNHLXvg4bPa9HcOKnMLl4t/Wbrnfv/Njzrblby0M\n2x4pcrxbCANWhr6cHRaE3/Ebay896BSutAsfBbUzf3D6/03K3EVUUsCK6TcqErA+9u8js0oP\nkHolllX2a5GRVunpImc/8MjFIk3X+tsQsAACFgDEiwasneteu+lge/lAL4w4uaTxzqChHTCO\niWx3oZ00nEfn9NJgv05FGm1O38WZIoe4hTBgZejL2WF4OsyabS/d5RR+LHJYWqcZuohKClgx\n/UZFAtau/5K6q/yn9iv7YbTIOWXWePtP5++it8gN/jYELICABQDxYn6LsPFL3ionl5wbtPu+\njsgFke2us1d+bT/uOkLkp16Vc4WwXcwuzhZp5haCgJWpL2eHHcLa1/3W2+p4QSdJpi6ikgJW\ner9Joj+V00/kUvth5zkiD9sbHyANP7Gs80VmOyvX1JMjdnntCFgAAQsA4qUHrF8Es4o6uaST\nFVlodFTCQfbym86KPnZhmdtkvH97lGvbE38++7B9gz6TA1amvr6I3mzl5iOntTPJQpvUYWcc\nTkRSwErvN0k0YH17qMiFo+/9mcjpOy3rIvcMXek+su8Od61dvdhrR8ACCFgAEC8lYB3dJfGL\nxk4u6RksLEg/0+Xdn/W2XRjuNrGjyCHBFcVHj0hqmRywMvXl7PC6cPdBEHpPorez7244EUkB\nK73fJNGAZb11oNfhjz63n4gXsxbbD97KLiKPeSUCFkDAAoB4TsAatdjzyVfboquScsmbMYlm\nqrvmOJFfOo8bGiTy2CAvrZ1T2MF2cGrAytRXfBByfrGnW+qwMw8nuU2lApb1dZ8T993v9IGb\nLGvtIVLPmW9itsgfvHU3idzhlQhYAAELAOKlz4MVSsoliyRyvTDJzSIFX1neFUL/Kt2LBXa5\nxwq/Qdo9WJn6ig9CH9iPnVObZh5OQuUDVkJ7/6eApom09moG+z8kRMACLAIWAGRgGrCcyTqb\nxzZzfulvlP34J5Fj/aoL7KoRYYOfpQasTH3FB6Fl9mNhatPMw0nIQcB6TuR4dwLTScHcFdbw\nsC8CFkDAAoB4pgFrR0ORU+LbnSryO+8K4S1exZY6Ij8qC9cfkRqwMvUVH4R21A/vf0ooZzhJ\nHWQXsDYdKQVz3FLiDNYQzmABCQQsAIhlGrCsn4vU3xjbzo4c9b6zxkk446jzK9Fdw9WfSmrA\nytRXhiB0ikiD78PqTxYv/qLc4SR1kF3Aukqku1d60f21HAf3YAERBCwAiGUcsK6VpF+j+SSR\nbpxreI9bzUV+7lfMsyt6h6uvSQ9YGfrKEIScIT4d1DrXBq8sdzhJHWQVsOYUyJGbvOJ/RP7H\nK3USecIrEbAAAhYAxDMOWM7ECCeVBkslP6j/u/Bbe/8rcsn3+4rc4y9/Gr1B6r0G9lIjtxgG\nrAx9ZQhCc+zCr4PaYfbCv8ofTrSDbAJWyQkiM/zyrv2kgfdr0j8R+cyrI2ABBCwAiGccsKz/\nsxcv9++s2lEs4Ykcy7pX5IgZInVX+8ul+4sc4M+rvuiI/X5pt13nlMOAlaGvDEGozA5wcqtX\n+ZGdag7fXv5woh1kE7D6iXQMF1RkuvO4tCC8lZ+ABRCwACCeecD6vLG9/LvX7ExT8sRP7eJv\nwzWr64pcEN6kZOtsrz5nqV34auC+MurGINEkAlZ8X5mC0Pz6dvHit74vW3b7AeGVwczDiXaQ\nRcB6r54cui5celLkF84sqh1FbvOrCFgAAQsA4pkHLGu2E2lkv+MOdWa5kpPXJNY4Z5NEJobL\nnzkt6/74Vz+uI9KlbLqz8pSzP40ErPi+Mgahx+u4O/D+DO7uyjycSAeVD1g7zxCZnFgsO0fk\nl2MnNRc5eqtfRcACCFgAEK8CAcv64FcSKOj6XWTFQ05Voy2JihcO8NvV/asdVU51iwujASu2\nr8xB6OXjgsb7j9r9cCIdVD5gDUmZfeurE71dHfZRUEPAAghYABCvIgHLDjrXnHl4g0ZH/N/f\nPk+q/q6hhBNxer6+6adN6jY583p34oav2jarf0Sbb5ICVlxf5QShksfbnHhgg8N/d8d6g+FE\nOqh0wPrPPtLkq6QmWwef2XjfU/olBkDAAghYAIByZPqpnPIQsAACFgCgHAQsoFIIWACAzAhY\nQKUQsAAAmRGwgEohYAEAMiNgAZVCwAIAZEbAAiqFgAUAyMwJWMf9ybbAqPkQp2k9AhZAwAIA\nZFYSTFn6ilHzVn5rAhb2dgQsAEBmBCygUghYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUA\nAJBjBCwAAIAcI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBj\nBCwAAIAcI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBjBCwA\nAIAcI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBjBCwAAIAc\nI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBjBCwAAIAcI2AB\nAADkGAELAAAgxwhYAPZ8l4jtJq/8tVOWkirYS9X1DGCvQ8ACsOcjYAGoYQhYALLzphtLpODz\nDOsneut/ms0+CFgAahgCFoDs+AFLBmRYfwEBC8Deh4AFIDtBwDq6LHb1l3VyHLBW13Vsy6a7\nhOEDBjwfLuS0ZwB7NwIWgOwEAUtejl09VHIcsHJpU4FI79x3CwAELADZCQNW59jVJ+/JAesV\nIWABqBIELADZcQPW8fZ/+22OWfu2vWLfw/fUgDWMgAWgahCwAGTHDVjdnT8eilnb067/Q7M9\nNWBdTMACUDUIWACy4wasgf9j/3Fu+sodTra6t+GeGrCOI2ABqBoELADZcQPWjf2dP5ekrXzS\nrd5T78HaUEDAAlA1CFgAsuMGrOvmOX/enLayyK49pSQ+YG2cPWHEoOHj526J7fa7mWOH3j7m\n3959XbsNWGULnxhx64gJb+yIW7nt3Un/uP22UY/MS52B4SUxCFhfzJg4YvD9U+Zszdzk6+mj\nbhv2z5kbY7f+54hBd4x+6pPS3ewGQO1CwAKQHTdg9Sz7b/vPH6ZOhbWuvl3bf2NMwPr67z+t\n63+/sP5vJ+xM7fSFP9b3VjZs/oa124lGF1x+iN/Xfi1fS+lp84O/rhd8z7HBeZPDBPaFJJkd\n3/OSXieGG/92eDRjrXHqfuOUpv6qwGtR5zczkvc976pDwx0c2G5W/N8fgFqJgAUgO27Auty6\n2nl4MWXdvU7lO+vTAtbOgY2S4s3xryRttrFzZF1Bj51Wl/IC1nd/Loj29cevo11N+q/kIHXy\n+/4Kk4C19sp6SY0Ovy+RIDc7FWfabS6Mtrhke2Lr1W2SdyG/TL+ECqC2ImAByI4bsC615joP\nHVLW/cyu+7H1TWrAWv+rlOghde6MrN72m+SVRbsuKydgLT0xpa9DPkx09ZfUHUkD/0SSQcD6\n/MdpW3cNr/SVOovHW2tPTm7QKdx62bFpWzd5s5J/xwBqHAIWgOy4AauLVXaM/bBv8m1IHzur\n/m6tTglYm89w40bBOX8Z/dAdXY7ywsc9ifXtvZpT+47855D2B9ulAVdlDlirf+S3Lry07Wne\nz/IcEp4pGuGta3pRr7/+tee53lXHAz5xV6057bTTnL7l4NMcb6X3vPRwd7neL/vd+/CdV53g\nddUmHKWzrx/sOt/+c78LL7u685n+Fc9n/dWlZ7qL9c+9csDQvl1/1cBdOjzp7BqAWoyABSA7\nbsC6xLIGOo8PJq3q68SoZV5wiQSsi92wUejHoF1TjnAW64bnnV71soh/P9P2YY2kwYWZA9Z5\n7uIVy9yFFV3cpXP9K3kr93UT1Vj/Fq+vL3XXFoUD6e0sJm5yT+5517nuYqul/vJzx7nLE4PW\nztwTB48SOXSMt8Vydddf4K++382Q16/3F9f/1Y1Y3XfzlwmgtiBgAchOELCWO3dC/TK6Zpdz\n4/tvrdSANd0NIgMS7b52L/L9Jlg821nab0G4+qV9vXNDsQFrnJtjHgkb3+qunewt9HPPQM1N\n7Kmnu/bjYLHcgHWPu9QnMkz3JFazdf6iM6qGB8opXwXrS3/trK+zxltyFwZF/jZecO7narDB\nArBXIGAByE4QsLxzSf+JrHnBqRibFrBOdRY7RbtY7JwNkunewodusBkeWX175oBV5p5Wuj7S\n2B3F2V7ZXXlxZOWWJk7NXcFieQGr9AfOwjnR70XOK4iObD+39UFfJdZ7v8ronXkrda4Y7pM0\nA8W1ztonLAB7BQIWgOyEAWuCU+gfWdPBXm60OTVg/dtZavJNUh/uL+2098p/c8pNo9Fk+1EZ\nA9YM92zX+kjjWe7qlU5x008OqSPyaHRHHZ2VLYOl8gLWs+7Cu0nDbOtUneoveAHrgeh654yd\nDHWLq5zicUlbf9r5lodfXmsB2CsQsABkJwxYW/cX57bvcMWmRv6ZquSAdbmz1C25j4VO3QHe\nPKBnpp3g8r8LGBew/uyUO0fbljaW+of/JJhzqnTV+0n33d/ttP/fYKm8gOXOsXB68jCfdhss\n8hbcgNUsadasPzhV3kXFlU7xQAvA3oqABSA7YcCy3HvIXwhXPOQsOjNjJQesI5NbRSrdOUJL\n3ZvBJ6TvIjZg/dApj0tq/FXchOqBSU7744Ol8gKWe4VwSPLWJe7sXf/wFvZLy3beibg/u8Wd\n7pcKnyxnKABqNQIWgOwkAtYcp9QuXOHMZnWkc0IrKWC5czbIVymdtHAq73dKn7jrP0xau71B\nhoDllT8yH+wzTvujgqVyApY7UbukTgv/S6fycq/sBqzRSatviPwFnOWelEuZ2h3AXoOABSA7\niYDl3lS+T/A9uWXOLeHuLVlJAetFZ6HBrpRO3O/7Xe2UprnJJuUs1AkZApYb6WSz+WCfNQ1Y\nM93y+pTN3Z/sOc8r75d+Ju4Wp6qtVx7ndiB/nL7dArAXImAByE4kYA0Kz0NZ/rxY7qSeSQHL\nDx5xCp317vxRB6Ts4/wMAcvtrPw7nco+vLPDL/77gLqR/RwVrCsnYI11io1SO7vZqT3BK7sB\na17S6gGRgFV2kb+3A5rf/V5qngRQ6xGwAGQnErBWOrOb/8KvPy4sJwWsOzIHrN866+90Skek\n7KN1hoDlzlX1g3IGt+0fx6Tv56hgbTkBy70b/sjU7oY7tc28shuwFiatjgYsa9MfEns8qPWD\nfH0Q2LsQsABkJxKwvDNNi92i+9uE3v3gSQFrYOaA5Tb5m1M6NmUfHTIErMFO8Tgro09OitvP\nUcHqcgKWO8wTUvsb7dT657V2F7CsXcMOiOy03u+nlFkA9hoELADZiQasiU65r1vsZpcafusW\nkwLWgMwB60RnvTslw0kp++iUIWANiGuc8G6QcJqe+MuL2jrONQ1Y7jBOTu1wjFNb3yvvNmBZ\n1rrbk36I+vRZFoC9BQELQHaiAet7J9EcUWqXSg60S8VebVLAcq+ypV17S/hr3BmsizMELHeO\n9x9l6mrjsW7TI4eFP/5sfpN7f6d4vJXiPqd2P69sELBs/xnxfw3ChFVwS6ahAqhtCFgAshMN\nWN7En87cBJOdwnNeZVLA+qezUM596UOd9f+dUvmHDAHLvWR3WKaurnFbto1+ydA4YLm/aZh2\nd9cwp/YQr2wWsGxbn+vzkyBi3ZW6EkAtRcACkJ2kgOXeeeX8+t8fneSz06tMClhTnIW6OzN2\nN8pZn/otwp9lCFiPOsV6pfE9bXdmlpdzknb1hGnAci8G7pPapTubxCle2ThgOZYNdadSlYbL\n4scKoLYhYAHITlLAsn5sLzTeZq2rZz9e59clBay33aDxccbu3LnWZVNy5cEZApY3xfvK+J68\nSbJeTqobYRqwvHmw1qR02d6pvNArVyhgWda269wer41fC6C2IWAByE5ywHIvrb1gPew8LPDr\nkgLWNveWpMczdveum0MWJdW5v5wcF7A2F3i7i/UPZ91ByV/da2kasFa45ZdSujzdqfR+bLCi\nAcuyrnDWpn0xEUDtRMACkJ3kgOVOhdXHam7/eUZQl/xbhO6POXfJ2N0WNzMl/xbhhEwBy/qR\nU74xqfHMYTYnGbnTnv5P0rqN+5sGLOtwpzwgeWwbnPNyMslbqHDAcn//uS5zNQB7BwIWgOwk\nByzrAnvplG1O+rg7qEoOWH2cpWbbkjtZmLgY584MemnS2lYZA5b788o/SWrs/l7gSMufyuqX\nSetuE+OA1dkpn5g8Snd694JV3sJuA9by1J/wcX8q+nsLwN6AgAUgOykBy73v3DnlVO+boCo5\nYC1yY8yIpD5Kj69z9q0feGU3MzXdElm7vGHGgPWqu/BipPFX7o/iOH3d6xSOie7mEzcUJb6j\n6Aasq8PVST3/2114PWmYv3WqzvUXyg1Yn99wflM35UXsdE7u7W8B2CsQsABkJyVgfd/EXnQm\nUC8Mq5IDlneKqdnyaB/umaWzvfJsN9kMj6xtKxkDVpl7jfDUkkTj7uGFwafdhssSq1afIu4l\nwn2Cy3TuybROyeMMerZOdhbOil7R836H+lF/qdyAtcoJU0duSVo7y1l7ugVgr0DAApCdlIDl\nTuHumBrWpASs2e5dVidHvqH3oFvzlLew053QYJ/54dq/i9TNFLC8eRekbXjFcazb1UNOcV1B\n8sg+PFbEa/6RX3OLs5CYCD65Z+/Gr8i3/j52b8s6KZj2ofxLhO7Jrj9FrwduOc2pGmQB2CsQ\nsABkJzVgveHlq6bbw5qUgOWdZJJDJ/tR5bN27vLvg9XunU6y/z93uEuLm4s0vjJjwPKSjPx0\nlnuq6bOu7tLPdrmr3F9GlD7eeaTFV9d1ZuhyJ3y4zN/2QbfBGKe4K73nQnfEDzy+AAAgAElE\nQVSx3ZfeUuk4d9O6c4LV5Qes19yNT3xih7+qbKZ7RqzxF7v76wRQOxCwAGQnNWBZJ7jZokei\nIjVgbTnDy2CHdL5pxG1X/tRbODK8ZWvXWV7NQUXde13sdjbcvYTYL9JbIgZ9fZzX+ojz2rU4\nscDr9zNv1Wy/n9bX92pzilM69jtvngb55Q09n7WC28Hk5JZ/PPXc9J5X/8Bd3ufCgQ88OLTj\nf7sLBfeGz2I3N7lf6fXd+Pyr/nrb33o3P9RbvL9yf8cAahwCFoDspAWswW6UeDtRkRqwrPW/\nklQnLkusXnNc8rriMvd+9WsjvSVikLXi6JSuDgt33SN5xZGfW9YLwYJ7l/3Pw3Vnx/T82bGp\no2zwSGKUuwlYpcVpz1FkSEX+YgHUZAQsANlJC1hfOjd4nxSpSAtY1o6/75sUPOr1SZq6fcV5\n0ZVX7rTGOY9XRXqLxCBr41UF0eYXfh2u2XlV0gr3rq8rogFrfsPyApb1XdeknuWcNyOD3O00\nDfcekBKvTpq5279MALUFAQtAdtIClnWhXTE0spwesCxrzd9PCYPH8QNWpHY64Vd1vHUNLnJu\nenreKXaK9BaNQZb1dvv9/a72az4nqZ/nz/UjUr0/zPCrHjmvad39j/rjK+7Cayf6GzaP7/mj\nXscHozy4eEZS17ufaHTj8F/VC5/k/q2fzPwDjABqHQIWgDxZ88IDQweNeHjmuvi10x8aMuT+\nl1Mn68xg5zuPDB9014Q529PWrHt69G23P/DKxgwb7nrjvkGD//F8/BhcK6ePHTZkzJPvV2oK\n9s3vPDHq9r/fOebJz5jBHdi7ELAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAA\nADlGwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlG\nwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlGwAIA\nAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlGwAIAAMgx\nAhYAAECOEbBg7vuDbPkeBAAAez4CFsxtFVu+BwEAwJ6PwyXMEbAAADDC4RLmCFgAABjhcAlz\nBCwAAIxwuIQ5AhYAAEY4XMIcAQsAACMcLmGOgAUAgBEOlzBHwAIAwAiHS5gjYAEAYITDJcwR\nsAAAMMLhEuYIWAAAGOFwCXMELAAAjHC4hDkCFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfA\nAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghYAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAEL\nAAAjHC5hjoAFAIARDpcw5wasZwEA1Sffn/yoJAIWzBGwAKC65fuTH5VEwII5AhYAVLd8f/Kj\nkghYMEfAAoDqlu9PflQSAQvmCFgAUN3y/cmPSiJguf6i+oVh0xtVl1f3PnfvVtWPqn7fBCwA\nqG6V+LDGnoCA5SJgGSFgAUB1S/kgfuWHIs+nfTw/LxHnu1WvXtSs/lE9VyfaTJS671Tikx+V\nVIsD1n06xbjt3b16rTFsmnXACsZVgX3unmHAynLfBCwAqG5JH8Ml1xZIXMB6LC1gPV5XfnfJ\ncXL02qDJN83kL5X44Edl1eKA1bsCAasCsg5YVTIuw4CV5b4JWABQ3aKfwu+dItIgLmD9Q6Rw\nQGC8XbH5ILndsnacI5cFTdrKj0uyOQKggmpvwNpWtGcGrKoZl1nAynbfBCwAqG6RD+G76ss+\nI9vGBawhIpOTKsbJgdvth2nSaKtX8bQUvJrNAQAVVXsD1iLdMwNW1YzLLGBlu28CFgBUt8iH\n8GnyP4us2IDVV2RmUkU3udB5WC3yuru84Qjpns3nPyqs1gSsbTMGdm1d1KHv5A3u4iT1DLhZ\n9YWw0RDV553rZFpqvTmwS4uOfWeUeisSN30vHHlFcesrRi3N0G/5ASuu8S7r83u6FhX3HLsh\naVzhPmNGY+369+Buxc3b9rp/ibMU8xTSBmoHrMXW0ru7tWrTc8LmsPGCkVe1Lep0/cS1yX8n\n5Tzf5D2nImABQHWLfAif3rPEig9YV4i8lVRxvn9tsIGMcx//LEduij1woarUloD1WVc/PWj7\nBc5yGCbmqN4QNCpppa22Wtb1qhtH+euv2+KuCQLH1lv9+sLx8f2WG7DSGw9QLZnR3KvrssaK\nCzkxo1nfO+hH/2kvxjyFtIHai5/NKPKqLv3Ga/v9oKCXlk9bsftO6yZlz6kIWABQ3SIfwh84\nf8QGLLvyk6SKn8vV7uOBcq/z8HKBzMhw6EIVqSUBa0MH1T7Pzl8w+xrVNuvsik2rHlZ9eNWq\nb3e2V/3Sb/Vv1WH2Q1/VR/XqaW/N+UcL1YHuGj9w7OqvetmkV2feY0eVSbH9lhewYhoPVH1J\nu015c+74Nqq3RccV7jNmNH2dft5dMGd0sar91op5CmkDtYPSVHdHY+0dDXKb7rK7ueRfi5bO\nH203ei5232ndpOw5FQELAKpb6idxbMC6UGR1UsVZ/hXB/WWk8+l9rHSKP3KhytSSgDVJtd8O\np1A21M4QbtUU/36jB1XH+a0Gqb5nuRGpaKh7NW6hHSwWOgU/cMxQvd79ksWCIi1aE99v5oAV\n09jeY9tBbt1C1eZbouMK9pk+mmWqvd1trJVttHNZ3FNIG6gdsNr83bmh0VpcqM3d88BPqV7l\nXap8S7X427h9p3aTtucUBCwAqG6pn8SxAetskU3j/nhY/YPO7LfCrbhAOjgPO+rIRPuhjxy2\n3vrPtb85u93T8Qcw5F4tCVhTB/Se55UW2xnBLQRhYoVq511uzdaW2tUJDXakaeNfir5XdbTz\n6AeObmF4ult1cny/mQNWTGM793Twv8DR089yMQErZTRzVCf4Xc5+dPb2uKeQNlB7Rx39HV2j\n+qn9UHaZ6gd+N4NVp8btO7WbtD37tnzp+axhQwIWAFSr1GNNbMA6Qeqc6M+C1WC4U9FDznIe\nPhKZb1nz6sgU6/mG7mpuda8utSRgJWxR9c6DhmHiOtX5buFFPz7YkWaE33q+qvta8wLHMtWe\n/ooVL779pRUV9mvyLcKwsZ17HvTrhqnOTRpXImCljGZecJEvlPoU0gd6a3DOzLKGqzo5b6nq\npcE5qLmq/WL2ndZN+p49U38aOJOABQDVKvUTOTZgHWZHp6adh4zo/l92YYhd8YTUcy5vDJOm\n263tP5EW1sZDpfnKrfcXyDNxH/PIvVoVsEq3btnynWpbdyEMEy+oDnYLA1S/ch7tSBN8m/Vb\n1RbOuSEvcMxOZJ3M/e4uYCU1tnPPa379aNWXksaVCFgpo9nUSnX4smifqU8hfaD2jl5P3pG9\nzdBg7Wp7PGXp+07rJn3PHgIWAORL6idybMBqKNLb/Qr5938WqbPYsrb/QFputT5sJn3tQ4cc\ntMp6QBpvtNe3839IB1Wu1gSsBff0aF/off8tJWCVFGuR86raVKTerwTYkcb/kp9VZm/irPMC\nxyOq43fbb3kBK63xrYld3a/6YtK4EgErdTSznT6uHP3axqDf1KeQPlB7R4uSd2S3GRusLbP7\n25q+7/Ru0vbsIWABQL6kHmliA9Z33wWf22W/E7nc+TxvKI2OLpDTtlgLG8jDltVKCp3Vj0m9\nbWlboyrUkoBVMlgTUgKWc2uTc1ffTNVZ7rIdaT4LNixWdU6ieoHjQdXHd9tv5oAV0zgy/2c5\nASt1NNaHN3hzJ/SfUxb7FNIHmr6jMd7NWZ5WqmvT953eTfqeXc+e5/nt6acRsACgWqUea2ID\nVsQskaOcx3eKmjU4ru8Gq/QsucBePNE5l2VZ74u8V97WyJlaErBuV23z2JLvSi1re3rAWqzq\nTAdys7b+3l22I83nwYatveThBY6HVB/Zbb+ZA1ZMY7OAlToa26cT+7inwm7YEPcU0ge6+4C1\nLn3f6d2k7zkJ3yIEgOqW+km8u4D1vUid0sjyndLYOWodIs4kP9YXIrPL2xo5UzsC1nLV1n7q\nKUkPWFYPJxN921zv8hbtSPOxv8a5KOdctfYCx2Oq9+2234wBK66xWcBKHY1n09xhRar9455C\n2kBjdvRo4rZ3a5cdmErS953eTcyeowhYAFDdUj+JdxewyuqIRH7VeUkjb6pR/2GNyLTytkbO\n1I6ANU31Hr+4PCZgPaU60WnzobdoR5rgFy+/tUOR8+gFjle8yUDL7zdjwIprbBawUkcTWtEp\nuLUq+SmkDTRmR7OCG+Ntq1Tbxew7vZuYPUcRsACguqV+Eu8uYNkRar/EUtl5co47z09TudN5\n+CL1RwtRVWpHwHpI9Um/ODkmYG1qoZdb1+hl/m1FdqR5yF/zrj9hlRc4Vqp28tusvPfeZ+L7\nzRiw4hqbBazU0STYHU2PeQppA43Z0TLVS4L7qOwkdUvMvtO7idlzFAELAKpb6idxXMB6qtuF\njwblx0R+lVjzgDT0fkPnWLnJefjAnRgL1aB2BKwJ4dfh1rdXLXZLUyL3IA1VtTNG8OqzI01X\nb75y6z7/Opofdq5UfSvscWJ8vxkDVlzj+IDljSsRsJJHUzb+lmFBn9OCG/NTnkLqQGN2VHa5\n6jt+1c3+L0Sn7julm/g9RxCwAKC6pX4SxwWsB0VO8b8cuONMkTvCFV82Ef9ihop7XJosdbem\nfbijKtSOgDVHtbt7S9/aq3t38O9jmhGZ5Ok91XZa+LW/ZEeaQu+njD9roYXuHeZ+4Jhphx33\na3yftdKir+P7zRiw4hrHBKxwXImAlTKafv6MWZa1rZfqyrinkDrQDDu63LtRfZZqp5K4fad2\nE7vnCAIWAFS31E/ipIB1TY8ezmTTW5qJtHU/8Tfbqw9OTLWjcsZOr3S3NHMiWCf5dewhDDlX\nOwJWSXvVm95Z8eHYNi2X9VW9b/lay/pAtcXEl55wL4E5PxujNwat7UgzWgfM+eyjycXq3zXu\nB46y/qoX//OlGXf7P34c12/GgBXXOCb3hONKBKyU0SxqrnrLc/MWvPHIZYnJQpOfQupA43ZU\ndrMdn55avOSNOwu1+btW3L5Tu4ndcwQBCwCqW+Iz+LUBjlNEOjiPzo84OxOMvu88PlnHzlU9\nRtx1xcEi9RLXHyZJvff94rom0meXNauePJHhSIocqx0By5rXwp99aqE13XkcZ1m7urs13ndV\nH9Pw3IwbaVYO86er6u+dU/UDh1UyyK8vHJ+p38zTNMQ0jsk94bgSASt1NHOKw+m0hoQTwiU9\nhbSBxuzIKhkS9NLev+Keuu+0bmL3nEDAAoDqlvgMHiJRJzhVQcCy/tU0qP/vf4cbrD1EEl8I\nf7SOHH6CSLv4IxhyrpYELGvpsEuKWveavMGySsd3bXnFHLvqm8EdW3YZ4N3EvbZQi8NvrTqR\nxnp9UNcWHfrN9O/xDgKHZb07vFtxq8tHfZ6x33Jmck9vHJd7gnFFAlbKaKzvptzUpWXzi3vd\n91Gi86SnkDbQuB1Z1qJ7rixu0fnmaeEF95R9pz/fuD0nELAAoLolPoPLC1jW+uEXHN5w3yML\nx0T+77i9nBhZevmCJvucPjI6RRaqUm0JWLuxUnVkuGDyc83Vx3Q0SU8hTwhYAFDd8v3Jj0ra\nSwLWKNWl4ULNDFhJTyFPCFgAUN3y/cmPSto7AtbKIr0psVQjA1byU8gTAhYAVLd8f/KjkvaK\ngPVdd9VPEos1MWClPIU8IWABQHXL9yc/Kqn2B6wP5k9ur3p/pCb7gLV1bZpvK9uXwWjSn0Ke\nELAAoLrl+5MflVT7A1YnZ86BW3dGarIPWJM0TafK9mUwmvSnkCcELACobvn+5Ecl1f6A1V1b\n9wnnP3DVuICV/hTyxA1Y+R4EAAB7Pg6XMEfAAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghY\nAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcwR8ACAMAIh0uYI2AB\nAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4XMIcAQsAACMcLmGOgAUA\ngBEOlzBHwAIAwAiHS5gjYAEAYITDJcwRsAAAMMLhEuYIWAAAGOFwCXMELAAAjHC4hDkCFgAA\nRjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghYAAAY\n4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcwR8ACAMAIh0uYI2ABAGCE\nwyXMuQHrWQDP5vvNCGBPR8CCOQIW4Mv3mxHAno6ABXMELMCX7zcjgD0dAQvmCFiAL99vRgB7\nOgIWzBGwAF++34wA9nQErNz4i+oX9sOtqh/leyhp/LHlAAEL8OXmLQWg9iJg5QYBC9irJL0z\nPul16oENjtBxpWnvmV3PtDumcYPDzhu82q949aJm9Y/quTrRYqLUfSc3708AexQCVnbu0ynu\n4929eq2xqipgBTupJH9sOUDAAnzRN8atdcVz2lcpb5mV/+uvkUZj3IrH68rvLjlOjl4btPim\nmfwlN29PAHsWAlZ2eidnn6oJWL2zC1i5Q8ACfJH3xR0iBX8aOqrPESLHb0l6x2w4zg5d/5g7\nb+oldUTG2hWbD5LbLWvHOXJZ0KSt/Liket6+AKoXASsr24qqIWCl7iR/CFiAL/G2WLKPNJzt\nFDb9XuT6pHdMP5E/7nBLj4s03WpZ4+TA7fbSNGm01WvxtBS8Wi1vXgDVjYCVlUVaDQErdSf5\nQ8ACfIm3RXdxzko51h8g+26KvmOOFXnfL54mMt2yusmFzsJqkdfd2g1HSPeqf+MCyAcCVkbb\nZgzs2rqoQ9/JG/yKG1V3WZ/f07WouOdYt26SegZEb3JfbC29u1urNj0nbHaa3Kz6QtjjENXn\nnQt+Wmq9ObBLi459ZyTuiV32wNVtW1zSb2rw8dxXC8tKxnRsMTmyk5hmaWOy7fr34G7Fzdv2\nun+Jt+yObYDqzHBn9qheie0ubdtkBCzAF74rdjST/Tb75d4iD0ffMXWlzna/2EFkpGWd718b\nbCDj3Mc/y5FJiQxA7UHAyuSzrn6y0fYLvBo7o5TMaO7VdXFuG48NWJ/NKPJqL/3GrpijekPQ\nY0krbbXVsq5X3TjK3/I6/46NnaPDnc31auwMtK2/vfxQNGClN0sbk/1/0b2DRvpPt8Id2yuq\nfw0GsqG5FpfEdpe2bTICFuAL3xVzxTsr5XhepHX0HbO/FAQ3WNkB6yHL+rlc7S4dKPc6Dy8X\nyAyDDyMANREBK4MNHVT7PDt/wexrVNusc6sGqr6k3aa8OXd8G9Xb7IpNqx5WfXjVqm+jAWuq\n22Ss3WSQXbGzveqXfpf/Vh1mOeem9FG9etpbc/7RQnWgt+oO1c6Pv7tk3j3Ntfk8t+Zvqi9q\ny743T4vsJKZZ2pjc/vs8++6COaOLVd2jgDu2kmItCv5X+TnVEfF7Tds2GQEL8IXvipEiNwXl\ndSLHRN8xfwguBVrWGVLwqWWd5V8R3N85nWVtPVY6VeRTCUBNQsDKYJJqP/fu1LKhdr5xqwap\nth3k1i1Ube6ee5oS3B6VCFht/u5eE1hcqM2dQPOg6ji/S3v79yz3ql7RUPfa4MIi1YVO4RXV\nXl76md9cLynxG1/X51sraSfxzVLGtEy1t3db7co22rksHNudiYuV/VQ/iO0ufdtkBCzAF74r\n+oiMCRcaS93oXFivivyvd5b6UZFi++EC6eAs7agjE91ND1tv/efa35zd7ukMn0MAai4CVgZT\nB/T2TupYi+3U4Rbs9NTB/+pPTz8ZxQSsjn6Ta1Tt/2G1Vqh23uVWbG2pXZ3MYgesNv65pHtV\nRzuP3bVwpb/fe1Rf9HfWwp+9KtxJfLOUMc1RneA3mv3o7O3h2Oar3uJVry/ULmWx3aVv6/l0\nnOfBww8jYAGO8N3RUWRauHCMSNKkc0NEjr3r5Tf+1amOnOHcM9BDznKqPxKZb1nz6sgU6/mG\n7jRZ3OoO1DoErN3aouqdxrfDzIN+3TBV966lmIAV3OM6XNVNaNepzncrXvTTy43+BTrLDT3O\n5+qXquFUgwtUB/s7G+JXBTvJ0CxlTPO8a5MR3thKOwbXCJ9WHRvfXfq2nqk/DZxJwAIc4buj\nSOT5cOFkkc+T3jvPnufNM3rUTRudxSeknhPAhknT7db2n0gLa+Oh0nzl1vsL5Jm4dx6AGoyA\nVa7SrVu2fKfa1l2ww8xrfv1o1Zecx5iA9XpKkxf8KOTcj+5O83xj4vt836q22GVZs/0TWY7v\nVS/3dxZ84gY7ydAsZUybWqkOXxZ9Ev7Y7ld1J+tx7rJfEd9d+rYeAhaQInx3XCTyUrhwhsin\n0bfOd9cf7gWs+r9xt9j+A2m51fqwmfS1PxHkoFXWA9LYSV7t5Pz09x2AGo2AldGCe3q0L/S+\nURcGLP/7hE5Yca/QxQSsRSlNnLvLnU/QTUX+CaMbE92U2f3b6yZrkhb+zub4rYKdZGiWOqbZ\nzqCvHP3axuCJ+GNb7E/1sMa/5BnXXdq2HgIWkCJ8dySdwTop+QzWymOk4LI3N21fPuZH/q3w\nsxtKo6ML5LQt1sIGzpQOraTQqX5M6m0r9+MIQI1DwMqgZHAkfIQBK5hFtJyAldrEudHKuYN1\npuosd9kOWJ8FeylWXWNZDyVHHd3p9fSh3yjYSYZmaTv88AZ3dWH/OWXRsVndtMiZrmeqN57Y\n7tK29bx3m2fgUT8kYAGO8N3RSeTJcOEokXWRd86vRPxL+N+dIuKeQX6nqFmD4/pusErPkgvs\nxROdc1mW9b7Ie+V/IgGoaQhYGdyu2uaxJd+VWtb2LAPWYlVn6pubtfX37rIdsML/x22tutay\nHlYdsSBiV3JPwU520yzcoWV9OrGPe+7thg2RsVmPeA2u0aINmbpL2zYZ3yIEfOG74gaR8Fp7\nWUOpvyvxhpkr8vOg/KTIn6Jvpjul8XL74RBx5m6xvvDjF4Dag4AVb7lq6+VesSTLgGX1UF1u\nfdtc7/IW7YD1sd/GuUS42b1Y91DqAGIC1m6aRQKWbdPcYUWq/SNjc+5qH2hZq4LJt+K6S9s2\nGQEL8IXvigdEwsmEV4icGHnDDBbpHVl1UGTVkkbeVKP+w5roVxEB1AoErHjTVO/xi8uzDVhP\nqU50OvQv+dkBK/h112/tGGe5M5CmfXkvJmDtpllywLKt6OTdERYELKuPFm2xHg9u7orrLm3b\nZAQswBe+K94VOTcoPybSOfKGuUHkb0F5g0idxJqy8+Qc91RXU7nTefhCZKYFoFYhYMV7SDW4\nr2JytgFrUwu93LpGL/PvaroxceboXe9+81WqF+9MGUBMwNpNs7SA5Yx8uhUJWE852aqXtvUm\nuIrrLm3bZAQswBe+K8p+KA3W+uX2ySeiBot0CcofiBycWPOANPzELRzr3fv+gTsxFoDahIAV\nb4LqeK+0vr1qsVuKD1iT3YryApY1VPUV1Uf9JTtgdfWmS7fu86fN6p2YuWHB5WOWp+ws3En5\nzbwdlo2/ZVjwJKZ599WHAevbQh3xteq9/uq07mK2TUbAAnyJt0V/Ef96+tL6cvCOyBtmtsjR\nwcTu90bvwfqyiXiTt1jqTvBuTZa6W9PebwBqNAJWvDmq3d1PxrVX9+7g3igVm55mBJOGlhuw\n3lNtp4Vf+0t2wCr0fkn5sxZa6N7vbsevtt43C1d3U12SsrNwJ+U383fYz59/y7K29VJdaUUC\nlnWzdnzKn4M+trv0bZMRsABf4m2x5kCpO9UpfH2GuD8xaFnX9Ojh/ATpjmNE+nhnrj9pJjI1\n3ETlDP/s8d3SzJmfoZP8Ou3tBqBmI2DFK2mvetM7Kz4c26blsr6q9y1fG5uePlBtMfGlJ8rK\nD1hll6nqjUHXdsAarQPmfPbR5GINbnwfqtry/rc/fn1MG9VRbk2kp3An5Tfzd7ioueotz81b\n8MYj9l6HOisSAetF1UvDS5Ux3aVvm4yABfgi74sJBSK/v23EFU1FzvO+Q9hQ5H33HVdf5Oz7\nXn7z6WsaixSF77xJUu99v7iuifTZZc2qJ0+U/4kEoMYhYGUwr4U/BdZCa7rzOC42Pe3q7jYq\nLT9gWY9peGrIDVgrh/lzT/X3JxcsHeVPaaqFY7xP6EhP4U7KbxbscE5xOLXVELf7RMDa2kqd\nG+4D6d2lbZuMgAX4om+MMft607XLn7xfdg4DlvXCf0ngz98HzdceIonv6D5aRw4/QaRd7McQ\ngBqMgJXJ0mGXFLXuNXmDnUPGd215xZz49PTN4I4tuwzYzRksa22hFpcEC07Asl4f1LVFh34z\nE7N5Ln2g58VFF1/zoD83RLSncCflNwt3+N2Um7q0bH5xr/v8NYmA5Zyz0i+jTzKlu7RtkxGw\nAF/SO2P59ac2aXjUxeH3QsKAZX3/YNFR+9U7+Od9FiZat5cTI//78vIFTfY5fWSpBaCWIWBV\nh5WqI8OFG51psWomAhbgy/ebEcCejoBVHUapLg0XCFhAzZfvNyOAPR0BqxqsLNKbEksELKDm\ny/ebEcCejoBV9b7rrvpJYpGABdR8+X4zAtjTEbCq2AfzJ7dXvT9SQ8ACar58vxkB7OkIWFWs\nkzPlwa3Rn6QhYAE1X77fjAD2dASsKtZdW/eJzMZg1fyAle9BAACw5+NwCXMELAAAjHC4hDkC\nFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghY\nAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcwR8ACAMAIh0uYI2AB\nAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4XMIcAQsAACMcLmGOgAUA\ngBEOlzBHwAIAwAiHS5gjYAEAYITDJcwRsAAAMMLhEuYIWAAAGOFwCYOEtdMAACAASURBVHME\nLAAAjHC4hDkCFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMlzBGw\nAAAwwuES5ghYAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCnBuwngWqQL5f3ACQWwQsmCNgocrk\n+8UNALlFwII5AhaqTL5f3ACQWwQsmCNgocrk+8UNALlFwII5AhaqTL5f3ACQWwQsmCNgocrk\n+8UNALlFwII5AhaqTPSF9kmvUw9scISOK01+/T0rSc526l69qFn9o3quTjSaKHXfqfq3AgDs\nDgEL5ghYqDKR19mtdf0IddpXSa+/mID1eF353SXHydFrgzbfNJO/VNPbAQDKQ8CCOQIWqkzi\nZXaHSMGfho7qc4TI8Vuir79PByRcIVJsWZsPktsta8c5clnQpq38uKT63hEAkBEBC+YIWKgy\n4atsyT7ScLZT2PR7keszvRZby76fW9Y4OXC7vTBNGm31qp+Wgler9k0AAGYIWDBHwEKVCV9l\n3cU5K+VYf4Dsuyn+pfiMyGD7oZtc6CytFnndrd5whHSv0rcAAJgiYO1Fts0Y2LV1UYe+kzcE\nNbv+PbhbcfO2ve5fkqkiCQELVSZ4ke1oJvtt9su9RR6OfSlvPlJO3mE/nu9fG2wg49zHP8uR\nGRIZAFQzAtbe47Ou6mu/wKtZ3zuo0X/GVyQjYKHKBC+yueKdlXI8L9I69rV8tRTMcR5/Lle7\nywfKvc7DywUyIxdvFQDIHgFrr7Ghg2qfZ+cvmH2Napt1blVfp+bdBXNGF6s+G1uRjICFKhO8\nyEaK3BSU14kcE/dafreOdHELZ/lXBPeXkc7r81jplKu3CwBkiYC115ik2s+5qmKVDVV1L7ws\nU+3t1lgr22jnspiKFAQsVJngRdZHZEz4imssdUvTXoaWdZ7s+6VbuEA6OA876shEd9PD1lv/\nufY3Z7d7OidvGQDIAgFrrzF1QO95XmmxnaOcxzmqE/yVsx+dvT2mwvdyR0/7k04kYKFqBC+2\njiLTwlfeMSJr0l/K00X6e6Uecpbz8JHIfMuaV0emWM83dOfI4lZ3APlGwNoLbVF1r6TMUx2U\ntCKtwjf1p4EzCVioGsGLrUjk+fCVd7LI5+mvx59J42+90hNSzwlgw6Tpdmv7T6SFtfFQab5y\n6/0F8kzWbxMAyAoBay9TunXLlu9U2zrlTa1Uhy+LrEyr8BGwUOWCF9tFIi+Fr7wzRD5NeznO\nErnWL27/gbTcan3YTPpa1gA5aJX1gDTeaNe3k/Nz8GYBgCwQsPYiC+7p0b7Q+46gG7Cs2c7S\nlaNf2xi0SKvwELBQ5YIXW9IZrJPizmD9XuqsDF+xDaXR0QVy2hZrYQNnSodWUuhUPyb1tuXs\nfQMAlUHA2muUDNYEL2BZH97gLhX2n1OWocK1Zp5nzgH7E7BQNYIXWyeRJ8NX3lEi61JfyCvq\nyP8llt4patbguL4brNKz5AJ78UTnXJZlvS/yXg7fOwBQcQSsvcbtqm0eW/JdqWVtDwOWZX06\nsY97UuuGDZkqIvgWIapM8CK7QWR0UC5rKPV3pb4KB4pMSK2zrDul8XL74RAZ5ix9ITK78m8V\nAMgBAtbeYrlq6+VesSQSsGyb5g4rUu1fTkWAgIUqE7zIHhC5ISivEDkx7VV4itT5Nq1ySSNv\nqlH/YU30q4gAkA8ErL3FNNV7/OLy5IBlW9FJdVG5FS4CFqpM8CJ7V+TcoPyYSOfUF6Edus5K\ne2WWnSfnuKe6msqdzsMXIjMr8OYAgNwjYO0tHlINbm2ZnBawnKrp5Vc4CFioMsGLrOyH0mCt\nX24fcyLqAZG/pL0yH5CGn7iFY71p4D9wJ8YCgDwiYO0tJqiO90rr26sW249l428ZFqydpjor\nvSIVAQtVJnyV9Q+nEV1aXw7ekfoi7BZzC9aXTWSwV1JxXtrWZKm7tVJvEwDIFQLW3mKOanf3\nV0fWXt27g+pmu9RP1Z9xaFsv1ZUxFSkIWKgy4atszYFSd6pT+PoMcX9i0LKu6dHjy2D12SJv\np74wVc7Y6ZXulmbO/Ayd5Nc5eM8AQBYIWHuLkvaqN72z4sOxbVou66t63/K11qLmqrc8N2/B\nG49cpjrUbpNWkYKAhSqTeJlNKBD5/W0jrmgqcp73HcKGIu8Ha+3a1Smvy0lSL1i9ron02WXN\nqidP5PbtAwAVRcDaa8xr4U+BtdCa7jyOs6w5xeHEWEPceRnTKpIRsFBlIq+zMfuK509bvIpo\nwKorknL1b+0hkvjK66N15PATRNrl7o0DAJVCwNp7LB12SVHrXpM3WFbp+K4tr5hjV3035aYu\nLZtf3Ou+j/w2aRVJCFioMtEX2vLrT23S8KiLw69ZRALWJpE6KS/L9nJi5P8GXr6gyT6njyzN\n9t0CAFkiYMEcAQtVJt8vbgDILQIWzBGwUGXy/eIGgNwiYMEcAQtVJt8vbgDILQIWzBGwUGXy\n/eIGgNwiYMEcAQtVJt8vbgDILQIWzBGwUGXy/eIGgNwiYMGcG7DyPQgAAPZ8HC5hjoAFAIAR\nDpcwR8ACAMAIh0uYI2ABAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4\nXMIcAQsAACMcLmGOgAUAgBEOlzBHwAIAwAiHS5gjYAEAYITDJcwRsAAAMMLhEuYIWAAAGOFw\nCXMELAAAjHC4hDkCFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMl\nzBGwAAAwwuES5ghYAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcw\nR8ACAMAIh0uYI2ABAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4XMIc\nAQsAACMcLmGOgAUAgBEOlzDnBqxncy7fTwsAgFwjYMEcAQsAACMELJgjYAEAYISABXMELAAA\njBCwYI6ABQCAEQJW7t2ourz69/oX1S8q3XS46tsGGxKwAAAwQsDKPQJWNgHrk16nHtjgCB1X\nGjeAV34o8ny49OpFzeof1XN1YvVEqfuO4d8BAABViYCVe9UbsO7TKe7j3b16rTHcJL3pnhOw\nbq0rntO+Stt9ybUFEglYj9eV311ynBy9Nqj4ppn8xfCvAACAKkXAyr3qDVi9/YCVlT0mYN0h\nUvCnoaP6HCFy/JaUvb93ikiDRMDafJDcblk7zpHLggZt5ccl2f5NAACQCwSs3KvWgLWtqDYF\nrCX7SMPZTmHT70WuT975XfVln5FtEwFrnBy43X6YJo22ehVPS8GrWf9NAACQCwSs3KvWgLVI\na1PA6i7OWSnH+gNk301JOz9N/meRFQlY3eRC52G1yOvu8oYjpHu2fw8AAOQGAStr3zx0VXHb\n3lO3WlNUX3Eq/IDVQzW4O2ig6id+ceHIK4pbXzFqabj5gpFXtS3qdP3EtYked9umrxaWlYzp\n2GLyJPUMiN65vtvNw6Zr7r+i1cU9x69LBKxd/x7crbh52173L4l7qlUdsHY0k/02++XeIg8n\n7fz0niVWNGCd718bbCDj3Mc/y5HJiQwAgLwhYGXr7TZexrniq4dV3XMp5QSsrbf6iahwvLfm\n+0F+hbZ82m9s0OZm1W397eWHYgKWweZB0/nFXn2HRUHAWt87aKv/jHmuVR2w5op3VsrxvEjr\npJ1/4PwRCVg/l6vdxwPlXufh5QKZsft/LQAAqgUBK0srW6le98qnb9+h3Uf6KSVzwNplp6LL\nJr06854i1UluRV/VS/61aOn80XbNc5Zpm7+pvqgt+948bdMqO9U9vGrVt2FqMtncb7q6tWr/\nuUsWTm7feaA/dLttn2ffXTBntB29YqanquqANVLkpqC8TuSY9BFEAtZZ/hXB/WWkM7RjpVMF\n/+kAAKgyBKwsDVUduMspzNJWuw1YM1Svd7/ntqBIi5yZEp5SvWqD2+Qt1eJvTdsMskNdH7fk\nXJf07sHyU5PJ5n7T4aq3ljnLX3dUb+jLVHvvcNuubKOdy9KebFUHrD4iY8KFxlI3fS6sSMC6\nQDo4DzvqyER308PWW/+59jdnt3s6bSMAAKobASs7JS218GuveIfuNmB1C29/v1t1smWVXab6\ngd9msOpU0za3qrbwZ7JKDVgmm3tNt7cOhz7TH/oc1Ql+29mPzt4ePsstX3o+a9iwSgNWR5Fp\n4cIxIukTe0UCVg85y3n4SGS+Zc2rI1Os5xu6M2hxqzsAIO8IWNl5X7WPX/xstwFrmWpPv2bF\ni29/aVlLVS8NzhPNVe1n2MYJWEP8qpSAZbS513SBam9/xfctvKHPUx0U9yyn/jRwZpUGrKLo\nPO0ni3yeNpJIwHpC6jkBbJg03W5t/4m0sDYeKs1Xbr2/QJ6Jew4AAFQjAlZ2pquOCsoddxew\nZquOSNr6BdWhQXm1atsyszZOwApCRErAMtrcazo90rSnN/RNrVSHL0t/ltUVsC4SeSlcOEPk\n07SRRALW9h9Iy63Wh82kr2UNkINWWQ9I4412fTs5P/0ZAABQrQhY2RnvXofz3Ly7gPWI6vik\nre2KsUG5TFW3mrVxAtYcvyolYBlt7jUdH2n6d3/oswvtJleOfm1j8rPMyxmsk3ZzBsua3VAa\nHV0gp22xFjZwpnRoJYVO9WNSb1vadgAAVCsCVnbGqD4VlG/fXcB6UPXx1K3DeGa1ctubtHEC\n1od+TUrAMtrca/pAZM0dwTxYH97gTfHQf070Fvdnz/P89vTTqjRgdRJ5Mlw4SmRd2t93NGBZ\n7xQ1a3Bc3w1W6Vlygb14onMuy7LeF3kvbTsAAKoVASs79ycu1lnDdhewHlJ9JGnr1PSzzqyN\nE7A+8mtSApbR5l7T+yNrhiRmcv90Yh/nNJbesCH92Vb1twhvEBkdlMsaSv1daSNICliBO6Wx\n8xd+iAxzlr4QmZ0+dAAAqhMBKztjI79UMyBjwBrgBazHVO9L2vpR1XC28l12qCkxa1NOwDLa\n3Gs6LnKJ8K9JP5Wzae6wItX+6c+2qgPWAyI3BOUVIiemjyAuYC1p5E016j+siX4VEQCAvCBg\nZWeqajhzU9fkgNVTNZhmoLcXsF5RvS1p61mqg4PyKtV2hm3KCVhGm3tNn1K9K1jz59TfIlzR\nSXVR2rOt6oD1rsi5Qfkxkc5pA4gLWGXnyTnuqa6mcqfz8IXIzPQNAQCoTgSs7LyhGsw9vjJl\nmoY+4YxUJUVewLJbdPJvbVp5773PuJMqXBLc62RHo1sM25QTsIw295q+q3q1v2JdYdqPPU9W\nnZ72bKs6YJX9UBoEZ/3ax56IiglYD0hD73eIjvWmgf/AnRgLAIB8ImBlZ71qS/8nhu9JCVh/\nU33VW/OU+hONXqn6llc1QXWiHSguV33H7+lm1edN2yQHLO9OKn+iUZPNvaZbirTwK2/FZG/o\nZeNvGRY8sWmqs9KebVUHLKu/iH9lcml9OXhH+t93esD6son4p+hUit0nI3W3pm8IAEB1ImBl\n6bpgIqxXCy9ODlh2wOnnXrpaXNzWD1gzVbu6lw0/a6VFzizqM1Qv924mn6XaqcS0TSRgzQhm\ns/IDlsnmftO/qw5wf4zm0+Lm3tD7qfrzUG3rpboy7clWecBac6DUdSeb//oMcX9i0LKu6dHj\ny0SD9IClcsZOr3S3NHPmZ+gkv878zwUAQLUgYGXpHVW99a0l795V2G9EcsBaUWgnrNnvzrm3\n6Nr7/YBV1l/14n++NOPu4JeYy26289BTi5e8cWehNn/XMm0TCVgfqLaY+NITZUFqMtncb7rU\njlXXzJg/Z1SLrnd7Q19k19zy3LwFbzxyWWR+0oQqD1jWhAKR39824oqmIud53yFsKPK+8/ja\nAMcpIh2cx5HBBpOk3vt+cV0T6bPLmlVPnsjqXxQAgOwRsLL1uDupgep1m1IClvW4t0J7rhun\nutBtXDLIryv0v8BXMsSv0PbBjUMGbSIBa1d3d01pkJpMNg+avlTk1XdYPFb1DadmTnHQVofE\nzNZZ9QHLGrOveP60xasIAtYQiTrBb772EEl82/HROnL4CSLtKvCvBwBAlSBgZW3R0C5FbW54\nsdT6/+3deZyUxZ3H8d8Mwym3Z1jvKxJd16BGV92sQX2ZjSlulTtg1IgYEI8EFy880OALkiii\ncVdZ0aBAohIx8QSjSYQYxVURRAUvRPBAEBjOebaeo59+erqepqbnYbr72c/7D7uequrqkqLm\n+dL9zNOTg6udMgHL+ccNQ3r1G/2HWjdqZeLTK5MuOLvvhVOy9yh/89cXnd176NWPRq4b2mmf\nSMBy1kwY3GfYdeE7WDZPD7t+ePv5fc8dOe0z95chn/dq1s4eN6xPz/6j7gzHj2qCgOW8f8XR\nHVoe0D+8wr5wwBooR0SC4LwzOrQ65o7tpqkDANCUCFjJuVmpJaWew67VFAELAIAUIGAl56Ls\nnUVTioAFAIAVAlYjzZ04Ovg07QOlhpd2LrscAQsAACsErEa6V6krvHsf1P4s+LW9FCNgAQBg\nhYDVSGsHK3XBIy8vevRC/Zj2G1wSsAAAsELAaqz3hmdubHDxJ6Wey65GwAIAwAoBq9E2z716\nSK++w296Lv23B/ACVqknAQBA+eN0CXsELAAArHC6hD0CFgAAVjhdwh4BCwAAK5wuYY+ABQCA\nFU6XsEfAAgDACqdL2CNgAQBghdMl7BGwAACwwukS9ghYAABY4XQJewQsAACscLqEPQIWAABW\nOF3CHgELAAArnC5hj4AFAIAVTpewR8ACAMAKp0vYI2ABAGCF0yXsEbAAALDC6RL2CFgAAFjh\ndAl7BCwAAKxwuoQ9AhYAAFY4XcIeAQsAACucLmGPgAUAgBVOl7BHwAIAwAqnS9jzAtYsAACQ\ntcZ0yiRgwZ4XsAAAQMTzplMmAQv2Nv3g+506lfrvMZLRsVOnTtWlngQS0V6vZU2pJ4FEtNVr\n2aLUk0DDEbDQSLXHaqX+e4xk/IteS36Qp0NXvZZtSz0JJOIQvZadSz0JNBwBC43kBazTkQrH\n6bXsXupJIBHf0Wt5aqkngUScqNfyu6WeBBruf02nTAIW7HkBq9STQDJO02u5qtSTQCIG6bVc\nVOpJIBGX6bV8stSTQEIIWLBHwEoRAlZ6ELDSg4CVJgQs2CNgpQgBKz0IWOlBwEoTAhbsEbBS\nhICVHgSs9CBgpQkBC/YIWClCwEoPAlZ6ELDShIAFewSsFCFgpQcBKz0IWGlCwII9AlaKELDS\ng4CVHgSsNCFgwR4BK0UIWOlBwEoPAlaaELBgr26dVupJIBnr9VruKPUkkIgNei23l3oSSMRG\nvZZbSz0JJISABQAAkDACFgAAQMIIWAAAAAkjYAEAACSMgAUAAJAwAhYAAEDCCFgAAAAJI2Ah\n3sf3jBrQe+j4p0y32CnUhjIUu2CLVMSYUkwNDbb4AqX+YmxhY1aamLVkX6YAAQuxZvcKdveI\nTxvUhjIUv2B/4Qd5pdk2rYeKCVhszAoTu5bsyxQgYCHOY3pfXzN77n3nKTV8fQPaUIYKLNiT\nSo2fkcGXdFSA5Zco1dscsNiYFSZ+LdmXKUDAQoxVfVWvhW5h841K3W7fhjJUaMF+r9RzpZgT\nivR4b9XnsV8aT8pszApTYC3ZlylAwEKMu5Wa4ZdqB6ueX1q3oQwVWrDpSi0owZRQrDHq4uWO\n+aTMxqwwBdaSfZkCBCyYbR+ken8dlB9U6hHbNpShggs2Vak3mn5KKNqYqVsc80mZjVlp4teS\nfZkGBCyYLVFqbKa8WKn/tG1DGSq4YLcptbzJZ4TieatlPCmzMStN/FqyL9OAgAWzuUrdlylv\n6aHOtW1DGSq4YNcrtbrJZ4RGMp6U2ZgVyRyw2JcpQMCC2b1KzQ0Phii13rINZajggl2pj+ff\nMLRX/1H3rWrymaFIxpMyG7MimQMW+zIFCFgwmxTd9D9V6kPLNpShggs2QqmLg7vt9Hq4rsnn\nhqIYT8pszIpkDljsyxQgYMHsZqX+Hh5crtQyyzaUoYILNlT/BO8/afacu4frwgNNPjcUxXhS\nZmNWJHPAYl+mAAELZjco9Wp4MFapJZZtKEMFF6yvUndtdAvb7tE/yd9p4qmhOMaTMhuzIpkD\nFvsyBQhYMMv5x/BlBd7Buox/KJe9ggu2ccPGTPFGpSY24bRQvJ2/g8XGrBTmgMW+TAECFswm\nRzf9JUp9bNmGMmS7YMuUOperPSqC8aTMxqxI5oAVwb6sVAQsmE1T6vHwYKBSGyzbUIZsF6yu\nj1LrmmZKaBzjSZmNWZF2GrDYl5WKgAWzJ5X670x5o1KDbNtQhqwXbIBSnzXJjNBIxpMyG7Mi\n7TRgsS8rFQELZu8qdUWm/IpS423bUIZsF2xLD6W2NM2U0DjGkzIbsyLtNGCxLysVAQtmdedl\nvyx2qlJP2bahDBVasAVTrpuXKeuT8sgmnRiKZTwpszErknEt2ZdpQMBCjOlK3euXPu+n+m20\nbkMZKrBgTys1IvjXcd1YpaY39dRQFPO7HmzMSmRcS/ZlGhCwEOOr/qrHn93C+iuVesivu/fu\nu1fHtaGMFVjMzYOVmvC1W7HldqXO+apkc0RD5J6U2ZiVzLiW7Ms0IGAhzrweSo2b+Ye79Ea/\nbJtfdbZSS+PaUM4KLObCnkoNmPrYnLuGKtXjb6WcJGwsnuEapdSt7uMjXh0bszIVWkv2ZQoQ\nsBDr6b7BV2GNy/y6d/hz3NCGslZgMV8aGDSpwS+XboKwNFtFDfHq2JiVqeBasi8rHwEL8dZM\nG92/z/BbXworsj/H89tQ3gos5oY51w7t03f4+Cc2l2huaIDCAYuNWUkKryX7suIRsAAAABJG\nwAIAAEgYAQsAACBhBCwAAICEEbAAAAASRsACAABIGAELAAAgYQQsAACAhBGwAAAAEkbAAgAA\nSBgBCwAAIGEELAAAgIQRsAAAABJGwAIAAEgYAQsAACBhBCwAAICEEbAAoOQWicgtTfdyL+mX\nu82yb60E5lt17xv0/nHRkwPSgYAFACVHwALShoAFAEYjJau640Fn3fT2rnutMg9Yh/fU3nCP\nVozq2qbNUT//NKfLZ3tK9YKg/Au3aw0BCyBgAYBRNGB5qn7w/q56rSYOWCtGjhz5rGVfN2CN\nyxz8qY3/R7HHP6JdBoqMyXlOBwIWQMACAKO8gCXS/vld9FpNHLAaIhqwPmwnVT+eM2eAyP7r\nsz2eEDl4Y85zCFgAAQsAzNyANXmRb+GfJnWv0scdlu2a16qQgHWRyDXu4zCRW8MO6/cTqfd2\nGAELIGABgJkbsB6NHP/1n3RF713zWpURsLZ2kNbeO1dvi3wr7DAiP00RsAACFgCY1Q9Yzus1\nIlWf7JLXqoyApWd5ql/aV2Rt0P5ilXxjbb3nELAAAhYAmOUFLGeArpnmFv6mC392vhh1YIs9\nlwZt80d326v57l37PRBcnNRTd3k58twH9fG1fvHjiT88sH2z9of0u2dDpjU3YNUfy3Fe1u3z\nHOeLCcd3qOnc7fLlkYG3zDjnqM4t9jlt4hfRqeYPERX+FmGBcTMiAWu6yIV+6XsiLwTN36z/\np+QQsACHgAUAMfID1l0SXIPk5qG567q6170v8lreOjG8EH6fh72ambo4NvLcHvrYu8/D1p81\nD/vu8VjQGg1Y+WM5zmJ98LgzK/gdPml+XzjuMwdmOu92R1hpGiIqDFjx44YiAWuyyNV+6dzw\nj2asyNl5zyFgAQQsADDLD1izdM0ot7BUF2ZeIWHAerqdW9y322HN3Efv+u9NbUUOyz51fUuR\n49xCnfJ/H3H/jt6dH2b7zZGAZRjLcd7RxVkPVYu06FzjVle/GIw73evVrJU36KVOgSGiwoAV\nO25WJGCNF7nJLw0Tme5PvEY6r857DgELIGABgFl+wPqNrrnOLbynC1PbSdef33bVB+6hDkvV\no1bo0ro73dz0O7fPIF14PXzqA/roV27hTl3Y627347x3fuL+WuKXXnM2YBnHct532ztUnf+a\n42x59mh98D1/2IXNRVpe/+4OZ9Xktm7oKzBEVBiw4saNiASsG0Ru9EtDRR5wH7d1E7k//4+O\ngAUQsADALD9gDdc1v3ULH+hCd7m8Lqg/Q6TqwaD8VnuRA2p1YW4mjXmUSDPv9ucH6/DzauQV\n/BuqZwOWcSznQ/cjwEz9mk66zxqvqPNNzXy/9rlqkf23xw8RFQasuHEjIgHrVyJX+aV+InPc\nx1tEvu84X1337XatDh2xInwOAQsgYAGAWV7A+qSNDkdeAPnI/Tjt3zP56hV9MCzsNUX8j8+2\ndhY5KlO5rqXImW7Bfe/r1EytO4xXmw1Y5rH8F/xJpvpiffC0W5ivCz/N1J6nD56IHyIqDFgx\n40ZFAtZDIj/ySyeKLNQPy1pJ2w+cd/f3r+BqMy/zHAIWQMACALP6AWv1d3TFQK/o5ZKnMg2j\n9MFbYbdNOob1cgsXSnBZu+P9/l0Qcza/v+CNsO9+Iod7hTBgxYzlvmBV+Dt+0/TRf7mFi3Rh\ncab2yX2POX1G/BBROQHLMG5UJGC9FVxH5mxvLzW1jlP3XZE7nO3HiJzwmwf7i3T+LHgOAQsg\nYAGAWTRgbfv8xXF76OOOfhhxc0nbbZmOOmAcHHnemTppuI/u20sTgjol0ubr/JfoJrKnVwgD\nVsxY7guGb4c5z+ijyW7hMJG98waNGSIqJ2AZxo2KBKwd35BmnwT/a6foh6kiJ9c59+v/un8W\no0WuDJ5DwAIIWABgZvguwrbP+U1uLvm3TL9N1SJnRJ53uW5cpR93dBE51q9yPyEcYHiJE0R2\n9wqZgBU3lvuCg8Lavwa9N1f7QSdH3BBROQErf9wc0a/KGStynn7YdrLIffrJ7aXlUsc5TeQZ\nt3F1jXTZ4fcjYAEELAAwyw9YJ2buKurmkiFO5KDNAVmd9PFLbsMYXVjhdbk/uDzKs3nW+Sfs\n3TozZm7Aihvro+jFVl4+cnu7N1k4p/60Y6cTkROw8sfNEQ1YV5TJ/QAABWZJREFUX+4lcubU\n248TOWab4/zQe4dueytpvdVr1dVL/H4ELICABQBm9QLWgcOy32js5pJLMgev57/T5V+f9Xdd\nmOR10VFkz8wnir/tktMzN2DFjeW+4OXhy2eC0KsSvZx9Z9OJyAlY+ePmiAYsZ0FHf8CDluv/\nET9mLdEPfuMwkYf8EgELIGABgJkbsKYs8S1duTnalJNLXjIkmt97LYeKnOQ+ftUim8du9NPa\nyT0GaXvUD1hxY5mDkPuNPRfUn3b8dHL7FBWwnFVjjmi92zHj1zvOZ3tKjXu/iWdE/sNvGycy\n0S8RsAACFgCY5d8HK5STS96UyOeFOa4WqVrp+J8QBp/SPVulyyM/CDrkXYMVN5Y5CL2mH4fW\n7xo/naziA1bWwOCrgB4V6efXTAi+SIiABTgELACIYRuw3Jt19jR2c7/pb4p+PEvkkKDqDF31\ny7DDcfUDVtxY5iC0Qj/2qN81fjpZCQSsJ0QO925gOiNz7wpnUjgWAQsgYAGAmW3A2tpS5Ehz\nv6NFuvufEF7rV2yoFjmoLmzvUj9gxY1lDkJbm4fXP2UVmE7OAI0LWOv3k6oXvFL2HaxbeAcL\nyCJgAYCRbcByjhdpvs7YT0eOmrXO/0h4x1H3W6KHh81vS/2AFTdWTBA6UqTFprB66ZIlHxWc\nTs4AjQtYI0Qu9kvPet+W4+IaLCCCgAUARtYB6zLJ+Taapdl0436GN9PpKXJ8ULFQV4wOmy/N\nD1gxY8UEIXeKczK17meDFxWcTs4AjQpYL1TJfuv94jKRf/ZLQ0Rm+SUCFkDAAgAz64Dl3hih\n6/bMUe2+zbuHv7X3ryI/2tRa5NfB8dvRC6RebaGP2njFMGDFjBUThF7Qhe9mam/TB78rPJ3o\nAI0JWLXfFPljUN6xm7Twv036KJF3/DoCFkDAAgAz64DlnK4PLwyurNp6toRv5DjO7SJd/ijS\n7NPgeHs7kfbBfdXf7LLbSbrv5245DFgxY8UEoTod4OQmv3KxTjX7bCk8negAjQlYY0UGhwdK\nZK77+F5VeCk/AQsgYAGAmX3AWt5WH3d/UWea2lnH6uKpYcunzUTOCC9S0obq5pPf04WV41vL\nlKsyiSYbsMxjxQWhl5vrYv8Fm+pW/KJ9+Mlg/HSiAzQiYL1aI3t9Hh49InKiexfVwSI3B1UE\nLICABQBm9gHLecaNNLLboXu5d7mSb63OtrjvJok8EB6/4/Zsdtgph1WLDKub6zYeecLbkYBl\nHis2CM2s9l7A/2/m6q746UQGKD5gbfu2yMPZw7qTRU6aNqOnyIEbgyoCFkDAAgCzBgQs57VT\nJKNq+NpIw71uVZsN2Yqn2gf9ml2jo8rRXvGNaMAyjhUfhOYdmuncbsrOpxMZoPiAdUu9u2+t\nPMJ/qb0XZ2oIWAABCwDMGhKwdNC5tNs+Ldp0Of365TnVa1tKeCNO36pxx3Zo1qHbFd6NG1ae\nu3vzLuesyQlYprEKBKHamecc0bHFPt0nfmExncgARQesZa2kw8qcLhsndGvb+six2QkQsAAC\nFgCggLivyimEgAUQsAAABRCwgKIQsAAA8QhYQFEIWACAeAQsoCgELABAPAIWUBQCFgAgHgEL\nKAoBCwAQzw1Yh56lvW7V/Ra3aw0BCyBgAQDi1WZuWTrfqnvfoDcBC//fEbAAAPEIWEBRCFgA\nAAAJI2ABAAAkjIAFAACQMAIWAABAwghYAAAACSNgAQAAJIyABQAAkDACFgAAQMIIWAAAAAkj\nYAEAACSMgAUAAJAwAhYAAEDCCFgAAAAJI2ABAAAkjIAFAACQMAIWAABAwghYAAAACSNgAQAA\nJIyABQAAkDACFgAAQMIIWAAAAAn7PxHizNVDi26KAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 1800, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_width=20; plot_height=30; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "plot_1 = plot_grid(plot_basics, plot_pgs, plot_meas, ncol=1, rel_heights=c(2,1.3,2), align=\"v\", axis=\"lr\")\n", - "plot_2 = plot_grid(plot_conditions, plot_medications, ncol=1, rel_heights=c(3,1.8), align=\"v\", axis=\"lr\")\n", - "plot_desc = plot_grid(plot_1, plot_2, ncol=1, rel_heights=c(5,3), align=\"v\", axis=\"lr\")\n", - "plot_desc\n", - "\n", - "plot_name = \"1_dataset_characterization\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=plot_desc, width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# OBSERVATION TIME" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAALQCAMAAAAjXrvTAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdB3wUZfoH8Gd2N5uQSkLoPYCh\niZEISBdDlyLSBQwdAUVAqtJ77x0EQTqEJBs99eyed5a/5Sxn755iwbOgSE3+mdndZHezZXb3\nnXlnZ37fz+fO3ZnN7jPvuM/+nJ19h4oAAAAAgCniXQAAAACA3iBgAQAAADCGgAUAAADAGAIW\nAAAAAGMIWAAAAACMIWABAAAAMIaABQAAAMAYAhYAAAAAYwhYAAAAAIwhYAEAAAAwhoAFAAAA\nwBgCFgAAAABjCFgAAAAAjCFgAQAAADCGgAUAAADAGAIWAAAAAGMIWAAAAACMIWABAAAAMIaA\nBWBov5DoF95lhOasVPxfhnx1ANA4BCwAfbv8bsGudUtXbTn28v+8rUbAitBXBwCNQ8AC0LFP\nV7YvR05Co0nPXfN8BAKWV30pgAIELADwCwELQLee6VomF6Rtu+j+GAQsrxCwACBMCFgAOvVl\nH6/JoN5jbo+KtIC1fuHCx0vufG8WXfTz8FDJCVjKvToA6AACFoA+5ZX3lQ2mXXF5WIQFrN8F\novtUeB05AQsAwA8ELABd2iE4kkDmA/n/+fGP/33x7PrbohyL+rgcdYmwgPUcqROwDs12FSeO\nUVu3RR+oUAQARDIELAA9OuDIUr3ec1l4bobVvvT2wpJlERaw1qoUsNxVFsdooeovCwCRDAEL\nQIf+ZU9StZ/yWP7prfaEtaBkSYQFrCEIWAAQGRCwAPTnQgMpNjX6psyaSwOkNebXnAsiLGDV\nR8ACgMiAgAWgP4ul1HTdT15WXR0orWvu/JIwsgLWrwICFgBEBgQsAN35X5J0lOplryt/qS5F\nqjPOuy4B6/0TG5ZtPfV6oZe/+uZv+zYuXbMj78OrXp/0t6cObVy6/uBLf/gq6beCjcv3fSV3\nAy6+cXTn6uXbDr/qOQfCMyQjYH3zt0c2rth16sU/fT/k7KPblq/d98RvMusJLmBd+teeVSt2\nPO3y5L8+tX35+odfC3HsACAiIWAB6M46KTTN8rH2b9Lado579oD1a/GNRTUdJ8ZXu/d79794\ndWKlkukJyg/9u+cTnl2SaXasjbrlkOscEF+Ly7KKigpXJIi31o6SvrgsU9Gd4uKbnffO7+1g\ncb6atdPxy87l35Ab8fQyL1N9fjqlYckf37LeNWP9IC7rKN7Kaef4iaWp4998DJI77wHL7dVL\nnv23WSn2J48e+pl91bsDHb8tSH6gzJFC32MHABEOAQtAdxqJn9cxP/ta3Ur6PHfMM2APWL8X\nPV/NJbwkH3R5+PeD3JMNtfnU9dmuLI51W3vdc6XrfnIkp4n2VWulA1D0jkc9F+LFpTsd945W\ndX+1xm85VsgJWD/dbXF7UJXtpYfjzosLmhc/ppvrI7IvyRhQGQHL+exv1Sh97oQni1cULjOX\nLqn3mdsz+Bs7AIhwCFgAevOB9GE9wud6+xQOy+137AHrwnMx7vHloZJHf1GPPCW5fPn4czvP\ntaZ1JSv/EO83Kcp3rFl7TUof8zzqOSEujHZcinpWmVezOg6ZyQhYnzco89ejSr6XuypFmKKf\nGrs/wPc4lZIRsBzP/mGy63MnfFxUNM3t1Rq4Hm7zO3YAEOEQsAD0ZqP0Wf2iz/UXEsX1ju8I\n7QHrrPgdYGyXkfcObmT/pDc/73jw1ebS/aj2dy9cNXtUO/uXXVXOOp/r/I3SAqHtrB0PrRlZ\n2/7Hm51rr4n3ahc5I81ae3xK96jndnHhQNfaKaXXlPnz72lvnxk18UNp1Q833HBDqng/9QbR\nK0VlAtZnVaT7ljZztuxfNzHd/lSDSl7HVHyvxrWs4v+P6zbm3ruaO44syZiTXUbAsj/75RuK\nx6JV9r3DrrM/d7+iw8X/b+0ybvIAx4G5RaV/73/sACDCIWAB6M1g8YM65rLvB0jfkcXYT/iR\nAla5cURVD9rPKH/jJumD3vkzw11SBpjh/L7x5/lSxJrkfKoh0oP7OL40vHZK+qLR/LZztZg6\nqohfDHZYf+rE1heK3pUe/m+3an6NFpc9Kt3+upyUqA44TkY6O1p6/O0lj71PvFt6krt7xLnW\nXrrb3/k13GP1pfuPOB8tvk7qNqJKe+x/8WVvaX0X3wPlJCdgSc++hug2+8v/vYI0cO+kkPl+\n6cyra7ulby9rlH5nGWDsACCyIWAB6I109ORmPw9YJH2y2z/JpYAlmKhRyZwOV26RVp+w3+sg\n3l7q8sdPijnB+qv9zqPkET3OSqeYd3TeFb94rDCKEh51LrhBXP2AWzX7xUWV7ZFqjnQE6qXS\nlfdIL/C+867fgLVZujfNpRjpIFaFc467YniLLk9NvnWuvyptnOkHH8NUSk7Akp49iSY71z4r\nra1B5mPOJRukJSVfrwYaOwCIbAhYADpzTfpi7V4/j3hC+mjPkW7bvyKkWJcpFH6QTjrvJd2+\nKn6PFuM2g8B0ce1J++1m4m23s5g+cDke5cw0wpMlq8VL3VADt2q6ioum229Lx5yGuKz8Q5px\nYoPzrr+AdVU6waut6yQTr0q/FlzvuCddUZCSvy1d/7K0JPAvCeUELPuztyp9eccJVjNKFlyS\nfl64w3k30NgBQGRDwALQme+kz/U1fh5hPwt+k3TbEbAedF0vRaiY8yVPVt/trz+6a8H+Z+3H\nu54X1yb96LZ6krjsTscde+oYVbr2W/FLQ3rT5fE/SKdC2Q+n/d60YvH6I65PN1xce4fznr+A\nVSDdecOtGOnb0mZuxex2XS/NCbaqKBD5AetfpauXSQsSz5cukWbRv8dxJ+DYAUBkQ8AC0Bn7\neU57/Dzie+kR86Xb9oAlfOe6/k1pmU28Kc1kVd7XE40X147z8vKJjhlC7anjPy6rO4sL5rgs\n2CYuyCi5e/W7t9ym/9wkrm7tvOcvYA1yfyKJ/feL77kUU8Ft1qwe4qJpRYHIDliNXVafkVaP\ncVkyT1ww2HEn4NgBQGRDwALQmdekD/aTfh5xSXrE/dJte8ByP2PrWnlx2Qrx5hXp+NKZss8h\nkaYmfdLbwn/Yb0upw21m0YfFJfVcFrQVF2z0WetRcfV1znv+Apb0DeFK97/+S5pnaqdLMXe5\nrZcOGY31+eJOsgPW/S6rXy+zH3aLC25z3Ak4dgAQ2RCwAHTmX9IHu9/JB6TUNEW6aQ9YD7qv\nv6U0irSUDqp4P03JfiTsW4+l/cSFu+y3pdQxyXXteSnyvF5y/yvxNCmL7/PMbeLDazvv+QlY\n0lTqZcJJG3HheJdidritnikuGurzxZ1kByzXbzffl1a7Tsr6iLjgFvvtwGMHAJENAQtAZ96Q\nProP+3nEn9IjZku37QHruPsDssVlraSb0hEnop6Pepnx/GlxjfWax1Lpl4COc+yl1LHNbfVQ\ncVHpZXxWi3f7+K61QG7Asp+57zl9vbQlnVyKcT9mtEBcNLgoENkBy+X3j0WfS6tdv+87JS7o\naL8deOwAILIhYAHozIfSB/tWP4/4VnrEYum2PWB5XBd6vrjM/lu/wl72hEWJfTe96ZEHHOHL\nG0dkklLHY25/JF0KsW7JXWmyzRzXBxS+vW7YzdUTXS4wIytgSfPTx3puqnTaU7pLMa+6rV7I\nOGC967L6C3FBtOsfuAaswGMHAJENAQtAZ36VPqWX+HnEf6RH2E+DtwesT90fIB1Wqma//XuP\n0o/+5AF7f3J52BrfIcHxRZiUOv7p9txXpQtHv+a4J6XBFJejYxd3ppV9ttrOtX4ClnQ2fE3P\nTV0vLq3gUsy7bqtZB6xPXFZLASvJ9Q9cA1bgsQOAyIaABaA3CeKntL8Ti+y/b3tCum0PWB7n\nQG0RlyU67lxbm+jy6W/peqpkqqfFvkNCpv0RUup4y/3Jp4jLnLNDSQlncunKDxt5e7baztV+\nApZUjOdVeIp2iEtjXYrRSsAKPHYAENkQsAD0ppX4KZ3m5wEPSp/j30i37QHrf+4PkH7uVvrt\n1rnVDV0DQIbj6sv2eOJdQ/sjvGSaov9zjUzSXOuvlax7w5nlUhq26TVY1F5uwJIuc+g6TYJk\nj7g0ymcx/AJW4LEDgMiGgAWgN3dLH9M/+n6A9KVfJftte8DyODdcOoKV7Lrk442drSUJQFhg\nXyh9/1bmWzlX3gJWkZTWXpFuSifkl07j8Fs96flrri39ylL2Se4PiDdL5nNw2i4ujfNZDL+A\nFXjsACCyIWAB6I00dRTt97n+D+lSOAPtd+wBy2O6gFXisloef/bnY9OaOiOW/do1+8SbPmch\nFXkNWEvFhfbZPWeIN0tnUp8qPflgl8nP5QcsaeL0Gp4FSJfmqeizGH4BK/DYAUBkQ8AC0Juf\npMvRtPS5/mEpGBy037EHrPfcHyH9irDM123FvlglTYVJ0V+I96TAYL7ipxSvAesLceqrmuKZ\nXIW1im+Z/utccUk6e6yt2xOelBuwpC8DYzwLkOY9aOKzGH4BK/DYAUBkQ8AC0B3pcjRuF/xz\nc4u4ttwv9jv2gPV390fcJS7r5PWPL94v/YF0cWb7nPHv+6nEa8CyXwZZ/G3hP8QbXUuWvyg9\n37Nuj90oN2DZ58HynLH0TnFhN5/F8AtYgccOACIbAhaA7ti/I7zVx1p7Esl23LMHLPe5QO0J\naJLnHzpMEFdKP9e7KJ2WdcJPJd4DlnQOvXhVGelKNaWzn+8U7yYXuj32DrkB6yvp9jMeL5Uh\nLpzmsxh+ASvw2AFAZEPAAtCdK3Wlj37v13u+IK00OS/AbA9Yw9weci1ZXOZrqlLp+s9mKQY1\nF2+O9FOJ94D1S7Q9ol2tWPzPxAsly6WTs653e+hvCXIDVlEVLynoV4u48KjPYvgFrMBjBwCR\nDQELQH8elj76E719SVg4UlpXcs1je8BKcrsQjv3rK+dlX748X+ROupqgFIumibcqXHRf/a7L\n13TeA5b9knufFD0n/sPlUsvS3FBt3B65nGQHLOl7TY8pDqTp3YXvfBbDMWAFHDsAiGwIWAD6\nUyjNHkXlXymz5tooaU1qySQO9oBFJ10fNFtcUvFq8a3PZ2aleB7KuiKeQ58g3XxP+tuNbquv\nXmdqtezfjjs+ApY00+kG+48GXS7PLM0O4TaB14fSE1B1530pYJVeq88t4jwv3XGfNv4WcVF7\n38VwDFgBxw4AIhsCFoAOfS59yUcJe91PaCr6qre0XMgvWeIIWPUvlz7oV2m2zzHize/EMFXz\nD7fn+Lu4NsN+u410GOZL19XSMadWjjs+AtYlsbxuReJFceq5LM6XSvmidMH3TUj6ijDGuRnS\nYZ8RJevdI05j8U5L1y3OldY7T/LSVsAKOHYAENkQsAD06Ikoe3Bq6XpE5/cVsfalK0uX/Wxf\nQneVBJNC6bxyx/WfpUNAt11weZI/bhAXLbXfeUqccYEau3yxtVdakue45yNgSSfKl3tdXLnY\nZek56W+zS+6/XY9ImqaBnGeMLRDvlE5M6h5xDkn3ppc+3/vSaVmNnHMhaCxgBRo7AIhsCFgA\nupTrSFh0/QOPfXr+2l/fv7xrcJxjkVuoEReYexenKMfs6T8PlB5zh/2eNJECNTzpPMBV+IR0\nnCj+G8d96XeAVOm4I8R8MlS6XzLzgq+AJT1tVvH/hM9dF2dJfz3NfsTsg3vNREOKUsVFYxwP\n2Cs9QDp7/1qRZ8Qp6iPdHeqYV+vqw9Kfml/0UwzPgBVo7AAgsiFgAejTS1XIu3IHXR/2nbgo\n9vNEIkv7B7c9tHKgPYUlOaOC/bo7FJ81cf7yRff1rWS/u8v553/caF9Q8a4HNy6/O9N+p2bJ\nGV6+AlZhXUcxHd0WP2VfmDxgxpRBTcRb9X6xz9NAbWbeU1DkPHGJGt/Rs5l4ZpVHwPq+hnQ/\nptvi3XtXDa8u3RG2lDy71gJWgLEDgMiGgAWgUz8O85qvOrpPbinFgEpFBVFuD4p+3rn+6kAv\nz+H6FWO7MmsbflGy1lfAKprneKzHBX0muz9Tzc+Lip503pHOB29Rsk48VckjYBV9Us+zFuvh\n0ifXWsAKMHYAENkQsAB065VegucHeMtcj8f8R1zaoKjo8Youj6rjOpv6lkSP52j0hOsTXF5S\nzm2tZdrvpSt9BqwP7Q+O/d198ZWJrk/VTTo/aYJrwPq/aH8Bq+iXUe5b3PZllyfXXMDyP3YA\nENkQsAB07MsV7WNKPr7Nzee8VeYR0pxXNxff+GmO8zvF+gvcfzb42/p2lpInSRhwxvMCej8s\naVKy+rqFX7mu8hmwHIeihpdZ/nh7R0Sy9PibY9HhTinmhNo9n5Pu/KOh45X6FnkJWMWBccp1\nzlpSB/7N7am1F7D8jh0ARDYELAB9u/RO/o61S1ZtPfl/fwR4ZOG7x9Yt3XrqHS+rzr9+ctvq\nJev2nPmk0Mva4pzw5O5VSzfuf+Jc2OUWFZ3L37F89e7nfvOx+tq/ti9dsfNxP6/09aMH1q7c\nc+Yt76VqDsuxAwDtQMACAAAAYAwBCwAAAIAxBCwAAAAAxhCwAAAAABhDwAIAAABgDAELAAAA\ngDEELAAAAADGELAAAAAAGEPAAgAAAGAMAQsAAACAMQQsAAAAAMYQsAAAAAAYQ8ACAAAAYAwB\nCwAAAIAxBCwAAAAAxhCwAAAAABhDwAIAAABgDAELAAAAgDEELAAAAADGELAAAAAAGEPAAgAA\nAGAMAQsAAACAMQQsAAAAAMYQsAAAAAAYQ8ACAAAAYAwBCwAAAIAxBCwAAAAAxhCwAAAAABhD\nwAIAAABgDAELAAAAgDEELAAAAADGELAAlHdhfovMzPr162dmZk79mXcxPp3Ln9GzuE67Hnev\nKPiWd0UAABELAQtAcU+kUUyzoUv3LB7dNZWSN1ziXY83H89oLBCRJSUtI6N+/VoxJKraa/kr\nV3lXBgAQiRCwABR2diiZep8osMu5qxzV/xfvkjxdze0qkLXJoIWHC5yObJo75KbyxSErqc+2\nr3nXBwAQcRCwAJT1bmVK21BQ6pHuprineBfl7m9pROnTcgrKOnB/50pEQuay//CuEQAgsiBg\nASjqnYrC8Dz31DLXEp3HuywX3w8hc5dNXtKVw55x15uIbljzDe9CAQAiCAIWgJLeriiMLxNZ\nFkVbjvAurMS+ZKrnJ17Zvy+cepOZTJ0OXeBdLABApEDAAlDQv1OFu70ElpWxpgO8S7O7NpFi\nxuR5KdHT4fHpROXv+TfvggEAIgMCFoByPqsgTPQaVzbER/8f7+JEFwdSzX0y4pVkZ78korbH\nL/MuGgAgAiBgASjm4k00zkdYmS/U/R/v8oqKfu9M6Ufl5qtiubMzBKq25HvedQMAaB4CFoBi\n7qUOPrNKf+pbyLu+czdR5qkg8pVoR88Yih7zHu/SAQA0DgELQCmnqfpJn0ElrzGt5Vzf5Y7U\nMTfIfFXs+NhKJHTX2EwTAAAag4AFoJDPkqxb/OSUh5OiXvL79wc7d+6s6M/2JlALW/D5qlj+\n7HSizBOY4x0AwCcELABlXMykyX5jylKhzp/+nmAhEf2uYIFbqdYJvwX6s6aVQPV3/qVgeWr5\n9d1H9x7++9vfcv/CFgD0BQELQBkL/JyAZdeX5vt7AoUD1tOWhD0h56tiO7IsVGWNkglQed/v\nE38YaVd1nM1v3gUACAoCFoAiPopOPh4gohxPjvnUzzMoG7A+SbEsDydfFTvQJ4aS559TrESF\nXdjR0kRU8cYud94zbnC3lvFE5YZ+wLsoANANBCwARWTRjIAJZSr19vMMigasqzeT9xm6gnJk\ncDzF3/+dUkUq6afFFcnUKHt7ybbkLb+9KplHfcm7MADQCQSsIPzwG+8KIGIcoYzA+cTWiB7z\n/RSKBqyN1Dr8fFXs5Khkipn4uVJlKuW3GbEU2++A5/6YVZ2sU//gXRwA6AICllxXznQ1mdLv\n3PAx70IgEvxSOWqXjHiyyVT/os/nUDJgfRYXf5BJwCooyLm7ElmGR9TEWIUHq1DKSG/f4OZN\nqUjXaWKOfQCIdAhY8lxcXJ2ofuMYonL7edcCEWAiDZWVTnrScp/PoWDAKsyi+xjlq2K591Un\n0+2vKlOqAt5oTdbBp31sTE4vIWo5JqAAgLAhYMlyuS/FdNtYUJC/fWIsjdHDb9NBUa+aquXI\nyiZHE+J8XndGwYC1jzJCmwHLB9vsNKJOTypTLGNXFlmopb/fTy5KpvZneVcJABEPAUuOq4Op\nqfP7hN116EZ/P/0CKCpqR0tlRpOxNMPXkygXsL4tHyP7Cs8y2RZdT3Tj0SuK1MvSRy0pZYH/\nbTnckupE1FeeAKBFCFgyXBtJ6aWXPDl9K6Xil0bgj40y5QaTnOS4H3w8i3IBa6DPa1CHY11r\ngWqt0/gvQXbEUruAl7e2DaLyz/CuFAAiHAJWYIWTKO2Ya/sdSTf5PjMZ4GpTwd81ctyNoVk+\nnkaxgPWqUJ/pF4QldnazUuL0z5SomY3zgyluupwtmWKxHuBdLABENgSswDZRzcPu3bcjTeBd\nFGjYAeokP5ScLh//k/enUSxgZdGSYGJTMA4PTSJTn6c0etmZDxpRg4fkbcjSOGE173IBIKIh\nYAV0NjHuYY/me6oWHeRdFmjWX7WiZH6KS0bTHO/Po1TAeoqaBVFesHKmpBE12vQ/BQoP18kE\n6nFG7nZsS/HzA08AgIAQsALKprFlmu+ucrFv864LtGod9QkmkZxKSvB+tZl/rFq16hL78gpb\nCuuCqS94q9pZKOaul9iXHpZrcyl6WhBbsasCLeZdMwBEMASsQF4WauWWbb5zhPrneVcG2vRL\nSuzhsv/G+DGSHlCzvtN0c1DlheLgiEpEDZZ8oeZ2BXD+dqok/8w40Z5UWsC7agCIXAhYAVy7\niZZ5a7691f1QhMgxl4YFl0ZOJSb+rF55VxuZtgeuKWy2RW2jSOi428f5Zar7OoMaBZd7Cwr2\nVkLCAoCQIWAFsIfaeu29J1NiMFcDeHEuIelUkB/kI2ilevXtp6wgywvVsYnpRJZu+1VMjz69\nWoWyZJ9+VeKhSrSed+UAEKkQsPz7X8VoH+crT6HBvIsDLZpHI4P9HD9qranaBJ2Xawd1Bn6Y\n9oyoU5yxsrZ9o9bm+ZAXKwS9V0S7ywv7OJcOAJEKAcu/+31+3WNLE/7JuzrQnl+SEoI9gFVQ\n0I1OqFXfUeoeStII3Y5haUTCTQv/j+PUDVvN1rmhVb8l3nySX90AEMkQsPw6n5Tk85JyK6il\nRmf7AY4W04jgP8a3CW3Uqu8mYWdoUSMMD41taiKqOiZHoSsrBnBtBiWuDbX2tTHWx7lUDQCR\nDgHLrx00yHfrbU2HeNcHWvNbcvyJED7GM+g1dep7gVqEGjXCcnRGh3gi663rP1ZnO11cHExV\nd4de+dKouFdUrxkAdAABy5/CJuYDvjvvHkuNP3lXCBqznO4M5VN8Pg1Tp76+tDzUpBGuvJUD\n6hDRddOfUfWK0L/dSunB/nzQzRwh9UM1CwYAnUDA8ucZauOv8/ajNbwrBG05nxp7zN+/Mr7Y\nqlq/U6O+j01poaUMRvZPamElqjDS9pcaWys6eyNlBn9SnJuJVOdbtcoFAP1AwPLnDv//uX8k\nuhou+gyu1vj7Ttmf8TRfjfomUTBzmSvi9PxuSUQJwx9X5TjWJ2l0q5eJgoMzmJr9qkaxAKAr\nCFh+fGWpZfPbeHsRfsMNLi5Ujjka2mf4ydhKKhzU+TkuJey0wUD+yj6pRJWnvKH4Br9Vme7w\n/x6Ww9aFbsF/SgFAkBCw/JhLk/w33n3mhtd4Fwkasp36hfoh3pceVr6+FXRXqPUxZlvZPZ6o\nxUPKnsX4QpJQ9kKiIchrSQPwTgeA4CBg+fZXxbhAJ290oFzeVYJ2XKkb9XCon+G7hHaK13ep\nWqgH2JRwZu6NApWf9rVy25tfzjydTa2nG9E9ytUJALqEgOXbQeoTqO9upta8qwTteIS6hv4Z\n3pTe93i6z5566qmrLOs7TT1Dr08Je/onkXWk53az8rDFuoBVpUdr0nKFygQAnULA8q21sCtg\n372R/sG7TNCKwqamMOZbmk73ezzfQiJiOjVnD9ocen3KyJlclUz93mO5lU7rhbhV7ArdX0HY\nr0SVAKBbCFg+fS00Cdx2l1Ev3nWCVuRTuzA+wXPiK15yfz7WAetrc70w6lNK/ux6ZB71FcPt\nlBTOpeQtLOvcGmexsS4SAPQMAcunjTReRtutLyjyX98QgVqHd4CoF3lc9Y51wFpCE8OpTzG2\nudUpZsZvDLe0qOjqeKqyh22ZK63lXmRaIwDoGwKWT20FOScsz6ZxvAsFbXieMsP6AN9CXd2f\nkHHAulbXejysApWTd08FqnqU3aYWXRxAdQ6yrnKeOenfDGsEAJ1DwPLlv6ZGsj4aKsTzuYIt\naE13WhneB3gD0xduT8g4YD1NncKrT0mnh0TRrR+w2tTfs6hRSDPq+zdVqPIpqxIBQPcQsHzZ\nQvJm0BlCO3mXClrwJjUM8/N7ssds7owD1lBaEWaBitqdQdZFl5ls6Q+ZdNNpJWocTWmqXNEI\nAPQAAcuXDsJ+WT13v+lG3qWCFgymeWF+fJ+MqeE2KwPbgPVzTNXw5zRX1OxkyniLwZZ+3oDB\n5XG860+Nf2RQIQAYAQKWD2dN6TJ7bgt6lXexwN8n5gDXVZKhCz3q+pRsA9YWGhFufUo7egtF\nLQz7INZbVamfUlHS1pMy/sdibwCA/iFg+bCdRsvsufNpDO9igb/xFP6k4Wupv+tTsg1YN5iZ\nn/XN3rwUygzzTKwnE4RRyhVoy6JWOOkSAORAwPKhk7BPZsvNT41j+wtziEDfRVdi8K1U9ehf\nXJ6TacB6nVqEX5/yjnakctsKw9jOh6MsjC6P411+e+qg7AUUAUAnELC8+8FcX3bLHUrbeZcL\nvM2UNWtaIMNoj8tzMg1Y02gugwJVMDOOepwNeTOXCrHLlK0vtxV1+oPVXgEAHUPA8m4XZcvu\nuAdMN/AuV32/vve3PRuf/ZV3GVrxS0ISi5+t7RXauzwpy4B1rVpsDoMC1XCgGVUsCG0rL42m\nCluVru9MC+p4ntFuAQAdQ4ZF8ZkAACAASURBVMDyrjMFMQ10S3qFd73qunq8OUmE9LtwLUbR\nMhrO5MO7kfBF6ZOyDFjP0a1MClSDbZRFmHwhhI38qT3VOaB8fbmtqB3OwwKAQBCwvPrVkhZE\nw11Ao3kXrKa/dtUjoWnnoVOm9W0cQ9ThCd4F8fdnpXJs5rWcRMtKn3VlcnIyq0Ml42kRkwLV\nsakGNXk76G18L41anVKjvNzW1BrnXQJAAAhYXuXSgCD6bX5qvIFOyvigPlk673Bu+vIMoswX\neNfE22a6g81H99GohooUeLlCUh6bCtVxqhtFr70W3DYWJFJ/lWb6ym1LN/2kyI4CAP1AwPJq\nMgV1puwAOsi7YtU8l0zd3b6GWd9KMM1hMwN3pLpYw3qI0Ud3a3pNiQoLqCejAtXyQCLd8mUQ\nW3hlrhA1TbXq8m6hRt8osaMAQD8QsLy6LjqoM4J30q28K1bLw1bzPZ6bv7IiZX7IuzCedlMv\nVp/cc2mKEhUOo1WsKlTLoZsoSf5/t3zXkSqtV7E6221U+yMl9hQA6AYCljdfUvPg2m26KZj/\n2I5gC4TYJWU3/3gHijXOMbwyrqRZmJ1afSa+0hX2Ff4Zn6rxy+R4YZsUQ7d9LW8Dn65MLY6q\nW95gqsziuj4AoFsIWN7skz2Nu8MkWsq7ZlXspIrbvA7A9FhhOe/iuDlIXRl8YDt0d79cDhvH\nqR+7CtWzuyklbpcx6+j5yYI5W/UEOVZIfIb9rgIA3UDA8mYwbQmu1x6z1g9n9ulI8Up0vK/Z\nK7ZVoHuCPCmZvR+fP7ln9dxlO089+18VX/VaQ3MQc3oEspqGsi/xdtrErkIV2SbGUvt/B9q6\np+tStTUcqptmsR5lv68AQC8QsLy4llo+2P8cbkcGmA/qx5rCAp8jsL8mDbzIr7ZLzy7sXYNK\n1Ry86R2VXvoEdQrvg9qNrVIc85+k/hJdnWGFqjrQgsxj/U7s/sN4QbidzySqi2OEdaz3FQDo\nBgKWF29Qx2Bb7UIay7tqxV3NoiF+huBoQ8oKZXZIBv67s298cahKaj5gzJS5S+dPHT0gU7x/\n42Y1fkpf2EzY4WdYgtafjrMucT8NZVmhuuZVp/hlPqcDO784garzOHwl2ViepnE/bgsAGoWA\n5cUqmhpsp81LSeIULtQzh5r7PbB3+ibqxuEY1rldHU1ElXo84HaiuW3HlEwTWQcqfxgrj9oF\n+2+LX5uoH+sSexLTCKiy3PEJVH6W10kR/thamRLGnuFX295qNJjjcVsA0DIELC86U/A/CutH\nR3iXrbBnhEoBfqd1pjn1vqRuUVfyekcRpY/Z6a2eg9k1yDTsE2UruHaDsDXof1v8qh7DeJbw\n36Jrsq1QbccGJ1DUsGc8J1t7bXwiRQ86zrW0I+nU8Re2uwsAdAIBq6wLMSF8Hm2jrrzrVtaV\npkLAb2JymlF/BSYZ8OmTOVWJao3Y67Mg2wO1KGrCOSVrOEHtg/+3xa8hrKetPUKDGJeoutMT\nqxOVH3qs5DjWT/mzbyBKGXiQe2WtqKnMuSQAwFgQsMp6knqH0Gjrm7/lXbiitso5lftUYxqq\n1jkpV/O7mSi2+wb/FdmmVabKpxWsopHJ69GzMGynnmxr7E8bGZfIgW1R9xQiim12x/jBfTs3\nLL5pajFPC5f/ye9O1d9lu8MAQBcQsMqaSfND6LNjSdc/KDqXEiPnYMGJdJqkSj0/rqhNdN19\nMq7tmzs8igb+oFQdBykrhH9Z/Ksd9TPLEi/EVYq8WUa9sW0YcnNtq/Qj0eimgxawubw2AyOE\n5JdY7jAA0AcErLIyLCdD6LKHzBm8C1fSJLpL1jAcrUlLlK/m9ZExZO0S4OBVie3XUWq+MoVc\nrmfx/QVlqIbTXpY15lJf5iXyYzuwbe9RGblaTfeYYhWYHRYAIhwCVhk/Ck1C6rKZpOMvCt6x\nVJX5W60DqbRb2VouH2tDVGV0EAcw8kdahVmKnBy2h7qH9C+LX7ups/TkuzIzM/8Mv8YRtJp9\njeDqAavFwJeKAgDvELDKOON3tiff7qfZvEtXzq30oNxx2JFgPqNgJT8uq05Cxrwgv/TaWJk6\n+p2uMjQXa1qZXYXQRX3z9+KzLySi38Ou8XL5ZH18Q6hlK2KFrWHvKQDQFwSsMmbS4pB67KmY\nmrqdczCXMuQPxNromBeUKuSt0TEU0yOEWZ2OtaCq7Cfb3xTS7yECGkXbxGdnE7CeoB5K1Ahu\nNicJG8PeVQCgKwhYZbQVQpxZpxM9y7t2pbQIaq6nBebk95So4mpOR6JKwXw36MJ2lyn6EcYF\n/a9CzKGQigngIaG9+PRsAtZ4WqpEjeBuW3laG/a+AgA9QcDydDGmdogtdgmN5l28Qp6jFkGN\nxBShJvurLf+6vi7R9XPzQ9w7BQWLygkL2V6SexoND7kavxqaxDk/mASsq5Xjc5UpEtzsSKaV\nDP6dAgDdQMDy9HLIpy3n6/ZyOT1pZXBDcSdd/yvbEj69L4GsXbaEuGvstlakO1le1+Rja0WF\nLjI8hsQzepgErBfpVmVqBA+7Umg1g3+rAEAvELA8rQ/+QoROt9MJ3tUr4l3humCHoht1Yhll\nXh5gpvLDDoe6Y5wO1qf2/2NXVV+aEW5FPuwXOhYxClhTaZ5CRYKH3SnC/vD/rQIAvUDA8tSf\ndoXaYDdTb97VKyKb5gQ7FHktaBCrU/6v5bUjqjOVxSV9T7ei65l9efkspSv287zrzGcZBay6\nMQodZYMytsZZbCz+zQIAXUDA8lQtMfRPzVpRP/EuXwHfWKsGf+LT6XSazOTVrxxqTJSxmFGU\nye9KtT9kUlfRtQxhLZuivBhN29kErHfoZsWKBE+rrOXY/1QVACIUApaHL6hl6P01m/Q4Gc79\nNDGEsThakxaH/9oXt9chU4fNoe8ST7bBlPpq+HUV20cd2JXlaZ/QiU3AWkb3KVcleJpnTtbx\ndMMAEBQELA9HKDv09npAaMW7fvZ+TUwK6UumAxVpZ5gvfWlnTbJ03RP6DvFmghD/dwbD8lNF\n60NsC3NT3/wDk4DV0hT2mWsQhClCbT0exQaAECBgebgn2B/MuWlGH/HeAOZW07DQBmNHgjms\nk/4v761DUb3Zz5Q+yxJ9OvxhGR5OEg8sm3axCFjfCo2UrBLKGERZilyUCQAiDgKWh+aW02F0\n1/toPu8NYK2wvvVIiKOxLiYqN/TXPXkdWXoqcSGagsUx5rCvpvw4peUpUZvTHurMImDtopFK\nVgll2DLp/nD/5QIAXUDAcnfe0iCc7nrCWpftVJb8vUDtQx6O5dHWR0N82advIlMXpb6DWxMv\nrAlvVM7XNm9UqDiHNMtPDAJWT9qpbJng6VhVOhbeTgMAfUDAcvcs9Qmru3agF3lvAmPZIV6a\nUbLUGv1EKC/6bjei1iFccVCurSk0M6wkfB/doVx1khG09/Xdu3dfDqfKovMx1RUuE8rYGhP3\ndlh7DQD0AQHL3TKaFVZzXUDjeW8CW7/HpYZ+cZqCgkVR5Z4O+jXPjjNTk3Vh7YdA9lSlkWGc\nKvOyqWo43yTLsYu6hV6fU47iORDKmiU0+CP8fQcAkQ4By11PCu+sn7ykZJYzmPO3jwaFNSDz\nLDE5wb3ihWXxVO2BsF5UhkNp1DvkCxv92VhYrnSBBXWifg61vhLZtFrxOqGM3jQp7F0HABEP\nActNYUpqmL21DzH4hZqGtBXCnCVhQbQ5mNkaCo/VooSxKlye+HhTahfqZXOyQ75eZRCG0YEQ\nyytxNTUpnMOPEKKc6sKT4e47AIh4CFhu3qd2YfbWDdSX90aw9JHQNNxPm7UJtEj2673cmix9\nj4X7krLk3EyNPg9pUPZTXRUuP7ODeoVUnYsXKUv5OqGsdeYav4S78wAg0iFguTlAY8PtrTWt\n53hvBUNzQr/0dYkdqTT+kqxX+2ywQK1CvhRksPJvo8qvhDAm78TG7lajvprRv4VQnasZpPhX\nreDVIBoR5r4DgIiHgOXmHloTbmu9i7bw3gp2rlYrdyr8T5sDNanll4Ff7Ofp0ZS2LPyXk2+s\nEBvkCWLFfk+n2apUN5iOhLDLXF1nZbD3IAS5aXQmzJ0HAJEOActNa1PYn0gHTDfy3gp2HqMu\nLD5uTrSjFFuAlzq/LJlSpzK6prNcD0SbVgY7XcNQuk2d4jbTHaHuN7sPqYU6lUIZW6Mqhf8b\nBQCIaAhYrq7E1gy/tWbSW7y3g5kBrH6FNiFKmOHvR3t/rq1IcSNUOLPJw/oU6h/cXJ5zqcEZ\nlYqrGhver/3X0mSVKoUyhtM9Ye08AIh4CFiu3qFO4XfW2TSF93aw8ke5qqwOKW2oTLVP+nqd\ncyurUMygo4xeKigHG1HjD4MYkrVU+aBatfWnU2Htvg7Cw2qVCp5yqlreCWvvAUCkQ8BydYDG\nhd9ZzySkyjulW/tOUv/wx8PheF8LdfR6bO/9CbEU0+8ws1cKTm5PSpI/s8Y+ITnMaSuCsJ6G\nhLP3zpnrq1YqlDGPbgln7wFAxEPAcnUvk2/EeoV54EE7BhPL+dR3NCdT1+Me87B+s7GNQKnZ\nXI5eOUy10iiZXxOeNsdvVa8wW8WEv8LYe4foTvVqhTKa04kw9h4ARDwELFdtwj/Hvdgm6sl7\nQ9j4KyGV7UnnC64jSrn3zGeO88q/zltYnK6ExjNVmFfUn611qO5LcgbkWHR02L8yDUZfyg9j\n9w2kzWoWCx52Wmr9GcbuA4BIh4Dl4iqLc9yL1TV/y3tTmMgP88rXXmztm0hEia07d26bmVp8\nS2g0LrxrEzFxpp9gnhXwhPLC+ULMElXrWk13hb73LiUyjscQpH60IPTdBwARDwHLxbssznEv\nNo5W8t4UJu6ilUzGw03ugmFtqgrF2YpSWw55ULUTxgNYnko1jvsfjT/6U6Utqha1cXJcGL8j\n/Dv1VLVa8HSifDkZ078BgF4hYLl4OPx53CVHLOm8N4WFy8nJSh0CyTl2UqFnDtXJOyx0i7+f\nfX18IzV6RN2ahhan0OAnQnW6lxapWy54upfGhbz7ACDiIWC5uJdWsWmsbUjWKT0a9zj1YDMc\nkWHnjWS64zUfY3F+TjRlqTX/lZMYsEK/4kqdGPWnFQM3eVWjQrvaJQDoAQKWi7YCo+MqCymb\n97YwMI6WshmOSDGvLlHWk9fKjkThkepUYYbq9YgBK+VyiHvvbWqtesHgYSqNCestCACRDAGr\n1NW4Goz6qq1yTORf8flqxYQ8RuMRKWwLmxJVu/dF94z1wYIGFDWAw1X9xIBFT4S4+5YxuEw3\nhCmvWtRn4b8TASAyIWCVeo9uYdVYR9Ia3lsTtmepM6vhiCBrOsURVb1jie1LcWqsX189OLc5\nkbXDbh61SAFrbIi7r5XAa+pWKDWNRrF8TwJAJEHAKnWQ0TnuxY5Y07x80xRZ7qEFrIYjopyZ\n3yme7Kzi/5ky7jvOpxIxYCWmXglp7501NeJTNLjKr275hPH7EgAiBQJWqSkMZyXoRI/x3pww\nFVaPVfukbs2w7Z07pFVG4/r1m/Ucv4TfgSAxYGXRUyHtvt00klvdUGq6Lk7HBIBQIGCVasfq\nHPdi66gX780J0xvUntloQEjEgDWPxoe0+3rSLt7lQ7H8GpaPGb8zASBCIGCVYHeOu6ieKcJ/\noL2UpjEcDgiBGLCOJVQM5TvC36PZXJQAwnV/iAkZACIeAlYJhue4F4hzDM7mvUHhaS2oPK0m\neBID1sku9EwIe+84DeJdPUjyUsv9xPzNCQCRAAGrBMNz3IvlJKT+xXuLwvGz+TqGowGhkALW\nYro7hN03lNbzrh7ssmk583cnAEQCBKwS02gFy77alw7x3qJwHKWhLEcDQiAFrNyEyleD3nuX\ny6fgQs8acTS6eqiTxQJAREPAKpFFx1j21V1CRiHvTQrDcFrHcjQgBFLAKuhMzwW99/5urKsc\naVsPOsL+/QkA2oeAVaJiKtu+2jqSZ2q4VjEJh0B4G1elSpVTBYtC+I5wMi3mXTw47RRaKvAO\nBQDNQ8By+pZasO2rG+hm3tsUupepE9vRgFDlJaUG+xVTYY24XN5lQ4lM+qcib1IA0DYELKfH\nmf/uKoNe5L1RIVtAMxmPBoSqOz0e5N57jTrwLhpKLaZBirxJAUDbELCcVjOPFMupB++NClkL\n01HGowGhWhH0ZOAP0izeRYOLOuYInxQPAEKBgOU0nLaz7qvpwpu8typEP+BKdtphS0kMcsaP\nphZOV08EryZH+qR4ABAKBCynG6LyWPfVeTSQ91aF6CCNYD0YELK+lBPU3vuYmvMuGVydjqsS\n2iW7ASCSIWA5XLamMe+rttqmD3lvV2gG0ybmowGhWh9kUF9Gk3mXDG66U75C71QA0C4ELId3\n6Fb2ffV+GsV7u0JyJRnzVGqIrUrs78HsvmbmI7xLBjfrqa9S71UA0CwELIfDNJp9X82rbn6b\n94aF4p/Umf1gQMgG0eEg9t77+IZQc2pbzir2bgUAjULAcphFSxXoq/OpE+8NC8UiTNKgKVup\nVxB7byFN5V0weBhDaxR7twKARiFgOXSnw0o01uZ0hveWhaC9cEiJwYBQ1Y46J3/vNbZgig2t\nORqVHskXzgKAUCBgOVRLVqSx7rCkBfkTew34w1pXkcGAUA2nPbL33tusL0kADLTBbO4AhoOA\nZXeOMpRprLfRKt7bFrTHqJ8ygwEh2iN0kL33HqTpvMuFMhbSGAXfsQCgRQhYds8olSmOJSR8\nx3vjgjWNFikzGBCqRsKncvdeAytmGdWe/NT4oH4JCgCRDwHLbpNiJwaPp9G8Ny5Y11tOKTQY\nEKIpNF/mznuDbuZdLHgxiPYr+qYFAM1BwLIbTZsVaqy5NYUIm2TwrNBUobGAoGTHx8c7ou7J\nmFrX5O292fgFqCbtEdor+7YFAK1BwLJrYT6jVGfdGJXyJe/NC8phGq7UWEAwhhLRScftW+kp\nWTuvsG40Dj9qUiPhK4XfuACgLQhYkquxtZTrrBPo5suyqvj+n7nbFizY89i75xXeXP9G0jrl\nBgPkcw1Yy2mYrJ33CrXjWjP4MoFWK/zGBQBtQcCSfEgdFGytben+gBX88di0puQU1eOhIOY9\nYq1mHPPLXkMoXAOWrXK5X+XsvEn0ANeawZdHzDcq/c4FAE1BwJKcpLsUbK3Hqwo2/6//4oiY\n4ljVrE/21EWLpgztUqf4TveX1dn0Mj7EWdIa4Rqwiu/slrHzLpRPyuVZMvh2I32g+JsXADQE\nAUsyjxYo2Vo3RqW84fvFf1nXkKjS7Ytczp3ZObwuCUP5nLOxje5WcixANreAtU9oLWPnHaI7\neFYMfkylBYq/eQFAQxCwJH3pgKK9dYqQ+KyPl/56egJZ2iy2ef7J8rpUbt4FVUfB7nbaqehY\ngFxuAaugmZwDIB0E7DytOm5toPy7FwC0AwFLUj+2TMBha7olOsfbC781PIqShj/i7U/y7y1P\nzT5WeySKrpRPVXYoQC73gDWNZgfceR8JjTnWC/61pv9T4Q0MAFqBgCW6YE5XurkuiDaXuZzc\ntfxORNUm5/j6mxNdKEn1a0W/TFlKjwXI4x6wTsVWDnhZy1mKzZcL4Zst48cuAKAfCFiiN6mL\n4t11TTz1eMn1Rb9a24Co6YN+D51NsQozr6g7FstxKTutcA9YBX3ooQD77nKVuNP8yoUAcsrV\nkDlbLADoAQKW6DCNVr69bk8n6vTMVekFr3y0uY1Alk6bAv3R5irUQ90TsboofDoayOYRsPaZ\nmhb633dnqAe/aiGgTvS8Om9iANACBCzRA+pc3XhpU6Kourdk90mPIhKa3O311CsPx26gTmrO\nO3optpri4wDyeASsgjb0pP+ddxtt4FYsBLaIJqjzLgYALUDAEt1O+9XpsKtuqZ9Y/KkZU6/D\nWLnHiXJaUOtf1BuKf1A3RUcA5PMMWGuom9999405jVutIENuYqrKX/gDAEcIWKLryin8I0JX\np7YfDOrxuW2p+U+qDcVSXCtYMzwDVkG68J6/fbeIJvAqFWTpLvOKkgCgBwhYxf4yX8e78/qT\n34kyflNrLLIouPgHytk+e/Zst6sWzaYxfnbd+Qpxx3mVCrIsoYlqvZEBgDsErGL/ps68O69f\ntizqKu9y0WG7WK46760Fn/Iqxfzge9+toUG8CwT/chOq4HeEAIaBgFXsiBo/IgxHbnO6M8AP\nyBh5Hr9D07IxtNDnrvurasxh3vVBAFn0oirvYwDQAASsIvFKhAt5N94ATqbRfFWGYhHN4r2t\n4NuJ2Iq/+9p1W6gf7/IgkPl0nyrvYwDQAASsYv3oId6NN5CDlWivGkNxiyBn7gjgZTDN9bHn\nLtWw4uw5zcuJranOoWgA4A8Bq1h6jIo/IgzRjviolwJvSbj+iqnJe0PBn1MpMV9433W7qRfv\n4iCwDvSq8m9jANAEBKyioouWBrzbrgxLhep+TnBm5FnqyXs7wa8pNNjrnruSZlFpLjcIx1ya\npfi7GAC0AQGrqOidyLi88TDKuqr0UCygObw3E/yypQlej2QepK68SwMZTkXXU/pNDAAagYBV\nVHSMRvJuu3LYMulBpYeig4AfomncCmrp5SyeX2qY9/CuDORoQ28p/S4GAG1AwCoqmk8LeHdd\nWY5VFnKVHYk/o+vw3kgIpDU9UnbPDachvOsCWWbQPGXfxACgFQhYRUX9aR/vrivP+qiUrxUd\niaepN+9thED2WGqUmdf/DKXl8q4LZDkR1VjR9zAAaAYCVlFRowj4EaHdeOqs6I+859Fc3psI\nAQ2gHh4n4/1YKWor76pAphb0gZLvYQDQDASsokuW+rx7rly2TNqm5FC0E47w3kQIKPcGmuq+\n3wZQNu+iQK4ptFLJ9zAAaAYCVtG71Il3z5XtQFzsx8qNxAWcghURjlan3a777RA1zOddE8h1\nWLhZubcwAGgIAlbRiUj6z/9p1Fq5uRqexVyVmrI6Ozvb66lVu+KjnindbQdionerXRqErpHp\nO8XewgCgIQhYRQtpPu+WG4SbaYWCI4FZsLRkKBGd9LpmmSXlMcdOu3IfxS5SuTAIxyj3448A\noFcIWEUDKJJmEDqcZH1HqZHoiFmwNMV3wCqYLFBnaT6lc1lUfYe6ZUF4dlFPpd7BAKAlCFhF\njaMj5UeEkrnUVqFfEuJChBrjJ2AVbGpGphGzBrcqT5nHVS0KwlYz+ndl3sEAoCkIWFesabwb\nbnBa0l5lRuJ5XIhQW/wFrIKC+TWKV5tSB+P89kgzkE4p8w4GAE1BwPqIOvBuuMF5KLrCT4qM\nxGKazXvbwJX/gFWQt3D5XkwvGoHW0XBF3sAAoC0IWPl0J++GG6RsGqXISHSig7w3DVwFCFgQ\noWyp5S8r8g4GAE1BwFpNs3g33CDl1RGeU2AgLsXW4L1l4AYBS6e609MKvIEBQGMQsEbTFt79\nNlirhSYK/Bfwi9Sd94aBGwQsnVpE97J//wKA1iBgtRFyePfboGXRWvYDsYxm8t4ucIOApVNn\nytVW9JqiAKAJCFgVKvFut8E7HJfE/jz3LjgFS2MQsPSqHb3J/P0LAFpj+ID1I2Xy7rYhGEn3\nsB6Iy3HVeG8VuEPA0qv7aSHr9y8AaI7hA9YL1Jd3tw1BblXLfxgPxD+pG++tAncIWHp11Hwj\n47cvAGiP4QPWbprMu9uGYib1YTwQK+h+3hsF7hCwdOt6+oLx+xcANMfwAWs6reTdbENhS6fn\n2A5ENzrAe6PA3bSMjIzI+wUGyDCWtrF9+wKA9hg+YPWkR3g325CsEzKusRyHKwlVeW8SgFHs\npW4s370AoEWGD1j14nj32hC1pYMsx+Fl6sJ7iwAMo5b1N5ZvXwDQIKMHrL/M6bxbbYj2WGpf\nYjgQK2k67y0CMIyBdJLhuxcAtMjoAesdyuLdakPVg3YwHIhutJ/3BgEYxlpc8BlA94wesE5S\nNu9WG6qD1qoXmI0DTsECUJEtOeUKs3cvAGiS0QPWEnqQd6sNWW/axGwccAoWgJq6sv4ZMABo\njdED1jDaybvThuxQdJU/WY0DTsECUNM8ms7qzQsA2mT0gJVpyeXdaUPXj901n7vjFCwAFeVE\n12P15gUAbTJ4wCqMr8G70YbhSLnU39mMA07BAlBXK3qPzZsXADTK4AHra2rFu8+GYxAtYzMO\nr+AULABVTaGVbN68AKBRBg9YT9EA3n02HMfiUs4zGYdVNI33tgAYyiPCzUzeuwCgVQYPWFto\nKu8+G5ZBtJ7JOHSnh3hvCoCxNBL+y+TNCwAaZfCANZnW8W6zYTkaU+UvBsNwJaEK7y0BMJhR\ntIvBexcANMvgASuLjvFus+HpTXsYDANmwQJQ2x7qweC9CwCaZfCAVT2Zd5cN0wFLGoMJoVfi\nFCwtGkpEJ3kXAYqpGY0LPgPombED1u9CU95NNlxZdCz8ceiBWbC0CAFL3wbSifDfuwCgWcYO\nWG9Qd95NNlw7hRsKwx2GyzgFS5MQsPRtHd3JoosBgEYZO2AdpdG8m2zY2tBj4Q7DS9SN91aA\nFwhY+mZLTbrEoo0BgDYZO2Atpvm8m2zYNlC7cIdhCc3kvRXgBQKWzvWgp1i0MQDQJmMHrGG0\ni3ePDV8G/SvMYegoPMJ7I8ALBCydW0T3MOljAKBJxg5YN5kj+FLPTotoYHij8Gd0Hd7bAN4g\nYOlcbmz1sE+gBADNMnbASqrOu8WyUMf8WVij8AT15b0J4A0Clt61p9cZtTIA0B5DB6yz1IJ3\nh2VhCk0Naxhm6eBMNF1CwNK7mTSfUS8DAO0xdMB6gW7n3WFZyElK/DWcYcg0n+C9CeANApbe\nHbc0YdXMAEBzDB2w9tBk3h2WiaG0LoxR+MXckPcGgFcIWLp3E73PrJ0BgMYYOmDNpOW8GywT\nh601Loc+Cjk0mPcGgFcIWLo3hZay62cAoC2GDlh96GHeDZaNrnQ89FGYRCt41w9eIWDp3lFz\nBrt+BgDaYuiA1TDGxrvBsrFLuCn0UUi35vCuH7xCwNK/DPqEXUMDAE0xcsC6Yk3j3V5ZyQx9\nstH/Ugbv6sG7gxs3e3WgBAAAIABJREFUbsznXQQoajKtYtnTAEBDjBywPqH2vNsrK4tpSKij\ncIiyeVcPYFSHTS1Y9jQA0BAjB6zHaAjv9sqKrUbUNyGOwl20gXf1AIZ1PYU3TTAAaJaRA9YG\nup93d2VmQsgzFtaIw7dQALxMoPVMuxoAaIaRA9ZEHR27ORlb+WJIg/A+3cy7dgDjOii0YdzX\nAEAjjBywbqXjvLsrO33oYEiDsF4nk60CRKZGwteMGxsAaIORA1aN8rx7K0N7hOYhDUJneoh3\n6QAGNpa2MG5sAKANBg5YfwhNePdWlm4KaaaGP6Jr8S4cwMj2Cx2Y9zYA0AIDB6y3qAvv3srS\nIhoawiDYqB/vwgEMraEJ3xEC6JKBA9YJGsW7tbJkqxH13+AHYaJOLscIEKkmYK5RAH0ycMBa\nSg/ybq1MjacFwQ9C3ZgzvOsGMLTDlqbsuxsA8GfggDWCdvBurUydjKsU9EwNH1Ar3mUDGFwL\n+rcSDQ4AODNwwGpp0tnBm950ONgx2ECTeFcNYHAzaaYSDQ4AODNwwEquyruxMrZbyAx2DLrS\nXt5VAxhcTly1q0p0OADgy7gB6we6iXdjZS2TXg1uDC6Uq8m7ZvBt6YABA3R2lBW8yaJnlGly\nAMCTcQPWS9SHd19lbSEND24MHqXbedcMvg0lopO8iwDlLaVRyjQ5AODJuAFrP03k3VdZs1W3\nng1qDCbTUt41g28IWAZhq5B4QaE2BwD8GDdgzdVhuBhLS4Iag3qYpEHLELCMoh+dUKjNAQA/\nxg1YA3R4Eb7jMdUuBzEEH1EL3hWDHwhYRrGZeivW6ACAF+MGrBusNt5tlb2edCyIIVhFk3kX\nDH4gYBlGrajvFet0AMCJYQNWYawer3K8Q7g5iDFoaTrMu2DwAwHLMMbScsVaHQBwYtiA9Q21\n5t1UldCcXpY9BF8LzXiXC/4gYBnG8ehamAoLQG8MG7Ceof68m6oSFtMg2UOwnu7mXS74g4Bl\nHF3IpmC3AwAeDBuwdtG9vHuqIuqYP5c7BG2Eg7yrBX8QsIxjM/VQst0BAAeGDVj300rePVUR\n99AMmSNw1tSId7HgFwKWgTQQPla04QGA6gwbsHqTPg/fnCmf+Ju8EdhGY3kXC34hYBnIfTRL\n2Y4HAGozbMBqGKPDWRpEg2mLvBHoRPt41wp+IWAZSE5Chb+UbXkAoDKjBqyr1jTeHVUhh611\nZf0e6SdLA96lgn8IWEbSlw4p3fUAQFVGDVifUXveDVUpt1KenBHYQ9m8KwX/Zrdr1y6HdxGg\nkj1Ca6W7HgCoyqgB6wkazLuhKmUzdZAzAt1pN+9KAaBEBr2mdNsDADUZNWBtoWm8+6liMugf\ngQfgf1F1eNcJAKUWUS/lGx8AqMeoAeteWsu7nypmuZwpdfbTMN51AoCLdAGHsAD0xKgBqzsd\n4d1OldNQeCPgALQR8A0hgJYspttUaH0AoBajBqy0eN7dVEELaECg7X+fcB1CAG1pTK+o0fwA\nQB0GDViXzOm8m6mS6pneCzAAU2gm7yIBwM0S6qlK+wMAVRg0YL1PnXg3UyXNprv8b/9fKQn4\n/T+AxjTBISwAHTFowMrX9ynetprmT/xu/yG6nXeNAOBhKXVXqQMCgPIMGrDW6fwbsql0t9/t\nb087eJcIAJ4ay5liBQAig0ED1gTayLuVKiq3kvVTP5v/gdCEd4UAUMZKIf2Cal0QAJRl0IDV\niU7wbqXKmub3h4TTaTrvAgGgrJ40VbUuCADKMmjAqpHMu5EqzFZPeMnn1l9Mjccp7gAadKqq\n6TlZLezn14t9UMioIQKAAowZsP7U/1dkK6iVz+Z7lHrzLg8AvFkt1P09UP/6cMvwBiSpOub0\nb2x7IwAwY8yA9TZ14d1HFdeKjvnY+ms3CNt5VwcyHNu7d6+NdxGgsn40zm/z+uNAu+JkFdO0\nW/fu3dvEEVnHfcu+QwIAA8YMWKcpm3cbVdwuS52/vG/9YWrPuziQY2jxB+lJ3kWAynJqCnm+\nW9fnExNJaDp5a779wXkrB1Sh2AdwFAtAi4wZsFbQXL5NVA29aLXXjb+UZsFlCCMCApYhbbRG\n5/toXB+NjKKUAe5v39y7kyj1YeWaJQCEypgBaxRt5dM71XQkLsnrdwdbqQfv0kAWBCxjWhwd\nddzbO/e9oWaqdl9umcefHBJDY30crgYAfowZsNoJRvgV3Xi69VrZbT9fOfog78pAFgQsg1pZ\nzry/zBv3nYEmqjUj3+sf7K5DzT9XoXECQDCMGbAqp6rcMbmwZdKKstu+mAbyLgzkQcAyqnXx\nwgK33xIWPnuHQHXm+PzJw+lOlPK4Wu0TAOQxZMD6jZqp2S25OZwcVebasT8mJhznXRfIg4Bl\nWJuTKHXleeeb9ofVDYjSHvD7i9KJlqgT6rZRAAjAkAHrdequVqPka7FQz/P3RXfTaN5VgUwI\nWMZ1bEgspU7ZeOqfr+0a3yKKLO2WBfqLFTHmR7i0UwDwwZAB6xiNUaNHakA/Gu6+6ZupmhFO\nP9MHBCwjOzo41j6ZKJnTRh+W8QdrYk0P8WmoAOCVIQPWEpqveHvUhtz6NMt1QvfjpqRdvGsC\nuRCwjO346pmj+/SavEHufxKtjzPt4tZUAaAMQwas4bRT0caoIfuq0KDSH3A/bY3ZwLsikA0B\nC4KyKcHk6/INAKA+QwasVqayc8no1eF0avuTY7vfTLQs5l0PyIeABcHZGBP9PNfWCgAuDBmw\nUqrwboQqymlDDQ6fLd7qfwyPEabzrgaCgIAFQVpkTv4P7/YKAA5GDFjnqDnvPqgm2+3Fn9NN\n725CVGUa71ogGAhYEKwpVBvXfgbQCCMGrJepF+82qK6NI5pFkbn1Yr/z6IDmIGBB0IZQxvnA\nPRAAVGDEgHWIxvPugqo7vQrXx4k4x/bu3YtQDEGxZVH/wsBNEACUZ8SANY8W8e6CAABKyG1C\ny3m3WAAQGTFgDaY9vJsgAIAiDlUwPca7xwJAkTEDVnNLHu8eCACgjHVRyZ/wbrIAYMyAlVid\ndwcEAFDKZLoeJ7oD8GfAgHWWWvBugAAAiulKw3i3WQAwYsB6kfry7n8AAIo5U4/28O6zAGDA\ngPUQTeLd/wAAlLMnLuZN3o0WwPAMGLDm0DLe7Q8AQEFzqP5vvDstgNEZMGDdQft5dz8AACX1\nokG8Oy2A0RkwYDWzYnZsANC1M/VpN+9WC2BwxgtYhbG1efc+AABl7Y0r9x7vZgtgbMYLWF9T\na96tDwBAYXOoyQXe3RbA0IwXsJ6h/rw7HwCA0rrQRN7dFsDQjBewdtG9vBsfgByz27Vrl8O7\nCIhYp2vScd7tFsDIjBew7qeVvBsfgBxDiegk7yIgcm2xJn/Fu98CGJjxAlYfOsi77wHIgYAF\n4ZlA7a/ybrgAxmW8gNWwHGZpgIiAgAXhsbWiRbwbLoBxGS5gXbXW4931AGRBwIIwHatoeo53\nywUwLMMFrE+oA++mByALAhaEa6Wpxs+8ey6AURkuYD1GQ3j3PABZELAgbIOoP++eC2BUhgtY\nG2k675YHIAsCFoQtryHt5d10AQzKcAFrMq3j3fIAZEHAgvDti4v9D++uC2BMhgtYXegY744H\nIAsCFjAwk67/i3fbBTAkwwWs2km8+x2APAhYwEJnmsS77QIYktEC1gVTI97tDkAeBCxg4RQu\nmQPAhdEC1jvUmXe7A5AHAQuY2GYt/yXvzgtgQEYLWDl0F+9uByAPAhawMYHaXeHdegGMx2gB\naxXN5d3sAORZOmDAgDO8iwAdsLWiObxbL4DxGC1gjaatvJsdAICqjlUW8nn3XgDDMVrAaiec\n5t3rAADUtd6SgtOwAFRmtIBVqSLvTgcAoLYxdPNl3t0XwGAMFrB+pQzejQ4AQG221jgNC0Bl\nBgtYr1FP3o0OAEB1xyoJj/LuvwDGYrCAdYTG8u5zAADqWx+V/BnvBgxgKAYLWAtpAe82BwDA\nwWRq9ifvDgxgJAYLWENpN+8uBwDAQxcaxrsDAxiJwQJWpiWXd5MDAOAhpz7t4N2CAQzEYAEr\nsTrvHgcAwMe+hOiXefdgAOMwVsA6Sy14tzgAAE4WCdX+y7sLAxiGsQLWC3Q77w4HAMDLXdQc\nJ7oDqMRYAWsvTeLd4AAAeLF1pOG82zCAURgrYM2i5bwbHIBcBzdu3JjPuwjQl5wGtJZ3HwYw\nCGMFrNvpAO/+BiDXUCI6ybsI0JkD5c1/492IAYzBWAGrcYyNd3sDkAsBCxSwJirxbd6dGMAQ\nDBWwrkan8W5uALIhYIESZgrVvubdiwGMwFAB6xPqwLu3AciGgAWKGEY3nufdjAEMwFAB61Ea\nyru1AciGgAWKsGVRjyu8uzGA/hkqYK2nGbxbG4BsCFigjNxmNJF3NwbQP0MFrPG0kXdnA5AN\nAQsUcqwmLeTdjgF0z1ABq6OAjyuIHAhYoJSHK9FG3v0YQO8MFbCqVODd1gDkQ8ACxewuLxzk\n3ZABdM5IAetXasa7qwHIh4AFytlQLgoTjgIoykgB6zXqybupAciHgAUKWmqJe4F3TwbQNSMF\nrEdoHO+eBiAfAhYoaa45/h+8mzKAnhkpYD1Ii3i3NAD5ELBAUXPMOIYFoCAjBawBtI93RwOQ\nDwELlDXbnPgK77YMoF9GCljNrPm8GxoAgGZMNyW9xLsvA+iWgQLWtXK1ebczAAANmWaKfYJ3\nZwbQKwMFrC+oLe9uBgCgJfOs1pO8WzOAThkoYD1Bg3g3MwAATVlezryXd28G0CcDBazNNI13\nLwMA0JY1ccJy3s0ZQJcMFLAm0TrerQyAgxUVyWOGkrJL5KwCfdpSgUZe4t2eAXTIQAEri47z\n7mQAqsu5XSD3zFR2iZxVoFsH61PbH3n3ZwD9MVDAqlmedx8DUN3mWkQWt8xUdomcVaBjp1pQ\n+ke8GzSA7hgnYP0hNOXdxgDUNtZC1gntXTNT2SVyVoGu5femxNO8WzSA3hgnYL1J3Xh3MQC1\n1aU62wvcMlPZJXJWgc5NsQrTLvNu0gD6YpyAdYxG8+5hAGpL65VT4J6Zyi4JuCqDaGrJneZE\ns6Qbm3vWjo2qcP2YklMbT92dmWq1JDUdecx+P50sBce7J1jGFt/Om966cowpLq3PVlZbBmxt\nrkpt/8u7SwPoinEC1iKaz7uFAahti/h/bpmp7JKAq2YRlXy/ftRMccUxrOBMV3JIcjx8XYpz\nScp6acH1RGcaFd8dWlDwcF3nOmEwu40Dlo63opRjvNs0gJ4YJ2ANpV28OxgAF2Uzk5/vAb2s\nOpNAwh7H7clEPcR/tiFKzV6y6cFOAkWtFBccSiBqMGHhortrF2cu6RiWeOCLrE1vmFhQUJyz\nGkxctnJODyvRfcy2C5iyjbXS4HO8GzWAfhgnYDW35PFuYABchBuwCnoTOQ88NSMSj09NLU5M\n9u8GZwpUPbf4n4OJmon/LMjPJMoWbxT/M73hYfHW1uJHn5EevTmKqoW7OaCUnQ2oqo13pwbQ\nDcMErML4Gry7F0BQpmVkZOTIeeCu5Rv8zvEWdsAqDkipNunWIyaqWfwPWzUyOY9ptSFaUPyP\n7Mw0x98tJcoQ/9mCyHpQWjKLaIjj0fcMn54fcIOAk7xhFurzOe9mDaAThglYX1Jr3s0LIChD\niehkwEfZpqSKpzaljdgv3c0ZVfYhYQesggZES6UbE4hGFv9jO9ENznUPkscPdA8Q1RL/WRyw\nOtiXzCe8/SLElkZUbtFfvNs1gC4YJmA9jks9Q4SRF7CGl5w+3nTk4oV3plYo+5DwA9ZkZ1Zq\nTKaD9vt9neuK89R1JQ/MPX78+F6iquLt4oB1t33pUSvRLZsDbgpogG1qearz8FXeDRtABwwT\nsDbQdN6dCyAo8gLWoJr3HTjz0ANZCY6c1bDsQ8IPWCeiySp+C/mwQDc5S3Nhv0jCss41nUU4\nA9Zcx99PEa/AU63n3KMBNwe4O97bQunHrvFu2QARzzABaxxt4t23AIIiL2BtzbX/M/fBjhUt\nMfXHnin7kPADVkEW0aTif4wlmi3e7e0esKzFi062clngDFgrnX+/NF1absp4wBZwi4C3fVlm\nuv4gLgANEB7DBKy2wineXQsgKPIClgwMAtYq+/eA6RQvBbi+RF1WlBJz1M1EcSM2H84rKDhS\nGrDWlT7DukFp4mEsysA11yPAro4mqrocczYAhMMwASulEu+WBRAcLQWsgupEuwv2EfV0ltbf\nff0mopgd9puPeA1YxY7MamsmujnI6oGLPb1iKDb7hULenRsgchklYH1PmbwbFkBwNBWwRhIN\nLxhBtEG6N63MzwKzibo7bq7zFbCKbUog2hpE6cDP8ZGViBqs/Jp38waIVEYJWM9RP97tCiA4\nmgpYj5ipdkF1+/wLBQU7iRLcJ+7tQzTWcXOAn4BV0J/wc5OIYVvSPopM7bae5d2/ASKSUQLW\ndprCu1kBBEdTAUs8x2o6lVwxvXbp9Z8frNlvlxScHHOJ7itHVFG8URKwbAMzOjmf5s7SnxZC\nBDg6vpFA5ls2fsG7hQNEHqMErHtoDe9OBRActQJW39tue9jfg+0WECWQ6ZDj3lSi+K3SrZ0V\nyLynoKA4fNWRpmh/qEZ6DFnFU+FLj2A1IWGm/dYjVUk4EPYGgZr2j24gEGUs+D+cjwUQFKME\nrCw6xrtNAQSHQcBaPVRUi+gW8Z8TvC4piCLa7P3BrvJTistpUXK3NZG178I1c3pGEw0svn8y\nrvgzeNH2ZbdHx+xKI+q37ZBLwFplIiFz4vzlcwdWIOoa3iYBBwcmZFiIqo2z/cm7kwNEEKME\nrGopvFsUQJAYBKxst+mqqntdUhKwvKxyNYhcv93L7SI4HmgeJE1tNddiv5u4zv5Eo13PwZoZ\nU/K8nbxM1AXad2xmh3ii2D57v+fdzAEihUEC1i/UjHd/AgiSxgLWHqKEXJf7G2+rFWeOb9B/\nl/N++xRzTFr20eLw1TfFWnOh20nuj4xolhJliqt3W9nT3iFS5C3vW5XI1H7TN7wbOkBEMEjA\n+hfdxrs5AQRpdXZ2dm7gh6llE1Ef3jUAbzuy0wUSbt78I++eDqB9BglYDzmvOgsAockiYQfv\nGkADDoxrLFBU71MXebd1AI0zSMCaQct5dyWAiLbV5HKKOxjbgexaRJUewBykAP4YJGDdRocC\nNw0A8OVgDRI28y4CtGNj7zgy93ued2sH0DCDBKy68bzbEUDkWrpgWDzhYgjg5tSk2kTtnuTd\n3AE0yxgB609TI97NCCByJYg/K2ybF/iBYCzLM4haPsa7vwNolDEC1pvUhXcnAohc1Si6wRQb\n7ypAg9a1EKjLe7w7PIAmGSNgHaExvPsQAIAObbyeLJPO8e7xABpkjID1oM8r2wIAQDjmVqHk\nA7ybPID2GCNg3UEP8e5BAAD6dCY7mrp/xbvNA2iNMQJWoxicPwIAoJC9zShhRyHvRg+gLYYI\nWJej6vHuPwAA+mWbHEs9cf0cAFeGCFj/oU682w8AgJ4daEbVnuPd6wG0xBAB6ziN4t18AAB0\nzTbOIky5zLvbA2iHIQLWPFrIu/cABG377NmzMbknRI6VqdTlZ97tHkAzDBGw+tIB3p0HIGhD\niegk7yIA5DvSnOr/h3e/B9AKQwSsunH4ESFEHgQsiDT5Ayj+DO+GD6ARRghY54UmvNsOQPAQ\nsCDyTLeaVvBu+QDa8P/t3XlgVOXVx/Ez2QiQgARkk00WFUSlLGJZrCiotX0iyG5REAVZLLK5\nWwsiGlAUASmiKbLIvkZqq7a1vlq3ape3rrWi+LohigoKyJK8d7JOMhNIZu7MmfvM9/OH3LlD\n9EzOPM/5mZncSYSA9bJcor3pANVHwIIHzcuSa49ob/pAPEiEgPWITNDec4DqI2DBi5afLBfu\n1d71gTiQCAFrkszR3nKA6iNgwZPWniHdPtfe9gF9iRCwzpe12jsOUH0ELHjT5t7S9gPtfR9Q\nlwgB68QG2vsNEAYCFjwqr780e0t74we0JUDA+ky6am83QBgIWPCskZL1svbWDyhLgID1tAzS\n3myAMBCw4F3jfRl/1N77AV0JELDul6naew0QBgIWPGxqcq2ntTd/QFUCBKzRskB7qwHCQMCC\nl92akv477d0f0JQAAatr8mbtnQYIAwELnjYjLY2PzUEisz9gHa3dXHufAcIxMiMjY4N2EUDY\n7k5PXqU9AAA99ges/0hv7W0GABLQ7PSUNdoTAFBjf8DaJCO0dxkASEQ5NZMf1x4BgBb7A9YM\nuV17kwGAhDS3VvJy7RkAKLE/YA2SR7X3GABITPdnJD+mPQQAHfYHrNPS87S3GABIUPfVTlqm\nPQUAFdYHrAPJp2pvMACQsJyE9aj2HAA0WB+wXpcLtfcXAEhc8zN9i7QHAaDA+oD1Wxmrvb0A\nQAJzEtZi7UkAxJ71AeuXkqO9uwBAInsw07dAexQAMWd9wOrpW6e9uQBAQltYV+ZozwIg1mwP\nWEczTtLeWgAgwf2mvtykPQ2AGLM9YL3DB+UAgLbcxjI9X3seADFle8BaIyO1NxYASHi5TWTC\nUe2BAMSS7QHrRpmpva8AAJY3l8EHtScCEEO2B6y+skp7WwHCM6Zx48YbtIsA3LKmvZz3jfZI\nAGLH9oDVoIH2pgKEabiIrNcuAnDNxm7S8WPtmQDEjOUB6yM5W3tPAcJEwIJltpwvrd/UngpA\nrFgesLbJMO0tBQgTAQu2yRskdX+vPRaAGLE8YP1abtfeUYAwEbBgnxvSknO05wIQG5YHrGzJ\n1d5PgDARsGChnLoy9gftyQDEguUBq3mm9m4ChIuABRs92kK67dAeDUAM2B2wdstZ2psJEC4C\nFqy0/lw5YYv2cACiz+6A9bQM0N5LgHARsGCpCWm+yVxzFNazO2DNkenaOwkQLgIWbPVgE+n4\nqvZ8AKLM7oA1TBZrbyRAuAhYsNa6vpJyCz/Egt3sDlinpm/T3keAcBGwYLEZDaTD89ojAogm\nqwPWvqT22psIEDYCFmy2tp/PN3Sn9pQAosfqgPW8/Ex7DwHCRsCC3XLaSM1ffac9J4BosTpg\nLZBJ2jsIELYHJk6cuEW7CCB68iadIA1mf6s9KYDosDpgXSELtTcQAEBl1g2pJfXu+FJ7VgDR\nYHXAOoX3uANAPFszPENqjnpZe1oA7rM5YH3lO0N77wAAHNO6UQ1FOi3mx1iwjc0B6/cySHvn\nAAAcR94d3XyS+tPHvtEeGoCbbA5YM+RW7X0DAHB8uVe2Eqlx4QI+Bhr2sDlg/VSWa28aAIAq\nWTyshYh0mPIkV26AHSwOWPlZJ2pvGACAKnv02h+litToc/ffjmoPECBiFgesd6WX9m4BAKiO\nDTMu9f8gq/7g3M+1ZwgQGYsD1goZrb1VAACqa/mUPvVEks6e9b/aYwSIgMUBa6LM0d4mAABh\nyFs4sn2SyOl3va89SYBwWRywuqZs0t4jAABhenxKtxSRH688qD1MgLDYG7D2p7bV3h4AABFY\nPbGjTxrd/rH2PAHCYG/AekEu0d4bAACRWfLzWpI6jogF77E3YM2TKdobAxCJByZOnLhFuwhA\n3fprG0nNqV9ozxSgmuwNWENkifa2AERiuIis1y4CiANbxmdJxtzD2lMFqBZ7A1bLjDztTQGI\nBAELKLFpdKac9Yr2WAGqw9qA9Zl01t4RgIgQsIAyq86T5F/u1Z4sQNVZG7C2ynDt/QCICAEL\nCHRnY2n3D+3RAlSZtQHrZpmhvRsAESFgAeVsMr70JdqzBagqawNWL98a7c0AiAgBC6jgltpy\n+T7t6QJUja0Ba3+NVto7ARAZAhZQ0SNtpeNO7fkCVImtAetP8nPtjQCIDAELCLL5Qjnpn9oD\nBqgKWwPWHXKL9j4ARIaABYQwxpfxpPaEAarA1oD1E98q7V0AiAwBCwhlSkrqCu0RAxyfpQHr\nQHoL7T0AiBABCwhpVq2kXO0hAxyXpQHrL3zSMzyPgAWE9kBG0mPaUwY4HksD1gy5SXsHACJE\nwAIq8WBmEq8SIt5ZGrD6+FZqbwBAhCa2bdt2o3YRQFyan5G8UnvOAMdmZ8A6WLOZ9vIHAETN\n3Jop27UnDXBMdgas5+Vi7dUPAIiee9IyXtMeNcCx2BmwZskN2osfABBFN/lOfE971gDHYGfA\n6ivLtdc+ACCaRkvbL7SHDVA5KwPWodpNtVc+ACC6jPQ+oD1ugEpZGbD+KhdqL3wAQHRtO0dG\naY8boFJWBqy7ZZr2wgcARNnGk2WR9rwBKmNlwLpIlmmvewBAtD2amfq89sABKmFjwNpfk7dg\nAUACuDOp8cfaIwcIzcaA9Tu5VHvRAwBiYKR0P6g9c4CQbAxY18lM7TUPAIiBvF4yQXvmACHZ\nGLBap2/SXvMAgFjY0Fw2ag8dIBQLA9bb0l17xQMAYmNR2gk7tMcOEIKFAWueTNBe8ACAGJkg\n3X7QnjtAMAsDVl/J1V7vgAtGZmRkbNAuAoh/58qN2nMHCGZfwNpXo4X2agfcMFxE1msXAcS/\ntY18T2pPHiCIfQFrq1ymvdoBNxCwgKqZl9KIj31G3LEvYI2Vu7UXO+AGAhZQRVfKT/O1Zw9Q\ngX0Bq0WtLdprHXADAQuoorwzZKn27AEqsC5g/Ut6ai91wBUELKCqcmvVfld7+gDlWRew7pFJ\n2isdcAUBC6iyydLlkPb4AcqxLmCd61uuvdABVxCwgKrrKTO0xw9Qjm0Ba3dKG+1lDriDgAVU\n3eqslL9pDyAgkG0B6zcyUnuZA+4gYAHVMMt32n7tCQQEsC1g/USWaq9ywB0ELKA6LpZp2hMI\nCGBZwPok+VTtNQ64hIAFVMeGJkl/0Z5BQBnLAtY8GaO9xgGXELCAapmbdPJe7SEElLIsYHXn\ndwhhDQIWUD2XyjjtIQSUsitgve87Q3uBA255ZNasWdu0iwA8ZFNz31PaYwgoYVfAuksmai9w\nAICS+SlN92jPIaCYXQGrY8pq7fUNANAyREZqzyGgmFUB6y3pqr26AQBqtrSVTdqTCChiVcC6\nXaZqr24AgJ5ZNr/9AAAWH0lEQVQFKSfu0h5FQCGrAla7tLXaixsAoGiEDNUeRUAhmwLWi9JD\ne2kDADRtbSdrtYcR4GdTwBohv9Ze2gAAVYvTsj7RnkZAgVUB64saTfK0VzYAQNfV0i9fex4B\nVgWsWXKN9roGACjLO0Me1p5HgE0B63CzGlwECwASXm6t2u9pTyTAooC1QS7WXtUAAH2TpOcR\n7ZEE2BOw+sgC7UUNAIgD3WSO9kgCrAlYb/g6aC9pAEA8WFE37XXtoYSEZ03AGi83ai9pwFVz\nRo4cuUW7CMCTZvjaf689lZDobAlYe+tkMYpgl+Eisl67CMCbLpbx2mMJic6WgJUjw7XXM+Au\nAhYQto0n+Z7QnkuokiNfvv/++1/usfDXEiwJWF9n1eIaDbAMAQsI3wMpDT/Xnkw4pkMvPzr9\n4tZ1pEjKST++bNqy1w5oV+UiSwLW7XK59moGXEbAAiIwUi46qj2aUKl3F5oMf67KbN6+W59z\ne/240ylZSf7byR3GLN+hXZxL7AhYuzLqMIhgGwIWEIG8TnK39mxCaJ/e29HZ3hpeOG72yoCO\nbX1s9tiLTqnh3NPsqvVfa9foAjsC1vVytdoiBqKEgAVEYmW9lOe1hxOCHd3402RJ6XrtktBt\n23Lv6LMzRFJ6zX1fu9JIWRGwdtZosCm2CxeIPgIWEJHZSc12a48nVHBgSTuR1mNWHbNz2+YO\naesT6TTrHe1yI2JFwBot18VovQKxQ8ACIjNcLsnXnk8I9P09DSWlT5U+dmX5+LOSRbrM+1i7\n5vDZELDeSWm6NdrrFIg5AhYQmW1nSo72gEKZww83lZr9l1W5f6snnZUkSRes+E678DBZELDy\nL5QborhCASUELCBCy+slP609olBi82mSNnBNNTt4TTuRzKue8+RPIi0IWEulU1501iagiYAF\nRConJcvzb5W2xLv9JKlv1X96VWbxoPoi7XI+1X4A1ef9gLWzTs1c1xcloI+ABURsnJzp1ReY\nrPL9bTXkzEVhNnHbzF6pknLp77x2XTPPB6z8fjLR1eUIxAkCFhC5fjLEky8v2eUPrSRreiRt\nfPyaFiIt7/xE+4FUi+cD1sO8QAhLTenUqRPXHwEis/lU3uiubc9IScpeF2kn772ghqQMeMpD\nP8byesD6MLMWLxACACrxWL2kDdqTKrFtaiyt7nejlWvHthBpO/dL7QdUVR4PWAd68AIhAKBy\n96enc0V3PV8Ok5TLt7jVzJyfpEr6yFe0H1TVeDtgHR0sPXiBEABQuTuS6nv7iuBetr2JtA33\nze0hrRrZSKRr7n7tB1YF3g5Y0+RU3qMCADiWCXLy59rjKjHtvUZSfuH2lcDz7ujqk6zp8X/9\nDU8HrEXS5NifZwQAwGDp8q32wEpEz7WSFvOj0dBHBmRK0s9+H+dvePdywMpLzqzk07gBACiR\n10d67NUeWQnnwLQk32Wbo9TSTZPaiLR74BvtB3ksHg5Yy9LS5kSpcwAAi2ztKb254Ghs/f10\naZQTzabOPTdFMsa9of04K+fZgHX0Rql9ZzRbBwCwxZZz5LzvtedWIjl8Z6pcGO0rJS+/PEt8\n528+ov1gK+HVgLXvUmmyOMqtAwBYYsvZcgEJK2be7CpZd8SirTe0F2lxz27txxuSRwPW386Q\njqtj0DsAgBU2d5Vz4nMO2+fIvenSO1Yzen6/NEm/6jXtxxyCJwPW3uuT5SLXrlsGALDf5t5y\nSvz/ar8N3ugudW6KYWdXj2wocs6qg9qPuyIvBqwtzaXRjBj2DgDgfXmXSuN4/EGHZQ7NTJMe\nK2Lb2m23d/JJw1t3aj/28jwXsI5u6CopAzfGtncAAO+72pexRXuI2e6FM6TeLQq9XWJqSXL2\nH+Lp0lgeC1j7Hm4nvu4LFXoHxNqmNWvW8ElQgJtuSPNNOaQ9yGy2a5TPd4HSO6Q3TDxZpM09\n8XPRfi8FrINbhtSUlAse0mkdEGPDRSTav+UMJJj5TeScD7WHmbUOL6onLe5RbO/cPmmSNviZ\nOPkxlmcC1o6lQ08QaTRkmWLrgFgiYAHuW9tTsjZoDzRLbesgNUcr/wLa6qubibSaERfvxvJC\nwDr8jyVXtXFmTZa5lxdMkDgIWEA0XJsq2f+nPdcs9PK54jt/uXZ3n3gi754+aZLUb8U+7W9I\nvAesvS8uGdejljNn0rtcvZB0hYRCwAKi4qH2kvlgvF7926teyfZJ5wXarS22dsIpIrWveCZf\n93sStwHr65dyp1/c0ueMGF+z88fdz1WvkHAIWEB05E2oLZ22a085m/yln0i7Wdp9DfTQoAYi\nyr8yGocB66NnFozv01j8Mk+/ZOJ9G7T7BKggYAHRsry3T3o8qz3tLHFwZXeRDnF3dcq82cOU\nr9wfTwHryH/z5ow6u05htMo665Jxs1dq9wdQRMAComd+F5E+W3mhMGIf3HKi+Dpr/upg5ZS/\nNfETsG7slO5PVklNuw+aPG+tdlsAdQQsIJrmninSMoePJ4zE7od6+aR29hLtXlZC+bsTNwEr\nv0VKy17Db1q4WbshQJwgYAHR9UDfNKnx8+XfaM8/j/rgoYtTxdd+Yvy+j0f5GxQ3Aavg4Fbt\nVgBxhYAFRNvqUc3FyViL3tKegF7z1RPTOzg7VMsrcrVbeCzK36T4CVgF2p0A4gsBC4iBRcOa\nOUut6YhFL+3XnoLesP/Vpdee7hNJ7XTNw9rNOw7l7xQBC4hTBCwgNpaM75HpLLeUM4bdsepV\n3pRVmR92PvvITZe1T3a+VakdBt0Rv68MllL+hh0vYGV3iZm2AAJkOdtYa+0igATRvGHddF/h\nL7En1cjIatik+cltT23f8cxOnWM3BONO505nduxwarvWLU9qVL9urdTC74740uuc2KyNdruq\nJnbfqtfDCVitBQAAAJX5CwErnrVq3759Le0i4K5TnaamaBcBV6U4PT1Fuwi4q7bT1JbaRcBd\nWU5Tm8TuP0fAimundenSJVO7CLirk9PUVO0i4Ko0p6dnaRcBd9VxmnqqdhFwV0OnqTFMzWEF\nrH+/htgY6DwbVmsXAXf1cJr6rHYRcNUfnZ721i4C7lrhNHWodhFw1xynqZNj95/bG07AQqxc\n6TwbXtMuAu7q7TT1K+0i4KpdTk/7aBcBd73kNPVq7SLgrtVOU+9SroGAFS8IWBYiYNmHgGUh\nApaFCFgoQ8CyEAHLPgQsCxGwLETAQhkCloUIWPYhYFmIgGUhAhbKELAsRMCyDwHLQgQsCxGw\nUIaAZSECln0IWBYiYFmIgIUyBCwLEbDsQ8CyEAHLQgQslFm3YMGCj7WLgLuWOE39XrsIuGqf\n09Ol2kXAXTudpm7ULgLu+qfT1D8p10DAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZ\nAQsAAMBlBCwAAACXEbAAAABcRsDS9eYYY14IPPHx0knDB1w586kjWhUhYkFNDXkKnhLUwf8u\nnji0/+U3rPxcqyJErGJT81+cO2bQgBE3r9qlVhIiFXqv3TXEmP+JfTEELE2Hl2Wb8k+GDf1N\nkfHs2x4V3NRQp+ApQR38YWHxQjUDtuiVhUgENfXTySVN7b9BryxEopK9Nv92Q8BKNDuuc7bn\nck+Grc6z4Fcbtv92tDFX7dUrDOELbmqoU/CUoA7mz3RW6s3LNi260vnzKcXKELagpu4eYczA\nuY9veWSs01RisydVttc+aQhYieaJAeayrQ8EPhk+G2j6v+I/ODjLmAVqhSF8wU0NdQqeEtzB\nPzijuPCj2Q88aMzlP6hVhrAFN/UuY6bv8R8cXWrMYD5D1IMq22t3DTajCFgJZoqZsKOg3JNh\niTGri44OjDCX7lGqCxEIbmqoU/CU4A6ON+bJoqMjo415TakuRCCoqXuyzcBviw6PjjHmFa3C\nEL5K9tr828yIDQSsBDNlsfN/voFPhiO/MAP2FR+vMmazUl2IQFBTQ56CpwR18Jtsc9mB4uNF\nxmxTqgsRCGrqR/NmPlpyPL80QMNLKtlrf2fMn7YTsBLMDv8/Ap8Mbxtzc8nxm8bcqlEUIhPU\n1JCn4CnBHTyy+6OSw1xjNirUhAgdc1neqzKNEanQTf18sPl1AQErIQU+GZynwG9Ljn/INkN1\nKkLEQmzbBCyvq6yDdxvz11jXApdU0tR9l5v+vEPDqyo2Nf9WM3Q3ASsxBT4ZnP8X3l56xxXG\n8HuEHkXAslAlHdw70Azh/dBeFbqpH041ZkXsi4E7KjZ1e+Ev+hKwElLgk2Fe4BPjl8Z8FPIr\nEPcIWBaqpIP3lf5iCrwnqKm7cpfOu86YgeuVCkLkKjT188HmVwUErAQV+GSYbcyrpXdMM+Y/\nKhUhYgQsC4Xu4Fpjph+OfTFwR1BT3/RfL2lo7rdK9cAF5Zuaf6sZ4r8wPwErIQU+Ge405u+l\nd9xszNsqFSFiBCwLhezgSmPGMYy9K3TAcpr6jFJBiFyFyxAW/0IoASshVfoTrKn8BMuzCFgW\nCtHBgznGTNitUg1cEaKpR/e8vXKoMfNV6oELyl+8e7C5Nd9/QMBKSIFPhvsDnxjXGfOxSkWI\nGAHLQsEd/OJ6Y27aF/pvwxMqWZZfXG3Mn2JeDNwR2NT8m83goo/1JWAlpMAnwzJjnii943Jj\nvlOpCBEjYFko+NWkEcbMP6RUDVxR2bJ8xZgpsa4FLglsal7pFWMJWAkp8MnwB2NKLyX8vTG/\n0KkIESNgWahiB18aYLL5RGCPq2xZHjQm+0isi4E7Apq6e5AZ+0KRBcY88sILO2JcCwFLWeAK\n/68x00uOXzdmpk5FiBgBy0IVOvhSfzPoZbVi4I7Apv5zU+6bJcf52cYcCP0liHcBTS3+nYUy\nS2NcCwFLWbnXi0eXfcLz4sKLo8GTCFgWKt/BdwaawW/pFQN3BDZ1qTELS44/MWaQTkWIGAEL\npcpt2yuMyS06+nKQGcT1ob2KgGWhch38/moz4F+KxcAdgU193Zihu4qPlxtzh1JJiFTovZb3\nYCWkck+Gb4aZ7Of8B3tvMGaNWk2IEAHLQuU6uNiYzYq1wCXlXkC4zpipXxUePnMpy9W7CFhw\nvLnab5IxOf4/i7brP2cbc9u6vN+McJY614f2oBBNDdVneElwB3f1N9krVpfK064Q1RZiWb43\nyJiBOWs25zpJy9ylXSCq71h7LQErwWwo99rwFUUnnx5YfPs2rtHgRSGaGrLP8JDgDr5Q/o0d\nY7QrRLWFWpb/GVt6YsEPyvUhDMfaawlYCSb0k+GLZdcPu+yqnJdUS0O4CFgWImBZKOSyPPJs\nzjVD+l8+9dEPdYtDeAhYAAAA1iNgAQAAuIyABQAA4DICFgAAgMsIWAAAAC4jYAEAALiMgAUA\nAOAyAhYAAIDLCFgAAAAuI2ABAAC4jIAFAADgMgIWAACAywhYAAAALiNgAQAAuIyABQAA4DIC\nFgAAgMsIWAAAAC4jYAHQk3+eiPy64tmfOSenKVQDAK4hYAFQ9F5NkbS3yp9b5+Srtvt16gEA\ndxCwAGia66Sp3vmBZ75pIuJ7VqkcAHAHAQuApiNdnYT1cOCZa50T12qVAwDuIGABUPWvVJET\nPiu7/VefSLNv9eoBADcQsADoul1EBpfeOnS6c3O7YjkA4AYCFgBdP7R3ItUTJbfucm6MKLnx\n7PWdG6bWbz9o5d7AL/h47s9b1Umu02bQ0u9KTr3ofNVzBV9NapV24juFJ/4766IWGcmZbcyC\nL2LwEACgIgIWAGUvJom02Fd0/F66SMMvi47fOkdKNF5b+rcP3ZhaerrB1uKT//D/2Otbf1KT\nfzg3D4xPKv07teeUews9AMQEAQuAtklODppcdHiBc7iu6PDpTH8+ata5XbL/z5ziv5tvCmNT\nnRYn+P/wbSg6+47/y6ZLccDKv9B/kNK8Td3CM1Ni/oAAgIAFQNt3rUSS/+Y/Wu7kof5FJ993\nElTSpA+co28f8oepjUWnH3IOGy75yjl6z//rhnX3FP1l53BxprS/6d5bdhYULHNudXvmkHP+\n0wX+L30x5o8IQMIjYAFQ97STgjodLij4soHICZ8Wnesn4ltVfP9bdURaHig8bO3Err8Xn57o\nfNm9hUc7naPzZVrxi4EXiDQpfsmx4L36IsNj8iAAIAABC4C+UU5AmltQMNL5I7fozOvO4ajS\n+xc5t1b4D/w/qjqv5Oz/OTcuKj2Sn5S82apxwPvkC+7rMmh2tMsHgIoIWAD07XEyUa0df3ZS\nUt/iM/73ZZV9hM7+WiUvHR788OV/l55uLnJK4UFhwHqq5HQ9kUtjUDQAVI6ABSAObPRnq1NE\nan9QfKKTSOuA+y8SyQr+qs4iJxYe+ANWxuGS0z8SSXs1erUCwPERsADEg8uKLqqwoPjm/iSR\nfgF3T3Pu+yzoi7qL1C888Aes3qWn73Nu1bzl/ShWCwDHQcACEA8+q+fPVz2OFt/0J6ZaLcv4\n732p6K6D66/p3qhmyWWuygLWFaX/rkM9C+86bcLGPTF+FABQjIAFIC74r61Q4+2SW/8rwYre\nY/V403InywLWdWX/ru9GFN+b3HMhGQuABgIWgLjwtZOHziq99VKIgLXJf8eswsNWPbN/4WgQ\nGLCmBf7bXrmiTvFX1b3zSCwfBgAUImABiAvlA9Yb5V7zK/NHn3PHxJ3Ft7pXGrAKCg79cWrH\nooj1swPRqRgAKkfAAhAXygesjyT0pRb6OecfKL3V9RgBy++zR3r5E9Yst2sFgOMhYAGIC+UD\n1qEaIqcH/6XvkkROLvvw5qbHCViOTekitb93t1QAOC4CFoC4UD5gFXQTSf026C/5P9T5qtJb\n78rxA1bBTOeu51ytFACOj4AFIC5UCFhTSz4cp8g7RWHrFefs9aUnJ1cWsHbuLDv2f85hXlQq\nBoDKEbAAxIUKAct/nYb2pb//d6BZ6vn+XyJ8N/CtWX9P818sq/CwXMCa2iDgoqMFq527Xo5m\n4QAQAgELQFyoELAK+jq3xxa/3erQYOfGeufgSKZIneIrur/RtHYP5/SX/uNyAete58aikhuH\nnb9Th18jBBBrBCwAcaFiwNqR4Zw4/3knYh1Y38U5PK/w7JXOUU//h+B8MrOmLLrFuXWP/3S5\ngLW3kXPryhcPOYffPenPYDfG8nEAgB8BC0BcqBiwCp7xJyyp3bah/9JX0mFX4cn3/CeT2/Vq\nlyQyKn+7/57Tu79b4T1Yf65ReBX3pi0zC6+D1XN/bB8JABCwAMSJoIBV8M9epRdx9131dfHJ\np0qu0J78q4KCw2cWHv674pvcX+lQdv33lMnkKwCxR8ACEBeCA1ZBwZ8nd26cVqtp3xk7ys59\ndluXusl1O09/13/jk6H1U5sO+SLoMg35v5/QvVF6cp3W2fM+iX7pABCEgAUAAOAyAhYAAIDL\nCFgAAAAuI2ABAAC4jIAFAADgMgIWAACAywhYAAAALiNgAQAAuIyABQAA4DICFgAAgMsIWAAA\nAC4jYAEAALiMgAUAAOAyAhYAAIDLCFgAAAAuI2ABAAC4jIAFAADgMgIWAACAywhYAAAALiNg\nAQAAuIyABQAA4DICFgAAgMsIWAAAAC4jYAEAALiMgAUAAOAyAhYAAIDLCFgAAAAuI2ABAAC4\njIAFAADgsv8HaRu2/v54gNEAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 360, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_width=20; plot_height=6; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "temp = data %>% filter(QRISK3_event==0) %>% select(c(eid, QRISK3_event_time))\n", - "mean = round((temp %>% summarise(mean=mean(QRISK3_event_time)))$mean, 1)\n", - "obs_time = ggplot(temp, aes(x=QRISK3_event_time)) + ggtitle(\"Observation Time\") + \n", - " geom_density(fill=\"gray70\") +\n", - " xlab(\"Years\") +\n", - " geom_vline(aes(xintercept=mean(QRISK3_event_time)),color=\"black\", linetype=\"dashed\", size=1)+\n", - " #geom_text(x=mean, label=mean, y=0.15, hjust=-0.5)+\n", - " #ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0))+\n", - " #theme_classic(base_size = 25) + theme(strip.background = element_blank(), plot.title=element_text(size=24, hjust=0.5))+\n", - " annotate(\"text\", x=mean+0.3, y=0.15, label=paste0(\"~ \", mean, \" years\"), size = geom_text_size)\n", - "obs_time\n", - "plot_name = \"2_observation_time\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# ENDPOINTS" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Frequencies" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "plot_width=20; plot_height=6; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "temp = data %>% select(c(any_of(targets))) %>% select(!contains(\"_time\")) %>% select(!contains(\"cancer_breast\")) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value!=0)/n(), count=sum(Value!=0), .groups = 'drop') %>% mutate(ratio=ratio*100) %>% arrange(desc(count)) %>% mutate(category = fct_reorder(category, count))\n", - "\n", - "plot_endpoints = ggplot(temp, aes(x=category, y=count)) + ggtitle(\"Endpoints\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Number of Events (%)\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$count)*1.3))+\n", - " geom_text(aes(x=category, y=count, label=glue(\"{count} ({round(ratio,1)}%)\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35)) + \n", - " scale_x_discrete()\n", - "\n", - "plot_name = \"3_endpoints\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAALQCAMAAAAjXrvTAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd3wVVfo/8CcNCIYaC18V5SfY\nC7q74lp2XVdxX7o8yQ0hCYQaIRaINAsoaBajiCC9SJEmikAWFUUsCKGqiAgbUKRKCUiRTkwC\nSc5v+p2ZO3MT5Cbcm3zef5AzZ86cmZt1534yc+YMCQAAAAAIKLrQBwAAAABQ1SBgAQAAAAQY\nAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFg\nAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYA\nAABAgCFgAQAAAAQYAhYABFhnkgwITF+/yn1RQWA6AwCoNAhYABBgCFgAAAhYANXUN+TXyj/e\nMwIWAAACFkA1hYAFAFBxELAAqqnQCFgHImSF5W4/PDPzs8DsGQDgfCBgAVRToRGwztHJMKJe\nF2TPAAAWCFgA1ZQasDr2c7Hrj/d8AQNWDiFgAUBQQMACqKbUgPVNBfR8AQPWMAQsAAgOCFgA\n1VSVDFhtEbAAIDggYAFUU1UyYDVDwAKA4ICABVBNVcWAdTwMAQsAggMCFkA1de4B69eF414b\n9vbnJxxWHft8+pA3Ji87pSy4BKzSDbOHZw2d/u1Zx873Lpo1cvDE7BX553MwS8gpYO1d9PbI\nrKETPvq5uJx9AwCcNwQsgGqqfAHroNzofrk0/74wdQKH8PsX2Rp98WiUuqpm/NfCGrDWyeV7\npMJv/S/RJoCo1+NX+16297xBnx6ixj+GmzOWZaJRvwez1zrNxGKtes1Tlxp19dt9Wc5fDgDA\neULAAqimyhewTsmN/iTE4X+Z00vnIlOTE51Ma8J6nBVdTAFrq1y+XoicRqZGF8+37OPwk5GW\nbNRofKmxzhKw/B6MY8A6kGytpXu2n8/vDACgvBCwAKqp8gWsYrnRdeLwTdac0tHbovB+6ypP\nSVdTwNqjJCaxrJa10VTTLnZeS3Zpxs08S8DyezBOAeuXpj5d16uIUWcAAHYIWADVVDnHYIVL\nja4seVD696J/dX26058i1JzyidEgVa24rd/Yt19PvVgqZT5lClgH5HLMYfn6Vf1Hn+jdVstG\nNbwTxe9Qr21F3tN/zLQ3n7peXZ+sr7W+i9DfwRxs3ry5vHu6uLnsW6mq+E/K6qi/PZk5pF/a\nfTWUpUY+NygBAAIPAQugmipnwKopR5ZxRJdOVlPOLla2a6mvX66mFm0kVNGw2lTjX6aA9ZsS\nnroTNZ1TolR8e5uywS36XcCSvynLiTu05U+bKcuztEVrwCrrYHrJS95B7hPlxbBnj2iLR15S\nIlb3cv6CAADOAwIWQDVVzoAVLTWqWZ9u3qdXFP9d3i78oLZ4l7x0Ua7Rfkm0elVJC1hHlIUw\nuuOQ3uB3NVHN0xZHK0t9vDv8VbmIFfubtmQJWGUdjC1gKSuzTB/mC3mwV43jZX1mAIDzhoAF\nUE2VM2BdpDRrsM9bo26oXbL6n7Iw3LTBG5aAdUxdqpfnbbCnjlzzD3Wh+Ep54d5SUwdrwkxd\nWgNWGQdjC1jF8h3EWqfNn6avOdsBAFQcBCyAakqNJt1fd7TCaKZmmknmLa+Qa4ao5f/I5Ybm\nEFN0tUPAesW8/dNyTZQ6Z9Ynyup1liNLkatuU8tOAcv1YGwBa7+81MzS9ZZOL09beriM3wwA\nwPlDwAKoptSA5cI7TaiSaWILzFs+Yrqppwwj72jp+HnfgBVx0Nxgg1L3sVJWplG43XpkC5T1\nm5SyQ8ByPxhbwFKeYKxf3t8HAEAgIWABVFPnErA6WbbsLld1U4rFyrDxdxw6tgSs+y0NSuvL\ndf9RysodwtetR1ZQW658Syk7BCzXg7EHrLPKQ4YflOu3AQAQWAhYANXUuQSsCZYtn5Or2inF\nn5XW/7OsLqrhE7AGWnctz7NAHeSSMjc7rbSuFvfIlY8rRYeA5XowPoPcW8iLde3zzgMAVAIE\nLIBq6lwC1heWLV+Wq1KU4odKa9vbCa/3CVhzrA3S5Lq75dLnyuoj1tXqu3YeUIoOAcv1YHwC\n1gz1wzy6sEgAAFQuBCyAaupcniJcY6nK9GYaZaapurZNHvQJWN9aG7wk1zWVS9PlUm37PgfK\ntdcrRYeA5XowPgGrtJWWF+vGj/qhpKxPCgAQQAhYANXUuQSsjZYqU6Z5Uy5ebtukjU/Asr0A\ncKhc10gujZJLje37HC7XxipFh4DlejA+AUucfMR7Ua5Bmyl4fBAAKg0CFkA1FZCA9R/jWpRJ\ne5+AdcDaYKxcV0cuDfJeqzKZ4L2udX4BS5QMq+uNWBT5cHapAACoDAhYANVUQAKWMiXDjbZN\nOvoErKPWBpPkuprG9jfZ9zlZro1SiucZsIT47Y0bTBGLbv+yrA8MABAICFgA1VRAApZ3NJVJ\nW5+AddDaYIxyy04uvSiXrrPvc7xce5FSPO+AJdk68qEaRsIKe7msTwwAEAAIWADVVEAC1hC5\neIVtk0d8AtYOawNlDNaVculVo2Q2TK69RCkGImBJ8j/tc4sesUb4/8AAAIGAgAVQTQUkYI2T\ni/anCP/iE7ByrQ28TwkqNwNr2ffZX669WSkGKGDJfhnSWOms5i+uHxYAIFAQsACqqYAErNlK\nJyetm1zsE7AWWhso82A9JJc+d7qDKFLlyn8pxQAGLCEKn1F66+v+aQEAAgQBC6CaCkjAWqd0\nssmyWnnHsjVgvWnt8yG57km5tFtZvcS2z9vlSvX9ggENWEI8YVw7AwCoUAhYANVUQALW6TC5\nbH0X4Tu+Aau9pUFpA7luuFJuJBczrbs8HilXzlbKAQ5YyvufIzBXAwBUOAQsgGoqIAFLXCOX\nH7OsTvQNWPXPmBv8aNpzJ7l4g3WXyvTuYfuV8nkGrF2nbB9HeY/0734/MQBAACBgAVRTgQlY\n3eVyw9Omtbtq+gYs+q95e2Xyq/rFSnmZsnq1pf9/yFV/U8t/IGA9rS3sfO7BhjTW+mnOhpM2\nxSkAQIVCwAKopgITsBaT93afKoUcAtZ1pktYR2LNmegmeaGF+aad+gLp99SFcwtYfeSFjtrC\nfjlMNT5taf2l3OD2sj4zAMB5Q8ACqKYCE7DOKlMf1FprrHyFKMI3YFEXI0KVJCgV+iub1RFb\npgf7flKGZd14Vl06t4D1srKpvkq5EvZv8/3A083lqqyyPjMAwHlDwAKoptSA1bGfm+/UZmVl\nGmXAFNV5W71EtTmeKOZJe8CKakXUSpts9OCjygYPG73FKcvt8tSl4hnKJA8RK7S15xawpiit\nJ8vFEiFWKks3zNOvnpV+rlwui9n7B39jAADlh4AFUE19Q/5NUZuVlWlKWqjNG3i692x7vVwa\n/pr8b391tXoF68faRJF/GzDu7azW6ktrGnrndj9wpVJT61+DJk0Z0uEKZSFsjL723ALWJvVY\nbmr96G3yGK4n1cWYB5966bX/9Iq/VF2cGKBfIACAHwhYANVUgAKWONjMul1SqfKqQe2mnxqw\nCmeHW9pEfmHqbltT+65rvGusPLeAJe40+rhLWipOcvhcr5//rw4AoEwIWADVVKACltj9gHmz\nJ8+KGfLPp9SVasA6JT5oaGpz9deW/o6lhVn2fK9pYNg5Bqy1Nc0BS4gxdW2f6sbPz+d3BgBQ\nXghYANVUwAKWEO/cp12gqtFKHjv1mVzUnuVTA9YJIQ4PbKx1fHG/Y/Zj+bHndfpuL05aZF5z\njgFLrLxB6ydeXT4x/L5I4yPVafPB2XP/RQEA/AEIWABw/g4unPr66xOX2qf11AOWmqg2zx2R\n9caMtSWOPexZOH3Y65M/WH++s6yXfD0+a/Bbn/3mrTn1/bxxb7zy5uQPtmEGdwCoNAhYAFCB\nzAELAKD6QMACgAqEgAUA1RMCFgBUIAQsAKieELAAoAIhYAFA9YSABQAVCAELAKonBCwAqEAI\nWABQPSFgAUAFQsACgOoJAQsAKhACFgBUTwhYAFCBELAAoHpCwAKACoSABQDVEwIWAFQgBCwA\nqJ4QsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAAC\nDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQ\nsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsIIe//nPf95x\noQ8CAAAAzgECVtD7f0S06UIfBAAAAJwDBKygh4AFAAAQahCwgh4CFgAAQKhBwAp6CFgAAACh\nBgEr6CFgAQAAhBoErKCHgAUAABBqELCCHgIWAABAqEHACnoIWAAAAKEGASvoIWABAACEGgSs\noIeABQAAEGoQsIIeAhYAAECoQcAKeghYAAAAoQYBK+ghYAEAAIQaBKygh4AFAAAQahCwgh4C\nFgAAVJApRCMC2N0kopEB7C6khWzAKl47pW9aYlLX52bklhqVG9gQl/Lkm6uK9RWpzDv0cu7U\n/p0S45MfG/jebu9mT3p7nsDcKU8plX49NL1NQof+7x6s4A/jlxywxn8CAABVkuvZf83jN9aN\nuvi+zL3K0idkcZfeKucqos+8GxVnJ18TXeOy+1/Za+rJ1sa8Joo6a8WVj11bu8Gtad/6tCn5\nuN01MTUue2DwAa1ieavYqKszDnhbzKKI77ViDwr/1PUTVS8hGrBKF3fzZqmMr/VqU8BSPL5Z\nW+ENWLv6mELY8N/1zbwBaxpzhz1KaX9vvaEnuzI+1Hh23A0CFgBAFebylZDfUc9Std+Wl50D\nVkHfMDKHp8236g1qGleS7G1MjlxOTU8rpcJu+ob9bG323G0cyGSlYm4E/bNzM2pyWG9xKJae\n18uFN9PFv7p8pGomNANWwWA59qQPmTB+cGe5NEG7VCUlpdTZqlnjekkr2vykrjAC1vY2UuXg\nOZ8v+WTS49L6585qmxkB6z2pi1+U0uEOzIlD3/twitzww0r4VL0QsAAAqh3nb4SSltK5/x/9\nhqRfRRQ2X6rYkun1BFGS0uqHm4lqmMLTrlgpBrXPHN6zibS1God82pilEK1Ud5dIVLfb6MEt\npSw2ytLkeDOi5m+tWjO/czjRdKniVAN6Q4gz91JXby/XFhjt14VTqzK+7aqJkAxYxS9IkecN\n7QbfzwOlhaFq2Xqvb9uT0qIavYyA1YM567i6uvRLD/N822bzmdtq17peZX72qFwomcyclF+B\nn0dV6EHAAgCodpy/EsZJSWmxXCiSos9VJdaVbSh6p/xzRBTVGptiCk//JvrbIblwphtR7BnH\nNiYr9KAmJhC12CcX5kdQzElzm/5EjyodiblEDaXvwhlUv0ha+pBqa1+MCyhsuWmDLkS4SSgL\nyYA1ndmzxLv4vpSwFiola8ASB9swr1dKesDayty5yFg/j7lLqWWzhcwpW9Xi0ThOPKEWS9KZ\n11TIJzHbxAhYAADVjvNXQjOid9TSsUuIvras+5hosFJoTrduEqbwtC+MLjqqFosuJ1rl1Mbs\nbgpXv/LyL6VYbbTxs488s8vcpinReq3YnEj6sk2nf8kLB4hWK7XHL6fu5g32RNItzp+pmgnF\ngHXYw/yRuWICc1tlNJUtYIkhzO8pBT1g5TAP867OHzbn27PmzRbHcZI+bGvP8EFv6w1HMS9y\nP55fJj2dktC5/3w182cyf26sGsic49BGiBeYS8TO0WmepIzpyhW12dpwr0yf7hGwAACqMMcv\nFikqNdQvW7UjmmFed6ox3aReU7o9o0CYw9OPHR59Vm/VhmieUxuT1URxamkO0WsuX3ERFK5f\nl2hPNFaIB7V7gzW0o+pGjS2XvEQy0RcunVUroRiwpjL3KjVXFHbQBknZA9Z05reUgh6wljAP\n8u1Q32xFHLdxnBBhGPMKt6M5O0EfCp+q/LEgZbiX9HXH4zmpwKGNEsMKFsWrdV3kPxsQsAAA\nqiXn75ai3T/pxSeIJppXPU1h2lfSBvkfl6tTTLS4jDYdibS9JxHtdD4OUYfC9AFWUsCaKsSd\n9LSyVJ/GyD+WhpHtCsRiotYunVUroRiw0pkXW2veZVYee7AHrDHMasDWA9Y2Zo/vf0TaZt96\nOPF/Tjs8lcqeo25HM5S509x129eMjud4+T5iQRJ79DD/KfNIpzZCDGJewunZ36yamcws/91w\ncv805mn79/vuBwELAKAKc/t2MbQk+sq0uC6cuphXO4enAzEUc8p/m6J6FFOoFhvTldK/R35Y\n5fsN+Yh+K1CIOyhsixAttDuCdeTLWSK/KXW0bXG2IUWfLuMzVQchGLAOM7MthvzMnCD/V2IL\nWMWPMatXjIxB7i8ypyz43dajutm6BG79g9MOd/VlfsftaHKYe6p5am08d5Zj/pvM+sXR/swb\nHNuILOk4spRLvBuZ45X/ErMxBgsAoPpx+3rR5UXSJUWm5QcoOs+83jE8rbuNaFgZbZYRsVo6\nQfSQWPqAPJvDVUMLra2WE92txqX31CHxLam9vHQmnGZJP/rQZUfE1r7339VugbFJsjJWq9oL\nwYD1A3Oareqsh1kelGcLWFOZ26n/pRgBKy9NimeJg7JzC0ztlM02JnLCWvu+Dk6dPDxD2mCe\n69F057g9WnE0s/xHxlrml9WKI3HqIHrfNvIjiu215y+k/jfKP20Ba+9rmluujkLAAgCoqly/\nXzRx1rnWFxK9aFlvD09bn+nV/gaii0b7aaN43Rh4tYGo3ehwbbaru4/5NGs6YunX/+0YTnfI\nTyj2oBZy9Y9E0nfmmnDKFp/VVDY0hroPJxpY1qeqBkIwYC1n7mOv68CcKywBq+TYmgFs3Ev0\nTjR67PU4de7QPtNz9Yne5c22JEl1ufZ+f5Sbpkw94XoweczG9Gq5zPJzHcUd9HuEC5inO7eR\nA9YUrWqYdpnNFrA2/NlQCwELAKCqcv2CUfUj+mexafkvFGO9iWMPT4vlsFOv3zF/bRTtjPkU\nVhA1j2gyY3vhrhENjIHvhk8eUJPX1QOUL8N5FCmPHB5GDYtE0S2UIE5cSvF78ieG0cfaBkuM\nS2PVWggGrM+YX7DXpTPLs/vbZ3KP0xOL+VU5e2b20FanfaDMM6rMT9qWpeDVLs/W749qwydt\nY768FjNP0Mu/Mz8u/5yo57pnmXe7tJEC1kqtagKzMucEAhYAQDXk9xuvtLeUfcx/5H9J1Nfa\nxDFgEd04208bxT1EP6qlT6X2NxxRipsuIsqxNDv2bCO1x6j7lWMtupJa54v/xcpTvmdSg/1i\nEsXIR9iOHtS22El0m99PVT2EYMDKYe5tr/NewTJp89pWfb05YEmOfz3t+dZyk77KTP/KZunb\n3pDCz0l7zyVHN89KYR5lr9fMsSa6BLlus/Ys4EHmXm5tXlUPWDZRu2uIgAUAUA35+8I70Yro\njgPmmocpfI+1jW94Ort/Vb8YSxBzDFjXEGmXuT41vUonk8gyDGfPNRTW9ZuTRbsm/z+iAXLN\n4ppUu0kYNT8tNtagaUIkqte83qdIbfjWGaKL/X2qaiIEA9Y65k62qmIPs/zog5SUOmSr2jN/\n521gC1iyou/l9+1kFKub8Wv5orA3c/+zDns81FW7yORrqu2ambJ5OnvkZzfmMy9wayMFLO0P\nB7eAdXCG5qZGkQhYAABVlZ/vux03ET1k+cN/dzg9ZGvk/BThlsvMI80d2zQiUqfTkgey19Jv\nQ24kutbc6j4ibUTLsZu1mR++98TWaNbvuChuQS2lxRvU1xeuJ9IfFIukaD+fqroIwYB1SMoo\nh61V25lby/+ZmMZgfcXc1TuQ3SFgSdYmqPNbSZuly8uHO2nTKtitcRj2pZombZFroswL964a\nmXqz57hbm7IDlgFPEQIAVGHO3y6yZbFET1n/7B9kTPBucJkHayapM667t2lAYVopl+gKvfYM\nUYyp0SqiO/XyB0T/NnfwJsXIz5ddoj6vuFeLX5IYCnf5SNVJCAYs0dlnXnUpmzwn/zQ/Rfii\naeSTS8AS45nHmjf7uTXzXId2hcxxxQ71yu2/qT6Vecp0pvv1SU2d2iBgAQCAzPHLRfbfKIp8\ny1Z3M4Xbp0t0CVj7iOr7b+O9glUQTvWM6giqaWo0mKiXXt5N1MC0anttdapR7cdBog+1NbiC\nJQvFgCUlkh6WmdxLHtdeRmgOWHmtOW6jvmAErEOWe9eL1Gf6vJstkZKUNvh8w/ypegQSpXHM\n5nkdvJYxZ/nW9mHPaTFXn/7dqQ0CFgAAyBy/XCQfRFBd+ytnpIjTwt7OFJ4WD+1rvLXwGJmC\nUhljsMR1RHu14mHT1SzJc0T/0cvHyXxlqvQBule5a9OQ3pR/7CXSXhSHMViKUAxYe6W484G5\nYj5zijKplGUerNnM6fp8aVrA+r4DdzVHs3eZx1k3m86cuEUpTVavbin2MbdxPpb9zG19h219\nJGernpxS5NoGAQsAAGTO3y7im1pU12dyxklEz9vrTOEpg8j4EvyO6CqnNl7epwhFH6JxWvEj\n633AweSdN36DJThNopo/K4Wm6tj3DcrEWLKdRLe6fKrqJBQDlnxnz7PSu7jKo79f2RKwzjzJ\nrL+uWQtYx1prl7pUp9OYl1s3Kx3E3FF5pfg6KbVp7xYXM425Q3308r7bOffxydoryI/G8chf\nmce4t3EOWHOc9oCABQBQhTl/uRy/mqJX+dSm+w7BMoenhUT19fs0TxKlOrXx8s6DJb4nulqb\n/Poh6SvH1GgxURN9iMwYc/bKq0eD1RIrE7yLORShdYF5sBQhGbAKnmKOm3BcXTgxMY55qHpd\nyjqTe67UarNa1G8RzpKqputvZ9omBZ/0Ittm+d2ZM+T/RkozmPuq04IsjtdfueMrR8ph25TS\ngXTm7VrtQO7wkTZBu3Mbh4C1yGWEPQIWAEAV5vzl8hTRGN/au4i+s9eZwlPxjUR/VWZ1KB0V\nRrTEqY3XYNIjkhAJRK3kL8fSl4hilW/J3j16yFNDnrmGqI/6FftzLNF8Y2umO7R7M6MoVr5d\n1JH+rq0aoc3nUM2FZMASx5+W52IfMOOjD6e/6JGKw7V4bXtVzkjmp9QRfHrAKnlNnohq4NvZ\n86ePkgIUp27z2exXqW2mfFt5WxvmxCHvfzBVbviq67EMYW498bufVk9OVu83Kr5ifsx0N9K3\njUPAko4iYdaSeZbRZTIELACAKszxq+WXKIoYkGnQX/3RkMg0K9ZKZd3NRO3ln/KoljXRRLVT\nsob2vl765ujs3MaQY5q0Pa8xUeMXJmXdQRSmjsGpSbRe+T6LIrpr/NJvFvSOIfIYX1GzKXK9\nVvytHvUpEV9Gkv5WOSnOlf0K66ovNAOWKJjh8c4rlbZcr7YFrBNSVpqplIxB7qXz25pmpMr6\n1WGzXKnriXJh6+NGwzHmF21aFY+L0+eNn1yiV+YnSsuz/LRxCFgl3ZUWPk8rImABAFRhjl8t\n2WRxl1YdQZTvbfS6pc31ctW31+iLYT3PuLTRFdWjOsabnbc015rU0Qar6AFLfPF/xubdfteb\nH77E9EbE98KpkZTo2mmLZ2Op1ikBIRqwpP9xFwxMbyPlkR7jvjVijT1gyReSPMo1KtM0Dfk5\nI3u3b+1pm541d5/zZp9K3SpvVCrOGdIt2ZPa9+1dfg9lx6SMtp62vaeYWw2R+sjz08YhYIlD\ngzu07pKJK1gAANWJ4xeLc8A6aXmMzzE8nZmR2CQmMvavz/3s3kbXwTwX6ZmpD19Ro+GdL+uD\nj42AJX6f4rn6osiL7+yz0btpKt1Q6F1a2rJerdvH6tcHviJKcPxQ1UzIBixZaZr72KiqQw5Y\nmy70QQAAQFWzkii+ArpNMeZrqN5COmDJY9Z7O08AWoUgYAEAQEX4K4VvL7vVOcqLopt97sVU\nR6EdsI62YR5TUna7kIaABQAAFWEZUduAd/qY+cZjdRbaAUt8wMzds5ct3nyhD6QCIWABAECF\nSKKw1QHucn04PRLgLkNUiAcseb51meMU6AGWf9iH/Y1QFQIBCwAAKsRv/0fX5pfd7BwU3kqx\n+wPaY8gK9YAl1md18CT3+LrshudtNvvoWAm7RcACAIAKkhPlfRNOQGRQOG4QqkI+YFUeBCwA\nAKhiphAND2B3k4kc30lSHSFgBT0ELAAAgFCDgBX0ELAAAABCDQJW0EPAAgAACDUIWEEPAQsA\nACDUIGAFPQQsAACAUIOAFfQQsAAAAEINAlbQQ8ACAAAINQhYQQ8BCwAAINQgYAU9BCwAAIBQ\ng4AV9BCwAAAAQg0CVtBDwAIAAAg1CFhBDwELAAAg1CBgBT0ELAAAgFCDgBX0ELAAAABCDQJW\n0EPAAgCo+qYQjQhgd5OIRgawOzh3VSBgPcPMedaq3Kn9OyXGJz828L3d5uritZP7pLVO7Njv\n7Y1qxVDm0dYtFzOnl4oNrPK0fyJr3raKPPhyQMACALig1jx+Y92oi+/L3Gut3hJN9Jm+sPSx\n6+pEX9NhsXe1b41Y+di1tRvcmvatwz5yoqhzWa2Ks5Ovia5x2f2v6AeyvFVs1NUZB7wtZlHE\n91qxB4V/Ws7PBxUi9APWDjkJTTXX7OrDhrjhvxv1S7p563v9KNfkMif9buntOeb/CiNgqXqv\nrozPIcR4znaqlgPW+E8AAKCCOZ+b8zuSpvbb5vqSe8gIWEcf1dukFrrViMJuelU/n50cuZya\nni6j1eZb9TU11YtTcyPon52bUZPDeotDsfS8Xi68mS7+1eXrBipD6AesccypnHrGW7G9DXOb\nwXM+X/LJpMelePTcWbW6aKgclroNeWvCa53k5PWxXPkU8+fmzvYwJxxXAlbqbMmst7I6ylsN\nLaiMT9ILAQsA4AJyPDWXtJROwv/oNyT9KqKw+aYVw8kIWAV/IYpqN2Jk2yiiNi41oiSRqG63\n0YNbhhGNsu8lhWhlGa12xUoRr33m8J5NpP1OlipONaA3hDhzL3X19nKt9+tqXTi1Kut7BypQ\nyAes35M4YzrzMm9ND+as48058DcAACAASURBVGqx9EsPs/r/h9JBUlDK2qGWv+suLeRIpQXM\nfc29vS2FKaEErCf1qk2vSW0HnhEVrtCDgAUAcAE5npvHSbFGuc1XJEWfq0qM+q3R1EgPWJlE\nVyhDOdZfRpTtXCMmELXYJxfmR1DMSetOVhAliTJa/Zvob4fkwpluRLHSt9IMql8kLX5ItfPV\nFgsobLlpgy5EuEl4AYV8wFrEPGcbc3+jYitz5yJjaR5zl1KtEPeRUV3wEnOylMJOJTLv9HZ2\ntj2zPDzLHLCEWCaltPEV9wl0mxgBCwDgAnI8NzcjekctHbuE6Gu9uuReuvJFLWCdbUC0VK3O\nIbrZsUbkX0qxB9WqZx95Zpd1J3dT+Fbhv9W+MLroqFosupxolRDp9C956QCROpDl+OXU3dzp\nnki6xfEjQaUI+YDVk3m/fKfPGHuYwzzMuzp/2Jxv5XuEJ5OYp5k2O92B238j/RzFPNFbu4pZ\n+a/TGrDEEuZ42/8ZzH6Z9HRKQuf+89U/NTLNdx0HqhfK7G2EeIG5ROwcneZJypiuXG6brQ34\nyvTpHgELAKBSOJ3hpVzTUL9s1Y5ohl4/nGhulhawviG6Ta+/l+hHpxoxh+g1t6+R1URxasm9\n1Y8dHn1WL7chmifEg9q9wRraUXWjxtYLY8lEX7jtEipcqAeszczPCTGf2Rh6KKWhQb7t5jCn\nnTVX5OYq/4/ZwtzOe73rZWZlaJYtYIkBzMPdjuDsBH0wfOoqeVkKeC/p647Hc1KBQxslhhUs\nilfrush/rSBgAQBcYI4n+aLdP+nFJ4j0P8m3RlOC0APWO0RP6G1eUaZH8K0RSUSmGyZWHYm0\nnftr5cVEi4W4k55WlurTGPnH0jBaZG22mKh12Z1BBQn1gDWCWfqv7KjHO8x9G7PH9z/PZ5jn\nOnbQS7/GJDkYx4nKUxz2gLVOSkalLkcwlLnT3HXb14yO5/g10nJBEnv0vyE+ZR7p1EaIQcxL\nOD37m1Uzk5nlP1dO7p/GPG3//qM+O0DAAgCoFG7fNLqWRF+ppZL7qMGvRsAaZ3ri732ibk41\nojFdKf175IdVvt9QRfUoRnvU0E8rrwMxFHNKiBbaHcE6NFb6N78pdbS1O9uQok+X9aGgooR4\nwDqZqF4iyjLFpBeZUxZYJ18QBR7m7Y49fMb8gl5+T58Wyx6wihKZtzofQQ5zTzVPrY3nzvKx\nvMmsX5Ptz7zBsY18wClZSibcyByv/B8gG2OwAAAuJOfTvCEvki7RbnmMUAZm6QFrpul6VTbR\n/U41J4geEksfCJPO6FcNLbR2vIyI1ZK/VoZ1txHJQ2FaUnt58Uw4zZJ+9KHLjoitfe+/q90C\no2Uy0cIyPhRUmBAPWB8yK1dG15iGueelMXPioOxc09wKu5gTSnw3lxQkM+9Ti6XShluUkj1g\niT7MX9u3VHXnuD1acTSz/LfNWuaX1YojceoIe9824lXm9tpjHxnqwHp7wCrK0zSrGYaABQBQ\n8dy+ajRxxlzrW6Pp38IbsFYT/UlvJNU1d6rZQNRudLg2j9Xdxywdv24MvPLXStnxM73a30B0\nkXIxoAe1kH/8SLRW+hoMp2zxWU1lQ2Oo+3CigWV8KKgwIR6wnmTeLP8s7sSsZxhx7PU4dR72\nPtNzi9WqjcydXLqYwDxdLX3P3Est+QSsTObPhJM8ZmNWt1zmwfKxdNDvES5Qu3ZoIwesKVrV\nMGZlYJYtYG34s6EWAhYAQMVz+ZrQ9CP6p/qdUnIf1ZNfIKIHrKK6RN+ojX5vQtTUqWaFFLMi\nmszYXrhrRANjSLumnTGfgr9WssVyfqrXT01e8yhSHsI7jBoWiaJbKEGcuJTi9+RPDKOPteZL\njEtjUPlCO2D9T3vqT4gZ3sAi2TOzhzZmPO0DZWj7WuZ0lz5+Ye6o/l/mdeP5P5+ANZj5I/uG\nisXME/Ty78yPyz8nKuPCJM8y73ZpIwWslVqVlPCWyD8RsAAALiiXrwlFaW8p+5xQyyOJlPeH\n6AFLPEvUTHkz24lWEUTXONV8KiWjG44orTddRJRj7vse9TlD4b+V8p2jXtu6cba8UHQltc4X\n/4uVh3tlUoP9YhLFyEfYjh7Umu80PcwIlS20A9YQ5g/V0j7m1CLzquNfT3u+tRyx+srvEPhR\nWu3WyXPa7b/jHk7R7ir6BKwXtBDkY47lpTqcINdt1p4FPKhdEXNqIwWsXK2LidpdQwQsAIAL\nys/XzYlWRHdoL/3bVpseVgpGwDrx/4jq9pr13rOXUR/lhqBvzafe9+rIs5CmmTu/hki7G+iv\nlers/lX9YoiUObIX16TaTcKo+WmxsQZNEyJRveb1PkVqw7fOEF3s50NBhQrpgHXMwx5tznZ5\nPHmOfX3R94OlQJNRLMRe5ji3190sYf6P/PMD5re0Kp+A9QTzWseNp1rDEyvXy9LZc0ook0cs\ncGsjBSzt7xW3gLXxAc2fbq+JgAUAUPHcv2523ET0kPaAeOnfqI5yccobsMTOG7VxUxm7ie5z\nqllOVKtYP78TXWvuvRGR9iC8v1ZeWy7TBq9/74mt0azfcVHcglpKizeojy6uJ/pBaxlJ0e4f\nCipWSAesudbg4vv2TCHWJjCvEKK4DfN6l16KUjlOvsr1FLM+m6g9YB2Vev/NceNpzCNzTZSR\n9O+qkam3Fv+c2pQdsAx4ihAAoFK4ftssiyV6Sp9LcRSRNvOiN2CJovF/b1irWZfV4muiTk41\nuURX6N2dIYoxd9+AwrSSv1YmM0mdxF33JsXI31+XKA8Xir3KLFmKGAp3/VBQwUI5YJV2tV0a\n2uPQaDyzPEHIAOZx1hXe51/fZn5fuYv4nF5jD1iLjLFednOYp/pU5ilzne7XZzx1aoOABQAQ\nbJzP80L8N4oi9TscYm9tui5b1ZZoQHb2ZkvbyURvCoeagnCqZ1RFUE1zC+8VLH+tTPYR1Tct\nbq+tTjWq/ThIpI2ewRWsCymUA9Za5rSFhkzmyUr1IUvOWqQ+tif9SLTM4bkteeIhrZinjIAf\ny7xUX2kLWMXpzO86H8My5izf2j7sOS1fX1vh2gYBCwAg2Dif58UHEVTX+8qZlWRjPcEnKq8J\ndKi5jkh/p9th03UqmXcMlp9Wi4f2NaYLOkbm7FX6AN2r3D5pqGa7vUTaE1sYg3UhhXLAeoV5\njndpm/rSm+87cFfzpOvvqpeuClOZ/2OqL8gwZmdQLm9tL041jZK3BazpzMm2N5/r9jO3PetT\n+5GcrXpySpFrGwQsAIBg43ye/6YW1TWNwnUOWIe1tYdr05Xqd429pg+RfiPlI1Km0TJ4nyL0\n0yqDyPhi+o7oKu+aSVTzZ6XQlAbIPzYoE2PJdhLd6vyhoOKFcMA6FMeeI6bl3solqGOtmU0T\n155OY14uF75k5uH60EFx8lnmrvn60irmGWvN9/GsAevDOONhRV+9vO92zn18sjaI62gcj/xV\nmwPVuY1zwDLlRS8ELACASuF4lj9+NUWvclzjHYMVHxOhvdqmB9HLzjXfE12tfe08JJ3Vzf14\n58Hy02ohUX39Bs2TRN4n4/Pq0WC1xJQk/5hDEVoXmAfrQgrhgDVLfYmfYZE6n6dUHTf9lFa3\nTco26ep1pOHyA4VrlauoJavTmZO3GVsWd+JuIzlun1FhDlg7BkkbvuF6FDnMKWpPB9K9r+MZ\nyB0+0iZod27jELAWaS8utEPAAgCoFI5n+aeIxjiuMAWsAUT/UN7QNoKo0SnnGpFA1Eoulb5E\nFHvK3M9g0iOSU6vePXrIs5oW30j0V2WiiNJRYUTeqYOY7tBukoyiWHl4cUf6u7ZK2vkAl2OH\nChe6AUuevH2dueL3JGVez5LX5LmmBr6dPX/6qAypmKoFqZIJ8jj41EFjJ2R1kAqdzMMS32H2\nsOl9AlLASp0tmzYiXd5q7Bnhaghz64nf/bR6crJpHP1XzI+ZblX6tnEIWNJOE2YtmefzUmkE\nLACASuF0jv8liiIGZBqmmNcZAevI5URXPP/Wa38hqrHEpUbkNSZq/MKkrDuIwj6w7CPHNGm7\nb6uaRMpT8GuiiWqnZA3tfb30rdDZ2Hg2ReoPyf9Wj/qUiC8jaZ5WkUJU5husoaKEbsBaxdbB\nVsp7/uRh7qXz25qeLMz61Vi/+gmjNm6k5RVPB+V365guAW+wPJz45Ap/x1E8Lk7vdLLxusP8\nRGl5lp82DgGrpLvSoljYIGABAFQKp3N8tnXA1V3mdd5pGjZcqa1vpM/b4FsjtjTXqurYxoMU\n1aM6ha6t9IAlvr1GP4qwnsaf/YcvoReNjt4Lp0ZS/GqnLZ6NpVqWS2VQmUI3YA1knmut2cLc\nVrkdmJ8zsnf71p626Vlz95kbFK+b3CetdWKXl+cdtHU2iLmTKdkYAcvTqdektT7XlGx2TMpo\n62nbe8ouU90QaeM8P20cApY4NLhD6y6ZuIIFAHBhOJ3hyxewxMk37m4QecndQ72Pq/vWiDNT\nH76iRsM7X7Z/BYkO2sShjq2MgCXOzEhsEhMZ+9fnfvZumko3eGcdEktb1qt1+1j96+wrogSn\nzwSVInQDVrUhB6xNF/ogAACgwqwkiq+AblOM+RrgAkDACnoIWAAAVdxfKXx72a3OUV4U3VzW\nLRioOAhYQQ8BCwCgiltG1DbgnT5mvvEIlQ4BK+ghYAEAVHVJFLY6wF2uD6dHAtwlnAsErHLL\nP+zjaNlbnT8ELACAqu63/6Nr88tudg4Kb6XY/QHtEc4NAla5zWYfHStjvwhYAABVXk4UdQlo\nhxkUjhuEFxQCVrkhYAEAQEWZQjQ8gN1NJnJ8OQhUGgSsoIeABQAAEGoQsIIeAhYAAECoQcAK\neghYAAAAoQYBK+ghYAEAAIQaBKygh4AFAAAQahCwgh4CFgAAQKhBwAp6CFgAAAChBgEr6CFg\nAQAAhBoErKCHgAUAABBqELCCHgIWAABAqEHACnoIWAAAAKEGASvoIWABAACEGgSsoIeABQAA\nEGoQsIIeAhYAAECoQcAKeghYAAAAoQYBK+ghYAEAVC1TiEYEsLtJRCMD2B0ERtUKWBuYOanA\nXLNPquEiU8Uz0nKebbPitZP7pLVO7Njv7Y3mnqwOVuSB+yMHrPGfAABA4Liectc8fmPdqIvv\ny9xrrd4STfSZsbTysWtrN7g17Vt9uTg7+ZroGpfd/8resvpR5ERRZ5ee3A9keavYqKszDngb\nzKKI77ViDwr/1PUTwQVS9QIWLzbXvGMLWDvk5anWrZZ088aoXj+aeqrkgDWes52qEbAAAALN\n5Tyc35E0td8215fcQ96AVdhNb9RPrdh8q15Rc6T/fhRHLqemp517cj+QuRH0z87NqMlhvcWh\nWHpeLxfeTBf/6vKR4EKpcgErjp83VZSmSRXmgDWOOZVTz5iaFA2V41O3IW9NeK2TVIj7WO8p\ndarFqQo/+l4IWAAAlcP5NFzSUjrh/qPfkPSriMLmm1YMJ2/AKkkkqttt9OCWYUSj5IpdsVIM\nap85vGcTqdFkv/0oUohWOvfkfiCnGtAbQpy5l7p6e7nWe8NmXTi1KvNLBipXlQtYvS13ANcz\n9zAHrN+TOGM68zJvi9JBUqrK2qGWv+suLeRoPT1ZKYfsVehBwAIAqBzO5+FxUlJS7oIUSdHn\nqhKjfms0NTIC1gSiFvvkwvwIijkp/fw30d8OyRVnuhHFnvHTj2IFUZJLT+4HMoPqy19lH1Lt\nfLXFAgpbbtqgCxFuEgaZKhewpsfxDG/Fm9x1kDlgLWKes425v7fFPOa4j4ylgpeYk4+LCxKw\nNjECFgBA5XA+DzcjekctHbuE6Gu9uuReuvJFPWDlX0qx2piRZx95ZpcQ+8LooqNqRdHlRKvc\n+1HdTeFbnXvycyDp9C956QDRaqX6+OXU3bzBnki6xfkzwYVS5QLW/Ge4k/HXQn4iTx5oDlg9\nmfeLp5iNUYcnk5inmXo43YHbfyPOLWD9MunplITO/eerf35kMn9urBqoXRCztRHiBeYSsXN0\nmicpY7oc6MRsbahXpk/3CFgAAIHmeDaXolJD/QukHZHx1/pworlZesCaQ/SaZasfOzz6rF5u\nQzTPvR/FaqI44dyTnwN5ULs3WEPrrRs1tlzyEslEXzh3BhdIlQtYc+Yzf6cvf878U39TwNrM\n/JwQUgtj0OEc5rSz5i5yc0u0nsoZsM5O0IfBp8p/t4gc5pf0dcfj1Yca7W2UGFawKF6t6yL/\nBYOABQBQeZxP6EW7f9KLTxBN1IpboylBGAEriWin6zcCEy127UfVkUjbu5+efDq4k55WlurT\nGPnH0jBaZN1iMVFr18OCC6HKBazZh+J4sL78HHct7WcKWCOUZwyPerzD3J9hnuvSUzkD1lDm\nTnPXbV8zOp7j10jLBUns0f+u+JR5pFMbIQYxL+H07G9WzUxmlv+EObl/GvO0/fuP+uwAAQsA\nINDKPLe3JPpKLZXcRw1+9QasxnSl9O+RH1Y5hKMDMRRjeyLK24+qqB7FFIoye7J30EK7I1iH\nxkr/5jeljrZmZxtS9OkyPxVUoqoXsMRA9hxXF/Pkxee9AetkonpBKUu/cScKPMzbXXoqX8DK\nYe6p5qm18dxZ7v1NZv06bX/mDY5t5ENIyVJS3kbmeOX/FNkYgwUAUEnKOrfnRdIl2nfHCGU8\nlB6wThA9JJY+ECadma8aWmjdaN1tRMNc+1EtI2K15K8nnw5aUnt56Uw4zZJ+9KHLjoitfe+/\nq90Co2Ey0cKyPhVUpioYsFYwf6guzuS4g+aA9SGzcm11jTHMfRdzQolDR+UPWN05bo9WHM0s\n/52ylvllteJIHHcpdWwjXmVurz0KksGszG9qC1i7+mluvSYKAQsAIKDKOrfHGXOtb42mfwtv\nwNpA1G50uDZH1d3H9PZbn+nV/gaii0a79qN53Rh45dKTcwc9qIW89CPRWulLLJyyxWc1lQ2N\noe7DiQaW9amgMlXBgHWmHWcoS6VpPECYA9aTzJvln8WdmNXEs5G5k1tPVk6T8QrlIpkx71Yu\nKzcnizvo9wgXME93biMHrCla1TBmZWCWLWBt+LOhFgIWAEBAlfFt0o/on8VKqeQ+qidP/qMH\nrBVEzSOazNheuGtEA2O4ujIEiqheP3tM8vaja2fMp+DSk3MH8yhSHq47jBoWiaJbKEGcuJTi\n9+RPDKOPtZZLjEtjEByqYMASE5m3yEvrmJeaA9b/mLWoP0OPN2uZ0916KlfAWsw8QS//zvy4\n/HOiPpv8s8y7XdpIAWulVjWBeYn8EwELAKCy+P0uKe0tZZ8TankkkfL2Dz1gfSoFqRuOKKs2\nXUSUo38ZqBeibpzt1o/uHiLtjSEuPTl3UHQltc4X/4uVp3zPpAb7xSSKkVe0owe1tjuJbvP7\nqaCSVcWAtYN5vLw0lJMLzQFriHHvcB9zqlL5o1Rw6yl1ltkJx2byU4hmCXLdZu1ZwIPMvdza\nSAErV+tionbXEAELAKCy+PsqOdGK6A7tpX/batPDSsEcsPR35mQSpRlbnd2/ql8MUV/nfgzX\nEGmXuVx7cuxgcU2q3SSMmp8WG2vQNCES1Wte71OkNnzrDNHF/j4VVLaqGLBEL04pUibBkh+2\nMALWMY8x+l0efZ4j/9zLHFfg0lO5xmBNtV3oUqZ8SGeP/BjJfOYFbm2kgKX9DeMWsI4t1lzf\nIAIBCwAgoPyc13fcRPSQ9jB46d+ozm6lpAes5US19Jt+G4mutWy65TLTSHNzP16NiLTH2P32\n5NvB957YGs36HRfFLailtHiD+vrC9UQ/aA0iKdrPp4JKVyUD1kIlPn2mjrgyAtZca8xR/tMs\nbsO83qWncgWsacwjc02UEfPvqpGptxbonNqUHbAMeIoQACDQ3E/ry2KJntLnRxxFpM2bqAes\nXKIr9KZniGKsG88kdcZ1ez9eDShMK/nvybWDNylGnvT9EvV5xb3qxFuyGAp3/1RQ+apkwDrV\nml+UR0ApEUkPWKVdbReSlGHuA5jHWfso1HsqV8CawzzVpzKPeZAQ+5V/XdogYAEAXECuZ/X/\nRlHkW/rC3tp0XbaqLdGA7OzNoiCc6hmNI6imdet9RPUd+jHxXsHy35NbB9trq1ONaj8OEmlj\nX3AFK9hUyYAlhnLc0f1aXtED1lrmtIWGTGblleeLmBMtc3tuS554SJQ/YC1jzvKt7cOe0/IV\nsxWubRCwAAAuILeT+gcRVNf7ypmVZCOdzK8j0p96Oqxcg1o8tK/xtsFjpAUlaz8m3jFYvj25\nH4ih9AG6V7lV0pDelH/sJdLezoYxWMGmagas9cxfZHPcb3JZD1ivMM/xttzG3E6uLkxl/k+p\nt74gQ51aobwBS4pxbX2v4H4kZ6ueykgwlzYIWAAAF5DLOf2bWlR3rXfRKWD1IdJvfHxE8hRZ\nGUTG98V3RFc59GPifYrQtyf3AzFMopo/K4WmNED+sUGZGEu2k+hWl08FF0TVDFilXXnI89pr\n/bSAdSiOPUdMTXsrczgI8SUzDzdmKTn5LHPXfHEOE4328r7bOffxydrb0I/G8chftVlNnds4\nByxTAvRCwAIACDTnM/rxqyl6lfMq41U53xNdrc0T/ZB0dhZiIVF9fTLpJ4lS/ffjnQfLt6ey\nDySvHmkvg2NKkn/MoQitC8yDFWyqZsAS73GqR5toSgtYs9RX/hkW6bN/DpcSVsZa5Ypryep0\n5uRtWk/lflVOirKFOJDufe3OQO7wkTZBu3Mbh4C1SHtxoR0CFgBAoDmf0Z8iGuO8xhuwRAJR\nK/lJ8dKXiGKlQvGNRH9VJlMoHRVGtMR/P4OJjPfl2nuS/vbv0SPP34Ew3aHdEBlFsfKQ4Y70\nd23VCFKvaUGwqKIB62Acczt1HKEasOTJ29eZm/6epM4CKkomyCPeUweNnZDVQSp02qz3lDrV\n4mPhbAhz64nf/bR6crJpvPxXzI9x11L3Ng4BS9plwqwl80qFDQIWAECgOZ7Pf4miiAGZhinm\ndd6AldeYqPELk7LuIAr7QK5YE01UOyVraO/rpdN15zL6yTFN2u7Tk6hJtN5PB7MpUn/w/bd6\n1KdEfBlJ87SKFKKyX2ENlaiKBiwxkHmiWlID1io25R3FaG2YuxCrnzCeLIwbeczoyaaPyz6L\nx8XpG082XmuYnygtz/LTxiFglXRXWlhfqiAQsAAAAs/xfJ5tHXB1l3mdN2CJLc21BnW0cR3f\nXqNvEtbzTBn9FNWjOsabnX160gKWSweHL6EXjY7eC6dGUqJrpy2ejaVapxw/FVwgVTVgLWdW\nb8ppAUsKXHOtbbcwt9WmeC9eN7lPWuvELi/PO2jqqZwBS4gdkzLaetr2nrLLVDdE2iLPTxuH\ngCUODe7QuksmrmABAFQ4x7N5OQOWODP14StqNLzzZeMr48yMxCYxkbF/fe7nMvsRHUxzkfr0\n5D9gpdINhd6OlrasV+v2sfof5V8RJTh+KLhQqlbAqpLkgLXpQh8EAAAExEqi+AroNsWYrwGC\nBAJW0EPAAgCoQv5K4dvLbnWO8qLoZp8bIHBBIWAFPQQsAIAqZBlR24B3+pj5xiMEBQSsoIeA\nBQBQlSRR2OoAd7k+nB4JcJdwvhCwyi3/sI+jZW91/hCwAACqkt/+j67ND2iPhbdS7P6A9gjn\nDwGr3Gb7PFjIHStjvwhYAABVSk4UdQlohxkUjhuEQQcBq9wQsAAAIBCmEA0PYHeTiRxfBAIX\nFAJW0EPAAgAACDUIWEEPAQsAACDUIGAFPQQsAACAUIOAFfQQsAAAAEINAlbQQ8ACAAAINQhY\nQQ8BCwAAINQgYAU9BCwAAIBQg4AV9BCwAAAAQg0CVtBDwAIAAAg1CFhBDwELAAAg1CBgBT0E\nLAAAgFCDgBX0ELAAAABCDQJW0EPAAgAACDUIWEEPAQsAACDUVEjAGs783R/Y7FXmH//Q/l5g\n3uX9UdUgYAFA6JpCNCKA3U0iGhnA7gAqDgJW0JMD1vhPAAD+GD+nl5yriD4zLS997Lo60dd0\nWGyqWvnYtbUb3Jr2rVGx5vEb60ZdfF/mXmXpE7K4y2cPUdTZtLgl2rpD590ubxUbdXXGAW+D\nWRTxvVbsQeGf+vlEAEEjGALWeM5Wflb3gKX/HmwQsADgfLiecwr6hpE57xx9VM9JqYVaVWE3\nvaqfWpHfUa+o/ba8XEbAOnI5NT3tXSy5h3wDls9u50bQPzs3oyaH9RaHYul5vVx4M138q+tH\nAggewRCweiFgKXohYAFA4Lmdcn64maiGKe8U/IUoqt2IkW2jiNqoVSWJRHW7jR7cUkpio5SK\nltIJ6R/9hqRfRRQ2X6rYkun1BFGSbR8pRCtNi8PJN2D57PZUA3pDiDP3UldvL9cWGO3XhVMr\nf2dSgCARBAGr0IOAJTN+DzYIWABwPlxOOSOiqNbYFFPeySS6Qhnvuf4yIvVsNIGoxT65MD+C\nYk5KP8cR1Vbu5BVJ0euqEmuPbSh6p7VmhTVybY2mRj4By2e3M6h+kfTjQ6qdr7ZYQGHLTRt0\nIcJNQggBQRCwNjEClsz4PdggYAHA+XA55TSnWzcJU8A624BoqVrMIbpZ/pl/KcUeVKuefeQZ\n+fzajOgdteLYJURfWzr8mGiwbR93U/hW71LJvXTli/aA5bvbdPqXvHSAaLVSffxy6m7eYk8k\n3eLymQCCSCAD1sGJTyS2zZj5mzlg/TLp6ZSEzv3nnzRaFS4alNbG077fnOPK4mxWZSoBa7PY\nMSo9MTnjnVN+9mPrwSFgbRz7RFKbJ8btcN2iB7N+d38Q889KoWTZ4PSk+JSeE7cbe/I9eifW\nVpnMnxurBjLnOPYkHWuJ2Dk6zZOUMf247fdgg4AFAOfD5cx1e0aBMAesb4hu09fdSyT/uTuH\n6DXLNvvCqKF+2aod0QzzulON6aYz1l2sJoozLQ4nmptlD1i+u31QuzdYQ+u/GzW2noOTib5w\n+VAAwSOAAWttkhoR2m8yAtbZCVps4NRVWqttaUZVrrxsDVjbFnnUxccOue7H3oNPwMp/VVsf\nN9NtC4eAdaSX3ojfbPcdkQAAIABJREFUFm5H78DeKof5JX3d8XhOKnDsSYphBYvi1bouBwUC\nFgBUFJdz1wb5H1PAeofoCX3dK+pkCElEtnt+Rbt/0otPEE00r3qawlbYdtGRyLT3rdGUIHwC\nlu9u76SnlaX6NEb+sTSMFlm7XUzU2uVDAQSPwAWsA22YX1y1feOc1E6D9IA1lLnT3HXb14yO\n5/g1Ss3x9sx9Plmbu7g3c/JvUsXJ/dOYp+3ff1QJWPM5PfubVdOTmbPc9uPTgz1glbzI3HX2\n8s9HS1lttssWDgGrn9xoXe6KCVJO/MTl6J3YWxUksUf/a+tT5pHOPUl7XaJ81pnSZ33N+nuw\nQcACgPPh78RtCljjjCcFhXifqJv0ozFdKf175IdVOx02bUn0lWlxXTh1sbUoqkcxhcZSyX3U\n4FffgOW72xbaHcE6NFb6N78pdbT1e7YhRZ8WAEEucAFrOPOrpXLh1w6sBawc5p5q1lgbz52V\nh0BmM/dXLiKXDpHyhLIu2zQGK/kVeWyj2BzH8W635Rx6sAasRczPKvvK9bDnoPMWvgHrF+Ze\n6tXtPcncqdT56B34tnqTWb963Z95g3NPWcwpWcr+NjLHn7b8HmwQsADgfLicvBSmgDXTdCkp\nm+h+IU4QPSSWPiDP5XDV0ELblnmRdEmRafkBis6zNVlGxN6lEcrwLZ+A5bvbltReXjgTTrOk\nH33osiNia9/772q3wNgmmWihv08FEAwCFrCK2nCcNjfJ53rA6s5xe7TVo5mVv3XmZ/bSLgZt\nlhKNUjAHrA7aQyO9mbe47MihB2vASjeGYo1inuO8hW/AWsGsDd0Ui99bXOR89A58W61lflmt\nOBLHXUqde5I+a3vts2Ywb7T8HlT5P2ma1Q5HwAKAP8zl5KUwBazVRH/Sq6UY1FyIDUTtRodr\nc1Tdfcy6ZZx1hvaFRC/aO3/dPIRrazT9WzgELN/d9qAW8sKPRGuFWBNO2eKzmsohGEPdhxMN\n9PepAIJBwAJWrp5dhPg9QQ1YeczPm1bbHi85zaxe9zUHrGnayuHM7jflfHqwBKxfmDO0Bru/\n+i7PeQvfgLXGflfS/9H7aVXcQb9HuIB5uktP0medolUNY1YGZtkC1oY/G2ohYAHAH+bvNGoK\nWEV1ib5Ri783IWqqTLLQPKLJjO2Fu0Y0sA5XF6If0T+LTct/oRifAQ7tTPMplNxH9eTzsU/A\n8t3tPIqU7z0Mo4ZFougWShAnLqX4PfkTw+hjbZsllktjAMEpYAFroTbcSJahBqzFzBP0qt+Z\nH/c2Ls4/ffoYc4qyYA5Yq7UGE5iX+N2dpQdLwFpsOhDXLXwD1slE5uG/mNq7H70oo9VEZvWN\nD88y73ZpI31WffY9/bMiYAFARfBzJjUHLPEsUTP5lCVOtIogukaIT4nohiPKuk0XEeV4Nyvt\nLWWvE6Z+viTq69P5PeqziIqRRFPlnz4By3e3RVdS63zxv1h5bFYmNdgvJlGMvK929KC2yU7T\nk4cAwSpgAWsm80y9/IoasOawRYK6Mnd0j9Q4tcY3YOkvNZ7ofk/OoQdLwHrXdCCuWzgMcl8s\nN3hywkr9nOF89HZOrTZrzwIe1C7qObWRPmuu7bMiYAFARXA9lwprwDrx/4jq9pr13rOXUR/l\nXt2npmnXM4nSjK1OtCK644C5n4cpfI+wu4ZIv6+4rTY9rBR8A5bPbsXimlS7SRg1Py021qBp\nQiSqV8/ep0htINgZoov9fSqAYBCwgDVJHe+kGKoGrKnWYMFnpbqCwaYK34Cl/7XjJ2A59GAJ\nWFOY55a5hdM8WP97TmkQ9+IKZay+09H7cmyVzh55Hq/5zAvc2jh8VlvA2tJBc/uNNRCwAOAP\nczmXKswBS+y8URtvlbGb6D4hlhPV0m8DbiS6Vm+34yaihyzPIe0Op4d8O29EpE2MVfo3qqNc\npXIIWD67FeJ7T2yNZv2Oi+IW1FJavEF9znA90Q/aJpEU7e9TAQSDgAWsiaaA9boasKYxj8w1\nkaene4M5+f3tx6T/zxb9wYDl0IMlYElx5t0yt3AKWFKmmdVHuc713HGXo/fl2Opd9eh7s+e4\nW5uyA5YBTxECwPlwOZcqLAFLFI3/e8NazbqsFl8TdRIil+gKfdUZohituCyW6Cnrn5yDjAne\nzRpQmFYaRaTNL+gQsOy79XqTYuRz+yU0TF7aS7RYWxFD4f4+FUAwCFjAmmG6M/eScYtwqq3V\nLuY22iN+BX8sYDn1YAlY7zOPL3MLU8DK9AYsyclVwzzMLzofvQPHVnnMg4TYr/zr0gYBCwAq\nib9TWIpD3pFMJnpTOmOGUz2jKoJqqoX/RlHkW7b2N1O47xx+3itYe2vTddmqtkQDsrM3Ox+N\nulvD9trqVKPaj4NEH2prcAULQkDAAtZHzMYju93UgLXMd7rQD5lHa8VdfyxgOfVgCVg56sSd\n/rfIYNZesCV6WQKWZHdHZSyYw9E7cG7Vhz2nxVzmFa5tELAAoJL4O4W5BKxEIvnh5uuI9mo1\nh/WrWR9EUF37i2p2kzqzgo0xBmsl2bicXLXdakofoHuVmwIN1di1l0h7DxnGYEEoCFjAWsf8\ntFb8LU4NWPuZ29pGLk1l/kArzvljAcupB0vA2sPcsVRtsGfMmI+dt+hjzJVV4LEHLLnVQsej\nd+Dc6iM5W/XklCLXNghYAFBJ/J3CrAFLv7B/uDZdKZ9G+xCN089qpExjJb6pRXXX2nuZRPS8\nvU6YniIsI2DZd2v0WlM9OTelAfKPDcrEWLKdRLf6+1QAwSBgAeu0h+P2qUX5qTllotFe3vce\n5z4+WU407xg3Eo+kMicppWx99Fa5ApZTD9aJRp9k/tZoO8t5i/8wL1frpCwkB6zSmS8P03fx\nIfOXjkfvxLHV0Tge+SvzGPc2zgHLGMVmhoAFAOfD5eSlMAes+JgI7ZU4PYiU6ZK/J7pamxH5\nIek8JP04fjVF+76bNd1xCJZlHiyd7xgs392q8uqRNv8gk3LinkMR2sFgHiwIBYF7Vc4rzJnK\n8yZbkuK9r8pJ2aasPJDOvF0o86V3VxodfrpXe2b5WTv51TbqxFXlClhOPVgD1ufMacr9v22J\n7PnVeQspdPVXLj1vTkpRr2D1N2beKuzJvMfx6J04txrIHT7SJmh3buPwWRe5TOCFgAUA58Pl\n5KUwB6wBRP/4XS6MIGqknClFAlEruVT6ElGsXHiKaIxvL3cRfefQ+WAinymavQGrd48eeS67\nVTDdoV36H0Wx8vwMHenv2iqp5QB/nwogGAQuYO2QYlXvRWtXjEtIG6W/7HkIc+uJ3/20enIy\ns3KhuSCVecD3u/83Pbn1L/2Yx+86LMQG5oRZS+aVli9gOfVgDVilLzK3fXvJolHay56dttgd\nJyWsxetWjPH0nagGrE3S4b/86Zrcr9/tyjzE+egdObb6ivkx7lrq3sbhsxq/BxsELAA4H86n\nrpWZspuJ2ss/5dcqH7mc6Irn33rtL0Q1tL838xoTNX5hUtYdRGHyUItfoihiQKZBfx9FQ6ID\nDrvIsU//LswBqybReuG8W9lsilyvFX+rR31KxJeRNE+rkGKh39gIEAwCF7DEEo86zVP7zdOZ\nv1aqisdp03ty3GR1moM1Cdp0VBvlud+ZZwhR0l2pKS7nNA0OPVgDlijI0nc6020LeQS6IuO3\nGdqVphVJxkRVrxe6HL0Tx1b5iazcnnRt4/BZjd+DDQIWAJwP51PX65ZBUdfLVRuu1JYaGVe1\ntjTXquooIxiyrUOp7tJaRRDlO+yiqB7Vsb8j2jdgOe1WiMOXmN5t+F44NbqeqJ22eDaWapku\ndQEEpwAGLLFnTLfElB7TD8szbC7T6nZMymjradt7ijGEacewzp42Peccl1LHzLTWT8jP2R0a\n3KF1l8xyXsFy6sEWsIRYNzw9KfHxcTvd9ym+f6Wjp02vjwvkqKWOmzyWPaBL6/i2Pcf/6N2V\n/eidD8ih1RApKuX5aeP0WfXfgw0CFgCcD+cTl0PAEiffuLtB5CV3DzVNuXBm6sNX1Gh458vq\nc9fOAeskuUxL1YFooa3KIWA57Vak0g2mbLa0Zb1at4/V//z8isjl3RoAQSSQAQsqhBywNpXd\nDAAgyKwkiq+AblOM+RoAghgCVtBDwAKAEPVXCnd7QOiPy4uim30u9QMEHQSsoIeABQAhahlR\n24B3+pjvjUeAIISAFfQQsAAgVCVR2OoAd7k+nB4JcJcAFSGYA1b+YR8Ob7uq8oeDgAUAoeq3\n/6NrnR4w/OMKb6XY/QHtEaBiBHPAms0+OlbDw0HAAoCQlRNFXQLaYQaF4wYhhAQErKA/HAQs\nAAhdU4iGB7C7yUSOr7wACDrBHLBAgYAFAAAQahCwgh4CFgAAQKhBwAp6CFgAAAChBgEr6CFg\nAQAAhBoErKCHgAUAABBqELCCHgIWAABAqEHACnoIWAAAAKEGASvoIWABAACEGgSsoIeABQAA\nEGoQsIIeAhYAAECoQcAKeghYAAAAoQYBK+ghYAEAAIQaBKygh4AFAAAQahCwgh4CFgAAQKhB\nwAp6CFgAAAChpnID1vPMe53XvMC8y22r5c8le9rn6hv7aylsjfy3LeOQggUCFgAEnylEIwLY\n3SSikQHsDuDCC4GA9TnLvqnWAWv8JwAANu6njZyriD7zLpZ83O6amBqXPTD4gFG19LHr6kRf\n02Gxn60ca4w1UdTZtLgl2t7wE7K4S65b3io26uoM70GIWRTxvVbsQeGfun8ggNBTgQFrPGfb\nq0b17HnQubGfKNSd+YUlqw7qG/sPTdZGftrqR+d+SJXO4RcmQ8ACAEdu55KCvmFkzjt77tZj\nTu3Jas3RR/Wa1EK3rZxqDEcup6anvYsl9/g0dAhYcyPon52bUZPDeptDsfS8Xi68mS7+1e0T\nAYSgCgxYvZzzgjP3KFSawAmny9XSt5Gftud0dJXD5ZAQsADAkcup5IebiWqY8s7xZkTN31q1\nZn7ncKLpck3BX4ii2o0Y2TaKqI3LVk41XilEK02Lw8knYG3J9HqCKEmIUw3oDSHO3Etdvb1c\nW2BssC6cWrl8IoBQVHEBq9ATmIBVwJxWvpa+jdzbntvRVQq3Q0LAAgBHzqeSEVFUa2yKKe/0\nJ3r0jFKaS9QwX/qZSXSFMrJz/WVE2c5bOdR4rVASk2FrNDVyu5coa0PRO4WYQfWLpIUPqXa+\nWr2AwpabWnUhwk1CqEIqLmBt4oAFrK7la+nbyL3tuR1dpXA7JAQsAHDkfCppTrduEuZg1JRo\nvbGOFgpxtgHRUrUih+hm560carzupvCt3qWSe+nKF/0ErI+JBks/0ulf8tIBotVK9fHLqbu5\n2Z5IusWtC4DQE7CAVbhoUFobT/t+c44ri7NZlSlEP44rLZjcIWGOaUS5rbV7FJqh9WMZ5L5b\nrHk1LSG13yfFaiPfPdgDlvvReQe55459KsXT8dlZ+vAAaeMSsXN0micpY/px4ccvk55OSejc\nf/5JZSmT+XNj1UDmHIc2Dp2bDskGAQsAHDmfkW7PKBCWYBRB4UVasT3RWCG+IbpNX3kv0Y+O\nWznUGFYTxZkWhxPNzXIPWKca003yFbQHtXuDNWiG8rMbNT5paZhM9IVLHwChJ1ABa1uanoRS\nc+VlU16QQkbhi1JxqjfN2FufY8DaM16r7HVKaeS7B1vA8nN0+iH9nqU3ab1A3bWUlAoWxat1\nXdwHwp+dYPS9Sl7OYX5JX3c8npMKHNo4dI6ABQDnyPmctEH+xxyM6lCYPtJJCljSefIdoif0\nla9o0yP4bOVQY+hIZNr51mhKEH4C1tMUtkL+eSc9rSzXpzHyj6VhtMjacDFRa5c+AEJPgALW\n8fbMfT5Zm7u4N3Pyb1LFyf3TmKft339UiP8wf8Wt+w380EgzPq3dA9bJ/b9ICWT//v0Fpuw0\ng5/M/nrlpNbMg5RGvnuwBix/R6dtUNKPufN/N+1YO8HDrA4DGMS8hNOzv1k1M5n5NdePPpS5\n09x129eMjuf4NdJyQRJ79L/KPmUe6dTGoXPTIdkgYAGAIz/nZHMwekS/JyfEHRS2RYhxRP30\nle8TdXPcyq1GUlSPYoyHD0XJfdTgVz8Ba104dVEKLbQ7gnXkq2givyl1tLU825CiTwuAKiJA\nAWs2c39lEGXpECkmKFXZ+pCiLOZn+qi5QUszDq3LMQbLm508Wcq9wZ+kLPST8x6sAcvf0Wkb\nfMT8lHof8FvmpKNarylZymYbmePd/l+fw9xTzVNr47mz/Gfim8z6Ve7+zBsc2zh1no0xWABw\nLlzOSjJzMFpOdLd6BntPHZs+03QFK5vofset3Goky4jYuzSC6B3hJ2A9QNF5SqEltZd/nAmn\nWdKPPnTZEbG17/13tVtgNE1WhogBVA0BCljzM3upV2bEZuZeSsHIC68yJ2h32LQ049D6nAJW\ninaFaCzzROc9WAOWv6NTNyjtqkYh2WDm+Vqv7bVnXTKYN7p88u4ct0crjmb+SvqxlvllteJI\nHHcpdWzj1LktYG3poLn9xhoIWADgy+WsJLMEo9eJmo5Y+vV/O4bTHYeEMoTqT/o6KRg1d97K\npUbtz3tRf2s0/Vv4CVgLiV5USz2ohfzjx//P3pnHV1GdffyXjc0oQrRSNyjgVlzft2qttta2\n2E+rTxYghFVAQSyEzaIoUPMqCgiyL4VQWUQRTFFxwQVZZNEiIghYXAABEUFAAhJCIMl5Z79z\n7525BAzJvcnv+wdz5sxzzpzLzb355syZZ4A1Sq2OR556q6aRI8tZ6j4KGBzhRRESU5T7XYRH\nRMxpX7dgDbMOhqVNd6JPSbDsByp8LJLtfQa/uwjDR2c22Cpyb6kVs1LkEavXaVbVSJGV3qPb\nJeLkydsgot8pU9zBvka4QGSGd4xX5yGCtf5/HWpRsAgh4Xh/KxkEi9Hrd5jZPhsOOqTvFp0D\nfGgeOdpIky+fVt41Gm1d+RRKbkNdfYLKV7B+hWRr5cNLSNT/Eh6J+kWq6GpkqEM/Q9rOgilx\neM2KXRw0NUZIbFOuglVccOTIQZEsY8ctWPanJ0iwgqJPSbDsu/T2i2SUeJ7BS7C8R2c2eEdk\nuB23R4spNXu1E+lNFlnsPbpFIpPt8lGR+/XtFBHz8RP99RsevWM8OqdgEUJOCe9vJYMgMTrY\nv4EpWEm3m236A031Lyd16O4EoLF3K58ajd9Ydx7qjDGWzfsL1rvAg1ax6GK0KFCfpugLwHJQ\nb7eaimRd+Nrij1bENtftjYTEOuUmWBvG9WyXat4IFy5Yy60gR7DCok9JsKw7D1Wp1sVhzzOE\nCpb/6MwGz5tzTWavWlCB2at9oinWhb1w5koQGXrdZutewL3W9UivGI/OKViEkFPC+1vJwC1G\nOxsj7r4PDxdtz/0FMEivOaQVzukz+4X+F6DfaVwibAwctIpf1cGdRsFPsO5EvL1CQi2qiTqN\n4nDdEbWxBqYr1dJM9vAiEq0l88eB8yK8KEJiinISrMKhLoMIF6xPrTBLfzyiT0mwvrKPtRL5\n3vMMwYIVaXRmg1yRuc4ZW4rsM3u1/0jzF6xng+VJTuiV3SRdzx8xX2SBX4xH5yGCdXi1xeXn\nxFOwCCHheH8rGbjF6DbAWpFwsBlgzK9vu8p6RGD2DuA2z1Z+NRoNADMzvCr9Lc42psL8BGtH\nPP4U2Ps4PaVG0wH5qvgmNNd2rzRvZlwHfGIFJKJ2hBdFSExRToL1tEjrF7ccLFaqyEuwbJew\n9Mcj+pQEa5t9LDNMhTwFK9LovAVrvyqjYE0XGbPBhX7FUp8P08P7Snq+X8zJBcuBdxESQjzx\n/lYycInRSuBGu/plGCvSte/CSb+rX6tp51XqA+Aer1a+NRr1EGeVxgL/Mks+gvW4cYthKM8g\nWf9qPh8j9b1vLOvTSEZ8hBdFSExRPoK1XaSV5UeFJxcsr+hTEqz/Wof0S4RHvM4QLFgRR2c2\neMFO36BRIiKFqoyCNddIbxrCLiNB1247TZdXDAWLEPJT8f5WMnCJ0VCgj129A6gXHJgLPOPV\nyrdGuWawvqmDy/NM2gCD8vI2h4Y2Q3x4cr8tdcxUo9ZmL/CKdYQzWKQKUT6C9YrIOKu4/eSC\n5RV9SoJlPx70gEhmqdcZggUr4ujMBu9aN/fpaGLUNmTc/oK1TGRIeG0/ST+i5tkrw7xiKFiE\nkJ+K97eSgUuMHgL+z67OR+gUUUtgpVcr3xrlWoO1AiGEftVpQndTWPPSO3CrMdlf33S7bwDr\nziWuwSJVifIRrGdFXraKc08uWF7RpyRY1pS0WivSz/MMwYIVcXRmg69FOtlpGpZaeazKJFia\njbU5EVb7qu5WvSWryDeGgkUI+al4fysZBM9gdbar19sGYz9zdV8dXFzq1cq3RrnuIjypYE0F\nHg5rPhU1PzcKTcwl9+uNxFg624BrIrwoQmKK8hGs50RmmaUD7UQyjVKevawpTH+8ok9JsDpb\n6ysnWff+nUSwIo7OSjR6v8jHVheDRd4K6dVfsFSfQNaIDffnWq/hh1QZ853IeP8Yb8EKrANz\nQcEihHji862k4xKjRUCjYqs83lyDlZacYC1l7Qk85tnKt0YF58Gy8V6D1c1jCdauurAuGIiR\nV17NRYKVdpl5sEhVonwEa7lID+MDvK9Xn/YixiOYF9oJQcP0xyv6lATLmsLa2kJSt3meIViw\nIo7OaqDt328+KuddkY6FIb1GEKylIlnmXY17uolssWoHS4dXA9nfPWI8Ol8YyKAaBAWLEOKJ\nz7eSjkuMjjcG+pmzVJ+nAPqDKgYBvz+qV4wGGvzo2cq3RhlzYkND6wKC1bdnz1127c3AR6GR\nghusKf2xSNHzM3TE76xDo600EoRUBcpHsArbiQz6eMenM1q3+HqAyKTt+5RaL5Ixe/FLpeH6\n4xVddsHSNlMkZ/lXm/OyfBUuWLAijs5qUDpYpMurm7d88EyqpK0N7TWCYKnhIi2mfPTfVbmt\nRSbale+J3Cv3lfrHeHTuDCkEChYhxBPPr6QVOTrNgPb6Vn+s8ntJwM2Tlny4oG8ykK5/xRy4\nELjo4X8+9SugxmKfVuE1DkthJrByExCsmsA6u7Y+sCckcA4S7cP766JfiXo3ES9ZFZrORbJG\nQmKKckrTsDrDSjK1Ub2hb2cqVdLDqCn20B+P6LILVn+Rg2OsjFIDzex0J0vTEGl0du7TwmF2\nmqp21mqAMgpW8UQrg6mk5pbYlQUttf3ZEWI8OneGFAIFixDiiedX0rCgRVFX6FXv/NzZ72pM\nXKn1F1v7Dd7ya+XRj01RXZx9LOS03oKVABQEx+073340ocYL8WhwBdDW2j2Rglo/KkKqCOWV\nyX3ryE7prXrPzddkYlaXFt312+e+H9qhReccjxksr+iyC1YvPVPnB090yWj36DvWbM/JBCvS\n6AJP79k07oHMjHsGv2J/HZRRsLTep2a3SW/Td5r7BQzXVGlXhBivzu0hhUDBIoR44vmF5CVG\nR6elNzwr8bwb+zlPrT/89C31Es+/ZcQPvq0iCJbqALwRclpPwTocdtOiaocrXW62pHndWtdP\nsP+sfA/I8HxNhMQi5f6wZ1Le6IK1qbIHQQghDiuAtDPQbZaTr4GQKgAFK+qhYBFCooxfI37L\nyaNOkV1JaBY2hU9IzELBinooWISQKGMZ0KbcO703/MIjITEMBSvqoWARQqKNTMStKucu18Xj\nL+XcJSGVSTQJVsG+MMIfYlV5VNbwKFiEkGhj/89xWcHJw06BY9cgZXe59khI5RJNgjVHwuhY\n2WNyUVnDo2ARQqKOpUmBB/CUC9mI5wVCUqWgYJUZChYhhNhMA0aVY3e5gOejLAiJWaJJsIgn\nFCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBF\nPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBg\nRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWiFnBGiXykb59WOQb\n74hHRbZX5IjOFBQsQqoH04DRp9pmKjDmTIyFEPJToWBFPbpgTXqdEFIh+H0Ql14KvGXvvAUX\nfzTrSl5r2zi5xgV3DN3jtFl9/1XnJJ13W843fv0EnyEJnVy7X9R2At+/OyWpYXagXzUbCR9b\nxZ6If7MsXySEkAom5gVrbO/ee70jyihYkySvHIf1U/AZCQWLkArE+9NZ+GAcXGL0Yrhg7bzF\n3q+TawYVdHRq/uXTj5sDF6LJkcBuyW+cwHkJ+EOnpmi0zz72fQoetsvHmuG870725UIIqXhi\nXrD8KaNg9YkawfIZCQWLkArE88P5STOghkuM/gmk5tjM0mvymwLX/XPl6vmd4oEZek1Jc+2j\n+/sBw7tdCsTN9+7HTRawwrU7CrZg/VgPTyt1/FbcFwi9rNAJXBuPu8vyBUMIqViqvWAdS48W\nwfIbCQWLkArE60M4Ogm1JmS5xGgYMDc45BHgr8eN0jygfoG2nQjUWaRXFLUELi3x7MfFciDT\ntftlbTSwAmfi3CJt8wrqFJjHFiDufVdoZ4AXCQmJPqq9YG2SaBEsv5FQsAipQLw+hNfhmk3K\nLUYDgLeDQ5oA65xovKFtmgLPmRUHzwc+8OzHxS2I/zKwV3IrLh5oBXbDn/XNHmCVcSz/QvRw\nt9yZiKu9v1QIIZVIrAnW3indW7bJnrU/fJH7sYWPd2mV3n7A3HwrVBOsHWr1k10y2g14vdjp\n4OupvbIyOj0y/7CxN0dMcjyOaZQsG9otMy2r95QtkcYU3CxHJPDNO1hkqWfX2uBK1LZxXdIz\ns2fkh4/EDQWLkArE6zN+fXahChKj7sB/gkMSEF9kFdsDE5T6Ng71S6yatsBMz34CrAJSXbuj\ngHlDrMA/WtcGa5idqK645HBQ29bAO17DJoRUJjEmWGsyTQ1pvylUsL7qYhmKtNtgxmoOs3OS\nVdfnR7PuxGTq+K99AAAgAElEQVQnaqW+79aa0GNKHehj18i/lB+hzZaK/MM+lp8mmYWeXWsa\nVrgwzazrvFdRsAiJErw+5ev1f9xipJU/Dw45G3H2sihNsJ7VNkU7/msf1Hxsimc/AToCrlN/\nWRsZyhasG9HLqDwX4/XNkjgsDG67CGjhNWxCSGUSW4K1p5XIwJVbNs5td8/jwYKV316k3+tr\nNizqK9J6vxGsCdZMeSDvgxVTW4g8bnYwQuSeeWu3rB6XJmmrtf3Du6eLTN+9+wePY0oN0Ptc\nu2H5ZE3rfG/eDm1WmCnp9p+Xb4qM8YpRShv+YumW9+HKWa1FngoZSTAULEIqEN+vH7cY/RnY\nE3z0L/YFPKVuQNwXwQebA+959uNQVBfJx5y9kttQ7ztHsG6yrgierU+MqYIm6BjS+ER91D6i\nCCHRRWwJ1iiRJ0v1wncdJFiw5og8YqwwLR2ueYoRrAlW+hDj2uB/00WMvyWXivQ25WdNmnQy\n/t7Ms1c+hR/7WqSPuWp1Z2u5p9R7SOHNnhGxp+sfEVnvfdohIllDjM43iqQdCRpJCBQsQioQ\n368ftxjdDBye+dcLkur9zyM7zJr3gVtMyXkheLW6xq5EnF/k2Y/DMkACe6ON5Vu2YDVHe31z\nPB6ztU0/XHBAffng7Te3XeDEtzZXfRFCoomYEqyiVpJqJXx5O0Sw5uf0MaeG1GZNi4yCJlhZ\n1lTSBBFjgr6HpO60+honYvxJ6WhN+LHlItYaVbXohUWB78cgwputEXnMrDiQKp1LvU/7pEh7\n646gbJGNQSMxObjI4op6CRQsQioK3+8ftxhdgfgrrRxXNUaZVcOAJqOXfPDvjvG44fvglqlB\nGdo9BUtr/ZSz82Vt3KUCgtUTN+mbz4A1Sq2OR556q6Zxamep+yhgsO+4CSGVQ0wJ1gbbnZQ6\nmuGXyf2IiDmB/qh1fU7jY5FsbbNLxMnOp/U1VN/aWuNxbLXIkJMNyaNZcQf7GuECkRk+p9UE\na5pVNVJkpXskFuv/16EWBYuQisL3w+4Wows0val/z7AxPX6uFYaZda/fYRpXw0GHghsOAP5Q\n7N2PQ1tXqoWS21B3lwoI1ktI1NdpjkT9IlV0NTLUoZ8hbWfBlDi8ZrVYHDT/RQiJCmJKsN4I\nKJM+7xMuWMUFR44cFMkydh4N3M63XySjRKlFIpPt0KMi9+tbW2s8jh1uKTLq68hD8upyioiR\n/Ub11+9j9I7RBMvOKThZZLF7JBYULEIqA98Pu1uMagLmnTNHuwLxm/XSwf4NTMFKuj2oj9K+\nwHWHfPpx+A3wmV0eYy6SdwSr6GK0KFCfpmCAUjmot1tNRbLeYVv7IT1qG3Ct77gJIZVDTAnW\nLJFZdvmJUMHaMK5nu1TzTjxHsKz7CVWpduCwUnMliAz9kK01XscW6f09MHlFyN+jbryabbbu\nBdxrTbh5xTwZGNyU0IuVJhQsQioD3w+7W4wOHrS/FUr/AOh/NO1sjLj7PjxctD33F8CgQKtD\ndwM37PHrx6ExcNAqflUHdxoFW7DUopqo0ygO1x1RG2tgulItzYwOLyLRWhd/HDjPd9yEkMoh\npgRrqoiTPXlEsGAVDnUpjCNYX9nRrUS+V+rZYNOREyqgNV7H1KcPGeXUgct9lrh7N+sm6fof\nt/NFFvjFaIJl/73qI1hb/2Zx7WU1KFiEVBS+3z8+CULfBRpqm9sA66r/wWbAIudz/EvgT8FZ\nqzz7aQCYd9So0t/ibHPhvCNY6uP0lBpNB+Sr4pvQXNu9Up/LUmod8InVPBG1fcdNCKkcYkqw\nprgEa1iwYD0t0vrFLQeLlSpyCdY2OzpTZJ9S00XGbHChZwG0tcbrmMYXs/sZ02IP5StPPJs9\nbypTX0nP94s5uWA58C5CQioQ3+8fH8E6CsQXq5XAjXbNyzDWqOssSwH+dqIM/dRDnFUaC1hp\n94aEBT6DZP3xFOdjpL73TUDkkhHvO25CSOUQU4I103WJ8B9BgrVdpJX1XJxCl2DZef70S4RH\njGt1z4b26bpEGHbM5PDKkekiA70PejbbZeTd2m1n3/KKoWAREp14f9KVr2CVxgOFaihg34Gj\ndgD1zNK/k5D4zzL148xgfVMHl+eZtAEG5eVtDgRtqWOmGrU2e4FXrCOcwSIk+ogpwXpVxLnZ\nuWuQYL0iMs46sN0lWPYDUQ+IZJZqf0163BZoa43XMYcdHUU2eR7xbtZP0o+oeSLLfWMoWIRE\nJ75fAz6CpWnOWUo9BPyfXZMPaz7p5QScE/4Mm8hrsFYghMCXR+kduNWYI6+PZ/TNN84DEbkG\ni5AoJKYEa61IL6u4PzVIsJ4Vedk6MtclWP8KNOynjDmlNiGz9Y7WeB0LoHXqncfPu9mrulv1\nlqwi3xgKFiHRie+3gEuMXu325xfs6heB25Q+g9XZrllv6c6HtXDOmoj9BHDuIowgWFNR03w+\nTxNzFf16IzGWzjbgGt9xE0Iqh5gSrCPpkvqtWZwbnGj0Oefi4YF2ImYaZU2wOlvLRieZCalU\nn0Dmhg335xrXFPPsdV1hx0pnPTbSPvMrIu96j8mjS6V+SJUx34mM94/xFixnhZkbChYhFYjP\nt0+QGE0Dmtk38P0PMMJ4HGAjO9fVeHMNVn5D1F4ZuZ8A7jxYNiFrsHbVxVCzJGaq+LlIsLIV\nMw8WIVFITAmWnpshx/gS+yIzLUiwlov0MA7s69WnvYiRoEYTLGsKa2sLSTXWuy8VyTLvLNzT\nTWSLXlho59YKP/aIlaBKqWO9Rexc7CF4dKkxWDq8aiVo947xEKyFrixfbihYhFQgvl8/LjE6\nkgJkGbew/KjVnndI86zGQD/zZuPPtYPzte3fgPEn6SfAUNj2FCBEsAQ3WDPhY5Gi611H/M46\nNDooMwQhJCqILcHaqmlV34Vrlk/M6DI2SLAK24kM+njHpzNat/h6gMik7fuMI1MkZ/lXm/Oy\nHHUZLtJiykf/XZXbWmSiUbNeJGP24pdKPY5t0s722JurN3zw/H0iw/3GFN6lxnsi98p9pf4x\nHoIVGEkwFCxCKhCPD/mKHJ1mQHt9qz9x+eV4zat6jhnd/Twg0Zjdfi8JuHnSkg8X9E0G0rWP\n8ddJSBiU4zDNsx+HpTBzW7kJFqw5SFxnFffXRb8S9W4iXrIqNGfzF0NCSOUQW4KlFqebqaTa\nb54h8oFeY6VpWJ1hpcDaqOd7F5lp5FE/OMZKPTXQms4vnmjlIpXUXDMRQ0kPY7fY69jyTCd3\n1bBjnuPx7FKjoKW2PztCjIdgBUYSDAWLkArE40M+LGhR1BV61b/r27sXLTOD3vm5E9H1qLaf\nF7yU6mbvfmyK6uLs0C+ZIMHadz4CtzK/EI8GVwBtrd0TKaj1o983FCGkkogxwVI7x3dtmdVz\nxj49i6fxvWZnct86slN6q95z8zWbmdWlRfflSvXSU3p+8ESXjHaPvhOYFto6NbtNepu+07bb\nFd8P7dCic06p57GDeYM6t0hr03uS8xALL8KaKWPOSnZFiPEQLPdI3FCwCKlAPD7iXmJ0YFTz\nBjVrX5Ka62jR0WnpDc9KPO/GfubagFMTLNUBCL2RJkiw2uFKl4AtaV631vUT7L/G3gMyPIZN\nCKlUYk2wqiG6YHnniCCEVBVWAGmn2zbLyddACIkeKFhRDwWLkGrArxG/5eRRXuxKQjO/h3kR\nQioNClbUQ8EipBqwDGhzei3vDb+6SAipfChYUQ8Fi5DqQCbiVp1Ou3Xx+Et5j4UQ8tOhYJWZ\ngn1h/FAR56VgEVId2P9zXFZw6s2OXYOU3eU/GkLIT4WCVWbmSBgdK+K8FCxCqgVLkwKP2yk7\n2YjnBUJCohEKVpmhYBFCziTTgFGn2iYX8HwCBCGksqFgRT0ULEIIISTWoGBFPRQsQgghJNag\nYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTW\noGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk\n1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBglYVRIh9V2skpWKRqMg0YXY7d\nTQXGlGN3hBDy06BglYVKF6xJrxNyBvD/sVt6KfCWa//z3teeW+NCmVlsV5S81rZxco0L7hi6\nJ7jhF7XdDVfce1mdetd0+Y/XGZLQySytvv+qc5LOuy3nm+CA1xHEzXrd+3enJDXMdp1yNhI+\ntoo9Ef+m/wsihJCKhYJVFipGsCZJnlc1BYucMfx+FgsfjEOQYD2ZYGnOdd+aFTtvscWnTq67\nZclvXA2PdbWDBoSd4sCFaHJELxR0dHr6V1CEh2DNS8AfOjVFo312zPcpeNguH2uG877ze0WE\nEFLBULDKQsUIVh8KFqlgfH4UP2kG1HAL1ggg7q7hE/tdCFxuWFF+U821/rly9fxO8cAMV9NR\nCAhWSUvgnK7jhjbXbG1s6DmygBVGUHOtwe8HDO92qXaO+e6IL3ICdAcylfqxHp5W6vituC/Q\ny2WFToO18bg74keMEEIqDgpWWagQwTqWTsEiFYz3j+LoJNSakOUSrC21UHORXjh8J9BfLzwC\n/PW4cWweUL/AafplbTRwGk4GbjImvOYnIPlw8DmWG8akMRGoY/RdpOnYpSU+n45WqL1NqZk4\nt0jbeQV1rDMuQNz7rqjOAC8SEkKiBApWWagQwdokFCxSwXj/KF6HazYpt2D1gD5zpHPgHNTW\nVakJsM6Jxht2YMmtuHig3bDgZ0jZa9b3/8vftwef4xbEf2kUmgLPmVUHzwc+8B7Ra8BQbdMN\nf9b39gCrjOr8C9HDHbYzEVd7d0AIIRVNNRGsjRO6Z7bqPnGrU7Fhwt+y0jv2n22v5egjUqw+\nfLxzRocBC51lvHundG/ZJnvW/pMI1tdTe2VldHpkvvkneo7I286hwSJLPWKUelSkRG0b1yU9\nM3tGvl4xR0xywrqnYJEzhvdP9PXZhcotWMdTcNaP9icFmK5tEhBfZNW0BybYLUcB84bYDecC\nT/l9aFYBqUbh2zjUt6et2gIzPaN/vAS/1OfL/mhdG6xhxXXFJcETY62Bd/xOSQghFUq1EKyC\nJy17SZ1lVhwdYlVIiwVmTX+RQxOtur8fMevWZJr77TdFEqwTk+2+2q3U95eK/MM+lp8mmYUe\nMYaGFS5MM+s663/lU7BIJeD9M71e/8clWCthzhzpvAW00jZnI85e+6QJ1rNW8cvayFCOYGUC\n2/w+Nh0B6+RFO/5rV3YHpnhG90Lccn17I3oZ++divL5ZEoeFwYGLgBZ+pySEkAqlOghWyUCR\n++a8//a4dJE5RsUAkU7/3rR1zWStxlyzodW8IL1e+c/yf2aIPG5U7WklMnDllo1z293zeATB\nGiFyz7y1W1aPS5O01dp+Yaak239VvykyxitGKa3HxdIt78OVs1qL6H/mH949XWT67t0/hJ2A\ngkXOGBE+Ni7BmgAMsqv3A421zV/sq3RK3YC4L6xP2m2o911AsC7Bxdq/Bz5ZGa5ZRXWRfCys\ntjnwntdQ1sajs1G4yboieLYxZ1bQBB1DIk/UR+0jEV4UIYRUGNVBsBaK9Df+2t6QLun6bNGr\nIn8zrsup/4hkGkrzqEj6cOPa4EZNujbqhVEiT5bqhe86iL9gLRXpbfrUmjTppJ/mGRH7KsUj\nIus9Y9QQkawhxiLhjSJpxq+EPK7BIhVNhI+NS7D6AYFUDMlI0D4o7wO3mCbzgr1aXanRxnIq\nW7AOAX9SS+7Q8z1cOiLEppYBEnbGXYk4vyisVuMO1N5lFJqjvb45Ho/ZxrAuOKC+fPD2m9su\ncEJbuxaEEUJIZVIdBKubiLXAdqzIXKVK7zO9R2eoiHFnuCZYra15p/Eik7VNUStJtZLqvB1B\nsHpI6k6rOE5E//t7jchjZsWBVOlc6hmjnhRpb90IlW0JXYhg/TfV4vqra1KwyJkhwsfGJVgd\ngFec+saA/lfKMKDJ6CUf/LtjPG743jzyZW3cpQKCtR5oOy7eSmJ1y8Ggzod5Lc9K9cns/gYw\n0Cz1xE365jNgjVKr45Gn3qppdO8sdR8FDI7wogghpMKoBoL1tUi2Vdzx3kfaX8JbRe4ttWpW\nijyibx+1LuYpQ5D0r+sNIn2smqMZvoK1S8TJc6i10O90Ku5gXyNcIDLDO0YXrGlW1UgRY2FW\niGCt/1+HWhQscmaI8LlxCVa6OyXWL62VVa/fYapTw0GHzAMlt6GuPtFkC9Zy4LqERjO3HNs+\nup69pN2mrUc+hQHAH4pDK3V+hWTryvlLSNTlbiTqF6miq5GhDv0MaTsLpsThNSt2sdfUGCGE\nVALVQLAWBdzJ5B2R4XZ5j0iWLluPBu79+0Eko0T7s9nVLNtXsBaZ010GR0Xu17dTRIy8PvrK\n+R0+MZpgrbCqJoss1rcULFLhRPjcuATrbmCxU38DoC+5Oti/gSlYSbdbvYyxFrvbgvWmdvDK\nA8ahTWcBS92d/wb4LPh0pX01HzvkNZB3gQetYtHFaFGgPk3RE8PnoN5uNRXJepu2+KMVsQ24\nNsKLIoSQCqMaCNbzIrNCK2bY5VIR0S/VaYK1wa5KFdG+tGe5mj3hK1hzJYgMvW6zdS/gXmsO\nzCvmycD5plhXDSlYpMKJ8Lnxm8G6ypjB2tkYcfd9eLhoe+4vrBXwX9XBnUaAW7DsZjlAF3fn\njYHga4aHNIm7IeSphhZ3It6+wq4W1USdRnG47ojaWENPF9HSnBl7EYnWIq/jwHkRXhQhhFQY\n1UCwponMC6rINVZiWbQU0XNhaYL1lV2VKbJXqamuqBG+gvVssDzJCb2ym6TrWYPmiyzwi9EE\ny/4L3kewinZZNK0ZR8EiZ4YInxuXYHUEXnbqGwL7lboNsK5xH2wGLNL+Lvktzt5hVNiC9T5Q\ny77ktxG4zN15A+C4e3/rL4E/heR6t9gRjz8F9j5OT6nRdEC+Kr4JzbXdK82HHK4DPrECElE7\nwosihJAKoxoIluY3zwdVhAqW9utCFyznXvJWhnNNcUUN8xWs6SJjNrgwUiY+bypTX0nP94s5\nuWA58C5CcsaI8LlxCdZDgHORu7Qmkkr0zFg32jUvQ1/bPhawHtVsC9YG4CI75jiQ7O68HuLc\nu8tSgL+d8B7H406mdzfPIFm/c+V8jNT3vjEczyAZ8RFeFCGEVBjVQLBeFJkUVPGCyHS7XCIi\net4ETbDsdIf6JcIflZrpukT4j0iXCJ8Nq9xlpNLabSfU8oqhYJFowO9Do4IEayrwkF29A7hS\nqaFAH1dNPfVNHVyeZ9IGGJSXt1kVxqOu01sCaro7D57B+ncSEv/pN45miA9PDreljplq1Nrs\nDdzmyBksQkiUUA0Ea6mZyTPAu9adfDqaBbXVt5pg2Q+N/UFET1X9qohzz3hXX8FaJjIkvLaf\npB9R80SW+8ZQsEg04P1TbeASrLXAb+3qF4F7jDmt/7Nr8oF4tQIhaD/ylwPfWDH7XLNZOkFr\nsF5OwDm+D7jR9O2msMrSO3CrMVlcH8/om28A6x4VrsEihEQL1UCwdop0tLIy7Bw//jUjb0Mn\nO03DUitp1aOBWaa15tp0bdPLqtmf6itYmqC1Cb+08aruVr0lq8g3hoJFooEInxuXYJVeihr2\nUzvbGZNFQ2HlVldGvqvzPAWrHzDR/kQYlxEDuO8i/LAWzlnjO4ypwMMelTU/NwpNzAX2643E\nWDrbgGsivChCCKkwqoFgqQdE/mOWnhOZrf26uF/kY+vYYBHjt4gmWF2saxaTzCuIR9Il9Vuz\nZm6ERKN9AvkdNtyfayU0/SFVxnwnMt4/xluwAkvDXFCwyBkjwsfGJVhqoJPqc2sSzjtuPPOv\nkb2AfXyIPDmPyvkYaGhl0/2T9jPsjnHlwcpviNor/YfRzWMJ1q66sOagxcwiPxcJ1omYB4sQ\nEi1UB8F6W5MnPT2h+qqlpOvJ2ReK3G8+KuddkY7Go2s0wUo11+h+lSGpxnr3J0RyjN8hX2Sm\nRXxUTpZ5/+GebiJbrNrB0uFVK0G7d4yHYC0MzddlQcEiZ4wIHxu3YO09FwnGEw++uwHGYwCP\nNwb6mdPAn6cA890NHcFSGcDd+v20pf8AUn50xwyFrUjqb8B4FUzfnj132eWbgbDPnuAGa0p4\nLFL0/Awd8Tvr0GjXYxMJIaQyqQ6CVTpQpM2/Fi8caz/suXSwplyvbt7ywTOpkrbWiNEEa7Lk\nLP/qs7mZ9tqrrZpW9V24ZvnEjC5jIzzsebhIiykf/XdVbmsR+4KIek/kXrmv1D/GQ7DWi2TM\nXvxSqQqBgkXOGJ4/0itydJoB7fWt7lPquTjgzqfGdK8P3GEsfnovCbh50pIPF/RNBtKDfmgD\ngrXrEuCSR6cO0aws7uWgUyx1Urt/nYSEQTkORu6HmsA6O1I7Y2h6rDlItA/vr4t+JerdRLxk\nVWhaGMkaCSGkwqgOgqUKh1gZqFKt+wILh9k5qdpZSzc0wdo50qobaOUsXJxu7rffPEPkA7/O\niyem2r3nltiVBS3FuBrpG+MhWCU9jIiwh4VQsMgZw/NHeljQYqorjLrc2tbuXeYjntU7P3ci\nuh4Nah4QLPXFdVbI2SFXv4vq4mzzY5YXvHTrZr3OLVgJQEFw233n29crNV6IR4MrgLbW7okU\n1PpREUJIFFAtBEuptaO6Zba8f6KT6kptGvdAZsY9g1+xv7t1wVKrhnTJaP/I286f4zvHd22Z\n1XPGPj1l6DL/zrdOzW6T3qbvtO2uuuGaKu2KEOMhWOr7oR1adM7xnMHadAqvlZCfhpdgqe39\nr61bs2GbN5yoo9PSG56VeN6N/TaGNHcJljr+7J0X1ah/42N7Q8/RATC7OolgHUZYXqt2uPJY\nYG9J87q1rp9g/1nyHpBx6i+YEELOANVEsE6KJljbTx5VKVCwSNVjBZB2BrrNcvI1EEJIJUPB\nMqFgEVKR/BrxW04edYrsSkKzsClgQgipFChYJhQsQiqSZUCbcu/0XvvCIyGEVDoULBMKFiEV\nSibiVpVzl+vi8Zdy7pIQQk4XCpZJGQSrYF8Y4c9IOwNQsEhVZP/PcVnBycNOgWPXIGV3ufZI\nCCGnDwXLpAyCNUfC6FgRQ6NgkSrJ0qTA43bKhWzE8wIhISRqoGCZULAIqWCmAaPKsbtcwPNR\nCIQQUilQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4K\nFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIe\nChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULBs\nHhXZXtlj8ISCVcWZBowux+6mAmPKsTtCCCGnBQXLJqoFa9LrpILxeztW3HtZnXrXdPmPsfM6\ngrjZDPm897Xn1rhQZhY7jZbce/nZtRt3WOTV4dIkdHLKlwJvhQZ4neT9u1OSGmbvCQTNRsLH\nVrEn4t8s6w8XIYSQM0R1EKxJkleGqMoXLJ9xUrAqBe/36FhX23MG6LuegvVkgrV73bdmox/+\nage0OxbW44EL0eSIWSx8MA5lE6x5CfhDp6ZotM+O+T4FDztjbIbzvivTTxwhhJAzRnUQrD4x\nIlg+46RgVQqeb1FJS+CcruOGNtdMaKy2/0VOgO5Aph4zAoi7a/jEfhcClxvmVPgrIKnt6DFt\nkoBWYV1mASvM0ifNgBoeghV+kh/r4Wmljt+K+wK9XFboNFgbj7vL/mNHCCHkTFANBOtYemwI\nlt84KViVgud7NBm4yZiWmp+A5MPBx1qh9jZts6UWahqXAg/fCfTXCznARcYiunUXAKFv8XJL\ny5QanYRaE7I8BCv8JDNxbpG28wrqFJjVCxD3viuqM8CLhIQQUrlUA8HaJLEhWH7jpGBVCl5v\nRcHPkLLXLPb/y9+Df1xeA4bq2x7QZ5d0DpyD2pqEnagHLDFrlgLNQrq8BfFfmqXrcM0mdRLB\nsk7SDX/W9/YAq4zq/AvRwx22MxFXR+iFEELImacKClbJsqHdMtOyek/Zou/NEZMcpQZIamlh\nboeMuUbYhgl/y0rv2H+2vYwlIFgzRHqZq2K+ntorK6PTI/MPh54jiOCoHJG3nUODRZZ69qSd\nrURtG9clPTN7Rn7IOEOgYFUKXu/0XOApnx+CHy/BL49r2+MpOOtHq64PMF2pD4Fr7ahbgc+C\nmq0CUq3i9dmF6iSCZZ/kj9a1wRqYaWy74pLgH9HWwDv+3RBCCDnzVD3BOtBHbP6lgsRFs51j\nA7Xis1r10SF2UIsFZjtHsN4Q6faDXjgx2Y5pt9L/fKFRS0X+YR/LT5PMQs+eNA0rXJhm1nXe\nqyhYUYfXe50JbPP5MeiFuOX6diXM2SWdt4w1V88B3e2aJ0JTKHQE7DOt1/+JLFj2SW5EL2P/\nXIzXN0visDA4cBHQwr8bQgghZ56qJ1gDRPq9vnbD8smZItrvrsO7p4tM371bU6b/E3lPWgwY\n/IpSJVpUp39v2rpmcrqIuVzFFqwPUuUe8/b3ESL3zFu7ZfW4NElb7Xu+0KjCTEm3pxPeFBnj\n3dPjIoulW96HK2e1FtFnRVzjDIGCVSl4vdeX4GLt3wOfrAzTrLXx6GwUJgCD7Mr9QGOlJlp3\nHOq8CHR1Nyuqi+SgGwsjCpZzkpusK4JnY4L2b0ETdAyJPFEftY/49kMIIeTMU+UE62uRPseN\n0s7Wck+pts2z1zYNEfl7P1NgXhX5m3FlTv1HJNOoswRrc0tpa85kLRXpbZrSmjTpVKi8CY96\nRsS+PPOIyHrvnrSxZA0xxrlRJM34XZjHNVjRhMc7cQj4k1pyh55L4dIRwQkX7kDtXUahH5Dr\n1CYjoVjNcs1g5QG3u5stAySon4iC5ZykOdrrm+PxmG2c8oID6ssHb7+57QIntDXwhm8/hBBC\nzjxVTlfjd3EAACAASURBVLCWizxnFRe9sEi/18oRlydFMswlyqX3meajM1Rkvr41BWtXO8nc\nbB7oIak7rZhxIu/5nC88ao3IY2bFgVTpXOrdkzaW9tYdYNkiG5UKE6y9My1+2SCRglXxeLzX\n64G24+KtdFS3HHQdeQMYaJY6AK841Y2Bvfoyq/+xK4YA17l7HBa6qCuSYAVO0hM36ZvPgDVK\nrY5HnnqrpjEoZ6n7KGCwXz+EEEIqgConWKtFhgTXuAVrmFm1VeTeUuvwSpFH9K0hWAe7SsZa\ns36XiJO6cYPIUO/TeUQVd7CvES4QmeHTkzaWaVbVSJGVQeM0Wf+/DrUoWBWPx5u9XNOjhEYz\ntxzbPrpeYHG6zq+QbF3bTXcb0i/1NVtF5wAfmvtHGwFN3D22Dc2nEEmwAid5CYn6XwojUb9I\nFV2NDHXoZ0jbWTAlDq9ZsYtDp8YIIYRULFVOsA63FBn1tbvGLVjW7593RIbbh/eIZOmypQtW\nYV9JtbI+qkUik+2YoyL3e5/OK2qKiPlMlP4iO3xitLHYJ5ossjhonCYUrMrF481+E8CVB4zi\nprOApc6Bd4EHreLdwGKn/gbgC+3HAGiq/xyoQ3cnGKuyAvwm9K7CCILlOknRxWhRoD5N0Rd3\n5aDebjUVyYeU7mt/tCK2uW5dJIQQUglUOcFSi1JF5IHJKw7ZFW7BWm5WPW9OLRmUauH6xTpN\nsLbmWJcLdeZKEBneZ/OK2mzdC7hXpI9fjDaWDVYXU6yrhhSsqMLjzX7T9SCbHKCLc+BOxNvX\ngINmsK4y7jo89AvgnD6zX+h/AfqFXCJsDLivNEYULNdJ1KKaqNMoDtcdURtr6KkgWprzaS8i\n0Voadhw4z6cfQgghFUHVEyz16UOGx6QOXG5eBXQL1qdmSK7IXCe+pYieC0sTrAFas8H2pcNn\ng7VITniezDOqm6TrqZDmiyzwi9HGYk9d+AjWN09ZXN0wiYJV8Xi82e8DtewHOG8ELrPrd8Tj\nT3a5I/Cy06AhsF/bbLvKWreVvQO4zd1jA+B40Cn8Bct9EqU+Tk+p0XRAviq+Cc213SvNGxXX\nAZ9YAYmo7d0PIYSQCqEKCpZSX8zup09jyUPGjYJuwbKkJlSw9N+Cj+otMkXmWdXTRcZscFHi\neSrPqOdNZeor6fl+MScXLAfeRVgpeLwTG4CL7PJxINkuPw7YN1aohwDnenBpTSQZPxBFk35X\nv1bTzqvUB8A97h7rIS74FP6C5T5JgGeQrN/zej5G6nvfAIusA8mI9+6HEEJIhVAlBUvj8MqR\n6SLGTVcegvWCyHQ7skTzKj1zgiZYqS9tayHp/zXr55oZSU+CZ9QukceV2m386xNDwYp2PN6J\nwnjUdXYSUNMuNkO8k75sKvCQXd4BXBncQy7wjHv/FGaw3Cdx2FLHTDVqbfYGbmHkDBYhhFQu\nVVWwNHZ0FNGfseshWO+67grUPKitvn3UWJr+msi95pNOloXdjuiFd1Q/ST+i5tlLvrxiKFjR\njtdbcTnwjVXcF5jN0jzqJidkLfBbu/xiyHyVvlYKQQ8FKPsarKCT2JTegVuNKbL6prd9A1iP\naeIaLEIIqWSqsGDpM0d6skUPwfpapJO91mqplbbKSjT6hO1emni18V535cY76lXdrXpLVpFv\nDAUr2vF6K/oBE+23GLjLKk4FnDQcqvRS1LAfb9nOnlCyK/bVwcWlykXZ7yIMOkmgsubnRqGJ\nmT5+vZEYS2cbcI1nP4QQQiqGqiZYpbMeG2mXXxF5VxniYi64CkhN6f0iH1tRg0WMX2mWYB26\nx352Tp/AU5s33J+73eeEnlE/pMqY70TG+8d4C1ZgYZgLClal4PVWfAw0tNLD/kl7U6zabkGr\nowY66UC3JuE8/QJgWnKC9WidnsBjQR2WPQ9WN48lWLvqwpqIFWTqm7lIsIbHPFiEEFLJVDXB\n0p9OY+UhOtZbRL+vfaH1QEC31Gh195uPynlXpKPx8Br7WYTrU6Xl13phqUjWV0bMnm4iW3zO\n5x01WDq8aiVo947xECxnnCFQsCoFz3c7A7hbv4Jc+g8g5Uer8mbgo0DI3nORYOT6+O4GGI8K\nVIOA3x/VC6OBBj8G9TcUCM5gGyRYfXv23GWXg09iIrjBmhkdixQ9P0NH/M46NNr1SERCCCGV\nQJUTrE1pIo+9uXrDB8/fZ2UTXS+SMXvxS6VuqSkdLNLl1c1bPngmVdLM1O22YKmZIn8zsgkN\nF2kx5aP/rsptLTLR41QmnlHvidwr95X6x3gIljPOEChYlYLnm73rEuCSR6cO0dwpzsnGUB/Y\n44p5Lg6486kx3bXqO4wFUgcuBC56+J9P/QqosTi4v6WBhPArcnSaAe31rWFmNYF1PifRmYNE\n+/D+uuhXot5NxEtWhSZq3q+AEEJIxVDlBEstz3QSTg0zPKmkh7FT7JYaVTjMDmpnrVpxBKv4\n7yLjjMLEVCsmNdc7SYNvVEFLbX92hBgPwXLGGQIFq1Lwfre/uM5KaXV24HJuAlDgjsmtbcXc\ndcSsWH+xVdEg9PJfUV2cbaUGHQY3V+hVbsEKPYlS+863r0VqvBCPBlcAba3dEymoFTxXRggh\npGKpeoKlDuYN6twirU3vSbbBfD+0Q4vOOUEzWBqbxj2QmXHP4FfsX1uOYKnvWou8b5S2Ts1u\nk96m7zS/BVjKN2q4pkq7IsR4CJYzzhAoWJWCz5t9/Nk7L6pR/8bH9jo1hxGacmp7/2vr1mzY\n5o1AyNO31Es8/5YR4XkWOgBWWGTBCj+JaocrjwX2ljSvW+v6Cbadvwf4PHqAEEJIxVAFBauq\noQvWpsoeBDkzrADSzkC3WU6+BkIIIZUDBSvqoWBVZX6NeL/7J06fXUloFjYTSgghpCKhYEU9\nFKyqzDKgTbl3eq9z4ZEQQkglQcGKeihYVZpMxK0q5y7XxeMv5dwlIYSQU4SCVWYK9oURvmj5\nDEDBqtLs/zkuKzh52Clw7Bqk7C7XHgkhhJwyFKwyM0fC6FgR56VgVW2WJqFzuXaYjXheICSE\nkMqGglVmKFjkjDANGFWO3eUCnk8EIIQQUpFQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoW\nIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4K\nFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIe\nChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmvElmCNEvnozJ/lYZFvzvxZygwF66czDRh9\nqm2mAmPOxFgIIYRUByhY4UShYE16vYri8XqL81o3rl3jgtufCLwJS+69/OzajTssCon8ojbw\nln+rAEuT0MkpXxpopNT7d6ckNczeEwidjYSPrWJPxL95Km8UIYQQ4kDBCjBJ8ozt2N699565\ns5z8/CFUM8HafA0saloTSD/81a5pd8wdWfIbOK4U3srFgQvR5IhZLHwwDi7BmpeAP3Rqikb7\n7IrvU/CwXT7WDOd9V+Z3jxBCCHFBwQrQx1twKgyf81cvwdqeAtRpnzOqdyPtZefqNYW/ApLa\njh7TJglo5Q4dBceVwlu5yQJWmKVPmgE1AoL1Yz08rdTxW3FfIPSyQqfd2njcfWpvISGEEGJC\nwXI4ll65guV3/uolWHcBv/1eLxzvCqQc1wo5wEXGGrR1FwCu/6Eva6OB7UrhrVwsBzLN0ugk\n1JqQFRCsmTi3SNu8gjoFZsUCxL3vatkZ4EVCQgghpwMFy2GTVK5g+Z2/WgnWt3E46wezWHQh\nsFKpE/WAJWbNUqCZE1lyKy4eaLlSeCs3tyD+S7N0Ha7ZpFyC1Q1/1jd7gFXGfv6F6OFuuTMR\nV5f5/SOEEEICxIRg7Z3SvWWb7Fn73YL19dReWRmdHpl/2Np/VKRErc3p0rLb+G+13U3Duma0\nf3yD04Vn+LZxXdIzs2fk6xVzxCTHtcj92MLHu7RKbz9gbn7E4QX3nSPytnNosMjSUz5/CNVK\nsD7r8Nf+drkV8JJSHwLX2jW3Ap/Z5VHAvCGWK4W3crEKSLWK12cXKrdg/dG6NlgDM41tV1xy\nOKhta+CdsDeEEEIIOSmxIFhrMk33aL/JEawTky0fkXbWdIXmNUdnWVXb1TyzlGotvfEML1yY\nZtZ11pe0ewjWV12cVhuUL6F9LxX5h30sP00yC0/5/CFUK8FyI8AipZ4Duts1TwQyJ3xZGxlq\niPuGwKBWLjoC9mnW6/+4BOtG9DK252K8vlkSh4XBnS0CWkQaIiGEEOJNDAjWnlYiA1du2Ti3\n3T2P24I1QuSeeWu3rB6XJmmrjRrt0JsyaNHqBfdqkvKBPLhw9dt9RDoU+4cvlm55H66c1Vrk\nKa3i8O7pItN37/7BEaz89iL9Xl+zYVFfkdb7fYcX2ndhpqTb0yBviow59fOHUF0Fa08ykn9U\naiIwwK56EehqlkpuQ73vvATLahWgqC6Sg24+dAnWTdYVwbMxQfu3oAk6hvR2oj5qH4kwRkII\nIcSbGBCsUSJPluqF7zqIJVhLRXqbErMmTToZt30NEcmapRf2tJDUDiP1BoVdRNZHCB9iLIbe\nKJJm/A7Ns9dAWYI1R+QRI6J0uKY+fqML7/sZEfuy0iPmAE7x/CFUU8Faey0wUtvOcs1g5QG3\nm6XRwHPKQ7DsVgGWARJU4RKs5mivb47HY7a26YcLDqgvH7z95rYLnODWwBv+YySEEEJ8iH7B\nKmolqVY2ordtweohqTutw+NE3tO3T4p0LzFqckQyzVmHZ0Ve8Q9vb905li2yUd+GCtb8nD7m\nbJPaLNLHb3jhfa8RecysOJAqnUtP/fwm6//XoVY1E6wv/96n/ZXAWeP0nVXA/9gHNKG6zoyo\njbtUiGAFtQowDHgqqMIlWD1xk775DFij1Op45Km3ahrJtJyl7qOAwT7vPCGEEOJP9AvWhoDd\nHM0wBWuXyMOuw0P1rWYsc8yaXJERZukdkVn+4dOsqpEixsKoUMEKcEQk9NqRjUffxR3sa4QL\nRGacxvlNqrFgLdIdp+6Ag8ZO0TnAh2b90UZAE71Qchvq7lIhghXUKkDb0FQLLsF6CYn6+reR\nqF+kiq5Ghjr0M6TtLJgSh9esiMWh81+EEEJIWYh+wXrDWsekk20K1iKRyXbVUZH79a1mLNZ8\n0/OOqCw3LcYn3FoAryaLLNa33oJVXHDkyEGRLJ/RefU9RcRcZt1fZMdpnN+kugsWcJVpzP2B\npvp/ozp0dwLQWC+NAZ7Vt+GC5bRy+I3rzkMDl2AVXYwWBerTFH2VVw7q7VZTkXxI6VL2Ryti\nm+seRkIIIaTMRL9gzTKnoQyeMAVrrgSRoR/SjMX6PTpHxPoFulIk1z/cvjNwinXVLlywNozr\n2S7VbOQnWF59b7buBdxrzb2d6vlNqrFgKXVi98oBycCDevnQL4Bz+sx+of8F6GdeIvyqDu40\nwkLWYLlbOTQGgie1XIKlFtVEnUZxuO6I2lgD05VqaWZ0eBGJ1rr448B5PmMkhBBC/Il+wZoq\nMtcujzAF69lgY5ETyjCWz82gOc4ic0uwfMLteQ0/wSoc6mrjJ1hefatukq7fyDZfZIFfTKTz\nmxQfsmicEFftBEvniwusBebbrrIeM5i9A7hNqdLf4mxjSsvrLkKnlU0DIDizu1uw1MfpKTWa\nDshXxTehubZ7pXnH4jrgEysgEbUjjJEQQgjxJvoFa4pLsIaZgjVdZMwGF/ri9giC5RN+MsF6\nWqT1i1sOFitV5C9YXn3rFyn1HvtKer5fzMkFy6Ga3kVo3D9oJFpXRZN+V79W086r1AfAPUqN\nBf5lRnjlwXJaWdRDXHBAlkcj9QySt2ub881bEL8J5NJKRnykMRJCCCGeRL9gzXRdIvyHc4nw\n2dCwCILlE34Swdou0mq7GVEY8RJhWN/6qvbHldpt/Hsa5w+h2grWt8C5wTW5wDPqmzq4PM+k\nDTAoL29zxFaRZ7AsttQxU41am73AK9YRzmARQgg5HaJfsF4VGW2Xu5qCtUxkSGhYBMHyCT+J\nYL0iYt/wv91fsLz6VqqfpB/Rs8kv942hYJmEvthFIx78wC4fBGoGH22pP2dwBUIYErFVxDVY\nFqV34FZj7rG+JnDKmMGyHnfENViEEEJOi+gXrLUivazi/lRTsHaLtDkREhZBsHzCTyJYz4q8\nbEXM9Rcsr74NKVyuektWkW8MBcsk9MVmAw/Y5Y+AS43CPqtiXx1cXOolWJ6tLCLdRWgzFTXN\nH54mGKRv1huJsXS2Add4vSmEEEJIRKJfsI6kS+q3ZnGunWi0T+CByhvuzzUu5EUQLJ9wD8Ex\nF3uZgvWcc2nyQDuRTL/hefSt1A+pMuY7kfH+MZHOH0K1Eqw3gHPtpKwPAO20TVpywjazoifw\nWFC0vQbLo5VDpDxYFrvqYqhZEhhv9FwkWFlgmQeLEELIaRH9gqXnZsgxHin4RWZa4FE5WV8Z\nB/d0E9miFyIJlnd4qOAstBNumYK1XKSHcdp9vfq0Fwl6vp0Lj741BkuHV60E7ad+/hCqlWAV\nXwX8eo9eKh0bB+gJwgYBvz+q14wGGgS/DbZgebRyGArbnizCBUtwgzXDOBYpen6GjviddUg7\n5yCvN4UQQgiJSAwI1lZNq/ouXLN8YkaXsfbDnoeLtJjy0X9X5bYWmWjURBIs7/BQwVkvkjF7\n8UullmAVthMZ9PGOT2e0bvH1AJFJ2+0LVSGE963xnsi9cl+pf0yk84dQrQRLra4N1MkaMqLv\nFdrL7qTXHLgQuOjhfz71K6DG4uBg5y7C8FYOS2HmttJYkaPTDGivbyfYEXOQuM4q7q+LfiXq\n3US8ZFVoNhZxIT4hhBDiSQwIllqcbuaPar95hoi5mLl4opUAVFJzzScQRhQsz/BQwSnpYUQU\n22kaVmdYKbA26tnkRWZ6jy68b42Cltr+7Agxkc4fQvUSLPWfxvbaqrje5u1/6y+2KhqErp0K\npGkIb2VTVBdnW1lDhwUt3brCCth3PgY60S/Eo4EmaW2t3RMpqOU3d0kIIYT4EwuCpXaO79oy\nq+eMfXrqzmVW3dap2W3S2/SdZq16iixYnuGhgqO+H9qhReecUieT+9aRndJb9Z6brwnSrC4t\nui/3G15o3zrDNVXaFSEm0vlD0AVrk+//TdXj+MyWjZITU3790Od2zeGnb6mXeP4tI34IDXXl\nwQpvZdPByTzqLVjtcOWxQPSS5nVrXT/Bttz3gIxyeVGEEEKqGTEhWNWb6iZY5c0KIO1022Y5\n+RoIIYSQU4GCFfVQsH4iv0b8lpNHebErCc3CZhQJIYSQk0PBinooWD+RZUCb02t5b8hzDQkh\nhJAyQsGKeihYP5VMxK06nXbr4vGX8h4LIYSQ6gEFq8wU7AsjbNX1mYCC9VPZ/3NcVnDqzY5d\ng5Td5T8aQggh1QEKVpmZI2F0rIjzUrB+MkuT0PnUW2UjnhcICSGEnB4UrDJDwYpdpgGjTrVN\nLuCZWZ8QQgg5ORSsqIeCRQghhMQaFKyoh4JFCCGExBoUrKiHgkUIIYTEGhSsqIeCRQghhMQa\nFKyoh4JFCCGExBoUrKiHgkUIIYTEGhSsqIeCRQghhMQaFKyoh4JFCCGExBoUrKiHgkUIIYTE\nGhSsqIeCRQghhMQaFKyoh4JFCCGExBoUrKiHgkUIIYTEGhSsqIeCRQghhMQaFKyoh4JFCCGE\nxBrRLFijRD46jWZPinwWHSMpHyhYkZgGjC7H7qYCY8qxO0IIIdUVCtYZHEn5oAvWpNdjC+9X\nUpzXunHtGhfc/sQ3rsqllwJvufaX3Hv52bUbd1hk7r2OIG4O7XJpEjqZpc97X3tujQtlZnHY\naUtea9s4ucYFdwzdY1W8f3dKUsPsPYGI2Uj42Cr2RPybZXlXCCGEkEhUIcGaJHnGNmYFy34B\nIVQZwdp8je1JNZ1ZosIH4+AWrB/+ase0O6bvn0SwDlyIJkeM0pMJVsh134bE7LzFbl0n16iY\nl4A/dGqKRvvsiO9T8LBdPtYM53138veKEEIIiUgVEqw+sS5Yfaq2YG1P0RSnfc6o3o20F2Sq\njvqkGVDDJViFvwKS2o4e0yYJaKVXfJEToDuQGdJnFrDCKIwA4u4aPrHfhcDlR4JC8ptq0vXP\nlavnd4oHZmgVP9bD00odvxX3BXq5rNCJXxuPu8v6jhFCCCE+VB3BOpYe44LlvIAQqopg3QX8\n9nu9cLwrkHJcL41OQq0JWS7BygEuMtabrbsACP3faIXa24JrltvKtaUWahoXFQ/fCfQPinkE\n+KtxMjUPqF+g1EycW6TtvYI6BWbEAsS972rQGeBFQkIIIT+RqiNYmyTGBct5ASFUEcH6Ng5n\n/WAWiy4EVuqF63DNJuUSrBP1gCVmcSnQLLiD14ChIX3egvgvjUIP6LNSOgfOQe3D7pgmwDqr\neB3whlLd8Gd9Zw+wyqjNvxA93A12JuJqr/eBEEIIKTtRKFh7p3Rv2SZ71n631nw9tVdWRqdH\n5gd+dR5b+HiXVuntB8zNN3bniEmOIVib1dax3Vq2zn7ux0gn2jihe2ar7hO36uUckbedA4NF\nlvqNxIPgwXn2FPYCHhUpUdvGdUnPzJ6RH/ICQqgigvVZh786U0utgJf07fXZhcotWB8C19ox\ntwJBnvzjJfjl8eAuVwGpRuF4Cs6y3+o+wHR3UALii6xie2CCUn+0rg3WwExj2xWXBBmZag28\n4/ECCCGEkLITfYK1JtM0jfabHK05MdmyD2m30or6qotTtUHfDxasrxamm7v3fu97noInrSap\ns7S9pSL/sI/kp0lmofdIPAgdnFdP4S9A07DChWlmXee9qhoIlhsBjAt66/V/XIL1HNDdjnki\nJGFCL8QtD+mmI2CeaSXMWSmdt6zVWzZnI85eYKUJ1rNK3Yhext65GK9vlsRhYXC3i4AWJ3kB\nhBBCSGSiTrD2tBIZuHLLxrnt7nnc1poRIvfMW7tl9bg0SVtt1OS3F+n3+poNi/qKtN6vVRze\nPV1k+u7dPxiCNV+65X24ckZrkSF+5ykZKHLfnPffHqep2BylCjMl3Z7HeFNkjM9IPAgdnEdP\nHi9A63GxMchZ2iCfCn4BIVQ9wdqTjOTA3KJLsCYCA+zqF4GurjZr49E5pJuiukg2bjVUE4BB\ndu1+oLE76i/2pUClbkDcF0rdZF0RPFufzlIFTdAxpN8T9VH7iCKEEEJ+AlEnWKNEnizVC991\nEEtrlor0NpVlTZp0MqYj5og8YlwvKh2uaYlxLM+1Bqv1E8ZVoc2pknZYebNQpL/R1YZ0Sd+r\n1DMi9nWhR0TWe4/Eg/DBhffk8QKGiGQNMV7BRpG0I0EvIIQqJ1hrrwVGBnZdgjXLNYOVB9zu\nanQHau8K6WcZIGapn3NbokYyEty5sN4HbjF16QVzSXxztNf3jsdjttH0ggPqywdvv7ntAqdJ\na2OtFiGEEHL6RJtgFbWSVCsN0du21vSQ1J3W4XEi7+nb+Tl9zJkgtVmkj1FwC1YH6/6wviJf\n+Jyom8h2szRWZK6mPiKPmfsHUqVzqfdIPAgfXFhPXi9AG2R7a5DZIhuDXoDJ7vEWv7woscoI\n1pd/79P+SuCsca46l2CtAv7Hrh4CXBcIegMYGNrZMOAps9QBeMWpbgzsDQlrMnrJB//uGI8b\n9CvGPXGTXv0ZsEap1fHIU2/VNNJkOUvdRwGD/V4BIYQQUhaiTbA22L6k1NEMU2t2iTzsOhxy\nJ9kREfMSj1uw7FXOo0RWe5/na5Fsq7jjvY92KVXcwb6yt0BkhvdIPPAYXFhPXi9AG+Q0q2qk\nyMqgF2Cy/n8dalUZwVqki0zdAQfddS7BKjoH+ND6P2+keVEg6FdIDrt42tbJp5DuzlX6SyA4\nm8Prd5h5RhsOOqTvvoREXcBGon6RKroaGerQz5C2s2BKHF6zGix2psYIIYSQ0yPaBOsNa9WS\nTrapNYtEJttVR0XuDwQXFxw5clAky9hxC5a96GayyGLv8yxyncdkioj5eJb+Iju8R+LdT9jg\nQnvyitEGuSJkkNVGsICr5rjq3Hmw+gNN9f8ydejuBPdaqneBB8M6+41zn+HdQOB9vgEImrY8\n2L+Bedak241xFV2MFgXq0xR9uVcO6u1WU5Gsm1db/NFqsc11MyMhhBByOkSbYM0SmWWXnzC1\nZq4EkWEe3DCuZ7tUsyZcsOxnI0+xLsiF87zrPCabrTv49lozVx4j8cBrcKE9ecVog9wQMsjq\nIFhKndi9ckBykC65BevQL4Bz+sx+of8F6Oe+RHgn4neqUBoD1lRY0AzWVcEzWDsbI+6+Dw8X\nbc/9hbUUflFN1GkUh+uOqI019JQOLc1kDy8i0Vwyr44D5/m/AkIIIeTkRJtgTTUWRJmMMLXm\n2WA/kRNaXeFQV0W4YNkJlPwFa5rIvJCqbpKu39o2X2SBz0g88BpcaE9eMR6DDBGsvTMtftmg\n6qzBMvniAvcqcrdgqW1XWc8NzN4B3GbX7ojHn8K7aQBYibE6Ai871Q2B/a6o2wDrYuzBZlZ2\niI/TU2o0HZCvim9Cc233SvPWxXXAJ1abRNSO/AoIIYSQyESbYE1xac0wU2umi4zZ4KJEq3ta\npPWLWw4WK1V0eoKlSc/zIVXPm8F9JT3fZyQeeA0utCevmJMLlkOVu4vQuFvQyVsVLFiqaNLv\n6tdq2nmV+gC4x658HHguvJd6iLNKDwHORdjSmkgqCQStBG60yy8Dd7k7eAbJ+o0O55v3NH5j\n6ZfSb0SMP8krIIQQQiISbYI103Vh7h/OJcJnQ6K2i7Sy7gEsPD3BelFkUkjVLpHHldpt/Os9\nEg88BhfWk1dM9Rasb4FznZ1gwXLIBZ6xy80QH54fzDWDNRV4yK7dAVzpChoK9HEdquc6tKWO\nmWrU2uwN3IrIGSxCCCE/kWgTrFdFRtvlrqbWLAtPF/qKiH2j//bTE6ylZnrPIPpJ+hE1T2S5\nOpZCawAAIABJREFU30g88BhcWE9eMdVPsBaNePADu3wQqOkc8BGsltbzCpUhRjd5RATWYK0F\nfmvXvuia+VLG5Nb/2eV8uGemSu/ArcZUV33T5L4BrGcccQ0WIYSQn0q0CdZakV5WcX+qqTW7\nRdqcCI56VsReczP39ARrp0jHUqs4frx5f/6ruhH1lqwiv5F44DG4sJ68YqqfYGUDD9jlj4BL\nnQPBgrXP3tbBxdYbpE9QPazCCdxFWHopatgN27lzYhkzWE4G+PVB4jQVNT83Ck3Mte/rjcRY\nOtuAa7zeCUIIIaSsRJtgHUmX1G/N4lw7vWefwOOTN9yfq18afM65fHegnUimUcqz10yVSbDU\nAyL/MUtaZ7ONwg+pMuY7kfH+I/EgfHBhPXnFeAuWs+jLTRURrDeAc+07AR8A2jkH3IKVlpxg\n3QHYE3jMru3muQTLlQdLDXTykG5NwnnuZ0IvAhrZid3Hu9dg7aoLK6WaGAne1VwkWKlfmQeL\nEELITyXaBEvPiJBj/EL8IjMt8KicrK+Mg3u6iWzRtstFehhB+3r1aS9iPNduoZ23qmyC9bZI\nFyPh91ctJd3K2D5YOrxqpVX3HokH4YML78kjxmOQC8NSc5lUEcEqvgr49R69VDo2zp23yi1Y\ng4DfH9ULo4EGzuMKbwa8/vuHwlYktfdcJMzXC9/dAOMRg0r17dlTf7bO8cZAP3Mq7PMUYL7T\nWnCDNa04Fil6foaO+J11aLTr0YaEEELI6RB1grVVk5m+C9csn5jRZaytNcNFWkz56L+rcluL\nTNQrCtuJDPp4x6czWrf4eoDIpO37lFovkjF78UulZRSs0oEibf61eOFY82HPBu+J3Cv32Rem\nvEbiQdjgwnvyiPEYpPMCQqgigqVW1wbqZA0Z0fcK7QV10mtW5Og0A9rrW92LDlwIXPTwP5/6\nFVAjoGD1gT0eHS6FmcBK5znN2e58akx3LfQO8x7CmsA6461IAm6etOTDBX2TgXTnf3cOEtdZ\nxf110a9EvZuIl6wKTflOtkyfEEIIiUjUCZZanG5mi2q/eYaIuSy6eKKVUlRSc83fnqszrBRY\nG/WM6yIzlSrpYdQUl1GwVOEQu0/nZsGClmJfLvQZiQfhgwvvKTzGY5DOCwihqgiW+k9jK8cV\n4nobV/GGwc0VetX6i629Bq51WQlAgUd/RXVx9jF7J7e21fAu88nOjmCpd37unKLrUTt83/mu\nZxu+EI8GmvW1tXZPpKCWM3tGCCGEnA7RJ1hq5/iuLbN6ztinJ+pcZtVtnZrdJr1N32nb7aCt\nIzult+o9N1+Tl1ldWnTXb9f7fmiHFp1zyjqDpbF2VLfMlvdPdKX9Hq4Jzq7II/EgbHDhPYXF\neA3SfgEhVBnBUsdntmyUnJjy64fMxeVegqUOP31LvcTzbxnhSstwGD5pqTq485Vu739t3ZoN\n2zgVjmCpo9PSG56VeN6N/TYGmrbDlccCe0ua1611/QRbbd8DMrxfACGEEFJGolCwSDC6YG06\neVg1ZAWQdga6zXLyNRBCCCGnCQUr6qFg+fJrxG85edQpsisJzcKmEQkhhJBTgoIV9VCwfFkG\ntCn3Tu91X3gkhBBCTgsKVtRDwfInE3GryrnLdfH4Szl3SQghpPpRDQSrYF8YHg+2q7h+ThUK\nlj/7f47LvG4wPH2OXYOU3eXaIyGEkOpINRCsORJGx8rs51ShYEVgaVLgSTjlQjbieYGQEELI\nT4aCVeH9nCoUrEhMA0aVY3e5gGc6fUIIIeSUqAaCFetQsAghhJBYg4IV9VCwCCGEkFiDghX1\nULAIIYSQWIOCFfVQsAghhJBYg4IV9VCwCCGEkFiDghX1ULAIIYSQWIOCFfVQsAghhJBYg4IV\n9VCwCCGEkFiDghX1ULAIIYSQWIOCFfVQsAghhJBYg4IV9VCwCCGEkFiDghX1ULAIIYSQWIOC\nFfVQsAghhJBY4//bu/cAm6q+D+C/uTNuuSUKXVSUEt3reZ/nKan3ees3hsEg5DZCyiVFV3kU\nEhElKVQike5XKqWEUFKiCElyyTVjzMWsd619O/ucs8/MmWOPc/bM9/NHZ+3fWXufdVjv6/vs\nvc/aCFgxDwELAADAaxCwYl75DVjPEz3p4uGeI5ro4uEAAABC83LAWjdjeLeM1h16PjjnN3u5\nYNX0wT3aZnQd9sIPwr/+/JAeGe163j3ru0KruJYtaZl9x39VEFw37C717xOCRwLWyj5NqibV\n+seI3/XND8mmpXNFs6QB0YeOR1ySRLfprY13XXxKcj1+scCh15c9z02tflGPFcbmF7fUTGo4\nYJfv/dmUsNpo3kHx70f+BQEAAMLn3YC1bbAtG004atU/7e2rD1xvlQs/6uWr9//KLAcGqT4b\nnOsnI2A9wwucyipgPfNu7HAce3ZXMzqlvqAVXg2KU8EVKWdIHIUIWPvq0TlHtNajCcZezf4I\n7HSst3nEYdr2awl0/W2N6My9Zoc9Neleq/OFVOvPYv8aAAAATpxnA9bmdsztRs/76NN3n+sj\n4889+Xo5d5wKQ73HPjv1sW4qeb1jdM8epepZY6c+M/o21ZpinAyRQarzXN3spwfKN9r9ZNVn\n+Pm71L/SQO8GrOOt5CD/PWxsVgOiuIWq8ixR2gjTS84VIb69kCg5RMDKJPpSa4yTx7x57NOD\n6xGddyTgczOIqvZ+anQrGdMmye2/q9PjQuRdS718Rzk3x+q+Jp5uCfMvAwAA4ER4NmDdwTzq\noN4sXJTOvFBvjpQZadSvevub/nJjidYuuEeGrceNK4kbH5T1MXpbBqm+voNu6is3C4LrJ8Wx\ndO8GrKeJUherRq5MPA2Oy8YYonn+fYIr4skkqjAl0zlgLSVqrzU2V6AU7diHbyQa6t9pKtEV\n2lmthQlU+bAQL9IpuXLrTUrN1ju8TXFf2Pp3J8JFQgAAOAm8GrB+Yb4t19qaz9y90GikvWWV\ncx5i7qClsOnM6Ut8e78mE5beLSBI7W7H/J1D/WT4kb0bsBoRvay3DtQm+lq+DiP6yL9PcEU0\no4t+FCEC1tUU/4vW6E/qrJSyrypVPGzvk30q1TQu3Q79z93bhMiim9TGLqJlWvVgPepv32F7\nIjV1Gj8AAIC7vBqwljA/4dvKfmLeCnWN8HB75pm2Xke68K3L5euu1szv2HefxpypneMIDFJj\nmec41Yuy9bk7M9vcNnyh/m//CGZfjnjQPIXm30eI+5iPiy1P9UhvP2CWFgHnGrd6jQg6vAcC\n1h9xVOO40e5E9KJ8uZ1ohX+n4Iq4ZECOCBGwlhGlaY28mlTJvDw7kMj+1yvmET3mt1dL49pg\nsjYGIXpTfb9EJjoQfezwBQAAANzl1YD1KfPI4Oo85h759sK6ddq/+zJPDS6013O7Mb+uGoFB\nahbzs0710PKnmrfBd9ZunZfR7yHzvYOtuX2OQx8thuV80FqvdVcnYTwdsETubz+ZTZmjpgkt\nNm307xNcEWuNukPA6kqkf9JXpJ+VUj4kamfv1J5oi99el9Od2uspNFm9fBZHH/gfdjFRW6cv\nAAAA4CqvBqxNzOlbgqp3M7/m1Lsn86f+FZln7lGvgUFqMvOLTvXQxjF3e23N5pVPtebWK+V2\nTntON8+avM880amPECPliDhrwfKvXurArM7CHN45k3nmzp37gz7ACwHLphXRJ/LlJqJd/m8E\nV3SOASu3GlU+prWmED1gVv8iOtveqz6dIf+779uvzKlwhXFFsApNkf/NPoe6Bhw3vwZVDLhR\nHgAAwH1eDVjifubMt4/613LSmTc79N3FzAf9Sz/LgKbOLQUEqQIZxbRzTGEHrCXMd+l5alVr\nvk0dcjyzeRVqOPNaxz5ilBz+qDzV+oG5tfZP/gIP34PlsyORaqub464kOvzi/9VJqt5iuPHb\nguCKzjFgfU7Eemsw0XSrXJkSbGthHSK6QXx2nVroocE4LY61olvVS148zdZ2rbNP/DLkX1d2\netvapwPRe0V/AwAAgBPn2YC1o4dMTRkjF6zz/QhfbGNuc9yh7xrmngGlApnFtoqgIDWDuZP2\nL3XYAas/p203mk8xq3M3q5gf1gv70vR774P7iEeZbzV+6DaAWVsRNSBg5e4wNEqJ81DASjNW\nXz+f4hsbK1QlTxDOFZ1jwBpj3V3VhehNq3w2kW09srVEnZ6KN4559QGhlhK9Qr2xnmiVECvj\naYH4MEV717rVfQLRg0V/AwAAgBPn2YAlDoxJ025aSh88a51xVuMH5m5OXZcwDw6sdWH+XvgF\nqeMHVj4gj6etCBC80OjvzqPYwWytY7mOebR8KehiXiN8m3mWcx8VsJ43Sk8YJ80CAtbaSy0V\nvBOwhhFdr/1t1JGppka3MRP715WNMc4VnWPA6mStp5Buf/sCv5uulhI1Szjzxc3Htj1ZXb8n\nfj4lqgD2BNXIFblNqY04dCq13p49LY7M3zh8ap0aAwAAKD3eDVhCbH/pDiP99HhDu7V9FXOW\nU8cPme8LrGUxq7uhAoNUmpFxwg1Yi5mnmu2jzH3U6zQzpQ1l/i1EHxmwvjRKU40bxMpAwCoc\nJCPPIa2ZQjRQ+/Hf0d5E8RscKzrHgHUNkbEK/y1EvvvnmhP97Ov0vkxqjfdpzR8rES0RIvcM\napstvq+p1nUfQdV3iueoshpPJ2vp+C1EFxfxDQAAAFzh5YAlHfx65r1tVf4Zop6Nsp65s1Ov\npcwDA2tdmNUD/vyDVLvHfjHeViu5z7Y75DyAef4xrI2qbTB+C7jb+FinPjJgrTMOMc24auj9\ngHVIhqHmxo3sBw6Yf2KF1xP1cazoHAPW2UQH9JbfGawmfmew3rc9ZWcEUQ/5sjiFUs+Mo2ZH\nxA/JakmHDH2xh1cpUb9lXuQR1Qr9DQAAANzh8YCl5K4eLWPLgAIhfmdOy3HoIdNSl4BSXjrz\nduOtBbpbmb+x7xLWPVgzAk50aWfSsjhdnapZyPx2qD4yYJnPSQwRsH64ztDikhRvBKxfLyC6\n4XBwfRFRwyIqjgHrNKI8vdWV6A2r3JDoL1+nL4gqmPe8/0B0rnpdnV4zudGwg6LgCmolNxvr\nzyj8juhbo2MiVQz5DQAAAFxSBgKWtKoN81IhCsx12AMclKkm4CG/PzO3V/8224LUJ8y9rHgW\nbsCayTxxnY12j/0remQaxOkHQ/UpPmBZvPIrws9rEvXLd3jjKFF8QeiKY8CqTnFG6x4i6wJr\nYQol2X7FsI7odLOdR1TZfoDxVHmbfKlN2nq0vxMtNt6oTPGhvgEAAIBbykbAEs8wq4WPHmB+\n2v8N/cJQf+Y3/etzjMt49iB1v+1eqXAD1jzmGUHFHdoqqDvNtVCd+pS9gPV6EiU+6/hOYTxR\nTuhKMWewniO6x6z+RtTY1iknnqpZGwmUYntrc6q+1Kjxstv3U0ScwQIAgJPAswFrz3b71gf6\nj/PkS4bfSp2bOkzbI7RlRXv7nVvJ7cG8SDXsQWpHW077wWiHG7A+Zx4VXB3M6UfUAw+XhuxT\n5gLWGwlUNcRDaGS6qVREpZh7sNYQ/Y9ZfZXI72ei5xGZPz7YazubJRPcdXStdqqrBo1XL79b\nz0HEPVgAAHAyeDRgre7CvezPvnlFP3V1rDPzI7Z6zgB9oYSDGfqrZSZzdy1x+QUpmcOyjHuh\nww1YO5k7Bl8We0tlq7s4Mzdkn7IWsJZXoKqr7H8CWTfNMdsyFv3DqWIo5leEhQ0oea9R7Wxf\nE0toi5CaZyzfIrrZ98ZzlKI/luccfRn4tdrCWMoWooscvwEAAICLPBqwDrRlti3IfaQH8xeq\nsYiZJ1h39xweytxLW85Thhf23SqtApCxSoJfkMrry/yCCK4XZaDv2c7r+kzfprf2p/HEP5kn\nh+7jHLDmOX2CFwLWwYZU8St74XmiC83f7bUgGudUMRSzDpa4n+h+vfVrEtXKs/daTdTQWK71\nBvmHZNV3VKPReoupvXqZRwlGP6yDBQAAJ4NHA5aYzZw2629jY5NMMFn62aIJ6geFq7SrQ8eX\nZTF32KSVCx+R9Ud+1btvGckhgtQ6edQNDvUiLGHO1D9jV5bvQT0Pcpe3jAXanfs4BKwPjAcX\nBvJCwOpHNNmvcKQmUaZ2i//fMkDVOuRUMTgGrNFkRiSx+xRKWKgafzYn7RGDQgy6444dWqMN\n0S1qFhQ+RFTzb2tvpubGKcNJVFOluq70T+OtJ22PNgQAACgtXg1Yxx9TK0o9+MKChbMmDZDN\nzpuM+lS1EELnkVOmjuoiG93M9Szzxqt61rjp0x7vrdYTnWNcSAwIUhOZ++UZ9c4z/LwjnI1l\nbjvtm5+WTe9gu8P+E+aetouYwX0cApb8yDazP51vv/Kp8UDA2ppECQ+MsKg16t+IlynqjolP\n3l6LKFG73S248qXW+0KiW9XrFPsRl+grs2tejiO68bGJt9cguk7/DWEKkf5r0R31ierf99wo\nGb3ifGco51Ki+WPSv6rR4ONiUSLNNwoyzhX3uGoAAIAT5tWAJQoXdrQtLTXKtwrDstt9y7JP\nPODbYUlvX/eh35vVgIB1qDPzS0Y9QNDDdgwFT6eZHzfdWkIgO0Nuzy6ij0PAOt5f6+G/oIHw\nRMBaQH6uVLXXa5ibp3+u9wqqjPHb63z7EXOrUZVj5sb0ikaXm4/oBStgiZ+bGW9V8V1e3Vvb\nvKYozYmn084n6mRs5tekCr4zXQAAAKXEswFLhpglEwfd2ja9Y9ao1/6w1wvWTB/co21G94fn\n7/brX7BK1jPa97r3Fd9jWoIuBX7CnL5JlCRgCfHrcwM6pncc9Pw2W22s3GNHEX0cApbYM7pL\n2+4jvHgGyylgiX0TWp2WUrF+2nQrKAVWighY6hnPvpvstg29uFpKw45WwRewRN6MG09PrnH5\nw7a/687U+Jhv67NW1SpcMsWMrZ8QtXH4AgAAAO7ycMAqL1TA+jHagzjpviRqXQqHzbTWawAA\nAChFCFgxr3wGLHEVxW8uvlcJ7UiiC4NOEQIAALgOASvmldOA9TlRR9cP2tN+4REAAKDUIGDF\nvHIasER7ilvm8iG/i6f/uHxIAAAAJwhYYcveG2R/8XuduPIasP6qS+dmu3rEYxdRzZ2uHhEA\nAMAZAlbY5gb9sJC7nozPLa8BSyxJou6uHnAAxeMCIQAAnBQIWGFDwDrZniea4OLhphM5LpUP\nAADgOgSsmFd+AxYAAIBXIWDFPAQsAAAAr0HAinkIWAAAAF6DgBXzELAAAAC8BgEr5iFgAQAA\neA0CVsxDwAIAAPAaBKyYh4AFAADgNQhYMU8FrAsuBQAAgJi0xulfbwSsmKcCFgAAAMSoz53+\n9UbAinm92zZrkhLtyQNeUL1JkyZ1oz0I8ITGcq4kRHsQ4AW15VSpHe1BxD4ELG/iSy+9tGK0\nJw94walyqjSM9iDAE5rLuZIY7UGAF9STU+X0aA8i9iFgeZMKWO+uBijWeDlV7oz2IMATrpRz\nZWm0BwFe8JCcKg9FexCx77DTv94IWDFPBaxfoz0I8ILX5FQZGe1BgCdcLefKoWgPArxgqpwq\nz0R7EB6FgBXzELAgTAhYEC4ELAgTAlbkELBiHgIWhAkBC8KFgAVhQsCKHAJWzEPAgjAhYEG4\nELAgTAhYkUPAinkIWBAmBCwIFwIWhAkBK3IIWDEPAQvChIAF4ULAgjAhYEUOASvmIWBBmBCw\nIFwIWBAmBKzIIWDFvJcmT568L9qDAC/4Xk6VT6I9CPCEZ+RcyYn2IMALlsup8nW0B+FRCFgA\nAAAALkPAAgAAAHAZAhYAAACAyxCwAAAAAFyGgAUAAADgMgQsAAAAAJchYAEAAAC4DAELAAAA\nwGUIWDFux/S7OrXpNvLjgmgPBKJpfRbzV/aCw7yIuARlyOapd2Smd75n9i5fCXMFHBR+PS6r\nXZsuw1/Z7athqrgMASu2LUhnXb9dxXeGMip/Vhr7ByyHeRFxCcqO3CnGXy+3edOsYa6Ag52D\nzKmSvsCsYaq4DQErpr0lp+xDC96b2ZO5x+FoDwaiZMsA+e+lX8BymBcRl6DsKBwp/36Hz1r4\ndDf5+rFew1wBB3u7MGeMm/Pm833kX7MRxjFVXIeAFcv+zOD0lapxbBTz5GiPBqLj3Tbc9q2J\n9oDlMC8iLkEZ8pH8R3O1auQ8xdw5V7UwV8DJo8xD96vG8enM7bNVC1PFfQhYsWwa81y9ldOF\nW++P7mAgSgZz/y3CL2A5zIuIS1CG9GP+QG8V9GTWohbmCjjYn8YZh/Tm8SxmLR5hqrgPASuG\nFdzKbf422q8wvxHVwUC0DJ6aK/wClsO8iLgEZcjBNG6bY7SfZn5bYK6As+0TRr5gtifpsRxT\npRQgYMWwDczDzfZ65vujORaImi3qP/aA5TAvIi5BWVKwd7vZnMH8usBcgeI9wbxUYKqUCgSs\nGPYe80yznZvGmdEcC0SXPWA5zIuIS1BGjWZeJjBXoFh/d+Z0dVkPU6UUIGDFMPk/Qt+zNroy\n4/cZ5Zc9YDnMi4hLUDYdzuAO6s5lzBUo2rYhzC+rBqZKKUDAimET7Dc238m8vYi+ULbZA5bD\nvIi4BGXTeOO+Y8wVCGn3jOkTBjBnzNe2MFVKAQJWDHuM+Rtr427mX6I4Fogue8BymBcRl6BM\nmsc8NF81MFcgpPVqadDMGcavCTFVSgECVgz7L/O31sZw5g1RHAtElz1gOcyLiEtQFs1m7qv/\ns4m5AiGt11df77tY28JUKQUIWDHM738ZDMH/MijPQp7BGhL8PyJLUoKy59hY5v579TbmChTh\n+P4NszOZJ6k2pkopQMCKYU/ar20PYN4RxbFAdNkDlsO8iLgEZc6egczDzHWJMFegGHt6MX8q\nMFVKBQJWDJvF/K610Zn5SBTHAtFlD1gO8yLiEpQ167swT8oztzBXoDgrmQcLTJVSgYAVwz5i\ntlbbzWa+NZpjgeiyByyHeRFxCcqY5W047U3fJuYKFOcYc1oBpkqpQMCKYZuZh5rtNcwjozkW\niC57wHKYFxGXoGxZns7tVti2MVfAydqFM9ab7cI05hxMlVKBgBXDCnv6npw5lfnjqA4Gosoe\nsBzmRcQlKFM2ZnD7n+wFzBVwMp15itn+g7mdwFQpFQhYsexl5hl666923C47uoOBaLIHLKd5\nEXEJypDsXtzme/8S5go4WMOcudtov8T8sHrFVHEfAlYsO9iR075QjcP3ML8a7dFAFPkFLId5\nEXEJypCpzG8ElDBXwEHhAOYh+7Tm4tbG/2/BVHEfAlZM+yyN+YHX3nm2i/y/hvxoDwaiYv1c\n5S7msepV//fTYV5EXIIyY3c6p7081/KOVsRcAQeb2jFnjH31jRkyafGjeg1TxXUIWLFtUYa+\n2C4/gN++llML2K6rXnSYFxGXoKz4ym+qcJZexVwBB7/0sSbK5FyjhqniNgSsGLdn1sCObXuM\nXR7tcUC0OAYsp3kRcQnKCOeAhbkCTgqWjO3dIb3zkBe2+WqYKi5DwAIAAABwGQIWAAAAgMsQ\nsAAAAABchoAFAAAA4DIELAAAAACXIWABAAAAuAwBCwAAAMBlCFgAAAAALkPAAgAAAHAZAhYA\nAACAyxCwAAAAAFyGgAUAAADgMgQsAAAAAJchYAEAAAC4DAELAAAAwGUIWABQrn1HRGNK9RO2\n9z83NenUh0r1M9ywMI4SPwur5xyilOWlPBoAr0PAAoByrdQD1trqpNxamp/hhrWViCaF2XcQ\n0WnbS3U0AJ6HgAUA3nCHiilL/GuXEt18goct9YB1lRp3QlJgwNK+TpAfSnMkRTp8FlGG3tx6\nV5PU1KbDdvm9v7c2xa8wN/KvJLoi/6SOD8BrELAAwBu0RHJ+rl/NAwFrlzx+5QUFIjugXtoB\n6yY6v0T9exDV2q21PkzVx1Jrtf39zkSDfVs/pRD998QHCVCGIWABgDfoiWSkX80DAesbefw7\nHeqlHLAKq5csYH0gP3yO1tpeheJ6vf12J6IGh33vv090tj0jPkaU9L0bAwUoqxCwAMAb9ESS\n8rO95oGA9a48/vMOdfV1Ri0JdMStj/2ZShSw8hsTXV6oNfsSaTfkdycaa71/uD7RJ/Ydcs4g\nusGFcQKUWQhYAOANMpGcFU90vb3mgYD1pjz+qw51FbDeLL2PfblkAWuqHI3+C8K8alRRO3Ml\nI9oF1vv9iHr57/GC3OPDEx4mQNmFgAUA3iATScv+8l/1l201BKxQ7ihRwCpoSHS53pR/Hv/W\nW2cQHTDe/zKO6h7w3yXvNKL/OeFhApRdCFgA4A0yMlxxsC5R7X2+mhWw/C/EzTLPrqzST8ys\n79EwueK5WT+q0vEFN9ZKrH7FqINGXxWwxsqXQZfUTj79+qdstx0JsWRgi1OTajZpN9uqfi17\nfyH23XVmcu2NwUMseKNP01OTqjdqPUW/XVw867u7yulXhI4Bq7V8Y5Vt+xW5/XDIARnfcN/o\ny6sl1mhx9xbr++vq6L02j7qpQeWEKufw5D1OHylel11f0psvE/XRW9cRLdVbOec7jPVhuc9a\nx6MBgEDAAgCvkInkIjGP/K5VFRew1svGu2JknJ42El8RYmczI3qcYdzMpQLWuIK+ZiKp/7l1\nlJ+usnLKafOEr/d7h5qo2ndBI1zU2Nqh0sMFqhJJwHpNvjHctp0mt38OOSD9G843fvhHSTPN\n728LWDn94n0De7zQ4TNbEVU9pjefJHpQb2VaAxxO1D5on+3yaP2dvgAAKAhYAOANMpGcp1Yf\noLilVq24gLVJNuZPkLtUT1HpInnj/nNkzqqRoDaaaRFIi0wT+qlsUl3LYZXXGAdZVEXLYS3O\n1Xob93tvlM3XhpJjwJqpdazf4vxk9do2Tw2rZcuLZbtpy5YtAy9DhgxYRysTnevbPCxHflno\nAWnf8FUZoJJrJKpy/Jey+HHLlpWIUuWnqlxUeKOWLuufU00b9+CgTxQHkogyjfZIokf1Vnfz\ncux3iVRjd/Be8g+/rlNaAwAFAQsAvEHd5C7ErxWJLrAWwyouYG2TjZEVT3nmkDj+1UWBZJTz\nAAALv0lEQVSyfXsfarGoQGS/orLKO1pfFbAyKaH/2kJx7K1GcqO5Hhp+PUWmlbu2ytahZ2ST\nXtersjW1CjUZ9sR9vwWMb4XMPfF3/y5b2bPqyG4j9HLJ78G6Vb6zztqaTcYC684DUt9wTLW4\n3muFyP1Ehbnr9N0u9N2Dpf40Ll+s8t7OyWrHr4M+UV2FnGu0/0s0Sm91I5qtXvNbWNcP/Twq\n98IDcwBCQcACAG+QiaSh0BZgMk+xFB+w1GWs1Mr6nULbKxBVjrvmqLahYkuW1lIBi+KMCLS3\ngRV7WsnqK8bxfqoqPztHtX6T719PdzucuCmUkYZmGRsb5A7JW7VmyQPWe750JjFRwq7QA1Lf\nsJJZ31Nd9tHvsrIFrJZEdf822ptqEnUK+sQseZAdRnsS0X16qx3R2+p1DNH/CnFwRPMqFRr1\n2+rba6nc63HHbwAACFgA4BVGwMq7gKjCZqNWXMD6nWwhQN3MFL9Bb+dVJrpCa2kBq7O5pwpe\nWgBZIxvdrQM+TcblMu2A/3K6MPapfOP/rK3HyVwTteQBK68GUVNz41AK0U3FDeh2s6x+ZblI\na9kC1mlEXawdx1/a7rGgT2xGVM9sv0p0m966imilfPmlAlX+TWxuoN/Dlep7HHR2ovVwHQAI\ngoAFAN5gBCyxNI6olVELJ2Al7zeqD/kuoAlxuZkptIBl/WovL5WoumrcJas/WQc8Ksvp5gHp\nY6fh9ZBvvG9t7UkwV5EqKmAFqqS/1YfM29q1H/XpSaqIAcVtsX9x/Y/BFrCqE7V2GrElTyal\nW8yNn8xbvgqqUmKOEIX/JJoiCi4huvK5VzoS1dhr7deU6OwiDwxQniFgAYA3mAFL9CTzqS5h\nBayrzOozZHt+HhNV0RoqYNX1fcr1cvMP+XqJf3i4SSYL84CVHZ9y3JgoJc+3eRlRvLYsewQB\na4lsjvaNM1W7vlfEgKzTXWKx3HpSa9kCVnMZMr9xGrJpC9me5nO8LiXsNEbxD6EtQXptoXhJ\n/ld97YFE91j73UKUdLyoAwOUZwhYAOANVsD6qxZRHf20VDgBq6dZnSE35psb7WUe0hoqYN3k\n+xR1O9KnQhyN950mU+6W5T+NAzour3lE7tDMtt3NvAM8goB1vB7RpXpTXSHULlkWNSDfChDL\nyFw11Rawxstixft+dRq17nPZYby1NVz/I8u/lmimPH5VStmo3ce1WL25O5HqWZlKfYXfQx8W\noHxDwAIAb7AClniRzMUwwwlYQ+zVReZGpj1g3eH7lEf0FKZ2TG3oU93IS6re1Wl0armEdNv2\nQ+YtVkUFrMeX+zPPMw2W723VWi+ZFx6LGpDvWdLLnQJW3rVaemvc//X9wtECMn4vqNl/qkyc\nUydfRnRJvnaWarQQBRWoon56TpY3mD1Hyf1WOx8SABCwAMAbfAFL/JsobplqhBOwhtmrS8wN\nv4B1v+9TxpF24madw/mlj40DDnAanboHvYtteywZaxtE8qicb+R7E7SWzDe1tSuSRQ3obmtH\nx4AljnQxdki4dopTxlIpbqFvc8Upeu+ztggxR49ZG+SL/mZ327dRp8aWBh4MAHQIWADgDbaA\ntTGZqKk6o+JSwLKWfRDiKbn5rJ5UAi0UgXnG5ksy133QTdKPE+GzCBsRXaNeDyabeS68ATkH\nLCFWdq1q7FPtvwVBnzaN/J/b/OfgxhUrXTLysBB7a1Pit0K7t+s/+nsPEI0z+6knRH8U6isA\nlHcIWADgDbaApV2AU0HCpYA1wvcp4/QzTz+S86XAkAHrW/J/Gs5o87JbRAHrQaI4dau9Orek\nr+UZ3oBCBSwh8j4Z0lSPWDfnBB7j2YCA5dPZeGqP/BLtrO/1kPkuAhZAERCwAMAb7AErpxFR\nxS3aYgtOAWtaCQOWLTI9op8ZUut3Oq1tEDJgbQnY4QEyloqPKGCpJww+LV9vJjpHr4Q3oNAB\nS/nz+X+ohDUqsP6i/yVCn/eJztPi2FxrqbAJto/DJUKAIiBgAYA32AOWth7B/wpxjT1gPWe9\nO7qEAauD71PUrwiXCZGXQnShwyBCBqyjCUQX27Y7yY7aUw0jCljiYqLr9SuED+uF8AZUdMCS\nFlYgqpQdUJxP9pvcfQ7XN5/76DuDNcZ2Bgs3uQMUAQELALzBL2Cpi1c0T93trgesj8l4Yp8m\ns4QBy5ZcrpOb+4R2bizpUPAgQgYscRFRcq5vs6m5GVnAkjkm8YB2aslccTSsARUbsNSznOmL\ngJpad2u8Q99+RP311idanFXs92Cpr7A95FcAKOcQsADAG/wD1q5TiE47eLMZsNQCUEPN93Jq\nljBg+WJCbirRGaoxhIwV1HUbjWwTOmD1Na8JarbJrau1VmQBa6t89zXRmuhysxLWgJwD1m+2\n51Iv8humTj3B+k4RZGkc1T+sN38hukhvdbWtJXaLTIHBt8wDgAYBCwC8wT9gafdZ9etkBiyV\nM/5pvqV+wVeygPWAWX5VHVU11LIITaz0kHNG0vULzQM6B6wVZF8JdJjcmqa1IgtY4mqi245W\nJHrKLIQ1IF/AakpUX68NqWVfGnWu7LEi4LNyE2yPyrHknE/0gdE+XomSc8zjbjJ7yPZZob8B\nQDmHgAUA3hAQsAplBIm3fkUoasmtNXrzy9RKJQ1YqcauBxpZ923fIFt9jKc657Un48RN6ICl\nIpF1n/3yZKKa+tmfCAPWZKJ6HxAl7LIq4QzIF7AuI0rSHrEjnjBumNfkX0NUNehnhBfbHvZs\nGW5f2IuJ3lOvv8aZd93rD3tuG/obAJRzCFgA4A0BAUusS9RXHdC31BW6uguOCLHlwQrxajEr\nLQ+EEbBWy+pNdMqzKg6taC43btQ7bKks29d/KRNNznyZ4+jfwjxgiIC1voLMePeqQHRwUhXZ\n7XW9XFTAGrUkiPn2rgSiVtadT+EOyBew2qo4tqdg635xuI5sdvtaLRt25AOZr+jeoLGoO/t3\nBNS+TaRT/7K23iC6Si142oXoMbO2VO411vnPAgAQsADAIwIDlrjHHrC2qfhB8dVT5X8fVpfT\n3lLVMAKWyiTTexIlnddcJRGqs8XosVg7YqVGp8ap1wt2C/OAIQKWWJAs34w7+9Jz4tUO5uKl\nJXkWoWS9f4O2af9xXxgD8gWsacbxFgvxWYpqJNRrWEWrXHs0aCyzZXmufym/ufoRgaXwWqJr\nZs1tTXSm9RvER+VeX4f4swAABCwA8IaggJXd0BawxKJqRqRIGKMtSmVdQCsmYH2hAlB+bzPg\nNFlnHX/tP6zYE9fjgF4rKmCJpRdaOzSw7gSPNGCpR1NT6hH7LsUPyBewcppaAUusvMB3/MRB\nwflK7E8k6uhfGkOUZt/+o7G+f531VukyorqFof4sAMo9BCwA8IaggKUtfmUFLLHn4atrJqY2\nGbRVNsn4xV0YAesD0u7XWnNns1rJp984/Zj9Az4b1OK05NR6NzxintUqOmCJ4wt7XVAzsUbj\nbnN8CzZEGrAOqPNOnQN2Km5AvoAl9vY9PaHCWe02q3bhh/2vrFMhoerZaRP+cBx4K6JqufbC\nLxWomn/X7NEtKle8cPg+q/B7nLWKAwAEQ8ACACjvXifnpUaLMkLu812pjAagTEDAAgAo7woa\nEF1Zsl3y65F9+QcACICABQBQ7j1DRJ+XaI+Z5FsmCwCCIWABAJR7+eeV8BRWTn2ilqU1GoCy\nAAELAADeI79lGYqlHpaIO7AAioCABQAAojtR7T1h995YgWhE6Q0GoAxAwAIAAHHoTKJ24XYu\nuIro8vzSHA6A5yFgAQCAEN9VIpoUZt/BRHW2l+poADwPAQsAAKTX4yjxs7B6ziFKwUNyAIqG\ngAUAAADgMgQsAAAAAJchYAEAAAC4DAELAAAAwGUIWAAAAAAuQ8ACAAAAcBkCFgAAAIDLELAA\nAAAAXIaABQAAAOAyBCwAAAAAlyFgAQAAALgMAQsAAADAZQhYAAAAAC5DwAIAAABwGQIWAAAA\ngMsQsAAAAABchoAFAAAA4DIELAAAAACXIWABAAAAuAwBCwAAAMBl/w+I4Y7eKhbgjgAAAABJ\nRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 360, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_endpoints" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Event densities" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:29:06.050717Z", - "start_time": "2020-11-04T14:28:59.615Z" - } - }, - "outputs": [], - "source": [ - "plot_width=20; plot_height=10; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "plots = list()\n", - "for (e in endpoints[-2]){\n", - " temp = data %>% filter(!!sym(paste0(e, \"_event\"))!=0)\n", - " \n", - " plots[[e]] = ggplot(temp, aes(x=!!sym(paste0(e, \"_event_time\")))) + \n", - " geom_density(adjust=1.5, fill=\"gray70\") + \n", - " scale_y_continuous(expand=c(0,0)) +\n", - " scale_x_continuous(expand=c(0,0)) +\n", - " xlab(e)\n", - " #+ \n", - " # theme_classic(base_size = base_size) \n", - " #print(paste0(nrow(temp), \" events in \", nrow(data), \" people in observation time\"))\n", - " #print(paste0(round((nrow(temp)/nrow(data))*100, 1), \" %\"))\n", - "}\n", - "title <- ggdraw(get_title(ggplot() + ggtitle(\"Endpoint Densities\")))\n", - "plots_density_raw = plot_grid(plotlist = plots, ncol=4)\n", - "plots_density = plot_grid(title, plots_density_raw , ncol=1, rel_heights=c(0.1, 0.9), align=\"v\", axis=\"lr\") \n", - "\n", - "plot_name = \"4_endpoint_densities\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:29:06.952215Z", - "start_time": "2020-11-04T14:29:00.872Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAASwCAMAAABIeoGzAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd2ATZR8H8N81adrSRUupQNl7\nTwHFgiJTJCyRvWVYNshUZMpeMmRvkA2F4p6496u+zlfFvRERZNPx5pK2JG12nrvfXfL9/CGX\ny3qe534m317unqMcAAAAABCKuBsAAAAAEGwQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAA\nwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQs\nAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAA\nQDAELABwbiBZPCTmtX6TX4sui3kxjXDbp2DsMAD4AgELAJxDwHIPAQsA3EDAAtC3t8it1/x/\nZe0GLMc+G2JKNOg49fGfBL241xCwAMANBCwAfUPAylNtxv8Evb53ELAAwA0ELAB900fA+t0g\nu+L145fPmvW063td9Vnq8qGAtnqrYJ8c2uxrhwEg2CBgAeibPgKWj85LRONc3+26z4Zxl9Rr\npSMPbQaAEIOABaBvtrDRf6oL3/v/yowB62XyImCNX2kzf/LQDkn5Eav+d6q10pGHNgNAiEHA\nAtA3W9h4S4FXZgxYS70JWA59/npTo9yElaLukVj5PLQZAEIMAhaAvgVlwOrlc8CyeLulLWGV\n/kPRtrnioc0AEGIQsAD0LSgDVmV/AlZO9hKT9Y7bs5Rsmyse2gwAIQYBC0DfgjFg/SP5FbBy\ncl6Jtt7zmHJNc8lTmwEgxCBgAeib7wHrtyfWzl+65ZlzTu46+8z2RYs3nfzXesNFwMr+aO/y\neUu2v33d6Yv/9NTulQs2HHr1YiCNeZH8DFg5GXLMoaL/FFx/7vldK+ct3/n6BR9bYvPTU1tW\nzluy7tiXma6f7qnNXjTDm7cBAL1AwALQN+8C1h/Wn87kpSOpku1QpbDbnyrwoGc7hNvuiuj8\nZo5jwPpAXm5mWfhrWvHcg8njR/1W8F2+GVs972Q+0x3L7TOWw7ybbhvzEzl43sc+j7beNd9h\n3W9zGxlyXy78jl32wdCbYXknLTm/NUV7P+esT07a7GSiUdfNcPs2AKBPCFgA+uZdwPpXflDD\nnJzT7eyTwMCrdg85N8DuHmnU9ZxBdgHrK3m5Wk7OyyXsHpR0xOE9Tt9vdMgZJR7Lzr/PIW+4\nbUyAAetsonxXit1RWNfnFHF4xaov+zIsv/dwbA81+6Zwn7wJWO6a4fZtAECfELAA9M27gJVp\n/U7POV3T8Wu8/41HXLnd8a4uWffJ/+QGrB/l5RI5JyMdH7TV7i2+rUIFDc7/rcshb7htTIAB\nK+ch630n82+fSS3YqrBl3g/Ld5UKdSo+7319Clhum+H2bQBAnxCwAPTNy2OwwiwPKp3VyvLf\n6Hb3jRnQMPfHqhP5D+hjW1F36potC/vI83bOSpNv5was3+XlmNPy/quiHUaM75WbSEw3Joo/\nZdu3ZWw2bfW2ZWnVbPf3yLvXMW+4a8wf9erVs04bmlRP9ravfT5lvW9y3s1/G1hvS7dNWbd1\nyaBytjda5e2wZDa03gxvfv+sRVMHp9pOUizxW8E+OWlzgYDlvhlu3wYA9AkBC0DfvAxYEfLX\n/1qi5E22L/3vzdbntcm7/xXbl3ru8UdXlxYhUzu7gPWXNTyNJKq03/br29t1rU+onfcrYFZz\n6+17TuXefrKy9fbu3JuOecNTY8bJt/w6yN3C2rBmebd6WR/aKfcHt6xDpeSbho+9HJYN1lQ0\n6UzuzTMPW7PPSGd9KtDmAgHLfTPcvg0A6BMCFoC+eRmwoiwPiihKtX7JW5HZQn5eWN6knE3l\nW9H/zX/8i1G2vSy5AeuMbQcMNfgz7wGXbInqYO7NVdZbE2684W/WnVjF/sq95ZA3PDUmoIBl\n3fEWlRv8nrA+cpZds6yH4d/u5bBYb8yze/Fn5cPMTP846ZPbgOWhGW7fBgD0CQELQN+8DFi2\nCaISfrmxxvbE3F1WH1tvLLd7wmKHgHXWdiv+5xsP+DFWXnOH7UZmafnGbdl2L/COZPeSjnnD\nQ2MCC1jW3UGU+/uadXdWf/u7v5B3WtETXrUkU/7FMNJhToWJN1KlDwHLfTPcvw0A6BMCFoC+\n2QLByIVOvZr/MFuS2Gj/zBR5zSLb8mx5OdH+O/5qOScBa67988fIa8Jtc2adsN79gUPLesqr\n6tqWnQUsl40JLGA9Zb3zXevySWsq/NPh/pHyuj5eteRXebGyw7P/N2DmtpdOO+mTu4DloRnu\n3wYA9AkBC0DfbGHDhRvThFqTRDGHeZnuklfl/qjXsNAulpwphQOWweEqfx9Z12VYl62zDNR3\nbNlx6/2fWpedBCzXjQksYL1vvfMF6/JweXGY4/2fyOvirnjTEuu5k0VdtcL7gOWhGe7fBgD0\nCQELQN98CVgDHJ5p3Ycy1LqYaT2qepeTF3YIWLc7PCC7qLxutnXZ+gvhQseWXbZO/LTeuuwk\nYLlsTIAB6zO73FdGXny2wAOsK1/zpiXXrScVHnXRCu8DlodmuH8bANAnBCwAffMlYK1zeOZk\neVVv6+KX1kd/7HD3VVOhgDXD8a3l2Q2on7xknRGdXnO8O6eZvHK4ddFJwHLZmAAD1hfWO4/J\ni9bJJeiXAg/oKq/c4FVLmsjLcQVnvM/ldcDy2Ay3bwMA+oSABaBvvgQsx50oM+VVPa2L6dZH\nF7gMX7VCAWu/4wMGy+tulZeesd59xvFu27V2WloXnQQsl40JMGD9x3qn9VozL8hLpqwCD5gm\nrx3jVUt22IaxwxNXcwrzOmB5bIbbtwEAfULAAtA3X84ifMdh1awbScJ65l1cgae0KhSwCsz6\n+bC8rpK8tF1eKlLwPWfIa6tZF50ELJeNCTBgWa+6TPLFFPOCizOdvGpJdsfch8d1fvQ/BROS\n1wHLYzPcvg0A6BMCFoC++RKwPnFYZZcklsmLpQo8pXuhgFXg+nhL5HUl5KVH5aUyBd9zuby2\nmHXRScBy2ZgAA5YtzvyY30Dn7vCuJefvuvGUhO6bHc7r8zpgeW6Gu7cBAH1CwALQNyEBa7a8\nWKnAU/oWCli/Oz5gjbwuVl6aIy9VK/ie6+S1tv1aKgYs69mPxsz8ZjnXyLuW5GQtjbN7lrHt\nIRcXsHYXsDw3w93bAIA+IWAB6JuQgGUNJTUKPKV/oYD1t+MDNsrrIvKfX7Pge26S14ZbF1UM\nWC3l++reeFHnqnvXEou/Fle3f2L95/Lu8DpgeW6Gu7cBAH1CwALQNyEB68bRVHZ6FQpYfzg+\nYLW8LkFeelBeqlrwPR+T10ZbF9ULWOetJz/azl20/kZZ6JdLe14ELIuvVrY25UcfaWbuWq8D\nludmuHsbANAnBCwAfRMSsBbJiykFnnJXoYB1yvEB1mOLSstLj+Qv2Vsqry1uXVQvYO2w3nfA\nurxFXnQ7g6d3Acvi4pMTaudlnxU5TvrkJmB5boa7twEAfULAAtA3IQFrrbxY8CzCmwsFrP86\nPuDGWYLWHwMjC76ndSKCWtZF1QJWdi1rU2wX8DkkLxuuu34h7wOW7LtF1slBKeI7J31yE7A8\nN8Pd2wCAPiFgAeibkIC11/oi5x2fklQoYD3h+ADrPFit5SXbPFgFfkHM6SOvbGddVC1g2a7P\nk3upwXetNz53/UK+BaycnCsPWF9xopM+uQlYnpvh7m0AQJ8QsAD0TUjA+sD6Ip863G29BLFj\nwFrm+Jqt5XX3y0s/WO9+scB71pdX2q7qp1bA+tc6O2rupZ5zrlgPaTrg+oV8DVg5OSPke53N\n7eUmYHluhru3AQB9QsAC0DchAeuCJC87XotwV+GA1dfhAdkJ8rrl1uUS8uIsx7f8xyiv3Gtd\nVitgWXeaUYe8m9ZrWA9y/UK+ByzrhZkN2YX75O5ahB6b4e5tAECfELAA9E1IwMqpKC8Pcbj7\nnsIBq+g1+wd8ZvfOA+TF6g7Pt03vLv1qXVYpYFknTKXwz/JuT5BvFrvi+KBP7H7K9Biwvv+3\nwFtYr2B9qXCf3AUsj81w9zYAoE8IWAD6JiZgjZSXEy/Y3ft9ROGARYftn2+d/KqodUbPnJPW\nu99weP075FXNbct+BKwxrjvjos+Z022tXJC/5lPr7ZWOj6oa1vSRj7xpybeTWyXSGsf3uB5G\nuZOrOgtYN9rscKf7Znh4GwDQJwQsAH0TE7Cet77Kcrt7e5KTgFXVbhfWmWL2maimfKOJ/W9a\ntgtIP2674VvAsu7x6e+6M877/GEzWyM72F3Nz7qq2Pf2D5svr2rqTUt+lVNOmQsO9z4n31vf\nSZ8KtNnxTrfN8PA2AKBPCFgA+iYmYF23zgwQ+V7+nXOJDIUDFg3Kj1BZXa0r8i6UbDtiy+68\nt8+th2XVyJ2cwLeANdP6VJ/6fOVYR8nWxKb2UeV568qadr/GbbauOeZVS+6QF++2/6HuQj15\n1TwnfSrQZsc73TfD/dsAgD4hYAHomy1s9J/qSu4JdZ4yjfWAKYrdYttF9UVnopj7Cwas8I5E\nHXMnG/2jg/UJbfNfrZP1du+fbbcyd1gneTC8mnuvbwFrs/XRm+TFrBwnbH0evzLXsjnDUiNz\nEyC1czyayfrbJyXvzw16X/d2bLb7lrxmfXD1g3n77bKfse6oi/nJSZ8KtNnxTvfNcP82AKBP\nCFgA+vYWubfZ9jBPmSarie3hCV1Gju1lnetgufVHrGm2u217sD4rQmRs/tDaLfO62a7pknhj\nbvffS1vXRLabs3Hzon4p1hvS6rx7fQtYtmOWqGa3DnWb+9Znw6xMx4deaGC7o/iAh1bOv7+R\n7UaZP/Pu9tCS+22Pj2mV9vD82eM6J9tubnDWpwJtLhCw3DfD7dsAgD4hYAHom6CAlfNHZcfn\n3ZttvdRg7o9+toB1ZW+Yw2OMz9q93NeVCr61aU/+nb4FrJzG+a/RNMcJl32+86NCjz2TWuhR\n1b/Lv9dDSzLvdfImC532qUCbC9zpvhlu3wYA9AkBC0DfRAWsnB9a2j/t/uu2q/ql2e60Bax/\nc44m2j2m3JsOr3d2sOTwzrfZHSTlY8B6L8I+rHjZ59i+bzt78LW5UQ4PM06wm7HeY0tWxxV4\nlxrPOO9TgTYXDFjum+HubQBAnxCwAPRNWMDKydmVmruDytRRPnbqaXkx97w4W8A6l5NzekaZ\n3BdOmnq2YFs+G1s1722T7n3K/h4fA1bOa9VzX6ezN302JdTs+PAzl509VPbH3Fr5D6066wf7\nuzy35NzyVGP+s2O7H71xScGCGcqhzYUClttmuHsbANAnBCwAyPfHE1sXLtzwUsFZL/MCli1R\nfXFgxbzFO95zevh5zo9PbF+6cNPRDwOdhDzrzcfmLVj/9F8BvkyeP57duGjeym3P+PV6/75/\ncO3iucs2Hf3afa88t9ltM7x9GwDQBQQsAPDMPmABAIBHCFgA4BkCFgCATxCwAMAzBCwAAJ8g\nYAGAZwhYAAA+QcACAM8QsAAAfIKABQCeIWABAPgEAQsAPEPAAgDwCQIWAHiGgAUA4BMELADw\nDAELAMAnCFgA4BkCFgCATxCwAMAzBCwAAJ8gYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAA\ngiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhY\nAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAA\ngGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgC\nFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAA\nACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiG\ngAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEA\nAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACC\nIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgA\nAAAAgiFgqS7r6+cLOfkPd6tAl/79sHAx5fn4CnfrICScftGh7k5xtwe06dwnrj6qTv7G3Tal\nIGCp6sd941OjSVakdM3GqRYNKxcLs9wMazj9rWzu1oGOXH1/y9hWpcgmIql8zfq3yfWU2rR+\n1dLxknWtsUbfR9+9zt1QCGrfLWgif4DFV5U/zmqXNFqWq8/8lrtVoCW/vbJ1eo9GibkfVlJc\nSuX6TawfVk3qVkwyWleW6vboJ9zNVAIClmp+2DagnFxeKal9p64+eOKG9HVTutYwEJV76Dvu\nNoIu/Pj4mMYm+WMpoU7b/pMWbzp8ooDjO5dPHdi6SoTlIbGd1v/E3V4IUtcPtJQorEbveXvz\nP8weHdrIRGF3n+RuGmjAxf/sn9vn5jjbn3sl6rXpM272mt0ZBT6sdi2b2L2h/JjS97+Yxd1i\n0RCwVHHxyTHV5N1WjfvPP1Dwy9DmwLQWkRTW5Q3uloLG/b5ncAVLKRkqtBmxaJ/zWrqRs9aO\nbZVsyfS3PPond7Mh+FxabfmLsXranoJlt39MZaI73uVuHvDJ+u7ZNaPalLPuSTeWatwlbd7m\nY+4/qzaMuq0IUcr0IPuBGQFLed8/dlckkanB4BXH3ZbYodEVie58m7u5oFlZbz7Y0PKZFdWo\n/8JDHrKV3SfXfbUkMt2LXQog1LXHSlJ4u7XOi25hfQobjFQfeq5/+9z6SV1qRVh3WsXVbDt4\nxoZ0bz+p0me3iqIwc1B9UiFgKew/s+pbKi2l89wj3pTYvDok9fqRu82gRVdODE0mMtTqt8zD\n34KF7RiUQtTocNDtfwc+T1UnU+edrmtubllKOsTdSFDL1VMv75wzuGUF2xFVERVu6zF+2V7X\n1eHKobGViJq/xN0bcRCwFJR5clw5ImO9oZu8r7B5FSl6eSZ3y0Fjrmb0i7f8RXjn1P2+f2jJ\nMh5pLFGdJ7i7AUHih04ktdnhtuTSB4TTkIvcDQVFXfr6ld1LxnZtUtJ2Wg3FVU69d+xC94Xh\nwfz6RG2D5oB3BCylXHt2eDJRZOokH78SM0bG0K1fc7ceNCTr5NAEosSOC9z/xOzB2uYStf6U\nuy8QBLLWxlL1Rz1XXHmq/Q13W0EBl//3wvbZw+6uUyz3xEBDUo0W3UbMXHPQY014Y0ltMo47\nx91HMRCwFHHtqSGJRLGtHvbqh8ECdt9CMTu4ewBa8b8HyxLFd1xc8OQb362qR+FTLnH3B/Tu\nuzsoepQ35XikLSW+zN1aEOjXV7Y+2PuWErm5ylSy9h3dhk9ftiOgv/ycePAmSjnB3VchELDE\nu/6MnK7i28/z+ViZPOMiachl7m6ABpzf0owosuUcv0vJ0fQkqvoWd59A3/bEUyNvfwRKM5j2\ncLcXBMg+dWxB30axtomskmq2vDdt5prHxXwoOXOkh5GGnOfutAAIWIJlnby/uCVddZgfUKjf\nUJ4a/8LdFeD29n0xJNUeL2bHu9XBDpJxHg52B7/9O5AiR3lfcHOipNXcTYaAXP9w88jbrNHK\nmNKk68i5G70+LTAQq8pT5fe5ux44BCyh/vNAClFs+8DSlexwcyr9EXdvgNP59fWIivXw4QQJ\nr8xJpNanufsGevVZDaqw3pd6ezSelnI3Gvz1w77xt0bJO61K3dZn2jpVklWeo52liA3c/Q8Y\nApY4PyyoRRTVcpaQMszoK8W9wN0jYPPJyDgKazxD9MENFnsaUPmPubsH+nQghu7y8bjSdQm0\nkrvZ4Lvs/67tVVrOVmVbjVji/bR7Aj0cQ8Oucg9DgBCwBLm4q1UYGZtO8eeoducmGiOOcvcK\nWFw/fDtRQs9twmrJwfHuUuyT3F0EHcqcIkVM9Lne1heVNnG3HHzz6aqu8hmCMY37zxd4gIKv\nNpWjln9zD0VgELCEeGd4HFHVEX7MrObGnEjjXu6OgfpOLyxDVHuqgvvjHwg3buHuJejOPx2o\nxGo/ym1NrOEwd9vBaz9t7yOfJpjYIu2xwM9cDszBxlTje+7xCAgCVuDOra1rKcd71gkvr0VR\nhse5Owcq+2xYFEW0WyO8mBwrK0bCgTHgm1M1qa5/f0Iui4zERVZ14fKzE2vJ84Wmjtwg+CPH\nP8c7UMpn3IMSCASsQH00LIbCmswQdB69oyVFDAe5+wcqyn62nURJA8XuCXVmbQLN5e4s6Mrr\nxekuf/eqPhxWPMgu4huMvnusQxGi8HoDH+Xec2WnHxX/kHtgAoCAFZBM+WCZYr23K1VdSyLD\nn+LuI6jl6vY6RNWmKpLVC9qYhIQFPjgQGTbc/3IbRrWCYVaj4JX52tTaRFTSPOuwuA8ZIUZI\niTqergEBKwDnlpcnqjtdyS/ER8KLYGLI0HB2USkKa7ZUwWJysKU4Tp8Hry2TImcGUm7tqVM2\ndx/AhYvpg5KIwusP2yjq00Wk0VKCfvdhIWD57dcp8WRqs0bh6pomJX3F3VNQ3s8PxFKkebPC\n1WRvU6KEI93BK1njKWFlQNWWXovmc/cCnDm7s0sUUXyr6SxTMXhjjFT8C+5R8hcClp9ODY+g\nuN57lK+uEVQF80IGuy+GmCi+r/KHXjlYE2PM4O446MGVHpSyJcBq25VoeIm7H1DQma13mYhK\ndl2swIR74oyg0j9wj5SfELD88kU/IyWPUOfX6i7U/Ap3f0FJ790TRiXSxM2g5q1Fpuh3ufsO\n2ne+NVUL/LpzC8NK/sHdE7D37+6OlnRVrveawD9KFNaPavzFPVr+QcDywxd9wqj0BFWORbbI\naEr3cfcYlPNKO6IKk1n+gpwmlfyRu/ugdX/eTI1E/HzUn9rhMCzNuP5k7yJEZfv6dN0jNh3p\ntsvcI+YXBCyffdPfQGUnq3gi66HytJa706CQp1KJaszkOi16IDW4yD0CoG0/Vqc7xFz9qx6u\nmaMVn0y8iSi5xxoR21UNGbdSL12mcwQsH/00PJzKTFH3C3FLbPjr3P0GBWQfbUTUYKGqxeSo\nJfXmHgTQtK/KkVnQx92O2MhPubsDOTnnNzYlim63SEOzXXl0pCrN4h43fyBg+eSvByKp5ETV\nC3OOlPI7d9dBtKz9dUhqukLtYnJwpAqt4B4H0LCPb6LewqptKjW8xt2hkPfh8FiS6k9S/5DP\nwOxKko5wD50fELB8cHF+PCWOUvAacS71ozszuXsPQmXurk5S6hqGYnKwPT78Ne6hAM16O1Ea\nKrDabqc53D0KbVcfb0aU2HOrwG2qlkdNMZ9wD5/vELC8lrmpFEUP5JnnNqMRzebuPwh0bVtl\nMrQUf/lK380LS8E0IODcyzFhY0UW295E08fcfQphf84tSVJ9RWfGVtADVOUs9wj6DAHLWxk1\nydRV5ZmKbthTzPAK9wiAKFc3VCBjm01cxeSoL92ty8NHQXFPRxkniy22GXTzde5ehaovhkVS\n5N36OGvQqc7URXefVAhY3nm3BUkttzEW14KwMn9zDwIIcXltGTK218xe+uN16FHuIQEtSo8I\nnyG62lJpGXe3QtMbncKo+JD9orenmo7VoOXcw+grBCxvnOolUf1VvNXVk+7lHgYQ4MLykmTq\nyJnVC9oRG4HfbaCQfcaIOcKLbXdM9PfcHQs92U81J6o0Wae/DebbEWd6h3sofYSA5dlfE0xU\nYS53cR2rRru4RwIC9c/84hTZeSd3MTl6kGrrcxY/UNBOQ6QSE4iMJjN3z0JN1uEGRPXnKbAx\n1TZLqniOezR9g4DlyaVFRSlpvAamDNkQGa/XCzKBzZ8PFaUi3VW4gKWP2tAk7qEBjdkUFr1U\niVrLqEHHufsWUrL21iLpVt7ZYITpQn25x9M3CFjuXd9SmqIHamPOkDRqpbtj/OCG78cUodi+\nWjwK4kByGGayBXtrpViFvpPXGMpf4u5d6MjaU53CWqxVZlOqL70iPc49pD5BwHIn+1B1zlMH\nC8ioT+u5RwT89VG/cEq8T8Q13RQwX6qKLz24YYUUr9gxp51pJnf3QkXW3hoU1nKDUluSwbqI\noj9xj6ovELDceLohSa00dDjytqhY/EioS9nPtpMoZcxR7gpyqQNN5h4j0I7FVFS5nR77i0Z9\nx93BkJB1oKYlXm1UbEOyuJ/a6Ol3HAQsl164jaRbH+OuJwcjqT33qIDvLm+pQ1T9QQ0cx+fS\nwWTDe9zDBFoxnxKVnC5pLHXn7mEIyD5SJ8j2Xlll1Kd13EPrAwQsF55LJWqktSMDM+rgTELd\n+emh4hTWbAl37Xgwh+rhMnFgNZuSFN3tkVGJMGuy0k40IKm5Fi4VIdq26JhvuQfXewhYzmQf\nb0rUQJGTaAKz0ZT0J/fggA+yn+tqpOjOW7gLx7M7aRH3YIEmPETJm5WttUXUKIu7l8Ht6SYk\nNQuaQ9sdjaE79fMjIQJWYVe31yKpsQbjlcVAGsA9POC1XxZUIiqXptEj2x09HlvkO+7xAg2Y\nRsmKX2XgNtrJ3c1g9nwzkpowT4ytnIwGtIl7hL2GgFXQ6fmlKKy5Vqszvbz0EvcIgVeuHLrb\nQOG3KzFZoyLGUkfuIQN+k6iE8ldx2hxeGmetKuXF5ho8ukWkrZFFf+UeZG8hYDl6f0gkRXbQ\nyGV4nVkqVb/KPUjgUdZLQxOIyg/TyhQfXsioSencwwbcJlLJ7SoUW2f8IK0QOV5p8egWkYbp\n5ywJBCw75zc1JkoetI+7ftxqRwu4xwncyzw5uiRRfKdHuWvFN2sM5S9yDx2wyh5PpdTIVyf2\nRhc9w93ZYPRsKlF9rZ9QE7DjVekE90h7CQErT9aLA6NJajTjOHf1eLA3rggmw9KwC8fvK04U\n3WqO/q6s2plmcI8ecMoeS+pII30AACAASURBVCk71Km1/rg6k3DZGU2IGgR9vLJYZSh/gXu0\nvYOAZZX97sQUoqSeOjjb68Ro6sY9XODCF6vaRRLFtZmp3SlF3TiQEPkN9wgCn+zRlKLWdcgP\nJ0b9zN3f4JK5tx5JjZeptP2YdaGp3OPtHQQsS2W+OqEcUdSd87Q8E+QNGVXoOe4hg8J+2jWo\nDBGldF2o9Z2gLk2gTtyjCGyyR1JptfKVPGnyCO4OB5PL6yuRlKrVc7OEO5QU/hn3kHsl5APW\nX3v7JRFFpk7TxgWdvbFcqok5IbXli62DK1nCVfQtaQrPIKSsjGrI7iErO43K7FKv1tJLhn/N\n3eWgcXpOMhlbKzn7vtZMo5bcg+6VkA5YF1+Y3jiMKL71DP2kK1lrepR76CDPPy88YrZEdIps\nOHCZbndd5Vku1brOPaDAIvt+KrNbzVqbSP24+xwkvrw/iop0VengOa1oQPu5x90bIRuw/n7y\nwVQTUVi13sv08cugnV1RCX9xjx/k5Fx+a82AGpaETonNhq7Q3zHtztypqwt9gTCWfFVW1Xx1\n4ngZw+fcvQ4C2U+3lyhp0H5Vt50GbDCW0cNx7qEYsK5/uHFITYlIKm+eoc+6HEijuQcxxF15\nd9199YyWbGWq0XnKNu56EGdHZPF/uMcW1Cfnqz0q19pU6sndbd07u7IqUZVJ6SpvOi3oRg9x\nj74XQixgXf9kx5hbo+TvxVrdH9bRJJAFHLnJiD/+uFz7z8ZhDcItNWSs3H7s6uDYcXVDH5rM\nPcCgOvX3X1lklA/7lLvj+vbukCJkvD1EThws6EBCpA4u+hw6AevSuxtHNJWzlVTmzvtX6Dzy\nT6W7ucczJH29e8wtkXK2qtRu1Eqd15Bzh4tFfMc9yqAyjv1XFtOpB3fPdezvNfWJkvqqeF6C\nxoyje7i3gWchEbD+fml5v1ry7zlhZVsOXaSLS+96kFGDXuAe1RBz8eT8jsXlGirXOm25Lqe5\n8s446sM91KCu7JEs+epERoWwT7j7rlNZz/aOpLDGmp8WW0kZlekk93bwKNgD1h9Pz7+nAsm/\nCVZpP3LZYe6aEGap1CCLe2xDx9mMSbeEWw9mH7wwGPK5O8fLS+9xjzeoyZKv1D1/MN90HIXl\nl48npxCV6KvKRY00bLHUSPNfgkEcsP565pEu8syPFF2n88S1wXasTCrt5h7g0HDh6UmNDERh\nFc2Tg+hgdjdm053cYw4qyh7Nla9OZJQLw7GkvvrmkdpEUa0W6u7kd/FSaSf31vAkOAPW5ddX\n9JYnfqTYBt2n6XrqR5c2Gctd4R7moJf94aKWJiJDte6zD3BvcPXUo6e5Bx5Ukz2WSrMdxzOF\n+nP3X1/+t7ARkbHxpOD5LSYQm8NLX+LeIh4EX8D6Zs/om+Wfc6Lq3jNND5cW9NfdtIJ7qIPb\nhaNDS1nqqFznmQe5t7W6Vkr1NL/nHUQZr971Bws7nmI8xT0AupH97ozaRGF1R+n39HfRutIj\n3FvFg6AKWJdeXdz5Jst3oqFih/GPBfse1N2RSee4Bzx4/bHp7kiimNRxfF8+fJrj5+eQMYkz\nX504MR5XJPTOP4eGlCQyNhzFcTaCZu2LjfuTe8u4FzQB67fDE6zHISfcMmhRaOw/7UUPcw96\nkPpl9e0GopRuC4PtwD0vbTJWuMq9DUAVU6kk6yVW0pMjfuYeA8279trs24xEsS2m6HNebAUN\noTHcW8e9YAhY2Z9u7F9RPoG+wt0Tg/OAK6cOxMX8wT30QeiPtc3DSKoycAP39mV0F63l3gyg\nhoeoBPOpaGk0kXsQNO3iybltoomkyj0Wheife24dSTZ9w72J3NJ7wLr6xqKOifIRV/V7zwux\nQ2VODKXx3MMfbM7vbGcgqdp9oXG+oEs7I0rq4TpfEKBZdBN3pR9JiMF1VZ3L/HTHyEby9I2l\n2k/FD4MuTKRe3NvJLT0HrHNPP9RCnla7WPPhq0JxwrUjxSN+4N4GwSTz6T5FiCoM3sq9Yfnd\nQwu5twYo7hEqzl/rA2k29zhoz18n141oWkQ+nLiyeWooHgbqtYwK0gfcW8sdvQasP46Ma2iQ\nL3vTfmIwnyro3hgaxr0dgsdnk0sRJfdYx71RNWFvdOJZ7g0CCltESRo4ouJAdBL2lub7+4ND\nC+9LTZKnGAorfcfQxaFxOHEgZlJ77o3mjh4D1i+Pj6ghXw+uWtcZoX3CanrJ8K+5N0Zw+Gd9\nU6IibTB5X56+NIN7m4CyVlDiRu4yk91Lj3IPBbvTnz63Y15ax9pxcrIiKblBl7HLka28U1PT\nF8zRW8D6Zc/QKvKFb+r2fiTYr1nihYmYp0+A7Jf6R5FUdyI+0W44GBer8fOfITBrpKLruavM\napep7DXuweBw5qu3ntixbPKguxuXNpGNKaVB+0HTVx/h3iS6spiacW9KN/QUsE4fSqtmqcLI\n+v0Xp3NvVW04XtrwBfdW0buf51ciSu7DfzCKtgyhSdxbBhS0UYp/jLvGcrUP4mnXLv/9998/\nnTp16pP333/p+YyD2zYsenj8fd1bN6qUKFEeQ2KFm1v3Snv4UaYLFundzXSCezO7ppeAdemZ\nSQ3CiCLq91+CcHXDFOrNvWV07drRuw1kajEPPw0WdCSxyK/cWwcUsz0sdjV3ieXZINXN5h4P\nkc6+vn3WkLtvrZ6SEE4uGOJKVWvUslPftGkL1+3Bh09gVkn1tVs/eghY2R8tbhVpKcoavRYe\n5d6YGpNRLuwz7s2jX59NTCaqODy0D+RzZYTWp/AD/z1uiF7JXWA3NKNnuAdElB829auYG6Ki\nk8tUrla/fv1mqamprdq379S9+8Chox6YPm/Zuu04ukWoVDrIvd1d0nzA+mvfwBKWai3TaSaq\n0olpGp8GRLvOrr/F8iHY4VHuLahVR5Mif+LeRqCMQ8aoZdz1ZWcZteYeESFOr2wsERWpY75/\n1lrsl1LPurCamdzb3hVNB6zs9+fdaiCKbT6Webph7cooH/Yp92bSocynekWSVHcSDid1bSSl\ncW8mUMTx8MjF3NXloCZ9yD0mgfvfkAiSag9ZjWSlupbaPYpPuwHr/JH7ShBJVXovC8VJRL2G\nXVi++/CBkkQl+uK4drfSk02YxzYYPRNhms9dXI5mUD/uQQnUb0MNdNNAzAnKYpOhynXuAnBB\nowHr65WtTfLVLSfiEgEeZJQL+5x7a+nKqUdqylNeLcIfmp6MoeHcGwvEeykqfDZ3aRWQkRKu\n75+jsx+Lo1IPYE8Al9a0nbsEXNBgwLr20gPybAzluy9GwXphKvXl3mL68cPyJkTGxlPw06AX\n0kuYvufeYCDa69HGGdyVVUgaTeEel0D83paih+Lsdj5bjJU0ugtLawHrt23d44hMjdK4L0Kq\nGxllDF9xbzV9OLX0FomkOqNw1qCXxtJQ7m0Ggr0bFzaVu64KOxxb9Dz3yPjv9ZJUH0cJs2pL\n27irwDktBazrrz3USCJKav8w5tT2wQM0iHvLaV/2+zPrEUm1huMoCe8dKxH+LfeGA6E+TJQm\ncpeVMz11fL2cnRFh/XHAAa+txoravByAZgLW1+u6xhMZag1Yw72t9OZ4SXwNunfh+PAUImP9\ntF3c20pnsAsryHxWXBrDXVRO7QqvoNkz7T1YKRXR2jFtIag9beUuBKc0EbC+3zmwHBEltZ22\nn3s76dFYGsG9BTXss+VtIoiim0/ax72d9Ccdu7CCylclaQR3TbnQmg5zj45/llDRVdyDB/Iu\nLE0ehcUdsK69v7ZPWXna2ybD13FvI71KT474mXkzatTvjw9OkWep7TofR6D6Bbuwgsl3ZWgw\nd0W5ska6jXt4/LKaErVxzexQ11abJxIyBqxL720ZdWuUHK4aD1p+jHv76FkaTeDbjFr1T8b4\nOpKluJqNwnxXfksvEY4TCYPFzxWpL3dBuVaf3uEeID/sC4vHjgFN2GKsosUfmTkC1sXPn143\n8e5KYZZsFVa21ag1OEAwQEcSo08zbEft+vfpKU0MRMbafTFLbWDw83PQ+K0adecuJzdm6fG6\n9W9GRK7gHjiwaU17uMvBCSUCVuaZUx+//9rzDp44eGDjmoVTR9zTokZ87rUwq7cbsRjXFxRi\nCM1QYDvq079PT7vVaInuVe6Zg5NRA5Z+E6ZzDw6na5OZu5rcySitv8lGfy4hzeQeN8i1yVAj\ni7sgChMasC6/uX5cx9pJ5FZk6Tp39hq3ECd0CXQotug5kRtSr84/NfUWOVxV6vwwTpcQYzSu\nSBgUzjag9tr+qSCNpnEPko+uNaOB3KMG+VrSAe6KKExYwMp+d0azcDlAmUrWaNyi/d3dHfQZ\nOHD4qCkzFqzejjm0ldCLFonakHp17onJTazhqgvClUDpyRG627EAhZxrSq20na8sfyUmXuQe\nJt9Mols0PqYhZb1UJ5u7JAoRFLC+f7g8kVShw+glu7mHOSTtjSxxWcyW1CVLuGpssISryl1n\nIlwJNpJGc29eCNSF5tRc80cjdqf13OPkk2ekm/BpoyWplM5dE4UICVif9DCQqfkUXIKET2da\nJ2JL6tC/T02x7rmq2m3mAe6tEIyOJkX+wr2NITCXWtEt2p+oZLuhhvb2QLh2ppRhGfeQgb01\n0s3cRVGIgID1c/8wKjsKX26sthsravEkVYVdfmlGMzlcVUa4Us4IGs+9nSEgV9pTI+3nK3kP\nxNPcQ+WDftSbe8DAUVPtFVDAASvr0Rgq+yB+iubWhvaKqAf9yHpvYesoIqliZ/wsqKgjiUV+\n597YEIBrZqqvi0Nfl1B77rHy3pNUQQ+hNaQsp1Tusigo0ID1c0uKTtP8r/shYL1UT0/71wP0\n05YexeQp2u9+EL9LK24YTebe3uC/6/dQbZ1MWFJV+oJ7tLx1oZxhJfdwQUH16RXuwiggwID1\nYjI12sk9qiBrpr3do8rIfHVqHUu4Smg5AZWniiMJMZjHVrcye1ENvUw3OEk/c4JMpi7cowWF\nLKR23IVRQGABa73RMAS/DmrDcmopqCa07FL6wGJExrqDV6PuVDOEpnNvd/BTVn+qqpvjE9MT\no//mHjDvfB6epJfUGlJq0HvcpeEooIA1i2Lnc48o5Kmjy4t5+eLKsV4xRPFtHsRnm6oOxced\n4d724JesQVRZR4co9qel3CPmnTY0jXuswIlZ1I27NBwFErAmU/IG7gGFfLPpHmFloUXvpiUQ\nFe+yGLuuVDeQHube+uCPrPuoop6OUtxjKq+Lk6FPUB3uoQJnMiqGfc5dHA4CCFjTqeQ27vGE\nGzIqhP1PXGFozIX19YjiOy5FuuJwMDb+LHcFgO+yh1H5x7mLxydt6Aj3oHnheg1pFfdIgVNT\naQB3dTjwP2AtphLbuUcT7E2k4QIrQ0t+nZpAYY1n4LRoLv1oDncNgM+yR1D5Pdyl45vV1IJ7\n1LywgVpxDxQ4dzwl/Dvu8rDnd8DaJyVu5h5McJBePDIoJyz6aWQExd6LvaWM9kcnnucuA/CR\nJV+V01m+ko8k/Q/3uHl0qZQJ+xa0aiyN4q4Pe/4GrHcjI7GTVGuG0oNCi0MTzkyMpOLDcVg7\nr160gLsQwDfZw3WYr048SIO4B86jxdSNe5jAlfSkKC3tZvAzYP1RWprBPZJQ0KHYhH/Flge7\nzDWJVGwkfhvktq9I0gXuWgBfZA3VY746cfymyD+5h86Dc8WK6OnEgVAzlKZxV4gd/wJW5p24\nDpMW9aCVguuD2fsNKbK/TqahDm499HICPVhlDdbd8Vc2Q2ge99h5MId6cQ8SuHYoLv4f7hK5\nwb+ANZsa4XQuDdptKntNcIFwujrNSC0wXbsmPB5500XuegCvZfajCvo6fzDP/siSV7lHz61z\nRWN0NLNYCOqrpcMZ/ApYbxiK6fN/3qDXnvaIrhA+X9SnpNncIwq57gm2vaPB7Nq9VFmvP2N1\n0Phn2Hzqwz1E4M7eyJsucRdJPn8C1oXKEiZw16YNUgPhJcJlTwy1xJ+KmrEnouRl7pIA71zp\nRNV0+7/Oeqkx9/i5c7F4kX3cQwRudaHHuKsknz8BazR15h5CcOEWel54jbC4NoYiJ3KPJtjp\nQqu5iwK8crEt1T7IXS7+a0RvcI+gG6uoO/cAgXs7jBWuc5dJHj8C1qthpXDYsVYtobbii4TB\n2daUso57MMHeLlPKFe6yAC/8k0oN9PwJPZt6cg+ha9fKmHZxDxB40EY7vzL7HrCuVJcWcg8g\nuFRD+kiBMlHbT7WpkW5/4whWnWgtd12AZ382pFuOctdKIDJKG3/iHkSXdtJd3OMDnmyQ6mZz\nF0ou3wPWHGrPPX7g2kPUT4EyUdmXZan9Me6RhAJ2mspo+/wusPixOrXU+f87aZqaychBdu2w\nTdzDAx7dRk9wV0ounwPWqch4HOOnYRkp4T8qUShq+uQmzDSjRR1pA3dpgAeflyGz3qfQORRT\nTKtTgjxNt3GPDni2kppzV0ounwNWZxrPPXrgziiapEShqOjTZGko9yiCE9vDy2EXlra9VYz6\ncpdJ4LrRRu6BdKENLeMeHPBCfXqdu1RsfA1Yz1M1vf99FOSOxMdpaCJbP3xdUhrOPYjgVAfa\nxF0d4M6T0VIad5EIsNVQUyvH0Dj6r1SDe2zAG/PIzF0rNj4GrMy6EhK8xvWlJcrUijp+LkdD\nuIcQnNtmLB9MVwoIOluMpmncNSJEKj3LPZZODaWp3EMDXqki/Ze7WKx8DFhb6HbukQMPHo9I\n0fEPOWdrUU/uEQRX7qLN3AUCrmTPoJggOcF7CXXgHk1nTkcV1/n5AyFjukZO9vItYF1MMW3l\nHjnw5G7aoVC1KO9aK5ykqmFbjRWwC0ujrvSj4kEzdVxl6Uvu8XRiIQ3kHhjwTkZK+Pfc5SLz\nLWAtoK7cAwcebQqro80jGLwwnG7G34ga1h67sDTqrxZUOXgujD6J0rgHtLDMsia9XuAx9Iyl\nMdz1IvMpYP1dNBoFpgO30dNK1YvCVlM5HV/jIwRgF5ZGfV6Zmh7irg5x0otFn+Ee0kLSqTX3\nuIC3jhYr8gd3weT4GLAepP7cwwZeWEatlKoXZb1ijN3MPXjgFnZhadKT8dQ1qE7vHkgLuce0\nkNb0KPewgNeG0AzugsnxLWCdjo0Por+Rglkt+kCxilHQLyXCHuEeOnAPJxJqUPZiQ/hY7soQ\na29Eaa3V2ZdSde5RAe8djE04z10yvgWsaTh/XidmUG/FKkY5mbfjGFLtw1xYmnOhJxVdwl0X\nonXQzgV7c42nidyDAj7opYX5inwIWH/FYAeWTmSUNmriFArfzKTGQfUrR3DCdO5a81Udqrqd\nuyyE2yA14h5YRxcT4o5wDwr44PGIUle4i8aXgPUQDeYeMvDSGBqvXM0o5KQhCadQ6EAHWs9d\nKmDncDy1PcpdFApoTCe5h9bBdurGPSTgE7MGdrZ7H7D+iY/FDiy9OJoQ87eCVaOEs2XDgmSW\nxCC33VSG/w9DyHV1LJmC7PCrXAu0crWTXLdKm7iHBHyy1Vglk7tqvA9Yj1A/7gEDr/WnRxSs\nGiX0ph7cgwZeMdMa7mKBXF/fTKVWcxeEQiqFaWmy0f9Sfe4BAR/dSQe4y8brgHWxeJH93OMF\nXtsXWeKyknUj3EGqlM49aOCVnaZSl7jLBax2xtLtB7jrQSmTaAT3+NoZjcsQ6s46qQH3lNte\nB6w11J17uMAHnWmjknUj2p/Fwx/jHjLwUmdazl0vYHGmB0WO4y4G5aQnRf3JPcT5LhWNxx+A\nunMr+5Tb3gas6+XDg+c6DKFgm7FqlqKVI1ZPGsA9YuCt3ZHJF7gLBnKeKkVVNnLXgpKG0Gzu\nMc63E1eJ06Hl1IK5brwNWPuoLfdggU9a0lFFK0eoY1QZlyDUj+60iLtiQt4/95GhV3D/T3Mg\nurhmfotuLm3gHg7wXV16nbduvA1YTaSguVB7iFgjNVa0ckQ6l2Jcwz1e4L290cXOcddMiDtR\nmsqs4K4DpXXVzIwgX0q1uQcD/DCP7uYtHC8D1svUhHuowEeN6FVla0eckTiDUF/60Czumglp\nv/Ukw73BOPmVo+3Gyuzn2dtMpgncgwH+qCp9xFo4XgasjoQ5ivRmAXd499o7YaUwR7Ku7I+N\n+4u7akJX5mNFqfIq7hpQw510mHuwbapHH+YeC/DHDOrJWjjeBawvwypxDxT4rKr0icLVI0Zm\nQ5rHPVbgm4E0hbtsQtZbjShq6HHuClDFGqkJ92jbVLyLeyjALxnlDF9xFo53AWskLnOpQ9Op\nv8LVI8Zaas49VOCjQwlFfuWum9D0ywCJUndwb3+1NKaXuQfcqkTQH+8WrCbRfZyF41XA+js6\nEXOA6E9GSvgPStePAH8mRIXM90XwGEEjuQsnFF2YE01l53NvfPUspLu4h9xqKPdAgJ+OlzRx\nfgt6FbCWUn/uYQI/jKaxStePAPfhIuI6dDTZdIq7ckLO9Y2lKC4tuOdmKKA680HKubiHAfw2\nmkYzFo43ASuzvGkP9yiBH44mFjmteAUF6v2w0tg9qkPjaAB36YSY7IPVyNQtxC5YNoN6cY+7\njHsYwG9Hk6J+4yscbwJWOrXmHiTwy2B6WPEKClD2bTSbe5jAD8fLGPRxDkWQyD5aj8Jab+fe\n7GrLKGP4mnvocxCw9Gw4TeYrHG8C1p0UEqcEB6GDMYnnFS+hwOyjxtyjBH6ZTp24iyd0ZB2u\nT1JqKE72PIGGcw9+DgKWnh2Oj+GbU8aLgPWpVJN7iMBPPWmp8jUUiEvljLgEhT5lVKM3uMsn\nRFzbWYOk29Zwb3EW6ckRP3OPPwKWrg2kGWyF40XASqOp3CMEftoTUfKy8kUUgAXUiXuMwE/z\nKZW7fELCueVlKez2UNx7ZZVGE7i3AAKWrh2MjT/LVTieA9Y/MZijQb/MtEGFKvLbH3Exe7mH\nCPzVkDK4Cyj4fT8pnkx3beLe1nyOJEb/yb0RELB0rS/N4yoczwFrNfXhHh/w23ZjxesqlJG/\nRtJ93CMEflsl1dbIpeKC1kv3GCiuV2ifxD2EpnNvBgQsXdvPdyyyx4CVXd24k3t8wH9tabca\ndeSfL40lsHdUx+6gbdwlFMzOra1FVH50qF+n81Bc3N/cm4J7DCAgvWgBU+F4DFgvUCr36EAA\nNoXVzFKjkPzSjaZwjw8EYEt46UvcNRS03rkvmgzNQmjWdpcG0CzujcE9BBCQ/dHFmHZheQxY\n3Wgh9+hAIG7XygXpC3tTqpLBPTwQiM60iLuIgtPpR+sQJfXGNaRkB2KLsh2knIt7CCAwPWgx\nT+F4Clg/G8tyjw0EZK3UIFuVUvJdc8Lf5/q2N7qo9q8VoDvXMrqZyNBkxnHuzasVfdl3YXGP\nAATm8aji/7IUjqeANYvu5x4bCEwzOqFKKfnsBDXiHhsI0CBdXO5SV94eU5yo9EAc+XrD/hju\nXVjcIwABupdpF5angFUz8gD30EBgVklNVCklX2XVkXCFAL07khz+FXchBZPPZlQiiu2wjHu7\nakw/ms27XbgHAAK0l2kXlqeAVfEu7pGBQDWhp1WpJR/tohbcIwMBm0RduQspaHw5tzaR6baH\ncGZtQQdii/KeSMg9ABCoHjyHi3oKWCVWcw8MBGoF3apKLfnmagVjCM+eGDQyKtOr3KUUFP47\npw6RsdEE/GLgTH96kHXrcPcfArW3SLFzDIXjKWBN5B4XCNzN9KwqxeSTx6g997iAAIvoZu3O\nA6ITma9PqSynq7G4rIELB+NiWKdz5+4/BKwXzWUoHE8Bi3tUQIBl1EyVYvLFxZImnIMeFJrR\nDu5i0rXzhwcXJzI1Hb+Pe0tq2RCayLmRuLsPAeM5UwIBKxQ00t4urMXUlXtUQIhN4aUucFeT\nbn22rJWJKO7O6Ye4N6PGHUmM+olxO3F3HwLXnx5Sv3AQsELBMs0dhXWuWJHHuUcFxLiHHuYu\nJ106vf++skRUvvtiTHjlWRoNY9xW3L2HwB2KZ/iZGQErJDSmp1QpJ6/Not7cYwKCHCga9T13\nPenNuSceaBBGFN1s1HbuzacT6SWN/+PbXty9BwE4fmZGwAoJK6TG2prOvUrsfu4xAVHGUnfu\netKTP49NvNlAZKjRe8kx7k2nI5M5q4y78yDAkWKRqv/MjIAVGppSuir15K0SA7lHBITJqEwv\ncReUPmR9snlwNbKEq6rdZuGoK99kVJLeYdtw3J0HEUbRULULBwErNKyR6mrqZPqGh7lHBMRZ\nItXN5K4ozfvu0JSWsZZwFVG75xyEKz/Mo+ZsG4+77yBCeinjlyoXDgJWiGhBe1UpKC9xDwcI\n1ZLWcFeUhmV+vndK62KWbEUl7xi+Aj8L+qsBHePahNxdByHU/5kZAStEbDBUva5KRXmHezhA\nqJ1RCX9wl5QmnXl59bDGUXK2Kn5Lv9mYRzQgq8OqXWPajtxdByHU/5kZAStUtKFNqlSUd7hH\nA8QaQoO4S0pjLn+wc3K7FDlaGcq0GDh3D/cWCgZtaDXT1uTuOYgxj+5Qt3AQsELFNlPKJVVK\nyivcowFipZeRXueuKa3I/vbYvHurG+RsFV+/87iVR7g3TtDYGVmM6ZrP3D0HQerTE6oWDgJW\nyOhCi1UpKa9wDwYItkCqp6WfoJlcfX/zqNQ4OVpFVm077BHsthKsP43j2bDcHQdBVkm1VD0f\nBwErZOyNTjijSk15g3swQLSWtJK7qFhde2/dffXDLdFKKtmsz/RNGdzbIygdSQ7/jGXrcncc\nRGlJG9UsHASs0DGAHlClprzBPRYg2u7oWM6LxbH6Ye+4WyIs2cpYqe39Sw5yb4lgNo1as2xh\n7n6DKNtMJc6rWDgIWKHjcLFIzVzShHssQLg06spdVQyyPl7dQz6UPaxcm1Er0rm3QfCrS4c4\nNjN3t0GYHvSgioWDgBVCxlJfVYrKC9xDAcJlVOObpohH9kcrzAmWcBXbuP8CTB2qjnXGMhcY\nNjV3t0GYgwlqXjoVASuEHC8vvadKVXnGPRQg3hpjGTV3vjP7dlOPJEu4Smo56jEcb6WirjSV\nYWtz9xrEGUu91Csc1MoRSgAAIABJREFUBKxQMofxYhOOuEcCFNCdRnHXlTouPDG6iiVcFb19\nzCbuMQ85B4uFf6r+FufuNYiTUVF6TbXCQcAKKY14jmAojHsgQAFHSoWFwGRYX61sG0EU0ei+\nNdhzxWE6pWarvtG5Ow0CLZQaqDZVAwJWSFlnqHBZlbryhHsgQAkLpOraKC+lXHtxYlUiKtN1\nHmYPZdOYNqi+4bn7DCK1oPVqFQ4CVmgx03xV6soT7nEARbSnadyVpZyzj/csSmRqnLaVe5hD\n27bI+F/U3vbcfQaRtkcm/qVS4SBghZa9cTE/q1JYHnCPAyjiQJLxXe7SUsb3q1qHEyW2f/gw\n9xjDcOqs9ubn7jIINZCGqVQ4CFghZqSap1C4xj0MoIzZUq0r3LUl3oezGxBRxV4rcNSVFmTU\noL0qVwB3l0Go9NJhb6lTOAhYIeZ4RellNQrLA+5hAIW0oSnctSVW5kvjyhMZ6g3HD4OascGU\n9Ju6VcDdYxBrPql06VQErFCzRKp9TZXSQl2FogPJhje4i0uci+mDihFFNpu4l3tcwd5gMqtb\nCNwdBsFup2WqFA4CVshpRUtUKS3UVUiaL1X6l7u6xDi9rXMUUXzbmThjUGuO16QtqtYCd4dB\nsN0x0arM546AFXL2xEb/oEZpoa5CU2e6j7u6BDi14nYDUcmui49zjyc4sTkq5hs1y4G7vyDa\nGLpLjcJBwAo9Y9Tev466CiVHytFR7vIKTPZ7M+oQSZX7r+UeS3BlLDVV5yAaG+7ugmgZtWmX\nCoWDgBV6MmrSQRVKC3UVotaYimliKhD/XH0mrTSRsUHadu5xBHea0YMqVgV3b0G4jaZivytf\nOAhYIWidscTfypcW6ipUDaM7VLsUhVhn9/aMI4puMXk/9xiCB/uSw55VrzC4ewviDaFuyhcO\nAlYo6k2DlS8t1FWoyriZ5jDXlz9+XCPPJZp099x07gEELywxJqs3oTt3Z0G849VUmE4NASsU\npZeTnla8tFBXIWtPouEkb3357L/zGknyXKIrMZeoXgyhVNUmnOHuKyhgvSlR8WMZELBC0gpD\nmX+ULi3UVehaEFZSheMbRMl6Y1IlorC6wzCXqJ5k3ELj1CoR7r6CEoZS22yFCwcBKzTdS4MU\nrizUVSjrTy3VPMkrAJkvjixJZLplPOYS1ZsDKbRTpSrh7iooIaM+rVS4cBCwQtPR8pSucGmh\nrkJYRmOayllfXsp8fnhxouiW03EJZz1aFxWp0iXluHsKitgRG/mRsoWDgBWiVhuLc/6Iw919\nUNi+EtIhxvryRtbJ+y3pKrbNbBzUrlczpBLqTJrM3VFQxnSqcUHRwkHAClWDqIPSvz+jrkLY\n6sjoj/nqy7P/PFBaTldzj3EPFARgENU9p0a1cPcTFHKXwsfKIGCFqoy6iv/+jLoKZZOl8n/y\nFZh7Py+uRRTVchb2XeldG2qrxqmE3N0EhRwpT9uVLBwErJC1I870npKlhboKcd2pxVW2AnPj\nyoH2BjI2mYJrOAeB9IbUJ0v5muHuJihlQ5GoDxUsHASs0DVTqnhWwdJCXYW4jKY0kKu+XPt8\nQhJRpeF7uEcHxDhUmUYrXzXcvQTFTJcqnFGucBCwQlhX6sJ1GBZ310EFhyrSXKb6cuHqvhZE\nsebV3CMD4uwpTQ8pXjjcnQTldKc2yl3ZCwErhKXXpIWKVRbqCnYkSduYCsyZXx6+iaj2A/hp\nMLhsv4lmK1063H0E5RxvqOCEtQhYoWxnguEZxUoLdQVrosOf5Cmwwt7tHU5FOq7jHhIQbnNx\nmqlw8XB3ERS0L4U2KFU4CFghbYmx6P+UKi3UFZxYaCryOkuBFZCVnkqUcv9B7vEAJWxOpinK\nHuzA3UNQ0oZYo1LX5kXACm2jqKqCR/ihrkLeg2FF/8NRYA6ubKpKVG8WruMcrLaWpGHKHUeT\ng8+rILcwPOZ9ZQoHASvEdaKWHOfSc3cb1DJOSvovQ4HZ+XdpKTK2XMU9EKCgneWoyyUFa4i7\nf6CsydJNXytSOAhYIe54Y+rHcCohd7dBNWlS8qfqF1i+v+cUowjzVu5RAGXtq01NFbz2F3f3\nQGFDqfyPShQOAlaoO1SZJilRWagrsBkmJbPtwzozI46ie2LSq+B3pDmVU+7Cvdy9A6X1pKq/\nKlA4CFghb3dJhskauDsNKhouFXtX9QqTyfEqtt9+7v6DGjJ6SNH7lKok7s6B4rpQdQUSFgIW\nbE6kNeIrC3UFeUZJsS+pXWE5OWdnxlHcAJw4GDKmRtIYhQ4o5e4aKC7DTFXF/0qIgAUn1sVL\nis0DgrqCEycmGSMOqFxh5+clUOyAQ9w9BxWtTaFGykw7w90zUF5GZyr/lejCQcCCEydWx0pr\nRVcW6gpumB0ZtkzN+rq0NImi+x7g7jao62ALit6gxDk73B0DNfSgm94TXDgIWGCxKk5aJLiy\nUFdgZ0VRGqbafCBX15aiqJ77uPsM6ptQhNp9L76iuLsFqhgqxWSILRwELJCtS6QH1Jytgbu/\noLat5ai5gufR27m+rTyZuj7O3WFgsbUuxay8LrqmuHsF6phqMojd046ABVZbSlGvy0JLC3UF\n9g42pdJvKF9ZWfuqkbHDTu7eApeMUdFU/1XBVcXdKVDJknjqd1Fg4SBggc2eqnSrOnsYUFeh\nKaOPFL5U4d2k2UfrUFgrTCsa0nbdTlKPU0LrirtLoJatlajOl+IKBwELch1uRqXfEVdZqCso\naE48tVNiNr8b2pLUYgN3N4HbwkpkGvubwLri7hCo5kgbitkmrHAQsCBPRl8pQq2TCbn7Cix2\n1qOkg0rWVclb13D3ETQgY0JxKjJRXMTi7g+oaGIUdf1DUOEgYMENs2Kp62lBlYW6gsIyhpio\n2y/K1RV+HASbo8MTKfJ+UfMacfcG1LSpOhXbJaZwELDAztYaVOKEmMpCXYEz66pR/GrhZ3mh\nrqCgIyOKU1inF4Qc9cfdF1DV8cEmavW5iMJBwAJ7x/oaqY+o3aOoKygsY3gRqvMC6goUlz6x\nIlG15QJ2ynP3BFS2qT4ZRwsoHAQscLSqIiWsVWwPA+oKTuxsKVGHj1BXoLyFqUYydTt+DXUF\nvpmWTPFzzwX6gYSABQUcGxJFNZX+nZC7k8BqWQ2Sun+MugLl7R6YQlRsxEuZqCvwxZHBMZQ4\n+6/APpAQsKCQnXdKdNtzgRUW6grcmVGBpI6voK5ABUs7xBElD3/mCuoKfLCvdzRFj/wikA8k\nBCxwYlUjosYHA/qbD3UF7mTMqEzUcKvIWZNRV+DCsdmtY4lium35GXUF3jswKJGkOx6/5PcH\nEgIWOLWssUTlFoicqw91BY7mN5Eo/v43UVeggvR5HZOJqO4D/nyocTceuKRPqkkUN/hZPw9L\nRsACF9a0MZHRfEDwLgbUFdywuXtRokoPfoC6AjWsGVTXSP78MM3dcGC0rmsiUeLAw/4c8Y6A\nBS7tHVqOKPrePWf8KCzUFXgjfcZtJqLyY54SE+S5uwNad2jWT6gr8M3xR9rHExmbz3nV18P4\nELDAnVVdk4kMtzz0Io6VAYUcnHRbJFHEHbNfvoC6AsWhrsB3x5fcW1GyfEylTj70nQ+Fg4AF\nHjzau2oYUXiT0bs+FTc9FnenQFOOzu1cjix/IjZM2/KB/6d6oa7AC6gr8M+eyR3KWkIWJbaa\nuPVt734wRMACz/ZON1c0WAorsmHf+Yc/+tefTyjUFbi3e6q5slxk4bV7zNr3/lnUFSgDdQX+\n2z+nX9MkkpW6Y9iig+/96b5wELDAO4cWDm1Z3mitrOQm3cevePzk53/781GFugKXjiwZ0aay\nyVpkiTf/F3UFCsDnFQRo78K0u+omWj+nqEiNNoMeXpv+xrdOf9/xFLBmTQXIN3lo19vrlY0P\ns5UWGRPK1Wra6j0/PrBQV+DKlBHdW9YvF284jroCBXjY54C6Au9MHNzljgaVkky534ZOP688\nBawSBODeKj8+sFBX4MmLqCtQwEnUFShgh7PCCf6AFZ6QkBDL3YhAFbF0IoK7Ea48HaofWPGW\nrWLgbkTgYi3dCOduhBOh+kUYFJ9YRFGWbkRxN8KZEK0ry+ZI4G5DoCQtd8JpXXkKWBW5Wx2w\n+EaNGlXlbkSgylk6kczdCFf8+cDSf11Z1LZsFU1+hfimqqUb8dyNcCJU6yrOsj2qcTcicCmW\nbpTiboQzoVlXkmVzNJK4WxEgg6UPDbkb4YpfAat/a7273bJNbuFuRKCaWTqRyt0IVz724wNL\n/3Vl0diyVe7kbkTgmlq6cTt3I5wI1bq6w7I9mnI3InCa/cwKzbpqJQcs7kYEStOdcFpXngKW\n/r1q2ST3czciUPMtnXicuxFQgNmyVU5xNyJwwy3deJ27EZDvbcv2GMLdiMCtsnRjI3cjIM9V\nOZtkcbciQP/Kf3twN8InCFi6gIClRQhYoAAELBAPAYsFApYuIGBpEQIWKAABC8RDwGKBgKUL\nCFhahIAFCkDAAvEQsFggYOkCApYWIWCBAhCwQDwELBYIWLqAgKVFCFigAAQsEA8BiwUCli4g\nYGkRAhYoAAELxEPAYoGApQsIWFqEgAUKQMAC8RCwWAR/wLp+7ty5i9yNCNRlSyeucjcCCvjX\nslX0/pFlcdHSDadXggcWQfGJlZNzxdKNK9yNgHyWzXGOuw2BytZdJ4I/YAEAAACoDAELAAAA\nQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMGCOmB9aLYzgbs1vvtsmNns\nMAPkz5vG9u46YM6zmVwtglx6Ly0UlyahrEA83VeVjosqqAPW67ourOvbO5kd6+pQl9y+pP3O\n1iqw0ndpobg0CmUF4um8qnRdVEEdsJ4xm+fszfMMd2t89O1os7mrQ10ds1TUw4ee2DbEbB58\nnq9hkKPz0kJxaRXKCsTTd1Xpu6iCOmAdMZtf5G6Dv050NXc7ttK+rn67x9zlHXnhyjyzeTVb\nw0Cm59JCcWkWygrE03VV6byogjpg7TKb3+Zug78mmEd+m+NQVxvM5r22pcv9zJ3/ZmoXWOm5\ntFBcmoWyAvF0XVU6L6qgDljrzOZPuNvgrwnrruY41FVmX3PXf3OX95jNR5naBVZ6Li0Ul2ah\nrEA8XVeVzosqqAPWUrP5W+42+MvacPu6+sJsnpa3/JnZ/CBHoyCPnksLxaVZKCsQT9dVpfOi\nCuqANdts/oO7DQGxr6snzOZtectXO5l78rQIbHRfWiguLUJZgXj6ryr9FlVQB6zJZvP5l+cO\n6NJr7LbfuNviF/u62mo2P5F/R39Lz1haBDa6Ly0UlxahrEA8/VeVfosqqANWmtk8MnfCjC77\ns7lb4wf7ulpuf5zfGLP5R5YWgY3uSwvFpUUoKxBP/1Wl36IK6oA1wFJRvZYfOr5hsGVhN3dr\n/GBfV/PN5nfz73jAbP6KpUVgo/vSQnFpEcoKxNN/Vem3qII6YN1jNq+/KC9c32SprK+5m+M7\n+7qaazb/J/+OaWbzFywtAhvdlxaKS4tQViCe/qtKv0UV1AHr4oWLeYvzzOYlnE3xj8vgPlHr\nwT3Y6b60UFxahLIC8fRfVfotqqAOWHa+Mpt76u/XZ/u6WmH/0/Nos/lnlhZBIfosLRSXxqGs\nQDydVpV+iypUAlZ2N7P5HHcjfGZfV9vN5hP5d/Qxmy+wtAgK0Wdpobg0DmUF4um0qvRbVKES\nsHJ6m82nudvgM/u6esZs3pK3fNFs7svTIihMl6WF4tI6lBWIp8+q0m9RhUrAutrJbL7K3Qif\n2dfVN2bzpLzlD8zmOTwtgkL0WVooLo1DWYF4Oq0q/RZVMAest9fOeilv2bIlRnG2xT/2dZU9\n5MaFLdeZzc8yNQlk+i8tFJcGoaxAvCCoKv0WVTAHrOfM5rTctJ49zWzexdsafzhcRHyX2bzV\ntvRXd3P3iy6eAmrQf2mhuDQIZQXiBUFV6beogjlgXelnNi+wXnf76mqzucc/3O3xnUNd/dPL\n3OkVeeH8ZLN5H1ubICcYSgvFpUEoKxAvCKpKv0UVzAEr553OZnPvdceOrx9gNnd6k7s1Pvls\nr2ys2bxI/veodd1Lnczmhw5krLf8/zLxOnP7Qp2OSwvFpV0oKxBPz1Wl96IK6oCV81af3Esw\nmfu9x90W3xwy2+tvW/ncPbm3H9L2qamhQL+lheLSMJQViKfjqtJ7UQV3wMq5cHzmgG73DJ7z\n5BXulvjIaV3l/Ll9XK9ugxe9xdo0sNJtaaG4tAxlBeLpt6r0XlRBHrAAAAAA1IeABQAAACAY\nAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUA\nAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIFZcB6i4iW\nurn/Q8v9C92/xI8jqxQJT37Y7rW8eJKzR3v1NC/bDSHvhKVEtnM3AtTBurHxYRTs8stLwPcl\nuICA5dRHCSTri4AFmoKAFUIQsEBBCFgqQMBy6hY5XhnCEbBAWxCwQggCFigIAUsFug5Y7aia\n0/XfjRo16gU3z/NYML9bHhBzKDPnot1reVVlhR/t+Wk3euGp3RDyELBCCMPGxodR6Mgvr4C/\nLwtw9b0civQcsLIT/NyQHgvmXcsDxvj6JOeP9vg0v3sBIQgBK4Sov7HxYRRCvC4vHwMWisiO\nngPW/0ipgCWX3mZfn+T80R6f5ncvIAQhYIUQ9Tc2PoxCiFIBC0VkR88Ba5diASvd8oB9vj7J\n+aM9Ps3vXkAIQsAKIepvbHwYhRClAhaKyI6eA9aooAhYfvcCQhACVghRf2PjwyiEKBWwUER2\n9BKwfl7SsXycIa5S900XbCu2U56bLLfetPz7Ss6ZseVNxb8scFZEoWd6Kpj1+a9caJqGRZZ/\nxtcvbkq5c9X53Ee7eGfnActDLxzanXl0eO3k8ITKndf8kbfqPcv9L+XknFnQON6Y2PCBb/0d\nTFDT1b09aieaSrRacsZupZOt+4xl6z6bk/PqgNpJEWXuXH/+xoOzj3SvEJVQa+BLCFjBz+XG\nfnlcw+TwYjW6786vjNzPg88GlzNFVRn2qbwq61DbJGNCk3n/2L+ky2c6fpK4+TBy8iEKuuSs\nvLz5vnTy1WdVsLYci8jpQ6y+mdeubIwhtpJ59Z/KdFQj9BGwrk0Jz99uScesqxw3pFwCT5yr\nId/80KFgnDwzgIC1JPP+vLvKnLzxWk7e2VnA8tgL+0J/rnr+XdEzM23rPrPcOJFzsEju+vBt\nAoYWFPZ8+fztuCZ/pbOt+6rlxv4bBVb+jbwH/9Yyb13bfxCwgpyrjf35LfkVU2J/7jrb58Ec\nybbauCcn59d6uY8p/b/8V3T9zAKfJC4/jJx+iIIeOS0vb74vnXz15TirrUIBy1n55VxOC7vx\nAbg4W/l+s9FFwMo2W7dEXNmi8j/SIXnds61aRRMVadWq1b2WW19a1h+YZH2UQ8By9kxPAetE\nq1Z1LQ+obXnphQUi0/I0+dMowfqJFvOB9dEu3tlJwPLcC7tC32awlnLDaib5327XrCu/tiwe\n3GcpTVOiUV4d9prAQQZF7LJuSEOkdduPz13pdOu+Y1ncPM7ynwjbLLcx/7U9+Lz1SzOhXg3L\n12GzY4SAFcxcbeznYuX1pRtWsVbOIttK6+fBcstnSUKEvNb05d+VLDkr0fqQermx3c0zC36S\nuPowcv4hCjrkvLy8+b508tXntLYci8hF+WW3lW8Yy1SKt77dBPUGQHW6CFiPWTZC8gb5F5av\nR1gW4/+2ra5147feU5bV62KpxtSl03+wLxjnz/TlGCyHyNSTDCM/ys65cqyy5UaDbDfv7CRg\nee7FjXa/bSnHsAd+sixd3H6TZe0s69rv5deKl4Z+lJNz9QU5BLb0bzxBNe9Y/iCMmP1NVs5v\nK2LkKG5d6Xzrvm9Z6keGB77Iybl0oKwc8W1/2U2Qs9gTlu/LKwfLUhsErKDmYmOfsnzhhY39\nzrJ07jH5u++wda38eTAnquhj53KyXq9jWR4xnBo+l5lzcY/8pZaR4+GZzj5JnH4YufjgAv1x\nXl7efF86+epzUVv2ReTiIfJursbPy39X/rpaXvumCl1noouAVdGykf6TuzwqvxjsN+QPlrV3\n0gO5+xpvFIzzZ/odsEjKXXta/gJMd/POTgKW517kPzu7lt336Bdxlj80v5OXfrSsjZb22Fb/\nmWBpTnD/fh0EGlr+UHvZtvhiGFFZeb+Ci61rLTDK/aPx9xJ5n0a/RvyfvfsOjKJa2wD+zm6y\n6YSE0AmE3iIdgdBBiujSq3REkCIiKEWR3kEUkCIISBXpBHu9ls96rVfEXq/XLqJ0SPLNbLKb\nTTKTbTPzzsw+vz+us8tuds45zz3z7uwU8Rvl57nP/lCRUGBZmdJgi9tC9//vcz4RE1PlgrQk\nzQex8R+4nv0+miheyDjverBb/Idbcny8U24mkS2wFCYuMB2FePmzvZTZ9Clkq0CBJf+SzkTl\n/8l79otSRENUbqeBmKHAknYSdXA/+EF80C130WsgpWepvfu3XE9gFN4ZfIF1k/sV0hQ2pJhP\nLlpg+dEKz7tfEBd6eNZmhfRF1fNZ491PTxQfPFtcK4DdS+R1xdox4oMnchRHt2DAHhEf9JcW\n1osL97iffRQFlqUpDPa74sIoz4seFB/tkhZc88GKvGd7isu2U7nLl+OJrs3x9U6ZmURuMlKa\nuMB0FOLlz/ZSZtOnkC3vECm8RPz2OMzz7Oqm/Zeo1D4DMkOBlXPx2zf/43mQSlQrd6lwgfWM\n+yX5Fbn8O4MvsN5xv+JyLFFSMZ8sswfLdys87x6dtynO9audqJ77swTPuYPSftbCV0MFY5EO\nDD3pfvB0pUbX7ctRHF1XwN50P31RDFjJrBzpvhNEp9zPXi2FAsvKFAZ7irjwiedF58Vo9JYW\npPnA4f7B7l7yOmSgOVGFHB/vlJtJZPdgKUxcYDoK8fJneymz6VPIlneIFF6SRNRLzXYZmCkK\nrAKaEJXOXSpUYMVfcb9E4eaVnncGXWCVz39JJ/Hhj8qf7Os6WLKt8Ly7DlHU5fwXNxO/m57N\n+6x0z7PPiY/WFNcKYFfT62xlD4XRlZJSMf/p9uLD73Jc3/bK5D87CAWWlSkMdiOial6vEreT\nydJ/pfmgpftJ6fCZhe4HTqKEHB/vlJtJZAusAvInLjAdhXj5s72U2fQpZMs7RAovaSx+MXg7\nxLaYhPkKrBZEpXKXChVYbT0vUQiM551BF1heO8dvER++oPzJvgos2Va4333WRtTQ68UjxOff\nyPusoZ5n/89XK4DbRXEg2xR+Uml0paT0zH9aCtiLOTmnxf9k5D+7EAWWhSkM9nkxMV28XjZd\nfP6nnNz5YIz7yW3igwPuBwPEGj7HxzvlZhLfBVb+xAVmozSX+LO9LLrpU8qWV4iUXrJa/G/M\n7K9UaJLhmaTAunhgbIuyMZRHvsAa7nm1d2Dk3hl0gTUp/yXz8+YzhU+WLbB8tcL9bukk6t5e\nqyPt/T+a91n596B+AwWW0UkDOVDuSbnRlZIyJf9pKWD7c3JOif8ZkP/sDhRYFqYw2NL/72Or\n5Evy+sI1zfvFnkMyB+UVWMW9U24mUSiwZCcuMBulucSf7WXRTZ9StrxCpPSSy61df73OxEOW\nPyPVHAXW3grkTb7Amux5uVdgZN8ZdIF1d/5LVooPtyt/slyB5bMV7ndLhwbmHwSYk7NcfLwz\n77OmF/gsFFiG9h55H+OZR2l0paTMz396lfhwW+41t0fmP3sABZaFKQz2R1SUdNinNB/MdL9Y\n2ly+5H7gLrCKe6fcTCJfYMlPXGA2SnOJP9vLops+pWx5hUjxJWeH5T2yt15v7RrLFAXWItdY\npLXuOVSUolRgFZwwVhXzzqALrMX5L1krPtyk/MkyBZbvVrjf/Sp5zrJ2eUDxs1BgGdrrhQbS\nRWl0paQszX86L2CvFHw1LjRqZQqD/YbMdupwjj8FVnHv9LvAUpi4wGyU5hJ/tpdFN31K2fIK\nkeJLcnLeGl4i74nEhVdzrMsMBdbz0uVjJ32X90jxGCyZMkfhnUEXWPPyXyKV8fJ7lRQKLD9a\n4X63tOMj/wiJnJyl4uPdsp+FAsvQPhCHaEThJ5VGVyZgj+Re331k/rN7UWBZmMJgf0zehyHk\n811gFfdOfwsspYkLzEZpLvFnezkv/315mz6lbHmFSPElksvPT0vPLbFuuBBkg0zADAWWdMXZ\n+z2PmgVQYCm8M+gCK/8jXD9Ey38XVCiw/GiF+91fU8HTWO+h3Aszo8AymW+owHHruZRGVyZg\nB3PvGud13MRGFFgWpjDY35P8ae2+C6zi3ulvgaU0cYHZKM0l/mwvi276lLLlFSLFl7j9tLWN\nVGEtCqIxJmGCAks666pq/v0gK/hfYCm9M+gCy+uAZelUiv9T/OSiBZY/rXC/+7ydqIHX6gwR\nn39X9rNQYBna5UiiRoWfVBpdmYC9npPzMxU48+cOFFgWpjDYl6OI6su83HeBVdw7/SywFCcu\nMBulucSf7WXRTZ9StrxCpPgSL4ejieLOBdwWszBBgSXdTnm059Fn5H+BpfTOoAssr7BIdyX/\nQ/GTixZY/rTC8+5riByX8j8rPe8hCiyzEQfXcd7z6NNTp6QbECqMbqGAdRAf/iL+t2SBa9d0\nQoFlZQqD3Zwo8kzRV/susIp7p58FluLEBaajEC9/tpcymz6FbHmHSOkl3haIf+7lQFtiGiYo\nsKRfjm/3PJoaQIGl9M7gr+T+vfsVl2KJKil/ctECy59WeN59K3lu1pqTe2fWVvKfhQLL2KT7\neR13P5B2mN+aozi6BQMm3e3EFTDpjGbP1ZfPRKLAsjKFwZ5G7tuQuHyat83yo8Aq5p1+FliK\nExeYjkK8/Nleymz6FLLlHSKll3z3Xf6TzxaYDq3GBAXWZ94/5L7nEB/F5i6LX/1T856WL3OU\n3hl8gVXgRk7MZLYaAAAgAElEQVQTlD+5aIHlTys8736TvC/QNlN8tFn+s1BgGZt03k479wPp\nwgvS/ZsVRtcVsDnup/dT3kUkF3pvRRcTCiwrUxhs6XT3up5zrS5UiuzkOhfLjwKrmHfKzSQy\nk5HixAWmoxAvf7aXMps+hWx5h0j+JdNSvK7NnbOPvO4QZjkmKLCuJhCV+Cl3+eMKcRniePzu\netCMKDLvntzyZY7SO4MvsGLfzX32dA3xwSvKn1y0wPKnFfmny7ai/PsMviEmvdTf8p+FAsvY\nsqWBzDvD+WQiUTnXT4Pyo1sgYGeqUt6O808EoriPc599Mw4FlqUpDfZ14tK4vKNjLg+gvGu2\n+1FgFfNOuZlEZjJSnLjAdBTi5c/2UmbTp5At7xDJv0T6pvmge52uiB9TwrqnEZqgwHLdS6S1\ndF39HxfE0IOzPbNBX2nwfr36zZ+KZY7CO4MqsP4tLnSjkpukjeGbjcUHXV3/7vdZhH60Ir/A\nOhlNZJvxs7j01wMJeTs+UGCZ0DvSfvjBb57P/maFdN2X3N3l8qP7vnfAGpDnvvYDxcWU7eKz\n3yyKo9EosCxNYbC/jhcXO70qbqkuHGjqiYY/BZbyO+VmErnJSGniAvORj5evoVbY9ClkyztE\n8i/5u6y4NOJ16X6sZ5+UyrgZunaCrsxQYH0hDZK9ZpuaNqJR2Y9L5XT9Fp/l5GymXM8pljkK\n7wyqwJIWtowRi/NajaV8UNncm9H7XWD50QqvK+oelHbQCtWaVrdR/j4QFFjm85hrACn3f90H\nOMiOrpSU+4fkB6x03lEP/63kem9JsSqjztJl4LexNAT0oDTYz0mzB8XVKCNdqYjq/eJ60p8C\nS/mdcjOJ3GSkNHGB+cjHy9dQK2z6FLLlHSKFl7wYJT2wV6iS4Hph6/OF19M6zFBg5Tzjvuir\n/d6cnCsNXIv/EWvidF8FlsI7gyqwXpaeuzI27+9R3Y9y/93/K7n7boX3PaFeqe/+JKrsvocr\nCiwTerGGexwTPLvFZUdXSsrqS6Pcz9f72P3iUw3cz/X4W7qI1ia9mwD6URrsD9p4EiOMPp37\nnF8FluI75WYS2clIYeICE5KNl6+hVtj05chnyztESi95q57nSYqYauH6yhwFVs5P9zRNtCc2\nudP1venHQaUiKwz8VVz67daK9uiq/b9ULrDk3xlUgfWkuPBUTs67tzVMcVTsuuVi3kv9L7B8\nt6LAXc2zDt9cr1REcp0Rez2n9KPAMqMLjw2sU9JRrtPKP7yelBldKSkrxAlpWqPSUZW77PA6\nLOHKI87K0SXrjXoxJ+cv8r4UIFiP4mC/OLVJOUdshevmu/cf+FlgKb1TdiaRnYwUJi4wIbl4\n+RpqhU2fS9FseYdI8SXZT01sUTbaXqJaz/t+1LC1/MxRYAFYns+yHwAATAQFFoAhoMACALAS\nFFgAhoACCwDASlBgARgCCiwAACtBgQVgCCiwAACsJIwLrNXd5K3kXjEISyiwAACsJIwLrJEk\nbyj3ikFYQoEFAGAlKLBQYIEhoMACALCSMC6wAIwEBRYAgJWgwAIAAABQGQosAAAAAJWhwAIA\nAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAA\nAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQ\nGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWh\nwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQos\nAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIA\nAABQGQosAAAAAJWhwAIAAABQGQosBldOPVfUa/9wrxZYz+V3C+fsW+5VAmv4ssgU9p9s7nUC\n8/nfi0WC9NLP3CulGhRYOvt858QW0SSJrlinaRtRi/TUeOmxvenMl65wrx5YR9bbizrGSMmK\nq9IgQwxao7QS0qOa097gXjMwtyv/t6RHspQloVSNxtIc1rhaovSw9NCD57nXDUzk1PoBFV0b\nw8TK17QSc5TRsJorV1R19L7fuFdOFSiwdPTFpoHlpEqqcrvhs9c/dsLLgfunOmvZiUrd8ir3\nSoIlXHl6bFkxa6mdJ6zcl5+zfUtGNnUQ1brvNPf6gVn98FDvBDFZKRnD7tl8ND9a+1eNbydW\nWSVueY97BcEUrjw3sYqYo4Smg2auO+i1LTyycdbARuIXQ3vHTb9zr2PoUGDp5OzxCVWlSr3l\nzSsOnZB3YE5XcYaqu+Es97qC2f17cmlx6uo4fZdMzA7f0yaCEu60xhdE0NepJU0FojJdpu+Q\nm8EyV/dJJmr/LPdagtFlvzq+FFFsy1s3ZspuC4+tuqkGkaP/c2b/1RkFlh5+2NA9mii6+bgH\n5ePkcXxehp2SF57hXmEwsX82Nxarq26LjinGbM/QRCqx9AL3ioK5fL24AZEtfcymYmawY3df\nQ9TuTe5VBSP7aYlYPZXovvBoMUE6ceLh4RWJ6m27xL22IUGBpbmPF0tf+lL7Lik+Tm6P9I+j\nlLWXudcaTOqr20uQrdlsH2E7PCaeqmNPA/jtj40ZAtmbTNlXfLBEqxuTMPIX7vUFo/q/QZHk\naDdP+fufR+bSNnaqtP4i9xqHAAWWprLfnlVL+tJ38xa/iqtc+wdHU53nuVcdzOit/nZKHLjd\nj5Ttu8EmjMOZq+CPq08MiCIhfZLv6splUWVK3s29zmBEWQdbEFUc+6i/G8NtNzqoyh7z/lCI\nAks7V/81JZXIce3te/1Nk9uuLgKN+pN7/cFsnu9IlDb1iJ8pW51KtXBEMvj09ZxKRBWGbfN/\nAjs2Jor6/8G93mA0l7fVJKHpQh8HyhS084YIam7aE59RYGnkwombSxPFtJl5IJAweaxOo0rP\ncbcBTOXpVkTp8wOYvA7fKETv4F5rMLYrR7rZKLrLioA2iidObK5NlU27VQRNXN6aRhGdHgws\nSKItGSTcYtL9DSiwtPDH7v7xRCWum3s44DC5HR1st83EZbHAX89nEDVdGWDKZsfSnVncaw7G\n9d95FYhqTAriW+KxgYLjIe7VB+PI2lWNIro/HHiSREsqUbkj3A0ICgos1Z1a3T6CqIxzyfGg\nsuSxqgy1x6Gi4Jc3Oorl1X2Bh2xjeeqLa0OCvBf7RVB09weCnMDmx9PtV7mbAAZxIl0sr/w5\nOFTWkSERNMyMF+9DgaWq809Oqk4kVL9pbbBJ8vJoc6r8PneLwAQ+7kXUYFVQIdtbl9r9zb3+\nYEDnHkonSr31Md8ZUvJQReqN6h1E/+5AQvtAzvQqYn01qmLCq3CjwFJN9keru8YQRbeY9Ego\nQfKSOUiIf5y7WWB0P4yxU61FwYbscAtq8Rd3E8BovpuRRLaMJQEeeVXIvnRqY8bdDqCuH0bY\nqFGo+xyO9hcilprudEIUWOr4Yecw6S44lXotDP6wKxl3OezbuJsGhnZ6ZgxVnB3ChvBoW2qB\nK9uCtzcHRVBC/6B/0PE4nEFNLHC/EwjF+YVxVHl+yFk6cWJxEjnNVq+jwArdbwcn1JZuqtRm\ncgAnMvtpeZywhrt9YFyX15aipEl+XLOvGMfaUptz3A0Bw7h6KIModZLSHb0CcrwjNUSFFdYO\np1GJiaHNUG670qnmSe72BAYFVmj+PHZ7A4HI0WjkmtD2pitZX5KWcjcSjOpITYq+6aDvFBXv\nWCvqgVsHgMu5DTWIGgVytY9iZXahxmbb6wDqOdWF7E6/Lyvqy7FeVOJJ7iYFBAVW8P558s6m\ndqKIekOW+XttxyBsTqHF3C0FQ3q7Ldm6yd3POVBHGtAY7saAEfw6L4UiOq9XIVNumZ2oFW4Y\nEKbOznBQg40qpunE1Ej7Ru5WBQIFVnAu/Wtu60gie+3+C0PegeDDlhRaxd1cMJ7vbhKoSeBX\n7ZP1WFVU8ZDzzaRYiuu/U51MuR1vQ92wfzQsHUqllJnqpunE8gSaYaJD3VFgBeE/93WPIxKq\n9ZkX3GXaA/RQsrCVu8lgMGdmRVPaQtUy9kgp4QB3k4DXhzdFUPLoEC7LoOBoYxppok0iqOSr\n6ymij/q7HzaXp5HmuQI3CqwAnT4wphIRlb9+lp83PlXB+gT7Me52g5Fc2ViGkm8L8Uq2BTwQ\nFYtrroWzV3oIlHr7URUj5XGgGs3jbh7o7NKiGErfoEWcdlenXhe5m+cvFFiB+GSldJH2uIxJ\n6p8uWKyVjpj/4247GMfjdSlqsMrfDWcK1Ux6uy8IWfbjrYlq3a3NeTonTuxMEfZyNxF09a86\nlDhVozztT6frzHLaMwosf2W9elcN6XfBgSvV3HHgpzm2lC+5OwAM4r1OJHTeoXrG+tKN+CEn\nLF3d35Co0RLVE5VvXUz0m9ytBP38OkIQumr3E8/hZtTeJCdOoMDyy9XnxpcjcjSfrPIBoH4b\nR3VxuW0QfTfMRg3VuBNTYcfSaTl340B/l7bWJCHjfg0S5WWOUPEn7oaCTrK3laIqgd53PiBH\nW1Dbs9zN9AsKLN+y/nVraaL4Tnercum9IN1I1+PGqXB6RjSlztMmYjtLRr7O3T7Q2dn7K1FE\nZ1XPpJc1lNqa58hkCMXHbShqlCYH8+UTK6wOpviVEAWWLx/cWYkoocsCjRPjy7GGNIu7K4DZ\nhdXJKh/bXsAioSrumRNW/lyYQo4b9TiiNLMFTeduLejg3KxIaq59osQKq5sZjnRHgVWsn9c0\nIIrtNI+5upLsKyMc5u4O4HR1R2WKHablZdf60AjuRoJ+/ndXAsX236NhoLzsLy8c5W4waO6J\nqlRqth55OtKI+pngNx0UWMquHO8ZQfZmd6l6++bgrXUkfMrdJcDnWH2KcGq7NTxajQ5xNxN0\n8tWtUZQ4fL+mgfK21pH0DXebQVs/9CVbL10uDnnixKG6dLPxz8pBgaXkm3sqEFUes1uftPjj\ndrrmPHevAJOXWpHQYavWEXswsvQv3C0FPUhXFS09TtejSidQSxyGZWWXV8dTLS3Ov5G3P41m\nczfZJxRYsrJO9LBRTLfVuoXFL11oPHfHAIu3riNqvl6HiI2ivtxtBe25rio6Ve8DH1rTHO6G\ng3ZeSaf4iVpdSk3OzrL0IHejfUGBJeO35WlE1SdpfZPBgB2qjF9wwtEHvQRK1/S0Z4/jtQm3\nzLG4rGMZWl5VVNmjKfZXuRsPGvlpuCB00ul4PrfNJezHudvtAwqsIt4bE02OzvfpGxX/POhI\n+o67e0BnH/cTqJZ6dx30YWNk2T+4WwwaurStLlETLa8qqmyJUPVv7vaDFi6vSaS05boHaqUj\n7t/cTS8eCqyCrh5qR1RmpH73GQzMeOqQxd1FoKdPhtio2hwd9zYMpZu52wya+WtFBbK30+84\nmUL60FjuHgANPF+P4sYeYwjUTKHCD9yNLxYKLG+nV1UhuuZuhnvh+CmzKa3i7iTQz8nBNkqb\nreuPOUdThZe5mw3a+O9dJSjqhof1jFNBhysLT3J3Aqjt674kdN7Fk6gR1NjQFxxFgZXv80nx\n5OiynicoftpVIuo/3P0EOvlokI2qzNT7WJkVQr1L3C0HDbw/3EGJQ/fqHKeC1tgrnubuB1DV\nP7OjqSbf6WAdaYCRL9aAAitP9vM32ihpqM5H6QVuNjW5zN1XoId3+wiUpnt5dUI6WXUZd9tB\nbdlPXUdUYQL7Nf0G0RjurgAVZT1cnpKmMsxSbodr0yLuTigGCiyX81vTiapPM8AF231qZ+g8\ngUpev0Ggagxneon2JsR9z918UNWFrfWJ6ur7W7O8I5WFZ7l7A1TzbANyDNDpyqIKdibbHufu\nBmUosETfzSxFtoxlrDHx276S+JHQ8l7oRFT7Xq7t4SQazN0BoKKf55UhWxuDXNRvta2aoQ+a\nAf990I2EdnrcybL4REWW/IK7JxShwMp+rred4vuyx8Rvs6mFCe7BBEHLPt6C6JpFfAk7Xg3H\nuVvHeyOjKLaXcea3nnQXd5eAGr4eZqN0I1zOaBI1MGzNHu4F1u/31SJKm6TrLSNClUFruLsN\nNHNldzoJzfW5rKiS5UJj1PCWcPVQe6JyYx9jjVNBB0tHvM/dLRCy/01yUOV7ucOU6zoayd0d\nSsK6wMp+6aZoimhrkt8GPXbFx3/L3XWgjfMbqpKt7TruiLWjrdw9AaH7bXllA1525l5qgYv5\nmdxvM2Kp9O1GCdbhaoadr8K4wPpmQTXxy91IA93N2V+30Y3cnQdaOL20LEV0fYg7XydObHeU\nwyW3ze6dUdHk6MJerBeVQZu4+wZC8dvseEoad4Q7R/m2xMV8yN0p8sK1wPpjS3uBHO0WGeC8\nmsBl1sc9CS3ofzNKUHSfR7jT5TIQ9+U1t/PbryUqM8qQt6TYEZ30K3f/QNB+mRFPiWOMdVTN\nLKr9D3e/yArLAuuvXTc6SKgzcT93LIK1IaKSMeMEQfv8lihKHGqUDeKBxNj/cvcIBO3k7Ukk\nNL3XKD/hFDaaRnP3EATp+ymxlDj6IHeECutBI7h7Rlb4FVi/bu0RRZQ6dAt3JELRn+7k7kdQ\n078H2KnMeAN9K5yAWxKa1dlHWhOV6GvgCe5oqvAGdy9BMD4eGUkpYw00T7kdrkq7uTtHTpgV\nWB8uy7CL1dXg9dx5CNHB0pEnufsSVPPcdURp0zhulqroaEU7EmZGr99SgoRr7jTQATIyFlNT\nHOduPs9fL1CFycaM1qboEl9x94+MMCqwzhwZl0ok1B65kTsLKphNHbn7E9SRdaApUfpcox0N\nOIt6c/cMBOq7xbWJkvsb4DQJH1ob9rQvUHBhe0OiWrOMNk953EatrnD3UVFhUmBdfWNBmwii\n2IwpJjxpUFYjeoy7U0EFFx+qSUKLVdxxKiqzJuFnHFP546H2NorIuNdQe0IVbHOU+Yu7vyAA\n399dmoSWhr6iUSuaz91LRYVDgfXphj6JREL1AcvMcK9BP22MqGzYq9eCv86sKEcRnY25S3UR\ndpKayJndTunEnVuNcpaEL4NpOneXgb+ynu5tp7heBj6qT7IvOeJN7p4qwuoF1q/7xlQmopTO\nd+7hHn+V9TZivQ6B+HlWIkX32sGdJCUN6DnuHgK//LmzV7TJTtw5lOIw7g3kwNuPS6oRpU00\n3ImDRSwQahtup4OVC6yLL8xoLBDFthi/iXvoNbA/MfZ77h6GEHw1IZoSbjLwHodV1JK7j8C3\nHzZ2iSSqOGg9d14CM436cPcc+Hb5qDOCHB1XcMfFLzfSZO7+KsyyBdbn62+II7LXG7rKDIck\nBGMiDeXuZAjaB0MiKOUWY38rbE6Pc3cTFCv73flNxe+QaUPWc2clYJk1CXcUN7r3ppYW0zXO\nwN8CCzhUUXieu8sKsWSBdf7JydWJqHyPOUa6yanajqcJb3H3NATn1R4CpU41+iGB9wvNsrl7\nChT9c/SWikS29Ju3cgclKMupGS7VYGTfL08niu+xhjsoAVhlq3KGu9sKsl6B9e2GG2KIoprf\naqIDEoKziFpj+2dC2SdaE9W+27DnO+drSce5OwvkfbbmuiiiuLbTzbJ3oagM2sPdi6Dk901t\nbRTRfKYxL3qlqB/dwt1zBVmrwLr6ysxriKiCc+Fh7pHWQ3M6yN3jEKir+xoQNVrCnR2/rBWa\noIQ3nkvPTqkhTnOpfZeZ+vCHzRFpF7m7EuScfuT6SOmUVPOdGHY4VXiWu/cKsFCB9cvOQUlE\nkY3GGv8yeyrZaK9xibvXISAXN1cnIcM0e91bYReW0fz+SL8EaQ/9hG3c4QjZDXQfd29CEWd2\nO6OI0kY8zB2PoKy2Vfmbuwe9WaTAuvLavc1sRMld7jb2YcMq605ruXseAvD3yvIUcZ2Jzmld\nKzTFLiwD+fb+9nai0j3mW2IP/Z6Y5NPcPQoF/LVbuuBHpcHGvDSfP/oY60xCKxRYn27onUhk\nqzv8ARMc1qKqndGlDXZMHyj7dU4SRfc07GWvZLWgJ7i7DfJ8t+pagYQaw9Zxh0I1Q2kmd6dC\nvtM7b4wy4QU/CjpU3vYad0d6MXuBdWrr0ArShUS7zHyUe2Q5DKY53CMA/vluSizFD97LnZgA\nraFW3B0Hkj82tharq/Rx5qrPfThYMuZH7o6FXH9sv95BlDp4PXcoQrVUqGOgQ/tMXGCdfXlF\n7zJicRXf8lYT/eiirscS437iHgfww8mRkZQ85gB3XgLXlF7g7ju4eqJfFAl1x+/iToPaJtCt\n3H0Loj+3Xx9JVHnIg9yBUEN3msvdn/nMWWD989qDYxrYxeKqZMa4teH2u2AB42gi92CAT2/0\ntlH5ySY74znXCurM3Xvh7rs5FYgqDjf/Qe1FHS0XiRvmcDuz6wYHUZWh5j3uqqD9yY6T3H3q\nYbYC6/InB+f1rWETa6vIWjdOt/ylrnw6UibyS+4xgWJlP9WBqNrM49xRCVI6Ge8OqmEk+9me\ndorpupI7BhqZRkO4ezi8XTjUT7qN5U1Wqa4ks6iNYU7NMU+BdfnjA/MHpoulNlFs3Rtue8Do\nl8HWyTTcMMfQruxtSNRgAXdMgreQenL3Yfg6/1BdoqoTTfjTsp8yq9g+5O7k8JX1wqhEovLm\nPqpdRnPawt21bmYosLK+PLxwYL1IqbRyVGs/8l5zXqBDI5ihjOzs2jQSMu7jDklIagj/4e7G\nMPXbvBSyt7Hqzqtc96B+5/LJzEpEyb1Mc1E+/22LTvqZu3fzGLzAuvrR9skZ8VJpFVWj48g5\nW8z6O4uG5mCGMqpf5pSiyK6buRMSolk0nLsjw9L3U2Ipts927uHXWGYt3FGVw1+briWK7rTI\nmlvUMYaZswxcYJ0+MbuDVFsJFdoMm7MlrA9lLw5mKIP69JZoiutv/hO/MitGfsvdl+Hnq7EO\nSh5t5ZvV51lIXbn7Ovy8PDyGhIbTLHtV7mNpwkvcfZzLoAXW2cfvaCQdyV6x47iVlk2BSjBD\nGdGLN9qo9FhLHDwzmaZw92a4+XJUBJWbZMrTTgNWj17h7u7w8uf9dYnKDLHiWakeK4V6l7n7\n2cWIBdapVZ0cRBF1+881753i9ZSOGcpgLu1qTFTjLouch3EkOe537h4NK1+PjqCKd5j6Rs4B\nWEoduTs8nLwzJoYiMhZY/RehLrSCu6ddjFZgZb81oyYRpfWZjx1X/lpGHbiHDbz8urg8CS2W\ncsdCPSNpAXefhpHvb4mkCtOseWyMrAb0Inefh4tLe1sSlRlu/uMWfNqbEP89d29LjFVgvXdn\nFSJH80mWuh+E9hriatvG8d7oaIq+4SHuTKhpf2zp89zdGi5+mhJF5aaGy94rlxXUjrvXw8Nv\n0je/xnPCo3afRAO4+1tioALrh6X1iKLbzcKuq0CtpDbcgwcul/e3Eb8hjtnPnQiV9aFN3D0b\nHv6YGUcpkyzy07LfGuMLog4+HRcjfvMz+znNfsusQc9xd3mOcQqsy4eut1NEixmHuMfFlJrQ\ns9wDCOJXhHvFb4gN7rbeN8QdETWzuDs3DJyZV4JKjguPQ9u9raS23F1vea/2tFHKaKt98yvO\naqGuAY5zN0aB9c2sskTVx+3lHhOzWk0Z3EMY9rKe6h1BMT2sdMuJfJ3oCHf/Wt4/S5MpYWRY\n7r9vhF1YmsrObC1uX61y0o2/utBq7o43RIGV/YzTRnE91nKPh5k1pWe4hzG8/bi4KlGVCZa4\nLIOMddSau4ct7tzq0hQ7JAyueyVnJY7C0tDVvelEjRZxD7Lu9sSV4L+eO3uBdW5THaJqk8Py\ni5t6VmMDyOjKcWcEOTpa+Z4mjegN7l62snP3laXoAeF7VZpG9C/uIbCqS1trkNAmLHdfjKXR\n3L3PXWD9dHcpsrdZwT0S5teUnucdyfB18q5yRGm3WHvrON8Y5+RY09/Ly1B03z3cY8xoOXXm\nHgRrurihMkVcFzZHthd0NNX2NvcAsBZYn9wcRXH9cU0GFWAnO4/f1jcniutu7ts5+yGzsv1r\n7r62qN/mJVN0/3Aur0TX0P9xj4MFXVhXkRw9LH3J9mItpFbZzEPAWGC90cdGZcfht0F1YCe7\n/i4c6OkgodH0w9yDr4MpdAd3d1vS15PjKH6ItXd/+mEJdeMeCcu5sLYCOZw7uYeWUwvayzwI\nbAXWcx2Jqt0VVhfU0xR2suvs6rOjEolSR4TJDtjDiSXOcHe59fzfQDslj7LqqRGBqEu4Zb2q\nLkp7r3qFwTXbi/NQROo53mHgKbCyj19LdM0C7u63lGvoNZaxDEtZL08qQ5Tc+wHuUdfPTbSG\nu9ct5uIucRasfHuYnTyvYD45ucfDSi5tqITyStSb5vEOBEeBlbW/AQnNV3H3vcUsou4MYxmO\nsl6dUoEoocti611RtBh7HGlXuXveSr6aVYaEppa/6a7faggfcA+JZVzZWiXcfxzMsz8x9gfW\nodC/wLq6u264njaqrTr0b90HM/xcfWGSWF3FdZwbdjseutAh7s63jIv7u9gozhmmZ3fJuocG\nco+KRVzdWZ0iejzCPaDGMImGsQ6G3gXWlUdqkq2DNS93zWwu9dF5MMPOhcdvTpGqqznhdzuT\nEyfWC7jjpTrenpxMVGsKzu/xllnF/hn3wFhB1v46FNF1O/dwGsXxNIH1Ug36FlhXtlcne+eH\nuDvdmjKrCx/rOpph5vTeAfFEJbrOC7t9V3kaYhepCr5eUpcowbmeezQN5y4DXBbS9LKPXUO2\nTlu4x9JAFvLe6FLPAuvyw9UoostW7h63rNk0VMfRDC/frO0cSVTGuSSsjrsqaC7yFaqf1mUI\nFNFidrjW6MU5Xj7yW+7xMbsnm5HQdhP3SBpLUzrMOCL6FViXt4nlVbeHubvbwjJTI77UbTjD\nSNYbd19DRFUHh9E5g3IyKzh+5B4LM/tlU0c7CfUmhv1FrxRMpsncQ2RuL7QmocV67mE0mo32\nGpf4xivTKqMAACAASURBVESvAuvKdrG86h6+15TVxR00TqfhDB9nDo0uQxTRaByye2IczeEe\nDtP6aWMnO1GNMWFy2bRgHCkVw39zXvN6rRNR0zXcg2hA19P9fKOiT4F15ZHqFNENmyiNHSsb\n9V9dxjNcfHZfZwdRiY4z93MPrSEciCt9gXtITOm/69pL1dVIHB5RrLE0i3ukTOvt7kQNrHy7\n+eDtjkn+k21c9Ciwru6qSRFdUV5pbwLuZ6Ka809NqU5EaQNWhvFhV4X0ou3cw2I+396XIZBQ\nazSOjvDlYELiX9yjZU7v9xSo7hLu8TOq4TSdbWS0L7Cy9tUmexfMLno4nBT3m+YDGg6+fLBH\nLFFU84k43dnbFqER98iYzDcrrxWrq7o34+ulP4bSUu4BM6OP+gpUC/dFUXQoJYrtTvVaF1jZ\nB+vjtFH9jKK5Gg+o9Z1/ckotIirvXBAON3EOTAt6mXt4TOTblc2JhPTxuKS2n/ZFlz3PPWim\nc3KQjarfyz10hjaVhnCNjsYF1uONSWiP6xXr5rG45H+0HVGL+2RNtxgiR9Nx+E4gZzH14x4h\ns/jxgZYC2a6ZgPvBBaAPbeAeN5M5NcRGaXfjhkvFyqzKdrVRTQuslzJIaL2Bu3fDykBareWI\nWtqfB2+pTESVemHXlZLMyhHfcQ+TGfy+ub2NhPrjUV0F5pHIarjhZQA+uclGVWajvPJlIXVg\nGiENC6x3uhI1C/NLB+luT1TFi9oNqXVdfX1+KztRbKtJOFqmOJNoJvdQGd75/U4HUe2xuBtc\n4LrQPu7hM4+TQ2xUeSbKKz80ohM8Y6RZgfXFIIHScdqo7m6krVoNqWV9tblvSSKh5qDlx7iH\nz+gOJZQ6xz1chpb13MgSRKnDcEWGoGwWGmVzD6FJ/GeQWF7NQHnll7VCfZ5doxoVWL/dFklV\n53P3ajjaFlErS5sxtaYzRyfUIKJS1921l3voTKEvbeEeMgM7OaOimKU+a7lHybwy6CnuQTSF\n9/vZKA17r/zWkbaxjJMmBdalVSWpzDQMPouOdEiLMbWiq68vaB1BFNV0LA4U9Nc22zXcw2ZU\nv69vThTdeTEmvhDcx3a0jJm8daNA1XDsVQC2RVZiOUFViwIrsybFjcJxwkweFJprMKbWk/e7\nYLX+S45wD5mptKKXuIfOiK4+3i+KhEbTDnKPj9ml01vcY2l0r3QlqjkH5VVAetNyjrFSv8D6\nsgfZuu/h7s4wdi09r/qgWoznd8E7EdRALaW+3MNnPJ/PrkBUcQRuNBi6+chX8Z5uS1QPh98E\nal9cyT8YRkvtAuvSwmiqv467M8PaSuqq8qBaytU3F+J3wVCk2b/lHkNjOb+rvUAxXXBGjyoy\n02yfcY+ocWUdakLUaCn3IJnRSJYb5qhcYL1RjxLvwL5LXvXoXXVH1Tq+3do/yfW74GL8Lhis\nyTSDexiN5MPJJYnqTcVPg2qZRuO4x9SoLm2vQ0LL+7hHyJwOl4pmuIafqgXWhTvtQpdHuTsy\n7M2lgWqOqlX88/httYkouTN+FwzJoYRkXKkhz/kdLYkS+2ziHhMrOVom+ifucTWkf9ZUInsH\n7HcP1m00Uv9BU7PAer8+lV3M3YtwIrOK/UsVh9UKst5Z0sFB5Gg8Zj336JhfP1xqLdcnU0qS\n0HDmUe4BsZhbaDb3yBrQz/ckk6PHw9yDY2LHK9k+0n3Y1CuwstdEUdcD3J0IojtogmrDagHf\nPjwohYjS+izEqa1q2GZryD2kBnDlUCeBSvTFPStVdzAh6W/u0TWaz8ZHU/wg7HoPyWy6UfeB\nU63AOt2LSszh7kFwOVo65me1xtXk/jwysZZYXJXscMdO7lGxjlb0L+5x5fbLkkpEdafjSD4t\nDKI13ONrLK/0tlHpsTjML0SZtekVvYdOrQLro+pUH/feMoqxdI9K42pm556b1dxOFNVkzDqc\nd6GmJdSPe2x5vTsqiqK64WRpjexxVL7MPcTGceXR5kTV7sQP0aFbRhl6j55KBdaReOqD+7gZ\nxsGEkmG+k/3CS/PaOohstQfiOqKqy6wSwXA+jlFkHWlHVHYMTubRTnfazT3KRvHnilQSmuHQ\nZnU0o+M6j586BdZKm+Mu7r4DL4PoPlUG1pTOPT+3fTSRUMU5Zz/3QFjTJJrJPchc/llXnajB\nPdglqqWHhAa45bPk5K1x5Oi+kXs8LGOd7vd8VqPAyrqNktZwdx142+OoFJ472f/MnJERKRZX\nqTfMxBGhmjkUX4rlxl7sfro7mSI647dBrWXQ09xDze/q0esEKjV8H/dgWEkH2qHvIKpQYF0e\nTKnbuDsOCupBj4Q+sibz3Z4J6TYiWzXnbBRX2uoblldq+HxcFCX0x9kS2ltNnbkHm9uvy6oQ\n1Z2BQ69U9XBElYu6DmPoBdZFJ9VCkW00W231w2kne/bHm4ZWJqLIev3n4mdB7W2zNeAect29\nO8BGZcbhVC5dhPvdKF65KYoc1z3APQzW49T5DNWQC6yLPegaXP3KeNpRphr5MIGs9+/vLV3n\nKq7ZiOW40JVOWobblRpe6UaUNh0n8uhkDg3hHnE+fzxQj6j8GOy20MDu6JQzeo5lqAXW5Z7U\n8BB3p0FRa6m1KgExuC829kuW7n/T9tb1OO5YR0uoL/fQ6+nZdkR15yJhusmsFBGmtxTPfnFo\nNEVkLETYtDGY7tVzOEMssLKGUjrqK0NqRK+qExHDOv/4xOpScdV+8mbuzg4/afbw2QA+2Yqo\n0VLuHg8vU2gq97Bz+G6hOKWVG47j/DTzWGK8nlfhDrHAup1q4vdBY1pETnUiYkynd/WNI4pu\nPg7nMLO4je7ijoBOnmxB1Gw1d3+HmyNJ8X9yj7zezu6+zkaO9oux80pLY2myjmMaWoG1miru\n5e4vUFBdOKlSSAznwmO9osQvej0X4SKiXA4nJJ3ljoEenm1JwrW4CI3+htMS7rHX1dXnRsQT\n1ZqAC9hq7EgZx1f6DWtIBdYRWxKuz2BYM2mUWikxln/fmkhUaTCuRsSqP23mDoL2XmlH1Px+\n7q4OS/uiy+l7Qj2rd6ZVIErpj93xOphKQ/Ub2FAKrA/iHfdxdxYoOl7e8YNqOTGMi480J0rq\nvZa7d8PeDns9q18I5J2uRI3x4yCTnmFzrbVP5tYiiuuMnwb1cbyK7QPdxjaEAuv3NGEGd19B\nMSbSNPWCYgx/LS1HQtO7cfU9A2hDz3DHQVOn+gtUfzl3L4evbfY6WdwZ0MHnixsQOVrNwhVm\ndDOHrtdteIMvsLK6Un/unoLiHC6ZYK3jRE/PTaRo5xbufgWXFdSDOxAa+vGWCKo+n7uPw1oY\nXMrvy2WNiSKaTsXFkXVVV7+r+AVfYM2lRse5OwqKNYIWqRgVbueXJVHCUFx9zzBqCJ9yZ0Ir\nZ+6JpfIz8JMNq7XUljsHmvpiaRMiW8PJmNL0toJa6nV4Q9AF1gu2FNzwzeD2x5axzD15sx9N\npbihuCaIgUyjidyp0MaVjaUpcQJ+h+bWkN7kjoJmPlvSSKquJmEjyqE5HdFpnIMtsH4tb1/B\n3UvgS19ar2pa+HzcjiJ64aueoRxNjrPWT9B5nqpHUYNQyvObT/24s6CNz6Xqyt4I1RWX9ULd\nK/oMdbAFVk8ayt1J4NPOyDSdcqSti/dEUlNcrt1ohtFK7mSo79T1JHR+hLtrQZSZZv+cOw7q\n+3ZFE7G6ajwZV5Bk1Ike1me0gyywtlJdHIBlAt1ot7p5YfFOPSo1m7sroYg9jsqWqN+9nJke\nSfVx4SuDmEa3cgdCZb8+2FogWyNUV8y2OSrpc/RMcAXWNwkxW7m7CPzwkO0a01+s6OqiSKEr\nTrMxom70GHc6VJW9tzylzOTuVXA7mhLzK3cmVHRh/w2RJNS7dTd3v8KJ3rRClzEPqsDK7kS3\ncXcQ+KUNnVA7Mjr7sT0l43R5Y9ogtOSOh5o+6UCRA3HvegMZQ3O5Q6Gat28tSZQ2Evc+MYR9\ncUm6HEAaVIG1iZriDGZzuJ9aqx0ZfT1fhppjf7pRNaHXuQOimotzHdTkIe4eBW+PxZU6x50L\nVfz1YAOikr1wey/DGK7P3eqDKbB+KBGznbt7wE+N6WXVQ6OjVXb7aBTzhrWABnAnRC2v1qEk\n3JnCaPpb4jzoD8fFke3aObjwh4EcSo7+ToehD6bA6k0TuHsH/LVUx9sCqO7iMCq5jLsHQVlm\nZfvX3CFRxdnbbEJ3HOhnODsjq5r9PIqsYx2ISt2EE1MNZjKN1GH0gyiwjlId7FMwj9rCe+rH\nRh+/ZlD1Hdz9B8WZQrdzp0QNr1an8ku5+xJkdKF93OEIycUttYjSZx/j7kco7Fiq7UPtxz/w\nAutsZft67r4B/82hgRrkRg9f1qAMHHJsbIdLJpzmzknILs20C72QNEPaJDTmjkcIzt1fkSI6\nPMDdiSDnHj1+3Am8wJpFfbh7BgKQmWb/TIPgaO/dstQbu0qNbphOpztr6JPGVAa7r4yqBT3L\nHZBgXXygHEU5cdqgUdWlFzTPQMAF1qeOUge5OwYCcSeN0SI5Wns5URjL3XXg076oipe4oxKa\nbbHUEUdfGdZK6sKdkOBk7ahMUX1wNxzjWiU0zdI6BQEXWN0Jp9qYy/HykXqcLqGyp2Ptd3D3\nHPihB+3kzkoo/hlOMdO5+xCKUY/e5Q5JMJ5pQJFOXFLU0DJoj9YxCLTAOkHp3L0CAbqNJmuS\nHS09ERV5D3e/gT+2mPpmAZ/Uo+pbuLsQijOXBnGnJHBf3EhCe/w4aHCbI9IuahyEAAusy7Vt\na7l7BQJ0NCXmJ23So5knoxy4ertJtKYnueMStCMJdP0R7g6EYmVWsX/JnZMAnb83murex91x\n4NONtErjKARYYN1PXbn7BAI2ju7UJj1aeTYa9ZVprKYO3HkJUvZcwYHfoQ3vDprAnZTAvFCD\nkqbh/BwT2BOX9Lu2WQiswPojOQa/KpvPoZLxv2mUH028Ehs5j7vPwG/p9BZ3YoJyth+l4Ax6\n4ztaOvpn7qwE4PRYQbgBZ02Ywwitr+MXWIE1jYZz9wgEYRTdo1F+tPBuov1u7h4D/82nftyR\nCcb/mlJdfF00g7E0mzss/numElVezd1j4KfDpR1faBqHgAqsr6NScDk+MzqQkGiey0F+XkaY\nxt1hEIDMqjYTXmntZGXqiMOvTOFgQuJf3HHx0/nJgn0gYmUe06ivpoEIqMC6iW7n7g8IynBa\noFWC1PZTNbqFu7sgIHfSzdypCdhryTQYh8mYxFBaxp0X/3xUjypi95WZZNagV7VMRCAF1vu2\ntOPc/QFB2R+XfEazDKnq78Y0gLu3IDDHyjn+y52bAGXG2Cdzdxv4a1902fPcifHHpmjqjstw\nm8syaq7lZWYCKbC601zu3oAgDaHFmmVITVe6U2fsWDCbCTSNOziB2RfpmMPdaeC/PrSBOzK+\n/TOE4mZx9xQEKoN2aRiKAAqsf1E97r6AYD0aV+pv7VKknvHU6Ch3X0GgDifHmeo01Ydtscu4\n+wwC8Ehk2hXu0PjyWX2q8TB3R0HAtkRWPKtdKgIosFoTJiXzGkRLtEuRalZTFZzgbEKjaQ53\ndAKwUYjHVSDNpbvhb8j0eCJ1x9HtZtSX5moXC/8LrCeoKXdPQPD2xZpgF9YJW0ncXsKMDiSU\nNMt5Xjk5G4QSuB2FyWyx19X8vrwhWWaLnMLdSRCU/Ymx32uWC78LrOwmwv3cPQEhGGz8o7D+\nk+DAKTjmNNT46XJ7SCixnru7IFAd6CB3cIpxcTglY+oyq0k0RLNk+F1gHaYM7n6AUDwal2zw\nnQy/VyNcAMuk9seV+oc7P/7ZZUtYx91bELANQmPj3lP897ZU/RHuHoJgHa8qvKZVNPwtsLLS\nhQ3c/QAhuYnmaZUiVVzpTP24+wiCNYiWcwfIL0ciYtdw9xUEoRU9zp0dJV/Voha4OoOJLaOm\nWv0A7W+BtY/ac/cChGZ/QuIfGqVIFVOpKS6zZlr7YkpreC6Oap6PilrO3VUQjPupBXd4FPy7\nLPXEpWVMrQ1t1SgcfhZYV+vYNnN3AoRoBN2tUYrUsJcq4ARCE+tPq7gj5Nu/EyLmc3cUBKcZ\nPcsdH1nPJQg3c/cNhGZbVGmN7iXnZ4G1hzpy9wGE6mBi/C/apEgFH8ZGP8jdQRCCvdFlDL8L\n68uywl3c/QRBWk1tufMj52BUxJ3cXQOhGkq3aRMP/wqsq7XtD3F3AYRsLE3VJkWhO12DZnB3\nD4RkgOGPwvqtJmFfg3k1ppe4E1TUVnv0Qu6OgZAdLhvxoSb58K/A2k2duXsAQnc4Jeo7TVIU\nsuye1Iu7dyA0+2JLGft+lxdaI2RmtoI6cEeoiDVCAi7PYAVzqK0mZ6n6VWBdrW3fwt0BoIJJ\ndLMWIQrdcqqPO+SY3WBawJ2j4mQPplY4FtnMGtDL3CEqZBGVXM/dK6CKptrcktCvAmsvdeJu\nPqjhWMWIU1qkKFT/ikjayd03EKr98YY+TXUe1TrM3UUQimXUkTtEBc2lFJz7ZRFbHOW0uE6k\nPwXW1To2HIFlDTOorwYhCtXP5W1LuHsGQjeCZnFHSdljQuld3B0EoWlorKOwZlMZ3N3ZMobQ\nZA0y4k+BtQ+nEFpFZnXhTQ1SFJqrnWk4d8eACg6WjPsfd5iUvBsbjRsQmt0KasedIy8zqBzu\nnGodh8vb31E/JH4UWFn1cA0sy1hE7dUPUYjmURMcG2MJ4+lW7jAp+DlVmM3dOxCyRvQ8d5I8\nZlL5Hdz9ASqaT82uqp4SPwqs/dSBu+mgmsaUqXqIQvO8LWUPd6+AKo6Wi/ycO06yLrelm7g7\nB0K3ijK4o+Q2h8qhvrKWNvSA6jHxXWBlpQsbuVsOqlkr1LuieopC8XM5O25eYhV30gDuPMma\nRC2wk9QKmtMT3FnKtYDKbufuDFDXzriE79XOie8C6xC14244qKgzbVY7RKHI6oIDsKwjs7rw\nBneiZOykSo9xdw2o4QGhsSaXKwrUCkrB8VeWM4F6qR0UnwVWdkNhA3e7QUU7HGWNdD3IxdQI\n+xasYzG14U5UUe/HxGzi7hhQRwYd4I6TaB0l48R668msSwdVTorPAusoteZuNqhqkJFOpn8t\nImk3d4eAiprRIe5MFXa6ujCLu1tAJRtttfkPcXhYSMRhM1a0MbKcypfy81VgZTcR1nO3GlR1\nMDn6G3VDFLw/KguLufsD1LTBXv0Sd6oKyu5Jfbh7BVTTmbZyJ2q/PWEddzeAJm6iUepmxVeB\nlUmtuNsMKrvdMEciZ/eigdy9AerqQSu5Y1XQCqp/jLtTQDXbIyud5w3U45ExuP+gRR1No6dV\nDYuvAqu1gMvzWU1mdaNcEHkd1cO2z2L2xJX4mTtX3l6JKInbMFlJb1rOGqiXYhy474RlrbFX\nVvUQZV8FVrUW3C0G1a0QGqh/RbUgvBeVgEvJWM5YGsMdLC+/VsSP0NayL67k74yBeqdExFzu\nLgDt9KexasbFV4FV/gHuBoP62tN6NUMUpH9qCXO4ewJUdzTV9hZ3tDyyrqch3B0C6hpJd/AF\n6mSKcCd3B4CGDqcKT6mYF18F1gLu9oIGdsYk/aJiiII0nJzcHQEaWETNsriz5bacGh7n7g9Q\n1+GUqC+58vRNRZrA3X7Q1Bp7xT/VC4yvAou7taCJMTRavQwF6RGqdoS7H0ALbWgTd7jyvBZR\nchd3b4Da7qD+THn6uQaN4G49aGww3aReYlBghaWjlYVX1QtRUE7Fx+Bafda0IzrJGMe5/1FZ\nWMTdGaC6zOpMs9fphtSbu/GgtaPV6VHVIoMCKzwtE9IvqxaiYJxvQNO4OwE0MkbN74DBy+6N\nq4BY0jKeH6HPtaHrcNsJ69voKPmdWplBgRWmOtMytTIUlFupM3cXgFaOVaNnWNOVaz2uAmJR\nrWm7/nG63INa4YC+cDCe2qtVwKPAClN7E2K/UilDwXiMUg9ydwFo5j5b1bOM6cr1Pq4CYlUP\nM9xQNWsINcBBo2EhszktVik1KLDC1VTqzHhf+lqO9dwdABrqyXkqfa5/agn3cHcDaGQwTdM7\nTxOo1gHuZoM+9iRF/J86qUGBFa4yG9HD6mQoGOWmcLcftHSwrE2lGSpoI+hG7l4ArRwqHfmx\nvnGaQ6n7uFsNelkkVFHnrs8osMLWw9El/6tKhoIxk7v1oK3FQm3eW8btoqqHuTsBNDOLOui6\nA341lcHvzWFkIDlVyRcKrPA1nm5QI0JB4W47aK0H3c6WLtHnCdGbuLsANNSEdusYp4eFpC3c\nLQYdHUtX55aXKLDCV2Y6x7k4yFV4OFheeJ4rXTk5F5vQVO4eAC1tcZRR50ccv1SLX8fdYNDV\nzpIR/1IhOCiwwtiW6BLfqpChYHA3HTS30paq4i0nAjSFOnK3H7Q1jG7WL09pq7ibCzpbYi+r\nwiE0KLDC2UT1rvcRIO6Wg/YGsd3RJOeoUBFnfFnc0VRBjV0M/sHx7eFnNLW4GHJwUGCFs8zm\n6vzQHDjuloP2jtWmzTzp+jYpci1360FrK4Saup1Hwd1W0F9mWxXu2IsCK6ztTox8O+QMBYO7\n4aCDh+NiPuQI1+VWNJ677aC9G2i6XpHibiowOFiV1oQaHBRY4W2eUEP3SyIjV+FiFtX+myFc\nd1IGd8tBBwfK2PW62Bp3U4HDtkT7EyEGBwVWmOtFQ0KMUFC4mw26cFJ//W8XcFwot5+74aCH\nJUJNne7IxN1SYLEiMuGD0IKDAivMHa1Jm0KLUFC4mw26OFpH/4P8vkmKvJ+73aCPG2mCPqHi\nbijwmC5UCu1UQhRY4W5bfNRbIUUoKNytBn08khTyTvYAXWxGE7hbDTo5VEl4XJdUcTcUmAyl\nBn+FEhwUWGFvrlDp51AiFBTuRoNOVkaWOKlrssZTO+42g27ujyjzkx6p4m4ncOlK7S+EEBwU\nWDCE2l0OIUJB4W4z6GUqVftVx2A9QqkHuZsM+hlJXfS4lB93M4HLsWup55Xgg4MCCzJb0Pjg\nExQc7jaDbvpTy3O65erdmBjcgjCcZDaiRTrkiruZwOZwOg0LvoZHgQUnDlSmB4JOUHC4mwy6\nyWxLN4bwFTAwjYXZ3O0FXe1Jtj+nfa64Wwl8HqtBtwR9LjQKLDhxYmui/XiwCQoOd4tBP0eu\noZF6Xayh3EDu1oLOVkSU/k7zXHE3EhjtS6PxwU5gKLBAtNIR+0aQCQoOd4NBR/ur02SdKqyb\nM7kbC3obS001v2UOdxuB057KNDbIXwlRYIFktq3UJ8ElKDjc7QU97alE05Ar0EhHGqJ1/c7d\nRGC1J42GB3eYAwoscJlIqd8GlaDgcDcXdLWzAk3VZR8Wd0OBweGaNA+5Ag3tq049g7paAwos\nyDWMavwYTIKCw91a0NcjFWkCTqcHbexMEXYgV6Ch/enU9s8ggoMCC/L0o1r6VVjcjQWd7axM\nN11CrkAT6+Mitb1hAHcDgdvhllT/m8CDgwIL3HpRze+DmXyCwd1W0Nu+mtQ5pJtOIFegaKkj\n9lXkCjR0/Hoq+3rAwUGBBW6ZvSnti+Dmn4BxtxV0d7AppWt+mB93I4HJ3fbEd5Ar0NIYW9TO\nQIODAgvyDaay7wY5AwWIu6Wgv2PdqczLyBVoYppQ8m3kCrQ0N5YmB3icAwos8DJWiNf2WAbk\nKpyNtUfer+3JhNwtBDZThETtfiXkbhwYwsaK1OKbgIKDAgu83RVpXxf0LBQA7nYCi8WJ1DeY\nc3GQK/Bpmi1Ws2+H3G0DY3isDSUdDCQ4KLCggBUl6OaLIcxEfuJuJvDYUZdSX0SuQAuzIyO3\nIVegqVsdNDKAk3VQYEFBD6dRs69Dmoz8wd1KYHJsoM025RxyBRpYGkczriJXoKUHq1LqU34H\nBwUWFHKwPZV8LLTpyDfuRgKbFeWp6tPIFWhgYznq/gdyBVo60t9OQ3/2MzgosKCISQ4acTrU\nKQm5AnkHe9qo3zfIFahvX0NKewu5Ak2tqUolH/Tv3oQosKCoDdWo4rHQZyXkCmStqUnRszW5\n6ih3y4DZ8f5C5KLg7suLXIGfjo2JpvpP+hMcFFgg4+igCOqt5VUhuRsIrDKnJFGp5f8gV6C6\nBUnU/D/IFWhqZyeBOvlxYXcUWCBrfR2KuVeDLSByBZKDQ2MpZaHqx8twNwv47WlDkbPOIleg\nqfsbEHV7zVdwUGCBvMwpiVTmgQsqTVDIFRSyb1AsxU38BLkCtd1TiipuV/V0Qu4WgQEtqkvU\n5mhWscFBgQVKHhsYTRXu02YvFnfbwAD2j0wmocPu88gVqOtA/0iqf6D4TR9yBaFa0oio2qrf\nigkOCixQtrtXFJWc/qV68xRyBd6O3lWPqMSop1U7Kpm7QWAQ2zoKVHerajvguZsDBrW2cyRF\nDXhCcQJDgQXF2TO4BNm67FNzJwNyBV429k0mKjXq8N/IFahpY0c7lbrrU1VihVyBkj2jKhCV\nnvCi/E/SKLCgeIen1CJKGHZc3RqLu1VgHMcXd08kcnRc9lboO7K42wIGsq1PHFHLdf/DfAVa\nylzRPYEo5UO54KDAAp/W90khinVu+FyFmQq5gqKOr+ifRmId323+06HdC5q7IWAoh6ZeI5Ct\n1ZJ3Qz0ci7shYGxH53VJfFkuOCiwwA+ZK3qVFzeAFYesf/tyiFMVcgWydk7rLGWMqg9YnPlV\nsBtE7kaA0ewYU0cgSun3wFuhzFzcrQDDy5Td/44CC/y0eVyLeHH752g65v5nvw9hrkKuQMnO\n2X2viZOqrNjGg+8N5qcd7gaAAe25o31JMVPRLcZtfPl3zFegDdngoMAC/2Wun9SlaoRrA3hN\nr6kPHHnrx2CPmuFuCRhW5pbZQ1qniimT3eWOXEEwNk7pUsUuzVwpGcFceo179cH4ZIPjq8Ca\nNxOggDtH39CyZoqrzCISElPTfV7NFrmCQN01fsAp5ArUNH1E92ZpicJx5Ao08KtccHwVWOUI\noHhrg5iwkCvw5V/IFWjgBeQKNCA7X4VFgRWVlJQUy70SKkgU22HnXomiwnbCKimOh8C9EqGT\nRamA7wAAIABJREFUYmXjXgkZ4VhgOcSxiOdeidBITYjjXonihGOuYsRBieZeidBEG30rHlSB\nVY17rdVQpmnTplW4V0IF14jtMOD/S4KZsCyRq8bieERwr0ToGojNiOJeCRnhmKskcSxqcK9E\naEqJTTD0MIRjriqJg1KeeyVCU05sQir3ShQnqAJr+HUW0EYcmgzulVBBc7EdHblXoijZC6yF\nQ66aiePRiXslQmfUZoRjrtqJY9GKeyVCIzWhJfdKFCccc9VaHJTW3CsRmrZG34oHdaFRS9gr\nDs0S7pVQwY1iO77mXgnwkP4v/wf3SoSui9iMH7lXAlyeEcfiDu6VCM3jYhNmcK8EFPSAOChb\nuFciNDvFJqzgXomAocAyERRYxoICC1SGAgu0gAKLCQosE0GBZSwosEBlKLBACyiwmKDAMhEU\nWMaCAgtUhgILtIACiwkKLBNBgWUsKLBAZSiwQAsosJigwDIRFFjGggILVIYCC7SAAosJCiwT\nQYFlLCiwQGUosEALKLCYoMAyERRYxoICC1SGAgu0gAKLSVgUWJfOnDlzgXslVPCP2I4s7pUA\nj7/F8cjmXonQIVbGcVkci3PcKxEaqQnnuVcCCrooDsol7pUIjTm34mFRYAEAAADoCQUWAAAA\ngMpQYAEAAACoDAUWAAAAgMpQYAEAAACoDAUWAAAAgMpQYAEAAACozOoF1vtOL+a8gt/JW5zO\n17yf+O+WKUP6jFjwzFWuNQIL5AqxMhiTRwp5MijkipPVC6zXzJ2unJwrO3o6CybsYO+85kz4\nmW2twp7Zc4VYGY6pI4U8GRZyxcnqBdbTTueCfW5Pc69N4L6e7HT2KZCwY2K27j34+PYxTufo\nv/lWLMyZPFeIlfGYOVLIk3EhV5ysXmAddjpf4F6HEJzo4+x77H7vhP3Uz9n7LWnh4iKncx3b\nioU7c+cKsTIgE0cKeTIw5IqT1QusXU7nm9zrEII7nBO/zimQsM1O577cpQvDnL3+ZFqvsGfu\nXCFWBmTiSCFPBoZccbJ6gbXR6fwP9zqE4I6Nl3IKJOzqUGeff/KW9zidR5jWK+yZO1eIlQGZ\nOFLIk4EhV5ysXmCtcjq/5l6HELjW3Tthp5zOWe7lk07n3RwrBWbPFWJlQCaOFPJkYMgVJ6sX\nWPOdzl+41yFU3gl73Onc7l6+1NM5iGeNwAK5QqyMxeyRQp6MCbniZPUC6y6n8++XFo7oPXjK\n9p+41yVY3gnb5nQ+7vmH4WLjWNYILJArxMpYzB4p5MmYkCtOVi+wJjidE/Oum9F7fzb32gTH\nO2H3eR/xd5vT+T3LGoEFcoVYGYvZI4U8GRNyxcnqBdYIMVaD7zt4fPNocWE399oExzthS5zO\ntz3/MN3p/JxljcACuUKsjMXskUKejAm54mT1Aquf07npnLRwZYsYry+4Vyco3glb6HS+5/mH\nWU7nKZY1AgvkCrEyFrNHCnkyJuSKk9ULrHNnz7kXFzmdKzlXJWiKJfw0M5Tw1mSBXCFWxmL2\nSCFPxoRccbJ6geXlc6dzkAl/gi6YsDXeP0JPdjr/y7JG4MWsuUKsDMuUkUKeDA+50l0YFVjZ\nfZ3OM9wrEQzvhO1wOk94/uEmp/MsyxqBF7PmCrEyLFNGCnkyPORKd2FUYOUMcTp/416HYHgn\n7Gmn82H38jmncyjPGoE3k+YKsTIuM0YKeTI+5EpvYVRgXerpdF7iXolgeCfsS6fzTvfyu07n\nAp41Ai9mzRViZVimjBTyZHjIle4sXmC9+eC8F93L4oBM4lyXoHknLHtM/i0uNzqdzzCtUriz\nQq4QK0MxfaSQJ0NCrlhZvMB61umckFeyZ89yOnfxrk2QCtxOfJfTuS136ff+zv7nFN4C2rJC\nrhArQzF9pJAnQ0KuWFm8wLo4zOlc6rr99qV1TufAv7jXJygFEvbXYGfPl6WFv+9yOh9lW6cw\nZ4VcIVaGYvpIIU+GhFyxsniBlfNWL6dzyMZjxzeNcDp7vs69NoE6uU8yxelcLv33iOu5F3s6\nnfc8lrlJ/P/NtCvM6xe+TJ0rxMqIzBsp5MnIkCtOVi+wct64Ke8+TM5h73CvS8AOOr0Nz33y\n2X55j+8x/kmq1mXmXCFWhmTaSCFPhoZcMbJ8gZVz9vjcEX37jV7wxEXuNQmcbMJyft1x++C+\no5e/wbpqYc/EuUKsjMmskUKejA254mP9AgsAAABAZyiwAAAAAFSGAgsAAABAZSiwAAAAAFSG\nAgsAAABAZSiwAAAAAFSGAgsAAABAZSiwAAAAAFSGAgsAAABAZSiwAAAAAFSGAgsAAABAZSiw\nAAAAAFSGAgsAAABAZSiwAAAAAFSGAgsAAABAZSiwAAAAAFSGAsvlBBHtkBbeEBdWFfPC98V/\nX1bMv/t6v+j7iTVjI8vcG/A6Bv+JYD6+ggZm4plfgveD+Cemh7oenlQhXuHGKBH0SYUVNRAU\nWC46FlgfJJFkaOArGewngglhC2glRtm6ocAKW0aJoE8osCxIxwKrpVRe2SNRYEFxsAW0EqNs\n3VBghS2jRNAnFFgW5BnUbyZNmvR8MS/0NTH5en/Oz+IfiD94NedcEGvppRvV9vcTwRDyR8wv\n2AJaSdAbjfzUoMCCUBglgj6hwLIgvwc15InpbfEP3BbKH3DJTgpscw3cAh0xbAGtJNiNhldq\nUGBBKIwSQZ9QYFmQfgWW9ElbQ/kDLp8RCixzCXTEsAW0kmA3Gl6pQYEFoTBKBH1CgWVB+hVY\nR8U/8Ggof8BlFwoskwl0xLAFtJJgNxq7UGCBOowSQZ9QYFmQ2QqsSSiwTCbQEcMW0EqC3WhM\nQoEF6jBKBH1CgRWKd8TeezEn5+ToKo6Ymrd8LD2VdbBrSkTStYv+cr3gBvEF73q94Wnx8e25\ni1ePjEsvE5lUo9f6X7z/5KV9A9OTHeU6r/zD68n/rrwxrYS9RPX+W866n3pd/Esv5/wxJc1R\n+lPXE9mH+1eNSao/8kWlswhl/ojfZxHmNfSPpc0TI5KbTP/a9a+byGOo/+tZuIU7PH+kbOE1\nluki2RUBTX25qFvleHtCdee6X12PC45Y0QGWGbYCQcu0EaX9L+/BS7c3KRNZqm7/3X/r1h4I\nhtz84iI/gkWmgoKpkbZud4n/md2yoiOl8YxvfX9+cdNXgXj5O4MWPLxBWr2n8pYLB77YhoJu\nuCNYKFm9xD/wjtc/7xEfzy1+Rc1O7wLrpNh7J3IWCLmjFrEnJ+d/DfOGsNJn0gsOi0tTvN4w\nxlNwPVvHM9pxc696XvBcmufZ9e7nLs+I9Lw25Vjek9Kc8viZutJz70uPf+rofknXv+QKLMU/\n4leBldvQA7F5fyByu/Rk4QLLr/Us0kLlAkuui2RXBDR0YYItfxhWZOcUHrEiAyw3bN5B+3ec\nGI/Pcpc/ael5bbn9ercMAiA7v+QojaDMVFB06zY7Z2dM3lPRO318fPHTl3e8/J5BlQqsooEv\npqGgH+YIFknWY+LSLK9/7yk+/qy4FTU/vQusL8TeO3AfkZAUJXWn49M/q4t1VrJdetBQ2rZc\nThFH97Ln9VeSieq7lra7XpPapLZD+m9f90t2uZ62R7tGZ2ruc9lO16MSlUtK/xEO5j77qbj8\n2J2uf5G2a3+7CrukhnXF0iPjGBUpsOT/iN8Flquhj4oTjyM5QvoDtlfFJ0907txAXE7v3Lnz\nMn/Xs2gLn+ncWdzixop/ZECBNZbvItkVAe1kd5W6OSK1eqJrxO7IKTxihQdYdti8gvZtOXGC\neit3+dkE6TWVmtR0vWc5Q/PAP/Lzi9IIyk0FBVMjbd0W7hG/mTqSXOWM7eViP97H9OUVL/9n\nUIUCSybwyg0F/TBHsGiyzscT1fRaP7EGaFbcilqA3gXWt2LvLYgpueFMTtZr14jL48dRk2ev\n5pzbI415pvSK28WFY57XPyU+WiEtvCkOlm36D+LSuR1lxSfn5f77W2LRHTX/y6ycn9bES9st\n15MbxKUym6W9kl+MFxcT/3Q9+5W4uDGB6s5cNfs78eEd0kbtcbGmu3igMnWhIgWW/B/xu8CS\nGrosURj7QU7Opeelqqpj7gu8j8Hyaz1lW1g//4fx/DWW7yKlFQGNSBue5s9JZdL/1klz1euu\nZ71GrNAAyw9bftD+Et8akfdbzFfiH7RN+UZcOrNB+tuH9GsWBEZ+flEaQfmpwDs10tbtjlhh\n1HvZOZeeThcftC72431MX/nxCmAGVSiw5AOPqLJjjqBMsoaK//3I84Ld4qMHillRK9C7wPpe\n7L3Y+A9yl8XSNl7IOO96IHX2LdLCh+JCH8/rR4tZ+FH8b3Z9r24/VUIsor9xLTYRNz4v5T77\nglhVV3b9wFJNfNN7ea+d5Kk/vhOXOtH0vD3Y/xOr5xKf5y7/UJGKFljyf8TvAktqaJywJ/fZ\nX5PErwS5Ryd4F1j+rKd8C+UKLIUuUloR0EhnovL/5C1/UYpoiGvJa8QKDrDCsHmCdrmTOGS7\n8v5dnHzcQ5nzifjaKhe0bAkET2F+URpB+amg8NYtRtid++A3MVfCT8V9vo/pK38eC2AGVSiw\n5AOPqHLjjqBMsh7P3zUichLZfy5mRa1A7wJLGqPcXVI5uT/B2k7lLl8Wi9xrXUviuET+nveK\ny2JB0FVaeEF8aQ/PX1kh7QeTFl4ir8t2SodrPZGTu4egg/cHdsv/6PbuumW9+OAe94seLVpg\nKfwRvwss16eNdz89UXzwrGvJq8Dyaz1lWyhbYCl0kdKKgEbKEQ3zPFjdtP8S10KheSp/gBWG\nzRO0keLCyrx/fVdcHuV57YPio105YEgK84vCCCpMBUVSc6v7NVPFB08X8/G+pi/PQiAzqEKB\nJRt4RJUdcwTlknU5mSjd/dyZqLwPUVhRS+AosBx5Ox9z7iWvH6yaE1VwLUjd7T7Y8klx2VVs\nj3aXFi6/2onqSQu3ik+fdD/7dKVG1+2TFi5+++Z/PK9NJarl+Wh6xv10N/HBKfeDq6WK7sGS\n/yMBFViC55S9HZ6pyXsPlj/rKd9CuQJLoYuUVgQ0In4n6FX02cLzlGeAFYbNHbT5lH9US84U\n8cEnnteejyXqrfbagzoU5helEZSfCgqnxuY5cUs6/+qh4j7fx/TlWQhkBlUosGQDj6iyY46g\nbLLGUd5h7TmuK2zl1nYKK2oJHAVWS/cD6Vffhe4HTqIE18Kf7kPfRKPEJ1137atDFJV/6HtO\nM3GkpTNJa+ae3lCcJkSlPR8df8X9tPi1q0z+iwYVLbDk/0hABZanVs95Tny0xrWkeB0shfWU\nb6FcgaXQRUorAhppLH6FeLvIs4XmqfwBVhi2vKBJk9AQz3lZjYiqef1NcWJKVnvtQR0K84tf\nI+iZCgqnprHnJdJ+z/v8Xpmi05dnIZAZVKHAkg08osqOOYKyyZJ2ay3NWxa3+LH/FLOilsBR\nYI1xP9gmPjjgfjBA3NDkLg30lL7SL4SuvZlnbUQNvf7MCPElb4hFt/h0Gx+f2IKolOej27qf\nPS0+yMh/0UIfBZbnjwRUYA31PP1/nrcpFljy66nQQpkCS6GLFFcENLJa7OKY2V8VerbQPOUZ\nYKVhyw3aSw6i6zzl13nxtV28XjtdfE2xR0EAF4X5xb8R9EwFhVMzwvOSwP5/XHT6ci8ENIMq\nFFhygUdU2TFHUD5ZWRWImuYuSr8QDilmRa2Bo8Ca5n4g/V/Uc0DQIE+BJZ05OMO19IS49JK0\nIF1rwHsXs/Tj4tHcpwfKfczFA2NblHVfr8OrcBnufsEp8cGA/NfvkCuw5P5IQAXWbQWeliuw\nfK6nQgtlCiyFLlJcEdDI5dauwawz8dCfXs8WmqcKDLDcsLmC9klJokb5lwKU3hhbJV9SXjEG\nhqMwvxQzgnJTQeHU3O75g378/7jY6cu9ENAMqlBgyQUeUWXHHEGFZEknDH7jWtpJecdGKG2L\nLYGjwJrpfrDDXT9J8gusrEpEFVwns4wkquL6fUQ6MG+Y159ZLj7emZPzHnkfr5dvbwXyll+4\nTHa/Qrq++cj8NxyQKbBk/0hABdb0Ak/LFFi+11OhhTIFlkIXKa4IaOXssLzxtLde79nkFJqn\nPAOsNGxS0Kamif9T5S/Pv31ERT2TAwakML8oj6DsVFA4NYH8/7j46cu9ENAMqnShUZnAI6rs\nmCOokKy3yf3D4o1Epa8Us6LWYMQCK+duyj0/4XJJ99kFr1LeRRzyPCA+3pR70xHvp/MscgUk\nrXXPoaIU78LFE49XCr5T5kKj8n9E1QLLj/VUaKFMgaXQRSiwGLw1vETeLJW4MO/K7ErzlNKw\nSUHLvT72EM+/vSEzNx7WvjUQOIX5RXEE5aeCEAosH9OXeyGgGVT5VjlFAo+osmOOoEKycmrk\n/R74l8P9NVNpW2wJhiywpL2LN+Xk/kKYe8qBVA4P9fozS8XHu3NyPiDvH4XdnpduxDPpu7xH\nLWQLl7eoQNW8lwoXWAp/RM0Cy5/1lG+hXIGl0EUosFhcfn5aeu7kdUPuVWaU5imlYXvf9eZS\ntSl3h5bLx+T12yIYmcL8ojSCClNB8AWWr+nLvfD/7N0HeBTV2gfwd7ObnhAIIYTQAxKa9N6k\ni+iCVOlIVaQjSFM6UqUI0jtIr0E/Rb323hsXC1exgoqASC/Zb2bTdjfb98y+Mzv/3/Pc6+5s\nss6c8/fMmylnfBpBXRdY+QKPqLJjjqCLPZflcSKDPLOlfIbwPXcrGhpUWWBZmhLFXrFY+ube\ncfgD2d8KPJWs877/KP2jQ75/hzwV7NLcd3WcFi7yE/pszvuuyldgufgSkQWWN+vpfAudFVgu\nmggFFpvT65vIO5zZ1jeuxilX3WYtsCp8/3UUUXzO9cM/k9MZIEB9XIwvrnrQxVDgf4HlafjK\neeHTCGpfYK2xK7BkNoFHVNkxR9DFnsu6Wiulf95LVM7tioYGdRZYm6QP9lmuxhOtylpwxUhU\nzeZrepL1EdA3wolqOP4r5Puyyube2W5JdVq4nCG7OxfGOhZYrr5EYIHl1Xo63UKnBZaLJkKB\nxemAVB/FWucZcTVOueo2OWgN/rZYnpb+WT97TocbkTkP5gSVczG+uOhBV0OB33s3j8NXzguf\nRlC5wMqb+ejJfAWWJS/wiCo75gi62HNZLNWIWmadIZzmdkVDgzoLrH9jibrIV7tF/J295E7p\n9fW8r6ma/Vbq/YgruUu/OXHil6xn6Q7IXfYtOS1cLAXt5t5o6VhgufoSgQWWd+vpbAudz4Pl\noolQYHGaKbW39ZGoLscpF92WG7R7KG+a47pE4f8EY7UhUC7GF+c96Goo8Hvv5nH4yn3hywh6\njLKfHWf1gLMCKzfwiCo73gi62HNZLPOITOctWyhvxlEXKxoS1FlgyROMxlzuRNQ5Z8HD2WdO\nspyS3jWUX8jPTDqSs1Q++Plw1indvJtJx7goXORbi3Nnj/0n3LHAcvUlAgss79bT2RY6L7Bc\nNBEKrGD76ae81y/ldIrLccpFt+UG7UyRvMfWjyO7J458gz2YarkYX5z3oKuhwO+9m8fhK/eF\nLyOoPPPR+JzFVwvnFljOAo+osuONoIs9V9a5wz2WjkR1PaxoSFBpgSXfWLAhkuhwzoL3yXZ6\ntInSuzU5P9csZ+kisj4ZXK6+c08yfxohvYvJ/VfnxWOW7YrMIccCy9WXCCywvFtPZ1toPc5R\n0vHf6KKJUGAF17ikvFlELZadUnu/L7+w6TH7HnHRbXlBk0/MlDxvfSnfYl3pVs7PXi0R3hJ3\nZqmUi/HFeQ+6Ggpcp8bDf8ceh6/cF76OoLk/K9/uai2wnAceUWXHG0EXey5JQ6L+V6KJlntY\n0ZCg0gJLvpkzkSgp7xkiUq/kXmD5ntT/ha3zL2bKi+dkLT2eQJRy3WK5FU9UIHtu2q9TYxtJ\nP3E251+dF4//Gohiv856/X5svgLL1ZcILLC8W09nW2i9BjH8X4d/o4smQoEVXPJQsjLnzU2p\nVwtYbyO06TH7HnHRbTZBG0a5F4G2ll4Ozb5S4kY3snkQAqiLi/HFeQ+6Ggpcp8bDf8ceh6/c\nF76MoJYkorBPspa/FRObXWC5CDyiyo03gi72XBbrZaWp/0dkPONpRUOBWgssax1rMwO55XiU\n9B/3Y3KfXFgWn1cOfyQfUOzx/pXMHxfIM7FYD33KTxtpLN959dvMaFo5OScHDvs1+YE8SZuk\nndmPs2NpgGOB5epLRN5F6N16OttCS2f5v5E/b/14zrbAct5EKLCC62JRqYn7vSv/aXDp/+Rx\nKuuhBDY95tDBzrvNJmhXKkmvN1lf/hAnvWz5ljQ6Xt1bW3rZPIgbBj5xPr646EEXQ4Hr1Hj6\n79jT8JUXLx9GUOvp7GL7Lklb8XhU2HLpzXMWl4FHVNnxRtD5nktyxkjUhqidxxUNBWotsH6x\nTrL4kc1v7pMPWxrSapezfjInZ/GerNkYs/4/6yTy93KAjHc0uUNa+GDmc/IHVep/67hf+7WE\n9VcKSrs3aiXPp71RXppbrrj4EpEFlnfr6WwLrbdIy162m3veaROhwAqyVyPl1jemlo63dlHj\nrAs9bXrMsYOddptt0OQj9nHfWV++LGeGYssny7PWUOU/grdZ4Bvn44uLHnQxFLhOjaf/jj0N\nXzbx8n4EtZyyrntYoRjp/6fJp5qsl3A4Dzyiyo43gs73XLLW1gXbPa9oCFBrgSU/5Jsq2f3q\nm1UoRymbw82vls9ZGp9zoPpYzrTCxicslpvVrC+/yrdfO1Et5xfbX5RnI5Lnz7YpV5x/idCZ\n3L1bT2dbeLVqbuptn57orIlQYAXbB5Vze4FMY7J3NzY9lq+DnXWbXdAWSm/qZJ0u/7xJ7s8a\nBpwPzgaBP5yOLxYXPeh8KHCdGo//HXsYvmzj5fUIarG8lJCzfJ51BrestDoNPKLKjzeCTpMl\n2ygvibnkxYpqn2oLrN35u+/2gUGVC5sSK/Z79rrt4qt7ulcsGJHScuHfuYtOT62dYEyoNd56\nH+hvDxQOT+3+Z/792s0t5lJRBSs/+KrFcoGyZ1mzKVecfonYZxF6t57OtvCvh4sbo8p2PWlf\nYDlrIhRYQZf5wiP1i0YZC6R1eOq33IV5PZa/g510m13QMlva/Gfz6phaKRExqa1n/KDwZkBg\nnI0vVs560OlQ4Do1nv87dj982cXL2xFU8ue0hoVNMZXG/Ci9pNzTPk4D72JDIYh4I+g0WZLz\n8iHPXt6tqNYFu8Dy2ibpj6HfuVcCAAAAwA+qLbDqEt3PvQ4AAAAA/lBrgfUaEb3KvRIAAAAA\n/lBpgXWjBlFt7pUAAAAA8Is6C6zMgUR0jHstAAAAAPyiygLr0zZSfdWJey3cWHy3cwu5VwwA\ndAPjEDBDBN1TX4H1YFHrfHVpf3v+UTb9ybne3CsGALqBcQiYIYLuqa/A6m3tnzt/5l4Pd5Aq\nAOCGcQiYIYLuqa/AGhdBCfWX3/D8gwAAAADqpL4CCwAAAEDjUGABAAAACIYCCwAAAEAwFFgA\nAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAgGAosAAAAAMFQYAEAAAAIhgILAAAA\nQDAUWAAAAACCocACAAAAEAwFFgAAAIBgKLAAAAAABEOBBQAAACAYCiwAAAAAwVBgAQAAAAiG\nAgsAAABAMBRYAAAAAIKhwAIAAAAQDAUWAAAAgGAosAAAAAAEQ4EFAAAAIBgKLAAAAADBUGAB\nAAAACIYCCwAAAEAwFFgAAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAgGAosAAAA\nAMFQYAEAAAAIhgILAAAAQDAUWAAAAACCocACAAAAEAwFFgAAAIBgKLAAAAAABEOBBQAAACAY\nCiwAAAAAwVBgBduFd1529N517pUCbcs8+Uq+VL1/jXutQPOufZYvVy9/cpN7rSCk3P4uf8he\n+Yl7rcRAgRVEV95a1L0cycKTK9RsIqlRPtEgvY1u+/Qv3CsHGvXL3nHN4q2pii1Zpb4UqsbV\nyyTIb6NaLPyee+VAs668s7xfVZM1WAml75SD1ahaaWvQ4to/8yv32kFouPbq9FYFrCErWObO\nBvLoVaOcdZ9IKd3X/cy9doFDgRUk5zImNIyQd4JVzcPnbck4muvA8jH3FCcyNN+BIw7goxNr\n+5SSQmVIbdJ74tN780J1dN/SUe1KSp/UWnqWex1Be/63Y0SdcCk+EeXbDJy2+oBNsHYvfqRV\nClFYs02XuFcStO7nZ9rHyKVUk35TV9mG7NDax3vXk/9IrPXkj9zrGCAUWEFwet+o6mHSbrBM\n+3FrbEorGxsGV5RyNvsc95qCdny3tmcxuWKv02f2bqehOrp5eI0wihr8X+41BQ05/9KcDslS\nroxp94xacdh5sNYNTjdQoYm/c68raNivT9U3EKW2n7TdecgyVgysFkaGu3Zq+gIaFFjKuvXl\n2v7lpeHKVKnrdBe7wWyrzNFUcM5l7hUGLfhmXe9UKVXxDYc+7bxiz7G1fzKFdf2ae31BA26d\nPDynm/UShsQGD87f7zZXR9d1jaeoEae51xm06cqONlLxVGXwOvcp2/FIJaKUWX9zr67/UGAp\n5tLHm0Y1jZOvhanea66H4cpqd984KrGLe7VB3a68vbhTUflCmPpDPBRXWQ5PKEvGwWe4VxuY\nnT937tyP0v/OXXX44Orp42/sWjK6Y9VIubaKubPTxI1exOro0f0PJVHcbMdvA/DoxKhCROWH\nbPUmZqvui6a4x/7kXmV/ocASLfOvE2/smP9w2zLylXqG4s0fWubiOLsTuzqZqM2P3FsAKvXv\ne6uH1pIvjUloNGS5N8VVloxJxSlhxW3utYegu33qlfXTBt5br1xiBNlKKFSodJpVUiFTzsLI\nMk16TV7nfayOHj04NJ7KHePeSNCW20dbGyih0yqvY7a7fwLFz9ToJX8osPxw5ft3MrYuf3Li\nyKFDu3fL1r5169aNalcuUyhnvIqvdPfQeXt8GK6s1lSn+A3c2wcqc/vn19aNv7esXLLTR/5X\nAAAgAElEQVSbyrUfu9bXVB0aFEMNTnBvBQTRhVcX960ZlTUUhSUUK1+1Ri35tuUGNWrUSC9f\nLiUlpVBcXEJcUkpq+WoNWnce/NhCrw4nONp1r4EGXODeVtCOq2vTiSqNP+hTzPYPjKfi2zK5\n190fKLB8cfb1tY92rJ5IroTFFS6RXqdllyGTl+z0Z7ySZIyMpq4YskB25vOja6f1b1k+6/hD\nbOX2w5864DlCzmxpQNErNTlCgc9+2DKosrUYL92o6/AZz+zwcyjyylNlqPTb3BsMGnFxYQqZ\n7lrie8x2dwmnZlq8WwcFlpd+O/T4PcWy5rBKrXpXx77DJkyfs3TpmvWybbus9okZstZXoPJf\ncm8uMDr70YGlY7s3Lp1zXic+rVHn4XP9OsSQZ3ws3Y+7VEPeXzsHlJbnV6jccdzKQ2IGJPcO\ndTGYFqB0B8/+mZVIUR03+ZezdXUocuYN7k3wGQoszzK/fqZXKetUaDU6Dp+32ZerFPxyqCPF\nHebeaGBw4+vd03vUTsgqqwyFytVr13v0zGcEFe6bKlHaZ9xbCAq6/eG0umFEMXUHLg5KbZVt\ndkHqdJF720HtLs5JpNge/p7ZkUwsRLWOc2+Fr1BgefD9mu5F5NMztXpMC/AQgg/GR4Qt4d5w\nCKqbn60ZXMt6yMqUWuue/hMWbBS+jzzcyRB7gHs7QSFXMgYVJQqr1HuR9zfVCLK1ElU7xb39\noGpXnypCsb3cz1Tkyc7mFP0M94b4CAWWGxcOPFRWPnDVdNgKxQ9b2VucQONw2F0vrr0xo1Ws\nXFqVbfHgE2sV3D9OiAxbxL2xoIBz2zpLAYpvPiGAAwQBONSWin3C3QagXrc2lqSoBwIrr2SP\nxVFnbV2gjALLhcxP5jY1EUXVHfqMgBHIZ+uK0YO3uNsAguD4U3fLj4tIbTVsifLndZYUopGY\nryHEnF7dJpyoaMcnjyieH5f6G+Jf4W4HUKvnqlB4RyH3WmysROW/4N4cX6DAcub83gEpRIZy\n3eYF81oGO9vTqCcqrBB346UR8iHS4u0nbgtSrDaWoB7au1IUXPrxqcZhRGV6Ph2kALky3hSJ\n60bBmU9bkKGFd5PXenaoI8Xu5t4iH6DAcpT52bxmJqL4pmNcPCMpSHZVQIUV0i4f6F2QKKrB\ncFFjj1eerUAd8FTxEHF8di3p78D0Bz08cCQoZkSG7+NuD1Cf3x4MoxrLBQbtsSjDE9q5fAYF\nlp3z+wamyoeuui9kPNyebXcFelA7QQKfXNnXLZYosf1M32bcE2BvVboXFZb2Zb4/sQJRWLWH\ntwQ7QS7MizKhwgJ7V2bHUcnpYoO2vAj10MwIhgIr1+0PZzc2EcU1GR2s8zUe7EqjUdyNAgq4\nfrR3HFFyp0VBvnUiy75q1AFnCbXt2gsPSX8IRtQd9SxHglyYFxWewd0woCp7S1P8MOF37Wyr\nQE21MqUfCqwsv2zqkURkKN99Af+hq1w7itMc7oYBwW6/NjiRKOn+p1iqK9n+O6k7Tj5r119b\nu0j1edxdEwVNkCbM3Iio17gbB9TjyxZk6rBLgaDtb0B3/sa9dd5BgWWxXHp+TGV5NoYWjyr6\nUAk/bCxs2MbdOiDSx48WJ0q4dwFbdSXbl05DcPJZm76Y19hIlGyezXb7jRvTTAUwWwNkOTfS\nRDW9f6SzT460o7InuTfQK3ovsG5//GSLSKLw6v2Xs+7zXFgRE/EadxOBKN/OSCeKbjEj6DNB\nOtpZhp7gbgzw2aXDQ0sRGSr0EXnNsFDjDSk/cLcSqEHmxmRKeVy5pHWnVE08mlDXBdYvGx9I\nIqLSHWfsVy4JgZllLPw9dzOBCD8vriMV8vUn+vm0ZrG2JtN67gYBn3y1qJX0l2BMY+abmz0Y\nSJW0cnUMKOiTBhTRW9Ghrj8lf8W9lV7QbYF15cVxVeTzgs3HBO8JOP4YRpW0NXUtOPH7003C\nKKz6KCUuSPDLqjjTMe5GAW/9tXtgCfkvwU5z1Xhi0M691Ap3UOjduUeM1EDp2WeGGIpooMLS\nZ4H17fJ20UThNQao8rygvXupA+be1rTfn2keRoZKQ1Vyc2qWJ00Jmntwqi5de3VynTCi2MYj\nN3NnxhuHa9PD3E0GrDK3JFOxGcpHbaghWf1nCfVXYF19cUQ5efZss3rPC9o5VJVmcrcZ+O3U\n0qbS7vGOgZu4c+RoNJX7m7txwL3Mzxa3iyEKS++hgnn5vLSnJK3hbjdg9FUziugVlAshBlOq\n6q9011mB9fv6jrFEkXWHrQ9GAMTYnhiGszna9Pks60zbA4M6V7u37qe2mKxBxU6u7V5Efkhl\n+ymBPyQ3mNbFRbzD3XbA5dKEcKobrCcL9KOyv3JvsAd6KrC+nFPXQFTMPEsV1xl7b6GpiNpj\nBPlcOza8NJGx2lC1ntk5UpMmcjcSOPfb9gGl5StEm41SZW3u3syw1DPcDQg8DpWipCnBi1o3\nqqLyw/B6KbBuvzUujSis8oMKTcyhqIHUDMcaNOXUmg5xRFGNxu7kzo4bO4saDnI3FOTz556H\nK0rFVWy9wSvUf4WoU32pBcYrPTplJlOnoE5/ew81vsK91W7posC6/sKQZKLIhmPUNpGolzLq\n0TTuNgRvXXp+TCVpB1n0vuA/Z9BHyyMSMAeIqvx9cNSdBqKIGv0Wa+aiq/wy6tDj3C0JQXdj\nfgxVWhHcqB1pRPerupgP/QLryqE+CUTxraZq7MSgrZ1Jxje52xG8cPPd2c0j5B3koNXcmfHG\nSKqlmaemhrzzR8bWCCMyVek1T+2VuSc7i4S9zN2cEGRvVaH4UUE/5nqgsrof2BviBda/e7rH\nEiW2n80+eXZg5hpKYzYslbv10aL28USGMh1naKaWb0EjuJsNJOeOjK1plIqrSt1na+PeZg8W\nGlP+4G5TCKazgwyGVhyPHt9ZgpZzb7wboVxgnd/WMYoo+f6FGr2UwVZX6svdnODazfcW3ltA\nPi/YZryqZrvyZF9xwxHuttO7M/tHVQ8jMlbsOlNtT2/2X19qj6dd6kfm5iQqOY8nausSjM9z\nb79rIVtgnVnbLoIotesSnl4X7VAaHeBuUnDqymszW8dKxVVyy9Hau+VrWXjS79wNqGPfbh6c\nTvKRq24hVFzJMqrSCu7GhWA5fhdF9GV7yMDC8AJfc7eAS6FZYJ1c3ET6m7BMzxVcfS7eyvAi\nOOiuOv88P6lRhDxtbZux2iuurAZSWxxq4HDpjQUdk6XoRFXvNTckTgva2xwXfYK7iSEoLk+J\noDobGLM2ltLOcjeCK6FXYN16a2JleXbH/msYu1wBD1Jn7qYFW+czxtUxSkkra56oqdOC9jJq\nqPoShpB049N1Q6qbpOKqUMNBi1X/dEE/TaA6N7kbGoLg+bKUOJE3a52ptVqzFmIF1u9beiQS\nhdd6RN1PcPbHkXTazd28kO3ysYlycWWs0Hmaap7f7KfNcdHfcDenfpx7/elBteVjnqY77ntU\nQ4+T8ENTmsXd2qC4X7tQmHkPc9SO1Kbx3A3hQggVWOePjKkq/1XYZnJoXc6QY1VE8l/cbQzy\nA+Lmt4wkCqvQdcZe7kyIMJ4aqHommdCQ+dMrq0a2TiW5tirT+uHFWp+JwbOdiRGfc7c6KOvm\nkniqsIw7aUeP7kox7OVuC+dCpMD6afco623Od/ZfHgK3DLrQD3cSsvtn34Bi0j6yVIcnuP9q\nE6cRLeBu1tCV+fsH+58aeV/lKLm0osQaHUctDf3aKsvjVOMGd/ODkt6tTrHDVLHDfToy/r/c\nreGU9gusHw/PNKfIfxeG1G3OzhxOoxe5W1vXTi1vHU4U33TMFu4oCLUjIQrXIwv2x5cvbp03\nqlvjMhHWwooiyzTqOmqhmh+cpIAWNIe7H0A5ZweHUXO1XH46jipf4m4QZzRcYF39+tDCQQ0S\n5OEroW7fULwTx9GSsLTL3K2uW1/MqCklrUy3hRp+hokLE6jRbe7mDQlXTry8ZfbwjvWKh1O2\nQuXq3ffghMVq2Q0F17MJkajcQ1XmhiQqMZc7YnnuoT7cTeKM9gqsKz+8s3/ZhB4Ni1kHMEOx\nRj2nbuLu3GDpQJO4m1+fPp50B5Gx+lCNzsXgSX1MWhSYs29vntqjbnJ2VRWWmFa3TY+Hpi7a\nHKq3CHppAjVB5R6aPm1IkXxTXzlxII02cDeKExopsK78753Dq2eO6NI0vUD2IGYoXLlV34nL\nNfNQEiH2JoV/xd0VupP5/viyRBH1x4buCZ6tsfE/cTezRl37eP2olkWsQ5IxuWqL7sOeWLpV\nFVelqEJdWsvdQaCA8yONVF9lf22ui4lR4Xyj6i6wrn93bN0T/dtUTsg54k6xJao27Tjw0Xnr\n1VQ8B89kaoppIYMp891xpYiimjwW2pf3DSczd0trT+aJTQ/Vsp4MTKppHjZrnT6HJLc2RRU6\nzd1NIFrmlqKUMo07W/lMoDuvcjdNPmotsM69sXpk27LGrKoqqkTVZh36jZm2ZLNebsBxqQ5t\n5e4a/bj1xqgSUvqaTg756/syKtF+7tbWlNufLr0/Sb61Ju3uYQt2c3efeg2iXtxdBYJ92ogi\neqrx1FFbGs7dNvmosMA6+3+zOpayFlbx6c26j5i5KiRmGxJkXUTKBe4O0ocrRwcnE0XfNUWN\nQ4lwK00lLnK3uGb8b3WXwvKcC40HL9RFOAJwOI1e5u4uEOnsw0aqp84pcvcVN2RwN48jlRVY\np7YMrGiQS6vqHUfq7aZm7/SgMdydpAO/rrs/Vkphq2m62YF2pUe5G10Trr44qoJcXDUftZa7\nyzRhsSH9OnefgTC3VhWmYuo7O5htmamI2s5Iq6jAurB/aDl5xpiqXSer7PI5NTmQbFLhpXyh\n5NILj94p5bBoh7mHuTs7iPYn4/4Jj06v7yjV3RG1hzzD3V3a0ZbmcXcbiPJ6NYrqp+LrdB6k\ne1R2jbJaCqxvFzU3EUXVGRCyDz8VZTK15u6s0PVXxsRG4USmagNWcfdzsE2lu1Q2NqnMifkN\nw4hS7puhm6OaQjwbH/crd9eBED92JcNdqp5kOeNOWsPdSvZUUWB9PLkSkaFc93korrxQjQ5x\nd1go+uOlhT3Ky/N/pHWcFtq3DLpQm57l7gPVyvxockUpGpX6667uDtwwXOceEi5OjqLyC7nT\n5MHG2NjvuRvKDn+B9fmkNKLwOsNVXRmryUpj+WvcnRZKrnx95KmH7pJvCaPoat2n6faWsDWm\n4v9y94Uq3X57bGlpiKo7cjt3F2nSkTTDm9xdCIG6tSGFCo1W/wxvo6mxqua2ZS6wfphdiSii\n0QTcKOiD9rSQt9dCw5mPDy8f371B1hMBqEjtLhNWq3/8UFJXPCcgv9tvjEiVJ0LDEOW3+Yaa\nqtrnge9eqkYR3TXxn0B9WszdWLY4C6wL65oYyFRvgi5PyATg2diEvxi7TetOv7llev8W5SOz\nH2uSVLlVnwlLNTF2KGxfYuT/uDtHXW6/MTyFKLbFVFx2FYimtJ67JyEQX95DhmYaufNsW3z0\nN9ztZYOtwLp9rGc0GSoNx1wMvhuowgnVNCDzf4fn9qwVl1VYxZet277fuHkbcdlfnjHUmbuP\nVCTz/THFpeqq1TQV3zWlDZsiimKSNe36ZYCRKi/mDpHXxqvq0fVMBdb/Hi9JlNJzHXdnaNPB\noiY8pd43vx2Y0KKgXFiZitfv+NC0Z3DU1ImM8vQad0epxfEpZYliWkxDAS7AAzj5rFnnHoum\n4lO4E+SL+rSUu9HycBRYV59taaColvP0fcVLIB6jDgz9plU/belfVq6tUhr1mrxGT3Nb+WyB\noZaK/vjj8/tTNYkimuhjEv8g2JcYdYq7T8Efl+cXosRHtDVobo2NUc+lDsEvsL4clUhUceQe\n7m7Qsox0eiPoHadJV54fIU+8HV2r9wycjPasCW3m7jF21/a2N1JY7XG4LE+ckZiqQYuuryxG\nsX01d7R/NLVSzZR+QS6wLm1sQFSgIyZCDtACqqeaCKnXn+vNMUSRtQYsOcLdYRqxIbz4Ze5e\n43V8dGGisoO3cfdEaDlSxvARd8+Cj25uKkMRnTX4d2lGDdrI3Xg5glpgff5IATJUfwwXjQau\nAe0LZs9p0O8r7jISFes4C+d5fNCJ5nB3HKPrO5sSxZuXc/dC6JlBLbg7F3xya2t5MrXfyh0c\nv2yISjzD3X7ZgldgXdncgKhgV1zXLsQq4x03gtZ12nN29V1hZLijHybe9tGu+Pg/uDuPy+lp\nRclw5wT8/aeEGvQcd/+C925tSydjG43MzJDfQOrJ3YLZglVgnRhdkAw1JuGeHFHa0KogdZ3m\nXN19XzgZKgzU7PDAaZBepwD578BIirkPFblClhmq3uLuYvDSzS13kLGVho+FHE6jF7gbMUtQ\nCqyb+1oaqEBnDXeY+myOSNX51TLOZb41KIGoZN8N3B2kUQeTw9X1MK/g+Pj+MCo6GHfeKOcu\n2srdyeCVa2vKaru8kiwJS1PH7jEIBdaZWcWJKj+KI+9idab5yved1vw8uxxRoY64iMZ/4+gB\n7l4Mus87GCjtMdwJoaT1ptJ4hKoG/Ls4lcLv1vzfp2aazN2SVooXWB/1jaSodiu42zv07Iwt\ndF7pztOWa7vbhlFE0xnYUQYio4zhE+6eDK4fe4XRHdMwK5/C7qVl3D0Nnvw1LZEiO2zmzkrg\n9haO+C93Y8qULbBu7W9MVGzwbu7WDkm9aaqinacxX8n315d/eBd3t2jeNLqbuy+D6d9JUVT6\nce5G14FtUUXwwBx1+9+IGIrtvoM7KUJMpBZqmMlIyQLr8spyRNWfwJ+GytibEKfbG74cXd7Y\nkCi+wwruPgkJVfT0wJw9xSlxNIaoYOhOs7h7G9z4sLuRCg8Mmfl1a9IO7ha1KFlgnZtVhEyt\nVnA3cwgbTGMU6z1N+XJ4Ahmq4f56QRZSQ+4eDZaf25Opq+Zmqtao3XEJf3N3OLhw+8hdRCVH\nh9Bt/mvDUy5wt6pyBdbZKQUotqs2pynTigOFo35VqPs05NqORphfTay6dJS7V4NjcwJVXc3d\n2vrRD898Vql/V95BVC3ErkN8gEZzt6tSBdb5x+OpQF9ceqWwR2iYIt2nIacmFSFDtYkh9IeX\nCiw31FDD5QtKO9eVooaF1j5F3fYlxKplgm2wcWpCQTK1CLlbrw8km77iblpFCqyrixKpQH8c\neFfcoeQIfT+k/tVORortgGMQojXRw4OYPihN6TjuGVSDaSx3r4Ojt7qaKL5bKJ5smkLNuRtX\ngQIrc3cZiukdMpfKqdooGiK8/zTj2uYaRGVGoJAXb1VY5ZCfdntjpKHrYe6G1pkDidG/cfc7\n2Lq2pRZRyeH7uZOhjJq0h7uBhRdYXzYjkzk0bvRUv0PFwn8Q3YEacX5eMTLUn8vdAyGqhSru\nwFHQrXEUO427lfXnYRrJ3fOQ59epyWSoOztkT5OvNpXkns9dcIF1+TET1cYpm6AZQwPFdqBG\n/D4+nqLMOMGjlLXGCiF9COtKR0pdw93IOnQwCfflqMZb3cIptmNID6L30xPMjSy2wHq9HBWZ\nwt2oenI4Nfyk0B7UhJ+HRVFC353cjR/KWtEW7l5W0PnGVAXx4fAIjeDufJBd2VCTqMSwEL/A\nYnfBaOarlEUWWNfGhxnMId5jajOWBgjsQU349ZFIKvLQAe6WD23rTeVvcne0Ys7WoobID4tD\nRSJ/4e5+sPz4WGEy1A/dc4O5RlE33pYWWGB9V4uS53E3qN4cTjXp6xDW3+OjKXkEpmVQWhva\nxN3VSvm7BrXA8yqZDKfh3P2vd5kvdTRSfGfNP8/ZGxnl6Q3WxhZXYO0vQM33cLen/ujrKqxr\niwpS4jCUV8rbYCoXooew/qlLrUL/T3e1OlQEV2GxuriyElHZkSF632A+Cww1b3M2t6gC6/YU\nQ8Ro7sbUo8N6upHwcDmK6aeXoYFZG9rM3d2KuNqc7sLxKz7DaBR3BHTs21EFyNRETyeamtJG\nzgYXVGBd6UzJITcTrDaM0c1cWCfvIWN7zAASJBtC8yqs292pLqa/YnQwKfo0dwh06vbz7QxU\n8IEt3BEIqo0Rxf5lbHMxBdbZhlQJez4eh1MifhLSiSp3c140VV3B3do60pq2cfe5AiZTOq5v\nZzWUxnGHQJcuLLuDqMI43V1f0Y2mMra6kALr10rUBKMWlxH0iIhOVLkvalKBsbh0JojWGSuG\n3lxYOygZfwnyOlAo9k/uGOjPN8PjydT8Ke7OZ7C3YDTjEQgRBdZPaXQvdn1sDiVFhfzzJ24v\niKDmz3K3tM60pF3c/S7aJ9HRK7mbVfcG0mTuHOhM5v+1M1Bi723cPc9jOPXha3oBBdYvadSF\nuw117WEaE3gvqtpvLSlhKncz686asKqsN+CId66sYTJ3q8K+AgXOcSdBT/5dWYGowqO6OzeY\n40hpw0dsjR94gfVHOnXlbkJ9O5AY84eAKKjXS0Wo9nbuVtahZnSAu+uFyuxInbnbFI4e7Uuz\nuKOgHz+MTSBTs8Xcfc5pBjVja/6AC6x/apOZuwH1bhBNEpEFlcqcZzQNxCloBisMtTK5e1+k\nZ6gybiBUgd2xhTlv7NKT1zoZKaH7Vu4eZ1aTDnN1QKAF1s27qQV2fsz2JYTwMfcrD1DiAu4W\n1qkG9Dx39wt0Ijp2E3eLgqw7LeIOgx5c21yDqMwo3H+2Iqwi15QzgRZYD1FN3Z7bVY++NFNI\nGlToj/qUrvc/wNgsoUbc/S/OzTo0gbtBwWpHVLGr3HEIeWemFyVD/bncfa0KbegZpl4IsMB6\nhkri8Tj8QveY+8k0zADCqDa9yp0AYeZQU+7mhGwdaTV3HELcZ/0jKdq8jrujVWJLZNGLPP0Q\nWIH1dng8ulANHgjRY+5fpVBnnIHmM59ac0dAlOORBTHPh1psCS8bio8JUIvbh5oTpQzezd3N\n6tGdnuDpioAKrD9Sw2ZxtxzIng3NY+4fFzYM5G5afatKH3CHQIzbDWkid2NCrra0gzsRIeuf\nZeWIqk7BAzdt7EmI5ZksMpAC63Yb6s3dcJAlJI+5f1zQMJy7YXVuJnXkToEYa6k+d1tCnrVh\nVUPqBlX1+GFsAQpvuYy7g9XmIRrK0h2BFFgLqAZO36hEKB5z/zLRMIq7XXWvnOEr7hyI8Gdi\n1GbupgQbTSiDOxOh6HV5WoYeOp2y3Z1DxUwnODokgALrs4gEdKRq3E3bxaVCFU4Ww/ErfpOo\nN3cQRBhCD3K3JNhaFko3qKrEtS01MS2DKxOpE0ef+F9gXatKj3M3GuRaF1YltI65/1GecP0V\nv4ziph+4oxC4T8KKYzYZdalFb3KnIrRYp2WoN4e7X9Uq4w56h6FX/C+wplBr7jYDG83okMBc\nsLtcnzpxNylIRtMj3FkIXDOaxt2OYG8u3cudilDycT9My+DeXGrC0C9+F1ifmpJwF6iaPG2o\nLzIYzDK7UlNc4KcGh5KiznCnIVAHqRZ3M4KjdMMX3LkIFTf3NiEqNhhTUrpVm+OyP38LrJu1\n8DehytSh/wiNBqvpVAmXEqjDYM0/6fJGhbCV3K0IjqaExtV9/P5eUIqo2uP4e9SDpw1VbgW9\nc/wtsJZQM+72AnvzqY3QaHA6Ykjazt2ekGVfgYQL3HkIzCpqy92IkE9GiVC4uo/dl0NiKKLt\nCu7e1IIWtCno3eNngfVbfCzuIFSbyvSR2HCwOVkwYgl3a0KOXjSPOxABuVI8AlM0qNAoGsEd\nDa27dbAFUVL/ndxdqQ0bTKWCPh23nwVWL3qIu7XA0TTqKjYcXK7VIkzQoB47o1I0/ZiABdSZ\nuwnBiYOJMX9xZ0PTzi4sQ1Rl0mHujtQMMz0V7D7yr8B6y1AWE/GrTkaZsG8Fx4PHSGrO3ZZg\nQ9uPCbiYFI2HEKrSAJrOHQ4N+3xQNEW0Wc7diVqyI7pwsK928KvAul2H5nG3FeQ3ngaJzgeH\no4bUfdxNCTY2m8oF/+pQYebSA9wNCE7tiU26xJ0OjbqxuylRcn/85eCbnvR4kDvKrwJrGzXi\nbilw4nBKxK+iAxJ8fyablnK3JNhpTbu4U+G3i4VjdnG3HzjXlZZzx0OTfp+ZSlQNj3P22d6E\n2CDPOeNPgXWllAkTmqnSMBonPCFB15n6crcj2FttqMmdCr/NxwEs1doaXjrknqCqvLd6RFDU\nPZh4xB9DaHhwO8ufAms+deRuJ3DqQMG4v4VHJMh2UTr+MlObhvQidy78dDk5CvdYqVZbepY7\nIBpzaV11ouJDMMm3fw4mR/wvqP3lR4F1rlAsTv2qVD+aKT4jQfVXUsQq7lYER4upJXcw/LQc\ntxCq2BpDDe6AaMq3owtSWP1ZmFPUb2OoT1B7zI8CaxJO4ajW7piky+JDEky9qT93I0J+d9KH\n3Mnwy43SEZiwT8Ua0jHuiGjGzYOtDZTQdSN3n2nakVJhQX1Ck+8F1h9xCbjHS7W0ftnoMUrD\ntC4qNIO6cEfDL9upHXfTgRuLqBV3RDTitxnFidLHHeTuMa2bSvcFs9t8L7AepUHcbQQubY0o\nfUOBmATL1XJhmMJdjTLKanKOtczqYWu5mw7cqUwfc4dEAzJf6RpOUW0x6VXgMtLp7SD2nM8F\n1pmYQngKr4q1o61K5CRIZtB93A0ITo2nIdzh8MNLmFBG5Z6gHtwhUb2zT6UTlRyKC9uFeJKa\nBrHvfC6wHqXB3C0EbqwLq5qpRFCC4sfoBIwi6nS4aOTv3PHw3d20kLvhwK2Mknjks3tv940i\nU9MncWG7KLXo+eD1nq8F1l+xBXEAS9WaUoYiSQmGLjSKu/nAhYdoInc8fPa1IZ272cADPPLZ\nnfNPVyUq2m87dy+FkmWGGreD1oG+FlhTaQB3+4Bby6mRIkkJgtepPP5OU6v9CQnBfo5XwAbT\nRO5mAw/wyGfX3u4XTcYGMzAoitUkiA+m8LHAulAwHrcQqlwtekOZrCjtdi0DTuioV2+az50Q\nH52NLoJbUlXvQZrBHRRV+mtJJaLkPlu5+yf0rDGWD9qdYD4WWPOoJ3frgAdz6TFLgp4AACAA\nSURBVB5lsqK0LdSEu+3AtZ1Rxa5yR8Q3c+lB7kYDj/bEFsYjnx3dPtY9kkyNcPBKEXfT6mB1\npG8F1rUUPHdC/dINnyuUFkVdKRm+nrvpwI2OtJY7Iz65WTISo5UGdKaV3FFRmVPTSxMV748p\nchWyOSI1WPNx+1ZgracO3G0DHk2lngqlRVEL8IhLddtsuuMWd0h8cYDacjcZeGGLKU1TuVLY\nle2twiiixTwcvFJO56Bd7uBTgZVZ0Yh5+tUvo6TxpFJ5Uc75xFgcb1C3VrSXOyW+aEGYmFET\nWtMe7qyoxjtDE4gqDMdsNYraGVvoXHD606cC6yg1424Z8MIYelipvChnKvXhbjdwb5WhNndK\nfPBfQyXuBgOvrDLU4Q6LOpyaXYGoUKdnuDsk9PWhScHpUp8KrBaE55howaEiUaeVCoxS/oov\nsJe73cCD+vQyd068N5LGc7cXeKce/Yc7Lfz+2dQ8jMIbT8ONr0Gwr2DMb0HpVV8KrM+oKne7\ngFeG0mOKJUYheMSlBiyk1tw58drlggl4MK5GzKe7uePC7OZzPaKJ0ofhKokgeShIZ3l8KbD6\n01TuZgGv7E8ocF6xyCjidEwinhCgflXpI+6keGsjdeFuLfBWRcNn3Hnh9P7IIkRFe6zh7gYd\nOZQS/l0wutaHAutMZLEj3M0C3ulDc5TLjBLG0lDuNgPPplNX7qR4q65hHXdrgbemUi/uvLD5\ndlp5ovh7FuCuwaB6lB4IRu/6UGDNxGOeNWNXdJFgTfQhxBkcwNKEjDJh33JnxTufUU3uxgKv\nZZQw/cidGBa/LalDFNF46iHuHtCdjDKGT4LQwd4XWNeLReHeUc3oTMsVTI1w42kId4uBN8bT\nIO6seOdhmszdVuC9UTSSOzHBd2FzayMZqo/GfpXDdGobhD72vsDaSe25mwS8tjWiZNAetxS4\ns3EFcQBLEw6nRPzCnRZvXCqQiIMCGnKosN4e+XztUNcoovKD8KxBLlWDce+q9wVWI8Mq7hYB\n77WnTQrGRrAn8NA4rRhGY7nT4o2N1I27pcAXA2k6d2aCKPOthwoRFcNl7ZwWUd1MxXva6wLr\nU6rO3SDgg42mdM08f+JioXjMgaURBwrFneXOixca4hJ3bdmro0c+f/dEWaIE82LuNte7BkF4\nMoXXBdZgXNOgLS218/yJhdSDu7XAW/21cKjhOFXjbifwTXdayp2aoLiwtjFRRDPMJ8pvtfEO\nxa+j8bbAOh+ThERoyipDDeUPgApxLTXyWe7WAm/tiS38L3diPHoUs7hrzXZNXTXqp8xX+0ST\noeqoPdytDbK7aZXSPe5tgbWMenO3BvimET2naHSE2UBm7rYC73WnxdyJ8eR6chxumtCa9rSZ\nOzcKOz2vPFFyjw3cLQ3ZtkamKP3HorcFVhUj7nbQmOWG+opGR5TbFY0budsKvLcjMvUad2Y8\n2E/3crcS+Gq9sdJt7uAoKPPVbuEU3mw25hNVkW40Q+Fu97LAeo0ac7cF+Ko2vaJseMQ4Qndx\ntxT4ogOt4c6MB+1pKXcjgc/uooPcwVHMv6sqE5UYjEcNqsvu+Lgzyna8lwXWAzSHuy3AV4up\npbLhEaMpLeduKfDFZlPaTe7QuPWbsSx3G4HvVhjqcSdHIafGFyRj47k4eKU6g2mYsl3vXYH1\nR0RxhEN7qtHbyqZHhA8w/4fWtKVt3Klxax6eC6BJdbVxyN1Xn/cyUYHum7lbF5w4VDT8G0U7\n37sCawEN5G4J8N0culvR8AjRjWZwtxP4Zp2xoqqvlqlo2sHdROCHxdSaOzrivdXeQMWH454L\nlZpAnRTtfq8KrMw7wnEfvRZVpA8VTY8Ap0wlcXBUa5oHYYY+/71NjbgbCPxSld7nDo9grzcn\nSp+KEU61Msore5rHqwLrFWrG3Q7gjxnUQcnwiPAojeRuJfDVKkN1Fc+xNpimcTcQ+GUWmbnD\nI9S7LYmqzeVuVXBnHjVQcizzqsDqTgiJNlUwfKpgeAS4mJCAo+fa04iOcCfHpcsFEjEnskbd\nYfiCOz7ifN1BKq/mczcpeFBf0UeeeFNg/RmRimOc2jRN4TPMAVuOp+Ro0XJDXe7kuLSNunA3\nD/hpKj3AHR9RTg8xUjoOTKjfamNZBef186bAWkQPcjcC+CejnLr/JLxd3oQJbLWoLr3AnR1X\nWtEq7tYBP2WUNip7U1ewXJ0XT8Un47iEFrSnRcoFwYsCKzMdN+Vo1lTqolx4ApdBLbhbCPzx\nFDXizo4LP4WlczcO+G089ecOkAjPlaP4oYe4GxO8siO24FnFkuBFgfU6ZnHXrow0VR/CakVL\nuFsI/FKbXuYOj3OzaRh324DfjqSa/sedoID91JHC2mPSds3oTyMVy4IXBVYfmsXdAuA3VR/C\n+spQibt9wD+LqAl3epzKLB+xi7ttwH+jaSh3hAJ0a0kcVcTDKTTkQNHwE0qlwXOBdT6mKE4l\na1dGecPnSoUnYENpInf7gJ9q0n+44+PMm9SUu2UgAIdSwk9xZyggX9ej2OHYY2rKRGqvVBw8\nF1grqA/39kMAHlfvjYTnYpJwQ71WLaSm3PlxZhAeDKBtI5V+Opyibj0ZSY23cbch+CajMr2o\nUCA8F1jVw/AUJS3LKKfaubAWUV/u1gG/1VTjk+MuF0g8wt0wEIhDyZE/c6fIb981oITJ3C0I\nPltiqKzQ8+s9FlgfUl3urYeATFPr9Mi3ykbg9lTtWkSNuROU3w7qzN0uEJjhNJw7Rf5aG0uN\nMKRpUSt6WplIeCywHqKp3BsPgUlX6RO+DlMr7qaBANSmY9wRyqctPcPdLBCYQ8mRv3DHyC/n\nOlHMWO7WA79sjU5UZqoGTwXWJTx3QvNmUxtFshOo1rSMu2kgAE9Rfe4I5ZNWnrtVIFDDtXkV\n1tulqNJG7rYDP/VXKHSeCqxN1JV70yFQVel1RcITmOOYo0Hj6tJR7hA5SnmYu1EgUIeSI37i\nzpHPMheZDN1xLEKzDhYzKnK3vacCq5lhLfemQ6Dmq3LOomH0GHfDQECWGWoq+SB6f5TC/I7a\nN1J7c2FduJ8SZnO3GwRgGjVVYjDzVGClVePecAhcbXpegewE5kJcIp4loXGNaS93jBzgHE0I\nOJQSrrHp3L+6gypv4W42CEgd2qFAMjwVWCnjubcbArfMUOO2AuEJyDLqxd0sEKBVYRVvcefI\nHneLgAhjNfZEwv1x1AF/LWrc2vDUi+Kj4anAqnaAe7tBgCa0U3x2ApJZwbSVu1UgUC1pE3eQ\n7HE3CIhwpITxv9xJ8l7mNEMEjkNoX3d6VHw4PBVYuGwvJKwxlr8hPjyBeIHu4m4UCNgGU+lr\n3Emyw90gIMRE6sadJK9d6kxJS7kbDAK3v0j4V8LT4anA4t5oEKMdPSM8OwFpT4u42wQCdy8t\n406SHe72ACEy0gyfcEfJS7/WokrbudsLRJhKzYRf544CSx+2Rhb9V3R2AvF9GCYsCgXbo4oo\ncOGC/7jbA8SYTu24o+SdT4tTi4PcrQVi1KXNovOBAksnutN00dkJxFgaw90iIEIPmsadJVvc\nzQGCVKHXuLPkjefiDH0yuNsKBFkfUeRvwQFBgaUTuwvEnRacnUDckYC7J0LCnoS437nDZIO7\nOUCQhVRfbXOsObHWFD6Bu6VAnD40SHBCUGDpxVBVzd6X1p27PUAMdeWKuzVAlHq0nztMnmQ+\nTvHzudsJBDpU0vCG2IygwNKLQ6nGr8VmJxDFN3O3B4hxqJjpOHea8nC3BojyTFgFld347Ojm\nQEpezd1MINR8Q0Wxt0WjwNKNKWq6bnQFd2uAKBPpXu405eFuDBCmDa3kTpNbl++lNEzlF2ru\npieEpgQFln5UpReEZicQ3G0BwmRUole445SLuzFAmK1RRf7hjpMb5xpRtT3cbQSi7U6MEDoZ\nFgos/VhqqHxTZHYCwd0WIM5iQ3XVPDCHuy1AnB40kTtOrv1+JzXC9AwhaDLVFzmaocDSkVb0\ntMDoBIS7KUCgZrSeO085uJsCxNmXGHWKO0+u/FCO2h3hbiBQQiNaLDAoKLB0ZGt04lmB2QkE\nd1OAQBsjil7gDlQ27qYAgUbRA9x5cuHrVOqK6a9C07b4mO/EJQUFlp70p4fFRScg3C0BIvVQ\n4jGpfuFuCRAoI83wNnegnPooydCfu3FAKeOoyW1hUUGBpScHU42fCotOQLhbAkTalxR+gjtR\nWbhbAkR6kmqL29WJ82YBwyPcTQPKqUdLhGUFBZauTKdG6pgfmbshQKgJ1JY7UVm4GwKEaqKe\nq/vyHIsxjuNuGFDQ1vjo/4oKCwosfakv/nGWfuFuBxDrTjrAHSkr7nYAoTZGFjnHHSlHRyJN\nU7jbBRT1GNUVdb89Cix92SD+cZZ+4W4HEGulsdQl7kzJuNsBxOpNw7kj5WBPeMQM7lYBhTUT\n9gh7FFg600cdj47jbgYQrJM6Ji3ibgYQ60Ax4yfcmbKz1Rg1l7tRQGk7C5veFZMXFFg6c7BE\n2DtiohMQ7mYAwfYmhavhUZfczQCCTaf6arrOfW1Y7ELuJgHlzTakXRQSGBRYevOkocp1IdEJ\nCHcrgGiTqbEK9oTcrQCiNaLV3KHKs9wQv4S7QSAYOlFfIYlBgaU7bWiWkOgEhLsRQLh6atgT\ncjcCiLY5quBp7lTlWEgJT3O3BwTFwTTaJiIyKLB0Z2fBSGE3ofqNuxFAuM3RCb9yxwq5Cj2D\nqTt3qrLNpsRV3K0BQbImKu4bAZlBgaU/E6kh+8kc7jYA8YZSR+5YIVeh50h5yuCOldUUSlrD\n3RgQNGOo+pXAQ4MCS4fq01OBJycw3E0A4mVUol3IFYj2tKm4Ch51mTmOkjdwNwUEUSsaHHhs\nUGDp0Nb4GBFHPwPB3QSggNURSWeQKxDtARrEHCupvnqEUjdzNwQE0/4yAmblRoGlR+OpgaiZ\nav3E3QKghAF0P2+skKtQdLCU4QXmXN0aSCW3crcDBNeamOiAH92LAkuXGtOcQJMTGO4GACUc\nqURbkCsQbYmxOPMTcwZS2R3crQDBNtlQ5myAwUGBpUvPFgr/KMDkBIa7AUAR66ISfkSuQLQH\nqBdrrCxpd+zkbgMIvm7UKsBTPSiw9Gm6oQLrs+O4tx+UMZya3kKuQLBDacz3T3Tcw90EwOBI\nbRoZWHBQYOnUfbwXjnJvPiikPu80ttybD8pYFVHwJ+QKgm13cVoTUHBQYOnUgTKsfxNybz4o\nZEei6S3kCkQbRk0578vh3nxgsiY+/OVAgoMCS69WRcV/G0hyAsO99aCU2YaSgV4YilxBPvXp\ncb5YIVe6NdeU8FUAwUGBpVtj6M7LASQnMNwbD4p5gNrxPSiAe+NBKTuTwgI6lIBcgV/GGEoG\n8AgwFFj61Yb6+R+cAHFvOyjmSHWaiVyBaAtNRX5BriDoetKd5/0ODgos/TqQRiv9Dk6AuLcd\nlLMjKez/kCsQbSA1uI5cQbBltKUmfp/rQYGlYxvjw9/wNzgB4t50UNDi8ILfIVcgWEZjGsoU\nK+RKz440pPb+lvYosPRstrHID34GJ0DcWw5KGkEVmR7Py73loKB9pWkVT6yQK107WIO6+nkP\nKwosXRtKlXn2hNwbDoq6j9rcQK5AsHXx4f9hiRVypW/7KtED/lVYKLD07R5qxbIn5N5uUNTh\nWjSEI1bIVWibayp0ArmCoNuT7meFhQJL3w7Xpn6Z/gQnQNzbDcraU4ZnRnfu7QZljaCyp5Er\nCLrd6dTFn+uwUGDp3N40mujPiBMg7s0GhW1OMqxDrkC07lTzH+QKgm5PJbrHj3sJUWDp3bYU\nmufXmBMQ7q0Gpa2MM+5BrkCwjFZ01xXkCoJuXw1q9LfPwUGBpXvrE2mFf6NOALg3GhS3KCo8\nA7kCwQ7X8/+eeeQK/HewMVU+5WtwUGDBqgRD0O9+5t5mUN7ciMjnkCsQ7EA16hT0G3O4NxpU\n4Eh7SvnAx+CgwIKjTxcwBHtKd+5NhiCYGRFxGLkCwfZVpvuDfQyLe5tBFQYYon287gEFFhw9\nuiLBEOTrsLi3GIJhVkT4DuQKBNtbxa/rjZErCNSUKMPkW74EBwUWSFYVpnFBna2Be4MhKJ6M\nDlsSzFghV7qwrzo1OYdcQfAtT6Y2f/oQHBRYINuQSj2uBTIC+Yh7eyE4liTQmNvIFYh1sCFV\n+SmIsUKuINuzNam4D0/wRYEFVjvSqfEfAY1BPuHeXAiSdcXJfBG5ArGOtKNivl5vjFyBABm9\nwoyPez2rOwosyLK/EZX6JMBhyHvcWwvBsvNOqvwtcgWC9TdEbQtarJAryDM3ieoe9zI4KLAg\nW0Z3Q9SGQAcib3FvLATNoXuoQNCmHOXeWAiax6NpRNBuJuTeWFCTXU0pao53U4WgwIJcU2Ko\nd5BO53BvKgTR6AgaEqS7vrg3FYJnVQmq811wYoVcgZ2JCXTn294EBwUW5FmXRmlvCRiOPOPe\nUgimlSWpwrvIFYi1txnFrQ3Ozc/cmwoq82xLg6Hfb56DgwILbBzsaAgbc0nIkIRcQa4D9xqM\no/9FrkCsMdF0t89PL0GuQIAnS1HsTI/7ShRYYOfJFCodhEfIcW8mBNmcolRiL3IFYm2oRnGL\ngvDgHO7tBPU5/FA8FV121X1wUGCBvf33G+keb++R8Bv3VkKw7e9iomaK31nPvZUQZBkj4ij9\nqNKxQq7Aid3doij1KbdH5lFggaOnq5BpsMLT+HFvIwTfqlpk6PQFcgVC7WhroLveUTZWyBU4\ntb1jFBWa/Kvr4KDAgnwyJqVS5MMnhY5QyBUcnVWeDB0UvYuCewuBwfIaRK3/o2SskCtwYUf3\nODJ1fcXVvRYosMCJQ8OTydjVq/tQ/cO9gcAi4/HyRHU2KzdnA/cGAou5VYlqbfVwOQxyBUrY\nN6wkUdnp3zsNDgoscOrQmFJE1Zb/JX6sQq50bU4dAyUMfVOhu+u5tw6YLKhnoMTRnyqTKuQK\n3HqyeQSR04loUGCBCxmz64dRuHnHBQXGK+RKx9Z1LkhUcvSrXj/PC7kCz9bdH09UecaXCqQK\nuQIPdo+s5vQ6QBRY4NqW/iWJItos/S8GLBDo8LS7ookSOq/6BrkCYQ5OrGciKjv8iPi/Cbk3\nDdTPaXBQYIFbK3qUIaLUnis/FXrAgXuzgNmBae2SpGAld3zylb+RKxBk15hGUUTGWqN2ib1H\nh3u7QP2cBgcFFniy8ZFG8dK+MLrBw6vfOosBC0RZNbRRISlYVKr9Yxvf+QO5AhEOzumabpRS\nVaj5qLVviEkVcgWeOQ0OCizwQsaKR1qVDJN3hkkN+zyx8aX/BvpMaO4NApVYP6FT9QJysCiu\nmnnkgh2vnwjo/A735oAq7HuyX6Nka6oSanQas2z/u6cCvMOQe4NA/ZwGx1OBNX0iQJZxfdvV\nKZtgsI5bFJmSXrdVp77Dxk+f/4sfAxZyBXlG9mhbp1yiMStZFF44rUbTe7oN+Aq5ggCM6X13\n3bxUxaSm121h7jVkzBTn99MjVxCYP50Fx1OBlUIA7i33Y8BCrsAT5AqUgFyBEl53FpzQL7Ai\nChUqFMu9EoGKlzYinHslXNmhywELuVLaAeRKq1Sdq106zFW01CFR3CsRmChpE2K4V8Idvwqs\nNO61Dljh2rVra34rKkgbkcC9Eq44DRZypQXIleogV0rTY65KSB1SjHslApMibUJJ7pVwx68C\nq29rrWsq9UtD7pUIVH1pI5pzr4Qr/jy/F7lSBeRKdZArpekxV42lDmnMvRKBkf/DaMS9Eu44\nzZWnAkv7MqR+mcS9EoEaIm2E0g+MB58gV6AE5ArEWyZ1yDrulQjMVmkTFnCvhM9QYGkCBizV\nQa5ACcgViIcCiwkKLE3AgKU6yBUoAbkC8VBgMUGBpQkYsFQHuQIlIFcgHgosJiiwNAEDluog\nV6AE5ArEQ4HFBAWWJmDAUh3kCpSAXIF4KLCYoMDSBAxYqoNcgRKQKxAPBRYTFFiagAFLdZAr\nUAJyBeKhwGIS+gXWjX/++ecK90oE6rK0ETe5VwJsIVegBOQKxLsmdch17pUIzHVpE65yr4TP\nQr/AAgAAAAgyFFgAAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAgGAosAAAAAMFC\nusD6zGxjLPfa+O74ELP5bdsFv64b1bNTv5nHbnGtEciQK1ACcgXiaTxVGg9VSBdYb2s6Wjc3\ndzDbZ2vf/dnbMuwM21oBcgXKQK5APE2nSvOhCukC60WzeebOHC9yr42PfhhhNneyy9ZhKVVP\n7Htu00CzecBFvhUD5AqUgFyBeFpOlfZDFdIF1gGz+T/c6+Cvo53MnQ8vtc3W6S7m+z+QX1yb\nbTY/zbZigFyBIpArEE/DqQqBUIV0gbXNbH6fex38Ndb8yA8Wu2ytMZt3Zr262sfc8RzTegFy\nBcpArkA8DacqBEIV0gXWKrP5K+518NfYVdctdtm61dvc6d/s1zvM5oNM6wXIFSgDuQLxNJyq\nEAhVSBdYi8zmH7jXwV/WFbfN1gmzeVLO6+Nm8xSOlQIr5AqUgFyBeBpOVQiEKqQLrBlm8x/c\n6xAQ22w9ZzZvynl9vYP5AZ41AgtyBcpArkA8radK26EK6QJrgtl88bVZ/e7vMWrTae518Ytt\ntjaazc/lftBX2jKWNQILcgXKQK5APK2nStuhCukCa5jZ/Ej2pBn3787kXhs/2GbrKdtr/Uaa\nzT+zrBFYkCtQBnIF4mk9VdoOVUgXWP2kTPV4at+RNQOkF9u518YPttmaazZ/mPvBo2bzdyxr\nBBbkCpSBXIF4Wk+VtkMV0gVWF7N59WX5xc11Ura+514d39lma5bZ/GnuB5PM5hMsawQW5AqU\ngVyBeFpPlbZDFdIF1uVLl3NezjabF3Kuin9cFu/jtFC8hyzkCpSAXIF4Wk+VtkMV0gWWje/M\n5ge0d/7ZNltLbE8/jzCbf2VZI7CHXIESkCsQT5Op0nao9FJgZXY2m//hXgmf2WZrs9l8NPeD\nXmbzJZY1AnvIFSgBuQLxNJkqbYdKLwWWpafZ/Bf3OvjMNlsvms0bcl5fNpt786wROECuQAnI\nFYinxVRpO1R6KbCudzCbr3OvhM9ss3XSbB6f8/oTs3kmzxqBPeQKlIBcgXiaTJW2QxXKBdb7\nK6e/mvNa6o3hnOviH9tsZQ7Me7jlKrP5GNMqAXIFikCuQDzNp0rboQrlAusls3lYdr2eOcls\n3sa7Nv6we5D4NrN5Y9ars13NXS+7+BVQHHIFSkCuQDzNp0rboQrlAutaH7P5Seuzt68/bTZ3\nv8C9Pr6zy9aFHuYOb8gvLk4wm3exrRMgV6AE5ArE03yqtB2qUC6wLB90NJt7rjp8ZHU/s7nD\nu9xr45PjO2WjzOb58j8PWpe92sFsnronY7X0X8y4m8zrp2vIFSgBuQLxtJuqUAhVSBdYlvd6\nZT+EydznI+518c0+s62+WQtf6pL9fqr6b08NacgVKAG5AvE0m6pQCFVoF1iWS0em9evcZcDM\n569xr4mPnGbL8ufm0T06D5j/HuuqAXIFykCuQDytpioUQhXiBRYAAABA8KHAAgAAABAMBRYA\nAACAYCiwAAAAAARDgQUAAAAgGAosAAAAAMFQYAEAAAAIhgILAAAAQDAUWAAAAACCocACAAAA\nEAwFFgAAAIBgKLAAAAAABEOBBQAAACAYCiwAAAAAwVBgAQAAAAiGAgsAAABAMBRYAAAAAIKh\nwAIAAAAQTJcF1gqSrM2/PPOjWZ0qF440JZRo9tDef/J9/MvKntUTIyIKp3ea+2XOsoHSNy3M\n/02dpMVrpH8OpxwxqVXunfniFZGbASpk7fF2jkszy8qLj9ovdBVDi/OoWWzjZOsrkesPqvLr\nqt41kyKN8eXvfuKdTNsP7KMQXazOsIM38j49IS1rZfPTrkY2+VsO2X7tjjDpy17Neffv1h7p\nCaaC5Tov+0vwdgErP/Z0eXIz2Xbqm7dtP3CfSX0OXrossKrKPVs73+LD1Wx7Pm6yfTV0vJvB\n5tPa2cPSh9Lr9Hzf9Ge49PsXLflDVXDUCSU2CFTD2uPG3xyWvklOCiwXMXQVNYtexyj9+tou\nCBV22OzOnESh6MbcTx0KLJcjm2OBddBEFHks+03m8kK5vxM16bpC2wjB58+eLseXXWw/Lbfl\nVt5H7jOpz8FLjwXWO0Qlo4g+tV+aOcqx72v+kffprbFhDp92OWf9oKb08i3Hf8NiaeFQ+UX+\nUJmm3VRw04BbVo/Pd1g62LrUvsByHkM3UdPrGKVXNx4xOPR0lbw/z5xGoVdOBWZXYLkZ2RwK\nrBcjiMJzUnrzAbvfaX5N2a2FYPFzT2d1fahjJtO/zv3QfSb1OXjpscDqSzS2A9HD9ktnyd1d\nZ8m7f1678fdHK+rJ75rl/sX4z93WNFQav/7Isd3TmllDVuOs/Mka6VV/x39DZWnhJ/ILOVRL\nPpO9lbGqXxnrl9T5W9GtA1ZSj0dLQbFfeDWBIsmxwHIeQzdRy4rT7NccXVJua4DP2busQag6\nft3hF7cvuFsOECW8kPNp3sgi+fSNrUMT5c8fzf7UrsByM7LZF1hvSsk1Hch595j0WVjPwydP\nf7P3Xvl3xii9wRAcfu7pZGca5s9k/HM5n7rPpD4HLx0WWOeiiN7ZRlTArm9/MUp/vG3Ke781\nXMrDluw3me2tKfww58OT3eT3LeRU/htPFONwFvtd6cO61lf2A1jmsZby7zW4LHaDQEWkHq9f\ngOgDu4W7iZo4FljOY+guak4umYGQdbOx3PH35F4Dc2GSFBiK/Dj7bb4oXOgjLTEdz3pjW2C5\nG9nsvuVDaSgL25nz7rswKZuvZ7+R/4yMwHVYIcHfPZ3kurUauy8vk1Ni5GDkDHbuM6nPwUuH\nBdZSopKZF6Tie6Pt0jlS9z9uu2CZXKlnv35SztU020/XyKX9UvnVQ5R1PbuNQdKiDdZXjqHK\nXBEhLekuZDtAjaQer9eVaJjdQmnUmuJYYDmPoduo6XSM0qex8gGkZ2yXQCfrDAAAD6xJREFU\nfFFMWlT2fNab/FGw7huzDxfYFljuRjbbb/kykciwJfenxtnsdrPu2tlpgRDg957OYhkmvTSu\nt/306xLSolI2B9hdZ1Kfg5cOC6xKRBMsFqkyr2+7tIfU/SdtF9wqZSjT4YL15W9yVTTd/lvm\nSouKyAcfPs09XJXjUlzucYn8oXpWzmu+i7YgVEg9Xm07USHbK1bOmMjwH8cCy3kM3UZNp2OU\nLn1lyP0rLdfJgtKycVmvnUThw7wdpW2B5W5ks/mW74pK9ZXNPa11iArmXS66S/rBWQFtEKiE\n33s6yydy9bXd/tNT8mnAUVmv3WdSn4OX/gqs16V+/txieU76xxc2i1tI7/+1+8EfLua8miB9\nVv+W3YeW2zUK9TtivbOmnsM3WTZKC4ZnvXQSKvkvw/oWCFFSj1c4ZyLaa7NsiVSCf+5QYLmI\nofuo6XOM0iX55EoXx4XPSgvjsi45dhaFSKKErFe2BZa7kS3vW34qKb182uaHfv70P6/mvXtD\n+nSqf1sC6uL/nk4+XdjT8ev2SQtjsg5huc+kPgcv/RVYPYlqSv+4VYxohM3i+yn7uvT8rheQ\nPnvFcenpnD/vNuaV8FkaSQuyT1M7CdXfCdKyj/xceVA7qcfTLG2J2tssq0H01CcOBZbzGHqI\nmj7HKD06I9XohpP5FteSArDI+spZFIoQhWW9si2w3Ixsed9yunzuNzslH8FyPmUbaIzfe7rf\nwqR8/Zjvl+QDDE9aX7nPpD4HL90VWH9FZv+h9hhRQZv5P+Qz0/fecvorb0kfVXT9jZeliinR\n5oyQPLg1zH7tLFSj8cdgCJN6vIxlO5HxdO6ir+SJsT62L7BcxNBD1PQ5RumRXNDcnX/xJmlx\na+srJ1G4JhVlhbNeOl6D5WJky/2Ws1WkF7PdrM890n7yB182ANTK7z3dNunT+/IvlgY7am59\n5T6T+hy8dFdgLSSKsB7Q/MbuIk7LKfleirb5/2a0ZCVynJuvHCF9vivv7Xjp7dbs185C9Xxu\nICH0SD1e2nKlgO38/uPlqd0/si+wXMTQQ9T0OUbpkXzrzIr8i/+Sz8dYZ8d2EoUXpEUts17a\nFlhuRracb/mntuOFz/ZuTZY+H+DrNoAq+b2nk59asir/4nMGoijrAQb3mdTn4KW3AivzDqKu\nWS8bEjW2+UQOFxnv2/RTvt/pLH2wz813fkW20ybfLEpUKOeYhLNQXZKWpfiz7qAB1gLLMpSo\nSs6SW6lEux0KLFcx9BA1fY5ReiSfC/zYyfJ0afln8ov8Ubghn6tZkvXabh4s1yNb9rdclucQ\nGe9iTW6d+WyF/MyBFv+6+AHQGH/3dDVysuegCtnM+ug6k/ocvPRWYL0s9XL2xGjrpJfHbT5a\nYiSrkj2f+dzuEUvNsq5Hdq0RkSH3+Pkh6adH57xxGqp4aeENx4UQGrIKrPdsrrN7kajgVYcC\ny1UMPUTN2WTIsQpsBHCTLzl3VtHIF9BYH2WTb2Q510FaUjh70m37R+W4HNmyvuVaG+fnI2UT\ns1NWdBEeQBEy/NzTFZc+dTYvqDyFx4vyC/eZ1OfgpbcCqytRsezzz//E2FRCsvfvzu34Al02\n5823LlfoTv76y7PN9gD7fdKb/+a8cVpgyQ/+Pe/3FoCqZRVY8iQM2TeSWnpZZ2u3L7BcxdBD\n1PQ5RumRFAqTs+UDKHs+KjkKK0/k+HD/CPneGcPu7B9zeBahq5HN+i37OsrLTfmubbbKKrCS\nZ14Qs1mgCv7t6aKIwp0tl6d9fFZ+4T6T+hy8dFZgnQkneiznTR/7i9Mln01Kz+37mGE5p6nL\nSO/czmJ8NZGoRPafAr9Jfx00y/3EaYFVydP3gXZlF1gLpGxlPR73orSvfN+hwHIZQw9R0+cY\npUO3KPfudnvyHTLWaY2dRSF8dc6PORRYrkY267ekZS0t+I2zf1/OEay4QY7PLwct82NP5zaT\n1jtM3WdSn4OXzgoseaLa3MNL8tyPOxx/4tfdo2qbsno/Mvsq0+rS6+/dfu0Y6Seez/s3PJv7\ngdMCK1laiKflhKjsAuu0lKH91gWbsm7MsSuwXMbQQ9TkOC14z96Hrn8cNCuKyJjpZLl8oXHu\nESwHzfOikK/Asjgd2bK/JfzpR6X/L3/Wkt//XvvPvmeGFJX3ra86+Ri0y+c9XRxRmLNMPkjZ\n0/65z6Q+By99FVi3y9pO8plZxvZgk41LLz9W0RqPrIn35JnZ3nP7vfJ41jnrZXmipLzDYk4L\nrHA9VO56lV1gyWeKs25pbk4032JfYLmOoYeo6fM6UT1KlXra2Wk5+XoX6wOf8+3MZp6w+TFn\nBZbMYWTL+pYS71lut5P+2ey6q7W5Pk/aE8d9G8D2gCr5tKcrJX16zsly+RTzf+QX7jOpz8FL\nXwXWC/lLbKcHxiX/uVP6MMJ6Qrq39Gq1ix/Ldpf0Z+Af8ovXye5+HGehOk42t5hBiMkpsA4Q\nmc5I//zJQEb57IptgeU6hh6ips8xSo9qudjVVabsSYztorBQetPH9sdcFVgym5HN+i0t/pRe\nnK8gvXrQ9frIE3B18m0TQBu83tM1kD59w8lyeY5a6/F495nU5+ClrwLr/vx7tkdd/exlOU/W\nCUGfll70cv/FOyl7HuS+RIbv8pY7C9VKaVk/PzcA1C6nwLqRRPSUxXpPdDv5vW2B5TqGHqKm\nzzFKj+R5sJbmX/xvGFGc9e4IuyjcrEa51yhYuSuwbEY2m2/5Rr4geb7rFapJZMSV7iHJ2z3d\nGOcJOSctTrSeOnSfSX0OXroqsH4z5d+zJbk8Li5Pa2s9dSM/zjnhYr7PbW9wvV4k60qbC9G5\n86pZOQtVK8qbiBRCTU6BJV/6eafFOnGR9TYamwLLTQw9RE2fY5QebZEPLeVfvD+3cLKPwnsG\nohL/5P2c2wIrb2Sz/Zb/k2o3w0GXvzNW+klchRWavNzTHZA+rZP/tzdTzvUx7jOpz8FLVwXW\nTKmLD/xiYxll7/6cuSYFJF1+cbuE9GPLHD/+pfQ0mxPS8lMy37VY1pL9Y36dhEp+KF00ZmkI\nVbkF1hckzynzgXUSLItdgeUmhh6ips8xSo9+l4vw4/kW35N7DschCvIRr6F5b90XWLkjm923\nLJJex+Q9pO7fk2/b3rE/Vw6tz5sBWuDlnu58DDk7b91YWrrR+sp9JvU5eOmpwLpdkqiU3W0Q\n/+QccLq5ZUSDug4/fpmynsdrscyXD4I63qYsjXXxr+e++17K6FjrVYLJtnOI5g/V7ZbSojGB\nbQioV26BJV9GM03+w/9h67u8AstNDD1FTZ9jlC51JScPfnsnTEpC1hEGhyicL0pkyDvClFdg\nuR/Z7L6lr/SmeE725PmSJ9j8Do5ghYZA9nRyWho4PsVQDkpq1m1d7jOpz8FLTwVWBuV7ynJP\nKQLW+1LlyWBes//sJcq5rvOcPPd6C/sps+S/90rYPCy6lfQ284yRaJLtT+UP1ePyAazTFghR\neQXWCqLa8swy71vf5RVY7mLoIWr6HKN0ST5tQ+vsl12S7/ianPXaMQrPSu/Tcid/sTmC5XZk\ns/uWq/JzTWpnf8dP0us7bP4MqCu9/19AWwSqEMCe7qR8WNXhkZW/pkjLFme9dp9JfQ5eeiqw\n7pV62OFWY/l+ronyi+nSi3J/2n50TR5uNmW9lq+IoOa213jKMxkZ/s9mwT5pwZurbZ+ZI3MM\n1e3H5G9aEvCmgFrlFVh/R1LYm7lPp88rsNzF0EPU9DlG6ZM845Vxk+2S8w3loudq1pt8UWhj\ne2TcpsByO7LZf8tvxeTLabKrqlq5Z35kr8v7yoC3CfgFsqebJ386yfbo+8ky8lGt7JM27jOp\nz8FLRwXWT2FEDR2W3ZKGlKJyPC7KhXiZl/M++a6ptKBkzuPA5PtXKWVjzvO4vmgtv3/C9ptu\nFCUa0dLxmV4OoXpDPl/t6Y5E0LK8AsvSTfpjMPe+m9wCy20MLe6jps8xSp/+kZ+oZej3e+6C\n/fK+LO6D7Hf5ovB9FFHYu9lvbAostyObw7d8EEW5h+C3Sy+jjmR/8Kn8JU8K2jLgFMieLtP6\nrv47Ob96ZU6s9L7wz9lv3WdSn4OXjgos+eTcGseF4yn7+eFvR8rZqTH90OcnTx1/aWk7aTdI\nEcdyfux6H/lTKtR7yc6M7ZPrW9+Ms/+myURFjET29+HIoVrymdWru8dXs/5epysWCFk2BZZ1\nuitj9hUNuQWW+xi6j5ocp9mv5aPsFgGPU+Xkro/pvOXDn858eWyS/IAtin4t59P8u6tZ0pJK\n2Wd3bC9ydzeyOX6L/FRV2mJ9mSnf7Uz3bP38x+MH+oVLL8tj3AoJgezpLt1nXVBh/KbnX9m1\npIN81TuV+jLnU/eZ1OfgpZ8C62YqUWS+u/e+knq9rfXVaynkIPGYzQ/OjrT/MHaLwzf9KAeV\nUu0fOp//4QHGWc6eNgChwqbAui0/fr5d9pucAstTDC3uoubscV4SJbcH2PzWzLGja3yR+2H+\nndl1+QqtKVmv7e4idDOy5fsW+Zk5EW9aX56vZ/c7qSctEBIC2dPdmhDu8Lst/8j90H0m9Tl4\nhfr25TkodWb3/Itr5l429df4WNuOTxj1t90PnupjzPswasjv+b5JftqE/WnD/KEyPej+oYag\ndTYFlnxQM3cWkJwCy2MMLW6ips8xSrcyNxe17ea0JTY3KDs54fK6PMB8an1pP02D65Et37dY\nn5lTOKuWuj4l79fCejp7UiFoUkB7uu8fCLP53Tq21yG7z6Q+B69Q3748d0ud+Vz+xfIcRNkl\ntuXykdGtyxQMjyhcttWjB6/l+9HTq3pWKxQeUeTOBzc6m9NYvl817Cf7ZTahiixRq/+OP5z8\nHoQS2wLru5xJsCx5BZYXMbS4jJo+xygdu75/cK1C8r1bxhaTj9nObOz0ipb+0rIa1kPojvNg\nuRrZ8n+L9Zk5FbMPsZ5d2fWORFOBMvc+eUrYJoEKBLSn+/3/27tjlAaiKAyjRRBiYZE0cQOi\nZSzSCqndgTtwBRY2gksQxBW4HIUsQSwC1lYiOCksbEwGfng3yTntvOIODMP34A3zeDUdHwyO\nTi7vX/5c+P+Z3M+X167fH8A2+550O7f31lMAvQksgMKuu43+XeshgN4EFkBhq79rjZatpwD6\nElgAlc27wrr4XL8OKEVgAVT2ujrnfva8/PpYrF8MVCGwAEp7+P3m6rT1JMDmBBZAbU9DgQVb\nR2ABFPd2cz4+PJ7dtp4D2JzAAgAIE1gAAGECCwAgTGABAIQJLACAMIEFABAmsAAAwgQWAECY\nwAIACBNYAABhAgsAIExgAQCECSwAgDCBBQAQJrAAAMIEFgBAmMACAAgTWAAAYQILACBMYAEA\nhAksAIAwgQUAEPYDmH9cQZZL+RwAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 600, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plots_density" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Kaplan Meyer estimates" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "options(warn=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n" - ] - } - ], - "source": [ - "stratum=\"sex\"\n", - "plots = list()\n", - "tables = list()\n", - "plots_tables = list()\n", - "expand = c(0.01, 0.8)\n", - "for (e in endpoints[-2]){\n", - " #print(e)\n", - " #fit = survfit(Surv(death_cens_time, death_cens)~sex, data = data)\n", - " fit = survfit(as.formula(glue(\"Surv({e}_event_time, {e}_event)~{stratum}\")), data=data)\n", - " plot = ggsurvplot(fit,data, conf.int = TRUE, ylim = c(0.85,1), cumevents=TRUE, cumevents.y.text = FALSE) #, risk.table =\"percentage\") + scale_color_\n", - " plots[[e]] = plot$plot + ylab(\"\") + theme(legend.position=\"none\") + \n", - " ggtitle(e) + theme(plot.title = element_text(size=facet_size, hjust=0.5)) + \n", - " scale_color_nejm() + scale_fill_nejm() + scale_x_continuous(expand=expand)\n", - "\n", - " tables[[e]] = plot$cumevents + ylab(\"\") + scale_color_nejm() + scale_fill_nejm() + scale_x_continuous(expand=expand)#+ scale_x_continuous(expand=c(0,0))\n", - " plots_tables[[e]] = plot_grid(plots[[e]], tables[[e]], align=\"v\", nrow=2, rel_heights=c(4,1))\n", - " legend <- get_legend(plots[[e]] + guides(color = guide_legend(nrow = 1)) + theme(legend.position = \"bottom\", legend.title=element_text(size=base_size), legend.text=element_text(size=base_size)))\n", - "} " - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "plot_width=20; plot_height=25; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "plots_f = plot_grid(plotlist = plots_tables, ncol=round(length(plots_tables)/3, 0))\n", - "plots_km = plot_grid(legend, plots_f, ncol=1, rel_heights=c(0.05, 1))\n", - "\n", - "plot_name = \"5_endpoint_km\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAu4CAIAAADq3RRSAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeVgUR/748R5hQAEREcELQUUDeN8aNR54bZ4kbjYaUROv1WhiPDYk3ppN\nYpYYXN2NGo3ZDXhsYryjJgYhkkWJR7xvRBGPELwBHUCu+f3R362nfzAzwEwPV79fj38U3dVV\nNTM1XVZ/pqt1RqNRAgAAAAAAAAAAAKANNSq6AQAAAAAAAAAAAADKDwFCAAAAAAAAAAAAQEMI\nEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQA\nIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQ\nAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAh\nAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBAC\nAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEA\nAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIA\nAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAA\nAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAA\nAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAA\nAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAA\nAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAA\nAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAA\nAAAAAAAaQoAQAAAAAAAAAAAA0BDHim4AAAAAgJLdT/hZxdK8evVTsTTAfvZevKtiaS8Ee6tY\nGgAAAABUXdxBCAAAAAAAAAAAAGgIAUIAAAAA0JbTp0/r/ueTTz6p6OYAGsU3EQAAABWIACEA\nAAAAAAAAAACgIQQIAQAAUFpGo/H48eMfffTRn/70p9atW3t5edWsWVOv13t4ePj6+vbt23fq\n1Klbt27NzMys6JYCFeDtt9/WKfzhD38oawlGo7F58+bKQvbu3WuPpgIqKtLzy6RHjx4V3XwA\nAABAowgQAgAAoFS+++67Dh06dO3adfHixTt37rx48eKDBw+ePn2an5+fkZFx+/bt+Pj4L774\n4tVXX23cuPH8+fOzs7MtlDZ06FCdThcYGFhu7S9RJWwSqrSYmJjU1NQyHXLo0KHr16/bqT0A\nAAAAAAgECAEAAFACo9E4c+bMP/7xj2fPni1N/idPnoSHh/fq1evu3bvmCjx27JiqbbRVJWwS\nqrqCgoKNGzeW6ZANGzbYqTEAAAAAACg5VnQDAAAAUNktWbLks88+E3926dJl9OjRPXr0CAgI\ncHd3r1GjxuPHj5OTk48cObJx40YRZjt16tSIESPi4uJq1Cj6o7SkpKRHjx6V3wsohUrYJFRd\ntWrVku+gXb9+/Zw5c0p5VE5OztatWyVJcnZ2fvr0qR3bB9jNRx991Lt379Lnd3d3t19jAAAA\nAFhAgBAAAACW3L59+4MPPpDTer3+iy++mDBhQpE8np6enp6eXbp0efvttzds2DBp0qS8vDxJ\nkuLj4zdu3Dhu3Lgi+Y8ePVoOLS+TStgkVF3t2rW7dOlSZmbmpUuXjh071q1bt9Ic9d1332Vk\nZEiS1LVr10OHDtm5jYBdtGnTpl+/fhXdCgAAAAAlY4lRAAAAWLJ+/fqCggI5PWfOnOLRwSLG\njh0bEREh/ly2bFnxPJUwGlcJm4Sqy2g0Dh48WE5HRUWV8iixvuhzzz1nj1YBAAAAACAQIAQA\nAIAl58+fF+nx48eX5pC33367adOmOp3O39+/efPm8k1RkiRFRUXpdDqdTrd69Wp5S2Jiou5/\nGjRoIEo4fPiw2B4fHy9J0sOHD2fOnNmsWTNnZ2dvb+/ExMTi9f72228REREvvvhis2bN6tSp\n4+joWKdOnYCAgBEjRnz55ZcGg6H4IaVvko0VVXvXrl1bsmTJ0KFD/fz8ateu7ejo6O7uHhAQ\n8NJLL61cufLevXulKeTnn3+eNWtW586dfXx8nJycvLy8goODR4wYsWnTpsePHxfPn5eX1759\ne/nDcnBwOH78uIXC//a3v4lPdtq0aVa+ztLJyckZNmyYnN68eXNp1gu9c+fO/v37JUnS6XQh\nISGlrKgcumJZPxStoefbj3V97/jx4+L1xsXFyRsvXrw4ceJEf39/Z2dnFxeXVq1avfHGGxcu\nXFAeWFhYuG3btiFDhtSvX1+v13t6enbv3n3JkiViCLOAbyIAAACqJCMAAABgXv/+/cV/HR8/\nflzKo5KTkzMzM4tsjIyMtPD/Uh8fH5Hz1KlTYvvevXszMjKCgoKUmU+dOqUsOTc3d/bs2Xq9\n3kL5Xl5eu3btsrpJNlZku3uH4lT8p2LDsrOz33zzzeJPmlRydXVdunRpYWGhuUIuXrzYo0cP\nCyU0aNBg8+bNxQ88efKko+P/PTehc+fOBQUFJstPSUlxcXGRszVr1qz0PblMRPSlVatWDx8+\nFA3bsmVLiccuX75czty1a9fTp0+LF75nzx6T+W3sisqvWHh4uMk8Vn8o6tpz4Y6K/1RsGD1f\nUMYdd+7caXuBtvQ9ZdhP/vp88MEHOp2ueCGOjo6bNm2Sj0pNTW3fvr3Jupo0aZKYmGiuqdr5\nJgIAAKD64Q5CAAAAWFKnTh2RvnLlSimPatasWe3atYtsbNSoUUhISEhIiKurq7zFxcUl5H+U\nyyrWqlVLpA0Gw0cffXTp0iVzdRmNxldeeeXTTz+VH3woc3d3b9q0qYeHh9hy//79l19+edu2\nbdY1ycaKqiuj0Ths2LA1a9YUFhbKWxwdHX19fVu0aKHsOQaDYc6cOWFhYSYLiYmJ6d69+5Ej\nR8SWJk2adOrUqWXLlg4ODvKWtLS00NDQpUuXFjm2Y8eO8+fPl9MnTpxYs2aNySqmT5+elZUl\nSZJOp/vqq6/c3NzErpo1a+qs9eOPP5qsLj8/v27dugMGDJD/LM0qo2J90dDQULGorznl0BVt\n+VC0gJ5fprerTGzse05OTiKdnZ29fPny999/32g06nS6unXrOjs7i735+fkTJ05MTEx89OhR\nnz59zpw5I0mSo6Ojp6enqEiSpNu3b7/66qsmv5V8EwEAAFClESAEAACAJV26dBHpxYsXlxi6\nsGDw4MGxsbGxsbH+/v7yFl9f39j/2bJli8ipvBvjwYMHX3zxhSRJQUFBc+bMiYiImDdvnqen\np8iwZs2aPXv2yGlvb++1a9c+ePAgIyPjxo0bjx49SkpKmjJlirzXaDROmjTp0aNHVjTJxorK\nR96jBxc+nnP3v/vLrcb169fLC2NKktS1a9eYmJisrKybN29evXo1PT09NTX1s88+ExfKV6xY\ncfjw4SIlJCcnv/rqq/ISeTVq1JgxY8b169dv3bp14sSJK1euPHz4cPXq1aKEuXPnbt++vUgJ\nCxcuFLf+LFiwIC0trUiGPXv2iA9u2rRp/fr1U+W1WyAHjV5//XX5z+jo6OKtUjp//rx816CD\ng0NoaKjRaLRcvr27ou0fSnm6+zj39a/PbDv7e3lWSs+3E9vfFuXwcenSpYULF3p4eKxevTo9\nPf3hw4dZWVmHDh1q27atnCE3N3fFihVz5869du1ap06d9u/fn5OT8+DBg8zMzE2bNomfuZw5\nc+aHH34o3lq+iQAAAKjaKuS+RQAAAFQVKSkpyuutgwcPvnr1qo1ltm7dWi7tmWeeMZnhxo0b\nokb5NqywsDBzy/Q1b95czlmjRo2TJ0+azKNcAS8iIsKKJqlVkdVKs3Dob7u2xPYOOrv4L+W2\nxKh4Wl7Dhg3NrV6YlJRUr149OduoUaOK7B00aJC8S6fTieX+irh48aK7u7uczc/PLzs7u0iG\nU6dOiV46evRo5a6srCwR/W3RooXBYChyrPKOorLat2+fsijx6fv5+clVi2Z/+umnFt7Gd999\nV842dOhQo9H466+/iipMLjFqe1e0vLChKh+KWkpcNXTd4ZvSO9+/uuFkeS4xSs9XFqXiEqO2\nvy03b94UjXFxcXFzczt9+nSREm7evFmzZk05j5ubm06ne/bZZ7Oysopk27hxoyhq8uTJxVui\nqW8iAAAAqh/uIAQAAIAlfn5+77//vvhz//79zzzzzIsvvhgZGam8Dqsu5WO9Dhw40Ldv34iI\nCJMPkUpOTk5OTpbTzz33XMeOHU0WOHfuXJGOjY21oknlVlHVIh73FRISoly9UCkgIGDevHmd\nO3cePnx4mzZtlLtOnjwZExMjp8eNGzdmzBiTJQQFBf3tb3+T0zdu3Ni6dWuRDB06dBDLLX79\n9dcHDhwQuz766KOUlBRJknQ6XWRkpHgem3Djxo3frSUWETWpVq1aoaGhcnr9+vXmshUUFHz9\n9ddyevz48RYKlNm7K6r1oVRv9PwS3iCrqPK2KEeKrKysRYsWFX+4oK+v7+DBg+X0kydPdDrd\nv//9b+XS1rKRI0eKD1degFSJbyIAAACqOseKbgAAAAAquwULFri4uLz33nvy+qIFBQV79+7d\nu3evJEm+vr69e/fu3bt3r1692rZtqwzsqWj+/Pkmo4OSJDVv3jwnJyctLS0tLU08R7C4Jk2a\n+Pr63rp1S5Kk69evW9GGcqvIgtyMR9k3LJWZ/zhTkqSnd9Iyzp40l8fRvY6rfwu1mvT06VM5\nIS+CZ05YWJjJx7Apw2azZ8+2UMLEiRNnz54tP01tx44dYvVOYcGCBbt27ZIv4r/11ltnz551\ncnK6fPny3//+dznDjBkz+vTpU7xkHx8fC/XaaMKECevWrZMk6cKFC8ePH1cu2CvExsampqZK\nkuTh4TFs2LASy7R3V1TxQ1HLpTtPHmTlmtv7KDtfkqRb6TmHrj+0UEigt5uXq5OFDGVCz7cH\n1fuek5PT5MmTTe5q37797t275XTfvn0DAwOL59Hr9UFBQfIdvbdv3y6yV4PfRAAAAFQzBAgB\nAABQsr/85S/PPvvs+++/Hx0drdx+69atb7755ptvvpEkyd3dfdCgQS+88MJLL72kfEagjdzc\n3CzfreLs7Ozn5+fn52e5nPr168uXaK1+NGC5VWROVsq1G19/VUImnZRx/nTG+dPm9rsHt23m\n/6ZaTfL395df5r59+3799deuXbuW6fD4+Hg50bx586CgIAs5a9Wq1adPH7n7iaOU9Hp9VFRU\nt27d8vLyEhMTIyIiFixYMG3atNzcXEmSWrZsGR4eXqa2qaJHjx5BQUGXLl2SJCkqKspkgHDD\nhg1yIjQ0VCx7aJldu6KKH4patp39/djNDMt5Dqc8Opxi6WW+17/5c81VOy/R8805fvy4o2MZ\nrjN069bN29tbTqve9zp16lS3bl2Tuxo0aCDS/fv3N1eCyGYyEqy1byIAAACqGZYYBQAAQKl0\n7979xx9/PHXq1Ny5c5955pniGTIzM7dv3z5hwgRfX9+33nrr2rVrqtTbsWPHMl1uNkc8qauw\nsND20ipDRf9H9///M7nFbsSqd7m5uX379p0/f75Yc69E2dnZZ8+eldMtWpR8U6NYpPHhw4dp\naWnFM3To0GHBggVy+uOPP/7444/lFRdr1KgRGRlZfP3A8iFWDf3mm2/kmI3S48ePd+3aVSSn\nWqzoiqp/KNUVPd+cjz/++MWyOHbsmHygPfpecHCwucOVwXiTtw8WyVb8y1t6fBMBAABQOXEH\nIQAAAMqgQ4cOHTp0CA8P/+233w4dOvTLL78kJCScOXMmPz9f5MnKylqzZs1XX321bNmyt99+\n28Ya/f39S5Pt6dOnu3fv3r9//7lz51JSUjIzM7Ozs22sumIrKi2j3aOAFsyYMWPnzp0JCQmS\nJGVnZ4eHh4eHhwcGBg74H3O370iS9ODBA3G5PCEhocQPOjMzU6RTUlKUNwAJ8+fP37Vr1+nT\np7OzsxcuXChvnDVrVq9evcr4ylQzduzYBQsW5OfnP3z4cM+ePa+88opy77Zt2+SFAQMDA7t3\n716mku3RFe3xoVRL9HzV2eNt8fDwMHe4ckHsUmYzh28iAAAAqigChAAAALBG48aNR44cOXLk\nSEmSDAbD4cOHY2Jidu/effnyZTnD06dPp0+fbjQap0+fbktFderUKTHP119//d5778kPcrOr\ncqvIJLeWQa1mzLWQIS/90fWNX3h2fdarx3Pm8jg4q3k7kV6vj46Onjp16qZNm8TGy5cvX758\n+fPPP3dwcOjRo0doaOiYMWOKx0uUq+1lZWXduHGj9PUqr4YXaU9UVFTXrl3z8vLkLa1atVqy\nZEnpS1ZdgwYNhg4dKj+zMyoqqkiAUKwvWtbbB+3UFe3xodhuUvemozrmm9t735D3cezVQa28\nng+qb6EQn9rOKjaJnq86O70tpTm8lNlM0tQ3EQAAANUMAUIAAADYytXVdeDAgQMHDly6dOmB\nAwdmzZp17tw5ede77747bNiwpk2bWl24s3MJl/WXLFmyaNEi5RZ/f//GjRvXq1evdu3aYmN0\ndPT9+/etbkZ5VmSOo4uro4urhQxy8M+xtnutxta/4WXl6uq6cePG6dOnr1q16rvvvlNemy4o\nKEhISEhISFi4cGFYWNj8+fMdHBzEXoPBYHWlT548MbcrICDAx8fn9u3b8p8tW7asqMVFhQkT\nJsgBwh9//PHOnTs+Pj7y9ps3b/73v/+VJMnBweH1118vfYH264p2+lBs1NDdWZLMngdcnZ5K\nklTXRR/gZenboTp6vkk7d+784x//aMWBlbPvWaa1byIAAACqGQKEAAAAUNOAAQOOHDkSEhJy\n5MgRSZJyc3PXrVtnvxtZfvrpp8WLF4s/p02bNnv2bJPxyB49etgStyu3iqqobt26bdiwIS8v\nLz4+/ocffti/f//58+fF3oyMjMWLFx89enTbtm3imV7KC+ivv/66uJfORnPnzhUxEkmSvv/+\n+02bNr322mvm8j948MBoNFpXV506dUpz79GLL77o5eV1//79/Pz8//znP++88468fePGjXLV\ngwYNatSoUSkrtWtXtNOHUo3R89VS5foe30QAAABUdQQIAQAAoDIXF5eIiIg+ffrIfx48eNB+\ndS1dulRc416xYsWsWbPM5SwoKKgSFVVper0+JCQkJCREkqS0tLS9e/euX7/+0KFD8t7vv/9+\n2bJl4gFp7u7u4kC11sSLj49fvXq1nG7atOnNmzclSZoxY0ZISEjDhg1NHtK4ceOnT59aV92+\nffuGDh1aYja9Xj9mzJh//vOfkiRFRUUpA4Ryokzri9q1K9rjQ9ECer7tqlzf45sIAACAqq7k\nB24DAAAAZdW1a1edTien79y5Y6daDAbDTz/9JKebNWs2c+ZMC5lteUZUuVVkIyev+u0/+bzh\n4JcqqgFKDRo0mDRp0sGDB7dv3y7unfrkk0+ysrJEBrF+7NWrV22vMSsr689//rN8yb5nz56/\n/PKL/ADLR48eTZkyxfbybTFx4kQ5ce7cuTNnzkiSdOzYscTEREmSPDw8hg0bVspy7N0VVf9Q\nykFDd+c9f+7yeufGFd2Q/0PPt07V6nt8EwEAAFANECAEAACAafn5+evXr58+fXrPnj27detW\npmMLCgrErRUuLi52aJ0kSdLt27cLCwvldL9+/URIsrgrV67YErcrt4qqpT/96U/z5s2T0waD\n4fjx43Jar9e3a9dOTl+5csX2u2Tmz58vX0nX6/Xr1q1r3LhxeHi4vGvPnj0Vu0Zfu3btOnXq\nJKd37NghSdLmzZvlP0NDQ0UYqUT27oqqfyhaRs8vk6rV9/gmAgAAoBogQAgAAADTHB0dP/zw\nw1WrVh05cuTXX3/9+eefS39sQkKCSPv7+6veNllGRoZIKxdkK27NmjVVoqKq6ObNm/J6hhb0\n7NlTpJVvpliHNi8v77vvvrNcSGJiooWr5AkJCStXrpTT7733Xps2bSRJmjp1qqh65syZJi/T\n5+TkGK1VplUWJ0yYICe+//57SZJ27twp/1mm9UXLoSuq+KFUb/R81VWhvsc3EQAAANUAAUIA\nAACY9frrr4v0pEmT7t27V5qjnj59Kp62JUnSiy++WCSDuNlCrLlnHQ8PD5FOSUkxl+3UqVOf\nf/65+DM7O7t4HstNUrGi6iQsLKx+/fp+fn6vvfaa5Zz3798XaW9vb5FWxsbCw8MtPKkrJydn\n4MCBXl5eISEh8h14StnZ2RMmTJBv6AkICFi0aJG8XafTrVu3Tq/XS5KUnp7+xhtvlPKl2cPo\n0aPlNQNPnTp18OBBuSMFBgZ279699IWUQ1dU60Opxuj5dlKF+h7fRAAAAFQDBAgBAABgVlhY\nWIMGDeT0tWvXunXrFhsba/mQpKSkQYMGHTt2TP7T19d3xIgRRfKIBRXT0tKePHlidfNatGhR\nu3ZtOR0XF5eWllY8z4ULF1544QW9Xv/ss8/KW7Kysh48eFCmJqlYUXXSsGFDOf5x8ODB1atX\nm8uWn5+/atUqOe3u7t6+fXuxq23btgMHDpTTly5deuutt8TKtEp5eXljx469fft2Xl7egQMH\nil8oX7hwYVJSkpxeu3atcsXONm3ahIWFyenvv/8+KiqqjK9SNZ6eni+99JIkSYWFhe+//768\nsUy3D0rl0hXV+lCqMXq+nVShvsc3EQAAANUAAUIAAACYVbt27W3btsm3PUmSlJKSMmjQoI4d\nO/71r3/dtWvXmTNnrl27duPGjYsXL8bExPzjH//4wx/+EBgYePDgQTm/k5PTv/71Lzc3tyLF\nNm3aVE7k5eWFhYXdu3evoKAgJSXl0aNHZWqeg4PDyy+/LKczMzOHDx+enJws9qampn744Ydd\nu3ZNTU1dunRp3759xa4vv/yyTE1SsaLqZMqUKT4+PnL67bffHjdu3OHDh/Py8kQGg8Gwb9++\nvn37/vLLL/KWqVOnFnne3rp160QPWbdu3cCBAw8dOiSug+fk5GzdurVnz55bt26Vt/Tr169I\nyPnw4cP/+Mc/5PS4ceNCQkKKtHPx4sXNmzeX07Nmzfrtt99se93WmzhxopyIi4uTJMnBwUF5\nk25plE9XtP1Dqd7o+fZTVfoe30QAAABUB1Y/dQAAAAAaERcXJ+4jLD1PT8/o6GiTBa5du9bk\nITExMXKGW7duiY1hYWEW2paUlKQMQDo4OLRs2bJ3794tW7asUeP/fgw3fvz4wsLCvXv3Kutq\n3bp19+7dExMTS9kktSqy2r1DcSr+s7ExwoEDB0T8WLwzjRo18vPzE7fXCL169crKyipeSExM\nTJEosqura0BAgLe3t1j6VRYcHHznzh3lsdnZ2YGBgfJeLy+ve/fumWxndHS0KOQPf/iDWi+/\niGnTpslV+Pn5mcxQUFDQuHFj0ZKhQ4eazPbrr7+KPHv27CmyV5WueOrUKbE9PDy8eBts+VDU\ntefCHRX/qdUqer6S6PmSJO3cudPG0mzse8rhY86cOeZqiYyMFNni4uLMZRs5cqScx9nZucgu\nrX0TAQAAUP1wByEAAABK0K9fv3Pnzr377ruurq6lyV+nTp0ZM2YkJSUNHjzYZIZx48a1adNG\nlbYFBARs377d3d1d/rOgoCApKenQoUNJSUmFhYUODg6LFi2KjIzU6XRDhgxp166dOPDChQtH\njx7Nzc0tZZPUqqia6d+/f3x8fHBwsNhSUFCQmpp648aNx48fi42Ojo6zZs2KiYmpVatW8ULk\n22J69+4tthgMhqtXr969e9f4v3tldDrdhAkTEhISlA9ykyRp8eLFly9fltPLly/38vIy2c7B\ngwePHj1aTu/bt++rr76y5tXarEaNGmPHjhV/lnV9UVn5dEVbPhQtoOfbT1Xpe3wTAQAAUNU5\nVnQDAAAAUAV4eXlFRER88MEHsbGxBw4cuHDhwtWrV9PT0w0Gg06nq127tru7e/PmzTt06NCr\nV6/nn3++yL01RdSsWTMuLm7RokV79uxJS0vT6/UNGzbs3Llzs2bNrGjb4MGDExMTV61a9eOP\nP169evXJkydubm4tWrQYMGDA5MmTW7VqJWdzdHTct2/fO++8Exsbm5mZWb9+/d69e4t1AkvT\nJFUqqn66det2/vz56OjoPXv2nDhxIiUlJSMjIy8vz9XV1cvLq02bNn379g0NDW3UqJGFQtq3\nb3/w4MG4uLjdu3fHx8enpqY+fPjQ0dHRw8MjODi4d+/eY8eOLd49jh07tnz5cjkdEhJiebnO\nFStW7Nu3T14z9p133hk0aJCvr69tL90aEyZMCA8PlyTJw8Nj2LBh1hVSPl3Rug9FO+j59lNV\n+h7fRAAAAFRpOqOpx1wDAAAAqFTuJ/ysYmlevfqpWBpgP3sv3lWxtBeCucUKAAAAACRJklhi\nFAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhrDEKAAAAAAAAAAAAKAh3EEIAAAAAAAAAAAAaAgB\nQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAg\nBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAAAABoCAFC\nAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAAAICGECAE\nAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAAABSdl4IAACAA\nSURBVAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAA\nAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAA\nAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAA\nAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAA\nAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAA\nAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAA\nAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAAAAAA\nAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAAAAAA\nAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAA\nAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAA\nAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAA\nAICGECBEdXbkyBHd/yxbtkz18k+fPi3K/+STT1QvX7h169a0adNatWrl6urq5OTk4+OzePFi\neZeF11huzbOlJeXcSJPs3U8AABq3d+9eMdBERUVVdHMAAGXAObxCMEcDgMrMwuBYbS7GAhrh\nWNENAFCCM2fO9O/f/9GjR2LL3bt3k5OTK7BJAAAAAAAAAACg6iJACFR2U6dOVUYHHRwcatTg\n3l8AAAAAAAAAAGAlAoSojIYOHRodHf3MM89cvnzZlnIaNGgwbdo0Od2xY0c1mlbe7ty5c+TI\nETnt5uYWGRn58ssvOzg4ZGVlyRsrz2usPC0pznKPqswtBwAAAIDqhzkaAFRLWjuBq3URG6go\nBAhR6RiNxmPHjqlSlL+//6pVq1QpqqLcvHlTpCdMmDB8+HA57eLiIicqz2usPC0posQeVWlb\nDgAAAADVD3M0AKiuNHUCV/EiNlBRWKgQlU5SUpJyRU2Nu3Pnjki3a9euAltSddGjAAAAAKDy\nYI4GAKgGGM5QDRAgRKVz9OjRim5CJZKfny/Sbm5uFdiSqoseBQAAAACVB3M0AEA1wHCGaoAA\nISodzq1QFz0KAAAAACoP5mgAgGqA4QzVAAFC2MVvv/0WERHx4osvNmvWrE6dOo6OjnXq1AkI\nCBgxYsSXX35pMBiKHxIVFaXT6XQ63erVq+UtiYmJuv9p0KCByHn48GGxPT4+XpKkhw8fzpw5\ns1mzZs7Ozt7e3omJiXLOI0eOiJzLli1TsbX2tnbtWrnZL7/8stg4atQo8XJee+01eWMpX6NO\np5MTp0+f/stf/tKxY0dvb29nZ+cmTZqEhIR89tlnjx8/Nnmg6u+2dezao0rZ8oKCgp07d06Z\nMqVt27Y+Pj5OTk6enp4tW7b84x//uGrVqrt375o78Pjx46L8uLg4eePDhw/Dw8O7devm4eGh\n1+vr1avXuXPnd9999/r161a+RwBQBeXm5n7zzTcjR45s27ZtvXr1nJ2dGzZsOHDgwIiIiIcP\nH5Z4uNVn5ujoaHFm3r9/v7zx4MGD48aNa9u2bf369WvWrNm0adOQkJC1a9eaGyIFo9G4Y8eO\nESNGNG/e3MXFxdPTs02bNuPHjxfnfABApaXiOfznn3+eNWtW586d5SHJy8srODh4xIgRmzZt\nsjCUmJwsXLx4ceLEif7+/s7Ozi4uLq1atXrjjTcuXLigPLCwsHDbtm1DhgypX7++Xq/39PTs\n3r37kiVLMjIyyrm1pZ/aqD5Hq4RzeQCoBmwZHMvzBG711c4iyjomln44s7GiIq5du7ZkyZKh\nQ4f6+fnVrl3b0dHR3d09ICDgpZdeWrly5b1790rzYoGijICqcnNzZ8+erdfrLfQ6Ly+vXbt2\nFTkwMjLSwiE+Pj4i56lTp8T2vXv3ZmRkBAUFKTOfOnVKznn48GGxMSIiQsXWFm9JeHi4Sm+h\n0Wg0rlmzxkKTJEkaM2ZMia9R2bxPP/00Pz9/6tSp5gr09fX9+eefLb9Gq99tC29Uie9hOfSo\nEvuJ0Wjcv39/YGCghQJdXV0XL16cn59f/FjlTH7Pnj1Go3HLli0uLi4my9Hr9V999ZXJNgBA\nNRMTE+Pv72/hvLpy5UoLh9tyZpZ/8iLbvHmz5SHS398/ISHBXDN+//33/v37mzt28ODB6enp\ne/bsEVsiIyNtf+sAAKpQ6xx+8eLFHj16WBiSGjRosHnzZpPHFp8sfPDBB+KKp5Kjo+OmTZvk\no1JTU9u3b2+yriZNmiQmJlp41eq2tkxTGxXnaDbO5QEA5tg4OJbnxVirr3YK1o2JpR/ObKxI\nyM7OfvPNN2vUsHSvl6ur69KlSwsLCy28XqA4Rwu9Cigro9H4yiuvKAcJSZLc3d09PDwyMzPT\n09PlLffv33/55Ze3bNkyfPhwka1Ro0YhISGSJB05ckT+nYiLi0vPnj3lvZ6eniJnrVq1RNpg\nMHz00UeXLl0q59bam/xTF0mS7t27d/bsWXljmzZtfHx8RLpMBTo4OEyfPn3t2rXyn3q93s3N\nLT093Wg0yltu3br1wgsv/Pe//+3UqZPyQLXebeuUT48qUWRk5OTJkwsKCsQWX1/f+vXrGwyG\n69ev5+bmSpJkMBg+/PDD8+fPb968ucj/cpycnEQ6Ozt78+bNY8aMKSwslHe5ubllZmaKh03m\n5eVNmjSpZcuWvXv3Ln0LAaDK2bhx44QJE5SnVgcHB71en5OTI/9pMBimT59+7dq1FStWFD/c\nxjOzs7OzSD9+/DgsLEwMkfK9GspHzaekpAwZMuSXX35p27ZtkWY8fvx46NChZ86cEVvq1q3b\ntGnT3NzcGzduZGVl7d+///nnn589e3YZ3x4AgN2pdQ6PiYl55ZVXlD/8b9Kkibe39+PHj5OT\nk+WhKi0tLTQ0NCUlZc6cOUUOLzJZWL58+fvvvy9Jkk6n8/DwyMrKevr0qbw3Pz9/4sSJXbp0\n8fb27tOnz7Vr1yRJku8eyMjIEGPi7du3X3311RMnTjg4ONi7tWWd2qg1R6vMc3kAqNLsPcFR\n9wRu9dVOmdVjYlmHMxsHX6PROGzYMLHyjSRJjo6ODRs2dHJyun//vlg5wGAwzJkzJy0tbfny\n5RbeNKCoiotNohoSN1ZLkuTt7b127doHDx6IvUlJSVOmTBEZ6tSp8/Dhw+KFtG7dWs7wzDPP\nmKxFngjJPv/889q1a0uSFBQUNGfOnIiIiHnz5t24cUPOaflHK7a31n53EAo7d+4UVXzzzTfF\nM5Tyvr2RI0dKkuTg4PDWW2+dPn1a/jlJTk7Orl27AgICRLaOHTsW+aWJKu+21XcQlk+PstxP\njhw5IqbWNWrUCAsLu3XrlthrMBgiIyNF4FaSpPfff79ICSkpKcrXWKdOHZ1ON2nSpNOnT8sZ\nnj59Ghsb265dO5Gtf//+JpsKANXD0aNHRcTO2dn5r3/969WrVwsKCoxG4++//758+XI3Nzdx\nSvz222+LHG77mfn48eNir7xqt4ODQ1hY2KVLl+QMWVlZ3377bdOmTUW2Nm3aFP8x5l/+8heR\nwdfXd+/eveKGxZycnC1btsglDBo0SGTjDkIAqCRUOYdfu3bNw8NDDEkzZsy4fv262JuRkbF6\n9WqRQZKkbdu2FSlBOVn44IMPatWq5eHhsXr16oyMDKPRWFBQcOjQIeUvVKZMmfLGG29IktSp\nU6f9+/fLbTYYDJs2bZIna7Ldu3cXf8nqttaWqY2NczRV5okAgOJsHxzL82Ks1Vc7jWqMicZS\nDGeqVKS8YbFr164xMTG5ublib2pq6meffaYs4ZdffjHXGKA4AoRQU/PmzcX57uTJkybzTJs2\nzcI4YSzFufXGjRuihAEDBkiSFBYWZvIGastjku2trUIBQkmSdDqdyRLu3bunvAC6c+dO5V5V\n3m2rA4Tl06MstLywsFAcLpm/qnvp0iV3d3c5j5OTk3KkNxqNN2/eFCW4urrqdDqxNJDS3bt3\n69atKz6su3fvmqwLAKoB8ftNR0fHuLi44hl++uknsXxK06ZNlcuEqnJmLjJESpK0devW4oWk\npaUpHyBRZKqWmpoq7kR0d3e/cuVK8RJu3brVuHFjZUUECAGgMlDrHC6ukJr7T77RaLx48aIY\nkvz8/LKzs5V7lZMFFxcXNzc3EWxT5qlZs6acx83NTafTPfvss1lZWUWybdy4URQ1efLk4i1R\nt7W2TG1sDBCqMk8EABShyuBYnhdjJWuvdhrVGBONpQsQ2l6RfLeiJEkNGzZ8/PixyRKSkpLq\n1asnZxs1apS5xgDFWVq4FiiT5OTk5ORkOf3cc8917NjRZLa5c+eKdGxsrBUVKRdcPnDgQN++\nfSMiIkw+pMGCcmtt5TFq1KjQ0NDi2728vD7++GPx55YtW5R7VXm3rVMZPqO4uDjxmI3nn39+\n/PjxJrMFBgYuWLBATufm5m7YsEG5V/l2GQyGN954Y8yYMcULqV+//qhRo+S00Wg8ffq0zc0H\ngMro559/PnnypJx+8803+/XrVzzPgAEDxCn35s2b0dHRYpcqZ+YiRo8ebXLtGh8fn08++UT8\nuXnzZuXe7du3i2Xfpk+f3rJly+IlNGnSZNmyZRaqBgBUCFXO4SdPnoyJiZHT48aNM/mffEmS\ngoKC/va3v8npGzdubN26VblXOVnIyspatGhR8YcL+vr6Dh48WE4/efJEp9P9+9//Vj4MQjZy\n5EhxC75ydTg7tbaipjaVYZ4IANWSvSc49jiBW3e1U5UxsTRUqUjMf0NCQpRr7SgFBATMmzev\nc+fOw4cPL+tzqaBxBAihmubNm+fk5KSkpBw5cmTlypXmsjVp0sTX11dOX79+3fZ658+fb0W8\nqqJaW4GUqwQUMXLkSPFg+R9//NFCIda929apDJ/Rpk2bRFr5C6biJkyYINa7+/bbb81l0+l0\nxRcTF7p27SrSyns3AaA6UZ4kLTxP/tVXX23SpEmHDh0GDhwoHqsg2eHMLEnSjBkzzO0KDQ0V\nQ2RsbKz8mCXZ3r17RVpep9SkESNGiN9yAgAqCVXO4evXrxdpy09jmjhxohhNduzYYS6bk5PT\n5MmTTe5SRg379u0bGBhYPI9erw8KCpLTt2/ftndrK2pqUxnmiQBQLdl7gmOPE7h1VztVHxPN\nUaUiEbVVPsWwuLCwsOPHj2/dunX+/PllbSe0jAAh1OTs7Ozn59e9e3fLP1WoX7++nHj06JGN\nNbq5ucnrXlqh/FtbgRo2bNilSxdze/V6fY8ePeT0o0ePUlNTTWaz5d22ToV/RmJhBGdnZ+UC\n6ybbIH76dPnyZfkZxcW1bt26WbNm5gpp0qSJSFse9QGg6vrpp5/khI+PT3BwsLlsQ4YMuXXr\n1qlTp2JiYsRdCJIdzsyNGzfu3r27uUKcnZ3FJc709HTl9VZxc4a3t7fJC7UyBweHgQMHWmgn\nAKD8qXIOj4+PlxPNmzcXkTmTatWq1adPnyJHFdepUyexMmcRyiWv+/fvb64Eka34bEL11lbg\n1KbC54kAUC2VwwRH3RO41Vc7VR8TzVGlIn9/fzmxb9++X3/9taxtACwjQIgKoNfr5YTyZ/jW\n6dixo6Ojo80tskTF1lYg5VPiTWrRooVIX7582WSecni3rWOnz8hgMFy5ckVOBwYGilrMEZe5\nCwsLz507ZzJP8fWClMRvhSTF74MAoDp5+vTptWvX5LTJJWsss8eZuXPnzpYLadWqlUiLxqen\np6elpcnpgIAAyyUoH5oIAKhwqpzDs7Ozz549K6eVkylzxJXQhw8fitqLsPC7GfEMQkmSLFy0\nFdlyc3Pt3drKP7WpHnN5ACgflWqCU8oTuHVXO+0xJpqkVkViYdLc3Ny+ffvOnz9frNQK2K4y\nXutHVff06dPdu3fv37//3LlzKSkpmZmZ2dnZdqpL/IbCauXZ2gpU4tCufMLwgwcPTOax/d22\nTkV9Rr///rv4j4iF38YKfn5+Im3ufwyenp4WSlA+8REAqqVbt26JU2ujRo3Kerg9zswljm7K\nIfLu3bvFS1NmMEmskAMAqAxUOYc/ePBADEkJCQkljiaZmZkinZKSorwjUPDw8DB3uHKmUMps\n9m5thU9tNDKXB4DyUZ4THLVO4NZd7bTHmGiSWhXNmDFj586dCQkJkiRlZ2eHh4eHh4cHBgYO\n+B9zyw8ApUGAECr7+uuv33vvPXNrVKquTp06thxezq2tQCW+UcofeD558sS6QuyhAj8j5cBs\n7iHASq6uriaPVXJycrK9YQBQdSkXGVMOPaVkjzOz5eubRQoR65Qqx8oSX4iyBABAhVPlHK5c\n9CwrK6tMj9kzNySVeGd8mbIp2aO1FTu10c5cHgDKR7lNcFQ8gVt3tdMeY6JJalWk1+ujo6On\nTp26adMmsfHy5cuXL1/+/PPPHRwcevToERoaOmbMGCKFsAIBQqhpyZIlixYtUm7x9/dv3Lhx\nvXr1ateuLTZGR0ffv39flRqdnZ2tPrb8W1uBShzale+kuRVgbHm3rVOxn1FWVpZI16pVq8T8\nymV/lMcCAIScnByRtuL6pj3OzCVe31RmECu2KX/iWqYSAAAVTpVzuLlH25aGuV9k2k/Vam2J\nNDWXB4DyUT4THHVP4NZd7Sy3MVHFilxdXTdu3Dh9+vRVq1Z99913yvBhQUFBQkJCQkLCwoUL\nw8LC5s+f7+DgYHW90CAChFDNTz/9tHjxYvHntGnTZs+e3bRp0+I5e/ToUeH/Ta9arbVdXl6e\n5QzKoKAVt3TYQ4V/RsrfQ5Um4KfMU5r7WgBAg2x8IpE9zswlNkOZQUQllVPNIs95Ks6WmSEA\nQHWqnMOV1zFff/31DRs2qNI2O6larbWswueJAFAtlcMER/UTuHVXO8ttTFS9om7dum3YsCEv\nLy8+Pv6HH37Yv3//+fPnxd6MjIzFixcfPXp027Ztyl/KApYRIIRqli5dajQa5fSKFStmzZpl\nLmdBQUF5NcqsqtVa25X4C5dKGNyq8M9I+WyP0vxESPnfowpZjhUAKj/l6TE9Pb2sh9vjzFym\nIVJEKJVjZYmhyoyMDMsZAADlSZVzuLu7u0iXacGxClG1WmtZhc8TAaBaKocJjuoncOuudpbb\nmGinivR6fUhISEhIiCRJaWlpe/fuXb9+/aFDh+S933///bJlyxYuXKhWdaj27P7UaGiEwWD4\n6aef5HSzZs1mzpxpIXOFPyegarVWFbdu3bKc4bfffhPp0j9u134qw2fUoEEDcVf+9evXS8yf\nnJws0iU+zxkAtKlx48ZiZdGbN2+W9XB7nJnLNESKQurVq2cyg0lJSUmWMwAAypMq5/AGDRqI\nmy2uXr2qVtvspGq11oLKME8EgGrJ3hMce5zArbvaWW5jYjlU1KBBg0mTJh08eHD79u3irsFP\nPvmEJx+h9AgQQh23b98uLCyU0/369dPpdOZyXrlypcL/m161WquKCxcuWM6gHKgCAwPt3JyS\nVYbPqFatWsHBwXL68uXLJS6wcO7cOTnh5OTUpk0bezQJAKo6vV7fqlUrOX3x4kXlgy6KS0xM\nlB+9fvv2bXmLPc7MJQ6RytlvixYt5ISPj4+4nbHEyd6ZM2csZwAAlCdVzuF6vb5du3Zy+sqV\nK5X8tryq1VoLKsM8EQCqJXtPcOxxArfuame5jYnlOfj+6U9/mjdvnpw2GAzHjx+3X12oZggQ\nQh3KW8uVN1AXt2bNGvs3pwRVq7WquHDhgoWf1eTm5h49elRON2nSxNPTs7zaZVYl+Yx69eol\nJ3Jzc6Ojoy3kvHHjhlj4u3PnzlY/rhkAqr1+/frJidzc3JiYGHPZbt26FRgYGBQUFBQU9PHH\nH4vtqp+ZLQ+ReXl5YnLVpEkTb29vsat169Zy4u7du5cvXzZXQmZm5sGDBy20EwBQ/lQ5h/fp\n00dO5OXlfffdd5ZrTExMrNiwXNVqrTmVZJ4IANWSXSc49jiBW321s9zGRLUqunnzZokL8PTs\n2VOkecgFSo8AIdShfCZQSkqKuWynTp36/PPPxZ8m7xsQPyGx393QKra2Cvniiy/M7dqxY4d4\nt1988cXyapEllaRHjR8/XqRXrlxpIafyvy/jxo0ra0UAoB0jR44U6b///e/msn377bciPXDg\nQJG2x5l53bp15nbt2LFDPNli8ODByl1DhgwR6aioKHMlrFy5Mi8vz0LtAIDyp8o5XDkkhYeH\nW3hgUk5OzsCBA728vEJCQnbs2FHW1qqiUrXW6jmaNufyAFA+7DrBsdMJ3LqrnWqNiSUOZ7ZX\nFBYWVr9+fT8/v9dee83csbL79++LtPKHrYBlBAihjhYtWtSuXVtOx8XFpaWlFc9z4cKFF154\nQa/XP/vss/KWrKysBw8eFMkmVkxOS0sr8WGzFd7aKmTFihUnT54svj09PX3RokXiz1GjRpVj\no8yqJD2qe/fu4gc4MTEx//rXv0xmO3LkyIoVK+R0vXr1Ro8eXaZaAEBTevfuLU6t8fHxyrsD\nhYsXLy5ZskRON2jQQDmds8eZefny5SaHyMzMTLFOi1Qsyjh8+HAxIVy1apXJ9W2OHj0aHh5u\noWoAQIVQ5Rzetm1b8ROWS5cuvfXWW0ajsXi2vLy8sWPH3r59Oy8v78CBAxYuDtpVpWqt1XM0\nbc7lAaB82HWCY6cTuHVXO9UaE0sczmyvqGHDhnLk7+DBg6tXry5+rCw/P3/VqlVy2t3dvX37\n9uZyAkUQIIQ6HBwcXn75ZTmdmZk5fPjw5ORksTc1NfXDDz/s2rVramrq0qVL+/btK3Z9+eWX\nRYpq2rSpnMjLywsLC7t3715BQUFKSsqjR48qYWsrM+VwMmTIkKysrJCQkLVr1z5+/FhsP3r0\n6IABA8SS3IMHDxY3v1esytOj/vWvf4nxfsqUKXPmzLlz547Ym5GR8c9//nPw4MHiOVhffPGF\n+B8PAKA4nU732Wef6fV6+c+FCxeOGjXq6NGj2dnZRqMxJSXl008/7dmzp1gU5dNPPy2yOqi6\nZ2YLQ2SfPn2uX78u/9mvX7/nnntOeWBQUNCIESPktMFg6NevX2RkpCghJSVlyZIlISEhBoNh\nwoQJZXuPAAB2ptY5fN26dW5ubiI9cODAQ4cOiWt/OTk5W7du7dmz59atW+Ut/fr1E/WWv8rT\nWqvnaBqZywNAhbDrBEetE7haVztVGRNLM5zZWNGUKVN8fHzk9Ntvvz1u3LjDhw8r7+A0GAz7\n9u3r27fvL7/8Im+ZOnWqmC8DJTMCKklKShLnO0mSHBwcWrZs2bt375YtW9ao8X+h6PHjxxcW\nFu7du1fZCVu3bt29e/fExES5nLVr15rsqzExMXIG5erSYWFhFpp0+PBhkTMiIkL11p46dUps\nDw8Pt8e7unPnTlHFN998U6bXqNy1bt26iRMnymm9Xt+qVauOHTuKAUbm4+OTnJxcpHxV3m0L\nb5SFXeXWoyy0XLZ161bltWmdTte8efPOnTu3aNFCtES2ZMmS4odb9x7aqUcBQCXx7bffFjmF\nSpJUfMvMmTNNHm7jmVk5+qxYsUL8ntTcEFm/fv2bN28WL+f27dtNmjQp0mYPDw/lfCwkJOTE\niRPiz3//+98qv5UAAKuodQ6PiYlRTlskSXJ1dQ0ICPD29hb3YciCg4Pv3LlT5HDlZGHOnDnm\nWhsZGSmyxcXFmcsm1vF2dnY2mUHF1toytbFljqbWPBEAUJztg6O9T+CqXO2U2TgmGksxnKlS\n0YEDB5ydnZXZHBwcGjVq5OfnV/yHsL169crKyrLio4dmcQchVBMQELB9+3bxmNmCgoKkpKRD\nhw4lJSUVFhY6ODgsWrQoMjJSp9MNGTKkXbt24sALFy4cPXpU/Mx/3Lhxbdq0qSqtrcyUjaxd\nu/YXX3wxadIkSZLy8vKuXLly6tQp5f0WQUFBMTExzZo1q4CGmlF5etTw4cNjY2PFs5qNRmNy\ncvKJEyeuXbtWWFgob2zatOmWLVsWLFhgS0UAoB2vvvpqbGxsQECAcqM4qUqSVLt27VWrVv3j\nH/8webiKZ+aCgoKoqCj54RAmh8jg4OC4uDhfX9/ixzZu3DgmJkY5BkmSlJ6enpOTI6eff/75\nnTt31q1bV+ytEv+FAAAtUOscLt8K0Lt3b7HFYDBcvXr17t27xv/dH6DT6SZMmJCQkFDhzwSq\nJK21ZY6mhbk8AFQUu05wVDmBq3i10/YxsZTDmY0V9e/fPz4+Pjg4WGwpKChITU29ceOG8r5J\nR0fHWbNmxcTE1KpVq8QmAYJjRTcA1crgwYMTExNXrVr1448/Xr169cmTJ25ubi1atBgwYMDk\nyZNbtWolZ3N0dNy3b98777wTGxubmZlZv3793r17i9931KxZMy4ubtGiRXv27ElLS9Pr9Q0b\nNuzcubPqsStVWluZGQwGkfbw8HB0dPzyyy/ffPPNqKio+Pj43377TX45rVu3Hj58+NixY4v8\nGqUyqDw9qk+fPmfPnt21a9cPP/xw+PDhO3fuZGRkuLu7e3t7d+vWbciQIcOHDy+yAh4AwLL+\n/fufO3du9+7d27dvP3v2bFpaWlZWlqenZ3Bw8NChQ//85z97enpaOFytM3NBQYGTk1NkZOSs\nWbM2bNhw4MABeYj08fF55plnRo8eHRoaamGFlsDAwBMnTvznP//Zvn37mTNn7t69W7NmzUaN\nGnXr1m3s2LH9+/eX/v/Ap5haAwAqnFrn8Pbt2x88eDAuLm737t3x8fGp1mrDSwAAIABJREFU\nqakPHz50dHT08PAIDg7u3bv32LFjK89vMStDa22co1X7uTwAVCC7TnBsP4Gre7XTxjGx9MOZ\njRV169bt/Pnz0dHRe/bsOXHiREpKSkZGRl5enqurq5eXV5s2bfr27RsaGtqoUaPSfAqAks5o\n6sGYAAAAQHV1+vTpjh07yunw8PC5c+dWbHsAAAAAAADKGUuMAgAAAAAAAAAAABpCgBAAAAAA\nAAAAAADQEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0xLGiGwBUK3//+99jYmJsLyckJOS9\n996zvRwAAAAAAAAAAIAiCBACajp37lx0dLTt5Xh5edleCAAAAAAAAAAAQHEsMQoAAAAAAAAA\nAABoCHcQAmqKioqKioqq6FYAAAAAAAAAAACYpTMajRXdBgAAAAAAAAAAAADlhCVGAQAAAAAA\nAAAAAA0hQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAA\nAAAA0BAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhmg4QpqenP3r0\nqKJbAQBAxWAcBABoGeMgAEDLGAcBADqj0VjRbagwXl5eDx48yM/Pd3BwqOi2AABQ3hgHAQBa\nxjgIANAyxkEAgKbvIAQAAAAAAAAAAAC0hgAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAI\nAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQA\nAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgA\nAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAA\nAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAA\nAAAAAAAAAGgIAUIAAAAAAAAAAABAQyosQJiXlzdv3jwHB4cuXbqUJn96evqsWbP8/f2dnJwa\nNWo0adKk33//vUwZAACoPBgHAQBaxjgIANAyxkEAQGXgWCG1Xrp06bXXXktKSipl/tzc3JCQ\nkJMnT77yyiudOnW6du3ahg0bDhw4cOLEibp165YmAwAAlQfjIABAyxgHAQBaxjgIAKgsjOUu\nIyOjVq1aXbp0SUpKcnZ27ty5c4mHLF++XJKkpUuXii3/j737jo6jOvsAfKdt712992bLveBu\nY2ODTQ2hh16SkIROCMQECGAI8KUREgKEaoox2NjGBTdwleWi3rtW23uf2f3+UCJkeSVLtrTa\nld7nHM6xZu/OXFlGv537zr1348aNCKGHHnpomA3CksvlCCGapi/0WwEAAABGDHIQAADAZAY5\nCAAAYDKDHAQAABA9sFAoFNmKJDKbzS+88MIf//hHiqI4HE5hYWFZWdnQb5k6dWpTU5PBYGCz\n2X0Hs7Ky7HZ7T08PhmHnbRD2tAqFwmQy0TRNEMSofGsAAADAeUEOAgAAmMwgBwEAAExmkIMA\nAACixzjsQSiTyV555RWKoobZ3uv1VlRUzJw5s3/IIYTmz5+v1+tbWlrO22DUug4AAABcNMhB\nAAAAkxnkIAAAgMkMchAAAED0GJ89CEeko6ODYZikpKQBx1NSUhBCzc3NDMMM3SA9PT0yXe31\n/N++qLGjZUtmzk2TZSv5kbw0AACAiSfmcvCFv31hdXrvuWx6RmFOJK8LAABgQoq5HHz+r19s\naXFhOI4wJCERwjCMIBFCGEniJCmmMIQQiyIELALDCZLDVvAoMZsQi3gEQcrlEowkORTBpXA+\ni2AROEKIxyLEHJJLwfQOAACYjGIuB1/42xcMwn93/5WRvCgAAIALEwMFQofDgRDi8wdW2gQC\nQe+r523Q/2BaWprNZuv9s9VqHYsO1+udHzqUH26sQAhlKfg/n5+yOl+VIeeNxbUAAABMeDGX\ng3V6538cyg3vNMmYilyOf15x2tS8lOI4UYFGMBaXAwAAMLHFXA7WG5xHQ0rEIIQQoodoGEQo\niFDggi+EY5iIwggcE3EpiiSEbJJD4f3riH0lRjGHxDFMzCVxDEMI8ShczKVEbFLKowQsAiEk\n4pBCNinjUSzyx8IkAACAaBBzOdh7P6j9x+7/u2spiYdf3RQAAECUiIECYa9z18vu3T2x7/h5\nG/SyWq1jlH8Ioaaquux/NwSRsu9Ig9H14ObqBzdX56oEt89MXJOvylPD8CgAAIARi4kcLC+v\nmfZhC0LKHGeHNOA4Is0/FOAdOmFBJywIITUXL02W5seJ5qVKpyaIU2XcMeoGAACAiScmctDV\n2vT4wy/9J2XdYA1mW6rDHrdQwt4/1AkGzv8YQjAUsvpDCCGTlxlJN8+PSxEcEudSBIfCRRxS\nwCI4FCFikwSO4RgScyg+ixBzSTmPxSIxCYeScCkcQxyKiBOxZTwKIURgmIgTM6MNAAAQ/WIi\nB48ePT370y6ElAihv9f7P3xq55IsxS3TE9YVagbZBhEAAMA4i4GP7CKRCJ3zwAtCyG63I4SE\nQuF5G/Q/aLFY+v7cuxnvKHY1oyBnvfLgWx1kottwWFbQ/6VavfPRrbWPbq3NUwvumZN887SE\n3hsnAAAAYGgxlIOlpXm/O1i5oZXqG9+cbam2UMLeL3We4PY60/Y606uoBSEkZhNTEsXz02RF\nccLiOGGuSgA3jQAAAM4VQznIT8148LoFDT+0tAb5KMjQCPcQrFAwhFAIIeTF2VXCtN6WTpIT\nQiOLvcGKi2EdkeaP6OQDeAKMJ8BYPBc+u7GXmENSBC7jUWIOKeZSbAIXcki1gMWhCD6L4LMI\nEYcUc0gpl+pdVRUhxKMIdu8sRhKXcuGWGQAAYikHZ80qufmTve/j2bMt1Uek+XYfs7lSt7lS\nlyDmLM9WXF2sWZQhF7BhxWwAAIgiMVAgTE5OJkmyra1twPGmpiaEUFZWlkajGbpBZPrZ67cP\n37Z2/cPNVQeqjGktnLh/J68MorOWZ6nROX+1ufqxrbXrCtUPXpI6O0UK46EAAACGEFs5+OyD\n1z5o93y2/dCp+q7TWkedINlCCdD/hjX7ioUIIZuP2d9k3t9k7v1SzmfNS5XmqwU5Kn6uSpAi\n5aqFLBwyEgAAJr3YysHM627acV2Y48FAIGA1BQP/LbnRDnvA6UChkMlkMdpcdhoPopDb7XfZ\n7IzHbfX4/L6AM4gHmKCTRkE6YPMFg35/39kYDHPjHISQH6f8OIUQ8uGkg+QGsP9W1LJdnUEM\ncxGcYnuzH6MQQgGcoLERjMleZImxl81LI4SMLv95W4aFY5iCTwnYZN98RDGHxHEMIcQhcT6L\nUApYfBaJEJJwSTGHUvApNomnyXgKPqu3+njx3wIAAIy72MrBtx671vLE21tl03tvAHvTpMvm\nffd457vHO3EMW56tuLxAVRIvmp0igQVIAQBg3GG9883HC4fDKSwsLCsrG7rZ7NmzKyoqDAYD\nj/ffnfyCwWBSUhJBEO3t7cNpEFbvkzI0TRPEKD+90rn5k6Y3X6NdDhoj6nmJ36hn75NN9eFh\n7k9KE8U3lsZfUaDOVMAmhQAAMOlM1Bz8bx8CAcOB3fWHjxyt7TzBSOsFSY28hHxHa1+DoQcf\nxRxydoo0Q8HLUvBKE8WzkiVsErZEAgCACWVi5+DoCjEM43bRHnfAag4Fg7TTwXg9jMtJOx0B\np4PxuIMBf9DrDfp9jM8boumA3Uq7nAGbtbdZKBhECLkJDoNhvX9wEDw3we59jofBCCfBdRNs\nBiM8BFvpswYwgsbIIIb5cMqHsxgM8+EshJAPpwI46cfC195Gpaw4ingsQswhRRxSwCJFHFLB\nZ0m4pIzHYpO4iE2KuaSYQ5I4JmSTGIZJuKSQTUq5FJciYIILACAyJmQOGg/v//RPfz2Gx5VJ\ncoQB92DRwGMRC9JlK3OVt05PkMCUcQAAGCfR+Eid1+utra0VCoUZGRm9R+6444677757w4YN\nzzzzTO+Rt956q7u7e/369cNsEGGJ665XXrK09b03u7Z8lu9qy29q+3Xz5yck2Qc0sw5ICz39\ndogo77SVd9oe2VJbmiialiiekyJZnqOIF3HGpdsAAACiwQTIwV44RamXrlIvXXVJKGSrOm05\nddxW8V2DtqvGy2rmxTdy45cay13Ej5E34NbR5qW/rTOguv9+SRHY2gL13DSpSsCW86iZyRJY\nrBsAACakCZODowsjCFIoIoUijkpzAW8P+rxBv5/xeT3aTsbj9mq7vXptiGEYrycUCCCEQkGG\ndjmDXm/Q7ww4HUG/z6vtZLzewU5ooQRenO0jKCfOJYMMjeMMRqw0HgsiLIgIP076cZLBCB9O\n+nCWk+D6cCqI4QGMcBLcAftxjB23n3H7Ga3ddwHv5VKEUsDiUYSATUi4FIVjAjbZuyZqnIgt\n4VLJEq6cT8l5LJWAxWNBQREAMGpiPQcVcxbe8970VZ++1/7Je9VIMt9c2ciP72HLBtzuuf3M\njlrDjlrDrzZXL86U3zkraVaKJEMO0ycAACCixmEG4f79+7dv397751deeUWpVN566629Xz7y\nyCNyubyysrKoqGjp0qW7d+/uPc4wzOLFiw8ePLh27drS0tKampqNGzcWFhYeOXKk99GY8zYI\nKwJPjDob6yqe+Y27vQX976/ZQXGPzbpxq2RqhcEz2LsWZshumZ54TbEGFkUBAICJZ1LlYFg+\nk0G3Z5tu9zZHfbWBELRyNWeE6aEQ0rFlboLd2+a8UxBIHJuaIJqSIJqVLCnQCNNkXLWQPfZ9\nBwAAcLEgB2MI4/WGAv4gTTMeF+10oFCIdrsCdlvQ6/FbTLTbTTvttMPut1n8ZhPttPuMhqBv\n0Joi6jf24MUpP065CI4PZzEY7iF6pyeyGAz34hSDEQGMbOLH2yhBACP9OOHDWSGEuQgOjeEe\nkoPhhJ+gLBiXGeFWjmOEwDG1gC3lkTyKEHMpMaf3D6SYQwnZRO/0RDGHUglYCWIOj0XwWQTs\nsAjApDV5ctBn1Le88zft9i+DgYCREjfz4s4IMz6NXzhgM6b+SuJFVxdrbpoWnyaDSiEAAETC\nOBQIX3zxxSeeeCLsSw0NDZmZmecGIULI6XSuX7/+s88+6+7uVqlU69ate/bZZ2Uy2fAbnCsy\nN4RBv6/j8w9a3v0743H/944IQ5RM0bzuVx/7Eg62Wj0BJuwbKQKbmSxZnq3IUvCL4oSFGiHs\nxAQAABPAZMvBIYRo2tlU1zu50HLiSMBus5F8KymwUEIjS9TFVpoo0U7V9GHumZQg5lySLpuR\nJO4NzTgR1AsBACAaQQ5ObKEgw7hctMvJ+LwBq8VnMtBOe8Bu85uNPr3Oq+/2W8w+gy7EnHMX\nfKEjE0EMcxBcC0tkoYQ+nLKSfAfJ9xAsH045Ca6XxXNzhH6cZWWLrATPEST8wYv8FkeHjEcp\n+KwEMUfEIeNF7AQxR8yhOBQu5pAEjonYJJ9FqIVsjZAN0xMBmGAmWw56OttbP3hLt/dbxu1C\nIUTjRA9L+oOs6JQ4+7Q40x8KM9ZJEVhxnGhdoXpNvqpAI6QIGA8FAICxMs57EI6vSN4Q+s3G\nhr++3LNz64+3PRjiaOJzf//a7oBiS5XuZJe9Ru8c4qch4pBXFmnW5KsWZ8jkfNZYdxgAAMCE\nF20Do57Odt3eHbrd37ham0LBYG9i0hihY0vbuOoPEpY38eIZbLjbECZJOAsz5Muy5DOTJbkq\nATxkAwAAYIBoy8FJhXY5/Baz32Sg3S6fXufuamNcLtpp95tNXkMP7XTSDlvvvolhXMwYBoZo\nnPDgLC/Ocog1TGIGzuZ6uEJcJMVFUjvBs9KYF6N8IczP4jowtisQtHppHx20egLBUKjL5g0w\nkR5CUQpYaTKeSsASc8h8jTBVyuWxiBwlP13Og+2ZAQAXI5I5GLBZ2je+1/HZ+4zX0/dr3Ebx\njyXM3Ju35ph50F+tKgFrZa7yhtL4ZVkKAoebOgAAGGVQIIzoDWH3N5ua3vyT32ruy0KcxUq9\n9d7Um+/CcMLk8m+vNXxwont3g5EJDvpz4bGItQXqG0rjF2fK+fAsIQAAgAsVtQOjtNPRvW2T\n6fABS/mxUJDpC00Gw20k30OyzwjTy+UFTcKUDlwwnA8yAjYxJV60JEsxLVE0JV6ULOWOaf8B\nAADEhKjNQYAQCtG032Ki3a6AzRr0+xiPO+j3BWxW2unwGfVeQw/jcvlMBsbl9JmNaLBPAyMd\n7Thn5JnkCwgOF+dyWRIZR5NACUWEQmMTqgLKeC1L5iI4ZndA5/BZPAGTO2B2B/x00OIJuPxM\nj8Pn9odfK2gUiThkqpQbJ+KkSLlJEk6ihJOl4CdLufEiNgyjAwDOK/I5GLBZOr/8uO3jd3pn\nE/4XhvhX39FzyTUbayxbqnSuQX55ijnkihzlqlzl7BRJnloQmQ4DAMCEBwXCSN8QenXa5rf/\n3LNzS4hh+lYclc9ZkP/kCyzJfyf+a+2+LdW6HbXG3fVGh48e7FRcipiTIlmeo1iZo5ySIIpI\n9wEAAEwc0T8w6reae3Z81bNzi6OhFqEww3w+nKoTJOm4ihZ5VrWqoM7HCgxj3TABm8hXC4vi\nhHNTpbNTJJkKHouAB/ABAGDSif4cBMMUDPiDXi/tcXt13YzTSbtdAbuVcbsYr8er0zJej99s\ndDbW0y7Hj++5yIEQDCGESL6ArVBREikvKY0SSyiRmJ+awdEkcJRqgs/HcMLqCYQQsntpqyfg\nCQS1dq/B5Xf6GJuXbja5exw+izvQbfeaXAE/M5orn/YuUhonYqdIuWohO1vJjxexxVxKwWdJ\nuVSajAvLlgIA0PjlIO1ytrzzt85NHwYDgb6hUZIviL/8Wtnqa7YYqO21hp11RqsnMNgZ4kTs\neanSPLVgZa5ybqo0Yj0HAICJBwqE43ND6Gyqq37+SUdDzY+7EorEOQ89o16ysn8zJhjqsnkb\nTe6DzeYPTnQ1Gt2DnTBDzruqWLM0S748W4HDMmoAAACGIYYGRj2d7fa6yp5vt1hOHuu/KM0A\nNE50ChMNGaX1yrwyQl1lpoPD+JxD4FieSrAmX3VJumxhhgxm5wMAwCQRQzkILl4oGPTptV69\njvG6Axazu6vDXlvhN5top512OgM2yzlvuKDL/O9eHGdzOEo1W6nmJadyNAmkQMhLSGYr1Wy5\nkhQOfLqXCYasnoDRFXD6aW8g6AkwCCG90292B7ps3iaTW2v39jh8WrtvsIk1I5Wp4KXLealS\nnlrImpogylMLEsVcARv+RwBgchnfHPQZemo3rDce3t//9y1GEIlX/TT99p8zXMGRNuuueuOn\np7QNRtcQ58lW8qclii9Jly3Llmcp+GPebwAAmFigQDhuQRj0++pee0677ctQ36OCGFItWpH/\nxPMEL3yeddq8H5V3v1/WVdnjCNsAIZSnFlxXEnfdlLg82G8JAADAkGJxYDTEMI6GGvPxQ5aT\nx1wtjT6jftDxOwx5lUnN+Uu64nJrg8L9OtrqGXRSfh8cw4rihLOSJYszZQsz5HEi9uj2HwAA\nQPSIxRwEY4R22AM2K+1yhEIh2ukI+ryerg6vQUc7HbTLwXjcXp3WbzbRDnsoyCB0QeXD/92e\nEzw+SyIjOBy2Oo4lkZM8HlsdR/IFLKmcl5TKksoJDgdnc8J0MhjqsnmNLn+H1dth9XTZfJ1W\nT7PZo3f4Oqzei5+DmCTh5KoEeWqBlEtNSxSXxAvjRByKgGEFACascc/BUJBp/+TdlvfeHLDi\nKMHjJ197c/L1PyMFQoTQqS77lmr91mr98Q7r0MPYKgFrVopkbYH6lumJ8OsLAACGAwqE43xD\naDi4p+bFpwI223+/xhBbqc687yHN8jVDvKvB6NpeY9hVb9xdb/TS4W8DJFxqebZiRY5ifpo0\nVwVrcwMAABgoGnLwIjmb6iwnjzsaanR7tgd93iGKhRjFchZf0pw5t1uW1k6zKnXOGp3rvPML\nsxT8+enSmUmSWSmSLAUfnqwHAICJZALkIIiwoN/nt1q82k53R5u7s81n0PmtZp++x93ZFqJp\nhEZn5VKEEE6xBFm5/NQMSizhKNSCrFxeYgpbqR7irTqHr83iaTC6O6yeLpvX4WPazJ4um7fL\n7r3g3RApAstXC9VCVpqMV6gRJkk4GQpeloLPJmFtdgAmgijJwYDN0r7xve5vNvnNxv5lQkos\nSbr2lqRrbiT5wt5jRpe/rMO2vdZwtM3aYHSZ3YOuQSrmkHNSpbkqfoFGuDpPBc99AgDAYKBA\nGBVBWPvKev2+nf1TUJRbmPPQ06LcwqHf6/YzR9utn53WbqnSd9q8gzWLF3GuKFStylWuyVfB\nAqQAAAB6RUkOjgrG63G1NNkqyi0nj1krTgZsliGKhSypTFIynZqxsJab1MySVWidW6v1Rpd/\n6EsQOFagFpQmiqcniTPkvKkJIrUQ7jMBACCGTaQcBOMuFAy6O1o9nW1enTZgt7o72vxWs6er\n3avtCgWDCI1C7ZCtUAlzCiixRFoyXZRfTInELJnivO+jgyGD029w+Y0uv9UT0Dn81TpHdY+z\nVu+y+wJO34hrhziGJYjZyVJuuoyXo+KnyXjF8cICtRBGGgCIOVGVgyGa7vzy4+Z//4V2nLVq\nGksuz7jrV3GXrcPwszrJBEM76gxbq/XH221ntPYAM9Qv2Xy1YE2+6vIC9ewUCYnDbysAAPgR\nFAijJQh7dm6t3fA04/mxyEfweAVPvahcsGyYZzjVZX/9YOvWar1p8CHORDFnbaH6lukJM5Ik\n8PEdAAAmuajKwVEUCjKWk8fNxw8ZD+1ztTQiNNSQHFulFuUWyucuNibk7HXwTnc7DrdZ6vRD\n7XLRR85n5Sj5M5LEizPlK3OV8DQ9AADElomagyCqBP0+2un0GXUebZffZPCbjV6Djrbb/Dar\n36gPOO2Mx32Bsw8xhLPYlFDES07jaBIEmdnCzFxeUipLrsTw4X4maTK5q3ucnTZvvcFZoXU0\nGN3dNi8dHPEwEYfEkyTcDAUvXy1IkXLjxZxMOS8TVl8AILpFYQ76reaOje+1b3wv6D9rbFOQ\nkZ3zm6ckJdPDvsviCRxutR5sNpd12vY1mob4JSZkk6vylCuyFStylEmSMIs5AwDAZAMFwigK\nQq9O2/DnF/X7d/WfSigtnZX2s/ulU2YM8yQ+Ovhdo+lwq2Vrtb5C6xgsFBPFnDtmJd04LT5T\nzodKIQAATE7RloNjgXY63O0ttpoK05EDlvJjQZ9v0KYYEqRnCXMKFfMWeQtnH+10Hmg2H2gy\n1+idQz+O2ovHIlblKmckieelyaYmiPisCftXCgAAE8ZkyEEQ/UI07dVpaafdbzG7O1oZr4d2\nOT3dHc6GWp/ZyLhdCI2sdkgKhJKSaYq5i0R5hWyFihQIcdbI1jyoN7hOddnbLJ5T3fbe/Q7b\nLd7zLsweVoKYk6XgT08ST08ST00Qpcl4sCsYANEjanPQZ+jp+PzDrq820k7nj0cxJMorynrg\nUUnJtCHe22B0fVzevb/J3GB0ddl8g/3uYpP4jaXxizPlVxSoRRxydPsPAAAxBAqEUReEpmPf\n17/2vLujre8IRhBZP3808aobsBH20+al9zaaDjSZt1brG4zhJ0MkS7mX5SmXZyuWZMolXOqi\nug4AACCmRGcOjh3G67VVlJtPHLGcPOaorQoxg66pRXA54oIpykUrNEsvc1O84x22BoOrrNN2\nvN1a0eM470cnHotYmiUvTRDPSpFckiaDZ+cBACA6TbYcBLEoGAg4G+tcbU2Ohhp79RmvTusz\n6EY21xDH2HIlW6nixidxE5J5SalsuZIbn8RWaXBquCMAbj/TafM2GF1NRneTyd1scnfZvNU6\np48OjujboQhsVrIkRcrN1wjnpUqL44XSwUchvm+2LPzbkf6D+ywC8728akRXBAAMIcpz0Gfo\naXrrjZ6dW0JMv181GFLMWZhx768F6dnnPYPR5d/TYNpWo/+2zqhzhH9UlMSx0kTxPXOSL89X\nKQWs0eo8AADECigQRmMQ0k5H1R8eMx7a1/9zPz81Pe1nD6iXrEQXNOPveIfto/KuT05qewZP\nxKkJosvyVNdPjctVCS6o4wAAAGJJ1OZgBPitZmdDrfHwfntNha3qNBpkwj1GkZrla9SLV0qn\nz8YpFkLI7WcaTe4KraNS66jVO4932LoG3wMYIUTiWIqUWxwvKooTFsUJ02TcQo0QFiMFAIBo\nMJlzEMSugM1qrz7j1ff4LSa/2ejp6XK3t/j0PUF/YETnwQiCrVDyM7L5SWkcTbwor1BcMGVE\now2hENI5fWe6HSe7bM0mT6vFXdXjHPpz0bmkXKo0UZSp4Oeo+CXxogXpsr7twfY0mJa9ebR/\nYwLDmdBZJUk+C3f+ceWIrggA6BMTOehsbqh9+Wlb1ekBz0aI8osy7npQOm32cBZVDoXQ8Q7r\nzjrjtlrDkTZL2LHw3i3n756TfGNpPMygAABMHlAgjN4g7P5mU9fmT+y1lf0jUD7nksLfv0ry\nL7CARwdDB5vNmyp6PirvNrsHvX/gkHiuWjAnRXJVkWZRphz27wUAgAkpynMwYgJ2m63ypH7/\nLkdtlbOlIWyxkBQIJVOmK+YsVC1aToml/V/qXcRmR53xZKfNO4zn6EUc8ooC9eJM+bREUUm8\naNS+DQAAACMEOQgmjBDDOJvrXS2N7vYWc/kxe9XpIVZKGAxLrpAUTRXmFCjmLuQlp/U+GjVS\nfibYYvK0Wz2NRnet3tlidh9vtw32mPK5kiScS3OUl+UppydJ6g2ugQVCHGeCQ33WgnohACMS\nMzkYCplPHGn6x2v2msoBr/CSU1NuvDPu0iswcrjLhDp89HvHu17Z19xm8YRtQOLYsmzFNcWa\npVmKVBn3onoOAABRDwqEUR2EwYC/dsP6nm+/6j+bnq1QZtzzK9WUdVoUAAAgAElEQVTiVQTn\nwnfTdfmZPQ3G3fWmHbWGRpNriH8Fcj7rxtL4a0vi5qdJB20EAAAgBkV/Dkaeq63ZeGif5eQx\nS9mRoN8fpgWGhNn56mWXKect5iWn9X+FDoYqtY49DaZNFT1VPQ6blz7v5aRcakWOYk2+akG6\nLFkKN58AABBRkINgoqJdDntNpUfbSdttPqPeZ9B7tJ3ujlbG7R7mGTAcFxdN4SakCLPzZDPm\n8lPSL6Y/WrvveIe12eTe32Su7HHoHH6H7/wfk0Qclt171oex8xYIz/Xi6pzHlmSMrLsATBqx\nlYOhYFC/99vmt//sbm8d8BI3PjHvieekU2eO6IRau29Lte7LCt3OOuNgWxVmKfgLMmQzk8Wr\n81QJ4gsfhgUAgKgFBcIYCEJnU13j3181Hf2+/1RCbnxiyYY3L/Jjeq92i2dnvXFvo2l7jcHi\nGXRaoYLPmp0iuWt20rIsBY8V1X9jAAAAhiNWcnBc+K1m7bYvu7761NPVMVgbXlJK3GVXyqbP\nFaRn4uyzbhdDIVTZ4/ihxVLR46jUOs5oHdbBE7ZXipR7eYFqeqK4ME44JV5EwPR9AAAYY5CD\nYLLxGfXenm6/xeTubPN0d7jbWtwdrT6D/rxvpMRi+axL+KkZ4uJSUW7RxTysjBAKhkIVWseJ\nTnuzyV2hddTqna1mj585f+UPQ1hoZBsw9r4LhRDCEWJeveyC+gvAhBWLORhiGOOhfW0fvW2r\nODXgJdnMuZn3PSzMyh3pOfVO/zfV+t0Nxs9P9wz2u4jAseI4Ye8e84syZfEiKBYCACYIKBDG\nTBD27Npa9+qztNPZdwTncBIuvyblhtvZSs2oXMITYHbVG890O+oNrh9aLc2m8E8XUgS2IF02\nP00GuxUCAEBMi60cHC/Oxjrj4f3mssPW02UhOvxqXRhJCDJzJYVTlAuWiXILCR5/QINgKNRh\n9TaZ3N83m7+s1FVoHcwgux72EnHIJZnya0vi1haq+fBQDgAAjA3IQQAQQgG7zdXSaDy833q6\nzF5TGaLPM7cPZ1H89GyOUi3KL+bGJ4pyizhx8Rh+Uf8T+ZngmW7Hxye7X9vfMgZDVL0lwh+t\nylVsu2tkM40AmJBiOgetFeVtH71tOnTgrBWVMaScvyTx6htl0+dcwDn1Tv/myp6NJ7X7msyD\nzSnsVagRXlOiua4kLlvJhyc7AQAxDQqEsRSEPkNPw1836L/7NtRvVQ1SKMx64JG4VVdio/1d\nnOqyb6roefd4Z4c1/DbjGIbmpUqvLYlbnCkvihOO7tUBAACMtZjLwfHlM+rNZYdNRw4Yf9jH\neMLvV4EQwllU3Oqr4lauE+UVYTgeto3FEzjaZj3QbP6uwXSswzrEZzEei5ibKi1NEOWqBKvy\nlBoh++K/EQAAAL0gBwEYgHY67DUVrtYma0W5s7HO09UxnL0MMZISZGaLsvNFBSW85FRBejbJ\nv8Anief9+dChVuuFvXdwAwuE/REYol+BmYVgkpoAOehqaazZ8HvbmfIBx/mp6apFKxKvvokl\nlV3Aaa2ewP4m86564/4mc7XOOUSxkEsR0xJFq/JUq/OUxXEiDGqFAIBYAwXC2AtCZ2Pd6cfv\n9/Zo+x8U5Rfl/Oq3ovzisbji3kbTNzX6sg7b/ibzYG2mJoiunxp/SZp0TipsVQgAALEhRnNw\n3DFer+XEYf2+nfr9u4bYy4fg82Wls4S5hYq5i4SZOWiQm8Vuu/dom3VPg2lXvbHe4Br60iXx\nouI44fx06bIsRbqcd1HfBgAATHqQgwAMjfF6rafLrGdOmI4cdDY3hALnWS+9F0aSgvRMjjqe\nE5fAS0zhJibLSmdjJDnSq+9pMC178+jIex2mR0MUCPuDmYVgspkYORgKBo0/7G365xuu5sYB\nL+EsVsKV18evvlqQnnXB53f46C8rdDvrDCc67fUG1xDFwngRZ0WO4u7ZSTA0CgCIIVAgjMkg\npF2Ozk0ft298L2C1/HgUQ6k33532swdwihqj61ZoHd81mr5rMB1qtRhd/rBtZqdIbpqWsDxb\nka0cuMAaAACAqBK7ORglQjRtqz7jqKuy11baKk56ujsHa8mSSOVzF/JT0kV5RZIpMwabWWh2\nByq0jn1Npj0Nph9aLEPcfGIYKk0QL89WlMQL48WcqQkiIXvE424AADDJQQ4CMHyhIONsrDMd\n/d5eW+k3G+21VcOsFyKECC5XMW8xPyWNm5giyiviJaYM512jVyAcMSWf0j+7fFwuDUAkTaQc\nDAWDPd9+1fHFR47aqoGvYUg++xLNisuVlywlONyLuYre6f+uwbi7wbTpTI9l8D3m89SCa4o1\nC9Jlc1OlPNgwAgAQ3aBAGMNB6Lea615Zbziwp/+Ko7yklNzHnpVOmTG2l2aCmyt075/o+rbO\nEGDC/BPCMDQ9UfzT0vg7ZyXBkCUAAESnWM/BaOOoqzId+6Fz00c+g36IZgSHy1aqVIsvTbzq\nBrZCNVizDqv3k5PdB5rNR9utBmf4h3J+PCeGFcYJpySIrinWXJqjpAhY2gYAAM4PchCACxYK\nBv0mvaOuxtFU52ppdDbWuttbQkNusdyHJVNoVl6umL2Al5TCVmoGa/b1t0fW7jxrESMCx5l+\nox8RgCPEvAoLkIIJa0LmoPV0mXbHV/p9O2mHY8BLJF+QfP2tyT+9/SLLhAght5/5vsVS3mU7\n3Grd22hy+MLv3soi8Hlp0hU5ivlpsrmpEhxWIAUARB8oEMZ8ENqqTte+/LSzqaH/QWF2XsoN\nt6uXXjbYgmajxeIJHG+3/eNw+/ZagycQZnMCEYdcnCm/bUbi6jwVjFcCAEBUmRg5GG1CDGOr\nPGUuO2w5ecxRW8l4w+/jixDCcJyt0qgWLpdMma6YtwjDB/0p6J3+b+sMu+uN5Z32yp6BN7oD\naITsRZnyS3MUxXHCwjghiwg/WxEAAADkIACjKGC3ebo67LUV1jPlXp3W3dJEu+znLRmy5Ar5\nrPnC7Hx+aoYwK48SS/pe2rz1+yv32vs3xhGKaHmwHxaB+V5eNU4XB2CsTOAcpB32jk0fdX7x\ngd88cLMkSiJJvflu9bLVbLlyVK7l9jNH263f1Og3V+iaTIPuQKEUsOalSqcniZdkymcmSwgc\nxkgBAFEBCoQTIQhDwWDz239u++CfIeasT8viwpKCp1/mxidFoA8BJnSwxfzqvuZd9cawcwpZ\nBHZVcdzaAtWCDFm8iBOBLgEAABjahMnBqBViGMuJI8ZD+ywnj7vaW4ZYiYsSilVLL41ffbUo\nr2joczp89M4641eVup31Rp3DN3RjLkWszFVeWaReV6iGCf0AADAA5CAAY4rxetwdrYYDe8xl\nh+w1lSE6/Ayb/jgqjXrZZepllwmz8y1lR8p/fXv/V3cpZr6Uft2Y9XdYMISCMKcQTBQTPgdD\nNK3fv6vzy49sZ8oHPK9AcDmZ9z6kWXE5KRSN1uWCodCeBtOnp7SfndbavEP9xpNyqWXZissL\nVKvzVDLeWG0UBQAAwwEFwokThM7GusrfP+Rqbe5/kJJI8x9/TjF/ccS64fIzO+sMH5Z3b681\nuP1h5hQihPLVgquLNcuyFfNSpfDIDAAAjJcJloNRLhRknA21+v27XK1N5uOHGI8nbDNSKIq/\n/GrZ1FnS6XPOu6lwh9XbZvGc6baXddrKOmwV2kEnF/buWbg0S748W3FJuoxNwrRCAACAHAQg\novxmk73mjOno9/rvdvitlqEbsyRSUW6h8ejBsw//OIfwX0lrPolbNCYdHbZVuYptd80c3z4A\ncDEmTw56tJ0dn/6nc9PHIeasgUqMJNRLVqXf+YvRnVwRDIVqdK5d9YZ9Tebd9UbXIKOjCCEC\nw0oTRQsyZOsKNaUJItiwEAAQeVAgnGhBaC473P7pe6bDB1C/H6y0dGbyT3+mmLMwkj3RO/1v\nHW7f3WDc3zRwOn8fAYv8ydS4++YmT0sUR7JvAAAA0ATNwZjAeD2G/bvMJ46YDu0fbICM4PE0\nK9aoFq+UTp2J4cOq51X1ON8/0bWnwXii0zbE5zsBm7iiQL00S7E6T6kWsi/sWwAAgAkAchCA\n8REK2euqnE31jroq05GDHm0nGuxzy8DHiQddZHSXYvpL6dcPfpYxGfjq3xsCQ/QrMLMQxJjJ\nloPenq7W9//Zve3LASu7YCQZv/qqtNvuYyvVo35RPxM80+344kzPoVbL6W77EDMLSRxbV6i+\nZ07ysmzFqHcDAAAGAwXCiRmElpPHKp/+jd9yVmVOccnizHsf4qekR7gztXrn5krdhye6h9g2\nKUXKvXl6wg1T4/PUgkj2DQAAJrMJnIMxxNXS2L3ty54dXw1I7T4shTLu0ivUyy4TZuUN85xG\nl7+qx3m8w/pVpe6HVutgH/YwDBWohdOTxPPTpFMSRCXxIhKm9QMAJhPIQQCiQdDvc7W1uJrr\nzeVHtdu/HIVaHoYQQg/n3H9KlP6/r8do4GvQM7+4OuexJRljc1EARs3kzMGA3db0z9e7v/p0\nwKKjGEHEX351yvW3cxOTx+jSTDB0rN26u8H0bZ3hUKtlsCH5DDnvqmLNLdMTCjXCMeoJAAD0\ngQLhhA1Cv8Vc9ewj5uOH+x/EcFxz6eWZ9z3Eko3D0yjddu8PLZZvagxbqnRmd/h9mEoTxdeW\naGanSOakSGEBNAAAGFMTOwdjSyjIWMqPGQ/v127bTDvsYdvwktM0K1aLi0qHP6cQIdRidn/X\nYNrbaNrbaO62e4doKWSTlxeolmYpri7WiDmwYSEAYOKDHAQg2pTd+1Nb1enRPCOGutmKW4of\nH81z9j/7MEqPSj6lf3b52HQAgIsymXPQ29Nt/GFvy7tv+i2mAS/J5y7I/c3vOJqEMe1Ah9W7\nq964u964r8mktYffWj5byZ+aIFqdr7qyUCNgT7qfEQAgMqBAOMGD0Hh4f9M/Xnc21vU/iJFE\n2s8eSLvlHoSN20SB4x22HbWGfx/raDWH34QpScL5yZT4NfmqhRmyCPcNAAAmicmQg7HI1drU\ns3NL99Yv/OaBN6u9WHJF0jU3qZes4iaMYKuMUAhV9ji+rtJ9XaU/0WFjhvwEqOCz1uSrbp+Z\nOCtFwiLgeR0AwMQEOQhAdNqzsBAFwy8lelGw/tMKxwGGUPBVWIYURBHIwaDP27X1i+Z//R/t\nOGvNM4ykNCtWJ//kVkFGzpj3IRQ60+34vsXyzyPtZwbZVJ5LETdNi7+mOG5JlhwWfQEAjC4o\nEE6KIOzZuaXpn294td39DyoXLsu67+Gxmzg/HMFQaF+T+etK3fsnugabU5irEtw1O+maYk2y\nlBvh7gEAwMQ2eXIwFoWCQUdtZfc3m3p2bWXc7nMbYDjGVqjTbr9fuWA5JRrZVr5md+CrSt3h\nNsuxdtvp7vATFnsJ2eTcVOnybMWqPGU+LAMOAJhYIAcBiGaWsiPlv759rM6OoU81i99KWj1W\n5x+eHCWv9vFF49sHMJlBDvZivN6uLz9u+c+bA8uEOCYuLk277X7ZtNmRmWKxs8742Wnt5kqd\n0eUP20DGY60rVF1VrFmRraQIqBQCAEYBFAgnSxCGaLp726aGv25gXK6+gxiOJ157U/rtPyf5\n4zzk56ODO+uMH5Z3fVWl8wbCPyq4LFuxOk9556xkmFYPAACjYlLlYOwK0bTp+A+dX3xoPVXG\neMOsEYqz2KLcgvjLr5GUTOPGj2BOYS+jy1/Z4zjQZP6yUlepddDBQT8Zyvms1XnKtYXqbCU/\nVyWAZ1cBALEOchCAaDa2BcJe//ss81TWnUckuWN7rcGxCMz38qrxujqYzCAH+wvRtH7/roa/\nvuzT6wa8pJi7MPexZ9lyZWR6QgdDO+uMmyt7TnXZj3fYwrZhkfiKbMWVRZo1+SqVgBWZjgEA\nJiQoEE6uIKSdjpZ3/97+ybv9D7JkiuxfPalesnKcOnWWABOq1jneOtLxyUmt2R3meRk+i1iZ\nq7xjVtLKHOX4rZAKAAATwSTMwdgWCjkaajo+/7Dn269DDBO2CScuIeWG29VLVlFiyQVcQefw\nba7UNRhdmyt0TaYw0xb7UASWKuVdXqBak69alCGHRAYAxCLIQQCiWbgCIY7QGCw92gtDCKHX\nU67dqpo1VpcYBphTCCIJcvBcjMfdteWzjk/e8+p7+h/HKEqcX5L9y8eEOQWR7E+nzfvOsc63\nj3a0WcLv0ETi2JVFmquLNZfmKCRcKpJ9AwBMDFAgnIxB2LNza91rz9GOfkuKYUg5f0nOQ0+z\nFarx69dAB5vN/zzSsfFUt58J8680S8G/qlgzN1WyOk9FwCQGAAAYuUmbg7GO8biNhw/odn9j\n/H5vKOwOPRjixicl//RnmmWrSYHwQi4RDJ3ssn9Toz/cat3baAwbxH1kPOqnU+NX56umJ4qV\n8PgqACB2QA4CEP3qXlrfuXXj/74aywJhHwwhhMqFWY/m3jPm1xoEzCkEkQE5OJhQkNHt2d76\n3puu1ub+xzEcE2Tn5z32B2FWROcch0LoRKft45PdO2oN1Tpn2DYcEr+qWLM4U16aIMpTC7gU\n/EwBAMMCBcJJGoRBn7f9s/db/v3XoP/HWXoYScVfflXaLfewlZpx7NsANi+9rUb/zrHO/c1m\nPx3mZiBOxL5jVtLaAvX0pJHtwAQAAJPcZM7BicGr0+q/29H19afuzjYU7gMdRlLSkulJ198i\nKZ52wcuJO33MoVbLrnrj1mp9rT787WgfGY+alyYtjhMtzJAtyZTDEzwAgGgGOQhAbOnZ/nXV\nC49H9JLn2aoQQ2E/gY1yF1Dw1cvG+ipgcoIcPC/9vp3Vzz/JeM5eWwVD6iUr0372AD81I/Jd\najC6tlbrN1foDraYBxvUxzFsebbijlmJawvVLAKPbAcBADEGCoSTOghdbc31rz9vPn64/0EM\nx+NWX5lx14MsmWK8OhaWzuH719GOrdX6I23WsA2SpZwrCtTXT4mfkSyG/AMAgPOCHJwwAjaL\n9Ux524dv22srQnSY1UdxFiUumJJy012y6XOwi/hxt1k8VT3OGp3zZJdtZ73R4AyzGHgfMYdc\nV6Qp0giX5yiK4y5kIiMAAIwpyEEAYlf5XTdYak9F+KK/yH+wRtB/v+dIFAj7vLg657El41CN\nABMY5OBw0E5Hx+cfdG3e6DPqz3oBQ5Ki0uxfPxXh2YR9jC7/5krdm4faT3SG36cQISTkkLdO\nT7h5WsKMJAnsCgEACAsKhJM+CEMh3d5vazc8Qzsc/Q8THE7a7Q8kX38bhkfdX87xDtubh9q+\nONNj89JhG4g55DUlcY8uTs9W8iPcNwAAiCGQgxOP32o2Hdrf/c0mW9XpEB0mJSmhWDptVuqt\n947KfezxDtsnJ7s/LO/WOXxDt0wUc5ZlKxZmyK4q0og45MVfGgAALh7kIAATQ/uH7zS8uSGS\nV3w99dqtqlkRWfD0RxSO+TfAuqNgNEEODl8oyPTs3Nr89l+82q4BL2lWrMl56OkLXq/l4mnt\nvo/Ku98/0VWpdTCDjPPHidgPzEv55SWpQjbciwEAzgIFQghChBCiHfaOTR+1ffQ243L1P85N\nSM5+8HHFnIUoKp8zOaN1vH6g5YszPfZBKoXxIs5vFqZdPzUuQcyJcN8AACD6QQ5OYD6jXrvj\nq64vP/bqesI2oIRiQWa2esUaYVaeKKfgIoO+Vu880Wk/020v77Ifa7cOlssIIQLDspX8Bxek\n/mRKnIRLXcxFAQDgIkEOAjDBNP3ttdaP/xnRS2Jol3z6S+nXR/SiCCGYUAhGA+TgiIVCPbu/\naXjjj36rpf9hgsNNWPeTpOtu4ajGc88mm5c+2WU70+34/EzP9+EWIKUI7NqSuHWF6mXZCinc\niwEAEEJQIIQg7I/xuLU7vmp66w3aYe9/XDF3YeGzrxGcKK2xBZjQgWbzJye7v67S6cOtdYZh\naE6K9LopcWsL1KkybuR7CAAA0QlycDJwd7YZDu7p/PyDwSqFCCFOXELKjXeol6yiRKOzm29Z\nh+2LMz2fnOrutHrpYPiPmiwCK4oT3Toj4ZriuDgRe1SuCwAAIwI5CMAEVvfS+s6tGyN9VQw9\nnHP/KVF6pK8LWxWCCwI5eGGCAb9u9zeNf/+T32zqfxwjSdWiFdkPPsmSysarb33qDa73T3T9\n/VC7yRVmpJQisDX56rUFqmtL4ngs+OkDMKlBgRCCcCDa6Wj6x2tdX30aCv64WgYnLiHnwScV\n8xePY8fOKxgKHWmzbqsxvHWkPeyuSASGFWgEv7wk9coijYwHT8oAACY7yMFJxdlYp/32666v\nP2NczvAtMMRLSMn+1ZPy2ZeM1kXpYGhXvfHrKt32GkO71Rv2YyeBYZlK3p2zkq4q0qTLeaN1\naQAAOC/IQQAmiXEoFmIIIfR6yrVbVbMidsnQq7AAKRgZyMGLEWKY7i2f1//fi0H/Wbst4Cwq\n8ZqbUm+8ixJLxqtvfehg6GCz+eOT3e+VdfnpMIsiC1jkmgLVbTMSlmcr8KhcPQ4AMNagQAhB\nGJ6t8mTNS8+4Whr7H5TNmFPwzAaWZPwfhBmajw7uqDV8VaX78ESXnwnzLxzHsMWZsl/MT12d\nryJxyD8AwCQFOTgJhWjacrqsa/NGR321V9vV/2GgPpy4BGnJtJSb7+anjObz71q778uKng/K\nu4+1WQfbGyNBzLmxNP6qYs2MJDHcoAIAxhrkIACTjaXsSPmvb4/0VTFULsx6NPeeSF5Tyaf0\nzy6P5BVBLIIcvHh+i7lz00cdn/6HPvspTIwkOOr45Otvi7/sSpw9/kuyGV3+j092v7qvpc3i\nCdtAI2TfOiPx7tlJ8MgmAJMNFAghCIfSvfXz2pd/33/0EGexMu/9TeLVN2Kx8Jdm89I76wzv\nHOvcVW8Mu8RZnIh975zkWSmSBekyLhUD3xEAAIwiyMFJjvF6bJWnmv/1F3vtmRDNDHwZQ9z4\nJEnR1Ix7fsVWjuZeGm0Wz9Zq/b+Pdp7utg9WKVTwWdeUaK4oUM9JkcBWhQCAMQI5CMCkNQ67\nFfbBEELoqaw7j0hyx+4iPIpwvXjp2J0fTAyQg6OF8Xq7t37e/PZfBuzZhBCiROK02+5LWPcT\nnBUVuyp02rybK3R/+6Gt3uA6914Mw1CyhHt5gerqYs2iDPm49BAAEGFQIIQgPA97bWXty793\n1Ff3P8hRa1JvvVez4oqo3ZhwALef+ey09tPT2u21xrD/5nks4pfzUx9dkg6b9AIAJg/IQdDL\nbzUbv/+ufeN/Bqwc0AvDcUnJtOQbbpeWTCd4/FG8rsvPfH5a+02NYUuVzhtuxRuEEI5huSr+\nHbOS5qVJZyWP/yo9AICJBHIQAIAQOvXz202nj4zLpbs4iluLHx+LM/MoYuMtUxFCa/JVY3F+\nMDFADo4u2uXs+PyD1vfeDPoHbntE8Hhpt96bdO3NUVImRAh1WL3vn+h681Bbh9UbtkGWgv+L\nS1JuLE2ATZoAmNigQAhBOCydmz9p+PPLQd9ZmUEKBJn3Pxy/5hoMx8erYyNldPk3V+r+U9Z1\nsNl87qssAivQCO+bm7I6Xxkvio3aJwAAXDDIQTCA+fihlnf+Zq+tCPoD576Ks9jS0hnJ190q\nKZk2uuvkOHz0ngbTrnrjhye6bF56sGbpct6ds5JK4kWzksVyPmsUOwAAmJwgBwEA/Y3DVoX9\nPJ9x8155yeidD9tyx7TeP0GNEAwGcnAs0A57z84tPd9usddWhM5ezIwlU+Q+/LRi/pKoGkc9\n3mH715GOD8q73P5zFpVBiMCwDAXvvrnJ98xJhqXXAJiQoEAIQThctMvR/O+/dn72wYD9inhJ\nKWm3P6BeellUxdt5Veucr+5r/vRUj9MfZiCSwLApCaI7ZyXdOiMB8g8AMFFBDoKwGK/XdPRA\n5+cf2qrOBP2+cxuwJFL57AXpdz/IUY3m0qMIISYYKuu0fXKy+7PTPV228I+yIoQ4JH77rKQb\nS+OnJ4lZRCx9/AAARBXIQQDAYMZtDVIM7ZJPfyn9+os/U7qc98Jl2XwW2f8gFAtBf5CDY8qr\n01Y/94T1dNmAcVSOOq5kw5uC9Kzx6lhYbj+zrdaws87wdZVe5whzDyhkkz+ZEverBWkFGkHk\nuwcAGDtQIIQgHBlHXVXtq8866mtC9Fl1NVFeUeEzG7iJyePVsQvDBEO1etcHJ7reONjqCYR5\nUkbIJu+anfTQojSYUAgAmHggB8HQGK9Xu21T89t/Cdis576KUZRs6sykn9wqnzkPYdioX71O\n7zrQbH7neOeJTpt/kAVIBSzyvnnJVxVpZqfA6qMAgBGDHAQADFP5XTdYak9F7noYQgh1sUdt\nAdLZaeLfLvmxGgFlQtALcjACPF0dda89Zy471H/Td4ykxIUleY89y0tKHb+uhRcKoR11hv+U\ndW2q6Al7F5Yi5T69Iuv6KXE8FvyzAWAigAIhBOGF8HS2Vz33uK3yrM/HGEVl/fzRpKtvHK9e\nXQy90/9hedd7xzsrtM7gOf9T4BhWFCd4aU3usiwFgY/+GCgAAIwLyEEwHCGGcbU1t3/0b9Ox\nH/xm47kNCA5HmFOQetNdshlzMZI8t8FF8jPBvY2mF/c0HWm3egPhK4UKPqskXnTbjIRZKZIs\nxWhulAgAmMAgBwEAIzUuGxb+Iv/BGkHSBb0V6/3v5mnx106J6zsKBULQC3IwYtwdrdXPPWGr\nOt3/IM5iKeYvyX7wCbZcOV4dG4LFE/iyQvfe8c7DbZYAM3CklM8ibpuRePP0hBlJYnwMnhYF\nAEQMFAghCC+crfJk3at/cDTWon7/iET5RflPvsBPzRi/fl0UiyewuUL3f9+3VmoddHDg/x0K\nPmtWsuSmafFXF8dRBOQfACC2QQ6CkXI01Na//oK95nTYTQoJDkc+Z2HKjXeIcgvH4uoBJtRo\ndH1dpXv9QGtPuHVvek1LFD+1PHN1ngqSGgAwNMhBAMDFKLv1altzTQQu9K+kNZ/ELbrgt6uF\n7H9dV9T/CBQIQS/IwQiznj5R8cxv/EZD/4MYSclnzs1/6gRpB9AAACAASURBVEVKJB6vjg2t\nxez+97HOt490aMPdgiWKOb+8JHV5tqJAI4T7LwBiERQIIQgvVs+urfV/ej7gsPUdwUgq7/Fn\n41auHcdeXbxWs+dfRzteO9ASdpNeMYecnyb77bKM2SlSeFAGABCjIAfBhWG8ns4vPmz/9D9+\nU5gJhQghbkKSuGBK8vW3CrPzx6IDoRA61mH94kzPm4faHb4wewkjhEQccmqC6Pop8WsL1XEi\n9lh0AwAQ6yAHAQCjwlJ2pPzXt0fscg/n3n9KlD789iwC+/DGqRzqrG2boUYIEOTgeGA87u5t\nX7b+5x8D7qQILk+1cFnOb35H8KJ0NRQmGNpRZ3hxT/ORNsu5EyoQQhwKn58me/bSLBgpBSC2\nQIEQgnAU0C5n/Rt/1G778sdDGJIUleb/9o/chAtbByNaWD2BzZW6F79rqtO7wjaQ8Vgzk8U/\nm5F4aa5SzBn9ddUAAGDsQA6Ci2Q9U97+8TuOxlqvtitsA1IoFOcVp91+v7hw6lh0gAmGDraY\n/+9g68kue6vZE7YNhqFcpeCZS7Muy1MK2ZDUAIAfQQ4CAEZXRCuF/xt/PynMeiT3ngEvEjiu\n5FN9Ky5cWaS5fWai3uF/aEvN2kLVNcVxCGqEAHJw/NAuZ9tHb3d89j7jdvc/Toklmksvz7zv\nIZxijVffzqvD6n33eOdr+1ssnjCLyiCEVELWL+en3jMnWcGP3u8CANAHCoQQhKMkFOrZtbXh\nzy/7Laa+YxhFyWfMK/z9hqh9/mX4jrRZPz7Z/dkpbdgJ9QghLkX8/tKsn06NT5JwItw3AAC4\nMJCDYLQ4m+sb/vyyraKc8XrDNuCo4yQl07J+/ihLphijPugcvoMtlt9tr6/VO8P3gcSnJopv\nmZawMleZKuOOUTcAADEEchAAMKbaP3yn4c0NY32VclHWo+cUCEUcalWuYuMpbe+XSRLOkiy5\nw8tsquhZmat6YF5y73GoEU5ykIPji3G76t54Qb/32wFlQoLPVy1Ynnn/wyypbLz6dl4+Oniw\n2fzid80Hm03+c3YoRAhhGFagEfxyfuraQrVKAJVCAKIXFAghCEdTMOCvWv+Ift+u/gcpoTh+\nzVUZ9/4GmxB/zzU657vHO/99rNPo8p/7Kolj89Kkz67MviRNBhPqAQBRDnIQjK4QTVvPnGj6\n15+d9TWMN8x8PpzFVsxblHnPr7mJyWPXjUaj+72yzs9OaZtM7rCr3yCEshT8wjjh86uy89SC\nsesJACDKQQ4CACJpDPcs/N/gA4YRS/ZX9P754/Luez6vPHcxdhLH3/1pce8CSFAgnOQgB6NB\nwGatfv5Jc9kPA3Z5x3BcNnNu0R9eJ7i88erbcHgCzLF22w+tlr9+39ZtD/O0KEVgc1Olv780\na1GGPPLdAwCcFxQIIQhHWYhhurdtan7rDb/F3P84Jy6h4KkXJSXTxqtjoysUQt+3mN842Hqo\n1aK1h9+kd0mWfP2l2TBHAQAQtSAHwRgJBZm2D/5lr66w1Vb4jYZzG/ASU6TTZguzchPW/WTs\numF0+XfUGl7b31reZQvbAMNQoUZ475zklbnKdHlU33gDAMYC5CAAYBzVvbS+c+vG0T8vhhBC\nFE9g/9PWX3xZFXYN9mdWZE1PEvd9CWXCSQtyMHp4ujuq/vC4rfIkOnucnuBw5bPm5zz0NEsW\n7dW1UAgdbDH/cU/Td40mPx08t0Gmgv/cqux1hWo2iZ/7KgBgvECBEIJwTAR93toNv9ft3Rn0\n/fjwCIZjkpLp+b97iaPSjGPfRp3W7nt1f/Nfvm/znZN/JI7NT5M+uCDtsjwli4D8AwBEF8hB\nMNZCwaCl7HDLe/+w11QE/WGep+HGJ4ryiiTF0xKvvmHsutFq9nxVpfv7obYm46BzCtNkvFkp\nkieXZhTFCceuJwCAqAI5CACIBmMxsxBnc1z/t+P7ZvPrB1vPHakQsMg31uWrhGct+gdlwkkI\ncjDaOJsbmv7xmvn4oaD/rEXLCB5PvXRV1gOPkoIYuFUxOP3bavR/+aHtRKf93LqDmEMuzJC/\nckVuliLmt6MCYGKAAiEE4RjyGXrO/PZBe3VF/4MYReU9uj5u5Vo0sZbgtHnpj8q7X97bFPYB\nPTaJZ8h5uWrBI4vSZ6dIIt89AAA4F+QgiJiA3Vbzwm/NZYcG26SQrVRLp84QF5UmXnn92HXD\n7qW31ej/cbj9jNZpdodZKhwhVJognp4kfmp5JmwqDMCEBzkIAIge1U8/ot37zWidDWdzitb/\nSTFvkeqZ3QZn+M88vV5YnVOkESIoEE5KkIPRiXY5Gv+yoXvHV6HAWYuOEny+ZsllmT9/mOTH\nQJkQIWRy+Tee0r6wp6nLNvAeEMOw0gTRq1fkLcyI3n0WAZgkoEAIQTjmHHVVlesfcbe39j8o\nyi8qefnvLMkEjIFDrZb1Oxu+b7G4/UzYBvEiztJs+QuX5SSKYeQRADCeIAdBhDEed9sH/zIf\nP2SvrwrR4VOSJVeoFizP+uVjODWGW9kzwdA3NfrndjeWd9iZQT4MJ4o5K3KUjy1Jz1bCw60A\nTEyQgwCAKNSz/euqFx6/yJP0FggRQnce9fmEMoQQEwx932zx/O8DmJzPmpEkRgitK1QniDkI\nCoSTEuRgNPP2dDf8dYPpyAHGc9Y8BIwkhVl5mQ88LJ0yY7z6NlJH2633f151sjvMhMKiOOGT\nSzOuLo6jiAk1jQSAGAIFQgjCSAgxTNeWz5rfeiNg/3ETIEosyXviOeX8JePYsbHjpYP/PNL+\n8nfNnec8JtOLReLrCtV/vCwHNj0CAIwXyEEwXmino/2Td03Hvne1NDEe97kNKLFEMWdh7iPP\n4OyxfZjG5qX3NBj/8n1bWafN4aXPbYBhWIFacO/c5PvmJuMTa/EDAADkIAAgyl1ksZCSSDpv\n+4Mor6j3y1Nd9t/tqO979fW1eRn9lviDAuEkBDkY/fwWc/XzT5jLDp37eKVi/uKiP7yOU9S4\ndOwCNJvcj39Tt6veaPUEBrwUJ2L/dlnmDaXxUm7MfDsATBhQIIQgjBzG4z756zttlaf6H1TM\nXpBx/0OC9Kzx6tVYq9E5N+xtrtY76/UuyzkRiGPYtCTRX64smJkM644CACINchCMu1CQaX33\nTWvFKeuZE/33Le5FCkWqBcuyfvFYBDbb8DPB7TWGJ7bVNRhcYfcpVPBZ05PEd89OuqJATeBQ\nKQRgIoAcBADElgtehpSZMt9/33MdVu/9X1T2HXxpTW6+WtC/GdQIJxvIwVjhNxtrXn7GdORg\niD7riUZBeta0v38QKyuO9vLSwU1nev6wq7FW7xzwEolji7Pkf7uqMFMBUykAiBwoEEIQRprh\nwO6q559gXK6+IxiOpd3+87Tb7hvHXkVAKIT2NZn++F3TD+FWHy3UCJ9clnFFgZrPgn+NAIAI\ngRwE0SMYCLS+96at4pTl5NFQMNj/JYwk+CkZ0tJZ6Xf8PAKVQpef2VKle+tIx/ct5gAT5nNy\nnJA9L0326hW5yVLuWHcGADCmIAcBADGn4uEH9Ef3Drf1/55oCqy7k155k9buu/uzir4XH5if\nsjJHOeAdUCOcVCAHY4vfbGr+918tJw67O9r6DhJ8gTivqODpl1ky+Tj27QLsqDU8sa3udLd9\nQGmCwLDSRNFjSzKuKtLAAi4ARAAUCCEIx4HPZDj9yH2O+ur+B1ULlxc++ydsEvwsbF76+d2N\nfz7Y6qWDA14Sc8grizQvrs5RC9nj0jcAwKQCOQiikKe7o3bDesvJo+euokNwOOKCqaL8ovS7\nfoHhY/6P1hNgvq7Sv7qv+USnPXjOB2YMw2anSJ5flb0wQwZLjwIQoyAHAQCxaFjrjoYQQoiX\nkp51/8M7e5jeVUYHFAhzVPxfL0jr3YCwDxQIJxXIwRhV/cJve3Z81f+pSpxFSUpmKuctSrzm\nxnHs2AVoMLru+azyhxaz/5xHM9PlvA2X566F5VsAGGNQIIQgHB8hmm775J22D/5JO3+cUc7R\nxBf87iVJybRx7FjE+OjgJye71+9sbDEP3HsJ/3/27js8imr9A/iZbek9m14JIRA6AoK0JBB6\nUVAUUFEs6L3+vHbxWtGrIIpe1Iuo2ECaIAiEUFMgBIMECCWNkN422U3v2+b3x4bNsimEZHZn\nd+f7eXy8u2dmJ+/zXOGbnXfOORQ1LsDp8wVDJge7sFIbAHAEchBMVmtFedaG96svnacV+qtz\nE0JE7mK38ZOdh4/2WfCgEYq5Lml460j2xeI6SWNb51+cxfaiqQNcX5gcOHUAOoUAZgY5CABm\nraWk6Nyy2V0fu/UbS9hLb5+hvAghmh5hQ6ty+Y6ObV8GuNluuj9c93NoEHIKctB8SZPirr//\nilqu/13JIXSwZ/T8wOWrWKmqz6qa5P8+euPg9YqKhja9Q2J70aww8RcLh4jtRazUBmDx0CBE\nELKJVirTXn22+mJKxxBFxFNmDHt/A8/KuvvPWQ41TR+4VvHJqdy0si5mJwxws31patCzEwKs\nBDxWygMAy4YcBBOnqKvJ/X5Tfea1hpxM0tVvrLZBIZ6Rs+wHDPKInGmEeq6U1b8Zk/VXYW19\nq7LzUVsRP9zT/q3pIXjKFcBcIAcBwKz1pkE48PlX7YJCCCHukyIIIX9er3hk++W2W6sZCfnU\npvuH+jt33H5Bg5BTkINmrU0qubl5o/Rsgqrl9okHFHEYFD5kzUcOoUNYKq2PFCr6x/PFX58t\nyKjQ355QJOCN9nGcMsD17RkhzjZCVsoDsFRoECIIWUar1QW/fpv/87e6U+OtPb2H/2eT45Bh\nLBZmZMW1rSt3XelyTr2NkD8txHXD/MHDvc1p22EAMH3IQTAXbbLKm5s31l5Jba0o73yUZ2Vt\nHxIqnhwV9PhqYxSjVP9yoWRDQl5elf4aABr2IsH4QKd3ZgzE6qMAJg45CAAWo2jHzzlbPut4\nf+u+woCnX3QIHawdPiFRpUsaNpfb1ba0TzyyEfJ/WDrcyVqgPQc9Qu5ADloARV3tzc2fy86d\nltdU6Y5TPMp13KTBb6y19vRmq7Y+u1RS99wf1y8U1XU+ZCXgRQ50e25iwPxwDzyUCcAINAgR\nhCahMS/n2rsvNRfma0coHs99UuSwD7/gCTn0YEhNi2LvlfJ1cbkF1S16hyiKGuvvOCHA5d3o\ngZhWDwCMQA6C2Sna/UvV+aTaK6mdl9MhhNgFD/Se+0DgsieNU8z5otq1J3KS82u6nFBICPF3\nto4c6PaPSYHj/J3QKQQwQchBALAwsuREQkhdxtWCX7doRjwiZ3nPXqQ94YRERQj5vd754PUK\n7eDbMwZOCHTWvkWDkDuQgxaDVqnyf/pf+fFDrZIy3XFKIPSMmjX49Q/4NrZs1dZnmo0eEm9W\nN8q7+Lbl7Wg1P9zz8wWDHXWebwCAPkCDEEFoMmg64+O3JKeO0EqVdkzk7DL0/c9cx93HYl2s\n2H9N8nVSwdn8GqVa/0+ogEdFhbp9s3hoqLsdK7UBgMVADoKZUrU0F2z7riL+WEtpceejdsED\nvWcvClzxlHGKUajotLL6LxLzrpQ3ZFU2dvmbtYuNcGaY+zvRA4d5YTEAABOCHAQAi9QmrTi7\nJIqoaUKI86ixPvOXCB2cdE/YldvyUa5Q2ijXvBXwqI/nhoV72mveokHIHchBC0OrVXnfbZLE\nxeq1CXlW1h7Tooe8udYct3NqkqteP5yZlF+TLmns3MWwFvDG+ju/OCXwwRHeeCAToG/QIEQQ\nmpbGvBtX3viHbpJRAr7f4kcHvfgmi1WxpaC65YMTN45mSitv/eKua5iXw0tTgx4f6yfkIwMB\noC+Qg2DuSvbtqM9Or8u4orsIgYbDoCHiSZFBT/6D4hlvH990SeO6uJvJBTWdVwIghFAUGR/g\nHBHi+l50qK0If+gA2IccBABLFT9tGK1q38aF4vODHnvWcchw7dETElWeY+C7x25oR+YN8Xju\nvgDtW/QIOQI5aJFotSr7s7XSpDh5bY3uuMjFdfAba8VTprNVWD+V1rW+c/RGTEalrKmLe6RB\nrjYLh3qunxdmI8R/zAB3Bw1CBKHJUSsUWZ++Kzl5hFZ1TCW0DQgOf/sTp6EjWSyMLWqa3n25\n/D+nbmZXNqk7/YH1drT6z5ywJ8b5Yu0yALhbyEGwGPm/fFt2ZH9reaneuNDJ2WnoSOfR4422\n7qjG6dzq947duFBc16JQdT5qJ+JPD3Uf7u3wTvRAa4Hx+pcAoAc5CACWKiFqpO567E4jxgSt\neFr79oREJVeqv/+rqLqlfeG+bHv/QWK7j+eEWQt5BA1CzkAOWjB1W2v6R2ukSXG6N1cJIW4T\npnjPud9z+hy2Cuu/tNL6F//M+Luotk2p1jvkait6fKzPp/MHi/j4kgXQW2gQIghNVEtZcdrr\nz+ntSug5Y+7gN9byrW1YLIxF1c2KN2Ky/rgq0W4nruXpYPXFwiHLRvugSwgAvYccBEtCq9V5\nW7+uTDjWXFzY+aiNj59HxEzHIcM9ImcZraQWhepSSf3niXnxN6u63KfQRsiPHOj6ydywkT6O\nnY+ezauZtjlFTdNhYtusNREGLxeAe5CDAGCprr//SkXcMe1bp/ARQSuf077V7EQoV9Gfxeeq\naEIIybb3J4S8GTVgcrArQYOQM5CDFq9VUpbzv89kyfG6TwzwrKxd75kQ/s46oaNTD581cdXN\nipcPZpwvrL0ha9JrbjhZC2aGib9dMtTNTsRSdQDmBA1CBKHpUrW2XHphZX3Wdd1BoZOz99wH\nQp79F0/I0b/l5Sr1u0dvxN+sulhSr/fnd7Sv47xwj/dnhgp46BMCwJ0hB8Ei5f3wleTkkZay\nLrYn5NvaOo+4x33CVL8HVxizJKWa/u1i6afxeVmVjV2eMMzL4ceHh48PcNYdjMupmrHlvPat\n2E5Y+WG0YQsF4BjkIABYKlqlKtj2fdHvvygbGgghIjf3wa++T936u07TICSEbE8tzddZF33R\nMI8p0ycRNAg5AznIEa2S0mvvvVKfcU13UOTqHvToM/5LH2OrKqacL6p95WDm+cJa1e33SEUC\n3uRgl+8fGh7iZstWbQBmAQ1CBKGpy/vxm4qTR5pLbpsNIHRy9l/yaPCqf7BVlSlIlzQ+t+96\nckGN3p9isb1o6Sjv/y4KR5sQAHqGHAQLVrT7l9orF+vSr8irZZ2P2gYEiadMH/jcK8S4U++L\nalreis0+kS3rcucMf2fr4d4OY3ydXo8c4Ggt0GsQEkJEfKptgxkvBwRgapCDAGDBZMmJ2Rs/\nbK2UaN6GvfqutYe35rW2QdimUKcU1p7Oq9a8nRTk/MCiSIIGIWcgBzmEpjM3vFdx8oiqtVU7\nRvF4rmMnekTN8Zm/mMXSGFFS17py15WEm1V6jQ4+Rd3j7xg9SPxu9EArbO4A0BU0CBGEZkCt\nUKR/+IY0KY5WdizPRfF44mnRQ9/bwBMKWayNddclDc/uvf5XQY3euLONcFqI66fzBod52LFS\nGACYPuQgWD6azv9lizTpVENOJun0O6+Vu4fr2AnOo8f7zDPqV2KaJjekTR+funk0S9plp1DA\no4JdbT0drM7mV+uO8ymeilbfek2Un881RrkAlgs5CAAWTJacWH7sYGXCcc3bsJfetvb21R7V\n9ghbFaqNifmahUbd7ISLhnr6OVs7DhmOHiEXIAe5RlFfl/3Ff2Rn41WtHVOHKYHAdexEr5nz\nvWYuYLE2RmRWNL53LOdolrRJrr+/g4BHTQtx23R/+FAve1ZqAzBZaBAiCM1GS2nx9Q9ea8i+\nTqs7/qO19vQKXPGM3+JlLBZmCo5nS/+5PyOvSn/dbULIKF/HhUM9184KZaMuADBpyEHgjrKY\n/VXnk2ov/y2v1X+khuLxHMKGes9e5LdkuZGrUqnpD0/e3H257Ia0qTfn83k8lVqtN0gRot6I\nTiFAXyAHAcCCyZITqy/+Vfz7ds3bgGVPuowapz2qbRASQjbE57Uq23/BsBHyXpkW7DJ0BBqE\nXIAc5Kbm4oLLrzzTWl6qO8gTWblPigh7+R2RqxtbhTGlrlX5ysHMmIyKykb9ZzEpiowPcI4e\n5P5edKiQj3XXAAhBgxBBaHbKDu4t3P1Tc3HHiqOUgO81Y97gNz/k7K6EWumSxpcPZZy6Iev8\nx9rb0WrxcK+NC4dgQj0AaCEHgWvUCkX+1q+rUv9qyE7XO0TxeC6jxzmPvtd+4CDx5ChjVqVS\n039er/jur6Ksysbi2tY7f6Ab6BQC3C3kIABYMFlyYu3Vi4U7ftS8db9vmu+ih7VHdRuE/0su\nrGpSaN++Oi3YzorvOGS45i06hRYMOchZtEqV/fnaytMnFfV1uuN8Ozv/xctDVr/MVmEMalOq\nXzucFXdDltnVNvCutsK5Qzw+njMowMXG+LUBmBQ0CBGE5kfV2pq+9nXZX4m0suM3WpG7ePTG\n7+1DwlgszERkVjS+fzzneLa0vlV/Qr2DlWDGIPetS4e72nJ6XVYA0EAOAmcV7flVlpxYdz1N\nLW/TO8S3tXUdM8F13ES/JSuMX9jYL85eLK3v50XsRLzGdbMZqQfAsiEHAcCyVcYfu772dVql\nIoTY+gcGPPyEldhTe1TbIyysbjmcXlHd0n4D4al7/XydrNEg5ALkIMepmpsyN3wgS05QtTR3\njFLEdcwEr9mLvOcsYq80JqUW1235q+hoprSsXv9ZTCGfGunjGBHitnZWqK0IfwqAo9AgRBCa\nq+K92wt++0FeJdOOiJxdglY+5//QYyxWZTralOq1J3IOp1delzToHbIV8RcN9dy4cIi3oxUr\ntQGAiUAOAsdVJhyvuXxBdja+tVKif4wi7hOnec1a5Dnd2J02wWuxKoZ+PUenEKBnyEEAsGyy\n5MSr7/yLVrTPDhTY24e/9TElaH9cWHcS4YXiuqOZUs3reUPE9/g76V5nppf+X5LukyIMVDMY\nE3IQCCEVp2KlZ+NlyQmqlo6NCfnWNuKp08NefVdg58BibQxS0/RbR7IPXKvIkXWxuYOTtWD5\nGJ+vHxjK52HdUeAcNAgRhGZM3daa/p+3pGdOaR6II4RQPJ7r2Inh76wTubqzW5vpuFBc9+/Y\n7MSbVUr1bX/YBTzq/mFeWx8e7mQtYKs2AGAXchCAEEKrVdmff1iVktS5Tci3sXWbMMUjYqbn\n9DlGrsrx38cb2lR3Pq8XsPQoQHeQgwBg2WTJien/eVPZ0PHQ8JDX14rcxZrXug1CWaN887ki\nzeu5Q8Rj0SDkBuQgaElOHCneu60+85ruoMDO3m/x8pDVL7FVlSFkVjS+GZMdf7OqSa6/7pqH\ng2hhuOfmJcOwPSFwChqECEKzV7Jvx80tG1WtHfPE+Xb2gUsfD37qBRarMjWFNS1vxmQdSq9s\nUdx2t1HAo0b7Oi4a5vVG5ADkHwDXIAcBtGTJiS2lRbVXLtZc/ltvKw5KIHAZPd513H12AcHu\nkyONVlJcTtWMLeeZuBJFCE0I4VNE+Tk6hQAdkIMAYNlkyYnVF1PKDu1VtbZPDHIIG8qzshLa\nO4gjZoqcXLQ9wupmxTdnCzWvOzcIO1u+ZLrhygajQQ6CLlqtvvHfT8qPH1Q13TbHznHIcN/5\nD/oseoitwgyhSa56+WDm30U1V8sb9ZojHg6i6FD39fMH+zlZs1UegDGhQYggtASNudlX3vxn\nq6RMd9A+ZNDo//4kcnFlqyoTVN2sWL33ekxGRatSrXfI2Ua4INzj0/mDse4oAHcgBwE6kybF\ny5ITyo8dpJX6j5Ty7ewdQgZ5Rs3xe9AY2xMy3iDUvsGEQgAN5CAAWDZZciIhRJZypvTAbr1D\n9iGDQp59qcsGoautYOU4fwernv5iRIPQMiAHoTNFXW3WhvelyQm634Z4VtZeM+aGvfY+Tyhk\nsTZDyK9uXr33enxOler2FgmPoiYHu/z8yIgBbrZs1QZgHGgQIggthFqhuPHFRxUJx5SNjdpB\nK3cP3weWBa9czWJhJqi+Vfncvut7r5TrLTpKCBHwqOmhbv9bMiwE+QfAAchBgO5Ijh+Wno2X\nno3XbtvTgSK2foFuE6eGvvAGxTPsn53VezO+TynQvuXzeCq1/iM+vXBbg1BLxKfaNhh76VQA\nk4IcBAAuyN3yZcFvP+gNChwch76zXtsgrGlWfH2rQUgImRXmfm+gcw/XRIPQMiAHoTvlsQdK\nDuzWW3HUfkBo4IqnvWYtYKsqw7lSVv9mTNaJG1V6jRI+RU0IdH5ghNer04LZqg3A0NAgRBBa\nFMnxw4U7f2zMvaEdoXg8nwUPDn79A/aKMlHSRvnaEzmxmdL86ma9Q3yKihjoNi9c/PJU5B+A\nJUMOAvRMcuxQTdoFaVKcoq6281H7kEE+85b4L33M0GV8llDwRkwG6XuD8A7mDHaPfWY845cF\nMH3IQQDgAumZuJL9OxvzcgghysYGtbyNEMITCUOefcXWP5AQckKiUqnpzcmFNS3tE4ZG+jgs\nGubZwzXRILQMyEHoWd7Wr0v/3C2vrdGO8G1s/O5/ZOA/X2exKsPJrGh8/XBWYm5Vk1x/M3hv\nB6tZg8Wfzh/sYS9ipTYAw0GDEEFocWg6d8uXhXt+0Z0L7zxy7LAPNliJvVisy2R9lVRwKqfq\nZLa087qjI7wdFg7z/GBmKJ+H7QkBLBByEKA3aKWycOePDTlZtdcuyWVSvaMOg8J9Fy31XbTU\nCJVsSy1buSvNcNdHpxC4BjkIAFygWWhUo2j3zzWXL2heW7l7aJ6l1swjrG6Wf3O2SHvmC5MD\nXW27XUsQDULLgByEO1LU1WZ8/O+qlNO0dhEyirjdO9lj2kyfBQ+yWpqhNMlV7xzN3nmprLJR\nrndIJOBFh7pvWDA43NOeldoADAENQgShZWoqyL327stN+Te1IzyRKOChx0Oef4XFqkxZdbPi\nrdjsfVfKq5v111JztRXOHeLx3YPDbEX4kwJgUZCDAHdFmhRfn36l5vLf9ZlXaZ1luvk2Nh7T\nol3HT/GaOc8IZRi6TaiBZiFwAXIQALhAt0FYHnugdDL20gAAIABJREFU8vRJzWtKIBjx8Vfk\nVoOQpukvTxc03po389S9fr5O1t1dEw1Cy4AchF7K/eGrkv07lA0N2hGKz/dZ8NDg195jsSqD\nalOq1xzJOpRemVelv+4aRVETAp3nDha/NT0EEyrAAqBBiCC0WLRSmfb689UXknUH3SZM8Yya\n4z33fraqMnFylfqVg5kHrlWU1bfqHXKxES4Y6vHZgiGYTQ9gMZCDAH2T/8u3pQd/b5NW6A7y\nbWwdBoW73TvJfsAg98mRxqlk4qaUlKJqg/4IbFUIFgw5CABcoNsgVLU05239urmkkBBCKCJy\ncdeM80SijIkP5wjcD2VUakaeHOfn74IGoYVDDkLvKRsbLr/ydH2Gzq6EFHEdO8kreq733AfY\nq8vgPonLTbxZdTqvWt5p3TVvR6tJQa5TBri8OCWIjdIAmIEGIYLQwmVv/Kj82J+qlhbtCN/O\n3mfuA4NeXEMoPOXRNZom7x/P2X25LEfWpHdIxKdmDHLfuHDIYA/Mpgcwe8hBgD6j1aq8H/9X\ndnCP7p4cGkIHJ7eJU9zGTxE4OLhPijBCMXE5VTO2nDf0T8GcQrA8yEEA4ALdBiEhpPTgHtm5\n051POy8eqZi1bNflcs3bZaN9QsW23V0TDULLgByEu0KrVVmffVCZeFLZUK8d5Ftb+z6wLNRC\ndyXUqm1RvHQw41iWrKKhrfPRcf5OD430fj1ygPELA+g/NAgRhJZPcvJI8d5ttz3kQojziDF+\nS1Z4TscT8T359lzRofSKUzdkSvVtf1FQFIkIcftm8VAsug1g1pCDAP2kbKhP//jf1X8nqeX6\nC3RTAoHz8NEuo8fbDwoXG2tC4ZqYnE8Tcgz6IyhC1BvnGvRHABgNchAAuECvQSg7m1B6eG/n\n01Kcw+n5j/52uX2BBDQIuQA5CH0gPX2yYMdWvbusTsNH+y9Z4TnDwr8mqGn61UOZMRnSm50m\nVBBCJgQ6Lxvtg9mEYHbQIEQQcgKtVmd99n7FqVjdqYQiZxe/hx4PXrmaxcLMQnFt61N7ribl\nV7cqbptNz6OoeeEe25ePdLIWsFUbAPQHchCAEZITR2TnEurSr7SWl3Y+aiX29Jox13nkWKOt\nO0r0O4UUIQb5hZ9HiArNQjBnyEEA4AK9BiGtUlUmHm+RlGnetlWUtVZICCEpzuESa7eTbmM0\n42gQcgFyEPpGrVBkffZB5ekTqqaOPhnfzs5rxvywV96hOPCf03/P5MdmSS8W11U33/acKEWR\ne/yc5od7vBs9kIeF68BMoEGIIOSQ8tgDpYf21l1P6xiiiPukqOEffcETYl+9O2hoU758MPOP\nq5LaltvCz07Ejxzo9s3ioYEuNmzVBgB9gxwEYJAsObG5uKDmYkpV6l+0Qn9CocjZxWnEPc4j\n7rH1DzTOuqNaUZsvJORKDXNtihAacwrBfCEHAYAj9HqEuiQnD1ecOko0DUIrl5PuYzXjcwaL\nU5odU6rlhJBHAvkLfG97LBgNQsuAHIT+kJyIKT24p/bKRd1B26AQ/yXL/R5YxlZVxqRU0+8f\nu/FramlpXaveoSBXm0dG+3w0e5CAhzYhmDo0CBGEnJO98aOyI3+o5XLtiG1AsP9Dj3Ikvfqp\nVal+43DW7rQyaaNcd1zAox4e5b314RHWAh5btQHA3UIOAhiC5OSRqnOJtVcvap7H12Pl7uE0\ndKTTiDEBD680WknbUstW7kq783l3TX9uoohPtW3A+u1gNpCDAMARPTQI666nFWz/XvP6kOd9\nx93HaV6HedgVW3ldrpETQu73EzwUcNvfk2gQWgbkIPRfzjcbSg/u0V2wjScS+S1e7jJqnDEX\nUGHXq4cy914pL67VbxM6WAsmBblED3J/ZVowK4UB9AYahAhCLiqL+aN47/bG3BvaEZ7Iyvf+\nRwa9+CaLVZkRlZp+bt/1nZfLmuUq3XEvB6v54R6RA92Wj/FhqzYA6D3kIIDhaCYUSk4cbriR\n2eUJziPv8Zw+19rT25gTCkdvPJdWVsvc9bpdvNROxGtcN5u5HwRgEMhBAOCIHhqEhJDatAsN\nN29UX0hOdh2233NKK09ECLGhVCqfkGt1KoIGoeVCDgIjJMcOlcUeqLl8XvebgbW3r2fETCPv\ns8AilZp+KzY7Jr0yS9rYudkywM12Zpj7fxeFW2FaBZgeNAgRhFxF0xmfvC05fohWd+yr5zp2\n4ohPvuLb2rFYlxmpapL/68+MY9myqqbbZhOK+NScIR6/LR9lb4U/WQAmDTkIYARFu3+pufR3\n3fXLivo6vUMUj+c4eJjL2ImOYUMpgcBoncLbdyg0OLGdsPLDaKP9OIDeQw4CAEf03CAkhKjb\nWq+990qKc/ghz/vqBO23RFpcfYvkPEIInyLbJlrpno8GoWVADgKDCn/bWrJ/Z2vlbWuoWHt6\nu0+KHPTiGkog6O6DFubLM/m/pZZdLqvr3HJxthGOD3CKHuT+WsQANkoD6BoahAhCTsv/6X8l\nf+6WV1dpR6y9fQOXr8Jyo73XqlSv2JF26HqFUn3bXyZie9FzEwM/nB3KVmEAcEfIQQCjkZ5N\naMq7UZuWWpt+RdXUqHdU6OTsNHSk07BRdgMGiW89Y1t37WLqC48Tmrb1C5q4M9YQVS3bfnV3\nWokhrtwdbFgIJgU5CADcccce4Y1Nn7SUlWwKXnzD1l8zwiNUpr0fIYRH6BMXXtc9maL4Uaev\nGaZSMB7kIDCrIu5oyYFdtWmpeuO2AcGBy570WfAgK1Wx4puzhecKahJvVpU3tHU+GuRqs3Sk\n97p5YTwKOxQC+9AgRBByXUXc0ZL9O3X31OXb2fstfGjgP1/v4VOg56as+dm9187mVytUt/2V\nMiHQ+fGxfs/fF8BWYQDQA+QggJHJkhNpmq69kio5flheLet8grWHl/ukSNexE8TTomtSUy69\nvIoQQihCCBE5ukyJSTZQYQu2XorJ7GLHRMPhU0T5OTqFwDLkIABwxx0bhMqmptorF4ZIxt/x\nUhuzvh3ZkDf9TDozlQF7kINgCIU7fpSeOVWXfkV3kBLw3e+L9IiY5TVzHluFGR9Nk/+cuhmf\nI0suqNG7X0oI8XWynhTsMnOQ+1P3+rNSHoAGGoQIQiCEprO/+E/pod9pVceOeo7hwwMefsJz\n+hwW6zI7u9PKjmVJ916R6O5NKOBRUwa4Rg10e3vGQDwZA2BSkIMAbJGeTai5lCJNim8tL+18\nVOTs4nbvFCsP74LfvusYpQiPL4xMuNL5fGYZuVkYJrbNWhNhtB8HoAs5CADccccGoYZ4f1P7\no0k9omi1+ov5/a0J2IYcBAORJSc2FeaVH/2zqeCm7saElEDoNWOueMp08bQZ7FXHgl8ulBzJ\nkP5VWFNa16p3yErAmxkm/vnh4W52IlZqA0CDEEEI7Yp/316wbYu8tkY7YhsQ7LvwoYBHnmCv\nKLNUVNOy5NdLqcX6Oy2N8HZYONTz/VmhAh76hAAmATkIwC5ZcmJrpaQq5Ux9xlV5TbXeUb7I\nSqW4fUUaHo/QakKM1Cn8LKHgjZgMQ/8UXevnhb0ZFWLMnwgchxwEAO7oZYMwJl2ScfRopn2A\nnBKWW3lcc+x2NSAaa4abP+QgGJQsObEpP6dw18+KulrdcSt3D/8HH7ULHmi0LdhNBE2TDQm5\nOy+VXS1v0DvkaC14bmLAp/MHs1IYcBwahAhC6NAmlVx795W662naEUrA95nzwOA31hLMfbtL\nb8Rk/XaxtLxef61tH0frFff4rMdC2wAmADkIYCJkyYnNxQWy5ITaa5dppbLjgH5U8ghRa8eN\ntv3PxE0pKUX6/UuDEvGptg1YxQEMDjkIANzUQ7MwNrdu5RVhby6CBqEFQA6CEUhPn5QmxVXE\nH1XLFbrjjoOH+T7wiM+8xWwVxqJvzxXtvlx2pay+rlWpOz7Yw37JCK+PZg/S3DE9m1czbXOK\n+lbvRmwnrPww2vjVgsVDgxBBCPpu/u+zoj2/0mq1dsQuKGTMV7+IXN1YrMocyVXql//MPJhe\n0XkG/RBP++fvC/i/yUFs1AUA7ZCDAKYmbtowovMbyB1QhBhrNiEh5KasOXRdYqcKDP5VAmuQ\nguEgBwGAm3poEF5Z8485Y9erKB4hhKZ4PcT8qb9f07628fa97/eTDFYIxoEcBKORHDskORVT\nnfoXrezYk4hvY+u/ZIXT8NFcm0qosf+q5M/rFQfTK+pvbxMOcLO9f5jnvQHObnaiGVvO6x7C\nY5RgCGgQIgihC/k/f1t25I9WSZl2xMbHL3jVP71nL2KxKvP1wfGcXZfLbkibdAcpiswb4vHI\naJ8VY3zYKgyA45CDAKYm9fnluisZ9IpxZxPqGr3xXFpZ7Z3PYwJFiBozFYBpyEEA4KaeG4Ta\n1+8MejrFudv17k5d6GgQekyNHv6fTQxVB8aDHAQjK/1zT9Hebc2F+bqDNj7+XtHzBjzzIltV\nsauyUX7/zxf/KqjRGxfxqZE+TheKb/u2xad4KlpN8OUIGIUGIYIQuiZNPFEWs192/oz2yXih\no5N42ozBr39A8fAfTF98c7bwt4ulfxfX6f61Yy3kLQz33PLQMBebXi1jAgAMQg4CmKC7m0So\nRRFCCN/KJuLkRcZL6oExe4R4YBYYhxwEAG7qeT9CzwPN6ru8U+hmL5CtndmfkoAVyEFgAU3n\nbf269OAeea1OS4wirmPv813woEfUbPYqY9O6uNydl8uud9qbUA+fx1PpfFVEmxAYgQYhghB6\nkv/T5vxt39HKjmWybYNCgh59GlMJ+2xdXO6mpIKKhtv2JnS0Fjwy2mfT/eHWAh5bhQFwEHIQ\nwGQlzhqnam6683l6qPZ/RZ3JYLyknq2Jyfk0IcdoPw47cAAjkIMAwFk99AgnnWi50dibW4Ud\nWyVPDnZOemEiA2WBcSEHgS2SY4dKDuyqS79towSBg0PQo88GrniKrapYt+lM/u9XJH8V1nbX\nr+FRlLrTIbQJoZ/QIEQQwh0U/rY1/9ctqpZm7YjAwdFz+ly3CZPFk6NYLMx8qWn6+X3pv6SW\nyJW3zZDwdrBaOd7vkzlhepvxYvMhAANBDgKYsprUlEsvr+rjhylCCLH1C5q4M5bBknrDOJ1C\nHkVUn+NrMPQXchAAOKuHBuEJSfsOYa77v9sgHJ3gNrLL02jcjzZ/yEFgV8G27ypPn2zI7ni0\nkRII3CZM8Yqe7zmdowuHCF8/qrzbSdy32Il4jes4OgUT+gMNQgQh3FnZ4X2ViSeqzp/VHbQL\nHui7cKn/Q4+yVZW5q2qSv3Ag41B6RbNcpTse4m63dKTXx3PC4m9W6W7Gu35e2JtRIUYvE8CS\nIQcBTFm/GoQaFCGEiBxdpsQkM1LS3Vq9N+P7lAKD/og5g91jnxlv0B8BFgw5CACc1csG4bXa\ntjcGr+7yNDQILQByEFgnO5sgTY6XHD+slsu1gyI394CHHg989GkWC2PLpK/PnSvo1w4O2JcB\n7hYahAhC6BVZcmJjbnbBjh9VTY3aQYrH81m01P3eKe6TI1mszaztvFT2y4WShJtVeg/IDPG0\nnzlIvCnpto2LEXIAzEIOApi47E/XlsTs6edFKIqFFUc7uylrDl2XaKCL8ymixIRCuHvIQQDg\nrJ63IdT2CNPr6E/S5V2dQtEb8d3c7CEHwUSUHz2Y/8u3LaVF2hGKxxNPi/aMmuMRydH9TR3/\nfbyhTXXn87qB2YTQe2gQIgjhLpTHHpAcP1xz+Tyt082y8fH3nr0oeNU/WCzM3H1ztnBbasmF\n4jrdQT6PUt3eNeRTPBWtxoqjAExBDgKYhaIdP+ds+YwQQgiPEPUdzu7SrU2C+FY2EScvMlVY\n32xLLVu5K83QPwWbFEJvIAcBADT0+oVoEHIEchBMh/T0Kem5hIqTR3SnEgqdnH0XPOQ0fLT7\npAj2SmNNXM5tK6v1AR6jhN5AgxBBCHdHlpxYn3mt9OAeeU21dpDi8byi54e/s45QVA+fhZ5t\nPJ2/PbXkSllDdyfweTyVuv3GKPbgBeg/5CCAeZEcPZT+yZp+XYJq/5cpzClctv3q7rQSA13c\nVsjf8/hozev54R4G+ilg7pCDAAAa3TUIu7N8yXQDVgPGghwEU1Oyf1fRnl91pxISQuwHhPou\nXOr34Aq2qmJL/xuEGphNCD1DgxBBCH0hPX2y5M/dNRdTdKcSOoQODnz0Gc7uo8uIu92MF21C\ngP5ADgKYHZ3ZhP3D9vaEeqI2X0jIlTJ4Qd0GoRY6haAHOQgAoIEGITchB8EESZPiKxOOVcQf\npZUdfxFRPJ546gyvmQvEUzn0lw9TDULcO4WeoUGIIIS+K967veTAruaiAu2IlbtHwCNPBjyy\nkr2izFvfNuPFoqMAfYMcBDBTDEwl1GifUEhFnUln4GoMYWQNUj5FPT7W94HhXp0Xd0CbELSQ\ngwAAejSdQjQIOQI5CCar7PC+koN7GrJu+5Ji4xsQsPRxay8frq04+llCwRsxGeT2ldXuBkUI\nrX2FZiHoQYMQQQj9Ij19qvzYQWlSnHaEJxL5Lnp40L/eYrEqsyZ4LVbVp7+W1s8LezMqhOly\nACwZchDArOVu/rJg1w/MXMvEJhRqLNh6KSZT0p8rvD8zdKy/0119BO1DTkEOAgDoQYOQU5CD\nYMra93g6tFdeLdMOUjzKcego8eQou6AQrrUJCXO7ufMIUaFNCLegQYggBAbkfvffoj2/quVt\n2hGvmfM9ouaIJ0eyWJVZ470a27e/mzCbEKD3kIMAFqAmNeXSy6uYuRZFCCE8vjAy4QozF2TI\n6I3n0srueoEBXROCnd6OCu39+WgTcgRyEABADxqEnIIcBNNXmXCi8vSJyvhj9O0z51zG3Osz\n/0GvmfPYKoxFEzelpBRV9/86uIMKGjy2CwCwBCGrXxr04hprDy/tiORETN4PmyTHD7NYlVlT\nb5x76rl7+/DBbGkz9Wrsp/G5jJcEAABgglzGTpielDH03+sZuBZNCE3UKkXc1PC4qeFpr61m\n4JpMmBUm7t8FKE9ba0JIZYP8sZ1X9l0tZ6QqAAAAAAAwKI/ImV7R84NXvSBydtEdr7l0PvuL\ntTf++wlbhbHor39NoDfOnRDg2s/raO6g8l6NZaQqMF+YQYgnZYAxlQknivZuq7t6STsicnUf\n+I9XvWcvYrEq89X/zXjxLAxAz5CDAJYndeWSurxMZq5lkhMKV+/N+D6l4G4/9eAI75E+Dk1y\n9fr4m0tHeT92j2/P52MGIUcgBwEAuiRLTux5EiFmEFoG5CCYEenpU7XXLlXGH2utvG0PAo9p\n0V5z7ufsEm5MzSYkhNiJeI3rZjNyKTAvaBAiCIFJtEp19e1/yZLjb23+SqzcPQY89YLPggdZ\nrctc9e0moB4kHEB3kIMAlirjvdfLE44wcy2q/X9t/YIm7mT/8dJeb7xBEdL11xw0CEELOQgA\n0CU0CDkCOQhmR5acWH3hXNmR/aqWZu2gbeAA/8XL/JasYLEwdjFy+1SLTxHl59ihkEPQIEQQ\nAvPyf/pfwW9btVsS8kRWnjPmiqdOF0+OYrcwM7Vs+9XdaSWEEIpQdDc3+3pAEUJR1Kwwt9hn\nxhugOgAzhhwEsGy32oTdtsruDkUIIRTFjzp9jYGr9duCrZdiMiXdHXWwEr43M+T1w1mdDz04\n0nvlWDQIgRDkIABAN9Ag5AjkIJgpyYnDJX/srEvvWOaEEvC959w/5M2PWKyKdZ8lFLwRk8Hg\nBdfPC3szKoTBC4JpQoMQQQgGUbjjx/yfN6taW7QjjkOG+y951Gv2AharMne9njSgp+PG6JzB\n7mgTAmghBwG4IO2FVVVXUhi7HNX+r6gzTH757LPufjdwtBZuWz7itUNZN2VNeocEPOr1yAH3\nBbl0/pQetAktHnIQAKBLsuRE7esuO4VoEFoG5CCYL+nZBMnRP6VJp2h1R2vDeeRY3/sf9oqe\nx2JhrGN2NiHBwmwcgAYhghAMpWj3LwXbv1fU1WpHKIFAPHWG1/S54mkzWCzMrDGyuDYegQHQ\nQA4CcEf2p2tLYvYweUWKUISKOpPO5DUZFZNRqVTTq3ZfrWlR9HDaJ/PChns59HAC2oQWDDkI\nANAdbY8QDUILhhwEc1ew/YfSA7t0dyW09vLxe2CZXVCI+6QI9upiX1+nWHQL645aMDQIEYRg\nQJKTRypOxsj+Oq27spetX2DwE897zV7IXl1mr/9tQh4hqo0INuA65CAA19Skplx6eRWTV6QI\nIUTk6DIlJpnJyzIhJqOSELI9taS+TVVW13q1vEF7iEdR1gKe5rWtiC/gtW+0KOBRk4JdVozx\npaiO66BBaMGQgwAA3UGDkAuQg2ABpKdPFu3dXpuW2jFEEcfBw33mL7Fy9+B4m1Azm5DP46nU\nakYuKOJTbRvmMHIpMB1oECIIwbBkyYk1ly+UHNilbmvVDgocHLyiF7iOvw+7EvbZTVlz6LrE\nfl4EwQYchxwE4CyGJxTeaqe5jZ8y6vPvGLssQzSdwvNFtT+kFFc0tN3x/PXzwob2OKeQoGto\nKZCDAADd6XmVUTQILQNyECzGja/Wl+z7jdZpg1ECodeMueLJkeKImSwWZgqiNl9IyJUyeEFM\nurAwaBAiCMEYKhOOy84mSE7G6GaV04gx/ktWeE5Hg6rvlm2/ujutpJ8XQZsQOAs5CMBxLSVF\n55Yxup8ERQghA1e/ErjiaSYv2z+aBiEh5IvT+Qk3q+54/ihfx+FeDvcP9xLxqe7OQYPQMiAH\nAQC6gwYhFyAHwZIUbPuu7MiBltIi3UGhk7PfA8schwzn+FRCQkhcTtWMLecZvCDuploMNAgR\nhGAksuTEhqzrRfu2Kxs6VrgSuboNeOr/fBctZbEwC8DIxoQINuAg5CAAaBhiQiFF8aNOX2Ps\nmv2gbRDmVjW/9GeGp4OVt6OV3jlNbaocWZPuyJIRXk+M8+vummgQWgbkIABAb2iTVAs5aBmQ\ng2BhpGfjay79XREXK6+S6Y47hA72WfCQtac32oTM7k3II0RNiNhOWPlhNFPXBONDgxBBCEZV\nfuyg5Nih6tS/tCM8kZXvoqWuYycipfqJkdmEFCFqTJMHzkAOAoCu3M1fFuz6gbHLmUybUHtb\ns7y+7dm915aO8n7sHl+9c0rrWp/bd113ZJy/03szQ7u7Jm6MWgbkIABAb6BBaKmQg2CRKhNO\nlB/7s+r8WVqp1A5SPJ5H1GyPqTN4Vta4Abtg66WYTAkTV6IIaW8tYd6F+UKDEEEIxiZLTqy+\ncK4sZp+qtWNXQvHkKO8594unzWCxMMvAyGxCtAmBI5CDANCla6/9s/J8AjPXurVIJ9/KJuLk\nRWau2Ved72/q2p5aeuKGrL5VqaZpQshQL4f188K6Oxk3Ri0DchAAoDfQILRUyEGwVLLkRHlN\ndcn+HQ03MnXHhU7OXtHzXcZOFE+OZKs203FT1hy6LrF/1+hoEGqhU2h20CBEEAI7Sv7Ykbf1\nG0VDnXbEyt3D/6HH7IJC8CRL/zEymzBMbJu1JoKJcgBMFHIQAHpQtOPnnC2fMXY5qv1fUWcy\nGLvmXeq5Qajx4oGM/OpmQoidiL/7sdHdnYYbo5YBOQgAAFyGHATLJktObLiRWRazr7WiXHfc\nPmSQ16yFdoEDcANWY01MzqcJOcxeE21CM4IGIYIQWCM5caTkwM66a5e1IxSPchk93vf+Rzwi\nZ7FYmMVYvTfj+5QCPo+nUqv7dgVMJQTLhhwEgN5Ie2FV1ZUUpq5GUaz1CHvTIPwqqeDkDRkh\nRMSndj82RsinujwNDULLgBwEAAAuQw4CF0hPn6xIOCE9c0ItV+iOOw0b7TN/icjFFW1Crc8S\nCt6IYfib2pzB7rHPjGf2msAsNAgRhMAmWXJiZfwxSVys7rrYVu4eXtHznEeNQ0Qxov+zCfkU\nUX6ONiFYIOQgAPSe5Oih9E/WMHMtVmcT9twm/PZcYWymVPM6OlR8MkdqJaD2rbxH7zQ0CC0D\nchAAALgMOQgcIUtOlNdUVZyMqb54XnecEgjc74vwiJzlFT2PrdpMU9TmCwm5UsYvu35e2JtR\nIYxfFvoJDUIEIbCv5MCu4r3bm4sKdAedwkf4PfQYIoopjGSb2E5Y+WE0I/UAmALkIAD0waVn\nltdkpTFzLYoQQgaufiVwxdPMXLAXem4QxuXI/numQPPay8FG0tAi5PH2PzlG7zQ0CC0DchAA\nALgMOQicIktObMjJLIv5o1VSpjtu5e4R9Ngz1l6+mKehxxBLjxKs1mZ60CBEEIJJkCbFV6Uk\nlcXupxUdE96tPbyCVj7nu2gpi4VZmImbUlKKqvtzBcQYWBLkIAD0R+rKJXV5mQxciCKEEL6V\nTcTJiwxc7U56bhBeLq1/79iNO14Evw9YBuQgAABwGXIQOEh6NqE2LbU8dr+ivk47SAmEvgsf\nchs/yX1yJIu1maZtqWUrdzH0eGgnmFNoCtAgRBCCqZAlJ7aWl5afOFSfcU07yLez91+8PGT1\nSywWZmHicqpmbDl/5/N6hNuCYBmQgwDQTxnvvV6ecISZa1Ed/2vQpUd7bhBKG+XP7r2mVN/x\nKxJFb5zDYFXACuQgAABwGXIQuEmWnEgrFdLkxIpTMbobE9qHDPKcMc9+QCimEnZmiO0JO8Me\nT6xAgxBBCKZFlpxYd/VS0b7f1G2t7UMU8V241P2+COQTgxgJNjsRr3HdbEbqAWAFchAAmJL2\nwqqqKymMXc64cwp1xWRU/lVQ80lc7p1ORIPQEiAHAQCAy5CDwGWy5MSW0uKi3T+3Vkp0x51G\njPFfssJzOn7V70KnSRcUIQZpLYn4VNsG/F9gJGgQIgjBFBXv3V7w6xZ5bY12xGX0ON/7H0E+\nMauf0+Q1MRgmts1aE8FcUQDGgxwEAGYx3iakCBV1Jp2xC/bmZ74a28sT0SC0AMhBAADgMuQg\nQEXc0dI/99Rc/lt30NrLx2fBQw4DwzBVo0s6ky4M1SDUhWmFhoYGIYIQTFTZkf3Fv29rzO3Y\nBUfk6h78xPN+i5exWJVF6sdswo4gxKKjYI7ktPeJAAAgAElEQVSQgwBgCEU7fs7Z8hljlzPu\nbELRa0dVhNCE0DTp8esuGoSWADkIAABchhwEIITIkhMbbmRKTsY0F+VrBykeJZ4202vWQoqi\n0CbszrLtV3enlRjtx80Z7B77zHij/TjuQIMQQQimS3r6VOGeX+quXtKO8ESioJXPB69czWJV\nluqmrDl0XWI/L4Ip8GBekIMAYDiMtwl5fGFkwhXGLtjdz+ntDMLbuNkLZGtnMl4MGBpyEAAA\nuAw5CKAlS06sTbtQtHcbrVRpB239Az1nzHMcPAw9wh4YZ3tCLez3xDg0CBGEYNJkZxOqL/1d\ndmiPqrV9S0JKIPC7/xHXcfchnAyBkTah2E5Y+WE0E+UAGBZyEACMIHfzlwW7fmDgQhQhhLiN\nnzLq8+8YuFo3/D+MK6lr6201t0wOdk56YaKBSgLDQQ4CAACXIQcBdMmSE5sKcstiDzQX5umO\nO4WP8Jq5wNrbF3die7YmJufThBzj/CzcemUQGoQIQjADxXt/K9yxtU1WqR1xv2+az7wl4mkz\nWKzKgjEyRx6zCcH0IQcBwGhaSorOLWPiSU+KEEJEji5TYpIZuFo3YjIqCSFrj+emltR0cwqW\nGLUEyEEAAOAy5CBAZ9IzcZKTMZWJx3V3G6D4fNexE72i53vNXsheaebBaBMKw8S2WWsijPCD\nLB4ahAhCMA+S44dzt37VWl6qHbH28vFbsiJw2ZMsVmXZJm5KSSmq7udFeISosDchmCrkIAAY\nWdoLq6qupDBwIar9X1FnDPLl81aDMC+1pLvfBNAgtATIQQAA4DLkIECXZMmJTUX5ZYf3NhcV\n6I4LHBwDHl7pEDoEUwl7I2rzhYRcqeGuz6OI6nPccWUAGoQIQjAblQknivdtr71yUTtCCYUD\nVr0Q9NgzLFZl8RhpE1KEqNEmBNODHAQAtqSuXFKXl8nAhQzTKdQ0CONvVn95Oq+bU9AgtATI\nQQAA4DLkIEAPZGcTaq6kSk7GyGUdXS6Kx/OImuMZES2OwAbkd4GRm6vdWT8v7M2oEANdnAvQ\nIEQQgjmRnU2oPHNKciKGVio0I5RAEPjwE04jxuDpFYNavTfj+5SCfl4EbUIwNchBAGBX9qdr\nS2L2MHKp6UloEMJdQw4CAACXIQcBeiZLTqSVStlfpysSjquaGrXjNr4BAY+stPbwxs3YuxKX\nUzVjy3nj/CxsUth7aBAiCMHMyJITW8tLC3f92Foh0YxQPMojarbn9HniKVHs1mbZbsqaQ9cl\nMnU1PN4CpgA5CACmgJE2IUUxOYlQ0yDswfxwD6Z+FrAIOQgAAFyGHAToDVlyorxaVvT7tqb8\nm9pBSiD0jJrlMXUGphL2jUHnFBJCbIX8PY+P1hvEl7guoUGIIASzVH70YMGvW5pLCrUj9gNC\nAx99xmvmfBar4oJtqWUrd6UxdTURn2rbgPkHwBrkIACYmv40C0eu38zUM7xoEHIEchAAALgM\nOQjQe9LTJ8uPHpSlnKGVSu2gbUBQ4LJVIld3TCXsJ2Zvt5JuGoQa+CqnBw1CBCGYq8r4YwU7\nfmzITteOWIk9g5943nfRUhar4ghNbgl5IoVazsgFMfMdWIEcBADTlLv5y4JdP9z1xyhCETJi\n3WZCSD+/oqNByBHIQQAA4DLkIMBdkSUnNhXmFe/d3iat0A7yRFa+Cx90HTcJPUKmMNIstBby\n93bTINTCdzoNNAgRhGDGpEnxlfFHK+KO0mq1ZoRvYxv8xPN2QSGIJSNYsPVSTKaE8cvOGewe\n+8x4xi8L0BlyEABMluToofRP1vTts3xb22Hvfd7/34V6aBPiy6RlQA4CAACXIQcB7pYsOVEt\nl0tOxsjOxmtvxhJC7IIH+i162NrbF/djGfRZQsEbMX3eRYLa+/hoayGv55PwtY6gQYggBHMn\nS06sz7petOsnVWurZkTg4BDwyCqHgWHIJONgdm9CPXYiXuO62Qa6OAByEABM313PJqQIIURo\nax/+7gbDzSPEN0nLgBwEAAAuQw4C9I0sObEp/2bR7p/ltTXaQUog8Fu8zGXMBPHkSBZrs0hR\nmy8k5Er7c4UhXnbLR/nyeFSY2M5K0NE1xNc6ggYhghAsQ+HOn4p2/qgbS+Ip073nLUYmGc2a\nmJxPE3IMd/0wsW3WmgjDXR+4CTkIAGahbyuOjlzf37VG0SC0eMhBAADgMuQgQH9Uxh8rPfh7\n9cUU3UFrD6/Ax56x9vDGtA3GMXLrlc+jlo/xWTrSW/MWX+sIIXeYZQkAZiFw+aqQ514VOjpp\nR6RJcfk/fl0Rd4zFqjhl/fxQeuPcZycEGej62dLmT+NzDXRxAAAAUxbyj5enJ2V43Hs3jz1R\nVP9/7vxwD3xjBAAAAACAzjyiZvsvfXzAqhesxJ7awdZKyY0vPy4/+mdlwnFZciJ71VkgRm69\nqtR0RYNc+zYmo/KO289bPMwgxJMyYDlKD/5etHd7c0FHG0nk4hqy+mWf+UtYrIqDDDSbUMij\n5J/NYfyywGXIQQAwO9mfri2J2dPLkymhcMRHm7o81PtHerv8xojGoWVADgIAAJchBwH6T5ac\nqGptKf1zd83lC7rjImcXv8XLHcKGYioh45Ztv7o7raTPH7cR8jcuHOLvbK0d4fiXOwHbBQAA\nY3wXLbVyE5cfP1SZeJzQhBAir6ku2P4DT2TtNXMe29VxyPr5oevnh25LLVu5K43ByyrV3H2e\nAwAAQCPszffD3nyfEBI3JfwOp1JE5OJijJoAAAAAAICTNP0/vrWN28RpxXu3t0krNOPy2pq8\nn/7nes+9ivo6oaMT2oQMmjPE/Y4NQisB/50ZIdq31yUNe9LKNa9bFKrj2dKn7/U3YIlmBTMI\n8aQMWBpZcmLdtcuFu3+hlQrNiJXYc8DT/+czbzG7hXHWxE0pKUXVTF2NIkS9cS5TVwOOQw4C\ngLm7c5uQEEKI49CRwY+t1h3BV3QgyEEAAOA25CAAg2TJibRSKT1zShJ/lFYotOOUUOi36GHX\ncffhCwjjerjjaivk73l8tPatpKHtn39cl6vaG2G2Ir6jlWCol8M/JgWK+BRmEAKARXGfFOE+\nKUJg75C79StaqSSEtEkrcr5ar6ipsgsORRoZ31//mkCYaxPShFCvxmpe8whRoVkIAADQnVsb\nEdr5B7FZBgAAAAAAWDTNHVdKIHAaMaZwx48tZcWacVqhKN73W931NGVzk8DWDjdmGaS549qZ\n7iYRT+25Wtko1zuhWa5qlqskDW1xObJP5oURbq8yihmEeFIGLFbe1q8Kd/2ibmvVvBXY2Qev\n+qetXyCiiF1Rmy8k5EoZvGCY2DZrTQSDFwTuQA4CgGW48Nji+oKs24ZoQghxnxThu3CpIX4i\nfpuyDMhBAADgMuQggCHIkhMJTcvOJ0mO/qlqbdWO821s/R54xHnkWHyVMDTdBuH21JL6NpXm\n9dm8mka5UvfMQBebt6aH+DpZc7lBiBmEABZrwNMvCuwdC379TtFQRwhRNjXe/N8GzxnzaZVK\nPHU629VxV/w/xhFC1sTkfJqQw8gFs6XN2jmFWIAUAAA4SOjk3OW4sqHeyJUAAAAAAACXtff/\nKMp1zISivdvqrl7SjKtamgt3/tSQnS6vlolc3dEmNI7HxvppX08Kdnn36A0fR+uy+vbGbWFN\nS5NcRXR6ihzsFKJBCGDJAh55QuDodOOL/6haWwghtJqWnDjcVJhLq1QekTPZro7T1s8PXT8/\nlBCybPvVO+6s23u0djE1AAAAzhj1zU+y5MT8LV/pzSOU19USmiYUwhEAAAAAAIxH0//jiUR1\nIy8X/7FD1dysGa++eL7myiW/+5cSrEpiMN01+crr2wghE4OcD6VXKG7tR1ha1zpIbGe84kwP\nj+0CAMCwfOY+EPzkP3SfrG/Izsjd+lXFqVgWqwKtXY+NoDfO1fwTGSLu9/Vo+7eOMVAWAACA\nWXGfFNF5HmFzYV5TQS4r9QAAAAAAAMe5T4pwGjZ6yBsfOg0bpR2klYrifTvyfvxGcuwwi7Vx\nFp9HPTHOX/v2WNZt+0DFZFTqrlDKBZhBCGD5Alc8ZesXWHZkf1XKaVpNE0KaC/NubFqnbGr0\nXWSQjXmgbzSrj2qs3pvxfUpBHy4iV7bPi+fgpHgAAOAyzTxCQkje1q8actqnEiqbGtmsCQAA\nAAAAOKx9KqG1TdVfpytOxWq/njTcyLjx1SfKxnprb19MJTSye/wcf7j1OrOysUWhshFydytW\niqZptmtgDTbjBU6RJSfWXDpf/MdvtLJ9a1ahg1Pwk8/7L32c3cKgZ9r9BXt7PiGHnhqrN4hm\nIXQJOQgAFqn6Ysrlf63SvOaJrLznLHK/L4LZH4Hv8JYBOQgAAFyGHAQwJllyolouL9m/o+by\nBe0g38Y2cPkqh0Hh+H5hNJppFe8czb5S1qAZ8XSw2nR/uJ2o429CTt1HxRKjAFzhPinCZcy9\nwY8/x7ex0YwoGuryfvqmcOdP7BYGPaM3zp0Q4HoX5xOy4MdUzT8Pbr9ouMIAAABME08o0r5W\ny9vKjhygaTWL9QAAAAAAAMe5T4rgiUQBjzwZvPI5vl37pneqlua8n74pO7yvIu6YZjUUMI4w\nsb32dUVDW7qEuwvPYIlRAA5xnxSh2aEnb+s3ioY6QoiysTH3h03qtlY8q2LKpoW4pRRV3+WH\nKEKIl6215k3n5bM59SwMAABwim1AEE8kUsvlmre0UqFsbOAJhLrn8KytKQrPSgIAAAAAgJFo\nb70OfO6V3O83KRvqCSGEJtKz8bXXLvk9sIxgqRJjGR/gvP+aRKluX1yzulmue/SO2xBa0m1V\nLDGKqfTARWUH9+Zs+VzZ0D6TmhIKAx950mnYKISQyRq98VxaWW0fPhjubffp3CFdHrKkMIO+\nQQ4CgKUq/n176aHfmwpyuztB4OAQ8tSL1t6+fbs+fmWyDMhBAADgMuQgAIvKYw8U7fm1MfeG\n7qDT8NH+Dz7Kt7ZxnxRRd+1i6guPE5rm8YWRCVfYqtPyaJt/qcV1a0/kaF6He9p/On9w7y9i\nSfdUMYMQgIt8Fj1EeFTB9u9bykoIIbRCUbhja8AjTxDc8DJVl1+9jxAycVNKr6cSUjyKEEIG\nudrf6UwAAABLY+Prbx8yqIcGobKhQXYu0W/JCmNWBQAAAAAAQAjxnvuA0NFZmhRXEReram3V\nDNZdu9xSXOC3eAUhpCknm6hpQohapYibGu42fsqoz79js2JLoe3tNbQpbUX8ZrmKENKi4O6e\nFGgQAnCUz4IH+bb2ud992VJWTAih1eqi3b9o1h1Fj9Bk/fWvCZoXnyUUvBGT0eO5tGaWvIJw\nN+EAAICz3CdFNNzIIBQh3a+WolbIuz1GCCGkZM+PVWld7+ZLESrqTHp/KgQAAAAAAC5znxxJ\nKMp55NjiP3Y0ZLd/uZDX1uT99I1tYLDrqHvbz6MJIaTq76Sk+ZOmxCSzVKwFcrAShLrbXilr\nIIQoVNy9fYoGIQB3eU6fTatVBdu+a8q/SQih1eqyw3+0lBTRKpV46nS2q4OevB4Z9Hpk0IKt\nl2IyJT2feSRdeiRdOiHY6e2o0MoG+auHMxcN83hwhDchJCaj0pJmxAMAAOhyGBQe8sy/mosL\n9cYr4o6q5W2EEO0mhd1RNSm66y/SPTQeAQAAAAAAesF9UoQsOTH4yeerzp8tj/1T3dY+lbC5\nML+l6PYvMjRRNNazUKJFsxO1d8eaMYMQALjJK3oeTyDM/2Wzds3rmssXFHW1qtZWgZ0dphKa\nuMNPj3k7NvuTOM36aRQhpNNECc0gkTUoGuVKFU3Xtih0Z8133nQXLUMAALAY9iFh9iFheoOy\n5ARNg1Bvww8AAAAAAAAj09x9pSie46Dwkv07G3KyNOM0rb51V4/cGqHjpoYTQiiKH3X6mrEL\ntTjzwz0+S8jTvK5pkWdLm8LEduyWxAo0CAG4ziNyJkWRkoN7qi/8pRlpzMvJ/vKj4JXPsVsY\n9MbHc8M+ntt+63PqNxeS8qW3H2/vF96UNe++XD5vCJp/AADAdbYBwXXX0wghaoVc+/W7S8qm\nJmMVBQAAAAAA3KVpE2Z9/oFeU/A26vYn/mmiip8aHnWm572H4M7srfiaFzRNYjMr86vtrQX8\newOcbIR8dgszJjQIAYCII2ZSQpGNX2Dpn7s1HSVlQ33u95vaqqSh/3yd7eqgtxYMFXdqEHZI\nLa5rU9CEkGtlDb+qS3k8EjnQzc/J2ogFAgAAsE/o6KR5QatUeVu/usPZPXw/BwAAAAAAYI5j\n+AjNs4x3QBOakLip4RQhaBP2R+RAt9jM9lup8TlV8TlVhJAwsd3nC4ewWpdRoUEIAITcelDF\nylVcuHOrqqWFEKKWtxXt/pkixHnUOKw1anZ4FDXAzZYQUlDdrFTThJDSutbSulZCSGZlY2Zl\nIyHkRLbsp4dHCPm33fvsvOhol7ASKQAAmDjNfh5dHODxevpYrzuCcVPCta+t3Nwn/3mm16UB\nAAAAAADoG/vtzrOLI9ukFb06myY0IZhK2B9ONsLOg9nSpka50l7ElcZZj1+PAYBL3CdFOAwa\nMujld6w9vNqHaFK059e662ld318DE/PA8I6mnbWA9+WiIV8u6umBl9oWxeJfLl6TNBi+NAAA\nAFPhFD6C6qFHSHd7RB/V8U/nnQ4BAAAAAADu1uT9CdOTMu7wUKMOmiZxU8PjpoanvbbaoIVZ\nJG8Hq3sDnDuP//vIDblSbfx6WMGVRigA9IZmpiBPICrc8UNj7g1CCK1WF+7Y6hU9X3sUTNZA\nd1t641y9KYATAp3/Lq7rLtWmDHB17ephGQAAAEtlHxI2+LUPWsqLifoOzUBZwonG8qLujk7H\ng7oAAAAAAGAA009fT3lsQVNBbq/OpgkhpOrvpMToeyJOXjRoYZbnneiB0ka5iqaPZkn3X5Vo\nBvOrmzMqGkf5OrJbm3GgQQgA+rxmzuMJ+Llbv2ouKiCE0Gp1+fFDQhc3gh6hGXozKkT7ury+\n7dm918b6O6cW12pGpoe6+WIbQgAA4BiRm7vIzf2Op9Wm/k26bxACAAAAAAAYSNi/3r708qq7\n+ABNVG0tcVPDeXxhZMIVg9VlUTQ7KGnmWkwOdjl0vUJ56ylSxZ0eJ7UYaBACQBc8omYTisr9\nYZOmR0gIKdrzs6K2mqBHaPK0uwN2t5ugvYivfc2ZsAMAAC7qdhtCAAAAAAAAE+YydsLQf69P\n/2TNXXyGJoQQtUqBjQn7INTd7tWI4E/j8zRvq5rkG+IKkgpkXZ5MEaLeONeI1RkQ9iAEgK55\nRM4auPpl+5BB7e9pUn78oOTEYWlSPKt1QX9RVMdrSX0be4UAAAAAAAAAAABAF7zmLJyelOE3\n/+G7+xjdvjFh0vxJhqnLYoW422lf51c3t3S/DSFNqO4OmR3MIASAbomnRauVqqLdP9dnXiOE\nEJpUxB1tLS8lNC2eOp3t6qCP7HRmEJ64IZ0U7OxqK2KxHgAAANMUuOq5wG4OYUEFAAAAAAAw\ngrA33/eYPuvSy6vsfAObSgt7+zGayOtr4qaGixxdpsQkG7JAy2Et6JhNF5spHe7lxGIxRoMZ\nhADQE8/ps4NWPuc8Yox2pC7jav7P/5OeTWCxKugbb0erw0+NfXiUt3akoLrlUHrXK5ECAAAA\nAAAAAAAAu1zGTpielBG08vm7+xhNCE0U9TWGKcoC2YsE1sKOfllpXSuLxRgNZhACwB2IJ0cS\nQluJPSvijmpGGnKy8n/erGpsFDg44Al6k6XdjJDcvh+hg7XA1VZY3azQvE3Mrc6tata8pggZ\n6eO4eLgXZTkT5QEAgNO6+0UFexMCAAAAAIAZ8ZqzkBByd7sSkvblRgkhtn5BE3fGGqQySyHk\nU0+O8/v2XJHmbXULJzZmQoMQAO5MPDmKongCW7vSmH2aDW8bstNvfL0u6LFnZcmJ6BGaFz5F\nfTQ77KWD6QoVTQipapJXNcm1Ry+X1ge62Iz1dyKEcGQzXgAAAAAAAAAAABPnNWeh0/BR55bN\nvruP0YQQ0lxSED81POpMhiEKsxja7uCd0NSrHd1WN3uBbO1MA5VkaFhiFAB6xX1ShPvkKK/o\n+doRRV1t7vf/rU27gGfwzU6Ai7WHvVV3Rysa2x+Q4chmvAAAAAAAAAAAAKbPxi9gelLG9KQM\npwFD7u6TdPtswoTIkYYpjVMo3X+GiB3YrqfvMIMQAHpLM1PQ2tO7eN8OVUszIUQtlxfu/lnZ\n3ES6X8ILTIHucqMaL00N2p5a2qxobwEqVOrCmhbN64PXK+YO9sAqowAAAAAAAAAAACZo7K9/\nXHpmeU1W2t19jCZqlSIhcmTk/7N37+FVV3e++NdOQrhfgpFyDSgwDFFEgSoKhoS0U239aXvs\nmdbajsdK1VrnjFYtDufpodppq6VH22nx11Zrb6Mep/X0oj3ajgEkIoxcCqLRqgFBKhaJ3C8m\n2fmePzZGyi07kH1Jvq/Xk8fuvfZaXz55nj58fHzvtdbCNZmpq3N79Kopra9v+/26FZvePtrM\n6H9dmJWKMk5ACLRDKgXsOXRE/Q+/07itIYQQovDn3/57QbduQUbYqfztoD5f+/C41rfb9zX9\nw0NroiiEEDbvfGfBq1u7FxVs29941PUAAAAAQI5MuvfBEMLq6z/bsGZZO5ZFoSXZVFNRXtyv\n5PzHlmSquM7jovJBj9VtyXUVOeOIUaB9SqdVFg8sHXfj/+g77rQDQ1F4/ZEHXv/lv/2l5nHH\njXZSA3p2qzh1YOvbby9+7c4F6+q37s5hSQAAAADAMZz5vftPm3NH+9ZEIUShcee2BRWntT2Z\nLk1ACLRb6bTKQTMvOOUfrul/+pkHhqLw9vJnXp0/r3Fbg4ywUzj80NFTB/ZqzwOixE3/t/Wn\ndO4fOrA2AAAAACAdgy+8uLq2buy1t7RvWRSiKKqpKF998zWZqYtOIBGlTpSLpdLS0oaGhubm\n5sLCwlzXAp3SW089ueGh+3c8/95p19369R/x8c/0HVfuuNH8d8j2+Td27r/5ty/teqc5vdV/\ndUXh9FMG1F5/bseVRpbog0BsneD3mfx7TtegDwIQZ/ogdEkrrrh0x7oX27cmERIhzFxcl5mK\nOpM0zxo9fN9F5+UOQuD4nTzjA4nCwoblS/78219ETU0hhKadO9b9+HsjPv6Z4L+ddTZD+/W4\n9+8nbN65v3XkvmV/fuEvO482v8tcxgtADPm3FAAAoOuZ8tNH/nTnbZsee7gda6IQhVBTUV7Y\nvWflf6zMWGnkI0eMAiekdHrVSWdPH331DUW9+xwYisKmRx546+kaZ412Or2LC8eU9m796dnN\nl0gAAAAAoNMYN3tudW3dkKqPtG9ZFJLv7KupKF/6qQ9npi7ykYAQOFGl0yp7l53yN/80p/cp\nY1IjUUvLG48+svmJ38gIAQAAAACyqfz2edW1dSdNnNqONVEIUdi76bUFFeUZqyuvXVQ+qCsd\nH5oOu0OADpA6p6uwZ6/1P7lnd/3LqcEtC3/fsm9fcIoXAAAAAEB2nfm9++v+5y2bF/6uHWve\nPXG0uF/J+Y8tyVhp5AUBIdBhBlX9XaKgYNP/eejtlUtTI1uXLW7atSNqbjp5xgdzWxuHu6h8\n0LGv3p37oVNDOPVoazNTFAAAAADQMcpvnzdkxaWrbvxs+5ZFoXHntpqK8oLCblUL12SmNHLP\nEaNARzp5xgdG/NdPl55X2Tqy44U1r/7wO3+peTx3RQEAAAAAxFHJlKnVtXWjLvtc+5ZFIUSh\nJdlUU1G+sGpiZkojx+wgBDpY6fSqkEiEEG195qnUyN4N69b96HuJgoKC4u6OGwUAAAAAyKbR\n193Yrf+AV74/r33LohBCaEk2LZgxYeZTazNRGDmUmx2E27dvv+GGG0aNGlVcXDx06NBZs2Zt\n3rz52Es2bNhw1VVXDRs2rLi4eOTIkTfddNOuXbtaP/3JT36SOJJ/+Zd/yfCvAhxB6bTKYZd8\nYthHP5koOPCXzN6N61+551uN2xq2LlmU09L4K6mrdw/+yXVFcaEPAhBn+iAAcaYPArlSdvmV\n1bV1wy/6RLtXRiGKkjUV5atvviYDdZEzOdhB2NjYWF1dvWrVqksvvXTSpEn19fU/+9nPFixY\nsHLlypKSkiMuWb9+/dlnn93Q0PDxj398woQJzzzzzF133fXMM88sXry4W7duIYTt27eHEC67\n7LKysrKDF06bNi0LvxFwuNROweIBJa/97AdRS0sIYf/mP78yf96pn71+65JF9hESZ/ogAHGm\nDwIQZ/ogkHPjZs/tf8ZZL3z91vYti0IIoeHZWlsJu5IcBITz589ftWrVnXfe+aUvfSk18qEP\nfegTn/jE1772tW9961tHXDJnzpytW7fee++9s2bNSo3ccMMN3/nOd+69997rrrsuvNsIv/jF\nL06ZMiUrvwTQtlQKOOLvr3j9Fz+LkskQQvOunfX3/euYq2+QERJn+iAAcaYPAhBn+iCQDwZf\nePHgCy9eff1nG9Ysa9/KKEQhWVNRXtyv5PzHlmSmOrInEUVRlv/Is846q76+/q233urevXvr\n4NixY3fu3Pnmm28mEonDl/Tv379Pnz6bNm1q/XT79u1Dhw6dOHHi0qVLw7t98ZVXXhkzZkz6\nlZSWljY0NDQ3NxcWFp7Y7wQc1dYli/ZsWLfh5/c27dqRGins3eeUf7im96jRMsI89FjdlnSm\nOYz0ROiDAMSZPghAnOmDQL5Z9blPbXtpdXtXJRIhCqGgsFvVwjWZqIrsyPYdhPv371+7du3Z\nZ599cBcMIUyfPn3Lli3r168/fMmePXt27tw5ZsyYg3vkgAEDxo4du2rVqmQyGd79psyAAQOS\nyeSmTZu2bt2a4d8DSFfptMreI08dc91NxSUDUyPJPbvr7/vX7auXu4+QGNIHAYgzfRCAONMH\ngTw06d4Hj+NWwigKIQotyaYFFeWZqIrsyHZA+PrrryeTyREjRhwyPnLkyBDCunXrDl/Ss2fP\noqKiw3tbr169GhsbU7f47tixI4Tw7VnvIIIAACAASURBVG9/++STTx4xYsTJJ588bty4Bx98\n8PCnrV69euW7mpubO+SXAo6tdFpl8cDSUz77hW79B6RGoqamDQ/9ePPjv5YREjf6IABxpg8C\nEGf6IJCfxs2eW11bN6TqI+1eGYUoCjUV5atvviYDdZFx2b6DcNeuXSGE3r17HzLep0+f1k8P\nUVBQcO655z799NNr166dMGFCavBPf/rTypUrQwi7d+8O735T5qGHHvrSl740bNiwF198cf78\n+ZdffvmuXbuuueav/q9ZVVWVmgxkU+o00YLi7uvu++47b/0lNbhl0R8Kiru3fko+cHZopumD\nAMSZPghAnOmDQD4rv31eeZh3PCeORqHh2doFFeUzF9dlpjQyJdsBYcrhB2qnrkI84kHbIYTb\nbrtt5syZF1988d133z1+/PjVq1fPmTOnrKysvr4+tSX/y1/+8vXXX3/BBRe0tthPf/rTkyZN\nmjNnzpVXXllcXNz6qMrKylTvDCE89dRTTU1NHf7bAUcz9CP/pbBHr9d/+fMda/+YGnnzD48m\n9+0NUVQ6vSq3tUE26YMAxJk+CECc6YNAPpt074N/uvO2TY893L5lUYhCqKkoDyEU9ys5/7El\nGSmOjpbtgLBfv37hSN+I2blzZwihb9++R1xVVVX13e9+d/bs2R/72MdCCH369PnqV7+6YsWK\n+vr6kpKSEMLMmTMPWVJeXv7hD3/4V7/61Zo1a97//ve3jv/qV79qfZ26jLcDfisgbe+rvqCw\nR4/Xf/nzt5cvTY28VVsTNTeFRMI+QuJAHwQgzvRBAOJMHwQ6hXGz546bPXffpo3PXHZB+1ZG\nIYTQuHNbTUW5mLBTyHZAWFZWVlRUtGHDhkPG6+vrQwhjx4492sLrr7/+iiuuWLVqVUFBwZln\nntm3b9/JkycPGTJkwIABR1syaNCg8O5eeyB/lE6rjKKW0BK9vXJZamTr0sUhkYiaGhPdisWE\ndG36IABxpg8CEGf6INCJ9BxeVl1bd3y7CcO7MWEiUTjzqbWZKI8Oke2AsLi4ePLkyc8+++ze\nvXt79eqVGmxpaXnqqadGjBhRVlZ2tIXJZLJv374zZsxIvd24ceMf//jHz3zmMyGE3bt3//zn\nPx8wYMBll1128JIXXnghvHvNL5BXTp4+M5EoKOrTd8tT/5Ea2frMU/ve2HTqVddvXbJIRkgX\npg8CEGf6IABxpg8Cnc642XP7n3HWC1+/td0ro9Q/kjUV5YXde1b+x8oOr40TV5D9P/Kqq67a\nu3fvvHnzWkd++MMfvvHGG7NmzUq93b9//+rVq1PfnUmZPXt2z549ly9fnnrb0tJy4403RlH0\n+c9/PoTQq1evr33ta1dfffVLL73UuuQ3v/nN008/fdZZZ5166qnZ+K2AdiqdVjnkwx87efp7\n52Dsea3+lfnzGre/vXXJotzVBRmnDwIQZ/ogAHGmDwKdzuALL66urRt0TtXxLI5CiELynX01\nFeU1FeUbHrivo6vjhCRSt+BmUzKZrKqqqq2tveSSSyZNmvTiiy8+/PDDp59++rJly1LfnXn+\n+ecnTJhQXV395JNPppY899xz5557bnFx8RVXXDFw4MBHH310xYoVt9xyyze/+c3UhN/+9rcf\n/ehHe/Xq9clPfnLo0KHPP//8r3/96759+y5cuHDSpElHqyR11nZzc3NhYWEWfnHgcFufXril\n9sk3n/htlEymRooHlJzy2et7vG+IfYR0VfogAHGmDwIQZ/og0HnV33P3aw/de0KPSASHjuaV\nHASEIYTdu3ffdtttv/jFL954441BgwZ99KMfvf322wcOHJj69PBGGEJYtmzZV77yleXLl+/d\nu7e8vPz666+/8sorD37m0qVLv/rVry5dunT37t2DBg36wAc+8OUvf3nMmDHHKEMjhHywdcmi\n7WtWbnz4J60ZYWGPnqd89guJ0PLKD+4OUWQTOl2PPghAnOmDAMSZPgh0ahsf+PEr358XQuLA\nKaLtlTjwj5mL6zq2MI5DbgLCPKERQp7YumTRntfq1/94fnL//tRIQXHxkL+7+M+/+2UIISRC\nIiRmLn4hlyVCV6QPAhBn+iAAcaYPAieiQ3YThhDGXPPFkZfP6pCSOA4CQo0Q8sLWJYv2b3lz\n3X3/2rRje2qkoFtxS3Nj64REQkYIHUwfBCDO9EEA4kwfBE7QthXLVt342RN9SsJuwlwqyHUB\nACGEUDqtssegwWO+cEuPwUNTIy1NjQdPiKJoYdXEXJQGAAAAAMB7SqZMra6tG3RO1Qk9JQpR\nFGoqyhfMmNBBddEOAkIgX5ROqyzuXzJ61n/vfvL7jjihpSWZ5ZIAAAAAADiiCd+aP+nu+0/0\nKVGIoqSYMPscMWorPeSRBZUTomRbKWAiFPcrOf+xJVmpCLoyfRCAONMHAYgzfRDocH+687ZN\njz18Qo9IhILCblUL13RQRbTBDkIgj/Qbn8aXRKLQuHPbhgfuy3w5AAAAAAC0bdzsudW1daMu\n+9zxPyIKLcmmmorymoryRR+c3HGlcWR2EPqmDOSXRR96f3LvnrbnJUKv4aPOffD/Zr4i6LL0\nQQDiTB8EIM70QSCj3nz8ty98/dYTekTiwD9mLq7rkJI4nB2EQH6p/P3yUZ+5uu15Udi76bUF\nFeWZrwgAAAAAgHQNvvDiE99NGKIQRcF/Ac4cOwh9UwbyVE3FaSGNv6AKihxLDcdJHwQgzvRB\nAOJMHwSyadXnPrXtpdXHvz5hK2FG2EEI5KlJd/0onWktzU0LZpyW6WIAAAAAADgOk+59cNLd\n9x//+ihEUXAxYYcTEAJ5qmTK1LHX3pLOzKglWnzhOZmuBwAAAACA41AyZWp1bV11bV3/U8cf\n5yOi0PLOvg4tKu4EhED+Krv8yvMeeiKdmU27dy2YcXqm6wEAAAAA4LhN+ekj1bV1wy/6xHGs\nTe0jXFg1scOriicBIZDXeg4vq65N63TpqKXFjbUAAAAAAHlu3Oy5x3noaBRakk3OGu0QAkKg\nE6iurQuJRJvToijICAEAAAAA8lzq0NHT5tzR7pVRSO7ft6j6zAwUFS8CQqBzqF78wsnnVbU5\nTUYIAAAAANApDL7w4uraurHX3tLehcnGRv8d+AQJCIFO44w754eCtv/WkhECAAAAAHQWZZdf\neRy7CaMo1H19ztYlizJTVNcnIAQ6k+qnnk+klxHWVJRveOC+LJQEAAAAAMAJSu0mHH7RJ9Jf\nsvnxX6/55+tqKsqXfurDmSusqxIQAp3MzKeeT+c+whCFV39w1+qbr8l8RQAAAAAAdIBxs+dW\n19ZV19YV9eyd1oIohCgk39mX4bq6IAEh0PlUL34hUVTU9rwovP1sbebLAQAAAACgI519/yPp\nT2586y/OGm0vASHQKc1c+FxhGl8hcR8hAAAAAECn03N4WWorYTqToyjUffPLW5csEhOmT0AI\ndFaVf1je831D25yWuo9wYdXELJQEAAAAAEAHqq6tCwVth1lNbzfsXvdyFurpMgSEQCd23i+f\nHHXZ59qeF4WW5qYFFadlviIAAAAAADrSpP91XzrT6n/47TW3XldzfvnqL33eVsI2CQiBzm30\ndTemlRGGEEXRghkyQgAAAACAzqRkytQ0zxoNISQKCnoNKwshyAiPTUAIdHqjr7vxtDl3pDMz\naolcSQgAAAAA0OlU19YNqfpIm9OilpbNv/9NFurp7ASEQFcw+MKLJ919fzozoyjICAEAAAAA\nOp3y2+e1fZ5cIvQcMiz10ibCYxAQAl1E+tvMZYQAAAAAAJ3R6OtuHHvtLceaEYVdL7+4e93L\n2aqos0pEUZTrGnKmtLS0oaGhubm5sLAw17UAHWbFFZfuWPdi2/MSYcw1Xxx5+azMVwR5Sh8E\nIM70QQDiTB8EOrua89PaAXLSuTOGX/KJ1OvSaZUZLKgTsoMQ6Gqm/PSRgqJubc+Lwqs/uGv1\nzddkviIAAAAAADIgcaSRRAiJkChI9BpWloOSOomiXBcA0PGqFq5ZfOHUpt0725gXhbefrc1K\nRQAAAAAAdIzW26bW3nTtlmcXv/dBFPqOHV/2ySuLevc5ZEnqPkL7CFs5YtRWeuiyaipOD1FL\nm9MSiTBzcVqXF0IXow8CEGf6IABxpg8CXcOS//qB/W++cYwJo6++oc+pf3PwiICwlSNGgS6r\nevHzoz5zdZvToigsqEjrxGoAAAAAAPLE4A9eNOySvy/uO+CQ8R7vG3LSOdNPOmd6t36HfkQr\nASHQlY2++oZew0a2OS2KQs355dv++GwWSgIAAAAA4MSNvvqGv735KwPKz3pvKAohCvvf3Nyw\n7Ontz63as/6V3FWX7wSEQBd37v9+fPAHPpLOzFX//b9t/PefZboeAAAAAAA6yoRvzZ94xz3j\nb77tkPHk3r1/fvSR8NcX7W1dsih1GSECQqDrO23uvLHX3pLOzFe/d0emiwEAAAAAIAta3tkf\n/XVASCsBIRALZZdfed5DT7Q5zX2EAAAAAACdVK9Rp550zvQeQ4a1jrz+7z8Nh2WEqX2EMd9N\nKCAE4qLn8LJ0zhqVEQIAAAAAdC7FpSdPvOOesZ+/efh/+VS/cae1jm/74/J9b2w6wYd3yTSx\nKNcFAGTPaXPn7dm4ftfLdceeFkWhpqJ8zDVfHHn5rOwUBgAAAADA8SmdVhlCaA3weo0YdfCn\nLY37j7G2i8V+6bODEIiXs3/0y/6nn9n2vCjU/+CuzJcDAAAAAEBH6n/6mUMuuLj17a5XX8ph\nMXlLQAjEzpT//8HCXr3bnOasUQAAAACAzqjH4KGtr7c+vTCHleQtASEQR5W/X37eQ0+0OU1G\nCAAAAADQ6fQcNrKge4/U65bGxn1vvJ7cf6yDRmNIQAjEVM/hZZPuvr/Naan7CGsvmpaFkgAA\nAAAAOHHd+vUfOPmc1OuopeXl73zjxW/M2ffnjbmtKq8ICIH4KpkytaB797bnRaFxx7aFlWdk\nviIAAAAAAI5H6bTK0mmV770vKDz40+T+/W+vXJblkvKZgBCItaon/1jUu086M1uSzQurJma6\nHgAAAAAATly/vylPFCQOHmls2PrO1i25qiffCAiBuJvxxLPVtXXpzGxpblowY0Km6wEAAAAA\n4AT1HVc+9h9vHfHxTyeKilIjO196/qVvfWXrM0/ltrA8ISAECCGENDPCqCVpHyEAAAAAQP7r\nOXTEwPefV1DU7b2hKGxb5aDREASEAK3GXntLOtNampsWzDgt08UAAAAAANBeqZsID76MsP+E\nsw6eECVbsl1TXhIQAhxQdvmVBcXF6cyMWqIFFeWZrgcAAAAAgBM0/NLLx1x7Y4/3DUm9jVqS\nua0nTwgIAd5TVbM63bNGoyAjBAAAAADIc4lEovcpY7v1L0m9bXx7a27ryRMCQoBDpZ8R1lSU\n11SUL/3UhzNdEgAAAAAAx637wNLUi6i5edvq5S3v7M9tPTknIAQ4guraukRBGn9DRiFEYe+m\n1xZUuJUQAAAAACBfHHwNYQghFCRS/xu1tGx86Mev/uDbIYqyX1X+EBACHNmYq29Kd2oUoiiS\nEQIAAAAA5KdEYdHBb/f9eWPznt25KiYfFLU9BSCWyi6/suzyKxdUnRE1N6czP4qimoryMdd8\nceTlszJdGwAAAAAA6Rs4eerbK5Ym9+1tHXlrycLC7j0KiosHTJxc1Ltv6/imh3/UsHrlwWsT\nIZzxjXuyV2tW2EEIcCwzFz4XEol0Z0fh1R/ctWDGhExWBAAAAABA+/QYMqx8ztdOPr+6dWTL\ngic2P/7rP//m3+u/f3d00HGjyT1NqbulWn+65FmkAkKANlQvfmHgWVPTnR2FqCW5oKI8kxUB\nAAAAANCGQ64hLCjuXjyw9PBp+7e82bx7Z5ZqyhsCQoC2nfWv9582547050dRqKko3/DAfZkr\nCQAAAACAdhlwxqQegwYfPr6l5vHNj/869fPOW28ePqFp547MV5dViahLboxMT2lpaUNDQ3Nz\nc2FhYa5rATqBjQ/8+JXvz0t/fiIRZi6uy1w9cIL0QQDiTB8EIM70QSA+ti5ZdMhIFEVNO7eH\nZLLh2SVbFv7+yMsOuXUqCj3eN3jcF//nIVsSO7WiXBcA0GmUXX7lvk0bNz32cJrzoygsqCiX\nEQIAAAAA5IlEIlHcvySEUFxy0kGjx14T9m95c82t16XedevXv+J3SzNXYXY4YhSgHcbNnnve\nQ0+kPz911qgrCQEAAAAAsq90WmXq5/CPBkyc3GvkKQfepHPaZuLAT+9RozuwwlyxgxCgfXoO\nL6uurQshrLji0h3rXmx7QRSiYCshAAAAAEAeKezRc+x1txw+vuH+729/+bm/GopCCGHCbXcN\nmnlBVkrLBjsIAY7TlJ8+MuicqjQnH9hKOGNCRksCAAAAAIA2CQgBjt+Eb82fdPf96c6OQhQl\nHTcKAAAAAEBuCQgBTkjJlKntzAjDwqqJmawIAAAAAIC/crSbCGPLHYQAJ6pkytTq2rpVn/vU\ntpdWpzO/pblp0QcnV/7HykwXBgAAAABAu4z87LUj33395n/87i9P/i6X1WSMHYQAHWPSvQ+e\nNueONCcn9++rvWhaRusBAAAAAIAjEhACdJjBF1583kNPpDm5ccc29xECAAAAAJB9AkKAjtRz\neFl1bd2gc6rSmRxFoaaifMMD92W6KgAAAAAAaCUgBOh4E741v/+p49OaGoVXf3DXog9OznBF\nAAAAAAC0X+LAz9qvfHFBxWm5rqbDCAgBMmLKTx8p+dsz05oaheQ7riQEAAAAAMg/0Xsvoig6\n1sxORUAIkCmT7n1w0t33pzU1Co07ty2YMSHDFQEAAAAAgIAQIJNKpkytrq0LIdH21ChELUkZ\nIQAAAABAhpROqyydVpnrKvKCgBAg46prXwiJNDLCEKKW5IKK8kzXAwAAAABAnBXlugCAWKhe\n/MKiD70/uXdPmzOjKNRUlIcQivuVnP/YksyXBgAAAADAe9bcet17b/5660fN+e9t8Oh+Uun0\nXy/OVlEdzA5CgCyp/P3y0+bckdbU6MCthEs/9eEMFwUAAAAAwFEcfjBc4r2fPqPH5aCkDpKI\noijXNeRMaWlpQ0NDc3NzYWFhrmsB4qL+nrtfe+jedGcnQiKEM75xj3OxyQR9EIA40wcBiDN9\nEKDV1iWLjj3h9Qd+/Pba5a1vq2vrMltQtjhiFCCrRl93Y/OunZseezit2VGIQljzz9eFEBKJ\nwplPrc1scQAAAAAAxIAjRgGybdzsuWOvvaUdC6IQohC1JGsvmpaxogAAAAAAiAs7CAFyoOzy\nK8suv3LRBycn9+9Lf1Xjzm0LKspnLu4ie9gBAAAAAHKrzdudtvz+d1kpJNvcQeisbSCX/nTn\nbekeN9oqEYr7lZz/2JLMVESM6IMAxJk+CECc6YMA7dJ6T2GbaWIn4ohRgFwaN3vukKqPtG9N\nFBp3bnPcKAAAAAAAx0dACJBj5bfPO23OHe1bE4XGndu2LlnU+tUVAAAAAABIkzsIAXJv8IUX\nhxBe+Pqt7VgThTX/fF3qZbdefSqeeDYThQEAAAAA0PXYQQiQFwZfeHF1bd3wiz7RjjXRgZ+m\nvbsXzDgtY6UBAAAAANClCAgB8si42XPbHROGEKIQtUSLqs/MTFEAAAAAAHQpAkKAvDNu9txB\n51S1d1VLsiUTxQAAAAAA0MUICAHy0YRvzT/voSfatSRqaV58wdkZqgcAAAAAgC5DQAiQp3oO\nL6uurauurRt77S1pLYhC057dNeeXPzfnHzNcGgAAAAAAnZiAECDflV1+ZaKwMP35b9XWLL7k\n/MzVAwAAAABApyYgBOgEZi5aW11b12fY6DTnN73dsPILn85oSQAAAAAAdFICQoBO45z//ejJ\n709ja2AihETo1r8k8xUBAAAAAND5CAgBOpMz7vrB8Is+0cakKIQovFVb4zJCAAAAAAAOJyAE\n6GR6Di9Lc+bbK57ZumTR1iWLMlkOAAAAAACdjIAQoJMpu/zK6tq6iXfcE0IIiaPPS4Q+o8el\nXqZiQkkhAAAAAABBQAjQSZVOq5x4xz0hOvqMKOx4fvULX7s1ezUBAAAAANAZFOW6AACOU+m0\nyhDe3UR4eFKYCCGEnkOGHTyW2kR4YCEAAAAAALFkByFAJ9Zj8NAQHSkdDCE1vuvlF9fcet36\nn/8g25UBAAAAAJCvBIQAndjgD1504NXhlxEm3vvpPWLUwZ+4jBAAAAAAIM4cMQrQiY2++obR\nV9+Qev2fl/1/uzfVH/ggCkW9+gyq/LuTKz6Qs+IAAAAAAMhLAkKALqKgqNvBb5v37N78+K9K\nJp1T1Kfv4ZMP30ToYkIAAAAAgJhwxChAFzHs45cdMhK1RMl9e3NSDAAAAAAAeUtACNBFlEw+\n5/DBlsbG7FcCAAAAAEA+c8QoQBfRc3jZxDvuCSE0PPv0pkceTA3uqFvdc9iInNYFAAAAAEB+\nsYMQoKvpOfS9RLBp+/amHdvTWXX4rYQAAAAAAHRJAkKArqN0WmUIodfwkYmCRGrk7RVL674+\n55X585w1CgAAAABAiiNGAbqkRAhR65u9G9fvfvWlfuVnHHvN0TYRpnJHAAAAAAC6BjsIAbqg\nPqeOPWRk/1/e2PfG6/YRAgAAAAAgIAToUlK7/Ub9wzXDL/1U6XkzWsc3P/Hbl7/zjZe+Obdx\nx7acFQcAAAAAQB4QEAJ0QQXde5x09vSBU847ZLxp146dL6xp79O2LlmU+umY4gAAAAAAyCl3\nEAJ0WT3eN7h4YGnj21sPHtz/5hv7t7zZY9DgXFUFAAAAANCJpI5t62IEhABdVqKo29h/nL1n\n3SvNe3Zv+j8PpgYb/vPphmefHnHppwe+/9D9hQAAAAAAxIEjRgG6mtJpla1faSnq1bv/6Wf2\nP33iX82IwvbnVmW/MAAAAAAA8oGAEKDrK+rdt+/fjD94JLl/X4iiXNUDAAAAAEAOCQgBYuGU\nK78w5vM3FZ9Umnq7d+P6N598rL0P2bpkUQeXBQAAAABA1gkIAWIhUVDQe9Toot59Wkd2vVSX\nw3oAAAAAAMiVolwXAED2nDS1Yt+mjVFLSwihaef2LYv+0PpRz8FD+/7t6bkrDQAAAACALBEQ\nAnRNpdMqDz8RdODkqdtWLttd/3IIoWnnjs2P//rgT0f8/RUDJ5+TtQoBAAAAAMgJR4wCxEtB\nt+KjfbRn/SvZrAQAAAAAgJwQEALES+n51YU9ehzlwyirpQAAAAAAkAuOGAWIl75jxp325W+2\nNDW2jrx4x5eT+/eluTx1bGnptMoMlAYAAAAAQDYICAG6rNYY75DLCBNFRYVFB/39n8heSQAA\nAAAA5JyAEIAD9m5Yv+e1+t6jRqfebnr4Rw2rV6ZeD7ngo4Nm/F3uSgMAAAAAoMO4gxCAA/Zv\neXPdj76X3L8/9Ta5pylEIfWTfGd/bmsDAAAAAKCjCAgB4q6wV+/W1y2N7zTt2JbDYgAAAAAA\nyDRHjAJ0fUe7jDBl+CWf3PSrBxu3vZ16+/ov/62we/cQwjub/tw6J7lvb6aLBAAAAAAgOwSE\nAHHXd1z5+6o//Pov/y31du/G9e99ljjwvw3LFjcsW5wI4Yxv3JP1AgEAAAAA6EgCQgBCt34D\nDrxKHGVGdOAfa269LoQw6V9/UnLW2VkpDQAAAACADuYOQgBCn78ZP6jqQ72Gj3xv6GhJYSJ0\nGzCge+mgrNQFAAAAAEDHs4MQIEZSlxEefhNhIpEYcsEl4YJLDh7ccP/3t7/83CEzJ37jnhBC\nrxGjMlYjAAAAAACZZQchAO3Q8J9P57oEAAAAAABOiB2EABwqddHgEW361YObfvVg6nW3fv0r\nfrc0W0UBAAAAANAxBIQAtMdBdxP2HjU6d3UAAAAAAHCcBIQAsVM6rfLwawgPNvGOe1pfv/LN\nr+59e/OBN1Eo7l8y/p+/lrrLEAAAAACAzsgdhAAcS0HPXrkuAQAAAACAjiQgBAAAAAAAgBhx\nxChAHB1+RuixDx0FAAAAAKDLEBACcCyj//GmEMJrD9y347lVua4FAAAAAIAO4IhRAAAAAAAA\niBEBIQAAAAAAAMSIgBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgB\nCCGE0mmVuS4BAAAAAIBsEBACAAAAAABAjAgIAWiHZFNTrksAAAAAAOCECAgBaFthcffUi+Se\n3S2N7+S2GAAAAAAATkRRrgsAIF8c7RrCrUsWdRsw8L33UZSdegAAAAAAyAQ7CAEAAAAAACBG\nBIQAAAAAAAAQIwJCAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAIQBtKp1X2KhsVErmu\nAwAAAACAjiAgBAAAAAAAgBgREAIAAAAAAECMCAgBSJtTRgEAAAAAOj8BIQAAAAAAAMSIgBAA\nAAAAAABiREAIAAAAAAAAMSIgBKB9mvfuzXUJAAAAAAAcv0QURbmuIWdKS0sbGhqam5sLCwtz\nXQtAPqo5v/zYEwacMWny/H/LTjF0OH0QgDjTBwGIM30QgKJcFwBA/koUdQstyRBCFKLQ8u4X\nShIhkTiwAb3f+Am5qg0AAAAAgOMjIATgqGYuXHPgVRQ9NXNSc/M7IQoDJ5171nd+lNO6AAAA\nAAA4fu4gBCANiUQikch1EQAAAAAAdAABIQAAAAAAAMSIgBAAAAAAAABiREAIQHp6dg9RrmsA\nAAAAAOCECQgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAA\nYkRACAAAAAAAADEiIAQAAAAAAIAYERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIA\n0tPSHBIhJMLbf1y6oOK0XFcDAAAAAMBxKsp1AQB0Ei3vvohCFKJcVgIAAAAAwAmwgxAAAAAA\nAABiREAIAAAAAAAAMZKbgHD79u033HDDqFGjiouLhw4dOmvWrM2bNx97yYYNG6666qphw4YV\nFxePHDnypptu2rVr1wk+EwBy9XbAwQAAIABJREFUQh8EIM70QQDiTB8EIE8koijb90g1Njae\ne+65q1atuvTSSydNmlRfX//zn/98+PDhK1euLCkpOeKS9evXn3322Q0NDR//+McnTJjwzDPP\nPPHEE1OnTl28eHG3bt2O75khhNLS0oaGhubm5sLCwkz9tgCd2YLKCVEy2ea07ieVTv/14izU\n0zXogwDEmT4IQJzpgwDkkSjr7rrrrhDCnXfe2Try8MMPhxBuuummoy355Cc/GUK49957W0f+\n6Z/+KYQwf/78435mFEUnnXRSCKG5ufn4fxmALm35tZc9OX38k9PHP3n++CfPH3/g9cEj549/\n8vzxf/zirFxX2pnogwDEmT4IQJzpgwDkjxzsIDzrrLPq6+vfeuut7t27tw6OHTt2586db775\nZiKROHxJ//79+/Tps2nTptZPt2/fPnTo0IkTJy5duvT4nhl8UwagPbatWLbqxs+2vq2urcth\nMZ2aPghAnOmDAMSZPghA/sj2HYT79+9fu3bt2WeffXDHCiFMnz59y5Yt69evP3zJnj17du7c\nOWbMmIP72YABA8aOHbtq1apkMnkczwSAnNAHAYgzfRCAONMHAcgrRVn+815//fVkMjlixIhD\nxkeOHBlCWLdu3amnnnrIRz179iwqKtq6desh47169WpsbNy8efO+ffvSf+a3v/3td955J/V6\n3759J/wLAUA76IMAxJk+CECc6YMA5JVsB4S7du0KIfTu3fuQ8T59+rR+eoiCgoJzzz336aef\nXrt27YQJE1KDf/rTn1auXBlC2L179969e9N/5m233bZ9+/YO+V0AoL30QQDiTB8EIM70QQDy\nSrYDwpTDD79OXYV4tEOxb7vttpkzZ1588cV33333+PHjV69ePWfOnLKysvr6+u7du6caYZrP\nnDt3bus3ZW6//fbUWgDaVDJl6sQ77km9Lp1WmdNaOj19EIA40wcBiDN9EIA8ke2AsF+/fuFI\n34jZuXNnCKFv375HXFVVVfXd73539uzZH/vYx0IIffr0+epXv7pixYr6+vqSkpJkMpn+M2+4\n4YbW1/PmzdMIAcgmfRCAONMHAYgzfRCAvJLtgLCsrKyoqGjDhg2HjNfX14cQxo4de7SF119/\n/RVXXLFq1aqCgoIzzzyzb9++kydPHjJkyIABA3r16nV8zwSALNMHAYgzfRCAONMHAcgridR+\n82yaOnXq2rVr33rrrV69eqVGWlpaRowYUVhYuHHjxqOtSiaThYWFrW83btw4atSoz3zmMz/9\n6U+P+5mlpaUNDQ3Nzc0HPxmAo9m6ZFHqhSNGT4Q+CECc6YMAxJk+CED+KMj+H3nVVVft3bt3\n3rx5rSM//OEP33jjjVmzZqXe7t+/f/Xq1anvuaTMnj27Z8+ey5cvT71taWm58cYboyj6/Oc/\nn+YzASBP6IMAxJk+CECc6YMA5I8c7CBMJpNVVVW1tbWXXHLJpEmTXnzxxYcffvj0009ftmxZ\n6nsuzz///IQJE6qrq5988snUkueee+7cc88tLi6+4oorBg4c+Oijj65YseKWW2755je/meYz\nj8g3ZQDaxQ7CDqEPAhBn+iAAcaYPApBHolzYtWvXzTffPHLkyG7dug0bNuwLX/hCQ0ND66dr\n164NIVRXVx+8ZOnSpR/60IcGDhzYo0ePSZMm3X///e165hGddNJJIYTm5uaO+r0Aura3nl6Y\n+sl1IZ2ePghAnOmDAMSZPghAnsjBDsL84ZsyAO1iB2EXow8CEGf6IABxpg8CkIM7CAEAAAAA\nAIBcERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiA\nEAAAAAAAAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAA\nAAAQIwJCAAAAAAAAiBEBIQDpKp1WmesSAAAAAAA4UQJCAAAAAAAAiBEBIQAAAAAAAMSIgBAA\nAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgBAAAAAAAgRgSEAAAAAAAA\nECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAAAAAIAYERAC\nAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiAEAAAAAAA\nAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAAAAAQIwJC\nAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAA\nAECMCAgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAAYqQo\n1wUA0JmUTqvMdQkAAAAAAJwQOwgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAA\nAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAAAAAIAYERACAAAAAABAjAgIAQAAAAAAIEYE\nhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiAEAAAAAAAAGJEQAgAAAAAAAAxIiAEAAAA\nAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAAAAAQIwJCAAAAAAAAiBEBIQAAAAAAAMSI\ngBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgBAAAAAAAgRgSEAAAA\nAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAAAAAIAY\nERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiAEAAA\nAAAAAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAAAAAQ\nIwJCAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIA\nAAAAAECMCAgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAA\nYkRACAAAAAAAADEiIAQAAAAAAIAYERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIA\nAAAAAACIEQEhAAAAAAAAxIiAEAAAAAAAAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAA\nQIwICAEAAAAAACBGBIQAAAAAAAAQIwJCAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAI\nAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAA\nAIgRASEAAAAAAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAACA/8fenUdJVd37At8N3Q00\ng4yKKDgAIoKIgGiCE+KEOOGEgooaBG8095po1DhcExPjGJ+JQZeap0ZdUZQEYozGSAQUUDSK\nCIiKgDiBCAoyQzf1/jjv1uvX4+nu6qH6fD4rK8veffrUrrPPb39PsatOAQAkiAVCAAAAAAAA\nSBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKB\nEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAA\nAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAA\nSBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKB\nEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAA\nAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAA\nSBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKB\nEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAA\nAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAA\nSJD6WSBct27dlVdeuffee+fn53fp0mXcuHErV66s+E8++OCDCy64YPfdd8/Ly+vUqdPIkSPf\nfPPN9G8fe+yxnLL86le/quWnAgBVJgcBSDI5CECSyUEAGojcun/I7du3Dxs27J133jnzzDMH\nDBiwdOnSxx9//JVXXnn77bfbtWtX5p8sWrToe9/7Xl5e3hVXXNGjR48VK1ZMnDhxyJAhL730\n0jHHHBNCWLduXQjhvPPO69atW/E/HDJkSB08IwCITw4CkGRyEIAkk4MANCCpOnfPPfeEEO64\n4450y6RJk0IIV111VXl/Mnr06BDCK6+8km6ZP39+COHoo4+Ofrz55ptDCG+99VaVetKhQ4cQ\nQmFhYRWfAQBUnxwEIMnkIABJJgcBaDjq4Rajjz/+eOvWrf/rv/4r3XLOOef06NHjiSeeSKVS\nZf7J0qVLQwiHH354uqVfv35t2rT55JNPoh+jd8q0bdu29roNABkhBwFIMjkIQJLJQQAajrpe\nINy6deuCBQsGDx7crFmz4u2HH3746tWrly9fXuZf7b///iGEDz/8MN2yZs2ajRs39u7dO/ox\nHYRFRUWff/75mjVrausJAEANyEEAkkwOApBkchCABqWuFwg/++yzoqKirl27lmjfa6+9QgjL\nli0r86+uvfbadu3anX/++bNmzVq1atW8efPOPffc5s2bR5+gDyGsX78+hHDvvfd26tSpa9eu\nnTp16tWr15/+9KfafCoAUGVyEIAkk4MAJJkcBKBBya3jx9uwYUMIoWXLliXaW7Vqlf5tab17\n93799dfPOOOMI444Imrp1q3btGnTDj300OjH6J0yTz311DXXXLPHHnssXrx44sSJY8aM2bBh\nw4QJE4rvauTIkRs3boz++7vvvsvYEwOAGOQgAEkmBwFIMjkIQINS1wuEkZycnBIt0V22S7dH\nFi9ePGLEiMLCwt/85jf77bff6tWr77nnnuHDh0+ePPnYY48NIdx0001XXHHFiSeemI7Y888/\nf8CAAddff/3FF1+cn5+f3tWMGTOi1ASA+iIHAUgyOQhAkslBABqIul4gbNOmTSjrHTHRm1Za\nt25d5l9dcsklX3311UcffbTHHntELeeee+5+++130UUXLV++PC8v75hjjinxJwcccMBJJ500\nZcqU+fPnH3LIIen26dOnFxUVRf89bNiw6DP4AFA35CAASSYHAUgyOQhAg1LXC4TdunXLzc1d\nsWJFifalS5eGEHr27Fn6TzZu3Dh37tyjjz46nYIhhIKCgmHDhj3++OMfffRRnz59ynysXXfd\nNfrz4o39+/dP/3dubv18gBKAxJKDACSZHAQgyeQgAA1Kkzp+vPz8/IEDB7755pubN29ON+7c\nuXPmzJldu3bt1q1b6T/ZsmVLKpXaunVrifaoZevWrRs3bnzggQeeeuqpEhssWrQo/M/X/AJA\nQyAHAUgyOQhAkslBABqUul4gDCH84Ac/2Lx581133ZVueeihh7788stx48ZFP27duvXdd9+N\n3jsTQujUqdM+++zz73//+6OPPkr/ybp166ZNm9amTZu+ffsWFBTceuut48eP/+CDD9Ib/PWv\nf501a9bBBx+877771snTAoBY5CAASSYHAUgyOQhAw5ETfQtuXSoqKho6dOhrr7122mmnDRgw\nYPHixZMmTerbt+8bb7xRUFAQQli4cOGBBx44bNiwadOmRX8yZcqUs846q127dpdddln37t1X\nrlz5hz/8Yfny5RMnTvzhD38YQnjuuedOP/30goKCc889t0uXLgsXLpw6dWrr1q2nT58+YMCA\n8nrSsWPHtWvXFhYWNm3atG6eOwDIQQCSTA4CkGRyEIAGJFUfNmzYcPXVV++11155eXl77LHH\n5Zdfvnbt2vRvFyxYEEIYNmxY8T+ZM2fO6aef3qlTp9zc3Hbt2h177LF///vfS2wwfPjwtm3b\n5ubmdunS5cILL1yyZEnF3ejQoUMIobCwMINPDQAqJQcBSDI5CECSyUEAGoh6+ARhw+GdMgAk\nmRwEIMnkIABJJgcBqIfvIAQAAAAAAADqiwVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAg\nQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVC\nAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAA\nAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAg\nQXLruwP179xzz83JyanvXgBQW5544olmzZrVdy8aLjkI0LjJwYrJQYDGTQ5WTA4CNG6V5GAq\nwaZOneoSAaDR27RpU30HTgMlBwGSQA6WRw4CJIEcLI8cBEiCinMwJ5VK1XcP69P06dOLiooy\nuMM//OEPkyZNuvLKK0eMGJHB3VI3Vq5ceeGFF/bs2fP++++v775QHdddd93bb79933337b//\n/vXdF6ps1qxZv/jFL0488cSrrroqs3seOnRo06ZNM7vPRkMOUpwczHZyMKvJwXohBylODmY7\nOZjV5GC9kIMUJweznRzMavWVg0m/xejQoUMzu8OXX345hNC7d+9jjz02s3umDixbtiyE0Lp1\na8OXpTp06BBCGDx48ODBg+u7L1TZd999F0Lo0qWLAqxLcpDi5GC2k4NZTQ7WCzlIcXIw28nB\nrCYH64UcpDg5mO3kYFarrxxsUpcPBgAAAAAAANQvC4QAAAAAAACQIEn/DsKMe++99z788MOB\nAwfuu+++9d0XqmzTpk0vvPBCu3btfJQ+S7366qtfffXVsGHD2rdvX999ocq++OKLOXPm7LPP\nPoMGDarvvlB9cjCrycFsJwezmhxsHORgVpOD2U4OZjU52DjIwawmB7OdHMxq9ZWDFggBAAAA\nAAAgQdxiFAAAAAAAABLEAiEAAAAAAAAkiAXCjFm3bt2VV16599575+fnd+nSZdy4cStXrqzv\nThHLY489llOWX/3qV/XdNcq1Y8eOn/3sZ02bNi3zvszqseGrYASVZJZSd9lL0WUjOZjt5GDj\no+6yl6LLRnIw28nBxkfdZS9Fl43kYLZrODmYWxs7TaDt27cPGzbsnXfeOfPMMwcMGLB06dLH\nH3/8lVdeefvtt9u1a1ffvaMS69atCyGcd9553bp1K94+ZMiQeuoRlVi8ePH555+/ZMmSMn+r\nHhu+ikdQSWYjdZfVFF3WkYPZTg42Puouqym6rCMHs50cbHzUXVZTdFlHDma7hpWDKTLhnnvu\nCSHccccd6ZZJkyaFEK666qp67BUx3XzzzSGEt956q747Qizr169v0aLFoEGDlixZ0qxZs4ED\nB5bYQD02cJWOoJLMRuouqym67CIHs50cbJTUXVZTdNlFDmY7OdgoqbuspuiyixzMdg0tB91i\nNDMef/zx1q1b/9d//Ve65ZxzzunRo8cTTzyRSqXqsWPEES3Lt23btr47QiyFhYU//OEP58yZ\n06NHjzI3UI8NXKUjqCSzkbrLaoouu8jBbCcHGyV1l9UUXXaRg9lODjZK6i6rKbrsIgezXUPL\nQQuEGbB169YFCxYMHjy4WbNmxdsPP/zw1atXL1++vL46RkzpqisqKvr888/XrFlT3z2iIu3b\nt7/77rvz8vLK/K16bPgqHsGgJLOQust2ii67yMFsJwcbH3WX7RRddpGD2U4ONj7qLtspuuwi\nB7NdQ8tBC4QZ8NlnnxUVFXXt2rVE+1577RVCWLZsWX10iipYv359COHee+/t1KlT165dO3Xq\n1KtXrz/96U/13S+qQz02Akoy66i7bKfoGhP12Agoyayj7rKdomtM1GMjoCSzjrrLdoquMVGP\njUAdl2RuLe03UTZs2BBCaNmyZYn2Vq1apX9LQxYtyz/11FPXXHPNHnvssXjx4okTJ44ZM2bD\nhg0TJkyo795RNeqxEVCSWUfdZTtF15iox0ZASWYddZftFF1joh4bASWZddRdtlN0jYl6bATq\nuCQtEGZMTk5OiZborr6l22lobrrppiuuuOLEE09Mz57nn3/+gAEDrr/++osvvjg/P79+u0c1\nqMespiSzlLrLXoqu8VGPWU1JZil1l70UXeOjHrOaksxS6i57KbrGRz1mtTouSbcYzYA2bdqE\nslbgv/vuuxBC69at66FPVMUxxxxz5plnFn9vxQEHHHDSSSd988038+fPr8eOUQ3qsRFQkllH\n3WU7RdeYqMdGQElmHXWX7RRdY6IeGwElmXXUXbZTdI2JemwE6rgkLRBmQLdu3XJzc1esWFGi\nfenSpSGEnj171kenqKldd901hLBx48b67ghVox4bKyXZkKm7RknRZSn12FgpyYZM3TVKii5L\nqcfGSkk2ZOquUVJ0WUo9Nla1V5IWCDMgPz9/4MCBb7755ubNm9ONO3funDlzZteuXbt161aP\nfaNSGzdufOCBB5566qkS7YsWLQr/8w2uZBH1mO2UZDZSd1lN0TUy6jHbKclspO6ymqJrZNRj\ntlOS2UjdZTVF18iox2xX9yVpgTAzfvCDH2zevPmuu+5Ktzz00ENffvnluHHj6rFXxFFQUHDr\nrbeOHz/+gw8+SDf+9a9/nTVr1sEHH7zvvvvWY9+oHvWY1ZRkllJ32UvRNT7qMaspySyl7rKX\nomt81GNWU5JZSt1lL0XX+KjHrFb3JZkTfUElNVRUVDR06NDXXnvttNNOGzBgwOLFiydNmtS3\nb9833nijoKCgvntHJZ577rnTTz+9oKDg3HPP7dKly8KFC6dOndq6devp06cPGDCgvntHSTNn\nznzxxRej/7777rs7deo0duzY6Mef/vSnHTp0UI8NXKUjqCSzkbrLaoouu8jBbCcHGyV1l9UU\nXXaRg9lODjZK6i6rKbrsIgezXYPLwRQZsmHDhquvvnqvvfbKy8vbY489Lr/88rVr19Z3p4hr\nzpw5w4cPb9u2bW5ubpcuXS688MIlS5bUd6co22233VbehJYeNfXYkMUZQSWZjdRdVlN0WUQO\nZjs52Fipu6ym6LKIHMx2crCxUndZTdFlETmY7RpaDvoEIQAAAAAAACSI7yAEAAAAAACABLFA\nCAAAAAAAAAligRAAAAAAAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QAAAAAAACQIBYIAQAA\nAAAAIEEsEAIAAAAAAECCWCCExubee+/NyckZN25cfXcEAOqBHAQgyeQgAEkmB6FKLBBCdrj9\n9ttzYjjxxBPru6cAkHlyEIAkk4MAJJkchFqSW98dAGLp0KFDr169ird89NFHqVRqr732at68\nebqxa9euP/rRjy677LLcXNUNQOMhBwFIMjkIQJLJQaglOalUqr77AFRH8+bNt23b9tZbbw0a\nNKi++wIAdU0OApBkchCAJJODkBFuMQoAAAAAAAAJYoEQGpsSX8Z733335eTk3HzzzWvWrLnk\nkkt23333li1bDhw48Pnnnw8hrF+//oorrujatWuzZs169er18MMPl9jb7NmzzzzzzM6dO+fn\n53fu3PnMM8+cM2dOXT8lAIhNDgKQZHIQgCSTg1AlFgihkYvuxL1u3brhw4fPnj17yJAh3bp1\ne+edd84444x58+Ydf/zxU6ZMGTBgQN++fT/66KPx48f/7W9/S//tQw89dOSRR06dOrVPnz5j\nx47t3bv3lClTDj/88EceeaT+nhAAVIEcBCDJ5CAASSYHoWIWCKGRi76V94knnujVq9eiRYsm\nT568cOHCY489dseOHSeffHK7du2WLFny17/+9e2337744otDCH/84x+jP/zwww+vuOKK3Nzc\nl1566V//+tfDDz88ffr0F154ITc39/LLL//000/r81kBQDxyEIAkk4MAJJkchIpZIIRGLicn\nJ4SwZcuWe++9NwrFpk2bXnDBBSGElStX/va3vy0oKIi2vOiii0IIixcvjn6cOHHijh07xo8f\nf+yxx6b3duKJJ44dO3br1q2PPvpo3T4PAKgOOQhAkslBAJJMDkLFLBBCIvTr169jx47pH/fY\nY48QQufOnXv16lWiccOGDdGPr7zySgjh5JNPLrGr4cOHhxBeffXVWu4yAGSMHAQgyeQgAEkm\nB6E8ufXdAaAu7LnnnsV/bNq0aQihS5cupRt37twZ/fjJJ5+EECZOnPjUU08V32zNmjUhhGXL\nltVidwEgo+QgAEkmBwFIMjkI5bFACImQl5dXujH6ZH2ZUqnUpk2bQgjFv5u3uPQbagCg4ZOD\nACSZHAQgyeQglMctRoEy5OTktGzZMoTw9ttvp8oSvV8GABolOQhAkslBAJJMDpIcFgiBsu27\n774hhBUrVtR3RwCgHshBAJJMDgKQZHKQhLBACJRt6NChIYRnnnmmRPuHH3744osvbtmypT46\nBQB1RA4CkGRyEIAkk4MkhAVCoGyXXXZZXl7e5MmTn3766XTj6tWrzz333JNOOunPf/5zPfYN\nAGqbHAQgyeQgAEkmB0kIC4RA2Xr37n3fffcVFRWNHj36qKOOuuSSS0455ZR99tnn3XffHTNm\nzOjRo+u7gwBQi+QgAEkmBwFIMjlIQuTWdweAhmvChAkHHnjgb37zm9mzZ8+ZM6egoODggw++\n6KKLLrnkkiZNvL0AgEYkJEyiAAAgAElEQVRODgKQZHIQgCSTgyRBTiqVqu8+AAAAAAAAAHXE\nWjcAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQA\nAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAA\nAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLE\nAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQA\nAAAAAIAEsUAIAAAAAAAACWKBsHH697//nZOTk5OT8/HHH2dqn2+88Ua0z08++SRT+2wEauNQ\n15lHHnlk//33b9asWatWrR5++OH67g5AxsjBOiMHARogOVhn5CBAAyQH64wchGyXW98daFgK\nCwufffbZF154Ye7cuatXr960aVPr1q332WefIUOGjBkz5tBDD63vDkLGvPnmmz/4wQ9CCG3a\ntOnevXvTpk3ru0dA/ZODJIccBEqTgySHHARKk4MkhxyEiE8Q/j/Tpk3bb7/9Ro8e/eSTTy5Z\nsmT9+vWFhYXffvvtO++8c9999x122GGnnXbamjVr6rubdeS5557Lycl57LHH0i39+vWbN2/e\nvHnzunTpUn/9ImP+/Oc/hxA6duy4bNmyd95555JLLqnvHmVG6VMXiEkOFicHGz05CJQgB4uT\ng42eHARKkIPFycFGTw5CxALh//Xkk0+eeOKJy5cvb9my5TXXXDN37tz169fv3Llz9erVzzzz\nzBFHHBFCeO6554466qjvvvuuvjtbF+bMmVOipaCgoH///v3798/Pz6+XLpFZq1atCiEMGDCg\nQ4cO9d2XTCp96gJxyMES5GCjJweB4uRgCXKw0ZODQHFysAQ52OjJQYhYIAwhhPfee+/SSy8t\nKirq1avXwoUL77jjjsGDB7dp0yYnJ6dTp05nn332q6+++utf/zqE8P7771955ZX13d+6MHv2\n7PruArWrqKgohJCXl1ffHckwpy5UgxwszWTS6MlBIE0OlmYyafTkIJAmB0szmTR6chD+rxSp\n1MknnxxCaNmy5ZIlSyrY7Lzzzuvevfu11167c+fOVCr18ssvR8dw5cqVJbZ84oknQghNmzZN\nt7z99tvRxjt27Fi0aNGZZ57ZuXPnFi1a9OrV69e//nVRUVEqlVqyZMmFF16455575ufnd+3a\n9T//8z83btyY3kOVHu6tt96KNi7xjJYuXfqjH/2oT58+rVq1ys3N7dChw9FHH/3II49Ezygy\nYcKEEidJtOfXX389+nH58uWpVOq4444LIRxxxBFlHqvf/e53IYS8vLzVq1dHLVu3bn3ggQeG\nDh3avn37vLy8Tp06DR069MEHH9yxY0cFx7z00fv8888vv/zyfffdt1mzZrvssssxxxzzz3/+\ns/jGdTwu6UP98ccfL1iw4LzzzuvSpUt+fv5uu+129tlnz58/v/TTiXko5s6dG+25qKjo2Wef\njb4196GHHqr4WG3YsOHOO+/8/ve/H+28Q4cORx555L333rt58+b0NmPHji09Fdx1110V7DZO\nn2vplIg/+uWduqlUatOmTXffffeQIUPat2+fm5vbsWPHfv36XXvttUuXLq34eEJCyEE5KAfl\nICSZHJSDclAOQpLJQTkoB+UgiWWBMPXpp5/m5OSEEK666qqKt9y+fXvxH6s04S5atCjaeObM\nmbvsskunTp0GDhzYrl27qPGaa65577332rdv37Zt20GDBu22225R+ymnnFK9hyszCF955ZWC\ngoIQQm5ubr9+/Q499NBdd9012mzkyJHpLPzDH/4watSoJk2ahBAGDx48atSo0aNHp0oFYfSg\nOTk5n3/+eeljddhhh4UQTj/99OjH1atXDxgwINr+wAMPPOaYY3r06BHt7dBDD/3mm28qPvLp\no/fWW2916dKlefPmAwcO7NevX25ubgihSZMmL7zwQn2NS/pQT5o0qaCgoHnz5gMGDDjwwAOj\nA9isWbMZM2YU70P8Q7FgwYKoffbs2dEzDSH8r//1vyo4UEuXLo321qRJk549ew4dOrRHjx5R\nTw488MD0Abn//vtHjRq11157hRC6dOkyatSoUaNG/e1vfytvtzH7XEunRPzRL+/U3bBhQ79+\n/aLH6tOnz9ChQwcOHBi9RaigoKDEAEECyUE5KAflICSZHJSDclAOQpLJQTkoB+UgSWaBMJX+\n0s633367Sn9YpQl38eLF0cbdu3f/5S9/WVhYmEqltmzZcuaZZ0bV2K9fv8svv3zr1q2pVKqo\nqOjHP/5xtP2HH35YjYcrMwijieaQQw5Jv1Vh586dv//976Mtn3766eL7bNasWQjh0UcfTbeU\nCMKNGze2atWqzKl52bJl0ZZTp06NWoYNGxZCGDBgwIIFC9KbzZkzZ9999w0hnHPOORUe6f93\n9Pbbb7+LL754/fr1UfuiRYu6du0aQvj+97+f3riOxyV9qHfddddx48Zt2LAhal+yZEl0wLt3\n7x7ttqqHIt23E0888fjjj3/99deXL1/+1VdflXeUioqKomjp1atXunupVOrdd9/dfffdQwjD\nhw8vvv2YMWNCCCNGjKjw2Fehz7V0SlRp9FNlnbq33XZbNECLFi1KN37zzTcjR44MIey///6V\nHgFo3OSgHJSDFZOD0LjJQTkoBysmB6Fxk4NyUA5WTA7SuFkgTF177bUhhPz8/OKzVRzVm3BP\nOumk4lvOnz8/au/bt2/0we3Id999Fy34P/nkk9V4uNJBuHr16nPOOeeoo44q8cHzVCp10EEH\nhRDOP//84o2VBmEqlbrwwgtDCIcddliJHf7qV7+K5p3ovUXTpk2LjvBnn31WYssZM2ZE+/z4\n449T5UsfvcGDBxc/SqlU6s477wwh5OXlpT9/Xcfjkj7U/fr1K9G3F154IfrVyy+/HLVU6VCk\n+7b33ntv2bKlguMTee6556Lt586dW+JXTz31VPSr4qkTMwir1OfaOCWqNPqpsk7ds846K4Qw\nduzYEo+1Zs2aa6+99v7779+2bVvFBwEaNzkoB+VgBeQgNHpyUA7KwQrIQWj05KAclIMVkIM0\nek1C4q1duzaE0L59+6ZNm9bBw5199tnFf+zZs2f0HyNHjoxm2Ejr1q07d+4cQlizZk1GHrdT\np06TJk2aMWNGdEPk4vbff/8QwsqVK6u6zwsuuCCE8MYbb6xYsaJ4ezTtjhkzJvq08tSpU0MI\nRx555J577lliD0cddVT0cf5//OMfcR7x0ksvLX6UQgh9+vQJIezYseO7776rav+Lq/m4jB07\ntkTfjj322BYtWoQQZs2aFbVU71CMGTOmefPmlT6F559/Pur54MGDS/xq5MiRUTzEPM7FVanP\ntXpKVHv027dvH0KYNWtWiZO8Q4cOt99++3/8x3/k5+dX8OfQ6MlBORjkYPnkIDR6clAOBjlY\nPjkIjZ4clINBDpZPDtLo5dZ3B+pfdKPtoqKiunm4ffbZp/iP0URZuj39qx07dmTw0bdt2zZ9\n+vT3339/9erV0UeSQwjz5s0LIRQWFlZ1b8ccc8wee+zxxRdfPPPMMz/96U+jxvnz50c3R77o\noovSLSGE99577+ijjy69k82bN4cQPvjggziPGE18xUV3Dw8hbN++var9L67m4xJ9jL24vLy8\nfffdd9GiRUuXLo1aqncoSgdbmaJ7c0fveyqhWbNm3bt3f//999P3rY6vSn2u1VOi2qN/+eWX\nP/3000uXLj3ggAPOPvvs4cOHH3XUUVE6AkEOysEQghwsnxyERk8OysEgB8snB6HRk4NyMMjB\n8slBGj0LhKFjx44hhG+++Wbr1q1x3o9QQ7vsskuZ7ekvgK09f/3rXy+77LJVq1ZlaodNmjQZ\nM2bMnXfeOWnSpPSs96c//SmEMGDAgOjrT0MI33zzTQhh9erVq1evLm9X69ati/OI6XzKuJqP\nS6dOncrbbfp9HNU7FOnvTK5YtPPyOhz15Ntvv42zq9K7jdnnWj0lqj36/fr1mzZt2hVXXPHm\nm28+/PDDDz/8cE5OTv/+/c8555wJEybUQelBAycHq00OFicHgxyE7CQHq00OFicHgxyE7CQH\nq00OFicHgxwkO7nFaIiKs6ioaM6cOfXdl1o0d+7cs846a9WqVQMGDHj22WdXrVoV3fU4lUqN\nHTu22ruN7q389ttvf/zxxyGEVCr19NNPh2LviQj/816kMWPGVHCv2+gu2FmtzFsxRM89+v9Q\n3UNRpeuz9GOVEL0rqrzfVrrD+H1umKfEIYccMnfu3H//+9+33HLLEUcckZ+fP2/evJ/97Gfd\nu3f/5z//mcEHgmwkB+VgRsjBSMM8JeQgVEAOysGMkIORhnlKyEGogByUgxkhByMN85SQg1TA\nAmE46qijohv4/u///b8r3nL79u3333//hg0bKt3nli1bMtO5eOI83L333ltYWLjXXnu98sor\nZ5111m677Rbd9Tj8zyeXq6dPnz4HH3xwCOGZZ54JIcyePfvTTz/Nz88fPXp0epvovUhffPFF\ntR8lU2p1XMp8s8/69etDsbfh1Oqh6NChQ/ife8eXFr1HphqfH69qnxvyKTFw4MCbbrrp1Vdf\n/eabb55++ul9993322+/Pe+882K+UQsaKzkoBzNCDkYa8ikhB6FMclAOZoQcjDTkU0IOQpnk\noBzMCDkYacinhBykTBYIw+67737GGWeEEJ5++unXXnutgi1vuummyy+/vEePHtHslg6SrVu3\nltiyGnc0rlQNH+79998PIZx44oklPjNeVFQ0e/bsmnQs+v7VyZMnhxAmTZoUQjj55JOjSTkS\n3f150aJFdXND8zoel7SFCxeWaCksLFy2bFkIYb/99otaavVQRDuPbmNdwqZNm6L7fZd5J+44\nu61SnxvaKVFaQUHBqFGjZs+enZub+80337z++uv10g1oIOSgHMwIOZjW0E6J0uQgFCcH5WBG\nyMG0hnZKlCYHoTg5KAczQg6mNbRTojQ5SHEWCEMI4dZbb23VqtXOnTvPOOOMN954o8xtfvnL\nX955550hhB/96EdRlkSr/SGEDz/8sPiW33zzzR//+MeMd7KGDxd9eLl0NkycOPHLL78Mpb6O\nONo+zjf0jh49umnTpvPmzfvss8+mTJkSQrj44ouLbzBy5MgQwtdff/3ss8+W+Nuvv/66T58+\nP/zhD6ObL2dEHY9L2lNPPVWiZdq0adG7kI466qiopVYPxWmnnRZC+Pjjj0tf2UyaNKmwsLBJ\nkyYjRoyo6m6r0ef6PSVKnLpff/31FVdccfzxx2/cuLHElrvuumt0m4I6fmsbNEByMMjBGpOD\naXIQso4cDHKwxuRgmhyErCMHgxysMTmYJgfJMhXc6zZR/vKXv+Tn54cQmjZtOm7cuOnTp3/7\n7bc7d+5cs2bNM888M3jw4OhwnXLKKTt27Ij+ZMeOHW3btg0hDBkyZPXq1VHjp59+esQRR/Tq\n1SvaVXr/ixcvjvYwb968Eg8dtU+ZMqVEe/fu3UMId911VzUe7q233op2u2TJkqjl0ksvDSG0\na9duxYoV6R3efffdrVu3HjNmTAihc+fO6aeWSqX23HPPEMKll16abkm/m2D58uUlujp8+PAQ\nwrhx40IIu+22W/H9RI455pgQwi677PLyyy+nG5csWTJo0KAQQv/+/Xfu3Fl6UOIcvenTp0e/\nWrlyZTUOVM3H5c0334y2bNu27a233lpYWBi1f/HFF7179w4h9O3bt/izi38oKuhbmXbu3Pm9\n730vhNCzZ8+PP/443T5nzpzoXSoXXXRR8e2jcR8xYkSle67G8GXwlKjS6KdKnbqFhYV77713\nCOHUU08tvtnWrVuvueaaEELz5s3T5wkkmRyUgyX2LAer0ec0OQhZRw7KwRJ7loPV6HOaHISs\nIwflYIk9y8Fq9DlNDpJFLBD+P7NmzYpmrjLl5+f/7Gc/K1HPt99+e/Tbli1bDho06KCDDsrN\nzT3wwAOff/75EEJOTk56y5pPuFV6uNJB+NFHH7Vu3TqE0KpVqxNOOOGkk07q2LFjfn7+M888\n869//Sva+KCDDvrP//zPaPtolgwh7L333vvss8/cuXMrCMLoTSLRLcuvuuqq0sc2+hLg6M97\n9ep13HHH9evXL9p+zz33/OCDDyoemqpOhXU5LunvcH722WebN2++++67n3DCCUcffXSLFi2i\no/3mm29W71BUNQhTqdSKFSuisM/Ly+vXr99xxx3Xs2fPaCfHHnvshg0bim8cPwirMXwZPCWq\nOvqlT92ZM2e2bNky6s8BBxxw5JFHHnLIIVE5NGnS5JFHHqn0CEBCyEE5WFzMcZGDchAaDTko\nB4uLOS5yUA5CoyEH5WBxMcdFDspBsp0Fwv9PYWHhM888c8EFF/Ts2XOXXXbJzc1t377997//\n/f/+7//+5JNPyvyTRx555JBDDmnZsmXz5s179Ohx7bXXrlu3bt68eVEpbtu2LdosI0EY/+FK\nB2EqlZo/f/5pp53Wvn37/Pz8vffee8yYMenOXHXVVR06dCgoKDj33HOjlpUrV5566qlt2rRp\n0aJFr169Fi9eXEEQbt68uU2bNtFvFyxYUOaB2rZt2wMPPHD00Ud36NAhNze3TZs2hxxyyK23\n3rp+/foyty+uqlNh/ANV83FJd2Dr1q3z5s07++yzO3funJeXt9tuu40ePbrMkIh5KKoRhKlU\nauPGjXfeeedhhx0WncCdOnU64YQTnnjiifRbeNLiB2H8Pqdl8JSo6uiXPnVTqdSyZctuvPHG\ngw8+eNddd83NzS0oKOjdu/eECRPmz58f5+lDcshBOZgmB6vR5zQ5CFlKDsrBNDlYjT6nyUHI\nUnJQDqbJwWr0OU0OkkVyUv9T8AAAAAAAAECj16S+OwAAAAAAAADUHQuEAAAAAAAAkCAWCAEA\nAAAAACBBLBACAAAAAABAglggBAAAAAAAgASxQAgAAAAAAAAJYoEQAAAAAAAAEsQCIQAAAAAA\nACSIBUIAAAAAAABIEAuEAAAAAAAAkCAWCAEAAAAAACBBLBACAAAAAABAglggBAAAAAAAgASx\nQAgAAAAAAAAJkugFwt/97nd33HFHKpWq744AQD2QgwAkmRwEIMnkIAA5SY6Bjh07rl27trCw\nsGnTpvXdFwCoa3IQgCSTgwAkmRwEINGfIAQAAAAAAICksUAIAAAAAAAACWKBEAAAAAAAABLE\nAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQA\nAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhJmRSqUe\neOCBQYMGtWzZsnXr1ocffvizzz5b350ifPjhhwUFBTk5Oe+++27x9p07dz744IMHHXRQQUFB\nQUFBv379brvttu3bt5few0svvdSlS5ecnJwZM2aU/u3XX3/9k5/8ZL/99mvevHm0n1tuuWXT\npk219HSSYMOGDTfeeGPv3r1btGjRtm3b448/fubMmaU3W7FixdixY3fffffmzZv36NHjuuuu\nK37YO3funFOOQYMGpTeLfxpQsYrLJM42lU6hL7/8cnlj+sknn8TfD7XHwW9oKi66SifbOBNp\nzMmWaivvMiZUloOhKpcoceZwYoqZVt9+++0vf/nL/v37t2nTJhqdX/ziF5s3by5vt2WeCQqw\noZGD2aKCqTVUOCXGLHAyouYDEee1npfztaeGF6KRSq92TLwNiuFoODJyqRlzPzHLmZjiXOHH\nzME4GWf4akOlRz6DVzKZGsHc6j5Z/j+XXXbZQw89tOuuu55++ulFRUUvvfTSOeecc+edd/70\npz+t764lV1FR0UUXXbRly5YS7alU6pRTTnnhhRfatWt33HHHFRUVvfbaa9dff/2MGTP+8Y9/\n5OTkRJtt2bLlmmuu+f3vf5+Xl1fm/leuXDl48ODPP//8+OOPP/vss7dv3z59+vSbb755ypQp\nr7/+evPmzWv36TVGGzZsGDJkyIIFC7p27Xraaadt2bLlH//4x7/+9a/JkyePHDkyvdmiRYuO\nOOKI9evXDx06dM8993zjjTfuuOOOWbNmvfrqq02aNAkhnHLKKd9++22JnW/evPnFF19s3bp1\n9GPM04CKVVomMbepdApdt25dCKFv3769evUq8bctW7aMvx9qj4PfcFRadHEm2zgTaZxtqLby\nLmNCjByMeYkSZ36mSuKk1Zo1a4488sjFixfvs88+J5xwwubNm2fPnv3zn//8hRdemDVrVumx\nKO9MUIANjRzMChVMrZVOiTEvR6mhjAxEnNd6Xs7XkoxciIYYVzvBxNvAGI4GIlOXmnH2E7Oc\niS/OFX6cHIyTcYavNsQ58pm6ksnkCKYaqp1frdrx/JRq/y9VWFjpQ3To0CGEUBhjy4pNnz49\nhDBgwID169dHLStXruzatWt+fv7SpUtruHOq7fbbbw8h9O/fP4Qwb968dPtDDz0UQjjssMPS\n47Vq1aq99torhPD3v/89vVm/fv3y8vLuuOOOCy+8MIQwffr0Evv/8Y9/HEK4/vrrizeefPLJ\nIYQHH3ywtp5Vo3b99deHEE466aTNmzdHLbNmzWrZsmWnTp02bNgQtezcuXPAgAG5ubkvvPBC\n1FJYWHjGGWfk5OT87W9/q2Dn11xzTQhh5syZ0Y8xTwMqVmmZxNkmzhQajdfvfve7CjrT+KZi\nOUj1VFp0cSbbMpWYSKu9DXGUdxkTJwdjXqLEmcOpkjhpNXbs2BDClVdeWVRUFLWsXbt2//33\nDyE89dRTpbcv70woUyMrQDlIxlVQUJVOiXEKnJrLyEDEea3n5XwtyciFaJyrnSRMvHKQasjU\npWac/VT7dSVVUua/Z1acg3EyzvDVhjhHPlNXMhkcwYZ7i9HU2q+LXn2l2v8LRYV11tVozO64\n4442bdpELZ07d77hhhu2b9/+2GOP1Vk3KO7999+/+eabzzvvvEMPPbTEr/7+97+HEG6//fb0\neO22224TJkwIIbz++uvpzZo0aTJnzpxrrrmmvA+TLVmyJIQwYsSI4o3Dhw9P/4qqmjx5cgjh\n3nvvbdGiRdQyZMiQ//iP//j666+nTp0atUyfPv2dd9659NJLo0MdQmjatOkf//jH7777Lppw\ny/Tee+/dc889Y8eOPfLII6OWmKcBFau0TOJsE2cKjd5f07Zt2wo60/imYjlI9VRadHEm29JK\nT6TV24Y4KriMiZODMS9R4szhVEmctOrYsePpp59+yy23pD8A0b59++ifYD788MMSG1dwJpTW\n+ApQDpJZFRdUpVNinAKn5jIyEHFe63k5X0syciEa52onCROvHKQaMnWpGWc/1XtdSZWUvsKP\nk4NxMs7w1YY4Rz5TVzIZHMGGu0CYRWbMmNGiRYujjjqqeOMJJ5wQQnDr3noRfUB+l112+d3v\nflf6t1OnTt24ceMRRxxRvLF9+/YlNpszZ07F3+DSp0+fEMLixYuLNy5dujSE0Ldv3+r1POE+\n+eSTli1b9uzZs3jj0KFDQwjpry7429/+FkI477zzim/TqlWrVq1albfbVCo1fvz41q1b33XX\nXenGmKcBFau0TOJsE2cKjeKzXbt2NdwPtcTBb1AqLbo4k20JZU6k1diGOCq+jImTgzEvUeLM\n4VRJnLS6++67p0yZUuIuoKtWrQoh9OjRo3hjxWdCCQqwfsnBhq/Sgqp0SoxT4NRcRgYizms9\nL+drSUYuRONc7Zh4GxTD0XBk6lIzzn6q8bqSKinzCj9ODsbJOMNXG+Ic+UxdyWRwBC0Q1tT6\n9etXrly59957l7iP81577dWsWbMSJwR14/bbb3/rrbfuv//+jh07lrlBy5Yt02+BifzjH/8I\nIRx33HHplvTye3l+/OMf77333ldfffUDDzywaNGi+fPn33HHHffff/9hhx1W4kKWmJo3b75t\n27bCwv/vbW7RjPnRRx9FP86fPz+E0Lt375tvvrl79+7NmjXr1q3blVdeGU2vZXrmmWfmzp17\n7bXXdurUqXh7nNOAilVaJpVuE3MKjcZ3xYoVI0eObNeuXfPmzQ844IBbb71169atVdoPtcHB\nb2gqLcw4k20J5U2kVd2GOCq+jImTgzEvUeLM4VRJpWlVQmFh4bJly37+85/fd999gwYNOuec\nc4r/ttIL2uIUYD2Sg1mh0oKqdEqsaoFTPZkaiEpf63k5X0syciFa6dWOibdBMRwNVqYuNcvb\nTzVeV1IlZV7hx8nBOBln+GpDnCOfqSuZDI6gBcKair47tPQHj3JycnbZZZfS3yxKbVuwYMEt\nt9wyatSoM888M+afTJ48eerUqSeffHKV7si02267vfXWW0ccccQPf/jDvn379u/f/7rrrvvB\nD34wffr0/Pz8avU96QYOHFhYWBi9WzDtL3/5S/if2TOE8Nlnn+Xn548fP/7BBx8cNmzYxRdf\nnJ+f/9vf/nbo0KGlv1Q5hLBz585bbrmlY8eOl19+ecWPXr3TgBqKOYVGJ8AVV1yxaNGi4cOH\nH3744Z9++umNN954/PHHb9++Pf5+qA0OftaJM9kWF2cijT/ZUrFKL2Pi5KBLlPpSaVoVd9ZZ\nZ+Xl5XXv3v2RRx655557Zs2aVfyf1ap0QasA65ccbPiq8QqxtCoVOLWnegNR+rWerKwvGXnV\nb+JtUAxHw5SpS80K9lPV15VUSXlX+HFyME7GGb7aEOfIZ+pKJoMjmFulrSktujop8wqyWbNm\nhYWFhYWFubmOcx3ZsWPH2LFj27Zt+/vf/z7mn0yaNGns2LG9e/d+/PHHq/RYGzZsOP/88196\n6aUxY8accMIJO3bsePHFFydOnPjVV189+eSTzZo1q3r3k+6mm26aPn36hAkTioqKjj322E2b\nNj300ENPPvlkCDoF3SQAACAASURBVGHHjh3RNhs3bty+ffvy5cs//vjj6AYjW7ZsOfXUU6dN\nmzZx4sSrr766xD4nTZr0/vvv33777RXcgzTU4DSghmJOofvvv/+IESNOOeWU8ePHR99msWLF\nipNOOum111777W9/+9Of/rTS/dTy80g0OZh14ky2xcWZSGNOtlQszmVMnBx0iVJfKk2r4hsP\nGjRo06ZNX3755YIFC37zm9+0b9/+ggsuiH5V1QtaBVi/5GADV41XiGWqUoFTe6oxEGW+1pOV\n9SUjr/pNvA2K4WiYMnWpWcF+qvq6kiop7wo/Tg7GyTjDVxviHPlMXclkcAR9grCmCgoKQghl\nLvBu27YtLy9PCtalW2+9dd68eTHvxRRC+PWvf33eeecdcMABM2bMqOr3Sdx4440vvfTSb37z\nmyeffPKCCy645JJLnn322WuvvXby5Mm//e1vq9X9pBs6dOh///d/r1279uyzz27Xrt2ee+45\nceLEhx9+OISQvu9506ZNQwi33XZbOiBbtGjx61//OoTw5z//ufQ+77777ubNm1922WUVPG5N\nTgNqKOYUetNNNz3//PMTJkxIf9f9XnvtFd0o/6mnnoqzn1p7BsjB7BNnsi0uzkQaZxsqFecy\nJk4OukSpL5WmVXHXXXfdiy++OH/+/I8++qh169YXXnjhlClTol9V9YJWAdYvOdjAVbWgylOl\nAqf2VHUgynutJyvrS0Ze9Zt4GxTD0TBl6lKzgv1U9XUlVVLeFX6cHIyTcYavNsQ58pm6ksnk\nCKYSrEOHDiGEwsLCmuzku+++CyHsv//+JdoLCwvz8vI6d+5ck51TJfPmzcvLyzv//POLN06Y\nMCGEMG/evBIbb9u2bfTo0SGEU089dcOGDRXsduzYsSGE6dOnl2jv2LFjs2bNduzYUbzx008/\nDSEccsgh1X8aiff+++/ffffdN9xww2OPPbZ+/fr33nsvhDBy5Mjot9F3ui5cuLD4n2zZsiUn\nJ2e33XYrsavoqwvOOeec8h4r/mlAxcork0q3qckUunnz5uimJTXcT5LJwcat4sKseLJNq3Qi\njbkNlYp5GRMnB6t6iRJnDqfaiqdVed59990QwuGHH56q4gVtSgHWjBxs9KpaUKkqTolxCpzq\nqflAVPxaz8v52laTC9FKr3ZMvJkiBxOiJpea5e0nLebrSqqkqlf4JXIwfsYZvsyq9tVFNa5k\nIhkZQW/iqKnWrVt37dr1k08+2bZtW/HbUHz88cc7duzo169fPfYtaf785z/v2LHjySefjD5O\nW9zBBx8cQpg+ffrRRx8dQigsLBw1atTUqVOvuuqqO++8s8R3fsaxcePGNWvWdOnSpcQ7oaJ3\n30SVT/X07t27d+/e6R/ffPPNEEL//v2jH/fff/+FCxd+8cUXffr0SW8TzbylPyUW3Xn55JNP\nLvOBan4aUHM1mUK3bNmSSqWiO5mYiuuRg5+lKp5s0yqeSONvQ6ViXsZUmoMuURqa4mm1ZcuW\nmTNnFhYWlqiXfffdN4SwZMmSUJUL2ogCrHdysCGrakFVVfECpx6VHoiKX+vJynpXw1f9Jt4G\nxXA0HJm61Dz00EMr3U9azNeVVElVr/CL52CVMs7wZVBNri6qeiWTlpERtECYAccee+yjjz46\nbdq0ESNGpBufe+65EMJxxx1Xf/1KnCFDhlx11VUlGqdNmzZ//vwLL7ywU6dOXbt2jRrHjx8/\nderUX/3qVzfccEP1HqugoKCgoGDVqlUbNmwo/rndpUuXhhB23XXX6u024RYuXDhnzpxTTjll\n9913Tzc+8cQTIYRTTjkl+nHYsGGTJ09+/vnnjz/++PQ2b731Vgih+IQYefnll0MIRx11VJkP\nV/PTgIyodArdtm3baaedtmXLlhkzZqQ/gB9CePXVV0MI6dcbpuJ65OBnlziTbVrFE2n8bahU\nzMuYSnPQJUp9iZlWp512Wm5u7tdffx3djyvywQcfhP956Rj/gjaiABsCOdhgVbWgyhOzwKlt\n8Qei4td6srIeZepVv4m3QTEcDUemLjUr3U+o4utKqqS8K/w4ORgz4wxfxsU58pm6kgmZHcEq\nfd6wkcnIR+lTqdTcuXNzcnL69u27du3aqGXJkiUdOnRo3br1qlWratxNaqT0x+QnT54cQjj3\n3HNj7qG8O2OcffbZIYSrr7463VJYWHjeeeeFEG644YYadzyJJk6cGEK45JJL0i3RFyYfc8wx\n6ZZ169a1b9++RYsW6RH59ttvBw8eHEJ47LHHiu+tqKiooKCgVatWZT5WVU8DKlbtW4ym4k2h\nxxxzTAjhxhtv3LlzZ9SybNmyHj16hBCefPLJ+PuhBDnYuJVXdHEm20jFE2n8bai20pcxcXKw\nqpcobjGaKXHSKnq1Nnbs2K1bt0Yt69evjz7AdN1115W35/Lu+6QAa0gOJlP1bjEap8DJoJoM\nRJzXel7O17aaXIjGudox8WaEHGx8MnWpGWc/8V9XUiUVX+HHycE4GWf4akOcI5+pK5kMjmBO\nKpWq2opiI9KxY8e1a9cWFhZGX4BcE9dcc81dd93VoUOHYcOGbd++/eWXX968efOjjz4aXRJR\njy677LIHH3xw3rx56U/XHnjggQsXLjzqqKNKfxlv9+7d77jjjhDCjBkzoqIKIfz73/9esWLF\nkUce2alTpxBCt27d7rnnnhDCihUrvv/973/55ZdHHHHE0KFDd+7c+eKLL7799tsHHnjgrFmz\n2rRpU3dPsrHYtGnT9773vQULFgwYMODggw/+6KOPXnvttd13333OnDl77713erMpU6acffbZ\nTZs2HTFiRLNmzWbOnLly5crhw4c///zzxT9w/fnnn3ft2rV3797vv/9+6ceKcxpQsThlEmeb\nEGMKXbp06aGHHrp27dr99tvv4IMPXrdu3axZszZt2jRmzJjit8UwFVeVHGx84hRdzMk2VDaR\nxt+Gait9GRNi5GCcS5SY8zNVEietPvnkkyFDhnz55ZddunQZNGjQzp07X3/99bVr1x5wwAGz\nZ89u27ZtmXsu80wICrDG5GAylS6oOFNizMtRaiJTAxHntZ6X87UhgxeicV71m3hrTg42Ppm6\n1Iyzn/ivK6mSiq/w4+RgnIwzfLUhzpHP1JVMJkewqiuKjUmm3ikTeeSRRwYOHNiiRYvWrVsP\nHTr0n//8Z0Z2Sw2VfhdMNO5lGjhwYLTNo48+Wt42ffr0Se/qq6+++slPfrLffvs1a9asRYsW\nffv2/fnPf17et4YSx6pVqy677LKuXbvm5+fvscce48ePX7lyZenNZs+ePXz48LZt2zZr1uyA\nAw647bbbtm3bVmKbBQsWhPK/AzbOaUDF4pRJzFJKxZhCly9fPm7cuG7duuXl5bVp02bIkCGP\nPfZY+u028fdDcXKw8YlZdDEn24on0vjbUG3lfcyl0hys9BIl/vxMlcRJq6+++urHP/5xz549\nmzdv3rx58wMOOOCGG2747rvvKthteWeCAqwhOZhMpQsq5pQY83KUasvUQMR8reflfMZl9kI0\nzqt+E28NycFGKVOXmnH2E7OcqZJKr/BjvuKoNOMMX22Ic+QzdSWTqRH0CcLMvFMGALKOHAQg\nyeQgAEkmBwFoUvkmAAAAAAAAQGNhgRAAAAAAAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QA\nAAAAAACQIBYIAQAAAAAAIEEsEAIAAAAAAECCWCAEAAAAAACABLFACAAAAAAAAAligRAAAAAA\nAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QAAAAAAACQIBYIAQAAAAAAIEEsEAIAAAAAAECC\nWCAEAAAAAACABLFACAAAAAAAAAligRAAAAAAAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QA\nAAAAAACQIBYIAQAAAAAAIEEsEGZGKpV64IEHBg0a1LJly9atWx9++OHPPvtsfXcqoXbu3Png\ngw8edNBBBQUFBQUF/fr1u+2227Zv3158m6+//vonP/nJfvvt17x582ibW265ZdOmTeXt88MP\nPywoKMjJyXn33XeLt3/77be//OUv+/fv36ZNm2g/v/jFLzZv3lxbzy0ZVqxYMXbs2N133715\n8+Y9evS47rrrSgxNpoYvzqlClXTu3DmnHIMGDUpvFnMEKz0TIi+99FKXLl1ycnJmzJhRq8+O\nisnBhqbi0tiwYcONN97Yu3fvFi1atG3b9vjjj585c2aJbTI12VJt5R3S+EMTZ4Y0i2bQyy+/\nXF4OfvLJJ2X+SXmjHKdI42xDnZGDDVmcV22VbhPzQpeMiJ9NNXmtV9VLHeKrmwtR/yDToMjB\nhqPSCbBKiVbphBzzn26Ir0qHtIb/5mn4MitmccUZnThZmbF/2U4lWIcOHUIIhYWFNd/V+PHj\nQwi77rrr6NGjR40a1bZt2xDCnXfeWfM9UyU7d+486aSTQgjt2rU79dRTR4wY0aZNmxDC8ccf\nv3PnzmibL7/8cs8994war7/++quvvnrgwIEhhP79+2/ZsqX0PgsLCw877LCoXubNm5du//rr\nr3v37h1C2Geffc4666yTTjppl112CSEMHjx4+/btdfSEG52FCxe2a9euSZMmw4YNGzt2bK9e\nvUIIQ4YMKSoqijbI1PDFOVWoqnHjxp1ZyvDhw0MIRx99dLRNzBGs9ExIpVKbN2++4oorQgh5\neXkhhOnTp9fx820E5GCjVGlpfPfddwceeGAIoWvXrqNGjTr11FPz8/ObNGnyl7/8Jb1NpiZb\nqq28QxpzaOLMkGbRjHvmmWdCCH379i2dhqtXry69fXmjHKdI/w97dx4fNZk/cPyZzkynd0sP\n7lJuKIdKQURBEUFQFkQUVITlkgUUD1gQVxSvFwoIuCrgvYLALouCgKDIjdzIJYJcFSiHXAr0\noAe95vdHdrP5TduZdCZzZPJ5v/pHmjzJPJknz/PNkyeTqEkDl4iDRqCm16YmjZoTXXiuUrHJ\nk75eZU91oJLPTkS5IKMJ4mDwUdMAqoxoahpkNZduUCmV+ko9vOZJ8WlOTeVSUzpqYqWGV7YD\nd4DwcG7e2F9Puf13o8T1F6FVINy4caMQIi0tLSsrS5pz4cKF5OTk0NDQEydOeLhxVMonn3wi\nhGjXrp1cFhcvXkxJSRFCfPvtt9KcMWPGCCEmTJigXLFHjx5CiI8//rjsNqdMmSKdiTq0toMG\nDRJCjB49Wm43r1y50rRpUyHEwoULvbJ7wa60tDQtLc1isXz33XfSnOLi4oceeshkMq1YsUKa\no1XxqTlUoInx48cLIX744QfpXzUlqOZIsNvtN910k9VqnTp16sCBA4Py0jZxEO5xWTUmTJgg\nhOjevXteXp40Z+vWrZGRkUlJSTk5OdIcrRpbuK2ir1Rl0ahpIYO+FfU96ezi/fffV5m+olJW\nU0nVpNE74iA0oabX5nbPzuFEF56rVGzypK9X2VMdqOSzE1EjXJAhDsINbl/sKhvRXFZnlZdu\noF5lv1JP4iDF5zMOlUtN6aiJlRpe2Q7cAcIVf1wRG7e6/ZejIrxpFQj79esnhFi7dq1y5kcf\nfSSEmDhxoocbR6X06tVLCLFp0yblzLfeeksI8fLLL0v/SqeV27ZtU6aZPXu2EGLcuHEOG/zl\nl19sNlu/fv1GjBjh0NqOHTv2wQcfzM7OVqafPHmyEOK1117Tcq8MY/369UKIJ598UjkzJydH\neZ1Lq+JTc6jAcwcOHLBYLIMGDZLnqClBNUeC3W6/5ZZbdu/ebf9v5zD4Lm0TB+Eel1WjcePG\nQojjx48rZ44bN04IMX/+fOlfrRpbuMfJV6qyaNS0kEHfivre22+/LYSYN2+emsROSllNJVWT\nRu+Ig9CEml6bez27sie68Jz62ORhX69SpzpQz2cnoka4IEMchBvcu9hVbkRzWZ1VXrqBepX6\nSj2MgxSfb5StXGpKR02s1PDKNu8g1MCmTZvCw8M7duyonNmtWzchBC8C8bFly5Zdv379zjvv\nVM6Mj49X/tu8eXMhxJEjR5QzT5w4IYRo0aKFcmZJScngwYNjY2Pff//9sp81ffr0pUuXRkdH\nK2devHhRCNGwYUOPdsOoVqxYIYSQzixlUVFRUVFR8r9aFZ+aQwUestvtw4cPj46OnjZtmjxT\nTQmqORKEENu3b+eNLwGCOBhQXFaNjIyMyMjIRo0aKWd26tRJCCG/WEKrxhZucP6VqiwaNS0k\nrajmMjMzhRBVqlRxmdJ5KauppGrSwGeIg4FMTa/NjZ5duSe68JzK2OR5X0/9qQ4qxWcnolyQ\nCSjEwcDhxsWuiiKay+qs8tIN1FP/lXoeByk+Hyi3cqkpHTWxUsMr2xY31oFSVlbWhQsXUlNT\npScyy1JSUmw2m8MJDXwgMjLSYc73338vhLj33nulf8eMGbNo0aJx48YVFhbeddddxcXF33//\n/QcffNCuXTuHZnHKlCm7d+9evHhxYmKi8w8tLi4+c+bMvHnzZs6c2aZNm0ceeUS7HTKQAwcO\nCCFSU1NfffXVBQsWnDt3rlq1ag899NBrr70mPb9eaFp8Lg8VeOjLL7/ctWvXlClTkpKS5Jlq\nSlDNkSCECA8P9/EeoVzEwUDjsmqEhYXl5eUVFxdbLP87D5SGNI4fPy79641YCZWcf6Uqi0ZN\nC0krqjlpgPD06dO9e/fetGlTfn5+/fr1+/fvP3bs2LCwMGVK56WsppKqSQPfIA7qiJpem8qe\nXbknuvCcytjkeV9P/akOKsXHJ6ISLsj4F3Ew0FT2YldFEc1ldVZ56Qbqqf9KPY+DFJ8PVFS5\nXJaOyr6eVle2GSD01LVr10R5w7Mmkyk2Nvbq1av+yBT+Z/HixcuWLevRo8ddd90lzalWrdru\n3buHDh361FNPyclGjRo1ffr00NBQec7BgwffeOONRx999OGHH3b+EX369FmyZIkQIjk5+Z13\n3hk5cqTDWRFUOnv2bGho6PDhw7dv3/7AAw+EhISsW7fuvffe++GHH7Zv3y6dmmhefLKyhwo8\nUVpa+sYbbyQmJo4aNUo5X00JqjkSEDiIg7rTunXrjRs3rlixonfv3vLMr7/+Wvx3eEN4s7GF\ncy6/UpVFA7+QatDTTz/dqFGj+++///Llyzt37nz55ZdXr169bt06uYBclrKaSqomDXyDOKgX\nanptKnt2FZ3owjc06esRT/1FwxNRCRdk/I44GOCcX+zyJKJx6UZzKr9STeIgxedt6itX2dJx\nr6/n9pVtBgg9lZ+fL4Qo9wzSZrMVFxc7DPbClxYtWjRo0KDU1NR58+bJM3NycgYMGLB69er+\n/ft369atqKho1apVs2fPvnTp0oIFC2w2mxCiqKho0KBBcXFxs2bNcvkpbdq0yc3NPX/+/MGD\nB2fMmBEfH//nP//Zi3sVvK5fv15YWHjq1Klff/1V+kl7fn7+Aw88sG7dutmzZ0uPWta8+CTl\nHirwxKJFiw4fPjxlyhSHpxOoKUE1RwICB3FQdyZOnLhx48YRI0aUlJR06dIlNzf3k08+WbBg\ngRCiqKhISuOlxhbOqflK1RQN/KVp06Z/+tOfevbsOXz4cJPJJIQ4ffp09+7dt2zZ8t577z3/\n/PNCXSmrqaRq0sA3iIN6oabXprJnV9GJLnxAq74e8dRftDoRlXFBxu+Ig4HM5cUuTyIal240\np+Yr1SoOUnzeprJylVs6bvT1PLqyXak3FvqSXl7Gm5GRIYRo37592UVVq1a1Wq2ebByeePPN\nN00mU6tWrS5duqSc/+yzzwohZsyYoZz5wgsvCCGmTp0q/fvqq68KIRYvXiwnKPvG17LS09Ob\nNWsmhPj666+12w8DqVWrlhBi1apVypk//vijEKJdu3bSv94ovooOFXgiLS0tLCwsMzPTYb6a\nElRzJChV9MZsvSMOwkNOqsYrr7wSEvK/F1EnJCRIbyC49dZbpQTei5VwQs1XqqZolNS0kMHa\nigaIdevWCSFatWol/auy4rispCrT6BpxEF6iptfmPE1FJ7rQUEWxSau+XmXjKSrL2yeiZQXf\nBRniIDyk5mKXmohWUXWu7KUbuKTmK9UqDlJ83qamcjmppJXq63l4ZTtwBwh9QJNAmJ2dLYRo\n2rSpw/zi4mKr1Vq9enVPNg733Lhx4/HHHxdCPPDAAzk5OQ5LExMTbTZbUVGRcuaZM2fkOrZ/\n/36r1TpgwABlApUXPX/66SchRIcOHbTYD8OR3jd+6NAh5cz8/HyTyVStWjXpX22Lz/mhArdJ\njzJ/5JFHyi5yWYJ2dUeCEpe23UYcDG7Oq8bhw4enT5/+0ksvzZ07Nysr6+effxZC9O7dW1rq\n1ViJcqn8StW0okoMEPpdXl6e9IgteyUrjvNKqj4NnCAOGpaaXltFaZyc6EJD5cYmDft6lY2n\nqCyvnohWhAsylUUcDFYqL3apjGgVVefKXrqBSy6/Ug3jIMXnVS4rl5pKqqavp8mVbX7i7ano\n6Ojk5OSMjIwbN24oH3Tw66+/FhUV3XTTTX7MmzEVFxc/+uijy5YtGzt27Ntvv60cbBdCXL9+\n/Y8//qhZs6bD8w2kd7pKZ5xLliwpKipasGCB9NNdpVatWgkhNm7ceNttt/3www/FxcU9evRQ\nJqhfv74QIj093Qt7FvyaNm166NCh3377rXnz5vJMqVcgvUVAq+K7++67hatDBZ6QnovtUDuE\nuhIUKo4EBBTioE6lpqampqbK/0q3Ct5yyy1C68YWKqn5Stu0aaOmFUVAyc/Pt9vt0nO3KlVx\nnFRSmZo08DbiYCDLz8932WtTk0apohNd+IBWfT2VvRJ4j4cnopWttvAq4mCgUX+xy8OIxqUb\nzbn8SjW85knxeZXzyqWykrrs62l1ZZsBQg106dJlzpw569at+9Of/iTP/Oabb4QQ9957r//y\nZVDDhw9ftmzZpEmTXnrppbJLIyIiIiIiLl68mJOTEx0dLc8/ceKEEKJq1apCiPbt248dO9Zh\nxXXr1h04cGDgwIFJSUnJyclCiF69elkslt9//z0iIkJOdvToUfHfM1dUVufOnRcvXrxy5cqu\nXbvKM3fv3i2EkBpEDYtPuDpU4Im1a9cKITp27OgwX00JChVHAgINcVBfDh06tH379p49e9ao\nUUOeOX/+fCFEz549hdaNLVRS85WqbEXhFzdu3OjVq1d+fv6mTZukFxBKNm/eLISQro6prDgu\nK6nKNPAZ4mAgU9Nrq1TPrqITXfiAVn094qkfaXIiKrggE2CIgwFF/cUuDyMal2405/Ir1fCa\nJ8XnVc4rl8vSUdnX0+zKtns/PAwOmvyU3m6379q1y2QytWjR4sqVK9Kc9PT0hISE6Ojoixcv\nepxNVMLixYuFEI899piTNH379hVCjBs3Tp5TXFzcr18/IcRLL71U0Vplf68tVchBgwYVFBRI\nc7KysqTbNP72t795vCtGlJmZGR8fHx4eLj+44Nq1a23bthVCzJ07V5qjVfGpOVTgnpKSkoiI\niKioqHKXqilBNUeCEg/HcxtxMLhVVDVmz54thBg6dKg8R3q9+T333CPP0aqxhYfKfqWVLRoe\nMepL99xzjxDi5ZdfLi0tleacPHmyYcOGQogFCxZUtFbZUlZTSdWkgUvEQSNQ02tT37NzfqIL\nDamPTe719dw71YF63j4R5YKMJoiDwUf9xS71Ea2i6lzZSzdwyb2v1L04SPF5j/PKpaZ01MRK\nDa9sm+x2u0cDjHqWmJh45cqV4uJis9ns4abGjx8/bdq0hISEzp07FxYWrl27Ni8vb86cOVIb\nCp9p2bLloUOHOnbsWPaWsQYNGkydOlUIcfr06TvuuOP8+fN33nlnp06dSktLV61atXfv3pYt\nW27dujUmJqbcLY8cOfLjjz/ev3+//EvejIyM9u3bnz9/vmbNmm3atCktLd2xY8eVK1eaNWu2\nbdu2uLg4r+5psFq6dGnfvn3NZvOf/vQnm832ww8/XLhw4f7771+5cqX0Q2mtik/NoQL3nDt3\nLjk5OTU19fDhw2WXqixBl0fCpk2bpOgohNizZ8/p06fvuuuupKQkIUSdOnXeeecdX+2uvhEH\ng4+aqpGbm3v77bcfPHgwLS2tVatWx48f37JlS40aNbZv3163bl1pXa0aW3io7FeqpmjUHAa0\not5w4sSJ22677cqVK40bN27VqlVmZubWrVtzc3P79+9f9ilAsrKlrKaSqkkDl4iDRqCm16a+\nZ+f8RBceci82udfXc+9UB8758kSUCzKaIA4GH/UXu5xHNJUNsstLN6gsN75St695Unxe4rxy\nqSkdNbFSyyvbno8x6pdWd8pIPv/889atW4eHh0dHR3fq1GnNmjWabBaVIpVpuVq3bi0nu3Tp\n0l//+tfGjRvbbLbw8PAWLVq89tprzt/kWe6vIi5dujRmzJhGjRqFhYWFhYU1a9bspZdeys7O\n9tbuGcO2bdvuv//+uLg4m83WrFmzyZMn37hxQ5lAk+JTeajADQcPHhRO3x6vsgSdHwlz5syp\nqASbN2/urX0LOsTB4KOyaly8eHHkyJHJycmhoaG1atUaPnz4hQsXHDalVayEJyo6/XBeNGoO\nA1pRLzl16tSwYcPq1KljtVpjYmLat28/d+5c+QeF5Sq3lNVUUjVp4Bxx0CDU9NpU9uxcnujC\nE+7FJrf7em6c6sA5H5+IckHGc8TB4KP+YpfziKa+QXZ5EQ+VVdmv1JNrnhSfNzivXCpLx2Ws\n1PDKNr8g1OZOGQAAdIc4CAAwMuIgAMDIiIMAAH4uCgAAAAAAAAAAABgIA4QAAAAAAAAAAACA\ngTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACAgTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACA\ngTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACAgTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACA\ngTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACAgVj8nQH/27dvX0gIA6UAELRatWpFO+8EcRAA\nghtx0DniFGFJuQAAIABJREFUIAAEN+Kgc8RBAAhuzuOgyW63+zI3AaVz586bNm0qLS3VcJtW\nq9VqtRYWFhYXF2u4WfiGyWQKDw8vLS0tKCjwd17gDpvNZjabCwoKtK3X8A2z2Wyz2YqLiwsL\nC7Xdcm5ubkREhLbbDA7EQTggDuodcVDXiIO+RxyEA+Kg3hEHdY046HvEQTggDuodcVDX/BUH\nDf0LwvXr1/fs2VPbJi8vL+/GjRsRERE2m03DzcI3SktLs7KyzGZzTEyMv/MCd1y/fr2oqCgm\nJsZsNvs7L6i0wsLC3Nzc0NDQyMhIbbfM8VAR4iAcEAf1jjioa8RB3yMOwgFxUO+Ig7pGHPQ9\n4iAcEAf1jjioa/6Kg4b+BaE3vP/++/PmzZswYcJDDz3k77yg0n777bdevXo1bdp0wYIF/s4L\n3PH000/v3Lnziy++aN68ub/zgkrbsGHD+PHjH3jggVdeecXfeYH7iIO6RhzUO+KgrhEHgwNx\nUNeIg3pHHNQ14mBwIA7qGnFQ74iDuuavOMgzpgEAAAAAAAAAAAADYYAQAAAAAAAAAAAAMBBD\nv4PQG6pWrZqamlqlShV/ZwTusFqtqampdevW9XdG4KY6depkZWWFh4f7OyNwR0xMTGpqao0a\nNfydEXiEOKhrxEG9Iw7qGnEwOBAHdY04qHfEQV0jDgYH4qCuEQf1jjioa/6Kg7yDEAAAAAAA\nAAAAADAQHjEKAAAAAAAAAAAAGAgDhAAAAAAAAAAAAICBMEAIAAAAAAAAAAAAGAgDhJrJzMwc\nPXp03bp1Q0NDa9asOWzYsAsXLvg7U1Bl7ty5pvJMmjTJ31lDhYqKil588UWz2dymTZuyS6mP\ngc9JCVIldYp6p19UOj0iDuodcTD4UO/0i0qnR8RBvSMOBh/qnX5R6fSIOKh3gRMHLd7YqAEV\nFhZ27tx53759Dz/8cFpa2okTJ+bNm7dhw4a9e/dWqVLF37mDC5mZmUKIfv361alTRzm/ffv2\nfsoRXDhy5MiAAQPS09PLXUp9DHzOS5AqqUfUO12j0ukOcVDviIPBh3qna1Q63SEO6h1xMPhQ\n73SNSqc7xEG9C6w4aIcW3nnnHSHE1KlT5TmLFi0SQowdO9aPuYJKr776qhBi9+7d/s4IVMnK\nygoPD2/Tpk16errNZmvdurVDAupjgHNZglRJPaLe6RqVTl+Ig3pHHAxK1Dtdo9LpC3FQ74iD\nQYl6p2tUOn0hDupdoMVBHjGqjXnz5kVHRz/33HPynEceeaRhw4bz58+32+1+zBjUkIbl4+Li\n/J0RqFJcXPzUU09t3769YcOG5SagPgY4lyVIldQj6p2uUen0hTiod8TBoES90zUqnb4QB/WO\nOBiUqHe6RqXTF+Kg3gVaHGSAUAMFBQUHDx5s27atzWZTzu/QocPly5dPnTrlr4xBJbnWlZSU\nnDt37o8//vB3juBMfHz89OnTrVZruUupj4HPeQkKqqQOUe/0jkqnL8RBvSMOBh/qnd5R6fSF\nOKh3xMHgQ73TOyqdvhAH9S7Q4iADhBo4e/ZsSUlJcnKyw/yUlBQhxMmTJ/2RKVRCVlaWEOLd\nd99NSkpKTk5OSkpq0qTJv/71L3/nC+6gPgYBqqTuUO/0jkoXTKiPQYAqqTvUO72j0gUT6mMQ\noErqDvVO76h0wYT6GAR8XCUtXtquoeTk5AghIiMjHeZHRUXJSxHIpGH5hQsXjh8/vlatWkeO\nHJk9e3b//v1zcnJGjBjh79yhcqiPQYAqqTvUO72j0gUT6mMQoErqDvVO76h0wYT6GASokrpD\nvdM7Kl0woT4GAR9XSQYINWMymRzmSE/1LTsfgWbixIlPP/30fffdJ7eeAwYMSEtLmzBhwpAh\nQ0JDQ/2bPbiB+qhrVEmdot7pF5Uu+FAfdY0qqVPUO/2i0gUf6qOuUSV1inqnX1S64EN91DUf\nV0keMaqBmJgYUd4IfHZ2thAiOjraD3lCZdxzzz0PP/yw8t6KZs2ade/e/erVqwcOHPBjxuAG\n6mMQoErqDvVO76h0wYT6GASokrpDvdM7Kl0woT4GAaqk7lDv9I5KF0yoj0HAx1WSAUIN1KlT\nx2KxnD592mH+iRMnhBCNGjXyR6bgqapVqwohrl+/7u+MoHKoj8GKKhnIqHdBiUqnU9THYEWV\nDGTUu6BEpdMp6mOwokoGMupdUKLS6RT1MVh5r0oyQKiB0NDQ1q1b//jjj3l5efLM0tLSH374\nITk5uU6dOn7MG1y6fv36hx9+uHDhQof5v/zyi/jvG1yhI9RHvaNK6hH1TteodEGG+qh3VEk9\not7pGpUuyFAf9Y4qqUfUO12j0gUZ6qPe+b5KMkCojSeeeCIvL2/atGnynE8++eT8+fPDhg3z\nY66gRkRExJtvvjl8+PCjR4/KM5cvX75169ZWrVrVr1/fj3mDe6iPukaV1CnqnX5R6YIP9VHX\nqJI6Rb3TLypd8KE+6hpVUqeod/pFpQs+1Edd832VNEkvqISHSkpKOnXqtGXLll69eqWlpR05\ncmTRokUtWrTYuXNnRESEv3MHF7755psHH3wwIiLiscceq1mz5qFDh5YtWxYdHb1x48a0tDR/\n5w6Ofvjhh1WrVknT06dPT0pKGjRokPTv888/n5CQQH0McC5LkCqpR9Q7XaPS6QtxUO+Ig0GJ\neqdrVDp9IQ7qHXEwKFHvdI1Kpy/EQb0LuDhoh0ZycnLGjRuXkpJitVpr1ao1atSoK1eu+DtT\nUGv79u33339/XFycxWKpWbPmwIED09PT/Z0plG/y5MkVNWhyqVEfA5maEqRK6hH1TteodDpC\nHNQ74mCwot7pGpVOR4iDekccDFbUO12j0ukIcVDvAi0O8gtCAAAAAAAAAAAAwEB4ByEAAAAA\nAAAAAABgIAwQAgAAAAAAAAAAAAbCACEAAAAAAAAAAABgIAwQAgAAAAAAAAAAAAbCACEAAAAA\nAAAAAABgIAwQAgAAAAAAAAAAAAbCACEAAAAAAAAAAABgIAwQAsHm3XffNZlMw4YN83dGAADw\nA+IgAMDIiIMAACMjDgKVwgAhoA9TpkwxqXDffff5O6cAAGiPOAgAMDLiIADAyIiDgJdY/J0B\nAKokJCQ0adJEOef48eN2uz0lJSUsLEyemZyc/Mwzz4wcOdJioXYDAIIHcRAAYGTEQQCAkREH\nAS8x2e12f+cBgDvCwsJu3Lixe/fuNm3a+DsvAAD4GnEQAGBkxEEAgJERBwFN8IhRAAAAAAAA\nAAAAwEAYIASCjcPLeGfOnGkymV599dU//vhj6NChNWrUiIyMbN269cqVK4UQWVlZTz/9dHJy\nss1ma9KkyaeffuqwtW3btj388MPVq1cPDQ2tXr36ww8/vH37dl/vEgAAqhEHAQBGRhwEABgZ\ncRCoFAYIgSAnPYk7MzPz/vvv37ZtW/v27evUqbNv376HHnpo//79Xbt2Xbp0aVpaWosWLY4f\nPz58+PAVK1bI637yySd33XXXsmXLmjdvPmjQoNTU1KVLl3bo0OHzzz/33w4BAFAJxEEAgJER\nBwEARkYcBJxjgBAIctJbeefPn9+kSZNffvll8eLFhw4d6tKlS1FRUY8ePapUqZKenr58+fK9\ne/cOGTJECPHFF19IKx47duzpp5+2WCyrV69ev379p59+unHjxu+++85isYwaNerMmTP+3CsA\nANQhDgIAjIw4CAAwMuIg4BwDhECQM5lMQoj8/Px3331XCopms/nPf/6zEOLChQvvvfdeRESE\nlHLw4MFCiCNHjkj/zp49u6ioaPjw4V26dJG3dt999w0aNKigoGDOnDm+3Q8AANxBHAQAGBlx\nEABgZMRBwDkGCAFDuOmmmxITE+V/a9WqJYSoXr16kyZNHGbm5ORI/27YsEEI0aNHD4dN3X//\n/UKIzZs3eznLAABohjgIADAy4iAAwMiIg0BFLP7OAABfqF27tvJfs9kshKhZs2bZmaWlpdK/\nGRkZQojZs2cvXLhQmeyPP/4QQpw8edKL2QUAQFPEQQCAkREHAQBGRhwEKsIAIWAIVqu17Ezp\nl/Xlstvtubm5Qgjlu3mV5BtqAAAIfMRBAICREQcBAEZGHAQqwiNGAZTDZDJFRkYKIfbu3Wsv\nj3S/DAAAQYk4CAAwMuIgAMDIiIMwDgYIAZSvfv36QojTp0/7OyMAAPgBcRAAYGTEQQCAkREH\nYRAMEAIoX6dOnYQQX375pcP8Y8eOrVq1Kj8/3x+ZAgDAR4iDAAAjIw4CAIyMOAiDYIAQQPlG\njhxptVoXL17873//W555+fLlxx57rHv37kuWLPFj3gAA8DbiIADAyIiDAAAjIw7CIBggBFC+\n1NTUmTNnlpSUPP744x07dhw6dGjPnj3r1av3008/9e/f//HHH/d3BgEA8CLiIADAyIiDAAAj\nIw7CICz+zgCAwDVixIiWLVvOmDFj27Zt27dvj4iIaNWq1eDBg4cOHRoSwu0FAIAgRxwEABgZ\ncRAAYGTEQRiByW63+zsPAAAAAAAAAAAAAHyEsW4AAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAULAp1auXGn6r7lz5yoX7dy5U140ffp0zT/6p59+krc/ZcoUzbfv7fzLzp49O2rUqMaNG0dG\nRoaGhlarVu2VV17x3sf5l8++VQBAubwdPQHA4Jz0j/Tl3Llz8o6MGzfO39nxlJPwR2QEgCBD\nLDasoCl6eMLi7wwAQCUcOHCgU6dO165dk+dcvnz55MmTfswSAAAAAAAAAAD6wgAhAD0ZOXKk\ncnTQbDaHhPBLaAAAAAAAAAAAKoEBQiBQVK9efdSoUdJ0q1at/JsZN/gg/5cuXdq5c6c0HRUV\nNWfOnN69e5vN5ry8PG98nG/cd999q1evbtKkydGjR8su1ftRAQBucN4wAgDgF4QnAAD8i1gM\naI4BQiBQ1K1bd9asWf7Ohft8kP8zZ87I00OGDOnTp480HRER4dXP9R673f7jjz86SaD3owIA\nKstlwwgAgO8RngAA8C9iMeANPJoPgG5cunRJnr7pppv8mBOtpKenK5+YCgCgYQQABCDCEwAA\n/kUsBryBAUIAulFcXCxPR0VF+TEnWtm1a5e/swAAgYWGEQAQgAhPAAD4F7EY8AYGCAHAbzi5\nAQAHNIwAgABEeAIAwL+IxYA3MECoJ3v27DH918aNG6WZhw8fHjp0aN26dW02W0REROPGjYcP\nH/7LL78oVywtLV28eHG3bt2SkpKsVmt8fPxtt902adKkrKwsh4/o0aOH/BH79u1zmaXVq1fL\n6UePHl02QUlJydKlS0eMGNGyZctq1aqFhobGx8c3atTowQcfnDVr1uXLl9XseGFh4cKFCx99\n9NGWLVsmJCTYbLYaNWp06dJl2rRpV69edbn6b7/9Nm3atJ49e9arVy82NtZiscTGxjZs2LBv\n376ffvppbm5uRSvu2LFD3rvNmzcLIa5evfrcc8/Vq1fPZrNVrVr12LFjDqvY7favv/66b9++\n9evXj4iIiI+Pb9GixeDBg+XycmLnzp3yx02fPl3z3fE2J/kv99C9evXq5MmT27ZtGxcXZ7Va\nExISWrduPW7cuFOnTjls+aOPPpLW7d27tzyzX79+8jYHDBhQNj++LHdRyaN07ty50vZnz54t\nzTl27Jj8odWrV1fzrSq5XdE8LBoAqMiJEycmTZp03333paSkREdHWyyWmJiYhg0bPvDAAzNn\nzvz9998d0qtvGN1rpTU5IXFixYoVZrNZylW9evUuXLhQbrJNmzaNHj26devWUh4SExObNWvW\nt2/fBQsW5OTkeJgHAAhAnvSPHHjehLrRQVAfnpRCQv5zpeXcuXMTJky4/fbba9eubbPZkpKS\n0tLSXnjhhdOnT1d2993jx86jv3rxK1eulAvos88+c/IRcuGaTKbvv/++3DSVPZ8pF9EfgH8R\ni/0biysVEB988EF51/bs2eNy4//85z/l9K+++qrDUg2LHsHMDv1QDvutWLHCbre//vrrJpOp\nbLFaLJYFCxZIa50/f/7mm28ut/Rr16597Ngx5UcsWbJEXvrss8+6zNLQoUPl9Hv37nVYumbN\nmqZNmzo5/CIjI1955ZXi4mInH7F27dq6des62cLMmTMrWrewsHD8+PFWq9VJHhITE5ctW1bu\n6vv375eTrVy5MisrKzU1Vbnu/v37lekvXLjQqVOnij6oa9eumZmZK1askOfMmTNHufqOHTvk\nRdOmTfPq7kyePNnJd+4eJ/kve+h++eWXERER5e6C1Wr9/PPPlat/+OGHTnZZCNG/f39leh+X\nu73yR+mcOXOc5K1atWpqvlWZJxXNw6IBgLLy8/OffPJJuT9WUbs0derU0tJSeS31DaMbrbQn\n7aSa6Llnz57IyEgpTWJiosPJleTw4cPt2rVzkofq1av/+9//ducbB4BA5WH/SOZ5E+p2B0F9\neDp79qw8/8UXX7Tb7V988UV4eHi5K4aFhX3xxReefr9Oea/zqCYy+rEXrzyiPv30UydfkbJw\nV61a5bDUvfMZB0R/AH5HLPZjLLZXPiAuWrRIXvq3v/3N5fYfeOABOb1DP1SrokfQY4BQT9LT\n0+VK++WXX86YMUOaNplMVapUsdlsynoeGhp69OjRq1evNmjQQJpjsVji4+PNZrMy2c0336y8\nHFZYWJiYmCgtSkxMLCwsdJKfoqKi+Ph4KXHz5s0dln7++ecOn5WcnJyWltakSZPQ0FDl/Ice\neqiiD5o3b57DRsxmc1hYmEOjNnr06LLrlpaW9uzZ0yFlTExMnTp14uLilDNNJtNXX31VdgtH\njx6V0yxatGjcuHEOW1NegszOznYYiK1SpcrNN9+cmpoqD7fccccdy5YtkxNUaoDQ893x4wCh\nw6G7cOFCuaMl/YbDYrEodyEkJGTLli3y6itWrOjcuXPnzp1vuukmOU2LFi06/5dyd3xc7na3\njtLVq1dLOZcvKEdERMi707dvXzXfqsTDiuZh0QCAg9LS0q5duyrbDYvFkpyc3KBBg9jYWIeG\nccyYMfKK6hvGyrbSHraTLqNnRkaGfNdqZGTkrl27yqZZs2ZNdHS08rNq166dlpbWqFEjh7xN\nmTLFowIAgIDhef9I4nkT6kkHQX14Ul6UfOONNxYsWCDfyxsaGlqlShWHoaaQkJAffvhB069c\nm12WeDJA6N9evCYDhG6fzygR/QH4HbHYj7HY7lZAzMvLi4qKkuY3atTI+fazs7Pl4YA2bdo4\nLNKk6GEEDBDqSUZGhlxpX3/99fDw8Li4uNmzZ2dlZdnt9pKSkq1bt7Zs2VJOM2LEiOHDhwsh\n0tLS1qxZIw0E5ubmLliwQNmsf/PNN8pPee655+RFFd2UJ1m1apWccurUqcpFO3fulFvAkJCQ\nsWPHnj17Vl6am5s7Z86catWqyau/+uqrZbe/a9cu+b4Sm8322muv/frrryUlJXa7/cKFC++8\n847cYgohFi1a5LC6/MNzIUTVqlU/+uijK1euyEvT09NHjBghJ4iNjb169arDFk6cOCEn+OCD\nD6QvLTU19YUXXpg2bdqLL754+vRpOfGYMWPkxMnJyStXrpRHXgsKCr788ss6deoIIe69996K\nWl7nQ0Ge744fBwiVh+7kyZNjY2NNJtOwYcN++uknKcGNGzfWrVunHP/r1KlT2Y9YunSpnGDh\nwoXlZsPH5e7hUdq8eXNpUZMmTSr7rdq1qGhaFQ0ASJTX2m699da1a9cqh9zOnz///vvvK3uA\n27dvd9iCy4axUq205+2k8+iZmZkpZ9hisZT9/YGUYXmXQ0JCnn322VOnTslLs7KyZs+erfxO\nFi9eXPEXDAC64Xn/yK5RE+p5B8GuIjwpL0qOGTMmIiLCZDINHjx437590i/Mbty48f3337do\n0UJO1r59+0p9pep5tfPoPDL6vRevyQCh5+czRH8AgYBY7MdY7HZA7N+/vzz/559/dvIR8+fP\nl1O+++67ykWaFD0MggFCPTlz5oxcaSMiIqKiouSL+Mo08p0IUVFRJpPpjjvuyMvLc0imbEH+\n8pe/KBcdOHBAXtS7d28n+RkyZIgcHn777Td5fmlpqdxkO2lfjhw5EhMTI6UJDQ1VRhdJWlqa\ntNRisWzcuLHsFtavXy/f+lGnTh2HJ4PVr19fzt6+ffvKzcOoUaPkfJYdfVE+jfqee+4RQowd\nO7bc54ecP39evmUjJibm+PHjZdOcPXu2Vq1aQqFSA4Se744fBwiVh25kZKTJZJIfgat0+fLl\nKlWqSMlMJtPly5cdEqgZIPRluds9Pko9GSDUpKJpVTQAIOncubPUVtSoUSMnJ6fcNOnp6QkJ\nCVKyfv36OSx12TCqb6U1aSedRM/CwkIpA1LbOG/evHK3L3e6Kmpj7Xb74cOH5TykpKTk5+eX\nmwwA9EKT/pFdoybU8w6CvZIXJcPDw00m0/z588sm+/333+UgaDKZLly4UO7WPOTVzqPzfqXf\ne/GaDBB6fj5D9Afgd8Ri/8ZitwPiypUr5b0o9xc1MvlHmWaz+eLFi/J8rYoeBsEAoZ4omzlR\n5kd7MuXTh0NCQo4cOVI2TWFhoXyfQtu2bR2Wyk2Y1Wr9448/yv2UwsJCecCga9euykXr16+X\nM9C9e3cnezR16lQ55euvv65cpHxd6jPPPFPRFpQvQfz222/l+cqfF9x9990Vra78Srt16+Zk\nqRCiY8eOFY0SzZw5U0720ksvVfRxCxcudNLyOhkK0mR3/DhA6PBNjhgxoqKNPPXUU3KyNWvW\nOCx1OUDo43L38Ci1ezZAqElF06poAEAiP2xzwIABTpJNnz69devWffr0efPNNx0WVarX57yV\n1qSddBI9Bw0aJC96++23y93y3r175TSDBw92kodZs2bJKSsaawQAvdCkf6RJE6pJB8Fe+fA0\ncuTIij5r9OjRcrLvv//eyX65x9udRyeLAqEXr8kAoYfnM0R/AIGAWOzHWOxJQCwsLJRf6dWi\nRYuK1s3KypJHAR2+Lk2KHsbh7H3LCGShoaF/+ctfyl2kfMRwx44dmzZtWjaN1WpNTU2Vps+d\nO+ewVP5pYFFRkUNjIVu3bt21a9ek6YEDByoXLViwQJ5W3v1R1pAhQ+QHfynfwurw78iRIyva\nwiOPPFK7du1bbrmlS5cuWVlZ8vz69esXFBRkZGTs3LlT2Sw6qF27dnJysjR96tQpJ1kVQkyY\nMEF+dLUD5c0dAwYMqGgLffv2lW9RqRRv7I6/mEymF154oaKlt956qzyt/I2ISj4udw+PUg9p\nUtGUvFo0AAzixo0b0kROTo6TZGPHjt2zZ89XX301YcIEDz/RSSuteTup9Prrr3/xxRfS9Jgx\nY55//vlyk8lphBDjx493ssGhQ4fKb4P4+uuv1eQBAAKWJv0jTZpQv/SkQkJC/va3v1W0tE2b\nNvK0N86r/dh5DMBevHs8PJ8h+gMIBMRiP8ZiTwKi1Wrt06ePNH3o0KHjx4+Xu+7y5cvlaKV8\nKqnw/mVqBBkGCPUqLS1N/gGfA/lmNyFEp06dKtqCnKzsKW///v3lexCUkUDpyy+/lCaio6N7\n9+6tXCT/5slmsymfZVxWUlJSq1atpOmjR4/m5ubKi+S7/qtVq9asWbOKttCtW7ezZ8/u379/\n7dq1/fr1Uy6y2WwpKSm33Xab8tHS5eZBmpDHO8sVFRUlP0asLPm5rFWrVi13RFZiNpu7dOni\n5FOc0HZ3/Kh58+b16tWraGnt2rXlaeedsYr4stw9P0o9oUlFU/J20QAwgrp160oTq1at2r17\nt7c/znkrrXk7KZs/f/5rr70mTffr12/GjBkVpdy8ebM0Ub9+ffnerHKFh4ffeeedDmsBgE5p\n0j/Sqgn1fU/q5ptvTklJqWhpjRo15Onr1697+Fnl8lfnMdB68W7z8HyG6A8gEBCL/RiLPQyI\nyuklS5aUu+5XX30lTURERDhcmffBZWoEEwYI9cpJ4yK/g1AI4aQVkJMVFhY6LKpSpUqvXr2k\n6T179hw+fNghQVFR0fLly6Xphx9+WL5DRAiRm5sr39rQtGlT+XWsLnektLT04MGD0vSNGzfk\nn583atTI+RY8JOewtLTUSbJWrVpZLJZyF2VmZl68eFGabtiwofOPU74MyRtU7o4fKX/hWpby\nWJJvhPEGz8vdl0dpWZpUNAcBUjQAdE2+dbGwsLBjx44TJkw4efKk9z7OSSvtjXZSsmnTpmHD\nhknTXbp0+eKLLyr6CWN+fv7PP/8sTTdo0MB5BoQQcm/56tWr8qkFAOiOJv0j3zehGvakWrZs\n6WSpssNetjPuS9p2HgOwF+82T85niP4AAgGx2I+x2POAeNddd9WsWVOaLneAMDs7e82aNdJ0\nr1695PeIiQC7TA1dKP+SCgJfXFxcRYvkF5yqT1bWkCFD5N8IfvHFF8p38wgh1q5dK9/KoXwB\njxDiwoULciPu5NdIMuXdHHL7dfbsWXkjcoPonhs3bnzzzTdr1qw5ePBgRkZGdnZ2fn6+G9uR\nbyEsSxnzHN7vWpb8Y3n3aLU7fiQ/R7tczg9L9XxQ7hoepW7QpKI58E3RAAhuzz777NKlS7dt\n2yaEyM/Pnzx58uTJk5s2bXrPf1X0/AP3OGmlvdFOCiGOHDnSu3dvqQ95yy23fP31106GHq9c\nuSK7s5IiAAAgAElEQVTnYdu2bU5yK8nOzpanMzIylM+EAAAd0aR/pHkT6suelPNg57Pzah93\nHgOwF+82T85niP4AAgGx2I+x2POAGBIS8uijj/79738XQuzduzcjI8Phy1+2bJl8777DQ0R9\neZkawYEBQr1yeSN8pZKV1bVr19q1a0uvJ1ywYMFbb70lv5tHKJ4vmpKS0rFjR+WKymCgvH+h\nIpGRkWXXVT7AUPm7pcr617/+9fzzz58/f97tLchiY2MrWqT8KbrL3Cr3t7I03B0/Cg0N9fZH\n+KbctTpK3aNJRXPgg6IBEPSsVuvq1atHjhypfP/f0aNHjx49+sEHH5jN5nbt2j322GP9+/fX\nZKTQSSvtjXby0qVL3bt3z8zMlP69du2a8ztblQ/GycvLq9TLLSrKAwAEPk36R9o2oT7uSVX0\n63Zf8n3nMQB78W7z5HyG6A8gEBCL/RiLNQmI/fr1kwYIhRBff/31X//6V+VS+fmiSUlJXbt2\nVS7y2WVqBA3/n7YiMIWEhAwcOPCtt94SQpw/f37dunXdunWTFimfLzpgwACHx2rl5eXJ0+Hh\n4S4/SPmbbnndgoICeabbY5yTJk2aOHGick7dunVr1aqVkJAQHR0tz1y9evUff/zhcmvySxnL\nUt7t4nKIxe0xGG13J4j5rNw1OUrdpklFAwBviIyMnD9//jPPPDNr1qzly5cre4YlJSXbtm3b\ntm3byy+/PHbs2AkTJihvP3KDk1baG+3k+++/rxwRPH369JNPPvmvf/2rom26fJehE156KxUA\n+IAm/SMNm1AD9qT8sssB2Iv3hNvnM0R/AIGAWOxHmgTEW2+9tWHDhr/++qsQYsmSJcoBwqys\nLPn5oo8++qjDUKhvLlMjmDBAiAoNGTJEGiAUQsybN08eIFy7dq187/zAgQMd1lLeeqBmHEKZ\nRr7B3/O3na1fv/6VV16R/x01atT48ePr1KlTNmW7du08jD3Kq5Mun1vtXnD15e7omi+/KP++\nk0+TigYA3tO2bdt58+YVFRVt3rz5u+++W7NmzaFDh+SlWVlZr7zyyq5duxYvXqwcmdOQN9pJ\naXQwISEhMTHx2LFjQoiFCxfed999ZU+HJMq+7p///Od58+apyzsA6Jsm/SOtmlAD9qT8tcv6\n6sWr5Mb5DNEfQCAgFvuRVhcMH3vssUmTJgkhduzYcf78eflppcuXL5fLVH5prswHl6kRZHin\nFCrUsGHDO++8U5pevny5fAPCv//9b2miXbt2jRs3dlhL+dZDNbe/KVsi+UFhyieGyYORlTJ1\n6lS73S5N//3vf581a1a5gUcIUVJS4sb2lZSXEV1egszKynLjI3y5O7rmyy/K86PUE5pUNADw\nNqvV2rlz5xkzZhw8ePDChQuffvpphw4d5KXffvvt9OnTvfTRXmonGzduvHPnziVLlsjXAZ9+\n+umTJ0+WmzgmJkae5qFhAIxDk/6RVk2oAXtS/tplffXiRWUu2lbqfIboDyAQEIv9SKsLhv36\n9ZMm7Hb70qVL5fnym78aNGjQrl07h7V8cJkaQYYBQjgzZMgQaSI3N/fbb78VQhQUFCxbtkya\nWe798tWrV5cfr3Hq1CmXH6G8pia/OrVWrVryT7DPnDlT2Wzn5uauX79emq5Xr95zzz3nJLHn\nD79OSEiQp3/77TfnidPT0yu7fR/vjn75+Ivy8Cj1kCYVDQB8qXr16sOGDduyZYtydG3KlCle\neu6xN9rJdu3a7dixo2HDhs2bN3/77belmTk5OY8//nhxcXG5eZDv35QeDgMARqBJ/0iTJtSA\nPSk/7nIA9uKdvyr46tWr6rMnc3k+Q/QHEAiIxX6k1QXDZs2a3XTTTdL0119/LU1kZWWtXbtW\nmi7780Hh/cvUCD4MEMKZvn37yk/okn44uGLFCulVq6GhoY8++mjZVcLDw5s1ayZNHz161OVv\nmQ8ePChNhIaGtmjRQpq2Wq3ybxMPHz6sfHpyWceOHZPeFn7u3Dlpzrlz5+SewN133+3wlkSl\n48ePex57qlWrJv9MwWW8PHDgQGW37+Pd0S8ff1EeHqUe0qSiAYBfPPTQQy+++KI0nZubu2fP\nHm98ijfayV69esXHx0vTzzzzzP333y9N79q167XXXiub3mq1yj2648eP8zMCAAahSf9IkybU\ngD0pP+5ygPTila9Tcp4HN/rmShWdzxD9AQQCYrEfaXjBUP4R4ebNm6UfIy5btszJ80WF9y9T\nI/gwQAhnoqKi+vbtK02vWrUqLy9v4cKF0r89evSQr5E5aN++vTRRWFi4evVqJ9s/ffq0/AT/\n1q1bK0/l7777bnkj8p0RZZ09e7Zp06apqampqalvvvmmNFP5+2jlz+HL+vDDD50sVa958+bS\nxOXLl48ePVpRsuzs7C1btlR2477fHZ3y/RflyVHqOU0qGgBo7syZMy5vk7z99tvlae891cTb\n7eScOXOSkpKk6cmTJ2/evLlsGvlp7UVFRcuXL3e+wWPHjnEZEUBw0KR/5HkTasCelH93ORB6\n8cpHqzm5O7OgoGDdunVOtuPJ+QzRH0AgIBb7kVYXDB977DFpori4eM2aNUII+Vmjt956a9k3\nf0m8epkawYcBQrgwdOhQaUIaHfzuu++kf8t9vqhk8ODB8vTMmTOdbFzZ9A8aNEi5SPnzxBkz\nZlS0hUWLFsnTXbp0kSaUrx3KyMioaN39+/d/8MEH8r/Ob+hwrlu3bvL03LlzK0o2c+bMoqKi\nym7c97ujU77/ojw5SiXynVNuPGFPk4oGABoaO3ZsUlJSSkrKgAEDnKdUvnm+atWqykWeNIwO\nvN1OVqtW7fPPP5emS0tLBwwYUPYNE8o8TJ482clLNQoKCrp06ZKYmNi5c2f5ATIAoFOa9I88\nb0I17CBoGJ68yr+dx0DoxSvfa/Xjjz9WtJ2PP/74ypUr5S7y/HyG6A8gEBCL/cjzC4aSunXr\nyjejfPfdd/n5+dIwoRDCSZDy6mVqBB8GCOHCnXfe2bBhQ2l6/Pjx0nu8ExMTu3fvXtEqt912\nm9x4rV279rPPPis32c6dO//+979L0wkJCY8//rhyaYcOHeSNbN68udzbKA4fPjxp0iRpunr1\n6j179pSmGzRoEB0dLU1v3Ljx4sWLZdf95ZdfevToYbVa77jjDmlOXl5eRT0El/r06SNHqVmz\nZv3yyy9l0+zatWvy5MlubNz3u6NTvv+iPDlKJfJbKy5evHj9+vVKfbomFQ0ANFSjRg3pStmW\nLVtmz55dUbLi4uJZs2ZJ0zExMTfffLNyqScNowMftJM9evR48sknpemzZ88OHz7cIUHLli3l\nnt6RI0eeeuopu91edjtFRUUDBw48d+5cUVHRhg0bnHS8AUAXNOkfed6EathB0DA8eZV/O4+B\n0IuvXbt2YmKiNL1169Z9+/aV3c7WrVsnTJggv07FgefnM0R/AIGAWOxHnl8wlMlPGV27du2m\nTZukoVOz2Vzum78kXr1MjeDDACFck+8WkV/i3a9fP/ltq+X67LPP5FZ7xIgRL7zwwqVLl+Sl\nWVlZ7733XteuXeWHJn/88cdytJCYTKb3339f/pSXX365X79+u3btys/Pt9vtGRkZb7/99u23\n3y7/UP3tt9+WHwhmNpt79+4tTWdnZ/fp0+fkyZPyls+fP//GG2/ceuut58+fnzp1aseOHeVF\nn376qepv5f9JTU2Vn8Wam5t79913z5kzR3pZoxAiIyNj0qRJnTt3zs3NHTJkSGU37vvd0Snf\nf1GeHKUS+f7WoqKisWPH/v777yUlJRkZGdeuXVOTAc8rGgBoaMSIEdWqVZOmn3766UGDBu3Y\nsUN5T2Jubu6qVas6duy4fft2ac7IkSPldkziYcPowAft5IwZM1JTU6Xpr776as6cOQ4JPvnk\nE/lxZ5988kmXLl22bt0q96sLCgq++uqr22+//auvvpLm3H333fJJBQDolFb9Iw+bUA07CNqG\nJ+/xb+cxQHrxffr0kSZKS0t79OixePHi3Nxcac6pU6cmTpx47733FhQUvPXWW/IqymvZmpzP\nEP0B+B2x2I88v2Aoe+SRR8xmsxDi/Pnz8o2t9957rxyqyvLqZWoEITv04+zZs3LBvfDCCxUl\nU16Z2rhxY0XJ5BsNbDaby88NCfl/Y8m7d+92mduvvvpK2bSZTKb69eu3bt26QYMGDlubNGlS\nRRtZtGiRQ2IhRNk5zz33nMOK6enpyncPmM3mRo0adejQoVGjRvLqgwcPLi0tXblypXJTzZs3\nv+22244dO2b//1/42LFjne/vuXPnateu7ZCxuLg4ZT+hc+fOe/fulf/9xz/+odzCjh075EXT\npk3TfHf2798vz588ebLLEqwsJ/lX/00qN1I2k/KDtoUQCxcuLLu678vd7sFRarfbP/roI1Ge\ntWvXuvxWJR5WNK2KBgAkGzZssNlsysbHbDbXrFkzJSWl7MBb+/bt8/LyHLbgsmGsbCvtYTup\nJnru27dP/oioqKjjx487JFi7dq0yPAkhIiMjGzZsWLVqVfnWTkmzZs0uXbrk+osGgIDnef9I\n4mETqkkHwa5pePL2ebW3O48uI6N/e/F2uz0jI8PhmAkJCalSpUpERIQ855VXXvn555/lf5ct\nW6bMiefnM3aiP4AAQCyuiG+ucXlywVCp7NNH58+f73wVrYoeRsAAoZ74a4DQbrcrH16cmpqq\nMsObN2+WX4tarjp16nz55ZfON7Jhwwb5GadlRUdHz5o1q9wVV69eXdHLb81m88SJE6VkRUVF\nN910k0OCgwcP2it/CfLIkSNlNyXr3r17dna28jaZDz/8ULm686Egz3fHCAOEdn+Uu92DozQ/\nP79FixZlV1E/QGj3rKIF2skTgCCwa9euZs2aOWmUhBAWi2X06NHlXk1z2TC60Up70k6qjJ5v\nv/22nKxNmzaFhYUOCX766acOHTo4yYPJZBoyZMi1a9fU7BEA6IKH/SOZh02o5x0Eu6bhyQfn\n1V7tPKqJjH7sxUvWrFkTGxtb0XakbCuPvbKnAR6ez0iI/gD8jlhcLp9d43I7ICr94x//UK4V\nERFx/fp1l2tpVfQIepaKjhJAaciQIatXr5amBw4cqHKtO++88+eff162bNl33323Y8eOS5cu\nZWVlxcTEVK1atW3btt26devTp09FP6CWderU6eDBg998882SJUt+/vnnixcv5uXlxcfHN2vW\n7L777nviiSfi4+PLXbFr167Hjh2bNWvW999//+uvv16/fj0qKqpBgwb33HPPX/7yl8aNG0vJ\nLBbLqlWr/vrXv65bty47OzspKalDhw5OfqbtRNOmTffu3fvPf/5zyZIlBw4cuHz5clhYWM2a\nNdu2bTtw4MBOnToJIUpLS+X0BQUF6jfu+93RKb98UW4fpWFhYRs3bpw4ceKKFSsuXrxotVpr\n1KjRunXrevXqqf90TSoaAGilbdu2hw4dWr169YoVK/bu3ZuRkZGVlVVUVBQZGZmYmNiiRYuO\nHTs+9thjNWvWLHd1TRpGBz5oJ8eNG/f9999v2LBBCLFnz56JEydOmTJFmeDmm2/esmXLxo0b\nv/nmm82bN58/f/7q1asWiyUuLq5Zs2YdOnQYOHCgJ/sIAAFIq/6Rh02oJh0Eb4Qn7/F759Hv\nvfh77703PT191qxZa9euPX78eFZWVmhoaEpKSrdu3Z577rm6desKIZQ/Zyl77Hl4PiMh+gPw\nO2Kxf7kdEJUeeuihp5566saNG9K/Dz74YEWv0VXy6mVqBBOTvbw3iwIO5syZM3ToUCGExWI5\nc+ZMjRo1/J0jAAAAAAAAAAAAuMPxobdAuT788ENpokePHowOAgAAAAAAAAAA6BcDhHBt06ZN\nu3fvlqafffZZ/2YGAAAAAAAAAAAAnuARo3ChqKiobdu2P/30kxCidevWe/bs8XeOAAAAAAAA\nAAAA4D5+QQhn7Hb7yJEjpdFBIcRbb73l3/wAAAAAAAAAAADAQxZ/ZwCBa//+/S+88MLatWul\nf3v37t21a1f/ZgnamjFjhly+nujcufPzzz/v+XYAAAAAwGjolwEA4F/EYhgWA4RwNGTIkFWr\nVuXl5eXk5Mgz69ev/9lnn/kxV/CGgwcPrl692vPtJCYmer4RAAAAADAg+mUAAPgXsRiGxQAh\nHBUVFV26dEk5p2XLlt9++218fLy/sgQAAAAAAAAAAACtmOx2u7/zgMAyduzYWbNmFRYWxsbG\nNm3a9PHHH3/yySetVqu/8wUAAAAAAAAAAAANMEAIAAAAAAAAAAAAGEiIvzMAAAAAAAAAAAAA\nwHcYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAAwEAYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAA\nwEAYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAAwEAYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAA\nwEAMPUD4xBNPPPLII6Wlpf7OCAAAfkAcBAAYGXEQAGBkxEEAgMlut/s7D36TmJh45cqV4uJi\ns9ns77wAAOBrxEEAgJERBwEARkYcBAAY+heEAAAAAAAAAAAAgNEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYiN8GCIuKil588UWz2dymTRs16TMzM0ePHl23bt3Q\n0NCaNWsOGzbswoULlUoAAEDgIA4CAIyMOAgAMDLiIAAgEFj88qlHjhwZMGBAenq6yvSFhYWd\nO3fet2/fww8/nJaWduLEiXnz5m3YsGHv3r1VqlRRkwAAgMBBHAQAGBlxEABgZMRBAECgsPtc\nVlZWeHh4mzZt0tPTbTZb69atXa7yzjvvCCGmTp0qz1m0aJEQYuzYsSoTlCshIUEIUVxc7O6u\nAABQacRBAICREQcBAEZGHAQABA6T3W737YikuHr16ltvvTV58mSr1RoWFtaiRYs9e/Y4X6VV\nq1YnTpz4/fffbTabPLNRo0bZ2dkXL140mUwuE5S72cTExCtXrhQXF5vNZk12DQAAl4iDAAAj\nIw4CAIyMOAgACBx+eAdhfHz89OnTrVaryvQFBQUHDx5s27atMsgJITp06HD58uVTp065TKBZ\n1gEA8BhxEABgZMRBAICREQcBAIHDP+8grJSzZ8+WlJQkJyc7zE9JSRFCnDx5sqSkxHmC+vXr\n+yarkvWb92VaIuok12hRPSrcyj04AACP6C4Obty89/r1vJS6tSOTEqPDbZGh5shQoiEAwE26\ni4NrNuz6+cyVKmGW2JjoJqn1qybGVYu2uV4NAIDy6DQORllCQsNCY2NjQkOt1qjo+Lhosy1U\nCFEl/H8jo5Gh5lDL/367YjOHRNBzBADf0sEAYU5OjhAiMjLSYX5UVJS01GUC5cwxY8bk5eVJ\n07m5ud7I8LwNB+flJAlx0hoiGiZF3Vkvvm58eJOqkalVo5pUjQyp4Hf9AACUS3dxcO6GQ/Ny\nkoQ4Is8JESLOXFzdJmpGWWIiwxrVSkiuGlc7Nqx2XFhcuDXGZqkSYbWEEB8BAOXQXRz85+aj\n83KShCgW4ppYv1cIYTKJ6jZROyGqRlxkWu2Y+gkRkaHm2rFhjZMi48LV/oIEAGBMuo2DpUIU\nCFFQqXUjrSGhlhAhTEKIKhH/CZFmkykmzCKEsJpNceHW+AhrVKglJswSZTOH/Xd8McpmsZpN\nVcKt5hBTjM1is/y/scaoUIvVbLKaQ6Js/5sZYjLFhungwjgAeJVu2sGyz8uW3p4oz3eZQDJ3\n7tzMzEwvZTL/t7NPfLT+x2yL9L0WlYojl64fuXRdTpAUFXpPw4Q2ybF3N0hIqx3DYCEAQCVd\nxMGzv54aN3fz3hxzk4Kzx6L+dwdrqRBXSyxX88ThPCFEgTj1mxC/OawbbjHVjrI0TIpsVqtK\n1ShbUmRovYTwOnHhVSKssWEWIiYAGJwu4qAQYtDbX2+7ZhYW0eT6WSGEFA3tdnGhQFz47br4\n7fo3v1ySE4eYTClVwtNqx9SND29aNaphYkTjpMjq0TaiHgDAgV7i4Nkv5+VdvizCk9pdO3zN\nGi3NVPYNncstKs0tKpWmr+UXeSWLCiaTiAtzvFMnItQcYTVLQ5LSIKU1xBRls0iLbOaQuHCL\n9K2GWULCrf8ZoYwJs0bbzDZLiBAiMtQSajYJIcKt5rhwq5wmNswSG86tsQACiw4GCGNiYkSZ\nG16EENnZ2UKI6OholwmUM+fMmVNU9J8A88QTT5RdyxO2xKQbVy6fCG8hhGh37fDOKs0cEvx+\nvXDRTxcW/XRBCGGzhNSLj+hQr0rHBvG3Jsc1qep4pw8AAEJXcbBGnZoZOUUnLEkiKt5hUbtr\nh+VpqaPo0EvML7anZxalZ2auSnfsr5pMolZ0aGJ0WHJcWK3YsPhwa3xEaM1YW5248JT48Nqx\nYRruAgAg0OgoDgohLGG2E5Yw8f/DnBwEHXqIpXb7qat5p67mKWdazaaUKuGNEiNvrhlze924\nljWiU6qEM2QIAIalrzgYGp9QmnNMhDuGvLKUPcSyXK6uCbu9nGFIHwxMSgONVvN/xh1DTCI2\nzBpmDYm2WRIirJGhljBrSGyYJTLUbDKZ4sItEVazzRISZbNYQ0zmEFONGFuoOSQ2zBIdZgk1\nh7j8OABwQgcDhHXq1LFYLKdPn3aYf+LECSFEo0aNqlev7jyBcuaDDz4oTz/55JPaZjXEFvbl\nO89uXrby5+/XHss1xZXkmktKMq1R2+JblE18o7j06OXrRy9f/2zXWSFEarWozo0S7mmY0K1J\nEk/cBgDIdBQHLaG27TMG79h9+Pip85cuXynIzLyak38tO+9GcXFWqfV8WHymJfq6JTzL8r97\nYsp2C8sOH9rt4lx24bnswp9+yy77oVE2c2JkaFJkaEJkaL348GbVoqvH2OrEhaVUCa8aZeOC\nKgDonY7ioBDiH8/+6bnDp7KuZV67nn/lwuWzR46du3jlanHIRVt8pjUyuvj/2LvvwDbK+3/g\nd6c77b0lD3nHdmzHWSQhJIQQWgKEWaCMFr6lQPlCf20p0NBC2WVD2y8bWkrLHh00ECBASMhw\nQqbjvS3b2nvenXS63x8Gx5EdT9mS5c/rD0juTnePE8dv6T73fJ7owmD34JEnu/UZY9gOV6TD\nFdna4hzcwsexpXmyGoOk2iBdXaio1ksg3QAAYP6YWzmo23Duo6aqXzo8DE0HwlEqEvUHQjRJ\nMWSUiYQDIZKKRii3M0FRQY5g8CUxFKc43MFfhzgCFkEQBNngPhRDv71rXRixDP6axnAS40U4\nvDDn+EOis1NKTK0IzUQQBkEQR4ie5qlwDJXwcLmAGHxvMFhrRBBEISQwFFEJuToJl49z5AJc\nyic4GCLnEyiKDDZilQkItYjIkfGhygjAfIYOzjdPFz6fX1VVdeDAgbEPW7ly5bFjx5xOp1Ao\nHNySSCTy8vI4HI7ZbJ7IAaNSq9Vutzsej3M4KS7IsQxj+eiDzpf+GPP7Egjmx4UuruxrZc0R\naUm7KC+GjvVjl8vBKnTi0woVZ5aqyrXicq0YPv4BAEC2ytYcHCkRi9EeV9TaT7scfR09A/3W\nbm80EEM8nmCAwwvgogiHb+Mp+/gaN1fKIuioz5OOOvVwDHwckwuIYrXQIOHVGKUFSoFBwivX\niQ0SHgf6ugAAQAaYJzlIuZ3eA3s9B/cF2pv7BuweVBjh8Af4KgbhWPjKberlXkI88bOpRNwl\nOdJTCxRri5WnFiiGll8CAAAw58yTHBwVyzCUy8FEwgmaiodDMb8vFvQnSJL2eQZ/HQ8GErFY\ndMBMuRwjXx5DcZJDIAjCImgc4TAoRmM4gqIkykUQhMYIZtjt1F6hHkGQwZJkiCNAvtsVJ3gU\nh8/hCxAOBxcKcZGEwxdEeKIAxke5vBiTCFEMgiCRGOOJxOh4AkEQPxlPpPVe+kwYXNRDxOVI\n+biYh0v5uJSH8wlscK1HuQDHMVQhJBQCQi4gDFJejow/WGgEAGSBTJxBSJJkS0uLRCIpLi4e\n3HLdddfdcMMNjz/++D333DO45aWXXrJYLPfdd98ED5hlKIeTc/5lho0XunZt73r1Way7QxEP\nlYYHEASJY5wWWaF1wzVuXcnePn+zPZyUKzSTOGoJHLUEnt3diyCITsJbmitdnCOrMUg2lKmV\nQljEHgAAslwW5OBIGEHwdQa+zoAgiG4Dsuy77fFQkHTYaI8rQZKU20m57D5bo6XPYiepvgjr\nwsURDs/FlXkIqR8X+bmiktCAwnu8Dc7Yj4uS8YQtSNmCFIIg79fbhrbzcCxHxs+T8yt14kKl\nUCbAlUJugUKgk/D0Eh7BgQ86AACQTtmXgzyVRv/98/XfPx9BkGWhoHvf1776Q7ZPP4yHQwiC\n3GD+KMrhurgyLy6ul5XYuAq3SNspyfUwo39ad4fpbW2ubW0uBEF4OHZKvrxCKz6tSLGmUFmg\nFMzm1wUAAGAmZF8OjgrlcAY/Hk4EEwmTTnvM56W97pjfR/s8TDgUC/oppz0eCoa62pnoyXul\nskhVsGcCAzrhdxjBxUViXCoTGHJwsZSQynhqLVel4Wm0hETGUWlJngjj8hAE8UVjLIuwCOKL\nxhAEYdlvf0ExiQjNBMg4w7IIgjAJxBmiIrFEgmX90TiCIAEqziRYBEHCdJyKJ3zRuC8a80Ri\nkRhDxRMT/JNJCT8ZRwZ7q/on90IBwZHyca2YKyA4egmPh2NyAU5wMK2YK+biRhlPKST4OIws\neMsAACAASURBVEfGxwfXdMQxVMLHMRSV8TOxJAHA/JSGGYQ7duzYunXr4K+feOIJjUZzzTXX\nDP729ttvV6lUDQ0N1dXVZ5555ueffz64nWGYM8444+uvv77ggguWLFnS3Nz8zjvvVFVV1dXV\nDT4aM+4Bo5qdJ2XYBOPa/VXXK38OdbUjCIIM/nmjiHzR0qr7nvJxpXW9vn8es+3p8Xa4ImOe\nCeFgaKlatFAvXp4nO7tcU6WXwAQIAACYc+ZbDk4ZQ5IRcxfldkYH+mJ+H2m3xnwef1N9OBhy\ncmVuQsYgqJsrDXKEIVwQ4ghIjOvmSqfZYQbH0GK10KQQ6MQ8AcFRCAmjlFemEeklPK2Ea5Dw\n4TFJAACYJsjBQQwZ9R6sG/jPu56DdQmaQpDvPioiCIIgLIraeEpLbpVv8ZktYlOjM9Lpjgze\nRhxDiVp4erHq4mr9+lIVzCwEAIDMBDk4E2J+byzgZyLhWDAQC/jjwQDltJFOO+12Um5nzO+j\nnPaTvniCt8ZHfBIkZAqBMZevN2IEV5CTLzAYCYmckMs5QjEhk3MVKhSbehaHaYZmEt5IjEUQ\nbyTm+25lxBDNOEKUPxqn4gk/GQ+QcR8ZG7q7T8UTkRgTYxJ+Mu6LxvzReMZOeeTjmFHGl/Hx\nwYd3pXxCwuPIBYSA4GhEXL2Uh6EIhqIGKU8hIHjwrgaAGZOGAuEjjzxy5513jrqrvb29pKRk\nZBAiCBIKhe6777733nvPYrFotdoLL7zw/vvvVyqVEz9gpFkOQn/j0dYn7w+2Nw/VCAmZvPTm\n2w0bLxo8oN0V3trsPDwQ2N7h7vVGxz2hQkBsWqhdV6w6JV++UD+JpjQAAADSaN7mYGqwbKSv\nx99wJNTT4dm3K9LXk4gdX0M+hnL8uDjE4fsIiRcXh3BBEBe6udJt6qWRYctUTJmIyzEpBGIe\nrpNwi1XCaoO0QCkwSnklahEOj+wAAMDEQA4miYeDrj07nF9/4Tv8De3zIMiJdypRhKtQGs65\nWHnuZYdJwZftriOWQF2vzxOJneR8CIIgYh5ndYEyT87fWKFZnifPk6cgBAEAAKQE5GBaJGgq\naumnnPZYwB8PBWmPk3I5B7fTHnc8HAy2NSdiw1YEnOz98hEfB1Ec56m1hERGKJQ8pZqvNxJy\npcCQw1WoMC6XrzXgEun0vqaJCpDxeIL1RWMxhg3R8XiCDZJxPxlnEmyPN2oPUoOdVN0R2hOJ\nBch4jEmEaGbw+CAVn51Bjk3I5fA4mOK7vnoKASEX4AoBgXMwKQ+X8nG1iBByOSohV0BgOTK+\nSsRVCgkxF4f+QACMK81rEKbX7AdhPBzqePZxy8f/ZBlmqEyYd+mPyn6+GTlxSkKrI9zuCu/q\n9h7s9x8ZCLjC4yxamyfnbyhTn1uhXVesVIm4M/YVAAAAyB5Z8IGQTTCRvt5QRyvlsEWt/YHm\nY8G2JjbxXT+WYe9xgrgwgAu8hNTBlbu4MhLjfqpZ7uLKmDEXBp4gHo4VqYQFCkGpRlSpE+fJ\nBSaFQCvmasSQyAAAkLkyMAeD7S22T/7j+OpT0mFDkGFBhiIIgsiqFuecf6n+e5tYDDtqCX7d\n5fm6y9NgC7U5k9etSLJAK/pemWZxjnRtsbJYddKpJAAAAOaVDMzB9ErQVKS/N9zVHunvpdzO\nmM9Lez2Uy85Eo/Ggf/iTqd+aXhERF0lEBUWCnHyeWisyFfE0OmF+IU+jm868w5SLxhgynqDj\nCV807o3GPJFYtyfiicTCNIMgiCtMB8i4NxoLUXFXmPaT8TjDBql4fLyeB7MDx1CtmCcgMLmA\n0Em4cgEh4+NSPqGTcEtUIoWQEBCYhIcrhYQa7qWDeQwKhGkIQs83e5oeupNyO4dqhOrVZyz4\n5W/5+pyTvaTDFfmyw7Xf7G91hA4PBAZ/Co8Kx9DB9erXl6hOK1TCgxIAAABOJis/EMbDwahl\nIGoxB1saQ13tkf7eqKWPjccRZJTPbwyGhTBBDMNDHIGPEEc4PDtX8bWqOsARebmSGEZEsGl9\nTiA4aKVOslAvLlGLjFLeklxZmUYEyy0AAECGyNgcZBOMv/Fo37t/d+3+KhGjkyYU8rV6zdoN\nuRddIcwvHNxmC1I7Oz1fd3u+bHc32UNjnBlD0VPyZZU68Zoi5UK9ZEmOFBatAACAeStjczAD\nsQmG9nooh41yO5lImHI5aJ+HslvDPV2Uy85QVIIiR7xmMhf4Lo05fAFfbySkMkKm4OsMuETG\nVaoEOiNfb+SqNIRUlpIvZ0YNzlP0RGL2IOUK00GKCdPxGMOGqDiCICGaiTGsNxKjmYQ3GvNG\nYn0+ss8XzYSa4mDXU7mAQBHEKOPlyQUSHi4X4CiC8HBMK+bppTyFgNBJuEYp9GYA2QMKhOkJ\nwpjf1/L4PY4d24bSAuVwCn58Q9FPbkHGW90oQjP7zL4dnZ4P6m0NtpOvwYsgYh5nU6Vu00Lt\neZVaCQ9uRwIAADjBPPlAyDJMqKs93N0e6mwLNNWHezq/beD27e6xXhtHOU6uvFeo8xASH086\nIM3z8eU0XzyAihyxKf6hiXkck0JgkPLlfNwo41doxUUqoZDLERJYrlyghUmHAAAwWzI/B0mH\nre+9f1i2vB8PBZMDC0VEhSU5my41brqUwz9+l2qf2bez0/NFu7vZETKPt24FH8d+sMhwcbXu\njBKVXEDMwFcAAAAgc2V+Ds4htMdNuR2xgD8eCsSDQdrrJm0W0mEd7GhKOawMeWIFcUrlQ5TD\n4Wl0uFDE0+r5Gj1PZxDmFQjzTOLCUhSf2zd+mQQboOK+aMwbibnCMT8ZC1FMLJHwReOeSMwa\nIKOxbxsFUfFEgIy7wnQkxlDxRJhmhhZonDUYisr4OBfHcmR8pZDAUMSkEBilfL2Ep5VwFQLC\nIOVpRFw+wRFxZ+Qf14Ofdd79aevwLQKciMaP/zks0AhbNq+biUuD7AMFwvQFIcu2P/+E+a1X\nh/eNUa86vfhnvxIXlU3wHM4QfaDf/1GTY3vHWM+K4hi6PF9+WqHi3Art6kIFrJMEAAAASXsO\npg9DkrGAL9rfS9osUUsf6bD56g+S1oFRe5OeTIAQWngqpyLPrTJZhVoLT2VGRAOR6b6typPz\n8+SCXDlfK+bWGKTL8mTlWpGAmF9/QQAAMDvmSg4maMrx1We2zz9y132NJD1fjyIYlyerqjWe\ne7Fu/cakm4Nmb/RAv/+zVtdnra5uT2SMS3AwtMYg+f4CzTkVmuX5cj6eQc3NAAAAzJC5koPZ\nIR4MRK39MZ83Hg7RHlfUOhA2d5E2S6Sv59uGN8jke5YOQhEOny80FRMyOSGVc2Vyvt4oyDUJ\n9DlcpYqrVKfui8hQYZqh4glXmA5ScW8kZgtSnkjMGqAiMcYaoLzRWDTG2AJUkIoHKSYaO2lb\nvpkg5eNCgqMQEnIBoRISAoKjEXNzZHy1iMiVCUwKgVpEaMRcbLz5Qkk2b2l/dHv78C1cjKAT\nkyiUPnLugt+sL57URUG2ggJhmoPQ/sXWtj8/THtcw8uEmrUbSm781VDHmAmyBMitzc7/Njm+\n7vKMsWS9Rsw9JU9+QZXuewvUJoVgGmMHAAAwt2VCDmYU2uehPa5QRyvtdVNuZ6DxaLCjlYmE\nEWRiH9VQhMKIAUVBOLfUri6OydQWXN4W47W6ooOrvk8ND8dK1aJitbBMIypWCUs1ogUaUY4M\nWpoAAMB0zbkcjPT1dL/2gvfA3uPLVQxBEZ5aq133PfXqMxSLT0FHfEWeSOzLDvf7R61HLIFW\nR3iMqwgIzkqTfGO55rxKbYVOnOovAgAAQKaYczmYrSi3k3Y7I+buSH9v1NJPu120z0N73ZTT\nfvygKdy/RxEEQTCCwPgCDl8wWD4U5Rfy9Ua+Poen1grzTIRUPtenHk5WjGG73BFrkHSGaG80\nlkggtiBFxhMIgngitNlLMiwbJOPWIGUPUlQ8Me4Jpw9FEY2IqxFzDVK+kODkyfl6CU8l4sr4\nuE7CkwtwMReX8DkaEW9oKbHpFwjHhiEI8+Q5qTobyHBQIEx/ECZoquuvz/a+8crwn/Uoh5N/\nxf8UX/+LkR/txsWyyP4+3+dtrvfrbUcGAmMcWaETn1qgWF+iWmmSF8Fi9QAAMM9kSA5mNJaN\nWvvDvV3hns5oXy/psFJOe6TfnKCpCX5CQzmYwJiXKKyw59d0c9UuqcEaJzpdYW805o/GrUGK\nmdJaCyoRt0AhMCkEg4XDcq24SCXQS3iTffAQAADmszmag4lYzF2307nzc/sXWxM0nbwbRXga\nnfGci3RnniMqLBn1DN5orN4S3NXtef2gpcUx1pqFK03y8yq1l9Toy7VQKQQAgGwzR3NwXqG9\nHtrrIu1WymmnXE7KaYsHA7TPE7X0x4P+b9uWTvnWPoqgOM5T63ganbigWFJWydPpuXKVML8A\nF0HuI8h36ykyCdYVpm1Byh2Ohai42UfagxTNJKwBKkQxQSruJ2N9PnKmq4kEB9WIeCoRkS8X\nWIP0oX7fCXsxIpa6AuFEwBzErAEFwkwJQseOz1qfeoD2uIdPJRSXLFhw693y6iVTPm2/n/xP\ng31Xt/frLs+Af8R6ucPIBcTyPNmmhdqzytTw8Q8AAOaDjMrBOYRNMOGuDs+hOtJmIa0DtNcd\n6euJBfwTnGUozCuQlFWIixdIFlTipdUdYcQZooNUPEwz9ZZgiyNkCVB9vqgvGk9M8k2agODU\n5khXFyhOyZeVa8WlGhH0iAMAgDHM9RykPS7bti2e/Xvc+3eNzCCUg2nWbsjZdKliyYoxJgf0\neqOftDjren2ftjqtAepkhy3UizdV6s6p0KwuVMDDKAAAkB3meg7Oc2wiQdotpN0aaDwaaG2k\nnI54KEB7PTG/F0GmUTVEvn3YiK/ViwpLxYUlAmMeLpHy9UaeRoti8K1yUp5IzBIg3eGYI0QN\nfsb3RuOuMO2LxvxkPEjGPZEYxSSsATLGZH85RsTFQg+fne5RgAmBAmEGBWEiRju2f9r96nOR\n/t7jP8cxNPfiK8tu+c30Z3zvM/v+fcy+3+zb2eWJjzlfoVglPLVAcVqRYk2hErrKAABAtsq0\nHJzDWDbS3xtsbwl1toa72gMtDTG/NxGLjfupDMU50ooaQU6ewJgnMOQIcvKFufmDq0T4yfhR\nS+CoJXCoP9DpjnS4wmPctz0ZrZhboRMv0IhLNcJFRulCvdgg4cN9XQAAGJQ1ORjqarNu/Y9j\n+yek3ToyengabclNt+k2bBz7pl6CZY8MBL7scO/q9n7R7jpZc2yjlL+uRHlxtf7MUpVcQKTq\nSwAAADD7siYHwXCJWIy0DUT7zZTbSbkctM/D0nQs4I+HAlG7hbQOsAwztYalGJfH0+oEhlxh\nrkm2cJGosISvMxIyeeq/hqwWY1hfNGYPUWYvOeAn7UHKHaHtQdoSIEMUM+AnXWF67Pv2WYDL\nQanHNqZ7FOBbUCDMuCBkGab7tRd6XnueZb6bmIwiiiUrFt71ME+jT8klPJHYV53uT1qce3q8\nzfbw2BMUVhUoNpZrLqzSVerEHAzuKQIAQPbIzBzMDgmaivT3BprqAy0Noc72UEczQ5ITnGKI\niyWigmKBIVeYZxKXlA/+GsVxR4ju9kR6PNFj1mCTPWQNkJ3uiDM0orncmIRcTpFSqJfyTApB\noVJQY5AaZbw8uUAr5k7tKwUAgLkr23KQZYNtTZaP/mn99EMmEk4KHWlFVdU9Twhy8ydypjDN\nbO9wv/ZN/7Y2l5+Mj3oMl4OtKVKcXa65uFoPy1UAAMBclG05CCaATSSiA+ZYwB8d6CPtFtJm\nIe0WymkP93SxzOjPBo0FRQSGXJ5WT8jkIlORwJjL1xoExjyeVodxeTMw/HmBZRF3hLYFqSAZ\nd0dizhAdSyTc4djdH7dO/m9o7tGICMf9Z6V7FPMLFAgzNAgDzQ0tT9wbbGsa+lyH8XgFP7re\ndNX1GJHK5zRtQeobs/9gv3+/2fdlh3uMdsliHueyRYbLag0bStVQKQQAgCyQyTmYZdgEQzkd\nwdZGz4G9gZZj4e5OhoxO4rFNFOEIReKiMr7OIMwrEBUUK5as4CqUCIJ4IrF2V7jdGTb7yEP9\n/rpe39gdxU8mXyEoVQtrc6S5Mn6FTlykEubJBdChFACQ3bI1B9kEM/DvdwY+fC/U2To8a3Cx\nxHT1T/UbzuXrjRM8FRlPfN7m+ucx20dNDsdJHklBUWR1geIHiwxXLjZq4HETAACYO7I1B8EU\nMGQ03N0R8/solyPc2xUdMId7u0hrf4KeyrJ2GJcQ5Jp4Gp1An8NTa4R5BYRCJczJ4+tzUj7y\n+WnzlvZHt7enexSzAeqFswAKhJkbhGwi0f/+6+3PPnZ8KiGCSBZUVj/4R4EhdyauGCDjO7s8\n/2mwHxoIHOr3n+ywQqXwqqXGSxcZagySmRgGAACA2ZHhOZjF2EQiYu72HT3o3r8raumL9HYn\nYvTk2rxgqDDXJK2oEuYVyGuWyqqXDD0/NNiPtNMV6fJEOlyRBmuw3z+V9dJ5OFasEmrFPJNS\nUKAQFKuFeXJ+gUKYr+DD6lMAgOyQ5TnIssG2pp7XX3bs2IYMb1SFocqlK43nXaJZc+bEn+5n\nWeRAv//dI9ZPWpwNtuCox/BwbFOldkOZ+vsLNAVKwfS/AgAAADMqy3MQTFuCpsK93fGgn/a6\nSbs10tdL2gaitoHoQB8ytR6YKMJVKGULa4WmIr5Gx1Vr+TqDuLAE4/FTPfYsN7JAyMUIOjGV\nau7cgiJI4slz0j2KbAMFwkwPQteer5of/T3tdg1twcXiyt89rFlz5oxe10/GP29zvXnIsq3N\nFaRG7ypTpBJeXmu4dnlumUY0o4MBAAAwE+ZEDs4HbIKh3a5IXw/tcQWaG0i7NdzbSTpsTDg8\nwTNwhEJx8QKeRosLRaKCYnFpBV9n4OuMg1XDGMO2OcMNtmCbM9zhCg/4yQE/1euNRmNT6VAi\nFxAlamGJWrTIKKnSS9YVq8Q8+P4BAMxJ8yQH/Y1HG++7PWrpT9pOyBU5m35gPP/SyT5+2uWO\nfNLi/E+jfVe3N0KPHiXFKuHqQsX5C3UXVOlwaD8DAAAZaZ7kIEg52uMO93ZGB8zB9pZov5n2\nusO9XQmamsrShgiCIAguFvPUWr7eKCos5Wt0wvxCnlrL1xlwiTSlA88e87ZAOAZY13DKoEA4\nB4KQIcneN17ufeMvCfq7pi4oYrriJyU3/RqZ+Uf4IzSzp8db1+t745ClxREa9ZgV+fJfrC24\nvNYAUwoAAGAOmSs5OE+xbNTSH+xoJm0WymGP9PVEbQOkzcJEIhM/h9BUqFi0TFpZIzDmigqK\nuUr10C4mwfZ4o832kDca29Pj7XBFWh2hPt+k25NyOdiyPFmBUlCqFuXJ+SVq0ZJcqYSHT/Y8\nAAAw++ZPDsb83s5X/mz75EMmGk3ahXIw9anrTFf9VFZVO9nThmlma4vzHwcGtrW5TvbQiVHK\nv7zWcEaJalmezCCF5YgAACCDzJ8cBLMgHg5G+nqjln7KYQ22t1AOG2m3Ui771JqUDuIqlXy9\nUZhXIDDmSyurJWWVXIUSxeDbFQqEJwUtSacACoRzJgi9h/Y13n8H5XIObVGvXlf2880TXGc+\nJQ4PBF6uM7912OqLjvITp1glvKRGv7pQcXa5hsuBVYsAACDTza0cBAiCsAxDOW2++sO+YweD\nrY3B9hY2Nvos/1Hx9QaRqVhUUCwqLBGXLJCUVaLYCXkdjTFmL9nsCHW6IkctgX4/6QzRne7I\npOYa4hhaphEt0IprjZJitWiBRrTIKCU48AgRACDjzLccjPm9ngN7ze+8FmhpGNkZTJCTZ9h4\nYd4lV03haX0/Gf/bN/1vH7Z80+dnTtJzDEPRU/JlF1XrL67Wl6iFU/kCAAAApNR8y0GQBixL\nOu2kzUJ7XOHerpjfG2pvCbY3x0OjT0EZF0oQ4qJSUUGxpKRcUlHF1+gFOXmpHfJct+mVQ1ua\nbekeReaCJqUjQYFwLgVhLOBvvO92975dQ1tQDif/h9cW3/jL2Xx6gmYSX7S7tzQ5Pqi32YPU\nyANyZPxrl+f+dEUerDwBAACZbM7lIBgp0FTvOVgXaKon7dZ4OETarWx8oiVDjkAoKiySlFUq\nlqxULl1ByBQnO9IZottdYUuAarGHjtmCLfZQu2sSVUMOhubLBSVqYaFSuMgoqTFKTys86bUA\nAGDWzNscJO3Wvg9et336Ie12J+3iiES5F11RcPX1uHgq680PLlSxs8uzo9Nz1BIY9RgURdYV\nq65emvPDWoOQO7/+5AEAIKPM2xwEacdEI6TNQrmdkd6uqKWf9nsphy3c00F7PJM9FVepFJdW\n8LV6rkKFS6QCY57AmCsuLEVx6GozuvXPfbO90zn+cVkLZZ+ETqQngALhXAtClm1/5jHze38f\n/sinYvHysl/+Vly8YJbHQsYTn7Q4/7q/b0uTY9TvoxqD5LJaw4+X5ebJYbFZAADIOHMyB8GY\nEjQV6mon7RbSbo30dHkO1UX7+yb4WkFevriwlK83yhctUy5dOfat4QTLdrojHzc7v+pw93qj\nne5IgJzEXEYRl7NAK16oE+crBIuMklMLFDkyeKsAAJht8zwHEzTl+OqzntdfDnd1JO3iqtRF\n192i33AuRzj1xeaPWgIv1/V92Gg/Wf9qlYj7gxr9maWq8xfqeDh0oAEAgNk2z3MQZKBEjA53\nd9BuF2m3Rq39YXMXaRmI2gaYcHhS50E5HEIiFZoKJQsWyiprJOVVfK0e40Kr8/F90e7e8MK+\ndI9iRkGBMBkUCOdkELp2b2/940Ok1TK0BcU5mjVnFvzoBklZ5eyP52C//6W9ff9tslsDo0wo\nRFHk9CLVuZWaM0vVtUYpLFMIAAAZYu7mIJi4mN9HOqyR3i5/U32osy3c3T6RpzJRDBWaihS1\ny6UV1dKKaqGpcNxeBe4w3eONHh4IHOjzH7UEWhzhURuSj345FMmTC3Jl/BX58tOLlRU6cala\nBG8YAAAzDXIQQRCEZb2H99u/3Grb9lHS3TdCrjBsvFC9ep2idvl0rtDpjuzt8f63ybGlyRGh\nR5l9rpfwfrBIf8vqggXaqdcjAQAATBbkIJgT2AQT6e0OtDZGB/oi/b3hrvZwb9fEG+d8C0UI\nsYyn0wvzC4S5JkIm56m1hFQuKasYo5UOGNUc72KKXrPcyMM564qVEl7yNNPzKrVpGVN6QYFw\nrgYhG493vvLn3jdeQYb9BWJ8fsHV15uu+ilGELM/pATLtjsjz+/pffOwxRmiRz1GL+H9eFnO\nZbWGpbmyWR4eAACAJHM6B8GUxfzeYHuL/9ihUHdHqLMtYu5GxnsziHEJaUW1pKxSZCqW1y4T\n5hcmLV44KkuAbHWE663BDle40RYye6NdnsgE33jK+PjiHFmJWrg4R7rSJK/US/gwuQQAkGqQ\ng8PF/N6+998wv/M3JhJJ2iWrWlR47f+qVq6Z5iWiMWZri/OVur5tba74aEsVLjJKb15t+p9T\ncnEMHhIBAIAZBzkI5ig2Hvc3HqVc9lBnm//YYdrrjvT3sfGJPp+aRFK+UJhrkpSWyxct42l0\nfJ0htaOdhx7f3nPHlqZ0j2IcVXrJw+fOSDvGOVdlhALh3A5Czzd72p95NNTZPnyjpHzhwrsf\nFZmK0jWqEMV81ub8oN72cbPzZLMHFhmlv1pbcGG1XsaHltAAAJAeWZCDYPoop917eL+/4Uig\n+VjU0h/z+8Z9CUcolC1cJDIVSStrJGWVIlMRMrHpfu4w3WAL7e7xNtmCRy1Bsy86wcakfBxb\nmierNkhqjdLFOdIqvQSWrQIATB/k4Eikw9b5wlP2zz9iRxTwFIuXG8+/VLd+IzrtPy6zN/rc\nHvO/jtnaXeGRNyTKNKL1paozilWbFmoFBPzVAADATIEcBNkkHg7GAv5ovznc3RHp64n090b6\nzaR1YLLnQXGCp1SJF1RIy6sVtctkVYun/84HDMm02iGBI7euLSIwrFwnTlWRAgqEc0l2BCFD\nRgf+/Xb/v96ODhxfZAjFsLxLf1R03S3TWTRi+sI0899G+6vf9O/q9o7aTAZD0VML5Deuyj+3\nUqsQpGHWIwAAzGfZkYMgtUi71fPNHl/9Iff+XbRrQkuX4xIpX6sXFZUKc01chVJaUS0uKZ9g\nM4MeT3S/2fdNn7/VGdpv9tuDo/QqH5VSSNQYpLU5kqW5srVFynyFYIIvBACAIZCDJ0O5nb2v\nv+zYsY1y2JN28XX6nAsuz/vB1Sn5pNntiby4t+/NQwOjrlOoEXPXFilvXm1aW6TkwJxCAABI\nNchBkPVojyvQ2hjp7SLtVsrtJK0Doa6OBDX66sijQxFCKucIhIolK4S5+UJTobS8GmYZzoQb\n32t6qa4nXVcXcXEOhlxUrftBzfh/uY4gfcN7zQw7+rQoERcLPXx2qgc4g6BAmCVByJBk91+f\nMb/7Ghs/XocT5OZV/vZhec2SNA5sUDzB7ur2/KfB/uYhi2O07qMoiq4rVv78NNM5FVpYoB4A\nAGZHNuUgmAkxv9d75EDE3B1sa/Ie3BcL+Cf4QpTDkVXXatZuUJ1y2sTnF7Is0uYMH7MFj1oC\nB/r8vd5ohyscYyb0TrVMI1pVoKgxSBbnSBfnSOXw1BEAYAIgB8fl2r3d/O7fvQf3JW0X5OWX\n//oe5bJVKblKjGE/aXH+4+DAv47ZRm09KuHhl9Tof7jY8L0yDaxQCwAAqQI5COYnhozSHlfM\n7wt1tnkO7PE31lNOx6Q6lHL4AmlFlax6sTCvQFpZI8w1wSzDlNu8pf3R7e3jHzdpKHLyRVYu\nW2T40bKccU9hDVA3vHfsZHt5OId89PtTHF06QIEwq4Iw0FTf8MAd0T7z8U0oYjj7ggW33s0R\nCNM3ruPiCfarDvezu3s/bHQkRvveUwiIa5bn3LauKEfGn/3hAQDAvJJ9OQhmFENGfUcO+I4d\nCrY0+puOxoPBibyKIxIJjXn672+SL1omKa1A8Ul07YjQzP4+38G+wO4e7zFroNMdFpQvzwAA\nIABJREFUneAbV6WQWJorW1eiOq1QUaWXKIVQLwQAjAJycIJce3eY3/6b99C+pNspkvKFlZsf\nFJekbPmWIwOBJ77q2tvr63Inr4M4SCkkrlqS87sNxToJL1UXBQCAeQtyEIBBCZryNx6lPa7o\nQF/UOhDubg+2NSfoUaa4jIrD5/O0etWqtaK8QunCGlFBMUZwZ3TA89AX7e4NLyQ/sjYlqIDA\norFROh0iCKIQcl+6tIo/3uQlKBBmj6wMQoYk+977e/erzyfo4026xMVlVfc/lcZVCUeyBamP\nmhxvH7F+2e4eWSlEUfT8hdqbTs0/q0yNwTOiAAAwM7IyB8GsoVyOUEer99C+YHtzpN9Mu53j\nfoLCuFy+IUd7+lmS0grVitMm254uTDP7zb5GW6jPF211hg/1+/v95ETeyRaphIuM0gUa0Zoi\npVHKW6iXEBx4dwEAgBycnFBXu+XDdwc+fDdBH3/EHsVx05U/Kbz2Joybyopdrzf6cl3flibH\nUUtg5F4hl3PFYuPt64oWaNO5oAYAAMx1kIMAnAwbjwc7WryH91NOO+WwB5rrKaeDTSQm8loU\nJ7gKJVel1py2XlpeJa9dzuHDNJgZNMm5hqjt3vV/2d+fSLAIgrjC9J++7hm++7dnFq8qUIx9\nCigQZo8sDsJwb1fjA78JtjQObUFx3HTVdUXX/RzFMquB54Cf3Nbmevuw9bM258hvxmqD5Nrl\nuVcvzdGK4ckLAABIsSzOQZAW8XAo1NXmbzjiO3LAvX83GxurSQuK4wJjnnLZSmGuiafTC3NM\nQlPhZB+0tAWpXd3e7R3uul5fgzVAT6wfKR/Hqg2SGqO0xiA5q0xdrhXDw0gAzE+Qg1MQ6etp\neeK+pKajXIWy9P9t1p1x9qSmiU/EgT7/p63O174ZaHeFk3bhGHphle7+s8sqdOLUXhQAAOYJ\nyEEAJoFlSbs10Hws2NYU6u7wHv6GCYcm8joUJwR6o3zxMr7OIMjJFxcvEJmKoCVpyl3xj/q3\nj/RP4ECUfXLjlibH4G9iDPuz948NXxCNj2P4eNWTBItEYvGT7YUC4VyS5UHIsgP/fa/tTw8n\nqONTCXMuuKzsl7/DiExstNXmDP/tm/6/7OsbuUihmMe5sEp/UbVuTaFSA5VCAABIkSzPQZBW\nDBn1Ht7vrz/k3rc73NMxkfYsKEHwtXr9WefKFtZKKqq4cuWkrkgziSZb6NBAoM0ZPtjv39Pj\njdCjtw1JIuHjy3Jlpxcr1xWrqvRilQjeaQAwX0AOThHLuuu+bn/u8XB35/DNuERa8rNb9d/f\nxOELUn7NIwOB9+ttL+w1u8MnBAqKImuLlDeszL90kQFmhwMAwKRADgIwHbTHFWxrDrY3B9ub\nfUcO0B73BF+I4hxRfpFs0RLZwlpZVa3AmJdp83my3mCB8Lp36keWIVLutCL51zefOtNXmQ4o\nEGZ5EPrqDzU9/NvhqxKqVq2p/N3Dk73pNmsCZPyDetsfd3bXW0dZ2QhFkRqD9Kcr8i6p0Ruk\nsOwEAABMy3zIQZAJmGgk0Hws0NLgbzjiPbx/QosXooikpFx/9vmyhbWS0nKMN+mWLEyCPTwQ\naHaEDvb59/f5m2xBP3nSR/yGU4m4ZxQrNy3UrS5UFKsyYglnAMAMgRycjkSM7n3zr92vPs/G\nT5gvzlWqSm+5Q3/WecgMzM4OkPGX6swv7DF3jlikcKFefMVi48ZyTZVBwuXAXTYAABgf5CAA\nKRQPBoIdLcGWxlB3R7C1MdLXPbwr+xgImZyrUHEVStWqtQJDrrSimq83jv2S3n881/HyM0O/\nxTjEGduPTmv089LvPm51R2IIglDxxN8PDIxcBG2qjr8HRlHkV2sLnjy/IkVnnhFQIMz+IEzQ\nVMsT91s//tfQFkImq7rvKeWyVWkc1bjqen1PftW1pclBxkfv77wiX37FEuOFVTqTIvUPqAIA\nwHwwT3IQZBrSNuDau9N7eL/vyAHa60bGeyuKYhhPrRWaCtWrz1AuXSkqLJnCRVkWabKHuj2R\nJnvoYL+/0RZsc4Zj47UkVQiIFSZ5kUpoUghMCsGGUhXMLwQgm0AOTl+039z+3OPOnV8kbRfm\nmUxXXWfYeNFMdNCKMezfvul/6POOXm905F4JH19bqLys1nBRtU7CS3HLUwAAyCaQgwDMIJYN\nm7tdu7eHOlo9B+viwcBE2uoMGiwZyhcvExeUyBctExUUJ3Vx73zu6Z63Xj7+exTh8nk0SQ0/\nhsMTrNt2cNpfxnyxeUvro9s7i1XCUvX4S1xHaGZnt+dke6HF6Fwyf4KQTSR6Xnu+66/PDt2D\nQ3FO+W33GM+9ZCae60yhwUdE3zxkOWIJjPqtiqLIZYsM1y7PPb1YKSCy/O8RAABSa/7kIMhY\nCYqk3M5QV3u4p9O1a3uos42JJk8KScKVK0SFJcpTVgty8mVVtXytfmqXJuOJnZ2eXd2eI5bA\nVx2eIDX+/EIMRQ1S3in58lUm+dpi5Sl58sx+GwUAGAfkYKqEOlp7Xn/J8eWnbOKEhzt5am3R\n9f9Pf9a5GDf13V/iCfbfDfZndvV83eUd9YlvPo5dWK2/vNZwXqUWx+DnNQAAJIMcBGA2kTZL\n2NwV7mq3f/EJabPQvvEflh2EEoS4sISvz9Gfda7QVCTMM3W//OwJBUIE4XAIhjlxwuKI9z7C\n3IJVb348nS8hi71c13fDe8cuqzX8aGnOuAdbA9QN7x072V4oEM4l8y0ILVs+aPvTH5jo8acs\nNWvPXHjXIxzh+IXxtGt3hff1+ra2ON8/aqVHe96fT2BXLjZevzJ/pUk++8MDAIC5aL7lIJgT\nIn09/obD1q3/8dUfZOPjLyLI1+q1Z26UVy9WLFmBiyVTuyiTYBtswQN9/lZn+Osuzz6zfyLv\nkCV8/PJFhkKVcG2RckmOVMiFf0cAzDGQg6kV6mrr/uuzjh3bku52cUSigquvz7v0xxz+pPtF\nT0SjLXTvp21j9J4REJyfnJJ7Wa1hbVGGLrQBAABpATkIQBrRHpe/8aj30D5/w1Ha66YctqQH\nrU4G4/K4YhnpdQzfOEqBcKQRJcOSG281XfXTSQw6e0GBcJ6ah0FIez31d97sbzjelZirUi96\n9DlpeVUaRzUp7jD9aavrn8ds/2mwxxOjfPeqRdybV5t+ckpuPrQeBQCAMc3DHARzSCJGhzpa\n/ccOu/buiJi7KZeTZcaqF6IYKiosNV39U82aDdO8B20NUAf6/Ht7vQf7/UcsAU84NupbjuEI\nDlquFV9ea/hBjWGBdg48egUAQCAHZ4a/4Uj3q8+59+9KKhPy1NqCH99gOOfiGSoTxhh2T493\ne4d7Z5dnZ6eHGe1Gx6oCxUVVup+uzFMIiJkYAwAAzC2QgwBkDjYeJx3WYFuz55s9oY7WqN1C\nu51jTTFEk37HYZHxn68d4yQogqzf2TTpM2SLDlek9OGvoEA478zPIGTIaMN9t7m+3j60BcWJ\nmj/8SX3quvQNaioCZPydI9ZHvuzsGrFAPYIgGIqeXa6+88ySUwvkGPT/AgCA0czPHARzFEOS\n/obD7r07nbu+JO2WsScXEjK50FSkO+P78polQlPxNG9GMwm2yxPZ2+PbZ/Y12oJ7erxjL16o\nFHKX5UkX58jWFinPKIEW6ABkLsjBmRPqauv5+0uOL7eyJz5gITDmVt71iLxmyYxe3RqgXj84\n8NqB/kZbaOReHEMvqzX8eFnOGSUqLgeb0ZEAAEAmgxwEIJMxJBlorg+0NNi3fRzp62HIcRbj\nSAH0+P/nZ7FwS5Nj/IPGc16ldvonmU1QIJynQTjw4butTz/Exr6deozinKp7n9Su+156RzU1\nTfbQlibH83t6ezyjrFFfrhX/Zn3RJTV6WKAeAACSzOccBHMam0hQTru/8ajlw/eC7c0xv2+M\ng1EOR5BXIDYVGc+/VLlsFTrt73Yqnthn9v230fH2YYslQI268NUQLo6VqIQbKzRrCpVlGlGF\nTjzNqwMAUghycKZF+80DH75rfu8fQx88B2nXnVX8s1uFuaaZHkCTPfTWYcsrdX22IDVyr4SP\nX7Ms5/Z1RdB7BgAwP0EOAjCHfHlGDRuPz971hoqFKGf9jpPOlssyUCCcd+Z5EJK2gSO33Rju\n6RraUvaLO/Mu/VEahzRN29pcHzba/7Z/IEQn/7jk4diVS4w/P61gcY40LWMDAIAMNM9zEGQJ\nlo1a+l11O81v/420Dox9LMbjC3Pz1avXKZaulJZV4pLpvitgEuzBfv/uHu+h/sAH9bZobJym\nLjI+fk6FdmOF5owSVa5snHmNu7q8pz9Xl2BZDorEnzhnmkMFAIwEOTg7Ql3tXa/82bX7q+Gd\nolEcz7nw8oKrfsrT6GZ6ACyL/LvB9tZh64eNdmrEOoUYip5Xqb1mec6GUrWUDw+VAgDmEchB\nAOaizpf+2PPGy8h4q2CkzIjGfFypYs2W3bN09dkFBcJ5B4IwHg4eue1G/7EjQ1sM515UcuOt\nXKUqjaOapmiMefOQ5aW6vv3mUeYTGCS8W9YUXL8iTyPmzv7YAAAgo0AOgixD2iyuup2eul3h\n3s6otX/sNqQozhHkFhjPuVC14jRxURky7YbkMYbd1ub6rNXZ7AjtN/t90XGWiDcpBOdUaFaa\nFEtypRVaMQdLHsAX7e4NL+wbvoXLQanHNk5znACAIZCDs8l37FDzI3dHeruHb0RxjvG8Swr/\n52aeSjMLY3CG6DcPW16uM4/aepSPY1cuMd55ZkmJWjgLgwEAgLSDHARgjup87umet15O2+VP\n/OTK4QnWbTuYpqGAFIAC4XwPQiYSPnb3r9z7dg1twUXi2idfklXVpnFU08eyyO4e71M7uv91\nzDZyL4qiVy423Hp64ZJc2eyPDQAAMgTkIMhiCYr0Nx4NdbXbv9ga7m6Ph0a5FzyEkMklZRXi\n4nLDOReIi8qmf3WWRVocoa0tzt3d3u0dbu94xUIhl1OpE19UrV+SI12eJ1OJuMhoBUIOijHs\nt3NfUARJPAnTCgGYFsjBWcYmEtat/+58/kna5x2+HePy8n94TeG1N2Fc3uyM5Jg1+N5R67O7\nzZ4InbQLRdGrlhivW5G7tkgJi9kDALIb5CAAc9TIAiGHQzDMOJ86Zwo6/Jfo+p2N6RkGmCoo\nEEIQIgmaarj3NufOL4a2oDin6r4ntafPySUJk3R7Iv+stz+1o9sSIEfuvbhaf8f6ohX58tkf\nGAAApB3kIJg/gu3N5rdeDXd3RCx9TDg8xpE8tVZWvbjgR9dLyipTdfUeT7TeGthv9r95yNLr\njY69bCGGonoJr0QtXJonf3pH1/BdHAxjEsnN8RCYWQjAVEEOpkWCpvo/eLPrr88y0cjw7YRM\nXrH5Ac2aM2dtJGGaeeuw5fk95kP9/pF7TQrB7WcU/bDWMPjQBgAAZB/IQQDmqMwqECZBEQRB\nSm681XTVT9M9FDAhUCCEIPzWwH/e7XjuiXj4+PP1ssqa6of+yNPo0ziqVEmw7MfNzg8b7X8/\nMDBy2YlSteia5TnXLs/NGW81IAAAyCaQg2AeYhNMuKvD33TU+vG/g23NCZo62ZG4WCzKLxIX\nL9Cfc4GschGaon8m9iC1s8vzYaNje4fbEiAn9U78ZAXC4WBmIQATBzmYRgwZ7f/nmz1/fzFp\nhrfQVFRxx73ymqXT7/w8cX0+8o1DA3/c2WMPJoeChIf/el3h1UtzilXQdxQAkG0gBwGY66L9\n5j1XnI1kVIFwEEwrnDugQAhBeBxpG6j/3S+CrU1DWzgicfmvf68/69zZ/Hg2oxwh+u3Dlse2\ndw34kycUclB0Y4Xm+pV5myp12fLlAgDAWCAHwTyXoClf/aG+998ItTWRjlF6kg/BuFxRUamk\neIHhnItk1YtRDEvJAOxB6tBA4PBA4J/1tiZ7KBoba9HEyYJKIQDjghxMu3g4ZH7rrz1v/IWN\nnXBLi683lt92j2rlmtkcDBlPvHFw4PeftI/sPYOh6I+W5dywMu/UAsVsDgkAAGYU5CAAWSnN\nKxSO6sQ77VypYs2W3WkaCkgGBUIIwhPEQ8Gjm//Xd+SElUVzL75iwa/uypoaIYIgTIJ9v952\n19bWDldk5F6TQnDbuqLLaw0aMTSTAQBkM8hBAIZQTnuoo7Xv/df9DUeGN1QYiSMQiIsX8DQ6\n05XXSSuqUjUAmkl0uiIX/PVA+2hvTqYDKoUAnAzkYIYgbQPH7r410Hwsabv+++ctuPVuXCSZ\n5fHU9fr+8EXH1mZnPJF8t6RMI3r6gsqN5Zos+nAMAJi/IAcBmCeafn+7dftH6R7FMOi3/1m/\ns2m8Q8GMgwIhBOEo7F983PzYvcywu2PGTZcs+NVds7Zo/OxgWWRbm+uVfX0fNzvDdDxpLxfH\nfn6aafP6YjWsOQEAyFKQgwCMxMbjvvqDfe+/EenrifT1svGx+rTgEom0rLLg2psUtctT9SjV\n6v/bs6fHl5JTfQdFkONv+EVcLPTw2Sk9PwBzFeRgRvF8s6f16Qcj5p7hGzEuT7N2Q8Xm+zl8\nwSyPxxeN3fNp+1/29YXp5OndK03yBzcuWF+igjIhAGBOgxwEYN5qffS+/i3vpHsUQ5VC6EGa\nTlAghCAcHe1xtf35YfvnW4e2KBYvr3rgaa5cmcZRzZAgFX/vqO2x7Z2tjnDSLi4HrdJL71hf\ndP5CrYCA7xMAQFaBHARgbAmaCnW193/wZrCtKdzbPUaxEBeJ+XojX2+UlJTnXnIlV6me/tW/\naHdveGHf9M+TVCAcTiMiHPeflYpLADAnQQ5mIN/Rg21/fCjY3jJ8I4fPly9aVnzjLyVllbM8\nHiqeeO1A/z2ftNtGLE9YqBRuPrPoh7VGKR+f5VEBAEBKQA4CAJBhCxmmE6xZmD5QIIQgHEvH\nC0/1vv7K0G95am3NI89Iy1PWTSvTHBkIPLq965/1VppJ/nch5uKX1epvWJV/Sp4cHhQFAGQH\nyEEAJi4RiwVbG/vefyPU0UI6bUw4+aGiISiGiUvKxcVlxk0/kNcsmfIVZ6FAOPwIaEMK5iHI\nwYw18O932v78hwSd/FiGfNHS6gf/xFWk4aHVz9tcT+/s/rjZmbRdwsNvOc3042U55Vrx7I8K\nAACmA3IQADDSoeuv9LYcSfMgTrz3jqKc9TuSe9GDVIECIQThOMxvvdrx/BPsd6svoDhedd8T\n2tO/l95RzSg/GX9mV8+Dn3eQscTIvQYJ796zSy9YqNNJsqrhKgBgHoIcBGBq2ATjO3Kg7/03\ngm1NpM0yxpF8nUFaWVN68+18vXGyVxlZIORgGJMY5c1JanFQJP4EFAvBvAA5mMlon6f1ifud\nOz9nT/y5xxGJKjc/qF33vVQ1dp6UnV2eX3/YfKDPP3JXlUFyxxlFZ5aqjFL+7A8MAACmAHIQ\nADAG29YPG/+wOd2jQBDkhHqh6pQ1tU+8mL6hZCEoEEIQjs+9d2f9734+/PnN/MuvKbn5dhTD\n0jiqmeaJxN46bHm5zlxvDY36z6RIJVySI/vl2oLVhYrZHx4AAEwf5CAA0+erP9T3/uvR/l7S\naokFR7lljCAIShCKmqXSiuqCH9/AEYomfvKkGuHsFAiHwLRCkPUgBzMfaRvoeuX/XHt3xvwn\nLM4qKatc9OizPI0uLaPa1e2986PWul5vPJH8ORFFkUuq9Y9vqihQzvaiiQAAMFmQgwCAScmI\nlQu/XbYQWb+zKc0jyRZQIIQgnJBwd8eRO24irQNDW4S5pqXPvc5VqtI4qtnR7Yn8/cDAi3vN\n1kDyshODCpSClSbFbesKl+bKZnlsAAAwHZCDAKQSy0Yt/ea3/+ZvOBzqbmfjzMhDUIKQLlgo\nrawuvOYmQiaf7BX+fsByzVtpaPYCcwpBtoIcnCsSNGX/YmvrUw8w0ejQRpQgZBXV5XfcJyoo\nTsuobEHqsS+7XqwzR+jkH/g4hq4rUT1wdtlK06R/1AMAwKyBHAQATEfnc0/3vPVy2i6PDv0f\n1iycFigQQhBOFENGj97+M+/hb4a2cBXKyt/+QbVqbRpHNWuYBLur2/vKvr63D1tGPig6aKVJ\n/uT5FacWwIRCAMDcADkIwAxh43F/49HOl/4U7GhhwqGRB6A4Li5ZwFNpxAUluZdezVNrJ37y\nDlek9OGvUjbWScIQhIFphSBbQA7OLbTHfXTz/waaTliBBuPxC6/9Wf4P/wcjiLSMioonPmt1\n3f1J6zFrKHHi3RUURU7Jkz91AXxCBABkKMhBAECqeA/UHfrVT9J2eRTh8ATrth1M2wDmMigQ\nQhBOBst2vPi0+c2/Dq0DgWJo2S9+m3vJVekd12yyBqgvO9x/2dd3eCDgi8ZGHrA4R/rbDSXn\nL9RyOdncghUAkAUgBwGYaUwk3PL4vb6jB0mH7WTHoBgmzC+U1y4vvObG4e3y/McOHrjlx8iw\n9+pcqWLNlt3DX/v49p47tqSts4qIi4UePjtdVwdg+iAH5yLX3h1N929OaunM1+kNGy8q/MnN\naVwFwxGiP2523P7fFleYHr4dRdFao+TxTRVnlmZ/9x0AwNwCOQgASDnzG6+2v/B4Gi783YRC\nYW7Bqjc/TsMA5iwoEEIQTpr38P4jt/0sQZFDW1SnrK555BmMy0vjqNLii3b3Q5937DP7RnaV\nUYu4t5xmunKJsVQ9iaWGAABgNkEOAjBropa+ntde9DUciZi7kJO9+0YRkalYsXRFyY2/4ghF\nI5/BRDnY4ENaJ2uisupPdXVmzyjnPeklp2X4eWFmIZiLIAfnqHgw0P7s486vv0hamFBgzFv0\n+PMiU1G6BoYgCBVPvLKv7/5t7Y4gnbSrSCX8zfqiq5bkiLjw/QYAyAiQgwCAGWXb+mHjHzbP\n9lXRE34JSxWOCwqEEIRTEbX2H7ntxkhv99AWYX5B7eMvCnLy0jiqdEmw7BuHLPd+2t7ljiTt\nQlFkSY7sD+csOLNUxcHQUV8OAADpAjkIwOyL+b2dLzztrT8Y83mTbm0PQTFUVFgq0OU4924/\ncQ+GIInvDkKQ0eYUIqP0IJ2pAuGoZ0YRJAGVQjBHQA7OabTP0/yHu9x1O9hhC0CgBKFacVrl\nnQ8SsnR29WRZ5J0jlrs+ae90hZN2ibn4Tavz//dUU4FSkJaxAQDAEMhBAMAsa330vv4t78zq\nJVEoE44DCoQQhFOUoMiWJ++3fvzvoS0cgUD//QsW3HpXGvu6pNd/Gx2/+ail2T7KUkN5cv6L\nl1Z/r0wNZUIAQOaAHAQgvUiHzfzmXwMtDYGWBjYeH+WI5HcNwwqEJx6gOmVN7RMvjnqV9c99\ns73TOe3Bjmr80iPMLASZDHIwC4Q6Whvuuz3c3TF8I4cvWHjv45rT1qdrVIOYBPv2EetDn3eM\n/IRIcNDVBYq7ziqFvqMAgDSCHAQApEW037znitldqwI9/n8oFiaBAiEE4TSwbO/br3a+8DTL\nHG+wqVy+atEjz2I8fhrHlV7N9tAdW1p2dHmCZPKdPpNC8MG1S5bmytIyMAAASAI5CECGiPm9\n3a+96K8/FGxrGlrpGUFGFghPDkUQBEFRzvodx052yOYt7Y9ub5/GMFMA6oUgo0AOZg3f0QPH\n7r6V9riGb5TXLqu+/ymuUp2uUQ35pMX5wLaOfb0+ZsTtF4OEd+eG4utOyRNC31EAwKyDHAQA\npNfIZTVmwaJHnhv+W/XqdbM8gEwDBUIIwunyNxyp33wz7fMObZFWVi9++i+4SJzGUaUdGU9s\naXLc9mFzrzc6fDuKIqsLlY+cs2B1YTqb3gAAAAI5CEDm+XJd9fDnriZt6LnIMSuFCILc+F7T\nS3U9U79Q6mwsV398/SnpHgWYpyAHswkTjbQ8do9z93YmcnzdB4xLqFevr9j8QCZ8OB3wk8/t\n7v2/Xb1BKvlBUrmAeHBj2dVLc2R8PC1jAwDMT5CDAICMMjtrFkKBMAkUCCEIUyAW8Dfcc5v3\n4J6h5R8Extylz/6Dp9Gld2CZ4GC//ydv19dbg0nbl+XJHj2v/IxiFQo9RwEAaQI5CECmOXDT\nlf6GIyk4EfrtfybSPmXVn+rqzJ4UXDTVFmiELZvXpXsUIJtBDmYf2us5+pubAk0nPCHBEQpV\nK9ZU3HEfLpGma2BDojHmmV29L9b1jbo84aPnLbhhVT4Oy1IAAGYF5CAAIMPNRMkwqUCIzPsa\nIRQIIQhTZuDDd1sev3doJRqOUFj+69/rv39+WgeVKep6fVe8frjHE03aniPjP76p/Ie1RigT\nAgBmH+QgAJms7kebwj2d0z3LZJZkf3x7zx1bMm49BhRBEtCVFMwMyMFsZf3kP61PP8SET1j5\nDyUI9arTq+57AiO46RrYcLu7vZs/bt3b7U3qO6qT8E4vVj5z0UKNOCPGCQDIYpCDAIC5pfXR\n+/q3vDPNk6A4XvPgn4dvgQIhFAghCFPG+vG/mh/7PRs/3hpLsWRF7RMvYFxeGkeVIRIs+/pB\ny11bW/t8ZNKuYrXo6fMrNi3UpmVgAIB5C3IQgEyWyvUYvnsOSZhbsOrNjyfyisycVgjFQpBa\nkINZjIlGmh+9x7nzswQdG75dYMxd9NjzooLidA0sidkbvf69Y1+2u+OJE+7MCAjOBQu1f7po\noRbKhACAGQM5CACYc1K7bCFKEDUP/Glqr82asiIUCCEIU8xXf+job26KB4931JSUli955jVc\nJEnjqDLKfxsdt/yrwexNLhOuLVK+flVtnpyfllEBAOYhyEEAMtmMLNie4kohiiBp+Cgh4mKh\nh8+e/euC7AM5mPWiA31t//eIZ/+eBE0NbeTw+cbzflD2izuRjOni4g7Tmz9qfXV/f9JsQhxD\nl+XJ/nhh5Yp8ebrGBgDIYpCDAIA5bYoNSIe9AcSlsoIrfjrlR8eyo0YIBUIIwtSjfZ5jd/3S\nd+TA0BZhQfGKv7yH8aD0ddzubu8dW1r29nqH/xPEMfT8Kt1zFy/USWDOJQBgxkEOApDJRisQ\nYgiSSM3ZUQSZTJkQQZAv2t0bXtg34ixp/igBcwrBdEAOzhMxv7ftj3+wf7F52zOAAAAgAElE\nQVSVTRz/ESrIyTecfUHhtT/LnDLhMWvwjv+27O71Bsl40q4ag+TPFy08vViZloEBALIV5CAA\nIAtMru/oyM+vKFJw9Q2yqtopXBoKhHMeBOGM6v/gjdY/PjT0r05SWr7shTehRphkv9l30/uN\nhwb8wzfycOzscs1T51cUqYTpGhgAYD6AHARgrhgsFopyTOGB3lSeFx38D7p+Z+OkXvf3A5Zr\n3jpCYNxYgk7leFJHIyIc95+V7lGATAc5OK8EWhqO/uZ/abdr+EZhnqnm4Wcyp+MogiDeaOyh\nzzv+7+semkm+V1OhFf9ibcGNq/LTMjAAQPaBHAQAZJMJVQpHK4WpTz0954LLUzWMOVc1hAIh\nBOEMcnz1WcO9vx5aklBcXLbshTc5Aih6JXvrsOXG9xqC1AkPiqIockq+/OnzK1YVKNI1MABA\ndoMcBGDOmZG+o8hUWo8OGW1mYfpJ+YT/ISgQgnFADs438VDw6Oabh7e6QRAE4/ENZ19QfOMv\nCaksXQMbKUQxbxwaeOjzjpEL2OfJ+Y9vqri81pCWgQEAsgnkIAAgW0X7zXuuGG1ZilELhCvX\n5lz0w1RdGgqEcwkE4Sywfvyv5kfuHurlIimrWPz0K4QMKl7JQhTzzO6eB7Z1RGhm+HYURc6r\n0P3jqkUyPp6usQEAshXkIABz1+T6qEzct3MKkfU7m6bw6jEXLJxVQoLzzo8Xj9x+XqV29gcD\nMhbk4Pzkqz/U/MjdEXP38I0oQZT94s7cC1N2byglWBbZ0uS47b/Nbc5w0q4StejBjWWXLTJk\nTIdUAMDcAzkIAMhuoz5fW3HH/YO/aHnyATYeQxBEUlZZdN0tqbooFAjnEgjC2WH/4uPG++4Y\nqhHyNLplz7/B1xvTO6rMFKGZJ3d0P/ZlV4g+YTahjI+fW6n904WVahE3XWMDAGQfyEEAskDT\n72+3bv8o9edFEQRBODzBum0Hp3aCwTakqRzSZJysQDg2KB/ON5CD8xfL9r7xF/O7r9Ee9/DN\nyuWrqx94ChdL0jWuk/m01Xn31rZv+vxJ20vVopcuq1pXrErLqAAAcx3kIABgvnHt/mro1433\n3xEPhxAEwcXihXc/lqpLQIFwLoEgnDW2z7Y0PnDH0BxeXCw2bLyo7Bd3pnVQmSsaY+75tP1f\nx+wdrhMeFOXh2IZS9d+uqIEyIQAgJSAHAcgaJ+2gMk3fTUzhShVrtuyezpkyoROphP//2bvz\nuKjK/v/j15mBAUFcBwRUBBUX3DXL1BLUSnHJ0lIrt1wzW6207ru629WisnLPSi2XbNE01FLB\nXHNfcUFkFZBFUFYHZs79x+iIKwPMzIGZ1/PB4/fwXHPOzLvv75aPZz7nui6niV38ejSpc5dz\n6BE6FOqggyu6lB314fTMfTtNm2IIIdTV3Hz6Dmr28luSSqVgttvaHZc1dd2p3XFZN413alBz\n/pDW9zSsREukAqgSqIMAHE3JBmH88sXZRw4IIZzcq7d6pwwNwqKszDNzZ3l27+XV4+FbX6VB\nWJVQCG0p9a/1UR+/JRdfnxhXI6hN249mu3h6K5iqkvvyn9j/bjiTd+Oio24ada+m2i8GtWxS\nl90cAVQIdRCwPwk/fR89/1PLv2/Flh69rQHfHlx/MtVS72YmlSSNuMd3SNtS9u6iTeggqIMQ\nQuiyLh57++WbNias3jiww5ffaepUxpl5O2KzXl938t+E7Ju+y2npVX1gK6/3+jRzcap0rU0A\nlRN1EICjKdkgTFi1JOvgv0IISSU1e+VtVy9zmxS6jPSTn73r1bOPz8MDb32VBmFVQiG0sUvH\nDx9+fWJxTo5pRO3u3vHL72q0bKNgqkouPVc3euXRbTEX825cdFQlSQNaeX03tG0dN2elsgGo\n6qiDgL2y1oRCYZVO4a2GLzu68nCSld78ngY1330k8O7n0CB0ENRBGMkGw8kZb6dt3agvLDAN\nOtesVX/gk00mvqxgsLvYFZf17Mqjp2/Zm9Bdox7Yqt7nj7b09nBRJBiAKoQ6CMDRlGwQnv/j\nZ9Oh/4gJNVu3N/NNaBDaDwqh7RVeSIn6cHrWoX2mEbVrtdbvh2m7BisXqgrILih6eW3Ub8cu\n5BTe0Cb0cHUa3MY7bGBL2oQAyoE6CDiCw1OezTyyx/LvKwlJSD3/OWH5d77mbEZ+4CeR5bvW\nSaXqHXh96s+JCzmJ2YWmw3lDWjeo6XqXy2kQOgjqIErSZV888e5rFw/uESW+I/Fo2rztzLmu\n9UqZdqwIWRZrjqc+/9uJlMtXbnrJWS091Ew7f0ibhrXu9rsOgIOjDgJwNCUbhLkxp2MWzjb+\n2dWnvrPZu1DLuqLchBghCUmItp/MvelVGoRVCYVQKdHfzEr+81fTVEJJpWo5/QOf0MeUTVX5\nXS4snrD62MZT6ZdubBNq1FIbnxpLn2oXVK+6UtkAVEXUQcBxHHvt+bR/Iyz/vtc2KXRr4H//\n8nDLv/81ZW0WujmrV43sYDr8+UjKsv3nTYcPNK5Tr/pt5tZ0aFCjrc/Nt4U0C+0YdRC3iv1+\nXvyKxfr8fNOIU/XqPqGDm704TcFUd6E3yH+fyfjvhjMHz1+66dsdZ7XUP6jewidas4c9gNui\nDgJwZNnHDh6Y/IwoX3Ps2o1wuxk0CKsyCqGCCs4n7pswtOhStmkk8MVpfk+OUjBSVVFQpH/x\n96hVh1NyrtzQJnRSSb2baZcOb+dZnds/AGahDgIOKOqd11Mi/rT8+167Qap77wPtP1tg+fcX\nQggxfX30zIhoc86s4ep86aOHTId5Ov3oFUd+OVrKlocqSfr6sVZ+tUufcEPX0D5QB3FbhRdS\njr/z6qUTR0oO1mzToUPYQrWbu1KpSnU2I/+t8NProi4UFhlKjldzVj/e1nvBkNbuGv53DuAG\n1EEAjqwgKWHXU32FwbzumFTK600mvFy9cTNBg7BqoRAq60r6hf2TnylMufo0t6SSvPsOCpr+\noZBK+wsHITLzdCNXHNl8JkOnv+GvsKuz6pHmnjP6NW/hxWxCAKWgDgIOy1ptQnHDjVPTia82\nenqcVT6ltDmFpgah/4cR8VkFdzrtVkPa+gzv4KNxUt39NBqE9oE6iLs49+3XCauX6fNyTSOu\n9bx9Bw4NGDVRwVSlyrlS/Orak78eTc0qKCo5XtPV6dHW9T4f2LIuswkBXEMdBODgEn5ekrhq\niaGouNQz9QV5pj6aQacT8rXnsW7pY2hq1H5g/U5LprQyGoQUQiXpsi8efWPypaijphH3gKbt\nP53n6l1fwVRVyIWcK//ZcGbjqfTzlwpLjkuS1D2g9soR7X1rsOcEgDuiDgIOriApYdfwPlb8\nAEkIIVRq55CII6Wdai3/CT+dmX/1W/I1xy9cyLl5p65btfb2+KRf87ufQ4PQPlAHcXdX0i8c\n/99r2UcOlBys3fG+1u+HaWrVUSqVOfJ1+hd+P/Hz4dRc3Q1feLk4qR5p7rnoyTZerDoDgDoI\nADfuSmims3M+zUuMvdOranf34I37KpTJtmgQUggVJuv1+yYMzTkdZRpxql69wWNPNZn4soKp\nqpYrxYYX10Qt23++oEhfctxJJfUKrDuzf4t2vjWUygagMqMOAjCx1iaF4vozlZIQPf+Juuup\n1rVoT+KE1ceebO8zotMNz6LFXSx44fcTJUdWjuhw97X4aBDaB+ogzBH99czEX5fLxdcn5Knd\nq7d5//O693VXMJU5cq4Uj1pxdMOptJsWHXXXOD3V0febx4M06lJmSwOwb9RBADC/QXhk+mRz\nTqtyDUL+OQiFSWr1PfOX1+3ygOnLo+Lc3PifFp14/w3hwN3rMnFxUi0Y0jr1f72e7lS/jpuz\nabzYIG86ndE+bMe9X+48dP6yggkBAEAl1+azOb22R3VdsdHyby1f/ZFlseXBoC0PBm3t0cby\nn1IBfrVdW3l7lBx5Z+OZIj3/EAUghBCBL0y7Z/5Pbg0bmUb0eblH3nju1Kf/Uy6UWTxcnH4b\n3fH0tB4Dgupp1NcXwMrTFS/akxD4SeRfpzMUjAcAAFDFSNd+7AgzCHlSprKI/W5uws8/FOde\n3+OhVrtO7WbOdarucZercBOd3vDmn6d/2Hf+Yr6u5LgkiXa+NR5prv0ktAWbPAIwog4CuJOY\nuV/ErVhkrXe/8z9F3Br437883Eofa9y28NYZhEIIWZa/25u05vgF08gHfZptj8n+KzpNJYm1\nz95z0/nMILQP1EGYTzYYznz5ccrGNfr8fNOgR9PmPqGPN3xyhILBzJSZp3v1j5O/H7uQc+WG\nRUfv96895/FWHeqz5AzgiKiDAFCOJUZ16Wknw/53p1er3AxCGoQUwkrkSkba4VfH556LNo1o\ntJ6dF6x0reejYKqqKF+nf/WPkysPJV8qvHmTVR8Pl0fb1Jv7eGvahACogwBKdXrme0nrV9nu\n827894napVrw3wfucGqZ3aVBKIQ4nZY3bf0p/bWbo9dDGu+Ju7w9NkMS0h9jO910Mg1C+0Ad\nRFldyUw/+OKY/PhzphHJydm376Mtpr2vYCrzXcwveurHQ3+fyTSU+CJIksSDjesse6p9w1ps\nYA84FuogAJjfIDz61hTZYCj9vBt5PtCr7cdfl/UqW6JBSCGsXAxXCo+9/WrGrkjTiKZW7XsW\nrqzm21CxTFVWsUF+b1P0D/uSki4V3vRSrWrOg9t6zx3cim0nAEdGHQRgvoPjn8o6ddjWnyoJ\nldo5JOKIpd5vfVTaXV7dFnPxs8ir3/t3alBTJan3JV68Qy5hCAu1VCoohTqIctAX5B/7z0uZ\ne3eWHPTq2af1/z6TVFXj3urQ+csjVxw5npJTclDjpHq8db3vhrWt5sxfB8BRUAcBwPwGYfS8\nz0o+JXY31x57lSSp8biX/EdMKE8yW6FBSCGsjKLnfHr+95X6wgLjoZOHR8Co5/yGjVY0VFVV\npJf/u+H0X2cyjiRfvumve6Pa1Z7v1uj1kMYKRQOgMOoggLLK2r/n4CvP2vQjr91cWXY24W0t\n2Zc07udjxQZZCOGmUTup1JcLdXc4V5LD+lo1DGyAOohyi/1ubvKfvxReSDWNeDRv1W7GNy6e\n9RRMVSa/Hk198feo5Ms3PEuqddcM7eAzI7RFdRf+UgD2jzoIAKJcq4zGzJ6VmxJ325dYYrQq\noRBWZok/Lz23+JvivKtbEkpqdcMhzwS+ME3ZVFXaofOXX193akv0zRvRB2rdH2tT7/0+zVyc\nqsYTrwAshToIoCL2jxp86dxJ232eZN0dCoUQ66PSpq0/FXUht/RTaRDaBeogKkJfWHB02vMX\nD+wxjairufmPnOg/YryCqcpEb5DfDD/9/d6kjLwbHoao6er0VMf6cx5vxbYUgH2jDgKAKFeD\nMC/69NnFs2/7UpVrENIPQCXV8MmRHb9Z4lyjpvFQ1usTVy89NfMdZVNVaR3q19g86d4dU+4P\nbenppLp+qxedkTcr4lyjDyOmrz/lwA8MAACAsrlnya+9tkf5hPSz0efJIj8pbsuDQbufsuLa\nnuZ1BwFAqF2rtf/iW88He5smOusL8s8t+vLI9Cm67NuvTlzZqFXSrP4t4v8bMrS9j7P6+h3i\npcLiebvi24Vt/+KfWAXjAQAAwNpoEKLy8ghsee8Pv7s1aGQ8lA3y+XW/HHl9kr7w5h31YL5u\nAbX/HNd5/yvd/OtUKzl+IefKzIhzLWduO5J8WalsAACgygl6/9Ne26N6bY+q266L1T9Mvtom\n3PpgkJU+Qbr6/5h+AOCOJJWq7cdfNXxipJOHh3FENsgZO7buHh56+eQxZbOZz02jXjmiw9k3\ng+/zq6UqMWfwWErOq2tP3vvlzplbYxSMBwAAAOthiVGm0ld2Bt2V/ZOeyjlzfQGrar4NOs1Z\n6uLprWAqO2CQ5U+2nFt7PHVf4qWS42pJeriFdvGTbX1quCiVDYBtUAcBWMmx155P+zfCup9x\nY/POUjsU1nt3c1runfYdvKO61Z0y3nu44p8OG6MOwlJSN/4Ru2RefmK8aUSlcfEfOSFg9HMK\npiqH1JwrY1cd3XAq/aYvioLqVf99TKdmnu4K5QJgFdRBACi3Oy1Mqu0WbNMcFcYMQlR2Ko3L\nPQtW1u7Q2TRSkJy0+5mB8Su+VzCVHVBJ0n96N9n7crc5j7e+16+m6VFRvSxvOJke8FHE6JVH\nCor0imYEAABVUpvP5vTaHhU46XUrfoZ8w49BX2yRdw1uUse8E0vOMpRaenpY5NMBVFHefQZ2\nWbauXu++ajc344hBdyVu6cIzsz+RDQZls5WJt4fLn+M6b550X6PaN6w3E3UhN2jmP/2/3X+5\n0DK/bAEAAFAZMIOQJ2WqBtlgODnz7dRNf8jFV1tWkpOT35Mjm05+TdlgdiNsW+w3O+LiLhaU\nHPSr7TruPr+3H2qqVCoAVkUdBGAzB8c/lXXqsBU/QBJ1732g/WcLKvg266PSTH9+b1PM/qSs\nO32eHNa3gp8FxVEHYXEp4b+f+/brwrRU00i1+n6Nnnq2/qNPKpiqHGRZvLspetXh5DPpeSXH\nte6aJ9v5fDkoqOSehQCqKOogAJSb3cwgpEFIIaxK4n9aHL98cdGlbNNInc73t5s1T+WsUTCV\n3SjSy5N/Pb76SMqlGx8LbVjL9Yl2Ph+HNndxYs4xYFeogwBsLGv/noOvPGulN5ckqec/Jyzy\nVsY24Xubzu1PuninT6NBaAeog7CGoktZe0YN0mWkm0ZUGo3PI482e/W/KmdnBYOVgyyLjzaf\nnb874fylwpLjvjVch7T1/mxgS9qEQJVGHQSAcqNBaA8ohFVRYWrygSkjC1OTTSPuAU39R4z3\nfniAgqnsyeXC4tErj6yPSivS3/DLoaarU78gry8fDfKsTjsWsBPUQQCVR9Q7r6dE/FnRd5GE\nEKJGs1YBY54XFbg3MzYIUy5fmbD62J0+iQahHaAOwkqKcy4ffeuF7CP7ZcP1Wyo3v4CAkZO8\n+1S9+1ad3jBh9bEVh1J0xTcsl+pX2/W7oe16BdZVKhiACqIOAkC50SC0BxTCKqo45/LhqRMu\nRR01jairVWs0fGzAs5MVTGVnDiRdGr7scHRG3k3j7hqnoe19ZvRrTpsQsAPUQQCV1umZ7yWt\nX1Xuy938mwROmmo6LOtNGg1CB0EdhFXFr/g+YcX3uosZphFN7To+fQdV0W0yErMLn111NCI6\nU1/iSyRJEn1aeK4a0cHDxUnBbADKhzoIABVx2x4hDcKqhEJYpZ2a9W7y+l9NW75LKlW93v1a\nvTNT2VR25vNtsT8fSdmbkH3T7wlXZ9VTHerPH9KaJWWAKo06CKAyi5n7RdyKReW71vOBXr79\nBpsOy9cgvIv+QV7lSIXKhjoIa9Pn5x39z4tZB/413bcKIbTdQ9q8F6ZycVUwWLmdvJA74Zfj\nO2OzSn6VVMfN+ZmO9T9/tKVaxe0hUJVQBwGgImgQVnkUwqru3KKvEn5eoi8oMI3U69239f/C\nFIxklxbuSfgzKv3vMxkFRfqS441qV3uuq9+0nk2UCgaggqiDAKqE8s0m9O0/xLN7z5sGzbxb\no0HoIKiDsI3Y7+fGL/9OX5BvGtHU1QaMntzgsWEKpqqIYyk5w388fCI1p+Sgf51qg9v6zOrf\nXCXRJgSqBuogAFQEDcIqj0JoB1I3/hH346K8uBjTiEezIL9ho9iS0OKyC4qG/3h4a3SG7sa9\nCTs1qLl6VIeAOm5KBQNQbtRBAFXFsdeeT/s3okyXONeuEzTtQ/PPL3kjR4PQQVAHYTP5SfHH\n//dazqkTphG1azXfgU80e3G6gqkqQpbFpF+OLz2QVFh0w8aEPh4ug9rUm9W/ZXUX/loBlR11\nEAAqggZhlUchtA+GoqIjb0y6uG+3aUTt5uY/YqL/iPEKprJXlwuLn1l+JDwqreTOE7WrOQ9u\n6z2jX/O67mxMCFQl1EEAVUvUO6+nRPxZ1qtuO5XwVne6kbtts5AGoX2gDsKWZIMh6sPpF7Zs\nkPXX1mWRhLbLgz6hj3uFPKxotPJLzC4cvuzQzrism8brebiMuqf+R6HNnVh0FKjEqIMAUBE0\nCKs8CqHdkA2Go9OnZOyOFNf+56xyca0/YEizl99SNJfdOpJ8+Yklh6Iz8koOumvUoS295g9p\nXcfNWalgAMqEOgigyilIStg1vI9Zp0pCCKFycvIf+ZxHYMtST6dB6ICog7C9xJ+Xxf20SJeZ\nYRpx9fJuOHSU39BRCqaqoBlbY9Ycu7A38dJN3y95Vdc81dH384FBrDkKVE7UQQAADUIKof2I\nXfxN/Kof9PnXt3aoe1/3dp/Ok1T8/6/lGWT57Q1n5uyMv1RYXHLcTaMeeU/9uY+35iYQqPyo\ngwDswO13KLx2i+MR2KLxuBfNeR8ahA6IOghFFOfmHHz52ZLLjUoqVb1efYP+O0Oqyv9TnLcr\nYdXh5N1xWTftSdGwluvz3RqxdT1QCVEHAQA0CCmEdiVlw9qz88NKPo/p0bxVpzlL1a7VFExl\nx5IvF45cfnRbTGax4YbfJC3rVZ/ctdGU7o2UCgbAHNRBAHZgywNBpZ5To1W7gBETy/f+f6Xq\nbx18anCv8r0bKhXqIJQiFxefCnsvZcNaufj605auPvUDRk70HTBEwWAVt/jfxO/2Ju2Ozyr5\nVZNKkp5o5/3T0+3VrDgKVCbUQQAADUIKob3RXcw4/u5rWYf2mkbcA5p2+maJc83aCqayb6sO\nJ689nrbuRFqu7vr9rUYtGVccrefhomA2AHdBHQRgB0ppEEpCCOFS18un72M1W7Wz1IdWuY0l\ncFvUQSgr6def4lf+UJhy3jSi0jjX6xnq+WBvzwer9lMIc3cm/HYsdevZzJLfOPnXqTa+i99b\nvZhKCFQW1EEAAA1CCqF9ivrwzZRNa02rS2lq1/UbNrrR02MVDWXnMvN0o1Yc/fPkDctwuWvU\nQ9p5f/1YKw8XJ6WCAbgT6iAA+3CbjQlVKqE3lByQnJyC/vOJk5u7RT6RBqF9oA5CcXJx8YkP\np6Vt3SQbrv/KcvNv0nDw0w0eG6ZgMIv4Zkf8/N0JJ1JzSg629fEY1bnBqz0ClEoFwIQ6CACg\nQUghtFvRX89MXL1Uvrb0pbpatfafL6rVpqOyqezeR5tjFu6JT8gqLDlYw9VpRKf6Xw4KcmJJ\nGaAyoQ4CsCcZOyPjv5uffeaoEEJSq+Xim5cGbT71bVcvH4t8Fg1C+0AdRCWRsPKH+J++1WVd\nNI1IKlXdrsFt3g9Taar2cix6gzxyxZFVh1L0N3711NW/9tpnO2ndNUoFAyCogwAAGoQUQvt2\n7tuv4n781rSvg0qjaTppasMnRyibyu4VFhue++X4b8dSLxcWlxwP1LqPuKf+f3s3legSApUD\ndRCAnTn22vNp/0YIIVQuLjVbti1Mu6DPzzV9566pXbdWh84+jwys+AfRILQP1EFUHumRf6Vu\n2ZC+7e+SUwk9mgX5PzPOq2efu1xYJRxPzXlyyaGTabklB+u6a8bd12BGvxZKpQJAHQQA0CCk\nENq582t/Prf4G93FDOOh2r16o6fGBoyaqGwqR5BdUDRm5dHwU+m64hsW+Grr4zG+i9+U7o2U\nCgbAhDoIwM6UaBC6tnnvcyHExX27En/5seQ5gS9Mc2tQ0X+H0CC0D9RBVDaxSxYk/fqT6e5V\nCKHRevo/Nc4+HnJ9e+OZVYdSojPySg42rus2IMjrw77Nq7vw1xCwNeogAIAGIYXQ/p1f+/O5\nb7/WZWUaDyWV1GDIiGYvTlc2lYNYsi9p5eGUTaczSv6qUUlSt4Daz97bYHTnBgpmA0AdBGB/\nMnZGljzMi40+O/+LkiONx0z2aNG6gp9Cg9A+UAdRCaVv25y+Y2vqprWmzTIklVSnc7fW73/u\n5F5d2WwVJ8vitXUnF+xOzNPdsNiMu8ZpeAefOYNbadQqpbIBDog6CACgQUghdAgFyYl7nx1c\nnHt1SRNJrQ4Y83zA6EnKpnIcYZGxi/cmnrxww5Iy7hr18A6+84a0ZmNCQCnUQQD256YGoRDi\n4r5dWYf25sacufuFrt6+AaMmaepozfkUGoT2gTqISiv665lJvy836IpMI671vANGT/YdMETB\nVJaSmF34xNKD/8Zn3zTeuK7bmM4N/vtQU0VSAQ6IOggAoEFIIXQUhWmph6dOyIs9azyUnJwa\nDnkmcMobyqZyKB9tjpm3K/78pcKSg/Vruk6634+bQEAR1EEA9s3ULMw5e/rcotmlnq/t3rO+\neV++0yC0D9RBVGZJv6+IW7LgSkaaacTVy7vR02MbDH5awVQWNCvi3LqotN2xWfobv5XqHlBn\nxD2+E7r4KRUMcBzUQQAADUIKoQNJj/zr7MIv8xPiTCM+fR4N+u8nyiVyOMUGedr6U0v3n8/I\n05Ucf6iZdvWojjVdnZQKBjgm6iAA+2ZqEBblXDo54x25uOiup4s6ne9vOOT6Rl9JqxZnHj5w\n2zMlIfX854SFYkIx1EFUcun/bMnc80/yn7/Jer1xRFKptN17tvnwS0llJ0tx/rAvafnB5M3R\nmSW/m3JSSY+38f5uWFt3DX83ASuiDgIAaBBSCB1L0aWsvWMGF6alXj2WhGe3nm0+/FJyojVl\nOzlXiocuO7TxVHrJXz81XZ1e6O7/Qd9myuUCHA51EIB9K7ncaH5i3KUTR8Tt7n3Sd2yVi4uF\nEDVbt/cfMcE0Hv/d/OwzR+/05r22R1kyK5RAHUSVELdsYez38wy6K6YRbddg3/6DPR/spWAq\ny5r9T+y8XQmn0/NKDjas5Tq5a6PpvZoolQqwe9RBAAANQgqhw9FdzDz61guXjh82jXgEtmj3\n2QKXup4KpnJA83YlLP438UDSpZKDg1rX+3V0R5UkCSF2nMvqMXePQZabe7qdmh6sTErArlEH\nAdi3W/cjvK3j772mz88XQkhO6jYffiVJV3dHpkFo96iDqCoSVi6JX/6t7mKmacStUUDDx59u\nMPgpBVNZ3NQ/Tv548HxazvXFZiRJGtHJd/HQtuxbD1gDdRAAYCerUld4kFcAACAASURBVADm\n09Sp22nuslptO5pGcqJP/TtiYOLqZQqmckDPdfXb/0q3F7v7u5VYN2bN8QutZ23/8O+zQogr\neoNBloUQp9PzpanhoYv2KpYVAADYL/dGV6enyMX6/MS4gvMJxh99Yb6ywQDAyG/YqBZT39V2\nDTaN5MfHnp0fdm7xN8qFsrywgS2T3u71dEdfjdPVr6pkWV66/7z/hxFvhZ924IfbAQAArIUZ\nhDwp46hk+cQH01L/Wm8acK5Zq+nk13z7Pa5gKMeUlqsbsHjf3oQbphK28/XoHegZtu1cyUGN\nWroyq69t0wH2jDoIwEHcfSphysa1aRGbbv/anaesMIPQDlAHUcXI8on330jd/KcwfYsjCe39\nwa3eneXkXl3JYJY2b1fC3F3xx1NySg629fHYPOk+z+oaIcS8HQmTfz/u6e6c9v5DCmUE7AF1\nEADADEI4Kklq9c6sgDGTTbdSRZeyY+aFJf/xi7K5HJBXdc2eF7sNaetjWtFLCHEkOWf29rib\nztQbJO//bZm5Ncam+QAAgF2TVCXuiaQbf+5sywNBpp8dgx60dkgAEJLU6t1PG4+erKlT9+qI\nLDJ2Rf47+rELWzYomszCnuvqd/jV7gOC6pW8QzyakhM0658P/j4rhEi8dEUIkZ5XJE0N5/YQ\nAACg3GgQwqE1Hjul6XNT1a7VjIe67KzTsz8+t+grZVM5IEkSq0d1ePuhpgF13EyDxQbDrWde\nyLky/c/T3AcCAABL8WjRWnK69uC8+aurlOgjVm/S3DrRAOBmAWOnNJnwikfT6792ClPOR389\nM37F9wqmsji1SvpjbKevHwtq5+thGszI0727KfrR7w6cSrs+uXD6n6dd3rCr/igAAIDNsMQo\nU+khElYtif1+TnFu7tVjSWi7hbT75BshsRG6rTm/vqHYYO4vJUkIQ1ioVfMA9o06CMBB3H2J\nUSGELjOjICVR3PiPkIyIv3JTEu50CUuM2gHqIKowWT41638pm9YadDrjgKSSvB8e0PKtj2+Y\nFW0X3t0UPWtrTGHx9edH3TWavGv/4UYsNwqUA3UQAECDkEIIIYRI/HlZ3LKFuqxM04i2a7Dv\nwCc8u4comMoBdft616647DJdohJCT5sQKBfqIABHU2qnsKT47+Znnzl6p1dpENoB6iCqurPz\nwhJWfC+XWHmlVrtOfsPGeD7QU8FU1hB3seDR7/YfvXFXwpI0KmedoUgI0dzT7dT0YNslA6oy\n6iAAwN6eLAPKp+GTI5q99KZHYAvTSMauyMSfl8rFxQqmckA7X+iqLuO8TYMQ0tRwr3f+tk4i\nAAAAAKiMmj43tfmrb7vW8zaNZB85EPv9nNS/1iuYyhr861S7S3dQCGHsDgohTqfns+IoAACA\nmWgQAlfV6x1673e/ej7QyzSSdfDfXU8+nLrxDwVTOaDiz0LlsNCytgnZoB4AAACAo6k/aGiz\nl/6j7RpsGsk5czL66xlxyxYqF8oqVGbfIer0sjQ1PHTRXmvGAQAAsAcsMcpUetxIlo+/99qF\nzdcfOXTxrNd04qvefQYoGMoxbYnO7D3/37JepZZE8WesOAqYhToIwNGUaYnRu9B2C7bI+0BZ\n1EHYk6gPpqdsKvFsqyR8Qx9v+eaHyiWysP+En/54S9meB2XTeuDuqIMAABqEFELcRtQH01P/\nXicbrv7t0NSu22Tci76PPqFsKkdTvgahUd8W2vDx91o2D2B/qIMAYFKm3iENQvtAHYSdObfo\nq4TVS/X5+aaRmq3a+Q0b4xXysIKpLEs1Nbys32GxaT1wJ9RBAABLjAK3EfT2jEYjJqo0zsZD\nXVbmmbmfxiz6StlUjqZXYN0JXfzLd+2GUxnqqeEWjQMAAAAAlVfj8S82e/FNNz9/08ilE0eS\nfvspfftW5UJZmCEs9K1eTcr0TZZBCBX3hgAAALdDgxC4vSbjXwwYPVnt6mo81Oflxi2df2rm\nu8qmcjQLngiSw0LL1yY0CCFNDa/+5kZLhwIAAACAysi3/+Cmz71Wp1MX00jWoX1n536a+tc6\nBVNZ1kehzV8PCSzTJbIQ0tRwr3f+tlIkAACAKooGIXBH/iMnNp001blmravHskj+89fTn9vP\nLg5VhbFNKIeFLhnevqzX5ukMPC4KAAAAwEF4PtCzw+zvfPsPNo3kJ8af+eLjc4u/UTCVZY3r\nUr8cV6XnFXFvCAAAUBINQuBuGgx5utkLb3q0aGU8lA2G82tWnPnyY2VTOaz6NV3KcZUsJGlq\nOCuOAgAAAHAQLad/4NvvcUl19TufopxLcUvmRX30VsaOCGWDWURTrZscFjqsfYOyXshUQgAA\ngJJoEAKl8O4zIGDkJI9mQcZD2SAn/vpjzMLZyqZyTL0C68phoSFNPMt4nSxYcRQAAACAI2n5\n5ocBY19QaZyNh7JBTtmw5ty3X13YYif3RCtGtI1+M7gcF6bnFbm8scHScQAAAKoeSZZlpTMo\nRqvVZmZmFhcXq9VqpbOgsjMU6Q4898zlU8eNh5KTutGwZ5tMekXZVA7rbEZ+4CeR5b7c0905\n7f2HLBcHqKqogwBgkrEz0vyTtd2CrZUDNkQdhCM4v2ZV0u8rcmPOmEZcfeo3GjbG1dvXnn6V\nTVwdtXBPXJkukYQwhIVaJw5QNVAHAQDMIATMonLWdJq7zCOwhfFQLtbHr/oh9vt5yqZyWMYl\nZcqxJaFRel4RC8sAAAAAsHv1Bw1t/OyUul26m0YKU86f+eqT1L/XpW/brGAwy1rwRFBZVxyV\nhXB6jX0oAACAQ2MGIU/KoAyKLmXvHfdEYcp546Gkkjx7POzzyEBt9xBlgzmy6eujZ0ZEl/vy\nvi204ePvtWAeoAqhDgIAHBl1EA7l7LywhFVL5eIi04irT32/J0c1fOIZBVNZ1qcRcW+sjyrr\nVWpJFH/GVEI4IuogAIAGIYUQZaMvLNjzzIDC1GTTSO0OnX0HPun9UD8FU2H4sqMrDyeV71qV\nEHrWloFDog4CABwZdRCOJmHVksRVSwrTUk0j6mrVmk58tcGQpxVMZXEDvj24/mRq6efdaEa/\n5tN6NrFGHqDSog4CAGgQUghRZinha+KXL86LizGNuHp5N3pmfIPHhyuYCkv3J49acbjcl7Mx\nIRwQdRAA4Miog3BA6dv+vhCxMW3rJtlgMI6oXV0bDh3dZPyLygazrPJtWq9RS1dm9bVCHKCS\nog4CAGgQUghRHuk7IlI3rEnbdn0TO5XGufHYFxs9PVbBVBBC9Jy7LyImvXzXMpUQjoY6CABw\nZNRBOKaMnZEF5xPjli3QZV00jkhO6voDhzZ/9b/KBrO4cjxCynKjcCjUQQAADUIKIcopY2dk\n5t4dyet/M1wpNI6o3dz8nxnvP3KissFQwamE7hpV7id9LJgHqLSogwAAR0YdhCNL+nV57LIF\nuozrz1Z6PzygXq++2m7ByoWyinLsRtHc0+3U9GDrxAEqEeogAIAGIYUQFZL487K45d+abqsk\nlcp/1KTGY6comwpCiOnro2dGRJf7cu4J4QiogwAAR0YdhIO7sGXDuUVf5SfFGw8llcr7kYGe\n3Xt69uitbDCLm7g6auGeuDJdwnKjcATUQQAADUIKISoqed0vMQu+0GVnGQ9VGpfGY6ew1mjl\nUZFFR2kTwr5RBwEAjow6CKRH/hW/csml44dMI9XqN2w0/FkXz3r2N5Xw/tl79iRcNP98SQgD\nO1DArlEHAQAqpQMAVZ7vgCGBU6a5NQowHhp0V2K/n3t+zSplU8Fk4ZOtyn3t6fR8r3f+Lv08\nAAAAAKhqPIMfbjR8jJt/E9NIwfnE6G9mXT55NGNnpHK5rGL3S12GtW9g/vmyENLU8NBFe60X\nCQAAQFk0CAEL8O4zMGDUcy5aL+OhvrDg3OKvE1YtUTYVjJpq3eSw0Ald/Mt3eXpekTQ1fObW\nGIuGAgAAAADlefbo3XT8i9ruPSXV1S+I9IUFsUvmJ/68JC3iL2WzWdyKEW1n9Q8q0yUbTmU4\nvRZupTwAAADKYolRptLDYlI2rD077zPdxUzjoeSk9n96fOPxLyqbCiWVY4N6E1aYgf2hDgIA\nHBl1EDDJ2BmZnxgfv/xb0/2sEMK1nk/jsS/4hA5SMJg1bInO7D3/3zJdws0g7BJ1EABAg5BC\nCEtK+nV5zMIvi/NyjYeSSvLp+1jLNz9UNhVuQpsQMKIOAgAcGXUQuMmFzeHxy7/LORNlGnH1\n9m087gVnj5r2tyVhOdqEM/o1n9azSennAVUEdRAAQIOQQggLS/p9ZfzyxYUp568eS6LJ+Jf8\nR05UNBRuo+fcfREx6eW7trmn26npwRaNAyiAOggAcGTUQeBW6Tu2Zu6MTNm01qArMo6oq1Xz\n6ftYnXvu93ywl7LZLG7p/uRRKw6X6RIeGIU9oQ4CAGgQUghheamb1sX/9G3uuWjjodrNrcn4\nlxs+8YyyqXCrsxn5gZ9ElvtyjVq6Mquv5eIAtkYdBAA4MuogcFsZOyPz4s/FLJwtFxeZBj0C\nW/gNHe3dZ6CCwaykrE+O0iOE3aAOAgBUSgcA7JD3IwMaj3/JrVFj46E+Pz/2h7nJf/yibCrc\nqqnWTQ4LndDFv3yXF+llaWp49Tc3WjQUAAAAAChG2y240VPPBox+zsmjhmkwJ/rU2fmfJ6//\nVcFgVrJ1cudZ/YPMP18WQj013Hp5AAAAbIYGIWAVng/0DBgxQVOrtvGw6FJ29NxZSb+tUDYV\nbmvBE0GbJ91XjgtlIQkh8nQGFfeHAAAAAOxIwOhJzV/5b90u3SXV1S+OrmSknVv8TfI6O3zy\n9fUQ/zL1CA1CSFPDZ26NsV4kAAAAG2CJUabSw4ry4mL2P/dUcU6O8VClcW44ZETTya8pmwp3\nMnF11MI9ceW+nBVHUeVQBwEAjow6CJQqY2fkpeOHE1YtMeiuGEfUrq4Boyc3emacssGsZPiy\noysPJ5l/vqe7c9r7D1kvD2BV1EEAADMIASty928SMOr6wiwGXVHCyu9PzXwnY2ekorlwewue\nCJLDQoe1b1C+y3V6WZoa7vXO35ZNBQAAAACK0HYLrtm6fcCYyZKzs3FEX1gY+8O8hJU/KJrL\nWlaMaFumqYTpeUVOr7GcDAAAqKqYQciTMrC6pN9Xxi7+WpedZRrxfrh/vV6h2m7ByoVCKcr6\n6OhNZvRrPq1nEwvmAayBOggAcGTUQcB8CSuXxP+0SJd10Xio0mj8Rz0XMGqisqmsp0PYrsPJ\n2eaf37eFNnz8vdbLA1gDdRAAwAxCwOoaPDas+atvezS7/hxi6l/rk35bnhbxl4KpcHcrRrSd\n0MW/3JdP//M0GxMCAAAAsA9+w0YFPj/NtZ638dCg08X/uCjp9xXKprKeQ1O79m/pbf75G05l\nVH9zo/XyAAAAWAMzCHlSBjaSvu3vxF9+zDq0zzTi6u0bMGayb7/HFUyFUvWcuy8iJr3cl0tC\nGMJCLZgHsCDqIADAkVEHgbJKCV8Ts/DLKxlpxkOVxqXx2Cnu/k3sdXWcpfuTR604bP757hpV\n7id9rJcHsCzqIACAGYSAjXj2eKjh0NF17rnfNFKYmnxu0VfJ639VMBVKtXVy5yXD25f7clkI\naWq4NDV85tYYC6YCAAAAABvzCR3UZOIrzjVqGg8NuiuxP8zNPrJf2VTWM/IeXzks1FklmXl+\nns6gZiEZAABQdTCDkCdlYFMZOyLSt29J2bROLi4yjji5Vw8YM9lv2GhFc6F0ZzPyAz+JrOCb\neLo7p73/kCXiABZAHQQAODLqIFA+59esOvf9HF1mhmmk7n3d6w8a5vlATwVTWVVZ15Xhvg9V\nAnUQAOCkdADAsWi7hwhJcm8cGLPgc4OuSAhRnJd7dl5YUdbFmm072uvCLPahqdZNDgut4Iqj\n6XlF0tRwIcSMfs2n9WxiuXQAAAAAYAv1Bw2VnJxj5ofpsrOMI5n/7pDUTkKSPLuHKJvNSrZO\n7iyEcJoarjfv/KyCYqvmAQAAsAhmEPKkDJQR/9PiuB8XFedcNh5KKlWDISPqdLqPHmGVsCU6\ns/f8f901mjydriLvoxJCzw6FUA51EADgyKiDQEWkblyXtGbFpePXt+ir0aK1/4gJnj16K5jK\n2jSvbygymPs1GhvSo5KjDgIA2IMQUEajp8cGTnmjmm8D46FsMCT+vCQl/PeMHRHKBoM5egXW\nlcNCn+7oW8H3MQghTQ0PXbTXIqkAAAAAwDa8+wzwf2Z8vd7XG2CXTx0/u2h2WsQmBVNZ27dD\n25l/siyEii0JAQBAJcYMQp6UgZLStm6MXTI/N+aMaaROp/saPDHSXhdmsT8W2ZjQyF2jyv2k\nj0XeCjATdRAA4Miog0DFZeyISF7/a/qOraYRt4aNmox/yaunPd/alGnjCeYRotKiDgIAmEEI\nKMmrZ5+AUZNqtm5vGrl44N/kP35WMBLKxLgx4az+QRV/qzydgcdLAQAAAFQh2u4hbWd8U3/g\nE5Lq6vdL+Ynxib8uv7Blg7LBrGrr5M7m3wPKLBsDAAAqKxqEgMK8evbxHzFBW2LKYMaubVEf\nTlcwEsrq9RB/OSx0WPsGFXwflqABAAAAUOVou4U0enqc5ORkPMw+sv/MFx+eX7NK2VRW9XqI\n/5Lh7Us/75oNpzJc3rDnpikAAKiKWGKUqfSoFDJ2RqZFbEzZ+IdppF7vft4P9dN2C1YuFMqj\nTKvN3IlGLV2Z1dcieYC7oA4CABwZdRCwrJMz3k5e/6vpUFOrdtMpb/j0eVTBSDYw4NuD60+m\nmnkyy42iUqEOAgCYQQhUCtpuwV4hfWp36GwaubDlz4wdWzN2RioXCuWxdXLnzZPuq+Cb6PSy\nNDWchWgAAAAAVBUtp39Q/9GhatdqxkNddtbZOZ8m/bZC2VTWtm5cxwld/M082bjcaPU3N1oz\nEQAAgLloEAKVhbZbcIfZ39Xp3PXqsSzOr/slJfz3jB0RiuZCmfUKrCuHhVa8TShYiAYAAABA\n1dHi9XebPv+62tXVeKjLuhj7/dyUDWuVTWVtC54ImhYSaP75eTpDixmRVosDAABgLhqEQCUi\nqdQNHhvu0fz6budp2/6OXTI/fdtmBVOhfIxtQjksNKSJZ0Xeh9mEAAAAAKoKVy9v/1HPqTQa\n46EuKzP2h3lpEX8pm8raZvQPLNOWhKfT82dujbFeHgAAAHOwByFrbaPSSf9nS8LPS7IP7zeN\nVPNt6D96km/oYwqmQgVNXB21cE9cBd/EXaPK/aSPJeIAQlAHAQCOjToIWE/SbyvOzg/T5+cb\nD90aBQSMmuT98ABlU9nA5F+Oz9udYObJKiH0bEkI5VAHAQDMIAQqHc8HezUaNsbzwd6mkYLk\nxPgfvy3Oy1UwFSpowRNBFZ9QmKczMJUQAAAAQCXX4PHh/iMmSNe6DvnxsdFzPk1YtUTZVDYw\nd0jrWf2DSj9PCCGEQQh2lAAAAApiBiFPyqCSytgZmbFrW/K61bLBYByp3aGz37Ax2m7BiuaC\nZSzdnzxqxeGKvINGLV2Z1ddSeeCYqIMAAEdGHQSsLfqbTxNXL5X1euOh2s3Nf8TE6o0D7f6u\n9mxGfuAnkeafz80dFEEdBAAwgxCopLTdgrVdewSMniw5Xf2HWtahfen/bM7YGaloLljGyHt8\n5bDQMm1lfxOdXuZpUwAAAACVVuCU1xuPnaLSuBgP9fn557796uK+nXZ/V9tU6xb9ZrD55+v0\nMlsSAgAA22MGIU/KoLI78+XHib/8aDqs3aFzwydHeT7QU8FIsKyKb0/Y3NPt1PRgy6SBI6EO\nAgAcGXUQsI3ktatjvp2ty7p49VgS9Qc+qe0azDzCm3i6O6e9/5DV4gA3ow4CAJhBCFR2zV5+\nq06n+02HWYf2Ja9bbfdPXDoU4/aEXfzqlPsdTqfne73ztwUjAQAAAIBF+D76RJMJL7v61L96\nLIvza39O+vWn9G2bFc1ldU21bnJYaP+W3maen55XxG0dAACwJRqEQBXQ7rP5NVq0Nh1m7NoW\nv3zxhS0sL2lXlj3dtiKXp+cVSVPDVVPDLZUHAAAAACzCd8CQZlPeqNmqnWkkc+/O6DmzUjeu\nUzCVbawb19H8rSXS84qqv7nRqnkAAABMaBACVYDK2TlgzGTvh/ubRrKPHIj+Zlby+t8UTAXL\nMj5eKoeFLhnevtxvIgvB/SQAAACAysazx0ONnhlfp1MX00hBclLssgWpf/+pYCrbmNE/UA4L\n9dCYtYpjns7g856dz60EAACVBA1CoGrQdguu1yu07r3dTCNX0i+c+/ar1L/WK5gK1jDyHl85\nLDSkiWf5LtcVi/VRaZaNBAAAAAAV5PlAz4ZPjqw/4AnJyck4kh9/Lva7bxxkdZzLnzyiUUnm\nnJl6WRcZk2ntPAAAADQIgSpD2y24/eeL/IaOUmk0xpErGWkx8z9P3WT/q7I4oK2TO5u/EE1J\nRQbDgMX7a/5nk8UjAQAAAEBFaLsFa7uHBIyaJKmufh+VnxifuHpZ+o4IZYPZxpVP+w5r38Cc\nM0Pm/vvYD/utnQcAADg4SZZlpTMoRqvVZmZmFhcXq9VmrfMAVAYZOyPzE+NiFs426K4YR6r5\nNmg8/iXvh/opGwzW03PuvoiY9DJdolZJa8Z0utOr/YO8KhwK9oA6CABwZNRBQCkZOyMvnTiS\nsPI7g67IOFKjRWu/YaPV1dy03YIVjWYL98/esyfhojlnDmrj9fvoe6ydBw6LOggAYAYhUMVo\nuwW7NfT3HzFecnI2jhQkJ8UudpRVWRzT1smdJ3TxL9MleoM8YPH+p5Yfsk4iAAAAACgnbbfg\nJhNeajD4GdPI5VPHYxbNLkxLzdgZqVwuG9n9UpfNk+4z58w1x9LcprPHPAAAsBYahEDVo+0W\nHDBmcsDIiZLz1R5hflL8uW+/Stm4VtlgsJ4FTwTJYaH9W3qX6aqcAv208JO3jq+PSjP+WCgd\nAAAAAJRN7fadfR4ZKK7tyldwPvHM7E+yDv6raCgb6RVYd1b/IHPOLCgy3Dd7p7XzAAAAx0SD\nEKiqAp6dHPDM+Ou7uyfGn/1mVvL635RNBataN66jHBZq5p2kEJIkSc3qVDcdp+XoRiw/8svR\nFCvFAwAAAAAzabsFB709w2/YGOna8oZycVHi6mWnv/hQ2WC28XqIvxwWKpV+otibcEmaGj5z\na4zVMwEAAAdDgxCowgLGTvF/Zrxpd3dddlbMwi9Ya9TuvR7ib96Ko7Isy2tOXBiweP9HW6OF\nEHpZzi4oKigymM5gEiEAAAAABdVu3zlg1CSN1tN4KBsM539fEb/8O0dYa1QIYQgLNfPMtzec\nsWoSAADggGgQAlVb43Ev+I+cqHatZjzUXcw8t/jrtIi/lE0FazOuOCqHhTqr7v7IqSSEJIkb\n5hECAAAAQCWh7Rbs0bxV85f+4+7fxDgiG+TYJfPzE+MUzWU7Xf1rmXNakUF2ei3c2mEAAIBD\noUEIVHk1WrYJGDNZ5eJqPMxPiEtYtSR9x1ZlU8E2dJ/2Hda+wZ1effGBRuvGdvpjbKcn2vvY\nMhUAAAAAmEnbLVil0TQZ/6Jbg0bGEX1e7rlvv4pd/I2ywWxj5wtdzewR6mXR9etd1s4DAAAc\nhyTLstIZFKPVajMzM4uLi9XX1rsHqqiMnZE5p0/ELp0vF+uNI7U7dG44dJRn957KBoPNbInO\n7D3/35sGXZxUzqrrD4IYZJFfVKxRq7Tumkld/TrUryGE6B/kZdOgqEyogwAAR0YdBCqb82t/\nPrdoti47y3goqSS/Yc82nTxV2VS20e3rXbviss0584tBLV9+IMDaeeAIqIMAABqEFELYjzNf\nfpz464/i2t9pbddg34FD6BE6jk8j4t5YH1XWqz7u17yNt4fpkH6hQ6EOAgAcGXUQqIRSNq49\nt3B2YVqq8VDtWq3ZK//R1Kqj7RasaC4bkaaau4hoxOT7gpvUtWoY2D3qIACAJUYB+9Hs5bd8\nQx83HWbsikxa/WPGjggFI6HScnFS9Wnh2aeFZ51qzkpnAQAAAAAhhPDp82jjcS+6XduPUF9Y\nEDP/C11GesbOSEVz2cjmSfeZeeYzyw9bNQkAAHAEzCDkSRnYlYydkRe2hKf+td404hX8cJsP\nvhCSpGAq2NL6qLSYjLy/z2TqDTf/es/X6f+JvWj8s4er0/Kn25f6bkwotG/UQQCAI6MOApVW\n6l9/ng57rzgv13jo5FGjydgXXH3qO8I8wttuHnFbkhCGsFBr54Edow4CAGgQUghhbzJ2RKRs\nWJO27W/TSN0uD7T/bIGCkWB766PSbh1MuXxlwupjxj9LkhjcxqeOm/PDzbUuTmWeTU7j0D5Q\nBwEAjow6CFRmiauXxXz7tf5aj1BydvYNfUzbNZgeYUmuTqqCmX2snQf2ijoIAGCJUcDeaLuH\n+IQ+pu3yoGkkc8/22MXfKBgJlZAsi1+OpizckzBnZ7zSWQAAAADgBg2fGNF4zPPONWoaD+Wi\novNrf76wJTxjZ+SlYwe29Gh1+LWJyia0nl6BdeWwUCcz1gEqLDZIU8Nnbo2xQSoAAGB/aBAC\ndkjbLdh30FDt/dd7hPErf0he94uCkVBpRV3INTjwVHIAAAAAlZPfsFFNJr7i6u1rGkn9a33y\nn7+d/3W5MMiZe7dHPtRJwXjWVvRZ36Z13c05c/qfp0MX7bV2HgAAYH9oEAL2ybN7SP1Hh3oE\ntjAe6gvyY7+fm7Z1o7KpoCyfGi7fDW3bsJZrycELOVc+i4xVKhIAAAAA3En9R58MnPxazdYd\nTCPp/2y+fOKEEELIQn+lwI7nEQohot/qoS59GqEQQmw8lWHlLAAAwA7RIATslrZ7iN+wMU4e\nNYyHhWmp576bc2HLBmVTwTbutEegZ3XN3MGtV43o0Nmvpmlwd1yWrXIBAAAAQBl49ezT6Kln\ntV17mEbyUhKu/kkWmXu3734qVJlkNlH8Wag5u8PJQkhTw73e+dvqgQAAgB2hQQjYM+9HBgSM\nfk6lcTYe5sXFxC2Znx75l7KpoDg3jfqhQK3q2p4WepYYBQAAQQAoZAAAIABJREFUAFBZeT7Y\nq/7AJz0f7H2b12SRnxS3vX83m4eyneIwczugGXlFVk0CAADsDA1CwM75DR3lN3SMpL760GHu\nuej4VUsydkQomwqKu9+/9oBWV2cZyrIoLDIomwcAAAAA7uTof19M375ZSOLqT0my0F3KSvh5\nqTLJbEIOC+1Yv0bppwkhTQ2PjMm0QSQAAGAHnJQOAMDqmkx8WUhS/I+LZINBCHHp2KHzf/ws\nGwyeD/ZSOhqs6E6rjAoh1kelCSFquF4vATq9wdWZR0YAAAAAVEayXn/3E6K/nnFu4RfBmw/Z\nJo/tHXi1u3pquDnPdYbM/feLQS1ffiDA6pkAAEAVp8zXwdnZ2S+//LK/v79Go/H19R03blxK\nSsrdL4mPjx87dmz9+vU1Gk2jRo2mTp2ak5NjevWHH36QbufDDz+08n8KUDXUbNWuwePDTYcZ\nu7Ylrl6azjxCx1byudusAtaisSnqIADAkVEHAZSVi2e9Us/RX7kS0bOdDcIoRR8WOi0k0Jwz\nX11z0tphUBHUQQBAJaHADEKdTterV6+DBw8OHjy4Y8eOMTExS5cu3bp164EDB2rXrn3bS2Jj\nY++9997MzMwhQ4a0adNm165dn3/++a5du/755x9nZ2chRHZ2thBi+PDhfn5+JS/s1s2el6EH\nzKftFiyEyI2Jzjq01ziSdWifc606kiQZX4ID0rprTH9esDuhpquzEMKzuubpjr4uTswmtCLq\nIADAkVEHAZRD998itoa0k4tLea7RUFS0tUfrntuO2yaV7c3oH7g3ITsiJv3upxnXGh3Uxuv3\n0ffYJhjMRx0EAFQeCjQI58yZc/DgwZkzZ77xxhvGkUceeWTo0KEfffTRZ599dttL3nrrrYyM\njEWLFo0bN8448vLLL8+ePXvRokWTJ08W1wrhq6++es89/NMHuD1tt2BZljV1PS9s/tM4khax\nqTj3siwbPLv3VDYbFFHNWW3687GU688eOqukEffUF0LM2hK3PS7jttdKQhjCQq2d0F5RBwEA\njow6CKB8ekYc2dKjtTCUssqmbDBsfTCo5z9Rtklle1snd94Sndl7/r+lnrnt3EUb5EFZUQcB\nAJWHJMuyjT+yQ4cOMTEx6enpLi4upsHAwMDLly+npqZKknTrJTVr1qxevXpSUpLp1ezsbF9f\n33bt2u3evVtcq4vR0dFNmzY1P4lWq83MzCwuLlar1aWfDdiFjJ2R59f+nLEr0jTi+WBv336P\nM4/QoRj3IDydlvfautusPONfp1qPJnWEEFvOZCVdyr/De0hyWF8rRrRr1EEAgCOjDgKoiMhH\nOuvz80o9TeXkHBJxxAZ5lDJ9ffTMiGhzzuThzsqGOggAqDxsvYhcYWHhsWPH7r333pJVUAjR\nvXv3tLS02NjYWy/Jy8u7fPly06ZNS9bIWrVqBQYGHjx4UK/Xi2tPytSqVUuv1yclJWVk3H7K\nCwBtt2Dffo/XatfJNJL+z+aUjWvZj9ABNfdyH9rep0FNV28PF28PF/W137FxFwuW7Du/ZN/5\nO3cHUX7UQQCAI6MOAqig4E37Wr01o9TTDMVFWx9sZYM8SpnRP1A2r+0nC1H9zY3WzgMzUQcB\nAJWKrRuEiYmJer2+YcOGN403atRICHHu3LlbL6lWrZqTk9Ottc3NzU2n0xl38b106ZIQ4ssv\nv/T09GzYsKGnp2fz5s2XL19ulf8GoIrz7NG70fBntSWWFU2L2JS0emlaxF8KpoIt9Q/yMv48\n06n+vCGtFz3ZZtGTbbxruJR+JSqMOggAcGTUQQAV5913oP/w8aWeJstyREhbG+RRkEZ9m9lm\nt8rTlbIuK2yGOggAqFRsvQdhTk6OEMLd3f2m8erVq5tevYlKpbr//vt37Nhx7NixNm3aGAdP\nnz594MABIURubq649qTMihUr3njjjfr16588eXLOnDlPP/10Tk7OxIkTS75bSEiI6VOM5RNw\nQNruIbIQ+rycrEP7jCMXD/xbmJkhZINXzz7KZoNShrb3+WZnvK6YW0frog4CABwZdRCARTSZ\n/Eri7z/qCwvufpqhuHhrcJuekcdsk8r2rszqK00NN+fMtmH/HJ36oLXzoFTUQQBApWLrBqHR\nrQtqG7dCvO1C20KI9957r2fPngMHDvziiy9atmx5+PDht956y8/PLyYmxjgl/+23354yZUqf\nPn1MJfaZZ57p2LHjW2+9NWbMGI1GY3qrw4cPG6sm4OA8u4cIIZyq10jfvsU4kh8XE7dsoSzL\n9Xqxt5wjCmla94HGdR77/oB5p8slb0TrVnfKeO9hKwWzS9RBAIAjow4CqLjgvw9s7dFaNpTy\ngKOs10f27hC8+ZBtUtmecaFR1dRw+a6nHU/OXR+V1j/IyzapcHfUQQBAJWHrJUZr1KghbvdE\nzOXLl4UQHh4et70qJCTk66+/TktLe+yxx1q0aDFu3LgXXnihS5cuQojatWsLIXr27Dl48OCS\nD+AEBQWFhoZevHjxyJEbdqU+dOhQzDW1atWy6H8cUMV4dg/x7T/Yp8+j0rX9qHOiT8Us+DJl\nw1plg8Fmbro/dFKZtUCNEEIIqeRPS8/b//bGraiDAABHRh0EYEE9tx1Xu908E+tW+itXdjxq\n55Pn7t4dNJ4wYPF+aWq465sbbBEId0AdBABUKraeQejn5+fk5BQfH3/TeExMjBAiMDDwThdO\nmTJl1KhRBw8eVKlU7du39/Dw6NSpk4+Pz12KmZeXl7g2197E39/f9Gf1taYI4LC03YKFEM41\nayWsWmIcKUhOPLf4a7WLC2uNOqZ1Y+8x/Xn6n2dOpF6+05lyGDNNy4M6CABwZNRBAJYVvGlf\n5COd9fl5dz/tysWMrT1a99x23DapbE+jlnT6UruEQghxRSc/MGfX9ue7WjsSbos6CACoVGzd\nINRoNJ06ddq7d29+fr6bm5tx0GAwbNu2rWHDhn5+fne6UK/Xe3h49OjRw3iYkJBw6NChESNG\nCCFyc3OXLVtWq1at4cOHl7zkxIkT4to2vwDuxNgjlGVD0u8r5aIiIURhanLMt18b9Hrvh/op\nHA6KquakzDLU9o06CABwZNRBABYXvGlfRK/2Bp3u7qfJBkNEz3YhW4/c/bQq6sqsvkKIDmG7\nDieXvnpk7MV86yfC7VEHAQCViq2XGBVCjB07Nj8//9NPPzWNLFy4MDk5edy4ccbDwsLCw4cP\nG5+dMZo2bVq1atX27dtnPDQYDK+88oosy88995wQws3N7aOPPpowYcKpU6dMl6xdu3bHjh0d\nOnRo3LixLf6rgKpM2y24Tqf7m4x7UXJ2No7kJ8SeWzT7wpaNygYD7BJ1EADgyKiDACwuZMth\ndbXS1xo1FBVF9GxngzxKOTS1qxwWetd9IySVJHWuX3t9VJrpx1bpcBV1EABQeUjGXXBtSa/X\nh4SEbN++/dFHH+3YsePJkydXrVrVunXrPXv2GJ+dOX78eJs2bXr16rV582bjJUePHr3//vs1\nGs2oUaPq1Kmzbt26/fv3v/7667NmzTKe8McffwwaNMjNzW3YsGG+vr7Hjx9fs2aNh4dHRERE\nx44d75REq9VmZmYWFxczpx4QQmTsjMw+eiBh5Q+yXm8cca3n02TCy96PDFA2GKzqLjeE7206\ntz/p4h1elFhitNyogwAAR0YdBGAlW3u0lg2GUk9TV6sW/NcBG+RRyvT10TMjou9+jkc19fKn\nOpgOb9qcHlZFHQQAVB4KNAiFELm5ue+9997q1auTk5O9vLwGDRr0/vvv16lTx/jqrYVQCLFn\nz57//e9/+/bty8/PDwoKmjJlypgxY0q+5+7duz/44IPdu3fn5uZ6eXn17t377bffbtq06V1i\nUAiBm2TsjLx88mjcj4vl4iLjiFujgKbjX/IMfljZYLCe8j0xyg1kBVEHAQCOjDoIwEq2PBBk\nzmk1g9rcs2CVtcMoxZwGYaPa1b55vFXJEW7xbIk6CACoJJRpEFYSFELgVhk7Iy9HHY1bvti4\nH6EQws3Pv/HYF+r1YrqYfaJB6MiogwAAR0YdBOySmT1C94CmXZb+Ye0wSvlP+OnM/KL4rII9\n8ZeyC27YndFdo+7euM5jrevVr+lacpxbPAdEHQQA0CCkEAI3y9gZmRN9Kvb7Oaa1Rmu2auc/\nYoK2e4iywWANNAgdGXUQAODIqIOAvdryYCthxpddKmfnkK1HbJBHEdLU8FLPcdFIv4zoZDrk\nLs/RUAcBACqlAwCodLTdgj0CW/gNHS1d+zfipRNHktasyNgRoWwwAAAAAADurtc/J4QklXqa\noajo6Fsv2CCPoiQhbv0/hXFQ8na7YRLh+qi08j0/CgAAqignpQMAqIy03YKFEAbdlcRffjSO\nZO7ZIYQkC+HJPEL7ctNTotwQAgAAAKjqev1zwpy1RtO3b9ka3KZn5DEbRLIxOSzU+If7Z+/Z\nk3DxphcHtqo3vktD26cCAACVCjMIAdyetltwnc5dvR/qZxrJ3LM99a91GTsjlQsFAAAAAEDp\nem2PMuc0Wa/fGtzG2mEUtOzptrcOXi4ssn0SAABQ2dAgBHBH2m7B9Xr38+rxkGkkLWJj+j+b\n6RECAAAAACo583uE+ycOtXYYpTTVurXxrnXt6Opyo/8mXFIqDwAAqDxYYhTA3RjXGpX1+vQd\nW4UQQhbJ4b/J+mLTS7AzrDgK/J+9Ow+Tq67zxX+qu7N2VtJZIQsJCLYEECKLWeykZVBgwG0Y\nRRAURBFFuOAweh9nFJ354TJwvYAoIAoMmQG8XAXmCiNZSCdsIQtZGkLICkkgSWdPp9Pd1ef3\nR4UmJJ2uk6VOVdd5vZ56Hs859aninX9yrLzP9xwAAIpGdU1tlHuNbq1dOP3cMVXPvBJDpPhV\nlHfa58iupvSXHpqf2e7TreybHx9+ypCemd2natfv86sQAChWVhACWVSMrRp83md7f+SUPfth\nsO7pJzbNecE6QgAAAApcxHWE6V31qx6+L9dh8mLqtz725JVjnrxyzIUfeb/529HYnHm9vbXh\nvpdW5zEeAJAvCkIgu/4Tqodf9vXeJ53aemTNn/6z4d11eYwEAAAAUVTX1JZ27ZZlKAze/M1t\nc669NJZE+TG0T9c2j2/Z1RxzEgCgELjFKBBJ/3GTgnTLyofv3Va7MAiClsamN397W5hOD/27\nYv75hHvLAAAARaDqr3NqLvh449Yt7Y9tWTD3pcsvOvOBP8eTKmbnnlCxu7nljQ07W8IgCILX\n1+/YuLMxCIItu5oWrNt+8uD37zK696f8KgSAYmUFIRBV/098cvgXv9q5X0VmN71z58qH7133\nl+L84QQAAEAxGf/U80EqlXVsx/Klqx99MIY8cbqgcsAFlQNSqdRFJw383sSRN08aefOkkWOP\n7ds68MSid1dvbshjQgAgfgpC4CAMmPSpEV++qqznnusKGzduWP2fv9/w3LP5TQUAAABZVc9Y\nHKUjXHrHrUtu/2kMefJr0nH9WrdfWr3lhj/X7mpK5zEPABAzBSFwcIZe/JVRX7++9fkNO5a9\nsebPj2ycNT2voQAAACC76hmLo4y9/fjkzfNeznWY/OrV9QMPHmpMt7yzfff+Y/vccRQAKBoK\nQuCgdR04eOjFXwneu+yybvasTXNe0BECAABQ+KpraqOMzfvuFTkOErfMjUZbdyvKO3929KCy\nkveXVDZnHk4IACSDghA4aBVjq3p/5JQh539+z34YrPnzYw3r38lrKAAAAIgkSkcYhsH0T54W\nQ5g8+toZx/yPTxzbuvvq2m3rLCIEgMRQEAKHomJsVf9xk3qe8JHMbsvuhhUP3P3O00/kNxUA\nAABEEaUjTO9ueO7cj8UQJo8G9erSuv3A7DVXP7rwrpmr9h97qnZ96yvGdABADpVlHwFoS8W4\nic31O5fe+bPGTXVBEDRu3LDs3l+lysoGfvK8fEcDAACALKpraqeMr2x/prl+54zzz57wXy/E\nEyk2Vz6yYP2OxjbfenrJhqeXbPjX808YPahnzKkAgDgpCIFDN+hvLmjcVLfsnttaGpuCIGh4\nd92qyfeXdOrc/xOfzHc0AAAAyCJKR9i0bevMz0wY96cZ8USKR9Woo7btTgdB0BIGM5ZtamhO\n7/3uOR+qOKpbpwN9tp1FhHs/4xAAKHAKQuCwDPvi5S1NjcvvvzNsagqCYPsbtSsfvjcIglRZ\nWcXYqjyHAwAAgHaNuOzqlQ/d0/7M7rqNc6699PS7/j2eSDG4bMwxrdufPqH/DU/UDunVde22\nhsyRr4w5us+BC0IAoDh4BiFwuHqMPH74JVcGqT2722oXrn7kD2Fzc15DAQAAQHajrr6+90mn\nZh3bunBuDGFicEHlgL1fQRCUdykNgmBgz/cfRrijMX3AzwMAxUJBCByuirFVvStPPvpv/661\nI9yyYO6qR/6w4bln85oLAAAAshtz9+SgJMs/kYVhMG3iyfHkyYvUXtvT3qzLWw4AIC4KQuAI\nqBhbVTF24uBzL2o9snXB3GX3/urdKU/nMRUAAABEUf3coqwzLc3NU6tGxxAmLzLrCDPWb9+d\nxyQAQDwUhMCRUTG2asDEcwd/6sLWIztXLnv78ckbZ03PXygAAACIpEv/gVlnwnR62qTs9yPt\nQC6oHDC4V5cnrxzzvaqR5Z33dIQ1yzev39GY32AAQK6V5TsAUDwqxlYFQVDStfvaJx4NW1qC\nINjy6iud+vRpfQsAAAAK07jHp00/92Pp+p3tj7U0NU7/5Eernp0XT6rYpFJBr65lOxvTQRCk\nw/A/568d0qtLp5KS047pPbRP13ynAwCOPAUhcCRlisBUScnbj0/OHNnw3LPpHTuCMKwYNzGf\nyQAAAKBdVc/MnjrxlLC5qf2x9O7dRdkRfu7kQXfNXJXZ/uuSjZmNznPW3PnZjwzu1SV/uQCA\nnHCLUeAIqxhb1e/McRXjJrUe2TTnxXee/S/3GgUAAKDATZr2alCS/Z/L0rt3T6/+aAx5YnBB\n5YDMxjG921gp2Njc8vr6HfEmAgDioCAEjryKsVVHX/D5ARPPbT3y7pT/t/31RTpCAAAAClz1\nc4tSpRE6wsbdNReNjyFPbE4c0GP04J77H39rS0P8YQCAXFMQAjlRMW7i4E9d1H989Z79MFj5\n8O92rl6hIwQAAKDATZq+KMpY46a6Jbf/NNdhYlNWkvqXT5/w+y+efO/Fo2/51Idaj7+4anMe\nUwEAOaIgBHKlYmzVkPM/12PUnh8VLY27V/zuzoZ31ugIAQAAKHDVNbVBKpV17O3HJ79yzSUx\n5Mmp1ruMplJBRXnnQT27jB7cs/W5g2u37v7Tonfzlw4AyAkFIZBDFeMmDv/SlV0HDMrspht2\nvXHnz3csX6ojBAAAoMBVz1gcZWzrovlTP3FSrsPErKwkNaxvt8x2OgwfnrMmv3kAgCNOQQjk\n1qBP/e3Iq77TqVfvzG7Y1LTywd82vLtORwgAAECBi7iOMGxpmVo1OoY8cTpxQHnrdkNzy+y3\ntuYxDABwxKXCMMx3hrypqKioq6trbm4uLS3NdxYocm//n4dXPPCbxk11md0uFQOOu/Z7Zd3L\nK8ZW5TUXJJrzIABJ5jwIRDdlfGWUsfLhI8/696dyHSannqpd37odhuHPp6+YuXxTZveo7p0e\n+NIp67c3Xv3Ya+mwqc2P9y/vtP6Wc+IIymFzHgTACkIgDl0HHX3cNTd17tM3s7t74/oVv/91\ny+4G6wgBAAAocNU1tamysqxj9auXxxAmNqlU6pTBPVt3N+9q+tnU5Xc/v/pA7WAQBLvTsSQD\nAI4EBSEQh4qxVZ169T72q98q7do1c6R+9Yqlv/7l7o3r2/8gAAAA5N2kaQuyzoRhMGV85eZ5\nL8eQJx5/c0LF6ce898SQMJi5YtMrb2/JbyQA4EhREAIxqRhb1XXQ0cMv/XqqbM/NKxreWbv8\n93e989//ld9gAAAAkFV1TW2UsbnXXfHS5RflOkw8SlKpykE98p0CAMgJBSEQn4qxVT2P//Dw\nL32tpHOnzJHGjRtWP/KHDTOm5DcYAAAAZBWxI9yxfOmcay/NdZh4nP/h/mNH9B3Us8ugnl3K\nO3tYHQAUj+z3Twc4girGVgVBMKp33+X33ZFu2BUEwfYli9c88WiqtDTzFgAAABSs6praqZ84\nKWxpaX9sy4K5qx99cNjFX4kn1ZFyQeWAp2o/8CiQ8s5lSzfuXL+jMcrHtzU0pW78f627nxk9\n4P9eMeYIRwQAjhArCIG4VYyt6j50xNCLvxKk9hype7Fm3dN/3jhrej5jAQAAQASTnlsUpFJZ\nx97640MxhIlB1aijIs+mWl8lJakzhvbNYSwA4PBYQQjkQWax4OBzL1z39BOZI+unP1M+7NjW\ntwAAAKBgVc9YPGV8ZfszDevWzDj/7An/9UI8kXLnsjHHXDbmmMz2um27r35s4YEme3Ut2/ov\n58SVCwA4LFYQAvlRMbZqQNW5/c4Yu2c/DFY+fO+21xZaRwgAAEDh69J/YNaZpm1bi+ZhhABA\nkVEQAnlTMW7i0Z/7Uvfhx2Z2w+b0yn+/b/O8l3WEAAAAFLhxj08bcdnVWe81unXhvHjyAAAc\nFAUhkE/9x00a+dVruw8bkdkNm5tWP/KHzfNm6wgBAAAocKOuvr56xuL2Z8IwnDK+cvWjD8YT\nCQAgIs8gBPJs4CfPC1vSy+75VcM7a4MgCMLgrT8+1LnvUfWr3lz629uDMOx3xvhTf/nbfMcE\nAACANpR2L0/X72x/ZuUffj3s4q/Ek+cwXVA5YO/dp2rX7707uFeXJ68cE/GzAEAhs4IQyL+y\n8p7HXXNTzxP2POA9bG5edu//3rro1aAlDMJg08s1+Y0HAAAAB1L1zOysM03btz1/8TkxhAEA\niEhBCORfxdiq0q5dR1x6ddeBgzNHwuam9TOm7NkOg6kTKvOXDgAAANrT+6RTs87sWrdGRwgA\nFA4FIVAQKsZWlXTuPPKq67oOGrL/u2EYTJlQuerh++IPBgAAAO0bc/fkoCT7P7LpCAGAwqEg\nBApFxdiqTr16H3/tP7R96WUYLL/vf8ceCgAAALKrfm5RaffyrGO71q1Z/eiDMeQBAGifghAo\nIAv+53cW/tP1WxfPD1JBkNr33Zbm5injK/2UAgAAoABVPTO7S/+BWceW3nHr5nkvx5DniLig\nckC+IwAAOaEgBApIrw+PzjqzarIbjQIAAFCIxj0+LcrY3Ouu6EAdIQBQlBSEQAEZc/fkILXf\nysEPaqzbOHVCZTx5AAAA4KBU19RGGVvwg2/nOgkAQDsUhEBhqZ6xOOtMGAZTxle63BIAAIAC\nFKUjbN6x46XLL4ohzOFzl1EAKEoKQqDgRLzccv5NV+c6CQAAAByCEZdl/8W6Y/nSBT/4Tgxh\nAAD2pyAEClF1TW2qtLT9mZamxpoLxsaTBwAAAKIbdfX1pd3Ls45tW/paDGEAAPanIAQK1KTp\nCwdPPP8Dh8Jgn93GbZt1hAAAABSgqmdmB6lU+zO731k78zMT4slzOC6oHND6yncWAODIUBAC\nhavyll98YH//H1Zh0Lh18/MXnxNXIgAAAIhqxKVfzzqzu27jnGsvjSEMAMDeyvIdAKA9XfoP\n3L3h3fZndq1bM+sL1WP/OCWeSAAAABDFqKuv3zzv5a2L5rc/tnP1snjyHBEWEQJAcbCCECho\n4x6flirrlHWs4d11S27/aQx5AAAAILoxd08OSrL8+1vTlq1ujQMAxExBCBS6SdNezfrYhiAI\n3n588otfuTCGPAAAABBd9XOLss7sWrdm9aMPxhAGACBDQQh0ANUzFkfpCHeueHNq1egY8gAA\nAEB0XfoPzDqz9I5bN897OYYwAACBghDoKCJ2hGE6/fov/jmGPAAAABDRuMenRRmbd8OVuU4C\nAJChIAQ6jOoZi6OMrXnisRcvvSDXYQAAACC66prarDNhOj1t0qkxhAEAUBACHUmUH1RBENSv\nXp7rJAAAAHBQep+UvfxraWqc+ZkJMYQBABJOQQh0MJEuugyDKeMrPbwBAACAwjHm7slRftLu\nrtv4/MXnxJAHAEgyBSHQ8URcRzj3uivmXHtprsMAAABAdFHWEe5at2bBD74TQxgAILEUhECH\nFLEj3LJgrnWEAAAAFI4xd0+O0hFuqJmy5PafxpAHAEgmBSHQUVXX1AapVNaxudddsfrRB2PI\nAwAAAFGMuXtylN+zm16eGUMYACCZFIRAB1Y9Y3GUseW/uyPXSQAAACC6KL9n699eXXPR+BjC\nAAAJpCAEOrYo9xpN1++ccf7ZMYQBAACAiLr0H5h1pnFTnRuNAgC5oCAEOrwoHWHTtq3PX3xO\nDGEAAAAginGPTwtKsv/T3NuPT9487+UY8gAAiaIgBIpBlAe871q3ZuZFE2IIAwAAAFFUP7co\nysMIF/7TDTGEAQASRUEIFIMxd0+Ocm+W3Zs2vnLNJTHkAQAAgCiiPIywactmN8UBAI4sBSFQ\nJMY9Pq20e3nWsa2L58+/6Rsx5AEAAIAoojw4Y9e6NVPGV65+9MEY8gAASaAgBIpH1TOzgyAI\n2r87SxjUvVyz6uH7YkkEAAAA2UV5cEYQBGuf+mOukwAACaEgBIpKdU3tabfdn2UoDJb99rZY\n4gAAAEB2Y+6eHGUdYaqsNIYwAEASKAiBYtN3zFlZZ8IwmDK+cvO8l2PIAwAAAFF06T+w/YEd\nS5c8d+7H4gkDABQ3BSFQhKJcdxkEwdzrrnj9F/+c6zAAAAAQxbjHp2Wdaa7fueT2n8YQBgAo\nbgpCoDhF7AjXPPGYZ7wDAABQIKL8mN26cF4MSQCA4qYgBIpWxI5w6R23utcoAAAAHcX2pa9Z\nRAgAHCYFIVDMInaE8757RY6DAAAAQCSl3cuzzlhECAAcJgUhUOSidIRhGEybeHIMYQAAAKB9\nVc/MzjqzfelrnpcBABwOBSFQ/KJ0hC3NzVPGV7rXKAAAAHlX2r08SKWCVBCk2h7o3Peo8hGj\n4g0FABQVBSGQCFHvNXrDlblOAgAAAO2remZ29YzFXQfboqiIAAAgAElEQVQOCcK2Bxo3b5p/\n49dd5AoAHDIFIZAUke41mk4/f/E5MYQBAACA9jW8s7b9gbnXXTHzMxPiCQMAFBkFIZAgXfoP\nzDqza92aOddeGkMYAAAAaEeqrFPWmd11G60jBAAOgYIQSJBxj08r7V6edWzLgrmv/+KfY8gD\nAAAABzJp2qtRrnP1AxYAOAQKQiBZqp6ZHZRk/6tvzZOPvXDJeTHkAQAAgAMZ9/i07EMRfuQC\nAOzD/4EAEqf6uUXZh8Kg/q2VS27/ae7jAAAAwAF16T+w/QqwftUKdxkFAA6WghBIouqa2ihj\nbz8+2a8sAAAA8mjc49OClpb2Zxb/9OZ4wgAARUNBCCRUxI5w3nevyHEQAAAAOCy717874/yz\n850CAOhIFIRAckXpCMMwmDK+0jpCAAAA8qVL/4FZZ5q2bV396IMxhAEAioOCEEi0EZddHWVs\n7nVXzPj0mbkOAwAAAPsb9/i0KL9e3/rjQzGEAQCKg4IQSLRRV18f8V6jTTu35zoMAAAAtGnU\n1ddnnWlYt+a1n/3TxlnTN86anvtEAEDHpiAEiPY8wjCYOqEy91kAAACgDVFuNLpj2ZIYkgAA\nRSAVhmG+M+RNRUVFXV1dc3NzaWlpvrMA+TdlfIT+LxUc943/MfzLV+U+DuSc8yAASeY8CHRE\n2X+3pvb8b0lpp4nTXs11Hjou50EArCAE2OOYz3wx+1AYvPnb21645LzcxwEAAIAPKkllGQj3\nvFrSzbEEAgA6KgUhwB4n3PhPvU86NftcGNS/tXLGp8/MfSIAAAB434gvfz3qaHJvGQYARKIg\nBHjfmLsnR3oeYRA07dw+/6Zv5DoPAAAAtBp19fXVNbWl3csjzIYbZ03PdR4AoONSEALsK1JH\nGAabXq7JfRYAAAD4gKpnZkcZW/D9b+U6CQDQcSkIAdrw8f94OutMGAZTxldOqzo5hjwAAADQ\nKsoDMjI/WjOvly6/KIZUAEAHoiAEaEO3Y4addvv9USZb0s2eRwgAAECcxtw9ueeHKqPPd+k/\nMHdhAICOSEEI0La+Y86K+jzCHdtnfaE613kAAACg1Rm/+2N1Te3Rn/58+2P9zhx39EUXf+i7\nP4gnFQDQUSgIAdoTsSNseHfd9L85PddhAAAAYG8Vn6guHzisnYG6l2au+fOjG1+YEVskAKBD\nUBACZBGxI0w37Fr18H25DgMAAACtKsZWnfCPP8o6tvSOW+dce2nu4wAAHYaCECC7SB1hGLz5\nm9umfuIjuY8DAAAAe/Qdc1bfUz6Wdaxzv/4xhAEAOgoFIUAk1TW1/U45K+tY2BJOnaAjBAAA\nID6n3flA1pn1056Zcf7ZMYQBADoEBSFAVKfeeX+QSmUdC8Nw6oTKGPIAAABARmn38iAIglQQ\ntPmzNRUEqaB8xKh4QwEAhUtBCHAQqmcsjjIWhsGUCZUeSQgAAEA8qp6ZnSotDcIgCNt6OwyC\nMNiyYO78f7hm46zpmVfMCQGAgqIgBDg4kZ5HGARBGCy75/YcZwEAAIA9en14dNaZuheee/vP\nj8QQBgAocApCgINWXVMblGT/+zNsca9RAAAAYjLm7sl7noux/11GU3teqdKS7kcPiz0aAFBw\nFIQAh6L6uUVRxjL3Gn3hkvNynQcAAAD2PBdj/7uMhnteYbpl/cwpsecCAAqOghDgEEW/12j9\nWystJQQAACAOJSV71gvu471FhOXHDM8c8BhCAEgyBSHAoauuqS3p1DnKZGYp4aqH78t1JAAA\nAJKs64BBe9YL7uO9RYR9TzszD7EAgAKjIAQ4LBOnzj/mgr+PNBoGb/72tvk3fSPHiQAAAEiu\nQedccPRFFx990cVdjuq/9/FUKuh35rh+Z47r1KtP60GLCAEgsVJhuP8FRUlRUVFRV1fX3Nxc\nWlqa7yxAxzb365dsfn1+pNFU0LlX3/FPzcpxIsjOeRCAJHMeBIrY1KrRYTrdzsCQC77Qf9yk\nzHbF2Ko4MlFgnAcBsIIQ4Ag47d7Jnfv2izQaBo3bNk8/5/QcJwIAACChen14dPmIkeUjRpaU\nle19vOuAQXteAwe3Htw4a7p1hACQQApCgCNj/BM13Y8eHmk0DNINu6ZMqHzhkvNyHAoAAIDE\n2bpo/s6Vy3euXN7S3Lz38Yb172Reb/3fyfnKBgAUCAUhwBFz9n/+pbqmNup0GNS/vXLqJ0bn\nMhEAAADJk0oFqWDP6wPH97y6Dxman2AAQMFQEAIcYdU1td2HRF1KGLakp008JceJAAAASJDq\nGYuDMNjz2tt7B7cumr/gh9/NTzgAoDCUZR8B4CCd+L1/nnvD1yIOtzQ3TT/n9Kq/zslpJAAA\nAJKldflguN+RIOhyVMXes/s/hrBibFVOUgEAhcEKQoAjr++Ys067/f7o8+mGXfNv+kbu8gAA\nAJAo1TW11TNqq2fU9j3xo3sOhUEqSJV26Z55NW3fvvx3dzTv3J7XmABA3igIAXKi75izqmtq\nB5w5MeJ83Us1UyZUut0oAAAAR1DXQUNat8OWML2rfs9r547tb7y2/8LBVhtnTW99xZATAIiZ\nghAgh0b/8q6P/8fTUafDoKW56YVLzstlIgAAABKk8pZfdO7e+0DvpnfujDMMAFA4FIQAudXt\nmGHVNbX9Tjkr4vyut1fmMg4AAADJ0qm8VxAEQSroffJpmVeqZM8/CYZhSz6TAQD5U5bvAACJ\ncOqd98//9tfqXn0x62QYBlMnfGTSjMUxpAIAAKDoHXfj9/c5svCH3w0bW4Ig2LHsjXwkAgDy\nzwpCgJiceuf9I7709SiTYRhOmVA5/ZzTcx0JAACABOo6YM+DCdO76vObBADIFwUhQHxGfeuG\niB1hEAbphl1TJ1TmOBEAAACJ02XAoMxGmE6HLdnvMrpx1vTcBgIAYqcgBIjVqG/dUF1TG3E4\nc7vRnOYBAAAgaVKpPRvphl07li3JaxYAID8UhAB5UF1T+5Ef3BplMgzD+Td9I9d5AAAASI5u\nQ4a2brfsbojykY2zpltHCADFREEIkB+DPn3hx//j6SiTdS/X1P7rD3KdBwAAgKJUMbZqnyPd\njhneur3micca1q+LNRAAUAAUhAB50+2YYaVdu2WfC4N1f/nTlAmVNReMzX0oAAAAil3rPUaD\noGnrlrpZz0X8nHWEAFA0FIQA+VT11zn9Tjkr0mgYNG7dvOrh+3KcCAAAgCLXdcCg0m7vX67a\nXL8jDMM85gEA4qcgBMizU++8v7qmNlUS6S/kN39726zPTcx1JAAAAIrJPncZLe3W/fhr/6Gk\nc5fM7pYFc9+4/SfNO3fkIRkAkCcKQoCCMOm5RQPOjND8hUHDxnfdaxQAAIDD0aX/wJLOnVp3\nG959Z+vi+RE/6y6jAFAEFIQAhaJ/9bmR5sKgadtmD34AAADgcPQY+aG9d8PGpnwlAQDil0ry\nHcYrKirq6uqam5tLS0vznQVgjynjKyNOlnbuctItt+9zoxiIznkQgCRzHgSSZv9rTMOmxrqX\nZq558o+Z3e7DRhx3zU0Rn3/RJr9POxDnQQCsIAQoLNU1tREn0427F3z/WusIAQAAyKpibNU+\nr1Snzr1Hf7R1oH71yvq3VuYvIAAQKwUhQMGprqmNWBOGYfjq978141NnqAkBAAA4WGW9+nQd\nNKR1t+GdtbvWrM68GjdtzGMwACDXyvIdAIC2Hf/N7y39zS+yz4VBU/2OJf/248yeO7oAAAAQ\nUSqVGnTuhSsf+E1m9+3HJ+/97uBPXThg4qfykQsAyDkrCAEK1LAvf3XAmRMjjYZBw8Z3X/3+\nt1b8/q4chwIAAKColBz4EXR1L82KMwkAECcFIUDhGv3Lu3qNODHSaBgEYdC8u8G9RgEAAIiu\n29ARZT17tvlWurFh+9LXty99vWH9uphTAQC5lgrDMN8Z8qaioqKurq65ubn0wJdKAeTdsnv+\n18qH7ok0mgpKO3WumjI/x4koEs6DACSZ8yBA6wWmzTu271y5LGhpyeyunzm1ftXyfYaH/O3n\n+4+rbv8LPfOiA3EeBMAKQoBCN+rq66traiONhkG6sXH2N7+U40QAAAAUj7IePXufdGrvk0/L\nvLocVbH/zOa5L8cfDADIHQUhQMdQXVNbUtYpyuS2xa/O/4drcp0HAACAotT75NNSJal9Dobp\ndF7CAAA5oiAE6DAmTnu1/8fGR5mse+G5KeMrVz/6YK4jAQAA0EEd6I6gvStPPuHGfx551XUj\nr7qu29FD4w0FAMREQQjQkVR84pOR5lJBSadO5SNG5TgOAAAARahLxYCex5/Y8/gTy7qX5zsL\nAJATCkKAjmTIRX9XXVPba8SJWebCoKWpaf6NX59z7aWx5AIAAAAAoMMoy3cAAA7asd+8bsuc\nl1c99of2hlJBEASdevfdOGt667ED3UAGAAAA2tG4eVPzju1lPXrmOwgAcGRYQQjQ8VSMrepz\n+hmn3Prr9obCIAiDDTVTNsycGlcuAAAAOpKsV5GmyjplNlp2N9S/tSLngQCAuCgIATqkirFV\nFWOrSrp0OeBEKghSQVmPHl0HDm49tvdqQgAAAGhf79Efbd3e/nrt1oVzFv/Lzeuf++88RgIA\njggFIUAHNvHZeQd8LwyCMGjesWP57+5Y8dBvYwwFAABAkehyVEXr9sYXZ6z89981b9+e3t2Q\nx0gAwBGhIAQoCqm2jrz3Kh86ovWwRYQAAABElOrUKd8RAICcKMt3AAAOS3VNbWbj9X/94Zq/\n/J89R8Og3xnjjvncJXmLBQAAQEeQeQzhga4l7Xb00J7Hn7h96et7H1w/7ekN054++f/7de7T\nAQC5oiAEKE6bXnnhmM9+KUjtv7SwvUWEWR9QDwAAQHKkUiUjr/xO47YtS37545bGxj1HwyDM\nayoA4PApCAGKxIk/+EnThvXrX6nJ7IbpdNjWnUcBAAAgutd+/sPGzZuCYN9fmK/+47cyG6Ou\nvr7HyA/FngsAOCwKQoAiUvqBv9V3Ln+jx6gTDuoLNs6abhEhAAAArfqc+rF0/c6Gd9fuXLUi\nCN9fOtjvzHGZjU69+uQpGgBw6BSEAMVj9C/vWvjDG9ZPeyazu7V2wcEWhAAAALC3wedelNkI\nmxrf/M3t9WtWZXbrXp65z0bnXn3HPzUr/oQAwCFQEAIUlT6jP7rhuf8OW8IgCIJ0+hC+IfOE\nQusIAQAAyGi9m+gH7PccwnRzYxtjAEBBKsl3AACOpG5HDwtKSjPbm+fPbt6+Lb95AAAAKAap\n914AQFGwghCg2JSUdUo3NwdBkN61q/6tlb0qTz6EL8msIzwQ6wsBAACS45Rbf53ZaNyw/rV/\n+1FeswAAR4aCEKDY9Dtr/Prp/53Z3rJwXsP6d1rfKh8+svzY4/KUCwAAgAK1/2WgbV422rmi\nfxBaRwgAxUBBCFBUKsZW7VzxZmtBuHnuS3u/mypJjfrmjeXDR+YjGgAAAB3Sgh98O2xp2bNz\n4HYwvXPnlPGVrbv9x1ef/K935DgaAHCIPIMQoNiUdO5yoLfClrB+9Yo4wwAAANDRdRs6Iuro\ne48qTJWken14dA4zAQCHxwpCgGLTbcgxvU8+beuCuW2+u+21hd2HHWsRIQAAABEdf81Nrds7\nly5583e/anOstLy86unZcYUCAA6LghCg6KRSI758VcvfNYbp5syBpu3blvzbLZntHcveWHbP\nrz78j7d06tk7fxEBAAAoaHs/lbDN5xECAB2aghCgOJV07hwEnTPbqZKSVElJ6xMjwuam3Rve\nVRACAAAAACSTZxACFJu9L/PMKOnSddCnLyrt2vX9Q2EYZyQAAAAAAAqHFYQAiTBgwjld+w9c\n8YffZHYb1q3tMeqE/EYCAACgwyk//oRTbv11m2/tf7kqAFCwrCAESIrS8p6t27vr1ucxCQAA\nAAAAeWQFIUBSlA87NlVWGjangyDYuvjV3Rve3X8m1anTwEmf7j50RNzhAAAAAACIi4IQoAhV\njK3aOGt6W++kMv/TtHVL09YtbX624Z21H775J7lKBgAAAABAvrnFKECCdOrdJ+tM05bNMSQB\nAACgo/BwQQAoPlYQAiTIsL+/4t2/PtVcX7//W01bNzXv2BEEQRCEYXNTqqxTzNkAAAAAAIiH\nghAgQcqHjxx51XVtvrXmycc2zpwWBEHYEm6eN/uoj3083mgAAAAAAMREQQhQnA78GMK2denX\nv3W7efu2IAjefuR3dfPntDmcClKTZiw+vIAAAAAAAOSHZxACEARB0OeU01u335n6l9qffn/X\n2+uCMGjzFYZhHqMCAAAQs4qxVZ5ECADFxApCAIIgCILU+5eMhE1NTU1bm3dsz2McAAAAAABy\nxApCAIIgCEq7de/Uu8/eR8KwJV9hAAAAAADIHSsIAYrW/rd/aeephKlUauRV19W9VFO/ekX9\n6pW5zAUAAECHlPmZeVAPvAcACpOCEIA9ug4YtHHWtCAIglT24SnjK1u3u/SrGPenGTnLBQAA\nAADAkaQgBOCQ7FUi9hh1Qv5yAAAAAABwcPLzDMItW7Zcf/31I0aM6Ny585AhQ6666qp169a1\n/5FVq1ZdeeWVRx99dOfOnYcPH37jjTdu3779ML8TgH2ccuuvT7n11yOv/M6AiZ/q1ndAO5PV\nM2pbX6f+272xJSwOzoMAJJnzIABJ5jwIQIFIhWEY83+ysbHx7LPPnjt37uc///nTTjtt2bJl\nDz300DHHHDNnzpy+ffu2+ZEVK1acccYZdXV1X/jCF0aPHv38888//fTTZ5111owZMzp16nRo\n3xkEQUVFRV1dXXNzc2lpaa7+tAAFJvqzIlbd/5stbyw40LvVNbVHJlDyOA8CkGTOgwDFoc2f\nlpknFNIO50EACkgYu9tuuy0Igp/97GetRx555JEgCG688cYDfeSLX/xiEAT33ntv65Hvfve7\nQRDcddddh/ydYRj269cvCILm5uZD/8MAdDQbZk6L+Hrla3//7LgPH+iV7z9HB+Y8CECSOQ8C\nFIc2f0XmO1QH4DwIQOHIwwrCj370o8uWLduwYUOXLl1aDx5//PHbtm175513UqnU/h/p3bt3\njx493n777dZ3t2zZMmTIkFNOOeWFF144tO8MXCkDJJIVhHnnPAhAkjkPAhQHKwgPjfMgAIUj\n7mcQNjQ0LFy48Iwzztj7jBUEwbhx49avX79ixYr9P7Jz585t27Ydd9xxe5/P+vTpc/zxx8+d\nOzedTh/CdwKQ1fCvfTPzSML9X9rBQ+Y8CECSOQ8CkGTOgwAUlLgLwrfeeiudTg8dOnSf48OH\nDw+CYPny5ft/pFu3bmVlZRs3btznePfu3RsbG9etW3dQ37lly5bN74l/9SRA3rmiM7+cBwFI\nMudBAJLMeRCAglIW839v+/btQRCUl5fvc7xHjx6t7+6jpKTk7LPPnjlz5sKFC0ePHp05uGTJ\nkjlz5gRBsGPHjvr6+ujfeeyxx27ZsuWI/FkA4GA5DwKQZM6DAEXDtaeHwHkQgIIS9wrCjP1v\nfp25aOVAN8X+8Y9/HIbhhRde+Kc//WnJkiWPPPLIeeedN2zYsCAIWpfPR/zOESNGjHyPW2wD\nkBfOgwAkmfMgAEnmPAhAgYh7BWGvXr2Ctq6I2bZtWxAEPXv2bPNTEydOvOOOO26++ebPfvaz\nQRD06NHjJz/5ySuvvLJs2bK+ffum0+no3zlv3rzW7czDeA/zTwTQ4bRzpWebz5nnCHIeBCDJ\nnAcBSDLnQQAKStwF4bBhw8rKylatWrXP8WXLlgVBcPzxxx/og9/+9rcvv/zyuXPnlpSUnHrq\nqT179jz99NMHDx7cp0+f7t27H9p3AkDMnAcBSDLnQQCSzHkQgIKSiv+BtGedddbChQs3bNjQ\nvXv3zJGWlpahQ4eWlpauXr36QJ9Kp9N7r3xfvXr1iBEjLrvssgceeOCQvzNzpUxzc7M19QAZ\nEVcQetrE4XAeBCDJnAcBSDLnQQAKRx6eQXjllVfW19f/4he/aD1yzz33rF279qqrrsrsNjQ0\nzJ8/P3OdS8bNN9/crVu32bNnZ3ZbWlpuuOGGMAyvueaaiN8JAAXCeRCAJHMeBCDJnAcBKBx5\nWEGYTqcnTpxYU1Nz0UUXnXbaaa+99tojjzxy0kknvfjii5nrXBYtWjR69Ojq6upnn30285EF\nCxacffbZnTt3vvzyy4866qgnn3zylVde+d73vvfzn/884ne2yZUyAPuLsojQCsLD4TwIQJI5\nDwKQZM6DABSOPBSEQRDs2LHjxz/+8WOPPbZ27doBAwZ85jOfueWWW4466qjMu/ufCIMgePHF\nF3/0ox/Nnj27vr6+srLy29/+9le/+tXo39kmJ0KA/SkIY+A8CECSOQ8CkGTOgwAUiPwUhAXC\niRBgfwrC5HAeBCDJnAcBSDLnQQDy8AxCAAAAAAAAIF8UhAB8QMXYKgsEAQAAAACKmIIQAAAA\nAAAAEkRBCAAAAAAAAAlSlu8AABQidxkFAAAAAChWVhACAAAAAABAgigIAQAAAAAAIEEUhAAA\nAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACA\nBFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAA\nAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAA\nkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURAC\nAAAAAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAA\nABJEQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApC\nAAAAAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAA\nAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRB\nCAAAAAAAAAmiIAQAAAAAAIAEURACAAAAAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAA\nAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIo\nCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAA\nAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQ\nBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURACAAAAAABAgigIAQAA\nAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJ\noiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAA\nAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAg\nQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQA\nAAAAAIAEURACAAAAAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAA\nJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQA\nAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAA\ngARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQ\nAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURACAAAAAABAgigIAQAAAAAAIEEUhAAAAAAA\nAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACABFEQ\nAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAAAAAA\nAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAK\nQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURACAAAA\nAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJE\nQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAA\nAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECC\nKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAA\nAP8/e3ceH1V1/3/8M9lJSCAbe9i3sEQIEajsi8gmimwCShARqNBWCwWLWlvcQJGiFn2ArSLy\nEFkU3LVSAwpRQIzIJoSwuBAMawgkkEwyvz9uO9/5ZZk5M7mZmTv39Xz00YfcnNw59575nPe9\ncyYzAAAAAGAiLBACAAAAAAAAAAAAJsICIQAAAAAAAAAAAGAiLBACAAAAAAAAAAAAJsICIQAA\nAAAAAAAAAGAiLBACAAAAAAAAAAAAJsICIQAAAAAAAAAAAGAiLBACAAAAAAAAAAAAJuKbBcJL\nly498MADzZs3DwsLa9So0fTp03Nzc53/yg8//KKLFAwAACAASURBVHD33Xc3bNgwNDQ0MTFx\n9OjRu3fvtv909erVlso88cQTNXwoAAC4jRwEAJgZOQgAMDNyEADgJ0K8/5DFxcWDBg369ttv\nx4wZk5qampOTs2bNms8//3zv3r2xsbGV/srBgwd/85vfhIaGzpkzp3Xr1qdOnVqxYkWvXr0+\n/fTTgQMHisilS5dEZOLEiU2bNnX8xV69ennhiAAAUEcOAgDMjBwEAJgZOQgA8CM2r1u2bJmI\nLFmyxL5l/fr1IjJ37tyqfmXSpEki8vnnn9u37Nu3T0T69++v/fOxxx4TkT179rjVk/j4eBGx\nWq1uHgEAAJ4jBwEAZkYOAgDMjBwEAPgPH3zE6Jo1a6Kjo//whz/Yt4wfP75169ZvvPGGzWar\n9FdycnJEpHfv3vYtKSkpMTExJ0+e1P6pvVOmbt26NddtAAB0QQ4CAMyMHAQAmBk5CADwH95e\nILx27dr+/fu7d+8eHh7uuL137955eXknTpyo9Lfat28vIkeOHLFvOXfu3JUrV5KTk7V/2oOw\ntLT0559/PnfuXE0dAAAA1UAOAgDMjBwEAJgZOQgA8CveXiD86aefSktLk5KSym1v1qyZiBw/\nfrzS31qwYEFsbOxdd921Y8eOM2fOZGVl3XnnnREREdpf0ItIfn6+iCxfvjwxMTEpKSkxMbFd\nu3ZvvvlmxV1t2bJl4/8UFxfreWwAALhCDgIAzIwcBACYGTkIAPArIV5+vIKCAhGJiooqt712\n7dr2n1aUnJz81Vdf3XHHHX369NG2NG3adOvWrT169ND+qb1TZt26dfPnz2/cuPHhw4dXrFgx\nefLkgoKCmTNnOu7qnnvu0RoDAOB95CAAwMzIQQCAmZGDAAC/4u0FQo3FYim3RfuU7YrbNYcP\nHx4xYoTVan3uuefatm2bl5e3bNmyYcOGbdq0afDgwSLy6KOPzpkzZ+jQofaIveuuu1JTUxcu\nXHjPPfeEhYXZdzV16tTCwkLtv9esWXPt2jXdjw4AAOfIQQCAmZGDAAAzIwcBAH7C2wuEMTEx\nUtk7Yi5fviwi0dHRlf7WtGnTfv3116NHjzZu3Fjbcuedd7Zt23bq1KknTpwIDQ0dOHBguV/p\n0KHD8OHDN2/evG/fvhtvvNG+/e9//7v9v99++22CEADgTeQgAMDMyEEAgJmRgwAAv+Lt7yBs\n2rRpSEjIqVOnym3PyckRkTZt2lT8lStXruzatatHjx72FBSRyMjIQYMG/fLLL0ePHq3qserV\nq6f9uj5dBwCg2shBAICZkYMAADMjBwEAfsXbC4RhYWHdunXbvXu3/e/ZRaSsrGz79u1JSUlN\nmzat+CtFRUU2m63iW1q0LdeuXbty5crLL7+8bt26cg0OHjwo//uaXwAA/AE5CAAwM3IQAGBm\n5CAAwK94e4FQRO69997CwsJnn33WvmXVqlWnT5+ePn269s9r165999132ntnRCQxMbFFixbf\nfPON45tiLl26tHXr1piYmE6dOkVGRj755JMzZsz44Ycf7A3efffdHTt2dO3atWXLll45LAAA\nlJCDAAAzIwcBAGZGDgIA/IdF+xZcbyotLR0wYMCXX3552223paamHj58eP369Z06dfr6668j\nIyNF5MCBA507dx40aNDWrVu1X9m8efPYsWNjY2NnzZrVqlWr3Nzcf/7znydOnFixYsX9998v\nIu+9997tt98eGRl55513NmrU6MCBA1u2bImOjs7IyEhNTa2qJwkJCefPn7darcHBwd45dgAA\nyEEAgJmRgwAAMyMHAQB+xOYLBQUF8+bNa9asWWhoaOPGjWfPnn3+/Hn7T/fv3y8igwYNcvyV\nzMzM22+/PTExMSQkJDY2dvDgwR9++GG5BsOGDatbt25ISEijRo2mTJmSnZ3tvBvx8fEiYrVa\ndTw0AABcIgcBAGZGDgIAzIwcBAD4CR/8BaH/4J0yAAAzIwcBAGZGDgIAzIwcBAD44DsIAQAA\nAAAAAAAAAPgKC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJhIiK874Hv/+c9/goJYKAWAgDVg\nwIDg4GBf98J/kYMAENjIQefIQQAIbOSgc+QgAAQ2FzloM7Fp06aFhLBECgAB7urVq74OHD9F\nDgKAGZCDVSEHAcAMyMGqkIMAYAbOc9DUMfCvf/2ruLj4+vXrOu7z+++/P3LkSLdu3Vq2bKnj\nbuEdV69e/eijj2JjYwcPHuzrvsATX3zxxa+//jpo0KC4uDhf9wVu++WXXzIzM1u0aJGWlqbv\nnnm7aFXIQZRDDhodOWho5KD3kYMohxw0OnLQ0MhB7yMHUQ45aHTkoKH5LAe99rYUk5g/f76I\nrFy50tcdgSdycnJEJDU11dcdgYeGDBkiIrt27fJ1R+CJt99+W0SmTZvm646gWshBQyMHjY4c\nNDRyMDCQg4ZGDhodOWho5GBgIAcNjRw0OnLQ0HyVg3zGNAAAAAAAAAAAAGAiLBACAAAAAAAA\nAAAAJmLq7yCsCZ07dx43bhwftG1QUVFR48aNa9Giha87Ag/16dOnTp06fNC2QTVp0mTcuHG6\nf9A2vIwcNDRy0OjIQUMjBwMDOWho5KDRkYOGRg4GBnLQ0MhBoyMHDc1XOWix2WxefkgAAAAA\nAAAAAAAAvsJHjAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgKhbi5d\nuvTAAw80b948LCysUaNG06dPz83N9XWnoGT16tWWyjzxxBO+7hqqVFJS8uc//zk4OLjS726l\nHv2fkxGkJA2KujMuis6IyEGjIwcDD3VnXBSdEZGDRkcOBh7qzrgoOiMiB43Of3IwpCZ2akLF\nxcWDBg369ttvx4wZk5qampOTs2bNms8//3zv3r2xsbG+7h1cuHTpkohMnDixadOmjtt79erl\nox7BhcOHD991113Z2dmV/pR69H/OR5CSNCLqztAoOsMhB42OHAw81J2hUXSGQw4aHTkYeKg7\nQ6PoDIccNDr/ykEb9LBs2TIRWbJkiX3L+vXrRWTu3Lk+7BUUPfbYYyKyZ88eX3cESvLz82vV\nqpWWlpadnR0eHt6tW7dyDahHP+dyBClJI6LuDI2iMxZy0OjIwYBE3RkaRWcs5KDRkYMBiboz\nNIrOWMhBo/O3HOQjRvWxZs2a6OjoP/zhD/Yt48ePb9269RtvvGGz2XzYMajQluXr1q3r645A\nidVqvf/++zMzM1u3bl1pA+rRz7kcQUrSiKg7Q6PojIUcNDpyMCBRd4ZG0RkLOWh05GBAou4M\njaIzFnLQ6PwtB1kg1MG1a9f279/fvXv38PBwx+29e/fOy8s7ceKErzoGRfaqKy0t/fnnn8+d\nO+frHsGZuLi4pUuXhoaGVvpT6tH/OR9BoSQNiLozOorOWMhBoyMHAw91Z3QUnbGQg0ZHDgYe\n6s7oKDpjIQeNzt9ykAVCHfz000+lpaVJSUnltjdr1kxEjh8/7otOwQ35+fkisnz58sTExKSk\npMTExHbt2r355pu+7hc8QT0GAErScKg7o6PoAgn1GAAoScOh7oyOogsk1GMAoCQNh7ozOoou\nkFCPAcDLJRlSQ/s1lYKCAhGJiooqt7127dr2n8Kfacvy69atmz9/fuPGjQ8fPrxixYrJkycX\nFBTMnDnT172De6jHAEBJGg51Z3QUXSChHgMAJWk41J3RUXSBhHoMAJSk4VB3RkfRBRLqMQB4\nuSRZINSNxWIpt0X7VN+K2+FvHn300Tlz5gwdOtQ+e951112pqakLFy685557wsLCfNs9eIB6\nNDRK0qCoO+Oi6AIP9WholKRBUXfGRdEFHurR0ChJg6LujIuiCzzUo6F5uST5iFEdxMTESGUr\n8JcvXxaR6OhoH/QJ7hg4cOCYMWMc31vRoUOH4cOHX7hwYd++fT7sGDxAPQYAStJwqDujo+gC\nCfUYAChJw6HujI6iCyTUYwCgJA2HujM6ii6QUI8BwMslyQKhDpo2bRoSEnLq1Kly23NyckSk\nTZs2vugUqqtevXoicuXKFV93BO6hHgMVJenPqLuARNEZFPUYqChJf0bdBSSKzqCox0BFSfoz\n6i4gUXQGRT0GqporSRYIdRAWFtatW7fdu3cXFhbaN5aVlW3fvj0pKalp06Y+7BtcunLlyssv\nv7xu3bpy2w8ePCj/+wZXGAj1aHSUpBFRd4ZG0QUY6tHoKEkjou4MjaILMNSj0VGSRkTdGRpF\nF2CoR6PzfkmyQKiPe++9t7Cw8Nlnn7VvWbVq1enTp6dPn+7DXkFFZGTkk08+OWPGjB9++MG+\n8d13392xY0fXrl1btmzpw77BM9SjoVGSBkXdGRdFF3ioR0OjJA2KujMuii7wUI+GRkkaFHVn\nXBRd4KEeDc37JWnRvqAS1VRaWjpgwIAvv/zytttuS01NPXz48Pr16zt16vT1119HRkb6undw\n4b333rv99tsjIyPvvPPORo0aHThwYMuWLdHR0RkZGampqb7uHcrbvn37xx9/rP330qVLExMT\n09PTtX/+6U9/io+Ppx79nMsRpCSNiLozNIrOWMhBoyMHAxJ1Z2gUnbGQg0ZHDgYk6s7QKDpj\nIQeNzu9y0AadFBQUzJs3r1mzZqGhoY0bN549e/b58+d93SmoyszMHDZsWN26dUNCQho1ajRl\nypTs7GxfdwqVe/rpp6ua0OyjRj36M5URpCSNiLozNIrOQMhBoyMHAxV1Z2gUnYGQg0ZHDgYq\n6s7QKDoDIQeNzt9ykL8gBAAAAAAAAAAAAEyE7yAEAAAAAAAAAAAATIQFQgAAAAAAAAAAAMBE\nWCAEAAAAAAAAAAAATIQFQgAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATIQFQgAAAAAAAAAAAMBE\nWCAEAAAAAAAAAAAATIQFQiDQLF++3GKxTJ8+3dcdAQDAB8hBAICZkYMAADMjBwG3sEAIGMPi\nxYstCoYOHerrngIAoD9yEABgZuQgAMDMyEGghoT4ugMAlMTHx7dr185xy9GjR202W7NmzSIi\nIuwbk5KSfve7382aNSskhOoGAAQOchAAYGbkIADAzMhBoIZYbDabr/sAwBMRERHXr1/fs2dP\nWlqar/sCAIC3kYMAADMjBwEAZkYOArrgI0YBAAAAAAAAAAAAE2GBEAg05b6M98UXX7RYLI89\n9ti5c+emTZvWsGHDqKiobt26ffDBByKSn58/Z86cpKSk8PDwdu3avfLKK+X2tnPnzjFjxjRo\n0CAsLKxBgwZjxozJzMz09iEBAKCMHAQAmBk5CAAwM3IQcAsLhECA0z6J+9KlS8OGDdu5c2ev\nXr2aNm367bff3nHHHVlZWUOGDNm8eXNqamqnTp2OHj06Y8aM999/3/67q1at6tu375YtWzp2\n7Jienp6cnLx58+bevXu/+uqrvjsgAADcQA4CAMyMHAQAmBk5CDjHAiEQ4LRv5X3jjTfatWt3\n8ODBTZs2HThwYPDgwSUlJSNHjoyNjc3Ozn733Xf37t17zz33iMjrr7+u/eKRI0fmzJkTEhLy\n6aef/uc//3nllVcyMjI++uijkJCQ2bNn//jjj748KgAA1JCDAAAzIwcBAGZGDgLOsUAIBDiL\nxSIiRUVFy5cv10IxODj47rvvFpHc3Nznn38+MjJSazl16lQROXz4sPbPFStWlJSUzJgxY/Dg\nwfa9DR06ND09/dq1a6+99pp3jwMAAE+QgwAAMyMHAQBmRg4CzrFACJhCSkpKQkKC/Z+NGzcW\nkQYNGrRr167cxoKCAu2fn3/+uYiMHDmy3K6GDRsmIl988UUNdxkAAN2QgwAAMyMHAQBmRg4C\nVQnxdQcAeEOTJk0c/xkcHCwijRo1qrixrKxM++fJkydFZMWKFevWrXNsdu7cORE5fvx4DXYX\nAABdkYMAADMjBwEAZkYOAlVhgRAwhdDQ0Iobtb+sr5TNZrt69aqIOH43ryP7G2oAAPB/5CAA\nwMzIQQCAmZGDQFX4iFEAlbBYLFFRUSKyd+9eW2W098sAABCQyEEAgJmRgwAAMyMHYR4sEAKo\nXMuWLUXk1KlTvu4IAAA+QA4CAMyMHAQAmBk5CJNggRBA5QYMGCAiGzZsKLf9yJEjH3/8cVFR\nkS86BQCAl5CDAAAzIwcBAGZGDsIkWCAEULlZs2aFhoZu2rTprbfesm/My8u78847hw8f/vbb\nb/uwbwAA1DRyEABgZuQgAMDMyEGYBAuEACqXnJz84osvlpaWTpo0qV+/ftOmTbv11ltbtGjx\n3XffTZ48edKkSb7uIAAANYgcBACYGTkIADAzchAmEeLrDgDwXzNnzuzcufNzzz23c+fOzMzM\nyMjIrl27Tp06ddq0aUFBvL0AABDgyEEAgJmRgwAAMyMHYQYWm83m6z4AAAAAAAAAAAAA8BLW\nugEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEwMH3zzTcWi8VisRw7\ndkyvfX799dfaPk+ePKnXPgNATZxqr3n11Vfbt28fHh5eu3btV155xdfdAQDdkINeQw4CgB8i\nB72GHAQAP0QOeg05CBhdiK874F+sVuvGjRs/+uijXbt25eXlXb16NTo6ukWLFr169Zo8eXKP\nHj183UFAN7t377733ntFJCYmplWrVsHBwb7uEQDfIwdhHuQggIrIQZgHOQigInIQ5kEOAhr+\ngvD/bN26tW3btpMmTVq7dm12dnZ+fr7Var148eK333774osv9uzZ87bbbjt37pyvu+kl7733\nnsViWb16tX1LSkpKVlZWVlZWo0aNfNcv6Obtt98WkYSEhOPHj3/77bfTpk3zdY/0UfGpC0AR\nOeiIHAx45CCAcshBR+RgwCMHAZRDDjoiBwMeOQhoWCD8r7Vr1w4dOvTEiRNRUVHz58/ftWtX\nfn5+WVlZXl7ehg0b+vTpIyLvvfdev379Ll++7OvOekNmZma5LZGRkV26dOnSpUtYWJhPugR9\nnTlzRkRSU1Pj4+N93Rc9VXzqAlBBDpZDDgY8chCAI3KwHHIw4JGDAByRg+WQgwGPHAQ0LBCK\niHz//ff33XdfaWlpu3btDhw4sGTJku7du8fExFgslsTExHHjxn3xxRdPPfWUiBw6dOiBBx7w\ndX+9YefOnb7uAmpWaWmpiISGhvq6IzrjqQt4gBysiMkk4JGDAOzIwYqYTAIeOQjAjhysiMkk\n4JGDwH/ZYLONHDlSRKKiorKzs500mzhxYqtWrRYsWFBWVmaz2T777DPtHObm5pZr+cYbb4hI\ncHCwfcvevXu1xiUlJQcPHhwzZkyDBg1q1arVrl27p556qrS01GazZWdnT5kypUmTJmFhYUlJ\nSb///e+vXLli34NbD7dnzx6tcbkjysnJ+d3vftexY8fatWuHhITEx8f379//1Vdf1Y5IM3Pm\nzHJPEm3PX331lfbPEydO2Gy2m2++WUT69OlT6bl64YUXRCQ0NDQvL0/bcu3atZdffnnAgAFx\ncXGhoaGJiYkDBgxYuXJlSUmJk3Ne8ez9/PPPs2fPbtmyZXh4eJ06dQYOHPjvf//bsbGXx8V+\nqo8dO7Z///6JEyc2atQoLCysfv3648aN27dvX8XDUTwVu3bt0vZcWlq6ceNG7VtzV61a5fxc\nFRQUPPPMMzfddJO28/j4+L59+y5fvrywsNDeJj09veJU8OyzzzrZrUqfa+gpoT76VT11bTbb\n1atXly5d2qtXr7i4uJCQkISEhJSUlAULFuTk5Dg/n4BJkIPkIDlIDgJmRg6Sg+QgOQiYGTlI\nDpKD5CBMiwVC248//mixWERk7ty5zlsWFxc7/tOtCffgwYNa4+3bt9epUycxMbFbt26xsbHa\nxvnz53///fdxcXF169ZNS0urX7++tv3WW2/17OEqDcLPP/88MjJSREJCQlJSUnr06FGvXj2t\n2ejRo+1Z+M9//nPChAlBQUEi0r179wkTJkyaNMlWIQi1B7VYLD///HPFc9WzZ08Ruf3227V/\n5uXlpaamau07d+48cODA1q1ba3vr0aPHhQsXnJ95+9nbs2dPo0aNIiIiunXrlpKSEhISIiJB\nQUEfffSRr8bFfqrXr18fGRkZERGRmprauXNn7QSGh4dv27bNsQ/qp2L//v3a9p07d2pHKiJ/\n//vfnZyonJwcbW9BQUFt2rQZMGBA69attZ507tzZfkJeeumlCRMmNGvWTEQaNWo0YcKECRMm\nvP/++1XtVrHPNfSUUB/9qp66BQUFKSkp2mN17NhxwIAB3bp1094iFBkZWW6AABMiB8lBcpAc\nBMyMHCQHyUFyEDAzcpAcJAfJQZgZC4Q2+5d27t27161fdGvCPXz4sNa4VatWjz/+uNVqtdls\nRUVFY8aM0aoxJSVl9uzZ165ds9lspaWlDz74oNb+yJEjHjxcpUGoTTQ33nij/a0KZWVl//jH\nP7SWb731luM+w8PDReS1116zbykXhFeuXKldu3alU/Px48e1llu2bNG2DBo0SERSU1P3799v\nb5aZmdmyZUsRGT9+vNMz/X9nr23btvfcc09+fr62/eDBg0lJSSJy00032Rt7eVzsp7pevXrT\np08vKCjQtmdnZ2snvFWrVtpu3T0V9r4NHTp0yJAhX3311YkTJ3799deqzlJpaakWLe3atbN3\nz2azfffddw0bNhSRYcOGObafPHmyiIwYMcLpuXejzzX0lHBr9G2VPXWffvppbYAOHjxo33jh\nwoXRo0eLSPv27V2eASCwkYPkIDnoHDkIBDZykBwkB50jB4HARg6Sg+Sgc+QgAhsLhLYFCxaI\nSFhYmONspcKzCXf48OGOLfft26dt79Spk/aH25rLly9rC/5r16714OEqBmFeXt748eP79etX\n7g/PbTbbDTfcICJ33XWX40aXQWiz2aZMmSIiPXv2LLfDJ554Qpt3tPcWbd26VTvDP/30U7mW\n27Zt0/Z57NgxW9XsZ6979+6OZ8lmsz3zzDMiEhoaav/7ay+Pi/1Up6SklOvbRx99pP3os88+\n07a4dSrsfWvevHlRUZGT86N57733tPa7du0q96N169ZpP3JMHcUgdKvPNfGUcGv0bZU9dceO\nHSsi6enp5R7r3LlzCxYseOmll65fv+78JACBjRwkB8lBJ8hBIOCRg+QgOegEOQgEPHKQHCQH\nnSAHEfCCxPTOnz8vInFxccHBwV54uHHjxjn+s02bNtp/jB49WpthNdHR0Q0aNBCRc+fO6fK4\niYmJ69ev37Ztm/aByI7at28vIrm5ue7u8+677xaRr7/++tSpU47btWl38uTJ2l8rb9myRUT6\n9u3bpEmTcnvo16+f9uf8n3zyicoj3nfffY5nSUQ6duwoIiUlJZcvX3a3/46qPy7p6enl+jZ4\n8OBatWqJyI4dO7Qtnp2KyZMnR0REuDyEDz74QOt59+7dy/1o9OjRWjwonmdHbvW5Rp8SHo9+\nXFyciOzYsaPckzw+Pn7x4sW//e1vw8LCnPw6EPDIQXJQyMGqkYNAwCMHyUEhB6tGDgIBjxwk\nB4UcrBo5iIAX4usO+J72QdulpaXeebgWLVo4/lObKCtut/+opKREx0e/fv16RkbGoUOH8vLy\ntD9JFpGsrCwRsVqt7u5t4MCBjRs3/uWXXzZs2PCnP/1J27hv3z7tw5GnTp1q3yIi33//ff/+\n/SvupLCwUER++OEHlUfUJj5H2qeHi0hxcbG7/XdU/XHR/ozdUWhoaMuWLQ8ePJiTk6Nt8exU\nVAy2Smmfza2976mc8PDwVq1aHTp0yP651erc6nONPiU8Hv3Zs2e/9dZbOTk5HTp0GDdu3LBh\nw/r166elIwAhB8lBESEHq0YOAgGPHCQHhRysGjkIBDxykBwUcrBq5CACHguEkpCQICIXLly4\ndu2ayvsRqqlOnTqVbrd/AWzNeffdd2fNmnXmzBm9dhgUFDR58uRnnnlm/fr19lnvzTffFJHU\n1FTt609F5MKFCyKSl5eXl5dX1a4uXbqk8oj2fNJd9cclMTGxqt3a38fh2amwf2eyc9rOq+qw\n1pOLFy+q7KribhX7XKNPCY9HPyUlZevWrXPmzNm9e/crr7zyyiuvWCyWLl26jB8/fubMmV4o\nPcDPkYMeIwcdkYNCDgLGRA56jBx0RA4KOQgYEznoMXLQETko5CCMiY8YFa04S0tLMzMzfd2X\nGrRr166xY8eeOXMmNTV148aNZ86c0T712Gazpaene7xb7bOV9+7de+zYMRGx2WxvvfWWOLwn\nQv73XqTJkyc7+axb7VOwDa3Sj2LQjl37f/H0VLh1fWZ/rHK0d0VV9VOXO1Tvs38+JW688cZd\nu3Z98803ixYt6tOnT1hYWFZW1p///OdW4vdajwAAIABJREFUrVr9+9//1vGBACMiB8lBXZCD\nGv98SpCDgBPkIDmoC3JQ459PCXIQcIIcJAd1QQ5q/PMpQQ7CCRYIpV+/ftoH+P7rX/9y3rK4\nuPill14qKChwuc+ioiJ9OqdG5eGWL19utVqbNWv2+eefjx07tn79+tqnHsv//nLZMx07duza\ntauIbNiwQUR27tz5448/hoWFTZo0yd5Gey/SL7/84vGj6KVGx6XSN/vk5+eLw9twavRUxMfH\ny/8+O74i7T0yHvz9uLt99uenRLdu3R599NEvvvjiwoULb731VsuWLS9evDhx4kTFN2oBgYoc\nJAd1QQ5q/PkpQQ4ClSIHyUFdkIMaf35KkINApchBclAX5KDGn58S5CAqxQKhNGzY8I477hCR\nt95668svv3TS8tFHH509e3br1q212c0eJNeuXSvX0oNPNHapmg936NAhERk6dGi5vxkvLS3d\nuXNndTqmff/qpk2bRGT9+vUiMnLkSG1S1mif/nzw4EHvfKC5l8fF7sCBA+W2WK3W48ePi0jb\ntm21LTV6KrSdax9jXc7Vq1e1z/uu9JO4VXbrVp/97SlRUWRk5IQJE3bu3BkSEnLhwoWvvvrK\nJ90A/AQ5SA7qghy087enREXkIOCIHCQHdUEO2vnbU6IichBwRA6Sg7ogB+387SlRETkIRywQ\niog8+eSTtWvXLisru+OOO77++utK2zz++OPPPPOMiPzud7/TskRb7ReRI0eOOLa8cOHC66+/\nrnsnq/lw2h8vV8yGFStWnD59Wip8HbHWXuUbeidNmhQcHJyVlfXTTz9t3rxZRO655x7HBqNH\njxaRs2fPbty4sdzvnj17tmPHjvfff7/24cu68PK42K1bt67clq1bt2rvQurXr5+2pUZPxW23\n3SYix44dq3hls379eqvVGhQUNGLECHd360GfffuUKPfUPXv27Jw5c4YMGXLlypVyLevVq6d9\nTIGX39oG+CFyUMjBaiMH7chBwHDIQSEHq40ctCMHAcMhB4UcrDZy0I4chME4+axbU3nnnXfC\nwsJEJDg4ePr06RkZGRcvXiwrKzt37tyGDRu6d++una5bb721pKRE+5WSkpK6deuKSK9evfLy\n8rSNP/74Y58+fdq1a6ftyr7/w4cPa3vIysoq99Da9s2bN5fb3qpVKxF59tlnPXi4PXv2aLvN\nzs7Wttx3330iEhsbe+rUKfsOly5dGh0dPXnyZBFp0KCB/dBsNluTJk1E5L777rNvsb+b4MSJ\nE+W6OmzYMBGZPn26iNSvX99xP5qBAweKSJ06dT777DP7xuzs7LS0NBHp0qVLWVlZxUFROXsZ\nGRnaj3Jzcz04UdUfl927d2st69at++STT1qtVm37L7/8kpycLCKdOnVyPDr1U+Gkb5UqKyv7\nzW9+IyJt2rQ5duyYfXtmZqb2LpWpU6c6ttfGfcSIES737MHw6fiUcGv0bRWeulartXnz5iIy\natQox2bXrl2bP3++iERERNifJ4CZkYPkYLk9k4Me9NmOHAQMhxwkB8vtmRz0oM925CBgOOQg\nOVhuz+SgB322IwdhICwQ/p8dO3ZoM1elwsLC/vznP5er58WLF2s/jYqKSktLu+GGG0JCQjp3\n7vzBBx+IiMVisbes/oTr1sNVDMKjR49GR0eLSO3atW+55Zbhw4cnJCSEhYVt2LDhP//5j9b4\nhhtu+P3vf6+112ZJEWnevHmLFi127drlJAi1N4loH1k+d+7ciudW+xJg7dfbtWt38803p6Sk\naO2bNGnyww8/OB8ad6dCb46L/TucN27cGBER0bBhw1tuuaV///61atXSzvbu3bs9OxXuBqHN\nZjt16pQW9qGhoSkpKTfffHObNm20nQwePLigoMCxsXoQejB8Oj4l3B39ik/d7du3R0VFaf3p\n0KFD3759b7zxRq0cgoKCXn31VZdnADAJcpAcdKQ4LuQgOQgEDHKQHHSkOC7kIDkIBAxykBx0\npDgu5CA5CKNjgfD/Y7VaN2zYcPfdd7dp06ZOnTohISFxcXE33XTTX/7yl5MnT1b6K6+++uqN\nN94YFRUVERHRunXrBQsWXLp0KSsrSyvF69eva810CUL1h6sYhDabbd++fbfddltcXFxYWFjz\n5s0nT55s78zcuXPj4+MjIyPvvPNObUtubu6oUaNiYmJq1arVrl27w4cPOwnCwsLCmJgY7af7\n9++v9ERdv3795Zdf7t+/f3x8fEhISExMzI033vjkk0/m5+dX2t6Ru1Oh+omq/rjYO3Dt2rWs\nrKxx48Y1aNAgNDS0fv36kyZNqjQkFE+FB0Fos9muXLnyzDPP9OzZU3sCJyYm3nLLLW+88Yb9\nLTx26kGo3mc7HZ8S7o5+xaeuzWY7fvz4I4880rVr13r16oWEhERGRiYnJ8+cOXPfvn0qhw+Y\nBzlIDtqRgx702Y4cBAyKHCQH7chBD/psRw4CBkUOkoN25KAHfbYjB2EgFtv/Ch4AAAAAAAAA\nAABAwAvydQcAAAAAAAAAAAAAeA8LhAAAAAAAAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAA\nAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAAAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAA\nAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAAAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAA\nAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAAAAAAAICJmHqB8NKlSxcvXvR1LwAA8A1yEABg\nZuQgAMDMyEEAgMVms/m6Dz6TkJBw/vx5q9UaHBzs674AAOBt5CAAwMzIQQCAmZGDAABT/wUh\nAAAAAAAAAAAAYDYsEAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIh\nAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIh\nAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIh\nAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgKhPmw228svv5yWlhYVFRUdHd27d++NGzf6ulNm\n9Nlnn1mqcPLkSXszlfEqKytbuXLlDTfcEBkZGRkZmZKS8vTTTxcXFzu2uXjx4uOPP96lS5eY\nmBitzd/+9rfCwkIvHGkg+fTTTxs1amSxWLZt2+Zxm1OnTqWnpzds2DAiIqJ169YPPfTQ1atX\n3W1z9uzZP/7xj23bto2IiNAGdNGiRRX3g3Kcj45KmaiUm8s2DRo0qKr809LSaubQ8X/IQX/j\nvDBdjpdinora9At1Os51pJ5PqKSe+gWkyjWS5siRI5GRkRaL5bvvvtPxcKCOHPQfKiWmMl4q\nkyTjrjuXp139EkWqfTkERbqcZ5fXLS5L263nBnRHQfk5lyWm8rIMtw9eU/1XQd0dLO4m9KJS\nSioTZkFBwSOPPJKcnFyrVq26desOGTJk+/btTh63WiNoM7H4+HgRsVqt1d/VjBkzRKRevXqT\nJk2aMGFC3bp1ReSZZ56p/p7hlg0bNohIp06dxlSQl5dnb+ZyvMrKyoYPHy4isbGxo0aNGjFi\nRExMjIgMGTKkrKxMa3P27Nnk5GQRadGixdixY4cPH16nTh0R6d69e3FxsbeP3JgKCwvnzJkj\nIqGhoSKSkZHhWZsDBw7ExsYGBQUNGjQoPT29Xbt2ItKrV6/S0lL1NqdPn27SpIk2ygsXLpw3\nb163bt1EpEuXLkVFRTVy/MbncnRUykSl3FTaTJ8+vWLhDxs2TET69+/vrVNiMORgQFKZNl2O\nl2Keqky/UKfjXEfq+YRK6ileQKoUsp3Vau3Zs6d2c5eVlVWjxxhgyMHAo1hiLsdLcZJk3PWl\nctoVL1F0uRyCS3qdZ5fXLSqlrfjcgCNy0CRclpjKbQi3D96hy6ug7g4WdxN6USklm8KEefny\n5c6dO4tIUlLShAkTRo0aFRYWFhQU9M4771T6uNUcQf9dICz79UzJB5s9/p9NId70CsKMjAwR\nSU1Nzc/P17bk5uYmJSWFhYXl5ORUc+dwy6pVq0TkhRdecNJGZby0/fTs2dPe5syZM82aNROR\nDz/8UNuSnp4uIg888IB9/j1//nz79u1FZN26dTVyeAEnJSUlNDR0yZIlU6ZMqSr2XLYpKytL\nTU0NCQn56KOPtC1Wq/WOO+6wWCzvv/++epsHH3xQRBYuXOi485EjR4rIypUrdTvmwOJydFTK\nRKXcVNpUav78+SKyfft2nY7Yq8hBeMZlYarnoPM8VZla4Ra95jpSz1dUUk/xAlLlGslu8eLF\n2g1/gN3Sk4PwgEqJqYyXyiTJuOtO5bSrXKLYdLocgku6nGeV6xb1+0qXzw0DIQehC5USU7kN\n4fbBO3R5FdTdwQrUuwnvUykllQlz4cKFIjJ8+PDCwkJty44dO6KiohITEwsKCio+bjVH0H8/\nYtR2/mzpF597/D8ptXqtq9rYL1myRFsTFpEGDRo8/PDDxcXFq1ev9lo3ICKXLl0SEW3hvSoq\n4/Xhhx+KyOLFi+1t6tevP3PmTBH56quvtC0JCQm33377okWLgoL+W0dxcXHaZeuRI0d0PrAA\nFRQUlJmZOX/+fIvF4nGbjIyMb7/99r777tP+fkJEgoODX3/99cuXL2vhp9gmOztbREaMGOG4\nc6299iNU5HJ0VMpEpdxU2lT0/fffL1u2LD09vW/fvtU9VF8gB+EZl4WpMl4qeaoytcItes11\npJ6vqKSe4gWkyjWS5tChQ4899tjEiRN79Oih+xH5FjkID6iUmMp4qUySjLvuVE67yiWK6HQ5\nBJd0Oc8q1y0qpa343DAQchC6UCkxldsQbh+8Q5dXQd0arAC+m/A+lVJSmTA3bdokIsuXL69V\nq5a2pVevXr/97W/Pnj27ZcuWcg9a/RH03wVCA9m2bVutWrX69evnuPGWW24REecfDgvdaVeE\nsbGxTtqojNeWLVuuXLnSp08fxzZxcXGO/1y6dOnmzZujo6MdN545c0ZEWrdu7fkxmElmZqbL\nL4dz2eb9998XkYkTJzpurF27du3atd1q07FjRxE5fPiwY5ucnBwR6dSpk/NOmpbL0VEpE5Vy\nU2lTjs1mmzFjRnR09LPPPqtwKKgWctCvuCxMlfFSyVOVqRVu0WuuI/V8RSX1FC8gVa6RRKS0\ntHTq1Kl16tR54YUXqt9/eIwc9B8qJaYyXiqTJOOuO5XTrnKJIjpdDsElXc6zynWLSmkrPjdQ\nEygof6ZSYiq3Idw+eIcur4KqDxZ3E/pSKSWVCfPkyZNRUVFt2rRxbDNgwADt1x036jKCLBBW\nV35+fm5ubvPmzbWPBrZr1qxZeHh4uVJETdOuCE+dOjV69OjY2NiIiIgOHTo8+eST165d0xqo\nj1dUVJT9vWmaTz75RERuvvnmio9rtVqPHz/+17/+9cUXX0xLSxs/frzuhxaQ7O+DqE6bffv2\niUhycvJjjz3WqlWr8PDwpk2bPvDAA9qTQb3Ngw8+2Lx583nz5r388ssHDx7ct2/fkiVLXnrp\npZ49e5bLXdipjKCdkzJRKTe3SlJENmzYsGvXrgULFiQmJqp3Eh4gB/2N88JUHC+XeSpqUyvc\npctcR+r5A5WLQydtFBN28eLFe/bseemllxISEnTrOtxEDvqtSktMcbxcTpKMe01QySaVSxTR\n6XIILulynt29pKwqPRWfG9AdBeXnFEvM5W0Itw/eocuroOqDxd2E7pyXkuKEGRERcf36dav1\n//tDcO0dMEePHnXcqMsIhnj8m9BcvHhRKntzt8ViqVOnzoULF3zRKfPSZsM5c+a0adNm2LBh\neXl5X3/99SOPPPLpp59u3bo1LCzM4/HatGnTli1bRo4cWfGzCseOHfv222+LSFJS0rJly2bN\nmlWuyFGjfvrpp7CwsBkzZmRmZo4aNSooKGjr1q3PP//89u3bMzMztWRVaVO/fv09e/ZMmzbt\n/vvvt+989uzZS5cuDQsL89nhBQq3ysRJuSm2KSsrW7RoUUJCwuzZs3XpP5wgB41Fcbxc5qmo\nTa2oJs/mOlLP51RSr/oXkPv371+0aNGECRPGjBmjV8/hAXLQP1VVYorj5XKSZNxrgko2qVyi\nuMTweYfieXbrktJJeury3IAHKCg/59ldW8XbEG4f/ISO93rcTXhBuVJSnDC7deuWkZHx/vvv\njx492t7mnXfekf+FnUavEWSBsLqKiopEpNKpMDw83Gq1Wq3WkBDOs5e0b99+xIgRt95664wZ\nM7QPaz516tTw4cO//PLL559//k9/+pNn47V+/fr09PTk5OQ1a9ZU/MW0tLSrV6+ePn16//79\nzz33XFxc3N13310DB4fKXblypbi4+MSJE8eOHdP+oL6oqGjUqFFbt25dsWLFvHnzFNsUFBTc\nddddn3766eTJk2+55ZaSkpKPP/54xYoVv/7669q1a8PDw317mEanXibOy02xzfr16w8dOrR4\n8WI+6tALyEFjURwvl3kqalMrqsPjuY7U8zmV1KvmBWRJSUl6enrdunX/8Y9/6Np3uI0c9E9V\nlZjieLmcJBn3mqCSTSqXKC4xfN6heJ7duqR0kp66PDfgAQrKz3lw11bpbQi3D35Cr3s97ia8\noGIpKU6Yjz76aEZGxsyZM0tLSwcPHnz16tVVq1atXbtWREpKSrT2Oo4gHzFaXZGRkSJSXFxc\n8UfXr18PDQ0lBb3p0Ucf/eCDD2bOnGn/KtdmzZppH8K7bt068Wi8nnrqqYkTJ3bo0GHbtm2V\nfpz9Qw899PHHH+/bt+/o0aPR0dFTpkzZvHmzvscFJ4KDg0Xk6aeftr88WqtWraeeekpEtLcW\nKrbR3lr43HPPrV279u677542bdrGjRsXLFiwadOm559/3rvHFIAUy8RluSm2Wbp0aURExKxZ\ns/Q8BlSBHDQWxfFymaeiNrXCY9WZ60g9n1NJvWpeQD755JNZWVl8HJA/IAf9U1UlpjheLidJ\nxr0mqGSTyiWKSwyfdyieZ7cuKZ2kpy7PDXiAgvJz7t61VXUbwu2Dn9DrXo+7iZpWaSkpTpgD\nBgz4y1/+cv78+XHjxsXGxjZp0mTFihWvvPKKiNi/jlfPEbSZWHx8vIhYrdbq7OTy5csi0r59\n+3LbrVZraGhogwYNqrNz6KKwsFD7Q12bm+N1/fr1SZMmicioUaMKCgpUHuu7774Tkd69e+vV\neZNIT08XkYyMDA/aaN+ve+DAAceNRUVFFoulfv366m0SEhLCw8NLSkoc2/z4448icuONN3py\nVGaiMoJ2lZaJSrkplqT2gezjx4935whMihwMbJUWZnXGyzFPbWpTKzxQ/bmO1PMrKheHTtpU\nWshZWVmhoaF33XWX48aZM2eKSFZWlh69Ngty0CQcS0xxvFxOkox7TfA4m8pdojjS/XIIlarO\nefb4klIlYZ08N2AjB81BvcSc34Zw++Bl1XkV1OVgcTdRo5yUklsT5qFDh5YuXfrwww+vXr06\nPz//+++/F5HRo0fb9B5B/oKwuqKjo5OSkk6ePHn9+nXH7ceOHSspKUlJSfFVx2BXVFRks9m0\nv95VHy+r1TphwoQ333xz7ty5mzdvLvfhXUVFRZ988skHH3xQ7rFatmwpItnZ2TV1MKigffv2\nIvLLL784btRS0P5tBC7bXLly5dy5c/Hx8eXe2qa9C0MLUbhLvUycl5t6G432qdwjR47U5zDg\nCjloLNUZL8c8FbXpF+7SZa4j9XxCJfX0uoB8++23S0pK1q5da3GwcuVKEenatavFYtm2bVv1\njgZuIAf9h0qJqYyXyiTJuOuuOtlU7hLFJYbPOxTPs8vrluqkp7vPDXiAgvJzindtzm9DuH3w\nH7rc63E3UXOcl5JbE2ZycvLcuXOfeOKJ9PT0mJiY3bt3i0iXLl1E7xFkgVAHgwcPvnbt2tat\nWx03vvfeeyJy8803+6hTZnT9+vWhQ4f269fPZrM5bv/iiy9ExF5jiuM1Y8aMLVu2PPHEE0uX\nLg0KqqRSbrvttgkTJhQWFjpu/OGHH+R/cy68Y9CgQSJS7m5hz549IpKcnKzYJjIyMjIy8syZ\nMwUFBY5tcnJyRKRevXo11//AplgmLstNsY3ms88+E5F+/frpcABQQw4ai8vxUsxTlekX7tJl\nriP1fEUl9XS5gOzVq9fcCm644QYRmTJlyty5c5OSkqp/OFBHDvoPlRJzOV6KkyTjri+V0654\niaKC4fMOlfOscknpsrR1fG7AAxSUP1O8a3N+G8Ltg//Q5V6Pu4ma4/KOXmXCPHDgwKpVq3Jz\ncx3bvPHGGyJy6623iu4j6O6fHAYSXf6U3maz7dq1y2KxdOrU6fz589qW7Ozs+Pj46OjoM2fO\nVLubcMPAgQNF5JFHHikrK9O2HD9+vHXr1iKydu1abYvKeG3atElE7rzzTiePpRVkenr6tWvX\ntC35+fn9+/cXkYceeqhGDi9wVecjRi9duhQXF1erVi37jy5evNi9e3cRWb16tXqbcePGici8\nefPse7ZarRMnThSRhx9+uNqHGOCqGh2VMlEpN5U2mtLS0sjIyNq1a3tyGOZDDga2qgpTZbxU\n8lRlaoVb9JrrSD1fUUk9dy8g1T/Emw8F8gA5GHhUSkxlvFQmScZddyqnXeUSxVF1Loegrjrn\nWeW6RaW03X1uwEYOmoNKianchnD74GXVeRXUs8HibqL6VEpJZcJcsWKFiEybNs3+W//4xz9E\nZODAgU727PEIWmz//5trTCUhIeH8+fNWq1X7es/qmD9//rPPPhsfHz9o0KDi4uLPPvussLDw\ntdde04oZXpOTk9OjR4/z58+3bdu2a9euly5d2rFjx9WrVydPnrx27Vp7M5fj1blz5wMHDvTr\n16/iW7lbtWq1ZMkSETl58mSvXr1Onz7dqFGjtLS0srKyr7766vz58x06dNi5c2fdunW9dtQG\ntW3bNm12E5Fvvvnm1KlTffv2TUxMFJGmTZsuW7ZMsY2IbN68edy4ccHBwSNGjAgPD9++fXtu\nbu6wYcM++OAD+5s1XLY5derUTTfddPr06T59+gwYMKCsrOzjjz/eu3dv586dd+zYERMT493T\nYwAqo6NSJirlptJG8/PPPyclJSUnJx86dKjGDj1wkIOBR3HadDleinmqMv1CnY5zHannEyqp\np9JGsZDLmTVr1sqVK7OysrSPnYEKcjDwKN6juRwvxUmScdeXymlXuUTR63IIzul4nl1et6iU\ntuLlKxyRgybhssRUbkO4ffACvV4F9WywuJuoPsU7epcT5tWrV3/zm9/s378/NTW1a9euR48e\n/fLLLxs2bJiZmdm8efOqHt3zEXR3RTGQ6PVOGc2rr77arVu3WrVqRUdHDxgw4N///rcuu4W7\nTpw4MX369KZNm4aGhsbExPTq1Wv16tX2d5DZOR8v7blRqW7dutmb/frrrw8++GCbNm0iIiIi\nIiI6dOjw8MMPX7582RvHaXyvvfZaVSe5Y8eO6m00O3fuHDZsWN26dcPDwzt06PD0009fv369\n3CO6bPPrr7/+8Y9/bNu2bXh4eK1atTp16vTXv/614jczQ6M4Oi7LRKXcFEvSZrPt379f+Ips\nZeRg4FGfNl2Ol2Keqky/UKTvXEfq+YTKxaHLNuqF7Ij3/HqAHAxIivdoLsdLcZJk3PWlctpd\nXqLoeDkEJ/Q9zyrXLS5LW/HyFXbkoHk4LzH1V0G5fahROr4K6sFgcTdRfep39C4nzDNnzsya\nNSspKSksLKxx48YzZszIzc11/uj8BaEndHynDAAAhkMOAgDMjBwEAJgZOQgA4NOfAAAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgVAfNpvt5ZdfTktLi4qKio6O7t2798aNG33dKZMqKytbuXLlDTfcEBkZGRkZmZKS\n8vTTTxcXF9sbNGjQwFKFtLQ0e7OLFy8+/vjjXbp0iYmJ0fbzt7/9rbCwsNzDnTp1Kj09vWHD\nhhEREa1bt37ooYeuXr3qpUMNOIpD43KI7T799NNGjRpZLJZt27ZV/GlBQcEjjzySnJxcq1at\nunXrDhkyZPv27TV3dCZx9uzZP/7xj23bto2IiNBGZ9GiReWKQqW4VPajcT7K8Bpy0N84Lw3F\n8XKZceoTMhSpnFLFGVLxEoVZVF8qGafSxuVVymeffVbVVdPJkye9cKQohxz0Hy4nUrfKR32S\nPHLkSGRkpMVi+e677/Q+JrNQvB9UKTeXWan4WHCXylWKyp24ShsuRP0KOejPvPxKKfTlcl5V\nvLBh+LxJ5QKy+i/a6DamNhOLj48XEavVWv1dzZgxQ0Tq1as3adKkCRMm1K1bV0SeeeaZ6u8Z\nbikrKxs+fLiIxMbGjho1asSIETExMSIyZMiQsrIyrc306dPHVDBs2DAR6d+/v9bm7NmzycnJ\nItKiRYuxY8cOHz68Tp06ItK9e/fi4mL7wx04cCA2NjYoKGjQoEHp6ent2rUTkV69epWWlvrg\n4I1PZWhUhthmsxUWFs6ZM0dEQkNDRSQjI6PcY12+fLlz584ikpSUNGHChFGjRoWFhQUFBb3z\nzjteO97Ac/r06SZNmmjDsXDhwnkRaaLEAAAgAElEQVTz5nXr1k1EunTpUlRUpLVRKS6V/dgU\nRhkukYMBSaU0VMbLZcYpTshQp3JKFWdIlUsUZlHdqWScShuVq5QNGzaISKdOnSpeO+Xl5fng\n4I2JHAw8KhOpYvm4NUlardaePXtqr7FkZWXV6DEGMJX7QZtCualkpeJjwS0qZ14l41TacCGq\nC3LQDLz8Sin0pTKvqlzYMHxeo3IBqcuLNjqOqf8uEB66Wjj32AmP/3e91PUFgV5BmJGRISKp\nqan5+fnaltzc3KSkpLCwsJycnGruHG5ZtWqViPTs2dM+FmfOnGnWrJmIfPjhh05+cf78+SKy\nfft27Z/p6eki8sADD9hfRzt//nz79u1FZN26ddqWsrKy1NTUkJCQjz76SNtitVrvuOMOi8Xy\n/vvv18jhmVK5oVEc4pSUlNDQ0CVLlkyZMqXSqXbhwoUiMnz48MLCQm3Ljh07oqKiEhMTCwoK\navyoAtSDDz4oIgsXLnTcOHLkSBFZuXKl9k+V4lLZj01hlI2OHIRnXJaGynipZJzHmYuqqJxS\nlRlS8RIl4GdR71PJOJU2Klcp2rPlhRde8N7heR05CA+oTKSK5ePWJLl48WLt1ToWCHVX7n5Q\npdwU7yZcPhbcpXLmVTJOPQcD+0KUHIQuvPlKKXSnMq+qXNgwfF6jcgGpy4s2Oo6p/37EaE5R\n0XM//eLx/4ptZV7rqlaHS5Ys0d6CISINGjR4+OGHi4uLV69e7bVuQEQ+/PBDEVm8eLF9LOrX\nrz9z5kwR+eqrr6r6re+//37ZsmXp6el9+/bVtiQkJNx+++2LFi0KCvpvjcTFxWmFd+TIEW1L\nRkbGt99+e99992nvqRGR4ODg119//fLly9pMjeqrODSKQxwUFJSZmTl//nyLxVLpnjdt2iQi\ny5cvr1WrlralV69ev/3tb8+ePbtly5YaO6AAl52dLSIjRoxw3KgViPYjUSsulf2IwigbHTkI\nz7gsDZXxUsk4zzIXTqicUpUZUvESJeBnUe9TyTiVNipXKZcuXRIR7Z2kgYochAdUJlLF8lGf\nJA8dOvTYY49NnDixR48e1ew/yql4P6hSbop3Ey4fC+5SOfMqGafSxgwXouQgdOHNV0qhO5V5\nVeXChuHzGpULSF1etNFxTP13gdBAtm3bVqtWrX79+jluvOWWW0SErzTzsi1btly5cqVPnz6O\nG+Pi4pz8is1mmzFjRnR09LPPPmvfuHTp0s2bN0dHRzu2PHPmjIi0bt1a++f7778vIhMnTnRs\nU7t27dq1a1fvIPBflQ6N4hBnZmY6/+qIkydPRkVFtWnTxnHjgAEDRIQvYfJYx44dReTw4cOO\nG3NyckSkU6dO2j9ViktlP6IwyvAactCvuCwNlfFSyTgPMhfOqZxSlRlS8RKFWVR3Khmn0kbl\nKkV7ISA2NrYGjgNuIwf9h8pEqlg+ipNkaWnp1KlT69Sp88ILL7jfXzhT6f2gSrkp3k24fCy4\nS+XMq2ScShsuRP0KOejPvPlKKXSnMq+qXNgwfF6jcgGpy4s2Oo5piFutUVF+fn5ubm5ycrL2\nobF2zZo1Cw8PL1fA8IKoqKhyWz755BMRufnmmyttv2HDhl27di1evDgxMbHSBlar9ccff1yz\nZs2LL76YlpY2fvx4bfu+fftEJDk5+bHHHlu7du3PP/9cv379O+64469//Wtgv5vba6oaGpUh\ntr/TsCoRERGFhYVWqzUk5P+mQS1Njx49Ws2em9aDDz64fv36efPmFRcX9+3b12q1fvLJJy+9\n9FLPnj3LvU6tqaq4FPfjcpThHeSgv3FeGorjpZhx7mYuXHJ5SlVmSMXhYxatUVVlnEoblasU\n7YWAU6dOjR49etu2bUVFRS1btpw8efLcuXMjIiJq/PDggBz0Ny4nUsXyUZwkFy9evGfPnk2b\nNiUkJOhzAPifiveDiuXm7l1JpY8FD6iceZWMU7xb50LUT5CD/s9rr5RCdyrzqrv3BQxfjVK5\ngNTlRRtH1RxT/oKwui5evCiVvfPCYrHUqVNH+yl8aNOmTVu2bBk5cmSlnxNSVla2aNGihISE\n2bNnV/rrY8eODQ0NbdWq1auvvrps2bIdO3bYi/Onn34KCwubMWPGypUrBw0adM8994SFhT3/\n/PMDBgwoKiqqwUMyB5dDY+d8iKvSrVs3q9Wq/Y2F3TvvvCP/S1Z4oH79+nv27OnTp8/999/f\nqVOnLl26PPTQQ/fee29GRkZYWFi5xk6Ky639wOfIQWNRHC/PMs6zCRlOVDylKjMklyg+5yTj\nVNqoXKVo/zFnzpyDBw8OGzasd+/eP/744yOPPDJkyJDi4uIaP0I4IAf9XMWJVMfy2b9//6JF\niyZMmDBmzBj9u25uld4PKpabu3cT6veecE7lzKtknGd361yI+go5aDg190opdKcyr7p1YcPw\n+T93J9Xqjyl/QVhd2usslV5lhoeHW63Wcm96gjetX78+PT09OTl5zZo1VTU4dOjQ4sWLq/pc\n0LS0tKtXr54+fXr//v3PPfdcXFzc3Xffrf3oypUrxcXFJ06cOHbs2P9j777jo6jzx49/tqVX\nCC2Y0DsqoSMcEJqhCIeIYEAQ5AecgmfBE0XlRFAR5PSEUxEhlBNQkKp0QgvSew9IL6Gm1y2/\nP+a+c3spm9nNbjaTfT0fPnx8dvYzn/1shve8d+Yz8xlp9aysrL59+27dunXOnDkTJkxw0Zfy\nEMVuGrma7U1clA8++CA+Pn7MmDEmk6lbt24ZGRlz585dsmSJECIvL69EXfdgaWlpQ4cO3bRp\n05AhQ55++um8vLwNGzbMmTMnKSlpyZIl3t7e1pVtBJdd7cDtyIPqonB7OZDjHN4hoyiF/kmV\n7CH5ieJ2NnKckjpKfqU0bNiwd+/ezzzzzOjRo6VnV1y9erVXr167d+/+6quv3n777VL8up6O\nPFiWFbojdVb45OXlDR8+PCQkZPbs2S7pvWcr9HhQYbjZezSh8NgTxVLyl1eS4xw4WueHqBuR\nB9XFpWdK4XRK9qt2/bBh85V99u5UnbBNLWXVuvsPRPweh/9LMxqL/YiKFSsKIYwKatpw5coV\nIUT79u0LvlW5cmWDwVCSxlES06ZN02g0UVFRSUlJRdVp3ry5j49PcnJysa0lJiY2btxYCPHL\nL79IS6pXry6E2LBhg3W1AwcOCCHatm1bws5DyaZRsomlp7PGx8cXfOvDDz+Un+MqhKhYsaJ0\niWKrVq1K3n/P9NprrwkhvvjiC+uF77zzjhBi+vTpRa1VMLjsbcfGVlY18iBKqNDQULi97M1x\nSnbIsEtRf1Ile0h7N1953YuWBQVznMI6jv1K2bp1qxAiKirKmd/BfciDKCG7cpON8ClqJzl5\n8mQhxIoVK+QlY8aMEUIcPXq0ZB2HxVLE8aDCcLP3aEL5aQHYpvAvryTH2ZUHy+sPUfIgnM7V\nZ0rhdI6dZ7MoOC5g87makqPskpy0KcjhbVp2BwhLgVMSYWpqqhCiYcOG+ZYbjUaDwVC1atWS\nNA7H5OTkxMbGCiH69u2blpZWVDXpCT3PP/+8wmaPHTsmhOjQoYP0UnoY7KlTp6zrZGVlaTSa\nKlWqONx5WBRsGoWb2FLc7vjMmTMzZ86cNGlSXFxcSkrKiRMnhBD9+/cvYf89VlhYmLe3d15e\nnvXCa9euFXtCM19w2dsOp7YdRh4s3woNDYXbS3mOU75DhkK2/6RK9pD2/kRhL+pS+XKc8joO\n/ErJzMyUZp5xTtc9AHmwvHIgN9kIn0J3kkePHjUYDEOHDrVeyAChsxR1PKgw3Ow6mrD3tABs\nUP6XV5LjlNThh2gJkQc9R+mcKYXTOXyeTclxAZvPpRweICzJTtWxbcot3iUVGBgYERFx5cqV\nnJwc66kqLl68mJeX98QTT7ixb57JaDQOGjRo9erVb7311ueff2590Vk+0hT2ffr0ybc8Kytr\n586dRqMx31u1a9cWQiQmJkovGzZseOrUqZs3bzZp0kSuI+2ymb65hIraNBLlm7hYjRo1atSo\nkfxSuruiWbNmDjfoydLT0+/fvx8eHp5v8pCwsDAhhPTzRUlwKWkHZQp5UF0Ubi+FOc6JO2RI\nbP9JFe4h+YniFkpynMIfmRIHfqVkZWVZLBae11vKyINljWO5yd7wWblyZV5e3pIlS6RpD61F\nRUUJIeLj4zt37mxPx/FfRR0PKgk3e48mbB97Qjm7/vJKclyxdfghWkaQB8u+UjtTCucqyfkx\n6x82bD51UbJTde42JX06Qbdu3bKzs6Vbd2Vr164VQnTv3t1NnfJco0ePXr169dSpU2fOnGn7\nB+KWLVuEEJ06dSr4Vr9+/QYNGpSZmWm98Ny5c+L/9sJCiK5duwoh1q9fb13n4MGDQgjrX7Fw\ngI1NI+zZxDacOnVq7ty5t2/ftl64ePFiIcQzzzzjWJsezs/Pz8/P786dO2lpadbLL126JISo\nXLmy9LLY4FLYDsoU8qC6KNleCnOcU3bIsGb7T6pwD8lPFHdR8gNSSZ1if6Xk5OTExMR06tTJ\nYrFY19m1a5cQgjNxpY88WKbY3pE6K3zat2//VgFPPvmkEGLYsGFvvfVWRESEM76Nh7JxPFhs\nuNl7NGH72BPKKfzLKzkSV3i0zg/RsoM8WMaV2plSOJeS/arCHzZsPnVRslN15ja1637DcsYp\nt9JbLJb9+/drNJqmTZs+ePBAWpKYmFixYsXAwMA7d+6UuJuww4oVK4QQgwcPLramyWTy8/ML\nCAgo9F3pR+fw4cOzs7OlJSkpKdIVoBMnTpSWJCcnV6hQwdfXV74R+NGjR61btxZCxMXFOeHL\neCrbm0b5JpYUdUP3nDlzhBAjR46Ul8yePVsI0aVLF4d6DYvFYhk4cKAQYsKECfISo9H4wgsv\nCCEmTZokLVESXErascbkeA4jD5ZvRYWGku2lJMfZu0NGsZT8SZXsIe39icJe1FmU5DgldZT8\nSunSpYsQ4v333zebzdKSP/74o27dukKIJUuWuPqblhvkwfJHyY7U3vBRvpNkilGnsH08qCTc\nlB9N2P4s2EvJX15JjlNShx+iTkEe9ASleaYUTqdkv6rkhw2br/Q5PMWoRdlO1YnbVGP53+Fl\njxIWFvbgwQOj0ajT6UrY1N/+9rcZM2ZUrFixa9euubm5W7ZsyczMXLBggbSZUWoef/zxU6dO\nderUqeBQeZ06daZPny6/vHHjRkRERKNGjc6cOVOwnStXrrRv3/7WrVvh4eEtW7Y0m82///77\ngwcPGjdunJCQEBISIlVbtWrVwIEDdTpd7969vb29d+7cefv27Z49e65fv57r1xxme9Mo2cQ7\nduyQjh+EEIcOHbp69WrHjh0rVaokhIiMjJw1a5YQIiMjo127didPnmzevHlUVNSFCxd2795d\nrVq1vXv31qxZ06VfsBy7evXqU089devWrT/96U/R0dFms3nDhg2HDx9+/PHH9+zZExQUJJQF\nl5J2lGxlFIs8WP4oDA0l26vYHKc850IhJX9SJXtIoWDzsRd1BSU5TkkdJb9SLl261KZNmwcP\nHtSvXz8qKio5OXnPnj0ZGRlDhgwpOOEhikIeLH+U7EiVhI9jO8mxY8d+9913R48e5ZkFJWH7\neFAoCDeFuVLJZ8EuSv7ySnKckjr8EHUK8qAnKOUzpXAuJftVJT9s2HylQ8kPSGedtHHmNrVr\nOLGccdaVMpL58+e3aNHC19c3MDAwOjp68+bNTmkWdpG2aaFatGhhXfPkyZPC5gNdk5KS3njj\njXr16vn4+Pj4+DRu3HjSpEmpqan5qiUkJPTs2TMkJMTb27tx48affvppTk6OS76bx7C9aZRs\n4gULFhRVp0mTJnJTd+7cGTt2bEREhJeXV/Xq1UePHn379u3S+IblWlJS0ptvvlm/fn1vb29f\nX9+mTZv+/e9/z/cEbCXBVWw7CrcybCMPlj/KQ0PJ9rKd45TnXCik8E+qZE9rKW7zsRd1EYU5\nrtg6Sn6lXL58edSoUZGRkQaDISgoqH379nFxcfKFw1CCPFj+KNyRFhs+ju0kuYPQKYo9VLco\nCDeFuVLJZ8EuSv7ySnJcsXX4IeoU5EFPUPpnSuFcSvarSo4L2HylQMkPSCeetHHWNuUOQudc\nKQMAgOqQBwEAnow8CADwZORBAACzIAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgAAAAA\nAAAAAAB4EAYIAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggBAAAAAAAAAAAADwIA4QAAAAA\nAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAAAAAAHoQBQgAAAAAAAAAAAMCDMEAIAAAA\nAAAAAAAAeBAGCAEAAAAAAAAAAAAPwgAhAAAAAAAAAAAA4EH07u6A+7Vu3Vqj0bi7FwAAV9mz\nZ4+Pj4+7e1F2kQcBoHwjD9pGHgSA8o08aBt5EADKN9t5UGOxWEqzN2XK8ePH27Vrl5WV5cQ2\nK1euXLFixdu3bycnJzuxWZQOg8FQt27d7Ozsy5cvu7svcERkZKS/v/+VK1ecG9coHYGBgY89\n9lhycvLt27ed23JGRoafn59z2ywfyIPIhzyoduRBVSMPlj7yIPIhD6odeVDVyIOljzyIfMiD\nakceVDV35UGPvoPwySefPH36tHOHSJcsWbJ27drp06d369bNic2idNy9e3fcuHFNmjTZunWr\nu/sCR0ybNu348eOrV6+uW7euu/sCu+3fv/+LL77o3bv3X/7yF+e27Ovr69wGyw3yIPIhD6od\neVDVyIOljzyIfMiDakceVDXyYOkjDyIf8qDakQdVzV150KMHCIUQtWrVcm6DISEhQoiwsLDa\ntWs7t2WUAm9vb+n/bD6VkvZ31atXZwuq0ZUrV4QQgYGBbL7SRB6ENfKg2pEHVY086BbkQVgj\nD6odeVDVyINuQR6ENfKg2pEHVc1deVBbmh8GAAAAAAAAAAAAwL0YIAQAAAAAAAAAAAA8iMa5\nM00jNTU1LS0tJCTE39/f3X2B3YxGY1JSksFgqFy5srv7Akfcv38/JyenUqVKXl5e7u4L7JaV\nlfXw4UM/P7/Q0FB39wWOIw+qGnlQ7ciDqkYeLB/Ig6pGHlQ78qCqkQfLB/KgqpEH1Y48qGru\nyoMMEAIAAAAAAAAAAAAehClGAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggdJrk5OTXX3+9\nZs2aXl5e4eHho0aNun37trs7BUXi4uI0hZk6daq7u4Yi5eXlvfvuuzqdrmXLlgXfJR7LPhtb\nkJBUKeJOvQg6NSIPqh15sPwh7tSLoFMj8qDakQfLH+JOvQg6NSIPql3ZyYN6VzTqgXJzc7t2\n7XrkyJEBAwY0b9780qVLixYt2r59++HDh3m6ctmXnJwshHjhhRciIyOtl7dv395NPUIxzp49\nO3To0MTExELfJR7LPttbkJBUI+JO1Qg61SEPqh15sPwh7lSNoFMd8qDakQfLH+JO1Qg61SEP\nql3ZyoMWOMOsWbOEENOnT5eXLF++XAjx1ltvubFXUGjy5MlCiIMHD7q7I1AkJSXF19e3ZcuW\niYmJ3t7eLVq0yFeBeCzjit2ChKQaEXeqRtCpC3lQ7ciD5RJxp2oEnbqQB9WOPFguEXeqRtCp\nC3lQ7cpaHmSKUedYtGhRYGDgX//6V3nJ888/X7du3cWLF1ssFjd2DEpIw/IhISHu7ggUMRqN\nr7zyyt69e+vWrVtoBeKxjCt2CxKSakTcqRpBpy7kQbUjD5ZLxJ2qEXTqQh5UO/JguUTcqRpB\npy7kQbUra3mQAUInyM7OPnnyZOvWrb29va2Xd+jQ4e7du5cvX3ZXx6CQHHUmk+nGjRv37993\nd49gS4UKFWbOnGkwGAp9l3gs+2xvQUFIqhBxp3YEnbqQB9WOPFj+EHdqR9CpC3lQ7ciD5Q9x\np3YEnbqQB9WurOVBBgid4Pr16yaTKSIiIt/yGjVqCCH++OMPd3QKdkhJSRFCfPnll5UqVYqI\niKhUqVKDBg1+/PFHd/cLjiAeywFCUnWIO7Uj6MoT4rEcICRVh7hTO4KuPCEeywFCUnWIO7Uj\n6MoT4rEcKOWQ1LuoXY+SlpYmhPD398+3PCAgQH4XZZk0LL906dK//e1v1atXP3v27Jw5c4YM\nGZKWljZmzBh39w72IR7LAUJSdYg7tSPoyhPisRwgJFWHuFM7gq48IR7LAUJSdYg7tSPoyhPi\nsRwo5ZBkgNBpNBpNviXSrL4Fl6Os+eCDD8aNGxcTEyPvPYcOHdq8efP33ntvxIgRXl5e7u0e\nHEA8qhohqVLEnXoRdOUP8ahqhKRKEXfqRdCVP8SjqhGSKkXcqRdBV/4Qj6pWyiHJFKNOEBQU\nJAobgU9NTRVCBAYGuqFPsEeXLl0GDBhgfW1F48aNe/Xq9fDhw+PHj7uxY3AA8VgOEJKqQ9yp\nHUFXnhCP5QAhqTrEndoRdOUJ8VgOEJKqQ9ypHUFXnhCP5UAphyQDhE4QGRmp1+uvXr2ab/ml\nS5eEEPXq1XNHp1BSlStXFkKkp6e7uyOwD/FYXhGSZRlxVy4RdCpFPJZXhGRZRtyVSwSdShGP\n5RUhWZYRd+USQadSxGN55bqQZIDQCby8vFq0aHHgwIHMzEx5odls3rlzZ0RERGRkpBv7hmKl\np6d/8803S5cuzbf89OnT4v+e4AoVIR7VjpBUI+JO1Qi6coZ4VDtCUo2IO1Uj6MoZ4lHtCEk1\nIu5UjaArZ4hHtSv9kGSA0DlefvnlzMzMGTNmyEvmzp1769atUaNGubFXUMLPz2/atGmjR48+\nd+6cvHDNmjV79uyJioqqXbu2G/sGxxCPqkZIqhRxp14EXflDPKoaIalSxJ16EXTlD/GoaoSk\nShF36kXQlT/Eo6qVfkhqpAdUooRMJlN0dPTu3bv79evXvHnzs2fPLl++vGnTpvv27fPz83N3\n71CMtWvX/vnPf/bz8xs8eHB4ePipU6dWr14dGBgYHx/fvHlzd/cO+e3cuXPDhg1SeebMmZUq\nVRo+fLj08u23365YsSLxWMYVuwUJSTUi7lSNoFMX8qDakQfLJeJO1Qg6dSEPqh15sFwi7lSN\noFMX8qDalbk8aIGTpKWlTZgwoUaNGgaDoXr16q+++uqDBw/c3SkotXfv3p49e4aEhOj1+vDw\n8GHDhiUmJrq7Uyjcp59+WtQOTd5qxGNZpmQLEpJqRNypGkGnIuRBtSMPllfEnaoRdCpCHlQ7\n8mB5RdypGkGnIuRBtStreZA7CAEAAAAAAAAAAAAPwjMIAQAAAAAAAAAAAA/CACEAAAAAAAAA\nAADgQRggBAAAAAAAAAAAADwIA4QAAAAAAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAA\nAAAAHoQBQgAAAAAAAAAAAMCDMEAIAAAAAAAAAAAAeBAGCIHy5ssvv9RoNKNGjXJ3RwAAcAPy\nIADAk5EHAQCejDwI2IUBQkAdPvvsM40CMTEx7u4pAADORx4EAHgy8iAAwJORBwEX0bu7AwAU\nqVixYoMGDayXXLhwwWKx1KhRw8fHR14YERExfvz4sWPH6vVENwCg/CAPAgA8GXkQAODJyIOA\ni2gsFou7+wDAET4+Pjk5OQcPHmzZsqW7+wIAQGkjDwIAPBl5EADgyciDgFMwxSgAAAAAAAAA\nAADgQRggBMqbfA/j/frrrzUazeTJk+/fvz9y5Mhq1ar5+/u3aNFi/fr1QoiUlJRx48ZFRER4\ne3s3aNDg+++/z9daQkLCgAEDqlat6uXlVbVq1QEDBuzdu7e0vxIAAIqRBwEAnow8CADwZORB\nwC4MEALlnDQTd3Jycs+ePRMSEtq3bx8ZGXnkyJFnn3326NGjPXr0WLVqVfPmzZs2bXrhwoXR\no0evW7dOXnfu3LkdO3ZcvXp1kyZNhg8f3qhRo1WrVnXo0GH+/Pnu+0IAANiBPAgA8GTkQQCA\nJyMPArYxQAiUc9JTeRcvXtygQYPTp0+vWLHi1KlT3bp1y8vL69OnT2hoaGJi4po1aw4fPjxi\nxAghxMKFC6UVz58/P27cOL1ev2nTpm3btn3//ffx8fG//fabXq9/9dVXr1275s5vBQCAMuRB\nAIAnIw8CADwZeRCwjQFCoJzTaDRCiKysrC+//FJKijqd7sUXXxRC3L59+6uvvvLz85NqvvTS\nS0KIs2fPSi/nzJmTl5c3evTobt26ya3FxMQMHz48Ozt7wYIFpfs9AABwBHkQAODJyIMAAE9G\nHgRsY4AQ8AhPPPFEWFiY/LJ69epCiKpVqzZo0CDfwrS0NOnl9u3bhRB9+vTJ11TPnj2FELt2\n7XJxlwEAcBryIADAk5EHAQCejDwIFEXv7g4AKA2PPfaY9UudTieECA8PL7jQbDZLL69cuSKE\nmDNnztKlS62r3b9/Xwjxxx9/uLC7AAA4FXkQAODJyIMAAE9GHgSKwgAh4BEMBkPBhdKd9YWy\nWCwZGRlCCOtn81qTL6gBAKDsIw8CADwZeRAA4MnIg0BRmGIUQCE0Go2/v78Q4vDhw5bCSNfL\nAABQLpEHAQCejDwIAPBk5EF4DgYIARSudu3aQoirV6+6uyMAALgBeRAA4MnIgwAAT0YehIdg\ngBBA4aKjo4UQP/30U77l58+f37BhQ1ZWljs6BQBAKSEPAgA8GXkQAODJyIPwEAwQAijc2LFj\nDQbDihUrli1bJi+8e/fu4MGDe/XqtXLlSjf2DQAAVyMPAgA8GXkQAODJyIPwEAwQAihco0aN\nvv76a5PJFBsb26lTp5EjRz7zzDO1atU6duzYkCFDYmNj3d1BAABciDwIAPBk5EEAgCcjD8JD\n6N3dAQBl15gxYx5//PEvvvgiISFh7969fn5+UVFRL7300siRI7VaLi8AAJRz5EEAgCcjDwIA\nPBl5EJ5AY7FY3N0HAAAAAAAAAAAAAKWEsW4AAAAAAAAAAADAgzBACAAAAAAAAAAAAHgQBggB\nAAAAAAAAAAAAD8IAIQAAADu/kEIAACAASURBVAAAAAAAAOBBGCAEAAAAAAAAAAAAPAgDhAAA\nAAAAAAAAAIAHYYAQAAAAAAAAAAAA8CAMEAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgA\nAAAAAAAAAAB4EAYIAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggBAAAAAAAAAAAADwIA4QA\nAAAAAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAAAAAAHoQBQgAAAAAAAAAAAMCDMEAI\nAAAAAAAAAAAAeBAGCAEAAAAAAAAAAAAPwgAhAAAAAAAAAAAA4EEYIAQAAAAAAAAAAAA8CAOE\nAAAAAAAAAAAAgAdhgBAAAAAAAAAAAADwIAwQAgAAAAAAAAAAAB6EAULAcbNnz9ZYmTt3rmPt\nWCyWQ4cOffzxx88++2yTJk3CwsJ8fHwMBkNISEhERESnTp3Gjh37888/p6amOtD4jRs35syZ\nExsb26xZs4oVK3p7e3t7e4eFhTVs2PDZZ5/95JNPTp48WdS6L7/8svztZsyY4di3e/bZZ+VG\nvvvuO3n5uHHjNEXz9/evXr1606ZN+/TpM2XKlE2bNmVlZTnWAQCAq+Xbpffs2dPeFiwWS+3a\nta0bWb9+vfLVnZWRZSXJnjLbmU6JU6dOlfCLAACc5ebNm998883QoUObN29eqVIlHx8fvV4f\nFBRUr169mJiYDz/8cO/evRaLRUlTyhOEn59feHh4q1atXnnllVWrVuXl5dlu+dy5c/K63bp1\nK7YnzjoUtf5Gq1evVvJH+Pe//63T6eSvGR8fX1TN9PT0RYsWvfDCCw0bNgwJCTEYDKGhoXXr\n1h0wYMBXX311//59JR8HACihMnv20jYb6fvpp59+//33d+/ebTablTTluvTNkSPcyQLAUU2b\nNrWOphYtWjjQyOrVq5944gkl0RoQEPDuu+9mZmYqbPn06dMDBw7UaDTFttyiRYtVq1YVbOHA\ngQNynQYNGjjw7e7evWswGOT+p6amym+9+uqr9uyrREhIyGuvvXb27FkHugEAcKl8u3SdTnfz\n5k27Wti1a1e+3f66deuUr+6UjCwpefaU2ZvpCjp58qTDXwQA4CynTp1SmBrq16+/ZMkSk8lk\nu0GHE0SVKlV++OEHGy2fPXtWrty1a1fb3XDioaj1N7KdHCW//PKLXq+X6nt7e2/atKnQamaz\n+auvvgoNDbXRNx8fn4kTJ+bk5BT7oQAAh5Xls5dFOXHixIABA5S0XKdOnbi4OKPRaLtB16Vv\njhzhRgwQAg5KSEiQdsERERE+Pj5S+ciRI8pbMJvNr732mr17/KioqKSkJNstG43GN954Q6u1\n7xbhAQMGPHz4MF9TUVFRcoXdu3fb+1eaOXOmvPro0aOt33Is+en1+g8//DAvL8/engAAXKfg\nLv2zzz6zq4VRo0bla0H5AGHJM7LEidlTwmEeAKhdbm7uK6+8ouTcorUmTZrYvq6xhAkiNja2\nqDFIhQOETj8UtWuAcOPGjV5eXlJlg8FQVMbPy8sbNGiQwr517tw5Ozvb9ucCABygirOX+eTk\n5IwePdre9N2gQYNTp07ZaNZ16ZsjR7iRvoT/+ACP9e2330qF55577tKlS2vXrhVCzJ0795tv\nvlHYwtSpU//5z3/KL1u2bBkbG9u2bdu6desGBQVptdq0tLQ//vhj3759ixcvlm/mO3r06MCB\nA+Pj44vKoKmpqc8///ymTZusFzZq1Kh3794NGjSoXLmyj4/Po0ePzpw5s2PHDmnMT6qzcuXK\nS5cubd26tWLFivKKY8aMGTt2rFSeN29ehw4dFH47yfz5862bKqrarFmzoqOjrZekp6c/evTo\nxo0b+/bt27Vr15UrV6TlRqNxypQpv/3226ZNmypUqGBXZwAArubr6yvNCL1w4cJ33nlH4VrZ\n2dk///yzEMLb2zsnJ8feDy15RhbOzp4Fffzxx/bmUCFErVq17F0FAOAsDx48GDBgwM6dO60X\nNm3aNCYmpn79+lJquHfv3q1bt7Zv375jxw45hZ0+fbpt27bLli2LiYkp9lMKHgrJLBZLWlra\nlStXEhISVqxY8fDhQ2n5jz/+WK1aNetrMe3lokNRJXbv3t2/f//c3FwhhF6vX7ZsWZ8+fQqt\nOWnSpOXLl0tlrVY7aNCgQYMGNW3a1N/fPyUl5cSJEwsXLvz111+lCjt27Jg4ceI//vEPhzsG\nACiUKs5eWktKSurfv//vv/9uvVBJ+j5//ny7du2WLl3au3fvYv8srkvfHDmitLl1eBJQq4cP\nH8r3KCQkJCxatEgqBwUFpaenK2nh+vXrOp1OWstgMMyfP992/YULF8pzdQoh4uLiCq1mNpt7\n9eplHeMdO3Y8cOBAUc1evHhx4MCB1vWjo6Otr2dJS0sLDAyU3vLz80tJSVHy7SR79+6Vm23V\nqlW+d5VfZGo2mzdt2tSlSxfrfrZt2zYjI0N5ZwAAriPv0tu0aRMUFCSV9+/fr3D1ZcuWSatY\nHwgpvIOw5BnZ4oLsKbF3vjUAQNmRl5fXvn176119z549T5w4UVT95OTkiRMnyilJCOHt7X3o\n0KFCKzuQIJKTk4cOHSqvpdfrT58+XbCakjsIXXEoqvAbHThwQD661Gq1P/74Y1E1L1y4IJ9T\nDgoK2rFjR6HV5IuEhBBeXl737t2z/V0AAHZRy9lLWU5OTuvWra1r9unTx3b6fu+99/z8/Kyz\nSVFHsq5L3xw5wo0cv+wL8GQLFy7Mzs4WQkRERLRr165v377e3t5CiNTUVPkix2JbMJlMUvmd\nd94ZMWKE7frDhg2bMWOG/LKo600+++yz3377TX754Ycf7ty5s1WrVkU1W6dOnZ9++unbb7+V\n77uPj4+3vjIoICAgNjZWKmdmZi5dutR2P6398MMPctnG7YPF0mg0PXr02Lp169dffy3PRbNv\n375i/2gAgFJmsVh69OghlePi4hSuJY/qdezY0d5PLHlGFi7IngAAtfvb3/4mT2Gt1WrnzJnz\n22+/Pf7440XVDw4O/vTTT/fv31+tWjVpSU5OzsCBA5OTk53Sn+Dg4EWLFsmnU41Go/VkLXZx\n0aFosU6ePBkTE5OWliaE0Gg08+fPf+GFF4qq/O2335rNZqn8z3/+s1OnToVWGzNmTP/+/aVy\nbm7uli1bHOsbAKBQajl7KXv99dfluxh1Ot3333+/bt062+l72rRpBw4ceOyxx6Qlubm5AwcO\nfPDgQZFf0h5OTN+AizBACDhi7ty5UmHw4MEajSY4OLhv37753rLt1KlTcvmll15Sssq4ceMi\nIyM1Gk3NmjVr166dkpKSr8KtW7f+/ve/yy8nT5780UcfKWl5zJgxU6dOlV9+8sknGRkZ1u/K\nZesxP9syMjLkM7NBQUGDBw9WuGJRNBrNuHHjFixYIP8a+Omnn/bs2VPCZgEATpSdnd2vXz+p\nvGzZMiXzhSYlJW3evFkIodFounbtau8nljwjuyh7AgDU69SpU19++aX8cu7cua+88oqSFZ94\n4ondu3eHhIRILy9fvvzxxx87q1cajcY6YeWblk05VxyKFisxMbF79+7SNGsajebbb78dPny4\njfq7du2SCiEhIUOGDLFR8/nnn5fLFy9etLdjAAAbVHT2Ughx5MgR68dMxMXFFXzUfaGaNGmy\nZ88e+UlG165dmzJlipIVlXBW+gZchAFCwG47d+6UZ26Rj1Xkw5v9+/efOHGi2EaSkpLkcpUq\nVZR8rk6n27FjR0pKyuXLl9esWRMcHJyvwpdffik9y0EI0aZNmw8++EBJs5KJEyc2a9YsNDR0\n2LBh8+bNs54QICoqSr49/+DBg0q+nRBi+fLl6enpUvnFF1/09/dX3hkbYmNj33jjDfnlhAkT\nnNIsAMApsrOze/furdfrhRCPHj2SHgdo248//mg0GoUQLVu2tP0Yv4KckpFdlD0BAOo1ffp0\ny/8962jAgAEvv/yy8nXr1KkzZ84c+eXcuXMfPXrkrI61atVKulFeCHH9+nXHGnHFoaht165d\n69q1q/y5X3311ejRo22v8ssvvxw5cmTbtm2//PKL9LuiKOHh4XLZgScZAwBsUNHZSyHEZ599\nJpdfeOEF67k9i1WjRo3vvvtOfjlv3jxn3UQonJS+ARdhgBCwm5wwoqKinnzySakcExMjTybz\n/fffF9uIdYK8cOGCwo+uVauW/MyGfHJzc60z2bRp0+RZwpXQarUbNmy4e/fuwoUL+/btK8/k\nKXHgJkJnzS9a0KRJk+S/3v79+w8dOuTExgEAJWE0GkNDQ+WnxiqZZVSeX3Tw4MHy9DUKlTwj\nuzR7AgDUKCkpSX44rkajmT59ur0txMbGNm/eXCqnp6crn4VFCflZv9JcnQ5w+qGobXfu3Ona\ntat8PnTGjBnjx48vdq2IiIioqKguXbpER0fbrnnr1i25HBkZ6UAPAQBFUdHZy1u3bq1cuVKu\n9sknnyhvVvLcc8/JN0hkZmYqnJBGoZKnb8BFGCAE7HP//v1ffvlFKltPva3T6V588UWpvGTJ\nkqysLNvttGzZUi5/+OGH9p4SLejAgQOpqalSuWHDhg7M0la1atWirs0cPHiw/JtgyZIlxV6Y\nee7cub1790rldu3a2Zjs2wEVKlSwntZg9erVTmwcAFAS0uOC5IS4adOmO3fu2Kh/6tSpY8eO\nCSF0Ot3gwYPl2zWUcEpGdmn2BACoUXx8vHRruxCiR48ederUcaCRcePGyWUnTiaWk5Mj348Y\nGhrqWCNOPxS14cGDB926dZNn/vz444+dPgeMfKWRVqvt3r27cxsHAA+norOX27Ztkx9e26tX\nr5o1azrQPetLWKQHYTiFU9I34CIMEAL2WbBggTQ85uXlFRsba/3WyJEjpUJycvJPP/1ku52h\nQ4fKN8L/+uuvvXr1unTpUkk6tnPnTrksP/zWWfz8/OSTrQ8fPly1apXt+tYXyY4dO9a5nRFC\n9OjRQy4nJCQ4vX0AgGOkEb4BAwZIF0iaTKbFixfbqL9w4UKp0L179/DwcLsGCJ2SkV2aPQEA\narRjxw653KdPH8caeeaZZ+Ty3r178/LyStgrifXgpXzrvL2cfihalNTU1Keffvr06dPSy/ff\nf//99993Yvsmk+m9997bsGGD9HL48OG1atVyYvsAABWdvbRO3w633Lt3b41GI5X37dvnrJmr\nnZK+ARdhgBCwg8VikScr69u3b75HJTVo0KBdu3ZSudg5zWrUqDF58mT55ebNmxs0aPDMM88s\nWLDg2rVrDvTtyJEjclnuhhNZTxM6b948GzWNRqN8Ojg0NHTgwIFO70ynTp3k8rlz55zePgCg\nJHx9fQcPHiyV5SHAgkwm048//iiVFT7xXuasjOzq7AkAUJ2DBw/KZYdTQ1hYWIMGDaRyZmam\nPEhWEnl5edaHkA4PXjr9ULRQmZmZvXv3Pnz4sPRywoQJH3/8ccmbNZlMSUlJx44dmz17drNm\nzT799FNpeXR09D//+c+Stw8AsKais5dOaTk0NLRx48ZSOTs7u0ylb8BFGCAE7LBt27bExESp\nXOipTHmKs4SEhDNnzthubdKkSbNmzZLn2jaZTOvXrx85cmSNGjUiIyNjY2P/9a9/HT9+XL5B\n3rb79+/L5Xr16ilZxS5NmzZ96qmnpPL27dsvX75cVM3169fLDzEeNmyYr6+v0zvj7+8vz2Z+\n584dZ12QCwBwFjkhnj59uqiHxW7dulV6blBISEi/fv3sat9ZGdnV2VPWv39/jT0CAgJc1xkA\ngA337t2Ty/IgnwMaNWokl+/evVuiPgnx6NGj55577sCBA9LLihUr2nttjTXnHooWlJOT8+c/\n/3nPnj3Sy6effnrGjBkO91YyceJEjUaj1+urVq0aFRU1fvz4U6dOCSGqVKkyY8aMzZs3kzoB\nwBXUcvbSOn2XpOX69esX2qZjHEjfHDmilDFACNhBfo5utWrVYmJiClYYNGiQn5+fVFbyMNs3\n3ngjISHh6aefzrf8+vXrS5cuffXVV5s1axYaGvrcc8/FxcU9fPjQRlMPHjyQyy6az1qeLNRi\nscyfP7+oatbzi1rfd+hcYWFhcjkjI8NFnwIAcEzbtm3lE6NxcXGF1pEfGjR48GAfHx+72ndW\nRi6F7AkAUBc5Nej1+pKcdLNOK9bpJp+bN2+eK9rBgwdXrlw5fvz4WrVqrV27VlpFo9HMmTOn\nhGnLiYei+RiNxkGDBm3ZskVesm3btm3btpWkt4WqXLnyRx99dP78+QkTJvA8YABwHVWcvZRb\nNhgM/v7+DrdToUKFgm0W5K70DTgdA4SAUklJSWvWrJHKL774onztjLWgoKBnn31WKi9evFjJ\nXNVt2rTZuHHj0aNHJ06cWOgFqqmpqStXrhwxYkRERMQrr7xS1GTf1oNk8ilR5xo4cKCcJuPi\n4gq9OOjWrVvyQyA6duxofdmsc1mfSpYn8gYAlB3ypZFLly7Nzc3N925aWtrq1avz1VTIiRm5\nFLInAEBFTCZTZmamVC7J6UUhhPQ4XklqampR1caNG9eoaK1bt37uuedmz56dkpIi1TcYDP/6\n178GDRpUkr5JnHUoms8777wjp2mJ0Wh87rnnzp8/X/I+W7t79+7kyZMfe+yxUaNGSXMSAABc\npIyfvTSZTNnZ2U5p1vraoPT09KKquTF9A87FNVaAUvPnz5ensrRxKnPEiBFLliwRQjx8+HDF\nihVDhgxR0nizZs2kJyjcvHlzz549e/fuTUhIOH78uPXQV2Zm5jfffDN//vyZM2eOGzcuXwvB\nwcFyOTk52foGO2fx8fEZNmzYl19+KYS4cePGxo0bCz71d+HChSaTSSq77vZB8b9X8XBKFwDK\noGHDhk2aNMloND58+HDdunUDBgywfnfFihXSGdiGDRu2adPGrpadmJFLIXtKpk+f3rFjR+X1\nCx31BAC4mk6n8/HxkU4ypqenWywWjUbjWFNpaWly2XqwsCQ6d+78+eeft2rVyimtSUp+KJrP\nH3/8IYQwGAxffPHF1atXv/jiCyFEcnJynz599u3bl++xwcqNHj06JibGbDY/fPjw7t27x44d\nW7t2bVJSUnp6+g8//LBixYpVq1ZFR0c71jgAQIkye/ZSp9MFBARI43lpaWklSd/ykJ5w3j2O\ndqVvjhxRyhggBBQxm83ff/+9VG7Tpo2NG+Oio6Nr1qx55coVIcTcuXMVDhDKqlevPmjQIOmK\nkoyMjN9//33Lli1r1649d+6cVCEnJ2f8+PEWi2X8+PHWK1rfAn///v26deva9bkKjRkzRhog\nFEL88MMPBQcI5alHw8LC8p0Ldq5Hjx5JBX9/fwYIAaAMqlq1akxMzPr164UQcXFx+ZKCPL+o\nvbcPOjcjl072FELUr1+/bdu2LmocAOBEFSpUkG5HM5lMqamp1qcy7SIfsAhnnGH86KOPnn/+\n+YYNG5awHRscPhQt6LHHHvv555/btm1rNptPnz69ceNGIcTFixefffbZLVu2eHl5OdC92rVr\n165d23rJ7NmzZ82a9cEHHxiNxpSUlL59+x4+fNj62VEAABcpg2cvK1SoIA0Qms3m5ORkhzOv\ndfp2+KIWmQPpmyNHlDKmGAUU2bx58+XLl6Xy/v37bTwbVqvVSucihRC7du0qyTwq/v7+3bp1\nmz59+tmzZ7dt2/b444/Lb02YMOHatWvWlcPDw+XysWPHHP5Q2xo2bNipUyepvG7durt371q/\nu3PnzosXL0rll156ydvb20XdOHPmjHzvSM2aNV30KQCAEhoxYoRU2LhxY1JSkrz82rVrO3fu\nFELodLoXX3zRrjadm5FLJ3sCAFSkatWqcvns2bMOt2Odd6pXr15UtVWrVlmK8Pnnn8vVEhMT\nXTo6mI9dh6L5REdHHzlyRDq5qdVqly5dKg/a7dq1y4nTzHh5eU2cOFF+0nB6evrEiROd1TgA\nQKEycvbSuuWTJ0863M7p06flcrVq1YqqVjbTN+AABggBRb777jvHVpTvciihLl267Nu3T76E\nJDc3Vz4QkljPz7Z7926nfGih5CO6vLw8+f4PyQ8//CAVNBrN6NGjXdeH+Ph4udyiRQvXfRAA\noCSeeeYZadIYo9H473//W16+ePFii8UihOjevbv1gZwSzs3IpZY9AQBqYT0D2L59+xxrJD09\nXb6LIiAgoHHjxg408sYbbzzxxBNSecmSJb/99ptjnSmhYg9F83nttdcqVaokvwwJCVm7dq18\nI2ZcXNz06dOd2L0RI0ZERUVJ5bVr11pPDQcAKGVuPHtpfdfd77//7lgjjx49ku98qFChgmNj\ne2UkfQMKMUAIFO/WrVvSDGkOWLhwYW5urlO64efnN2PGDPllvjzaoUMHufzrr79aP/FCObPZ\nXGydAQMGyMd78oigECIlJWXFihVSOTo6ul69eg50QKFVq1bJ5a5du7rugwAAJWEwGOSJPePi\n4uTlixcvlgr2zi/q9IxcatkTAKAW7dq1k8tr1651rJFNmzbJ2aFNmzaOPR9Ir9d/99138lOU\nxowZk5qa6lh/Ssj2oWixGjRosHTpUq32Pyeg3n33XesDupLr3LmzVDCZTEeOHHFiywAAe7nr\n7OWf/vQnuSyfn7TXmjVr5HLnzp0de5Bh2UnfgBIMEALFmzdvnvy43ZUrV15XQH5Q3/379514\n8NOqVSs5wVjP1SaEePLJJx977DGpnJKSIj8LULkbN27Url178uTJ1tNtF+Tl5SWfzz137px8\nVc7y5cuzsrKk8tixY+39dOWOHDmybds2qezr69u3b1/XfRYAoIRGjhwpFU6ePHn8+HEhxIED\nB6RZ10JCQvr162dXa07PyKWWPQEAatGjRw+9Xi+V4+Pjz5w540Aj1ldSPvfccw53pm3btvLU\nLDdu3Hj77bcdbqqEbByKKtGzZ0/5xkGLxTJ06FDbI3np6emXLl1KSEiwPZ2pRJquQEI6BgC3\nc8vZyy5duvj5+UnlQ4cOOTYHwLx58+Ry7969HWhBUnbSN1AsBgiBYpjNZjk9REZG9u/f/zEF\nRowY4evrK62V7256o9G4cOHC8ePHt2vXrnXr1nZ1xmQySXOyCSHktCfRarXjxo2TX06ZMuXW\nrVt2NT569OirV69OmTKlRo0a0qOhbNSUM/3PP/8sFZYtWyYVKleu/Oc//9muj1bObDZbp9Ux\nY8aEhIS46LMAACX3xBNPNG/eXCr/8ssvwipfDB482MfHR3lTTs/IonSzJwBAFapVq2Z9OPPO\nO+/Y28LevXs3bdoklQMDA+Wb6R3z2WefValSRSp///331k9bsJeLDkUVmjBhgvzg4czMzL59\n+xaVc1evXh0YGFi3bt0OHTrMnj272Jbv378vl0NDQx3oGwAgH9WdvQwJCRkxYoT88o033jCZ\nTHa1vHr16oSEBKkcHh5edtI34FIMEALF+PXXX69fvy6VX3zxRYV3lwcFBclHlfHx8fIE1kII\nvV4/ZcqU2bNn79u37+DBgzt27FDeGTlRCSFq1qyZ793Ro0cHBgZK5YcPHw4dOjQnJ0dhyzNn\nztywYYNUDg4Otp3769at26VLF6n8888/WyyWpKSkXbt2SUtGjhxpMBgUfq69Jk+evH37dqns\n6+vrwOE6AKCUycdpv/76q7CaJtre+UWdnpElpZY9AQBq8de//lUur1+/3q7nymdkZLz88svy\n7Gfjxo2Ts4xjQkJCZs2aJZUtFsuoUaMyMzMda8p1h6IKzZ07V86VN2/e7Nu3b6HfRb60SAix\nevVq+SxzUfbs2SOXa9So4VjfAADW1Hj28o033pDnANi3b9/f//535X2+efPmX/7yF/nlm2++\n6e3trXz1gpyYvgGXYoAQKMZ3330nl4cNG6Z8RbmyxWKxvkVdCCFfOCmEGDVq1L1795Q0mJOT\n8/7778svn3nmmXwVQkNDv/76a/llfHx8TEyMkoe0f/rpp/JteRqNZu7cufLNFkWRJxG9cePG\nnj17Vq1aJV2Yo9Fo5JvonctsNr/zzjtTp06Vl0ybNq1q1aqu+CwAgBPFxsZKB1dHjx7dvXv3\nlStXhBANGza0fkC9Eq7IyKJ0sycAQBU6dOggT5EthPjLX/6yYMECJSsmJyd379793Llz0st6\n9ep9+OGHJe9PbGxs9+7dpfIff/wxadIkh5ty0aGoQj4+PqtWrapWrZr08vDhwy+++GLB8b/I\nyEh5jDAxMdH2H3/nzp0HDx6UyrVr165du7ZjfQMA5KO6s5d16tT5+OOP5ZdTp0599913i73K\nRAhx6dKlDh063LlzR3rZtm3b1157rdi1iuXE9A24kAVA0a5evSo/Sr1du3Z2rWs0GuUjnypV\nquTm5spvpaamWo9s1axZc8uWLbZbu3DhgvXjdiMiItLS0gqtme8W+KpVq/7www95eXmFVj5+\n/Hi3bt2s63/wwQdKvl1ubq58p/y4cePkGwqffvppJatbLJZXX31V/tBVq1bZrrxz58727dtb\n9zM2NlbhBwEAXE3epdeoUaPQCgMHDpQqREdHS4XPPvusYDX5BJ8QYt26ddZvuSgjy1yRPe3K\ndACAMiUlJaVWrVryblyj0QwbNuzWrVs2VlmxYoX1fRIBAQH79+8vtKYDCSIxMVGel1ur1e7d\nu7fQamfPnpVb7tq1a8EKLjoUtesb7d+/33qO8YkTJxass3jxYrmCj4/PmjVrCm3qyJEj1l/n\nk08+sf3RAADl1Hj20mw256vZpk2bhISEojqcmZk5depUf39/uX7FihWvXbtWaGXXpW+OHOFG\negGgaN9//708Oczw4cPtWlen0w0ZMmTmzJlCiKSkpDVr1shPpw8MDFyxYkXXrl2lm+ivXLnS\nvXv3Zs2a9evXr1mzZrVq1QoICNDr9RkZGTdv3jx9+vSmTZs2b94s98TLy2vevHkBAQGFfu78\n+fM1Gs2SJUukl3fu3Hn55ZcnTJjQq1evFi1aVK1aNSAgICUl5cyZM9u3b9+/f7/1um+++eaU\nKVOUfDuDwTBy5MhPCzI8LwAAIABJREFUP/1UCLF8+fKHDx9Ky8eMGWPXX0ly+fLlY8eO5Vv4\n6NGju3fvHjp0aPPmzSdOnLB+q3///gVvAQEAlFkjR46UnlkrPXpBp9NZX46qhIsysszV2fPU\nqVOOPTS3c+fODqwFACihoKCg+Pj4rl27Xrp0SQhhsVgWLVq0YsWKmJiYvn37Nm7cuEqVKt7e\n3nfv3r19+3Z8fPyaNWusB+d8fX3XrVvnxKmn69at+95770n3I5rN5pdffvno0aMOzH7m0kNR\nhVq3bj137lz5/v7PPvusYcOG+ZL7kCFD4uLitm3bJoTIzs7u169fz549Bw8e/OSTTwYHB2dm\nZp47d27NmjVLly7Ny8uTVqlbt+7rr79eko4BAKyp8eylRqNZvXr14MGD169fLy3Zv39/+/bt\n69evb52+7927d/v27R07dmzdutV65s/IyMj169dHRESU7C/3Xw6kb44cUdrcPUIJlF15eXnh\n4eFSpHh7ez969MjeFk6ePCnHWo8ePfK9Gx8f78AMmRUqVNi0aVOxH/3xxx/bdbjo7+8fFxdn\n17e7fPmyfDOHJDw8vKiLfQqyvjpGOZ1ON2XKFLPZbFdXAQAuVewdhCaTqXr16vLOPCYmptBq\nRd1B6OqMLHNu9nQs0+Vj7zcFADjRzZs3O3bsaO+uu1mzZsePH7fRrGM3CuTk5DRs2FBe8b33\n3itYp9g7CCVOPxR14Bu99dZb8ipeXl67du3KV+HRo0fKR1jDw8MvXryo5HMBAHZR49lLo9H4\n9ttvGwwGu/rcpUuXpKQkG826Ln1z5Ag34hmEQJHWrVt369YtqdyvXz8HLt9o2rRpVFSUVN6y\nZcvly5et3+3cufPJkycnTJhgfSe7DcHBwa+99lpiYmKPHj2Krfz++++fP39+6NChOp3Odk0f\nH5//9//+X2Jior03ZNSsWTNfT15++WX5acBOp9frX3rppXPnzn3wwQcajcZFnwIAcAWtVmv9\n1MCXXnrJrtVdnZFlpZA9AQAqEh4evmPHjgULFsiPV7Ctdu3as2bNOnDgwBNPPOH0znh5eX37\n7bfyy88///zo0aOONeXSQ1GFPv/885iYGKmcm5vbv39/6WZNWUhIyO7du9977z3bndRqtS+8\n8MKJEyfq1KnjrL4BAGRqPHup0+k+//zzM2fODBo0KN+9DYVq2bLlb7/9tm3btsqVKxdb2V5O\nTN+AKzDFKFCk7777Ti5bn9a0y/Dhw6X9vsVimTdv3rRp06zfDQsLmzFjxkcffbR169bt27ef\nPn364sWLycnJGRkZGo0mMDAwKCiodu3azZo1a9++fa9evey6rKZGjRqLFy+eMWPGqlWrdu/e\nffr06evXr6enp2s0muDg4KpVq7Zo0eJPf/rTgAEDgoODHft2Y8aM2bhxo1TWarWjRo1yrJ1C\neXt7V6pUqXLlyo8//nj37t27d+/uijwNACgdI0aMkCamDgkJ6devn13rlkJGlpVC9gQAqIhG\no3nppZdiY2PXrVu3cePGI0eOXL58OS0tzWg0ShV0Ol3Hjh3btm3buXPnbt26KTkR6bBOnToN\nHz584cKFQgij0Thy5MiDBw86do2mSw9FldBqtUuXLm3Tps2FCxeEEA8ePOjTp8/vv/9ufRmQ\nl5fXtGnT3nzzzWXLlu3YseP48eMPHjxITU318/OrUKFCkyZN2rdvHxsbW6NGDef2DQBgTaVn\nL+vWrbts2bJ//OMfq1ev3rNnz5kzZ65du5aWlmY2m/38/KpWrVq/fv22bdv27t1bvpbURZyY\nvgGn01gsFnf3AQAAAAAAQB3MZnN4eHhSUpIQQqvVXrt2zXombQAAAEAVmGIUAAAAAABAKa1W\n++yzz0pls9k8b9489/YHAAAAcAB3EAIAAAAAANjhyJEjLVq0kMqhoaFnz55V+JxCAAAAoIzg\nDkIAAAAAAAA7NG/ePDo6Wio/evTo+eefz8zMdG+XAAAAALswQAgAAAAAAGCfWbNm6fV6qbxr\n164WLVosXbo0KSnJaDTev3//5MmT7u0eAAAAYBtTjAIAAAAAANht9uzZ48ePL/StBg0anDt3\nrpT7AwAAACjHHYQAAAAAAAB2Gzdu3Lfffuvj4+PujgAAAAB24w5CAAAAAAAAB12/fn3OnDmb\nN2++evVqVlZWcHBwREREjx49pk6d6u6uAQAAAEVigBAAAAAAAAAAAADwIEwxCgAAAAAAAAAA\nAHgQBggBAAAAAAAAAAAAD8IAIQAAAAAAAAAAAOBBGCAEAAAAAAAAAAAAPAgDhAAAAAAAAAAA\nAIAHYYAQAAAAAAAAAAAA8CAMEAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgAAAAAAAAA\nAAB4EI8eINy5c+fWrVstFou7OwIAgBuQBwEAnow8CADwZORBAIDGk9NAWFjYgwcPjEajTqdz\nd18AACht5EEAgCcjDwIAPBl5EADg0XcQAgAAAAAAAAAAAJ6GAUIAAAAAAAAAAADAgzBACAAA\nAAAAAAAAAHgQBggBAAAAAAAAAAAAD8IAIQAAAAAAAAAAAOBBGCAEAAAAAAAAAAAAPAgDhAAA\nAAAAAAAAAIAHYYAQAAAAAAAAAAAA8CAMEAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgA\nAAAAAAAAAAB4EAYIAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggBAAAAAAAAAAAADwIA4QA\nAAAAAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAAAAAAHoQBQgAAAAAAAAAAAMCDMEAI\nAAAAAAAAAAAAeBAGCAEAAAAAAAAAAAAPwgAhAAAAAAAAAAAA4EHcNkCYl5f37rvv6nS6li1b\nKqmfnJz8+uuv16xZ08vLKzw8fNSoUbdv37arAgAAZQd5EADgyciDAABPRh4EAJQFerd86tmz\nZ4cOHZqYmKiwfm5ubteuXY8cOTJgwIDmzZtfunRp0aJF27dvP3z4cGhoqJIKAACUHeRBAIAn\nIw8CADwZeRAAUFZYSl1KSoqvr2/Lli0TExO9vb1btGhR7CqzZs0SQkyfPl1esnz5ciHEW2+9\npbBCoSpWrCiEMBqNjn4VAADsRh4EAHgy8iAAwJORBwEAZYfGYrGU7oikePjw4SeffPLpp58a\nDAYfH5+mTZseOnTI9ipRUVGXLl26d++et7e3vLBevXqpqal37tzRaDTFVii02bCwsAcPHhiN\nRp1O55SvBgBAsciDAABPRh4EAHgy8iAAoOxwwzMIK1SoMHPmTIPBoLB+dnb2yZMnW7dubZ3k\nhBAdOnS4e/fu5cuXi63gtK4DAFBi5EEAgCcjDwIAPBl5EABQdrjnGYR2uX79uslkioiIyLe8\nRo0aQog//vjDZDLZrlC7dm154bFjx0wmk1Q2Go2u6PDIKYtOpOsHd4sa3KbWY8E+rvgIAIDn\nUF8e/GjxtjTfZvXCuzUJ/1OtCs2qB7niUwAAHkJ9eXDKoosZmr8O6vzMk9W9dG64JBcAUJ6o\nLg8O//vCRWmVhBC+5ly9sPhZ8vRajUar0Wh1Qqvx1gg/b71GpxNanVanC/DRG3RajU6v+d+7\nGP29dAVzqJdO4++l9zVofQz/U9nPoPXW/6dyqJ9BCOFn0MlLhBD+Xnov3X9uowzy0eu0hd9S\nGeit12s1Go0I8TVYrVtITwCg3FDBAGFaWpoQwt/fP9/ygIAA6d1iK1gvjI6OTk5OdlFXk5NT\nT56+dCfTfNgUcnjT5bc3XX4yPGhUm4jouhUbVfHXFnFHPwAANqgvD2aZrln8rl1IXnshWQjR\noLJ/y8eCW0WGPBke+FTNUA6uAAB2UV8ezDTvNlbe/e+Tldac792o8tinIptXDzboOBgEADhC\nRXlQCJF57bIpJ0cqZ2m9hBBpwlsIISxCmISQhiZzpddGIYxC5LiuMy4S4msomNSDfPT+Xjpf\nq5FLg04T4K0XQnjrtH5eOiGEXqsJ9P7PqXidVgT5GP5b00vnY9D5GrRB3nqdVuNr0AV46+TK\n1itKI6D5FgKAw1SzHyk4X7b09ER5ebEVJJ07d05PT5fKO3fuzMvLc2InHz1I7rbiWq62cttH\nZ/aFNhZCHL+VOn7VaSFEiK/hqZohzz1RrVv9sIgQbisEANhHpXlQCHH+bsb5uxn/PnJLCBHq\na+hSr2K3emG9GlWKDPV14kcDAMo3VeTBh/eTu668nqepLL28l54bd/BG3MEblQK8utSt2LVe\n2OCoapzLAwA4QBV5UAhxfcWSzOtZospjNuq0fXSm0OXyIWQZl5xVyB/tUWELS4FGI0J8/nu/\no06rCfL5zy8NjRAhvoYAb12or8Gg0wb76KV7V7RaEfx/q4T46iv5ewX56L10Wn8vXbCvwaDV\nBPnovfRafy+dEMLXoPPRc40vUJ6p4OAkKChIFLjgRQiRmpoqhAgMDCy2gvXCVatWyWXpYbxO\n7GqtOpG/PHVyypbEQ8ENrM+NCiGSs/J+O3vvt7P3hBCNqwT85akaw1tV5+AQAFAsdeXBtd3+\n+G7lzov6sPYPT5k02nzHeI+y8laeuLPyxB0hRPPHgrvXD+vdqNJTNUOLmuMFAAAV5cHadSOX\ntzw6aefVswE1rI8H76XnLj92e/mx22+tPdu5boVnH6/6QlS4N6fbAAAKqCgPCiHqvvJ2rwUr\nKt6+nW7Rmc2WtDxLXp7RYjKmmzRGk8liMgkhcnX/HdBK1/33stH6GTekQp5Wl631kspRKRel\ngkWIbK13nlZn1Pz3Lj21jCm6jsWSf2zyfkau0z8l1Neg02pCfPXBPgZpitcQH7009izdyKjX\naSr4GQL+c6OktoKfIcBbJw0u6nX/udNRp/nv4GWon4E7IIEyQgVxGBkZqdfrr169mm/5pUuX\nhBD16tWrWrWq7Qql009J74G9o9tc3v/uXzdkhvqYc3O0ht9Dm+SrcyYpffyq0+/9dv7pBmED\nn6zWq1HlAG9doa0BAKCuPPh0787R7Zqem/nR5b0J5wMiW6Wcv+VdcU3V9tZHcZIjN1KO3EiZ\nvv1SBT/Dn2pXGNqievf6YcE+KvhlAgAoTerKg/1j+7UJ/mXj1//YWDEqLCllfZV21u+m5RjX\nnb677vTdd389/3rHmqPbRYZaPeUIAICC1JUHdT4+o/4ydFTRFYxpqZk3rxnT08zZ2bkpj0yZ\nGebcHGNGuik7y5yTY87LzU1+aExLNSanmvPyzHm5uQ/uWczmgu3kafTZOoO4LIQQerPJrNHm\naAxCCItGk63Nn1tztF7JhgAhRJ5Wb/1urtaQK7/Uag2BQTpvn7yAUFNgaJZXgEav13p56wMD\nTVp9ljBovbw1+v85XM3INeaaLFLZYrEkZ//3mY7pOcY8k0UIkZ77n4K80F33GpaE1GdXDD16\n6bThwd6B3novnTbUzyBNx1ol0MvfS++t1/oZtP5eei+9Rpp5VQgR7GOQri6W7nH099KF+Xt5\n67WMNQIO00j3m7uLj49P06ZNDx06ZLta27ZtT548ee/ePT8/P2mJ2WyOiIjQ6XTXrl1TUqFQ\n0pUyRqNRp3Py+Jw5Lzfx6+k3Vi1N0/vd8Qq95ltlU6VWxwPrmDSFXCXqo9c+3bDSqDYR3eqH\ncdc2AHiU8poHhRB3Nq09N/MjU3aWsIg8re6Kb9V9IY1PRbY6LioazYX/9tBrNb0b/3/27jOw\nqaoPA/i92aPp3nu3UFo6GA5QwIG4J4qo8KqAiKgoKCioKCggIIgigiAogoKCKIKKKIpsWrro\noHvvpGn2vO+H1NCmBTpzM57fB+Wem978KYUnyf+ec3znjgm/OcqThTmFAABOwFFzUJJ5Lm/5\nImV9fTnfv4zvvz9gbLEwUE9YPgubST6cFDDjupCxkQg+AABn5Kg5OIAovV7T3GjU6wwKubZV\nohU36aStOlmbrlVi0Kh1ErFeKVdWlunapNe6UG+e9QqZzOQLeP6BDA6X4+bBEok47p78kHCu\npzfJZHJ9/Dle3iy+gOUiIros93p1Mo1eb6QkSp3WYFRoDQqtQas3qnRGtd60ZyMhUekkystt\nRbnWYGo6GilKqrrclezYetQbKZlGTxCERKmTqHRqnVGla7+aVK030toOGCSmVVL5bKangO0p\nYPu6cExbObry2C4cpoeA7evC4bIYAjbTU8AOcOUJOEzcoAxA2OYMQrVaXVBQIBKJoqKiTCPP\nPPPMzJkzP/zww7fffts0snnz5tra2qVLl/bwAVbGYHPi5i32vv7mil1bRZnnYhQ1tzRnSNnC\nHLfos0n3HFF7mG8eIQhCrTceyG04kNvgxmM9mhw4fWTQqFB3LLYGAOC0HCAHCYLwn3iv1/U3\nV+zcUvndDrbREKOoiVHUELVH1DzX6qlvHmeHHC1qqZd12pFeb6RMgSjgMG+K9LwvwW9UqFtK\nkFsv314BAIB9c4Ac9EgembZhR94HixkZZyJVtbe0ZLRyXH7zGZU3ZMIpOd/8qZzOQO2+ULv7\nQm2IO2/OjWFPpAUFuWG7egAAZ+cAOTiASBaL5x94zYcZdTq9rM2gVOgVMq1ErFcqNM0Nerlc\n19aqFTcblAp1fa2muVGvkF/jQlSH/3ZhUCoVpcUdiuv+YWw3D467B0vkynH3ZLmIWCJXtpsH\nx8OT7ebO9fLleHgxOByuj5/58abZb9ZfVICiiNo2daNc26LQEgQh0+g1emPbf21FgiBUOqNa\nb5SqdUYjodYbmhVarYGSKHWtKp3pO6QzGOUaA/Ffj9PK9VvQGoxalVGi0tW2qXv1hZ4Ctvt/\n33zzn4KHgB0g4go4THc+myQIdz5LwGH6CDlcFsNPxBVxWUIO0zSL0bTX4wD/Zq5l2e8lS34r\n7DjCZ7FV+itOThVyGPIP7hj8usAu0TCD8O+//z58+LDp16tXr/bx8Zk2bZrpcMGCBV5eXrm5\nuYmJibfccssff/xhGjcYDOPHjz9+/Ph9992Xmpqan5//3XffDRs27PTp06ZbY675gG5Z506Z\n2oPfF21crZe1tacLSRgSrz9zz/zDxa2nKyTdfvu9hJwpKQH/GxmcFOiKO0kBAByMs+WgNPdC\n6RcbxOmnL7/LYpBJy9b73HTr2crWny42/l7YdK7qivd7RnsL7hzie0e8z9gIT6zIDQDgAJwq\nB5uOH81bvkivkJvfDMrSbvl99LQvM5vVessF01gM8sEk/6UTY+J9XQapHgAAoJ1T5aCtMep0\nBqVcr5DrpK2mZiGl02nEzXqFTFFWomtr1bY0aZoaNC1Npu0SLfX5Q/SuH+6SJMfDk+cfxA8I\nZrt7CILD2G7uwvBoQUgYk8fv5go2T6E1aA1GgiDa1HqZRi/XGOQavXm2ovkXco1BZzBK1Xoj\nRWj0hja1XqYxtKp0Kp1BpTO2qfVKnaFBpqG93dhbrjyWp4Dt68J15bFcuSw3PsuVyzJNUjT1\nEXkspjufJWAzeWxmoCvXS8jpz/zFhQeLVv5V1HGEw2BrjQOzeu2keO9DM0YNyKXALtDQIFyx\nYsWiRYu6PVVUVBQdHd01CAmCkMvlS5cu3bt3b21tra+v7/333//uu+96enr2/AFdWS0IVbVV\nOYtfkhUVmN8Weo8Zn/Dmihod66eLDTvTa89Wtnb7hW481lMjgh8Z7n9DuAfmFAIAOAYnzEHK\naKz//eeSzes0TQ0ERRAkQTIY4U89F/nMC6YHVEpUB/MaPz1RkddwxTs62UzywUT/+4b53RTp\niQkWAAD2y9lyUN1Ql/f+G5KMM+Y3g/zg0Ig1O34s12w6WZFdJ7N4PEkSacFuU1MDnx4V4oqV\nrwAAHI6z5aBdoiidrE3fJtW2tmiaGg0atV7WppW0qBvrdRKxQaPStjTrFTJdm7SbPmLfPmjv\n8KEv282DJXRhuYi43r4sFxHHw4vlIuJ4enG9fdmu7hx3T7aHJ0vo+PcSmVdeVWgNbWq9eYlU\ngiD0Rkqq1kvVOoORaFPrlDqjRm9UaPVaPdWi1ErV+ia5VqbRyzV6iUrXcRk/m8JkkB58tgef\n7c5nufHZrlyWO5/lwmUFufFMHUQ2g3TlsZgM0oXDYjNJHxeOeavFQW0Q9tCKu+JenxBlzWeE\nQULzHoT0smYQUnp95XfbS7asp0zrR5OEKCY+5aOtbDcPgiAu1sv35dR/drKirk3T7ZcHufGe\nSAuaNiJoiJ/jBwAAAFiHld8QGtSqzPkzW7PSLW6XYbmIzI+5UNN25FLzrwVNx0vFV7lnMMJT\n8FCS/1MjghIDRFd6DAAAwNVZ70YZvb74szVV339NGYwEQRAk4TVqTMLbH7Jd3TKqpZtOVe7K\nqFVoLT9hdOEyx0V5zR0TflusN1bbBgCAAYcGYT8ZtRpVbbVRo9bJ2jSN9VqpxKBU6qQSvVym\nk0l1bVJdq0SvkOmk3U0L6e3n8Z1fCTDYbI6XD8fdk+vrz3Z1d40fJggJY4nc2K5ubFc3Jv+K\n00adkM5ASdW6GqlaoTUotQYjRdRI1S1KrVJrUOqMMo2+Ta3X6I0EQWj0RqXOQBAERVGVEnWj\nXCNV6691easScpheQo6/iNss15WKFR1PMRlMg7G7aa90Y5KEfvWddFcBV4MGoVWDsGrv15c+\n/uDyraNBISlrvuAHhZjOUhRxqkJyuKDpy7PVNdJulksmSSLRX3TvML+Hk/yHB7pap2YAAHBU\n1s9BrUSc9frstvwccxTy/APTNnzVdVcJqVqfXi3dm1V3OL+pQqK60gXTgt0eTQ6YGO+ThE4h\nAAD0kpVzsOXsvzmLXzaolKbJ9C5Rcanrt5luGJVrDF+n1yw7UtztrjmhHvwZo0OeuyHUW8ix\nQp0AAOAk0CC0EorSSlq04haNuEnb0mxQKrStEm1Lk7q5QdPUoGlq1EklHR7cp6fo3D5k8vi8\ngCCerz9L5Mbx8GRwuCwXEVvkxhK58vwCeL7+HXdAhKtT6QxqvdFopGraNAqNXqE1tKr1MrVe\nazC2qnQGimhT67V6Y71MI9PoW5Q603KpLQqdTGNbzUV7gQVOrQ8NQmsHYd2vBwrXvGtQtX/W\nyRKJUj/eIYqJ7/gYjd54slxyvFS85XRV9RU6haND3Z8dHfJYSqCQgxQHAIC+oCUHKaOhZNNH\nFd9+SZgmCJIE19s3Zd02YVjklb4kv0F+5FLzltNVufWW67CZJQWIHksJHB/tNTrUHdMsAACg\nJ6yfg7W/7MtfucScgIKQ8JR123i+/qazeiP1S17j7gu1B3Ibuu5QyGUxnhoR9MzokNGh7tap\nFgAAHBsahDZCr5BpJWJVTZWqrlpVW6VtadLJ2gxKpaa5QSdt1cs7vwvu5wf5/71ZZru68YPD\nOB5eXB9fjoc3zy+AHxTCdnFlubpxvX1JBqN/TwMEQRAyjV6rN5qmIbap9a1qnd5ANcq1EpWu\nSa5tUWrb1PpWlV6s1EpUOrFSp9YZW9U6J+7VdMNHyG589za6q3BwaBDSEITi9NM5i1/Sy2Wm\nf9OZQmHSsvWeI2/o9sFnKlt3ptfsyaxrlGu7nhVxWZOTAx5M9L8j3puBD0QBAKA3aHxD2Hjs\n9/wVS/SK9ihk8HgxcxYE3TeZZFytkgaZ5t8yye+FzT9dbKiXdb8od4Ar94FE/3uG+t4S481m\nIhkBAOCKaMnBhj9+yV/1tkGpNB1yvLxGbNxlXlTGpF6m+fp8zcG8xn9KxV2vEOkleDjJf86N\nYaEefGtUDAAADgoNQnuhFbdoWho1jfV6uUwnbdXJZZrGOr1cpm6s00rEmsYGyrS25AD1Dhls\nDj84lOfjzwsMEoSEs0WuLJEbS+jC9fbl+fozuLx+/nbgKlQ6Q6tKXy1VS1U6rYGSqttnIiq0\nhgU/5dvqdopWhSmGAw4NQnqCUHYpL2vhHE1Tg+nfbpLJCLzroajnXmG7unX7eJ2B+jmv4cec\nhsMFTc2KbjqFoR78aSOCbo/zuTHcA41CAADoCXrfEEovZmUvmqOViM3LjXqkjk56f0NPtls3\nzbHYcb7mUH6jpsscC5MgN95LY8Onjwz2ccGCbAAA0A06bxh98yXzhACut0/axp38wJCuj0yv\nlm47W/3V+Wq5xnJTGQZJTkkJeHVcZEoQ9p4AAIC+QIPQMRiUCkVFqaalSSdt1bWKdW1SraRF\nVVulbWnWSiV6WVunR/enD0ASBEFwPL24Xr6C0HCebwDPP1AYGcPz9We7ubOE2PXDehYeLFr5\nV1HHERaDpTc69aKmHCapWTWJ7irsEhqEtAWhqroy8/XZysoy8wejwojo1PXbOR6eV/kqg5H6\n6WLD9nM1hwsadd3dNhDtLXg0OfCxlIBh/vh3GQAArob2N4SK8pLMBc+p62vMUegSFTfktaWu\nQ5N6eAWdgfqjqHnHuepD+U3dLvHPYTIeSPR7/sawsRGeuIEGAAA6ojEHpRezshfO0ba23yXD\ndnePe+Utvwl3dP9gtX7L6cr1/5R3u/3EbbHe00cGPzzcn8PEamAAANALtL8fBCsw6rRGtdqo\n0xmUCnVTvbqhTl1fq1fK1XU16sZ6TVODpqmh/aF9bhGQBEEQpimGbHcPrpcPzz+IHxTCErpw\nvHw4Hl6C4DASP2MDqmuDkMNga406uuqxIyRBGNfcSXcVtgUNQjqDUCdtzX5zbmtW+uUeYXhU\n0vsbBCHh1/zaujbN5tOVuzJqLzUpun3AuCivF8eG3ZPgx2LgA1EAAOgG7TlIEIReISveuKb2\n4A+U4b+5ESQRdM8j0XMW9GQqoZnWYEyvkv6Y2/BdZl2FRNX1ARGegkeTA55IC0rw78VlAQDA\ngdGbg7Ki/KwFz2mam9qPSSLw7ofjF7xzpV1/DEbq3zLJ99l1uzJqxUrLD4B8XTizbwi7f5hf\nMiYUAgBAz9jC+0GwBTqpRFVXo26oMyjkGnGzqrpCVVttaiUOwOKlJEEymCyRiOcfxPXx5bh7\nCiOieT7+HE9vjqcXzy+AweEO0O/DiaBB2A8ktQYTDTtBg5DmIKSMhtpf9hVtWGnehYJksyKe\nmhU+bXYP94OWegUbAAAgAElEQVQ9VyXddrbq2wt1rapu/hWI8xW+NDZi2oggAQdhDwAAndhC\nDpo0//tXztuvGDWXtxXk+volLF7hkTq6D1fLqZMt+6P4l7xGhdZyQTaCIG4I93g8NfDBRP8A\nV7wPAQBwarTnoLy06MJL/9NK/ttokCRCHnky9sVFV/8qpdbwdXrN6mOlxc3KrmevC3N/elTI\n1NRAvAEEAICroz0HwcYZdTpNc4NBodC2inXSVq24Wd1Yr26oVdVUqWqq9AoZQfR340OSyRCE\nhLPd3Dke3lw/f0FwGFvkyvUL4Lh5cH39mTxst9w9NAj7AQ1CS2gQ2kQQitNPZy983qC6vGKM\nKG7osKVrBMFhPbyC3kidqWj9Or1m94XaNrXlGmueAva0EcHTRgYND8T9pAAA0M52cpAgiLb8\nnLzlixQVpeY3GCSTETrl6ahnXyRZrD5cUKLSfXuhbuOJitx6WdezJEmMCnF/LCXg0eRAdAoB\nAJyTLeSgVtxSuPbdxr+PmBeV8Ro1Ju6VJfygbrYk7EhvpPZk1n1+qvJ4mbjre3p3PvvFseFv\n3BLFZWHdUQAA6J4t5CDYL4NarSi9pKyp1EnE2laxpqVJ29ykbqjVNDfpFbJ+Ng4JgiBIgsnj\n8/wCuH4BXE9vflCoIDSC5+snjIjGfoc9N2tv3ubT5XRXYVNIas2kg3mNFqN3D/WlpRpbgAah\nrQRhW35Ozlvz1HW15hG2u0fCkpVeo8f06jpag/H3wuYPjpacLJd0PXtTpOdjKYGPDPf3FnL6\nWzEAANg5m8pBk6o9X5Vu+0Qvl5tH3BKTE99bx/Xu42s1iiLOVrXuTK/5LrOuSa7t+gAOk3Fr\nrNe9CX73JvihUwgA4FRsJwdLNq8r/3qz+aM0jofnkNff8x4zvidfe6lJseHf8q/O13S9T9TH\nhfPa+MgXxoTz0CYEAIAubCcHwcFoWpr0bVKdrE3b0qRuqFXX12pbxcqqCl1bq6apgTIY+rlm\nKdvNQxASLggN5/n4ucYnCqNiuN5+DDZ7wH4DzmrCxnN/lTRd+3H2j8NiPDMq5M4hPhbjztkm\nRIPQhoKQ0uuLN62t2vv15X2YGGTQfZNj5rzWhynVpgXWfsxp0BqMFqeYDHJCtNezo0PuT/TD\nVvYAAE7L1nLQRNPUkPvOq61ZGeYRfnBIyuot/ODQ/lxWb6QO5DZ8ebb6aFGzWm+ZjARBMBnk\n8EDXO4f43DXEd3SoO4kNfAEAHJ0N5SBFFX2yqnLPjsuflzHIqGdfDH9qVg8voDUYjxa1bDpZ\n+Ut+o8HY6T2+jwtnyW3Rz44O4bPp/m0CAIAtsaEcBKdh1OnUddXaVom6oVbXJpUXF6obanWt\nYq1ErGlu7E/jkOXqyha5cb19uL4BguAwrpcP28NTGB4lDI0g8PZ+QN3zRcbB/Hq6qxgYXA75\n/ZNpA3tNu+syokFoc0HYlpedtegFbUuzeUQUNzRl7Ra2m0cfrlYjVW86VbntTHVtm7rrWT8R\nd/LwgGevC0kKwNRsAACnY5s5SBAEZTSUf7W57MuN5jtmuD6+ie995DYspf8Xl6r1h/Ib9+c0\nHMxrVOm62aSQIIjUYLcn0wInxfvG+Qr7/4wAAGCbbC0Hm0/8lb9yiVZ8eUtCvwl3DFn0PpPH\n6/lFqqXqT/+t+PBYadc24azrQ1+4McxPhOnyAABAELaXg+Dk9HKZrlWiETdrmht1khaNuFld\nX6tuqNO2NGmaGw0qVd8uy3IRCSOieH4BXF9/nrcfPzCEHxzK5As4nl4MNhbYG0Qf/lX+2sE8\nuqu4OpLFZHgLWCwGOSLE7elRweRA9JLRILQnNhuEmubGvGULxedPm0dcE5JSVm9mifq4g6DO\nQB251Lzh3/KjRc06Qzd/4mnBbs/dEPrI8AA3Xl/2eQIAAHtkszlo0nL234tLF+ik0vZjkvCf\neO+QBe8wuL34nPQq5BrDrgs1312oO14m7jYcCYKI9hYsGB/51IhgLM4GAOB4bDAHNS1N+SuX\ntJz6x3wHvTAyevjKjfyA4F5dp6RFue6fsk0nK/Wd24RCDvPJEUEvj43AHTAAAGCDOQjQLUqv\nV9fXqpsbVNUViooydV21rLhA09Ro1Gj6c1mSxXaJjPJIu54fFCIMi3QdktSru7JgYFlrYiJJ\nXGGmqpDLejjJ7+GkgGteolGmnbk330Dpur8OhyH/4I5+1WhdaBDaahBSVOWeHSWb15v/peP5\n+cfOW+wzZkJ/rtqs0P58sfHr9JpjJS3dbmX/aHLAE2lBYyL6MlsRAADsi03nIEEQBCEvKUyf\nO03f1mYecU9OS3xvPcfDcwCfRabR78uuP1rUcqigqUXRzT6F7nz2lJSA22K970nwYzGwOAkA\ngIOwzRykjIbCte/VHNhj/uyC6+uX9slX/MCQ3l6qQqJadqR4x/nqrvfBjInwmDsm/MEkf+Qa\nAIDTss0cBOg5VW2VNDdT1ypRN9brpBKdvE3TUKeqr+34GUKvMDhsnl8g19efHxjsEhUnihvq\nNiSJZGE6DQ0WHixa+VfRIFz4ig1CgiCuD/N449aoa16irk0zc2/Olc5yWUz1yol9rI4OaBDa\ndBC2nD6etfB5Sn95S8Lo514Je/yZ/l+5sFGx9WzVN+m13S49ekO4x5NpQfcn+vlj/RkAAMdl\n+zlIEISyuiJv+RvSnAvmEa63T+onXwmCwwb8uYwU9Vth82cnK34vbNZ0t09hhKdgalrgzOtC\nQ9xxXyEAgN2z5RysO7S/YPVSo7b9thVBaHjaJ19xPL37cKlqqfrj4+Vbz1SJlZa3Ocf6CF8b\nHzk1LQgT5QEAnJAt5yBAf+jlMnVjvaa5oS0/V15coKqpUtXX9LFrSBJMnoDn5y8Mj+L5BwlC\nwoUR0cKwSLab+0BXDdc2a2/e5tPl/bsG+eatUYfyG00tMbXOWNAo73h63X1DoryvsdIGGoSO\nwy6CsPnfvy4uW6iXy8wjQfdNjpu3eEBuXjAYqd8KmzefrjyYZ7mVPUEQDJK8NdZr2aS4kSFu\n/X8uAACwNXaRgwRBUEZD9Q+7ij5dZb5jRhgembJuG9d7sBZ2l2n0R4tavr1Quy+nvuusCyaD\nfCjJf9b1oeOjvLDZOQCA/bLxHJTmZma/OVfb0mI65Pr6xb2ypM8rysg0+k9PVHz0d1mj3HKu\nvJ+I+/So4JfGhmN7QgAAp2LjOQgwsAxqtbqhVlVVoRE3GdQqrbhF3VAnyTijbWnuw9VYIpHr\n0CR+YLAwPFoYHiUMixy8Dyjg6no515Ck1kw6mNdoOhArddO/ze7YILsp0jPCi3/1S8jUhn05\nV1wNFQ1Ce2IvQaiqqy5Y+dblLQlJImDS/UMWvkcyBqzsJrl206nKL85UVUq62fH1hnCPOTeG\n3TnEx53PHqhnBAAA2tlLDpo0HT+at/wN8x0zwsjotA1fDfZde5US1cf/lv+S12RxT5mJt5Az\nfWTwi2PDMaEQAMAe2X4OthXkZsydZlD99x6NQca+9EbIQ1P7fEGdgfolv3HTycojl5qNnT8K\n4LIYU1ICZ98QOioUd8QDADgF289BACvQtUlVNZXSvGxtS5NW0qJpalBWV6hrayhjN6sKXQXb\nzZ0fHMrzCxCGRfIDg3kBwcKwqIHdHgUGirlBSBDEj7kN+3MaxMputpvpGzQI7YkdBSFlNOa9\n/0b9bz+1r5FLEsH3Pxb36lsD/kSH8ps2/Fv+x6VmfZcJhS5c5uMpQXPHhg3zFw348wIAgPXZ\nUQ6ayC7lpc95wqBqXxzbJTou5aOt1nnBXdAoX3+8/NsLda0qy/XZ2Exy2ojgdybGBLmhTQgA\nYE/sIgclGWeyF7/UcVGssCeejZ41j+jfHPas2rb3j5Z8n1Vv7PKBQEqQ6zsTY+4Z6odZ8gAA\njs0uchCAFgaVUl5ySZpzQd3coGlqUNfVKCrLDApFb6/D5PPdEoYLo2KFIRFsdw+ef6AwPIrJ\nu8YENRhspgbhM99ld11aY8CNiXQ/PueGwX6W/kCD0G6CkDIayrZvKvvyU/M+mtFz5odNeXow\nnqtJrv0lv3H1sdKL9ZYTJkiSGBfl9c7EmJsicQcEAIB9s68cNJFknst8daZRozEdst3dhy1d\n65l2nXWeXaE17Mms+/BYaX6DZT4KOMy5Y8Jn3xAa5oHX+gAA9sFeclBdX5v3wZuS9DPtxyQR\nNfPl8Cdn9v/KpS3KT09UbD9X3e32hFNSAqeNDIrwFPT/iQAAwAbZSw4C2AiDWq0oK27Lz1Y3\n1Mku5clLi7TiZqL3rRW2q5vnyOsFoZGucQmi+IQ+rE1a8fXG4i2fEAQhCA6/ftehXlcABEEQ\nxJuHClv+ew28L6e+acCahZdvsiNJYt5N4WvuHTJAVx4UaBDaVRBS1KWPP6jau9M84H3juPjX\nlnK9fAbpCX+62LD277LjpZKuN5amBbvNHRP2WEogFxvaAwDYJ/vLQYIgCEJ89kT2my+a11sj\nWcyk9zd43zDOmjWcq5Luz6nfeqbK4nYzLovxcJL/KzdHpAZj+14AAFtnRzlIGQy577za+Nfv\npkMGh524bP1AZZ9Mo//ybPXHx8tLWpQWp1gM8oUxYW/cEu3jwhmQ5wIAANthRzkIYJuMOq2y\nokxeViQvLlRUlmpbmhWlRQa1ulcXYbu6sd3cheFRgrBIfmCw65BEl6jYq+8sVrLxo/LdWwji\nciuKw+Nq1RqCIJhc/rgj6X377TizLaerZu7NeSDRb3JywDUfXC/Tzvsx70pnscSoPbHLIKSo\nnCUvNx47Yh7gevukbtghCAkfvOesa9N8nV7z2cmKcrHlDoXBbrx5N0fMuTEMbUIAALtjlzlI\nEARBSDLP5S6Zp5WITYckizlk4bKAO+6zchlKrWH7ueplfxTXtWksTt0c5Tl/XORtsd7IRwAA\nm2VfOUjp9QVrltYe/MF0ozrb3WPUF3t5/oEDdn2K+LWw6YOjJcdLxRaneCzG3LHhT48Kjvd1\nGainAwAA2tlXDgLYC01zo7qhTllRqqqtkuZmyosLta2S3l6EKRDwA4Ldk0eIYoeKouNcouPJ\nDn9PLzcIzY9nsg0GHUF0nL12GUkQE/65YkMLiP8ahJOTA55MC7rmg+vaNDP35lzpLBqE9sRO\ng5AyGgrXvFdzYI95hOcfkPjuR65Dkwb1eQ1Gal9O/frj5SfKLP9RC3Ljrb4n/rGUAXt3CgAA\nVmCnOWiiaWnKXjSnLS+3/ZgkfMfdHjN3Ic/X38qVSNX6j/4uW/t3mUyjtzjlKWBPHxm8YHyk\nv4hr5aoAAOCa7C4HjRr1uVlT5MWFpkNeQFDap18PbPBRFHGiXLLldOWPuQ1t6k65RpLk1NTA\nBeMjkwKwJz0AgCOwuxwEsFO6NqlOKlHVVqtqq1TVla05GfLiAqPWcoH3q2Dy+Fy/AI+UEfyA\nYJeouNazp8r3bu/0AHOD8Eq6axxyXD3GHjzR8zIcWHGzMuaDY2gQOh27DsKmf/8sWPnW5ckT\nbHb0zJdDH5vez83qe+JoUcuqv0qOXGqx+OGZmhr40k0RI0OwqBoAgH2w6xwkCEIrbs5+80Vp\nTqZ5hOPlNeydNR4po6xfjFxj2HKmcvOpqoJGy+0JOSzGw0n+jyYHTIzzwYRCAADbYY85qJWI\nTz95j+6/+9BZLi6J737kOerGAX8itd64/p+ylX+WSlSdPmwiSfKuIT7vTIxJw2LaAAB2zh5z\nEMBhqKorpXnZ0rwsTUOdoqJU09RoUFku9n4lJElSnTc/ZDLYBmMvOo7/XcjisswJf1+x7+XY\n0CB0UvYehLKi/MxXZph7hARBeF0/NmnZegaXZ4VnLxMr1/5d9vmpSp2h049QqAd/8a3RT40I\nwmegAAA2zt5zkCAIo1aT/eaLLaeOm0dINmvYO2t8b76Nlnr0RupgXuPHx8v/Km7pepbDYkxJ\nCXzhxrARuJkGAMAG2GkOthXkXnjlWX1bm+mQZDGTV20ajB4hQRASlW7F0ZKvztfUyzotpk2S\n5KR47/njIsdFeQ3+HaoAADAo7DQHARyVXi6TXcprzTqvlYg1TQ3Si1laScvlPqAVXnE5fb/w\nYF5j/y9y91Df/l/EmtAgtO8gVNVUZb0+W1Feah7hB4WkrNnCDw61TgHlYtWrP+Xvy6m3GA92\n480ZEzZ9ZDAWVQMAsFkOkIMEQVB6fc3B70u/2GCeTkGyWQlLVvlNuIPGqvIb5DvTa7aerW6Q\nWW5PSBDEMH/R2xNjHkz0Y+BTVQAA+thvDsou5WUtnKNpbDAdMvm8xGUfe40eM0hPpzdSuzJq\n3ztSVNxseWP7zVGe790ROzbSc5CeGgAABo/95iCAk9ArZLKigtas9Objf7YV5l77CwZWh48r\nmFz+uCPp1i7A6tAgdDqOEYQ6aWvRp6vqDv1oHmG7eyR/uMl1SKLVath6pur1XwpbFFqLcSGH\nOTU1aNEtUeGefKsVAwAAPeQYOWiiqq3KWTJPVti+7TbJIAPvmxz93KssoQuNVSm0hi/PVn9x\npiqrtq3r2TAP/iPDA6aPDE7wp7NIAACnZdc5qJO2Zi6Y1ZbXfls3yWJFz5oXOuV/g/eMBiO1\n+0Ltmr/LMmssQ21ycsD6+4fi3lAAAPti1zkI4ISO3pRA0NXK6XJvM/YvdBhoEDpIENYd3l/w\n4VKjtr1Fx+TxY+e9GTDpfpJhpXU+DUbqn1LxtrPVuzJqjZ1/qDgsxszrQl4aGxHtLbBOMQAA\n0BOOlIMEQRiUigvzZ0mzM8wjotghw1d9xvWm/+6t4mbl/pz6L85UXWpSWJwiSfLOeJ8Z14VM\njPfhYXVuAAArsvcc1DQ3Zs6fJS8uNI/4jrt92DurSRZr8J7UYKT2ZNWtOFqSXSfrOB7sxvv2\nyZQbIzwG76kBAGBg2XsOAjitko0fle/eQnMRXVqGJEFO+OciHaVAv6BB6DhBKCvKz3x1hlZ8\neUtC/zvuHfrGcpJh1d9dtVS9/I/i7Wer1Xpjx3EGSSYGiKamBs6+IcyF6wjfcAAAe+dgOUgQ\nhEGlzHn7lZaT/5hHmHxB/IJ3/G+/m8aqzIwU9celltXHSv8oau76+sudz35hTNiUlMChfphQ\nCABgDQ6Qgzppa8ZL/+vYI/RIHTV8xadMgXBQn9dIUX8Vi5f8eulUucQ8aNqYcMH4yHFRXoP6\n7AAAMCAcIAcBnFPXBiGTyTYYdHTVcxlp+g86hfYEDUKHCkJNU0P6i9NUVZXmEffkEcPeWW39\nyRNyjWHdP2Wfn6qslqotTrlwWFPTAl++KTzeFx+AAgDQyfFykCAIgqKq9+269MkqSnf5xXH4\ntFlRM16isSgL2XWyL05XfZ9dV9dmuUMhSRKThwcsnRgb5zu4n+0CAIBj5KBO2lr0ycq6wwfM\nI54jrx++ciODM+gLflIUsftC7dz9F8XKTh9I3RLjtWxS3HVh7oNdAAAA9Idj5CCAE7LdBqFZ\nh/mFguDw63cdoq8UuAY0CB0tCHVSSdEnqzq+P2S7uw9f+ZlbwnDrFyPT6Defqlp9rLRe1vUD\nUPLuoT4zRodOGuLDYnSZkwwAAIPPIXPQRJJxJnfpAm1Ls3kk4n+zI/73vJVn1V+daZW2T/6t\nONlh+oUJSRL3Jfi9e0dsYoCIltoAAJyBI+Vg1Q/fFK1/nzK2v7v3Gj0m6f2PGVyeFZ66tEU5\n9ZvM0xWtFuOT4n0WjI8cH43ZhAAANsqRchDA2eS9taDur1/MhzbXIOyo8wf/0bNeCZv6LE2l\nQDfQIHTMIKzc/WXxZ2soY/sin0w+P3ntFvfEVFqK0RqM316oO5TfuD+3Qdt53VGCIGJ9hAvG\nRz6RFoSNlwAArMyBc5AgCL2sLX/lW43HfjePeI8Zn/jeOgabTWNV3SppUW4+Vfnxv+VqnWVK\nPpYS+P6dsRGe2MQXAGDgOVgO1v/+88VlC4n/eoQuUTEJb692iYyxwlPrjdTWM1WfnazMqm2z\nODUuyuvDe+JHhLhZoQwAAOgVB8tBACdnExsT9gR5+f8T/smjtRQgCDQIHTgIxWdP5L4zX9cm\nNR2SLHb8/LcC736IxpLKxMqvztdsPlVV22a57qiIx3oyLejNW6MCXa1xlysAABCOnoMEQRAU\nlfvuaw1HLt9VFzb1mejZr9JY0VVo9MbdF2qX/l5ULlZ1HGcxyKlpQS+PDU8OcqWrNgAAh+R4\nOVh3eH/+B0vM94lyPDyT124RxQyxWgEH8xrf/q0oo1racZBJkrNuCH1tfGSYB99qlQAAwDU5\nXg4CgAXJ+dMZ856mu4orw56FNgANQkcOQk1Tw/nZj6vr60yHJJMx/MNNXqPG0FuV3kjtyaxb\nf7z8bKXlKjRcFuOJtKClE2OC3NAmBAAYdA6fgwRBUEZj8cbVld9tJ/57vRP57NyI6bNpLepq\nFFrDvpz69/8oKWiUW5wKdOVNGxl0b4Lf6FB3EotzAwD0m0PmYN3hH/M/WGzuETI4nIS3P/S9\n+TZr1rA/p37Fn6UWb/c4TPL+RP+5Y8LHRHhYsxgAALgSh8xBAOiJ+sM/XXx/Id1VdEB2+iVm\nFloTGoQOHoSapoas15+XXco3HTI4nOS1WzySR9JblcmFmrbVx0r3ZNbpjZ1+CDlMcsXd8bOu\nCxVwHPbPBQDAFjhDDpoUb1xdsWub+dB33G1D3/yAybfddTv1RurLs9ULfs6XqvVdz3oJOU+l\nBU1JDRyJFdsAAPrBUXNQXnopa8Fz6ob69mOSGPL6u4F3P2zlMn6+2Lj096L0zrMJCYK4LdZ7\n9g2hDyT6W7keAACw4Kg5CAC9Zcv9QhPsXDh40CB0/CA0qNUZLz7VlpdrOmRwuPEL3g6YdD+9\nVZnVSNVbTldt+LdCrNR2HA/z4L99e8wTaUFsJmZJAAAMCifJQYIgKKPh4ruvNfxx2DzikTIy\nefXnDK5NT1jXGoxbz1Sv/LOkQqLq9gHjo71eGht+T4IvAzMKAQB6z4FzUFlVnr3oBUV5qemQ\nZDCGLl7hf/vdVi5Db6Q+P1W55PAliUpncWpspOebt0bdFuuNCAMAoIsD5yAA9IfN9QuJyy1D\nr1Fjk1d/TmspjgYNQqcIQk1zY8bcacqqCvNI+FMzo2a+TGNJFprk2m1nq94/WtLWeaqEr4jz\n1m0xT40IEnFZdNUGAOConCcHCYKgDIact+Y1/f2HecT7hpuHvbuWybP1/ZD0RurvEvF3mbV7\nMuu6nVAY4y1ccnv0PUN93fls65cHAGC/HDsH9XJZ7juvtpz+13RIMhixL78R/ODj1q9EpTNs\nPl217p8yi012CYIIcuOtuCvu8dRAtAkBAKzPsXMQAAZE4cql1Qe/o7uKDrq8ZhQEh1+/6xAd\npTgINAidJQi1EnH681M79gij58wPm2Jbm5TKNPpXDuRvPVtt8WPpymO9Nj7yibQgbGsPADCA\nnCoHCYKgjMaan/ZcWrvMvDOTICQs9ZOvuF4+9BbWQxRFHC8T/3yxcfu56maF1uIsh0nOuj7s\nrdujvYUcWsoDALA7Dp+DRp32wrxnWjPTTYckk5G8ZovniOvpqmdvVt364+UnyiQW4+Ge/KUT\nYx9O8sceEwAA1uTwOQgAg6Fk40flu7fQXUUHJLYt7Bc0CJ0oCDUtTQWr32k+/pd5JPLZFyKm\nP09jSd2qlKheO1iwJ6vO4meTxSBvCPd46abwB4b54wZTAID+c7YcNKk9+EP+iiXmQwaHm7zm\nc4+UUTSW1FsURRwuaFrxZ8nxUrHFKQ6L8cAwv3k3R4wOdaelNgAAO+IMOWhQq7Neny1JP2M6\nZLm6pq7/UhQzhMaSfi9s/uBoybGSFotxEY/13h2xM0aHoE0IAGAdzpCDAGAFNrEkKdqEfYUG\noXMFIWU0FHy4tPbn780jPmMnJCxZyRQIaayqWwWN8pV/lu5Mr9EbLX9EA0TcxbdFTx8ZjLeO\nAAD94YQ5aFK9f/el9R9Q+vblOkkWK3nVZ56jbqS3qj44U9m65PClo0Utxi4v526J8Vp739Ck\nABEthQEA2AUnyUGjTpv+wlNtF7NNhxx3j+Q1m0VxCfRWdaaydeWfpT/m1lskmBuP9fkjiY8m\nB9BUFwCAE3GSHAQAq5GcP50xj9YFC0nLI7QMrwkNQqcLQqNGnfX68+Lzp80jbkmpKWu32OYm\nTA0yzaq/SjeerFDrjBanRFzWnBvDnhwRNNTPhZbaAADsnXPmoEnzyWMX33tdL5OZDpl8wcjN\n3wojoumtqm9q29Q702vf/u1S16x8Ii1owfhItAkBALrlPDmoaW48/9wUdX2d6ZBkMROXrfcZ\nM4HeqgiCOF8lXfFnyb6cBovPJR5M9F9+Z2y8L97oAQAMIufJQQCgRc78OY1n/rr24wYVZhZe\nCxqEzhiElNFQsOrt2oP7zCPeN45L+uATksGgsaqrUOkMW89Ub/i3/FKTouvZR5MDPrgrLsJT\nYP3CAADsmtPmoIlWIs6cP1NW2P4yke3unvbpTmFYJL1V9ZlEpdt+rnrD8YoysbLjOEkSacFu\nyyfF3R7nTVdtAAC2yalyUFFRmv78VJ1UajpkcNgp6790T0yltyqTqlb10t+Ltp2t6vjhBItB\nvnxTxBu3Rnnw2fSVBgDgyJwqBwGAdpkvPN2SdfrajxsM5OX/o1loAQ1C5w3Cul8P5K9YTOkN\npkPvseMTl65lcLj0VnV16dXSjScqdpyrMXT+uWWQ5KPJAfPHRaQGu9FVGwCA3XHyHCQIQidt\nPTdjsqq22nTokTIyee0XDLYdfxBJUcSPufWvHSwoblZanIr3dfns4YRxUV60FAYAYIOcLQdl\nhRezF81VN9abDtmubmmffWM7d8aUiZUv7Lt4KL+p46AHn73p4WGPDA/AJvQAAAPO2XIQAGyE\nqrry5JQ76Hr24Ss2djz0vnEcTYXYCjQInToIG44eyn1nPvHfj0DII0/EvvQGrRX1SI1UvfFE\nxacnKqRqfcdxkiRGhbgvvi36jngfFgPvIAEArgE5SBCEqqbq3MxHddJW0yE/MGT4yk/tdK1R\nMyNFbVP0oPsAACAASURBVD9X8/rBgmaFtuM4SRLRXsIlt0dPSQlEUAIAOGEO6qStF16dISu4\naDpki9yS125xHTKM3qo62nGueuEvhfUyTcfBGG/h5snDbo70QpsQAGAAOWEOAoBNoWXPQosG\nYZ85TGcRDUJnD8LynVtKPv+ovUdIEkH3TY6ePZ8ltIPNHrQG47cX6l7cf9GiTUgQhI8LZ/Gt\n0bNvCGMz8Q4SAOCKkIMmzSePZb3+vPl2GQaHm/rxNrdhKbQWNQCMFPVdZt1bvxYVN1su0O0t\n5Lx5a9QLY8LRJgQAZ+acOaisrjj37CN6udx0SDIYicvX+4y9hd6qOtIZqA+PlS47UqzSGTqO\nB7hy37495uEkfy8hh67aAAAciXPmIADYLOv0C9EgtIAGIYKQKN32adm2T82HvICgEZt2cb18\naCyp59R6496sujcPFVa1qi1O+Yu4Gx5MeDDRj4EbTQEAuoMcNKv5eW/hh0spo9F0yOQLRnz2\njUt0HL1VDZS/S8TP/5Cb1yC3GA905W2fknRbLPYmBAAn5bQ5qCgvOTdrikHxX4+QxUxZ+4VH\n6mh6q7JQIVG99GPegdwGi3EeizF3bPjcMeEh7jxaCgMAcBhOm4MAYEcGfOdCkiTY7pc/BmGJ\nXAPverBvq+47Ro8QDUIEIUEZDRfffb3hj0PmEY6H18gt3/L8g2isqlcMRmpPVt2iXworJCqL\nU95Czpwbw567IdRfZNPbKwIAWB9ysKO2gtzsRXM1Te0fRDIFgqGLlvuOn0hvVQOFooiDeY0r\n/iw5VdHa8bUfSRLXhXlsenhYUoCIxvIAAGjhzDkoLy7MWjhHXV9rOmQJXUbv+JHnH0hvVV2d\nKJPM/zn/dEWrxTibSd4U6bXp4WHR3gJaCgMAcADOnIMAYI8KVy6tPvjdQF6RIgiC4PkHxs1b\nPFCXtLuuIRqECEKCIAiCoqr37Sr6dJVRqzMNcDw8E5etdx+eRm9dvZVV27b+ePmOczXGzj/Y\nHCb5RFrQG7dGR3nhDSQAQDvkoAVNU0P6nCdVtdXtxyThNfLGpJUbGWw2rXUNpKzatk/+rdh6\ntrpzm5AcHih667boexP8mFh0FACchpPnoEGpyHj56ba8HNMh19dv5Offcn386K2qW6fKJQt/\nKTxRJjF0fpfHIMn7hvm9MzEGt7kAAPSBk+cgANi7nPlzGs/81a9LUARBECyhS8Jbq3r+RTpJ\ny6WNq3zG3OJ78+1dz6JBaE8QhBZaszMyX51pUClNhwwON/alRUH3Taa3qj4oaVG+9nPBvpx6\ni3EOk0wJdnvzlui7h/pi2VEAAORgV8rqivTnHte2SswjPP/AtE++ssFJFf2RWy+bujMzu05m\nMR7gyn3vjtgn0oK4LAYthQEAWBNyUCtuPjP9fq1YbDr0n3h3wpJefDhiZc0K7bp/yj87WSFW\n6jqOs5nknBvDFk6I8sOaMQAAvYEcBAB7p6quPDnljl59iSg63vQLdX2dTiYlCILJ5ye8vZrs\ncbdA29yUv/pt3wl3BNx+b9ezaBDaEwRhV20FuelznjJqLu/n5z12fMLiFSyh/d2SmV0nW3z4\n0pHCJrXeaHEqxlu4+t74exNs8fZYAACrQQ52S9sqznxlhuxSvnmE5+s/avt+tqsbjVUNOIoi\n9mTVzf8pv1pquYmvB5/99sSYaSOC3PmOM3USAKAr5CBBELLCi+kvTjcoFKZDr9FjEpd/zOTZ\n7vZ+Kp1h8+mqFUdL6mWajuMcJvncDWHLJ8W5cJ33TxMAoFeQgwDgMM5Pe0hamn/txxHE8BUb\nTb+o/G6HJOOM6ddRM19yiYrr4XOhQeg4EITdUlaVX3j5aXXD5el3LlGxIz7fzeTxaayqz+Qa\nw7azVcuPFjfKtBanrg/32Pn48EgsOgoAzgo5eEUUVb5zS+nWDZTeYBrg+QWkffqVHe3O20NG\nitqf0/DO70W5XWYT8tnMV8dFzLspwlOANiEAOCbkoEn1D98UfrTcfOg6NDFlzRaWyJXGkq5J\nZ6C+yah569dLVa2dbnNx57MXToh8YUy4kOPUf6YAAD2BHAQAR3WVmYXmBmHj30fqDu03/Tpk\n8jS3oYk9vLhW3HxpwwqCJEiCSPpgo8VZNAjtCYLwSgxKRdbrz0sunDOPCMIiRm7abePvEq9C\noTV8ebb6k3/LC5sUHcc5TPKNW6NfvTkS95kCgBNCDl6d9GJWxtynOu7Om7ZxpyAknNaiBkt+\ng3zOvov/lIgNXTbxHRHi/uat0XcO8aGrNgCAQYIcbEdR+SuX1B7cZx5wTx6R/OEmJt/W76RU\n641rjpWuPlbWquq06Kg7n718UuzsG8KwrwQAwFUgBwHAsUnOn86Y97TFoLlBqCgvKf5sTR8v\n/d+LTPPVzNAgtCcIwqur/+2ni8sWEv/9gPADg1M37OD5BdBaVH/9WtD02sGCnM7zJFx5rAXj\nIufdHIH7TAHAqSAHr0l89kTma7Mpvd50yPX2HbHpG8ebR2hWLlZ9cLTky3NVOoPl68Mob+Hy\nSbEPJvqzmfi0FQAcBHLwMoqq+n5n0acfmiPPNX5Yykdf2MUdogqt4ePj5e/+XmSxtcQQX5dd\nTyQnB9nBbwEAgBbIQQBwZtLczPOzHyd62By71gchUTNfdomMJdAgtC8Iwmuq/+2nvOVvUMb2\nN1o8X/8Rn+/m+tj91n27Mmrn/5Rf13nXCn8R94O74h5PDeQwGXQVBgBgTcjBnmjLy854+WmD\nUmk6ZIvcUtZ9IYpLoLeqQSVW6j4+Xv7BnyXaLpv4egk5E6K9Nj6U4C3k0FIbAMAAQg5aaD7x\nV/aiueZ3f/ygkJQ1W/jBofRW1UN1bZp3jxRtO1Ol7XCPC4tBXhfmse7+IWnBDrWRMADAgEAO\nAoAz08vaTjxym15uud/KFXXXI/QaPcb0C5+xt3K9fQk0CO0LgrAnmk/9nb3oBfMmTBwPz5T1\nX7pExtBbVf8ptYZlfxSvPlZqMUnCx4WzcELUnBvDuCy0CQHAwSEHe0heXHj+uccNapXpkCl0\nSf3oC9ehSfRWNdjqZZrvs+rXHS8vaVZYnOKzmeOjvVbcFZcYIKKlNgCAAYEc7Kru1wN5yxeZ\n76RmCl2Gr/jEI2UUrUX1QqVENf3b7L+KWyzG04LdNj8yLBVtQgCADpCDAODkFBWl5Ts2GbXa\nXn1Va8ZZray1/aBL15Dj6jH24ImBqM5K0CBEEF5ba9b5C/OeNf9V4Xh4pX22UxAcRm9VA6Je\npln7d9nHx8s1nSdJeArYL4wJf218JBYdBQAHhhzsOVlRQcYLT+kVctMhk8dLfG+d1/U30VuV\ndZwqlzy/72JmTZvFOEkSsd7CuWPDn7s+lMnAuqMAYH+Qg92qO7w/f8VblKH9DlGSwUh4+0O/\nWybRW1WvnCqXPLErq7RF2XGQJIlbYry3P5YU5MajqzAAAJuCHAQAaD5xrIePzFr4fE8exhQK\nx/16ru8FWR0ahAjCHmnLz8l4cbpB1T55guPpnfbJDkFoBL1VDZTsOtmcfRdPlkmMnf86BLhy\nl02Keyw5QIA2IQA4IuRgr6jra84+84hO2n6bGMlgDHvvI9+bb6O3KqspbFS8/kvBH5daFFq9\nxakhvi4T470X3xrthXVHAcCuIAevpDXrfPaiubo2qemQZLOTV33mOfIGeqvqFY3euDO9Ztkf\nxeViVcdxBkmOifDY+mhStLeArtoAAGwEchAAoHcNQvOt0VduqaFBaE8QhL2iKC85N2OyuUfI\n4HBSPtrqPjyN3qoGUEmLcs4PuUcutVi0Cbksxrgoz/X3J8T5CumqDQBgMCAHe0vdWH/u2Ue0\n4vaFy0gGI3LGi+FPzqS3KmtqVelW/lm69WxVk9xyCQ4em7H23qEzrwvBbEIAsBfIwatQ1VZl\nLpitrCg1HTI47OTVmz1SR9NbVW8ZjNT+3IZXf8qrlKg7jjNI8pnRwR/dNxQLxgCAM0MOAgAQ\nvekRmmiaGgrWLL3SWTQI7QmCsLdkhRfT5zxl3oSJZDHjXn0r6J5H6K1qYJWJla/+lH8ov8li\n0VEmSd4U5bnm3iEpQa501QYAMLCQg32glYgzXpyuKCs2j0Q++0LE9B4tNOEwDEbq57zGFX+W\nnK1stXghGebB//iBofcM9SPRJQQAm4ccvDq9XHZm+gPq+lrToZ32CAmCoCjiizNVr/6cL1N3\nmgTv68L56vHhE+N86CoMAIBeyEEAAKL3DUKCorIWzum6+6AJGoT2BEHYB7Kigsz5M7UtzaZD\nkkEOWbQ8YNL99FY14Aoa5U/tyrpQ06Y3dvoLQpLEyBC3b6amYEUaAHAAyMG+0Stk6bOfkJcW\nmUe8rhszfNVnJMPpvo3HSlrmHcjvuj1hkBtv2aTYJ9KCWJhNCAA2DDl4TdpW8blnJ5t7hEyh\nS9onO0QxQ+itqm8UWsPuC7WvHywQK3Udx8dHe+2YMjzEHRsTAoDTQQ4CABA9bhBmv/ECZTRe\n+3Gd+Yy9Jen9Db2uyYrQIEQQ9pqmqf7880+q62raj0liyMJlgXc9SGtRg6KqVf3m4cLfCpoa\nOy+kxmKQE2K81t47NMHfha7aAAD6DznYZ5Ref2HeM5ILl28Kc0sYnvbp1ySLRWNVdKmXaR7f\nmXmspMXiRWWAK/eeBL9Vd8e78Zzx2wIAtg852BM6qeTsM49c7hHyBcmrN7kPH0FvVX2m0hk2\nnqhcdKhAZ7gcWhwW456hvlsmJ3rw2TTWBgBgZchBAACixw3Cos9Wm5ffv4b/7pQmSTLy2Zds\nfGMaNAgRhH1h1GnPz54qK7hoOiQZjCGLljnePEITnYHamV7z1q+XqqWdNq4gSSLRX7RgfOTU\n1CAspAYA9gg52B+U0VDw4dLan783j7gOTRyx8Rvn7BESBJFdJ3v62+yMGqnFS0tXHuuJ1KC1\n9w3hshg0lQYA0D3kYA9pmurPPv2wViI2HTKFLiM+2+kSGUtvVf1RJlY+uD3DYga8l5CzfFLs\nM6NDMP0dAJwEchAAgOjDEqMEoSgqLN66vttTWGLUniAI+8OoUZ9/7nFZUYHpkGSQQ9/8wH/i\nvfRWNXiMFPXzxcZZ3+c2yDQWp0aEuN2T4LtoQjSbiXeSAGBPkIP9V/rFx2U7NhH/vZhyG5qU\n8vF2Js95lyk7W9n6yoH80xWths6vMANcuTOuC33rtmgmPnUFAJuBHOw5dX3NuRmPmnuEHE+v\nkZu/5fkH0VtVf1AUse1s1as/5Us7b0wY4s5bcVf846mBdBUGAGA1yEEAgL6RnD+dMe/pbk+h\nQWhPEIT9ZFCrz82YrCgrNh2SDEbsK4uD73+M3qoGlUZvXPdP2cfHK2rb1Ban/EXc76el3hjh\nQUthAAB9gBwcEFU/fHNp3XJzj5AfGDJ6+z6mQEhrUTS7WC9/+UDe3yUtHRdwIwgi1IN39Lnr\nsI8vANgI5GCvqBvrz/7vQZ201XTIFLqM3PytMCyS3qr6Sa03fvJv+du/FSm1ho7jQ3xdlt0Z\n+2CiP12FAQBYAXIQAKBvHKlBiLWeoO+YPN7ILXtcotrXlqGMxsLV7xZ/tobeqgYVl8V4fUJU\n1Vvjf5ieOsxf1PFUvUwz9tPTt39+tq7NcoohAAA4sJCHpsbMWWA+VNVWFaxZShkNV/kSh5fg\n73Jk1qiKxRNuifFmdliGu1KiHr7m+P++zVZonfr7AwBgj3i+/mmffs3k8U2HBoU8/bmpbQW5\n9FbVTzwWY/64yKxXx94e583oEFj5jfKHtmdc//HJ4mYljeUBAAAAAAwqzCDEnTL9ZdSozzzz\niLK8xDwS+/IbIQ8/QWNJVnMov2n2DzmVkk6zCQUc5r0JfhseGOot5NBVGABATyAHB1Ddrwfy\nVyyh9O3LlHmNHpO8+nMCW9QSRHGz8oHt6bl1so6DngL2M6NDVt4Vj+8QANAIOdgHssKLF+Y9\nq2uTmg6ZPN6Iz3e7RMXRW9WAyKmTzdibc6aiteMggyRHhri9e0fs7XHedBUGADBIkIMAAH12\npZ0LvW8cZ9U6+g0NQgThANDLZZnzn5PmXjCPxL26JPiBKTSWZDUURZyukDy5O7ukWdFxnMdi\nTE0LWn//UCEHP10AYKOQgwOret+uwrXLzIduw1JSP97G4HBpLMl2nCyX3P9lepNc23EwQMSd\nGO+z7v6hbjwWXYUBgDNDDvaNvPRS+vNP6OVy0yFL5Jr26VcukbH0VjVQjpW0vHqgIKNGajGe\nGCD6asrw5CBXWqoCABgMyEEAgD5Dg9ARIAgHEkWlz53Wmnm+/ZAkfG++PXHZOlprsh6Dkfom\no3begTyxUtdxXMhh3ZPgu3VyogBtQgCwPcjBAVe2fWPpF5+YDwXBYakbtnN9/GgsyXbUyzSz\n9ub+Wtik1Rs7jrvxWJOTAz+6bwhuqQEAK0MO9pm6vvbczMe04mbTIdvVbcTmbwXBYfRWNYC+\ny6ybtTdHqtZ3HCRJYnSo+5ePJcX7utBVGADAAEIOAgD0R7c9QjQI7QmCcGAZNeqcd15tPv6X\necR9eFrK2i0MLo/GqqxJrjFM/zbrUH6TStdpayVPAXvpxNjnbwxlYCU1ALAlyMEBRxmNRZ+s\nrNrztXmE4+E1csu3PP8gGquyKVWt6sd3Zp4oF1u8AvUWcqaPDF51NxYdBQDrQQ72h6q68tys\nx3TS9gU5WSLXUdu+5wcE01vVANLojQt/KTic31TY1GmpGAZJ3pPgu/PxZBcufmwAwL4hBwEA\n+gMNQruHIBxwBrX6/KzH5CWXzCP8wOARm3ZzPL1orMrKxErdk7uyfi9s0hs7/eWK93XZ8MDQ\nW2OxdwUA2Ark4CC5tG559Y/fUvr2m0W43r4jNu3i+QfSW5VNOVvZ+sahS8dLW7SGTlkZ5S38\n38jgN2+NoqswAHAqyMF+UlSUnpsx2aBUmg653r7Xff0TS+Roi3D+Vtj03Pe55WJVx0Ehh/VQ\nkt+GBxJcsUo2ANgt5CAAQH+gQWj3EISDgTIasxe+0HzymHlEEBI2csselouItproUCNVzzuQ\nf+BiQ8eF1EiSfHS4/47Hh3OYDBprAwAwQQ4Ontas9MzXnjMo2ucccLy8R+/4kePuSW9VtqZB\npnl2T86vBZa31MT5CtfeO/TOIT50FQYATgI52H/y4sLzc540KNr3I+T5BYz4fDfX25feqgac\nkaJ+yK6fdyC/RqruOC7kMCdEe+9+MhmrZAOAPUIOAgD0BxqEdg9BOHgKPnyn9uAPlKF98oQg\nJGzUl/uZPGdZa9SsqlX93Pe5hwuaOv5FC3HnTUkJ/OCuOKw4CgD0Qg4OKlnhxfOzHzdq2/em\nFYRGjN6xn8Hm0FuVDSoXq574JvNkhcTiNekQP5f7h/m9f2ccTXUBgONDDg4IWeHF888/adS0\nd8443j7X7fiR7eZBb1WDwWCknt2T801Gja7z9PcIT8FDSf5v3x6DRUcBwL4gBwEA+gMNQruH\nIBxUzaf+zl74grlH6Do0ccSmXSTDGb/V/5SKZ+3NLWiUdxyM93X5Zurw1GA3uqoCAEAODra2\ngtyMF6YZ1O2LkoniEkZs+gY9wm4dLxW/+GNeZk2bxfgwf9GBp9MivQS0VAUAjg05OFCa/vkj\n56155rW1RTHxaZ/tctTbQ2vb1HP35x3Ma+y4VAxBEJ4C9g/TU8dFOdHmGgBg75CDAACABiGC\ncBC1nPona9Ec8xtFz7TrUtZvo7ckuhiM1OLDlz78q9RAWW5MuO7+IRPjsIoaANAAOWgF4rMn\nMufPpP5bQtMzbXTKum0EZpBfwV/FLS/uz8utl3Uc5LEZjyYHfDE5icXA9w0ABhJycAC15mRk\nznvWoG6fR+iWmJL68XYGm01vVYOnSa59Yd/F/bn1HWcTMkny3mG+X01JxlRCALALyEEAAECD\nEEE4uOoO7c/74E3iv5+yqJkvhT81i9aK6JRdJ5uxJ/tcldTir93YSM/lk2LHRmJvKgCwKuSg\nddQe/KFg1VvmHqFH6uiUj74g8T2/siOXmhf8nJ9V26lN6C/iPpEWtPJuLNANAAMGOTiwGo4e\nurh0gTnvRDHxIzbtYnAdcx6hSWZN21O7s3LqOgWWr4iz5ZHEexP86KoKAKCHkIMAAIAGIYJw\n0FXu/rLo0w/Nh+HTZkXNeInGemh3slzy2NcXqlrVFuO3xHgfeDoN+9sDgNUgB62met+uwrXL\nzIeeI29IXrOZZDBoLMn2/V0invxVRqNc23EwwlPw3VMpI0OwQDcADADk4ICr+WlPwap3zIeC\n0PARm3azXR38H+2CRvndW9NLmhUdB4cHir6flhbtjSWyAcB2IQcBAAANQgShNWS9Nrv55N/t\nByQR8shTsS8upLUimlEUseTXS/uy6/M7b0zoK+JMGxG88q54zI4AACtADlpT0YaVld/tMB+K\nYuJT1m1ju7nTWJLtk2n0T3+b80NOfcfXqyRJjgpxuz/Rb+GEKBprAwAHgBwceBRVuu2T8h2b\nzPMIeb7+I7/Yw/H0preuwaYzUM//kLszvUbdYWNCLosxIcbrs4eGhXnwaawNAOBKkIMAAIAG\nIYLQGiijIWPu/1qzzpsOSRYrcNID8a8vpbcqW7AzveaNQ4UWswkjvQRTU4OWToxBmxAABhVy\n0KooKmfxy41/HzEPcDy9hq/6zDV+GI1F2YXsOtlz3+eeKpdYjI+J8Nw+JSnKC5MzAKCPkIOD\npGjDyqq9X1PG9laZIDR81NbvmXzH/+e6UqJ6cHtGerW04yCHxXg4yX/zI4lYKgYAbA1yEAAA\n0CBEEFqJUac7P/NRWVGBecTrujGJy9Yzec5+NyVFEXP2Xdx6plJr6PSXMdSD91BiwOp747HZ\nEgAMEuSg9WW9/nzzyWPmrXkZHO6ITd+IYofSWZOdOFPZOvWbLIsF3DgsxiPDAzY/PEyAT10B\noPeQg4OndMvHFbu3GbXty0S7RMaM3LqXwebQW5V1vHuk6NN/KyyWyPZ14cwfF7lgfCRdVQEA\ndIUcBAAANAgRhNajV8jPTH9AXVdjHuEHhoza9j3LRURjVTaiTKyctjv7eKnYYjzQlffTM2lp\nwQ6+bwcA0AI5SIvSrZ9U7Npm1LTPHWe7uY/c8h0/MITequyCkaIW/lL4Q3Z9aYuy4ziPzbgv\nwW/L5EQRl0VXbQBgj5CDg0p8/lTmKzPM8wg9R1yfsm4rvSVZjVJreOnHvP25DS2KTm3C68M9\nfp85yoWLnzcAsAnIQQAAQIMQQWhVBpUye9Fc8flT5hFBeNSoL/YyeTwaq7IdGdXSZ/bkZNa0\ndRxkMch7h/l9PWU4pkcAwMBCDtJFXlqU+coMTXOj6ZDj7nHdNwfZbh70VmUvKIp443Dhl2er\nG2SajuMBrtxHkgLW3jeEycDMewDoEeTgYGv654+cxS+be4QxcxaETvkfvSVZk1Jr+N932Qdy\nGzQdNiYMduP9MmNkUgDukQUA+iEHAQAADUIEIQ3yVyyp+/UApdebDgX/Z+++45q8FjeAnzcJ\nYQsqIHvjoO69fgqutqh1bxERRaXOUue9vd111bonbqq46i5a66wLFREVEYWwl4CIbEKS9/fH\nizFVayEETsbz/dz7KeeYl/t4qz4m5z3vsXfqsu8ET6hPN5X6WH016fTj538lvlT87WlmIBjW\nynrLyJYGAh7FbACgTdCDFJWmJt0JGCUtq9oJJzRv2Hn3MX3LJnRTaZBSsXTKoYe/PcyWyP72\nV1nXxkZj2tp890lTAZYJAeDfoAfrQeqhPfEbVnJfMzymzc/bGnfuSTdSPUt5WdZ/6514hUdk\nC3jMIE+rvePaNDDAxncAoAk9CAAAWCBEEdIhClmfErpdfjOpoZ1D512/CYxN6KZSKw8yC4fv\niXrrKWp2Zgbze7kEe7nQSgUA2gQ9SFfRs9jImRPlzxo1sLHruu8k39CIbirNkvii9ItTT87F\n5SpuziCE2JkZHJnUrpszNmUCwIegB+vH/fkB+XerHiHDE+q3W7vTvHV7upHqmVTGfnn6yZab\nqYptZWUiDOrh9PUAD4rBAEDHoQcBAAALhChCarLPn479cSkrlXLDBp6tOm07SBjc7/9GpZSd\nduThr5GZUoXfp3yG8XJvvGtMK8eGhhSzAYAWQA9Sl3/35sMls6TlVWuEJq4eHbbsx+0yNfU0\np2TakUdvnePLY5jhrax3jcXBhADwj9CD9YOVSO4EjCwWPeOGAmOTznuOGdrY001V/yJSCkbv\ni0orKFecdLcw9uto99/+7rRSAYAuQw8CAAAWCFGEND1b+1P6iTBWUrVGaNG1V5tVW7BG+Jbk\n/LIvTsWeic2plL753arHZ8a0td01prUeH/93AYCS0IPq4FXM/Xuz/OSP3RY2tuiwcZ+RgzPV\nUBrpVvLLGUdjHmYVKU5am+qPb2+7YlBzPHEUAN6FHqw34oL8235DxS/yuKGhnWPHbQeE5o3o\npqp/FRLZ9KOPDt3PKlfYSsgwZEBTi11jW9s2MKCYDQB0EHoQAACwQIgipCzr3MnYH5bIh2ae\nrdut3803wN64tz3NKRm8M1Lx7ApCiGtjo/m9XGb1dKKVCgA0GnpQTTy/8Pvj7xbJH7utZ2rm\n7DfDcawf3VQaauP1lLXXkkV/r0sHcwO/jvbffdIU9yABgCL0YH0qy0i77TdUWl7GDYUNG7lN\nnWs7ZBTdVFQk5ZcO2XXv0d/vaNEX8CZ1tN82siWqCgDqDXoQAACwQIgipE+0bU1yaIh8aOre\nrN36PXoNzChGUk+VUjb41JPQexkFZZXyST7DdHYyH+RptbSvG8VsAKCJ0IPq4/mlc7E/LJaJ\nxdyQp2/gNHay67Q5dFNpqEopO/Xww8MPssor/3YwoXMjwzFtbZYPbE4rGACoG/RgPSt4cC9q\n7mT582P4hkYtv/3ZorsX1VDULLsoCr2X8eR5seJkB3uz6d0cp3V1oJUKAHQKehAAALBAiCJU\nAywb8+2Xzy+eJa9/MRrY2HXeeRRrhO9VVimdcvDh0YfZEtnffvP2a2oRNrGthbGQVjAA0Djo\nk6c5NwAAIABJREFUQbWSfnR/4s6NlUWvuCHD49mPmNB07pIPXwX/JD6vZML+6HtphbK//13X\ns4nJ6LY2Xw/woBUMANQHerD+5f514fH3i6VlpdyQEQjar99j3ro93VS0sCyZffzxr/cyXpVL\n5JNCPjPQs8nusa3NDHCGLgDULfQgAABggRBFqC6erf0p/dgB+QPWhBaWXXYfFzbUuXMpqikq\n/dWIvVHJ+WWKk4Z6/NFtrbeObGUg4NEKBgAaBD2obsrSU+/N9qvIfc4NGR5jO3Bk80Xf0k2l\n0TbfSA25nRqdUag4yTCkl2ujrSNbNrcyoRUMANQBepCKYtHTqDn+la8KuKHAxKRTyGFdPny3\nuEI6cu+9P57mKU4aCwXj2tmsG+ppJMQvTgCoK+hBAADAAiGKUI2Itq1NCdvNSqqen2lgZd1x\n+0F9Cyu6qdSWVMbOPv74XFxeUn6p4rypvuCzj6z2jGsj4OH8CgD4EPSgGhIX5EfPCyhKeCqf\nsRsyuvmCb+gl0ga/XE06/CDrdkqB4qSAx4xqY/PrhDY8HPcEoKvQg7RUvnp5d9qYssx0bqhn\natbl11P6jS3ppqLrTGzO9CMxmYXlipMWxsKALvZ4ODYA1BH0IAAAYIEQRaheEnduTNm/Uyau\n4Ib6FlZd9p7QMzOnm0rNzTr+eF9kRpHCc2kIIa6NjWb1dJrfy4VWKgBQf+hB9SQTV0QGTSyK\ne8wNGR7jOG6K+8xguqm0wPd/Jhx9kPUwq0hxsoWVybRuDqhLAN2EHqSoPCf7tu9nkpKqE/iE\nDRt12XdKx58fUyqWBh2LOfIgu1QsVZwf5Gl1eFI7Qz38KgUAFUMPAgAAFghRhGoned+2pL3b\nZBVV904aWNt23vUbziP8sIKyyklhD8/F5VRK3/yO5jHMQE+rCe1txrS1pZgNANQWelBtsTJp\n1Bz/guhIbsjw+bYDhzdf8A3BXrfakbHszN8e/x6bk/Hqb1s0erk28u9sP7mTPa1gAEAFepCu\n4sT4yMCx0vKqQxNM3Jp23v0bw9P1fxc5xeIpBx+ef5ar+M7Owdzgi94u83A7CwCoFHoQAACw\nQIgiVEevYqKj5vjL9xGauHp03H6Ib2BAN5X6S31ZNu9k7MmYHJnC72sDAW94a+udY1rjYEIA\neAt6UJ2xUundqaOK4uPkM4279Gz78zasEdZepZQdE3r/REy24t+C9QW8T5pbbh3Z0tpUn140\nAKhX6EHqXt6/82DhTGlZ1RqhRbdebVZtpRtJTey6k77jdtqt5JfyGYYh3u6NT/p3NNHHL1cA\nUA30IAAAYIEQRaimUn4NSdy1USauOo/QyMGpw5b9QnOdfuZMNUWmvRq1Lyo5v0xx0sJYOL69\n7TKfZjjlHgDk0INqTlJSHDl9XEmySD7TqEO3tmu2Y3eFSqy4JNpxOz0hr0RxUl/AG93WZsfo\nVkI+7qoB0H7oQXXw4tZfDxbNZGVVn0s07vp/rZdt5Onp0U2lJqYdfhR6L6NCIpPP2JjqL+zj\niq2EAKAS6EEAAMACIYpQfYm2rkk5sEP+XtGgiXWXPScEpg3optIIUhk787fH+6My3jq+wsJY\nOLGD7fKBzfWxmxAA0IOaQCaueLh0zouIa/IZ06aeHTbu5RsZU0ylNWQs++WpuNB7GXklYsV5\nSxPh5z2cvh7gQSsYANQP9KCaSNq9KXHnJvmwYbtO7dbtZnh4w0IIITHZRYN2RKa8fHP3p5DP\nDPqoyb5xbYxx6ycA1A56EAAAsECIIlRr8ZtWpR3Zx0qqVrkMmli7zQi27j+QbipN8bKsMvBw\nzPFH2dK//zZvYqo/r5fz4j5utIIBgJpAD2qKB4tn5V2/JB8KG1u4TJ5pP2wcxUjapLBcMu3I\no/NP8wrKKhXnvd0bH/JtZ2kipBUMAOoaelBdsGz0ghmKd8OYt+nQfsMe7JjnyFh29rHY3XfT\nyyrf3P3Z2Fg4uyfuZQGAWkEPAgAAFghRhOouOTQkafcmmbjq1n5hw0YufjPtR06gm0qD7Lyd\nti8y43rSS9nff7O7WxjP6uE4F0+nAdBh6EEN8mTZfzN/PyYf8o2MOmzcZ9rUk2IkLXP0YXbY\n/cxTMc8lsjd12dhYOKxlk00jPsITRwG0EnpQrTz+bmH2+TPyYQPPVh23HGDwr+a1+LySAdvu\nKB4kwTDkk+aWv/m1N9TD/0sAoAz0IAAAYIEQRagBEkPWp4Ttkq8R8oRCl8kznSdNp5tKs+y8\nnbYnMuNW0kvF3YRCAW9sW5vto1rhiaMAugk9qFkSNv+cdnS/TFzBDflGRu6B83HHjGqF3E5b\nfy05JqtIcdLB3GBYK2tv98ZDWzahFQwA6gJ6UN3E/rA469wp+dCsdfsOG/ZijVCuVCwNOhYT\ndj9LrHAqoWNDgwnt7X74tCmPYShmAwBNhB4EAAAsEKIINUPS3m3Je7fKPxVlBHwXv5ku/kF0\nU2mcLTdTf7malJBXojhpY6o/ubP9Tz7NaKUCAFrQgxon/fjBpN2bxfl53FBo3tDFP8h+BNYI\nVYllybwTsbvupBeLJYrz5oZ6w1tZ+7SwHNHamlY2AFAt9KAaiv1hSdYfJ8nrTynMW7dvv3Ef\nziNUtPtO+qYbKffSXylOOjU0nNfLeR4eDwMANYEeBAAALBCiCDVGxsnDSXu2VOQ+54Y8odA1\nYLbThAC6qTTRTxdFIRGpik+nIYS0sjH17Wi3wMuVVioAqH/oQU2UeeqoKGSt+GU+NxSYmLhN\nm4s1QpUTvSidfiTmquiF4hNHCSENDfU+bWG5fGBzB3MDWtkAQFXQg+rpybL/ZoYfk68RWvXu\n3+rHdVQTqR2WJTN/i9l9J00sVXg8DJ/xaWG1b3wbU30BxWwAoEHQgwAAgAVCFKEmEb/Mvxs4\npjwrgxvy9A2cxk12nTqHbipNVCKWTg57eCIm+63PPdvbmU3t6jCzuyOtYABQn9CDGqrwSUzU\nnMnSslJuKDA2cZvxhf2wsXRTaaWN11NC76XfTSt86y/Mhnr8WT2dVg5qTisYAKgEelBtxa34\nOuP0EfnQYfSkpnMWU8yjnh5lFY3fH/3WY7EbGemNbWu7ekgLA5wiAQD/Bj0IAABYIEQRapiK\nvJzI6ePKn2dxQ0ag5+If5OKH8wiVse1W6p676REpBYqTfIbp5txwRnfHCe1taQUDgPqBHtRc\nZZlpd6aMkBQXc0O+oZGLf5DT+Cl0U2mrnbfTTj7OOf80t0LhzCdCiGcTkzn/5zy9G+6qAdBU\n6EF1FvN18POLZ7mvGT7faay/28wv6EZST79cTdpwPfmtx8PYNNAPn9qprV0DWqkAQCOgBwEA\nAAuEKELNU5aeGvn5RPGLqhOY+AYGbtPnO4zypZtKc333Z3zIrbT0V+WKkwZ6PP9O9uuGfqTH\nx1n3AFoLPajR0n/bn7hrU+Wrqps8ePoGLn7TnSfhjpm6Enov40BU5vXEl4pnEwp4jE8Lq73j\nWpsb6lHMBgDKQQ+qNZaNnDH+1eMHVUOGOIz0bTp3CdVMaqpcIgs6GrM/KkPxiaMCHhPQxWHL\niJYM3s8BwD9ADwIAABYIUYQaSVJSdNtvWHl2JjdkBHpOEwLcpuFZo0piWfLdn/EhEWkZf18m\nbGZpHNDFYYE3DiYE0E7oQU1XkiyKnDlBUlTIDRmBwH1GsONYP7qptNvB6MytN1OvivIVJ+3M\nDOb1cv4S5/gCaBr0oJqTFBfdnTa6NC2FGzI8nov/5y7+M+mmUlv7ItP3RmZcTciXKnzI09HB\n7PMeTpM72VMMBgBqCz0IAABYIEQRaipx/ovbU4aL83K5IcPnO4yc6DF7Ed1UGk0slS04Hbfz\ndnqJwt4IQkj/Zhbj29niXSWA9kEPaoGs8BMJ29fI21CvgZn7jGDbz0bSTaX1ll8SrfsrObuo\nQnGyrV0D/072c/7PmVIoAKgx9KD6k5aV3pvlV/T0MTdkBHyXyZ+7TJ5BN5U623Yr9ccLCWkF\nb+771OMzn33UZFw72xGtrSkGAwA1hB4EAAAsEKIINVh5dkbkzIkVuc+5IcPjufjNcAmYRTeV\npssvrRwTev9S/AuZwh8OfIbp6mQ+oo31/F4uFLMBgGqhB7VDVviJxF0b5bvqBaYNXP2DHEZP\noptK6xVXSOeeeLw/KlPxYEKGYT5uanFoUrsGBgKK2QCgmtCDGkFaXh7hO7g8K4MbMny+wyhf\nj1kL6aZSZ+US2eCdkRee5SlONjISTupou3JQCxwhAQBy6EEAAMACIYpQs0mKi+5OH1uaksQN\n+cYm7jPm2w8bRzeVFlh2UbTjdlrii9K35tvYmn7czPLrAR5GQvyuAdB46EGtUZ6dcdtvmKSk\nmBvyDQxd/IOcJgTQTaULNl5PWX8tOT6vRHHS3sxgXi+XYC/cUgOg7tCDmqIi9/m9zyeVZabJ\nZ+yGjW0e/D+KkdTf13/Eb7yekl8qVpx0bGgwr5cLbvoEAA56EAAAsECIItR4soryO1NHlyQl\ncEO+oaGL3wynidPoptIOQb893heZ8dYTRwkhlibCBV6uOJsQQNOhB7VJUXzc/Tn+lUWvuCHf\n0NB9+hf2IyfQTaULWJb8749ne++mKz7PjRDSy7XR1K4Ovh3saAUDgH+FHtQg4vwXkTPHl2W8\nXiNkiONYf4/PF1ANpe7KJbLAI4/CojIlsr997NPJ0ezL3q6j29rQCgYAagI9CAAAWCBEEWoD\n8cv8iAkDKwurPhVlBHqOoya64+2iKvz2MPuqKP9ETPZbn3syDPF2bxzQ2WF8e1ta2QCgltCD\nWibz5BFRyFpxwUtuyDcwcJkyy2n8FLqpdIRUxn5+7PHeyPTyyjdPHDUQ8AK7Oa4b6kkxGAB8\nAHpQs0jLSqNmTy6Mi+GGjEDgGjDb2Rc3hv6L3XfSQ+9l/CXKlyp8+GMiFAxr1SRkdCt9AY9i\nNgCgCz0IAABYIEQRaomSpISouf7i/BfckBHwXfxmuvgH0U2lNU4/zonKeHUoOuvJ82LFeWOh\nYExb622jWgl4OMoCQPOgB7VP1rmTCZt+Fr+sakOeUM/ZL8jFbzrdVLpj843U1VcTFR/QzTCk\nk4PZ1K6O07o4UAwGAO+FHtQ4skpxZODYovg4bsg3MnKdMttxrB/dVBph/bXkX64mpbwsU5xs\nZmm8uK/b5E72tFIBAF3oQQAAwAIhilB7ZJ09mbhjffnzLG7IEwpd/IOcfQPpptIy2yNS119L\neZxdpDjZoonJQm9XvLEE0DjoQa2UcfJw4o4N8jVCRsB3mzYP5xHWGxnLLjgdt/tO+suySvmk\nvoA3qo3NrjGt9fi4nwZAjaAHNZGkuOjOlJHy8wj5xsZdQ08bWFnTTaURWJYs+j1u/bXkCsmb\nze6GevyALg7rhrbgMWgoAJ2DHgQAACwQogi1Ss6lc/FbVpdnZXBDRsB3GjvFbcZ8uqm0jIxl\n5598suduemH5m7MJ9fhMX3eLoa2aTO/mSDEbANQIelBblWWkRc32K8/J5oZC84ZugfNtPxtJ\nN5VOORSdueZq8u3UAsVJdwvjiR1s/9ffA5/BAqgJ9KCGKk1PiZw+rvJV1Z+x+hZWXfefFhib\n0k2lKbKLKj4/9vhUzHPFgwlb2ZjO+T/nqdjsDqBj0IMAAIAFQhShthEX5N+dMlL+qSjD4zn7\nzXANmEU3lfbZH5V55EHW6cc5MoU/Q3gMM7CF1RG/djjKAkAjoAe1WPYfp0U71svvmOEbG7tM\nmoF9hPWJZcl/zj7dcTstt1isON/WrsFCL9dxOMEXQA2gBzVX+fOsiElDpCVVxx8YO7t13HpA\nYII1wur66aJozdWkvJI3DWUg4I1uazPkoybDW2M7JoCuQA8CAAAWCFGEWkicnxc5c2JZRio3\nZPT0XHynu0zBeYSq9/2fCeuuJb8o+dtHnx4Wxgv6uOKwJQD1hx7UbunHwxI2rZKWl3NDvpGR\n0/ipLpNn0E2la44+zD76IOu3h9mKGzXMDfUmdrBbM6QFTvAFoAs9qNFSDuxK3LFeJq56J2Li\n1rTjtoN8AwO6qTRIYblk+J6oSwl5ip8JNTISTu/m8JNPM3q5AKD+oAcBAAALhChC7ZRz6VzS\nni3FifHckOExtp+Naf7l/+im0krlEtmc47EnYrIVd0gIeMyoNjbDW1uPxP2nAGoMPaj1ikVP\nI2dMkJaVckNGwHf2nY5d9fXv5yuJO2+nx+UUK062s2uwsI/r2LbYSghADXpQ04m2/JJ8YAd5\n/ZGGiVvTTjuO8PT0qIbSMD9eEK2/npRT9Lc7Pls0MfnSy3VKZ5wxD6Dl0IMAAIAFQhSh1hK/\nzL87dVT586yqMUOa9Pm05berqYbSWidinp9+/HxfZIbiDgkzA0FAF4fVn7WgGAwAPgA9qAuy\nwo/Hb1olP6iJJxQ6jpviNm0O3VS66atzz9ZeTS4WvznB18pUOLOb0zcfe1BMBaDL0INaIGHT\nqtRDe9jX70Ese/ZpvXwj3UgaJ+x+5q/3Mi/E54klMvmkUMCb3Ml+8/CP+NjsDqC90IMAAIAF\nQhShNhO/zI+cMV7+rFFCSJN+A1t+s4piJO32y9WkFZdFb91/2snRbEZXpyldcP8pgNpBD+qI\nrLMnE3duKM/OrBozxGHExKbzllINpaP23E3feTv9RnK+/C/gDEP6elhM6+Iwuq0N1WgAugg9\nqB2erV+RfjSUlckIIYQh9sPGN/viv7RDaZ49d9O33UqNSClQnGxtYxrUw2l6N0daqQCgTqEH\nAQAAC4QoQi2Xe+1SStiuVw+j5DNWvfu3/H4Nw+NRTKXFSsVS/0MPT8Q8V7z/1FjIH9PWZvBH\nTYa2bEIxGwC8BT2oO7LP/56weVVFXg43ZHg8j1mLHEb70k2ls77+I371lcQSsVQ+49TQcEY3\nx8V93SimAtBB6EGtEfvD4qxzp+RDuyGjmy/4hl4cDfbDnwlr/krKL62Uzwh4zORO9gM9rfBW\nDkD7oAcBAAALhChC7Zd77VL60dD8e7flM406dmu3Zgdh8LCUuhJ6L2PzjZS37j9tZWM6ob3t\noj749BNAXaAHdUr2H6dT9u+Qn86r18DM/fMFtgOH002ls7bcTN0ekRqdUag4+Ukzy4CuDji+\nF6DeoAe1BiuTRk4fX/jkkXzGduDwFkt+oBhJcxVXSEftjfrjWZ7ih0UWxsJBnlYDW1iNbIOS\nAtAe6EEAAMACIYpQJ7AyadQc/4LoSPmMRU/vNss2Yo2wTi0Nf7rtVqri/aeEkO7ODYN6OE1o\nb0srFQDIoQd1Te6V88/WLy/PyeaGQgtL9+lf2Hw6hG4qncWy5ItTsVtvppYr7Lm3bWAQ7OXy\nRW8XQsj1xJe9N0fIWNZYyCte9gm9pABaCz2oTWQV5VFzp7yKia4aM8Rl0gxXnLmrrG/+iN92\nKzW7qEJxspGR3pi2tgOaWWA3IYB2QA8CAAAWCFGEuoKVSWO+/jLn8h/yGas+n7T67heKkXTB\nwejMg/ezTj3OUfyjxkCPN6yl9c4xrQz18FsPgCb0oA4qS0+97T9cWlbKDQ2sbd0C51oPGEw3\nlS5bfy15663UJ8+L5TM8hhnQzMK3g10TU/1+W988/6CZpVHcYi8KEQG0F3pQy8gqyu/N9iuM\nrdpHyOjpuU753Nk3kG4qzXUi5nlIROrZuNy3PjQyFgoGe1run9iWh9ttATQcehAAALBAiCLU\nLQ+XzM69dlE+bNLPp+U3P1PMoyO+PR//673MhLwSxckWTUwWebv6dbKnlQoA0IO6qfBJTNQc\nP2lZGTfUt7ByC5xr4zOMbiod9/lvj3fdTSuvfLOV0FRfMKCp5W+PshRfJuQzFSs/rfd0AFoL\nPah9WInktv/wkqQEbsgI9Fwmz3CZPJNuKo228XpKeFzOpfgXFQr73QkhLW1Mv+jl4t8Z7+YA\nNBh6EAAAsECIItQ50V8Gvoi4XjVgiHX/QR99tQLPGq1rZ2JzriXmb7uV+qpcIp9sZKQ3u6fz\nNx97UAwGoMvQgzor9eAe0fY1MnHVI6CFjS1c/GbaDx9HN5WO23wjdeVlUcrLsg+8hs/jSVbh\nWaMAKoMe1EqVrwruTBlR/rzqBgtGIHCf8YXj2MlUQ2m80HsZYfcz/4jLkyk+GEbAm9LZYcNw\nT2wlBNBQ6EEAAMACIYpQ97Bs9IIZLyKuySesevdv9eM6iol0x8HozEP3s04/zpEq/MnTy7XR\njO6O49rhVEKA+oYe1GVJuzanHNgpLa9ajhKYmLjPCLYbOoZuKh0nlsrmn3jya1RGocLNNIr4\nDE/KygghDCGy1T71mw5AC6EHtVVFXk7kjPHl2ZncUNiosfuML7BXvva2R6SefZJ78vFzxY+R\nmluZfNHbZVpXB3q5AEBJ6EEAAMACIYpQF7Ey6b0g3zcn2BNi0dO7zfJNFCPplGUXRSsuiRS3\nEtqbGXzh5TK/lwvFVAA6CD2o41IO7EratUm+RqhvYdV07lIr7wF0U+k4vQVnJbLq/uXcWMgr\nXoYNhQDKQw9qsezzp0Xb1ymuEbpMDsJeeZVYdlH0y9WkvBKxfMZYKJjf27mLo/kgTyuKwQCg\nptCDAADAox0AgAKGx++wKbRx5x7ymbzrl58s/4piJJ2ypK/bysHN29uZyWfSX5V/eSpu1N77\nJ2KeUwwGAKBTnMZPcf/8Sz0zc25YkZeTHLot9+oFuql0XGdHs39/0WslYhkTHO4Tcqfu8gAA\naCjrAYOdxgfwhPrcUJz/ImnXxowTh+im0g5L+rptGdmyj0dj+UyJWPLDnwlLw59uuJ5MLxcA\nAAAA1Bh2EOJOGd3FyqQPF8/Ou3mFGzI8npNvoNu0OTQz6ZhFZ+LWX0suVzju3rWx0ZyeTm4W\nxoM8ra4nvuy9OULGsnyGSH7Gg9QAVA89CISQ9N8OPNu4gq2sOo/QwMbO1f9zG5+hdFPpsgZL\n/yiqkNboEhQlgHLQg1ovZf9O0Y718o7jGxt7BC2wGzKabiqtsfJy4qrLiYpbCXkMM7CF1XH/\n9nweTiUE0ADoQQAAwAIhilDX3Z8/Lf/uDe5rRsB3GOnrMWsh3Ug6ZdONlA3Xkp/mlshn9PjM\nJ82thrVs4tjQsN/W2/L5T5tbhE/rTCMjgNZCDwLn2foV6UdDWVnV7Rr6FlbOfjPsh42lm0rH\n6S88K5bW7G/pWCYEqCn0oC5IPxaWsG2NtKSYGwrNG7pNn287eCTdVFpj7930DddT7qW/Upxs\naWO6uI/bhPY4Yx5A3aEHAQAAC4QoQl3HSiR3p44qSngqn7EdOLzFkh8oRtI1px4/PxyddSg6\nS/HUJT0+M6hFk+Mx2YqvFPKZipWf1ntAAK2FHgS5Z2t/Sj8RxkqqNq7xjU26HzonNG9EN5WO\nuxj/QvFGmWqyNNbL+a5/XeQB0D7oQR2RfjxMtH2tpKiIG/INjdynz7cfOYFuKm3y3Z/xOyLS\n0grK5TMNDAQzujmuGNScYioA+FfoQQAAwBmEoOsYgaD9plAjR2f5TObvxx59NZ9eIp3z2UdN\nfp3QdvnA5jam+vLJSin71uogIUTK4kk1AAB1oum8pW6B8+VnNUlLiu/P8WclErqpQAm5JZW8\n4HDaKQAA1Ij9sHGuU2bzDQ25obSsVLRzfVb4CbqptMn/+nusH/bRpI52DFP1fq2wXLLycmLH\nNTdCItLoZgMAAACAD8AOQtwpA4QQ8vziufRj+wse3JPPOIyc2HTeUoqRdNCxh9nnnuYde5T9\nQuEcC0V8hidlZQRPUQNQEfQgvCXtcKhoxzppaSk3tOjeu83KLXQj6bhVl5MXnolV7lo8mhvg\nX6EHdUra4X1Ju7dUFlU9DNPAyrrr/jN8QyO6qbTMD38mrLiUWCx+c4NRIyPhl14uS/q6UUwF\nAP8EPQgAAFggRBFCldyrF5L3hxTGPuKGDI/nMjnIZUoQ3VS6Rm/BWcUHjX5YM0ujuMVedRkH\nQMuhB+FdSbs2Je3ZIj+P0Lr/wI++XkU3Eiw+E7/icrwSFzKEyFbjfhqAf4Qe1DWZp4/Gb1wp\neX0eoWlTz047DjE8/NtXpX2RGZtvptxOKVCcHNjCyr+z/YjW1rRSAcB7oQcBAAALhChCeIOV\nyaJmTSp4GMUNeUI916lzncZPoZtKp/TYcPNmcsG/v+41fPQJUBvoQXiv2B8WZ507JR86jJzQ\ndN5/KOYBuX2RmX5h0TW9CvfTAPwT9KAOSgnbLdq2lpVUckOLbr3arNpKN5L2ORObcy/91Zqr\nSa/K/7aVcHFf1wVerhSDAcBb0IMAAIAzCAHeYHg8xzF+8vMIZeLKxB3r0w6HUg2lW27M7t7d\n2bz6r2cJYYLDmy+/UmeJAAB0ToulP5m37Sgfph8/mBy6nWIeqKVnuaW0IwAAqAuncf6Oo33J\n65PN8279FfPNAqqJtNAgT6uvB3is/qxFS2tT+WR+qXjp708/3n7n13sZFLMBAAAAgCLsIMSd\nMvA28cv8uwEjy3OyuaHQvKHH7MXWHw+mm0rXCL4Ml9bwDydjIa942Sd1EwdAO6EH4Z+wEsmd\ngJHFomfckNHTcwuc5zTOn24qIIQk5JV6LLtSw4sYQliCbfcA70AP6qzYH5ZknTspH9p8OtTz\nPz9RzKPFph5+FHovQyyRyWcaGur9p597sJcLxVQAwEEPAgAAdhACvE3YsJHLlFlC84bcUFzw\nMmn35ucXz9FNpWskP/tcmNGlRpeUiGX6C8/WUR4AAJ3CCAQdNu4zsLblhmxlZdLuTcmhIXRT\nASHE3cKIXe2zyNujJhex8n9g2z0AACHE8z8/NWzXWT7MOnsidhkepl0ndoxutW1kS9fGRvKZ\nl2WVC87Efbz9zsHoTIrBAAAAAIBggRDgvWwHDXeeNIOnb8ANS9NTkvdueX4Ri0/qTixlmeBw\nwZfhtIMAAGg8gWmDjlsP6FtYcUNpaWnizvVJOzfSTQWc5YM82NU+3m6WSlz7NLeUF4yiBADd\nxjDt1+9u1KGbfCL77InEHRsoJtJikzvZ/zy4RVB3pwYGAm6GZdnzT/MWno7beTuNbjbRNuzt\nAAAgAElEQVQAAAAAHYcFQoD3cxjt6zxhKvP6MQvFifEJm1ZV5OXQTaVT+no0rukmQo6UJfjo\nEwCg9vQtrNwC5wobNuKGrESacnBP5qmjdFOB3KWgTnvHtVXiQm4rIbbdA4BOY5g2P281b1N1\n5i4rY1MP7ck8jY6rE8NaNdk04qPVn7VwtzCWT6YVlAefevLt+XiKwQAAAAB0HM4gxLO24UMS\ntqxODdvNyqqOTDBycum69yQjENBNpWumH4ndHpGsxIU8QqQ4bAngn6EHoTqywk8kh24rTUvh\nhgZW1m7T5+NoXrWy6nLywjOxyl3LZ4jkZ3Ql6Cj0ILAy6Z3Jw4sTq9aohBaW7oHzbXyG0k2l\nxaQyNvBIzIGojPLXpxIyDPm4mWVAF4eRra3pZgPQQehBAADADkKAD3GfGewwepJ8RbA0Jenh\n4ll0I+mgbaM82dU+7GqfwZ5NanShjBAmOHzFJVEdBQMA0AU2PkNd/GfpmZlzw/Kc7KQ9myUl\nxXRTgaIF3s7sap/Ars5KXCtlCRMcbrIEZy0DgC5ieHwn38A3x8/n5T7bsCz9WBjdVFqMz2N2\njmm1anCLhoZ63AzLknNxuf8Jf7rrdjrdbAAAAAA6CAuEAP/CY9ZC14DZDK/qN0texF+Pv11A\nN5LOGtnGRomrlvz+VOVJAAB0ivWAgc6+gTxh1Wd5pWkp0cGBudcu0U0Fb9k2yjN+iZdy15aI\nZTjBFwB0k3X/gc6TZvANqo6flxQVJYasTzsSSjeVdpvV02nFoOZtbE3lM89yS4KOxcw5Hnsm\nFod6AAAAANQfPGIUW+mhWmJ/WJx17pR8aDdkdPMF39CLo7v2RWb6hUXX8CKGEJb7hwxPHAVQ\ngB6EGknaszVpzxZWUskNG7bv0n79brqR4L36bL57WZSr3LXNLI3iFnupNA6A+kIPglxyaEjq\ngV2VRa+4Id/AsNuhc/qNLemm0m4sS2Yff7ztVqpE9uZTqe7ODT/v4TS+vS3FYAC6Az0IAABY\nIEQRQvWwbHRw4Is7N7gRw+c7TZjqFjiXbiidNS704cFoJR9B82lzi/BpnVWbB0BDoQehpp6t\nX5F2eK98aOU1oNX3awjDUIwE/6TbuoiI1HwlLsT9NKA70IOgKPPkkWcbl0vLyrihkZNr130n\nGfzaqGPLL4nW/5WcVVQhn7EwFs7s7tTZ0czcQK/35ggZyxJClg9stqiPG72YANoJPQgAAFgg\nRBFCdbEy6f25AS/v3+GGfAND95nB9iPG002lsxLySj2WXVHuWnz0CcBBD4ISYn9cmnX2hHxo\n5TWg1Q9rKeaBDxi8I+rMk2z5Tvoa4REiRVeCtkMPwlsyTh5O2PKzpLjqnF2L7l5tVm6mG0kX\nHH2QvflmyuWEF4qTLW1MB7ZosuJSgnzG0lgv57v+9Z4OQJuhBwEAAAuEKEKogdyrfyaErC9N\nFnFDvpGRR9ACu6Fj6KbSZbXZSmgs5BUv+0S1eQA0C3oQlBMdHPji9nX50GHkxKbzllLMAx9W\nmyeO4pYa0G7oQXhX0p4tSbs2sTIZN7QfMb7Z/P/SjaQjFp6J23QjpVQslc+YGQhflYsVXyPk\nMxUrP633aABaCz0IAAA82gEANIll7/6uk2cKGzXmhtLSUlHIuqyzJ+mm0mVhvq3Z1T6BXZ2V\nuLZELGOCw5svv6LiTAAA2q7Nqi0WPfvIh+knwkTbsIlQfV0K6hS/xEu5a1lCmOBwn5A7Kk0E\nAKC+XCbPbNL3zRJUxvGDSbu3UMyjO1YOar5mSIuuTubymbdWBwkhUhZPNQcAAABQJewgxJ0y\nUGPpxw8mhqyrLKw6wd7I3sl12hzFt5FQ/y7Gv+i39bbSl+NgQtBN6EFQWt71yylhuwoe3OOG\njJ6e4+hJ5q07WPTwopoLPqQ22+4JIc0sjeIWe6kuDgB96EF4P5aNnDnhVUw0N+IbGzeb91+b\nT4fQDaUjzsTmRGcUrrySWFQuefdH+QxPysoINrgDqAh6EAAAsECIIgRlZJw4lLBltaSk6nQK\nYxd3t2lzLXv1pZsK9kVm+oVFK3ctnyGSn/EmE3QLehBqI+fyH6Lta0vTUuQzdoNHNV/0LcVI\nUB3d1kVEpOYrdy2e7QZaBj0I/0RaXh7hO7g8K4MbGljbugXOtx4wkG4qXaC34KxEVt0PqXDn\nCkAtoQcBAACPGAVQht3QMU4TAsjrB5yUJCWIQtY9vxBONRSQSR1t2dU+bW3N//2l75CyeIoa\nAEANWHl/7DZtroGNnXwm4/SRx98uoBgJquPW3K6LvD2Uu1YsZZngcKv//anaSAAA6oZvYOAy\naTrf0IgblmdnJu3b+vziObqpdEFnR7Pqv/hpbikvGO/BAQAAAJSHHYS4UwaUl7BpVcrB3eT1\n7yEjJxe3qXOsvD+mGgoIqd0TR/G8GtAd6EGovezzZ9IO7yuMi5HP2A0Z03zB1xQjQTWtupy8\n8EyscteiK0E7oAfhw5L3bUvctZGVSLmhgY1dp5BDQvNGdFPpAqaGy344MAJAOehBAADAAiGK\nEGolbtW3macPs6+fgmLk6OwaMBvnEaqJ2jxFjUeIFB99grZDD4JK5F79M3n/jsLYR9yQEeg5\n+05zDZhFNxVU0/QjsdsjkpW7Fk8cBU2HHoR/Jdq+LuXXEFYm44amHs077TzK8PAopjrXYOkf\nRRXS6r8eb98AlIAeBAAALBCiCKG2RNvWpuzfIX/TaNaynfPEqRY9vemmArk+m+9eFuUqdy0O\nJgTthh4EVcm9din96K/59yK4IcPjuQd96Th2MtVQUF1Kn+DLEMISYmmsl/Ndf5WnAqgH6EGo\njviNK9OOhsr3EdoOHN5iyQ90I+kIJZ4KYyzkFS/7pI7yAGgf9CAAAODGN4Dacps+z2GMHyMQ\ncMNXMfeT9m3NvXaJbiqQuxTUKX6Jl3LXcgcTrrgkUmkiAABtY/l/feyGjjVycOKGrEyWcnB3\n9rnTdFNBNXEn+A5qYV3TC1nCEEJySypxBBQAaDGPWQudJwbKj5/POns8YdMqqongH5WIZThX\nHgAAAKD6sIMQd8qAasRvXJl6cI98aOX9sc0nQyx6eFELBO8YvCPqzJNs5a7FYUugldCDoFrP\nL4QnbFtTnpXBDYUNG7sHfWnz6RC6qaD6EvJKPZZdUfpydCVoHPQgVN+DhUF5N69wXzM8nrNv\noOu0OTQD6Qzl3sQ1szSKW+xVB3EAtAp6EAAAsIMQQDU8Zi20HjBIfmNpzuU/nl8Mz7txhWYm\n+LvTU9tfmNFFuWtZQpjgcP2FZ1UbCQBAmzTp5+M0fgrfwIAbil++SA7dJikpopsKqs/dwohd\n7VPLrmy+/IpKQwEAqIVW3/9i4taU+5qVyVKPhqYf3U83ko44PbX9ykGeNb3qaW4pdrcDAAAA\n/CvsIMSdMqBKMd98+fzCm/chVn0+afXdLxTzwHtNPxK7PSJZ6ctxOypoDfQg1IWk3ZtTwnZJ\nS0u5oZG9k/vMYMve/eimgpqqzW5CHiFSbCUETYAehBrJuXw+ac/mYtEzbihs2Nhj9mLrAQPp\nptIpn+28dzr2eY0uwUG5AB+AHgQAAOwgBFClJv18GrRoJR/mXDr36H9fUMwD77VtlKdyhy1x\ncDsqAMAHuPgHOYyaxPCq/pJZmp6Se+0C3UigBG434SJvDyWulRHCBIejKwFAy1h5D3AaN0Vo\n3pAbil++SNy5PufyH3RT6ZSRbWxqekluSaXJknN1EQYAAABAC2AHIe6UARWTVZQ/WBiUfy9C\nPuMaMMvFP4hiJPiAPpvvXhblKnetkM9UrPxUtXkA6hN6EOqOaOualAM7WZmMEMLwGLth45rN\n/y/tUKCk2nQlnyGSn7GbENQUehCUkHHy8LP1y2UV5dzQtKlnp5BDDH4J1aNu6yIiUvOr/3oc\nkQvwT9CDAACAHYQAKsbTN7AfObFRpx7ymbQjoRknD1OMBB9wKajT3nFtlbu2UsoyweG4IxUA\n4F1uM+ZbdPfivmZlbMbxsKRdm6kmAuVdCuqkxPlPHClLmOBwn5A7qo0EAECL3ZDRTuOnMIKq\nD9OLnsU++mo+zp6vT7fmdh3b1r76r+eOyMXWdgAAAIB3YQch7pSBOpF7/VJiyHr5ARUGVtZu\nM4Ot++OACvWl1PYIhhCW4KZU0FjoQahTskpxZODYovg4bsgT6rsGzDJ2drPo4UU1Fyivlof4\n4iAoUDfoQVBawpbVqWG7WBlLCCEMsR86rnHX/0PB1Selz8r9tLlF+LTOqo4DoJHQgwAAgB2E\nAHXCsmcfh5ET+cbG3LA8Jzv1wM7cK+fppoIPuBTUKX6JVw0vYuX/wB2pAABv4ekJO249YOzs\nxg1l4oqk3ZtK05KphoJa2TbK88KMLkpfnltSyQSH6y88q8JIAABUuM8MbtLv9d2fLMk4fbQw\nLgb7COsTd1auEufKn43Lwxs3AAAAAA4WCAHqiu3gka7+n/OEQm5YFB+XcnBP7l8X6aaCD+De\nZCr90Se3TGj1vz9VmwoAQHPx9A2cxk8RWlhyQ2l5uWj72qSdG+mmgtro69FY3pXGr/+SUyNi\nKYtlQgDQAi2W/NigRSvua1ZSmbx3y8v7eJxyfTs9tX3N7/KseuOGx18DAAAAYIEQoA45jp3s\nONqP4VX9RnsVE51yYGfuVSwgqTXuo0+lDybMLank445UAIDXbHyGuQfO17ew4oYysThp37ak\n3VvopoJa4rpysKeV0t+BWybEHg4A0Fw8PT2n8QEGNnbckJWxaUdCRdvW0E2lg7i7PJV4+3Y2\nLg93qwAAAICOwxmEeNY21Lm4Vd9mnDwkHxq7uLtNnWPZux/FSFBNtTlsSchnKlZ+qtI4ACqG\nHoR6k3nmWNLujeXPs7kh38jIffoX9iPG000FKtFtXUREan5tvgMaE2hBD0LtZZ8/nRwaUpKU\nwA0ZHs9lcpDLlCC6qXTW4B1RZ55k1/QqHJELOgs9CAAAWCBEEUJ9iF32n6zw469PrCNmLds6\nTZxq2bMP1VBQXZ4rrj/JKVTuWh4h0tU+qs0DoCroQahP2X/+nrR7U2lqMjcUGJu4+Ac5jp1M\nMxOoSEJeqceyK7X/PviIFuoZehBUIufSOVHIutK0FG4oNG/oNuML20Ej6KbSWcqtETKEyPCu\nDXQPehAAAPCIUYD64LnkR4cRExWfNZp6YFfu1Qt0U0E1xS7quXKQp3LXygjBI9QAAAgh1v0H\nukyeKWzUmBtKSopF29ekHNhFNxWoBPd4t0EtrGv5fXJLKgVfojEBQMNY9fnENWC2sYs7NxQX\nvHy2YUVW+HG6qXTW6antlThUnjuVsPnyK3WQCAAAAEB9YYEQoJ406tTdfsQEhsdww4KHUfGb\nf84+d4puKqimBd7O7GqfsW3tlbucxTIhAAAh1gMGuwXM0TMz54YycWXKryEZJw/n3bhCNReo\nhnKfyb5FyhLUJQBonCb9fBxHT+Ibm3BDaUlx2pHQ3OuX6abSWdxBuYFdnWt64dPcUtynAgAA\nADoFjxjFVnqoP3k3ruRdv5xx+oh8xsjJxW3qXCvvARRTQY3si8z0C4uuzXfA42tAfaAHgYrM\n00eT9mx+cx6hsbGr/yzHsX50U4EKXYx/0W/r7dp/n2aWRnGLvWr/fQD+CXoQVCv96H7RjnWS\n4mJu2KhDF/tRvjhXgiKlT5TH4bigI9CDAACABUIUIdSrvBtXXty+nnHiICuTcTNGzm6u/p83\n6fsJ3WBQI9xHn8ZCYYlYrNx3wDIhqAP0INCSeebYs3U/SctKuSFPKHSeNMNl8gy6qUC1Vl1O\nXngmtpbfBEf5Qp1CD4LKiULWJ+/bKj973sr741bfr6GaCEifzXcvi3KVuPDT5hbh0zqrPA+A\n+kAPAgAAFghRhFDf8m5cKXoam7h7o/x9o5Gjs8vkmdYDBlPNBTWm9B2pioyFvOJlWB4GOtCD\nQFHa4dCk3Zsri15xQ0ZPz23aXGMnV4seXlRzgYop/bGsouUDmy3q46aSPACK0INQFx4unpV7\n/ZJ8aDdsbPPg/1HMA4SQhLxSj2VXlLgQt3WCdkMPAgAAziAEqG8WPbxMm3k6KJxHWJqanLhz\nY87lP+gGg5raNsqTXe3T1bFRbb5JiVjGBIdb/e9PVaUCANAIDqN93Wcv1Lew4oZsZWXS3q3l\n2Rl0U4HKXQrqVJtDfDmLf3+KgwkBQFO0Xr5R8WaXzJOHUg/upRcHCCHE3cKIXe0zqIV1TS/k\nzpJfcUlUF6kAAAAAqMMOQtwpA9SItq1NObCTlUq5YYPmLZ0nTbfs1ZduKlCC0nekvoXPEMnP\nuEEV6g96EKjLOnsyceeG8uxMbsjTN3CZPNPZdxrdVFBHFp+JX3E5XunLsY0DVA49CHUk96+L\nKWG7Xj26zw0NrKzdps+3/hgPjKFP6VNy8chr0EroQQAAwA5CAGrMWrZ19g1kBFV/DyuMi0kO\n3Z579QLdVKAE7o7UWm6PIIRIWYIdEgCgU2w+HeLiHyQ0b8gNZRXlSXu2pB0OpZsK6sjyQR7s\nap+VgzyVu5wlRH/hWdVGAgCoC5a9+jqO9jOwtuWG5TnZyaHbcy6fp5sKCCF9PRqzq3283Sxr\neqGM4J0aAAAAaCHsIMSdMkBT3o0rL+/fST20R34eoYlbU9cpsyx796OaC5Sk9B2pbxHymYqV\nn9b++wB8GHoQ1ETmySOiHevFL19wQz0z86Zzl+BoXu1W+8336EqoPfQg1Km0I7/Gb17FVlZy\nw0adejiMGG/R05tuKuCsupy88EysEhdiKyFoE/QgAABgByEATRY9vBq262z32RhSdRwhKRY9\nyzh9mGooUB53R+oib49afh+xlGWCw3HcBQDoCNsho9wC5xo0qToZqPJVQWrY7twr2GmhzbjN\n9/FLvJT+DhKZ6tIAANQBh1ETnScEMLyqT13y797IOnsi78YVqqGgygJvZ+XeuMlwKiEAAABo\nEewgxJ0yQF/ejSu51y5mhR9nZVWfddkPH9/si//STQW1tC8y0y8suvbfp5mlUdxir9p/H4B3\noQdBrWSe+e3Zup+kZWXcsFGnHg4jJ1j08KIaCurJ9COx2yOSlbsWWwlBaehBqAdPlv038/dj\n8qHt4BGWPfui3dSH0jva0T6gBdCDAACAHYQA9Fn08LL8v742A4fJZzJOHU7as5ViJKi9SR1t\n2dU+F2Z0qeX3eZpbarLknEoiAQCoM9tBIxxGTZJvqc+PvJEfeQs7LXTEtlGee8e1Ve5asZRt\nvvyKSuMAAKiMZa9+Ft295MPM07/lXDqHdlMfSh8nL5ayfJxKCAAAABoOC4QAasGih5dlz77m\nbTpyQ1YiST8amn3uNN1UUHvcQ0fZ1T5dHRsp/U1KxDKfkDsqTAUAoJ7cAufa+Ly+XYYl6ccO\nFCU8xaeoOmJSR1ul76p5mltq9p8/VJsHAEAlLHp42X42yrxtR/lM1h+n8u/dRruplTDf1isH\nedb0KhlhmOBwLBMCAACA5sICIYC6sOjh5TByoqFt1a2L4oKXCdt+yT7/O91UoCq35nZlV/t4\nu1kqd/nZuDycdQEAusBz8Q9mLat2krFSadLuzUVPY+lGgnojv6tGiZ0cheVSfEQLAOrJsqe3\n42g/8zYd5DPpx34tFj2lGAnexZ1KWMNlQpa8PpUQe9kBAABAE2GBEECNWHkPcPYN5OkbcMOK\n3OeikLXZf2KNUHtcCupUm92E/z2LzxEAQNsxjNPYyUb2TtyIlVQm7duSenAv3VBQz8J8Wyvx\nxFEZIfh8FgDUk2Wvvo7jppi1ascNWYk0ae+2lP076aaCd3HLhINaWNf0wqe5pTzcpwIAAACa\nhmFZlnYGanAYL6inlP07RSHrWUklNzRydHabNtfK+2O6qUDlFp+JX3E5XunLhXymYuWnKswD\nOgg9CGor+/wZ0dZfynOyuSHf0NBt2jyH0b50U0H967P57mVRbo0ucWpssHFoy0GeVnUUCbQJ\nehDqWe6V8wnb15WmJnFDnlDoGjDbaUIA3VTwXgl5pR7LrihxoaWxXs53/VUdB6BOoAcBAIDO\nDsKCgoJ58+Y5OzsLhUJbW9upU6dmZWV9+JKUlJSAgAA7OzuhUOjk5BQcHFxUVCT/0T179jDv\n88MPP9TxTwVA9ZwmBDiNn8IIBNywNDVZtGP984tn6aYClVs+yEO5p6hxxFJWfyF+VWgq9CDA\nh1kPGOQWOM/Aqur+fWlZWXLotszTR+mmgvrH7bxva2te/UtSXpQP3hmJIwnVHHoQdJOl1wAX\nvxn6lk24oUwsTg3blRV+gm4qeC93CyN2tU9gV+eaXphbUolHXsO/Qg8CAICaENT//6RYLO7b\nt29UVNSIESPat28vEon27dt36dKle/fuNWzY8L2XJCUlde7c+cWLFyNHjmzVqtXNmzd/+eWX\nmzdv/vXXX3p6eoSQgoICQsi4ceMcHR0VL+zRo0c9/IwAVM7sozaOY/xSD+1hJVJCSGlKUtrR\nX628BzA83NWlbcJ8W4f5tt4XmekXFl3Ta8VSlhccLlvtUxfBoO6gBwGqw/qTz2RSiShknTgv\nlxAifpmfenifnllDy159aUeD+nY/uHu71TejMwuqf0mJWHYmNof7GrsJ1Q16EHSZ9ceDZVJJ\n0o4N3C55ccHLhM2rWJnMdtBw2tHgPbaN8hzdtkm/rbdrdBV3KiGe+AL/BD0IAADqg8IC4aZN\nm6KiolasWLFw4UJu5uOPPx4zZsyPP/74888/v/eSpUuX5uXlhYSETJ06lZuZN2/eunXrQkJC\ngoKCyOsi/OKLLzp27FgvPwmAumXRw4sQwhAm5dAeViIhhLx6dD/2+8VN+g3kfgi0zKSOtt2d\nzZV4iA1LiP7Cs3jnqVnQgwDVZDtwuKyiQrR9jaS4mBBSkpSQdfYEFgh108fNLGu0QCiVsZMO\nRe8b05YQgpVCdYMeBB1n6zOMSKRP1/4oE1cQQsQFL0Xb1rCSSruhY2hHg/fo69GYXe3TbV1E\nRGp+jS4US1kmOJxHiBQ3dMLfoQcBAEB9UDiDsF27diKRKDc3V19fXz7p4eFRWFiYnZ3NMMy7\nl5iZmZmYmKSnp8t/tKCgwNbWtk2bNrdu3SKvezE+Pt7d3b36SfCsbVBzeTeu5N+9mXb0V27I\n8Hgu/p+7+M+kmwrqmnK7CXHWhQZBDwLUSNLuLUm7N7IylhBCGGL32ejmC76hnAmoWnU5eeGZ\n2Oq8cuBHljO6OsmHWCBUE+hBAEJIcmhI8t6t0vIybihs1Nhj1iLrAYPopoIPuBj/oqZbCeWw\nmxAUoQcBAEB91PcZhOXl5Y8ePercubNiCxJCevbsmZOTk5SU9O4lJSUlhYWF7u7uih1pbm7u\n4eERFRUllUrJ6ztlzM3NpVJpenp6Xl5eHf88AOqDRQ+vRp26W/bqxw1ZmSz14O60I7/STQV1\nbVJHW3a1T1fHRjW6CmddaAr0IEBNufjPtB4wuGrAkoxThxN3bMi7cYVmJqCqiamwmq+MSHmp\nODwTm8P9pw5CQXWhBwE4zr7T3ALn8g2NuKE4/0XKryG51y7RTQUfwG0lrNGxuHLcbkKTJedU\nngo0DnoQAADUSn0/YjQtLU0qlTo4OLw17+TkRAhJTEx0dXV964cMDQ0FAsG73WZkZCQWi7Oy\nsuzt7V+9ekUIWbt27ebNm1++fEkIadq06ddffz1+/Pi3rlq7dm1FRQX3dVlZmYp+WgB1xaKH\nFyupLElNKk0WEUIkJcWibb/w9Q1sPxtJOxrUrVtzu/KDw2U1uURGSPPlV+IWe9VRJFAJ9CCA\nElos/bEkNakw9hEhhLAk7Wiox+cL825cwWO3ddOkjraTOtoSQph/uzPmRbFk8M5IQkhXF7P/\n9PGoj3Dwb9CDAHKGdo5u0+aItq+VlpcTQooT49OOhBKGsezpTTsa/KP7wd2rv5H9LSViGc4m\nBPQgAAColfpeICwqKiKEGBsbvzVvYmIi/9G38Hi8bt26Xb9+/dGjR61ateImnz59eu/ePUJI\ncXExeX2nTFhY2MKFC+3s7J48ebJp06YJEyYUFRVNnz5d8bt9++233IsBNIVl7/6SkpJnG5ZL\nigoJIdLy8pQDO/XMzC1796MdDeqWdLXP4jPxKy7HV/+SZ3ll3MYIPEVNbaEHAZTA8PjO4wOS\n9m4tio8jhEiKixO2rHYNmE07F1DW3dn8ZvKH/0BjuP82bWSiOItTCSlCDwLIWfTwyrtxxWnc\nlKS9W1mZjBDyMuo2K6m07OFF3veMQVATC7ydF3g7E0Larb5Zo/NxOdxuQiwT6iz0IAAAqJX6\nXiDkvPtAbe4oxPc+aJsQ8u233/bp0+ezzz5bs2ZNixYtoqOjly5d6ujoKBKJuC35X3311axZ\nsz755BN5xU6cOLF9+/ZLly719/cXCt88hujrr7+W3ynz3XfflZaWqvxnB6ByNj5DZeIKUci6\nylcFhJDS9JSUAzsJIVgj1HrLB3k8zi468yS7mq9nWXbWiZiNQ1ueic3Bh57qDD0IUFOWXgOk\n5RVxa76TlpQQQioLXyXu3MDw+XZDx9COBtTcmN2dEDIu9OHB6PT3vuDrAe4dHczqNxRUC3oQ\ngMNthbf+dEjW78e5mYKHUU+Wf9ViyQ80Y0H1zO/trMTh8RxumZAhRLbaR7WpQCOgBwEAQE3U\n9wJhgwYNyPvuiCksLCSEmJqavvcqb2/vDRs2LFq0aNiwYYQQExOT77//PjIyUiQSNWzYkBDS\np0+fty7x9PT08fE5fvz4gwcPOnXqJJ+fN2+e/OtVq1ahCEFT2A0dwz1flJWxhJBXjx+khO0i\nPJ7l/739ix+0zOmp7Qkh3dZFRKTmV+f1KS/KB++M1OMxx/w7cDNYKVQr6EEApVl/MrgiPzdp\nz2ZpaSkhpLLwlWj7Wp5QaOMzjHY0oCnMt/X3n7p7LLvy7g+dfPz8cXaxS2PDXq41O9kX6g56\nEOAt3BqhtLQ058ofhCWEkKw/Tho5uzmN86cbDP4V98jrD9yn8q9YQpjg8E+bWyGrqOEAACAA\nSURBVIRP66zabKC20IMAAKBWePX8v+fo6CgQCFJSUt6aF4lEhBAPj388GmTWrFnZ2dlXrlz5\n66+/MjMz582b9+TJExsbG3Pzfzwg2srKirzeaw+gBYyd3WwGDpcPX8VEJ+/dinPsdURvt8Y1\nen2ljJ10SMm7WaFOoQcBasNp/BT3mV8KXn90Uln4KvnXHTmXz9NNBdS5WxgNamH97nx0RuHR\nh1mrLieef5pHCMkpEvseeHD0YZb8BfJnjUK9QQ8CvMuih5fNJ0MsunlxQ1YiTQ3blXX2JNVQ\nUF1hvq3Z1T5tbf/xz6J/dTYujwkON1lyToWpQG2hBwEAQK3U9w5CoVDYoUOHO3fulJaWGhkZ\ncZMymezq1asODg6Ojo7/dKFUKjU1Ne3duzc3TE1NvX//vq+vLyGkuLg4NDTU3Nx83Lhxipc8\nfvyYvD7mF0ALWPTwsujhxTC8jNNHuHtLC+NiMn//jeHxuNtOQYstH+SxfFDVW4VVl5MXnon9\n10teFku2RqTM6OqEUwnVCnoQoJYMrKzdps4VbV8rKSkmhJSmJmX+fpQnFKIKddy83k4feCL3\ntaR8IyFPwOMVlFWWVcrqMxi8BT0I8F4WPbxYSWVxUnx5VgYhRJz/Iv34Ab0GZmg3TXE/uHtt\nthISQkrEMiY43FjIK172iQqDgbpBDwIAgFqp7x2EhJCAgIDS0tJVq1bJZ7Zv356ZmTl16lRu\nWF5eHh0dzd07w1m0aJGhoeHdu3e5oUwmmz9/PsuyM2fOJIQYGRn9+OOPgYGBcXFx8ktOnjx5\n/fr1du3aubq61sfPCqC+WPTwth04Qj7Mu345P/IWxTxQ/xZ4Owd2df63VzFGQr5bwzcnn5+J\nzZH/py7Twb9DDwLUhkUPLwNrW8dxUxhB1Y1uLyKuowqhr0djdrXP6YCOpwM6Dm9tzf/7ET7R\nGYUrLiX+eCGBVjxQhB4EeC/L3v2dJ07jCfW4YWHso9y/LuTduEI1FNRAmG/rCzO61PKblIhl\n/OBwleQBtYUeBAAA9cFwp+DWJ6lU6u3tfe3atSFDhrRv3/7JkyeHDh1q2bJlREQEd+9MTExM\nq1at+vbte+HCBe6Shw8fduvWTSgU+vn5NWrU6PTp05GRkQsWLFi5ciX3glOnTg0dOtTIyGjs\n2LG2trYxMTEnTpwwNTW9fPly+/bt/ymJhYXFixcvJBIJn8+vh584gKrk3bjy/GJ49vkz3JAR\nCNymzXWaEEA3FdSzhLzS9563pMipscHGoS3fncduQrrQgwC1l3fjSu5fFzJ/P8YNGT7fLXAe\nqhDeuglmwv7ownLJW68Z1qrJxPZ2QkHVjZLoxPqHHgT4ANHWNcm/hnBfMzzGedL0Bi1aYx+h\nZll8Jn7F5fjaf59mlkZxi71q/31A3aAHAQBAfVBYICSEFBcXf/vtt0eOHMnMzLSysho6dOh3\n333XqFEj7kffLUJCSERExDfffHP37t3S0lJPT89Zs2b5+//tyO5bt259//33t27dKi4utrKy\n6tev31dffeXu7v6BGChC0Fx51y8n/7rjVcx9bsg3NHIP+tJ+2Fi6qaCeMdW+t7Sri9l/+rw5\nzAAfhlKHHgSovdzrl5P3bS2MfcQN9UzNPGYvtPEZRjcVqAlupXDn7bQTMc/f/VEBj5nZ3WlA\nM4u35tGP9QY9CPAB9+dPy797g/uaEQjcps5xmjiVbiRQwr7ITL+w2p4Kb2msl/Ndf5XkAbWC\nHgQAADVBZ4FQTaAIQaPlXD6fsGV1WWYaNzS0c3CdOse6/0C6qaA+9dhw82ZywQdfwnD/9e1g\nO6qtzbs/jE9CdRx6EDRdzuXzCVt/KctI5YbCRo2bzfuPVR+c3ANvthL6hT3IL638wCt/Gtis\nlbUp9zVqUdegB0E95V6/lLDll9KURG7I0zfwmLUQN4NqqNrvJsQaIdQd9CAAAAhoBwAAJVl5\nD5CUFou2/iJ+mU8IKctIS9j8M18otOyNNw+64sbs7twXIRFpgUcevfuCeb2c+nq8vT1C0ZnY\nHHwYCgCay8p7gKS48NnGldKSYkKIOP9F0t6tjJ7Q8v/60I4G6qKfR+PCCmlCbknCi1LFeX0B\nz9u9MSGkkaEepWgAAO9n2bOPrKIiYfOq8ufZhBBZRXnSzg08fX1b7JLXQMsHeSwf5DH9SOz2\niGTlvkNuSaXgy3DJzz4qzQUAAABACHYQ4k4Z0HSpB/ckbP2FlVSdr2P2URsn30DLnt50U0H9\nG7wj6syT7LcmGxgIjPT4To0M5/R0bmDw/+zdeXxU9b3/8e8kkz0hECaBkJAEAiKboqKCE2CS\nKJtsbogIAi644IKX9trrvb/b6629tbbW1qUoiIhgQKWAQhWUkISwKfsWxZB9Jfu+zsz5/XHS\nKUVgDoE5Z5bX85E+Hvl+853pu//w6Tmf8/2eiz8RQoPQk1EH4R4K1q3M/fAda0fXLjHDHROi\nZj7I65pw/vsIrZK0N6/2bFXLppNdtTLIV79h/ii7X0KVdG/UQTiz0r9vsj0MKoQIGjBo4KJn\n2CXv0q5mN6FOCOsb9AhxjVEHAQBeWgcAcFVi5iyMfXCh7h//Z67+9PHyHV9W7U3XNBScRUOb\nubyx/buCui9OnRNCVDR2zE85vvFE2flrtmVV2H40igkAVyV23hMxDy4Suq5h1b6M2mMHKYU4\nn5dON25g2OTrw20zLZ3mP6TlZuTUaJgKAC6j3933Dnj0WX1QsDxszjtbuu1vVDeX9tq0wdIb\nU1+fNqwbn5WE0C376ve7cq55KgAA4Mk4YhRweaE33Bzd3lq08RN5WJG+I6BftBCCzRMeZemE\n2J/vILTJyK1p7bQmDOhV19rZ2mlVMxgAqCB0xKjISTPKtn8pD4s+XePToyd1EJchSWJ3bs3u\n3JrIHn7XhQddatmlnp5hZyEAFUTfM6eztjrvo+WS1SqEqP5+b/CgIVQ3V/fLxLhfJsadrWoZ\n/Lv0K/3sy38/81JSvANCAQAAD0WDEHB58iVie1VlRfo3QgghicINH/n2utyb5+B+kgf3lt6Y\nKt/HPFXeuP3HSotVHCioNVslIcS5xvatWeeyK5sv/yU/vw3KDVAALsFgNAlJasrPafzxtBBC\nsloL1q306REaNXO21tHg7Erq2y7TIAQAbQ14dEl7ZUXJ1s/lYfHmDf6R0dH3zNE2Fa7eIEOg\n9MbUKz101CqEbtlX8u++3rr216c4Jh0AAPAUvIOQs7bhJqr2pOWufrfxTJY81If0GPzUsn4z\nH9A2FVR2QYfvic9Olje224YBPvrWTvPo/qGJg3qPje3l46372RcoRePQPVAH4WYqdm3P+eDt\nlsI8eejbK2zg48/TI8T5xbGx3fzn3Xk51a3VzR3yzOQh4UsSYq/0O6mD7oE6CJdQtSctf+2K\n+tPH5aF3UNCQF/4zcuosbVPhGnry86wVB/K78UF6hLhK1EEAAO8gBNyEISExbt4T/pFR8tDc\n2JDzwVslX3ymbSqobNqwCPlHHj51R0x0qL/eq6sR2NppFkIcKqr/Q1ru23vytQoJAA4SkTQ5\nbt4T+uCu1zV11Nbkrn63Ut5eDwghhAjx0/+/uwb/dsp1tpmT5Y0a5gEAuwwJidH3zfUJ7SkP\nLc3NRZ+t4WWE7uT9B4ZJb0x9KXHwlX6wwyJ5/WNDIQAAQDfQIATcR0TipAELnj7vxmg1N0Y9\n3C3RoR0Wq3zK6AXSzlZPX3Vo+qpD3BgF4E4ip86Kf+IF76CuEyM7qirz1q6ozPhW21RwNv16\n+A/sHSj/XlLftnxfgbZ5AODy+k6cPnDREn1Q14Ve49kzZTu+pEfoZl6bNnjNQ6Ou9FOSEH7/\n/rUj8gAAAE9AgxBwK/2m3Rv/xAvegV33vDqqKvNTVlVm7tI2FTRkig8bG9dL73Xhv/Z+eq/J\n14dPvj48LMBHk2AA4CDR9z08aPGLOn3XP26NZ7IKP12jbSRo64Lt9UIInU5EBPvaht/+VKVF\nLgC4AtH3P9x/9iO2YcWu7ZV7UukRuplHRveT3pgqvTF1zqho5Z/qsEjXv5busFAAAMCd0SAE\n3E30fQ8PevJFnV4vDxuyThb/7RNtI0F9ttug80dHv5wc/+kjN62cPfK3U4fYFkhCLDHGLjHG\nRoX6a5QRABzFv2+/qBkPiH+8aLXuxJG8Ve9omghOZ0xsT9vvF91qDwDOpsf1I3rfnmAblv19\nU/V3ezTMA8dZP/+GK+oRnqls0S37ypvjRgEAwBWiQQi4If++UVHT/3ljtObQ/rzVyzVNBI35\neuv6hviFB/1zt0SH2Trrw8O/3XmWu6IA3I/BaOp9e0LkpBm2maJNKeXf/F3DSHA2yYMNU4aG\ny79LksitbtE2DwDYZTCaombN6XnjLfJQskolW9bnffiutqngIOvn33ClN+ysQrCVEAAAXBG9\n1gEAXHsGo0kI0dlYd25n19sIij77OCAyqu/kGZf7GDyMRZIOFNQdLq6/Paan/dUA4FLkUtiY\n/WNTzk9CiM76uqKNH+sDAw0JiRong3Zs2+u3ZVUIIeJ7BwlRKc+8npYb7Ot9W2zP2TdGapYP\nAOwJH5ckJMnS3tb442khhGSVClJW+fYOj5o5W+touPYsb0z9+FDpgvXHlH/kp6pWucadf7A2\nAADApbCDEHBPBqOpz53TguOvk4edjfWFG1ZX7UnTNhXU9PNXLl3UmoPFO3n3EgB3ZDCa+j+4\nwMuv6yDlhqyTFek7eF0TbEL9//msZEl925nK5rWHSk6VN2oYCQDsCh+fPGD+4uCBg+Whpa2t\ncMPqyt2p2qaCg8hvJRzVT+kDnZIkPbvllPjHozAAAACXR4MQcFvhCYkxDy7wDgiUh41nz5R9\nvYUbo54ssoff1sdGvzh+QPJgg22yqK7trT355Y3tGgYDAAfpN/WeqJmzbWdul23/siL9G0oh\nZBHBvj+frG7uVD8JAFyR8Al3xc57wrdXmDxsKSoo3fo51c2NHV12x5iYMIWLC6rbpq869PAn\nR7dlVcg/Ds0GAABcGkeMAu4scuo9LcWF+WvfF5IQQlRkfCu8vMQ/Dl6DZ0oa3Pum6B7pZ6st\nUtfbByVJrDtcEh7kd3N0j5GRIdrGA4Br67rnf9VaXFi1L10eln29xSe0p6AUQoiBvQOfuiPm\nQEFdS4flp8pmebKkvs224PXU/Mz8i2+y1wlhfWOqGikB4GL6TpzWdq4sd+VfJKtVCFG1f3dA\nVAylzY1NiO99oLBG+fqGNssjnx77+MFRjosEAADcAA1CwM3FL36hpSi/Im2HPKxI2xEQGS24\nMerZegX4vDhhwMYTZfk1rfJMRk6NEGLTyfJ37h3ev2fXcXzcGAXgHvrNeMDS2lx79KA8LN6U\n4h8RWbU3nVKIu4dG3D00oqyhffHnJ+WZI8X1Mb266mBpU9ulPijZ9qUCgEbi5j/RnHe2/Jut\n8rBk68bA/rHR9z2sbSo4yGvTBr82retcWd2yr5R8pLbJ/N6BgqfGxPJWQgAAcCk0CAH3Fzlp\nhrWttWr/bnlYvGV9YEycpomgKvlS8IKzZSbEh/UK9PnPr86cP2mVpO0/Vg7tEyQPuTEKwD2E\nJyQKIVnb2+uzTgghrB0d2cv/GP/EC4LHZSCEECKyh58hyLequUMIcaay+fe7crVOBACK9Eme\n0naurO74ISGEtb3t7Iq/+PQM65M8RetccCzpjalPfp614kD+ZVfpAn294nsF2cbnXw/SLAQA\nADIahID7MyQkCp2us7Gh/tQxIYSlpSX7nd9LZnPUrAe1jgYtjegbPG5g2L68WttZo0KIL0+f\n+/K0hqEAwCHCE5Ks7e2tf/6/jtpqIYTU2Zm35r3rnv13rXNBG7Ybo7a7pX56Xs0OwPUYjCZL\nW2tLQU5HXa0QwtLcVLB2hZevX/i4JK2jwbHef2DYLxPjBv8u/dJLpJYOyxc/lN81xHDpNQAA\nwNNxJQx4BIPRFH3vQ/qgYHlobmrK+2j5udSvtU0FbXnpdP+eOHDLo7e8fc9wrbMAgMP1SZ4y\nYOHT/hF95aGlualg/WpKIWRTrg/XsTcegAvqkzxlwMJnvHz95GHj2TNlX2+p2puuaSioYZAh\n0O6aguq26asOTV916Le7slWIBAAAXA47CAFP0Xfi9LZzZYUbPuqsrxNCtFdVlH75ubefvyEh\nUetoUMP5x8hccNxoTC//oRHBP1Q0qR4KAFQVfd9cL3//s+/8obOxXgjRUph39q9/1Hl5RSRO\n0joaNDZzRJ874nrVt3W++MUPyj4hnf8KqN7B+qpXJjooGwBcXvT9D7dXV+avWyEkIYSo2pMa\nHH+d4BhtD3BHXM99+XWXXaKT/3NdWPD5s7brQc4aBQDAw9EgBDxI3PzF3v6BZ5f/wdrRKYSo\nOXzAOyBQ6HRcOno4L53ud9OGFNa2WqwSN0YBuDffnmExDy3MXfWOZLEIIdrOlZVs+dTL149S\niPBg3/BgX8XL/2W/4dDwkGueBwCUCx0xqk/y1HM7vxJCSFYpf+1KjtH2BHufu0P+ZeWBosWf\nn/z5gl+YBkyID1M3FAAAcCU0CAHPEtAvOnLyrJIvP5eHlXt2+ffrL3i81ON563QDwuyfUXMe\nbowCcElyvYud+1jB+tWSuetxGX1ID0EphBBCiK2PjZZ/MVulX2w9k1N1ye310htT1AoFAHYY\njCZJkppyfmrOOyuEkMydeetW6Hv06DtxutbRoIYnxvT/8lTlth/KL5jfcLR0Z3bVgLCAeTdH\n+V7sbbvbsirYRAgAgCejQQh4FvnuZ3tNVdWeNHmmeHOKPihIcGMUQojzbox2WqRffHkmt4Yb\nowDcjVzvoqbfX7x5vTxTkf6N8PISlEKcR++l6+WvfEMhAGgsPCHR0tqSs/yNtopyIURHVWXe\nmvd13j59kidrHQ2aKa5vK65vO1bSEOynn31jZEVjx7KtP8wcEXH/DZG2Nee/foJmIQAAnuYi\nDxABcG8Goylq2v09b7xFHkqdnflrV9SdOMyr7HE+H29dWCA3RgG4J4PR1HvMOMOY8baZil3b\nizevtz09Aw/BnVAA7qTvXXfHzl/s5esjD1sKcgvWraC0eYilE2Iv89cD+XVf/VDR0mmpa+1s\n7bSqlgoAADg5dhACnsiQkGhpb2+vPNdaWiyEkMzmwvUfWlpaBJsnAACeQT6NzWrurDm0X56p\nPpCpDw7m1bwAANcVfc+cztqavDXL5VftNmb/eG7XdkNCota54HDJg3tLb0yVtwOm59RsO33O\nIonc6harJAkhsquas6uab4kK1TomAABwLjQIAQ/VJ3myZDHnrX63pahACCFZpZIvNngHBAp6\nhB7AtmHi/PNkAMDThCckCknS6b2rD+yRZ87t/Frn5S0ohRBCCPHrSQOFGHjRP7H1EIDTChky\nLHbuY/lrV8jD8m+36oNDhvzbf2mbCmoyxYeZ4sOEEAvWn6hp6bDN/1TVLIQ419iRW90ysPdF\n3kD/88tD6h0AAO6NBiHgufpOnKbz1ud//F5Tzk9CCMkqFW740NrRJrgxCiEEN0YBeIDwcUk6\nLy+dzqtq/255pvzbbT49wwSlEADgmuT6FXbLmJrDB4QQQhJlX20KHXFT34l3axsMKrjgSdC5\nN/dbsb+gwyLJk43tZiFERk51Rk71/TdELrg1SqucAADASdAgBDyat7//wEefzfvor43ZPwoh\nJKtUvClFp/cR3BgFAHgGg9EkWa2W9vbaI98JIYQkSrZ8GtA3qmpvOqUQAOCKDEaTJFk7G+sb\nf/pBCGFpayvdtlEfFERd8zSThhg+PVZa2dTx8z9tPFG28USZEOL/7h4ysm/Ipb7hUkfO8MAo\nAADuwUvrAAC0ZDCadHp93PzFIYOGyDNyj7ClKL9qb7qm0aAGrusAQAgRPi6p/wPzewwdKQ+t\nHe05K//cVl6ibSqoY9qwCNuP1lkA4JoJT0iKmbPQOyBAHtYe+a4+6wSXeB4oMT7s5uhQIXQX\nzPvpvSZfHz75+vCwAB9NggEAAGdAgxDwdAajycvPf8CiJSGDr5dnrB0dOSvfaiku4AISAOAh\nwsclxT60yLdnL3loaW3NXfVO+fat2qYCAKDb+k6c3u/u+2zDoo3rzM2NGuaBmmxPvcwfHf3K\npMErZo/4zeTrXhw/wLbAS6dbYoxdYoyNCvXXKCMAANAeDUIAwmA0hU+4M+6Rp2w3Rq3tbbmr\n3u6ordE2GFTAzgkAkEUkTR74+PO+YQZ52NlQn7PqrfJv/q5tKgAAuu26F/7DdlSMpbkpb837\nFbu2axsJmogM8RsV1WNon2DbTJvZ8m9f/JBypFSSNMwFAAA0RoMQQBcvX9+Bjz/vH9FXHlpa\nWnJWvFm2/QttUwEAoBq/8D4DFj3tHRQkD9vKSgo3rK7ak6ZtKgAAukmn6z/7Ee/AQHnUUpCb\nv3ZFZeYubUPBGUiSyK5qXn+09GQ5+0oBAPBcNAgBdDEYTX7hfQY8/pxtH2FHTXX+2pWVe7iA\nBAB4BIPR5B8RGTt7gZdv1/t4Gn/KKvt6Cz1CAICLipx6T+xDj+q8um7+NGb/WJn+De+SgM3m\nk+U/VTZrnQIAAGhDr3UAAE7EYDRV7U2PmftY3uq/WlpbhBAtBblFn64RQoQnJGmdDg7381NG\nt2VVaJIEALRiMJqEELFzH89bs1xIQghRkfGtPjhE6HTynwAAcC0DFj1jbW8vSFklWa1CiPKd\nfw+MHSD+UfLgrmwXd7ZrusgefpsW3rL2cHFWedOZfzQFDxXVnyhr/PDBG0L9uUMIAIDHofwD\n+BfyVWLcI4tzV74lX0DWHj2oDwnV6by4gAQAeAK53oWPv7MyY6c8U/b1Fr+IvoJ7qe6OB2UA\nuKvQkTcZxiXJdU2yWHJXvTNg0TOCuuZ5fLx1j97W/1xj++OfnbRNdpitX/9YGdPT//qI4LBA\nHw3jAQAAlXHEKIALGYym4IHXRU6ZZZup3L2z6sBuDqIBAHgIg9HUb8o9YbeMkYeS1Vq44aOO\nmipKIQDAFRmMpsiJM/zC+8hDyWIpSFnVUVOlbSpopU+I37039PXT//OW4CeHS36XmvPsptM1\nLR0aBgMAACpjByGAi5CfJO1sqK/MTJVnSrduDOjTT/CQqYf5+V4KAPAQhoREyWJuq6poKcgV\nQlhaW3JWvT1o8dKqvemUQgCAywmfcGdnfV1ByqqW4gIhhKWlpWjjOp8ePcMn3Kl1NDiWfE13\nwZ74RbdG3xAZ8j87ss+fbGw3Z5U3JQwMUzUfAADQDg1CABdnMJokSeqor60/cUQIIZnNOR+8\nNWDB04IeIQDAM4RPuMvS3vbTm//X2VgvhOioqsxf98GgxS9onQvq4UEZAO6k34z7dT4+2W+/\n1tlQL4Royvkp/5OVwts7PCFR62jQwPA+IdGh/sX1bedPtpqtWuUBAADqo0EI4JLCExKlzs7s\nivK28lIhhGQ2F25YPfCxZ9k8AQDwEH0nTu+sr8tZ8WdLa6sQoqUwL2/tSuGtDx+XpHU0AACu\nmE+P0Oh7Hspf+75klYQQDVknq/dn6HQ6ru88kL+P11v3DC+qay2qa/tjeq48eaK04a7rDPLv\nr6fmZ+Zf/BxanRDWN6aqFBQAADgMDUIAlxORONHS2pL30V9bS4uFEObmppxVbw9+5pda5wIA\nQCUB/frHzV+cu+odyWIRQjSeOZ2/5j0hSeHjk7WOBgDAlZEbgVGzHirenCIkIYQo/ftm/z6R\ngnNi3N35e+Jtx436eOsG9g7sF+of6Ovd0mERQhwoqHvis5PyX2tbpEt9myR0jgwLAABU4mV/\nCQDPFjl11oCFz/j0CJWHlubms++9UfbVFm1TAQCgDoPRFBw/pP/983ReXffCGn48Vbb9i6q9\n6ZrmAgCgOwxGU+/bEwy3j5eHkrkzb837LUX51DWP5a/3Cvbzln9vM1vLG9vln3ZLh7bBAACA\no9EgBGCfT2jPQU/+m61HaG5szF+3sjL9G21TAQCgDoPR1Ovm2/tNf8DWI6zcvbP26PfcSwUA\nuCKD0RR5970BUf3lobW9LfeDt+gRerKoHv5aRwAAABqgQQjAPoPR5GsIj1+81DsoSJ5pKcwr\n/WoLF5AAAA9hMJoMd5jCJ0y0zRRtXNt49gylEADgiiISJw5ctMTP0HXspKWtLXf1u+1VFdQ1\nz/T8uLipQyMSBoTZfny9OUQUAAD3xzsIAShiMJqq9qbHznk076O/yi9hqtqX7hPSQ/CyCgCA\nZzAYTUKSWovyG8+eEUJIZkvhhg8HPbVM61wAAHRH38kzrBZzzntvdtRWCyEszc05K/488PHn\nq/amc4nnaQxBvk/fESOEmL7qkLJPSLplX9kGvYP1Va9MvMxqAADgnNhBCEApg9EUct3Q3mPH\n22bKv91an3VCw0gAAKjJkJAY89CjAVEx8tDc2Fi4YXVFGmduAwBckm/PsPinXvTt2UsedtbX\n5X34bmdDvbap4Ap05/8MDQ/ROg8AAOgOdhACuAIGo0mSJMncWX1gjxBCskolWzYERvWPnHqP\n1tEAAFBD30nTrebOs3/9Y2d9nRCipaigeFOKl68vmy0AAC5HPidmwMJnzq78i6W5SQjRUVud\nv3aFPqRHeEKi1ungKNOGdR0tuy2r4oI/bX1stO33V3bkHiquudSXSG9McUQ2AACgJnYQArgy\n4QmJUdNnB8dfJw876+sK1q+u3JOmbSoAAFTj2zOs/30P67y6/o907dHvaw7t56VNAABXZDCa\n/COjBj31ord/gDzTUphXsmV9FZd4AAAA7o4GIYArFj7hzv73zdMHBcvD5ryz5du/4MYoAMBD\nGIymkCHDo2Y+aJsp3baxvfKchpEAAOg2g9HkHxEZO3+x0HXNVB/YU7F7J5d4AAAA7o0GIYDu\n8O1tiJmzyHYBWbl7Z+OZLC4gAQAewmA09R4zrsewkfLQ0tqa/8kHFbu2a5sKAIDuMRhNIYOG\nhBuTbDNlX29uyv2JSzz3ZjtrFAAAeCbeQQigO+Q3LUWMv6si41shhGS1BiGWsgAAIABJREFU\n5q9bOWDR07Y/AQDg3gxGU2dD/dnS1zvqaoUQbWUl+WtX6Hx8w8cl2f0sAADORr6Os5o75PfN\nC0nkrV4+6Ol/0zYVNPTrSQOFGHjRP9FZBADAPbCDEEA3GYymvhOnBQ0YJA+tHe35H7/fXnmO\nh0wBAB4icsrM2HlP6Hx85GFj9o/l32ylDgIAXJTBaIqa8WBgzAB5aO1oz1+7siLtG21TAQAA\nwEFoEALovvAJdw1Y8JR/RF95aGltLUj50NLWyr1RAICHiJmzMPbBhbYztyvSd1Ts/pY6CABw\nUeHjk2PnPuoX3kcedtRUFaxfVZm5S9tUcJxpwyJsP1pnAQAAaqNBCOCq9Llz6sDHn/cN6y0P\nW0uLcle+RY8QAOA5Qkfe1Cd5atdAEmV/31x79CB1EADgonx79R6w8Gkv36798Q1ZJ8u+2kxd\nAwAAcD80CAFcLZ/QnjEPLtR5df170lJcULRxnSRZuYYEAHgCg9HUJ3Fyj2EjbTMlWz9vKyuh\nDgIAXJHBaPIzRETNesg2U7kntebQfuoaAACAm6FBCOBqGYymoLj42Icf1+n18kz9yaOF6z+S\nLBZtgwEAoI7wCXfGPfKkrUdoaW7KWfmXtvJS7qUCAFyRwWgKu2VMROKkrrEkSr7Y0FZRTl0D\nAABwJzQIAVwDBqMpdMSo6FlzbDN1xw/lffxeZcZODVMBAKCa8ISk/vc+7BPaUx6am5vOvvcG\n91IBAC7KYDT1nTQjdPiN8tDa0Zmz4s22c2XUNQAAALdBgxDAtWEwmsJuvaPf3fcKXddM44+n\nizau5QISAOAh9CE9Bj29zNYjtLS2Fn26RjKbtU0FAED3hCck9p+9wDfMIA/NjY0FKassba3a\npoLjTBsWccGP1okAAIBj0SAEcM0YjKbw8XdGzZxjex9h7dGDVfvS6RECADyBwWjy7dV74OPP\n+/bqLc+0FBcUb0qp2pOmbTAAALqnT/LkAYue9ukRKg/byktzP3ynMv0bbVMBAADgmqBBCOBa\nMhhNhrHjo2Y+aJsp3bqx7vgheoQAAE9gMJr8I/rGzFloe1am5vCBki8/ow4CAFyUf0TkgIVP\ne/n6yMOWgry8j9/nXRIAAABuQK91AABuqPeYca0lhdXf7xVCSFZr4Wcf+0dEah0KAAA1GIwm\nIUS/6feXfPGZPFO1LyPkuqG2PwEA4EIMRlPV3vS4h5/IW/OeZLUKIRp/+qH8m606vZ665vY4\nZRQAAPfGDkIA15jBaDIYTVEzHwwZfL08I5nNBetX8ZApAMBDGIwmwx2miKTJtpnCz9eZm5vZ\nRwgAcEUGoynk+hH9Zz9i2x9fkfFtQ9YJ6hoAAIBLo0EIwCHCJ9wZ98iT/hF95WHbufLyb7Zy\nAQkA8BAGoyly0oyQ64bJQ0tzU+GG1ZIkaZsKAIDuMRhNvW66LXzCXbaZws8/bisr0TASAAAA\nrhINQgCO4uXrFzv3MZ23tzysyPi25vB39AgBAB7CYDTFzH7E2z9AHjb+lFW+40vqIADARRmM\npr6TpgfGDpSHlpaWgvUfnkv9WttUAAAA6DYahAAcxWA0+UdGnf+QafHmlKacM9wbBQB4CH1I\nj/4PzNN56eRhRfqOqj27qIMAABcVnpAU+9Cjvj17ycO2c2Wl2zZS1wAAAFyUXusAANyZwWgS\nktReVVF/4ogQQurszP3g7dh5T3T9CQAAtyYXu3DTpIpd24UQQhIlWzdKVqugDgIAXFO/afda\nWpqzl/9R6uwUQtQc3B80YLCgrgEAALggdhACcCxDQmLM/fN8wwzyULJaiz5b01ZRznOmAABP\nYDCa+k6cHhx/nW2mbPsXjdk/UAcBAC4qIKp/v8mzbMOSLZ92VFdR1wAAAFwODUIADheRNDl+\n8dLAmDh5aGlrK/psjSRJXEMCADxBeELiwEXP9LrpVnkoWSxFn6+1tLVRBwEArshgNBmMptAb\nbpaH1o72gg2rJYtF21QAAAC4UjQIAajBt1fYwMee8w3rLQ9bigqquSsKAPAY4aaJ/e+fH9g/\nVh521teVbNkgJEnbVAAAdI8hIbH/vXN9eoTKw5bCvNKvNvHgCwAAgGuhQQhADQajyds/IGbO\nIp2XTp4p/WpTZWZq1Z40bYMBAKAOnV4fO+8JLz9/eVh79Puiz9dVZuzUNhUAAN3T586p/R94\nxHZ9V7UnrSJtOz1CAAAAF0KDEIBKDEZTUOzA3mPGy0PJYind9reyr7dwDQkA8AQGo8m3Z1jU\n9PttMzWH9xesX13JszIAANcUct3QvhNn2IZlO75syDrB9R0AAICroEEIQD0Go6nf3fcFxsXb\nZioyvq0/dYxrSACAJzAYTWG33mH4x7MyQoj6U0er9++mDgIAXJHBaIowTQwbPbZrLInCjWvb\nK89R1wAAAFwCDUIAqgqfcGf8o0vCbh1rmyn627q28hKuIQEAnsBgNEXdMydy8kzbTOnfNzZm\n/0gdBAC4IkNCYvS9c0OuGyYPLc3NOSv/0lFXQ10DAABwfjQIAagtImly9H3zQoYMl4eWlpa8\nj5abm5u4hgQAeAKD0RSROKn3bUZ5KJktBZ980FKUTx0EALginbd39L1zvQMD5WFnfV3J5g2S\nJFHXAAAAnBwNQgAa0Ol0MQ884tvbIA87amsK1q2ULBauIQEAHqLf9AcCY+Lk3y2tLTkr32qr\nKKMOAgBcjsFo8u0VNuipZfqgYHmm4cdTxX/7REiStsEAAABweTQIAWjAYDTpQ0IGLHzG2z9A\nnmnKzS7enCKE4N4oAMDtGYwmL1/fuPlP+oZ1PStjbW/LW/VOZ2M9dRAA4HIMRpN/n8joe+fa\nZmoO7ivauK5qT5qGqQAAAHB5NAgBaMNgNPlH9I2Zs1Dn1fUPUc3B/SVffCrxnCkAwAMYjCaf\nHqHxTy795376utqc9/9sbmygRwgAcDkGoyl0xKi+E6fbZmoO7a9I30FRAwAAcFo0CAFoxmA0\n9Rg6MvLue2wzVfsyij79qHJPGpeRAAC3ZzCafHuGDVj4jJefvzzTXnku54O3pM4O6iAAwOUY\njKY+yVMiEifZZsq//Xtzfg5FDQAAwDnRIASgJYPRFJ6QbLhjgm2m9ujBil1faxgJAADVyPvp\nBz72rJevnzzTVl5a+vUWwZnbAAAXZDCaIifPNCQkyUPJYslft6KjrkbbVAAAALgoGoQANGYw\nmqJmPtj3rrttM+d2ftV4Jqts298yZ44r+OQDDbMBAOBoBqMpKHbgwEeX6PQ+8kzV3vSaw991\n1lZTBwEArqjflFmBMQPk382NjbkfvF2Z/o22kQAAAPBzNAgBOIU+d94dMeEu+XfJas1d/U75\nt9s6aqrPvv+ntMQbtc0GAIBDGYymoAGDIifPsM0UfbambPsW6iAAwOUYjCadXh8373F9cLA8\n0155rjz1a3bGAwAAOBsahAC0ZzCahBB9J80IjO16zlRIoubwd/IvVktn5jSjZuEAAHA8g9Fk\nSEjqMXSkbab22GEhqIMAANdjMJp8QnsNWLREp/eWZyozvm0tLaZHCAAA4FRoEAJwCgajSeft\nPWDB07azaP5JEh0NtdwbBQC4t/CExLiHH+sxbOSFf6AOAgBcjcFoCoyOjTBNloeS1VqQssrS\n1kaPEAAAwHnQIATgLAxGkz4oePAzv+h54y0X/k0SHQ216Xf9bB4AADcSbpo44JGnwkaPvfAP\n1EEAgKsxGE19kib7GSLkYXvlucINq4UkaZsKAAAANnqtAwDAP53586tt5aVCCKH72d8kYWlr\nrT36fa+bblM9FwAAatj7wJ3UQQCA2wgfn9xeWZ797h+tHe1CiIYfThZ9vk6SpPBxSVpHAwAA\nADsIATgTc1PD5RcceX7hdwtmqhMGAACVUQcBAG7Gv29U/wfm2R58qTm8v3TbRg4aBQAAcAY0\nCAE4keh75tpd05SbfeLl51QIAwCAyqiDAAA3YzCaet5wi2GsyTZTtS+9/tRReoQAAACao0EI\nwInEL17qF97H7rLKzFTujQIA3A91EADgfgxGU9SMB/pOnNY1lkTJF59ZO9rpEQIAAGiLBiEA\n55KwKU2n97G7rDIz9fCSeSrkAQBATdRBAID7MSQk9kmaEjJkuDzsbKgv+3qLtpEAAABAgxCA\n00lKO+4dGGR3WcMPp1QIAwCAyhTWwaazZ1QIAwDAtaHTRd8318vXVx5V7c+oSNtetSdN21AA\nAACejAYhAGdk2nEwetacy6+xmjsypxnVyQMAgJqU1EFza/P+uVPVyQMAwFUyGE2+ob0iJ83s\nGkuibPuXpdv+xkGjAAAAWqFBCMBJDVn238Nffu1yKyTRUV975s1X1UoEAIB6lNTBlqJ86iAA\nwFUYjKbeRlPI9cNtM5V7dtWfOkaPEAAAQBM0CAE4r75TZngH2DljrXhTyr7Zd6mTBwAANSms\ng98tmHn5NQAAOInwhMQB85/sPWacbaZ4U0p75Tl6hAAAAOqjQQjAqZm+OWh3TWtZyeEl81QI\nAwCAypTUwabcbPYRAgBcRfiEO6NmzQkZ0rWP0NzclP/x+9b2NnqEAAAAKqNBCMDZ+YX3sbum\n7sSREy8/p0IYAABU5h1oZxOhEKJ4Uwo9QgCAq9DpdP3vn+fbs5c8bKsoL0j5UJKs9AgBAADU\nRIMQgLNL2JSm0/vYXVaZmUqPEADgfkw7Dgqdzu4yeoQAAFdhMJp8eoTGPfKkzqfrQq/hx1Nl\nX23RNhUAAICnoUEIwAUkpR0XXvb/varak6pCGAAAVJa8+7SSHmHJ5hQVwgAAcPUMRlNAVEz/\n++eJf9S3ysyd1Qcy2UQIAACgGhqEAFxDcsYpuz1CSRK7xg9TJw8AAGpS0iOkDgIAXIjBaOo1\n6tY+yXd3jSVRvHl91d40eoQAAADqoEEIwGUkZ5yyu4Z7owAAd5W8+7TdNZIkdk0YoUIYAACu\nnsFo6nPn1B7DRtpmSrdtbMrNpkcIAACgAhqEAFxJ6IhRdtfQIwQAuCu/8D5210hW664Jw1UI\nAwDA1dPpdHEPP2G70JOsUuGG1eaWZnqEAAAAjkaDEIArGb08JTkzy+4yeoQAALeUsClNWY9Q\nSkuy/0gNAACaMxhNOr0+du5jQXHx8kxnfV3uyrfqTxxOnTA8dfywY794UtuEAAAA7ooGIQDX\no3AfYfqdN6kQBgAANSnsEVo7O/bNvkuFPAAAXCWD0aTz9o6Zs8jbP0CeaS0tKtm8QVglIYma\n7/doGw8AAMBd0SAE4HpGL09Rcm/U0t7OvVEAgPtR2CNsLSuhDgIAXILBaPLtFRY791Gd3lue\n6Wxpln+RJGnXhJGX/igAAAC6iQYhAJeUsCnNJ7Sn3WXcGwUAuKWETWk+IT3sLmstKznx8nMq\n5AEA4CoZjKaQIcMHPbVMHxR8wZ8kyUKPEAAA4JqjQQjAVY3fto/9EwAAjzX+qwNKeoSVmamH\nl8xTIQ8AAFfJYDQF9o+LeehRnZfuX/4gCUmypCXeqFEuAAAA90SDEIALU76P8LsFM1XIAwCA\nmsZ/dUDodHaX1Z04UvjZxyrkAQDgauwyjTz+q2dyV70lSZK4oL5JwmruTB03jIoGAABwrdAg\nBODaxm/b5+Xra3dZU272mTdfVSEPAABqSt59WkmPMPvt12qPfq9CHgAAuq3HUPvniBZtXKtC\nEgAAAE9AgxCAy0tMPabztv+vWdnXm1QIAwCAypJ3n1ay7PSrLzk6CQAAV2P08pQLNw7+TBuv\nkAAAALhGaBACcAdJ6afsrrG0tu2+e6wKYQAAUFlyZpbdNe0V57ijCgBwcnHzFttdw2vmAQAA\nrgkahADchJJ7o50N9YeXzFMhDAAAKgsdMcrumtaykhMvP6dCGAAAuid+8VKFFY3XzAMAAFwl\nGoQA3EfcfPtPm9adPFLwyQcqhAEAQE2jl6f4hfexu6xqT6oKYQAA6LbRy1OUXNm1nytTIQwA\nAIAbo0EIwH3EL14qvLzsvLVCEmff+1Pt0e9VygQAgFoSNqUJne7ydVCSRPpdt6iVCACA7ohf\nvDQ5Mysy8e5/mZX+ZdTZ0sSjnwAAAFeDBiEAt5KccSp5t/2zRo88v5AeIQDA/STvPm23Dlra\nWtOS7J/eBgCAtgYs/tdjsS94AkYSZ9/705k3X1UxEQAAgFuhQQjAQx19YaHWEQAA0Ia1s2PP\nrPFapwAA4HIComN8Qntefk3xphReRggAANA9NAgBuKHkTPubCCVJ7JowQoUwAACoTNGrm6qr\n9s2+S4UwAAB02/ht++yuacrNZh8hAABAN9AgBOCeFPUIrdbUccM4axQA4GbiFy8NHWH/ENHW\nshJ2XQAAnJx3YJDdNcWbUugRAgAAXCkahADclpJ7o0KIk//9oqOTAACgstHLU5TcUW3KzT68\nZJ4KeQAA6B7TjoNCp7O7rHhTCo9+AgAAXBEahADc1ujlKUr2EXbW1XJvFADgfkw7DirpEdad\nOFL42ccq5AEAoHuSd59W0iM88fKzKoQBAABwGzQIAbg5JfsI604coUcIAHA/ph0HhZf9/8Nf\nkPKBCmEAAOi25N2n7a4xNzVxdDYAAIByNAgBuLnRy1N0eh+7y+pOHOGtFQAA95Occcrumo7q\nqt13j1UhDAAA3abk0c+m3OwTLz+nQhgAAAA3QIMQgPtLSjuu8K0VnLEGAHA/cfMX213T2VDP\nrgsAgDNT+OhnZWYql3UAAABK0CAE4BEUvrWiaONaFcIAAKCm+MVLFe66oEcIAHBmSWnHlRyd\nnf32axwPAwAAYBcNQgCeQslbK9rKSjiRBgDgfkYvT/EODLK7rCk3m10XAABnlpxxSuHxMLVH\nv1chDwAAgOuiQQjAg/iF97G7pjIzlStJAID7Me04qORkNjbTAwCcnJJHP4UQR19Y6OAgAAAA\nro0GIQAPkrApTcm90aNLF6kQBgAAlSWlHRf2Nl20lZUcXjJPlTgAAHRTcmaW3TWSJHZNGK5C\nGAAAABdFgxCAZ0lKO253jWSVdplGqhAGAACVxc1bbHdN3YkjvIwQAODkFPUIrdLuu8eqEAYA\nAMAV0SAE4HEUXUlaLLsmjFAhDAAAaopfvFR42b8E4GWEAADnp+TKrrOhnh4hAADARdEgBOCJ\nlD1tas2YdKsKYQAAUFNyxinvwCC7y7Lffo0eIQDAycXNt78zvrOhft/su1QIAwAA4FpoEALw\nUEquJM0tzbyHCQDgfkw7DipZlrvqbUcnAQDgasQvXho6YpTdZa28YRcAAOBnaBAC8FDxi5cq\n6RHWnThy5s1XVcgDAICalGymt/CgDADA6Y1enqJkZzxXdgAAABegQQjAcyl8D1PxphTOWAMA\nuB8lPcK6E0foEQIAnJxpx0Gd3sfussrMnSqEAQAAcBU0CAF4tOSMU0Kns7ss++3XeNoUAOCG\nFDwow5YLAIDzS0o7Luxd2LVXVvDUCwAAgA0NQgCeLnn3aSXLSjanODoJAAAqS844pWTLRfGm\nFHqEAAAnFzfP/isk6k8eUSEJAACAS6BBCAAiOTPL7j5CSRK7xg9TJw8AAKpJSjuuZDM9D8oA\nAJxc1yskLlvTJCHS77pFrUQAAABOjQYhAAihbB8hPUIAgFtK3n2aB2UAAG4gOeNU8u7LvmFX\nEpa21rTEG9RKBAAA4LxoEAJAl7j59k+k4fYoAMAtKX5QZrgKYQAAcCir2bz77rFapwAAANAY\nDUIA6BK/eKl3YJDdZfQIAQBuSdmDMtKuCfQIAQBOLTnzspsIhRBCdDbU75k1XoUwAAAATosG\nIQD8k2nHQaX7CLk9CgBwL/GLl+r0PnaXSVaJB2UAAE5OyWVde3XVdwtmqhAGAADAOdEgBIB/\nEb94qZIHTiWrxDFrAAA3k5R2XOGDMmlJo1TIAwBA98QvXuoX3sfusqbc7MNL5qmQBwAAwAnR\nIASAi/D2D7C7RpKkfbPvUiEMAACqiV+8NHSE/eaftbNjz0xOZgMAOK+ETWlKXiFRd+JI4Wcf\nq5AHAADA2dAgBICLMH17OOymMXaXtZaVcMwaAMDNjF6eIrzsXya013AyGwDAqZl2HFRS0QpS\nPlAhDAAAgLOhQQgAF3fTWx/6hhnsLpMkkZZ4gwp5AABQTXLGKSXvI2zKzd41YYQKeQAA6J7k\njFN213RUV+2+e6wKYQAAAJwKDUIAuKRxX+xWciiN1WzOnDlOhTwAAKgmKe24ogO3rdbdU+3v\nuQcAQCtKXq/b2VDPtngAAOBpaBACwOWYdhzUKTiUpqOmOn3SaBXyAACgGtO3h3Xe3naXdTY2\nnHnzVRXyAADQDQpfr9uUm33i5edUyAMAAOAkaBACgB1JGaeUvLjC0tpS8AnvrgAAuJWk9JNK\nlhVvSvnxD792dBgAALpn9PIUJWfDVGam1h79XoU8AAAAzoAGIQDYl5xxysvX184iSZx9709p\nSfYfTQUAwIUkZ2YpWVa69XNHJwEAoNtMOw4Knc7usvyP31chDAAAgDOgQQgAiiSmHhv81C/t\nLrN2duyecrsKeQAAUI2SHqEkidRxww4vmadCHgAAuiF592m7a2oO7WcTIQAA8BA0CAFAqZiH\nFyk5a7SzqTF94i0q5AEAQDXJmVlxDz1hd1ndiSMH5k1TIQ8AAN2g5KDR4y89rUISAAAAzdEg\nBIArkJxxSskyS2trmukGR4cBAEBN8c+8qGRZS2Guo5MAANA9ph0H7a6xtLZmTLpVhTAAAADa\nokEIAFdG4auYrBbzoScfdHQYAADUpPysUc5nAwA4JyW1zNzSvGfWeBXCAAAAaIgGIQBcseTM\nLCXvt6/POnno6bkq5AEAQDVx8xcrWXb0hYUODgIAQDcp6RG2V1ftm32XCmEAAAC0QoMQALpD\nyfvthRD1p47RIwQAuJP4xUsV7iPcNWG4CnkAAOiG0BGj7K5pLSs58fJzKoQBAADQBA1CAOgm\nhWeN1p86xlUlAMDNKOoRWqXUccMKP/tYhTwAAFyR0ctTvAOD7C6rPWb/nYUAAAAuigYhAHSf\nwh5hZWZqWuINjg4DAICaFJ41evad1xydBACAbjDtOGj3zRHmxgYOGgUAAO6KBiEAXBWFPUKr\n2cxJawAAdxK/eOkd67fbXSZJYtf4YSrkAQDgSil5c0RrWcnhJfNUCAMAAKAyGoQAcLUU9ggl\nq7R7yu2ODgMAgGoComMUvo8wdfywY794UoVIAABcEb/wPnbX1J04wmsjAACA+6FBCADXgMIe\nYWdTIz1CAICb0el97C+SRPX3mfvnTnV8HAAArkDCpjQlhawyM5W36gIAADdDgxAArg3lPcK0\nxBsdHQYAANUkpR0PuU7BIaKSaCnOZx8hAMDZJKUdF17274/xVl0AAOBmaBACwDWj+H2EnemT\nRjs6DAAAqrlt1UYlt1bZRwgAcE7JGafsruGtugAAwM3QIASAa0lhj9DS0rJrwghHhwEAQDVK\nbq0K0bWPsOCTDxwcBwCAK6PwrbpcxwEAALdBgxAArjGFPULJauX5UwCAO0nOzFL4PsKz7/2J\nNzkBAJyNd2CQ3TVcxwEAALdBgxAArr3kzCydgpPWOKMGAOBmktKO973zbiUrs99+jSIIAHAq\nph0HFe4jTEsapUIeAAAAh6JBCAAOkaTspDV6hAAANzP813+InvagkpWSJHZNGO7oPAAAXBEl\nPUJrZ8fuqWNUCAMAAOA4NAgBwFGUnjVKjxAA4F6GvPTriNsTlayUrNLe+5MdnQcAgCui5KzR\nzsaG7xbMVCEMAACAg9AgBAAHSs7M8vYPsLuMLRQAADcz8o/vDn7ql0pWtp0rS0++ydF5AABQ\nzrTjoD4o2O6yptzsA4/MUCEPAACAI9AgBADHMn17WMkyySqljh+2f+5UR+cBAEAdMQ8vumP9\ndiUrLR3taYk3OjoPAADKTdj+vZJ9hM15Z0+8/JwKeQAAAK45GoQA4HDJmVlCp7O/ThKtxfkO\nTwMAgFoComMUHrhtNXemjh+WOc3o6EgAAChk2nFQeNm/b1aZmVr42ccq5AEAALi2aBACgBqS\nd5/29vOzu4z3EQIA3E/c/MWK1kmio6H22C+edHAcAACUSs44pWRZ9tuv1R793tFhAAAAri0a\nhACgEtPOoz4hPewuo0cIAHAz8YuXJmdmeel97C+VRM33mY5PBACAUgq3wh99YaGDgwAAAFxj\nNAgBQD3jvzoQHBtvd5kkie8WzFQhDwAAqklMO+7tH2B3mSSJtMQbVMgDAIBCSnqEkiRSxw1j\nHyEAAHAhNAgBQFW3r9saMmio3WVNudmp44adefNVFSIBAKAO07eHlbyU12o286AMAMCpJGdm\nRU970O4y9hECAAAXQoMQANR22+q/6bwV/fNbsjnF0WEAAFDTHSlfK1kmPyhz4uXnHJ0HAACF\nhrz0a7trJEnsGj9chTAAAABXjwYhAGggKf3U8Jdfs7tMkkTq+GEFn3ygQiQAAFQQEB2TnJml\n8EGZyszUws8+dnQkAAAUipu/2O4aSZLSkm5UIQwAAMBVokEIANroO2VG9Kw59tdJIu+j5Y6P\nAwCAehQ+KCOEyP/or44OAwCAQvGLl3oHBtldZu3s3DVhhAp5AAAArgYNQgDQzJBl/x1y3TC7\nyyztrWwiBAC4mb5TZsQ99ITdZZ2NDQcemaFCHgAAlDDtOCi87N9Mk6zWPTPHq5AHAACg22gQ\nAoCWblu10c/Qx84iSZx9709pSaNUSQQAgErin3nR2z/A7rK20mIVwgAAoFByximd3sfusvaa\nKl6mCwAAnBkNQgDQWMLmNL9wez1CIaydHWmJN6iQBwAA1Zi+PWz3QRlLe1vquGHfLZipTiQA\nAOxKSjuu0+vtLqvMTD28ZJ4KeQAAALqBBiEAaC9hU5qSLRRWszl13LDao9+rEAkAAHUofFCm\nKTf7zJuvqpAHAAAlktJOKFlWd+II+wgBAIBzokEIAE7B9O3hm9/8UMnKmoP7HB0GAAA1JWxK\n8w4MsruseFMKT8kAAJxHcmaWkvcRVmam7pt9lwp5AAAArog2DcJLbeVkAAAgAElEQVS6urql\nS5fGxcX5+vr269fv8ccfLysru/xHCgoKHnvssaioKF9f39jY2GXLljU2Nl7ldwKAU+k1eoyS\nHmH+2hXcHnV11EEAuIBpx0Ely448v5Ai6AaogwDcRnLGKaHT2V3WWlay974kFfLAJVAHAQBO\nQidJksr/lR0dHWPHjj1y5Mh9991388035+TkrF27Njo6+vDhw7169broR/Ly8m677bbq6ur7\n779/5MiR+/bt2759+5gxY3bv3u3j49O97xRCGAyG6upqs9ns7e3tqP+1AHCFUscNU7Is+t65\nQ178L0eHgSNQBwHgUpQUQX1g0ARl3UQ4J+ogAPeTOn64sHt7TSd63zZu1B/fVyURnBd1EADg\nRCTV/elPfxJC/P73v7fNfPrpp0KIZcuWXeojc+bMEUKsXLnSNvPCCy8IId59991uf6ckSb17\n9xZCmM3m7v+PAQAH2JkwVMlPzZHvtE6K7qAOAsBl2K+A44drnRFXhToIwC0puogbNzR/3Ur7\n3wW3Rh0EADgPDXYQ3nTTTTk5OZWVlX5+frbJwYMHNzQ0lJeX6y52MkNoaGhwcHBxcbHtr3V1\ndf369bvxxhv379/fve8UPCkDwIkp2UIRPPj62z/cpEIYXFvUQQC4DCUVUOfldcP/vWMwmhwf\nB9cedRCAWzr09Nz6U8fsr2MfocejDgIAnIfa7yBsa2s7efLkbbfddn7FEkIkJCRUVFTk5eX9\n/CPNzc0NDQ2DBg06v5717Nlz8ODBR44csVgs3fhOAHByyZlZdtc0Zf+Yv3aFCmFwDVEHAeDy\nQkeMsrtGslqP/+qZg089pEIeXFvUQQDuavTylLj5i+2vk0T1d5m8T9djUQcBAE5F7QZhUVGR\nxWLp37//BfOxsbFCiNzc3J9/JCAgQK/XV1VVXTAfGBjY0dFRVlbWje8EABfgZf+f6JwVfz72\n70+rkAXXCnUQAC5v9PIU78AgJSsbfzxdtTfdwXFwjVEHAbix+MVLlTzoKYQ48vzCM2++6ug8\ncELUQQCAU9Gr/N/X2NgohAgKuvCaPzg42PbXC3h5eY0dO3bPnj0nT54cOXKkPHnmzJnDhw8L\nIZqamlpaWpR/56JFi5qbm88PAwDOKTnjlJJj1lryz55/e5Tz1pwcdRAA7DLtOCgUnDUqWczH\nf/VM77ETRr2+XJVcuAaogwDcXnJmlpLruOJNKQFRMTGzH1EhEpwHdRAA4FTUbhDKfn74tfwq\nxEsdiv3KK68kJSXNmDHjzTffHDp06LFjx15++eWYmJicnBw/Pz+5ECr8zi1bttTV1V2r/yEA\n4FBKri1by0pO/MeSG373rjqRcE1QBwHALr/wPu2V5+wuszQ1yA/K8IiMC6EOAnBvN7/54ZEX\nH7W7LPvt14o+/cj4t10qRIJToQ4CAJyE2g3CHj16iIs9otLQ0CCECAkJueinEhMT33777Zde\neumee+4RQgQHB//mN785dOhQTk5Or169LBaL8u/cvHmz2WyWf7/vvvvkNQDgtHR6H8ncefk1\nkpDOvPHKkGW/FkJU7U3nDqkzow4CgEIJm9JqDx2we4O17uTRhv98fuRv36JN6BKogwA8Qa/R\nY+5Yv33fQ5PtrmyrKC/87GP2EXoO6iAAwKmo3SCMiYnR6/UFBQUXzOfk5AghBg8efKkPPvvs\nswsWLDhy5IiXl9eoUaNCQkJuueWWyMjInj17BgYGKv9Ok8lk+93Hx+fq/tcAgMMlpR3PmHKb\nuanpcosk0VZ57vh/PCOE8PbxNaUeUykcrhx1EACU6zV6jJJlVov51H+/OOJ/33R0Hlw96iAA\nDxEQHaPwrNHsd16r+X7vqD++r0IqaI46CABwKjp5v7maxowZc/LkycrKysDAQHnGarX279/f\n29u7sLDwUp+yWCze3t62YWFhYVxc3Pz589esWdPt7zQYDNXV1Waz+fxvBgBnk7Piz/lrVyhc\nrPPW3/Dbt9g/4cyogwBwRVLHDxcKrll0OnHD7/5KBXR+1EEAHkVJj1CnE0m7s1QIA2dAHQQA\nOA8v9f8rH3vssZaWlj/84Q+2mRUrVpSWlj7++OPysK2t7dixY/JzLrKXXnopICDg4MGD8tBq\ntb744ouSJD399NMKvxMAXFf84qXJmVnJmYquGCWrOW/1u/Ixa3BO1EEAuCLJu0+LS7yS53yS\nJLJe/39UQOdHHQTgUUJHjLK7RpLErvH2+4hwD9RBAIDz0GAHocViSUxMzMzMnDlz5s033/zD\nDz98+umnI0aMOHDggPycy6lTp0aOHJmcnLxz5075IydOnBg7dqyvr++CBQvCwsK2bt166NCh\nX/7yl6+//rrC77wonpQB4FrSJ95qaW22u8w7MHDEf/+RLRROizoIAN2gZAeGEMJL7zPy1b8I\nXkboxKiDADxN+qRbLS32r+OEEDovr6SMU47OA21RBwEAzkODBqEQoqmp6ZVXXvn8889LS0sj\nIiJmzZr1v//7v2FhYfJff14IhRAHDhz4n//5n4MHD7a0tAwbNuzZZ59dtGiR8u+8KAohAJej\n9Paoj8/I3/yFe6NOizoIAN2Qlnij1dxpd1mP4TcOmP8kRdCZUQcBeCCFl3KB/ePGpnzl6DDQ\nFnUQAOAktGkQOgkKIQCX01pcuO+hycrX97zh5lveXee4PHBp1EEALkfh3dXeYydEz3yQHiEu\njzoIQGUKq9jg534VM/sRR4cBqIMAAA3eQQgA6LaA6BiFLyMUOiF0wie0V9Xe9PN/HJsPAABH\nuvG1vypZVr0/4/Rvf+XoMAAAXJGb3/xQybKz77zm6CQAAACCBiEAuKIbX/tr7AML7SyShJBE\nZWZq5Z5damQCAMDxDEaTogdldCIgMoqHYwAATqXX6DGDn/ql3WWSJHYl3ahCHgAA4OE4YpSt\n9ABc1XdzpjeV5FzyzzohhNAHBcc8uChk8NCLLuHsNQ9HHQTgoqr2pp/+zb+bm5vsrgyMix/8\n1DJBycPFUAcBaEXhWaPBAwffvuYLR4eBx6IOAgDYQQgArur2DVvDbx13yT9LQkjC3NSUu+rt\nvLXvq5gLAADHMhhNYbcZ7SzSCaETQf3j1AgEAMCVUPjaiKbc7DNvvuroMAAAwGPRIAQAF9bv\nvocu+TfdP38udXuUU9cAAC5q5P++aed9hP961DbHjQIAnEpyZpZOwbatks0pKoQBAACeSa91\nAABA9xmMJtvt0ar0nSXbN3X9QRKRk2dFmCZqlgwA8P/Zu/P4qOp7b+C/ISthl4ACArIIymYN\nVtuigmL7oLUvF9yxotaqV2xrX231ts/16b1drdrqrRd9ql21j4jaurXaBcUNFBUQAVERERTB\nGNawBLLM88dpxzQJIUAyk5nzfr982XN+c+bMNzPzy6fmexbaWOm4CR2Kiup27mz64X9earv4\nwD7prAoAWujEpxfv8VqjyWR49pRPHf/4i+kpCQCIFWcQAuSKRKL+Wvnsv7TkSXt7LoXTLwBo\nP0b/1y27fWw3l9qWYgC0Hy251mjN1i1pqAQAiCENQoDsVjpuwj8Wxk/sOuiw1HhtVVUymcxM\nTQCQFqkQbEILLrUNABl3yBcvb36DZDI8edyIZz//6fTUAwDEh0uMAmS91J9H1z70wJaVb6TG\nqzesL+xZusenV8x5urk/sAJAOzbxudejkwIrnnlyzRN/+MdoMuQVdRxyxdc79j248VNSJxGK\nPwAybsjl16z9yyM7P/qw+c2qt2x++qSyCbMWpKcqACAOnEEIkDtG3zy99/GfDf88b3D9vOcy\nWg4ApEPpuAmNW321VTs2LpiXiXIAYO8c+8fZezyPMIRQu7Nq7jmfTUM9AEBMaBAC5JSSAYNS\ny3XVu1r4rOjOgm7LBED2Kh0/sduQEfVHkrU1zT9F8AHQTgy5/JqW3I9wx9o1q++/Ow31AABx\noEEIkFO6jfpEIv8fl4/e+s7yZE11ZusBgPQoHTehqPTA+iObly6qrdqRqXoAYG/lFXfc4zZv\n335zGioBAOJAgxAg5yQS0f9Wrftg64rle/VU51IAkL1G3zz9iBtu71BQFK1Wb960beXbzT9F\n8AHQfkz4+/w9bpOsrVn2k/8jvwCA/Zef6QIAaGWdhwyrfGNptFz14Qf5nTvXfzSRl1fUu0+i\ngwNEAMhN3Y84asPLc6LlyjeWVm/Z3KGoqOtho1pyWgYAZFZRrwN3fvRh89t88KcHt65cHkJo\nfAteAICW0yAEyDUHTvhcqkH4wZ//2HiDkoMHDv23b6SuRNqAY1EByGoHjD0m1SCsePHZaKG4\n90HDrvnfiby8zNUFAHt27B9nP3nciD1utmXpoiX/5+ujvneLHiEAsM+cQQKQU0rHTQgd9vDX\nz+3vr9q+ZnV66gGANGvyCJiq8nW7NlQ0uX3FnKcdHANA+zHxuddTt41oRu2una99e5oIAwD2\nmQYhQK7p2Ofgwu49mt9m+6p3Kpe/sW3l28mamvRUBQDp0bHfgJKBgxuP12zflv5iAGAfTHx2\naUt6hMlkcvntNznSBQDYN4lkMpnpGjKmtLR0/fr1NTU1ea41BOSQijlP12zbtm3l8lBXV398\n+5rV5U//rcHGJf0HDp32rURi744XcR2b3CAHgdwT/YU0mUzuLF+XrKnevHTRh08+ET1U2L3H\nYd/6r91dYTsi4GJFDgLtXEuuNRoSoaCk84jrb4zWBBktJwcBcAYhQA7K79Sp26hPdBtTVv+f\nzoOHNd5y+3urdn5Unv4KAaAtRH8YTSQSxQf26dhvQHHvg1IP7dq0sXrzpoxVBgB7aeJzr+95\no2So3r71zZ/+V9uXAwDkGg1CgFyzu4NGSwYOavrSo7W1bVoPAGRK18NHd+zXP7W69q+PrHns\ngW2rV+5ue5doA6B9acGFRkMyVH304WvfvqrtqwEAcooGIUBc5BV3HPb164dc/rXBl3219/jP\npsYrXnwmg1UBQNvpUFR8wNHjUqubFs2veH72il/cWlO5Zd926D5PAKTTxGeXhg4t+ttdMhle\nv/F6IQUAtFxzd+AAIMfkFRd3HjI8hFC7rTI1uGXp4nBG5moCgLaUX9yxwUiyprrqo3Wdu3Rt\ncvvd/WnVXZ0AyIiJzywJLbsfYfWG9Yv/42ujf/DfMgsAaAlnEALEUedDDy/o1j1aTta5xCgA\nuaN03IT6fxjtNvKIroePTuTl/ctGyWSaqwKA/THxudc75BfscbO6muqV9/wiDfUAADlAgxAg\nB+3xiNH8Tp2jUwlDCLU7d1Rv2dzmNQFAJiQKCgdd/G9jfnTboIuvTA1Wrf0ggyUBwD448LjP\ntWSzLUsXvXrtv7V1MQBADtAgBIipDvn/uMp0sqZ2+3vvZrQWAGhzeZ26pJZ3ri/f26e7+yAA\nmTXiezf1+uRxLdly/QvPPH/68W1dDwCQ7TQIAWKq64jRqeWdH32YwUoAIA06DRiUyP/HhUY3\nLZr/1s9vWPGLWza9Nj+zVQFAy/WdfP4RN9y+5+0SobBnr7YvBwDIbhqEADGV17FTanntEw9v\nXroog8UAQOvazdW2E9H/1GzbumPN6q3vLF99329rtlWmsS4A2HfRfXaPuOH2/E6dm9suGSrf\nWvbkcSNe+OIXnP4OAOyOBiFAbtrjbQg7FBbVX922akUbVgMA7UBBt+4NRpK1tTVbtmSkGADY\nN6XjJhxw9Lg9bJQIIRE69T8kHQUBANkpP9MFAJAZHfv06zambPNrC6LVbe8sX/vEwx0KC3se\nfWx+l66ZrQ0A2sKA8y758G+P1WzfXrt9266N66PBnes/Ku7TL7OFAcBeGf29WyrmPL3o36/a\n7RbJEEL46LknC7r1qD+8xwNJAYD4cAYhQFwlEodc8KXU2vb3VpU//bd1f/vTyt/dkcGiAKDt\ndBowaPBlXx321X8/8LOfTw2u+9tjGSwJAPZN6bgJHYqKdvtwIoREyO/cufjAPmksCgDIJs4g\nBIixRCKvuLi2qqr+2I4172WqHABoRamTJBrffqmoZ6/Ucs1W9yAEICuN/q9bdnsSYTKEEGq2\nbn3nV7d1HXnEoC9eEQ3Xz0RnEwJAzGkQAuSsJv97r8EfSfuccubax//YoEcYeX/mr9a/Or/B\nYCKRGPOj6a1WIgBkQqdDhnQdMXrL64tDCMna2mSyLpFwbRUAskxzHb7Ex4vuRAgANEmDECDW\neh5zbM9jjg0hrHnsgYrnZ4cQknV1m5cu6jbyiNpt1dFhp/UlG40AQDbKKy6JFmqrdmxdsbzL\n0OGZrQcA9sHE516PjgGteObJNU/84R+jydB7wv/qM+m05p9bMedpJxECQJw5ThaAEELIL+mU\nWt5ZvjaDlQBAGnTs0y+1XL15U7KmOoPFAMA+Kx03oXGf76Pnn3J0JwDQPA1CAEIIoUfZManl\nja++8u7/++X2Naub2jDpXk0AZJcmT48oGTAotfze/b9bfP3Xy2f/NX01AUCrKh0/sduQw1Or\nyerqlrQHG9+mFwCIDw1CgHiJDi9tfJBph8Li1HLVug82v7Zg19ZNTTw/GT7404NtXCMAtL1E\nov5asq5u3aw/J51sAUB2Kh03oaj0oPojVWvXZKoYACAraBACEEIIeUVFHQoLQiL8yz+NJcLG\nV19+8rgR0T9zz/lsugsFgNZQfGCfvI4l9UeSNTXVmzdmqh4A2E+jb57ee/znUjeS37hgXkbL\nAQDaOw1CAEIIIZGf3//si1q26cf/dBk2oo3rAoA2kVfc8dCrr+37+TM7DxmWGlz24/9Y+5dH\nMlgVAOyPzocenjrQM1lb05KnuMooAMRWfqYLAKC96D5mbPcxY1Orq379fze99VrDjZKh5OCB\nn57xRForA4D9k7qwdv0/gxaV9u51/Ek127dtXfFWarBizuw+k05Lb3UA0Dq6DB2eyMtP1tSE\nELYsW3LQ/zotr7h4j88CAOJJgxAgvkrHTXC4KAAx12XY4R898/dkXV20Gv1RNYTw/sxfrX91\nfmqzRAhjfnx7BuoDgL2R6NAhusjoro3rt737dtfDRu3xKRVznm5wi3oAIA5cYhQAAIivzoOH\nHfqVf+9y6GHRajJZV1W+LoRQu606JEPqn2Sy2b0AQPvQfXRZannrO29tfm3BlmWL63btymBJ\nAED75AxCAAAg1jr2Pbi4z8GVy98IIYRk2PLG4uLeB2W6KADYFwd88jMb5r8YLX/0zKyPQggh\nFPfpN+yr30502O15AtGlZZxHCACxokEIQNMGXnrlwHqrb9/x023vrshYNQDQGnZ3ee2uh4/6\n6NlZ0fKO99/b/NqCmspNDbZJJusSCZdgAaD9Kh03Yft77zYer1q7ZteGiqLS3mmvCABov/z3\nLUCsOUQUAEIIxQf2Sy1vWvTKu//vl1s/WP0vWyTDmofuS3dZALCXOvY5uGPf/o3HN7368vp5\nz2945YXqzQ2PgElxi3oAiBVnEAIAAHHXoSA/hBASu98iEda/9Pz6l56P1gq6djv+zy+kozIA\n2BuJ/PxDp32rqnxtSCY3L1304ZNPROPr/v7naCG/S5fDvvmfecUdM1cjANAuaBACAABx16Gw\nqEfZMRsXzGu+R5jS6ZAhbV8UAOyLRH5+dBJhVfm6xo/WVFZWrX2/06BDm3zu7k4ijK4941aF\nAJBLNAgBAIAYSf1Zs8HfQAecO/XAEyfV7doZra595MHK1W9//HAy5HfuOvI/bgj+MApAO1b/\nbrtdDxtV3Pugxm3CjQte2rZqZSIvr9uoIwt7HJDuEgGA9kGDECDu6v8HJADEWVGvA1PLecUl\nGawEAPZfXseSYV//j+pNG0IIW1e8+d6D/y8aX//SnGjho2dmHX7dfyUKCjNWIgCQOR0yXQAA\nAEC7lwg127a89p1pma4DAPZCokOHwgNKo38aP1pduXnn+oqW7KdiztOOKwWAHKNBCAAAxNFe\nXyk0GZJ1bVIJALS1TocM7XLoYY3H62qq018MANAeuMQoALu9GxMAxNbAS68cGEIIYfV9v9m4\n8OWQyHA9ANBCTd5FIpGXN/iyr9ZWVYVk3cZXX1nz8H3R+Lq/PTb40qvTXSIA0A5oEAIAALRQ\nMtMFAMC+yysuDiEUdOmaGtmxZnXmygEAMsklRgEAAFpq85JXM10CAOyXroeNKu7T7x8rDn0B\ngLhyBiEAABBTTV6ELbLo36/6eKXe9UXf/f2d7/7+zmi5Y59+n7n/721XHgC0hUR+fsc+B1et\nXRNCqN2xrap8bXHvPpkuCgBIN2cQAvCx1M0IAYAQQkiEhncfTHz8T5dhIzJTFQA0a4//ZZdX\nUhItJOuSO8s/bPOCAID2xxmEAAAADR1xw+2p5bdvuWHbh6tDCCEZSg4e+OkZT2SsLABoDd1G\njKl4fna0vOX1xV0PH53Iy8tsSQBAmjmDEAAAoDl5HUsyXQIAtKZE3sfnDGyY/8L6l+ZksBgA\nICM0CAFosUQIibB9zaqnjh+Z6VIAoHWUjpvgCtsAxE1Bl271r6G9a0NF5moBADLDJUYB+Be7\n+yPpqnt/+Y+lZEiGZNrqAQAAYG+l/suuYs7TjR8t7Fna79Sz1jz2YLS6eemrXQ8f1XnwsHRV\nBwBknjMIAQAAmjPoyq92GjjE4TEA5JLScSeklnetr1h1768yWAwAkH4ahAAAQNy50CgAsZNI\nFHbvkVqrqaxM1tRksBwAIM00CAEAAAAgdgZc8KXi3gelVpdPv6nyzdczWA8AkE7uQQhAc548\nbsQex4t6lh778LPpqggAAICWqn+KfIP7EXYaOLjryCOqytdFqzs+eO+9B+8Z8b9/nMbqAICM\n0SAEoDmJ/IJkTXVIhBDCv9x7KfHxYuchw9NbFAAAAK2gqGev+qs1Wyujhfdn/mr9q/NT44kQ\nxvz49rRWBgC0MQ1CAJpz4uxFqeUVt9/y7oy7ouWJz7ryDAC5pnTchAanVgBAbutx1Kdqtm7Z\n8MqLOyvKQwghJOt2VnUoKq7dVl3/CNHkbp4OAGQv9yAEAAAAgDhKJDr0PmFSl8NGRqvJuuSG\nhS9ltiQAID2cQQgAAAAAuW939yPseFDf1HLd9u1prAgAyBhnEAIAAABAfHUd8YnU8tq/Prro\nuqs2vflag202vTY/AAA5xBmEALTUkKu+3u2II8O/HnYKALlkdxn39h0/TW8hAJBGiXr/3o1V\n9/5q1b2/ipYLunY7/s8vtHlVAEBbcgYhAAAAAMRXfseSwtJeIdnsRomP/+l0yJA0VQYAtBln\nEAIAAABAvJSOm/DxbQgTiSGXX7PxlRfqdu2KBipfe3XHxvKPt06G/M5dR/7HDcEVZQAgV2gQ\nAgAAAECsFXbrceDEU1Kru9au+5cGIQCQc1xiFAAAAAAAAGJEgxAAAAAA2L1EqNm25bXvTMt0\nHQBAq3GJUQAAAACInX+5DeG/GnjplQNDCCGsvu83Gxe+HBIhJEMymcbiAIA25gxCAACAFkiE\nkAjb16x66viRmS4FAAAA9osGIQAAQAsk//HvpBMoAIipZPXmTZmuAQBoHRqEAAAAABBHpeMm\n7MXWybDmTw+2VSkAQHq5ByEAAAAA8LFF/37VxyuJjxc2L17w5HEjorWOffp95v6/p7syAKCV\naBACAAAAAI1ErcFko5EQQghdho1IbzUAQGvSIAQAAGha6iSJEP7lT6L1x4t6lh778LNpLAoA\n2twRN9yeWl75f3++5d03QgghGUoOHvjpGU9krCwAoPW4ByEAAEDTEvkFIYSQ+Jfu4McjiRAS\nofOQ4ZkoDQBax97dhhAAyBXOIAQAAGjaibMXRQsVc57+8PFH1j3712h14rOvZ64oAAAA2F/O\nIAQAANiD0nETivsNyHQVAAAA0Do0CAEAAACApg268qudBg4JyUzXAQC0Kg1CAAAAAIiv0nET\n3IkQAOLGPQgBAAD2bMhVX+92xJEhBH9CBQAAINs5gxAAAAAAAABiRIMQAAAAAOLOKfIAECsa\nhAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECP5mS4AAAAAAMi83d2G8O07fpreQgCANucM\nQgAAAAAAAIgRDUIAAAAAAACIEQ1CAAAAAAAAiBENQgAAAAAAAIgRDUIAAAAAAACIEQ1CAAAA\nAAAAiBENQgAAAACgWYkQEmH7mlVPHT8y06UAAK1AgxAAAAAAaFbyH/9OJpMZrgQAaA0ahAAA\nAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECP5mS4AAAAAAGh3njxuxMcriabHi3qWHvvws2ks\nCgBoHc4gBAAAAAAaSuQXhBBC4l+6gx+PJEJIhM5DhmeiNABgfzmDEAAAAABo6MTZi6KFijlP\nf/j4I+ue/Wu0OvHZ1zNXFADQOpxBCAAAAADsVum4CcX9BmS6CgCgNWkQAgAAAAAAQIxoEAIA\nAAAAAECMuAchAAAAANCcIVd9vdsRR4YQSsdNyHQtAEArcAYhAAAAAAAAxIgGIQAAAAAAAMSI\nBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADESH6mCwAgm5SOm5DpEgAA\nAAAA2C/OIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACA\nGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAE\nAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAA\nAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjJ\nz3QBAAAA2aF03IRMlwAAAACtwBmEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAA\nAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQ\nIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAkSE2wAACAASURBVAAAAAAAECMa\nhAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAA\nAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAj+ZkuAAAAAABo\n70rHTch0CQBAq3EGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEA\nAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAA\nAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxEhm\nGoSbNm265pprDjnkkMLCwr59+1522WVr165t/ilvvPHGF7/4xT59+hQUFPTq1euMM8546aWX\nUo/+9re/TTTlBz/4QRv/KACw1+QgAHEmBwGIMzkIQDuRn/6X3LVr18SJExcsWDB58uSysrIV\nK1bcfffdTz311Pz583v06NHkU5YuXfrpT3+6oKDg6quvHjp06KpVq6ZPnz5u3Li//vWvJ554\nYghh06ZNIYTzzz9/wIAB9Z84bty4NPxEANBychCAOJODAMSZHASgHUmm3c9+9rMQwk9+8pPU\nyMyZM0MI3/jGN3b3lAsuuCCE8NRTT6VGFi1aFEKYMGFCtPrd7343hPDyyy/vVSU9e/YMIdTU\n1OzlTwAA+04OAhBnchCAOJODALQfGbjE6N13392lS5evfe1rqZFzzjln6NCh99xzTzKZbPIp\nK1asCCEce+yxqZExY8Z07dr13XffjVajI2W6d+/edmUDQKuQgwDEmRwEIM7kIADtR7obhFVV\nVYsXLz766KOLiorqjx977LHl5eUrV65s8lmHHXZYCOHNN99MjVRUVGzduvXwww+PVlNBWFtb\n+/7771dUVLTVDwAA+0EOAhBnchCAOJODALQr6W4Qvvfee7W1tf37928wPnDgwBDCO++80+Sz\nrrvuuh49elx44YXPP//8unXrFi5ceN555xUXF0dn0IcQNm/eHEK49dZbe/Xq1b9//169eg0f\nPvzee+9tyx8FAPaaHAQgzuQgAHEmBwFoV/LT/HqVlZUhhE6dOjUY79y5c+rRxg4//PAXXnjh\nzDPPPO6446KRAQMGzJo165hjjolWoyNlZsyYce211/br12/ZsmXTp0+fMmVKZWXlFVdcUX9X\ngwYNilIz9SwASBs5CECcyUEA4kwOAtCupLtBGEkkEg1GoqtsNx6PLFu27POf/3xNTc1Pf/rT\nYcOGlZeX/+xnPzv55JMffPDBk046KYRw/fXXX3311ZMmTUpF7IUXXlhWVvad73znkksuKSws\nTO1q06ZN8g+AzJKDAMSZHAQgzuQgAO1EuhuEXbt2DU0dEbNly5YQQpcuXZp81qWXXvrhhx++\n9dZb/fr1i0bOO++8YcOGXXzxxStXriwoKDjxxBMbPGXEiBGnnHLKQw89tGjRok9+8pOp8Y0b\nN6aWS0tL169fv98/EwC0lBwEIM7kIABxJgcBaFfSfQ/CAQMG5Ofnr1q1qsH4ihUrQgiHHnpo\n46ds3bp13rx5xxxzTCoFQwglJSUTJ05cs2bNW2+9tbvX6t27d/T01ikdAPabHAQgzuQgAHEm\nBwFoV9LdICwsLBw7duxLL720ffv21GBdXd0zzzzTv3//AQMGNH7Kjh07kslkVVVVg/FopKqq\nauvWrXfccceMGTMabLB06dLwz9v8AkB7IAcBiDM5CECcyUEA2pV0NwhDCF/60pe2b99+0003\npUbuvPPODz744LLLLotWq6qqXn311ejYmRBCr169Bg0a9Morr9Q/KGbTpk2zZs3q2rXrqFGj\nSkpKfvjDH15++eVvvPFGaoNHHnnk+eefP/LIIwcPHpyWHwsAWkQOAhBnchCAOJODALQfiegu\nuOlUW1t7wgknPPfcc6eddlpZWdmyZctmzpw5atSoF198saSkJISwZMmS0aNHT5w4cdasWdFT\nHnroobPOOqtHjx5XXnnlkCFD1q5d+8tf/nLlypXTp0+/6qqrQgiPPvro6aefXlJSct555/Xt\n23fJkiUPP/xwly5dZs+eXVZWtrtKomtt19TU5OXlpednBwA5CECcyUEA4kwOAtCOJDOhsrLy\nm9/85sCBAwsKCvr16zdt2rT169enHl28eHEIYeLEifWfMnfu3NNPP71Xr175+fk9evQ46aST\n/vznPzfY4OSTT+7evXt+fn7fvn0vuuii5cuXN19Gz549Qwg1NTWt+KMBwB7JQQDiTA4CEGdy\nEIB2IgNnELYfjpQBIM7kIABxJgcBiDM5CEAG7kEIAAAAAAAAZIoGIQAAAAAAAMSIBiEAAAAA\nAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSI\nBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAA\nAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAA\nxIgGIQAAAAAAAMRIfqYLyLxhw4ZlugQA2tCSJUs6duyY6SraLzkIkNvkYPPkIEBuk4PNk4MA\nua35HEwkk8l0VtOubNq0qV+/ftu3b890IQC0oW3btpWUlGS6ivZIDgLEgRzcHTkIEAdycHfk\nIEAcNJ+DsW4QhhA2bdrUuu/Af/7nf/785z+/5ZZbpk6d2oq7JT3efffdsrKyI444Yvbs2Zmu\nhX0xefLk2bNnz5o1q6ysLNO1sNcee+yxqVOnTpky5bbbbmvdPXfv3j2RSLTuPnOGHKQ+OZjt\n5GBWk4MZIQepTw5mOzmY1eRgRshB6pOD2U4OZrVM5WDcLzHavXv31t1hcXFxCKGkpKRHjx6t\nu2fSYOPGjSGEvLw8H1+WKigoCCF06dLFJ5iNOnfuHEIoKiry8aWTHKQ+OZjt5GBWk4MZIQep\nTw5mOzmY1eRgRshB6pOD2U4OZrVM5WCHdL4YAAAAAAAAkFkahAAAAAAAABAjcb8HYavbsWNH\nVVVVSUlJUVFRpmthr9XV1W3evDkvL69r166ZroV9sXXr1urq6i5duuTnx/36ydmourp669at\nRUVFbiCf1eRgVpOD2U4OZjU5mBvkYFaTg9lODmY1OZgb5GBWk4PZTg5mtUzloAYhAAAAAAAA\nxIhLjAIAAAAAAECMaBACAAAAAABAjGgQtppNmzZdc801hxxySGFhYd++fS+77LK1a9dmuiha\n5Le//W2iKT/4wQ8yXRq7VV1d/e1vfzsvL++oo45q/Kj52P418wmaklnKvMteJl02koPZTg7m\nHvMue5l02UgOZjs5mHvMu+xl0mUjOZjt2k8Oul9l69i1a9fEiRMXLFgwefLksrKyFStW3H33\n3U899dT8+fN79OiR6erYg02bNoUQzj///AEDBtQfHzduXIYqYg+WLVt24YUXLl++vMlHzcf2\nr/lP0JTMRuZdVjPpso4czHZyMPeYd1nNpMs6cjDbycHcY95lNZMu68jBbNe+cjBJa/jZz34W\nQvjJT36SGpk5c2YI4Rvf+EYGq6KFvvvd74YQXn755UwXQots3ry5Y8eORx111PLly4uKisaO\nHdtgA/OxndvjJ2hKZiPzLquZdNlFDmY7OZiTzLusZtJlFzmY7eRgTjLvsppJl13kYLZrbzno\nEqOt4+677+7SpcvXvva11Mg555wzdOjQe+65J5lMZrAwWiJqy3fv3j3ThdAiNTU1V1111dy5\nc4cOHdrkBuZjO7fHT9CUzEbmXVYz6bKLHMx2cjAnmXdZzaTLLnIw28nBnGTeZTWTLrvIwWzX\n3nJQg7AVVFVVLV68+Oijjy4qKqo/fuyxx5aXl69cuTJThdFCqVlXW1v7/vvvV1RUZLoimnPA\nAQfcfPPNBQUFTT5qPrZ/zX+CwZTMQuZdtjPpsosczHZyMPeYd9nOpMsucjDbycHcY95lO5Mu\nu8jBbNfeclCDsBW89957tbW1/fv3bzA+cODAEMI777yTiaLYC5s3bw4h3Hrrrb169erfv3+v\nXr2GDx9+7733Zrou9oX5mANMyaxj3mU7ky6XmI85wJTMOuZdtjPpcon5mANMyaxj3mU7ky6X\nmI85IM1TMr+N9hsrlZWVIYROnTo1GO/cuXPqUdqzqC0/Y8aMa6+9tl+/fsuWLZs+ffqUKVMq\nKyuvuOKKTFfH3jEfc4ApmXXMu2xn0uUS8zEHmJJZx7zLdiZdLjEfc4ApmXXMu2xn0uUS8zEH\npHlKahC2mkQi0WAkuqpv43Ham+uvv/7qq6+eNGlS6rfnhRdeWFZW9p3vfOeSSy4pLCzMbHns\nA/Mxq5mSWcq8y14mXe4xH7OaKZmlzLvsZdLlHvMxq5mSWcq8y14mXe4xH7NamqekS4y2gq5d\nu4amOvBbtmwJIXTp0iUDNbE3TjzxxMmTJ9c/tmLEiBGnnHLKhg0bFi1alMHC2AfmYw4wJbOO\neZftTLpcYj7mAFMy65h32c6kyyXmYw4wJbOOeZftTLpcYj7mgDRPSQ3CVjBgwID8/PxVq1Y1\nGF+xYkUI4dBDD81EUeyv3r17hxC2bt2a6ULYO+ZjrjIl2zPzLieZdFnKfMxVpmR7Zt7lJJMu\nS5mPucqUbM/Mu5xk0mUp8zFXtd2U1CBsBYWFhWPHjn3ppZe2b9+eGqyrq3vmmWf69+8/YMCA\nDNbGHm3duvWOO+6YMWNGg/GlS5eGf97BlSxiPmY7UzIbmXdZzaTLMeZjtjMls5F5l9VMuhxj\nPmY7UzIbmXdZzaTLMeZjtkv/lNQgbB1f+tKXtm/fftNNN6VG7rzzzg8++OCyyy7LYFW0RElJ\nyQ9/+MPLL7/8jTfeSA0+8sgjzz///JFHHjl48OAM1sa+MR+zmimZpcy77GXS5R7zMauZklnK\nvMteJl3uMR+zmimZpcy77GXS5R7zMaulf0omohtUsp9qa2tPOOGE55577rTTTisrK1u2bNnM\nmTNHjRr14osvlpSUZLo69uDRRx89/fTTS0pKzjvvvL59+y5ZsuThhx/u0qXL7Nmzy8rKMl0d\nDT3zzDNPPPFEtHzzzTf36tVr6tSp0eq3vvWtnj17mo/t3B4/QVMyG5l3Wc2kyy5yMNvJwZxk\n3mU1ky67yMFsJwdzknmX1Uy67CIHs127y8EkraSysvKb3/zmwIEDCwoK+vXrN23atPXr12e6\nKFpq7ty5J598cvfu3fPz8/v27XvRRRctX74800XRtB//+Me7+4WW+tTMx/asJZ+gKZmNzLus\nZtJlETmY7eRgrjLvsppJl0XkYLaTg7nKvMtqJl0WkYPZrr3loDMIAQAAAAAAIEbcgxAAAAAA\nAABiRIMQAAAAAAAAYkSDEAAAAAAAAGJEgxAAAAAAAABiRIMQAAAAAAAAYkSDEAAAAAAAAGJE\ngxAAAAAAAABiRIMQcs2tt96aSCQuu+yyTBcCABkgBwGIMzkIQJzJQdgrGoSQHW644YZEC0ya\nNCnTlQJA65ODAMSZHAQgzuQgtJH8TBcAtEjPnj2HDx9ef+Stt95KJpMDBw4sLi5ODfbv3/8r\nX/nKlVdemZ9vdgOQO+QgAHEmBwGIMzkIbSSRTCYzXQOwL4qLi3fu3Pnyyy8fddRRma4FANJN\nDgIQZ3IQgDiTg9AqXGIUAAAAAAAAYkSDEHJNg5vx3nbbbYlE4rvf/W5FRcWll17ap0+fTp06\njR079k9/+lMIYfPmzVdffXX//v2LioqGDx9+1113NdjbnDlzJk+efNBBBxUWFh500EGTJ0+e\nO3duun8kAGgxOQhAnMlBAOJMDsJe0SCEHBddiXvTpk0nn3zynDlzxo0bN2DAgAULFpx55pkL\nFy783Oc+99BDD5WVlY0aNeqtt966/PLLH3vssdRz77zzzuOPP/7hhx8eOXLk1KlTDz/88Ice\neujYY4/99a9/nbkfCAD2ghwEIM7kIABxJgeheRqEkOOiu/Lec889w4cPX7p06YMPPrhkyZKT\nTjqpurr61FNP7dGjx/Llyx955JH58+dfcsklIYTf/e530RPffPPNq6++Oj8//69//euTTz55\n1113zZ49+/HHH8/Pz582bdrq1asz+VMBQMvIQQDiTA4CEGdyEJqnQQg5LpFIhBB27Nhx6623\nRqGYl5f3xS9+MYSwdu3a//7v/y4pKYm2vPjii0MIy5Yti1anT59eXV19+eWXn3TSSam9TZo0\naerUqVVVVb/5zW/S+3MAwL6QgwDEmRwEIM7kIDRPgxBiYcyYMaWlpanVfv36hRAOOuig4cOH\nNxisrKyMVp966qkQwqmnntpgVyeffHII4dlnn23jkgGg1chBAOJMDgIQZ3IQdic/0wUA6XDw\nwQfXX83Lywsh9O3bt/FgXV1dtPruu++GEKZPnz5jxoz6m1VUVIQQ3nnnnTYsFwBalRwEIM7k\nIABxJgdhdzQIIRYKCgoaD0Zn1jcpmUxu27YthFD/3rz1pQ6oAYD2Tw4CEGdyEIA4k4OwOy4x\nCjQhkUh06tQphDB//vxkU6LjZQAgJ8lBAOJMDgIQZ3KQ+NAgBJo2ePDgEMKqVasyXQgAZIAc\nBCDO5CAAcSYHiQkNQqBpJ5xwQgjh/vvvbzD+5ptvPvHEEzt27MhEUQCQJnIQgDiTgwDEmRwk\nJjQIgaZdeeWVBQUFDz744H333ZcaLC8vP++880455ZQ//OEPGawNANqaHAQgzuQgAHEmB4kJ\nDUKgaYcffvhtt91WW1t7wQUXjB8//tJLL/3CF74waNCgV199dcqUKRdccEGmCwSANiQHAYgz\nOQhAnMlBYiI/0wUA7dcVV1wxevTon/70p3PmzJk7d25JScmRRx558cUXX3rppR06OLwAgBwn\nBwGIMzkIQJzJQeIgkUwmM10DAAAAAAAAkCZ63QAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAA\nECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqE\nAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAA\nAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAj\nGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEuemVV15JJBKJROLt\nt99urX2++OKL0T7ffffd1tpnDmiLtzptfv3rXx922GFFRUWdO3e+6667Ml0OQKuRg2kjBwHa\nITmYNnIQoB2Sg2kjByHb5We6gPalpqbmgQceePzxx+fNm1deXr5t27YuXboMGjRo3LhxU6ZM\nOeaYYzJdILSal1566Utf+lIIoWvXrkOGDMnLy8t0RUDmyUHiQw4CjclB4kMOAo3JQeJDDkLE\nGYQfmzVr1rBhwy644ILf//73y5cv37x5c01NzcaNGxcsWHDbbbd96lOfOu200yoqKjJdZpo8\n+uijiUTit7/9bWpkzJgxCxcuXLhwYd++fTNXF63mD3/4QwihtLT0nXfeWbBgwaWXXprpilpH\n468u0EJysD45mPPkINCAHKxPDuY8OQg0IAfrk4M5Tw5CRIPwH37/+99PmjRp5cqVnTp1uvba\na+fNm7d58+a6urry8vL777//uOOOCyE8+uij48eP37JlS6aLTYe5c+c2GCkpKfnEJz7xiU98\norCwMCMl0brWrVsXQigrK+vZs2ema2lNjb+6QEvIwQbkYM6Tg0B9crABOZjz5CBQnxxsQA7m\nPDkIEQ3CEEJ47bXXvvzlL9fW1g4fPnzJkiU/+clPjj766K5duyYSiV69ep199tnPPvvsj370\noxDC66+/fs0112S63nSYM2dOpkugbdXW1oYQCgoKMl1IK/PVhX0gBxvzyyTnyUEgRQ425pdJ\nzpODQIocbMwvk5wnB+EfkiSTp556agihU6dOy5cvb2az888/f8iQIdddd11dXV0ymfz73/8e\nvYdr165tsOU999wTQsjLy0uNzJ8/P9q4urp66dKlkydPPuiggzp27Dh8+PAf/ehHtbW1yWRy\n+fLlF1100cEHH1xYWNi/f/+vfvWrW7duTe1hr17u5ZdfjjZu8BOtWLHiK1/5ysiRIzt37pyf\nn9+zZ88JEyb8+te/jn6iyBVXXNHgSxLt+YUXXohWV65cmUwmP/vZz4YQjjvuuCbfq5///Och\nhIKCgvLy8mikqqrqjjvuOOGEEw444ICCgoJevXqdcMIJv/jFL6qrq5t5zxu/e++///60adMG\nDx5cVFTUrVu3E0888W9/+1v9jdP8uaTe6rfffnvx4sXnn39+3759CwsLDzzwwLPPPnvRokWN\nf5wWvhXz5s2L9lxbW/vAAw9Ed8298847m3+vKisrb7zxxs985jPRznv27Hn88cffeuut27dv\nT20zderUxr8KbrrppmZ225Ka2+gr0fJPf3df3WQyuW3btptvvnncuHEHHHBAfn5+aWnpmDFj\nrrvuuhUrVjT/fkJMyEE5KAflIMSZHJSDclAOQpzJQTkoB+UgsaVBmFy9enUikQghfOMb32h+\ny127dtVf3atfuEuXLo02fuaZZ7p169arV6+xY8f26NEjGrz22mtfe+21Aw44oHv37kcdddSB\nBx4YjX/hC1/Yt5drMgifeuqpkpKSEEJ+fv6YMWOOOeaY3r17R5udccYZqSz85S9/ee6553bo\n0CGEcPTRR5977rkXXHBBslEQRi+aSCTef//9xu/Vpz71qRDC6aefHq2Wl5eXlZVF248ePfrE\nE08cOnRotLdjjjlmw4YNzb/zqXfv5Zdf7tu3b3Fx8dixY8eMGZOfnx9C6NChw+OPP56pzyX1\nVs+cObOkpKS4uLisrGz06NHRG1hUVPT000/Xr6Hlb8XixYuj8Tlz5kQ/aQjhlltuaeaNWrFi\nRbS3Dh06HHrooSeccMLQoUOjSkaPHp16Q26//fZzzz134MCBIYS+ffuee+6555577mOPPba7\n3baw5jb6SrT809/dV7eysnLMmDHRa40cOfKEE04YO3ZsdIhQSUlJgw8IYkgOykE5KAchzuSg\nHJSDchDiTA7KQTkoB4kzDcJk6qad8+fP36sn7tUv3GXLlkUbDxky5Pvf/35NTU0ymdyxY8fk\nyZOj2ThmzJhp06ZVVVUlk8na2tqvf/3r0fZvvvnmPrxck0EY/aL55Cc/mTpUoa6u7n/+53+i\nLe+77776+ywqKgoh/OY3v0mNNAjCrVu3du7cuclfze+880605cMPPxyNTJw4MYRQVla2ePHi\n1GZz584dPHhwCOGcc85p9p3++N0bNmzYJZdcsnnz5mh86dKl/fv3DyF85jOfSW2c5s8l9Vb3\n7t37sssuq6ysjMaXL18eveFDhgyJdru3b0WqtkmTJn3uc5974YUXVq5c+eGHH+7uXaqtrY2i\nZfjw4anyksnkq6++2qdPnxDCySefXH/7KVOmhBA+//nPN/ve70XNbfSV2KtPP9nUV/fHP/5x\n9AEtXbo0Nbhhw4YzzjgjhHDYYYft8R2A3CYH5aAcbJ4chNwmB+WgHGyeHITcJgfloBxsnhwk\nt2kQJq+77roQQmFhYf3fVi2xb79wTznllPpbLlq0KBofNWpUdOJ2ZMuWLVHD//e///0+vFzj\nICwvLz/nnHPGjx/f4MTzZDJ5xBFHhBAuvPDC+oN7DMJkMnnRRReFED71qU812OEPfvCD6PdO\ndGzRrFmzonf4vffea7Dl008/He3z7bffTu5e6t07+uij679LyWTyxhtvDCEUFBSkzr9O8+eS\neqvHjBnToLbHH388eujvf/97NLJXb0WqtkMOOWTHjh3NvD+RRx99NNp+3rx5DR6aMWNG9FD9\n1GlhEO5VzW3xldirTz/Z1Ff3rLPOCiFMnTq1wWtVVFRcd911t99++86dO5t/EyC3yUE5KAeb\nIQch58lBOSgHmyEHIefJQTkoB5shB8l5HULsrV+/PoRwwAEH5OXlpeHlzj777Pqrhx56aLRw\nxhlnRL9hI126dDnooINCCBUVFa3yur169Zo5c+bTTz8dXRC5vsMOOyyEsHbt2r3d5xe/+MUQ\nwosvvrhq1ar649Gv3SlTpkRnKz/88MMhhOOPP/7ggw9usIfx48dHp/P/5S9/ackrfvnLX67/\nLoUQRo4cGUKorq7esmXL3tZf3/5/LlOnTm1Q20knndSxY8cQwvPPPx+N7NtbMWXKlOLi4j3+\nCH/605+iyo8++ugGD51xxhlRPLTwfa5vr2pu06/EPn/6BxxwQAjh+eefb/Al79mz5w033PBv\n//ZvhYWFzTwdcp4clINBDu6eHIScJwflYJCDuycHIefJQTkY5ODuyUFyXn6mC8i86ELbtbW1\n6Xm5QYMG1V+NflE2Hk89VF1d3YqvvnPnztmzZ7/++uvl5eXRKckhhIULF4YQampq9nZvJ554\nYr9+/dasWXP//fd/61vfigYXLVoUXRz54osvTo2EEF577bUJEyY03sn27dtDCG+88UZLXjH6\nxVdfdPXwEMKuXbv2tv769v9ziU5jr6+goGDw4MFLly5dsWJFNLJvb0XjYGtSdG3u6LinBoqK\nioYMGfL666+nrlvdcntVc5t+Jfb50582bdp99923YsWKESNGnH322SeffPL48eOjdASCHJSD\nIQQ5uHtyEHKeHJSDQQ7unhyEnCcH5WCQg7snB8l5GoShtLQ0hLBhw4aqqqqWHI+wn7p169bk\neOoGsG3nkUceufLKK9etW9daO+zQocOUKVNuvPHGmTNnpn7r3XvvvSGEsrKy6PanIYQNGzaE\nEMrLy8vLy3e3q02bNrXkFVP51Or2/3Pp1avX7nabeWtNyAAAIABJREFUOo5j396K1D2Tmxft\nfHcFR5Vs3LixJbtqvNsW1tymX4l9/vTHjBkza9asq6+++qWXXrrrrrvuuuuuRCLxiU984pxz\nzrniiivSMPWgnZOD+0wO1icHgxyE7CQH95kcrE8OBjkI2UkO7jM5WJ8cDHKQ7OQSoyGanLW1\ntXPnzs10LW1o3rx5Z5111rp168rKyh544IF169ZFVz1OJpNTp07d591G11aeP3/+22+/HUJI\nJpP33XdfqHdMRPjnsUhTpkxp5lq30VWws1qTl2KIfvbo32Ff34q9+v9nqddqIDoqaneP7nGH\nLa+5fX4lPvnJT86bN++VV1753ve+d9xxxxUWFi5cuPDb3/72kCFD/va3v7XiC0E2koNysFXI\nwUj7/ErIQWiGHJSDrUIORtrnV0IOQjPkoBxsFXIw0j6/EnKQZmgQhvHjx0cX8P3Vr37V/Ja7\ndu26/fbbKysr97jPHTt2tE5xLdOSl7v11ltramoGDhz41FNPnXXWWQceeGB01ePwzzOX983I\nkSOPPPLIEML9998fQpgzZ87q1asLCwsvuOCC1DbRsUhr1qzZ51dpLW36uTR5sM/mzZtDvcNw\n2vSt6NmzZ/jnteMbi46R2Yfzx/e25vb8lRg7duz111//7LPPbtiw4b777hs8ePDGjRvPP//8\nFh6oBblKDsrBViEHI+35KyEHoUlyUA62CjkYac9fCTkITZKDcrBVyMFIe/5KyEGapEEY+vTp\nc+aZZ4YQ7rvvvueee66ZLa+//vpp06YNHTo0+u2WCpKqqqoGW+7DFY33aD9f7vXXXw8hTJo0\nqcE547W1tXPmzNmfwqL7rz744IMhhJkzZ4YQTj311OiXciS6+vPSpUvTc0HzNH8uKUuWLGkw\nUlNT884774QQhg0bFo206VsR7Ty6jHUD27Zti6733eSVuFuy272qub19JRorKSk599xz58yZ\nk5+fv2HDhhdeeCEjZUA7IQflYKuQgynt7SvRmByE+uSgHGwVcjClvX0lGpODUJ8clIOtQg6m\ntLevRGNykPo0CEMI4Yc//GHnzp3r6urOPPPMF198scltvv/97994440hhK985StRlkTd/hDC\nm2++WX/LDRs2/O53v2v1Ivfz5aKTlxtnw/Tp0z/44IPQ6HbE0fYtuUPvBRdckJeXt3Dhwvfe\ne++hhx4KIVxyySX1NzjjjDNCCB999NEDDzzQ4LkfffTRyJEjr7rqqujiy60izZ9LyowZMxqM\nzJo1KzoKafz48dFIm74Vp512Wgjh7bffbvz/bGbOnFlTU9OhQ4fPf/7ze7vbfag5s1+JBl/d\njz766Oqrr/7c5z63devWBlv27t07ukxBmg9tg3ZIDgY5uN/kYIochKwjB4Mc3G9yMEUOQtaR\ng0EO7jc5mCIHyTLNXOs2Vv74xz8WFhaGEPLy8i677LLZs2dv3Lixrq6uoqLi/vvvP/roo6O3\n6wtf+EJ1dXX0lOrq6u7du4cQxo0bV15eHg2uXr36uOOOGz58eLSr1P6XLVsW7WHhwoUNXjoa\nf+ihhxqMDxkyJIRw00037cPLvfzyy9Fuly9fHo18+ctfDiH06NFj1ar/396dh0dRpnsfv5vs\nCWFLgIAEUNkSAkISlDGsgiCrIsoiShQxMMrxiCAygKKMKChyuSEXeL2IytEDRmEURUbHgAIu\nHEUERIgs0dGgkAMhkJCkk37/qHf67ekk3U93Vy/V9f1c/mEqxdPVdfddv6p6Ot1F9gFXrFiR\nmJg4ZcoUEUlJSbE/NZvN1q5dOxG555577Evs7yY4ceKE06aOGDFCRKZPny4irVu3dhxHc911\n14lI06ZNP/74Y/vCwsLC7OxsEenVq1dtbW3doqjsvYKCAu1XxcXFXuwo3+vy9ddfa2s2a9Zs\n6dKlVqtVW/7rr7+mpaWJSEZGhuOzU98VLratXrW1tX/6059EpHPnzj/99JN9+Z49e7R3qdx5\n552O62t1HzVqlNuRvSifji8Jj6pvq/PStVqtHTt2FJGxY8c6rnbp0qV58+aJSGxsrP11ApgZ\nOUgOOo1MDnqxzXbkIGA45CA56DQyOejFNtuRg4DhkIPkoNPI5KAX22xHDsJAmCD8/3bt2qUd\nueoVHR39l7/8xamfly1bpv02ISEhOzv7qquuioyM7NGjx9atW0XEYrHY1/T9gOvRw9UNwqNH\njyYmJopI48aNhw8fPnLkyOTk5Ojo6E2bNv3jH//QVr7qqqvuv/9+bX3tKCkiHTt2vPzyy7/6\n6isXQai9SUT7yPI5c+bU3bfalwBr/7xr167XX399z549tfXbtWv3448/ui6Np4fCQNbF/h3O\nb7/9dmxsbJs2bYYPHz5o0KC4uDhtb3/99dfe7QpPg9BmsxUVFWlhHxUV1bNnz+uvv75z587a\nIEOHDi0rK3NcWT0IvSifji8JT6tf96W7c+fOhIQEbXvS09MHDBjQp08frR0aNWq0bt06t3sA\nMAlykBx0pFgXcpAcBMIGOUgOOlKsCzlIDgJhgxwkBx0p1oUcJAdhdEwQ/hur1bpp06Y77rij\nc+fOTZs2jYyMbNGixbXXXvvoo4+ePHmy3n+ybt26Pn36JCQkxMbGdurU6eGHHz537ty+ffu0\nVqysrNRW0yUI1R+ubhDabLb9+/ffeOONLVq0iI6O7tix45QpU+wbM2fOnKSkpPj4+EmTJmlL\niouLx44d26RJk7i4uK5dux4+fNhFEJaXlzdp0kT77YEDB+rdUZWVlatXrx40aFBSUlJkZGST\nJk369OmzdOnS0tLSetd35OmhUH1H+V4X+wZcunRp3759t956a0pKSlRUVOvWrW+77bZ6Q0Jx\nV3gRhDab7cKFC08//XTfvn21F3DLli2HDx/+xhtv2N/CY6cehOrbbKfjS8LT6td96dpstuPH\njy9atKh3796tWrWKjIyMj49PS0ubMWPG/v37VZ4+YB7kIDloRw56sc125CBgUOQgOWhHDnqx\nzXbkIGBQ5CA5aEcOerHNduQgDMRi+1fDAwAAAAAAAAAAAAh7jYK9AQAAAAAAAAAAAAAChwlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlCAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlCAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlCAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMxNQThHffffeECRNqa2uDvSEAAAQBOQgAMDNyEABg\nZuQgAMBis9mCvQ1Bk5ycXFJSYrVaIyIigr0tAAAEGjkIADAzchAAYGbkIADA1H9BCAAAAAAA\nAAAAAJgNE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAA\nAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAA\nAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAA\nAAAAAJgIE4T6sNlsq1evzs7OTkhISExM7Nev39tvvx3sjTKvoqKi3NzcNm3axMbGdurUaf78\n+RcvXnRcQb1e27dvb9u2rcVi2bFjR93flpWVLVq0KC0tLS4urlmzZsOGDdu5c6c/nlF4c72T\nz549+9e//rVXr15NmjSJj4/v2bPn448/Xl5e7uk6p0+ffvDBB7t06RIbG6uts2TJEscXRkpK\niqUB2dnZ/nnqYcJFBT/++OOG9urJkyfVxxG1tlV5JcBPyMEQodh0bvNLx+aFW4HJQfWTFgrq\nqcDkoKMjR47Ex8dbLJbvvvvOcTmnpkFEDoYU19eDio1ZW1u7Zs2aq666Kj4+Xju0PvXUU1VV\nVY4PRN114fvRz9OrgIbGoaDecVtBt7do9B1H01CV4Se0T8jSK/W4aRZIviejymmMp48FdS72\nqmIrub2PLZ5U2Q2biSUlJYmI1Wr1fai8vDwRadWq1W233TZx4sRmzZqJyNNPP+37yPDUwYMH\nmzdv3qhRoyFDhuTm5nbt2lVEcnJyampq7Ouo1Ku8vHzWrFkiEhUVJSIFBQVOD3T+/PkePXqI\nSGpq6sSJE8eOHRsdHd2oUaN33303AE8zPLjdyadPn05LSxORyy+//JZbbhk5cmTTpk1F5Oqr\nr66qqlJf57fffmvXrp2IDBs2bMGCBXPnzs3KyhKRXr16VVRUaOtMnz59fB0jRowQkUGDBgVq\nlxiM2wpu2rRJRDIyMuru2z/++EN9HJtC26q8EuCEHAw/Kk2nkl86Ni9cCFgOKp60UFBPBTIH\n7axWa9++fbVLuX379tmXc2rqBXIwLLm9HlRpzNra2pEjR4pI8+bNx44dO2rUqCZNmmhXE7W1\ntfbHou4+0uXo5+lVQEPj2Cio51QqqHKLRq9x7FxUGY7IQTPQK/W4aRYYuiSj4mkMV3/+4Hav\nqrSSyn1sxSqrCN0JwtrfT1Vv3ez1fzaFeNMrCAsKCkQkMzOztLRUW1JcXJyamhodHX3s2DEf\nB4dHamtrMzMzIyMjP/zwQ22J1Wq9+eabLRbL+++/ry1RrFfPnj2joqKWL18+derUevt5wYIF\nIjJy5Mjy8nJtya5duxISElq2bFlWVubXpxk23O7k3NxcEXnggQfsJ/0lJSXdunUTkbfeekt9\nndmzZ4vIggULHAcfPXq0iKxZs8bFFs6bN09Edu7c6fNzDU9uK7h27VoReeGFF3wcR6VtVV4J\nxkIOwgsqTaeSX3o1L1wLWA4qnrRQUE8FLAcdLVu2TLs4dLoREH6npuQgvKByPajSmNo6ffv2\ntdf01KlTHTp0EJEPPvhAW0LdfafL0c/Tq4CGxqGgXnBbQZWW1HEcu4aqbCzkIHShV+rVi5tm\nutMlGRULytWfP3i3V51aSeU+ttdtW1fofsSoreR0zWefev2f1FgDtqlaPZYvX67N04pISkrK\nwoULq6qq1q9fH7DNgIgUFBR8++2399xzjzbxLiIRERGvvfba+fPntS4S5Xo1atRoz5498+bN\ns1gs9T5Wfn6+iDz33HNxcXHakpycnD//+c+nT5/esmWLX55e2HG7k5OTk2+66aYlS5Y0avT/\nDlYtWrTQrgCPHDmivk5hYaGIjBo1ynFw7UWi/ape33///cqVK3NzcwcMGODDswxnbit47tw5\nEdHePOjLOCptq/JKMBZyEF5QaTqV/NKreeFawHJQ8aSFgnoqYDlo98MPPyxevHjy5MnXXHON\n06/C79SUHIQXVK4HVRrzgw8+EJFly5bZa9q6desZM2aIyBdffKEtoe6+0+Xo59FVgItxKKgX\n3FZQpSV1HEfjosrGQg5CF3qlXl3cNPMHXZJRsaBc/fmDF3u1biup3Mf2rm3r32aP1ka9duzY\nERcXN3DgQMeFw4cPFxG+9iPA3n//fRGZPHmy48LGjRs3btzY/qNivfbs2eP6Q7RPnjyZkJDQ\nuXNnx4WDBw/WHsLrp2AqbnfyihUrNm/enJiY6Ljw1KlTItKpUyf1dbp37y4ihw8fdlzn2LFj\nIpKRkVHvQ9tstry8vMTExGeeecaT52QubiuonYk2b97cx3FU2lbllQA/IQdDh0rTqeSXXs0L\n1wKWg4onLRTUUwHLQU1NTc2dd97ZtGnTF154oe5vOTUNInIwdKhcD6o05pYtWy5cuNC/f3/H\nhS1atHD8kbr7Tpejn/pVgOtxKKgX3FZQpSV1HEfcVRl+QvuEMr1Szwk3zfxEl2RULChXf/7g\n6V6tt5VU7mN70bYNYYLQV6WlpcXFxR07dtQ+WNauQ4cOMTExToWEv+3fv19E0tLSFi9efOWV\nV8bExLRv3/6BBx7Q4lA8qZf9zdcNiY2NraystFr/7T1ZWuIePXpUl6cT9tzuZEdWq/X48eOP\nPfbYiy++mJ2dPWHCBPV1Zs+e3bFjx7lz565evfrQoUP79+9fvnz5yy+/3LdvX6drDLtNmzZ9\n9dVXDz/8cMuWLb14aibhtoJa6xUVFY0bN6558+axsbHp6elLly69dOmS+jheHGZVXi3QCzkY\nUlSaTiW/dGleuBWwHFQ8aaGgngpMDtotW7Zs7969L7/8cnJyct3fcmoaLORgSHF7PSjKjZmQ\nkGD/izTNRx99JCLXX3+9UHed6HL0c+Q6K12MQ0G947aCKi2p4zjiyasFeqF9QpwuqVcXN838\nRK9kVCkoV3/+4OlerbeVFO9je9q2DWGC0Fdnz56V+qZnLRZL06ZNtd8iYH755Zfo6Oi8vLw1\na9YMGTLkrrvuio6Ofv755wcPHlxRUSG61isrK8tqtWpvZLN799135V/pCx3dcsstUVFRV155\n5bp161auXLlr1y6nU0/X67Ru3Xrv3r39+/e/9957MzIyevXqNX/+/LvvvrugoCA6Orruw9XW\n1i5ZsiQ5Ofm+++7z+3MLa1ovzJo169ChQyNGjOjXr9/PP/+8aNGiYcOGVVVVKQ7iaduqvFqg\nI3IwpKg0nUp+6dK80JGPOchJS7Do2EoHDhxYsmTJxIkTx48fX+8KVDlYyMGQ4vZ6ULxtzPz8\n/C1btowePVr79CfqHjBuj352rrPS9TgU1E9UWlLHcdRfLdAR7RPidEk9J9w0Cy4vjnWuC4pg\naaiVPL2PrfG6ypFebj7+RTsXqbc2MTExVqvVarVGRrKfA+TChQtVVVUnTpz46aeftM+aqKio\nGDt27CeffLJq1aq5c+fqWK9HHnmkoKBgxowZNTU1Q4cOvXjx4tq1azds2CAi1dXVuj4tSHZ2\n9sWLF3/77bcDBw48++yzLVq0uOOOO9TXKSsru/3227dv3z5lypThw4dXV1dv27Zt1apVv//+\n+4YNG2JiYpyG2rhx4w8//LBs2bK6n1gCj3Tr1m3UqFFjxozJy8vTPn27qKho5MiRn3/++fPP\nP//QQw+pDOJp26q8WqAjcjCkqDSdSn7p0rzQkY85yElLsOjVStXV1bm5uc2aNXvppZcaWocq\nBws5GFLcXg+KV425cePG3NzctLS0119/XVtC3QND5ehn5yIH3Y5DQf1EpSX1GsejVwt0RPuE\nOF1Sr+4K3DQLFi+OdW4LimBpqJU8vY8tvlWZvyD0VXx8vIjU+56LysrKqKgoUjCQIiIiROSp\np56y91VcXNyTTz4pIu+8847oWq/Bgwc/+uijJSUlt956a/Pmzdu1a7dq1apXXnlFRJy+/wC+\nmz9//rZt2/bv33/06NHExMSpU6du3rxZfZ1FixZt37792Wef3bBhwx133DFt2rS333774Ycf\nzs/Pf/755+s+3IoVK2JjY2fOnOn3JxbuHnnkka1bt86YMcP+3bwdOnTQPiH9rbfeUhzE07ZV\nebVAR+RgSFFpOpX80qV5oSMfc5CTlmDRq5WWLl26b98+1x+YRpWDhRwMKW6vB8XzxnzyyScn\nT56cnp6+Y8cO+3c4UffAUDn62bnIQbfjUFA/UWlJvcbx6NUCHdE+IU6X1HPCTbMg8vRYp1JQ\nBEtDreTpfWwfqxy6x+hGaRkxyw3wlcLaH9GXlJQ4La+pqTl79mxSUlIwNsq8mjdv/uuvv6am\npjou7NGjh8ViOXHihOhdr8cff3zSpEkffvjh2bNnO3fuPG7cuKKiIhFp166dT08DDevUqdOb\nb77Zq1evlStXjhs3TnGdN998MyYm5v7773dc7b777lu+fHl+fv68efMcl3///ffffvvthAkT\nmjZt6r8nYmbXXnutxWI5fvy44vpet63KqyWUkYPQS92m8y6/PG1e+IN3OSictIQST1vpu+++\ne/LJJ2+//Xa3HyIUZlUmB+EFt9eDDam3Mauqqu66664333xz7Nix//Vf/+X45m7qHgDqRz8n\nTjmoMg4F9ROvW9LTcbx+tYQychD+42nqOeKmWRB5dKxTLCiCxUUrqd/H1qXKoTtBaBSJiYmp\nqaknT56srKx0/APPn376qbq6umfPnkHcNhPq1q3bwYMHf/311+7du9sXVldX22w27esHdK9X\nWlpaWlqa/cevv/5aRHr16uXT04CIiFRUVOzcudNqtY4ePdpx+RVXXCEihYWFiutcuHDhzJkz\nbdu2dXrbmvZem59//tnpcbVv63EaEDqqqKiw2WwuPjXbiUrbqrwS4CfkYOirt+m8yC9Pmxc+\n0isH7ThpCRGettI777xTXV29YcMG7fNCHfXu3VtECgoKBg0apC2hyoFHDoYUt9eDDanbmFar\ndeLEiVu2bJkzZ87TTz/dqNG/ffwSdQ8AlaPfNddc4zYHFY+iFNQfvG5JT8dxW2WbzebTM0HD\nOB4akaep54ibZkGkfl2gXlAES0OtpH4fW68qM0Gog6FDh7766quffPLJqFGj7Avfe+89Ebn+\n+uuDt11mNGTIkPz8/K1btw4bNsy+cO/evSJiv1eiV70OHjy4Z8+eMWPGtGnTxr7wjTfeEJEx\nY8b49jzw/9x4442RkZGnT5/WPrNC8+OPP8q/Dosq68THx8fHx586daqsrMzxI7aOHTsmIq1a\ntXJ60I8//lhEBg4c6KcnZR6VlZU33nhjRUXFjh077J9lISKfffaZiHh0naDStiqvFvgJORgi\nFJvObX7p2LzwkS45KJy0BIlerZSTkzNnzhynhZ988sn+/funTp3asmVL7S8qqHIQkYOhw+31\noHpj5uXlbdmy5Yknnli4cGG9j0Xd/U3x6Oc2BxXHoaD+oHKLRpdx3FbZl2cBt2ifkKVj6tlx\n0yyIFBNNPCkogqWhVlK/j61blW0mpv2du9Vq9XGcr776ymKxZGRklJSUaEsKCwuTkpISExNP\nnTrl82bCA+fOnWvRokVcXFxBQYG25OzZs1dffbWIrF+/Xlviab1yc3NFxD6g3apVq0Rk2rRp\n9iXa18Ned911ej+t8NfQTtbuZ+Xm5l66dElbUlpaqr0XZv78+err3HrrrSIyd+5c+8hWq3Xy\n5MkisnDhQsdHrKmpiY+Pb9y4sR+eZThrqILXXXediCxatKi2tlZbcvz48U6dOonIhg0b1MdR\naVuVVwKckIPhR6XpVPJLr+aFIn/noKcnLRTUU/7OwbpmzJghIvv27bMv4dTUC+Rg+FG5HlRp\nzPz8fBGZNGmSi8ei7jry5ejn3VVA3XEoqC8aqqBKS/pjHE3dKsMJOWgGeqWehptmAeNLMqoX\n1NPHgjrXe9V1K6ncx/a0yi5YbCb+K/vk5OSSkhKr1ap93bEv5s2b98wzzyQlJQ0ZMqSqqurj\njz8uLy9/9dVXtZcCAmnz5s233nprRETEqFGjYmJidu7cWVxcPGLEiK1bt9r/0tZtvXbs2KHd\nUhGR//mf/ykqKhowYID2prP27duvXLlSRC5evPinP/3pwIEDmZmZvXv3Pnr06Oeff96mTZs9\ne/Z07NgxCM/caFR28smTJ3Nycn777be2bdtmZ2fX1tZ+8cUXJSUl6enpu3fvbtasmeI6RUVF\n11577W+//da/f//BgwfX1tZu27btm2++6dGjx65du5o0aWLfqn/+85+pqalpaWk//PBDEHaK\noahU8NixY9dcc01JSUmXLl169+597ty5Xbt2Xbx4ccqUKfbPQ1AZRxTaVuWVACfkYPhRaTqV\n/NKxedGQQOagStEpqKcCnINOZs6cuWbNmn379tk/PpRTUy+Qg2HJ7fWgSmP26NHj4MGDAwcO\nrPtBFFdeeeXy5cu1/6fuvtDr6OfdVUDdcYSCekixgm5bUq9x6qq3ynBEDpqBjqkn3DTzM72S\nUaWgXP35g/pedd1KKvex1dvWPd/nGI1Lr3fKaNatW5eVlRUXF5eYmDh48OC///3vugwLL+ze\nvXvEiBHNmjWLiYlJT09/6qmnKisrndZxXa9XX321oZbp3r27fbVTp07NnDkzNTU1Ojr6sssu\ny8vLKy4uDsQzDAuKO/n333+fPXt2586dY2NjY2Nj09PTFy5ceP78ecehFNd58MEHu3TpEhMT\nExcXl5GR8dhjj5WVlTlt1YEDB0SkT58+/nviYUOxgidOnJg+fXr79u2joqKaNGmSk5Ozfv16\n+zvX1MexKRxmVV4JcEQOhiW3TWdTyy8dmxf1CnAOui06BfVU4HPQUb1/FcGpqafIwXDl9nrQ\nbWNqr416ZWVlOQ5F3b2m49HPi6uAhv62jIKqU6+g65bUa5y6+AtCt8hBk9Ax9bhp5ld6JaNK\nQbn68wf1veq2ldzex1ZvW7f4C0J93ikDAIDhkIMAADMjBwEAZkYOAgDq/zN8AAAAAAAAAAAA\nAGGJCUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJgg1IfNZlu9enV2dnZCQkJiYmK/fv3efvvtYG+USZ09e/avf/1r\nr169mjRpEh8f37Nnz8cff7y8vNxptaKiotzc3DZt2sTGxnbq1Gn+/PkXL150XOH06dMPPvhg\nly5dYmNjtXGWLFnitI5m+/btbdu2tVgsO3bs8N/zMgnF3e62fGVlZYsWLUpLS4uLi2vWrNmw\nYcN27tzpNAht6w8qe16lyirjKDY7AoOGCh1hAfu/AAAgAElEQVQqreF2nY8//tjSgJMnT2rr\npKSkNLROdnZ2IJ9yOFE5QtbW1q5Zs+aqq66Kj4/X1nnqqaeqqqrsKyiWhqOoP6jkl6MjR47E\nx8dbLJbvvvvOcbnKK4EKhhRyMDQ11GIaF9dxKjkonrc83FLcpa6vBxXLx1FUL65viagcHnWp\nO6emwUUOhj63dy91vFMKveh7Ye62xNCdjtXx32mnxWaz6TKQ7g6XV/yf4t+9/udPXt4hupHF\n9TrJycklJSVWqzUiIsLrB9LMmDFj7dq1rVq1Gjp0aE1Nzfbt28+dO/f0008/9NBDPo4Mj5w5\nc2bAgAGHDx++/PLLs7KyysvLd+/eXVpaevXVV+/atSsqKkpb7dChQ/379y8tLR08eHC7du2+\n/PLLI0eO5OTkfPbZZ40aNRKR4uLiq6+++p///OewYcOys7OrqqoKCgq++eabXr16ffHFF7Gx\nsdo4FRUV8+bNe+mll6KioqqrqwsKCgYNGhSs5x4GFHe72/KVlZXl5OQcOHAgNTX12muvraio\n+Oijj6xWa35+/rhx4+wPR9vqTmXPq1RZZRzFZjc0chBeUGkNlXXefvvtCRMmZGRkdO3a1ekh\nVq9e3bJlSxG55557zp496/Tb8vLybdu2DRo0qKCgICDPOKyoHCFtNtvo0aM//PDD5s2b9+/f\nv6am5vPPPz9//vywYcM++ugji8UiaqUxw1E08BTPQOxqamr69ev35Zdfisi+fft69eqlLVd5\nJZihguQgfNRQi4nCdZxKDnra8nBLcZe6vR5UKZ8ZjqIBoHJLxO3hUa+6h9+pKTkIvai0ql53\nSqEvHS/M3ZYY/qBXdfx72mkLVe+fKZGCXV7/V2a1un2IpKQkEbEqrOmaVsvMzMzS0lJtSXFx\ncWpqanR09LFjx3wcHB7Jzc0VkQceeKCmpkZbUlJS0q1bNxF56623tCW1tbWZmZmRkZEffvih\ntsRqtd58880Wi+X999/XlsyePVtEFixY4Dj46NGjRWTNmjX2JT179oyKilq+fPnUqVNFpKCg\nwN9PMLyp7HaV8i1YsEBERo4cWV5eri3ZtWtXQkJCy5Yty8rKtCW0rT+o7HmVKquMo9LsRkcO\nwgsqraGyztq1a0XkhRde8HQD5s2bJyI7d+7U49mYjsoRUitN37597e126tSpDh06iMgHH3zg\nYnCn0pjhKBp4KvnlaNmyZSKiTVrs27fPvlzllWCGCpKD8FFDLWZTuI5TyUFPWx5uqexSletB\nlfKZ4SgaAG5bSeXwqFfd62XoU1NyEHpx26o63imFvvS6MPf6KAp/8KI6fj3tZH5YB1qvLl++\nvEmTJtqSlJSUhQsXVlVVrV+/PphbZj7Jyck33XTTkiVL7O99aNGihXbqf+TIEW1JQUHBt99+\ne88994wYMUJbEhER8dprr50/f14LNhEpLCwUkVGjRjkOrq2v/UrTqFGjPXv2zJs3T3vDPnyk\nsttVypefny8izz33XFxcnLYkJyfnz3/+8+nTp7ds2aItoW39QWXPq1RZZRyVZkfA0FChQ6U1\nVNY5d+6ciDRr1syjR//+++9XrlyZm5s7YMAAPZ6N6agcIT/44AMRWbZsmb3dWrduPWPGDBH5\n4osvGhq5bmk4ivqDSn7Z/fDDD4sXL548efI111zj9CuVVwIVDCnkYAhy0WKicB2nkoMetTxU\nqOxSletBlfJxFNWF21ZSOTzqVfe6ODUNGHIwxLltVR3vlEJfel2Ye3cUhT94Vx2/nnYyQaiD\nHTt2xMXFDRw40HHh8OHDRYRvIAiwFStWbN68OTEx0XHhqVOnRKRTp07aj++//76ITJ482XGd\nxo0bN27c2P5j9+7dReTw4cOO6xw7dkxEMjIy7Ev27NnDZ9nrSGW3q5Tv5MmTCQkJnTt3dlxn\n8ODBImL/pHXa1h9U9rxKlVXGUWl2BAwNFTpUWkNlHe06pHnz5uoPbbPZ8vLyEhMTn3nmGR+e\ngampHCG3bNly4cKF/v37O67TokULF8PWWxqOov6gkl+ampqaO++8s2nTpi+88ELdcVReCVQw\npJCDocZ1i4nCdZxKDqq3PBSp7FKV60GV8nEU1YXbVlI5POpVdyecmgYSORji3LaqjndKoS+9\nLsy9OIrCH7yujl9PO5kg9FVpaWlxcXHHjh2dPqS+Q4cOMTExTsdNBJLVaj1+/Phjjz324osv\nZmdnT5gwQVu+f/9+EUlLS1u8ePGVV14ZExPTvn37Bx54QDvmambPnt2xY8e5c+euXr360KFD\n+/fvX758+csvv9y3b1/HdrVP2kMXKrtdpXyxsbGVlZVWq9VxcC1Njx49KrSt37jd86JWZZVx\nHDXU7AgMGipkqbRGQ+toB9WioqJx48Y1b948NjY2PT196dKlly5daujhNm3a9NVXXz388MPa\nFyHAC4qnHwkJCU7fEvHRRx+JyPXXX1/vsG5Lw1FUL+r5tWzZsr1797788svJycl1x1F8JdhR\nweAiB0OQ6xYThes4lRz09JQVbqnsUpXrQU9PYziKes11KykeHvWquxNOTQOGHAx9blNPxzul\n0JdeF+ZeHEXhD15Xx6+nnUwQ+kr7nsm6b9y2WCxNmzat+y2UCIxbbrklKirqyiuvXLdu3cqV\nKx2/ZvyXX36Jjo7Oy8tbs2bNkCFD7rrrrujo6Oeff37w4MEVFRXaOq1bt967d2///v3vvffe\njIyMXr16zZ8//+677y4oKIiOjg7e0wpzKrtdpXxZWVlWq1V7/4Xdu+++K/9KVtrWT9zueVGr\nsso4di6aHYFBQ4UmldZwsY7Wa7NmzTp06NCIESP69ev3888/L1q0aNiwYVVVVXUfrra2dsmS\nJcnJyffdd5+/n1oY8+70Iz8/f8uWLaNHj67347PcloajqI4U8+vAgQNLliyZOHHi+PHj6x3H\no1cCFQw6cjDUuG0xFSo56NEpK1So7FKV60GPTmM4ivqP4uFRr7o74tQ0kMjBMMCd0pCl14W5\np0dR+IMv1fHraWekj/8eWp3qPRTGxMRYrVar1RoZyX4OtOzs7IsXL/72228HDhx49tlnW7Ro\ncccdd2i/unDhQlVV1YkTJ3766Sftb3UrKirGjh37ySefrFq1au7cuSJSVlZ2++23b9++fcqU\nKcOHD6+urt62bduqVat+//33DRs2xMTEBPO5hS+V3a5SvkceeaSgoGDGjBk1NTVDhw69ePHi\n2rVrN2zYICLV1dVC2/qN2z0valVWGcfORbMjMGio0KTSGi7W6dat26hRo8aMGZOXl6d9U0VR\nUdHIkSM///zz559//qGHHnIaauPGjT/88MOyZcv4iBJfeHH6sXHjxtzc3LS0tNdff73eMd2W\nhqOojlTyq7q6Ojc3t1mzZi+99FJD43j0SqCCQUcOhhSVFlOhkoMenbJChcouVbke9Og0hqOo\n/ygeHvWquyNOTQOJHAwD3CkNWXpdmHt6FIU/+FId/5522kwsKSlJRKxWqy+DnDx5UkRycnLq\n/qpVq1ZRUVG+DA7fFRYWpqeni8i7776rLbnssstEZNu2bY6rff311yLSt29f7cf7779fRJ59\n9lnHdR5++GERWb58ed1H0b7MvKCgwC/PwTRUdrtK+Ww226OPPur48WtJSUnamyz69Oljo239\nyfWetyk3l9tx6qrb7HCLHDQDldZQbJ9PPvlERHr37l33V5mZmbGxsefOndNhi03M09OPpUuX\nWiyW3r17//777w2NqV4ajqK6cJtfixcvFpH8/Hz7P5kxY4aI7Nu3z77E01eChgp6gRwMPyot\n5sij67i6OejFKStcc7tLFa8H63JxGqPhKOqLeltJ/fCoe905NVVEDppNQ6nnjzul8B8vLsy9\nTk/oyMfq+O+0kwlCX4Pw/PnzItKtWzen5VarNSoqKiUlxZfBoYvvvvtORPr166f9qH137sGD\nBx3XqaiosFgsrVu31n5MTk6OiYmprq52XOfnn39uqOuYINSFym5XKZ/mhx9+WLFixcKFC9ev\nX19aWvr999+LyLhx42y0rZ+52PM2T5rL9Tj1cmp2uEUOmoRKa6isU15ern1SkNNy7RPzJ0yY\noMO2mpv6EbKysvK2224TkbFjx5aVlTU0oKel4SiqCxf5tW/fvqioqNtvv91x/bqzF56eiNpR\nQU+Rg2FGscUceXQdV28OenHKCtdc71L160EnDZ3GOOIo6rV6W8mjw6OOdefUVB05aDYNpZ4/\n7pTCf7y4MPc6PaEXXarjp9NO/sTbV4mJiampqSdPnqysrHT8e+qffvqpurq6Z8+eQdw2s6mo\nqNi5c6fVah09erTj8iuuuEJECgsLtR+7det28ODBX3/9tXv37vZ1tITTvmzgwoULZ86cadu2\nrdNnIGhfca+FH3SnuNvdls8uLS0tLS3N/qP2zotevXoJbetnLva8R83lYhzFZkdg0FChQ6U1\nfGmfiooKm81W9+ODtA++dxoQnlI/Qlqt1okTJ27ZsmXOnDlPP/2047sInTRUGo6ifuUiv955\n553q6uoNGzZonwbjqHfv3iJSUFCQnZ3t9pVABUMKORg6VFps0KBBXo9fbw66aHl4x/UuVb8e\ndOJYPo6igeHR4VHHunNqGmDkYBjgTqmxeHFh7nV6Qi+6VMdPp50N3lCAuqFDh166dEn78167\n9957T0Suv/76IG2USd14440TJ04sLy93XPjjjz/Kv0JLRIYMGSIiW7dudVxn7969IqL1WHx8\nfHx8/KlTp8rKyhzXOXbsmIi0atXKj0/AxBR3u9vyicjBgwfXrl1bXFzsuM4bb7whImPGjNF+\npG39we2eV6yySgVVmh0BQ0OFDpXWcLtOZWXlDTfcMHDgQJvN5rjOZ599JiJ1L/I//vhjERk4\ncKC+z8Vs1E8/8vLytmzZ8sQTT6xYscLF7KC4LA1HUX9wm185OTlz6rjqqqtEZOrUqXPmzElN\nTVV8JVDBkEIOhgiVFlMZRzEHVU5Z4RGVXer2elCxfBxFA0Pl8KhL3R1xahp45KDRcac0NOl4\nYe7RURT+4GN1/Hva6eNfIBqaLn9Kb7PZvvrqK4vFkpGRUVJSoi0pLCxMSkpKTEw8deqUz5sJ\nD2gtkZube+nSJW1JaWmp9i7R+fPna0vOnTvXokWLuLg4+9/Unz179uqrrxaR9evXa0tuvfVW\nEZk7d659ZKvVOnnyZBFZuHBh3cflI0Z1obLbVcq3atUqEZk2bZp9nJdeeklErrvuOvsS2tYf\nVPa8SpVVxlFpdrhFDoYfldZQWee6664TkUWLFtXW1mpLjh8/3qlTJxHZsGGD4yPW1NTEx8c3\nbtw4EE8v3KkcIfPz80Vk0qRJbkdzXRqOov6gkl911f38Q5VXAhXUBTloBt59xKhKDnrX8nBB\nZZeqXA+qlI+jqL4aaiWVw6NedddwauoRctBsGmpVf9wphS70ujBXP4rCH3yvjl9PO5kg1CEI\nbTbbQw89JCJJSUkTJky46aabEhISLBYLDRZ4J06caNu2rYi0bdt27Nixo0eP1qqcnp5+9uxZ\n+2rvvvtuREREdHT0uHHjJk2a1KZNGxEZMWJETU2NtsLJkye1cfr37//oo48uWrQoKytLRHr0\n6FFaWqqtU1BQMP5fOnToICIDBgzQfpw9e3YQnrzxqex2m0L5Lly40KNHDxHJzMy8++67+/fv\nLyJt2rQ5ceKE48PRtrpT2fMqVVYZR7HZ4Ro5GH5UWkNlnZ9++klb2KVLl4kTJw4fPjwhIUFE\npkyZ4vSIv/zyi4ikpaUF9HmGKZUjpPb9BAMHDhxfx7x58xxHc10ajqL+oHgG4qTu7IXKK4EK\n6oIcNIO6LaZyHaeSg961PFxQ3KVurwdVysdR1HeKt0TcHh71qruGU1OPkINmoNiqutwphe50\nvDBXPIrCH3yvjl9PO5kg1CcIbTbbunXrsrKy4uLiEhMTBw8e/Pe//12XYeGp33//ffbs2Z07\nd46NjY2NjU1PT1+4cOH58+edVtu9e/eIESOaNWsWExOTnp7+1FNPVVZWOo3z4IMPdunSJSYm\nJi4uLiMj47HHHisrK7Ov8Oqrr0oDunfvHoinGo7c7naN2/KdOnVq5syZqamp0dHRl112WV5e\nXnFxcd2Ho211p7LnVaqsOI5Ks8MFcjAsqbSGyjonTpyYPn16+/bto6KimjRpkpOTs379evv7\nFu0OHDggfC+9ftweIbW2rVdWVpbjUG5Lw1HUHxTPQBzV++dNKllJBX1HDppB3RZTvI5TyUEv\nWh6uKe5St9eDKuXjKOoj9Vsibg+PetXdxqmph8hBM1BvVd/vlMIfdLwwVzmKwh90qY7/Tjst\ntn//EFtTSU5OLikpsVqtERERwd4WAAACjRwEAJgZOQgAMDNyEADQKNgbAAAAAAAAAAAAACBw\nmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBE\nmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBE\nmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATCQy2BsQfK+88kqjRkyU\nAkDYmjZtWmQkedcgchAAwhs56Bo5CADhjRx0jRwEgPDmJgdtJvb4449HRUXpu7sTExNTUlLi\n4uL0HRaBERERkZKSkpSUFOwNgZeaN2+ekpKie18jMGJjY1NSUpo2bar7yBcvXgx24IQochBO\nyEGjIwcNjRwMPHIQTshBoyMHDY0cDDxyEE7IQaMjBw0tWDlo6nfQPProo1artaqqSscxCwsL\ni4qKhgwZ0q5dOx2HRWBUVFTs3r07MTHxmmuuCfa2wBv79u0rKSkZN25ckyZNgr0t8Ngff/zx\n/ffft23bNj09Xd+ROTdqCDkIJ+Sg0ZGDhkYOBh45CCfkoNGRg4ZGDgYeOQgn5KDRkYOGFqwc\ntNhsNn0fz+ReeOGF119/fcGCBTfffHOwtwUe+/XXX2+88cZu3bpt2LAh2NsCb8yaNevLL798\n7bXXunfvHuxtgcc+/fTTefPmjR079tFHHw32tsB75KChkYNGRw4aGjkYHshBQyMHjY4cNDRy\nMDyQg4ZGDhodOWhowcpBPmMaAAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATiXjssceCvQ1hpaam\nplWrVn369GnVqlWwtwVeyszMzMjICPZWwBvV1dWXX355nz59GjduHOxtgcdqa2sTEhKysrKu\nuOKKYG8LvEcOhgFy0LjIQUMjB8MDORgGyEHjIgcNjRwMD+RgGCAHjYscNLRg5SDfQQgAAAAA\nAAAAAACYCB8xCgAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4S6OXfu\n3AMPPNCxY8fo6Oi2bdtOnz69uLg42BsFJevXr7fU54knngj2pqFB1dXVf/nLXyIiIrKzs+v+\nln4MfS4qSEsaFH1nXDSdEZGDRkcOhh/6zrhoOiMiB42OHAw/9J1x0XRGRA4aXejkYKQ/BjWh\nqqqqIUOGfPvtt+PHj8/MzDx27Njrr7/+6aeffvPNN82bNw/21sGNc+fOicjkyZPbt2/vuDwn\nJydIWwQ3Dh8+fPvttxcWFtb7W/ox9LmuIC1pRPSdodF0hkMOGh05GH7oO0Oj6QyHHDQ6cjD8\n0HeGRtMZDjlodKGVgzboYeXKlSKyfPly+5KNGzeKyJw5c4K4VVC0ePFiEdm7d2+wNwRKSktL\n4+LisrOzCwsLY2JisrKynFagH0Oc2wrSkkZE3xkaTWcs5KDRkYNhib4zNJrOWMhBoyMHwxJ9\nZ2g0nbGQg0YXajnIR4zq4/XXX09MTPzP//xP+5IJEyZ06tTpjTfesNlsQdwwqNCm5Zs1axbs\nDYESq9V677337tmzp1OnTvWuQD+GOLcVpCWNiL4zNJrOWMhBoyMHwxJ9Z2g0nbGQg0ZHDoYl\n+s7QaDpjIQeNLtRykAlCHVy6dOnAgQNXX311TEyM4/J+/fr98ccfJ06cCNaGQZG962pqav75\nz3+eOXMm2FsEV1q0aLFixYqoqKh6f0s/hj7XFRRa0oDoO6Oj6YyFHDQ6cjD80HdGR9MZCzlo\ndORg+KHvjI6mMxZy0OhCLQeZINTBL7/8UlNTk5qa6rS8Q4cOInL8+PFgbBQ8UFpaKiLPPfdc\ny5YtU1NTW7Zs2bVr1zfffDPY2wVv0I9hgJY0HPrO6Gi6cEI/hgFa0nDoO6Oj6cIJ/RgGaEnD\noe+MjqYLJ/RjGAhwS0b6aVxTKSsrE5GEhASn5Y0bN7b/FqFMm5Z/66235s2bd9lllx0+fHjV\nqlVTpkwpKyubMWNGsLcOnqEfwwAtaTj0ndHRdOGEfgwDtKTh0HdGR9OFE/oxDNCShkPfGR1N\nF07oxzAQ4JZkglA3FovFaYn2qb51lyPUPPLII7NmzbrhhhvsR8/bb789MzNzwYIFd911V3R0\ndHA3D16gHw2NljQo+s64aLrwQz8aGi1pUPSdcdF04Yd+NDRa0qDoO+Oi6cIP/WhoAW5JPmJU\nB02aNJH6ZuDPnz8vIomJiUHYJnjiuuuuGz9+vON7K9LT00eOHPm///u/+/fvD+KGwQv0Yxig\nJQ2HvjM6mi6c0I9hgJY0HPrO6Gi6cEI/hgFa0nDoO6Oj6cIJ/RgGAtySTBDqoH379pGRkUVF\nRU7Ljx07JiKdO3cOxkbBV61atRKRCxcuBHtD4Bn6MVzRkqGMvgtLNJ1B0Y/hipYMZfRdWKLp\nDIp+DFe0ZCij78ISTWdQ9GO48l9LMkGog+jo6KysrK+//rq8vNy+sLa2dufOnampqe3btw/i\ntsGtCxcurF69+q233nJafujQIfnXN7jCQOhHo6MljYi+MzSaLszQj0ZHSxoRfWdoNF2YoR+N\njpY0IvrO0Gi6MEM/Gl3gW5IJQn3cfffd5eXlzzzzjH3J2rVrf/vtt+nTpwdxq6AiPj5+6dKl\neXl5P/74o33h3/72t127dvXu3fuKK64I4rbBO/SjodGSBkXfGRdNF37oR0OjJQ2KvjMumi78\n0I+GRksaFH1nXDRd+KEfDS3wLWnRvqASPqqpqRk8ePDnn39+4403ZmZmHj58eOPGjRkZGV9+\n+WV8fHywtw5uvPfeezfddFN8fPykSZPatm178ODBLVu2JCYmFhQUZGZmBnvr4Gznzp3btm3T\n/n/FihUtW7bMzc3VfnzooYeSkpLoxxDntoK0pBHRd4ZG0xkLOWh05GBYou8MjaYzFnLQ6MjB\nsETfGRpNZyzkoNGFXA7aoJOysrK5c+d26NAhKirqsssuu++++0pKSoK9UVC1Z8+eESNGNGvW\nLDIysm3btlOnTi0sLAz2RqF+Tz31VEMHNHvV6MdQplJBWtKI6DtDo+kMhBw0OnIwXNF3hkbT\nGQg5aHTkYLii7wyNpjMQctDoQi0H+QtCAAAAAAAAAAAAwET4DkIAAAAAAAAAAADARJggBAAA\nAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAA\nAAAAAAAAAEyECUIAAAAAAAAAAADARJggBMLNc889Z7FYpk+fHuwNAQAgCMhBAICZkYMAADMj\nBwGPMEEIGMOyZcssCm644YZgbykAAPojBwEAZkYOAgDMjBwE/CQy2BsAQElSUlLXrl0dlxw9\netRms3Xo0CE2Nta+MDU19T/+4z9mzpwZGUl3AwDCBzkIADAzchAAYGbkIOAnFpvNFuxtAOCN\n2NjYysrKvXv3ZmdnB3tbAAAINHIQAGBm5CAAwMzIQUAXfMQoAAAAAAAAAAAAYCJMEALhxunL\neF988UWLxbJ48eIzZ85MmzatTZs2CQkJWVlZW7duFZHS0tJZs2alpqbGxMR07dr1lVdecRpt\n9+7d48ePT0lJiY6OTklJGT9+/J49ewL9lAAAUEYOAgDMjBwEAJgZOQh4hAlCIMxpn8R97ty5\nESNG7N69Oycnp3379t9+++3NN9+8b9++YcOGbd68OTMzMyMj4+jRo3l5ee+//779365du3bA\ngAFbtmzp3r17bm5uWlra5s2b+/Xrt27duuA9IQAAPEAOAgDMjBwEAJgZOQi4xgQhEOa0b+V9\n4403unbteujQofz8/IMHDw4dOrS6unr06NHNmzcvLCz829/+9s0339x1110i8tprr2n/8MiR\nI7NmzYqMjNy+ffs//vGPV155paCg4MMPP4yMjLzvvvt+/vnnYD4rAADUkIMAADMjBwEAZkYO\nAq4xQQiEOYvFIiIVFRXPPfecFooRERF33HGHiBQXFz///PPx8fHamnfeeaeIHD58WPtx1apV\n1dXVeXl5Q4cOtY92ww035ObmXrp06dVXXw3s8wAAwBvkIADAzMhBAICZkYOAa0wQAqbQs2fP\n5ORk+4+XXXaZiKSkpHTt2tVpYVlZmfbjp59+KiKjR492GmrEiBEi8tlnn/l5kwEA0A05CAAw\nM3IQAGBm5CDQkMhgbwCAQGjXrp3jjxERESLStm3bugtra2u1H0+ePCkiq1ateuuttxxXO3Pm\njIgcP37cj5sLAICuyEEAgJmRgwAAMyMHgYYwQQiYQlRUVN2F2l/W18tms128eFFEHL+b15H9\nDTUAAIQ+chAAYGbkIADAzMhBoCF8xCiAelgsloSEBBH55ptvbPXR3i8DAEBYIgcBAGZGDgIA\nzIwchHkwQQigfldccYWIFBUVBXtDAAAIAnIQAGBm5CAAwMzIQZgEE4QA6jd48GAR2bRpk9Py\nI0eObNu2raKiIhgbBQBAgJCDAAAzIwcBAGZGDsIkmCAEUL+ZM2dGRUXl5+f/93//t33hH3/8\nMWnSpJEjR77zzjtB3DYAAPyNHAQAmBk5CAAwM3IQJsEEIYD6paWlvfjiizU1NbfddtvAgQOn\nTZs2ZsyYyy+//LvvvpsyZcptt90W7GjdTtcAAAEkSURBVA0EAMCPyEEAgJmRgwAAMyMHYRKR\nwd4AAKFrxowZPXr0ePbZZ3fv3r1nz574+PjevXvfeeed06ZNa9SItxcAAMIcOQgAMDNyEABg\nZuQgzMBis9mCvQ0AAAAAAAAAAAAAAoS5bgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAA\nAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAA\nAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAA\nAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATOT/AjlS\nTSScJgIJAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 1500, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plots_km" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Competing Events" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "competing_endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fit5 <- survfit(Surv(CompetingEvents_event_time, CompetingEvents_event, type = \"mstate\") ~ 1, data = data)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "options(repr.plot.width=10, repr.plot.height=10)\n", - "ggcompetingrisks(fit5, palette = \"jco\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ggsurvplot(fit5,data, conf.int = TRUE, ylim = c(0.70,1), cumevents=TRUE, cumevents.y.text = FALSE)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.2" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": true - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization.ipynb b/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization.ipynb deleted file mode 100644 index bc77dec..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization.ipynb +++ /dev/null @@ -1,3037 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Exploration" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:53.068218Z", - "start_time": "2020-11-04T14:16:47.983Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "-- \u001b[1mAttaching packages\u001b[22m --------------------------------------- tidyverse 1.3.0 --\n", - "\n", - "\u001b[32mv\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.2 \u001b[32mv\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", - "\u001b[32mv\u001b[39m \u001b[34mtibble \u001b[39m 3.0.3 \u001b[32mv\u001b[39m \u001b[34mdplyr \u001b[39m 1.0.2\n", - "\u001b[32mv\u001b[39m \u001b[34mtidyr \u001b[39m 1.1.2 \u001b[32mv\u001b[39m \u001b[34mstringr\u001b[39m 1.4.0\n", - "\u001b[32mv\u001b[39m \u001b[34mreadr \u001b[39m 1.3.1 \u001b[32mv\u001b[39m \u001b[34mforcats\u001b[39m 0.5.0\n", - "\n", - "-- \u001b[1mConflicts\u001b[22m ------------------------------------------ tidyverse_conflicts() --\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\n", - "\n", - "Attaching package: 'lubridate'\n", - "\n", - "\n", - "The following objects are masked from 'package:base':\n", - "\n", - " date, intersect, setdiff, union\n", - "\n", - "\n", - "\n", - "Attaching package: 'glue'\n", - "\n", - "\n", - "The following object is masked from 'package:dplyr':\n", - "\n", - " collapse\n", - "\n", - "\n", - "\n", - "Attaching package: 'cowplot'\n", - "\n", - "\n", - "The following object is masked from 'package:lubridate':\n", - "\n", - " stamp\n", - "\n", - "\n", - "Loading required package: ggpubr\n", - "\n", - "\n", - "Attaching package: 'ggpubr'\n", - "\n", - "\n", - "The following object is masked from 'package:cowplot':\n", - "\n", - " get_legend\n", - "\n", - "\n", - "\n", - "Attaching package: 'arsenal'\n", - "\n", - "\n", - "The following object is masked from 'package:lubridate':\n", - "\n", - " is.Date\n", - "\n", - "\n" - ] - } - ], - "source": [ - "try(library(tidyverse), silent=TRUE)\n", - "library(lubridate)\n", - "library(glue)\n", - "library(cowplot)\n", - "library(survminer)\n", - "library(survival)\n", - "library(ggsci)\n", - "library(arsenal)\n", - "library(yaml)\n", - "\n", - "#setwd(\"/\")\n", - "#path = \"/home/steinfej/projects/uk_biobank/\"\n", - "#dataset_path = \"data/datasets/cvd_big_excl\"" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:53.090072Z", - "start_time": "2020-11-04T14:16:48.270Z" - } - }, - "outputs": [], - "source": [ - "dataset_name = \"cvd_massive_excl_emb\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = glue(\"{data_path}/2_datasets_pre/{dataset_name}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load data" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:57.477187Z", - "start_time": "2020-11-04T14:16:49.046Z" - } - }, - "outputs": [], - "source": [ - "data = arrow::read_feather(glue(\"{dataset_path}/baseline_clinical.feather\")) \n", - "data_description = arrow::read_feather(glue(\"{dataset_path}/baseline_description.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:57.520779Z", - "start_time": "2020-11-04T14:16:50.668Z" - } - }, - "outputs": [], - "source": [ - "phenotypes = names(read_yaml(glue(\"{dataset_path}/phenotype_list.yaml\")))\n", - "family_history = names(read_yaml(glue(\"{dataset_path}/fh_list.yaml\")))\n", - "medications = names(read_yaml(glue(\"{dataset_path}/medication_list.yaml\")))\n", - "endpoints_ph = names(read_yaml(glue(\"{dataset_path}/endpoint_list.yaml\")))\n", - "endpoints_death = names(read_yaml(glue(\"{dataset_path}/death_list.yaml\")))\n", - "endpoints_scores = names(read_yaml(glue(\"{dataset_path}/scores_list.yaml\")))\n", - "endpoints = c(endpoints_ph, endpoints_death, endpoints_scores)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:58.275310Z", - "start_time": "2020-11-04T14:16:57.351Z" - } - }, - "outputs": [], - "source": [ - "covariates = (data_description %>% filter(isTarget==FALSE) %>% filter(based_on!=\"PGS\"))$covariate[-1]\n", - "targets = (data_description %>% filter(isTarget==TRUE))$covariate[-1]\n", - "pgs = (data_description %>% filter(isTarget==FALSE) %>% filter(based_on==\"PGS\") %>% filter(!dtype==\"Date\"))$covariate" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'admin'
  2. 'PGS'
  3. 'basics'
  4. 'questionnaire'
  5. 'measurements'
  6. 'labs'
  7. 'family_history'
  8. 'diagnoses'
  9. 'diagnoses_emb'
  10. 'medications'
  11. 'endpoints_hospital'
  12. 'endpoints_death'
  13. 'score_SCORE'
  14. 'score_ASCVD'
  15. 'score_QRISK3'
  16. 'score_MACE'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'admin'\n", - "\\item 'PGS'\n", - "\\item 'basics'\n", - "\\item 'questionnaire'\n", - "\\item 'measurements'\n", - "\\item 'labs'\n", - "\\item 'family\\_history'\n", - "\\item 'diagnoses'\n", - "\\item 'diagnoses\\_emb'\n", - "\\item 'medications'\n", - "\\item 'endpoints\\_hospital'\n", - "\\item 'endpoints\\_death'\n", - "\\item 'score\\_SCORE'\n", - "\\item 'score\\_ASCVD'\n", - "\\item 'score\\_QRISK3'\n", - "\\item 'score\\_MACE'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'admin'\n", - "2. 'PGS'\n", - "3. 'basics'\n", - "4. 'questionnaire'\n", - "5. 'measurements'\n", - "6. 'labs'\n", - "7. 'family_history'\n", - "8. 'diagnoses'\n", - "9. 'diagnoses_emb'\n", - "10. 'medications'\n", - "11. 'endpoints_hospital'\n", - "12. 'endpoints_death'\n", - "13. 'score_SCORE'\n", - "14. 'score_ASCVD'\n", - "15. 'score_QRISK3'\n", - "16. 'score_MACE'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"admin\" \"PGS\" \"basics\" \n", - " [4] \"questionnaire\" \"measurements\" \"labs\" \n", - " [7] \"family_history\" \"diagnoses\" \"diagnoses_emb\" \n", - "[10] \"medications\" \"endpoints_hospital\" \"endpoints_death\" \n", - "[13] \"score_SCORE\" \"score_ASCVD\" \"score_QRISK3\" \n", - "[16] \"score_MACE\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique(data_description$based_on)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [], - "source": [ - "data_description %>% filter(based_on %in% c(\"measurements\", \"labs\")) %>% write_csv(\"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/retina_labels/measurements_labs.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'agents_acting_on_the_renin-angiotensin_system'
  2. 'all_other_non-therapeutic_products'
  3. 'all_other_therapeutic_products'
  4. 'allergens'
  5. 'anabolic_agents_for_systemic_use'
  6. 'analgesics'
  7. 'anesthetics'
  8. 'anthelmintics'
  9. 'anti-acne_preparations'
  10. 'anti-parkinson_drugs'
  11. 'antianemic_preparations'
  12. 'antibacterials_for_systemic_use'
  13. 'antibiotics_and_chemotherapeutics_for_dermatological_use'
  14. 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents'
  15. 'antiemetics_and_antinauseants'
  16. 'antiepileptics'
  17. 'antifungals_for_dermatological_use'
  18. 'antigout_preparations'
  19. 'antihemorrhagics'
  20. 'antihistamines_for_systemic_use'
  21. 'antihypertensives'
  22. 'antiinflammatory_and_antirheumatic_products'
  23. 'antimycobacterials'
  24. 'antimycotics_for_systemic_use'
  25. 'antineoplastic_agents'
  26. 'antiobesity_preparations,_excl._diet_products'
  27. 'antiprotozoals'
  28. 'antipruritics,_incl._antihistamines,_anesthetics,_etc.'
  29. 'antipsoriatics'
  30. 'antiseptics_and_disinfectants'
  31. 'antithrombotic_agents'
  32. 'antivirals_for_systemic_use'
  33. 'appetite_stimulants'
  34. 'ass'
  35. 'atypical_antipsychotics'
  36. 'beta_blocking_agents'
  37. 'bile_and_liver_therapy'
  38. 'blood_substitutes_and_perfusion_solutions'
  39. 'calcium_channel_blockers'
  40. 'calcium_homeostasis'
  41. 'cardiac_therapy'
  42. 'contrast_media'
  43. 'corticosteroids,_dermatological_preparations'
  44. 'corticosteroids_for_systemic_use'
  45. 'cough_and_cold_preparations'
  46. 'diagnostic_agents'
  47. 'diagnostic_radiopharmaceuticals'
  48. 'digestives,_incl._enzymes'
  49. 'diuretics'
  50. 'drugs_for_acid_related_disorders'
  51. 'drugs_for_constipation'
  52. 'drugs_for_functional_gastrointestinal_disorders'
  53. 'drugs_for_obstructive_airway_diseases'
  54. 'drugs_for_treatment_of_bone_diseases'
  55. 'drugs_used_in_diabetes'
  56. 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents'
  57. 'emollients_and_protectives'
  58. 'endocrine_therapy'
  59. 'general_nutrients'
  60. 'glucocorticoids'
  61. 'gynecological_antiinfectives_and_antiseptics'
  62. 'immune_sera_and_immunoglobulins'
  63. 'immunostimulants'
  64. 'immunosuppressants'
  65. 'lipid_modifying_agents'
  66. 'medicated_dressings'
  67. 'mineral_supplements'
  68. 'muscle_relaxants'
  69. 'nasal_preparations'
  70. 'ophthalmological_and_otological_preparations'
  71. 'ophthalmologicals'
  72. 'other_alimentary_tract_and_metabolism_products'
  73. 'other_dermatological_preparations'
  74. 'other_drugs_for_disorders_of_the_musculo-skeletal_system'
  75. 'other_gynecologicals'
  76. 'other_hematological_agents'
  77. 'other_nervous_system_drugs'
  78. 'other_respiratory_system_products'
  79. 'otologicals'
  80. 'pancreatic_hormones'
  81. 'peripheral_vasodilators'
  82. 'pituitary_and_hypothalamic_hormones_and_analogues'
  83. 'preparations_for_treatment_of_wounds_and_ulcers'
  84. 'psychoanaleptics'
  85. 'psycholeptics'
  86. 'sex_hormones_and_modulators_of_the_genital_system'
  87. 'statins'
  88. 'stomatological_preparations'
  89. 'surgical_dressings'
  90. 'therapeutic_radiopharmaceuticals'
  91. 'throat_preparations'
  92. 'thyroid_therapy'
  93. 'tonics'
  94. 'topical_products_for_joint_and_muscular_pain'
  95. 'urologicals'
  96. 'vaccines'
  97. 'vasoprotectives'
  98. 'vitamins'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'agents\\_acting\\_on\\_the\\_renin-angiotensin\\_system'\n", - "\\item 'all\\_other\\_non-therapeutic\\_products'\n", - "\\item 'all\\_other\\_therapeutic\\_products'\n", - "\\item 'allergens'\n", - "\\item 'anabolic\\_agents\\_for\\_systemic\\_use'\n", - "\\item 'analgesics'\n", - "\\item 'anesthetics'\n", - "\\item 'anthelmintics'\n", - "\\item 'anti-acne\\_preparations'\n", - "\\item 'anti-parkinson\\_drugs'\n", - "\\item 'antianemic\\_preparations'\n", - "\\item 'antibacterials\\_for\\_systemic\\_use'\n", - "\\item 'antibiotics\\_and\\_chemotherapeutics\\_for\\_dermatological\\_use'\n", - "\\item 'antidiarrheals,\\_intestinal\\_antiinflammatory/antiinfective\\_agents'\n", - "\\item 'antiemetics\\_and\\_antinauseants'\n", - "\\item 'antiepileptics'\n", - "\\item 'antifungals\\_for\\_dermatological\\_use'\n", - "\\item 'antigout\\_preparations'\n", - "\\item 'antihemorrhagics'\n", - "\\item 'antihistamines\\_for\\_systemic\\_use'\n", - "\\item 'antihypertensives'\n", - "\\item 'antiinflammatory\\_and\\_antirheumatic\\_products'\n", - "\\item 'antimycobacterials'\n", - "\\item 'antimycotics\\_for\\_systemic\\_use'\n", - "\\item 'antineoplastic\\_agents'\n", - "\\item 'antiobesity\\_preparations,\\_excl.\\_diet\\_products'\n", - "\\item 'antiprotozoals'\n", - "\\item 'antipruritics,\\_incl.\\_antihistamines,\\_anesthetics,\\_etc.'\n", - "\\item 'antipsoriatics'\n", - "\\item 'antiseptics\\_and\\_disinfectants'\n", - "\\item 'antithrombotic\\_agents'\n", - "\\item 'antivirals\\_for\\_systemic\\_use'\n", - "\\item 'appetite\\_stimulants'\n", - "\\item 'ass'\n", - "\\item 'atypical\\_antipsychotics'\n", - "\\item 'beta\\_blocking\\_agents'\n", - "\\item 'bile\\_and\\_liver\\_therapy'\n", - "\\item 'blood\\_substitutes\\_and\\_perfusion\\_solutions'\n", - "\\item 'calcium\\_channel\\_blockers'\n", - "\\item 'calcium\\_homeostasis'\n", - "\\item 'cardiac\\_therapy'\n", - "\\item 'contrast\\_media'\n", - "\\item 'corticosteroids,\\_dermatological\\_preparations'\n", - "\\item 'corticosteroids\\_for\\_systemic\\_use'\n", - "\\item 'cough\\_and\\_cold\\_preparations'\n", - "\\item 'diagnostic\\_agents'\n", - "\\item 'diagnostic\\_radiopharmaceuticals'\n", - "\\item 'digestives,\\_incl.\\_enzymes'\n", - "\\item 'diuretics'\n", - "\\item 'drugs\\_for\\_acid\\_related\\_disorders'\n", - "\\item 'drugs\\_for\\_constipation'\n", - "\\item 'drugs\\_for\\_functional\\_gastrointestinal\\_disorders'\n", - "\\item 'drugs\\_for\\_obstructive\\_airway\\_diseases'\n", - "\\item 'drugs\\_for\\_treatment\\_of\\_bone\\_diseases'\n", - "\\item 'drugs\\_used\\_in\\_diabetes'\n", - "\\item 'ectoparasiticides,\\_incl.\\_scabicides,\\_insecticides\\_and\\_repellents'\n", - "\\item 'emollients\\_and\\_protectives'\n", - "\\item 'endocrine\\_therapy'\n", - "\\item 'general\\_nutrients'\n", - "\\item 'glucocorticoids'\n", - "\\item 'gynecological\\_antiinfectives\\_and\\_antiseptics'\n", - "\\item 'immune\\_sera\\_and\\_immunoglobulins'\n", - "\\item 'immunostimulants'\n", - "\\item 'immunosuppressants'\n", - "\\item 'lipid\\_modifying\\_agents'\n", - "\\item 'medicated\\_dressings'\n", - "\\item 'mineral\\_supplements'\n", - "\\item 'muscle\\_relaxants'\n", - "\\item 'nasal\\_preparations'\n", - "\\item 'ophthalmological\\_and\\_otological\\_preparations'\n", - "\\item 'ophthalmologicals'\n", - "\\item 'other\\_alimentary\\_tract\\_and\\_metabolism\\_products'\n", - "\\item 'other\\_dermatological\\_preparations'\n", - "\\item 'other\\_drugs\\_for\\_disorders\\_of\\_the\\_musculo-skeletal\\_system'\n", - "\\item 'other\\_gynecologicals'\n", - "\\item 'other\\_hematological\\_agents'\n", - "\\item 'other\\_nervous\\_system\\_drugs'\n", - "\\item 'other\\_respiratory\\_system\\_products'\n", - "\\item 'otologicals'\n", - "\\item 'pancreatic\\_hormones'\n", - "\\item 'peripheral\\_vasodilators'\n", - "\\item 'pituitary\\_and\\_hypothalamic\\_hormones\\_and\\_analogues'\n", - "\\item 'preparations\\_for\\_treatment\\_of\\_wounds\\_and\\_ulcers'\n", - "\\item 'psychoanaleptics'\n", - "\\item 'psycholeptics'\n", - "\\item 'sex\\_hormones\\_and\\_modulators\\_of\\_the\\_genital\\_system'\n", - "\\item 'statins'\n", - "\\item 'stomatological\\_preparations'\n", - "\\item 'surgical\\_dressings'\n", - "\\item 'therapeutic\\_radiopharmaceuticals'\n", - "\\item 'throat\\_preparations'\n", - "\\item 'thyroid\\_therapy'\n", - "\\item 'tonics'\n", - "\\item 'topical\\_products\\_for\\_joint\\_and\\_muscular\\_pain'\n", - "\\item 'urologicals'\n", - "\\item 'vaccines'\n", - "\\item 'vasoprotectives'\n", - "\\item 'vitamins'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'agents_acting_on_the_renin-angiotensin_system'\n", - "2. 'all_other_non-therapeutic_products'\n", - "3. 'all_other_therapeutic_products'\n", - "4. 'allergens'\n", - "5. 'anabolic_agents_for_systemic_use'\n", - "6. 'analgesics'\n", - "7. 'anesthetics'\n", - "8. 'anthelmintics'\n", - "9. 'anti-acne_preparations'\n", - "10. 'anti-parkinson_drugs'\n", - "11. 'antianemic_preparations'\n", - "12. 'antibacterials_for_systemic_use'\n", - "13. 'antibiotics_and_chemotherapeutics_for_dermatological_use'\n", - "14. 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents'\n", - "15. 'antiemetics_and_antinauseants'\n", - "16. 'antiepileptics'\n", - "17. 'antifungals_for_dermatological_use'\n", - "18. 'antigout_preparations'\n", - "19. 'antihemorrhagics'\n", - "20. 'antihistamines_for_systemic_use'\n", - "21. 'antihypertensives'\n", - "22. 'antiinflammatory_and_antirheumatic_products'\n", - "23. 'antimycobacterials'\n", - "24. 'antimycotics_for_systemic_use'\n", - "25. 'antineoplastic_agents'\n", - "26. 'antiobesity_preparations,_excl._diet_products'\n", - "27. 'antiprotozoals'\n", - "28. 'antipruritics,_incl._antihistamines,_anesthetics,_etc.'\n", - "29. 'antipsoriatics'\n", - "30. 'antiseptics_and_disinfectants'\n", - "31. 'antithrombotic_agents'\n", - "32. 'antivirals_for_systemic_use'\n", - "33. 'appetite_stimulants'\n", - "34. 'ass'\n", - "35. 'atypical_antipsychotics'\n", - "36. 'beta_blocking_agents'\n", - "37. 'bile_and_liver_therapy'\n", - "38. 'blood_substitutes_and_perfusion_solutions'\n", - "39. 'calcium_channel_blockers'\n", - "40. 'calcium_homeostasis'\n", - "41. 'cardiac_therapy'\n", - "42. 'contrast_media'\n", - "43. 'corticosteroids,_dermatological_preparations'\n", - "44. 'corticosteroids_for_systemic_use'\n", - "45. 'cough_and_cold_preparations'\n", - "46. 'diagnostic_agents'\n", - "47. 'diagnostic_radiopharmaceuticals'\n", - "48. 'digestives,_incl._enzymes'\n", - "49. 'diuretics'\n", - "50. 'drugs_for_acid_related_disorders'\n", - "51. 'drugs_for_constipation'\n", - "52. 'drugs_for_functional_gastrointestinal_disorders'\n", - "53. 'drugs_for_obstructive_airway_diseases'\n", - "54. 'drugs_for_treatment_of_bone_diseases'\n", - "55. 'drugs_used_in_diabetes'\n", - "56. 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents'\n", - "57. 'emollients_and_protectives'\n", - "58. 'endocrine_therapy'\n", - "59. 'general_nutrients'\n", - "60. 'glucocorticoids'\n", - "61. 'gynecological_antiinfectives_and_antiseptics'\n", - "62. 'immune_sera_and_immunoglobulins'\n", - "63. 'immunostimulants'\n", - "64. 'immunosuppressants'\n", - "65. 'lipid_modifying_agents'\n", - "66. 'medicated_dressings'\n", - "67. 'mineral_supplements'\n", - "68. 'muscle_relaxants'\n", - "69. 'nasal_preparations'\n", - "70. 'ophthalmological_and_otological_preparations'\n", - "71. 'ophthalmologicals'\n", - "72. 'other_alimentary_tract_and_metabolism_products'\n", - "73. 'other_dermatological_preparations'\n", - "74. 'other_drugs_for_disorders_of_the_musculo-skeletal_system'\n", - "75. 'other_gynecologicals'\n", - "76. 'other_hematological_agents'\n", - "77. 'other_nervous_system_drugs'\n", - "78. 'other_respiratory_system_products'\n", - "79. 'otologicals'\n", - "80. 'pancreatic_hormones'\n", - "81. 'peripheral_vasodilators'\n", - "82. 'pituitary_and_hypothalamic_hormones_and_analogues'\n", - "83. 'preparations_for_treatment_of_wounds_and_ulcers'\n", - "84. 'psychoanaleptics'\n", - "85. 'psycholeptics'\n", - "86. 'sex_hormones_and_modulators_of_the_genital_system'\n", - "87. 'statins'\n", - "88. 'stomatological_preparations'\n", - "89. 'surgical_dressings'\n", - "90. 'therapeutic_radiopharmaceuticals'\n", - "91. 'throat_preparations'\n", - "92. 'thyroid_therapy'\n", - "93. 'tonics'\n", - "94. 'topical_products_for_joint_and_muscular_pain'\n", - "95. 'urologicals'\n", - "96. 'vaccines'\n", - "97. 'vasoprotectives'\n", - "98. 'vitamins'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"agents_acting_on_the_renin-angiotensin_system\" \n", - " [2] \"all_other_non-therapeutic_products\" \n", - " [3] \"all_other_therapeutic_products\" \n", - " [4] \"allergens\" \n", - " [5] \"anabolic_agents_for_systemic_use\" \n", - " [6] \"analgesics\" \n", - " [7] \"anesthetics\" \n", - " [8] \"anthelmintics\" \n", - " [9] \"anti-acne_preparations\" \n", - "[10] \"anti-parkinson_drugs\" \n", - "[11] \"antianemic_preparations\" \n", - "[12] \"antibacterials_for_systemic_use\" \n", - "[13] \"antibiotics_and_chemotherapeutics_for_dermatological_use\" \n", - "[14] \"antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents\"\n", - "[15] \"antiemetics_and_antinauseants\" \n", - "[16] \"antiepileptics\" \n", - "[17] \"antifungals_for_dermatological_use\" \n", - "[18] \"antigout_preparations\" \n", - "[19] \"antihemorrhagics\" \n", - "[20] \"antihistamines_for_systemic_use\" \n", - "[21] \"antihypertensives\" \n", - "[22] \"antiinflammatory_and_antirheumatic_products\" \n", - "[23] \"antimycobacterials\" \n", - "[24] \"antimycotics_for_systemic_use\" \n", - "[25] \"antineoplastic_agents\" \n", - "[26] \"antiobesity_preparations,_excl._diet_products\" \n", - "[27] \"antiprotozoals\" \n", - "[28] \"antipruritics,_incl._antihistamines,_anesthetics,_etc.\" \n", - "[29] \"antipsoriatics\" \n", - "[30] \"antiseptics_and_disinfectants\" \n", - "[31] \"antithrombotic_agents\" \n", - "[32] \"antivirals_for_systemic_use\" \n", - "[33] \"appetite_stimulants\" \n", - "[34] \"ass\" \n", - "[35] \"atypical_antipsychotics\" \n", - "[36] \"beta_blocking_agents\" \n", - "[37] \"bile_and_liver_therapy\" \n", - "[38] \"blood_substitutes_and_perfusion_solutions\" \n", - "[39] \"calcium_channel_blockers\" \n", - "[40] \"calcium_homeostasis\" \n", - "[41] \"cardiac_therapy\" \n", - "[42] \"contrast_media\" \n", - "[43] \"corticosteroids,_dermatological_preparations\" \n", - "[44] \"corticosteroids_for_systemic_use\" \n", - "[45] \"cough_and_cold_preparations\" \n", - "[46] \"diagnostic_agents\" \n", - "[47] \"diagnostic_radiopharmaceuticals\" \n", - "[48] \"digestives,_incl._enzymes\" \n", - "[49] \"diuretics\" \n", - "[50] \"drugs_for_acid_related_disorders\" \n", - "[51] \"drugs_for_constipation\" \n", - "[52] \"drugs_for_functional_gastrointestinal_disorders\" \n", - "[53] \"drugs_for_obstructive_airway_diseases\" \n", - "[54] \"drugs_for_treatment_of_bone_diseases\" \n", - "[55] \"drugs_used_in_diabetes\" \n", - "[56] \"ectoparasiticides,_incl._scabicides,_insecticides_and_repellents\"\n", - "[57] \"emollients_and_protectives\" \n", - "[58] \"endocrine_therapy\" \n", - "[59] \"general_nutrients\" \n", - "[60] \"glucocorticoids\" \n", - "[61] \"gynecological_antiinfectives_and_antiseptics\" \n", - "[62] \"immune_sera_and_immunoglobulins\" \n", - "[63] \"immunostimulants\" \n", - "[64] \"immunosuppressants\" \n", - "[65] \"lipid_modifying_agents\" \n", - "[66] \"medicated_dressings\" \n", - "[67] \"mineral_supplements\" \n", - "[68] \"muscle_relaxants\" \n", - "[69] \"nasal_preparations\" \n", - "[70] \"ophthalmological_and_otological_preparations\" \n", - "[71] \"ophthalmologicals\" \n", - "[72] \"other_alimentary_tract_and_metabolism_products\" \n", - "[73] \"other_dermatological_preparations\" \n", - "[74] \"other_drugs_for_disorders_of_the_musculo-skeletal_system\" \n", - "[75] \"other_gynecologicals\" \n", - "[76] \"other_hematological_agents\" \n", - "[77] \"other_nervous_system_drugs\" \n", - "[78] \"other_respiratory_system_products\" \n", - "[79] \"otologicals\" \n", - "[80] \"pancreatic_hormones\" \n", - "[81] \"peripheral_vasodilators\" \n", - "[82] \"pituitary_and_hypothalamic_hormones_and_analogues\" \n", - "[83] \"preparations_for_treatment_of_wounds_and_ulcers\" \n", - "[84] \"psychoanaleptics\" \n", - "[85] \"psycholeptics\" \n", - "[86] \"sex_hormones_and_modulators_of_the_genital_system\" \n", - "[87] \"statins\" \n", - "[88] \"stomatological_preparations\" \n", - "[89] \"surgical_dressings\" \n", - "[90] \"therapeutic_radiopharmaceuticals\" \n", - "[91] \"throat_preparations\" \n", - "[92] \"thyroid_therapy\" \n", - "[93] \"tonics\" \n", - "[94] \"topical_products_for_joint_and_muscular_pain\" \n", - "[95] \"urologicals\" \n", - "[96] \"vaccines\" \n", - "[97] \"vasoprotectives\" \n", - "[98] \"vitamins\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "medications" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "ranking_diagnoses = as.data.frame(t(data %>% dplyr::summarise(across(all_of(phenotypes), mean))))\n", - "ranking_diagnoses = tibble::rownames_to_column(ranking_diagnoses, var = \"column\")\n", - "colnames(ranking_diagnoses) = c(\"column\", \"frequency\")\n", - "ranking_diagnoses = ranking_diagnoses %>% arrange(desc(frequency)) %>% mutate(rank=row_number())" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [], - "source": [ - "ranking_diagnoses %>% filter(frequency>0) %>% write_csv(\"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/retina_labels/diagnoses.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "ename": "ERROR", - "evalue": "Error in eval(expr, envir, enclos): object 'measurements' not found\n", - "output_type": "error", - "traceback": [ - "Error in eval(expr, envir, enclos): object 'measurements' not found\nTraceback:\n" - ] - } - ], - "source": [ - "measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:59.684813Z", - "start_time": "2020-11-04T14:16:58.773Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'chronic_alcoholism_in_remission'
  2. 'chronic_pancreatitis'
  3. 'gastroparesis'
  4. 'ectopic_pregnancy'
  5. 'muscle_weakness'
  6. 'recurrent_major_depression'
  7. 'pilonidal_cyst'
  8. 'pain_in_toe'
  9. 'pulmonary_tuberculosis'
  10. 'celiac_disease'
  11. 'cramp_in_lower_leg'
  12. 'secondary_malignant_neoplasm_of_pleura'
  13. 'fracture_of_hand'
  14. 'cyst_of_breast'
  15. 'nephrotic_syndrome'
  16. 'polyp_of_nasal_sinus'
  17. 'chondromalacia_of_patella'
  18. 'spinal_stenosis_in_cervical_region'
  19. 'disorder_of_artery'
  20. 'vitiligo'
  21. 'female_cystocele'
  22. 'dysphasia'
  23. 'retinal_disorder'
  24. 'epiretinal_membrane'
  25. 'recurrent_major_depression_in_partial_remission'
  26. 'infection_caused_by_trichomonas'
  27. 'osteomyelitis'
  28. 'polyp_of_nasal_cavity_and/or_nasal_sinus'
  29. 'mass_of_neck'
  30. 'idiopathic_thrombocytopenic_purpura'
  31. 'complete_miscarriage'
  32. 'gastric_ulcer'
  33. 'papilloma_of_skin'
  34. 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction'
  35. 'secondary_malignant_neoplastic_disease'
  36. 'hypoxemia'
  37. 'paraplegia'
  38. 'perforation_of_tympanic_membrane'
  39. 'ventricular_tachycardia'
  40. 'mixed_incontinence'
  41. 'disorder_of_eye_due_to_type_2_diabetes_mellitus'
  42. 'trigeminal_neuralgia'
  43. 'retinal_detachment'
  44. 'leukopenia'
  45. 'vitreous_hemorrhage'
  46. 'ischemic_ulcer'
  47. 'intramural_leiomyoma_of_uterus'
  48. 'viral_hepatitis_type_a'
  49. 'm\\u00e9ni\\u00e8re\\'s_disease'
  50. 'fracture_of_phalanx_of_hand'
  51. 'muscle_atrophy'
  52. 'incontinence_of_feces'
  53. 'mitral_valve_disorder'
  54. 'atherosclerosis_of_arteries_of_the_extremities'
  55. 'spondylosis'
  56. 'pterygium'
  57. 'ulnar_neuropathy'
  58. 'lung_mass'
  59. 'foreign_body_in_respiratory_tract'
  60. 'chronic_kidney_disease_stage_4'
  61. 'myocardial_ischemia'
  62. 'non-toxic_multinodular_goiter'
  63. 'pain_in_finger'
  64. 'cervical_spondylosis_without_myelopathy'
  65. 'body_mass_index_25-29_-_overweight'
  66. 'clouded_consciousness'
  67. 'mixed_conductive_and_sensorineural_hearing_loss'
  68. 'tooth_eruption_disorder'
  69. 'hyperuricemia'
  70. 'closed_fracture_of_neck_of_femur'
  71. 'bipolar_ii_disorder'
  72. 'disturbance_in_sleep_behavior'
  73. 'relationship_problems'
  74. 'sprain_of_wrist'
  75. 'personality_disorder'
  76. 'external_hemorrhoids'
  77. 'abnormal_vision'
  78. 'hyperprolactinemia'
  79. 'hemochromatosis'
  80. 'lumbosacral_radiculopathy'
  81. 'heart_valve_disorder'
  82. 'cardiac_arrest'
  83. 'infection_caused_by_molluscum_contagiosum'
  84. 'chronic_kidney_disease_stage_2'
  85. 'secondary_malignant_neoplasm_of_peritoneum'
  86. 'thoracic_back_pain'
  87. 'blood_in_urine'
  88. 'adhesive_capsulitis_of_shoulder'
  89. 'diplopia'
  90. 'sj\\u00f6gren\\'s_syndrome'
  91. 'ureteric_stone'
  92. 'bronchospasm'
  93. 'chronic_fatigue_syndrome'
  94. 'cannabis_dependence'
  95. 'neck_sprain'
  96. 'multinodular_goiter'
  97. 'ptosis_of_eyelid'
  98. 'failure_to_thrive'
  99. 'torticollis'
  100. 'acute_bronchiolitis'
  101. 'viral_exanthem'
  102. 'talipes_planus'
  103. 'idiopathic_peripheral_neuropathy'
  104. 'foreign_body_in_pharynx'
  105. 'jaw_pain'
  106. 'renal_impairment'
  107. 'ataxia'
  108. 'age-related_macular_degeneration'
  109. 'uterine_prolapse'
  110. 'renal_mass'
  111. 'pneumonitis'
  112. 'coordination_problem'
  113. 'blindness_-_both_eyes'
  114. 'primary_hyperparathyroidism'
  115. 'musculoskeletal_pain'
  116. 'mycosis'
  117. 'primigravida'
  118. 'urethral_stricture'
  119. 'leukocytosis'
  120. 'ventricular_premature_complex'
  121. 'ulcer_of_foot_due_to_diabetes_mellitus'
  122. 'chronic_headache_disorder'
  123. 'hemangioma'
  124. 'lymphedema'
  125. 'postmenopausal_state'
  126. 'chronic_ulcer_of_skin'
  127. 'left_heart_failure'
  128. 'excessive_and_frequent_menstruation'
  129. 'thrombocytosis'
  130. 'disorder_of_liver'
  131. 'disorder_of_carotid_artery'
  132. 'altered_bowel_function'
  133. 'abscess_of_foot'
  134. 'malignant_tumor_of_head_and/or_neck'
  135. 'streptococcus_group_b_infection_of_the_infant'
  136. 'concussion_injury_of_brain'
  137. 'feeding_problems_in_newborn'
  138. 'bipolar_i_disorder'
  139. 'viral_pharyngitis'
  140. 'lower_respiratory_tract_infection'
  141. 'hydronephrosis'
  142. 'borderline_personality_disorder'
  143. 'esophageal_varices'
  144. 'hypersomnia'
  145. 'sensorineural_hearing_loss_bilateral'
  146. 'varicocele'
  147. 'subarachnoid_intracranial_hemorrhage'
  148. 'incisional_hernia'
  149. 'varicella'
  150. 'pain_in_testicle'
  151. 'transplant_follow-up'
  152. 'tinea_cruris'
  153. 'laryngitis'
  154. 'hypertrophy_of_nail'
  155. 'amblyopia'
  156. 'polyp_of_cervix'
  157. 'cyst_of_kidney'
  158. 'hepatic_encephalopathy'
  159. 'blood_glucose_abnormal'
  160. 'postherpetic_neuralgia'
  161. 'frank_hematuria'
  162. 'cramp'
  163. 'interstitial_lung_disease'
  164. 'complete_atrioventricular_block'
  165. 'malignant_tumor_of_kidney'
  166. 'otitis'
  167. 'septic_shock'
  168. 'disorder_of_thyroid_gland'
  169. 'hypertrophic_cardiomyopathy'
  170. 'respiratory_distress_syndrome_in_the_newborn'
  171. 'infectious_gastroenteritis'
  172. 'subdural_intracranial_hemorrhage'
  173. 'hepatitis_b_carrier'
  174. 'manic_bipolar_i_disorder'
  175. 'secondary_pulmonary_hypertension'
  176. 'gonorrhea'
  177. 'derangement_of_knee'
  178. 'appendicitis'
  179. 'polyneuropathy_due_to_diabetes_mellitus'
  180. 'neonatal_hypoglycemia'
  181. 'prolonged_rupture_of_membranes'
  182. 'vasomotor_rhinitis'
  183. 'renal_disorder_due_to_type_1_diabetes_mellitus'
  184. 'tuberculosis'
  185. 'feeding_problem'
  186. 'chronic_tonsillitis'
  187. 'acute_duodenal_ulcer_with_hemorrhage'
  188. 'hammer_toe'
  189. 'malignant_tumor_of_cervix'
  190. 'prolapsed_lumbar_intervertebral_disc'
  191. 'hematemesis'
  192. 'perianal_abscess'
  193. 'nonvenomous_insect_bite'
  194. 'spondylolisthesis'
  195. 'malignant_tumor_of_esophagus'
  196. 'aphthous_ulcer_of_mouth'
  197. 'ventricular_septal_defect'
  198. 'oropharyngeal_dysphagia'
  199. 'injury_of_knee'
  200. 'traumatic_brain_injury'
  201. 'osteoarthritis_of_glenohumeral_joint'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'chronic\\_alcoholism\\_in\\_remission'\n", - "\\item 'chronic\\_pancreatitis'\n", - "\\item 'gastroparesis'\n", - "\\item 'ectopic\\_pregnancy'\n", - "\\item 'muscle\\_weakness'\n", - "\\item 'recurrent\\_major\\_depression'\n", - "\\item 'pilonidal\\_cyst'\n", - "\\item 'pain\\_in\\_toe'\n", - "\\item 'pulmonary\\_tuberculosis'\n", - "\\item 'celiac\\_disease'\n", - "\\item 'cramp\\_in\\_lower\\_leg'\n", - "\\item 'secondary\\_malignant\\_neoplasm\\_of\\_pleura'\n", - "\\item 'fracture\\_of\\_hand'\n", - "\\item 'cyst\\_of\\_breast'\n", - "\\item 'nephrotic\\_syndrome'\n", - "\\item 'polyp\\_of\\_nasal\\_sinus'\n", - "\\item 'chondromalacia\\_of\\_patella'\n", - "\\item 'spinal\\_stenosis\\_in\\_cervical\\_region'\n", - "\\item 'disorder\\_of\\_artery'\n", - "\\item 'vitiligo'\n", - "\\item 'female\\_cystocele'\n", - "\\item 'dysphasia'\n", - "\\item 'retinal\\_disorder'\n", - "\\item 'epiretinal\\_membrane'\n", - "\\item 'recurrent\\_major\\_depression\\_in\\_partial\\_remission'\n", - "\\item 'infection\\_caused\\_by\\_trichomonas'\n", - "\\item 'osteomyelitis'\n", - "\\item 'polyp\\_of\\_nasal\\_cavity\\_and/or\\_nasal\\_sinus'\n", - "\\item 'mass\\_of\\_neck'\n", - "\\item 'idiopathic\\_thrombocytopenic\\_purpura'\n", - "\\item 'complete\\_miscarriage'\n", - "\\item 'gastric\\_ulcer'\n", - "\\item 'papilloma\\_of\\_skin'\n", - "\\item 'fetal\\_or\\_neonatal\\_effect\\_of\\_breech\\_delivery\\_and\\_extraction'\n", - "\\item 'secondary\\_malignant\\_neoplastic\\_disease'\n", - "\\item 'hypoxemia'\n", - "\\item 'paraplegia'\n", - "\\item 'perforation\\_of\\_tympanic\\_membrane'\n", - "\\item 'ventricular\\_tachycardia'\n", - "\\item 'mixed\\_incontinence'\n", - "\\item 'disorder\\_of\\_eye\\_due\\_to\\_type\\_2\\_diabetes\\_mellitus'\n", - "\\item 'trigeminal\\_neuralgia'\n", - "\\item 'retinal\\_detachment'\n", - "\\item 'leukopenia'\n", - "\\item 'vitreous\\_hemorrhage'\n", - "\\item 'ischemic\\_ulcer'\n", - "\\item 'intramural\\_leiomyoma\\_of\\_uterus'\n", - "\\item 'viral\\_hepatitis\\_type\\_a'\n", - "\\item 'm\\textbackslash{}u00e9ni\\textbackslash{}u00e8re\\textbackslash{}'s\\_disease'\n", - "\\item 'fracture\\_of\\_phalanx\\_of\\_hand'\n", - "\\item 'muscle\\_atrophy'\n", - "\\item 'incontinence\\_of\\_feces'\n", - "\\item 'mitral\\_valve\\_disorder'\n", - "\\item 'atherosclerosis\\_of\\_arteries\\_of\\_the\\_extremities'\n", - "\\item 'spondylosis'\n", - "\\item 'pterygium'\n", - "\\item 'ulnar\\_neuropathy'\n", - "\\item 'lung\\_mass'\n", - "\\item 'foreign\\_body\\_in\\_respiratory\\_tract'\n", - "\\item 'chronic\\_kidney\\_disease\\_stage\\_4'\n", - "\\item 'myocardial\\_ischemia'\n", - "\\item 'non-toxic\\_multinodular\\_goiter'\n", - "\\item 'pain\\_in\\_finger'\n", - "\\item 'cervical\\_spondylosis\\_without\\_myelopathy'\n", - "\\item 'body\\_mass\\_index\\_25-29\\_-\\_overweight'\n", - "\\item 'clouded\\_consciousness'\n", - "\\item 'mixed\\_conductive\\_and\\_sensorineural\\_hearing\\_loss'\n", - "\\item 'tooth\\_eruption\\_disorder'\n", - "\\item 'hyperuricemia'\n", - "\\item 'closed\\_fracture\\_of\\_neck\\_of\\_femur'\n", - "\\item 'bipolar\\_ii\\_disorder'\n", - "\\item 'disturbance\\_in\\_sleep\\_behavior'\n", - "\\item 'relationship\\_problems'\n", - "\\item 'sprain\\_of\\_wrist'\n", - "\\item 'personality\\_disorder'\n", - "\\item 'external\\_hemorrhoids'\n", - "\\item 'abnormal\\_vision'\n", - "\\item 'hyperprolactinemia'\n", - "\\item 'hemochromatosis'\n", - "\\item 'lumbosacral\\_radiculopathy'\n", - "\\item 'heart\\_valve\\_disorder'\n", - "\\item 'cardiac\\_arrest'\n", - "\\item 'infection\\_caused\\_by\\_molluscum\\_contagiosum'\n", - "\\item 'chronic\\_kidney\\_disease\\_stage\\_2'\n", - "\\item 'secondary\\_malignant\\_neoplasm\\_of\\_peritoneum'\n", - "\\item 'thoracic\\_back\\_pain'\n", - "\\item 'blood\\_in\\_urine'\n", - "\\item 'adhesive\\_capsulitis\\_of\\_shoulder'\n", - "\\item 'diplopia'\n", - "\\item 'sj\\textbackslash{}u00f6gren\\textbackslash{}'s\\_syndrome'\n", - "\\item 'ureteric\\_stone'\n", - "\\item 'bronchospasm'\n", - "\\item 'chronic\\_fatigue\\_syndrome'\n", - "\\item 'cannabis\\_dependence'\n", - "\\item 'neck\\_sprain'\n", - "\\item 'multinodular\\_goiter'\n", - "\\item 'ptosis\\_of\\_eyelid'\n", - "\\item 'failure\\_to\\_thrive'\n", - "\\item 'torticollis'\n", - "\\item 'acute\\_bronchiolitis'\n", - "\\item 'viral\\_exanthem'\n", - "\\item 'talipes\\_planus'\n", - "\\item 'idiopathic\\_peripheral\\_neuropathy'\n", - "\\item 'foreign\\_body\\_in\\_pharynx'\n", - "\\item 'jaw\\_pain'\n", - "\\item 'renal\\_impairment'\n", - "\\item 'ataxia'\n", - "\\item 'age-related\\_macular\\_degeneration'\n", - "\\item 'uterine\\_prolapse'\n", - "\\item 'renal\\_mass'\n", - "\\item 'pneumonitis'\n", - "\\item 'coordination\\_problem'\n", - "\\item 'blindness\\_-\\_both\\_eyes'\n", - "\\item 'primary\\_hyperparathyroidism'\n", - "\\item 'musculoskeletal\\_pain'\n", - "\\item 'mycosis'\n", - "\\item 'primigravida'\n", - "\\item 'urethral\\_stricture'\n", - "\\item 'leukocytosis'\n", - "\\item 'ventricular\\_premature\\_complex'\n", - "\\item 'ulcer\\_of\\_foot\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'chronic\\_headache\\_disorder'\n", - "\\item 'hemangioma'\n", - "\\item 'lymphedema'\n", - "\\item 'postmenopausal\\_state'\n", - "\\item 'chronic\\_ulcer\\_of\\_skin'\n", - "\\item 'left\\_heart\\_failure'\n", - "\\item 'excessive\\_and\\_frequent\\_menstruation'\n", - "\\item 'thrombocytosis'\n", - "\\item 'disorder\\_of\\_liver'\n", - "\\item 'disorder\\_of\\_carotid\\_artery'\n", - "\\item 'altered\\_bowel\\_function'\n", - "\\item 'abscess\\_of\\_foot'\n", - "\\item 'malignant\\_tumor\\_of\\_head\\_and/or\\_neck'\n", - "\\item 'streptococcus\\_group\\_b\\_infection\\_of\\_the\\_infant'\n", - "\\item 'concussion\\_injury\\_of\\_brain'\n", - "\\item 'feeding\\_problems\\_in\\_newborn'\n", - "\\item 'bipolar\\_i\\_disorder'\n", - "\\item 'viral\\_pharyngitis'\n", - "\\item 'lower\\_respiratory\\_tract\\_infection'\n", - "\\item 'hydronephrosis'\n", - "\\item 'borderline\\_personality\\_disorder'\n", - "\\item 'esophageal\\_varices'\n", - "\\item 'hypersomnia'\n", - "\\item 'sensorineural\\_hearing\\_loss\\_bilateral'\n", - "\\item 'varicocele'\n", - "\\item 'subarachnoid\\_intracranial\\_hemorrhage'\n", - "\\item 'incisional\\_hernia'\n", - "\\item 'varicella'\n", - "\\item 'pain\\_in\\_testicle'\n", - "\\item 'transplant\\_follow-up'\n", - "\\item 'tinea\\_cruris'\n", - "\\item 'laryngitis'\n", - "\\item 'hypertrophy\\_of\\_nail'\n", - "\\item 'amblyopia'\n", - "\\item 'polyp\\_of\\_cervix'\n", - "\\item 'cyst\\_of\\_kidney'\n", - "\\item 'hepatic\\_encephalopathy'\n", - "\\item 'blood\\_glucose\\_abnormal'\n", - "\\item 'postherpetic\\_neuralgia'\n", - "\\item 'frank\\_hematuria'\n", - "\\item 'cramp'\n", - "\\item 'interstitial\\_lung\\_disease'\n", - "\\item 'complete\\_atrioventricular\\_block'\n", - "\\item 'malignant\\_tumor\\_of\\_kidney'\n", - "\\item 'otitis'\n", - "\\item 'septic\\_shock'\n", - "\\item 'disorder\\_of\\_thyroid\\_gland'\n", - "\\item 'hypertrophic\\_cardiomyopathy'\n", - "\\item 'respiratory\\_distress\\_syndrome\\_in\\_the\\_newborn'\n", - "\\item 'infectious\\_gastroenteritis'\n", - "\\item 'subdural\\_intracranial\\_hemorrhage'\n", - "\\item 'hepatitis\\_b\\_carrier'\n", - "\\item 'manic\\_bipolar\\_i\\_disorder'\n", - "\\item 'secondary\\_pulmonary\\_hypertension'\n", - "\\item 'gonorrhea'\n", - "\\item 'derangement\\_of\\_knee'\n", - "\\item 'appendicitis'\n", - "\\item 'polyneuropathy\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'neonatal\\_hypoglycemia'\n", - "\\item 'prolonged\\_rupture\\_of\\_membranes'\n", - "\\item 'vasomotor\\_rhinitis'\n", - "\\item 'renal\\_disorder\\_due\\_to\\_type\\_1\\_diabetes\\_mellitus'\n", - "\\item 'tuberculosis'\n", - "\\item 'feeding\\_problem'\n", - "\\item 'chronic\\_tonsillitis'\n", - "\\item 'acute\\_duodenal\\_ulcer\\_with\\_hemorrhage'\n", - "\\item 'hammer\\_toe'\n", - "\\item 'malignant\\_tumor\\_of\\_cervix'\n", - "\\item 'prolapsed\\_lumbar\\_intervertebral\\_disc'\n", - "\\item 'hematemesis'\n", - "\\item 'perianal\\_abscess'\n", - "\\item 'nonvenomous\\_insect\\_bite'\n", - "\\item 'spondylolisthesis'\n", - "\\item 'malignant\\_tumor\\_of\\_esophagus'\n", - "\\item 'aphthous\\_ulcer\\_of\\_mouth'\n", - "\\item 'ventricular\\_septal\\_defect'\n", - "\\item 'oropharyngeal\\_dysphagia'\n", - "\\item 'injury\\_of\\_knee'\n", - "\\item 'traumatic\\_brain\\_injury'\n", - "\\item 'osteoarthritis\\_of\\_glenohumeral\\_joint'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'chronic_alcoholism_in_remission'\n", - "2. 'chronic_pancreatitis'\n", - "3. 'gastroparesis'\n", - "4. 'ectopic_pregnancy'\n", - "5. 'muscle_weakness'\n", - "6. 'recurrent_major_depression'\n", - "7. 'pilonidal_cyst'\n", - "8. 'pain_in_toe'\n", - "9. 'pulmonary_tuberculosis'\n", - "10. 'celiac_disease'\n", - "11. 'cramp_in_lower_leg'\n", - "12. 'secondary_malignant_neoplasm_of_pleura'\n", - "13. 'fracture_of_hand'\n", - "14. 'cyst_of_breast'\n", - "15. 'nephrotic_syndrome'\n", - "16. 'polyp_of_nasal_sinus'\n", - "17. 'chondromalacia_of_patella'\n", - "18. 'spinal_stenosis_in_cervical_region'\n", - "19. 'disorder_of_artery'\n", - "20. 'vitiligo'\n", - "21. 'female_cystocele'\n", - "22. 'dysphasia'\n", - "23. 'retinal_disorder'\n", - "24. 'epiretinal_membrane'\n", - "25. 'recurrent_major_depression_in_partial_remission'\n", - "26. 'infection_caused_by_trichomonas'\n", - "27. 'osteomyelitis'\n", - "28. 'polyp_of_nasal_cavity_and/or_nasal_sinus'\n", - "29. 'mass_of_neck'\n", - "30. 'idiopathic_thrombocytopenic_purpura'\n", - "31. 'complete_miscarriage'\n", - "32. 'gastric_ulcer'\n", - "33. 'papilloma_of_skin'\n", - "34. 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction'\n", - "35. 'secondary_malignant_neoplastic_disease'\n", - "36. 'hypoxemia'\n", - "37. 'paraplegia'\n", - "38. 'perforation_of_tympanic_membrane'\n", - "39. 'ventricular_tachycardia'\n", - "40. 'mixed_incontinence'\n", - "41. 'disorder_of_eye_due_to_type_2_diabetes_mellitus'\n", - "42. 'trigeminal_neuralgia'\n", - "43. 'retinal_detachment'\n", - "44. 'leukopenia'\n", - "45. 'vitreous_hemorrhage'\n", - "46. 'ischemic_ulcer'\n", - "47. 'intramural_leiomyoma_of_uterus'\n", - "48. 'viral_hepatitis_type_a'\n", - "49. 'm\\u00e9ni\\u00e8re\\'s_disease'\n", - "50. 'fracture_of_phalanx_of_hand'\n", - "51. 'muscle_atrophy'\n", - "52. 'incontinence_of_feces'\n", - "53. 'mitral_valve_disorder'\n", - "54. 'atherosclerosis_of_arteries_of_the_extremities'\n", - "55. 'spondylosis'\n", - "56. 'pterygium'\n", - "57. 'ulnar_neuropathy'\n", - "58. 'lung_mass'\n", - "59. 'foreign_body_in_respiratory_tract'\n", - "60. 'chronic_kidney_disease_stage_4'\n", - "61. 'myocardial_ischemia'\n", - "62. 'non-toxic_multinodular_goiter'\n", - "63. 'pain_in_finger'\n", - "64. 'cervical_spondylosis_without_myelopathy'\n", - "65. 'body_mass_index_25-29_-_overweight'\n", - "66. 'clouded_consciousness'\n", - "67. 'mixed_conductive_and_sensorineural_hearing_loss'\n", - "68. 'tooth_eruption_disorder'\n", - "69. 'hyperuricemia'\n", - "70. 'closed_fracture_of_neck_of_femur'\n", - "71. 'bipolar_ii_disorder'\n", - "72. 'disturbance_in_sleep_behavior'\n", - "73. 'relationship_problems'\n", - "74. 'sprain_of_wrist'\n", - "75. 'personality_disorder'\n", - "76. 'external_hemorrhoids'\n", - "77. 'abnormal_vision'\n", - "78. 'hyperprolactinemia'\n", - "79. 'hemochromatosis'\n", - "80. 'lumbosacral_radiculopathy'\n", - "81. 'heart_valve_disorder'\n", - "82. 'cardiac_arrest'\n", - "83. 'infection_caused_by_molluscum_contagiosum'\n", - "84. 'chronic_kidney_disease_stage_2'\n", - "85. 'secondary_malignant_neoplasm_of_peritoneum'\n", - "86. 'thoracic_back_pain'\n", - "87. 'blood_in_urine'\n", - "88. 'adhesive_capsulitis_of_shoulder'\n", - "89. 'diplopia'\n", - "90. 'sj\\u00f6gren\\'s_syndrome'\n", - "91. 'ureteric_stone'\n", - "92. 'bronchospasm'\n", - "93. 'chronic_fatigue_syndrome'\n", - "94. 'cannabis_dependence'\n", - "95. 'neck_sprain'\n", - "96. 'multinodular_goiter'\n", - "97. 'ptosis_of_eyelid'\n", - "98. 'failure_to_thrive'\n", - "99. 'torticollis'\n", - "100. 'acute_bronchiolitis'\n", - "101. 'viral_exanthem'\n", - "102. 'talipes_planus'\n", - "103. 'idiopathic_peripheral_neuropathy'\n", - "104. 'foreign_body_in_pharynx'\n", - "105. 'jaw_pain'\n", - "106. 'renal_impairment'\n", - "107. 'ataxia'\n", - "108. 'age-related_macular_degeneration'\n", - "109. 'uterine_prolapse'\n", - "110. 'renal_mass'\n", - "111. 'pneumonitis'\n", - "112. 'coordination_problem'\n", - "113. 'blindness_-_both_eyes'\n", - "114. 'primary_hyperparathyroidism'\n", - "115. 'musculoskeletal_pain'\n", - "116. 'mycosis'\n", - "117. 'primigravida'\n", - "118. 'urethral_stricture'\n", - "119. 'leukocytosis'\n", - "120. 'ventricular_premature_complex'\n", - "121. 'ulcer_of_foot_due_to_diabetes_mellitus'\n", - "122. 'chronic_headache_disorder'\n", - "123. 'hemangioma'\n", - "124. 'lymphedema'\n", - "125. 'postmenopausal_state'\n", - "126. 'chronic_ulcer_of_skin'\n", - "127. 'left_heart_failure'\n", - "128. 'excessive_and_frequent_menstruation'\n", - "129. 'thrombocytosis'\n", - "130. 'disorder_of_liver'\n", - "131. 'disorder_of_carotid_artery'\n", - "132. 'altered_bowel_function'\n", - "133. 'abscess_of_foot'\n", - "134. 'malignant_tumor_of_head_and/or_neck'\n", - "135. 'streptococcus_group_b_infection_of_the_infant'\n", - "136. 'concussion_injury_of_brain'\n", - "137. 'feeding_problems_in_newborn'\n", - "138. 'bipolar_i_disorder'\n", - "139. 'viral_pharyngitis'\n", - "140. 'lower_respiratory_tract_infection'\n", - "141. 'hydronephrosis'\n", - "142. 'borderline_personality_disorder'\n", - "143. 'esophageal_varices'\n", - "144. 'hypersomnia'\n", - "145. 'sensorineural_hearing_loss_bilateral'\n", - "146. 'varicocele'\n", - "147. 'subarachnoid_intracranial_hemorrhage'\n", - "148. 'incisional_hernia'\n", - "149. 'varicella'\n", - "150. 'pain_in_testicle'\n", - "151. 'transplant_follow-up'\n", - "152. 'tinea_cruris'\n", - "153. 'laryngitis'\n", - "154. 'hypertrophy_of_nail'\n", - "155. 'amblyopia'\n", - "156. 'polyp_of_cervix'\n", - "157. 'cyst_of_kidney'\n", - "158. 'hepatic_encephalopathy'\n", - "159. 'blood_glucose_abnormal'\n", - "160. 'postherpetic_neuralgia'\n", - "161. 'frank_hematuria'\n", - "162. 'cramp'\n", - "163. 'interstitial_lung_disease'\n", - "164. 'complete_atrioventricular_block'\n", - "165. 'malignant_tumor_of_kidney'\n", - "166. 'otitis'\n", - "167. 'septic_shock'\n", - "168. 'disorder_of_thyroid_gland'\n", - "169. 'hypertrophic_cardiomyopathy'\n", - "170. 'respiratory_distress_syndrome_in_the_newborn'\n", - "171. 'infectious_gastroenteritis'\n", - "172. 'subdural_intracranial_hemorrhage'\n", - "173. 'hepatitis_b_carrier'\n", - "174. 'manic_bipolar_i_disorder'\n", - "175. 'secondary_pulmonary_hypertension'\n", - "176. 'gonorrhea'\n", - "177. 'derangement_of_knee'\n", - "178. 'appendicitis'\n", - "179. 'polyneuropathy_due_to_diabetes_mellitus'\n", - "180. 'neonatal_hypoglycemia'\n", - "181. 'prolonged_rupture_of_membranes'\n", - "182. 'vasomotor_rhinitis'\n", - "183. 'renal_disorder_due_to_type_1_diabetes_mellitus'\n", - "184. 'tuberculosis'\n", - "185. 'feeding_problem'\n", - "186. 'chronic_tonsillitis'\n", - "187. 'acute_duodenal_ulcer_with_hemorrhage'\n", - "188. 'hammer_toe'\n", - "189. 'malignant_tumor_of_cervix'\n", - "190. 'prolapsed_lumbar_intervertebral_disc'\n", - "191. 'hematemesis'\n", - "192. 'perianal_abscess'\n", - "193. 'nonvenomous_insect_bite'\n", - "194. 'spondylolisthesis'\n", - "195. 'malignant_tumor_of_esophagus'\n", - "196. 'aphthous_ulcer_of_mouth'\n", - "197. 'ventricular_septal_defect'\n", - "198. 'oropharyngeal_dysphagia'\n", - "199. 'injury_of_knee'\n", - "200. 'traumatic_brain_injury'\n", - "201. 'osteoarthritis_of_glenohumeral_joint'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"chronic_alcoholism_in_remission\" \n", - " [2] \"chronic_pancreatitis\" \n", - " [3] \"gastroparesis\" \n", - " [4] \"ectopic_pregnancy\" \n", - " [5] \"muscle_weakness\" \n", - " [6] \"recurrent_major_depression\" \n", - " [7] \"pilonidal_cyst\" \n", - " [8] \"pain_in_toe\" \n", - " [9] \"pulmonary_tuberculosis\" \n", - " [10] \"celiac_disease\" \n", - " [11] \"cramp_in_lower_leg\" \n", - " [12] \"secondary_malignant_neoplasm_of_pleura\" \n", - " [13] \"fracture_of_hand\" \n", - " [14] \"cyst_of_breast\" \n", - " [15] \"nephrotic_syndrome\" \n", - " [16] \"polyp_of_nasal_sinus\" \n", - " [17] \"chondromalacia_of_patella\" \n", - " [18] \"spinal_stenosis_in_cervical_region\" \n", - " [19] \"disorder_of_artery\" \n", - " [20] \"vitiligo\" \n", - " [21] \"female_cystocele\" \n", - " [22] \"dysphasia\" \n", - " [23] \"retinal_disorder\" \n", - " [24] \"epiretinal_membrane\" \n", - " [25] \"recurrent_major_depression_in_partial_remission\" \n", - " [26] \"infection_caused_by_trichomonas\" \n", - " [27] \"osteomyelitis\" \n", - " [28] \"polyp_of_nasal_cavity_and/or_nasal_sinus\" \n", - " [29] \"mass_of_neck\" \n", - " [30] \"idiopathic_thrombocytopenic_purpura\" \n", - " [31] \"complete_miscarriage\" \n", - " [32] \"gastric_ulcer\" \n", - " [33] \"papilloma_of_skin\" \n", - " [34] \"fetal_or_neonatal_effect_of_breech_delivery_and_extraction\"\n", - " [35] \"secondary_malignant_neoplastic_disease\" \n", - " [36] \"hypoxemia\" \n", - " [37] \"paraplegia\" \n", - " [38] \"perforation_of_tympanic_membrane\" \n", - " [39] \"ventricular_tachycardia\" \n", - " [40] \"mixed_incontinence\" \n", - " [41] \"disorder_of_eye_due_to_type_2_diabetes_mellitus\" \n", - " [42] \"trigeminal_neuralgia\" \n", - " [43] \"retinal_detachment\" \n", - " [44] \"leukopenia\" \n", - " [45] \"vitreous_hemorrhage\" \n", - " [46] \"ischemic_ulcer\" \n", - " [47] \"intramural_leiomyoma_of_uterus\" \n", - " [48] \"viral_hepatitis_type_a\" \n", - " [49] \"mnire's_disease\" \n", - " [50] \"fracture_of_phalanx_of_hand\" \n", - " [51] \"muscle_atrophy\" \n", - " [52] \"incontinence_of_feces\" \n", - " [53] \"mitral_valve_disorder\" \n", - " [54] \"atherosclerosis_of_arteries_of_the_extremities\" \n", - " [55] \"spondylosis\" \n", - " [56] \"pterygium\" \n", - " [57] \"ulnar_neuropathy\" \n", - " [58] \"lung_mass\" \n", - " [59] \"foreign_body_in_respiratory_tract\" \n", - " [60] \"chronic_kidney_disease_stage_4\" \n", - " [61] \"myocardial_ischemia\" \n", - " [62] \"non-toxic_multinodular_goiter\" \n", - " [63] \"pain_in_finger\" \n", - " [64] \"cervical_spondylosis_without_myelopathy\" \n", - " [65] \"body_mass_index_25-29_-_overweight\" \n", - " [66] \"clouded_consciousness\" \n", - " [67] \"mixed_conductive_and_sensorineural_hearing_loss\" \n", - " [68] \"tooth_eruption_disorder\" \n", - " [69] \"hyperuricemia\" \n", - " [70] \"closed_fracture_of_neck_of_femur\" \n", - " [71] \"bipolar_ii_disorder\" \n", - " [72] \"disturbance_in_sleep_behavior\" \n", - " [73] \"relationship_problems\" \n", - " [74] \"sprain_of_wrist\" \n", - " [75] \"personality_disorder\" \n", - " [76] \"external_hemorrhoids\" \n", - " [77] \"abnormal_vision\" \n", - " [78] \"hyperprolactinemia\" \n", - " [79] \"hemochromatosis\" \n", - " [80] \"lumbosacral_radiculopathy\" \n", - " [81] \"heart_valve_disorder\" \n", - " [82] \"cardiac_arrest\" \n", - " [83] \"infection_caused_by_molluscum_contagiosum\" \n", - " [84] \"chronic_kidney_disease_stage_2\" \n", - " [85] \"secondary_malignant_neoplasm_of_peritoneum\" \n", - " [86] \"thoracic_back_pain\" \n", - " [87] \"blood_in_urine\" \n", - " [88] \"adhesive_capsulitis_of_shoulder\" \n", - " [89] \"diplopia\" \n", - " [90] \"sjgren's_syndrome\" \n", - " [91] \"ureteric_stone\" \n", - " [92] \"bronchospasm\" \n", - " [93] \"chronic_fatigue_syndrome\" \n", - " [94] \"cannabis_dependence\" \n", - " [95] \"neck_sprain\" \n", - " [96] \"multinodular_goiter\" \n", - " [97] \"ptosis_of_eyelid\" \n", - " [98] \"failure_to_thrive\" \n", - " [99] \"torticollis\" \n", - "[100] \"acute_bronchiolitis\" \n", - "[101] \"viral_exanthem\" \n", - "[102] \"talipes_planus\" \n", - "[103] \"idiopathic_peripheral_neuropathy\" \n", - "[104] \"foreign_body_in_pharynx\" \n", - "[105] \"jaw_pain\" \n", - "[106] \"renal_impairment\" \n", - "[107] \"ataxia\" \n", - "[108] \"age-related_macular_degeneration\" \n", - "[109] \"uterine_prolapse\" \n", - "[110] \"renal_mass\" \n", - "[111] \"pneumonitis\" \n", - "[112] \"coordination_problem\" \n", - "[113] \"blindness_-_both_eyes\" \n", - "[114] \"primary_hyperparathyroidism\" \n", - "[115] \"musculoskeletal_pain\" \n", - "[116] \"mycosis\" \n", - "[117] \"primigravida\" \n", - "[118] \"urethral_stricture\" \n", - "[119] \"leukocytosis\" \n", - "[120] \"ventricular_premature_complex\" \n", - "[121] \"ulcer_of_foot_due_to_diabetes_mellitus\" \n", - "[122] \"chronic_headache_disorder\" \n", - "[123] \"hemangioma\" \n", - "[124] \"lymphedema\" \n", - "[125] \"postmenopausal_state\" \n", - "[126] \"chronic_ulcer_of_skin\" \n", - "[127] \"left_heart_failure\" \n", - "[128] \"excessive_and_frequent_menstruation\" \n", - "[129] \"thrombocytosis\" \n", - "[130] \"disorder_of_liver\" \n", - "[131] \"disorder_of_carotid_artery\" \n", - "[132] \"altered_bowel_function\" \n", - "[133] \"abscess_of_foot\" \n", - "[134] \"malignant_tumor_of_head_and/or_neck\" \n", - "[135] \"streptococcus_group_b_infection_of_the_infant\" \n", - "[136] \"concussion_injury_of_brain\" \n", - "[137] \"feeding_problems_in_newborn\" \n", - "[138] \"bipolar_i_disorder\" \n", - "[139] \"viral_pharyngitis\" \n", - "[140] \"lower_respiratory_tract_infection\" \n", - "[141] \"hydronephrosis\" \n", - "[142] \"borderline_personality_disorder\" \n", - "[143] \"esophageal_varices\" \n", - "[144] \"hypersomnia\" \n", - "[145] \"sensorineural_hearing_loss_bilateral\" \n", - "[146] \"varicocele\" \n", - "[147] \"subarachnoid_intracranial_hemorrhage\" \n", - "[148] \"incisional_hernia\" \n", - "[149] \"varicella\" \n", - "[150] \"pain_in_testicle\" \n", - "[151] \"transplant_follow-up\" \n", - "[152] \"tinea_cruris\" \n", - "[153] \"laryngitis\" \n", - "[154] \"hypertrophy_of_nail\" \n", - "[155] \"amblyopia\" \n", - "[156] \"polyp_of_cervix\" \n", - "[157] \"cyst_of_kidney\" \n", - "[158] \"hepatic_encephalopathy\" \n", - "[159] \"blood_glucose_abnormal\" \n", - "[160] \"postherpetic_neuralgia\" \n", - "[161] \"frank_hematuria\" \n", - "[162] \"cramp\" \n", - "[163] \"interstitial_lung_disease\" \n", - "[164] \"complete_atrioventricular_block\" \n", - "[165] \"malignant_tumor_of_kidney\" \n", - "[166] \"otitis\" \n", - "[167] \"septic_shock\" \n", - "[168] \"disorder_of_thyroid_gland\" \n", - "[169] \"hypertrophic_cardiomyopathy\" \n", - "[170] \"respiratory_distress_syndrome_in_the_newborn\" \n", - "[171] \"infectious_gastroenteritis\" \n", - "[172] \"subdural_intracranial_hemorrhage\" \n", - "[173] \"hepatitis_b_carrier\" \n", - "[174] \"manic_bipolar_i_disorder\" \n", - "[175] \"secondary_pulmonary_hypertension\" \n", - "[176] \"gonorrhea\" \n", - "[177] \"derangement_of_knee\" \n", - "[178] \"appendicitis\" \n", - "[179] \"polyneuropathy_due_to_diabetes_mellitus\" \n", - "[180] \"neonatal_hypoglycemia\" \n", - "[181] \"prolonged_rupture_of_membranes\" \n", - "[182] \"vasomotor_rhinitis\" \n", - "[183] \"renal_disorder_due_to_type_1_diabetes_mellitus\" \n", - "[184] \"tuberculosis\" \n", - "[185] \"feeding_problem\" \n", - "[186] \"chronic_tonsillitis\" \n", - "[187] \"acute_duodenal_ulcer_with_hemorrhage\" \n", - "[188] \"hammer_toe\" \n", - "[189] \"malignant_tumor_of_cervix\" \n", - "[190] \"prolapsed_lumbar_intervertebral_disc\" \n", - "[191] \"hematemesis\" \n", - "[192] \"perianal_abscess\" \n", - "[193] \"nonvenomous_insect_bite\" \n", - "[194] \"spondylolisthesis\" \n", - "[195] \"malignant_tumor_of_esophagus\" \n", - "[196] \"aphthous_ulcer_of_mouth\" \n", - "[197] \"ventricular_septal_defect\" \n", - "[198] \"oropharyngeal_dysphagia\" \n", - "[199] \"injury_of_knee\" \n", - "[200] \"traumatic_brain_injury\" \n", - "[201] \"osteoarthritis_of_glenohumeral_joint\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "covariates[700:900]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:01.632846Z", - "start_time": "2020-11-04T14:17:00.584Z" - } - }, - "outputs": [], - "source": [ - "data = data %>% mutate_at(c(\"sex\", \"overall_health_rating\", \"smoking_status\", \"ethnic_background\"), as.factor)\n", - "data = data %>% mutate(sex=fct_relevel(sex, c(\"Male\", \"Female\")),\n", - " overall_health_rating=fct_relevel(overall_health_rating, c(\"Excellent\", \"Good\", \"Fair\", \"Poor\")),\n", - " smoking_status=fct_relevel(smoking_status, c(\"Current\", \"Previous\", \"Never\")))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Missing values" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "#na_count <-data.frame(sapply(data %>% as.data.frame(), function(y) sum(length(which(is.na(y))))))\n", - "#na_count %>% filter(sapply(data %>% as.data.frame(), function(y) sum(length(which(is.na(y)))))>0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Covariates BIG" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Table 1" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "mycontrols <- tableby.control(test=FALSE, total=TRUE,\n", - " numeric.test=\"kwt\", cat.test=\"chisq\",\n", - " numeric.stats=c(\"meansd\"), numeric.simplify=TRUE,\n", - " cat.stats=c(\"countpct\"), digits = 2L,cat.simplify = TRUE,\n", - " stats.labels=list(N='N', meansd='Median', Nmiss=\"Missing\"))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(arsenal)\n", - "table_one = tableby(sex~., control=mycontrols, data=data %>% select(all_of(c(covariates, targets))))\n", - "write2html(table_one, glue(\"{dataset_path}/table1_big.html\"));\n", - "#summary(table_one, text=TRUE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# BASELINE" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "base_size = 25\n", - "title_size = 30\n", - "facet_size = 22\n", - "geom_text_size=7" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size)))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(pgs))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\")\n", - "plot_pgs = ggplot(temp, aes(x=value)) + ggtitle(\"Polygenic Scores\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=6, scales = \"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(covariates))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\")\n", - "plot_cont = ggplot(temp, aes(x=value)) + ggtitle(\"Measurements\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=4, scales = \"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(covariates))) %>% select_if(is.factor) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\",values_ptypes=list(value=\"character\"))%>% \n", - " group_by(parameter, value, .drop = TRUE) %>% summarise(count=n(), ratio=round((100*n()/502504), 1)) %>% ungroup()\n", - "plot_cat = ggplot(temp, aes(x=value, y=ratio)) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " geom_text(aes(label=paste0(ratio, \" %\")), vjust=-1, size = geom_text_size) + \n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + \n", - " facet_grid(~parameter, scales = \"free\", space=\"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(forcats)\n", - "library(ggrepel)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "options(repr.plot.width=40, repr.plot.height=8)\n", - "\n", - "plot_cat = ggplot(temp, aes(x=parameter, y=ratio, fill=factor(parameter))) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=\"fill\", fill=\"gray70\", aes(alpha=ratio)) + coord_flip()+# #, fill=\"gray70\", width=0.5) #+\n", - " geom_text_repel(aes(label=ifelse(is.na(value), \"\", paste0(ratio*100, \" %\")), vjust=1), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " geom_text_repel(aes(label=value, vjust=-0.5), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " scale_y_continuous(limits=c(-0.05, 1.05))+ xlab(\"\") +\n", - " theme_void(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), legend.position = \"None\")\n", - "\n", - "plot_cat " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "\n", - "plot_cat = ggplot(temp, aes(x=parameter, y=ratio, fill=fct_rev(value))) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=\"fill\", alpha=0.5) + coord_flip()+# #, fill=\"gray70\", width=0.5) #+\n", - " geom_text(aes(label=paste0(ratio*100, \" %\"), vjust=1), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " geom_text(aes(label=value, vjust=-0.5), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " scale_y_continuous(limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + facet_grid(~parameter, cols=1)+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), legend.position = \"None\")+\n", - " scale_fill_d3() + theme(axis.line=element_blank(),\n", - " axis.text.x=element_blank(),\n", - " axis.text.y=element_blank(),\n", - " axis.ticks=element_blank(),\n", - " legend.position=\"none\",\n", - " panel.background=element_blank(),\n", - " panel.border=element_blank(),\n", - " panel.grid.major=element_blank(),\n", - " panel.grid.minor=element_blank(),\n", - " plot.background=element_blank())\n", - "plot_cat " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(c(any_of(phenotypes))) %>% \n", - " pivot_longer(everything(),names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_conditions = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Conditions\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5))#, strip.text.x = element_text(size = 16))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(c(any_of(medications))) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_medications = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Medications\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "outputs_hidden": true - } - }, - "source": [ - "options(repr.plot.width=30, repr.plot.height=100)\n", - "plot_1 = plot_grid(plot_pgs, plot_cat, plot_cont, ncol=1, rel_heights=c(1,0.7,10), align=\"v\")\n", - "plot_2 = plot_grid(plot_conditions, plot_medications, ncol=2, rel_widths=c(3,2.5), align=\"h\")\n", - "plot_grid(plot_1, plot_2, ncol=1, rel_heights=c(5,1.5), align=\"v\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Covariates Union" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:04.842258Z", - "start_time": "2020-11-04T14:17:03.935Z" - } - }, - "outputs": [], - "source": [ - "mycontrols <- tableby.control(test=FALSE, total=TRUE,\n", - " numeric.test=\"kwt\", cat.test=\"chisq\",\n", - " numeric.stats=c(\"meansd\"), numeric.simplify=TRUE,\n", - " cat.stats=c(\"countpct\"), digits = 2L,cat.simplify = TRUE,\n", - " stats.labels=list(N='N', meansd='Median', Nmiss=\"Missing\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:05.316730Z", - "start_time": "2020-11-04T14:17:04.385Z" - } - }, - "outputs": [], - "source": [ - "f = list()\n", - "f$pgs = c('PGS000011', 'PGS000057', 'PGS000058', 'PGS000059')\n", - "f$basics = c('age_at_recruitment','sex', 'ethnic_background',\"townsend_deprivation_index_at_recruitment\")\n", - "f$questionnaire = c('overall_health_rating','smoking_status')\n", - "f$measurements = c('body_mass_index_bmi','weight',\"standing_height\",'systolic_blood_pressure','diastolic_blood_pressure')\n", - "f$labs = c(\"cholesterol\", \"hdl_cholesterol\", \"ldl_direct\",\"triglycerides\")\n", - "f$family_history = c('fh_heart_disease')\n", - "f$diagnoses = c(\"stroke\", \"diabetes1\", \"diabetes2\", \"chronic_kidney_disease\", \"atrial_fibrillation\", \"migraine\", \n", - " \"rheumatoid_arthritis\", \"systemic_lupus_erythematosus\", \"severe_mental_illness\", \"erectile_dysfunction\")\n", - "f$medications = c(\"antihypertensives\", \"ass\", \"atypical_antipsychotics\", \"glucocorticoids\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.758624Z", - "start_time": "2020-11-04T14:17:04.775Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "processing file: table1_union.html.Rmd\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " |......................................................................| 100%\n", - " ordinary text without R code\n", - "\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "output file: table1_union.html.knit.md\n", - "\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/bin/pandoc +RTS -K512m -RTS table1_union.html.utf8.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_excl/table1_union.html --lua-filter /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmarkdown/lua/latex-div.lua --email-obfuscation none --self-contained --standalone --section-divs --template /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable 'theme:bootstrap' --include-in-header /tmp/RtmpRfvefu/rmarkdown-str11963d037f4.html --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "Output created: /data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_excl/table1_union.html\n", - "\n" - ] - } - ], - "source": [ - "library(arsenal)\n", - "table_one = tableby(sex~., control=mycontrols, data=data %>% select(all_of(c(f$pgs, f$basics, f$questionnaire, f$measurements, f$labs, f$family_history, f$medications, f$diagnoses))))\n", - "write2html(table_one, glue(\"{dataset_path}/table1_union.html\"));\n", - "#summary(table_one, text=TRUE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# BASELINE" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.778888Z", - "start_time": "2020-11-04T14:17:08.887Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.814098Z", - "start_time": "2020-11-04T14:17:09.367Z" - } - }, - "outputs": [], - "source": [ - "base_size = 25\n", - "title_size = 35\n", - "facet_size = 25\n", - "geom_text_size=7\n", - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size))) " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:12.517888Z", - "start_time": "2020-11-04T14:17:11.602Z" - } - }, - "outputs": [], - "source": [ - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size))) " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:12.887887Z", - "start_time": "2020-11-04T14:17:11.969Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. White
  2. Black
  3. <NA>
  4. Asian
  5. Mixed
  6. Chinese
\n", - "\n", - "
\n", - "\t\n", - "\t\tLevels:\n", - "\t\n", - "\t\n", - "\t
  1. 'Asian'
  2. 'Black'
  3. 'Chinese'
  4. 'Mixed'
  5. 'White'
\n", - "
" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item White\n", - "\\item Black\n", - "\\item \n", - "\\item Asian\n", - "\\item Mixed\n", - "\\item Chinese\n", - "\\end{enumerate*}\n", - "\n", - "\\emph{Levels}: \\begin{enumerate*}\n", - "\\item 'Asian'\n", - "\\item 'Black'\n", - "\\item 'Chinese'\n", - "\\item 'Mixed'\n", - "\\item 'White'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. White\n", - "2. Black\n", - "3. <NA>\n", - "4. Asian\n", - "5. Mixed\n", - "6. Chinese\n", - "\n", - "\n", - "\n", - "**Levels**: 1. 'Asian'\n", - "2. 'Black'\n", - "3. 'Chinese'\n", - "4. 'Mixed'\n", - "5. 'White'\n", - "\n", - "\n" - ], - "text/plain": [ - "[1] White Black Asian Mixed Chinese\n", - "Levels: Asian Black Chinese Mixed White" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique(data$ethnic_background)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basic Information" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:13.873348Z", - "start_time": "2020-11-04T14:17:12.784Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(all_of(c(f$basics, f$questionnaire))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "labels = c(age_at_recruitment = \"age\", townsend_deprivation_index_at_recruitment=\"townsend\")\n", - "plot_age_te = ggplot(temp, aes(x=value)) + \n", - " geom_density(adjust=1.5, fill=\"gray70\")+ facet_wrap(~parameter, ncol=1, scales = \"free\", labeller=labeller(parameter=labels))+\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") " - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:14.547997Z", - "start_time": "2020-11-04T14:17:13.377Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`summarise()` regrouping output by 'parameter' (override with `.groups` argument)\n", - "\n" - ] - } - ], - "source": [ - "temp = data %>% select(all_of(c(f$basics, f$questionnaire))) %>% select_if(is.factor) %>% select_if(is.factor) %>% drop_na() %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\",values_ptypes=list(value=\"character\")) %>% \n", - " group_by(parameter, value, .drop = TRUE) %>% summarise(count=n(), ratio=round((100*n()/502504), 1)) %>% ungroup() %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_seth = ggplot(temp, aes(x=value, y=ratio, fill=parameter))+ \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " geom_text(aes(label=paste0(ratio, \" %\")), vjust=-1, size = geom_text_size) + \n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + \n", - " #theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + \n", - " facet_grid(~parameter, scales = \"free\", space=\"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:16.659027Z", - "start_time": "2020-11-04T14:17:14.329Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Removed 516 rows containing non-finite values (stat_density).\"\n" - ] - } - ], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "plot_title = ggplot(temp, aes(x=value)) + ggtitle(\"Basic Information\")\n", - "title <- ggdraw(get_title(plot_title))\n", - "plot_basics_raw = plot_grid(plot_age_te, plot_seth, ncol=2, rel_widths=c(1, 4), align=\"h\", axis=\"lr\")\n", - "plot_basics = plot_grid(title, plot_basics_raw , ncol=1, rel_heights=c(0.1, 0.9), align=\"v\", axis=\"lr\") " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:18.391317Z", - "start_time": "2020-11-04T14:17:17.305Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "temp = data %>% select(all_of(f$pgs)) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_pgs = ggplot(temp, aes(x=value)) + ggtitle(\"Polygenic Scores\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=4, scales = \"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:19.147957Z", - "start_time": "2020-11-04T14:17:17.792Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "temp = data %>% select(all_of(c(f$measurements, f$labs))) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_meas = ggplot(temp, aes(x=value)) + ggtitle(\"Measurements\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=5, scales = \"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:19.829906Z", - "start_time": "2020-11-04T14:17:18.264Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(c(any_of(f$diagnoses))) %>% \n", - " pivot_longer(everything(),names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_conditions = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Conditions\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()+\n", - " theme_classic(base_size = base_size)+ theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35))#, strip.text.x = element_text(size = 16))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:20.135005Z", - "start_time": "2020-11-04T14:17:18.560Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(c(any_of(f$medications))) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_medications = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Medications\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35)) + \n", - " scale_x_discrete()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:28.906077Z", - "start_time": "2020-11-04T14:17:19.409Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Removed 48868 rows containing non-finite values (stat_density).\"\n", - "Warning message:\n", - "\"Removed 192399 rows containing non-finite values (stat_density).\"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAA4QCAMAAAD1Fs8TAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd6DUVNrH8efSRREplg1durqK\nBVGsgIhtwEIRu2tF7F0sWFZFERULgr0XsHLtbe2urm0tr4oFu6C4CohwKTdvkmmZmWTKTSZn\nJvl+/riTnGSSk5wzmd/NzCSiAwAAwFeiugIAAABhQ8ACAADwGQELQMP8LKalQa3uq7O3WLdp\ny79t805QKyxNwHsDQKUjYAFomGAjxdUtJK42oBWWiIAFIAMBCwilNyVDo1Z/67PHKXcv8HMV\nXiLFYeZTNyzhCbekNoWABaAaELCAUMoKWAmNd3jSv1UEGbD+aEPAAlBVCFhAKDkHLMOgn/1a\nxbzGpmUNem6pAesuq+4bzvryq1d9q79nUyZOfCo14mVvAAghAhYQSq4BS7p8prpueukB6yhz\n/nX/V74KNcCiGpETVFcCQKUiYAGhFA9YJ16VMOWCE3Ztn0hYG9eprlzpAWuwOf/J5atPQ/xL\nCFgAXBGwgFCKB6w37UUrXxgUT1j/VFWptFID1qbm/HeUrz4NMZmABcAdAQsIJYeAZTjbKu2m\npEYZSg1YfSrw6+37ErAAuCNgAaHkHLDiH7WJ+mt1lhqwepvzP1V4viD1IGABcEfAAkLJJWA9\nbBXfr6JGGUIQsP6oIWABcEfAAkLJJWD9YhVfmV287N17b7js4uvufsv5MgPfP3nzVRddPu3R\nz1YWXG/9RzOv+udVd76xPP9s7gHr58evu3jyzU8vzCx1CVjfP3nXVZdMn/XKErf1LKy96uKb\nv80sq3vjxkmXTHvetoY/nrv+4im3v+24da675gUpImAVrKDbBgOodgQsIJRcAlZ9I7P40oyy\nxTdt3yR5DYdmg+7PjkZvjVsndYmHtcY+m57gcGnND49cOzHn6nu/mq96mQFrvjm2gzn00LY1\n8ec3Sl0S9aOsy0ykvon15fF9UtXecYo9wnxnlg0xtvaSVubQZPsqFp7eNv6c5mO/SqxgVLN4\nSZsJv2dV023XfJ9Zpeec94Z7BfNuMIBQIGABoeQSsJZZxTfZi+79W2Za2OB9+9R5o7PyzcAv\nk5NyIsXvh9fY59wtzyVBMwPWYnNsM13/dZj9+QfHLyfhErB+PbpJRvF619enlv6rWbCVro+L\nT5psW8X7HdNPafWMMaH+n43TJd2/yqil664pJmDlq2DeDQYQCgQsIJRcAtanVvHbtpLTJVsz\n21mqud1zJrdOLjQ7UnzVJ2vOtf/rWr3MgLXSHOul/7pB5vMPtCY6B6yve+ZU7NDUR3x/xpf+\nWGLC5PQqPmtjf0arObp+UsYyetpPQbnvmiICVt4K5t1gAKFAwAJCySVgXWOWtluRLrgq/tbe\ndo/jzz332O2aWiNrpq71vnIzq6DpdkdPnHTGodvGP0pbL3FmKitSzOsWX9TGw/8xZhPrk0hZ\n+0vdRdZ3sMzZO64aYvxdfdhhxx20WeKkkpWlvtzE0NwcXd8c2uQVs/Cr9awZmgw885pbrxjX\nOz776OTiVpljXfRkfJmcWsXyTURqBhx83P694lP20u82Y9PQI8aPTJysOr+oXTPfqId13db2\nVpX+nbs38lcw7wYDCAUCFhBKzgFrmRWCTk0XfLeaFRtuS0Sun/9hPW3P5OTp5ljNqb8lRn87\n14pYxyRmzowU8auYHjXXGvn2EGtsu/SnYpmyApaZn9pfJ7LOjfHFfROznj40NUPWl9xXbWdN\n3yf5id4TPazxu5LTzfyynvkt9O2nzHrg2pdTq7hcZPf4c55tZ23ah22l8SnWN69WzbA+0euY\nqnGBXaOfYI6mv+SeuTcKVbDgBgOodgQsIJQcA9aKMdZZlwXpkjOt0yyvpQuOtZ73f4mx7c2R\ni2xLeMZMIc3+sIYzI8XtVmC5OzXnP62pbheEyApYZpZpvpZs+GOyYKW15kbzk+NZAWuqtfCT\n0sv72ZqhXXLLWpgjh0qrx9NzWKtoLeOT4y9ai+goje9LllyZucsK7Jr8AatQBQtuMIBqR8AC\nQskpYL28hVnW9GlbkXViZV9bwZ+tzZLEdRxWmp9ctfjTvoyTzckzrcGMSFFvLcl2bix+RmuA\nS/WyAtbq1qLa/JieIV7/1A/rMgPWSuub6tvYT4+9ZX2/fkpiLJ5fap6xzRBfxYD0c7a1CmxV\nrrN+XjgtOZp/1+QPWAUrWHCDAVQ7AhYQSvH360tmJTxw8+SD4t9Xbz3bNteijdZuJHKP/YkH\nmDPtHR/+yRzukbHczw8679YXf7UGMyLFk+bw6r/Z5nzWmvydc/UcA9YM+xwdzJJJybHMgFVr\nzf5uxhKtk3MbZyzvUPv0eNEb6YL4KbY1F6dLRpoFxyZGCuya/AGryArm2WAA1Y6ABYRSPGDl\naLTv11kzrvzp/YxrXF5tzrZ1fNi6ntRabqvIiBSHm8MHZSx4DWm63kbPOj3TOWC1y7iI1K5m\nUeoztsyAZV06ol/mEuM/GfzYtjz5xD7dKtrAVhC/qP1htpJzzIIxti3Is2vyB6ziKphvgwFU\nOwIWEEqOAatmz/cLPvFec8Ze8eEV1o/bHnaZMyNSdDaHb8+Y/mOei5M7BayMeKYfYxYdnhzL\nDFjWB3CZV0vVl7Y0C2+wLa9vxnSr6BRbwTtW9WfaSmaYBbu7V9q+a/IHrOIqmG+DAVQ7AhYQ\nSi5nsKTf5QW+Rz3bnKtLYmRLc2RNly8G2SPFz7mnjPJyCljTMuY4zSwamxzLCFjWddAl+0rx\nA83CI23LOyZjslVk/8Tv/6yl2C8kcZdZsKN7pTN2Tb6AVWQF820wgGpHwAJCyS1gibT654p8\nT6y1p4jb40/Z7XGna4zbI8Ur1vBih7mcOQWsZzLmOM8sSn1elxGwnrZW9pue6WCzcJBteddl\nTLaKbL8J1L+2lmK/w+Ass2AH90pn7Jp8AavICubbYADVjoAFhFL2rwhXLfz+xam7xK8UulPm\nLffq/3vF/lt1WNN2x5hUiqjfI1Gw5oir31uVtQp7pLCSmOu3tXI5Bay3MuaY6B6wbjNHWmYv\n0voGVW/b8p7ImGwVfWQrmGsWNLfPkhuw8uyafAGryArm22AA1Y6ABYSS84VGv49fLXOnlemi\nZTesLzm6JKcu2jVd2GbkTb/aF2aPFNZ1nzoWXz2ngPVRxhx5Apb1ZfNO2YucYpa2sy3v9YzJ\nVtEXtgIrYLW2z5IdsPLvmjwBq8gK5ttgANWOgAWEksutcvTrrfLLUuOf9c3NELYUoa+avKat\nvMnOs9LXdrJHikvMwcwLOuTlKWBdYI70zl7kNLO0pW15mV/oLz1gFdg1eQJWkRUkYAFhRsAC\nQsktYOkHWudRkt+WejcZn9r2GbjHGNN2mQFL1xdclnET536pCy/YI4WVDjJ/tpeXp4Bl3YR5\nAz3LjWZpU9fllRywCu2aPAGrQRUkYAHhQsACQsk1YH1mTXggPrIwfvHRTpPTP6bL/CZ33Jyr\ndmqWSlg15yVK7ZHiMnOwW/HV8xSwJpgjvfQs1rm51V2XV2rAKrhr8gSsBlWQgAWECwELCCXX\ngKX3Mickrrd0ojXXGPuv/5wClmHJEydtlIxYibvF2COF9fHXusVXz1PAsq7BnvOFr8lm6dqu\nyys1YBXcNXkCVoMqSMACwoWABYSSe8AaYk4YYg3WtTKHt8m4bMNM54Blmjupk7XU5nOtUXuk\nuMccbLLS8WlOPAUs67O2FtmLPNO2SO8Bq/CuyROwGlRBAhYQLgQsIJTcA9Zu5oRNrcH41ate\nzJh8lXvA0vVlp1jPONkasUeK+OpcbjzowFPAil9mKvuCqfuZhcNcl1diwCq8awpeB6vEChKw\ngHAhYAGh5B6wNjcnbGUN3mAOtqnPmLx3voCl60eZk+M/kLNHisU15vAzrk/L5ilgfWut+IWs\nRfYzC09yXV6JAavwrskTsBpUQQIWEC4ELCCUXAPW0jXMCXtbwxeZg3/PmLywVf6AZd3/ubEV\nPDLuvtfNHD4rY9anJxuyU0aCp4Clr2eOTcxc4h9NzMJ7XZdXYsAqvGvy3YuwIRUkYAHhQsAC\nQsk1YFkpQi6whq3rNQ3MmHyxZAasb7Jvf2PdsvgvcygjUli3Kt4oY07r3nvXOlfPW8A6yBzr\nk7lE6+rpNT+5Lq/EgFV41+QLWA2pIAELCBcCFhBKbgFrSfzqA+9aI9eYg+vbJ39mvfNLB2vk\n69OGtM1OSCsaGZNbWYMZkeJla+R525w/WjeY+cC5et4C1kvWyjKv1L6jWbSd+/JKDFgFdo2e\nCFjHpSZn7I2GVJCABYQLAQsIJZeAtWio2E7NPGaNzE1PnrehWJ+DtbA+A/zJDFOd/sxYwLPm\n5H7WYEakqLc+I9x4aXpO65xW5odsad4Clr6BObql/RtSj1iVucd9eSUGrAK7xnCSOXZganrG\n3mhIBQlYQLgQsIBQcgxYC2/ubBU3/zA+vsD6avrBqen/7S5iXYtAPrHGrZMuu/9lW8Kfm5hF\nF1nDmZEi/rwxy5Jz3mYt+xaX6nkMWHdaKzs5Pff/Wd966pu8qoL3gFVo1+j6edYaUzNk7o0G\nVJCABYQLAQsIpXjAOvGqlEnnHDKwqcRNTc5lXRNLToqfpPr0uMYi++rtzaLDrJJXrcl9Zi5P\nzF7/tHVmZo3vrbHMSBFPY7L5s9Zpmy8Otca2WOVSPY8BSx9uLX7sD/GxlbdblW78Sp7llXqh\n0QK7Rtdvsma40Rxclbs3Sq8gAQsIFwIWEEpviqtGqXylPxcvaTPy1ONHb2gOdf89fjECGXja\nsbW6fnR8+hpDxp178fknjFgnPjo9/uSsSPFzj/hUbdDYvfpY539k7S9y6pXgNWDN62itoMWw\nC2bcNOmADtZIzTX5lldqwCq0a/SP4zNssPduG2+XuzdKryABCwgXAhYQSu4Bq9fTttnGZ07r\n9LWuP5McuUrXV45yWMCliedmRQr9265ZM677tmv1vAYs/Yvu2dVqdnd6qh83ey6wa3S9f2ra\nAIe9UXIFCVhAuBCwgFByC1j9Z2Tc/WXFOPvEYdbFx4+yp4hr1sxaQN9UPsuOFPrCcTUZS/vZ\nvXqeA5b++6EZK5Nt7N838yNgFdw1/2menOgUsEquIAELCBcCFhBKOQGradtu2x8z/ducGZ/a\nLpEDmuz6ZKLo7kFtG7fqstu/rJGFU7ZtklpIq5EPp/NZTqTQ9bf3a5WYc/URr+h5eA9Yuv7J\n8b2S9Wo/6smMSX4ErMK75tU+idWP0B33RmkVJGAB4ULAAqJuwWPTLr5sxr8Wus6w+J2Z1112\n4RU3PvxFves8SSveuXvKRVfe+UqdnzV09d3jt02+9MaH3y9cr4YpsGtWvXH9RZfc8NQC9wWU\nu4IAKhYBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADw\nGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsA\nAMBnBCwAAACfEbAAAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcE\nLAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADwGQELAADAZwQsAAAA\nnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAA\nAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxG\nwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA\n8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbAAAAB8RsACAADwGQEL\nAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAAwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBn\nBCwAAACfEbBQzX7SNO2Coud+15j7hlJX8bHxpGtLfZLvi/DPc0ZlHlBdiaqXatJCbVtaDy20\nNt+X7K5BLxZEhGOPpMvkIGChmhGwSkbA8gMBC1FGwCoOAQvVjIBVMgKWHwhYiDICVnEIWKg+\n+2nbJYZKe5P5bsKECa+WujICFnIpC1gN7ftFSi++QS8WRIRjtw+ky6R7qJdZgkLAQtWp71ve\nN5lMBCzkUhWwytz3bYsH3Ck7pBXRQyupExOwUHW+0ghYDUfA8oOqgFXmvm9bPOBO2SGtiB5a\nSZ2YgIWqM4uA5QEByw+qAlaZ+/6sCnpvQgVTdkgroodWUicmYKHqTCBgeUDA8oOqgFXmvj+h\ngt6bUMGUHdKK6KGV1ImjGLB+nnbQgN6dem99xN1L7MXPj9+2V9eBp3yg638YnWd6qvyN84Zt\n3HnDHY54cHHgNUXu7n9AS9pEj7/JXGQ8XLrHZl022vmf3yee9IFR/Lqu/37Nbr07bzDsgm8T\nxRm/cln+yFGDN+jSb/S03/NXwDyUXGc8TBz69y6bjbrZ3gtcelLOkjOORs921LQB8+PDDn3u\nHWPgTf33cwd0+fuX8ZlWPnn64I079x146K2/JpdhhqR7Uuszd8mLeTbbUP/EEVut33fQCa9H\nIWDl7LBDjU3+wDbDQ8b45MRw7ss7twUc2rmkgOXQQ13WnX9tRfV9F0VsVebiUy8W917lesys\nNt9cvV//np16bX3wLQvsxdnts2KIpnVMd6SpxjafFWg9vcndykTTfn7Sll3W3+a0z8yiVY+P\n3ahz392uXmR7osMRyPGQ5nuXya5xZg81FejELgdKx51RFtELWCv+2TnVBBs9nSqePzZZeEn9\nN8bfOxLlc/ZIzd3vMTU1jrLc3Z/7JnOpPmv9RFG3WfGnfW4MP6fXdk8Ud74/XmwPWK8MSC6n\nx615q2AeSqatPCM59xZvJCe49CSHJduPRv/tYcz9lTXo2OfMeZ9ftINZ+rE118vbp9bSY/LK\n+EJcjhsum22saWRyEWMXhT5g5e6w2eYuts1xiDEebwKnl3d2Czi2c0kBy6GHuqw7/9qK6vsu\nitgql4Dl3qtcjpnVZtmZHdM95vr6ZLFD+3xk7LNdViWmf2/ska3+VFDfhnHaynjTXtkh0bIP\nGW26U2KWzb9KPdPpCOR4SPO5y+TWODtgFezEbgHLpcn9F7mAVX+wtVN79+9jPnR4PFG8eIg5\n2nOHrY2+dtonxuC98fKXe1mdbdg2nczH65RVO6Icdv9Lo0cbr+fuo0ePPlKPv8lc9ZDRaF36\nWq+Yjm9az5trDNY+apR02cB6BXZ8yyq2BaxZ1hI7dbN6w8R8dTAPJTPONA8Tfa0DUc8P4+Uu\nPclpybaj0ff9jFf0+9agc5/70hiYfaH1ZOuN8H5rcVsM266L+Xj4CuupLscNl83WF1tHzb47\n7WAc8YY/rYU7YDnssKU9NW2b9ByLu2rartaQ48s7qwWc27mkgOXQQ90OLXnXVlTfd1HEVmUu\nPvVice1VLsfMalNvvel33mLr3hkHA8f2mWwM3paYwdiDHd7IXVyFctxKq2lnGNvRt6tZ2OXL\nP7Y25tnA2uKdElHK+QjkeEjzt8s41DizhxbRiV0OlC5NXgaRC1i3G/tz47vMz27mnm62zR/x\nYvMNdJNao+/8dEYHbUrqLegbo+U6nvudMbTodrMRH3ddLsrAZfcPyvweysTuHU78qF5f/q/B\nxsgIq/h78+Xfu8Opn+j68lfNF/VIqzgdsN43Xvddp3yzSp9/Y0/znSdPJcxDydFap7M+qdfr\nnh5ojOwc/4fHpSc5LTl9NFpk1L1z4iy1c5+z/q/rpe1w8Q2X/mCMvmcc3Tpe8JMx9NcDmxiT\nrrCe6nLccNlsfaJ5gHzeOGDW1fbX9tVCHbAcd9ixxsCnqVkeNMZuMgec+1dWCzi3c0kBy6GH\nuvXtAmsrou+7KGqr7ItPvVjcepXLMbPqmC+f3V4xc8P8W8yWeMcqdW6fFca/Kr3jn+8/axSe\nrajKDeC4lWbTXrl+n9sX6aveNnvQ6adrw15eqf/1kBkun40/0fkI5HhI87fLOLeLrYcW0Yld\nDpTOiy6HyAUsI6F3/CgxPCH1fvujEc57JI7AN2mdUy1vvBl1eCgx9xwj7W65LNjaRpzL7s96\nk1m/w4Pxkd82NOa3jn4/GsU9kk9d0Ncotj5oTwesYcZBIfHf52vGP1r9k/+tOfjY+u/o0cQq\n+hsjT1mDzj3Jccmpo9GKUcaiEh/luPS5H4yBUdoFibPW9YNsR6EvjF3QxTzkux03XDZ7vvHv\nae+vEztsM6163wqL4LzDnk+9MZiM/3s7/WIOOPevzBZwaeeSApZDD3Xr2wXWVkTfd1HUVjkG\nLJde5XbMrDqjNa1f8pO+ucZuPMYacmmfj40NHW8OLB2gaVv/FXRdG85xK82m7d7zE6vwx26a\n1rPD8KXWiPk/yGnWkMsRyPGQ5m+XcW4Xe8Aq3IldDpTOiy6HqAUs8/+4fZIj5hFqP2toumb7\nksbBqbegD42BE1PPvc0Yy/89B/jKbfdnvcloZyRnMc/U/CtVfHqy+Cxj5GVzIHUAeMMYOCc5\n+WRj5AX3WlgBa3xyzDzyWC9Hl57kuOTU0egEY2BaYqJLn7Oqvk/yffA1Y+SAVFWuN//hNAdc\njhsum32rMTApWfpouAOW8w5bsYGmDU4WLuqaaCyX/pXZAi7tXFLAcuihLusutLYi+n6+ehTa\nKseA5dKrXPpv9emnacelRqbvcsRU89H10H+FMfia8XipkRr+HWg9vXHcSqtpr08Umt9M7PhF\nfHhFT03bzRpyOQI5HtL87TKONbb30CI6scuB0nnR5RC1gKXXff9e+rOCLTRtW2tgjLHn5yZL\nP061/LnGwJzU3Eu7a9o/gqon3Hd/1ptMx9Tvp8xfh92VLO6Q+u3KA8lXWeoAYH5l/fPk5H9t\nPnTMI+61sLpD6qdDK4xa9LWGnHuS45KTRyPzpPjE5ESXPmcdm15Klp+UEf4WdNK0Hc2BPAHL\nYbP3Mwa+SJau3LB63wqL4LLDzE8Qkt/anZV8t3TpX5kt4NLOJQUshx7q1rcLrK2Ivp+nHgW3\nyjVgOfQql/5bffpq2qE5ha6HfvNDwu2W61900bTzgqqhHxy30mzaLokP1vTLtdRHebq+m6Zt\nag24vKAcD2n+dhnHGmecwSrciV0OlM6LLofIBawMwzTt79bARpq2Rbp4cLLlh2ra1rbZjTeq\nDYKsXtS57f6sN5mdU3OY/23NSBanzljorxhjN5oDqQPANunf+RZkHgj6pUdHGaPzcmZK9STH\nJSeORuY7+zGpX6y49Dmz6j1XJIu317SuK9Jz7Wq8pZo/R84TsBw22/h/beP0Mo6u3rfCIrjs\nMPPE4jWJMuNf5+7W5wMu/SuzBTKl2rmkgOXQQ4s6tOSurYi+n6ceBbfKNWA59CqX/lt9djZC\nxvvZhe7tY35IONU8DGyzNJj6+cNxK82m3SM5Yn6j6arkiPEi6WUNuLygHA9p/nYZxxpnBKwM\njp3Y5UDpvOhyiHbA2l3TNjQfFxk7ft908emJll/aMaNYv8Aoz/c1B/jKdfdnvckcn5rjP8n3\nIbP42Nzi5AGgzljynsVW4+P0uWfTaVr8I4JMyZ7kvOT40egN45/eMaljlUufs6q+V7J0ibG4\nnWwLOt6Y+K6eN2DlbvZC43F4ehlXVe9bYWFuO2zVppq2S7zI/ITQ+pDXrX9ltECWZDuXFrBy\ne2hxh5bctRXR9/PUo+BWuQas3F7l1n+rj/nB1fqXfpNRlq99phizTzVyxtuB1dAPTltpNe3J\nyZH7jJHa5MiRRq4yH91eUE6HNJ+7jGON3QOWYyd2OVA6L7ocIhiw6mpP3X2T5MVj4m0yx97P\n4lHebHmzm3TfMq1vonMhEK67P+tNJn2m/l17wDontzh5ADB/RXxUsdUwDyUT0qNT0ochh57k\nvGTraDSnj6YNTV9R0qXPZb5tmouzfyptnsU3v2KfJ2DlbvYXxuOResbcVfpWWJjbDrO+omR9\nO9f6p9v6zMOtf2UGF92xnUsLWLk9NM+hJe/aiuj7eepRcKtcA1Zur3Lrv9VnxQhrD2x/1uN/\npMryHfpXDLXmP19NbRvKaSutzUxth3lgeDk5cnQiYLm9oJwOaT53GccaZwWsQp3Y5UDpvOhy\niF7AenhTzc5qE/PCs+emZ3k00fKfarleclksfOe6+7PeZNK3C8kIWA7FyQPAR5r9G6wFmIeS\nSenRacZo/Lp5Tj3JecnmIiaalx/dMn19ZJc+Z1U99etv86u2x9kWdJ0W//pQnoCVu9nmmk5I\nL6O2et8KC3PbYfr7WvITtIM07e/WP91u/SujBXTndm7orXKSbeJ+aMm/tiL6fp56FNwq14Dl\n3Kuc+m8VWnJcYid0GnFr4g0376H/E/P3b9tW1QeEuuNWWk17cXIG8zCSuq5XMmC5vaCcDml+\ndxmnGmcGrIKd2O1Co46LLofIBayrrd06YMQhxxo2SrTJvzXrphNJyWtdv+vwKntCUb0jyHX3\new5Y5m1DTiu2GuahxPYrk5uN0TvNAcee5LxkcxHxKwenfw/s0ucyq/5W1uJuSqy8pID178yF\nhPpCo247TNcHJj4nXdQlGTTc+lfWPf4c29lrwHLt2wXW5i1gFdyqEgKWW/+tSu8f3zvRCL2v\nsq7YkvfQv2RzY+xAdbVtqJytLCJgub2gnA5p/neZ3BpnBKzCndj9VjkOiy6HqAWsV82LcU/4\nITGW/Nj2PS3jaq6zEy3/mZZ1Vh1Bct39ngPWJ6U0rHkoSV9DyTqDZf4L59yTnJds/WBG23A7\nzXadD5c+l1l184TYsbYFXWOMmxc+KilgmSdvbGewHq7qt8IC3HaYrl+maR3MHyeYnxDGP+xx\n61+Ze9G5nb0GLLd1F1qbXwHLZT0lBCy3/lulVrx6/uD4++2B5gWv8h76z7bmezDA2vklayuL\nCFhuLyinQ1o5ukx2je09tEVWGTIAACAASURBVIhO7B6wHBZdDlELWOZlrG9Mje2aaBPzhPDp\n6ZnuSrS8ebm0gH7NiVyuu99zwPrOeDyk2Gp8nLEs6ztY5v+yzj3JecnW0WjbuZ9107ReyW9W\nuvS5zKp/m7ULJmnxCyxnHjfuyh+wzBuD2b6DdUeVvxXm5bbD4nvhNuPxwNTPw9z6V+ZedG5n\nrwHLbd2F1uZXwHJZTwkBy63/VrH59+xpvlCv1vMf+t803tf7a1rfKv29k20riwhYbi8op0Na\nubqMvcb2HlpEJ3Y5UDovuhwiFrDM30Rslb6146aJNpmX+bZ4TqLlV3TVtEFBVxFJrrvfc8Ba\n0VnThhZbDfNQYvveuvkrwv+49iTnJZuL2ON3Xb/FeNw98aMblz6XWfWlnTRtiG1BxxgTzVsh\nmseN9EWPrskfsH7RMn5FODEEb4Wu3HaYYYimjYp/Qjg5XuDWvzL2oks7ew1YLusuuDafApbb\nekoIWG79t7o9YQSGHn/lPfT/NVDTYj/31rSDg6yYr5JbWUTAcntBOR3SythlUjW29dBiOrHL\ngdJ50eUQsYBl3vH0pNTYV1qiTeq7Z7ychiVbfjdN67xIhyJuu99zwDKX0CX9JdUvv/jiJ/da\nmIcSW+cYaYz+7tqTnJecen88QEt9Yd6tz2VWfbCxuOV6zuhLWuJuepaj8wcsvU/GdbBGheOt\n0IXLDjNca/SmhfpMLX3FUZf+lbEX3drZY8ByWXfBtfkUsNzWU0LAcuu/Ve5KYzvMm2a7H/rP\nM6Z8ap0Hrt7beiS3snDAcntBOR3SytllkjW29dBiOrHLgdJ50eUQsYBlfh0l/cvmiak22VnT\nOv4vWWx+mBBv+fMzX0VfErYC5bb7vQesCcbAM8nJ5scBqTuO5LJOhv+YHFtuHCQ21917kuOS\nU0ejX/5udLTEi9mlz2VW3bww/LOpMfMeqjFzwLyyzIXJ0mUbFghY5m+SU1dyX1TFd40rgssO\n0+Of3s7WD03eAkR37V8Ze9Gtnb0GLOd1F1ybTwHLbT0lBCy3/luFfvghPfxyov+4Hvrf7mgF\nivqYpvXJveBwBXPayiIClssLyvGQ5nOXcaqxrYcW04ldDpTOiy6HiAUsM+amPlH+qIsx1t0a\nvNAYuj1ZfmSq5c0PjXdI/cRg2eadR/EjwgC57f7B6QsCNzBgmb9n2Ts5+QZj5HH3WlgBK+NW\nfmfq7j3Jccnp90fzlPUWC61Blz6XWXXze6Hpa/NdrNluBZRai/nDnrwB6yr7YXRqNb8VFuay\nw0zGW+IJS9fXtJuTBS79K2MvurWz14DlvO6Cayui7xdTD7f12Bdf6N3Spf9WnfM3sl+A9RFj\nO97T3Y89S7fRtIHmd6I/7VxVvyR03soiApbLC8rxkOZrl3Gusa2HFtOJnQ+ULosuh4gFrJW9\nNK134suJn23aY7ixa61E/bYxsNmv8fK7tF6pljdvnnR64mPeFWaPqM1ZJMrHZffvqmmdE/dC\nb2DAMv//TF574fPemtbPdhI8mxWwuie+yLNwoDFi3uPVrSc5Ltn2JnymlvzGuUufy/o5vbm4\n5Lc03zUOIhvGr+u3kfG/YKJKb3XvUSBgzemgaT0+ixe+16N63wqL4rLDdOvrIpu+oGmdfknN\n69y/MvaiWzt7DVjO6y64tiL6fjH1cFuPffGF3i3djpnVxvwv6LbkyApjV/S2flPmcuwxz2y9\nag1dUlVb7LyVRQQslxeU4yHN1y7j0i7pHlpMJ3Y+ULosuhwiFrCsK/2PMH/1MO/K9bXbLk31\nkr2NoUFvGq+n+ed26HxDquW/7WkMjnrLKF9Wu4tmu3c3guCy+w83j30LVn73R4MDlv6B+UHZ\nuPeW1n93vXk5lHzfpvivMX0/rc+d5nHlvZ2NkbFWsVtPclqy7Wi0dActeaFS5z6XFbA+72Yc\nIf5pZoJFN5lHpMSpNvPEfb/Hlxi76LJuHc1Lcz2fZ7P1o4yhje43NuC7q3toJ1XVG0PJXHaY\n4ZdOxv/imrZ/el7n/pW5F13a2XPAcl53obUV0feLqodb77UtvtC7pdsxs9os3sSo+vHvmF/U\nXvKC+S79T6vYuX3e6Zi65MnSrY035p8VVbpkzltZTMByfkE5HtJ87TIu7WLroUV0YucDpcui\nyyFqAWuu+bLptM2e2xgvlBPrn9fMBt/9KyMBW1cd23CoWT7txXTLv2LOr/UYuLF5yQ1tx1/V\n1j5ynHe/+Wtb0ysND1j67PhV8uJ/05/kOzCfdPfJxj9F2+5svi61TeJ3iXfrSU5Ltr8Jm+ey\ne35tDjn3uayApT9unvvusPUuW1sLTF7x9Htrx3Ts2934O9n8OOPpPJut/7y5VZk+xqFSG21e\nm/m+YnZ+lXLeYaYx1l6wX7/IsX9l7kWXdvYcsJzXXWhtRfT9ourh1nttiy/4bul2zKw2r3c1\nt6PTplv2sjZ9ROI3Kk7ts2x74z+V3xLPM79AfYCiOpfOcSuLCVjOLyjHQ5q/Xca5XWw9tIhO\n7HKgdGnyMohawNJfSl6/tdPlur5iiDX4qVH+1haJ8u536PaW/2RPLanDSQtV1jySHHf/ssGF\n3mQKByz99YHJBfe6LW8V3jRmeXTFqcm5d/g0Ue7WkxyWnPEmbF6pdFfrh82OfS47YOn/HpTa\nBf3Tn1C/nFr7tda1anI/3LK/5X4xJLmIAxabc9+Zd4urnPMO0+N3s9W6L7EXOfWvrBZwbmfv\nAcu5bxdYWxF9v6h6uPVe2+ILvlu6HjOrzfs7phpC6zwx9Wbr0D4Xafaz3eO1avpXxWkriwpY\nji8ox0Oaz13GsV1sPbSITuxyoHRrcv9FLmDp8yft0rtT72EXWr/Vnnf0hp03PWqBObjoxr37\nde69y6Sfdd3Mwg+lnvD6xGH9unTfdMyUbxXVONqcdv9vZ2zWqdtWR3zjJWDpy2YftX2fLv1G\nTfs9fwVe0KwP7j88Z6eNumw29u661AS3npS75IyjUf2o1FHNqc/lBCx91ROn7Lhh5w22P/5h\n+zfFFkyObdi5+w4TvzMGk4d997fcFTMP7t+tz44nvh6/p/2Nepg57zBdX2j+3zo+a+bc/pXd\nAo7t7EPAcu7b+ddWRN8vqh6uvTe9+MLvlu7HzCpT/+JZu2/SrVPvrQ+ZkfHDwOz2eb+Tpo1O\nT/61r6b1/lGvFg5bWVzAcnpBOR7S/O4yju2S7qFFdGLd+UDp3uR+i17AKoL5s4LnVFcCkUKf\nQzWj/6JEkegyBCwH12vJ25UBwaDPoZrRf1GiSHQZAlbCyq/TZwoP0bROS/LMC/iBPodqRv9F\niSLXZQhYls937KIdnRyZ39l2tWegPOhzqGb0X5Qogl2GgGVZsZGmdX4lMXygZr8DN1AW9DlU\nM/ovShTBLkPAiptu/nL0yvm6vvLNvYzBHcp2ZVdUpun7OZtWxlXS50JDQfdRXg/6L0rk0GUq\n5ZVTJgSsuFUHW5fE6LXF+ubDBp8WfgZC5QTN2bHlWyV9LjwUdB/l9aD/okQOXaZSXjllQsBK\nWHF+51Tb7jFXdW0QNBWvc/pcaFTK20Sg9aD/okS5XaZSXjllQsBK+e7qMZt267LxsLNfU10T\nRAV9DtWM/osSRazLELAAAAB8RsACAADwGQELAADAZwQsAAAAnxGwAAAAfEbAAgAA8BkBCwAA\nwGcELAAAAJ8RsAAAAHxGwAIAAPAZAQsAAMBnBCwAAACfEbB8s+x/lsWq6wEAAFQjYPnl1nZS\n037tRtL4yN9VVwUAAKhFwPJH3UHSYuwdtbX3H99BuvxHdW0AAIBSBCxfLI/J+jfVWh4ZWdPy\nMdX1AQAAKhGwfHGw/H1WbdJZzZrMUl0hAACgEAHLD1Ok+8zatEtaNH1adZUAAIA6BCwfvNm0\n9W21dhc1bfWB6koBAABlCFje/dm95sLaTKfWdPlFdbUAAIAqBCzvjpPhtdlGy5CVqusFAAAU\nIWB59lajvz2YE7Bmbybnqa4YAABQhIDl1aot5KKcfFVbe0/7Ri+orhoAAFCDgOXVTbKtQ76q\nrb2sUYcFqusGAACUIGB5tGjdZrc4BqzasbKP6soBAAAlCFgenS2jnfNV7aO95XbVtQMAACoQ\nsLz5seVaM10CVu2MFq2/VV0/AACgAAHLmyNlnFu+qq09RgbXq64gAAAIHgHLk8+b/O0R94A1\nezO5RnUNAQBA8AhYnoyS09zzVW3t7Wu0nKO6igAAIHAELC/erek2O1/Aqj1ZtuaC7gAARA4B\ny4td5Ly8+aq2dqBcrLqSAAAgaAQsD16WvgXyVe09bZq9q7qaAAAgYAQsD7aRSwsFrNpzZYO/\nVNcTAAAEi4DVcI/JFgXzVW3tLnKM6ooCAIBgEbAabEXfmmuLCFizOtQ8prqqAAAgUASsBpsh\nQ4rIV7W1Vzdt973qugIAgCARsBpq0brNbisqYNUeLtuuUF1bAAAQIAJWQ53pepfnbLMHyGmq\nawsAAAJEwGqgz5u3nVVkwKq9b92aB1XXFwAABIeA1UBD5ZRi81Vt7dTmrT5WXWEAABAYAlbD\n3C0b579JTqZTpcdvqqsMAACCQsBqkPntm00vIV/V1u4lO9aprjQAAAgIAatBRsghJeWr2sf6\nyyH1qmsNAACCQcBqiOnS97HSAlbtrPVloupqAwCAYBCwGuC9FqvfUmK+qq29o73MUF1xAAAQ\nCAJW6eZ3qTm75HxVW3v9Go0fUl11AAAQBAJWyf4cIGMakK9qay9v3vwF1ZUHAAABIGCVatnO\nsl0pV2iwmdik1Vuqqw8AAMqPgFWiJcNks0calq9qa0+rafeh6g0AAABlR8Aqza8Dpd9DDc1X\ntbXja/72hepNAAAA5UbAKsn73WSbhxuer2prD5Wu36veCAAAUGYErBLUT1utZmQDv3+VNFr6\n/qJ6OwAAQHkRsIr3zTBZ/Sxv8cqwh2yxSPWWAACAsiJgFWvpxavLxrd6zle1s3eUIctUbwwA\nACgnAlZxlt/SWVod6/HjwbhHNpd9V6neHgAAUEYErGIsvrabNBl+rx/xyjCrt5yieosAAEAZ\nEbAKe/PoNaXpLqXffdDVPZpcp3qjAABA+RCw8lv6/MndRNqMucO/eGWYsWbjJ1VvGQAAKBsC\nlrtvH5mwYwuR5tue0+BLt7uZ1HTN/1O9eUBSrWQYYJv0+WoiT+U84a0j+67ZtP22E3Mu6vby\nHu2adjl2XrrgLmn8TjmqDAAVjoDlZMnbNx0/qK3xTlPTaffzHvQ7XZlOlJ7/U72VQIJ7wFo1\nUHID1pIDk3O2vDlzygONZfDBPaTrr8mCX9rJ6WWsOABULAJWllUfXH/wRk3M9451Bow9755y\nhCvLCNmNnxKiQnw+Me0okVHpKVMkN2CtGmqU7XjGpCM6G/+CPGSfsriNXKbry7eRw5IlY6Tn\n0vLWHQAqEwHL7vOpsbWM945mvXYZd9n9ZctWlkc3lvNUby6Qa6Ss9nVqZM5qsl5OwLpOpOVz\n5kDdPiKd7f8n3C5r1RkPj0jLJfGCx6Tm5TLXFwAqEwEracULJ3Q3wlX7QeOmPlrebBV3d/tG\nz6jeZiDbbJFLUiOrtpGOE3ICVg+RO+NDv68t8oZtyhEyzHyYJ/K6Nf6HJseUtbYAULEIWJbF\nDx7QRqT5luNuDCJbxV3RZO0fVG83kGlxJ9lgeWpsisgDF2UHrB9rpG3ytNVYkdttk4YkPhts\nlig9XDpxXygAEUXA0vVvbtithUibXSY+FFy6Mv1DdlipetuBDMdJzSupkTmryV56TsDS675N\n/QT2KJHptin95TjrcS25xnx4sUa4HAmAqIp6wFr8xEkbikjHkZN9uQ1OSWb3lwtVbz9g924j\nOSQ1smpbafOzQ8CyGSryvG10y8Qngq3kWuPvku5yYJnqCQAVL8oBa0Ht6Vs1EWna7/AZgYcr\nyz1tm7xRuJpAYAbJaunPra+0vmuVL2D90ETWrrOND5X9zYfljeQu4+EkWfc3fc7JOwwY+1jZ\nKgwAlSqiAWv5O9MO7lMj0qj7XufPUpOuTBfVdF+selcAKY+LTEiNzFlNdtfzB6zhIlfax8fL\nlubDJyL/0fW3Gsks/anm1vWy+Ko7gMiJXsD67ZXrj9jCPOo332jUeWW+FkNBI+Rw1fsDSNlC\n1khd/3bVttLaPJuVJ2CdITI442uEM6XJfONhsrSt0+s2kr30hevIiO+WTK+R2WWsNQBUoggF\nrOWfz77iqEHrmv9PN+6607irA7kYQwEPdZZa1fsFSHhW5OTUyFUit5iPrgGr/kSRTRZmFNV1\nlL2X6P9tJ2fo+kRp85M+Q9Yw5xgrQ8pXawCoSNEIWN8/ev4+fZpan1W06zf8uCsD/rlgHlc3\nWW+B6r0DxO0sjb5LDn/RUna2BtwC1sI9RDadl1X4XHNp2bVGNvlT/6iZ3Krr+8hws/g+abKs\nXJUGgMoU+oC16v2rR2pmsmrRffv9T7tqpupElW1/2Vf1LgIs3zaSnZLD9dtJq2+tIZeA9dUG\nIjvlXuTqnT3bNetxxh/6yi1lqDHaxzyXpevvi7xXnjoDQKUKdcCq//javc1bNq/Zf+zZNwd/\nGYaiPNpDHiq8JUD5XZC6QruuXy2SuI+zc8B6qZ3IuBXuy7pC1vjGeFhbJptj34s852tVAaDi\nhTZgrXhn6sh1jHDVdsdjp6sOUXld22RdPiREJdhQGiW/4v59S+k1K25fkbNnzfo0c9YHm0qT\nG/Is6suW8UuNJh7mizxSjhoDQOUKZcCae/8p27Y0wlXrbcfdoDo/FbZ//NpBgFrfSvwiC6ZX\nJctFGbM+3FjWzHcnzfpBso11N522coX58L3I0+WoMgBUrrAFrFXvTtlzPeP9oKbjkOOmqY5O\nxXlkfX7DjgowQ+T05HD+gPVmC1nzP/kX1fwza6C7nG0+fGBdGAsAoiRUAev3e/ZtZ7wXrDXg\nwItUX+CqFFObdPhD9a4DjrB9Bcsm9ztYf3SR1V7Lt6QfWssl8aGYjDIf7pfGS3ypIwBUjfAE\nrMV37tZMpM2gE25UHZhKNlqOUL33gAEibzsUpwPWiePHW/fRGSfxb1a5ismmie+/Xy3tzOsz\nHCjb+1hRAKgGIQlYq57Zv6VIl32vrtDfCub3cKeaF1TvQUReW5Hsy1qZ0gGrucj7xsPcptL4\n7IkpN+U8415p8n5icEFrOWmV/mwTmVmuWgNAhQpFwJpzdieRdUZfrzooNdjkmvX/VL0TEXWN\nRZw+x8sJWLMyv501IPsJv65tu6HhPY1kvd4iY8tUZwCoWNUfsBbcMFCkxZBLqvLcVdIIOUH1\nfkTELRJp5FRecsDaT/rYLtv+4tDWLfpduzJ7JgAIuyoPWP+7Y49mUrPRCbNUJySPZv2t0euq\n9yUAAPBLNQesOVOHNhXpdOAtquORDy6u6bNU9f4EAAA+qdaA9fWdh3UTka5jr1UdjXyya/oa\nRAAAoMpVX8Cq+2jmObubN8Fp0f/om1XHIv/MXKfxm6p3LQAA8EcVBaz5b957yZE7rd/Y/GJt\nmwGHXP6o6kzkr3/W9PlL9S4GAAC+qIqA9eszkw7YvFX8N0uteg8++LzbVaehcthVTlK9owEA\ngC8qPmB9d/shvcxg1aTDFnscNmFqNd0Cp0Sz1mv0L9V7GwAA+KGiA9by50/ua37ZauORp097\nRHX+Kb/LGnXhnoQAAIRB5QasxQ/s21qkWb9DpoTsy1buRsoBqvc6AADwQYUGrMX37NlCpN2u\n5z2oOvQE6ZH15V7Vex4AAHhXiQFrxewxLUW0kVOq+u43DTGteeu5qvc+AADwrPIC1menrCuy\n7qipqsOOEsfI1stVNwAAAPCqwgLWyocG18jqu1weuXNXSQPlTNVtAAAAvKqogLVkajeRDU5+\nSHXKUei+dRo9q7oZAACARxUUsBZfurY0HXqN6oij2OWN1/1ZdUsAAABvKiZgrbhuHWk58k7V\n+Ua9g2XwKtWNAQAAPKmUgPXaRtJ85L2qw00lmL25XKi6NQAAgCeVEbDqTm5UM/gO1dGmQtzd\ntvErqhsEAAB4UREB64ctZb1LVOeaynFJTaf/qW4SAADgQSUErE86ynYzVaeaSjJaRqluEwAA\n4EEFBKxP15EDInvdK0eP9pa7VbcKAABoOPUBa14XOVx1oqk005u3+Ul1uwAAgAZTHrCWbyej\nVeeZynO47KO6YQAAQIMpD1jnyAA+H8zxWC+pVd0yiDYv/Vd13QFAPdUB6z+N29/nVyoJk6mN\n11+quGkQbV66r+q6A4B6igPWqs3kfL8ySbjE5FK1TYOI89J7VdcdANRTHLBukW39SiQhc+/q\nrReobRtEm5feq7ruAKCe2oC1rFPTW/xKJGFzsJyptG0QcV46r+q6A4B6agPW9RLzK4+EzqzW\na3AKC+p46byq6w4A6ikNWCu6NuUGhK4OlokqGwcR56Xvqq47AKinNGDNlGF+pZEQemD19n+p\nbB1Em5e+q7ruAKCe0oC1Tc31fqWRMNpLblTZOog2L11Xdd0BQD2VAetD2divLBJKtzTqp7B1\nEHFeuq7qugOAeioD1rFyhl9ZJJz6y78VNg+izUvPVV13AFBPYcBa1rbVI35FkXA6R45U1zyI\nOC89V3XdAUA9hQHrQa7RUMCjbVrzNXco4qXnqq47AKinMGDtI1P8SiJhNUIeUNc+iDYvHVd1\n3QFAPXUBa1GLv/mVQ0LrStlTWfsg4rx0XNV1BwD11AWs+2SUXzkkvLQWi5Q1EKLNS79VXXcA\nUE9dwBopV/oVQ8JrlNyvrIEQbV76req6A4B6ygLWsjXWnu1XDAmvK2WMqgZCxHnpt6rrDgDq\nKQtYT/AbwiLMbr9mnaoWQrR56beq6w4A6ikLWMfIRX6lkDDbTZ5V1UKINi/dVnXdAUA9ZQGr\na4uH/QohYXaenKSqhRBtXrqt6roDgHqqAtYnspVfGSTUHmzWW1ELIeK8dFvVdQcA9VQFrCtl\nvF8ZJNw2k68VNRGizUuvVV13AFBPVcAaJjf7FUHC7R8yQ1ETIdq89FrVdQcA9RQFrKWrdfAr\ngYTcdTJSTRMh4rz0WtV1BwD1FAWsF2R3vxJIyM1u226VmjZCtHnptarrDgDqKQpYZ8nZfiWQ\nsNtR3lfTRog2L51Wdd0BQD1FAWtAo/v9CiBhd7xMUdNGiDYvnVZ13QFAPTUBa2GTHn7lj9C7\nSWJK2ggR56XTqq47AKinJmA9Lnv5lT/Cr30bvoSF4Hnps6rrDgDqqQlYp8lEv+JH+O0oHyhp\nJESblz6ruu4AoJ6agMVXsEowXq5V0kiINi99VnXdAUA9JQFrcVO+glW862RfFY2EiPPSZ1XX\nHQDUUxKwnpERfqWPCJi9RkcVjYSI89JnVdcdANRTErDOlbP8Sh9R0F++VdFKiDYvXVZ13QFA\nPSUBa8eau/0KH1FwoNynopUQbV66rOq6A4B6KgLW8pbciLAUF8vxCloJEeely6quOwCopyJg\nvSVD/coekTCrcX8FrYSI89JlVdcdANRTEbCmyAl+ZY9oWL/pXwqaCdHmpceqrjsAqKciYI2U\n6X5Fj2jYTV5X0EyINi89VnXdAUA9FQFLW3O2X9EjGk7kfs8InJceq7ruAKCegoA1V7b0K3lE\nxA0yOvhmQsR56bGq6w4A6ikIWPfKwX4lj4iYvXqX4JsJEeelx6quOwCopyBgHSuX+pU8oqKf\nzAu+nRBtXjqs6roDgHoKAtbmTR70K3hExWiZHXw7Idq8dFjVdQcA9YIPWH824U7PpTpHzg28\nnRBxXjqs6roDgHrBB6yXZQ+/ckdk3CHDAm8nRJyXDqu67gCgXvABa5Kc6lfuiI727eoDbyhE\nm5f+qrruAKBe8AFrT7nJr9gRHVvLl4E3FKLNS39VXXcAUC/4gLVea79SR4QcJPcF3lCINi/9\nVXXdAUC9wAPW1zLAr9QRIRfJyUE3FCLOS39VXXcAUC/wgHW/HORX6oiQ+2u2C7qhEHFe+qvq\nugOAeoEHrBPlYr9SR5R0WGNl0C2FaPPSXVXXHQDUCzxgbdVopl+hI0p2kI+DbilEm5fuqrru\nAKBe0AFrWfOufmWOSDlcbg+4pRBxXrqr6roDgHpBB6x/yy5+ZY5IuUzGB9xSiDgv3VV13QFA\nvaAD1tVyvF+ZI1JmNRoQcEsh4rx0V9V1BwD1gg5YY2SaX5kjWro2rwu4qRBtXnqr6roDgHpB\nB6yuq8/2K3JEy07ybsBNhWjz0ltV1x0A1As4YP0km/mVOCJmnEwPtqkQcV56q+q6A4B6AQes\nh2WsX4kjYq6Uw4JtKkScl96quu4AoF7AAes0ucCvxBExjzTdONimQsR56a2q6w4A6gUcsLar\nuc+vxBE1vZr8GWxbIdq8dFbVdQcA9YINWMtbdvIrb0TO7vJKoG2FiPPSWVXXHQDUCzZgvS1D\n/cobkXOSTA60rRBxXjqr6roDgHrBBqxr5Di/8kbk3CCjA20rRJyXzqq67gCgXrABa1+53q+8\nETmzV+8SaFsh4rx0VtV1BwD1gg1YnbnMaMP1kx8DbSxEm5e+qrruAKBeoAHrB9nCr7QRQWPk\n0SAbCxHnpa+qrjsAqBdowHpADvArbUTQeTIhyMZCxHnpq6rrDgDqBRqwjpeL/UobEXRPzaAg\nGwsR56Wvqq47AKgXaMDatPEsv9JGFGmrrwiytRBtXrqq6roDgHpBBqxFTXr6lTUiaZB8EGBr\nIeK8dFXVdQcA9YIMWM/KCL+yRiSNk+sDbC1EnJeuqrruAKBekAHrXDnbr6wRSdfI/gG2FiLO\nS1dVXXcAUC/IgLVjzT1+ZY1IeqxltwBbCxHnpauqrjsAqBdgwFrWgjs9e7O5/BBccyHivPRU\n1XUHAPUCDFgvyW5+JY2IOlDuC665EHFeeqrqugOAegEGrAvldL+SRkRNknHBNRcizktPVV13\nAFAvwIA1uOZOv5JGRD3UbIPgmgsR56Wnqq47AKgXXMBaulpnv4JGZP29Zl5g7YWI89JRVdcd\nANQLLmC9IHv4lTMiknXoUwAAIABJREFUaz+ZGVh7IeK8dFTVdQcA9YILWGfJBL9yRmRdKkcH\n1l6IOC8dVXXdAUC94ALWFo3u8ytnRNYjLXoG1l6IOC8dVXXdAUC9wALWgka9/YoZEbaZfBtU\ngyHivPRT1XUHAPUCC1j3yVi/UkaEHSY3BtVgiDgv/VR13QFAvcAC1iFyhV8pI8Kuk5FBNRgi\nzks/VV13AFAvqIBVv16rx/xKGVHWfq3lAbUYIs5LN1VddwBQL6iA9Zbs6FfGiLRd5MWAWgwR\n56Wbqq47AKgXVMCaKKf6lTEi7Vw5OaAWQ8R56aaq6w4A6gUVsDZpwkUa/PBg8+4BtRgizks3\nVV13AFAvoIA1V/r5FTEibiv5bzBNhojz0ktV1x0A1AsoYF0u4/xKGBF3spwbTJMh4rz0UtV1\nBwD1AgpYmzW6y6+EEXEzm/EZIYLgpZeqrjsAqBdMwPqMTwh9M1DeCqTNEHFeOqnqugOAesEE\nrLPlRL/yReSdLeMDaTNEnJdOqrruAKBeIAFrVefmM/3KF5H3SOs2S4JoNEScl06quu4AoF4g\nAetJGeJXvEDt3nJLEI2GiPPSR1XXHQDUCyRgDZfL/UoXqL2xZtMgGg0R56WPqq47AKgXRMD6\nqvH6foULGAbICwG0GiLOSxdVXXcAUC+IgDVeTvArW8AwSQYH0GqIOC9dVHXdAUC9AALWT6u1\nf8SvbAHTRvJS+ZsNEeelh6quOwCoF0DAOlaO8itZwHKZbLmq/O2GaPPSQ1XXHQDUK3/A+qTp\nOg/7lSwQt7XMKHu7IeK8dFDVdQcA9coesFZtJ2f6lSuQcEuLNeeWu+EQcV46qOq6A4B6ZQ9Y\nk6W/X7ECKeNlwNJytxyizUv/VF13AFCv3AHrxaat7/ArVSBtexmzssxNh2jz0j1V1x0A1Ctz\nwPpP68YX+5UpYPNgb9m/rrxth2jz0j1V1x0A1CtvwHpszRru8lwe9/WUgV+VtfEQbV56p+q6\nA4B65QxYcw+QZqf4lCeQbdbWstqZP5ex+RBtXjqn6roDgHoeA9aFo9zs2l+rkdX7bYuy6dlU\nGv1t0532dm0Dkz/dBNFDwAIALzwGrJ0Elc2fboLoIWABgBcBB6wmXbp06ViWIJGtnbGmVkGs\nyNykDkGsSNoba1qj1Cf5000QPQQsAPAi4IDVbPPNN9+k1IzQIF2NNa0dxIqaGyvaOIgVSTdj\nTe1LfZI/3QTRQ8ACAC88vgE/PqM0U4yMsE2Jz2mYscaaTghiRZcbK9o+iBXNGG2s6eRSn+RP\nN0H0ELAAwIuAz3D8bGSEIYGsaaKxpllBrOg7Y0W7BLEifYKxpkcDWRNAwAIATwhYXhGwEEoE\nLADwgoDlFQELoUTAAgAvCFheEbAQSgQsAPCCgOUVAQuhRMACAC8IWF4RsBBKBCwA8IKA5RUB\nC6FEwAIALwIOWL+NGzfutEDWdIexppeDWNEvxorOCmJF+i3Gml4PZE0AAQsAPOFK3wAcELAA\nwAsCFgAHBCwA8IKABcABAQsAvCBgAXBAwKoIn68m8lRq7NV/9GzZ5u+H/ruomeNe3qNd0y7H\nzksX3CWN3/G9mgByEbAAOCBgVYJVAyWdmZYdLglnFJ454YHGMvjgHtL112TBL+3k9HLVFoAd\nAQuAAwJWJZgi6cy0ah+RNQ+fesnQGpGrC82csLiNXKbry7eRw5IlY6Tn0jJWGEAKAQuAAwJW\nBZizmqyXykzTRLb80Rx4qLGssajAzAm3y1p1xsMj0nJJvOAxqQnk8jUACFgAnBCw1Fu1jXSc\nkMxMS9aRdvPj5afueso3+WdOOkKGmQ/zROKX0PtDk2PKWWMAaYEFrPmjY7FXUmM/3Hj82L0O\nuuCZlf6t4P2YzUllXJHls+uOGjn22Ks+Tpf4v6a3YxmOKNuKgFwELPWmiDxwUTIz3S9ycdEz\nJw1JfDbYTG63Hg+XTg7nvgCUQ1ABq/6cmC1gzdozERrGzcv3pJK85hSwyrEiw4ppwxPLnVZf\nvjU5B6wybRKQiYCl3JzVZC89lZlGiXxd9MxJ/eU463EtucZ8eLFGnixPXQHkCCpgPRmzBaxH\njeFzZz1+6z9isUN9+3fq6VjsgnuTni7jioy0eEUsNmrq7FkXGDHr3vKt6Yd7026Mxc4u24qA\nXAQs1VZtK21+TmemTtLR+Pvbe685xqysmZO2THwi2EquNf4u6S4HlrXKAGwCCljzR8UOSQWs\nn/eJ7fmWObDsoljsGr9W8VAs9kJWUXlWpOvPxWInWL96fnef2F7/K+eaUq6N7flNICsC4ghY\nql0pcqeeykwLRXbSXxxUIyKdL19WYOaUobK/+bC8kdxlPJwk6/6mzzl5hwFjHwug/kDUBROw\n6s+OHTArFbCmp877LD0gNuJ/Pq3jzlgs+/J75VmRXndwbMxv8cH7zrvpuzKuKeXD4bG79SBW\nBCQQsBSbs5rsrqcz0wciY6c2SlwHa+vf88+cMl62NB8+EfmPrr/VSGbpTzW3lsBX3YGyCyZg\nPRGLvfB4MmCt3D+21+LEhLtjsYd9Wse0WOyjzJIyrUh/Ixa7J5g1JdUdHTuiLogVAUkELLVW\nbSutf9DTmekVkU0ad739y2XfXNlGZHj+mVNmShPzl4eTpW2dXreR7KUvXEdGfLdkeo3MDmYz\ngAgLJGDNGxWbqKcC1qex2JnJKZ/EYhN8WsnkWCzruwllWpG5ph+CWVPSnbHYu4GsCEgiYKl1\nlcgt5mMyMz0hIn3iZ84/Xl3kX3lnTqnrKHsv0f/bzrz2+0Rp85M+Q9ZYaJSPlSFl3wIg6oII\nWPUTYmN+TQcsY+DW5KS64bExPq3l/FhsfmZJmVakHxY7yPi7+Kv/+7nca0r4bs/YxYGsCEgh\nYCn1RUvZ2RqwB6xkeJoocmjemdOeay4tu9bIJn/qHzUT4+CxT/zk133SJPd7XNUm99aLDjdj\nfEpsslIl92lEeQURsIxU8IyeDli3xGKPp6YdGIv59Fu404wl/evCg/bc9/hbE8GnTCtaOjw2\nQf/4HPNCDYfev6yca0q6ILbnj3oQKwJSCFgq1W8nrb61hpKZ6WWRFslr330k0jPvzDbv7Nmu\nWY8z/tBXbilDjdE+8fsYvi/yXjnrH4TcWy863YzxPveAxX0aUWYBBKx5o2Ln6raANSUWey01\n8bhY7Dt/VjMuFjsmcYWoPe+vL+OK5sZik54ckVjVCb+XcU0JH8ZiMxKD5V0RkEbAUulqkZvj\nQ8nM9KFIh+TU5SJr5J3ZwRWyhvlD5LVlsjn2vchzvlc6YLm3XnS4GaN+g8jwiUl32Kdwn0bf\nFXVO0fDWkX3XbNp+24nfZ08I2znF8ges+gmx0eZnd6mAdXEs9nZq6imx2Bx/1nOQEXf2nTLr\nsemHGgN3lXFFn8Rix+156HM/Lf/18QNisbPqy7emhDNieyd/LljeFQFpBCyFvm8pvWbF7Sty\n9qxZn+pLG0nr1PTG0jzvzLm+bBm/1GjiYb7II+XdhLLLvfWi080Y9UtF7ndeAPdp9Ftx5xT1\nJQcmzyi2vDlzSujOKZY/YNXGYta1g1MB68JYLH1y+sxYzOlo0AD7xGI3WK+TFTcaCeuL8q3o\nHfOq6n9Ygz/tG4u9Ub41xRmB7rrkcFlXBNgQsBR6VbJcpOu9RJL/8P9qO5vlPHO2+kGyzSpz\noK1cYT58L/J02beirHJvveh4M0b9DNct5T6NfivunOKqoUbZjmdMOqKzSM1D9inhO6dY9oD1\n86jYBOsDO+czWCf7dhZmyZ9LkoMXxWKXl29F/4mlr7j1SCx2UfnWFGdsTepEallXBNgQsBRy\nykwniST/03pUrKte5Zk52wxp/pk10F2sW0J8YF0Yq5rl3nrR8WaM+lEi2RdITOA+jT4r8pzi\ndSItrc+n6/YR6bzKNiV85xTLHbDqz4yNin+gmgpYV9q/R3RsziUPfDAnFhtTX7YVfRyL7Zn8\nsumvsdhYvbyb9L8RsVNTI+Xfd0AcAasypCLDOyJdEu87O4lcn3/mLD+0lkviQzEZZT7cL42X\nOM1YNXJvveh8M0Z9jMhnzovgPo3+KvacYg/rpgOm39cWecM2JXznFMsdsGYnPiC0BazbYrH0\nAXi/WOxP31dav3cstrBsK/omFkvfz2tkLLa8vJs0K7UH9SD2HRBHwKoM6ciwl8ge5mWG688V\naWddb/jE8eN/cJk5U0w2XREfulramT99PlC2L1uNg5B760WXmzHqw0TmZT87jvs0+qvIc4o/\n1kjb5GmrsZI4exgXvnOKZQ5Yv46MHfla3DWx2E2vmfcpfToWS32zbUkstn8ZVjs2Fvu1bCta\nPiI2KjVihJyl5d2kE2Kx31IjAew7wELAqgzpN6gfOol0OmvGRZuK1MRv4tBc5H2XmTPcK02S\n8y1oLSet0p9tIjPLV+UA5N560eVmjPoAkUW377Zu0zabnflt5hTu0+iros8p1n37f8nBo0Sm\n26aE75ximQPWJ7EsN+r6l7H0Z17vxmIX+L/WuuGxWF35VnRM+pKmRtjaWy/rJi2IxWwnScu/\n74A4AlZlsL1Bfb5J4ktWrRK/iysyYP26tqRv+nBPI1mvt8jYMlU3GLm3XnS7GaPeWxr1Sey2\nZlMypnCfRj8Vf07RZqjI87bR8J1TVBCw6v+RvkvxNOsapH7493UTX0wOG9FjvF6uFVmf0yX/\nx/koFjuljGsyPBeL2SJ+GVcEZCBgVQb7G9TyW3bu0Kxt//OS/+AVGbD2kz62y7a/OLR1i37X\nrsydrXrk3nrR9WaM+rpGYmp70KVXHfM3Y+BS+xTu0+in4s8ppv3QRNaus42H75xiMDd7NqW+\ng2XeWe+W+NCCkbGRPn3V8tlYbFyiqerPjMXuLNuKdP2rWOyQv+KDF8di95VxTboVo+xnScu3\nIiADAQuVKvfWi643YzRD6AnWF9b+Olykkf3CNtyn0UclnFNMGy5ypX08fOcUVQSsP/aNDbd+\ne7notEQ+8cGyA2KxS6zXUd01sdjoP8q2IsOkWOw8K9s8GIuN+r2ca9L102Oxj2yj5VsRkIGA\nhQqVe+vFPDdj/P33hYmh+sEiR9onhfk+jQEr5ZxiyhkigzPOpIbvnKKKgKW/ODwWO/uB2TcY\nmejkFX4t/60RsdjYaY8+dsNBsdjwN8q4Il3/32Gx2MG3PT3zlFgs9nxZ16TrB2Tdw7psKwIy\nELBQmXJvvZj3Zoxpz4p0ySgI730ag1bKOcWE+hNFNlmYURS+c4pKApb+7D6Jr2Sd7eN1Bt7c\nL/lFrwNSl9Ary4p0/acTE4sd+WyZ16TvlX1H53KtCMhAwEJlyr31YlE3Y9T1v0QaOX73LHz3\naQxYSecU4xbuIbJp9gU0QndOUU3A0n+57YR99z500pu+ruHPx847aO99Dr3gCVtblGVFur7y\nhfMP3WvsiXemL6BQpjXVGUkq60RVmTYJyEDAQkXKvfViUTdjNNQ3EnG68Ur47tMYsAacU/xq\nA5Gdci9yFbZzisEFLABVhICFipR7Z6Bi7hVkMpLT6g7F4btPY9BKP6f4UjuRcXm+4xKWc4oE\nLAAOCFioSKUFrEePGHZPcvg+kW0dFhi++zQGrPRzig82lSY35FliaM4pErAAOCBgodLlnh3J\nKblJZMPEd0aWbyZyee5CwnefxqCVfE7x4cayZr6LOIbnnCIBC4ADAhYqXb6AlbhP45/tRMZY\nV+1ZPEak/UI9R+ju0xi4UgPWmy1kzbznCMNzTpGABcABAQuVLl/ASl7l/uFGRq4af9WVR7UX\nafJs9hLCeJ9GlYo4p6j/0UVWey3fQkJ0TpGABcABAQuVrpiApT/YNnkapcNLuYsI330alSri\nnKI+TuLfrHIVonOKBCwADghYqHRFBSz9tylD12u+WqfhNzpdSyl092lUq4gWmdtUGp89MeWm\nnGWE6ZwiAQuAAwIWgNIUEbBmZX47a0D2IkJ1TpGABcABAQtAaXwIWKE6p0jAAuCAgAUAXhCw\nADggYAGAFwQsAA4IWADgBQELgAMCFgB4QcAC4ICABQBeELAAOCBgAYAXBCwADghYAOAFAQuA\nAwIWAHhBwALggIAFAF4QsAA4IGBVHFoEqCoELAAOCFgVhxYBqgoBC4ADAlbFoUWAqkLAAuCA\ngFVxaBGgqhCwADggYFUcWgSoKgQsAA4IWBWHFgGqCgELgAMCVsWhRYCqQsAC4ICAVXFoEaCq\nELAAOCBgVRxaBKgqBCwADghYFYcWAaoKAQuAAwJWxaFFgKpCwALggIBVcWgRoKoQsAA4IGBV\nHFrEFbsGlYiABcCBh7cs3rPKgxZxxa5BJSJgAXDg4S2L96zyoEVcsWsqjYcWCVGTELAAOOAA\nWXFoEVfsmkrjoUVC1CQELAAOOEBWHFrEFbum0nhokRA1CQELgAMOkBWHFnHFrqk0HlokRE1C\nwALggANkxaFFXLFrKo2HFglRkxCwADjgAFlxaBFX7JpK46FFQtQkBCwADjhAVhxaxBW7ptJ4\naJEQNQkBC4ADDpAVhxZxxa6pNB5aJERNQsAC4IADZMWhRVyxayqNhxYJUZMQsAA44ABZcWgR\nV+yaSuOhRULUJAQsAA44QFYcWsQVu6bSeGiREDUJAQuAAw6QFYcWccWuqTQeWiRETULAAuCA\nA2TFoUVcsWsqjYcWCVGTELAAOOAAWXFoEVfsmkrjoUVC1CQELAAOOEBWHFrEFbum0nhokRA1\nCQELgAMOkBWHFnHFrqk0HlokRE1CwALggANkxaFFXLFrKo2HFglRkxCwyu05TdMeUF0JoFQc\nICsOLeKKXVNpPLRIiJqEgFVuBCxUJQ6QFYcWccWuqTQeWiRETULAKjcCFqoSB8iKQ4u4YtdU\nGg8tEqImqeKAtZ+2neoqFIOAharEAbLi0CKu2DWVxkOLhKhJqjdg1fclYAFlwwGy4tAirtg1\nlcZDi4SoSao3YH2lEbCAsuEAWXFoEVfB7JqVs0avv1qzdXe48Hv3krS3juy7ZtP2207MmfTy\nHu2adjl2XrrgLmn8TkmbWwU8tEiIemv1BqxZBCygfDhAVhxaxFUgu+bTv0tC86vcSlKWHJic\n1PLmzCkPNJbBB/eQrr8mC35pJ6c3cLsrl4cWCVFvrd6ANYGABZQPB8iKQ4u4CmLXfNPOCEv7\nT5xyfFcjNd3oXJKyaqhRtOMZk47oLFLzkH3K4jZyma4v30YOS5aMkZ5LvW1+BfLQIiHqrVUa\nsB7QkjZJlKx88vTBG3fuO/DQW+P/F9RvqGmHJ2f/q7Mx51fJsUma1vF3/QOj6HVd//2a3Xp3\n3mDYBd+mF/7N1fv179mp19YH37LAvs43zhu2cecNdzjiwcXJEvdF1D9xxFbr9x10wusELFQp\nDpAVhxZxFcSu2V1ku1/MgeWHi7Rb7liScp0RvZ4zB+r2Eem8yjbldlmrznh4RFouiRc8JjUv\ne9n2yuShRULUW8MSsF7ePlXSY/JKs+QoTft7cvaXzfK7k2MjNG03Xf/cKHpOr+2eeFbn+xNT\nl53ZMb2o6+uTT5qzR6q032OJMrdF6PNHJucdu4iAharEAbLi0CKuAtg1P9bI6v+LD9ZpIq85\nlaT1ELkzPvT72iJv2KYcIcPMh3kir1vjf2hyTEM3u4J5aJEQ9dYqDVgvjR7dQ9O6jx49+khr\n/P5OZprZYth2XczHw1cYRfcYA18mZr/ULD0uMbLUmGeSrs81imofNcJUlw3M81tax7esqfVj\nray0xda9rYA0MfGkl3uZY5sP28Za0XXxQpdF6It3Msf67rSDEb2GP03AQjXiAFlxaBFXAeya\nTw7Y7dTk8EiRmU4lKUb2aps8bTVW5HbbpCGJzwabJUoPl06LGrDFlc5Di4Sot1ZpwDIMsn0H\n6z0j9nS84Cdj6K8HNjECzRXG0PfG4z2J6Xto3bbQtkiMvGpM+Hd8+rW9O5z6ia4vf3WIMTLS\nmmqeG9vtFTOhzb+ljzEc/3HHN8Zgx3O/M4YW3W6WPm6VuixCn2iGvedXGv/W1PbX9iVgoRpx\ngKw4tIirgHdNTOS5/CV13/5fcvAokem2Kf0l/r/+WnKN+fBijTzZkCpUOg8tEqLeGoqAVT/I\nFmK+6K1pXcwoNFDTjo8X/dlZ2+NwTfsuPna5pvUyAtSP5keAHRLfPlzQV9M6WN+4Gq1p/f5M\nLGruhpoWP3lrpKTkrPocYwVbLjOHXBYxv6um9f46XvrTZhoBC9WIA2TFoUVcBbtr5q0haywu\nUJI2VOR52+iWiU8EW8m1xt8l3eXABtSg8nlokRD11lAErNeMDHNAasL1xtiVxuOZmrZVvOQF\nTTtnqqbNio/tpWmHGA8/mckn9ePYs4wR64uG/dKfJer69F2OmGo+fmhMPTFVepuWWJbLIm7V\nrM8g4x4lYKEqcYCsOLSIq0B3zbsbi0wuUJL2QxNZu842PlT2Nx+WN5K7jIeTZN3f9Dkn7zBg\n7GPOT69WHlokRL01FAHrJCPDvJCasKCTpu1oPD5hlP5slVykaQ+9rGknWyPLumrabXo8HXVI\n/fDvgeQHin017dCcdZ1rTJ2TGlvaXdP+obsvYj9j4Itk6coNCVioRhwgKw4t4iqoXTPnlBP2\n7yOy+tQ8JVmGi1xpHx8vW5oPn4j8R9ffaiSz9KeaW9fLCtdX3T20SIh6aygC1vaa1nVFesqu\nmtZxia4vNILWo8mCbxd21AZaI68bgWeuHk9Hg1PPecUYs65jsrOmdXk/e11DNW1r26iRoDbQ\n3RfRT9M2Ts98NAEL1YgDZMWhRVwFtWueM5NQ6zN+z1eS6QyRwSvtBTOlyXzjYbK0rdPrNpK9\n9IXryIjvlkyvkdmlbXNl89AiIeqtYQhYSzpq2k62KccbkeZd43F3TTvLHF/USdtM13fSNOve\nBFckPjk009Gxqef8x/y+ujkw3RhY/9JvMla11FjBvrbxC4x55rsuYqHxODw981UELFQjDpAV\nhxZxFdSueS5+cfa+9+Ypsas/UWSThRlFdR1l7yX6f9vJGbo+Udr8pM+QNcw5xsqQkje7gnlo\nkRD11jAELPNqCf+wTbncGH9Kty4oap1fek7Txuv62YnzWfskvjZlpqNzUs95NxmwVoywLs+w\n/VmP/5GaaM7afcu0vokE57yIL4zHI9O1eYCAhWrEAbLi0CKugts1K3567Yw1RE7OV5KycA+R\nTedlFT7XXFp2rZFN/tQ/aia3Gm9JYv1Dfp80WVZiXSqZhxYJUW8NQ8D6ULN/MV3Xr0t8Cf0N\nTetgpqTzNe0uXZ+taWcaI3XdNO0Jcy4zHV2Qek4qYOlLjktcI7TTiFsTGetTLddLroswr+9+\nQro2tQQsVCMOkBWHFnEV7K75fF2RxwuUmL7aQGSn3ItcvbNnu2Y9zvhDX7mlDDVG+5jnsnT9\nfZH3GlCXSuWhRULUW8MQsN4yIsz/s3ceYFJTax9/t9FEQBDLqmDhKtderr3r5eq93iwLSG+i\noCJIs6DiJyoqSBEURcBCU0AREaxX7B1RsfeGFUSlKMICu/mSSWYmM3NOdmZOck6S+f8eHiaT\nZPO2c878J5OcXObYcpfx3pxEd0src6L12GVVX+j66vLyU/WY6rKmdeMJLKOhD9rPVlH7TdwW\n35jO49xDvJHqDiYaBaEEA2TgQEW4SE7NLLKmY3dbo+svNCPqvzV9bZLx1NC8GKW5dQPi9xlz\na4UagYpEqLVGQWB9kHIplK7fZrx/yFzoUV5+g66v29265vzY8t1+0/UJ8Quk+AJL17e+fO1p\nlo7qaZ60/bQ8MaVWCuxDrEg9g/UwBBYIIxggAwcqwkVyan4kalLbGv2hMiq90+UgXzawphq1\nX1YTLcrHl4AiUJEItdYoCKyV5alTK4wx3j9tLkwvL9d0/Un7kqgh5eVP6PrZ5eUTYnu5CSyT\n1fdXmgprkm5NKJo5dwPvEJ+lXoM1CwILhBEMkIEDFeEiITVLxw5LPFJwLVFd1honD5dQo/+5\nHK/mVDo+9jSdpmQ+esQ8g/VUtr6EAIGKRKi1RkFgbdqjvNx5/8VFhqR531z4pLy8xSZzEqt7\nzXfzzCcLbtk7/vSb2gSWweN7lZe3+kvXt+5p/byYDvsQv6TeRTgSAguEEQyQgQMV4SIhNQOJ\nLowvv0nUgrXGwev1qNFyt+NNo7qfxhb2oRHmy7uxibEig0BFItRaoyCw9NPKy1tuSW5Jvj20\nvPw18+0n5puvy8v/ZV4g1dqalCQLgaXfYqx93Xj9j6HUGM/j5Byidco8WB0hsEAYwQAZOFAR\nLhJS8xhRE/txa/qFRN1Ya5Ksa0n1X3E73A+N6SZrSaOO5st8KtmYrS8hQKAiEWqtkRBYw+O/\nCcYwH8GsWYsXl5dPWrtb+f41sXeHlO+x4dby8n7WNp7A+uGHpI0X7QNfW5540I7JlxtcD2FO\n9JCYyX1DCwgsEEYwQAYOVISLhNRs+zvRMbEpF2omFRE9y1qj60MGDIh9gvQn68oqLhodZl//\nPomamZf69qST8ok8qAhUJEKtNbwC67Ty8n/Yi++UOycCvbE8Ni2DyYLy8p5PJK6f6lde/nzP\nxDa2Orr2wPJ2SRuLjLXmnbPmPA0nJ2bj3XxEi45uMz2YU4veGF97azkEFggjGCADByrCRUZq\nltUnatB51Ngh+xFRb/YavS6R+SSQb8qoZMTIBHdlHGwulcafGPJrYxparT9dSg8KJiFQCFQk\nQq01vALr3+XlLf60l7Vy+zGABm+3LC8/wH6u+ary8oOvtR9go+t3l5fffHB5uX1Ol62O7iy3\nnlQYY2tFefl+sbnfOhurL6+x155vvHmUfwj9893Ky1tZv67r77SCwAKhBANk4EBFuEhJzRt7\nk03RoC2cNbbAWkApHJ1+qDXN6arEm/uLaRdDonUVS0HAEKhIhFpreAVWX1Pz/LrtO3My0M/2\nKi/f/YZfjKUNd+1rrE/M+HZKefmx9hXvsekcTjD+2ZvY6uiPQ8wpGd4yz91ufNbQV+Y8DwYr\n/2YsdlxmSKzVzYPrAAAgAElEQVTNj55pLHZwOYSuX2AsHTjfEHnfTWpVPhQCC4QRDJCBAxXh\nIic1W2Z22LNhabNjLvuUuyZLgdWNWjumbX+uTeN6h07elr5TqBGoSIRaa3gF1hx7xs+XzDeP\ntTSWdjv2zGN3N1cln2t+TWy6ULvhVsfmDx1hb+Koo1f3NHfa47Cj9o0dve0ma/tLpsIqb3Xc\nwbuZr6escTuE/vMRsb9tbci+8k7mPPPz/EkBAP6BATJwoCJckJqgIVCRCJUkvAJr82kOgaW/\ncWpijvUjHeV5xlzRI/6ue7njanieOlpxSuJI5S1Gborv8FFlYu1uQ9e7H0L/4vT4vj3+MGfp\nmu1p5ABIAANk4EBFuCA1QUOgIhEqSXgFlv7b8MP32OuYft9a76ofv+SUA1rsf9Kghx0TNuh/\nmvfw3R5/Z15wnrhui6uOap678qxD9tpjv2PPmZbylM5XR55xaMt9Dus8YaVe2yH0rQ/2PnKv\n1qcMeVXXN5QnLgIDIDxggAwcqAgXpCZoCFQkQiUJscACAPgHBsjAgYpwQWqChkBFIlQSCCwA\nAAMMkIEDFeGC1AQNgYpEqCQQWAAABhggAwcqwgWpCRoCFYlQSSCwAAAMMEAGDlSEC1ITNAQq\nEqGSQGABABhggAwcqAgXpCZoCFQkQiWBwAIAMMAAGThQES5ITdAQqEiESgKBBQBggAEycKAi\nXJCaoCFQkQiVBAILAMAAA2TgQEW4IDVBQ6AiESoJBBYAgAEGyMCBinBBaoKGQEUiVBIILAAA\nAwyQgQMV4YLUBA2BikSoJBBYAAAGGCADByrCBakJGgIViVBJILAAAAwwQAYOVIQLUhM0BCoS\noZJAYAEAGGCADByoCBekJmgIVCRCJYHAAgAwwAAZOFARLkhN0BCoSIRKAoEFAGCAATJwoCJc\nkJqgIVCRCJUEAgsAwAADZOBARbggNUFDoCIRKgkEFgCAAQbIwIGKcEFqgoZARSJUEggsAAAD\nDJCBAxXhgtQEDYGKRKgkEFgAAAYYIAMHKsIFqQkaAhWJUEkgsAAADDBABg5UhAtSEzQEKhKh\nkkBgAQAYYIAMHKgIF0WpETAb9ZIgNSZBE1hb3hhz/vnnn3nmmeefP/gr1c4AULhggAwcqAgX\nRakRMBv1kiA1JgESWOufm9TvmPpEtMe/B157Ta89qdEjql0CoGDBABk4UBEuilIjYDbqJUFq\nTIIisDbfdUKJoa2K92gzdKaV4yUD65TMVe0WAIUKBsjAgYpwUZQaAbNRL4mk1Cw7/++NynY8\nYeT31tsnycHpaftuW9Bp7/p1dj75+u/Tj/Lif5uVtRy4KrliDpW8lXvMmQREYL2wDxW1ajt0\n0kJnlm+uX/asascAKFDw2RE4UBEuilIjYDbqJZGSmo0942Kqwd2xFfNcBNYnB8U31J2YuuWB\nEjqtdyvac018xS/N6PL8Q3cQDIF1Z0nxv+/OTPMNpc1/UO0aAIWJlAES5AIqwkVRagTMRr0k\nMlJT3cZQS6cMH9OvBVHRQnPNnUQVI+PMStn522aGDOs+csKgPY0/mu7c8scOdLOubzmezouv\n6Ux/2yQYv0UgBNZdRdvfxMzzedSmRrVzABQkMgZIkBOoCBdFqREwG/WSyEjN7YZkWmouVHUg\nalFtLIwmms/Z+SyiE38xF7b0JWq2xbFlJjWpMl4WUYON1orFVPRiPjFnEgSB9VLZ9pPZeV5y\nKN2t2jsAChIZAyTICVSEi6LUCJiNeklkpKYV0WxraW1zoteM1+FET7H3/bGItvvdWqwqJ3rF\nsakfnWG+rCJ6NfZ+XTldlHO8bAIgsNbtUXwDL9H31G32m2r/AChEZAyQICdQES6KUiNgNuol\nkZAaQzM1rbaXuxLNNF4uIHqDvfNHPf5zaXz5bKIHHZtOt38brBM7hK73pT025BYslwAIrAF0\nNj/TPWmQav8AKEQkDJAgN1ARLopSI2A26iWRkZqqlR/HFw1lNVU3L56iT2v/O41oqePtkXRx\n7LUJ3Wa+PFdET2TrQW2oF1gfle66kJ/phc3rfK3aQwAKEBkDJMgJVISLotQImI16SSSnpg3R\nM8bLGUSrat13VUNq+Ifj/VH2L4Lb02Tj/437UM88HGCjXmC1oyvdUj2E+qj2EIACRPIACWoH\nFeGiKDUCZqNeErmp+aGUmpsXqh9NtGHmf3Yu2+HwK1by9n37YKJxzhVtqLv5sqWY5hgvQ2nn\n3/TPh518dNfFufuRjnKB9W7RPkvcUr14t1I8MgcA6cgdIEEWoCJcFKVGwGzUSyI3NRVEt5iv\n+1Fxa3uyqzoTMnf7/JLB3Y3t292asnYAHWW+fES0XNeXFdMC/cm6sUOIX+quXGD1oBHuuR5K\n56v2EYDCQ+4ACbIAFeGiKDUCZqNeEqmpGU502jZzYWdDFjXtNXriRbsaC6Mz9ltqyqbGw9em\nrn2QSlcbL+OoaZVedSC109fvRG2/2zi1iJbkFboD1QLrx7LdXE9gPfroIzvV/VmxkwAUHlIH\nSJANqAgXRakRMBv1kkhMTc0QokPWxxbrEg2OXV71V1+i4k/S91xqndz6e+pD+Kp2p/Yb9fea\n0XBdH0k7/KRPo4bm4bpmPGwnZ1QLrGvpgtqSfT5dpdhJAAoPiQMkyA5UhIui1AiYjXpJ5KVm\n/X+JDrMvbV+7dr29tuY0Yv34tfWnV4Y3JBqWsnJpXWqwZxEd8qf+QR26V9c7UIW5eh6Vbs41\n7DQUC6xtu9ebX1uyFzRstlGtlwAUHvIGSJAlqAgXRakRMBv1kkhLzVf7E/2TMW/V00Qt2X/x\n2c5Ej6WseauyWZ1Ww9fp246iNsbb1ua5LF1fQfROTq5kolhgPUmn157t9jRNrZcAFB7SBkiQ\nLagIF0WpETAb9ZLISs0LzYj6b2Vs+IuoeBv7b2aRNXd7BuOp4bfGS3PrLsPvU6fLygfFAqsL\njak92/cUH6zWSwAKD1kDJMgaVISLotQImI16SSSl5qEyKr2TuaWmmIjzxOYfiZqw1n/ZwJpq\n1H5ZTbQoB1dYqBVYGxrsXMsl7jGOppeUuglA4SFpgATZg4pwUZQaAbNRL4mc1DxcQo3+x95k\nyKPtHG+Xjh32Wnx5LVFdxl/UnErHxx6905TGmy/fcx9smDVqBdYc6pRNuq+jbkrdBKDwkDNA\nghxARbgoSo2A2aiXREpqXq9HjZY73j/S74z748vziE5wbBpIdGF8+U2iFoyjTaO61nN29qER\n5su7sYmxhFArsCpocjbpXrJr3TVK/QSg4JAyQIJcQEW4KEqNgNmol0RGata1pPqvOFfcRXSA\nfePflsOJxjo2PUbU5Dt7+UJinbP5oTHdZC1p1NF8mU8lovfXKRVYG+rull2+exNjUlYAgH/I\nGCBBTqAiXBSlRsBs1EsiIzX9ybpYKsGfzYg6rzOX/uhMtGNsyoYhAwb8YLxs+zvRMbHJHGom\nFRE9m3k0jQ6zL5afRM1MmdaTTsordAdKBdYD1DG7fM8p3V+lnwAUHjIGSJATqAgXRakRMBv1\nkkhIzTdlVDJiZIK7jFUPFxu6asDEWy7Ykaj06dhedYlWmK/L6hM16Dxq7JD9iKh35tHmUukK\ne/HXxjS0Wn+6lB4UzYJSgdWNJmSZ8GPpdZWOAlBwSBggQW6gIlwUpUbAbNRLIiE1CyiFo811\nDzWNv93tBWuvuMDS39g7vqlo0JaMg61p7pjR/P5i2sXQYV3FUqCrFVhbmzbN5h5Ck2uon0JH\nASg8JAyQIDdQES6KUiNgNuolkZAalsDSf5vQZpe69feomB6fhD0hsPQtMzvs2bC02TGXfco4\nWDdq7Zi2/bk2jesdOpkzjVYOqBRYL9G/sk34Izs0wmzuAEhEwgAJcgMV4aIoNQJmo14SpMZE\npcAaTldlnfH2NEehpwAUHBggAwcqwkVRagTMRr0kSI2JSoF1SOkDWWd8ivhzrQEA2YMBMnCg\nIlwUpUbAbNRLgtSYKBRYPxUdmEPK/1a8Up2rABQcGCADByrCRVFqBMxGvSRIjYlCgTWLeuWQ\n8gvic4ABACSAATJwoCJcFKVGwGzUS4LUmCgUWD3olhxSfn9pa3WuAlBwYIAMHKgIF0WpETAb\n9ZIgNSbqBFbNrttnO0lDjGPoTWW+AlBwYIAMHKgIF0WpETAb9ZIgNSbqBNZHdFxOOb+SLlbm\nKwAFBwbIwIGKcFGUGgGzUS8JUmOiTmDdThfmlPOHG+6UOfsqAMAfMEAGDlSEi6LUCJiNekmQ\nGhN1AqsDTckt6WdShPIOQMDBABk4UBEuilIjYDbqJUFqTJQJrJrmO+R0Cdajj46lzqqcBaDg\nwAAZOFARLopSI2A26iVBakyUCawP6YQck75k1/rrVXkLQKGBATJwoCJcFKVGwGzUS4LUmCgT\nWFOof65Z70L3qvIWgEIDA2TgQEW4KEqNgNmolwSpMVEmsLrS7blmfSqdpspbAAoNDJCBAxXh\noig1AmajXhKkxkSZwNo9t1mwYuxX/J0qdwEoMDBABg5UhIui1AiYjXpJkBoTVQLrazoq97Rf\nQGMUuQtAoYEBMnCgIlwUpUbAbNRLgtSYqBJYs+mc3NN+X+kBitwFoNDAABk4UBEuilIjYDbq\nJUFqTFQJrAtpbB55P5LeVuQvAAUGBsjAgYpwUZQaAbNRLwlSY6JKYB1UtjCPvA+nIYr8BaDA\nwAAZOFARLopSI2A26iVBakwUCaz1xa3zyfvC7XbeqsZhAAoMDJCBAxXhoig1AmajXhKkxkSR\nwHqa2uWV+DPoMTUOA1BgYIAMHKgIF0WpETAb9ZIgNSaKBNYouiKvxN9MndQ4DECBgQEycKAi\nXBSlRsBs1EuC1JgoElj/oRl5JX7JrvV+V+MxAIUFBsjAgYpwUZQaAbNRLwlSY6JGYNXs2DTP\nzHenqUo8BqDAwAAZOFARLopSI2A26iVRlJqAVUSNwPqCjs0zBfcUHavEYwAKjICNVAACywVF\nqREwG/WSKEpNwCqiRmDdT73zzcHB9IkSlwEoLAI2UgEILBcUpUbAbNRLoig1AauIGoE1mG7M\nNwfD6HIlLgNQWARspAIQWC4oSo2A2aiXRFFqAlYRNQLr2KIH883BQw12xVRYAPhOwEYqAIHl\ngqLUCJiNekkUpSZgFVEisLbUa5F/Es6kxSp8BqCwCNhIBSCwXFCUGgGzUS+JotQErCJKBNbb\ndHr+SRhPFSp8BqCwCNhIBSCwXFCUGgGzUS+JotQErCJKBNY06i+QhT1Lf1ThNAAFRcBGKgCB\n5YKi1AiYjXpJFKUmYBVRIrD60QSBLJxPN6pwGoCCImAjFYDAckFRagTMRr0kilITsIooEViH\nlT4skIV5dfaqVuE1AIVEwEYqAIHlgqLUCJiNekkUpSZgFVEhsDaV7SOShUdPpccVeA1AQRGw\nkQpAYLmgKDUCZqNeEkWpCVhFVAisN+kMkSw8OhaXuQPgNwEbqQAElguKUiNgNuolUZSagFVE\nhcC6kwaIZOHRR/cu+VaB2wAUEgEbqQAElguKUiNgNuolUZSagFVEhcDqS7eIZOHRRwfQlQrc\nBqCQCNhIBSCwXFCUGgGzUS+JotQErCIqBNbhQte4GyzYbsdNCvwGoIAI2EgFILBcUJQaAbNR\nL4mi1ASsIgoEVlWdvUWSYNKWZsj3G4BCImAjFYDAckFRagTMRr0kilITsIooEFhvUxuRJJhM\nLzpUvt8AFBIBG6kABJYLilIjYDbqJVGUmoBVRIHAuktoHneLo+k5+Y4DUEAEbKQCEFguKEqN\ngNmol0RRagJWEQUCqz+NF0lCjNF0lnzHASggAjZSAQgsFxSlRsBs1EuiKDUBq4gCgXVM8UMi\nSbD4W9GH8j0HoHAI2EgFILBcUJQaAbNRL4mi1ASsIvIF1rYGLURyYDOcekv3HIACImAjFYDA\nckFRagTMRr0kilITsIrIF1gf0qkiObBZXF62UrrrABQOARupAASWC4pSI2A26iVRlJqAVUS+\nwJpD54rkIM5AGiDddQAKh4CNVDbPtyB6Mn3lZ/UZK/mbXvxvs7KWA1clV8yhkrc89NE3AlmR\nYKAoNQJmo14SRakJWEXkC6xhdKNIDuIs2rHej9J9B6BgCNhIFWPTsCLKFEzVxzFW8jc9UEKn\n9W5Fe66Jr/ilGV1ei+EcdN2y8//eqGzHE0Z+n75BXNcFsCJBQVFqBMxGvSSKUhOwisgXWKfR\nXJEcJLiQLpbuOwAFQ8BGKpN3DiCqkylqJhBXYDE2/bED3azrW46n8+JrOtPf3J8MkYOu29iT\nbBrcnbolH12XRvAqEhgUpUbAbNRLoig1AauIfIHVtLlICpIs3LFexndEAIBHBGykMriljOpN\n7pwhaj6vT7twBBZr00xqUmW8LKIGG60Vi6noRVe7Oei66jbGulOGj+nXgqhooXNLHroug8BV\nJDgoSo2A2aiXRFFqAlYR6QJrJR0tkgIHF9EFsp0HoGAI2EhlcAgd9KGeIbCqj6fdr2ILLOam\nfnSG+bKK6NXY+3XldJGr2Vx03e1EDZaaC1UdiFpUO7bkrusyCVxFgoOi1AiYjXpJFKUmYBWR\nLrAWUxeRFDhYtEvZF7K9B6BQCNhIZXDowE16psCaQPTAKLbAYm463T6HVIdmxl770h4bXM3m\noutaEc22ltY2J3rNsSVnXccgcBUJDopSI2A26iVRlJqAVUS6wLqOrhJJgZNh1Fm29wAUCgEb\nqQzeNf9LVzqf16d2OltgsTcdaV+82YRuM1+eK6In3M3moOt+LKKm8dNWXclWcBY56zoGgatI\ncFCUGgGzUS+JotQErCLSBVY7ulskBU6W7FX0pmz3ASgQAjZSxUlTOtUn0A4/swUWZ9NR9pmj\n7Wmy8f/GfahnLRZz0XVVKz+OL15ANNWxJWddxyCYFQkEilIjYDbqJVGUmoBVRLrA2nu7JSIp\nSOF6OlG2+wAUCCI900e30pTOLbHf5JgCi7OpDXU3X7YU0xzjZSjt/Jv++bCTj+66OBezLrou\naYeecbzNWdcxCGZFAoGi1AiYjXpJFKUmYBWRLbDWFR0okoE0jqCHJPsPQIEg0jF9dCtV6Xxe\nP/bYd5bS4W0aQEeZLx8RLdf1ZcW0QH+ybmxeBddLorLXdTY/lFLzKsf7/HRdKsGsSCBQlBoB\ns1EviaLUBKwisgXWS6SJZCCNKSV753ijMwAgK0Q6po9upSid6hOo8Q86U+lwNz1IpauNl3HU\ntEqvOpDa6et3orbfbZxaREuyNeum6+JUEN3ifJ+frkslmBUJBIpSI2A26iVRlJqAVUS2wJpM\ng0QykM5/6QbJAQBQGIj0Sx/dSlE6E4nuMV8ZSoe7qWp3ar9Rf68ZDdf1kbTDT/o0arheNy9K\nPz1bsy66Ls5wotO2OVfkp+tSCWZFAoGi1AiYjXpJFKUmYBWRLbD60kSRDKQzd/vtvpMcAQAF\ngUi/9NEtp9L5ogH9K7aQqXRcNi2tSw32LKJD/tQ/qEP36noHqjBXz6PSzdmZddN1FjVDiA5Z\nn7IqP12XSjArEggUpUbAbNRLoig1AauIbIH1j5KFIhnIYAB1lBwBAAWBSLf00S2H0qk5kbZf\nGVvKUDoum3T9rcpmdVoNX6dvO4raGG9bm5pH11cQvZOVWTfxZrH+v0SHrUpbmZeuSyWYFQkE\nilIjYDbqJVGUmoBVRLLA2lq/hUgCMlnSip6WGwIABYFIt/TRLYfSmURkP+8vQ+m4bEoynhp+\na7w0p3Hmu++JlmZl1lW8mXy1P9E/Mye5ykfXpRLMigQCRakRMBv1kihKTcAqIllgfUSniCSA\nwYSifbP+AggAyBaRXumjW0ml830D2neBRReiEQsWfJLYyWVTki8bWFNS2S+riRZlY7ZW8fZC\nM6L+W/mHykXXpRLMigQCRakRMBv1kihKTcAqIllgzaU+IglgcSaNkhsDAIWASKf00a2k0nmZ\n0kgOBC6bEtScSsfHZl1vSuPNF0PpPJWN2drE20NlVHqnSwA56bpUglmRQKAoNQJmo14SRakJ\nWEUkC6zhdL1IAljMbVz/S7lBAFAAiHRKH93yTGBNo7qfxhb2oRHmy7uxCRSEzJo8XEKN/ufi\nf266LpVgViQQKEqNgNmol0RRagJWEckC60yaI5IAJsPsK04BAN4h0id9dCvjoYAmLhda8Tb9\n0JhuspY060aZ+VSyMRuz7gLr9XrUyEWn5arrUglmRQKBotQImI16SRSlJmAVkSywdt1BJH42\nSw6muXKjACD6iPRJH92qRWANGTDgB86mVDQ6zL5OahI1My/j7Ekn5W82zrqWVP8Vl8PkqutS\nCWZFAoGi1AiYjXpJFKUmYBWRK7BW0+Ei8XOYWrbz71LDACD6iHRJXxx6eaTJAUTdzdfJzk1J\npVOXaIXO3pTCXCqN7/drYxparT9dSg+6GM9S1/Un68oqLjnqulSCVpEAoSg1AmajXhJFqQlY\nReQKrKepvUj8PLpRP6lhABB9RHqkLw6NTvlhbj/nppwF1prmdFXizf3FtMt+RF3ZZnPRdd+U\nUcmIkQnuyjhYrroulaBVJEAoSo2A2aiXRFFqAlYRuQJrHF0iEj+Ph/coelFqHABEHpEe6YtD\nXgqsbtTaMbvLc20a1zt08rbM3XI1uyD16qyj04+Vg65jEbSKBAhFqREwG/WSKEpNwCoiV2D1\npNtF4udyc9F+eOgzAF4i0iFV++4lXgqsHHQdC1SEi6LUCJiNekkUpSZgFZErsA4ue0Qkfj7/\ntu7IAQB4hEh/VO17REFFuChKjYDZqJdEUWoCVhGpAquqbB+R8F2Y37TsPZmRABB1RPqjat8j\nCirCRVFqBMxGvSSKUhOwikgVWCvonyLhuzGCjnR5OAUAIEdEuqNq3yMKKsJFUWoEzEa9JIpS\nE7CKSBVYM6mfSPiunEA3ywwFgIgj0htV+x5RUBEuilIjYDbqJVGUmoBVRKrAGko3ioTvyn2N\n6rEe6AoAyAuR3qja94iCinBRlBoBs1EviaLUBKwiUgXWaTRXJHx3LqNjcrgfBwDgikhnVO17\nREFFuChKjYDZqJdEUWoCVhGpAqtpc5Hoa+M4Gi0zGAAijUhfVO17REFFuChKjYDZqJdEUWoC\nVhGZAus7Okok+tq4r3GdFbU7AQDIBpG+qNr3iIKKcFGUGgGzUS+JotQErCIyBdYS6iISfa1c\nTQf8JTEcAKKMSFdU7XtEQUW4KEqNgNmol0RRagJWEZkCaxRdKRJ97ZxB/SWGA0CUEemJqn2P\nKKgIF0WpETAb9ZIoSk3AKiJTYJ1N00Wir50Fu9MCifEAEGFEeqJq3yMKKsJFUWoEzEa9JIpS\nE7CKyBRYreovEYk+C26r0+gziQEBEF1EOqJq3yMKKsJFUWoEzEa9JIpSE7CKSBRYG4r/LhJ8\nVgym/TfIiwiA6CLSD1X7HlFQES6KUiNgNuolUZSagFVEosB6hc4SCT47/k1nYTYsAMQR6Yaq\nfY8oqAgXRakRMBv1kihKTcAqIlFg3U4XiwSfHYsOwoXuAHiASDdU7XtEQUW4KEqNgNmol0RR\nagJWEYkCqy/dIhJ8lszbg66WFxMAUUWkF6r2PaKgIlwUpUbArO8lqV7Sde+GdXY+9aZVrK3P\ntyB6MnP1i/9tVtZyoOMv5lDJW3mZV5SagFVEosA6omShSPDZMmMnul5eUABEFJFOqNr3iIKK\ncFGUGgGzfpfku2PJpsH0jI2bhhURS2A9UEKn9W5Fe66Jr/ilGV2en31FqQlYReQJrC119xSJ\nPXum70jDa6SFBUA0EemDqn2PKKgIF0WpETDrc0nWtSI65M5Xli3sXUw0I23jOwcQ1WEIrD92\noJuNj+rj6bz4ms70t035OaAoNQGriDyB9R6dKhJ7Dty9C3XPs1EAACxEuqBq3yMKKsJFUWoE\nzPpckiuI/rMltvQAUdONKdtuKaN6kzszBNZMalJlvCyiBvYfLKaiF/N0QFFqAlYReQJrFvUV\niT0XZreio7+XFhgAUUSkB6r2PaKgIlwUpUbArM8l2Yco/mjeQ4geS9l2CB30oc4SWP3oDPNl\nFdGrsffryumifB1QlJqAVUSewBpMo0Viz4mHTqDmT0mLDIAIItIBVfseUVARLopSI2DW55KU\nUHGVvdidaHLKtkMHbtKZAut0+7fBOjQz9tqX9sh7XklFqQlYReQJrBOLHhCJPTeWnFtaNGyz\ntNgAiBwi/U+17xEFFeGiKDUCZn0uyfZUFL9OxhBY96Rse9f8jyWwjqSLY69N6Dbz5bkieiJv\nBxSlJmAVkSawqhuVi4SeM+N3oYNW1O4WAICJSO+Dj75QWNHmhKLUCJj1uST/jv/Mp+uHURHj\nCXIsgXWU/Yvg9rFTXhv3oZ75O6AoNQGriDSB9RmdKBJ67jzwT6pzw1ZZ4QEQMUQ6X8R9VJUa\nRWbDQPgq4nNJXiQ69s/Y0v1EHRk7sARWG+puvmwppjnGy1Da+Tf982EnH911cR4OKEpNwCoi\nTWDNpXNEQs+Hq5vQkR/Jig+AaCHS9SLuo6rUKDIbBsJXEb9LMppon1uee+2hnsV02C+M7SyB\nNYCOMl8+Ilqu68uKaYH+ZN3YVFp5XOquKDUBq4g0gXUp3SASel7cfwLVG4dHEwKQByI9L+I+\nqkqNIrNhIHwV8b0kj55qzTPacsR61maWwHqQSlcbL+OoaZVedSC109fvRG2/2zi1iJbkbl5N\nagJWEWkC69SieSKh58nljeg4xs/PAIBaEOl3EfdRVWoUmQ0D4auI3yVZe+kulsAqO5lpiiWw\nqnan9hv195rRcF0fSTv8pE+jhqY660qn52xfUWoCVhFZAqum8S4ikefN7KOpwcRqSUECEB1E\nul3EfVSVGkVmw0D4KuJzSb7bm4rOe31D1bfT9yIawdiBJbD0pXWpwZ5FdMif+gd16F5d70AV\n5up5VJrzPfmKUhOwisgSWJ/RCSKRCzBsezoBJ7EAyBGRThdxH1WlRpHZMBC+ivhckhOI7rKW\n1h5AtInECnMAACAASURBVDRzB6bA0t+qbFan1fB1+rajqI3xtrV5LkvXVxC9k6sDilITsIrI\nElj3Ux+RyEWYdTTVH4PbCQHICZE+F3EfVaVGkdkwEL6K+FuSV4iOjC8/THRW5h5sgRVnPDX8\n1nhpTuPMd98zJZo7ilITsIrIElhD6UaRyMW4tBEdtlxSoABEA5EeF3EfVaVGkdkwEL6K+FuS\nm4gGx5dXEu2QuYerwPqygTXVqP2ymmhRrh4oSk3AKiJLYB1fNF8kckHuO5lKLl4nKVQAooBI\nh4u4j6pSo8hsGAhfRfwtyWVE18aX1xEVZ+7hJrBqTqXjY1cuN6Xx5sv3RDk/ek5RagJWEUkC\na2uD3UUCF+e6XWmXOTVyggUgAoh0t4j7qCo1isyGgfBVxPczWOfEl98l2jFzDzeBNY3qfhpb\n2Me6Pv7d2MRYuaEoNQGriCSBtYJOEwncAxZ2qUMnvisnWgDCj0hvi7iPqlKjyGwYCF9F/C3J\nUqI941NA3pbrNVg/NKabrCXNmgR+PpVszNUDRakJWEUkCazpdKFI4J4w/R9UcuEaOfECEHZE\n+lrEfVSVGkVmw0D4KuJvSbbsTTTU+snm02ZEC82FIQMG/JDcw0VgaXSYfVfYJGpmzs/Qk07K\n2QNFqQlYRSQJrHPpFpHAPeKaXWmH23E/IQBZINLTIu6jqtQoMhsGwlcRn0vyTBnR0Xc89/ri\nIQ2JKmNSqy7RCvP15ZEmBxB1N18nZ/zpXCpdYS/+2piGVutPl9KDOTugKDUBq4gkgbV/nUUi\ngXvFw73r0cEvyQkZgFAj0tEi7qOq1CgyGwbCVxG/S/K/XSlO379ia+ICazQ52S/9D9c0p6sS\nb+4vpl32I+qau31FqQlYReQIrLXF+4vE7SGzTikq6vmzlKABCDMi3SziPqpKjSKzYSB8FfG9\nJH/dVdlyu9Idjxz6gb0iS4HVjVo7pm1/rk3jeodOzuOJvopSE7CKyBFYT1J7kbg9Zcye1OQO\nPDwHAHdEOlnEfVSVGkVmw0D4KhL1kihKTcAqIkdgXUMjROL2lkf61qcjc574H4DCQqSPRdxH\nValRZDYMhK8iUS+JotQErCJyBNY/aY5I3F4z8zgqHbJBSuQAhBSRHhZxH1WlRpHZMBC+ikS9\nJIpSE7CKSBFYWxvuJhK2D4zcmXZ/SEboAIQUkf4VcR9VpUaR2TAQvopEvSSKUhOwikgRWG9S\nG5Gw/eChs0vpzC9kBA9AKBHpXhH3UVVqFJkNA+GrSNRLoig1AauIFIE1gYaIhO0PdxxIdUfk\nPD0tAAWCSOeKuI+qUqPIbBgIX0WiXhJFqQlYRaQILI2mi4TtE0uGNaU95uP5hACwEOlbEfdR\nVWoUmQ0D4atI1EuiKDUBq4gMgbWt8Y4iUfvHA+1K6aQVtQcAQOEh0rMi7qOq1CgyGwbCV5Go\nl0RRagJWERkCa7nyJz1zufMIKrkAzycEIAORfhVxH1WlRpHZMBC+ikS9JIpSE7CKyBBYo4N4\nCVac/yunHe7IY55aAKKNSK+KuI+qUqPIbBgIX0WiXhJFqQlYRWQIrNNppkjUPmM+n/CwVyWk\nAYAwIdKpIu6jqtQoMhsGwleRqJdEUWoCVhEJAmtjvT1EgvafmSdRUZ9f/E8EACFCpEtF3EdV\nqZFtdtn5f29UtuMJI79PW/+k81l2p6due/G/zcpaDlyVXDGHSt7Ky3pOhK8iEFi+pCZgFZEg\nsB6jtiJBy+DGPfA7IQApiHSoiPuoKjVyzW7sGddQDe5O3TKPL7AeKKHTereiPRMXtv7SjC7P\nJ9YcCV9FILB8SU3AKiJBYA2g60WClsKic+vRoS/5nwsAwoJIf4q4j6pSI9VsdRtDPZ0yfEy/\nFkRFC1M23UlUMTLOLOeWP3agm3V9y/F0XnxNZ/rbpjzDzYXwVQQCy5fUBKwiEgTWXvUeFgla\nEjNPKio6G1O7A2Aj0psi7qOq1Eg1eztRg6XmQlUHohbVzk2jieaz/2gmNakyXhZRA3sO58VU\n9GLutnMnfBWBwPIlNQGriP8C6z06ViRmeYxpRWX90682AKBAEelLEfdRVWqkmm1FNNtaWtuc\n6DXnpuFET7H/qB+dYb6sIrLuG1pXThflbjoPwlcRCCxfUhOwivgvsEYFeZKGFJYM24nqXvC5\n7xkBIASIdKWI+6gqNTLN/lhETeOnrboSzXRuu4DoDfZfnW7/NljH/oO+tMeGnE3nQ/gqAoHl\nS2oCVhH/BdahJXNFYpbKoot2ouK2z+DxOQCIdKSI+6gqNVLNVq38OL5oCKqpzk2diT5l/9GR\ndHHstQndZr48V0RP5G45H8JXEQgsX1ITsIr4LrC+oENFQpbNomF7E+03HpM21MbzLYie5G79\nrH7mVkX3b4M8EelGEfdRVWoUmdXbED3jfH8G0Sr2nkfZvwhuT5ON/zfuQz2FDGdP+CoCgeVL\nagJWEd8F1ii6WCRkBYw+sZTqdHgcsza4sGlYEbkIrOrjMrd6dP82T9htW9Bp7/p1dj75+oyr\n6CDs8kOkD0XcR1WpUWT2h1JqXuVccTTRhpn/2blsh8OvWJm6axvqbr5sKaY5xstQ2vk3/fNh\nJx/ddbGI/WwIX0UgsHxJTcAq4rvAal02TyRkJczpszvRblfiaiwe7xxAVMdFYE2gDIHlzf3b\nXGH3yUHxaXnqTkzdompintAj0oMi7qOq1CgyW0F0S8qK/ai4td3d6kxI2TKAjjJfPiJaruvL\nimmB/mTd2H5+X+oevopAYPmSmoBVxG+B9TodJxKxMsa2qU9FJ8780+f0hJNbyqje5M58gfV5\nfdolfasn929zhd23zYgadB85YdCexlg+3blF2cQ8oUek+0TcR1WpUWN2ONFpqefzdzZ6WdNe\noydetKuxMNq55UEqXW28jKOmVXrVgdROX78Ttf1u49QiWiLgQRaEryIQWL6kJmAV8Vtg9aVr\nRCJWyIIhBxRRowvf8TlBYeQQOuhDnS+wqo+n3a9K3+rF/dt8YXcW0Ymx6+a29CVqtsWxRdnE\nPKFHpPNE3EdVqVFhtmYI0SHrU9fVJRr8h7nwl9Hdij9xbKnandpv1N9rRsN1fSTt8JM+jRqa\nf9w1/Yk6XhO+ikBg+ZKagFXEZ4G1brtmj4hErJapZ+9AdNTsqtrjLCwOHbhJdxFYE4geGJW+\n1Yv7t7nC7sci2u53a7GqnOgVxyZlE/OEHpGeE3EfVaVGgdn1/yU6LP2K9rVr44qr5jSi852b\nltalBnsW0SF/6h/UoXt1vQNVmKvnUenmfF3IivBVJAydRJHZMPZNDj4LrEnUXSRg5Sy66rAi\n2vXGtf5mKWy8a/7HFVif16d2eobA8uL+ba6w+6jHfy6NL59N9KBjk7KJeTzg00EHN6lTrs1M\nv99CzrN2RfpNXgbD46Oq1Mg3+9X+RP906zBPE7VMWfFWZbM6rYav07cdRW2Mt63Nc1m6voLI\n398CwleRMHQSRWbD2Dc5+Cuwtu1dNksk4CAw9b/1qNGI333NUxjhCazqE2iHnzMFlhf3b7sL\nOxuNaKnjrScT8/CUjr83L95QYmuoQ35M3SDnWbsinSY/i6HxUVVqpJt9oRlR/61ue/xFVMy8\n4Xo8NfzWeGlO48x336f2Su8JX0XC0EkUmQ1j3+Tgr8B6kE4XiTcgzOvRiJrctNHXTIUPntC5\nJfaEjQyB5dn927UIrFUNqeEfjvdeCDuu0vH15sWxREVnjbl9aDnRvqk3W8h51q5Il8nPYmh8\nVJUa2WYfKqPSO913qSkmYjWwLxtY32jsl9VEi/JyIVvCV5EwdBJFZsPYNzn4KrBqDi+6QyTe\nwLCg53a0+2xM8O6EI3Q+r09n6QyB5dn92+4C6+2DyfrKHMcDYcdXOn7evPhlPaob+9K/4V9E\nl6ZskvOsXZEOk6fJsPioKjWSzT5cQo3+V8s+hnLajrG65lQ6PvagnaY03nz5nvv0Qo8IX0XC\n0EkUmQ1j3+Tgq8B6jI4RCTdIzG1XRke97meywgZb6FSfQI1/0BkCy7P7t/nXfl0yuHtrY7i/\nNWWtuLBzUTp+3rx4EZkSzeS3RlQ/5TIYOc/aFeku+doMiY+qUiPX7Ov1qNFy1oZH+p1xf3x5\nHtEJjF2mUV3rYTr70Ajz5d1Y//OR8FUkDJ1Ekdkw9k0OfgqsmiOLJomEGyymH0tFPdN/Iipg\n2EJnItE95muGwPLs/m2uwFpqyqbGw9NuSBAXdnyl4+fNi1ua0XbxnzoHk3k/VhI5z9oV6Sz5\n2gyJj6pSI9XsupZU/xXmlruIDrDvCdxyONHYzD1+aEw3WUsadTRf5lOJv9dYhK8iYegkisyG\nsW9y8FNgPUJHi0QbOG5sSQ1v+MvHhIUKptD5ogH9K7aQIbA8u3/bXWAR/X1uylphYeeidPy8\nefEVsiSayZNEZzu3yXnWrkhXydtoOHxUlRqpZvuT1YgcDBkwwDw9/Wczos7rzBV/GE1xx/WZ\nf6vRYfal8ZOomdm/e9JJuXuQC+GrSBg6iSKzYeybHHwUWNUHFU0WiTZ4PNJ/e9pjZrV/KQsT\nLKFTcyJtbz2cLFNgeXX/tss1WFt/emV4Q6JhKStFhZ2b0nHg9c2Lk8n6bcXkV6K9ndvkPGtX\npKfkbzUUPqpKjUyz35RRyYjErRQj7zLX1SVaYb4+XGzoqgETb7lgR6LSpzP/di6VrrAXf21M\nQ6v1p0tTvn74QPgqEoZOoshsGPsmBx8F1n10kkiwgWRe21I6aDGudtfZQmcS0d3WEkNgxRG8\nf7uWuwg/25nosZQ1gsLOTekk8fzmxaHOq+YbUonzVng5z9oV6Sd5mMsLRT6qSo1MswsohaPN\ndXGBpT/UNL5+txcy/3RNc7oq8eb+YtplP6KueYacLeGrSBg6iSKzYeybHPwTWFv2Lp0mEmxA\nueukIjpiCSQWS+h834D2XWDRxZAlCxZ8wvg70fu3a5sHa5bjjFMKeQo7N6WTwPubF3s487I3\n0WrHNjnP2hXpJblbyw9FPqpKjUyzrgJL/21Cm13q1t+jYjrrNHA3au1Y/VybxvUOnczsNh4S\nvoqEoZMoMhvGvsnBP4E1hc4UiTW43HZ0ER063+8BI/AwhM7LlMaozD8Tvn+7NoH1I1ET1vp8\nhZ2b0jHx6ebFSmeY+xN97dgm51m7In0kZ2N5oshHValRZDYMhK8iYegkisyGsW9y8E1gbdqt\nzgyRWIPMrccV0T53FPjMo3kKLOH7t1kCa+nYYa/Fl9cS1WX8Wd7Czk3pxGz7c/Pif4meTbw5\njOgzxzY5z9oV6SE5G8sTRT6qSo0is2EgfBUJQydRZDaMfZODbwJrErUVCTXgTDm9lHa8+me/\nkhcG3M8k8a7BEr9/m2V3INGF8eU3iVow/ixvYeemdEx8unkxRdf9PVXXyXnWrkj/yNVWvijy\nUVVqFJkNA+GrSBg6iSKzYeybHPwSWJvK684WCTXwzOywHdU9Z0XtmYgqKULHvn87CU9gid+/\nzRJYjxE1+c5evpCoW+Zf5S/s3JSOhS83L/YkejjxpiXRr+zdfHzWrkjvyNVWvijyUVVqFJkN\nA+GrSBg6iSKzYeybHPwSWJMjfQIrxoP9diE65eHCm7Xh5dh92wcQdTdfzbvkHFe/2nAElgf3\nb7OE3TZD+BwTm7mgZlKR84xTgvyFXXZKx/ObFy8jmhJfrqlLZZxm5uOzdkX6Rq628kWRj6pS\no8hsGAhfRcLQSRSZDWPf5OCTwNrSos4skUjDwZKrDiTaa/za2vMRKUanXGe1n7kqS4Eldv+2\ni7BbVp+oQedRY4cYB6TemX8qIOyyVDpe37w4jeiy+PJKotac3Xx81q5Iz8jVVr4o8lFVahSZ\nDQPhq0gYOokis2Hsmxx8Eliz6N8igYaHW08vo+36s6YjiC75Cyyx+7fd7L6xd3x90aAtGX8p\nIuyyVDpe37z4NtGJ8eV5RL04u/n4rF2RbpGrrXxR5KOq1CgyGwbCV5EwdBJFZsPYNzn4I7Bq\nDiqeLhJomLivR1MqOuMJzIzlO67CbsvMDns2LG12zGWsh8iICDsXpePnzYs1LajOmoT7KapM\n0rN2RTpFrrbyRZGPqlKjyGwYCF9FwtBJFJkNY9/k4I/AeoqOE4kzZCy6dD/j8/6OP31JJVCM\ni9Lx8+ZF/SqKn3X7qox2dJ6Vk/SsXZEukautfFHko6rUKDIbBsJXkTB0EkVmw9g3OfgjsM6k\nsSJxho/xJ5XSDpd/V3tmQOjgKx0/b17UVzehkoXmws+HUex5O7KftSvSH3I2lieKfFSVGkVm\nw0D4KhKGTqLIbBj7JgdfBNYnRfuKhBlKZpy9PZV2fq325ICQwVc6ft68qOuzjUP+68aJFzQl\nOtW6sl7us3ZFekPOxvJEkY+qUqPIbBgIX0XC0EkUmQ1j3+Tgi8AaQJeKhBlSHhqwB9FR91X5\nkVGgEL7S8fHmRYPp9e3Lzc6yf32W+6xdkb6Qu7X8UOSjqtQoMhsGwleRMHQSRWbD2Dc5+CGw\n1m/fdJFImKFlybVHFNEuI3/yIadAIXyl49/NiybfXnpw47otuyTm15L7rF2RnpC7tfxQ5KOq\n1CgyGwbCV5EwdBJFZsPYNzn4IbBupy4iUYaaqWfVp7JOz+GewkjBVzq+3byoHpFuEHEfVaVG\nkdkwEL6KhKGTKDIbxr7JwQ+BdUDJTJEoQ84D5+9G1HrCLz4kFgB5iHSCiPuoKjWKzIaB8FUk\nDJ1Ekdkw9k0OPgisFwpqjgYGS248oZTqtF+Mq7FAiBHpAhH3UVVqFJkNA+GrSBg6iSKzYeyb\nHHwQWJ3pBpEgI8GcPrsTNe339Fbv0wuAFETaf8R9VJUaRWbDQPgqEoZOoshsGPsmB+8F1s91\ndlsiEmRUGH9WY0Nj9VzAmKYIgOAj0vgj7qOq1CgyGwbCV5EwdBJFZsPYNzl4L7Cup74iMUaI\nR0ad2YSo7NSxH3qeZAD8RqTpR9xHValRZDYMhK8iYegkisyGsW9y8Fxgbd2t3nyRGKPFknEd\n9yKilv0f+8vrRAPgKyLtPuI+qkqNIrNhIHwVCUMnUWQ2jH2Tg+cC60E6QyTECDJj4LH1iBpo\n0370OtcA+IdIm4+4j6pSo8hsGAhfRcLQSRSZDWPf5OC5wBpcNFkkxGiy6Ia2uxIVHXHNm9Ve\n5xsAfxBp8BH3UVVqFJkNA+GrSBg6iSKzYeybHDwXWOtvFYkwwtx57oElRDv1nPer1ykHwAdE\nGnvEfVSVGkVmw0D4KhKGTqLIbBj7JgfvL3IXCTDizLvslEZEJceMegczvYOgI9LSI+6jqtSE\nz2wYWoIis0iNL3YVmeUBgSWXJeO77ltEtMeAZ8LzzBRQkIg084j7qCo14TMbhpagyCxS44td\nRWZ5QGDJ575hJzQgat7/RVyQBYKLSBOPuI+qUhM+s2FoCYrMIjW+2FVklgcElhIevrbN9kQt\nrvjY8/QD4A0i7TviPqpKTfjMhqElKDKL1PhiV5FZHhBYqlg08tR6REfd8bvnFQDAA0Qad8R9\nVJWa8JkNQ0tQZBap8cWuIrM8ILAUsmDoIUVUt+PjuBwLBA+Rlh1xH1WlJnxmw9ASFJlFanyx\nq8gsDwgstczoWU5Ufjl+KgRBQ6RZR9xHVakJn9kwtARFZpEaX+wqMssDAks1S25uU5/oH7et\n8bwSEhCIW7XroBZEGnXEfVSVmvCZDUNLUGQWqfHFriKzPCCwAsBDww4torKz7tvgeTH8RiDo\nEJotLASSHIbPjjAO4uEzG4aWoMgsUuOLXUVmeUBgBYMZvVsS1auY8Yvn9fAVgYhDaLawEEhy\nGD47wjiIh89sGFqCIrNIjS92FZnlAYEVGCZ3KicqPmrEs395XhPfEAg3hGYLC4Ekh+GzI4yD\nePjMhqElKDKL1PhiV5FZHhBYQWJyz9bFRHWOHjT7g62eF8YPBGINodnCQiDJYfjsCOMgHj6z\nYWgJiswiNb7YVWSWBwRWwJh3lba3IbKo7mFdRz3wznrPy+MtAoGG0GxhIZDkMHx2hHEQD5/Z\nMLQERWaRGl/sKjLLQ1Bgff5WBhOBKDcPaPuP8hIyabL/aV0HX3/HvCdezsx0VuRR1Krsjy4Q\nZJ7xqDSrCIFoRcKVYvYTVgNcFSwfA2M2hN0te7t/MBpCjRQf88iIF2azt8u8+eltGT7mkxIP\nzAa+b/6U9YepoMD6J4Fgk0dRv1ftMygYjmI1wHGqvQLyeZnRELapdioYPMvqJCWqvSpkrs/6\nw1SmwKrfoEGDYr9CzqDIsFZfmjUqNczVlWeujmGuNJsd8yiqNwIraw+9RXId4hTLbW0JDLMN\niuSbrWeY9WSE91FgKUpNXa9Skxtlhtky+WZLPOtu/gkshamp58mR/BNYZmrqeHGg3PAuNTlh\nSoIGnhwpmALroCOOOEJeWusa1g6WZo2aGeb2lmeupWFup2x2zKOo3gisrD30lh0Ns3vJN1vf\nMHugfLN0mGFXgYzdzzDbyIsD+SiwDjV8VPC5+jfDbBP5ZnczzJbLN9vEMPs3T47kn8AqN3zc\nzZMj5URjw+y+nhzJP4G1q+Hj7l4cKDcaGWb3k2+2xDB7uCdHkiaw+h8Bgk0eRV2t2mdQMPRi\nNcA5qr0C8lnBaAjVqp0KBm+yOsmRqr0qZO7K+sPU+7sI+fzb8GylNGs/GtbaSLOmP26Yu0ye\nuRsNc/fLM5cHNxgezpVvdpFhdoR8s58bZivlm9WPNewquNW0n2H2Vflmc+Ikw8df5Zs1v3O+\nKN/sHYbZKfLNPm+YHSDfbE5MM3y8Tb7ZVwyz58s3mxP3GD5OkG/2DcPsufLN/mGYPVqyTQgs\nj4DASgMCSwYQWFwgsCQAgcUFAosLBJYvQGB5BwQWBwgsGUBgcYHAChoQWFwgsPwGAssjILDS\ngMCSAQQWFwgsCUBgcYHA4gKB5QsQWN4BgcUBAksGEFhcILCCBgQWFwgsv4HA8ggIrDQgsGQA\ngcUFAksCEFhcILC4QGD5AgSWd0BgcYDAkgEEFhcIrKABgcUFAstvILA8AgIrDQgsGUBgcYHA\nkgAEFhcILC4QWL7wxccff1wlzVqVYe1zadb0dYa5H+SZ+8kw95s8c3mgyMO1htkf5ZvdbJj9\nUr5Z/VPD7jb5Zr81zP4p32xOfGb4uFW+2ZWGWebTef1ltWH2F/lmNxhm5X1pzo9fDB9Xyzf7\nRwhSs0ZNav40zH4r32y1YZb5dHkfkSmwAAAAAAAKAggsAAAAAACPgcACAAAAAPAYCCwAAAAA\nAI+BwAIAAAAA8BgILAAAAAAAj4HAAj5xuaZ9L8POlZqW7S2/Oeyayg2a9lHaKlnhZZCf4Qma\n9qYHxoOUiOyx6553+QUIVnY8agWRQ0LLUNH4ABOZfVKmwFqhORjqr60fpg/q2q7Xdf+TMUeQ\nvLg+6qdprzhXyAwznUuMaN1m/vK+Gb8bT3JllwE3L91sr/VcYG1bPn1on/Ydeg6/+4P4Ktm6\nwoy04ybnmh/NuKvyN5zdR+tITZuVfHeepj2dePNXpaZ9JTMR72rp5D1jjx8CK8M99hR/XmVn\n29v3XHJex8quF415TGD21NwFVjLMtt0uvuOD2v/AZ7JMe47k0zLc+qhHJvKAMXjJw0zJWMf7\nhzXtJe8tCDfHqAqsV+QJrAWVtpn+q3y1E0NWXFtnVGipAktqmGl8Zdq9x2WHSYMGeTyHXerg\n2mO5tdZrgfVs36SNwbaaYOgK78NzEIt0qXPN7MTgnZ/h7D5aH9O0QYk3PxgWxyTevaFpvWvc\nEnGHtiB3t1xQLbBqiSfLT3qPmskz/ZKGKm/NeyJTEYEV40oFk5m6+aNYYPH6qEcmcoc1eHkN\nv2PEUvJW8r2fAkugOfo6dKchU2A9pWnXzY3zlJ+WHjFy/38LHrv3XE3r4/+sypLi+nqgprVL\nEVhyw0zjdk3rpnXbItOk0bu6xZI8+/ZhhtZs+2FsrbcCq2qs2XH7jrlzyo29jIWKJbG1DF3h\nK0akFdrljhU1fYwVIh8m2X20rjbs/h5/s8SIv2t1/N0UTZvsmojB3gusbvek8Ee+h8pLYNUS\nT4Z7Pp5F3jzGbJT9Rk+ZNmGI+SXr3J/zPFBeAsvqc3NnTTzfNK34+RH+pD1PgZVLH5UhsNiD\nl9fwO0ZM/py3OfHeF4EVqOZYKzIF1kJNe1aKoZ87aJXLzIXNozTN/6dQyYnr0XZa+0cmOgWW\n5DBT+aujNnCGpr0g06bRuy6ML39tfKW3RjdPBVbNdUavHfWVtfzmRcab581FBQJrSMoPsCs0\nbYAEgaUbET8TX75W66xpiUdLGPl+3S0Rmyu9F1gX1r5XVuQjsGqLx0P3aqP6avNcov3YlbWz\n2mraRXk+AygvgZUM8zWjQdycn2Wv8CfteQqsXPqoBIHFGbw8xqVjGCnprWn3Jt77IrAC1Rxr\nRabAmq1pb0gxNFXT7McMb+qhtf3dfWdx5MQ1VLvoaz1FYEkOM5UnNG3+F5p2hUybKb3L/LYU\n+67kqcB60Pje90ji3ab/07RO63QlAmtGhTYzuWK8dt51MgTWjORFFFvO1qZWxluY/pOmtdvk\nlogPtWgJrNrikSiw5mhapeO3qPc7Jjp+rggKLH2Z0T3W5mfaIwIlsHLpoxIEFmfw8hiXjmGk\nZGFPrfKr+HufBVYAmmOtyBRYUzRNyoV327pr7eK/JtynaQ/7bU9OXEOnGF3XKbBkh5nKIE37\nSe/vvFqw+oWb+nVs23nQVPuhx4lLCTc/cV2fsyu7D58f7+3GWFOtf31rn8qOA2fkMgKk9K6t\nhsD6xT7at2w7Bh9MvqDj2Rfc/lXCsD3IGULiYsbTijd0dH4B0/U/e2jdX9djuuIT/atJ/Tp0\nGjj7j5Tw2LF8M+3izu16X7Ew8cNtenJY+6RGuvASrVfi97mNHbTpVzsvcl/fU6uIn1waq2lT\neIdcPfWCDl0Gzvo1249WY/TsVpPw4bUh2qX2hsc07f9cEjHXvihiZK2hZQ3ro5QddmqRGfYz\nhDtV1AAAIABJREFUBBZjh9QqpsaTrXuMNmg3k+FaRc2m6T3azc8q9FR+b5/2kfbswHvejy+/\nP7l/58qel85Zk9ycuSrXVuAgLczkXTZZGBYJOkt/4jAL+vbIPh363WY++v3D0X3bdb8ukTTW\niMRpGa6ecPuoRyZygzd4DdC0eEUMAfip+eqoTGqRxDqGkZLFL2raMHsEcQqs1AOP1LTktTRX\nx8+0pRtntB92c3SLgWEqeZF7eotlpIo1dOeATIE1TtO+lmHnE8eJlY807Sq/7cmJK2bCKbBk\nh5mCYfyy2I+jd8fX/DY4cemhtS7ejL/oE1/fzR7hjDa/6Ym21rpzcrjcMKV3bdK0trF7eOIj\nV6YdfeMN9poK6964xCBnyIV+rFN+8zWtT8qvL++/HxtAjeN88YR9R8G5vzjDY8WydUrCk1c4\nyWHskxbp/IWOD8OnNO3jK1LuIjS+vA20Lj9524hlE+eQyztaK7p/mOVH67au8XFFv1fT1k7T\n2toy6npNW+KSCOe46x5a1jA/ShlhpxeZYT9NYGXukFHFPAVWZhu0m4kxsm++SnO/K4THHMNS\nNXvTX6Pi9tov5q/KuRU4SAtzlNUMsjMsEnSW/lgwC/rXLHvVt/oDdgN52dqYWSV+y3D1hNtH\nPTKRG7zBi6EaHJVxFkm0Y7xrfhMYaTcR3SGw0g/8vPV1Lca6ttbNmJnGGe2H3RzdYmCYin8y\nZbZYRqoyh+6ckCmwrhW4DygXHnMI+aoKrbPf9mTFpacKLNlhpnBL7Aaa3yuTl7kP17Shj779\n/ktTjNH8UXOF3YzXdTc3LH9/6RBN62TdYW603We1fgtef2VWJ027MXujqT/Aa9qVsQV75GLY\nqTY63XlzX3zq1kr7N5X4IPdahdaLed/lJZr2AGu98Rm+MObxDMPjUbojPFYsYzWt1wNvf7ns\n1rZa22Xs5DD2SYt07i8V2k3x95dp59UMT52mYaJ9WqOqn1bxMeeQq842hPcrX34wv1uv67L8\naB2b+PlpoNZff1XTrA+lrR3NM5b8RGz4ydBj9/700++1hpY17HMVGWFnFJlhP01gZe6QUUVn\nPNm7x2iDdrWMMeIZrf3wqxflkQhjhOf8WbXRJno/9OFXy6cYwT/OW5VHK0iSFub11kGzMywS\ndJb+WDAL+rg2YumyxecaWuA1bdgTy54y0tgjps0ZVeK3DFdPuH3UIxO5wRu8GKrBURlnkUQ7\nhpGSeealwZ1sewmBlX7gTR21yvh5qsc1bSJrH2b7YTdHtxgYpuw+yWixzJN96UN3TsgUWJdp\n2obnr+9V2WXQvfneBZMV92jaY4k3PQ2jfhrT5cWlpwos2WE62dDB+tYxKnEd5TeaNtjSWt91\n0nqZ54jtZmx85bkitqFmTFwRGn/VeVRs3Qea1pbxSx0HZ+/6qrdWaekKe+Ri2HlC0y6NneR4\nv1KrXJ3c9ZMOWlfm9RCbjJ7GPBFs6IpO18eGzk8qtLaxTNvhMWIxvjMNsoqxvK3WexMzOZn7\npEc61/heVmn/vvCD+fbyVIG1sY/WwWxuxvd06zoQxiEnaNoNsdP1P/fQsvxoNY5ySWzhN02b\nqm+o0G6NvXvfTj0/EQviv2PVElrWsAVWRtgZRWbYTxVYjB0YVVyQxzVYjDaYbCaXDM3vMsmN\nFZq2kr3pEU3rbzWRNzSt4++cVXm0giRpYfbVtOVZGxYIOlt/YnAKGjuhuaq9VtFjnBn+pj6a\n9q65ilElfstw9YTbRz0ykRPcwYuhGhyVcSwKd4xYSswdbrDexwVW5oHHa9r/7D+6wioL23h6\n+2E3R9cYMk3ZfZLRYjNTlTl054ZMgdVf0y6yT7ZVzs/d1ayZ4LwS/GJN+84/UzFkxaWnCizZ\nYTpZZN+2uCzxM+VLmjbb3rj0/qXmKGM344UjB9tf1D4x2mpswfiU7r7RWjcwl+vXjN7VY7HJ\nwhlXVWidX7PW2iMXw06/xGUPkzRtfmLXH7ppHT/JOLjJt5rWjvljjOFxD9tj4zvpZ3oyPEYs\nF2kV8Vrcat2Ul5mczH3SI51r/pX93W2WVrE6XWDp71Zo1+j6ykptoPW7QOYhq87WKmzJ/1S2\nH62GpKqIDVBLY7duDNXOia2eaZ+o5yciMe7WElrWcK62SQ87o8gM+6kCi7EDo4r5CCxGG0w2\nk3Z5nub+StM6sEeVmvNsyWBwk6YtZK/KpxUkSQ3zbcOXTdkaFgk6S38s2AW9wOrJI40PT+s7\n3D12f2JUid8yXD3h9lGPTOQEd/BiCCxHZRyLwh3DEljbjD2tsTkusDIPvFwze7HJbxXaOTVc\n4+nth9kc3WPINGX1SVaLzUxV5tCdGzIFljk1R5cJCxZPNX+fnuOfnRudo8glmva5f6ZiyIpL\nTxVYssN0cqF9//62XnFhtyz+i1GCjPly/9S0nrEFoz/cZa8blzY1vSvOWebaTkm7gjnTjvHl\nY6C9auUzb/4Q33VtX63d22wDxre0XswNNyR/jjV07TJHeJmx/KAlZ8d5X4v9hJCRHMY+6ZHO\n1bd0tf2v6aON0DMElnkX6Qs1w7V2X/MO+X58cNf1v9pl+9F6mT0ojtUq/4qdKIqdPRmkae+5\nJyI+7tYWWtZkTClpt6bUsDOKzLKfIrBYOzBaZD4CK0mirSebyehsA8801Ie9xZBe58al1yvW\nVx3GqrxagdN6MswPe2ja9KwNiwSdnT8WnILav3RPT9wX+7+UxxSYJKrEbxmunnD7qEcmcoI7\neLEFVrwyyUXxjmEJLPPk9jkxVWYLLMaBt/WI/3C3WNNm8I2ntx9mc3SPIcOU3SdZLTYzVZmf\na7khU2B10LQ7Y3nfajR67Qvf7Fyvae8k3lzhmMrHJ2TFpacKLNlhOnhP0y6ylmbGO+AGIwsT\nvnHulCKwtm3888+1mn2h2A3xK3tid2BmP4dY6kdu91nWCfYUgeW0s9T+cT+JueumIYmLXTMw\nvuz0Y24wPH41zePkJ2daLEsTd7cZn2iadr7OSA5jn/RI58akROwckfFF7TmGwNp8gdZjYWK0\nYxzyMUcCBmb70fqg9Uc13eKfzuY39N8rtE7b3BMRH3drCy1reAIrI+zUIrPspwgs1g6MFpmF\nwEphQmJLSltPNpN8Z318w/GZ8nbCnHlV7v8cM+2vMgzWMFfl1QoSmGeNF8SYP22oYXfgpqwN\niwTt5k962jkFtU8h3Zeo40tJsaCnVYnfMlw94fZRj0zkBHfwYguseGWSi+IdwxZY5q5TzVdb\nYLEOPDU+C/6l1lc4jvH09sNsjrXEkG7K7pOsFpuZqszPtdzwW2C9fpuFGeHGPzfGV49KfWaR\nt6Sc2hnm/6kdWXHpLmewJITpYEzixPiPmtbNGlKWmlNMXzjl5fXxnRJC4P1bB3SrsIbDhMCK\n3+c3NZfT5ImvLzXrvn5qkNG7YrYSAivdzn0Z31iNXb8aaZ8NZvGREQ1zg+Hxh2keJz8502KZ\nn/oJ0M7clJ4c1j5pkc6Nfce6w3w3Vuu0mSGw9E/M23suq+YecpYjAddn+9H6tRa71OAz6/e2\nrR1j9+A8G/+KyE9EfNytLbSsMSdtnuMknryUsDOKzLKfIrBYOzBaZH4CK6OtJ5tJvjMCOc9M\npAqs++xv5CY1xrqNzFV5tYIEaWGOip0LyM6wSNDZ+mOmnVNQe762uZr2pLX0in2+g1Elfstw\n9YTbRz0ykRPcwYstsOKVSS6Kd4y4wNrYS6swZactsFgH/sS+EXG1fX6VYzy9/TCbYy0xpJuy\n+ySrxTJSlfG5lht+C6w5dqRppxI+txWjL9zi/NlpoPsTiT3G17j0VIGlLsy1lYlLO81TZ89b\nS+9dFqt0xVUvWRmwP1o23eRo8AmBFZ+tMj+BZVI93r5rz/70zLRzV8ZdNcauw42tV/NK9L3h\nPvO6U4bHyU/OtC33pPZxLXapUFpymPukRmqOVIO1zlWxCXYm6yyBpU/TkpfeMQ45zRJJMcZm\n/dHax3yosz7P/mZ+rdahKnah6NJaEhEfd2sLLWv4v8E5w84oMst+isBi7cAIKwuB1WWqA/Pb\nPaOtJ5vJe3llQddXalpl/FbdldbX1UstgTXdUV/zPPoa5qr8WoEjTJuKLgOm2GfJszMsErSb\nP+lp5xTUnm1kbuIa57jAYlSJ3zJcPeH2UY9M5AR38GILrHhlkoviHSMusMyThRdvSwgsZtD9\ntEpzBpiFVlPmGU9vP8zmWEsM6absPslqsax5sNI/13JDkcCqaa9peUrC2pnhvJ+ym6Zlf5ua\nML7GpacKLHVhPpDaiIfH1382Z2jsS9tlMfVlf7TcrGmd5n251uhuVZ4KLPNhPZo5iaD96Zlp\nx+hs96Ue4ErTu46cu5kNtp2taStYG3IRWPcarf19B/aplpTkcPZxRmqOVI/F1OuT1s+/mQJr\ni3lvRXyQYBxyqmMIGZ31R+sdmvaQacWacHSxpr2t1/SIP6KwdoFVW2hZwxVYKWFnFJllP0Vg\nsXbIT2BluMdo65nNJFe2dsj4+X8xW2D9ylyVXyuIw6xCdoZ9ef4Bwx9OQbkCi1Elfstw9YTb\nRz0ykRPcwYstsOKVSS6Kd4yEwDInTliYEFjMoO+zDjfE/q5ei3GHBcag4B5DuimOwPqVnSo9\n/XMtN2Reg+WkazISz3nKMSXYRk3r7pcdFn7GpacKLGVhmrdfpOC4f3HDK+Mq7UlPrWb8raad\nbV8itclbgaWPsE6rWCMXw848++x9EmPXige/bh+f4CET45C3p67ZzPOYK7Dmc2dWTCaHv08i\nUnOk+qO9ufelVtSZAssQF70SD6ZgHHKm48eh/8v6o3WZOTPfX5X2BQrfmYf9RtOGWhtrF1i1\nhZY1XIGVEnZGkVn2038izNjBG4HFauviAku/KsNhW2Dd75gJr9roh5uYq/JrBXGYVcjOsCyB\nxSkoT2CxqsRvGa6e8PqoVyZygzd4OVTDSDeBJd4xkgJr9dna2T+bN5u/xDmweTn6dbEncF2X\njXGHBVeBlY0pu0+yWiwjVRaOz7XcUCSwqlweOy7Ml1riAR/mRQvX+WWHga9x6akCS1mYyzWt\nz2MJRiaubLBZ2dO6TsdqxkYfu9Xe8K3HAsv4jmE+ecsauRh2ns+YxfTKmCRbomnn/qEzeULT\nOqRMvPJFp6m/sD3mCqwX3O47sZPjuo+eHKnGahW//2QPaBkC6+MKbeR37bUB1u9HjEM+omm3\nxJf7Zv3RurmD1mHrW4mPpXO0IWbG7IGzdoFVW2hZwxNYqWFnFJllP0VgsXbwRmCx2roHAsv4\nJtUltb3aAutpx21oRivpyl6VXyuIw6xCdoZlCSxOQXkCi1Ulfstw9YTXR70ykRu8wWtgciLs\nwW4CS7xjJAWW+XvcNebZvZc4BzZngKn80/wx5KVsjDssuAqsbEzZfZLVYhmpShD/XMsNiQLr\njdtHPhdfNgTBAN8M1ZybfPTxlOQsY34hLS49VWBJDjPJ9c5zq/oXRttM1ZTzrRlQrWZ8T/Ip\nifM9FlgXatoLuuPihnQ732laT/tn8+9uu21JYlczAM790Zu7adq1jp/aNw20roTMRWAZnbUL\n/9IKKznu+yRHqhVGXRdoFb/aBlME1ubztY6rzTM4M2J/wjik0Rovthd/rcj+o/VaI6TZ9oMe\nzdml2m4cnbg5tnaBVVtoWcMRWGlhZxSZZT9FYLF28EZgsdq6BwKrqkf6rTOLLIH1jab1jjfW\n563Zfhir8mwFNswqZGdYlsDiFJQnsFhV4rcMV094fdQrE7nBG7yGJm6zNuci5Qss8Y7hEFjb\nLjZG56WWpmEH/Yi5cVDsCrbajTssuAqsbEzZfZLVYhmpSjLfObN3tkgUWIZi7G9HWHNFcvou\nH5idOE/469na2RvddxZGXlypAktymAl+qdAqf3O8H2LeoFwz65px8RXG8P+0Hm/GsxM/UPxm\n9P+OsSVvBNaHmqaZEyhaIxfLzoWxuTJNZlsTlNkftOt7xR+NkIFRTG3Ctvi7DZdq2nkb2R5z\nBZb53Sf+eNH3z59uGGQkJ2OfjEhjI1XNedqYy+3nfqULrKmxe5O3DdAqLAcyD/lnpVbxo7XG\nvLsm249W43vngqu0/vY74zvh2z0TIsZVYM3n+JEfHIGVHnZGkRn2UycaZezA/hxxfUgxwz1W\nG/RAYJmXDGt3Oj453+hsCaya8zXtLXvd1dbNcoxVebYCG2YVsjMsS2BxCsoTWKwq8VuGqye8\nPuqViRzhDF7GF6YXrVWG0HARWOIdwyGw9M8qtB7/s08aMYP+vUKb+LM9YXWtxh0WXAVWVqbs\niUYZLTYjVYyhOzckCqzNxhexm2Knuqtu07ROeVwwli3rumgVsTxtuMx8OJLPyIsrTWDJDTPB\nnLQfZZ6Ize12RWJCq82DrKuyrGZsfDhcFOvzay4e3F3TYnnyRGC9a6T9WnPBGrlYdp7StD6x\nM75fdNAqk1osNht4h2/YNiYYHWvg8ti1kdWv9jPq+QXHY77AMr4OdbZO+KzqZz29IjM5mfuk\nR2qNVPdr3SrtmWjSBNZ7Fdql5ofupxX2Q48Zh7xe00bGkvJZx7bZf7SuNhLbMfG777oKbULy\nFw9+Ip6I38lSS2hZwx5LM8LOKDLDfsajctJ3YIT1RMadObW6x2qDXggs/U6jUQ5915JYVcvN\nx9r2X2P7eL413hifrT03cVbl1wps2FXIzrAsgcUuKE9gsarEbxmunvD6qFcmcoU9eBly74rY\nuk86dnYVWMIdwymwzEZ7QfJROYygr9Z6PJJ8kIe7cYcFd4GVjankiJXeYjNTlTl054bMa7CW\nGd2765RHFt/ZS9MqXvPT0nMVmjbigSV3Gp/Bw/w6IZtESlwfzTUxajzGfLVOQMsN08acvD1l\nInTzbr6V+odGEq55fNn7r913nj2Bm9WMNxlf4Ua8tfK9GZ3afzNc0+74do2QwOoWS8Pcu8eZ\nd5L1jn3KWCMXy06N8VHU5e5nn5hUmfawZ/PC3/6bmTaqp5iX7Xe7bvKUUeaT23pZ92/lJLDM\nacLaT33z41end7IvO81MTuY+6ZFaI9Vqo8RdrauNUgXWX+dp7azuPi1+gMxDfmXYHfLE8pdu\nb9dnUg4frQO0ttYzvmIM1iqTs4vyE2G43G7Osw/W1BZa1pjVvieFJaywM4rMsJ/2sOfMHRhh\nJePhupc+1LPaoCcCq2a22Si733DHXeOu7GAuTrDOV9cY37z7PPLJl6+Nr9Davs1blWcr4IaZ\ntWFZAotdUJ7AYlWJ3zJcPeH1Ua9M5Ap78Fpp+HfF0rdfuq1y2FRXgSXcMVIE1kbzCSf2ZU/M\noJ/RtHO18xLHcTXusOAusLIxZfdJRovNTBVj6M4JqRe5v94tft9Zj+W17y3C0x1sQyNkTF4g\nI64FKfftWU9fkBymhTFMnZfauW6NDVwvdUx4NzqmXexmvKydtbLzB+ZvT7FH9AoILCf/Z93w\nYY9cDDv6plH2rhWznLsaKvGS5EmZdF69IGGhYuJaa11uAmvb7RXxA0y37sPOSA5jn7RI7ZHq\nantS5HSBdVtij03n2qe6GYd8ttJa0f2TGfHng2WBsa/WbpPzXWX8B2h+Iqqt53Fuqy20rMmY\nyd28k5ERdnqRGfbTBFbmDoywkvFw3csY6hlt0BOBZVgblkxDxdWJx3duGh1f2W05f1V+rcA2\nzP6hNivD0gQWs6DcaRoYVeK3DFdPuH3UIxO5wxq8EtPqDPx1pn0ahyOwRDtGisAy8x0XWMyg\nN5qfXslHy7kad1ioRWBlYSp+kQWjEWemKnPozgm5dxH+ufiaXu079Lnu8Tw8zY1fZgzu0r7P\nmNf9tmMhIS6mwJIcZoyrM6aR+kzTuhjDytoFI85p37bLoDvsth5vxl+N61159qD564y2P6tP\n+wte8kJgtetx2d3xuYHiI1emHYO3J/Tr2OH8279O3VXXf+6U+LU9g21vTx/ap32Hc655MPGk\n0dwEluHLtIFdKrsMuStxjUV6clj7pEZqj1QvJq4vTxFYb2nagPhJy+Wa1nsD55Df3da3Q+cB\nM9aYd/W8wIk3A/PqtuQdyWbWR9SeCP2Xm3q0P2dkTW2hZQ1LYLHDTi0yw36awMrcgVVFRzwc\n9zKH+sw26JHA0vWP77uiX6e2nS8aszTlIoQPb72wY7teVy/a6LYqr1ZgwZ0sIwvD0gQWs6Bc\ngcWoEr9luHrC7aMemcgDxuCl629d37Py7MFLNpn6ISYlOAJLtGOkCizzNu/EVOysoMdoqdNj\nuxh3WKhFYGVhKjnRTWYjzkgVa+jOAVXzYAEAAAAARBYILAAAAAAAj4HAAgAAAADwGAgsAAAA\nAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACP\ngcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcAC\nAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAA\nAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAY\nCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwA\nAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAA\nAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+B\nwAIAAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIA\nAAAA8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA\n8BgILAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgI\nLAAAAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAA\nAAAAj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAA\nj4HAAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HA\nAgAAAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAAAAAj4HAAgAA\nAADwGAgsAAAAAACPgcACAAAAAPAYCCwAAAAAAI+BwAIAAAAA8BgILAAAl7Vksla1GwY/xzzZ\npNoNAADIEggsAACXiAmsqg8fvnviDTeMnb7onb+8cQsAADhAYAEQSV6ndBq1PLTTbe/kdpQo\nCaw3rjq4JJmNkn9c94FnzgEAQAYQWABEkkyBZbH/tFzO3URHYD19dGYuKt7z0EEAAEgBAguA\nSMITWET7LMv+KMERWKtKTDbn+debezBTUTbVUx8BACAJBBYAkYQvsKj0nqyPEhyBJcQfx8Rj\nb3706W3/fdJexfH3N6p2DQAQVSCwAIgklsAaMjHBmCt7HWjripInsj1KRARWTyvuNrN+slf8\n9Xiv0tiq4qxTAQAAOQGBBUAksQTW66krv7+mfmx149+yPEo0BNbCWBS7P5ey8rPDY2v33qLI\nKQBAxIHAAiCSMAWWrn/eKrZ+eJZHiYbA+ocZxI5fp63dZP1uOE2JSwCAyAOBBUAk4Qgs/esm\n5vrtsrwdLxIC6/tYEHdkro+dzvuHAo8AAAUABBYAkYQnsPQxsQ3/y+4okRBYi2LXnf2euWFo\n7CqslfI9AgAUABBYAEQSrsBaU2RuuDRt7fdPzJl409QFL21MXZ2zwPr1yTtuGj39VZfpFNYv\nnT1x1IRZr/zJ3+Xnx26/cdzdT62v1VrNBw9OvGHi7Nfcr6OaHLsCi7Hh/VMG3b0sLeJajsnJ\nU5L1j0688e4UzeYe8PdP3D1x1Ngpj3y6zTUGAEDogMACIJJwBZZ+kLmhg3PNl4Nax6ctqHPK\nBKd2SAqsjuyf04abq/eNv3vsJPs+xcYXfm+8fdxc7Orc/efrj4jPpl52yuytji2rzXUnm0sL\nTyiy9ig+2XGLH2Oi0ffPb24fa7v2L7ukYry5S0uXHbI9Jj9P35nrTjfU2U3bm0vjsgjYZFn/\nneIHpCZdn87ORQBAOIDAAiCS8AXWv80NJyXfr7mwlJzsckdNYltSYC2NLX2YfrC9zbWjreXf\nuzuO0uAeXZ9hLlyQ3HnrdQ1SLO37fHLbH+aKww1vznDu0bsqvj1DYK3tW+Tc8z8/c1Nxt7k9\nqzlKXY/plqc15opjdL2/tSkusNwC1vVVnSiV477MwkcAQEiAwAIgkvAFVidbyth8/TdKp0/i\n56qkwKrZx1xK/2VxeUy7WLNL/XFY6lFu0ieaL0MTO/92Qrqh4vGJjdtiAkRfs3/qHj3j29MF\n1let047VnPvcm6dj26fXnjPXY7rm6U/z7QH6YnvDuCwC1r/ZJ+OAjVn1AgCEEwgsACIJX2C1\nMTe0ib/7apfYjqXHXXHbveP772d90HeKb3VcgzXaXNol7Uqhy8yVZ8UWa860/nbPAWNuu/wQ\nc2nR9eb/iRkhbAFWdPzlU+4Ze05La+9bE4cyf1zcvfp04//tzjjv4l6H27+sPWpvThNYq/ay\nNh9ccW7nQ6zfJZvzzv/8ETvz1Pyj2lLmekz3PFWb71rqcXU4LouAt1nzcJWdeOHIMcP7nFAn\n9m4X/nk4AEDIgMACIJLwBda+5obu9pvqE2P7dfjKfv+4NU/WHPutQ2CtKjMXH0891p7muodj\ni/NiuzabZ214+QCinQeba0bE9+0S2+H/2bvvwCiq7Q/gZzcVQgiEvqG30Am9I70XUYrRhLMU\nAAAgAElEQVRSRGlKERAFBGmKFOlF6UjvJSFrf+pTLE98v2cXuyBWLCi9JvnNzGY3u5utycyc\nKd/PHzJls7n3zHH3ZMq9fbJLloxDNnE1wnWOKEZYK/40UclNjirqdG9yrwS9Cqz20ur9p6SV\nH+6V1trkXLLz1N9RLB32szuU9wwSJ6k8LP2a8J+2yw8dWPtmCB3eIBVfjziHfP1rtlRijQvS\nRgDQDRRYAIbkt8ByVCrLs9dWS2sPue2WTs4U+9Ox5v4U4Z3i4gCP93pPKlyk5+1uST9X6CPn\nrkuthTX3Aus56a3muv0m6YLcbc5VcVCqmCJU+2fnhlttxf3Ws+7NdhZY26XqZLfrvZ6U9u73\nE4uPs2+eanP4up9XBH3PIHHKihVX7qP453JeEaTDUu/mu/3+l8VWRv8ToIUAoCcosAAMyW+B\nJV23o08dK7fKiiut3E/9nLC4FWDuBdZL4mKMx3BSU8RNU6RFx41O63P2nS/rqGqcBVY9cWWY\n+09/IZ60ImdJEie9uujPOfsdXch+ktCjwMqUzh+53xAmnX1q5i8Y8ylb/MCNX/l5TcD3DBan\n7PLQ4j68WOAO3xIvgcZ6DN0gRfOgvz4AgM6gwAIwJH8F1umi4vbk7DW79Kr/ebxikLipnmPZ\nvcDKlG5Rch8QPbO8uMXxZKF0OdDmfoboqEeB9Ya4nPC7x28aJ24bnL3iKLA8Jq5JErcsdix7\nFFgviMtx7hMqOuq7M/6i8RDlKNlvxX99DDoV8D2DxSm79fe57Q7S4V/Exaoee7+6Z86zr//h\nrwsAoDMosAAMyU+B9ZN0XsV175D0RGGK50scj8I5yiaPgUala2ZN3V75rtsG6Rm7Bz3eKNm9\nwBojLo/2/E2fitsKZ4+fIJUoxTwGupIGlMi+LOdRYI0Sl+9xf+mtQhRVuo7/kaR2FSN38d1W\nn/J6RcD3DBan7ALL/T76IB2WRs4q4re9AKB7KLAADMlngXXxGUed0dB5Bke68rXI80VXpbGb\nHBf7PAqsX6RbmU7mvHJSzjknaZwCSvd4o6fcC6xy4rL3BD3SxuzxPONyFTiOEz6jHMseBZZ0\n5my7x2t/DjLu+4UnE8lTnYUeI9QHfM9gcXK0vmauvvnv8E3pKcmjgRsNADqGAgvAkBwF1ozN\nLusXP9zOcZ6FSjincpGGTyfvEctbihvHSIueU+XcLq5Mc70uUyw7CjqKkA+lF/7o8T6fuBVY\nv0nLP2d56idu3OBYltq2zmO3NAhE9kjw7gXWr7lOF4Xi/JZuUZ4lVqHJP7n2BnzPoHFytN79\nEcCgHW4qLhZ+IQsADAoFFoAh/Yf8Kn3C+SLpvnX6y+tHh4sb20uLngWWdJuSzXX/0lviavZd\n3AfF5egMj/fJcHuK8FUf+7OyHhW3Zl9XjMt9xmeOuGmQY9m9wDouLV8MJxwOf+8fV8djrPb4\nbc5dAd8zaJwcrX/abWfQDm93tKDHc4GebAQA/UKBBWBI/gusNr+4XiTNZVPQ+0dniVsdt8F7\nFlgZ0mU010mXB8W1fzuWpQmVK3u9UfOcAmu7/3qvj+PFUolywuPn5/opsKQ3y+v9S+fSpzZ3\nm/Pm8ezNAd8zaJwcrXcfJCxohzN7Za8W7rvqA+9CDAD0DwUWgCH5K7CaHHN70SpxSznvH10u\nbi0mLXoWWFmPu1U8WRniwJmVs0cuWCzuqef1Rj1yCqwl/uuNdo4XSyXKpx4/76/AkgalKpuH\noDhdenlyVeev35sV/D2DxsnR+nfcdgbv8IXuOZuK9t+MxwcBDAYFFoAh5S6wCpSt32/NSY8X\nSQVTsvePrhO3Os7XeBVYP0mDN2WvviHuejJ7z2xxxXscqsE5Bdbj/uuNRo4Xh1FgLRQXPYc4\nCN/r2fVNwj/B3zNonByt/9D7RwJ2OCtjaWG3rZFdDvkbiR4A9AgFFoAh+Z8qx8008TW1vLdu\nErdGSYteBVaWNH1N9oNz4jN+Vudt7dI7tfV6o5E5BdZc//VGDceLwyiwpO0ej+zlyUHpMcDs\nhwMDvmfQOOVuffAOC/58ymN66RT/w0wAgO6gwAIwpJAKrJnia6p7b31G3BonLXoXWNKAm44T\nVRmlhMVuzh1SPdHK640G5BRY0uW0XBfZ3IVRYEnjP1QK3LVQvCjd8N44+HsGjVPu1gfvsMPX\nKztFuyosy5wwewAA2oUCC8CQQiqwpKFDc914tFTcWkJa9C6wHFPGfCkuvi4uuSZ2keqTBl5v\n1DmnwNoiLga8Lz2MAku6NlcqcNdCIo07Yb0Q9D2Dxil364N32OXy8w/VcZZYK8JqPwBoGAos\nAEMKqcCSLnLFem+VxhKoLS16F1iOkRPmiUtjhYViriEGnvZ1AqhuToF1SFyMuBmgLWEUWHvE\nxUgf092Ea7/0pl8Hfc+gccrd+uAd9nBqsTQGKcWcCr31AKBpKLAADCmkAssxvtNZr63Sveld\npcVcBdYZKzluVbpZQliY5Nou1ROxnndpX4rIKbDel97I8xZ7T2EUWI6++Z14MHQnpDc6EfQ9\ng8Ypd+uDd9jLtYeln5gS+k8AgKahwAIwpJAKrB+kF73mtTVF3OiYAjBXgeUYekGoJF4U//3Y\ntfkjH/WJdBExu8C6Jt1odCBAW8IosC5K9055T0Pjz4V/Lx1Y9Xefu6TJFOmroO8ZNE65Wx+8\nw7ncL/5ErmcVAUCnUGABGFJIBVZWafFFcz23/SMNw+kYHip3gZUmbpidlTWEcsYbEFyW6pP9\nHm80yq3AymooLt8boClhFFhZlcTlGR6vfWmpwLsEEn0gtewZn79zr/SmF4O/Z7A4+Wh90A7n\nIs3/HIGxGgAMAgUWgCGFVmDdI76ohuc2adhyi2O499wF1i2bdJrlcpxX1SKNNzDS/X3+iXMv\nsB4Sl4td8/xVn7pddQunwJJmga7j8VppYsC1PrqYWUbcU8HnhDTS1ICVQ3jPYHHy0fqgHc46\n7T0xjzRsxBVfDQUA/UGBBWBIoRVYb0ivesdjWztxUxvHcu4CyzFBzEfiuZ9Y9+1TxM3Zg3Y6\nPEDuBdZn0spKj990q7q12ZMfZa+EU2C9Ka286vbSn6X7vT7K8mGy9OLxPvackM5BTQ3hPYPF\nyUfrA3f4+6kdE73rwZvi/W3xvroAADqEAgvAkEIrsLJqia9q6n5ZKlX6wT2OFR8F1mmxDJgp\njjg62H2z44Yrt0ts6RaPAstxOqjYafefWSBucg7/Hk6BlSldz6t3Neel0vmnuj67+FshR9Ny\nzff3lfTgnuWjUN4zSJx8tT5gh38Ro1jukscPvCLuTfHZBwDQHxRYAIYUYoG1U3qZ26NrJ6Xb\njWpmjy/go8DK6ipsqRztdbYnK7O+VK3scK7vi6aCvdwLrH9JBVctt2tkm6Utadlr4RRYWQel\ntUGuC3DbpLfa6ruPixyVXtv3PLZeWxcvbR7q3BDwPYPEyVfrA3dYOv/V0/164CUpgvN99wEA\ndAcFFoAhhVhgZfWRXnf3T461W9uLi6sRx7P3+iqwjjjqFaroeTt2umNr/1evZ2Vdf0F82HDp\n/e4FluOEEJXcn12TfHO3tN7FuTusAstRn1CjV6Q2fHOftNY41zkqh8yB2S1u8tTbjq5kfJ/6\nQCnHtuSczgV8z8Bx8tX6wB1+S1qpcfCGs5EvSSfJCv2YBQDGgAILwJBCLbB+k8Zmp9iuj2/c\nvHhokrRiWePc66vAulnaUZrM83qn4dlljLWETbp5qV+mZ4F1qYFjf4l7Hlu54IFGjpVyrvET\nwiuwfq3q+Hlb+7v71XBcjCzxjb8+Xu1DLglJyVVL50xOU9NtZImA7xk4Tj4LrMAdzr5FrVDH\nsbMXzJvUt6RjdYO/PgCA3qDAAjCkUAusrG+qkJfo3a6dvgqsrBmO6uK01xvd6O7xLgOvZnkW\nWFl/tfb+TVTjlGtveAVW1g8Vvd6q1Pv++5i5IDLXr5YMc78rP/B7BoyTzwIrcIdvDfDRnkX+\n+wAAOoMCC8CQQi6wsv6+z+LxJd/K7Yd8FljfSa/vnOuNMlbG5ZQm4r1LUoE1K+cFN54o4PGb\nIh+6kLMzzAIr6/xYj2Z3/TVgJ7+/N3eJZenytterAr5noDj5LrACdzhrTWGvBtV8KWAfAEBX\nUGABGFLoBVZW1ucTqzu/44sPeMF9j88CK6uNuHGfjzf6a3u/2sUji9Qctl8adkq6aLjA/QVn\nn6jtKieqz/3BfVe4BVZW1vuD47PfKq7v8axgzm7pW9ytmClw26Jvfbwq4Hv6j5OfAitgh4V6\nbnnrnLIvvv/RkGcuBAAdQIEFAFlZZ57btnTRpqMfhjKO+LViYoVxLfgL+4qFg/cY6mdf3rh4\n/spnX/ozL830cvP/di+fv2LncZ+jiPrwx/E9G5Y9sWD5sy985beYCfye4cQpW8AOX/y/g08/\n9cSyTUe/wQjuAAaDAgsAwiMNYT4thBc2FV+4V/H2AABoEAosAAhLZj2hbLJ+F/yF12PEAivA\nvecAAMaFAgsAwiKNuTnQx46f39jmsf6idK/TDR+vBAAwPBRYABCO36VhsP7nvflM/Tjvm+p7\nii/soF7LAAA0BAUWAIThWgexbBqQe0d5cXtrt3vHD0gPx+1Xr2kAABqCAgsAQvd7R7FqivUe\nZFSwRKqn+l90ru+XhoAqj6EHAMCcUGABQChu/Xz1wsdPJJKvoRdEV6pJu0rNe+985pVvdtwm\nrVlfUb2dAACagAILAELxa84gnUN9vuDzIs79OSOez1e5kQAAWoECCwBCkVNgDfFz2e/zyuQp\nZrO6TQQA0A4UWAAQCmeBVWhFhr+XXH480a28ihzymZrtAwDQFBRYABCKc5UjKMLWaukvgV50\nPW3ibeUKRxSu0GjUtp/UahkAgAahwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIA\nAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAA\nAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQ\nGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmh\nwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQos\nAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIAAACQGQosAAAAAJmhwAIA\nAACQGQosAAAAAJmhwAIAAACQmZEKrJm2HGVrNB+2+rtcLzm7e1K3+pXKVU/pOXn3b947Mz9a\nObJd7YrlkxvdMc1+wXPfe090Tylfq920l27Jvzkr67seQpO/ydVaP5tBNXpMqRk2T3dKW1vY\ncvkrvFiALIyTUqKrBya0qVm+RotRm5FNXIyVUbeem9KudvmU7otOhh4BDTNqgSVJGvqjxwu+\nHlfWfe99n3rsfamj+89WW3Q1Z9dPd7q2t/tE5s2C7VXEjbkqKT+bQT16TKnxXk1GgaUpxkkp\nwa6arm2VFt7Ib2ggTwyVUa/mfFBN9Sr2dMnQBZbNlvxuzu6bs8t67S23NNO1N3O29892+cO5\n73SK2+aqJ2TdLPx1McSxzauS8rMZ1KTHlBrq9UtRYGmKcVIqK3OKuFK2RacW5cWF26/IHy0I\nzkAZlbUxyW1j90uyx0p1RiuwNn3m8OHrGweIxyr5e+fev/tLB639E7tfPP7ytmnNpbVprh9e\nKR3RTf/35/Wbf3/0rHhtznZHhmPX9Q7CSsttX537Ib2fsFT3dxk3Z2U9V1v4jGpp866k/GwG\nVekxpfrYbJ0+c3NK2vr1Zx5ut9l6ZigaOvDNOCmVtUl4SZ3dF4WlK6lNhOVHFAwb+GWgjHpZ\nbHvftDPnTq5MFpbuUTJs6jBagfWi2/p/GwobRmav3JJOVA753LX3eGdxw7PZa7+Us9nK78/5\n2UPi32QHHcvPiD/o+Ossc66wPEXGzVmThOWG7y72rqT8bAZ16TGl2tlsQ4P16zWhaV8E7z7I\nzzgpdVX4Dkw+lb1yNkX4g/B06GEA2Rgno240Fl6x2LH8cyth+bVw4qBJRi6wsr4QsiXprGN5\nkbAzaYv73psThE2VfnasrBaWn3Lfu1nY0MHxuvo2W4rzcvCtnkJC/ibb5qwsIcFH/J2Vq5Ly\nsxnUpceUamCzjQvSrcvNXJ9joDLjpNRLwi9f5FoTv0k3hhQBkJdxMuqQ8MuHOVdOVbLZuoQW\nAQ0zdIGVNU7YckBaOl3OrWzPdrObzdbgsGN5rLDb4++vW02Smt0rZYb4OfK0a/vLwtozsm0W\nKqnKO4T/5i6wfG8GdekxparYbI8G6Zbwp2SLa0FeA8owTko943GK4b829ytPoB7jZNT9wv6P\nXWviCa/cD0TqjLELrJ3CliWufYO9f+D7Da7LJOKFas9b6n64mL3wsLDrF9fmW8k2W1/ZNmdl\ndflS/G+uSsrPZlCXDlPqpi3o2alPyhnh5LtOGSelxLMfOTdTfy6sTfbZY1CWcTKqsc2WkrP2\nifCiNb46rCfGLrDswpbZ4sKVKh61cW4jhP2f+N7VxmZr6bY63GarcF2uzVlZjv/mqqT8bAZ1\n6TCl/hB+7bqAnbrV1WYbEfAVoBzjpNQR13kS0evC2qoAbQelGCejKthsA3LWblW12e4N0HZd\nMHaBtUvYskxceEtY6BHoZ8W/xoZ5j/8puZZks411W18mvPIzmTa7+KmkUGAx02FKfSf8u1vc\ncMvfRcDNNlulH/3sA6UZJ6V+L2+zjXatLfL/VQ2KMkxGXRe23ue23tazOtMlYxdYDwlbjooL\nS21e9/J5+1F8euJuX0/BfO11NlO8Ee85mTa7oMDSJh2m1IfCv/YrO4fWSrJV67rQxz0M52vb\nbE8GajgoyUApNcPZcMGnVX1ciwI1GCejKtps/d1e3cVmK6f30WsNXWCdrWKzlf1TXBou7Hol\n4A+Lpbyt3D37f/Le8Y6w3f0pjDeE9W0ybXZBgaVNOkwp8d/pdW3Zyj2ca/TH+TZbrfMBGw4K\nMlBKXepmsyVNfPvczfMfLhQ60ezXIF0HRRgno5rYbPXdXi0OUfpHlr4ZucD6Qxw2bby02FtY\n+irwT28q5zjajcdt/9x9CMbnbK6BQST/E9ZXyrTZBQWWNukwpdJtnjr949moX4U/E9cH6zco\nxkgpdXFyziDhSWP0/l2oV8bJKPEpwo9cLz4p7tH70GpGLbBunjuxuI6wXuMHabWNsJhrkksv\nHwx2He/k0Qf+dm4Wb+U85vayT23SWU9ZNrugwNImHaaUeP+FrfLMd8/eOPvSPeLy3ZlZ7uYK\nPTDAFBS6ZayUerFpdmPqbdf7xRzdMk5GHbC539Yunn6z6X3KZ6MVWF6qve3Y1UhYdrss0sbt\nJf/K2fzZwpwdVR7Nrp29b5f6QlifL9NmFxRY2qTDlHpa+PfO7GEEs1LLe70q6++q7qNDguqM\nlFIn+wjLSfVbp4hnQVLcT1WAeoyTUdfrC0urHVtvzpHao/f5JoxdYPX6NnuXOCGS24NTfhJN\n8Oux2d3KO3ZUdIzPdtTmswiXZbMLCixt0mFKXT579mzOY0Ebha093Vuz0marcDbsOIBsDJRS\nb1ex2epsFmeXu5DewesTDVRjoIwSX28b/Nq5m2f2drAliaewct0bpjMGLrCaTX7LtUuckMnt\nGWL/iSa6fPzJttKureLaCzb30V4cIxavkmmzCwosbdJxSjncFP6GTfozZz2jMcbA4mWclDpb\n22Zr4vz6vjZUePHrIUcB5GOcjHKM3p4t6Rnx6++fXK/WF6MVWNu+cfj2t+vuu8Z5HujX0hwW\n+kw00dti7V9BLJ/fFRY2ue15TVjfKdNmFxRY2qTjlMomPkrvNmr7v23ej3SDuoyTUuI1nDdd\nW89Vsdl6Bes8KMA4GSXYmpxdX9V+Rdxc/mYoEdAwoxVYfr48tgq7Hsm9+XW/iZZ1pZfNcTbz\ne5vn7VJ7hPWXZdrsggJLm3ScUtm22Dye47nfZqul988sfTNOSqXYbC3cNo8RNuPiMwPjZJTo\nz40Dm9doMvTQ1aysATZbO9+t1A+TFFjiRFn1rufaHCDRsk4I++4Q/r1Z3vOiyhOOokeWzS4o\nsLRJxymVTXxeZ69r7XoVn7PYg3oMk1JnhX8ecNu8Ulj/t59mgoIMk1He6nkOA69LJimwMpoJ\n+w7l2hwo0a4n2WxtxIXOHjNQZvWx2ZIz5NrshAJLm3ScUtlWCe15yaN1+/20DlRhmJT6Svhn\nitvmdcJ6up9mgoIMk1FexHGwdD9in0kKrKxNwr7GucavdibazYOP9fKesumKsK+LuCDed5cz\nWNsFoSYfJttmJxRY2qTDlDr/+SvujzaLT+J86VqbZXOf3B4YGCalfrZ5zhy3AGeweBgmo7ys\nELae8tMv3TBLgXWptrBztPeslnuclXwLYeFdz31vCptGigv/ERaecG0Wr2ofkG2zEwosbdJf\nSn1i85gT7q8qNlu9nNUONlvDgB0GpRkmpW5UFJLJbRDbIcLLvs0C1Rkmo7Iyf3lr+1/OrVfq\n2WxdA3ZcD8xSYEkPjNruu+q+6ebq8s5EE2f5bvGn+87r4nwD0tWUzDY2W7JzONwLTWy2Gldk\n2+yEAkub9JdSGSk2W9mPXb9zmvArZ7nWbgitGxRG90F+xkmpgTb3gRnOCs1sEHIUQD7GySjx\nIUPX3NRPeJ+F0CXTFFjS1RFb01TXFeCLe1qJW/pdkFbEeSWbHc959ff9xHOrjilFDguLvRzj\ncVwZJiyvyZJvczYUWNqkw5QS72donH2+PVNcqZAzVt/nHuUWcDBOSokTyjV3Pjd4QxwHa0X4\n4YB8M05G3axvs1XOPqO2Tdja2cf9WjpjngIrY56YV7a6k3Y89+4bR5ffXUlafeSaY+/7FcW1\nzste/Pz0j1+9uWmIOIlphTcc+zIHCSuN1n/62xfbxdzsfEPGzd9+JnlEbLpj8UaAzaAyHabU\nNXGwwErT//3D2S92dRFbsCOnweJAye6T24P6jJNSmXcIiyk7xDmer/6ru1htXZA7WBAC42RU\n1rPCYpW5H/7126tivV415ySXbpmnwMrK2lvD5qVFzhCM76Z476z1hnPfhR5um9uelXNze+/f\n6ritz89mUJkeU+p0U7ettqQlbs31GhQLGBgopc51kNbrt2kszbKSknM3M6jIQBmVeY/b1vJG\nmBjATAVW1j8Lq7of1j6H3Idc/OsJj53Js//O2Xfh4bLO7Q/8IetmFFiapseUyjo30bXV1uYV\n99aKQxU9H14EQGZGSqlrcyu5Npcd7fYuoCIjZdSNaUnOrV0+DzsSGmSqAisr63L6jD4NKpet\nktJr8t5c00heeXnOoGY1yleo3Xzg4y94jc52clGP+uXrdp3/kcybUWBpmh5TSnBm1eDGVcvX\n7/ToS57PDz0udOeNLOBkrJT6c8volrXKJzcdvOr7wH0CxRgro754vEet8jXaT3rN+9FHfTJS\ngQUAAACgCSiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiw\nAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsA\nAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwAAAAAGSGAgsAAABAZiiwnH44\ndNDpPe62gEl85ky5D7hbAkbnzDX7Te6WgC58kZ0wb3A3RM9QYEkyj3WyEBVv1Llbu2pRRA0O\nZXK3CIzvmzssVCClS+eUAkQdUdWDgn4dbKW4Rt06VrVQTaQaBHXpwQgq3KJbm5JETd/hbox+\nocASvZJClDxmq11yeFYzC7X4mLtNYHC3FsdSlelHxZRLnVmHLPf+yd0iMKzni1PF6alirm3u\nZInawN0c0LqTyVRmWpqYMEuakXXCZe726BUKrKysPwaRpdUqu5t1TSlqcQZ3u8DIfmlHCVPS\nXSk3vwKVfo67TWBQqyOiRhxzptq8eHqSu0GgbW8kUI8jzoRZYKOaOOGQNyiwst62UdXldi+z\nilDv89wtA+N6tww12eWecalDIi0P4/YYUMACKrLMLdXWF6dl3E0CLXulQMREt4Q53J0KbOdu\nkz6hwNoXYx2c5l1f2e276lC9X7jbBka1N9ZyT7pXyq0sQx3PcTcMjGcNFd/gkWmbEi17uRsF\n2vVmgchZnp9NjxakCfjrLw9MX2BttRaYm7u8Es8odKKqZ7hbB8a0xFJgTu6U29+IaiLlQGbH\nIhI2eGXa6tjYE9zNAq36qHDEY96fTevL4q+/vDB7gXUwolCuy4PZ0vtRtV+52wcGlPkIJa72\nlXLHelCF77lbB8ZyMj56aa5Mm2Upe5a7YaBNP9osD/n+6+80d9P0x+QF1n9iY5flziWnvpSC\n+7BAbhn3U5ktflJuEFX6mbt9YCSXa5GPr0v7YOp4i7tpoEWXGtAwn3/99aSkz7kbpzvmLrB+\ntVlm+cqlbOkdqRsuPIO8Mu6lijv95twAqouiHuQzkrr5/GxrRLO5mwYalDmQOvj5bBpGJT/h\nbp7emLrAyuhAQwPUV3Z7agpN4W4kGEvGcKq8N0DOdaGeGCAE5HKUKhzxmWd7iltf5W4caM9S\nqu47YQRjLCW/5G6fzpi6wFpEjbyf5PKyrwzt524lGEnm/YHrK3tqPZrD3Ugwit9LRK31k2hL\nIsrgNizwcjwyYZv/D6dRVAG3JYfFzAXWR9FFdgeur+z2p2Piv+ZuJxjIdKqwJ3DK7SlufY27\nlWAQ/Wm430QbSj0xIxh4+CPJ8mSgD6eB1OQqdxt1xcQF1s2GFOgGrGyTqNF17paCYaymMjuC\npdxT1rJ/c7cTDCGVqh3zm2fH6tDT3A0ETcnsQ3cH/GxKb0v3cjdSV0xcYD1FbdFic9wAACAA\nSURBVIPXV3Z7W3qMu6VgFMciEjYFT7lBNJy7oWAEF8pGrg2QZ9viCnzB3UTQkvVU239BLjlc\nmbZxt1JPzFtgfV8wPugFQtH+4pEYkw9k8amvIYlyS61EL3I3FQxgEg0ImGiPUFM8JQ0uXxWM\n2xrsw2ljwULfcLdTR8xbYPWgSaHUV3b745Y6uEgIMvinGj0cUsqttFbC9PWQXx9FlvL7QJhD\na1rM3UjQjFvNaUrwD6fJ1AIjqIXMtAVWKtUK8gShSyeaz91aMIIB1DfElOtLj3I3FvQuszXN\nDpJnuxNiv+JuJmjFEmoRyodTC1rO3VL9MGuBdaVixNoQv+zsexNicVIU8m0zJaeGmHIHE6Mx\n4Azkz15qHDTRHqF2eJIQJF/EFg7pppmd8XGnuNuqG2YtsOZR7xC/6wRTqCd3e0H3vo8vEMIN\n7tmmUjfu9oK+XSkf6T3Hsw8NaQd3Q0ETMlrS1NA+nCZSD+7G6oZJC6zTBRP2h/xlZ0+vRc9x\ntxh0LrMjTQg95ex1KJ27xaBrC0O6IL0putQ/3C0FLVhDzUL9PqxNR7lbqxcmLbAG0fgwvuzs\nqy01bnA3GfRtG6WEetOfaI216jXuJoOO/ZFQKOCMAU530SPcTQUNOF0oLugIfU5rIype4W6v\nTpizwHrLUiWcLzu7vTM9w91m0LVzJWI2h5Vy3Wkpd5tBxybTfSHl2aHi0d9ytxX4dQ/nnENv\nPPcVIlMWWBmNaVFYX3b2HTGlLnC3GvRsAg0JL+X2xCVgqjjIqzMxxYMM0eA0hfpzNxbY7aU6\nYZxz2Fc47mfuFuuDKQusHdQyvC87cQ6mx7lbDTp2MrJ0iN93LqNoDHerQbdGh3xCIr2q5T/c\nrQVm50pFhfBERI4H6D7uJuuDGQusy2WjwrtaI9gfX/hP7naDfvWi6eGmXGpSxMfczQad+j6q\nTKhDgtjnUzvu5gKz0TQ4rA+ntLLWj7jbrAtmLLCepNvD/bKz24fTDO52g24dpxrh3fQnmkUd\nudsNOjU61HkqRCn0Mnd7gdXblrJHw/1w6srdaF0wYYH1e+H4feElk+hQQvwf3C0HvWod7k1/\nknp0jLvhoEtnokunhZ5nyy1NMdqomd2sa1kY7odTLXqNu9l6YMIC60EaEW4yiUbQTO6Wg069\nTA3zknJrLMkYHQTyYEJ4w9A0w6BrpraCOoT94bSEUJWHwHwF1vfRJcK93VhyKKHwOe62gz61\npGV5STl7Z3qau+mgQ78XLB7WFZ/Vlob4sjSvXwrH7Qr/w6kZRhsNgfkKrKE0OfxkEt2DBwkh\nT/4VwqRwPu2ILXGeu/GgP7NpZHiJ1pLSuNsMbIbRmDx8OK211Mngbrn2ma7A+iyi3LE8ZJPg\nQFyxi9ytBz26LY8nsOz2u+kx7saD7lxKLHQwvDxbY2mAU1hm9a6lYhg37OW4jfZyN137TFdg\n3Ukz8pJMooG0nLv1oENvU/28ptzBhLhfuJsPerOWBoSbaC3wPIVZZTajJ/P04bQhIvkWd+M1\nz2wF1qfWyuE/L59tb2zSde72g/70pAV5TTn7GBrP3XzQmYwqkSHPKue02tKYu9nAY1/Ikzx7\n60g7uRuveWYrsO6gWXnMJkFP2sbdftCdjy3JeU+5oyWjT3F3APQljdqHn2jN6AXudgOH65Ui\n1ufxw2lTRHWcwgrCZAXWZ/k4gWW3b4mogdv6IExDaGbeU84+kUZxdwD0pT2tCj/PVlBL7nYD\nh7XUPc8fTh1pF3fztc5kBdagfH3Z2VvT89w9AJ05HZWUj5renlYm6hR3F0BPPqU6eUm0RvQ6\nd8tBfZdLR4d9Pdllo7UmzjgEZq4C66uI8vn5srMvpw7cXQCdmUwT8pNy9kn0AHcXQE/G0KN5\nybOnMDGTGS2jO/Lx4dSODnJ3QOPMVWCNoin5yCZBbfqAuw+gK3/HF8nTuLYuqSVj8SAhhOzv\ngsXz9NC9vQ69x912UNvlUrG78/Hh9IwlBcN7BGSqAuuXmJJ5++xxmUXDuDsBurKYhuUv5ez3\n03TuToB+rMhrws2jftxtB7Wtojvz9eHUAjfNBGaqAuvRPI1Y6y69TPTP3L0AHblui92bz5w7\nFF/kAnc3QC8yq0fuzONnW2XrSe7Wg7qul4vOwyQ5bpZTG+4+aJuZCqyLReMP5Sub7OLpBAyt\nDaHbTr3ym3L2u2gVdzdAL/5FbfOaZ1NpBHfrQV3bqWc+P5zq0zvcndA0MxVYa2hgPrPJbj8U\nV/wKdz9ANzLrWTflO+d2RFbBszoQmv60MK95llYqBqfnTSWzbr4/nuZTH+5eaJqJCqyMquEP\ncJzb7bSVuyOgG69Qy/ynnL092bk7AvrwW1TZvD8nPYZmcrcf1PQytcr3h1NVCy4sB2CiAutY\nXgY4zmWrtQ53R0A3utISGXJuOXXj7gjow2Iakfc8O1So2GXuDoCKusvw8TSVRnJ3Q8tMVGB1\nohX5zia7OKfEce6egE58mp9ZctxUs37D3RXQg8xqUXvykWd30gbuHoB6vrJUy/9nU1rJmF+5\nO6Jh5imwTlpq5D+b7OJF54HcXQGdGEHTZcm5yTSNuyugB//O+y3uou2RyRjWyDwm5ndYSMlo\nmsXdEQ0zT4E1gR6RIZvs9vSyUbgVFELxW0zJY7Lk3OG4kte5OwM6MJTm5yvRWtO/uLsAarmY\nkHBUhg8nXFgOxDQF1sWEIqkyZJNdHKlhLndnQBdm0yh5Us7emw5wdwa07+8CJfM1FZh9Ed3O\n3QdQy0YaIMuHU39az90V7TJNgbVBhjEaHA7EJt3k7g3owJUScQdlyrm11Jm7N6B962hwPhOt\nYsQZ7k6AShpYtsry4bQNF5b9M02B1cAqTzYJutER7t6ADmyifnKlnL269Xvu7oDmNcn3V+Y4\nms3dCVDHCWosy0eT3d4W8+X4ZZYC6wQ1kSmb7PbV1IW7O6B9mbUjZKvp7eNpDnd/QOs+o5T8\n5tmBWBtOz5vDaJolxyeTYBm+EP0yS4F1H82RKZvs4umE77j7A5r3ErWWL+UOxJS9xd0h0LhH\nZHiOpxulcXcD1HCxUGKaDB9MkhqWL7i7o1UmKbD+iSsuz/Nckok0g7tDoHk9ZBlk1Kk9nu+C\nwG6WjjuS7zxbQb24+wFq2CrbTcniYKPjubujVSYpsNbR3bJlk91+qEDpG9w9Ao372lpVxpSz\nL6Ch3D0CbXuOusqQaJUifuLuCKigpSX/s6Q6pSYWOs/dH40ySYHV0PqsbNlkF8+jp3L3CDTu\nQVlG8XNJL1kQn2EQyABZTpmOoYXcHQHlnaR6MiSL0920hrtDGmWOAut/1EjGbMJ5dAjqQuEi\ncozil+Mu2sLdJ9Cyc7G2/A2C5bA3qhoeuje+qbL+/bcjsgaSxidzFFjjaIaM2SSoFInR3CGQ\nNXSXvCm3xdKWu0+gZetpqCyJ1pre5u4KKO1mmYKHZckWV9K8yt0lbTJFgXWlaIJMo7g7jaEF\n3J0CTasVsU3elLPXsuDZVfCvuUzjRs6l0dxdAaU9T11kSRanBdSfu0vaZIoCa7eMIz464Dw6\nBPQGtZI55ewTMEUT+PelXDfVpCUmXOHuDChsoKyPOEsz9P7K3SdNMkWB1YHWyZpNdvGU6HHu\nXoGGDaIn5U65/dGVUdSDP4/RZJkSrR/t4+4MKEum+/XcjKJF3J3SJDMUWN9bk+VNJsE8Gsnd\nLdCu36KTZP4AE7Sht7j7BVqVUT72kEx5toZ6cvcGlLWehsiULE578eefT2YosObQeJmzyW4/\nllj4Mne/QLMW00jZU84+BzfHgD+vUXvZEq1i5Fnu7oCimls2y5Yt2W7Dbe6+mKDAyqgQs1/u\nbLLb76Rd3B0DrcqsEr1X/pRLK1LkKnfPQKOG03zZEu1ejGpkbF9THdmSxWkB3cXdLS0yQYH1\nLxn/tsuxjjpxdwy06lVqq0DK2fvSQe6egTZdipdxLrBtlmbc/QElzaaJsiWLU3qZ2L+4+6VB\nJiiwhsh/v7GouvUH7p6BRt1FC5RIuVXUm7tnoE07qb+MiVaPvubuECgns3K0Atd0htJa7o5p\nkPELrPMFS8p/v7FgLIbCAt/+ii2jSMrZy0f9zt030KROsj4o/SDN4+4QKOe4IifYt1kbcndM\ng4xfYG2SdZ7nHHujquOxCfBlDQ1TJOXsw3FzDPhyxlpdzjzbF1Wdu0egnDE0V85scWpIH3P3\nTHuMX2C1lnHWcA8t6T/cfQNNamDdrkzKbbM04e4baNFCekDWRGtB/+XuEijlWtGENFmzJdtU\nmsLdNe0xfIH1jUX+ByYcZtNY7s6BFn0k89TiburTF9y9Aw2qESnvU6vT6WHuLoFSjlAfWZPF\n6UhcqZvcfdMcwxdYsxR4YMIhNaHoNe7egQZNpukKpZx9Mj3G3TvQnveopbx5dqSgLYO7U6CQ\nfrRC3mxx6krPcfdNc4xeYGVUiD2oTDbhqXnw6UbJQkeUSrmDMRVx4x94G0ezZE609vQmd6dA\nGedikmROFqenaBB35zTH6AXW64oMguWwGlNKQG526q5Yytnb4osPvF1LTEiVOc/m0gPcvQJl\nbJR9mhyn9NIF/uHundYYvcCSc4DjXCpGYgZx8NafliqXcvMwXQ54O0y95c6z1PgSuJ/GmNrK\nP02O0120lbt3WmPwAutSoeLKjEgkGUlLuTsIWnMuxqZcxonT5eDGP/DUm1bJnmjd6EXuboES\nfrDUlD1ZnDZSe+7uaY3BC6wdsg5w7G13ZG3uDoLWKHcGXtKHDnP3ELTlbFR5+fNsIQ3n7hco\nYRGNlT9bnJKtZ7j7pzEGL7DkHeA4l2b0PncPQWNaK3cGXrSCbufuIWjLSrpX/jxLT0zAzOJG\nVCdyj/zZ4jSGnuLun8YYu8D60VpVuWQSzMRQWODptKW2oilnLx/9J3cfQVMaWHcokGd9KJW7\nYyC/j6iJAsnitDuyLncHNcbYBdZiGqNgNklDYeHPPHA3n8YrmnL2YbSeu4+gJZ9SQyXybCnd\nxd0zkN9UmqpEtjg1xnQ5noxdYNWO3K1kNolDYe3j7iNoSo0oecfUzmWrpRV3H0FLptHDSuRZ\nesm4y9xdA7lllI09pES2OD1Mj3J3UVsMXWB9oOjpUNFa6szdSdCS/1ILhVPOXtvyHXcvQTsy\nyhZQ5ivzDjrA3TeQ278VHBdSdCi2PEZCdmfoAush5eYscapq/YG7l6Ahk2mG0ik3gZ7g7iVo\nx6vUUZk8W0F3cvcN5Daa5imTLU5t6Th3HzXFyAXWrTJxis1Z4jSWHufuJmjHrdLKp9y+qOrc\n3QTtuFepoZTTSxe4yN05kNf1xIQ0ZbLFaQ7dz91JTTFygfUSdVE2mQT7YypiVlRwepk6K55y\n9pZ0grufoBVXCiceUyjP+tNe7t6BvNKop0LJ4pRauNh17l5qiZELrGG0UOFssouzov6Lu5+g\nGffQAuVTbiY9yN1P0Ir91E+pPFuNIdeMZhAtUSpbnHpQOncvtcTABZay0+Q4LcQM4uCk4OkE\nN6nxJW5w9xQ0og+tVizRbLHnubsHcrpQsKTiX4lPYXgPdwYusPbSHUonkyDdFv07d09BI/ap\nknL2bvQ8d09BG/6MLqdcng2kXdz9AzntogHKZUu29JIFL3D3U0MMXGD1UvBvOzfDaSV3T0Ej\netEaNVJuMd3N3VPQhvU0VLk8W0t9uPsHcupOTyuXLU4DaCd3PzXEuAXWX0r+bedmZ2Qd7q6C\nNvwRVUGVlEsvhT8SQdLWsknBREuK+Ye7gyCfP6IqKpgsTs9QV+6OaohxC6x1NEyFbLKLMz7/\nh7uvoAnraLg6KTeItnH3FbTgR2uyknl2F05GGMl6ukfJbHGqFPkbd0+1w7gFVhvLFjWySRz5\nYyR3X0ETWlqeVSflNlAH7r6CFixVdrLVtdSbu4cgH5W+Eu+lNdw91Q7DFlhnrDXVSCbBseKF\ncMEGsrK+s9RRKeXs1a1nuHsLGtDYukPRPCuLa4TGofDpTpdtlmbcXdUOwxZYS5T9287dINrE\n3VvQgCdoglopdz8t5O4t8PuG6imbZ7hGaCDL1PpKrGf5mruvmmHYAquhdZc62WS3b0HFDoLq\nUfvUSrk9kTW4ewv8nqAHlc0zPEdoIA0typ7udHmQ5nL3VTOMWmB9RSnqJJMohT7h7i+wO0Et\n1Uu5ZvQ+d3+BXe3IvQrnWVIMxho1iK+ovsLJ4rQ/umomd2+1wqgF1uM0UaVsEkylydz9BXYP\n0kz1Um4mTeDuL3D7lJoonWcDaTd3L0EeKn4ltsaD9U5GLbBqRap2ucZuPxpf7Bp3h4HZjRLx\nR9VLOcypClmP0RSl82wN9eXuJcijluKnO11m0Xju3mqFQQusj6mpWskk6k0HuHsMzOzUTd2U\nO8LdY2BWNfqg4nlmi8Uj0obwoYpfiamFi+PPPweDFlgz6WHVssku/p2HwWvNToWJ6t2txBBF\nZvd/atz0N5D2cvcT5DCNpiqfLU496Bh3fzXCoAVWFRX+tnNXJeJH7i4Dq38KlFZ8onoPFSN/\n5e4zsHqEHlU+zVbTHdz9BBlkVow5pHy2OC2l/twd1ghjFljvq/lAl+h+WsDdZ2C1le5SN+VG\n0hLuPgOnzPKxh1XIszIFLnL3FPLvHWqrQrI4pZeJPcfdY20wZoH1CE1XMZsEe6Oq4cFUU2tH\nG9VNud2RNbn7DJzeodvUyLP+uL/UCB6kWWpki9Ng2sjdY20wZIGl0t927lrTW9y9BkanVZqG\nwk0Lepe718DoQZqtRpqtoIHcPYV8u1U6TsVnnO32zZZW3F3WBkMWWO9SGzWTSTSXRnP3Ghgt\noLFqp9wcGsXda+Bzq4w6X5npJQtd4e4r5Ne/qLMayZKjtuVb7j5rgiELrMk0Q91sstvTEhPw\nMWRiNdQbZMbpWLF43B1jXq9RJ3XyrB8d5e4r5NcImq9OtjiNx3Q5EiMWWJllCxxRN5vs4scQ\nHmc2rxPUQvWMsw+krdz9Bjaj1PrKXEpDuPsK+XStaJFj6mSL0/7oyrgrOcuYBZZKd396Wkvd\nufsNbCaoOU2O0yZLc+5+A5friQlp6qRZevHCmKdC59KotzrJkqMNHefutRYYscCaRI+pnU2C\nShiXyLSuF49PZUi5evQpd8+BSRr1UivN+lA6d28hfwbSMrWyxQm3iEoMWGBllC2o/hVCu30E\nreTuOTBJox4MGWefShO5ew5MVJw4YDEN5+4t5MvFgqXUHQVZkFYUdyVnGbLAeovaq51Moh3W\nxtw9ByZ3qP8Houho4aL4DDOni3ElVfvKTE8sgpnldG03DVArWXLcTvu4+60BBiywJqo7pJpL\nCp3k7jqw+CsmiSXjhM+wXdx9Bxa7qL96adaDXuDuL+RHT1qrXrY4rcFdyVlGLLAykliuENrt\nD9Fj3H0HFs/QUJaMs6+3tOXuO7DooeZX5gIayd1fyIc/oyqolyw5MFtqlhELrOM8Vwjt9oMx\nFfBgqik1t2zlSTl7bZw1NaXfoyqqmGXHEord5O4x5N16GqZitriMpGXcPednvAKL6wqh+GDq\n29ydBwZfUl2mjLNPoSncvQcGa+leNdOsG73C3WPIuzaWLWpmi9OuiDrcPednuAIrI6mgqpMu\nuZlF47l7Dwweo0lMGWc/El8MYxSZUDPLNjXTbD7dz91jyLMz1hpqJkuOxvQhd9/ZGa7AYnqG\nUJQaXwJn0s0no0LMQa6Us/fGozom9BXVUzXLUuNL3uLuM+TVUzRG1WxxmUYPcfedneEKrEls\nVwjFM+l42sZ8XqN2bBlnX0sduPsPqptNE9VNs870OnefIa9SInapmy1OR+JK3uDuPDejFVhM\no4w6LKR7uPsPqruXHmfLOLs92fINdwBAZZmVog+om2XzaBx3pyGPPqeG6iZLjq5k5+49N6MV\nWG9znk5ILxaPgR/N5nJ8osrzqHqYSI9yRwBUdpzaqpxlqYVK4xqhTs2iySpni8tTNIC799yM\nVmBNZpmH0KkvHeIOAKhsN93JmHH2QwVLm/40vNmMprlqp1lHeoO715AnmVXUPt2ZI71M7Dnu\n/jMzWIGVWbYA3xVCu30F3ckdAVBZV3qaMePEG//SuEMAqrpapEia2lk2B09I69R71FrtZMkx\nmDZw95+ZwQos1iuEAlvsP9whAFX9HFGZNeOEor43dwxAVfvpdtWzLDW+FK4R6tIkmql6trhs\ntrTi7j8zgxVYvFcI7fZBtIM7BKCqJTSKNePs9kqRP3MHAdTUk1arn2Ud6d/c/YY8uFUmjvOa\nTh2zP4NjrAIrsxzrFUK7fR11444BqKou1zPQLqNpEXcQQEW/Rao5TY7THDxHqEuvUieGbHGZ\nSHO4I8DLWAUW9xVCcYLLs9xBABV9QE2YM86+N6o65sA0kRU0giHLcI1Qn0bQfIZscTlg9gl6\njVVgcV8htNuH0zruIICKHqLpzBlnt7eit7jDAOpJidjJkWUdMdaoDl1PTFD9gQgPt9Gb3DFg\nZagCi/kZQtFWSxvuKIB6bpZmvcPBYS6N4I4DqOZTasySZfPoAe6uQ9iOUS+WbHF5wuQfToYq\nsPivENrtNSynuMMAqnmBunInnN1+rHihi9yBALVMYTpnmhpfHDOt6s7dtIQlW1yOFYu/zB0E\nToYqsPivENrtY2gJdxhANXfTIu6EE/THs6umwXfOtAu9wt15CNPlQiXSebLF5U7azR0FTkYq\nsDL4rxDa7bsiUrjjAGo5X7Ak9+eXaD21544EqOQ56saUZfNpJHfnIUz7eaeZEK2jztxR4GSk\nAus4tefOJkED+ow7EKCSZ2kQd7pJkq2nuEMB6hhAS5mS7FiRote5ew/huZ1jyDQv1axnuMPA\nyEgF1oM0izuZBA/RY9yBAJW0pw3c6SYZR/O5QwGqOBdrYztn2pPs3N2HsPwTm8SVLDkeoAXc\ncWBkoAIro0zcUe5kEhyMqWjukT/M44w1mTvbHPZFV0POmcJ6GsqWZYtpKHf3ISzb6S62bHEx\n9zh9Biqw3qAO3LkkaYthiUxiEd3PnWzZWtM73MEANbSwbGVLsvTi8Ve4+w/h6Ebr2LIlRysz\nfzgZqMAaS3O4U0kyh+7nDgWoolbkHu5ky4acM4evqB5jlvWjQ9wBgDD8Eck8Eb3DHBrDHQk+\nximwbpaMT+VOJUlqQtFr3MEAFfyPmnHnmlNa0QScXDCBmTSZMctW0J3cAYAwbKB7GLPFRfhw\nMu9QWMYpsF6hLtyZlK03HeYOBqhgsgamyXHqS/u5wwGKyygfe4gzy8oUuMAdAghdO9rEmS0u\n/Uw8FJZxCqyRvLNaullJfbiDAcq7pYVpcpxWUw/ueIDiXmW+zXQQRrTVkZ+t1VmzxWUddeSO\nBRvDFFjXixY5xp1IThWifucOByjuRc2cMhVVjPyVOyCgtGG0gDXJ1lE37hBAyFbRKNZsyWHi\ncfoMU2Clc89q6eY+WskdDlDcUFrInWhuRtBy7oCAwi7EcU8cUDESfzrqRjPLdt5scRlH87iD\nwcUwBRb7rJZudkTU5w4HKO0S/zRf7pBzxsc/ccBwWscdBAjRKUsd5mxx2R9dyaxDYRmlwLoU\np6Wvuyb0f9wBAYXtpv7caeahEX3EHRJQ1m2WjcxJttXShjsIEKLFNJY5W3K0o9e4w8HEKAXW\nXk193c2g8dwBAYV1o2e408zDVHqYOySgqO8sNbmTzF7T1BPL6Uq9iN3c2eLypGknATBKgdWL\n1nAnkZvUhKIYlsjYftXGIH45jsSVvskdFFDSHJrAnWT2MbSEOwwQkpPUkDtZcqSXKvA3d0B4\nGKTA+jOqHHcOeTDzyB/msIpGcCeZl270HHdQQEEZFWMOcOeYfZe1AXccICSzWcek9TaEnuEO\nCA+DFFjraBh3CnlYb2nLHRJQVGPrDu4k87KEBnAHBRT0GrXjTjFBCn3BHQgIRdVo/nI8xzZr\nQ+6A8DBIgdXGsoU7hTzVseBzyMi+pBTuFPOWnhTzF3dYQDnD6EnuFBNMorncgYAQnKCW3Kni\noRF9wB0SFsYosE5r4PZPTw/TZO6ggIK0dQLeYZhZT8ObwvmC3INgSfZHV+OOBIRgIs3gThUP\nj5r0uS9jFFgLaRx3Ank5mlDEvBNcGl9mZU2dgHfYZmnMHRdQzCa6izvBJC3pfe5QQFA3S2lo\nHi9Rqkm/EI1RYNWO3MudQN760TbuqIBi3qE23AnmQwp9yh0YUEoLy2bu/JI8Sg9xhwKCeok6\ncyeKl37mnMfSEAXWB9SUO31y2WRpwh0WUMxYmsOdYD48gqGwDOsk1eVOL4cjBW23uIMBwQzT\n1Dxeog2W1txB4WCIAmsKTedOn9wa0QnuuIBCrhcrnMqdXz4ciSt1gzs0oIypNIU7vbJ1pFe5\ngwFBXCpUXAs37HmoQye5w8LACAXWrTIau94smUPDuAMDCkmjntzp5VM3SuMODSjiZumCh7mz\nK9sTNJI7GhDELk1NbOIw1ZTPfRmhwHpZc9ebRelJ0b9yRwaU0Z+WcaeXT8uoD3doQBHHqBt3\ncjkdK1LkGnc4ILDOGpvHS3S0cKIJpzcxQoE1jBZwJ48vo+hx7siAIv6OtWnuBLxD+UgU9YbU\nh5Zz55ZLbzrKHQ4I6KeIKtxJ4oMpb3M3QIF1MU5715tF+2NLX+eODShhEw3mTi4/RmKqOEP6\nJbIid2rlWIYpAzRuMY3hThIfNlhacgdGfQYosHZq8HqzpJcZK3YzaGvZxJ1bfuyOrMEdHFDA\nYhrNnVo50ssUOM8dEAikZuQe7iTxpR59zB0Z1RmgwOqiwevNko2WFO7YgAJOaW7egByt6G3u\n8IDsMqtFaWmgv0G0nTsiEMB71II7RXyaTmO5Q6M6/RdYv2jyerOkGb3GHR2Q33zNzRuQYx7d\nyx0ekN0b1Jo7sdyto87cEYEAxtAs7hTxKbVo/AXu2KhN/wXWMhrFnTj+LKKe3NEB+SVr6nSC\np2PF43D5xnCG0RPcieWhcgSepdCuK0WKaHGUPsFd9DR3cNSm/wIrJWInnmrFqwAAIABJREFU\nd974Vd3yOXd4QG7/0dg89Z7uog3cAQKZ/V1AE/M85xhBK7ljAn7toju4E8SP7RG1MrmjozLd\nF1ifUCPutPFvOt3HHR+Q2wM0mzuvAnjW2og7QCCztTSEO6087bBiWnHtakfruRPEn5ammwVA\n9wXWVHqEO2v8O1Ym+ifuAIG8rhZN0OgJeIdG9D/uEIG8UqzbuLPKSwp9wR0U8OMbDT+Ds5Bu\n5w6PyvReYN2yFdDKFBK+jKVHuCME8jpAfbmzKqAZ9AB3iEBW71MT7qTyNplmcUcF/JhOk7jT\nw7+KEae446MuvRdYL1Mn7pwJ5EjR+L+5QwSy6kGrubMqoNTE+IvcMQI5jdLeQ2EHYyqY7WYa\nvbhZJu4Qd3r4N4GmcgdIXXovsIZqc5ocF6F93CECOf0cUZk7p4IYSJu4gwQyuhifmMadU7m0\npePccQGfDlMP7uQI4Eh84mXuCKlK5wWWVqfJcdlXoKQJZ7g0sIWanIXC3bNWjG9rJBtpIHdK\n5TaHxnDHBXzqou0z7P1pPXeEVKXzAmsHDeDOmCD6mW/oDyPLTNbmLBTuGtMJ7jCBfJpYtnBn\nVG5pRYpc5Q4M+PCtNZk7NwLaFlnDVBeXdV5gdaJ13BkTxI6oije4owSyeYtacWdUULMxOIiB\nfEgp3AnlS186wB0Z8GEaTeROjcDa0nPcMVKTvgusH61VufMlqG6YuMtA7qN53AkV1LGSBc5x\nxwnkMpYe5U4oX56mHtyRgdyulYjT8lP1ghXUgTtIatJ3gbVI8zfE2O2bI2pkcMcJZHI+rvgx\n7oQKbhgt5w4UyORygkbnPakc+Qt3bCCXPdSbOzGCqU0fcEdJRfousGpq/4YYu709HeKOE8hk\nPd3NnU4h2B1dBTW9QTxL/bnTybdR9BR3bCCXVvQMd2IEM4uGckdJRbousE5QC+5sCcEzlgam\nuq3PyBpZtnKnUyja0/PckQJ5NLds4s4m33ZH1uSODXj7mOpx50VQ6UlRP3DHST26LrDGam8E\nPl9amOu2PgP7Py1PfOlmGXXjDhXI4iNt3uIuakH/4Y4OeBmjzRv2PI2nh7jjpB49F1hanxXO\naSU15w4VyGK0Pip6u7265UvuWIEcxmn3G3MOjeaODnj6O66Y9sakzeVIERNNb6LnAmu/xmeF\nc2lEr3DHCmTwTyE9fH6JHqZx3MECGVwqXFSzf0OmJRa+xB0f8LCShnBnRSiGmWh6Ez0XWF1p\nLXeqhGYJteWOFchgLQ3mTqUQpRYv+Cd3tCD/Nmt5IOX+tJU7PuAuo2rkTu6kCMW+AqVMM72J\njgusM9Yq3JkSqvr0Jne0IP9qR2znzqRQDaPF3NGC/NPkKO5Omyy49UFTXqDbuHMiNCaa3kTH\nBdZ8eoA7UUK1kDpxRwvy7d/UkjuRQrY3JgkTCOje/1FD7kQKpB59wh0hcNODlnGnRGi2m2d6\nE/0WWBmVo/dxJ0rIatO73PGC/LqTFnDnUeh60E7ueEF+jaLHuPMokGk0gTtCkONrazXujAhV\nF9N8Oum3wPoXteNOk9DNx8QSuvdDZPl07jwK3UZrXYy+pnP/xBXX9EMVqQkJuM1dOybSQ9wZ\nEaqN1lomGQpZvwXWQFrInSZhSKb/cgcM8mc6jefOonC0pBe4Iwb5s0brD1X0p83cMQKn84WL\nHOVOiJC1paPc8VKHbguss9FJOjqfYJ9HfbgjBvlyOTFe49OoelqOR1d1LrNWxA7uLApsq7UB\nd5DAaRXdxZ0PoVtracQdL3XotsB6ikZwJ0lYqlnMNMWlAa3X6qRw/tSnd7hjBvmhg4cqmuDe\nUq3IqBKp8XLcQzOTnGDXa4GVUSVKB/M8u5lN/bhjBvmQkRy5jTuHwjOfenIHDfJjgPYfqphH\nd3NHCRzSqT13NoRjBbXijpgq9FpgvaCvdBJUtXzMHTTIu3S9jDGTIxknTfXsp6hymr8JIt0W\n/Qt3nEDSgVZxZ0NYGtLr3CFTg14LrD60hDtDwjSTBnAHDfLuNlrJnUHhmk13cEcN8m4O3c+d\nQcGNpjnccQLRx1SHOxfCs4Tac8dMDTotsE5FVOROkHClV7J+xh02yKsTVI87gcKWXtmCgSB1\n63rpAge4Myi4AwVLXuWOFAjuoxncuRCmevQWd9BUoNMCaxpN4M6PsM2gQdxhg7y6k+Zx50/4\ncNJUx3ZTL+78CUVfTEioBb/FlDrGnQphWkhduKOmAn0WWJcTC+nqkXlJegXrSe7AQd58aa2o\n+fthckuvbMV9f3rV1LKBO39CscVaGwPa8ptDo7gzIWymmN5EnwXWRrqDOzvyYDoeudGrEfQI\nd/bkxWN4dFWv3qVG3NkTmlYmed5e066UKKiD68le5lM37rgpT5cFVmbtiK3c2ZEH6eUjvuAO\nHeTFD9Fl9HYCXpJexfI/7thBnvSn+dzZE5oV1IE7VrCRbufOgzyoSf/hDpzidFlgvUStuXMj\nT6bREO7QQV48qK9ZcnLMwRyY+nQqUvtjNGSrg1nAuGXW0OUZhydMcApLlwVWF1rKnRt5kl4u\n4ivu2EH4fi1QXD+zfHmqieHcdWkyPcidOqGaQ/25o2V2dmrLnQV5UpPe4w6d0vRYYH1iqcmd\nGXk0lYZyBw/C9zCN4c6cvFpA7bijB+H7O77IEe7UCVV6ReuX3PEyuXb6G6RPMp+6codOaXos\nsIbrbsgPp2NlI/BZpDu/FUzUzbddLin0Enf8IGwLaRh34oRuKg3njpe5/VeHg/Q51DL8CXYd\nFlhnom26vONY9AgN4w4fhOthHT4C7bLC0iCDO4AQpiulCuzjTpzQHUuK/J47YqY2gOZw50Ae\nPUmduIOnMB0WWA/p9Y5ju3QXFk5h6cyvBYvq9wSW+Bj9Xu4IQpieoX7caROOyTSKO2Jm9m1E\nBb08EJFLHTrOHT5l6a/A+jNOz993U2kwdwAhPJP0eweWaENElevcIYSw3KgQtYM7bcKRVjrq\nFHfMTOwBeog7A/JsMbXlDp+y9FdgzaHh3FmRD+nlrZ9zRxDC8VNscR0X9ILutIY7hhCWLdSd\nO2nCMxGnsPj8GlsilTsB8q4BvcwdQEXprsC6UDROf2PWuplOA7lDCOF4gMZx50z+7Igt8Q93\nECEMNypH6mxUo9QyUd9xR820pun6DPtySxNDT7WkuwJrMd3FnRP5kl7Z+hF3DCF030WV0vHf\nh5K76FHuKEIYtlJX7pQJ12S6hztqZnUuPkF/8/K6aU5HuEOoJL0VWJdLxe7lTon8mU29uIMI\noRuq4xscsh0qWuAH7jBCyK5X0tsJLLv9WLkI3PnAYy7dw3308+UZa61b3DFUkN4KrBV0J3dG\n5FN6suHH/jCQj63ldTsmiMsETNGkI8/o7Q4s0XRMK87jfNG4/dwHP3860FbuICpIZwXWldIx\nu7kTIr8WGP3BCSPpSbO48yX/jlW0GH5KCsO4bIvezp0w4UuvihRj8aTOb5mx27dGlbvCHUXl\n6KzAWqGvAWJ8a0DPc8cRQvMm6XVWJg/zqbmh7yQ1koV0B3e65MV8uo07cmZ0PjFOR0PS+taX\nFnKHUTn6KrAul47ZxZ0O+bfKUtfIV50NJLM5LebOFlk0o93csYSQ/JFQSJ83mTag57hjZ0Lz\ndX8Cy27fG5fwO3ccFaOvAmuZEU5g2e230bPckYRQHKSm3Lkij41RSRe5gwmheJDu406WvFlt\nqY0/G9X2dxH9n8Cy20fQOO5AKkZXBdbFkrG6vwNLtCXadok7lhDc9SoR67hzRSb9MVSDLnwV\nVVKvw9p2oA3c0TOdmTSE+7DL4GiZyM+4I6kUXRVYC6k/dy7Ioz/N4o4lBLeSunFnilwOFYvG\nJJg60JumcqdKXm2LKXWeO3wm81tcwkHuwy6HGcad81lPBdY/iQX1eXtCLvuLxGL+ec37K7GA\nAe74yzbNuJ9hBvIy1dDtvL32QTSdO34mM4FGcR90edQz7Gijeiqw5tBg7kSQy0S6nTuaEMwk\nGsadJzJKob3cAYUgbtSyrODOk7w7lBiDCXPU9E10yaPcB10ez0SWN+hNMzoqsH6PL6zrWQjd\npSfTC9zxhMC+0O/tML5siCp9jjukENhy6sSdJvkxme7gjqCp9Kcp3IdcLv3oEe5oKkNHBdZk\nGsGdBvJZZa1s4NHVDKE7TefOElndTaO4QwoB/VI4TtfXpNOr0evcMTSRdyxV9Xs92cuh4pHG\nnKJXPwXW6ZjiRjqh0Ac3LGhbOtU2zMeX5Gg5y7+5gwqB3E1juJMkf5Za6t7kDqJpZDalhdwH\nXD6zqYkhR/nQT4F1Lz3InQRyOlg88gPukIJ/V6tYV3PniMyWWKpe5g4r+PcqVU7jzpF86kir\nuaNoGjupOffhllNreoo7okrQTYH1aURZvX/6eJpD9W9wBxX8epx6cmeI7HrTJO6wgl/XqluW\ncmdIfu0oWOQsdxxN4qItahP34ZbT7sKxn3PHVAG6KbB60UzuFJBZB5rNHVTw57sCCQYYItnL\noTLWN7kDC/7Mpu7cCZJ/I+le7jiaxHSjDArpNJ0aG/CMg14KrNf1PECMb/uKRZ7gDiv40Z0m\nc+eHAhZZKl/gjiz49ll04n7u/Mi/1AqWt7gjaQpfRhc7xH2wZdbWiGccdFJgZTSmp7iPv+zm\nWaphgjht2k91jFbPS/rRfdyhBZ8ymtOj3Nkhh0W4z10VnfU75L8/+4pHvs0dVtnppMDaRS25\nD78CetEI7sCCL3+VilrPnRyKOFKRDnEHF3xZSS24k0MeHWgJdyxNYD/V4z7Q8ltgqfg3d2Dl\npo8C60r5SEPd0JdN+Lrbxx1a8GG4IeZQ9WVtdNEfuKMLuX1TsNAO7tyQx+74uFPc0TS887ZI\nI/4F2J8GcEdWbvoosOZTX+5jr4h1MYW/5o4t5PI8VUzlTg2l3E+tcAlHczJa00PcmSGXidSd\nO5yGN54Gch9mJaQm0wbu0MpMFwXWT4XijfdIl2QSpVzlji54+btshI5nhAsivTlGuNWepdSU\nOzFkk14Hs14q7D/WMkYadDvHlrgCH3MHV166KLCG0FjuI6+UjjSSO7rg5R5j/nmYbV9Ji507\nwuDpk9jCO7nzQj4bokv+wR1RQ7texzKf+yArZAYlG+s5Zz0UWG9ZKh7jPvBKOVyRNnPHFzwc\nokqGvUAoWhFV9HvuGIO7q/VoBndWyOkeups7pIY2jzpyH2LF9Ka7uMMrKx0UWDfrWxZxH3bl\nbIyLwWhYWvJjYvTT3EmhrLHUEBONa8lEg31hplWlo9wxNbBPohMNeseM4Gg1epo7wHLSQYG1\ngtpxH3UlzbaU+407xOByqx2N5k4JpXWg4dxhhhzHLDaDjRm5NrLk79xRNawbDekx7gOsoK3x\nhjrjoP0C60x8nIHuT/DhbmpznTvI4PQ4NTbkEKPuDlemtdxxBqfTiVEruTNCbsPoDu6wGtZc\nuo378CpqjqW8gW7h036B1ce4d7g7pDej+7mDDNlejyi2mzshlLc1PuoN7kiDw7WmdD93Psgu\nLZm2cwfWoN6PTNzLfXiVNYg63+KOsmw0X2Dtp5pGP6NwsAKt4Q4zSH4uHWHg+/1yPBlR4jR3\nrEEyhtpwZ4MCNsbGf8sdWUO6lGyZx31wFZbe0EAjyWi9wDpbImod9wFX3ObCES9yBxoE11vR\ncO5kUMcoSrnEHW0QrKcKBrsBy2EiNcGNDwoYTb24D63i9payGGaGE60XWP1M8Y23OLLwJ9yR\nhqysB6il0U+XOnWifhnc4Yas16LijTgJmKANPcQdXAM6QBWMOcSoh7WxBf/HHWmZaLzAepZq\nGHYILHcPWcr9xB1rWE/lDnJnglqO1qQZ3PGGk0Ujn+TOBIXsL2PBWA1y+7aw0ceQcZhhKWuQ\n70NtF1hfx8ca9O87b4OpruEmEtebVw17NsGX3SVxHzK3nyrQg9x5oJjV0QmYaFVeV1IMnC8e\nhlIDY4zorukC62oDmsx9pNXSlVpd5o63uX1WJHIBdxao6Zm46Ne5Y25uf9amu7izQEGTqJYx\nviQ1Y7jBRqT1L70jdTbEPXyaLrBGU3vuA62aYy2o6zXugJvZT+VpIncSqOuJyCKfckfdzM41\nou7cOaCo7tQb9/nJaDVVNsENWA6pDWigEQZr0HKBtZEqGvIBG9+ONqCeqLDYnKtLd3OngNom\nWZJ+4I67ef3ViNob+5GK1Lr0MHeUDeRfkYW3ch9S9RxKpvsMUJ5ruMB6I6qQiW6JsdsP16Pu\nmCOOycUW1I07AdQ3lJLPckferH6tR+2N/gDP3jK0jjvOhnGySORC7gOqpn2VaYT+KyztFlhf\nJEY8wX2M1XU4hdrgTncWl9tTa6N/2/nSm+qf4469OX1dhTobP+M2xEekcUfaIH6paLZbGPZU\nortvcIc9vzRbYP1YgcZzH2G1HW1Gdc5wB96MLnekJqncR59DeidqhAqLwdvF6Q5jXx90WBJd\n4Dh3rA3hn/o0kPtgqm1vdep2kTvw+aTVAutsTUM/YONHWjcqY6SpxHXiYjtqfJT72PM41p4a\nGGhqVb3YEWsdw33o1TErIuH/uKNtAJdbUyczFOSeDqVQw5+5Q58/Gi2wztal3txHl8W9ltit\n3ME3m7+aUxOT1ldChdWRauKsqbpuTKSCc7gPvFqmWIpjlor8utKRWqRxH0kGqR0oSd/1uTYL\nrB9rUjfz1euS2QXpPgyIpaYfa1MbU14fdEjvSWU/5j4GpvJjK0oy/gSrLmMtJTEaSP5cam/W\nU+zpQy0FdnOHPz80WWB9UYF6mbS+sts3VKSaH3IfARP5uBz1MG2ySYZY4p/jPgomYi9OLQ5w\nH3M1jbGU+Ig76LomnmI3zQBY3mbE0pSb3Ecg77RYYL1VjAZxH1ZGR7pT9EIdp5S+PF/YMoT7\niHObEmVdkMl9IEziygRL5CiTFfT3W4q+yx13Hfu+JrU28Sn2tWWo3W/cxyDPNFhg7YqxjuU+\nqLxmJVBTnFVXQ+biiKgp3Ieb39JE6vMX97EwhRM1KGkl9+FW3URrHM6R5tXxEtTL+AN6BLC/\nCdne5D4KeaW5AuvWNCpgmhtA/dndmqJnXeU+FMb3z51UdAn3wdaCHbWpPB6nV9zV6ZGW7iaa\nncJlRlQkRhzNm7VR1lHch49Z+jBr5JM6HXNUawXWn12p9NPcB1QDZiZS1Re5D4bRvVeFamzn\nPtLakDbQEjEdMzUp681kKm6ywZOdFsXTWENM3quyv/tTvElTxt2CotRRn+M1aKzA+m9FStnL\nfTQ1YX9PC91xmvt4GNmNuZGW2018b4OXhSWozn+5j4mR/THCYulhqrvb3W0qR81OcR8C3Xmt\nHCWbaP5B/3Y1pOKHuY9GXmirwHo6xtLf1Jeb3a2oTgXnYXJCpbxfnxIf5z7GWrK/E0U+ghFC\nFJKxsRiVf4r7GDM62JoSdnIfBX25MM5iHYg/ASXpI6Pobh0OiaylAuvcnVRoNveB1JD0BxOo\n/G483qWEv8ZaqT3OlXqaV5IqYOo4RbzViGKHm/y7cnwM9fqB+0DoSFo5SsIdoi5rq1CJnbr7\nNtRQgYXTobnsvz2SGuJWLNldX5VINtzakMuh2yOo2+fcR8d4vhtoodbbuI8uu421KG4Bnt0J\nzXe9KaK/aUe/8iXtnmhqq7chIjVTYF2cgNOhPmxqZaGWz+uubte0jF2VqcBwc46MHMzaOhQ5\nEqcZZPXrhGiqsoj7yGpB+vh4Kv/sLe4DogMXZ8ZSzbXcx0trNjWiiBE/ch+bsGilwEqrQDac\nDvVlRWOiuptxb4xcbu2pSRHddnIfVs2aYaPokV9wHyXj+HlyQSo5xWRDi/q1t28kVduG5wkD\nu7mhNBWdjJzJbXYSxU7+hfv4hEEbBdYnXSmi32Hug6dVK1paqci497gPkiFcXl+VrO03ch9S\nLUt9sAxZOh/Cl6AcPrwvhhLH4Gxpji2dIqnsUxjW1r+MPdUoesBB7gOlTanjilHsA19zH6OQ\naaHA+mywleqs5T5yWra1fwJR1cf+x32k9O6HGcUoshPKqyDSpiaTUBa8ivma8uf8lhZEpcei\nvPK0pUcMFRx5gvvoaNSNHTUpojNu2PPryP0lyNrDrpMLzewFVuYrvSxUYRb3UdO61Fkto4nK\nj7Nf5D5gunXrub4RFHcHPrpCsbq3UNIXG37kEvdR063Lh/oXIEu9GRh2Jrc9w4oT1Vn6E/cx\n0p7fF5WliPYbuA+QtqVOqUpkm6qL+92ZC6zTTwqhqjoDV5tDcGBqqwJEUa1mvXSe96Dp0keP\nlCGqON6M85TkTdoTXYQaK7bb099zHzodOru1r/D/aum7NnEfRa06NqtpBFnbrPiO+0hpyXX7\ngBiK6Y6kCW5ZZ+H/r6pT39T8SXbOAuu7FS0tFNV2MffB0o/U+f0qWYgi6o7e/LHmU0s7Mt6f\nWYOoYGc8RRGeY0/dUZaIaj78Msa7Dd2t9x5vZiUqc+dy7uOnbbtGJwufZckTj/3NfcQ04fe9\nQ4oQ2UZgcL7QHJ7aPJoood/aTzX9jD1XgXX55UdqE1lqjUU+hWnvY7fXiBK+9uLaTNn3DdPR\n05MvNw8uSRTVdCoeosiLTaMbCNkW23H+WxjAKLgb/13VL1H4XKtxDyZUDcG2BxoKX5IR9cfv\n/pb7yHHKOLl9bB2h2EzsuQTXcsJwaGaX4sI3YdEe857/lfsY+sNRYP14dGor4f+rqJQHMNNu\n3qQuG9M+ySLmVseHd36Abz7frn6499GuwtcdFb5tmmnngJPB4bm9ywlRjGkxaecnN7gPqlZd\n/fL55aObxApxSuzwyB7uQ6YfR+YPqBkpRK14t5kHvzTfWfnz72wY27KQ0P+o2kOWoboK3/qx\nbcUii0p1mrzh3xqcD1rdAuu3t7c83KWkEA5LxT5zcDtM/ux/cnhLMZZkrdx13NKD75y5puqx\n1K7rp97as3BMp0pWMTjFW41ajQ+ufNsxtUdFMZ7Rte6YtuGlk7j3XZLx26ev7Vk1896eKaVJ\n+j+xQucHcYNy2I4surd5MTF+0XXuFLPLDIP+3Tz16vrJXSuIvbYktR35FMZsz7ttMwY2SpT+\nB4yr23fy6vSPz3Ef3RzBCqznD+bfttXzp44e0LFBuRgpCIWqtBoweTrIYtJdHevbCpBDnC25\n0W09Bwwf+9DsBcuf2bZfhmOXB68EzqgbivzSA1tXL3h0/LDet6WUT8iORoGkeu0HPsh9gAzk\nocEd6pSKcga3VqvuA0ZMfPTxp9Zu3qbIIXXzfuCU+l3p3+9u94alcx8aObBbq9rlEizZqUYR\nCWVrt+o9/GHuQ6RjEwbcVrNUZPYHWbm6bXoNGTvt8eXrdyh0GIOMpPS1Ar/ywLanl8ydOnZY\nvw6NqyVaHf8bVWjUddgU7tAbwqQhXZtWK5adQDFJddr0GjZ++vyVG3cpcCR9+91XIgUrsCoT\nQFhSAmfUee72ge7cFzil3uBuH+jOqsAptYq7faA7b/hKpDALrNiiRYsW5Gm+pIjw+618vz5G\n+PVxfL+eEoTfH8H366OFX18o6Ks0V2BxJ20uUUKD4rkb4c4qNKgIdyM8iP+ju84PqV9gRQq/\n/v/Zuw84qYk9DuBzHFVEFBV9gaN3UEBEBVGKIoKG3qUIYgURUGkiRUQRqdJBRAERqXJrr49n\n7/3ZBbEi+JReDm5fJtuyu6m7s/lnd3/fz0fJJnfJTKb9b5NMThG+VyG8V1YRp0WVmqeUjRk5\nnAVYucpvl2VuKGarjxXBvW6xtHKkEq4cqYxypKKuHEknEhERYJ3VpEmTSq5kQF9D5fjF6Q5/\nhnL4qnSHZw2U45ey/rFUKaccvrrlT3kuwKKutHHKKgmqRZ0IreJKghpSJyJKYyVFkZ7S9QCr\ntHL4esL3KoT3yipCSVoTwr9/zZyrJE07yDsLsEopv93AlXSeqhyppitHOls5Up4rR6qiHOlM\nV45URzmSO3+66kQiCQVY/S+Pcomy22aX02mqHL8N3eGzPPuXKoe/yPKnbjSvUQddSGi0Fkqy\nm7t+VBOtlARdSJ0IrTZKgppSJyLK+VE1/UHzKvWp8MO3Vg5/gfC9CnGZkrTzqROhjyetCXUi\nDJwf03VuNq9Sm6N/u7VrDcReHysC7xYvduVIzZUjXeLKkS5UjtTSlSPx+nRZ9KpP9SqSw6cI\nH1d2O83Zrwh1uXJ8wndpb1YOP4Hu8H5ZOT7h3MfPKYe/ne7wiVqtJPt+6kRovakk6HrqRGj9\nxgdG6kRE4X/KEL4Q+Avl8D3pDm9ml5K01tSJ0HeCB1gefUn4FUrSEn81z/fKb3cUmBpjryhH\nutWVIz2iHGmmK0earBxpvStHGqQcyZ2XXPKQe5eNn0OA5QQCLARYAiDAsoQAywgCrIQgwIqF\nACsZCLBSAQEWAiwBEGBZQoBlBAFWQhBgxUKAlQwEWKmAAAsBlgAIsCwhwDKCACshCLBiIcBK\nBgKsVECAhQBLAARYlhBgGUGAlRAEWLEQYCUDAVYqIMBCgCUAAixLCLCMIMBKCAKsWAiwkoEA\nKxUQYCHAEgABliUEWEYQYCUEAVYsBFjJQICVCgiwEGAJgADLEgIsIwiwEoIAKxYCrGSkKMA6\nunfv3sMJJUiMfcrxT9Adnmf/EN3h/ftps39MOXwavumeutLGKfDaeTyhJGgfdSKi8IZeSHf4\n48rhD9Ad3oz3yipiL22pmUmu6+Qnfb/A1Bhzr29wr1s8pBzJnbj7oHKk464cyW4k4jDAAgAA\nAAArCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAII5CrC+XzS0\nV+e+d67+I1WpMVf41ozru3fpN3aNnQm+UmVXT1n+D8FxP5Y1RhIkwO//esGN3fsMm/MFycET\n5YlKE4+qGsXxQL3SQVfV3pOjeGo+WKU2vz/rhh5KbV73P+qU6Phi/k09uw2Z8T51OjS+vF6W\n39Cu+GXZ8D5dBkx5wdFkSa6Ne253VqnvhdztXlzpNpz1EA4CrKO71e66AAAgAElEQVTzQ/vs\nsiW5JCbmtxGh43feQHF8VeEEmWZkfIN6ICxY1DF49EUenUtQjycqTTyyahSHvF7poKxqng6w\ndo8OpatbPnVaYh2cGkrbNK/M6luwktcjbYC1oXMwjTfbD5bcG/fc7qxc6IXc7F5c6jZSFWAV\nTlH2NnblpgUDlH9fSDKRCdjdT+lWZjy+ZfkNyvFJIjzuWZloZHxelqesDXne/eMXzpTlHvPy\nN0xRKvFa9w+fIG9Umnhk1SgOdb3SQVrVflkbsUyW73L7+GYOKrV42NOfffXWAiVOeJo6NdGO\n3a6EBQ9syZ/dTZYneeMvsB+HKTFRVID1lNLq7t7w9CODZXmQ3dnw3Rv3XO+sXOiFXOxe3Oo2\nnPUQ9gMs5VR1+4AvHJ4ny33df+PUvbJ8h/rF+AklVz2I3jSyq4d8Lc3IuEmWXyE4bNhLsnzb\nbr7wYTe5ixcvUOjyRKWJR1eN4lDXKx2eqWrz5c47CA8f5zEldglc2/qwo9zDW+/LWSfLA7bz\nhZ8Hk/z9Hc/XRe761BxtgPV7N7mz+qa6I1Nl+SGbu3Fv3HO7s3KjF3Kxe6HoNqx7CPsB1s2y\n/Gxg6bjShD5IIlUJ+V9HudvewOKJ62XZnTc6xiq8S+63gWZkXCXL7xAcNuToQLlX8OW7T0xc\nvpMwJU54otLEI6xGcYjrlQ7PVLXPOspr6I6uQ6nC3wQXx8jyv0nTEuPENbL8YWDxu47yIC98\nhTVSvuVHf1SAtST81cbhfnInm2Owa+Oe252VK72Qe90LRbdho4ewHWD901HuGrq2vkCWtyae\nqsTsnDXl4dDy3HCdd9kzSjz+NM3IuEiWPyc4bMhbsvw44eET5IlKE4+wGsUhrlc6vFLVjt4k\nX+/+F/VmOslyqAteKMvrSNMS4xtZvim0PEWWv6JMS9DIRUrpaQOs49fIXUJvbF4jy5tt7cW9\ncc/tzsqVXsi97oWg27DTQ9j/Buv47nBUuEKWNyaaKBEeJBqc/ughT/ITjYxKnn8kOKzm8L8Q\nHl4AqkoTj7IaxSGuVzq8UtVWhb+T8Yqeshy6cLTQU7cU+v2vyfKc0HK+N+7SVKu1NsD6SpbH\nhpa/lOXx9nZDMu650Fm50wu5170QdBt2eoiE5sG6T5bfTOT3BNnfV+5McWtG4Xi5126qkXGy\nLFNONHCdPED5//4f/vs7YSKSQVVp4pFWozjE9UqHR6razs7yNNIExJsiy58GF8dGrhZ6glKd\nl4WWP5Tl6ZRp0dIGWEoaHwktH+0o93K8M9fGPRc6K5d6Ife6F/e7DVs9RCIB1r5uck/C+4V3\njJLlVRQHflq9e5NoZLxTlve9ds+Azr2HP0Iw8BzuqPzB98UE/hjsoHVH3D9+0sgqTTzSahSH\ntl7p8EpVmyJ3/pXu6Lr+K8sjAx3vex3lCcSJifaK5husT2R5OGVatLQB1grto5f9lXrvcF+u\njXtudFYu9UKudS8E3YatHiKRAGsm2VfAu1YsmzVMlrutpzj4Hz3ku/1kI+PNsnxLaJKUda7f\nQ7pd+aP02U7B49/2t9uHTwpppYlHW43i0NYrHR6pap/J8lKqYxvaLMuDN370xRtzOslD91An\nJspXsjw0tKxU7eso06KlDbBmaW94v1WWnd4I7ca451Zn5VYv5Fr34n63Ya+HSCDAWifLdxQ4\n/zURvuRnr9eKvRTHLhwv9+TfdhKNjHwWlt6zNmxdMkhZWO320ZUTf2vnQS/9dmz30/1keZwX\nBmLbKCtNPOJqFIe2XunwSFUbI3f1xhXlKO+PD4wgg1YdoE5KtIJeshycQPv4UFnuS5uaCG2A\nNU2W3wtvuF2Wv3W2K1fGPZc6K9d6Ide6F/e7DXs9hPMAa7Us30Q1WH0Z6F5ueong2L7ggx1E\nI2M3WV6sfj9dsEw5A9+5fPQP+JS1/6iLv/WW5bdcPnxSKCtNPOJqFIe2XunwRlVTKs0CmiOb\nObhyQKAyd7zdE5VH4xFZHqLOjn54eseO3gyw7pHlj8Ibxjp91NGdcc+lzsq1Xsi17sX1bsNm\nD+E0wDoyXZZv2Z1IgsQ48b+vVit/LM11/cC/95DHq2Ex0ch48ED48v9UWZ7h8tHflyPzmWyR\n5akuHz5JZJUmHnU1ikNbr3R4o6op5+JnmiOb2HOjLM/576GC3a/cIsuLqFMT7eAQWe6x9NVt\nKwfKSzp78xJh1DdYo5x9g+XeuOdGZ+VeL+Ra9+J6t2Gzh3AYYP15myyP2W/9cyn153Xuzz5d\nOFbuEXh9Ff3I+K0s93L5yskXstw59H7U3bLcx92ji0BRaeJ5qRrFIahXOjxR1f7XSb6D5MCm\nxofv0j5yh+eqz66hwRtg5u2T5WHUqQnRBliztfdgDXP0VL/L416KOyuaXii13Yvb3YbdHsJZ\ngPVlPyW0PpZQgkR61/3X0uaHZ36jHxkLu8qyyxdpd8hy//CH7rJMXwccI6g08bxUjeIQ1Csd\nnqhqG7wzK23EN5qn8z6T5dsp06Lj+LPj+3a9ftbn/p0e+opbG2CtlGVfeENfWbZ/G5vr415q\nOyuaXii13Yvb3YbdHsJRgPV2F7mjF6a3OyLLHY9b/5hAu7vLN7wR8JAsL3/jDdLJGfvIsstX\naY91knuEP/SNTCidRtyvNPG8VY3iuF+vdHiiqt0my39RHNfUJlleGVo+5IHabOQN2TuvGNIG\nWM/Lcniq9IOyfI3tnbg/7qW0s6LqhVLavbjdbdjtIZwEWG93lruTvbfsk00rvgwtF3Z0u98N\n3nsYscz6d1LmqJJ9t9/hcUtkwjilKnd1+eiJoq008TxVjeJQ1CsdHqhqe2T5ForjmntM83qc\nE52cz+PkFmXUfp86DSHaAOt7OXJV50NZnmJ3Hy6Ne651VkS9UIq7F3e7Dds9hIMA6+tuco//\nJpie5C2T5fmh5V9lubu7RycfGd9ZMOnV0PKHmjln3LIy8hquz713dcIIbaWJR16N4lDXKx0e\nqGovyfISiuOa26SpzbtkuRP9/XJR/gn+e6iv3JtoGp942gCrcHDkDc+L1Hk2bXFr3HOts3Kx\nF3Kxe3G327DdQ9gPsA5eJ3f51PrHUkUpnl6hCFX5U24iWUJobp55UZZvDob/hWMJJiX/QZav\nPRRYnCbLT7h9+AR5ptLE88g9WNT1SocHqtoiL96Cxe+7GhiKXF6VPXYX/rQeHYNTdT/qgb8b\nwrQBFn933IrA0p7ucnebk7K7Nu5RdFap7oVc7F7c7TZs9xD2A6xFdt8/nhqFw2R5VOCq50ud\ntK3GbTQj45F+snyf+hjL0Ydkuec/Vj8v3HSlyatd0kZZ7pEuU7l7ptLE80iARV6vdNBXtdGy\n/DnFcc0dv1GWFwW+ttp1rf1vYNzxuCyPVd9Q8lxHuRf9oxIhUQHWP73ljtv4wr477Q/Bro17\nFJ1VqnshN7sXV7sN2z2E7QBrV2e546q1YfkJJy1R33WX5W7Tn9i8QqmH8r2uHz6MaGR8V2lz\nfRY9tXXxAFnuSDD74v+uU/5+Xvn8+tuVs/+y+4dPkFcqTTyPBFjk9UoHfVXr57k3YKs+6yzL\nI32fff3eyt6yfJe37nE/MEiWr1357AYldOn0LnViuC/VcWq4LE/n/wZipFc7KuftyfzFSvmO\nsnkV08Vxj6CzSnkv5GL34mq3YbuHsB1gvRF92fb6hJOWsG9vCB/9IcJ7calGxrf7hnLfj+QW\n0t9GBA/f/UWKwyfII5UmnlcCLPJ6pYO8qnXx6B3knwwM1+aZh6gTE2PHoGDK+nojTN8QNV4F\nH+F/sVvw811252hwc9xzv7NKfS/kYvfiZrdhu4dIowDLf/y16UN6du476uEdBAcPIxsZD2yd\nOKBrt0FTnnHnXeFxjr8yeVCXPiNWee/5dTPeqDTxPBNgkdcrHcRV7ajSwXnmNu0oR1+877oe\nnfuOWPoDdUriHd48uk+na27f4InLzAYBlv/Plbf17jpo+tu2d+PquOd6Z+VCL+Ri9+Jet2G/\nh0jgZc8AAAAAYAYBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABA\nMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYA\nCwAAAEAwBFgAAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEA\nAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAA\nwRBgAQAAAAiGAAsAAABAMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgC\nLAAAAADBEGABAAAACIYACwAAAEAwBFgAAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUA\nAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAA\nBEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAI\nsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgAAAAAgiHAAgAAABAMARYA\nAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAA\nEAwBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAIIh\nwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgA\nAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAA\nQDAEWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAABEOABZCV3maqnB8Ntq8ObG/iaqIAADIG\nAiyArBQMsNgkg+1tEWABACQBARZAVgoFWFUKdTf/UgQBlmOzJk16jjoNAOAVCLAAslIowGKv\n6m6ezhBgObUvh7HbqBMBAF6BAAsgK4UDrAG6m+shwHLsNYYACwDCEGABZCU1wKql/Fd6v87W\n95QNpc5GgOXIgwiwACACARZAVlIDrFv4/1bobB2mrG9/OgIsR3ojwAKACARYAFlJDbCmnKP8\n75L4jcd4bPVQCQRYjtRAgAUAEQiwALKSGmCNG8///33cxs3qatyD5cg/OQiwACACARZAVlID\nrNvf5f+fELexs7K2/mH9AGvvS6vmTJ312BsH9Pd75MO1ix+YtmDNu0d0N//87MNzps5Y9NTX\nxxNL9l7fnGkP/+QgPYqjby2bft+il/dG1vzz0sJpsx59Tz8N1jv0//70gmkPPvz83qiVrzC9\nACvZDANAukKABZCV1ABrWGEF5f+VYqfC2lNMWTt+r06A9fs9TXKDzxcWa7WqIHan+5dfWjT0\ndGLx1uuOxWx+9+byoa3s1D4vxiSmbPQPX8bXLQ8s7+TLl/n9hfeV4UsP2kjPLr6upbKwd3S5\nwA+U6PNDYNPnPYoH1pw2/u/YHNjYoX9Ti5zATxRp+Wxw488syktWGQaAzIcACyArqTHNDf5b\n+T8vx2x7iK/84K+4AKtgyklRcUSt16J/b+2/ouOMeh9rt/7RM3orax6+NmkVYO3myxf5/TcH\nfjEUYJmlZz9fcZ7f/3HFyPYyLygbCu/Njayp/kPUMe3scHc77U8MPKpu1A2wTDIMAJkPARZA\nVlJjmsH+N/g/18RsO19ZV9P/J9+kDbD+ahETMLAiM7W/Njp2Myuu+dJme/W4zWXf1ibGJMA6\nwJfr+7cGf+9BG+k5rgZI/q9P024v863fPzLqN2oetpvB4A5314v+if7qRr0AyyzDAJD5EGAB\nZCU1prnWX1hN+adU9M1E/+Wb7vH/wf/RBFj7G6tBQs7FoxetmHFt5UDIMC+yfU5gTbmrh999\n97BLiqkfTvk6tPX4eeqKYpfcNGn6mEEtAhfpzv5dkxiTAOsEX64cnv30QTvp4e/6qXisofID\nFw689Zpagc1d/GuU/xdve/3Q7sFv2ybbzqC6wxM8WaXbXXfrgPOCX4T5+LZdDRs2PIN/OqMh\n945VhgEg8yHAAshKakwz0O+fooljgsbwKGO7//eYAKu3GiJ0DF7mOrFB4h9zPw1t3llKjahW\nBu9b+n2w+uOdQ5uXqLHLHX8FP/51txpx3KJJjEmApQY3Z/O7yC+dteHJ+dvspIdPMnHGDMau\nClwFfPF0NQGflWO5t6t3Xp1Yqt4uVjFyA5qdHS5grPyywLdeO2T159uGtt/GP0VucjfNMABk\nPgRYAFkpFGDt4DdsN9duOcFvfG/ljw2wnlbDiUmRn/u9Dl/RMvRxLP9U9I3I9mHqL/w3+OlS\n/mGq5jAv8Pim+D+RxJgFWCWV5dMHsTJPR7ZbpYfHeyXKsqGhz6+qP1+R5T4RWjNbXRO+amdr\nh6ey+r+GVhxX81RkV/BjTIBlmmEAyHwIsACyUijA8rfmC99qtrzAV6yMC7DO5R/7a3fxFf9O\nh4ViHj7NJuut2XygLF8zO/DhOL+gVjJq5oNRfPP6SGLMAqxAcJPzgma7VXpKq/HShZEvqII3\nWN0RXnFUfbxwkbMdnvZrZHvgfY6hJwmjAyzzDANA5kOABZCVwgHWKr4wXrPlGuXzSftjA6x/\nqzHQn1H7UN+00zewvK/BmUUYe1y7uR/f3DWw/BtfrhH1298MmPjIq7sjiTELsALBzSDNZqv0\nBH/lrcjWe9UVp2hevdidrxjmbIdLtdv5d31sevBDdIBlnmEAyHwIsACyUjjAOsinlqp4Irxh\n30nBL3KiA6wb+Kfro/fxuRqxhGcUPf7bx1F3y8/lm5sFltWZrE41TYx1gPWlZrNletRfqafZ\nqk5Pz67TrJnAV/RytMPTtU8d+tvzVSODH6IDLPMMA0DmQ4AFkJXCAZZfvRs9cvFtBf/IZ8aK\nDrDyon9Ks/J1o0Os5VtrBZYL1GfuNpslxjLAqht3aLP0qL9yu2bjByz2Et1SvuIqRzscELVZ\n/YZrSPBDdIBlnmEAyHwIsACyUiTA+g9f6hPe0FL5lMe/0IoKsNQ5G9ivMTvpwlcuMTpEPt9a\nOfjhAvXLoGf1f9JegKV9As86PeqvaC9ZqrNPRL14cTVf0crRDhdFbb5Te+pibnI3zTAAZD4E\nWABZKRJgqbenlww93badP1Wo3pIVFWC9zD8UPxGzE/XJwVuNDuHTBliPqgEM6/D0UaPEWAZY\nCzRbrdOj/ormoUb/j2oCtK9I3MBXtHS0w+ivuCbyVaFrjDEBlmmGASDzIcACyEqaAGuq9nso\ndV4sdXrQqAArGC7o6RjZaeGnM6+5qMIpmnfRhAOswquDK07pNPej2DjGXoD1jGardXrUX/lc\n8yvb+YoS2kNoAyybO3w3Ko2TTAIs0wwDQOZDgAWQlTQB1k4+jedFwfU1wstRAdYM4/ijVWiX\nRxZXi99aObR1X/vIytO6L496ms5egPWmZqt1etRf+U7zK9vjDqINsGzuUBuxmQdYphkGgMyH\nAAsgK2kCrEAs85W6qL6bcLG6GBVgTTGOP0I/8nVdva2Vw0c88eApmvVFr9gQmaLKXoClfXW0\ndXocBlg2d+ggwDLLMABkPgRYAFlJG2CpN3uPURevV5ZK/E9djAqwJhnHH3UCP/FhKJooV6f5\n1b24S6IDLL9/zwN1tL/YKPwqaHsBlja4sU6PwwDL5g6dBFgmGQaAzIcACyAraQOsQzw2ko4r\nS4dPVZZ6BNZGBViz+Ic8k/3tra7GEHkPRh7Ti7rJPejbOZcXDwccORO1iXEUYFmmx2mAZXOH\nzgIsv1GGASDzIcACyEraAMs/hH/gMwqs4wvBm8mjAqyH+QezeTNHqBFEL8086boBluLgMyMb\nhCKO2ZrEOAqwLNPjNMCyuUPHAZZfN8MAkPkQYAFkpagAS73zir9HsIPy71kFgZVRAZYai+QW\nGO7uKJ8Pnl0c9QPr9QMsbvt0dQpPVmJ7JDExAVYz0wDLKj2OAyybO0wkwFIPHp1hAMh8CLAA\nslJUgOWvqXw4+Yh/T1EWmf08KsB6Tw0P/mu4O3W2UvZq1Lo5xgGW33/kdvU3RkUSExNg1TYN\nsKzS4zjAsrnDRAOsmAwDQOZDgAWQlaIDLPVFyC/4H+H/fBZcFxVgHVFvJHrScHeL+ebToh+T\n62oWYPn9N/LNtdXFd/hi8aitBSeZBlhW6XEcYNncYeIBVlSGASDzIcACyErRAZY6FdZIfyfl\n/41D66LfRXge/3St4e7UyUrPiVq1t4x5gKW+DjlXjcnUlyqzY9qt7zPTAMsqPY4DLJs7TCbA\n0mQYADIfAiyArBQdYPnbKp/qH+ExxNzQqugAayT/dPqR6J18viu0pE4j1Txq4zQWHWDt2O+P\npn5HdUjdxGKjIf9oiwDLIj3OAyx7O3QSYJlkGAAyHwIsgKwUE2A9zj+uUv4r+mdoVXSA9YUa\n8MyJ2sfxWkUuvPcTdfEhvrWaduPXakDCKqgffrzzsnJsfnQKCvi3ZmXUxYP8BYhso2bjvjMs\nAiyL9DgPsOzt0CrACr2Y0SLDAJD5EGABZKWYAOtQWeUjn4o98mbB6ADL31z9hmeHdh/qd1QX\nqotb1fBke2TbH/WZeomwpHpJ7DceW+QdiErBi3xzo8Ayf0EPu0az8XpmEWBZpMd5gGVvhyYB\nlvoVWP/gB6sMA0DGQ4AFkJViAqxQRMM2hdfEBFgvqd8y1dNcM1uurnlKXd6TE72/T6szpk7T\nwL5UP7fii1dpL48daMhXTQ186MOXcyPvwpnKWHm+alnws05wY56eBAIsWzs0CbAm8g91Q5ss\nMgwAGQ8BFkBWig2w3grEV+WOhtfEBFj+W9QfKL8uOFfUd2pQxK4IblXnBWUjA9/ZfHVrLp9X\nS73Md5265nV1c531oRvZC5+vx1ec/HPgoy+w72cDn764SvnRCXzNkuCP6wQ3FulxHmDZ2qFJ\ngLWchUPCE5YZBoCMhwALICvFBliBeafY0MiK2ADrQONADHbmgLvmTLupSeBDXuiWrZcCn0/r\nfsfwnvX5UvW/A/M0sOZ3DvP5/TcFtp982c13T5t8W6fygY+hAOp44Oisas9hI6/hVyqLvf8A\n//xQcLtegGWengQCLDs7NAmwAjdxsXpdO5x7id8qwwCQ8RBgAWSluADrPjUAeC+yIjbA8v/V\ngsWqsz28dWj0lrwf/f4XQh/mKCFUj7hfZuz+8G+/WzRqQ84q/0L+78zgZr0AyyI9zgMsOzs0\nCbD8TcO/xW/bssgwAGQ6BFgAWSkuwPqF35ZdV7MiLsDyH7unVFS4UHTkvsjGgpu1m9qptzLd\nGAmw/P6HTomJNuo+r9n382U1W8pu9vsf4wvTglt1Ayzz9CQQYNnYoVmA9X4JbYBllWEAyHAI\nsACyUlyA5W+nrJiu+RwfYPn9u+6pHw4Xak36KXrjc5fkBOOS9sGbqfxrWpfLLVO5w2vqh72z\nWkS+pyrTfXP0i/9+Hh6KR866k1+W28IXJwQ36gdYpulJJMCy3qFZgOV/vU7wNzv5bWQYADIb\nAiwAcGLXC0unT53zyPN7dLbt2bpo2gNLX9tr+Mv7P1i/4IF7Zi7b/J3OhObHP149b+rMxz4+\nLiw9CUlihyfeWjj1vsXPaX7TNMMAkMkQYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEAwB\nFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsAAABAMARYAAAAAIIhwAIA\nAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgAAAAA\ngiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQYAEAAAAIhgALAAAAQDAE\nWAAAAACCIcACAAAAEAwBFgAAAIBgCLAAAAAABEOABQAAACAYAiwAAAAAwRBgAQAAAAiGAAsA\nAABAMARYAAAAAIIhwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAA\nCIYACwAAAEAwBFgAAAAAgiHAAgAAABAMARYAAACAYAiwAAAAAARDgAUAAAAgGAIsAAAAAMEQ\nYAEAAAAIhgALAAAAQDAEWAAAAACCIcACAAAAEMxJgPWFJEnzEzzOS8rvPpng71L4UEnvYts/\nLTJ3iZ9lZ2nOYFYn4jdl+xTXUgPmwo1HbP11VsioMlHCnVBCZWLQhSUzfoSl20CSoBQ1igiU\nsDsQYOlDgJXGMFqmEwRY3oPhlxgCrAyBAEsfAqw0htEynSDA8h4Mv8QQYGUIBFj6do4fP/51\n2z/tjQDLWZozmNWJMBwt+0qXpChJGUnM6Qo3HrH111lIlF1VxjLR4U4ooTLB8Ju0ZBsFStgj\nEGCJ4I0AC2wyGi0L66bjaElG0OlKUdcg9junjKoy1olOrhPC8Ju0JLOJEvYKBFgiIMBKK0aj\n5Q9SGo6WdASdrrQOsNKyylgnGsMvsSSziRL2CgRYIiDASitGo+WGdBwt6Qg6XWkdYKVllbFO\nNIZfYklmEyXsFQiwRECAlVaMRsvx6Tha0hF0utI6wErLKmOdaAy/xJLMJkrYK5wGWAuUfya1\nPafyeT0e3q/ZdPzZ0W3OrVS3+aBHdmvWFj5z/UXV6ra+7c3wWeuv/POZ5ideUz5PNDzgJ8pW\n5Xe/GXlB5WoX3/k1X3Xi6T4NKtXtMHef5sd+XzTgwtp5tZtdv+agZu2OuX2b1syr1Wzgij0W\nK/WEn60IpuHvhzrUrlSv3ZSfzHIX9NbEdudWqt/y+o3BM1RwmSRV/CS8eZ7yw+OMj2xwlm2c\ni4x7irCwviQNCX04VEnJ3g+hT9OVU/p3YDH2dMeciJeHtvTnVlMAACAASURBVKhVpfntyvn/\nR1m9hK/io+VU5Z/7rz6vcoMr7v1Z/bknpZCGKc9YGoptOfGnS6cZOms8NtqcXmka0C3koPSv\nMrHFYdyxWhecTuet/4zZsS03tqlXuVHPRX+bJ86gC4safvVHDNsDiSGe8X/7/e8Mb9Ogyvk9\nVoWO/YGy+m3/33dfWPmc74Or4iuBztkyWMlT8Xh4Oz+lrzo5iiGTRsHZG+lQwsFVXihhpwHW\nouNjQqV3/lvhLdsuDZdpjQePh9bu6h5a2Wdf8Kw9o/xzt2aXo2L6hWjfKFtf8s+uENhJpU3K\nLi8P7rFJeKgtuLdS+OANng+tPTK2YiRJCwtNVuoLV7tAGnzVg79WaZ1J7lTfXh0+RqOtgVWf\nKym88kRw+8/Kri46YHxkg7Ns41xkXIDlv1GSzgktb+NZXRP61EmSOqgLOqdbeyJ29Qltva9w\nh/L/x/hKPlre799QLbil6ga+EgGWifiWE3u6dJuhs8Zjo83plaYB3UJWpX+ViS8Oo47VuuB0\nO2/d4fc/F4Z/7hHT5Bl0YdrhV3/EsD+QGHpH2b41cuwL348c++V9LfmqL9QVepXA/qhhMPza\nO4qJ+GxqCsDuSIcSVle4X8J6qXUaYC0dq/yvUl11nK8ZCo3W5alnud0llfm/QwoCa/erAUDd\ny1sqHWXH5wNnraCBUjcKwnssqCdJrY0PuF35Jd9SSapQtwrfVeXv/2mmHLyeerTLg4VTOFDN\nXO2mdfg/FZ4OrlU7yUrnN6utbp1kvNJAuNqpaXhKKYDK9dTqXfFd49xx22rx9U3aXaymckFg\n5YPK4srgnpX0VnjLb8zgLNs4F5kXYD2u5Cj0h8L9PKe3Bj8cVmradL6ge7ojJ2L/ZeopbNlM\nOZV3fqksruVr+Wg5Z5OyqnJdtWVVfFtZ+e+ePWtIUvWePXve4GYW04JOy4k5XfrN0FnjsW5z\nuqVpQLeQufSvMjrFYdCxWhecfuetN/xuUH8wr6p152nQhWmGX/0Rw8FAYuhjZfvjE5X/Vamr\nJrTmV+rq75XF/HvUNerAqFsJ7I8aBsOvraOYMWkU9kc6lLDhuU9tCeul1mmAdZOUN+7LQv/R\n55srH64IBHsfKTuvOOU3ZenQkw2V1TMDPz6Jn8mXlbH/qK+p1Dt41viJCQff/leVTwuND/iz\nsnl2tTqP7vOfeK+Nsjx6tNRu23H/oU08Vy8GfuZRZfHc1fwbze2jefX7J3xCOvyHF9+uFbw+\nfmC40kC42vE0zK9d4Y4v/f5jr/O+t7tJ7vz+HcqOK969U1na9yg/RqAZFCgVqPYudfFFZeVd\nCZxlG+ci8wKsnzW1/Gqp6vnS+cEPrysb3vEbne7IieB9QEOfUuS/jakgzQqVEh8tJ1WvMOLz\nQv+x1/jJ7BTYa+t0vKHGDfotR3u69Juhs8Zj2eb0S9OAUSFnQJXRKw79jtW64PQ7b53h92Ml\n1q0ya8cJ/65lNfkoY5I+gy4sMvwajBhOBhIjnyrbb5Xypnyn/BWW31T50EY9tvpVZC2p5bTF\n9//iN6oE9kcNg+HX1lHMmDQKJyMdSpikhPVS6zTAkio8FfjwF8/ac3ypsLXmjHynRIGV+QH9\nu6ooleDHwNrfzpOCP/Nf5d/rwnscqSTvD+MD/qr8cPWaXwaWlbi6ZoWOh9UPG5UNdwZ+ppmy\ni8+DPz8+XFd6SlKj0GW47fUl6RbDlQbC1Y6noUaFTYG1e5SYucIe49z5/UrtCP2w/1vlXFxw\nJHDqlLo7lC8cvlCSmh0yObDRWbZxLjIvwPIrbXd4YOlAJenqIZK0M/BphiTV4i1C/3RHCk/5\nO6lG4A8c/3Kpkna0rFZhY2D9X0pNqBAIfhFgGdBvOdrTpd8MnTUeqzZnUJoGjAo5A6qMXnHo\nd6yWBWfQeesMv+2UP/KD37y/UVGSmkau+sQx6MLCOzU4qKOBxPTYoVDmz0ah5V+UhR7SlNBt\nIfqVwP6oYTD82jqKGZNG4WSkQwmTlLBeah0HWENDn/jAriblDWWhX/iHFiqfZvOFR6TgVRzu\nqfBZ46X4v+DaAqXv7GNyQN6rhb/hulZZrvhd8Bdrhm7B4RFlN+3P91WXGkWuJvn9S668fp7h\nSgPhaqemYXRo9TjlwzaT3H2mLIwI72Sl8il468dMZfENv3qhq8I7Jsc1PMs2zkUGBlhjJemi\nwNIrkjRhXvh0dpGka/2Gpzt8IpYoC/eFNg8Ml5J6LseE1vM/n15TlxBgGdBvOZrTZdAMnTUe\nqzZnUJoGDAo5E6qMbnHodqyWBWfQeccPv28pCxNCP8fv8HrFOH0GXVh4pwYHdTaQ2Dr2euXD\n9XxBLb9uoXHRoBLYHzUMhl9bR7FDp1E4GelQwiQlrJdaxwFW+Gm4guqSVJcvjIwqiz15ktSK\nL/RVVn8XWnu8fuis8ZMZuoFOGTSlTX5jPDeV/wl+mCGFLxX4/R0kqXFg6ejPH30V/oXzJamF\nuqB0MIPidqe70kBUZ18h/BzTk6HTbpC7u5WFb8M7OaycosGBRX6R8JJj/u8qmz01qTI4yzbO\nRQYGWPze3d/VpalKVdkmSaPUD0eqBO5pMzjd4RPRS1nYHtr8RdRoWTH8WNkm5dNqdQkBlgH9\nlqM9XfrN0FnjsWpzBqVpwKCQM6HK6BaHbsdqWXAGnXf88MtvKv4m9HOvNWnba4tx+gy6sPBO\nDQ7qbCAxO/ZHoU9HlWPX4Y8XqQPjv0OrDSqB/VHDbPi1OoodOo3CyUiHEiYpYb3UOg2wNHfK\n91A+8q+hL5WkKpHbK/3tlZ6IP0SqxIXnRtbeFDpr/yhjY/vgyhGSVMvschnPzdWhD/wS9JzQ\nB+VPy1o6v9Au9NTZFUo08nHsVt2VBqI6+zbh1f9RPi3jCwa5aytJzTR7UWpOveAiv0g4j5+z\ni3XLIcLgLNs4FxkYYO1V2mDgi2ilWv20t6LUXP3wZnAUNDjd4RPRQArftaVoox0trwiv5n9W\nLVWXEGAZ0G85hqcr3AydNR6rNmdQmgYMCjkTqoxuceh2rJYFZ9B5xw+/Fzt4VNKgCwvv1OCg\nzgYSk2OfF/nYTfnIb5bh5VczvHODSmB/1DAZfi2PYkt8o4hmPtKhhElKWI/TAKtv5OOdknrV\n62BFSbpc81PDldUfKkOj8k/HyNo54bN2YzhQ5l9kj/Cb4LkZFfrwhPLBF/pwg1JSOr9wlSTV\nVxf4F/3V7t8RvVV3pYGozn5YePX7wRpkkLvDyrnordnLFGX9ruDyLOXg85Qa9Z7FkfXPsp1z\nkYEBFi9Rdc6wfXm8UV0eaMf8giu/cmh0ukMnYp8UtX20drQcHl4dKlMEWIb0W47h6Qo3Q0eN\nx6rNGZWmAf1Czogqo18ceh2rVcEZdN7xw+9R5Qc7202fQRcW2qnBQZ0OJMbHvjb62G/6A+XX\nJbTSqBLYHzVMhl/Lo9gS3yiimY90KGGSEtbjNMAaH/k4KzDK82eqtV998stXz/n93yn/aB5e\nfjJ81vgDLveqS/yLbLMJC9TcTNbuYVvow02aAOuo746rGoYmqAlWu4JO6odLxz39T2R3uisN\nRHX2E6JW8xpkkDv+w9UviKgbrM3q0duqR5/st6B/lu2ci0wMsKYHv8t4Sb3sflfw+6xugVt0\njE536ER8qw1KA9/7hUfLyIXaUJkiwDKk33KiT5deM3TUeKzanFFpGtAv5IyoMvrFodexWhWc\nQecdP/zyH7zRbvoMurDQTg0O6nQgMT62ZkIwfmw+CVJUgGxUCeyPGibDr+VRbIlvFH4HIx1K\nmKSE9VLrNMCaHvm4SPm4LnCj162an1ogqTeU8dmYb4us9YXP2okmktRYfUDhNkm6wHS2T56B\naaEPT0qacEwTYG1uLGkFqp3/4K3Bz3mdHgmfNt2V+qI6+ylRq3kNMsjdV1K88AXbL/kjSS0s\nLhAanWU75yITA6y3JKkCL6rJ6k0v+ZI0VvlwtKokPeM3Pt2hE/FJdFN8StKMlvFligDLmG7L\niTpdus3QUeOx0+b0StOA/k4yo8roFodux2pRcAadd/zw+7lkcbVBy6ALC+3U4KBOBxLjY8+K\nfFysfHzCHyi/8Ow4ht207VHDZPi1Pood8Y3C0UiHEqYoYb3UOg2wNE/ePax8XOX3vyuFp0xQ\nLQ+sfid6tWb2sOlS4BGcgjpRhaTDToA1V83ahZ2uHaZoEK52fv/Hw2sH8117znHTlXosOnuD\n3H2oU67PhH7ooNIBSv1NM8zpn+VsDbCO1eCTeqvXyb/z+3cFpk9Uoq48/n4go9MdOhG8lKZG\n9hWeIthbo2V60Gk52tOl3wwdNR47bU6vNA3o7yRTqoxeR6bfsZoWnEHnHT/8fhDzg6YMurDQ\nTg0O6nggMTz2Q/HHjio/k27a5qhhMvzaOYo1nYlGnYx0KGGKEtZLrdMAa2bkIw9bNwQi32Ga\nn3pI+bwxMN+qJizdHDlr/ItC/pQl/yL7B78ZG0HF63wi2fG/BFdfpal2Skfz+uQ2gZz3P2K+\nMp5FZ2+Qu68l7Z0aMe5Sj7rRNMd+o7OcrQGWv5963eOfioHbIJtJFf5SvxVWr9kbne7QifhI\nipqQOF/y6GiZHuJajuZ0GTRDR43Hqs0ZlaYB/Z1kTpWJ78iMOlaTgjPovOOH3y/NerZYBl1Y\naKcGB3U8kNg99np/TPmZdtO2Rg07w6/pUazENwpHIx1K2Csl7DTA0rxRnl/8VKLCn6Topxz5\n31EvBt4nprmw+pjmrHWRpBqH1VvcrvabshFU8Glfl4V/oX1UteN2Pd6Zn7S51iujWXT2Brn7\nVTKeCeJtpYE0laS6Vvc56p/lrA2wlkmS7Pc/FzzdIyTpWb+/e/A7YqPTHToR/Cvc0ZHVq707\nWqaLqJajOV0GzdBR47Fqc0alaUB/J5lVZWI6MpOO1aDgDDrv+OF3pxR1Z7E5gy4stFODgzof\nSGwem89DGVV+Zt20ynLUiB5+V+sOv5ZHMRPfKByNdChhr5Sw0wBLcxscv33/fb//cJ4kXab5\nqVsk9TWjf0pRjwZM0py1deopOVLL/GWtfjtBBX8u4aLIfVyN46qd4pmqSr8TOxuE7koNi87e\nIHcFVQzfrXiouRIp/F5bkgYaH1Slf5azNsBSRrxKh/mEI+ocP0/w7xeOVQu+zsDodIdOxB/R\nfcYEb4+WaSLScqIfVdJrho4aj1WbMypNA/o7ybgqo+3IzDtWvYIz6Lzjh9+CSpLU1m6aDLqw\n0E4NDup8ILF5bN5XRJWfSTcdZj5q8OF3dXj1Q7rDr52jGIprFM5GOpSwV0rYaYCl2V935SN/\nM1IbSap8LLI69LFO1OQWPTRn7UANPvmqT/m5v80PaB1U8Hcvjgz//A+SXrXzz1ZWv21rZYRF\nZ2+Uuw5KOLBPd4cTlS1fqdG5xXS+Bmc5WwMsPknKW7xSqZPs/chnI3pHkuoELpQbnO7QiSis\nHnUq23l+tEwL4ZYTOV1GzdBZ47Foc0alacDg2BlXZTQdmUXHqlNwRp13/CxJyu9Ujjyg8/13\n3/1mnCSDLiy8U4ODOh5IbBybz5K02x9bfsbddITpqPFv5d/l4bU36Q6/to5iJK5ROBvpUMJe\nKWHHM7n/Gvp0TOmKmvAFPgPsi+Ef4i9qlfkCf/YxPD3rvqg3h42QpOqHrpOkIRYHtA4q+OXb\nyNPTkyLV7pdfwmv920IJ1F2pzyrAMsjd5OgA6vvw2X+vonrjaaGsBAcmb1/0G57lrA2wbpWk\nuX9XkOoF/nprKOXtmxd8OYLh6Q6fiCskqWLo9SHqN9FeHy29SrflRE6XUTN01nis2pxBaRow\n2ElGVBmjjiy+Y7UoOKPOO374Ha8svBD6OX5tJPzeoHgGXVh4pwYHdT6QWB6bv0cs3H1Gys+o\nm7Y9avCJ0O4JrTxSX3/4NRwMrMU3CmcjHUqYooT1OA6wot4ZxJ+ZV+8LjUy3NU0KfrU2RxsR\nzIvqDvljA2uraN/+rs86qOCRfPgq6OeVlU/V+dLkBpHZwPz+LZI6tb7uSiNWnb1B7vgtHC3D\nzyYcaVKpR+DZhcMXS1JzfvPcV5WsniQ0OMtZG2BtUE7Ys+FSvl6SXusf/vLW4HSHT8Q9ysKj\noc03WI6WbaJm8YYQg5YTOV0GzdBh47FqcwalacBgJxlQZYw7stiO1bLgjDrv+OGX77pr6Of4\no/FPGyfQoAsL79TgoM4HEqNjPxD6tFUKTmsWXX76lcDBqPGb9mzwh+H0hl+jwcCG+EbhZKRD\nCdOUsF5qHQdY1T8LfNjbXPkQeG2xLEXuB/tQKfr6+/nStxUkqcbXgbUf1Yg+a8rv1pOkBppZ\n83VZBxXHa0lS7eBt4183rtFR+Rn+5yevHitDP1ugrK19xGClEavO3ih3/FVmo4OXygt4/xyY\ncJ2Huq+rS/dZVB+js5y1AdYfknTu5PD9nQ8rbetcSdoZ3Kh/usMn4j1l4bzdgc2rpVpWo2V7\nSap0wA+xDFpO5HQZNEOHjceqzRmUpgGjQk7/KmPSkcV0rJYFZ9R5xw+//Lv30JP539SWpEaa\nSz2xDLqw8E4NDprAQGJx7H0XScGrQNHlp18JnIwaDSSpYvAg71avoT/8Gg0GJowbhZORDiVM\nU8J6qXUSYH2q7K2vVGcVPykfXSEFX9iulEZVJS33/smzu5z3SMHIl7+6ocE65Yd3zq0hjYw6\na2qUqpms2YCNoILPtt+Jz3L/x+xq0sr7gwW8v6GyMPwD3s8cfIXXxXuNVhqx6uyNcvdTTWWx\nx7vKOT/iu1IKvf/8g4rhB1EPN1NK8HeTIxuc5awNsPytJKlZ4MZMv/qkb4vQe079Rqc7ciK6\nKkut31Y277q7QqXFVqPlEN5c9hzfaT3Rf3YxaDma06XfDB02Hss2p1+aBox2kv5VxqQji+lY\nrQvOoPOOH379n/BLNzd/dLhw50I+Z5DZlRGDLiwy/BqMGM4HknhfaI99Wbh8YwZG3UrgZNTg\nF7saPX1Q2dMDVSvyqZhetnsUUyaNwsFIhxKmKWG91DoJsHhRrBmlxMYtruBpkhr+FNzwNP/G\nskKzK5tV5KtDE5D93kRt7XWUcyr15JO4PhHe02/qD34Sd4QYNoKK7TyHeRd3vljZ44jCl/lu\nW1/1g//NKnwpr/EFtdQ0dFJv3tNdaZJX087eKHf/4QmSajQ/l09bIrVS/xY+cqlSf/4K7oLf\nPdfP4sg6Zzl7A6yJ/CzUDn4Re0KdEC48l67u6daciK/VH6/fllePRa9ajZarpYD/uJKvNKLf\ncjSny6AZOms8lm1OvzQNGO0kA6qMcUcW27FaFpxB560z/Prz1R+QAv+P3A6kw6ALiwy/BiOG\n84EkHj/Islsixz4ncLdOzMCoXwkcjBo/q79fsW515f8P8itFz9s+ihmTRuFkpEMJk5SwXmqd\nBFhvK/t4quCOYNlJLb8Kb3mndWil1DTyNeh3l4VW9tvPp8BYFdlVX/77lge0EVT4/x2agjVv\nht9fEDiikrCPW4VTJFWaFOyBdFfqs+zsDXP3ZefwMSqM3Kuumipp/x4Yal6BDM5y9gZYal8S\nDkmv4Z80TyfonG7tiXj3/ODG6o/5LUfLI8Gp5hBgxdJtOdrTpd8MnTUe6zanW5oGDHeSAVXG\nuCPrK0V3rJYFp9956w2//jebh36u1krT5Bl0YZrh12DEcD6QxOEHWXJsROgXWgWvPMUOjLqV\nwMmosS1c4eer8zv57B/FRHw2IwXgZKRDCVOUsF5qnQRYfIbgV/3+zyZc3qDyeX3WHNVsOvHM\n7a3qV6p36fDN2gu3BesHNq1ap9WINwNvqY9Mk6bemjbfb8VOgOXfNf3K2nm1292jzl38x031\nKzW+cY+yVPjquKsaVs2r3ezapZGn9nRX6rLu7I1z9+akdo0qV2/ca1bwG76P85S4PLLr3XUl\nqfavfiMGZzl7A6wD/JvrBaFP/CJI9F0vsac7+kTsW9a1UaXaV07/PRCpbeLrDMv0rzHn5VW9\n6PrYd9ODfsvRni7dZuis8dhoc3qlacB4JxlQZQw7sriO1bLgdDtv3eHXfyT/xkvrVG7UY5HF\n9DoGXZh2+DUYMRwPJHH4QRYq497ktudUadr7ydDdaXEDo14lcDRq7HlQrl+pestJO5VFKfgH\ntM2jGDNpFM5GOpSw3xsl7CTAEmidMkpaTWkOIBR/QOQl6kSAIK6UZtpVmazvWL+IjTAhw6RX\nCRMFWB0kaTDNkSFrLVRa5ofUiQBBXCnNtKsyWd+xptfwC86lVwnTBFhvKefoTZIjQ3Y5/mPk\nO99rJSnvIGFaIFmulGY6Vxl0rOk1/IJz6VXCJAFWQVtJupLiwJBdvmlVWbop9GFXJUnqQJka\nSI4rpZnWVQYda5oNv+BcepUwRYBVOEo5Rf8mODBkmYIGklQp+IBXQX9J+350SDuulGY6Vxl0\nrOk2/IJz6VXCBAHW572VM3Rd5POSvvoWpT4pdIcmzHQ2WaJUteqzd/n9x9/uoiy2NJm7HzxP\npzTFt6P0rTKxHWuKUXZhxsdOr+HX21DCyXM7wBrRUJ3Nq5nmMdDbJH3DUp8aukMTZjqbnBio\nntVa51fj/9T7yvo3wLt0SlN8O0rTKqPTsaYYZRdmfOz0Gn69DSWcPLcDrGHqWWqjnQYKAZbL\ndTebFEyuFD63V2+nTg0kJ740U9CO0rPK6HSsKYbhN9OhhJPndoA1ubJU+6qHrd7yDCDKzrm9\nGletfG67u96gTgkkz5XSTMcqg441IL2GX3AuvUqYaB4sAAAAgMyFAAsAAABAMARYAAAAAIIh\nwAIAAAAQDAEWAAAAgGAIsAAAAAAEQ4AFAAAAIBgCLAAAAADBEGABAAAACIYACwAAAEAwBFgA\nAAAAgiHAAgAAABDMawHW+0u5j6mTAanw8tIg3zHqpEA2+41Xwk+oU5FB9iwLtOtC6oQAlSOb\nQr37L9RJ8RKPBVgPF8tp0r95zkmvUScEhNvfk7GanQb2aFaWsbPv3kWdHMha/9RnjS7LOeVD\n6nRkjO+rsArdezfKYZdjcM1Ox2aVZ6xci54D25dnZbdSp8ZDvBVgrckpM8Xn843LLfcTdVJA\nsL/OY7Xm+Lj8Ge1PYqVG7qFOEWSpnuzKfN+onMr/o05IhthdnXV9SmnYixux8q9TJwYIfNeY\nlew4V+3dt95YPHcNdXq8w1MB1qelTgoU0g3scuq0gFhHLmatt/hC1g85nZV7jDpNkJU2slq8\nJnZnfalTkiE6si6BZp0/uEiJJ6hTA677pDxrtSbcuc8oXewV6hR5hpcCrILz2LhgQ23E1lGn\nBoQaxppv9WlsGliS9T9CnSrIPgcqFl3Ia+CW6uwZ6rRkhDWsfrhpTy5ZZCF1esBlO87KuUHb\nt08reiYuFQd5KcBazC4NFdGSolWPUicHBHopp8IGX7Rl1VirA9TpgqwzOfR9y7zcqoeoE5MB\n9p1dfGmkVc8+JWcudYrAVcfOZ4Oju/brWFs87hDgoQDr0FklVoaLqD1bTJ0eEOdIzZyZvlgb\nm7LW+A4L3LW7TJl1wQoos6nUqckAE1hPbatecGrOMuokgZsmRL4Y8YWvQKEOBHgowJoX+suS\nW1msagF1gkCY2ax9XHzl821pyvrgLx1w1Th2baj+PVHm5N+pk5P2dp9c9smoVj2/TO7T1IkC\n9/y3+OnrYnv2FSVPw2PiKu8EWMerFlulKaIr2ePUKQJR9p9eak1sG1S/w6rJ7qNOG2SVvWXL\nRK5V38Buok5P2hsTe33I90CxU76iThW4pgMbHd+zD2aDqNPlDd4JsPJZG20JLck5nzpFIMr0\n6KsIEY+Vy32ZOnGQTeawPpHqt+VfRb+lTlCa+1+ZsrE3V/pGsAa4uS1bbGN1dTr2LXlF3qdO\nmSd4J8DqyGZFFVFT9hZ1kkCMw2eXXKsfYPmm556FqzTgmhPVi63WVL/bMVVDku5h/eNbdVs2\ngjpd4JI27H69jn0ya0WdMk/wTID1R7HKsSXUnzpNIMZy1skgvvL5BrLLT1CnD7LGK6yltvbl\nVyryJXWS0tqhM0vF3YDj8204uwj+Os4Ob7Nz9Dv2RuxZ6rR5gWcCrHmxl/LzzyqJmZYzwzlF\nVhgGWPmN2QPU6YOs0Y/dG1X9xrDe1ElKa4u1TyZF3JvT6Dh10sAN3dgU/Y59bk5jPMDkoQCr\nWc4jMSV0DcOUdRnhNdbMML7y+VaVLY53e4M7DpU5Iz86vq9cBDdkJ+5EzaIrdVv1pWwpddrA\nBTtyq+TrVgCfrwXbRJ06D/BKgLUzp15sAa3MuYA6VSBCLzbNJMDyTWANj1EnEbLDpriL1aNZ\nP+pEpbHNrLV+o15Z/GxMIpwFxrKhRv36wpyG+ArLMwHWPHZ9XAmdy76hThYk7/diFY3+yAlo\nze6hTiNkh37swZjKl5+XiwcJE3Yxm2fQqLtjApYscLR86bhnSMMuZlup00fPKwFWGxZ/m85w\nNpk6WZC8+9l1pvGVb23Zkt9RJxKywfEzysbF+rezgdTJSlvvsIZGjfqJ0uX2UScPUm0D62Dc\nr8/LuYg6ffQ8EmD9XayaThstWp86XZC0wprFHjcPsHyjWAfqVEI2eFvnitbWCpgLK1G92GTD\nRt0bX2Flvg6G32By57H/UCeQnEcCrCdZL50CasL+S50wSNY2dolFfOXLr8ueo04mZIGp7I74\n2ncn5sJK0M6iecYX/58oVf4gdQIhtX7N1fleJOJe1pk6heQ8EmANYPHvAubXCKdRJwySNZDd\nYxVg+WbnNMRkWJBybdhj8ZUvv0oRPMaakNHGdzgrurIF1AmE1HpQ585prapFfqBOIjVvBFiF\n/yqj96fQ2tym1CmDJO0rfYb5Le6qS9ha6oRCxjtSqqJe5ZvI2lKnLC0dLFdmo0mbfqxodcyF\nldka5a42qQD8nUmjqJNIzRsB1sfsUt0CapDzC3XSIDkrdC/+xlpSpC6+woIUe4NdqVv7zmHP\nUyctHT3Mupo26svYRuokQip9yZqYd+ubTjk12y8TaFLBtwAAIABJREFUeyPAeoCN0C2gwWwZ\nddIgOZfmLLURYPlasQ3UKYVMN4ON0q18s3POwXctzjXOedi0Tc9nLaiTCKl0l0F7iujKHqFO\nJDFvBFhtmf58wItYR+qkQVJ+zNF713q8BTnnUycVMl1ntky/9rXK+nEgAe+wphaNuiH7gDqR\nkEI1ij9pUQOW5VxInUhingiwDuvfG6E4u/QR6sRBMqayWyzaYFBT9m/qtEKGO+tUg8q3olje\nYerEpZ1BbKJFm56AKcYy2QesuWW33pB9Qp1MWp4IsF5lVxmUz1XsBerEQTJqF1tr2QhV01gn\n6rRCZvuJXWBU+zqxmdSpSzf7Sp+x1aJN559dcjd1MiFlxrA7Lbv10ew26mTS8kSANZGNMyif\nSWwEdeIgCe+bvuc5StXc7dSphYy2kV1jVPnWlDoD8447s4z1tmzTg9gD1MmElKlWwvg1OSGb\ny5xxlDqdpDwRYF2as8agfDYVr0udOEjCKDbGsg0GDWNjqFMLGW2MybzjvdgU6uSlmYstbnHn\nHi9eDQ8HZyo7Vwj5NahN1Akl5YUA61CJyobl05jtoE4eJOxEhVKbbDRC1cbSZ+J+O0ihy5nx\nO5vWlTnlT+r0pZXvchrYaNSt8YqGjDWWjbZRA2Zn+a0fXgiwthneguXzDWFLqJMHCfuPzrvf\nDMnscer0QiY7/UyT2jeYDaNOX1qZxIbbaNMPsC7UCYUUqVHc+gqhIq9YVt+H54UAa6pJKLyI\ndaVOHiRsGLvbThsMWMhaUacXMtgOdpFJ7dtUvtiX1ClMJ7WKPWFveP2NOqWQEh/bvL12IFtI\nnVRKXgiw2um9ISzkzFOOUacPEnSiwkmbbTXCgLo531KnGDLXFuN73LmxrFUhdRLTx4fsQltt\negibTp1USIkJ7HZbNeCRnGbUSaXkgQDr+Clnm5RPO7aNOoGQoLdYS1ttMGgEbnOH1Jlo8XVq\nE9yNYJ+dR/S5x4vWRtiakeoWs5plNKhBTja/8dkDAdbHpjfqjGPjqRMICRrNxtprgwEbTjq7\ngDrJkLE6skdMq98jJ5X+hjqNaaO6vRtwfL6L2RvUaYUU+MJyHv+QW9i91Ikl5IEAayG72aR4\nnix6HnUCIUG1i6232QgDrmRbqZMMGatKGYvqN4o1wnzu9nxk6xF9biK7jjqxkAJT2G02a8Da\novWpE0vIAwFWf/aQWfnUz/mdOoWQkG/Y+TbbYNCsLH+kF1Lo75xzrOpfG3YzdSrTxN2Wr/kN\neapcmYPUqQXxGubafEUHfwvaZ9SppeOBAKtmKdNXLgxgj1KnEBIyx/SrST1ViiKYhtTYxjpa\nVb8NeVk+K6Jt5xZdZ7dNd2FrqFMLwn3PGtvu1W9nd1Enlw59gPWXxV+W81hP6iRCQq5g1nM9\nRxuMV8JBisy3MXHT/OKnI8K3YQdraLtNL2DtqJMLwj3AhtquAeuL16BOLh36AOs51t20ePLL\nnYZbn9PRoZIVbbfBoNVZfbkeUukGNtu6Ag7GxJh2zGfX22/U1XIxFVbGuSBntf0a0Jx9QJ1e\nMvQB1mQ23rx42rL/UKcREvACk+23waAL2bvUyYbM1KzIRuv6l1+bbaZOaBpoz5bbb9ND2Czq\n9IJgO3PqO+jVx7DR1AkmQx9gXcVWmhfPODaOOo2QgDvYRAeNMOAudgt1siEjFZ5cwU4FXFA0\nbz91Uj3vQMk8B216TS6eA88089gQBzVgQ4mqWTsZGn2AVb6cRfGsK9qQOo2QgMZFnU3SwG0p\nWw5vfIYU+IFdbKsGdmOjqJPqeT7WxUmjPo/hJUQZpmXOCic1oAV7jzrFVMgDrB3W71w4J+cX\n6lSCY38VqeOkDQZ1ZOupEw6Z6CnW11YF3FC+6MfUafW6oWyqkzY9EnNFZ5g/c2s46tXHsDuo\nk0yFPMDayPpZFc8gtpw6leDYFtbDUSMMmMc6UCccMtG9bJy9GjiRNT1OnViPq1HSyStGfeuz\n+ApRZnqY9XfUq28sWSVbawB5gDWWTbYqngWsK3UqwbGRzv7MDamKqbAgBXqzJTZrYAvclG3u\nB6cTCF/C3qROM4h0FVvsrAZk7zVC8gDrcrbGsnjKn4wbc9LO+bk231YWbQimwoIUqF/CdDpj\njdVlSm+nTq2nLXYySQM3gd1KnWYQaH9JWw+MaIxhd1Inmgh1gFV4+pnWxdOevUycTHBqf9Ga\nDhthwOrcc6mTDpnnaDH7d40MxxubTHVjC5216c0nn4Wrrhlkg8XUlfGy9zlC6gBrO2tmXTwT\nsvceubT1IuvssBEGnc9wkzGI9hm7zHYNzK/DXqJOr4edKHe60zbdlr1AnWoQpx+b6bQGZO01\nQuoAy8Y97kr8WwwTfKebyXZvKo41Gs/Jg3CPs8H2q+DMnPOz9O9tOz5grZ226XvZIOpUgzAF\np52W77QGZO1zhNQB1njre9wVjdhPxOkEh65gjzpthAGbSp+FVyOBYOPYFAd18CL2DHWCvWsG\nG+G0TW8tdyruos0Yr7B2TiuAb2PJvOz8m4U6wLqS2Xmn0WC2jDid4MyJU8s7boRBbdnz1KmH\nTCM7ivfnsEuoE+xd7dgjjtu0zJ6iTjaIMoLd7bgC+C5hb1OnmwR1gFX+dDulsxATNaSZL9ml\nzhthwH2sH3XqIdNULeOoDp6bxa+ntXDs5H85b9MzWG/qdIMoNYvbeKtnrHFsBHW6SRAHWD+z\nC2wVzxllcdkorax09LKqKPlnlj5AnXzILPtzGjiqgxPYtdRJ9qo32RUJtOnyaNOZ4iubY3a0\nTaUqnKBOOQXiAGsr62OreNpiqrr0chObkUArDOjO1lAnHzLL26yDoyqYX77UX9Rp9qhp7PYE\n2nQ39iR1wkGMmWxoAhXA15pto045BeIAazKbYKt0xrC7aRMKzjQpuimRVqhawK6kTj5klofZ\nzc7qYH82hzrNHnUFW5lAm56LmzwyResE7sHz8VdQ3UKdcgrEAVYnm4W1NudC2oSCI0eKV0uk\nEQZVK/oHdQYgo4xg051VwVVF61Kn2ZsKErkFSyGV3EuddBBhb7GqCVWALWXOzMbbfIgDrDy7\n957WzMVX9mnkvQSe5I0YzOZSZwAyymXsCYd1sDn7D3WiPekd1jahNt2TraZOOoiwifVIqAL4\nrmTPUaedAG2AtZs1st0+N5KmFBxZlNh1+qBHc5pSZwAySvkznNbBe1h/6kR7UgKzYKnms6up\nkw4iXM/uT6gC+KaxAdRpJ0AbYL1g+6VG97GbSFMKjgxmcxNrhQEN2dfUOYAMsos1cVoF888u\nuYc62V50NXs4sTZdsfjf1GkHAfJKb0msAuSffsoh6sS7jzbAeoDdabN0tpSsQZpScKRhsQRb\nYcBteKYBBHqFdXVcBweyB6mT7UEnTnP8XWBQH7aSOvGQvC9Z8wQrgK8LW0+devfRBli92WK7\npdOEbSdNKjhwpFiNRFuh6skSVbLzxQqQEnPZSMd1cE2xmqiDcT5jrRJs04tYB+rEQ/LmJH7z\nx2zWhTr17qMNsGqVtP3WyMFsOWlSwYH3k7rH3cdfrPAGdR4gcwxJ5Ip1S7yyKd5CdkuibbpS\nMTynlP6uZCsSrQC+CiWz7yoxaYC1v0hd24XzEF62kD6WJt4NB0xkN1PnATLHhUUSmJVtBpOp\n0+09fdiCRNt0X1wjTH9HTpISLX+fr3cW1gDSAOtNB/Mr5596ZlZOtZ+WbmQzE2+G3Jaypx+l\nzgRkisKTKyZSCasV+ZE65Z5TsYztaw6xcI0wA7zi8JUIURazK6jT7zrSAGsBG2a/dC5ln1Cm\nFRxoWiSB14FGuYptpc4EZIof2MWJ1MHh7E7qlHvNdtY08TZdCc8Rpr1xbHziFcBXreif1Blw\nG2mANYTNtl84w9lMyrSCfQWlKiXRClUPsp7UuYBM8RTrm0gd3Fjm9Cx8rtzUajYw8Tbdlz1K\nnX5I0gVFnM7YqzWALabOgNtIA6ymuQ5ujViBN9Sli89Z6yRaoSr/7FJ4tQaIMZWNS6gSds7C\ne0bM3cQeSLxNL8Rco+nu79zaiZe/z7eMtabOgdsoAyyHX3T8qzRuy0kPq9ngZJqhqhcGNxCk\nF1uaUB1cijegxjinWOLvcPf58kr8Q50BSMoW1jOJ8vf5auRm21tmKQOsL53NqXIl20aYWLBv\nFJuWVDPkFmXhDZGQGvVKJHhndiP2KXXaPeVvB4996+jNVlHnAJJya5I9+7VsEXUWXEYZYK1l\n1zopnLGY3jtNtGGPJ9UMVdWy7o8dSI0jRWsmWAfHsFupE+8pzyYwI77GfNaROgeQlPrFk/kG\n0+dbztpQZ8FllAHWaHaPk8JZm9OcMLFg3+mJvk5DayBbSJ0PyAgfs7YJ1sHNZTBbiNYENiGp\nNl2hJG6sTGe/55ybVPnz5wh3U2fCXZQBVnu2ylHh1CiK5pkOdrILkmyG3MM5l1JnBDLCKjYk\n0Uoos43UqfeS1jlrkmrTvdga6ixAEtaya5Iqf5+vH1tBnQl3UQZY0qnOCqcbyydMLdiVz3on\n2QxVtYv8Sp0TyASj2dRE6+Ac1ok69R5SULpCck36IZzOtDaEzUiuAvgWZduTpIQB1m7W2Fnh\n3MNuo0st2DY5qcnowq5j86lzApmgPVudcCXMK44X6IV9wC5Lsk3jGmFaq1FyS5IVQKkB+6hz\n4SrCAOtl1sVZ2WwqXp8utWBbF/Zwss2QW5HTkjonkAnyyiZeCfuxpdTJ946HnLx5Q1dPXCNM\nYzvZeUmWv8/XnW2gzoarCAOsuWykw8I5NwcXjdJA1dIJv68sSs3cXdRZgfT3TzJ35i7PaUWd\nfu/oxRYl2aRxjTCdPZbMPP5BM1k/6my4ijDAuo7Nc1g4AzCPShr4O+ecpJthsLiXUecF0t/r\nTE6iEtbCnYBhlU5O+i8nXCNMY4PYzGTL35df7rRj1PlwE2GA5ehFOapZ7Fq65IJN25Ia0DSW\nsPbUeYH0tzipC1uD2UPUGfCKX1iTpNt0L/yNnL6qlnoq6Qrga8deoc6Hm+gCrBOl85yWzdaT\nK5IlF+yaw0Yk3wxVFUtk1w2RkApD2YNJ1MFHclpQZ8Ar1if9kD6fa/Qq6mxAgrYLCLB9vonZ\n9agaXYD1PWvhuHAuYl+TpRdsGuT40q+R7mw9dWYg7bXMWZ9MJayDa4RBIxOf7iIir/j/qPMB\niVnp7M0rBjaVqE6dETfRBVhbEvh76CbM7u19jYom/Sxv0IOsP3VmIO2dXj6pSojZQkIuKpJU\npBpwTbbNNJk5BrLZyZe/z3ch+5I6Jy6iC7CmJjBb0mLWlSy9YM/R4tVENEMu/9RyBdTZgTT3\nK2uaVCXEbCFBh0tUFdCml7C21BmBxFQ+aauACuC7lU2nzomL6AKsXmyp88I549TjZAkGWz5K\nejbCiMvZ69TZgTT3AuueXCWsgdlCVG+wDiLadLXc36lzAon4Mcm/VEIey7mEOisuoguw6hdP\nIB5uzT4gSzDYsoLdIKQdcuPYOOrsQJqbzW5PrhIOYMup8+AJMx3PW6hrEB7LTE8r2GAR5c//\nYsmityOQBVhHi1dPoGxGZtXXi2npVjZdTDtUrC96LnV2IM0NZg8lVwmz7vVpBrolcskh3sqc\nZtQ5gUT0Z3NElL/P1zebpvMnC7C+YG0SaZ24gu91LXKeFNMOuYbsJ+r8QHq7IHdzkpWwAmYL\n4aRTxLygoUHOD9RZgQRUKi3kFiyfbzbrQ50X95AFWOvYoEQKp8JJR6hSDHacOFkS0wxVg9kS\n6gxBWis8uWKylbALe4o6Fx7wk6BbcHxD2VTqvIBz37ILxZQ/n8w9e55dIguw7maTEimcDuw1\nqhSDHd8kML2ZscVMps4QpLUf2cXJVsL72fXUufCAday/iBbt860tVoc6L+DcMjZETPn7fFew\nbdS5cQ1ZgNWVrUikbMaxCVQpBjvWCXghqMbZpfGNJSTBx/okWwefKl2xkDob9G5j00Q0aEUz\n9h51ZsCx3sneyxhxFxtDnRvXkAVYtUsldEX/iSIXUaUY7BgtYrrniKvYi9Q5gnQ2nY1JuhK2\nYJ9SZ4Ne0yIbBLRnbhwbTp0ZcKrw7DJibsFTrC/WgDo7rqEKsI4UrZ1Y4dQs+jdRksGOy9nj\notohN5GNoM4RpLN+bFHSlXA4e5A6G+QOi5s/eHOZM49RZwcc+i9rLqr8fb5G7Efq/LiFKsD6\nhLVNrGy6sy1ESQY7Tj9TXDtUbCxemzpHkM4aC3hxE55d9vvfFDPNqKoDnhpIOwvZTcLK33c9\nW0CdH7dQBVhr2XWJlc29bBhRksGGHewice2Qa8K+p84TpK/jpSoJqIR5JQ9TZ4SaoGlGVTPx\nxrO0050tFFb+vmWsPXV+3EIVYN3FJidWNpvwlYaXbU7gFd6mbsDEz5C474Q81Ho1e5k6I9S6\nsWUCTmRQXvE/qfMDjhSeUVbYLViKiiX2U+fIJVQBVhf2SIJl05jtIEozWLsrsdk3jD3MrqTO\nE6SvrayvgEo4gY2lzgi1CoKmGVUNZHOp8wOOfMouEVf8fGq5rdQ5cglVgFXzpETb6yC8GszD\n2rPHRDZEH788c4A6U5C27hfwEKHPt67IBdQZIbZD1DSjqseKnEOdIXBkLhsqsPx992XN1HJE\nAdbh3AQfIvT55rOeNGkGG84qJ7Idctnzxw6I11/MrSM1iu6lzgktYdOMBjRhH1HnCJzoKOZF\nlCFPnfyvLJlajijA+ohdkWjZ5Jc77ThNosHSz+wCke2Qu4/dQJ0rSFtNBDxE6ONR/tPUOaEl\nbppR1Rg8qpRWjp92hsji9/kuZe9T58kdRAHW6iTm3W/D3qVJNFjaynoLbIWqLaUrZMkfOyDc\nidJJv4lQNYndQZ0VWhcIm2ZUtfmUcln/XGY6+YC1Fln8Pt8dbBJ1ntxBFGCNTWK+7zvYFJpE\ng6WJbILAVhhwSbb8sQPC/ShoesT1uU2ps0LqkLhpRgM6sieo8wT2zWC3iS3/J3LPo86TO4gC\nLDmJe6Efz2lGk2iwdDV7VGArDLiD3U2dLUhTz7BeYiphrdx/qPNC6XWB04yq5rMrqPME9nVI\n7M3BJhrk/EydKVcQBVjVTk6ibGrn7qFJNVj516nCWmDYE0UbUmcL0tRMdoeYStg1u2/CmsFG\niTmPYTWKYLadtFFQ5izBxe8bzBZS58oVNAHWgSL1kiibPmwtSarByq9CH+YOyaI3V4FY17F5\nYurgRHYndV4odRY5zajqZtzokT7eZpcLLn7fUtaOOleuoAmw3mPtkyibmawfSarBik/UFZko\nN7I51BmD9NQ8Z6OYOvhkds+EVV74N9PrilfDsyvp4n7hX2D6fHklsmLmE5oA6xF2YxJFk1/2\nzBMkyQYLU9hdwhpgxMqcS6gzBumpXHlRlbBmNs+E9R1rJuo8hl3KXqPOFth0BVspvPy7s/XU\n2XIDTYA1it2XTNm0Zu+QJBssdEz4BUimahX5jTpnkI7+YE1E1cGsvgnrUTZY1HkMu4cNpM4W\n2HO09L+EF7/vQXYNdb7cQBNgtWWPJ1M2o/FcmTflnSKq+UW5li2izhmko3+zzqLq4CR2O3Vu\n6NzAHhR1HsPyzzg5W174m+7eYO2EF78vv9ypR6kz5gKaAEtK7oUq64o2Jkk2mPuTNRLU+qIt\nZ22oswbpaDEbJqoOrs9tQp0bOvWLbxZ1HiN6skep8wW2TBX1LG6UK9nL1BlzAUmAtSfZgfic\nLJlEI808z7qLaXuxauTuos4bpKHhbIawOlgn93/U2aHyV5H6wk5jxBLWmjpjYMtlScxaaWxy\nVrwuiSTAei3Zb+6vY4sp0g3m7mNjxLS9WANxjRAS0JatFVYHe7It1Nmh4kvNH061MRVWWjh6\nUoVUFP/mk7LhHWgkAdb8ZCfeX8LaU6QbzHUXPltO0CM5l1LnDdJQXllxdXBaVvzBrWssmyju\nPEbcxO6lzhnYsI1dmYriz453oJEEWDewOUmWTcUS+ygSDqaql84X0vLi1SmykzpzkHb25zQQ\nVwU3Fa9DnR8qLXLEfRGosbZobeqcgQ1T2J2pKH7fnewu6qylHkmA1bxIstP/dWMbKRIOZv4W\nOZ5Fu4HNoM4dpJ33hf7p3YhlaZB/pGQVgadRoxl7jzpvYK1VzqqUFP+TRetTZy31KAKswjJJ\nX9OdwfoTJBxMvcY6imh3elYXwXOj4NQqNkRgHbyWPUKdIRrC3/QcMo7dSp03sHS4ZF5qit/X\nhH1LnbmUowiwfmAXJ1s0+eVOPUaQcjAzm40U0ex0ncc+p84epJtx7B6BVXAu60udIRrTUnSJ\nyLelzJnoxT3vVXZVaorfN5Q9QJ25lKMIsJ5ifZMumyvZSwQpBzMD2PzkG52B29kY6uxBuuki\n9MUCWfuGrvYpeFFKwJXMR505sHI3G5ui4l+V04w6cylHEWCJeGPdZHYLQcrBzDnFtghodfo2\nlKyYnaMbJK52SaEPXVzKPqLOEYXjp5wl8ixqzWA9qXMHVi7OSeq1K2bqFvmVOnepRhFg9RDw\nNP+W0hIGXG85XKyGgDZnpE1WzPsLAh0tWlNoFRzBplNnicIH7DKhp1Ej/18l/6HOHpg7WDxF\njzgoBmf+fJYUAZaQPyxbszcIkg7GPmBtky9WQ/eyAdQZhPTymeDIYFVOVr6xaRYbLvQ0avVh\ny6mzB+ZeYJ1SVvzLWDvq7KUaQYB1MLeOgLKZwEa4n3QwsZzdJKBcjeSfWRrvhgUnnmQDxdbB\nKsUPUOeJQMdUTR+sWJZzCXX2wNyY1MwyG1C5WKa/f4ogwHpPyOw0m0rlZcFE++lkqMAXv+no\nyVZS5xDSymQ2QWwV7Myeoc6T+06cdrrYsxilbs4P1BkEU01zn0xd8fdmj1PnL8UIAqyH2c0i\nyqYle9P9tIOxi3PWiyhXI0tyWlLnENJKD7ZcbBWcnI3fmn/MWoo9i1GGscnUGQQzf+fWTmHx\nz2U9qDOYYgQB1q3sARFlc1c29nYedqKMJKJYjeGPXXCkntiHCH2+jcWyYOrpWHPZMLFnMcq6\n4lVxIcLLNrOeKSz+/PInH6bOYWoRBFiX5Aj5znFz6X8ddz/xYORb1kJEsRobyiZR5xHSyDHx\nT7Wem/Mbda5c15ktFX0atVqy16hzCCZuYdNSWfwdWT51DlPL/QCr8NSzxZRNG7bN9cSDoQ2s\nv5hyNbKuRBXMzAG2fS5+eoH+bDV1rtx24vRyos9ilKl4OtjTapbYnMriv58Nps5harkfYG1n\nzcSUzSR2s+uJB0N3pfJpE1Ur9ip1JiF9rGODRNfAWexa6ly57WN2qeizGCW//El7qfMIhnaw\n81Ja/FvLnpHZ16HcD7CeYn3ElM2WMmcWuJ56MHJ1yl6oEXIv3vAN9t3FJouugVtLV6LOldvm\npPQWLB+fCivjJ5tMY8vZ4NQWf9sMv0TsfoA1WcCLcgKuzManpj2rQhlBxWoo/6xSmPcZ7OqU\ngoj/QvYddbZc1jG1t2D5fCtyzqfOIxjqkcL3y6omsuHUeUwp9wOszmyFoLK5D99oeMce1lBQ\nsRrrjXmfwbbqpcXXwBvYEupsuev4qWeIP4vRzsvOVzymhePlygl+EjdWps9n6X6AVbW0qCLL\nP+Pkg64nH/S9zLoIKlZjy7Pg7esgyP4i9cTXwPnZ9nbi91kb8Wcx2jjcS+tZb6XuPZQhLdi7\n1LlMJdcDrH9yGggrm65srdvJBwOz2Chh5WroHPYVdT4hTbzD2ouvgPlly2f039txZrDbxJ/F\naFvKldlHnU3QN4ndmeriH83GUOcylVwPsP7NOgorm3nsareTDwb6swXCytXQKDaaOp+QJpay\nW1JQA1uwL6gz5qoOwm7oMNYz2667po8LiqxNdemvL16TOpep5HqANZuNEFc4VYrucjv9oO/c\nYlvElauRjaXPPkadUUgPt7AHU1ADb2bzqTPmpmNl/pWCkxhjRZGG1PkEXX8WSeV7coIuZJ9R\n5zOFXA+wBrCHxJXNwOzq7jzsSLFq4orVWHu2mTqnkB5aiHlhRIz/s3ffAU5U2x/AT7ayLL2T\nZelSFAFBUIooIIro0JsoIAiogIigUkQQAcFGESkiRarIAgsb6+9Zn+1ZnwV7x2fBLoj03d8k\nu8kmm5nNJJl7z8zk+/lDsnGz99x77p05Saaspv7cHZPpFbpIwCCWdA69xN1R0LKRrhCf/Rsd\nfYcO6QWWqZ90bHCdIzt+0PQOXWheWvUtoUu4ewq2kF/RpBtGlFC1SiLdTmCe+GNwPN6ruSfY\nqQN2MYSWis/+9pTTufspkOwC64i5NwhrSZ9K7gBoWkfjzMyrrkZJ33B3FezgS+ooZAJ2pbe5\nuyZRN9cmIaMYKi879TvunkK445VEX6TBp52Tj2uUXWC9Tj3NzM1kulVyB0DTJFpoZl51XUe3\ncXcV7GCXoG83JtG93F2T50iZbCGDWNJ1NJ27qxDuWXN31nom02zunooju8BaRRPMzE1OmbqJ\n9Im9dXVxbTczr7oezXDjMHeIbA7NEjIB1yXSl9TP0mVCBrGknPJV/ubuK4SZQrfJyP721Gbc\nPRVHdoE1lhabmpyu9IzkHoAGUUe8hLuEdnB3Fmygj6jrC9Qud4y7b9LcSjPFDGJJg3C2kgU1\nSt8lJfvn0H+5uyqM7AKrTYq5OVtAV0ruAWj4nDqZmlZ9K1znc3cWbCBb1K0xeybQKW8dkh4R\nNIolbExteIK7s1DCB3SunOzf7ODLG0ousI6mmXw2f16NsrgBML+ddKW5edXXgt7j7i1Y3q/U\nWtD8m+bos8pDHEwx9Yyk0vSgrdy9hRLmmXnJytI4+UAfyQXWm6ZfV+UKWiW3C6BhFs02Oa+6\nZtBo7t6C5f0fDRQ0/7a5OnF3TpbHqL+gQQyzOqlFYt2DyAbaJG2VlP2u9AJ3Z0WRXGCtMv3+\nFetdbeR2ATRcShtNzquuvTXK/MTdXbC6u8RdwKlh6l/cvZNkCt0uahDDnIdLCFvMN64zZSV/\nrnPfNEsusEbTErOT05bektsHCFe7stlp1TcI62JpAAAgAElEQVQGV2qASIbQalHzrz/t5e6d\nJK1TckQNYpjlrrPwEZal3EfXyEr+3ioVDnN3VxDJBdaZaabfsW4mjZPbBwjzA51tdlr17cis\ninO6oXSNygq7ROI8up67d3L8nHSGqDHU0JH2cHcYgnVybZCW/H60mbu7gsgtsP5ONv/mkXuq\nlEuUj+wt63EabHpe9Q2mxdwdBmv7U+DXG7vSmnJ3T45H6XJhgxhuuauVY490tqPvk5rJS/4K\n6sbdX0HkFlgvirhw3VB6QGonIMxcmmF+XnVtSc86yt1jsLRnqa+4+XcWfcvdPymuoUXiBjFc\nZ3qUu8dQ7AEaLTH5TV1fcndYDLkF1j00xfzcPJzcHN/e8+ot6qqO2hRayd1jsLRFIm9SPJoe\n4u6fFI3LmH48R2lWJTXFtbCs43yXzG369TSTu8NiyC2wBgo59LQzPS21F1BSVkUBadX3cGrd\nxLmaNsRgAK0RN/2W02Du/snwDbUVN4ZaLkyQwtUWfkxqIjP3ORm1nXkLNLkFVt1yIg49vTuR\nbg9mRT/K3hT3wsXPoDT1hGxoiuRVqXySu4MSrJf6HZFqfVqdf7g7DUXkfkPovQVaDneXhZBa\nYP1AbYQkp4lrn8xuQAkeqce4qzak1TnC3Wmwrp+EXcfd50J6hbuHEgyjZSIHUUMfupu701Ck\ni9RvCD2eZQ49zF1qgbVb0Gkp02ikzG5ACbNplpC86lNoGXenwbryxFb80xLhSmz5NSsI/BRQ\n09bMyr9zdxt8vk8y/3z/0jV3fczdaRGkFli30FwhudlbO/Ubmf2AUJfQw0Lyqm9Tei1cCwv0\n3Cq24t+W1I67h+K9R51FjqGm4Q6+66+93E9XS879TTSRu9MiSC2wznMJujn7RBovsx8QqnoV\nMWktxQC6k7vXYFkX0mahs69Z0gHuLgp3H00UOoZacipnfMfdb/CSeZXRQrmVy//J3WsBZBZY\nxzOyRSWnejoWJpsv6FxBedW3LbPyH9z9Bos6VamG2Nl3pWMvPF3sElordhC1XEdjuPsNqv2u\n06Xnfpgjrx8ts8B6nXqISs54fITFZxuNFJVXfVc49cIpELd91EXs5FtKl3P3UbSjmbXFjqGm\nXHfKJ9w9h4KCe+XdhzBgc2pDB56cK7PAWkqTRCUnt0ba1xJ7AsFuoAWi8qovp2LmD9wdB2ta\nI3r3kFe1stOvifks9RI7htpupoHcPYeCgnZJm+Tnvjvt5O63+WQWWINppbDkTKKrJPYEgp2b\ntENYXvWNw4eWoG0ULRY8+S6iF7k7Kdh0mil4DDXlNXS9wd11+JxaMuR+uasjd8fNJ7PAcpcX\nd97vnqzkDyV2BYodSW8gLK2lyK2Z+jl318GSThN+j5db6SbuTgrWJmW74DHUdjtdyN11mM9w\ngoPHe5PPl7l7bjqJBdZX1F5gcqZTH3ldgSCv0CUC86pvamLcsQSi9bNL+PvvnLSm3L0U6yfX\nGaLHUMeZ9C/uzie8M1K2caR+HvXm7rnpJBZYm+kqgcnJa0IvyesLFLuXbhSY11Iy3tD1H+6+\ngwXl0hDhk68dfcrdTaE20XDhY6jtXlfbU9y9T3DvUzue3Dd2vc/dd7NJLLCuobtEJmchnZsv\nrzMQ0JceFJlXffOoM3ffwYKm0h3C595Eh9/V5XJaInwMdXSiLdy9T3AzaCpP6mfQUO6+m01i\ngXVG6m6h2TmHHpHXGfDLr1FJaFpL0daJp51AvNoliz/pYpMTD8gtdrJqJdn3yQl4MKUebjTK\nKb9+eg5P6vOyk512vxx5BdZvor/VX51SDzdjl+8T6ig2r/pWJjfEphhKOJRymoS51yzpe+6O\nCvQadZMwhjoUWsDd/4T2Cp3HlfqbHXeBOXkF1l4aJDg7vWmutN6A31oaIziv+i7DphhKeor6\nSph6o2kFd0cFmkW3SBhDHdvKl/sf9wAksvF0G1fq8+olvcfdfXPJK7BuotsFZ2d7xYyvpXUH\nioygpYLzqm9bhcxvufsPFjND7J2eizxE3bk7KlBrpos0FLqOhnAPQAI7Xq286Kuc6JtFvbj7\nby55BVb7pEdFZ+d6B57maXn1M/eKzqu+ibg4B5TQQdQt5UM1TnbuDZ/3i7/QRWn2NqKnuIcg\nce3luYZ/keb0LPcAmEpagXUwpbHw5OQ1x1HPsn1NZwvPaykZb0q53CMAlnIotaGUqTeSHuTu\nqjAP0NVSxlDP4qT6B7nHIGENonsYU3+vq7Wj7kgorcB6UsaREQ+k1P5NVofAZz2NEp9XfctT\n3H9wDwFYyRPUT8rMe8jVjburwlxEa6SMoa5+dC33GCSq39LdbCeQep1Pq7mHwEzSCqzpUo6c\nu8J5F9KwuOHC7/tWuqE0knsIwEpuojlyZt5pyT9y91WQP9LqyhlCXbvquB7nHoUEtYLtErOF\nNpSp5qQPSaQVWB2SZBwZkduYNsvqEXhllWM8BMub8fq0m3sMwELapEi69fhoWsbdV0E201A5\nQ6hvcUpNp5avFne2az1v6ofTddxjYCJZBZaMQ7C8Vpcp7+x7WFjMR3xXwSqyPLUqTuoGv5+T\nmkuaeBtc53J3VpB+tEzSGOobSRfijjkM3qM2zJnf7U56k3sUzCOrwHqM+stJz4105mFJfYKC\ngmV0nZy86htD5zvqsEiIx3a6XNbEa+H6kru3QhzMqC1rCPXltaE53AORiCbQNO7Uz6WznbNB\nl1VgTRF+FSy/i2iYpD5BQcFl3IfDqpvi9jSdexjAKq6mu2VNvIk0j7u3QmwTfkloI7ZUS3qC\neyQSz98VK/FdBMuvEz3APQ6mkVVgnZki6/ZGu5rQvZI6BUcyLfBmd1sNF67VAIWyM/fImneP\npDbl7q0QvS3wDaHq3pTKX3APRcJZQwO58+7xPJxR8QfugTCLpALrR1cLaenZUCn5aTm9gv+j\ny6TlVd/itApOu0coxOZDmccEdqA3uPsrwG9p2fKGsDQTqAWuhiVZq6R13GlXjaXB3ANhFkkF\n1iaZ537elVL5czndSng3yDonvnSTqcnv3EMBVrCYJsibdjNpInd/BVhFV8obwlL1JAUHukv1\nHJ3DnXSvvY3JKVfpkFRgDaMlEvMzgU7/S06/El2j9F0S86qvN/U4wT0WYAEXksR34LkVqhzl\n7rD5OrrWyhvCUuW2oJu4RyOxXEYLuZPusySp/t/cY2EOOQXWyWqVpF4dthddhrc+EnxojTc8\nHs+e1o78MAGidChd6iUyFdrB3WPTfSbxaI5IttZ28P2ILGifS87FlCLrRzdwD4Y55BRYr1B3\nqelR3/rcIqVjCW4BTZKaV33b69By7tEAdrtlXQ2m0DK6mLvHpptOk2UOYelWlU/BqYTyjOC/\nRkORnbWTXuIeDVPIKbCm0XS5+dlWi9ZJ6Vlia5u0RW5e9a2pkOyUr+0hZqNokdRZ1zjpa+4u\nm+x47bKyzvc2YmFqOQddddLivkipw3tbjiALXY0OcY+HGeQUWM1TJd2+ImBlZur/SelaIvvK\ndabktJbirtTy73APCPA6WaO83D3ERJrB3WeT7aRLpI5gJNNcNT7jHpNEMYKmcKe7WB9n3GRW\nSoH1EbWVnp/5KeXx1kewRfyXcQ9ys8v9LfeIAKsXJR+K4MnJrHGEu9Pm6m6Ni2AVG0MNcVdC\nKfYlZ1vmAyyPZ1cDeph7REwgpcCaz3Gozk2uau/L6FwCOytps/y86htBpzvpPuwQtUl0m+Q5\n18dhhyJ86JJ1K0fDBlLLP7iHJSEoNIM718FWl814i3tI4ielwGqZvJUhQde5qr8no3cJax+d\nxZDWUvSiDg45uRdicapOhuyrhqxNOt1R5yuPo1skj2BEeT2oE24vK96/qJnUU/0jmunK+h/3\noMRNRoH1AcM3hF7jXJWdcSaCRU2z0lf2Xns7UQ8HXpgIDHqRukqfc+eRk27T9HNGdWl3GjJs\nbwfqeYx7ZBzvRAvXvdyZLuFKOtP214+WUWDN4NoRT0ous0lC/xLUCWudb+SV24Z6OeyYGDDu\nGob7CtzvOiufu9/mmUWjpY9gZLtbU5/j3EPjdIupG3eew/SkDna/WZKEAutknTJcO+LZGXTt\nP+J7mJj2Uk+mtOrb1YouwreECeqfSpUYPn7pSDu5O26aPyuVl326tyE7W1AffIYl1LflMjdx\npznM3s7U2eYVloQC6wm6kC1DK7Op+aviu5iQetJitrzq2tWG2h/gHhlgsYX6Mcy4FUlNHXOX\nprk0jGEEDchpQT3xxkmkS2XexNOw3A7Uwd5nOEgosPrQ3XwZyunpSpqIGxMK8FlSE7606svt\nQvVwPayE1Nm1kmPG9aD7uXtukt8qZW7nGEEDclrTuT9zj4+DPUwtrHWEe5HcTtTG1nkXX2B9\nm1KfNUXza5PbOR/iW8d4qx3iXiRvsCtjDffggHz/JZ7L3m7KqOyQz0xvoeEsI2jE7vOo4Yfc\nA+RY+yuVWcOdYW17u1Gz/dzDEwfxBdY07s8edw1OoT7fC+9ngvm5bNVc3rzqmpFJfX/iHh+Q\nbTjN5Jlvo2k4d99N8U2ZKlY7ayVI3gCqsId7iBzq1AWWumR0iLzLqO5H3AMUO+EF1qHK5Xdy\n52hFM6r4oIPO9bGCWy15vlGhtc2p6sPId2L5JtXN9CXHngbkiDsSD7bMrdu1TU5zTXPM4W6W\nMo/aWvILwkJXUFX7HkctvMBaTEO4E6RWwddk0Hk2LoOt55cKFSz8bnfv6DQ6H9fxTyjX8JUH\nS1Lcv3J3P37/osYW3st6LalBHb7iHiYHei65yhbu3JZmfFLGLu4xipXoAutI7XRL5G792ZQ2\nzRG357aGqTSKO6WlWtOWkq/F94SJ47PUmnxfWQ8jxfYfmP5zmuUuNBnmkY5UYS33QDnO/prJ\nd3JntnS3piXdxT1KMRJdYC2hPtzZKTK9Krk3OOq2Foy+Sq/G/sVvBLfWpnJzcP5oouhLU/nm\n2t4WtIh7AOI1lS7jG0DDJpahnl9zD5WzHGpj4aM9itxbmYba8+MRwQXWX9XKWOZ+wDkDU6nl\nHtu/07SEPjSZO50R5Y6pQFXvxl3MEsJT1ITz+62NVZJtfhjW80k1Lfydf7G1LSnzblzW3TzH\ne1nwEu5hNpxGzd/lHqpYCC6wbqLLuVMTZG0XF7Vch0u7x22P1e4Lqu3RyzPIvQpbY+c71CCJ\n96q3d6dW+IB7EOLxc1bSItYBNCzv+vJ0+v9xj5djnBxKrax6Oniw3b0obYENT3EQW2DtS6tm\nrbdF93d2UcWxL+Cbwrj86k5Zzp1JY7b2S6NGm05yDxgINob9SITJVNfGl4I50d2q13DXsKWH\niy7FNbFMcWwQNbXk3ZHCzapIrV7hHq+oCS2wTpxLM7jTUtKa/pWIsqd/IrLfDpffz0Zb4w0X\nJ1PTtbgDtKNtpbq7uCfaUGpp35t6XG/p8/TDLG5OySM+5x40B/jjQmpq1Yv3h9lyAbmG2i3r\nQgus26kjd1I07Lm9axmizuv/FNl1J7uXmjPcVDdma7onU9VJr+PgO8d6I6PMCu5Z5snrQR3s\nemPauyjrEe7xi0rejDqUPPAFrOn4fNCE2lrrK6bS3VmfUkfu4x61qIgssJ5IqrqVOyXacm5s\n4aL0S5a9h+8Ko+dJrriBO4HRWdevPFH2NXvsuv+DUn1Y3WWFD8r3dqJzf+Mei5gsd1V+iHv0\norV3aj2ihtNexBGWMct/IIN62+mtslpYT8ki14W7bXQslsAC660KqfdwJ0Tfg0PrEFHFnvP/\nfVTcEDjR82XT7uJOXtR2zzivLFFK5zkv4BQHp3mrBl3DPb98cjtTs8+4RyMG810VH+Aeuxjk\nzTsvjSizx7x/H+MeQVva14Uyp3EnMWp7pzUjypr1NffoGSWuwHqjqmsqdzZKt2b8BTXUIqvM\nBbOftu/RE7I9VjblVu7ExSR3wYCGLqK0Djds3mejd0AQwaOZrnHcc6vI3kupwlq7fW11+Eqq\nyv8Fa2xyZvR0q1vwshff867dhp3b/65NobNt9k1EkaUXZ1DSRdvtcVytsAJrR6aL+SbPhmy4\nuVe2utt1Neo3Y+N/7PkBv0z5dyenMt1S1wxbpl1aP8lbU5899oGX8YWhA/w5ltIt9Db8hjLU\n+T/cYxKV15pRQ3vuZ4tsvLlnlrqkaw5Z8R7OFjbqw3HpVMsK36vHZseE04gqXf2kDWosQQXW\nr6MpzULbvdJtmdmvRSZ5VT3nijmbXzsgZkwc4NNuVNF+3w+G2nHn6AvqJqvJdjXsPW39K0i2\njR17sBbVXc49o4KtPZuo1wvc42LY16OSXJewn4AZt3WTzquorujMjuNXPf8j95ha3sGHz3dR\n9evscPUrfcv7VCIq22N27mfW/jpCSIH18x2Vqd5y7hREZ/3ccZeeVSvJV2dltrhs/MJN/3r/\nB3y5H+yza1KpzUbuRJli1+KJl55Rzpfsci0uu27+w0++/xNOeLCZD2a5KW2o1cqDec2JWi61\nwzWxTj49OIWy53MPmDnyHriua5bLu6DLn9X/pgee+NgGn25w+GPbwAyiM262d3nltXfepd7v\nhym1yWU3rX3dqt9HmF9gffHgpWmUOWI39/jHJHf1nHHK2dlpVKR8/XMvG3XTvEUPPvho7rP/\n/TqBr+zw+QPq256aN3MnyFQb5l3buzjZybVadB02ad6a3Jc++h73MLS2Y+88dFU9ojKXreee\nQxruPDeJXGdNfuQTK7+3/nzD8GpE2ZPtdRZZBDn3TuzXrk5q4Xqu1b7/9fPXP/bmdziLqci3\nnls7pagDM3g1d6LMsnHWFV0al/Vm21Wvx9g5yzfn/uvNz36x0vF4kQqs8xsa1KB+dlatapXK\ner98SSlfo5a91ahaqUJmRnpaShKFSkpOTU1Pz8jILFehYqUqVavVrFU7q052dr36qrrZ2YWP\nGhgdNLEuLD21Jwz9kQb16tSuXpjW1Io1ufMiRI2qlSuUy0hPTXYFJdqVlJSSmpZelOgq1apV\nr1mzZm1VVpY34b48C85facaUntvPGEMTqH69bHfNqhUzU72ZcqVbdj5WL++r2l1pZStWqV5L\nnS9RzZU7S8/tU/ENoXcEK2R4t2tJGVW4B0qM6lUqlstISy7eaKekZ5TNLF+hQqVKlb1LuVpN\ndbPtXcjZ2XUlr+Ltped2ldntqSsmq3bNalUqls9I823eUstV5U6P6WpUqVA2LXhPnZyWUa5i\n5arVvVtstzfNhTtoswe3hNe1MhqpwGpIYFdNS0/tce74IHZK6bndxx0fxO6m0nO7izs+iN2a\n0nN7J3d8EDvNQy/lFVi1mzdvXtm0vxavCmo02dxBBCSp0TQz/a+KL7C8Oa0S/5+JWrKQ8TKg\nhtpwdY6Gm6kNB79HYy2wvKNQTWgLOhqpDacztJuutttIWmtMBVZltZO1Bf1tv4ZqG2XENpGp\nNlFfbBNUR22jQkyvNF5geftRz6R4SyVjwOQ2VFZmQw0CPzEXWPXbtm3Lsm/SVFmNpjF3EAHJ\najRtTP+r4gusemrcNeL/M1FLUds9i6FdylIbdnM0rLbb1jIFVh01GNG7Yk0t1IYzGNrNUNtt\nIa01pgKrhtpJ0Xv0M9Q2yoptooLaRFOxTVAjtY3Y3lgaL7Bk9ENuQ+XVhqS8LZbWUDm1oeaB\nn2IqsD54yyyT1GDuMe2vxWuVGs1o7iACXlKjaW/6X41w06b8+Fu4QY377vj/TNT+rbZ7DkO7\nb92qNjyHo+F2asMvB/0c4Z6n/wgNZoYazO1CW9DRU214L0O7uWq7vaS19l3puf1DULP3qp28\nXtDf9rtUbWO32Ca2qE0MEtvEW1erbayM6ZW/lJ7bH4t/c6PaxlCT4i2VjAGT29A2taEBMhp6\nRG2of+AnzRMZhd7sOcRcNZhHpbUWydNqNDdyBxFwyFswcAcRg3lq3I8wtPuX2m4HhnYLlqsN\nr+Zo2FtgHeZoWMtSNZgIb8XF6KM2HKG0FOJTtd1+DO1K9ajaybmC2xigtvGx2CZeV5sYJbaJ\ngqlqG08KbuNVtY0Ip7KYQ8aA+byhNnSVjIbeUhsaIaOhd9SGriz9V1BgWQEKrOigwGKFAsuJ\nUGAZhgIrFiiwhEKBpQ8FVnRQYLFCgeVEKLAMQ4EVCxRYQqHA0ocCKzoosFihwHIiFFiGocCK\nBQosoVBg6UOBFR0UWKxQYDkRCizDUGDFAgWWUCiw9KHAig4KLFYosJwIBZZhKLBigQJLKBRY\n+lBgRQcFFisUWE6EAsswFFixQIEl1DP333//e9Jai+QzNRoPdxABx9RoVnAHEYNnmXJ6hGu8\nXlEb/g9Hw8vVho9zNKzlZTUYzRtvibZRbfhXhnZ/UdvdxNCuVO+pnXxGcBub1TYOiG1iv9pE\njtgmCh5T2/hUcBvfqm3sFNyGj4wB8/lObWiHjIb+pzYk5bOc79WGItxdUl6BBQAAAJAgUGAB\nAAAAmAwFFgAAAIDJUGABAAAAmAwFFgAAAIDJUGABAAAAmAwFFgAAAIDJUGABAAAAmExsgfXF\nyglD+g67efNPxU/9b82ky/uNmPv0SaENl+LAYEX5tyXC+eSBawZePnHJvuJn2Acnkv8qQQJX\nwhcb9odjFeXl4Cc0mhMSQWjD0rpubNFImyoWGX4/8cu3ZLv5b943blC/K6dv/734Ocsv1Ehk\nZFX4+pGxUkq2IXQzkP/q3WMHqlNtS9DFWAVNNVk7n33Lrx08YMzdbwY9ZW5DYTNZVNER23QW\nWWAdW+4PoF+u/7mcvkVPXfdTaS8VJ3+WErSFZgznxMreRW2vzOePxqCXtaaV0LBPbPAOU/AK\n0mhORAQlG5bUdYOLRtZUsczwFxG+fMPa/eUWf0IG5AlsVyoZWRW+fmSslPA2RG4Gfpjs/8N9\nA5dWFzPVZO18Ds/z92jBEf9zpjYUNpNFFR2xTmeBBVb+XLWl6Rt2PTBC/ffpwuf2qA9vy3ls\n/WhFGXVQXNOleMLbf/8WmjGc/HsVZdCyvJy5at62sUdj1FOKMneb31OFzwkN+6uJ6koJWUEa\nzYmIIKxhOV03uGhkTRXrDH8R0cs3rN3D4xRl4mPvf/zqA+rG8zFh7UolI6vC14+MlaLRhsDN\nwC9XqkX83VtzH1KnnJJr6p8uQdbO5/hUtVa8Kzdv8QBFmZMvoKGwWSaq6Ih5OgsssNQQBrzl\nfXBkmaIMO+Z99OMApa/vJmZH1cr2fnFN6zswSLkqsIXmDOdfinLDL94Hbw9Q+v3OHY1RuxTl\n2RJPCQ3b00/pv2dJ8MTWaE5EBOENy+m6sUUja6pYaPgLiV6+4e1uVHcNhR/4v91bGXRQULtS\nyciq+PUjY6VotCFwMzBfUW7y7QlOrVHrn8Nm/ukSZO18tivKiK+9D74b7S93TG0ofJYJKjpi\nn84CC6zrFOWJwkcn1eH19Xp1oGA+cqXS53e9V4qTf6tyZU5gC80YzrGRypDfCh8+Mvuh/czR\nGLZJUUre61ho2Dcq478qCJnYGs2JiCC8YTldN7ZoZE0VCw2/j/DlG97uWEXx39Z3mqK8IKhd\nqWRkVfz6kbFSNNoQtxn4vbcy4K/Ch6fUWfe6iX+6BFk7n1NXKMrbhQ8/762Myje9ofBZJqjo\niH06iyuw/uyt9Pd/7/qAouxV/zl5hdLvUNFTWxRlt7C2dT2u1p2P+bfQnOG8qihbQ5/hHxwD\nVirKB6HPiA37xpXqm5Dgia3RnJAIwhqW03Vji0baVLHQ8PsIX77h7fZRFH9CVijKdkHtSiUj\nq8LXj4yVotGGwM3A/vvmrvU/XlpYJwiaarJ2Pp8qyrX+x3MV5WPTGwqbZaKKjtins8BPsE7+\nst//cJ2i7FT/+VhRpvuf+lBRZoprW8dPg5Q5BYEtNGc49yjK/0KfYR8cI9Swvwp9RmzYvsaC\nJ7ZGc0IiCGtYUtcNLRppU8VCw+8lfvmGtztYUQ4XPVxReGSMLRZqaWRkVfz6kbFSwtuQtBm4\np3CSC5pqsnY+zyvKEv/jvMKPd8xtKHyWCSo6Yp/Ocq6DdaeivKL+o24b1/ufOtZbGSKl7SD5\nM5UhvxRvoTnDuVoZof730Jcf/eh/hntwDLldUQ6EPiMh7OCJrdGcuAhCVpT0rusvGrlTxRrD\nXyBv+Ya0q77zfq/o4fTCbwttsVAjkpFVWetHxkopakPOZuDQMKXv72L+tJesnY/6V9f4H7+t\nKIvENKRxqKaP6UVHTNNZSoF1cIAy2Ps2cF3gPBzVcEWRfQbOY74j7QJbaMZwjvRWK9x9s7xn\nfo7afpQ7GuNuVuN6/o4RfYdOWl+0OCWEHTyxNZoTF0HIipLd9VIWjdypYo3hL5C3fEPa/UhR\nbiz8COuN3sosoe1KJSOrktaPjJXib0PKZuCbKYqyScyf9pK283k26BOsdxVlkpiGdAos84uO\nmKazlALr3qKjv+4LjvB6Rdmv+wohfhqk3FYQtIVmDOdrtZ5/ok/RRTNu+IM5GuOuU5Tx/ku1\nbPcdtCgh7OCJrdGcuAhKHj4pteulLBq5U8Uawy9x+Ya2u1tRRu98Z9/LS/ooE34V2q5UMrIq\naf3IWCn+NkRvBg6sW3PfREUZsKPA9D8dIG3n87GiTPA/Vpft1WIa0imwzC86YprOMgqs7Ypy\n0wnvgwWK8kbg2amK8pmExovlz1QGez/VC2yhGcP5UFGu7zvqXz8c/+WxKxVlRj5vNMZ5ry4y\n9L6cvatHqQ82e5+REHbwxNZoTlwEIStKctdLWzRyp4o1hl/i8i2xxX5zZuF2dNSmv8W2K5WM\nrMpZPzJWSqAN0ZuBD70zbci6orMJxUw1aTufE0MUpehS8ScnKMowMQ1pF1gCio6YprOEAmuz\nolxbOGHuUJR3Ak9PLzytQB5P0RmcgS00YzhvqVkZ+6fv4Q9DFeVV3miMG6Aoq3yflJ9Yo/bg\n8wIpYQdPbI3mxEUQsqLkdr3URSN3qlhj+CUu39B2D28YUVhg9Z7KvtkwkYysSlk/MlZKcRui\nNwMfFs61a//l+0nMVJO381mvKGN817JqChoAACAASURBVDQ/sqh3b1+BJaAhzQJLRNER03QW\nXmAdXaQo438pfBxS402R/N7vx0HKTN9HedpvgeWG86ZSfBmNXEWZxxuNcYf/9p9SVTBPUe4u\nkBK27pvtKeHvUk2NIGRFyex6hEUjd6pYY/glLt+Qdn+9RlGWfPTPiV+eHa8oK4W2K5WMrEpY\nPzJWSnAb4jcDp37/ePMQRVlaYP6fLiJv53N4jKIMevC5FzeMVFb39X1FKKAhjQJLTNER03QW\nXWD9fIOiTPNfHWJxcIQTw84VFSp/ujKo8AZBgS00Yzj7FKWv/4aQvyjK5bzRxOQzRRmSLyXs\n4Imt0Zy4CPTOTxHd9UiLRu5UscTwy1y+IWmfGTh09ehNhS3bbaFqk5FV8etHxkoJaSOYuM3A\nz1cXXidczFSTuPM5MKHoOKVlBxVlopiGwmeZoKIjpuksuMD68Eq1Fj/u/2mDongC/2uYovwt\ntvEQeYFLvAa20IzhfKMowwM/DFSU47yDE4v8/oryl5Swgye2RnPiItBbUYK7HnHRyJ0qlhh+\nmcs3uN1PC09+8nlfUaaKbFcqGVkVvn5krJTQNoIJ3Ay8XngDYTFTTebO5+QTM4f1H3vfBwX7\nCz8qE9BQ2CwTVXTENJ3FFliv9VN65xb/+JSiBK5Ve1hRrhDadqhfBirjXi50v6I89PLLX7GG\nc7yPMijwwzDfxaIZo4nN5Yryi5Swgye2RnPiItBbUWK7HnnRyJ0qVhh+qcs3uMO7FGWD//E/\nitL7pA0XqiYZWRW9fmSslBJthBC3GTgqcqqx7HxeVpQtBUIaKjnLhBUdMU1noQXWa32VgcE3\n7PlCUW7yP35bUeaKbLuEooMHi61hDadgfPF1ytT53r+AN5pYHOutKMekhB08sTWaExeB3ooS\n2nUDi0buVLHC8EtdvsEd3lh4exyfU318F7ex20LVJiOrgtePjJVSso1gJm8G3t217kP/4/ze\nvrpH0FTj2Pmo74veFNNQiVkmruiIaTqLLLA+GaAM+ij4ifzRxTdbXOm/vbYcWltoxnC8nyfu\nLXr4QeE3D5zRGPWfB+Y853/8duFFTiSEHXIsTnhz4iIIblhW140sGrlTxQrDL3X5lvgEa7n/\n8QFF6ZNvj4UamYysil0/MlZKWBsCNwNrgqba94oy0MQ/XYLEnc+fRf/+M0wZekJMQ6F1j8Ci\nI6bpLLDAOny10u+90Kc2Kcq6wke/DlQGHg5/jQyBgzg4w/lSUa76p/DhAkV5hDkao/5PUa47\nVvgwf3rR1YbFhx2ygjSaExZBcMOSum5s0UidKpYY/mLil29wu+8rysgTRY+fK3qLaoOFGpmM\nrApdPzJWSngbAjcD6n56iP+DpY2KMtvEP12CtJ3PgkG9iy5z/rD/rjnmNxR6cp/AoiOm6Syw\nwFoZfuvqP4cqvV/0Pjh4c1FiGRRvoTnDWaQuIV8OdirKoD+4ozHo6JWKcqfv9Ixj9yvKYN/b\nE/Fhh6wgjeaERRDcsKSuG1s0UqeKJYa/mPjlG9zuyWsUZaXv8hAFB64qeltqg4UamYysCl0/\nMlZKeBsCNwP5ExVlym++h//qUzRygqaarJ3PVkWZ7rsXz5O9lSGFl6Uyv6GQmSyy6IhpOosr\nsA70VXpv2haQ53vyud6KcuujeavU8KaciPAHRCneQnOG8/vV6nvjDU/tmKooyjPs0Rj1urry\nL1+5Z++qEYrS+9XC5wSG/aFv6kxSlEXef3frNWd+BBoNS+m60UUjZ6pYafgDRC5fjXbf76so\nN3re/+SNDUPVxk6KaVcqGVkVv35krBStNgRuBj4fqCgDFj2ye51aaSnzTf3TJcja+fw9SlGu\n2vBEjlpw9Hm9wPSGwmeZoKIjjuksrsB6OfSgibGFz/7fgKKfb2U7uzloC80Zzg+Ti5oe+H8W\niMao14b5E3rlm/7nxIWdEzKFhus2Z3oEWg3L6LrhRSNlqlhq+P1ELl+tdt8dGXji3n8EtSuV\njKyKXz8yVopmGwI3A5+NC7R1/zFz/3QJsnY+34wq+qPDXg08Z15D4bNMUNERx3SWXWAV/Lzh\nhqH9Ry16TVi7EQVvoTnDOfns7aP6XT5502/FT/EPTkR/7509ov+AUXMfP1r8nLCwtXe0Gs2Z\nHYFmwxK6bnzRyJgq1hr+IiKXr2a7x/7vzqsH9R02+cEvi3/RBgtVl4ysil8/MlaKdhsCNwMn\nn180ZnDfYVPWfmP6ny7ZkqSdz5Hdt1ze54qpOX8GPWdaQ0YLrLhbjGM6y7jZMwAAAEBCQYEF\nAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAA\nAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAA\nYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAm\nQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIU\nWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EF\nAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAA\nAAAmQ4EFAAAAYDIUWAAAAAAmQ4EFAAAAYDIUWAAAAAAms12B9YPb7Z5r+Lf3qb+9XGA01m2c\ni6H8/Ev9pUe9D2IaIkwBm9EZhRhnQeBlb6sPVpkUIsQkUgpEzX+ddgNTA8AaUGCJk5B7VxRY\nlmncMlBgORUKLIDSoMASJyH3riiwLNO4ZaDAcioUWAClQYGlZZj7vOhfZFbj9uaUAgtTwDyC\nCqz9M2fOfCne2MzJs9PpjVKkFIia/zrtosACi0GBpSG/OfausXJIgYUpYCJBBZYZTMqzw8U8\nSpLnPwossBgUWBq+dGPvGiuHFFiYAiaycIFlUp4dLuZRQoEFiQ0FloYc7F1j5pACC1PARBYu\nsEzKs8PFPEoosCCxocDSMBN715g5pMDCFDCRhQssk/LscDGPEgosSGxWL7CO517T7fR6rQev\n/KPoCe/edZ76z8LL2tRrcdH874J+9+QTt3RrWbd5x1Hrf/E/FbrAX519ccu6Z5w/duehoFd9\ns3RYu9Oym3QYue5X38+Puv1a6b/uLfV/v1bwx23n1DvzC4ONJwj9/OQ/Pvbchs273vBKlLtW\nTAG7Cx6FGGeB1ssCp5KFp0I7zyWnkkaeIUzoKIWOdcjZfM9M6Nykfsep7xYU/Kk+vdr7VFFm\nh6v/vB/0J59Xf55d+DBsdftEWm7B7WpNDZ0/UhC+1gFEsniB9e9z/Iu78frCZ7x714UFOQ2L\nnm6QE/jdF7sEtgSN7zlZ+FzwpvuzywL/v/Ve/4uOTq9T/KoV+QUaW12t13n/7jMHz/c+t89Q\n4wlDNz8HBvoH6PKD0exaMQVsL2gUYpwFmi8L7GXDUqGZ5/CphALLiNBRCh3roELnwOX+X7sz\n/xv1vxsLCgKZfVz957agPznF7S+4wld3gZHlFtyu1tTQ+SMaax1AJGsXWDnZ3pWQ3cC3IOb4\nnvLuXZfsynK76zX3rZU6rxX97nbf75598Xn1vP+OOeF7MmjT/WIT7/NtL+7k+70HCp/M920V\n6p7doWmgiRcGD27sdjcaPHjwOP3XfaE+zLvDHdikR2o8cejl59CF3p+aX3h+I7e791Nuw7tW\nTAH7Kx6FGGeB9ssCe9mSqdDMl8ZUKpln0BI6SqFjXVzoHOrufeq08zuo6/LmD9WH27zPFmX2\nRAu3u8WJwF88cbrb3dX3SGN1G1puQe1qTg3jax1AJEsXWP+t63bXv++bUwUH1pzmXV/e57x7\n1zmNsiZ/kF9w/Plu6g99Cn/3HXUh1Zn7g/ron0dbqU/f63u2eNP9TTP1/9+2X3108GH1ofsx\n37Ped2e9/u1d+gfWeZ99y/ds16BDDrRf53uL1sR9/oJVC/9noPEEopefOd7q45mTBQXHPO3c\nQw3vWjEFHKB4FGKcBdovC+xlS6RCO1+aUykkz6AnaJRCx7q40JmuPmrlUZfRD9Oy3PeVzOxs\n9d+nAn/uOfWnFd4HmikxstyK29WeGlGtdQBhLF1gXay+23i18OHLddzudt7vXbx714ZZOwuf\n/e0MtzvrgPdRftfiNy8Fn6tvUOp5F1fQpltde1m7iv7/Z+r/b3/U+2iw293676Jnv1b/2Hjf\no+Ctrvbr/qf+3UHuuUWfMUdsPIHo5OdAfbe76VdFv9LGbXjXiingAIFRiHEW6LwssJcNTYVO\nvjSnEgosQ4JGKXSsAyn4vp7b3fjjwicfctctmdmP1H+vDvy5G9Xi5yfvA82UGFlugXZ1pkZU\nax1AGCsXWK+qy2WW/wfv1/bPFhTuXd3T/M963788733wsvrgysArV6g/LfY+CGy631cfTA78\n/w3qT74jd1q73dcHnl3dc+wy34Og7YnO63xRDPBv0SM1nkh08rNefbDI/+wew7tWTAEnCIxC\njLNA52WBvWxoKnTypTmVUGAZEjRKoWMdSMFq9cGd/l8fGZ5Zbyn1e9H/PtHc7b7c+0AzJYaW\nW6BdnakR1VoHEMbKBdY0dV186v/h+bY9huQWFC60OoETx3apP232PrjRv8X0+TXb7b7A+yCw\nwG9TH3wW+P9HGrndo70P1KU+KrzhoO2Jzut8y/0F/9ORGk8kOvkZpj743P/syTOM7loxBZwg\nMAoxzgKdl4UWWIFU6ORLcyqhwDKkZIEVGOtACoaoD772P7svvMDyFkL+o9ifVR/7Pl3STImh\n5RZoV2dqRLXWAYSxcoHVSevsHu9Cuyjwk/eDgwe9D7q43fWLj6IsuETdBR8uCFrgPdzuDkF/\nRV2Xp3v/vcjtrvffsDaCtic6r/NGcVqgvUiNJxKd/KjvHVsW/9K1RnetmAJOEBiFGGeBzstC\nCqziVOjkS3MqocAypESBVTzWgRS0cLvPLv79bmGZ/bO+231J0f+d7HY3+cf7QDMlhpZboF2d\nqRHVWgcQxsIF1rE6bnffsGe9C21S4Kc3ixbwYfV3Lwz6rUnq828XFC/wI+r/Hxr0/+eqz3sP\n3PF+st1w4Tcl2ijenui9zhtFP/+TkRpPKNr5+Uv9t3fxLy0xuGvFFHCEffHNAr2XhRRYgVTo\n5Et7KqHAMqREgRUY60AKDrpDBv2W8MxeE/i0yvsNoe/rO82UGFpugXZ1pkZ0ax1AGAsXWF+r\nq+GasGe9C2124Ke3ixaw93dHB/3W3erPTxYUL3Dvqxq1L9a8aAd4oo/3k2d3lxmP/Rn06uLt\nid7rQvbxkRpPKNr5+Vz9N+hU+EcN7loxBRxhX3yzQO9lIQVWIBU6+dKeSiiwDClRYBW/u/Gn\n4DP13ynFv/9weGa9Zw7O9z3yfkPoO7JdMyWGllugXZ2pEd1aBxDGwgXWB+7gAxX9Qu+T4t+7\neg9qvD7otx5wFx7W6F/gH7vD+b7QP3x90U/ZfdYHFl3x9kTvdd4obvX/eqTGE4p2ft5V/72h\n+Jc8BnetmAKO4B+FGGeB3stCCqxAKnTypT2VUGAZUqLACox1IAXeFAVdSXRPeGZPtXW7z/Kd\nJXiD293ed7C6ZkoMLbeQdjWmRnRrHUAYCxdY3psj3Bz2rPbe9fUSv/uQ+vOmguIF/rbGinu8\n8Ff/O6lp0RNNlxRdf7t4e6L3upAoIjWeULTz85/QITJ6iUlMAUfwj0KMs0DvZSEFViAVOvnS\nnkoosAwpUWCFLj5vCrwpmlf8+1rX6F/kLjzb90Qz/3l/mikxtNxC2tWYGtGtdQBhLFxgeS8H\nPCnsWe29q/fN0MSg37pf/dl7oST/Av9E828VOfHS7d0K19zwwivmFG9P9F4XEkWkxhOKdn7+\n6w55p7nb4K4VU8AR9sU3C/Repl1g6eRLeyqhwDIkYoH1jjvkuuh5Gpn1fiE4oaDwG8Ivfc9o\npsTQcgu0qzM1olvrAMJYuMDary6Bq8Ke1d67fusOPQHX+3bp/wqKF/j37ggn6B7Y2te75Jb6\nfijenui9LiSKSI0nFO38fOoOOVZio8FdK6aAI+yLbxbovUy7wNLJl/ZUQoFlSMQCy/ud3C3F\nv79ZK7P93O7GR3znf1xW+IRmSgwtt0C7OlMjurUOIIyFC6wTdd3uHmHPau9dj2S73d2Dfmu8\nu/Buov4FfqK+/+5X+h5voG4BfKcPF29P9F4XEkWkxhOKdn5+doec7TPH4K4VU8AR9sU3C/Re\npl1g6eRLeyqhwDIkYoH1U2itNEsrs9vd3jvWHG1SdB9onZQYWm6BdnWmRnRrHUAYCxdY3mVd\n70jgpy8+/9x7pzftvav3yiv1jhe/1P9jYIH3crvrHozQ3mL1l18rati/PdF5XWgUkRpPJDr5\naRZyvZpBBnetmAKOsC/OWaDzMu0CSy9fmlMJBZYhEQus/EYhFc3FWpn9u7HbPdZ7HHq9P4r/\nbHhKDC23QOp1pkZUax1AGCsXWDPVFfC0/wfvp77e26Po7F2nFX0nU+g79SfF+yCwwG93F90t\nodAX/tX3v/8VP/mi/28EbU90XhcaRaTGE4lOfrznRweuuHww7F5lejAFnGBfnLNA52U6BZZO\nvjSnEgosQyIWWN5LeNbx3wrH98WdRmYnu92N/rna7R7jf0IzJYaWW6BdnakR1VoHEMbKBZb3\nFJH+/h9WuQtvia6zd/UeZVl8abkF7qLbpwQWuPcggfMDZ40cbVt3kPeskttbBF28riBX/Z13\nvA+6FV+WWPt1JaKI1Hgi0cmP9xKAC/zPLtPeAGvAFHCCfXHOAp2X6RRYOvnSnErBeQZdQaOk\nU+jcoT542P/sOO3MejOwrb7b/VTwE2EpMbTcAu3qTI2o1jqAMFYusPIVdQkU3Y/z06Zud2vv\nly46e9cC7+9u9T9bz+0+45D3UfEC994s65aie4We8G4BPAWFi3qD/2+d6O12N/WdV3KJ213X\nf9N1zdeViCJi4wlEJz+fZbndjT8pfPKdxoZ3rZgCTrAvzlmg8zKdAksnX5pTKSTPoCdolHQK\nnTfUB21+KXxys7uJdmY7ut2nu90tAje80U6JkeUWaFdnakS11gGEsXKBVfCu9yPf6945kr9/\nRVN30F3VtfaunzZwu+vM/1l9dPChJv73p0EL/NvT1IeDXlfX3FFPT/XhAO+Th1qpjya95V3x\nh59VF1zRtYbHeFfnryf3/6n3upKb9EiNJxC9/HhvldFiu1p17F/a2H2j0V0rpoAT7It3Fmi/\nTK/A0s6X5lQKyTPoCRolnUKnoL/6qOtr6pgfuC2r7irtzPo+YXLPKv67mikxstyK29WeGlGt\ndQBhLF1gFeTV8S3Jwv8W3h1Fb+9a8Fg99XFWh54dfL9d9L4oaIH/27vk3I07tszy/ntB4but\nV+p7f8g+q30TXxN9Cg+53Owu9G/d15XYpEdsPHHo5efHtr4hbabWIe7B3gufP+J9NvIQYQrY\nX/EoxDgLtF+mV2Bp50tzKoXmGXQEjZJeofOJ7/qdZ/TopA7vyufcmgXWD76hfzfoD2ulxMhy\nK25Xe2pEtdYBhLF2gVXwSseipe1usqHwGd29a8F/uvp/193OU/Rc8AL/sG/g/2fd+FfRk/+9\nIPCku+6cogV3tFvwVlfrdSU36REbTxi6+fm8u3+ArjzkvWyU90LnRoYIU8D2gkYhxlmg+TLd\nAks7z1pTqUSeQVvQKOkVOgWvn100to02FugUWAXD1B/PD/nLGikxstyC2tWcGjp/RHutAwhj\n8QKr4GjeNV2a1Ws9aKX/1F79vWvBqcenXnBG3dO7TNodOGE+dIG/Mufi1vUanTXkvm+LG8h/\nbsalrRpkN+1w1YM/BZ78bVqb7Abnjv1G93Vhm/TIjScI/fyc2DGyXYNmF0x+paDgoPr0Gu9z\nRoYIU8Du9sU/C7Repl9gaedZYyqF5Rk0FY+SbqFTcHBN/9Z1m/Zc9GNBwTPq07u8z5XI7N7w\nRGukpCDycgtuV2tq6PwRnbUOIIrVCywAALAT7wl6/9J4frvbXfeA9GgA2KDAAgAA86xQC6y3\nNZ7v5XaPlh4MAB8UWAAAEJ+TXxV/53aV2519OPxXXlXrrlckhgTADQUWAADE49ML6rmv9f9w\noK7b3Sv8d070cLt7ygwKgBsKLAAAiMeJFm533aJTMU8MdxdfdLdY/hT16RckxwXACgUWsFs9\nTNtK7sBAIswCO1vtvUDD4gMFBSdf6+e9GEPYNdI/GKo+fTVHaABsUGABuxvc2iZyBwYSYRbY\n2amRhVezOruh95/TPw79v5Nb+S7t2eEP7RcDOBQKLGCHXStgFtjcidvrBlJ22dcl/udE39Pd\nvucIDIAPCiwAAIjX/qVDzmpQr+XFt74c9r9ur+dueunaExovAnAyFFgAAAAAJkOBBQAAAGAy\nFFgAAAAAJkOBBQAAAGAyFFgAAAAAJkOBBQAAAGAyFFgAAAAAJkOBBQAAAGAyFFgAAAAAJkOB\nBQAAAGAyFFgAAAAAJkOBBQAAAGAyOxdYPykNa9Wq1fCCT7kDgWjtbulNXa1G805yRwLSbWzu\nS37ju05xR5IIvj1L3Ubewh0FQEKycYH1WX06c8G2uzpQ5de5Q4GoHBlFKT3v2rZ6dCXqcZA7\nGJDr5DhK77/kkdUjy9Olh7iDSQA9aPCSLNrMHQZAIrJvgfVtNg3O86gmuKp8yR0MROH3zlT/\nAW/mPNvaUOfD3OGATPkjqf4aX/K3tKROqLBEe5pa5XlWp9X4gzsQgARk2wLrYAu6wlPoGmp7\nnDscMOzX1tRxZ1HqcjvQwHzugECiedTwEX/yO9JFWLiC9aB71KEeRrO5AwFIQLYtsAbRRR6/\nLjSfOxww6lA76r43kLpdzWgxd0Qgz4tJVTYGkp/bhq7hDsjh9ic19Y70o+Ur4bt4AOnsWmCt\noaa5gQ31toplv+UOCIw5eQmdn+cptqFC+gfcMYEsh+q7FgYl/9G69BB3SM52D43zjfRgWsEd\nCkDisWmB9W35suuCNtQTaCR3RGDMNGqZ6wk2g9rjVMJEMYX6hST/wcyM97ljcrROrk2F72OS\nW3CHApB4bFpgDaAJwdvpPVnJn3CHBEY85aq5zROqE95cJ4oPUmrkhCZfrbePckflYH+lNi4a\n6Pb0JncwAAnHngXWC9QkL2Q7fRON4o4JDPgzK/m+EvWVZ2OZKr9yxwVSXEQzSma/O93GHZWD\n7aaBReM8kyZwBwOQcOxZYHWiu0I303trpX3PHRRENokGl9zDejwj6AbuuECGp6lFWPK3V0n7\niDsu57qB5heNc275Gie4owFINLYssF6gtiW30+NoFndUENEnKTV3hRdYu6qnfcUdGYiX39YV\n9vGl90vCC7kDc672yYGvZC+i/+OOBiDR2LLAupQWltxM78iseYw7LIhkMN0cvof1eCbTcO7I\nQLzd1FEr+y3pMe7InOqf1IaBYZ5H47jDAUg0diywvkhqHL6ZvpQe5Y4LIvgkqX5eeOY8nr3Z\nyfiayPHyW7ke0Mr+MldL3JRQjJfo0sAw7ylfA2frAshlxwLrZrohfDO9nC7ijgsiGKv9AZb3\na6Kh3LGBaHupk3b2z6Md3LE51LLgLWUPeoE7HoAEY8MC63jNTI0DeTyNk7/jjgxK9VvZ6nu0\nd7F59ZLwEZbTneNapp39la5WuF2SEFdR0JDfRjdyxwOQYGxYYO2hnlqb6WtoEXdkUKolNEJ7\nD+vx3EJXckcHYr0YfmaKXyd6gjs6ZzorJeiivrvKNOKOByDB2LDAGuy7fWmYLcmtuCODUp2Z\nvElvF7s3K+UL7vBAqL60QC/79+JEQiGOpzUIHuZz6UPuiAASi/0KrIMZtTSPlPa0oY+5Y4NS\nvEXn6O1hvScS4hwnR/syuaF+9pvTPu74nGgfdQ0e5Un4jB9ALvsVWNu0rlVZuP2Yxx0blGIq\nTdPfxebWSP+BO0AQ6CatM1P8bqZrueNzohwaHjzKG12duSMCSCz2K7D6k86xsttS8B2hheXX\nydA6N8FvHN3CHSGIc6Rq+VKyn1ul/CHuCB1oLt0aMsyNk3/jDgkgodiuwDpctrbeZro14YLg\n1vUqXVBKfeXZWbHiX9whgjBbqU9p2R9Ma7gjdKChtDpklIfQdu6QABKK7QqsvdRXbyt9LS3l\njg50TaGZpe1iPcPoXu4QQZhutLK05K91ncMdoQO1Tg29LMo9NJI7JICEYrsCa6z+yUgbXF25\nowNdDdNL+4bQ49mSVhd3o3Wqb5Kalpp8Tysc5m66/PLZoYO8t3wtXHAMQCLbFVh1MnO1N9Gq\n+qn4lsmq9pV2DqHPxfgCw7EW0HWlJ38qDsEz3Q9hS64LvcMdFEAisVuB9YHe/Ta8BtJO7vhA\nx0KaFKHAWuHqyB0kCHJGyrbSk78zIws3JDTZv8OOpphMC7mDAkgkdiuw7qXr9bfSi+hq7vhA\nR2eX7lVG/VrTW9xRghAfULtIye9Oz3JH6TTrwj423ISDKABksluBdQmt099I78nM5o4PtP2e\n0jjSLtYzi0ZxhwlC3EZTIiX/DhrDHaXTzKB5JUe5fhouhwEgj80KrOPldC/S4NURh8pa1A4a\nErHA2lsjA9fpcaTTU7dHSv6eSpWPcYfpMINpbclR7k953FEBJBCbFViv0MWlbaUn0GLuCEHT\nGLo7YoHlGY70OdJHkb8h9Hh60WPccTpM+6Sw84Hm0fXcUQEkEJsVWAvpptI20mupF3eEoKlu\n5p7SEldoU0oznEbuQHdGPMFBtZBGcMfpMDWqhw3y7vQm3FEBJBCbFVi9aEOpW+namfiewYo+\npg6Rd7EeT2d6kTtSMN+5rs2Rc59XuRLWrpkOu1qEj3Jb3O0CQB57FVgnK9YofSvdE3toS1oe\n6TpIhebRFdyRgul+SmpuJPm9N8F3ywAAIABJREFU6EnuSB3lQ+oePshX04PccQEkDnsVWO9S\n19I30tNpNneMoKFPibui6cirWQaHuTvOehphJPnzaCx3pI7yBA0NH+QHaAB3XACJw14F1qpI\nH4Rsc3XijhHCnawUfjiIpuG0jDtWMNsAWm4k93vK18S1Rk20SuvIt7wqlU9yBwaQMOxVYI2g\nZRG20o1ScaEX63lD69sKLRuTW3LHCiY7XsFgdd2NXuKO1Ulm0HyNQe5O/+EODCBh2KvAOq1M\npHPR+tET3EFCmLvoRmP7WE97ep07WDDXC9TTWO5n0lTuWJ1khObX8lPpDu7AABKGrQqsX7XO\niwk1h27mjhLC9Ixw8mexWTSOO1gw1zSaaSz3OWmnccfqJBdQjsYgb3adxx0YQMKwVYH1JA2I\ntJHekdyWO0oo6Xi5WgbrK8+eKuXxHa+ztE551GDy29FH3ME6SOPymoPcIOUv7sgAEoWtCqw5\nNCPiRrpp8u/cYUIJr1EPowWWZxCt4w4XzPRj5I+d/SbSQu5onSM/o77mIPenvdyhASQKWxVY\nkS4z6jWYcrnDhBLuinyv34A1rnO5wwUzbaThRnO/ydWRO1rn+Fnn/kTzaCJ3aACJwlYFVo0q\nkTfS82gSd5hQwqW0znCB5WlN73PHCya6ghYbzn3TpAPc4TrGf3XOLdiVhrvlAEhipwLrazon\n8jZ6Z+qZ3HFCqFNGr4LlMw3vsJ0kv1b5PMO5H04buON1jMfpCu1BPou+4Y4NIEHYqcDaYejL\nhjNceBdsLf+NdP39ELkVKx3mjhhM8y6dZzz3y6k/d7yOsUbvDtujaQ13bAAJwk4F1jSaa2Aj\nPZR2cAcKIe6n8cb3sR7PAFrPHTGY5h69/bymmplHuAN2itvpdu0xXk6DuGMDSBB2KrC6ubYZ\n2EbfSeO5A4UQQ+iBKPaxnjWu9twRg2kuiub4O49Cj3MH7BTX6t31Iq9KFdwtB0AKGxVY+ZVq\nGtlG705rxh0phMiK4igcr7Pobe6QwSRHy2ZFk/p5dC13xE6h0BadQe6KuyUAyGGjAusz6mRo\nI92KvucOFYJ8o3O+uK4ZuJq7YzxLl0aT+txMdz53yA7RNkXvbc0UmscdHEBisFGBtY1GGtpI\nX0lbuUOFINtoRDT7WO/V3MvhYtMOMYNujSr359Fb3CE7RFY1vTHe5OrCHRxAYrBRgXUjLTC0\njb6bxnCHCkEm0sKo9rHe8xRWcgcN5jg7eXtUqZ9Ks7lDdoaTKU10B7lB6kHu8AASgo0KrC4u\nY9vq3DKNuEOFIG1Sdka1j/V4NiS14g4aTPF7crPoUr89Bak3xY/UXneQcbccADnsU2CdKm/0\ncNk2uJKehRxOaRzdPlbVnl7jDhvMkENDokx9S/qaO2hHeJcu1h3jeTSBOzyAhGCfAmsfdTG4\njb4K14O2kBfpsij3sR7PbBrNHTaY4Zqovx4eS8u4g3aEJ2mo7hjvSsfdcgBksE+B9TCNMbiN\nXkwjuIOFgLtoapT7WI9nb7XMP7njBhM0KpMbZerXUXfuoB1hI12rP8ht8DEhgAz2KbAm0F1G\nd8+Z2dzBQkA/WhPlPlZ1Oa3ijhvi9xWdHXXqG6T+zh22E9xFM/THGHfLAZDCPgXWOUk5RrfR\n7ekL7mjBz10husuM+qxzteWOG+K3xvCnzsUup83cYTvBZLpbf4xxtxwAKWxTYB0rU8/wNvpq\neog7XCiyP4YPMTzeq7m/xx05xG0wLY8688toAHfYTjCstA+O86pUxt1yAMSzTYH1BvUwvI1e\nSldwhwtFdtIVUe9jVTfTZO7IIV6nqleK4dPLWmUPcwfuAN2otA/8u+FuOQAS2KbAWkETDG+i\n88rX5g4XitxCt0e/j/V4dpWrcZw7dIjTO3R+DKnvQ3ncgTvAGWVKG+MpNJ87QIAEYJsCaxQt\nMb6NPoc+5Y4XCnV1bYthJ+vx9KI93KFDnO6hG2LI/EIaxR24A1SvWdoY4245ADLYpsA6Iy2K\nE77H4iwZizhVoVYM+1jVvdSPO3aI08W0LobM761Y9QR35LZ3MqlpqYNcP+0Qd4gAzmeXAutg\nUvMottHLcBCWRXxE58Wwj/XKSvuNO3iIy7FMd0yZ70HPcYduez/SOaWOcT96jDtEAOezS4H1\nHPWOYhOdVy6LO2Dw2UyjY9rJejzDccdnm3uResWU+dl0PXfotvdBhHOC5tIk7hABnM8uBdai\n6K4Hfg6uhGUNk6K+V4rfOldH7uAhLnNoWkyZ352Rnc8du909S4NKHeNdac25QwRwPrsUWFFe\nD3w0bkdoDZ1cO2LayapauFAk29p5rq2xZf48eoM7drvbGukSr61oP3eMAI5nlwIrq3xUV9S5\nD2ciWcLJstmx7WNV19Nc7vAhDofTG8SY+VtoBnfwdreMbip9jEfiLSiAcDYpsP5HbaPaRO/J\naMQdMhR4DwXpGuNO1uPZntqEO3yIw9PUJ8bM70htxh283c2keaWP8VIaxh0jgOPZpMDaTZdH\nt40+i77njhkKCjbGcDO6gI643LSdTadZsWa+HX3EHb3NjaX7Sx/ivIrVT3EHCeB0NimwptOc\n6DbRV9AO7pghnmPcVTNxppOdnZu0PdbMT6IF3NHbXD/aGGGMu9A73EECOJ1NCqxutCW6TfSd\nNJE7Zigo6Bz7Me4ez+7MmrjipG0dSm0Uc+a3JLXjDt/mOrkiXZd5Mi3iDhLA6exRYEV/PfCd\nKa25g4aCU+WyYt3Hel1ET3L3AGL1FPWNPfMtXN9xx29vTTIjDfEmV3fuIAGczh4FVgzXA2+a\n/Bd31PAxdYltB1voThrO3QOI1YzYD8HyeMbQCu747a1q7YhjXD/9b+4oARzOHgXWw3R1tJvo\nvvQUd9SwJebruPvkVcvEPsCuOsR4l2+fddSDO35bO+GKfGcx3C0HQDR7FFgTaFG0m+gZNJs7\naphK82Pav/oNoG3cXYDY/J3aMJ7M10/9g7sHdvZThFsRes3DHYkABLNHgdU+OSfaLfRmwiEG\n7C6gOD7F8Hhv2n0ZdxcgNs9EdfPQMENRWsdjX4RbEXrtSm/MHSaAw9miwDoWyzWha2fiFDRm\n+VWqx7BvDVY39VfuTkBMZtOMeBK/mC7n7oGdPUcDI49xO/qMO04AZ7NFgfWWgfdjYbrTW9xx\nJ7qv6dzo8xZiBK3i7gTEpKsrygurhMqrUuk4dxdsbIeRgx+vpaXccQI4my0KrFU0PvpN9ERa\nxh13osulYdHnLcQ6V2fuTkAsjmXEfhNKn570HHcfbGwlTY48xGvpYu44AZzNFgXWGFoc/RZ6\nBQ3hjjvRzY7nTP1Cp7u+5u4FxOAV6hlf4mfTjdx9sLG5hu58kZ1+kDtQAEezRYF1Vsru6LfQ\neeWyueNOdL1pffR5C3Ud3cndC4jBIpoSX+J3puFW37G7ge41MMYDKJc7UABHs0OBdSS2m260\no2+5I09wdcvHkrcQW1JacPcCYnBp3LU1DsGOwxW0xsAQL6TR3IECOJodCqzXY/u6YQRt5Y48\nsf1KrWLJW6iz6T3ufkDUTlWK9/xRz3W0hLsX9nURGbnR9t4KNU5yRwrgZHYosFbRhFi20Atp\nPHfkie0Z6hdL3kJNpenc/YCovUsXxJt4XMw9Dm1T8oyMcTd6hTtSACezQ4E1NpZj3D2eXakt\nuSNPbPfEexyOV06ZuvncHYFoLY/tPVGI7PRD3N2wrXqVDQ3xDLqFO1IAJ7NDgdUmZVdMW+hm\nSbjdBqfhtDymvIXqQi9zdwSiNYRWxJ34frSXuxu2Va6uoSHOwZkEACLZoMA6lh7jXc360xPc\nsSe0Fqm5sSUuxG00gbsjEK2s8oa+oirVArqWuxt2dYRaGBvj9rSPO1YAB7NBgfVOLNdx95pF\nM7hjT2RHUxvHlrdQueVr4J5HNvMltTch8Rn1ufthV99RR2NjfAPN5Y4VwMFsUGCtpWtj20Jv\nw2XAOb0da2FcwsX0JHdXIDob6SoTEn8OfcTdEZt61+h519uSW3PHCuBgNiiwJtA9MW6h66cd\n5g4+ga2jcTHmLdQCGsHdFYjO2JiXbLDxtJi7Izb1DA02OMat6AvuYAGcywYFVseknBi30Aru\nZ8ZoEi2MMW+h8qpW+Ie7LxCVZmlmHH23gS7i7ohNGbrXs891dA93sADOZf0C62RmzLeNnU6z\nuaNPYF1cRi52aEBf2sHdF4jGLy6Dx1hHkF3mb+6u2NMqI/d69tno6sAdLIBzWb/A+pDOj3UD\nvcV1Pnf0iSu/Uq1Y81bCYurH3RmIRi4NMSXxfekx7q7Y0zyabXSMT3ft544WwLGsX2BtoVEx\nb6HrpePLJS5fGT2TKbKstN+4ewNRuJluNyXv82gid1fs6Ubjx8CNoWXc0QI4lvULrKk0L+Yt\ntELPcIefsPbQsJjzVsIweoi7NxCFDiZ9Oby7TEPurtjTlfSg0THegE/5AYSxfoHVjbbFvIWe\nRTO5w09Yt9OtMeethAepK3dvwLh/0hqYlPh29Al3Z2ypVxTbzMbJB7jDBXAqyxdY+VWqx76B\n3p50Dnf8CasfrY09cSWclvQ/7u6AYf+mXibl/Tpawt0ZWzrHZfxC+iPw8TCAKJYvsL6mc+LY\nQp+WjNsRMmmQGf/dUvzG4mRyG7mTppqU93XUg7szttSogvExXk29uMMFcCrLF1i76Io4ttCD\nKJe7AwnqT5NO1ffZnNyKuz9g2GW0zqzE10s/yN0bO6qcFcUYZ6f/xR0vgENZvsC6jWbFsYFe\nQOO5O5CgXiQljryV1Jbe5+4QGJRftappeR9Iu7m7Y0MnXM2jGOPB9Ah3wAAOZfkC6zLaEMcG\nend6E+4OJKhldEMceSvpJrqFu0Ng0Id0nml5X0hXc3fHhn6mdlGM8WIawh0wgENZvsByV4xr\nC30Wfc3dg8Q0mpbGlbhQOzOyTnL3CIxZS2NNy/ue8rVOcffHfj6h7lGMcV61Cke5IwZwJqsX\nWD9R27i20KNpLXcXEtNZKbvjSlwJ3elp7h6BMaNpsXl5P5/+w90f+3mZ+kYzxgo9wR0xgDNZ\nvcB6wvB94bUto6HcXUhIx9Prx5W3khbQldxdAmOamnKn5yI3063c/bGfPBoe3doaxx0xgDNZ\nvcCaT9Pj2kDnVayO7xgYvE9d48pbWB5rZOJ8Mlsw607PhbannMndIfvZQBOiGeM95WtiGwkg\ngtULrP7xXq6yC73D3YdEtImuji9vJQ2hddx9AiM8NMjMvLemL7l7ZDv30bSoxrgrvcIdMoAj\nWb3Aql8uzstVTsI1KjlMoQXx5a2kB11duPsERsyg2Wbm/TpazN0j25lJ86Ma4xk4RxdACIsX\nWL9Sqzg30OuoJ3cnElH3OO4gqe101+fcnQIDLnBtNTPtG1BYR20c3R/VGO9Mb8wdMoAjWbzA\nepoGxLuFrp15jLsXCahqtXjzVtIkHO5sBycyo7mKuAGn4WbE0RoU7bUD29OH3DEDOJHFC6w7\nozyaQENPeom7F4lnP7WPN28l7SiTjUNxre+tqK7BZMBIWsPdJ7vpRjnRjfEkms8dM4ATWbzA\n6k8PxbuBvoXmcvci8eTR0HjzFqY7PcXdLYhoeXRnsEW2Gt/xR6tVWpRjvCXpbO6YAZzI4gVW\nvXiPcVc3Hq7zuXuReO6gGfHmLcwiGszdLYjoclphct7rpv7O3SmbqVM12jFu4fqWO2gAB7J2\ngfUztY5/A10v/TB3PxKOCZ88hsnLSv+Vu18QSf3MuN8SlTCUNnN3ymYyor7I71hayh00gANZ\nu8B63Ixr6lxGz3D3I+E0MH036/EejbOEu18QwffUxuy0L6e+3L2yl3/ozGjHeD3O1QQQwNoF\n1lwzvmmagdPPZPvD1Kt5+21MbsHdMYhgF11uet7dGYe4u2Ur31GnqMe4adIP3GEDOI+1C6ze\ntC7+7fM2V0fufiSaF6h3/HkLdw69xt0zKN1UusP0tA+kR7m7ZSvv0cVRj/EoWsEdNoDzWLvA\nql3RjA10gxTcxk6upTTZjMSVdBtdzd0zKF0H13bT076YBnF3y1aeo4FRj/Fa1wXcYQM4j6UL\nrO+onRkb6D44v1+ykVFeStqgPVXL/cXdNSjNkfSoj6+OLK9GuX+4O2YnOTQ6+kE+LRnfEQKY\nzdIF1m5zDui4jaZx9yTBtEzNNSNxYYbQau6uQWleol4C0t6PdnN3zE4epBuiH+PRtIw7bgDH\nsXSBZdJ9Y7cntefuSWI5mtrIjLyFW+fCBREt7S6aIiDt99Aw7o7ZyQKaFf0Yb3Sdyx03gONY\nusDqTltM2UA3Tv6DuysJ5S3qYUrewrWlt7k7B6VQaK2ArOdVK3+Eu2c2MpXuimGQW7i+4A4c\nwGmsXGDlV6phzgZ6AHm4+5JQHqJrzElcmJk0jrtzoC+/WhUhab+UHuPumo2MpFUxjPEE3FIM\nwGxWLrA+ps7mbJ/n0o3cfUko4+lucxIXZk+V8jgj1Lo+MWvFlrCARnN3zUZ6x/TB//a00/K5\nIwdwGCsXWJtiORtGy86Ultx9SSgdXTnmJC7cUFrF3TvQ9RCNE5L1vRWrnuDum310dO2JZZA7\n08vckQM4jJULrIm00KQNdAvXT9ydSSCnMrNMylu49Umola1rJC0Vk/aLcLsr45plxjTGc3CV\nOQCTWbnAapdk1gchV9BW7s4kkE+oi0l503AOvcLdP9DTsOxeMVm/ncZz980+qtWOaYz3ViuH\nr98BTGXhAuuoeRctvJeu4u5NAnmERpmVuHC305Xc/QMd31FbQVnPzXSf4u6dXeSnnBbbIA+m\ntdyxAziLhQus/9BFZm2f92TW4e5NArmZ5pmVuHB5tdN/5u4gaNtCI0Sl/QJ8cGnUH7GWuQ+5\ncL1AAFNZuMBaRtebtn3uRB9wdydxXEjbTEtcuNG0gLuDoG2csLNHPTNoCnfv7OILuiDGQT6L\n3uEOHsBRLFxgXUHLTds+X0/3cncncVStblreNGxLr4szyqypSbqYOySpdpapj4sIGPMfUmIc\n5Bm4yhyAqSxcYDUpY94RsxuoG3d3EsY31MG0vGm5iHZxdxG0/ECtxWW9M73F3T+beIKGxTjG\ne6qU+5M7egAnsW6B9ZurpYnb5/qp2HRIkktXmJi4cPfT+dxdBC1baLi4rN9C07n7ZxObY7+P\nwjBayh09gJNYt8B6kgaauH0eSDu5O5QoZtNtJiZOQwt6l7uPoOFqcYdgeTw5aY25+2cTS+nm\nWAd5Y8ppOFkTwDzWLbBup5kmbp/vopHcHUoUl9EGExOnYQaN4u4jaGiQIewQLFUHHIFtzKw4\nTuK9AHdtBTCRdQusS2ijiZvnvRWrneTuUYLIqmhi3jRzWbPMAe5OQpgvqZ3IrN+M7wiNuS6O\ny+kvpu7c4QM4iGULrPyq1UzcOns83elF7i4lhp+EXW0yYAzN4e4lhHmQxohMek56A5xHaMRg\nWh/7KJ+Or98BzGPZAutT6mzexlk1iyZzdykxPEGDTU2chkfL1jjC3U0oaSA9IDTrnek17i7a\nQjeK4w5jM2k4d/wAzmHZAmsTjTZv26zaVaYe3gDLMJ9mmJo4LX1pDXc3oYSTVSrnCU36TLqe\nu4+20CotjkHOy0rdz90BAMewbIE1nu4ybdPs05ne4O5TQuhPa81NnIb1yc1wtpPFvE7dxCZ9\nd7kauMKsAVlxHVsxAZ/0A5jGsgVW65RdZm2ZC02jW7j7lBDqlhP7QYZPF9rL3U8IdQdNFZz0\nnjjFzYgyDeIZ5N1VMn/h7gGAU1i1wPo71lvC68JBslL8Sq1MTpyWpdSZu6MQqpNri+Ck302D\nuDtpA3/HuQBH0W3cXQBwCqsWWM/HfEMtXThIVoanaYDZidNyFr3E3VMI9kdKY9E5z8tK/5W7\nm9b3TZxnB+0oX/kgdx8AHMKqBdaC2C9HrOdWmsTdqwRwJ00zO3FaFlAv7p5CsB00RHjSR+JO\nLpG9Rb3iG+XLaRF3HwAcwqoF1qXmXw58VyYOkhVvAK0xO3GamrhwYW8rGS3yPjlFNiafwd1N\n63uKhsY3ytvK1DzM3QkAZ7BogZVftaopm+QQPegp7n45Xz0Zx7h7vNc1G8DdVSiWX7vcHvFJ\n74AvhiPaQuPiHOX++KAQwBwWLbA+Mvkyoz4L6Erufjnez9Ta/MRpyWuQtI+7sxDwNp0nIel3\n0DDujlrekrgPrtiUlnWUuxcAjmDRAushGmvKFjlEXvXMQ9wdc7onaaD5idM0g4ZwdxYC7qAb\nJeQ8z52Ou1BGcGsc93ouotBK7l4AOIJFC6yraLEZG+QSBtPD3B1zujskXMe9UF79pPe5ewt+\nHYRfpMFnDN3B3VOru4aWxTvKD6dl4yMsABNYtMBqnCHiiI7V1JW7Y07Xm9YJSJymmdSPu7dQ\n5JfkplJyvr2M+xh3Xy1ugAmnB11GD3B3A8AJrFlg/SDoSJ5mSV9zd83halcUkjgteY1db3J3\nFwptpivkJL0XbeHuq8V1ofhvgbExrfbf3P0AcABrFljb6UoTNsbhxtNc7q45235qJyRxmm6n\nHtz9hUJDaamcnK9ync3dV4s7PcOEYR5A87n7AeAA1iywxtNCE7YS4ban4XY5Qu2U9UmGTwt6\nhrvD4HWiUhU5F+fweM6mf3P31tpq1DRhlB8pX/4n7o4A2J81C6wz0ky+07NfF3qOu2+Odgvd\nLiZxmu51tUW9bAUv0MWycj6f+nL31tJOJTcxY5jH0CjungDYnyULrAOuFmZsJDTMo+HcnXO0\n813bBGVOU0fayt1jUN1Es6TlvEHS59zdtbKfzfmSPjfb9TJ3VwBsz5IFVg5dbsZGQkNe9bJ/\ncffOwU5kZglKnLYHU+od4e4zFBQ0S8uRlvMpNJ67u1b2IV1oyjAvcLXA+ZoAcbJkgXWdoEOw\nVENpDXfvHOy/1F1U4rQptJC7z1DwGbWVl/LcamV/5u6whT1PA8wZ5+44IQggXpYssE5L323O\nRiLcWlcH7t452Eq6TlTitG0rVwEH47JbLDXto2k2d4ctbAeNNmeYt1VK+4C7MwA2Z8UCaz+d\nZc42QktL+pC7f841PP6rSEdpDI3l7jR0dcV/bUvjHs2shos06Vph2j2LZtDZJ7h7A2BvViyw\n1tFVJm0jNEylqdz9c65GGXvFZU5Tblby29y9TnS/pzSUmvOBtIy7y9Y1x7zzeLvQPO7eANib\nFQusoSI/B9lVrgYO3hTkJ0EX4C/NbOqMSzXw2kpDpaZ8U1rd49x9tqzxtMSscd5aKQ13+wSI\nhwULrFPVKoq8auGllMPdQ6faRcMEJk5HO9rE3e8EN8S8fboxvWg9d58taxCtN22cb6U2+JIQ\nIA4WLLDeoK6mbSI0LKOLuXvoVJNpnsjMaVuTWutP7o4ntGMVqsm6jHuRtSmnneTutVWZcSvC\ngPPpDu7+ANiZBQus2+km8zYRGk5zfcHdRYc6O1ne5ZCKDaXruTue0J6kS2WnvDtt5u61VTXN\nNHGct+FLQoB4WLDAOjdpq4nbiHCTaAZ3F53prxRT7tIRrV21k9/g7noiGyf/c8sHk5riIyxt\nFU291O8MaoPD3QBiZr0C6+ek5mZuIsLlZFY/yt1JR3qc+onNnI47qDUOFWFzsmb5XOkp70Yb\nufttTUfI3LuMdcHlRgFiZ70C62EabuomItyltJ27k450C80WnDkdF9Cd3H1PXC/Kvnq/15qU\nRvhkRcs31NnUgd5WJRWXQQGIlfUKrAF0v6mbiHArqAt3Jx2pfdJ2wZnTsbVimY+5O5+wrmcp\nq3vSKu6OW9LrpJg70LNdp//z/+zdeWDUZP7H8adQQAEFQcVz9eex6qqrq6vub3dd12v96e63\nlKOUG1FQBKSAByweFVFBEBFFBBQBD0QQOUQ8EA8WD0RWRbxR8UIQFUSQqzS/JJOZycxkppk2\nx7R9v/7oZJJMnuRJnuTTmcwzYW8UUF3lXMDa1nh/37+TdIJ6N+zNrIE21g3lFizDNerP3JMT\njt0HNfLtd60ymFL/QLpzdzDP8/f//0/1CXujgOoq5wLW0+pfHp8hUg1WPcLezBporiryfc+l\n87/qjrA3v5Z6WZ0Tyh5vrW4Je9Nz0SR1pccVPevgvLlhbxVQTeVcwOqpbvH4DJFq7n57bgh7\nO2uevmH0gmV5aC8+JAxHL1Uayh5/bK+9+JnvVMPUDV7X9Nh6zb4Ke7OA6inXAtbuFnvN9foM\nkao7Heh575j6HnZxmK1r1Ol8kzAEO5o3Cf47hKYe6vKwNz4HefhLOTGXqT/zjQKgMnItYC0J\n5BOHGXvuz52bHvtC/SGAPZfWX/k+eRjmBd/LqGXOQXW5kzJFKzXN+6r+s+of9nYB1VKuBawS\n79/idlKo7g17S2uaieqSIPZcOo82q/dW2FVQC7VSd4S1x69Xfw9763PPGXXmeV/TMw5Sj4W9\nYUB1lGMBa/chDQP5nGlqvd/sCHtba5iWanwQey6t0rzjtoZdB7XO9/UPDW+P/4H+7FIc2syP\nmh63R0P+ewGyl2MBa6k6y48TRKoL1YSwt7Vm2d54/2D2XFoXqd5hV0KtM0p1D2+H35d/8Oaw\nKyDH7K53lC9V/e+8g74Me9uA6ifHAlY/db0vJ4gUU+ofwl1YXnpeXRTMnkvriUP4PnnAyn+b\n/0iIe7xI9Qu7BnLMenW6P1XdTR27PuyNA6qd3ApYZQcF8wnhU8ZdWPy8ipf6qZsC2nNpja3X\njH+zA/WcOjPMHT77wDqvhV0FueVt9X8+1bWoE0lYQJZyK2AtDu53zaY33ntt2Jtbk/zPHiF2\n0mC5TJ3Bz3gHSdSIUHf4sLzjtoVdBznladXJp6qef4E6ju6wgOzkVsC6VN3s0/kh1WWqS9ib\nW4O8o/4c2J5L76+qZ9gVUZt8UufIkHf4BWpA2JWQUyaofn5V9XxRh7wX9vYB1UtOBaxfmzTz\n4UvGacw9PO/FsDe45ihVAwPbc+nNOlyNDbsmapErQt/pMw/Mey7sWsgl1/n5awqd85ouDnsD\ngWolpwLWY6rQv9NDipETmaftAAAgAElEQVR5R3Ofu1d+n/9YgLsurfub1OVG96Cs22PfkHpx\nj7sjvwWf9Md1Vff5WNkl+fUfDXsLgeokpwLWP9Q9Pp4eUlykBoe9xTXFx+qUIPdceiPr77kk\n7MqoLa5VPcPe3cavXp3J77jEnK1m+VnZQ/fMGxX2JgLVSC4FrC/r+NOJSzqP75u/IuxtriFu\nVVcGuuvSu75uE3ZqIDY0bvpE2Hv7qafm/0n1DbsmcsdRe/lb23ftowaWh72RQLWRSwHrBtXb\n39NDslJ1Ev/9euLE/OnB7rr0+ufty724Qbg2zE5G42Ycoh4IuypyRfke/+Nzbd9/kOrMb2AA\nLuVQwNp50B4zfT49JDuHXwj2xCr1x4D3XAZX5LX4IOwKqQXWNsqFN7B0ExrVfyXsysgR3/nV\nz2jcI0ep8zaFvZ1ANZFDAWt68H2BT29Wf2XYm10TDAn962R2PdQBJCzf9c2FO7BMQ+vu+1nY\ntZEbXlPie23POkWduCbsDQWqhxwKWKfnBf9rwdepU3eFvd3VX/lhe/h6b222LlEt+JTQZ6vr\n7/9k2Ps56jJ13Maw6yMnPKJ6+F/bc/+hWvBFEsCN3AlYL6rT/D85pPibujnsDa/+XlJ/D2HX\nZdAjr/mbYVdKDVeUS29aXqTO42ZK3bBgfsr10jr1RnKrO1Cx3AlYZ6vbgzg5JJnerN5bYW95\ntdfNz+4NK+WKvL3ogNJPr+YdMT/snRw391R1MVd8TeseUD83tzRR5/G7OUCFciZgLVYnBXJu\nSFaa99tfwt72au7nRvvl0MU24pr8eveHXS812O7T1K1h72K7mUeoIWHXSQ74u7/dYMVNO1nt\nfR+RFqhArgSs8j+qkcGcG5KJ6hD2xldz41XHcHZdJrc2Uv24vc4vD+TET0/aTGuh7gi7UsJ3\naNOg6nv+FXuqMz8Me3uBHJcrAWtKaGfsJ49WI8Pe+urtxDpTQtp3mdx3sPobv6Lijw37Npgc\n9v5NMnGfvHFhV0vYfsk7IbgKf/A01WAoXWIBmeRIwNrYov79wZ0bEk3Zp870sLe/OntF/Sms\nXZfRjNPUAS+EXTk1U2fVLey9m2Lc3nl3h10vIVuu/i/IGr+2qTr2+bC3GchlORKwLlMdgjw1\nJLpzj3qzw66AaqyVuiW8fZfJ/G516wzif2zvzVf/E/qvPKe6p4m6NeyaCdfDQfTSYPPYP/LU\nP14Pe6uB3JUbAWtx3iFhdqpzW4P8aWFXQbX1SR2/f56j8kbur076b9gVVOOsa5E/Nuw962R8\nM1WyO+zKCdMQdVPAVT76eKX+voC73QFnORGwNv2mzqiAzwyJRjTKGxF2JVRXl+ZSh0jJZpyr\n8gf/GnYV1Sxl56muYe9XZ5MPVoVbwq6eEBWq4O+MG/Z7pY67f1vYmw7kpJwIWO1VUeAnhkR3\nN1O9+M5ZZXxW/8C5Ie+8jG7cV/3P/LArqUYZpE7NuV45LNN/p05aHXb9hOfwvcLYMXf+ra7a\n9xq+UQikyoWANUkdFfotHZMPVf/3c9gVUR11USVh77vMZkodddHHYVdTzTFZtZge9j5N68nz\nVNPHw66hsPwYUleCT00ubKzU729YzkeFQKIcCFjL92g0KZwTg92Mk9Txn4RdFdXPijqHzgt7\n11Vk7HGq/sCfwq6pGmJOfqN7w96hmfSprzqsD7uSwvGCahVWrT8x8JR8pQ7pz69iAHbhB6y1\nh+QF8gNaFZlzkdqb7hqytPvPgd9XWwnzr95X7TOiNt+d45k59RuMCHt3ZnbvkWqfu2rld0dH\nqGtCrPcZ15y5p1LHj/gy7GoAckfoAevnP6hOIZ4W7EoaqKJ1YddH9XKvOiPsvebKE10aqn1v\nYudW1YP5DXLtZydTzO2+hzp80vawqyp4/wzhHvcEs/99Rr7KO33YG9zOCpjCDlhbzlLn5Mwt\ns/f9Vu0zrizkGqlOPmrUKBc7cXcyvV0jVb/4WfZuFez+t2o0POwd6cJDF+Wrg27fFHZ1Bays\nyf5hV/xTTz1y+fF5SjU+/6aXamHCBZKFHLA2nqnOCP0G97h5l+6pTnw23CqpRracmMtdNCSb\n0eMgpQ4seZVbcStp/T/U/uPC3ovuTJEGaq+BtevTqrfU2WFXu+mRq847UCnV8J+Tvgu7SoCQ\nhRuwPvmd+lMO5SvdtLPz1FmLQq2UamNXgbog7P2VlfnDz2uk1MG9ntoadtVVR3NbqJMfDXsX\nuja9U1OV3/6NsCstQKU59N/OtEEX6SGrzmlDFn4bdrUAIQo1YD3cRF2Uc50o3XmyUifcVUu/\niJSNXR3VCWH2v18ps4ecpWesBucMX8aHhVn5ukjld8mZD/PdmN3nEKVOve/HsGsuKCfnPxZ2\nlSeYcPFxdZRSTU8tunbi4q/Crh0gDCEGrE8uUg2uDPss4GTU/9ZRdf/xAF/sz+jnf6qjZoS9\nqypjzrDC3+gn/iZyx5vcjOvSxusbqaNy8vdxMplfemqeqn/h+M/Drr4gvKdODru+Uzx2fdFp\nB+YrQ+PTLh27hJ4GUcuEFrC+uLyeOn5C2GeANKZdcoTSz8z3rw2rdnLf8mPU76tlvjJNHXDu\nfvpZv9HZ1839OuyazH2fX9NENemd8/2dOZnc2QjTR1w8+cOafuvdFWpQ2JXtbO4Dt17Z9n8P\nrqvvh7z/uaDXzRPnvrqaz+hRO4QTsMqea5uvWlydy584TOikn5nzTugz7b2doVRRblt/ZX6e\n5Nbdc1m7v/+5Bxv/W+933sAHXqs1HyRl7bNxZ9VRe3eZGfbuqrQJPf64h/FR1fn/nvlRzX3L\ncs0ezXO7PT55V4mcsJeyNPqfP/6j3WXXDr9v5kur1tf07IvaK4SAtXFerwOV+k2/nLv7Ktl9\n3U6sp58L6h/fdsjUpbyZFbfiikaqRTXoYLRij97Y4bTm5hl/n1NalYx6+IVV34dduTmkbNXk\ni4/Q6+bYK58Ie0dVzdw7e5y5v7GX6/9OSsbMfnNtjbuk775Q9Qu7lt2YftcNJV1bnnXCoU3q\nqpj8A0++sOvAW+6dOvP5V9/7mg6BUXNUFLCWLvLOkw+MuKrT3w7NU2qPP1w6rFoo7XHhydZN\nBA0OO+0fHXpdc/Md4x+a42Gl+OjVzLu2vDLLfG7KkAI9Hu91YWnYu8Y7Qy6RPx3dLHrCz29+\nxB/+dlHbzj1KBt10+/jJD82es8DrHeOBtzPv2y1VXPwTE4de/s/f7WlEkt/+86qwd5A3Bnc5\n/8QD61k7ef/f/e+F7S8beOMovTU/78ke8U4Fv9i13uElC/6hjrg57ArO0vVX9bm0U+sL/3bK\nMQfb05a+c5oceMTRJ59y5tn/bN2+xxX9+19/w023jxw/4aGHHp+jezrw/eGlbyq43qKGqShg\nHaFQXR2TedfuDHv9UHmSed+uCnv9UHlXZ963s8NeP1TepAqut6hhKg5Ye+uCOvzq6mU1Dqqw\nenphewZVWAO9sAZBFbanXli9kANWY30d6vi4/Dy/j0vjWGzkZwFVOv7cBax8v7chxvfaiqkT\n2DkiuJKMgzl2e5L7gLWH/rL6gaygoZFeWt2KZ/OI0bzzgiosuKOXgFXLVBiw8k7VBXWkN9TL\nOj6gslQzvbAjgyrsYL2wg4Iq7Ei9sGYhB6wT9HXwM77WMY5LH5fv/7HYXC+g0m8QuwtYe+lF\nHOvV+mbUSC/pd4GUtKde0gmBlFRfL+mkQErK10v6Q+yZ64B1qP6yAwJZQcOxeml7VTybR4zm\n7ec/aAmCO3oJWLVMRQGr4FRUV60z79pdYa8fKq9/5n37Wdjrh8obk3nfvhj2+qHy5lRwvUUN\nU+G3CHcah0VQvV5/dGqFscA7T+uFXRNUYeP0wu4LqrCBemFh/6Ki6OvwmY/L32Yclz4uX3tf\nX36RnwUs0Au41s8CNO1NvYiL/S3CskovqV0gJRnZsYL37zyyVi/pvEBK2qiX9JfsX3a7/rJp\n3q9NGl310t4KrLQ/6qX9GlRhvrd11FYErGAQsDxGwHKBgFUVBKwEBCwgWwSsYBCwPEbAcoGA\nVRUErAQELCBbBKxgELA8RsBygYBVFQSsBAQsIFsErGAQsDxGwHKBgFUVBKwEBCwgWwSsYBCw\nPEbAcoGAVRUErAQELCBbBKxgELA8RsBygYBVFQSsBAQsIFsErGAQsDxGwHKBgFUVBKwEBCwg\nWxUGrPJvdEH9+PwOvax1AZWlbdUL+zGown7WC/s5qMJ+0AvbGlRhaXynr8NOH5dvHpc+Lt88\nFtf7WUAAx992v7chxvfaitmpl/RdICWV6SWtDaSk3XpJ32b/so36yzZ7vzZprNdL2x5YaUFe\ndgI8elHLVBiwAAAAkB0CFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeqyBg\nfTOpX4dWXYc+F1RPo5q2vp3IEv+LKV8++rKiVp0Hz/jJz1Le7ymy1D5i9fg+xYUdr3nYj86+\nUgrTPhp3edsOfces8qGwSqyNl/ysR0P5ayN7ttUPj0f87R3H64M9U3P1timn3QFvi82AqhZT\nwdK826Y3JUHPbNYiCymtogp7LNBzc0ANIibIU9eqe3q1a9Nj5PIgykItkzlgzSq0zipXBNX9\nZ/n1EkTA2nBt9HzZZr5vheyaUiAJ59Md90RLbTXH98K0XeMLrNLGB9ZjX/q18ZKf9Wha2z9a\nQOEsXwqI8Ppgz9RcPW3KGXbAUk8DVualebhNGQOWV9uU2iqqsMcCPTcH1CCigjx1bR0W3bRb\nt/ldFmqdjAFrrn7U3TBrwYOXiHQPqMfgheLtNcfZ1stE+i5Y+eFr4/Sz1AKfCvm8r379sZ9P\ny4fq2zZ4yuxxXfXH53wuTCu/Q6Ro7PxZQ/Vz1XRvC6vE2njJz3o0beisB++Rj865Xz9MxJ8I\nZ/L4YM/UXD1typl2wLMiQ6dHVfn3mjIuzctt+mZ63CSR69yvhXupraIKeyzQc3NQDcIS5Klr\n51V6aLx9zvw724iUBv6PKGq6TAHruzZSuMwY2K6H/LsDWZ31RXJxAAFrmt6YIu+sryiQIn/O\nT0+1ktZzx9jPp/p5uo35Y17bxop03OFvYdoikZINxsCKNtLK1w9C3ayNl3ysx4hbRK42a2y3\nfq0t8u1Hhzw+2DM1V2+bcqYdMFtkcVWX725pvp2e7pHCNa7Xwr3UVlGFPRbsuTmgBhEV5Klr\nhkjXL4yBry/x57811GqZAtaE2P8P2zpLyyCu0eXXSedZAQSsniIfW4ODRF72pYwB0vtzLeF8\neoXIwshQmd6YPf3d1NTCdnSTYuuX7h678f6vvCysEmvjKR/r0fRTgbSxfjdyt36kLPO8gAiv\nD/ZMzdXbppxpBzwk8kYVF+9yaX6dnlYWyCPu18K91FZRhT0W6Lk5oAYRFeSpa3cnkRWRwU8L\npDtvYcFbGQJWWSdp9Ys1/IjIkwGszdP6v4oLAghYLUWin7ffKzLDlzIGjNf/tbefTzcVSOto\nqeNE5vlamPaayKNellC1tfGSn/Vo+mr00Aeiw3fFsoTnPD7YMzVXb5tyxh0wXuS9qi3e5dL8\nOj3t6CU9k94V9WabUlpFFfZYsOfmgBpEVJCnro9FekWHh4p8GFS5qCUyBKwPRQZHh98XGeL/\nyqwrklItiIDVTiT6Pve9ft1U8LnxJyFllG2I/Tc2WeQJfwsbJfKNlyVUbW085WM9phjl29Ho\n9cGeqbl63JQz7QC9wj6v4uLdLc2v09NDsbc03KxFFlJaRRX2WPDn5ij/GoS9iMBOXS+JjIkO\nzw/+ZlXUdBkCln7yfzA6vKNAin1fl/IhUrwhkICl/6/yrjU4OP5poQ/SpYzbRF71t7BLpav+\n95fPPvjO83IqsTZ+8aUebX7pKIX+fP7i+cGeqbn615RTdsBNIh5+kz/D0nzapq8K5dYs1iJb\n9lZRhT0W+Lk5yr8GERfkqUuvyEnR4RUiI/wvEbVKhoA12f4Fuy4ivn9XZYF5l2EQAesDkQGR\nt7DeLJDrfSwoTcrY3EbaeX+rqL2wbQX6v7Wrrje+7dx9xnbPi8pybfziTz3GrRko8pA/i/b8\nYM/UXH1ryqk74Bp96S/d3LWwfb8HPbg+ZliaT9s0VAq/zWItsmVvFVXYY4Gfmy0+NoiYQE9d\ni23vYL0j0s/n4lDbZAhYo+1XyCtF/L5Rel2R3KAFE7C0J0UueeK/q5aOaSl9fvCxnDQp4w5f\n3oy2F/aF/t/YwpZWBy8lG70vLKu18Ys/9WhaP3nS6L4ibWb6s3jvD/ZMzdW3ppy6A64Q6R3t\nMmlGle8ZzrA0f7ZppcjEbNYiW/ZWUYU9FvS5WfO9QcQFeur6UKRPdFhvjJf6WxpqnQwB61aR\nN2NPrhL5xN81KR8i7Yw34gMJWNryIZEG3P2hLX4W45wyZohcvcvfwt4XubKw+6K1Ozcs6Czy\n7xC+HRNAwPKpHk3vG0dH8eSf/Vm6Dwd7pubqV1N22AFG11jtR8+aN6G7PvBwVQvIsDR/tmmQ\ntE79BMzDbbK3iirssYDPzQZ/G0RiQcGdunYVi1jdxZf1Eenoa2GofTIErJtF/ht7Mtj3b1g8\nZX09JZCAtXVK10jAKrjK18IcU8bDIr38OE/ZC3vL6I56kzm4tr3Iaz4Ul8Xa+MOvejS9Hzk+\nei3yZek+HOyZmqtPTdlpB7QRuc/80HDXJL36Pq1iCRmW5ss26Xt9XFZrkS17q6jCHgv43Gzw\nt0HYBHvqelCkh9kV/rYRBQUELHjM7TtYA/3+L+m7Ihli/rMSRMD64XKRMR/8umvD4t4i430s\nyCFlbB8h0nuD34Utl3jfPXNEhvlRnvu18YN/9WjZ/dOHD+v/397lw6L9ONgzNVdfmrLzDti6\nJXZP1jCRkVUsI8PSfNkmvZCvs1qLbKV9Byu7PRbsudniY4OwC/bUtbWHSNHEF1+Z0k0mFPIR\nITyWIWDdab9C9vX5q7Plg6Uo8ptaQQSsIbF7RLdf7WtxqSnj+xKRQb84z+1hYatECqO/ArtB\npIMvBbpeGx/4WI/2Ui71tGNyiy8He6bm6kdTrngHfCJS7N0HPMlL82ObfmopV2e3Ftmyt4oq\n7LFAz812/jSIBAGfutb3sW73GrtZpK/PhaG2yRCwpog8FXvSUcTXm5Xmx/qvCyBgfWz7ushK\nkav8KyklZbzfWf8XcKf/ha0R6RKb0FbEpyJdro33/KxHu2Ue/GJxCl8O9kzN1Yem7GIHlLcW\n8e4j3OSl+XF6mlVhL5pV3SZ7q6jCHgv03JzAlwaRIOhTV9nCIR1b9xz9nvZVKO/0o0bLELCe\nFYn137tVpJOfq7GhrVy2NOJukfuXLvWws8JUs0WmRId/FSkoyzBv1SSnjNdbSYFvP5ZqL2xn\nSymKTegY77g+OL4GLF/r0W67D4eHPwd7pubqfVN2tQM6iHj4GW7S0vw4PZWI/JjdWmTL3iqq\nsMeCPDcn8qNBJArt1LVUkn8jCaiiDAFrtcTfL18hMtTP1bDuoIybVPFrKm+a7edxdrf0sxeZ\npJTxeqG09fCX2jIV1jveOaJ+xmrtW6Hu1sZj/tbjO7Mnvx8dLi/w/gzvz8Geqbl63pRd7YAd\net1591PcyUvz4fT0g0jvLNciW/ZWUYU9FuS52f8GkSSsU5f+387ywApD7ZAhYJVfEv8V0fE+\n/9J4sAFrtsg90eH1Ii39+yZwYsr4qI0UfeBbWYmFTYn/SNx7vn4K6mptvOVzPU6yHR7firT1\nevn+HOyZmqvXTTn9DnhjXOmL0eEVtj6GKifT0nw4PS0SmZDlWmTL3iqqsMeCPDf73yCSBHzq\n2mQ9/tpR2vvV6QtqqwwBy/hVrsmRoR/aSls/e8y2C+AerJUi3aJN6UWp6L7WqkhIGVsvlVbv\nZpjZ08I+E7n418jgrSKP+Vism7XxlN/1qF9Ei6P/Qk8TudHHorw82DM1V2+bcoYd8LzIFdY7\nPOWDq9zrd8aleX96Gu98C5aX25TQKqqwxwI9NwfYIAyBnrpuLSqweuef6vO/9aiNMgWsTe2l\n4BVjYPM1AV6iAwhYZZeLjI+8bbX+Yl///0s4n473+WfvEyPNCP1MaJ54nxApCqErd/8Clt/1\nWN5XZGDkXpxFLf39LqSXB7tTc508YcL6dNMqz2kHWCVt7yxym/ndwh13i7TblPLarDguzZ9t\nMlwr8p79uQ/blNAqqrDHAj03B9ggTEGeuh4VGWz+Hs8zBVLsfy+qqGUyBSztxQKR6x6ff59+\nghkY2JunQXTTsLJQZMBTKz96c0p7fQt9uWfz/emGfiIjjEfjerS+UAoemh4z39fCNO2nS0W6\nTXl25lUi8oKHZVVubTzkYz1aPm0r0mbEY09O1i8scov3y4/z9GB3aK5FIh+lm1ZpjjsgWtIy\n/QrcYfzcefd1FSmocieRTkvzZZtMnZN+1NnTbXJqFVXYY4Gem4NrEKYgT11buotcPGXhLD2n\ntlzmc1mofTIGLO35NtZdItcF9z3gQHpyf6db7AaYO371pYRZCXfZGN87Xpp4401PXwvTre1v\nPW/7vIdFVXZtvONjPUZ9clls8Xd7d5u2A28P9tTmGrtce9mUHXdArKTXO0YndPbglmGHpfmy\nTaZWSd938XSbHFtFFfZYoOfmwBpERJCnrjXdrbI6hvBzF6jpMgcs7fspJe1bdx/xejArYwrm\ntwh3PH/bpUWFHftP/MynAsIPWFrZ4pu6t+rQ/6GKvnnuteofsLSyl0b0aFfYceADa/xYepzH\nB3tKc41frj1sypkDlrZl3o1dW7fpPvTp7VUvymlpvmyTYYe+MQlvBnm6Tc6togp7LNBzc1AN\nIlpcgKeubU9e26Flp6tmVfHjbMBBBQELAAAA2SJgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4j\nYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAA\neIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAF\nAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAx\nAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAA\ngMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhY\nAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAe\nI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEA\nAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyA\nBQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADg\nMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYA\nAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAaghuinddZHh74xhtc15xowT\nAcALBCwAPtn+ztx7Rw4bff+sd3cEUh4BC0DuIGAB8MOnt/65gYrKP+mGFf4XScACkDsIWAC8\n98r/qWRnLPC7UAIWgNxBwALgtbVFKfHKcO63/hZrD1jr6hq2x6aNLi19JvYkeSIAeI6ABcBj\nL7ZwzFdKNXvB13LtASvJ5jylSnwtHAASELAAeOuJelae+v3geR9s2PLdh3MGHW+N2XORnwVn\nCFgvKQIWgEARsAB46rm6kTD11zdsI18/z0pY7/lYcoaANYqABSBYBCwAXvq8qZmk9n40afyj\nDSPvavl451OGgNWegAUgWAQsAF46x8xRzZenTHhrb3PKzf4VnSFgHUXAAhAsAhYAD80wU1Qj\np08CF9UxJu2z2bey0wesTXkELADBImAB8M7u48yANc5xYl9jUtNnE0d+vfDhMbdNmLVka/qF\nfrdg3K2jHnj2Z4dJG5+dMuL2SS//Yj5JH7AWKxcBq2pr8vXCB8YMGzl+7kdlFRQDoHYgYAHw\nzjNmvjqr3HHij4326jw/4VdzVvc7NtqFQ/2/j7Ynm/Xmcoyh2X/Ni8xR56yFSQt87iLrC4sN\nWr6mpeto9OvEriIWaY4djVZtTZZdsX+sgKYdnndRUQBqOgIWAO9EehhdnGbq24mdp2/olZ+Q\nfQ64Nx7MfjFGnKLPc4F9jm72ePZzV9uUvD67tIsrHbCqtibr2iUWof68ulKVB6AmIWAB8MyO\nxka++K3zG1jJPj9aJese+3ytzFyQtuF3iTN0ib98+1mJkwp3X1rZgFW1NfniyJRXN3m9khUI\noMYgYAHwzItmvBjpat7PDjBnzv/z4LsfvOOKYyLJpF1ssnFH/CG7z9X/Nrrg0iu7nmL1rvVU\nbIaOkRG/H3TPA8M77qsPlV7hGLDWn3TSScZkte9Jhje0lIBVtTUpO8V8Wu/MXqUjBnX/a33z\n2QHfVboOAdQMBCwAnhlupovULhoc7D7TnLfNZ9bzp48ynz8cnd7AiETjlNp/UiQIrRFz+vnR\n6a9Egox1M9SOUQ1V/QscA5ahxHgSv8k9cWIV12SC8STv6h+tpz/eYEas3m7qAEANRsAC4Jli\nI1s02Olm1rFmShkQH/Gd+dZR8x+sp3saS2qqjo/9QHTZ34zpddZbT88wnjVaGXv54j0jbyxl\nH7CquCbmk2G2LXvOuJ+r/iY3lQCg5iJgAfDMH42w8Sc3c5YdYsz6F/vdWsvM7+iNtp41MmPP\nPt/Gp79ujrHesnpX2Wc23F7JgFXFNSkzPjHcY4t92wYaU2e6qQUANRcBC4BnDjSiRZGbOZ8y\nM8qKhHHm+1+/t10p2a4AACAASURBVJ5EYs1E+/SDjTEjIsM3GcPN7Llmx2GVC1hVXJO1xuBR\nCa/+uOuND764oYIKAFDDEbAAeMa8/egyN3OaPRucnDhunplkVkWemLGmeUK/DhfaPsoz7yzv\nkvDyaysXsKq4Jl8Zg03dbDKAWoWABcAr5WYuudbNrObncsMTx20zfw/6vsgTM9Z0TZje2xjV\nwxwsM6PcQwmTX69cwKrimuwyv1T4pJttBlCbELAAeGWnGVxKXcxpdo+u/pM09s+2N8DMWDM+\nYfI1xqgO5uBH5uvfTZi8o35lAlZV10Q73RjeO7mTeQC1HQELgGfqJAaZ9J41Y82PSWPN37o5\nOzJsxprnEibfaIwqNgfnmK9P+k3AYyoTsKq6JtpUcwHqogU7NACIIWAB8IyZRbpUPJ82xZix\nYfLY642xx9gWtSxhcmk81pidT+2d9PJzKxOwqromWvm/IglL7d3yrv/urnDLAdQSBCwAnjF/\nNOafLma8y5jx0OSxo42xzSPDZqx5L2GyLdbcYQwelPTytpUJWFVdE03bfKGK2aft/Xx9EICB\ngAXAM+bPAx7mYsahtneI4sbb3k3KHGtuMgaPTHp5p8oErKquiW73qL3jEUvl/2OWu99iBFCj\nEbAAeKaXGTG+qXhGs0uF3yWPnWSMrRcZzhxrzNcfl/TyLpUJWFVdE9MPtx9ri1jq5OczbjyA\n2oCABcAz95n54vGKZxxizPfb5LH3GmMbRYYzx5obnN7Bal+ZgFXVNYn6ZMx59WMJK+/G9JsO\noHYgYAHwzPtmvGhf8Yy3GPMdkjx2lDF2v8hw5lgzwhg8OOnlF1YmYFV1TWy2Pj3ghGjEujPN\nhgOoLQhYALxj/oZMve/STZ73kzVgfgS3R/LkwcbY4yPDmWPNOGMw+VuEf6xMwKrqmiT5YsSh\n5sIbfOE0FUDtQcAC4B0zyaib0kz9KH/vGzeZQ5Hep9YnTe9ojLwgMpw51kw3X7858eX7ViZg\nVXVNUmy/ylziQOepAGoLAhYA77xthou9vnScWH6+Pq2p+eHZl+Z8i5NmONkYaf3YYOZYs8J8\n/aqEyebPLmcdsKq6Jg4uN6amfDERQO1CwALgofPMvHKe47Q7zWm3mcMHGIOlidM35Rsjp0ee\nZI41W/KM4cTfInyoUgGrqmviwPz957r01QDUbgQsAB56NS/th4TPmKnlkF/NJ12N4WMTZzA7\nVc9bG3lSQaw5whi+JGFym8oFrKquiaat+SVpS82fiv7VoQoA1B4ELABe6m6GF/XvlAnPmUEl\n75nIs5fNuV5NmOPvxqgzrScVxJrexnCzLbapaxpUELCujM2aMLFqa/L5Nec2U/ckbuku4ycZ\n90qpAAC1CgELgJc2HRVJWMWJXyXcPcZ8/yr+NtLvjGen2z9Hi/yA86PWswoC1iJz5tG2qcUq\nfcAaYDyJ/0Zi4sQqrclaI0wduiVh6vPG1JOTKwZA7ULAAuCplU0iSWevUfFPzsoX/TEy8qKd\n0VGRO6Zs37X7wLwZ6rhd1tMKAtYuszeEPZbHJt6sVN20AetGc9GxeRMnVm1NzDe7/mn/PHDL\nScaoYWkrCECtQMAC4K03or/M17h4wtI1P3y9cvZVR1tjztkWn63AHNPB+l2dsqlmJwt1l0Qn\nV3Tn05RIinsgktg+bKkX1yttwLrffDbJGNydMrFqa/If88XHzowmx/JnzXfEGn+dXaUBqGkI\nWAA89n40TyW7YodtrnWHmOP2uGDoxPtHdDZ7KFV5d8cmVxSwdp8eWeY+hb37tT/GGBp9q/F3\ncGRyYoZaFZn3d60v+v2ZKROruCa9rDR57hU33HpTScv9I08nVKUCAdQABCwAXtvcp45DvDpo\nRuJcnx6ZPEf9R+JTK/zu3vqjEl9cVH638WB91JeUoU6LzXZG6sSqrUlZkcO2Dq9MtQGoSQhY\nALz3TuvkiNX8xi3JM23snpcwy19et02suPepL8+2v7jXLm2q8XhFZGJShlreIFPAquKa3L23\nSnTcs9nUFYAaiYAFwA9fjThzj1ji2L/VzB1OM73f77fRWfYtWpgwyU33ng/91Ypx9f9l3DH1\njDFofVcwOUP951irnJYOE6u6Jj+P/mt+bFv3avvkLg1ArUfAAuCT7e/OuXfkzWOmzP88w0xf\nLZgyavikJ9+uXMfn6xdMHj58wovJPX062P3avcNuu++ZH3xak1/emjnu9pvvmPTkp/TgDsBA\nwAIAAPAYAQsAAMBjBCwAAACPEbAAAAA8RsACAADwGAELAADAYwQsAAAAjxGwAAAAPEbAAgAA\n8BgBCwAAwGMELAAAAI8RsAAAADxGwAIAAPAYAQsAAMBjBCwAAACPEbAAAAA8RsACAADwGAEL\nAADAYwQsAAAAjxGwAAAAPEbAAgAA8BgBCwAAwGMELAAAAI8RsAAAADxGwAIAAPAYAQsAAMBj\nBCwAAACPEbAAAAA8RsACAADwGAELAADAYwQsAAAAjxGwAAAAPEbAgnvbi3RhrwQAALmPgAX3\ntipd2CsBAEDu43IJ9whYAAC4wuUS7hGwAABwhcsl3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCA\nK1wu4R4BCwAAV7hcwj0CFgAArnC5hHsELAAAXOFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA\n4AqXS7hHwAIAwBUul3CPgAUAgCtcLuEeAQsAAFe4XMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgA\nALjC5RLuEbAAAHCFyyXcI2ABAOAKl0u4R8ACAMAVLpdwzwxYTwEAghP2mR+VRMCCewQsAAha\n2Gd+VBIBC+4RsAAgaGGf+VFJBKxq4t8ia5ynXCvydXyG9PN5gIAFAEHz7ZQOfxGwqgkCFgDU\nSonn4f9ccnTDfU7s/kbKCbpsVrsj9qzf4qybv7ZGvPKv5vUO67suPsfDqu5bvl0fkIKAlUvu\nlVnpJqUPTnf167deI2ABQM1kPwtv76Esg5LOzx+eGJ3SYIw54vG66pxuR6nDN0Tn+L65uta3\nywNSEbBySUllAlbiDAQsAKhRbCfh3W2U2rvH2NvOz1PqroTT85rmSjXsVDq63+H6aXqSPuKX\nfdTtmrbzL+rS6CzF6uhtvl0ekIqAlUO2FxKwAAAJbCfh8Uqd/q0xMLuuarzZfnr+p1Jnfm8M\n7OyhVPOdmjZVNd2hP52jGm6NzDFP5b3i29UBDghYOWSVELAAAAls5+D9VfP1kcGrL7zKfq7/\nNk81+ikyuOMgpZZqWk91gfFsnVKvmqM3HaR6+3ZxgJMaGLB2v3xbz6KWxf0mrI6N+mLilcWt\nug2eHcn7pSLPxiZdL/KSwzyaNkgKyrdN6txqhuNUB3q02a2tKO3epufdxj8Yq4b3aNVp6Mo0\n62DN/vnY7oVFfadsMkZMl4hS48n2hUO7ty3sNGjGpvjs2dzknrJ0561IqSuHyrMhYAFA0OLn\n4BlK3ep8IXi/80VXR4fbKjVT0861Phusr6aajz3UoRkuYPBBzQtYP5ZI1AORMbvGR0d0XGo8\nf0nkhujcm1pK0TaHeczktX2I/nyy41QHem77dZo11xrt8chQwX+c18GcfdvClpFxFxv/ktgD\n1qfdY7NbES3LgJWydMd1SKmr1MpLQMACgKDFz8FFSn2e9hoUI0ot0rTT1JXms6bqbuPhxTy1\nsOKXwks1L2ANEhnw1IqVS8YXiUSOy5EiXR9fsXrZ2JbScpn+fFuRFEaD/NMiY5zm0bSbRF6Q\n1oOun+M41cFQkaflukXL5l2ih6TXZODCZc/qcaVzmeM6mLMvlp6zXl86rZ2I8T/J5rUPijy4\ndu1PeuzrZGzE8pWL+ou0+8GcPcuAlbJ0x3VIqavUyktAwAKAoMXPwYeqQ/S/P/53aaaYta6x\navyLpp1ufSK4l7rHOHsfqbpkeA38UOMC1hciJTvNoa/aSddyzXzDql8kTy1vKd2Mt6vuEHnO\nmn2wyDuO82jDRK4aEPlI22GqA/0FxdOMgXWtpaDzKKPobd0ji0+z/OJh5pq+J9JyizEwK3oP\n1nSRweak8hF65jJHZRmwHJaeug4pdZVaeYkIWAAQtNgp+GelztNePDtPPxH/ZuT2NJeiFb9X\napT+eL7qZDzdWUc9rD8MUC1+1D4ZeNYZHealeR08V+MC1hKRh6zBRY8uMr5D0VsKvrLGjBV5\nQX9YLnJjZMSPBXJxueM82i0irazP1hymOtBfcPluc6hUpMjMNNpkkTlplqDP3sn6bkdfkfeM\nx1jAml1aYr1R9qEeecyBLAOWw9JT1yGlrlIrL+K/t0YMPew3BCwACFTsVPyOUh3G1rF6u/rf\njSlXg0+uKul0rFKNxhpP+qjTjYf3lVquacvqqFnaMw3MF3Kre1BqXMBaJjIsYcQ3IrGu1VaK\n3KY/lHWOfkY4T2SK8zxGRBmedglO9BdMjwxNEhkZGXpOZFr65d9vjRolYt4UNSv1W4RbRCJv\n62YfsJKW7rAOKXWVMsIy+9SoUwhYABCo2Kl4iVIn1T186urta+7cR6mClFP1IiM/NRkUSV4z\nVb7xHsEo1WyHtuME1Ur7eX/V8qutE/LUfOdrCbxW4wLW5jYio7+wjVgkMj46/KvIZcbjBJFF\n5oirRb5MM48eUeanX4ID/QXW206PxILSkkjOSbN86wZ4bbzIYuMxKWCVbd2yZaNIsfkk+4CV\ntHSHdUipq5QRFgIWAIQldip+Ws9Px/5oDq5qpNRLyafqRZH3to4z/9ffcYhqvVV7t7nR5Xup\n2metNlE1/lkf30Gd63wtgddqXMDSFhWISK/x//nZej5DErQyxn1odYaw3voAzmkePaIsSb8E\nB/oL3o8MTRd5JjK0VGRS+uVH+3CYYH1qaAtYK8f26VgQmbuyAStp6U7rkFxXqSMiCFgAEJbY\nqdgIWNbFRc9Mqnvq9WDX2qWDGis10DyfN1AND89TJ23R3quvHtS0NpH3vB5T+elu34K3al7A\n0t69JtJBwpAl5l3akxODhewyRvaUwl/0h9ki89LNo0eUdyMLdFxCKv0FH0WGpsduorcCVprl\nW3ksNWBtu802c2UDVtLSHbciqa4cRpg+nx3x2L77ErAAIFCxU/ErSu1RZg2/p9TRzteEj1so\ntcAYeKuwef2jBm3Syk5X5+tPj438fOHbSv3X+YXwWA0MWPrh9fAA892fa4wuNh8UGbPSxrwP\n/ZFI6OgvhWYvnE7zxCOK4xJSZQhYmZefGrBuF2n32OqNekPa4VnASrMVCXXlOMKGbxECQNBi\np+CVSh0cHd6pVGPna4I2TUU6cY+6QzU2Lgv7mV8u1L42e8lCAGpkwNJtXjqqUGSIZn40Njll\n8jciQzVtrfk3zTzxiOK4hFQZAlbm5acErDUiba00tc2zgJV+K+J1lW5EFAELAIIWOwVvq6Oa\nxJ7UVQ2cT+nat0o1tT1d3TDS1aj1sF6pOWleCG/V1ICl+7KLyCpNe9nxm3EDpHCL0dt65DYr\np3niEcV5CSkyBKzMy08JWHNExlqT1ngWsDJuhVVXGUaYCFgAELT4Ofi3Sn1tDW6wvZulWzRy\n4GvR4Y3Knr3Kz1Z/MT+xaKbuMB6+VupZDUGowQHLeM9mgfk2VfvUu6bmGtmqnxRH+npymice\nUZyXkCJDwMq8/JSANVnkyfg2eBSwMm9FpK4yjTAQsAAgaPFz8AClxlmDc5X6p+3s3FepXtHh\nN5X6TXzKRNUgcmk6Ul1nPLxjdoyFANS0gFU+7cZR0eE5Is/rDyXx33ZeedkkK6X8VCBjvhO5\n25rgMI8tojguIUWGgFXB8m0By/xp6YcivWfpfuwoUmQOVTlgpa5DSl05VF4iAhYABC1+Dn5L\nqcOsLqTPU+pe29l5gVJNo11J91KqY2zCN02U1XmjKPNqMkPV3ep8MYHHalrAMn77ZnFkaHs/\nEeN4e0mk+FNzzLqeIqut+a6XznOtLs6d57FFFOclJMsUsDIvPxqBFlo/jLhEpLf5TZENV5Z0\nEjG+7+hBwEpdh5S6Sq28RAQsAAia7STcSql/GZeE8huUam5eG/r36fON/lB2nFJ/WmeMKL8r\nT6nFsVeI+oP12cVdqrnRP0MX9Tfnawm8VuMC1qqWIjc+vWzla49cKjLCHDVCpPWENz94dVI7\nkei7q9oLIpfIpbG+CFLnsUUU5yUkyxSwMi8/GoHeEWn18OKZ5ds6ilz31pfvTmnX+otBIveu\n2eBFwEpdh5S6cqi8BAQsAAia7ST8zaFKHfrvicP+oFRe5E6SBkq9bTwu21OphsXDRvY/Rj9N\nd4u9YLrKf9sa/KGJGrBbez5fzUx3FYO3alzA0pYUxbp6Gh7pTa1snNVlpxRMinWxsLWN/vzh\n2KtS57EHLMclJMsYsDIuPxqBdvc25yjTlrWyusB6T1tgPE71JGClrkNKXaVWXgICFgAEzX4W\n/vgk66cI95oRGRENWNobR1hTVF6/ndHZN+yn4l8If7SOOkCPXx3SXcTgsZoXsLSNs667uHXL\n9v3ujeUj7bOJfdsXtu9/vz2ijNBDxDe258nz2AOW8xKSZAxYGZcfi0Df39a59cWl5frMo7oV\ntu03Y5OeiqZ1b335Ek8ClsNWpNSVQ+XZELAAIGgJp+Gdk/9xcP1mp9243noeC1jazqltDm+c\n3/xP13wUn7ujOtb2v/KL5zfZ4+R7yjQEowYGLPiGgAUAQQv7zI9KImDBPQIWAAQt7DM/KomA\nBfcIWAAQtLDP/KgkAhbcI2ABQNDCPvOjkghYlbB1Q4qfanK58RUwAlagJQIAUC1xuayE6ZKi\nS00uN4aABQCAK1wuK4GABQAAMuFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hHwAIA\nwBUul3CPgAUAgCtcLuEeAQsAAFe4XMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgAALjC5RLuEbAA\nAHCFyyXcI2ABAOAKl0u4R8ACAMAVLpdwj4AFAIArXC7hHgELAABXuFzCPQIWAACucLmEewQs\nAABc4XIJ9whYAAC4wuUS7hGwAABwhcsl3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCAK1wu4R4B\nCwAAV7hcwj0CFgAArnC5hHsELAAAXOFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hH\nwAIAwBUul3DPDFhPATCF3SAB5DICFtwjYAE2YTdIALmMgAX3CFiATdgNEkAuI2BVW9eKfB3k\n6zQCFpCgku0IQK1AwKq2CFhAuOyNo2xWuyP2rN/irJuTW9czyuZcc9Qr/2pe77C+6+LzPKzq\nvlXJRgkgVxGwqq27+vVbH+TrNAIWkMDWNj48MZqhGoxJbDWPpQSsx+uqc7odpQ7fEJ3l++bq\n2kq2SQA5i4AF9whYgE28aaxprlTDTqWj+x2uN5FJCa3mPqUKSqOm6SN+2Ufdrmk7/6Iujc5S\nrI7eFlQjBhAUAhbcI2ABNvGm8U+lzvzeGNjZQ6nmO+2tZrhSMxKa0VTVdIf+MEc13BoZMU/l\nveJvywUQAgIW3CNgATaxlvFtnmr0U2Rwx0FKLbW3mkFKPZvQjHqqC4yHdUq9aj7fdJDq7Wu7\nBRAKAlZO+7fIbm1Fafc2Pe/+Vn+6aniPVp2GroxMi92s/v3kK4qKS2Zv1WaJvGSMGCQF5dsm\ndW5l/t+8feHQ7m0LOw2asUlLeJ256M/Hdi8s6jtlU6zALyZeWdyq2+DZmx1Xh4AF2MRaxvud\nL7o6OtxWqZn2VnO5Um8kNKNzrc8G66up5mMPdahzewNQrRGwclqpyK/TxNRxjfZ4ZKjgP+a0\naMB6s11k9OXfPihi/kt8vcj2IfqYyfrwp93F0jExmOmL3rawZWTSxdZd77vGx2ZemrIuGgEL\nSODYaEWpRfbnxUp9lDDDaepK87Gputt4eDFPLcz+1AAg5xGwctpQkaflukXL5l0iUvqaDFy4\n7NkSkc5lxjQrKH3VRuSqlz5+c6T0vkfkTWPKTSIvSOtB18/RtE2dRAY8tXzlov4i7X7QbK/T\nF71Yes56fek0PaDdGilupEjXx1esXja2pbRc5rA6BCzAxqnNrmusGv9iH3GBUusS5jjd+kRw\nL3WP0aiOVF0qfYIAkMMIWDltmEix8b0jbV1rKeg8qlwf2tZd5B1jlBWURogM3W08f17aWAFL\nf9VVAyJ3hEwXGWzecVuuz/egZnudsehh5qT3RFpuMQZeEukX+axieUvp5vC1JgIWYOPQZFf8\nXqlRCWPOUGrz1Ita1NvnlMFfmiPOV52Mh5111MP6wwDV4kftk4FnndFhXuVOEgByFAErp90i\ncrmZnoxP9IrMFKRNFpljPEaC0jY9eX0XmXmkWAFLf1Ur60O/2aUl1ltRH4qUaPHXGTN1sr7E\n1FfkPeOxtxR8ZRU8VuSF+Go8VxAhJxxPwAKiElvrJ1eVdDpWqUZjE0cfo+oca/WCVX+0MaKP\nOt14eF+p5Zq2rI6apT3TwJzMre5AjULAyml6CpoeGZokMjIy9JyI+aZWJCi9LTLAmvlTW8Aa\nnrKoLSKRTyLiAet+a9IoEeOWq29EYr0drhS5Lf7a2adGnULAAqISm9giIyQ1GbQxqeW10Mc2\n6zp8TO8D9QGjYc5U+cb/P6NUsx3ajhNUK+3n/VXLr7ZOyFPzszw/AMhlBKycpqcg6w2oR0Rm\nRYaWWMkoEpQWiIyLzt05HrASz9RlW7ds2ShSrMVfZ8z0H2vyeJHF+sMikfHRV/wqcln89QQs\nwEFia10UeZvquOmJoxsoVWLelPVrD6XqfKhpOw5Rrbdq7zZXgzStVO2zVpuoGv+sT+9g/ZAO\ngJqBgJXT9BT0fmRousgzkaGlImZP0ZGgNE0k1ovh9fGAtSS2iJVj+3QsiHw1MDlgWV8r1CZE\nPg+cIQlaxVeDgAU4SG6vu9YuHdRYqYEJIzdu/NkaKj9HKeP/lkUNVMPD89RJW7T36qsHNa2N\nKjAmP6byt1fuPAEgFxGwcpqegqxveOsB67nIUGLAmiQyNzr37fGA9a41attttsiUHLCs7BYN\nWJMTA5bsiq3Gxg8i/tuwIQELiHJqsx+3UGpBmvb8vFKHGY9vFTavf9SgTVrZ6ep8/emxxntZ\nmva2Uv/N6vQAIKcRsHJaxQFrgu3jwFHxgBXNTnrmavfY6o1lmrajwoD1oMiYlTa7U1aHbxEC\nNo6NdpqK9NTu4Fel6pTZnt+hGq/RH/aLfO/w66QOtABUbwSsnFZxwJoSuzfL/KZhUsBaI9J2\nTWRwW4UBa0aka9IMCFiAjWMr+VappmkaUHkdpWzdn6xuGOlq1HpYr9SczA0QQHVCwMppFQes\n2dYzQ/eUgDVHJPqd8TUVBqyXRYZlXh0CFmATaxmLRg58LTq8UakGaRqQHqEaxZ+Vn63+Yr5N\n3EzdYTx8nfyjhQCqNQJWTqs4YL0mcp0181eSErAmizxpTZ1RYcBaK9I+ft+VEwIWYBNrGX2V\n6hUdflOp39gazdyeFzwaHX5Mqb/Gp0xUDSKt+0hltuF3zI6xANQUBKycVnHA+lGktfVLsWNT\nA9ZDVp9Z+nwdRYq0+OscApZWIhL9D3rlZZPWpK4OAQuwibWMBUo1jXbS20upjrZGc79Sx1tf\nDtx5ilIjYxO+aaKsvuZEmU1zhqq71c1ZAUD1QMDKaRUHLO2qaEdYrxS0TwlYS0R6mzfVbriy\npJPIL7bXOQSsl0SKPzXHrOspsjp1dQhYgE2sZZQdp9SfzF8cLL8rTymjWzmtf58+3+gPW5or\nVbzJGPFLsVL7/hx7jag/WG8Y36WaGxGsi/pbpc4SAHITASunuQhYb4nILW+sXnFnweAxKQFr\nW0eR69768t0p7Vp/MUjk3jUbMgUs43cNW09484NXJ7WzdV9qQ8ACbOJNY9meSjUsHjay/zF6\nE+lmjmqg1NvG45N19FzVZ8ydl++rVP7zsVdMV/lvW4M/NFEDdmvP56uZVTpbAMgtBKyc5iJg\naY9b3YhetTk1YGnLWlldYL1n9PkuMjVjwCobZy1LCialdtJAwAIS2NrGG0dYvzeo8vqZv6Ee\nC1jaE82ikw5+OTb/hv3UkNiTR+uoA/Rk1qGy5wkAuYiAldPcBCxt1YiLC9td80KZdqfIW9ar\notlJ+2xUt8K2/WZs0tPTtO6tL1+SMWDps0/s276wff/7HW7A0ghYQAJ749g5tc3hjfOb/+ka\nq8XGA5b24+jzD2iw56EFk2wdtXdUx9qevXh+kz1OvsfeRRaAao+AVYPcKvKhrwUQsAAbX1sb\ngGqOgFWD9BLZ4GsBBCzAxtfWBqCaI2BVdwtGllgf9X0p0t3fsghYgI2/zQ1A9UbAqu4mi1xt\n/vrGtmtFpvtbFgELsPG3uQGo3ghY1d3GziI9n1z+9pzL9Eef+yk0A5a/RQAAUBNwuaz2Putu\nda0gvdf6XBQBCwAAV7hcVn/bF1zfpbBN91sW+/4tbwIWAACucLmEewQsAABc4XIJ9whYAAC4\nwuUS7hGwAABwhcsl3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCAK1wu4R4BCwAAV7hcwj0CFgAA\nrnC5hHsELAAAXOFyCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hHwAIAwBUul3CPgAUA\ngCtcLuEeAQsAAFe4XMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgAALjC5RLuEbAAAHCFyyXcI2AB\nAOAKl0u4R8ACAMAVLpdwj4AFAIArXC7hHgELAABXuFzCPQIWAACucLmEewQsAABc4XIJ9whY\nAAC4wuUS7hGwAABwhcsl3CNgAQDgCpdLuGcGrKcAt8I+YgEgNAQsuEfAQnbCPmIBIDQErFtE\n3g97Ha4V+TpxzGiRN6u2zMzblVxi6ho4IWAhO1U7hgGgGiNgEbCc18AJAQvZsR89yy47bu96\n+/61NPlAe0bZnGuOeuVfzesd1nddfJ6HVd23Kj4+ASCHELACC1j3yqx0k+7q12994pjKB6xo\nMZm3K1piJzlTPAAAIABJREFUdO7UNXBCwEJ2bMdOl2iGavhA4lH1WErAeryuOqfbUerwDdFZ\nvm+urnV3+ANAriBgBRawStIHrFSVD1glrgJWpVaKgIUsxQ6d3efrh87fB43o+Rul8mYnHFX3\nKVVQGjVNH/HLPup2Tdv5F3VpdJZidfS2LI5TAMgBBKygAtb2wkACVqwYV9uV3UoRsJCl2KEz\nTqmGi4yBHW2U+s1u+1E1XKkZCYfZVNV0h/4wRzXcGhkxT+W9ksVhCgC5gIAVVMBaJYEErFgx\nrrYru5UiYCFLsUPnKKUeigxt3E+p1+xH1SClnk04zHqqC4yHdUq9aj7fdJDqncVRCgA5oZYG\nrEFSUL5tUudWM8wg8qH22V0927Tr+9AvsRm+mHhlcatug2dvtp73EYneEDJU5CPj8d8iu7UV\npd3b9Lz7W/3pquE9WnUaujK6gO0Lh3ZvW9hp0IxN5tPpElFqPlt5zxXFhV2ufji6yNgt5usn\nXN6mfd9pP2QOWEnLtm2OrRiH7bJttVmibe7oGux++baeRS2L+01Y7VQwAQvZiR453+apZtG3\nrTooNdV+VF2u1BsJh9m51meD9a35eqhDN2sAUM3U0oB1vcj2IXq0mGwGkU8XFkaSxiXfRybv\nGm9FD+m4NDLGIWCVivw6zZprjfZ4ZKjgP5GZPu0eW4KZuewB69dh0Wmt50Xmjsab5UWR8Z1W\nZQpYycu2bU5iwEreLttWpwlYP5ZEFy0POJRMwEJ2YofOji8/iA7qgWqC/agqVuqjhMPsNHWl\n+dhU3W08vJinFqZrCwCQs2ppwLpJ5AVpPej6OWYQmS09Z72+dEo7kWGRySNFuj6+YvWysS2l\n5TJzjEPA0h+flusWLZt3iR5RXpOBC5c9q8eTzmXGtE2dRAY8tXzlov4i7X7QR2xe+6DIg2vX\n/qRpuweJdHti1WfLx+vx52lzkVa8WddWZMjS1e/N6Nh1aPqAlbJs2+bYinHYLttWmyXa5rbW\nYJCx6BUrl4zXk55DH0YELGTH6QA+X6kX7M8vUGpdwgynW58I7qXuMQ66I1WXNE0BAHJYLQ1Y\nw0SuGvCTOagHkXY3G/fUah8WSEvzo4iXRPpFPpNY3lK6mV9fcghY+jKKje88aetaS0HnUeX6\n0LbuIu8Yo6aLDN5pDJSP0COM+bJZ0dud5opcEfls7w2RInMlrHgzWuQWYzHad50lfcByWLZt\nc2bZ7sFK3i7bbFaJsbkjz78QKTEXrX3VTrqWpxRNwEJ2HI7fb/LVfjvsI85QavPUi1rU2+eU\nwV+aI85XnYyHnXXUw/rDANXiR+2TgWed0WFemhYBALmolgYsPX20Wh8b7Gx9Wam/yMfGY28p\n+MqacayI+d+2Q8DSX3h55LaSUj0obTGHJovMMR5nl5ZE3vnSPtQzizkQzTLll1ohTHebiPmN\n9Ui82dFWCr6LTHg2Q8ByWLZtc+wBK3m7bLM5B6wlItadyNqiRxfFr4I7fo5YV7cuAQtZcDh+\nC5S6M2HEMarOsVYvWPVHm41NnW48vK/Uck1bVkfN0p5pYE7mVncA1UjtDVjD44MPWoOjRYzo\n8o1IrFfDlSK3GY/OAWt6ZMwkkZGRoedEpiWWtEUk8gFHNMt8JnJJ9L2hpSKDjcdIvFkZzUua\n9msrN98ijC3btjn2gJW0XfbZnAPWstiHpIlmnxp1CgELWUg9lgYpdU5ZwpgWenRq1nX4mN4H\n6gPGATpT5Rv/B4xSzXZoO05QrbSf91ctv9o6IU/Nr7BNAECuqL0Ba3588FVrcLzIYv1hkcj4\n6Iy/ilxmPDoHLOudpEdinR0sEbk/XkrZ1i1bNooUm0+iWUbPYCOiM6zTJxphKxJvFoiMiU7p\nW1HASli2bXPsAStpu+yzOQeszW1ERn+RWhgBC5WTfCSV91fqpJ8TxzVQqsT8nuuvPZSq86Gm\n7ThEtd6qvdtcDdK0UrXPWm2iamy8poP1QzoAUB3U3oC1JD64yhqcEPk8cIYkaGVMcg5YVkdT\n00WeiQwtFZkUGVo5tk/HgsgCEgOWnsamRFejXJ9qfIwXiTfTbG9/3ZwpYKUs27Y59oCVtF32\n2ZwDlrbIWGyv8f9JugQSsFA5SUfuz/9S6g/rkkZu3Bg93MrPUcr4f2ZRA9Xw8Dx10hbtvfrq\nQU1rowqMyY+p/O1pGwUA5JjaG7DejQ9GO+S0gsjkxIAlu7R0Acv6drkesJ6LDEUD1rbbbK9P\nDFiTROL9VreJLDYSbybapoxMH7Aclm3bnFkOHY3aAlZ0tjQBS3v3mkhvE0OW2G9xJ2ChchIP\n3c9+p9R5mbq0el6pw4zHtwqb1z9q0Cat7HR1vv70WOO9LE17W6n/ZngxAOSU2huw3k8dtILI\ngyJjVtoYd7JnGbBuF2n32OqNZZq2o6KAZXS0EIk3E2xThqcPWA7Ltm1DBQErOipdwNK0jx8e\nYL47dk20F1MbvkWI7CQcPi83V+qKXWkOa9OvStWx36B1h2q8Rn/YT40ynn2t1KJMrwaAXELA\nSg0iM8yuOBPZAlZpxQFrjUjbNZEx25ID1qPxm8+13XqQMXqBiMSbqbaPCG9IG7Cclu1lwNJt\nXjqqUGRIatkELGTHfvQ8UU/l3+d8UEeV11HK9qvOqxtGuhq1HtYrNSfz6wEgdxCwUoPIyw7f\npesrYnVwoJVUHLDmiIy15l6THLCet76XaFgr0sF4jMSbuSKx76/3SBuwnJbtccDSfdklfgtX\nHAEL2bEdPE/WVXs/53xMx+gRqlH8WfnZ6i9mRyjN1B3Gw9fJP1oIADmMgJUaRPTY0z75g4wB\nItG3jQorDliTRZ60XjgjOWB9IdIten/TSyI3Go+ReLNC5Eprwg8FaQOW07K9D1jGsheklE3A\nQnbix87re6i9lzsd0HN7XvBodPgxpf4anzJRNYi0sCPVdcbDO2bHWABQPRCwHIJIiUj0P+WV\nl00yg9VNIq9ExsyVigPWQ7EP+37sKFJkDs2y7rAqv0zkLWvp11tfP4zEmy2FUvBtZMKM9B2N\nOi07MWDNSLddjgFrRvx5+bQbR0WLmSPyfErZBCxkJ3bobDpM7bnU8YC+X6njrS8H7jxFqZGx\nCd80UdZ7vaLM43yGqrvVuVEAQO4hYDkEkZdEij81x6zrKbLaGNBjzWDz04oPi4orDlhLRHqb\n9+puuLKkk4jZyc/CaC9X+sBlkRvInxfpYt5xYsWdm0VKzZd9XNQybcByWrZtG2LFuApYsbkj\nzwdbHWZp2vZ+ItHe7OMIWMhO7NC5QkXuo7Lp36fPN/rDluZKFZsN4pdipfaN9xAi6g/WG8l3\nqeZGBOui/ubcJgAgBxGwHIKINkKk9YQ3P3h1UjuRceaYLwv0hLVoxZK7CwdOqDhgbesoct1b\nX747pV3rLwaJ3Ltmg6a9I9Lq4cUzy7Xy60W6z/1w9Wt3FEjLFebLrLjzmR6r+i9cvmRcq+53\npQ1YTsu2bUOsGFcBKzZ35PkqfQVufHrZytceudTWHWocAQvZiR45X9RTda8rjTF7422g1NvG\n45N19FzVZ8ydl++rVH78bdPpKv9ta/CHJmrAbu35fDUzTXsGgNxDwHIKWGXjrH48pWBS5OcG\ntcetEX1/mCrynvXCtN00LGtldVP1ntE/u8hUTdvd2xxTpkek4dFerDpat5RE74BaXBgZ3+nD\nKSKvpVl3h2XbtiFWjKuAFZvber6kKNbD1nCHPh0JWMhO9MiZpRKcYYyLBiztiWbR8Qe/HDvW\nNuyn4t9jfbSOOuAYpTqkaRIAkIMIWE4BS9M+m9i3fWH7/vevib3krZu7FLYtmb/NiFrLrRem\nDVjaZ6O6FbbtN2OTHtamdW99udGB+ve3dW59cal5f/uqsb2KWnW9fk70jpLYLeZf3d2jTXGf\nKRu02SLxa02S1GXbtiFWjKuAFZs7+nzjrOsubt2yfb9739ccELCQneiRkzFgaT+OPv+ABnse\nWjDJFuo7qmNtz148v8keJ9+T+BuGAJDTamnAQqUQsJCdsI9YAAgNAQvuEbCQnbCPWAAIDQEL\n7hGwkJ2wj1gACA0BC+4RsJCdsI9YAAgNASuHbd2Q4qdwV8gIWKGuAQAA1QKXyxw2XVJ0CXWF\nCFgAALjC5TKHEbAAAKieuFzCPQIWAACucLmEewQsAABc4XIJ9whYAAC4wuUS7hGwAABwhcsl\n3CNgAQDgCpdLuEfAAgDAFS6XcI+ABQCAK1wu4R4BCwAAV7hcwj0CFgAArnC5hHsELAAAXOFy\nCfcIWAAAuMLlEu4RsAAAcIXLJdwjYAEA4AqXS7hHwAIAwBUul3CPgAUAgCtcLuEeAQsAAFe4\nXMI9AhYAAK5wuYR7BCwAAFzhcgn3CFgAALjC5RLuEbAAAHCFyyXcI2ABAOAKl0u4R8ACAMAV\nLpdwj4AFAIArXC7hHgELAABXuFzCPQIWAACucLmEewQsAABc4XIJ9whYAAC4wuUS7hGwAABw\nhcsl3DMD1lPwRth7EwDgIwIW3CNgeSnsvQkA8BEBC+4RsLwU9t4EAPiIgJWbRou8aTxeK/K1\n8xz/FlkT5BoZCFheCnrvAQACRMDKTWEFrNXj+xQXdrzm4XWOUwlYXkqs25d+o9QzKTX+jLI5\n1xz1yr+a1zusr20HPazqvuXZAQAA8AYBKzdFA9Zd/fqtd57DZcC6V2a5L3XHPWJpNcdpOgHL\nS/aa3TYwTzkFrMdSAtbjddU53Y5Sh2+IzvJ9c3Wt+10MAAgGASs3RQNWei4DVkkWAat8qB6t\nBk+ZPa6r/vicwwwELC/ZKva/xytV3ylg3adUQWnUNH3EL/uo2zVt51/UpdFZitXR21zvYgBA\nQAhYucmrgLW9MIuA9axIG/PDpm1jRTruSJ2BgOWleL3eWU/tcU+xU8AartSMhBFTVVNjx8xR\nDbdGRsxTea+43sMAgKAQsHKTVwFrlWQRsK4QWRgZKrtExOG+HgKWl+L1epI6cZXmGLAGKfVs\nwoie6gLjYZ1Sr5rPNx2kervewQCAwBCwcsr6CZe3ad932g+pN7lvXzi0e9vCToNmbLJm1QPW\nl9qyW7q36jjoqbLYAr6YeGVxq26DZ282n0237qgqdZim2/3ybT2LWhb3m7DafLqpQFpHP2wa\nJzIvdfUIWF6K1+vJfbdpzgHrcqXeSBhxrvXZYH011XzsoQ7dnPIqAEDoCFi5ZHlRJBB1WpUc\nsD7tHr39vOPKyLx6wPrqXmtcyS+RcbvGx+Zaajy3B6zkaZr2Y0l0jDxgjijb8FV0TSaLPJG6\nfgQsL8Xr9R3jj2PA0kd+lDDiNHWl+dhU3W08vJinFmZzhAEAAkLAyiHr2ooMWbr6vRkduw5N\nDFibOokMeGr5ykX9Rdr9YM6sB6yp0mvWa/+Z2FpkaGQBI0W6Pr5i9bKxLaXlMv355rUPijy4\ndu1PDtM0bZCxzBUrl4zXY11yp0y3ibyauoIELC8lVa5jwLpAqcQeM063PhHcS91j7JAjVZcs\nDjAAQGAIWDlktMgt5cbAd50lMWBNFxm803hePkJPTObMesAqHGZ+NvhBocgHxsBLIv0inxct\nbyndzE/7ZkXvwUqd9oVIiblM7at20rU8YU02t5F2W1NXkIDlpaTKdQxYZyi1eepFLertc8rg\nL80R56tOxsPOOuph/WGAavGj9snAs87o4PCBLgAgRASs3LGjrRR8Fxl8NilgzS4tibzrpH2o\nxyJzQA9YxdbdN/eITDAee0tB9DO+sSIvGI+xgJU6bYnIQ9aYRf/P3p1GWVHdfd//MwhKTFDR\nJLdJ1CeaaIYrarJi1nN7JXmMt8mL5N8TNA3NJEFQARmMBkUuiWKAiArIcAMOgCi0EoIjIi0O\nLZogoNigaAQZJAgCMgg2IN37qfGMdbp3Nz2chu/nhVWn9q5du6pZ7t+qqrPPY6XJ3xm8R3Vu\nwscdy31lX/sqAavepPz5IwPWhdLyomAWrDb3uhsGyGXu4l2RFcYsbynzzfNtvWJedQeArELA\nyh7lYXYy5ov8TDO5H1D1Hwo5AWt8sG2l6kBnsVU1NuOk09ZodxkGrIiy5aqjMvSkRPWmLxM+\nL/hZ6KcErHqTctEjA9Y3nOh0Rs8x4/v/L2dljLPhCWntzjw7Ts44bA7/WPLNvq9L7paD01rI\n05n/ZQEAGh0BK3s8G49MZmBUwDp68MCBPapF3gcnYIVf4N+lml9pTKnq1LDqF6r93GUYsCLK\n9ndUvXdjVEfmqF63L3EDAashpFz1yIDVVsT/BsMX14i0XGfM4W9LwUHzTgcZZsxIOX2bmS6n\nun+rrsEP6QAAsgMBK3vMVp0drt+ZGrDKJw4ozvG/8hcLWMH3CU2VU7Dfu++UKN8tCgNWVFmp\n2951U19LylLGHBqr2n9n0iYCVkNI+fNHBqw9e8K/TtVvRNxcXNpW2p3XQi4+YNa0kYeN6Sg5\nbvE8aX2odv/cAAANiYCVPaarxmbtvjs5YFWMTkhHsYD1YVi7k+qn3tQKSdyHfGHAiioz79zs\nrecML0t4xf3TwarDPk/u2WvX+/p973sErHqT8uePDFgJloic6y5X5nVoc8GwveboZXKV8/Ei\n916WMW+LvGX/Tw0A0NAIWNljWkLAGpMcsP6m2nne+j1HjTmcELA+CmsXqu405mHV8eUJKk08\nYEWVOT6YM9S7LXZzOH2pebe76oQjGXrItwjrU8rFrSlgfSHS8mjC53vkVHcq/7NknPvpY5HS\n6vYGADQuAlb2mJXwiPB/kgLWJtVOwe/iVCQErPeCyu4jwgPeY8CHUttMeESYVubbv2xcnurw\n4NM/8zVnYcYeErDqU8rFrSlgVbUUSfhV5/Xt/KlGg8UOkcx/NwBAoyNgZY8nVe8L169JClgL\nVScGBZsSAlb4I7+7VQurjHkl4muBYcCKKovZ3EN1rbf2zzzt9K+M9QhY9Srl4tYUsJwI9ZX4\np6or5HLvNuQZco+7+Dj1RwsBAE2KgJU9VqneEKzuykkKWA+p/iMoKUkIWA/GdxzqLLapdvnS\nJAsDVlRZnNPos+7y/Y5a+F7GWgSs+pVycaMC1pN9f/dYuD5P5L/jJdOlrf8bOufLbe5itTcx\nFgAgWxCwsseBPM35j79akjzR6COxh4e7i1ULvTUnYF0dvCs1RXWmuxwcn7mhvN8M75ni/PC9\nrrSyqtm3jwuPvFB1ibM42Efz36muhwSs+pRycaMC1gMiPwq+HHjkpyJ3xwq2tpfR/pqK9++h\nRFpFTL0PAGgqBKwscqfqSO815g8Kc5MCVplqf69g5w2Du6l63/G7NfYbzRsKNMd73/1l1SL/\nm4Xb+6qud1cWhXNrpZfdorrUP+6hQaruNO9T4zfKohGw6lPKxU0KWEMGDNjqLA50ECnyvoDw\nuVN8ZnxCDZVLgxuSE6SDG8F6yK/s/pEBABoFASuLbHBi1ZBFK8om5/eekBSwKopVb1u5+Z2Z\nnQs2DlOdsmmnVzJNR5Z9uG5+UWyC0rGqBdPefO/1GZ1VJ3tbVqvmz1n6RFVE2VrnaLc/t7z8\njUf7qI51NuzI05xH5sZEzAxOwKpPscv62kjXj0S6uUv3R5zdCUbfdpf/aOnkqgHj77v2TJHW\nS2J7zJXWbweru9rL0EqzpLU8Uc//GgEAx4KAlU2W5vmzVHVbN1P1DXdLME3D8vxgCqw17nzv\nqrOMuUl1z/hgVqvhwWOko5ODuUg1Z4Y/EUNlf+/j0aiyssLYtFhj3AaWJU+V1Te9fwSs+hS7\nrGMk0YXupjBgmb+fEW7/1iuxHXaeJcNjHx5rKd+8UKRr/f0zBAAcOwJWVtly/zUdiwbM3GkW\nqHrjaTiT+4ZxvfI6DSrZ6wSl2b0Lri0z5gZ3ttA37uydX3zrC/F5QjdMH9glr8uQBzaFGz4d\n3b3g6pFVkWV75t92dUFul0FT3vU+ErAaV+yyVhewzO57r/pm21O+kzMjYaL2Yrko4dNLV7U/\n+ZJJiVNkAQCaHAEL9ghY9amp/5oAgAZEwII9AlZ9auq/JgCgARGwYI+AVZ+a+q8JAGhABCzY\nI2DVp6b+awIAGhABC/a8gNXUnQAAIPsxXMIeAQsAACsMl7BHwAIAwArDJewRsAAAsMJwCXsE\nLAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgELAAArDJewR8AC\nAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewRsAAAsMJwCXsELAAA\nrDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgELAAArDJewR8ACAMAK\nwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewRsAAAsMJwCXsELAAArDBc\nwh4BCwAAKwyXsEfAAgDACsMl7HkB65kTR1NfbwBAs0XAgj0CFgAAVghYsEfAAgDACgGrYf1Z\n9ePokltVN2Xa69WbO+d1Kw93rq6mSalUfd0aulQjAhYAAFYIWA2rTgFrsbr+ScBqasln//I5\nIs9HX5jkolf/0OGkcwdujxfPkVYr63jJAQDNEwGrHk3R+ambJgwatCO6cjVRqL/qrUuX7Qh3\nrj40JVeqpm7Yu8xdqtGJHLAqbmwhGQJWStHjreQ3vS6Q83aGGz7tIH+u4xUHADRTBKx6NDg9\nYGWWOQpV5Wv+Aaua6ZWqqVur3kU7gQPWWz8SaRMdsFKKPj9d/mbMkculT1ihSL5XcayXHgDQ\nvBCw6s+hvPoJWBWqve1qplfKXLd2vYt24gas+06SkycVRQas1KJZctphZ7FQ2h30NzwlLV49\n1isPAGhmCFj1Z63WW8DqY1czvVLmurXrXbQTN2BdLP+11kQHrNSivvI7d7Fd5HXv896zpf+x\nXngAQHNDwKqzQ4vu6N0pr9uwkr3ex7nqG2nMMM2pqpjRPb8k4Y3ylNqZo9CsoJ2kl9w3m+V3\n9c4vHvbMUb9S+hFSA1bm3sVfci+fdH1RXo+b5oQvCzk7V5qPJvbOKxw4c6+JcOIGrEsGVpgM\nASu16Mrg2WAbmeUtr5Hv7M/0bwgAcLwiYNXVh73DJFRc7n5OiDAjVA8Nd1YfiqeZ1Nq1DFhb\npgQbB3/uVUo/QkrAqqZ3YZe+GBVWKXjKP/RI1YpFuf62q6NehD9xA9Zq9z/RASu16Odyg7c8\nTe53Fy+1kEU1/FMCABx/CFh1tLeb6tBnVpSXDlHtvMvZsH/bw6oPb9v2mTF/UX1RC4aNWBhL\nM2m1Mwes/ds2OvFm27ZtFQnZaZZeN/+N16YXqN7hVUo/QnLAqq53wQ6Vw1R7/X3thhVT81Sf\n81q9Q3Wp9p3/z2WzO6v+NaJvJ27A8kQHrNSiy4Ingl+VSe4lO196WPxzAgAcZwhYdTRX9ZYj\n7krVWCe5eJvmh285jVL909DPvNUgzUTUtngHK56d8kZ5zwbfc7LQe9FHSA5Y1fUu2OFJ1ev9\n54D/Ui38LGi1aJS32xrV3MQvMgYIWBYB6yrp5i6OtJQ5zmKofGO3+feNv/5F16cy7AoAOB4R\nsOpowcjBy/21daqDvZVYhLlLNT94whakmYjatQpYRcFbPJNUp0UfITlgVdc7f4eqPqqrgwOO\nVl0QtNot+ObbQNU18R6tvd9377e+RcCKlFA0QC5zF++KrDBmeUuZb55v6wZTXnUHgBMJAeuY\nHVD1HwIlBqwxQWHatOmx2rUKWOODopWqA6OPkOlbhOm983fYoPrHqqDOMtVbglYfCDaNU10W\nb2TBz0I/JWBFSih6Qlq72XecnHHYHP6x5Jt9X5fcLQentZCnM+wMADj+ELCOydGDBw7sUS3y\nPiQGrHAsTQpYSbVrFbAWB0W7VPMrI48QFbCie+fv8ILq2LDedqdOld/qa8GmqapL4z0iYHns\nAtbhb0vBQfNOBxlmzEg5fZuZLqfuc7Z3lSsz7AwAOP4QsOqsfOKA4hz/K3fpAassqBQLWGm1\naxWwgm8emiqnif2RR0gNWJl75+/wqOrM8IBVTqWDfqvhgaapvhjvEQHLYxewTGlbaXdeC7n4\ngFnTRh42pqPkuJvnSetDGfYGABx3CFh1VDFa49ID1jtBtSD+RNSuVcD6MCzrpPpp5BGSA1Z1\nvfN3mKFaEjtiR9WdfqvvBluSAxbvYHksA5ZZmdehzQXD9pqjl8lVzseL3HtZxrwt8laGvQEA\nxx0CVh39TbXzvPV7jhpzOCpghUEliD8RtWsVsD4KywrTolBkwKqud9EBa5epJmCF+BahVcAK\n3SOnun+Ms2Sc++ljkdIMewMAjjsErLrZpNopyEcVNQesqNq1CljvBUXuI8IDUUdIDljV9s7f\n4bFw+gZHpapWGAJWmpTTr2XAWt/On2o0WOwQWZhhbwDAcYeAVTcLVScGq5tqDlhRtWsVsMIf\nC96tWlgVdYTkgFVt7/wdlqiODg+4TbVrSr8JWK6U069dwKq6Qi53v5BgzpB73MXHIovT9gMA\nHKcIWHXzkOo/gtWSmgNWVO1aBawHg6JVqkMjj5AcsKrtnb/DRtVe4TQNL6ventIqAcuVcvq1\nC1jTpe373sr5cpu7WO1NjAUAODEQsOrmEdXZ/truYtVCb21++FpTWvyJql2rgHX1Eb9oSvDd\nvxoCVrW9CyYa7ae6MmhihOrzKa0SsFwpp1+rgLW1vQS3CFW8v0CJtDqYYW8AwHGHgFU3Zar9\nvV+v2XnD4G6q3k8wLwonBE2LP1G1axWwgltYGwo056PIIyQHrGp7F+zgfO7n/1TOEtUeFSmt\nErBcKaeflKKGDBiwNUORR+XSL/21CdLBnZ+hh/wq+u8NADgOEbDqpqJY9baVm9+Z2blg4zDV\nKZt2GrNaNX/O0ieq0uNPVG37gOUspunIsg/XzS/KGOGSA1a1vQt2qBqh2vvJdevfuCdHc1el\ntkrAcsVO/LWRrh+JdHOX7o84m7Yib2cocs2V1m8Hq7vay9BKs6S1PFGbf2EAgGaNgFVHy/OD\nSaawRcvfAAAgAElEQVTWmGfd5SxjKvt7W45GxJ+I2vYB6ybVPeODOa2G+3NV1jRNQ3W9C+c+\nrRgTTpRVHLwbRMBKETvxMZLoQndTGLAiihw7z5Lhsb0faynfvFCkq+U/LQDAcYCAVVcbxvXK\n6zSoZK8xR2f3LrjWnVj909HdC64eGXEHK6q2fcC6QfVL88advfOLb30heC+9poBVXe/iv96z\nduJ1hfk9RywMXw0iYKWInXitA1axXJQwbftLV7U/+ZJJR6v/BwUAOJ4QsGDvhA1YAADUDgEL\n9ghYAABYIWDBHgELAAArBCzYI2ABAGCFgNWUDu5M81lT96k6XsBq6k4AAJD9GC6b0lxN06Op\n+1QdAhYAAFYYLpsSAQsAgOMSwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArD\nJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzC\nHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewR\nsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgEL\nAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJex5AeuZ\nBtbUJwkAwLEjYMEeAQsAACsELNgjYAEAYIWAdeK6VXVT7fYgYAEAYIWAdeJqBgHr/UE/Oa3N\n2TrraIYOfXCKyPP+6qt/6HDSuQO3x8vmSKuVtTs9AADqCwHreDRF51vUyv6AdVcr8V38n8j+\nVP5vCQPW463kN70ukPN2hmWfdpA/1+7sAACoNwSs49Hg4yNg3S3S4vdjJw89W+T7B6L6c6+E\nAevz0+Vvxhy5XPqEZUXyvYranR0AAPWGgHUcOpR3XASs9SdL21J3Zf9vRW6K6M6/T5FvBgFr\nlpx22FkslHYH/bKnpMWrtTs5AADqDwHrOLRWj4uA1V/cu1Ku3V+TU/an9abycvn28CBg9ZXf\nuYvtIq97ZXvPlv61OzcAAOoRAes4UPnK6L6FuUWDpq13P81V30hjhmlOVcWM7vklXrXySdcX\n5fW4aU74mlI8YM1UvcF/Brdx+g1F+b1uWZAeZ1yNGrCOdJCvfB6sDxZ5OK0394o8PioIWFcG\nzwbbyCxveY18J/oUAABoDASs5m/3YA09aJIC1gjVQ8Od1YeczV+MCisVPOXvFwtYz6r2/cxd\n+XJqWKd4WdSRGjVgLRP/rpTreZFOqZ359ymSb8KA9XO5wdt4mtzvLl5qIYvq4coCAFBHBKzm\nb5jq0GdWlZdNLVR14sn+bQ+rPrxtmxOZ/qL6ohYMG7HQmEqnVq+/r92wYmqe6nPefmHAeiNH\ne/rTG9yt2vPxVeuXT8zV3OURR2rUgDVJ5LZwfZfId1P6UvnfcvonsYB1WfBE8Ksyye3n+dKj\n/q4vAAC1RsBq9jaqDj7irW3prD2rnOX88B2sUap/GurdmzJPql6/11v7l2qhty0IWOs6alf/\nTtbLqoP8B2srcrVXxHfwGjVgDRWZETvyqdIqZS6s+0QeMbGAdZV0cxdHWsocb9dv7Db/vvHX\nv+j61LFdWwAA6oaA1eyVqT4SrJY+Vup+ly4WsO5Szd/hrVX1UV0d1BqtusBd+gFra7EWrvML\n+mvOlqDORNUX44d47Xpfv+99r/ECVneRhbEefFdkR9JZ//sU+b2JB6wBcpm7eFdkhTHLW8p8\n83xbbwYtXnUHADQFAlazt1x1VPKWxIA1xt+0QfWPVUHxMtVb3KUXsPZco/mr/O1bVWNTc5ar\njo43uOBnoZ82XsDKi03S7vihyEeJp1j539J+q4kHrCektRvAxskZh83hH0u+2fd1yd1ycFoL\nefoYLi0AAHVEwGr29ndUvXdj4pbEgBXkixdUx4bF21WL3LDlBqyKIZrzWrC9VHVqWOcL1X7x\nBpskYP1BZGmsB5eKfJB4iuNF3Df3YwHr8Lel4KB5p4MMM2aknL7NTJdT9znbu8qVdb+yAADU\nFQGr+SvNUdXrpr62L9yQGLDK/E2Pqs4Mi6uc6u50nE7A2jAyeFzoKtEk+fEjNP0drB8k38H6\nsJ381lsJA5YpbSvtzmshFx8wa9q4Uzp0lBx38zxpfeiYLzAAALVFwDoOvHOzl4hyhpf5TwET\nA9Y7fpUZqiWx+h1V3bmwnIA1zNltRPjo8KHkgKVfxnbYsdxX9rWvNl7A6iHyj1gPzhXZFT/h\nql/KVzd7a7GAZVbmdWhzwbC95uhlcpXz8SL3XpYxb4u8VS/XGACA2iBgHRc+mDPUvY2lN3tf\nFEwMWO/6FVIDlptWbnX3KFR9PNj8sOr48gSVaYdp1G8R3iwSe2JZ1VZOSujOBJEH/bVRibe5\nPPfIqe53Is+Sce6nj0VK63ZJAQA4BgSs48X+ZePyVIe7qxEB6zHV2FTolU6ucudgcAJWzhMf\nFWjee/72En9G0mo0asCaLnJzuL5Z5KJ4Nz5uJ9+f7+sictv8+eviZevb+VONBosdiV9FBACg\nsRCwjiObe6iuNZEBa0nCtwK3qXZ1l07AKjXmadU/+r9I80ra1xFTNWrAWiXyy3B9nkjPeDde\nkxTxblddIZd7t7rOkHvcxccii+tyKQEAOCYErONJieqzJjJgbVTtFb5r9bLq7e4ymGj0zjB7\nOcGry5emOo0asKrOkTbhzyYWJ92IqiZgTZe273sr5/vTwK/2JsYCAKCREbCau6rZt48L1xeq\nLjFewPJfuIoHrKp+qiuDWiNUvfeWgoC1r2f42zmDVcPbPeX9ZmxKP1ajBiwzXGS4v7bhJDnz\nSOTZp7yDtbW9BDfqVArdRYm0Omh5IQEAqD8ErGbvFtVgvqhDg1TdqdgXqY73NsQDlrutn/9T\nOUtUe3g/gxP+FuHqHO240V15WbXoQ6/O9r6q69MP1bgBa8dp0sqbQ+KTS8X7iUFjhgwYsDWp\nRykBS+XS4B7cBOngzs/QQ35Vh0sKAMAxImA1e2tzVW9/bnn5G4/2CWYTXa2aP2fpE1WJAatq\nhGrvJ9etf+OeHM31p24PA5aZpXq9N1vUWNWCaW++9/qMzqqTIw7VuAHLPNJC5Ld/HX/tGSJX\n+N8hbCvydlKPkgPWXGkdFu9qL0MrzZLW8sQxXl4AAOqAgNX8lRXGpq4a4+Wkyv7eh6OJActU\njAkrFQdvJcUC1tE/qU70VibnBHVyZqRP0tDoAcvMOCV4yer3B/wN1QesnWeFzxQdj7WUb14o\n0rXu1xUAgDojYB0H9sy/7eqC3C6DpoRp6tPR3QuuHpl0B8uxduJ1hfk9RywMX0qKBSzzSWfV\nV721DdMHdsnrMuSBiBewTOMHLLPppp+0b3tul2fDz9UHrGK5KGHa9peuan/yJZOO1uZCAgBQ\nTwhYsNfoAQsAgOaJgAV7BCwAAKwQsGCPgAUAgBUCFuwRsAAAsELAgj0vYDV1JwAAyH4Ml7BH\nwAIAwArDJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQs\nAACsMFzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIA\nwArDJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACs\nMFzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArD\nJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJe17AeqYumrrn\nAAA0KgIW7BGwAACwQsCCPQIWAABWCFjH6M+qHzuLW1U31WX3e1XftK376s2d87qV1+UoSYIe\n1wUBCwAAKwSsY9R4AWuxuv5Zl6MkafqA9f6gn5zW5myddTT9CMv7/eBrJ5353yPDHr76hw4n\nnTtwe7zCHGm1so69BwCg0RCw6miKzveWEwYN2mEaJWD1V7116bIddTmKJ6XHdVE/AeuuVuK7\n+D+p7fcISqTdg96Gx1vJb3pdIOftDGt82kH+XMfOAwDQeAhYdTQ4iCuBhg9YVfmaf6Auhwil\n9Lgu6iVg3S3S4vdjJw89W+T7ySdUeZXT/P83bGzfc5wqC5wNn58ufzPmyOXSJ6xSJN+rONaz\nAACgwRGw6uZQXmMHrArV3nU5Qii1x3VRHwFr/cnSttRd2f9bkZuSmp8s0s4rOtxR5JxKY2bJ\naYedjwul3UG/xlPS4tVjPQkAABoeAatu1moTBKw+NdfKLLXHdVEfAau/uHelXLu/JqfsT2z+\nApFH/LU9Z4m8YUxf+Z37abvI697mvWdL/2M9BwAAGsEJG7A2Tr+hKL/XLQvCEX6Y5lRVzOie\nXxJZ6lgz6drCTtdO3uCuz1XfyIiX3CN2Tbdj2rUduwycvSsIWCNUX4iVjVF93llUvjK6b2Fu\n0aBp692Ns4Ij6j/NANXwlaQ7VN83/tErzUcTe+cVDpy517LHjvJJ1xfl9bhpTthcdDMJ6iFg\nHekgX/k8WB8s8nBC6/9pIWdUButdRWYZc2XwbLCN+8FxjXyn2ssKAECWOEED1pdTw8BSvMzf\n4mScQ8Odzw9FlpqDdwVbcmab6gJWxK4RVhT6dbqt9QNWmerNYVlFR+140Jjdg8OG1H3fu/qA\nNVK1YlGuX+HqHXY9Nl+MCtsseMrfJaqZJPUQsJaJf1fK9bxIp8TmD29+L1y9VmSaMT+XG7xP\np8n97uKlFrIo80UFACB7nKAB627Vno+vWr98Yq7mLve2/EX1RS0YNmJhZGmlk736zH118cQ8\n1bnG7N/2sOrD27Z9lhaw0neNsL2T6vBl69eUFPe8wwtYXxarbg0KX1EdZ9w7ajr0mVXlZVOd\nLPaMe8SNTujZtm1bRVTAcpZLte/8fy6b3Vn1r3Y9rnSO0OvvazesmOrUeM5kaCZZPQSsSSK3\nheu7RL6b4RJdJfKiMZcFTwS/KpPco58vPTJdUgAAssqJGbBeVh3kP2takau9vK+ljVL909DP\nMpUuUr3JWynP0zz33s788I2m5IAVsWuEe1XvqnJXPumu/jtYD6jOCgqdjrxljBOnBh/xPm/p\nrD3dyrF3sCIClrNP0Siv+hrV3ANWPX5S9Xr/OeC/VAs/y9BMsnoIWENFZsQ+nCqtIubCcmxt\nLWcddmNWN/fTkZYyx9v1G7vNv2/89S+6PpXhwgIAkCVOzIDVX3O2BKsTVV90l3ep5u/IWNo3\n9orVBFX3Na0MASti13SHO2nOJ/7q4iBgbVbt6b9+dLBAe1d5Dw2D971N6WOl7lfpqgtYTue7\nBd+zG6i6xqbHVX1UVwfNjFZdkKEZ34KfhX56rAGru8jC2IfvikRPyZUjcp97qnKZ++ldkRXG\nLG8p883zbb1psnjVHQCQ3U7IgLVVNTZbZbnqaHfphIsxGUs3qg4Mtmx+8U33YV50wIpqOJ1T\nMjhY/SI/+Bbhn1RXeFte9JPVctVRyXvVELAeCDaNU11m0+MNqn+sCmosU70luplAPQasPJHn\nYx9+KPJR1BUaJvIb99bWE9LaDWDj5IzD5vCPJd/s+7rkbjk4rYU8HX1pAQDIDidkwCpVnRqu\nf6Haz1064eLpjKXOpvHJTUQHrKiG0z2b0NrAIGC9EMaxkaru/Ob7O6reuzFxrxoC1mvBpqmq\nS2167BxwbFi0XbWoKrKZQD0GrD+IxBu+VOSD9OtTNUTk4n3u2uFvS8FB804HGeZcGDl9m5ku\np7oFXeXK6EsLAEB2OCEDVokmyXe3OeGiLGPpo6qzk5uIDlhRDaebndDanUHAqijUPDc67M8L\n7oGV5jgNXDf1tX1hzRoCVvgj0NP8J5M19tipMDMsqnIOdTCymUBD3cH6QdQdrH1OBrs0+PXB\n0rbS7rwWcvEBs6aNO6VDR8lxN8+T1oeiry0AAFnhhAxYDyXnIP3SeOHinYylD6g+ntxEdMCK\najjddP+lKM/d4USj96u6r24vVl3il7xzsz/JwvAy/0leDQHr3WBTkIxq7PGMhE6Yjn6T6c0E\nDu/zbW/V6lgDVg+Rf8Q+nCuyK/XqbPihyP+JzXa1Mq9DmwuG7TVHL5OrnI8XufeyjHlb5K3I\nSwsAQHY4IQPWw6rjyxO4r5fHw0VEqROcHk1uIjpgRTWcblpCthkTBqx1qu6cTyO00xdh2Qdz\nhrq3sfRm78t+tQtYNfY4NWDtimwmRT18i/BmkdhT1Kq2clLqJXqlg8j16cH0HjnVfWf/LHGn\nsDAfi5Sm9w4AgKxxQgasEn8+0STxcBFROk91SvKWjI8I0xpONyvh8d3/xH4qZ4Dbwme5el9i\n1f3LxuWpDndXowLWyIwBq8YeP6Yam0W90klxFZHNpKiHgDVdJDan6maRi1KO8PeTpPX/TT/w\n+nb+VKPBYkfiVxEBAMg+J2TAeiXtK3qJ4SKi9OW0eTejA1ZUw+me1HiKuiYWsJytc8zC2IPK\nmM09VNeahIA1UDWc22BwxoBVY4+XJHzJcZtq1+hmUtRDwFol8stwfZ5Iz+QD/KOVfO0Fk6bq\nCrncu9V1htzjLj4WWZxeCwCArHFCBiwnUHRJfQoVDxcRpVtUewRzGmy5/37324bRASuq4XSr\n/KeBrl05sYC1P1/7mSHapyq1eonqsyYhYA2NzXBVkZcxYNXY442qvcJDOWns9uhmUtRDwKo6\nR9qEN+CKU29E/fNk+dqKiCs2Xdp652nO96eBX+1NjAUAQNY6IQOWe+cnvANS3m+GF1cSwkVE\n6XWq//K3POLeaPLiiv8KU/JEoxG7pjuQpzn/8VdLNBawzFhVJ+k85q1Xzb59XFh9of/eeyxg\n/UX1Vb/kSc0YsGrscVU/1ZXBPiP8n5dulIBlhosM99c2nCRnHklsfu+5ckrULzhubS/B3TaV\nQu+ySauDEfUAAMgWJ2bAcoJM0Yfe2va+quvdlYRwEVG6WLW391zuw46a587CviicZyrtp3JS\nd41wp+pI7ydiPijMjQest1S7xqZ4vyU2D9WhQaru7PCxgOUEplu852XrCosyB6wae+x87uf/\nVM4S1R4VGZpJVh8Ba8dp0sqbN/6TS8X7iUFjhgwY4P0S4/Xiv2KVSuXS4L7gBOngzs/QQ36V\n4dICAJAVTsyA5d4tKpj25nuvz+isOtnbkhAuIkqrhqt2eXDpogn+Tycbs1o1f87SJ6pSf+w5\nfdcIG5xYNWTRirLJ+b0nxAOW++M1emvwYa1T5fbnlpe/8WifYEbQWMDanOMkrNJVZffn3Tgt\nc8CqscdVI5wI9uS69W/ck6O5q1KvQcMFLPNIC5Hf/nX8tWeIXOF/h7CtyNvOYuNJ0uq2kTHh\npPJmrrR+O1jd1V6GVpolreWJTNcWAIBscIIGrKOTc4KpqnJm+IN8YsBKLzUVo8It/hcAK/t7\nn46mBqyIXSMszfPrdFs3U/WNcOs8TZg+vawwNpvWGG9SzVjAMo8H2wfumhX8YmBUMqqpx6Zi\nTHiA4uCFpsYJWGbGKeL7ffB70kHAmi9JfhFU33lW+EzR8VhL+eaFIl0zXloAALLBCRqwjNkw\nfWCXvC5DHgjfk0oMWOmljlX39i3s2G9yOPP4p6O7F1w9Mu0OVuSu6bbcf03HogEzd5oFqq+E\nG3fmaGFFrMqe+bddXZDbZdCUoFvxgGVW3tkjr9PgpyvcqLUipfMJyaj6HjvWTryuML/niIXh\n+0yNFLDMppt+0r7tuV2eDT9XH7CK5aKEadtfuqr9yZdMOlrdxQUAoMmdsAErC21RndTUfahe\nPQUsAACOdwSs7DFZdUNT96F6BCwAAKwQsLLGljy9ran7UAMCFgAAVghY2WJP/+ArgVnMC1hN\n3QkAALIfw2WDOrgzzWdR9VavKClWndbY3astAhYAAFYYLhvUXE3TI6peD7fkrpp/ZaeJEbAA\nALDCcNmgbANWf+00dHHarxBmHQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgAAFhhuIQ9\nAhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhguYY+ABQCAFYZL2CNg\nAQBgheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgAAFhhuIQ9AhYA\nAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhguYY+ABQCAFYZL2CNgAQBg\nheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgAAFhhuIQ9L2A9U42m\n7iAAANmBgAV7BCwAAKwQsGCPgAUAgJVmGLD+rPqxZdVbVTc1aF+OwV2q7zZ1H2qLgAUAgBUC\nVlM57gPW+4N+clqbs3XW0aiWXj5H5PnYp1f/0OGkcwdujxfPkVYrG+gcAABoBE0ZsKbo/Lrs\nNmHQoB2WVbMxYIVn3TABq47X1FJtAtZdrcR38X/S2qm4sYUkBKzHW8lvel0g5+0MN3zaQf7c\ngKcBAEBDa8qANbhBw4ArGwPW4AYNWA17TWsRsO4WafH7sZOHni3y/QMpzbz1I5E28YD1+eny\nN2OOXC59wgpF8r2KBjwNAAAaWhMGrEN5J2LAip11gwSsBr6m9gFr/cnSttRd2f9bkZuSW7nv\nJDl5UlE8YM2S0w47i4XS7qC/4Slp8WoDngUAAA2uCQPWWj0RA1bsrBskYDXwNbUPWP3FvSvl\n2v01OWV/UisXy3+tNQkBq6/8zl1sF3nd+7z3bOnfgCcBAEDDq7eAVfnK6L6FuUWDpq13P41Q\nfSFWNEb1+bQac9U30quycfoNRfm9blkQjsROMqo0q0b27tj3fvcNnrVjrsnvdke5XxZ/yX3N\npGsLO107eUPGTgUBa4Bq+HrPHarvu8vBqkfNP++4Or/7sEXBW9gRtVL6nElq74dpTlXFjO75\nJWmXIeGsnYC1zmyY0Ldj54GPfJ6xqeouhDGHFt3Ru1Net2Ele036NS2fdH1RXo+b5sTebEo9\nmdqfsHXAOtJBvhKe1GCRh5NauWRghUkMWFcGzwbbyCxveY18JzmRAQDQ3NRXwNo9WEMPOh/L\nVG8Oiyo6aseDaTUSw8CXU8OS4mX+PiNVv5gdbNpkHvfXcl7zysKAdfCuYKec2Zl6lTlg3aS6\nb3Kw/5/8d4QiaqX0OVp6751cdWi48/mhtMuQHLA+XJTnf/zjp5maqu5CmA97x6p7mSvxmn4x\nKiwreCryT1SXE7YOWMvEvyvlel6kU1Irq93/JASsn8sN3vI0ud9dvNRCFmW82AAANAv1FbCG\nqQ59ZlV52dRCVWeY/bJYdWtQ9IrquPQa+7c9rPrwtm2fOUV3q/Z8fNX65RNzNXe5t48z4D+n\nt5Uuf+qPTlx4Q29ctHyxM/R39+41BQGr0okwfea+uniiE1LmZuhV5oDl9OYxvWHhv8r+b77q\nHV5RdK3EPkdL7/1fVF/UgmEjFqZdhoSzdgLWAu07/5/LZnZWHZWpqeouxN5ubvdWlJcOUe28\nyyRd00qn673+vnbDiqnO5Xku6k9UlxO2DliTRG4L13eJfDe9qYSAdVnwRPCrMsk9xvnSI9Ol\nBgCgmaingLVRdfARb21LZ+1ZZcwDqrOCslGqb0XUMPPD94VeVh3kPxNakau9KoJ9irz7UtsL\nNKf7OLd6RW9V795HELAWqd7k1S3P07wM8zZkDlhOSd5YL6ascRLIGhNZK73PEaJ7/6ehbnJM\nvwzxs3YCVuc73Ze7zboczd1fhwsxV/UWr3tVY51c5e0Xa/1J1ev954b/Ui38LPJkan/C1gFr\nqMiM2F6nSqv0ubASAtZV0s1dHGkpc7xdv7Hb/PvGX/+i61PRFxwAgOxXTwGrTPWRYLX0sVIn\nNmxW7VnpfT5YoL2rImrEw0B/zdkSFE1UfdFdOunjWn/3kU4+8B/hPaS60F0GAatv7AX2Caol\n0d2qNmB1Dl70uV91qomsld7nCNG9z/cjX9plSApY3YNvzQ1R/aAOF2LByMH+bS6zzglG3krY\nelWfIIQ5RqsuiDwZ+xPe857vrXbt7AJWd5GFsb2/K5IegBMC1gC5zF28K7LCmOUtZb55vq03\ngxavugMAmqt6CljLY0+5Qn9SXeGtvOgP2uk1wjCwVTU2q2S56mh3eVfssd8M1bv9tRdUvXs5\nfsDaqDow2Gnzi29uNZGqDVjjg00rVL2RPL1Wep/TZej9mAyXISlghe9+36u6vA4XIu6Aqv9Y\nLWx9g+ofwxtQy1RviTwZ+xNe8LPQT+0CVl7iPO0/FPkorcmEgPWEtHYD2Dg547A5/GPJN/u+\nLrlbDk5rIU9HdQYAgOxXTwFrf0fVezcmbnkhSAjunZf/RNYIw0BpcAfJ9YVqP3d5lx85HI/G\nJh4oU33AXfoBqzSekDKrNmAtDjZ9pppfGVkrvc/pMvQ+jAaplyEpYL0eVJqqurQOF8J39OCB\nA3tUi0xi685hx4YVtjuFVVEnY3/CtQ5YfxBZGtv7UpEP0ppMCFiHvy0FB807HWSYc5nk9G1m\nupy6z9neVa5M7woAAM1Bfb3kXpqjqtdNfW1fuKGiUPPcD/vzgtsyaTXCMFCiSfLdbfFJoub6\nczwY706M916PH7AeTbuNE6HagBVOdlDldGxfdK20PqfL0PuyTJchMWCtDSpN858H1vZCGFM+\ncUBxjl87OWA5V2dm2MMqp/Rg1MnYn/Cx3cH6QQ13sExpW2l3Xgu5+IBZ08ad0qGj5Lib50nr\nQ9EXHQCALFdv82C9c7M/g8DwsuDR1P2q7lvKi1WXRNcIw8BDyblCvzRervDnZXJzRTCVVHLA\nekD18Ro7VW3A+jCsVai6I7pW+lmlydD7d8Ly1MswP2Ki0SBg1fZCVIxOqJwcsGYkvpbWMbKL\nONUAACAASURBVDix1JOxP+EXcnz64x/ZBaweIv+I7X2uyK6065YYsMzKvA5tLhi21xy9TK5y\nPl7k3ssy5m2RtzJcdQAAsls9zuT+wZyh3t2Um/1vr61Tdac3GqGdvoiuEYaBh1XHlydwH9fV\nHLCcNPJojV2qNmDF7qp08ouj8kbaWaXJ0PvYJO2pl6GagFXbC/E31c7z1u85aszhmgLWrqiT\nqf0JW3+L8GaR2NPOqrZyUmVaU0kBK3SPnOr+vc4Sd14P87FIaXofAABoBur3p3L2LxuXpzrc\n/zDATTef5ep9GWokPCJ8KLWhmgPWPNUpNfYnPWCNjAes94JN7iPCz6NrRZxVqgy9j/8KTspl\nqCZg1fJCbFLtFHyPsiI1YD0Wf4PeVDppKf7TyQknU/sTtg5Y00ViM6xuFrkovamogLW+nT/V\naLDYkfhVRAAAmpN6/y3CzT3Cd4ueVJ1jFiY8LUupEYaBVyK+ulZzwHpZ9a81diYIWAP9Z4Cu\nwfGAFf6e8GdOUDHRtSLOKlWG3scDVsplqCZg1fJCOG1ODGptSg1YS8J36x3bVLtGnkztT9g6\nYK0S+WW4Pk+kZ1pLUQGr6gq53LvVdYbc4y4+Flmcth8AAM1B/f/Yc4nqs97K/nztZ4Zon7S3\nl4IaYRhwAkCXL1Oq1Bywtqj2CFrecv/9Gb7PHwSsobEpsyry4gErvFu0KphEKqJWxFmlytD7\neMBKuQzVBKxaXoiHVMP3nEpSA9ZG1V7hdXei6O2RJ1P7E7YOWFXnSJvw7lhx5I2oiIA1Xdr6\nnTjfnwZ+tTcxFgAAzVD9BKyq2bePC9cXxt5qH6vqDO6PZaoxP3xPaHB8yoTyfjO8Mb/mgGWu\nU/2XX/CIe48oUhCw/hK7XfWkxgNWb3/OcjMleJyWViv6rFJF9z4esJIuQ8JZpwesWl6IR2Lf\no9xdrFqY1HpVP9WVQVMjvK8fRpxM7U/YOmCZ4SLBI8YNJ8mZR9IvW3rA2tpegrtuKt7ZlEir\ng+k7AgDQDNTTHaxb/JmcHIcGqQbTkb+l2lVzPslUY1E4k5UTP4r8r/Rt76u63l2xCFiLnYjk\nPeH6sKPmfRLdrSBgOVHkFu/Z07rConjAyvF/zvjDfM3x3ndPrxV5Vqmie58QsJIuQ/ysIwJW\n7S5EmWp/7ydodt4wuJv/Glm8dWeln/+W+hLVHhWRJ1P7E7YPWDtOk1bu/PHmk0vF+4lBY4YM\nGJAwH2x6wFK5NLh/N0E6uPMz9JBfpfUAAIBmoZ4C1tpc1dufW17+xqN94lNcur/XordmrLFa\nNX/O0ieqvHs8BdPefO/1GZ1VJ3u1LQJW1XDVLg8uXTSh5h973pzjRInSVWX35904LR6wpurI\nsg/fLSnU4P3z9FqRZ5UmsvcJASvpMsTPOiJg1e5CVBSr3rZy8zszOxdsHKY6ZdPOhNarRjj5\n88l169+4J0dzV0X/AWp/wvYByzzSQuS3fx1/7RkiV/jfIWwr8ra7fG2k60ci3dzlpHCHudL6\n7WB1V3sZWmmWtJYnMl1zAACyW329g1VWGJuRaUxsdsh5GrsjElGjsr/34agxRycHs2Vqzgx/\nMLYIWKZiVLhTxhlHg4BlHg9qDtw1K/hlZ6dky7hg6/Cgw+m1Is8qVWTvEwJW8mWInXVUwKrd\nhVieH0yBtcY86y5nJV7TijFhz4tXZPoT1fqEaxGwzIxTxPd7/xcUYwFrjCS6MKi+8yyJf23x\nsZbyzQtFkt/NBwCg+ai3l9z3zL/t6oLcLoOmJESLnTlaWJG5xqejuxdcPdJ7F3vD9IFd8roM\neSB46doqYBmz6t6+hR37TU6fJjwUBiyz8s4eeZ0GP13hZooVQckW8/qo3vndblkcews/rVbk\nWaWL6H1i/eTLEJ51VMCq3YUwG8b1yus0qGSvk8xm9y64tswkXdO1E68rzO85YmHsPab0k6nt\nCdcmYJlNN/2kfdtzu8Rela8+YBXLRQmJ7qWr2p98yaSjUX0AAKAZqP9vESbYojqp5lpNIha9\nGkEWX4ZaqlXAAgDgxNWgAWuy6oaGbP8YNGbAyuLLUEsELAAArDRkwNqSp7c1YPPHpBEDVjZf\nhloiYAEAYKUBA9ae/mmzV2aPxgtYWX0ZaomABQCAlYYKWKtXlBSrTmug1tMd3Jnms+rq1yVg\n1fYYpvEvQwPzAlZTdwIAgOzXUMNlD/eb/nel/vBLw5mraXpUV78uAau2xzCNfxkaGAELAAAr\nDTVc9tdOQxen/Qphw8nSgNXYl6GBEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArD\nJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzC\nHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewR\nsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACwwnAJewQsAACsMFzCHgEL\nAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsAACsMl7BHwAIAwArDJewRsAAA\nsMJwCXtewHoms6buHwAAWYKABXsELAAArBCwYI+ABQCAFQJWdrpX9U13+WfVj6Nr3Kq6qTF7\n5CJgAQBghYCVnZouYL3bV3VZhrLaBKz3B/3ktDZn66yjUQ29fI7I87FPr/6hw0nnDtweL54j\nrVYe+5kAANBkCFjZKQxYEwYN2hFdwzJgTdH5tTnulzNztF4C1l2txHfxf9KaqbixhSQErMdb\nyW96XSDn7Qw3fNpB/lybTgMAkG0IWNkpDFiZWQaswbUKWB8NVM2vj4B1t0iL34+dPPRske8f\nSGnlrR+JtIkHrM9Pl78Zc+Ry6RNWKJLvVdSi0wAAZB0CVnaqr4B1KK82AeuZfC14cnw9BKz1\nJ0vbUndl/29Fbkpu5L6T5ORJRfGANUtOO+wsFkq7g/6Gp6TFq/Z9BgAgCxGwslN9Bay1WpuA\nNVT7f2TqI2D1F/eulGv31+SU/UmNXCz/tdYkBKy+8jt3sV3kde/z3rOlv32XAQDIRgSsrLJj\n2rUduwycvSv9JfdDi+7o3Smv27CSvUFVJ2BtNsvv6p1fPOyZ+IvkG6ffUJTf65YFfqaZq76R\nEWWOyldG9y3MLRo0bX2wYejUw6Y+AtaRDvKVz4P1wSIPJzVyycAKkxiwrgyeDbaRWd7yGvlO\nciIDAKDZIWBlkxWFfiDqtjY1YH3YO8hKWlzu13UC1pYpwbbBQZr5cmqslpeREgNWapkxuweH\nW/RBf8tH7n/qIWAtE/+ulOt5kU5Jjax2/5MQsH4uN3jL0+R+d/FSC1lU2+sGAECWIWBlke2d\nVIcvW7+mpLjnHckBa2831aHPrCgvHaLaeZdX2QlYs/S6+W+8Nr1A9Q6/gbtVez6+av3yibma\nu9z5vH/bw6oPb9v2WUSZMcPcNleVl011Yl3C++n1ELAmidwWru8S+W56SwkB67LgieBXZZJ7\niPOlR60vHAAAWYaAlUXuVb2ryl35pLsmB6y5qrcccT9XjXUSk1fZCVh5o7xng+/lqb7nrrys\nOsh/urYiV3t5X8SbH76DlV62UXWw16bZ0ll7VsV6UQ8Ba6jIjNhOp0qr9LmwEgLWVdLNXRxp\nKXO8Xb+x2/z7xl//outTVtcMAIBsRMDKHoc7ac4n/urilIC1YORg/66TWefEIm/FCVhFwbtK\nk1Snucv+mrMlaGui6ovuMhaw0svKVB8JtpQ+Vno41o2IgPXRAt+8M8+0CljdRRbGdv6uSPpU\nXgkBa4Bc5i7eFVlhzPKWMt8839abQYtX3QEAzRYBK3uUh9nJmC/yM83kfkDVf4TmBKzxwbaV\nqgOdxVbV2PycTluj3WUYsCLKlquOiupGRMBa8LPQT60CVl7iPO0/FPko7SAJAesJae0GsHFy\nxmFz+MeSb/Z9XXK3HJzWQp6OvEwAAGQ/Alb2eDYemczAqIB19OCBA3tUi7wPTsBaHGzfpZpf\naUyp6tSw6heq/dxlGLAiyvZ3VL13Y3o36iFg/UFkaWznS0U+SDtIQsA6/G0pOGje6SDDjBkp\np28z0+XUfc72rnJl5msFAEBWI2Blj9mqs8P1O1MDVvnEAcU5/lf+YgEr+D6hqXIK9htTokny\n3aIwYEWVlbrtXTf1tX3J3ajvO1g/qOEOliltK+3OayEXHzBr2rhTOnSUHHfzPGl9qDaXDwCA\n7EHAyh7TVUvC9buTA1bF6IR0FAtYH4a1O6l+asxDySFKvzTxgBVVZt652VvPGV5WldCNiID1\n1l99d5x7jlXA6iHyj9jO54rsSjvXxIBlVuZ1aHPBsL3m6GVylfPxIvdeljFvi7xVyysIAECW\nIGBlj2kJAWtMcsD6m2rneev3HDXmcELAit0YKlTdaczDquPLE1SaeMCKKnN8MGeod1vs5r2x\nXtTHtwhvFok9kKxqKydVprWUFLBC98ip7uT0Z8k499PHIqU1XDEAALIUASt7zEp4RPg/SQFr\nk2qn4HdxKhIC1ntBZfcR4QHvMeBDqW0mPCJMK/PtXzYuT3V4fEM9BKzpIjeH65tFLkpvKSpg\nrW/nTzUaLHYkfhURAIBmhYCVPZ5UvS9cvyYpYC1UnRgUbEoIWOFPIu9WLawy5pWIrwWGASuq\nLGZzD9W1sU/1ELBWifwyXJ8n0jO9pYiAVXWFXO7d6jpD7nEXH4ssTtsPAIBmgYCVPVap3hCs\n7spJClgPqYbvNJUkBKwH4zsOdRbbVLt8mdJmGLCiyuKcRp+NfaiHgFV1jrTZGawXR96IighY\n06Xt+97K+f408Ku9ibEAAGiOCFjZ40Ce5vzHXy1Jnmj0kdjDw93FqoXemhOwrvYnYjdTVGe6\ny8HxmRvK+83wninOD9/rSiurmn37uPDIC1WXxLpRDwHLDBcJHjpuOEnOPJLeUnrA2tpeRvtr\nKt4Zlkirgxn6AQBAliNgZZE7VUd6vyrzQWFuUsAqU+3vFey8YXA3Ve+nnW+N/UbzhgLN8d53\nf1m1yP9m4fa+quvdlUXh3FrpZbeoBpNVHRqkGk7zXj8Ba8dp0mqBu/LJpeL9xKAxQwYM2Bpv\nKT1gqVwa3GKbIB3c+Rl6yK9sLhoAAFmIgJVFNjixasiiFWWT83tPSApYFcWqt63c/M7MzgUb\nh6lO2bTTK5mmI8s+XDe/KDZB6VjVgmlvvvf6jM6qk70tq1Xz5yx9oiqibK1ztNufW17+xqN9\nVMe6W96d63LS1lh3+Y/0DloHLPNIC5Hf/nX8tWeIXOF/h7CtyNvu8rWRrh+JdHOXk8Id5krr\nt4PVXe1laKVZ0lqeqNerCwBA4yFgZZOlef4sVd3WzVR9w90STNOwPD+YAmuNO9+76ixjblLd\nMz6Y1Wp4MCPn0cnBXKSaM8OPNZX9vY9Ho8rKCmPTYo3xGpifNFVWj/T+2QcsM+MU8f3+gL8h\nDFhjJNGFQfWdZ0n8i4yPtZRvXijStb4uKwAAjY2AlVW23H9Nx6IBM3eaBaqvuBvCmdw3jOuV\n12lQyV4nKM3uXXBtmTE3uLOFvnFn7/ziW1+IzxO6YfrALnldhjywKdzw6ejuBVePrIos2zP/\ntqsLcrsMmvKu/7k+A5bZdNNP2rc9t0vs5fnqA1axXJQwbftLV7U/+ZJJR+t2DQEAaHoELNir\nTcACAOAERsCCPQIWAABWCFiwR8ACAMAKAQv2CFgAAFghYMGeF7CauhMAAGQ/hkvYI2ABAGCF\n4RL2CFgAAFhhuIQ9AhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhgu\nYY+ABQCAFYZL2CNgAQBgheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2\nCFgAAFhhuIQ9AhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0CFgAAVhguYY+A\nBQCAFYZL2CNgAQBgheES9ghYAABYYbiEPQIWAABWGC5hj4AFAIAVhkvYI2ABAGCF4RL2CFgA\nAFhhuIQ9AhYAAFYYLmGPgAUAgBWGS9gjYAEAYIXhEvYIWAAAWGG4hD0vYD2Trqn7BQBAliFg\nwR4BCwAAKwQs2CNgAQBg5TgJWHepvnusbfxZ9WPLqreqbqph33tV3zzWHmUUNl6LLtcLAhYA\nAFYIWDEErBrZBKz3B/3ktDZn66yjUQ28fI7I87FPr/6hw0nnDtweL54jrVY2UNcBAGhMBKyY\nCYMG7bCsmhaw0vdtlIBViy7XC4uAdVcr8V38n7TdK25sIQkB6/FW8pteF8h5O8MNn3aQPzfs\nCQAA0DgIWHWRFrDSNUrAamw1B6y7RVr8fuzkoWeLfP9Ayt5v/UikTTxgfX66/M2YI5dLn7BC\nkXyvouFPAgCAhkfAqgsCVoaAtf5kaVvqruz/rchNyTvfd5KcPKkoHrBmyWmHncVCaXfQ3/CU\ntHi1EU4CAICGR8CqCwJWhoDVX9y7Uq7dX5NT9iftfLH811qTELD6yu/cxXaR173Pe8+W/g1/\nCgAANIZmG7DWTLq2sNO1kzf4n5yAtc5smNC3Y+eBj3zubxqmOVUVM7rnl3ifyiddX5TX46Y5\n4fs+TkSqNB9N7J1XOHDmXn9T/I3x5LYjxAPWTNUbDiTsu2PatR27DJy9K5aBIg7k2Dj9hqL8\nXrcs8CPICNUXYkVjVOOvgSdLazw8bOUro/sW5hYNmrY+wxFchxbd0btTXrdhJbFuWO2WqKaA\ndaSDfCW4/GawyMNJO18ysMIkBqwrg2eDbWSWt7xGvhN9VAAAmp1mGrAOOonKkzPb++x8/HBR\nnr/pj596m5zUcmi48/EhZ/2LUUF1LXjKb2CkasWiXH/b1f6L4mFaSW07QixgPava97OEfVcU\n+rt2WxtmoIgDmS+nht0pXuZ+LlO9OWy6oqN2PBh91PTGg8PuHhy2pw9GH8HxYe/YpnJ/i9Vu\nyZe9hoC1TPy7Uq7nRTol7bza/U9CwPq53OAtT5P73cVLLWRR9HkDANDsNM+AVekkpz5zX108\n0clUc90NTiZaoH3n/3PZzM6qo7w6f1F9UQuGjVjoVB+m2uvvazesmOrUf84rvUN1qbfDbGeH\nv3qbgrSS1naEMGC9kaM9tyfsu72T6vBl69eUFPe8I8hAEQcyd6v2fHzV+uUTczV3ufP5y2LV\nrUHTr6iOiz5oROPBYZ3TG/rMqvKyqU4CeybyCMbs7eZWWlFeOkS18y5vk81uyWoKWJNEbgvX\nd4l8N72FhIB1WfBE8KsyyW36fOmR4WoDANDsNM+AtUj1Ju/7ZuV5mufeFnICVuc73Vemzboc\nzfWeNI1S/dPQz7zqT6pe7z8X+5dq4WdBadGoI+7aGtVc7/tuQVpJaztCELDWddSu/p2sYN97\nVe+qcj9/0l2DDBRxoJdVB/kPw1bkai/3WA+ozgqaduq/FX3QiMb9w25UHewdwWzprD2rIo9g\n5qre4lWqGqvqPbuz2i1ZTQFrqMiMWOVTpVX6XFgJAesq6eYujrSUOd6u39ht/n3jr3/R9ano\n0wcAoBlpngGrb+wdqAmq7ktWTsDqHjxYG6L6gfE35fv5qKqP6upgz9GqC4LSbsEOA1XXuMsg\nJKW1HcEPWFuLtXCdv8Hf93AnzfnE37A4zEARB+qvOVuChiaqvugsNqv2rPQ2HCzQ3lWRx4xq\n3D9smeojQaXSx0oPRx7BLBg5OLgntc4JVu7Sajff8mG+m777/1QbsLqLLIzt9F2R9HyaELAG\nyGXu4l2RFc4RWsp883xbbwYtXnUHADR7zTJgbVQdGKxufvFN9+HaXcFdGePd6PGShLNpjL9l\ng+ofw9CyTPWWoPSBYNM4Ve+Fo9jtoJS2I3gBa881mr8q2ODvWx5EF8cX+fGAlXKgraqx6TSd\nPUa7yz+prvA2vBhPPSmiGvcPuzx8KhqKOkLcAVXvYVwtdlvws9BPqw1YeYnztP9Q5KO0s0gI\nWE9IazeAjZMzDpvDP5Z8s+/rkrvl4LQW8nT0FQAAoNlolgGrVHV88hYnxrwerE5VXRpsCgbq\nF1THhhW3qxZV+aWvpezgp5X0tiO4AatiiOaETQT7Ppuw78B4wEo5kHOEqWGtL1T7BV3088xI\n1fQZ0D1RjfuH3d9R9d6NCVWjjuA7evDAgT3OJXDXa7GbbcD6g8jS2E6XinyQdhYJAevwt6Xg\noHmngwxzTltO32amy6n7nO1d5croKwAAQLPRLAPWo6opX/BzYszaYHVa8HDL2VQWqz4zrFil\nqgf90vKUHfy0kt52BCdgbRgZPGw08X1nJ+x7ZzxgpRyoRJPku0UVhZrnhov9eZrpx2KiGg+e\napbmOO1cN/W1fUFx1BGMKZ84oDjH3+IFLMvdXHW6g/WDGu5gmdK20u68FnLxAbOmjTulQ0fJ\ncTfPk9aHMlwDAACaiWYZsB5QfTx5S8JEowkB6x1/y4zEd6k6qu6M3sFPK+ltR3AC1jAngoyI\nvS3l7zs94UB3xwNWyoEeSs4x+qVbdr+q+3L3YtUlGY4Z1Xg4O8Q7N/vzSgwv83oUdYSK0Qkb\n/IBls5vvowW+eWeeWW3A6iHyj9hO54rsSjuLxIBlVuZ1aHPBsL3m6GVylfPxIvdeljFvi2R4\nzR8AgOaiWQYsJwk8mrwlOmAFm1ID1q7oHfy0kt52hFvd/FGYEMX8faclHGhMxoD1sOr48gTe\n2+3rVN1ZoUZopy8yHDOq8fjcqB/MGerdnbp5b4Yj/E2187z1e44aczgWsCx2S1bTtwhvFok9\nZKxqKyelt5AUsEL3yKnu9wrOEm+Cio9FSjNcAwAAmolmGbDmqU5J3lJtwHos/ga8qXTSREX0\nDn5aSW87ghOwcp74qEDz3gs2+PvOSniK9z8ZA1aJP/lpigHue/Of5ep9mY4Z1Xg8YDn2LxuX\npzo8+gibVDsFX46sSAhYNe2WoqaANV0kNmPqZpGL0luICljr2/lTjQaLHYlfRQQAoFlqlgHr\n5diUnaFqA9aShG/EbVPtmmEHP62ktx3BCVilxjyt+sfgh2H8fZ/UeD66JmPAeiX123seZ985\nZmHssWZkhbTGkwKWY3MP7120iCM4LU8MVjclB6xqd0tRU8BaJfLLcH2eSM/0FiICVtUVcrl3\nq+sMucddfCyyuPpuAACQ7ZplwNqi2iN4/WnL/fe73xWsNmBtVO0Vvi3l5KfbTfQOflpJbztC\nMNHonbHk5u+7yn/O59qVkzFgORmvy5epLZr9+drPDNE+0ZNgmejGUwOWexPq2cgjPKT6j3id\nlICVebcUNQWsqnOkTfhrj8WRN6IiAtZ0afu+t3K+Pw38am9iLAAAmrNmGbDMdar/8tcecW/8\n1BCwqvqprgxKRwQ/pZwxYKW3HSEIWPt6hr+84+97IE9zgkkWSjRjwDKDVcNbNOX9ZgQP7sxY\nVSf9PZbxnKMa9w5bNfv22I/rLPRfkk8/wiOxB4y7i1UL3atis1uKmgKWGS4y3F/bcJKceSS9\nhfSAtbW9BClVpdA7O2mV4ccYAQBoLppnwFqs2tubJfzDjprnTm9ebcByf/2mn/9TOUtUe1SY\n6B2CgJXWdoTwtwhX52jHjQn73qk60vt5mA8KczMHLCdHFX3obdneV3V9UPqWatfYXO1RIhr3\nD3tLMJGXMYcGqW6JPEKZan9v5503DO6m6j7ZtNktRY0Ba8dp0sqbvOKTS8X7iUFjhgwYkDBd\na3rAUrk0uG02QTq48zP0kF9lvggAADQLzTNgVQ1X7fLg0kUTEn7suZqAVTXCCU1Prlv/xj05\nmutPvp45YKW1HSEMWO6b59cfiu+7wUk+QxatKJuc33tC5oDl3qwqmPbme6/P6Kw6OXZOfVT1\n1mpOOqJx/7BrnYLbn1te/sajfcIpVdOOUFGsetvKze/M7FywcZjqlE07rXZLUWPAMo+0EPnt\nX8dfe4bIFf53CNuKvO0uXxvp+pFIN3c5KdxhrrR+O1jd1V6GVpolreWJaq4CAADNQfMMWKZi\nVDBXU47/4Kv6gGUqxoRzOxUHr/dkDlhpbUeIBayjf/JfHg/3XZrn79pt3UzVNzIcyBydnBMe\nYkZ8JoN5GrulFC298eCwZYWxuavGHMpwhOX5wRRYa9w54b0fl7bZLVnNAcvMOEV8vz/gbwgD\n1hhJdGFQfedZ4TNFx2Mt5ZsXinSt7iIAANAcNNOAZcyqe/sWduw3OZgrvIaAZczaidcV5vcc\nsTB8u6eagJXadoRYwDKfdFZ9NWHfLfdf07FowMydZoHqKxkO5NgwfWCXvC5DHkh8z2lnjhZW\nVHvOaY2Hh90z/7arC3K7DJoSP+O0I2wY1yuv06CSvU6Mmt274Noyy92SWAQss+mmn7Rve26X\nZ8PP1QesYrkoYdr2l65qf/Ilk45WexEAAGgGmm3AOv5sUZ1Uc60mZROwAAAAASt7TFbd0NR9\nqAEBCwAAKwSsbLElT29r6j7UhIAFAIAVAlaW2NNf9f2m7kRNCFgAAFghYFXv4M40n9X/UVav\nKClWnda4B60DL2A1dScAAMh+DJfVm6tpetT/UXq47d4V+5maxjloHRCwAACwwnBZvcbJOv21\n09DF8V8hJGABANC8MVzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMIeAQsA\nACsMl7BHwAIAwArDJewRsAAAsMJwCXsELAAArDBcwh4BCwAAKwyXsEfAAgDACsMl7BGwAACw\nwnAJewQsAACsMFzCHgELAAArDJewR8ACAMAKwyXsEbAAALDCcAl7BCwAAKwwXMKeF7D6AQCA\nuA+ihkwCFux5AQsAACR4JWrIJGDB3hfFXb/1rab+d4w6a/+tb33rq03dCdRVS+fPd3ZTdwJ1\ndprz9zu1qTuBumrl/Pn+VzXlBCwco4qfORrtHzTq27edP191/4tAVmvt/PkubepOpQARDgAA\nIABJREFUoM7Ocf5+32jqTqCuTnL+fJdUU07AwjHyAtZYNFddnT9fr6buBOrqTufPd1lTdwJ1\n1tn5+/2xqTuBuhrp/Pn+32rKt0QNmQQs2PMCVlN3AnV2n/Pne7CpO4G62uv8+f53U3cCdTbG\n+fvNaepOoK52OH++K2q7EwEL9ghYzRsBq1kjYDVvBKxmjYCF/5+9O4GTojr3Pv4MqyKKgtv1\nxmjUuOa6JdHcGJMYr/FN4jMMy4CsggYXQBCXgGgkBAUUERUkilE2RZQgLogILhFxQVwBRSPI\noiIIKKvDMky9tXd1d/VwZrpnmhl+389H+tSpU6dOQ3fX36rq01WMgFWzEbBqNAJWzUbAqtEI\nWKhiBKyajYBVoxGwajYCVo1GwEIVI2DVbASsGo2AVbMRsGo0AhaqGAGrZiNg1WgErJqNgFWj\nEbBQxQhYNRsBq0YjYNVsBKwajYCFKra9oy3fg0ClPWr/8z2V70Ggsjbb/3xd8z0IVNpY+9/v\nuXwPApW13v7nu6KiGxGwAAAAcoyABQAAkGMELAAAgBwjYAEAAOQYAQsAACDHCFgAAAA5RsAC\nAADIMQIWAABAjhGwYOrLMb3ateg88IXSfA8ElbJkdI+2Re1vmLg63wNBpa1pozon34NApXwy\n6orW7XqOWJTvcaASyuYPv7y4Rcd+k7+t2HYELBiaUqSeqzhC10DbR/r/fNpiWr7Hgkoqu1kJ\nWDXTztGF/vtvdFm+x4KKWvuX4NOz1TMV2pCABTNP2S+uv06Z/vClql035XswqKiygfa/X7+x\nU0d1th9fyPdoUDkzlIBVM5XdqVp8zzNTBtoxa1K+B4MK2nq5as/pCxa/MapIdXpFtiRgwcjX\nrbRonlPYNkj13nyPBhU10/5/r3ecQsk9qu2353s4qIw1xdqFgFUjzVbtvdYpvNtKW1TwMhPy\nbbzqAO/OmHcLtbgi5xcIWDByf/g/XiUdtTmfEDXNVaozvFLpparv5HcwqJSym7TjFAJWTbT9\nEm273is+dsuDK/M7GFRUN9VP/WJf1X9XYEsCFkyUdtAWm/3yI6pP5nUwqLANhdqyxC+PUn06\nr4NB5Tyn+tJ0AlZN9Ibqo/keAyqtuWrw6Xmf6uQKbEnAgonFqv2C8keq/fM5FlRC6drwf5sf\nUv1XPoeCylldrAMsAlaNNEz1y3yPAZXWRnWrX7QDVkW+JETAggn7c/3hoLy9UNvmcyzIzmDV\n1/M9BlRYWX9tu5aAVTNdpp3tPzcv/fjrfI8ElTBQ9UO/2C9xtdAEAQsmHop+eaKTKt8jrLE2\ntdI2W3ffDHuY6e63PwlYNVFJofa3Ft3sTNTQdfK2fI8GFfWxah/vM/PtQr25IlsSsGBiuOrc\ncOFqVW7TrLHu5HviNdHqYv2rRcCqmZapDp3R3J9Jqfd3+R4OKupJ1Uv/9d6iuSOaa491FdmQ\ngAUTt6m+HS5cp/qfPI4F2Zisev3OfA8CFVXWX9ussQhYNdNHqlcXdZ29asfa6R1Vb2Sm0Rpn\nfn8vHXedsKVC2xGwYOLvqu+FC/1UF+dxLMjCRNUrN+Z7EKiwZ/1pNghYNdE79qG52wa3uOpi\n1TfyPBxU1Naxnb2AVXhdxd5+BCyYSDqDdS1nsGqobUNVu6/N9yhQYV8Xa3/3vAcBqyaabx+a\n3/LL01QH5XUwqLB1V6iO+Pj7nWtf6q46uiJbErBg4q7oPVg9+c5xzfRNb9W+m3ffDnuYsn5a\n7P0CKAGrJlqkWlTql9eqtsvrYFBh/cPveG27vmJvQAIWTIxVfTZcaK9asQvR2CN81FH17h35\nHgUq7plwHn4CVk20XLVTuNBalTdhjfKpaq+gvED1ugpsSsCCiZmq/wzKW1U75HMsqJw3W2hh\nRebIw55ibWu9fK7nXtUH5879PN8jQoXsaK7F4UL7xLTgqBGmqo4Nyt+rFpaW0zYFAQsmlqhe\nH5TfVR2Yz7GgUt4s0tZv7b4Z9jwfaYox+R4RKqa76hq/aIetlnkdCypqfOTncXY1r9AskAQs\nmCi7NPELz6PdGQ9Rs3zSSos/zvcgUCkErJpubOL3PxdW7BoT8m+q6sigvEa1eQWm2SBgwcgE\n1Ye80rrW2pqZwGuarZdpiw933wx7OO7BqpGWqnb53ivepvpYfgeDClqgekkwd+DLkWs5BghY\nMLLhYi181SlsuoEPiBpotOqT+R4DskfAqpmGqt7i/m/pv1SLmcq9Zim9QnW0d9pqTZeKXb8h\nYMHMy4WqNz3+zD86ql7LTOA1zZoiLZwwKfRMvseDSiJg1UzfXqZ6ydiZT1ynqi/mezCooAVF\nqn2eXfDJ22Mvto+CFbjHnYAFU7Na+TeA3MQcDTXO3OR7eLrlezyoJAJWDbXqGv+913pWvoeC\nCvvgkvCz887vK7IhAQumvhnb++KWXYe+me9xoOIIWLUEAaumKn3pb11btLtmwvp8DwSVsH3W\n4MuKi9pf88DSim1HwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAA\nIMcIWAAAADlGwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcI\nWAAAADlGwAKAvHtfRIZU3+7etHc3zLBtifheMWreym99WaUHB9QOBCwAyDsCFlDbELAAIFYP\nSahz4I/+dOunVbevPTxgHd/cttBZWtbrpEaNftJ3dVKTtYdInbf88u1O03oELICABQCxogHL\nVfDH5VW1r2oOWMt69OjxomFbJ2DdFCw838j7qzj4nWiT9iJ9krZpQsACCFgAECstYIkc8O8q\n2lc1B6yKiAaslftLwWVPP91O5IebEi2eEzlma9I2BCyAgAUA8ZyAddf7nnnPD/9dgb3c5D9V\ns68aErCuFPmr89hFZGjYYNORIimnwwhYAAELAOI5AWtaZPn1/7YrWlTNvmpGwNrRRPZ1z1x9\nKnJy2OCq9DRFwAIIWAAQLzVgWQvqiRSsqpJ91YyAZY/yt17pByLf+etfK5D/+i5lGwIWQMAC\ngHhpActqZ9eMdQpv2IVXrfW9jm5wyCf+uld6n3lo/WYntZ7o35zU3G4yP7LtI/byLV7xyzsu\nOvqAugcc23rMlmBtcsBK7cuy5tvrX7as9YN/3qRe0zOv+zzS8fZJbX7StMHh59+xPjrU9C6i\nwm8RltNvIBKwJohc7pXOE5njrz4h9W/JImABFgELADJID1j/EP8eJCcPTd94knPf+/vumo9/\nEd4If/hkt+Zxu9gvsm2hvezO87DjL/XDtgc/5a+NBqz0vizrI3vhWesJ/zt8Uv/hsN/ZRweN\n9xsZVsZ1ERUGrMz9hiIB6y6Rm71S2/Cvpp9Icdo2BCyAgAUA8dID1hN2TS+n8IldePx6CQPW\nrP2d4g/O/HFd59G9//v7xiI/Tmy6qaHIz5xCmXrfR/zhge7MD1O81ZGAFdOXZX1mF594rI5I\ng6b1nOo6r/n9TnBb1d3H7fQaq5wuosKAlbHfhEjAGihyq1fqIjLBG3g9abombRsCFkDAAoB4\n6QHrAbtmgFNYahdG7y8n9R124wpn0Q5LdXots0sb73Ny07+cNh3swoJw04n20t1O4T67cOj9\nzuW8z65wvpb4rbs6EbBi+7KWO+ubFPz5A8va/uKp9sJ5Xrfz6os0/NuSXdbXdzV2Ql85XUSF\nAStTvxGRgPV3kUFeqbPIROdx55ki49P/6ghYAAELAOKlB6yuds2jTmGFXfidXFfm118gUvCI\nX/74AJGjSuzC9CCNuVSkrjv9+TF2+HkvsgdvQvVEwIrty1rpXAIM6r85yG7zjVu08029V7za\nl+qI/LA0cxdRYcDK1G9EJGDdLXKjV2ot8rTzOETk/1nWhgFn7L/PcVctC7chYAEELACIlxaw\nVjWyw5EbQL5wLqf9JshX79oLXcJWo8S7fLajqchPgsqNDUUudArOua/fBrVON25tImDF9+Xt\n8Iqguru9MMspvGIXrg5qL7UXnsvcRVQYsDL0GxUJWI+JXOKVfiEyz374zz7SeIW15IfeHVyN\nXg62IWABBCwAiJcasNacZVe0d4tuLnkhWNHLXvg4bPa9HcOKnMLl4t/Wbrnfv/Njzrblby0M\n2x4pcrxbCANWhr6cHRaE3/Ebay896BSutAsfBbUzf3D6/03K3EVUUsCK6TcqErA+9u8js0oP\nkHolllX2a5GRVunpImc/8MjFIk3X+tsQsAACFgDEiwasneteu+lge/lAL4w4uaTxzqChHTCO\niWx3oZ00nEfn9NJgv05FGm1O38WZIoe4hTBgZejL2WF4OsyabS/d5RR+LHJYWqcZuohKClgx\n/UZFAtau/5K6q/yn9iv7YbTIOWXWePtP5++it8gN/jYELICABQDxYn6LsPFL3ionl5wbtPu+\njsgFke2us1d+bT/uOkLkp16Vc4WwXcwuzhZp5haCgJWpL2eHHcLa1/3W2+p4QSdJpi6ikgJW\ner9Joj+V00/kUvth5zkiD9sbHyANP7Gs80VmOyvX1JMjdnntCFgAAQsA4qUHrF8Es4o6uaST\nFVlodFTCQfbym86KPnZhmdtkvH97lGvbE38++7B9gz6TA1amvr6I3mzl5iOntTPJQpvUYWcc\nTkRSwErvN0k0YH17qMiFo+/9mcjpOy3rIvcMXek+su8Od61dvdhrR8ACCFgAEC8lYB3dJfGL\nxk4u6RksLEg/0+Xdn/W2XRjuNrGjyCHBFcVHj0hqmRywMvXl7PC6cPdBEHpPorez7244EUkB\nK73fJNGAZb11oNfhjz63n4gXsxbbD97KLiKPeSUCFkDAAoB4TsAatdjzyVfboquScsmbMYlm\nqrvmOJFfOo8bGiTy2CAvrZ1T2MF2cGrAytRXfBByfrGnW+qwMw8nuU2lApb1dZ8T993v9IGb\nLGvtIVLPmW9itsgfvHU3idzhlQhYAAELAOKlz4MVSsoliyRyvTDJzSIFX1neFUL/Kt2LBXa5\nxwq/Qdo9WJn6ig9CH9iPnVObZh5OQuUDVkJ7/6eApom09moG+z8kRMACLAIWAGRgGrCcyTqb\nxzZzfulvlP34J5Fj/aoL7KoRYYOfpQasTH3FB6Fl9mNhatPMw0nIQcB6TuR4dwLTScHcFdbw\nsC8CFkDAAoB4pgFrR0ORU+LbnSryO+8K4S1exZY6Ij8qC9cfkRqwMvUVH4R21A/vf0ooZzhJ\nHWQXsDYdKQVz3FLiDNYQzmABCQQsAIhlGrCsn4vU3xjbzo4c9b6zxkk446jzK9Fdw9WfSmrA\nytRXhiB0ikiD78PqTxYv/qLc4SR1kF3Aukqku1d60f21HAf3YAERBCwAiGUcsK6VpF+j+SSR\nbpxreI9bzUV+7lfMsyt6h6uvSQ9YGfrKEIScIT4d1DrXBq8sdzhJHWQVsOYUyJGbvOJ/RP7H\nK3USecIrEbAAAhYAxDMOWM7ECCeVBkslP6j/u/Bbe/8rcsn3+4rc4y9/Gr1B6r0G9lIjtxgG\nrAx9ZQhCc+zCr4PaYfbCv8ofTrSDbAJWyQkiM/zyrv2kgfdr0j8R+cyrI2ABBCwAiGccsKz/\nsxcv9++s2lEs4Ykcy7pX5IgZInVX+8ul+4sc4M+rvuiI/X5pt13nlMOAlaGvDEGozA5wcqtX\n+ZGdag7fXv5woh1kE7D6iXQMF1RkuvO4tCC8lZ+ABRCwACCeecD6vLG9/LvX7ExT8sRP7eJv\nwzWr64pcEN6kZOtsrz5nqV34auC+MurGINEkAlZ8X5mC0Pz6dvHit74vW3b7AeGVwczDiXaQ\nRcB6r54cui5celLkF84sqh1FbvOrCFgAAQsA4pkHLGu2E2lkv+MOdWa5kpPXJNY4Z5NEJobL\nnzkt6/74Vz+uI9KlbLqz8pSzP40ErPi+Mgahx+u4O/D+DO7uyjycSAeVD1g7zxCZnFgsO0fk\nl2MnNRc5eqtfRcACCFgAEK8CAcv64FcSKOj6XWTFQ05Voy2JihcO8NvV/asdVU51iwujASu2\nr8xB6OXjgsb7j9r9cCIdVD5gDUmZfeurE71dHfZRUEPAAghYABCvIgHLDjrXnHl4g0ZH/N/f\nPk+q/q6hhBNxer6+6adN6jY583p34oav2jarf0Sbb5ICVlxf5QShksfbnHhgg8N/d8d6g+FE\nOqh0wPrPPtLkq6QmWwef2XjfU/olBkDAAghYAIByZPqpnPIQsAACFgCgHAQsoFIIWACAzAhY\nQKUQsAAAmRGwgEohYAEAMiNgAZVCwAIAZEbAAiqFgAUAyMwJWMf9ybbAqPkQp2k9AhZAwAIA\nZFYSTFn6ilHzVn5rAhb2dgQsAEBmBCygUghYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUA\nAJBjBCwAAIAcI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBj\nBCwAAIAcI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBjBCwA\nAIAcI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBjBCwAAIAc\nI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgAUAAJBjBCwAAIAcI2AB\nAADkGAELAAAgxwhYAPZ8l4jtJq/8tVOWkirYS9X1DGCvQ8ACsOcjYAGoYQhYALLzphtLpODz\nDOsneut/ms0+CFgAahgCFoDs+AFLBmRYfwEBC8Deh4AFIDtBwDq6LHb1l3VyHLBW13Vsy6a7\nhOEDBjwfLuS0ZwB7NwIWgOwEAUtejl09VHIcsHJpU4FI79x3CwAELADZCQNW59jVJ+/JAesV\nIWABqBIELADZcQPW8fZ/+22OWfu2vWLfw/fUgDWMgAWgahCwAGTHDVjdnT8eilnb067/Q7M9\nNWBdTMACUDUIWACy4wasgf9j/3Fu+sodTra6t+GeGrCOI2ABqBoELADZcQPWjf2dP5ekrXzS\nrd5T78HaUEDAAlA1CFgAsuMGrOvmOX/enLayyK49pSQ+YG2cPWHEoOHj526J7fa7mWOH3j7m\n3959XbsNWGULnxhx64gJb+yIW7nt3Un/uP22UY/MS52B4SUxCFhfzJg4YvD9U+Zszdzk6+mj\nbhv2z5kbY7f+54hBd4x+6pPS3ewGQO1CwAKQHTdg9Sz7b/vPH6ZOhbWuvl3bf2NMwPr67z+t\n63+/sP5vJ+xM7fSFP9b3VjZs/oa124lGF1x+iN/Xfi1fS+lp84O/rhd8z7HBeZPDBPaFJJkd\n3/OSXieGG/92eDRjrXHqfuOUpv6qwGtR5zczkvc976pDwx0c2G5W/N8fgFqJgAUgO27Auty6\n2nl4MWXdvU7lO+vTAtbOgY2S4s3xryRttrFzZF1Bj51Wl/IC1nd/Loj29cevo11N+q/kIHXy\n+/4Kk4C19sp6SY0Ovy+RIDc7FWfabS6Mtrhke2Lr1W2SdyG/TL+ECqC2ImAByI4bsC615joP\nHVLW/cyu+7H1TWrAWv+rlOghde6MrN72m+SVRbsuKydgLT0xpa9DPkx09ZfUHUkD/0SSQcD6\n/MdpW3cNr/SVOovHW2tPTm7QKdx62bFpWzd5s5J/xwBqHAIWgOy4AauLVXaM/bBv8m1IHzur\n/m6tTglYm89w40bBOX8Z/dAdXY7ywsc9ifXtvZpT+47855D2B9ulAVdlDlirf+S3Lry07Wne\nz/IcEp4pGuGta3pRr7/+tee53lXHAz5xV6057bTTnL7l4NMcb6X3vPRwd7neL/vd+/CdV53g\nddUmHKWzrx/sOt/+c78LL7u685n+Fc9n/dWlZ7qL9c+9csDQvl1/1cBdOjzp7BqAWoyABSA7\nbsC6xLIGOo8PJq3q68SoZV5wiQSsi92wUejHoF1TjnAW64bnnV71soh/P9P2YY2kwYWZA9Z5\n7uIVy9yFFV3cpXP9K3kr93UT1Vj/Fq+vL3XXFoUD6e0sJm5yT+5517nuYqul/vJzx7nLE4PW\nztwTB48SOXSMt8Vydddf4K++382Q16/3F9f/1Y1Y3XfzlwmgtiBgAchOELCWO3dC/TK6Zpdz\n4/tvrdSANd0NIgMS7b52L/L9Jlg821nab0G4+qV9vXNDsQFrnJtjHgkb3+qunewt9HPPQM1N\n7Kmnu/bjYLHcgHWPu9QnMkz3JFazdf6iM6qGB8opXwXrS3/trK+zxltyFwZF/jZecO7narDB\nArBXIGAByE4QsLxzSf+JrHnBqRibFrBOdRY7RbtY7JwNkunewodusBkeWX175oBV5p5Wuj7S\n2B3F2V7ZXXlxZOWWJk7NXcFieQGr9AfOwjnR70XOK4iObD+39UFfJdZ7v8ronXkrda4Y7pM0\nA8W1ztonLAB7BQIWgOyEAWuCU+gfWdPBXm60OTVg/dtZavJNUh/uL+2098p/c8pNo9Fk+1EZ\nA9YM92zX+kjjWe7qlU5x008OqSPyaHRHHZ2VLYOl8gLWs+7Cu0nDbOtUneoveAHrgeh654yd\nDHWLq5zicUlbf9r5lodfXmsB2CsQsABkJwxYW/cX57bvcMWmRv6ZquSAdbmz1C25j4VO3QHe\nPKBnpp3g8r8LGBew/uyUO0fbljaW+of/JJhzqnTV+0n33d/ttP/fYKm8gOXOsXB68jCfdhss\n8hbcgNUsadasPzhV3kXFlU7xQAvA3oqABSA7YcCy3HvIXwhXPOQsOjNjJQesI5NbRSrdOUJL\n3ZvBJ6TvIjZg/dApj0tq/FXchOqBSU7744Ol8gKWe4VwSPLWJe7sXf/wFvZLy3beibg/u8Wd\n7pcKnyxnKABqNQIWgOwkAtYcp9QuXOHMZnWkc0IrKWC5czbIVymdtHAq73dKn7jrP0xau71B\nhoDllT8yH+wzTvujgqVyApY7UbukTgv/S6fycq/sBqzRSatviPwFnOWelEuZ2h3AXoOABSA7\niYDl3lS+T/A9uWXOLeHuLVlJAetFZ6HBrpRO3O/7Xe2UprnJJuUs1AkZApYb6WSz+WCfNQ1Y\nM93y+pTN3Z/sOc8r75d+Ju4Wp6qtVx7ndiB/nL7dArAXImAByE4kYA0Kz0NZ/rxY7qSeSQHL\nDx5xCp317vxRB6Ts4/wMAcvtrPw7nco+vLPDL/77gLqR/RwVrCsnYI11io1SO7vZqT3BK7sB\na17S6gGRgFV2kb+3A5rf/V5qngRQ6xGwAGQnErBWOrOb/8KvPy4sJwWsOzIHrN866+90Skek\n7KN1hoDlzlX1g3IGt+0fx6Tv56hgbTkBy70b/sjU7oY7tc28shuwFiatjgYsa9MfEns8qPWD\nfH0Q2LsQsABkJxKwvDNNi92i+9uE3v3gSQFrYOaA5Tb5m1M6NmUfHTIErMFO8Tgro09OitvP\nUcHqcgKWO8wTUvsb7dT657V2F7CsXcMOiOy03u+nlFkA9hoELADZiQasiU65r1vsZpcafusW\nkwLWgMwB60RnvTslw0kp++iUIWANiGuc8G6QcJqe+MuL2jrONQ1Y7jBOTu1wjFNb3yvvNmBZ\n1rrbk36I+vRZFoC9BQELQHaiAet7J9EcUWqXSg60S8VebVLAcq+ypV17S/hr3BmsizMELHeO\n9x9l6mrjsW7TI4eFP/5sfpN7f6d4vJXiPqd2P69sELBs/xnxfw3ChFVwS6ahAqhtCFgAshMN\nWN7En87cBJOdwnNeZVLA+qezUM596UOd9f+dUvmHDAHLvWR3WKaurnFbto1+ydA4YLm/aZh2\nd9cwp/YQr2wWsGxbn+vzkyBi3ZW6EkAtRcACkJ2kgOXeeeX8+t8fneSz06tMClhTnIW6OzN2\nN8pZn/otwp9lCFiPOsV6pfE9bXdmlpdzknb1hGnAci8G7pPapTubxCle2ThgOZYNdadSlYbL\n4scKoLYhYAHITlLAsn5sLzTeZq2rZz9e59clBay33aDxccbu3LnWZVNy5cEZApY3xfvK+J68\nSbJeTqobYRqwvHmw1qR02d6pvNArVyhgWda269wer41fC6C2IWAByE5ywHIvrb1gPew8LPDr\nkgLWNveWpMczdveum0MWJdW5v5wcF7A2F3i7i/UPZ91ByV/da2kasFa45ZdSujzdqfR+bLCi\nAcuyrnDWpn0xEUDtRMACkJ3kgOVOhdXHam7/eUZQl/xbhO6POXfJ2N0WNzMl/xbhhEwBy/qR\nU74xqfHMYTYnGbnTnv5P0rqN+5sGLOtwpzwgeWwbnPNyMslbqHDAcn//uS5zNQB7BwIWgOwk\nByzrAnvplG1O+rg7qEoOWH2cpWbbkjtZmLgY584MemnS2lYZA5b788o/SWrs/l7gSMufyuqX\nSetuE+OA1dkpn5g8Snd694JV3sJuA9by1J/wcX8q+nsLwN6AgAUgOykBy73v3DnlVO+boCo5\nYC1yY8yIpD5Kj69z9q0feGU3MzXdElm7vGHGgPWqu/BipPFX7o/iOH3d6xSOie7mEzcUJb6j\n6Aasq8PVST3/2114PWmYv3WqzvUXyg1Yn99wflM35UXsdE7u7W8B2CsQsABkJyVgfd/EXnQm\nUC8Mq5IDlneKqdnyaB/umaWzvfJsN9kMj6xtKxkDVpl7jfDUkkTj7uGFwafdhssSq1afIu4l\nwn2Cy3TuybROyeMMerZOdhbOil7R836H+lF/qdyAtcoJU0duSVo7y1l7ugVgr0DAApCdlIDl\nTuHumBrWpASs2e5dVidHvqH3oFvzlLew053QYJ/54dq/i9TNFLC8eRekbXjFcazb1UNOcV1B\n8sg+PFbEa/6RX3OLs5CYCD65Z+/Gr8i3/j52b8s6KZj2ofxLhO7Jrj9FrwduOc2pGmQB2CsQ\nsABkJzVgveHlq6bbw5qUgOWdZJJDJ/tR5bN27vLvg9XunU6y/z93uEuLm4s0vjJjwPKSjPx0\nlnuq6bOu7tLPdrmr3F9GlD7eeaTFV9d1ZuhyJ3y4zN/2QbfBGKe4K73nQnfEDzy+AAAgAElE\nQVSx3ZfeUuk4d9O6c4LV5Qes19yNT3xih7+qbKZ7RqzxF7v76wRQOxCwAGQnNWBZJ7jZokei\nIjVgbTnDy2CHdL5pxG1X/tRbODK8ZWvXWV7NQUXde13sdjbcvYTYL9JbIgZ9fZzX+ojz2rU4\nscDr9zNv1Wy/n9bX92pzilM69jtvngb55Q09n7WC28Hk5JZ/PPXc9J5X/8Bd3ufCgQ88OLTj\nf7sLBfeGz2I3N7lf6fXd+Pyr/nrb33o3P9RbvL9yf8cAahwCFoDspAWswW6UeDtRkRqwrPW/\nklQnLkusXnNc8rriMvd+9WsjvSVikLXi6JSuDgt33SN5xZGfW9YLwYJ7l/3Pw3Vnx/T82bGp\no2zwSGKUuwlYpcVpz1FkSEX+YgHUZAQsANlJC1hfOjd4nxSpSAtY1o6/75sUPOr1SZq6fcV5\n0ZVX7rTGOY9XRXqLxCBr41UF0eYXfh2u2XlV0gr3rq8rogFrfsPyApb1XdeknuWcNyOD3O00\nDfcekBKvTpq5279MALUFAQtAdtIClnWhXTE0spwesCxrzd9PCYPH8QNWpHY64Vd1vHUNLnJu\nenreKXaK9BaNQZb1dvv9/a72az4nqZ/nz/UjUr0/zPCrHjmvad39j/rjK+7Cayf6GzaP7/mj\nXscHozy4eEZS17ufaHTj8F/VC5/k/q2fzPwDjABqHQIWgDxZ88IDQweNeHjmuvi10x8aMuT+\nl1Mn68xg5zuPDB9014Q529PWrHt69G23P/DKxgwb7nrjvkGD//F8/BhcK6ePHTZkzJPvV2oK\n9s3vPDHq9r/fOebJz5jBHdi7ELAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAA\nADlGwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlG\nwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlGwAIA\nAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlGwAIAAMgx\nAhYAAECOEbBg7vuDbPkeBAAAez4CFsxtFVu+BwEAwJ6PwyXMEbAAADDC4RLmCFgAABjhcAlz\nBCwAAIxwuIQ5AhYAAEY4XMIcAQsAACMcLmGOgAUAgBEOlzBHwAIAwAiHS5gjYAEAYITDJcwR\nsAAAMMLhEuYIWAAAGOFwCXMELAAAjHC4hDkCFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfA\nAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghYAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAEL\nAAAjHC5hjoAFAIARDpcw5wasZwEA1Sffn/yoJAIWzBGwAKC65fuTH5VEwII5AhYAVLd8f/Kj\nkghYMEfAAoDqlu9PflQSAQvmCFgAUN3y/cmPSiJguf6i+oVh0xtVl1f3PnfvVtWPqn7fBCwA\nqG6V+LDGnoCA5SJgGSFgAUB1S/kgfuWHIs+nfTw/LxHnu1WvXtSs/lE9VyfaTJS671Tikx+V\nVIsD1n06xbjt3b16rTFsmnXACsZVgX3unmHAynLfBCwAqG5JH8Ml1xZIXMB6LC1gPV5XfnfJ\ncXL02qDJN83kL5X44Edl1eKA1bsCAasCsg5YVTIuw4CV5b4JWABQ3aKfwu+dItIgLmD9Q6Rw\nQGC8XbH5ILndsnacI5cFTdrKj0uyOQKggmpvwNpWtGcGrKoZl1nAynbfBCwAqG6RD+G76ss+\nI9vGBawhIpOTKsbJgdvth2nSaKtX8bQUvJrNAQAVVXsD1iLdMwNW1YzLLGBlu28CFgBUt8iH\n8GnyP4us2IDVV2RmUkU3udB5WC3yuru84Qjpns3nPyqs1gSsbTMGdm1d1KHv5A3u4iT1DLhZ\n9YWw0RDV553rZFpqvTmwS4uOfWeUeisSN30vHHlFcesrRi3N0G/5ASuu8S7r83u6FhX3HLsh\naVzhPmNGY+369+Buxc3b9rp/ibMU8xTSBmoHrMXW0ru7tWrTc8LmsPGCkVe1Lep0/cS1yX8n\n5Tzf5D2nImABQHWLfAif3rPEig9YV4i8lVRxvn9tsIGMcx//LEduij1woarUloD1WVc/PWj7\nBc5yGCbmqN4QNCpppa22Wtb1qhtH+euv2+KuCQLH1lv9+sLx8f2WG7DSGw9QLZnR3KvrssaK\nCzkxo1nfO+hH/2kvxjyFtIHai5/NKPKqLv3Ga/v9oKCXlk9bsftO6yZlz6kIWABQ3SIfwh84\nf8QGLLvyk6SKn8vV7uOBcq/z8HKBzMhw6EIVqSUBa0MH1T7Pzl8w+xrVNuvsik2rHlZ9eNWq\nb3e2V/3Sb/Vv1WH2Q1/VR/XqaW/N+UcL1YHuGj9w7OqvetmkV2feY0eVSbH9lhewYhoPVH1J\nu015c+74Nqq3RccV7jNmNH2dft5dMGd0sar91op5CmkDtYPSVHdHY+0dDXKb7rK7ueRfi5bO\nH203ei5232ndpOw5FQELAKpb6idxbMC6UGR1UsVZ/hXB/WWk8+l9rHSKP3KhytSSgDVJtd8O\np1A21M4QbtUU/36jB1XH+a0Gqb5nuRGpaKh7NW6hHSwWOgU/cMxQvd79ksWCIi1aE99v5oAV\n09jeY9tBbt1C1eZbouMK9pk+mmWqvd1trJVttHNZ3FNIG6gdsNr83bmh0VpcqM3d88BPqV7l\nXap8S7X427h9p3aTtucUBCwAqG6pn8SxAetskU3j/nhY/YPO7LfCrbhAOjgPO+rIRPuhjxy2\n3vrPtb85u93T8Qcw5F4tCVhTB/Se55UW2xnBLQRhYoVq511uzdaW2tUJDXakaeNfir5XdbTz\n6AeObmF4ult1cny/mQNWTGM793Twv8DR089yMQErZTRzVCf4Xc5+dPb2uKeQNlB7Rx39HV2j\n+qn9UHaZ6gd+N4NVp8btO7WbtD37tnzp+axhQwIWAFSr1GNNbMA6Qeqc6M+C1WC4U9FDznIe\nPhKZb1nz6sgU6/mG7mpuda8utSRgJWxR9c6DhmHiOtX5buFFPz7YkWaE33q+qvta8wLHMtWe\n/ooVL779pRUV9mvyLcKwsZ17HvTrhqnOTRpXImCljGZecJEvlPoU0gd6a3DOzLKGqzo5b6nq\npcE5qLmq/WL2ndZN+p49U38aOJOABQDVKvUTOTZgHWZHp6adh4zo/l92YYhd8YTUcy5vDJOm\n263tP5EW1sZDpfnKrfcXyDNxH/PIvVoVsEq3btnynWpbdyEMEy+oDnYLA1S/ch7tSBN8m/Vb\n1RbOuSEvcMxOZJ3M/e4uYCU1tnPPa379aNWXksaVCFgpo9nUSnX4smifqU8hfaD2jl5P3pG9\nzdBg7Wp7PGXp+07rJn3PHgIWAORL6idybMBqKNLb/Qr5938WqbPYsrb/QFputT5sJn3tQ4cc\ntMp6QBpvtNe3839IB1Wu1gSsBff0aF/off8tJWCVFGuR86raVKTerwTYkcb/kp9VZm/irPMC\nxyOq43fbb3kBK63xrYld3a/6YtK4EgErdTSznT6uHP3axqDf1KeQPlB7R4uSd2S3GRusLbP7\n25q+7/Ru0vbsIWABQL6kHmliA9Z33wWf22W/E7nc+TxvKI2OLpDTtlgLG8jDltVKCp3Vj0m9\nbWlboyrUkoBVMlgTUgKWc2uTc1ffTNVZ7rIdaT4LNixWdU6ieoHjQdXHd9tv5oAV0zgy/2c5\nASt1NNaHN3hzJ/SfUxb7FNIHmr6jMd7NWZ5WqmvT953eTfqeXc+e5/nt6acRsACgWqUea2ID\nVsQskaOcx3eKmjU4ru8Gq/QsucBePNE5l2VZ74u8V97WyJlaErBuV23z2JLvSi1re3rAWqzq\nTAdys7b+3l22I83nwYatveThBY6HVB/Zbb+ZA1ZMY7OAlToa26cT+7inwm7YEPcU0ge6+4C1\nLn3f6d2k7zkJ3yIEgOqW+km8u4D1vUid0sjyndLYOWodIs4kP9YXIrPL2xo5UzsC1nLV1n7q\nKUkPWFYPJxN921zv8hbtSPOxv8a5KOdctfYCx2Oq9+2234wBK66xWcBKHY1n09xhRar9455C\n2kBjdvRo4rZ3a5cdmErS953eTcyeowhYAFDdUj+JdxewyuqIRH7VeUkjb6pR/2GNyLTytkbO\n1I6ANU31Hr+4PCZgPaU60WnzobdoR5rgFy+/tUOR8+gFjle8yUDL7zdjwIprbBawUkcTWtEp\nuLUq+SmkDTRmR7OCG+Ntq1Tbxew7vZuYPUcRsACguqV+Eu8uYNkRar/EUtl5co47z09TudN5\n+CL1RwtRVWpHwHpI9Um/ODkmYG1qoZdb1+hl/m1FdqR5yF/zrj9hlRc4Vqp28tusvPfeZ+L7\nzRiw4hqbBazU0STYHU2PeQppA43Z0TLVS4L7qOwkdUvMvtO7idlzFAELAKpb6idxXMB6qtuF\njwblx0R+lVjzgDT0fkPnWLnJefjAnRgL1aB2BKwJ4dfh1rdXLXZLUyL3IA1VtTNG8OqzI01X\nb75y6z7/Opofdq5UfSvscWJ8vxkDVlzj+IDljSsRsJJHUzb+lmFBn9OCG/NTnkLqQGN2VHa5\n6jt+1c3+L0Sn7julm/g9RxCwAKC6pX4SxwWsB0VO8b8cuONMkTvCFV82Ef9ihop7XJosdbem\nfbijKtSOgDVHtbt7S9/aq3t38O9jmhGZ5Ok91XZa+LW/ZEeaQu+njD9roYXuHeZ+4Jhphx33\na3yftdKir+P7zRiw4hrHBKxwXImAlTKafv6MWZa1rZfqyrinkDrQDDu63LtRfZZqp5K4fad2\nE7vnCAIWAFS31E/ipIB1TY8ezmTTW5qJtHU/8Tfbqw9OTLWjcsZOr3S3NHMiWCf5dewhDDlX\nOwJWSXvVm95Z8eHYNi2X9VW9b/lay/pAtcXEl55wL4E5PxujNwat7UgzWgfM+eyjycXq3zXu\nB46y/qoX//OlGXf7P34c12/GgBXXOCb3hONKBKyU0SxqrnrLc/MWvPHIZYnJQpOfQupA43ZU\ndrMdn55avOSNOwu1+btW3L5Tu4ndcwQBCwCqW+Iz+LUBjlNEOjiPzo84OxOMvu88PlnHzlU9\nRtx1xcEi9RLXHyZJvff94rom0meXNauePJHhSIocqx0By5rXwp99aqE13XkcZ1m7urs13ndV\nH9Pw3IwbaVYO86er6u+dU/UDh1UyyK8vHJ+p38zTNMQ0jsk94bgSASt1NHOKw+m0hoQTwiU9\nhbSBxuzIKhkS9NLev+Keuu+0bmL3nEDAAoDqlvgMHiJRJzhVQcCy/tU0qP/vf4cbrD1EEl8I\nf7SOHH6CSLv4IxhyrpYELGvpsEuKWveavMGySsd3bXnFHLvqm8EdW3YZ4N3EvbZQi8NvrTqR\nxnp9UNcWHfrN9O/xDgKHZb07vFtxq8tHfZ6x33Jmck9vHJd7gnFFAlbKaKzvptzUpWXzi3vd\n91Gi86SnkDbQuB1Z1qJ7rixu0fnmaeEF95R9pz/fuD0nELAAoLolPoPLC1jW+uEXHN5w3yML\nx0T+77i9nBhZevmCJvucPjI6RRaqUm0JWLuxUnVkuGDyc83Vx3Q0SU8hTwhYAFDd8v3Jj0ra\nSwLWKNWl4ULNDFhJTyFPCFgAUN3y/cmPSto7AtbKIr0psVQjA1byU8gTAhYAVLd8f/KjkvaK\ngPVdd9VPEos1MWClPIU8IWABQHXL9yc/Kqn2B6wP5k9ur3p/pCb7gLV1bZpvK9uXwWjSn0Ke\nELAAoLrl+5MflVT7A1YnZ86BW3dGarIPWJM0TafK9mUwmvSnkCcELACobvn+5Ecl1f6A1V1b\n9wnnP3DVuICV/hTyxA1Y+R4EAAB7Pg6XMEfAAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghY\nAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcwR8ACAMAIh0uYI2AB\nAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4XMIcAQsAACMcLmGOgAUA\ngBEOlzBHwAIAwAiHS5gjYAEAYITDJcwRsAAAMMLhEuYIWAAAGOFwCXMELAAAjHC4hDkCFgAA\nRjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghYAAAY\n4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcwR8ACAMAIh0uYI2ABAGCE\nwyXMuQHrWQDP5vvNCGBPR8CCOQIW4Mv3mxHAno6ABXMELMCX7zcjgD0dAQvmCFiAL99vRgB7\nOgIWzBGwAF++34wA9nQErNz4i+oX9sOtqh/leyhp/LHlAAEL8OXmLQWg9iJg5QYBC9irJL0z\nPul16oENjtBxpWnvmV3PtDumcYPDzhu82q949aJm9Y/quTrRYqLUfSc3708AexQCVnbu0ynu\n4929eq2xqipgBTupJH9sOUDAAnzRN8atdcVz2lcpb5mV/+uvkUZj3IrH68rvLjlOjl4btPim\nmfwlN29PAHsWAlZ2eidnn6oJWL2zC1i5Q8ACfJH3xR0iBX8aOqrPESLHb0l6x2w4zg5d/5g7\nb+oldUTG2hWbD5LbLWvHOXJZ0KSt/Liket6+AKoXASsr24qqIWCl7iR/CFiAL/G2WLKPNJzt\nFDb9XuT6pHdMP5E/7nBLj4s03WpZ4+TA7fbSNGm01WvxtBS8Wi1vXgDVjYCVlUVaDQErdSf5\nQ8ACfIm3RXdxzko51h8g+26KvmOOFXnfL54mMt2yusmFzsJqkdfd2g1HSPeqf+MCyAcCVkbb\nZgzs2rqoQ9/JG/yKG1V3WZ/f07WouOdYt26SegZEb3JfbC29u1urNj0nbHaa3Kz6QtjjENXn\nnQt+Wmq9ObBLi459ZyTuiV32wNVtW1zSb2rw8dxXC8tKxnRsMTmyk5hmaWOy7fr34G7Fzdv2\nun+Jt+yObYDqzHBn9qheie0ubdtkBCzAF74rdjST/Tb75d4iD0ffMXWlzna/2EFkpGWd718b\nbCDj3Mc/y5FJiQxA7UHAyuSzrn6y0fYLvBo7o5TMaO7VdXFuG48NWJ/NKPJqL/3GrpijekPQ\nY0krbbXVsq5X3TjK3/I6/46NnaPDnc31auwMtK2/vfxQNGClN0sbk/1/0b2DRvpPt8Id2yuq\nfw0GsqG5FpfEdpe2bTICFuAL3xVzxTsr5XhepHX0HbO/FAQ3WNkB6yHL+rlc7S4dKPc6Dy8X\nyAyDDyMANREBK4MNHVT7PDt/wexrVNusc6sGqr6k3aa8OXd8G9Xb7IpNqx5WfXjVqm+jAWuq\n22Ss3WSQXbGzveqXfpf/Vh1mOeem9FG9etpbc/7RQnWgt+oO1c6Pv7tk3j3Ntfk8t+Zvqi9q\ny743T4vsJKZZ2pjc/vs8++6COaOLVd2jgDu2kmItCv5X+TnVEfF7Tds2GQEL8IXvipEiNwXl\ndSLHRN8xfwguBVrWGVLwqWWd5V8R3N85nWVtPVY6VeRTCUBNQsDKYJJqP/fu1LKhdr5xqwap\nth3k1i1Ube6ee5oS3B6VCFht/u5eE1hcqM2dQPOg6ji/S3v79yz3ql7RUPfa4MIi1YVO4RXV\nXl76md9cLynxG1/X51sraSfxzVLGtEy1t3db7co22rksHNudiYuV/VQ/iO0ufdtkBCzAF74r\n+oiMCRcaS93oXFivivyvd5b6UZFi++EC6eAs7agjE91ND1tv/efa35zd7ukMn0MAai4CVgZT\nB/T2TupYi+3U4Rbs9NTB/+pPTz8ZxQSsjn6Ta1Tt/2G1Vqh23uVWbG2pXZ3MYgesNv65pHtV\nRzuP3bVwpb/fe1Rf9HfWwp+9KtxJfLOUMc1RneA3mv3o7O3h2Oar3uJVry/ULmWx3aVv6/l0\nnOfBww8jYAGO8N3RUWRauHCMSNKkc0NEjr3r5Tf+1amOnOHcM9BDznKqPxKZb1nz6sgU6/mG\n7jRZ3OoO1DoErN3aouqdxrfDzIN+3TBV966lmIAV3OM6XNVNaNepzncrXvTTy43+BTrLDT3O\n5+qXquFUgwtUB/s7G+JXBTvJ0CxlTPO8a5MR3thKOwbXCJ9WHRvfXfq2nqk/DZxJwAIc4buj\nSOT5cOFkkc+T3jvPnufNM3rUTRudxSeknhPAhknT7db2n0gLa+Oh0nzl1vsL5Jm4dx6AGoyA\nVa7SrVu2fKfa1l2ww8xrfv1o1Zecx5iA9XpKkxf8KOTcj+5O83xj4vt836q22GVZs/0TWY7v\nVS/3dxZ84gY7ydAsZUybWqkOXxZ9Ev7Y7ld1J+tx7rJfEd9d+rYeAhaQInx3XCTyUrhwhsin\n0bfOd9cf7gWs+r9xt9j+A2m51fqwmfS1PxHkoFXWA9LYSV7t5Pz09x2AGo2AldGCe3q0L/S+\nURcGLP/7hE5Yca/QxQSsRSlNnLvLnU/QTUX+CaMbE92U2f3b6yZrkhb+zub4rYKdZGiWOqbZ\nzqCvHP3axuCJ+GNb7E/1sMa/5BnXXdq2HgIWkCJ8dySdwTop+QzWymOk4LI3N21fPuZH/q3w\nsxtKo6ML5LQt1sIGzpQOraTQqX5M6m0r9+MIQI1DwMqgZHAkfIQBK5hFtJyAldrEudHKuYN1\npuosd9kOWJ8FeylWXWNZDyVHHd3p9fSh3yjYSYZmaTv88AZ3dWH/OWXRsVndtMiZrmeqN57Y\n7tK29bx3m2fgUT8kYAGO8N3RSeTJcOEokXWRd86vRPxL+N+dIuKeQX6nqFmD4/pusErPkgvs\nxROdc1mW9b7Ie+V/IgGoaQhYGdyu2uaxJd+VWtb2LAPWYlVn6pubtfX37rIdsML/x22tutay\nHlYdsSBiV3JPwU520yzcoWV9OrGPe+7thg2RsVmPeA2u0aINmbpL2zYZ3yIEfOG74gaR8Fp7\nWUOpvyvxhpkr8vOg/KTIn6Jvpjul8XL74RBx5m6xvvDjF4Dag4AVb7lq6+VesSTLgGX1UF1u\nfdtc7/IW7YD1sd/GuUS42b1Y91DqAGIC1m6aRQKWbdPcYUWq/SNjc+5qH2hZq4LJt+K6S9s2\nGQEL8IXvigdEwsmEV4icGHnDDBbpHVl1UGTVkkbeVKP+w5roVxEB1AoErHjTVO/xi8uzDVhP\nqU50OvQv+dkBK/h112/tGGe5M5CmfXkvJmDtpllywLKt6OTdERYELKuPFm2xHg9u7orrLm3b\nZAQswBe+K94VOTcoPybSOfKGuUHkb0F5g0idxJqy8+Qc91RXU7nTefhCZKYFoFYhYMV7SDW4\nr2JytgFrUwu93LpGL/PvaroxceboXe9+81WqF+9MGUBMwNpNs7SA5Yx8uhUJWE852aqXtvUm\nuIrrLm3bZAQswBe+K8p+KA3W+uX2ySeiBot0CcofiBycWPOANPzELRzr3fv+gTsxFoDahIAV\nb4LqeK+0vr1qsVuKD1iT3YryApY1VPUV1Uf9JTtgdfWmS7fu86fN6p2YuWHB5WOWp+ws3En5\nzbwdlo2/ZVjwJKZ599WHAevbQh3xteq9/uq07mK2TUbAAnyJt0V/Ef96+tL6cvCOyBtmtsjR\nwcTu90bvwfqyiXiTt1jqTvBuTZa6W9PebwBqNAJWvDmq3d1PxrVX9+7g3igVm55mBJOGlhuw\n3lNtp4Vf+0t2wCr0fkn5sxZa6N7vbsevtt43C1d3U12SsrNwJ+U383fYz59/y7K29VJdaUUC\nlnWzdnzKn4M+trv0bZMRsABf4m2x5kCpO9UpfH2GuD8xaFnX9Ojh/ATpjmNE+nhnrj9pJjI1\n3ETlDP/s8d3SzJmfoZP8Ou3tBqBmI2DFK2mvetM7Kz4c26blsr6q9y1fG5uePlBtMfGlJ8rK\nD1hll6nqjUHXdsAarQPmfPbR5GINbnwfqtry/rc/fn1MG9VRbk2kp3An5Tfzd7ioueotz81b\n8MYj9l6HOisSAetF1UvDS5Ux3aVvm4yABfgi74sJBSK/v23EFU1FzvO+Q9hQ5H33HVdf5Oz7\nXn7z6WsaixSF77xJUu99v7iuifTZZc2qJ0+U/4kEoMYhYGUwr4U/BdZCa7rzOC42Pe3q7jYq\nLT9gWY9peGrIDVgrh/lzT/X3JxcsHeVPaaqFY7xP6EhP4U7KbxbscE5xOLXVELf7RMDa2kqd\nG+4D6d2lbZuMgAX4om+MMft607XLn7xfdg4DlvXCf0ngz98HzdceIonv6D5aRw4/QaRd7McQ\ngBqMgJXJ0mGXFLXuNXmDnUPGd215xZz49PTN4I4tuwzYzRksa22hFpcEC07Asl4f1LVFh34z\nE7N5Ln2g58VFF1/zoD83RLSncCflNwt3+N2Um7q0bH5xr/v8NYmA5Zyz0i+jTzKlu7RtkxGw\nAF/SO2P59ac2aXjUxeH3QsKAZX3/YNFR+9U7+Od9FiZat5cTI//78vIFTfY5fWSpBaCWIWBV\nh5WqI8OFG51psWomAhbgy/ebEcCejoBVHUapLg0XCFhAzZfvNyOAPR0BqxqsLNKbEksELKDm\ny/ebEcCejoBV9b7rrvpJYpGABdR8+X4zAtjTEbCq2AfzJ7dXvT9SQ8ACar58vxkB7OkIWFWs\nkzPlwa3Rn6QhYAE1X77fjAD2dASsKtZdW/eJzMZg1fyAle9BAACw5+NwCXMELAAAjHC4hDkC\nFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMlzBGwAAAwwuES5ghY\nAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcwR8ACAMAIh0uYI2AB\nAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4XMIcAQsAACMcLmGOgAUA\ngBEOlzBHwAIAwAiHS5gjYAEAYITDJcwRsAAAMMLhEuYIWAAAGOFwCYOEtdMAACAASURBVHME\nLAAAjHC4hDkCFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMlzBGw\nAAAwwuES5ghYAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCnBuwngWqQL5f3ACQWwQsmCNgocrk\n+8UNALlFwII5AhaqTL5f3ACQWwQsmCNgocrk+8UNALlFwII5AhaqTL5f3ACQWwQsmCNgocrk\n+8UNALlFwII5AhaqTPSF9kmvUw9scISOK01+/T0rSc526l69qFn9o3quTjSaKHXfqfq3AgDs\nDgEL5ghYqDKR19mtdf0IddpXSa+/mID1eF353SXHydFrgzbfNJO/VNPbAQDKQ8CCOQIWqkzi\nZXaHSMGfho7qc4TI8Vuir79PByRcIVJsWZsPktsta8c5clnQpq38uKT63hEAkBEBC+YIWKgy\n4atsyT7ScLZT2PR7keszvRZby76fW9Y4OXC7vTBNGm31qp+Wgler9k0AAGYIWDBHwEKVCV9l\n3cU5K+VYf4Dsuyn+pfiMyGD7oZtc6CytFnndrd5whHSv0rcAAJgiYO1Fts0Y2LV1UYe+kzcE\nNbv+PbhbcfO2ve5fkqkiCQELVSZ4ke1oJvtt9su9RR6OfSlvPlJO3mE/nu9fG2wg49zHP8uR\nGRIZAFQzAtbe47Ou6mu/wKtZ3zuo0X/GVyQjYKHKBC+yueKdlXI8L9I69rV8tRTMcR5/Lle7\nywfKvc7DywUyIxdvFQDIHgFrr7Ghg2qfZ+cvmH2Napt1blVfp+bdBXNGF6s+G1uRjICFKhO8\nyEaK3BSU14kcE/dafreOdHELZ/lXBPeXkc7r81jplKu3CwBkiYC115ik2s+5qmKVDVV1L7ws\nU+3t1lgr22jnspiKFAQsVJngRdZHZEz4imssdUvTXoaWdZ7s+6VbuEA6OA876shEd9PD1lv/\nufY3Z7d7OidvGQDIAgFrrzF1QO95XmmxnaOcxzmqE/yVsx+dvT2mwvdyR0/7k04kYKFqBC+2\njiLTwlfeMSJr0l/K00X6e6Uecpbz8JHIfMuaV0emWM83dOfI4lZ3APlGwNoLbVF1r6TMUx2U\ntCKtwjf1p4EzCVioGsGLrUjk+fCVd7LI5+mvx59J42+90hNSzwlgw6Tpdmv7T6SFtfFQab5y\n6/0F8kzWbxMAyAoBay9TunXLlu9U2zrlTa1Uhy+LrEyr8BGwUOWCF9tFIi+Fr7wzRD5NeznO\nErnWL27/gbTcan3YTPpa1gA5aJX1gDTeaNe3k/Nz8GYBgCwQsPYiC+7p0b7Q+46gG7Cs2c7S\nlaNf2xi0SKvwELBQ5YIXW9IZrJPizmD9XuqsDF+xDaXR0QVy2hZrYQNnSodWUuhUPyb1tuXs\nfQMAlUHA2muUDNYEL2BZH97gLhX2n1OWocK1Zp5nzgH7E7BQNYIXWyeRJ8NX3lEi61JfyCvq\nyP8llt4patbguL4brNKz5AJ78UTnXJZlvS/yXg7fOwBQcQSsvcbtqm0eW/JdqWVtDwOWZX06\nsY97UuuGDZkqIvgWIapM8CK7QWR0UC5rKPV3pb4KB4pMSK2zrDul8XL74RAZ5ix9ITK78m8V\nAMgBAtbeYrlq6+VesSQSsGyb5g4rUu1fTkWAgIUqE7zIHhC5ISivEDkx7VV4itT5Nq1ySSNv\nqlH/YU30q4gAkA8ErL3FNNV7/OLy5IBlW9FJdVG5FS4CFqpM8CJ7V+TcoPyYSOfUF6Edus5K\ne2WWnSfnuKe6msqdzsMXIjMr8OYAgNwjYO0tHlINbm2ZnBawnKrp5Vc4CFioMsGLrOyH0mCt\nX24fcyLqAZG/pL0yH5CGn7iFY71p4D9wJ8YCgDwiYO0tJqiO90rr26sW249l428ZFqydpjor\nvSIVAQtVJnyV9Q+nEV1aXw7ekfoi7BZzC9aXTWSwV1JxXtrWZKm7tVJvEwDIFQLW3mKOanf3\nV0fWXt27g+pmu9RP1Z9xaFsv1ZUxFSkIWKgy4atszYFSd6pT+PoMcX9i0LKu6dHjy2D12SJv\np74wVc7Y6ZXulmbO/Ayd5Nc5eM8AQBYIWHuLkvaqN72z4sOxbVou66t63/K11qLmqrc8N2/B\nG49cpjrUbpNWkYKAhSqTeJlNKBD5/W0jrmgqcp73HcKGIu8Ha+3a1Smvy0lSL1i9ron02WXN\nqidP5PbtAwAVRcDaa8xr4U+BtdCa7jyOs6w5xeHEWEPceRnTKpIRsFBlIq+zMfuK509bvIpo\nwKorknL1b+0hkvjK66N15PATRNrl7o0DAJVCwNp7LB12SVHrXpM3WFbp+K4tr5hjV3035aYu\nLZtf3Ou+j/w2aRVJCFioMtEX2vLrT23S8KiLw69ZRALWJpE6KS/L9nJi5P8GXr6gyT6njyzN\n9t0CAFkiYMEcAQtVJt8vbgDILQIWzBGwUGXy/eIGgNwiYMEcAQtVJt8vbgDILQIWzBGwUGXy\n/eIGgNwiYMEcAQtVJt8vbgDILQIWzBGwUGXy/eIGgNwiYMGcG7DyPQgAAPZ8HC5hjoAFAIAR\nDpcwR8ACAMAIh0uYI2ABAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4\nXMIcAQsAACMcLmGOgAUAgBEOlzBHwAIAwAiHS5gjYAEAYITDJcwRsAAAMMLhEuYIWAAAGOFw\nCXMELAAAjHC4hDkCFgAARjhcwhwBCwAAIxwuYY6ABQCAEQ6XMEfAAgDACIdLmCNgAQBghMMl\nzBGwAAAwwuES5ghYAAAY4XAJcwQsAACMcLiEOQIWAABGOFzCHAELAAAjHC5hjoAFAIARDpcw\nR8ACAMAIh0uYI2ABAGCEwyXMEbAAADDC4RLmCFgAABjhcAlzBCwAAIxwuIQ5AhYAAEY4XMIc\nAQsAACMcLmGOgAUAgBEOlzDnBqxncy7fTwsAgFwjYMEcAQsAACMELJgjYAEAYISABXMELAAA\njBCwYI6ABQCAEQJW7t2ourz69/oX1S8q3XS46tsGGxKwAAAwQsDKPQJWNgHrk16nHtjgCB1X\nGjeAV34o8ny49OpFzeof1XN1YvVEqfuO4d8BAABViYCVe9UbsO7TKe7j3b16rTHcJL3pnhOw\nbq0rntO+Stt9ybUFEglYj9eV311ynBy9Nqj4ppn8xfCvAACAKkXAyr3qDVi9/YCVlT0mYN0h\nUvCnoaP6HCFy/JaUvb93ikiDRMDafJDcblk7zpHLggZt5ccl2f5NAACQCwSs3KvWgLWtqDYF\nrCX7SMPZTmHT70WuT975XfVln5FtEwFrnBy43X6YJo22ehVPS8GrWf9NAACQCwSs3KvWgLVI\na1PA6i7OWSnH+gNk301JOz9N/meRFQlY3eRC52G1yOvu8oYjpHu2fw8AAOQGAStr3zx0VXHb\n3lO3WlNUX3Eq/IDVQzW4O2ig6id+ceHIK4pbXzFqabj5gpFXtS3qdP3EtYked9umrxaWlYzp\n2GLyJPUMiN65vtvNw6Zr7r+i1cU9x69LBKxd/x7crbh52173L4l7qlUdsHY0k/02++XeIg8n\n7fz0niVWNGCd718bbCDj3Mc/y5HJiQwAgLwhYGXr7TZexrniq4dV3XMp5QSsrbf6iahwvLfm\n+0F+hbZ82m9s0OZm1W397eWHYgKWweZB0/nFXn2HRUHAWt87aKv/jHmuVR2w5op3VsrxvEjr\npJ1/4PwRCVg/l6vdxwPlXufh5QKZsft/LQAAqgUBK0srW6le98qnb9+h3Uf6KSVzwNplp6LL\nJr06854i1UluRV/VS/61aOn80XbNc5Zpm7+pvqgt+948bdMqO9U9vGrVt2FqMtncb7q6tWr/\nuUsWTm7feaA/dLttn2ffXTBntB29YqanquqANVLkpqC8TuSY9BFEAtZZ/hXB/WWkM7RjpVMF\n/+kAAKgyBKwsDVUduMspzNJWuw1YM1Svd7/ntqBIi5yZEp5SvWqD2+Qt1eJvTdsMskNdH7fk\nXJf07sHyU5PJ5n7T4aq3ljnLX3dUb+jLVHvvcNuubKOdy9KebFUHrD4iY8KFxlI3fS6sSMC6\nQDo4DzvqyER308PWW/+59jdnt3s6bSMAAKobASs7JS218GuveIfuNmB1C29/v1t1smWVXab6\ngd9msOpU0za3qrbwZ7JKDVgmm3tNt7cOhz7TH/oc1Ql+29mPzt4ePsstX3o+a9iwSgNWR5Fp\n4cIxIukTe0UCVg85y3n4SGS+Zc2rI1Os5xu6M2hxqzsAIO8IWNl5X7WPX/xstwFrmWpPv2bF\ni29/aVlLVS8NzhPNVe1n2MYJWEP8qpSAZbS513SBam9/xfctvKHPUx0U9yyn/jRwZpUGrKLo\nPO0ni3yeNpJIwHpC6jkBbJg03W5t/4m0sDYeKs1Xbr2/QJ6Jew4AAFQjAlZ2pquOCsoddxew\nZquOSNr6BdWhQXm1atsyszZOwApCRErAMtrcazo90rSnN/RNrVSHL0t/ltUVsC4SeSlcOEPk\n07SRRALW9h9Iy63Wh82kr2UNkINWWQ9I4412fTs5P/0ZAABQrQhY2RnvXofz3Ly7gPWI6vik\nre2KsUG5TFW3mrVxAtYcvyolYBlt7jUdH2n6d3/oswvtJleOfm1j8rPMyxmsk3ZzBsua3VAa\nHV0gp22xFjZwpnRoJYVO9WNSb1vadgAAVCsCVnbGqD4VlG/fXcB6UPXx1K3DeGa1ctubtHEC\n1od+TUrAMtrca/pAZM0dwTxYH97gTfHQf070Fvdnz/P89vTTqjRgdRJ5Mlw4SmRd2t93NGBZ\n7xQ1a3Bc3w1W6Vlygb14onMuy7LeF3kvbTsAAKoVASs79ycu1lnDdhewHlJ9JGnr1PSzzqyN\nE7A+8mtSApbR5l7T+yNrhiRmcv90Yh/nNJbesCH92Vb1twhvEBkdlMsaSv1daSNICliBO6Wx\n8xd+iAxzlr4QmZ0+dAAAqhMBKztjI79UMyBjwBrgBazHVO9L2vpR1XC28l12qCkxa1NOwDLa\n3Gs6LnKJ8K9JP5Wzae6wItX+6c+2qgPWAyI3BOUVIiemjyAuYC1p5E016j+siX4VEQCAvCBg\nZWeqajhzU9fkgNVTNZhmoLcXsF5RvS1p61mqg4PyKtV2hm3KCVhGm3tNn1K9K1jz59TfIlzR\nSXVR2rOt6oD1rsi5Qfkxkc5pA4gLWGXnyTnuqa6mcqfz8IXIzPQNAQCoTgSs7LyhGsw9vjJl\nmoY+4YxUJUVewLJbdPJvbVp5773PuJMqXBLc62RHo1sM25QTsIw295q+q3q1v2JdYdqPPU9W\nnZ72bKs6YJX9UBoEZ/3ax56IiglYD0hD73eIjvWmgf/AnRgLAIB8ImBlZ71qS/8nhu9JCVh/\nU33VW/OU+hONXqn6llc1QXWiHSguV33H7+lm1edN2yQHLO9OKn+iUZPNvaZbirTwK2/FZG/o\nZeNvGRY8sWmqs9KebVUHLKu/iH9lcml9OXhH+t93esD6son4p+hUit0nI3W3pm8IAEB1ImBl\n6bpgIqxXCy9ODlh2wOnnXrpaXNzWD1gzVbu6lw0/a6VFzizqM1Qv924mn6XaqcS0TSRgzQhm\ns/IDlsnmftO/qw5wf4zm0+Lm3tD7qfrzUG3rpboy7clWecBac6DUdSeb//oMcX9i0LKu6dHj\ny0SD9IClcsZOr3S3NHPmZ+gkv878zwUAQLUgYGXpHVW99a0l795V2G9EcsBaUWgnrNnvzrm3\n6Nr7/YBV1l/14n++NOPu4JeYy26289BTi5e8cWehNn/XMm0TCVgfqLaY+NITZUFqMtncb7rU\njlXXzJg/Z1SLrnd7Q19k19zy3LwFbzxyWWR+0oQqD1jWhAKR39824oqmIud53yFsKPK+8/ja\nAMcpIh2cx5HBBpOk3vt+cV0T6bPLmlVPnsjqXxQAgOwRsLL1uDupgep1m1IClvW4t0J7rhun\nutBtXDLIryv0v8BXMsSv0PbBjUMGbSIBa1d3d01pkJpMNg+avlTk1XdYPFb1DadmTnHQVofE\nzNZZ9QHLGrOveP60xasIAtYQiTrBb772EEl82/HROnL4CSLtKvCvBwBAlSBgZW3R0C5FbW54\nsdT6/+3deZyUxZ3H8d8Mwym3Z1jvKxJd16BGV92sQX2ZjSlulTtg1IgYEI8EFy880OALkiii\ncVdZ0aBAohIx8QSjSYQYxVURRAUvRPBAEBjOebaeo59+erqepqbnYbr72c/7D7uequrqkqLm\n+dL9zNOTg6udMgHL+ccNQ3r1G/2HWjdqZeLTK5MuOLvvhVOy9yh/89cXnd176NWPRq4b2mmf\nSMBy1kwY3GfYdeE7WDZPD7t+ePv5fc8dOe0z95chn/dq1s4eN6xPz/6j7gzHj2qCgOW8f8XR\nHVoe0D+8wr5wwBooR0SC4LwzOrQ65o7tpqkDANCUCFjJuVmpJaWew67VFAELAIAUIGAl56Ls\nnUVTioAFAIAVAlYjzZ04Ovg07QOlhpd2LrscAQsAACsErEa6V6krvHsf1P4s+LW9FCNgAQBg\nhYDVSGsHK3XBIy8vevRC/Zj2G1wSsAAAsELAaqz3hmdubHDxJ6Wey65GwAIAwAoBq9E2z716\nSK++w296Lv23B/ACVqknAQBA+eN0CXsELAAArHC6hD0CFgAAVjhdwh4BCwAAK5wuYY+ABQCA\nFU6XsEfAAgDACqdL2CNgAQBghdMl7BGwAACwwukS9ghYAABY4XQJewQsAACscLqEPQIWAABW\nOF3CHgELAAArnC5hj4AFAIAVTpewR8ACAMAKp0vYI2ABAGCF0yXsEbAAALDC6RL2CFgAAFjh\ndAl7BCwAAKxwuoQ9AhYAAFY4XcIeAQsAACucLmGPgAUAgBVOl7BHwAIAwAqnS9jzAtYsAACQ\ntcZ0yiRgwZ4XsAAAQMTzplMmAQv2Nv3g+506lfrvMZLRsVOnTtWlngQS0V6vZU2pJ4FEtNVr\n2aLUk0DDEbDQSLXHaqX+e4xk/IteS36Qp0NXvZZtSz0JJOIQvZadSz0JNBwBC43kBazTkQrH\n6bXsXupJIBHf0Wt5aqkngUScqNfyu6WeBBruf02nTAIW7HkBq9STQDJO02u5qtSTQCIG6bVc\nVOpJIBGX6bV8stSTQEIIWLBHwEoRAlZ6ELDSg4CVJgQs2CNgpQgBKz0IWOlBwEoTAhbsEbBS\nhICVHgSs9CBgpQkBC/YIWClCwEoPAlZ6ELDShIAFewSsFCFgpQcBKz0IWGlCwII9AlaKELDS\ng4CVHgSsNCFgwR4BK0UIWOlBwEoPAlaaELBgr26dVupJIBnr9VruKPUkkIgNei23l3oSSMRG\nvZZbSz0JJISABQAAkDACFgAAQMIIWAAAAAkjYAEAACSMgAUAAJAwAhYAAEDCCFgAAAAJI2Ah\n3sf3jBrQe+j4p0y32CnUhjIUu2CLVMSYUkwNDbb4AqX+YmxhY1aamLVkX6YAAQuxZvcKdveI\nTxvUhjIUv2B/4Qd5pdk2rYeKCVhszAoTu5bsyxQgYCHOY3pfXzN77n3nKTV8fQPaUIYKLNiT\nSo2fkcGXdFSA5Zco1dscsNiYFSZ+LdmXKUDAQoxVfVWvhW5h841K3W7fhjJUaMF+r9RzpZgT\nivR4b9XnsV8aT8pszApTYC3ZlylAwEKMu5Wa4ZdqB6ueX1q3oQwVWrDpSi0owZRQrDHq4uWO\n+aTMxqwwBdaSfZkCBCyYbR+ken8dlB9U6hHbNpShggs2Vak3mn5KKNqYqVsc80mZjVlp4teS\nfZkGBCyYLVFqbKa8WKn/tG1DGSq4YLcptbzJZ4TieatlPCmzMStN/FqyL9OAgAWzuUrdlylv\n6aHOtW1DGSq4YNcrtbrJZ4RGMp6U2ZgVyRyw2JcpQMCC2b1KzQ0Phii13rINZajggl2pj+ff\nMLRX/1H3rWrymaFIxpMyG7MimQMW+zIFCFgwmxTd9D9V6kPLNpShggs2QqmLg7vt9Hq4rsnn\nhqIYT8pszIpkDljsyxQgYMHsZqX+Hh5crtQyyzaUoYILNlT/BO8/afacu4frwgNNPjcUxXhS\nZmNWJHPAYl+mAAELZjco9Wp4MFapJZZtKEMFF6yvUndtdAvb7tE/yd9p4qmhOMaTMhuzIpkD\nFvsyBQhYMMv5x/BlBd7Buox/KJe9ggu2ccPGTPFGpSY24bRQvJ2/g8XGrBTmgMW+TAECFswm\nRzf9JUp9bNmGMmS7YMuUOperPSqC8aTMxqxI5oAVwb6sVAQsmE1T6vHwYKBSGyzbUIZsF6yu\nj1LrmmZKaBzjSZmNWZF2GrDYl5WKgAWzJ5X670x5o1KDbNtQhqwXbIBSnzXJjNBIxpMyG7Mi\n7TRgsS8rFQELZu8qdUWm/IpS423bUIZsF2xLD6W2NM2U0DjGkzIbsyLtNGCxLysVAQtmdedl\nvyx2qlJP2bahDBVasAVTrpuXKeuT8sgmnRiKZTwpszErknEt2ZdpQMBCjOlK3euXPu+n+m20\nbkMZKrBgTys1IvjXcd1YpaY39dRQFPO7HmzMSmRcS/ZlGhCwEOOr/qrHn93C+iuVesivu/fu\nu1fHtaGMFVjMzYOVmvC1W7HldqXO+apkc0RD5J6U2ZiVzLiW7Ms0IGAhzrweSo2b+Ye79Ea/\nbJtfdbZSS+PaUM4KLObCnkoNmPrYnLuGKtXjb6WcJGwsnuEapdSt7uMjXh0bszIVWkv2ZQoQ\nsBDr6b7BV2GNy/y6d/hz3NCGslZgMV8aGDSpwS+XboKwNFtFDfHq2JiVqeBasi8rHwEL8dZM\nG92/z/BbXworsj/H89tQ3gos5oY51w7t03f4+Cc2l2huaIDCAYuNWUkKryX7suIRsAAAABJG\nwAIAAEgYAQsAACBhBCwAAICEEbAAAAASRsACAABIGAELAAAgYQQsAACAhBGwAAAAEkbAAgAA\nSBgBCwAAIGEELAAAgIQRsAAAABJGwAIAAEgYAQsAACBhBCwAAICEEbAAoOQWicgtTfdyL+mX\nu82yb60E5lt17xv0/nHRkwPSgYAFACVHwALShoAFAEYjJau640Fn3fT2rnutMg9Yh/fU3nCP\nVozq2qbNUT//NKfLZ3tK9YKg/Au3aw0BCyBgAYBRNGB5qn7w/q56rSYOWCtGjhz5rGVfN2CN\nyxz8qY3/R7HHP6JdBoqMyXlOBwIWQMACAKO8gCXS/vld9FpNHLAaIhqwPmwnVT+eM2eAyP7r\nsz2eEDl4Y85zCFgAAQsAzNyANXmRb+GfJnWv0scdlu2a16qQgHWRyDXu4zCRW8MO6/cTqfd2\nGAELIGABgJkbsB6NHP/1n3RF713zWpURsLZ2kNbeO1dvi3wr7DAiP00RsAACFgCY1Q9Yzus1\nIlWf7JLXqoyApWd5ql/aV2Rt0P5ilXxjbb3nELAAAhYAmOUFLGeArpnmFv6mC392vhh1YIs9\nlwZt80d326v57l37PRBcnNRTd3k58twH9fG1fvHjiT88sH2z9of0u2dDpjU3YNUfy3Fe1u3z\nHOeLCcd3qOnc7fLlkYG3zDjnqM4t9jlt4hfRqeYPERX+FmGBcTMiAWu6yIV+6XsiLwTN36z/\np+QQsACHgAUAMfID1l0SXIPk5qG567q6170v8lreOjG8EH6fh72ambo4NvLcHvrYu8/D1p81\nD/vu8VjQGg1Y+WM5zmJ98LgzK/gdPml+XzjuMwdmOu92R1hpGiIqDFjx44YiAWuyyNV+6dzw\nj2asyNl5zyFgAQQsADDLD1izdM0ot7BUF2ZeIWHAerqdW9y322HN3Efv+u9NbUUOyz51fUuR\n49xCnfJ/H3H/jt6dH2b7zZGAZRjLcd7RxVkPVYu06FzjVle/GIw73evVrJU36KVOgSGiwoAV\nO25WJGCNF7nJLw0Tme5PvEY6r857DgELIGABgFl+wPqNrrnOLbynC1PbSdef33bVB+6hDkvV\no1bo0ro73dz0O7fPIF14PXzqA/roV27hTl3Y627347x3fuL+WuKXXnM2YBnHct532ztUnf+a\n42x59mh98D1/2IXNRVpe/+4OZ9Xktm7oKzBEVBiw4saNiASsG0Ru9EtDRR5wH7d1E7k//4+O\ngAUQsADALD9gDdc1v3ULH+hCd7m8Lqg/Q6TqwaD8VnuRA2p1YW4mjXmUSDPv9ucH6/DzauQV\n/BuqZwOWcSznQ/cjwEz9mk66zxqvqPNNzXy/9rlqkf23xw8RFQasuHEjIgHrVyJX+aV+InPc\nx1tEvu84X1337XatDh2xInwOAQsgYAGAWV7A+qSNDkdeAPnI/Tjt3zP56hV9MCzsNUX8j8+2\ndhY5KlO5rqXImW7Bfe/r1EytO4xXmw1Y5rH8F/xJpvpiffC0W5ivCz/N1J6nD56IHyIqDFgx\n40ZFAtZDIj/ySyeKLNQPy1pJ2w+cd/f3r+BqMy/zHAIWQMACALP6AWv1d3TFQK/o5ZKnMg2j\n9MFbYbdNOob1cgsXSnBZu+P9/l0Qcza/v+CNsO9+Iod7hTBgxYzlvmBV+Dt+0/TRf7mFi3Rh\ncab2yX2POX1G/BBROQHLMG5UJGC9FVxH5mxvLzW1jlP3XZE7nO3HiJzwmwf7i3T+LHgOAQsg\nYAGAWTRgbfv8xXF76OOOfhhxc0nbbZmOOmAcHHnemTppuI/u20sTgjol0ubr/JfoJrKnVwgD\nVsxY7guGb4c5z+ijyW7hMJG98waNGSIqJ2AZxo2KBKwd35BmnwT/a6foh6kiJ9c59+v/un8W\no0WuDJ5DwAIIWABgZvguwrbP+U1uLvm3TL9N1SJnRJ53uW5cpR93dBE51q9yPyEcYHiJE0R2\n9wqZgBU3lvuCg8Lavwa9N1f7QSdH3BBROQErf9wc0a/KGStynn7YdrLIffrJ7aXlUsc5TeQZ\nt3F1jXTZ4fcjYAEELAAwyw9YJ2buKurmkiFO5KDNAVmd9PFLbsMYXVjhdbk/uDzKs3nW+Sfs\n3TozZm7Aihvro+jFVl4+cnu7N1k4p/60Y6cTkROw8sfNEQ1YV5TJ/QAABWZJREFUX+4lcubU\n248TOWab4/zQe4dueytpvdVr1dVL/H4ELICABQBm9QLWgcOy32js5pJLMgev57/T5V+f9Xdd\nmOR10VFkz8wnir/tktMzN2DFjeW+4OXhy2eC0KsSvZx9Z9OJyAlY+ePmiAYsZ0FHf8CDluv/\nET9mLdEPfuMwkYf8EgELIGABgJkbsKYs8S1duTnalJNLXjIkmt97LYeKnOQ+ftUim8du9NPa\nyT0GaXvUD1hxY5mDkPuNPRfUn3b8dHL7FBWwnFVjjmi92zHj1zvOZ3tKjXu/iWdE/sNvGycy\n0S8RsAACFgCY5d8HK5STS96UyOeFOa4WqVrp+J8QBp/SPVulyyM/CDrkXYMVN5Y5CL2mH4fW\n7xo/naziA1bWwOCrgB4V6efXTAi+SIiABTgELACIYRuw3Jt19jR2c7/pb4p+PEvkkKDqDF31\ny7DDcfUDVtxY5iC0Qj/2qN81fjpZCQSsJ0QO925gOiNz7wpnUjgWAQsgYAGAmW3A2tpS5Ehz\nv6NFuvufEF7rV2yoFjmoLmzvUj9gxY1lDkJbm4fXP2UVmE7OAI0LWOv3k6oXvFL2HaxbeAcL\nyCJgAYCRbcByjhdpvs7YT0eOmrXO/0h4x1H3W6KHh81vS/2AFTdWTBA6UqTFprB66ZIlHxWc\nTs4AjQtYI0Qu9kvPet+W4+IaLCCCgAUARtYB6zLJ+Taapdl0436GN9PpKXJ8ULFQV4wOmy/N\nD1gxY8UEIXeKczK17meDFxWcTs4AjQpYL1TJfuv94jKRf/ZLQ0Rm+SUCFkDAAgAz64Dl3hih\n6/bMUe2+zbuHv7X3ryI/2tRa5NfB8dvRC6RebaGP2njFMGDFjBUThF7Qhe9mam/TB78rPJ3o\nAI0JWLXfFPljUN6xm7Twv036KJF3/DoCFkDAAgAz64DlnK4PLwyurNp6toRv5DjO7SJd/ijS\n7NPgeHs7kfbBfdXf7LLbSbrv5245DFgxY8UEoTod4OQmv3KxTjX7bCk8negAjQlYY0UGhwdK\nZK77+F5VeCk/AQsgYAGAmX3AWt5WH3d/UWea2lnH6uKpYcunzUTOCC9S0obq5pPf04WV41vL\nlKsyiSYbsMxjxQWhl5vrYv8Fm+pW/KJ9+Mlg/HSiAzQiYL1aI3t9Hh49InKiexfVwSI3B1UE\nLICABQBm9gHLecaNNLLboXu5d7mSb63OtrjvJok8EB6/4/Zsdtgph1WLDKub6zYeecLbkYBl\nHis2CM2s9l7A/2/m6q746UQGKD5gbfu2yMPZw7qTRU6aNqOnyIEbgyoCFkDAAgCzBgQs57VT\nJKNq+NpIw71uVZsN2Yqn2gf9ml2jo8rRXvGNaMAyjhUfhOYdmuncbsrOpxMZoPiAdUu9u2+t\nPMJ/qb0XZ2oIWAABCwDMGhKwdNC5tNs+Ldp0Of365TnVa1tKeCNO36pxx3Zo1qHbFd6NG1ae\nu3vzLuesyQlYprEKBKHamecc0bHFPt0nfmExncgARQesZa2kw8qcLhsndGvb+six2QkQsAAC\nFgCggLivyimEgAUQsAAABRCwgKIQsAAA8QhYQFEIWACAeAQsoCgELABAPAIWUBQCFgAgHgEL\nKAoBCwAQzw1Yh56lvW7V/Ra3aw0BCyBgAQDi1WZuWTrfqnvfoDcBC//fEbAAAPEIWEBRCFgA\nAAAJI2ABAAAkjIAFAACQMAIWAABAwghYAAAACSNgAQAAJIyABQAAkDACFgAAQMIIWAAAAAkj\nYAEAACSMgAUAAJAwAhYAAEDCCFgAAAAJI2ABAAAkjIAFAACQMAIWAABAwghYAAAACSNgAQAA\nJIyABQAAkDACFgAAQMIIWAAAAAn7PxHizNVDi26KAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 1800, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_width=20; plot_height=30; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "plot_1 = plot_grid(plot_basics, plot_pgs, plot_meas, ncol=1, rel_heights=c(2,1.3,2), align=\"v\", axis=\"lr\")\n", - "plot_2 = plot_grid(plot_conditions, plot_medications, ncol=1, rel_heights=c(3,1.8), align=\"v\", axis=\"lr\")\n", - "plot_desc = plot_grid(plot_1, plot_2, ncol=1, rel_heights=c(5,3), align=\"v\", axis=\"lr\")\n", - "plot_desc\n", - "\n", - "plot_name = \"1_dataset_characterization\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=plot_desc, width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# OBSERVATION TIME" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAALQCAMAAAAjXrvTAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdB3wUZfoH8Gd2N5uQSkLoPYCh\niZEISBdDlyLSBQwdAUVAqtJ77x0EQTqEJBs99eyed5a/5Sxn755iwbOgSE3+mdndZHezZXb3\nnXlnZ37fz+fO3ZnN7jPvuM/+nJ19h4oAAAAAgCniXQAAAACA3iBgAQAAADCGgAUAAADAGAIW\nAAAAAGMIWAAAAACMIWABAAAAMIaABQAAAMAYAhYAAAAAYwhYAAAAAIwhYAEAAAAwhoAFAAAA\nwBgCFgAAAABjCFgAAAAAjCFgAQAAADCGgAUAAADAGAIWAAAAAGMIWAAAAACMIWABAAAAMIaA\nBWBov5DoF95lhOasVPxfhnx1ANA4BCwAfbv8bsGudUtXbTn28v+8rUbAitBXBwCNQ8AC0LFP\nV7YvR05Co0nPXfN8BAKWV30pgAIELADwCwELQLee6VomF6Rtu+j+GAQsrxCwACBMCFgAOvVl\nH6/JoN5jbo+KtIC1fuHCx0vufG8WXfTz8FDJCVjKvToA6AACFoA+5ZX3lQ2mXXF5WIQFrN8F\novtUeB05AQsAwA8ELABd2iE4kkDmA/n/+fGP/33x7PrbohyL+rgcdYmwgPUcqROwDs12FSeO\nUVu3RR+oUAQARDIELAA9OuDIUr3ec1l4bobVvvT2wpJlERaw1qoUsNxVFsdooeovCwCRDAEL\nQIf+ZU9StZ/yWP7prfaEtaBkSYQFrCEIWAAQGRCwAPTnQgMpNjX6psyaSwOkNebXnAsiLGDV\nR8ACgMiAgAWgP4ul1HTdT15WXR0orWvu/JIwsgLWrwICFgBEBgQsAN35X5J0lOplryt/qS5F\nqjPOuy4B6/0TG5ZtPfV6oZe/+uZv+zYuXbMj78OrXp/0t6cObVy6/uBLf/gq6beCjcv3fSV3\nAy6+cXTn6uXbDr/qOQfCMyQjYH3zt0c2rth16sU/fT/k7KPblq/d98RvMusJLmBd+teeVSt2\nPO3y5L8+tX35+odfC3HsACAiIWAB6M46KTTN8rH2b9Lado579oD1a/GNRTUdJ8ZXu/d79794\ndWKlkukJyg/9u+cTnl2SaXasjbrlkOscEF+Ly7KKigpXJIi31o6SvrgsU9Gd4uKbnffO7+1g\ncb6atdPxy87l35Ab8fQyL1N9fjqlYckf37LeNWP9IC7rKN7Kaef4iaWp4998DJI77wHL7dVL\nnv23WSn2J48e+pl91bsDHb8tSH6gzJFC32MHABEOAQtAdxqJn9cxP/ta3Ur6PHfMM2APWL8X\nPV/NJbwkH3R5+PeD3JMNtfnU9dmuLI51W3vdc6XrfnIkp4n2VWulA1D0jkc9F+LFpTsd945W\ndX+1xm85VsgJWD/dbXF7UJXtpYfjzosLmhc/ppvrI7IvyRhQGQHL+exv1Sh97oQni1cULjOX\nLqn3mdsz+Bs7AIhwCFgAevOB9GE9wud6+xQOy+137AHrwnMx7vHloZJHf1GPPCW5fPn4czvP\ntaZ1JSv/EO83Kcp3rFl7TUof8zzqOSEujHZcinpWmVezOg6ZyQhYnzco89ejSr6XuypFmKKf\nGrs/wPc4lZIRsBzP/mGy63MnfFxUNM3t1Rq4Hm7zO3YAEOEQsAD0ZqP0Wf2iz/UXEsX1ju8I\n7QHrrPgdYGyXkfcObmT/pDc/73jw1ebS/aj2dy9cNXtUO/uXXVXOOp/r/I3SAqHtrB0PrRlZ\n2/7Hm51rr4n3ahc5I81ae3xK96jndnHhQNfaKaXXlPnz72lvnxk18UNp1Q833HBDqng/9QbR\nK0VlAtZnVaT7ljZztuxfNzHd/lSDSl7HVHyvxrWs4v+P6zbm3ruaO44syZiTXUbAsj/75RuK\nx6JV9r3DrrM/d7+iw8X/b+0ybvIAx4G5RaV/73/sACDCIWAB6M1g8YM65rLvB0jfkcXYT/iR\nAla5cURVD9rPKH/jJumD3vkzw11SBpjh/L7x5/lSxJrkfKoh0oP7OL40vHZK+qLR/LZztZg6\nqohfDHZYf+rE1heK3pUe/m+3an6NFpc9Kt3+upyUqA44TkY6O1p6/O0lj71PvFt6krt7xLnW\nXrrb3/k13GP1pfuPOB8tvk7qNqJKe+x/8WVvaX0X3wPlJCdgSc++hug2+8v/vYI0cO+kkPl+\n6cyra7ulby9rlH5nGWDsACCyIWAB6I109ORmPw9YJH2y2z/JpYAlmKhRyZwOV26RVp+w3+sg\n3l7q8sdPijnB+qv9zqPkET3OSqeYd3TeFb94rDCKEh51LrhBXP2AWzX7xUWV7ZFqjnQE6qXS\nlfdIL/C+867fgLVZujfNpRjpIFaFc467YniLLk9NvnWuvyptnOkHH8NUSk7Akp49iSY71z4r\nra1B5mPOJRukJSVfrwYaOwCIbAhYADpzTfpi7V4/j3hC+mjPkW7bvyKkWJcpFH6QTjrvJd2+\nKn6PFuM2g8B0ce1J++1m4m23s5g+cDke5cw0wpMlq8VL3VADt2q6ioum229Lx5yGuKz8Q5px\nYoPzrr+AdVU6waut6yQTr0q/FlzvuCddUZCSvy1d/7K0JPAvCeUELPuztyp9eccJVjNKFlyS\nfl64w3k30NgBQGRDwALQme+kz/U1fh5hPwt+k3TbEbAedF0vRaiY8yVPVt/trz+6a8H+Z+3H\nu54X1yb96LZ6krjsTscde+oYVbr2W/FLQ3rT5fE/SKdC2Q+n/d60YvH6I65PN1xce4fznr+A\nVSDdecOtGOnb0mZuxex2XS/NCbaqKBD5AetfpauXSQsSz5cukWbRv8dxJ+DYAUBkQ8AC0Bn7\neU57/Dzie+kR86Xb9oAlfOe6/k1pmU28Kc1kVd7XE40X147z8vKJjhlC7anjPy6rO4sL5rgs\n2CYuyCi5e/W7t9ym/9wkrm7tvOcvYA1yfyKJ/feL77kUU8Ft1qwe4qJpRYHIDliNXVafkVaP\ncVkyT1ww2HEn4NgBQGRDwALQmdekD/aTfh5xSXrE/dJte8ByP2PrWnlx2Qrx5hXp+NKZss8h\nkaYmfdLbwn/Yb0upw21m0YfFJfVcFrQVF2z0WetRcfV1znv+Apb0DeFK97/+S5pnaqdLMXe5\nrZcOGY31+eJOsgPW/S6rXy+zH3aLC25z3Ak4dgAQ2RCwAHTmX9IHu9/JB6TUNEW6aQ9YD7qv\nv6U0irSUDqp4P03JfiTsW4+l/cSFu+y3pdQxyXXteSnyvF5y/yvxNCmL7/PMbeLDazvv+QlY\n0lTqZcJJG3HheJdidritnikuGurzxZ1kByzXbzffl1a7Tsr6iLjgFvvtwGMHAJENAQtAZ96Q\nProP+3nEn9IjZku37QHruPsDssVlraSb0hEnop6Pepnx/GlxjfWax1Lpl4COc+yl1LHNbfVQ\ncVHpZXxWi3f7+K61QG7Asp+57zl9vbQlnVyKcT9mtEBcNLgoENkBy+X3j0WfS6tdv+87JS7o\naL8deOwAILIhYAHozIfSB/tWP4/4VnrEYum2PWB5XBd6vrjM/lu/wl72hEWJfTe96ZEHHOHL\nG0dkklLHY25/JF0KsW7JXWmyzRzXBxS+vW7YzdUTXS4wIytgSfPTx3puqnTaU7pLMa+6rV7I\nOGC967L6C3FBtOsfuAaswGMHAJENAQtAZ36VPqWX+HnEf6RH2E+DtwesT90fIB1Wqma//XuP\n0o/+5AF7f3J52BrfIcHxRZiUOv7p9txXpQtHv+a4J6XBFJejYxd3ppV9ttrOtX4ClnQ2fE3P\nTV0vLq3gUsy7bqtZB6xPXFZLASvJ9Q9cA1bgsQOAyIaABaA3CeKntL8Ti+y/b3tCum0PWB7n\nQG0RlyU67lxbm+jy6W/peqpkqqfFvkNCpv0RUup4y/3Jp4jLnLNDSQlncunKDxt5e7baztV+\nApZUjOdVeIp2iEtjXYrRSsAKPHYAENkQsAD0ppX4KZ3m5wEPSp/j30i37QHrf+4PkH7uVvrt\n1rnVDV0DQIbj6sv2eOJdQ/sjvGSaov9zjUzSXOuvlax7w5nlUhq26TVY1F5uwJIuc+g6TYJk\nj7g0ymcx/AJW4LEDgMiGgAWgN3dLH9M/+n6A9KVfJftte8DyODdcOoKV7Lrk442drSUJQFhg\nXyh9/1bmWzlX3gJWkZTWXpFuSifkl07j8Fs96flrri39ylL2Se4PiDdL5nNw2i4ujfNZDL+A\nFXjsACCyIWAB6I00dRTt97n+D+lSOAPtd+wBy2O6gFXisloef/bnY9OaOiOW/do1+8SbPmch\nFXkNWEvFhfbZPWeIN0tnUp8qPflgl8nP5QcsaeL0Gp4FSJfmqeizGH4BK/DYAUBkQ8AC0Juf\npMvRtPS5/mEpGBy037EHrPfcHyH9irDM123FvlglTYVJ0V+I96TAYL7ipxSvAesLceqrmuKZ\nXIW1im+Z/utccUk6e6yt2xOelBuwpC8DYzwLkOY9aOKzGH4BK/DYAUBkQ8AC0B3pcjRuF/xz\nc4u4ttwv9jv2gPV390fcJS7r5PWPL94v/YF0cWb7nPHv+6nEa8CyXwZZ/G3hP8QbXUuWvyg9\n37Nuj90oN2DZ58HynLH0TnFhN5/F8AtYgccOACIbAhaA7ti/I7zVx1p7Esl23LMHLPe5QO0J\naJLnHzpMEFdKP9e7KJ2WdcJPJd4DlnQOvXhVGelKNaWzn+8U7yYXuj32DrkB6yvp9jMeL5Uh\nLpzmsxh+ASvw2AFAZEPAAtCdK3Wlj37v13u+IK00OS/AbA9Yw9weci1ZXOZrqlLp+s9mKQY1\nF2+O9FOJ94D1S7Q9ol2tWPzPxAsly6WTs653e+hvCXIDVlEVLynoV4u48KjPYvgFrMBjBwCR\nDQELQH8elj76E719SVg4UlpXcs1je8BKcrsQjv3rK+dlX748X+ROupqgFIumibcqXHRf/a7L\n13TeA5b9knufFD0n/sPlUsvS3FBt3B65nGQHLOl7TY8pDqTp3YXvfBbDMWAFHDsAiGwIWAD6\nUyjNHkXlXymz5tooaU1qySQO9oBFJ10fNFtcUvFq8a3PZ2aleB7KuiKeQ58g3XxP+tuNbquv\nXmdqtezfjjs+ApY00+kG+48GXS7PLM0O4TaB14fSE1B1530pYJVeq88t4jwv3XGfNv4WcVF7\n38VwDFgBxw4AIhsCFoAOfS59yUcJe91PaCr6qre0XMgvWeIIWPUvlz7oV2m2zzHize/EMFXz\nD7fn+Lu4NsN+u410GOZL19XSMadWjjs+AtYlsbxuReJFceq5LM6XSvmidMH3TUj6ijDGuRnS\nYZ8RJevdI05j8U5L1y3OldY7T/LSVsAKOHYAENkQsAD06Ikoe3Bq6XpE5/cVsfalK0uX/Wxf\nQneVBJNC6bxyx/WfpUNAt11weZI/bhAXLbXfeUqccYEau3yxtVdakue45yNgSSfKl3tdXLnY\nZek56W+zS+6/XY9ImqaBnGeMLRDvlE5M6h5xDkn3ppc+3/vSaVmNnHMhaCxgBRo7AIhsCFgA\nupTrSFh0/QOPfXr+2l/fv7xrcJxjkVuoEReYexenKMfs6T8PlB5zh/2eNJECNTzpPMBV+IR0\nnCj+G8d96XeAVOm4I8R8MlS6XzLzgq+AJT1tVvH/hM9dF2dJfz3NfsTsg3vNREOKUsVFYxwP\n2Cs9QDp7/1qRZ8Qp6iPdHeqYV+vqw9Kfml/0UwzPgBVo7AAgsiFgAejTS1XIu3IHXR/2nbgo\n9vNEIkv7B7c9tHKgPYUlOaOC/bo7FJ81cf7yRff1rWS/u8v553/caF9Q8a4HNy6/O9N+p2bJ\nGV6+AlZhXUcxHd0WP2VfmDxgxpRBTcRb9X6xz9NAbWbeU1DkPHGJGt/Rs5l4ZpVHwPq+hnQ/\nptvi3XtXDa8u3RG2lDy71gJWgLEDgMiGgAWgUz8O85qvOrpPbinFgEpFBVFuD4p+3rn+6kAv\nz+H6FWO7MmsbflGy1lfAKprneKzHBX0muz9Tzc+Lip503pHOB29Rsk48VckjYBV9Us+zFuvh\n0ifXWsAKMHYAENkQsAB065VegucHeMtcj8f8R1zaoKjo8Youj6rjOpv6lkSP52j0hOsTXF5S\nzm2tZdrvpSt9BqwP7Q+O/d198ZWJrk/VTTo/aYJrwPq/aH8Bq+iXUe5b3PZllyfXXMDyP3YA\nENkQsAB07MsV7WNKPr7Nzee8VeYR0pxXNxff+GmO8zvF+gvcfzb42/p2lpInSRhwxvMCej8s\naVKy+rqFX7mu8hmwHIeihpdZ/nh7R0Sy9PibY9HhTinmhNo9n5Pu/KOh45X6FnkJWMWBccp1\nzlpSB/7N7am1F7D8jh0ARDYELAB9u/RO/o61S1ZtPfl/fwR4ZOG7x9Yt3XrqHS+rzr9+ctvq\nJev2nPmk0Mva4pzw5O5VSzfuf+Jc2OUWFZ3L37F89e7nfvOx+tq/ti9dsfNxP6/09aMH1q7c\nc+Yt76VqDsuxAwDtQMACAAAAYAwBCwAAAIAxBCwAAAAAxhCwAAAAABhDwAIAAABgDAELAAAA\ngDEELAAAAADGELAAAAAAGEPAAgAAAGAMAQsAAACAMQQsAAAAAMYQsAAAAAAYQ8ACAAAAYAwB\nCwAAAIAxBCwAAAAAxhCwAAAAABhDwAIAAABgDAELAAAAgDEELAAAAADGELAAAAAAGEPAAgAA\nAGAMAQsAAACAMQQsAAAAAMYQsAAAAAAYQ8ACAAAAYAwBCwAAAIAxBCwAAAAAxhCwAAAAABhD\nwAIAAABgDAELAAAAgDEELAAAAADGELAAlHdhfovMzPr162dmZk79mXcxPp3Ln9GzuE67Hnev\nKPiWd0UAABELAQtAcU+kUUyzoUv3LB7dNZWSN1ziXY83H89oLBCRJSUtI6N+/VoxJKraa/kr\nV3lXBgAQiRCwABR2diiZep8osMu5qxzV/xfvkjxdze0qkLXJoIWHC5yObJo75KbyxSErqc+2\nr3nXBwAQcRCwAJT1bmVK21BQ6pHuprineBfl7m9pROnTcgrKOnB/50pEQuay//CuEQAgsiBg\nASjqnYrC8Dz31DLXEp3HuywX3w8hc5dNXtKVw55x15uIbljzDe9CAQAiCAIWgJLeriiMLxNZ\nFkVbjvAurMS+ZKrnJ17Zvy+cepOZTJ0OXeBdLABApEDAAlDQv1OFu70ElpWxpgO8S7O7NpFi\nxuR5KdHT4fHpROXv+TfvggEAIgMCFoByPqsgTPQaVzbER/8f7+JEFwdSzX0y4pVkZ78korbH\nL/MuGgAgAiBgASjm4k00zkdYmS/U/R/v8oqKfu9M6Ufl5qtiubMzBKq25HvedQMAaB4CFoBi\n7qUOPrNKf+pbyLu+czdR5qkg8pVoR88Yih7zHu/SAQA0DgELQCmnqfpJn0ElrzGt5Vzf5Y7U\nMTfIfFXs+NhKJHTX2EwTAAAag4AFoJDPkqxb/OSUh5OiXvL79wc7d+6s6M/2JlALW/D5qlj+\n7HSizBOY4x0AwCcELABlXMykyX5jylKhzp/+nmAhEf2uYIFbqdYJvwX6s6aVQPV3/qVgeWr5\n9d1H9x7++9vfcv/CFgD0BQELQBkL/JyAZdeX5vt7AoUD1tOWhD0h56tiO7IsVGWNkglQed/v\nE38YaVd1nM1v3gUACAoCFoAiPopOPh4gohxPjvnUzzMoG7A+SbEsDydfFTvQJ4aS559TrESF\nXdjR0kRU8cYud94zbnC3lvFE5YZ+wLsoANANBCwARWTRjIAJZSr19vMMigasqzeT9xm6gnJk\ncDzF3/+dUkUq6afFFcnUKHt7ybbkLb+9KplHfcm7MADQCQSsIPzwG+8KIGIcoYzA+cTWiB7z\n/RSKBqyN1Dr8fFXs5Khkipn4uVJlKuW3GbEU2++A5/6YVZ2sU//gXRwA6AICllxXznQ1mdLv\n3PAx70IgEvxSOWqXjHiyyVT/os/nUDJgfRYXf5BJwCooyLm7ElmGR9TEWIUHq1DKSG/f4OZN\nqUjXaWKOfQCIdAhY8lxcXJ2ofuMYonL7edcCEWAiDZWVTnrScp/PoWDAKsyi+xjlq2K591Un\n0+2vKlOqAt5oTdbBp31sTE4vIWo5JqAAgLAhYMlyuS/FdNtYUJC/fWIsjdHDb9NBUa+aquXI\nyiZHE+J8XndGwYC1jzJCmwHLB9vsNKJOTypTLGNXFlmopb/fTy5KpvZneVcJABEPAUuOq4Op\nqfP7hN116EZ/P/0CKCpqR0tlRpOxNMPXkygXsL4tHyP7Cs8y2RZdT3Tj0SuK1MvSRy0pZYH/\nbTnckupE1FeeAKBFCFgyXBtJ6aWXPDl9K6Xil0bgj40y5QaTnOS4H3w8i3IBa6DPa1CHY11r\ngWqt0/gvQXbEUruAl7e2DaLyz/CuFAAiHAJWYIWTKO2Ya/sdSTf5PjMZ4GpTwd81ctyNoVk+\nnkaxgPWqUJ/pF4QldnazUuL0z5SomY3zgyluupwtmWKxHuBdLABENgSswDZRzcPu3bcjTeBd\nFGjYAeokP5ScLh//k/enUSxgZdGSYGJTMA4PTSJTn6c0etmZDxpRg4fkbcjSOGE173IBIKIh\nYAV0NjHuYY/me6oWHeRdFmjWX7WiZH6KS0bTHO/Po1TAeoqaBVFesHKmpBE12vQ/BQoP18kE\n6nFG7nZsS/HzA08AgIAQsALKprFlmu+ucrFv864LtGod9QkmkZxKSvB+tZl/rFq16hL78gpb\nCuuCqS94q9pZKOaul9iXHpZrcyl6WhBbsasCLeZdMwBEMASsQF4WauWWbb5zhPrneVcG2vRL\nSuzhsv/G+DGSHlCzvtN0c1DlheLgiEpEDZZ8oeZ2BXD+dqok/8w40Z5UWsC7agCIXAhYAVy7\niZZ5a7691f1QhMgxl4YFl0ZOJSb+rF55VxuZtgeuKWy2RW2jSOi428f5Zar7OoMaBZd7Cwr2\nVkLCAoCQIWAFsIfaeu29J1NiMFcDeHEuIelUkB/kI2ilevXtp6wgywvVsYnpRJZu+1VMjz69\nWoWyZJ9+VeKhSrSed+UAEKkQsPz7X8VoH+crT6HBvIsDLZpHI4P9HD9qranaBJ2Xawd1Bn6Y\n9oyoU5yxsrZ9o9bm+ZAXKwS9V0S7ywv7OJcOAJEKAcu/+31+3WNLE/7JuzrQnl+SEoI9gFVQ\n0I1OqFXfUeoeStII3Y5haUTCTQv/j+PUDVvN1rmhVb8l3nySX90AEMkQsPw6n5Tk85JyK6il\nRmf7AY4W04jgP8a3CW3Uqu8mYWdoUSMMD41taiKqOiZHoSsrBnBtBiWuDbX2tTHWx7lUDQCR\nDgHLrx00yHfrbU2HeNcHWvNbcvyJED7GM+g1dep7gVqEGjXCcnRGh3gi663rP1ZnO11cHExV\nd4de+dKouFdUrxkAdAABy5/CJuYDvjvvHkuNP3lXCBqznO4M5VN8Pg1Tp76+tDzUpBGuvJUD\n6hDRddOfUfWK0L/dSunB/nzQzRwh9UM1CwYAnUDA8ucZauOv8/ajNbwrBG05nxp7zN+/Mr7Y\nqlq/U6O+j01poaUMRvZPamElqjDS9pcaWys6eyNlBn9SnJuJVOdbtcoFAP1AwPLnDv//uX8k\nuhou+gyu1vj7Ttmf8TRfjfomUTBzmSvi9PxuSUQJwx9X5TjWJ2l0q5eJgoMzmJr9qkaxAKAr\nCFh+fGWpZfPbeHsRfsMNLi5Ujjka2mf4ydhKKhzU+TkuJey0wUD+yj6pRJWnvKH4Br9Vme7w\n/x6Ww9aFbsF/SgFAkBCw/JhLk/w33n3mhtd4Fwkasp36hfoh3pceVr6+FXRXqPUxZlvZPZ6o\nxUPKnsX4QpJQ9kKiIchrSQPwTgeA4CBg+fZXxbhAJ290oFzeVYJ2XKkb9XCon+G7hHaK13ep\nWqgH2JRwZu6NApWf9rVy25tfzjydTa2nG9E9ytUJALqEgOXbQeoTqO9upta8qwTteIS6hv4Z\n3pTe93i6z5566qmrLOs7TT1Dr08Je/onkXWk53az8rDFuoBVpUdr0nKFygQAnULA8q21sCtg\n372R/sG7TNCKwqamMOZbmk73ezzfQiJiOjVnD9ocen3KyJlclUz93mO5lU7rhbhV7ArdX0HY\nr0SVAKBbCFg+fS00Cdx2l1Ev3nWCVuRTuzA+wXPiK15yfz7WAetrc70w6lNK/ux6ZB71FcPt\nlBTOpeQtLOvcGmexsS4SAPQMAcunjTReRtutLyjyX98QgVqHd4CoF3lc9Y51wFpCE8OpTzG2\nudUpZsZvDLe0qOjqeKqyh22ZK63lXmRaIwDoGwKWT20FOScsz6ZxvAsFbXieMsP6AN9CXd2f\nkHHAulbXejysApWTd08FqnqU3aYWXRxAdQ6yrnKeOenfDGsEAJ1DwPLlv6ZGsj4aKsTzuYIt\naE13WhneB3gD0xduT8g4YD1NncKrT0mnh0TRrR+w2tTfs6hRSDPq+zdVqPIpqxIBQPcQsHzZ\nQvJm0BlCO3mXClrwJjUM8/N7ssds7owD1lBaEWaBitqdQdZFl5ls6Q+ZdNNpJWocTWmqXNEI\nAPQAAcuXDsJ+WT13v+lG3qWCFgymeWF+fJ+MqeE2KwPbgPVzTNXw5zRX1OxkyniLwZZ+3oDB\n5XG860+Nf2RQIQAYAQKWD2dN6TJ7bgt6lXexwN8n5gDXVZKhCz3q+pRsA9YWGhFufUo7egtF\nLQz7INZbVamfUlHS1pMy/sdibwCA/iFg+bCdRsvsufNpDO9igb/xFP6k4Wupv+tTsg1YN5iZ\nn/XN3rwUygzzTKwnE4RRyhVoy6JWOOkSAORAwPKhk7BPZsvNT41j+wtziEDfRVdi8K1U9ehf\nXJ6TacB6nVqEX5/yjnakctsKw9jOh6MsjC6P411+e+qg7AUUAUAnELC8+8FcX3bLHUrbeZcL\nvM2UNWtaIMNoj8tzMg1Y02gugwJVMDOOepwNeTOXCrHLlK0vtxV1+oPVXgEAHUPA8m4XZcvu\nuAdMN/AuV32/vve3PRuf/ZV3GVrxS0ISi5+t7RXauzwpy4B1rVpsDoMC1XCgGVUsCG0rL42m\nCluVru9MC+p4ntFuAQAdQ4ZF8ZkAACAASURBVMDyrjMFMQ10S3qFd73qunq8OUmE9LtwLUbR\nMhrO5MO7kfBF6ZOyDFjP0a1MClSDbZRFmHwhhI38qT3VOaB8fbmtqB3OwwKAQBCwvPrVkhZE\nw11Ao3kXrKa/dtUjoWnnoVOm9W0cQ9ThCd4F8fdnpXJs5rWcRMtKn3VlcnIyq0Ml42kRkwLV\nsakGNXk76G18L41anVKjvNzW1BrnXQJAAAhYXuXSgCD6bX5qvIFOyvigPlk673Bu+vIMoswX\neNfE22a6g81H99GohooUeLlCUh6bCtVxqhtFr70W3DYWJFJ/lWb6ym1LN/2kyI4CAP1AwPJq\nMgV1puwAOsi7YtU8l0zd3b6GWd9KMM1hMwN3pLpYw3qI0Ud3a3pNiQoLqCejAtXyQCLd8mUQ\nW3hlrhA1TbXq8m6hRt8osaMAQD8QsLy6LjqoM4J30q28K1bLw1bzPZ6bv7IiZX7IuzCedlMv\nVp/cc2mKEhUOo1WsKlTLoZsoSf5/t3zXkSqtV7E6221U+yMl9hQA6AYCljdfUvPg2m26KZj/\n2I5gC4TYJWU3/3gHijXOMbwyrqRZmJ1afSa+0hX2Ff4Zn6rxy+R4YZsUQ7d9LW8Dn65MLY6q\nW95gqsziuj4AoFsIWN7skz2Nu8MkWsq7ZlXspIrbvA7A9FhhOe/iuDlIXRl8YDt0d79cDhvH\nqR+7CtWzuyklbpcx6+j5yYI5W/UEOVZIfIb9rgIA3UDA8mYwbQmu1x6z1g9n9ulI8Up0vK/Z\nK7ZVoHuCPCmZvR+fP7ln9dxlO089+18VX/VaQ3MQc3oEspqGsi/xdtrErkIV2SbGUvt/B9q6\np+tStTUcqptmsR5lv68AQC8QsLy4llo+2P8cbkcGmA/qx5rCAp8jsL8mDbzIr7ZLzy7sXYNK\n1Ry86R2VXvoEdQrvg9qNrVIc85+k/hJdnWGFqjrQgsxj/U7s/sN4QbidzySqi2OEdaz3FQDo\nBgKWF29Qx2Bb7UIay7tqxV3NoiF+huBoQ8oKZXZIBv67s298cahKaj5gzJS5S+dPHT0gU7x/\n42Y1fkpf2EzY4WdYgtafjrMucT8NZVmhuuZVp/hlPqcDO784garzOHwl2ViepnE/bgsAGoWA\n5cUqmhpsp81LSeIULtQzh5r7PbB3+ibqxuEY1rldHU1ElXo84HaiuW3HlEwTWQcqfxgrj9oF\n+2+LX5uoH+sSexLTCKiy3PEJVH6W10kR/thamRLGnuFX295qNJjjcVsA0DIELC86U/A/CutH\nR3iXrbBnhEoBfqd1pjn1vqRuUVfyekcRpY/Z6a2eg9k1yDTsE2UruHaDsDXof1v8qh7DeJbw\n36Jrsq1QbccGJ1DUsGc8J1t7bXwiRQ86zrW0I+nU8Re2uwsAdAIBq6wLMSF8Hm2jrrzrVtaV\npkLAb2JymlF/BSYZ8OmTOVWJao3Y67Mg2wO1KGrCOSVrOEHtg/+3xa8hrKetPUKDGJeoutMT\nqxOVH3qs5DjWT/mzbyBKGXiQe2WtqKnMuSQAwFgQsMp6knqH0Gjrm7/lXbiitso5lftUYxqq\n1jkpV/O7mSi2+wb/FdmmVabKpxWsopHJ69GzMGynnmxr7E8bGZfIgW1R9xQiim12x/jBfTs3\nLL5pajFPC5f/ye9O1d9lu8MAQBcQsMqaSfND6LNjSdc/KDqXEiPnYMGJdJqkSj0/rqhNdN19\nMq7tmzs8igb+oFQdBykrhH9Z/Ksd9TPLEi/EVYq8WUa9sW0YcnNtq/Qj0eimgxawubw2AyOE\n5JdY7jAA0AcErLIyLCdD6LKHzBm8C1fSJLpL1jAcrUlLlK/m9ZExZO0S4OBVie3XUWq+MoVc\nrmfx/QVlqIbTXpY15lJf5iXyYzuwbe9RGblaTfeYYhWYHRYAIhwCVhk/Ck1C6rKZpOMvCt6x\nVJX5W60DqbRb2VouH2tDVGV0EAcw8kdahVmKnBy2h7qH9C+LX7ups/TkuzIzM/8Mv8YRtJp9\njeDqAavFwJeKAgDvELDKOON3tiff7qfZvEtXzq30oNxx2JFgPqNgJT8uq05Cxrwgv/TaWJk6\n+p2uMjQXa1qZXYXQRX3z9+KzLySi38Ou8XL5ZH18Q6hlK2KFrWHvKQDQFwSsMmbS4pB67KmY\nmrqdczCXMuQPxNromBeUKuSt0TEU0yOEWZ2OtaCq7Cfb3xTS7yECGkXbxGdnE7CeoB5K1Ahu\nNicJG8PeVQCgKwhYZbQVQpxZpxM9y7t2pbQIaq6nBebk95So4mpOR6JKwXw36MJ2lyn6EcYF\n/a9CzKGQigngIaG9+PRsAtZ4WqpEjeBuW3laG/a+AgA9QcDydDGmdogtdgmN5l28Qp6jFkGN\nxBShJvurLf+6vi7R9XPzQ9w7BQWLygkL2V6SexoND7kavxqaxDk/mASsq5Xjc5UpEtzsSKaV\nDP6dAgDdQMDy9HLIpy3n6/ZyOT1pZXBDcSdd/yvbEj69L4GsXbaEuGvstlakO1le1+Rja0WF\nLjI8hsQzepgErBfpVmVqBA+7Umg1g3+rAEAvELA8rQ/+QoROt9MJ3tUr4l3humCHoht1Yhll\nXh5gpvLDDoe6Y5wO1qf2/2NXVV+aEW5FPuwXOhYxClhTaZ5CRYKH3SnC/vD/rQIAvUDA8tSf\ndoXaYDdTb97VKyKb5gQ7FHktaBCrU/6v5bUjqjOVxSV9T7ei65l9efkspSv287zrzGcZBay6\nMQodZYMytsZZbCz+zQIAXUDA8lQtMfRPzVpRP/EuXwHfWKsGf+LT6XSazOTVrxxqTJSxmFGU\nye9KtT9kUlfRtQxhLZuivBhN29kErHfoZsWKBE+rrOXY/1QVACIUApaHL6hl6P01m/Q4Gc79\nNDGEsThakxaH/9oXt9chU4fNoe8ST7bBlPpq+HUV20cd2JXlaZ/QiU3AWkb3KVcleJpnTtbx\ndMMAEBQELA9HKDv09npAaMW7fvZ+TUwK6UumAxVpZ5gvfWlnTbJ03RP6DvFmghD/dwbD8lNF\n60NsC3NT3/wDk4DV0hT2mWsQhClCbT0exQaAECBgebgn2B/MuWlGH/HeAOZW07DQBmNHgjms\nk/4v761DUb3Zz5Q+yxJ9OvxhGR5OEg8sm3axCFjfCo2UrBLKGERZilyUCQAiDgKWh+aW02F0\n1/toPu8NYK2wvvVIiKOxLiYqN/TXPXkdWXoqcSGagsUx5rCvpvw4peUpUZvTHurMImDtopFK\nVgll2DLp/nD/5QIAXUDAcnfe0iCc7nrCWpftVJb8vUDtQx6O5dHWR0N82advIlMXpb6DWxMv\nrAlvVM7XNm9UqDiHNMtPDAJWT9qpbJng6VhVOhbeTgMAfUDAcvcs9Qmru3agF3lvAmPZIV6a\nUbLUGv1EKC/6bjei1iFccVCurSk0M6wkfB/doVx1khG09/Xdu3dfDqfKovMx1RUuE8rYGhP3\ndlh7DQD0AQHL3TKaFVZzXUDjeW8CW7/HpYZ+cZqCgkVR5Z4O+jXPjjNTk3Vh7YdA9lSlkWGc\nKvOyqWo43yTLsYu6hV6fU47iORDKmiU0+CP8fQcAkQ4By11PCu+sn7ykZJYzmPO3jwaFNSDz\nLDE5wb3ihWXxVO2BsF5UhkNp1DvkCxv92VhYrnSBBXWifg61vhLZtFrxOqGM3jQp7F0HABEP\nActNYUpqmL21DzH4hZqGtBXCnCVhQbQ5mNkaCo/VooSxKlye+HhTahfqZXOyQ75eZRCG0YEQ\nyytxNTUpnMOPEKKc6sKT4e47AIh4CFhu3qd2YfbWDdSX90aw9JHQNNxPm7UJtEj2673cmix9\nj4X7krLk3EyNPg9pUPZTXRUuP7ODeoVUnYsXKUv5OqGsdeYav4S78wAg0iFguTlAY8PtrTWt\n53hvBUNzQr/0dYkdqTT+kqxX+2ywQK1CvhRksPJvo8qvhDAm78TG7lajvprRv4VQnasZpPhX\nreDVIBoR5r4DgIiHgOXmHloTbmu9i7bw3gp2rlYrdyr8T5sDNanll4Ff7Ofp0ZS2LPyXk2+s\nEBvkCWLFfk+n2apUN5iOhLDLXF1nZbD3IAS5aXQmzJ0HAJEOActNa1PYn0gHTDfy3gp2HqMu\nLD5uTrSjFFuAlzq/LJlSpzK6prNcD0SbVgY7XcNQuk2d4jbTHaHuN7sPqYU6lUIZW6Mqhf8b\nBQCIaAhYrq7E1gy/tWbSW7y3g5kBrH6FNiFKmOHvR3t/rq1IcSNUOLPJw/oU6h/cXJ5zqcEZ\nlYqrGhver/3X0mSVKoUyhtM9Ye08AIh4CFiu3qFO4XfW2TSF93aw8ke5qqwOKW2oTLVP+nqd\ncyurUMygo4xeKigHG1HjD4MYkrVU+aBatfWnU2Htvg7Cw2qVCp5yqlreCWvvAUCkQ8BydYDG\nhd9ZzySkyjulW/tOUv/wx8PheF8LdfR6bO/9CbEU0+8ws1cKTm5PSpI/s8Y+ITnMaSuCsJ6G\nhLP3zpnrq1YqlDGPbgln7wFAxEPAcnUvk2/EeoV54EE7BhPL+dR3NCdT1+Me87B+s7GNQKnZ\nXI5eOUy10iiZXxOeNsdvVa8wW8WEv8LYe4foTvVqhTKa04kw9h4ARDwELFdtwj/Hvdgm6sl7\nQ9j4KyGV7UnnC64jSrn3zGeO88q/zltYnK6ExjNVmFfUn611qO5LcgbkWHR02L8yDUZfyg9j\n9w2kzWoWCx52Wmr9GcbuA4BIh4Dl4iqLc9yL1TV/y3tTmMgP88rXXmztm0hEia07d26bmVp8\nS2g0LrxrEzFxpp9gnhXwhPLC+ULMElXrWk13hb73LiUyjscQpH60IPTdBwARDwHLxbssznEv\nNo5W8t4UJu6ilUzGw03ugmFtqgrF2YpSWw55ULUTxgNYnko1jvsfjT/6U6Utqha1cXJcGL8j\n/Dv1VLVa8HSifDkZ078BgF4hYLl4OPx53CVHLOm8N4WFy8nJSh0CyTl2UqFnDtXJOyx0i7+f\nfX18IzV6RN2ahhan0OAnQnW6lxapWy54upfGhbz7ACDiIWC5uJdWsWmsbUjWKT0a9zj1YDMc\nkWHnjWS64zUfY3F+TjRlqTX/lZMYsEK/4kqdGPWnFQM3eVWjQrvaJQDoAQKWi7YCo+MqCymb\n97YwMI6WshmOSDGvLlHWk9fKjkThkepUYYbq9YgBK+VyiHvvbWqtesHgYSqNCestCACRDAGr\n1NW4Goz6qq1yTORf8flqxYQ8RuMRKWwLmxJVu/dF94z1wYIGFDWAw1X9xIBFT4S4+5YxuEw3\nhCmvWtRn4b8TASAyIWCVeo9uYdVYR9Ia3lsTtmepM6vhiCBrOsURVb1jie1LcWqsX189OLc5\nkbXDbh61SAFrbIi7r5XAa+pWKDWNRrF8TwJAJEHAKnWQ0TnuxY5Y07x80xRZ7qEFrIYjopyZ\n3yme7Kzi/5ky7jvOpxIxYCWmXglp7501NeJTNLjKr275hPH7EgAiBQJWqSkMZyXoRI/x3pww\nFVaPVfukbs2w7Z07pFVG4/r1m/Ucv4TfgSAxYGXRUyHtvt00klvdUGq6Lk7HBIBQIGCVasfq\nHPdi66gX780J0xvUntloQEjEgDWPxoe0+3rSLt7lQ7H8GpaPGb8zASBCIGCVYHeOu6ieKcJ/\noL2UpjEcDgiBGLCOJVQM5TvC36PZXJQAwnV/iAkZACIeAlYJhue4F4hzDM7mvUHhaS2oPK0m\neBID1sku9EwIe+84DeJdPUjyUsv9xPzNCQCRAAGrBMNz3IvlJKT+xXuLwvGz+TqGowGhkALW\nYro7hN03lNbzrh7ssmk583cnAEQCBKwS02gFy77alw7x3qJwHKWhLEcDQiAFrNyEyleD3nuX\ny6fgQs8acTS6eqiTxQJAREPAKpFFx1j21V1CRiHvTQrDcFrHcjQgBFLAKuhMzwW99/5urKsc\naVsPOsL+/QkA2oeAVaJiKtu+2jqSZ2q4VjEJh0B4G1elSpVTBYtC+I5wMi3mXTw47RRaKvAO\nBQDNQ8By+pZasO2rG+hm3tsUupepE9vRgFDlJaUG+xVTYY24XN5lQ4lM+qcib1IA0DYELKfH\nmf/uKoNe5L1RIVtAMxmPBoSqOz0e5N57jTrwLhpKLaZBirxJAUDbELCcVjOPFMupB++NClkL\n01HGowGhWhH0ZOAP0izeRYOLOuYInxQPAEKBgOU0nLaz7qvpwpu8typEP+BKdtphS0kMcsaP\nphZOV08EryZH+qR4ABAKBCynG6LyWPfVeTSQ91aF6CCNYD0YELK+lBPU3vuYmvMuGVydjqsS\n2iW7ASCSIWA5XLamMe+rttqmD3lvV2gG0ybmowGhWh9kUF9Gk3mXDG66U75C71QA0C4ELId3\n6Fb2ffV+GsV7u0JyJRnzVGqIrUrs78HsvmbmI7xLBjfrqa9S71UA0CwELIfDNJp9X82rbn6b\n94aF4p/Umf1gQMgG0eEg9t77+IZQc2pbzir2bgUAjULAcphFSxXoq/OpE+8NC8UiTNKgKVup\nVxB7byFN5V0weBhDaxR7twKARiFgOXSnw0o01uZ0hveWhaC9cEiJwYBQ1Y46J3/vNbZgig2t\nORqVHskXzgKAUCBgOVRLVqSx7rCkBfkTew34w1pXkcGAUA2nPbL33tusL0kADLTBbO4AhoOA\nZXeOMpRprLfRKt7bFrTHqJ8ygwEh2iN0kL33HqTpvMuFMhbSGAXfsQCgRQhYds8olSmOJSR8\nx3vjgjWNFikzGBCqRsKncvdeAytmGdWe/NT4oH4JCgCRDwHLbpNiJwaPp9G8Ny5Y11tOKTQY\nEKIpNF/mznuDbuZdLHgxiPYr+qYFAM1BwLIbTZsVaqy5NYUIm2TwrNBUobGAoGTHx8c7ou7J\nmFrX5O292fgFqCbtEdor+7YFAK1BwLJrYT6jVGfdGJXyJe/NC8phGq7UWEAwhhLRScftW+kp\nWTuvsG40Dj9qUiPhK4XfuACgLQhYkquxtZTrrBPo5suyqvj+n7nbFizY89i75xXeXP9G0jrl\nBgPkcw1Yy2mYrJ33CrXjWjP4MoFWK/zGBQBtQcCSfEgdFGytben+gBX88di0puQU1eOhIOY9\nYq1mHPPLXkMoXAOWrXK5X+XsvEn0ANeawZdHzDcq/c4FAE1BwJKcpLsUbK3Hqwo2/6//4oiY\n4ljVrE/21EWLpgztUqf4TveX1dn0Mj7EWdIa4Rqwiu/slrHzLpRPyuVZMvh2I32g+JsXADQE\nAUsyjxYo2Vo3RqW84fvFf1nXkKjS7Ytczp3ZObwuCUP5nLOxje5WcixANreAtU9oLWPnHaI7\neFYMfkylBYq/eQFAQxCwJH3pgKK9dYqQ+KyPl/56egJZ2iy2ef7J8rpUbt4FVUfB7nbaqehY\ngFxuAaugmZwDIB0E7DytOm5toPy7FwC0AwFLUj+2TMBha7olOsfbC781PIqShj/i7U/y7y1P\nzT5WeySKrpRPVXYoQC73gDWNZgfceR8JjTnWC/61pv9T4Q0MAFqBgCW6YE5XurkuiDaXuZzc\ntfxORNUm5/j6mxNdKEn1a0W/TFlKjwXI4x6wTsVWDnhZy1mKzZcL4Zst48cuAKAfCFiiN6mL\n4t11TTz1eMn1Rb9a24Co6YN+D51NsQozr6g7FstxKTutcA9YBX3ooQD77nKVuNP8yoUAcsrV\nkDlbLADoAQKW6DCNVr69bk8n6vTMVekFr3y0uY1Alk6bAv3R5irUQ90TsboofDoayOYRsPaZ\nmhb633dnqAe/aiGgTvS8Om9iANACBCzRA+pc3XhpU6Kourdk90mPIhKa3O311CsPx26gTmrO\nO3optpri4wDyeASsgjb0pP+ddxtt4FYsBLaIJqjzLgYALUDAEt1O+9XpsKtuqZ9Y/KkZU6/D\nWLnHiXJaUOtf1BuKf1A3RUcA5PMMWGuom9999405jVutIENuYqrKX/gDAEcIWKLryin8I0JX\np7YfDOrxuW2p+U+qDcVSXCtYMzwDVkG68J6/fbeIJvAqFWTpLvOKkgCgBwhYxf4yX8e78/qT\n34kyflNrLLIouPgHytk+e/Zst6sWzaYxfnbd+Qpxx3mVCrIsoYlqvZEBgDsErGL/ps68O69f\ntizqKu9y0WG7WK46760Fn/Iqxfzge9+toUG8CwT/chOq4HeEAIaBgFXsiBo/IgxHbnO6M8AP\nyBh5Hr9D07IxtNDnrvurasxh3vVBAFn0oirvYwDQAASsIvFKhAt5N94ATqbRfFWGYhHN4r2t\n4NuJ2Iq/+9p1W6gf7/IgkPl0nyrvYwDQAASsYv3oId6NN5CDlWivGkNxiyBn7gjgZTDN9bHn\nLtWw4uw5zcuJranOoWgA4A8Bq1h6jIo/IgzRjviolwJvSbj+iqnJe0PBn1MpMV9433W7qRfv\n4iCwDvSq8m9jANAEBKyioouWBrzbrgxLhep+TnBm5FnqyXs7wa8pNNjrnruSZlFpLjcIx1ya\npfi7GAC0AQGrqOidyLi88TDKuqr0UCygObw3E/yypQlej2QepK68SwMZTkXXU/pNDAAagYBV\nVHSMRvJuu3LYMulBpYeig4AfomncCmrp5SyeX2qY9/CuDORoQ28p/S4GAG1AwCoqmk8LeHdd\nWY5VFnKVHYk/o+vw3kgIpDU9UnbPDachvOsCWWbQPGXfxACgFQhYRUX9aR/vrivP+qiUrxUd\niaepN+9thED2WGqUmdf/DKXl8q4LZDkR1VjR9zAAaAYCVlFRowj4EaHdeOqs6I+859Fc3psI\nAQ2gHh4n4/1YKWor76pAphb0gZLvYQDQDASsokuW+rx7rly2TNqm5FC0E47w3kQIKPcGmuq+\n3wZQNu+iQK4ptFLJ9zAAaAYCVtG71Il3z5XtQFzsx8qNxAWcghURjlan3a777RA1zOddE8h1\nWLhZubcwAGgIAlbRiUj6z/9p1Fq5uRqexVyVmrI6Ozvb66lVu+KjnindbQdionerXRqErpHp\nO8XewgCgIQhYRQtpPu+WG4SbaYWCI4FZsLRkKBGd9LpmmSXlMcdOu3IfxS5SuTAIxyj3448A\noFcIWEUDKJJmEDqcZH1HqZHoiFmwNMV3wCqYLFBnaT6lc1lUfYe6ZUF4dlFPpd7BAKAlCFhF\njaMj5UeEkrnUVqFfEuJChBrjJ2AVbGpGphGzBrcqT5nHVS0KwlYz+ndl3sEAoCkIWFesabwb\nbnBa0l5lRuJ5XIhQW/wFrIKC+TWKV5tSB+P89kgzkE4p8w4GAE1BwPqIOvBuuMF5KLrCT4qM\nxGKazXvbwJX/gFWQt3D5XkwvGoHW0XBF3sAAoC0IWPl0J++GG6RsGqXISHSig7w3DVwFCFgQ\noWyp5S8r8g4GAE1BwFpNs3g33CDl1RGeU2AgLsXW4L1l4AYBS6e609MKvIEBQGMQsEbTFt79\nNlirhSYK/Bfwi9Sd94aBGwQsnVpE97J//wKA1iBgtRFyePfboGXRWvYDsYxm8t4ucIOApVNn\nytVW9JqiAKAJCFgVKvFut8E7HJfE/jz3LjgFS2MQsPSqHb3J/P0LAFpj+ID1I2Xy7rYhGEn3\nsB6Iy3HVeG8VuEPA0qv7aSHr9y8AaI7hA9YL1Jd3tw1BblXLfxgPxD+pG++tAncIWHp11Hwj\n47cvAGiP4QPWbprMu9uGYib1YTwQK+h+3hsF7hCwdOt6+oLx+xcANMfwAWs6reTdbENhS6fn\n2A5ENzrAe6PA3bSMjIzI+wUGyDCWtrF9+wKA9hg+YPWkR3g325CsEzKusRyHKwlVeW8SgFHs\npW4s370AoEWGD1j14nj32hC1pYMsx+Fl6sJ7iwAMo5b1N5ZvXwDQIKMHrL/M6bxbbYj2WGpf\nYjgQK2k67y0CMIyBdJLhuxcAtMjoAesdyuLdakPVg3YwHIhutJ/3BgEYxlpc8BlA94wesE5S\nNu9WG6qD1qoXmI0DTsECUJEtOeUKs3cvAGiS0QPWEnqQd6sNWW/axGwccAoWgJq6sv4ZMABo\njdED1jDaybvThuxQdJU/WY0DTsECUNM8ms7qzQsA2mT0gJVpyeXdaUPXj901n7vjFCwAFeVE\n12P15gUAbTJ4wCqMr8G70YbhSLnU39mMA07BAlBXK3qPzZsXADTK4AHra2rFu8+GYxAtYzMO\nr+AULABVTaGVbN68AKBRBg9YT9EA3n02HMfiUs4zGYdVNI33tgAYyiPCzUzeuwCgVQYPWFto\nKu8+G5ZBtJ7JOHSnh3hvCoCxNBL+y+TNCwAaZfCANZnW8W6zYTkaU+UvBsNwJaEK7y0BMJhR\ntIvBexcANMvgASuLjvFus+HpTXsYDANmwQJQ2x7qweC9CwCaZfCAVT2Zd5cN0wFLGoMJoVfi\nFCwtGkpEJ3kXAYqpGY0LPgPombED1u9CU95NNlxZdCz8ceiBWbC0CAFL3wbSifDfuwCgWcYO\nWG9Qd95NNlw7hRsKwx2GyzgFS5MQsPRtHd3JoosBgEYZO2AdpdG8m2zY2tBj4Q7DS9SN91aA\nFwhY+mZLTbrEoo0BgDYZO2Atpvm8m2zYNlC7cIdhCc3kvRXgBQKWzvWgp1i0MQDQJmMHrGG0\ni3ePDV8G/SvMYegoPMJ7I8ALBCydW0T3MOljAKBJxg5YN5kj+FLPTotoYHij8Gd0Hd7bAN4g\nYOlcbmz1sE+gBADNMnbASqrOu8WyUMf8WVij8AT15b0J4A0Clt61p9cZtTIA0B5DB6yz1IJ3\nh2VhCk0Naxhm6eBMNF1CwNK7mTSfUS8DAO0xdMB6gW7n3WFZyElK/DWcYcg0n+C9CeANApbe\nHbc0YdXMAEBzDB2w9tBk3h2WiaG0LoxR+MXckPcGgFcIWLp3E73PrJ0BgMYYOmDNpOW8GywT\nh601Loc+Cjk0mPcGgFcIWLo3hZay62cAoC2GDlh96GHeDZaNrnQ89FGYRCt41w9eIWDp3lFz\nBrt+BgDaYuiA1TDGxrvBsrFLuCn0UUi35vCuH7xCwNK/DPqEXUMDAE0xcsC6Yk3j3V5ZyQx9\nstH/Ugbv6sG7gxs3e3WgBAAAIABJREFUbsznXQQoajKtYtnTAEBDjBywPqH2vNsrK4tpSKij\ncIiyeVcPYFSHTS1Y9jQA0BAjB6zHaAjv9sqKrUbUNyGOwl20gXf1AIZ1PYU3TTAAaJaRA9YG\nup93d2VmQsgzFtaIw7dQALxMoPVMuxoAaIaRA9ZEHR27ORlb+WJIg/A+3cy7dgDjOii0YdzX\nAEAjjBywbqXjvLsrO33oYEiDsF4nk60CRKZGwteMGxsAaIORA1aN8rx7K0N7hOYhDUJneoh3\n6QAGNpa2MG5sAKANBg5YfwhNePdWlm4KaaaGP6Jr8S4cwMj2Cx2Y9zYA0AIDB6y3qAvv3srS\nIhoawiDYqB/vwgEMraEJ3xEC6JKBA9YJGsW7tbJkqxH13+AHYaJOLscIEKkmYK5RAH0ycMBa\nSg/ybq1MjacFwQ9C3ZgzvOsGMLTDlqbsuxsA8GfggDWCdvBurUydjKsU9EwNH1Ar3mUDGFwL\n+rcSDQ4AODNwwGpp0tnBm950ONgx2ECTeFcNYHAzaaYSDQ4AODNwwEquyruxMrZbyAx2DLrS\nXt5VAxhcTly1q0p0OADgy7gB6we6iXdjZS2TXg1uDC6Uq8m7ZvBt6YABA3R2lBW8yaJnlGly\nAMCTcQPWS9SHd19lbSEND24MHqXbedcMvg0lopO8iwDlLaVRyjQ5AODJuAFrP03k3VdZs1W3\nng1qDCbTUt41g28IWAZhq5B4QaE2BwD8GDdgzdVhuBhLS4Iag3qYpEHLELCMoh+dUKjNAQA/\nxg1YA3R4Eb7jMdUuBzEEH1EL3hWDHwhYRrGZeivW6ACAF+MGrBusNt5tlb2edCyIIVhFk3kX\nDH4gYBlGrajvFet0AMCJYQNWYawer3K8Q7g5iDFoaTrMu2DwAwHLMMbScsVaHQBwYtiA9Q21\n5t1UldCcXpY9BF8LzXiXC/4gYBnG8ehamAoLQG8MG7Ceof68m6oSFtMg2UOwnu7mXS74g4Bl\nHF3IpmC3AwAeDBuwdtG9vHuqIuqYP5c7BG2Eg7yrBX8QsIxjM/VQst0BAAeGDVj300rePVUR\n99AMmSNw1tSId7HgFwKWgTQQPla04QGA6gwbsHqTPg/fnCmf+Ju8EdhGY3kXC34hYBnIfTRL\n2Y4HAGozbMBqGKPDWRpEg2mLvBHoRPt41wp+IWAZSE5Chb+UbXkAoDKjBqyr1jTeHVUhh611\nZf0e6SdLA96lgn8IWEbSlw4p3fUAQFVGDVifUXveDVUpt1KenBHYQ9m8KwX/Zrdr1y6HdxGg\nkj1Ca6W7HgCoyqgB6wkazLuhKmUzdZAzAt1pN+9KAaBEBr2mdNsDADUZNWBtoWm8+6liMugf\ngQfgf1F1eNcJAKUWUS/lGx8AqMeoAeteWsu7nypmuZwpdfbTMN51AoCLdAGHsAD0xKgBqzsd\n4d1OldNQeCPgALQR8A0hgJYspttUaH0AoBajBqy0eN7dVEELaECg7X+fcB1CAG1pTK+o0fwA\nQB0GDViXzOm8m6mS6pneCzAAU2gm7yIBwM0S6qlK+wMAVRg0YL1PnXg3UyXNprv8b/9fKQn4\n/T+AxjTBISwAHTFowMrX9ynetprmT/xu/yG6nXeNAOBhKXVXqQMCgPIMGrDW6fwbsql0t9/t\nb087eJcIAJ4ay5liBQAig0ED1gTayLuVKiq3kvVTP5v/gdCEd4UAUMZKIf2Cal0QAJRl0IDV\niU7wbqXKmub3h4TTaTrvAgGgrJ40VbUuCADKMmjAqpHMu5EqzFZPeMnn1l9Mjccp7gAadKqq\n6TlZLezn14t9UMioIQKAAowZsP7U/1dkK6iVz+Z7lHrzLg8AvFkt1P09UP/6cMvwBiSpOub0\nb2x7IwAwY8yA9TZ14d1HFdeKjvnY+ms3CNt5VwcyHNu7d6+NdxGgsn40zm/z+uNAu+JkFdO0\nW/fu3dvEEVnHfcu+QwIAA8YMWKcpm3cbVdwuS52/vG/9YWrPuziQY2jxB+lJ3kWAynJqCnm+\nW9fnExNJaDp5a779wXkrB1Sh2AdwFAtAi4wZsFbQXL5NVA29aLXXjb+UZsFlCCMCApYhbbRG\n5/toXB+NjKKUAe5v39y7kyj1YeWaJQCEypgBaxRt5dM71XQkLsnrdwdbqQfv0kAWBCxjWhwd\nddzbO/e9oWaqdl9umcefHBJDY30crgYAfowZsNoJRvgV3Xi69VrZbT9fOfog78pAFgQsg1pZ\nzry/zBv3nYEmqjUj3+sf7K5DzT9XoXECQDCMGbAqp6rcMbmwZdKKstu+mAbyLgzkQcAyqnXx\nwgK33xIWPnuHQHXm+PzJw+lOlPK4Wu0TAOQxZMD6jZqp2S25OZwcVebasT8mJhznXRfIg4Bl\nWJuTKHXleeeb9ofVDYjSHvD7i9KJlqgT6rZRAAjAkAHrdequVqPka7FQz/P3RXfTaN5VgUwI\nWMZ1bEgspU7ZeOqfr+0a3yKKLO2WBfqLFTHmR7i0UwDwwZAB6xiNUaNHakA/Gu6+6ZupmhFO\nP9MHBCwjOzo41j6ZKJnTRh+W8QdrYk0P8WmoAOCVIQPWEpqveHvUhtz6NMt1QvfjpqRdvGsC\nuRCwjO346pmj+/SavEHufxKtjzPt4tZUAaAMQwas4bRT0caoIfuq0KDSH3A/bY3ZwLsikA0B\nC4KyKcHk6/INAKA+QwasVqayc8no1eF0avuTY7vfTLQs5l0PyIeABcHZGBP9PNfWCgAuDBmw\nUqrwboQqymlDDQ6fLd7qfwyPEabzrgaCgIAFQVpkTv4P7/YKAA5GDFjnqDnvPqgm2+3Fn9NN\n725CVGUa71ogGAhYEKwpVBvXfgbQCCMGrJepF+82qK6NI5pFkbn1Yr/z6IDmIGBB0IZQxvnA\nPRAAVGDEgHWIxvPugqo7vQrXx4k4x/bu3YtQDEGxZVH/wsBNEACUZ8SANY8W8e6CAABKyG1C\ny3m3WAAQGTFgDaY9vJsgAIAiDlUwPca7xwJAkTEDVnNLHu8eCACgjHVRyZ/wbrIAYMyAlVid\ndwcEAFDKZLoeJ7oD8GfAgHWWWvBugAAAiulKw3i3WQAwYsB6kfry7n8AAIo5U4/28O6zAGDA\ngPUQTeLd/wAAlLMnLuZN3o0WwPAMGLDm0DLe7Q8AQEFzqP5vvDstgNEZMGDdQft5dz8AACX1\nokG8Oy2A0RkwYDWzYnZsANC1M/VpN+9WC2BwxgtYhbG1efc+AABl7Y0r9x7vZgtgbMYLWF9T\na96tDwBAYXOoyQXe3RbA0IwXsJ6h/rw7HwCA0rrQRN7dFsDQjBewdtG9vBsfgByz27Vrl8O7\nCIhYp2vScd7tFsDIjBew7qeVvBsfgBxDiegk7yIgcm2xJn/Fu98CGJjxAlYfOsi77wHIgYAF\n4ZlA7a/ybrgAxmW8gNWwHGZpgIiAgAXhsbWiRbwbLoBxGS5gXbXW4931AGRBwIIwHatoeo53\nywUwLMMFrE+oA++mByALAhaEa6Wpxs+8ey6AURkuYD1GQ3j3PABZELAgbIOoP++eC2BUhgtY\nG2k675YHIAsCFoQtryHt5d10AQzKcAFrMq3j3fIAZEHAgvDti4v9D++uC2BMhgtYXegY744H\nIAsCFjAwk67/i3fbBTAkwwWs2km8+x2APAhYwEJnmsS77QIYktEC1gVTI97tDkAeBCxg4RQu\nmQPAhdEC1jvUmXe7A5AHAQuY2GYt/yXvzgtgQEYLWDl0F+9uByAPAhawMYHaXeHdegGMx2gB\naxXN5d3sAORZOmDAgDO8iwAdsLWiObxbL4DxGC1gjaatvJsdAICqjlUW8nn3XgDDMVrAaiec\n5t3rAADUtd6SgtOwAFRmtIBVqSLvTgcAoLYxdPNl3t0XwGAMFrB+pQzejQ4AQG221jgNC0Bl\nBgtYr1FP3o0OAEB1xyoJj/LuvwDGYrCAdYTG8u5zAADqWx+V/BnvBgxgKAYLWAtpAe82BwDA\nwWRq9ifvDgxgJAYLWENpN+8uBwDAQxcaxrsDAxiJwQJWpiWXd5MDAOAhpz7t4N2CAQzEYAEr\nsTrvHgcAwMe+hOiXefdgAOMwVsA6Sy14tzgAAE4WCdX+y7sLAxiGsQLWC3Q77w4HAMDLXdQc\nJ7oDqMRYAWsvTeLd4AAAeLF1pOG82zCAURgrYM2i5bwbHIBcBzdu3JjPuwjQl5wGtJZ3HwYw\nCGMFrNvpAO/+BiDXUCI6ybsI0JkD5c1/492IAYzBWAGrcYyNd3sDkAsBCxSwJirxbd6dGMAQ\nDBWwrkan8W5uALIhYIESZgrVvubdiwGMwFAB6xPqwLu3AciGgAWKGEY3nufdjAEMwFAB61Ea\nyru1AciGgAWKsGVRjyu8uzGA/hkqYK2nGbxbG4BsCFigjNxmNJF3NwbQP0MFrPG0kXdnA5AN\nAQsUcqwmLeTdjgF0z1ABq6OAjyuIHAhYoJSHK9FG3v0YQO8MFbCqVODd1gDkQ8ACxewuLxzk\n3ZABdM5IAetXasa7qwHIh4AFytlQLgoTjgIoykgB6zXqybupAciHgAUKWmqJe4F3TwbQNSMF\nrEdoHO+eBiAfAhYoaa45/h+8mzKAnhkpYD1Ii3i3NAD5ELBAUXPMOIYFoCAjBawBtI93RwOQ\nDwELlDXbnPgK77YMoF9GCljNrPm8GxoAgGZMNyW9xLsvA+iWgQLWtXK1ebczAAANmWaKfYJ3\nZwbQKwMFrC+oLe9uBgCgJfOs1pO8WzOAThkoYD1Bg3g3MwAATVlezryXd28G0CcDBazNNI13\nLwMA0JY1ccJy3s0ZQJcMFLAm0TrerQyAgxUVyWOGkrJL5KwCfdpSgUZe4t2eAXTIQAEri47z\n7mQAqsu5XSD3zFR2iZxVoFsH61PbH3n3ZwD9MVDAqlmedx8DUN3mWkQWt8xUdomcVaBjp1pQ\n+ke8GzSA7hgnYP0hNOXdxgDUNtZC1gntXTNT2SVyVoGu5femxNO8WzSA3hgnYL1J3Xh3MQC1\n1aU62wvcMlPZJXJWgc5NsQrTLvNu0gD6YpyAdYxG8+5hAGpL65VT4J6Zyi4JuCqDaGrJneZE\ns6Qbm3vWjo2qcP2YklMbT92dmWq1JDUdecx+P50sBce7J1jGFt/Om966cowpLq3PVlZbBmxt\nrkpt/8u7SwPoinEC1iKaz7uFAahti/h/bpmp7JKAq2YRlXy/ftRMccUxrOBMV3JIcjx8XYpz\nScp6acH1RGcaFd8dWlDwcF3nOmEwu40Dlo63opRjvNs0gJ4YJ2ANpV28OxgAF2Uzk5/vAb2s\nOpNAwh7H7clEPcR/tiFKzV6y6cFOAkWtFBccSiBqMGHhortrF2cu6RiWeOCLrE1vmFhQUJyz\nGkxctnJODyvRfcy2C5iyjbXS4HO8GzWAfhgnYDW35PFuYABchBuwCnoTOQ88NSMSj09NLU5M\n9u8GZwpUPbf4n4OJmon/LMjPJMoWbxT/M73hYfHW1uJHn5EevTmKqoW7OaCUnQ2oqo13pwbQ\nDcMErML4Gry7F0BQpmVkZOTIeeCu5Rv8zvEWdsAqDkipNunWIyaqWfwPWzUyOY9ptSFaUPyP\n7Mw0x98tJcoQ/9mCyHpQWjKLaIjj0fcMn54fcIOAk7xhFurzOe9mDaAThglYX1Jr3s0LIChD\niehkwEfZpqSKpzaljdgv3c0ZVfYhYQesggZES6UbE4hGFv9jO9ENznUPkscPdA8Q1RL/WRyw\nOtiXzCe8/SLElkZUbtFfvNs1gC4YJmA9jks9Q4SRF7CGl5w+3nTk4oV3plYo+5DwA9ZkZ1Zq\nTKaD9vt9neuK89R1JQ/MPX78+F6iquLt4oB1t33pUSvRLZsDbgpogG1qearz8FXeDRtABwwT\nsDbQdN6dCyAo8gLWoJr3HTjz0ANZCY6c1bDsQ8IPWCeiySp+C/mwQDc5S3Nhv0jCss41nUU4\nA9Zcx99PEa/AU63n3KMBNwe4O97bQunHrvFu2QARzzABaxxt4t23AIIiL2BtzbX/M/fBjhUt\nMfXHnin7kPADVkEW0aTif4wlmi3e7e0esKzFi062clngDFgrnX+/NF1absp4wBZwi4C3fVlm\nuv4gLgANEB7DBKy2wineXQsgKPIClgwMAtYq+/eA6RQvBbi+RF1WlBJz1M1EcSM2H84rKDhS\nGrDWlT7DukFp4mEsysA11yPAro4mqrocczYAhMMwASulEu+WBRAcLQWsgupEuwv2EfV0ltbf\nff0mopgd9puPeA1YxY7MamsmujnI6oGLPb1iKDb7hULenRsgchklYH1PmbwbFkBwNBWwRhIN\nLxhBtEG6N63MzwKzibo7bq7zFbCKbUog2hpE6cDP8ZGViBqs/Jp38waIVEYJWM9RP97tCiA4\nmgpYj5ipdkF1+/wLBQU7iRLcJ+7tQzTWcXOAn4BV0J/wc5OIYVvSPopM7bae5d2/ASKSUQLW\ndprCu1kBBEdTAUs8x2o6lVwxvXbp9Z8frNlvlxScHHOJ7itHVFG8URKwbAMzOjmf5s7SnxZC\nBDg6vpFA5ls2fsG7hQNEHqMErHtoDe9OBRActQJW39tue9jfg+0WECWQ6ZDj3lSi+K3SrZ0V\nyLynoKA4fNWRpmh/qEZ6DFnFU+FLj2A1IWGm/dYjVUk4EPYGgZr2j24gEGUs+D+cjwUQFKME\nrCw6xrtNAQSHQcBaPVRUi+gW8Z8TvC4piCLa7P3BrvJTistpUXK3NZG178I1c3pGEw0svn8y\nrvgzeNH2ZbdHx+xKI+q37ZBLwFplIiFz4vzlcwdWIOoa3iYBBwcmZFiIqo2z/cm7kwNEEKME\nrGopvFsUQJAYBKxst+mqqntdUhKwvKxyNYhcv93L7SI4HmgeJE1tNddiv5u4zv5Eo13PwZoZ\nU/K8nbxM1AXad2xmh3ii2D57v+fdzAEihUEC1i/UjHd/AgiSxgLWHqKEXJf7G2+rFWeOb9B/\nl/N++xRzTFr20eLw1TfFWnOh20nuj4xolhJliqt3W9nT3iFS5C3vW5XI1H7TN7wbOkBEMEjA\n+hfdxrs5AQRpdXZ2dm7gh6llE1Ef3jUAbzuy0wUSbt78I++eDqB9BglYDzmvOgsAockiYQfv\nGkADDoxrLFBU71MXebd1AI0zSMCaQct5dyWAiLbV5HKKOxjbgexaRJUewBykAP4YJGDdRocC\nNw0A8OVgDRI28y4CtGNj7zgy93ued2sH0DCDBKy68bzbEUDkWrpgWDzhYgjg5tSk2kTtnuTd\n3AE0yxgB609TI97NCCByJYg/K2ybF/iBYCzLM4haPsa7vwNolDEC1pvUhXcnAohc1Si6wRQb\n7ypAg9a1EKjLe7w7PIAmGSNgHaExvPsQAIAObbyeLJPO8e7xABpkjID1oM8r2wIAQDjmVqHk\nA7ybPID2GCNg3UEP8e5BAAD6dCY7mrp/xbvNA2iNMQJWoxicPwIAoJC9zShhRyHvRg+gLYYI\nWJej6vHuPwAA+mWbHEs9cf0cAFeGCFj/oU682w8AgJ4daEbVnuPd6wG0xBAB6ziN4t18AAB0\nzTbOIky5zLvbA2iHIQLWPFrIu/cABG377NmzMbknRI6VqdTlZ97tHkAzDBGw+tIB3p0HIGhD\niegk7yIA5DvSnOr/h3e/B9AKQwSsunH4ESFEHgQsiDT5Ayj+DO+GD6ARRghY54UmvNsOQPAQ\nsCDyTLeaVvBu+QDa8P/t3XlgVOXVx/Ez2QiQgARkk00WFUSlLGJZrCiotX0iyG5REAVZLLK5\nWwsiGlAUASmiKbLIvkZqq7a1vlq3ape3rrWi+LohigoKyJK8d7JOMhNIZu7MmfvM9/OH3LlD\n9EzOPM/5mZncSYSA9bJcor3pANVHwIIHzcuSa49ob/pAPEiEgPWITNDec4DqI2DBi5afLBfu\n1d71gTiQCAFrkszR3nKA6iNgwZPWniHdPtfe9gF9iRCwzpe12jsOUH0ELHjT5t7S9gPtfR9Q\nlwgB68QG2vsNEAYCFjwqr780e0t74we0JUDA+ky6am83QBgIWPCskZL1svbWDyhLgID1tAzS\n3myAMBCw4F3jfRl/1N77AV0JELDul6naew0QBgIWPGxqcq2ntTd/QFUCBKzRskB7qwHCQMCC\nl92akv477d0f0JQAAatr8mbtnQYIAwELnjYjLY2PzUEisz9gHa3dXHufAcIxMiMjY4N2EUDY\n7k5PXqU9AAA99ges/0hv7W0GABLQ7PSUNdoTAFBjf8DaJCO0dxkASEQ5NZMf1x4BgBb7A9YM\nuV17kwGAhDS3VvJy7RkAKLE/YA2SR7X3GABITPdnJD+mPQQAHfYHrNPS87S3GABIUPfVTlqm\nPQUAFdYHrAPJp2pvMACQsJyE9aj2HAA0WB+wXpcLtfcXAEhc8zN9i7QHAaDA+oD1Wxmrvb0A\nQAJzEtZi7UkAxJ71AeuXkqO9uwBAInsw07dAexQAMWd9wOrpW6e9uQBAQltYV+ZozwIg1mwP\nWEczTtLeWgAgwf2mvtykPQ2AGLM9YL3DB+UAgLbcxjI9X3seADFle8BaIyO1NxYASHi5TWTC\nUe2BAMSS7QHrRpmpva8AAJY3l8EHtScCEEO2B6y+skp7WwHCM6Zx48YbtIsA3LKmvZz3jfZI\nAGLH9oDVoIH2pgKEabiIrNcuAnDNxm7S8WPtmQDEjOUB6yM5W3tPAcJEwIJltpwvrd/UngpA\nrFgesLbJMO0tBQgTAQu2yRskdX+vPRaAGLE8YP1abtfeUYAwEbBgnxvSknO05wIQG5YHrGzJ\n1d5PgDARsGChnLoy9gftyQDEguUBq3mm9m4ChIuABRs92kK67dAeDUAM2B2wdstZ2psJEC4C\nFqy0/lw5YYv2cACiz+6A9bQM0N5LgHARsGCpCWm+yVxzFNazO2DNkenaOwkQLgIWbPVgE+n4\nqvZ8AKLM7oA1TBZrbyRAuAhYsNa6vpJyCz/Egt3sDlinpm/T3keAcBGwYLEZDaTD89ojAogm\nqwPWvqT22psIEDYCFmy2tp/PN3Sn9pQAosfqgPW8/Ex7DwHCRsCC3XLaSM1ffac9J4BosTpg\nLZBJ2jsIELYHJk6cuEW7CCB68iadIA1mf6s9KYDosDpgXSELtTcQAEBl1g2pJfXu+FJ7VgDR\nYHXAOoX3uANAPFszPENqjnpZe1oA7rM5YH3lO0N77wAAHNO6UQ1FOi3mx1iwjc0B6/cySHvn\nAAAcR94d3XyS+tPHvtEeGoCbbA5YM+RW7X0DAHB8uVe2Eqlx4QI+Bhr2sDlg/VSWa28aAIAq\nWTyshYh0mPIkV26AHSwOWPlZJ2pvGACAKnv02h+litToc/ffjmoPECBiFgesd6WX9m4BAKiO\nDTMu9f8gq/7g3M+1ZwgQGYsD1goZrb1VAACqa/mUPvVEks6e9b/aYwSIgMUBa6LM0d4mAABh\nyFs4sn2SyOl3va89SYBwWRywuqZs0t4jAABhenxKtxSRH688qD1MgLDYG7D2p7bV3h4AABFY\nPbGjTxrd/rH2PAHCYG/AekEu0d4bAACRWfLzWpI6jogF77E3YM2TKdobAxCJByZOnLhFuwhA\n3fprG0nNqV9ozxSgmuwNWENkifa2AERiuIis1y4CiANbxmdJxtzD2lMFqBZ7A1bLjDztTQGI\nBAELKLFpdKac9Yr2WAGqw9qA9Zl01t4RgIgQsIAyq86T5F/u1Z4sQNVZG7C2ynDt/QCICAEL\nCHRnY2n3D+3RAlSZtQHrZpmhvRsAESFgAeVsMr70JdqzBagqawNWL98a7c0AiAgBC6jgltpy\n+T7t6QJUja0Ba3+NVto7ARAZAhZQ0SNtpeNO7fkCVImtAetP8nPtjQCIDAELCLL5Qjnpn9oD\nBqgKWwPWHXKL9j4ARIaABYQwxpfxpPaEAarA1oD1E98q7V0AiAwBCwhlSkrqCu0RAxyfpQHr\nQHoL7T0AiBABCwhpVq2kXO0hAxyXpQHrL3zSMzyPgAWE9kBG0mPaUwY4HksD1gy5SXsHACJE\nwAIq8WBmEq8SIt5ZGrD6+FZqbwBAhCa2bdt2o3YRQFyan5G8UnvOAMdmZ8A6WLOZ9vIHAETN\n3Jop27UnDXBMdgas5+Vi7dUPAIiee9IyXtMeNcCx2BmwZskN2osfABBFN/lOfE971gDHYGfA\n6ivLtdc+ACCaRkvbL7SHDVA5KwPWodpNtVc+ACC6jPQ+oD1ugEpZGbD+KhdqL3wAQHRtO0dG\naY8boFJWBqy7ZZr2wgcARNnGk2WR9rwBKmNlwLpIlmmvewBAtD2amfq89sABKmFjwNpfk7dg\nAUACuDOp8cfaIwcIzcaA9Tu5VHvRAwBiYKR0P6g9c4CQbAxY18lM7TUPAIiBvF4yQXvmACHZ\nGLBap2/SXvMAgFjY0Fw2ag8dIBQLA9bb0l17xQMAYmNR2gk7tMcOEIKFAWueTNBe8ACAGJkg\n3X7QnjtAMAsDVl/J1V7vgAtGZmRkbNAuAoh/58qN2nMHCGZfwNpXo4X2agfcMFxE1msXAcS/\ntY18T2pPHiCIfQFrq1ymvdoBNxCwgKqZl9KIj31G3LEvYI2Vu7UXO+AGAhZQRVfKT/O1Zw9Q\ngX0Bq0WtLdprHXADAQuoorwzZKn27AEqsC5g/Ut6ai91wBUELKCqcmvVfld7+gDlWRew7pFJ\n2isdcAUBC6iyydLlkPb4AcqxLmCd61uuvdABVxCwgKrrKTO0xw9Qjm0Ba3dKG+1lDriDgAVU\n3eqslL9pDyAgkG0B6zcyUnuZA+4gYAHVMMt32n7tCQQEsC1g/USWaq9ywB0ELKA6LpZp2hMI\nCGBZwPok+VTtNQ64hIAFVMeGJkl/0Z5BQBnLAtY8GaO9xgGXELCAapmbdPJe7SEElLIsYHXn\ndwhhDQIWUD2XyjjtIQSUsitgve87Q3uBA255ZNasWdu0iwA8ZFNz31PaYwgoYVfAuksmai9w\nAICS+SlN92jPIaCYXQGrY8pq7fUNANAyREZqzyGgmFUB6y3pqr26AQBqtrSVTdqTCChiVcC6\nXaZqr24AgJ5ZNr/9AAAWH0lEQVQFKSfu0h5FQCGrAla7tLXaixsAoGiEDNUeRUAhmwLWi9JD\ne2kDADRtbSdrtYcR4GdTwBohv9Ze2gAAVYvTsj7RnkZAgVUB64saTfK0VzYAQNfV0i9fex4B\nVgWsWXKN9roGACjLO0Me1p5HgE0B63CzGlwECwASXm6t2u9pTyTAooC1QS7WXtUAAH2TpOcR\n7ZEE2BOw+sgC7UUNAIgD3WSO9kgCrAlYb/g6aC9pAEA8WFE37XXtoYSEZ03AGi83ai9pwFVz\nRo4cuUW7CMCTZvjaf689lZDobAlYe+tkMYpgl+Eisl67CMCbLpbx2mMJic6WgJUjw7XXM+Au\nAhYQto0n+Z7QnkuokiNfvv/++1/usfDXEiwJWF9n1eIaDbAMAQsI3wMpDT/Xnkw4pkMvPzr9\n4tZ1pEjKST++bNqy1w5oV+UiSwLW7XK59moGXEbAAiIwUi46qj2aUKl3F5oMf67KbN6+W59z\ne/240ylZSf7byR3GLN+hXZxL7AhYuzLqMIhgGwIWEIG8TnK39mxCaJ/e29HZ3hpeOG72yoCO\nbX1s9tiLTqnh3NPsqvVfa9foAjsC1vVytdoiBqKEgAVEYmW9lOe1hxOCHd3402RJ6XrtktBt\n23Lv6LMzRFJ6zX1fu9JIWRGwdtZosCm2CxeIPgIWEJHZSc12a48nVHBgSTuR1mNWHbNz2+YO\naesT6TTrHe1yI2JFwBot18VovQKxQ8ACIjNcLsnXnk8I9P09DSWlT5U+dmX5+LOSRbrM+1i7\n5vDZELDeSWm6NdrrFIg5AhYQmW1nSo72gEKZww83lZr9l1W5f6snnZUkSRes+E678DBZELDy\nL5QborhCASUELCBCy+slP609olBi82mSNnBNNTt4TTuRzKue8+RPIi0IWEulU1501iagiYAF\nRConJcvzb5W2xLv9JKlv1X96VWbxoPoi7XI+1X4A1ef9gLWzTs1c1xcloI+ABURsnJzp1ReY\nrPL9bTXkzEVhNnHbzF6pknLp77x2XTPPB6z8fjLR1eUIxAkCFhC5fjLEky8v2eUPrSRreiRt\nfPyaFiIt7/xE+4FUi+cD1sO8QAhLTenUqRPXHwEis/lU3uiubc9IScpeF2kn772ghqQMeMpD\nP8byesD6MLMWLxACACrxWL2kDdqTKrFtaiyt7nejlWvHthBpO/dL7QdUVR4PWAd68AIhAKBy\n96enc0V3PV8Ok5TLt7jVzJyfpEr6yFe0H1TVeDtgHR0sPXiBEABQuTuS6nv7iuBetr2JtA33\nze0hrRrZSKRr7n7tB1YF3g5Y0+RU3qMCADiWCXLy59rjKjHtvUZSfuH2lcDz7ujqk6zp8X/9\nDU8HrEXS5NifZwQAwGDp8q32wEpEz7WSFvOj0dBHBmRK0s9+H+dvePdywMpLzqzk07gBACiR\n10d67NUeWQnnwLQk32Wbo9TSTZPaiLR74BvtB3ksHg5Yy9LS5kSpcwAAi2ztKb254Ghs/f10\naZQTzabOPTdFMsa9of04K+fZgHX0Rql9ZzRbBwCwxZZz5LzvtedWIjl8Z6pcGO0rJS+/PEt8\n528+ov1gK+HVgLXvUmmyOMqtAwBYYsvZcgEJK2be7CpZd8SirTe0F2lxz27txxuSRwPW386Q\njqtj0DsAgBU2d5Vz4nMO2+fIvenSO1Yzen6/NEm/6jXtxxyCJwPW3uuT5SLXrlsGALDf5t5y\nSvz/ar8N3ugudW6KYWdXj2wocs6qg9qPuyIvBqwtzaXRjBj2DgDgfXmXSuN4/EGHZQ7NTJMe\nK2Lb2m23d/JJw1t3aj/28jwXsI5u6CopAzfGtncAAO+72pexRXuI2e6FM6TeLQq9XWJqSXL2\nH+Lp0lgeC1j7Hm4nvu4LFXoHxNqmNWvW8ElQgJtuSPNNOaQ9yGy2a5TPd4HSO6Q3TDxZpM09\n8XPRfi8FrINbhtSUlAse0mkdEGPDRSTav+UMJJj5TeScD7WHmbUOL6onLe5RbO/cPmmSNviZ\nOPkxlmcC1o6lQ08QaTRkmWLrgFgiYAHuW9tTsjZoDzRLbesgNUcr/wLa6qubibSaERfvxvJC\nwDr8jyVXtXFmTZa5lxdMkDgIWEA0XJsq2f+nPdcs9PK54jt/uXZ3n3gi754+aZLUb8U+7W9I\nvAesvS8uGdejljNn0rtcvZB0hYRCwAKi4qH2kvlgvF7926teyfZJ5wXarS22dsIpIrWveCZf\n93sStwHr65dyp1/c0ueMGF+z88fdz1WvkHAIWEB05E2oLZ22a085m/yln0i7Wdp9DfTQoAYi\nyr8yGocB66NnFozv01j8Mk+/ZOJ9G7T7BKggYAHRsry3T3o8qz3tLHFwZXeRDnF3dcq82cOU\nr9wfTwHryH/z5ow6u05htMo665Jxs1dq9wdQRMAComd+F5E+W3mhMGIf3HKi+Dpr/upg5ZS/\nNfETsG7slO5PVklNuw+aPG+tdlsAdQQsIJrmninSMoePJ4zE7od6+aR29hLtXlZC+bsTNwEr\nv0VKy17Db1q4WbshQJwgYAHR9UDfNKnx8+XfaM8/j/rgoYtTxdd+Yvy+j0f5GxQ3Aavg4Fbt\nVgBxhYAFRNvqUc3FyViL3tKegF7z1RPTOzg7VMsrcrVbeCzK36T4CVgF2p0A4gsBC4iBRcOa\nOUut6YhFL+3XnoLesP/Vpdee7hNJ7XTNw9rNOw7l7xQBC4hTBCwgNpaM75HpLLeUM4bdsepV\n3pRVmR92PvvITZe1T3a+VakdBt0Rv68MllL+hh0vYGV3iZm2AAJkOdtYa+0igATRvGHddF/h\nL7En1cjIatik+cltT23f8cxOnWM3BONO505nduxwarvWLU9qVL9urdTC74740uuc2KyNdruq\nJnbfqtfDCVitBQAAAJX5CwErnrVq3759Le0i4K5TnaamaBcBV6U4PT1Fuwi4q7bT1JbaRcBd\nWU5Tm8TuP0fAimundenSJVO7CLirk9PUVO0i4Ko0p6dnaRcBd9VxmnqqdhFwV0OnqTFMzWEF\nrH+/htgY6DwbVmsXAXf1cJr6rHYRcNUfnZ721i4C7lrhNHWodhFw1xynqZNj95/bG07AQqxc\n6TwbXtMuAu7q7TT1K+0i4KpdTk/7aBcBd73kNPVq7SLgrtVOU+9SroGAFS8IWBYiYNmHgGUh\nApaFCFgoQ8CyEAHLPgQsCxGwLETAQhkCloUIWPYhYFmIgGUhAhbKELAsRMCyDwHLQgQsCxGw\nUIaAZSECln0IWBYiYFmIgIUyBCwLEbDsQ8CyEAHLQgQslFm3YMGCj7WLgLuWOE39XrsIuGqf\n09Ol2kXAXTudpm7ULgLu+qfT1D8p10DAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZ\nAQsAAMBlBCwAAACXEbAAAABcRsDS9eYYY14IPPHx0knDB1w586kjWhUhYkFNDXkKnhLUwf8u\nnji0/+U3rPxcqyJErGJT81+cO2bQgBE3r9qlVhIiFXqv3TXEmP+JfTEELE2Hl2Wb8k+GDf1N\nkfHs2x4V3NRQp+ApQR38YWHxQjUDtuiVhUgENfXTySVN7b9BryxEopK9Nv92Q8BKNDuuc7bn\nck+Grc6z4Fcbtv92tDFX7dUrDOELbmqoU/CUoA7mz3RW6s3LNi260vnzKcXKELagpu4eYczA\nuY9veWSs01RisydVttc+aQhYieaJAeayrQ8EPhk+G2j6v+I/ODjLmAVqhSF8wU0NdQqeEtzB\nPzijuPCj2Q88aMzlP6hVhrAFN/UuY6bv8R8cXWrMYD5D1IMq22t3DTajCFgJZoqZsKOg3JNh\niTGri44OjDCX7lGqCxEIbmqoU/CU4A6ON+bJoqMjo415TakuRCCoqXuyzcBviw6PjjHmFa3C\nEL5K9tr828yIDQSsBDNlsfN/voFPhiO/MAP2FR+vMmazUl2IQFBTQ56CpwR18Jtsc9mB4uNF\nxmxTqgsRCGrqR/NmPlpyPL80QMNLKtlrf2fMn7YTsBLMDv8/Ap8Mbxtzc8nxm8bcqlEUIhPU\n1JCn4CnBHTyy+6OSw1xjNirUhAgdc1neqzKNEanQTf18sPl1AQErIQU+GZynwG9Ljn/INkN1\nKkLEQmzbBCyvq6yDdxvz11jXApdU0tR9l5v+vEPDqyo2Nf9WM3Q3ASsxBT4ZnP8X3l56xxXG\n8HuEHkXAslAlHdw70Azh/dBeFbqpH041ZkXsi4E7KjZ1e+Ev+hKwElLgk2Fe4BPjl8Z8FPIr\nEPcIWBaqpIP3lf5iCrwnqKm7cpfOu86YgeuVCkLkKjT188HmVwUErAQV+GSYbcyrpXdMM+Y/\nKhUhYgQsC4Xu4Fpjph+OfTFwR1BT3/RfL2lo7rdK9cAF5Zuaf6sZ4r8wPwErIQU+Ge405u+l\nd9xszNsqFSFiBCwLhezgSmPGMYy9K3TAcpr6jFJBiFyFyxAW/0IoASshVfoTrKn8BMuzCFgW\nCtHBgznGTNitUg1cEaKpR/e8vXKoMfNV6oELyl+8e7C5Nd9/QMBKSIFPhvsDnxjXGfOxSkWI\nGAHLQsEd/OJ6Y27aF/pvwxMqWZZfXG3Mn2JeDNwR2NT8m83goo/1JWAlpMAnwzJjnii943Jj\nvlOpCBEjYFko+NWkEcbMP6RUDVxR2bJ8xZgpsa4FLglsal7pFWMJWAkp8MnwB2NKLyX8vTG/\n0KkIESNgWahiB18aYLL5RGCPq2xZHjQm+0isi4E7Apq6e5AZ+0KRBcY88sILO2JcCwFLWeAK\n/68x00uOXzdmpk5FiBgBy0IVOvhSfzPoZbVi4I7Apv5zU+6bJcf52cYcCP0liHcBTS3+nYUy\nS2NcCwFLWbnXi0eXfcLz4sKLo8GTCFgWKt/BdwaawW/pFQN3BDZ1qTELS44/MWaQTkWIGAEL\npcpt2yuMyS06+nKQGcT1ob2KgGWhch38/moz4F+KxcAdgU193Zihu4qPlxtzh1JJiFTovZb3\nYCWkck+Gb4aZ7Of8B3tvMGaNWk2IEAHLQuU6uNiYzYq1wCXlXkC4zpipXxUePnMpy9W7CFhw\nvLnab5IxOf4/i7brP2cbc9u6vN+McJY614f2oBBNDdVneElwB3f1N9krVpfK064Q1RZiWb43\nyJiBOWs25zpJy9ylXSCq71h7LQErwWwo99rwFUUnnx5YfPs2rtHgRSGaGrLP8JDgDr5Q/o0d\nY7QrRLWFWpb/GVt6YsEPyvUhDMfaawlYCSb0k+GLZdcPu+yqnJdUS0O4CFgWImBZKOSyPPJs\nzjVD+l8+9dEPdYtDeAhYAAAA1iNgAQAAuIyABQAA4DICFgAAgMsIWAAAAC4jYAEAALiMgAUA\nAOAyAhYAAIDLCFgAAAAuI2ABAAC4jIAFAADgMgIWAACAywhYAAAALiNgAQAAuIyABQAA4DIC\nFgAAgMsIWAAAAC4jYAHQk3+eiPy64tmfOSenKVQDAK4hYAFQ9F5NkbS3yp9b5+Srtvt16gEA\ndxCwAGia66Sp3vmBZ75pIuJ7VqkcAHAHAQuApiNdnYT1cOCZa50T12qVAwDuIGABUPWvVJET\nPiu7/VefSLNv9eoBADcQsADoul1EBpfeOnS6c3O7YjkA4AYCFgBdP7R3ItUTJbfucm6MKLnx\n7PWdG6bWbz9o5d7AL/h47s9b1Umu02bQ0u9KTr3ofNVzBV9NapV24juFJ/4766IWGcmZbcyC\nL2LwEACgIgIWAGUvJom02Fd0/F66SMMvi47fOkdKNF5b+rcP3ZhaerrB1uKT//D/2Otbf1KT\nfzg3D4xPKv07teeUews9AMQEAQuAtklODppcdHiBc7iu6PDpTH8+ata5XbL/z5ziv5tvCmNT\nnRYn+P/wbSg6+47/y6ZLccDKv9B/kNK8Td3CM1Ni/oAAgIAFQNt3rUSS/+Y/Wu7kof5FJ993\nElTSpA+co28f8oepjUWnH3IOGy75yjl6z//rhnX3FP1l53BxprS/6d5bdhYULHNudXvmkHP+\n0wX+L30x5o8IQMIjYAFQ97STgjodLij4soHICZ8Wnesn4ltVfP9bdURaHig8bO3Err8Xn57o\nfNm9hUc7naPzZVrxi4EXiDQpfsmx4L36IsNj8iAAIAABC4C+UU5AmltQMNL5I7fozOvO4ajS\n+xc5t1b4D/w/qjqv5Oz/OTcuKj2Sn5S82apxwPvkC+7rMmh2tMsHgIoIWAD07XEyUa0df3ZS\nUt/iM/73ZZV9hM7+WiUvHR788OV/l55uLnJK4UFhwHqq5HQ9kUtjUDQAVI6ABSAObPRnq1NE\nan9QfKKTSOuA+y8SyQr+qs4iJxYe+ANWxuGS0z8SSXs1erUCwPERsADEg8uKLqqwoPjm/iSR\nfgF3T3Pu+yzoi7qL1C888Aes3qWn73Nu1bzl/ShWCwDHQcACEA8+q+fPVz2OFt/0J6ZaLcv4\n732p6K6D66/p3qhmyWWuygLWFaX/rkM9C+86bcLGPTF+FABQjIAFIC74r61Q4+2SW/8rwYre\nY/V403InywLWdWX/ru9GFN+b3HMhGQuABgIWgLjwtZOHziq99VKIgLXJf8eswsNWPbN/4WgQ\nGLCmBf7bXrmiTvFX1b3zSCwfBgAUImABiAvlA9Yb5V7zK/NHn3PHxJ3Ft7pXGrAKCg79cWrH\nooj1swPRqRgAKkfAAhAXygesjyT0pRb6OecfKL3V9RgBy++zR3r5E9Yst2sFgOMhYAGIC+UD\n1qEaIqcH/6XvkkROLvvw5qbHCViOTekitb93t1QAOC4CFoC4UD5gFXQTSf026C/5P9T5qtJb\n78rxA1bBTOeu51ytFACOj4AFIC5UCFhTSz4cp8g7RWHrFefs9aUnJ1cWsHbuLDv2f85hXlQq\nBoDKEbAAxIUKAct/nYb2pb//d6BZ6vn+XyJ8N/CtWX9P818sq/CwXMCa2iDgoqMFq527Xo5m\n4QAQAgELQFyoELAK+jq3xxa/3erQYOfGeufgSKZIneIrur/RtHYP5/SX/uNyAete58aikhuH\nnb9Th18jBBBrBCwAcaFiwNqR4Zw4/3knYh1Y38U5PK/w7JXOUU//h+B8MrOmLLrFuXWP/3S5\ngLW3kXPryhcPOYffPenPYDfG8nEAgB8BC0BcqBiwCp7xJyyp3bah/9JX0mFX4cn3/CeT2/Vq\nlyQyKn+7/57Tu79b4T1Yf65ReBX3pi0zC6+D1XN/bB8JABCwAMSJoIBV8M9epRdx9131dfHJ\np0qu0J78q4KCw2cWHv674pvcX+lQdv33lMnkKwCxR8ACEBeCA1ZBwZ8nd26cVqtp3xk7ys59\ndluXusl1O09/13/jk6H1U5sO+SLoMg35v5/QvVF6cp3W2fM+iX7pABCEgAUAAOAyAhYAAIDL\nCFgAAAAuI2ABAAC4jIAFAADgMgIWAACAywhYAAAALiNgAQAAuIyABQAA4DICFgAAgMsIWAAA\nAC4jYAEAALiMgAUAAOAyAhYAAIDLCFgAAAAuI2ABAAC4jIAFAADgMgIWAACAywhYAAAALiNg\nAQAAuIyABQAA4DICFgAAgMsIWAAAAC4jYAEAALiMgAUAAOAyAhYAAIDLCFgAAAAuI2ABAAC4\njIAFAADgsv8HaRu2/v54gNEAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 360, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_width=20; plot_height=6; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "temp = data %>% filter(QRISK3_event==0) %>% select(c(eid, QRISK3_event_time))\n", - "mean = round((temp %>% summarise(mean=mean(QRISK3_event_time)))$mean, 1)\n", - "obs_time = ggplot(temp, aes(x=QRISK3_event_time)) + ggtitle(\"Observation Time\") + \n", - " geom_density(fill=\"gray70\") +\n", - " xlab(\"Years\") +\n", - " geom_vline(aes(xintercept=mean(QRISK3_event_time)),color=\"black\", linetype=\"dashed\", size=1)+\n", - " #geom_text(x=mean, label=mean, y=0.15, hjust=-0.5)+\n", - " #ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0))+\n", - " #theme_classic(base_size = 25) + theme(strip.background = element_blank(), plot.title=element_text(size=24, hjust=0.5))+\n", - " annotate(\"text\", x=mean+0.3, y=0.15, label=paste0(\"~ \", mean, \" years\"), size = geom_text_size)\n", - "obs_time\n", - "plot_name = \"2_observation_time\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# ENDPOINTS" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Frequencies" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "plot_width=20; plot_height=6; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "temp = data %>% select(c(any_of(targets))) %>% select(!contains(\"_time\")) %>% select(!contains(\"cancer_breast\")) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value!=0)/n(), count=sum(Value!=0), .groups = 'drop') %>% mutate(ratio=ratio*100) %>% arrange(desc(count)) %>% mutate(category = fct_reorder(category, count))\n", - "\n", - "plot_endpoints = ggplot(temp, aes(x=category, y=count)) + ggtitle(\"Endpoints\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Number of Events (%)\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$count)*1.3))+\n", - " geom_text(aes(x=category, y=count, label=glue(\"{count} ({round(ratio,1)}%)\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35)) + \n", - " scale_x_discrete()\n", - "\n", - "plot_name = \"3_endpoints\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAALQCAMAAAAjXrvTAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd3wVVfo/8CcNCIYaC18V5SfY\nC7q74lp2XVdxX7o8yQ0hCYQaIRaINAsoaBajiCC9SJEmikAWFUUsCKGqiAgbUKRKCUiRTkwC\nSc5v+p2ZO3MT5Cbcm3zef5AzZ86cmZt1534yc+YMCQAAAAAIKLrQBwAAAABQ1SBgAQAAAAQY\nAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFg\nAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYAAABAgCFgAQAAAAQYAhYA\nAABAgCFgAQAAAAQYAhYABFhnkgwITF+/yn1RQWA6AwCoNAhYABBgCFgAAAhYANXUN+TXyj/e\nMwIWAAACFkA1hYAFAFBxELAAqqnQCFgHImSF5W4/PDPzs8DsGQDgfCBgAVRToRGwztHJMKJe\nF2TPAAAWCFgA1ZQasDr2c7Hrj/d8AQNWDiFgAUBQQMACqKbUgPVNBfR8AQPWMAQsAAgOCFgA\n1VSVDFhtEbAAIDggYAFUU1UyYDVDwAKA4ICABVBNVcWAdTwMAQsAggMCFkA1de4B69eF414b\n9vbnJxxWHft8+pA3Ji87pSy4BKzSDbOHZw2d/u1Zx873Lpo1cvDE7BX553MwS8gpYO1d9PbI\nrKETPvq5uJx9AwCcNwQsgGqqfAHroNzofrk0/74wdQKH8PsX2Rp98WiUuqpm/NfCGrDWyeV7\npMJv/S/RJoCo1+NX+16297xBnx6ixj+GmzOWZaJRvwez1zrNxGKtes1Tlxp19dt9Wc5fDgDA\neULAAqimyhewTsmN/iTE4X+Z00vnIlOTE51Ma8J6nBVdTAFrq1y+XoicRqZGF8+37OPwk5GW\nbNRofKmxzhKw/B6MY8A6kGytpXu2n8/vDACgvBCwAKqp8gWsYrnRdeLwTdac0tHbovB+6ypP\nSVdTwNqjJCaxrJa10VTTLnZeS3Zpxs08S8DyezBOAeuXpj5d16uIUWcAAHYIWADVVDnHYIVL\nja4seVD696J/dX26058i1JzyidEgVa24rd/Yt19PvVgqZT5lClgH5HLMYfn6Vf1Hn+jdVstG\nNbwTxe9Qr21F3tN/zLQ3n7peXZ+sr7W+i9DfwRxs3ry5vHu6uLnsW6mq+E/K6qi/PZk5pF/a\nfTWUpUY+NygBAAIPAQugmipnwKopR5ZxRJdOVlPOLla2a6mvX66mFm0kVNGw2lTjX6aA9ZsS\nnroTNZ1TolR8e5uywS36XcCSvynLiTu05U+bKcuztEVrwCrrYHrJS95B7hPlxbBnj2iLR15S\nIlb3cv6CAADOAwIWQDVVzoAVLTWqWZ9u3qdXFP9d3i78oLZ4l7x0Ua7Rfkm0elVJC1hHlIUw\nuuOQ3uB3NVHN0xZHK0t9vDv8VbmIFfubtmQJWGUdjC1gKSuzTB/mC3mwV43jZX1mAIDzhoAF\nUE2VM2BdpDRrsM9bo26oXbL6n7Iw3LTBG5aAdUxdqpfnbbCnjlzzD3Wh+Ep54d5SUwdrwkxd\nWgNWGQdjC1jF8h3EWqfNn6avOdsBAFQcBCyAakqNJt1fd7TCaKZmmknmLa+Qa4ao5f/I5Ybm\nEFN0tUPAesW8/dNyTZQ6Z9Ynyup1liNLkatuU8tOAcv1YGwBa7+81MzS9ZZOL09beriM3wwA\nwPlDwAKoptSA5cI7TaiSaWILzFs+Yrqppwwj72jp+HnfgBVx0Nxgg1L3sVJWplG43XpkC5T1\nm5SyQ8ByPxhbwFKeYKxf3t8HAEAgIWABVFPnErA6WbbsLld1U4rFyrDxdxw6tgSs+y0NSuvL\ndf9RysodwtetR1ZQW658Syk7BCzXg7EHrLPKQ4YflOu3AQAQWAhYANXUuQSsCZYtn5Or2inF\nn5XW/7OsLqrhE7AGWnctz7NAHeSSMjc7rbSuFvfIlY8rRYeA5XowPoPcW8iLde3zzgMAVAIE\nLIBq6lwC1heWLV+Wq1KU4odKa9vbCa/3CVhzrA3S5Lq75dLnyuoj1tXqu3YeUIoOAcv1YHwC\n1gz1wzy6sEgAAFQuBCyAaupcniJcY6nK9GYaZaapurZNHvQJWN9aG7wk1zWVS9PlUm37PgfK\ntdcrRYeA5XowPgGrtJWWF+vGj/qhpKxPCgAQQAhYANXUuQSsjZYqU6Z5Uy5ebtukjU/Asr0A\ncKhc10gujZJLje37HC7XxipFh4DlejA+AUucfMR7Ua5Bmyl4fBAAKg0CFkA1FZCA9R/jWpRJ\ne5+AdcDaYKxcV0cuDfJeqzKZ4L2udX4BS5QMq+uNWBT5cHapAACoDAhYANVUQAKWMiXDjbZN\nOvoErKPWBpPkuprG9jfZ9zlZro1SiucZsIT47Y0bTBGLbv+yrA8MABAICFgA1VRAApZ3NJVJ\nW5+AddDaYIxyy04uvSiXrrPvc7xce5FSPO+AJdk68qEaRsIKe7msTwwAEAAIWADVVEAC1hC5\neIVtk0d8AtYOawNlDNaVculVo2Q2TK69RCkGImBJ8j/tc4sesUb4/8AAAIGAgAVQTQUkYI2T\ni/anCP/iE7ByrQ28TwkqNwNr2ffZX669WSkGKGDJfhnSWOms5i+uHxYAIFAQsACqqYAErNlK\nJyetm1zsE7AWWhso82A9JJc+d7qDKFLlyn8pxQAGLCEKn1F66+v+aQEAAgQBC6CaCkjAWqd0\nssmyWnnHsjVgvWnt8yG57km5tFtZvcS2z9vlSvX9ggENWEI8YVw7AwCoUAhYANVUQALW6TC5\nbH0X4Tu+Aau9pUFpA7luuFJuJBczrbs8HilXzlbKAQ5YyvufIzBXAwBUOAQsgGoqIAFLXCOX\nH7OsTvQNWPXPmBv8aNpzJ7l4g3WXyvTuYfuV8nkGrF2nbB9HeY/0734/MQBAACBgAVRTgQlY\n3eVyw9Omtbtq+gYs+q95e2Xyq/rFSnmZsnq1pf9/yFV/U8t/IGA9rS3sfO7BhjTW+mnOhpM2\nxSkAQIVCwAKopgITsBaT93afKoUcAtZ1pktYR2LNmegmeaGF+aad+gLp99SFcwtYfeSFjtrC\nfjlMNT5taf2l3OD2sj4zAMB5Q8ACqKYCE7DOKlMf1FprrHyFKMI3YFEXI0KVJCgV+iub1RFb\npgf7flKGZd14Vl06t4D1srKpvkq5EvZv8/3A083lqqyyPjMAwHlDwAKoptSA1bGfm+/UZmVl\nGmXAFNV5W71EtTmeKOZJe8CKakXUSpts9OCjygYPG73FKcvt8tSl4hnKJA8RK7S15xawpiit\nJ8vFEiFWKks3zNOvnpV+rlwui9n7B39jAADlh4AFUE19Q/5NUZuVlWlKWqjNG3i692x7vVwa\n/pr8b391tXoF68faRJF/GzDu7azW6ktrGnrndj9wpVJT61+DJk0Z0uEKZSFsjL723ALWJvVY\nbmr96G3yGK4n1cWYB5966bX/9Iq/VF2cGKBfIACAHwhYANVUgAKWONjMul1SqfKqQe2mnxqw\nCmeHW9pEfmHqbltT+65rvGusPLeAJe40+rhLWipOcvhcr5//rw4AoEwIWADVVKACltj9gHmz\nJ8+KGfLPp9SVasA6JT5oaGpz9deW/o6lhVn2fK9pYNg5Bqy1Nc0BS4gxdW2f6sbPz+d3BgBQ\nXghYANVUwAKWEO/cp12gqtFKHjv1mVzUnuVTA9YJIQ4PbKx1fHG/Y/Zj+bHndfpuL05aZF5z\njgFLrLxB6ydeXT4x/L5I4yPVafPB2XP/RQEA/AEIWABw/g4unPr66xOX2qf11AOWmqg2zx2R\n9caMtSWOPexZOH3Y65M/WH++s6yXfD0+a/Bbn/3mrTn1/bxxb7zy5uQPtmEGdwCoNAhYAFCB\nzAELAKD6QMACgAqEgAUA1RMCFgBUIAQsAKieELAAoAIhYAFA9YSABQAVCAELAKonBCwAqEAI\nWABQPSFgAUAFQsACgOoJAQsAKhACFgBUTwhYAFCBELAAoHpCwAKACoSABQDVEwIWAFQgBCwA\nqJ4QsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAAC\nDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQ\nsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsAAAAAACDAELAAAAIMAQsIIe//nPf95x\noQ8CAAAAzgECVtD7f0S06UIfBAAAAJwDBKygh4AFAAAQahCwgh4CFgAAQKhBwAp6CFgAAACh\nBgEr6CFgAQAAhBoErKCHgAUAABBqELCCHgIWAABAqEHACnoIWAAAAKEGASvoIWABAACEGgSs\noIeABQAAEGoQsIIeAhYAAECoQcAKeghYAAAAoQYBK+ghYAEAAIQaBKygh4AFAAAQahCwgh4C\nFgAAVJApRCMC2N0kopEB7C6khWzAKl47pW9aYlLX52bklhqVG9gQl/Lkm6uK9RWpzDv0cu7U\n/p0S45MfG/jebu9mT3p7nsDcKU8plX49NL1NQof+7x6s4A/jlxywxn8CAABVkuvZf83jN9aN\nuvi+zL3K0idkcZfeKucqos+8GxVnJ18TXeOy+1/Za+rJ1sa8Joo6a8WVj11bu8Gtad/6tCn5\nuN01MTUue2DwAa1ieavYqKszDnhbzKKI77ViDwr/1PUTVS8hGrBKF3fzZqmMr/VqU8BSPL5Z\nW+ENWLv6mELY8N/1zbwBaxpzhz1KaX9vvaEnuzI+1Hh23A0CFgBAFebylZDfUc9Std+Wl50D\nVkHfMDKHp8236g1qGleS7G1MjlxOTU8rpcJu+ob9bG323G0cyGSlYm4E/bNzM2pyWG9xKJae\n18uFN9PFv7p8pGomNANWwWA59qQPmTB+cGe5NEG7VCUlpdTZqlnjekkr2vykrjAC1vY2UuXg\nOZ8v+WTS49L6585qmxkB6z2pi1+U0uEOzIlD3/twitzww0r4VL0QsAAAqh3nb4SSltK5/x/9\nhqRfRRQ2X6rYkun1BFGS0uqHm4lqmMLTrlgpBrXPHN6zibS1God82pilEK1Ud5dIVLfb6MEt\npSw2ytLkeDOi5m+tWjO/czjRdKniVAN6Q4gz91JXby/XFhjt14VTqzK+7aqJkAxYxS9IkecN\n7QbfzwOlhaFq2Xqvb9uT0qIavYyA1YM567i6uvRLD/N822bzmdtq17peZX72qFwomcyclF+B\nn0dV6EHAAgCodpy/EsZJSWmxXCiSos9VJdaVbSh6p/xzRBTVGptiCk//JvrbIblwphtR7BnH\nNiYr9KAmJhC12CcX5kdQzElzm/5EjyodiblEDaXvwhlUv0ha+pBqa1+MCyhsuWmDLkS4SSgL\nyYA1ndmzxLv4vpSwFiola8ASB9swr1dKesDayty5yFg/j7lLqWWzhcwpW9Xi0ThOPKEWS9KZ\n11TIJzHbxAhYAADVjvNXQjOid9TSsUuIvras+5hosFJoTrduEqbwtC+MLjqqFosuJ1rl1Mbs\nbgpXv/LyL6VYbbTxs488s8vcpinReq3YnEj6sk2nf8kLB4hWK7XHL6fu5g32RNItzp+pmgnF\ngHXYw/yRuWICc1tlNJUtYIkhzO8pBT1g5TAP867OHzbn27PmzRbHcZI+bGvP8EFv6w1HMS9y\nP55fJj2dktC5/3w182cyf26sGsic49BGiBeYS8TO0WmepIzpyhW12dpwr0yf7hGwAACqMMcv\nFikqNdQvW7UjmmFed6ox3aReU7o9o0CYw9OPHR59Vm/VhmieUxuT1URxamkO0WsuX3ERFK5f\nl2hPNFaIB7V7gzW0o+pGjS2XvEQy0RcunVUroRiwpjL3KjVXFHbQBknZA9Z05reUgh6wljAP\n8u1Q32xFHLdxnBBhGPMKt6M5O0EfCp+q/LEgZbiX9HXH4zmpwKGNEsMKFsWrdV3kPxsQsAAA\nqiXn75ai3T/pxSeIJppXPU1h2lfSBvkfl6tTTLS4jDYdibS9JxHtdD4OUYfC9AFWUsCaKsSd\n9LSyVJ/GyD+WhpHtCsRiotYunVUroRiw0pkXW2veZVYee7AHrDHMasDWA9Y2Zo/vf0TaZt96\nOPF/Tjs8lcqeo25HM5S509x129eMjud4+T5iQRJ79DD/KfNIpzZCDGJewunZ36yamcws/91w\ncv805mn79/vuBwELAKAKc/t2MbQk+sq0uC6cuphXO4enAzEUc8p/m6J6FFOoFhvTldK/R35Y\n5fsN+Yh+K1CIOyhsixAttDuCdeTLWSK/KXW0bXG2IUWfLuMzVQchGLAOM7MthvzMnCD/V2IL\nWMWPMatXjIxB7i8ypyz43dajutm6BG79g9MOd/VlfsftaHKYe6p5am08d5Zj/pvM+sXR/swb\nHNuILOk4spRLvBuZ45X/ErMxBgsAoPpx+3rR5UXSJUWm5QcoOs+83jE8rbuNaFgZbZYRsVo6\nQfSQWPqAPJvDVUMLra2WE92txqX31CHxLam9vHQmnGZJP/rQZUfE1r7339VugbFJsjJWq9oL\nwYD1A3Oareqsh1kelGcLWFOZ26n/pRgBKy9NimeJg7JzC0ztlM02JnLCWvu+Dk6dPDxD2mCe\n69F057g9WnE0s/xHxlrml9WKI3HqIHrfNvIjiu215y+k/jfKP20Ba+9rmluujkLAAgCoqly/\nXzRx1rnWFxK9aFlvD09bn+nV/gaii0b7aaN43Rh4tYGo3ehwbbaru4/5NGs6YunX/+0YTnfI\nTyj2oBZy9Y9E0nfmmnDKFp/VVDY0hroPJxpY1qeqBkIwYC1n7mOv68CcKywBq+TYmgFs3Ev0\nTjR67PU4de7QPtNz9Yne5c22JEl1ufZ+f5Sbpkw94XoweczG9Gq5zPJzHcUd9HuEC5inO7eR\nA9YUrWqYdpnNFrA2/NlQCwELAKCqcv2CUfUj+mexafkvFGO9iWMPT4vlsFOv3zF/bRTtjPkU\nVhA1j2gyY3vhrhENjIHvhk8eUJPX1QOUL8N5FCmPHB5GDYtE0S2UIE5cSvF78ieG0cfaBkuM\nS2PVWggGrM+YX7DXpTPLs/vbZ3KP0xOL+VU5e2b20FanfaDMM6rMT9qWpeDVLs/W749qwydt\nY768FjNP0Mu/Mz8u/5yo57pnmXe7tJEC1kqtagKzMucEAhYAQDXk9xuvtLeUfcx/5H9J1Nfa\nxDFgEd04208bxT1EP6qlT6X2NxxRipsuIsqxNDv2bCO1x6j7lWMtupJa54v/xcpTvmdSg/1i\nEsXIR9iOHtS22El0m99PVT2EYMDKYe5tr/NewTJp89pWfb05YEmOfz3t+dZyk77KTP/KZunb\n3pDCz0l7zyVHN89KYR5lr9fMsSa6BLlus/Ys4EHmXm5tXlUPWDZRu2uIgAUAUA35+8I70Yro\njgPmmocpfI+1jW94Ort/Vb8YSxBzDFjXEGmXuT41vUonk8gyDGfPNRTW9ZuTRbsm/z+iAXLN\n4ppUu0kYNT8tNtagaUIkqte83qdIbfjWGaKL/X2qaiIEA9Y65k62qmIPs/zog5SUOmSr2jN/\n521gC1iyou/l9+1kFKub8Wv5orA3c/+zDns81FW7yORrqu2ambJ5OnvkZzfmMy9wayMFLO0P\nB7eAdXCG5qZGkQhYAABVlZ/vux03ET1k+cN/dzg9ZGvk/BThlsvMI80d2zQiUqfTkgey19Jv\nQ24kutbc6j4ibUTLsZu1mR++98TWaNbvuChuQS2lxRvU1xeuJ9IfFIukaD+fqroIwYB1SMoo\nh61V25lby/+ZmMZgfcXc1TuQ3SFgSdYmqPNbSZuly8uHO2nTKtitcRj2pZombZFroswL964a\nmXqz57hbm7IDlgFPEQIAVGHO3y6yZbFET1n/7B9kTPBucJkHayapM667t2lAYVopl+gKvfYM\nUYyp0SqiO/XyB0T/NnfwJsXIz5ddoj6vuFeLX5IYCnf5SNVJCAYs0dlnXnUpmzwn/zQ/Rfii\naeSTS8AS45nHmjf7uTXzXId2hcxxxQ71yu2/qT6Vecp0pvv1SU2d2iBgAQCAzPHLRfbfKIp8\ny1Z3M4Xbp0t0CVj7iOr7b+O9glUQTvWM6giqaWo0mKiXXt5N1MC0anttdapR7cdBog+1NbiC\nJQvFgCUlkh6WmdxLHtdeRmgOWHmtOW6jvmAErEOWe9eL1Gf6vJstkZKUNvh8w/ypegQSpXHM\n5nkdvJYxZ/nW9mHPaTFXn/7dqQ0CFgAAyBy/XCQfRFBd+ytnpIjTwt7OFJ4WD+1rvLXwGJmC\nUhljsMR1RHu14mHT1SzJc0T/0cvHyXxlqvQBule5a9OQ3pR/7CXSXhSHMViKUAxYe6W484G5\nYj5zijKplGUerNnM6fp8aVrA+r4DdzVHs3eZx1k3m86cuEUpTVavbin2MbdxPpb9zG19h219\nJGernpxS5NoGAQsAAGTO3y7im1pU12dyxklEz9vrTOEpg8j4EvyO6CqnNl7epwhFH6JxWvEj\n633AweSdN36DJThNopo/K4Wm6tj3DcrEWLKdRLe6fKrqJBQDlnxnz7PSu7jKo79f2RKwzjzJ\nrL+uWQtYx1prl7pUp9OYl1s3Kx3E3FF5pfg6KbVp7xYXM425Q3308r7bOffxydoryI/G8chf\nmce4t3EOWHOc9oCABQBQhTl/uRy/mqJX+dSm+w7BMoenhUT19fs0TxKlOrXx8s6DJb4nulqb\n/Poh6SvH1GgxURN9iMwYc/bKq0eD1RIrE7yLORShdYF5sBQhGbAKnmKOm3BcXTgxMY55qHpd\nyjqTe67UarNa1G8RzpKqputvZ9omBZ/0Ittm+d2ZM+T/RkozmPuq04IsjtdfueMrR8ph25TS\ngXTm7VrtQO7wkTZBu3Mbh4C1yGWEPQIWAEAV5vzl8hTRGN/au4i+s9eZwlPxjUR/VWZ1KB0V\nRrTEqY3XYNIjkhAJRK3kL8fSl4hilW/J3j16yFNDnrmGqI/6FftzLNF8Y2umO7R7M6MoVr5d\n1JH+rq0aoc3nUM2FZMASx5+W52IfMOOjD6e/6JGKw7V4bXtVzkjmp9QRfHrAKnlNnohq4NvZ\n86ePkgIUp27z2exXqW2mfFt5WxvmxCHvfzBVbviq67EMYW498bufVk9OVu83Kr5ifsx0N9K3\njUPAko4iYdaSeZbRZTIELACAKszxq+WXKIoYkGnQX/3RkMg0K9ZKZd3NRO3ln/KoljXRRLVT\nsob2vl765ujs3MaQY5q0Pa8xUeMXJmXdQRSmjsGpSbRe+T6LIrpr/NJvFvSOIfIYX1GzKXK9\nVvytHvUpEV9Gkv5WOSnOlf0K66ovNAOWKJjh8c4rlbZcr7YFrBNSVpqplIxB7qXz25pmpMr6\n1WGzXKnriXJh6+NGwzHmF21aFY+L0+eNn1yiV+YnSsuz/LRxCFgl3ZUWPk8rImABAFRhjl8t\n2WRxl1YdQZTvbfS6pc31ctW31+iLYT3PuLTRFdWjOsabnbc015rU0Qar6AFLfPF/xubdfteb\nH77E9EbE98KpkZTo2mmLZ2Op1ikBIRqwpP9xFwxMbyPlkR7jvjVijT1gyReSPMo1KtM0Dfk5\nI3u3b+1pm541d5/zZp9K3SpvVCrOGdIt2ZPa9+1dfg9lx6SMtp62vaeYWw2R+sjz08YhYIlD\ngzu07pKJK1gAANWJ4xeLc8A6aXmMzzE8nZmR2CQmMvavz/3s3kbXwTwX6ZmpD19Ro+GdL+uD\nj42AJX6f4rn6osiL7+yz0btpKt1Q6F1a2rJerdvH6tcHviJKcPxQ1UzIBixZaZr72KiqQw5Y\nmy70QQAAQFWzkii+ArpNMeZrqN5COmDJY9Z7O08AWoUgYAEAQEX4K4VvL7vVOcqLopt97sVU\nR6EdsI62YR5TUna7kIaABQAAFWEZUduAd/qY+cZjdRbaAUt8wMzds5ct3nyhD6QCIWABAECF\nSKKw1QHucn04PRLgLkNUiAcseb51meMU6AGWf9iH/Y1QFQIBCwAAKsRv/0fX5pfd7BwU3kqx\n+wPaY8gK9YAl1md18CT3+LrshudtNvvoWAm7RcACAIAKkhPlfRNOQGRQOG4QqkI+YFUeBCwA\nAKhiphAND2B3k4kc30lSHSFgBT0ELAAAgFCDgBX0ELAAAABCDQJW0EPAAgAACDUIWEEPAQsA\nACDUIGAFPQQsAACAUIOAFfQQsAAAAEINAlbQQ8ACAAAINQhYQQ8BCwAAINQgYAU9BCwAAIBQ\ng4AV9BCwAAAAQg0CVtBDwAIAAAg1CFhBDwELAAAg1CBgBT0ELAAAgFCDgBX0ELAAAABCDQJW\n0EPAAgCo+qYQjQhgd5OIRgawOzh3VSBgPcPMedaq3Kn9OyXGJz828L3d5uritZP7pLVO7Njv\n7Y1qxVDm0dYtFzOnl4oNrPK0fyJr3raKPPhyQMACALig1jx+Y92oi+/L3Gut3hJN9Jm+sPSx\n6+pEX9NhsXe1b41Y+di1tRvcmvatwz5yoqhzWa2Ks5Ovia5x2f2v6AeyvFVs1NUZB7wtZlHE\n91qxB4V/Ws7PBxUi9APWDjkJTTXX7OrDhrjhvxv1S7p563v9KNfkMif9buntOeb/CiNgqXqv\nrozPIcR4znaqlgPW+E8AAKCCOZ+b8zuSpvbb5vqSe8gIWEcf1dukFrrViMJuelU/n50cuZya\nni6j1eZb9TU11YtTcyPon52bUZPDeotDsfS8Xi68mS7+1eXrBipD6AesccypnHrGW7G9DXOb\nwXM+X/LJpMelePTcWbW6aKgclroNeWvCa53k5PWxXPkU8+fmzvYwJxxXAlbqbMmst7I6ylsN\nLaiMT9ILAQsA4AJyPDWXtJROwv/oNyT9KqKw+aYVw8kIWAV/IYpqN2Jk2yiiNi41oiSRqG63\n0YNbhhGNsu8lhWhlGa12xUoRr33m8J5NpP1OlipONaA3hDhzL3X19nKt9+tqXTi1Kut7BypQ\nyAes35M4YzrzMm9ND+as48058DcAACAASURBVGqx9EsPs/r/h9JBUlDK2qGWv+suLeRIpQXM\nfc29vS2FKaEErCf1qk2vSW0HnhEVrtCDgAUAcAE5npvHSbFGuc1XJEWfq0qM+q3R1EgPWJlE\nVyhDOdZfRpTtXCMmELXYJxfmR1DMSetOVhAliTJa/Zvob4fkwpluRLHSt9IMql8kLX5ItfPV\nFgsobLlpgy5EuEl4AYV8wFrEPGcbc3+jYitz5yJjaR5zl1KtEPeRUV3wEnOylMJOJTLv9HZ2\ntj2zPDzLHLCEWCaltPEV9wl0mxgBCwDgAnI8NzcjekctHbuE6Gu9uuReuvJFLWCdbUC0VK3O\nIbrZsUbkX0qxB9WqZx95Zpd1J3dT+Fbhv9W+MLroqFosupxolRDp9C956QCROpDl+OXU3dzp\nnki6xfEjQaUI+YDVk3m/fKfPGHuYwzzMuzp/2Jxv5XuEJ5OYp5k2O92B238j/RzFPNFbu4pZ\n+a/TGrDEEuZ42/8ZzH6Z9HRKQuf+89U/NTLNdx0HqhfK7G2EeIG5ROwcneZJypiuXG6brQ34\nyvTpHgELAKBSOJ3hpVzTUL9s1Y5ohl4/nGhulhawviG6Ta+/l+hHpxoxh+g1t6+R1URxasm9\n1Y8dHn1WL7chmifEg9q9wRraUXWjxtYLY8lEX7jtEipcqAeszczPCTGf2Rh6KKWhQb7t5jCn\nnTVX5OYq/4/ZwtzOe73rZWZlaJYtYIkBzMPdjuDsBH0wfOoqeVkKeC/p647Hc1KBQxslhhUs\nilfrush/rSBgAQBcYI4n+aLdP+nFJ4j0P8m3RlOC0APWO0RP6G1eUaZH8K0RSUSmGyZWHYm0\nnftr5cVEi4W4k55WlurTGPnH0jBaZG22mKh12Z1BBQn1gDWCWfqv7KjHO8x9G7PH9z/PZ5jn\nOnbQS7/GJDkYx4nKUxz2gLVOSkalLkcwlLnT3HXb14yO5/g10nJBEnv0vyE+ZR7p1EaIQcxL\nOD37m1Uzk5nlP1dO7p/GPG3//qM+O0DAAgCoFG7fNLqWRF+ppZL7qMGvRsAaZ3ri732ibk41\nojFdKf175IdVvt9QRfUoRnvU0E8rrwMxFHNKiBbaHcE6NFb6N78pdbS1O9uQok+X9aGgooR4\nwDqZqF4iyjLFpBeZUxZYJ18QBR7m7Y49fMb8gl5+T58Wyx6wihKZtzofQQ5zTzVPrY3nzvKx\nvMmsX5Ptz7zBsY18wClZSibcyByv/B8gG2OwAAAuJOfTvCEvki7RbnmMUAZm6QFrpul6VTbR\n/U41J4geEksfCJPO6FcNLbR2vIyI1ZK/VoZ1txHJQ2FaUnt58Uw4zZJ+9KHLjoitfe+/q90C\no2Uy0cIyPhRUmBAPWB8yK1dG15iGueelMXPioOxc09wKu5gTSnw3lxQkM+9Ti6XShluUkj1g\niT7MX9u3VHXnuD1acTSz/LfNWuaX1YojceoIe9824lXm9tpjHxnqwHp7wCrK0zSrGYaABQBQ\n8dy+ajRxxlzrW6Pp38IbsFYT/UlvJNU1d6rZQNRudLg2j9Xdxywdv24MvPLXStnxM73a30B0\nkXIxoAe1kH/8SLRW+hoMp2zxWU1lQ2Oo+3CigWV8KKgwIR6wnmTeLP8s7sSsZxhx7PU4dR72\nPtNzi9WqjcydXLqYwDxdLX3P3Est+QSsTObPhJM8ZmNWt1zmwfKxdNDvES5Qu3ZoIwesKVrV\nMGZlYJYtYG34s6EWAhYAQMVz+ZrQ9CP6p/qdUnIf1ZNfIKIHrKK6RN+ojX5vQtTUqWaFFLMi\nmszYXrhrRANjSLumnTGfgr9WssVyfqrXT01e8yhSHsI7jBoWiaJbKEGcuJTi9+RPDKOPteZL\njEtjUPlCO2D9T3vqT4gZ3sAi2TOzhzZmPO0DZWj7WuZ0lz5+Ye6o/l/mdeP5P5+ANZj5I/uG\nisXME/Ty78yPyz8nKuPCJM8y73ZpIwWslVqVlPCWyD8RsAAALiiXrwlFaW8p+5xQyyOJlPeH\n6AFLPEvUTHkz24lWEUTXONV8KiWjG44orTddRJRj7vse9TlD4b+V8p2jXtu6cba8UHQltc4X\n/4uVh3tlUoP9YhLFyEfYjh7Umu80PcwIlS20A9YQ5g/V0j7m1CLzquNfT3u+tRyx+srvEPhR\nWu3WyXPa7b/jHk7R7ir6BKwXtBDkY47lpTqcINdt1p4FPKhdEXNqIwWsXK2LidpdQwQsAIAL\nys/XzYlWRHdoL/3bVpseVgpGwDrx/4jq9pr13rOXUR/lhqBvzafe9+rIs5CmmTu/hki7G+iv\nlers/lX9YoiUObIX16TaTcKo+WmxsQZNEyJRveb1PkVqw7fOEF3s50NBhQrpgHXMwx5tznZ5\nPHmOfX3R94OlQJNRLMRe5ji3190sYf6P/PMD5re0Kp+A9QTzWseNp1rDEyvXy9LZc0ook0cs\ncGsjBSzt7xW3gLXxAc2fbq+JgAUAUPHcv2523ET0kPaAeOnfqI5yccobsMTOG7VxUxm7ie5z\nqllOVKtYP78TXWvuvRGR9iC8v1ZeWy7TBq9/74mt0azfcVHcglpKizeojy6uJ/pBaxlJ0e4f\nCipWSAesudbg4vv2TCHWJjCvEKK4DfN6l16KUjlOvsr1FLM+m6g9YB2Vev/NceNpzCNzTZSR\n9O+qkam3Fv+c2pQdsAx4ihAAoFK4ftssiyV6Sp9LcRSRNvOiN2CJovF/b1irWZfV4muiTk41\nuURX6N2dIYoxd9+AwrSSv1YmM0mdxF33JsXI31+XKA8Xir3KLFmKGAp3/VBQwUI5YJV2tV0a\n2uPQaDyzPEHIAOZx1hXe51/fZn5fuYv4nF5jD1iLjLFednOYp/pU5ilzne7XZzx1aoOABQAQ\nbJzP80L8N4oi9TscYm9tui5b1ZZoQHb2ZkvbyURvCoeagnCqZ1RFUE1zC+8VLH+tTPYR1Tct\nbq+tTjWq/ThIpI2ewRWsCymUA9Za5rSFhkzmyUr1IUvOWqQ+tif9SLTM4bkteeIhrZinjIAf\ny7xUX2kLWMXpzO86H8My5izf2j7sOS1fX1vh2gYBCwAg2Dif58UHEVTX+8qZlWRjPcEnKq8J\ndKi5jkh/p9th03UqmXcMlp9Wi4f2NaYLOkbm7FX6AN2r3D5pqGa7vUTaE1sYg3UhhXLAeoV5\njndpm/rSm+87cFfzpOvvqpeuClOZ/2OqL8gwZmdQLm9tL041jZK3BazpzMm2N5/r9jO3PetT\n+5GcrXpySpFrGwQsAIBg43ye/6YW1TWNwnUOWIe1tYdr05Xqd429pg+RfiPlI1Km0TJ4nyL0\n0yqDyPhi+o7oKu+aSVTzZ6XQlAbIPzYoE2PJdhLd6vyhoOKFcMA6FMeeI6bl3solqGOtmU0T\n155OY14uF75k5uH60EFx8lnmrvn60irmGWvN9/GsAevDOONhRV+9vO92zn18sjaI62gcj/xV\nmwPVuY1zwDLlRS8ELACASuF4lj9+NUWvclzjHYMVHxOhvdqmB9HLzjXfE12tfe08JJ3Vzf14\n58Hy02ohUX39Bs2TRN4n4/Pq0WC1xJQk/5hDEVoXmAfrQgrhgDVLfYmfYZE6n6dUHTf9lFa3\nTco26ep1pOHyA4VrlauoJavTmZO3GVsWd+JuIzlun1FhDlg7BkkbvuF6FDnMKWpPB9K9r+MZ\nyB0+0iZod27jELAWaS8utEPAAgCoFI5n+aeIxjiuMAWsAUT/UN7QNoKo0SnnGpFA1Eoulb5E\nFHvK3M9g0iOSU6vePXrIs5oW30j0V2WiiNJRYUTeqYOY7tBukoyiWHl4cUf6u7ZK2vkAl2OH\nChe6AUuevH2dueL3JGVez5LX5LmmBr6dPX/6qAypmKoFqZIJ8jj41EFjJ2R1kAqdzMMS32H2\nsOl9AlLASp0tmzYiXd5q7Bnhaghz64nf/bR6crJpHP1XzI+ZblX6tnEIWNJOE2YtmefzUmkE\nLACASuF0jv8liiIGZBqmmNcZAevI5URXPP/Wa38hqrHEpUbkNSZq/MKkrDuIwj6w7CPHNGm7\nb6uaRMpT8GuiiWqnZA3tfb30rdDZ2Hg2ReoPyf9Wj/qUiC8jaZ5WkUJU5husoaKEbsBaxdbB\nVsp7/uRh7qXz25qeLMz61Vi/+gmjNm6k5RVPB+V365guAW+wPJz45Ap/x1E8Lk7vdLLxusP8\nRGl5lp82DgGrpLvSoljYIGABAFQKp3N8tnXA1V3mdd5pGjZcqa1vpM/b4FsjtjTXqurYxoMU\n1aM6ha6t9IAlvr1GP4qwnsaf/YcvoReNjt4Lp0ZS/GqnLZ6NpVqWS2VQmUI3YA1knmut2cLc\nVrkdmJ8zsnf71p626Vlz95kbFK+b3CetdWKXl+cdtHU2iLmTKdkYAcvTqdektT7XlGx2TMpo\n62nbe8ouU90QaeM8P20cApY4NLhD6y6ZuIIFAHBhOJ3hyxewxMk37m4QecndQ72Pq/vWiDNT\nH76iRsM7X7Z/BYkO2sShjq2MgCXOzEhsEhMZ+9fnfvZumko3eGcdEktb1qt1+1j96+wrogSn\nzwSVInQDVrUhB6xNF/ogAACgwqwkiq+AblOM+RrgAkDACnoIWAAAVdxfKXx72a3OUV4U3VzW\nLRioOAhYQQ8BCwCgiltG1DbgnT5mvvEIlQ4BK+ghYAEAVHVJFLY6wF2uD6dHAtwlnAsErHLL\nP+zjaNlbnT8ELACAqu63/6Nr88tudg4Kb6XY/QHtEc4NAla5zWYfHStjvwhYAABVXk4UdQlo\nhxkUjhuEFxQCVrkhYAEAQEWZQjQ8gN1NJnJ8OQhUGgSsoIeABQAAEGoQsIIeAhYAAECoQcAK\neghYAAAAoQYBK+ghYAEAAIQaBKygh4AFAAAQahCwgh4CFgAAQKhBwAp6CFgAAAChBgEr6CFg\nAQAAhBoErKCHgAUAABBqELCCHgIWAABAqEHACnoIWAAAAKEGASvoIWABAACEGgSsoIeABQAA\nEGoQsIIeAhYAAECoQcAKeghYAAAAoQYBK+ghYAEAVC1TiEYEsLtJRCMD2B0ERtUKWBuYOanA\nXLNPquEiU8Uz0nKebbPitZP7pLVO7Njv7Y3mnqwOVuSB+yMHrPGfAABA4Liectc8fmPdqIvv\ny9xrrd4STfSZsbTysWtrN7g17Vt9uTg7+ZroGpfd/8resvpR5ERRZ5ee3A9keavYqKszDngb\nzKKI77ViDwr/1PUTwQVS9QIWLzbXvGMLWDvk5anWrZZ088aoXj+aeqrkgDWes52qEbAAAALN\n5Tyc35E0td8215fcQ96AVdhNb9RPrdh8q15Rc6T/fhRHLqemp517cj+QuRH0z87NqMlhvcWh\nWHpeLxfeTBf/6vKR4EKpcgErjp83VZSmSRXmgDWOOZVTz5iaFA2V41O3IW9NeK2TVIj7WO8p\ndarFqQo/+l4IWAAAlcP5NFzSUjrh/qPfkPSriMLmm1YMJ2/AKkkkqttt9OCWYUSj5IpdsVIM\nap85vGcTqdFkv/0oUohWOvfkfiCnGtAbQpy5l7p6e7nWe8NmXTi1KvNLBipXlQtYvS13ANcz\n9zAHrN+TOGM68zJvi9JBUqrK2qGWv+suLeRoPT1ZKYfsVehBwAIAqBzO5+FxUlJS7oIUSdHn\nqhKjfms0NTIC1gSiFvvkwvwIijkp/fw30d8OyRVnuhHFnvHTj2IFUZJLT+4HMoPqy19lH1Lt\nfLXFAgpbbtqgCxFuEgaZKhewpsfxDG/Fm9x1kDlgLWKes425v7fFPOa4j4ylgpeYk4+LCxKw\nNjECFgBA5XA+DzcjekctHbuE6Gu9uuReuvJFPWDlX0qx2piRZx95ZpcQ+8LooqNqRdHlRKvc\n+1HdTeFbnXvycyDp9C956QDRaqX6+OXU3bzBnki6xfkzwYVS5QLW/Ge4k/HXQn4iTx5oDlg9\nmfeLp5iNUYcnk5inmXo43YHbfyPOLWD9MunplITO/eerf35kMn9urBqoXRCztRHiBeYSsXN0\nmicpY7oc6MRsbahXpk/3CFgAAIHmeDaXolJD/QukHZHx1/pworlZesCaQ/SaZasfOzz6rF5u\nQzTPvR/FaqI44dyTnwN5ULs3WEPrrRs1tlzyEslEXzh3BhdIlQtYc+Yzf6cvf878U39TwNrM\n/JwQUgtj0OEc5rSz5i5yc0u0nsoZsM5O0IfBp8p/t4gc5pf0dcfj1Yca7W2UGFawKF6t6yL/\nBYOABQBQeZxP6EW7f9KLTxBN1IpboylBGAEriWin6zcCEy127UfVkUjbu5+efDq4k55WlurT\nGPnH0jBaZN1iMVFr18OCC6HKBazZh+J4sL78HHct7WcKWCOUZwyPerzD3J9hnuvSUzkD1lDm\nTnPXbV8zOp7j10jLBUns0f+u+JR5pFMbIQYxL+H07G9WzUxmlv+EObl/GvO0/fuP+uwAAQsA\nINDKPLe3JPpKLZXcRw1+9QasxnSl9O+RH1Y5hKMDMRRjeyLK24+qqB7FFIoye7J30EK7I1iH\nxkr/5jeljrZmZxtS9OkyPxVUoqoXsMRA9hxXF/Pkxee9AetkonpBKUu/cScKPMzbXXoqX8DK\nYe6p5qm18dxZ7v1NZv06bX/mDY5t5ENIyVJS3kbmeOX/FNkYgwUAUEnKOrfnRdIl2nfHCGU8\nlB6wThA9JJY+ECadma8aWmjdaN1tRMNc+1EtI2K15K8nnw5aUnt56Uw4zZJ+9KHLjoitfe+/\nq90Co2Ey0cKyPhVUpioYsFYwf6guzuS4g+aA9SGzcm11jTHMfRdzQolDR+UPWN05bo9WHM0s\n/52ylvllteJIHHcpdWwjXmVurz0KksGszG9qC1i7+mluvSYKAQsAIKDKOrfHGXOtb42mfwtv\nwNpA1G50uDZH1d3H9PZbn+nV/gaii0a79qN53Rh45dKTcwc9qIW89CPRWulLLJyyxWc1lQ2N\noe7DiQaW9amgMlXBgHWmHWcoS6VpPECYA9aTzJvln8WdmNXEs5G5k1tPVk6T8QrlIpkx71Yu\nKzcnizvo9wgXME93biMHrCla1TBmZWCWLWBt+LOhFgIWAEBAlfFt0o/on8VKqeQ+qidP/qMH\nrBVEzSOazNheuGtEA2O4ujIEiqheP3tM8vaja2fMp+DSk3MH8yhSHq47jBoWiaJbKEGcuJTi\n9+RPDKOPtZZLjEtjEByqYMASE5m3yEvrmJeaA9b/mLWoP0OPN2uZ0916KlfAWsw8QS//zvy4\n/HOiPpv8s8y7XdpIAWulVjWBeYn8EwELAKCy+P0uKe0tZZ8TankkkfL2Dz1gfSoFqRuOKKs2\nXUSUo38ZqBeibpzt1o/uHiLtjSEuPTl3UHQltc4X/4uVp3zPpAb7xSSKkVe0owe1tjuJbvP7\nqaCSVcWAtYN5vLw0lJMLzQFriHHvcB9zqlL5o1Rw6yl1ltkJx2byU4hmCXLdZu1ZwIPMvdza\nSAErV+tionbXEAELAKCy+PsqOdGK6A7tpX/batPDSsEcsPR35mQSpRlbnd2/ql8MUV/nfgzX\nEGmXuVx7cuxgcU2q3SSMmp8WG2vQNCES1Wte71OkNnzrDNHF/j4VVLaqGLBEL04pUibBkh+2\nMALWMY8x+l0efZ4j/9zLHFfg0lO5xmBNtV3oUqZ8SGeP/BjJfOYFbm2kgKX9DeMWsI4t1lzf\nIAIBCwAgoPyc13fcRPSQ9jB46d+ozm6lpAes5US19Jt+G4mutWy65TLTSHNzP16NiLTH2P32\n5NvB957YGs36HRfFLailtHiD+vrC9UQ/aA0iKdrPp4JKVyUD1kIlPn2mjrgyAtZca8xR/tMs\nbsO83qWncgWsacwjc02UEfPvqpGptxbonNqUHbAMeIoQACDQ3E/ry2KJntLnRxxFpM2bqAes\nXKIr9KZniGKsG88kdcZ1ez9eDShMK/nvybWDNylGnvT9EvV5xb3qxFuyGAp3/1RQ+apkwDrV\nml+UR0ApEUkPWKVdbReSlGHuA5jHWfso1HsqV8CawzzVpzKPeZAQ+5V/XdogYAEAXECuZ/X/\nRlHkW/rC3tp0XbaqLdGA7OzNoiCc6hmNI6imdet9RPUd+jHxXsHy35NbB9trq1ONaj8OEmlj\nX3AFK9hUyYAlhnLc0f1aXtED1lrmtIWGTGblleeLmBMtc3tuS554SJQ/YC1jzvKt7cOe0/IV\nsxWubRCwAAAuILeT+gcRVNf7ypmVZCOdzK8j0p96Oqxcg1o8tK/xtsFjpAUlaz8m3jFYvj25\nH4ih9AG6V7lV0pDelH/sJdLezoYxWMGmagas9cxfZHPcb3JZD1ivMM/xttzG3E6uLkxl/k+p\nt74gQ51aobwBS4pxbX2v4H4kZ6ueykgwlzYIWAAAF5DLOf2bWlR3rXfRKWD1IdJvfHxE8hRZ\nGUTG98V3RFc59GPifYrQtyf3AzFMopo/K4WmNED+sUGZGEu2k+hWl08FF0TVDFilXXnI89pr\n/bSAdSiOPUdMTXsrczgI8SUzDzdmKTn5LHPXfHEOE4328r7bOffxydrb0I/G8chftVlNnds4\nByxTAvRCwAIACDTnM/rxqyl6lfMq41U53xNdrc0T/ZB0dhZiIVF9fTLpJ4lS/ffjnQfLt6ey\nDySvHmkvg2NKkn/MoQitC8yDFWyqZsAS73GqR5toSgtYs9RX/hkW6bN/DpcSVsZa5Ypryep0\n5uRtWk/lflVOirKFOJDufe3OQO7wkTZBu3Mbh4C1SHtxoR0CFgBAoDmf0Z8iGuO8xhuwRAJR\nK/lJ8dKXiGKlQvGNRH9VJlMoHRVGtMR/P4OJjPfl2nuS/vbv0SPP34Ew3aHdEBlFsfKQ4Y70\nd23VCFKvaUGwqKIB62Acczt1HKEasOTJ29eZm/6epM4CKkomyCPeUweNnZDVQSp02qz3lDrV\n4mPhbAhz64nf/bR6crJpvPxXzI9x11L3Ng4BS9plwqwl80qFDQIWAECgOZ7Pf4miiAGZhinm\ndd6AldeYqPELk7LuIAr7QK5YE01UOyVraO/rpdN15zL6yTFN2u7Tk6hJtN5PB7MpUn/w/bd6\n1KdEfBlJ87SKFKKyX2ENlaiKBiwxkHmiWlID1io25R3FaG2YuxCrnzCeLIwbeczoyaaPyz6L\nx8XpG082XmuYnygtz/LTxiFglXRXWlhfqiAQsAAAAs/xfJ5tHXB1l3mdN2CJLc21BnW0cR3f\nXqNvEtbzTBn9FNWjOsabnX160gKWSweHL6EXjY7eC6dGUqJrpy2ejaVapxw/FVwgVTVgLWdW\nb8ppAUsKXHOtbbcwt9WmeC9eN7lPWuvELi/PO2jqqZwBS4gdkzLaetr2nrLLVDdE2iLPTxuH\ngCUODe7QuksmrmABAFQ4x7N5OQOWODP14StqNLzzZeMr48yMxCYxkbF/fe7nMvsRHUxzkfr0\n5D9gpdINhd6OlrasV+v2sfof5V8RJTh+KLhQqlbAqpLkgLXpQh8EAAAExEqi+AroNsWYrwGC\nBAJW0EPAAgCoQv5K4dvLbnWO8qLoZp8bIHBBIWAFPQQsAIAqZBlR24B3+pj5xiMEBQSsoIeA\nBQBQlSRR2OoAd7k+nB4JcJdwvhCwyi3/sI+jZW91/hCwAACqkt/+j67ND2iPhbdS7P6A9gjn\nDwGr3Gb7PFjIHStjvwhYAABVSk4UdQlohxkUjhuEQQcBq9wQsAAAIBCmEA0PYHeTiRxfBAIX\nFAJW0EPAAgAACDUIWEEPAQsAACDUIGAFPQQsAACAUIOAFfQQsAAAAEINAlbQQ8ACAAAINQhY\nQQ8BCwAAINQgYAU9BCwAAIBQg4AV9BCwAAAAQg0CVtBDwAIAAAg1CFhBDwELAAAg1CBgBT0E\nLAAAgFCDgBX0ELAAAABCDQJW0EPAAgAACDUIWEEPAQsAACDUVEjAGs783R/Y7FXmH//Q/l5g\n3uX9UdUgYAFA6JpCNCKA3U0iGhnA7gAqDgJW0JMD1vhPAAD+GD+nl5yriD4zLS997Lo60dd0\nWGyqWvnYtbUb3Jr2rVGx5vEb60ZdfF/mXmXpE7K4y2cPUdTZtLgl2rpD590ubxUbdXXGAW+D\nWRTxvVbsQeGf+vlEAEEjGALWeM5Wflb3gKX/HmwQsADgfLiecwr6hpE57xx9VM9JqYVaVWE3\nvaqfWpHfUa+o/ba8XEbAOnI5NT3tXSy5h3wDls9u50bQPzs3oyaH9RaHYul5vVx4M138q+tH\nAggewRCweiFgKXohYAFA4Lmdcn64maiGKe8U/IUoqt2IkW2jiNqoVSWJRHW7jR7cUkpio5SK\nltIJ6R/9hqRfRRQ2X6rYkun1BFGSbR8pRCtNi8PJN2D57PZUA3pDiDP3UldvL9cWGO3XhVMr\nf2dSgCARBAGr0IOAJTN+DzYIWABwPlxOOSOiqNbYFFPeySS6Qhnvuf4yIvVsNIGoxT65MD+C\nYk5KP8cR1Vbu5BVJ0euqEmuPbSh6p7VmhTVybY2mRj4By2e3M6h+kfTjQ6qdr7ZYQGHLTRt0\nIcJNQggBQRCwNjEClsz4PdggYAHA+XA55TSnWzcJU8A624BoqVrMIbpZ/pl/KcUeVKuefeQZ\n+fzajOgdteLYJURfWzr8mGiwbR93U/hW71LJvXTli/aA5bvbdPqXvHSAaLVSffxy6m7eYk8k\n3eLymQCCSCAD1sGJTyS2zZj5mzlg/TLp6ZSEzv3nnzRaFS4alNbG077fnOPK4mxWZSoBa7PY\nMSo9MTnjnVN+9mPrwSFgbRz7RFKbJ8btcN2iB7N+d38Q889KoWTZ4PSk+JSeE7cbe/I9eifW\nVpnMnxurBjLnOPYkHWuJ2Dk6zZOUMf247fdgg4AFAOfD5cx1e0aBMAesb4hu09fdSyT/uTuH\n6DXLNvvCqKF+2aod0QzzulON6aYz1l2sJoozLQ4nmptlD1i+u31QuzdYQ+u/GzW2noOTib5w\n+VAAwSOAAWttkhoR2m8yAtbZCVps4NRVWqttaUZVrrxsDVjbFnnUxccOue7H3oNPwMp/VVsf\nN9NtC4eAdaSX3ojfbPcdkQAAIABJREFUFm5H78DeKof5JX3d8XhOKnDsSYphBYvi1bouBwUC\nFgBUFJdz1wb5H1PAeofoCX3dK+pkCElEtnt+Rbt/0otPEE00r3qawlbYdtGRyLT3rdGUIHwC\nlu9u76SnlaX6NEb+sTSMFlm7XUzU2uVDAQSPwAWsA22YX1y1feOc1E6D9IA1lLnT3HXb14yO\n5/g1Ss3x9sx9Plmbu7g3c/JvUsXJ/dOYp+3ff1QJWPM5PfubVdOTmbPc9uPTgz1glbzI3HX2\n8s9HS1lttssWDgGrn9xoXe6KCVJO/MTl6J3YWxUksUf/a+tT5pHOPUl7XaJ81pnSZ33N+nuw\nQcACgPPh78RtCljjjCcFhXifqJv0ozFdKf175IdVOx02bUn0lWlxXTh1sbUoqkcxhcZSyX3U\n4FffgOW72xbaHcE6NFb6N78pdbT1e7YhRZ8WAEEucAFrOPOrpXLh1w6sBawc5p5q1lgbz52V\nh0BmM/dXLiKXDpHyhLIu2zQGK/kVeWyj2BzH8W635Rx6sAasRczPKvvK9bDnoPMWvgHrF+Ze\n6tXtPcncqdT56B34tnqTWb963Z95g3NPWcwpWcr+NjLHn7b8HmwQsADgfLicvBSmgDXTdCkp\nm+h+IU4QPSSWPiDP5XDV0ELblnmRdEmRafkBis6zNVlGxN6lEcrwLZ+A5bvbltReXjgTTrOk\nH33osiNia9/772q3wNgmmWihv08FEAwCFrCK2nCcNjfJ53rA6s5xe7TVo5mVv3XmZ/bSLgZt\nlhKNUjAHrA7aQyO9mbe47MihB2vASjeGYo1inuO8hW/AWsGsDd0Ui99bXOR89A58W61lflmt\nOBLHXUqde5I+a3vts2Ywb7T8HlT5P2ma1Q5HwAKAP8zl5KUwBazVRH/Sq6UY1FyIDUTtRodr\nc1Tdfcy6ZZx1hvaFRC/aO3/dPIRrazT9WzgELN/d9qAW8sKPRGuFWBNO2eKzmsohGEPdhxMN\n9PepAIJBwAJWrp5dhPg9QQ1YeczPm1bbHi85zaxe9zUHrGnayuHM7jflfHqwBKxfmDO0Bru/\n+i7PeQvfgLXGflfS/9H7aVXcQb9HuIB5uktP0medolUNY1YGZtkC1oY/G2ohYAHAH+bvNGoK\nWEV1ib5Ri783IWqqTLLQPKLJjO2Fu0Y0sA5XF6If0T+LTct/oRifAQ7tTPMplNxH9eTzsU/A\n8t3tPIqU7z0Mo4ZFougWShAnLqX4PfkTw+hjbZsllktjAMEpYAFroTbcSJahBqzFzBP0qt+Z\nH/c2Ls4/ffoYc4qyYA5Yq7UGE5iX+N2dpQdLwFpsOhDXLXwD1slE5uG/mNq7H70oo9VEZvWN\nD88y73ZpI31WffY9/bMiYAFARfBzJjUHLPEsUTP5lCVOtIogukaIT4nohiPKuk0XEeV4Nyvt\nLWWvE6Z+viTq69P5PeqziIqRRFPlnz4By3e3RVdS63zxv1h5bFYmNdgvJlGMvK929KC2yU7T\nk4cAwSpgAWsm80y9/IoasOawRYK6Mnd0j9Q4tcY3YOkvNZ7ofk/OoQdLwHrXdCCuWzgMcl8s\nN3hywkr9nOF89HZOrTZrzwIe1C7qObWRPmuu7bMiYAFARXA9lwprwDrx/4jq9pr13rOXUR/l\nXt2npmnXM4nSjK1OtCK644C5n4cpfI+wu4ZIv6+4rTY9rBR8A5bPbsXimlS7SRg1Py021qBp\nQiSqV8/ep0htINgZoov9fSqAYBCwgDVJHe+kGKoGrKnWYMFnpbqCwaYK34Cl/7XjJ2A59GAJ\nWFOY55a5hdM8WP97TmkQ9+IKZay+09H7cmyVzh55Hq/5zAvc2jh8VlvA2tJBc/uNNRCwAOAP\nczmXKswBS+y8URtvlbGb6D4hlhPV0m8DbiS6Vm+34yaihyzPIe0Op4d8O29EpE2MVfo3qqNc\npXIIWD67FeJ7T2yNZv2Oi+IW1FJavEF9znA90Q/aJpEU7e9TAQSDgAWsiaaA9boasKYxj8w1\nkaene4M5+f3tx6T/zxb9wYDl0IMlYElx5t0yt3AKWFKmmdVHuc713HGXo/fl2Opd9eh7s+e4\nW5uyA5YBTxECwPlwOZcqLAFLFI3/e8NazbqsFl8TdRIil+gKfdUZohituCyW6Cnrn5yDjAne\nzRpQmFYaRaTNL+gQsOy79XqTYuRz+yU0TF7aS7RYWxFD4f4+FUAwCFjAmmG6M/eScYtwqq3V\nLuY22iN+BX8sYDn1YAlY7zOPL3MLU8DK9AYsyclVwzzMLzofvQPHVnnMg4TYr/zr0gYBCwAq\nib9TWIpD3pFMJnpTOmOGUz2jKoJqqoX/RlHkW7b2N1O47xx+3itYe2vTddmqtkQDsrM3Ox+N\nulvD9trqVKPaj4NEH2prcAULQkDAAtZHzMYju93UgLXMd7rQD5lHa8VdfyxgOfVgCVg56sSd\n/rfIYNZesCV6WQKWZHdHZSyYw9E7cG7Vhz2nxVzmFa5tELAAoJL4O4W5BKxEIvnh5uuI9mo1\nh/WrWR9EUF37i2p2kzqzgo0xBmsl2bicXLXdakofoHuVmwIN1di1l0h7DxnGYEEoCFjAWsf8\ntFb8LU4NWPuZ29pGLk1l/kArzvljAcupB0vA2sPcsVRtsGfMmI+dt+hjzJVV4LEHLLnVQsej\nd+Dc6iM5W/XklCLXNghYAFBJ/J3CrAFLv7B/uDZdKZ9G+xCN089qpExjJb6pRXXX2nuZRPS8\nvU6YniIsI2DZd2v0WlM9OTelAfKPDcrEWLKdRLf6+1QAwSBgAeu0h+P2qUX5qTllotFe3vce\n5z4+WU407xg3Eo+kMicppWx99Fa5ApZTD9aJRp9k/tZoO8t5i/8wL1frpCwkB6zSmS8P03fx\nIfOXjkfvxLHV0Tge+SvzGPc2zgHLGMVmhoAFAOfD5eSlMAes+JgI7ZU4PYiU6ZK/J7pamxH5\nIek8JP04fjVF+76bNd1xCJZlHiyd7xgs392q8uqRNv8gk3LinkMR2sFgHiwIBYF7Vc4rzJnK\n8yZbkuK9r8pJ2aasPJDOvF0o86V3VxodfrpXe2b5WTv51TbqxFXlClhOPVgD1ufMacr9v22J\n7PnVeQspdPVXLj1vTkpRr2D1N2beKuzJvMfx6J04txrIHT7SJmh3buPwWRe5TOCFgAUA58Pl\n5KUwB6wBRP/4XS6MIGqknClFAlEruVT6ElGsXHiKaIxvL3cRfefQ+WAinymavQGrd48eeS67\nVTDdoV36H0Wx8vwMHenv2iqp5QB/nwogGAQuYO2QYlXvRWtXjEtIG6W/7HkIc+uJ3/20enIy\ns3KhuSCVecD3u/83Pbn1L/2Yx+86LMQG5oRZS+aVli9gOfVgDVilLzK3fXvJolHay56dttgd\nJyWsxetWjPH0nagGrE3S4b/86Zrcr9/tyjzE+egdObb6ivkx7lrq3sbhsxq/BxsELAA4H86n\nrpWZspuJ2ss/5dcqH7mc6Irn33rtL0Q1tL838xoTNX5hUtYdRGHyUItfoihiQKZBfx9FQ6ID\nDrvIsU//LswBqybReuG8W9lsilyvFX+rR31KxJeRNE+rkGKh39gIEAwCF7DEEo86zVP7zdOZ\nv1aqisdp03ty3GR1moM1Cdp0VBvlud+ZZwhR0l2pKS7nNA0OPVgDlijI0nc6020LeQS6IuO3\nGdqVphVJxkRVrxe6HL0Tx1b5iazcnnRt4/BZjd+DDQIWAJwP51PX65ZBUdfLVRuu1JYaGVe1\ntjTXquooIxiyrUOp7tJaRRDlO+yiqB7Vsb8j2jdgOe1WiMOXmN5t+F44NbqeqJ22eDaWapku\ndQEEpwAGLLFnTLfElB7TD8szbC7T6nZMymjradt7ijGEacewzp42Peccl1LHzLTWT8jP2R0a\n3KF1l8xyXsFy6sEWsIRYNzw9KfHxcTvd9ym+f6Wjp02vjwvkqKWOmzyWPaBL6/i2Pcf/6N2V\n/eidD8ih1RApKuX5aeP0WfXfgw0CFgCcD+cTl0PAEiffuLtB5CV3DzVNuXBm6sNX1Gh458vq\nc9fOAeskuUxL1YFooa3KIWA57Vak0g2mbLa0Zb1at4/V//z8isjl3RoAQSSQAQsqhBywNpXd\nDAAgyKwkiq+AblOM+RoAghgCVtBDwAKAEPVXCnd7QOiPy4uim30u9QMEHQSsoIeABQAhahlR\n24B3+pjvjUeAIISAFfQQsAAgVCVR2OoAd7k+nB4JcJcAFSGYA1b+YR8Ob7uq8oeDgAUAoeq3\n/6NrnR4w/OMKb6XY/QHtEaBiBHPAms0+OlbDw0HAAoCQlRNFXQLaYQaF4wYhhAQErKA/HAQs\nAAhdU4iGB7C7yUSOr7wACDrBHLBAgYAFAAAQahCwgh4CFgAAQKhBwAp6CFgAAAChBgEr6CFg\nAQAAhBoErKCHgAUAABBqELCCHgIWAABAqEHACnoIWAAAAKEGASvoIWABAACEGgSsoIeABQAA\nEGoQsIIeAhYAAECoQcAKeghYAAAAoQYBK+ghYAEAAIQaBKygh4AFAAAQahCwgh4CFgAAQKhB\nwAp6CFgAAAChpnID1vPMe53XvMC8y22r5c8le9rn6hv7aylsjfy3LeOQggUCFgAEnylEIwLY\n3SSikQHsDuDCC4GA9TnLvqnWAWv8JwAANu6njZyriD7zLpZ83O6amBqXPTD4gFG19LHr6kRf\n02Gxn60ca4w1UdTZtLgl2t7wE7K4S65b3io26uoM70GIWRTxvVbsQeGfun8ggNBTgQFrPGfb\nq0b17HnQubGfKNSd+YUlqw7qG/sPTdZGftrqR+d+SJXO4RcmQ8ACAEdu55KCvmFkzjt77tZj\nTu3Jas3RR/Wa1EK3rZxqDEcup6anvYsl9/g0dAhYcyPon52bUZPDeptDsfS8Xi68mS7+1e0T\nAYSgCgxYvZzzgjP3KFSawAmny9XSt5Gftud0dJXD5ZAQsADAkcup5IebiWqY8s7xZkTN31q1\nZn7ncKLpck3BX4ii2o0Y2TaKqI3LVk41XilEK02Lw8knYG3J9HqCKEmIUw3oDSHO3Etdvb1c\nW2BssC6cWrl8IoBQVHEBq9ATmIBVwJxWvpa+jdzbntvRVQq3Q0LAAgBHzqeSEVFUa2yKKe/0\nJ3r0jFKaS9QwX/qZSXSFMrJz/WVE2c5bOdR4rVASk2FrNDVyu5coa0PRO4WYQfWLpIUPqXa+\nWr2AwpabWnUhwk1CqEIqLmBt4oAFrK7la+nbyL3tuR1dpXA7JAQsAHDkfCppTrduEuZg1JRo\nvbGOFgpxtgHRUrUih+hm560carzupvCt3qWSe+nKF/0ErI+JBks/0ulf8tIBotVK9fHLqbu5\n2Z5IusWtC4DQE7CAVbhoUFobT/t+c44ri7NZlSlEP44rLZjcIWGOaUS5rbV7FJqh9WMZ5L5b\nrHk1LSG13yfFaiPfPdgDlvvReQe55459KsXT8dlZ+vAAaeMSsXN0micpY/px4ccvk55OSejc\nf/5JZSmT+XNj1UDmHIc2Dp2bDskGAQsAHDmfkW7PKBCWYBRB4UVasT3RWCG+IbpNX3kv0Y+O\nWznUGFYTxZkWhxPNzXIPWKca003yFbQHtXuDNWiG8rMbNT5paZhM9IVLHwChJ1ABa1uanoRS\nc+VlU16QQkbhi1JxqjfN2FufY8DaM16r7HVKaeS7B1vA8nN0+iH9nqU3ab1A3bWUlAoWxat1\nXdwHwp+dYPS9Sl7OYX5JX3c8npMKHNo4dI6ABQDnyPmctEH+xxyM6lCYPtJJCljSefIdoif0\nla9o0yP4bOVQY+hIZNr51mhKEH4C1tMUtkL+eSc9rSzXpzHyj6VhtMjacDFRa5c+AEJPgALW\n8fbMfT5Zm7u4N3Pyb1LFyf3TmKft339UiP8wf8Wt+w380EgzPq3dA9bJ/b9ICWT//v0Fpuw0\ng5/M/nrlpNbMg5RGvnuwBix/R6dtUNKPufN/N+1YO8HDrA4DGMS8hNOzv1k1M5n5NdePPpS5\n09x129eMjuf4NdJyQRJ79L/KPmUe6dTGoXPTIdkgYAGAIz/nZHMwekS/JyfEHRS2RYhxRP30\nle8TdXPcyq1GUlSPYoyHD0XJfdTgVz8Ba104dVEKLbQ7gnXkq2givyl1tLU825CiTwuAKiJA\nAWs2c39lEGXpECkmKFXZ+pCiLOZn+qi5QUszDq3LMQbLm508Wcq9wZ+kLPST8x6sAcvf0Wkb\nfMT8lHof8FvmpKNarylZymYbmePd/l+fw9xTzVNr47mz/Gfim8z6Ve7+zBsc2zh1no0xWABw\nLlzOSjJzMFpOdLd6BntPHZs+03QFK5vofset3Goky4jYuzSC6B3hJ2A9QNF5SqEltZd/nAmn\nWdKPPnTZEbG17/13tVtgNE1WhogBVA0BCljzM3upV2bEZuZeSsHIC68yJ2h32LQ049D6nAJW\ninaFaCzzROc9WAOWv6NTNyjtqkYh2WDm+Vqv7bVnXTKYN7p88u4ct0crjmb+SvqxlvllteJI\nHHcpdWzj1LktYG3poLn9xhoIWADgy+WsJLMEo9eJmo5Y+vV/O4bTHYeEMoTqT/o6KRg1d97K\npUbtz3tRf2s0/Vv4CVgLiV5USz2ohfzjx//P3pnHV1GdffyXjc0oQrRSNyjgVlzft2qttta2\n2E+rTxYghFVAQSyEzaIoUPMqCgiyL4VQWUQRTFFxwQVZZNEiIghYXAABEUFAAhJCIMl5Z79z\n7525BAzJvcnv+wdz5sxzzpzLzb355syZZ4A1Sq2OR556q6aRI8tZ6j4KGBzhRRESU5T7XYRH\nRMxpX7dgDbMOhqVNd6JPSbDsByp8LJLtfQa/uwjDR2c22Cpyb6kVs1LkEavXaVbVSJGV3qPb\nJeLkydsgot8pU9zBvka4QGSGd4xX5yGCtf5/HWpRsAgh4Xh/KxkEi9Hrd5jZPhsOOqTvFp0D\nfGgeOdpIky+fVt41Gm1d+RRKbkNdfYLKV7B+hWRr5cNLSNT/Eh6J+kWq6GpkqEM/Q9rOgilx\neM2KXRw0NUZIbFOuglVccOTIQZEsY8ctWPanJ0iwgqJPSbDsu/T2i2SUeJ7BS7C8R2c2eEdk\nuB23R4spNXu1E+lNFlnsPbpFIpPt8lGR+/XtFBHz8RP99RsevWM8OqdgEUJOCe9vJYMgMTrY\nv4EpWEm3m236A031Lyd16O4EoLF3K58ajd9Ydx7qjDGWzfsL1rvAg1ax6GK0KFCfpugLwHJQ\nb7eaimRd+Nrij1bENtftjYTEOuUmWBvG9WyXat4IFy5Yy60gR7DCok9JsKw7D1Wp1sVhzzOE\nCpb/6MwGz5tzTWavWlCB2at9oinWhb1w5koQGXrdZutewL3W9UivGI/OKViEkFPC+1vJwC1G\nOxsj7r4PDxdtz/0FMEivOaQVzukz+4X+F6DfaVwibAwctIpf1cGdRsFPsO5EvL1CQi2qiTqN\n4nDdEbWxBqYr1dJM9vAiEq0l88eB8yK8KEJiinISrMKhLoMIF6xPrTBLfzyiT0mwvrKPtRL5\n3vMMwYIVaXRmg1yRuc4ZW4rsM3u1/0jzF6xng+VJTuiV3SRdzx8xX2SBX4xH5yGCdXi1xeXn\nxFOwCCHheH8rGbjF6DbAWpFwsBlgzK9vu8p6RGD2DuA2z1Z+NRoNADMzvCr9Lc42psL8BGtH\nPP4U2Ps4PaVG0wH5qvgmNNd2rzRvZlwHfGIFJKJ2hBdFSExRToL1tEjrF7ccLFaqyEuwbJew\n9Mcj+pQEa5t9LDNMhTwFK9LovAVrvyqjYE0XGbPBhX7FUp8P08P7Snq+X8zJBcuBdxESQjzx\n/lYycInRSuBGu/plGCvSte/CSb+rX6tp51XqA+Aer1a+NRr1EGeVxgL/Mks+gvW4cYthKM8g\nWf9qPh8j9b1vLOvTSEZ8hBdFSExRPoK1XaSV5UeFJxcsr+hTEqz/Wof0S4RHvM4QLFgRR2c2\neMFO36BRIiKFqoyCNddIbxrCLiNB1247TZdXDAWLEPJT8f5WMnCJ0VCgj129A6gXHJgLPOPV\nyrdGuWawvqmDy/NM2gCD8vI2h4Y2Q3x4cr8tdcxUo9ZmL/CKdYQzWKQKUT6C9YrIOKu4/eSC\n5RV9SoJlPx70gEhmqdcZggUr4ujMBu9aN/fpaGLUNmTc/oK1TGRIeG0/ST+i5tkrw7xiKFiE\nkJ+K97eSgUuMHgL+z67OR+gUUUtgpVcr3xrlWoO1AiGEftVpQndTWPPSO3CrMdlf33S7bwDr\nziWuwSJVifIRrGdFXraKc08uWF7RpyRY1pS0WivSz/MMwYIVcXRmg69FOtlpGpZaeazKJFia\njbU5EVb7qu5WvSWryDeGgkUI+al4fysZBM9gdbar19sGYz9zdV8dXFzq1cq3RrnuIjypYE0F\nHg5rPhU1PzcKTcwl9+uNxFg624BrIrwoQmKK8hGs50RmmaUD7UQyjVKevawpTH+8ok9JsDpb\n6ysnWff+nUSwIo7OSjR6v8jHVheDRd4K6dVfsFSfQNaIDffnWq/hh1QZ853IeP8Yb8EKrANz\nQcEihHji862k4xKjRUCjYqs83lyDlZacYC1l7Qk85tnKt0YF58Gy8V6D1c1jCdauurAuGIiR\nV17NRYKVdpl5sEhVonwEa7lID+MDvK9Xn/YixiOYF9oJQcP0xyv6lATLmsLa2kJSt3meIViw\nIo7OaqDt328+KuddkY6FIb1GEKylIlnmXY17uolssWoHS4dXA9nfPWI8Ol8YyKAaBAWLEOKJ\nz7eSjkuMjjcG+pmzVJ+nAPqDKgYBvz+qV4wGGvzo2cq3RhlzYkND6wKC1bdnz1127c3AR6GR\nghusKf2xSNHzM3TE76xDo600EoRUBcpHsArbiQz6eMenM1q3+HqAyKTt+5RaL5Ixe/FLpeH6\n4xVddsHSNlMkZ/lXm/OyfBUuWLAijs5qUDpYpMurm7d88EyqpK0N7TWCYKnhIi2mfPTfVbmt\nRSbale+J3Cv3lfrHeHTuDCkEChYhxBPPr6QVOTrNgPb6Vn+s8ntJwM2Tlny4oG8ykK5/xRy4\nELjo4X8+9SugxmKfVuE1DkthJrByExCsmsA6u7Y+sCckcA4S7cP766JfiXo3ES9ZFZrORbJG\nQmKKckrTsDrDSjK1Ub2hb2cqVdLDqCn20B+P6LILVn+Rg2OsjFIDzex0J0vTEGl0du7TwmF2\nmqp21mqAMgpW8UQrg6mk5pbYlQUttf3ZEWI8OneGFAIFixDiiedX0rCgRVFX6FXv/NzZ72pM\nXKn1F1v7Dd7ya+XRj01RXZx9LOS03oKVABQEx+073340ocYL8WhwBdDW2j2Rglo/KkKqCOWV\nyX3ryE7prXrPzddkYlaXFt312+e+H9qhReccjxksr+iyC1YvPVPnB090yWj36DvWbM/JBCvS\n6AJP79k07oHMjHsGv2J/HZRRsLTep2a3SW/Td5r7BQzXVGlXhBivzu0hhUDBIoR44vmF5CVG\nR6elNzwr8bwb+zlPrT/89C31Es+/ZcQPvq0iCJbqALwRclpPwTocdtOiaocrXW62pHndWtdP\nsP+sfA/I8HxNhMQi5f6wZ1Le6IK1qbIHQQghDiuAtDPQbZaTr4GQKgAFK+qhYBFCooxfI37L\nyaNOkV1JaBY2hU9IzELBinooWISQKGMZ0KbcO703/MIjITEMBSvqoWARQqKNTMStKucu18Xj\nL+XcJSGVSTQJVsG+MMIfYlV5VNbwKFiEkGhj/89xWcHJw06BY9cgZXe59khI5RJNgjVHwuhY\n2WNyUVnDo2ARQqKOpUmBB/CUC9mI5wVCUqWgYJUZChYhhNhMA0aVY3e5gOejLAiJWaJJsIgn\nFCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBF\nPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBg\nRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWiFnBGiXykb59WOQb\n74hHRbZX5IjOFBQsQqoH04DRp9pmKjDmTIyFEPJToWBFPbpgTXqdEFIh+H0Ql14KvGXvvAUX\nfzTrSl5r2zi5xgV3DN3jtFl9/1XnJJ13W843fv0EnyEJnVy7X9R2At+/OyWpYXagXzUbCR9b\nxZ6If7MsXySEkAom5gVrbO/ee70jyihYkySvHIf1U/AZCQWLkArE+9NZ+GAcXGL0Yrhg7bzF\n3q+TawYVdHRq/uXTj5sDF6LJkcBuyW+cwHkJ+EOnpmi0zz72fQoetsvHmuG870725UIIqXhi\nXrD8KaNg9YkawfIZCQWLkArE88P5STOghkuM/gmk5tjM0mvymwLX/XPl6vmd4oEZek1Jc+2j\n+/sBw7tdCsTN9+7HTRawwrU7CrZg/VgPTyt1/FbcFwi9rNAJXBuPu8vyBUMIqViqvWAdS48W\nwfIbCQWLkArE60M4Ogm1JmS5xGgYMDc45BHgr8eN0jygfoG2nQjUWaRXFLUELi3x7MfFciDT\ntftlbTSwAmfi3CJt8wrqFJjHFiDufVdoZ4AXCQmJPqq9YG2SaBEsv5FQsAipQLw+hNfhmk3K\nLUYDgLeDQ5oA65xovKFtmgLPmRUHzwc+8OzHxS2I/zKwV3IrLh5oBXbDn/XNHmCVcSz/QvRw\nt9yZiKu9v1QIIZVIrAnW3indW7bJnrU/fJH7sYWPd2mV3n7A3HwrVBOsHWr1k10y2g14vdjp\n4OupvbIyOj0y/7CxN0dMcjyOaZQsG9otMy2r95QtkcYU3CxHJPDNO1hkqWfX2uBK1LZxXdIz\ns2fkh4/EDQWLkArE6zN+fXahChKj7sB/gkMSEF9kFdsDE5T6Ng71S6yatsBMz34CrAJSXbuj\ngHlDrMA/WtcGa5idqK645HBQ29bAO17DJoRUJjEmWGsyTQ1pvylUsL7qYhmKtNtgxmoOs3OS\nVdfnR7PuxGTq+K99AAAgAElEQVQnaqW+79aa0GNKHehj18i/lB+hzZaK/MM+lp8mmYWeXWsa\nVrgwzazrvFdRsAiJErw+5ev1f9xipJU/Dw45G3H2sihNsJ7VNkU7/msf1Hxsimc/AToCrlN/\nWRsZyhasG9HLqDwX4/XNkjgsDG67CGjhNWxCSGUSW4K1p5XIwJVbNs5td8/jwYKV316k3+tr\nNizqK9J6vxGsCdZMeSDvgxVTW4g8bnYwQuSeeWu3rB6XJmmrtf3Du6eLTN+9+wePY0oN0Ptc\nu2H5ZE3rfG/eDm1WmCnp9p+Xb4qM8YpRShv+YumW9+HKWa1FngoZSTAULEIqEN+vH7cY/RnY\nE3z0L/YFPKVuQNwXwQebA+959uNQVBfJx5y9kttQ7ztHsG6yrgierU+MqYIm6BjS+ER91D6i\nCCHRRWwJ1iiRJ0v1wncdJFiw5og8YqwwLR2ueYoRrAlW+hDj2uB/00WMvyWXivQ25WdNmnQy\n/t7Ms1c+hR/7WqSPuWp1Z2u5p9R7SOHNnhGxp+sfEVnvfdohIllDjM43iqQdCRpJCBQsQioQ\n368ftxjdDBye+dcLkur9zyM7zJr3gVtMyXkheLW6xq5EnF/k2Y/DMkACe6ON5Vu2YDVHe31z\nPB6ztU0/XHBAffng7Te3XeDEtzZXfRFCoomYEqyiVpJqJXx5O0Sw5uf0MaeG1GZNi4yCJlhZ\n1lTSBBFjgr6HpO60+honYvxJ6WhN+LHlItYaVbXohUWB78cgwputEXnMrDiQKp1LvU/7pEh7\n646gbJGNQSMxObjI4op6CRQsQioK3+8ftxhdgfgrrRxXNUaZVcOAJqOXfPDvjvG44fvglqlB\nGdo9BUtr/ZSz82Vt3KUCgtUTN+mbz4A1Sq2OR556q6Zxamep+yhgsO+4CSGVQ0wJ1gbbnZQ6\nmuGXyf2IiDmB/qh1fU7jY5FsbbNLxMnOp/U1VN/aWuNxbLXIkJMNyaNZcQf7GuECkRk+p9UE\na5pVNVJkpXskFuv/16EWBYuQisL3w+4Wows0val/z7AxPX6uFYaZda/fYRpXw0GHghsOAP5Q\n7N2PQ1tXqoWS21B3lwoI1ktI1NdpjkT9IlV0NTLUoZ8hbWfBlDi8ZrVYHDT/RQiJCmJKsN4I\nKJM+7xMuWMUFR44cFMkydh4N3M63XySjRKlFIpPt0KMi9+tbW2s8jh1uKTLq68hD8upyioiR\n/Ub11+9j9I7RBMvOKThZZLF7JBYULEIqA98Pu1uMagLmnTNHuwLxm/XSwf4NTMFKuj2oj9K+\nwHWHfPpx+A3wmV0eYy6SdwSr6GK0KFCfpmCAUjmot1tNRbLeYVv7IT1qG3Ct77gJIZVDTAnW\nLJFZdvmJUMHaMK5nu1TzTjxHsKz7CVWpduCwUnMliAz9kK01XscW6f09MHlFyN+jbryabbbu\nBdxrTbh5xTwZGNyU0IuVJhQsQioD3w+7W4wOHrS/FUr/AOh/NO1sjLj7PjxctD33F8CgQKtD\ndwM37PHrx6ExcNAqflUHdxoFW7DUopqo0ygO1x1RG2tgulItzYwOLyLRWhd/HDjPd9yEkMoh\npgRrqoiTPXlEsGAVDnUpjCNYX9nRrUS+V+rZYNOREyqgNV7H1KcPGeXUgct9lrh7N+sm6fof\nt/NFFvjFaIJl/73qI1hb/2Zx7WU1KFiEVBS+3z8+CULfBRpqm9sA66r/wWbAIudz/EvgT8FZ\nqzz7aQCYd9So0t/ibHPhvCNY6uP0lBpNB+Sr4pvQXNu9Up/LUmod8InVPBG1fcdNCKkcYkqw\nprgEa1iwYD0t0vrFLQeLlSpyCdY2OzpTZJ9S00XGbHChZwG0tcbrmMYXs/sZ02IP5StPPJs9\nbypTX0nP94s5uWA58C5CQioQ3+8fH8E6CsQXq5XAjXbNyzDWqOssSwH+dqIM/dRDnFUaC1hp\n94aEBT6DZP3xFOdjpL73TUDkkhHvO25CSOUQU4I103WJ8B9BgrVdpJX1XJxCl2DZef70S4RH\njGt1z4b26bpEGHbM5PDKkekiA70PejbbZeTd2m1n3/KKoWAREp14f9KVr2CVxgOFaihg34Gj\ndgD1zNK/k5D4zzL148xgfVMHl+eZtAEG5eVtDgRtqWOmGrU2e4FXrCOcwSIk+ogpwXpVxLnZ\nuWuQYL0iMs46sN0lWPYDUQ+IZJZqf0163BZoa43XMYcdHUU2eR7xbtZP0o+oeSLLfWMoWIRE\nJ75fAz6CpWnOWUo9BPyfXZMPaz7p5QScE/4Mm8hrsFYghMCXR+kduNWYI6+PZ/TNN84DEbkG\ni5AoJKYEa61IL6u4PzVIsJ4Vedk6MtclWP8KNOynjDmlNiGz9Y7WeB0LoHXqncfPu9mrulv1\nlqwi3xgKFiHRie+3gEuMXu325xfs6heB25Q+g9XZrllv6c6HtXDOmoj9BHDuIowgWFNR03w+\nTxNzFf16IzGWzjbgGt9xE0Iqh5gSrCPpkvqtWZwbnGj0Oefi4YF2ImYaZU2wOlvLRieZCalU\nn0Dmhg335xrXFPPsdV1hx0pnPTbSPvMrIu96j8mjS6V+SJUx34mM94/xFixnhZkbChYhFYjP\nt0+QGE0Dmtk38P0PMMJ4HGAjO9fVeHMNVn5D1F4ZuZ8A7jxYNiFrsHbVxVCzJGaq+LlIsLIV\nMw8WIVFITAmWnpshx/gS+yIzLUiwlov0MA7s69WnvYiRoEYTLGsKa2sLSTXWuy8VyTLvLNzT\nTWSLXlho59YKP/aIlaBKqWO9Rexc7CF4dKkxWDq8aiVo947xEKyFrixfbihYhFQgvl8/LjE6\nkgJkGbew/KjVnndI86zGQD/zZuPPtYPzte3fgPEn6SfAUNj2FCBEsAQ3WDPhY5Gi611H/M46\nNDooMwQhJCqILcHaqmlV34Vrlk/M6DI2SLAK24kM+njHpzNat/h6gMik7fuMI1MkZ/lXm/Oy\nHHUZLtJiykf/XZXbWmSiUbNeJGP24pdKPY5t0s722JurN3zw/H0iw/3GFN6lxnsi98p9pf4x\nHoIVGEkwFCxCKhCPD/mKHJ1mQHt9qz9x+eV4zat6jhnd/Twg0Zjdfi8JuHnSkg8X9E0G0rWP\n8ddJSBiU4zDNsx+HpTBzW7kJFqw5SFxnFffXRb8S9W4iXrIqNGfzF0NCSOUQW4KlFqebqaTa\nb54h8oFeY6VpWJ1hpcDaqOd7F5lp5FE/OMZKPTXQms4vnmjlIpXUXDMRQ0kPY7fY69jyTCd3\n1bBjnuPx7FKjoKW2PztCjIdgBUYSDAWLkArE40M+LGhR1BV61b/r27sXLTOD3vm5E9H1qLaf\nF7yU6mbvfmyK6uLs0C+ZIMHadz4CtzK/EI8GVwBtrd0TKaj1o983FCGkkogxwVI7x3dtmdVz\nxj49i6fxvWZnct86slN6q95z8zWbmdWlRfflSvXSU3p+8ESXjHaPvhOYFto6NbtNepu+07bb\nFd8P7dCic06p57GDeYM6t0hr03uS8xALL8KaKWPOSnZFiPEQLPdI3FCwCKlAPD7iXmJ0YFTz\nBjVrX5Ka62jR0WnpDc9KPO/GfubagFMTLNUBCL2RJkiw2uFKl4AtaV631vUT7L/G3gMyPIZN\nCKlUYk2wqiG6YHnniCCEVBVWAGmn2zbLyddACIkeKFhRDwWLkGrArxG/5eRRXuxKQjO/h3kR\nQioNClbUQ8EipBqwDGhzei3vDb+6SAipfChYUQ8Fi5DqQCbiVp1Ou3Xx+Et5j4UQ8tOhYJWZ\ngn1h/FAR56VgEVId2P9zXFZw6s2OXYOU3eU/GkLIT4WCVWbmSBgdK+K8FCxCqgVLkwKP2yk7\n2YjnBUJCohEKVpmhYBFCziTTgFGn2iYX8HwCBCGksqFgRT0ULEIIISTWoGBFPRQsQgghJNag\nYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTW\noGBFPRQsQgghJNagYEU9FCxCCCEk1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk\n1qBgRT0ULEIIISTWoGBFPRQsQgghJNagYEU9FCxCCCEk1qBglYVRIh9V2skpWKRqMg0YXY7d\nTQXGlGN3hBDy06BglYVKF6xJrxNyBvD/sVt6KfCWa//z3teeW+NCmVlsV5S81rZxco0L7hi6\nJ7jhF7XdDVfce1mdetd0+Y/XGZLQySytvv+qc5LOuy3nm+CA1xHEzXrd+3enJDXMdp1yNhI+\ntoo9Ef+m/wsihJCKhYJVFipGsCZJnlc1BYucMfx+FgsfjEOQYD2ZYGnOdd+aFTtvscWnTq67\nZclvXA2PdbWDBoSd4sCFaHJELxR0dHr6V1CEh2DNS8AfOjVFo312zPcpeNguH2uG877ze0WE\nEFLBULDKQsUIVh8KFqlgfH4UP2kG1HAL1ggg7q7hE/tdCFxuWFF+U821/rly9fxO8cAMV9NR\nCAhWSUvgnK7jhjbXbG1s6DmygBVGUHOtwe8HDO92qXaO+e6IL3ICdAcylfqxHp5W6vituC/Q\ny2WFToO18bg74keMEEIqDgpWWagQwTqWTsEiFYz3j+LoJNSakOUSrC21UHORXjh8J9BfLzwC\n/PW4cWweUL/AafplbTRwGk4GbjImvOYnIPlw8DmWG8akMRGoY/RdpOnYpSU+n45WqL1NqZk4\nt0jbeQV1rDMuQNz7rqjOAC8SEkKiBApWWagQwdokFCxSwXj/KF6HazYpt2D1gD5zpHPgHNTW\nVakJsM6Jxht2YMmtuHig3bDgZ0jZa9b3/8vftwef4xbEf2kUmgLPmVUHzwc+8B7Ra8BQbdMN\nf9b39gCrjOr8C9HDHbYzEVd7d0AIIRVNNRGsjRO6Z7bqPnGrU7Fhwt+y0jv2n22v5egjUqw+\nfLxzRocBC51lvHundG/ZJnvW/pMI1tdTe2VldHpkvvkneo7I286hwSJLPWKUelSkRG0b1yU9\nM3tGvl4xR0xywrqnYJEzhvdP9PXZhcotWMdTcNaP9icFmK5tEhBfZNW0BybYLUcB84bYDecC\nT/l9aFYBqUbh2zjUt6et2gIzPaN/vAS/1OfL/mhdG6xhxXXFJcETY62Bd/xOSQghFUq1EKyC\nJy17SZ1lVhwdYlVIiwVmTX+RQxOtur8fMevWZJr77TdFEqwTk+2+2q3U95eK/MM+lp8mmYUe\nMYaGFS5MM+s663/lU7BIJeD9M71e/8clWCthzhzpvAW00jZnI85e+6QJ1rNW8cvayFCOYGUC\n2/w+Nh0B6+RFO/5rV3YHpnhG90Lccn17I3oZ++divL5ZEoeFwYGLgBZ+pySEkAqlOghWyUCR\n++a8//a4dJE5RsUAkU7/3rR1zWStxlyzodW8IL1e+c/yf2aIPG5U7WklMnDllo1z293zeATB\nGiFyz7y1W1aPS5O01dp+Yaak239VvykyxitGKa3HxdIt78OVs1qL6H/mH949XWT67t0/hJ2A\ngkXOGBE+Ni7BmgAMsqv3A421zV/sq3RK3YC4L6xP2m2o911AsC7Bxdq/Bz5ZGa5ZRXWRfCys\ntjnwntdQ1sajs1G4yboieLYxZ1bQBB1DIk/UR+0jEV4UIYRUGNVBsBaK9Df+2t6QLun6bNGr\nIn8zrsup/4hkGkrzqEj6cOPa4EZNujbqhVEiT5bqhe86iL9gLRXpbfrUmjTppJ/mGRH7KsUj\nIus9Y9QQkawhxiLhjSJpxq+EPK7BIhVNhI+NS7D6AYFUDMlI0D4o7wO3mCbzgr1aXanRxnIq\nW7AOAX9SS+7Q8z1cOiLEppYBEnbGXYk4vyisVuMO1N5lFJqjvb45Ho/ZxrAuOKC+fPD2m9su\ncEJbuxaEEUJIZVIdBKubiLXAdqzIXKVK7zO9R2eoiHFnuCZYra15p/Eik7VNUStJtZLqvB1B\nsHpI6k6rOE5E//t7jchjZsWBVOlc6hmjnhRpb90IlW0JXYhg/TfV4vqra1KwyJkhwsfGJVgd\ngFec+saA/lfKMKDJ6CUf/LtjPG743jzyZW3cpQKCtR5oOy7eSmJ1y8Ggzod5Lc9K9cns/gYw\n0Cz1xE365jNgjVKr45Gn3qppdO8sdR8FDI7wogghpMKoBoL1tUi2Vdzx3kfaX8JbRe4ttWpW\nijyibx+1LuYpQ5D0r+sNIn2smqMZvoK1S8TJc6i10O90Ku5gXyNcIDLDO0YXrGlW1UgRY2FW\niGCt/1+HWhQscmaI8LlxCVa6OyXWL62VVa/fYapTw0GHzAMlt6GuPtFkC9Zy4LqERjO3HNs+\nup69pN2mrUc+hQHAH4pDK3V+hWTryvlLSNTlbiTqF6miq5GhDv0MaTsLpsThNSt2sdfUGCGE\nVALVQLAWBdzJ5B2R4XZ5j0iWLluPBu79+0Eko0T7s9nVLNtXsBaZ010GR0Xu17dTRIy8PvrK\n+R0+MZpgrbCqJoss1rcULFLhRPjcuATrbmCxU38DoC+5Oti/gSlYSbdbvYyxFrvbgvWmdvDK\nA8ahTWcBS92d/wb4LPh0pX01HzvkNZB3gQetYtHFaFGgPk3RE8PnoN5uNRXJepu2+KMVsQ24\nNsKLIoSQCqMaCNbzIrNCK2bY5VIR0S/VaYK1wa5KFdG+tGe5mj3hK1hzJYgMvW6zdS/gXmsO\nzCvmycD5plhXDSlYpMKJ8Lnxm8G6ypjB2tkYcfd9eLhoe+4vrBXwX9XBnUaAW7DsZjlAF3fn\njYHga4aHNIm7IeSphhZ3It6+wq4W1USdRnG47ojaWENPF9HSnBl7EYnWIq/jwHkRXhQhhFQY\n1UCwponMC6rINVZiWbQU0XNhaYL1lV2VKbJXqamuqBG+gvVssDzJCb2ym6TrWYPmiyzwi9EE\ny/4L3kewinZZNK0ZR8EiZ4YInxuXYHUEXnbqGwL7lboNsK5xH2wGLNL+Lvktzt5hVNiC9T5Q\ny77ktxG4zN15A+C4e3/rL4E/heR6t9gRjz8F9j5OT6nRdEC+Kr4JzbXdK82HHK4DPrECElE7\nwosihJAKoxoIluY3zwdVhAqW9utCFyznXvJWhnNNcUUN8xWs6SJjNrgwUiY+bypTX0nP94s5\nuWA58C5CcsaI8LlxCdZDgHORu7Qmkkr0zFg32jUvQ1/bPhawHtVsC9YG4CI75jiQ7O68HuLc\nu8tSgL+d8B7H406mdzfPIFm/c+V8jNT3vjEczyAZ8RFeFCGEVBjVQLBeFJkUVPGCyHS7XCIi\net4ETbDsdIf6JcIflZrpukT4j0iXCJ8Nq9xlpNLabSfU8oqhYJFowO9Do4IEayrwkF29A7hS\nqaFAH1dNPfVNHVyeZ9IGGJSXt1kVxqOu01sCaro7D57B+ncSEv/pN45miA9PDreljplq1Nrs\nDdzmyBksQkiUUA0Ea6mZyTPAu9adfDqaBbXVt5pg2Q+N/UFET1X9qohzz3hXX8FaJjIkvLaf\npB9R80SW+8ZQsEg04P1TbeASrLXAb+3qF4F7jDmt/7Nr8oF4tQIhaD/ylwPfWDH7XLNZOkFr\nsF5OwDm+D7jR9O2msMrSO3CrMVlcH8/om28A6x4VrsEihEQL1UCwdop0tLIy7Bw//jUjb0Mn\nO03DUitp1aOBWaa15tp0bdPLqtmf6itYmqC1Cb+08aruVr0lq8g3hoJFooEInxuXYJVeihr2\nUzvbGZNFQ2HlVldGvqvzPAWrHzDR/kQYlxEDuO8i/LAWzlnjO4ypwMMelTU/NwpNzAX2643E\nWDrbgGsivChCCKkwqoFgqQdE/mOWnhOZrf26uF/kY+vYYBHjt4gmWF2saxaTzCuIR9Il9Vuz\nZm6ERKN9AvkdNtyfayU0/SFVxnwnMt4/xluwAkvDXFCwyBkjwsfGJVhqoJPqc2sSzjtuPPOv\nkb2AfXyIPDmPyvkYaGhl0/2T9jPsjnHlwcpviNor/YfRzWMJ1q66sOagxcwiPxcJ1omYB4sQ\nEi1UB8F6W5MnPT2h+qqlpOvJ2ReK3G8+KuddkY7Go2s0wUo11+h+lSGpxnr3J0RyjN8hX2Sm\nRXxUTpZ5/+GebiJbrNrB0uFVK0G7d4yHYC0MzddlQcEiZ4wIHxu3YO09FwnGEw++uwHGYwCP\nNwb6mdPAn6cA890NHcFSGcDd+v20pf8AUn50xwyFrUjqb8B4FUzfnj132eWbgbDPnuAGa0p4\nLFL0/Awd8Tvr0GjXYxMJIaQyqQ6CVTpQpM2/Fi8caz/suXSwplyvbt7ywTOpkrbWiNEEa7Lk\nLP/qs7mZ9tqrrZpW9V24ZvnEjC5jIzzsebhIiykf/XdVbmsR+4KIek/kXrmv1D/GQ7DWi2TM\nXvxSqQqBgkXOGJ4/0itydJoB7fWt7lPquTjgzqfGdK8P3GEsfnovCbh50pIPF/RNBtKDfmgD\ngrXrEuCSR6cO0aws7uWgUyx1Urt/nYSEQTkORu6HmsA6O1I7Y2h6rDlItA/vr4t+JerdRLxk\nVWhaGMkaCSGkwqgOgqUKh1gZqFKt+wILh9k5qdpZSzc0wdo50qobaOUsXJxu7rffPEPkA7/O\niyem2r3nltiVBS3FuBrpG+MhWCU9jIiwh4VQsMgZw/NHeljQYqorjLrc2tbuXeYjntU7P3ci\nuh4Nah4QLPXFdVbI2SFXv4vq4mzzY5YXvHTrZr3OLVgJQEFw233n29crNV6IR4MrgLbW7okU\n1PpREUJIFFAtBEuptaO6Zba8f6KT6kptGvdAZsY9g1+xv7t1wVKrhnTJaP/I286f4zvHd22Z\n1XPGPj1l6DL/zrdOzW6T3qbvtO2uuuGaKu2KEOMhWOr7oR1adM7xnMHadAqvlZCfhpdgqe39\nr61bs2GbN5yoo9PSG56VeN6N/TaGNHcJljr+7J0X1ah/42N7Q8/RATC7OolgHUZYXqt2uPJY\nYG9J87q1rp9g/1nyHpBx6i+YEELOANVEsE6KJljbTx5VKVCwSNVjBZB2BrrNcvI1EEJIJUPB\nMqFgEVKR/BrxW04edYrsSkKzsClgQgipFChYJhQsQiqSZUCbcu/0XvvCIyGEVDoULBMKFiEV\nSibiVpVzl+vi8Zdy7pIQQk4XCpZJGQSrYF8Y4c9IOwNQsEhVZP/PcVnBycNOgWPXIGV3ufZI\nCCGnDwXLpAyCNUfC6FgRQ6NgkSrJ0qTA43bKhWzE8wIhISRqoGCZULAIqWCmAaPKsbtcwPNR\nCIQQUilQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4K\nFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIe\nChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULBs\nHhXZXtlj8ISCVcWZBowux+6mAmPKsTtCCCGnBQXLJqoFa9LrpILxeztW3HtZnXrXdPmPsfM6\ngrjZDPm897Xn1rhQZhY7jZbce/nZtRt3WOTV4dIkdHLKlwJvhQZ4neT9u1OSGmbvCQTNRsLH\nVrEn4t8s6w8XIYSQM0R1EKxJkleGqMoXLJ9xUrAqBe/36FhX23MG6LuegvVkgrV73bdmox/+\nage0OxbW44EL0eSIWSx8MA5lE6x5CfhDp6ZotM+O+T4FDztjbIbzvivTTxwhhJAzRnUQrD4x\nIlg+46RgVQqeb1FJS+CcruOGNtdMaKy2/0VOgO5Aph4zAoi7a/jEfhcClxvmVPgrIKnt6DFt\nkoBWYV1mASvM0ifNgBoeghV+kh/r4Wmljt+K+wK9XFboNFgbj7vL/mNHCCHkTFANBOtYemwI\nlt84KViVgud7NBm4yZiWmp+A5MPBx1qh9jZts6UWahqXAg/fCfTXCznARcYiunUXAKFv8XJL\ny5QanYRaE7I8BCv8JDNxbpG28wrqFJjVCxD3viuqM8CLhIQQUrlUA8HaJLEhWH7jpGBVCl5v\nRcHPkLLXLPb/y9+Df1xeA4bq2x7QZ5d0DpyD2pqEnagHLDFrlgLNQrq8BfFfmqXrcM0mdRLB\nsk7SDX/W9/YAq4zq/AvRwx22MxFXR+iFEELImacKClbJsqHdMtOyek/Zou/NEZMcpQZIamlh\nboeMuUbYhgl/y0rv2H+2vYwlIFgzRHqZq2K+ntorK6PTI/MPh54jiOCoHJG3nUODRZZ69qSd\nrURtG9clPTN7Rn7IOEOgYFUKXu/0XOApnx+CHy/BL49r2+MpOOtHq64PMF2pD4Fr7ahbgc+C\nmq0CUq3i9dmF6iSCZZ/kj9a1wRqYaWy74pLgH9HWwDv+3RBCCDnzVD3BOtBHbP6lgsRFs51j\nA7Xis1r10SF2UIsFZjtHsN4Q6faDXjgx2Y5pt9L/fKFRS0X+YR/LT5PMQs+eNA0rXJhm1nXe\nqyhYUYfXe50JbPP5MeiFuOX6diXM2SWdt4w1V88B3e2aJ0JTKHQE7DOt1/+JLFj2SW5EL2P/\nXIzXN0visDA4cBHQwr8bQgghZ56qJ1gDRPq9vnbD8smZItrvrsO7p4tM371bU6b/E3lPWgwY\n/IpSJVpUp39v2rpmcrqIuVzFFqwPUuUe8/b3ESL3zFu7ZfW4NElb7Xu+0KjCTEm3pxPeFBnj\n3dPjIoulW96HK2e1FtFnRVzjDIGCVSl4vdeX4GLt3wOfrAzTrLXx6GwUJgCD7Mr9QGOlJlp3\nHOq8CHR1Nyuqi+SgGwsjCpZzkpusK4JnY4L2b0ETdAyJPFEftY/49kMIIeTMU+UE62uRPseN\n0s7Wck+pts2z1zYNEfl7P1NgXhX5m3FlTv1HJNOoswRrc0tpa85kLRXpbZrSmjTpVKi8CY96\nRsS+PPOIyHrvnrSxZA0xxrlRJM34XZjHNVjRhMc7cQj4k1pyh55L4dIRwQkX7kDtXUahH5Dr\n1CYjoVjNcs1g5QG3u5stAySon4iC5ZykOdrrm+PxmG2c8oID6ssHb7+57QIntDXwhm8/hBBC\nzjxVTlfjd3EAACAASURBVLCWizxnFRe9sEi/18oRlydFMswlyqX3meajM1Rkvr41BWtXO8nc\nbB7oIak7rZhxIu/5nC88ao3IY2bFgVTpXOrdkzaW9tYdYNkiG5UKE6y9My1+2SCRglXxeLzX\n64G24+KtdFS3HHQdeQMYaJY6AK841Y2Bvfoyq/+xK4YA17l7HBa6qCuSYAVO0hM36ZvPgDVK\nrY5HnnqrpjEoZ6n7KGCwXz+EEEIqgConWKtFhgTXuAVrmFm1VeTeUuvwSpFH9K0hWAe7SsZa\ns36XiJO6cYPIUO/TeUQVd7CvES4QmeHTkzaWaVbVSJGVQeM0Wf+/DrUoWBWPx5u9XNOjhEYz\ntxzbPrpeYHG6zq+QbF3bTXcb0i/1NVtF5wAfmvtHGwFN3D22Dc2nEEmwAid5CYn6XwojUb9I\nFV2NDHXoZ0jbWTAlDq9ZsYtDp8YIIYRULFVOsA63FBn1tbvGLVjW7593RIbbh/eIZOmypQtW\nYV9JtbI+qkUik+2YoyL3e5/OK2qKiPlMlP4iO3xitLHYJ5ossjhonCYUrMrF481+E8CVB4zi\nprOApc6Bd4EHreLdwGKn/gbgC+3HAGiq/xyoQ3cnGKuyAvwm9K7CCILlOknRxWhRoD5N0Rd3\n5aDebjUVyYeU7mt/tCK2uW5dJIQQUglUOcFSi1JF5IHJKw7ZFW7BWm5WPW9OLRmUauH6xTpN\nsLbmWJcLdeZKEBneZ/OK2mzdC7hXpI9fjDaWDVYXU6yrhhSsqMLjzX7T9SCbHKCLc+BOxNvX\ngINmsK4y7jo89AvgnD6zX+h/AfqFXCJsDLivNEYULNdJ1KKaqNMoDtcdURtr6KkgWprzaS8i\n0Voadhw4z6cfQgghFUHVEyz16UOGx6QOXG5eBXQL1qdmSK7IXCe+pYieC0sTrAFas8H2pcNn\ng7VITniezDOqm6TrqZDmiyzwi9HGYk9d+AjWN09ZXN0wiYJV8Xi82e8DtewHOG8ELrPrd8Tj\nT3a5I/Cy06AhsF/bbLvKWreVvQO4zd1jA+B40Cn8Bct9EqU+Tk+p0XRAviq+Cc213SvNGxXX\nAZ9YAYmo7d0PIYSQCqEKCpZSX8zup09jyUPGjYJuwbKkJlSw9N+Cj+otMkXmWdXTRcZscFHi\neSrPqOdNZeor6fl+MScXLAfeRVgpeLwTG4CL7PJxINkuPw7YN1aohwDnenBpTSQZPxBFk35X\nv1bTzqvUB8A97h7rIS74FP6C5T5JgGeQrN/zej5G6nvfAIusA8mI9+6HEEJIhVAlBUvj8MqR\n6SLGTVcegvWCyHQ7skTzKj1zgiZYqS9tayHp/zXr55oZSU+CZ9QukceV2m386xNDwYp2PN6J\nwnjUdXYSUNMuNkO8k75sKvCQXd4BXBncQy7wjHv/FGaw3Cdx2FLHTDVqbfYGbmHkDBYhhFQu\nVVWwNHZ0FNGfseshWO+67grUPKitvn3UWJr+msi95pNOloXdjuiFd1Q/ST+i5tlLvrxiKFjR\njtdbcTnwjVXcF5jN0jzqJidkLfBbu/xiyHyVvlYKQQ8FKPsarKCT2JTegVuNKbL6prd9A1iP\naeIaLEIIqWSqsGDpM0d6skUPwfpapJO91mqplbbKSjT6hO1emni18V535cY76lXdrXpLVpFv\nDAUr2vF6K/oBE+23GLjLKk4FnDQcqvRS1LAfb9nOnlCyK/bVwcWlykXZ7yIMOkmgsubnRqGJ\nmT5+vZEYS2cbcI1nP4QQQiqGqiZYpbMeG2mXXxF5VxniYi64CkhN6f0iH1tRg0WMX2mWYB26\nx352Tp/AU5s33J+73eeEnlE/pMqY70TG+8d4C1ZgYZgLClal4PVWfAw0tNLD/kl7U6zabkGr\nowY66UC3JuE8/QJgWnKC9WidnsBjQR2WPQ9WN48lWLvqwpqIFWTqm7lIsIbHPFiEEFLJVDXB\n0p9OY+UhOtZbRL+vfaH1QEC31Gh195uPynlXpKPx8Br7WYTrU6Xl13phqUjWV0bMnm4iW3zO\n5x01WDq8aiVo947xECxnnCFQsCoFz3c7A7hbv4Jc+g8g5Uer8mbgo0DI3nORYOT6+O4GGI8K\nVIOA3x/VC6OBBj8G9TcUCM5gGyRYfXv23GWXg09iIrjBmhkdixQ9P0NH/M46NNr1SERCCCGV\nQJUTrE1pIo+9uXrDB8/fZ2UTXS+SMXvxS6VuqSkdLNLl1c1bPngmVdLM1O22YKmZIn8zsgkN\nF2kx5aP/rsptLTLR41QmnlHvidwr95X6x3gIljPOEChYlYLnm73rEuCSR6cO0dwpzsnGUB/Y\n44p5Lg6486kx3bXqO4wFUgcuBC56+J9P/QqosTi4v6WBhPArcnSaAe31rWFmNYF1PifRmYNE\n+/D+uuhXot5NxEtWhSZq3q+AEEJIxVDlBEstz3QSTg0zPKmkh7FT7JYaVTjMDmpnrVpxBKv4\n7yLjjMLEVCsmNdc7SYNvVEFLbX92hBgPwXLGGQIFq1Lwfre/uM5KaXV24HJuAlDgjsmtbcXc\ndcSsWH+xVdEg9PJfUV2cbaUGHQY3V+hVbsEKPYlS+863r0VqvBCPBlcAba3dEymoFTxXRggh\npGKpeoKlDuYN6twirU3vSbbBfD+0Q4vOOUEzWBqbxj2QmXHP4FfsX1uOYKnvWou8b5S2Ts1u\nk96m7zS/BVjKN2q4pkq7IsR4CJYzzhAoWJWCz5t9/Nk7L6pR/8bH9jo1hxGacmp7/2vr1mzY\n5o1AyNO31Es8/5YR4XkWOgBWWGTBCj+JaocrjwX2ljSvW+v6Cbadvwf4PHqAEEJIxVAFBauq\noQvWpsoeBDkzrADSzkC3WU6+BkIIIZUDBSvqoWBVZX6NeL/7J06fXUloFjYTSgghpCKhYEU9\nFKyqzDKgTbl3eq9z4ZEQQkglQcGKeihYVZpMxK0q5y7XxeMv5dwlIYSQU4SCVWYK9oURvmj5\nDEDBqtLs/zkuKzh52Clw7Bqk7C7XHgkhhJwyFKwyM0fC6FgR56VgVW2WJqFzuXaYjXheICSE\nkMqGglVmKFjkjDANGFWO3eUCnk8EIIQQUpFQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoW\nIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4K\nFiGEEBJrULCiHgoWIYQQEmtQsKIeChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmtQsKIe\nChYhhBASa1Cwoh4KFiGEEBJrULCiHgoWIYQQEmvElmCNEvnozJ/lYZFvzvxZygwF66czDRh9\nqm2mAmPOxFgIIYRUByhY4UShYE16vYri8XqL81o3rl3jgtufCLwJS+69/OzajTssCon8ojbw\nln+rAEuT0MkpXxpopNT7d6ckNczeEwidjYSPrWJPxL95Km8UIYQQ4kDBCjBJ8ozt2N699565\ns5z8/CFUM8HafA0saloTSD/81a5pd8wdWfIbOK4U3srFgQvR5IhZLHwwDi7BmpeAP3Rqikb7\n7IrvU/CwXT7WDOd9V+Z3jxBCCHFBwQrQx1twKgyf81cvwdqeAtRpnzOqdyPtZefqNYW/ApLa\njh7TJglo5Q4dBceVwlu5yQJWmKVPmgE1AoL1Yz08rdTxW3FfIPSyQqfd2njcfWpvISGEEGJC\nwXI4ll65guV3/uolWHcBv/1eLxzvCqQc1wo5wEXGGrR1FwCu/6Eva6OB7UrhrVwsBzLN0ugk\n1JqQFRCsmTi3SNu8gjoFZsUCxL3vatkZ4EVCQgghpwMFy2GTVK5g+Z2/WgnWt3E46wezWHQh\nsFKpE/WAJWbNUqCZE1lyKy4eaLlSeCs3tyD+S7N0Ha7ZpFyC1Q1/1jd7gFXGfv6F6OFuuTMR\nV5f5/SOEEEICxIRg7Z3SvWWb7Fn73YL19dReWRmdHpl/2Np/VKRErc3p0rLb+G+13U3Duma0\nf3yD04Vn+LZxXdIzs2fk6xVzxCTHtcj92MLHu7RKbz9gbn7E4QX3nSPytnNosMjSUz5/CNVK\nsD7r8Nf+drkV8JJSHwLX2jW3Ap/Z5VHAvCGWK4W3crEKSLWK12cXKrdg/dG6NlgDM41tV1xy\nOKhta+CdsDeEEEIIOSmxIFhrMk33aL/JEawTky0fkXbWdIXmNUdnWVXb1TyzlGotvfEML1yY\nZtZ11pe0ewjWV12cVhuUL6F9LxX5h30sP00yC0/5/CFUK8FyI8AipZ4Duts1TwQyJ3xZGxlq\niPuGwKBWLjoC9mnW6/+4BOtG9DK252K8vlkSh4XBnS0CWkQaIiGEEOJNDAjWnlYiA1du2Ti3\n3T2P24I1QuSeeWu3rB6XJmmrjRrt0JsyaNHqBfdqkvKBPLhw9dt9RDoU+4cvlm55H66c1Vrk\nKa3i8O7pItN37/7BEaz89iL9Xl+zYVFfkdb7fYcX2ndhpqTb0yBviow59fOHUF0Fa08ykn9U\naiIwwK56EehqlkpuQ73vvATLahWgqC6Sg24+dAnWTdYVwbMxQfu3oAk6hvR2oj5qH4kwRkII\nIcSbGBCsUSJPluqF7zqIJVhLRXqbErMmTToZt30NEcmapRf2tJDUDiP1BoVdRNZHCB9iLIbe\nKJJm/A7Ns9dAWYI1R+QRI6J0uKY+fqML7/sZEfuy0iPmAE7x/CFUU8Faey0wUtvOcs1g5QG3\nm6XRwHPKQ7DsVgGWARJU4RKs5mivb47HY7a26YcLDqgvH7z95rYLnODWwBv+YySEEEJ8iH7B\nKmolqVY2ordtweohqTutw+NE3tO3T4p0LzFqckQyzVmHZ0Ve8Q9vb905li2yUd+GCtb8nD7m\nbJPaLNLHb3jhfa8RecysOJAqnUtP/fwm6//XoVY1E6wv/96n/ZXAWeP0nVXA/9gHNKG6zoyo\njbtUiGAFtQowDHgqqMIlWD1xk775DFij1Op45Km3ahrJtJyl7qOAwT7vPCGEEOJP9AvWhoDd\nHM0wBWuXyMOuw0P1rWYsc8yaXJERZukdkVn+4dOsqpEixsKoUMEKcEQk9NqRjUffxR3sa4QL\nRGacxvlNqrFgLdIdp+6Ag8ZO0TnAh2b90UZAE71Qchvq7lIhghXUKkDb0FQLLsF6CYn6+reR\nqF+kiq5Ghjr0M6TtLJgSh9esiMWh81+EEEJIWYh+wXrDWsekk20K1iKRyXbVUZH79a1mLNZ8\n0/OOqCw3LcYn3FoAryaLLNa33oJVXHDkyEGRLJ/RefU9RcRcZt1fZMdpnN+kugsWcJVpzP2B\npvp/ozp0dwLQWC+NAZ7Vt+GC5bRy+I3rzkMDl2AVXYwWBerTFH2VVw7q7VZTkXxI6VL2Ryti\nm+seRkIIIaTMRL9gzTKnoQyeMAVrrgSRoR/SjMX6PTpHxPoFulIk1z/cvjNwinXVLlywNozr\n2S7VbOQnWF59b7buBdxrzb2d6vlNqrFgKXVi98oBycCDevnQL4Bz+sx+of8F6GdeIvyqDu40\nwkLWYLlbOTQGgie1XIKlFtVEnUZxuO6I2lgD05VqaWZ0eBGJ1rr448B5PmMkhBBC/Il+wZoq\nMtcujzAF69lgY5ETyjCWz82gOc4ic0uwfMLteQ0/wSoc6mrjJ1hefatukq7fyDZfZIFfTKTz\nmxQfsmicEFftBEvniwusBebbrrIeM5i9A7hNqdLf4mxjSsvrLkKnlU0DIDizu1uw1MfpKTWa\nDshXxTehubZ7pXnH4jrgEysgEbUjjJEQQgjxJvoFa4pLsIaZgjVdZMwGF/ri9giC5RN+MsF6\nWqT1i1sOFitV5C9YXn3rFyn1HvtKer5fzMkFy6Ga3kVo3D9oJFpXRZN+V79W086r1AfAPUqN\nBf5lRnjlwXJaWdRDXHBAlkcj9QySt2ub881bEL8J5NJKRnykMRJCCCGeRL9gzXRdIvyHc4nw\n2dCwCILlE34Swdou0mq7GVEY8RJhWN/6qvbHldpt/Hsa5w+h2grWt8C5wTW5wDPqmzq4PM+k\nDTAoL29zxFaRZ7AsttQxU41am73AK9YRzmARQgg5HaJfsF4VGW2Xu5qCtUxkSGhYBMHyCT+J\nYL0iYt/wv91fsLz6VqqfpB/Rs8kv942hYJmEvthFIx78wC4fBGoGH22pP2dwBUIYErFVxDVY\nFqV34FZj7rG+JnDKmMGyHnfENViEEEJOi+gXrLUivazi/lRTsHaLtDkREhZBsHzCTyJYz4q8\nbEXM9Rcsr74NKVyuektWkW8MBcsk9MVmAw/Y5Y+AS43CPqtiXx1cXOolWJ6tLCLdRWgzFTXN\nH54mGKRv1huJsXS2Add4vSmEEEJIRKJfsI6kS+q3ZnGunWi0T+CByhvuzzUu5EUQLJ9wD8Ex\nF3uZgvWcc2nyQDuRTL/hefSt1A+pMuY7kfH+MZHOH0K1Eqw3gHPtpKwPAO20TVpywjazoifw\nWFC0vQbLo5VDpDxYFrvqYqhZEhhv9FwkWFlgmQeLEELIaRH9gqXnZsgxHin4RWZa4FE5WV8Z\nB/d0E9miFyIJlnd4qOAstBNumYK1XKSHcdp9vfq0Fwl6vp0Lj741BkuHV60E7ad+/hCqlWAV\nXwX8eo9eKh0bB+gJwgYBvz+q14wGGgS/DbZgebRyGArbnizCBUtwgzXDOBYpen6GjviddUg7\n5yCvN4UQQgiJSAwI1lZNq/ouXLN8YkaXsfbDnoeLtJjy0X9X5bYWmWjURBIs7/BQwVkvkjF7\n8UullmAVthMZ9PGOT2e0bvH1AJFJ2+0LVSGE963xnsi9cl+pf0yk84dQrQRLra4N1MkaMqLv\nFdrL7qTXHLgQuOjhfz71K6DG4uBg5y7C8FYOS2HmttJYkaPTDGivbyfYEXOQuM4q7q+LfiXq\n3US8ZFVoNhZxIT4hhBDiSQwIllqcbuaPar95hoi5mLl4opUAVFJzzScQRhQsz/BQwSnpYUQU\n22kaVmdYKbA26tnkRWZ6jy68b42Cltr+7Agxkc4fQvUSLPWfxvbaqrje5u1/6y+2KhqErp0K\npGkIb2VTVBdnW1lDhwUt3brCCth3PgY60S/Eo4EmaW2t3RMpqOU3d0kIIYT4EwuCpXaO79oy\nq+eMfXrqzmVW3dap2W3S2/SdZq16iixYnuGhgqO+H9qhReecUieT+9aRndJb9Z6brwnSrC4t\nui/3G15o3zrDNVXaFSEm0vlD0AVrk+//TdXj+MyWjZITU3790Od2zeGnb6mXeP4tI34IDXXl\nwQpvZdPByTzqLVjtcOWxQPSS5nVrXT/Bttz3gIxyeVGEEEKqGTEhWNWb6iZY5c0KIO1022Y5\n+RoIIYSQU4GCFfVQsH4iv0b8lpNHebErCc3CZhQJIYSQk0PBinooWD+RZUCb02t5b8hzDQkh\nhJAyQsGKeihYP5VMxK06nXbr4vGX8h4LIYSQ6gEFq8wU7AsjbNX1mYCC9VPZ/3NcVnDqzY5d\ng5Td5T8aQggh1QEKVpmZI2F0rIjzUrB+MkuT0PnUW2UjnhcICSGEnB4UrDJDwYpdpgGjTrVN\nLuCZWZ8QQgg5ORSsqIeCRQghhMQaFKyoh4JFCCGExBoUrKiHgkUIIYTEGhSsqIeCRQghhMQa\nFKyoh4JFCCGExBoUrKiHgkUIIYTEGhSsqIeCRQghhMQaFKyoh4JFCCGExBoUrKiHgkUIIYTE\nGhSsqIeCRQghhMQaFKyoh4JFCCGExBoUrKiHgkUIIYTEGhSsqIeCRQghhMQaFKyoh4JFCCGE\nxBrRLFijRD46jWZPinwWHSMpHyhYkZgGjC7H7qYCY8qxO0IIIdUVCtYZHEn5oAvWpNdjC+9X\nUpzXunHtGhfc/sQ3rsqllwJvufaX3Hv52bUbd1hk7r2OIG4O7XJpEjqZpc97X3tujQtlZnHY\naUtea9s4ucYFdwzdY1W8f3dKUsPsPYGI2Uj42Cr2RPybZXlXCCGEkEhUIcGaJHnGNmYFy34B\nIVQZwdp8je1JNZ1ZosIH4+AWrB/+ase0O6bvn0SwDlyIJkeM0pMJVsh134bE7LzFbl0n16iY\nl4A/dGqKRvvsiO9T8LBdPtYM53138veKEEIIiUgVEqw+sS5Yfaq2YG1P0RSnfc6o3o20F2Sq\njvqkGVDDJViFvwKS2o4e0yYJaKVXfJEToDuQGdJnFrDCKIwA4u4aPrHfhcDlR4JC8ptq0vXP\nlavnd4oHZmgVP9bD00odvxX3BXq5rNCJXxuPu8v6jhFCCCE+VB3BOpYe44LlvIAQqopg3QX8\n9nu9cLwrkHJcL41OQq0JWS7BygEuMtabrbsACP3faIXa24JrltvKtaUWahoXFQ/fCfQPinkE\n+KtxMjUPqF+g1EycW6TtvYI6BWbEAsS972rQGeBFQkIIIT+RqiNYmyTGBct5ASFUEcH6Ng5n\n/WAWiy4EVuqF63DNJuUSrBP1gCVmcSnQLLiD14ChIX3egvgvjUIP6LNSOgfOQe3D7pgmwDqr\neB3whlLd8Gd9Zw+wyqjNvxA93A12JuJqr/eBEEIIKTtRKFh7p3Rv2SZ71n631nw9tVdWRqdH\n5gd+dR5b+HiXVuntB8zNN3bniEmOIVib1dax3Vq2zn7ux0gn2jihe2ar7hO36uUckbedA4NF\nlvqNxIPgwXn2FPYCHhUpUdvGdUnPzJ6RH/ICQqgigvVZh786U0utgJf07fXZhcotWB8C19ox\ntwJBnvzjJfjl8eAuVwGpRuF4Cs6y3+o+wHR3UALii6xie2CCUn+0rg3WwExj2xWXBBmZag28\n4/ECCCGEkLITfYK1JtM0jfabHK05MdmyD2m30or6qotTtUHfDxasrxamm7v3fu97noInrSap\ns7S9pSL/sI/kp0lmofdIPAgdnFdP4S9A07DChWlmXee9qhoIlhsBjAt66/V/XIL1HNDdjnki\nJGFCL8QtD+mmI2CeaSXMWSmdt6zVWzZnI85eYKUJ1rNK3Yhext65GK9vlsRhYXC3i4AWJ3kB\nhBBCSGSiTrD2tBIZuHLLxrnt7nnc1poRIvfMW7tl9bg0SVtt1OS3F+n3+poNi/qKtN6vVRze\nPV1k+u7dPxiCNV+65X24ckZrkSF+5ykZKHLfnPffHqep2BylCjMl3Z7HeFNkjM9IPAgdnEdP\nHi9A63GxMchZ2iCfCn4BIVQ9wdqTjOTA3KJLsCYCA+zqF4GurjZr49E5pJuiukg2bjVUE4BB\ndu1+oLE76i/2pUClbkDcF0rdZF0RPFufzlIFTdAxpN8T9VH7iCKEEEJ+AlEnWKNEnizVC991\nEEtrlor0NpVlTZp0MqYj5og8YlwvKh2uaYlxLM+1Bqv1E8ZVoc2pknZYebNQpL/R1YZ0Sd+r\n1DMi9nWhR0TWe4/Eg/DBhffk8QKGiGQNMV7BRpG0I0EvIIQqJ1hrrwVGBnZdgjXLNYOVB9zu\nanQHau8K6WcZIGapn3NbokYyEty5sN4HbjF16QVzSXxztNf3jsdjttH0ggPqywdvv7ntAqdJ\na2OtFiGEEHL6RJtgFbWSVCsN0du21vSQ1J3W4XEi7+nb+Tl9zJkgtVmkj1FwC1YH6/6wviJf\n+Jyom8h2szRWZK6mPiKPmfsHUqVzqfdIPAgfXFhPXi9AG2R7a5DZIhuDXoDJ7vEWv7woscoI\n1pd/79P+SuCsca46l2CtAv7Hrh4CXBcIegMYGNrZMOAps9QBeMWpbgzsDQlrMnrJB//uGI8b\n9CvGPXGTXv0ZsEap1fHIU2/VNNJkOUvdRwGD/V4BIYQQUhaiTbA22L6k1NEMU2t2iTzsOhxy\nJ9kREfMSj1uw7FXOo0RWe5/na5Fsq7jjvY92KVXcwb6yt0BkhvdIPPAYXFhPXi9AG+Q0q2qk\nyMqgF2Cy/n8dalUZwVqki0zdAQfddS7BKjoH+ND6P2+keVEg6FdIDrt42tbJp5DuzlX6SyA4\nm8Prd5h5RhsOOqTvvoREXcBGon6RKroaGerQz5C2s2BKHF6zGix2psYIIYSQ0yPaBOsNa9WS\nTrapNYtEJttVR0XuDwQXFxw5clAky9hxC5a96GayyGLv8yxyncdkioj5eJb+Iju8R+LdT9jg\nQnvyitEGuSJkkNVGsICr5rjq3Hmw+gNN9f8ydejuBPdaqneBB8M6+41zn+HdQOB9vgEImrY8\n2L+Bedak241xFV2MFgXq0xR9uVcO6u1WU5Gsm1db/NFqsc11MyMhhBByOkSbYM0SmWWXnzC1\nZq4EkWEe3DCuZ7tUsyZcsOxnI0+xLsiF87zrPCabrTv49lozVx4j8cBrcKE9ecVog9wQMsjq\nIFhKndi9ckBykC65BevQL4Bz+sx+of8F6Oe+RHgn4neqUBoD1lRY0AzWVcEzWDsbI+6+Dw8X\nbc/9hbUUflFN1GkUh+uOqI019JQOLc1kDy8i0Vwyr44D5/m/AkIIIeTkRJtgTTUWRJmMMLXm\n2WA/kRNaXeFQV0W4YNkJlPwFa5rIvJCqbpKu39o2X2SBz0g88BpcaE9eMR6DDBGsvTMtftmg\n6qzBMvniAvcqcrdgqW1XWc8NzN4B3GbX7ojHn8K7aQBYibE6Ai871Q2B/a6o2wDrYuzBZlZ2\niI/TU2o0HZCvim9Cc233SvPWxXXAJ1abRNSO/AoIIYSQyESbYE1xac0wU2umi4zZ4KJEq3ta\npPWLWw4WK1V0eoKlSc/zIVXPm8F9JT3fZyQeeA0utCevmJMLlkOVu4vQuFvQyVsVLFiqaNLv\n6tdq2nmV+gC4x658HHguvJd6iLNKDwHORdjSmkgqCQStBG60yy8Dd7k7eAbJ+o0O55v3NH5j\n6ZfSb0SMP8krIIQQQiISbYI103Vh7h/OJcJnQ6K2i7Sy7gEsPD3BelFkUkjVLpHHldpt/Os9\nEg88BhfWk1dM9Rasb4FznZ1gwXLIBZ6xy80QH54fzDWDNRV4yK7dAVzpChoK9HEdquc6tKWO\nmWrU2uwN3IrIGSxCCCE/kWgTrFdFRtvlrqbWLAtPF/qKiH2j//bTE6ylZnrPIPpJ+hE1T2S5\nOpZCawAAIABJREFU30g88BhcWE9eMdVPsBaNePADu3wQqOkc8BGsltbzCpUhRjd5RATWYK0F\nfmvXvuia+VLG5Nb/2eV8uGemSu/ArcZUV33T5L4BrGcccQ0WIYSQn0q0CdZakV5WcX+qqTW7\nRdqcCI56VsReczP39ARrp0jHUqs4frx5f/6ruhH1lqwiv5F44DG4sJ68YqqfYGUDD9jlj4BL\nnQPBgrXP3tbBxdYbpE9QPazCCdxFWHopatgN27lzYhkzWE4G+PVB4jQVNT83Ck3Mte/rjcRY\nOtuAa7zeCUIIIaSsRJtgHUmX1G/N4lw7vWefwOOTN9yfq18afM65fHegnUimUcqz10yVSbDU\nAyL/MUtaZ7ONwg+pMuY7kfH+I/EgfHBhPXnFeAuWs+jLTRURrDeAc+07AR8A2jkH3IKVlpxg\n3QHYE3jMru3muQTLlQdLDXTykG5NwnnuZ0IvAhrZid3Hu9dg7aoLK6WaGAne1VwkWKlfmQeL\nEELITyXaBEvPiJBj/EL8IjMt8KicrK+Mg3u6iWzRtstFehhB+3r1aS9iPNduoZ23qmyC9bZI\nFyPh91ctJd3K2D5YOrxqpVX3HokH4YML78kjxmOQC8NSc5lUEcEqvgr49R69VDo2zp23yi1Y\ng4DfH9ULo4EGzuMKbwa8/vuHwlYktfdcJMzXC9/dAOMRg0r17dlTf7bO8cZAP3Mq7PMUYL7T\nWnCDNa04Fil6foaO+J11aLTr0YaEEELI6RB1grVVk5m+C9csn5jRZaytNcNFWkz56L+rcluL\nTNQrCtuJDPp4x6czWrf4eoDIpO37lFovkjF78UulZRSs0oEibf61eOFY82HPBu+J3Cv32Rem\nvEbiQdjgwnvyiPEYpPMCQqgigqVW1wbqZA0Z0fcK7QV10mtW5Og0A9rrW92LDlwIXPTwP5/6\nFVAjoGD1gT0eHS6FmcBK5znN2e58akx3LfQO8x7CmsA6461IAm6etOTDBX2TgXTnf3cOEtdZ\nxf110a9EvZuIl6wKTflOtkyfEEIIiUjUCZZanG5mi2q/eYaIuSy6eKKVUlRSc83fnqszrBRY\nG/WM6yIzlSrpYdQUl1GwVOEQu0/nZsGClmJfLvQZiQfhgwvvKTzGY5DOCwihqgiW+k9jK8cV\n4nobV/GGwc0VetX6i629Bq51WQlAgUd/RXVx9jF7J7e21fAu88nOjmCpd37unKLrUTt83/mu\nZxu+EI8GmvW1tXZPpKCWM3tGCCGEnA7RJ1hq5/iuLbN6ztinJ+pcZtVtnZrdJr1N32nb7aCt\nIzult+o9N1+Tl1ldWnTXb9f7fmiHFp1zyjqDpbF2VLfMlvdPdKX9Hq4Jzq7II/EgbHDhPYXF\neA3SfgEhVBnBUsdntmyUnJjy64fMxeVegqUOP31LvcTzbxnhSstwGD5pqTq485Vu739t3ZoN\n2zgVjmCpo9PSG56VeN6N/TYGmrbDlccCe0ua1611/QRbbd8DMrxfACGEEFJGolCwSDC6YG06\neVg1ZAWQdga6zXLyNRBCCCGnCQUr6qFg+fJrxG85edQpsisJzcKmEQkhhJBTgoIV9VCwfFkG\ntCn3Tu91X3gkhBBCTgsKVtRDwfInE3GryrnLdfH4Szl3SQghpPpRDQSrYF8YHg+2q7h+ThUK\nlj/7f47LvG4wPH2OXYOU3eXaIyGEkOpINRCsORJGx8rs51ShYEVgaVLgSTjlQjbieYGQEELI\nT4aCVeH9nCoUrEhMA0aVY3e5gGc6fUIIIeSUqAaCFetQsAghhJBYg4IV9VCwCCGEkFiDghX1\nULAIIYSQWIOCFfVQsAghhJBYg4IV9VCwCCGEkFiDghX1ULAIIYSQWIOCFfVQsAghhJBYg4IV\n9VCwCCGEkFiDghX1ULAIIYSQWIOCFfVQsAghhJBYg4IV9VCwCCGEkFiDghX1ULAIIYSQWIOC\nFfVQsAghhJBY4//bu/cAm6q+D+C/uTNuuSUKXVSUEt3reZ/nKan3ees3hsEg5DZCyiVFV3kU\nEhElKVQike5XKqWEUFKiCElyyTVjzMWsd619O/ucs8/MmWOPc/bM9/NHZ+3fWXufdVjv6/vs\nvc/aCFgxDwELAADAaxCwYl75DVjPEz3p4uGeI5ro4uEAAABC83LAWjdjeLeM1h16PjjnN3u5\nYNX0wT3aZnQd9sIPwr/+/JAeGe163j3ru0KruJYtaZl9x39VEFw37C717xOCRwLWyj5NqibV\n+seI3/XND8mmpXNFs6QB0YeOR1ySRLfprY13XXxKcj1+scCh15c9z02tflGPFcbmF7fUTGo4\nYJfv/dmUsNpo3kHx70f+BQEAAMLn3YC1bbAtG004atU/7e2rD1xvlQs/6uWr9//KLAcGqT4b\nnOsnI2A9wwucyipgPfNu7HAce3ZXMzqlvqAVXg2KU8EVKWdIHIUIWPvq0TlHtNajCcZezf4I\n7HSst3nEYdr2awl0/W2N6My9Zoc9Neleq/OFVOvPYv8aAAAATpxnA9bmdsztRs/76NN3n+sj\n4889+Xo5d5wKQ73HPjv1sW4qeb1jdM8epepZY6c+M/o21ZpinAyRQarzXN3spwfKN9r9ZNVn\n+Pm71L/SQO8GrOOt5CD/PWxsVgOiuIWq8ixR2gjTS84VIb69kCg5RMDKJPpSa4yTx7x57NOD\n6xGddyTgczOIqvZ+anQrGdMmye2/q9PjQuRdS718Rzk3x+q+Jp5uCfMvAwAA4ER4NmDdwTzq\noN4sXJTOvFBvjpQZadSvevub/nJjidYuuEeGrceNK4kbH5T1MXpbBqm+voNu6is3C4LrJ8Wx\ndO8GrKeJUherRq5MPA2Oy8YYonn+fYIr4skkqjAl0zlgLSVqrzU2V6AU7diHbyQa6t9pKtEV\n2lmthQlU+bAQL9IpuXLrTUrN1ju8TXFf2Pp3J8JFQgAAOAm8GrB+Yb4t19qaz9y90GikvWWV\ncx5i7qClsOnM6Ut8e78mE5beLSBI7W7H/J1D/WT4kb0bsBoRvay3DtQm+lq+DiP6yL9PcEU0\no4t+FCEC1tUU/4vW6E/qrJSyrypVPGzvk30q1TQu3Q79z93bhMiim9TGLqJlWvVgPepv32F7\nIjV1Gj8AAIC7vBqwljA/4dvKfmLeCnWN8HB75pm2Xke68K3L5euu1szv2HefxpypneMIDFJj\nmec41Yuy9bk7M9vcNnyh/m//CGZfjnjQPIXm30eI+5iPiy1P9UhvP2CWFgHnGrd6jQg6vAcC\n1h9xVOO40e5E9KJ8uZ1ohX+n4Iq4ZECOCBGwlhGlaY28mlTJvDw7kMj+1yvmET3mt1dL49pg\nsjYGIXpTfb9EJjoQfezwBQAAANzl1YD1KfPI4Oo85h759sK6ddq/+zJPDS6013O7Mb+uGoFB\nahbzs0710PKnmrfBd9ZunZfR7yHzvYOtuX2OQx8thuV80FqvdVcnYTwdsETubz+ZTZmjpgkt\nNm307xNcEWuNukPA6kqkf9JXpJ+VUj4kamfv1J5oi99el9Od2uspNFm9fBZHH/gfdjFRW6cv\nAAAA4CqvBqxNzOlbgqp3M7/m1Lsn86f+FZln7lGvgUFqMvOLTvXQxjF3e23N5pVPtebWK+V2\nTntON8+avM880amPECPliDhrwfKvXurArM7CHN45k3nmzp37gz7ACwHLphXRJ/LlJqJd/m8E\nV3SOASu3GlU+prWmED1gVv8iOtveqz6dIf+779uvzKlwhXFFsApNkf/NPoe6Bhw3vwZVDLhR\nHgAAwH1eDVjifubMt4/613LSmTc79N3FzAf9Sz/LgKbOLQUEqQIZxbRzTGEHrCXMd+l5alVr\nvk0dcjyzeRVqOPNaxz5ilBz+qDzV+oG5tfZP/gIP34PlsyORaqub464kOvzi/9VJqt5iuPHb\nguCKzjFgfU7Eemsw0XSrXJkSbGthHSK6QXx2nVroocE4LY61olvVS148zdZ2rbNP/DLkX1d2\netvapwPRe0V/AwAAgBPn2YC1o4dMTRkjF6zz/QhfbGNuc9yh7xrmngGlApnFtoqgIDWDuZP2\nL3XYAas/p203mk8xq3M3q5gf1gv70vR774P7iEeZbzV+6DaAWVsRNSBg5e4wNEqJ81DASjNW\nXz+f4hsbK1QlTxDOFZ1jwBpj3V3VhehNq3w2kW09srVEnZ6KN4559QGhlhK9Qr2xnmiVECvj\naYH4MEV717rVfQLRg0V/AwAAgBPn2YAlDoxJ025aSh88a51xVuMH5m5OXZcwDw6sdWH+XvgF\nqeMHVj4gj6etCBC80OjvzqPYwWytY7mOebR8KehiXiN8m3mWcx8VsJ43Sk8YJ80CAtbaSy0V\nvBOwhhFdr/1t1JGppka3MRP715WNMc4VnWPA6mStp5Buf/sCv5uulhI1Szjzxc3Htj1ZXb8n\nfj4lqgD2BNXIFblNqY04dCq13p49LY7M3zh8ap0aAwAAKD3eDVhCbH/pDiP99HhDu7V9FXOW\nU8cPme8LrGUxq7uhAoNUmpFxwg1Yi5mnmu2jzH3U6zQzpQ1l/i1EHxmwvjRKU40bxMpAwCoc\nJCPPIa2ZQjRQ+/Hf0d5E8RscKzrHgHUNkbEK/y1EvvvnmhP97Ov0vkxqjfdpzR8rES0RIvcM\napstvq+p1nUfQdV3iueoshpPJ2vp+C1EFxfxDQAAAFzh5YAlHfx65r1tVf4Zop6Nsp65s1Ov\npcwDA2tdmNUD/vyDVLvHfjHeViu5z7Y75DyAef4xrI2qbTB+C7jb+FinPjJgrTMOMc24auj9\ngHVIhqHmxo3sBw6Yf2KF1xP1cazoHAPW2UQH9JbfGawmfmew3rc9ZWcEUQ/5sjiFUs+Mo2ZH\nxA/JakmHDH2xh1cpUb9lXuQR1Qr9DQAAANzh8YCl5K4eLWPLgAIhfmdOy3HoIdNSl4BSXjrz\nduOtBbpbmb+x7xLWPVgzAk50aWfSsjhdnapZyPx2qD4yYJnPSQwRsH64ztDikhRvBKxfLyC6\n4XBwfRFRwyIqjgHrNKI8vdWV6A2r3JDoL1+nL4gqmPe8/0B0rnpdnV4zudGwg6LgCmolNxvr\nzyj8juhbo2MiVQz5DQAAAFxSBgKWtKoN81IhCsx12AMclKkm4CG/PzO3V/8224LUJ8y9rHgW\nbsCayTxxnY12j/0remQaxOkHQ/UpPmBZvPIrws9rEvXLd3jjKFF8QeiKY8CqTnFG6x4i6wJr\nYQol2X7FsI7odLOdR1TZfoDxVHmbfKlN2nq0vxMtNt6oTPGhvgEAAIBbykbAEs8wq4WPHmB+\n2v8N/cJQf+Y3/etzjMt49iB1v+1eqXAD1jzmGUHFHdoqqDvNtVCd+pS9gPV6EiU+6/hOYTxR\nTuhKMWewniO6x6z+RtTY1iknnqpZGwmUYntrc6q+1Kjxstv3U0ScwQIAgJPAswFrz3b71gf6\nj/PkS4bfSp2bOkzbI7RlRXv7nVvJ7cG8SDXsQWpHW077wWiHG7A+Zx4VXB3M6UfUAw+XhuxT\n5gLWGwlUNcRDaGS6qVREpZh7sNYQ/Y9ZfZXI72ei5xGZPz7YazubJRPcdXStdqqrBo1XL79b\nz0HEPVgAAHAyeDRgre7CvezPvnlFP3V1rDPzI7Z6zgB9oYSDGfqrZSZzdy1x+QUpmcOyjHuh\nww1YO5k7Bl8We0tlq7s4Mzdkn7IWsJZXoKqr7H8CWTfNMdsyFv3DqWIo5leEhQ0oea9R7Wxf\nE0toi5CaZyzfIrrZ98ZzlKI/luccfRn4tdrCWMoWooscvwEAAICLPBqwDrRlti3IfaQH8xeq\nsYiZJ1h39xweytxLW85Thhf23SqtApCxSoJfkMrry/yCCK4XZaDv2c7r+kzfprf2p/HEP5kn\nh+7jHLDmOX2CFwLWwYZU8St74XmiC83f7bUgGudUMRSzDpa4n+h+vfVrEtXKs/daTdTQWK71\nBvmHZNV3VKPReoupvXqZRwlGP6yDBQAAJ4NHA5aYzZw2629jY5NMMFn62aIJ6geFq7SrQ8eX\nZTF32KSVCx+R9Ud+1btvGckhgtQ6edQNDvUiLGHO1D9jV5bvQT0Pcpe3jAXanfs4BKwPjAcX\nBvJCwOpHNNmvcKQmUaZ2i//fMkDVOuRUMTgGrNFkRiSx+xRKWKgafzYn7RGDQgy6444dWqMN\n0S1qFhQ+RFTzb2tvpubGKcNJVFOluq70T+OtJ22PNgQAACgtXg1Yxx9TK0o9+MKChbMmDZDN\nzpuM+lS1EELnkVOmjuoiG93M9Szzxqt61rjp0x7vrdYTnWNcSAwIUhOZ++UZ9c4z/LwjnI1l\nbjvtm5+WTe9gu8P+E+aetouYwX0cApb8yDazP51vv/Kp8UDA2ppECQ+MsKg16t+IlynqjolP\n3l6LKFG73S248qXW+0KiW9XrFPsRl+grs2tejiO68bGJt9cguk7/DWEKkf5r0R31ierf99wo\nGb3ifGco51Ki+WPSv6rR4ONiUSLNNwoyzhX3uGoAAIAT5tWAJQoXdrQtLTXKtwrDstt9y7JP\nPODbYUlvX/eh35vVgIB1qDPzS0Y9QNDDdgwFT6eZHzfdWkIgO0Nuzy6ij0PAOt5f6+G/oIHw\nRMBaQH6uVLXXa5ibp3+u9wqqjPHb63z7EXOrUZVj5sb0ikaXm4/oBStgiZ+bGW9V8V1e3Vvb\nvKYozYmn084n6mRs5tekCr4zXQAAAKXEswFLhpglEwfd2ja9Y9ao1/6w1wvWTB/co21G94fn\n7/brX7BK1jPa97r3Fd9jWoIuBX7CnL5JlCRgCfHrcwM6pncc9Pw2W22s3GNHEX0cApbYM7pL\n2+4jvHgGyylgiX0TWp2WUrF+2nQrKAVWighY6hnPvpvstg29uFpKw45WwRewRN6MG09PrnH5\nw7a/687U+Jhv67NW1SpcMsWMrZ8QtXH4AgAAAO7ycMAqL1TA+jHagzjpviRqXQqHzbTWawAA\nAChFCFgxr3wGLHEVxW8uvlcJ7UiiC4NOEQIAALgOASvmldOA9TlRR9cP2tN+4REAAKDUIGDF\nvHIasER7ilvm8iG/i6f/uHxIAAAAJwhYYcveG2R/8XuduPIasP6qS+dmu3rEYxdRzZ2uHhEA\nAMAZAlbY5gb9sJC7nozPLa8BSyxJou6uHnAAxeMCIQAAnBQIWGFDwDrZniea4OLhphM5LpUP\nAADgOgSsmFd+AxYAAIBXIWDFPAQsAAAAr0HAinkIWAAAAF6DgBXzELAAAAC8BgEr5iFgAQAA\neA0CVsxDwAIAAPAaBKyYh4AFAADgNQhYMU8FrAsuBQAAgJi0xulfbwSsmKcCFgAAAMSoz53+\n9UbAinm92zZrkhLtyQNeUL1JkyZ1oz0I8ITGcq4kRHsQ4AW15VSpHe1BxD4ELG/iSy+9tGK0\nJw94walyqjSM9iDAE5rLuZIY7UGAF9STU+X0aA8i9iFgeZMKWO+uBijWeDlV7oz2IMATrpRz\nZWm0BwFe8JCcKg9FexCx77DTv94IWDFPBaxfoz0I8ILX5FQZGe1BgCdcLefKoWgPArxgqpwq\nz0R7EB6FgBXzELAgTAhYEC4ELAgTAlbkELBiHgIWhAkBC8KFgAVhQsCKHAJWzEPAgjAhYEG4\nELAgTAhYkUPAinkIWBAmBCwIFwIWhAkBK3IIWDEPAQvChIAF4ULAgjAhYEUOASvmIWBBmBCw\nIFwIWBAmBKzIIWDFvJcmT568L9qDAC/4Xk6VT6I9CPCEZ+RcyYn2IMALlsup8nW0B+FRCFgA\nAAAALkPAAgAAAHAZAhYAAACAyxCwAAAAAFyGgAUAAADgMgQsAAAAAJchYAEAAAC4DAELAAAA\nwGUIWDFux/S7OrXpNvLjgmgPBKJpfRbzV/aCw7yIuARlyOapd2Smd75n9i5fCXMFHBR+PS6r\nXZsuw1/Z7athqrgMASu2LUhnXb9dxXeGMip/Vhr7ByyHeRFxCcqO3CnGXy+3edOsYa6Ag52D\nzKmSvsCsYaq4DQErpr0lp+xDC96b2ZO5x+FoDwaiZMsA+e+lX8BymBcRl6DsKBwp/36Hz1r4\ndDf5+rFew1wBB3u7MGeMm/Pm833kX7MRxjFVXIeAFcv+zOD0lapxbBTz5GiPBqLj3Tbc9q2J\n9oDlMC8iLkEZ8pH8R3O1auQ8xdw5V7UwV8DJo8xD96vG8enM7bNVC1PFfQhYsWwa81y9ldOF\nW++P7mAgSgZz/y3CL2A5zIuIS1CG9GP+QG8V9GTWohbmCjjYn8YZh/Tm8SxmLR5hqrgPASuG\nFdzKbf422q8wvxHVwUC0DJ6aK/wClsO8iLgEZcjBNG6bY7SfZn5bYK6As+0TRr5gtifpsRxT\npRQgYMWwDczDzfZ65vujORaImi3qP/aA5TAvIi5BWVKwd7vZnMH8usBcgeI9wbxUYKqUCgSs\nGPYe80yznZvGmdEcC0SXPWA5zIuIS1BGjWZeJjBXoFh/d+Z0dVkPU6UUIGDFMPk/Qt+zNroy\n4/cZ5Zc9YDnMi4hLUDYdzuAO6s5lzBUo2rYhzC+rBqZKKUDAimET7Dc238m8vYi+ULbZA5bD\nvIi4BGXTeOO+Y8wVCGn3jOkTBjBnzNe2MFVKAQJWDHuM+Rtr427mX6I4Fogue8BymBcRl6BM\nmsc8NF81MFcgpPVqadDMGcavCTFVSgECVgz7L/O31sZw5g1RHAtElz1gOcyLiEtQFs1m7qv/\ns4m5AiGt11df77tY28JUKQUIWDHM738ZDMH/MijPQp7BGhL8PyJLUoKy59hY5v579TbmChTh\n+P4NszOZJ6k2pkopQMCKYU/ar20PYN4RxbFAdNkDlsO8iLgEZc6egczDzHWJMFegGHt6MX8q\nMFVKBQJWDJvF/K610Zn5SBTHAtFlD1gO8yLiEpQ167swT8oztzBXoDgrmQcLTJVSgYAVwz5i\ntlbbzWa+NZpjgeiyByyHeRFxCcqY5W047U3fJuYKFOcYc1oBpkqpQMCKYZuZh5rtNcwjozkW\niC57wHKYFxGXoGxZns7tVti2MVfAydqFM9ab7cI05hxMlVKBgBXDCnv6npw5lfnjqA4Gosoe\nsBzmRcQlKFM2ZnD7n+wFzBVwMp15itn+g7mdwFQpFQhYsexl5hl666923C47uoOBaLIHLKd5\nEXEJypDsXtzme/8S5go4WMOcudtov8T8sHrFVHEfAlYsO9iR075QjcP3ML8a7dFAFPkFLId5\nEXEJypCpzG8ElDBXwEHhAOYh+7Tm4tbG/2/BVHEfAlZM+yyN+YHX3nm2i/y/hvxoDwaiYv1c\n5S7msepV//fTYV5EXIIyY3c6p7081/KOVsRcAQeb2jFnjH31jRkyafGjeg1TxXUIWLFtUYa+\n2C4/gN++llML2K6rXnSYFxGXoKz4ym+qcJZexVwBB7/0sSbK5FyjhqniNgSsGLdn1sCObXuM\nXR7tcUC0OAYsp3kRcQnKCOeAhbkCTgqWjO3dIb3zkBe2+WqYKi5DwAIAAABwGQIWAAAAgMsQ\nsAAAAABchoAFAAAA4DIELAAAAACXIWABAAAAuAwBCwAAAMBlCFgAAAAALkPAAgAAAHAZAhYA\nAACAyxCwAAAAAFyGgAUAAADgMgQsAAAAAJchYAEAAAC4DAELAAAAwGUIWABQrn1HRGNK9RO2\n9z83NenUh0r1M9ywMI4SPwur5xyilOWlPBoAr0PAAoByrdQD1trqpNxamp/hhrWViCaF2XcQ\n0WnbS3U0AJ6HgAUA3nCHiilL/GuXEt18goct9YB1lRp3QlJgwNK+TpAfSnMkRTp8FlGG3tx6\nV5PU1KbDdvm9v7c2xa8wN/KvJLoi/6SOD8BrELAAwBu0RHJ+rl/NAwFrlzx+5QUFIjugXtoB\n6yY6v0T9exDV2q21PkzVx1Jrtf39zkSDfVs/pRD998QHCVCGIWABgDfoiWSkX80DAesbefw7\nHeqlHLAKq5csYH0gP3yO1tpeheJ6vf12J6IGh33vv090tj0jPkaU9L0bAwUoqxCwAMAb9ESS\n8rO95oGA9a48/vMOdfV1Ri0JdMStj/2ZShSw8hsTXV6oNfsSaTfkdycaa71/uD7RJ/Ydcs4g\nusGFcQKUWQhYAOANMpGcFU90vb3mgYD1pjz+qw51FbDeLL2PfblkAWuqHI3+C8K8alRRO3Ml\nI9oF1vv9iHr57/GC3OPDEx4mQNmFgAUA3iATScv+8l/1l201BKxQ7ihRwCpoSHS53pR/Hv/W\nW2cQHTDe/zKO6h7w3yXvNKL/OeFhApRdCFgA4A0yMlxxsC5R7X2+mhWw/C/EzTLPrqzST8ys\n79EwueK5WT+q0vEFN9ZKrH7FqINGXxWwxsqXQZfUTj79+qdstx0JsWRgi1OTajZpN9uqfi17\nfyH23XVmcu2NwUMseKNP01OTqjdqPUW/XVw867u7yulXhI4Bq7V8Y5Vt+xW5/XDIARnfcN/o\ny6sl1mhx9xbr++vq6L02j7qpQeWEKufw5D1OHylel11f0psvE/XRW9cRLdVbOec7jPVhuc9a\nx6MBgEDAAgCvkInkIjGP/K5VFRew1svGu2JknJ42El8RYmczI3qcYdzMpQLWuIK+ZiKp/7l1\nlJ+usnLKafOEr/d7h5qo2ndBI1zU2Nqh0sMFqhJJwHpNvjHctp0mt38OOSD9G843fvhHSTPN\n728LWDn94n0De7zQ4TNbEVU9pjefJHpQb2VaAxxO1D5on+3yaP2dvgAAKAhYAOANMpGcp1Yf\noLilVq24gLVJNuZPkLtUT1HpInnj/nNkzqqRoDaaaRFIi0wT+qlsUl3LYZXXGAdZVEXLYS3O\n1Xob93tvlM3XhpJjwJqpdazf4vxk9do2Tw2rZcuLZbtpy5YtAy9DhgxYRysTnevbPCxHflno\nAWnf8FUZoJJrJKpy/Jey+HHLlpWIUuWnqlxUeKOWLuufU00b9+CgTxQHkogyjfZIokf1Vnfz\ncux3iVRjd/Be8g+/rlNaAwAFAQsAvEHd5C7ErxWJLrAWwyouYG2TjZEVT3nmkDj+1UWBZJTz\nAAALv0lEQVSyfXsfarGoQGS/orLKO1pfFbAyKaH/2kJx7K1GcqO5Hhp+PUWmlbu2ytahZ2ST\nXtersjW1CjUZ9sR9vwWMb4XMPfF3/y5b2bPqyG4j9HLJ78G6Vb6zztqaTcYC684DUt9wTLW4\n3muFyP1Ehbnr9N0u9N2Dpf40Ll+s8t7OyWrHr4M+UV2FnGu0/0s0Sm91I5qtXvNbWNcP/Twq\n98IDcwBCQcACAG+QiaSh0BZgMk+xFB+w1GWs1Mr6nULbKxBVjrvmqLahYkuW1lIBi+KMCLS3\ngRV7WsnqK8bxfqoqPztHtX6T719PdzucuCmUkYZmGRsb5A7JW7VmyQPWe750JjFRwq7QA1Lf\nsJJZ31Nd9tHvsrIFrJZEdf822ptqEnUK+sQseZAdRnsS0X16qx3R2+p1DNH/CnFwRPMqFRr1\n2+rba6nc63HHbwAACFgA4BVGwMq7gKjCZqNWXMD6nWwhQN3MFL9Bb+dVJrpCa2kBq7O5pwpe\nWgBZIxvdrQM+TcblMu2A/3K6MPapfOP/rK3HyVwTteQBK68GUVNz41AK0U3FDeh2s6x+ZblI\na9kC1mlEXawdx1/a7rGgT2xGVM9sv0p0m966imilfPmlAlX+TWxuoN/Dlep7HHR2ovVwHQAI\ngoAFAN5gBCyxNI6olVELJ2Al7zeqD/kuoAlxuZkptIBl/WovL5WoumrcJas/WQc8Ksvp5gHp\nY6fh9ZBvvG9t7UkwV5EqKmAFqqS/1YfM29q1H/XpSaqIAcVtsX9x/Y/BFrCqE7V2GrElTyal\nW8yNn8xbvgqqUmKOEIX/JJoiCi4huvK5VzoS1dhr7deU6OwiDwxQniFgAYA3mAFL9CTzqS5h\nBayrzOozZHt+HhNV0RoqYNX1fcr1cvMP+XqJf3i4SSYL84CVHZ9y3JgoJc+3eRlRvLYsewQB\na4lsjvaNM1W7vlfEgKzTXWKx3HpSa9kCVnMZMr9xGrJpC9me5nO8LiXsNEbxD6EtQXptoXhJ\n/ld97YFE91j73UKUdLyoAwOUZwhYAOANVsD6qxZRHf20VDgBq6dZnSE35psb7WUe0hoqYN3k\n+xR1O9KnQhyN950mU+6W5T+NAzour3lE7tDMtt3NvAM8goB1vB7RpXpTXSHULlkWNSDfChDL\nyFw11Rawxstixft+dRq17nPZYby1NVz/I8u/lmimPH5VStmo3ce1WL25O5HqWZlKfYXfQx8W\noHxDwAIAb7AClniRzMUwwwlYQ+zVReZGpj1g3eH7lEf0FKZ2TG3oU93IS6re1Wl0armEdNv2\nQ+YtVkUFrMeX+zPPMw2W723VWi+ZFx6LGpDvWdLLnQJW3rVaemvc//X9wtECMn4vqNl/qkyc\nUydfRnRJvnaWarQQBRWoon56TpY3mD1Hyf1WOx8SABCwAMAbfAFL/JsobplqhBOwhtmrS8wN\nv4B1v+9TxpF24madw/mlj40DDnAanboHvYtteywZaxtE8qicb+R7E7SWzDe1tSuSRQ3obmtH\nx4AljnQxdki4dopTxlIpbqFvc8Upeu+ztggxR49ZG+SL/mZ327dRp8aWBh4MAHQIWADgDbaA\ntTGZqKk6o+JSwLKWfRDiKbn5rJ5UAi0UgXnG5ksy133QTdKPE+GzCBsRXaNeDyabeS68ATkH\nLCFWdq1q7FPtvwVBnzaN/J/b/OfgxhUrXTLysBB7a1Pit0K7t+s/+nsPEI0z+6knRH8U6isA\nlHcIWADgDbaApV2AU0HCpYA1wvcp4/QzTz+S86XAkAHrW/J/Gs5o87JbRAHrQaI4dau9Orek\nr+UZ3oBCBSwh8j4Z0lSPWDfnBB7j2YCA5dPZeGqP/BLtrO/1kPkuAhZAERCwAMAb7AErpxFR\nxS3aYgtOAWtaCQOWLTI9op8ZUut3Oq1tEDJgbQnY4QEyloqPKGCpJww+LV9vJjpHr4Q3oNAB\nS/nz+X+ohDUqsP6i/yVCn/eJztPi2FxrqbAJto/DJUKAIiBgAYA32AOWth7B/wpxjT1gPWe9\nO7qEAauD71PUrwiXCZGXQnShwyBCBqyjCUQX27Y7yY7aUw0jCljiYqLr9SuED+uF8AZUdMCS\nFlYgqpQdUJxP9pvcfQ7XN5/76DuDNcZ2Bgs3uQMUAQELALzBL2Cpi1c0T93trgesj8l4Yp8m\ns4QBy5ZcrpOb+4R2bizpUPAgQgYscRFRcq5vs6m5GVnAkjkm8YB2aslccTSsARUbsNSznOmL\ngJpad2u8Q99+RP311idanFXs92Cpr7A95FcAKOcQsADAG/wD1q5TiE47eLMZsNQCUEPN93Jq\nljBg+WJCbirRGaoxhIwV1HUbjWwTOmD1Na8JarbJrau1VmQBa6t89zXRmuhysxLWgJwD1m+2\n51Iv8humTj3B+k4RZGkc1T+sN38hukhvdbWtJXaLTIHBt8wDgAYBCwC8wT9gafdZ9etkBiyV\nM/5pvqV+wVeygPWAWX5VHVU11LIITaz0kHNG0vULzQM6B6wVZF8JdJjcmqa1IgtY4mqi245W\nJHrKLIQ1IF/AakpUX68NqWVfGnWu7LEi4LNyE2yPyrHknE/0gdE+XomSc8zjbjJ7yPZZob8B\nQDmHgAUA3hAQsAplBIm3fkUoasmtNXrzy9RKJQ1YqcauBxpZ923fIFt9jKc657Un48RN6ICl\nIpF1n/3yZKKa+tmfCAPWZKJ6HxAl7LIq4QzIF7AuI0rSHrEjnjBumNfkX0NUNehnhBfbHvZs\nGW5f2IuJ3lOvv8aZd93rD3tuG/obAJRzCFgA4A0BAUusS9RXHdC31BW6uguOCLHlwQrxajEr\nLQ+EEbBWy+pNdMqzKg6taC43btQ7bKks29d/KRNNznyZ4+jfwjxgiIC1voLMePeqQHRwUhXZ\n7XW9XFTAGrUkiPn2rgSiVtadT+EOyBew2qo4tqdg635xuI5sdvtaLRt25AOZr+jeoLGoO/t3\nBNS+TaRT/7K23iC6Si142oXoMbO2VO411vnPAgAQsADAIwIDlrjHHrC2qfhB8dVT5X8fVpfT\n3lLVMAKWyiTTexIlnddcJRGqs8XosVg7YqVGp8ap1wt2C/OAIQKWWJAs34w7+9Jz4tUO5uKl\nJXkWoWS9f4O2af9xXxgD8gWsacbxFgvxWYpqJNRrWEWrXHs0aCyzZXmufym/ufoRgaXwWqJr\nZs1tTXSm9RvER+VeX4f4swAABCwA8IaggJXd0BawxKJqRqRIGKMtSmVdQCsmYH2hAlB+bzPg\nNFlnHX/tP6zYE9fjgF4rKmCJpRdaOzSw7gSPNGCpR1NT6hH7LsUPyBewcppaAUusvMB3/MRB\nwflK7E8k6uhfGkOUZt/+o7G+f531VukyorqFof4sAMo9BCwA8IaggKUtfmUFLLHn4atrJqY2\nGbRVNsn4xV0YAesD0u7XWnNns1rJp984/Zj9Az4b1OK05NR6NzxintUqOmCJ4wt7XVAzsUbj\nbnN8CzZEGrAOqPNOnQN2Km5AvoAl9vY9PaHCWe02q3bhh/2vrFMhoerZaRP+cBx4K6JqufbC\nLxWomn/X7NEtKle8cPg+q/B7nLWKAwAEQ8ACACjvXifnpUaLMkLu812pjAagTEDAAgAo7woa\nEF1Zsl3y65F9+QcACICABQBQ7j1DRJ+XaI+Z5FsmCwCCIWABAJR7+eeV8BRWTn2ilqU1GoCy\nAAELAADeI79lGYqlHpaIO7AAioCABQAAojtR7T1h995YgWhE6Q0GoAxAwAIAAHHoTKJ24XYu\nuIro8vzSHA6A5yFgAQCAEN9VIpoUZt/BRHW2l+poADwPAQsAAKTX4yjxs7B6ziFKwUNyAIqG\ngAUAAADgMgQsAAAAAJchYAEAAAC4DAELAAAAwGUIWAAAAAAuQ8ACAAAAcBkCFgAAAIDLELAA\nAAAAXIaABQAAAOAyBCwAAAAAlyFgAQAAALgMAQsAAADAZQhYAAAAAC5DwAIAAABwGQIWAAAA\ngMsQsAAAAABchoAFAAAA4DIELAAAAACXIWABAAAAuAwBCwAAAMBl/w+I4Y7eKhbgjgAAAABJ\nRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 360, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_endpoints" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Event densities" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:29:06.050717Z", - "start_time": "2020-11-04T14:28:59.615Z" - } - }, - "outputs": [], - "source": [ - "plot_width=20; plot_height=10; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "plots = list()\n", - "for (e in endpoints[-2]){\n", - " temp = data %>% filter(!!sym(paste0(e, \"_event\"))!=0)\n", - " \n", - " plots[[e]] = ggplot(temp, aes(x=!!sym(paste0(e, \"_event_time\")))) + \n", - " geom_density(adjust=1.5, fill=\"gray70\") + \n", - " scale_y_continuous(expand=c(0,0)) +\n", - " scale_x_continuous(expand=c(0,0)) +\n", - " xlab(e)\n", - " #+ \n", - " # theme_classic(base_size = base_size) \n", - " #print(paste0(nrow(temp), \" events in \", nrow(data), \" people in observation time\"))\n", - " #print(paste0(round((nrow(temp)/nrow(data))*100, 1), \" %\"))\n", - "}\n", - "title <- ggdraw(get_title(ggplot() + ggtitle(\"Endpoint Densities\")))\n", - "plots_density_raw = plot_grid(plotlist = plots, ncol=4)\n", - "plots_density = plot_grid(title, plots_density_raw , ncol=1, rel_heights=c(0.1, 0.9), align=\"v\", axis=\"lr\") \n", - "\n", - "plot_name = \"4_endpoint_densities\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:29:06.952215Z", - "start_time": "2020-11-04T14:29:00.872Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAASwCAMAAABIeoGzAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd2ATZR8H8N81adrSRUupQNl7\nTwHFgiJTJCyRvWVYNshUZMpeMmRvkA2F4p6496u+zlfFvRERZNPx5pK2JG12nrvfXfL9/CGX\ny3qe534m317unqMcAAAAABCKuBsAAAAAEGwQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAA\nwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQs\nAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAA\nQDAELABwbiBZPCTmtX6TX4sui3kxjXDbp2DsMAD4AgELAJxDwHIPAQsA3EDAAtC3t8it1/x/\nZe0GLMc+G2JKNOg49fGfBL241xCwAMANBCwAfUPAylNtxv8Evb53ELAAwA0ELAB900fA+t0g\nu+L145fPmvW063td9Vnq8qGAtnqrYJ8c2uxrhwEg2CBgAeibPgKWj85LRONc3+26z4Zxl9Rr\npSMPbQaAEIOABaBvtrDRf6oL3/v/yowB62XyImCNX2kzf/LQDkn5Eav+d6q10pGHNgNAiEHA\nAtA3W9h4S4FXZgxYS70JWA59/npTo9yElaLukVj5PLQZAEIMAhaAvgVlwOrlc8CyeLulLWGV\n/kPRtrnioc0AEGIQsAD0LSgDVmV/AlZO9hKT9Y7bs5Rsmyse2gwAIQYBC0DfgjFg/SP5FbBy\ncl6Jtt7zmHJNc8lTmwEgxCBgAeib7wHrtyfWzl+65ZlzTu46+8z2RYs3nfzXesNFwMr+aO/y\neUu2v33d6Yv/9NTulQs2HHr1YiCNeZH8DFg5GXLMoaL/FFx/7vldK+ct3/n6BR9bYvPTU1tW\nzluy7tiXma6f7qnNXjTDm7cBAL1AwALQN+8C1h/Wn87kpSOpku1QpbDbnyrwoGc7hNvuiuj8\nZo5jwPpAXm5mWfhrWvHcg8njR/1W8F2+GVs972Q+0x3L7TOWw7ybbhvzEzl43sc+j7beNd9h\n3W9zGxlyXy78jl32wdCbYXknLTm/NUV7P+esT07a7GSiUdfNcPs2AKBPCFgA+uZdwPpXflDD\nnJzT7eyTwMCrdg85N8DuHmnU9ZxBdgHrK3m5Wk7OyyXsHpR0xOE9Tt9vdMgZJR7Lzr/PIW+4\nbUyAAetsonxXit1RWNfnFHF4xaov+zIsv/dwbA81+6Zwn7wJWO6a4fZtAECfELAA9M27gJVp\n/U7POV3T8Wu8/41HXLnd8a4uWffJ/+QGrB/l5RI5JyMdH7TV7i2+rUIFDc7/rcshb7htTIAB\nK+ch630n82+fSS3YqrBl3g/Ld5UKdSo+7319Clhum+H2bQBAnxCwAPTNy2OwwiwPKp3VyvLf\n6Hb3jRnQMPfHqhP5D+hjW1F36potC/vI83bOSpNv5was3+XlmNPy/quiHUaM75WbSEw3Joo/\nZdu3ZWw2bfW2ZWnVbPf3yLvXMW+4a8wf9erVs04bmlRP9ravfT5lvW9y3s1/G1hvS7dNWbd1\nyaBytjda5e2wZDa03gxvfv+sRVMHp9pOUizxW8E+OWlzgYDlvhlu3wYA9AkBC0DfvAxYEfLX\n/1qi5E22L/3vzdbntcm7/xXbl3ru8UdXlxYhUzu7gPWXNTyNJKq03/br29t1rU+onfcrYFZz\n6+17TuXefrKy9fbu3JuOecNTY8bJt/w6yN3C2rBmebd6WR/aKfcHt6xDpeSbho+9HJYN1lQ0\n6UzuzTMPW7PPSGd9KtDmAgHLfTPcvg0A6BMCFoC+eRmwoiwPiihKtX7JW5HZQn5eWN6knE3l\nW9H/zX/8i1G2vSy5AeuMbQcMNfgz7wGXbInqYO7NVdZbE2684W/WnVjF/sq95ZA3PDUmoIBl\n3fEWlRv8nrA+cpZds6yH4d/u5bBYb8yze/Fn5cPMTP846ZPbgOWhGW7fBgD0CQELQN+8DFi2\nCaISfrmxxvbE3F1WH1tvLLd7wmKHgHXWdiv+5xsP+DFWXnOH7UZmafnGbdl2L/COZPeSjnnD\nQ2MCC1jW3UGU+/uadXdWf/u7v5B3WtETXrUkU/7FMNJhToWJN1KlDwHLfTPcvw0A6BMCFoC+\n2QLByIVOvZr/MFuS2Gj/zBR5zSLb8mx5OdH+O/5qOScBa67988fIa8Jtc2adsN79gUPLesqr\n6tqWnQUsl40JLGA9Zb3zXevySWsq/NPh/pHyuj5eteRXebGyw7P/N2DmtpdOO+mTu4DloRnu\n3wYA9AkBC0DfbGHDhRvThFqTRDGHeZnuklfl/qjXsNAulpwphQOWweEqfx9Z12VYl62zDNR3\nbNlx6/2fWpedBCzXjQksYL1vvfMF6/JweXGY4/2fyOvirnjTEuu5k0VdtcL7gOWhGe7fBgD0\nCQELQN98CVgDHJ5p3Ycy1LqYaT2qepeTF3YIWLc7PCC7qLxutnXZ+gvhQseWXbZO/LTeuuwk\nYLlsTIAB6zO73FdGXny2wAOsK1/zpiXXrScVHnXRCu8DlodmuH8bANAnBCwAffMlYK1zeOZk\neVVv6+KX1kd/7HD3VVOhgDXD8a3l2Q2on7xknRGdXnO8O6eZvHK4ddFJwHLZmAAD1hfWO4/J\ni9bJJeiXAg/oKq/c4FVLmsjLcQVnvM/ldcDy2Ay3bwMA+oSABaBvvgQsx50oM+VVPa2L6dZH\nF7gMX7VCAWu/4wMGy+tulZeesd59xvFu27V2WloXnQQsl40JMGD9x3qn9VozL8hLpqwCD5gm\nrx3jVUt22IaxwxNXcwrzOmB5bIbbtwEAfULAAtA3X84ifMdh1awbScJ65l1cgae0KhSwCsz6\n+bC8rpK8tF1eKlLwPWfIa6tZF50ELJeNCTBgWa+6TPLFFPOCizOdvGpJdsfch8d1fvQ/BROS\n1wHLYzPcvg0A6BMCFoC++RKwPnFYZZcklsmLpQo8pXuhgFXg+nhL5HUl5KVH5aUyBd9zuby2\nmHXRScBy2ZgAA5YtzvyY30Dn7vCuJefvuvGUhO6bHc7r8zpgeW6Gu7cBAH1CwALQNyEBa7a8\nWKnAU/oWCli/Oz5gjbwuVl6aIy9VK/ie6+S1tv1aKgYs69mPxsz8ZjnXyLuW5GQtjbN7lrHt\nIRcXsHYXsDw3w93bAIA+IWAB6JuQgGUNJTUKPKV/oYD1t+MDNsrrIvKfX7Pge26S14ZbF1UM\nWC3l++reeFHnqnvXEou/Fle3f2L95/Lu8DpgeW6Gu7cBAH1CwALQNyEB68bRVHZ6FQpYfzg+\nYLW8LkFeelBeqlrwPR+T10ZbF9ULWOetJz/azl20/kZZ6JdLe14ELIuvVrY25UcfaWbuWq8D\nludmuHsbANAnBCwAfRMSsBbJiykFnnJXoYB1yvEB1mOLSstLj+Qv2Vsqry1uXVQvYO2w3nfA\nurxFXnQ7g6d3Acvi4pMTaudlnxU5TvrkJmB5boa7twEAfULAAtA3IQFrrbxY8CzCmwsFrP86\nPuDGWYLWHwMjC76ndSKCWtZF1QJWdi1rU2wX8DkkLxuuu34h7wOW7LtF1slBKeI7J31yE7A8\nN8Pd2wCAPiFgAeibkIC11/oi5x2fklQoYD3h+ADrPFit5SXbPFgFfkHM6SOvbGddVC1g2a7P\nk3upwXetNz53/UK+BaycnCsPWF9xopM+uQlYnpvh7m0AQJ8QsAD0TUjA+sD6Ip863G29BLFj\nwFrm+Jqt5XX3y0s/WO9+scB71pdX2q7qp1bA+tc6O2rupZ5zrlgPaTrg+oV8DVg5OSPke53N\n7eUmYHluhru3AQB9QsAC0DchAeuCJC87XotwV+GA1dfhAdkJ8rrl1uUS8uIsx7f8xyiv3Gtd\nVitgWXeaUYe8m9ZrWA9y/UK+ByzrhZkN2YX75O5ahB6b4e5tAECfELAA9E1IwMqpKC8Pcbj7\nnsIBq+g1+wd8ZvfOA+TF6g7Pt03vLv1qXVYpYFknTKXwz/JuT5BvFrvi+KBP7H7K9Biwvv+3\nwFtYr2B9qXCf3AUsj81w9zYAoE8IWAD6JiZgjZSXEy/Y3ft9ROGARYftn2+d/KqodUbPnJPW\nu99weP075FXNbct+BKwxrjvjos+Z022tXJC/5lPr7ZWOj6oa1vSRj7xpybeTWyXSGsf3uB5G\nuZOrOgtYN9rscKf7Znh4GwDQJwQsAH0TE7Cet77Kcrt7e5KTgFXVbhfWmWL2maimfKOJ/W9a\ntgtIP2674VvAsu7x6e+6M877/GEzWyM72F3Nz7qq2Pf2D5svr2rqTUt+lVNOmQsO9z4n31vf\nSZ8KtNnxTrfN8PA2AKBPCFgA+iYmYF23zgwQ+V7+nXOJDIUDFg3Kj1BZXa0r8i6UbDtiy+68\nt8+th2XVyJ2cwLeANdP6VJ/6fOVYR8nWxKb2UeV568qadr/GbbauOeZVS+6QF++2/6HuQj15\n1TwnfSrQZsc73TfD/dsAgD4hYAHomy1s9J/qSu4JdZ4yjfWAKYrdYttF9UVnopj7Cwas8I5E\nHXMnG/2jg/UJbfNfrZP1du+fbbcyd1gneTC8mnuvbwFrs/XRm+TFrBwnbH0evzLXsjnDUiNz\nEyC1czyayfrbJyXvzw16X/d2bLb7lrxmfXD1g3n77bKfse6oi/nJSZ8KtNnxTvfNcP82AKBP\nCFgA+vYWubfZ9jBPmSarie3hCV1Gju1lnetgufVHrGm2u217sD4rQmRs/tDaLfO62a7pknhj\nbvffS1vXRLabs3Hzon4p1hvS6rx7fQtYtmOWqGa3DnWb+9Znw6xMx4deaGC7o/iAh1bOv7+R\n7UaZP/Pu9tCS+22Pj2mV9vD82eM6J9tubnDWpwJtLhCw3DfD7dsAgD4hYAHom6CAlfNHZcfn\n3ZttvdRg7o9+toB1ZW+Yw2OMz9q93NeVCr61aU/+nb4FrJzG+a/RNMcJl32+86NCjz2TWuhR\n1b/Lv9dDSzLvdfImC532qUCbC9zpvhlu3wYA9AkBC0DfRAWsnB9a2j/t/uu2q/ql2e60Bax/\nc44m2j2m3JsOr3d2sOTwzrfZHSTlY8B6L8I+rHjZ59i+bzt78LW5UQ4PM06wm7HeY0tWxxV4\nlxrPOO9TgTYXDFjum+HubQBAnxCwAPRNWMDKydmVmruDytRRPnbqaXkx97w4W8A6l5NzekaZ\n3BdOmnq2YFs+G1s1722T7n3K/h4fA1bOa9VzX6ezN302JdTs+PAzl509VPbH3Fr5D6066wf7\nuzy35NzyVGP+s2O7H71xScGCGcqhzYUClttmuHsbANAnBCwAyPfHE1sXLtzwUsFZL/MCli1R\nfXFgxbzFO95zevh5zo9PbF+6cNPRDwOdhDzrzcfmLVj/9F8BvkyeP57duGjeym3P+PV6/75/\ncO3iucs2Hf3afa88t9ltM7x9GwDQBQQsAPDMPmABAIBHCFgA4BkCFgCATxCwAMAzBCwAAJ8g\nYAGAZwhYAAA+QcACAM8QsAAAfIKABQCeIWABAPgEAQsAPEPAAgDwCQIWAHiGgAUA4BMELADw\nDAELAMAnCFgA4BkCFgCATxCwAMAzBCwAAJ8gYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAA\ngiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhY\nAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAA\ngGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgC\nFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAA\nACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiG\ngAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEA\nAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACC\nIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgA\nAAAAgiFgqS7r6+cLOfkPd6tAl/79sHAx5fn4CnfrICScftGh7k5xtwe06dwnrj6qTv7G3Tal\nIGCp6sd941OjSVakdM3GqRYNKxcLs9wMazj9rWzu1oGOXH1/y9hWpcgmIql8zfq3yfWU2rR+\n1dLxknWtsUbfR9+9zt1QCGrfLWgif4DFV5U/zmqXNFqWq8/8lrtVoCW/vbJ1eo9GibkfVlJc\nSuX6TawfVk3qVkwyWleW6vboJ9zNVAIClmp+2DagnFxeKal9p64+eOKG9HVTutYwEJV76Dvu\nNoIu/Pj4mMYm+WMpoU7b/pMWbzp8ooDjO5dPHdi6SoTlIbGd1v/E3V4IUtcPtJQorEbveXvz\nP8weHdrIRGF3n+RuGmjAxf/sn9vn5jjbn3sl6rXpM272mt0ZBT6sdi2b2L2h/JjS97+Yxd1i\n0RCwVHHxyTHV5N1WjfvPP1Dwy9DmwLQWkRTW5Q3uloLG/b5ncAVLKRkqtBmxaJ/zWrqRs9aO\nbZVsyfS3PPond7Mh+FxabfmLsXranoJlt39MZaI73uVuHvDJ+u7ZNaPalLPuSTeWatwlbd7m\nY+4/qzaMuq0IUcr0IPuBGQFLed8/dlckkanB4BXH3ZbYodEVie58m7u5oFlZbz7Y0PKZFdWo\n/8JDHrKV3SfXfbUkMt2LXQog1LXHSlJ4u7XOi25hfQobjFQfeq5/+9z6SV1qRVh3WsXVbDt4\nxoZ0bz+p0me3iqIwc1B9UiFgKew/s+pbKi2l89wj3pTYvDok9fqRu82gRVdODE0mMtTqt8zD\n34KF7RiUQtTocNDtfwc+T1UnU+edrmtubllKOsTdSFDL1VMv75wzuGUF2xFVERVu6zF+2V7X\n1eHKobGViJq/xN0bcRCwFJR5clw5ImO9oZu8r7B5FSl6eSZ3y0Fjrmb0i7f8RXjn1P2+f2jJ\nMh5pLFGdJ7i7AUHih04ktdnhtuTSB4TTkIvcDQVFXfr6ld1LxnZtUtJ2Wg3FVU69d+xC94Xh\nwfz6RG2D5oB3BCylXHt2eDJRZOokH78SM0bG0K1fc7ceNCTr5NAEosSOC9z/xOzB2uYStf6U\nuy8QBLLWxlL1Rz1XXHmq/Q13W0EBl//3wvbZw+6uUyz3xEBDUo0W3UbMXHPQY014Y0ltMo47\nx91HMRCwFHHtqSGJRLGtHvbqh8ECdt9CMTu4ewBa8b8HyxLFd1xc8OQb362qR+FTLnH3B/Tu\nuzsoepQ35XikLSW+zN1aEOjXV7Y+2PuWErm5ylSy9h3dhk9ftiOgv/ycePAmSjnB3VchELDE\nu/6MnK7i28/z+ViZPOMiachl7m6ABpzf0owosuUcv0vJ0fQkqvoWd59A3/bEUyNvfwRKM5j2\ncLcXBMg+dWxB30axtomskmq2vDdt5prHxXwoOXOkh5GGnOfutAAIWIJlnby/uCVddZgfUKjf\nUJ4a/8LdFeD29n0xJNUeL2bHu9XBDpJxHg52B7/9O5AiR3lfcHOipNXcTYaAXP9w88jbrNHK\nmNKk68i5G70+LTAQq8pT5fe5ux44BCyh/vNAClFs+8DSlexwcyr9EXdvgNP59fWIivXw4QQJ\nr8xJpNanufsGevVZDaqw3pd6ezSelnI3Gvz1w77xt0bJO61K3dZn2jpVklWeo52liA3c/Q8Y\nApY4PyyoRRTVcpaQMszoK8W9wN0jYPPJyDgKazxD9MENFnsaUPmPubsH+nQghu7y8bjSdQm0\nkrvZ4Lvs/67tVVrOVmVbjVji/bR7Aj0cQ8Oucg9DgBCwBLm4q1UYGZtO8eeoducmGiOOcvcK\nWFw/fDtRQs9twmrJwfHuUuyT3F0EHcqcIkVM9Lne1heVNnG3HHzz6aqu8hmCMY37zxd4gIKv\nNpWjln9zD0VgELCEeGd4HFHVEX7MrObGnEjjXu6OgfpOLyxDVHuqgvvjHwg3buHuJejOPx2o\nxGo/ym1NrOEwd9vBaz9t7yOfJpjYIu2xwM9cDszBxlTje+7xCAgCVuDOra1rKcd71gkvr0VR\nhse5Owcq+2xYFEW0WyO8mBwrK0bCgTHgm1M1qa5/f0Iui4zERVZ14fKzE2vJ84Wmjtwg+CPH\nP8c7UMpn3IMSCASsQH00LIbCmswQdB69oyVFDAe5+wcqyn62nURJA8XuCXVmbQLN5e4s6Mrr\nxekuf/eqPhxWPMgu4huMvnusQxGi8HoDH+Xec2WnHxX/kHtgAoCAFZBM+WCZYr23K1VdSyLD\nn+LuI6jl6vY6RNWmKpLVC9qYhIQFPjgQGTbc/3IbRrWCYVaj4JX52tTaRFTSPOuwuA8ZIUZI\niTqergEBKwDnlpcnqjtdyS/ER8KLYGLI0HB2USkKa7ZUwWJysKU4Tp8Hry2TImcGUm7tqVM2\ndx/AhYvpg5KIwusP2yjq00Wk0VKCfvdhIWD57dcp8WRqs0bh6pomJX3F3VNQ3s8PxFKkebPC\n1WRvU6KEI93BK1njKWFlQNWWXovmc/cCnDm7s0sUUXyr6SxTMXhjjFT8C+5R8hcClp9ODY+g\nuN57lK+uEVQF80IGuy+GmCi+r/KHXjlYE2PM4O446MGVHpSyJcBq25VoeIm7H1DQma13mYhK\ndl2swIR74oyg0j9wj5SfELD88kU/IyWPUOfX6i7U/Ap3f0FJ790TRiXSxM2g5q1Fpuh3ufsO\n2ne+NVUL/LpzC8NK/sHdE7D37+6OlnRVrveawD9KFNaPavzFPVr+QcDywxd9wqj0BFWORbbI\naEr3cfcYlPNKO6IKk1n+gpwmlfyRu/ugdX/eTI1E/HzUn9rhMCzNuP5k7yJEZfv6dN0jNh3p\ntsvcI+YXBCyffdPfQGUnq3gi66HytJa706CQp1KJaszkOi16IDW4yD0CoG0/Vqc7xFz9qx6u\nmaMVn0y8iSi5xxoR21UNGbdSL12mcwQsH/00PJzKTFH3C3FLbPjr3P0GBWQfbUTUYKGqxeSo\nJfXmHgTQtK/KkVnQx92O2MhPubsDOTnnNzYlim63SEOzXXl0pCrN4h43fyBg+eSvByKp5ETV\nC3OOlPI7d9dBtKz9dUhqukLtYnJwpAqt4B4H0LCPb6LewqptKjW8xt2hkPfh8FiS6k9S/5DP\nwOxKko5wD50fELB8cHF+PCWOUvAacS71ozszuXsPQmXurk5S6hqGYnKwPT78Ne6hAM16O1Ea\nKrDabqc53D0KbVcfb0aU2HOrwG2qlkdNMZ9wD5/vELC8lrmpFEUP5JnnNqMRzebuPwh0bVtl\nMrQUf/lK380LS8E0IODcyzFhY0UW295E08fcfQphf84tSVJ9RWfGVtADVOUs9wj6DAHLWxk1\nydRV5ZmKbthTzPAK9wiAKFc3VCBjm01cxeSoL92ty8NHQXFPRxkniy22GXTzde5ehaovhkVS\n5N36OGvQqc7URXefVAhY3nm3BUkttzEW14KwMn9zDwIIcXltGTK218xe+uN16FHuIQEtSo8I\nnyG62lJpGXe3QtMbncKo+JD9orenmo7VoOXcw+grBCxvnOolUf1VvNXVk+7lHgYQ4MLykmTq\nyJnVC9oRG4HfbaCQfcaIOcKLbXdM9PfcHQs92U81J6o0Wae/DebbEWd6h3sofYSA5dlfE0xU\nYS53cR2rRru4RwIC9c/84hTZeSd3MTl6kGrrcxY/UNBOQ6QSE4iMJjN3z0JN1uEGRPXnKbAx\n1TZLqniOezR9g4DlyaVFRSlpvAamDNkQGa/XCzKBzZ8PFaUi3VW4gKWP2tAk7qEBjdkUFr1U\niVrLqEHHufsWUrL21iLpVt7ZYITpQn25x9M3CFjuXd9SmqIHamPOkDRqpbtj/OCG78cUodi+\nWjwK4kByGGayBXtrpViFvpPXGMpf4u5d6MjaU53CWqxVZlOqL70iPc49pD5BwHIn+1B1zlMH\nC8ioT+u5RwT89VG/cEq8T8Q13RQwX6qKLz24YYUUr9gxp51pJnf3QkXW3hoU1nKDUluSwbqI\noj9xj6ovELDceLohSa00dDjytqhY/EioS9nPtpMoZcxR7gpyqQNN5h4j0I7FVFS5nR77i0Z9\nx93BkJB1oKYlXm1UbEOyuJ/a6Ol3HAQsl164jaRbH+OuJwcjqT33qIDvLm+pQ1T9QQ0cx+fS\nwWTDe9zDBFoxnxKVnC5pLHXn7mEIyD5SJ8j2Xlll1Kd13EPrAwQsF55LJWqktSMDM+rgTELd\n+emh4hTWbAl37Xgwh+rhMnFgNZuSFN3tkVGJMGuy0k40IKm5Fi4VIdq26JhvuQfXewhYzmQf\nb0rUQJGTaAKz0ZT0J/fggA+yn+tqpOjOW7gLx7M7aRH3YIEmPETJm5WttUXUKIu7l8Ht6SYk\nNQuaQ9sdjaE79fMjIQJWYVe31yKpsQbjlcVAGsA9POC1XxZUIiqXptEj2x09HlvkO+7xAg2Y\nRsmKX2XgNtrJ3c1g9nwzkpowT4ytnIwGtIl7hL2GgFXQ6fmlKKy5Vqszvbz0EvcIgVeuHLrb\nQOG3KzFZoyLGUkfuIQN+k6iE8ldx2hxeGmetKuXF5ho8ukWkrZFFf+UeZG8hYDl6f0gkRXbQ\nyGV4nVkqVb/KPUjgUdZLQxOIyg/TyhQfXsioSencwwbcJlLJ7SoUW2f8IK0QOV5p8egWkYbp\n5ywJBCw75zc1JkoetI+7ftxqRwu4xwncyzw5uiRRfKdHuWvFN2sM5S9yDx2wyh5PpdTIVyf2\nRhc9w93ZYPRsKlF9rZ9QE7DjVekE90h7CQErT9aLA6NJajTjOHf1eLA3rggmw9KwC8fvK04U\n3WqO/q6s2plmcI8ecMoeS+pII30AACAASURBVCk71Km1/rg6k3DZGU2IGgR9vLJYZSh/gXu0\nvYOAZZX97sQUoqSeOjjb68Ro6sY9XODCF6vaRRLFtZmp3SlF3TiQEPkN9wgCn+zRlKLWdcgP\nJ0b9zN3f4JK5tx5JjZeptP2YdaGp3OPtHQQsS2W+OqEcUdSd87Q8E+QNGVXoOe4hg8J+2jWo\nDBGldF2o9Z2gLk2gTtyjCGyyR1JptfKVPGnyCO4OB5PL6yuRlKrVc7OEO5QU/hn3kHsl5APW\nX3v7JRFFpk7TxgWdvbFcqok5IbXli62DK1nCVfQtaQrPIKSsjGrI7iErO43K7FKv1tJLhn/N\n3eWgcXpOMhlbKzn7vtZMo5bcg+6VkA5YF1+Y3jiMKL71DP2kK1lrepR76CDPPy88YrZEdIps\nOHCZbndd5Vku1brOPaDAIvt+KrNbzVqbSP24+xwkvrw/iop0VengOa1oQPu5x90bIRuw/n7y\nwVQTUVi13sv08cugnV1RCX9xjx/k5Fx+a82AGpaETonNhq7Q3zHtztypqwt9gTCWfFVW1Xx1\n4ngZw+fcvQ4C2U+3lyhp0H5Vt50GbDCW0cNx7qEYsK5/uHFITYlIKm+eoc+6HEijuQcxxF15\nd9199YyWbGWq0XnKNu56EGdHZPF/uMcW1Cfnqz0q19pU6sndbd07u7IqUZVJ6SpvOi3oRg9x\nj74XQixgXf9kx5hbo+TvxVrdH9bRJJAFHLnJiD/+uFz7z8ZhDcItNWSs3H7s6uDYcXVDH5rM\nPcCgOvX3X1lklA/7lLvj+vbukCJkvD1EThws6EBCpA4u+hw6AevSuxtHNJWzlVTmzvtX6Dzy\nT6W7ucczJH29e8wtkXK2qtRu1Eqd15Bzh4tFfMc9yqAyjv1XFtOpB3fPdezvNfWJkvqqeF6C\nxoyje7i3gWchEbD+fml5v1ry7zlhZVsOXaSLS+96kFGDXuAe1RBz8eT8jsXlGirXOm25Lqe5\n8s446sM91KCu7JEs+epERoWwT7j7rlNZz/aOpLDGmp8WW0kZlekk93bwKNgD1h9Pz7+nAsm/\nCVZpP3LZYe6aEGap1CCLe2xDx9mMSbeEWw9mH7wwGPK5O8fLS+9xjzeoyZKv1D1/MN90HIXl\nl48npxCV6KvKRY00bLHUSPNfgkEcsP565pEu8syPFF2n88S1wXasTCrt5h7g0HDh6UmNDERh\nFc2Tg+hgdjdm053cYw4qyh7Nla9OZJQLw7GkvvrmkdpEUa0W6u7kd/FSaSf31vAkOAPW5ddX\n9JYnfqTYBt2n6XrqR5c2Gctd4R7moJf94aKWJiJDte6zD3BvcPXUo6e5Bx5Ukz2WSrMdxzOF\n+nP3X1/+t7ARkbHxpOD5LSYQm8NLX+LeIh4EX8D6Zs/om+Wfc6Lq3jNND5cW9NfdtIJ7qIPb\nhaNDS1nqqFznmQe5t7W6Vkr1NL/nHUQZr971Bws7nmI8xT0AupH97ozaRGF1R+n39HfRutIj\n3FvFg6AKWJdeXdz5Jst3oqFih/GPBfse1N2RSee4Bzx4/bHp7kiimNRxfF8+fJrj5+eQMYkz\nX504MR5XJPTOP4eGlCQyNhzFcTaCZu2LjfuTe8u4FzQB67fDE6zHISfcMmhRaOw/7UUPcw96\nkPpl9e0GopRuC4PtwD0vbTJWuMq9DUAVU6kk6yVW0pMjfuYeA8279trs24xEsS2m6HNebAUN\noTHcW8e9YAhY2Z9u7F9RPoG+wt0Tg/OAK6cOxMX8wT30QeiPtc3DSKoycAP39mV0F63l3gyg\nhoeoBPOpaGk0kXsQNO3iybltoomkyj0Wheife24dSTZ9w72J3NJ7wLr6xqKOifIRV/V7zwux\nQ2VODKXx3MMfbM7vbGcgqdp9oXG+oEs7I0rq4TpfEKBZdBN3pR9JiMF1VZ3L/HTHyEby9I2l\n2k/FD4MuTKRe3NvJLT0HrHNPP9RCnla7WPPhq0JxwrUjxSN+4N4GwSTz6T5FiCoM3sq9Yfnd\nQwu5twYo7hEqzl/rA2k29zhoz18n141oWkQ+nLiyeWooHgbqtYwK0gfcW8sdvQasP46Ma2iQ\nL3vTfmIwnyro3hgaxr0dgsdnk0sRJfdYx71RNWFvdOJZ7g0CCltESRo4ouJAdBL2lub7+4ND\nC+9LTZKnGAorfcfQxaFxOHEgZlJ77o3mjh4D1i+Pj6ghXw+uWtcZoX3CanrJ8K+5N0Zw+Gd9\nU6IibTB5X56+NIN7m4CyVlDiRu4yk91Lj3IPBbvTnz63Y15ax9pxcrIiKblBl7HLka28U1PT\nF8zRW8D6Zc/QKvKFb+r2fiTYr1nihYmYp0+A7Jf6R5FUdyI+0W44GBer8fOfITBrpKLruavM\napep7DXuweBw5qu3ntixbPKguxuXNpGNKaVB+0HTVx/h3iS6spiacW9KN/QUsE4fSqtmqcLI\n+v0Xp3NvVW04XtrwBfdW0buf51ciSu7DfzCKtgyhSdxbBhS0UYp/jLvGcrUP4mnXLv/9998/\nnTp16pP333/p+YyD2zYsenj8fd1bN6qUKFEeQ2KFm1v3Snv4UaYLFundzXSCezO7ppeAdemZ\nSQ3CiCLq91+CcHXDFOrNvWV07drRuw1kajEPPw0WdCSxyK/cWwcUsz0sdjV3ieXZINXN5h4P\nkc6+vn3WkLtvrZ6SEE4uGOJKVWvUslPftGkL1+3Bh09gVkn1tVs/eghY2R8tbhVpKcoavRYe\n5d6YGpNRLuwz7s2jX59NTCaqODy0D+RzZYTWp/AD/z1uiF7JXWA3NKNnuAdElB829auYG6Ki\nk8tUrla/fv1mqamprdq379S9+8Chox6YPm/Zuu04ukWoVDrIvd1d0nzA+mvfwBKWai3TaSaq\n0olpGp8GRLvOrr/F8iHY4VHuLahVR5Mif+LeRqCMQ8aoZdz1ZWcZteYeESFOr2wsERWpY75/\n1lrsl1LPurCamdzb3hVNB6zs9+fdaiCKbT6Webph7cooH/Yp92bSocynekWSVHcSDid1bSSl\ncW8mUMTx8MjF3NXloCZ9yD0mgfvfkAiSag9ZjWSlupbaPYpPuwHr/JH7ShBJVXovC8VJRL2G\nXVi++/CBkkQl+uK4drfSk02YxzYYPRNhms9dXI5mUD/uQQnUb0MNdNNAzAnKYpOhynXuAnBB\nowHr65WtTfLVLSfiEgEeZJQL+5x7a+nKqUdqylNeLcIfmp6MoeHcGwvEeykqfDZ3aRWQkRKu\n75+jsx+Lo1IPYE8Al9a0nbsEXNBgwLr20gPybAzluy9GwXphKvXl3mL68cPyJkTGxlPw06AX\n0kuYvufeYCDa69HGGdyVVUgaTeEel0D83paih+Lsdj5bjJU0ugtLawHrt23d44hMjdK4L0Kq\nGxllDF9xbzV9OLX0FomkOqNw1qCXxtJQ7m0Ggr0bFzaVu64KOxxb9Dz3yPjv9ZJUH0cJs2pL\n27irwDktBazrrz3USCJKav8w5tT2wQM0iHvLaV/2+zPrEUm1huMoCe8dKxH+LfeGA6E+TJQm\ncpeVMz11fL2cnRFh/XHAAa+txoravByAZgLW1+u6xhMZag1Yw72t9OZ4SXwNunfh+PAUImP9\ntF3c20pnsAsryHxWXBrDXVRO7QqvoNkz7T1YKRXR2jFtIag9beUuBKc0EbC+3zmwHBEltZ22\nn3s76dFYGsG9BTXss+VtIoiim0/ax72d9Ccdu7CCylclaQR3TbnQmg5zj45/llDRVdyDB/Iu\nLE0ehcUdsK69v7ZPWXna2ybD13FvI71KT474mXkzatTvjw9OkWep7TofR6D6Bbuwgsl3ZWgw\nd0W5ska6jXt4/LKaErVxzexQ11abJxIyBqxL720ZdWuUHK4aD1p+jHv76FkaTeDbjFr1T8b4\nOpKluJqNwnxXfksvEY4TCYPFzxWpL3dBuVaf3uEeID/sC4vHjgFN2GKsosUfmTkC1sXPn143\n8e5KYZZsFVa21ag1OEAwQEcSo08zbEft+vfpKU0MRMbafTFLbWDw83PQ+K0adecuJzdm6fG6\n9W9GRK7gHjiwaU17uMvBCSUCVuaZUx+//9rzDp44eGDjmoVTR9zTokZ87rUwq7cbsRjXFxRi\nCM1QYDvq079PT7vVaInuVe6Zg5NRA5Z+E6ZzDw6na5OZu5rcySitv8lGfy4hzeQeN8i1yVAj\ni7sgChMasC6/uX5cx9pJ5FZk6Tp39hq3ECd0CXQotug5kRtSr84/NfUWOVxV6vwwTpcQYzSu\nSBgUzjag9tr+qSCNpnEPko+uNaOB3KMG+VrSAe6KKExYwMp+d0azcDlAmUrWaNyi/d3dHfQZ\nOHD4qCkzFqzejjm0ldCLFonakHp17onJTazhqgvClUDpyRG627EAhZxrSq20na8sfyUmXuQe\nJt9Mols0PqYhZb1UJ5u7JAoRFLC+f7g8kVShw+glu7mHOSTtjSxxWcyW1CVLuGpssISryl1n\nIlwJNpJGc29eCNSF5tRc80cjdqf13OPkk2ekm/BpoyWplM5dE4UICVif9DCQqfkUXIKET2da\nJ2JL6tC/T02x7rmq2m3mAe6tEIyOJkX+wr2NITCXWtEt2p+oZLuhhvb2QLh2ppRhGfeQgb01\n0s3cRVGIgID1c/8wKjsKX26sthsravEkVYVdfmlGMzlcVUa4Us4IGs+9nSEgV9pTI+3nK3kP\nxNPcQ+WDftSbe8DAUVPtFVDAASvr0Rgq+yB+iubWhvaKqAf9yHpvYesoIqliZ/wsqKgjiUV+\n597YEIBrZqqvi0Nfl1B77rHy3pNUQQ+hNaQsp1Tusigo0ID1c0uKTtP8r/shYL1UT0/71wP0\n05YexeQp2u9+EL9LK24YTebe3uC/6/dQbZ1MWFJV+oJ7tLx1oZxhJfdwQUH16RXuwiggwID1\nYjI12sk9qiBrpr3do8rIfHVqHUu4Smg5AZWniiMJMZjHVrcye1ENvUw3OEk/c4JMpi7cowWF\nLKR23IVRQGABa73RMAS/DmrDcmopqCa07FL6wGJExrqDV6PuVDOEpnNvd/BTVn+qqpvjE9MT\no//mHjDvfB6epJfUGlJq0HvcpeEooIA1i2Lnc48o5Kmjy4t5+eLKsV4xRPFtHsRnm6oOxced\n4d724JesQVRZR4co9qel3CPmnTY0jXuswIlZ1I27NBwFErAmU/IG7gGFfLPpHmFloUXvpiUQ\nFe+yGLuuVDeQHube+uCPrPuoop6OUtxjKq+Lk6FPUB3uoQJnMiqGfc5dHA4CCFjTqeQ27vGE\nGzIqhP1PXGFozIX19YjiOy5FuuJwMDb+LHcFgO+yh1H5x7mLxydt6Aj3oHnheg1pFfdIgVNT\naQB3dTjwP2AtphLbuUcT7E2k4QIrQ0t+nZpAYY1n4LRoLv1oDncNgM+yR1D5Pdyl45vV1IJ7\n1LywgVpxDxQ4dzwl/Dvu8rDnd8DaJyVu5h5McJBePDIoJyz6aWQExd6LvaWM9kcnnucuA/CR\nJV+V01m+ko8k/Q/3uHl0qZQJ+xa0aiyN4q4Pe/4GrHcjI7GTVGuG0oNCi0MTzkyMpOLDcVg7\nr160gLsQwDfZw3WYr048SIO4B86jxdSNe5jAlfSkKC3tZvAzYP1RWprBPZJQ0KHYhH/Flge7\nzDWJVGwkfhvktq9I0gXuWgBfZA3VY746cfymyD+5h86Dc8WK6OnEgVAzlKZxV4gd/wJW5p24\nDpMW9aCVguuD2fsNKbK/TqahDm499HICPVhlDdbd8Vc2Q2ge99h5MId6cQ8SuHYoLv4f7hK5\nwb+ANZsa4XQuDdptKntNcIFwujrNSC0wXbsmPB5500XuegCvZfajCvo6fzDP/siSV7lHz61z\nRWN0NLNYCOqrpcMZ/ApYbxiK6fN/3qDXnvaIrhA+X9SnpNncIwq57gm2vaPB7Nq9VFmvP2N1\n0Phn2Hzqwz1E4M7eyJsucRdJPn8C1oXKEiZw16YNUgPhJcJlTwy1xJ+KmrEnouRl7pIA71zp\nRNV0+7/Oeqkx9/i5c7F4kX3cQwRudaHHuKsknz8BazR15h5CcOEWel54jbC4NoYiJ3KPJtjp\nQqu5iwK8crEt1T7IXS7+a0RvcI+gG6uoO/cAgXs7jBWuc5dJHj8C1qthpXDYsVYtobbii4TB\n2daUso57MMHeLlPKFe6yAC/8k0oN9PwJPZt6cg+ha9fKmHZxDxB40EY7vzL7HrCuVJcWcg8g\nuFRD+kiBMlHbT7WpkW5/4whWnWgtd12AZ382pFuOctdKIDJKG3/iHkSXdtJd3OMDnmyQ6mZz\nF0ou3wPWHGrPPX7g2kPUT4EyUdmXZan9Me6RhAJ2mspo+/wusPixOrXU+f87aZqaychBdu2w\nTdzDAx7dRk9wV0ounwPWqch4HOOnYRkp4T8qUShq+uQmzDSjRR1pA3dpgAeflyGz3qfQORRT\nTKtTgjxNt3GPDni2kppzV0ounwNWZxrPPXrgziiapEShqOjTZGko9yiCE9vDy2EXlra9VYz6\ncpdJ4LrRRu6BdKENLeMeHPBCfXqdu1RsfA1Yz1M1vf99FOSOxMdpaCJbP3xdUhrOPYjgVAfa\nxF0d4M6T0VIad5EIsNVQUyvH0Dj6r1SDe2zAG/PIzF0rNj4GrMy6EhK8xvWlJcrUijp+LkdD\nuIcQnNtmLB9MVwoIOluMpmncNSJEKj3LPZZODaWp3EMDXqki/Ze7WKx8DFhb6HbukQMPHo9I\n0fEPOWdrUU/uEQRX7qLN3AUCrmTPoJggOcF7CXXgHk1nTkcV1/n5AyFjukZO9vItYF1MMW3l\nHjnw5G7aoVC1KO9aK5ykqmFbjRWwC0ujrvSj4kEzdVxl6Uvu8XRiIQ3kHhjwTkZK+Pfc5SLz\nLWAtoK7cAwcebQqro80jGLwwnG7G34ga1h67sDTqrxZUOXgujD6J0rgHtLDMsia9XuAx9Iyl\nMdz1IvMpYP1dNBoFpgO30dNK1YvCVlM5HV/jIwRgF5ZGfV6Zmh7irg5x0otFn+Ee0kLSqTX3\nuIC3jhYr8gd3weT4GLAepP7cwwZeWEatlKoXZb1ijN3MPXjgFnZhadKT8dQ1qE7vHkgLuce0\nkNb0KPewgNeG0AzugsnxLWCdjo0Por+Rglkt+kCxilHQLyXCHuEeOnAPJxJqUPZiQ/hY7soQ\na29Eaa3V2ZdSde5RAe8djE04z10yvgWsaTh/XidmUG/FKkY5mbfjGFLtw1xYmnOhJxVdwl0X\nonXQzgV7c42nidyDAj7opYX5inwIWH/FYAeWTmSUNmriFArfzKTGQfUrR3DCdO5a81Udqrqd\nuyyE2yA14h5YRxcT4o5wDwr44PGIUle4i8aXgPUQDeYeMvDSGBqvXM0o5KQhCadQ6EAHWs9d\nKmDncDy1PcpdFApoTCe5h9bBdurGPSTgE7MGdrZ7H7D+iY/FDiy9OJoQ87eCVaOEs2XDgmSW\nxCC33VSG/w9DyHV1LJmC7PCrXAu0crWTXLdKm7iHBHyy1Vglk7tqvA9Yj1A/7gEDr/WnRxSs\nGiX0ph7cgwZeMdMa7mKBXF/fTKVWcxeEQiqFaWmy0f9Sfe4BAR/dSQe4y8brgHWxeJH93OMF\nXtsXWeKyknUj3EGqlM49aOCVnaZSl7jLBax2xtLtB7jrQSmTaAT3+NoZjcsQ6s46qQH3lNte\nB6w11J17uMAHnWmjknUj2p/Fwx/jHjLwUmdazl0vYHGmB0WO4y4G5aQnRf3JPcT5LhWNxx+A\nunMr+5Tb3gas6+XDg+c6DKFgm7FqlqKVI1ZPGsA9YuCt3ZHJF7gLBnKeKkVVNnLXgpKG0Gzu\nMc63E1eJ06Hl1IK5brwNWPuoLfdggU9a0lFFK0eoY1QZlyDUj+60iLtiQt4/95GhV3D/T3Mg\nurhmfotuLm3gHg7wXV16nbduvA1YTaSguVB7iFgjNVa0ckQ6l2Jcwz1e4L290cXOcddMiDtR\nmsqs4K4DpXXVzIwgX0q1uQcD/DCP7uYtHC8D1svUhHuowEeN6FVla0eckTiDUF/60Czumglp\nv/Ukw73BOPmVo+3Gyuzn2dtMpgncgwH+qCp9xFo4XgasjoQ5ivRmAXd499o7YaUwR7Ku7I+N\n+4u7akJX5mNFqfIq7hpQw510mHuwbapHH+YeC/DHDOrJWjjeBawvwypxDxT4rKr0icLVI0Zm\nQ5rHPVbgm4E0hbtsQtZbjShq6HHuClDFGqkJ92jbVLyLeyjALxnlDF9xFo53AWskLnOpQ9Op\nv8LVI8Zaas49VOCjQwlFfuWum9D0ywCJUndwb3+1NKaXuQfcqkTQH+8WrCbRfZyF41XA+js6\nEXOA6E9GSvgPStePAH8mRIXM90XwGEEjuQsnFF2YE01l53NvfPUspLu4h9xqKPdAgJ+OlzRx\nfgt6FbCWUn/uYQI/jKaxStePAPfhIuI6dDTZdIq7ckLO9Y2lKC4tuOdmKKA680HKubiHAfw2\nmkYzFo43ASuzvGkP9yiBH44mFjmteAUF6v2w0tg9qkPjaAB36YSY7IPVyNQtxC5YNoN6cY+7\njHsYwG9Hk6J+4yscbwJWOrXmHiTwy2B6WPEKClD2bTSbe5jAD8fLGPRxDkWQyD5aj8Jab+fe\n7GrLKGP4mnvocxCw9Gw4TeYrHG8C1p0UEqcEB6GDMYnnFS+hwOyjxtyjBH6ZTp24iyd0ZB2u\nT1JqKE72PIGGcw9+DgKWnh2Oj+GbU8aLgPWpVJN7iMBPPWmp8jUUiEvljLgEhT5lVKM3uMsn\nRFzbWYOk29Zwb3EW6ckRP3OPPwKWrg2kGWyF40XASqOp3CMEftoTUfKy8kUUgAXUiXuMwE/z\nKZW7fELCueVlKez2UNx7ZZVGE7i3AAKWrh2MjT/LVTieA9Y/MZijQb/MtEGFKvLbH3Exe7mH\nCPzVkDK4Cyj4fT8pnkx3beLe1nyOJEb/yb0RELB0rS/N4yoczwFrNfXhHh/w23ZjxesqlJG/\nRtJ93CMEflsl1dbIpeKC1kv3GCiuV2ifxD2EpnNvBgQsXdvPdyyyx4CVXd24k3t8wH9tabca\ndeSfL40lsHdUx+6gbdwlFMzOra1FVH50qF+n81Bc3N/cm4J7DCAgvWgBU+F4DFgvUCr36EAA\nNoXVzFKjkPzSjaZwjw8EYEt46UvcNRS03rkvmgzNQmjWdpcG0CzujcE9BBCQ/dHFmHZheQxY\n3Wgh9+hAIG7XygXpC3tTqpLBPTwQiM60iLuIgtPpR+sQJfXGNaRkB2KLsh2knIt7CCAwPWgx\nT+F4Clg/G8tyjw0EZK3UIFuVUvJdc8Lf5/q2N7qo9q8VoDvXMrqZyNBkxnHuzasVfdl3YXGP\nAATm8aji/7IUjqeANYvu5x4bCEwzOqFKKfnsBDXiHhsI0CBdXO5SV94eU5yo9EAc+XrD/hju\nXVjcIwABupdpF5angFUz8gD30EBgVklNVCklX2XVkXCFAL07khz+FXchBZPPZlQiiu2wjHu7\nakw/ms27XbgHAAK0l2kXlqeAVfEu7pGBQDWhp1WpJR/tohbcIwMBm0RduQspaHw5tzaR6baH\ncGZtQQdii/KeSMg9ABCoHjyHi3oKWCVWcw8MBGoF3apKLfnmagVjCM+eGDQyKtOr3KUUFP47\npw6RsdEE/GLgTH96kHXrcPcfArW3SLFzDIXjKWBN5B4XCNzN9KwqxeSTx6g997iAAIvoZu3O\nA6ITma9PqSynq7G4rIELB+NiWKdz5+4/BKwXzWUoHE8Bi3tUQIBl1EyVYvLFxZImnIMeFJrR\nDu5i0rXzhwcXJzI1Hb+Pe0tq2RCayLmRuLsPAeM5UwIBKxQ00t4urMXUlXtUQIhN4aUucFeT\nbn22rJWJKO7O6Ye4N6PGHUmM+olxO3F3HwLXnx5Sv3AQsELBMs0dhXWuWJHHuUcFxLiHHuYu\nJ106vf++skRUvvtiTHjlWRoNY9xW3L2HwB2KZ/iZGQErJDSmp1QpJ6/Not7cYwKCHCga9T13\nPenNuSceaBBGFN1s1HbuzacT6SWN/+PbXty9BwE4fmZGwAoJK6TG2prOvUrsfu4xAVHGUnfu\netKTP49NvNlAZKjRe8kx7k2nI5M5q4y78yDAkWKRqv/MjIAVGppSuir15K0SA7lHBITJqEwv\ncReUPmR9snlwNbKEq6rdZuGoK99kVJLeYdtw3J0HEUbRULULBwErNKyR6mrqZPqGh7lHBMRZ\nItXN5K4ozfvu0JSWsZZwFVG75xyEKz/Mo+ZsG4+77yBCeinjlyoXDgJWiGhBe1UpKC9xDwcI\n1ZLWcFeUhmV+vndK62KWbEUl7xi+Aj8L+qsBHePahNxdByHU/5kZAStEbDBUva5KRXmHezhA\nqJ1RCX9wl5QmnXl59bDGUXK2Kn5Lv9mYRzQgq8OqXWPajtxdByHU/5kZAStUtKFNqlSUd7hH\nA8QaQoO4S0pjLn+wc3K7FDlaGcq0GDh3D/cWCgZtaDXT1uTuOYgxj+5Qt3AQsELFNlPKJVVK\nyivcowFipZeRXueuKa3I/vbYvHurG+RsFV+/87iVR7g3TtDYGVmM6ZrP3D0HQerTE6oWDgJW\nyOhCi1UpKa9wDwYItkCqp6WfoJlcfX/zqNQ4OVpFVm077BHsthKsP43j2bDcHQdBVkm1VD0f\nBwErZOyNTjijSk15g3swQLSWtJK7qFhde2/dffXDLdFKKtmsz/RNGdzbIygdSQ7/jGXrcncc\nRGlJG9UsHASs0DGAHlClprzBPRYg2u7oWM6LxbH6Ye+4WyIs2cpYqe39Sw5yb4lgNo1as2xh\n7n6DKNtMJc6rWDgIWKHjcLFIzVzShHssQLg06spdVQyyPl7dQz6UPaxcm1Er0rm3QfCrS4c4\nNjN3t0GYHvSgioWDgBVCxlJfVYrKC9xDAcJlVOObpohH9kcrzAmWcBXbuP8CTB2qjnXGMhcY\nNjV3t0GYgwlqXjoVASuEHC8vvadKVXnGPRQg3hpjGTV3vjP7dlOPJEu4Smo56jEcb6WirjSV\nYWtz9xrEGUu91Csc1MoRSgAAIABJREFUBKxQMofxYhOOuEcCFNCdRnHXlTouPDG6iiVcFb19\nzCbuMQ85B4uFf6r+FufuNYiTUVF6TbXCQcAKKY14jmAojHsgQAFHSoWFwGRYX61sG0EU0ei+\nNdhzxWE6pWarvtG5Ow0CLZQaqDZVAwJWSFlnqHBZlbryhHsgQAkLpOraKC+lXHtxYlUiKtN1\nHmYPZdOYNqi+4bn7DCK1oPVqFQ4CVmgx03xV6soT7nEARbSnadyVpZyzj/csSmRqnLaVe5hD\n27bI+F/U3vbcfQaRtkcm/qVS4SBghZa9cTE/q1JYHnCPAyjiQJLxXe7SUsb3q1qHEyW2f/gw\n9xjDcOqs9ubn7jIINZCGqVQ4CFghZqSap1C4xj0MoIzZUq0r3LUl3oezGxBRxV4rcNSVFmTU\noL0qVwB3l0Go9NJhb6lTOAhYIeZ4RellNQrLA+5hAIW0oSnctSVW5kvjyhMZ6g3HD4OascGU\n9Ju6VcDdYxBrPql06VQErFCzRKp9TZXSQl2FogPJhje4i0uci+mDihFFNpu4l3tcwd5gMqtb\nCNwdBsFup2WqFA4CVshpRUtUKS3UVUiaL1X6l7u6xDi9rXMUUXzbmThjUGuO16QtqtYCd4dB\nsN0x0arM546AFXL2xEb/oEZpoa5CU2e6j7u6BDi14nYDUcmui49zjyc4sTkq5hs1y4G7vyDa\nGLpLjcJBwAo9Y9Tev466CiVHytFR7vIKTPZ7M+oQSZX7r+UeS3BlLDVV5yAaG+7ugmgZtWmX\nCoWDgBV6MmrSQRVKC3UVotaYimliKhD/XH0mrTSRsUHadu5xBHea0YMqVgV3b0G4jaZivytf\nOAhYIWidscTfypcW6ipUDaM7VLsUhVhn9/aMI4puMXk/9xiCB/uSw55VrzC4ewviDaFuyhcO\nAlYo6k2DlS8t1FWoyriZ5jDXlz9+XCPPJZp099x07gEELywxJqs3oTt3Z0G849VUmE4NASsU\npZeTnla8tFBXIWtPouEkb3357L/zGknyXKIrMZeoXgyhVNUmnOHuKyhgvSlR8WMZELBC0gpD\nmX+ULi3UVehaEFZSheMbRMl6Y1IlorC6wzCXqJ5k3ELj1CoR7r6CEoZS22yFCwcBKzTdS4MU\nrizUVSjrTy3VPMkrAJkvjixJZLplPOYS1ZsDKbRTpSrh7iooIaM+rVS4cBCwQtPR8pSucGmh\nrkJYRmOayllfXsp8fnhxouiW03EJZz1aFxWp0iXluHsKitgRG/mRsoWDgBWiVhuLc/6Iw919\nUNi+EtIhxvryRtbJ+y3pKrbNbBzUrlczpBLqTJrM3VFQxnSqcUHRwkHAClWDqIPSvz+jrkLY\n6sjoj/nqy7P/PFBaTldzj3EPFARgENU9p0a1cPcTFHKXwsfKIGCFqoy6iv/+jLoKZZOl8n/y\nFZh7Py+uRRTVchb2XeldG2qrxqmE3N0EhRwpT9uVLBwErJC1I870npKlhboKcd2pxVW2AnPj\nyoH2BjI2mYJrOAeB9IbUJ0v5muHuJihlQ5GoDxUsHASs0DVTqnhWwdJCXYW4jKY0kKu+XPt8\nQhJRpeF7uEcHxDhUmUYrXzXcvQTFTJcqnFGucBCwQlhX6sJ1GBZ310EFhyrSXKb6cuHqvhZE\nsebV3CMD4uwpTQ8pXjjcnQTldKc2yl3ZCwErhKXXpIWKVRbqCnYkSduYCsyZXx6+iaj2A/hp\nMLhsv4lmK1063H0E5RxvqOCEtQhYoWxnguEZxUoLdQVrosOf5Cmwwt7tHU5FOq7jHhIQbnNx\nmqlw8XB3ERS0L4U2KFU4CFghbYmx6P+UKi3UFZxYaCryOkuBFZCVnkqUcv9B7vEAJWxOpinK\nHuzA3UNQ0oZYo1LX5kXACm2jqKqCR/ihrkLeg2FF/8NRYA6ubKpKVG8WruMcrLaWpGHKHUeT\ng8+rILcwPOZ9ZQoHASvEdaKWHOfSc3cb1DJOSvovQ4HZ+XdpKTK2XMU9EKCgneWoyyUFa4i7\nf6CsydJNXytSOAhYIe54Y+rHcCohd7dBNWlS8qfqF1i+v+cUowjzVu5RAGXtq01NFbz2F3f3\nQGFDqfyPShQOAlaoO1SZJilRWagrsBkmJbPtwzozI46ie2LSq+B3pDmVU+7Cvdy9A6X1pKq/\nKlA4CFghb3dJhskauDsNKhouFXtX9QqTyfEqtt9+7v6DGjJ6SNH7lKok7s6B4rpQdQUSFgIW\nbE6kNeIrC3UFeUZJsS+pXWE5OWdnxlHcAJw4GDKmRtIYhQ4o5e4aKC7DTFXF/0qIgAUn1sVL\nis0DgrqCEycmGSMOqFxh5+clUOyAQ9w9BxWtTaFGykw7w90zUF5GZyr/lejCQcCCEydWx0pr\nRVcW6gpumB0ZtkzN+rq0NImi+x7g7jao62ALit6gxDk73B0DNfSgm94TXDgIWGCxKk5aJLiy\nUFdgZ0VRGqbafCBX15aiqJ77uPsM6ptQhNp9L76iuLsFqhgqxWSILRwELJCtS6QH1Jytgbu/\noLat5ai5gufR27m+rTyZuj7O3WFgsbUuxay8LrqmuHsF6phqMojd046ABVZbSlGvy0JLC3UF\n9g42pdJvKF9ZWfuqkbHDTu7eApeMUdFU/1XBVcXdKVDJknjqd1Fg4SBggc2eqnSrOnsYUFeh\nKaOPFL5U4d2k2UfrUFgrTCsa0nbdTlKPU0LrirtLoJatlajOl+IKBwELch1uRqXfEVdZqCso\naE48tVNiNr8b2pLUYgN3N4HbwkpkGvubwLri7hCo5kgbitkmrHAQsCBPRl8pQq2TCbn7Cix2\n1qOkg0rWVclb13D3ETQgY0JxKjJRXMTi7g+oaGIUdf1DUOEgYMENs2Kp62lBlYW6gsIyhpio\n2y/K1RV+HASbo8MTKfJ+UfMacfcG1LSpOhXbJaZwELDAztYaVOKEmMpCXYEz66pR/GrhZ3mh\nrqCgIyOKU1inF4Qc9cfdF1DV8cEmavW5iMJBwAJ7x/oaqY+o3aOoKygsY3gRqvMC6goUlz6x\nIlG15QJ2ynP3BFS2qT4ZRwsoHAQscLSqIiWsVWwPA+oKTuxsKVGHj1BXoLyFqUYydTt+DXUF\nvpmWTPFzzwX6gYSABQUcGxJFNZX+nZC7k8BqWQ2Sun+MugLl7R6YQlRsxEuZqCvwxZHBMZQ4\n+6/APpAQsKCQnXdKdNtzgRUW6grcmVGBpI6voK5ABUs7xBElD3/mCuoKfLCvdzRFj/wikA8k\nBCxwYlUjosYHA/qbD3UF7mTMqEzUcKvIWZNRV+DCsdmtY4lium35GXUF3jswKJGkOx6/5PcH\nEgIWOLWssUTlFoicqw91BY7mN5Eo/v43UVeggvR5HZOJqO4D/nyocTceuKRPqkkUN/hZPw9L\nRsACF9a0MZHRfEDwLgbUFdywuXtRokoPfoC6AjWsGVTXSP78MM3dcGC0rmsiUeLAw/4c8Y6A\nBS7tHVqOKPrePWf8KCzUFXgjfcZtJqLyY54SE+S5uwNad2jWT6gr8M3xR9rHExmbz3nV18P4\nELDAnVVdk4kMtzz0Io6VAYUcnHRbJFHEHbNfvoC6AsWhrsB3x5fcW1GyfEylTj70nQ+Fg4AF\nHjzau2oYUXiT0bs+FTc9FnenQFOOzu1cjix/IjZM2/KB/6d6oa7AC6gr8M+eyR3KWkIWJbaa\nuPVt734wRMACz/ZON1c0WAorsmHf+Yc/+tefTyjUFbi3e6q5slxk4bV7zNr3/lnUFSgDdQX+\n2z+nX9MkkpW6Y9iig+/96b5wELDAO4cWDm1Z3mitrOQm3cevePzk53/781GFugKXjiwZ0aay\nyVpkiTf/F3UFCsDnFQRo78K0u+omWj+nqEiNNoMeXpv+xrdOf9/xFLBmTQXIN3lo19vrlY0P\ns5UWGRPK1Wra6j0/PrBQV+DKlBHdW9YvF284jroCBXjY54C6Au9MHNzljgaVkky534ZOP688\nBawSBODeKj8+sFBX4MmLqCtQwEnUFShgh7PCCf6AFZ6QkBDL3YhAFbF0IoK7Ea48HaofWPGW\nrWLgbkTgYi3dCOduhBOh+kUYFJ9YRFGWbkRxN8KZEK0ry+ZI4G5DoCQtd8JpXXkKWBW5Wx2w\n+EaNGlXlbkSgylk6kczdCFf8+cDSf11Z1LZsFU1+hfimqqUb8dyNcCJU6yrOsj2qcTcicCmW\nbpTiboQzoVlXkmVzNJK4WxEgg6UPDbkb4YpfAat/a7273bJNbuFuRKCaWTqRyt0IVz724wNL\n/3Vl0diyVe7kbkTgmlq6cTt3I5wI1bq6w7I9mnI3InCa/cwKzbpqJQcs7kYEStOdcFpXngKW\n/r1q2ST3czciUPMtnXicuxFQgNmyVU5xNyJwwy3deJ27EZDvbcv2GMLdiMCtsnRjI3cjIM9V\nOZtkcbciQP/Kf3twN8InCFi6gIClRQhYoAAELBAPAYsFApYuIGBpEQIWKAABC8RDwGKBgKUL\nCFhahIAFCkDAAvEQsFggYOkCApYWIWCBAhCwQDwELBYIWLqAgKVFCFigAAQsEA8BiwUCli4g\nYGkRAhYoAAELxEPAYoGApQsIWFqEgAUKQMAC8RCwWAR/wLp+7ty5i9yNCNRlSyeucjcCCvjX\nslX0/pFlcdHSDadXggcWQfGJlZNzxdKNK9yNgHyWzXGOuw2BytZdJ4I/YAEAAACoDAELAAAA\nQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMGCOmB9aLYzgbs1vvtsmNns\nMAPkz5vG9u46YM6zmVwtglx6Ly0UlyahrEA83VeVjosqqAPW67ourOvbO5kd6+pQl9y+pP3O\n1iqw0ndpobg0CmUF4um8qnRdVEEdsJ4xm+fszfMMd2t89O1os7mrQ10ds1TUw4ee2DbEbB58\nnq9hkKPz0kJxaRXKCsTTd1Xpu6iCOmAdMZtf5G6Dv050NXc7ttK+rn67x9zlHXnhyjyzeTVb\nw0Cm59JCcWkWygrE03VV6byogjpg7TKb3+Zug78mmEd+m+NQVxvM5r22pcv9zJ3/ZmoXWOm5\ntFBcmoWyAvF0XVU6L6qgDljrzOZPuNvgrwnrruY41FVmX3PXf3OX95jNR5naBVZ6Li0Ul2ah\nrEA8XVeVzosqqAPWUrP5W+42+MvacPu6+sJsnpa3/JnZ/CBHoyCPnksLxaVZKCsQT9dVpfOi\nCuqANdts/oO7DQGxr6snzOZtectXO5l78rQIbHRfWiguLUJZgXj6ryr9FlVQB6zJZvP5l+cO\n6NJr7LbfuNviF/u62mo2P5F/R39Lz1haBDa6Ly0UlxahrEA8/VeVfosqqANWmtk8MnfCjC77\ns7lb4wf7ulpuf5zfGLP5R5YWgY3uSwvFpUUoKxBP/1Wl36IK6oA1wFJRvZYfOr5hsGVhN3dr\n/GBfV/PN5nfz73jAbP6KpUVgo/vSQnFpEcoKxNN/Vem3qII6YN1jNq+/KC9c32SprK+5m+M7\n+7qaazb/J/+OaWbzFywtAhvdlxaKS4tQViCe/qtKv0UV1AHr4oWLeYvzzOYlnE3xj8vgPlHr\nwT3Y6b60UFxahLIC8fRfVfotqqAOWHa+Mpt76u/XZ/u6WmH/0/Nos/lnlhZBIfosLRSXxqGs\nQDydVpV+iypUAlZ2N7P5HHcjfGZfV9vN5hP5d/Qxmy+wtAgK0Wdpobg0DmUF4um0qvRbVKES\nsHJ6m82nudvgM/u6esZs3pK3fNFs7svTIihMl6WF4tI6lBWIp8+q0m9RhUrAutrJbL7K3Qif\n2dfVN2bzpLzlD8zmOTwtgkL0WVooLo1DWYF4Oq0q/RZVMAest9fOeilv2bIlRnG2xT/2dZU9\n5MaFLdeZzc8yNQlk+i8tFJcGoaxAvCCoKv0WVTAHrOfM5rTctJ49zWzexdsafzhcRHyX2bzV\ntvRXd3P3iy6eAmrQf2mhuDQIZQXiBUFV6beogjlgXelnNi+wXnf76mqzucc/3O3xnUNd/dPL\n3OkVeeH8ZLN5H1ubICcYSgvFpUEoKxAvCKpKv0UVzAEr553OZnPvdceOrx9gNnd6k7s1Pvls\nr2ys2bxI/veodd1Lnczmhw5krLf8/zLxOnP7Qp2OSwvFpV0oKxBPz1Wl96IK6oCV81af3Esw\nmfu9x90W3xwy2+tvW/ncPbm3H9L2qamhQL+lheLSMJQViKfjqtJ7UQV3wMq5cHzmgG73DJ7z\n5BXulvjIaV3l/Ll9XK9ugxe9xdo0sNJtaaG4tAxlBeLpt6r0XlRBHrAAAAAA1IeABQAAACAY\nAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUA\nAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIFZcB6i4iW\nurn/Q8v9C92/xI8jqxQJT37Y7rW8eJKzR3v1NC/bDSHvhKVEtnM3AtTBurHxYRTs8stLwPcl\nuICA5dRHCSTri4AFmoKAFUIQsEBBCFgqQMBy6hY5XhnCEbBAWxCwQggCFigIAUsFug5Y7aia\n0/XfjRo16gU3z/NYML9bHhBzKDPnot1reVVlhR/t+Wk3euGp3RDyELBCCMPGxodR6Mgvr4C/\nLwtw9b0civQcsLIT/NyQHgvmXcsDxvj6JOeP9vg0v3sBIQgBK4Sov7HxYRRCvC4vHwMWisiO\nngPW/0ipgCWX3mZfn+T80R6f5ncvIAQhYIUQ9Tc2PoxCiFIBC0VkR88Ba5diASvd8oB9vj7J\n+aM9Ps3vXkAIQsAKIepvbHwYhRClAhaKyI6eA9aooAhYfvcCQhACVghRf2PjwyiEKBWwUER2\n9BKwfl7SsXycIa5S900XbCu2U56bLLfetPz7Ss6ZseVNxb8scFZEoWd6Kpj1+a9caJqGRZZ/\nxtcvbkq5c9X53Ee7eGfnActDLxzanXl0eO3k8ITKndf8kbfqPcv9L+XknFnQON6Y2PCBb/0d\nTFDT1b09aieaSrRacsZupZOt+4xl6z6bk/PqgNpJEWXuXH/+xoOzj3SvEJVQa+BLCFjBz+XG\nfnlcw+TwYjW6786vjNzPg88GlzNFVRn2qbwq61DbJGNCk3n/2L+ky2c6fpK4+TBy8iEKuuSs\nvLz5vnTy1WdVsLYci8jpQ6y+mdeubIwhtpJ59Z/KdFQj9BGwrk0Jz99uScesqxw3pFwCT5yr\nId/80KFgnDwzgIC1JPP+vLvKnLzxWk7e2VnA8tgL+0J/rnr+XdEzM23rPrPcOJFzsEju+vBt\nAoYWFPZ8+fztuCZ/pbOt+6rlxv4bBVb+jbwH/9Yyb13bfxCwgpyrjf35LfkVU2J/7jrb58Ec\nybbauCcn59d6uY8p/b/8V3T9zAKfJC4/jJx+iIIeOS0vb74vnXz15TirrUIBy1n55VxOC7vx\nAbg4W/l+s9FFwMo2W7dEXNmi8j/SIXnds61aRRMVadWq1b2WW19a1h+YZH2UQ8By9kxPAetE\nq1Z1LQ+obXnphQUi0/I0+dMowfqJFvOB9dEu3tlJwPLcC7tC32awlnLDaib5327XrCu/tiwe\n3GcpTVOiUV4d9prAQQZF7LJuSEOkdduPz13pdOu+Y1ncPM7ynwjbLLcx/7U9+Lz1SzOhXg3L\n12GzY4SAFcxcbeznYuX1pRtWsVbOIttK6+fBcstnSUKEvNb05d+VLDkr0fqQermx3c0zC36S\nuPowcv4hCjrkvLy8+b508tXntLYci8hF+WW3lW8Yy1SKt77dBPUGQHW6CFiPWTZC8gb5F5av\nR1gW4/+2ra5147feU5bV62KpxtSl03+wLxjnz/TlGCyHyNSTDCM/ys65cqyy5UaDbDfv7CRg\nee7FjXa/bSnHsAd+sixd3H6TZe0s69rv5deKl4Z+lJNz9QU5BLb0bzxBNe9Y/iCMmP1NVs5v\nK2LkKG5d6Xzrvm9Z6keGB77Iybl0oKwc8W1/2U2Qs9gTlu/LKwfLUhsErKDmYmOfsnzhhY39\nzrJ07jH5u++wda38eTAnquhj53KyXq9jWR4xnBo+l5lzcY/8pZaR4+GZzj5JnH4YufjgAv1x\nXl7efF86+epzUVv2ReTiIfJursbPy39X/rpaXvumCl1noouAVdGykf6TuzwqvxjsN+QPlrV3\n0gO5+xpvFIzzZ/odsEjKXXta/gJMd/POTgKW517kPzu7lt336Bdxlj80v5OXfrSsjZb22Fb/\nmWBpTnD/fh0EGlr+UHvZtvhiGFFZeb+Ci61rLTDK/aPx9xJ5n0a/RvyfvfsOjKJa2wD+zm6y\n6YSE0AmE3iIdgdBBiujSq3REkCIiKEWR3kEUkCIISBXpBHu9ls96rVfEXq/XLqJ0SPLNbLKb\nTTKTbTPzzsw+vz+us8tuds45zz3z7uwU8Rvl57nP/lCRUGBZmdJgi9tC9//vcz4RE1PlgrQk\nzQex8R+4nv0+miheyDjverBb/Idbcny8U24mkS2wFCYuMB2FePmzvZTZ9Clkq0CBJf+SzkTl\n/8l79otSRENUbqeBmKHAknYSdXA/+EF80C130WsgpWepvfu3XE9gFN4ZfIF1k/sV0hQ2pJhP\nLlpg+dEKz7tfEBd6eNZmhfRF1fNZ491PTxQfPFtcK4DdS+R1xdox4oMnchRHt2DAHhEf9JcW\n1osL97iffRQFlqUpDPa74sIoz4seFB/tkhZc88GKvGd7isu2U7nLl+OJrs3x9U6ZmURuMlKa\nuMB0FOLlz/ZSZtOnkC3vECm8RPz2OMzz7Oqm/Zeo1D4DMkOBlXPx2zf/43mQSlQrd6lwgfWM\n+yX5Fbn8O4MvsN5xv+JyLFFSMZ8sswfLdys87x6dtynO9audqJ77swTPuYPSftbCV0MFY5EO\nDD3pfvB0pUbX7ctRHF1XwN50P31RDFjJrBzpvhNEp9zPXi2FAsvKFAZ7irjwiedF58Vo9JYW\npPnA4f7B7l7yOmSgOVGFHB/vlJtJZPdgKUxcYDoK8fJneymz6VPIlneIFF6SRNRLzXYZmCkK\nrAKaEJXOXSpUYMVfcb9E4eaVnncGXWCVz39JJ/Hhj8qf7Os6WLKt8Ly7DlHU5fwXNxO/m57N\n+6x0z7PPiY/WFNcKYFfT62xlD4XRlZJSMf/p9uLD73Jc3/bK5D87CAWWlSkMdiOial6vEreT\nydJ/pfmgpftJ6fCZhe4HTqKEHB/vlJtJZAusAvInLjAdhXj5s72U2fQpZMs7RAovaSx+MXg7\nxLaYhPkKrBZEpXKXChVYbT0vUQiM551BF1heO8dvER++oPzJvgos2Va4333WRtTQ68UjxOff\nyPusoZ5n/89XK4DbRXEg2xR+Uml0paT0zH9aCtiLOTmnxf9k5D+7EAWWhSkM9nkxMV28XjZd\nfP6nnNz5YIz7yW3igwPuBwPEGj7HxzvlZhLfBVb+xAVmozSX+LO9LLrpU8qWV4iUXrJa/G/M\n7K9UaJLhmaTAunhgbIuyMZRHvsAa7nm1d2Dk3hl0gTUp/yXz8+YzhU+WLbB8tcL9bukk6t5e\nqyPt/T+a91n596B+AwWW0UkDOVDuSbnRlZIyJf9pKWD7c3JOif8ZkP/sDhRYFqYw2NL/72Or\n5Evy+sI1zfvFnkMyB+UVWMW9U24mUSiwZCcuMBulucSf7WXRTZ9StrxCpPSSy61df73OxEOW\nPyPVHAXW3grkTb7Amux5uVdgZN8ZdIF1d/5LVooPtyt/slyB5bMV7ndLhwbmHwSYk7NcfLwz\n77OmF/gsFFiG9h55H+OZR2l0paTMz396lfhwW+41t0fmP3sABZaFKQz2R1SUdNinNB/MdL9Y\n2ly+5H7gLrCKe6fcTCJfYMlPXGA2SnOJP9vLops+pWx5hUjxJWeH5T2yt15v7RrLFAXWItdY\npLXuOVSUolRgFZwwVhXzzqALrMX5L1krPtyk/MkyBZbvVrjf/Sp5zrJ2eUDxs1BgGdrrhQbS\nRWl0paQszX86L2CvFHw1LjRqZQqD/YbMdupwjj8FVnHv9LvAUpi4wGyU5hJ/tpdFN31K2fIK\nkeJLcnLeGl4i74nEhVdzrMsMBdbz0uVjJ32X90jxGCyZMkfhnUEXWPPyXyKV8fJ7lRQKLD9a\n4X63tOMj/wiJnJyl4uPdsp+FAsvQPhCHaEThJ5VGVyZgj+Re331k/rN7UWBZmMJgf0zehyHk\n811gFfdOfwsspYkLzEZpLvFnezkv/315mz6lbHmFSPElksvPT0vPLbFuuBBkg0zADAWWdMXZ\n+z2PmgVQYCm8M+gCK/8jXD9Ey38XVCiw/GiF+91fU8HTWO+h3Aszo8AymW+owHHruZRGVyZg\nB3PvGud13MRGFFgWpjDY35P8ae2+C6zi3ulvgaU0cYHZKM0l/mwvi276lLLlFSLFl7j9tLWN\nVGEtCqIxJmGCAks666pq/v0gK/hfYCm9M+gCy+uAZelUiv9T/OSiBZY/rXC/+7ydqIHX6gwR\nn39X9rNQYBna5UiiRoWfVBpdmYC9npPzMxU48+cOFFgWpjDYl6OI6su83HeBVdw7/SywFCcu\nMBulucSf7WXRTZ9StrxCpPgSL4ejieLOBdwWszBBgSXdTnm059Fn5H+BpfTOoAssr7BIdyX/\nQ/GTixZY/rTC8+5riByX8j8rPe8hCiyzEQfXcd7z6NNTp6QbECqMbqGAdRAf/iL+t2SBa9d0\nQoFlZQqD3Zwo8kzRV/susIp7p58FluLEBaajEC9/tpcymz6FbHmHSOkl3haIf+7lQFtiGiYo\nsKRfjm/3PJoaQIGl9M7gr+T+vfsVl2KJKil/ctECy59WeN59K3lu1pqTe2fWVvKfhQLL2KT7\neR13P5B2mN+aozi6BQMm3e3EFTDpjGbP1ZfPRKLAsjKFwZ5G7tuQuHyat83yo8Aq5p1+FliK\nExeYjkK8/Nleymz6FLLlHSKll3z3Xf6TzxaYDq3GBAXWZ94/5L7nEB/F5i6LX/1T856WL3OU\n3hl8gVXgRk7MZLYaAAAgAElEQVQTlD+5aIHlTys8736TvC/QNlN8tFn+s1BgGZt03k479wPp\nwgvS/ZsVRtcVsDnup/dT3kUkF3pvRRcTCiwrUxhs6XT3up5zrS5UiuzkOhfLjwKrmHfKzSQy\nk5HixAWmoxAvf7aXMps+hWx5h0j+JdNSvK7NnbOPvO4QZjkmKLCuJhCV+Cl3+eMKcRniePzu\netCMKDLvntzyZY7SO4MvsGLfzX32dA3xwSvKn1y0wPKnFfmny7ai/PsMviEmvdTf8p+FAsvY\nsqWBzDvD+WQiUTnXT4Pyo1sgYGeqUt6O808EoriPc599Mw4FlqUpDfZ14tK4vKNjLg+gvGu2\n+1FgFfNOuZlEZjJSnLjAdBTi5c/2UmbTp5At7xDJv0T6pvmge52uiB9TwrqnEZqgwHLdS6S1\ndF39HxfE0IOzPbNBX2nwfr36zZ+KZY7CO4MqsP4tLnSjkpukjeGbjcUHXV3/7vdZhH60Ir/A\nOhlNZJvxs7j01wMJeTs+UGCZ0DvSfvjBb57P/maFdN2X3N3l8qP7vnfAGpDnvvYDxcWU7eKz\n3yyKo9EosCxNYbC/jhcXO70qbqkuHGjqiYY/BZbyO+VmErnJSGniAvORj5evoVbY9ClkyztE\n8i/5u6y4NOJ16X6sZ5+UyrgZunaCrsxQYH0hDZK9ZpuaNqJR2Y9L5XT9Fp/l5GymXM8pljkK\n7wyqwJIWtowRi/NajaV8UNncm9H7XWD50QqvK+oelHbQCtWaVrdR/j4QFFjm85hrACn3f90H\nOMiOrpSU+4fkB6x03lEP/63kem9JsSqjztJl4LexNAT0oDTYz0mzB8XVKCNdqYjq/eJ60p8C\nS/mdcjOJ3GSkNHGB+cjHy9dQK2z6FLLlHSKFl7wYJT2wV6iS4Hph6/OF19M6zFBg5Tzjvuir\n/d6cnCsNXIv/EWvidF8FlsI7gyqwXpaeuzI27+9R3Y9y/93/K7n7boX3PaFeqe/+JKrsvocr\nCiwTerGGexwTPLvFZUdXSsrqS6Pcz9f72P3iUw3cz/X4W7qI1ia9mwD6URrsD9p4EiOMPp37\nnF8FluI75WYS2clIYeICE5KNl6+hVtj05chnyztESi95q57nSYqYauH6yhwFVs5P9zRNtCc2\nudP1venHQaUiKwz8VVz67daK9uiq/b9ULrDk3xlUgfWkuPBUTs67tzVMcVTsuuVi3kv9L7B8\nt6LAXc2zDt9cr1REcp0Rez2n9KPAMqMLjw2sU9JRrtPKP7yelBldKSkrxAlpWqPSUZW77PA6\nLOHKI87K0SXrjXoxJ+cv8r4UIFiP4mC/OLVJOUdshevmu/cf+FlgKb1TdiaRnYwUJi4wIbl4\n+RpqhU2fS9FseYdI8SXZT01sUTbaXqJaz/t+1LC1/MxRYAFYns+yHwAATAQFFoAhoMACALAS\nFFgAhoACCwDASlBgARgCCiwAACtBgQVgCCiwAACsJIwLrNXd5K3kXjEISyiwAACsJIwLrJEk\nbyj3ikFYQoEFAGAlKLBQYIEhoMACALCSMC6wAIwEBRYAgJWgwAIAAABQGQosAAAAAJWhwAIA\nAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAA\nAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQ\nGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWh\nwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQos\nAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIAAABQGQosAAAAAJWhwAIA\nAABQGQosAAAAAJWhwAIAAABQGQosBldOPVfUa/9wrxZYz+V3C+fsW+5VAmv4ssgU9p9s7nUC\n8/nfi0WC9NLP3CulGhRYOvt858QW0SSJrlinaRtRi/TUeOmxvenMl65wrx5YR9bbizrGSMmK\nq9IgQwxao7QS0qOa097gXjMwtyv/t6RHspQloVSNxtIc1rhaovSw9NCD57nXDUzk1PoBFV0b\nw8TK17QSc5TRsJorV1R19L7fuFdOFSiwdPTFpoHlpEqqcrvhs9c/dsLLgfunOmvZiUrd8ir3\nSoIlXHl6bFkxa6mdJ6zcl5+zfUtGNnUQ1brvNPf6gVn98FDvBDFZKRnD7tl8ND9a+1eNbydW\nWSVueY97BcEUrjw3sYqYo4Smg2auO+i1LTyycdbARuIXQ3vHTb9zr2PoUGDp5OzxCVWlSr3l\nzSsOnZB3YE5XcYaqu+Es97qC2f17cmlx6uo4fZdMzA7f0yaCEu60xhdE0NepJU0FojJdpu+Q\nm8EyV/dJJmr/LPdagtFlvzq+FFFsy1s3ZspuC4+tuqkGkaP/c2b/1RkFlh5+2NA9mii6+bgH\n5ePkcXxehp2SF57hXmEwsX82Nxarq26LjinGbM/QRCqx9AL3ioK5fL24AZEtfcymYmawY3df\nQ9TuTe5VBSP7aYlYPZXovvBoMUE6ceLh4RWJ6m27xL22IUGBpbmPF0tf+lL7Lik+Tm6P9I+j\nlLWXudcaTOqr20uQrdlsH2E7PCaeqmNPA/jtj40ZAtmbTNlXfLBEqxuTMPIX7vUFo/q/QZHk\naDdP+fufR+bSNnaqtP4i9xqHAAWWprLfnlVL+tJ38xa/iqtc+wdHU53nuVcdzOit/nZKHLjd\nj5Ttu8EmjMOZq+CPq08MiCIhfZLv6splUWVK3s29zmBEWQdbEFUc+6i/G8NtNzqoyh7z/lCI\nAks7V/81JZXIce3te/1Nk9uuLgKN+pN7/cFsnu9IlDb1iJ8pW51KtXBEMvj09ZxKRBWGbfN/\nAjs2Jor6/8G93mA0l7fVJKHpQh8HyhS084YIam7aE59RYGnkwombSxPFtJl5IJAweaxOo0rP\ncbcBTOXpVkTp8wOYvA7fKETv4F5rMLYrR7rZKLrLioA2iidObK5NlU27VQRNXN6aRhGdHgws\nSKItGSTcYtL9DSiwtPDH7v7xRCWum3s44DC5HR1st83EZbHAX89nEDVdGWDKZsfSnVncaw7G\n9d95FYhqTAriW+KxgYLjIe7VB+PI2lWNIro/HHiSREsqUbkj3A0ICgos1Z1a3T6CqIxzyfGg\nsuSxqgy1x6Gi4Jc3Oorl1X2Bh2xjeeqLa0OCvBf7RVB09weCnMDmx9PtV7mbAAZxIl0sr/w5\nOFTWkSERNMyMF+9DgaWq809Oqk4kVL9pbbBJ8vJoc6r8PneLwAQ+7kXUYFVQIdtbl9r9zb3+\nYEDnHkonSr31Md8ZUvJQReqN6h1E/+5AQvtAzvQqYn01qmLCq3CjwFJN9keru8YQRbeY9Ego\nQfKSOUiIf5y7WWB0P4yxU61FwYbscAtq8Rd3E8BovpuRRLaMJQEeeVXIvnRqY8bdDqCuH0bY\nqFGo+xyO9hcilprudEIUWOr4Yecw6S44lXotDP6wKxl3OezbuJsGhnZ6ZgxVnB3ChvBoW2qB\nK9uCtzcHRVBC/6B/0PE4nEFNLHC/EwjF+YVxVHl+yFk6cWJxEjnNVq+jwArdbwcn1JZuqtRm\ncgAnMvtpeZywhrt9YFyX15aipEl+XLOvGMfaUptz3A0Bw7h6KIModZLSHb0CcrwjNUSFFdYO\np1GJiaHNUG670qnmSe72BAYFVmj+PHZ7A4HI0WjkmtD2pitZX5KWcjcSjOpITYq+6aDvFBXv\nWCvqgVsHgMu5DTWIGgVytY9iZXahxmbb6wDqOdWF7E6/Lyvqy7FeVOJJ7iYFBAVW8P558s6m\ndqKIekOW+XttxyBsTqHF3C0FQ3q7Ldm6yd3POVBHGtAY7saAEfw6L4UiOq9XIVNumZ2oFW4Y\nEKbOznBQg40qpunE1Ej7Ru5WBQIFVnAu/Wtu60gie+3+C0PegeDDlhRaxd1cMJ7vbhKoSeBX\n7ZP1WFVU8ZDzzaRYiuu/U51MuR1vQ92wfzQsHUqllJnqpunE8gSaYaJD3VFgBeE/93WPIxKq\n9ZkX3GXaA/RQsrCVu8lgMGdmRVPaQtUy9kgp4QB3k4DXhzdFUPLoEC7LoOBoYxppok0iqOSr\n6ymij/q7HzaXp5HmuQI3CqwAnT4wphIRlb9+lp83PlXB+gT7Me52g5Fc2ViGkm8L8Uq2BTwQ\nFYtrroWzV3oIlHr7URUj5XGgGs3jbh7o7NKiGErfoEWcdlenXhe5m+cvFFiB+GSldJH2uIxJ\n6p8uWKyVjpj/4247GMfjdSlqsMrfDWcK1Ux6uy8IWfbjrYlq3a3NeTonTuxMEfZyNxF09a86\nlDhVozztT6frzHLaMwosf2W9elcN6XfBgSvV3HHgpzm2lC+5OwAM4r1OJHTeoXrG+tKN+CEn\nLF3d35Co0RLVE5VvXUz0m9ytBP38OkIQumr3E8/hZtTeJCdOoMDyy9XnxpcjcjSfrPIBoH4b\nR3VxuW0QfTfMRg3VuBNTYcfSaTl340B/l7bWJCHjfg0S5WWOUPEn7oaCTrK3laIqgd53PiBH\nW1Dbs9zN9AsKLN+y/nVraaL4Tnercum9IN1I1+PGqXB6RjSlztMmYjtLRr7O3T7Q2dn7K1FE\nZ1XPpJc1lNqa58hkCMXHbShqlCYH8+UTK6wOpviVEAWWLx/cWYkoocsCjRPjy7GGNIu7K4DZ\nhdXJKh/bXsAioSrumRNW/lyYQo4b9TiiNLMFTeduLejg3KxIaq59osQKq5sZjnRHgVWsn9c0\nIIrtNI+5upLsKyMc5u4O4HR1R2WKHablZdf60AjuRoJ+/ndXAsX236NhoLzsLy8c5W4waO6J\nqlRqth55OtKI+pngNx0UWMquHO8ZQfZmd6l6++bgrXUkfMrdJcDnWH2KcGq7NTxajQ5xNxN0\n8tWtUZQ4fL+mgfK21pH0DXebQVs/9CVbL10uDnnixKG6dLPxz8pBgaXkm3sqEFUes1uftPjj\ndrrmPHevAJOXWpHQYavWEXswsvQv3C0FPUhXFS09TtejSidQSxyGZWWXV8dTLS3Ov5G3P41m\nczfZJxRYsrJO9LBRTLfVuoXFL11oPHfHAIu3riNqvl6HiI2ivtxtBe25rio6Ve8DH1rTHO6G\ng3ZeSaf4iVpdSk3OzrL0IHejfUGBJeO35WlE1SdpfZPBgB2qjF9wwtEHvQRK1/S0Z4/jtQm3\nzLG4rGMZWl5VVNmjKfZXuRsPGvlpuCB00ul4PrfNJezHudvtAwqsIt4bE02OzvfpGxX/POhI\n+o67e0BnH/cTqJZ6dx30YWNk2T+4WwwaurStLlETLa8qqmyJUPVv7vaDFi6vSaS05boHaqUj\n7t/cTS8eCqyCrh5qR1RmpH73GQzMeOqQxd1FoKdPhtio2hwd9zYMpZu52wya+WtFBbK30+84\nmUL60FjuHgANPF+P4sYeYwjUTKHCD9yNLxYKLG+nV1UhuuZuhnvh+CmzKa3i7iTQz8nBNkqb\nreuPOUdThZe5mw3a+O9dJSjqhof1jFNBhysLT3J3Aqjt674kdN7Fk6gR1NjQFxxFgZXv80nx\n5OiynicoftpVIuo/3P0EOvlokI2qzNT7WJkVQr1L3C0HDbw/3EGJQ/fqHKeC1tgrnubuB1DV\nP7OjqSbf6WAdaYCRL9aAAitP9vM32ihpqM5H6QVuNjW5zN1XoId3+wiUpnt5dUI6WXUZd9tB\nbdlPXUdUYQL7Nf0G0RjurgAVZT1cnpKmMsxSbodr0yLuTigGCiyX81vTiapPM8AF231qZ+g8\ngUpev0Ggagxneon2JsR9z918UNWFrfWJ6ur7W7O8I5WFZ7l7A1TzbANyDNDpyqIKdibbHufu\nBmUosETfzSxFtoxlrDHx276S+JHQ8l7oRFT7Xq7t4SQazN0BoKKf55UhWxuDXNRvta2aoQ+a\nAf990I2EdnrcybL4REWW/IK7JxShwMp+rred4vuyx8Rvs6mFCe7BBEHLPt6C6JpFfAk7Xg3H\nuVvHeyOjKLaXcea3nnQXd5eAGr4eZqN0I1zOaBI1MGzNHu4F1u/31SJKm6TrLSNClUFruLsN\nNHNldzoJzfW5rKiS5UJj1PCWcPVQe6JyYx9jjVNBB0tHvM/dLRCy/01yUOV7ucOU6zoayd0d\nSsK6wMp+6aZoimhrkt8GPXbFx3/L3XWgjfMbqpKt7TruiLWjrdw9AaH7bXllA1525l5qgYv5\nmdxvM2Kp9O1GCdbhaoadr8K4wPpmQTXxy91IA93N2V+30Y3cnQdaOL20LEV0fYg7XydObHeU\nwyW3ze6dUdHk6MJerBeVQZu4+wZC8dvseEoad4Q7R/m2xMV8yN0p8sK1wPpjS3uBHO0WGeC8\nmsBl1sc9CS3ofzNKUHSfR7jT5TIQ9+U1t/PbryUqM8qQt6TYEZ30K3f/QNB+mRFPiWOMdVTN\nLKr9D3e/yArLAuuvXTc6SKgzcT93LIK1IaKSMeMEQfv8lihKHGqUDeKBxNj/cvcIBO3k7Ukk\nNL3XKD/hFDaaRnP3EATp+ymxlDj6IHeECutBI7h7Rlb4FVi/bu0RRZQ6dAt3JELRn+7k7kdQ\n078H2KnMeAN9K5yAWxKa1dlHWhOV6GvgCe5oqvAGdy9BMD4eGUkpYw00T7kdrkq7uTtHTpgV\nWB8uy7CL1dXg9dx5CNHB0pEnufsSVPPcdURp0zhulqroaEU7EmZGr99SgoRr7jTQATIyFlNT\nHOduPs9fL1CFycaM1qboEl9x94+MMCqwzhwZl0ok1B65kTsLKphNHbn7E9SRdaApUfpcox0N\nOIt6c/cMBOq7xbWJkvsb4DQJH1ob9rQvUHBhe0OiWrOMNk953EatrnD3UVFhUmBdfWNBmwii\n2IwpJjxpUFYjeoy7U0EFFx+qSUKLVdxxKiqzJuFnHFP546H2NorIuNdQe0IVbHOU+Yu7vyAA\n399dmoSWhr6iUSuaz91LRYVDgfXphj6JREL1AcvMcK9BP22MqGzYq9eCv86sKEcRnY25S3UR\ndpKayJndTunEnVuNcpaEL4NpOneXgb+ynu5tp7heBj6qT7IvOeJN7p4qwuoF1q/7xlQmopTO\nd+7hHn+V9TZivQ6B+HlWIkX32sGdJCUN6DnuHgK//LmzV7TJTtw5lOIw7g3kwNuPS6oRpU00\n3ImDRSwQahtup4OVC6yLL8xoLBDFthi/iXvoNbA/MfZ77h6GEHw1IZoSbjLwHodV1JK7j8C3\nHzZ2iSSqOGg9d14CM436cPcc+Hb5qDOCHB1XcMfFLzfSZO7+KsyyBdbn62+II7LXG7rKDIck\nBGMiDeXuZAjaB0MiKOUWY38rbE6Pc3cTFCv73flNxe+QaUPWc2clYJk1CXcUN7r3ppYW0zXO\nwN8CCzhUUXieu8sKsWSBdf7JydWJqHyPOUa6yanajqcJb3H3NATn1R4CpU41+iGB9wvNsrl7\nChT9c/SWikS29Ju3cgclKMupGS7VYGTfL08niu+xhjsoAVhlq3KGu9sKsl6B9e2GG2KIoprf\naqIDEoKziFpj+2dC2SdaE9W+27DnO+drSce5OwvkfbbmuiiiuLbTzbJ3oagM2sPdi6Dk901t\nbRTRfKYxL3qlqB/dwt1zBVmrwLr6ysxriKiCc+Fh7pHWQ3M6yN3jEKir+xoQNVrCnR2/rBWa\noIQ3nkvPTqkhTnOpfZeZ+vCHzRFpF7m7EuScfuT6SOmUVPOdGHY4VXiWu/cKsFCB9cvOQUlE\nkY3GGv8yeyrZaK9xibvXISAXN1cnIcM0e91bYReW0fz+SL8EaQ/9hG3c4QjZDXQfd29CEWd2\nO6OI0kY8zB2PoKy2Vfmbuwe9WaTAuvLavc1sRMld7jb2YcMq605ruXseAvD3yvIUcZ2Jzmld\nKzTFLiwD+fb+9nai0j3mW2IP/Z6Y5NPcPQoF/LVbuuBHpcHGvDSfP/oY60xCKxRYn27onUhk\nqzv8ARMc1qKqndGlDXZMHyj7dU4SRfc07GWvZLWgJ7i7DfJ8t+pagYQaw9Zxh0I1Q2kmd6dC\nvtM7b4wy4QU/CjpU3vYad0d6MXuBdWrr0ArShUS7zHyUe2Q5DKY53CMA/vluSizFD97LnZgA\nraFW3B0Hkj82tharq/Rx5qrPfThYMuZH7o6FXH9sv95BlDp4PXcoQrVUqGOgQ/tMXGCdfXlF\n7zJicRXf8lYT/eiirscS437iHgfww8mRkZQ85gB3XgLXlF7g7ju4eqJfFAl1x+/iToPaJtCt\n3H0Loj+3Xx9JVHnIg9yBUEN3msvdn/nMWWD989qDYxrYxeKqZMa4teH2u2AB42gi92CAT2/0\ntlH5ySY74znXCurM3Xvh7rs5FYgqDjf/Qe1FHS0XiRvmcDuz6wYHUZWh5j3uqqD9yY6T3H3q\nYbYC6/InB+f1rWETa6vIWjdOt/ylrnw6UibyS+4xgWJlP9WBqNrM49xRCVI6Ge8OqmEk+9me\ndorpupI7BhqZRkO4ezi8XTjUT7qN5U1Wqa4ks6iNYU7NMU+BdfnjA/MHpoulNlFs3Rtue8Do\nl8HWyTTcMMfQruxtSNRgAXdMgreQenL3Yfg6/1BdoqoTTfjTsp8yq9g+5O7k8JX1wqhEovLm\nPqpdRnPawt21bmYosLK+PLxwYL1IqbRyVGs/8l5zXqBDI5ihjOzs2jQSMu7jDklIagj/4e7G\nMPXbvBSyt7Hqzqtc96B+5/LJzEpEyb1Mc1E+/22LTvqZu3fzGLzAuvrR9skZ8VJpFVWj48g5\nW8z6O4uG5mCGMqpf5pSiyK6buRMSolk0nLsjw9L3U2Ipts927uHXWGYt3FGVw1+briWK7rTI\nmlvUMYaZswxcYJ0+MbuDVFsJFdoMm7MlrA9lLw5mKIP69JZoiutv/hO/MitGfsvdl+Hnq7EO\nSh5t5ZvV51lIXbn7Ovy8PDyGhIbTLHtV7mNpwkvcfZzLoAXW2cfvaCQdyV6x47iVlk2BSjBD\nGdGLN9qo9FhLHDwzmaZw92a4+XJUBJWbZMrTTgNWj17h7u7w8uf9dYnKDLHiWakeK4V6l7n7\n2cWIBdapVZ0cRBF1+881753i9ZSOGcpgLu1qTFTjLouch3EkOe537h4NK1+PjqCKd5j6Rs4B\nWEoduTs8nLwzJoYiMhZY/RehLrSCu6ddjFZgZb81oyYRpfWZjx1X/lpGHbiHDbz8urg8CS2W\ncsdCPSNpAXefhpHvb4mkCtOseWyMrAb0Inefh4tLe1sSlRlu/uMWfNqbEP89d29LjFVgvXdn\nFSJH80mWuh+E9hriatvG8d7oaIq+4SHuTKhpf2zp89zdGi5+mhJF5aaGy94rlxXUjrvXw8Nv\n0je/xnPCo3afRAO4+1tioALrh6X1iKLbzcKuq0CtpDbcgwcul/e3Eb8hjtnPnQiV9aFN3D0b\nHv6YGUcpkyzy07LfGuMLog4+HRcjfvMz+znNfsusQc9xd3mOcQqsy4eut1NEixmHuMfFlJrQ\ns9wDCOJXhHvFb4gN7rbeN8QdETWzuDs3DJyZV4JKjguPQ9u9raS23F1vea/2tFHKaKt98yvO\naqGuAY5zN0aB9c2sskTVx+3lHhOzWk0Z3EMY9rKe6h1BMT2sdMuJfJ3oCHf/Wt4/S5MpYWRY\n7r9vhF1YmsrObC1uX61y0o2/utBq7o43RIGV/YzTRnE91nKPh5k1pWe4hzG8/bi4KlGVCZa4\nLIOMddSau4ct7tzq0hQ7JAyueyVnJY7C0tDVvelEjRZxD7Lu9sSV4L+eO3uBdW5THaJqk8Py\ni5t6VmMDyOjKcWcEOTpa+Z4mjegN7l62snP3laXoAeF7VZpG9C/uIbCqS1trkNAmLHdfjKXR\n3L3PXWD9dHcpsrdZwT0S5teUnucdyfB18q5yRGm3WHvrON8Y5+RY09/Ly1B03z3cY8xoOXXm\nHgRrurihMkVcFzZHthd0NNX2NvcAsBZYn9wcRXH9cU0GFWAnO4/f1jcniutu7ts5+yGzsv1r\n7r62qN/mJVN0/3Aur0TX0P9xj4MFXVhXkRw9LH3J9mItpFbZzEPAWGC90cdGZcfht0F1YCe7\n/i4c6OkgodH0w9yDr4MpdAd3d1vS15PjKH6ItXd/+mEJdeMeCcu5sLYCOZw7uYeWUwvayzwI\nbAXWcx2Jqt0VVhfU0xR2suvs6rOjEolSR4TJDtjDiSXOcHe59fzfQDslj7LqqRGBqEu4Zb2q\nLkp7r3qFwTXbi/NQROo53mHgKbCyj19LdM0C7u63lGvoNZaxDEtZL08qQ5Tc+wHuUdfPTbSG\nu9ct5uIucRasfHuYnTyvYD45ucfDSi5tqITyStSb5vEOBEeBlbW/AQnNV3H3vcUsou4MYxmO\nsl6dUoEoocti611RtBh7HGlXuXveSr6aVYaEppa/6a7faggfcA+JZVzZWiXcfxzMsz8x9gfW\nodC/wLq6u264njaqrTr0b90HM/xcfWGSWF3FdZwbdjseutAh7s63jIv7u9gozhmmZ3fJuocG\nco+KRVzdWZ0iejzCPaDGMImGsQ6G3gXWlUdqkq2DNS93zWwu9dF5MMPOhcdvTpGqqznhdzuT\nEyfWC7jjpTrenpxMVGsKzu/xllnF/hn3wFhB1v46FNF1O/dwGsXxNIH1Ug36FlhXtlcne+eH\nuDvdmjKrCx/rOpph5vTeAfFEJbrOC7t9V3kaYhepCr5eUpcowbmeezQN5y4DXBbS9LKPXUO2\nTlu4x9JAFvLe6FLPAuvyw9UoostW7h63rNk0VMfRDC/frO0cSVTGuSSsjrsqaC7yFaqf1mUI\nFNFidrjW6MU5Xj7yW+7xMbsnm5HQdhP3SBpLUzrMOCL6FViXt4nlVbeHubvbwjJTI77UbTjD\nSNYbd19DRFUHh9E5g3IyKzh+5B4LM/tlU0c7CfUmhv1FrxRMpsncQ2RuL7QmocV67mE0mo32\nGpf4xivTKqMAACAASURBVESvAuvKdrG86h6+15TVxR00TqfhDB9nDo0uQxTRaByye2IczeEe\nDtP6aWMnO1GNMWFy2bRgHCkVw39zXvN6rRNR0zXcg2hA19P9fKOiT4F15ZHqFNENmyiNHSsb\n9V9dxjNcfHZfZwdRiY4z93MPrSEciCt9gXtITOm/69pL1dVIHB5RrLE0i3ukTOvt7kQNrHy7\n+eDtjkn+k21c9Ciwru6qSRFdUV5pbwLuZ6Ka809NqU5EaQNWhvFhV4X0ou3cw2I+396XIZBQ\nazSOjvDlYELiX9yjZU7v9xSo7hLu8TOq4TSdbWS0L7Cy9tUmexfMLno4nBT3m+YDGg6+fLBH\nLFFU84k43dnbFqER98iYzDcrrxWrq7o34+ulP4bSUu4BM6OP+gpUC/dFUXQoJYrtTvVaF1jZ\nB+vjtFH9jKK5Gg+o9Z1/ckotIirvXBAON3EOTAt6mXt4TOTblc2JhPTxuKS2n/ZFlz3PPWim\nc3KQjarfyz10hjaVhnCNjsYF1uONSWiP6xXr5rG45H+0HVGL+2RNtxgiR9Nx+E4gZzH14x4h\ns/jxgZYC2a6ZgPvBBaAPbeAeN5M5NcRGaXfjhkvFyqzKdrVRTQuslzJIaL2Bu3fDykBareWI\nWtqfB2+pTESVemHXlZLMyhHfcQ+TGfy+ub2NhPrjUV0F5pHIarjhZQA+uclGVWajvPJlIXVg\nGiENC6x3uhI1C/NLB+luT1TFi9oNqXVdfX1+KztRbKtJOFqmOJNoJvdQGd75/U4HUe2xuBtc\n4LrQPu7hM4+TQ2xUeSbKKz80ohM8Y6RZgfXFIIHScdqo7m6krVoNqWV9tblvSSKh5qDlx7iH\nz+gOJZQ6xz1chpb13MgSRKnDcEWGoGwWGmVzD6FJ/GeQWF7NQHnll7VCfZ5doxoVWL/dFklV\n53P3ajjaFlErS5sxtaYzRyfUIKJS1921l3voTKEvbeEeMgM7OaOimKU+a7lHybwy6CnuQTSF\n9/vZKA17r/zWkbaxjJMmBdalVSWpzDQMPouOdEiLMbWiq68vaB1BFNV0LA4U9Nc22zXcw2ZU\nv69vThTdeTEmvhDcx3a0jJm8daNA1XDsVQC2RVZiOUFViwIrsybFjcJxwkweFJprMKbWk/e7\nYLX+S45wD5mptKKXuIfOiK4+3i+KhEbTDnKPj9ml01vcY2l0r3QlqjkH5VVAetNyjrFSv8D6\nsgfZuu/h7s4wdi09r/qgWoznd8E7EdRALaW+3MNnPJ/PrkBUcQRuNBi6+chX8Z5uS1QPh98E\nal9cyT8YRkvtAuvSwmiqv467M8PaSuqq8qBaytU3F+J3wVCk2b/lHkNjOb+rvUAxXXBGjyoy\n02yfcY+ocWUdakLUaCn3IJnRSJYb5qhcYL1RjxLvwL5LXvXoXXVH1Tq+3do/yfW74GL8Lhis\nyTSDexiN5MPJJYnqTcVPg2qZRuO4x9SoLm2vQ0LL+7hHyJwOl4pmuIafqgXWhTvtQpdHuTsy\n7M2lgWqOqlX88/httYkouTN+FwzJoYRkXKkhz/kdLYkS+2ziHhMrOVom+ifucTWkf9ZUInsH\n7HcP1m00Uv9BU7PAer8+lV3M3YtwIrOK/UsVh9UKst5Z0sFB5Gg8Zj336JhfP1xqLdcnU0qS\n0HDmUe4BsZhbaDb3yBrQz/ckk6PHw9yDY2LHK9k+0n3Y1CuwstdEUdcD3J0IojtogmrDagHf\nPjwohYjS+izEqa1q2GZryD2kBnDlUCeBSvTFPStVdzAh6W/u0TWaz8ZHU/wg7HoPyWy6UfeB\nU63AOt2LSszh7kFwOVo65me1xtXk/jwysZZYXJXscMdO7lGxjlb0L+5x5fbLkkpEdafjSD4t\nDKI13ONrLK/0tlHpsTjML0SZtekVvYdOrQLro+pUH/feMoqxdI9K42pm556b1dxOFNVkzDqc\nd6GmJdSPe2x5vTsqiqK64WRpjexxVL7MPcTGceXR5kTV7sQP0aFbRhl6j55KBdaReOqD+7gZ\nxsGEkmG+k/3CS/PaOohstQfiOqKqy6wSwXA+jlFkHWlHVHYMTubRTnfazT3KRvHnilQSmuHQ\nZnU0o+M6j586BdZKm+Mu7r4DL4PoPlUG1pTOPT+3fTSRUMU5Zz/3QFjTJJrJPchc/llXnajB\nPdglqqWHhAa45bPk5K1x5Oi+kXs8LGOd7vd8VqPAyrqNktZwdx142+OoFJ472f/MnJERKRZX\nqTfMxBGhmjkUX4rlxl7sfro7mSI647dBrWXQ09xDze/q0esEKjV8H/dgWEkH2qHvIKpQYF0e\nTKnbuDsOCupBj4Q+sibz3Z4J6TYiWzXnbBRX2uoblldq+HxcFCX0x9kS2ltNnbkHm9uvy6oQ\n1Z2BQ69U9XBElYu6DmPoBdZFJ9VCkW00W231w2kne/bHm4ZWJqLIev3n4mdB7W2zNeAect29\nO8BGZcbhVC5dhPvdKF65KYoc1z3APQzW49T5DNWQC6yLPegaXP3KeNpRphr5MIGs9+/vLV3n\nKq7ZiOW40JVOWobblRpe6UaUNh0n8uhkDg3hHnE+fzxQj6j8GOy20MDu6JQzeo5lqAXW5Z7U\n8BB3p0FRa6m1KgExuC829kuW7n/T9tb1OO5YR0uoL/fQ6+nZdkR15yJhusmsFBGmtxTPfnFo\nNEVkLETYtDGY7tVzOEMssLKGUjrqK0NqRK+qExHDOv/4xOpScdV+8mbuzg4/afbw2QA+2Yqo\n0VLuHg8vU2gq97Bz+G6hOKWVG47j/DTzWGK8nlfhDrHAup1q4vdBY1pETnUiYkynd/WNI4pu\nPg7nMLO4je7ijoBOnmxB1Gw1d3+HmyNJ8X9yj7zezu6+zkaO9oux80pLY2myjmMaWoG1miru\n5e4vUFBdOKlSSAznwmO9osQvej0X4SKiXA4nJJ3ljoEenm1JwrW4CI3+htMS7rHX1dXnRsQT\n1ZqAC9hq7EgZx1f6DWtIBdYRWxKuz2BYM2mUWikxln/fmkhUaTCuRsSqP23mDoL2XmlH1Px+\n7q4OS/uiy+l7Qj2rd6ZVIErpj93xOphKQ/Ub2FAKrA/iHfdxdxYoOl7e8YNqOTGMi480J0rq\nvZa7d8PeDns9q18I5J2uRI3x4yCTnmFzrbVP5tYiiuuMnwb1cbyK7QPdxjaEAuv3NGEGd19B\nMSbSNPWCYgx/LS1HQtO7cfU9A2hDz3DHQVOn+gtUfzl3L4evbfY6WdwZ0MHnixsQOVrNwhVm\ndDOHrtdteIMvsLK6Un/unoLiHC6ZYK3jRE/PTaRo5xbufgWXFdSDOxAa+vGWCKo+n7uPw1oY\nXMrvy2WNiSKaTsXFkXVVV7+r+AVfYM2lRse5OwqKNYIWqRgVbueXJVHCUFx9zzBqCJ9yZ0Ir\nZ+6JpfIz8JMNq7XUljsHmvpiaRMiW8PJmNL0toJa6nV4Q9AF1gu2FNzwzeD2x5axzD15sx9N\npbihuCaIgUyjidyp0MaVjaUpcQJ+h+bWkN7kjoJmPlvSSKquJmEjyqE5HdFpnIMtsH4tb1/B\n3UvgS19ar2pa+HzcjiJ64aueoRxNjrPWT9B5nqpHUYNQyvObT/24s6CNz6Xqyt4I1RWX9ULd\nK/oMdbAFVk8ayt1J4NPOyDSdcqSti/dEUlNcrt1ohtFK7mSo79T1JHR+hLtrQZSZZv+cOw7q\n+3ZFE7G6ajwZV5Bk1Ike1me0gyywtlJdHIBlAt1ot7p5YfFOPSo1m7sroYg9jsqWqN+9nJke\nSfVx4SuDmEa3cgdCZb8+2FogWyNUV8y2OSrpc/RMcAXWNwkxW7m7CPzwkO0a01+s6OqiSKEr\nTrMxom70GHc6VJW9tzylzOTuVXA7mhLzK3cmVHRh/w2RJNS7dTd3v8KJ3rRClzEPqsDK7kS3\ncXcQ+KUNnVA7Mjr7sT0l43R5Y9ogtOSOh5o+6UCRA3HvegMZQ3O5Q6Gat28tSZQ2Evc+MYR9\ncUm6HEAaVIG1iZriDGZzuJ9aqx0ZfT1fhppjf7pRNaHXuQOimotzHdTkIe4eBW+PxZU6x50L\nVfz1YAOikr1wey/DGK7P3eqDKbB+KBGznbt7wE+N6WXVQ6OjVXb7aBTzhrWABnAnRC2v1qEk\n3JnCaPpb4jzoD8fFke3aObjwh4EcSo7+ToehD6bA6k0TuHsH/LVUx9sCqO7iMCq5jLsHQVlm\nZfvX3CFRxdnbbEJ3HOhnODsjq5r9PIqsYx2ISt2EE1MNZjKN1GH0gyiwjlId7FMwj9rCe+rH\nRh+/ZlD1Hdz9B8WZQrdzp0QNr1an8ku5+xJkdKF93OEIycUttYjSZx/j7kco7Fiq7UPtxz/w\nAutsZft67r4B/82hgRrkRg9f1qAMHHJsbIdLJpzmzknILs20C72QNEPaJDTmjkcIzt1fkSI6\nPMDdiSDnHj1+3Am8wJpFfbh7BgKQmWb/TIPgaO/dstQbu0qNbphOpztr6JPGVAa7r4yqBT3L\nHZBgXXygHEU5cdqgUdWlFzTPQMAF1qeOUge5OwYCcSeN0SI5Wns5URjL3XXg076oipe4oxKa\nbbHUEUdfGdZK6sKdkOBk7ahMUX1wNxzjWiU0zdI6BQEXWN0Jp9qYy/HykXqcLqGyp2Ptd3D3\nHPihB+3kzkoo/hlOMdO5+xCKUY/e5Q5JMJ5pQJFOXFLU0DJoj9YxCLTAOkHp3L0CAbqNJmuS\nHS09ERV5D3e/gT+2mPpmAZ/Uo+pbuLsQijOXBnGnJHBf3EhCe/w4aHCbI9IuahyEAAusy7Vt\na7l7BQJ0NCXmJ23So5knoxy4ertJtKYnueMStCMJdP0R7g6EYmVWsX/JnZMAnb83murex91x\n4NONtErjKARYYN1PXbn7BAI2ju7UJj1aeTYa9ZVprKYO3HkJUvZcwYHfoQ3vDprAnZTAvFCD\nkqbh/BwT2BOX9Lu2WQiswPojOQa/KpvPoZLxv2mUH028Ehs5j7vPwG/p9BZ3YoJyth+l4Ax6\n4ztaOvpn7qwE4PRYQbgBZ02Ywwitr+MXWIE1jYZz9wgEYRTdo1F+tPBuov1u7h4D/82nftyR\nCcb/mlJdfF00g7E0mzss/numElVezd1j4KfDpR1faBqHgAqsr6NScDk+MzqQkGiey0F+XkaY\nxt1hEIDMqjYTXmntZGXqiMOvTOFgQuJf3HHx0/nJgn0gYmUe06ivpoEIqMC6iW7n7g8IynBa\noFWC1PZTNbqFu7sgIHfSzdypCdhryTQYh8mYxFBaxp0X/3xUjypi95WZZNagV7VMRCAF1vu2\ntOPc/QFB2R+XfEazDKnq78Y0gLu3IDDHyjn+y52bAGXG2Cdzdxv4a1902fPcifHHpmjqjstw\nm8syaq7lZWYCKbC601zu3oAgDaHFmmVITVe6U2fsWDCbCTSNOziB2RfpmMPdaeC/PrSBOzK+\n/TOE4mZx9xQEKoN2aRiKAAqsf1E97r6AYD0aV+pv7VKknvHU6Ch3X0GgDifHmeo01Ydtscu4\n+wwC8Ehk2hXu0PjyWX2q8TB3R0HAtkRWPKtdKgIosFoTJiXzGkRLtEuRalZTFZzgbEKjaQ53\ndAKwUYjHVSDNpbvhb8j0eCJ1x9HtZtSX5moXC/8LrCeoKXdPQPD2xZpgF9YJW0ncXsKMDiSU\nNMt5Xjk5G4QSuB2FyWyx19X8vrwhWWaLnMLdSRCU/Ymx32uWC78LrOwmwv3cPQEhGGz8o7D+\nk+DAKTjmNNT46XJ7SCixnru7IFAd6CB3cIpxcTglY+oyq0k0RLNk+F1gHaYM7n6AUDwal2zw\nnQy/VyNcAMuk9seV+oc7P/7ZZUtYx91bELANQmPj3lP897ZU/RHuHoJgHa8qvKZVNPwtsLLS\nhQ3c/QAhuYnmaZUiVVzpTP24+wiCNYiWcwfIL0ciYtdw9xUEoRU9zp0dJV/Voha4OoOJLaOm\nWv0A7W+BtY/ac/cChGZ/QuIfGqVIFVOpKS6zZlr7YkpreC6Oap6PilrO3VUQjPupBXd4FPy7\nLPXEpWVMrQ1t1SgcfhZYV+vYNnN3AoRoBN2tUYrUsJcq4ARCE+tPq7gj5Nu/EyLmc3cUBKcZ\nPcsdH1nPJQg3c/cNhGZbVGmN7iXnZ4G1hzpy9wGE6mBi/C/apEgFH8ZGP8jdQRCCvdFlDL8L\n68uywl3c/QRBWk1tufMj52BUxJ3cXQOhGkq3aRMP/wqsq7XtD3F3AYRsLE3VJkWhO12DZnB3\nD4RkgOGPwvqtJmFfg3k1ppe4E1TUVnv0Qu6OgZAdLhvxoSb58K/A2k2duXsAQnc4Jeo7TVIU\nsuye1Iu7dyA0+2JLGft+lxdaI2RmtoI6cEeoiDVCAi7PYAVzqK0mZ6n6VWBdrW3fwt0BoIJJ\ndLMWIQrdcqqPO+SY3WBawJ2j4mQPplY4FtnMGtDL3CEqZBGVXM/dK6CKptrcktCvAmsvdeJu\nPqjhWMWIU1qkKFT/ikjayd03EKr98YY+TXUe1TrM3UUQimXUkTtEBc2lFJz7ZRFbHOW0uE6k\nPwXW1To2HIFlDTOorwYhCtXP5W1LuHsGQjeCZnFHSdljQuld3B0EoWlorKOwZlMZ3N3ZMobQ\nZA0y4k+BtQ+nEFpFZnXhTQ1SFJqrnWk4d8eACg6WjPsfd5iUvBsbjRsQmt0KasedIy8zqBzu\nnGodh8vb31E/JH4UWFn1cA0sy1hE7dUPUYjmURMcG2MJ4+lW7jAp+DlVmM3dOxCyRvQ8d5I8\nZlL5Hdz9ASqaT82uqp4SPwqs/dSBu+mgmsaUqXqIQvO8LWUPd6+AKo6Wi/ycO06yLrelm7g7\nB0K3ijK4o+Q2h8qhvrKWNvSA6jHxXWBlpQsbuVsOqlkr1LuieopC8XM5O25eYhV30gDuPMma\nRC2wk9QKmtMT3FnKtYDKbufuDFDXzriE79XOie8C6xC14244qKgzbVY7RKHI6oIDsKwjs7rw\nBneiZOykSo9xdw2o4QGhsSaXKwrUCkrB8VeWM4F6qR0UnwVWdkNhA3e7QUU7HGWNdD3IxdQI\n+xasYzG14U5UUe/HxGzi7hhQRwYd4I6TaB0l48R668msSwdVTorPAusoteZuNqhqkJFOpn8t\nImk3d4eAiprRIe5MFXa6ujCLu1tAJRtttfkPcXhYSMRhM1a0MbKcypfy81VgZTcR1nO3GlR1\nMDn6G3VDFLw/KguLufsD1LTBXv0Sd6oKyu5Jfbh7BVTTmbZyJ2q/PWEddzeAJm6iUepmxVeB\nlUmtuNsMKrvdMEciZ/eigdy9AerqQSu5Y1XQCqp/jLtTQDXbIyud5w3U45ExuP+gRR1No6dV\nDYuvAqu1gMvzWU1mdaNcEHkd1cO2z2L2xJX4mTtX3l6JKInbMFlJb1rOGqiXYhy474RlrbFX\nVvUQZV8FVrUW3C0G1a0QGqh/RbUgvBeVgEvJWM5YGsMdLC+/VsSP0NayL67k74yBeqdExFzu\nLgDt9KexasbFV4FV/gHuBoP62tN6NUMUpH9qCXO4ewJUdzTV9hZ3tDyyrqch3B0C6hpJd/AF\n6mSKcCd3B4CGDqcKT6mYF18F1gLu9oIGdsYk/aJiiII0nJzcHQEaWETNsriz5bacGh7n7g9Q\n1+GUqC+58vRNRZrA3X7Q1Bp7xT/VC4yvAou7taCJMTRavQwF6RGqdoS7H0ALbWgTd7jyvBZR\nchd3b4Da7qD+THn6uQaN4G49aGww3aReYlBghaWjlYVX1QtRUE7Fx+Bafda0IzrJGMe5/1FZ\nWMTdGaC6zOpMs9fphtSbu/GgtaPV6VHVIoMCKzwtE9IvqxaiYJxvQNO4OwE0MkbN74DBy+6N\nq4BY0jKeH6HPtaHrcNsJ69voKPmdWplBgRWmOtMytTIUlFupM3cXgFaOVaNnWNOVaz2uAmJR\nrWm7/nG63INa4YC+cDCe2qtVwKPAClN7E2K/UilDwXiMUg9ydwFo5j5b1bOM6cr1Pq4CYlUP\nM9xQNWsINcBBo2EhszktVik1KLDC1VTqzHhf+lqO9dwdABrqyXkqfa5/agn3cHcDaGQwTdM7\nTxOo1gHuZoM+9iRF/J86qUGBFa4yG9HD6mQoGOWmcLcftHSwrE2lGSpoI+hG7l4ArRwqHfmx\nvnGaQ6n7uFsNelkkVFHnrs8osMLWw9El/6tKhoIxk7v1oK3FQm3eW8btoqqHuTsBNDOLOui6\nA341lcHvzWFkIDlVyRcKrPA1nm5QI0JB4W47aK0H3c6WLtHnCdGbuLsANNSEdusYp4eFpC3c\nLQYdHUtX55aXKLDCV2Y6x7k4yFV4OFheeJ4rXTk5F5vQVO4eAC1tcZRR50ccv1SLX8fdYNDV\nzpIR/1IhOCiwwtiW6BLfqpChYHA3HTS30paq4i0nAjSFOnK3H7Q1jG7WL09pq7ibCzpbYi+r\nwiE0KLDC2UT1rvcRIO6Wg/YGsd3RJOeoUBFnfFnc0VRBjV0M/sHx7eFnNLW4GHJwUGCFs8zm\n6vzQHDjuloP2jtWmzTzp+jYpci1360FrK4Saup1Hwd1W0F9mWxXu2IsCK6ztTox8O+QMBYO7\n4aCDh+NiPuQI1+VWNJ677aC9G2i6XpHibiowOFiV1oQaHBRY4W2eUEP3SyIjV+FiFtX+myFc\nd1IGd8tBBwfK2PW62Bp3U4HDtkT7EyEGBwVWmOtFQ0KMUFC4mw26cFJ//W8XcFwot5+74aCH\nJUJNne7IxN1SYLEiMuGD0IKDAivMHa1Jm0KLUFC4mw26OFpH/4P8vkmKvJ+73aCPG2mCPqHi\nbijwmC5UCu1UQhRY4W5bfNRbIUUoKNytBn08khTyTvYAXWxGE7hbDTo5VEl4XJdUcTcUmAyl\nBn+FEhwUWGFvrlDp51AiFBTuRoNOVkaWOKlrssZTO+42g27ujyjzkx6p4m4ncOlK7S+EEBwU\nWDCE2l0OIUJB4W4z6GUqVftVx2A9QqkHuZsM+hlJXfS4lB93M4HLsWup55Xgg4MCCzJb0Pjg\nExQc7jaDbvpTy3O65erdmBjcgjCcZDaiRTrkiruZwOZwOg0LvoZHgQUnDlSmB4JOUHC4mwy6\nyWxLN4bwFTAwjYXZ3O0FXe1Jtj+nfa64Wwl8HqtBtwR9LjQKLDhxYmui/XiwCQoOd4tBP0eu\noZF6Xayh3EDu1oLOVkSU/k7zXHE3EhjtS6PxwU5gKLBAtNIR+0aQCQoOd4NBR/ur02SdKqyb\nM7kbC3obS001v2UOdxuB057KNDbIXwlRYIFktq3UJ8ElKDjc7QU97alE05Ar0EhHGqJ1/c7d\nRGC1J42GB3eYAwoscJlIqd8GlaDgcDcXdLWzAk3VZR8Wd0OBweGaNA+5Ag3tq049g7paAwos\nyDWMavwYTIKCw91a0NcjFWkCTqcHbexMEXYgV6Ch/enU9s8ggoMCC/L0o1r6VVjcjQWd7axM\nN11CrkAT6+Mitb1hAHcDgdvhllT/m8CDgwIL3HpRze+DmXyCwd1W0Nu+mtQ5pJtOIFegaKkj\n9lXkCjR0/Hoq+3rAwUGBBW6ZvSnti+Dmn4BxtxV0d7AppWt+mB93I4HJ3fbEd5Ar0NIYW9TO\nQIODAgvyDaay7wY5AwWIu6Wgv2PdqczLyBVoYppQ8m3kCrQ0N5YmB3icAwos8DJWiNf2WAbk\nKpyNtUfer+3JhNwtBDZThETtfiXkbhwYwsaK1OKbgIKDAgu83RVpXxf0LBQA7nYCi8WJ1DeY\nc3GQK/Bpmi1Ws2+H3G0DY3isDSUdDCQ4KLCggBUl6OaLIcxEfuJuJvDYUZdSX0SuQAuzIyO3\nIVegqVsdNDKAk3VQYEFBD6dRs69Dmoz8wd1KYHJsoM025RxyBRpYGkczriJXoKUHq1LqU34H\nBwUWFHKwPZV8LLTpyDfuRgKbFeWp6tPIFWhgYznq/gdyBVo60t9OQ3/2MzgosKCISQ4acTrU\nKQm5AnkHe9qo3zfIFahvX0NKewu5Ak2tqUolH/Tv3oQosKCoDdWo4rHQZyXkCmStqUnRszW5\n6ih3y4DZ8f5C5KLg7suLXIGfjo2JpvpP+hMcFFgg4+igCOqt5VUhuRsIrDKnJFGp5f8gV6C6\nBUnU/D/IFWhqZyeBOvlxYXcUWCBrfR2KuVeDLSByBZKDQ2MpZaHqx8twNwv47WlDkbPOIleg\nqfsbEHV7zVdwUGCBvMwpiVTmgQsqTVDIFRSyb1AsxU38BLkCtd1TiipuV/V0Qu4WgQEtqkvU\n5mhWscFBgQVKHhsYTRXu02YvFnfbwAD2j0wmocPu88gVqOtA/0iqf6D4TR9yBaFa0oio2qrf\nigkOCixQtrtXFJWc/qV68xRyBd6O3lWPqMSop1U7Kpm7QWAQ2zoKVHerajvguZsDBrW2cyRF\nDXhCcQJDgQXF2TO4BNm67FNzJwNyBV429k0mKjXq8N/IFahpY0c7lbrrU1VihVyBkj2jKhCV\nnvCi/E/SKLCgeIen1CJKGHZc3RqLu1VgHMcXd08kcnRc9lboO7K42wIGsq1PHFHLdf/DfAVa\nylzRPYEo5UO54KDAAp/W90khinVu+FyFmQq5gqKOr+ifRmId323+06HdC5q7IWAoh6ZeI5Ct\n1ZJ3Qz0ci7shYGxH53VJfFkuOCiwwA+ZK3qVFzeAFYesf/tyiFMVcgWydk7rLGWMqg9YnPlV\nsBtE7kaA0ewYU0cgSun3wFuhzFzcrQDDy5Td/44CC/y0eVyLeHH752g65v5nvw9hrkKuQMnO\n2X2viZOqrNjGg+8N5qcd7gaAAe25o31JMVPRLcZtfPl3zFegDdngoMAC/2Wun9SlaoRrA3hN\nr6kPHHnrx2CPmuFuCRhW5pbZQ1qniimT3eWOXEEwNk7pUsUuzVwpGcFceo179cH4ZIPjq8Ca\nNxOggDtH39CyZoqrzCISElPTfV7NFrmCQN01fsAp5ArUNH1E92ZpicJx5Ao08KtccHwVWOUI\noHhrg5iwkCvw5V/IFWjgBeQKNCA7X4VFgRWVlJQUy70SKkgU22HnXomiwnbCKimOh8C9EqGT\nRamA7wAAIABJREFUYmXjXgkZ4VhgOcSxiOdeidBITYjjXonihGOuYsRBieZeidBEG30rHlSB\nVY17rdVQpmnTplW4V0IF14jtMOD/S4KZsCyRq8bieERwr0ToGojNiOJeCRnhmKskcSxqcK9E\naEqJTTD0MIRjriqJg1KeeyVCU05sQir3ShQnqAJr+HUW0EYcmgzulVBBc7EdHblXoijZC6yF\nQ66aiePRiXslQmfUZoRjrtqJY9GKeyVCIzWhJfdKFCccc9VaHJTW3CsRmrZG34oHdaFRS9gr\nDs0S7pVQwY1iO77mXgnwkP4v/wf3SoSui9iMH7lXAlyeEcfiDu6VCM3jYhNmcK8EFPSAOChb\nuFciNDvFJqzgXomAocAyERRYxoICC1SGAgu0gAKLCQosE0GBZSwosEBlKLBACyiwmKDAMhEU\nWMaCAgtUhgILtIACiwkKLBNBgWUsKLBAZSiwQAsosJigwDIRFFjGggILVIYCC7SAAosJCiwT\nQYFlLCiwQGUosEALKLCYoMAyERRYxoICC1SGAgu0gAKLSVgUWJfOnDlzgXslVPCP2I4s7pUA\nj7/F8cjmXonQIVbGcVkci3PcKxEaqQnnuVcCCrooDsol7pUIjTm34mFRYAEAAADoCQUWAAAA\ngMpQYAEAAACoDAUWAAAAgMpQYAEAAACoDAUWAAAAgMpQYAEAAACozOoF1vtOL+a8gt/JW5zO\n17yf+O+WKUP6jFjwzFWuNQIL5AqxMhiTRwp5MijkipPVC6zXzJ2unJwrO3o6CybsYO+85kz4\nmW2twp7Zc4VYGY6pI4U8GRZyxcnqBdbTTueCfW5Pc69N4L6e7HT2KZCwY2K27j34+PYxTufo\nv/lWLMyZPFeIlfGYOVLIk3EhV5ysXmAddjpf4F6HEJzo4+x77H7vhP3Uz9n7LWnh4iKncx3b\nioU7c+cKsTIgE0cKeTIw5IqT1QusXU7nm9zrEII7nBO/zimQsM1O577cpQvDnL3+ZFqvsGfu\nXCFWBmTiSCFPBoZccbJ6gbXR6fwP9zqE4I6Nl3IKJOzqUGeff/KW9zidR5jWK+yZO1eIlQGZ\nOFLIk4EhV5ysXmCtcjq/5l6HELjW3Tthp5zOWe7lk07n3RwrBWbPFWJlQCaOFPJkYMgVJ6sX\nWPOdzl+41yFU3gl73Onc7l6+1NM5iGeNwAK5QqyMxeyRQp6MCbniZPUC6y6n8++XFo7oPXjK\n9p+41yVY3gnb5nQ+7vmH4WLjWNYILJArxMpYzB4p5MmYkCtOVi+wJjidE/Oum9F7fzb32gTH\nO2H3eR/xd5vT+T3LGoEFcoVYGYvZI4U8GRNyxcnqBdYIMVaD7zt4fPNocWE399oExzthS5zO\ntz3/MN3p/JxljcACuUKsjMXskUKejAm54mT1Aquf07npnLRwZYsYry+4Vyco3glb6HS+5/mH\nWU7nKZY1AgvkCrEyFrNHCnkyJuSKk9ULrHNnz7kXFzmdKzlXJWiKJfw0M5Tw1mSBXCFWxmL2\nSCFPxoRccbJ6geXlc6dzkAl/gi6YsDXeP0JPdjr/y7JG4MWsuUKsDMuUkUKeDA+50l0YFVjZ\nfZ3OM9wrEQzvhO1wOk94/uEmp/MsyxqBF7PmCrEyLFNGCnkyPORKd2FUYOUMcTp/416HYHgn\n7Gmn82H38jmncyjPGoE3k+YKsTIuM0YKeTI+5EpvYVRgXerpdF7iXolgeCfsS6fzTvfyu07n\nAp41Ai9mzRViZVimjBTyZHjIle4sXmC9+eC8F93L4oBM4lyXoHknLHtM/i0uNzqdzzCtUriz\nQq4QK0MxfaSQJ0NCrlhZvMB61umckFeyZ89yOnfxrk2QCtxOfJfTuS136ff+zv7nFN4C2rJC\nrhArQzF9pJAnQ0KuWFm8wLo4zOlc6rr99qV1TufAv7jXJygFEvbXYGfPl6WFv+9yOh9lW6cw\nZ4VcIVaGYvpIIU+GhFyxsniBlfNWL6dzyMZjxzeNcDp7vs69NoE6uU8yxelcLv33iOu5F3s6\nnfc8lrlJ/P/NtCvM6xe+TJ0rxMqIzBsp5MnIkCtOVi+wct64Ke8+TM5h73CvS8AOOr0Nz33y\n2X55j+8x/kmq1mXmXCFWhmTaSCFPhoZcMbJ8gZVz9vjcEX37jV7wxEXuNQmcbMJyft1x++C+\no5e/wbpqYc/EuUKsjMmskUKejA254mP9AgsAAABAZyiwAAAAAFSGAgsAAABAZSiwAAAAAFSG\nAgsAAABAZSiwAAAAAFSGAgsAAABAZSiwAAAAAFSGAgsAAABAZSiwAAAAAFSGAgsAAABAZSiw\nAAAAAFSGAgsAAABAZSiwAAAAAFSGAgsAAABAZSiwAAAAAFSGAsvlBBHtkBbeEBdWFfPC98V/\nX1bMv/t6v+j7iTVjI8vcG/A6Bv+JYD6+ggZm4plfgveD+Cemh7oenlQhXuHGKBH0SYUVNRAU\nWC46FlgfJJFkaOArGewngglhC2glRtm6ocAKW0aJoE8osCxIxwKrpVRe2SNRYEFxsAW0EqNs\n3VBghS2jRNAnFFgW5BnUbyZNmvR8MS/0NTH5en/Oz+IfiD94NedcEGvppRvV9vcTwRDyR8wv\n2AJaSdAbjfzUoMCCUBglgj6hwLIgvwc15InpbfEP3BbKH3DJTgpscw3cAh0xbAGtJNiNhldq\nUGBBKIwSQZ9QYFmQfgWW9ElbQ/kDLp8RCixzCXTEsAW0kmA3Gl6pQYEFoTBKBH1CgWVB+hVY\nR8U/8Ggof8BlFwoskwl0xLAFtJJgNxq7UGCBOowSQZ9QYFmQ2QqsSSiwTCbQEcMW0EqC3WhM\nQoEF6jBKBH1CgRWKd8TeezEn5+ToKo6Ymrd8LD2VdbBrSkTStYv+cr3gBvEF73q94Wnx8e25\ni1ePjEsvE5lUo9f6X7z/5KV9A9OTHeU6r/zD68n/rrwxrYS9RPX+W866n3pd/Esv5/wxJc1R\n+lPXE9mH+1eNSao/8kWlswhl/ojfZxHmNfSPpc0TI5KbTP/a9a+byGOo/+tZuIU7PH+kbOE1\nluki2RUBTX25qFvleHtCdee6X12PC45Y0QGWGbYCQcu0EaX9L+/BS7c3KRNZqm7/3X/r1h4I\nhtz84iI/gkWmgoKpkbZud4n/md2yoiOl8YxvfX9+cdNXgXj5O4MWPLxBWr2n8pYLB77YhoJu\nuCNYKFm9xD/wjtc/7xEfzy1+Rc1O7wLrpNh7J3IWCLmjFrEnJ+d/DfOGsNJn0gsOi0tTvN4w\nxlNwPVvHM9pxc696XvBcmufZ9e7nLs+I9Lw25Vjek9Kc8viZutJz70uPf+rofknXv+QKLMU/\n4leBldvQA7F5fyByu/Rk4QLLr/Us0kLlAkuui2RXBDR0YYItfxhWZOcUHrEiAyw3bN5B+3ec\nGI/Pcpc/ael5bbn9ercMAiA7v+QojaDMVFB06zY7Z2dM3lPRO318fPHTl3e8/J5BlQqsooEv\npqGgH+YIFknWY+LSLK9/7yk+/qy4FTU/vQusL8TeO3AfkZAUJXWn49M/q4t1VrJdetBQ2rZc\nThFH97Ln9VeSieq7lra7XpPapLZD+m9f90t2uZ62R7tGZ2ruc9lO16MSlUtK/xEO5j77qbj8\n2J2uf5G2a3+7CrukhnXF0iPjGBUpsOT/iN8Flquhj4oTjyM5QvoDtlfFJ0907txAXE7v3Lnz\nMn/Xs2gLn+ncWdzixop/ZECBNZbvItkVAe1kd5W6OSK1eqJrxO7IKTxihQdYdti8gvZtOXGC\neit3+dkE6TWVmtR0vWc5Q/PAP/Lzi9IIyk0FBVMjbd0W7hG/mTqSXOWM7eViP97H9OUVL/9n\nUIUCSybwyg0F/TBHsGiyzscT1fRaP7EGaFbcilqA3gXWt2LvLYgpueFMTtZr14jL48dRk2ev\n5pzbI415pvSK28WFY57XPyU+WiEtvCkOlm36D+LSuR1lxSfn5f77W2LRHTX/y6ycn9bES9st\n15MbxKUym6W9kl+MFxcT/3Q9+5W4uDGB6s5cNfs78eEd0kbtcbGmu3igMnWhIgWW/B/xu8CS\nGrosURj7QU7Opeelqqpj7gu8j8Hyaz1lW1g//4fx/DWW7yKlFQGNSBue5s9JZdL/1klz1euu\nZ71GrNAAyw9bftD+Et8akfdbzFfiH7RN+UZcOrNB+tuH9GsWBEZ+flEaQfmpwDs10tbtjlhh\n1HvZOZeeThcftC72431MX/nxCmAGVSiw5AOPqLJjjqBMsoaK//3I84Ld4qMHillRK9C7wPpe\n7L3Y+A9yl8XSNl7IOO96IHX2LdLCh+JCH8/rR4tZ+FH8b3Z9r24/VUIsor9xLTYRNz4v5T77\nglhVV3b9wFJNfNN7ea+d5Kk/vhOXOtH0vD3Y/xOr5xKf5y7/UJGKFljyf8TvAktqaJywJ/fZ\nX5PErwS5Ryd4F1j+rKd8C+UKLIUuUloR0EhnovL/5C1/UYpoiGvJa8QKDrDCsHmCdrmTOGS7\n8v5dnHzcQ5nzifjaKhe0bAkET2F+URpB+amg8NYtRtid++A3MVfCT8V9vo/pK38eC2AGVSiw\n5AOPqHLjjqBMsh7P3zUichLZfy5mRa1A7wJLGqPcXVI5uT/B2k7lLl8Wi9xrXUviuET+nveK\ny2JB0FVaeEF8aQ/PX1kh7QeTFl4ir8t2SodrPZGTu4egg/cHdsv/6PbuumW9+OAe94seLVpg\nKfwRvwss16eNdz89UXzwrGvJq8Dyaz1lWyhbYCl0kdKKgEbKEQ3zPFjdtP8S10KheSp/gBWG\nzRO0keLCyrx/fVdcHuV57YPio105YEgK84vCCCpMBUVSc6v7NVPFB08X8/G+pi/PQiAzqEKB\nJRt4RJUdcwTlknU5mSjd/dyZqLwPUVhRS+AosBx5Ox9z7iWvH6yaE1VwLUjd7T7Y8klx2VVs\nj3aXFi6/2onqSQu3ik+fdD/7dKVG1+2TFi5+++Z/PK9NJarl+Wh6xv10N/HBKfeDq6WK7sGS\n/yMBFViC55S9HZ6pyXsPlj/rKd9CuQJLoYuUVgQ0In4n6FX02cLzlGeAFYbNHbT5lH9US84U\n8cEnnteejyXqrfbagzoU5helEZSfCgqnxuY5cUs6/+qh4j7fx/TlWQhkBlUosGQDj6iyY46g\nbLLGUd5h7TmuK2zl1nYKK2oJHAVWS/cD6Vffhe4HTqIE18Kf7kPfRKPEJ1137atDFJV/6HtO\nM3GkpTNJa+ae3lCcJkSlPR8df8X9tPi1q0z+iwYVLbDk/0hABZanVs95Tny0xrWkeB0shfWU\nb6FcgaXQRUorAhppLH6FeLvIs4XmqfwBVhi2vKBJk9AQz3lZjYiqef1NcWJKVnvtQR0K84tf\nI+iZCgqnprHnJdJ+z/v8Xpmi05dnIZAZVKHAkg08osqOOYKyyZJ2ay3NWxa3+LH/FLOilsBR\nYI1xP9gmPjjgfjBA3NDkLg30lL7SL4SuvZlnbUQNvf7MCPElb4hFt/h0Gx+f2IKolOej27qf\nPS0+yMh/0UIfBZbnjwRUYA31PP1/nrcpFljy66nQQpkCS6GLFFcENLJa7OKY2V8VerbQPOUZ\nYKVhyw3aSw6i6zzl13nxtV28XjtdfE2xR0EAF4X5xb8R9EwFhVMzwvOSwP5/XHT6ci8ENIMq\nFFhygUdU2TFHUD5ZWRWImuYuSr8QDilmRa2Bo8Ca5n4g/V/Uc0DQIE+BJZ05OMO19IS49JK0\nIF1rwHsXs/Tj4tHcpwfKfczFA2NblHVfr8OrcBnufsEp8cGA/NfvkCuw5P5IQAXWbQWeliuw\nfK6nQgtlCiyFLlJcEdDI5dauwawz8dCfXs8WmqcKDLDcsLmC9klJokb5lwKU3hhbJV9SXjEG\nhqMwvxQzgnJTQeHU3O75g378/7jY6cu9ENAMqlBgyQUeUWXHHEGFZEknDH7jWtpJecdGKG2L\nLYGjwJrpfrDDXT9J8gusrEpEFVwns4wkquL6fUQ6MG+Y159ZLj7emZPzHnkfr5dvbwXyll+4\nTHa/Qrq++cj8NxyQKbBk/0hABdb0Ak/LFFi+11OhhTIFlkIXKa4IaOXssLzxtLde79nkFJqn\nPAOsNGxS0Kamif9T5S/Pv31ERT2TAwakML8oj6DsVFA4NYH8/7j46cu9ENAMqnShUZnAI6rs\nmCOokKy3yf3D4o1Epa8Us6LWYMQCK+duyj0/4XJJ99kFr1LeRRzyPCA+3pR70xHvp/MscgUk\nrXXPoaIU78LFE49XCr5T5kKj8n9E1QLLj/VUaKFMgaXQRSiwGLw1vETeLJW4MO/K7ErzlNKw\nSUHLvT72EM+/vSEzNx7WvjUQOIX5RXEE5aeCEAosH9OXeyGgGVT5VjlFAo+osmOOoEKycmrk\n/R74l8P9NVNpW2wJhiywpL2LN+Xk/kKYe8qBVA4P9fozS8XHu3NyPiDvH4XdnpduxDPpu7xH\nLWQLl7eoQNW8lwoXWAp/RM0Cy5/1lG+hXIGl0EUosFhcfn5aeu7kdUPuVWaU5imlYXvf9eZS\ntSl3h5bLx+T12yIYmcL8ojSCClNB8AWWr+nLvfD/7N0HeBTV2gfwd7ObnhAIIYTQAxKa9N6k\ni+iCVOlIVaQjSFM6UqUI0jtIr0E/Rb323hsXC1exgoqASC/Zb2bTdjfb98y+Mzv/3/Pc6+5s\nss6c8/fMmylnfBpBXRdY+QKPqLJjjqCLPZflcSKDPLOlfIbwPXcrGhpUWWBZmhLFXrFY+ube\ncfgD2d8KPJWs877/KP2jQ75/hzwV7NLcd3WcFi7yE/pszvuuyldgufgSkQWWN+vpfAudFVgu\nmggFFpvT65vIO5zZ1jeuxilX3WYtsCp8/3UUUXzO9cM/k9MZIEB9XIwvrnrQxVDgf4HlafjK\neeHTCGpfYK2xK7BkNoFHVNkxR9DFnsu6Wiulf95LVM7tioYGdRZYm6QP9lmuxhOtylpwxUhU\nzeZrepL1EdA3wolqOP4r5Puyyube2W5JdVq4nCG7OxfGOhZYrr5EYIHl1Xo63UKnBZaLJkKB\nxemAVB/FWucZcTVOueo2OWgN/rZYnpb+WT97TocbkTkP5gSVczG+uOhBV0OB33s3j8NXzguf\nRlC5wMqb+ejJfAWWJS/wiCo75gi62HNZLNWIWmadIZzmdkVDgzoLrH9jibrIV7tF/J295E7p\n9fW8r6ma/Vbq/YgruUu/OXHil6xn6Q7IXfYtOS1cLAXt5t5o6VhgufoSgQWWd+vpbAudz4Pl\noolQYHGaKbW39ZGoLscpF92WG7R7KG+a47pE4f8EY7UhUC7GF+c96Goo8Hvv5nH4yn3hywh6\njLKfHWf1gLMCKzfwiCo73gi62HNZLPOITOctWyhvxlEXKxoS1FlgyROMxlzuRNQ5Z8HD2WdO\nspyS3jWUX8jPTDqSs1Q++Plw1indvJtJx7goXORbi3Nnj/0n3LHAcvUlAgss79bT2RY6L7Bc\nNBEKrGD76ae81y/ldIrLccpFt+UG7UyRvMfWjyO7J458gz2YarkYX5z3oKuhwO+9m8fhK/eF\nLyOoPPPR+JzFVwvnFljOAo+osuONoIs9V9a5wz2WjkR1PaxoSFBpgSXfWLAhkuhwzoL3yXZ6\ntInSuzU5P9csZ+kisj4ZXK6+c08yfxohvYvJ/VfnxWOW7YrMIccCy9WXCCywvFtPZ1toPc5R\n0vHf6KKJUGAF17ikvFlELZadUnu/L7+w6TH7HnHRbXlBk0/MlDxvfSnfYl3pVs7PXi0R3hJ3\nZqmUi/HFeQ+6Ggpcp8bDf8ceh6/cF76OoLk/K9/uai2wnAceUWXHG0EXey5JQ6L+V6KJlntY\n0ZCg0gJLvpkzkSgp7xkiUq/kXmD5ntT/ha3zL2bKi+dkLT2eQJRy3WK5FU9UIHtu2q9TYxtJ\nP3E251+dF4//Gohiv856/X5svgLL1ZcILLC8W09nW2i9BjH8X4d/o4smQoEVXPJQsjLnzU2p\nVwtYbyO06TH7HnHRbTZBG0a5F4G2ll4Ozb5S4kY3snkQAqiLi/HFeQ+6Ggpcp8bDf8ceh6/c\nF76MoJYkorBPspa/FRObXWC5CDyiyo03gi72XBbrZaWp/0dkPONpRUOBWgssax1rMwO55XiU\n9B/3Y3KfXFgWn1cOfyQfUOzx/pXMHxfIM7FYD33KTxtpLN959dvMaFo5OScHDvs1+YE8SZuk\nndmPs2NpgGOB5epLRN5F6N16OttCS2f5v5E/b/14zrbAct5EKLCC62JRqYn7vSv/aXDp/+Rx\nKuuhBDY95tDBzrvNJmhXKkmvN1lf/hAnvWz5ljQ6Xt1bW3rZPIgbBj5xPr646EEXQ4Hr1Hj6\n79jT8JUXLx9GUOvp7GL7Lklb8XhU2HLpzXMWl4FHVNnxRtD5nktyxkjUhqidxxUNBWotsH6x\nTrL4kc1v7pMPWxrSapezfjInZ/GerNkYs/4/6yTy93KAjHc0uUNa+GDmc/IHVep/67hf+7WE\n9VcKSrs3aiXPp71RXppbrrj4EpEFlnfr6WwLrbdIy162m3veaROhwAqyVyPl1jemlo63dlHj\nrAs9bXrMsYOddptt0OQj9nHfWV++LGeGYssny7PWUOU/grdZ4Bvn44uLHnQxFLhOjaf/jj0N\nXzbx8n4EtZyyrntYoRjp/6fJp5qsl3A4Dzyiyo43gs73XLLW1gXbPa9oCFBrgSU/5Jsq2f3q\nm1UoRymbw82vls9ZGp9zoPpYzrTCxicslpvVrC+/yrdfO1Et5xfbX5RnI5Lnz7YpV5x/idCZ\n3L1bT2dbeLVqbuptn57orIlQYAXbB5Vze4FMY7J3NzY9lq+DnXWbXdAWSm/qZJ0u/7xJ7s8a\nBpwPzgaBP5yOLxYXPeh8KHCdGo//HXsYvmzj5fUIarG8lJCzfJ51BrestDoNPKLKjzeCTpMl\n2ygvibnkxYpqn2oLrN35u+/2gUGVC5sSK/Z79rrt4qt7ulcsGJHScuHfuYtOT62dYEyoNd56\nH+hvDxQOT+3+Z/792s0t5lJRBSs/+KrFcoGyZ1mzKVecfonYZxF6t57OtvCvh4sbo8p2PWlf\nYDlrIhRYQZf5wiP1i0YZC6R1eOq33IV5PZa/g510m13QMlva/Gfz6phaKRExqa1n/KDwZkBg\nnI0vVs560OlQ4Do1nv87dj982cXL2xFU8ue0hoVNMZXG/Ci9pNzTPk4D72JDIYh4I+g0WZLz\n8iHPXt6tqNYFu8Dy2ibpj6HfuVcCAAAAwA+qLbDqEt3PvQ4AAAAA/lBrgfUaEb3KvRIAAAAA\n/lBpgXWjBlFt7pUAAAAA8Is6C6zMgUR0jHstAAAAAPyiygLr0zZSfdWJey3cWHy3cwu5VwwA\ndAPjEDBDBN1TX4H1YFHrfHVpf3v+UTb9ybne3CsGALqBcQiYIYLuqa/A6m3tnzt/5l4Pd5Aq\nAOCGcQiYIYLuqa/AGhdBCfWX3/D8gwAAAADqpL4CCwAAAEDjUGABAAAACIYCCwAAAEAwFFgA\nAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAgGAosAAAAAMFQYAEAAAAIhgILAAAA\nQDAUWAAAAACCocACAAAAEAwFFgAAAIBgKLAAAAAABEOBBQAAACAYCiwAAAAAwVBgAQAAAAiG\nAgsAAABAMBRYAAAAAIKhwAIAAAAQDAUWAAAAgGAosAAAAAAEQ4EFAAAAIBgKLAAAAADBUGAB\nAAAACIYCCwAAAEAwFFgAAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAgGAosAAAA\nAMFQYAEAAAAIhgILAAAAQDAUWAAAAACCocACAAAAEAwFFgAAAIBgKLAAAAAABEOBBQAAACAY\nCiwAAAAAwVBgBduFd1529N517pUCbcs8+Uq+VL1/jXutQPOufZYvVy9/cpN7rSCk3P4uf8he\n+Yl7rcRAgRVEV95a1L0cycKTK9RsIqlRPtEgvY1u+/Qv3CsHGvXL3nHN4q2pii1Zpb4UqsbV\nyyTIb6NaLPyee+VAs668s7xfVZM1WAml75SD1ahaaWvQ4to/8yv32kFouPbq9FYFrCErWObO\nBvLoVaOcdZ9IKd3X/cy9doFDgRUk5zImNIyQd4JVzcPnbck4muvA8jH3FCcyNN+BIw7goxNr\n+5SSQmVIbdJ74tN780J1dN/SUe1KSp/UWnqWex1Be/63Y0SdcCk+EeXbDJy2+oBNsHYvfqRV\nClFYs02XuFcStO7nZ9rHyKVUk35TV9mG7NDax3vXk/9IrPXkj9zrGCAUWEFwet+o6mHSbrBM\n+3FrbEorGxsGV5RyNvsc95qCdny3tmcxuWKv02f2bqehOrp5eI0wihr8X+41BQ05/9KcDslS\nroxp94xacdh5sNYNTjdQoYm/c68raNivT9U3EKW2n7TdecgyVgysFkaGu3Zq+gIaFFjKuvXl\n2v7lpeHKVKnrdBe7wWyrzNFUcM5l7hUGLfhmXe9UKVXxDYc+7bxiz7G1fzKFdf2ae31BA26d\nPDynm/UShsQGD87f7zZXR9d1jaeoEae51xm06cqONlLxVGXwOvcp2/FIJaKUWX9zr67/UGAp\n5tLHm0Y1jZOvhanea66H4cpqd984KrGLe7VB3a68vbhTUflCmPpDPBRXWQ5PKEvGwWe4VxuY\nnT937tyP0v/OXXX44Orp42/sWjK6Y9VIubaKubPTxI1exOro0f0PJVHcbMdvA/DoxKhCROWH\nbPUmZqvui6a4x/7kXmV/ocASLfOvE2/smP9w2zLylXqG4s0fWubiOLsTuzqZqM2P3FsAKvXv\ne6uH1pIvjUloNGS5N8VVloxJxSlhxW3utYegu33qlfXTBt5br1xiBNlKKFSodJpVUiFTzsLI\nMk16TV7nfayOHj04NJ7KHePeSNCW20dbGyih0yqvY7a7fwLFz9ToJX8osPxw5ft3MrYuf3Li\nyKFDu3fL1r5169aNalcuUyhnvIqvdPfQeXt8GK6s1lSn+A3c2wcqc/vn19aNv7esXLLTR/5X\nAAAgAElEQVSbyrUfu9bXVB0aFEMNTnBvBQTRhVcX960ZlTUUhSUUK1+1Ri35tuUGNWrUSC9f\nLiUlpVBcXEJcUkpq+WoNWnce/NhCrw4nONp1r4EGXODeVtCOq2vTiSqNP+hTzPYPjKfi2zK5\n190fKLB8cfb1tY92rJ5IroTFFS6RXqdllyGTl+z0Z7ySZIyMpq4YskB25vOja6f1b1k+6/hD\nbOX2w5864DlCzmxpQNErNTlCgc9+2DKosrUYL92o6/AZz+zwcyjyylNlqPTb3BsMGnFxYQqZ\n7lrie8x2dwmnZlq8WwcFlpd+O/T4PcWy5rBKrXpXx77DJkyfs3TpmvWybbus9okZstZXoPJf\ncm8uMDr70YGlY7s3Lp1zXic+rVHn4XP9OsSQZ3ws3Y+7VEPeXzsHlJbnV6jccdzKQ2IGJPcO\ndTGYFqB0B8/+mZVIUR03+ZezdXUocuYN7k3wGQoszzK/fqZXKetUaDU6Dp+32ZerFPxyqCPF\nHebeaGBw4+vd03vUTsgqqwyFytVr13v0zGcEFe6bKlHaZ9xbCAq6/eG0umFEMXUHLg5KbZVt\ndkHqdJF720HtLs5JpNge/p7ZkUwsRLWOc2+Fr1BgefD9mu5F5NMztXpMC/AQgg/GR4Qt4d5w\nCKqbn60ZXMt6yMqUWuue/hMWbBS+jzzcyRB7gHs7QSFXMgYVJQqr1HuR9zfVCLK1ElU7xb39\noGpXnypCsb3cz1Tkyc7mFP0M94b4CAWWGxcOPFRWPnDVdNgKxQ9b2VucQONw2F0vrr0xo1Ws\nXFqVbfHgE2sV3D9OiAxbxL2xoIBz2zpLAYpvPiGAAwQBONSWin3C3QagXrc2lqSoBwIrr2SP\nxVFnbV2gjALLhcxP5jY1EUXVHfqMgBHIZ+uK0YO3uNsAguD4U3fLj4tIbTVsifLndZYUopGY\nryHEnF7dJpyoaMcnjyieH5f6G+Jf4W4HUKvnqlB4RyH3WmysROW/4N4cX6DAcub83gEpRIZy\n3eYF81oGO9vTqCcqrBB346UR8iHS4u0nbgtSrDaWoB7au1IUXPrxqcZhRGV6Ph2kALky3hSJ\n60bBmU9bkKGFd5PXenaoI8Xu5t4iH6DAcpT52bxmJqL4pmNcPCMpSHZVQIUV0i4f6F2QKKrB\ncFFjj1eerUAd8FTxEHF8di3p78D0Bz08cCQoZkSG7+NuD1Cf3x4MoxrLBQbtsSjDE9q5fAYF\nlp3z+wamyoeuui9kPNyebXcFelA7QQKfXNnXLZYosf1M32bcE2BvVboXFZb2Zb4/sQJRWLWH\ntwQ7QS7MizKhwgJ7V2bHUcnpYoO2vAj10MwIhgIr1+0PZzc2EcU1GR2s8zUe7EqjUdyNAgq4\nfrR3HFFyp0VBvnUiy75q1AFnCbXt2gsPSX8IRtQd9SxHglyYFxWewd0woCp7S1P8MOF37Wyr\nQE21MqUfCqwsv2zqkURkKN99Af+hq1w7itMc7oYBwW6/NjiRKOn+p1iqK9n+O6k7Tj5r119b\nu0j1edxdEwVNkCbM3Iio17gbB9TjyxZk6rBLgaDtb0B3/sa9dd5BgWWxXHp+TGV5NoYWjyr6\nUAk/bCxs2MbdOiDSx48WJ0q4dwFbdSXbl05DcPJZm76Y19hIlGyezXb7jRvTTAUwWwNkOTfS\nRDW9f6SzT460o7InuTfQK3ovsG5//GSLSKLw6v2Xs+7zXFgRE/EadxOBKN/OSCeKbjEj6DNB\nOtpZhp7gbgzw2aXDQ0sRGSr0EXnNsFDjDSk/cLcSqEHmxmRKeVy5pHWnVE08mlDXBdYvGx9I\nIqLSHWfsVy4JgZllLPw9dzOBCD8vriMV8vUn+vm0ZrG2JtN67gYBn3y1qJX0l2BMY+abmz0Y\nSJW0cnUMKOiTBhTRW9Ghrj8lf8W9lV7QbYF15cVxVeTzgs3HBO8JOP4YRpW0NXUtOPH7003C\nKKz6KCUuSPDLqjjTMe5GAW/9tXtgCfkvwU5z1Xhi0M691Ap3UOjduUeM1EDp2WeGGIpooMLS\nZ4H17fJ20UThNQao8rygvXupA+be1rTfn2keRoZKQ1Vyc2qWJ00Jmntwqi5de3VynTCi2MYj\nN3NnxhuHa9PD3E0GrDK3JFOxGcpHbaghWf1nCfVXYF19cUQ5efZss3rPC9o5VJVmcrcZ+O3U\n0qbS7vGOgZu4c+RoNJX7m7txwL3Mzxa3iyEKS++hgnn5vLSnJK3hbjdg9FUziugVlAshBlOq\n6q9011mB9fv6jrFEkXWHrQ9GAMTYnhiGszna9Pks60zbA4M6V7u37qe2mKxBxU6u7V5Efkhl\n+ymBPyQ3mNbFRbzD3XbA5dKEcKobrCcL9KOyv3JvsAd6KrC+nFPXQFTMPEsV1xl7b6GpiNpj\nBPlcOza8NJGx2lC1ntk5UpMmcjcSOPfb9gGl5StEm41SZW3u3syw1DPcDQg8DpWipCnBi1o3\nqqLyw/B6KbBuvzUujSis8oMKTcyhqIHUDMcaNOXUmg5xRFGNxu7kzo4bO4saDnI3FOTz556H\nK0rFVWy9wSvUf4WoU32pBcYrPTplJlOnoE5/ew81vsK91W7posC6/sKQZKLIhmPUNpGolzLq\n0TTuNgRvXXp+TCVpB1n0vuA/Z9BHyyMSMAeIqvx9cNSdBqKIGv0Wa+aiq/wy6tDj3C0JQXdj\nfgxVWhHcqB1pRPerupgP/QLryqE+CUTxraZq7MSgrZ1Jxje52xG8cPPd2c0j5B3koNXcmfHG\nSKqlmaemhrzzR8bWCCMyVek1T+2VuSc7i4S9zN2cEGRvVaH4UUE/5nqgsrof2BviBda/e7rH\nEiW2n80+eXZg5hpKYzYslbv10aL28USGMh1naKaWb0EjuJsNJOeOjK1plIqrSt1na+PeZg8W\nGlP+4G5TCKazgwyGVhyPHt9ZgpZzb7wboVxgnd/WMYoo+f6FGr2UwVZX6svdnODazfcW3ltA\nPi/YZryqZrvyZF9xwxHuttO7M/tHVQ8jMlbsOlNtT2/2X19qj6dd6kfm5iQqOY8nausSjM9z\nb79rIVtgnVnbLoIotesSnl4X7VAaHeBuUnDqymszW8dKxVVyy9Hau+VrWXjS79wNqGPfbh6c\nTvKRq24hVFzJMqrSCu7GhWA5fhdF9GV7yMDC8AJfc7eAS6FZYJ1c3ET6m7BMzxVcfS7eyvAi\nOOiuOv88P6lRhDxtbZux2iuurAZSWxxq4HDpjQUdk6XoRFXvNTckTgva2xwXfYK7iSEoLk+J\noDobGLM2ltLOcjeCK6FXYN16a2JleXbH/msYu1wBD1Jn7qYFW+czxtUxSkkra56oqdOC9jJq\nqPoShpB049N1Q6qbpOKqUMNBi1X/dEE/TaA6N7kbGoLg+bKUOJE3a52ptVqzFmIF1u9beiQS\nhdd6RN1PcPbHkXTazd28kO3ysYlycWWs0Hmaap7f7KfNcdHfcDenfpx7/elBteVjnqY77ntU\nQ4+T8ENTmsXd2qC4X7tQmHkPc9SO1Kbx3A3hQggVWOePjKkq/1XYZnJoXc6QY1VE8l/cbQzy\nA+Lmt4wkCqvQdcZe7kyIMJ4aqHommdCQ+dMrq0a2TiW5tirT+uHFWp+JwbOdiRGfc7c6KOvm\nkniqsIw7aUeP7kox7OVuC+dCpMD6afco623Od/ZfHgK3DLrQD3cSsvtn34Bi0j6yVIcnuP9q\nE6cRLeBu1tCV+fsH+58aeV/lKLm0osQaHUctDf3aKsvjVOMGd/ODkt6tTrHDVLHDfToy/r/c\nreGU9gusHw/PNKfIfxeG1G3OzhxOoxe5W1vXTi1vHU4U33TMFu4oCLUjIQrXIwv2x5cvbp03\nqlvjMhHWwooiyzTqOmqhmh+cpIAWNIe7H0A5ZweHUXO1XH46jipf4m4QZzRcYF39+tDCQQ0S\n5OEroW7fULwTx9GSsLTL3K2uW1/MqCklrUy3hRp+hokLE6jRbe7mDQlXTry8ZfbwjvWKh1O2\nQuXq3ffghMVq2Q0F17MJkajcQ1XmhiQqMZc7YnnuoT7cTeKM9gqsKz+8s3/ZhB4Ni1kHMEOx\nRj2nbuLu3GDpQJO4m1+fPp50B5Gx+lCNzsXgSX1MWhSYs29vntqjbnJ2VRWWmFa3TY+Hpi7a\nHKq3CHppAjVB5R6aPm1IkXxTXzlxII02cDeKExopsK78753Dq2eO6NI0vUD2IGYoXLlV34nL\nNfNQEiH2JoV/xd0VupP5/viyRBH1x4buCZ6tsfE/cTezRl37eP2olkWsQ5IxuWqL7sOeWLpV\nFVelqEJdWsvdQaCA8yONVF9lf22ui4lR4Xyj6i6wrn93bN0T/dtUTsg54k6xJao27Tjw0Xnr\n1VQ8B89kaoppIYMp891xpYiimjwW2pf3DSczd0trT+aJTQ/Vsp4MTKppHjZrnT6HJLc2RRU6\nzd1NIFrmlqKUMo07W/lMoDuvcjdNPmotsM69sXpk27LGrKoqqkTVZh36jZm2ZLNebsBxqQ5t\n5e4a/bj1xqgSUvqaTg756/syKtF+7tbWlNufLr0/Sb61Ju3uYQt2c3efeg2iXtxdBYJ92ogi\neqrx1FFbGs7dNvmosMA6+3+zOpayFlbx6c26j5i5KiRmGxJkXUTKBe4O0ocrRwcnE0XfNUWN\nQ4lwK00lLnK3uGb8b3WXwvKcC40HL9RFOAJwOI1e5u4uEOnsw0aqp84pcvcVN2RwN48jlRVY\np7YMrGiQS6vqHUfq7aZm7/SgMdydpAO/rrs/Vkphq2m62YF2pUe5G10Trr44qoJcXDUftZa7\nyzRhsSH9OnefgTC3VhWmYuo7O5htmamI2s5Iq6jAurB/aDl5xpiqXSer7PI5NTmQbFLhpXyh\n5NILj94p5bBoh7mHuTs7iPYn4/4Jj06v7yjV3RG1hzzD3V3a0ZbmcXcbiPJ6NYrqp+LrdB6k\ne1R2jbJaCqxvFzU3EUXVGRCyDz8VZTK15u6s0PVXxsRG4USmagNWcfdzsE2lu1Q2NqnMifkN\nw4hS7puhm6OaQjwbH/crd9eBED92JcNdqp5kOeNOWsPdSvZUUWB9PLkSkaFc93korrxQjQ5x\nd1go+uOlhT3Ky/N/pHWcFtq3DLpQm57l7gPVyvxockUpGpX6667uDtwwXOceEi5OjqLyC7nT\n5MHG2NjvuRvKDn+B9fmkNKLwOsNVXRmryUpj+WvcnRZKrnx95KmH7pJvCaPoat2n6faWsDWm\n4v9y94Uq3X57bGlpiKo7cjt3F2nSkTTDm9xdCIG6tSGFCo1W/wxvo6mxqua2ZS6wfphdiSii\n0QTcKOiD9rSQt9dCw5mPDy8f371B1hMBqEjtLhNWq3/8UFJXPCcgv9tvjEiVJ0LDEOW3+Yaa\nqtrnge9eqkYR3TXxn0B9WszdWLY4C6wL65oYyFRvgi5PyATg2diEvxi7TetOv7llev8W5SOz\nH2uSVLlVnwlLNTF2KGxfYuT/uDtHXW6/MTyFKLbFVFx2FYimtJ67JyEQX95DhmYaufNsW3z0\nN9ztZYOtwLp9rGc0GSoNx1wMvhuowgnVNCDzf4fn9qwVl1VYxZet277fuHkbcdlfnjHUmbuP\nVCTz/THFpeqq1TQV3zWlDZsiimKSNe36ZYCRKi/mDpHXxqvq0fVMBdb/Hi9JlNJzHXdnaNPB\noiY8pd43vx2Y0KKgXFiZitfv+NC0Z3DU1ImM8vQad0epxfEpZYliWkxDAS7AAzj5rFnnHoum\n4lO4E+SL+rSUu9HycBRYV59taaColvP0fcVLIB6jDgz9plU/belfVq6tUhr1mrxGT3Nb+WyB\noZaK/vjj8/tTNYkimuhjEv8g2JcYdYq7T8Efl+cXosRHtDVobo2NUc+lDsEvsL4clUhUceQe\n7m7Qsox0eiPoHadJV54fIU+8HV2r9wycjPasCW3m7jF21/a2N1JY7XG4LE+ckZiqQYuuryxG\nsX01d7R/NLVSzZR+QS6wLm1sQFSgIyZCDtACqqeaCKnXn+vNMUSRtQYsOcLdYRqxIbz4Ze5e\n43V8dGGisoO3cfdEaDlSxvARd8+Cj25uKkMRnTX4d2lGDdrI3Xg5glpgff5IATJUfwwXjQau\nAe0LZs9p0O8r7jISFes4C+d5fNCJ5nB3HKPrO5sSxZuXc/dC6JlBLbg7F3xya2t5MrXfyh0c\nv2yISjzD3X7ZgldgXdncgKhgV1zXLsQq4x03gtZ12nN29V1hZLijHybe9tGu+Pg/uDuPy+lp\nRclw5wT8/aeEGvQcd/+C925tSydjG43MzJDfQOrJ3YLZglVgnRhdkAw1JuGeHFHa0KogdZ3m\nXN19XzgZKgzU7PDAaZBepwD578BIirkPFblClhmq3uLuYvDSzS13kLGVho+FHE6jF7gbMUtQ\nCqyb+1oaqEBnDXeY+myOSNX51TLOZb41KIGoZN8N3B2kUQeTw9X1MK/g+Pj+MCo6GHfeKOcu\n2srdyeCVa2vKaru8kiwJS1PH7jEIBdaZWcWJKj+KI+9idab5yved1vw8uxxRoY64iMZ/4+gB\n7l4Mus87GCjtMdwJoaT1ptJ4hKoG/Ls4lcLv1vzfp2aazN2SVooXWB/1jaSodiu42zv07Iwt\ndF7pztOWa7vbhlFE0xnYUQYio4zhE+6eDK4fe4XRHdMwK5/C7qVl3D0Nnvw1LZEiO2zmzkrg\n9haO+C93Y8qULbBu7W9MVGzwbu7WDkm9aaqinacxX8n315d/eBd3t2jeNLqbuy+D6d9JUVT6\nce5G14FtUUXwwBx1+9+IGIrtvoM7KUJMpBZqmMlIyQLr8spyRNWfwJ+GytibEKfbG74cXd7Y\nkCi+wwruPgkJVfT0wJw9xSlxNIaoYOhOs7h7G9z4sLuRCg8Mmfl1a9IO7ha1KFlgnZtVhEyt\nVnA3cwgbTGMU6z1N+XJ4Ahmq4f56QRZSQ+4eDZaf25Opq+Zmqtao3XEJf3N3OLhw+8hdRCVH\nh9Bt/mvDUy5wt6pyBdbZKQUotqs2pynTigOFo35VqPs05NqORphfTay6dJS7V4NjcwJVXc3d\n2vrRD898Vql/V95BVC3ErkN8gEZzt6tSBdb5x+OpQF9ceqWwR2iYIt2nIacmFSFDtYkh9IeX\nCiw31FDD5QtKO9eVooaF1j5F3fYlxKplgm2wcWpCQTK1CLlbrw8km77iblpFCqyrixKpQH8c\neFfcoeQIfT+k/tVORortgGMQojXRw4OYPihN6TjuGVSDaSx3r4Ojt7qaKL5bKJ5smkLNuRtX\ngQIrc3cZiukdMpfKqdooGiK8/zTj2uYaRGVGoJAXb1VY5ZCfdntjpKHrYe6G1pkDidG/cfc7\n2Lq2pRZRyeH7uZOhjJq0h7uBhRdYXzYjkzk0bvRUv0PFwn8Q3YEacX5eMTLUn8vdAyGqhSru\nwFHQrXEUO427lfXnYRrJ3fOQ59epyWSoOztkT5OvNpXkns9dcIF1+TET1cYpm6AZQwPFdqBG\n/D4+nqLMOMGjlLXGCiF9COtKR0pdw93IOnQwCfflqMZb3cIptmNID6L30xPMjSy2wHq9HBWZ\nwt2oenI4Nfyk0B7UhJ+HRVFC353cjR/KWtEW7l5W0PnGVAXx4fAIjeDufJBd2VCTqMSwEL/A\nYnfBaOarlEUWWNfGhxnMId5jajOWBgjsQU349ZFIKvLQAe6WD23rTeVvcne0Ys7WoobID4tD\nRSJ/4e5+sPz4WGEy1A/dc4O5RlE33pYWWGB9V4uS53E3qN4cTjXp6xDW3+OjKXkEpmVQWhva\nxN3VSvm7BrXA8yqZDKfh3P2vd5kvdTRSfGfNP8/ZGxnl6Q3WxhZXYO0vQM33cLen/ujrKqxr\niwpS4jCUV8rbYCoXooew/qlLrUL/T3e1OlQEV2GxuriyElHZkSF632A+Cww1b3M2t6gC6/YU\nQ8Ro7sbUo8N6upHwcDmK6aeXoYFZG9rM3d2KuNqc7sLxKz7DaBR3BHTs21EFyNRETyeamtJG\nzgYXVGBd6UzJITcTrDaM0c1cWCfvIWN7zAASJBtC8yqs292pLqa/YnQwKfo0dwh06vbz7QxU\n8IEt3BEIqo0Rxf5lbHMxBdbZhlQJez4eh1MifhLSiSp3c140VV3B3do60pq2cfe5AiZTOq5v\nZzWUxnGHQJcuLLuDqMI43V1f0Y2mMra6kALr10rUBKMWlxH0iIhOVLkvalKBsbh0JojWGSuG\n3lxYOygZfwnyOlAo9k/uGOjPN8PjydT8Ke7OZ7C3YDTjEQgRBdZPaXQvdn1sDiVFhfzzJ24v\niKDmz3K3tM60pF3c/S7aJ9HRK7mbVfcG0mTuHOhM5v+1M1Bi723cPc9jOPXha3oBBdYvadSF\nuw117WEaE3gvqtpvLSlhKncz686asKqsN+CId66sYTJ3q8K+AgXOcSdBT/5dWYGowqO6OzeY\n40hpw0dsjR94gfVHOnXlbkJ9O5AY84eAKKjXS0Wo9nbuVtahZnSAu+uFyuxInbnbFI4e7Uuz\nuKOgHz+MTSBTs8Xcfc5pBjVja/6AC6x/apOZuwH1bhBNEpEFlcqcZzQNxCloBisMtTK5e1+k\nZ6gybiBUgd2xhTlv7NKT1zoZKaH7Vu4eZ1aTDnN1QKAF1s27qQV2fsz2JYTwMfcrD1DiAu4W\n1qkG9Dx39wt0Ijp2E3eLgqw7LeIOgx5c21yDqMwo3H+2Iqwi15QzgRZYD1FN3Z7bVY++NFNI\nGlToj/qUrvc/wNgsoUbc/S/OzTo0gbtBwWpHVLGr3HEIeWemFyVD/bncfa0KbegZpl4IsMB6\nhkri8Tj8QveY+8k0zADCqDa9yp0AYeZQU+7mhGwdaTV3HELcZ/0jKdq8jrujVWJLZNGLPP0Q\nWIH1dng8ulANHgjRY+5fpVBnnIHmM59ac0dAlOORBTHPh1psCS8bio8JUIvbh5oTpQzezd3N\n6tGdnuDpioAKrD9Sw2ZxtxzIng3NY+4fFzYM5G5afatKH3CHQIzbDWkid2NCrra0gzsRIeuf\nZeWIqk7BAzdt7EmI5ZksMpAC63Yb6s3dcJAlJI+5f1zQMJy7YXVuJnXkToEYa6k+d1tCnrVh\nVUPqBlX1+GFsAQpvuYy7g9XmIRrK0h2BFFgLqAZO36hEKB5z/zLRMIq7XXWvnOEr7hyI8Gdi\n1GbupgQbTSiDOxOh6HV5WoYeOp2y3Z1DxUwnODokgALrs4gEdKRq3E3bxaVCFU4Ww/ErfpOo\nN3cQRBhCD3K3JNhaFko3qKrEtS01MS2DKxOpE0ef+F9gXatKj3M3GuRaF1YltI65/1GecP0V\nv4ziph+4oxC4T8KKYzYZdalFb3KnIrRYp2WoN4e7X9Uq4w56h6FX/C+wplBr7jYDG83okMBc\nsLtcnzpxNylIRtMj3FkIXDOaxt2OYG8u3cudilDycT9My+DeXGrC0C9+F1ifmpJwF6iaPG2o\nLzIYzDK7UlNc4KcGh5KiznCnIVAHqRZ3M4KjdMMX3LkIFTf3NiEqNhhTUrpVm+OyP38LrJu1\n8DehytSh/wiNBqvpVAmXEqjDYM0/6fJGhbCV3K0IjqaExtV9/P5eUIqo2uP4e9SDpw1VbgW9\nc/wtsJZQM+72AnvzqY3QaHA6Ykjazt2ekGVfgYQL3HkIzCpqy92IkE9GiVC4uo/dl0NiKKLt\nCu7e1IIWtCno3eNngfVbfCzuIFSbyvSR2HCwOVkwYgl3a0KOXjSPOxABuVI8AlM0qNAoGsEd\nDa27dbAFUVL/ndxdqQ0bTKWCPh23nwVWL3qIu7XA0TTqKjYcXK7VIkzQoB47o1I0/ZiABdSZ\nuwnBiYOJMX9xZ0PTzi4sQ1Rl0mHujtQMMz0V7D7yr8B6y1AWE/GrTkaZsG8Fx4PHSGrO3ZZg\nQ9uPCbiYFI2HEKrSAJrOHQ4N+3xQNEW0Wc7diVqyI7pwsK928KvAul2H5nG3FeQ3ngaJzgeH\no4bUfdxNCTY2m8oF/+pQYebSA9wNCE7tiU26xJ0OjbqxuylRcn/85eCbnvR4kDvKrwJrGzXi\nbilw4nBKxK+iAxJ8fyablnK3JNhpTbu4U+G3i4VjdnG3HzjXlZZzx0OTfp+ZSlQNj3P22d6E\n2CDPOeNPgXWllAkTmqnSMBonPCFB15n6crcj2FttqMmdCr/NxwEs1doaXjrknqCqvLd6RFDU\nPZh4xB9DaHhwO8ufAms+deRuJ3DqQMG4v4VHJMh2UTr+MlObhvQidy78dDk5CvdYqVZbepY7\nIBpzaV11ouJDMMm3fw4mR/wvqP3lR4F1rlAsTv2qVD+aKT4jQfVXUsQq7lYER4upJXcw/LQc\ntxCq2BpDDe6AaMq3owtSWP1ZmFPUb2OoT1B7zI8CaxJO4ajW7piky+JDEky9qT93I0J+d9KH\n3Mnwy43SEZiwT8Ua0jHuiGjGzYOtDZTQdSN3n2nakVJhQX1Ck+8F1h9xCbjHS7W0ftnoMUrD\ntC4qNIO6cEfDL9upHXfTgRuLqBV3RDTitxnFidLHHeTuMa2bSvcFs9t8L7AepUHcbQQubY0o\nfUOBmATL1XJhmMJdjTLKanKOtczqYWu5mw7cqUwfc4dEAzJf6RpOUW0x6VXgMtLp7SD2nM8F\n1pmYQngKr4q1o61K5CRIZtB93A0ITo2nIdzh8MNLmFBG5Z6gHtwhUb2zT6UTlRyKC9uFeJKa\nBrHvfC6wHqXB3C0EbqwLq5qpRFCC4sfoBIwi6nS4aOTv3PHw3d20kLvhwK2Mknjks3tv940i\nU9MncWG7KLXo+eD1nq8F1l+xBXEAS9WaUoYiSQmGLjSKu/nAhYdoInc8fPa1IZ272cADPPLZ\nnfNPVyUq2m87dy+FkmWGGreD1oG+FlhTaQB3+4Bby6mRIkkJgtepPP5OU6v9CQnBfo5XwAbT\nRO5mAw/wyGfX3u4XTcYGMzAoitUkiA+m8LHAulAwHrcQqlwtekOZrCjtdi0DTuioV2+az50Q\nH52NLoJbUlXvQZrBHRRV+mtJJaLkPlu5+yf0rDGWD9qdYD4WWPOoJ3frgAdz6TFLgp4AACAA\nSURBVB5lsqK0LdSEu+3AtZ1Rxa5yR8Q3c+lB7kYDj/bEFsYjnx3dPtY9kkyNcPBKEXfT6mB1\npG8F1rUUPHdC/dINnyuUFkVdKRm+nrvpwI2OtJY7Iz65WTISo5UGdKaV3FFRmVPTSxMV748p\nchWyOSI1WPNx+1ZgracO3G0DHk2lngqlRVEL8IhLddtsuuMWd0h8cYDacjcZeGGLKU1TuVLY\nle2twiiixTwcvFJO56Bd7uBTgZVZ0Yh5+tUvo6TxpFJ5Uc75xFgcb1C3VrSXOyW+aEGYmFET\nWtMe7qyoxjtDE4gqDMdsNYraGVvoXHD606cC6yg1424Z8MIYelipvChnKvXhbjdwb5WhNndK\nfPBfQyXuBgOvrDLU4Q6LOpyaXYGoUKdnuDsk9PWhScHpUp8KrBaE55howaEiUaeVCoxS/oov\nsJe73cCD+vQyd068N5LGc7cXeKce/Yc7Lfz+2dQ8jMIbT8ONr0Gwr2DMb0HpVV8KrM+oKne7\ngFeG0mOKJUYheMSlBiyk1tw58drlggl4MK5GzKe7uePC7OZzPaKJ0ofhKokgeShIZ3l8KbD6\n01TuZgGv7E8ocF6xyCjidEwinhCgflXpI+6keGsjdeFuLfBWRcNn3Hnh9P7IIkRFe6zh7gYd\nOZQS/l0wutaHAutMZLEj3M0C3ulDc5TLjBLG0lDuNgPPplNX7qR4q65hHXdrgbemUi/uvLD5\ndlp5ovh7FuCuwaB6lB4IRu/6UGDNxGOeNWNXdJFgTfQhxBkcwNKEjDJh33JnxTufUU3uxgKv\nZZQw/cidGBa/LalDFNF46iHuHtCdjDKGT4LQwd4XWNeLReHeUc3oTMsVTI1w42kId4uBN8bT\nIO6seOdhmszdVuC9UTSSOzHBd2FzayMZqo/GfpXDdGobhD72vsDaSe25mwS8tjWiZNAetxS4\ns3EFcQBLEw6nRPzCnRZvXCqQiIMCGnKosN4e+XztUNcoovKD8KxBLlWDce+q9wVWI8Mq7hYB\n77WnTQrGRrAn8NA4rRhGY7nT4o2N1I27pcAXA2k6d2aCKPOthwoRFcNl7ZwWUd1MxXva6wLr\nU6rO3SDgg42mdM08f+JioXjMgaURBwrFneXOixca4hJ3bdmro0c+f/dEWaIE82LuNte7BkF4\nMoXXBdZgXNOgLS218/yJhdSDu7XAW/21cKjhOFXjbifwTXdayp2aoLiwtjFRRDPMJ8pvtfEO\nxa+j8bbAOh+ThERoyipDDeUPgApxLTXyWe7WAm/tiS38L3diPHoUs7hrzXZNXTXqp8xX+0ST\noeqoPdytDbK7aZXSPe5tgbWMenO3BvimET2naHSE2UBm7rYC73WnxdyJ8eR6chxumtCa9rSZ\nOzcKOz2vPFFyjw3cLQ3ZtkamKP3HorcFVhUj7nbQmOWG+opGR5TbFY0budsKvLcjMvUad2Y8\n2E/3crcS+Gq9sdJt7uAoKPPVbuEU3mw25hNVkW40Q+Fu97LAeo0ac7cF+Ko2vaJseMQ4Qndx\ntxT4ogOt4c6MB+1pKXcjgc/uooPcwVHMv6sqE5UYjEcNqsvu+Lgzyna8lwXWAzSHuy3AV4up\npbLhEaMpLeduKfDFZlPaTe7QuPWbsSx3G4HvVhjqcSdHIafGFyRj47k4eKU6g2mYsl3vXYH1\nR0RxhEN7qtHbyqZHhA8w/4fWtKVt3Klxax6eC6BJdbVxyN1Xn/cyUYHum7lbF5w4VDT8G0U7\n37sCawEN5G4J8N0culvR8AjRjWZwtxP4Zp2xoqqvlqlo2sHdROCHxdSaOzrivdXeQMWH454L\nlZpAnRTtfq8KrMw7wnEfvRZVpA8VTY8Ap0wlcXBUa5oHYYY+/71NjbgbCPxSld7nDo9grzcn\nSp+KEU61Msore5rHqwLrFWrG3Q7gjxnUQcnwiPAojeRuJfDVKkN1Fc+xNpimcTcQ+GUWmbnD\nI9S7LYmqzeVuVXBnHjVQcizzqsDqTgiJNlUwfKpgeAS4mJCAo+fa04iOcCfHpcsFEjEnskbd\nYfiCOz7ifN1BKq/mczcpeFBf0UeeeFNg/RmRimOc2jRN4TPMAVuOp+Ro0XJDXe7kuLSNunA3\nD/hpKj3AHR9RTg8xUjoOTKjfamNZBef186bAWkQPcjcC+CejnLr/JLxd3oQJbLWoLr3AnR1X\nWtEq7tYBP2WUNip7U1ewXJ0XT8Un47iEFrSnRcoFwYsCKzMdN+Vo1lTqolx4ApdBLbhbCPzx\nFDXizo4LP4WlczcO+G089ecOkAjPlaP4oYe4GxO8siO24FnFkuBFgfU6ZnHXrow0VR/CakVL\nuFsI/FKbXuYOj3OzaRh324DfjqSa/sedoID91JHC2mPSds3oTyMVy4IXBVYfmsXdAuA3VR/C\n+spQibt9wD+LqAl3epzKLB+xi7ttwH+jaSh3hAJ0a0kcVcTDKTTkQNHwE0qlwXOBdT6mKE4l\na1dGecPnSoUnYENpInf7gJ9q0n+44+PMm9SUu2UgAIdSwk9xZyggX9ej2OHYY2rKRGqvVBw8\nF1grqA/39kMAHlfvjYTnYpJwQ71WLaSm3PlxZhAeDKBtI5V+Opyibj0ZSY23cbch+CajMr2o\nUCA8F1jVw/AUJS3LKKfaubAWUV/u1gG/1VTjk+MuF0g8wt0wEIhDyZE/c6fIb981oITJ3C0I\nPltiqKzQ8+s9FlgfUl3urYeATFPr9Mi3ykbg9lTtWkSNuROU3w7qzN0uEJjhNJw7Rf5aG0uN\nMKRpUSt6WplIeCywHqKp3BsPgUlX6RO+DlMr7qaBANSmY9wRyqctPcPdLBCYQ8mRv3DHyC/n\nOlHMWO7WA79sjU5UZqoGTwXWJTx3QvNmUxtFshOo1rSMu2kgAE9Rfe4I5ZNWnrtVIFDDtXkV\n1tulqNJG7rYDP/VXKHSeCqxN1JV70yFQVel1RcITmOOYo0Hj6tJR7hA5SnmYu1EgUIeSI37i\nzpHPMheZDN1xLEKzDhYzKnK3vacCq5lhLfemQ6Dmq3LOomH0GHfDQECWGWoq+SB6f5TC/I7a\nN1J7c2FduJ8SZnO3GwRgGjVVYjDzVGClVePecAhcbXpegewE5kJcIp4loXGNaS93jBzgHE0I\nOJQSrrHp3L+6gypv4W42CEgd2qFAMjwVWCnjubcbArfMUOO2AuEJyDLqxd0sEKBVYRVvcefI\nHneLgAhjNfZEwv1x1AF/LWrc2vDUi+Kj4anAqnaAe7tBgCa0U3x2ApJZwbSVu1UgUC1pE3eQ\n7HE3CIhwpITxv9xJ8l7mNEMEjkNoX3d6VHw4PBVYuGwvJKwxlr8hPjyBeIHu4m4UCNgGU+lr\n3Emyw90gIMRE6sadJK9d6kxJS7kbDAK3v0j4V8LT4anA4t5oEKMdPSM8OwFpT4u42wQCdy8t\n406SHe72ACEy0gyfcEfJS7/WokrbudsLRJhKzYRf544CSx+2Rhb9V3R2AvF9GCYsCgXbo4oo\ncOGC/7jbA8SYTu24o+SdT4tTi4PcrQVi1KXNovOBAksnutN00dkJxFgaw90iIEIPmsadJVvc\nzQGCVKHXuLPkjefiDH0yuNsKBFkfUeRvwQFBgaUTuwvEnRacnUDckYC7J0LCnoS437nDZIO7\nOUCQhVRfbXOsObHWFD6Bu6VAnD40SHBCUGDpxVBVzd6X1p27PUAMdeWKuzVAlHq0nztMnmQ+\nTvHzudsJBDpU0vCG2IygwNKLQ6nGr8VmJxDFN3O3B4hxqJjpOHea8nC3BojyTFgFld347Ojm\nQEpezd1MINR8Q0Wxt0WjwNKNKWq6bnQFd2uAKBPpXu405eFuDBCmDa3kTpNbl++lNEzlF2ru\npieEpgQFln5UpReEZicQ3G0BwmRUole445SLuzFAmK1RRf7hjpMb5xpRtT3cbQSi7U6MEDoZ\nFgos/VhqqHxTZHYCwd0WIM5iQ3XVPDCHuy1AnB40kTtOrv1+JzXC9AwhaDLVFzmaocDSkVb0\ntMDoBIS7KUCgZrSeO085uJsCxNmXGHWKO0+u/FCO2h3hbiBQQiNaLDAoKLB0ZGt04lmB2QkE\nd1OAQBsjil7gDlQ27qYAgUbRA9x5cuHrVOqK6a9C07b4mO/EJQUFlp70p4fFRScg3C0BIvVQ\n4jGpfuFuCRAoI83wNnegnPooydCfu3FAKeOoyW1hUUGBpScHU42fCotOQLhbAkTalxR+gjtR\nWbhbAkR6kmqL29WJ82YBwyPcTQPKqUdLhGUFBZauTKdG6pgfmbshQKgJ1JY7UVm4GwKEaqKe\nq/vyHIsxjuNuGFDQ1vjo/4oKCwosfakv/nGWfuFuBxDrTjrAHSkr7nYAoTZGFjnHHSlHRyJN\nU7jbBRT1GNUVdb89Cix92SD+cZZ+4W4HEGulsdQl7kzJuNsBxOpNw7kj5WBPeMQM7lYBhTUT\n9gh7FFg600cdj47jbgYQrJM6Ji3ibgYQ60Ax4yfcmbKz1Rg1l7tRQGk7C5veFZMXFFg6c7BE\n2DtiohMQ7mYAwfYmhavhUZfczQCCTaf6arrOfW1Y7ELuJgHlzTakXRQSGBRYevOkocp1IdEJ\nCHcrgGiTqbEK9oTcrQCiNaLV3KHKs9wQv4S7QSAYOlFfIYlBgaU7bWiWkOgEhLsRQLh6atgT\ncjcCiLY5quBp7lTlWEgJT3O3BwTFwTTaJiIyKLB0Z2fBSGE3ofqNuxFAuM3RCb9yxwq5Cj2D\nqTt3qrLNpsRV3K0BQbImKu4bAZlBgaU/E6kh+8kc7jYA8YZSR+5YIVeh50h5yuCOldUUSlrD\n3RgQNGOo+pXAQ4MCS4fq01OBJycw3E0A4mVUol3IFYj2tKm4Ch51mTmOkjdwNwUEUSsaHHhs\nUGDp0Nb4GBFHPwPB3QSggNURSWeQKxDtARrEHCupvnqEUjdzNwQE0/4yAmblRoGlR+OpgaiZ\nav3E3QKghAF0P2+skKtQdLCU4QXmXN0aSCW3crcDBNeamOiAH92LAkuXGtOcQJMTGO4GACUc\nqURbkCsQbYmxOPMTcwZS2R3crQDBNtlQ5myAwUGBpUvPFgr/KMDkBIa7AUAR66ISfkSuQLQH\nqBdrrCxpd+zkbgMIvm7UKsBTPSiw9Gm6oQLrs+O4tx+UMZya3kKuQLBDacz3T3Tcw90EwOBI\nbRoZWHBQYOnUfbwXjnJvPiikPu80ttybD8pYFVHwJ+QKgm13cVoTUHBQYOnUgTKsfxNybz4o\nZEei6S3kCkQbRk0578vh3nxgsiY+/OVAgoMCS69WRcV/G0hyAsO99aCU2YaSgV4YilxBPvXp\ncb5YIVe6NdeU8FUAwUGBpVtj6M7LASQnMNwbD4p5gNrxPSiAe+NBKTuTwgI6lIBcgV/GGEoG\n8AgwFFj61Yb6+R+cAHFvOyjmSHWaiVyBaAtNRX5BriDoetKd5/0ODgos/TqQRiv9Dk6AuLcd\nlLMjKez/kCsQbSA1uI5cQbBltKUmfp/rQYGlYxvjw9/wNzgB4t50UNDi8ILfIVcgWEZjGsoU\nK+RKz440pPb+lvYosPRstrHID34GJ0DcWw5KGkEVmR7Py73loKB9pWkVT6yQK107WIO6+nkP\nKwosXRtKlXn2hNwbDoq6j9rcQK5AsHXx4f9hiRVypW/7KtED/lVYKLD07R5qxbIn5N5uUNTh\nWjSEI1bIVWibayp0ArmCoNuT7meFhQJL3w7Xpn6Z/gQnQNzbDcraU4ZnRnfu7QZljaCyp5Er\nCLrd6dTFn+uwUGDp3N40mujPiBMg7s0GhW1OMqxDrkC07lTzH+QKgm5PJbrHj3sJUWDp3bYU\nmufXmBMQ7q0Gpa2MM+5BrkCwjFZ01xXkCoJuXw1q9LfPwUGBpXvrE2mFf6NOALg3GhS3KCo8\nA7kCwQ7X8/+eeeQK/HewMVU+5WtwUGDBqgRD0O9+5t5mUN7ciMjnkCsQ7EA16hT0G3O4NxpU\n4Eh7SvnAx+CgwIKjTxcwBHtKd+5NhiCYGRFxGLkCwfZVpvuDfQyLe5tBFQYYon287gEFFhw9\nuiLBEOTrsLi3GIJhVkT4DuQKBNtbxa/rjZErCNSUKMPkW74EBwUWSFYVpnFBna2Be4MhKJ6M\nDlsSzFghV7qwrzo1OYdcQfAtT6Y2f/oQHBRYINuQSj2uBTIC+Yh7eyE4liTQmNvIFYh1sCFV\n+SmIsUKuINuzNam4D0/wRYEFVjvSqfEfAY1BPuHeXAiSdcXJfBG5ArGOtKNivl5vjFyBABm9\nwoyPez2rOwosyLK/EZX6JMBhyHvcWwvBsvNOqvwtcgWC9TdEbQtarJAryDM3ieoe9zI4KLAg\nW0Z3Q9SGQAcib3FvLATNoXuoQNCmHOXeWAiax6NpRNBuJuTeWFCTXU0pao53U4WgwIJcU2Ko\nd5BO53BvKgTR6AgaEqS7vrg3FYJnVQmq811wYoVcgZ2JCXTn294EBwUW5FmXRmlvCRiOPOPe\nUgimlSWpwrvIFYi1txnFrQ3Ozc/cmwoq82xLg6Hfb56DgwILbBzsaAgbc0nIkIRcQa4D9xqM\no/9FrkCsMdF0t89PL0GuQIAnS1HsTI/7ShRYYOfJFCodhEfIcW8mBNmcolRiL3IFYm2oRnGL\ngvDgHO7tBPU5/FA8FV121X1wUGCBvf33G+keb++R8Bv3VkKw7e9iomaK31nPvZUQZBkj4ij9\nqNKxQq7Aid3doij1KbdH5lFggaOnq5BpsMLT+HFvIwTfqlpk6PQFcgVC7WhroLveUTZWyBU4\ntb1jFBWa/Kvr4KDAgnwyJqVS5MMnhY5QyBUcnVWeDB0UvYuCewuBwfIaRK3/o2SskCtwYUf3\nODJ1fcXVvRYosMCJQ8OTydjVq/tQ/cO9gcAi4/HyRHU2KzdnA/cGAou5VYlqbfVwOQxyBUrY\nN6wkUdnp3zsNDgoscOrQmFJE1Zb/JX6sQq50bU4dAyUMfVOhu+u5tw6YLKhnoMTRnyqTKuQK\n3HqyeQSR04loUGCBCxmz64dRuHnHBQXGK+RKx9Z1LkhUcvSrXj/PC7kCz9bdH09UecaXCqQK\nuQIPdo+s5vQ6QBRY4NqW/iWJItos/S8GLBDo8LS7ookSOq/6BrkCYQ5OrGciKjv8iPi/Cbk3\nDdTPaXBQYIFbK3qUIaLUnis/FXrAgXuzgNmBae2SpGAld3zylb+RKxBk15hGUUTGWqN2ib1H\nh3u7QP2cBgcFFniy8ZFG8dK+MLrBw6vfOosBC0RZNbRRISlYVKr9Yxvf+QO5AhEOzumabpRS\nVaj5qLVviEkVcgWeOQ0OCizwQsaKR1qVDJN3hkkN+zyx8aX/BvpMaO4NApVYP6FT9QJysCiu\nmnnkgh2vnwjo/A735oAq7HuyX6Nka6oSanQas2z/u6cCvMOQe4NA/ZwGx1OBNX0iQJZxfdvV\nKZtgsI5bFJmSXrdVp77Dxk+f/4sfAxZyBXlG9mhbp1yiMStZFF44rUbTe7oN+Aq5ggCM6X13\n3bxUxaSm121h7jVkzBTn99MjVxCYP50Fx1OBlUIA7i33Y8BCrsAT5AqUgFyBEl53FpzQL7Ai\nChUqFMu9EoGKlzYinHslXNmhywELuVLaAeRKq1Sdq106zFW01CFR3CsRmChpE2K4V8Idvwqs\nNO61Dljh2rVra34rKkgbkcC9Eq44DRZypQXIleogV0rTY65KSB1SjHslApMibUJJ7pVwx68C\nq29rrWsq9UtD7pUIVH1pI5pzr4Qr/jy/F7lSBeRKdZArpekxV42lDmnMvRKBkf/DaMS9Eu44\nzZWnAkv7MqR+mcS9EoEaIm2E0g+MB58gV6AE5ArEWyZ1yDrulQjMVmkTFnCvhM9QYGkCBizV\nQa5ACcgViIcCiwkKLE3AgKU6yBUoAbkC8VBgMUGBpQkYsFQHuQIlIFcgHgosJiiwNAEDluog\nV6AE5ArEQ4HFBAWWJmDAUh3kCpSAXIF4KLCYoMDSBAxYqoNcgRKQKxAPBRYTFFiagAFLdZAr\nUAJyBeKhwGIS+gXWjX/++ecK90oE6rK0ETe5VwJsIVegBOQKxLsmdch17pUIzHVpE65yr4TP\nQr/AAgAAAAgyFFgAAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAgGAosAAAAAMFC\nusD6zGxjLPfa+O74ELP5bdsFv64b1bNTv5nHbnGtEciQK1ACcgXiaTxVGg9VSBdYb2s6Wjc3\ndzDbZ2vf/dnbMuwM21oBcgXKQK5APE2nSvOhCukC60WzeebOHC9yr42PfhhhNneyy9ZhKVVP\n7Htu00CzecBFvhUD5AqUgFyBeFpOlfZDFdIF1gGz+T/c6+Cvo53MnQ8vtc3W6S7m+z+QX1yb\nbTY/zbZigFyBIpArEE/DqQqBUIV0gbXNbH6fex38Ndb8yA8Wu2ytMZt3Zr262sfc8RzTegFy\nBcpArkA8DacqBEIV0gXWKrP5K+518NfYVdctdtm61dvc6d/s1zvM5oNM6wXIFSgDuQLxNJyq\nEAhVSBdYi8zmH7jXwV/WFbfN1gmzeVLO6+Nm8xSOlQIr5AqUgFyBeBpOVQiEKqQLrBlm8x/c\n6xAQ22w9ZzZvynl9vYP5AZ41AgtyBcpArkA8radK26EK6QJrgtl88bVZ/e7vMWrTae518Ytt\ntjaazc/lftBX2jKWNQILcgXKQK5APK2nStuhCukCa5jZ/Ej2pBn3787kXhs/2GbrKdtr/Uaa\nzT+zrBFYkCtQBnIF4mk9VdoOVUgXWP2kTPV4at+RNQOkF9u518YPttmaazZ/mPvBo2bzdyxr\nBBbkCpSBXIF4Wk+VtkMV0gVWF7N59WX5xc11Ura+514d39lma5bZ/GnuB5PM5hMsawQW5AqU\ngVyBeFpPlbZDFdIF1uVLl3NezjabF3Kuin9cFu/jtFC8hyzkCpSAXIF4Wk+VtkMV0gWWje/M\n5ge0d/7ZNltLbE8/jzCbf2VZI7CHXIESkCsQT5Op0nao9FJgZXY2m//hXgmf2WZrs9l8NPeD\nXmbzJZY1AnvIFSgBuQLxNJkqbYdKLwWWpafZ/Bf3OvjMNlsvms0bcl5fNpt786wROECuQAnI\nFYinxVRpO1R6KbCudzCbr3OvhM9ss3XSbB6f8/oTs3kmzxqBPeQKlIBcgXiaTJW2QxXKBdb7\nK6e/mvNa6o3hnOviH9tsZQ7Me7jlKrP5GNMqAXIFikCuQDzNp0rboQrlAusls3lYdr2eOcls\n3sa7Nv6we5D4NrN5Y9ars13NXS+7+BVQHHIFSkCuQDzNp0rboQrlAutaH7P5Seuzt68/bTZ3\nv8C9Pr6zy9aFHuYOb8gvLk4wm3exrRMgV6AE5ArE03yqtB2qUC6wLB90NJt7rjp8ZHU/s7nD\nu9xr45PjO2WjzOb58j8PWpe92sFsnronY7X0X8y4m8zrp2vIFSgBuQLxtJuqUAhVSBdYlvd6\nZT+EydznI+518c0+s62+WQtf6pL9fqr6b08NacgVKAG5AvE0m6pQCFVoF1iWS0em9evcZcDM\n569xr4mPnGbL8ufm0T06D5j/HuuqAXIFykCuQDytpioUQhXiBRYAAABA8KHAAgAAABAMBRYA\nAACAYCiwAAAAAARDgQUAAAAgGAosAAAAAMFQYAEAAAAIhgILAAAAQDAUWAAAAACCocACAAAA\nEAwFFgAAAIBgKLAAAAAABEOBBQAAACAYCiwAAAAAwVBgAQAAAAiGAgsAAABAMBRYAAAAAIKh\nwAIAAAAQTJcF1gqSrM2/PPOjWZ0qF440JZRo9tDef/J9/MvKntUTIyIKp3ea+2XOsoHSNy3M\n/02dpMVrpH8OpxwxqVXunfniFZGbASpk7fF2jkszy8qLj9ovdBVDi/OoWWzjZOsrkesPqvLr\nqt41kyKN8eXvfuKdTNsP7KMQXazOsIM38j49IS1rZfPTrkY2+VsO2X7tjjDpy17Neffv1h7p\nCaaC5Tov+0vwdgErP/Z0eXIz2Xbqm7dtP3CfSX0OXrossKrKPVs73+LD1Wx7Pm6yfTV0vJvB\n5tPa2cPSh9Lr9Hzf9Ge49PsXLflDVXDUCSU2CFTD2uPG3xyWvklOCiwXMXQVNYtexyj9+tou\nCBV22OzOnESh6MbcTx0KLJcjm2OBddBEFHks+03m8kK5vxM16bpC2wjB58+eLseXXWw/Lbfl\nVt5H7jOpz8FLjwXWO0Qlo4g+tV+aOcqx72v+kffprbFhDp92OWf9oKb08i3Hf8NiaeFQ+UX+\nUJmm3VRw04BbVo/Pd1g62LrUvsByHkM3UdPrGKVXNx4xOPR0lbw/z5xGoVdOBWZXYLkZ2RwK\nrBcjiMJzUnrzAbvfaX5N2a2FYPFzT2d1fahjJtO/zv3QfSb1OXjpscDqSzS2A9HD9ktnyd1d\nZ8m7f1678fdHK+rJ75rl/sX4z93WNFQav/7Isd3TmllDVuOs/Mka6VV/x39DZWnhJ/ILOVRL\nPpO9lbGqXxnrl9T5W9GtA1ZSj0dLQbFfeDWBIsmxwHIeQzdRy4rT7NccXVJua4DP2busQag6\nft3hF7cvuFsOECW8kPNp3sgi+fSNrUMT5c8fzf7UrsByM7LZF1hvSsk1Hch595j0WVjPwydP\nf7P3Xvl3xii9wRAcfu7pZGca5s9k/HM5n7rPpD4HLx0WWOeiiN7ZRlTArm9/MUp/vG3Ke781\nXMrDluw3me2tKfww58OT3eT3LeRU/htPFONwFvtd6cO61lf2A1jmsZby7zW4LHaDQEWkHq9f\ngOgDu4W7iZo4FljOY+guak4umYGQdbOx3PH35F4Dc2GSFBiK/Dj7bb4oXOgjLTEdz3pjW2C5\nG9nsvuVDaSgL25nz7rswKZuvZ7+R/4yMwHVYIcHfPZ3kurUauy8vk1Ni5GDkDHbuM6nPwUuH\nBdZSopKZF6Tie6Pt0jlS9z9uu2CZXKlnv35SztU020/XyKX9UvnVQ5R1PbuNQdKiDdZXjqHK\nXBEhLekuZDtAjaQer9eVaJjdQmnUmuJYYDmPoduo6XSM0qex8gGkZ2yXQCfrDAAAD6xJREFU\nfFFMWlT2fNab/FGw7huzDxfYFljuRjbbb/kykciwJfenxtnsdrPu2tlpgRDg957OYhkmvTSu\nt/306xLSolI2B9hdZ1Kfg5cOC6xKRBMsFqkyr2+7tIfU/SdtF9wqZSjT4YL15W9yVTTd/lvm\nSouKyAcfPs09XJXjUlzucYn8oXpWzmu+i7YgVEg9Xm07USHbK1bOmMjwH8cCy3kM3UZNp2OU\nLn1lyP0rLdfJgtKycVmvnUThw7wdpW2B5W5ks/mW74pK9ZXNPa11iArmXS66S/rBWQFtEKiE\n33s6yydy9bXd/tNT8mnAUVmv3WdSn4OX/gqs16V+/txieU76xxc2i1tI7/+1+8EfLua8miB9\nVv+W3YeW2zUK9TtivbOmnsM3WTZKC4ZnvXQSKvkvw/oWCFFSj1c4ZyLaa7NsiVSCf+5QYLmI\nofuo6XOM0iX55EoXx4XPSgvjsi45dhaFSKKErFe2BZa7kS3vW34qKb182uaHfv70P6/mvXtD\n+nSqf1sC6uL/nk4+XdjT8ev2SQtjsg5huc+kPgcv/RVYPYlqSv+4VYxohM3i+yn7uvT8rheQ\nPnvFcenpnD/vNuaV8FkaSQuyT1M7CdXfCdKyj/xceVA7qcfTLG2J2tssq0H01CcOBZbzGHqI\nmj7HKD06I9XohpP5FteSArDI+spZFIoQhWW9si2w3Ixsed9yunzuNzslH8FyPmUbaIzfe7rf\nwqR8/Zjvl+QDDE9aX7nPpD4HL90VWH9FZv+h9hhRQZv5P+Qz0/fecvorb0kfVXT9jZeliinR\n5oyQPLg1zH7tLFSj8cdgCJN6vIxlO5HxdO6ir+SJsT62L7BcxNBD1PQ5RumRXNDcnX/xJmlx\na+srJ1G4JhVlhbNeOl6D5WJky/2Ws1WkF7PdrM890n7yB182ANTK7z3dNunT+/IvlgY7am59\n5T6T+hy8dFdgLSSKsB7Q/MbuIk7LKfleirb5/2a0ZCVynJuvHCF9vivv7Xjp7dbs185C9Xxu\nICH0SD1e2nKlgO38/uPlqd0/si+wXMTQQ9T0OUbpkXzrzIr8i/+Sz8dYZ8d2EoUXpEUts17a\nFlhuRracb/mntuOFz/ZuTZY+H+DrNoAq+b2nk59asir/4nMGoijrAQb3mdTn4KW3AivzDqKu\nWS8bEjW2+UQOFxnv2/RTvt/pLH2wz813fkW20ybfLEpUKOeYhLNQXZKWpfiz7qAB1gLLMpSo\nSs6SW6lEux0KLFcx9BA1fY5ReiSfC/zYyfJ0afln8ov8Ubghn6tZkvXabh4s1yNb9rdclucQ\nGe9iTW6d+WyF/MyBFv+6+AHQGH/3dDVysuegCtnM+ug6k/ocvPRWYL0s9XL2xGjrpJfHbT5a\nYiSrkj2f+dzuEUvNsq5Hdq0RkSH3+Pkh6adH57xxGqp4aeENx4UQGrIKrPdsrrN7kajgVYcC\ny1UMPUTN2WTIsQpsBHCTLzl3VtHIF9BYH2WTb2Q510FaUjh70m37R+W4HNmyvuVaG+fnI2UT\ns1NWdBEeQBEy/NzTFZc+dTYvqDyFx4vyC/eZ1OfgpbcCqytRsezzz//E2FRCsvfvzu34Al02\n5823LlfoTv76y7PN9gD7fdKb/+a8cVpgyQ/+Pe/3FoCqZRVY8iQM2TeSWnpZZ2u3L7BcxdBD\n1PQ5RumRFAqTs+UDKHs+KjkKK0/k+HD/CPneGcPu7B9zeBahq5HN+i37OsrLTfmubbbKKrCS\nZ14Qs1mgCv7t6aKIwp0tl6d9fFZ+4T6T+hy8dFZgnQkneiznTR/7i9Mln01Kz+37mGE5p6nL\nSO/czmJ8NZGoRPafAr9Jfx00y/3EaYFVydP3gXZlF1gLpGxlPR73orSvfN+hwHIZQw9R0+cY\npUO3KPfudnvyHTLWaY2dRSF8dc6PORRYrkY267ekZS0t+I2zf1/OEay4QY7PLwct82NP5zaT\n1jtM3WdSn4OXzgoseaLa3MNL8tyPOxx/4tfdo2qbsno/Mvsq0+rS6+/dfu0Y6Seez/s3PJv7\ngdMCK1laiKflhKjsAuu0lKH91gWbsm7MsSuwXMbQQ9TkOC14z96Hrn8cNCuKyJjpZLl8oXHu\nESwHzfOikK/Asjgd2bK/JfzpR6X/L3/Wkt//XvvPvmeGFJX3ra86+Ri0y+c9XRxRmLNMPkjZ\n0/65z6Q+By99FVi3y9pO8plZxvZgk41LLz9W0RqPrIn35JnZ3nP7vfJ41jnrZXmipLzDYk4L\nrHA9VO56lV1gyWeKs25pbk4032JfYLmOoYeo6fM6UT1KlXra2Wk5+XoX6wOf8+3MZp6w+TFn\nBZbMYWTL+pYS71lut5P+2ey6q7W5Pk/aE8d9G8D2gCr5tKcrJX16zsly+RTzf+QX7jOpz8FL\nXwXWC/lLbKcHxiX/uVP6MMJ6Qrq39Gq1ix/Ldpf0Z+Af8ovXye5+HGehOk42t5hBiMkpsA4Q\nmc5I//zJQEb57IptgeU6hh6ips8xSo9qudjVVabsSYztorBQetPH9sdcFVgym5HN+i0t/pRe\nnK8gvXrQ9frIE3B18m0TQBu83tM1kD59w8lyeY5a6/F495nU5+ClrwLr/vx7tkdd/exlOU/W\nCUGfll70cv/FOyl7HuS+RIbv8pY7C9VKaVk/PzcA1C6nwLqRRPSUxXpPdDv5vW2B5TqGHqKm\nzzFKj+R5sJbmX/xvGFGc9e4IuyjcrEa51yhYuSuwbEY2m2/5Rr4geb7rFapJZMSV7iHJ2z3d\nGOcJOSctTrSeOnSfSX0OXroqsH4z5d+zJbk8Li5Pa2s9dSM/zjnhYr7PbW9wvV4k60qbC9G5\n86pZOQtVK8qbiBRCTU6BJV/6eafFOnGR9TYamwLLTQw9RE2fY5QebZEPLeVfvD+3cLKPwnsG\nohL/5P2c2wIrb2Sz/Zb/k2o3w0GXvzNW+klchRWavNzTHZA+rZP/tzdTzvUx7jOpz8FLVwXW\nTKmLD/xiYxll7/6cuSYFJF1+cbuE9GPLHD/+pfQ0mxPS8lMy37VY1pL9Y36dhEp+KF00ZmkI\nVbkF1hckzynzgXUSLItdgeUmhh6ips8xSo9+l4vw4/kW35N7DschCvIRr6F5b90XWLkjm923\nLJJex+Q9pO7fk2/b3rE/Vw6tz5sBWuDlnu58DDk7b91YWrrR+sp9JvU5eOmpwLpdkqiU3W0Q\n/+QccLq5ZUSDug4/fpmynsdrscyXD4I63qYsjXXxr+e++17K6FjrVYLJtnOI5g/V7ZbSojGB\nbQioV26BJV9GM03+w/9h67u8AstNDD1FTZ9jlC51JScPfnsnTEpC1hEGhyicL0pkyDvClFdg\nuR/Z7L6lr/SmeE725PmSJ9j8Do5ghYZA9nRyWho4PsVQDkpq1m1d7jOpz8FLTwVWBuV7ynJP\nKQLW+1LlyWBes//sJcq5rvOcPPd6C/sps+S/90rYPCy6lfQ284yRaJLtT+UP1ePyAazTFghR\neQXWCqLa8swy71vf5RVY7mLoIWr6HKN0ST5tQ+vsl12S7/ianPXaMQrPSu/Tcid/sTmC5XZk\ns/uWq/JzTWpnf8dP0us7bP4MqCu9/19AWwSqEMCe7qR8WNXhkZW/pkjLFme9dp9JfQ5eeiqw\n7pV62OFWY/l+ronyi+nSi3J/2n50TR5uNmW9lq+IoOa213jKMxkZ/s9mwT5pwZurbZ+ZI3MM\n1e3H5G9aEvCmgFrlFVh/R1LYm7lPp88rsNzF0EPU9DlG6ZM845Vxk+2S8w3loudq1pt8UWhj\ne2TcpsByO7LZf8tvxeTLabKrqlq5Z35kr8v7yoC3CfgFsqebJ386yfbo+8ky8lGt7JM27jOp\nz8FLRwXWT2FEDR2W3ZKGlKJyPC7KhXiZl/M++a6ptKBkzuPA5PtXKWVjzvO4vmgtv3/C9ptu\nFCUa0dLxmV4OoXpDPl/t6Y5E0LK8AsvSTfpjMPe+m9wCy20MLe6jps8xSp/+kZ+oZej3e+6C\n/fK+LO6D7Hf5ovB9FFHYu9lvbAostyObw7d8EEW5h+C3Sy+jjmR/8Kn8JU8K2jLgFMieLtP6\nrv47Ob96ZU6s9L7wz9lv3WdSn4OXjgos+eTcGseF4yn7+eFvR8rZqTH90OcnTx1/aWk7aTdI\nEcdyfux6H/lTKtR7yc6M7ZPrW9+Ms/+myURFjET29+HIoVrymdWru8dXs/5epysWCFk2BZZ1\nuitj9hUNuQWW+xi6j5ocp9mv5aPsFgGPU+Xkro/pvOXDn858eWyS/IAtin4t59P8u6tZ0pJK\n2Wd3bC9ydzeyOX6L/FRV2mJ9mSnf7Uz3bP38x+MH+oVLL8tj3AoJgezpLt1nXVBh/KbnX9m1\npIN81TuV+jLnU/eZ1OfgpZ8C62YqUWS+u/e+knq9rfXVaynkIPGYzQ/OjrT/MHaLwzf9KAeV\nUu0fOp//4QHGWc6eNgChwqbAui0/fr5d9pucAstTDC3uoubscV4SJbcH2PzWzLGja3yR+2H+\nndl1+QqtKVmv7e4idDOy5fsW+Zk5EW9aX56vZ/c7qSctEBIC2dPdmhDu8Lst/8j90H0m9Tl4\nhfr25TkodWb3/Itr5l429df4WNuOTxj1t90PnupjzPswasjv+b5JftqE/WnD/KEyPej+oYag\ndTYFlnxQM3cWkJwCy2MMLW6ips8xSrcyNxe17ea0JTY3KDs54fK6PMB8an1pP02D65Et37dY\nn5lTOKuWuj4l79fCejp7UiFoUkB7uu8fCLP53Tq21yG7z6Q+B69Q3748d0ud+Vz+xfIcRNkl\ntuXykdGtyxQMjyhcttWjB6/l+9HTq3pWKxQeUeTOBzc6m9NYvl817Cf7ZTahiixRq/+OP5z8\nHoQS2wLru5xJsCx5BZYXMbS4jJo+xygdu75/cK1C8r1bxhaTj9nObOz0ipb+0rIa1kPojvNg\nuRrZ8n+L9Zk5FbMPsZ5d2fWORFOBMvc+eUrYJoEKBLSn+/3/27tjlAaiKAyjRRBiYZE0cQOi\nZSzSCqndgTtwBRY2gksQxBW4HIUsQSwC1lYiOCksbEwGfng3yTntvOIODMP34A3zeDUdHwyO\nTi7vX/5c+P+Z3M+X167fH8A2+550O7f31lMAvQksgMKuu43+XeshgN4EFkBhq79rjZatpwD6\nElgAlc27wrr4XL8OKEVgAVT2ujrnfva8/PpYrF8MVCGwAEp7+P3m6rT1JMDmBBZAbU9DgQVb\nR2ABFPd2cz4+PJ7dtp4D2JzAAgAIE1gAAGECCwAgTGABAIQJLACAMIEFABAmsAAAwgQWAECY\nwAIACBNYAABhAgsAIExgAQCECSwAgDCBBQAQJrAAAMIEFgBAmMACAAgTWAAAYQILACBMYAEA\nhAksAIAwgQUAEPYDmH9cQZZL+RwAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 600, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plots_density" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Kaplan Meyer estimates" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "options(warn=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(predvars, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(substitute(subset), data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in terms.formula(formula, data = data):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in FUN(X[[i]], ...):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'mnire's_disease' to native encoding\"\n", - "Warning message in eval(extras, data, env):\n", - "\"unable to translate 'sjgren's_syndrome' to native encoding\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n" - ] - } - ], - "source": [ - "stratum=\"sex\"\n", - "plots = list()\n", - "tables = list()\n", - "plots_tables = list()\n", - "expand = c(0.01, 0.8)\n", - "for (e in endpoints[-2]){\n", - " #print(e)\n", - " #fit = survfit(Surv(death_cens_time, death_cens)~sex, data = data)\n", - " fit = survfit(as.formula(glue(\"Surv({e}_event_time, {e}_event)~{stratum}\")), data=data)\n", - " plot = ggsurvplot(fit,data, conf.int = TRUE, ylim = c(0.85,1), cumevents=TRUE, cumevents.y.text = FALSE) #, risk.table =\"percentage\") + scale_color_\n", - " plots[[e]] = plot$plot + ylab(\"\") + theme(legend.position=\"none\") + \n", - " ggtitle(e) + theme(plot.title = element_text(size=facet_size, hjust=0.5)) + \n", - " scale_color_nejm() + scale_fill_nejm() + scale_x_continuous(expand=expand)\n", - "\n", - " tables[[e]] = plot$cumevents + ylab(\"\") + scale_color_nejm() + scale_fill_nejm() + scale_x_continuous(expand=expand)#+ scale_x_continuous(expand=c(0,0))\n", - " plots_tables[[e]] = plot_grid(plots[[e]], tables[[e]], align=\"v\", nrow=2, rel_heights=c(4,1))\n", - " legend <- get_legend(plots[[e]] + guides(color = guide_legend(nrow = 1)) + theme(legend.position = \"bottom\", legend.title=element_text(size=base_size), legend.text=element_text(size=base_size)))\n", - "} " - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "plot_width=20; plot_height=25; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "plots_f = plot_grid(plotlist = plots_tables, ncol=round(length(plots_tables)/3, 0))\n", - "plots_km = plot_grid(legend, plots_f, ncol=1, rel_heights=c(0.05, 1))\n", - "\n", - "plot_name = \"5_endpoint_km\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAu4CAIAAADq3RRSAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeVgUR/748R5hQAEREcELQUUDeN8aNR54bZ4kbjYaUROv1WhiPDYk3ppN\nYpYYXN2NGo3ZDXhsYryjJgYhkkWJR7xvRBGPELwBHUCu+f3R362nfzAzwEwPV79fj38U3dVV\nNTM1XVZ/pqt1RqNRAgAAAAAAAAAAAKANNSq6AQAAAAAAAAAAAADKDwFCAAAAAAAAAAAAQEMI\nEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQA\nIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQ\nAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAh\nAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBAC\nAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEA\nAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIA\nAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAA\nAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAA\nAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAA\nAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAA\nAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAA\nAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAA\nAAAAAAAaQoAQAAAAAAAAAAAA0BDHim4AAAAAgJLdT/hZxdK8evVTsTTAfvZevKtiaS8Ee6tY\nGgAAAABUXdxBCAAAAAAAAAAAAGgIAUIAAAAA0JbTp0/r/ueTTz6p6OYAGsU3EQAAABWIACEA\nAAAAAAAAAACgIQQIAQAAUFpGo/H48eMfffTRn/70p9atW3t5edWsWVOv13t4ePj6+vbt23fq\n1Klbt27NzMys6JYCFeDtt9/WKfzhD38oawlGo7F58+bKQvbu3WuPpgIqKtLzy6RHjx4V3XwA\nAABAowgQAgAAoFS+++67Dh06dO3adfHixTt37rx48eKDBw+ePn2an5+fkZFx+/bt+Pj4L774\n4tVXX23cuPH8+fOzs7MtlDZ06FCdThcYGFhu7S9RJWwSqrSYmJjU1NQyHXLo0KHr16/bqT0A\nAAAAAAgECAEAAFACo9E4c+bMP/7xj2fPni1N/idPnoSHh/fq1evu3bvmCjx27JiqbbRVJWwS\nqrqCgoKNGzeW6ZANGzbYqTEAAAAAACg5VnQDAAAAUNktWbLks88+E3926dJl9OjRPXr0CAgI\ncHd3r1GjxuPHj5OTk48cObJx40YRZjt16tSIESPi4uJq1Cj6o7SkpKRHjx6V3wsohUrYJFRd\ntWrVku+gXb9+/Zw5c0p5VE5OztatWyVJcnZ2fvr0qR3bB9jNRx991Lt379Lnd3d3t19jAAAA\nAFhAgBAAAACW3L59+4MPPpDTer3+iy++mDBhQpE8np6enp6eXbp0efvttzds2DBp0qS8vDxJ\nkuLj4zdu3Dhu3Lgi+Y8ePVoOLS+TStgkVF3t2rW7dOlSZmbmpUuXjh071q1bt9Ic9d1332Vk\nZEiS1LVr10OHDtm5jYBdtGnTpl+/fhXdCgAAAAAlY4lRAAAAWLJ+/fqCggI5PWfOnOLRwSLG\njh0bEREh/ly2bFnxPJUwGlcJm4Sqy2g0Dh48WE5HRUWV8iixvuhzzz1nj1YBAAAAACAQIAQA\nAIAl58+fF+nx48eX5pC33367adOmOp3O39+/efPm8k1RkiRFRUXpdDqdTrd69Wp5S2Jiou5/\nGjRoIEo4fPiw2B4fHy9J0sOHD2fOnNmsWTNnZ2dvb+/ExMTi9f72228REREvvvhis2bN6tSp\n4+joWKdOnYCAgBEjRnz55ZcGg6H4IaVvko0VVXvXrl1bsmTJ0KFD/fz8ateu7ejo6O7uHhAQ\n8NJLL61cufLevXulKeTnn3+eNWtW586dfXx8nJycvLy8goODR4wYsWnTpsePHxfPn5eX1759\ne/nDcnBwOH78uIXC//a3v4lPdtq0aVa+ztLJyckZNmyYnN68eXNp1gu9c+fO/v37JUnS6XQh\nISGlrKgcumJZPxStoefbj3V97/jx4+L1xsXFyRsvXrw4ceJEf39/Z2dnFxeXVq1avfHGGxcu\nXFAeWFhYuG3btiFDhtSvX1+v13t6enbv3n3JkiViCLOAbyIAAACqJCMAAABgXv/+/cV/HR8/\nflzKo5KTkzMzM4tsjIyMtPD/Uh8fH5Hz1KlTYvvevXszMjKCgoKUmU+dOqUsOTc3d/bs2Xq9\n3kL5Xl5eu3btsrpJNlZku3uH4lT8p2LDsrOz33zzzeJPmlRydXVdunRpYWGhuUIuXrzYo0cP\nCyU0aNBg8+bNxQ88efKko+P/PTehc+fOBQUFJstPSUlxcXGRszVr1qz0PblMRPSlVatWDx8+\nFA3bsmVLiccuX75czty1a9fTp0+LF75nzx6T+W3sisqvWHh4uMk8Vn8o6tpz4Y6K/1RsGD1f\nUMYdd+7caXuBtvQ9ZdhP/vp88MEHOp2ueCGOjo6bNm2Sj0pNTW3fvr3Jupo0aZKYmGiuqdr5\nJgIAAKD64Q5CAAAAWFKnTh2RvnLlSimPatasWe3atYtsbNSoUUhISEhIiKurq7zFxcUl5H+U\nyyrWqlVLpA0Gw0cffXTp0iVzdRmNxldeeeXTTz+VH3woc3d3b9q0qYeHh9hy//79l19+edu2\nbdY1ycaKqiuj0Ths2LA1a9YUFhbKWxwdHX19fVu0aKHsOQaDYc6cOWFhYSYLiYmJ6d69+5Ej\nR8SWJk2adOrUqWXLlg4ODvKWtLS00NDQpUuXFjm2Y8eO8+fPl9MnTpxYs2aNySqmT5+elZUl\nSZJOp/vqq6/c3NzErpo1a+qs9eOPP5qsLj8/v27dugMGDJD/LM0qo2J90dDQULGorznl0BVt\n+VC0gJ5fprerTGzse05OTiKdnZ29fPny999/32g06nS6unXrOjs7i735+fkTJ05MTEx89OhR\nnz59zpw5I0mSo6Ojp6enqEiSpNu3b7/66qsmv5V8EwEAAFClESAEAACAJV26dBHpxYsXlxi6\nsGDw4MGxsbGxsbH+/v7yFl9f39j/2bJli8ipvBvjwYMHX3zxhSRJQUFBc+bMiYiImDdvnqen\np8iwZs2aPXv2yGlvb++1a9c+ePAgIyPjxo0bjx49SkpKmjJlirzXaDROmjTp0aNHVjTJxorK\nR96jBxc+nnP3v/vLrcb169fLC2NKktS1a9eYmJisrKybN29evXo1PT09NTX1s88+ExfKV6xY\ncfjw4SIlJCcnv/rqq/ISeTVq1JgxY8b169dv3bp14sSJK1euPHz4cPXq1aKEuXPnbt++vUgJ\nCxcuFLf+LFiwIC0trUiGPXv2iA9u2rRp/fr1U+W1WyAHjV5//XX5z+jo6OKtUjp//rx816CD\ng0NoaKjRaLRcvr27ou0fSnm6+zj39a/PbDv7e3lWSs+3E9vfFuXwcenSpYULF3p4eKxevTo9\nPf3hw4dZWVmHDh1q27atnCE3N3fFihVz5869du1ap06d9u/fn5OT8+DBg8zMzE2bNomfuZw5\nc+aHH34o3lq+iQAAAKjaKuS+RQAAAFQVKSkpyuutgwcPvnr1qo1ltm7dWi7tmWeeMZnhxo0b\nokb5NqywsDBzy/Q1b95czlmjRo2TJ0+azKNcAS8iIsKKJqlVkdVKs3Dob7u2xPYOOrv4L+W2\nxKh4Wl7Dhg3NrV6YlJRUr149OduoUaOK7B00aJC8S6fTieX+irh48aK7u7uczc/PLzs7u0iG\nU6dOiV46evRo5a6srCwR/W3RooXBYChyrPKOorLat2+fsijx6fv5+clVi2Z/+umnFt7Gd999\nV842dOhQo9H466+/iipMLjFqe1e0vLChKh+KWkpcNXTd4ZvSO9+/uuFkeS4xSs9XFqXiEqO2\nvy03b94UjXFxcXFzczt9+nSREm7evFmzZk05j5ubm06ne/bZZ7Oysopk27hxoyhq8uTJxVui\nqW8iAAAAqh/uIAQAAIAlfn5+77//vvhz//79zzzzzIsvvhgZGam8Dqsu5WO9Dhw40Ldv34iI\nCJMPkUpOTk5OTpbTzz33XMeOHU0WOHfuXJGOjY21oknlVlHVIh73FRISoly9UCkgIGDevHmd\nO3cePnx4mzZtlLtOnjwZExMjp8eNGzdmzBiTJQQFBf3tb3+T0zdu3Ni6dWuRDB06dBDLLX79\n9dcHDhwQuz766KOUlBRJknQ6XWRkpHgem3Djxo3frSUWETWpVq1aoaGhcnr9+vXmshUUFHz9\n9ddyevz48RYKlNm7K6r1oVRv9PwS3iCrqPK2KEeKrKysRYsWFX+4oK+v7+DBg+X0kydPdDrd\nv//9b+XS1rKRI0eKD1degFSJbyIAAACqOseKbgAAAAAquwULFri4uLz33nvy+qIFBQV79+7d\nu3evJEm+vr69e/fu3bt3r1692rZtqwzsqWj+/Pkmo4OSJDVv3jwnJyctLS0tLU08R7C4Jk2a\n+Pr63rp1S5Kk69evW9GGcqvIgtyMR9k3LJWZ/zhTkqSnd9Iyzp40l8fRvY6rfwu1mvT06VM5\nIS+CZ05YWJjJx7Apw2azZ8+2UMLEiRNnz54tP01tx44dYvVOYcGCBbt27ZIv4r/11ltnz551\ncnK6fPny3//+dznDjBkz+vTpU7xkHx8fC/XaaMKECevWrZMk6cKFC8ePH1cu2CvExsampqZK\nkuTh4TFs2LASy7R3V1TxQ1HLpTtPHmTlmtv7KDtfkqRb6TmHrj+0UEigt5uXq5OFDGVCz7cH\n1fuek5PT5MmTTe5q37797t275XTfvn0DAwOL59Hr9UFBQfIdvbdv3y6yV4PfRAAAAFQzBAgB\nAABQsr/85S/PPvvs+++/Hx0drdx+69atb7755ptvvpEkyd3dfdCgQS+88MJLL72kfEagjdzc\n3CzfreLs7Ozn5+fn52e5nPr168uXaK1+NGC5VWROVsq1G19/VUImnZRx/nTG+dPm9rsHt23m\n/6ZaTfL395df5r59+3799deuXbuW6fD4+Hg50bx586CgIAs5a9Wq1adPH7n7iaOU9Hp9VFRU\nt27d8vLyEhMTIyIiFixYMG3atNzcXEmSWrZsGR4eXqa2qaJHjx5BQUGXLl2SJCkqKspkgHDD\nhg1yIjQ0VCx7aJldu6KKH4patp39/djNDMt5Dqc8Opxi6WW+17/5c81VOy/R8805fvy4o2MZ\nrjN069bN29tbTqve9zp16lS3bl2Tuxo0aCDS/fv3N1eCyGYyEqy1byIAAACqGZYYBQAAQKl0\n7979xx9/PHXq1Ny5c5955pniGTIzM7dv3z5hwgRfX9+33nrr2rVrqtTbsWPHMl1uNkc8qauw\nsND20ipDRf9H9///M7nFbsSqd7m5uX379p0/f75Yc69E2dnZZ8+eldMtWpR8U6NYpPHhw4dp\naWnFM3To0GHBggVy+uOPP/7444/lFRdr1KgRGRlZfP3A8iFWDf3mm2/kmI3S48ePd+3aVSSn\nWqzoiqp/KNUVPd+cjz/++MWyOHbsmHygPfpecHCwucOVwXiTtw8WyVb8y1t6fBMBAABQOXEH\nIQAAAMqgQ4cOHTp0CA8P/+233w4dOvTLL78kJCScOXMmPz9f5MnKylqzZs1XX321bNmyt99+\n28Ya/f39S5Pt6dOnu3fv3r9//7lz51JSUjIzM7Ozs22sumIrKi2j3aOAFsyYMWPnzp0JCQmS\nJGVnZ4eHh4eHhwcGBg74H3O370iS9ODBA3G5PCEhocQPOjMzU6RTUlKUNwAJ8+fP37Vr1+nT\np7OzsxcuXChvnDVrVq9evcr4ylQzduzYBQsW5OfnP3z4cM+ePa+88opy77Zt2+SFAQMDA7t3\n716mku3RFe3xoVRL9HzV2eNt8fDwMHe4ckHsUmYzh28iAAAAqigChAAAALBG48aNR44cOXLk\nSEmSDAbD4cOHY2Jidu/effnyZTnD06dPp0+fbjQap0+fbktFderUKTHP119//d5778kPcrOr\ncqvIJLeWQa1mzLWQIS/90fWNX3h2fdarx3Pm8jg4q3k7kV6vj46Onjp16qZNm8TGy5cvX758\n+fPPP3dwcOjRo0doaOiYMWOKx0uUq+1lZWXduHGj9PUqr4YXaU9UVFTXrl3z8vLkLa1atVqy\nZEnpS1ZdgwYNhg4dKj+zMyoqqkiAUKwvWtbbB+3UFe3xodhuUvemozrmm9t735D3cezVQa28\nng+qb6EQn9rOKjaJnq86O70tpTm8lNlM0tQ3EQAAANUMAUIAAADYytXVdeDAgQMHDly6dOmB\nAwdmzZp17tw5ede77747bNiwpk2bWl24s3MJl/WXLFmyaNEi5RZ/f//GjRvXq1evdu3aYmN0\ndPT9+/etbkZ5VmSOo4uro4urhQxy8M+xtnutxta/4WXl6uq6cePG6dOnr1q16rvvvlNemy4o\nKEhISEhISFi4cGFYWNj8+fMdHBzEXoPBYHWlT548MbcrICDAx8fn9u3b8p8tW7asqMVFhQkT\nJsgBwh9//PHOnTs+Pj7y9ps3b/73v/+VJMnBweH1118vfYH264p2+lBs1NDdWZLMngdcnZ5K\nklTXRR/gZenboTp6vkk7d+784x//aMWBlbPvWaa1byIAAACqGQKEAAAAUNOAAQOOHDkSEhJy\n5MgRSZJyc3PXrVtnvxtZfvrpp8WLF4s/p02bNnv2bJPxyB49etgStyu3iqqobt26bdiwIS8v\nLz4+/ocffti/f//58+fF3oyMjMWLFx89enTbtm3imV7KC+ivv/66uJfORnPnzhUxEkmSvv/+\n+02bNr322mvm8j948MBoNFpXV506dUpz79GLL77o5eV1//79/Pz8//znP++88468fePGjXLV\ngwYNatSoUSkrtWtXtNOHUo3R89VS5foe30QAAABUdQQIAQAAoDIXF5eIiIg+ffrIfx48eNB+\ndS1dulRc416xYsWsWbPM5SwoKKgSFVVper0+JCQkJCREkqS0tLS9e/euX7/+0KFD8t7vv/9+\n2bJl4gFp7u7u4kC11sSLj49fvXq1nG7atOnNmzclSZoxY0ZISEjDhg1NHtK4ceOnT59aV92+\nffuGDh1aYja9Xj9mzJh//vOfkiRFRUUpA4Ryokzri9q1K9rjQ9ECer7tqlzf45sIAACAqq7k\nB24DAAAAZdW1a1edTien79y5Y6daDAbDTz/9JKebNWs2c+ZMC5lteUZUuVVkIyev+u0/+bzh\n4JcqqgFKDRo0mDRp0sGDB7dv3y7unfrkk0+ysrJEBrF+7NWrV22vMSsr689//rN8yb5nz56/\n/PKL/ADLR48eTZkyxfbybTFx4kQ5ce7cuTNnzkiSdOzYscTEREmSPDw8hg0bVspy7N0VVf9Q\nykFDd+c9f+7yeufGFd2Q/0PPt07V6nt8EwEAAFANECAEAACAafn5+evXr58+fXrPnj27detW\npmMLCgrErRUuLi52aJ0kSdLt27cLCwvldL9+/URIsrgrV67YErcrt4qqpT/96U/z5s2T0waD\n4fjx43Jar9e3a9dOTl+5csX2u2Tmz58vX0nX6/Xr1q1r3LhxeHi4vGvPnj0Vu0Zfu3btOnXq\nJKd37NghSdLmzZvlP0NDQ0UYqUT27oqqfyhaRs8vk6rV9/gmAgAAoBogQAgAAADTHB0dP/zw\nw1WrVh05cuTXX3/9+eefS39sQkKCSPv7+6veNllGRoZIKxdkK27NmjVVoqKq6ObNm/J6hhb0\n7NlTpJVvpliHNi8v77vvvrNcSGJiooWr5AkJCStXrpTT7733Xps2bSRJmjp1qqh65syZJi/T\n5+TkGK1VplUWJ0yYICe+//57SZJ27twp/1mm9UXLoSuq+KFUb/R81VWhvsc3EQAAANUAAUIA\nAACY9frrr4v0pEmT7t27V5qjnj59Kp62JUnSiy++WCSDuNlCrLlnHQ8PD5FOSUkxl+3UqVOf\nf/65+DM7O7t4HstNUrGi6iQsLKx+/fp+fn6vvfaa5Zz3798XaW9vb5FWxsbCw8MtPKkrJydn\n4MCBXl5eISEh8h14StnZ2RMmTJBv6AkICFi0aJG8XafTrVu3Tq/XS5KUnp7+xhtvlPKl2cPo\n0aPlNQNPnTp18OBBuSMFBgZ279699IWUQ1dU60Opxuj5dlKF+h7fRAAAAFQDBAgBAABgVlhY\nWIMGDeT0tWvXunXrFhsba/mQpKSkQYMGHTt2TP7T19d3xIgRRfKIBRXT0tKePHlidfNatGhR\nu3ZtOR0XF5eWllY8z4ULF1544QW9Xv/ss8/KW7Kysh48eFCmJqlYUXXSsGFDOf5x8ODB1atX\nm8uWn5+/atUqOe3u7t6+fXuxq23btgMHDpTTly5deuutt8TKtEp5eXljx469fft2Xl7egQMH\nil8oX7hwYVJSkpxeu3atcsXONm3ahIWFyenvv/8+KiqqjK9SNZ6eni+99JIkSYWFhe+//768\nsUy3D0rl0hXV+lCqMXq+nVShvsc3EQAAANUAAUIAAACYVbt27W3btsm3PUmSlJKSMmjQoI4d\nO/71r3/dtWvXmTNnrl27duPGjYsXL8bExPzjH//4wx/+EBgYePDgQTm/k5PTv/71Lzc3tyLF\nNm3aVE7k5eWFhYXdu3evoKAgJSXl0aNHZWqeg4PDyy+/LKczMzOHDx+enJws9qampn744Ydd\nu3ZNTU1dunRp3759xa4vv/yyTE1SsaLqZMqUKT4+PnL67bffHjdu3OHDh/Py8kQGg8Gwb9++\nvn37/vLLL/KWqVOnFnne3rp160QPWbdu3cCBAw8dOiSug+fk5GzdurVnz55bt26Vt/Tr169I\nyPnw4cP/+Mc/5PS4ceNCQkKKtHPx4sXNmzeX07Nmzfrtt99se93WmzhxopyIi4uTJMnBwUF5\nk25plE9XtP1Dqd7o+fZTVfoe30QAAABUB1Y/dQAAAAAaERcXJ+4jLD1PT8/o6GiTBa5du9bk\nITExMXKGW7duiY1hYWEW2paUlKQMQDo4OLRs2bJ3794tW7asUeP/fgw3fvz4wsLCvXv3Kutq\n3bp19+7dExMTS9kktSqy2r1DcSr+s7ExwoEDB0T8WLwzjRo18vPzE7fXCL169crKyipeSExM\nTJEosqura0BAgLe3t1j6VRYcHHznzh3lsdnZ2YGBgfJeLy+ve/fumWxndHS0KOQPf/iDWi+/\niGnTpslV+Pn5mcxQUFDQuHFj0ZKhQ4eazPbrr7+KPHv27CmyV5WueOrUKbE9PDy8eBts+VDU\ntefCHRX/qdUqer6S6PmSJO3cudPG0mzse8rhY86cOeZqiYyMFNni4uLMZRs5cqScx9nZucgu\nrX0TAQAAUP1wByEAAABK0K9fv3Pnzr377ruurq6lyV+nTp0ZM2YkJSUNHjzYZIZx48a1adNG\nlbYFBARs377d3d1d/rOgoCApKenQoUNJSUmFhYUODg6LFi2KjIzU6XRDhgxp166dOPDChQtH\njx7Nzc0tZZPUqqia6d+/f3x8fHBwsNhSUFCQmpp648aNx48fi42Ojo6zZs2KiYmpVatW8ULk\n22J69+4tthgMhqtXr969e9f4v3tldDrdhAkTEhISlA9ykyRp8eLFly9fltPLly/38vIy2c7B\ngwePHj1aTu/bt++rr76y5tXarEaNGmPHjhV/lnV9UVn5dEVbPhQtoOfbT1Xpe3wTAQAAUNU5\nVnQDAAAAUAV4eXlFRER88MEHsbGxBw4cuHDhwtWrV9PT0w0Gg06nq127tru7e/PmzTt06NCr\nV6/nn3++yL01RdSsWTMuLm7RokV79uxJS0vT6/UNGzbs3Llzs2bNrGjb4MGDExMTV61a9eOP\nP169evXJkydubm4tWrQYMGDA5MmTW7VqJWdzdHTct2/fO++8Exsbm5mZWb9+/d69e4t1AkvT\nJFUqqn66det2/vz56OjoPXv2nDhxIiUlJSMjIy8vz9XV1cvLq02bNn379g0NDW3UqJGFQtq3\nb3/w4MG4uLjdu3fHx8enpqY+fPjQ0dHRw8MjODi4d+/eY8eOLd49jh07tnz5cjkdEhJiebnO\nFStW7Nu3T14z9p133hk0aJCvr69tL90aEyZMCA8PlyTJw8Nj2LBh1hVSPl3Rug9FO+j59lNV\n+h7fRAAAAFRpOqOpx1wDAAAAqFTuJ/ysYmlevfqpWBpgP3sv3lWxtBeCucUKAAAAACRJklhi\nFAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhrDEKAAAAAAAAAAAAKAh3EEIAAAAAAAAAAAAaAgB\nQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAg\nBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAAAABoCAFC\nAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAAAICGECAE\nAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAAABSdl4IAACAA\nSURBVAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAA\nAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAA\nAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAA\nAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAA\nAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAA\nAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAA\nAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAAAAAA\nAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAAAAAA\nAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAA\nAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAA\nAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAAAAAA\nAICGECBEdXbkyBHd/yxbtkz18k+fPi3K/+STT1QvX7h169a0adNatWrl6urq5OTk4+OzePFi\neZeF11huzbOlJeXcSJPs3U8AABq3d+9eMdBERUVVdHMAAGXAObxCMEcDgMrMwuBYbS7GAhrh\nWNENAFCCM2fO9O/f/9GjR2LL3bt3k5OTK7BJAAAAAAAAAACg6iJACFR2U6dOVUYHHRwcatTg\n3l8AAAAAAAAAAGAlAoSojIYOHRodHf3MM89cvnzZlnIaNGgwbdo0Od2xY0c1mlbe7ty5c+TI\nETnt5uYWGRn58ssvOzg4ZGVlyRsrz2usPC0pznKPqswtBwAAAIDqhzkaAFRLWjuBq3URG6go\nBAhR6RiNxmPHjqlSlL+//6pVq1QpqqLcvHlTpCdMmDB8+HA57eLiIicqz2usPC0posQeVWlb\nDgAAAADVD3M0AKiuNHUCV/EiNlBRWKgQlU5SUpJyRU2Nu3Pnjki3a9euAltSddGjAAAAAKDy\nYI4GAKgGGM5QDRAgRKVz9OjRim5CJZKfny/Sbm5uFdiSqoseBQAAAACVB3M0AEA1wHCGaoAA\nISodzq1QFz0KAAAAACoP5mgAgGqA4QzVAAFC2MVvv/0WERHx4osvNmvWrE6dOo6OjnXq1AkI\nCBgxYsSXX35pMBiKHxIVFaXT6XQ63erVq+UtiYmJuv9p0KCByHn48GGxPT4+XpKkhw8fzpw5\ns1mzZs7Ozt7e3omJiXLOI0eOiJzLli1TsbX2tnbtWrnZL7/8stg4atQo8XJee+01eWMpX6NO\np5MTp0+f/stf/tKxY0dvb29nZ+cmTZqEhIR89tlnjx8/Nnmg6u+2dezao0rZ8oKCgp07d06Z\nMqVt27Y+Pj5OTk6enp4tW7b84x//uGrVqrt375o78Pjx46L8uLg4eePDhw/Dw8O7devm4eGh\n1+vr1avXuXPnd9999/r161a+RwBQBeXm5n7zzTcjR45s27ZtvXr1nJ2dGzZsOHDgwIiIiIcP\nH5Z4uNVn5ujoaHFm3r9/v7zx4MGD48aNa9u2bf369WvWrNm0adOQkJC1a9eaGyIFo9G4Y8eO\nESNGNG/e3MXFxdPTs02bNuPHjxfnfABApaXiOfznn3+eNWtW586d5SHJy8srODh4xIgRmzZt\nsjCUmJwsXLx4ceLEif7+/s7Ozi4uLq1atXrjjTcuXLigPLCwsHDbtm1DhgypX7++Xq/39PTs\n3r37kiVLMjIyyrm1pZ/aqD5Hq4RzeQCoBmwZHMvzBG711c4iyjomln44s7GiIq5du7ZkyZKh\nQ4f6+fnVrl3b0dHR3d09ICDgpZdeWrly5b1790rzYoGijICqcnNzZ8+erdfrLfQ6Ly+vXbt2\nFTkwMjLSwiE+Pj4i56lTp8T2vXv3ZmRkBAUFKTOfOnVKznn48GGxMSIiQsXWFm9JeHi4Sm+h\n0Wg0rlmzxkKTJEkaM2ZMia9R2bxPP/00Pz9/6tSp5gr09fX9+eefLb9Gq99tC29Uie9hOfSo\nEvuJ0Wjcv39/YGCghQJdXV0XL16cn59f/FjlTH7Pnj1Go3HLli0uLi4my9Hr9V999ZXJNgBA\nNRMTE+Pv72/hvLpy5UoLh9tyZpZ/8iLbvHmz5SHS398/ISHBXDN+//33/v37mzt28ODB6enp\ne/bsEVsiIyNtf+sAAKpQ6xx+8eLFHj16WBiSGjRosHnzZpPHFp8sfPDBB+KKp5Kjo+OmTZvk\no1JTU9u3b2+yriZNmiQmJlp41eq2tkxTGxXnaDbO5QEA5tg4OJbnxVirr3YK1o2JpR/ObKxI\nyM7OfvPNN2vUsHSvl6ur69KlSwsLCy28XqA4Rwu9Cigro9H4yiuvKAcJSZLc3d09PDwyMzPT\n09PlLffv33/55Ze3bNkyfPhwka1Ro0YhISGSJB05ckT+nYiLi0vPnj3lvZ6eniJnrVq1RNpg\nMHz00UeXLl0q59bam/xTF0mS7t27d/bsWXljmzZtfHx8RLpMBTo4OEyfPn3t2rXyn3q93s3N\nLT093Wg0yltu3br1wgsv/Pe//+3UqZPyQLXebeuUT48qUWRk5OTJkwsKCsQWX1/f+vXrGwyG\n69ev5+bmSpJkMBg+/PDD8+fPb968ucj/cpycnEQ6Ozt78+bNY8aMKSwslHe5ubllZmaKh03m\n5eVNmjSpZcuWvXv3Ln0LAaDK2bhx44QJE5SnVgcHB71en5OTI/9pMBimT59+7dq1FStWFD/c\nxjOzs7OzSD9+/DgsLEwMkfK9GspHzaekpAwZMuSXX35p27ZtkWY8fvx46NChZ86cEVvq1q3b\ntGnT3NzcGzduZGVl7d+///nnn589e3YZ3x4AgN2pdQ6PiYl55ZVXlD/8b9Kkibe39+PHj5OT\nk+WhKi0tLTQ0NCUlZc6cOUUOLzJZWL58+fvvvy9Jkk6n8/DwyMrKevr0qbw3Pz9/4sSJXbp0\n8fb27tOnz7Vr1yRJku8eyMjIEGPi7du3X3311RMnTjg4ONi7tWWd2qg1R6vMc3kAqNLsPcFR\n9wRu9dVOmdVjYlmHMxsHX6PROGzYMLHyjSRJjo6ODRs2dHJyun//vlg5wGAwzJkzJy0tbfny\n5RbeNKCoiotNohoSN1ZLkuTt7b127doHDx6IvUlJSVOmTBEZ6tSp8/Dhw+KFtG7dWs7wzDPP\nmKxFngjJPv/889q1a0uSFBQUNGfOnIiIiHnz5t24cUPOaflHK7a31n53EAo7d+4UVXzzzTfF\nM5Tyvr2RI0dKkuTg4PDWW2+dPn1a/jlJTk7Orl27AgICRLaOHTsW+aWJKu+21XcQlk+PstxP\njhw5IqbWNWrUCAsLu3XrlthrMBgiIyNF4FaSpPfff79ICSkpKcrXWKdOHZ1ON2nSpNOnT8sZ\nnj59Ghsb265dO5Gtf//+JpsKANXD0aNHRcTO2dn5r3/969WrVwsKCoxG4++//758+XI3Nzdx\nSvz222+LHG77mfn48eNir7xqt4ODQ1hY2KVLl+QMWVlZ3377bdOmTUW2Nm3aFP8x5l/+8heR\nwdfXd+/eveKGxZycnC1btsglDBo0SGTjDkIAqCRUOYdfu3bNw8NDDEkzZsy4fv262JuRkbF6\n9WqRQZKkbdu2FSlBOVn44IMPatWq5eHhsXr16oyMDKPRWFBQcOjQIeUvVKZMmfLGG29IktSp\nU6f9+/fLbTYYDJs2bZIna7Ldu3cXf8nqttaWqY2NczRV5okAgOJsHxzL82Ks1Vc7jWqMicZS\nDGeqVKS8YbFr164xMTG5ublib2pq6meffaYs4ZdffjHXGKA4AoRQU/PmzcX57uTJkybzTJs2\nzcI4YSzFufXGjRuihAEDBkiSFBYWZvIGastjku2trUIBQkmSdDqdyRLu3bunvAC6c+dO5V5V\n3m2rA4Tl06MstLywsFAcLpm/qnvp0iV3d3c5j5OTk3KkNxqNN2/eFCW4urrqdDqxNJDS3bt3\n69atKz6su3fvmqwLAKoB8ftNR0fHuLi44hl++uknsXxK06ZNlcuEqnJmLjJESpK0devW4oWk\npaUpHyBRZKqWmpoq7kR0d3e/cuVK8RJu3brVuHFjZUUECAGgMlDrHC6ukJr7T77RaLx48aIY\nkvz8/LKzs5V7lZMFFxcXNzc3EWxT5qlZs6acx83NTafTPfvss1lZWUWybdy4URQ1efLk4i1R\nt7W2TG1sDBCqMk8EABShyuBYnhdjJWuvdhrVGBONpQsQ2l6RfLeiJEkNGzZ8/PixyRKSkpLq\n1asnZxs1apS5xgDFWVq4FiiT5OTk5ORkOf3cc8917NjRZLa5c+eKdGxsrBUVKRdcPnDgQN++\nfSMiIkw+pMGCcmtt5TFq1KjQ0NDi2728vD7++GPx55YtW5R7VXm3rVMZPqO4uDjxmI3nn39+\n/PjxJrMFBgYuWLBATufm5m7YsEG5V/l2GQyGN954Y8yYMcULqV+//qhRo+S00Wg8ffq0zc0H\ngMro559/PnnypJx+8803+/XrVzzPgAEDxCn35s2b0dHRYpcqZ+YiRo8ebXLtGh8fn08++UT8\nuXnzZuXe7du3i2Xfpk+f3rJly+IlNGnSZNmyZRaqBgBUCFXO4SdPnoyJiZHT48aNM/mffEmS\ngoKC/va3v8npGzdubN26VblXOVnIyspatGhR8YcL+vr6Dh48WE4/efJEp9P9+9//Vj4MQjZy\n5EhxC75ydTg7tbaipjaVYZ4IANWSvSc49jiBW3e1U5UxsTRUqUjMf0NCQpRr7SgFBATMmzev\nc+fOw4cPL+tzqaBxBAihmubNm+fk5KSkpBw5cmTlypXmsjVp0sTX11dOX79+3fZ658+fb0W8\nqqJaW4GUqwQUMXLkSPFg+R9//NFCIda929apDJ/Rpk2bRFr5C6biJkyYINa7+/bbb81l0+l0\nxRcTF7p27SrSyns3AaA6UZ4kLTxP/tVXX23SpEmHDh0GDhwoHqsg2eHMLEnSjBkzzO0KDQ0V\nQ2RsbKz8mCXZ3r17RVpep9SkESNGiN9yAgAqCVXO4evXrxdpy09jmjhxohhNduzYYS6bk5PT\n5MmTTe5SRg379u0bGBhYPI9erw8KCpLTt2/ftndrK2pqUxnmiQBQLdl7gmOPE7h1VztVHxPN\nUaUiEbVVPsWwuLCwsOPHj2/dunX+/PllbSe0jAAh1OTs7Ozn59e9e3fLP1WoX7++nHj06JGN\nNbq5ucnrXlqh/FtbgRo2bNilSxdze/V6fY8ePeT0o0ePUlNTTWaz5d22ToV/RmJhBGdnZ+UC\n6ybbIH76dPnyZfkZxcW1bt26WbNm5gpp0qSJSFse9QGg6vrpp5/khI+PT3BwsLlsQ4YMuXXr\n1qlTp2JiYsRdCJIdzsyNGzfu3r27uUKcnZ3FJc709HTl9VZxc4a3t7fJC7UyBweHgQMHWmgn\nAKD8qXIOj4+PlxPNmzcXkTmTatWq1adPnyJHFdepUyexMmcRyiWv+/fvb64Eka34bEL11lbg\n1KbC54kAUC2VwwRH3RO41Vc7VR8TzVGlIn9/fzmxb9++X3/9taxtACwjQIgKoNfr5YTyZ/jW\n6dixo6Ojo80tskTF1lYg5VPiTWrRooVIX7582WSecni3rWOnz8hgMFy5ckVOBwYGilrMEZe5\nCwsLz507ZzJP8fWClMRvhSTF74MAoDp5+vTptWvX5LTJJWsss8eZuXPnzpYLadWqlUiLxqen\np6elpcnpgIAAyyUoH5oIAKhwqpzDs7Ozz549K6eVkylzxJXQhw8fitqLsPC7GfEMQkmSLFy0\nFdlyc3Pt3drKP7WpHnN5ACgflWqCU8oTuHVXO+0xJpqkVkViYdLc3Ny+ffvOnz9frNQK2K4y\nXutHVff06dPdu3fv37//3LlzKSkpmZmZ2dnZdqpL/IbCauXZ2gpU4tCufMLwgwcPTOax/d22\nTkV9Rr///rv4j4iF38YKfn5+Im3ufwyenp4WSlA+8REAqqVbt26JU2ujRo3Kerg9zswljm7K\nIfLu3bvFS1NmMEmskAMAqAxUOYc/ePBADEkJCQkljiaZmZkinZKSorwjUPDw8DB3uHKmUMps\n9m5thU9tNDKXB4DyUZ4THLVO4NZd7bTHmGiSWhXNmDFj586dCQkJkiRlZ2eHh4eHh4cHBgYO\n+B9zyw8ApUGAECr7+uuv33vvPXNrVKquTp06thxezq2tQCW+UcofeD558sS6QuyhAj8j5cBs\n7iHASq6uriaPVXJycrK9YQBQdSkXGVMOPaVkjzOz5eubRQoR65Qqx8oSX4iyBABAhVPlHK5c\n9CwrK6tMj9kzNySVeGd8mbIp2aO1FTu10c5cHgDKR7lNcFQ8gVt3tdMeY6JJalWk1+ujo6On\nTp26adMmsfHy5cuXL1/+/PPPHRwcevToERoaOmbMGCKFsAIBQqhpyZIlixYtUm7x9/dv3Lhx\nvXr1ateuLTZGR0ffv39flRqdnZ2tPrb8W1uBShzale+kuRVgbHm3rVOxn1FWVpZI16pVq8T8\nymV/lMcCAIScnByRtuL6pj3OzCVe31RmECu2KX/iWqYSAAAVTpVzuLlH25aGuV9k2k/Vam2J\nNDWXB4DyUT4THHVP4NZd7Sy3MVHFilxdXTdu3Dh9+vRVq1Z99913yvBhQUFBQkJCQkLCwoUL\nw8LC5s+f7+DgYHW90CAChFDNTz/9tHjxYvHntGnTZs+e3bRp0+I5e/ToUeH/Ta9arbVdXl6e\n5QzKoKAVt3TYQ4V/RsrfQ5Um4KfMU5r7WgBAg2x8IpE9zswlNkOZQUQllVPNIs95Ks6WmSEA\nQHWqnMOV1zFff/31DRs2qNI2O6larbWswueJAFAtlcMER/UTuHVXO8ttTFS9om7dum3YsCEv\nLy8+Pv6HH37Yv3//+fPnxd6MjIzFixcfPXp027Ztyl/KApYRIIRqli5dajQa5fSKFStmzZpl\nLmdBQUF5NcqsqtVa25X4C5dKGNyq8M9I+WyP0vxESPnfowpZjhUAKj/l6TE9Pb2sh9vjzFym\nIVJEKJVjZYmhyoyMDMsZAADlSZVzuLu7u0iXacGxClG1WmtZhc8TAaBaKocJjuoncOuudpbb\nmGinivR6fUhISEhIiCRJaWlpe/fuXb9+/aFDh+S933///bJlyxYuXKhWdaj27P7UaGiEwWD4\n6aef5HSzZs1mzpxpIXOFPyegarVWFbdu3bKc4bfffhPp0j9u134qw2fUoEEDcVf+9evXS8yf\nnJws0iU+zxkAtKlx48ZiZdGbN2+W9XB7nJnLNESKQurVq2cyg0lJSUmWMwAAypMq5/AGDRqI\nmy2uXr2qVtvspGq11oLKME8EgGrJ3hMce5zArbvaWW5jYjlU1KBBg0mTJh08eHD79u3irsFP\nPvmEJx+h9AgQQh23b98uLCyU0/369dPpdOZyXrlypcL/m161WquKCxcuWM6gHKgCAwPt3JyS\nVYbPqFatWsHBwXL68uXLJS6wcO7cOTnh5OTUpk0bezQJAKo6vV7fqlUrOX3x4kXlgy6KS0xM\nlB+9fvv2bXmLPc7MJQ6RytlvixYt5ISPj4+4nbHEyd6ZM2csZwAAlCdVzuF6vb5du3Zy+sqV\nK5X8tryq1VoLKsM8EQCqJXtPcOxxArfuame5jYnlOfj+6U9/mjdvnpw2GAzHjx+3X12oZggQ\nQh3KW8uVN1AXt2bNGvs3pwRVq7WquHDhgoWf1eTm5h49elRON2nSxNPTs7zaZVYl+Yx69eol\nJ3Jzc6Ojoy3kvHHjhlj4u3PnzlY/rhkAqr1+/frJidzc3JiYGHPZbt26FRgYGBQUFBQU9PHH\nH4vtqp+ZLQ+ReXl5YnLVpEkTb29vsat169Zy4u7du5cvXzZXQmZm5sGDBy20EwBQ/lQ5h/fp\n00dO5OXlfffdd5ZrTExMrNiwXNVqrTmVZJ4IANWSXSc49jiBW321s9zGRLUqunnzZokL8PTs\n2VOkecgFSo8AIdShfCZQSkqKuWynTp36/PPPxZ8m7xsQPyGx393QKra2Cvniiy/M7dqxY4d4\nt1988cXyapEllaRHjR8/XqRXrlxpIafyvy/jxo0ra0UAoB0jR44U6b///e/msn377bciPXDg\nQJG2x5l53bp15nbt2LFDPNli8ODByl1DhgwR6aioKHMlrFy5Mi8vz0LtAIDyp8o5XDkkhYeH\nW3hgUk5OzsCBA728vEJCQnbs2FHW1qqiUrXW6jmaNufyAFA+7DrBsdMJ3LqrnWqNiSUOZ7ZX\nFBYWVr9+fT8/v9dee83csbL79++LtPKHrYBlBAihjhYtWtSuXVtOx8XFpaWlFc9z4cKFF154\nQa/XP/vss/KWrKysBw8eFMkmVkxOS0sr8WGzFd7aKmTFihUnT54svj09PX3RokXiz1GjRpVj\no8yqJD2qe/fu4gc4MTEx//rXv0xmO3LkyIoVK+R0vXr1Ro8eXaZaAEBTevfuLU6t8fHxyrsD\nhYsXLy5ZskRON2jQQDmds8eZefny5SaHyMzMTLFOi1Qsyjh8+HAxIVy1apXJ9W2OHj0aHh5u\noWoAQIVQ5Rzetm1b8ROWS5cuvfXWW0ajsXi2vLy8sWPH3r59Oy8v78CBAxYuDtpVpWqt1XM0\nbc7lAaB82HWCY6cTuHVXO9UaE0sczmyvqGHDhnLk7+DBg6tXry5+rCw/P3/VqlVy2t3dvX37\n9uZyAkUQIIQ6HBwcXn75ZTmdmZk5fPjw5ORksTc1NfXDDz/s2rVramrq0qVL+/btK3Z9+eWX\nRYpq2rSpnMjLywsLC7t3715BQUFKSsqjR48qYWsrM+VwMmTIkKysrJCQkLVr1z5+/FhsP3r0\n6IABA8SS3IMHDxY3v1esytOj/vWvf4nxfsqUKXPmzLlz547Ym5GR8c9//nPw4MHiOVhffPGF\n+B8PAKA4nU732Wef6fV6+c+FCxeOGjXq6NGj2dnZRqMxJSXl008/7dmzp1gU5dNPPy2yOqi6\nZ2YLQ2SfPn2uX78u/9mvX7/nnntOeWBQUNCIESPktMFg6NevX2RkpCghJSVlyZIlISEhBoNh\nwoQJZXuPAAB2ptY5fN26dW5ubiI9cODAQ4cOiWt/OTk5W7du7dmz59atW+Ut/fr1E/WWv8rT\nWqvnaBqZywNAhbDrBEetE7haVztVGRNLM5zZWNGUKVN8fHzk9Ntvvz1u3LjDhw8r7+A0GAz7\n9u3r27fvL7/8Im+ZOnWqmC8DJTMCKklKShLnO0mSHBwcWrZs2bt375YtW9ao8X+h6PHjxxcW\nFu7du1fZCVu3bt29e/fExES5nLVr15rsqzExMXIG5erSYWFhFpp0+PBhkTMiIkL11p46dUps\nDw8Pt8e7unPnTlHFN998U6bXqNy1bt26iRMnymm9Xt+qVauOHTuKAUbm4+OTnJxcpHxV3m0L\nb5SFXeXWoyy0XLZ161bltWmdTte8efPOnTu3aNFCtES2ZMmS4odb9x7aqUcBQCXx7bffFjmF\nSpJUfMvMmTNNHm7jmVk5+qxYsUL8ntTcEFm/fv2bN28WL+f27dtNmjQp0mYPDw/lfCwkJOTE\niRPiz3//+98qv5UAAKuodQ6PiYlRTlskSXJ1dQ0ICPD29hb3YciCg4Pv3LlT5HDlZGHOnDnm\nWhsZGSmyxcXFmcsm1vF2dnY2mUHF1toytbFljqbWPBEAUJztg6O9T+CqXO2U2TgmGksxnKlS\n0YEDB5ydnZXZHBwcGjVq5OfnV/yHsL169crKyrLio4dmcQchVBMQELB9+3bxmNmCgoKkpKRD\nhw4lJSUVFhY6ODgsWrQoMjJSp9MNGTKkXbt24sALFy4cPXpU/Mx/3Lhxbdq0qSqtrcyUjaxd\nu/YXX3wxadIkSZLy8vKuXLly6tQp5f0WQUFBMTExzZo1q4CGmlF5etTw4cNjY2PFs5qNRmNy\ncvKJEyeuXbtWWFgob2zatOmWLVsWLFhgS0UAoB2vvvpqbGxsQECAcqM4qUqSVLt27VWrVv3j\nH/8webiKZ+aCgoKoqCj54RAmh8jg4OC4uDhfX9/ixzZu3DgmJkY5BkmSlJ6enpOTI6eff/75\nnTt31q1bV+ytEv+FAAAtUOscLt8K0Lt3b7HFYDBcvXr17t27xv/dH6DT6SZMmJCQkFDhzwSq\nJK21ZY6mhbk8AFQUu05wVDmBq3i10/YxsZTDmY0V9e/fPz4+Pjg4WGwpKChITU29ceOG8r5J\nR0fHWbNmxcTE1KpVq8QmAYJjRTcA1crgwYMTExNXrVr1448/Xr169cmTJ25ubi1atBgwYMDk\nyZNbtWolZ3N0dNy3b98777wTGxubmZlZv3793r17i9931KxZMy4ubtGiRXv27ElLS9Pr9Q0b\nNuzcubPqsStVWluZGQwGkfbw8HB0dPzyyy/ffPPNqKio+Pj43377TX45rVu3Hj58+NixY4v8\nGqUyqDw9qk+fPmfPnt21a9cPP/xw+PDhO3fuZGRkuLu7e3t7d+vWbciQIcOHDy+yAh4AwLL+\n/fufO3du9+7d27dvP3v2bFpaWlZWlqenZ3Bw8NChQ//85z97enpaOFytM3NBQYGTk1NkZOSs\nWbM2bNhw4MABeYj08fF55plnRo8eHRoaamGFlsDAwBMnTvznP//Zvn37mTNn7t69W7NmzUaN\nGnXr1m3s2LH9+/eX/v/Ap5haAwAqnFrn8Pbt2x88eDAuLm737t3x8fGp1mrDSwAAIABJREFU\nqakPHz50dHT08PAIDg7u3bv32LFjK89vMStDa22co1X7uTwAVCC7TnBsP4Gre7XTxjGx9MOZ\njRV169bt/Pnz0dHRe/bsOXHiREpKSkZGRl5enqurq5eXV5s2bfr27RsaGtqoUaPSfAqAks5o\n6sGYAAAAQHV1+vTpjh07yunw8PC5c+dWbHsAAAAAAADKGUuMAgAAAAAAAAAAABpCgBAAAAAA\nAAAAAADQEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0xLGiGwBUK3//+99jYmJsLyckJOS9\n996zvRwAAAAAAAAAAIAiCBACajp37lx0dLTt5Xh5edleCAAAAAAAAAAAQHEsMQoAAAAAAAAA\nAABoCHcQAmqKioqKioqq6FYAAAAAAAAAAACYpTMajRXdBgAAAAAAAAAAAADlhCVGAQAAAAAA\nAAAAAA0hQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAA\nAAAA0BAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhmg4QpqenP3r0\nqKJbAQBAxWAcBABoGeMgAEDLGAcBADqj0VjRbagwXl5eDx48yM/Pd3BwqOi2AABQ3hgHAQBa\nxjgIANAyxkEAgKbvIAQAAAAAAAAAAAC0hgAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAI\nAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQA\nAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgA\nAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAA\nAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAA\nAAAAAAAAAGgIAUIAAAAAAAAAAABAQyosQJiXlzdv3jwHB4cuXbqUJn96evqsWbP8/f2dnJwa\nNWo0adKk33//vUwZAACoPBgHAQBaxjgIANAyxkEAQGXgWCG1Xrp06bXXXktKSipl/tzc3JCQ\nkJMnT77yyiudOnW6du3ahg0bDhw4cOLEibp165YmAwAAlQfjIABAyxgHAQBaxjgIAKgsjOUu\nIyOjVq1aXbp0SUpKcnZ27ty5c4mHLF++XJKkpUuXii3/j737jo6jOvsAfKdt712992bLveBu\nY2ODTQ2hh16SkIROCMQECGAI8KUREgKEaoox2NjGBTdwleWi3rtW23uf2f3+UCJkeSVLtrTa\nld7nHM6xZu/OXFlGv537zr1348aNCKGHHnpomA3CksvlCCGapi/0WwEAAABGDHIQAADAZAY5\nCAAAYDKDHAQAABA9sFAoFNmKJDKbzS+88MIf//hHiqI4HE5hYWFZWdnQb5k6dWpTU5PBYGCz\n2X0Hs7Ky7HZ7T08PhmHnbRD2tAqFwmQy0TRNEMSofGsAAADAeUEOAgAAmMwgBwEAAExmkIMA\nAACixzjsQSiTyV555RWKoobZ3uv1VlRUzJw5s3/IIYTmz5+v1+tbWlrO22DUug4AAABcNMhB\nAAAAkxnkIAAAgMkMchAAAED0GJ89CEeko6ODYZikpKQBx1NSUhBCzc3NDMMM3SA9PT0yXe31\n/N++qLGjZUtmzk2TZSv5kbw0AACAiSfmcvCFv31hdXrvuWx6RmFOJK8LAABgQoq5HHz+r19s\naXFhOI4wJCERwjCMIBFCGEniJCmmMIQQiyIELALDCZLDVvAoMZsQi3gEQcrlEowkORTBpXA+\ni2AROEKIxyLEHJJLwfQOAACYjGIuB1/42xcMwn93/5WRvCgAAIALEwMFQofDgRDi8wdW2gQC\nQe+r523Q/2BaWprNZuv9s9VqHYsO1+udHzqUH26sQAhlKfg/n5+yOl+VIeeNxbUAAABMeDGX\ng3V6538cyg3vNMmYilyOf15x2tS8lOI4UYFGMBaXAwAAMLHFXA7WG5xHQ0rEIIQQoodoGEQo\niFDggi+EY5iIwggcE3EpiiSEbJJD4f3riH0lRjGHxDFMzCVxDEMI8ShczKVEbFLKowQsAiEk\n4pBCNinjUSzyx8IkAACAaBBzOdh7P6j9x+7/u2spiYdf3RQAAECUiIECYa9z18vu3T2x7/h5\nG/SyWq1jlH8Ioaaquux/NwSRsu9Ig9H14ObqBzdX56oEt89MXJOvylPD8CgAAIARi4kcLC+v\nmfZhC0LKHGeHNOA4Is0/FOAdOmFBJywIITUXL02W5seJ5qVKpyaIU2XcMeoGAACAiScmctDV\n2vT4wy/9J2XdYA1mW6rDHrdQwt4/1AkGzv8YQjAUsvpDCCGTlxlJN8+PSxEcEudSBIfCRRxS\nwCI4FCFikwSO4RgScyg+ixBzSTmPxSIxCYeScCkcQxyKiBOxZTwKIURgmIgTM6MNAAAQ/WIi\nB48ePT370y6ElAihv9f7P3xq55IsxS3TE9YVagbZBhEAAMA4i4GP7CKRCJ3zwAtCyG63I4SE\nQuF5G/Q/aLFY+v7cuxnvKHY1oyBnvfLgWx1kottwWFbQ/6VavfPRrbWPbq3NUwvumZN887SE\n3hsnAAAAYGgxlIOlpXm/O1i5oZXqG9+cbam2UMLeL3We4PY60/Y606uoBSEkZhNTEsXz02RF\nccLiOGGuSgA3jQAAAM4VQznIT8148LoFDT+0tAb5KMjQCPcQrFAwhFAIIeTF2VXCtN6WTpIT\nQiOLvcGKi2EdkeaP6OQDeAKMJ8BYPBc+u7GXmENSBC7jUWIOKeZSbAIXcki1gMWhCD6L4LMI\nEYcUc0gpl+pdVRUhxKMIdu8sRhKXcuGWGQAAYikHZ80qufmTve/j2bMt1Uek+XYfs7lSt7lS\nlyDmLM9WXF2sWZQhF7BhxWwAAIgiMVAgTE5OJkmyra1twPGmpiaEUFZWlkajGbpBZPrZ67cP\n37Z2/cPNVQeqjGktnLh/J68MorOWZ6nROX+1ufqxrbXrCtUPXpI6O0UK46EAAACGEFs5+OyD\n1z5o93y2/dCp+q7TWkedINlCCdD/hjX7ioUIIZuP2d9k3t9k7v1SzmfNS5XmqwU5Kn6uSpAi\n5aqFLBwyEgAAJr3YysHM627acV2Y48FAIGA1BQP/LbnRDnvA6UChkMlkMdpcdhoPopDb7XfZ\n7IzHbfX4/L6AM4gHmKCTRkE6YPMFg35/39kYDHPjHISQH6f8OIUQ8uGkg+QGsP9W1LJdnUEM\ncxGcYnuzH6MQQgGcoLERjMleZImxl81LI4SMLv95W4aFY5iCTwnYZN98RDGHxHEMIcQhcT6L\nUApYfBaJEJJwSTGHUvApNomnyXgKPqu3+njx3wIAAIy72MrBtx671vLE21tl03tvAHvTpMvm\nffd457vHO3EMW56tuLxAVRIvmp0igQVIAQBg3GG9883HC4fDKSwsLCsrG7rZ7NmzKyoqDAYD\nj/ffnfyCwWBSUhJBEO3t7cNpEFbvkzI0TRPEKD+90rn5k6Y3X6NdDhoj6nmJ36hn75NN9eFh\n7k9KE8U3lsZfUaDOVMAmhQAAMOlM1Bz8bx8CAcOB3fWHjxyt7TzBSOsFSY28hHxHa1+DoQcf\nxRxydoo0Q8HLUvBKE8WzkiVsErZEAgCACWVi5+DoCjEM43bRHnfAag4Fg7TTwXg9jMtJOx0B\np4PxuIMBf9DrDfp9jM8boumA3Uq7nAGbtbdZKBhECLkJDoNhvX9wEDw3we59jofBCCfBdRNs\nBiM8BFvpswYwgsbIIIb5cMqHsxgM8+EshJAPpwI46cfC195Gpaw4ingsQswhRRxSwCJFHFLB\nZ0m4pIzHYpO4iE2KuaSYQ5I4JmSTGIZJuKSQTUq5FJciYIILACAyJmQOGg/v//RPfz2Gx5VJ\ncoQB92DRwGMRC9JlK3OVt05PkMCUcQAAGCfR+Eid1+utra0VCoUZGRm9R+6444677757w4YN\nzzzzTO+Rt956q7u7e/369cNsEGGJ665XXrK09b03u7Z8lu9qy29q+3Xz5yck2Qc0sw5ICz39\ndogo77SVd9oe2VJbmiialiiekyJZnqOIF3HGpdsAAACiwQTIwV44RamXrlIvXXVJKGSrOm05\nddxW8V2DtqvGy2rmxTdy45cay13Ej5E34NbR5qW/rTOguv9+SRHY2gL13DSpSsCW86iZyRJY\nrBsAACakCZODowsjCFIoIoUijkpzAW8P+rxBv5/xeT3aTsbj9mq7vXptiGEYrycUCCCEQkGG\ndjmDXm/Q7ww4HUG/z6vtZLzewU5ooQRenO0jKCfOJYMMjeMMRqw0HgsiLIgIP076cZLBCB9O\n+nCWk+D6cCqI4QGMcBLcAftxjB23n3H7Ga3ddwHv5VKEUsDiUYSATUi4FIVjAjbZuyZqnIgt\n4VLJEq6cT8l5LJWAxWNBQREAMGpiPQcVcxbe8970VZ++1/7Je9VIMt9c2ciP72HLBtzuuf3M\njlrDjlrDrzZXL86U3zkraVaKJEMO0ycAACCixmEG4f79+7dv397751deeUWpVN566629Xz7y\nyCNyubyysrKoqGjp0qW7d+/uPc4wzOLFiw8ePLh27drS0tKampqNGzcWFhYeOXKk99GY8zYI\nKwJPjDob6yqe+Y27vQX976/ZQXGPzbpxq2RqhcEz2LsWZshumZ54TbEGFkUBAICJZ1LlYFg+\nk0G3Z5tu9zZHfbWBELRyNWeE6aEQ0rFlboLd2+a8UxBIHJuaIJqSIJqVLCnQCNNkXLWQPfZ9\nBwAAcLEgB2MI4/WGAv4gTTMeF+10oFCIdrsCdlvQ6/FbTLTbTTvttMPut1n8ZhPttPuMhqBv\n0Joi6jf24MUpP065CI4PZzEY7iF6pyeyGAz34hSDEQGMbOLH2yhBACP9OOHDWSGEuQgOjeEe\nkoPhhJ+gLBiXGeFWjmOEwDG1gC3lkTyKEHMpMaf3D6SYQwnZRO/0RDGHUglYCWIOj0XwWQTs\nsAjApDV5ctBn1Le88zft9i+DgYCREjfz4s4IMz6NXzhgM6b+SuJFVxdrbpoWnyaDSiEAAETC\nOBQIX3zxxSeeeCLsSw0NDZmZmecGIULI6XSuX7/+s88+6+7uVqlU69ate/bZZ2Uy2fAbnCsy\nN4RBv6/j8w9a3v0743H/944IQ5RM0bzuVx/7Eg62Wj0BJuwbKQKbmSxZnq3IUvCL4oSFGiHs\nxAQAABPAZMvBIYRo2tlU1zu50HLiSMBus5F8KymwUEIjS9TFVpoo0U7V9GHumZQg5lySLpuR\nJO4NzTgR1AsBACAaQQ5ObKEgw7hctMvJ+LwBq8VnMtBOe8Bu85uNPr3Oq+/2W8w+gy7EnHMX\nfKEjE0EMcxBcC0tkoYQ+nLKSfAfJ9xAsH045Ca6XxXNzhH6cZWWLrATPEST8wYv8FkeHjEcp\n+KwEMUfEIeNF7AQxR8yhOBQu5pAEjonYJJ9FqIVsjZAN0xMBmGAmWw56OttbP3hLt/dbxu1C\nIUTjRA9L+oOs6JQ4+7Q40x8KM9ZJEVhxnGhdoXpNvqpAI6QIGA8FAICxMs57EI6vSN4Q+s3G\nhr++3LNz64+3PRjiaOJzf//a7oBiS5XuZJe9Ru8c4qch4pBXFmnW5KsWZ8jkfNZYdxgAAMCE\nF20Do57Odt3eHbrd37ham0LBYG9i0hihY0vbuOoPEpY38eIZbLjbECZJOAsz5Muy5DOTJbkq\nATxkAwAAYIBoy8FJhXY5/Baz32Sg3S6fXufuamNcLtpp95tNXkMP7XTSDlvvvolhXMwYBoZo\nnPDgLC/Ocog1TGIGzuZ6uEJcJMVFUjvBs9KYF6N8IczP4jowtisQtHppHx20egLBUKjL5g0w\nkR5CUQpYaTKeSsASc8h8jTBVyuWxiBwlP13Og+2ZAQAXI5I5GLBZ2je+1/HZ+4zX0/dr3Ebx\njyXM3Ju35ph50F+tKgFrZa7yhtL4ZVkKAoebOgAAGGVQIIzoDWH3N5ua3vyT32ruy0KcxUq9\n9d7Um+/CcMLk8m+vNXxwont3g5EJDvpz4bGItQXqG0rjF2fK+fAsIQAAgAsVtQOjtNPRvW2T\n6fABS/mxUJDpC00Gw20k30OyzwjTy+UFTcKUDlwwnA8yAjYxJV60JEsxLVE0JV6ULOWOaf8B\nAADEhKjNQYAQCtG032Ki3a6AzRr0+xiPO+j3BWxW2unwGfVeQw/jcvlMBsbl9JmNaLBPAyMd\n7Thn5JnkCwgOF+dyWRIZR5NACUWEQmMTqgLKeC1L5iI4ZndA5/BZPAGTO2B2B/x00OIJuPxM\nj8Pn9odfK2gUiThkqpQbJ+KkSLlJEk6ihJOl4CdLufEiNgyjAwDOK/I5GLBZOr/8uO3jd3pn\nE/4XhvhX39FzyTUbayxbqnSuQX55ijnkihzlqlzl7BRJnloQmQ4DAMCEBwXCSN8QenXa5rf/\n3LNzS4hh+lYclc9ZkP/kCyzJfyf+a+2+LdW6HbXG3fVGh48e7FRcipiTIlmeo1iZo5ySIIpI\n9wEAAEwc0T8w6reae3Z81bNzi6OhFqEww3w+nKoTJOm4ihZ5VrWqoM7HCgxj3TABm8hXC4vi\nhHNTpbNTJJkKHouAB/ABAGDSif4cBMMUDPiDXi/tcXt13YzTSbtdAbuVcbsYr8er0zJej99s\ndDbW0y7Hj++5yIEQDCGESL6ArVBREikvKY0SSyiRmJ+awdEkcJRqgs/HcMLqCYQQsntpqyfg\nCQS1dq/B5Xf6GJuXbja5exw+izvQbfeaXAE/M5orn/YuUhonYqdIuWohO1vJjxexxVxKwWdJ\nuVSajAvLlgIA0PjlIO1ytrzzt85NHwYDgb6hUZIviL/8Wtnqa7YYqO21hp11RqsnMNgZ4kTs\neanSPLVgZa5ybqo0Yj0HAICJBwqE43ND6Gyqq37+SUdDzY+7EorEOQ89o16ysn8zJhjqsnkb\nTe6DzeYPTnQ1Gt2DnTBDzruqWLM0S748W4HDMmoAAACGIYYGRj2d7fa6yp5vt1hOHuu/KM0A\nNE50ChMNGaX1yrwyQl1lpoPD+JxD4FieSrAmX3VJumxhhgxm5wMAwCQRQzkILl4oGPTptV69\njvG6Axazu6vDXlvhN5top512OgM2yzlvuKDL/O9eHGdzOEo1W6nmJadyNAmkQMhLSGYr1Wy5\nkhQOfLqXCYasnoDRFXD6aW8g6AkwCCG90292B7ps3iaTW2v39jh8WrtvsIk1I5Wp4KXLealS\nnlrImpogylMLEsVcARv+RwBgchnfHPQZemo3rDce3t//9y1GEIlX/TT99p8zXMGRNuuueuOn\np7QNRtcQ58lW8qclii9Jly3Llmcp+GPebwAAmFigQDhuQRj0++pee0677ctQ36OCGFItWpH/\nxPMEL3yeddq8H5V3v1/WVdnjCNsAIZSnFlxXEnfdlLg82G8JAADAkGJxYDTEMI6GGvPxQ5aT\nx1wtjT6jftDxOwx5lUnN+Uu64nJrg8L9OtrqGXRSfh8cw4rihLOSJYszZQsz5HEi9uj2HwAA\nQPSIxRwEY4R22AM2K+1yhEIh2ukI+ryerg6vQUc7HbTLwXjcXp3WbzbRDnsoyCB0QeXD/92e\nEzw+SyIjOBy2Oo4lkZM8HlsdR/IFLKmcl5TKksoJDgdnc8J0MhjqsnmNLn+H1dth9XTZfJ1W\nT7PZo3f4Oqzei5+DmCTh5KoEeWqBlEtNSxSXxAvjRByKgGEFACascc/BUJBp/+TdlvfeHLDi\nKMHjJ197c/L1PyMFQoTQqS77lmr91mr98Q7r0MPYKgFrVopkbYH6lumJ8OsLAACGAwqE43xD\naDi4p+bFpwI223+/xhBbqc687yHN8jVDvKvB6NpeY9hVb9xdb/TS4W8DJFxqebZiRY5ifpo0\nVwVrcwMAABgoGnLwIjmb6iwnjzsaanR7tgd93iGKhRjFchZf0pw5t1uW1k6zKnXOGp3rvPML\nsxT8+enSmUmSWSmSLAUfnqwHAICJZALkIIiwoN/nt1q82k53R5u7s81n0PmtZp++x93ZFqJp\nhEZn5VKEEE6xBFm5/NQMSizhKNSCrFxeYgpbqR7irTqHr83iaTC6O6yeLpvX4WPazJ4um7fL\n7r3g3RApAstXC9VCVpqMV6gRJkk4GQpeloLPJmFtdgAmgijJwYDN0r7xve5vNvnNxv5lQkos\nSbr2lqRrbiT5wt5jRpe/rMO2vdZwtM3aYHSZ3YOuQSrmkHNSpbkqfoFGuDpPBc99AgDAYKBA\nGBVBWPvKev2+nf1TUJRbmPPQ06LcwqHf6/YzR9utn53WbqnSd9q8gzWLF3GuKFStylWuyVfB\nAqQAAAB6RUkOjgrG63G1NNkqyi0nj1krTgZsliGKhSypTFIynZqxsJab1MySVWidW6v1Rpd/\n6EsQOFagFpQmiqcniTPkvKkJIrUQ7jMBACCGTaQcBOMuFAy6O1o9nW1enTZgt7o72vxWs6er\n3avtCgWDCI1C7ZCtUAlzCiixRFoyXZRfTInELJnivO+jgyGD029w+Y0uv9UT0Dn81TpHdY+z\nVu+y+wJO34hrhziGJYjZyVJuuoyXo+KnyXjF8cICtRBGGgCIOVGVgyGa7vzy4+Z//4V2nLVq\nGksuz7jrV3GXrcPwszrJBEM76gxbq/XH221ntPYAM9Qv2Xy1YE2+6vIC9ewUCYnDbysAAPgR\nFAijJQh7dm6t3fA04/mxyEfweAVPvahcsGyYZzjVZX/9YOvWar1p8CHORDFnbaH6lukJM5Ik\n8PEdAAAmuajKwVEUCjKWk8fNxw8ZD+1ztTQiNNSQHFulFuUWyucuNibk7HXwTnc7DrdZ6vRD\n7XLRR85n5Sj5M5LEizPlK3OV8DQ9AADElomagyCqBP0+2un0GXUebZffZPCbjV6Djrbb/Dar\n36gPOO2Mx32Bsw8xhLPYlFDES07jaBIEmdnCzFxeUipLrsTw4X4maTK5q3ucnTZvvcFZoXU0\nGN3dNi8dHPEwEYfEkyTcDAUvXy1IkXLjxZxMOS8TVl8AILpFYQ76reaOje+1b3wv6D9rbFOQ\nkZ3zm6ckJdPDvsviCRxutR5sNpd12vY1mob4JSZkk6vylCuyFStylEmSMIs5AwDAZAMFwigK\nQq9O2/DnF/X7d/WfSigtnZX2s/ulU2YM8yQ+Ovhdo+lwq2Vrtb5C6xgsFBPFnDtmJd04LT5T\nzodKIQAATE7RloNjgXY63O0ttpoK05EDlvJjQZ9v0KYYEqRnCXMKFfMWeQtnH+10Hmg2H2gy\n1+idQz+O2ovHIlblKmckieelyaYmiPisCftXCgAAE8ZkyEEQ/UI07dVpaafdbzG7O1oZr4d2\nOT3dHc6GWp/ZyLhdCI2sdkgKhJKSaYq5i0R5hWyFihQIcdbI1jyoN7hOddnbLJ5T3fbe/Q7b\nLd7zLsweVoKYk6XgT08ST08ST00Qpcl4sCsYANEjanPQZ+jp+PzDrq820k7nj0cxJMorynrg\nUUnJtCHe22B0fVzevb/J3GB0ddl8g/3uYpP4jaXxizPlVxSoRRxydPsPAAAxBAqEUReEpmPf\n17/2vLujre8IRhBZP3808aobsBH20+al9zaaDjSZt1brG4zhJ0MkS7mX5SmXZyuWZMolXOqi\nug4AACCmRGcOjh3G67VVlJtPHLGcPOaorQoxg66pRXA54oIpykUrNEsvc1O84x22BoOrrNN2\nvN1a0eM470cnHotYmiUvTRDPSpFckiaDZ+cBACA6TbYcBLEoGAg4G+tcbU2Ohhp79RmvTusz\n6EY21xDH2HIlW6nixidxE5J5SalsuZIbn8RWaXBquCMAbj/TafM2GF1NRneTyd1scnfZvNU6\np48OjujboQhsVrIkRcrN1wjnpUqL44XSwUchvm+2LPzbkf6D+ywC8728akRXBAAMIcpz0Gfo\naXrrjZ6dW0JMv181GFLMWZhx768F6dnnPYPR5d/TYNpWo/+2zqhzhH9UlMSx0kTxPXOSL89X\nKQWs0eo8AADECigQRmMQ0k5H1R8eMx7a1/9zPz81Pe1nD6iXrEQXNOPveIfto/KuT05qewZP\nxKkJosvyVNdPjctVCS6o4wAAAGJJ1OZgBPitZmdDrfHwfntNha3qNBpkwj1GkZrla9SLV0qn\nz8YpFkLI7WcaTe4KraNS66jVO4932LoG3wMYIUTiWIqUWxwvKooTFsUJ02TcQo0QFiMFAIBo\nMJlzEMSugM1qrz7j1ff4LSa/2ejp6XK3t/j0PUF/YETnwQiCrVDyM7L5SWkcTbwor1BcMGVE\now2hENI5fWe6HSe7bM0mT6vFXdXjHPpz0bmkXKo0UZSp4Oeo+CXxogXpsr7twfY0mJa9ebR/\nYwLDmdBZJUk+C3f+ceWIrggA6BMTOehsbqh9+Wlb1ekBz0aI8osy7npQOm32cBZVDoXQ8Q7r\nzjrjtlrDkTZL2LHw3i3n756TfGNpPMygAABMHlAgjN4g7P5mU9fmT+y1lf0jUD7nksLfv0ry\nL7CARwdDB5vNmyp6PirvNrsHvX/gkHiuWjAnRXJVkWZRphz27wUAgAkpynMwYgJ2m63ypH7/\nLkdtlbOlIWyxkBQIJVOmK+YsVC1aToml/V/qXcRmR53xZKfNO4zn6EUc8ooC9eJM+bREUUm8\naNS+DQAAACMEOQgmjBDDOJvrXS2N7vYWc/kxe9XpIVZKGAxLrpAUTRXmFCjmLuQlp/U+GjVS\nfibYYvK0Wz2NRnet3tlidh9vtw32mPK5kiScS3OUl+UppydJ6g2ugQVCHGeCQ33WgnohACMS\nMzkYCplPHGn6x2v2msoBr/CSU1NuvDPu0iswcrjLhDp89HvHu17Z19xm8YRtQOLYsmzFNcWa\npVmKVBn3onoOAABRDwqEUR2EwYC/dsP6nm+/6j+bnq1QZtzzK9WUdVoUAAAgAElEQVTiVQTn\nwnfTdfmZPQ3G3fWmHbWGRpNriH8Fcj7rxtL4a0vi5qdJB20EAAAgBkV/Dkaeq63ZeGif5eQx\nS9mRoN8fpgWGhNn56mWXKect5iWn9X+FDoYqtY49DaZNFT1VPQ6blz7v5aRcakWOYk2+akG6\nLFkKN58AABBRkINgoqJdDntNpUfbSdttPqPeZ9B7tJ3ujlbG7R7mGTAcFxdN4SakCLPzZDPm\n8lPSL6Y/WrvveIe12eTe32Su7HHoHH6H7/wfk0Qclt171oex8xYIz/Xi6pzHlmSMrLsATBqx\nlYOhYFC/99vmt//sbm8d8BI3PjHvieekU2eO6IRau29Lte7LCt3OOuNgWxVmKfgLMmQzk8Wr\n81QJ4gsfhgUAgKgFBcIYCEJnU13j3181Hf2+/1RCbnxiyYY3L/Jjeq92i2dnvXFvo2l7jcHi\nGXRaoYLPmp0iuWt20rIsBY8V1X9jAAAAhiNWcnBc+K1m7bYvu7761NPVMVgbXlJK3GVXyqbP\nFaRn4uyzbhdDIVTZ4/ihxVLR46jUOs5oHdbBE7ZXipR7eYFqeqK4ME44JV5EwPR9AAAYY5CD\nYLLxGfXenm6/xeTubPN0d7jbWtwdrT6D/rxvpMRi+axL+KkZ4uJSUW7RxTysjBAKhkIVWseJ\nTnuzyV2hddTqna1mj585f+UPQ1hoZBsw9r4LhRDCEWJeveyC+gvAhBWLORhiGOOhfW0fvW2r\nODXgJdnMuZn3PSzMyh3pOfVO/zfV+t0Nxs9P9wz2u4jAseI4Ye8e84syZfEiKBYCACYIKBDG\nTBD27Npa9+qztNPZdwTncBIuvyblhtvZSs2oXMITYHbVG890O+oNrh9aLc2m8E8XUgS2IF02\nP00GuxUCAEBMi60cHC/Oxjrj4f3mssPW02UhOvxqXRhJCDJzJYVTlAuWiXILCR5/QINgKNRh\n9TaZ3N83m7+s1FVoHcwgux72EnHIJZnya0vi1haq+fBQDgAAjA3IQQAQQgG7zdXSaDy833q6\nzF5TGaLPM7cPZ1H89GyOUi3KL+bGJ4pyizhx8Rh+Uf8T+ZngmW7Hxye7X9vfMgZDVL0lwh+t\nylVsu2tkM40AmJBiOgetFeVtH71tOnTgrBWVMaScvyTx6htl0+dcwDn1Tv/myp6NJ7X7msyD\nzSnsVagRXlOiua4kLlvJhyc7AQAxDQqEsRSEPkNPw1836L/7NtRvVQ1SKMx64JG4VVdio/1d\nnOqyb6roefd4Z4c1/DbjGIbmpUqvLYlbnCkvihOO7tUBAACMtZjLwfHlM+rNZYdNRw4Yf9jH\neMLvV4EQwllU3Oqr4lauE+UVYTgeto3FEzjaZj3QbP6uwXSswzrEZzEei5ibKi1NEOWqBKvy\nlBoh++K/EQAAAL0gBwEYgHY67DUVrtYma0W5s7HO09UxnL0MMZISZGaLsvNFBSW85FRBejbJ\nv8Anief9+dChVuuFvXdwAwuE/REYol+BmYVgkpoAOehqaazZ8HvbmfIBx/mp6apFKxKvvokl\nlV3Aaa2ewP4m86564/4mc7XOOUSxkEsR0xJFq/JUq/OUxXEiDGqFAIBYAwXC2AtCZ2Pd6cfv\n9/Zo+x8U5Rfl/Oq3ovzisbji3kbTNzX6sg7b/ibzYG2mJoiunxp/SZp0TipsVQgAALEhRnNw\n3DFer+XEYf2+nfr9u4bYy4fg82Wls4S5hYq5i4SZOWiQm8Vuu/dom3VPg2lXvbHe4Br60iXx\nouI44fx06bIsRbqcd1HfBgAATHqQgwAMjfF6rafLrGdOmI4cdDY3hALnWS+9F0aSgvRMjjqe\nE5fAS0zhJibLSmdjJDnSq+9pMC178+jIex2mR0MUCPuDmYVgspkYORgKBo0/7G365xuu5sYB\nL+EsVsKV18evvlqQnnXB53f46C8rdDvrDCc67fUG1xDFwngRZ0WO4u7ZSTA0CgCIIVAgjMkg\npF2Ozk0ft298L2C1/HgUQ6k33532swdwihqj61ZoHd81mr5rMB1qtRhd/rBtZqdIbpqWsDxb\nka0cuMAaAACAqBK7ORglQjRtqz7jqKuy11baKk56ujsHa8mSSOVzF/JT0kV5RZIpMwabWWh2\nByq0jn1Npj0Nph9aLEPcfGIYKk0QL89WlMQL48WcqQkiIXvE424AADDJQQ4CMHyhIONsrDMd\n/d5eW+k3G+21VcOsFyKECC5XMW8xPyWNm5giyiviJaYM512jVyAcMSWf0j+7fFwuDUAkTaQc\nDAWDPd9+1fHFR47aqoGvYUg++xLNisuVlywlONyLuYre6f+uwbi7wbTpTI9l8D3m89SCa4o1\nC9Jlc1OlPNgwAgAQ3aBAGMNB6Lea615Zbziwp/+Ko7yklNzHnpVOmTG2l2aCmyt075/o+rbO\nEGDC/BPCMDQ9UfzT0vg7ZyXBkCUAAESnWM/BaOOoqzId+6Fz00c+g36IZgSHy1aqVIsvTbzq\nBrZCNVizDqv3k5PdB5rNR9utBmf4h3J+PCeGFcYJpySIrinWXJqjpAhY2gYAAM4PchCACxYK\nBv0mvaOuxtFU52ppdDbWuttbQkNusdyHJVNoVl6umL2Al5TCVmoGa/b1t0fW7jxrESMCx5l+\nox8RgCPEvAoLkIIJa0LmoPV0mXbHV/p9O2mHY8BLJF+QfP2tyT+9/SLLhAght5/5vsVS3mU7\n3Grd22hy+MLv3soi8Hlp0hU5ivlpsrmpEhxWIAUARB8oEMZ8ENqqTte+/LSzqaH/QWF2XsoN\nt6uXXjbYgmajxeIJHG+3/eNw+/ZagycQZnMCEYdcnCm/bUbi6jwVjFcCAEBUmRg5GG1CDGOr\nPGUuO2w5ecxRW8l4w+/jixDCcJyt0qgWLpdMma6YtwjDB/0p6J3+b+sMu+uN5Z32yp6BN7oD\naITsRZnyS3MUxXHCwjghiwg/WxEAAADkIACjKGC3ebo67LUV1jPlXp3W3dJEu+znLRmy5Ar5\nrPnC7Hx+aoYwK48SS/pe2rz1+yv32vs3xhGKaHmwHxaB+V5eNU4XB2CsTOAcpB32jk0fdX7x\ngd88cLMkSiJJvflu9bLVbLlyVK7l9jNH263f1Og3V+iaTIPuQKEUsOalSqcniZdkymcmSwgc\nxkgBAFEBCoQTIQhDwWDz239u++CfIeasT8viwpKCp1/mxidFoA8BJnSwxfzqvuZd9cawcwpZ\nBHZVcdzaAtWCDFm8iBOBLgEAABjahMnBqBViGMuJI8ZD+ywnj7vaW4ZYiYsSilVLL41ffbUo\nr2joczp89M4641eVup31Rp3DN3RjLkWszFVeWaReV6iGCf0AADAA5CAAY4rxetwdrYYDe8xl\nh+w1lSE6/Ayb/jgqjXrZZepllwmz8y1lR8p/fXv/V3cpZr6Uft2Y9XdYMISCMKcQTBQTPgdD\nNK3fv6vzy49sZ8oHPK9AcDmZ9z6kWXE5KRSN1uWCodCeBtOnp7SfndbavEP9xpNyqWXZissL\nVKvzVDLeWG0UBQAAwwEFwokThM7GusrfP+Rqbe5/kJJI8x9/TjF/ccS64fIzO+sMH5Z3b681\nuP1h5hQihPLVgquLNcuyFfNSpfDIDAAAjJcJloNRLhRknA21+v27XK1N5uOHGI8nbDNSKIq/\n/GrZ1FnS6XPOu6lwh9XbZvGc6baXddrKOmwV2kEnF/buWbg0S748W3FJuoxNwrRCAACAHAQg\novxmk73mjOno9/rvdvitlqEbsyRSUW6h8ejBsw//OIfwX0lrPolbNCYdHbZVuYptd80c3z4A\ncDEmTw56tJ0dn/6nc9PHIeasgUqMJNRLVqXf+YvRnVwRDIVqdK5d9YZ9Tebd9UbXIKOjCCEC\nw0oTRQsyZOsKNaUJItiwEAAQeVAgnGhBaC473P7pe6bDB1C/H6y0dGbyT3+mmLMwkj3RO/1v\nHW7f3WDc3zRwOn8fAYv8ydS4++YmT0sUR7JvAAAA0ATNwZjAeD2G/bvMJ46YDu0fbICM4PE0\nK9aoFq+UTp2J4cOq51X1ON8/0bWnwXii0zbE5zsBm7iiQL00S7E6T6kWsi/sWwAAgAkAchCA\n8REK2euqnE31jroq05GDHm0nGuxzy8DHiQddZHSXYvpL6dcPfpYxGfjq3xsCQ/QrMLMQxJjJ\nloPenq7W9//Zve3LASu7YCQZv/qqtNvuYyvVo35RPxM80+344kzPoVbL6W77EDMLSRxbV6i+\nZ07ysmzFqHcDAAAGAwXCiRmElpPHKp/+jd9yVmVOccnizHsf4qekR7gztXrn5krdhye6h9g2\nKUXKvXl6wg1T4/PUgkj2DQAAJrMJnIMxxNXS2L3ty54dXw1I7T4shTLu0ivUyy4TZuUN85xG\nl7+qx3m8w/pVpe6HVutgH/YwDBWohdOTxPPTpFMSRCXxIhKm9QMAJhPIQQCiQdDvc7W1uJrr\nzeVHtdu/HIVaHoYQQg/n3H9KlP6/r8do4GvQM7+4OuexJRljc1EARs3kzMGA3db0z9e7v/p0\nwKKjGEHEX351yvW3cxOTx+jSTDB0rN26u8H0bZ3hUKtlsCH5DDnvqmLNLdMTCjXCMeoJAAD0\ngQLhhA1Cv8Vc9ewj5uOH+x/EcFxz6eWZ9z3Eko3D0yjddu8PLZZvagxbqnRmd/h9mEoTxdeW\naGanSOakSGEBNAAAGFMTOwdjSyjIWMqPGQ/v127bTDvsYdvwktM0K1aLi0qHP6cQIdRidn/X\nYNrbaNrbaO62e4doKWSTlxeolmYpri7WiDmwYSEAYOKDHAQg2pTd+1Nb1enRPCOGutmKW4of\nH81z9j/7MEqPSj6lf3b52HQAgIsymXPQ29Nt/GFvy7tv+i2mAS/J5y7I/c3vOJqEMe1Ah9W7\nq964u964r8mktYffWj5byZ+aIFqdr7qyUCNgT7qfEQAgMqBAOMGD0Hh4f9M/Xnc21vU/iJFE\n2s8eSLvlHoSN20SB4x22HbWGfx/raDWH34QpScL5yZT4NfmqhRmyCPcNAAAmicmQg7HI1drU\ns3NL99Yv/OaBN6u9WHJF0jU3qZes4iaMYKuMUAhV9ji+rtJ9XaU/0WFjhvwEqOCz1uSrbp+Z\nOCtFwiLgeR0AwMQEOQhAdNqzsBAFwy8lelGw/tMKxwGGUPBVWIYURBHIwaDP27X1i+Z//R/t\nOGvNM4ykNCtWJ//kVkFGzpj3IRQ60+34vsXyzyPtZwbZVJ5LETdNi7+mOG5JlhwWfQEAjC4o\nEE6KIOzZuaXpn294td39DyoXLsu67+Gxmzg/HMFQaF+T+etK3fsnugabU5irEtw1O+maYk2y\nlBvh7gEAwMQ2eXIwFoWCQUdtZfc3m3p2bWXc7nMbYDjGVqjTbr9fuWA5JRrZVr5md+CrSt3h\nNsuxdtvp7vATFnsJ2eTcVOnybMWqPGU+LAMOAJhYIAcBiGaWsiPlv759rM6OoU81i99KWj1W\n5x+eHCWv9vFF49sHMJlBDvZivN6uLz9u+c+bA8uEOCYuLk277X7ZtNmRmWKxs8742Wnt5kqd\n0eUP20DGY60rVF1VrFmRraQIqBQCAEYBFAgnSxCGaLp726aGv25gXK6+gxiOJ157U/rtPyf5\n4zzk56ODO+uMH5Z3fVWl8wbCPyq4LFuxOk9556xkmFYPAACjYlLlYOwK0bTp+A+dX3xoPVXG\neMOsEYqz2KLcgvjLr5GUTOPGj2BOYS+jy1/Z4zjQZP6yUlepddDBQT8Zyvms1XnKtYXqbCU/\nVyWAZ1cBALEOchCAaDa2BcJe//ss81TWnUckuWN7rcGxCMz38qrxujqYzCAH+wvRtH7/roa/\nvuzT6wa8pJi7MPexZ9lyZWR6QgdDO+uMmyt7TnXZj3fYwrZhkfiKbMWVRZo1+SqVgBWZjgEA\nJiQoEE6uIKSdjpZ3/97+ybv9D7JkiuxfPalesnKcOnWWABOq1jneOtLxyUmt2R3meRk+i1iZ\nq7xjVtLKHOX4rZAKAAATwSTMwdgWCjkaajo+/7Dn269DDBO2CScuIeWG29VLVlFiyQVcQefw\nba7UNRhdmyt0TaYw0xb7UASWKuVdXqBak69alCGHRAYAxCLIQQCiWbgCIY7QGCw92gtDCKHX\nU67dqpo1VpcYBphTCCIJcvBcjMfdteWzjk/e8+p7+h/HKEqcX5L9y8eEOQWR7E+nzfvOsc63\nj3a0WcLv0ETi2JVFmquLNZfmKCRcKpJ9AwBMDFAgnIxB2LNza91rz9GOfkuKYUg5f0nOQ0+z\nFarx69dAB5vN/zzSsfFUt58J8680S8G/qlgzN1WyOk9FwCQGAAAYuUmbg7GO8biNhw/odn9j\n/H5vKOwOPRjixicl//RnmmWrSYHwQi4RDJ3ssn9Toz/cat3baAwbxH1kPOqnU+NX56umJ4qV\n8PgqACB2QA4CEP3qXlrfuXXj/74aywJhHwwhhMqFWY/m3jPm1xoEzCkEkQE5OJhQkNHt2d76\n3puu1ub+xzEcE2Tn5z32B2FWROcch0LoRKft45PdO2oN1Tpn2DYcEr+qWLM4U16aIMpTC7gU\n/EwBAMMCBcJJGoRBn7f9s/db/v3XoP/HWXoYScVfflXaLfewlZpx7NsANi+9rUb/zrHO/c1m\nPx3mZiBOxL5jVtLaAvX0pJHtwAQAAJPcZM7BicGr0+q/29H19afuzjYU7gMdRlLSkulJ198i\nKZ52wcuJO33MoVbLrnrj1mp9rT787WgfGY+alyYtjhMtzJAtyZTDEzwAgGgGOQhAbOnZ/nXV\nC49H9JLn2aoQQ2E/gY1yF1Dw1cvG+ipgcoIcPC/9vp3Vzz/JeM5eWwVD6iUr0372AD81I/Jd\najC6tlbrN1foDraYBxvUxzFsebbijlmJawvVLAKPbAcBADEGCoSTOghdbc31rz9vPn64/0EM\nx+NWX5lx14MsmWK8OhaWzuH719GOrdX6I23WsA2SpZwrCtTXT4mfkSyG/AMAgPOCHJwwAjaL\n9Ux524dv22srQnSY1UdxFiUumJJy012y6XOwi/hxt1k8VT3OGp3zZJdtZ73R4AyzGHgfMYdc\nV6Qp0giX5yiK4y5kIiMAAIwpyEEAYlf5XTdYak9F+KK/yH+wRtB/v+dIFAj7vLg657El41CN\nABMY5OBw0E5Hx+cfdG3e6DPqz3oBQ5Ki0uxfPxXh2YR9jC7/5krdm4faT3SG36cQISTkkLdO\nT7h5WsKMJAnsCgEACAsKhJM+CEMh3d5vazc8Qzsc/Q8THE7a7Q8kX38bhkfdX87xDtubh9q+\nONNj89JhG4g55DUlcY8uTs9W8iPcNwAAiCGQgxOP32o2Hdrf/c0mW9XpEB0mJSmhWDptVuqt\n947KfezxDtsnJ7s/LO/WOXxDt0wUc5ZlKxZmyK4q0og45MVfGgAALh7kIAATQ/uH7zS8uSGS\nV3w99dqtqlkRWfD0RxSO+TfAuqNgNEEODl8oyPTs3Nr89l+82q4BL2lWrMl56OkLXq/l4mnt\nvo/Ku98/0VWpdTCDjPPHidgPzEv55SWpQjbciwEAzgIFQghChBCiHfaOTR+1ffQ243L1P85N\nSM5+8HHFnIUoKp8zOaN1vH6g5YszPfZBKoXxIs5vFqZdPzUuQcyJcN8AACD6QQ5OYD6jXrvj\nq64vP/bqesI2oIRiQWa2esUaYVaeKKfgIoO+Vu880Wk/020v77Ifa7cOlssIIQLDspX8Bxek\n/mRKnIRLXcxFAQDgIkEOAjDBNP3ttdaP/xnRS2Jol3z6S+nXR/SiCCGYUAhGA+TgiIVCPbu/\naXjjj36rpf9hgsNNWPeTpOtu4ajGc88mm5c+2WU70+34/EzP9+EWIKUI7NqSuHWF6mXZCinc\niwEAEEJQIIQg7I/xuLU7vmp66w3aYe9/XDF3YeGzrxGcKK2xBZjQgWbzJye7v67S6cOtdYZh\naE6K9LopcWsL1KkybuR7CAAA0QlycDJwd7YZDu7p/PyDwSqFCCFOXELKjXeol6yiRKOzm29Z\nh+2LMz2fnOrutHrpYPiPmiwCK4oT3Toj4ZriuDgRe1SuCwAAIwI5CMAEVvfS+s6tGyN9VQw9\nnHP/KVF6pK8LWxWCCwI5eGGCAb9u9zeNf/+T32zqfxwjSdWiFdkPPsmSysarb33qDa73T3T9\n/VC7yRVmpJQisDX56rUFqmtL4ngs+OkDMKlBgRCCcCDa6Wj6x2tdX30aCv64WgYnLiHnwScV\n8xePY8fOKxgKHWmzbqsxvHWkPeyuSASGFWgEv7wk9coijYwHT8oAACY7yMFJxdlYp/32666v\nP2NczvAtMMRLSMn+1ZPy2ZeM1kXpYGhXvfHrKt32GkO71Rv2YyeBYZlK3p2zkq4q0qTLeaN1\naQAAOC/IQQAmiXEoFmIIIfR6yrVbVbMidsnQq7AAKRgZyMGLEWKY7i2f1//fi0H/Wbst4Cwq\n8ZqbUm+8ixJLxqtvfehg6GCz+eOT3e+VdfnpMIsiC1jkmgLVbTMSlmcr8KhcPQ4AMNagQAhB\nGJ6t8mTNS8+4Whr7H5TNmFPwzAaWZPwfhBmajw7uqDV8VaX78ESXnwnzLxzHsMWZsl/MT12d\nryJxyD8AwCQFOTgJhWjacrqsa/NGR321V9vV/2GgPpy4BGnJtJSb7+anjObz71q778uKng/K\nu4+1WQfbGyNBzLmxNP6qYs2MJDHcoAIAxhrkIACTjaXsSPmvb4/0VTFULsx6NPeeSF5Tyaf0\nzy6P5BVBLIIcvHh+i7lz00cdn/6HPvspTIwkOOr45Otvi7/sSpw9/kuyGV3+j092v7qvpc3i\nCdtAI2TfOiPx7tlJ8MgmAJMNFAghCIfSvfXz2pd/33/0EGexMu/9TeLVN2Kx8Jdm89I76wzv\nHOvcVW8Mu8RZnIh975zkWSmSBekyLhUD3xEAAIwiyMFJjvF6bJWnmv/1F3vtmRDNDHwZQ9z4\nJEnR1Ix7fsVWjuZeGm0Wz9Zq/b+Pdp7utg9WKVTwWdeUaK4oUM9JkcBWhQCAMQI5CMCkNQ67\nFfbBEELoqaw7j0hyx+4iPIpwvXjp2J0fTAyQg6OF8Xq7t37e/PZfBuzZhBCiROK02+5LWPcT\nnBUVuyp02rybK3R/+6Gt3uA6914Mw1CyhHt5gerqYs2iDPm49BAAEGFQIIQgPA97bWXty793\n1Ff3P8hRa1JvvVez4oqo3ZhwALef+ey09tPT2u21xrD/5nks4pfzUx9dkg6b9AIAJg/IQdDL\nbzUbv/+ufeN/Bqwc0AvDcUnJtOQbbpeWTCd4/FG8rsvPfH5a+02NYUuVzhtuxRuEEI5huSr+\nHbOS5qVJZyWP/yo9AICJBHIQAIAQOvXz202nj4zLpbs4iluLHx+LM/MoYuMtUxFCa/JVY3F+\nMDFADo4u2uXs+PyD1vfeDPoHbntE8Hhpt96bdO3NUVImRAh1WL3vn+h681Bbh9UbtkGWgv+L\nS1JuLE2ATZoAmNigQAhBOCydmz9p+PPLQd9ZmUEKBJn3Pxy/5hoMx8erYyNldPk3V+r+U9Z1\nsNl87qssAivQCO+bm7I6Xxkvio3aJwAAXDDIQTCA+fihlnf+Zq+tCPoD576Ks9jS0hnJ190q\nKZk2uuvkOHz0ngbTrnrjhye6bF56sGbpct6ds5JK4kWzksVyPmsUOwAAmJwgBwEA/Y3DVoX9\nPJ9x8155yeidD9tyx7TeP0GNEAwGcnAs0A57z84tPd9usddWhM5ezIwlU+Q+/LRi/pKoGkc9\n3mH715GOD8q73P5zFpVBiMCwDAXvvrnJ98xJhqXXAJiQoEAIQThctMvR/O+/dn72wYD9inhJ\nKWm3P6BeellUxdt5Veucr+5r/vRUj9MfZiCSwLApCaI7ZyXdOiMB8g8AMFFBDoKwGK/XdPRA\n5+cf2qrOBP2+cxuwJFL57AXpdz/IUY3m0qMIISYYKuu0fXKy+7PTPV228I+yIoQ4JH77rKQb\nS+OnJ4lZRCx9/AAARBXIQQDAYMZtDVIM7ZJPfyn9+os/U7qc98Jl2XwW2f8gFAtBf5CDY8qr\n01Y/94T1dNmAcVSOOq5kw5uC9Kzx6lhYbj+zrdaws87wdZVe5whzDyhkkz+ZEverBWkFGkHk\nuwcAGDtQIIQgHBlHXVXtq8866mtC9Fl1NVFeUeEzG7iJyePVsQvDBEO1etcHJ7reONjqCYR5\nUkbIJu+anfTQojSYUAgAmHggB8HQGK9Xu21T89t/Cdis576KUZRs6sykn9wqnzkPYdioX71O\n7zrQbH7neOeJTpt/kAVIBSzyvnnJVxVpZqfA6qMAgBGDHAQADFP5XTdYak9F7noYQgh1sUdt\nAdLZaeLfLvmxGgFlQtALcjACPF0dda89Zy471H/Td4ykxIUleY89y0tKHb+uhRcKoR11hv+U\ndW2q6Al7F5Yi5T69Iuv6KXE8FvyzAWAigAIhBOGF8HS2Vz33uK3yrM/HGEVl/fzRpKtvHK9e\nXQy90/9hedd7xzsrtM7gOf9T4BhWFCd4aU3usiwFgY/+GCgAAIwLyEEwHCGGcbU1t3/0b9Ox\nH/xm47kNCA5HmFOQetNdshlzMZI8t8FF8jPBvY2mF/c0HWm3egPhK4UKPqskXnTbjIRZKZIs\nxWhulAgAmMAgBwEAIzUuGxb+Iv/BGkHSBb0V6/3v5mnx106J6zsKBULQC3IwYtwdrdXPPWGr\nOt3/IM5iKeYvyX7wCbZcOV4dG4LFE/iyQvfe8c7DbZYAM3CklM8ibpuRePP0hBlJYnwMnhYF\nAEQMFAghCC+crfJk3at/cDTWon7/iET5RflPvsBPzRi/fl0UiyewuUL3f9+3VmoddHDg/x0K\nPmtWsuSmafFXF8dRBOQfACC2QQ6CkXI01Na//oK95nTYTQoJDkc+Z2HKjXeIcgvH4uoBJtRo\ndH1dpXv9QGtPuHVvek1LFD+1PHN1ngqSGgAwNMhBAMDFKLv1altzTQQu9K+kNZ/ELbrgt6uF\n7H9dV9T/CBQIQS/IwQiznj5R8cxv/EZD/4MYSclnzs1/6gRpB9AAACAASURBVEVKJB6vjg2t\nxez+97HOt490aMPdgiWKOb+8JHV5tqJAI4T7LwBiERQIIQgvVs+urfV/ej7gsPUdwUgq7/Fn\n41auHcdeXbxWs+dfRzteO9ASdpNeMYecnyb77bKM2SlSeFAGABCjIAfBhWG8ns4vPmz/9D9+\nU5gJhQghbkKSuGBK8vW3CrPzx6IDoRA61mH94kzPm4faHb4wewkjhEQccmqC6Pop8WsL1XEi\n9lh0AwAQ6yAHAQCjwlJ2pPzXt0fscg/n3n9KlD789iwC+/DGqRzqrG2boUYIEOTgeGA87u5t\nX7b+5x8D7qQILk+1cFnOb35H8KJ0NRQmGNpRZ3hxT/ORNsu5EyoQQhwKn58me/bSLBgpBSC2\nQIEQgnAU0C5n/Rt/1G778sdDGJIUleb/9o/chAtbByNaWD2BzZW6F79rqtO7wjaQ8Vgzk8U/\nm5F4aa5SzBn9ddUAAGDsQA6Ci2Q9U97+8TuOxlqvtitsA1IoFOcVp91+v7hw6lh0gAmGDraY\n/+9g68kue6vZE7YNhqFcpeCZS7Muy1MK2ZDUAIAfQQ4CAEZXRCuF/xt/PynMeiT3ngEvEjiu\n5FN9Ky5cWaS5fWai3uF/aEvN2kLVNcVxCGqEAHJw/NAuZ9tHb3d89j7jdvc/Toklmksvz7zv\nIZxijVffzqvD6n33eOdr+1ssnjCLyiCEVELWL+en3jMnWcGP3u8CANAHCoQQhKMkFOrZtbXh\nzy/7Laa+YxhFyWfMK/z9hqh9/mX4jrRZPz7Z/dkpbdgJ9QghLkX8/tKsn06NT5JwItw3AAC4\nMJCDYLQ4m+sb/vyyraKc8XrDNuCo4yQl07J+/ihLphijPugcvoMtlt9tr6/VO8P3gcSnJopv\nmZawMleZKuOOUTcAADEEchAAMKbaP3yn4c0NY32VclHWo+cUCEUcalWuYuMpbe+XSRLOkiy5\nw8tsquhZmat6YF5y73GoEU5ykIPji3G76t54Qb/32wFlQoLPVy1Ynnn/wyypbLz6dl4+Oniw\n2fzid80Hm03+c3YoRAhhGFagEfxyfuraQrVKAJVCAKIXFAghCEdTMOCvWv+Ift+u/gcpoTh+\nzVUZ9/4GmxB/zzU657vHO/99rNPo8p/7Kolj89Kkz67MviRNBhPqAQBRDnIQjK4QTVvPnGj6\n15+d9TWMN8x8PpzFVsxblHnPr7mJyWPXjUaj+72yzs9OaZtM7rCr3yCEshT8wjjh86uy89SC\nsesJACDKQQ4CACJpDPcs/N/gA4YRS/ZX9P754/Luez6vPHcxdhLH3/1pce8CSFAgnOQgB6NB\nwGatfv5Jc9kPA3Z5x3BcNnNu0R9eJ7i88erbcHgCzLF22w+tlr9+39ZtD/O0KEVgc1Olv780\na1GGPPLdAwCcFxQIIQhHWYhhurdtan7rDb/F3P84Jy6h4KkXJSXTxqtjoysUQt+3mN842Hqo\n1aK1h9+kd0mWfP2l2TBHAQAQtSAHwRgJBZm2D/5lr66w1Vb4jYZzG/ASU6TTZguzchPW/WTs\numF0+XfUGl7b31reZQvbAMNQoUZ475zklbnKdHlU33gDAMYC5CAAYBzVvbS+c+vG0T8vhhBC\nFE9g/9PWX3xZFXYN9mdWZE1PEvd9CWXCSQtyMHp4ujuq/vC4rfIkOnucnuBw5bPm5zz0NEsW\n7dW1UAgdbDH/cU/Td40mPx08t0Gmgv/cqux1hWo2iZ/7KgBgvECBEIJwTAR93toNv9ft3Rn0\n/fjwCIZjkpLp+b97iaPSjGPfRp3W7nt1f/Nfvm/znZN/JI7NT5M+uCDtsjwli4D8AwBEF8hB\nMNZCwaCl7HDLe/+w11QE/WGep+HGJ4ryiiTF0xKvvmHsutFq9nxVpfv7obYm46BzCtNkvFkp\nkieXZhTFCceuJwCAqAI5CACIBmMxsxBnc1z/t+P7ZvPrB1vPHakQsMg31uWrhGct+gdlwkkI\ncjDaOJsbmv7xmvn4oaD/rEXLCB5PvXRV1gOPkoIYuFUxOP3bavR/+aHtRKf93LqDmEMuzJC/\nckVuliLmt6MCYGKAAiEE4RjyGXrO/PZBe3VF/4MYReU9uj5u5Vo0sZbgtHnpj8q7X97bFPYB\nPTaJZ8h5uWrBI4vSZ6dIIt89AAA4F+QgiJiA3Vbzwm/NZYcG26SQrVRLp84QF5UmXnn92HXD\n7qW31ej/cbj9jNZpdodZKhwhVJognp4kfmp5JmwqDMCEBzkIAIge1U8/ot37zWidDWdzitb/\nSTFvkeqZ3QZn+M88vV5YnVOkESIoEE5KkIPRiXY5Gv+yoXvHV6HAWYuOEny+ZsllmT9/mOTH\nQJkQIWRy+Tee0r6wp6nLNvAeEMOw0gTRq1fkLcyI3n0WAZgkoEAIQTjmHHVVlesfcbe39j8o\nyi8qefnvLMkEjIFDrZb1Oxu+b7G4/UzYBvEiztJs+QuX5SSKYeQRADCeIAdBhDEed9sH/zIf\nP2SvrwrR4VOSJVeoFizP+uVjODWGW9kzwdA3NfrndjeWd9iZQT4MJ4o5K3KUjy1Jz1bCw60A\nTEyQgwCAKNSz/euqFx6/yJP0FggRQnce9fmEMoQQEwx932zx/O8DmJzPmpEkRgitK1QniDkI\nCoSTEuRgNPP2dDf8dYPpyAHGc9Y8BIwkhVl5mQ88LJ0yY7z6NlJH2633f151sjvMhMKiOOGT\nSzOuLo6jiAk1jQSAGAIFQgjCSAgxTNeWz5rfeiNg/3ETIEosyXviOeX8JePYsbHjpYP/PNL+\n8nfNnec8JtOLReLrCtV/vCwHNj0CAIwXyEEwXmino/2Td03Hvne1NDEe97kNKLFEMWdh7iPP\n4OyxfZjG5qX3NBj/8n1bWafN4aXPbYBhWIFacO/c5PvmJuMTa/EDAADkIAAgyl1ksZCSSDpv\n+4Mor6j3y1Nd9t/tqO979fW1eRn9lviDAuEkBDkY/fwWc/XzT5jLDp37eKVi/uKiP7yOU9S4\ndOwCNJvcj39Tt6veaPUEBrwUJ2L/dlnmDaXxUm7MfDsATBhQIIQgjBzG4z756zttlaf6H1TM\nXpBx/0OC9Kzx6tVYq9E5N+xtrtY76/UuyzkRiGPYtCTRX64smJkM644CACINchCMu1CQaX33\nTWvFKeuZE/33Le5FCkWqBcuyfvFYBDbb8DPB7TWGJ7bVNRhcYfcpVPBZ05PEd89OuqJATeBQ\nKQRgIoAcBADElgtehpSZMt9/33MdVu/9X1T2HXxpTW6+WtC/GdQIJxvIwVjhNxtrXn7GdORg\niD7riUZBeta0v38QKyuO9vLSwU1nev6wq7FW7xzwEolji7Pkf7uqMFMBUykAiBwoEEIQRprh\nwO6q559gXK6+IxiOpd3+87Tb7hvHXkVAKIT2NZn++F3TD+FWHy3UCJ9clnFFgZrPgn+NAIAI\ngRwE0SMYCLS+96at4pTl5NFQMNj/JYwk+CkZ0tJZ6Xf8PAKVQpef2VKle+tIx/ct5gAT5nNy\nnJA9L0326hW5yVLuWHcGADCmIAcBADGn4uEH9Ef3Drf1/55oCqy7k155k9buu/uzir4XH5if\nsjJHOeAdUCOcVCAHY4vfbGr+918tJw67O9r6DhJ8gTivqODpl1ky+Tj27QLsqDU8sa3udLd9\nQGmCwLDSRNFjSzKuKtLAAi4ARAAUCCEIx4HPZDj9yH2O+ur+B1ULlxc++ydsEvwsbF76+d2N\nfz7Y6qWDA14Sc8grizQvrs5RC9nj0jcAwKQCOQiikKe7o3bDesvJo+euokNwOOKCqaL8ovS7\nfoHhY/6P1hNgvq7Sv7qv+USnPXjOB2YMw2anSJ5flb0wQwZLjwIQoyAHAQCxaFjrjoYQQoiX\nkp51/8M7e5jeVUYHFAhzVPxfL0jr3YCwDxQIJxXIwRhV/cJve3Z81f+pSpxFSUpmKuctSrzm\nxnHs2AVoMLru+azyhxaz/5xHM9PlvA2X566F5VsAGGNQIIQgHB8hmm775J22D/5JO3+cUc7R\nxBf87iVJybRx7FjE+OjgJye71+9sbDEP3HsJ/3/27js8imr9A/iZbek9m14JIRA6AoK0JBB6\nUVAUUFEs6L3+vHbxWtGrIIpe1Iuo2ECaIAiEUFMgBIMECCWNkN422U3v2+b3x4bNsimEZHZn\nd+f7eXy8u2dmJ+/zXOGbnXfOORQ1LsDp8wVDJge7sFIbAHAEchBMVmtFedaG96svnacV+qtz\nE0JE7mK38ZOdh4/2WfCgEYq5Lml460j2xeI6SWNb51+cxfaiqQNcX5gcOHUAOoUAZgY5CABm\nraWk6Nyy2V0fu/UbS9hLb5+hvAghmh5hQ6ty+Y6ObV8GuNluuj9c93NoEHIKctB8SZPirr//\nilqu/13JIXSwZ/T8wOWrWKmqz6qa5P8+euPg9YqKhja9Q2J70aww8RcLh4jtRazUBmDx0CBE\nELKJVirTXn22+mJKxxBFxFNmDHt/A8/KuvvPWQ41TR+4VvHJqdy0si5mJwxws31patCzEwKs\nBDxWygMAy4YcBBOnqKvJ/X5Tfea1hpxM0tVvrLZBIZ6Rs+wHDPKInGmEeq6U1b8Zk/VXYW19\nq7LzUVsRP9zT/q3pIXjKFcBcIAcBwKz1pkE48PlX7YJCCCHukyIIIX9er3hk++W2W6sZCfnU\npvuH+jt33H5Bg5BTkINmrU0qubl5o/Rsgqrl9okHFHEYFD5kzUcOoUNYKq2PFCr6x/PFX58t\nyKjQ355QJOCN9nGcMsD17RkhzjZCVsoDsFRoECIIWUar1QW/fpv/87e6U+OtPb2H/2eT45Bh\nLBZmZMW1rSt3XelyTr2NkD8txHXD/MHDvc1p22EAMH3IQTAXbbLKm5s31l5Jba0o73yUZ2Vt\nHxIqnhwV9PhqYxSjVP9yoWRDQl5elf4aABr2IsH4QKd3ZgzE6qMAJg45CAAWo2jHzzlbPut4\nf+u+woCnX3QIHawdPiFRpUsaNpfb1ba0TzyyEfJ/WDrcyVqgPQc9Qu5ADloARV3tzc2fy86d\nltdU6Y5TPMp13KTBb6y19vRmq7Y+u1RS99wf1y8U1XU+ZCXgRQ50e25iwPxwDzyUCcAINAgR\nhCahMS/n2rsvNRfma0coHs99UuSwD7/gCTn0YEhNi2LvlfJ1cbkF1S16hyiKGuvvOCHA5d3o\ngZhWDwCMQA6C2Sna/UvV+aTaK6mdl9MhhNgFD/Se+0DgsieNU8z5otq1J3KS82u6nFBICPF3\nto4c6PaPSYHj/J3QKQQwQchBALAwsuREQkhdxtWCX7doRjwiZ3nPXqQ94YRERQj5vd754PUK\n7eDbMwZOCHTWvkWDkDuQgxaDVqnyf/pf+fFDrZIy3XFKIPSMmjX49Q/4NrZs1dZnmo0eEm9W\nN8q7+Lbl7Wg1P9zz8wWDHXWebwCAPkCDEEFoMmg64+O3JKeO0EqVdkzk7DL0/c9cx93HYl2s\n2H9N8nVSwdn8GqVa/0+ogEdFhbp9s3hoqLsdK7UBgMVADoKZUrU0F2z7riL+WEtpceejdsED\nvWcvClzxlHGKUajotLL6LxLzrpQ3ZFU2dvmbtYuNcGaY+zvRA4d5YTEAABOCHAQAi9QmrTi7\nJIqoaUKI86ixPvOXCB2cdE/YldvyUa5Q2ijXvBXwqI/nhoV72mveokHIHchBC0OrVXnfbZLE\nxeq1CXlW1h7Tooe8udYct3NqkqteP5yZlF+TLmns3MWwFvDG+ju/OCXwwRHeeCAToG/QIEQQ\nmpbGvBtX3viHbpJRAr7f4kcHvfgmi1WxpaC65YMTN45mSitv/eKua5iXw0tTgx4f6yfkIwMB\noC+Qg2DuSvbtqM9Or8u4orsIgYbDoCHiSZFBT/6D4hlvH990SeO6uJvJBTWdVwIghFAUGR/g\nHBHi+l50qK0If+gA2IccBABLFT9tGK1q38aF4vODHnvWcchw7dETElWeY+C7x25oR+YN8Xju\nvgDtW/QIOQI5aJFotSr7s7XSpDh5bY3uuMjFdfAba8VTprNVWD+V1rW+c/RGTEalrKmLe6RB\nrjYLh3qunxdmI8R/zAB3Bw1CBKHJUSsUWZ++Kzl5hFZ1TCW0DQgOf/sTp6EjWSyMLWqa3n25\n/D+nbmZXNqk7/YH1drT6z5ywJ8b5Yu0yALhbyEGwGPm/fFt2ZH9reaneuNDJ2WnoSOfR4422\n7qjG6dzq947duFBc16JQdT5qJ+JPD3Uf7u3wTvRAa4Hx+pcAoAc5CACWKiFqpO567E4jxgSt\neFr79oREJVeqv/+rqLqlfeG+bHv/QWK7j+eEWQt5BA1CzkAOWjB1W2v6R2ukSXG6N1cJIW4T\npnjPud9z+hy2Cuu/tNL6F//M+Luotk2p1jvkait6fKzPp/MHi/j4kgXQW2gQIghNVEtZcdrr\nz+ntSug5Y+7gN9byrW1YLIxF1c2KN2Ky/rgq0W4nruXpYPXFwiHLRvugSwgAvYccBEtCq9V5\nW7+uTDjWXFzY+aiNj59HxEzHIcM9ImcZraQWhepSSf3niXnxN6u63KfQRsiPHOj6ydywkT6O\nnY+ezauZtjlFTdNhYtusNREGLxeAe5CDAGCprr//SkXcMe1bp/ARQSuf077V7EQoV9Gfxeeq\naEIIybb3J4S8GTVgcrArQYOQM5CDFq9VUpbzv89kyfG6TwzwrKxd75kQ/s46oaNTD581cdXN\nipcPZpwvrL0ha9JrbjhZC2aGib9dMtTNTsRSdQDmBA1CBKHpUrW2XHphZX3Wdd1BoZOz99wH\nQp79F0/I0b/l5Sr1u0dvxN+sulhSr/fnd7Sv47xwj/dnhgp46BMCwJ0hB8Ei5f3wleTkkZay\nLrYn5NvaOo+4x33CVL8HVxizJKWa/u1i6afxeVmVjV2eMMzL4ceHh48PcNYdjMupmrHlvPat\n2E5Y+WG0YQsF4BjkIABYKlqlKtj2fdHvvygbGgghIjf3wa++T936u07TICSEbE8tzddZF33R\nMI8p0ycRNAg5AznIEa2S0mvvvVKfcU13UOTqHvToM/5LH2OrKqacL6p95WDm+cJa1e33SEUC\n3uRgl+8fGh7iZstWbQBmAQ1CBKGpy/vxm4qTR5pLbpsNIHRy9l/yaPCqf7BVlSlIlzQ+t+96\nckGN3p9isb1o6Sjv/y4KR5sQAHqGHAQLVrT7l9orF+vSr8irZZ2P2gYEiadMH/jcK8S4U++L\nalreis0+kS3rcucMf2fr4d4OY3ydXo8c4Ggt0GsQEkJEfKptgxkvBwRgapCDAGDBZMmJ2Rs/\nbK2UaN6GvfqutYe35rW2QdimUKcU1p7Oq9a8nRTk/MCiSIIGIWcgBzmEpjM3vFdx8oiqtVU7\nRvF4rmMnekTN8Zm/mMXSGFFS17py15WEm1V6jQ4+Rd3j7xg9SPxu9EArbO4A0BU0CBGEZkCt\nUKR/+IY0KY5WdizPRfF44mnRQ9/bwBMKWayNddclDc/uvf5XQY3euLONcFqI66fzBod52LFS\nGACYPuQgWD6azv9lizTpVENOJun0O6+Vu4fr2AnOo8f7zDPqV2KaJjekTR+funk0S9plp1DA\no4JdbT0drM7mV+uO8ymeilbfek2Un881RrkAlgs5CAAWTJacWH7sYGXCcc3bsJfetvb21R7V\n9ghbFaqNifmahUbd7ISLhnr6OVs7DhmOHiEXIAe5RlFfl/3Ff2Rn41WtHVOHKYHAdexEr5nz\nvWYuYLE2RmRWNL53LOdolrRJrr+/g4BHTQtx23R/+FAve1ZqAzBZaBAiCM1GS2nx9Q9ea8i+\nTqs7/qO19vQKXPGM3+JlLBZmCo5nS/+5PyOvSn/dbULIKF/HhUM9184KZaMuADBpyEHgjrKY\n/VXnk2ov/y2v1X+khuLxHMKGes9e5LdkuZGrUqnpD0/e3H257Ia0qTfn83k8lVqtN0gRot6I\nTiFAXyAHAcCCyZITqy/+Vfz7ds3bgGVPuowapz2qbRASQjbE57Uq23/BsBHyXpkW7DJ0BBqE\nXIAc5Kbm4oLLrzzTWl6qO8gTWblPigh7+R2RqxtbhTGlrlX5ysHMmIyKykb9ZzEpiowPcI4e\n5P5edKiQj3XXAAhBgxBBaHbKDu4t3P1Tc3HHiqOUgO81Y97gNz/k7K6EWumSxpcPZZy6Iev8\nx9rb0WrxcK+NC4dgQj0AaCEHgWvUCkX+1q+rUv9qyE7XO0TxeC6jxzmPvtd+4CDx5ChjVqVS\n039er/jur6Ksysbi2tY7f6Ab6BQC3C3kIABYMFlyYu3Vi4U7ftS8db9vmu+ih7VHdRuE/0su\nrGpSaN++Oi3YzorvOGS45i06hRYMOchZtEqV/fnaytMnFfV1uuN8Ozv/xctDVr/MVmEMalOq\nXzucFXdDltnVNvCutsK5Qzw+njMowMXG+LUBmBQ0CBGE5kfV2pq+9nXZX4m0suM3WpG7ePTG\n7+1DwlgszERkVjS+fzzneLa0vlV/Qr2DlWDGIPetS4e72nJ6XVYA0EAOAmcV7flVlpxYdz1N\nLW/TO8S3tXUdM8F13ES/JSuMX9jYL85eLK3v50XsRLzGdbMZqQfAsiEHAcCyVcYfu772dVql\nIoTY+gcGPPyEldhTe1TbIyysbjmcXlHd0n4D4al7/XydrNEg5ALkIMepmpsyN3wgS05QtTR3\njFLEdcwEr9mLvOcsYq80JqUW1235q+hoprSsXv9ZTCGfGunjGBHitnZWqK0IfwqAo9AgRBCa\nq+K92wt++0FeJdOOiJxdglY+5//QYyxWZTralOq1J3IOp1delzToHbIV8RcN9dy4cIi3oxUr\ntQGAiUAOAsdVJhyvuXxBdja+tVKif4wi7hOnec1a5Dnd2J02wWuxKoZ+PUenEKBnyEEAsGyy\n5MSr7/yLVrTPDhTY24e/9TElaH9cWHcS4YXiuqOZUs3reUPE9/g76V5nppf+X5LukyIMVDMY\nE3IQCCEVp2KlZ+NlyQmqlo6NCfnWNuKp08NefVdg58BibQxS0/RbR7IPXKvIkXWxuYOTtWD5\nGJ+vHxjK52HdUeAcNAgRhGZM3daa/p+3pGdOaR6II4RQPJ7r2Inh76wTubqzW5vpuFBc9+/Y\n7MSbVUr1bX/YBTzq/mFeWx8e7mQtYKs2AGAXchCAEEKrVdmff1iVktS5Tci3sXWbMMUjYqbn\n9DlGrsrx38cb2lR3Pq8XsPQoQHeQgwBg2WTJien/eVPZ0PHQ8JDX14rcxZrXug1CWaN887ki\nzeu5Q8Rj0SDkBuQgaElOHCneu60+85ruoMDO3m/x8pDVL7FVlSFkVjS+GZMdf7OqSa6/7pqH\ng2hhuOfmJcOwPSFwChqECEKzV7Jvx80tG1WtHfPE+Xb2gUsfD37qBRarMjWFNS1vxmQdSq9s\nUdx2t1HAo0b7Oi4a5vVG5ADkHwDXIAcBtGTJiS2lRbVXLtZc/ltvKw5KIHAZPd513H12AcHu\nkyONVlJcTtWMLeeZuBJFCE0I4VNE+Tk6hQAdkIMAYNlkyYnVF1PKDu1VtbZPDHIIG8qzshLa\nO4gjZoqcXLQ9wupmxTdnCzWvOzcIO1u+ZLrhygajQQ6CLlqtvvHfT8qPH1Q13TbHznHIcN/5\nD/oseoitwgyhSa56+WDm30U1V8sb9ZojHg6i6FD39fMH+zlZs1UegDGhQYggtASNudlX3vxn\nq6RMd9A+ZNDo//4kcnFlqyoTVN2sWL33ekxGRatSrXfI2Ua4INzj0/mDse4oAHcgBwE6kybF\ny5ITyo8dpJX6j5Ty7ewdQgZ5Rs3xe9AY2xMy3iDUvsGEQgAN5CAAWDZZciIhRJZypvTAbr1D\n9iGDQp59qcsGoautYOU4fwernv5iRIPQMiAHoTNFXW3WhvelyQm634Z4VtZeM+aGvfY+Tyhk\nsTZDyK9uXr33enxOler2FgmPoiYHu/z8yIgBbrZs1QZgHGgQIggthFqhuPHFRxUJx5SNjdpB\nK3cP3weWBa9czWJhJqi+Vfncvut7r5TrLTpKCBHwqOmhbv9bMiwE+QfAAchBgO5Ijh+Wno2X\nno3XbtvTgSK2foFuE6eGvvAGxTPsn53VezO+TynQvuXzeCq1/iM+vXBbg1BLxKfaNhh76VQA\nk4IcBAAuyN3yZcFvP+gNChwch76zXtsgrGlWfH2rQUgImRXmfm+gcw/XRIPQMiAHoTvlsQdK\nDuzWW3HUfkBo4IqnvWYtYKsqw7lSVv9mTNaJG1V6jRI+RU0IdH5ghNer04LZqg3A0NAgRBBa\nFMnxw4U7f2zMvaEdoXg8nwUPDn79A/aKMlHSRvnaEzmxmdL86ma9Q3yKihjoNi9c/PJU5B+A\nJUMOAvRMcuxQTdoFaVKcoq6281H7kEE+85b4L33M0GV8llDwRkwG6XuD8A7mDHaPfWY845cF\nMH3IQQDgAumZuJL9OxvzcgghysYGtbyNEMITCUOefcXWP5AQckKiUqnpzcmFNS3tE4ZG+jgs\nGubZwzXRILQMyEHoWd7Wr0v/3C2vrdGO8G1s/O5/ZOA/X2exKsPJrGh8/XBWYm5Vk1x/M3hv\nB6tZg8Wfzh/sYS9ipTYAw0GDEEFocWg6d8uXhXt+0Z0L7zxy7LAPNliJvVisy2R9lVRwKqfq\nZLa087qjI7wdFg7z/GBmKJ+H7QkBLBByEKA3aKWycOePDTlZtdcuyWVSvaMOg8J9Fy31XbTU\nCJVsSy1buSvNcNdHpxC4BjkIAFygWWhUo2j3zzWXL2heW7l7aJ6l1swjrG6Wf3O2SHvmC5MD\nXW27XUsQDULLgByEO1LU1WZ8/O+qlNO0dhEyirjdO9lj2kyfBQ+yWpqhNMlV7xzN3nmprLJR\nrndIJOBFh7pvWDA43NOeldoADAENQgShZWoqyL327stN+Te1IzyRKOChx0Oef4XFqkxZdbPi\nrdjsfVfKq5v111JztRXOHeLx3YPDbEX4kwJgUZCDAHdFmhRfn36l5vLf9ZlXaZ1luvk2Nh7T\nol3HT/GaOc8IZRi6TaiBZiFwAXIQALhAt0FYHnugdDL20gAAIABJREFU8vRJzWtKIBjx8Vfk\nVoOQpukvTxc03po389S9fr5O1t1dEw1Cy4AchF7K/eGrkv07lA0N2hGKz/dZ8NDg195jsSqD\nalOq1xzJOpRemVelv+4aRVETAp3nDha/NT0EEyrAAqBBiCC0WLRSmfb689UXknUH3SZM8Yya\n4z33fraqMnFylfqVg5kHrlWU1bfqHXKxES4Y6vHZgiGYTQ9gMZCDAH2T/8u3pQd/b5NW6A7y\nbWwdBoW73TvJfsAg98mRxqlk4qaUlKJqg/4IbFUIFgw5CABcoNsgVLU05239urmkkBBCKCJy\ncdeM80SijIkP5wjcD2VUakaeHOfn74IGoYVDDkLvKRsbLr/ydH2Gzq6EFHEdO8kreq733AfY\nq8vgPonLTbxZdTqvWt5p3TVvR6tJQa5TBri8OCWIjdIAmIEGIYLQwmVv/Kj82J+qlhbtCN/O\n3mfuA4NeXEMoPOXRNZom7x/P2X25LEfWpHdIxKdmDHLfuHDIYA/Mpgcwe8hBgD6j1aq8H/9X\ndnCP7p4cGkIHJ7eJU9zGTxE4OLhPijBCMXE5VTO2nDf0T8GcQrA8yEEA4ALdBiEhpPTgHtm5\n051POy8eqZi1bNflcs3bZaN9QsW23V0TDULLgByEu0KrVVmffVCZeFLZUK8d5Ftb+z6wLNRC\ndyXUqm1RvHQw41iWrKKhrfPRcf5OD430fj1ygPELA+g/NAgRhJZPcvJI8d5ttz3kQojziDF+\nS1Z4TscT8T359lzRofSKUzdkSvVtf1FQFIkIcftm8VAsug1g1pCDAP2kbKhP//jf1X8nqeX6\nC3RTAoHz8NEuo8fbDwoXG2tC4ZqYnE8Tcgz6IyhC1BvnGvRHABgNchAAuECvQSg7m1B6eG/n\n01Kcw+n5j/52uX2BBDQIuQA5CH0gPX2yYMdWvbusTsNH+y9Z4TnDwr8mqGn61UOZMRnSm50m\nVBBCJgQ6Lxvtg9mEYHbQIEQQcgKtVmd99n7FqVjdqYQiZxe/hx4PXrmaxcLMQnFt61N7ribl\nV7cqbptNz6OoeeEe25ePdLIWsFUbAPQHchCAEZITR2TnEurSr7SWl3Y+aiX29Jox13nkWKOt\nO0r0O4UUIQb5hZ9HiArNQjBnyEEA4AK9BiGtUlUmHm+RlGnetlWUtVZICCEpzuESa7eTbmM0\n42gQcgFyEPpGrVBkffZB5ekTqqaOPhnfzs5rxvywV96hOPCf03/P5MdmSS8W11U33/acKEWR\ne/yc5od7vBs9kIeF68BMoEGIIOSQ8tgDpYf21l1P6xiiiPukqOEffcETYl+9O2hoU758MPOP\nq5LaltvCz07Ejxzo9s3ioYEuNmzVBgB9gxwEYJAsObG5uKDmYkpV6l+0Qn9CocjZxWnEPc4j\n7rH1DzTOuqNaUZsvJORKDXNtihAacwrBfCEHAYAj9HqEuiQnD1ecOko0DUIrl5PuYzXjcwaL\nU5odU6rlhJBHAvkLfG97LBgNQsuAHIT+kJyIKT24p/bKRd1B26AQ/yXL/R5YxlZVxqRU0+8f\nu/FramlpXaveoSBXm0dG+3w0e5CAhzYhmDo0CBGEnJO98aOyI3+o5XLtiG1AsP9Dj3Ikvfqp\nVal+43DW7rQyaaNcd1zAox4e5b314RHWAh5btQHA3UIOAhiC5OSRqnOJtVcvap7H12Pl7uE0\ndKTTiDEBD680WknbUstW7kq783l3TX9uoohPtW3A+u1gNpCDAMARPTQI666nFWz/XvP6kOd9\nx93HaV6HedgVW3ldrpETQu73EzwUcNvfk2gQWgbkIPRfzjcbSg/u0V2wjScS+S1e7jJqnDEX\nUGHXq4cy914pL67VbxM6WAsmBblED3J/ZVowK4UB9AYahAhCLiqL+aN47/bG3BvaEZ7Iyvf+\nRwa9+CaLVZkRlZp+bt/1nZfLmuUq3XEvB6v54R6RA92Wj/FhqzYA6D3kIIDhaCYUSk4cbriR\n2eUJziPv8Zw+19rT25gTCkdvPJdWVsvc9bpdvNROxGtcN5u5HwRgEMhBAOCIHhqEhJDatAsN\nN29UX0hOdh2233NKK09ECLGhVCqfkGt1KoIGoeVCDgIjJMcOlcUeqLl8XvebgbW3r2fETCPv\ns8AilZp+KzY7Jr0yS9rYudkywM12Zpj7fxeFW2FaBZgeNAgRhFxF0xmfvC05fohWd+yr5zp2\n4ohPvuLb2rFYlxmpapL/68+MY9myqqbbZhOK+NScIR6/LR9lb4U/WQAmDTkIYARFu3+pufR3\n3fXLivo6vUMUj+c4eJjL2ImOYUMpgcBoncLbdyg0OLGdsPLDaKP9OIDeQw4CAEf03CAkhKjb\nWq+990qKc/ghz/vqBO23RFpcfYvkPEIInyLbJlrpno8GoWVADgKDCn/bWrJ/Z2vlbWuoWHt6\nu0+KHPTiGkog6O6DFubLM/m/pZZdLqvr3HJxthGOD3CKHuT+WsQANkoD6BoahAhCTsv/6X8l\nf+6WV1dpR6y9fQOXr8Jyo73XqlSv2JF26HqFUn3bXyZie9FzEwM/nB3KVmEAcEfIQQCjkZ5N\naMq7UZuWWpt+RdXUqHdU6OTsNHSk07BRdgMGiW89Y1t37WLqC48Tmrb1C5q4M9YQVS3bfnV3\nWokhrtwdbFgIJgU5CADcccce4Y1Nn7SUlWwKXnzD1l8zwiNUpr0fIYRH6BMXXtc9maL4Uaev\nGaZSMB7kIDCrIu5oyYFdtWmpeuO2AcGBy570WfAgK1Wx4puzhecKahJvVpU3tHU+GuRqs3Sk\n97p5YTwKOxQC+9AgRBByXUXc0ZL9O3X31OXb2fstfGjgP1/v4VOg56as+dm9187mVytUt/2V\nMiHQ+fGxfs/fF8BWYQDQA+QggJHJkhNpmq69kio5flheLet8grWHl/ukSNexE8TTomtSUy69\nvIoQQihCCBE5ukyJSTZQYQu2XorJ7GLHRMPhU0T5OTqFwDLkIABwxx0bhMqmptorF4ZIxt/x\nUhuzvh3ZkDf9TDozlQF7kINgCIU7fpSeOVWXfkV3kBLw3e+L9IiY5TVzHluFGR9Nk/+cuhmf\nI0suqNG7X0oI8XWynhTsMnOQ+1P3+rNSHoAGGoQIQiCEprO/+E/pod9pVceOeo7hwwMefsJz\n+hwW6zI7u9PKjmVJ916R6O5NKOBRUwa4Rg10e3vGQDwZA2BSkIMAbJGeTai5lCJNim8tL+18\nVOTs4nbvFCsP74LfvusYpQiPL4xMuNL5fGYZuVkYJrbNWhNhtB8HoAs5CADccccGoYZ4f1P7\no0k9omi1+ov5/a0J2IYcBAORJSc2FeaVH/2zqeCm7saElEDoNWOueMp08bQZ7FXHgl8ulBzJ\nkP5VWFNa16p3yErAmxkm/vnh4W52IlZqA0CDEEEI7Yp/316wbYu8tkY7YhsQ7LvwoYBHnmCv\nKLNUVNOy5NdLqcX6Oy2N8HZYONTz/VmhAh76hAAmATkIwC5ZcmJrpaQq5Ux9xlV5TbXeUb7I\nSqW4fUUaHo/QakKM1Cn8LKHgjZgMQ/8UXevnhb0ZFWLMnwgchxwEAO7oZYMwJl2ScfRopn2A\nnBKWW3lcc+x2NSAaa4abP+QgGJQsObEpP6dw18+KulrdcSt3D/8HH7ULHmi0LdhNBE2TDQm5\nOy+VXS1v0DvkaC14bmLAp/MHs1IYcBwahAhC6NAmlVx795W662naEUrA95nzwOA31hLMfbtL\nb8Rk/XaxtLxef61tH0frFff4rMdC2wAmADkIYCJkyYnNxQWy5ITaa5dppbLjgH5U8ghRa8eN\ntv3PxE0pKUX6/UuDEvGptg1YxQEMDjkIANzUQ7MwNrdu5RVhby6CBqEFQA6CEUhPn5QmxVXE\nH1XLFbrjjoOH+T7wiM+8xWwVxqJvzxXtvlx2pay+rlWpOz7Yw37JCK+PZg/S3DE9m1czbXOK\n+lbvRmwnrPww2vjVgsVDgxBBCPpu/u+zoj2/0mq1dsQuKGTMV7+IXN1YrMocyVXql//MPJhe\n0XkG/RBP++fvC/i/yUFs1AUA7ZCDAKYmbtowovMbyB1QhBhrNiEh5KasOXRdYqcKDP5VAmuQ\nguEgBwGAm3poEF5Z8485Y9erKB4hhKZ4PcT8qb9f07628fa97/eTDFYIxoEcBKORHDskORVT\nnfoXrezYk4hvY+u/ZIXT8NFcm0qosf+q5M/rFQfTK+pvbxMOcLO9f5jnvQHObnaiGVvO6x7C\nY5RgCGgQIgihC/k/f1t25I9WSZl2xMbHL3jVP71nL2KxKvP1wfGcXZfLbkibdAcpiswb4vHI\naJ8VY3zYKgyA45CDAKYm9fnluisZ9IpxZxPqGr3xXFpZ7Z3PYwJFiBozFYBpyEEA4KaeG4Ta\n1+8MejrFudv17k5d6GgQekyNHv6fTQxVB8aDHAQjK/1zT9Hebc2F+bqDNj7+XtHzBjzzIltV\nsauyUX7/zxf/KqjRGxfxqZE+TheKb/u2xad4KlpN8OUIGIUGIYIQuiZNPFEWs192/oz2yXih\no5N42ozBr39A8fAfTF98c7bwt4ulfxfX6f61Yy3kLQz33PLQMBebXi1jAgAMQg4CmKC7m0So\nRRFCCN/KJuLkRcZL6oExe4R4YBYYhxwEAG7qeT9CzwPN6ru8U+hmL5CtndmfkoAVyEFgAU3n\nbf269OAeea1OS4wirmPv813woEfUbPYqY9O6uNydl8uud9qbUA+fx1PpfFVEmxAYgQYhghB6\nkv/T5vxt39HKjmWybYNCgh59GlMJ+2xdXO6mpIKKhtv2JnS0Fjwy2mfT/eHWAh5bhQFwEHIQ\nwGQlzhqnam6683l6qPZ/RZ3JYLyknq2Jyfk0IcdoPw47cAAjkIMAwFk99AgnnWi50dibW4Ud\nWyVPDnZOemEiA2WBcSEHgS2SY4dKDuyqS79towSBg0PQo88GrniKrapYt+lM/u9XJH8V1nbX\nr+FRlLrTIbQJoZ/QIEQQwh0U/rY1/9ctqpZm7YjAwdFz+ly3CZPFk6NYLMx8qWn6+X3pv6SW\nyJW3zZDwdrBaOd7vkzlhepvxYvMhAANBDgKYsprUlEsvr+rjhylCCLH1C5q4M5bBknrDOJ1C\nHkVUn+NrMPQXchAAOKuHBuEJSfsOYa77v9sgHJ3gNrLL02jcjzZ/yEFgV8G27ypPn2zI7ni0\nkRII3CZM8Yqe7zmdowuHCF8/qrzbSdy32Il4jes4OgUT+gMNQgQh3FnZ4X2ViSeqzp/VHbQL\nHui7cKn/Q4+yVZW5q2qSv3Ag41B6RbNcpTse4m63dKTXx3PC4m9W6W7Gu35e2JtRIUYvE8CS\nIQcBTFm/GoQaFCGEiBxdpsQkM1LS3Vq9N+P7lAKD/og5g91jnxlv0B8BFgw5CACc1csG4bXa\ntjcGr+7yNDQILQByEFgnO5sgTY6XHD+slsu1gyI394CHHg989GkWC2PLpK/PnSvo1w4O2JcB\n7hYahAhC6BVZcmJjbnbBjh9VTY3aQYrH81m01P3eKe6TI1mszaztvFT2y4WShJtVeg/IDPG0\nnzlIvCnpto2LEXIAzEIOApi47E/XlsTs6edFKIqFFUc7uylrDl2XaKCL8ymixIRCuHvIQQDg\nrJ63IdT2CNPr6E/S5V2dQtEb8d3c7CEHwUSUHz2Y/8u3LaVF2hGKxxNPi/aMmuMRydH9TR3/\nfbyhTXXn87qB2YTQe2gQIgjhLpTHHpAcP1xz+Tyt082y8fH3nr0oeNU/WCzM3H1ztnBbasmF\n4jrdQT6PUt3eNeRTPBWtxoqjAExBDgKYhaIdP+ds+YwQQgiPEPUdzu7SrU2C+FY2EScvMlVY\n32xLLVu5K83QPwWbFEJvIAcBADT0+oVoEHIEchBMh/T0Kem5hIqTR3SnEgqdnH0XPOQ0fLT7\npAj2SmNNXM5tK6v1AR6jhN5AgxBBCHdHlpxYn3mt9OAeeU21dpDi8byi54e/s45QVA+fhZ5t\nPJ2/PbXkSllDdyfweTyVuv3GKPbgBeg/5CCAeZEcPZT+yZp+XYJq/5cpzClctv3q7rQSA13c\nVsjf8/hozev54R4G+ilg7pCDAAAa3TUIu7N8yXQDVgPGghwEU1Oyf1fRnl91pxISQuwHhPou\nXOr34Aq2qmJL/xuEGphNCD1DgxBBCH0hPX2y5M/dNRdTdKcSOoQODnz0Gc7uo8uIu92MF21C\ngP5ADgKYHZ3ZhP3D9vaEeqI2X0jIlTJ4Qd0GoRY6haAHOQgAoIEGITchB8EESZPiKxOOVcQf\npZUdfxFRPJ546gyvmQvEUzn0lw9TDULcO4WeoUGIIIS+K967veTAruaiAu2IlbtHwCNPBjyy\nkr2izFvfNuPFoqMAfYMcBDBTDEwl1GifUEhFnUln4GoMYWQNUj5FPT7W94HhXp0Xd0CbELSQ\ngwAAejSdQjQIOQI5CCar7PC+koN7GrJu+5Ji4xsQsPRxay8frq04+llCwRsxGeT2ldXuBkUI\nrX2FZiHoQYMQQQj9Ij19qvzYQWlSnHaEJxL5Lnp40L/eYrEqsyZ4LVbVp7+W1s8LezMqhOly\nACwZchDArOVu/rJg1w/MXMvEJhRqLNh6KSZT0p8rvD8zdKy/0119BO1DTkEOAgDoQYOQU5CD\nYMra93g6tFdeLdMOUjzKcego8eQou6AQrrUJCXO7ufMIUaFNCLegQYggBAbkfvffoj2/quVt\n2hGvmfM9ouaIJ0eyWJVZ470a27e/mzCbEKD3kIMAFqAmNeXSy6uYuRZFCCE8vjAy4QozF2TI\n6I3n0srueoEBXROCnd6OCu39+WgTcgRyEABADxqEnIIcBNNXmXCi8vSJyvhj9O0z51zG3Osz\n/0GvmfPYKoxFEzelpBRV9/86uIMKGjy2CwCwBCGrXxr04hprDy/tiORETN4PmyTHD7NYlVlT\nb5x76rl7+/DBbGkz9Wrsp/G5jJcEAABgglzGTpielDH03+sZuBZNCE3UKkXc1PC4qeFpr61m\n4JpMmBUm7t8FKE9ba0JIZYP8sZ1X9l0tZ6QqAAAAAAAwKI/ImV7R84NXvSBydtEdr7l0PvuL\ntTf++wlbhbHor39NoDfOnRDg2s/raO6g8l6NZaQqMF+YQYgnZYAxlQknivZuq7t6STsicnUf\n+I9XvWcvYrEq89X/zXjxLAxAz5CDAJYndeWSurxMZq5lkhMKV+/N+D6l4G4/9eAI75E+Dk1y\n9fr4m0tHeT92j2/P52MGIUcgBwEAuiRLTux5EiFmEFoG5CCYEenpU7XXLlXGH2utvG0PAo9p\n0V5z7ufsEm5MzSYkhNiJeI3rZjNyKTAvaBAiCIFJtEp19e1/yZLjb23+SqzcPQY89YLPggdZ\nrctc9e0moB4kHEB3kIMAlirjvdfLE44wcy2q/X9t/YIm7mT/8dJeb7xBEdL11xw0CEELOQgA\n0CU0CDkCOQhmR5acWH3hXNmR/aqWZu2gbeAA/8XL/JasYLEwdjFy+1SLTxHl59ihkEPQIEQQ\nAvPyf/pfwW9btVsS8kRWnjPmiqdOF0+OYrcwM7Vs+9XdaSWEEIpQdDc3+3pAEUJR1Kwwt9hn\nxhugOgAzhhwEsGy32oTdtsruDkUIIRTFjzp9jYGr9duCrZdiMiXdHXWwEr43M+T1w1mdDz04\n0nvlWDQIgRDkIABAN9Ag5AjkIJgpyYnDJX/srEvvWOaEEvC959w/5M2PWKyKdZ8lFLwRk8Hg\nBdfPC3szKoTBC4JpQoMQQQgGUbjjx/yfN6taW7QjjkOG+y951Gv2AharMne9njSgp+PG6JzB\n7mgTAmghBwG4IO2FVVVXUhi7HNX+r6gzTH757LPufjdwtBZuWz7itUNZN2VNeocEPOr1yAH3\nBbl0/pQetAktHnIQAKBLsuRE7esuO4VoEFoG5CCYL+nZBMnRP6VJp2h1R2vDeeRY3/sf9oqe\nx2JhrGN2NiHBwmwcgAYhghAMpWj3LwXbv1fU1WpHKIFAPHWG1/S54mkzWCzMrDGyuDYegQHQ\nQA4CcEf2p2tLYvYweUWKUISKOpPO5DUZFZNRqVTTq3ZfrWlR9HDaJ/PChns59HAC2oQWDDkI\nANAdbY8QDUILhhwEc1ew/YfSA7t0dyW09vLxe2CZXVCI+6QI9upiX1+nWHQL645aMDQIEYRg\nQJKTRypOxsj+Oq27spetX2DwE897zV7IXl1mr/9tQh4hqo0INuA65CAA19Skplx6eRWTV6QI\nIUTk6DIlJpnJyzIhJqOSELI9taS+TVVW13q1vEF7iEdR1gKe5rWtiC/gtW+0KOBRk4JdVozx\npaiO66BBaMGQgwAA3UGDkAuQg2ABpKdPFu3dXpuW2jFEEcfBw33mL7Fy9+B4m1Azm5DP46nU\nakYuKOJTbRvmMHIpMB1oECIIwbBkyYk1ly+UHNilbmvVDgocHLyiF7iOvw+7EvbZTVlz6LrE\nfl4EwQYchxwE4CyGJxTeaqe5jZ8y6vPvGLssQzSdwvNFtT+kFFc0tN3x/PXzwob2OKeQoGto\nKZCDAADd6XmVUTQILQNyECzGja/Wl+z7jdZpg1ECodeMueLJkeKImSwWZgqiNl9IyJUyeEFM\nurAwaBAiCMEYKhOOy84mSE7G6GaV04gx/ktWeE5Hg6rvlm2/ujutpJ8XQZsQOAs5CMBxLSVF\n55Yxup8ERQghA1e/ErjiaSYv2z+aBiEh5IvT+Qk3q+54/ihfx+FeDvcP9xLxqe7OQYPQMiAH\nAQC6gwYhFyAHwZIUbPuu7MiBltIi3UGhk7PfA8schwzn+FRCQkhcTtWMLecZvCDuploMNAgR\nhGAksuTEhqzrRfu2Kxs6VrgSuboNeOr/fBctZbEwC8DIxoQINuAg5CAAaBhiQiFF8aNOX2Ps\nmv2gbRDmVjW/9GeGp4OVt6OV3jlNbaocWZPuyJIRXk+M8+vummgQWgbkIABAb2iTVAs5aBmQ\ng2BhpGfjay79XREXK6+S6Y47hA72WfCQtac32oTM7k3II0RNiNhOWPlhNFPXBONDgxBBCEZV\nfuyg5Nih6tS/tCM8kZXvoqWuYycipfqJkdmEFCFqTJMHzkAOAoCu3M1fFuz6gbHLmUybUHtb\ns7y+7dm915aO8n7sHl+9c0rrWp/bd113ZJy/03szQ7u7Jm6MWgbkIABAb6BBaKmQg2CRKhNO\nlB/7s+r8WVqp1A5SPJ5H1GyPqTN4Vta4Abtg66WYTAkTV6IIaW8tYd6F+UKDEEEIxiZLTqy+\ncK4sZp+qtWNXQvHkKO8594unzWCxMMvAyGxCtAmBI5CDANCla6/9s/J8AjPXurVIJ9/KJuLk\nRWau2Ved72/q2p5aeuKGrL5VqaZpQshQL4f188K6Oxk3Ri0DchAAoDfQILRUyEGwVLLkRHlN\ndcn+HQ03MnXHhU7OXtHzXcZOFE+OZKs203FT1hy6LrF/1+hoEGqhU2h20CBEEAI7Sv7Ykbf1\nG0VDnXbEyt3D/6HH7IJC8CRL/zEymzBMbJu1JoKJcgBMFHIQAHpQtOPnnC2fMXY5qv1fUWcy\nGLvmXeq5Qajx4oGM/OpmQoidiL/7sdHdnYYbo5YBOQgAAFyGHATLJktObLiRWRazr7WiXHfc\nPmSQ16yFdoEDcANWY01MzqcJOcxeE21CM4IGIYIQWCM5caTkwM66a5e1IxSPchk93vf+Rzwi\nZ7FYmMVYvTfj+5QCPo+nUqv7dgVMJQTLhhwEgN5Ie2FV1ZUUpq5GUaz1CHvTIPwqqeDkDRkh\nRMSndj82RsinujwNDULLgBwEAAAuQw4CF0hPn6xIOCE9c0ItV+iOOw0b7TN/icjFFW1Crc8S\nCt6IYfib2pzB7rHPjGf2msAsNAgRhMAmWXJiZfwxSVys7rrYVu4eXtHznEeNQ0Qxov+zCfkU\nUX6ONiFYIOQgAPSe5Oih9E/WMHMtVmcT9twm/PZcYWymVPM6OlR8MkdqJaD2rbxH7zQ0CC0D\nchAAALgMOQgcIUtOlNdUVZyMqb54XnecEgjc74vwiJzlFT2PrdpMU9TmCwm5UsYvu35e2JtR\nIYxfFvoJDUIEIbCv5MCu4r3bm4sKdAedwkf4PfQYIoopjGSb2E5Y+WE0I/UAmALkIAD0waVn\nltdkpTFzLYoQQgaufiVwxdPMXLAXem4QxuXI/numQPPay8FG0tAi5PH2PzlG7zQ0CC0DchAA\nALgMOQicIktObMjJLIv5o1VSpjtu5e4R9Ngz1l6+mKehxxBLjxKs1mZ60CBEEIJJkCbFV6Uk\nlcXupxUdE96tPbyCVj7nu2gpi4VZmImbUlKKqvtzBcQYWBLkIAD0R+rKJXV5mQxciCKEEL6V\nTcTJiwxc7U56bhBeLq1/79iNO14Evw9YBuQgAABwGXIQOEh6NqE2LbU8dr+ivk47SAmEvgsf\nchs/yX1yJIu1maZtqWUrdzH0eGgnmFNoCtAgRBCCqZAlJ7aWl5afOFSfcU07yLez91+8PGT1\nSywWZmHicqpmbDl/5/N6hNuCYBmQgwDQTxnvvV6ecISZa1Ed/2vQpUd7bhBKG+XP7r2mVN/x\nKxJFb5zDYFXACuQgAABwGXIQuEmWnEgrFdLkxIpTMbobE9qHDPKcMc9+QCimEnZmiO0JO8Me\nT6xAgxBBCKZFlpxYd/VS0b7f1G2t7UMU8V241P2+COQTgxgJNjsRr3HdbEbqAWAFchAAmJL2\nwqqqKymMXc64cwp1xWRU/lVQ80lc7p1ORIPQEiAHAQCAy5CDwGWy5MSW0uKi3T+3Vkp0x51G\njPFfssJzOn7V70KnSRcUIQZpLYn4VNsG/F9gJGgQIgjBFBXv3V7w6xZ5bY12xGX0ON/7H0E+\nMauf0+Q1MRgmts1aE8FcUQDGgxwEAGYx3iakCBV1Jp2xC/bmZ74a28sT0SC0AMhBAADgMuQg\nQEXc0dI/99Rc/lt30NrLx2fBQw4DwzBVo0s6ky4M1SDUhWmFhoYGIYIQTFTZkf3Fv29rzO3Y\nBUfk6h78xPN+i5exWJVF6sdswo4gxKKjYI7ktPeJAAAgAElEQVSQgwBgCEU7fs7Z8hljlzPu\nbELRa0dVhNCE0DTp8esuGoSWADkIAABchhwEIITIkhMbbmRKTsY0F+VrBykeJZ4202vWQoqi\n0CbszrLtV3enlRjtx80Z7B77zHij/TjuQIMQQQimS3r6VOGeX+quXtKO8ESioJXPB69czWJV\nluqmrDl0XWI/L4Ip8GBekIMAYDiMtwl5fGFkwhXGLtjdz+ntDMLbuNkLZGtnMl4MGBpyEAAA\nuAw5CKAlS06sTbtQtHcbrVRpB239Az1nzHMcPAw9wh4YZ3tCLez3xDg0CBGEYNJkZxOqL/1d\ndmiPqrV9S0JKIPC7/xHXcfchnAyBkTah2E5Y+WE0E+UAGBZyEACMIHfzlwW7fmDgQhQhhLiN\nnzLq8+8YuFo3/D+MK6lr6201t0wOdk56YaKBSgLDQQ4CAACXIQcBdMmSE5sKcstiDzQX5umO\nO4WP8Jq5wNrbF3die7YmJufThBzj/CzcemUQGoQIQjADxXt/K9yxtU1WqR1xv2+az7wl4mkz\nWKzKgjEyRx6zCcH0IQcBwGhaSorOLWPiSU+KEEJEji5TYpIZuFo3YjIqCSFrj+emltR0cwqW\nGLUEyEEAAOAy5CBAZ9IzcZKTMZWJx3V3G6D4fNexE72i53vNXsheaebBaBMKw8S2WWsijPCD\nLB4ahAhCMA+S44dzt37VWl6qHbH28vFbsiJw2ZMsVmXZJm5KSSmq7udFeISosDchmCrkIAAY\nWdoLq6qupDBwIar9X1FnDPLl81aDMC+1pLvfBNAgtATIQQAA4DLkIECXZMmJTUX5ZYf3NhcV\n6I4LHBwDHl7pEDoEUwl7I2rzhYRcqeGuz6OI6nPccWUAGoQIQjAblQknivdtr71yUTtCCYUD\nVr0Q9NgzLFZl8RhpE1KEqNEmBNODHAQAtqSuXFKXl8nAhQzTKdQ0CONvVn95Oq+bU9AgtATI\nQQAA4DLkIEAPZGcTaq6kSk7GyGUdXS6Kx/OImuMZES2OwAbkd4GRm6vdWT8v7M2oEANdnAvQ\nIEQQgjmRnU2oPHNKciKGVio0I5RAEPjwE04jxuDpFYNavTfj+5SCfl4EbUIwNchBAGBX9qdr\nS2L2MHKp6UloEMJdQw4CAACXIQcBeiZLTqSVStlfpysSjquaGrXjNr4BAY+stPbwxs3YuxKX\nUzVjy3nj/CxsUth7aBAiCMHMyJITW8tLC3f92Foh0YxQPMojarbn9HniKVHs1mbZbsqaQ9cl\nMnU1PN4CpgA5CACmgJE2IUUxOYlQ0yDswfxwD6Z+FrAIOQgAAFyGHAToDVlyorxaVvT7tqb8\nm9pBSiD0jJrlMXUGphL2jUHnFBJCbIX8PY+P1hvEl7guoUGIIASzVH70YMGvW5pLCrUj9gNC\nAx99xmvmfBar4oJtqWUrd6UxdTURn2rbgPkHwBrkIACYmv40C0eu38zUM7xoEHIEchAAALgM\nOQjQe9LTJ8uPHpSlnKGVSu2gbUBQ4LJVIld3TCXsJ2Zvt5JuGoQa+CqnBw1CBCGYq8r4YwU7\nfmzITteOWIk9g5943nfRUhar4ghNbgl5IoVazsgFMfMdWIEcBADTlLv5y4JdP9z1xyhCETJi\n3WZCSD+/oqNByBHIQQAA4DLkIMBdkSUnNhXmFe/d3iat0A7yRFa+Cx90HTcJPUKmMNIstBby\n93bTINTCdzoNNAgRhGDGpEnxlfFHK+KO0mq1ZoRvYxv8xPN2QSGIJSNYsPVSTKaE8cvOGewe\n+8x4xi8L0BlyEABMluToofRP1vTts3xb22Hvfd7/34V6aBPiy6RlQA4CAACXIQcB7pYsOVEt\nl0tOxsjOxmtvxhJC7IIH+i162NrbF/djGfRZQsEbMX3eRYLa+/hoayGv55PwtY6gQYggBHMn\nS06sz7petOsnVWurZkTg4BDwyCqHgWHIJONgdm9CPXYiXuO62Qa6OAByEABM313PJqQIIURo\nax/+7gbDzSPEN0nLgBwEAAAuQw4C9I0sObEp/2bR7p/ltTXaQUog8Fu8zGXMBPHkSBZrs0hR\nmy8k5Er7c4UhXnbLR/nyeFSY2M5K0NE1xNc6ggYhghAsQ+HOn4p2/qgbS+Ip073nLUYmGc2a\nmJxPE3IMd/0wsW3WmgjDXR+4CTkIAGahbyuOjlzf37VG0SC0eMhBAADgMuQgQH9Uxh8rPfh7\n9cUU3UFrD6/Ax56x9vDGtA3GMXLrlc+jlo/xWTrSW/MWX+sIIXeYZQkAZiFw+aqQ514VOjpp\nR6RJcfk/fl0Rd4zFqjhl/fxQeuPcZycEGej62dLmT+NzDXRxAAAAUxbyj5enJ2V43Hs3jz1R\nVP9/7vxwD3xjBAAAAACAzjyiZvsvfXzAqhesxJ7awdZKyY0vPy4/+mdlwnFZciJ71VkgRm69\nqtR0RYNc+zYmo/KO289bPMwgxJMyYDlKD/5etHd7c0FHG0nk4hqy+mWf+UtYrIqDDDSbUMij\n5J/NYfyywGXIQQAwO9mfri2J2dPLkymhcMRHm7o81PtHerv8xojGoWVADgIAAJchBwH6T5ac\nqGptKf1zd83lC7rjImcXv8XLHcKGYioh45Ztv7o7raTPH7cR8jcuHOLvbK0d4fiXOwHbBQAA\nY3wXLbVyE5cfP1SZeJzQhBAir6ku2P4DT2TtNXMe29VxyPr5oevnh25LLVu5K43ByyrV3H2e\nAwAAQCPszffD3nyfEBI3JfwOp1JE5OJijJoAAAAAAICTNP0/vrWN28RpxXu3t0krNOPy2pq8\nn/7nes+9ivo6oaMT2oQMmjPE/Y4NQisB/50ZIdq31yUNe9LKNa9bFKrj2dKn7/U3YIlmBTMI\n8aQMWBpZcmLdtcuFu3+hlQrNiJXYc8DT/+czbzG7hXHWxE0pKUXVTF2NIkS9cS5TVwOOQw4C\ngLm7c5uQEEKI49CRwY+t1h3BV3QgyEEAAOA25CAAg2TJibRSKT1zShJ/lFYotOOUUOi36GHX\ncffhCwjjerjjaivk73l8tPatpKHtn39cl6vaG2G2Ir6jlWCol8M/JgWK+BRmEAKARXGfFOE+\nKUJg75C79StaqSSEtEkrcr5ar6ipsgsORRoZ31//mkCYaxPShFCvxmpe8whRoVkIAADQnVsb\nEdr5B7FZBgAAAAAAWDTNHVdKIHAaMaZwx48tZcWacVqhKN73W931NGVzk8DWDjdmGaS549qZ\n7iYRT+25Wtko1zuhWa5qlqskDW1xObJP5oURbq8yihmEeFIGLFbe1q8Kd/2ibmvVvBXY2Qev\n+qetXyCiiF1Rmy8k5EoZvGCY2DZrTQSDFwTuQA4CgGW48Nji+oKs24ZoQghxnxThu3CpIX4i\nfpuyDMhBAADgMuQggCHIkhMJTcvOJ0mO/qlqbdWO821s/R54xHnkWHyVMDTdBuH21JL6NpXm\n9dm8mka5UvfMQBebt6aH+DpZc7lBiBmEABZrwNMvCuwdC379TtFQRwhRNjXe/N8GzxnzaZVK\nPHU629VxV/w/xhFC1sTkfJqQw8gFs6XN2jmFWIAUAAA4SOjk3OW4sqHeyJUAAAAAAACXtff/\nKMp1zISivdvqrl7SjKtamgt3/tSQnS6vlolc3dEmNI7HxvppX08Kdnn36A0fR+uy+vbGbWFN\nS5NcRXR6ihzsFKJBCGDJAh55QuDodOOL/6haWwghtJqWnDjcVJhLq1QekTPZro7T1s8PXT8/\nlBCybPvVO+6s23u0djE1AAAAzhj1zU+y5MT8LV/pzSOU19USmiYUwhEAAAAAAIxH0//jiUR1\nIy8X/7FD1dysGa++eL7myiW/+5cSrEpiMN01+crr2wghE4OcD6VXKG7tR1ha1zpIbGe84kwP\nj+0CAMCwfOY+EPzkP3SfrG/Izsjd+lXFqVgWqwKtXY+NoDfO1fwTGSLu9/Vo+7eOMVAWAACA\nWXGfFNF5HmFzYV5TQS4r9QAAAAAAAMe5T4pwGjZ6yBsfOg0bpR2klYrifTvyfvxGcuwwi7Vx\nFp9HPTHOX/v2WNZt+0DFZFTqrlDKBZhBCGD5Alc8ZesXWHZkf1XKaVpNE0KaC/NubFqnbGr0\nXWSQjXmgbzSrj2qs3pvxfUpBHy4iV7bPi+fgpHgAAOAyzTxCQkje1q8actqnEiqbGtmsCQAA\nAAAAOKx9KqG1TdVfpytOxWq/njTcyLjx1SfKxnprb19MJTSye/wcf7j1OrOysUWhshFydytW\niqZptmtgDTbjBU6RJSfWXDpf/MdvtLJ9a1ahg1Pwk8/7L32c3cKgZ9r9BXt7PiGHnhqrN4hm\nIXQJOQgAFqn6Ysrlf63SvOaJrLznLHK/L4LZH4Hv8JYBOQgAAFyGHAQwJllyolouL9m/o+by\nBe0g38Y2cPkqh0Hh+H5hNJppFe8czb5S1qAZ8XSw2nR/uJ2o429CTt1HxRKjAFzhPinCZcy9\nwY8/x7ex0YwoGuryfvqmcOdP7BYGPaM3zp0Q4HoX5xOy4MdUzT8Pbr9ouMIAAABME08o0r5W\ny9vKjhygaTWL9QAAAAAAAMe5T4rgiUQBjzwZvPI5vl37pneqlua8n74pO7yvIu6YZjUUMI4w\nsb32dUVDW7qEuwvPYIlRAA5xnxSh2aEnb+s3ioY6QoiysTH3h03qtlY8q2LKpoW4pRRV3+WH\nKEKIl6215k3n5bM59SwMAABwim1AEE8kUsvlmre0UqFsbOAJhLrn8KytKQrPSgIAAAAAgJFo\nb70OfO6V3O83KRvqCSGEJtKz8bXXLvk9sIxgqRJjGR/gvP+aRKluX1yzulmue/SO2xBa0m1V\nLDGKqfTARWUH9+Zs+VzZ0D6TmhIKAx950mnYKISQyRq98VxaWW0fPhjubffp3CFdHrKkMIO+\nQQ4CgKUq/n176aHfmwpyuztB4OAQ8tSL1t6+fbs+fmWyDMhBAADgMuQgAIvKYw8U7fm1MfeG\n7qDT8NH+Dz7Kt7ZxnxRRd+1i6guPE5rm8YWRCVfYqtPyaJt/qcV1a0/kaF6He9p/On9w7y9i\nSfdUMYMQgIt8Fj1EeFTB9u9bykoIIbRCUbhja8AjTxDc8DJVl1+9jxAycVNKr6cSUjyKEEIG\nudrf6UwAAABLY+Prbx8yqIcGobKhQXYu0W/JCmNWBQAAAAAAQAjxnvuA0NFZmhRXEReram3V\nDNZdu9xSXOC3eAUhpCknm6hpQohapYibGu42fsqoz79js2JLoe3tNbQpbUX8ZrmKENKi4O6e\nFGgQAnCUz4IH+bb2ud992VJWTAih1eqi3b9o1h1Fj9Bk/fWvCZoXnyUUvBGT0eO5tGaWvIJw\nN+EAAICz3CdFNNzIIBQh3a+WolbIuz1GCCGkZM+PVWld7+ZLESrqTHp/KgQAAAAAAC5znxxJ\nKMp55NjiP3Y0ZLd/uZDX1uT99I1tYLDrqHvbz6MJIaTq76Sk+ZOmxCSzVKwFcrAShLrbXilr\nIIQoVNy9fYoGIQB3eU6fTatVBdu+a8q/SQih1eqyw3+0lBTRKpV46nS2q4OevB4Z9Hpk0IKt\nl2IyJT2feSRdeiRdOiHY6e2o0MoG+auHMxcN83hwhDchJCaj0pJmxAMAAOhyGBQe8sy/mosL\n9cYr4o6q5W2EEO0mhd1RNSm66y/SPTQeAQAAAAAAesF9UoQsOTH4yeerzp8tj/1T3dY+lbC5\nML+l6PYvMjRRNNazUKJFsxO1d8eaMYMQALjJK3oeTyDM/2Wzds3rmssXFHW1qtZWgZ0dphKa\nuMNPj3k7NvuTOM36aRQhpNNECc0gkTUoGuVKFU3Xtih0Z8133nQXLUMAALAY9iFh9iFheoOy\n5ARNg1Bvww8AAAAAAAAj09x9pSie46Dwkv07G3KyNOM0rb51V4/cGqHjpoYTQiiKH3X6mrEL\ntTjzwz0+S8jTvK5pkWdLm8LEduyWxAo0CAG4ziNyJkWRkoN7qi/8pRlpzMvJ/vKj4JXPsVsY\n9MbHc8M+ntt+63PqNxeS8qW3H2/vF96UNe++XD5vCJp/AADAdbYBwXXX0wghaoVc+/W7S8qm\nJmMVBQAAAAAA3KVpE2Z9/oFeU/A26vYn/mmiip8aHnWm572H4M7srfiaFzRNYjMr86vtrQX8\newOcbIR8dgszJjQIAYCII2ZSQpGNX2Dpn7s1HSVlQ33u95vaqqSh/3yd7eqgtxYMFXdqEHZI\nLa5rU9CEkGtlDb+qS3k8EjnQzc/J2ogFAgAAsE/o6KR5QatUeVu/usPZPXw/BwAAAAAAYI5j\n+AjNs4x3QBOakLip4RQhaBP2R+RAt9jM9lup8TlV8TlVhJAwsd3nC4ewWpdRoUEIAITcelDF\nylVcuHOrqqWFEKKWtxXt/pkixHnUOKw1anZ4FDXAzZYQUlDdrFTThJDSutbSulZCSGZlY2Zl\nIyHkRLbsp4dHCPm33fvsvOhol7ASKQAAmDjNfh5dHODxevpYrzuCcVPCta+t3Nwn/3mm16UB\nAAAAAADoG/vtzrOLI9ukFb06myY0IZhK2B9ONsLOg9nSpka50l7ElcZZj1+PAYBL3CdFOAwa\nMujld6w9vNqHaFK059e662ld318DE/PA8I6mnbWA9+WiIV8u6umBl9oWxeJfLl6TNBi+NAAA\nAFPhFD6C6qFHSHd7RB/V8U/nnQ4BAAAAAADu1uT9CdOTMu7wUKMOmiZxU8PjpoanvbbaoIVZ\nJG8Hq3sDnDuP//vIDblSbfx6WMGVRigA9IZmpiBPICrc8UNj7g1CCK1WF+7Y6hU9X3sUTNZA\nd1t641y9KYATAp3/Lq7rLtWmDHB17ephGQAAAEtlHxI2+LUPWsqLifoOzUBZwonG8qLujk7H\ng7oAAAAAAGAA009fT3lsQVNBbq/OpgkhpOrvpMToeyJOXjRoYZbnneiB0ka5iqaPZkn3X5Vo\nBvOrmzMqGkf5OrJbm3GgQQgA+rxmzuMJ+Llbv2ouKiCE0Gp1+fFDQhc3gh6hGXozKkT7ury+\n7dm918b6O6cW12pGpoe6+WIbQgAA4BiRm7vIzf2Op9Wm/k26bxACAAAAAAAYSNi/3r708qq7\n+ABNVG0tcVPDeXxhZMIVg9VlUTQ7KGnmWkwOdjl0vUJ56ylSxZ0eJ7UYaBACQBc8omYTisr9\nYZOmR0gIKdrzs6K2mqBHaPK0uwN2t5ugvYivfc2ZsAMAAC7qdhtCAAAAAAAAE+YydsLQf69P\n/2TNXXyGJoQQtUqBjQn7INTd7tWI4E/j8zRvq5rkG+IKkgpkXZ5MEaLeONeI1RkQ9iAEgK55\nRM4auPpl+5BB7e9pUn78oOTEYWlSPKt1QX9RVMdrSX0be4UAAAAAAAAAAABAF7zmLJyelOE3\n/+G7+xjdvjFh0vxJhqnLYoW422lf51c3t3S/DSFNqO4OmR3MIASAbomnRauVqqLdP9dnXiOE\nEJpUxB1tLS8lNC2eOp3t6qCP7HRmEJ64IZ0U7OxqK2KxHgAAANMUuOq5wG4OYUEFAAAAAAAw\ngrA33/eYPuvSy6vsfAObSgt7+zGayOtr4qaGixxdpsQkG7JAy2Et6JhNF5spHe7lxGIxRoMZ\nhADQE8/ps4NWPuc8Yox2pC7jav7P/5OeTWCxKugbb0erw0+NfXiUt3akoLrlUHrXK5ECAAAA\nAAAAAAAAu1zGTpielBG08vm7+xhNCE0U9TWGKcoC2YsE1sKOfllpXSuLxRgNZhACwB2IJ0cS\nQluJPSvijmpGGnKy8n/erGpsFDg44Al6k6XdjJDcvh+hg7XA1VZY3azQvE3Mrc6tata8pggZ\n6eO4eLgXZTkT5QEAgNO6+0UFexMCAAAAAIAZ8ZqzkBByd7sSkvblRgkhtn5BE3fGGqQySyHk\nU0+O8/v2XJHmbXULJzZmQoMQAO5MPDmKongCW7vSmH2aDW8bstNvfL0u6LFnZcmJ6BGaFz5F\nfTQ77KWD6QoVTQipapJXNcm1Ry+X1ge62Iz1dyKEcGQzXgAAAAAAAAAAABPnNWeh0/BR55bN\nvruP0YQQ0lxSED81POpMhiEKsxja7uCd0NSrHd1WN3uBbO1MA5VkaFhiFAB6xX1ShPvkKK/o\n+doRRV1t7vf/rU27gGfwzU6Ai7WHvVV3Rysa2x+Q4chmvAAAAAAAAAAAAKbPxi9gelLG9KQM\npwFD7u6TdPtswoTIkYYpjVMo3X+GiB3YrqfvMIMQAHpLM1PQ2tO7eN8OVUszIUQtlxfu/lnZ\n3ES6X8ILTIHucqMaL00N2p5a2qxobwEqVOrCmhbN64PXK+YO9sAqowAAAAAAAAAAACZo7K9/\nXHpmeU1W2t19jCZqlSIhcmTk/7N37+FVV3e++NdOQrhfgpFyDSgwDFFEgSoKhoS0U239aXvs\nmdbajsdK1VrnjFYtDufpodppq6VH22nx11Zrb6Mep/X0oj3ajgEkIoxcCqLRqgFBKhaJ3C8m\n2fmePzZGyi07kH1Jvq/Xk8fuvfZaXz55nj58fHzvtdbCNZmpq3N79Kopra9v+/26FZvePtrM\n6H9dmJWKMk5ACLRDKgXsOXRE/Q+/07itIYQQovDn3/57QbduQUbYqfztoD5f+/C41rfb9zX9\nw0NroiiEEDbvfGfBq1u7FxVs29941PUAAAAAQI5MuvfBEMLq6z/bsGZZO5ZFoSXZVFNRXtyv\n5PzHlmSquM7jovJBj9VtyXUVOeOIUaB9SqdVFg8sHXfj/+g77rQDQ1F4/ZEHXv/lv/2l5nHH\njXZSA3p2qzh1YOvbby9+7c4F6+q37s5hSQAAAADAMZz5vftPm3NH+9ZEIUShcee2BRWntT2Z\nLk1ACLRb6bTKQTMvOOUfrul/+pkHhqLw9vJnXp0/r3Fbg4ywUzj80NFTB/ZqzwOixE3/t/Wn\ndO4fOrA2AAAAACAdgy+8uLq2buy1t7RvWRSiKKqpKF998zWZqYtOIBGlTpSLpdLS0oaGhubm\n5sLCwlzXAp3SW089ueGh+3c8/95p19369R/x8c/0HVfuuNH8d8j2+Td27r/5ty/teqc5vdV/\ndUXh9FMG1F5/bseVRpbog0BsneD3mfx7TtegDwIQZ/ogdEkrrrh0x7oX27cmERIhzFxcl5mK\nOpM0zxo9fN9F5+UOQuD4nTzjA4nCwoblS/78219ETU0hhKadO9b9+HsjPv6Z4L+ddTZD+/W4\n9+8nbN65v3XkvmV/fuEvO482v8tcxgtADPm3FAAAoOuZ8tNH/nTnbZsee7gda6IQhVBTUV7Y\nvWflf6zMWGnkI0eMAiekdHrVSWdPH331DUW9+xwYisKmRx546+kaZ412Or2LC8eU9m796dnN\nl0gAAAAAoNMYN3tudW3dkKqPtG9ZFJLv7KupKF/6qQ9npi7ykYAQOFGl0yp7l53yN/80p/cp\nY1IjUUvLG48+svmJ38gIAQAAAACyqfz2edW1dSdNnNqONVEIUdi76bUFFeUZqyuvXVQ+qCsd\nH5oOu0OADpA6p6uwZ6/1P7lnd/3LqcEtC3/fsm9fcIoXAAAAAEB2nfm9++v+5y2bF/6uHWve\nPXG0uF/J+Y8tyVhp5AUBIdBhBlX9XaKgYNP/eejtlUtTI1uXLW7atSNqbjp5xgdzWxuHu6h8\n0LGv3p37oVNDOPVoazNTFAAAAADQMcpvnzdkxaWrbvxs+5ZFoXHntpqK8oLCblUL12SmNHLP\nEaNARzp5xgdG/NdPl55X2Tqy44U1r/7wO3+peTx3RQEAAAAAxFHJlKnVtXWjLvtc+5ZFIUSh\nJdlUU1G+sGpiZkojx+wgBDpY6fSqkEiEEG195qnUyN4N69b96HuJgoKC4u6OGwUAAAAAyKbR\n193Yrf+AV74/r33LohBCaEk2LZgxYeZTazNRGDmUmx2E27dvv+GGG0aNGlVcXDx06NBZs2Zt\n3rz52Es2bNhw1VVXDRs2rLi4eOTIkTfddNOuXbtaP/3JT36SOJJ/+Zd/yfCvAhxB6bTKYZd8\nYthHP5koOPCXzN6N61+551uN2xq2LlmU09L4K6mrdw/+yXVFcaEPAhBn+iAAcaYPArlSdvmV\n1bV1wy/6RLtXRiGKkjUV5atvviYDdZEzOdhB2NjYWF1dvWrVqksvvXTSpEn19fU/+9nPFixY\nsHLlypKSkiMuWb9+/dlnn93Q0PDxj398woQJzzzzzF133fXMM88sXry4W7duIYTt27eHEC67\n7LKysrKDF06bNi0LvxFwuNROweIBJa/97AdRS0sIYf/mP78yf96pn71+65JF9hESZ/ogAHGm\nDwIQZ/ogkHPjZs/tf8ZZL3z91vYti0IIoeHZWlsJu5IcBITz589ftWrVnXfe+aUvfSk18qEP\nfegTn/jE1772tW9961tHXDJnzpytW7fee++9s2bNSo3ccMMN3/nOd+69997rrrsuvNsIv/jF\nL06ZMiUrvwTQtlQKOOLvr3j9Fz+LkskQQvOunfX3/euYq2+QERJn+iAAcaYPAhBn+iCQDwZf\nePHgCy9eff1nG9Ysa9/KKEQhWVNRXtyv5PzHlmSmOrInEUVRlv/Is846q76+/q233urevXvr\n4NixY3fu3Pnmm28mEonDl/Tv379Pnz6bNm1q/XT79u1Dhw6dOHHi0qVLw7t98ZVXXhkzZkz6\nlZSWljY0NDQ3NxcWFp7Y7wQc1dYli/ZsWLfh5/c27dqRGins3eeUf7im96jRMsI89FjdlnSm\nOYz0ROiDAMSZPghAnOmDQL5Z9blPbXtpdXtXJRIhCqGgsFvVwjWZqIrsyPYdhPv371+7du3Z\nZ599cBcMIUyfPn3Lli3r168/fMmePXt27tw5ZsyYg3vkgAEDxo4du2rVqmQyGd79psyAAQOS\nyeSmTZu2bt2a4d8DSFfptMreI08dc91NxSUDUyPJPbvr7/vX7auXu4+QGNIHAYgzfRCAONMH\ngTw06d4Hj+NWwigKIQotyaYFFeWZqIrsyHZA+PrrryeTyREjRhwyPnLkyBDCunXrDl/Ss2fP\noqKiw3tbr169GhsbU7f47tixI4Tw7VnvIIIAACAASURBVG9/++STTx4xYsTJJ588bty4Bx98\n8PCnrV69euW7mpubO+SXAo6tdFpl8cDSUz77hW79B6RGoqamDQ/9ePPjv5YREjf6IABxpg8C\nEGf6IJCfxs2eW11bN6TqI+1eGYUoCjUV5atvviYDdZFx2b6DcNeuXSGE3r17HzLep0+f1k8P\nUVBQcO655z799NNr166dMGFCavBPf/rTypUrQwi7d+8O735T5qGHHvrSl740bNiwF198cf78\n+ZdffvmuXbuuueav/q9ZVVWVmgxkU+o00YLi7uvu++47b/0lNbhl0R8Kiru3fko+cHZopumD\nAMSZPghAnOmDQD4rv31eeZh3PCeORqHh2doFFeUzF9dlpjQyJdsBYcrhB2qnrkI84kHbIYTb\nbrtt5syZF1988d133z1+/PjVq1fPmTOnrKysvr4+tSX/y1/+8vXXX3/BBRe0tthPf/rTkyZN\nmjNnzpVXXllcXNz6qMrKylTvDCE89dRTTU1NHf7bAUcz9CP/pbBHr9d/+fMda/+YGnnzD48m\n9+0NUVQ6vSq3tUE26YMAxJk+CECc6YNAPpt074N/uvO2TY893L5lUYhCqKkoDyEU9ys5/7El\nGSmOjpbtgLBfv37hSN+I2blzZwihb9++R1xVVVX13e9+d/bs2R/72MdCCH369PnqV7+6YsWK\n+vr6kpKSEMLMmTMPWVJeXv7hD3/4V7/61Zo1a97//ve3jv/qV79qfZ26jLcDfisgbe+rvqCw\nR4/Xf/nzt5cvTY28VVsTNTeFRMI+QuJAHwQgzvRBAOJMHwQ6hXGz546bPXffpo3PXHZB+1ZG\nIYTQuHNbTUW5mLBTyHZAWFZWVlRUtGHDhkPG6+vrQwhjx4492sLrr7/+iiuuWLVqVUFBwZln\nntm3b9/JkycPGTJkwIABR1syaNCg8O5eeyB/lE6rjKKW0BK9vXJZamTr0sUhkYiaGhPdisWE\ndG36IABxpg8CEGf6INCJ9BxeVl1bd3y7CcO7MWEiUTjzqbWZKI8Oke2AsLi4ePLkyc8+++ze\nvXt79eqVGmxpaXnqqadGjBhRVlZ2tIXJZLJv374zZsxIvd24ceMf//jHz3zmMyGE3bt3//zn\nPx8wYMBll1128JIXXnghvHvNL5BXTp4+M5EoKOrTd8tT/5Ea2frMU/ve2HTqVddvXbJIRkgX\npg8CEGf6IABxpg8Cnc642XP7n3HWC1+/td0ro9Q/kjUV5YXde1b+x8oOr40TV5D9P/Kqq67a\nu3fvvHnzWkd++MMfvvHGG7NmzUq93b9//+rVq1PfnUmZPXt2z549ly9fnnrb0tJy4403RlH0\n+c9/PoTQq1evr33ta1dfffVLL73UuuQ3v/nN008/fdZZZ5166qnZ+K2AdiqdVjnkwx87efp7\n52Dsea3+lfnzGre/vXXJotzVBRmnDwIQZ/ogAHGmDwKdzuALL66urRt0TtXxLI5CiELynX01\nFeU1FeUbHrivo6vjhCRSt+BmUzKZrKqqqq2tveSSSyZNmvTiiy8+/PDDp59++rJly1LfnXn+\n+ecnTJhQXV395JNPppY899xz5557bnFx8RVXXDFw4MBHH310xYoVt9xyyze/+c3UhN/+9rcf\n/ehHe/Xq9clPfnLo0KHPP//8r3/96759+y5cuHDSpElHqyR11nZzc3NhYWEWfnHgcFufXril\n9sk3n/htlEymRooHlJzy2et7vG+IfYR0VfogAHGmDwIQZ/og0HnV33P3aw/de0KPSASHjuaV\nHASEIYTdu3ffdtttv/jFL954441BgwZ99KMfvf322wcOHJj69PBGGEJYtmzZV77yleXLl+/d\nu7e8vPz666+/8sorD37m0qVLv/rVry5dunT37t2DBg36wAc+8OUvf3nMmDHHKEMjhHywdcmi\n7WtWbnz4J60ZYWGPnqd89guJ0PLKD+4OUWQTOl2PPghAnOmDAMSZPgh0ahsf+PEr358XQuLA\nKaLtlTjwj5mL6zq2MI5DbgLCPKERQp7YumTRntfq1/94fnL//tRIQXHxkL+7+M+/+2UIISRC\nIiRmLn4hlyVCV6QPAhBn+iAAcaYPAieiQ3YThhDGXPPFkZfP6pCSOA4CQo0Q8sLWJYv2b3lz\n3X3/2rRje2qkoFtxS3Nj64REQkYIHUwfBCDO9EEA4kwfBE7QthXLVt342RN9SsJuwlwqyHUB\nACGEUDqtssegwWO+cEuPwUNTIy1NjQdPiKJoYdXEXJQGAAAAAMB7SqZMra6tG3RO1Qk9JQpR\nFGoqyhfMmNBBddEOAkIgX5ROqyzuXzJ61n/vfvL7jjihpSWZ5ZIAAAAAADiiCd+aP+nu+0/0\nKVGIoqSYMPscMWorPeSRBZUTomRbKWAiFPcrOf+xJVmpCLoyfRCAONMHAYgzfRDocH+687ZN\njz18Qo9IhILCblUL13RQRbTBDkIgj/Qbn8aXRKLQuHPbhgfuy3w5AAAAAAC0bdzsudW1daMu\n+9zxPyIKLcmmmorymoryRR+c3HGlcWR2EPqmDOSXRR96f3LvnrbnJUKv4aPOffD/Zr4i6LL0\nQQDiTB8EIM70QSCj3nz8ty98/dYTekTiwD9mLq7rkJI4nB2EQH6p/P3yUZ+5uu15Udi76bUF\nFeWZrwgAAAAAgHQNvvDiE99NGKIQRcF/Ac4cOwh9UwbyVE3FaSGNv6AKihxLDcdJHwQgzvRB\nAOJMHwSyadXnPrXtpdXHvz5hK2FG2EEI5KlJd/0onWktzU0LZpyW6WIAAAAAADgOk+59cNLd\n9x//+ihEUXAxYYcTEAJ5qmTK1LHX3pLOzKglWnzhOZmuBwAAAACA41AyZWp1bV11bV3/U8cf\n5yOi0PLOvg4tKu4EhED+Krv8yvMeeiKdmU27dy2YcXqm6wEAAAAA4LhN+ekj1bV1wy/6xHGs\nTe0jXFg1scOriicBIZDXeg4vq65N63TpqKXFjbUAAAAAAHlu3Oy5x3noaBRakk3OGu0QAkKg\nE6iurQuJRJvToijICAEAAAAA8lzq0NHT5tzR7pVRSO7ft6j6zAwUFS8CQqBzqF78wsnnVbU5\nTUYIAAAAANApDL7w4uraurHX3tLehcnGRv8d+AQJCIFO44w754eCtv/WkhECAAAAAHQWZZdf\neRy7CaMo1H19ztYlizJTVNcnIAQ6k+qnnk+klxHWVJRveOC+LJQEAAAAAMAJSu0mHH7RJ9Jf\nsvnxX6/55+tqKsqXfurDmSusqxIQAp3MzKeeT+c+whCFV39w1+qbr8l8RQAAAAAAdIBxs+dW\n19ZV19YV9eyd1oIohCgk39mX4bq6IAEh0PlUL34hUVTU9rwovP1sbebLAQAAAACgI519/yPp\nT2586y/OGm0vASHQKc1c+FxhGl8hcR8hAAAAAECn03N4WWorYTqToyjUffPLW5csEhOmT0AI\ndFaVf1je831D25yWuo9wYdXELJQEAAAAAEAHqq6tCwVth1lNbzfsXvdyFurpMgSEQCd23i+f\nHHXZ59qeF4WW5qYFFadlviIAAAAAADrSpP91XzrT6n/47TW3XldzfvnqL33eVsI2CQiBzm30\ndTemlRGGEEXRghkyQgAAAACAzqRkytQ0zxoNISQKCnoNKwshyAiPTUAIdHqjr7vxtDl3pDMz\naolcSQgAAAAA0OlU19YNqfpIm9OilpbNv/9NFurp7ASEQFcw+MKLJ919fzozoyjICAEAAAAA\nOp3y2+e1fZ5cIvQcMiz10ibCYxAQAl1E+tvMZYQAAAAAAJ3R6OtuHHvtLceaEYVdL7+4e93L\n2aqos0pEUZTrGnKmtLS0oaGhubm5sLAw17UAHWbFFZfuWPdi2/MSYcw1Xxx5+azMVwR5Sh8E\nIM70QQDiTB8EOrua89PaAXLSuTOGX/KJ1OvSaZUZLKgTsoMQ6Gqm/PSRgqJubc+Lwqs/uGv1\nzddkviIAAAAAADIgcaSRRAiJkChI9BpWloOSOomiXBcA0PGqFq5ZfOHUpt0725gXhbefrc1K\nRQAAAAAAdIzW26bW3nTtlmcXv/dBFPqOHV/2ySuLevc5ZEnqPkL7CFs5YtRWeuiyaipOD1FL\nm9MSiTBzcVqXF0IXow8CEGf6IABxpg8CXcOS//qB/W++cYwJo6++oc+pf3PwiICwlSNGgS6r\nevHzoz5zdZvToigsqEjrxGoAAAAAAPLE4A9eNOySvy/uO+CQ8R7vG3LSOdNPOmd6t36HfkQr\nASHQlY2++oZew0a2OS2KQs355dv++GwWSgIAAAAA4MSNvvqGv735KwPKz3pvKAohCvvf3Nyw\n7Ontz63as/6V3FWX7wSEQBd37v9+fPAHPpLOzFX//b9t/PefZboeAAAAAAA6yoRvzZ94xz3j\nb77tkPHk3r1/fvSR8NcX7W1dsih1GSECQqDrO23uvLHX3pLOzFe/d0emiwEAAAAAIAta3tkf\n/XVASCsBIRALZZdfed5DT7Q5zX2EAAAAAACdVK9Rp550zvQeQ4a1jrz+7z8Nh2WEqX2EMd9N\nKCAE4qLn8LJ0zhqVEQIAAAAAdC7FpSdPvOOesZ+/efh/+VS/cae1jm/74/J9b2w6wYd3yTSx\nKNcFAGTPaXPn7dm4ftfLdceeFkWhpqJ8zDVfHHn5rOwUBgAAAADA8SmdVhlCaA3weo0YdfCn\nLY37j7G2i8V+6bODEIiXs3/0y/6nn9n2vCjU/+CuzJcDAAAAAEBH6n/6mUMuuLj17a5XX8ph\nMXlLQAjEzpT//8HCXr3bnOasUQAAAACAzqjH4KGtr7c+vTCHleQtASEQR5W/X37eQ0+0OU1G\nCAAAAADQ6fQcNrKge4/U65bGxn1vvJ7cf6yDRmNIQAjEVM/hZZPuvr/Naan7CGsvmpaFkgAA\nAAAAOHHd+vUfOPmc1OuopeXl73zjxW/M2ffnjbmtKq8ICIH4KpkytaB797bnRaFxx7aFlWdk\nviIAAAAAAI5H6bTK0mmV770vKDz40+T+/W+vXJblkvKZgBCItaon/1jUu086M1uSzQurJma6\nHgAAAAAATly/vylPFCQOHmls2PrO1i25qiffCAiBuJvxxLPVtXXpzGxpblowY0Km6wEAAAAA\n4AT1HVc+9h9vHfHxTyeKilIjO196/qVvfWXrM0/ltrA8ISAECCGENDPCqCVpHyEAAAAAQP7r\nOXTEwPefV1DU7b2hKGxb5aDREASEAK3GXntLOtNampsWzDgt08UAAAAAANBeqZsID76MsP+E\nsw6eECVbsl1TXhIQAhxQdvmVBcXF6cyMWqIFFeWZrgcAAAAAgBM0/NLLx1x7Y4/3DUm9jVqS\nua0nTwgIAd5TVbM63bNGoyAjBAAAAADIc4lEovcpY7v1L0m9bXx7a27ryRMCQoBDpZ8R1lSU\n11SUL/3UhzNdEgAAAAAAx637wNLUi6i5edvq5S3v7M9tPTknIAQ4guraukRBGn9DRiFEYe+m\n1xZUuJUQAAAAACBfHHwNYQghFCRS/xu1tGx86Mev/uDbIYqyX1X+EBACHNmYq29Kd2oUoiiS\nEQIAAAAA5KdEYdHBb/f9eWPznt25KiYfFLU9BSCWyi6/suzyKxdUnRE1N6czP4qimoryMdd8\nceTlszJdGwAAAAAA6Rs4eerbK5Ym9+1tHXlrycLC7j0KiosHTJxc1Ltv6/imh3/UsHrlwWsT\nIZzxjXuyV2tW2EEIcCwzFz4XEol0Z0fh1R/ctWDGhExWBAAAAABA+/QYMqx8ztdOPr+6dWTL\ngic2P/7rP//m3+u/f3d00HGjyT1NqbulWn+65FmkAkKANlQvfmHgWVPTnR2FqCW5oKI8kxUB\nAAAAANCGQ64hLCjuXjyw9PBp+7e82bx7Z5ZqyhsCQoC2nfWv9582547050dRqKko3/DAfZkr\nCQAAAACAdhlwxqQegwYfPr6l5vHNj/869fPOW28ePqFp547MV5dViahLboxMT2lpaUNDQ3Nz\nc2FhYa5rATqBjQ/8+JXvz0t/fiIRZi6uy1w9cIL0QQDiTB8EIM70QSA+ti5ZdMhIFEVNO7eH\nZLLh2SVbFv7+yMsOuXUqCj3eN3jcF//nIVsSO7WiXBcA0GmUXX7lvk0bNz32cJrzoygsqCiX\nEQIAAAAA5IlEIlHcvySEUFxy0kGjx14T9m95c82t16XedevXv+J3SzNXYXY4YhSgHcbNnnve\nQ0+kPz911qgrCQEAAAAAsq90WmXq5/CPBkyc3GvkKQfepHPaZuLAT+9RozuwwlyxgxCgfXoO\nL6uurQshrLji0h3rXmx7QRSiYCshAAAAAEAeKezRc+x1txw+vuH+729/+bm/GopCCGHCbXcN\nmnlBVkrLBjsIAY7TlJ8+MuicqjQnH9hKOGNCRksCAAAAAIA2CQgBjt+Eb82fdPf96c6OQhQl\nHTcKAAAAAEBuCQgBTkjJlKntzAjDwqqJmawIAAAAAIC/crSbCGPLHYQAJ6pkytTq2rpVn/vU\ntpdWpzO/pblp0QcnV/7HykwXBgAAAABAu4z87LUj33395n/87i9P/i6X1WSMHYQAHWPSvQ+e\nNueONCcn9++rvWhaRusBAAAAAIAjEhACdJjBF1583kNPpDm5ccc29xECAAAAAJB9AkKAjtRz\neFl1bd2gc6rSmRxFoaaifMMD92W6KgAAAAAAaCUgBOh4E741v/+p49OaGoVXf3DXog9OznBF\nAAAAAAC0X+LAz9qvfHFBxWm5rqbDCAgBMmLKTx8p+dsz05oaheQ7riQEAAAAAMg/0Xsvoig6\n1sxORUAIkCmT7n1w0t33pzU1Co07ty2YMSHDFQEAAAAAgIAQIJNKpkytrq0LIdH21ChELUkZ\nIQAAAABAhpROqyydVpnrKvKCgBAg46prXwiJNDLCEKKW5IKK8kzXAwAAAABAnBXlugCAWKhe\n/MKiD70/uXdPmzOjKNRUlIcQivuVnP/YksyXBgAAAADAe9bcet17b/5660fN+e9t8Oh+Uun0\nXy/OVlEdzA5CgCyp/P3y0+bckdbU6MCthEs/9eEMFwUAAAAAwFEcfjBc4r2fPqPH5aCkDpKI\noijXNeRMaWlpQ0NDc3NzYWFhrmsB4qL+nrtfe+jedGcnQiKEM75xj3OxyQR9EIA40wcBiDN9\nEKDV1iWLjj3h9Qd+/Pba5a1vq2vrMltQtjhiFCCrRl93Y/OunZseezit2VGIQljzz9eFEBKJ\nwplPrc1scQAAAAAAxIAjRgGybdzsuWOvvaUdC6IQohC1JGsvmpaxogAAAAAAiAs7CAFyoOzy\nK8suv3LRBycn9+9Lf1Xjzm0LKspnLu4ie9gBAAAAAHKrzdudtvz+d1kpJNvcQeisbSCX/nTn\nbekeN9oqEYr7lZz/2JLMVESM6IMAxJk+CECc6YMA7dJ6T2GbaWIn4ohRgFwaN3vukKqPtG9N\nFBp3bnPcKAAAAAAAx0dACJBj5bfPO23OHe1bE4XGndu2LlnU+tUVAAAAAABIkzsIAXJv8IUX\nhxBe+Pqt7VgThTX/fF3qZbdefSqeeDYThQEAAAAA0PXYQQiQFwZfeHF1bd3wiz7RjjXRgZ+m\nvbsXzDgtY6UBAAAAANClCAgB8si42XPbHROGEKIQtUSLqs/MTFEAAAAAAHQpAkKAvDNu9txB\n51S1d1VLsiUTxQAAAAAA0MUICAHy0YRvzT/voSfatSRqaV58wdkZqgcAAAAAgC5DQAiQp3oO\nL6uurauurRt77S1pLYhC057dNeeXPzfnHzNcGgAAAAAAnZiAECDflV1+ZaKwMP35b9XWLL7k\n/MzVAwAAAABApyYgBOgEZi5aW11b12fY6DTnN73dsPILn85oSQAAAAAAdFICQoBO45z//ejJ\n709ja2AihETo1r8k8xUBAAAAAND5CAgBOpMz7vrB8Is+0cakKIQovFVb4zJCAAAAAAAOJyAE\n6GR6Di9Lc+bbK57ZumTR1iWLMlkOAAAAAACdjIAQoJMpu/zK6tq6iXfcE0IIiaPPS4Q+o8el\nXqZiQkkhAAAAAABBQAjQSZVOq5x4xz0hOvqMKOx4fvULX7s1ezUBAAAAANAZFOW6AACOU+m0\nyhDe3UR4eFKYCCGEnkOGHTyW2kR4YCEAAAAAALFkByFAJ9Zj8NAQHSkdDCE1vuvlF9fcet36\nn/8g25UBAAAAAJCvBIQAndjgD1504NXhlxEm3vvpPWLUwZ+4jBAAAAAAIM4cMQrQiY2++obR\nV9+Qev2fl/1/uzfVH/ggCkW9+gyq/LuTKz6Qs+IAAAAAAMhLAkKALqKgqNvBb5v37N78+K9K\nJp1T1Kfv4ZMP30ToYkIAAAAAgJhwxChAFzHs45cdMhK1RMl9e3NSDAAAAAAAeUtACNBFlEw+\n5/DBlsbG7FcCAAAAAEA+c8QoQBfRc3jZxDvuCSE0PPv0pkceTA3uqFvdc9iInNYFAAAAAEB+\nsYMQoKvpOfS9RLBp+/amHdvTWXX4rYQAAAAAAHRJAkKArqN0WmUIodfwkYmCRGrk7RVL674+\n55X585w1CgAAAABAiiNGAbqkRAhR65u9G9fvfvWlfuVnHHvN0TYRpnJHAAAAAAC6BjsIAbqg\nPqeOPWRk/1/e2PfG6/YRAgAAAAAgIAToUlK7/Ub9wzXDL/1U6XkzWsc3P/Hbl7/zjZe+Obdx\nx7acFQcAAAAAQB4QEAJ0QQXde5x09vSBU847ZLxp146dL6xp79O2LlmU+umY4gAAAAAAyCl3\nEAJ0WT3eN7h4YGnj21sPHtz/5hv7t7zZY9DgXFUFAAAAANCJpI5t62IEhABdVqKo29h/nL1n\n3SvNe3Zv+j8PpgYb/vPphmefHnHppwe+/9D9hQAAAAAAxIEjRgG6mtJpla1faSnq1bv/6Wf2\nP33iX82IwvbnVmW/MAAAAAAA8oGAEKDrK+rdt+/fjD94JLl/X4iiXNUDAAAAAEAOCQgBYuGU\nK78w5vM3FZ9Umnq7d+P6N598rL0P2bpkUQeXBQAAAABA1gkIAWIhUVDQe9Toot59Wkd2vVSX\nw3oAAAAAAMiVolwXAED2nDS1Yt+mjVFLSwihaef2LYv+0PpRz8FD+/7t6bkrDQAAAACALBEQ\nAnRNpdMqDz8RdODkqdtWLttd/3IIoWnnjs2P//rgT0f8/RUDJ5+TtQoBAAAAAMgJR4wCxEtB\nt+KjfbRn/SvZrAQAAAAAgJwQEALES+n51YU9ehzlwyirpQAAAAAAkAuOGAWIl75jxp325W+2\nNDW2jrx4x5eT+/eluTx1bGnptMoMlAYAAAAAQDYICAG6rNYY75DLCBNFRYVFB/39n8heSQAA\nAAAA5JyAEIAD9m5Yv+e1+t6jRqfebnr4Rw2rV6ZeD7ngo4Nm/F3uSgMAAAAAoMO4gxCAA/Zv\neXPdj76X3L8/9Ta5pylEIfWTfGd/bmsDAAAAAKCjCAgB4q6wV+/W1y2N7zTt2JbDYgAAAAAA\nyDRHjAJ0fUe7jDBl+CWf3PSrBxu3vZ16+/ov/62we/cQwjub/tw6J7lvb6aLBAAAAAAgOwSE\nAHHXd1z5+6o//Pov/y31du/G9e99ljjwvw3LFjcsW5wI4Yxv3JP1AgEAAAAA6EgCQgBCt34D\nDrxKHGVGdOAfa269LoQw6V9/UnLW2VkpDQAAAACADuYOQgBCn78ZP6jqQ72Gj3xv6GhJYSJ0\nGzCge+mgrNQFAAAAAEDHs4MQIEZSlxEefhNhIpEYcsEl4YJLDh7ccP/3t7/83CEzJ37jnhBC\nrxGjMlYjAAAAAACZZQchAO3Q8J9P57oEAAAAAABOiB2EABwqddHgEW361YObfvVg6nW3fv0r\nfrc0W0UBAAAAANAxBIQAtMdBdxP2HjU6d3UAAAAAAHCcBIQAsVM6rfLwawgPNvGOe1pfv/LN\nr+59e/OBN1Eo7l8y/p+/lrrLEAAAAACAzsgdhAAcS0HPXrkuAQAAAACAjiQgBAAAAAAAgBhx\nxChAHB1+RuixDx0FAAAAAKDLEBACcCyj//GmEMJrD9y347lVua4FAAAAAIAO4IhRAAAAAAAA\niBEBIQAAAAAAAMSIgBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgB\nCCGE0mmVuS4BAAAAAIBsEBACAAAAAABAjAgIAWiHZFNTrksAAAAAAOCECAgBaFthcffUi+Se\n3S2N7+S2GAAAAAAATkRRrgsAIF8c7RrCrUsWdRsw8L33UZSdegAAAAAAyAQ7CAEAAAAAACBG\nBIQAAAAAAAAQIwJCAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAIQBtKp1X2KhsVErmu\nAwAAAACAjiAgBAAAAAAAgBgREAIAAAAAAECMCAgBSJtTRgEAAAAAOj8BIQAAAAAAAMSIgBAA\nAAAAAABiREAIAAAAAAAAMSIgBKB9mvfuzXUJAAAAAAAcv0QURbmuIWdKS0sbGhqam5sLCwtz\nXQtAPqo5v/zYEwacMWny/H/LTjF0OH0QgDjTBwGIM30QgKJcFwBA/koUdQstyRBCFKLQ8u4X\nShIhkTiwAb3f+Am5qg0AAAAAgOMjIATgqGYuXHPgVRQ9NXNSc/M7IQoDJ5171nd+lNO6AAAA\nAAA4fu4gBCANiUQikch1EQAAAAAAdAABIQAAAAAAAMSIgBAAAAAAAABiREAIQHp6dg9RrmsA\nAAAAAOCECQgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAA\nYkRACAAAAAAAADEiIAQAAAAAAIAYERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIA\n0tPSHBIhJMLbf1y6oOK0XFcDAAAAAMBxKsp1AQB0Ei3vvohCFKJcVgIAAAAAwAmwgxAAAAAA\nAABiREAIAAAAAAAAMZKbgHD79u033HDDqFGjiouLhw4dOmvWrM2bNx97yYYNG6666qphw4YV\nFxePHDnypptu2rVr1wk+EwBy9XbAwQAAIABJREFUQh8EIM70QQDiTB8EIE8koijb90g1Njae\ne+65q1atuvTSSydNmlRfX//zn/98+PDhK1euLCkpOeKS9evXn3322Q0NDR//+McnTJjwzDPP\nPPHEE1OnTl28eHG3bt2O75khhNLS0oaGhubm5sLCwkz9tgCd2YLKCVEy2ea07ieVTv/14izU\n0zXogwDEmT4IQJzpgwDkkSjr7rrrrhDCnXfe2Try8MMPhxBuuummoy355Cc/GUK49957W0f+\n6Z/+KYQwf/78435mFEUnnXRSCKG5ufn4fxmALm35tZc9OX38k9PHP3n++CfPH3/g9cEj549/\n8vzxf/zirFxX2pnogwDEmT4IQJzpgwDkjxzsIDzrrLPq6+vfeuut7t27tw6OHTt2586db775\nZiKROHxJ//79+/Tps2nTptZPt2/fPnTo0IkTJy5duvT4nhl8UwagPbatWLbqxs+2vq2urcth\nMZ2aPghAnOmDAMSZPghA/sj2HYT79+9fu3bt2WeffXDHCiFMnz59y5Yt69evP3zJnj17du7c\nOWbMmIP72YABA8aOHbtq1apkMnkczwSAnNAHAYgzfRCAONMHAcgrRVn+815//fVkMjlixIhD\nxkeOHBlCWLdu3amnnnrIRz179iwqKtq6desh47169WpsbNy8efO+ffvSf+a3v/3td955J/V6\n3759J/wLAUA76IMAxJk+CECc6YMA5JVsB4S7du0KIfTu3fuQ8T59+rR+eoiCgoJzzz336aef\nXrt27YQJE1KDf/rTn1auXBlC2L179969e9N/5m233bZ9+/YO+V0AoL30QQDiTB8EIM70QQDy\nSrYDwpTDD79OXYV4tEOxb7vttpkzZ1588cV33333+PHjV69ePWfOnLKysvr6+u7du6caYZrP\nnDt3bus3ZW6//fbUWgDaVDJl6sQ77km9Lp1WmdNaOj19EIA40wcBiDN9EIA8ke2AsF+/fuFI\n34jZuXNnCKFv375HXFVVVfXd73539uzZH/vYx0IIffr0+epXv7pixYr6+vqSkpJkMpn+M2+4\n4YbW1/PmzdMIAcgmfRCAONMHAYgzfRCAvJLtgLCsrKyoqGjDhg2HjNfX14cQxo4de7SF119/\n/RVXXLFq1aqCgoIzzzyzb9++kydPHjJkyIABA3r16nV8zwSALNMHAYgzfRCAONMHAcgridR+\n82yaOnXq2rVr33rrrV69eqVGWlpaRowYUVhYuHHjxqOtSiaThYWFrW83btw4atSoz3zmMz/9\n6U+P+5mlpaUNDQ3Nzc0HPxmAo9m6ZFHqhSNGT4Q+CECc6YMAxJk+CED+KMj+H3nVVVft3bt3\n3rx5rSM//OEP33jjjVmzZqXe7t+/f/Xq1anvuaTMnj27Z8+ey5cvT71taWm58cYboyj6/Oc/\nn+YzASBP6IMAxJk+CECc6YMA5I8c7CBMJpNVVVW1tbWXXHLJpEmTXnzxxYcffvj0009ftmxZ\n6nsuzz///IQJE6qrq5988snUkueee+7cc88tLi6+4oorBg4c+Oijj65YseKWW2755je/meYz\nj8g3ZQDaxQ7CDqEPAhBn+iAAcaYPApBHolzYtWvXzTffPHLkyG7dug0bNuwLX/hCQ0ND66dr\n164NIVRXVx+8ZOnSpR/60IcGDhzYo0ePSZMm3X///e165hGddNJJIYTm5uaO+r0Aura3nl6Y\n+sl1IZ2ePghAnOmDAMSZPghAnsjBDsL84ZsyAO1iB2EXow8CEGf6IABxpg8CkIM7CAEAAAAA\nAIBcERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiA\nEAAAAAAAAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAA\nAAAQIwJCAAAAAAAAiBEBIQDpKp1WmesSAAAAAAA4UQJCAAAAAAAAiBEBIQAAAAAAAMSIgBAA\nAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgBAAAAAAAgRgSEAAAAAAAA\nECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAAAAAIAYERAC\nAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiAEAAAAAAA\nAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAAAAAQIwJC\nAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAA\nAECMCAgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAAYqQo\n1wUA0JmUTqvMdQkAAAAAAJwQOwgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAA\nAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAAAAAIAYERACAAAAAABAjAgIAQAAAAAAIEYE\nhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiAEAAAAAAAAGJEQAgAAAAAAAAxIiAEAAAA\nAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAAAAAQIwJCAAAAAAAAiBEBIQAAAAAAAMSI\ngBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgBAAAAAAAgRgSEAAAA\nAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAAAAAIAY\nERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIAAAAAAACIEQEhAAAAAAAAxIiAEAAA\nAAAAAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAAQIwICAEAAAAAACBGBIQAAAAAAAAQ\nIwJCAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAIAAAAAAAAMSIgBAAAAAAAgBgREAIA\nAAAAAECMCAgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAAAIgRASEAAAAAAADEiIAQAAAAAAAA\nYkRACAAAAAAAADEiIAQAAAAAAIAYERACAAAAAABAjAgIAQAAAAAAIEYEhAAAAAAAABAjAkIA\nAAAAAACIEQEhAAAAAAAAxIiAEAAAAAAAAGJEQAgAAAAAAAAxIiAEAAAAAACAGBEQAgAAAAAA\nQIwICAEAAAAAACBGBIQAAAAAAAAQIwJCAAAAAAAAiBEBIQAAAAAAAMSIgBAAAAAAAABiREAI\nAAAAAAAAMSIgBAAAAAAAgBgREAIAAAAAAECMCAgBAAAAAAAgRgSEAAAAAAAAECMCQgAAAAAA\nAIgRASEAAAAAAADEiIAQAAAAAAAAYkRACAAAAAAAADEiIAQAAACA/8fenUdJVd37At8N3Q00\ng4yKKDgAIoKIgGiCE+KEOOGEgooaBG8095po1DhcExPjGJ+JQZeap0ZdUZQEYozGSAQUUDSK\nCIiKgDiBCAoyQzf1/jjv1uvX4+nu6qH6fD4rK8veffrUrrPPb39PsatOAQAkiAVCAAAAAAAA\nSBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKB\nEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAA\nAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAA\nSBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKB\nEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAA\nAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAA\nSBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKB\nEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAA\nAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAA\nSJD6WSBct27dlVdeuffee+fn53fp0mXcuHErV66s+E8++OCDCy64YPfdd8/Ly+vUqdPIkSPf\nfPPN9G8fe+yxnLL86le/quWnAgBVJgcBSDI5CECSyUEAGojcun/I7du3Dxs27J133jnzzDMH\nDBiwdOnSxx9//JVXXnn77bfbtWtX5p8sWrToe9/7Xl5e3hVXXNGjR48VK1ZMnDhxyJAhL730\n0jHHHBNCWLduXQjhvPPO69atW/E/HDJkSB08IwCITw4CkGRyEIAkk4MANCCpOnfPPfeEEO64\n4450y6RJk0IIV111VXl/Mnr06BDCK6+8km6ZP39+COHoo4+Ofrz55ptDCG+99VaVetKhQ4cQ\nQmFhYRWfAQBUnxwEIMnkIABJJgcBaDjq4Rajjz/+eOvWrf/rv/4r3XLOOef06NHjiSeeSKVS\nZf7J0qVLQwiHH354uqVfv35t2rT55JNPoh+jd8q0bdu29roNABkhBwFIMjkIQJLJQQAajrpe\nINy6deuCBQsGDx7crFmz4u2HH3746tWrly9fXuZf7b///iGEDz/8MN2yZs2ajRs39u7dO/ox\nHYRFRUWff/75mjVrausJAEANyEEAkkwOApBkchCABqWuFwg/++yzoqKirl27lmjfa6+9QgjL\nli0r86+uvfbadu3anX/++bNmzVq1atW8efPOPffc5s2bR5+gDyGsX78+hHDvvfd26tSpa9eu\nnTp16tWr15/+9KfafCoAUGVyEIAkk4MAJJkcBKBBya3jx9uwYUMIoWXLliXaW7Vqlf5tab17\n93799dfPOOOMI444Imrp1q3btGnTDj300OjH6J0yTz311DXXXLPHHnssXrx44sSJY8aM2bBh\nw4QJE4rvauTIkRs3boz++7vvvsvYEwOAGOQgAEkmBwFIMjkIQINS1wuEkZycnBIt0V22S7dH\nFi9ePGLEiMLCwt/85jf77bff6tWr77nnnuHDh0+ePPnYY48NIdx0001XXHHFiSeemI7Y888/\nf8CAAddff/3FF1+cn5+f3tWMGTOi1ASA+iIHAUgyOQhAkslBABqIul4gbNOmTSjrHTHRm1Za\nt25d5l9dcsklX3311UcffbTHHntELeeee+5+++130UUXLV++PC8v75hjjinxJwcccMBJJ500\nZcqU+fPnH3LIIen26dOnFxUVRf89bNiw6DP4AFA35CAASSYHAUgyOQhAg1LXC4TdunXLzc1d\nsWJFifalS5eGEHr27Fn6TzZu3Dh37tyjjz46nYIhhIKCgmHDhj3++OMfffRRnz59ynysXXfd\nNfrz4o39+/dP/3dubv18gBKAxJKDACSZHAQgyeQgAA1Kkzp+vPz8/IEDB7755pubN29ON+7c\nuXPmzJldu3bt1q1b6T/ZsmVLKpXaunVrifaoZevWrRs3bnzggQeeeuqpEhssWrQo/M/X/AJA\nQyAHAUgyOQhAkslBABqUul4gDCH84Ac/2Lx581133ZVueeihh7788stx48ZFP27duvXdd9+N\n3jsTQujUqdM+++zz73//+6OPPkr/ybp166ZNm9amTZu+ffsWFBTceuut48eP/+CDD9Ib/PWv\nf501a9bBBx+877771snTAoBY5CAASSYHAUgyOQhAw5ETfQtuXSoqKho6dOhrr7122mmnDRgw\nYPHixZMmTerbt+8bb7xRUFAQQli4cOGBBx44bNiwadOmRX8yZcqUs846q127dpdddln37t1X\nrlz5hz/8Yfny5RMnTvzhD38YQnjuuedOP/30goKCc889t0uXLgsXLpw6dWrr1q2nT58+YMCA\n8nrSsWPHtWvXFhYWNm3atG6eOwDIQQCSTA4CkGRyEIAGJFUfNmzYcPXVV++11155eXl77LHH\n5Zdfvnbt2vRvFyxYEEIYNmxY8T+ZM2fO6aef3qlTp9zc3Hbt2h177LF///vfS2wwfPjwtm3b\n5ubmdunS5cILL1yyZEnF3ejQoUMIobCwMINPDQAqJQcBSDI5CECSyUEAGoh6+ARhw+GdMgAk\nmRwEIMnkIABJJgcBqIfvIAQAAAAAAADqiwVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAg\nQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVC\nAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAA\nAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAg\nQXLruwP179xzz83JyanvXgBQW5544olmzZrVdy8aLjkI0LjJwYrJQYDGTQ5WTA4CNG6V5GAq\nwaZOneoSAaDR27RpU30HTgMlBwGSQA6WRw4CJIEcLI8cBEiCinMwJ5VK1XcP69P06dOLiooy\nuMM//OEPkyZNuvLKK0eMGJHB3VI3Vq5ceeGFF/bs2fP++++v775QHdddd93bb79933337b//\n/vXdF6ps1qxZv/jFL0488cSrrroqs3seOnRo06ZNM7vPRkMOUpwczHZyMKvJwXohBylODmY7\nOZjV5GC9kIMUJweznRzMavWVg0m/xejQoUMzu8OXX345hNC7d+9jjz02s3umDixbtiyE0Lp1\na8OXpTp06BBCGDx48ODBg+u7L1TZd999F0Lo0qWLAqxLcpDi5GC2k4NZTQ7WCzlIcXIw28nB\nrCYH64UcpDg5mO3kYFarrxxsUpcPBgAAAAAAANQvC4QAAAAAAACQIEn/DsKMe++99z788MOB\nAwfuu+++9d0XqmzTpk0vvPBCu3btfJQ+S7366qtfffXVsGHD2rdvX999ocq++OKLOXPm7LPP\nPoMGDarvvlB9cjCrycFsJwezmhxsHORgVpOD2U4OZjU52DjIwawmB7OdHMxq9ZWDFggBAAAA\nAAAgQdxiFAAAAAAAABLEAiEAAAAAAAAkiAXCjFm3bt2VV16599575+fnd+nSZdy4cStXrqzv\nThHLY489llOWX/3qV/XdNcq1Y8eOn/3sZ02bNi3zvszqseGrYASVZJZSd9lL0WUjOZjt5GDj\no+6yl6LLRnIw28nBxkfdZS9Fl43kYLZrODmYWxs7TaDt27cPGzbsnXfeOfPMMwcMGLB06dLH\nH3/8lVdeefvtt9u1a1ffvaMS69atCyGcd9553bp1K94+ZMiQeuoRlVi8ePH555+/ZMmSMn+r\nHhu+ikdQSWYjdZfVFF3WkYPZTg42Puouqym6rCMHs50cbHzUXVZTdFlHDma7hpWDKTLhnnvu\nCSHccccd6ZZJkyaFEK666qp67BUx3XzzzSGEt956q747Qizr169v0aLFoEGDlixZ0qxZs4ED\nB5bYQD02cJWOoJLMRuouqym67CIHs50cbJTUXVZTdNlFDmY7OdgoqbuspuiyixzMdg0tB91i\nNDMef/zx1q1b/9d//Ve65ZxzzunRo8cTTzyRSqXqsWPEES3Lt23btr47QiyFhYU//OEP58yZ\n06NHjzI3UI8NXKUjqCSzkbrLaoouu8jBbCcHGyV1l9UUXXaRg9lODjZK6i6rKbrsIgezXUPL\nQQuEGbB169YFCxYMHjy4WbNmxdsPP/zw1atXL1++vL46RkzpqisqKvr888/XrFlT3z2iIu3b\nt7/77rvz8vLK/K16bPgqHsGgJLOQust2ii67yMFsJwcbH3WX7RRddpGD2U4ONj7qLtspuuwi\nB7NdQ8tBC4QZ8NlnnxUVFXXt2rVE+1577RVCWLZsWX10iipYv359COHee+/t1KlT165dO3Xq\n1KtXrz/96U/13S+qQz02Akoy66i7bKfoGhP12Agoyayj7rKdomtM1GMjoCSzjrrLdoquMVGP\njUAdl2RuLe03UTZs2BBCaNmyZYn2Vq1apX9LQxYtyz/11FPXXHPNHnvssXjx4okTJ44ZM2bD\nhg0TJkyo795RNeqxEVCSWUfdZTtF15iox0ZASWYddZftFF1joh4bASWZddRdtlN0jYl6bATq\nuCQtEGZMTk5OiZborr6l22lobrrppiuuuOLEE09Mz57nn3/+gAEDrr/++osvvjg/P79+u0c1\nqMespiSzlLrLXoqu8VGPWU1JZil1l70UXeOjHrOaksxS6i57KbrGRz1mtTouSbcYzYA2bdqE\nslbgv/vuuxBC69at66FPVMUxxxxz5plnFn9vxQEHHHDSSSd988038+fPr8eOUQ3qsRFQkllH\n3WU7RdeYqMdGQElmHXWX7RRdY6IeGwElmXXUXbZTdI2JemwE6rgkLRBmQLdu3XJzc1esWFGi\nfenSpSGEnj171kenqKldd901hLBx48b67ghVox4bKyXZkKm7RknRZSn12FgpyYZM3TVKii5L\nqcfGSkk2ZOquUVJ0WUo9Nla1V5IWCDMgPz9/4MCBb7755ubNm9ONO3funDlzZteuXbt161aP\nfaNSGzdufOCBB5566qkS7YsWLQr/8w2uZBH1mO2UZDZSd1lN0TUy6jHbKclspO6ymqJrZNRj\ntlOS2UjdZTVF18iox2xX9yVpgTAzfvCDH2zevPmuu+5Ktzz00ENffvnluHHj6rFXxFFQUHDr\nrbeOHz/+gw8+SDf+9a9/nTVr1sEHH7zvvvvWY9+oHvWY1ZRkllJ32UvRNT7qMaspySyl7rKX\nomt81GNWU5JZSt1lL0XX+KjHrFb3JZkTfUElNVRUVDR06NDXXnvttNNOGzBgwOLFiydNmtS3\nb9833nijoKCgvntHJZ577rnTTz+9oKDg3HPP7dKly8KFC6dOndq6devp06cPGDCgvntHSTNn\nznzxxRej/7777rs7deo0duzY6Mef/vSnHTp0UI8NXKUjqCSzkbrLaoouu8jBbCcHGyV1l9UU\nXXaRg9lODjZK6i6rKbrsIgezXYPLwRQZsmHDhquvvnqvvfbKy8vbY489Lr/88rVr19Z3p4hr\nzpw5w4cPb9u2bW5ubpcuXS688MIlS5bUd6co22233VbehJYeNfXYkMUZQSWZjdRdVlN0WUQO\nZjs52Fipu6ym6LKIHMx2crCxUndZTdFlETmY7RpaDvoEIQAAAAAAACSI7yAEAAAAAACABLFA\nCAAAAAAAAAligRAAAAAAAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QAAAAAAACQIBYIAQAA\nAAAAIEEsEAIAAAAAAECCWCCExubee+/NyckZN25cfXcEAOqBHAQgyeQgAEkmB6FKLBBCdrj9\n9ttzYjjxxBPru6cAkHlyEIAkk4MAJJkchFqSW98dAGLp0KFDr169ird89NFHqVRqr732at68\nebqxa9euP/rRjy677LLcXNUNQOMhBwFIMjkIQJLJQaglOalUqr77AFRH8+bNt23b9tZbbw0a\nNKi++wIAdU0OApBkchCAJJODkBFuMQoAAAAAAAAJYoEQGpsSX8Z733335eTk3HzzzWvWrLnk\nkkt23333li1bDhw48Pnnnw8hrF+//oorrujatWuzZs169er18MMPl9jb7NmzzzzzzM6dO+fn\n53fu3PnMM8+cM2dOXT8lAIhNDgKQZHIQgCSTg1AlFgihkYvuxL1u3brhw4fPnj17yJAh3bp1\ne+edd84444x58+Ydf/zxU6ZMGTBgQN++fT/66KPx48f/7W9/S//tQw89dOSRR06dOrVPnz5j\nx47t3bv3lClTDj/88EceeaT+nhAAVIEcBCDJ5CAASSYHoWIWCKGRi76V94knnujVq9eiRYsm\nT568cOHCY489dseOHSeffHK7du2WLFny17/+9e2337744otDCH/84x+jP/zwww+vuOKK3Nzc\nl1566V//+tfDDz88ffr0F154ITc39/LLL//000/r81kBQDxyEIAkk4MAJJkchIpZIIRGLicn\nJ4SwZcuWe++9NwrFpk2bXnDBBSGElStX/va3vy0oKIi2vOiii0IIixcvjn6cOHHijh07xo8f\nf+yxx6b3duKJJ44dO3br1q2PPvpo3T4PAKgOOQhAkslBAJJMDkLFLBBCIvTr169jx47pH/fY\nY48QQufOnXv16lWiccOGDdGPr7zySgjh5JNPLrGr4cOHhxBeffXVWu4yAGSMHAQgyeQgAEkm\nB6E8ufXdAaAu7LnnnsV/bNq0aQihS5cupRt37twZ/fjJJ5+EECZOnPjUU08V32zNmjUhhGXL\nltVidwEgo+QgAEkmBwFIMjkI5bFACImQl5dXujH6ZH2ZUqnUpk2bQgjFv5u3uPQbagCg4ZOD\nACSZHAQgyeQglMctRoEy5OTktGzZMoTw9ttvp8oSvV8GABolOQhAkslBAJJMDpIcFgiBsu27\n774hhBUrVtR3RwCgHshBAJJMDgKQZHKQhLBACJRt6NChIYRnnnmmRPuHH3744osvbtmypT46\nBQB1RA4CkGRyEIAkk4MkhAVCoGyXXXZZXl7e5MmTn3766XTj6tWrzz333JNOOunPf/5zPfYN\nAGqbHAQgyeQgAEkmB0kIC4RA2Xr37n3fffcVFRWNHj36qKOOuuSSS0455ZR99tnn3XffHTNm\nzOjRo+u7gwBQi+QgAEkmBwFIMjlIQuTWdweAhmvChAkHHnjgb37zm9mzZ8+ZM6egoODggw++\n6KKLLrnkkiZNvL0AgEYkJEyiAAAgAElEQVRODgKQZHIQgCSTgyRBTiqVqu8+AAAAAAAAAHXE\nWjcAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQA\nAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAA\nAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQAAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLE\nAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQA\nAAAAAIAEsUAIAAAAAAAACWKBsHH697//nZOTk5OT8/HHH2dqn2+88Ua0z08++SRT+2wEauNQ\n15lHHnlk//33b9asWatWrR5++OH67g5AxsjBOiMHARogOVhn5CBAAyQH64wchGyXW98daFgK\nCwufffbZF154Ye7cuatXr960aVPr1q332WefIUOGjBkz5tBDD63vDkLGvPnmmz/4wQ9CCG3a\ntOnevXvTpk3ru0dA/ZODJIccBEqTgySHHARKk4MkhxyEiE8Q/j/Tpk3bb7/9Ro8e/eSTTy5Z\nsmT9+vWFhYXffvvtO++8c9999x122GGnnXbamjVr6rubdeS5557Lycl57LHH0i39+vWbN2/e\nvHnzunTpUn/9ImP+/Oc/hxA6duy4bNmyd95555JLLqnvHmVG6VMXiEkOFicHGz05CJQgB4uT\ng42eHARKkIPFycFGTw5CxALh//Xkk0+eeOKJy5cvb9my5TXXXDN37tz169fv3Llz9erVzzzz\nzBFHHBFCeO6554466qjvvvuuvjtbF+bMmVOipaCgoH///v3798/Pz6+XLpFZq1atCiEMGDCg\nQ4cO9d2XTCp96gJxyMES5GCjJweB4uRgCXKw0ZODQHFysAQ52OjJQYhYIAwhhPfee+/SSy8t\nKirq1avXwoUL77jjjsGDB7dp0yYnJ6dTp05nn332q6+++utf/zqE8P7771955ZX13d+6MHv2\n7PruArWrqKgohJCXl1ffHckwpy5UgxwszWTS6MlBIE0OlmYyafTkIJAmB0szmTR6chD+rxSp\n1MknnxxCaNmy5ZIlSyrY7Lzzzuvevfu11167c+fOVCr18ssvR8dw5cqVJbZ84oknQghNmzZN\nt7z99tvRxjt27Fi0aNGZZ57ZuXPnFi1a9OrV69e//nVRUVEqlVqyZMmFF16455575ufnd+3a\n9T//8z83btyY3kOVHu6tt96KNi7xjJYuXfqjH/2oT58+rVq1ys3N7dChw9FHH/3II49Ezygy\nYcKEEidJtOfXX389+nH58uWpVOq4444LIRxxxBFlHqvf/e53IYS8vLzVq1dHLVu3bn3ggQeG\nDh3avn37vLy8Tp06DR069MEHH9yxY0cFx7z00fv8888vv/zyfffdt1mzZrvssssxxxzzz3/+\ns/jGdTwu6UP98ccfL1iw4LzzzuvSpUt+fv5uu+129tlnz58/v/TTiXko5s6dG+25qKjo2Wef\njb4196GHHqr4WG3YsOHOO+/8/ve/H+28Q4cORx555L333rt58+b0NmPHji09Fdx1110V7DZO\nn2vplIg/+uWduqlUatOmTXffffeQIUPat2+fm5vbsWPHfv36XXvttUuXLq34eEJCyEE5KAfl\nICSZHJSDclAOQpLJQTkoB+UgiWWBMPXpp5/m5OSEEK666qqKt9y+fXvxH6s04S5atCjaeObM\nmbvsskunTp0GDhzYrl27qPGaa65577332rdv37Zt20GDBu22225R+ymnnFK9hyszCF955ZWC\ngoIQQm5ubr9+/Q499NBdd9012mzkyJHpLPzDH/4watSoJk2ahBAGDx48atSo0aNHp0oFYfSg\nOTk5n3/+eeljddhhh4UQTj/99OjH1atXDxgwINr+wAMPPOaYY3r06BHt7dBDD/3mm28qPvLp\no/fWW2916dKlefPmAwcO7NevX25ubgihSZMmL7zwQn2NS/pQT5o0qaCgoHnz5gMGDDjwwAOj\nA9isWbMZM2YU70P8Q7FgwYKoffbs2dEzDSH8r//1vyo4UEuXLo321qRJk549ew4dOrRHjx5R\nTw488MD0Abn//vtHjRq11157hRC6dOkyatSoUaNG/e1vfytvtzH7XEunRPzRL+/U3bBhQ79+\n/aLH6tOnz9ChQwcOHBi9RaigoKDEAEECyUE5KAflICSZHJSDclAOQpLJQTkoB+UgSWaBMJX+\n0s633367Sn9YpQl38eLF0cbdu3f/5S9/WVhYmEqltmzZcuaZZ0bV2K9fv8svv3zr1q2pVKqo\nqOjHP/5xtP2HH35YjYcrMwijieaQQw5Jv1Vh586dv//976Mtn3766eL7bNasWQjh0UcfTbeU\nCMKNGze2atWqzKl52bJl0ZZTp06NWoYNGxZCGDBgwIIFC9KbzZkzZ9999w0hnHPOORUe6f93\n9Pbbb7+LL754/fr1UfuiRYu6du0aQvj+97+f3riOxyV9qHfddddx48Zt2LAhal+yZEl0wLt3\n7x7ttqqHIt23E0888fjjj3/99deXL1/+1VdflXeUioqKomjp1atXunupVOrdd9/dfffdQwjD\nhw8vvv2YMWNCCCNGjKjw2Fehz7V0SlRp9FNlnbq33XZbNECLFi1KN37zzTcjR44MIey///6V\nHgFo3OSgHJSDFZOD0LjJQTkoBysmB6Fxk4NyUA5WTA7SuFkgTF177bUhhPz8/OKzVRzVm3BP\nOumk4lvOnz8/au/bt2/0we3Id999Fy34P/nkk9V4uNJBuHr16nPOOeeoo44q8cHzVCp10EEH\nhRDOP//84o2VBmEqlbrwwgtDCIcddliJHf7qV7+K5p3ovUXTpk2LjvBnn31WYssZM2ZE+/z4\n449T5UsfvcGDBxc/SqlU6s477wwh5OXlpT9/Xcfjkj7U/fr1K9G3F154IfrVyy+/HLVU6VCk\n+7b33ntv2bKlguMTee6556Lt586dW+JXTz31VPSr4qkTMwir1OfaOCWqNPqpsk7ds846K4Qw\nduzYEo+1Zs2aa6+99v7779+2bVvFBwEaNzkoB+VgBeQgNHpyUA7KwQrIQWj05KAclIMVkIM0\nek1C4q1duzaE0L59+6ZNm9bBw5199tnFf+zZs2f0HyNHjoxm2Ejr1q07d+4cQlizZk1GHrdT\np06TJk2aMWNGdEPk4vbff/8QwsqVK6u6zwsuuCCE8MYbb6xYsaJ4ezTtjhkzJvq08tSpU0MI\nRx555J577lliD0cddVT0cf5//OMfcR7x0ksvLX6UQgh9+vQJIezYseO7776rav+Lq/m4jB07\ntkTfjj322BYtWoQQZs2aFbVU71CMGTOmefPmlT6F559/Pur54MGDS/xq5MiRUTzEPM7FVanP\ntXpKVHv027dvH0KYNWtWiZO8Q4cOt99++3/8x3/k5+dX8OfQ6MlBORjkYPnkIDR6clAOBjlY\nPjkIjZ4clINBDpZPDtLo5dZ3B+pfdKPtoqKiunm4ffbZp/iP0URZuj39qx07dmTw0bdt2zZ9\n+vT3339/9erV0UeSQwjz5s0LIRQWFlZ1b8ccc8wee+zxxRdfPPPMMz/96U+jxvnz50c3R77o\noovSLSGE99577+ijjy69k82bN4cQPvjggziPGE18xUV3Dw8hbN++var9L67m4xJ9jL24vLy8\nfffdd9GiRUuXLo1aqncoSgdbmaJ7c0fveyqhWbNm3bt3f//999P3rY6vSn2u1VOi2qN/+eWX\nP/3000uXLj3ggAPOPvvs4cOHH3XUUVE6AkEOysEQghwsnxyERk8OysEgB8snB6HRk4NyMMjB\n8slBGj0LhKFjx44hhG+++Wbr1q1x3o9QQ7vsskuZ7ekvgK09f/3rXy+77LJVq1ZlaodNmjQZ\nM2bMnXfeOWnSpPSs96c//SmEMGDAgOjrT0MI33zzTQhh9erVq1evLm9X69ati/OI6XzKuJqP\nS6dOncrbbfp9HNU7FOnvTK5YtPPyOhz15Ntvv42zq9K7jdnnWj0lqj36/fr1mzZt2hVXXPHm\nm28+/PDDDz/8cE5OTv/+/c8555wJEybUQelBAycHq00OFicHgxyE7CQHq00OFicHgxyE7CQH\nq00OFicHgxwkO7nFaIiKs6ioaM6cOfXdl1o0d+7cs846a9WqVQMGDHj22WdXrVoV3fU4lUqN\nHTu22ruN7q389ttvf/zxxyGEVCr19NNPh2LviQj/816kMWPGVHCv2+gu2FmtzFsxRM89+v9Q\n3UNRpeuz9GOVEL0rqrzfVrrD+H1umKfEIYccMnfu3H//+9+33HLLEUcckZ+fP2/evJ/97Gfd\nu3f/5z//mcEHgmwkB+VgRsjBSMM8JeQgVEAOysGMkIORhnlKyEGogByUgxkhByMN85SQg1TA\nAmE46qijohv4/u///b8r3nL79u3333//hg0bKt3nli1bMtO5eOI83L333ltYWLjXXnu98sor\nZ5111m677Rbd9Tj8zyeXq6dPnz4HH3xwCOGZZ54JIcyePfvTTz/Nz88fPXp0epvovUhffPFF\ntR8lU2p1XMp8s8/69etDsbfh1Oqh6NChQ/ife8eXFr1HphqfH69qnxvyKTFw4MCbbrrp1Vdf\n/eabb55++ul9993322+/Pe+882K+UQsaKzkoBzNCDkYa8ikhB6FMclAOZoQcjDTkU0IOQpnk\noBzMCDkYacinhBykTBYIw+67737GGWeEEJ5++unXXnutgi1vuummyy+/vEePHtHslg6SrVu3\nltiyGnc0rlQNH+79998PIZx44oklPjNeVFQ0e/bsmnQs+v7VyZMnhxAmTZoUQjj55JOjSTkS\n3f150aJFdXND8zoel7SFCxeWaCksLFy2bFkIYb/99otaavVQRDuPbmNdwqZNm6L7fZd5J+44\nu61SnxvaKVFaQUHBqFGjZs+enZub+80337z++uv10g1oIOSgHMwIOZjW0E6J0uQgFCcH5WBG\nyMG0hnZKlCYHoTg5KAczQg6mNbRTojQ5SHEWCEMI4dZbb23VqtXOnTvPOOOMN954o8xtfvnL\nX955550hhB/96EdRlkSr/SGEDz/8sPiW33zzzR//+MeMd7KGDxd9eLl0NkycOPHLL78Mpb6O\nONo+zjf0jh49umnTpvPmzfvss8+mTJkSQrj44ouLbzBy5MgQwtdff/3ss8+W+Nuvv/66T58+\nP/zhD6ObL2dEHY9L2lNPPVWiZdq0adG7kI466qiopVYPxWmnnRZC+Pjjj0tf2UyaNKmwsLBJ\nkyYjRoyo6m6r0ef6PSVKnLpff/31FVdccfzxx2/cuLHElrvuumt0m4I6fmsbNEByMMjBGpOD\naXIQso4cDHKwxuRgmhyErCMHgxysMTmYJgfJMhXc6zZR/vKXv+Tn54cQmjZtOm7cuOnTp3/7\n7bc7d+5cs2bNM888M3jw4OhwnXLKKTt27Ij+ZMeOHW3btg0hDBkyZPXq1VHjp59+esQRR/Tq\n1SvaVXr/ixcvjvYwb968Eg8dtU+ZMqVEe/fu3UMId911VzUe7q233op2u2TJkqjl0ksvDSG0\na9duxYoV6R3efffdrVu3HjNmTAihc+fO6aeWSqX23HPPEMKll16abkm/m2D58uUlujp8+PAQ\nwrhx40IIu+22W/H9RI455pgQwi677PLyyy+nG5csWTJo0KAQQv/+/Xfu3Fl6UOIcvenTp0e/\nWrlyZTUOVM3H5c0334y2bNu27a233lpYWBi1f/HFF7179w4h9O3bt/izi38oKuhbmXbu3Pm9\n730vhNCzZ8+PP/443T5nzpzoXSoXXXRR8e2jcR8xYkSle67G8GXwlKjS6KdKnbqFhYV77713\nCOHUU08tvtnWrVuvueaaEELz5s3T5wkkmRyUgyX2LAer0ec0OQhZRw7KwRJ7loPV6HOaHISs\nIwflYIk9y8Fq9DlNDpJFLBD+P7NmzYpmrjLl5+f/7Gc/K1HPt99+e/Tbli1bDho06KCDDsrN\nzT3wwAOff/75EEJOTk56y5pPuFV6uNJB+NFHH7Vu3TqE0KpVqxNOOOGkk07q2LFjfn7+M888\n869//Sva+KCDDvrP//zPaPtolgwh7L333vvss8/cuXMrCMLoTSLRLcuvuuqq0sc2+hLg6M97\n9ep13HHH9evXL9p+zz33/OCDDyoemqpOhXU5LunvcH722WebN2++++67n3DCCUcffXSLFi2i\no/3mm29W71BUNQhTqdSKFSuisM/Ly+vXr99xxx3Xs2fPaCfHHnvshg0bim8cPwirMXwZPCWq\nOvqlT92ZM2e2bNky6s8BBxxw5JFHHnLIIVE5NGnS5JFHHqn0CEBCyEE5WFzMcZGDchAaDTko\nB4uLOS5yUA5CoyEH5WBxMcdFDspBsp0Fwv9PYWHhM888c8EFF/Ts2XOXXXbJzc1t377997//\n/f/+7//+5JNPyvyTRx555JBDDmnZsmXz5s179Ohx7bXXrlu3bt68eVEpbtu2LdosI0EY/+FK\nB2EqlZo/f/5pp53Wvn37/Pz8vffee8yYMenOXHXVVR06dCgoKDj33HOjlpUrV5566qlt2rRp\n0aJFr169Fi9eXEEQbt68uU2bNtFvFyxYUOaB2rZt2wMPPHD00Ud36NAhNze3TZs2hxxyyK23\n3rp+/foyty+uqlNh/ANV83FJd2Dr1q3z5s07++yzO3funJeXt9tuu40ePbrMkIh5KKoRhKlU\nauPGjXfeeedhhx0WncCdOnU64YQTnnjiifRbeNLiB2H8Pqdl8JSo6uiXPnVTqdSyZctuvPHG\ngw8+eNddd83NzS0oKOjdu/eECRPmz58f5+lDcshBOZgmB6vR5zQ5CFlKDsrBNDlYjT6nyUHI\nUnJQDqbJwWr0OU0OkkVyUv9T8AAAAAAAAECj16S+OwAAAAAAAADUHQuEAAAAAAAAkCAWCAEA\nAAAAACBBLBACAAAAAABAglggBAAAAAAAgASxQAgAAAAAAAAJYoEQAAAAAAAAEsQCIQAAAAAA\nACSIBUIAAAAAAABIEAuEAAAAAAAAkCAWCAEAAAAAACBBLBACAAAAAABAglggBAAAAAAAgASx\nQAgAAAAAAAAJkugFwt/97nd33HFHKpWq744AQD2QgwAkmRwEIMnkIAA5SY6Bjh07rl27trCw\nsGnTpvXdFwCoa3IQgCSTgwAkmRwEINGfIAQAAAAAAICksUAIAAAAAAAACWKBEAAAAAAAABLE\nAiEAAAAAAAAkiAVCAAAAAAAASBALhAAAAAAAAJAgFggBAAAAAAAgQSwQAgAAAAAAQIJYIAQA\nAAAAAIAEsUAIAAAAAAAACWKBEAAAAAAAABLEAiEAAAAAAAAkiAVCAAAAAAAASBALhJmRSqUe\neOCBQYMGtWzZsnXr1ocffvizzz5b350ifPjhhwUFBTk5Oe+++27x9p07dz744IMHHXRQQUFB\nQUFBv379brvttu3bt5few0svvdSlS5ecnJwZM2aU/u3XX3/9k5/8ZL/99mvevHm0n1tuuWXT\npk219HSSYMOGDTfeeGPv3r1btGjRtm3b448/fubMmaU3W7FixdixY3fffffmzZv36NHjuuuu\nK37YO3funFOOQYMGpTeLfxpQsYrLJM42lU6hL7/8cnlj+sknn8TfD7XHwW9oKi66SifbOBNp\nzMmWaivvMiZUloOhKpcoceZwYoqZVt9+++0vf/nL/v37t2nTJhqdX/ziF5s3by5vt2WeCQqw\noZGD2aKCqTVUOCXGLHAyouYDEee1npfztaeGF6KRSq92TLwNiuFoODJyqRlzPzHLmZjiXOHH\nzME4GWf4akOlRz6DVzKZGsHc6j5Z/j+XXXbZQw89tOuuu55++ulFRUUvvfTSOeecc+edd/70\npz+t764lV1FR0UUXXbRly5YS7alU6pRTTnnhhRfatWt33HHHFRUVvfbaa9dff/2MGTP+8Y9/\n5OTkRJtt2bLlmmuu+f3vf5+Xl1fm/leuXDl48ODPP//8+OOPP/vss7dv3z59+vSbb755ypQp\nr7/+evPmzWv36TVGGzZsGDJkyIIFC7p27Xraaadt2bLlH//4x7/+9a/JkyePHDkyvdmiRYuO\nOOKI9evXDx06dM8993zjjTfuuOOOWbNmvfrqq02aNAkhnHLKKd9++22JnW/evPnFF19s3bp1\n9GPM04CKVVomMbepdApdt25dCKFv3769evUq8bctW7aMvx9qj4PfcFRadHEm2zgTaZxtqLby\nLmNCjByMeYkSZ36mSuKk1Zo1a4488sjFixfvs88+J5xwwubNm2fPnv3zn//8hRdemDVrVumx\nKO9MUIANjRzMChVMrZVOiTEvR6mhjAxEnNd6Xs7XkoxciIYYVzvBxNvAGI4GIlOXmnH2E7Oc\niS/OFX6cHIyTcYavNsQ58pm6ksnkCKYaqp1frdrx/JRq/y9VWFjpQ3To0CGEUBhjy4pNnz49\nhDBgwID169dHLStXruzatWt+fv7SpUtruHOq7fbbbw8h9O/fP4Qwb968dPtDDz0UQjjssMPS\n47Vq1aq99torhPD3v/89vVm/fv3y8vLuuOOOCy+8MIQwffr0Evv/8Y9/HEK4/vrrizeefPLJ\nIYQHH3ywtp5Vo3b99deHEE466aTNmzdHLbNmzWrZsmWnTp02bNgQtezcuXPAgAG5ubkvvPBC\n1FJYWHjGGWfk5OT87W9/q2Dn11xzTQhh5syZ0Y8xTwMqVmmZxNkmzhQajdfvfve7CjrT+KZi\nOUj1VFp0cSbbMpWYSKu9DXGUdxkTJwdjXqLEmcOpkjhpNXbs2BDClVdeWVRUFLWsXbt2//33\nDyE89dRTpbcv70woUyMrQDlIxlVQUJVOiXEKnJrLyEDEea3n5XwtyciFaJyrnSRMvHKQasjU\npWac/VT7dSVVUua/Z1acg3EyzvDVhjhHPlNXMhkcwYZ7i9HU2q+LXn2l2v8LRYV11tVozO64\n4442bdpELZ07d77hhhu2b9/+2GOP1Vk3KO7999+/+eabzzvvvEMPPbTEr/7+97+HEG6//fb0\neO22224TJkwIIbz++uvpzZo0aTJnzpxrrrmmvA+TLVmyJIQwYsSI4o3Dhw9P/4qqmjx5cgjh\n3nvvbdGiRdQyZMiQ//iP//j666+nTp0atUyfPv2dd9659NJLo0MdQmjatOkf//jH7777Lppw\ny/Tee+/dc889Y8eOPfLII6OWmKcBFau0TOJsE2cKjd5f07Zt2wo60/imYjlI9VRadHEm29JK\nT6TV24Y4KriMiZODMS9R4szhVEmctOrYsePpp59+yy23pD8A0b59++ifYD788MMSG1dwJpTW\n+ApQDpJZFRdUpVNinAKn5jIyEHFe63k5X0syciEa52onCROvHKQaMnWpGWc/1XtdSZWUvsKP\nk4NxMs7w1YY4Rz5TVzIZHMGGu0CYRWbMmNGiRYujjjqqeOMJJ5wQQnDr3noRfUB+l112+d3v\nflf6t1OnTt24ceMRRxxRvLF9+/YlNpszZ07F3+DSp0+fEMLixYuLNy5dujSE0Ldv3+r1POE+\n+eSTli1b9uzZs3jj0KFDQwjpry7429/+FkI477zzim/TqlWrVq1albfbVCo1fvz41q1b33XX\nXenGmKcBFau0TOJsE2cKjeKzXbt2NdwPtcTBb1AqLbo4k20JZU6k1diGOCq+jImTgzEvUeLM\n4VRJnLS6++67p0yZUuIuoKtWrQoh9OjRo3hjxWdCCQqwfsnBhq/Sgqp0SoxT4NRcRgYizms9\nL+drSUYuRONc7Zh4GxTD0XBk6lIzzn6q8bqSKinzCj9ODsbJOMNXG+Ic+UxdyWRwBC0Q1tT6\n9etXrly59957l7iP81577dWsWbMSJwR14/bbb3/rrbfuv//+jh07lrlBy5Yt02+BifzjH/8I\nIRx33HHplvTye3l+/OMf77333ldfffUDDzywaNGi+fPn33HHHffff/9hhx1W4kKWmJo3b75t\n27bCwv/vbW7RjPnRRx9FP86fPz+E0Lt375tvvrl79+7NmjXr1q3blVdeGU2vZXrmmWfmzp17\n7bXXdurUqXh7nNOAilVaJpVuE3MKjcZ3xYoVI0eObNeuXfPmzQ844IBbb71169atVdoPtcHB\nb2gqLcw4k20J5U2kVd2GOCq+jImTgzEvUeLM4VRJpWlVQmFh4bJly37+85/fd999gwYNOuec\nc4r/ttIL2uIUYD2Sg1mh0oKqdEqsaoFTPZkaiEpf63k5X0syciFa6dWOibdBMRwNVqYuNcvb\nTzVeV1IlZV7hx8nBOBln+GpDnCOfqSuZDI6gBcKair47tPQHj3JycnbZZZfS3yxKbVuwYMEt\nt9wyatSoM888M+afTJ48eerUqSeffHKV7si02267vfXWW0ccccQPf/jDvn379u/f/7rrrvvB\nD34wffr0/Pz8avU96QYOHFhYWBi9WzDtL3/5S/if2TOE8Nlnn+Xn548fP/7BBx8cNmzYxRdf\nnJ+f/9vf/nbo0KGlv1Q5hLBz585bbrmlY8eOl19+ecWPXr3TgBqKOYVGJ8AVV1yxaNGi4cOH\nH3744Z9++umNN954/PHHb9++Pf5+qA0OftaJM9kWF2cijT/ZUrFKL2Pi5KBLlPpSaVoVd9ZZ\nZ+Xl5XXv3v2RRx655557Zs2aVfyf1ap0QasA65ccbPiq8QqxtCoVOLWnegNR+rWerKwvGXnV\nb+JtUAxHw5SpS80K9lPV15VUSXlX+HFyME7GGb7aEOfIZ+pKJoMjmFulrSktujop8wqyWbNm\nhYWFhYWFubmOcx3ZsWPH2LFj27Zt+/vf/z7mn0yaNGns2LG9e/d+/PHHq/RYGzZsOP/88196\n6aUxY8accMIJO3bsePHFFydOnPjVV189+eSTzZo1q3r3k+6mm26aPn36hAkTioqKjj322E2b\nNj300ENPPvlkCDoF3SQAACAASURBVGHHjh3RNhs3bty+ffvy5cs//vjj6AYjW7ZsOfXUU6dN\nmzZx4sSrr766xD4nTZr0/vvv33777RXcgzTU4DSghmJOofvvv/+IESNOOeWU8ePHR99msWLF\nipNOOum111777W9/+9Of/rTS/dTy80g0OZh14ky2xcWZSGNOtlQszmVMnBx0iVJfKk2r4hsP\nGjRo06ZNX3755YIFC37zm9+0b9/+ggsuiH5V1QtaBVi/5GADV41XiGWqUoFTe6oxEGW+1pOV\n9SUjr/pNvA2K4WiYMnWpWcF+qvq6kiop7wo/Tg7GyTjDVxviHPlMXclkcAR9grCmCgoKQghl\nLvBu27YtLy9PCtalW2+9dd68eTHvxRRC+PWvf33eeecdcMABM2bMqOr3Sdx4440vvfTSb37z\nmyeffPKCCy645JJLnn322WuvvXby5Mm//e1vq9X9pBs6dOh///d/r1279uyzz27Xrt2ee+45\nceLEhx9+OISQvu9506ZNQwi33XZbOiBbtGjx61//OoTw5z//ufQ+77777ubNm1922WUVPG5N\nTgNqKOYUetNNNz3//PMTJkxIf9f9XnvtFd0o/6mnnoqzn1p7BsjB7BNnsi0uzkQaZxsqFecy\nJk4OukSpL5WmVXHXXXfdiy++OH/+/I8++qh169YXXnjhlClTol9V9YJWAdYvOdjAVbWgylOl\nAqf2VHUgynutJyvrS0Ze9Zt4GxTD0TBl6lKzgv1U9XUlVVLeFX6cHIyTcYavNsQ58pm6ksnk\nCKYSrEOHDiGEwsLCmuzku+++CyHsv//+JdoLCwvz8vI6d+5ck51TJfPmzcvLyzv//POLN06Y\nMCGEMG/evBIbb9u2bfTo0SGEU089dcOGDRXsduzYsSGE6dOnl2jv2LFjs2bNduzYUbzx008/\nDSEccsgh1X8aiff+++/ffffdN9xww2OPPbZ+/fr33nsvhDBy5Mjot9F3ui5cuLD4n2zZsiUn\nJ2e33XYrsavoqwvOOeec8h4r/mlAxcork0q3qckUunnz5uimJTXcT5LJwcat4sKseLJNq3Qi\njbkNlYp5GRMnB6t6iRJnDqfaiqdVed59990QwuGHH56q4gVtSgHWjBxs9KpaUKkqTolxCpzq\nqflAVPxaz8v52laTC9FKr3ZMvJkiBxOiJpea5e0nLebrSqqkqlf4JXIwfsYZvsyq9tVFNa5k\nIhkZQW/iqKnWrVt37dr1k08+2bZtW/HbUHz88cc7duzo169fPfYtaf785z/v2LHjySefjD5O\nW9zBBx8cQpg+ffrRRx8dQigsLBw1atTUqVOvuuqqO++8s8R3fsaxcePGNWvWdOnSpcQ7oaJ3\n30SVT/X07t27d+/e6R/ffPPNEEL//v2jH/fff/+FCxd+8cUXffr0SW8TzbylPyUW3Xn55JNP\nLvOBan4aUHM1mUK3bNmSSqWiO5mYiuuRg5+lKp5s0yqeSONvQ6ViXsZUmoMuURqa4mm1ZcuW\nmTNnFhYWlqiXfffdN4SwZMmSUJUL2ogCrHdysCGrakFVVfECpx6VHoiKX+vJynpXw1f9Jt4G\nxXA0HJm61Dz00EMr3U9azNeVVElVr/CL52CVMs7wZVBNri6qeiWTlpERtECYAccee+yjjz46\nbdq0ESNGpBufe+65EMJxxx1Xf/1KnCFDhlx11VUlGqdNmzZ//vwLL7ywU6dOXbt2jRrHjx8/\nderUX/3qVzfccEP1HqugoKCgoGDVqlUbNmwo/rndpUuXhhB23XXX6u024RYuXDhnzpxTTjll\n9913Tzc+8cQTIYRTTjkl+nHYsGGTJ09+/vnnjz/++PQ2b731Vgih+IQYefnll0MIRx11VJkP\nV/PTgIyodArdtm3baaedtmXLlhkzZqQ/gB9CePXVV0MI6dcbpuJ65OBnlziTbVrFE2n8bahU\nzMuYSnPQJUp9iZlWp512Wm5u7tdffx3djyvywQcfhP956Rj/gjaiABsCOdhgVbWgyhOzwKlt\n8Qei4td6srIeZepVv4m3QTEcDUemLjUr3U+o4utKqqS8K/w4ORgz4wxfxsU58pm6kgmZHcEq\nfd6wkcnIR+lTqdTcuXNzcnL69u27du3aqGXJkiUdOnRo3br1qlWratxNaqT0x+QnT54cQjj3\n3HNj7qG8O2OcffbZIYSrr7463VJYWHjeeeeFEG644YYadzyJJk6cGEK45JJL0i3RFyYfc8wx\n6ZZ169a1b9++RYsW6RH59ttvBw8eHEJ47LHHiu+tqKiooKCgVatWZT5WVU8DKlbtW4ym4k2h\nxxxzTAjhxhtv3LlzZ9SybNmyHj16hBCefPLJ+PuhBDnYuJVXdHEm20jFE2n8bai20pcxcXKw\nqpcobjGaKXHSKnq1Nnbs2K1bt0Yt69evjz7AdN1115W35/Lu+6QAa0gOJlP1bjEap8DJoJoM\nRJzXel7O17aaXIjGudox8WaEHGx8MnWpGWc/8V9XUiUVX+HHycE4GWf4akOcI5+pK5kMjmBO\nKpWq2opiI9KxY8e1a9cWFhZGX4BcE9dcc81dd93VoUOHYcOGbd++/eWXX968efOjjz4aXRJR\njy677LIHH3xw3rx56U/XHnjggQsXLjzqqKNKfxlv9+7d77jjjhDCjBkzoqIKIfz73/9esWLF\nkUce2alTpxBCt27d7rnnnhDCihUrvv/973/55ZdHHHHE0KFDd+7c+eKLL7799tsHHnjgrFmz\n2rRpU3dPsrHYtGnT9773vQULFgwYMODggw/+6KOPXnvttd13333OnDl77713erMpU6acffbZ\nTZs2HTFiRLNmzWbOnLly5crhw4c///zzxT9w/fnnn3ft2rV3797vv/9+6ceKcxpQsThlEmeb\nEGMKXbp06aGHHrp27dr99tvv4IMPXrdu3axZszZt2jRmzJjit8UwFVeVHGx84hRdzMk2VDaR\nxt+Gait9GRNi5GCcS5SY8zNVEietPvnkkyFDhnz55ZddunQZNGjQzp07X3/99bVr1x5wwAGz\nZ89u27ZtmXsu80wICrDG5GAylS6oOFNizMtRaiJTAxHntZ6X87UhgxeicV71m3hrTg42Ppm6\n1Iyzn/ivK6mSiq/w4+RgnIwzfLUhzpHP1JVMJkewqiuKjUmm3ikTeeSRRwYOHNiiRYvWrVsP\nHTr0n//8Z0Z2Sw2VfhdMNO5lGjhwYLTNo48+Wt42ffr0Se/qq6+++slPfrLffvs1a9asRYsW\nffv2/fnPf17et4YSx6pVqy677LKuXbvm5+fvscce48ePX7lyZenNZs+ePXz48LZt2zZr1uyA\nAw647bbbtm3bVmKbBQsWhPK/AzbOaUDF4pRJzFJKxZhCly9fPm7cuG7duuXl5bVp02bIkCGP\nPfZY+u028fdDcXKw8YlZdDEn24on0vjbUG3lfcyl0hys9BIl/vxMlcRJq6+++urHP/5xz549\nmzdv3rx58wMOOOCGG2747rvvKthteWeCAqwhOZhMpQsq5pQY83KUasvUQMR8reflfMZl9kI0\nzqt+E28NycFGKVOXmnH2E7OcqZJKr/BjvuKoNOMMX22Ic+QzdSWTqRH0CcLMvFMGALKOHAQg\nyeQgAEkmBwFoUvkmAAAAAAAAQGNhgRAAAAAAAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QA\nAAAAAACQIBYIAQAAAAAAIEEsEAIAAAAAAECCWCAEAAAAAACABLFACAAAAAAAAAligRAAAAAA\nAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QAAAAAAACQIBYIAQAAAAAAIEEsEAIAAAAAAECC\nWCAEAAAAAACABLFACAAAAAAAAAligRAAAAAAAAASxAIhAAAAAAAAJIgFQgAAAAAAAEgQC4QA\nAAAAAACQIBYIAQAAAAAAIEEsEGZGKpV64IEHBg0a1LJly9atWx9++OHPPvtsfXcqoXbu3Png\ngw8edNBBBQUFBQUF/fr1u+2227Zv3158m6+//vonP/nJfvvt17x582ibW265ZdOmTeXt88MP\nPywoKMjJyXn33XeLt3/77be//OUv+/fv36ZNm2g/v/jFLzZv3lxbzy0ZVqxYMXbs2N133715\n8+Y9evS47rrrSgxNpoYvzqlClXTu3DmnHIMGDUpvFnMEKz0TIi+99FKXLl1ycnJmzJhRq8+O\nisnBhqbi0tiwYcONN97Yu3fvFi1atG3b9vjjj585c2aJbTI12VJt5R3S+EMTZ4Y0i2bQyy+/\nXF4OfvLJJ2X+SXmjHKdI42xDnZGDDVmcV22VbhPzQpeMiJ9NNXmtV9VLHeKrmwtR/yDToMjB\nhqPSCbBKiVbphBzzn26Ir0qHtIb/5mn4MitmccUZnThZmbF/2U4lWIcOHUIIhYWFNd/V+PHj\nQwi77rrr6NGjR40a1bZt2xDCnXfeWfM9UyU7d+486aSTQgjt2rU79dRTR4wY0aZNmxDC8ccf\nv3PnzmibL7/8cs8994war7/++quvvnrgwIEhhP79+2/ZsqX0PgsLCw877LCoXubNm5du//rr\nr3v37h1C2Geffc4666yTTjppl112CSEMHjx4+/btdfSEG52FCxe2a9euSZMmw4YNGzt2bK9e\nvUIIQ4YMKSoqijbI1PDFOVWoqnHjxp1ZyvDhw0MIRx99dLRNzBGs9ExIpVKbN2++4oorQgh5\neXkhhOnTp9fx820E5GCjVGlpfPfddwceeGAIoWvXrqNGjTr11FPz8/ObNGnyl7/8Jb1NpiZb\nqq28QxpzaOLMkGbRjHvmmWdCCH379i2dhqtXry69fXmjHKdI/w97dx4fNZk/cPyZzkynd0sP\n7lJuKIdKQURBEUFQFkQUVITlkgUUD1gQVxSvFwoIuCrgvYLALouCgKDIjdzIJYJcFSiHXAr0\noAe95vdHdrP5TduZdCZzZPJ5v/pHmjzJPJknz/PNkyeTqEkDl4iDRqCm16YmjZoTXXiuUrHJ\nk75eZU91oJLPTkS5IKMJ4mDwUdMAqoxoahpkNZduUCmV+ko9vOZJ8WlOTeVSUzpqYqWGV7YD\nd4DwcG7e2F9Puf13o8T1F6FVINy4caMQIi0tLSsrS5pz4cKF5OTk0NDQEydOeLhxVMonn3wi\nhGjXrp1cFhcvXkxJSRFCfPvtt9KcMWPGCCEmTJigXLFHjx5CiI8//rjsNqdMmSKdiTq0toMG\nDRJCjB49Wm43r1y50rRpUyHEwoULvbJ7wa60tDQtLc1isXz33XfSnOLi4oceeshkMq1YsUKa\no1XxqTlUoInx48cLIX744QfpXzUlqOZIsNvtN910k9VqnTp16sCBA4Py0jZxEO5xWTUmTJgg\nhOjevXteXp40Z+vWrZGRkUlJSTk5OdIcrRpbuK2ir1Rl0ahpIYO+FfU96ezi/fffV5m+olJW\nU0nVpNE74iA0oabX5nbPzuFEF56rVGzypK9X2VMdqOSzE1EjXJAhDsINbl/sKhvRXFZnlZdu\noF5lv1JP4iDF5zMOlUtN6aiJlRpe2Q7cAcIVf1wRG7e6/ZejIrxpFQj79esnhFi7dq1y5kcf\nfSSEmDhxoocbR6X06tVLCLFp0yblzLfeeksI8fLLL0v/SqeV27ZtU6aZPXu2EGLcuHEOG/zl\nl19sNlu/fv1GjBjh0NqOHTv2wQcfzM7OVqafPHmyEOK1117Tcq8MY/369UKIJ598UjkzJydH\neZ1Lq+JTc6jAcwcOHLBYLIMGDZLnqClBNUeC3W6/5ZZbdu/ebf9v5zD4Lm0TB+Eel1WjcePG\nQojjx48rZ44bN04IMX/+fOlfrRpbuMfJV6qyaNS0kEHfivre22+/LYSYN2+emsROSllNJVWT\nRu+Ig9CEml6bez27sie68Jz62ORhX69SpzpQz2cnoka4IEMchBvcu9hVbkRzWZ1VXrqBepX6\nSj2MgxSfb5StXGpKR02s1PDKNu8g1MCmTZvCw8M7duyonNmtWzchBC8C8bFly5Zdv379zjvv\nVM6Mj49X/tu8eXMhxJEjR5QzT5w4IYRo0aKFcmZJScngwYNjY2Pff//9sp81ffr0pUuXRkdH\nK2devHhRCNGwYUOPdsOoVqxYIYSQzixlUVFRUVFR8r9aFZ+aQwUestvtw4cPj46OnjZtmjxT\nTQmqORKEENu3b+eNLwGCOBhQXFaNjIyMyMjIRo0aKWd26tRJCCG/WEKrxhZucP6VqiwaNS0k\nrajmMjMzhRBVqlRxmdJ5KauppGrSwGeIg4FMTa/NjZ5duSe68JzK2OR5X0/9qQ4qxWcnolyQ\nCSjEwcDhxsWuiiKay+qs8tIN1FP/lXoeByk+Hyi3cqkpHTWxUsMr2xY31oFSVlbWhQsXUlNT\npScyy1JSUmw2m8MJDXwgMjLSYc73338vhLj33nulf8eMGbNo0aJx48YVFhbeddddxcXF33//\n/QcffNCuXTuHZnHKlCm7d+9evHhxYmKi8w8tLi4+c+bMvHnzZs6c2aZNm0ceeUS7HTKQAwcO\nCCFSU1NfffXVBQsWnDt3rlq1ag899NBrr70mPb9eaFp8Lg8VeOjLL7/ctWvXlClTkpKS5Jlq\nSlDNkSCECA8P9/EeoVzEwUDjsmqEhYXl5eUVFxdbLP87D5SGNI4fPy79641YCZWcf6Uqi0ZN\nC0krqjlpgPD06dO9e/fetGlTfn5+/fr1+/fvP3bs2LCwMGVK56WsppKqSQPfIA7qiJpem8qe\nXbknuvCcytjkeV9P/akOKsXHJ6ISLsj4F3Ew0FT2YldFEc1ldVZ56Qbqqf9KPY+DFJ8PVFS5\nXJaOyr6eVle2GSD01LVr10R5w7Mmkyk2Nvbq1av+yBT+Z/HixcuWLevRo8ddd90lzalWrdru\n3buHDh361FNPyclGjRo1ffr00NBQec7BgwffeOONRx999OGHH3b+EX369FmyZIkQIjk5+Z13\n3hk5cqTDWRFUOnv2bGho6PDhw7dv3/7AAw+EhISsW7fuvffe++GHH7Zv3y6dmmhefLKyhwo8\nUVpa+sYbbyQmJo4aNUo5X00JqjkSEDiIg7rTunXrjRs3rlixonfv3vLMr7/+Wvx3eEN4s7GF\ncy6/UpVFA7+QatDTTz/dqFGj+++///Llyzt37nz55ZdXr169bt06uYBclrKaSqomDXyDOKgX\nanptKnt2FZ3owjc06esRT/1FwxNRCRdk/I44GOCcX+zyJKJx6UZzKr9STeIgxedt6itX2dJx\nr6/n9pVtBgg9lZ+fL4Qo9wzSZrMVFxc7DPbClxYtWjRo0KDU1NR58+bJM3NycgYMGLB69er+\n/ft369atqKho1apVs2fPvnTp0oIFC2w2mxCiqKho0KBBcXFxs2bNcvkpbdq0yc3NPX/+/MGD\nB2fMmBEfH//nP//Zi3sVvK5fv15YWHjq1Klff/1V+kl7fn7+Aw88sG7dutmzZ0uPWta8+CTl\nHirwxKJFiw4fPjxlyhSHpxOoKUE1RwICB3FQdyZOnLhx48YRI0aUlJR06dIlNzf3k08+WbBg\ngRCiqKhISuOlxhbOqflK1RQN/KVp06Z/+tOfevbsOXz4cJPJJIQ4ffp09+7dt2zZ8t577z3/\n/PNCXSmrqaRq0sA3iIN6oabXprJnV9GJLnxAq74e8dRftDoRlXFBxu+Ig4HM5cUuTyIal240\np+Yr1SoOUnzeprJylVs6bvT1PLqyXak3FvqSXl7Gm5GRIYRo37592UVVq1a1Wq2ebByeePPN\nN00mU6tWrS5duqSc/+yzzwohZsyYoZz5wgsvCCGmTp0q/fvqq68KIRYvXiwnKPvG17LS09Ob\nNWsmhPj666+12w8DqVWrlhBi1apVypk//vijEKJdu3bSv94ovooOFXgiLS0tLCwsMzPTYb6a\nElRzJChV9MZsvSMOwkNOqsYrr7wSEvK/F1EnJCRIbyC49dZbpQTei5VwQs1XqqZolNS0kMHa\nigaIdevWCSFatWol/auy4rispCrT6BpxEF6iptfmPE1FJ7rQUEWxSau+XmXjKSrL2yeiZQXf\nBRniIDyk5mKXmohWUXWu7KUbuKTmK9UqDlJ83qamcjmppJXq63l4ZTtwBwh9QJNAmJ2dLYRo\n2rSpw/zi4mKr1Vq9enVPNg733Lhx4/HHHxdCPPDAAzk5OQ5LExMTbTZbUVGRcuaZM2fkOrZ/\n/36r1TpgwABlApUXPX/66SchRIcOHbTYD8OR3jd+6NAh5cz8/HyTyVStWjXpX22Lz/mhArdJ\njzJ/5JFHyi5yWYJ2dUeCEpe23UYcDG7Oq8bhw4enT5/+0ksvzZ07Nysr6+effxZC9O7dW1rq\n1ViJcqn8StW0okoMEPpdXl6e9IgteyUrjvNKqj4NnCAOGpaaXltFaZyc6EJD5cYmDft6lY2n\nqCyvnohWhAsylUUcDFYqL3apjGgVVefKXrqBSy6/Ug3jIMXnVS4rl5pKqqavp8mVbX7i7ano\n6Ojk5OSMjIwbN24oH3Tw66+/FhUV3XTTTX7MmzEVFxc/+uijy5YtGzt27Ntvv60cbBdCXL9+\n/Y8//qhZs6bD8w2kd7pKZ5xLliwpKipasGCB9NNdpVatWgkhNm7ceNttt/3www/FxcU9evRQ\nJqhfv74QIj093Qt7FvyaNm166NCh3377rXnz5vJMqVcgvUVAq+K7++67hatDBZ6QnovtUDuE\nuhIUKo4EBBTioE6lpqampqbK/0q3Ct5yyy1C68YWKqn5Stu0aaOmFUVAyc/Pt9vt0nO3KlVx\nnFRSmZo08DbiYCDLz8932WtTk0apohNd+IBWfT2VvRJ4j4cnopWttvAq4mCgUX+xy8OIxqUb\nzbn8SjW85knxeZXzyqWykrrs62l1ZZsBQg106dJlzpw569at+9Of/iTP/Oabb4QQ9957r//y\nZVDDhw9ftmzZpEmTXnrppbJLIyIiIiIiLl68mJOTEx0dLc8/ceKEEKJq1apCiPbt248dO9Zh\nxXXr1h04cGDgwIFJSUnJyclCiF69elkslt9//z0iIkJOdvToUfHfM1dUVufOnRcvXrxy5cqu\nXbvKM3fv3i2EkBpEDYtPuDpU4Im1a9cKITp27OgwX00JChVHAgINcVBfDh06tH379p49e9ao\nUUOeOX/+fCFEz549hdaNLVRS85WqbEXhFzdu3OjVq1d+fv6mTZukFxBKNm/eLISQro6prDgu\nK6nKNPAZ4mAgU9Nrq1TPrqITXfiAVn094qkfaXIiKrggE2CIgwFF/cUuDyMal2405/Ir1fCa\nJ8XnVc4rl8vSUdnX0+zKtns/PAwOmvyU3m6379q1y2QytWjR4sqVK9Kc9PT0hISE6Ojoixcv\nepxNVMLixYuFEI899piTNH379hVCjBs3Tp5TXFzcr18/IcRLL71U0Vplf68tVchBgwYVFBRI\nc7KysqTbNP72t795vCtGlJmZGR8fHx4eLj+44Nq1a23bthVCzJ07V5qjVfGpOVTgnpKSkoiI\niKioqHKXqilBNUeCEg/HcxtxMLhVVDVmz54thBg6dKg8R3q9+T333CPP0aqxhYfKfqWVLRoe\nMepL99xzjxDi5ZdfLi0tleacPHmyYcOGQogFCxZUtFbZUlZTSdWkgUvEQSNQ02tT37NzfqIL\nDamPTe719dw71YF63j4R5YKMJoiDwUf9xS71Ea2i6lzZSzdwyb2v1L04SPF5j/PKpaZ01MRK\nDa9sm+x2u0cDjHqWmJh45cqV4uJis9ns4abGjx8/bdq0hISEzp07FxYWrl27Ni8vb86cOVIb\nCp9p2bLloUOHOnbsWPaWsQYNGkydOlUIcfr06TvuuOP8+fN33nlnp06dSktLV61atXfv3pYt\nW27dujUmJqbcLY8cOfLjjz/ev3+//EvejIyM9u3bnz9/vmbNmm3atCktLd2xY8eVK1eaNWu2\nbdu2uLg4r+5psFq6dGnfvn3NZvOf/vQnm832ww8/XLhw4f7771+5cqX0Q2mtik/NoQL3nDt3\nLjk5OTU19fDhw2WXqixBl0fCpk2bpOgohNizZ8/p06fvuuuupKQkIUSdOnXeeecdX+2uvhEH\ng4+aqpGbm3v77bcfPHgwLS2tVatWx48f37JlS40aNbZv3163bl1pXa0aW3io7FeqpmjUHAa0\not5w4sSJ22677cqVK40bN27VqlVmZubWrVtzc3P79+9f9ilAsrKlrKaSqkkDl4iDRqCm16a+\nZ+f8RBceci82udfXc+9UB8758kSUCzKaIA4GH/UXu5xHNJUNsstLN6gsN75St695Unxe4rxy\nqSkdNbFSyyvbno8x6pdWd8pIPv/889atW4eHh0dHR3fq1GnNmjWabBaVIpVpuVq3bi0nu3Tp\n0l//+tfGjRvbbLbw8PAWLVq89tprzt/kWe6vIi5dujRmzJhGjRqFhYWFhYU1a9bspZdeys7O\n9tbuGcO2bdvuv//+uLg4m83WrFmzyZMn37hxQ5lAk+JTeajADQcPHhRO3x6vsgSdHwlz5syp\nqASbN2/urX0LOsTB4KOyaly8eHHkyJHJycmhoaG1atUaPnz4hQsXHDalVayEJyo6/XBeNGoO\nA1pRLzl16tSwYcPq1KljtVpjYmLat28/d+5c+QeF5Sq3lNVUUjVp4Bxx0CDU9NpU9uxcnujC\nE+7FJrf7em6c6sA5H5+IckHGc8TB4KP+YpfziKa+QXZ5EQ+VVdmv1JNrnhSfNzivXCpLx2Ws\n1PDKNr8g1OZOGQAAdIc4CAAwMuIgAMDIiIMAAH4uCgAAAAAAAAAAABgIA4QAAAAAAAAAAACA\ngTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACAgTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACA\ngTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACAgTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACA\ngTBACAAAAAAAAAAAABgIA4QAAAAAAAAAAACAgVj8nQH/27dvX0gIA6UAELRatWpFO+8EcRAA\nghtx0DniFGFJuQAAIABJREFUIAAEN+Kgc8RBAAhuzuOgyW63+zI3AaVz586bNm0qLS3VcJtW\nq9VqtRYWFhYXF2u4WfiGyWQKDw8vLS0tKCjwd17gDpvNZjabCwoKtK3X8A2z2Wyz2YqLiwsL\nC7Xdcm5ubkREhLbbDA7EQTggDuodcVDXiIO+RxyEA+Kg3hEHdY046HvEQTggDuodcVDX/BUH\nDf0LwvXr1/fs2VPbJi8vL+/GjRsRERE2m03DzcI3SktLs7KyzGZzTEyMv/MCd1y/fr2oqCgm\nJsZsNvs7L6i0wsLC3Nzc0NDQyMhIbbfM8VAR4iAcEAf1jjioa8RB3yMOwgFxUO+Ig7pGHPQ9\n4iAcEAf1jjioa/6Kg4b+BaE3vP/++/PmzZswYcJDDz3k77yg0n777bdevXo1bdp0wYIF/s4L\n3PH000/v3Lnziy++aN68ub/zgkrbsGHD+PHjH3jggVdeecXfeYH7iIO6RhzUO+KgrhEHgwNx\nUNeIg3pHHNQ14mBwIA7qGnFQ74iDuuavOMgzpgEAAAAAAAAAAAADYYAQAAAAAAAAAAAAMBBD\nv4PQG6pWrZqamlqlShV/ZwTusFqtqampdevW9XdG4KY6depkZWWFh4f7OyNwR0xMTGpqao0a\nNfydEXiEOKhrxEG9Iw7qGnEwOBAHdY04qHfEQV0jDgYH4qCuEQf1jjioa/6Kg7yDEAAAAAAA\nAAAAADAQHjEKAAAAAAAAAAAAGAgDhAAAAAAAAAAAAICBMEAIAAAAAAAAAAAAGAgDhJrJzMwc\nPXp03bp1Q0NDa9asOWzYsAsXLvg7U1Bl7ty5pvJMmjTJ31lDhYqKil588UWz2dymTZuyS6mP\ngc9JCVIldYp6p19UOj0iDuodcTD4UO/0i0qnR8RBvSMOBh/qnX5R6fSIOKh3gRMHLd7YqAEV\nFhZ27tx53759Dz/8cFpa2okTJ+bNm7dhw4a9e/dWqVLF37mDC5mZmUKIfv361alTRzm/ffv2\nfsoRXDhy5MiAAQPS09PLXUp9DHzOS5AqqUfUO12j0ukOcVDviIPBh3qna1Q63SEO6h1xMPhQ\n73SNSqc7xEG9C6w4aIcW3nnnHSHE1KlT5TmLFi0SQowdO9aPuYJKr776qhBi9+7d/s4IVMnK\nygoPD2/Tpk16errNZmvdurVDAupjgHNZglRJPaLe6RqVTl+Ig3pHHAxK1Dtdo9LpC3FQ74iD\nQYl6p2tUOn0hDupdoMVBHjGqjXnz5kVHRz/33HPynEceeaRhw4bz58+32+1+zBjUkIbl4+Li\n/J0RqFJcXPzUU09t3769YcOG5SagPgY4lyVIldQj6p2uUen0hTiod8TBoES90zUqnb4QB/WO\nOBiUqHe6RqXTF+Kg3gVaHGSAUAMFBQUHDx5s27atzWZTzu/QocPly5dPnTrlr4xBJbnWlZSU\nnDt37o8//vB3juBMfHz89OnTrVZruUupj4HPeQkKqqQOUe/0jkqnL8RBvSMOBh/qnd5R6fSF\nOKh3xMHgQ73TOyqdvhAH9S7Q4iADhBo4e/ZsSUlJcnKyw/yUlBQhxMmTJ/2RKVRCVlaWEOLd\nd99NSkpKTk5OSkpq0qTJv/71L3/nC+6gPgYBqqTuUO/0jkoXTKiPQYAqqTvUO72j0gUT6mMQ\noErqDvVO76h0wYT6GAR8XCUtXtquoeTk5AghIiMjHeZHRUXJSxHIpGH5hQsXjh8/vlatWkeO\nHJk9e3b//v1zcnJGjBjh79yhcqiPQYAqqTvUO72j0gUT6mMQoErqDvVO76h0wYT6GASokrpD\nvdM7Kl0woT4GAR9XSQYINWMymRzmSE/1LTsfgWbixIlPP/30fffdJ7eeAwYMSEtLmzBhwpAh\nQ0JDQ/2bPbiB+qhrVEmdot7pF5Uu+FAfdY0qqVPUO/2i0gUf6qOuUSV1inqnX1S64EN91DUf\nV0keMaqBmJgYUd4IfHZ2thAiOjraD3lCZdxzzz0PP/yw8t6KZs2ade/e/erVqwcOHPBjxuAG\n6mMQoErqDvVO76h0wYT6GASokrpDvdM7Kl0woT4GAaqk7lDv9I5KF0yoj0HAx1WSAUIN1KlT\nx2KxnD592mH+iRMnhBCNGjXyR6bgqapVqwohrl+/7u+MoHKoj8GKKhnIqHdBiUqnU9THYEWV\nDGTUu6BEpdMp6mOwokoGMupdUKLS6RT1MVh5r0oyQKiB0NDQ1q1b//jjj3l5efLM0tLSH374\nITk5uU6dOn7MG1y6fv36hx9+uHDhQof5v/zyi/jvG1yhI9RHvaNK6hH1TteodEGG+qh3VEk9\not7pGpUuyFAf9Y4qqUfUO12j0gUZ6qPe+b5KMkCojSeeeCIvL2/atGnynE8++eT8+fPDhg3z\nY66gRkRExJtvvjl8+PCjR4/KM5cvX75169ZWrVrVr1/fj3mDe6iPukaV1CnqnX5R6YIP9VHX\nqJI6Rb3TLypd8KE+6hpVUqeod/pFpQs+1Edd832VNEkvqISHSkpKOnXqtGXLll69eqWlpR05\ncmTRokUtWrTYuXNnRESEv3MHF7755psHH3wwIiLiscceq1mz5qFDh5YtWxYdHb1x48a0tDR/\n5w6Ofvjhh1WrVknT06dPT0pKGjRokPTv888/n5CQQH0McC5LkCqpR9Q7XaPS6QtxUO+Ig0GJ\neqdrVDp9IQ7qHXEwKFHvdI1Kpy/EQb0LuDhoh0ZycnLGjRuXkpJitVpr1ao1atSoK1eu+DtT\nUGv79u33339/XFycxWKpWbPmwIED09PT/Z0plG/y5MkVNWhyqVEfA5maEqRK6hH1TteodDpC\nHNQ74mCwot7pGpVOR4iDekccDFbUO12j0ukIcVDvAi0O8gtCAAAAAAAAAAAAwEB4ByEAAAAA\nAAAAAABgIAwQAgAAAAAAAAAAAAbCACEAAAAAAAAAAABgIAwQAgAAAAAAAAAAAAbCACEAAAAA\nAAAAAABgIAwQAgAAAAAAAAAAAAbCACEAAAAAAAAAAABgIAwQAsHm3XffNZlMw4YN83dGAADw\nA+IgAMDIiIMAACMjDgKVwgAhoA9TpkwxqXDffff5O6cAAGiPOAgAMDLiIADAyIiDgJdY/J0B\nAKokJCQ0adJEOef48eN2uz0lJSUsLEyemZyc/Mwzz4wcOdJioXYDAIIHcRAAYGTEQQCAkREH\nAS8x2e12f+cBgDvCwsJu3Lixe/fuNm3a+DsvAAD4GnEQAGBkxEEAgJERBwFN8IhRAAAAAAAA\nAAAAwEAYIASCjcPLeGfOnGkymV599dU//vhj6NChNWrUiIyMbN269cqVK4UQWVlZTz/9dHJy\nss1ma9KkyaeffuqwtW3btj388MPVq1cPDQ2tXr36ww8/vH37dl/vEgAAqhEHAQBGRhwEABgZ\ncRCoFAYIgSAnPYk7MzPz/vvv37ZtW/v27evUqbNv376HHnpo//79Xbt2Xbp0aVpaWosWLY4f\nPz58+PAVK1bI637yySd33XXXsmXLmjdvPmjQoNTU1KVLl3bo0OHzzz/33w4BAFAJxEEAgJER\nBwEARkYcBJxjgBAIctJbeefPn9+kSZNffvll8eLFhw4d6tKlS1FRUY8ePapUqZKenr58+fK9\ne/cOGTJECPHFF19IKx47duzpp5+2WCyrV69ev379p59+unHjxu+++85isYwaNerMmTP+3CsA\nANQhDgIAjIw4CAAwMuIg4BwDhECQM5lMQoj8/Px3331XCopms/nPf/6zEOLChQvvvfdeRESE\nlHLw4MFCiCNHjkj/zp49u6ioaPjw4V26dJG3dt999w0aNKigoGDOnDm+3Q8AANxBHAQAGBlx\nEABgZMRBwDkGCAFDuOmmmxITE+V/a9WqJYSoXr16kyZNHGbm5ORI/27YsEEI0aNHD4dN3X//\n/UKIzZs3eznLAABohjgIADAy4iAAwMiIg0BFLP7OAABfqF27tvJfs9kshKhZs2bZmaWlpdK/\nGRkZQojZs2cvXLhQmeyPP/4QQpw8edKL2QUAQFPEQQCAkREHAQBGRhwEKsIAIWAIVqu17Ezp\nl/Xlstvtubm5Qgjlu3mV5BtqAAAIfMRBAICREQcBAEZGHAQqwiNGAZTDZDJFRkYKIfbu3Wsv\nj3S/DAAAQYk4CAAwMuIgAMDIiIMwDgYIAZSvfv36QojTp0/7OyMAAPgBcRAAYGTEQQCAkREH\nYRAMEAIoX6dOnYQQX375pcP8Y8eOrVq1Kj8/3x+ZAgDAR4iDAAAjIw4CAIyMOAiDYIAQQPlG\njhxptVoXL17873//W555+fLlxx57rHv37kuWLPFj3gAA8DbiIADAyIiDAAAjIw7CIBggBFC+\n1NTUmTNnlpSUPP744x07dhw6dGjPnj3r1av3008/9e/f//HHH/d3BgEA8CLiIADAyIiDAAAj\nIw7CICz+zgCAwDVixIiWLVvOmDFj27Zt27dvj4iIaNWq1eDBg4cOHRoSwu0FAIAgRxwEABgZ\ncRAAYGTEQRiByW63+zsPAAAAAAAAAAAAAHyEsW4AAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyEAUIAAAAAAAAAAADAQBggBAAAAAAAAAAAAAyE\nAULAp1auXGn6r7lz5yoX7dy5U140ffp0zT/6p59+krc/ZcoUzbfv7fzLzp49O2rUqMaNG0dG\nRoaGhlarVu2VV17x3sf5l8++VQBAubwdPQHA4Jz0j/Tl3Llz8o6MGzfO39nxlJPwR2QEgCBD\nLDasoCl6eMLi7wwAQCUcOHCgU6dO165dk+dcvnz55MmTfswSAAAAAAAAAAD6wgAhAD0ZOXKk\ncnTQbDaHhPBLaAAAAAAAAAAAKoEBQiBQVK9efdSoUdJ0q1at/JsZN/gg/5cuXdq5c6c0HRUV\nNWfOnN69e5vN5ry8PG98nG/cd999q1evbtKkydGjR8su1ftRAQBucN4wAgDgF4QnAAD8i1gM\naI4BQiBQ1K1bd9asWf7Ohft8kP8zZ87I00OGDOnTp480HRER4dXP9R673f7jjz86SaD3owIA\nKstlwwgAgO8RngAA8C9iMeANPJoPgG5cunRJnr7pppv8mBOtpKenK5+YCgCgYQQABCDCEwAA\n/kUsBryBAUIAulFcXCxPR0VF+TEnWtm1a5e/swAAgYWGEQAQgAhPAAD4F7EY8AYGCAHAbzi5\nAQAHNIwAgABEeAIAwL+IxYA3MECoJ3v27DH918aNG6WZhw8fHjp0aN26dW02W0REROPGjYcP\nH/7LL78oVywtLV28eHG3bt2SkpKsVmt8fPxtt902adKkrKwsh4/o0aOH/BH79u1zmaXVq1fL\n6UePHl02QUlJydKlS0eMGNGyZctq1aqFhobGx8c3atTowQcfnDVr1uXLl9XseGFh4cKFCx99\n9NGWLVsmJCTYbLYaNWp06dJl2rRpV69edbn6b7/9Nm3atJ49e9arVy82NtZiscTGxjZs2LBv\n376ffvppbm5uRSvu2LFD3rvNmzcLIa5evfrcc8/Vq1fPZrNVrVr12LFjDqvY7favv/66b9++\n9evXj4iIiI+Pb9GixeDBg+XycmLnzp3yx02fPl3z3fE2J/kv99C9evXq5MmT27ZtGxcXZ7Va\nExISWrduPW7cuFOnTjls+aOPPpLW7d27tzyzX79+8jYHDBhQNj++LHdRyaN07ty50vZnz54t\nzTl27Jj8odWrV1fzrSq5XdE8LBoAqMiJEycmTZp03333paSkREdHWyyWmJiYhg0bPvDAAzNn\nzvz9998d0qtvGN1rpTU5IXFixYoVZrNZylW9evUuXLhQbrJNmzaNHj26devWUh4SExObNWvW\nt2/fBQsW5OTkeJgHAAhAnvSPHHjehLrRQVAfnpRCQv5zpeXcuXMTJky4/fbba9eubbPZkpKS\n0tLSXnjhhdOnT1d2993jx86jv3rxK1eulAvos88+c/IRcuGaTKbvv/++3DSVPZ8pF9EfgH8R\ni/0biysVEB988EF51/bs2eNy4//85z/l9K+++qrDUg2LHsHMDv1QDvutWLHCbre//vrrJpOp\nbLFaLJYFCxZIa50/f/7mm28ut/Rr16597Ngx5UcsWbJEXvrss8+6zNLQoUPl9Hv37nVYumbN\nmqZNmzo5/CIjI1955ZXi4mInH7F27dq6des62cLMmTMrWrewsHD8+PFWq9VJHhITE5ctW1bu\n6vv375eTrVy5MisrKzU1Vbnu/v37lekvXLjQqVOnij6oa9eumZmZK1askOfMmTNHufqOHTvk\nRdOmTfPq7kyePNnJd+4eJ/kve+h++eWXERER5e6C1Wr9/PPPlat/+OGHTnZZCNG/f39leh+X\nu73yR+mcOXOc5K1atWpqvlWZJxXNw6IBgLLy8/OffPJJuT9WUbs0derU0tJSeS31DaMbrbQn\n7aSa6Llnz57IyEgpTWJiosPJleTw4cPt2rVzkofq1av/+9//ducbB4BA5WH/SOZ5E+p2B0F9\neDp79qw8/8UXX7Tb7V988UV4eHi5K4aFhX3xxReefr9Oea/zqCYy+rEXrzyiPv30UydfkbJw\nV61a5bDUvfMZB0R/AH5HLPZjLLZXPiAuWrRIXvq3v/3N5fYfeOABOb1DP1SrokfQY4BQT9LT\n0+VK++WXX86YMUOaNplMVapUsdlsynoeGhp69OjRq1evNmjQQJpjsVji4+PNZrMy2c0336y8\nHFZYWJiYmCgtSkxMLCwsdJKfoqKi+Ph4KXHz5s0dln7++ecOn5WcnJyWltakSZPQ0FDl/Ice\neqiiD5o3b57DRsxmc1hYmEOjNnr06LLrlpaW9uzZ0yFlTExMnTp14uLilDNNJtNXX31VdgtH\njx6V0yxatGjcuHEOW1NegszOznYYiK1SpcrNN9+cmpoqD7fccccdy5YtkxNUaoDQ893x4wCh\nw6G7cOFCuaMl/YbDYrEodyEkJGTLli3y6itWrOjcuXPnzp1vuukmOU2LFi06/5dyd3xc7na3\njtLVq1dLOZcvKEdERMi707dvXzXfqsTDiuZh0QCAg9LS0q5duyrbDYvFkpyc3KBBg9jYWIeG\nccyYMfKK6hvGyrbSHraTLqNnRkaGfNdqZGTkrl27yqZZs2ZNdHS08rNq166dlpbWqFEjh7xN\nmTLFowIAgIDhef9I4nkT6kkHQX14Ul6UfOONNxYsWCDfyxsaGlqlShWHoaaQkJAffvhB069c\nm12WeDJA6N9evCYDhG6fzygR/QH4HbHYj7HY7lZAzMvLi4qKkuY3atTI+fazs7Pl4YA2bdo4\nLNKk6GEEDBDqSUZGhlxpX3/99fDw8Li4uNmzZ2dlZdnt9pKSkq1bt7Zs2VJOM2LEiOHDhwsh\n0tLS1qxZIw0E5ubmLliwQNmsf/PNN8pPee655+RFFd2UJ1m1apWccurUqcpFO3fulFvAkJCQ\nsWPHnj17Vl6am5s7Z86catWqyau/+uqrZbe/a9cu+b4Sm8322muv/frrryUlJXa7/cKFC++8\n847cYgohFi1a5LC6/MNzIUTVqlU/+uijK1euyEvT09NHjBghJ4iNjb169arDFk6cOCEn+OCD\nD6QvLTU19YUXXpg2bdqLL754+vRpOfGYMWPkxMnJyStXrpRHXgsKCr788ss6deoIIe69996K\nWl7nQ0Ge744fBwiVh+7kyZNjY2NNJtOwYcN++uknKcGNGzfWrVunHP/r1KlT2Y9YunSpnGDh\nwoXlZsPH5e7hUdq8eXNpUZMmTSr7rdq1qGhaFQ0ASJTX2m699da1a9cqh9zOnz///vvvK3uA\n27dvd9iCy4axUq205+2k8+iZmZkpZ9hisZT9/YGUYXmXQ0JCnn322VOnTslLs7KyZs+erfxO\nFi9eXPEXDAC64Xn/yK5RE+p5B8GuIjwpL0qOGTMmIiLCZDINHjx437590i/Mbty48f3337do\n0UJO1r59+0p9pep5tfPoPDL6vRevyQCh5+czRH8AgYBY7MdY7HZA7N+/vzz/559/dvIR8+fP\nl1O+++67ykWaFD0MggFCPTlz5oxcaSMiIqKiouSL+Mo08p0IUVFRJpPpjjvuyMvLc0imbEH+\n8pe/KBcdOHBAXtS7d28n+RkyZIgcHn777Td5fmlpqdxkO2lfjhw5EhMTI6UJDQ1VRhdJWlqa\ntNRisWzcuLHsFtavXy/f+lGnTh2HJ4PVr19fzt6+ffvKzcOoUaPkfJYdfVE+jfqee+4RQowd\nO7bc54ecP39evmUjJibm+PHjZdOcPXu2Vq1aQqFSA4Se744fBwiVh25kZKTJZJIfgat0+fLl\nKlWqSMlMJtPly5cdEqgZIPRluds9Pko9GSDUpKJpVTQAIOncubPUVtSoUSMnJ6fcNOnp6QkJ\nCVKyfv36OSx12TCqb6U1aSedRM/CwkIpA1LbOG/evHK3L3e6Kmpj7Xb74cOH5TykpKTk5+eX\nmwwA9EKT/pFdoybU8w6CvZIXJcPDw00m0/z588sm+/333+UgaDKZLly4UO7WPOTVzqPzfqXf\ne/GaDBB6fj5D9Afgd8Ri/8ZitwPiypUr5b0o9xc1MvlHmWaz+eLFi/J8rYoeBsEAoZ4omzlR\n5kd7MuXTh0NCQo4cOVI2TWFhoXyfQtu2bR2Wyk2Y1Wr9448/yv2UwsJCecCga9euykXr16+X\nM9C9e3cnezR16lQ55euvv65cpHxd6jPPPFPRFpQvQfz222/l+cqfF9x9990Vra78Srt16+Zk\nqRCiY8eOFY0SzZw5U0720ksvVfRxCxcudNLyOhkK0mR3/DhA6PBNjhgxoqKNPPXUU3KyNWvW\nOCx1OUDo43L38Ci1ezZAqElF06poAEAiP2xzwIABTpJNnz69devWffr0efPNNx0WVarX57yV\n1qSddBI9Bw0aJC96++23y93y3r175TSDBw92kodZs2bJKSsaawQAvdCkf6RJE6pJB8Fe+fA0\ncuTIij5r9OjRcrLvv//eyX65x9udRyeLAqEXr8kAoYfnM0R/AIGAWOzHWOxJQCwsLJRf6dWi\nRYuK1s3KypJHAR2+Lk2KHsbh7H3LCGShoaF/+ctfyl2kfMRwx44dmzZtWjaN1WpNTU2Vps+d\nO+ewVP5pYFFRkUNjIVu3bt21a9ek6YEDByoXLViwQJ5W3v1R1pAhQ+QHfynfwurw78iRIyva\nwiOPPFK7du1bbrmlS5cuWVlZ8vz69esXFBRkZGTs3LlT2Sw6qF27dnJysjR96tQpJ1kVQkyY\nMEF+dLUD5c0dAwYMqGgLffv2lW9RqRRv7I6/mEymF154oaKlt956qzyt/I2ISj4udw+PUg9p\nUtGUvFo0AAzixo0b0kROTo6TZGPHjt2zZ89XX301YcIEDz/RSSuteTup9Prrr3/xxRfS9Jgx\nY55//vlyk8lphBDjx493ssGhQ4fKb4P4+uuv1eQBAAKWJv0jTZpQv/SkQkJC/va3v1W0tE2b\nNvK0N86r/dh5DMBevHs8PJ8h+gMIBMRiP8ZiTwKi1Wrt06ePNH3o0KHjx4+Xu+7y5cvlaKV8\nKqnw/mVqBBkGCPUqLS1N/gGfA/lmNyFEp06dKtqCnKzsKW///v3lexCUkUDpyy+/lCaio6N7\n9+6tXCT/5slmsymfZVxWUlJSq1atpOmjR4/m5ubKi+S7/qtVq9asWbOKttCtW7ezZ8/u379/\n7dq1/fr1Uy6y2WwpKSm33Xab8tHS5eZBmpDHO8sVFRUlP0asLPm5rFWrVi13RFZiNpu7dOni\n5FOc0HZ3/Kh58+b16tWraGnt2rXlaeedsYr4stw9P0o9oUlFU/J20QAwgrp160oTq1at2r17\nt7c/znkrrXk7KZs/f/5rr70mTffr12/GjBkVpdy8ebM0Ub9+ffnerHKFh4ffeeedDmsBgE5p\n0j/Sqgn1fU/q5ptvTklJqWhpjRo15Onr1697+Fnl8lfnMdB68W7z8HyG6A8gEBCL/RiLPQyI\nyuklS5aUu+5XX30lTURERDhcmffBZWoEEwYI9cpJ4yK/g1AI4aQVkJMVFhY6LKpSpUqvXr2k\n6T179hw+fNghQVFR0fLly6Xphx9+WL5DRAiRm5sr39rQtGlT+XWsLnektLT04MGD0vSNGzfk\nn583atTI+RY8JOewtLTUSbJWrVpZLJZyF2VmZl68eFGabtiwofOPU74MyRtU7o4fKX/hWpby\nWJJvhPEGz8vdl0dpWZpUNAcBUjQAdE2+dbGwsLBjx44TJkw4efKk9z7OSSvtjXZSsmnTpmHD\nhknTXbp0+eKLLyr6CWN+fv7PP/8sTTdo0MB5BoQQcm/56tWr8qkFAOiOJv0j3zehGvakWrZs\n6WSpssNetjPuS9p2HgOwF+82T85niP4AAgGx2I+x2POAeNddd9WsWVOaLneAMDs7e82aNdJ0\nr1695PeIiQC7TA1dKP+SCgJfXFxcRYvkF5yqT1bWkCFD5N8IfvHFF8p38wgh1q5dK9/KoXwB\njxDiwoULciPu5NdIMuXdHHL7dfbsWXkjcoPonhs3bnzzzTdr1qw5ePBgRkZGdnZ2fn6+G9uR\nbyEsSxnzHN7vWpb8Y3n3aLU7fiQ/R7tczg9L9XxQ7hoepW7QpKI58E3RAAhuzz777NKlS7dt\n2yaEyM/Pnzx58uTJk5s2bXrPf1X0/AP3OGmlvdFOCiGOHDnSu3dvqQ95yy23fP31106GHq9c\nuSK7s5IiAAAgAElEQVTnYdu2bU5yK8nOzpanMzIylM+EAAAd0aR/pHkT6suelPNg57Pzah93\nHgOwF+82T85niP4AAgGx2I+x2POAGBIS8uijj/79738XQuzduzcjI8Phy1+2bJl8777DQ0R9\neZkawYEBQr1yeSN8pZKV1bVr19q1a0uvJ1ywYMFbb70lv5tHKJ4vmpKS0rFjR+WKymCgvH+h\nIpGRkWXXVT7AUPm7pcr617/+9fzzz58/f97tLchiY2MrWqT8KbrL3Cr3t7I03B0/Cg0N9fZH\n+KbctTpK3aNJRXPgg6IBEPSsVuvq1atHjhypfP/f0aNHjx49+sEHH5jN5nbt2j322GP9+/fX\nZKTQSSvtjXby0qVL3bt3z8zMlP69du2a8ztblQ/GycvLq9TLLSrKAwAEPk36R9o2oT7uSVX0\n63Zf8n3nMQB78W7z5HyG6A8gEBCL/RiLNQmI/fr1kwYIhRBff/31X//6V+VS+fmiSUlJXbt2\nVS7y2WVqBA3/n7YiMIWEhAwcOPCtt94SQpw/f37dunXdunWTFimfLzpgwACHx2rl5eXJ0+Hh\n4S4/SPmbbnndgoICeabbY5yTJk2aOHGick7dunVr1aqVkJAQHR0tz1y9evUff/zhcmvySxnL\nUt7t4nKIxe0xGG13J4j5rNw1OUrdpklFAwBviIyMnD9//jPPPDNr1qzly5cre4YlJSXbtm3b\ntm3byy+/PHbs2AkTJihvP3KDk1baG+3k+++/rxwRPH369JNPPvmvf/2rom26fJehE156KxUA\n+IAm/SMNm1AD9qT8sssB2Iv3hNvnM0R/AIGAWOxHmgTEW2+9tWHDhr/++qsQYsmSJcoBwqys\nLPn5oo8++qjDUKhvLlMjmDBAiAoNGTJEGiAUQsybN08eIFy7dq187/zAgQMd1lLeeqBmHEKZ\nRr7B3/O3na1fv/6VV16R/x01atT48ePr1KlTNmW7du08jD3Kq5Mun1vtXnD15e7omi+/KP++\nk0+TigYA3tO2bdt58+YVFRVt3rz5u+++W7NmzaFDh+SlWVlZr7zyyq5duxYvXqwcmdOQN9pJ\naXQwISEhMTHx2LFjQoiFCxfed999ZU+HJMq+7p///Od58+apyzsA6Jsm/SOtmlAD9qT8tcv6\n6sWr5Mb5DNEfQCAgFvuRVhcMH3vssUmTJgkhduzYcf78eflppcuXL5fLVH5prswHl6kRZHin\nFCrUsGHDO++8U5pevny5fAPCv//9b2miXbt2jRs3dlhL+dZDNbe/KVsi+UFhyieGyYORlTJ1\n6lS73S5N//3vf581a1a5gUcIUVJS4sb2lZSXEV1egszKynLjI3y5O7rmyy/K86PUE5pUNADw\nNqvV2rlz5xkzZhw8ePDChQuffvpphw4d5KXffvvt9OnTvfTRXmonGzduvHPnziVLlsjXAZ9+\n+umTJ0+WmzgmJkae5qFhAIxDk/6RVk2oAXtS/tplffXiRWUu2lbqfIboDyAQEIv9SKsLhv36\n9ZMm7Hb70qVL5fnym78aNGjQrl07h7V8cJkaQYYBQjgzZMgQaSI3N/fbb78VQhQUFCxbtkya\nWe798tWrV5cfr3Hq1CmXH6G8pia/OrVWrVryT7DPnDlT2Wzn5uauX79emq5Xr95zzz3nJLHn\nD79OSEiQp3/77TfnidPT0yu7fR/vjn75+Ivy8Cj1kCYVDQB8qXr16sOGDduyZYtydG3KlCle\neu6xN9rJdu3a7dixo2HDhs2bN3/77belmTk5OY8//nhxcXG5eZDv35QeDgMARqBJ/0iTJtSA\nPSk/7nIA9uKdvyr46tWr6rMnc3k+Q/QHEAiIxX6k1QXDZs2a3XTTTdL0119/LU1kZWWtXbtW\nmi7780Hh/cvUCD4MEMKZvn37yk/okn44uGLFCulVq6GhoY8++mjZVcLDw5s1ayZNHz161OVv\nmQ8ePChNhIaGtmjRQpq2Wq3ybxMPHz6sfHpyWceOHZPeFn7u3Dlpzrlz5+SewN133+3wlkSl\n48ePex57qlWrJv9MwWW8PHDgQGW37+Pd0S8ff1EeHqUe0qSiAYBfPPTQQy+++KI0nZubu2fP\nHm98ijfayV69esXHx0vTzzzzzP333y9N79q167XXXiub3mq1yj2648eP8zMCAAahSf9IkybU\ngD0pP+5ygPTila9Tcp4HN/rmShWdzxD9AQQCYrEfaXjBUP4R4ebNm6UfIy5btszJ80WF9y9T\nI/gwQAhnoqKi+vbtK02vWrUqLy9v4cKF0r89evSQr5E5aN++vTRRWFi4evVqJ9s/ffq0/AT/\n1q1bK0/l7777bnkj8p0RZZ09e7Zp06apqampqalvvvmmNFP5+2jlz+HL+vDDD50sVa958+bS\nxOXLl48ePVpRsuzs7C1btlR2477fHZ3y/RflyVHqOU0qGgBo7syZMy5vk7z99tvlae891cTb\n7eScOXOSkpKk6cmTJ2/evLlsGvlp7UVFRcuXL3e+wWPHjnEZEUBw0KR/5HkTasCelH93ORB6\n8cpHqzm5O7OgoGDdunVOtuPJ+QzRH0AgIBb7kVYXDB977DFpori4eM2aNUII+Vmjt956a9k3\nf0m8epkawYcBQrgwdOhQaUIaHfzuu++kf8t9vqhk8ODB8vTMmTOdbFzZ9A8aNEi5SPnzxBkz\nZlS0hUWLFsnTXbp0kSaUrx3KyMioaN39+/d/8MEH8r/Ob+hwrlu3bvL03LlzK0o2c+bMoqKi\nym7c97ujU77/ojw5SiXynVNuPGFPk4oGABoaO3ZsUlJSSkrKgAEDnKdUvnm+atWqykWeNIwO\nvN1OVqtW7fPPP5emS0tLBwwYUPYNE8o8TJ482clLNQoKCrp06ZKYmNi5c2f5ATIAoFOa9I88\nb0I17CBoGJ68yr+dx0DoxSvfa/Xjjz9WtJ2PP/74ypUr5S7y/HyG6A8gEBCL/cjzC4aSunXr\nyjejfPfdd/n5+dIwoRDCSZDy6mVqBB8GCOHCnXfe2bBhQ2l6/Pjx0nu8ExMTu3fvXtEqt912\nm9x4rV279rPPPis32c6dO//+979L0wkJCY8//rhyaYcOHeSNbN68udzbKA4fPjxp0iRpunr1\n6j179pSmGzRoEB0dLU1v3Ljx4sWLZdf95ZdfevToYbVa77jjDmlOXl5eRT0El/r06SNHqVmz\nZv3yyy9l0+zatWvy5MlubNz3u6NTvv+iPDlKJfJbKy5evHj9+vVKfbomFQ0ANFSjRg3pStmW\nLVtmz55dUbLi4uJZs2ZJ0zExMTfffLNyqScNowMftJM9evR48sknpemzZ88OHz7cIUHLli3l\nnt6RI0eeeuopu91edjtFRUUDBw48d+5cUVHRhg0bnHS8AUAXNOkfed6EathB0DA8eZV/O4+B\n0IuvXbt2YmKiNL1169Z9+/aV3c7WrVsnTJggv07FgefnM0R/AIGAWOxHnl8wlMlPGV27du2m\nTZukoVOz2Vzum78kXr1MjeDDACFck+8WkV/i3a9fP/ltq+X67LPP5FZ7xIgRL7zwwqVLl+Sl\nWVlZ7733XteuXeWHJn/88cdytJCYTKb3339f/pSXX365X79+u3btys/Pt9vtGRkZb7/99u23\n3y7/UP3tt9+WHwhmNpt79+4tTWdnZ/fp0+fkyZPyls+fP//GG2/ceuut58+fnzp1aseOHeVF\nn376qepv5f9JTU2Vn8Wam5t79913z5kzR3pZoxAiIyNj0qRJnTt3zs3NHTJkSGU37vvd0Snf\nf1GeHKUS+f7WoqKisWPH/v777yUlJRkZGdeuXVOTAc8rGgBoaMSIEdWqVZOmn3766UGDBu3Y\nsUN5T2Jubu6qVas6duy4fft2ac7IkSPldkziYcPowAft5IwZM1JTU6Xpr776as6cOQ4JPvnk\nE/lxZ5988kmXLl22bt0q96sLCgq++uqr22+//auvvpLm3H333fJJBQDolFb9Iw+bUA07CNqG\nJ+/xb+cxQHrxffr0kSZKS0t79OixePHi3Nxcac6pU6cmTpx47733FhQUvPXWW/IqymvZmpzP\nEP0B+B2x2I88v2Aoe+SRR8xmsxDi/Pnz8o2t9957rxyqyvLqZWoEITv04+zZs3LBvfDCCxUl\nU16Z2rhxY0XJ5BsNbDaby88NCfl/Y8m7d+92mduvvvpK2bSZTKb69eu3bt26QYMGDlubNGlS\nRRtZtGiRQ2IhRNk5zz33nMOK6enpyncPmM3mRo0adejQoVGjRvLqgwcPLi0tXblypXJTzZs3\nv+22244dO2b//1/42LFjne/vuXPnateu7ZCxuLg4ZT+hc+fOe/fulf/9xz/+odzCjh075EXT\npk3TfHf2798vz588ebLLEqwsJ/lX/00qN1I2k/KDtoUQCxcuLLu678vd7sFRarfbP/roI1Ge\ntWvXuvxWJR5WNK2KBgAkGzZssNlsysbHbDbXrFkzJSWl7MBb+/bt8/LyHLbgsmGsbCvtYTup\nJnru27dP/oioqKjjx487JFi7dq0yPAkhIiMjGzZsWLVqVfnWTkmzZs0uXbrk+osGgIDnef9I\n4mETqkkHwa5pePL2ebW3O48uI6N/e/F2uz0jI8PhmAkJCalSpUpERIQ855VXXvn555/lf5ct\nW6bMiefnM3aiP4AAQCyuiG+ucXlywVCp7NNH58+f73wVrYoeRsAAoZ74a4DQbrcrH16cmpqq\nMsObN2+WX4tarjp16nz55ZfON7Jhwwb5GadlRUdHz5o1q9wVV69eXdHLb81m88SJE6VkRUVF\nN910k0OCgwcP2it/CfLIkSNlNyXr3r17dna28jaZDz/8ULm686Egz3fHCAOEdn+Uu92DozQ/\nP79FixZlV1E/QGj3rKIF2skTgCCwa9euZs2aOWmUhBAWi2X06NHlXk1z2TC60Up70k6qjJ5v\nv/22nKxNmzaFhYUOCX766acOHTo4yYPJZBoyZMi1a9fU7BEA6IKH/SOZh02o5x0Eu6bhyQfn\n1V7tPKqJjH7sxUvWrFkTGxtb0XakbCuPvbKnAR6ez0iI/gD8jlhcLp9d43I7ICr94x//UK4V\nERFx/fp1l2tpVfQIepaKjhJAaciQIatXr5amBw4cqHKtO++88+eff162bNl33323Y8eOS5cu\nZWVlxcTEVK1atW3btt26devTp09FP6CWderU6eDBg998882SJUt+/vnnixcv5uXlxcfHN2vW\n7L777nviiSfi4+PLXbFr167Hjh2bNWvW999//+uvv16/fj0qKqpBgwb33HPPX/7yl8aNG0vJ\nLBbLqlWr/vrXv65bty47OzspKalDhw5OfqbtRNOmTffu3fvPf/5zyZIlBw4cuHz5clhYWM2a\nNdu2bTtw4MBOnToJIUpLS+X0BQUF6jfu+93RKb98UW4fpWFhYRs3bpw4ceKKFSsuXrxotVpr\n1KjRunXrevXqqf90TSoaAGilbdu2hw4dWr169YoVK/bu3ZuRkZGVlVVUVBQZGZmYmNiiRYuO\nHTs+9thjNWvWLHd1TRpGBz5oJ8eNG/f9999v2LBBCLFnz56JEydOmTJFmeDmm2/esmXLxo0b\nv/nmm82bN58/f/7q1asWiyUuLq5Zs2YdOnQYOHCgJ/sIAAFIq/6Rh02oJh0Eb4Qn7/F759Hv\nvfh77703PT191qxZa9euPX78eFZWVmhoaEpKSrdu3Z577rm6desKIZQ/Zyl77Hl4PiMh+gPw\nO2Kxf7kdEJUeeuihp5566saNG9K/Dz74YEWv0VXy6mVqBBOTvbw3iwIO5syZM3ToUCGExWI5\nc+ZMjRo1/J0jAAAAAAAAAAAAuMPxobdAuT788ENpokePHowOAgAAAAAAAAAA6BcDhHBt06ZN\nu3fvlqafffZZ/2YGAAAAAAAAAAAAnuARo3ChqKiobdu2P/30kxCidevWe/bs8XeOAAAAAAAA\nAAAA4D5+QQhn7Hb7yJEjpdFBIcRbb73l3/wAAAAAAAAAAADAQxZ/ZwCBa//+/S+88MLatWul\nf3v37t21a1f/ZgnamjFjhly+nujcufPzzz/v+XYAAAAAwGjolwEA4F/EYhgWA4RwNGTIkFWr\nVuXl5eXk5Mgz69ev/9lnn/kxV/CGgwcPrl692vPtJCYmer4RAAAAADAg+mUAAPgXsRiGxQAh\nHBUVFV26dEk5p2XLlt9++218fLy/sgQAAAAAAAAAAACtmOx2u7/zgMAyduzYWbNmFRYWxsbG\nNm3a9PHHH3/yySetVqu/8wUAAAAAAAAAAAANMEAIAAAAAAAAAAAAGEiIvzMAAAAAAAAAAAAA\nwHcYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAAwEAYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAA\nwEAYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAAwEAYIAQAAAAAAAAAAAAMhAFCAAAAAAAAAAAA\nwEAMPUD4xBNPPPLII6Wlpf7OCAAAfkAcBAAYGXEQAGBkxEEAgMlut/s7D36TmJh45cqV4uJi\ns9ns77wAAOBrxEEAgJERBwEARkYcBAAY+heEAAAAAAAAAAAAgNEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOEAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYCAOE\nAAAAAAAAAAAAgIEwQAgAAAAAAAAAAAAYiN8GCIuKil588UWz2dymTRs16TMzM0ePHl23bt3Q\n0NCaNWsOGzbswoULlUoAAEDgIA4CAIyMOAgAMDLiIAAgEFj88qlHjhwZMGBAenq6yvSFhYWd\nO3fet2/fww8/nJaWduLEiXnz5m3YsGHv3r1VqlRRkwAAgMBBHAQAGBlxEABgZMRBAECgsPtc\nVlZWeHh4mzZt0tPTbTZb69atXa7yzjvvCCGmTp0qz1m0aJEQYuzYsSoTlCshIUEIUVxc7O6u\nAABQacRBAICREQcBAEZGHAQABA6T3W737YikuHr16ltvvTV58mSr1RoWFtaiRYs9e/Y4X6VV\nq1YnTpz4/fffbTabPLNRo0bZ2dkXL140mUwuE5S72cTExCtXrhQXF5vNZk12DQAAl4iDAAAj\nIw4CAIyMOAgACBx+eAdhfHz89OnTrVaryvQFBQUHDx5s27atMsgJITp06HD58uVTp065TKBZ\n1gEA8BhxEABgZMRBAICREQcBAIHDP+8grJSzZ8+WlJQkJyc7zE9JSRFCnDx5sqSkxHmC+vXr\n+yarkvWb92VaIuok12hRPSrcyj04AACP6C4Obty89/r1vJS6tSOTEqPDbZGh5shQoiEAwE26\ni4NrNuz6+cyVKmGW2JjoJqn1qybGVYu2uV4NAIDy6DQORllCQsNCY2NjQkOt1qjo+Lhosy1U\nCFEl/H8jo5Gh5lDL/367YjOHRNBzBADf0sEAYU5OjhAiMjLSYX5UVJS01GUC5cwxY8bk5eVJ\n07m5ud7I8LwNB+flJAlx0hoiGiZF3Vkvvm58eJOqkalVo5pUjQyp4Hf9AACUS3dxcO6GQ/Ny\nkoQ4Is8JESLOXFzdJmpGWWIiwxrVSkiuGlc7Nqx2XFhcuDXGZqkSYbWEEB8BAOXQXRz85+aj\n83KShCgW4ppYv1cIYTKJ6jZROyGqRlxkWu2Y+gkRkaHm2rFhjZMi48LV/oIEAGBMuo2DpUIU\nCFFQqXUjrSGhlhAhTEKIKhH/CZFmkykmzCKEsJpNceHW+AhrVKglJswSZTOH/Xd8McpmsZpN\nVcKt5hBTjM1is/y/scaoUIvVbLKaQ6Js/5sZYjLFhungwjgAeJVu2sGyz8uW3p4oz3eZQDJ3\n7tzMzEwvZTL/t7NPfLT+x2yL9L0WlYojl64fuXRdTpAUFXpPw4Q2ybF3N0hIqx3DYCEAQCVd\nxMGzv54aN3fz3hxzk4Kzx6L+dwdrqRBXSyxX88ThPCFEgTj1mxC/OawbbjHVjrI0TIpsVqtK\n1ShbUmRovYTwOnHhVSKssWEWIiYAGJwu4qAQYtDbX2+7ZhYW0eT6WSGEFA3tdnGhQFz47br4\n7fo3v1ySE4eYTClVwtNqx9SND29aNaphYkTjpMjq0TaiHgDAgV7i4Nkv5+VdvizCk9pdO3zN\nGi3NVPYNncstKs0tKpWmr+UXeSWLCiaTiAtzvFMnItQcYTVLQ5LSIKU1xBRls0iLbOaQuHCL\n9K2GWULCrf8ZoYwJs0bbzDZLiBAiMtQSajYJIcKt5rhwq5wmNswSG86tsQACiw4GCGNiYkSZ\nG16EENnZ2UKI6OholwmUM+fMmVNU9J8A88QTT5RdyxO2xKQbVy6fCG8hhGh37fDOKs0cEvx+\nvXDRTxcW/XRBCGGzhNSLj+hQr0rHBvG3Jsc1qep4pw8AAEJXcbBGnZoZOUUnLEkiKt5hUbtr\nh+VpqaPo0EvML7anZxalZ2auSnfsr5pMolZ0aGJ0WHJcWK3YsPhwa3xEaM1YW5248JT48Nqx\nYRruAgAg0OgoDgohLGG2E5Yw8f/DnBwEHXqIpXb7qat5p67mKWdazaaUKuGNEiNvrhlze924\nljWiU6qEM2QIAIalrzgYGp9QmnNMhDuGvLKUPcSyXK6uCbu9nGFIHwxMSgONVvN/xh1DTCI2\nzBpmDYm2WRIirJGhljBrSGyYJTLUbDKZ4sItEVazzRISZbNYQ0zmEFONGFuoOSQ2zBIdZgk1\nh7j8OABwQgcDhHXq1LFYLKdPn3aYf+LECSFEo0aNqlev7jyBcuaDDz4oTz/55JPaZjXEFvbl\nO89uXrby5+/XHss1xZXkmktKMq1R2+JblE18o7j06OXrRy9f/2zXWSFEarWozo0S7mmY0K1J\nEk/cBgDIdBQHLaG27TMG79h9+Pip85cuXynIzLyak38tO+9GcXFWqfV8WHymJfq6JTzL8r97\nYsp2C8sOH9rt4lx24bnswp9+yy77oVE2c2JkaFJkaEJkaL348GbVoqvH2OrEhaVUCa8aZeOC\nKgDonY7ioBDiH8/+6bnDp7KuZV67nn/lwuWzR46du3jlanHIRVt8pjUyuvj/2LvvwDbK+3/g\nd6c77b0lD3nHdmzHWSQhJIQQWgKEWaCMFr6lQPlCf20p0NBC2WVD2y8bWkrLHh00ECBASMhw\nQqbjvS3b2nvenXS63x8Gx5EdT9mS5c/rD0juTnePE8dv6T73fJ7owmD34JEnu/UZY9gOV6TD\nFdna4hzcwsexpXmyGoOk2iBdXaio1ksg3QAAYP6YWzmo23Duo6aqXzo8DE0HwlEqEvUHQjRJ\nMWSUiYQDIZKKRii3M0FRQY5g8CUxFKc43MFfhzgCFkEQBNngPhRDv71rXRixDP6axnAS40U4\nvDDn+EOis1NKTK0IzUQQBkEQR4ie5qlwDJXwcLmAGHxvMFhrRBBEISQwFFEJuToJl49z5AJc\nyic4GCLnEyiKDDZilQkItYjIkfGhygjAfIYOzjdPFz6fX1VVdeDAgbEPW7ly5bFjx5xOp1Ao\nHNySSCTy8vI4HI7ZbJ7IAaNSq9Vutzsej3M4KS7IsQxj+eiDzpf+GPP7Egjmx4UuruxrZc0R\naUm7KC+GjvVjl8vBKnTi0woVZ5aqyrXicq0YPv4BAEC2ytYcHCkRi9EeV9TaT7scfR09A/3W\nbm80EEM8nmCAwwvgogiHb+Mp+/gaN1fKIuioz5OOOvVwDHwckwuIYrXQIOHVGKUFSoFBwivX\niQ0SHgf6ugAAQAaYJzlIuZ3eA3s9B/cF2pv7BuweVBjh8Af4KgbhWPjKberlXkI88bOpRNwl\nOdJTCxRri5WnFiiGll8CAAAw58yTHBwVyzCUy8FEwgmaiodDMb8vFvQnSJL2eQZ/HQ8GErFY\ndMBMuRwjXx5DcZJDIAjCImgc4TAoRmM4gqIkykUQhMYIZtjt1F6hHkGQwZJkiCNAvtsVJ3gU\nh8/hCxAOBxcKcZGEwxdEeKIAxke5vBiTCFEMgiCRGOOJxOh4AkEQPxlPpPVe+kwYXNRDxOVI\n+biYh0v5uJSH8wlscK1HuQDHMVQhJBQCQi4gDFJejow/WGgEAGSBTJxBSJJkS0uLRCIpLi4e\n3HLdddfdcMMNjz/++D333DO45aWXXrJYLPfdd98ED5hlKIeTc/5lho0XunZt73r1Way7QxEP\nlYYHEASJY5wWWaF1wzVuXcnePn+zPZyUKzSTOGoJHLUEnt3diyCITsJbmitdnCOrMUg2lKmV\nQljEHgAAslwW5OBIGEHwdQa+zoAgiG4Dsuy77fFQkHTYaI8rQZKU20m57D5bo6XPYiepvgjr\nwsURDs/FlXkIqR8X+bmiktCAwnu8Dc7Yj4uS8YQtSNmCFIIg79fbhrbzcCxHxs+T8yt14kKl\nUCbAlUJugUKgk/D0Eh7BgQ86AACQTtmXgzyVRv/98/XfPx9BkGWhoHvf1776Q7ZPP4yHQwiC\n3GD+KMrhurgyLy6ul5XYuAq3SNspyfUwo39ad4fpbW2ubW0uBEF4OHZKvrxCKz6tSLGmUFmg\nFMzm1wUAAGAmZF8OjgrlcAY/Hk4EEwmTTnvM56W97pjfR/s8TDgUC/oppz0eCoa62pnoyXul\nskhVsGcCAzrhdxjBxUViXCoTGHJwsZSQynhqLVel4Wm0hETGUWlJngjj8hAE8UVjLIuwCOKL\nxhAEYdlvf0ExiQjNBMg4w7IIgjAJxBmiIrFEgmX90TiCIAEqziRYBEHCdJyKJ3zRuC8a80Ri\nkRhDxRMT/JNJCT8ZRwZ7q/on90IBwZHyca2YKyA4egmPh2NyAU5wMK2YK+biRhlPKST4OIws\neMsAACAASURBVEfGxwfXdMQxVMLHMRSV8TOxJAHA/JSGGYQ7duzYunXr4K+feOIJjUZzzTXX\nDP729ttvV6lUDQ0N1dXVZ5555ueffz64nWGYM8444+uvv77ggguWLFnS3Nz8zjvvVFVV1dXV\nDT4aM+4Bo5qdJ2XYBOPa/VXXK38OdbUjCIIM/nmjiHzR0qr7nvJxpXW9vn8es+3p8Xa4ImOe\nCeFgaKlatFAvXp4nO7tcU6WXwAQIAACYc+ZbDk4ZQ5IRcxfldkYH+mJ+H2m3xnwef1N9OBhy\ncmVuQsYgqJsrDXKEIVwQ4ghIjOvmSqfZYQbH0GK10KQQ6MQ8AcFRCAmjlFemEeklPK2Ea5Dw\n4TFJAACYJsjBQQwZ9R6sG/jPu56DdQmaQpDvPioiCIIgLIraeEpLbpVv8ZktYlOjM9Lpjgze\nRhxDiVp4erHq4mr9+lIVzCwEAIDMBDk4E2J+byzgZyLhWDAQC/jjwQDltJFOO+12Um5nzO+j\nnPaTvniCt8ZHfBIkZAqBMZevN2IEV5CTLzAYCYmckMs5QjEhk3MVKhSbehaHaYZmEt5IjEUQ\nbyTm+25lxBDNOEKUPxqn4gk/GQ+QcR8ZG7q7T8UTkRgTYxJ+Mu6LxvzReMZOeeTjmFHGl/Hx\nwYd3pXxCwuPIBYSA4GhEXL2Uh6EIhqIGKU8hIHjwrgaAGZOGAuEjjzxy5513jrqrvb29pKRk\nZBAiCBIKhe6777733nvPYrFotdoLL7zw/vvvVyqVEz9gpFkOQn/j0dYn7w+2Nw/VCAmZvPTm\n2w0bLxo8oN0V3trsPDwQ2N7h7vVGxz2hQkBsWqhdV6w6JV++UD+JpjQAAADSaN7mYGqwbKSv\nx99wJNTT4dm3K9LXk4gdX0M+hnL8uDjE4fsIiRcXh3BBEBe6udJt6qWRYctUTJmIyzEpBGIe\nrpNwi1XCaoO0QCkwSnklahEOj+wAAMDEQA4miYeDrj07nF9/4Tv8De3zIMiJdypRhKtQGs65\nWHnuZYdJwZftriOWQF2vzxOJneR8CIIgYh5ndYEyT87fWKFZnifPk6cgBAEAAKQE5GBaJGgq\naumnnPZYwB8PBWmPk3I5B7fTHnc8HAy2NSdiw1YEnOz98hEfB1Ec56m1hERGKJQ8pZqvNxJy\npcCQw1WoMC6XrzXgEun0vqaJCpDxeIL1RWMxhg3R8XiCDZJxPxlnEmyPN2oPUoOdVN0R2hOJ\nBch4jEmEaGbw+CAVn51Bjk3I5fA4mOK7vnoKASEX4AoBgXMwKQ+X8nG1iBByOSohV0BgOTK+\nSsRVCgkxF4f+QACMK81rEKbX7AdhPBzqePZxy8f/ZBlmqEyYd+mPyn6+GTlxSkKrI9zuCu/q\n9h7s9x8ZCLjC4yxamyfnbyhTn1uhXVesVIm4M/YVAAAAyB5Z8IGQTTCRvt5QRyvlsEWt/YHm\nY8G2JjbxXT+WYe9xgrgwgAu8hNTBlbu4MhLjfqpZ7uLKmDEXBp4gHo4VqYQFCkGpRlSpE+fJ\nBSaFQCvmasSQyAAAkLkyMAeD7S22T/7j+OpT0mFDkGFBhiIIgsiqFuecf6n+e5tYDDtqCX7d\n5fm6y9NgC7U5k9etSLJAK/pemWZxjnRtsbJYddKpJAAAAOaVDMzB9ErQVKS/N9zVHunvpdzO\nmM9Lez2Uy85Eo/Ggf/iTqd+aXhERF0lEBUWCnHyeWisyFfE0OmF+IU+jm868w5SLxhgynqDj\nCV807o3GPJFYtyfiicTCNIMgiCtMB8i4NxoLUXFXmPaT8TjDBql4fLyeB7MDx1CtmCcgMLmA\n0Em4cgEh4+NSPqGTcEtUIoWQEBCYhIcrhYQa7qWDeQwKhGkIQs83e5oeupNyO4dqhOrVZyz4\n5W/5+pyTvaTDFfmyw7Xf7G91hA4PBAZ/Co8Kx9DB9erXl6hOK1TCgxIAAABOJis/EMbDwahl\nIGoxB1saQ13tkf7eqKWPjccRZJTPbwyGhTBBDMNDHIGPEEc4PDtX8bWqOsARebmSGEZEsGl9\nTiA4aKVOslAvLlGLjFLeklxZmUYEyy0AAECGyNgcZBOMv/Fo37t/d+3+KhGjkyYU8rV6zdoN\nuRddIcwvHNxmC1I7Oz1fd3u+bHc32UNjnBlD0VPyZZU68Zoi5UK9ZEmOFBatAACAeStjczAD\nsQmG9nooh41yO5lImHI5aJ+HslvDPV2Uy85QVIIiR7xmMhf4Lo05fAFfbySkMkKm4OsMuETG\nVaoEOiNfb+SqNIRUlpIvZ0YNzlP0RGL2IOUK00GKCdPxGMOGqDiCICGaiTGsNxKjmYQ3GvNG\nYn0+ss8XzYSa4mDXU7mAQBHEKOPlyQUSHi4X4CiC8HBMK+bppTyFgNBJuEYp9GYA2QMKhOkJ\nwpjf1/L4PY4d24bSAuVwCn58Q9FPbkHGW90oQjP7zL4dnZ4P6m0NtpOvwYsgYh5nU6Vu00Lt\neZVaCQ9uRwIAADjBPPlAyDJMqKs93N0e6mwLNNWHezq/beD27e6xXhtHOU6uvFeo8xASH086\nIM3z8eU0XzyAihyxKf6hiXkck0JgkPLlfNwo41doxUUqoZDLERJYrlyghUmHAAAwWzI/B0mH\nre+9f1i2vB8PBZMDC0VEhSU5my41brqUwz9+l2qf2bez0/NFu7vZETKPt24FH8d+sMhwcbXu\njBKVXEDMwFcAAAAgc2V+Ds4htMdNuR2xgD8eCsSDQdrrJm0W0mEd7GhKOawMeWIFcUrlQ5TD\n4Wl0uFDE0+r5Gj1PZxDmFQjzTOLCUhSf2zd+mQQboOK+aMwbibnCMT8ZC1FMLJHwReOeSMwa\nIKOxbxsFUfFEgIy7wnQkxlDxRJhmhhZonDUYisr4OBfHcmR8pZDAUMSkEBilfL2Ep5VwFQLC\nIOVpRFw+wRFxZ+Qf14Ofdd79aevwLQKciMaP/zks0AhbNq+biUuD7AMFwvQFIcu2P/+E+a1X\nh/eNUa86vfhnvxIXlU3wHM4QfaDf/1GTY3vHWM+K4hi6PF9+WqHi3Art6kIFrJMEAAAASXsO\npg9DkrGAL9rfS9osUUsf6bD56g+S1oFRe5OeTIAQWngqpyLPrTJZhVoLT2VGRAOR6b6typPz\n8+SCXDlfK+bWGKTL8mTlWpGAmF9/QQAAMDvmSg4maMrx1We2zz9y132NJD1fjyIYlyerqjWe\ne7Fu/cakm4Nmb/RAv/+zVtdnra5uT2SMS3AwtMYg+f4CzTkVmuX5cj6eQc3NAAAAzJC5koPZ\nIR4MRK39MZ83Hg7RHlfUOhA2d5E2S6Sv59uGN8jke5YOQhEOny80FRMyOSGVc2Vyvt4oyDUJ\n9DlcpYqrVKfui8hQYZqh4glXmA5ScW8kZgtSnkjMGqAiMcYaoLzRWDTG2AJUkIoHKSYaO2lb\nvpkg5eNCgqMQEnIBoRISAoKjEXNzZHy1iMiVCUwKgVpEaMRcbLz5Qkk2b2l/dHv78C1cjKAT\nkyiUPnLugt+sL57URUG2ggJhmoPQ/sXWtj8/THtcw8uEmrUbSm781VDHmAmyBMitzc7/Njm+\n7vKMsWS9Rsw9JU9+QZXuewvUJoVgGmMHAAAwt2VCDmYU2uehPa5QRyvtdVNuZ6DxaLCjlYmE\nEWRiH9VQhMKIAUVBOLfUri6OydQWXN4W47W6ooOrvk8ND8dK1aJitbBMIypWCUs1ogUaUY4M\nWpoAAMB0zbkcjPT1dL/2gvfA3uPLVQxBEZ5aq133PfXqMxSLT0FHfEWeSOzLDvf7R61HLIFW\nR3iMqwgIzkqTfGO55rxKbYVOnOovAgAAQKaYczmYrSi3k3Y7I+buSH9v1NJPu120z0N73ZTT\nfvygKdy/RxEEQTCCwPgCDl8wWD4U5Rfy9Ua+Poen1grzTIRUPtenHk5WjGG73BFrkHSGaG80\nlkggtiBFxhMIgngitNlLMiwbJOPWIGUPUlQ8Me4Jpw9FEY2IqxFzDVK+kODkyfl6CU8l4sr4\nuE7CkwtwMReX8DkaEW9oKbHpFwjHhiEI8+Q5qTobyHBQIEx/ECZoquuvz/a+8crwn/Uoh5N/\nxf8UX/+LkR/txsWyyP4+3+dtrvfrbUcGAmMcWaETn1qgWF+iWmmSF8Fi9QAAMM9kSA5mNJaN\nWvvDvV3hns5oXy/psFJOe6TfnKCpCX5CQzmYwJiXKKyw59d0c9UuqcEaJzpdYW805o/GrUGK\nmdJaCyoRt0AhMCkEg4XDcq24SCXQS3iTffAQAADmszmag4lYzF2307nzc/sXWxM0nbwbRXga\nnfGci3RnniMqLBn1DN5orN4S3NXtef2gpcUx1pqFK03y8yq1l9Toy7VQKQQAgGwzR3NwXqG9\nHtrrIu1WymmnXE7KaYsHA7TPE7X0x4P+b9uWTvnWPoqgOM5T63ganbigWFJWydPpuXKVML8A\nF0HuI8h36ykyCdYVpm1Byh2Ohai42UfagxTNJKwBKkQxQSruJ2N9PnKmq4kEB9WIeCoRkS8X\nWIP0oX7fCXsxIpa6AuFEwBzErAEFwkwJQseOz1qfeoD2uIdPJRSXLFhw693y6iVTPm2/n/xP\ng31Xt/frLs+Af8R6ucPIBcTyPNmmhdqzytTw8Q8AAOaDjMrBOYRNMOGuDs+hOtJmIa0DtNcd\n6euJBfwTnGUozCuQlFWIixdIFlTipdUdYcQZooNUPEwz9ZZgiyNkCVB9vqgvGk9M8k2agODU\n5khXFyhOyZeVa8WlGhH0iAMAgDHM9RykPS7bti2e/Xvc+3eNzCCUg2nWbsjZdKliyYoxJgf0\neqOftDjren2ftjqtAepkhy3UizdV6s6p0KwuVMDDKAAAkB3meg7Oc2wiQdotpN0aaDwaaG2k\nnI54KEB7PTG/F0GmUTVEvn3YiK/ViwpLxYUlAmMeLpHy9UaeRoti8K1yUp5IzBIg3eGYI0QN\nfsb3RuOuMO2LxvxkPEjGPZEYxSSsATLGZH85RsTFQg+fne5RgAmBAmEGBWEiRju2f9r96nOR\n/t7jP8cxNPfiK8tu+c30Z3zvM/v+fcy+3+zb2eWJjzlfoVglPLVAcVqRYk2hErrKAABAtsq0\nHJzDWDbS3xtsbwl1toa72gMtDTG/NxGLjfupDMU50ooaQU6ewJgnMOQIcvKFufmDq0T4yfhR\nS+CoJXCoP9DpjnS4wmPctz0ZrZhboRMv0IhLNcJFRulCvdgg4cN9XQAAGJQ1ORjqarNu/Y9j\n+yek3ToyengabclNt+k2bBz7pl6CZY8MBL7scO/q9n7R7jpZc2yjlL+uRHlxtf7MUpVcQKTq\nSwAAADD7siYHwXCJWIy0DUT7zZTbSbkctM/D0nQs4I+HAlG7hbQOsAwztYalGJfH0+oEhlxh\nrkm2cJGosISvMxIyeeq/hqwWY1hfNGYPUWYvOeAn7UHKHaHtQdoSIEMUM+AnXWF67Pv2WYDL\nQanHNqZ7FOBbUCDMuCBkGab7tRd6XnueZb6bmIwiiiUrFt71ME+jT8klPJHYV53uT1qce3q8\nzfbw2BMUVhUoNpZrLqzSVerEHAzuKQIAQPbIzBzMDgmaivT3BprqAy0Noc72UEczQ5ITnGKI\niyWigmKBIVeYZxKXlA/+GsVxR4ju9kR6PNFj1mCTPWQNkJ3uiDM0orncmIRcTpFSqJfyTApB\noVJQY5AaZbw8uUAr5k7tKwUAgLkr23KQZYNtTZaP/mn99EMmEk4KHWlFVdU9Twhy8ydypjDN\nbO9wv/ZN/7Y2l5+Mj3oMl4OtKVKcXa65uFoPy1UAAMBclG05CCaATSSiA+ZYwB8d6CPtFtJm\nIe0WymkP93SxzOjPBo0FRQSGXJ5WT8jkIlORwJjL1xoExjyeVodxeTMw/HmBZRF3hLYFqSAZ\nd0dizhAdSyTc4djdH7dO/m9o7tGICMf9Z6V7FPMLFAgzNAgDzQ0tT9wbbGsa+lyH8XgFP7re\ndNX1GJHK5zRtQeobs/9gv3+/2fdlh3uMdsliHueyRYbLag0bStVQKQQAgCyQyTmYZdgEQzkd\nwdZGz4G9gZZj4e5OhoxO4rFNFOEIReKiMr7OIMwrEBUUK5as4CqUCIJ4IrF2V7jdGTb7yEP9\n/rpe39gdxU8mXyEoVQtrc6S5Mn6FTlykEubJBdChFACQ3bI1B9kEM/DvdwY+fC/U2To8a3Cx\nxHT1T/UbzuXrjRM8FRlPfN7m+ucx20dNDsdJHklBUWR1geIHiwxXLjZq4HETAACYO7I1B8EU\nMGQ03N0R8/solyPc2xUdMId7u0hrf4KeyrJ2GJcQ5Jp4Gp1An8NTa4R5BYRCJczJ4+tzUj7y\n+WnzlvZHt7enexSzAeqFswAKhJkbhGwi0f/+6+3PPnZ8KiGCSBZUVj/4R4EhdyauGCDjO7s8\n/2mwHxoIHOr3n+ywQqXwqqXGSxcZagySmRgGAACA2ZHhOZjF2EQiYu72HT3o3r8raumL9HYn\nYvTk2rxgqDDXJK2oEuYVyGuWyqqXDD0/NNiPtNMV6fJEOlyRBmuw3z+V9dJ5OFasEmrFPJNS\nUKAQFKuFeXJ+gUKYr+DD6lMAgOyQ5TnIssG2pp7XX3bs2IYMb1SFocqlK43nXaJZc+bEn+5n\nWeRAv//dI9ZPWpwNtuCox/BwbFOldkOZ+vsLNAVKwfS/AgAAADMqy3MQTFuCpsK93fGgn/a6\nSbs10tdL2gaitoHoQB8ytR6YKMJVKGULa4WmIr5Gx1Vr+TqDuLAE4/FTPfYsN7JAyMUIOjGV\nau7cgiJI4slz0j2KbAMFwkwPQteer5of/T3tdg1twcXiyt89rFlz5oxe10/GP29zvXnIsq3N\nFaRG7ypTpBJeXmu4dnlumUY0o4MBAAAwE+ZEDs4HbIKh3a5IXw/tcQWaG0i7NdzbSTpsTDg8\nwTNwhEJx8QKeRosLRaKCYnFpBV9n4OuMg1XDGMO2OcMNtmCbM9zhCg/4yQE/1euNRmNT6VAi\nFxAlamGJWrTIKKnSS9YVq8Q8+P4BAMxJ8yQH/Y1HG++7PWrpT9pOyBU5m35gPP/SyT5+2uWO\nfNLi/E+jfVe3N0KPHiXFKuHqQsX5C3UXVOlwaD8DAAAZaZ7kIEg52uMO93ZGB8zB9pZov5n2\nusO9XQmamsrShgiCIAguFvPUWr7eKCos5Wt0wvxCnlrL1xlwiTSlA88e87ZAOAZY13DKoEA4\nB4KQIcneN17ufeMvCfq7pi4oYrriJyU3/RqZ+Uf4IzSzp8db1+t745ClxREa9ZgV+fJfrC24\nvNYAUwoAAGAOmSs5OE+xbNTSH+xoJm0WymGP9PVEbQOkzcJEIhM/h9BUqFi0TFpZIzDmigqK\nuUr10C4mwfZ4o832kDca29Pj7XBFWh2hPt+k25NyOdiyPFmBUlCqFuXJ+SVq0ZJcqYSHT/Y8\nAAAw++ZPDsb83s5X/mz75EMmGk3ahXIw9anrTFf9VFZVO9nThmlma4vzHwcGtrW5TvbQiVHK\nv7zWcEaJalmezCCF5YgAACCDzJ8cBLMgHg5G+nqjln7KYQ22t1AOG2m3Ui771JqUDuIqlXy9\nUZhXIDDmSyurJWWVXIUSxeDbFQqEJwUtSacACoRzJgi9h/Y13n8H5XIObVGvXlf2880TXGc+\nJQ4PBF6uM7912OqLjvITp1glvKRGv7pQcXa5hsuBVYsAACDTza0cBAiCsAxDOW2++sO+YweD\nrY3B9hY2Nvos/1Hx9QaRqVhUUCwqLBGXLJCUVaLYCXkdjTFmL9nsCHW6IkctgX4/6QzRne7I\npOYa4hhaphEt0IprjZJitWiBRrTIKCU48AgRACDjzLccjPm9ngN7ze+8FmhpGNkZTJCTZ9h4\nYd4lV03haX0/Gf/bN/1vH7Z80+dnTtJzDEPRU/JlF1XrL67Wl6iFU/kCAAAApNR8y0GQBixL\nOu2kzUJ7XOHerpjfG2pvCbY3x0OjT0EZF0oQ4qJSUUGxpKRcUlHF1+gFOXmpHfJct+mVQ1ua\nbekeReaCJqUjQYFwLgVhLOBvvO92975dQ1tQDif/h9cW3/jL2Xx6gmYSX7S7tzQ5Pqi32YPU\nyANyZPxrl+f+dEUerDwBAACZbM7lIBgp0FTvOVgXaKon7dZ4OETarWx8oiVDjkAoKiySlFUq\nlqxULl1ByBQnO9IZottdYUuAarGHjtmCLfZQu2sSVUMOhubLBSVqYaFSuMgoqTFKTys86bUA\nAGDWzNscJO3Wvg9et336Ie12J+3iiES5F11RcPX1uHgq680PLlSxs8uzo9Nz1BIY9RgURdYV\nq65emvPDWoOQO7/+5AEAIKPM2xwEacdEI6TNQrmdkd6uqKWf9nsphy3c00F7PJM9FVepFJdW\n8LV6rkKFS6QCY57AmCsuLEVx6GozuvXPfbO90zn+cVkLZZ+ETqQngALhXAtClm1/5jHze38f\n/sinYvHysl/+Vly8YJbHQsYTn7Q4/7q/b0uTY9TvoxqD5LJaw4+X5ebJYbFZAADIOHMyB8GY\nEjQV6mon7RbSbo30dHkO1UX7+yb4WkFevriwlK83yhctUy5dOfat4QTLdrojHzc7v+pw93qj\nne5IgJzEXEYRl7NAK16oE+crBIuMklMLFDkyeKsAAJht8zwHEzTl+OqzntdfDnd1JO3iqtRF\n192i33AuRzj1xeaPWgIv1/V92Gg/Wf9qlYj7gxr9maWq8xfqeDh0oAEAgNk2z3MQZKBEjA53\nd9BuF2m3Rq39YXMXaRmI2gaYcHhS50E5HEIiFZoKJQsWyiprJOVVfK0e40Kr8/F90e7e8MK+\ndI9iRkGBMBkUCOdkELp2b2/940Ok1TK0BcU5mjVnFvzoBklZ5eyP52C//6W9ff9tslsDo0wo\nRFHk9CLVuZWaM0vVtUYpLFMIAAAZYu7mIJi4mN9HOqyR3i5/U32osy3c3T6RpzJRDBWaihS1\ny6UV1dKKaqGpcNxeBe4w3eONHh4IHOjzH7UEWhzhURuSj345FMmTC3Jl/BX58tOLlRU6cala\nBG8YAAAzDXIQQRCEZb2H99u/3Grb9lHS3TdCrjBsvFC9ep2idvl0rtDpjuzt8f63ybGlyRGh\nR5l9rpfwfrBIf8vqggXaqdcjAQAATBbkIJgT2AQT6e0OtDZGB/oi/b3hrvZwb9fEG+d8C0UI\nsYyn0wvzC4S5JkIm56m1hFQuKasYo5UOGNUc72KKXrPcyMM564qVEl7yNNPzKrVpGVN6QYFw\nrgYhG493vvLn3jdeQYb9BWJ8fsHV15uu+ilGELM/pATLtjsjz+/pffOwxRmiRz1GL+H9eFnO\nZbWGpbmyWR4eAACAJHM6B8GUxfzeYHuL/9ihUHdHqLMtYu5GxnsziHEJaUW1pKxSZCqW1y4T\n5hcmLV44KkuAbHWE663BDle40RYye6NdnsgE33jK+PjiHFmJWrg4R7rSJK/US/gwuQQAkGqQ\ng8PF/N6+998wv/M3JhJJ2iWrWlR47f+qVq6Z5iWiMWZri/OVur5tba74aEsVLjJKb15t+p9T\ncnEMHhIBAIAZBzkI5ig2Hvc3HqVc9lBnm//YYdrrjvT3sfGJPp+aRFK+UJhrkpSWyxct42l0\nfJ0htaOdhx7f3nPHlqZ0j2IcVXrJw+fOSDvGOVdlhALh3A5Czzd72p95NNTZPnyjpHzhwrsf\nFZmK0jWqEMV81ub8oN72cbPzZLMHFhmlv1pbcGG1XsaHltAAAJAeWZCDYPoop917eL+/4Uig\n+VjU0h/z+8Z9CUcolC1cJDIVSStrJGWVIlMRMrHpfu4w3WAL7e7xNtmCRy1Bsy86wcakfBxb\nmierNkhqjdLFOdIqvQSWrQIATB/k4Eikw9b5wlP2zz9iRxTwFIuXG8+/VLd+IzrtPy6zN/rc\nHvO/jtnaXeGRNyTKNKL1paozilWbFmoFBPzVAADATIEcBNkkHg7GAv5ovznc3RHp64n090b6\nzaR1YLLnQXGCp1SJF1RIy6sVtctkVYun/84HDMm02iGBI7euLSIwrFwnTlWRAgqEc0l2BCFD\nRgf+/Xb/v96ODhxfZAjFsLxLf1R03S3TWTRi+sI0899G+6vf9O/q9o7aTAZD0VML5Deuyj+3\nUqsQpGHWIwAAzGfZkYMgtUi71fPNHl/9Iff+XbRrQkuX4xIpX6sXFZUKc01chVJaUS0uKZ9g\nM4MeT3S/2fdNn7/VGdpv9tuDo/QqH5VSSNQYpLU5kqW5srVFynyFYIIvBACAIZCDJ0O5nb2v\nv+zYsY1y2JN28XX6nAsuz/vB1Sn5pNntiby4t+/NQwOjrlOoEXPXFilvXm1aW6TkwJxCAABI\nNchBkPVojyvQ2hjp7SLtVsrtJK0Doa6OBDX66sijQxFCKucIhIolK4S5+UJTobS8GmYZzoQb\n32t6qa4nXVcXcXEOhlxUrftBzfh/uY4gfcN7zQw7+rQoERcLPXx2qgc4g6BAmCVByJBk91+f\nMb/7Ghs/XocT5OZV/vZhec2SNA5sUDzB7ur2/KfB/uYhi2O07qMoiq4rVv78NNM5FVpYoB4A\nAGZHNuUgmAkxv9d75EDE3B1sa/Ie3BcL+Cf4QpTDkVXXatZuUJ1y2sTnF7Is0uYMH7MFj1oC\nB/r8vd5ohyscYyb0TrVMI1pVoKgxSBbnSBfnSOXw1BEAYAIgB8fl2r3d/O7fvQf3JW0X5OWX\n//oe5bJVKblKjGE/aXH+4+DAv47ZRm09KuHhl9Tof7jY8L0yDaxQCwAAqQI5COYnhozSHlfM\n7wt1tnkO7PE31lNOx6Q6lHL4AmlFlax6sTCvQFpZI8w1wSzDlNu8pf3R7e3jHzdpKHLyRVYu\nW2T40bKccU9hDVA3vHfsZHt5OId89PtTHF06QIEwq4Iw0FTf8MAd0T7z8U0oYjj7ggW33s0R\nCNM3ruPiCfarDvezu3s/bHQkRvveUwiIa5bn3LauKEfGn/3hAQDAvJJ9OQhmFENGfUcO+I4d\nCrY0+puOxoPBibyKIxIJjXn672+SL1omKa1A8Ul07YjQzP4+38G+wO4e7zFroNMdFpQvzwAA\nIABJREFUneAbV6WQWJorW1eiOq1QUaWXKIVQLwQAjAJycIJce3eY3/6b99C+pNspkvKFlZsf\nFJekbPmWIwOBJ77q2tvr63Inr4M4SCkkrlqS87sNxToJL1UXBQCAeQtyEIBBCZryNx6lPa7o\nQF/UOhDubg+2NSfoUaa4jIrD5/O0etWqtaK8QunCGlFBMUZwZ3TA89AX7e4NLyQ/sjYlqIDA\norFROh0iCKIQcl+6tIo/3uQlKBBmj6wMQoYk+977e/erzyfo4026xMVlVfc/lcZVCUeyBamP\nmhxvH7F+2e4eWSlEUfT8hdqbTs0/q0yNwTOiAAAwM7IyB8GsoVyOUEer99C+YHtzpN9Mu53j\nfoLCuFy+IUd7+lmS0grVitMm254uTDP7zb5GW6jPF211hg/1+/v95ETeyRaphIuM0gUa0Zoi\npVHKW6iXEBx4dwEAgBycnFBXu+XDdwc+fDdBH3/EHsVx05U/Kbz2Joybyopdrzf6cl3flibH\nUUtg5F4hl3PFYuPt64oWaNO5oAYAAMx1kIMAnAwbjwc7WryH91NOO+WwB5rrKaeDTSQm8loU\nJ7gKJVel1py2XlpeJa9dzuHDNJgZNMm5hqjt3vV/2d+fSLAIgrjC9J++7hm++7dnFq8qUIx9\nCigQZo8sDsJwb1fjA78JtjQObUFx3HTVdUXX/RzFMquB54Cf3Nbmevuw9bM258hvxmqD5Nrl\nuVcvzdGK4ckLAABIsSzOQZAW8XAo1NXmbzjiO3LAvX83GxurSQuK4wJjnnLZSmGuiafTC3NM\nQlPhZB+0tAWpXd3e7R3uul5fgzVAT6wfKR/Hqg2SGqO0xiA5q0xdrhXDw0gAzE+Qg1MQ6etp\neeK+pKajXIWy9P9t1p1x9qSmiU/EgT7/p63O174ZaHeFk3bhGHphle7+s8sqdOLUXhQAAOYJ\nyEEAJoFlSbs10Hws2NYU6u7wHv6GCYcm8joUJwR6o3zxMr7OIMjJFxcvEJmKoCVpyl3xj/q3\nj/RP4ECUfXLjlibH4G9iDPuz948NXxCNj2P4eNWTBItEYvGT7YUC4VyS5UHIsgP/fa/tTw8n\nqONTCXMuuKzsl7/DiExstNXmDP/tm/6/7OsbuUihmMe5sEp/UbVuTaFSA5VCAABIkSzPQZBW\nDBn1Ht7vrz/k3rc73NMxkfYsKEHwtXr9WefKFtZKKqq4cuWkrkgziSZb6NBAoM0ZPtjv39Pj\njdCjtw1JIuHjy3Jlpxcr1xWrqvRilQjeaQAwX0AOThHLuuu+bn/u8XB35/DNuERa8rNb9d/f\nxOELUn7NIwOB9+ttL+w1u8MnBAqKImuLlDeszL90kQFmhwMAwKRADgIwHbTHFWxrDrY3B9ub\nfUcO0B73BF+I4hxRfpFs0RLZwlpZVa3AmJdp83my3mCB8Lp36keWIVLutCL51zefOtNXmQ4o\nEGZ5EPrqDzU9/NvhqxKqVq2p/N3Dk73pNmsCZPyDetsfd3bXW0dZ2QhFkRqD9Kcr8i6p0Ruk\nsOwEAABMy3zIQZAJmGgk0Hws0NLgbzjiPbx/QosXooikpFx/9vmyhbWS0nKMN+mWLEyCPTwQ\naHaEDvb59/f5m2xBP3nSR/yGU4m4ZxQrNy3UrS5UFKsyYglnAMAMgRycjkSM7n3zr92vPs/G\nT5gvzlWqSm+5Q3/WecgMzM4OkPGX6swv7DF3jlikcKFefMVi48ZyTZVBwuXAXTYAABgf5CAA\nKRQPBoIdLcGWxlB3R7C1MdLXPbwr+xgImZyrUHEVStWqtQJDrrSimq83jv2S3n881/HyM0O/\nxTjEGduPTmv089LvPm51R2IIglDxxN8PDIxcBG2qjr8HRlHkV2sLnjy/IkVnnhFQIMz+IEzQ\nVMsT91s//tfQFkImq7rvKeWyVWkc1bjqen1PftW1pclBxkfv77wiX37FEuOFVTqTIvUPqAIA\nwHwwT3IQZBrSNuDau9N7eL/vyAHa60bGeyuKYhhPrRWaCtWrz1AuXSkqLJnCRVkWabKHuj2R\nJnvoYL+/0RZsc4Zj47UkVQiIFSZ5kUpoUghMCsGGUhXMLwQgm0AOTl+039z+3OPOnV8kbRfm\nmUxXXWfYeNFMdNCKMezfvul/6POOXm905F4JH19bqLys1nBRtU7CS3HLUwAAyCaQgwDMIJYN\nm7tdu7eHOlo9B+viwcBE2uoMGiwZyhcvExeUyBctExUUJ3Vx73zu6Z63Xj7+exTh8nk0SQ0/\nhsMTrNt2cNpfxnyxeUvro9s7i1XCUvX4S1xHaGZnt+dke6HF6Fwyf4KQTSR6Xnu+66/PDt2D\nQ3FO+W33GM+9ZCae60yhwUdE3zxkOWIJjPqtiqLIZYsM1y7PPb1YKSCy/O8RAABSa/7kIMhY\nCYqk3M5QV3u4p9O1a3uos42JJk8KScKVK0SFJcpTVgty8mVVtXytfmqXJuOJnZ2eXd2eI5bA\nVx2eIDX+/EIMRQ1S3in58lUm+dpi5Sl58sx+GwUAGAfkYKqEOlp7Xn/J8eWnbOKEhzt5am3R\n9f9Pf9a5GDf13V/iCfbfDfZndvV83eUd9YlvPo5dWK2/vNZwXqUWx+DnNQAAJIMcBGA2kTZL\n2NwV7mq3f/EJabPQvvEflh2EEoS4sISvz9Gfda7QVCTMM3W//OwJBUIE4XAIhjlxwuKI9z7C\n3IJVb348nS8hi71c13fDe8cuqzX8aGnOuAdbA9QN7x072V4oEM4l8y0ILVs+aPvTH5jo8acs\nNWvPXHjXIxzh+IXxtGt3hff1+ra2ON8/aqVHe96fT2BXLjZevzJ/pUk++8MDAIC5aL7lIJgT\nIn09/obD1q3/8dUfZOPjLyLI1+q1Z26UVy9WLFmBiyVTuyiTYBtswQN9/lZn+Osuzz6zfyLv\nkCV8/PJFhkKVcG2RckmOVMiFf0cAzDGQg6kV6mrr/uuzjh3bku52cUSigquvz7v0xxz+pPtF\nT0SjLXTvp21j9J4REJyfnJJ7Wa1hbVGGLrQBAABpATkIQBrRHpe/8aj30D5/w1Ha66YctqQH\nrU4G4/K4YhnpdQzfOEqBcKQRJcOSG281XfXTSQw6e0GBcJ6ah0FIez31d97sbzjelZirUi96\n9DlpeVUaRzUp7jD9aavrn8ds/2mwxxOjfPeqRdybV5t+ckpuPrQeBQCAMc3DHARzSCJGhzpa\n/ccOu/buiJi7KZeTZcaqF6IYKiosNV39U82aDdO8B20NUAf6/Ht7vQf7/UcsAU84NupbjuEI\nDlquFV9ea/hBjWGBdg48egUAQCAHZ4a/4Uj3q8+59+9KKhPy1NqCH99gOOfiGSoTxhh2T493\ne4d7Z5dnZ6eHGe1Gx6oCxUVVup+uzFMIiJkYAwAAzC2QgwBkDjYeJx3WYFuz55s9oY7WqN1C\nu51jTTFEk37HYZHxn68d4yQogqzf2TTpM2SLDlek9OGvoEA478zPIGTIaMN9t7m+3j60BcWJ\nmj/8SX3quvQNaioCZPydI9ZHvuzsGrFAPYIgGIqeXa6+88ySUwvkGPT/AgCA0czPHARzFEOS\n/obD7r07nbu+JO2WsScXEjK50FSkO+P78polQlPxNG9GMwm2yxPZ2+PbZ/Y12oJ7erxjL16o\nFHKX5UkX58jWFinPKIEW6ABkLsjBmRPqauv5+0uOL7eyJz5gITDmVt71iLxmyYxe3RqgXj84\n8NqB/kZbaOReHEMvqzX8eFnOGSUqLgeb0ZEAAEAmgxwEIJMxJBlorg+0NNi3fRzp62HIcRbj\nSAH0+P/nZ7FwS5Nj/IPGc16ldvonmU1QIJynQTjw4butTz/Exr6deozinKp7n9Su+156RzU1\nTfbQlibH83t6ezyjrFFfrhX/Zn3RJTV6WKAeAACSzOccBHMam0hQTru/8ajlw/eC7c0xv2+M\ng1EOR5BXIDYVGc+/VLlsFTrt73Yqnthn9v230fH2YYslQI268NUQLo6VqIQbKzRrCpVlGlGF\nTjzNqwMAUghycKZF+80DH75rfu8fQx88B2nXnVX8s1uFuaaZHkCTPfTWYcsrdX22IDVyr4SP\nX7Ms5/Z1RdB7BgAwP0EOAjCHfHlGDRuPz971hoqFKGf9jpPOlssyUCCcd+Z5EJK2gSO33Rju\n6RraUvaLO/Mu/VEahzRN29pcHzba/7Z/IEQn/7jk4diVS4w/P61gcY40LWMDAIAMNM9zEGQJ\nlo1a+l11O81v/420Dox9LMbjC3Pz1avXKZaulJZV4pLpvitgEuzBfv/uHu+h/sAH9bZobJym\nLjI+fk6FdmOF5owSVa5snHmNu7q8pz9Xl2BZDorEnzhnmkMFAIwEOTg7Ql3tXa/82bX7q+Gd\nolEcz7nw8oKrfsrT6GZ6ACyL/LvB9tZh64eNdmrEOoUYip5Xqb1mec6GUrWUDw+VAgDmEchB\nAOaizpf+2PPGy8h4q2CkzIjGfFypYs2W3bN09dkFBcJ5B4IwHg4eue1G/7EjQ1sM515UcuOt\nXKUqjaOapmiMefOQ5aW6vv3mUeYTGCS8W9YUXL8iTyPmzv7YAAAgo0AOgixD2iyuup2eul3h\n3s6otX/sNqQozhHkFhjPuVC14jRxURky7YbkMYbd1ub6rNXZ7AjtN/t90XGWiDcpBOdUaFaa\nFEtypRVaMQdLHsAX7e4NL+wbvoXLQanHNk5znACAIZCDs8l37FDzI3dHeruHb0RxjvG8Swr/\n52aeSjMLY3CG6DcPW16uM4/aepSPY1cuMd55ZkmJWjgLgwEAgLSDHARgjup87umet15O2+VP\n/OTK4QnWbTuYpqGAFIAC4XwPQiYSPnb3r9z7dg1twUXi2idfklXVpnFU08eyyO4e71M7uv91\nzDZyL4qiVy423Hp64ZJc2eyPDQAAMgTkIMhiCYr0Nx4NdbXbv9ga7m6Ph0a5FzyEkMklZRXi\n4nLDOReIi8qmf3WWRVocoa0tzt3d3u0dbu94xUIhl1OpE19UrV+SI12eJ1OJuMhoBUIOijHs\nt3NfUARJPAnTCgGYFsjBWcYmEtat/+58/kna5x2+HePy8n94TeG1N2Fc3uyM5Jg1+N5R67O7\nzZ4InbQLRdGrlhivW5G7tkgJi9kDALIb5CAAc9TIAiGHQzDMOJ86Zwo6/Jfo+p2N6RkGmCoo\nEEIQIgmaarj3NufOL4a2oDin6r4ntafPySUJk3R7Iv+stz+1o9sSIEfuvbhaf8f6ohX58tkf\nGAAApB3kIJg/gu3N5rdeDXd3RCx9TDg8xpE8tVZWvbjgR9dLyipTdfUeT7TeGthv9r95yNLr\njY69bCGGonoJr0QtXJonf3pH1/BdHAxjEsnN8RCYWQjAVEEOpkWCpvo/eLPrr88y0cjw7YRM\nXrH5Ac2aM2dtJGGaeeuw5fk95kP9/pF7TQrB7WcU/bDWMPjQBgAAZB/IQQDmqMwqECZBEQRB\nSm681XTVT9M9FDAhUCCEIPzWwH/e7XjuiXj4+PP1ssqa6of+yNPo0ziqVEmw7MfNzg8b7X8/\nMDBy2YlSteia5TnXLs/NGW81IAAAyCaQg2AeYhNMuKvD33TU+vG/g23NCZo62ZG4WCzKLxIX\nL9Cfc4GschGaon8m9iC1s8vzYaNje4fbEiAn9U78ZAXC4WBmIQATBzmYRgwZ7f/nmz1/fzFp\nhrfQVFRxx73ymqXT7/w8cX0+8o1DA3/c2WMPJoeChIf/el3h1UtzilXQdxQAkG0gBwGY66L9\n5j1XnI1kVIFwEEwrnDugQAhBeBxpG6j/3S+CrU1DWzgicfmvf68/69zZ/Hg2oxwh+u3Dlse2\ndw34kycUclB0Y4Xm+pV5myp12fLlAgDAWCAHwTyXoClf/aG+998ItTWRjlF6kg/BuFxRUamk\neIHhnItk1YtRDEvJAOxB6tBA4PBA4J/1tiZ7KBoba9HEyYJKIQDjghxMu3g4ZH7rrz1v/IWN\nnXBLi683lt92j2rlmtkcDBlPvHFw4PeftI/sPYOh6I+W5dywMu/UAsVsDgkAAGYU5CAAWSnN\nKxSO6sQ77VypYs2W3WkaCkgGBUIIwhPEQ8Gjm//Xd+SElUVzL75iwa/uypoaIYIgTIJ9v952\n19bWDldk5F6TQnDbuqLLaw0aMTSTAQBkM8hBAIZQTnuoo7Xv/df9DUeGN1QYiSMQiIsX8DQ6\n05XXSSuqUjUAmkl0uiIX/PVA+2hvTqYDKoUAnAzkYIYgbQPH7r410Hwsabv+++ctuPVuXCSZ\n5fHU9fr+8EXH1mZnPJF8t6RMI3r6gsqN5Zos+nAMAJi/IAcBmCeafn+7dftH6R7FMOi3/1m/\ns2m8Q8GMgwIhBOEo7F983PzYvcywu2PGTZcs+NVds7Zo/OxgWWRbm+uVfX0fNzvDdDxpLxfH\nfn6aafP6YjWsOQEAyFKQgwCMxMbjvvqDfe+/EenrifT1svGx+rTgEom0rLLg2psUtctT9SjV\n6v/bs6fHl5JTfQdFkONv+EVcLPTw2Sk9PwBzFeRgRvF8s6f16Qcj5p7hGzEuT7N2Q8Xm+zl8\nwSyPxxeN3fNp+1/29YXp5OndK03yBzcuWF+igjIhAGBOgxwEYN5qffS+/i3vpHsUQ5VC6EGa\nTlAghCAcHe1xtf35YfvnW4e2KBYvr3rgaa5cmcZRzZAgFX/vqO2x7Z2tjnDSLi4HrdJL71hf\ndP5CrYCA7xMAQFaBHARgbAmaCnW193/wZrCtKdzbPUaxEBeJ+XojX2+UlJTnXnIlV6me/tW/\naHdveGHf9M+TVCAcTiMiHPeflYpLADAnQQ5mIN/Rg21/fCjY3jJ8I4fPly9aVnzjLyVllbM8\nHiqeeO1A/z2ftNtGLE9YqBRuPrPoh7VGKR+f5VEBAEBKQA4CAJBhCxmmE6xZmD5QIIQgHEvH\nC0/1vv7K0G95am3NI89Iy1PWTSvTHBkIPLq965/1VppJ/nch5uKX1epvWJV/Sp4cHhQFAGQH\nyEEAJi4RiwVbG/vefyPU0UI6bUw4+aGiISiGiUvKxcVlxk0/kNcsmfIVZ6FAOPwIaEMK5iHI\nwYw18O932v78hwSd/FiGfNHS6gf/xFWk4aHVz9tcT+/s/rjZmbRdwsNvOc3042U55Vrx7I8K\nAACmA3IQADDSoeuv9LYcSfMgTrz3jqKc9TuSe9GDVIECIQThOMxvvdrx/BPsd6svoDhedd8T\n2tO/l95RzSg/GX9mV8+Dn3eQscTIvQYJ796zSy9YqNNJsqrhKgBgHoIcBGBq2ATjO3Kg7/03\ngm1NpM0yxpF8nUFaWVN68+18vXGyVxlZIORgGJMY5c1JanFQJP4EFAvBvAA5mMlon6f1ifud\nOz9nT/y5xxGJKjc/qF33vVQ1dp6UnV2eX3/YfKDPP3JXlUFyxxlFZ5aqjFL+7A8MAACmAHIQ\nADAG29YPG/+wOd2jQBDkhHqh6pQ1tU+8mL6hZCEoEEIQjs+9d2f9734+/PnN/MuvKbn5dhTD\n0jiqmeaJxN46bHm5zlxvDY36z6RIJVySI/vl2oLVhYrZHx4AAEwf5CAA0+erP9T3/uvR/l7S\naokFR7lljCAIShCKmqXSiuqCH9/AEYomfvKkGuHsFAiHwLRCkPUgBzMfaRvoeuX/XHt3xvwn\nLM4qKatc9OizPI0uLaPa1e2986PWul5vPJH8ORFFkUuq9Y9vqihQzvaiiQAAMFmQgwCAScmI\nlQu/XbYQWb+zKc0jyRZQIIQgnJBwd8eRO24irQNDW4S5pqXPvc5VqtI4qtnR7Yn8/cDAi3vN\n1kDyshODCpSClSbFbesKl+bKZnlsAAAwHZCDAKQSy0Yt/ea3/+ZvOBzqbmfjzMhDUIKQLlgo\nrawuvOYmQiaf7BX+fsByzVtpaPYCcwpBtoIcnCsSNGX/YmvrUw8w0ejQRpQgZBXV5XfcJyoo\nTsuobEHqsS+7XqwzR+jkH/g4hq4rUT1wdtlK06R/1AMAwKyBHAQATEfnc0/3vPVy2i6PDv0f\n1iycFigQQhBOFENGj97+M+/hb4a2cBXKyt/+QbVqbRpHNWuYBLur2/vKvr63D1tGPig6aKVJ\n/uT5FacWwIRCAMDcADkIwAxh43F/49HOl/4U7GhhwqGRB6A4Li5ZwFNpxAUluZdezVNrJ37y\nDlek9OGvUjbWScIQhIFphSBbQA7OLbTHfXTz/waaTliBBuPxC6/9Wf4P/wcjiLSMioonPmt1\n3f1J6zFrKHHi3RUURU7Jkz91AXxCBABkKMhBAECqeA/UHfrVT9J2eRTh8ATrth1M2wDmMigQ\nQhBOBst2vPi0+c2/Dq0DgWJo2S9+m3vJVekd12yyBqgvO9x/2dd3eCDgi8ZGHrA4R/rbDSXn\nL9RyOdncghUAkAUgBwGYaUwk3PL4vb6jB0mH7WTHoBgmzC+U1y4vvObG4e3y/McOHrjlx8iw\n9+pcqWLNlt3DX/v49p47tqSts4qIi4UePjtdVwdg+iAH5yLX3h1N929OaunM1+kNGy8q/MnN\naVwFwxGiP2523P7fFleYHr4dRdFao+TxTRVnlmZ/9x0AwNwCOQgASDnzG6+2v/B4Gi783YRC\nYW7Bqjc/TsMA5iwoEEIQTpr38P4jt/0sQZFDW1SnrK555BmMy0vjqNLii3b3Q5937DP7RnaV\nUYu4t5xmunKJsVQ9iaWGAABgNkEOAjBropa+ntde9DUciZi7kJO9+0YRkalYsXRFyY2/4ghF\nI5/BRDnY4ENaJ2uisupPdXVmzyjnPeklp2X4eWFmIZiLIAfnqHgw0P7s486vv0hamFBgzFv0\n+PMiU1G6BoYgCBVPvLKv7/5t7Y4gnbSrSCX8zfqiq5bkiLjw/QYAyAiQgwCAGWXb+mHjHzbP\n9lXRE34JSxWOCwqEEIRTEbX2H7ntxkhv99AWYX5B7eMvCnLy0jiqdEmw7BuHLPd+2t7ljiTt\nQlFkSY7sD+csOLNUxcHQUV8OAADpAjkIwOyL+b2dLzztrT8Y83mTbm0PQTFUVFgq0OU4924/\ncQ+GIInvDkKQ0eYUIqP0IJ2pAuGoZ0YRJAGVQjBHQA7OabTP0/yHu9x1O9hhC0CgBKFacVrl\nnQ8SsnR29WRZ5J0jlrs+ae90hZN2ibn4Tavz//dUU4FSkJaxAQDAEMhBAMAsa330vv4t78zq\nJVEoE44DCoQQhFOUoMiWJ++3fvzvoS0cgUD//QsW3HpXGvu6pNd/Gx2/+ail2T7KUkN5cv6L\nl1Z/r0wNZUIAQOaAHAQgvUiHzfzmXwMtDYGWBjYeH+WI5HcNwwqEJx6gOmVN7RMvjnqV9c99\ns73TOe3Bjmr80iPMLASZDHIwC4Q6Whvuuz3c3TF8I4cvWHjv45rT1qdrVIOYBPv2EetDn3eM\n/IRIcNDVBYq7ziqFvqMAgDSCHAQApEW037znitldqwI9/n8oFiaBAiEE4TSwbO/br3a+8DTL\nHG+wqVy+atEjz2I8fhrHlV7N9tAdW1p2dHmCZPKdPpNC8MG1S5bmytIyMAAASAI5CECGiPm9\n3a+96K8/FGxrGlrpGUFGFghPDkUQBEFRzvodx052yOYt7Y9ub5/GMFMA6oUgo0AOZg3f0QPH\n7r6V9riGb5TXLqu+/ymuUp2uUQ35pMX5wLaOfb0+ZsTtF4OEd+eG4utOyRNC31EAwKyDHAQA\npNfIZTVmwaJHnhv+W/XqdbM8gEwDBUIIwunyNxyp33wz7fMObZFWVi9++i+4SJzGUaUdGU9s\naXLc9mFzrzc6fDuKIqsLlY+cs2B1YTqb3gAAAAI5CEDm+XJd9fDnriZt6LnIMSuFCILc+F7T\nS3U9U79Q6mwsV398/SnpHgWYpyAHswkTjbQ8do9z93YmcnzdB4xLqFevr9j8QCZ8OB3wk8/t\n7v2/Xb1BKvlBUrmAeHBj2dVLc2R8PC1jAwDMT5CDAICMMjtrFkKBMAkUCCEIUyAW8Dfcc5v3\n4J6h5R8Extylz/6Dp9Gld2CZ4GC//ydv19dbg0nbl+XJHj2v/IxiFQo9RwEAaQI5CECmOXDT\nlf6GIyk4EfrtfybSPmXVn+rqzJ4UXDTVFmiELZvXpXsUIJtBDmYf2us5+pubAk0nPCHBEQpV\nK9ZU3HEfLpGma2BDojHmmV29L9b1jbo84aPnLbhhVT4Oy1IAAGYF5CAAIMPNRMkwqUCIzPsa\nIRQIIQhTZuDDd1sev3doJRqOUFj+69/rv39+WgeVKep6fVe8frjHE03aniPjP76p/Ie1RigT\nAgBmH+QgAJms7kebwj2d0z3LZJZkf3x7zx1bMm49BhRBEtCVFMwMyMFsZf3kP61PP8SET1j5\nDyUI9arTq+57AiO46RrYcLu7vZs/bt3b7U3qO6qT8E4vVj5z0UKNOCPGCQDIYpCDAIC5pfXR\n+/q3vDPNk6A4XvPgn4dvgQIhFAghCFPG+vG/mh/7PRs/3hpLsWRF7RMvYFxeGkeVIRIs+/pB\ny11bW/t8ZNKuYrXo6fMrNi3UpmVgAIB5C3IQgEyWyvUYvnsOSZhbsOrNjyfyisycVgjFQpBa\nkINZjIlGmh+9x7nzswQdG75dYMxd9NjzooLidA0sidkbvf69Y1+2u+OJE+7MCAjOBQu1f7po\noRbKhACAGQM5CACYc1K7bCFKEDUP/Glqr82asiIUCCEIU8xXf+job26KB4931JSUli955jVc\nJEnjqDLKfxsdt/yrwexNLhOuLVK+flVtnpyfllEBAOYhyEEAMtmMLNie4kohiiBp+Cgh4mKh\nh8+e/euC7AM5mPWiA31t//eIZ/+eBE0NbeTw+cbzflD2izuRjOni4g7Tmz9qfXV/f9JsQhxD\nl+XJ/nhh5Yp8ebrGBgDIYpCDAIA5bYoNSIe9AcSlsoIrfjrlR8eyo0YIBUIIwtSjfZ5jd/3S\nd+TA0BZhQfGKv7yH8aD0ddzubu8dW1r29nqH/xPEMfT8Kt1zFy/USWDOJQBgxkEOApDJRisQ\nYgiSSM3ZUQSZTJkQQZAv2t0bXtg34ixp/igBcwrBdEAOzhMxv7ftj3+wf7F52zOAAAAgAElE\nQVSVTRz/ESrIyTecfUHhtT/LnDLhMWvwjv+27O71Bsl40q4ag+TPFy08vViZloEBALIV5CAA\nIAtMru/oyM+vKFJw9Q2yqtopXBoKhHMeBOGM6v/gjdY/PjT0r05SWr7shTehRphkv9l30/uN\nhwb8wzfycOzscs1T51cUqYTpGhgAYD6AHARgrhgsFopyTOGB3lSeFx38D7p+Z+OkXvf3A5Zr\n3jpCYNxYgk7leFJHIyIc95+V7lGATAc5OK8EWhqO/uZ/abdr+EZhnqnm4Wcyp+MogiDeaOyh\nzzv+7+semkm+V1OhFf9ibcGNq/LTMjAAQPaBHAQAZJMJVQpHK4WpTz0954LLUzWMOVc1hAIh\nBOEMcnz1WcO9vx5aklBcXLbshTc5Aih6JXvrsOXG9xqC1AkPiqIockq+/OnzK1YVKNI1MABA\ndoMcBGDOmZG+o8hUWo8OGW1mYfpJ+YT/ISgQgnFADs438VDw6Oabh7e6QRAE4/ENZ19QfOMv\nCaksXQMbKUQxbxwaeOjzjpEL2OfJ+Y9vqri81pCWgQEAsgnkIAAgW0X7zXuuGG1ZilELhCvX\n5lz0w1RdGgqEcwkE4Sywfvyv5kfuHurlIimrWPz0K4QMKl7JQhTzzO6eB7Z1RGhm+HYURc6r\n0P3jqkUyPp6usQEAshXkIABz1+T6qEzct3MKkfU7m6bw6jEXLJxVQoLzzo8Xj9x+XqV29gcD\nMhbk4Pzkqz/U/MjdEXP38I0oQZT94s7cC1N2byglWBbZ0uS47b/Nbc5w0q4StejBjWWXLTJk\nTIdUAMDcAzkIAMhuoz5fW3HH/YO/aHnyATYeQxBEUlZZdN0tqbooFAjnEgjC2WH/4uPG++4Y\nqhHyNLplz7/B1xvTO6rMFKGZJ3d0P/ZlV4g+YTahjI+fW6n904WVahE3XWMDAGQfyEEAskDT\n72+3bv8o9edFEQRBODzBum0Hp3aCwTakqRzSZJysQDg2KB/ON5CD8xfL9r7xF/O7r9Ee9/DN\nyuWrqx94ChdL0jWuk/m01Xn31rZv+vxJ20vVopcuq1pXrErLqAAAcx3kIABgvnHt/mro1433\n3xEPhxAEwcXihXc/lqpLQIFwLoEgnDW2z7Y0PnDH0BxeXCw2bLyo7Bd3pnVQmSsaY+75tP1f\nx+wdrhMeFOXh2IZS9d+uqIEyIQAgJSAHAcgaJ+2gMk3fTUzhShVrtuyezpkyoROphP//2bvz\nuKjK/v/j15mBAUFcBwRUBBUX3DXL1BLUSnHJ0lIrt1wzW6207ru629WisnLPSi2XbNE01FLB\nXHNfcUFkFZBFUFYHZs79x+iIKwPMzIGZ1/PB4/fwXHPOzLvv75aPZz7nui6niV38ejSpc5dz\n6BE6FOqggyu6lB314fTMfTtNm2IIIdTV3Hz6Dmr28luSSqVgttvaHZc1dd2p3XFZN413alBz\n/pDW9zSsREukAqgSqIMAHE3JBmH88sXZRw4IIZzcq7d6pwwNwqKszDNzZ3l27+XV4+FbX6VB\nWJVQCG0p9a/1UR+/JRdfnxhXI6hN249mu3h6K5iqkvvyn9j/bjiTd+Oio24ada+m2i8GtWxS\nl90cAVQIdRCwPwk/fR89/1PLv2/Flh69rQHfHlx/MtVS72YmlSSNuMd3SNtS9u6iTeggqIMQ\nQuiyLh57++WbNias3jiww5ffaepUxpl5O2KzXl938t+E7Ju+y2npVX1gK6/3+jRzcap0rU0A\nlRN1EICjKdkgTFi1JOvgv0IISSU1e+VtVy9zmxS6jPSTn73r1bOPz8MDb32VBmFVQiG0sUvH\nDx9+fWJxTo5pRO3u3vHL72q0bKNgqkouPVc3euXRbTEX825cdFQlSQNaeX03tG0dN2elsgGo\n6qiDgL2y1oRCYZVO4a2GLzu68nCSld78ngY1330k8O7n0CB0ENRBGMkGw8kZb6dt3agvLDAN\nOtesVX/gk00mvqxgsLvYFZf17Mqjp2/Zm9Bdox7Yqt7nj7b09nBRJBiAKoQ6CMDRlGwQnv/j\nZ9Oh/4gJNVu3N/NNaBDaDwqh7RVeSIn6cHrWoX2mEbVrtdbvh2m7BisXqgrILih6eW3Ub8cu\n5BTe0Cb0cHUa3MY7bGBL2oQAyoE6CDiCw1OezTyyx/LvKwlJSD3/OWH5d77mbEZ+4CeR5bvW\nSaXqHXh96s+JCzmJ2YWmw3lDWjeo6XqXy2kQOgjqIErSZV888e5rFw/uESW+I/Fo2rztzLmu\n9UqZdqwIWRZrjqc+/9uJlMtXbnrJWS091Ew7f0ibhrXu9rsOgIOjDgJwNCUbhLkxp2MWzjb+\n2dWnvrPZu1DLuqLchBghCUmItp/MvelVGoRVCYVQKdHfzEr+81fTVEJJpWo5/QOf0MeUTVX5\nXS4snrD62MZT6ZdubBNq1FIbnxpLn2oXVK+6UtkAVEXUQcBxHHvt+bR/Iyz/vtc2KXRr4H//\n8nDLv/81ZW0WujmrV43sYDr8+UjKsv3nTYcPNK5Tr/pt5tZ0aFCjrc/Nt4U0C+0YdRC3iv1+\nXvyKxfr8fNOIU/XqPqGDm704TcFUd6E3yH+fyfjvhjMHz1+66dsdZ7XUP6jewidas4c9gNui\nDgJwZNnHDh6Y/IwoX3Ps2o1wuxk0CKsyCqGCCs4n7pswtOhStmkk8MVpfk+OUjBSVVFQpH/x\n96hVh1NyrtzQJnRSSb2baZcOb+dZnds/AGahDgIOKOqd11Mi/rT8+167Qap77wPtP1tg+fcX\nQggxfX30zIhoc86s4ep86aOHTId5Ov3oFUd+OVrKlocqSfr6sVZ+tUufcEPX0D5QB3FbhRdS\njr/z6qUTR0oO1mzToUPYQrWbu1KpSnU2I/+t8NProi4UFhlKjldzVj/e1nvBkNbuGv53DuAG\n1EEAjqwgKWHXU32FwbzumFTK600mvFy9cTNBg7BqoRAq60r6hf2TnylMufo0t6SSvPsOCpr+\noZBK+wsHITLzdCNXHNl8JkOnv+GvsKuz6pHmnjP6NW/hxWxCAKWgDgIOy1ptQnHDjVPTia82\nenqcVT6ltDmFpgah/4cR8VkFdzrtVkPa+gzv4KNxUt39NBqE9oE6iLs49+3XCauX6fNyTSOu\n9bx9Bw4NGDVRwVSlyrlS/Orak78eTc0qKCo5XtPV6dHW9T4f2LIuswkBXEMdBODgEn5ekrhq\niaGouNQz9QV5pj6aQacT8rXnsW7pY2hq1H5g/U5LprQyGoQUQiXpsi8efWPypaijphH3gKbt\nP53n6l1fwVRVyIWcK//ZcGbjqfTzlwpLjkuS1D2g9soR7X1rsOcEgDuiDgIOriApYdfwPlb8\nAEkIIVRq55CII6Wdai3/CT+dmX/1W/I1xy9cyLl5p65btfb2+KRf87ufQ4PQPlAHcXdX0i8c\n/99r2UcOlBys3fG+1u+HaWrVUSqVOfJ1+hd+P/Hz4dRc3Q1feLk4qR5p7rnoyTZerDoDgDoI\nADfuSmims3M+zUuMvdOranf34I37KpTJtmgQUggVJuv1+yYMzTkdZRpxql69wWNPNZn4soKp\nqpYrxYYX10Qt23++oEhfctxJJfUKrDuzf4t2vjWUygagMqMOAjCx1iaF4vozlZIQPf+Juuup\n1rVoT+KE1ceebO8zotMNz6LFXSx44fcTJUdWjuhw97X4aBDaB+ogzBH99czEX5fLxdcn5Knd\nq7d5//O693VXMJU5cq4Uj1pxdMOptJsWHXXXOD3V0febx4M06lJmSwOwb9RBADC/QXhk+mRz\nTqtyDUL+OQiFSWr1PfOX1+3ygOnLo+Lc3PifFp14/w3hwN3rMnFxUi0Y0jr1f72e7lS/jpuz\nabzYIG86ndE+bMe9X+48dP6yggkBAEAl1+azOb22R3VdsdHyby1f/ZFlseXBoC0PBm3t0cby\nn1IBfrVdW3l7lBx5Z+OZIj3/EAUghBCBL0y7Z/5Pbg0bmUb0eblH3nju1Kf/Uy6UWTxcnH4b\n3fH0tB4Dgupp1NcXwMrTFS/akxD4SeRfpzMUjAcAAFDFSNd+7AgzCHlSprKI/W5uws8/FOde\n3+OhVrtO7WbOdarucZercBOd3vDmn6d/2Hf+Yr6u5LgkiXa+NR5prv0ktAWbPAIwog4CuJOY\nuV/ErVhkrXe/8z9F3Br437883Eofa9y28NYZhEIIWZa/25u05vgF08gHfZptj8n+KzpNJYm1\nz95z0/nMILQP1EGYTzYYznz5ccrGNfr8fNOgR9PmPqGPN3xyhILBzJSZp3v1j5O/H7uQc+WG\nRUfv96895/FWHeqz5AzgiKiDAFCOJUZ16Wknw/53p1er3AxCGoQUwkrkSkba4VfH556LNo1o\ntJ6dF6x0reejYKqqKF+nf/WPkysPJV8qvHmTVR8Pl0fb1Jv7eGvahACogwBKdXrme0nrV9nu\n827894napVrw3wfucGqZ3aVBKIQ4nZY3bf0p/bWbo9dDGu+Ju7w9NkMS0h9jO910Mg1C+0Ad\nRFldyUw/+OKY/PhzphHJydm376Mtpr2vYCrzXcwveurHQ3+fyTSU+CJIksSDjesse6p9w1ps\nYA84FuogAJjfIDz61hTZYCj9vBt5PtCr7cdfl/UqW6JBSCGsXAxXCo+9/WrGrkjTiKZW7XsW\nrqzm21CxTFVWsUF+b1P0D/uSki4V3vRSrWrOg9t6zx3cim0nAEdGHQRgvoPjn8o6ddjWnyoJ\nldo5JOKIpd5vfVTaXV7dFnPxs8ir3/t3alBTJan3JV68Qy5hCAu1VCoohTqIctAX5B/7z0uZ\ne3eWHPTq2af1/z6TVFXj3urQ+csjVxw5npJTclDjpHq8db3vhrWt5sxfB8BRUAcBwPwGYfS8\nz0o+JXY31x57lSSp8biX/EdMKE8yW6FBSCGsjKLnfHr+95X6wgLjoZOHR8Co5/yGjVY0VFVV\npJf/u+H0X2cyjiRfvumve6Pa1Z7v1uj1kMYKRQOgMOoggLLK2r/n4CvP2vQjr91cWXY24W0t\n2Zc07udjxQZZCOGmUTup1JcLdXc4V5LD+lo1DGyAOohyi/1ubvKfvxReSDWNeDRv1W7GNy6e\n9RRMVSa/Hk198feo5Ms3PEuqddcM7eAzI7RFdRf+UgD2jzoIAKJcq4zGzJ6VmxJ325dYYrQq\noRBWZok/Lz23+JvivKtbEkpqdcMhzwS+ME3ZVFXaofOXX193akv0zRvRB2rdH2tT7/0+zVyc\nqsYTrwAshToIoCL2jxp86dxJ232eZN0dCoUQ66PSpq0/FXUht/RTaRDaBeogKkJfWHB02vMX\nD+wxjairufmPnOg/YryCqcpEb5DfDD/9/d6kjLwbHoao6er0VMf6cx5vxbYUgH2jDgKAKFeD\nMC/69NnFs2/7UpVrENIPQCXV8MmRHb9Z4lyjpvFQ1usTVy89NfMdZVNVaR3q19g86d4dU+4P\nbenppLp+qxedkTcr4lyjDyOmrz/lwA8MAACAsrlnya+9tkf5hPSz0efJIj8pbsuDQbufsuLa\nnuZ1BwFAqF2rtf/iW88He5smOusL8s8t+vLI9Cm67NuvTlzZqFXSrP4t4v8bMrS9j7P6+h3i\npcLiebvi24Vt/+KfWAXjAQAAwNpoEKLy8ghsee8Pv7s1aGQ8lA3y+XW/HHl9kr7w5h31YL5u\nAbX/HNd5/yvd/OtUKzl+IefKzIhzLWduO5J8WalsAACgygl6/9Ne26N6bY+q266L1T9Mvtom\n3PpgkJU+Qbr6/5h+AOCOJJWq7cdfNXxipJOHh3FENsgZO7buHh56+eQxZbOZz02jXjmiw9k3\ng+/zq6UqMWfwWErOq2tP3vvlzplbYxSMBwAAAOthiVGm0ld2Bt2V/ZOeyjlzfQGrar4NOs1Z\n6uLprWAqO2CQ5U+2nFt7PHVf4qWS42pJeriFdvGTbX1quCiVDYBtUAcBWMmx155P+zfCup9x\nY/POUjsU1nt3c1runfYdvKO61Z0y3nu44p8OG6MOwlJSN/4Ru2RefmK8aUSlcfEfOSFg9HMK\npiqH1JwrY1cd3XAq/aYvioLqVf99TKdmnu4K5QJgFdRBACi3Oy1Mqu0WbNMcFcYMQlR2Ko3L\nPQtW1u7Q2TRSkJy0+5mB8Su+VzCVHVBJ0n96N9n7crc5j7e+16+m6VFRvSxvOJke8FHE6JVH\nCor0imYEAABVUpvP5vTaHhU46XUrfoZ8w49BX2yRdw1uUse8E0vOMpRaenpY5NMBVFHefQZ2\nWbauXu++ajc344hBdyVu6cIzsz+RDQZls5WJt4fLn+M6b550X6PaN6w3E3UhN2jmP/2/3X+5\n0DK/bAEAAFAZMIOQJ2WqBtlgODnz7dRNf8jFV1tWkpOT35Mjm05+TdlgdiNsW+w3O+LiLhaU\nHPSr7TruPr+3H2qqVCoAVkUdBGAzB8c/lXXqsBU/QBJ1732g/WcLKvg266PSTH9+b1PM/qSs\nO32eHNa3gp8FxVEHYXEp4b+f+/brwrRU00i1+n6Nnnq2/qNPKpiqHGRZvLspetXh5DPpeSXH\nte6aJ9v5fDkoqOSehQCqKOogAJSb3cwgpEFIIaxK4n9aHL98cdGlbNNInc73t5s1T+WsUTCV\n3SjSy5N/Pb76SMqlGx8LbVjL9Yl2Ph+HNndxYs4xYFeogwBsLGv/noOvPGulN5ckqec/Jyzy\nVsY24Xubzu1PuninT6NBaAeog7CGoktZe0YN0mWkm0ZUGo3PI482e/W/KmdnBYOVgyyLjzaf\nnb874fylwpLjvjVch7T1/mxgS9qEQJVGHQSAcqNBaA8ohFVRYWrygSkjC1OTTSPuAU39R4z3\nfniAgqnsyeXC4tErj6yPSivS3/DLoaarU78gry8fDfKsTjsWsBPUQQCVR9Q7r6dE/FnRd5GE\nEKJGs1YBY54XFbg3MzYIUy5fmbD62J0+iQahHaAOwkqKcy4ffeuF7CP7ZcP1Wyo3v4CAkZO8\n+1S9+1ad3jBh9bEVh1J0xTcsl+pX2/W7oe16BdZVKhiACqIOAkC50SC0BxTCKqo45/LhqRMu\nRR01jairVWs0fGzAs5MVTGVnDiRdGr7scHRG3k3j7hqnoe19ZvRrTpsQsAPUQQCV1umZ7yWt\nX1Xuy938mwROmmo6LOtNGg1CB0EdhFXFr/g+YcX3uosZphFN7To+fQdV0W0yErMLn111NCI6\nU1/iSyRJEn1aeK4a0cHDxUnBbADKhzoIABVx2x4hDcKqhEJYpZ2a9W7y+l9NW75LKlW93v1a\nvTNT2VR25vNtsT8fSdmbkH3T7wlXZ9VTHerPH9KaJWWAKo06CKAyi5n7RdyKReW71vOBXr79\nBpsOy9cgvIv+QV7lSIXKhjoIa9Pn5x39z4tZB/413bcKIbTdQ9q8F6ZycVUwWLmdvJA74Zfj\nO2OzSn6VVMfN+ZmO9T9/tKVaxe0hUJVQBwGgImgQVnkUwqru3KKvEn5eoi8oMI3U69239f/C\nFIxklxbuSfgzKv3vMxkFRfqS441qV3uuq9+0nk2UCgaggqiDAKqE8s0m9O0/xLN7z5sGzbxb\no0HoIKiDsI3Y7+fGL/9OX5BvGtHU1QaMntzgsWEKpqqIYyk5w388fCI1p+Sgf51qg9v6zOrf\nXCXRJgSqBuogAFQEDcIqj0JoB1I3/hH346K8uBjTiEezIL9ho9iS0OKyC4qG/3h4a3SG7sa9\nCTs1qLl6VIeAOm5KBQNQbtRBAFXFsdeeT/s3okyXONeuEzTtQ/PPL3kjR4PQQVAHYTP5SfHH\n//dazqkTphG1azXfgU80e3G6gqkqQpbFpF+OLz2QVFh0w8aEPh4ug9rUm9W/ZXUX/loBlR11\nEAAqggZhlUchtA+GoqIjb0y6uG+3aUTt5uY/YqL/iPEKprJXlwuLn1l+JDwqreTOE7WrOQ9u\n6z2jX/O67mxMCFQl1EEAVUvUO6+nRPxZ1qtuO5XwVne6kbtts5AGoX2gDsKWZIMh6sPpF7Zs\nkPXX1mWRhLbLgz6hj3uFPKxotPJLzC4cvuzQzrism8brebiMuqf+R6HNnVh0FKjEqIMAUBE0\nCKs8CqHdkA2Go9OnZOyOFNf+56xyca0/YEizl99SNJfdOpJ8+Yklh6Iz8koOumvUoS295g9p\nXcfNWalgAMqEOgigyilIStg1vI9Zp0pCCKFycvIf+ZxHYMtST6dB6ICog7C9xJ+Xxf20SJeZ\nYRpx9fJuOHSU39BRCqaqoBlbY9Ycu7A38dJN3y95Vdc81dH384FBrDkKVE7UQQAADUIKof2I\nXfxN/Kof9PnXt3aoe1/3dp/Ok1T8/6/lGWT57Q1n5uyMv1RYXHLcTaMeeU/9uY+35iYQqPyo\ngwDswO13KLx2i+MR2KLxuBfNeR8ahA6IOghFFOfmHHz52ZLLjUoqVb1efYP+O0Oqyv9TnLcr\nYdXh5N1xWTftSdGwluvz3RqxdT1QCVEHAQA0CCmEdiVlw9qz88NKPo/p0bxVpzlL1a7VFExl\nx5IvF45cfnRbTGax4YbfJC3rVZ/ctdGU7o2UCgbAHNRBAHZgywNBpZ5To1W7gBETy/f+f6Xq\nbx18anCv8r0bKhXqIJQiFxefCnsvZcNaufj605auPvUDRk70HTBEwWAVt/jfxO/2Ju2Ozyr5\nVZNKkp5o5/3T0+3VrDgKVCbUQQAADUIKob3RXcw4/u5rWYf2mkbcA5p2+maJc83aCqayb6sO\nJ689nrbuRFqu7vr9rUYtGVccrefhomA2AHdBHQRgB0ppEEpCCOFS18un72M1W7Wz1IdWuY0l\ncFvUQSgr6def4lf+UJhy3jSi0jjX6xnq+WBvzwer9lMIc3cm/HYsdevZzJLfOPnXqTa+i99b\nvZhKCFQW1EEAAA1CCqF9ivrwzZRNa02rS2lq1/UbNrrR02MVDWXnMvN0o1Yc/fPkDctwuWvU\nQ9p5f/1YKw8XJ6WCAbgT6iAA+3CbjQlVKqE3lByQnJyC/vOJk5u7RT6RBqF9oA5CcXJx8YkP\np6Vt3SQbrv/KcvNv0nDw0w0eG6ZgMIv4Zkf8/N0JJ1JzSg629fEY1bnBqz0ClEoFwIQ6CACg\nQUghtFvRX89MXL1Uvrb0pbpatfafL6rVpqOyqezeR5tjFu6JT8gqLDlYw9VpRKf6Xw4KcmJJ\nGaAyoQ4CsCcZOyPjv5uffeaoEEJSq+Xim5cGbT71bVcvH4t8Fg1C+0AdRCWRsPKH+J++1WVd\nNI1IKlXdrsFt3g9Taar2cix6gzxyxZFVh1L0N3711NW/9tpnO2ndNUoFAyCogwAAGoQUQvt2\n7tuv4n781rSvg0qjaTppasMnRyibyu4VFhue++X4b8dSLxcWlxwP1LqPuKf+f3s3legSApUD\ndRCAnTn22vNp/0YIIVQuLjVbti1Mu6DPzzV9566pXbdWh84+jwys+AfRILQP1EFUHumRf6Vu\n2ZC+7e+SUwk9mgX5PzPOq2efu1xYJRxPzXlyyaGTabklB+u6a8bd12BGvxZKpQJAHQQA0CCk\nENq582t/Prf4G93FDOOh2r16o6fGBoyaqGwqR5BdUDRm5dHwU+m64hsW+Grr4zG+i9+U7o2U\nCgbAhDoIwM6UaBC6tnnvcyHExX27En/5seQ5gS9Mc2tQ0X+H0CC0D9RBVDaxSxYk/fqT6e5V\nCKHRevo/Nc4+HnJ9e+OZVYdSojPySg42rus2IMjrw77Nq7vw1xCwNeogAIAGIYXQ/p1f+/O5\nb7/WZWUaDyWV1GDIiGYvTlc2lYNYsi9p5eGUTaczSv6qUUlSt4Daz97bYHTnBgpmA0AdBGB/\nMnZGljzMi40+O/+LkiONx0z2aNG6gp9Cg9A+UAdRCaVv25y+Y2vqprWmzTIklVSnc7fW73/u\n5F5d2WwVJ8vitXUnF+xOzNPdsNiMu8ZpeAefOYNbadQqpbIBDog6CACgQUghdAgFyYl7nx1c\nnHt1SRNJrQ4Y83zA6EnKpnIcYZGxi/cmnrxww5Iy7hr18A6+84a0ZmNCQCnUQQD256YGoRDi\n4r5dWYf25sacufuFrt6+AaMmaepozfkUGoT2gTqISiv665lJvy836IpMI671vANGT/YdMETB\nVJaSmF34xNKD/8Zn3zTeuK7bmM4N/vtQU0VSAQ6IOggAoEFIIXQUhWmph6dOyIs9azyUnJwa\nDnkmcMobyqZyKB9tjpm3K/78pcKSg/Vruk6634+bQEAR1EEA9s3ULMw5e/rcotmlnq/t3rO+\neV++0yC0D9RBVGZJv6+IW7LgSkaaacTVy7vR02MbDH5awVQWNCvi3LqotN2xWfobv5XqHlBn\nxD2+E7r4KRUMcBzUQQAADUIKoQNJj/zr7MIv8xPiTCM+fR4N+u8nyiVyOMUGedr6U0v3n8/I\n05Ucf6iZdvWojjVdnZQKBjgm6iAA+2ZqEBblXDo54x25uOiup4s6ne9vOOT6Rl9JqxZnHj5w\n2zMlIfX854SFYkIx1EFUcun/bMnc80/yn7/Jer1xRFKptN17tvnwS0llJ0tx/rAvafnB5M3R\nmSW/m3JSSY+38f5uWFt3DX83ASuiDgIAaBBSCB1L0aWsvWMGF6alXj2WhGe3nm0+/FJyojVl\nOzlXiocuO7TxVHrJXz81XZ1e6O7/Qd9myuUCHA51EIB9K7ncaH5i3KUTR8Tt7n3Sd2yVi4uF\nEDVbt/cfMcE0Hv/d/OwzR+/05r22R1kyK5RAHUSVELdsYez38wy6K6YRbddg3/6DPR/spWAq\ny5r9T+y8XQmn0/NKDjas5Tq5a6PpvZoolQqwe9RBAAANQgqhw9FdzDz61guXjh82jXgEtmj3\n2QKXup4KpnJA83YlLP438UDSpZKDg1rX+3V0R5UkCSF2nMvqMXePQZabe7qdmh6sTErArlEH\nAdi3W/cjvK3j772mz88XQkhO6jYffiVJV3dHpkFo96iDqCoSVi6JX/6t7mKmacStUUDDx59u\nMPgpBVNZ3NQ/Tv548HxazvXFZiRJGtHJd/HQtuxbD1gDdRAAYCerUld4kFcAACAASURBVADm\n09Sp22nuslptO5pGcqJP/TtiYOLqZQqmckDPdfXb/0q3F7v7u5VYN2bN8QutZ23/8O+zQogr\neoNBloUQp9PzpanhoYv2KpYVAADYL/dGV6enyMX6/MS4gvMJxh99Yb6ywQDAyG/YqBZT39V2\nDTaN5MfHnp0fdm7xN8qFsrywgS2T3u71dEdfjdPVr6pkWV66/7z/hxFvhZ924IfbAQAArIUZ\nhDwp46hk+cQH01L/Wm8acK5Zq+nk13z7Pa5gKMeUlqsbsHjf3oQbphK28/XoHegZtu1cyUGN\nWroyq69t0wH2jDoIwEHcfSphysa1aRGbbv/anaesMIPQDlAHUcXI8on330jd/KcwfYsjCe39\nwa3eneXkXl3JYJY2b1fC3F3xx1NySg629fHYPOk+z+oaIcS8HQmTfz/u6e6c9v5DCmUE7AF1\nEADADEI4Kklq9c6sgDGTTbdSRZeyY+aFJf/xi7K5HJBXdc2eF7sNaetjWtFLCHEkOWf29rib\nztQbJO//bZm5Ncam+QAAgF2TVCXuiaQbf+5sywNBpp8dgx60dkgAEJLU6t1PG4+erKlT9+qI\nLDJ2Rf47+rELWzYomszCnuvqd/jV7gOC6pW8QzyakhM0658P/j4rhEi8dEUIkZ5XJE0N5/YQ\nAACg3GgQwqE1Hjul6XNT1a7VjIe67KzTsz8+t+grZVM5IEkSq0d1ePuhpgF13EyDxQbDrWde\nyLky/c/T3AcCAABL8WjRWnK69uC8+aurlOgjVm/S3DrRAOBmAWOnNJnwikfT6792ClPOR389\nM37F9wqmsji1SvpjbKevHwtq5+thGszI0727KfrR7w6cSrs+uXD6n6dd3rCr/igAAIDNsMQo\nU+khElYtif1+TnFu7tVjSWi7hbT75BshsRG6rTm/vqHYYO4vJUkIQ1ioVfMA9o06CMBB3H2J\nUSGELjOjICVR3PiPkIyIv3JTEu50CUuM2gHqIKowWT41638pm9YadDrjgKSSvB8e0PKtj2+Y\nFW0X3t0UPWtrTGHx9edH3TWavGv/4UYsNwqUA3UQAECDkEIIIYRI/HlZ3LKFuqxM04i2a7Dv\nwCc8u4comMoBdft616647DJdohJCT5sQKBfqIABHU2qnsKT47+Znnzl6p1dpENoB6iCqurPz\nwhJWfC+XWHmlVrtOfsPGeD7QU8FU1hB3seDR7/YfvXFXwpI0KmedoUgI0dzT7dT0YNslA6oy\n6iAAwN6eLAPKp+GTI5q99KZHYAvTSMauyMSfl8rFxQqmckA7X+iqLuO8TYMQ0tRwr3f+tk4i\nAAAAAKiMmj43tfmrb7vW8zaNZB85EPv9nNS/1iuYyhr861S7S3dQCGHsDgohTqfns+IoAACA\nmWgQAlfV6x1673e/ej7QyzSSdfDfXU8+nLrxDwVTOaDiz0LlsNCytgnZoB4AAACAo6k/aGiz\nl/6j7RpsGsk5czL66xlxyxYqF8oqVGbfIer0sjQ1PHTRXmvGAQAAsAcsMcpUetxIlo+/99qF\nzdcfOXTxrNd04qvefQYoGMoxbYnO7D3/37JepZZE8WesOAqYhToIwNGUaYnRu9B2C7bI+0BZ\n1EHYk6gPpqdsKvFsqyR8Qx9v+eaHyiWysP+En/54S9meB2XTeuDuqIMAABqEFELcRtQH01P/\nXicbrv7t0NSu22Tci76PPqFsKkdTvgahUd8W2vDx91o2D2B/qIMAYFKm3iENQvtAHYSdObfo\nq4TVS/X5+aaRmq3a+Q0b4xXysIKpLEs1Nbys32GxaT1wJ9RBAABLjAK3EfT2jEYjJqo0zsZD\nXVbmmbmfxiz6StlUjqZXYN0JXfzLd+2GUxnqqeEWjQMAAAAAlVfj8S82e/FNNz9/08ilE0eS\nfvspfftW5UJZmCEs9K1eTcr0TZZBCBX3hgAAALdDgxC4vSbjXwwYPVnt6mo81Oflxi2df2rm\nu8qmcjQLngiSw0LL1yY0CCFNDa/+5kZLhwIAAACAysi3/+Cmz71Wp1MX00jWoX1n536a+tc6\nBVNZ1kehzV8PCSzTJbIQ0tRwr3f+tlIkAACAKooGIXBH/iMnNp001blmravHskj+89fTn9vP\nLg5VhbFNKIeFLhnevqzX5ukMPC4KAAAAwEF4PtCzw+zvfPsPNo3kJ8af+eLjc4u/UTCVZY3r\nUr8cV6XnFXFvCAAAUBINQuBuGgx5utkLb3q0aGU8lA2G82tWnPnyY2VTOaz6NV3KcZUsJGlq\nOCuOAgAAAHAQLad/4NvvcUl19TufopxLcUvmRX30VsaOCGWDWURTrZscFjqsfYOyXshUQgAA\ngJJoEAKl8O4zIGDkJI9mQcZD2SAn/vpjzMLZyqZyTL0C68phoSFNPMt4nSxYcRQAAACAI2n5\n5ocBY19QaZyNh7JBTtmw5ty3X13YYif3RCtGtI1+M7gcF6bnFbm8scHScQAAAKoeSZZlpTMo\nRqvVZmZmFhcXq9VqpbOgsjMU6Q4898zlU8eNh5KTutGwZ5tMekXZVA7rbEZ+4CeR5b7c0905\n7f2HLBcHqKqogwBgkrEz0vyTtd2CrZUDNkQdhCM4v2ZV0u8rcmPOmEZcfeo3GjbG1dvXnn6V\nTVwdtXBPXJkukYQwhIVaJw5QNVAHAQDMIATMonLWdJq7zCOwhfFQLtbHr/oh9vt5yqZyWMYl\nZcqxJaFRel4RC8sAAAAAsHv1Bw1t/OyUul26m0YKU86f+eqT1L/XpW/brGAwy1rwRFBZVxyV\nhXB6jX0oAACAQ2MGIU/KoAyKLmXvHfdEYcp546Gkkjx7POzzyEBt9xBlgzmy6eujZ0ZEl/vy\nvi204ePvtWAeoAqhDgIAHBl1EA7l7LywhFVL5eIi04irT32/J0c1fOIZBVNZ1qcRcW+sjyrr\nVWpJFH/GVEI4IuogAIAGIYUQZaMvLNjzzIDC1GTTSO0OnX0HPun9UD8FU2H4sqMrDyeV71qV\nEHrWloFDog4CABwZdRCOJmHVksRVSwrTUk0j6mrVmk58tcGQpxVMZXEDvj24/mRq6efdaEa/\n5tN6NrFGHqDSog4CAGgQUghRZinha+KXL86LizGNuHp5N3pmfIPHhyuYCkv3J49acbjcl7Mx\nIRwQdRAA4Miog3BA6dv+vhCxMW3rJtlgMI6oXV0bDh3dZPyLygazrPJtWq9RS1dm9bVCHKCS\nog4CAGgQUghRHuk7IlI3rEnbdn0TO5XGufHYFxs9PVbBVBBC9Jy7LyImvXzXMpUQjoY6CABw\nZNRBOKaMnZEF5xPjli3QZV00jkhO6voDhzZ/9b/KBrO4cjxCynKjcCjUQQAADUIKIcopY2dk\n5t4dyet/M1wpNI6o3dz8nxnvP3KissFQwamE7hpV7id9LJgHqLSogwAAR0YdhCNL+nV57LIF\nuozrz1Z6PzygXq++2m7ByoWyinLsRtHc0+3U9GDrxAEqEeogAIAGIYUQFZL487K45d+abqsk\nlcp/1KTGY6comwpCiOnro2dGRJf7cu4J4QiogwAAR0YdhIO7sGXDuUVf5SfFGw8llcr7kYGe\n3Xt69uitbDCLm7g6auGeuDJdwnKjcATUQQAADUIKISoqed0vMQu+0GVnGQ9VGpfGY6ew1mjl\nUZFFR2kTwr5RBwEAjow6CKRH/hW/csml44dMI9XqN2w0/FkXz3r2N5Xw/tl79iRcNP98SQgD\nO1DArlEHAQAqpQMAVZ7vgCGBU6a5NQowHhp0V2K/n3t+zSplU8Fk4ZOtyn3t6fR8r3f+Lv08\nAAAAAKhqPIMfbjR8jJt/E9NIwfnE6G9mXT55NGNnpHK5rGL3S12GtW9g/vmyENLU8NBFe60X\nCQAAQFk0CAEL8O4zMGDUcy5aL+OhvrDg3OKvE1YtUTYVjJpq3eSw0Ald/Mt3eXpekTQ1fObW\nGIuGAgAAAADlefbo3XT8i9ruPSXV1S+I9IUFsUvmJ/68JC3iL2WzWdyKEW1n9Q8q0yUbTmU4\nvRZupTwAAADKYolRptLDYlI2rD077zPdxUzjoeSk9n96fOPxLyqbCiWVY4N6E1aYgf2hDgIA\nHBl1EDDJ2BmZnxgfv/xb0/2sEMK1nk/jsS/4hA5SMJg1bInO7D3/3zJdws0g7BJ1EABAg5BC\nCEtK+nV5zMIvi/NyjYeSSvLp+1jLNz9UNhVuQpsQMKIOAgAcGXUQuMmFzeHxy7/LORNlGnH1\n9m087gVnj5r2tyVhOdqEM/o1n9azSennAVUEdRAAQIOQQggLS/p9ZfzyxYUp568eS6LJ+Jf8\nR05UNBRuo+fcfREx6eW7trmn26npwRaNAyiAOggAcGTUQeBW6Tu2Zu6MTNm01qArMo6oq1Xz\n6ftYnXvu93ywl7LZLG7p/uRRKw6X6RIeGIU9oQ4CAGgQUghheamb1sX/9G3uuWjjodrNrcn4\nlxs+8YyyqXCrsxn5gZ9ElvtyjVq6Mquv5eIAtkYdBAA4MuogcFsZOyPz4s/FLJwtFxeZBj0C\nW/gNHe3dZ6CCwaykrE+O0iOE3aAOAgBUSgcA7JD3IwMaj3/JrVFj46E+Pz/2h7nJf/yibCrc\nqqnWTQ4LndDFv3yXF+llaWp49Tc3WjQUAAAAAChG2y240VPPBox+zsmjhmkwJ/rU2fmfJ6//\nVcFgVrJ1cudZ/YPMP18WQj013Hp5AAAAbIYGIWAVng/0DBgxQVOrtvGw6FJ29NxZSb+tUDYV\nbmvBE0GbJ91XjgtlIQkh8nQGFfeHAAAAAOxIwOhJzV/5b90u3SXV1S+OrmSknVv8TfI6O3zy\n9fUQ/zL1CA1CSFPDZ26NsV4kAAAAG2CJUabSw4ry4mL2P/dUcU6O8VClcW44ZETTya8pmwp3\nMnF11MI9ceW+nBVHUeVQBwEAjow6CJQqY2fkpeOHE1YtMeiuGEfUrq4Boyc3emacssGsZPiy\noysPJ5l/vqe7c9r7D1kvD2BV1EEAADMIASty928SMOr6wiwGXVHCyu9PzXwnY2ekorlwewue\nCJLDQoe1b1C+y3V6WZoa7vXO35ZNBQAAAACK0HYLrtm6fcCYyZKzs3FEX1gY+8O8hJU/KJrL\nWlaMaFumqYTpeUVOr7GcDAAAqKqYQciTMrC6pN9Xxi7+WpedZRrxfrh/vV6h2m7ByoVCKcr6\n6OhNZvRrPq1nEwvmAayBOggAcGTUQcB8CSuXxP+0SJd10Xio0mj8Rz0XMGqisqmsp0PYrsPJ\n2eaf37eFNnz8vdbLA1gDdRAAwAxCwOoaPDas+atvezS7/hxi6l/rk35bnhbxl4KpcHcrRrSd\n0MW/3JdP//M0GxMCAAAAsA9+w0YFPj/NtZ638dCg08X/uCjp9xXKprKeQ1O79m/pbf75G05l\nVH9zo/XyAAAAWAMzCHlSBjaSvu3vxF9+zDq0zzTi6u0bMGayb7/HFUyFUvWcuy8iJr3cl0tC\nGMJCLZgHsCDqIADAkVEHgbJKCV8Ts/DLKxlpxkOVxqXx2Cnu/k3sdXWcpfuTR604bP757hpV\n7id9rJcHsCzqIACAGYSAjXj2eKjh0NF17rnfNFKYmnxu0VfJ639VMBVKtXVy5yXD25f7clkI\naWq4NDV85tYYC6YCAAAAABvzCR3UZOIrzjVqGg8NuiuxP8zNPrJf2VTWM/IeXzks1FklmXl+\nns6gZiEZAABQdTCDkCdlYFMZOyLSt29J2bROLi4yjji5Vw8YM9lv2GhFc6F0ZzPyAz+JrOCb\neLo7p73/kCXiABZAHQQAODLqIFA+59esOvf9HF1mhmmk7n3d6w8a5vlATwVTWVVZ15Xhvg9V\nAnUQAOCkdADAsWi7hwhJcm8cGLPgc4OuSAhRnJd7dl5YUdbFmm072uvCLPahqdZNDgut4Iqj\n6XlF0tRwIcSMfs2n9WxiuXQAAAAAYAv1Bw2VnJxj5ofpsrOMI5n/7pDUTkKSPLuHKJvNSrZO\n7iyEcJoarjfv/KyCYqvmAQAAsAhmEPKkDJQR/9PiuB8XFedcNh5KKlWDISPqdLqPHmGVsCU6\ns/f8f901mjydriLvoxJCzw6FUA51EADgyKiDQEWkblyXtGbFpePXt+ir0aK1/4gJnj16K5jK\n2jSvbygymPs1GhvSo5KjDgIA2IMQUEajp8cGTnmjmm8D46FsMCT+vCQl/PeMHRHKBoM5egXW\nlcNCn+7oW8H3MQghTQ0PXbTXIqkAAAAAwDa8+wzwf2Z8vd7XG2CXTx0/u2h2WsQmBVNZ27dD\n25l/siyEii0JAQBAJcYMQp6UgZLStm6MXTI/N+aMaaROp/saPDHSXhdmsT8W2ZjQyF2jyv2k\nj0XeCjATdRAA4Miog0DFZeyISF7/a/qOraYRt4aNmox/yaunPd/alGnjCeYRotKiDgIAmEEI\nKMmrZ5+AUZNqtm5vGrl44N/kP35WMBLKxLgx4az+QRV/qzydgcdLAQAAAFQh2u4hbWd8U3/g\nE5Lq6vdL+Ynxib8uv7Blg7LBrGrr5M7m3wPKLBsDAAAqKxqEgMK8evbxHzFBW2LKYMaubVEf\nTlcwEsrq9RB/OSx0WPsGFXwflqABAAAAUOVou4U0enqc5ORkPMw+sv/MFx+eX7NK2VRW9XqI\n/5Lh7Us/75oNpzJc3rDnpikAAKiKWGKUqfSoFDJ2RqZFbEzZ+IdppF7vft4P9dN2C1YuFMqj\nTKvN3IlGLV2Z1dcieYC7oA4CABwZdRCwrJMz3k5e/6vpUFOrdtMpb/j0eVTBSDYw4NuD60+m\nmnkyy42iUqEOAgCYQQhUCtpuwV4hfWp36GwaubDlz4wdWzN2RioXCuWxdXLnzZPuq+Cb6PSy\nNDWchWgAAAAAVBUtp39Q/9GhatdqxkNddtbZOZ8m/bZC2VTWtm5cxwld/M082bjcaPU3N1oz\nEQAAgLloEAKVhbZbcIfZ39Xp3PXqsSzOr/slJfz3jB0RiuZCmfUKrCuHhVa8TShYiAYAAABA\n1dHi9XebPv+62tXVeKjLuhj7/dyUDWuVTWVtC54ImhYSaP75eTpDixmRVosDAABgLhqEQCUi\nqdQNHhvu0fz6budp2/6OXTI/fdtmBVOhfIxtQjksNKSJZ0Xeh9mEAAAAAKoKVy9v/1HPqTQa\n46EuKzP2h3lpEX8pm8raZvQPLNOWhKfT82dujbFeHgAAAHOwByFrbaPSSf9nS8LPS7IP7zeN\nVPNt6D96km/oYwqmQgVNXB21cE9cBd/EXaPK/aSPJeIAQlAHAQCOjToIWE/SbyvOzg/T5+cb\nD90aBQSMmuT98ABlU9nA5F+Oz9udYObJKiH0bEkI5VAHAQDMIAQqHc8HezUaNsbzwd6mkYLk\nxPgfvy3Oy1UwFSpowRNBFZ9QmKczMJUQAAAAQCXX4PHh/iMmSNe6DvnxsdFzPk1YtUTZVDYw\nd0jrWf2DSj9PCCGEQQh2lAAAAApiBiFPyqCSytgZmbFrW/K61bLBYByp3aGz37Ax2m7BiuaC\nZSzdnzxqxeGKvINGLV2Z1ddSeeCYqIMAAEdGHQSsLfqbTxNXL5X1euOh2s3Nf8TE6o0D7f6u\n9mxGfuAnkeafz80dFEEdBAAwgxCopLTdgrVdewSMniw5Xf2HWtahfen/bM7YGaloLljGyHt8\n5bDQMm1lfxOdXuZpUwAAAACVVuCU1xuPnaLSuBgP9fn557796uK+nXZ/V9tU6xb9ZrD55+v0\nMlsSAgAA22MGIU/KoLI78+XHib/8aDqs3aFzwydHeT7QU8FIsKyKb0/Y3NPt1PRgy6SBI6EO\nAgAcGXUQsI3ktatjvp2ty7p49VgS9Qc+qe0azDzCm3i6O6e9/5DV4gA3ow4CAJhBCFR2zV5+\nq06n+02HWYf2Ja9bbfdPXDoU4/aEXfzqlPsdTqfne73ztwUjAQAAAIBF+D76RJMJL7v61L96\nLIvza39O+vWn9G2bFc1ldU21bnJYaP+W3maen55XxG0dAACwJRqEQBXQ7rP5NVq0Nh1m7NoW\nv3zxhS0sL2lXlj3dtiKXp+cVSVPDVVPDLZUHAAAAACzCd8CQZlPeqNmqnWkkc+/O6DmzUjeu\nUzCVbawb19H8rSXS84qqv7nRqnkAAABMaBACVYDK2TlgzGTvh/ubRrKPHIj+Zlby+t8UTAXL\nMj5eKoeFLhnevtxvIgvB/SQAAACAysazx0ONnhlfp1MX00hBclLssgWpf/+pYCrbmNE/UA4L\n9dCYtYpjns7g856dz60EAACVBA1CoGrQdguu1yu07r3dTCNX0i+c+/ar1L/WK5gK1jDyHl85\nLDSkiWf5LtcVi/VRaZaNBAAAAAAV5PlAz4ZPjqw/4AnJyck4kh9/Lva7bxxkdZzLnzyiUUnm\nnJl6WRcZk2ntPAAAADQIgSpD2y24/eeL/IaOUmk0xpErGWkx8z9P3WT/q7I4oK2TO5u/EE1J\nRQbDgMX7a/5nk8UjAQAAAEBFaLsFa7uHBIyaJKmufh+VnxifuHpZ+o4IZYPZxpVP+w5r38Cc\nM0Pm/vvYD/utnQcAADg4SZZlpTMoRqvVZmZmFhcXq9VmrfMAVAYZOyPzE+NiFs426K4YR6r5\nNmg8/iXvh/opGwzW03PuvoiY9DJdolZJa8Z0utOr/YO8KhwK9oA6CABwZNRBQCkZOyMvnTiS\nsPI7g67IOFKjRWu/YaPV1dy03YIVjWYL98/esyfhojlnDmrj9fvoe6ydBw6LOggAYAYhUMVo\nuwW7NfT3HzFecnI2jhQkJ8UudpRVWRzT1smdJ3TxL9MleoM8YPH+p5Yfsk4iAAAAACgnbbfg\nJhNeajD4GdPI5VPHYxbNLkxLzdgZqVwuG9n9UpfNk+4z58w1x9LcprPHPAAAsBYahEDVo+0W\nHDBmcsDIiZLz1R5hflL8uW+/Stm4VtlgsJ4FTwTJYaH9W3qX6aqcAv208JO3jq+PSjP+WCgd\nAAAAAJRN7fadfR4ZKK7tyldwPvHM7E+yDv6raCgb6RVYd1b/IHPOLCgy3Dd7p7XzAAAAx0SD\nEKiqAp6dHPDM+Ou7uyfGn/1mVvL635RNBataN66jHBZq5p2kEJIkSc3qVDcdp+XoRiw/8svR\nFCvFAwAAAAAzabsFB709w2/YGOna8oZycVHi6mWnv/hQ2WC28XqIvxwWKpV+otibcEmaGj5z\na4zVMwEAAAdDgxCowgLGTvF/Zrxpd3dddlbMwi9Ya9TuvR7ib96Ko7Isy2tOXBiweP9HW6OF\nEHpZzi4oKigymM5gEiEAAAAABdVu3zlg1CSN1tN4KBsM539fEb/8O0dYa1QIYQgLNfPMtzec\nsWoSAADggGgQAlVb43Ev+I+cqHatZjzUXcw8t/jrtIi/lE0FazOuOCqHhTqr7v7IqSSEJIkb\n5hECAAAAQCWh7Rbs0bxV85f+4+7fxDgiG+TYJfPzE+MUzWU7Xf1rmXNakUF2ei3c2mEAAIBD\noUEIVHk1WrYJGDNZ5eJqPMxPiEtYtSR9x1ZlU8E2dJ/2Hda+wZ1effGBRuvGdvpjbKcn2vvY\nMhUAAAAAmEnbLVil0TQZ/6Jbg0bGEX1e7rlvv4pd/I2ywWxj5wtdzewR6mXR9etd1s4DAAAc\nhyTLstIZFKPVajMzM4uLi9XX1rsHqqiMnZE5p0/ELp0vF+uNI7U7dG44dJRn957KBoPNbInO\n7D3/35sGXZxUzqrrD4IYZJFfVKxRq7Tumkld/TrUryGE6B/kZdOgqEyogwAAR0YdBCqb82t/\nPrdoti47y3goqSS/Yc82nTxV2VS20e3rXbviss0584tBLV9+IMDaeeAIqIMAABqEFELYjzNf\nfpz464/i2t9pbddg34FD6BE6jk8j4t5YH1XWqz7u17yNt4fpkH6hQ6EOAgAcGXUQqIRSNq49\nt3B2YVqq8VDtWq3ZK//R1Kqj7RasaC4bkaaau4hoxOT7gpvUtWoY2D3qIACAJUYB+9Hs5bd8\nQx83HWbsikxa/WPGjggFI6HScnFS9Wnh2aeFZ51qzkpnAQAAAAAhhPDp82jjcS+6XduPUF9Y\nEDP/C11GesbOSEVz2cjmSfeZeeYzyw9bNQkAAHAEzCDkSRnYlYydkRe2hKf+td404hX8cJsP\nvhCSpGAq2NL6qLSYjLy/z2TqDTf/es/X6f+JvWj8s4er0/Kn25f6bkwotG/UQQCAI6MOApVW\n6l9/ng57rzgv13jo5FGjydgXXH3qO8I8wttuHnFbkhCGsFBr54Edow4CAGgQUghhbzJ2RKRs\nWJO27W/TSN0uD7T/bIGCkWB766PSbh1MuXxlwupjxj9LkhjcxqeOm/PDzbUuTmWeTU7j0D5Q\nBwEAjow6CFRmiauXxXz7tf5aj1BydvYNfUzbNZgeYUmuTqqCmX2snQf2ijoIAGCJUcDeaLuH\n+IQ+pu3yoGkkc8/22MXfKBgJlZAsi1+OpizckzBnZ7zSWQAAAADgBg2fGNF4zPPONWoaD+Wi\novNrf76wJTxjZ+SlYwe29Gh1+LWJyia0nl6BdeWwUCcz1gEqLDZIU8Nnbo2xQSoAAGB/aBAC\ndkjbLdh30FDt/dd7hPErf0he94uCkVBpRV3INTjwVHIAAAAAlZPfsFFNJr7i6u1rGkn9a33y\nn7+d/3W5MMiZe7dHPtRJwXjWVvRZ36Z13c05c/qfp0MX7bV2HgAAYH9oEAL2ybN7SP1Hh3oE\ntjAe6gvyY7+fm7Z1o7KpoCyfGi7fDW3bsJZrycELOVc+i4xVKhIAAAAA3En9R58MnPxazdYd\nTCPp/2y+fOKEEELIQn+lwI7nEQohot/qoS59GqEQQmw8lWHlLAAAwA7RIATslrZ7iN+wMU4e\nNYyHhWmp576bc2HLBmVTwTbutEegZ3XN3MGtV43o0Nmvpmlwd1yWrXIBAAAAQBl49ezT6Kln\ntV17mEbyUhKu/kkWmXu3734qVJlkNlH8Wag5u8PJQkhTw73e+dvqgQAAgB2hQQjYM+9HBgSM\nfk6lcTYe5sXFxC2Znx75l7KpoDg3jfqhQK3q2p4WepYYBQAAQQAoZAAAIABJREFUAFBZeT7Y\nq/7AJz0f7H2b12SRnxS3vX83m4eyneIwczugGXlFVk0CAADsDA1CwM75DR3lN3SMpL760GHu\nuej4VUsydkQomwqKu9+/9oBWV2cZyrIoLDIomwcAAAAA7uTof19M375ZSOLqT0my0F3KSvh5\nqTLJbEIOC+1Yv0bppwkhTQ2PjMm0QSQAAGAHnJQOAMDqmkx8WUhS/I+LZINBCHHp2KHzf/ws\nGwyeD/ZSOhqs6E6rjAoh1kelCSFquF4vATq9wdWZR0YAAAAAVEayXn/3E6K/nnFu4RfBmw/Z\nJo/tHXi1u3pquDnPdYbM/feLQS1ffiDA6pkAAEAVp8zXwdnZ2S+//LK/v79Go/H19R03blxK\nSsrdL4mPjx87dmz9+vU1Gk2jRo2mTp2ak5NjevWHH36QbufDDz+08n8KUDXUbNWuwePDTYcZ\nu7Ylrl6azjxCx1byudusAtaisSnqIADAkVEHAZSVi2e9Us/RX7kS0bOdDcIoRR8WOi0k0Jwz\nX11z0tphUBHUQQBAJaHADEKdTterV6+DBw8OHjy4Y8eOMTExS5cu3bp164EDB2rXrn3bS2Jj\nY++9997MzMwhQ4a0adNm165dn3/++a5du/755x9nZ2chRHZ2thBi+PDhfn5+JS/s1s2el6EH\nzKftFiyEyI2Jzjq01ziSdWifc606kiQZX4ID0rprTH9esDuhpquzEMKzuubpjr4uTswmtCLq\nIADAkVEHAZRD998itoa0k4tLea7RUFS0tUfrntuO2yaV7c3oH7g3ITsiJv3upxnXGh3Uxuv3\n0ffYJhjMRx0EAFQeCjQI58yZc/DgwZkzZ77xxhvGkUceeWTo0KEfffTRZ599dttL3nrrrYyM\njEWLFo0bN8448vLLL8+ePXvRokWTJ08W1wrhq6++es89/NMHuD1tt2BZljV1PS9s/tM4khax\nqTj3siwbPLv3VDYbFFHNWW3687GU688eOqukEffUF0LM2hK3PS7jttdKQhjCQq2d0F5RBwEA\njow6CKB8ekYc2dKjtTCUssqmbDBsfTCo5z9Rtklle1snd94Sndl7/r+lnrnt3EUb5EFZUQcB\nAJWHJMuyjT+yQ4cOMTEx6enpLi4upsHAwMDLly+npqZKknTrJTVr1qxevXpSUpLp1ezsbF9f\n33bt2u3evVtcq4vR0dFNmzY1P4lWq83MzCwuLlar1aWfDdiFjJ2R59f+nLEr0jTi+WBv336P\nM4/QoRj3IDydlvfautusPONfp1qPJnWEEFvOZCVdyr/De0hyWF8rRrRr1EEAgCOjDgKoiMhH\nOuvz80o9TeXkHBJxxAZ5lDJ9ffTMiGhzzuThzsqGOggAqDxsvYhcYWHhsWPH7r333pJVUAjR\nvXv3tLS02NjYWy/Jy8u7fPly06ZNS9bIWrVqBQYGHjx4UK/Xi2tPytSqVUuv1yclJWVk3H7K\nCwBtt2Dffo/XatfJNJL+z+aUjWvZj9ABNfdyH9rep0FNV28PF28PF/W137FxFwuW7Du/ZN/5\nO3cHUX7UQQCAI6MOAqig4E37Wr01o9TTDMVFWx9sZYM8SpnRP1A2r+0nC1H9zY3WzgMzUQcB\nAJWKrRuEiYmJer2+YcOGN403atRICHHu3LlbL6lWrZqTk9Ottc3NzU2n0xl38b106ZIQ4ssv\nv/T09GzYsKGnp2fz5s2XL19ulf8GoIrz7NG70fBntSWWFU2L2JS0emlaxF8KpoIt9Q/yMv48\n06n+vCGtFz3ZZtGTbbxruJR+JSqMOggAcGTUQQAV5913oP/w8aWeJstyREhbG+RRkEZ9m9lm\nt8rTlbIuK2yGOggAqFRsvQdhTk6OEMLd3f2m8erVq5tevYlKpbr//vt37Nhx7NixNm3aGAdP\nnz594MABIURubq649qTMihUr3njjjfr16588eXLOnDlPP/10Tk7OxIkTS75bSEiI6VOM5RNw\nQNruIbIQ+rycrEP7jCMXD/xbmJkhZINXzz7KZoNShrb3+WZnvK6YW0frog4CABwZdRCARTSZ\n/Eri7z/qCwvufpqhuHhrcJuekcdsk8r2rszqK00NN+fMtmH/HJ36oLXzoFTUQQBApWLrBqHR\nrQtqG7dCvO1C20KI9957r2fPngMHDvziiy9atmx5+PDht956y8/PLyYmxjgl/+23354yZUqf\nPn1MJfaZZ57p2LHjW2+9NWbMGI1GY3qrw4cPG6sm4OA8u4cIIZyq10jfvsU4kh8XE7dsoSzL\n9Xqxt5wjCmla94HGdR77/oB5p8slb0TrVnfKeO9hKwWzS9RBAIAjow4CqLjgvw9s7dFaNpTy\ngKOs10f27hC8+ZBtUtmecaFR1dRw+a6nHU/OXR+V1j/IyzapcHfUQQBAJWHrJUZr1KghbvdE\nzOXLl4UQHh4et70qJCTk66+/TktLe+yxx1q0aDFu3LgXXnihS5cuQojatWsLIXr27Dl48OCS\nD+AEBQWFhoZevHjxyJEbdqU+dOhQzDW1atWy6H8cUMV4dg/x7T/Yp8+j0rX9qHOiT8Us+DJl\nw1plg8Fmbro/dFKZtUCNEEIIqeRPS8/b//bGraiDAABHRh0EYEE9tx1Xu908E+tW+itXdjxq\n55Pn7t4dNJ4wYPF+aWq465sbbBEId0AdBABUKraeQejn5+fk5BQfH3/TeExMjBAiMDDwThdO\nmTJl1KhRBw8eVKlU7du39/Dw6NSpk4+Pz12KmZeXl7g2197E39/f9Gf1taYI4LC03YKFEM41\nayWsWmIcKUhOPLf4a7WLC2uNOqZ1Y+8x/Xn6n2dOpF6+05lyGDNNy4M6CABwZNRBAJYVvGlf\n5COd9fl5dz/tysWMrT1a99x23DapbE+jlnT6UruEQghxRSc/MGfX9ue7WjsSbos6CACoVGzd\nINRoNJ06ddq7d29+fr6bm5tx0GAwbNu2rWHDhn5+fne6UK/Xe3h49OjRw3iYkJBw6NChESNG\nCCFyc3OXLVtWq1at4cOHl7zkxIkT4to2vwDuxNgjlGVD0u8r5aIiIURhanLMt18b9Hrvh/op\nHA6KquakzDLU9o06CABwZNRBABYXvGlfRK/2Bp3u7qfJBkNEz3YhW4/c/bQq6sqsvkKIDmG7\nDieXvnpk7MV86yfC7VEHAQCViq2XGBVCjB07Nj8//9NPPzWNLFy4MDk5edy4ccbDwsLCw4cP\nG5+dMZo2bVq1atX27dtnPDQYDK+88oosy88995wQws3N7aOPPpowYcKpU6dMl6xdu3bHjh0d\nOnRo3LixLf6rgKpM2y24Tqf7m4x7UXJ2No7kJ8SeWzT7wpaNygYD7BJ1EADgyKiDACwuZMth\ndbXS1xo1FBVF9GxngzxKOTS1qxwWetd9IySVJHWuX3t9VJrpx1bpcBV1EABQeUjGXXBtSa/X\nh4SEbN++/dFHH+3YsePJkydXrVrVunXrPXv2GJ+dOX78eJs2bXr16rV582bjJUePHr3//vs1\nGs2oUaPq1Kmzbt26/fv3v/7667NmzTKe8McffwwaNMjNzW3YsGG+vr7Hjx9fs2aNh4dHRERE\nx44d75REq9VmZmYWFxczpx4QQmTsjMw+eiBh5Q+yXm8cca3n02TCy96PDFA2GKzqLjeE7206\ntz/p4h1elFhitNyogwAAR0YdBGAlW3u0lg2GUk9TV6sW/NcBG+RRyvT10TMjou9+jkc19fKn\nOpgOb9qcHlZFHQQAVB4KNAiFELm5ue+9997q1auTk5O9vLwGDRr0/vvv16lTx/jqrYVQCLFn\nz57//e9/+/bty8/PDwoKmjJlypgxY0q+5+7duz/44IPdu3fn5uZ6eXn17t377bffbtq06V1i\nUAiBm2TsjLx88mjcj4vl4iLjiFujgKbjX/IMfljZYLCe8j0xyg1kBVEHAQCOjDoIwEq2PBBk\nzmk1g9rcs2CVtcMoxZwGYaPa1b55vFXJEW7xbIk6CACoJJRpEFYSFELgVhk7Iy9HHY1bvti4\nH6EQws3Pv/HYF+r1YrqYfaJB6MiogwAAR0YdBOySmT1C94CmXZb+Ye0wSvlP+OnM/KL4rII9\n8ZeyC27YndFdo+7euM5jrevVr+lacpxbPAdEHQQA0CCkEAI3y9gZmRN9Kvb7Oaa1Rmu2auc/\nYoK2e4iywWANNAgdGXUQAODIqIOAvdryYCthxpddKmfnkK1HbJBHEdLU8FLPcdFIv4zoZDrk\nLs/RUAcBACqlAwCodLTdgj0CW/gNHS1d+zfipRNHktasyNgRoWwwAAAAAADurtc/J4QklXqa\noajo6Fsv2CCPoiQhbv0/hXFQ8na7YRLh+qi08j0/CgAAqignpQMAqIy03YKFEAbdlcRffjSO\nZO7ZIYQkC+HJPEL7ctNTotwQAgAAAKjqev1zwpy1RtO3b9ka3KZn5DEbRLIxOSzU+If7Z+/Z\nk3DxphcHtqo3vktD26cCAACVCjMIAdyetltwnc5dvR/qZxrJ3LM99a91GTsjlQsFAAAAAEDp\nem2PMuc0Wa/fGtzG2mEUtOzptrcOXi4ssn0SAABQ2dAgBHBH2m7B9Xr38+rxkGkkLWJj+j+b\n6RECAAAAACo583uE+ycOtXYYpTTVurXxrnXt6Opyo/8mXFIqDwAAqDxYYhTA3RjXGpX1+vQd\nW4UQQhbJ4b/J+mLTS7AzrDgK/J+9Ow+Tq67zxX+qu7N2VtJZIQsJCLYEECKLWeykZVBgwG0Y\nRRAURBFFuOAweh9nFJ354TJwvYAoIAoMmQG8XAXmCiNZSCdsIQtZGkLICkkgSWdPp9Pd1ef3\nR4UmJJ2uk6VOVdd5vZ56Hs859aninX9yrLzP9xwAAIpGdU1tlHuNbq1dOP3cMVXPvBJDpPhV\nlHfa58iupvSXHpqf2e7TreybHx9+ypCemd2natfv86sQAChWVhACWVSMrRp83md7f+SUPfth\nsO7pJzbNecE6QgAAAApcxHWE6V31qx6+L9dh8mLqtz725JVjnrxyzIUfeb/529HYnHm9vbXh\nvpdW5zEeAJAvCkIgu/4Tqodf9vXeJ53aemTNn/6z4d11eYwEAAAAUVTX1JZ27ZZlKAze/M1t\nc669NJZE+TG0T9c2j2/Z1RxzEgCgELjFKBBJ/3GTgnTLyofv3Va7MAiClsamN397W5hOD/27\nYv75hHvLAAAARaDqr3NqLvh449Yt7Y9tWTD3pcsvOvOBP8eTKmbnnlCxu7nljQ07W8IgCILX\n1+/YuLMxCIItu5oWrNt+8uD37zK696f8KgSAYmUFIRBV/098cvgXv9q5X0VmN71z58qH7133\nl+L84QQAAEAxGf/U80EqlXVsx/Klqx99MIY8cbqgcsAFlQNSqdRFJw383sSRN08aefOkkWOP\n7ds68MSid1dvbshjQgAgfgpC4CAMmPSpEV++qqznnusKGzduWP2fv9/w3LP5TQUAAABZVc9Y\nHKUjXHrHrUtu/2kMefJr0nH9WrdfWr3lhj/X7mpK5zEPABAzBSFwcIZe/JVRX7++9fkNO5a9\nsebPj2ycNT2voQAAACC76hmLo4y9/fjkzfNeznWY/OrV9QMPHmpMt7yzfff+Y/vccRQAKBoK\nQuCgdR04eOjFXwneu+yybvasTXNe0BECAABQ+KpraqOMzfvuFTkOErfMjUZbdyvKO3929KCy\nkveXVDZnHk4IACSDghA4aBVjq3p/5JQh539+z34YrPnzYw3r38lrKAAAAIgkSkcYhsH0T54W\nQ5g8+toZx/yPTxzbuvvq2m3rLCIEgMRQEAKHomJsVf9xk3qe8JHMbsvuhhUP3P3O00/kNxUA\nAABEEaUjTO9ueO7cj8UQJo8G9erSuv3A7DVXP7rwrpmr9h97qnZ96yvGdABADpVlHwFoS8W4\nic31O5fe+bPGTXVBEDRu3LDs3l+lysoGfvK8fEcDAACALKpraqeMr2x/prl+54zzz57wXy/E\nEyk2Vz6yYP2OxjbfenrJhqeXbPjX808YPahnzKkAgDgpCIFDN+hvLmjcVLfsnttaGpuCIGh4\nd92qyfeXdOrc/xOfzHc0AAAAyCJKR9i0bevMz0wY96cZ8USKR9Woo7btTgdB0BIGM5ZtamhO\n7/3uOR+qOKpbpwN9tp1FhHs/4xAAKHAKQuCwDPvi5S1NjcvvvzNsagqCYPsbtSsfvjcIglRZ\nWcXYqjyHAwAAgHaNuOzqlQ/d0/7M7rqNc6699PS7/j2eSDG4bMwxrdufPqH/DU/UDunVde22\nhsyRr4w5us+BC0IAoDh4BiFwuHqMPH74JVcGqT2722oXrn7kD2Fzc15DAQAAQHajrr6+90mn\nZh3bunBuDGFicEHlgL1fQRCUdykNgmBgz/cfRrijMX3AzwMAxUJBCByuirFVvStPPvpv/661\nI9yyYO6qR/6w4bln85oLAAAAshtz9+SgJMs/kYVhMG3iyfHkyYvUXtvT3qzLWw4AIC4KQuAI\nqBhbVTF24uBzL2o9snXB3GX3/urdKU/nMRUAAABEUf3coqwzLc3NU6tGxxAmLzLrCDPWb9+d\nxyQAQDwUhMCRUTG2asDEcwd/6sLWIztXLnv78ckbZ03PXygAAACIpEv/gVlnwnR62qTs9yPt\nQC6oHDC4V5cnrxzzvaqR5Z33dIQ1yzev39GY32AAQK6V5TsAUDwqxlYFQVDStfvaJx4NW1qC\nINjy6iud+vRpfQsAAAAK07jHp00/92Pp+p3tj7U0NU7/5Eernp0XT6rYpFJBr65lOxvTQRCk\nw/A/568d0qtLp5KS047pPbRP13ynAwCOPAUhcCRlisBUScnbj0/OHNnw3LPpHTuCMKwYNzGf\nyQAAAKBdVc/MnjrxlLC5qf2x9O7dRdkRfu7kQXfNXJXZ/uuSjZmNznPW3PnZjwzu1SV/uQCA\nnHCLUeAIqxhb1e/McRXjJrUe2TTnxXee/S/3GgUAAKDATZr2alCS/Z/L0rt3T6/+aAx5YnBB\n5YDMxjG921gp2Njc8vr6HfEmAgDioCAEjryKsVVHX/D5ARPPbT3y7pT/t/31RTpCAAAAClz1\nc4tSpRE6wsbdNReNjyFPbE4c0GP04J77H39rS0P8YQCAXFMQAjlRMW7i4E9d1H989Z79MFj5\n8O92rl6hIwQAAKDATZq+KMpY46a6Jbf/NNdhYlNWkvqXT5/w+y+efO/Fo2/51Idaj7+4anMe\nUwEAOaIgBHKlYmzVkPM/12PUnh8VLY27V/zuzoZ31ugIAQAAKHDVNbVBKpV17O3HJ79yzSUx\n5Mmp1ruMplJBRXnnQT27jB7cs/W5g2u37v7Tonfzlw4AyAkFIZBDFeMmDv/SlV0HDMrspht2\nvXHnz3csX6ojBAAAoMBVz1gcZWzrovlTP3FSrsPErKwkNaxvt8x2OgwfnrMmv3kAgCNOQQjk\n1qBP/e3Iq77TqVfvzG7Y1LTywd82vLtORwgAAECBi7iOMGxpmVo1OoY8cTpxQHnrdkNzy+y3\ntuYxDABwxKXCMMx3hrypqKioq6trbm4uLS3NdxYocm//n4dXPPCbxk11md0uFQOOu/Z7Zd3L\nK8ZW5TUXJJrzIABJ5jwIRDdlfGWUsfLhI8/696dyHSannqpd37odhuHPp6+YuXxTZveo7p0e\n+NIp67c3Xv3Ya+mwqc2P9y/vtP6Wc+IIymFzHgTACkIgDl0HHX3cNTd17tM3s7t74/oVv/91\ny+4G6wgBAAAocNU1tamysqxj9auXxxAmNqlU6pTBPVt3N+9q+tnU5Xc/v/pA7WAQBLvTsSQD\nAI4EBSEQh4qxVZ169T72q98q7do1c6R+9Yqlv/7l7o3r2/8gAAAA5N2kaQuyzoRhMGV85eZ5\nL8eQJx5/c0LF6ce898SQMJi5YtMrb2/JbyQA4EhREAIxqRhb1XXQ0cMv/XqqbM/NKxreWbv8\n93e989//ld9gAAAAkFV1TW2UsbnXXfHS5RflOkw8SlKpykE98p0CAMgJBSEQn4qxVT2P//Dw\nL32tpHOnzJHGjRtWP/KHDTOm5DcYAAAAZBWxI9yxfOmcay/NdZh4nP/h/mNH9B3Us8ugnl3K\nO3tYHQAUj+z3Twc4girGVgVBMKp33+X33ZFu2BUEwfYli9c88WiqtDTzFgAAABSs6praqZ84\nKWxpaX9sy4K5qx99cNjFX4kn1ZFyQeWAp2o/8CiQ8s5lSzfuXL+jMcrHtzU0pW78f627nxk9\n4P9eMeYIRwQAjhArCIG4VYyt6j50xNCLvxKk9hype7Fm3dN/3jhrej5jAQAAQASTnlsUpFJZ\nx97640MxhIlB1aijIs+mWl8lJakzhvbNYSwA4PBYQQjkQWax4OBzL1z39BOZI+unP1M+7NjW\ntwAAAKBgVc9YPGV8ZfszDevWzDj/7An/9UI8kXLnsjHHXDbmmMz2um27r35s4YEme3Ut2/ov\n58SVCwA4LFYQAvlRMbZqQNW5/c4Yu2c/DFY+fO+21xZaRwgAAEDh69J/YNaZpm1bi+ZhhABA\nkVEQAnlTMW7i0Z/7Uvfhx2Z2w+b0yn+/b/O8l3WEAAAAFLhxj08bcdnVWe81unXhvHjyAAAc\nFAUhkE/9x00a+dVruw8bkdkNm5tWP/KHzfNm6wgBAAAocKOuvr56xuL2Z8IwnDK+cvWjD8YT\nCQAgIs8gBPJs4CfPC1vSy+75VcM7a4MgCMLgrT8+1LnvUfWr3lz629uDMOx3xvhTf/nbfMcE\nAACANpR2L0/X72x/ZuUffj3s4q/Ek+cwXVA5YO/dp2rX7707uFeXJ68cE/GzAEAhs4IQyL+y\n8p7HXXNTzxP2POA9bG5edu//3rro1aAlDMJg08s1+Y0HAAAAB1L1zOysM03btz1/8TkxhAEA\niEhBCORfxdiq0q5dR1x6ddeBgzNHwuam9TOm7NkOg6kTKvOXDgAAANrT+6RTs87sWrdGRwgA\nFA4FIVAQKsZWlXTuPPKq67oOGrL/u2EYTJlQuerh++IPBgAAAO0bc/fkoCT7P7LpCAGAwqEg\nBApFxdiqTr16H3/tP7R96WUYLL/vf8ceCgAAALKrfm5RaffyrGO71q1Z/eiDMeQBAGifghAo\nIAv+53cW/tP1WxfPD1JBkNr33Zbm5injK/2UAgAAoABVPTO7S/+BWceW3nHr5nkvx5DniLig\nckC+IwAAOaEgBApIrw+PzjqzarIbjQIAAFCIxj0+LcrY3Ouu6EAdIQBQlBSEQAEZc/fkILXf\nysEPaqzbOHVCZTx5AAAA4KBU19RGGVvwg2/nOgkAQDsUhEBhqZ6xOOtMGAZTxle63BIAAIAC\nFKUjbN6x46XLL4ohzOFzl1EAKEoKQqDgRLzccv5NV+c6CQAAAByCEZdl/8W6Y/nSBT/4Tgxh\nAAD2pyAEClF1TW2qtLT9mZamxpoLxsaTBwAAAKIbdfX1pd3Ls45tW/paDGEAAPanIAQK1KTp\nCwdPPP8Dh8Jgn93GbZt1hAAAABSgqmdmB6lU+zO731k78zMT4slzOC6oHND6yncWAODIUBAC\nhavyll98YH//H1Zh0Lh18/MXnxNXIgAAAIhqxKVfzzqzu27jnGsvjSEMAMDeyvIdAKA9XfoP\n3L3h3fZndq1bM+sL1WP/OCWeSAAAABDFqKuv3zzv5a2L5rc/tnP1snjyHBEWEQJAcbCCECho\n4x6flirrlHWs4d11S27/aQx5AAAAILoxd08OSrL8+1vTlq1ujQMAxExBCBS6SdNezfrYhiAI\n3n588otfuTCGPAAAABBd9XOLss7sWrdm9aMPxhAGACBDQQh0ANUzFkfpCHeueHNq1egY8gAA\nAEB0XfoPzDqz9I5bN897OYYwAACBghDoKCJ2hGE6/fov/jmGPAAAABDRuMenRRmbd8OVuU4C\nAJChIAQ6jOoZi6OMrXnisRcvvSDXYQAAACC66prarDNhOj1t0qkxhAEAUBACHUmUH1RBENSv\nXp7rJAAAAHBQep+UvfxraWqc+ZkJMYQBABJOQQh0MJEuugyDKeMrPbwBAACAwjHm7slRftLu\nrtv4/MXnxJAHAEgyBSHQ8URcRzj3uivmXHtprsMAAABAdFHWEe5at2bBD74TQxgAILEUhECH\nFLEj3LJgrnWEAAAAFI4xd0+O0hFuqJmy5PafxpAHAEgmBSHQUVXX1AapVNaxudddsfrRB2PI\nAwAAAFGMuXtylN+zm16eGUMYACCZFIRAB1Y9Y3GUseW/uyPXSQAAACC6KL9n699eXXPR+BjC\nAAAJpCAEOrYo9xpN1++ccf7ZMYQBAACAiLr0H5h1pnFTnRuNAgC5oCAEOrwoHWHTtq3PX3xO\nDGEAAAAginGPTwtKsv/T3NuPT9487+UY8gAAiaIgBIpBlAe871q3ZuZFE2IIAwAAAFFUP7co\nysMIF/7TDTGEAQASRUEIFIMxd0+Ocm+W3Zs2vnLNJTHkAQAAgCiiPIywactmN8UBAI4sBSFQ\nJMY9Pq20e3nWsa2L58+/6Rsx5AEAAIAoojw4Y9e6NVPGV65+9MEY8gAASaAgBIpH1TOzgyAI\n2r87SxjUvVyz6uH7YkkEAAAA2UV5cEYQBGuf+mOukwAACaEgBIpKdU3tabfdn2UoDJb99rZY\n4gAAAEB2Y+6eHGUdYaqsNIYwAEASKAiBYtN3zFlZZ8IwmDK+cvO8l2PIAwAAAFF06T+w/YEd\nS5c8d+7H4gkDABQ3BSFQhKJcdxkEwdzrrnj9F/+c6zAAAAAQxbjHp2Wdaa7fueT2n8YQBgAo\nbgpCoDhF7AjXPPGYZ7wDAABQIKL8mN26cF4MSQCA4qYgBIpWxI5w6R23utcoAAAAHcX2pa9Z\nRAgAHCYFIVDMInaE8757RY6DAAAAQCSl3cuzzlhECAAcJgUhUOSidIRhGEybeHIMYQAAAKB9\nVc/MzjqzfelrnpcBABwOBSFQ/KJ0hC3NzVPGV7rXKAAAAHlX2r08SKWCVBCk2h7o3Peo8hGj\n4g0FABQVBSGQCFHvNXrDlblOAgAAAO2remZ29YzFXQfboqiIAAAgAElEQVQOCcK2Bxo3b5p/\n49dd5AoAHDIFIZAUke41mk4/f/E5MYQBAACA9jW8s7b9gbnXXTHzMxPiCQMAFBkFIZAgXfoP\nzDqza92aOddeGkMYAAAAaEeqrFPWmd11G60jBAAOgYIQSJBxj08r7V6edWzLgrmv/+KfY8gD\nAAAABzJp2qtRrnP1AxYAOAQKQiBZqp6ZHZRk/6tvzZOPvXDJeTHkAQAAgAMZ9/i07EMRfuQC\nAOzD/4EAEqf6uUXZh8Kg/q2VS27/ae7jAAAAwAF16T+w/QqwftUKdxkFAA6WghBIouqa2ihj\nbz8+2a8sAAAA8mjc49OClpb2Zxb/9OZ4wgAARUNBCCRUxI5w3nevyHEQAAAAOCy717874/yz\n850CAOhIFIRAckXpCMMwmDK+0jpCAAAA8qVL/4FZZ5q2bV396IMxhAEAioOCEEi0EZddHWVs\n7nVXzPj0mbkOAwAAAPsb9/i0KL9e3/rjQzGEAQCKg4IQSLRRV18f8V6jTTu35zoMAAAAtGnU\n1ddnnWlYt+a1n/3TxlnTN86anvtEAEDHpiAEiPY8wjCYOqEy91kAAACgDVFuNLpj2ZIYkgAA\nRSAVhmG+M+RNRUVFXV1dc3NzaWlpvrMA+TdlfIT+LxUc943/MfzLV+U+DuSc8yAASeY8CHRE\n2X+3pvb8b0lpp4nTXs11Hjou50EArCAE2OOYz3wx+1AYvPnb21645LzcxwEAAIAPKkllGQj3\nvFrSzbEEAgA6KgUhwB4n3PhPvU86NftcGNS/tXLGp8/MfSIAAAB434gvfz3qaHJvGQYARKIg\nBHjfmLsnR3oeYRA07dw+/6Zv5DoPAAAAtBp19fXVNbWl3csjzIYbZ03PdR4AoONSEALsK1JH\nGAabXq7JfRYAAAD4gKpnZkcZW/D9b+U6CQDQcSkIAdrw8f94OutMGAZTxldOqzo5hjwAAADQ\nKsoDMjI/WjOvly6/KIZUAEAHoiAEaEO3Y4addvv9USZb0s2eRwgAAECcxtw9ueeHKqPPd+k/\nMHdhAICOSEEI0La+Y86K+jzCHdtnfaE613kAAACg1Rm/+2N1Te3Rn/58+2P9zhx39EUXf+i7\nP4gnFQDQUSgIAdoTsSNseHfd9L85PddhAAAAYG8Vn6guHzisnYG6l2au+fOjG1+YEVskAKBD\nUBACZBGxI0w37Fr18H25DgMAAACtKsZWnfCPP8o6tvSOW+dce2nu4wAAHYaCECC7SB1hGLz5\nm9umfuIjuY8DAAAAe/Qdc1bfUz6Wdaxzv/4xhAEAOgoFIUAk1TW1/U45K+tY2BJOnaAjBAAA\nID6n3flA1pn1056Zcf7ZMYQBADoEBSFAVKfeeX+QSmUdC8Nw6oTKGPIAAABARmn38iAIglQQ\ntPmzNRUEqaB8xKh4QwEAhUtBCHAQqmcsjjIWhsGUCZUeSQgAAEA8qp6ZnSotDcIgCNt6OwyC\nMNiyYO78f7hm46zpmVfMCQGAgqIgBDg4kZ5HGARBGCy75/YcZwEAAIA9en14dNaZuheee/vP\nj8QQBgAocApCgINWXVMblGT/+zNsca9RAAAAYjLm7sl7noux/11GU3teqdKS7kcPiz0aAFBw\nFIQAh6L6uUVRxjL3Gn3hkvNynQcAAAD2PBdj/7uMhnteYbpl/cwpsecCAAqOghDgEEW/12j9\nWystJQQAACAOJSV71gvu471FhOXHDM8c8BhCAEgyBSHAoauuqS3p1DnKZGYp4aqH78t1JAAA\nAJKs64BBe9YL7uO9RYR9TzszD7EAgAKjIAQ4LBOnzj/mgr+PNBoGb/72tvk3fSPHiQAAAEiu\nQedccPRFFx990cVdjuq/9/FUKuh35rh+Z47r1KtP60GLCAEgsVJhuP8FRUlRUVFRV1fX3Nxc\nWlqa7yxAxzb365dsfn1+pNFU0LlX3/FPzcpxIsjOeRCAJHMeBIrY1KrRYTrdzsCQC77Qf9yk\nzHbF2Ko4MlFgnAcBsIIQ4Ag47d7Jnfv2izQaBo3bNk8/5/QcJwIAACChen14dPmIkeUjRpaU\nle19vOuAQXteAwe3Htw4a7p1hACQQApCgCNj/BM13Y8eHmk0DNINu6ZMqHzhkvNyHAoAAIDE\n2bpo/s6Vy3euXN7S3Lz38Yb172Reb/3fyfnKBgAUCAUhwBFz9n/+pbqmNup0GNS/vXLqJ0bn\nMhEAAADJk0oFqWDP6wPH97y6Dxman2AAQMFQEAIcYdU1td2HRF1KGLakp008JceJAAAASJDq\nGYuDMNjz2tt7B7cumr/gh9/NTzgAoDCUZR8B4CCd+L1/nnvD1yIOtzQ3TT/n9Kq/zslpJAAA\nAJKldflguN+RIOhyVMXes/s/hrBibFVOUgEAhcEKQoAjr++Ys067/f7o8+mGXfNv+kbu8gAA\nAJAo1TW11TNqq2fU9j3xo3sOhUEqSJV26Z55NW3fvvx3dzTv3J7XmABA3igIAXKi75izqmtq\nB5w5MeJ83Us1UyZUut0oAAAAR1DXQUNat8OWML2rfs9r547tb7y2/8LBVhtnTW99xZATAIiZ\nghAgh0b/8q6P/8fTUafDoKW56YVLzstlIgAAABKk8pZfdO7e+0DvpnfujDMMAFA4FIQAudXt\nmGHVNbX9Tjkr4vyut1fmMg4AAADJ0qm8VxAEQSroffJpmVeqZM8/CYZhSz6TAQD5U5bvAACJ\ncOqd98//9tfqXn0x62QYBlMnfGTSjMUxpAIAAKDoHXfj9/c5svCH3w0bW4Ig2LHsjXwkAgDy\nzwpCgJiceuf9I7709SiTYRhOmVA5/ZzTcx0JAACABOo6YM+DCdO76vObBADIFwUhQHxGfeuG\niB1hEAbphl1TJ1TmOBEAAACJ02XAoMxGmE6HLdnvMrpx1vTcBgIAYqcgBIjVqG/dUF1TG3E4\nc7vRnOYBAAAgaVKpPRvphl07li3JaxYAID8UhAB5UF1T+5Ef3BplMgzD+Td9I9d5AAAASI5u\nQ4a2brfsbojykY2zpltHCADFREEIkB+DPn3hx//j6SiTdS/X1P7rD3KdBwAAgKJUMbZqnyPd\njhneur3micca1q+LNRAAUAAUhAB50+2YYaVdu2WfC4N1f/nTlAmVNReMzX0oAAAAil3rPUaD\noGnrlrpZz0X8nHWEAFA0FIQA+VT11zn9Tjkr0mgYNG7dvOrh+3KcCAAAgCLXdcCg0m7vX67a\nXL8jDMM85gEA4qcgBMizU++8v7qmNlUS6S/kN39726zPTcx1JAAAAIrJPncZLe3W/fhr/6Gk\nc5fM7pYFc9+4/SfNO3fkIRkAkCcKQoCCMOm5RQPOjND8hUHDxnfdaxQAAIDD0aX/wJLOnVp3\nG959Z+vi+RE/6y6jAFAEFIQAhaJ/9bmR5sKgadtmD34AAADgcPQY+aG9d8PGpnwlAQDil0ry\nHcYrKirq6uqam5tLS0vznQVgjynjKyNOlnbuctItt+9zoxiIznkQgCRzHgSSZv9rTMOmxrqX\nZq558o+Z3e7DRhx3zU0Rn3/RJr9POxDnQQCsIAQoLNU1tREn0427F3z/WusIAQAAyKpibNU+\nr1Snzr1Hf7R1oH71yvq3VuYvIAAQKwUhQMGprqmNWBOGYfjq978141NnqAkBAAA4WGW9+nQd\nNKR1t+GdtbvWrM68GjdtzGMwACDXyvIdAIC2Hf/N7y39zS+yz4VBU/2OJf/248yeO7oAAAAQ\nUSqVGnTuhSsf+E1m9+3HJ+/97uBPXThg4qfykQsAyDkrCAEK1LAvf3XAmRMjjYZBw8Z3X/3+\nt1b8/q4chwIAAKColBz4EXR1L82KMwkAECcFIUDhGv3Lu3qNODHSaBgEYdC8u8G9RgEAAIiu\n29ARZT17tvlWurFh+9LXty99vWH9uphTAQC5lgrDMN8Z8qaioqKurq65ubn0wJdKAeTdsnv+\n18qH7ok0mgpKO3WumjI/x4koEs6DACSZ8yBA6wWmzTu271y5LGhpyeyunzm1ftXyfYaH/O3n\n+4+rbv8LPfOiA3EeBMAKQoBCN+rq66traiONhkG6sXH2N7+U40QAAAAUj7IePXufdGrvk0/L\nvLocVbH/zOa5L8cfDADIHQUhQMdQXVNbUtYpyuS2xa/O/4drcp0HAACAotT75NNSJal9Dobp\ndF7CAAA5oiAE6DAmTnu1/8fGR5mse+G5KeMrVz/6YK4jAQAA0EEd6I6gvStPPuHGfx551XUj\nr7qu29FD4w0FAMREQQjQkVR84pOR5lJBSadO5SNG5TgOAAAARahLxYCex5/Y8/gTy7qX5zsL\nAJATCkKAjmTIRX9XXVPba8SJWebCoKWpaf6NX59z7aWx5AIAAAAAoMMoy3cAAA7asd+8bsuc\nl1c99of2hlJBEASdevfdOGt667ED3UAGAAAA2tG4eVPzju1lPXrmOwgAcGRYQQjQ8VSMrepz\n+hmn3Prr9obCIAiDDTVTNsycGlcuAAAAOpKsV5GmyjplNlp2N9S/tSLngQCAuCgIATqkirFV\nFWOrSrp0OeBEKghSQVmPHl0HDm49tvdqQgAAAGhf79Efbd3e/nrt1oVzFv/Lzeuf++88RgIA\njggFIUAHNvHZeQd8LwyCMGjesWP57+5Y8dBvYwwFAABAkehyVEXr9sYXZ6z89981b9+e3t2Q\nx0gAwBGhIAQoCqm2jrz3Kh86ovWwRYQAAABElOrUKd8RAICcKMt3AAAOS3VNbWbj9X/94Zq/\n/J89R8Og3xnjjvncJXmLBQAAQEeQeQzhga4l7Xb00J7Hn7h96et7H1w/7ekN054++f/7de7T\nAQC5oiAEKE6bXnnhmM9+KUjtv7SwvUWEWR9QDwAAQHKkUiUjr/xO47YtS37545bGxj1HwyDM\nayoA4PApCAGKxIk/+EnThvXrX6nJ7IbpdNjWnUcBAAAgutd+/sPGzZuCYN9fmK/+47cyG6Ou\nvr7HyA/FngsAOCwKQoAiUvqBv9V3Ln+jx6gTDuoLNs6abhEhAAAArfqc+rF0/c6Gd9fuXLUi\nCN9fOtjvzHGZjU69+uQpGgBw6BSEAMVj9C/vWvjDG9ZPeyazu7V2wcEWhAAAALC3wedelNkI\nmxrf/M3t9WtWZXbrXp65z0bnXn3HPzUr/oQAwCFQEAIUlT6jP7rhuf8OW8IgCIJ0+hC+IfOE\nQusIAQAAyGi9m+gH7PccwnRzYxtjAEBBKsl3AACOpG5HDwtKSjPbm+fPbt6+Lb95AAAAKAap\n914AQFGwghCg2JSUdUo3NwdBkN61q/6tlb0qTz6EL8msIzwQ6wsBAACS45Rbf53ZaNyw/rV/\n+1FeswAAR4aCEKDY9Dtr/Prp/53Z3rJwXsP6d1rfKh8+svzY4/KUCwAAgAK1/2WgbV422rmi\nfxBaRwgAxUBBCFBUKsZW7VzxZmtBuHnuS3u/mypJjfrmjeXDR+YjGgAAAB3Sgh98O2xp2bNz\n4HYwvXPnlPGVrbv9x1ef/K935DgaAHCIPIMQoNiUdO5yoLfClrB+9Yo4wwAAANDRdRs6Iuro\ne48qTJWken14dA4zAQCHxwpCgGLTbcgxvU8+beuCuW2+u+21hd2HHWsRIQAAABEdf81Nrds7\nly5583e/anOstLy86unZcYUCAA6LghCg6KRSI758VcvfNYbp5syBpu3blvzbLZntHcveWHbP\nrz78j7d06tk7fxEBAAAoaHs/lbDN5xECAB2aghCgOJV07hwEnTPbqZKSVElJ6xMjwuam3Rve\nVRACAAAAACSTZxACFJu9L/PMKOnSddCnLyrt2vX9Q2EYZyQAAAAAAAqHFYQAiTBgwjld+w9c\n8YffZHYb1q3tMeqE/EYCAACgwyk//oRTbv11m2/tf7kqAFCwrCAESIrS8p6t27vr1ucxCQAA\nAAAAeWQFIUBSlA87NlVWGjangyDYuvjV3Rve3X8m1anTwEmf7j50RNzhAAAAAACIi4IQoAhV\njK3aOGt6W++kMv/TtHVL09YtbX624Z21H775J7lKBgAAAABAvrnFKECCdOrdJ+tM05bNMSQB\nAACgo/BwQQAoPlYQAiTIsL+/4t2/PtVcX7//W01bNzXv2BEEQRCEYXNTqqxTzNkAAAAAAIiH\nghAgQcqHjxx51XVtvrXmycc2zpwWBEHYEm6eN/uoj3083mgAAAAAAMREQQhQnA78GMK2denX\nv3W7efu2IAjefuR3dfPntDmcClKTZiw+vIAAAAAAAOSHZxACEARB0OeU01u335n6l9qffn/X\n2+uCMGjzFYZhHqMCAAAQs4qxVZ5ECADFxApCAIIgCILU+5eMhE1NTU1bm3dsz2McAAAAAABy\nxApCAIIgCEq7de/Uu8/eR8KwJV9hAAAAAADIHSsIAYrW/rd/aeephKlUauRV19W9VFO/ekX9\n6pW5zAUAAECHlPmZeVAPvAcACpOCEIA9ug4YtHHWtCAIglT24SnjK1u3u/SrGPenGTnLBQAA\nAADAkaQgBOCQ7FUi9hh1Qv5yAAAAAABwcPLzDMItW7Zcf/31I0aM6Ny585AhQ6666qp169a1\n/5FVq1ZdeeWVRx99dOfOnYcPH37jjTdu3779ML8TgH2ccuuvT7n11yOv/M6AiZ/q1ndAO5PV\nM2pbX6f+272xJSwOzoMAJJnzIABJ5jwIQIFIhWEY83+ysbHx7LPPnjt37uc///nTTjtt2bJl\nDz300DHHHDNnzpy+ffu2+ZEVK1acccYZdXV1X/jCF0aPHv38888//fTTZ5111owZMzp16nRo\n3xkEQUVFRV1dXXNzc2lpaa7+tAAFJvqzIlbd/5stbyw40LvVNbVHJlDyOA8CkGTOgwDFoc2f\nlpknFNIO50EACkgYu9tuuy0Igp/97GetRx555JEgCG688cYDfeSLX/xiEAT33ntv65Hvfve7\nQRDcddddh/ydYRj269cvCILm5uZD/8MAdDQbZk6L+Hrla3//7LgPH+iV7z9HB+Y8CECSOQ8C\nFIc2f0XmO1QH4DwIQOHIwwrCj370o8uWLduwYUOXLl1aDx5//PHbtm175513UqnU/h/p3bt3\njx493n777dZ3t2zZMmTIkFNOOeWFF144tO8MXCkDJJIVhHnnPAhAkjkPAhQHKwgPjfMgAIUj\n7mcQNjQ0LFy48Iwzztj7jBUEwbhx49avX79ixYr9P7Jz585t27Ydd9xxe5/P+vTpc/zxx8+d\nOzedTh/CdwKQ1fCvfTPzSML9X9rBQ+Y8CECSOQ8CkGTOgwAUlLgLwrfeeiudTg8dOnSf48OH\nDw+CYPny5ft/pFu3bmVlZRs3btznePfu3RsbG9etW3dQ37lly5bN74l/9SRA3rmiM7+cBwFI\nMudBAJLMeRCAglIW839v+/btQRCUl5fvc7xHjx6t7+6jpKTk7LPPnjlz5sKFC0ePHp05uGTJ\nkjlz5gRBsGPHjvr6+ujfeeyxx27ZsuWI/FkA4GA5DwKQZM6DAEXDtaeHwHkQgIIS9wrCjP1v\nfp25aOVAN8X+8Y9/HIbhhRde+Kc//WnJkiWPPPLIeeedN2zYsCAIWpfPR/zOESNGjHyPW2wD\nkBfOgwAkmfMgAEnmPAhAgYh7BWGvXr2Ctq6I2bZtWxAEPXv2bPNTEydOvOOOO26++ebPfvaz\nQRD06NHjJz/5ySuvvLJs2bK+ffum0+no3zlv3rzW7czDeA/zTwTQ4bRzpWebz5nnCHIeBCDJ\nnAcBSDLnQQAKStwF4bBhw8rKylatWrXP8WXLlgVBcPzxxx/og9/+9rcvv/zyuXPnlpSUnHrq\nqT179jz99NMHDx7cp0+f7t27H9p3AkDMnAcBSDLnQQCSzHkQgIKSiv+BtGedddbChQs3bNjQ\nvXv3zJGWlpahQ4eWlpauXr36QJ9Kp9N7r3xfvXr1iBEjLrvssgceeOCQvzNzpUxzc7M19QAZ\nEVcQetrE4XAeBCDJnAcBSDLnQQAKRx6eQXjllVfW19f/4he/aD1yzz33rF279qqrrsrsNjQ0\nzJ8/P3OdS8bNN9/crVu32bNnZ3ZbWlpuuOGGMAyvueaaiN8JAAXCeRCAJHMeBCDJnAcBKBx5\nWEGYTqcnTpxYU1Nz0UUXnXbaaa+99tojjzxy0kknvfjii5nrXBYtWjR69Ojq6upnn30285EF\nCxacffbZnTt3vvzyy4866qgnn3zylVde+d73vvfzn/884ne2yZUyAPuLsojQCsLD4TwIQJI5\nDwKQZM6DABSOPBSEQRDs2LHjxz/+8WOPPbZ27doBAwZ85jOfueWWW4466qjMu/ufCIMgePHF\nF3/0ox/Nnj27vr6+srLy29/+9le/+tXo39kmJ0KA/SkIY+A8CECSOQ8CkGTOgwAUiPwUhAXC\niRBgfwrC5HAeBCDJnAcBSDLnQQDy8AxCAAAAAAAAIF8UhAB8QMXYKgsEAQAAAACKmIIQAAAA\nAAAAEkRBCAAAAAAAAAlSlu8AABQidxkFAAAAAChWVhACAAAAAABAgigIAQAAAAAAIEEUhAAA\nAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACA\nBFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAA\nAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAA\nkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURAC\nAAAAAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAA\nABJEQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApC\nAAAAAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAA\nAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRB\nCAAAAAAAAAmiIAQAAAAAAIAEURACAAAAAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAA\nAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIo\nCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAA\nAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQ\nBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURACAAAAAABAgigIAQAA\nAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJ\noiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAA\nAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAg\nQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQA\nAAAAAIAEURACAAAAAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAA\nJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQA\nAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAA\ngARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQ\nAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURACAAAAAABAgigIAQAAAAAAIEEUhAAAAAAA\nAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJEQQgAAAAAAAAJoiAEAAAAAACABFEQ\nAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAAAAAASBAFIQAAAAAAACSIghAAAAAA\nAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECCKAgBAAAAAAAgQRSEAAAAAAAAkCAK\nQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAAAAAAAAmiIAQAAAAAAIAEURACAAAA\nAABAgigIAQAAAAAAIEEUhAAAAAAAAJAgCkIAAAAAAABIEAUhAAAAAAAAJIiCEAAAAAAAABJE\nQQgAAAAAAAAJoiAEAAAAAACABFEQAgAAAAAAQIIoCAEAAAAAACBBFIQAAAAAAACQIApCAAAA\nAAAASBAFIQAAAAAAACSIghAAAAAAAAASREEIAAAAAAAACaIgBAAAAAAAgARREAIAAAAAAECC\nKAgBAAAAAAAgQRSEAAAAAAAAkCAKQgAAAAAAAEgQBSEAAAAAAAAkiIIQAAAAAAAAEkRBCAAA\nAP8/e3ceH1V1/3/8M9lJSCAbe9i3sEQIEajsi8gmimwCShARqNBWCwWLWlvcQJGiFn2ArSLy\nEFkU3LVSAwpRQIzIJoSwuBAMawgkkEwyvz9uO9/5ZZk5M7mZmTv39Xz00YfcnNw59575nPe9\ncyYzAAAAAGAiLBACAAAAAAAAAAAAJsICIQAAAAAAAAAAAGAiLBACAAAAAAAAAAAAJsICIQAA\nAAAAAAAAAGAiLBACAAAAAAAAAAAAJsICIQAAAAAAAAAAAGAiLBACAAAAAAAAAAAAJuKbBcJL\nly498MADzZs3DwsLa9So0fTp03Nzc53/yg8//KKLFAwAACAASURBVHD33Xc3bNgwNDQ0MTFx\n9OjRu3fvtv909erVlso88cQTNXwoAAC4jRwEAJgZOQgAMDNyEADgJ0K8/5DFxcWDBg369ttv\nx4wZk5qampOTs2bNms8//3zv3r2xsbGV/srBgwd/85vfhIaGzpkzp3Xr1qdOnVqxYkWvXr0+\n/fTTgQMHisilS5dEZOLEiU2bNnX8xV69ennhiAAAUEcOAgDMjBwEAJgZOQgA8CM2r1u2bJmI\nLFmyxL5l/fr1IjJ37tyqfmXSpEki8vnnn9u37Nu3T0T69++v/fOxxx4TkT179rjVk/j4eBGx\nWq1uHgEAAJ4jBwEAZkYOAgDMjBwEAPgPH3zE6Jo1a6Kjo//whz/Yt4wfP75169ZvvPGGzWar\n9FdycnJEpHfv3vYtKSkpMTExJ0+e1P6pvVOmbt26NddtAAB0QQ4CAMyMHAQAmBk5CADwH95e\nILx27dr+/fu7d+8eHh7uuL137955eXknTpyo9Lfat28vIkeOHLFvOXfu3JUrV5KTk7V/2oOw\ntLT0559/PnfuXE0dAAAA1UAOAgDMjBwEAJgZOQgA8CveXiD86aefSktLk5KSym1v1qyZiBw/\nfrzS31qwYEFsbOxdd921Y8eOM2fOZGVl3XnnnREREdpf0ItIfn6+iCxfvjwxMTEpKSkxMbFd\nu3ZvvvlmxV1t2bJl4/8UFxfreWwAALhCDgIAzIwcBACYGTkIAPArIV5+vIKCAhGJiooqt712\n7dr2n1aUnJz81Vdf3XHHHX369NG2NG3adOvWrT169ND+qb1TZt26dfPnz2/cuPHhw4dXrFgx\nefLkgoKCmTNnOu7qnnvu0RoDAOB95CAAwMzIQQCAmZGDAAC/4u0FQo3FYim3RfuU7YrbNYcP\nHx4xYoTVan3uuefatm2bl5e3bNmyYcOGbdq0afDgwSLy6KOPzpkzZ+jQofaIveuuu1JTUxcu\nXHjPPfeEhYXZdzV16tTCwkLtv9esWXPt2jXdjw4AAOfIQQCAmZGDAAAzIwcBAH7C2wuEMTEx\nUtk7Yi5fviwi0dHRlf7WtGnTfv3116NHjzZu3Fjbcuedd7Zt23bq1KknTpwIDQ0dOHBguV/p\n0KHD8OHDN2/evG/fvhtvvNG+/e9//7v9v99++22CEADgTeQgAMDMyEEAgJmRgwAAv+Lt7yBs\n2rRpSEjIqVOnym3PyckRkTZt2lT8lStXruzatatHjx72FBSRyMjIQYMG/fLLL0ePHq3qserV\nq6f9uj5dBwCg2shBAICZkYMAADMjBwEAfsXbC4RhYWHdunXbvXu3/e/ZRaSsrGz79u1JSUlN\nmzat+CtFRUU2m63iW1q0LdeuXbty5crLL7+8bt26cg0OHjwo//uaXwAA/AE5CAAwM3IQAGBm\n5CAAwK94e4FQRO69997CwsJnn33WvmXVqlWnT5+ePn269s9r165999132ntnRCQxMbFFixbf\nfPON45tiLl26tHXr1piYmE6dOkVGRj755JMzZsz44Ycf7A3efffdHTt2dO3atWXLll45LAAA\nlJCDAAAzIwcBAGZGDgIA/IdF+xZcbyotLR0wYMCXX3552223paamHj58eP369Z06dfr6668j\nIyNF5MCBA507dx40aNDWrVu1X9m8efPYsWNjY2NnzZrVqlWr3Nzcf/7znydOnFixYsX9998v\nIu+9997tt98eGRl55513NmrU6MCBA1u2bImOjs7IyEhNTa2qJwkJCefPn7darcHBwd45dgAA\nyEEAgJmRgwAAMyMHAQB+xOYLBQUF8+bNa9asWWhoaOPGjWfPnn3+/Hn7T/fv3y8igwYNcvyV\nzMzM22+/PTExMSQkJDY2dvDgwR9++GG5BsOGDatbt25ISEijRo2mTJmSnZ3tvBvx8fEiYrVa\ndTw0AABcIgcBAGZGDgIAzIwcBAD4CR/8BaH/4J0yAAAzIwcBAGZGDgIAzIwcBAD44DsIAQAA\nAAAAAAAAAPgKC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAA\nAAAAAAAAAJgIC4QAAAAAAAAAAACAibBACAAAAAAAAAAAAJhIiK874Hv/+c9/goJYKAWAgDVg\nwIDg4GBf98J/kYMAENjIQefIQQAIbOSgc+QgAAQ2FzloM7Fp06aFhLBECgAB7urVq74OHD9F\nDgKAGZCDVSEHAcAMyMGqkIMAYAbOc9DUMfCvf/2ruLj4+vXrOu7z+++/P3LkSLdu3Vq2bKnj\nbuEdV69e/eijj2JjYwcPHuzrvsATX3zxxa+//jpo0KC4uDhf9wVu++WXXzIzM1u0aJGWlqbv\nnnm7aFXIQZRDDhodOWho5KD3kYMohxw0OnLQ0MhB7yMHUQ45aHTkoKH5LAe99rYUk5g/f76I\nrFy50tcdgSdycnJEJDU11dcdgYeGDBkiIrt27fJ1R+CJt99+W0SmTZvm646gWshBQyMHjY4c\nNDRyMDCQg4ZGDhodOWho5GBgIAcNjRw0OnLQ0HyVg3zGNAAAAAAAAAAAAGAiLBACAAAAAAAA\nAAAAJmLq7yCsCZ07dx43bhwftG1QUVFR48aNa9Giha87Ag/16dOnTp06fNC2QTVp0mTcuHG6\nf9A2vIwcNDRy0OjIQUMjBwMDOWho5KDRkYOGRg4GBnLQ0MhBoyMHDc1XOWix2WxefkgAAAAA\nAAAAAAAAvsJHjAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgKhbi5d\nuvTAAw80b948LCysUaNG06dPz83N9XWnoGT16tWWyjzxxBO+7hqqVFJS8uc//zk4OLjS726l\nHv2fkxGkJA2KujMuis6IyEGjIwcDD3VnXBSdEZGDRkcOBh7qzrgoOiMiB43Of3IwpCZ2akLF\nxcWDBg369ttvx4wZk5qampOTs2bNms8//3zv3r2xsbG+7h1cuHTpkohMnDixadOmjtt79erl\nox7BhcOHD991113Z2dmV/pR69H/OR5CSNCLqztAoOsMhB42OHAw81J2hUXSGQw4aHTkYeKg7\nQ6PoDIccNDr/ykEb9LBs2TIRWbJkiX3L+vXrRWTu3Lk+7BUUPfbYYyKyZ88eX3cESvLz82vV\nqpWWlpadnR0eHt6tW7dyDahHP+dyBClJI6LuDI2iMxZy0OjIwYBE3RkaRWcs5KDRkYMBiboz\nNIrOWMhBo/O3HOQjRvWxZs2a6OjoP/zhD/Yt48ePb9269RtvvGGz2XzYMajQluXr1q3r645A\nidVqvf/++zMzM1u3bl1pA+rRz7kcQUrSiKg7Q6PojIUcNDpyMCBRd4ZG0RkLOWh05GBAou4M\njaIzFnLQ6PwtB1kg1MG1a9f279/fvXv38PBwx+29e/fOy8s7ceKErzoGRfaqKy0t/fnnn8+d\nO+frHsGZuLi4pUuXhoaGVvpT6tH/OR9BoSQNiLozOorOWMhBoyMHAw91Z3QUnbGQg0ZHDgYe\n6s7oKDpjIQeNzt9ykAVCHfz000+lpaVJSUnltjdr1kxEjh8/7otOwQ35+fkisnz58sTExKSk\npMTExHbt2r355pu+7hc8QT0GAErScKg7o6PoAgn1GAAoScOh7oyOogsk1GMAoCQNh7ozOoou\nkFCPAcDLJRlSQ/s1lYKCAhGJiooqt7127dr2n8Kfacvy69atmz9/fuPGjQ8fPrxixYrJkycX\nFBTMnDnT172De6jHAEBJGg51Z3QUXSChHgMAJWk41J3RUXSBhHoMAJSk4VB3RkfRBRLqMQB4\nuSRZINSNxWIpt0X7VN+K2+FvHn300Tlz5gwdOtQ+e951112pqakLFy685557wsLCfNs9eIB6\nNDRK0qCoO+Oi6AIP9WholKRBUXfGRdEFHurR0ChJg6LujIuiCzzUo6F5uST5iFEdxMTESGUr\n8JcvXxaR6OhoH/QJ7hg4cOCYMWMc31vRoUOH4cOHX7hwYd++fT7sGDxAPQYAStJwqDujo+gC\nCfUYAChJw6HujI6iCyTUYwCgJA2HujM6ii6QUI8BwMslyQKhDpo2bRoSEnLq1Kly23NyckSk\nTZs2vugUqqtevXoicuXKFV93BO6hHgMVJenPqLuARNEZFPUYqChJf0bdBSSKzqCox0BFSfoz\n6i4gUXQGRT0GqporSRYIdRAWFtatW7fdu3cXFhbaN5aVlW3fvj0pKalp06Y+7BtcunLlyssv\nv7xu3bpy2w8ePCj/+wZXGAj1aHSUpBFRd4ZG0QUY6tHoKEkjou4MjaILMNSj0VGSRkTdGRpF\nF2CoR6PzfkmyQKiPe++9t7Cw8Nlnn7VvWbVq1enTp6dPn+7DXkFFZGTkk08+OWPGjB9++MG+\n8d13392xY0fXrl1btmzpw77BM9SjoVGSBkXdGRdFF3ioR0OjJA2KujMuii7wUI+GRkkaFHVn\nXBRd4KEeDc37JWnRvqAS1VRaWjpgwIAvv/zytttuS01NPXz48Pr16zt16vT1119HRkb6undw\n4b333rv99tsjIyPvvPPORo0aHThwYMuWLdHR0RkZGampqb7uHcrbvn37xx9/rP330qVLExMT\n09PTtX/+6U9/io+Ppx79nMsRpCSNiLozNIrOWMhBoyMHAxJ1Z2gUnbGQg0ZHDgYk6s7QKDpj\nIQeNzu9y0AadFBQUzJs3r1mzZqGhoY0bN549e/b58+d93SmoyszMHDZsWN26dUNCQho1ajRl\nypTs7GxfdwqVe/rpp6ua0OyjRj36M5URpCSNiLozNIrOQMhBoyMHAxV1Z2gUnYGQg0ZHDgYq\n6s7QKDoDIQeNzt9ykL8gBAAAAAAAAAAAAEyE7yAEAAAAAAAAAAAATIQFQgAAAAAAAAAAAMBE\nWCAEAAAAAAAAAAAATIQFQgAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATIQFQgAAAAAAAAAAAMBE\nWCAEAAAAAAAAAAAATIQFQiDQLF++3GKxTJ8+3dcdAQDAB8hBAICZkYMAADMjBwG3sEAIGMPi\nxYstCoYOHerrngIAoD9yEABgZuQgAMDMyEGghoT4ugMAlMTHx7dr185xy9GjR202W7NmzSIi\nIuwbk5KSfve7382aNSskhOoGAAQOchAAYGbkIADAzMhBoIZYbDabr/sAwBMRERHXr1/fs2dP\nWlqar/sCAIC3kYMAADMjBwEAZkYOArrgI0YBAAAAAAAAAAAAE2GBEAg05b6M98UXX7RYLI89\n9ti5c+emTZvWsGHDqKiobt26ffDBByKSn58/Z86cpKSk8PDwdu3avfLKK+X2tnPnzjFjxjRo\n0CAsLKxBgwZjxozJzMz09iEBAKCMHAQAmBk5CAAwM3IQcAsLhECA0z6J+9KlS8OGDdu5c2ev\nXr2aNm367bff3nHHHVlZWUOGDNm8eXNqamqnTp2OHj06Y8aM999/3/67q1at6tu375YtWzp2\n7Jienp6cnLx58+bevXu/+uqrvjsgAADcQA4CAMyMHAQAmBk5CDjHAiEQ4LRv5X3jjTfatWt3\n8ODBTZs2HThwYPDgwSUlJSNHjoyNjc3Ozn733Xf37t17zz33iMjrr7+u/eKRI0fmzJkTEhLy\n6aef/uc//3nllVcyMjI++uijkJCQ2bNn//jjj748KgAA1JCDAAAzIwcBAGZGDgLOsUAIBDiL\nxSIiRUVFy5cv10IxODj47rvvFpHc3Nznn38+MjJSazl16lQROXz4sPbPFStWlJSUzJgxY/Dg\nwfa9DR06ND09/dq1a6+99pp3jwMAAE+QgwAAMyMHAQBmRg4CzrFACJhCSkpKQkKC/Z+NGzcW\nkQYNGrRr167cxoKCAu2fn3/+uYiMHDmy3K6GDRsmIl988UUNdxkAAN2QgwAAMyMHAQBmRg4C\nVQnxdQcAeEOTJk0c/xkcHCwijRo1qrixrKxM++fJkydFZMWKFevWrXNsdu7cORE5fvx4DXYX\nAABdkYMAADMjBwEAZkYOAlVhgRAwhdDQ0Iobtb+sr5TNZrt69aqIOH43ryP7G2oAAPB/5CAA\nwMzIQQCAmZGDQFX4iFEAlbBYLFFRUSKyd+9eW2W098sAABCQyEEAgJmRgwAAMyMHYR4sEAKo\nXMuWLUXk1KlTvu4IAAA+QA4CAMyMHAQAmBk5CJNggRBA5QYMGCAiGzZsKLf9yJEjH3/8cVFR\nkS86BQCAl5CDAAAzIwcBAGZGDsIkWCAEULlZs2aFhoZu2rTprbfesm/My8u78847hw8f/vbb\nb/uwbwAA1DRyEABgZuQgAMDMyEGYBAuEACqXnJz84osvlpaWTpo0qV+/ftOmTbv11ltbtGjx\n3XffTZ48edKkSb7uIAAANYgcBACYGTkIADAzchAmEeLrDgDwXzNnzuzcufNzzz23c+fOzMzM\nyMjIrl27Tp06ddq0aUFBvL0AABDgyEEAgJmRgwAAMyMHYQYWm83m6z4AAAAAAAAAAAAA8BLW\nugEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEW\nCAEAAAAAAAAAAAATYYEQAAAAAAAAAAAAMBEWCAEAAAAAAAAAAAATYYEwMH3zzTcWi8VisRw7\ndkyvfX799dfaPk+ePKnXPgNATZxqr3n11Vfbt28fHh5eu3btV155xdfdAQDdkINeQw4CgB8i\nB72GHAQAP0QOeg05CBhdiK874F+sVuvGjRs/+uijXbt25eXlXb16NTo6ukWLFr169Zo8eXKP\nHj183UFAN7t377733ntFJCYmplWrVsHBwb7uEQDfIwdhHuQggIrIQZgHOQigInIQ5kEOAhr+\ngvD/bN26tW3btpMmTVq7dm12dnZ+fr7Var148eK333774osv9uzZ87bbbjt37pyvu+kl7733\nnsViWb16tX1LSkpKVlZWVlZWo0aNfNcv6Obtt98WkYSEhOPHj3/77bfTpk3zdY/0UfGpC0AR\nOeiIHAx45CCAcshBR+RgwCMHAZRDDjoiBwMeOQhoWCD8r7Vr1w4dOvTEiRNRUVHz58/ftWtX\nfn5+WVlZXl7ehg0b+vTpIyLvvfdev379Ll++7OvOekNmZma5LZGRkV26dOnSpUtYWJhPugR9\nnTlzRkRSU1Pj4+N93Rc9VXzqAlBBDpZDDgY8chCAI3KwHHIw4JGDAByRg+WQgwGPHAQ0LBCK\niHz//ff33XdfaWlpu3btDhw4sGTJku7du8fExFgslsTExHHjxn3xxRdPPfWUiBw6dOiBBx7w\ndX+9YefOnb7uAmpWaWmpiISGhvq6IzrjqQt4gBysiMkk4JGDAOzIwYqYTAIeOQjAjhysiMkk\n4JGDwH/ZYLONHDlSRKKiorKzs500mzhxYqtWrRYsWFBWVmaz2T777DPtHObm5pZr+cYbb4hI\ncHCwfcvevXu1xiUlJQcPHhwzZkyDBg1q1arVrl27p556qrS01GazZWdnT5kypUmTJmFhYUlJ\nSb///e+vXLli34NbD7dnzx6tcbkjysnJ+d3vftexY8fatWuHhITEx8f379//1Vdf1Y5IM3Pm\nzHJPEm3PX331lfbPEydO2Gy2m2++WUT69OlT6bl64YUXRCQ0NDQvL0/bcu3atZdffnnAgAFx\ncXGhoaGJiYkDBgxYuXJlSUmJk3Ne8ez9/PPPs2fPbtmyZXh4eJ06dQYOHPjvf//bsbGXx8V+\nqo8dO7Z///6JEyc2atQoLCysfv3648aN27dvX8XDUTwVu3bt0vZcWlq6ceNG7VtzV61a5fxc\nFRQUPPPMMzfddJO28/j4+L59+y5fvrywsNDeJj09veJU8OyzzzrZrUqfa+gpoT76VT11bTbb\n1atXly5d2qtXr7i4uJCQkISEhJSUlAULFuTk5Dg/n4BJkIPkIDlIDgJmRg6Sg+QgOQiYGTlI\nDpKD5CBMiwVC248//mixWERk7ty5zlsWFxc7/tOtCffgwYNa4+3bt9epUycxMbFbt26xsbHa\nxvnz53///fdxcXF169ZNS0urX7++tv3WW2/17OEqDcLPP/88MjJSREJCQlJSUnr06FGvXj2t\n2ejRo+1Z+M9//nPChAlBQUEi0r179wkTJkyaNMlWIQi1B7VYLD///HPFc9WzZ08Ruf3227V/\n5uXlpaamau07d+48cODA1q1ba3vr0aPHhQsXnJ95+9nbs2dPo0aNIiIiunXrlpKSEhISIiJB\nQUEfffSRr8bFfqrXr18fGRkZERGRmprauXNn7QSGh4dv27bNsQ/qp2L//v3a9p07d2pHKiJ/\n//vfnZyonJwcbW9BQUFt2rQZMGBA69attZ507tzZfkJeeumlCRMmNGvWTEQaNWo0YcKECRMm\nvP/++1XtVrHPNfSUUB/9qp66BQUFKSkp2mN17NhxwIAB3bp1094iFBkZWW6AABMiB8lBcpAc\nBMyMHCQHyUFyEDAzcpAcJAfJQZgZC4Q2+5d27t27161fdGvCPXz4sNa4VatWjz/+uNVqtdls\nRUVFY8aM0aoxJSVl9uzZ165ds9lspaWlDz74oNb+yJEjHjxcpUGoTTQ33nij/a0KZWVl//jH\nP7SWb731luM+w8PDReS1116zbykXhFeuXKldu3alU/Px48e1llu2bNG2DBo0SERSU1P3799v\nb5aZmdmyZUsRGT9+vNMz/X9nr23btvfcc09+fr62/eDBg0lJSSJy00032Rt7eVzsp7pevXrT\np08vKCjQtmdnZ2snvFWrVtpu3T0V9r4NHTp0yJAhX3311YkTJ3799deqzlJpaakWLe3atbN3\nz2azfffddw0bNhSRYcOGObafPHmyiIwYMcLpuXejzzX0lHBr9G2VPXWffvppbYAOHjxo33jh\nwoXRo0eLSPv27V2eASCwkYPkIDnoHDkIBDZykBwkB50jB4HARg6Sg+Sgc+QgAhsLhLYFCxaI\nSFhYmONspcKzCXf48OGOLfft26dt79Spk/aH25rLly9rC/5r16714OEqBmFeXt748eP79etX\n7g/PbTbbDTfcICJ33XWX40aXQWiz2aZMmSIiPXv2LLfDJ554Qpt3tPcWbd26VTvDP/30U7mW\n27Zt0/Z57NgxW9XsZ6979+6OZ8lmsz3zzDMiEhoaav/7ay+Pi/1Up6SklOvbRx99pP3os88+\n07a4dSrsfWvevHlRUZGT86N57733tPa7du0q96N169ZpP3JMHcUgdKvPNfGUcGv0bZU9dceO\nHSsi6enp5R7r3LlzCxYseOmll65fv+78JACBjRwkB8lBJ8hBIOCRg+QgOegEOQgEPHKQHCQH\nnSAHEfCCxPTOnz8vInFxccHBwV54uHHjxjn+s02bNtp/jB49WpthNdHR0Q0aNBCRc+fO6fK4\niYmJ69ev37Ztm/aByI7at28vIrm5ue7u8+677xaRr7/++tSpU47btWl38uTJ2l8rb9myRUT6\n9u3bpEmTcnvo16+f9uf8n3zyicoj3nfffY5nSUQ6duwoIiUlJZcvX3a3/46qPy7p6enl+jZ4\n8OBatWqJyI4dO7Qtnp2KyZMnR0REuDyEDz74QOt59+7dy/1o9OjRWjwonmdHbvW5Rp8SHo9+\nXFyciOzYsaPckzw+Pn7x4sW//e1vw8LCnPw6EPDIQXJQyMGqkYNAwCMHyUEhB6tGDgIBjxwk\nB4UcrBo5iIAX4usO+J72QdulpaXeebgWLVo4/lObKCtut/+opKREx0e/fv16RkbGoUOH8vLy\ntD9JFpGsrCwRsVqt7u5t4MCBjRs3/uWXXzZs2PCnP/1J27hv3z7tw5GnTp1q3yIi33//ff/+\n/SvupLCwUER++OEHlUfUJj5H2qeHi0hxcbG7/XdU/XHR/ozdUWhoaMuWLQ8ePJiTk6Nt8exU\nVAy2Smmfza2976mc8PDwVq1aHTp0yP651erc6nONPiU8Hv3Zs2e/9dZbOTk5HTp0GDdu3LBh\nw/r166elIwAhB8lBESEHq0YOAgGPHCQHhRysGjkIBDxykBwUcrBq5CACHguEkpCQICIXLly4\ndu2ayvsRqqlOnTqVbrd/AWzNeffdd2fNmnXmzBm9dhgUFDR58uRnnnlm/fr19lnvzTffFJHU\n1FTt609F5MKFCyKSl5eXl5dX1a4uXbqk8oj2fNJd9cclMTGxqt3a38fh2amwf2eyc9rOq+qw\n1pOLFy+q7KribhX7XKNPCY9HPyUlZevWrXPmzNm9e/crr7zyyiuvWCyWLl26jB8/fubMmV4o\nPcDPkYMeIwcdkYNCDgLGRA56jBx0RA4KOQgYEznoMXLQETko5CCMiY8YFa04S0tLMzMzfd2X\nGrRr166xY8eeOXMmNTV148aNZ86c0T712Gazpaene7xb7bOV9+7de+zYMRGx2WxvvfWWOLwn\nQv73XqTJkyc7+axb7VOwDa3Sj2LQjl37f/H0VLh1fWZ/rHK0d0VV9VOXO1Tvs38+JW688cZd\nu3Z98803ixYt6tOnT1hYWFZW1p///OdW4vdajwAAIABJREFUrVr9+9//1vGBACMiB8lBXZCD\nGv98SpCDgBPkIDmoC3JQ459PCXIQcIIcJAd1QQ5q/PMpQQ7CCRYIpV+/ftoH+P7rX/9y3rK4\nuPill14qKChwuc+ioiJ9OqdG5eGWL19utVqbNWv2+eefjx07tn79+tqnHsv//nLZMx07duza\ntauIbNiwQUR27tz5448/hoWFTZo0yd5Gey/SL7/84vGj6KVGx6XSN/vk5+eLw9twavRUxMfH\ny/8+O74i7T0yHvz9uLt99uenRLdu3R599NEvvvjiwoULb731VsuWLS9evDhx4kTFN2oBgYoc\nJAd1QQ5q/PkpQQ4ClSIHyUFdkIMaf35KkINApchBclAX5KDGn58S5CAqxQKhNGzY8I477hCR\nt95668svv3TS8tFHH509e3br1q212c0eJNeuXSvX0oNPNHapmg936NAhERk6dGi5vxkvLS3d\nuXNndTqmff/qpk2bRGT9+vUiMnLkSG1S1mif/nzw4EHvfKC5l8fF7sCBA+W2WK3W48ePi0jb\ntm21LTV6KrSdax9jXc7Vq1e1z/uu9JO4VXbrVp/97SlRUWRk5IQJE3bu3BkSEnLhwoWvvvrK\nJ90A/AQ5SA7qghy087enREXkIOCIHCQHdUEO2vnbU6IichBwRA6Sg7ogB+387SlRETkIRywQ\niog8+eSTtWvXLisru+OOO77++utK2zz++OPPPPOMiPzud7/TskRb7ReRI0eOOLa8cOHC66+/\nrnsnq/lw2h8vV8yGFStWnD59Wip8HbHWXuUbeidNmhQcHJyVlfXTTz9t3rxZRO655x7HBqNH\njxaRs2fPbty4sdzvnj17tmPHjvfff7/24cu68PK42K1bt67clq1bt2rvQurXr5+2pUZPxW23\n3SYix44dq3hls379eqvVGhQUNGLECHd360GfffuUKPfUPXv27Jw5c4YMGXLlypVyLevVq6d9\nTIGX39oG+CFyUMjBaiMH7chBwHDIQSEHq40ctCMHAcMhB4UcrDZy0I4chME4+axbU3nnnXfC\nwsJEJDg4ePr06RkZGRcvXiwrKzt37tyGDRu6d++una5bb721pKRE+5WSkpK6deuKSK9evfLy\n8rSNP/74Y58+fdq1a6ftyr7/w4cPa3vIysoq99Da9s2bN5fb3qpVKxF59tlnPXi4PXv2aLvN\nzs7Wttx3330iEhsbe+rUKfsOly5dGh0dPXnyZBFp0KCB/dBsNluTJk1E5L777rNvsb+b4MSJ\nE+W6OmzYMBGZPn26iNSvX99xP5qBAweKSJ06dT777DP7xuzs7LS0NBHp0qVLWVlZxUFROXsZ\nGRnaj3Jzcz04UdUfl927d2st69at++STT1qtVm37L7/8kpycLCKdOnVyPDr1U+Gkb5UqKyv7\nzW9+IyJt2rQ5duyYfXtmZqb2LpWpU6c6ttfGfcSIES737MHw6fiUcGv0bRWeulartXnz5iIy\natQox2bXrl2bP3++iERERNifJ4CZkYPkYLk9k4Me9NmOHAQMhxwkB8vtmRz0oM925CBgOOQg\nOVhuz+SgB322IwdhICwQ/p8dO3ZoM1elwsLC/vznP5er58WLF2s/jYqKSktLu+GGG0JCQjp3\n7vzBBx+IiMVisbes/oTr1sNVDMKjR49GR0eLSO3atW+55Zbhw4cnJCSEhYVt2LDhP//5j9b4\nhhtu+P3vf6+112ZJEWnevHmLFi127drlJAi1N4loH1k+d+7ciudW+xJg7dfbtWt38803p6Sk\naO2bNGnyww8/OB8ad6dCb46L/TucN27cGBER0bBhw1tuuaV///61atXSzvbu3bs9OxXuBqHN\nZjt16pQW9qGhoSkpKTfffHObNm20nQwePLigoMCxsXoQejB8Oj4l3B39ik/d7du3R0VFaf3p\n0KFD3759b7zxRq0cgoKCXn31VZdnADAJcpAcdKQ4LuQgOQgEDHKQHHSkOC7kIDkIBAxykBx0\npDgu5CA5CKNjgfD/Y7VaN2zYcPfdd7dp06ZOnTohISFxcXE33XTTX/7yl5MnT1b6K6+++uqN\nN94YFRUVERHRunXrBQsWXLp0KSsrSyvF69eva810CUL1h6sYhDabbd++fbfddltcXFxYWFjz\n5s0nT55s78zcuXPj4+MjIyPvvPNObUtubu6oUaNiYmJq1arVrl27w4cPOwnCwsLCmJgY7af7\n9++v9ERdv3795Zdf7t+/f3x8fEhISExMzI033vjkk0/m5+dX2t6Ru1Oh+omq/rjYO3Dt2rWs\nrKxx48Y1aNAgNDS0fv36kyZNqjQkFE+FB0Fos9muXLnyzDPP9OzZU3sCJyYm3nLLLW+88Yb9\nLTx26kGo3mc7HZ8S7o5+xaeuzWY7fvz4I4880rVr13r16oWEhERGRiYnJ8+cOXPfvn0qhw+Y\nBzlIDtqRgx702Y4cBAyKHCQH7chBD/psRw4CBkUOkoN25KAHfbYjB2EgFtv/Ch4AAAAAAAAA\nAABAwAvydQcAAAAAAAAAAAAAeA8LhAAAAAAAAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAA\nAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAAAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAA\nAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAAAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAA\nAAAAAICJsEAIAAAAAAAAAAAAmAgLhAAAAAAAAAAAAICJmHqB8NKlSxcvXvR1LwAA8A1yEABg\nZuQgAMDMyEEAgMVms/m6Dz6TkJBw/vx5q9UaHBzs674AAOBt5CAAwMzIQQCAmZGDAABT/wUh\nAAAAAAAAAAAAYDYsEAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIh\nAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIh\nAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIhAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgIh\nAAAAAAAAAAAAYCIsEAIAAAAAAAAAAAAmwgKhPmw228svv5yWlhYVFRUdHd27d++NGzf6ulNm\n9Nlnn1mqcPLkSXszlfEqKytbuXLlDTfcEBkZGRkZmZKS8vTTTxcXFzu2uXjx4uOPP96lS5eY\nmBitzd/+9rfCwkIvHGkg+fTTTxs1amSxWLZt2+Zxm1OnTqWnpzds2DAiIqJ169YPPfTQ1atX\n3W1z9uzZP/7xj23bto2IiNAGdNGiRRX3g3Kcj45KmaiUm8s2DRo0qKr809LSaubQ8X/IQX/j\nvDBdjpdinora9At1Os51pJ5PqKSe+gWkyjWS5siRI5GRkRaL5bvvvtPxcKCOHPQfKiWmMl4q\nkyTjrjuXp139EkWqfTkERbqcZ5fXLS5L263nBnRHQfk5lyWm8rIMtw9eU/1XQd0dLO4m9KJS\nSioTZkFBwSOPPJKcnFyrVq26desOGTJk+/btTh63WiNoM7H4+HgRsVqt1d/VjBkzRKRevXqT\nJk2aMGFC3bp1ReSZZ56p/p7hlg0bNohIp06dxlSQl5dnb+ZyvMrKyoYPHy4isbGxo0aNGjFi\nRExMjIgMGTKkrKxMa3P27Nnk5GQRadGixdixY4cPH16nTh0R6d69e3FxsbeP3JgKCwvnzJkj\nIqGhoSKSkZHhWZsDBw7ExsYGBQUNGjQoPT29Xbt2ItKrV6/S0lL1NqdPn27SpIk2ygsXLpw3\nb163bt1EpEuXLkVFRTVy/MbncnRUykSl3FTaTJ8+vWLhDxs2TET69+/vrVNiMORgQFKZNl2O\nl2Keqky/UKfjXEfq+YRK6ileQKoUsp3Vau3Zs6d2c5eVlVWjxxhgyMHAo1hiLsdLcZJk3PWl\nctoVL1F0uRyCS3qdZ5fXLSqlrfjcgCNy0CRclpjKbQi3D96hy6ug7g4WdxN6USklm8KEefny\n5c6dO4tIUlLShAkTRo0aFRYWFhQU9M4771T6uNUcQf9dICz79UzJB5s9/p9NId70CsKMjAwR\nSU1Nzc/P17bk5uYmJSWFhYXl5ORUc+dwy6pVq0TkhRdecNJGZby0/fTs2dPe5syZM82aNROR\nDz/8UNuSnp4uIg888IB9/j1//nz79u1FZN26dTVyeAEnJSUlNDR0yZIlU6ZMqSr2XLYpKytL\nTU0NCQn56KOPtC1Wq/WOO+6wWCzvv/++epsHH3xQRBYuXOi485EjR4rIypUrdTvmwOJydFTK\nRKXcVNpUav78+SKyfft2nY7Yq8hBeMZlYarnoPM8VZla4Ra95jpSz1dUUk/xAlLlGslu8eLF\n2g1/gN3Sk4PwgEqJqYyXyiTJuOtO5bSrXKLYdLocgku6nGeV6xb1+0qXzw0DIQehC5USU7kN\n4fbBO3R5FdTdwQrUuwnvUykllQlz4cKFIjJ8+PDCwkJty44dO6KiohITEwsKCio+bjVH0H8/\nYtR2/mzpF597/D8ptXqtq9rYL1myRFsTFpEGDRo8/PDDxcXFq1ev9lo3ICKXLl0SEW3hvSoq\n4/Xhhx+KyOLFi+1t6tevP3PmTBH56quvtC0JCQm33377okWLgoL+W0dxcXHaZeuRI0d0PrAA\nFRQUlJmZOX/+fIvF4nGbjIyMb7/99r777tP+fkJEgoODX3/99cuXL2vhp9gmOztbREaMGOG4\nc6299iNU5HJ0VMpEpdxU2lT0/fffL1u2LD09vW/fvtU9VF8gB+EZl4WpMl4qeaoytcItes11\npJ6vqKSe4gWkyjWS5tChQ4899tjEiRN79Oih+xH5FjkID6iUmMp4qUySjLvuVE67yiWK6HQ5\nBJd0Oc8q1y0qpa343DAQchC6UCkxldsQbh+8Q5dXQd0arAC+m/A+lVJSmTA3bdokIsuXL69V\nq5a2pVevXr/97W/Pnj27ZcuWcg9a/RH03wVCA9m2bVutWrX69evnuPGWW24REecfDgvdaVeE\nsbGxTtqojNeWLVuuXLnSp08fxzZxcXGO/1y6dOnmzZujo6MdN545c0ZEWrdu7fkxmElmZqbL\nL4dz2eb9998XkYkTJzpurF27du3atd1q07FjRxE5fPiwY5ucnBwR6dSpk/NOmpbL0VEpE5Vy\nU2lTjs1mmzFjRnR09LPPPqtwKKgWctCvuCxMlfFSyVOVqRVu0WuuI/V8RSX1FC8gVa6RRKS0\ntHTq1Kl16tR54YUXqt9/eIwc9B8qJaYyXiqTJOOuO5XTrnKJIjpdDsElXc6zynWLSmkrPjdQ\nEygof6ZSYiq3Idw+eIcur4KqDxZ3E/pSKSWVCfPkyZNRUVFt2rRxbDNgwADt1x036jKCLBBW\nV35+fm5ubvPmzbWPBrZr1qxZeHh4uVJETdOuCE+dOjV69OjY2NiIiIgOHTo8+eST165d0xqo\nj1dUVJT9vWmaTz75RERuvvnmio9rtVqPHz/+17/+9cUXX0xLSxs/frzuhxaQ7O+DqE6bffv2\niUhycvJjjz3WqlWr8PDwpk2bPvDAA9qTQb3Ngw8+2Lx583nz5r388ssHDx7ct2/fkiVLXnrp\npZ49e5bLXdipjKCdkzJRKTe3SlJENmzYsGvXrgULFiQmJqp3Eh4gB/2N88JUHC+XeSpqUyvc\npctcR+r5A5WLQydtFBN28eLFe/bseemllxISEnTrOtxEDvqtSktMcbxcTpKMe01QySaVSxTR\n6XIILulynt29pKwqPRWfG9AdBeXnFEvM5W0Itw/eocuroOqDxd2E7pyXkuKEGRERcf36dav1\n//tDcO0dMEePHnXcqMsIhnj8m9BcvHhRKntzt8ViqVOnzoULF3zRKfPSZsM5c+a0adNm2LBh\neXl5X3/99SOPPPLpp59u3bo1LCzM4/HatGnTli1bRo4cWfGzCseOHfv222+LSFJS0rJly2bN\nmlWuyFGjfvrpp7CwsBkzZmRmZo4aNSooKGjr1q3PP//89u3bMzMztWRVaVO/fv09e/ZMmzbt\n/vvvt+989uzZS5cuDQsL89nhBQq3ysRJuSm2KSsrW7RoUUJCwuzZs3XpP5wgB41Fcbxc5qmo\nTa2oJs/mOlLP51RSr/oXkPv371+0aNGECRPGjBmjV8/hAXLQP1VVYorj5XKSZNxrgko2qVyi\nuMTweYfieXbrktJJeury3IAHKCg/59ldW8XbEG4f/ISO93rcTXhBuVJSnDC7deuWkZHx/vvv\njx492t7mnXfekf+FnUavEWSBsLqKiopEpNKpMDw83Gq1Wq3WkBDOs5e0b99+xIgRt95664wZ\nM7QPaz516tTw4cO//PLL559//k9/+pNn47V+/fr09PTk5OQ1a9ZU/MW0tLSrV6+ePn16//79\nzz33XFxc3N13310DB4fKXblypbi4+MSJE8eOHdP+oL6oqGjUqFFbt25dsWLFvHnzFNsUFBTc\nddddn3766eTJk2+55ZaSkpKPP/54xYoVv/7669q1a8PDw317mEanXibOy02xzfr16w8dOrR4\n8WI+6tALyEFjURwvl3kqalMrqsPjuY7U8zmV1KvmBWRJSUl6enrdunX/8Y9/6Np3uI0c9E9V\nlZjieLmcJBn3mqCSTSqXKC4xfN6heJ7duqR0kp66PDfgAQrKz3lw11bpbQi3D35Cr3s97ia8\noGIpKU6Yjz76aEZGxsyZM0tLSwcPHnz16tVVq1atXbtWREpKSrT2Oo4gHzFaXZGRkSJSXFxc\n8UfXr18PDQ0lBb3p0Ucf/eCDD2bOnGn/KtdmzZppH8K7bt068Wi8nnrqqYkTJ3bo0GHbtm2V\nfpz9Qw899PHHH+/bt+/o0aPR0dFTpkzZvHmzvscFJ4KDg0Xk6aeftr88WqtWraeeekpEtLcW\nKrbR3lr43HPPrV279u677542bdrGjRsXLFiwadOm559/3rvHFIAUy8RluSm2Wbp0aURExKxZ\ns/Q8BlSBHDQWxfFymaeiNrXCY9WZ60g9n1NJvWpeQD755JNZWVl8HJA/IAf9U1UlpjheLidJ\nxr0mqGSTyiWKSwyfdyieZ7cuKZ2kpy7PDXiAgvJz7t61VXUbwu2Dn9DrXo+7iZpWaSkpTpgD\nBgz4y1/+cv78+XHjxsXGxjZp0mTFihWvvPKKiNi/jlfPEbSZWHx8vIhYrdbq7OTy5csi0r59\n+3LbrVZraGhogwYNqrNz6KKwsFD7Q12bm+N1/fr1SZMmicioUaMKCgpUHuu7774Tkd69e+vV\neZNIT08XkYyMDA/aaN+ve+DAAceNRUVFFoulfv366m0SEhLCw8NLSkoc2/z4448icuONN3py\nVGaiMoJ2lZaJSrkplqT2gezjx4935whMihwMbJUWZnXGyzFPbWpTKzxQ/bmO1PMrKheHTtpU\nWshZWVmhoaF33XWX48aZM2eKSFZWlh69Ngty0CQcS0xxvFxOkox7TfA4m8pdojjS/XIIlarO\nefb4klIlYZ08N2AjB81BvcSc34Zw++Bl1XkV1OVgcTdRo5yUklsT5qFDh5YuXfrwww+vXr06\nPz//+++/F5HRo0fb9B5B/oKwuqKjo5OSkk6ePHn9+nXH7ceOHSspKUlJSfFVx2BXVFRks9m0\nv95VHy+r1TphwoQ333xz7ty5mzdvLvfhXUVFRZ988skHH3xQ7rFatmwpItnZ2TV1MKigffv2\nIvLLL784btRS0P5tBC7bXLly5dy5c/Hx8eXe2qa9C0MLUbhLvUycl5t6G432qdwjR47U5zDg\nCjloLNUZL8c8FbXpF+7SZa4j9XxCJfX0uoB8++23S0pK1q5da3GwcuVKEenatavFYtm2bVv1\njgZuIAf9h0qJqYyXyiTJuOuuOtlU7hLFJYbPOxTPs8vrluqkp7vPDXiAgvJzindtzm9DuH3w\nH7rc63E3UXOcl5JbE2ZycvLcuXOfeOKJ9PT0mJiY3bt3i0iXLl1E7xFkgVAHgwcPvnbt2tat\nWx03vvfeeyJy8803+6hTZnT9+vWhQ4f269fPZrM5bv/iiy9ExF5jiuM1Y8aMLVu2PPHEE0uX\nLg0KqqRSbrvttgkTJhQWFjpu/OGHH+R/cy68Y9CgQSJS7m5hz549IpKcnKzYJjIyMjIy8syZ\nMwUFBY5tcnJyRKRevXo11//AplgmLstNsY3ms88+E5F+/frpcABQQw4ai8vxUsxTlekX7tJl\nriP1fEUl9XS5gOzVq9fcCm644QYRmTJlyty5c5OSkqp/OFBHDvoPlRJzOV6KkyTjri+V0654\niaKC4fMOlfOscknpsrR1fG7AAxSUP1O8a3N+G8Ltg//Q5V6Pu4ma4/KOXmXCPHDgwKpVq3Jz\ncx3bvPHGGyJy6623iu4j6O6fHAYSXf6U3maz7dq1y2KxdOrU6fz589qW7Ozs+Pj46OjoM2fO\nVLubcMPAgQNF5JFHHikrK9O2HD9+vHXr1iKydu1abYvKeG3atElE7rzzTiePpRVkenr6tWvX\ntC35+fn9+/cXkYceeqhGDi9wVecjRi9duhQXF1erVi37jy5evNi9e3cRWb16tXqbcePGici8\nefPse7ZarRMnThSRhx9+uNqHGOCqGh2VMlEpN5U2mtLS0sjIyNq1a3tyGOZDDga2qgpTZbxU\n8lRlaoVb9JrrSD1fUUk9dy8g1T/Emw8F8gA5GHhUSkxlvFQmScZddyqnXeUSxVF1Loegrjrn\nWeW6RaW03X1uwEYOmoNKianchnD74GXVeRXUs8HibqL6VEpJZcJcsWKFiEybNs3+W//4xz9E\nZODAgU727PEIWmz//5trTCUhIeH8+fNWq1X7es/qmD9//rPPPhsfHz9o0KDi4uLPPvussLDw\ntdde04oZXpOTk9OjR4/z58+3bdu2a9euly5d2rFjx9WrVydPnrx27Vp7M5fj1blz5wMHDvTr\n16/iW7lbtWq1ZMkSETl58mSvXr1Onz7dqFGjtLS0srKyr7766vz58x06dNi5c2fdunW9dtQG\ntW3bNm12E5Fvvvnm1KlTffv2TUxMFJGmTZsuW7ZMsY2IbN68edy4ccHBwSNGjAgPD9++fXtu\nbu6wYcM++OAD+5s1XLY5derUTTfddPr06T59+gwYMKCsrOzjjz/eu3dv586dd+zYERMT493T\nYwAqo6NSJirlptJG8/PPPyclJSUnJx86dKjGDj1wkIOBR3HadDleinmqMv1CnY5zHannEyqp\np9JGsZDLmTVr1sqVK7OysrSPnYEKcjDwKN6juRwvxUmScdeXymlXuUTR63IIzul4nl1et6iU\ntuLlKxyRgybhssRUbkO4ffACvV4F9WywuJuoPsU7epcT5tWrV3/zm9/s378/NTW1a9euR48e\n/fLLLxs2bJiZmdm8efOqHt3zEXR3RTGQ6PVOGc2rr77arVu3WrVqRUdHDxgw4N///rcuu4W7\nTpw4MX369KZNm4aGhsbExPTq1Wv16tX2d5DZOR8v7blRqW7dutmb/frrrw8++GCbNm0iIiIi\nIiI6dOjw8MMPX7582RvHaXyvvfZaVSe5Y8eO6m00O3fuHDZsWN26dcPDwzt06PD0009fv369\n3CO6bPPrr7/+8Y9/bNu2bXh4eK1atTp16vTXv/614jczQ6M4Oi7LRKXcFEvSZrPt379f+Ips\nZeRg4FGfNl2Ol2Keqky/UKTvXEfq+YTKxaHLNuqF7Ij3/HqAHAxIivdoLsdLcZJk3PWlctpd\nXqLoeDkEJ/Q9zyrXLS5LW/HyFXbkoHk4LzH1V0G5fahROr4K6sFgcTdRfep39C4nzDNnzsya\nNSspKSksLKxx48YzZszIzc11/uj8BaEndHynDAAAhkMOAgDMjBwEAJgZOQgA4NOfAAAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAAAAAAABNhgRAAAAAAAAAAAAAwERYIAQAAAAAA\nAAAAABNhgVAfNpvt5ZdfTktLi4qKio6O7t2798aNG33dKZMqKytbuXLlDTfcEBkZGRkZmZKS\n8vTTTxcXF9sbNGjQwFKFtLQ0e7OLFy8+/vjjXbp0iYmJ0fbzt7/9rbCwsNzDnTp1Kj09vWHD\nhhEREa1bt37ooYeuXr3qpUMNOIpD43KI7T799NNGjRpZLJZt27ZV/GlBQcEjjzySnJxcq1at\nunXrDhkyZPv27TV3dCZx9uzZP/7xj23bto2IiNBGZ9GiReWKQqW4VPajcT7K8Bpy0N84Lw3F\n8XKZceoTMhSpnFLFGVLxEoVZVF8qGafSxuVVymeffVbVVdPJkye9cKQohxz0Hy4nUrfKR32S\nPHLkSGRkpMVi+e677/Q+JrNQvB9UKTeXWan4WHCXylWKyp24ShsuRP0KOejPvPxKKfTlcl5V\nvLBh+LxJ5QKy+i/a6DamNhOLj48XEavVWv1dzZgxQ0Tq1as3adKkCRMm1K1bV0SeeeaZ6u8Z\nbikrKxs+fLiIxMbGjho1asSIETExMSIyZMiQsrIyrc306dPHVDBs2DAR6d+/v9bm7NmzycnJ\nItKiRYuxY8cOHz68Tp06ItK9e/fi4mL7wx04cCA2NjYoKGjQoEHp6ent2rUTkV69epWWlvrg\n4I1PZWhUhthmsxUWFs6ZM0dEQkNDRSQjI6PcY12+fLlz584ikpSUNGHChFGjRoWFhQUFBb3z\nzjteO97Ac/r06SZNmmjDsXDhwnkRaaLEAAAgAElEQVTz5nXr1k1EunTpUlRUpLVRKS6V/dgU\nRhkukYMBSaU0VMbLZcYpTshQp3JKFWdIlUsUZlHdqWScShuVq5QNGzaISKdOnSpeO+Xl5fng\n4I2JHAw8KhOpYvm4NUlardaePXtqr7FkZWXV6DEGMJX7QZtCualkpeJjwS0qZ14l41TacCGq\nC3LQDLz8Sin0pTKvqlzYMHxeo3IBqcuLNjqOqf8uEB66Wjj32AmP/3e91PUFgV5BmJGRISKp\nqan5+fnaltzc3KSkpLCwsJycnGruHG5ZtWqViPTs2dM+FmfOnGnWrJmIfPjhh05+cf78+SKy\nfft27Z/p6eki8sADD9hfRzt//nz79u1FZN26ddqWsrKy1NTUkJCQjz76SNtitVrvuOMOi8Xy\n/vvv18jhmVK5oVEc4pSUlNDQ0CVLlkyZMqXSqXbhwoUiMnz48MLCQm3Ljh07oqKiEhMTCwoK\navyoAtSDDz4oIgsXLnTcOHLkSBFZuXKl9k+V4lLZj01hlI2OHIRnXJaGynipZJzHmYuqqJxS\nlRlS8RIl4GdR71PJOJU2Klcp2rPlhRde8N7heR05CA+oTKSK5ePWJLl48WLt1ToWCHVX7n5Q\npdwU7yZcPhbcpXLmVTJOPQcD+0KUHIQuvPlKKXSnMq+qXNgwfF6jcgGpy4s2Oo6p/37EaE5R\n0XM//eLx/4ptZV7rqlaHS5Ys0d6CISINGjR4+OGHi4uLV69e7bVuQEQ+/PBDEVm8eLF9LOrX\nrz9z5kwR+eqrr6r6re+//37ZsmXp6el9+/bVtiQkJNx+++2LFi0KCvpvjcTFxWmFd+TIEW1L\nRkbGt99+e99992nvqRGR4ODg119//fLly9pMjeqrODSKQxwUFJSZmTl//nyLxVLpnjdt2iQi\ny5cvr1WrlralV69ev/3tb8+ePbtly5YaO6AAl52dLSIjRoxw3KgViPYjUSsulf2IwigbHTkI\nz7gsDZXxUsk4zzIXTqicUpUZUvESJeBnUe9TyTiVNipXKZcuXRIR7Z2kgYochAdUJlLF8lGf\nJA8dOvTYY49NnDixR48e1ew/yql4P6hSbop3Ey4fC+5SOfMqGafSxgwXouQgdOHNV0qhO5V5\nVeXChuHzGpULSF1etNFxTP13gdBAtm3bVqtWrX79+jluvOWWW0SErzTzsi1btly5cqVPnz6O\nG+Pi4pz8is1mmzFjRnR09LPPPmvfuHTp0s2bN0dHRzu2PHPmjIi0bt1a++f7778vIhMnTnRs\nU7t27dq1a1fvIPBflQ6N4hBnZmY6/+qIkydPRkVFtWnTxnHjgAEDRIQvYfJYx44dReTw4cOO\nG3NyckSkU6dO2j9ViktlP6IwyvAactCvuCwNlfFSyTgPMhfOqZxSlRlS8RKFWVR3Khmn0kbl\nKkV7ISA2NrYGjgNuIwf9h8pEqlg+ipNkaWnp1KlT69Sp88ILL7jfXzhT6f2gSrkp3k24fCy4\nS+XMq2ScShsuRP0KOejPvPlKKXSnMq+qXNgwfF6jcgGpy4s2Oo5piFutUVF+fn5ubm5ycrL2\nobF2zZo1Cw8PL1fA8IKoqKhyWz755BMRufnmmyttv2HDhl27di1evDgxMbHSBlar9ccff1yz\nZs2LL76YlpY2fvx4bfu+fftEJDk5+bHHHlu7du3PP/9cv379O+64469//Wtgv5vba6oaGpUh\ntr/TsCoRERGFhYVWqzUk5P+mQS1Njx49Ws2em9aDDz64fv36efPmFRcX9+3b12q1fvLJJy+9\n9FLPnj3LvU6tqaq4FPfjcpThHeSgv3FeGorjpZhx7mYuXHJ5SlVmSMXhYxatUVVlnEoblasU\n7YWAU6dOjR49etu2bUVFRS1btpw8efLcuXMjIiJq/PDggBz0Ny4nUsXyUZwkFy9evGfPnk2b\nNiUkJOhzAPifiveDiuXm7l1JpY8FD6iceZWMU7xb50LUT5CD/s9rr5RCdyrzqrv3BQxfjVK5\ngNTlRRtH1RxT/oKwui5evCiVvfPCYrHUqVNH+yl8aNOmTVu2bBk5cmSlnxNSVla2aNGihISE\n2bNnV/rrY8eODQ0NbdWq1auvvrps2bIdO3bYi/Onn34KCwubMWPGypUrBw0adM8994SFhT3/\n/PMDBgwoKiqqwUMyB5dDY+d8iKvSrVs3q9Wq/Y2F3TvvvCP/S1Z4oH79+nv27OnTp8/999/f\nqVOnLl26PPTQQ/fee29GRkZYWFi5xk6Ky639wOfIQWNRHC/PMs6zCRlOVDylKjMklyg+5yTj\nVNqoXKVo/zFnzpyDBw8OGzasd+/eP/744yOPPDJkyJDi4uIaP0I4IAf9XMWJVMfy2b9//6JF\niyZMmDBmzBj9u25uld4PKpabu3cT6veecE7lzKtknGd361yI+go5aDg190opdKcyr7p1YcPw\n+T93J9Xqjyl/QVhd2usslV5lhoeHW63Wcm96gjetX78+PT09OTl5zZo1VTU4dOjQ4sWLq/pc\n0LS0tKtXr54+fXr//v3PPfdcXFzc3Xffrf3oypUrxcXFJ06cOHbs2P9j777jo6jzx49/tqVX\nCC2Y0DsqoSMcEJqhCIeIYEAQ5AecgmfBE0XlRFAR5PSEUxEhlBNQkKp0QgvSew9IL6Gm1y2/\nP+a+c3spm9nNbjaTfT0fPnx8dvYzn/1shve8d+Yz8xlp9aysrL59+27dunXOnDkTJkxw0Zfy\nEMVuGrma7U1clA8++CA+Pn7MmDEmk6lbt24ZGRlz585dsmSJECIvL69EXfdgaWlpQ4cO3bRp\n05AhQ55++um8vLwNGzbMmTMnKSlpyZIl3t7e1pVtBJdd7cDtyIPqonB7OZDjHN4hoyiF/kmV\n7CH5ieJ2NnKckjpKfqU0bNiwd+/ezzzzzOjRo6VnV1y9erVXr167d+/+6quv3n777VL8up6O\nPFiWFbojdVb45OXlDR8+PCQkZPbs2S7pvWcr9HhQYbjZezSh8NgTxVLyl1eS4xw4WueHqBuR\nB9XFpWdK4XRK9qt2/bBh85V99u5UnbBNLWXVuvsPRPweh/9LMxqL/YiKFSsKIYwKatpw5coV\nIUT79u0LvlW5cmWDwVCSxlES06ZN02g0UVFRSUlJRdVp3ry5j49PcnJysa0lJiY2btxYCPHL\nL79IS6pXry6E2LBhg3W1AwcOCCHatm1bws5DyaZRsomlp7PGx8cXfOvDDz+Un+MqhKhYsaJ0\niWKrVq1K3n/P9NprrwkhvvjiC+uF77zzjhBi+vTpRa1VMLjsbcfGVlY18iBKqNDQULi97M1x\nSnbIsEtRf1Ile0h7N1953YuWBQVznMI6jv1K2bp1qxAiKirKmd/BfciDKCG7cpON8ClqJzl5\n8mQhxIoVK+QlY8aMEUIcPXq0ZB2HxVLE8aDCcLP3aEL5aQHYpvAvryTH2ZUHy+sPUfIgnM7V\nZ0rhdI6dZ7MoOC5g87makqPskpy0KcjhbVp2BwhLgVMSYWpqqhCiYcOG+ZYbjUaDwVC1atWS\nNA7H5OTkxMbGCiH69u2blpZWVDXpCT3PP/+8wmaPHTsmhOjQoYP0UnoY7KlTp6zrZGVlaTSa\nKlWqONx5WBRsGoWb2FLc7vjMmTMzZ86cNGlSXFxcSkrKiRMnhBD9+/cvYf89VlhYmLe3d15e\nnvXCa9euFXtCM19w2dsOp7YdRh4s3woNDYXbS3mOU75DhkK2/6RK9pD2/kRhL+pS+XKc8joO\n/ErJzMyUZp5xTtc9AHmwvHIgN9kIn0J3kkePHjUYDEOHDrVeyAChsxR1PKgw3Ow6mrD3tABs\nUP6XV5LjlNThh2gJkQc9R+mcKYXTOXyeTclxAZvPpRweICzJTtWxbcot3iUVGBgYERFx5cqV\nnJwc66kqLl68mJeX98QTT7ixb57JaDQOGjRo9erVb7311ueff2590Vk+0hT2ffr0ybc8Kytr\n586dRqMx31u1a9cWQiQmJkovGzZseOrUqZs3bzZp0kSuI+2ymb65hIraNBLlm7hYjRo1atSo\nkfxSuruiWbNmDjfoydLT0+/fvx8eHp5v8pCwsDAhhPTzRUlwKWkHZQp5UF0Ubi+FOc6JO2RI\nbP9JFe4h+YniFkpynMIfmRIHfqVkZWVZLBae11vKyINljWO5yd7wWblyZV5e3pIlS6RpD61F\nRUUJIeLj4zt37mxPx/FfRR0PKgk3e48mbB97Qjm7/vJKclyxdfghWkaQB8u+UjtTCucqyfkx\n6x82bD51UbJTde42JX06Qbdu3bKzs6Vbd2Vr164VQnTv3t1NnfJco0ePXr169dSpU2fOnGn7\nB+KWLVuEEJ06dSr4Vr9+/QYNGpSZmWm98Ny5c+L/9sJCiK5duwoh1q9fb13n4MGDQgjrX7Fw\ngI1NI+zZxDacOnVq7ty5t2/ftl64ePFiIcQzzzzjWJsezs/Pz8/P786dO2lpadbLL126JISo\nXLmy9LLY4FLYDsoU8qC6KNleCnOcU3bIsGb7T6pwD8lPFHdR8gNSSZ1if6Xk5OTExMR06tTJ\nYrFY19m1a5cQgjNxpY88WKbY3pE6K3zat2//VgFPPvmkEGLYsGFvvfVWRESEM76Nh7JxPFhs\nuNl7NGH72BPKKfzLKzkSV3i0zg/RsoM8WMaV2plSOJeS/arCHzZsPnVRslN15ja1637DcsYp\nt9JbLJb9+/drNJqmTZs+ePBAWpKYmFixYsXAwMA7d+6UuJuww4oVK4QQgwcPLramyWTy8/ML\nCAgo9F3pR+fw4cOzs7OlJSkpKdIVoBMnTpSWJCcnV6hQwdfXV74R+NGjR61btxZCxMXFOeHL\neCrbm0b5JpYUdUP3nDlzhBAjR46Ul8yePVsI0aVLF4d6DYvFYhk4cKAQYsKECfISo9H4wgsv\nCCEmTZokLVESXErascbkeA4jD5ZvRYWGku2lJMfZu0NGsZT8SZXsIe39icJe1FmU5DgldZT8\nSunSpYsQ4v333zebzdKSP/74o27dukKIJUuWuPqblhvkwfJHyY7U3vBRvpNkilGnsH08qCTc\nlB9N2P4s2EvJX15JjlNShx+iTkEe9ASleaYUTqdkv6rkhw2br/Q5PMWoRdlO1YnbVGP53+Fl\njxIWFvbgwQOj0ajT6UrY1N/+9rcZM2ZUrFixa9euubm5W7ZsyczMXLBggbSZUWoef/zxU6dO\nderUqeBQeZ06daZPny6/vHHjRkRERKNGjc6cOVOwnStXrrRv3/7WrVvh4eEtW7Y0m82///77\ngwcPGjdunJCQEBISIlVbtWrVwIEDdTpd7969vb29d+7cefv27Z49e65fv57r1xxme9Mo2cQ7\nduyQjh+EEIcOHbp69WrHjh0rVaokhIiMjJw1a5YQIiMjo127didPnmzevHlUVNSFCxd2795d\nrVq1vXv31qxZ06VfsBy7evXqU089devWrT/96U/R0dFms3nDhg2HDx9+/PHH9+zZExQUJJQF\nl5J2lGxlFIs8WP4oDA0l26vYHKc850IhJX9SJXtIoWDzsRd1BSU5TkkdJb9SLl261KZNmwcP\nHtSvXz8qKio5OXnPnj0ZGRlDhgwpOOEhikIeLH+U7EiVhI9jO8mxY8d+9913R48e5ZkFJWH7\neFAoCDeFuVLJZ8EuSv7ySnKckjr8EHUK8qAnKOUzpXAuJftVJT9s2HylQ8kPSGedtHHmNrVr\nOLGccdaVMpL58+e3aNHC19c3MDAwOjp68+bNTmkWdpG2aaFatGhhXfPkyZPC5gNdk5KS3njj\njXr16vn4+Pj4+DRu3HjSpEmpqan5qiUkJPTs2TMkJMTb27tx48affvppTk6OS76bx7C9aZRs\n4gULFhRVp0mTJnJTd+7cGTt2bEREhJeXV/Xq1UePHn379u3S+IblWlJS0ptvvlm/fn1vb29f\nX9+mTZv+/e9/z/cEbCXBVWw7CrcybCMPlj/KQ0PJ9rKd45TnXCik8E+qZE9rKW7zsRd1EYU5\nrtg6Sn6lXL58edSoUZGRkQaDISgoqH379nFxcfKFw1CCPFj+KNyRFhs+ju0kuYPQKYo9VLco\nCDeFuVLJZ8EuSv7ySnJcsXX4IeoU5EFPUPpnSuFcSvarSo4L2HylQMkPSCeetHHWNuUOQudc\nKQMAgOqQBwEAnow8CADwZORBAACzIAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgAAAAA\nAAAAAAB4EAYIAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggBAAAAAAAAAAAADwIA4QAAAAA\nAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAAAAAAHoQBQgAAAAAAAAAAAMCDMEAIAAAA\nAAAAAAAAeBAGCAEAAAAAAAAAAAAPwgAhAAAAAAAAAAAA4EH07u6A+7Vu3Vqj0bi7FwAAV9mz\nZ4+Pj4+7e1F2kQcBoHwjD9pGHgSA8o08aBt5EADKN9t5UGOxWEqzN2XK8ePH27Vrl5WV5cQ2\nK1euXLFixdu3bycnJzuxWZQOg8FQt27d7Ozsy5cvu7svcERkZKS/v/+VK1ecG9coHYGBgY89\n9lhycvLt27ed23JGRoafn59z2ywfyIPIhzyoduRBVSMPlj7yIPIhD6odeVDVyIOljzyIfMiD\nakceVDV35UGPvoPwySefPH36tHOHSJcsWbJ27drp06d369bNic2idNy9e3fcuHFNmjTZunWr\nu/sCR0ybNu348eOrV6+uW7euu/sCu+3fv/+LL77o3bv3X/7yF+e27Ovr69wGyw3yIPIhD6od\neVDVyIOljzyIfMiDakceVDXyYOkjDyIf8qDakQdVzV150KMHCIUQtWrVcm6DISEhQoiwsLDa\ntWs7t2WUAm9vb+n/bD6VkvZ31atXZwuq0ZUrV4QQgYGBbL7SRB6ENfKg2pEHVY086BbkQVgj\nD6odeVDVyINuQR6ENfKg2pEHVc1deVBbmh8GAAAAAAAAAAAAwL0YIAQAAAAAAAAAAAA8iMa5\nM00jNTU1LS0tJCTE39/f3X2B3YxGY1JSksFgqFy5srv7Akfcv38/JyenUqVKXl5e7u4L7JaV\nlfXw4UM/P7/Q0FB39wWOIw+qGnlQ7ciDqkYeLB/Ig6pGHlQ78qCqkQfLB/KgqpEH1Y48qGru\nyoMMEAIAAAAAAAAAAAAehClGAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggdJrk5OTXX3+9\nZs2aXl5e4eHho0aNun37trs7BUXi4uI0hZk6daq7u4Yi5eXlvfvuuzqdrmXLlgXfJR7LPhtb\nkJBUKeJOvQg6NSIPqh15sPwh7tSLoFMj8qDakQfLH+JOvQg6NSIPql3ZyYN6VzTqgXJzc7t2\n7XrkyJEBAwY0b9780qVLixYt2r59++HDh3m6ctmXnJwshHjhhRciIyOtl7dv395NPUIxzp49\nO3To0MTExELfJR7LPttbkJBUI+JO1Qg61SEPqh15sPwh7lSNoFMd8qDakQfLH+JO1Qg61SEP\nql3ZyoMWOMOsWbOEENOnT5eXLF++XAjx1ltvubFXUGjy5MlCiIMHD7q7I1AkJSXF19e3ZcuW\niYmJ3t7eLVq0yFeBeCzjit2ChKQaEXeqRtCpC3lQ7ciD5RJxp2oEnbqQB9WOPFguEXeqRtCp\nC3lQ7cpaHmSKUedYtGhRYGDgX//6V3nJ888/X7du3cWLF1ssFjd2DEpIw/IhISHu7ggUMRqN\nr7zyyt69e+vWrVtoBeKxjCt2CxKSakTcqRpBpy7kQbUjD5ZLxJ2qEXTqQh5UO/JguUTcqRpB\npy7kQbUra3mQAUInyM7OPnnyZOvWrb29va2Xd+jQ4e7du5cvX3ZXx6CQHHUmk+nGjRv37993\nd49gS4UKFWbOnGkwGAp9l3gs+2xvQUFIqhBxp3YEnbqQB9WOPFj+EHdqR9CpC3lQ7ciD5Q9x\np3YEnbqQB9WurOVBBgid4Pr16yaTKSIiIt/yGjVqCCH++OMPd3QKdkhJSRFCfPnll5UqVYqI\niKhUqVKDBg1+/PFHd/cLjiAeywFCUnWIO7Uj6MoT4rEcICRVh7hTO4KuPCEeywFCUnWIO7Uj\n6MoT4rEcKOWQ1LuoXY+SlpYmhPD398+3PCAgQH4XZZk0LL906dK//e1v1atXP3v27Jw5c4YM\nGZKWljZmzBh39w72IR7LAUJSdYg7tSPoyhPisRwgJFWHuFM7gq48IR7LAUJSdYg7tSPoyhPi\nsRwo5ZBkgNBpNBpNviXSrL4Fl6Os+eCDD8aNGxcTEyPvPYcOHdq8efP33ntvxIgRXl5e7u0e\nHEA8qhohqVLEnXoRdOUP8ahqhKRKEXfqRdCVP8SjqhGSKkXcqRdBV/4Qj6pWyiHJFKNOEBQU\nJAobgU9NTRVCBAYGuqFPsEeXLl0GDBhgfW1F48aNe/Xq9fDhw+PHj7uxY3AA8VgOEJKqQ9yp\nHUFXnhCP5QAhqTrEndoRdOUJ8VgOEJKqQ9ypHUFXnhCP5UAphyQDhE4QGRmp1+uvXr2ab/ml\nS5eEEPXq1XNHp1BSlStXFkKkp6e7uyOwD/FYXhGSZRlxVy4RdCpFPJZXhGRZRtyVSwSdShGP\n5RUhWZYRd+USQadSxGN55bqQZIDQCby8vFq0aHHgwIHMzEx5odls3rlzZ0RERGRkpBv7hmKl\np6d/8803S5cuzbf89OnT4v+e4AoVIR7VjpBUI+JO1Qi6coZ4VDtCUo2IO1Uj6MoZ4lHtCEk1\nIu5UjaArZ4hHtSv9kGSA0DlefvnlzMzMGTNmyEvmzp1769atUaNGubFXUMLPz2/atGmjR48+\nd+6cvHDNmjV79uyJioqqXbu2G/sGxxCPqkZIqhRxp14EXflDPKoaIalSxJ16EXTlD/GoaoSk\nShF36kXQlT/Eo6qVfkhqpAdUooRMJlN0dPTu3bv79evXvHnzs2fPLl++vGnTpvv27fPz83N3\n71CMtWvX/vnPf/bz8xs8eHB4ePipU6dWr14dGBgYHx/fvHlzd/cO+e3cuXPDhg1SeebMmZUq\nVRo+fLj08u23365YsSLxWMYVuwUJSTUi7lSNoFMX8qDakQfLJeJO1Qg6dSEPqh15sFwi7lSN\noFMX8qDalbk8aIGTpKWlTZgwoUaNGgaDoXr16q+++uqDBw/c3SkotXfv3p49e4aEhOj1+vDw\n8GHDhiUmJrq7Uyjcp59+WtQOTd5qxGNZpmQLEpJqRNypGkGnIuRBtSMPllfEnaoRdCpCHlQ7\n8mB5RdypGkGnIuRBtStreZA7CAEAAAAAAAAAAAAPwjMIAQAAAAAAAAAAAA/CACEAAAAAAAAA\nAADgQRggBAAAAAAAAAAAADwIA4QAAAAAAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAA\nAAAAHoQBQgAAAAAAAAAAAMCDMEAIAAAAAAAAAAAAeBAGCIHy5ssvv9RoNKNGjXJ3RwAAcAPy\nIADAk5EHAQCejDwI2IUBQkAdPvvsM40CMTEx7u4pAADORx4EAHgy8iAAwJORBwEX0bu7AwAU\nqVixYoMGDayXXLhwwWKx1KhRw8fHR14YERExfvz4sWPH6vVENwCg/CAPAgA8GXkQAODJyIOA\ni2gsFou7+wDAET4+Pjk5OQcPHmzZsqW7+wIAQGkjDwIAPBl5EADgyciDgFMwxSgAAAAAAAAA\nAADgQRggBMqbfA/j/frrrzUazeTJk+/fvz9y5Mhq1ar5+/u3aNFi/fr1QoiUlJRx48ZFRER4\ne3s3aNDg+++/z9daQkLCgAEDqlat6uXlVbVq1QEDBuzdu7e0vxIAAIqRBwEAnow8CADwZORB\nwC4MEALlnDQTd3Jycs+ePRMSEtq3bx8ZGXnkyJFnn3326NGjPXr0WLVqVfPmzZs2bXrhwoXR\no0evW7dOXnfu3LkdO3ZcvXp1kyZNhg8f3qhRo1WrVnXo0GH+/Pnu+0IAANiBPAgA8GTkQQCA\nJyMPArYxQAiUc9JTeRcvXtygQYPTp0+vWLHi1KlT3bp1y8vL69OnT2hoaGJi4po1aw4fPjxi\nxAghxMKFC6UVz58/P27cOL1ev2nTpm3btn3//ffx8fG//fabXq9/9dVXr1275s5vBQCAMuRB\nAIAnIw8CADwZeRCwjQFCoJzTaDRCiKysrC+//FJKijqd7sUXXxRC3L59+6uvvvLz85NqvvTS\nS0KIs2fPSi/nzJmTl5c3evTobt26ya3FxMQMHz48Ozt7wYIFpfs9AABwBHkQAODJyIMAAE9G\nHgRsY4AQ8AhPPPFEWFiY/LJ69epCiKpVqzZo0CDfwrS0NOnl9u3bhRB9+vTJ11TPnj2FELt2\n7XJxlwEAcBryIADAk5EHAQCejDwIFEXv7g4AKA2PPfaY9UudTieECA8PL7jQbDZLL69cuSKE\nmDNnztKlS62r3b9/Xwjxxx9/uLC7AAA4FXkQAODJyIMAAE9GHgSKwgAh4BEMBkPBhdKd9YWy\nWCwZGRlCCOtn81qTL6gBAKDsIw8CADwZeRAA4MnIg0BRmGIUQCE0Go2/v78Q4vDhw5bCSNfL\nAABQLpEHAQCejDwIAPBk5EF4DgYIARSudu3aQoirV6+6uyMAALgBeRAA4MnIgwAAT0YehIdg\ngBBA4aKjo4UQP/30U77l58+f37BhQ1ZWljs6BQBAKSEPAgA8GXkQAODJyIPwEAwQAijc2LFj\nDQbDihUrli1bJi+8e/fu4MGDe/XqtXLlSjf2DQAAVyMPAgA8GXkQAODJyIPwEAwQAihco0aN\nvv76a5PJFBsb26lTp5EjRz7zzDO1atU6duzYkCFDYmNj3d1BAABciDwIAPBk5EEAgCcjD8JD\n6N3dAQBl15gxYx5//PEvvvgiISFh7969fn5+UVFRL7300siRI7VaLi8AAJRz5EEAgCcjDwIA\nPBl5EJ5AY7FY3N0HAAAAAAAAAAAAAKWEsW4AAAAAAAAAAADAgzBACAAAAAAAAAAAAHgQBggB\nAAAAAAAAAAAAD8IAIQAAADu/kEIAACAASURBVAAAAAAAAOBBGCAEAAAAAAAAAAAAPAgDhAAA\nAAAAAAAAAIAHYYAQAAAAAAAAAAAA8CAMEAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgA\nAAAAAAAAAAB4EAYIAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggBAAAAAAAAAAAADwIA4QA\nAAAAAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAAAAAAHoQBQgAAAAAAAAAAAMCDMEAI\nAAAAAAAAAAAAeBAGCAEAAAAAAAAAAAAPwgAhAAAAAAAAAAAA4EEYIAQAAAAAAAAAAAA8CAOE\nAAAAAAAAAAAAgAdhgBAAAAAAAAAAAADwIAwQAgAAAAAAAAAAAB6EAULAcbNnz9ZYmTt3rmPt\nWCyWQ4cOffzxx88++2yTJk3CwsJ8fHwMBkNISEhERESnTp3Gjh37888/p6amOtD4jRs35syZ\nExsb26xZs4oVK3p7e3t7e4eFhTVs2PDZZ5/95JNPTp48WdS6L7/8svztZsyY4di3e/bZZ+VG\nvvvuO3n5uHHjNEXz9/evXr1606ZN+/TpM2XKlE2bNmVlZTnWAQCAq+Xbpffs2dPeFiwWS+3a\nta0bWb9+vfLVnZWRZSXJnjLbmU6JU6dOlfCLAACc5ebNm998883QoUObN29eqVIlHx8fvV4f\nFBRUr169mJiYDz/8cO/evRaLRUlTyhOEn59feHh4q1atXnnllVWrVuXl5dlu+dy5c/K63bp1\nK7YnzjoUtf5Gq1evVvJH+Pe//63T6eSvGR8fX1TN9PT0RYsWvfDCCw0bNgwJCTEYDKGhoXXr\n1h0wYMBXX311//59JR8HACihMnv20jYb6fvpp59+//33d+/ebTablTTluvTNkSPcyQLAUU2b\nNrWOphYtWjjQyOrVq5944gkl0RoQEPDuu+9mZmYqbPn06dMDBw7UaDTFttyiRYtVq1YVbOHA\ngQNynQYNGjjw7e7evWswGOT+p6amym+9+uqr9uyrREhIyGuvvXb27FkHugEAcKl8u3SdTnfz\n5k27Wti1a1e+3f66deuUr+6UjCwpefaU2ZvpCjp58qTDXwQA4CynTp1SmBrq16+/ZMkSk8lk\nu0GHE0SVKlV++OEHGy2fPXtWrty1a1fb3XDioaj1N7KdHCW//PKLXq+X6nt7e2/atKnQamaz\n+auvvgoNDbXRNx8fn4kTJ+bk5BT7oQAAh5Xls5dFOXHixIABA5S0XKdOnbi4OKPRaLtB16Vv\njhzhRgwQAg5KSEiQdsERERE+Pj5S+ciRI8pbMJvNr732mr17/KioqKSkJNstG43GN954Q6u1\n7xbhAQMGPHz4MF9TUVFRcoXdu3fb+1eaOXOmvPro0aOt33Is+en1+g8//DAvL8/engAAXKfg\nLv2zzz6zq4VRo0bla0H5AGHJM7LEidlTwmEeAKhdbm7uK6+8ouTcorUmTZrYvq6xhAkiNja2\nqDFIhQOETj8UtWuAcOPGjV5eXlJlg8FQVMbPy8sbNGiQwr517tw5Ozvb9ucCABygirOX+eTk\n5IwePdre9N2gQYNTp07ZaNZ16ZsjR7iRvoT/+ACP9e2330qF55577tKlS2vXrhVCzJ0795tv\nvlHYwtSpU//5z3/KL1u2bBkbG9u2bdu6desGBQVptdq0tLQ//vhj3759ixcvlm/mO3r06MCB\nA+Pj44vKoKmpqc8///ymTZusFzZq1Kh3794NGjSoXLmyj4/Po0ePzpw5s2PHDmnMT6qzcuXK\nS5cubd26tWLFivKKY8aMGTt2rFSeN29ehw4dFH47yfz5862bKqrarFmzoqOjrZekp6c/evTo\nxo0b+/bt27Vr15UrV6TlRqNxypQpv/3226ZNmypUqGBXZwAArubr6yvNCL1w4cJ33nlH4VrZ\n2dk///yzEMLb2zsnJ8feDy15RhbOzp4Fffzxx/bmUCFErVq17F0FAOAsDx48GDBgwM6dO60X\nNm3aNCYmpn79+lJquHfv3q1bt7Zv375jxw45hZ0+fbpt27bLli2LiYkp9lMKHgrJLBZLWlra\nlStXEhISVqxY8fDhQ2n5jz/+WK1aNetrMe3lokNRJXbv3t2/f//c3FwhhF6vX7ZsWZ8+fQqt\nOWnSpOXLl0tlrVY7aNCgQYMGNW3a1N/fPyUl5cSJEwsXLvz111+lCjt27Jg4ceI//vEPhzsG\nACiUKs5eWktKSurfv//vv/9uvVBJ+j5//ny7du2WLl3au3fvYv8srkvfHDmitLl1eBJQq4cP\nH8r3KCQkJCxatEgqBwUFpaenK2nh+vXrOp1OWstgMMyfP992/YULF8pzdQoh4uLiCq1mNpt7\n9eplHeMdO3Y8cOBAUc1evHhx4MCB1vWjo6Otr2dJS0sLDAyU3vLz80tJSVHy7SR79+6Vm23V\nqlW+d5VfZGo2mzdt2tSlSxfrfrZt2zYjI0N5ZwAAriPv0tu0aRMUFCSV9+/fr3D1ZcuWSatY\nHwgpvIOw5BnZ4oLsKbF3vjUAQNmRl5fXvn176119z549T5w4UVT95OTkiRMnyilJCOHt7X3o\n0KFCKzuQIJKTk4cOHSqvpdfrT58+XbCakjsIXXEoqvAbHThwQD661Gq1P/74Y1E1L1y4IJ9T\nDgoK2rFjR6HV5IuEhBBeXl737t2z/V0AAHZRy9lLWU5OTuvWra1r9unTx3b6fu+99/z8/Kyz\nSVFHsq5L3xw5wo0cv+wL8GQLFy7Mzs4WQkRERLRr165v377e3t5CiNTUVPkix2JbMJlMUvmd\nd94ZMWKE7frDhg2bMWOG/LKo600+++yz3377TX754Ycf7ty5s1WrVkU1W6dOnZ9++unbb7+V\n77uPj4+3vjIoICAgNjZWKmdmZi5dutR2P6398MMPctnG7YPF0mg0PXr02Lp169dffy3PRbNv\n375i/2gAgFJmsVh69OghlePi4hSuJY/qdezY0d5PLHlGFi7IngAAtfvb3/4mT2Gt1WrnzJnz\n22+/Pf7440XVDw4O/vTTT/fv31+tWjVpSU5OzsCBA5OTk53Sn+Dg4EWLFsmnU41Go/VkLXZx\n0aFosU6ePBkTE5OWliaE0Gg08+fPf+GFF4qq/O2335rNZqn8z3/+s1OnToVWGzNmTP/+/aVy\nbm7uli1bHOsbAKBQajl7KXv99dfluxh1Ot3333+/bt062+l72rRpBw4ceOyxx6Qlubm5AwcO\nfPDgQZFf0h5OTN+AizBACDhi7ty5UmHw4MEajSY4OLhv37753rLt1KlTcvmll15Sssq4ceMi\nIyM1Gk3NmjVr166dkpKSr8KtW7f+/ve/yy8nT5780UcfKWl5zJgxU6dOlV9+8sknGRkZ1u/K\nZesxP9syMjLkM7NBQUGDBw9WuGJRNBrNuHHjFixYIP8a+Omnn/bs2VPCZgEATpSdnd2vXz+p\nvGzZMiXzhSYlJW3evFkIodFounbtau8nljwjuyh7AgDU69SpU19++aX8cu7cua+88oqSFZ94\n4ondu3eHhIRILy9fvvzxxx87q1cajcY6YeWblk05VxyKFisxMbF79+7SNGsajebbb78dPny4\njfq7du2SCiEhIUOGDLFR8/nnn5fLFy9etLdjAAAbVHT2Ughx5MgR68dMxMXFFXzUfaGaNGmy\nZ88e+UlG165dmzJlipIVlXBW+gZchAFCwG47d+6UZ26Rj1Xkw5v9+/efOHGi2EaSkpLkcpUq\nVZR8rk6n27FjR0pKyuXLl9esWRMcHJyvwpdffik9y0EI0aZNmw8++EBJs5KJEyc2a9YsNDR0\n2LBh8+bNs54QICoqSr49/+DBg0q+nRBi+fLl6enpUvnFF1/09/dX3hkbYmNj33jjDfnlhAkT\nnNIsAMApsrOze/furdfrhRCPHj2SHgdo248//mg0GoUQLVu2tP0Yv4KckpFdlD0BAOo1ffp0\ny/8962jAgAEvv/yy8nXr1KkzZ84c+eXcuXMfPXrkrI61atVKulFeCHH9+nXHGnHFoaht165d\n69q1q/y5X3311ejRo22v8ssvvxw5cmTbtm2//PKL9LuiKOHh4XLZgScZAwBsUNHZSyHEZ599\nJpdfeOEF67k9i1WjRo3vvvtOfjlv3jxn3UQonJS+ARdhgBCwm5wwoqKinnzySakcExMjTybz\n/fffF9uIdYK8cOGCwo+uVauW/MyGfHJzc60z2bRp0+RZwpXQarUbNmy4e/fuwoUL+/btK8/k\nKXHgJkJnzS9a0KRJk+S/3v79+w8dOuTExgEAJWE0GkNDQ+WnxiqZZVSeX3Tw4MHy9DUKlTwj\nuzR7AgDUKCkpSX44rkajmT59ur0txMbGNm/eXCqnp6crn4VFCflZv9JcnQ5w+qGobXfu3Ona\ntat8PnTGjBnjx48vdq2IiIioqKguXbpER0fbrnnr1i25HBkZ6UAPAQBFUdHZy1u3bq1cuVKu\n9sknnyhvVvLcc8/JN0hkZmYqnJBGoZKnb8BFGCAE7HP//v1ffvlFKltPva3T6V588UWpvGTJ\nkqysLNvttGzZUi5/+OGH9p4SLejAgQOpqalSuWHDhg7M0la1atWirs0cPHiw/JtgyZIlxV6Y\nee7cub1790rldu3a2Zjs2wEVKlSwntZg9erVTmwcAFAS0uOC5IS4adOmO3fu2Kh/6tSpY8eO\nCSF0Ot3gwYPl2zWUcEpGdmn2BACoUXx8vHRruxCiR48ederUcaCRcePGyWUnTiaWk5Mj348Y\nGhrqWCNOPxS14cGDB926dZNn/vz444+dPgeMfKWRVqvt3r27cxsHAA+norOX27Ztkx9e26tX\nr5o1azrQPetLWKQHYTiFU9I34CIMEAL2WbBggTQ85uXlFRsba/3WyJEjpUJycvJPP/1ku52h\nQ4fKN8L/+uuvvXr1unTpUkk6tnPnTrksP/zWWfz8/OSTrQ8fPly1apXt+tYXyY4dO9a5nRFC\n9OjRQy4nJCQ4vX0AgGOkEb4BAwZIF0iaTKbFixfbqL9w4UKp0L179/DwcLsGCJ2SkV2aPQEA\narRjxw653KdPH8caeeaZZ+Ty3r178/LyStgrifXgpXzrvL2cfihalNTU1Keffvr06dPSy/ff\nf//99993Yvsmk+m9997bsGGD9HL48OG1atVyYvsAABWdvbRO3w633Lt3b41GI5X37dvnrJmr\nnZK+ARdhgBCwg8VikScr69u3b75HJTVo0KBdu3ZSudg5zWrUqDF58mT55ebNmxs0aPDMM88s\nWLDg2rVrDvTtyJEjclnuhhNZTxM6b948GzWNRqN8Ojg0NHTgwIFO70ynTp3k8rlz55zePgCg\nJHx9fQcPHiyV5SHAgkwm048//iiVFT7xXuasjOzq7AkAUJ2DBw/KZYdTQ1hYWIMGDaRyZmam\nPEhWEnl5edaHkA4PXjr9ULRQmZmZvXv3Pnz4sPRywoQJH3/8ccmbNZlMSUlJx44dmz17drNm\nzT799FNpeXR09D//+c+Stw8AsKais5dOaTk0NLRx48ZSOTs7u0ylb8BFGCAE7LBt27bExESp\nXOipTHmKs4SEhDNnzthubdKkSbNmzZLn2jaZTOvXrx85cmSNGjUiIyNjY2P/9a9/HT9+XL5B\n3rb79+/L5Xr16ilZxS5NmzZ96qmnpPL27dsvX75cVM3169fLDzEeNmyYr6+v0zvj7+8vz2Z+\n584dZ12QCwBwFjkhnj59uqiHxW7dulV6blBISEi/fv3sat9ZGdnV2VPWv39/jT0CAgJc1xkA\ngA337t2Ty/IgnwMaNWokl+/evVuiPgnx6NGj55577sCBA9LLihUr2nttjTXnHooWlJOT8+c/\n/3nPnj3Sy6effnrGjBkO91YyceJEjUaj1+urVq0aFRU1fvz4U6dOCSGqVKkyY8aMzZs3kzoB\nwBXUcvbSOn2XpOX69esX2qZjHEjfHDmilDFACNhBfo5utWrVYmJiClYYNGiQn5+fVFbyMNs3\n3ngjISHh6aefzrf8+vXrS5cuffXVV5s1axYaGvrcc8/FxcU9fPjQRlMPHjyQyy6az1qeLNRi\nscyfP7+oatbzi1rfd+hcYWFhcjkjI8NFnwIAcEzbtm3lE6NxcXGF1pEfGjR48GAfHx+72ndW\nRi6F7AkAUBc5Nej1+pKcdLNOK9bpJp+bN2+eK9rBgwdXrlw5fvz4WrVqrV27VlpFo9HMmTOn\nhGnLiYei+RiNxkGDBm3ZskVesm3btm3btpWkt4WqXLnyRx99dP78+QkTJvA8YABwHVWcvZRb\nNhgM/v7+DrdToUKFgm0W5K70DTgdA4SAUklJSWvWrJHKL774onztjLWgoKBnn31WKi9evFjJ\nXNVt2rTZuHHj0aNHJ06cWOgFqqmpqStXrhwxYkRERMQrr7xS1GTf1oNk8ilR5xo4cKCcJuPi\n4gq9OOjWrVvyQyA6duxofdmsc1mfSpYn8gYAlB3ypZFLly7Nzc3N925aWtrq1avz1VTIiRm5\nFLInAEBFTCZTZmamVC7J6UUhhPQ4XklqampR1caNG9eoaK1bt37uuedmz56dkpIi1TcYDP/6\n178GDRpUkr5JnHUoms8777wjp2mJ0Wh87rnnzp8/X/I+W7t79+7kyZMfe+yxUaNGSXMSAABc\npIyfvTSZTNnZ2U5p1vraoPT09KKquTF9A87FNVaAUvPnz5ensrRxKnPEiBFLliwRQjx8+HDF\nihVDhgxR0nizZs2kJyjcvHlzz549e/fuTUhIOH78uPXQV2Zm5jfffDN//vyZM2eOGzcuXwvB\nwcFyOTk52foGO2fx8fEZNmzYl19+KYS4cePGxo0bCz71d+HChSaTSSq77vZB8b9X8XBKFwDK\noGHDhk2aNMloND58+HDdunUDBgywfnfFihXSGdiGDRu2adPGrpadmJFLIXtKpk+f3rFjR+X1\nCx31BAC4mk6n8/HxkU4ypqenWywWjUbjWFNpaWly2XqwsCQ6d+78+eeft2rVyimtSUp+KJrP\nH3/8IYQwGAxffPHF1atXv/jiCyFEcnJynz599u3bl++xwcqNHj06JibGbDY/fPjw7t27x44d\nW7t2bVJSUnp6+g8//LBixYpVq1ZFR0c71jgAQIkye/ZSp9MFBARI43lpaWklSd/ykJ5w3j2O\ndqVvjhxRyhggBBQxm83ff/+9VG7Tpo2NG+Oio6Nr1qx55coVIcTcuXMVDhDKqlevPmjQIOmK\nkoyMjN9//33Lli1r1649d+6cVCEnJ2f8+PEWi2X8+PHWK1rfAn///v26deva9bkKjRkzRhog\nFEL88MMPBQcI5alHw8LC8p0Ldq5Hjx5JBX9/fwYIAaAMqlq1akxMzPr164UQcXFx+ZKCPL+o\nvbcPOjcjl072FELUr1+/bdu2LmocAOBEFSpUkG5HM5lMqamp1qcy7SIfsAhnnGH86KOPnn/+\n+YYNG5awHRscPhQt6LHHHvv555/btm1rNptPnz69ceNGIcTFixefffbZLVu2eHl5OdC92rVr\n165d23rJ7NmzZ82a9cEHHxiNxpSUlL59+x4+fNj62VEAABcpg2cvK1SoIA0Qms3m5ORkhzOv\ndfp2+KIWmQPpmyNHlDKmGAUU2bx58+XLl6Xy/v37bTwbVqvVSucihRC7du0qyTwq/v7+3bp1\nmz59+tmzZ7dt2/b444/Lb02YMOHatWvWlcPDw+XysWPHHP5Q2xo2bNipUyepvG7durt371q/\nu3PnzosXL0rll156ydvb20XdOHPmjHzvSM2aNV30KQCAEhoxYoRU2LhxY1JSkrz82rVrO3fu\nFELodLoXX3zRrjadm5FLJ3sCAFSkatWqcvns2bMOt2Odd6pXr15UtVWrVlmK8Pnnn8vVEhMT\nXTo6mI9dh6L5REdHHzlyRDq5qdVqly5dKg/a7dq1y4nTzHh5eU2cOFF+0nB6evrEiROd1TgA\nQKEycvbSuuWTJ0863M7p06flcrVq1YqqVjbTN+AABggBRb777jvHVpTvciihLl267Nu3T76E\nJDc3Vz4QkljPz7Z7926nfGih5CO6vLw8+f4PyQ8//CAVNBrN6NGjXdeH+Ph4udyiRQvXfRAA\noCSeeeYZadIYo9H473//W16+ePFii8UihOjevbv1gZwSzs3IpZY9AQBqYT0D2L59+xxrJD09\nXb6LIiAgoHHjxg408sYbbzzxxBNSecmSJb/99ptjnSmhYg9F83nttdcqVaokvwwJCVm7dq18\nI2ZcXNz06dOd2L0RI0ZERUVJ5bVr11pPDQcAKGVuPHtpfdfd77//7lgjjx49ku98qFChgmNj\ne2UkfQMKMUAIFO/WrVvSDGkOWLhwYW5urlO64efnN2PGDPllvjzaoUMHufzrr79aP/FCObPZ\nXGydAQMGyMd78oigECIlJWXFihVSOTo6ul69eg50QKFVq1bJ5a5du7rugwAAJWEwGOSJPePi\n4uTlixcvlgr2zi/q9IxcatkTAKAW7dq1k8tr1651rJFNmzbJ2aFNmzaOPR9Ir9d/99138lOU\nxowZk5qa6lh/Ssj2oWixGjRosHTpUq32Pyeg3n33XesDupLr3LmzVDCZTEeOHHFiywAAe7nr\n7OWf/vQnuSyfn7TXmjVr5HLnzp0de5Bh2UnfgBIMEALFmzdvnvy43ZUrV15XQH5Q3/379514\n8NOqVSs5wVjP1SaEePLJJx977DGpnJKSIj8LULkbN27Url178uTJ1tNtF+Tl5SWfzz137px8\nVc7y5cuzsrKk8tixY+39dOWOHDmybds2qezr69u3b1/XfRYAoIRGjhwpFU6ePHn8+HEhxIED\nB6RZ10JCQvr162dXa07PyKWWPQEAatGjRw+9Xi+V4+Pjz5w540Aj1ldSPvfccw53pm3btvLU\nLDdu3Hj77bcdbqqEbByKKtGzZ0/5xkGLxTJ06FDbI3np6emXLl1KSEiwPZ2pRJquQEI6BgC3\nc8vZyy5duvj5+UnlQ4cOOTYHwLx58+Ry7969HWhBUnbSN1AsBgiBYpjNZjk9REZG9u/f/zEF\nRowY4evrK62V7256o9G4cOHC8ePHt2vXrnXr1nZ1xmQySXOyCSHktCfRarXjxo2TX06ZMuXW\nrVt2NT569OirV69OmTKlRo0a0qOhbNSUM/3PP/8sFZYtWyYVKleu/Oc//9muj1bObDZbp9Ux\nY8aEhIS46LMAACX3xBNPNG/eXCr/8ssvwipfDB482MfHR3lTTs/IonSzJwBAFapVq2Z9OPPO\nO+/Y28LevXs3bdoklQMDA+Wb6R3z2WefValSRSp///331k9bsJeLDkUVmjBhgvzg4czMzL59\n+xaVc1evXh0YGFi3bt0OHTrMnj272Jbv378vl0NDQx3oGwAgH9WdvQwJCRkxYoT88o033jCZ\nTHa1vHr16oSEBKkcHh5edtI34FIMEALF+PXXX69fvy6VX3zxRYV3lwcFBclHlfHx8fIE1kII\nvV4/ZcqU2bNn79u37+DBgzt27FDeGTlRCSFq1qyZ793Ro0cHBgZK5YcPHw4dOjQnJ0dhyzNn\nztywYYNUDg4Otp3769at26VLF6n8888/WyyWpKSkXbt2SUtGjhxpMBgUfq69Jk+evH37dqns\n6+vrwOE6AKCUycdpv/76q7CaJtre+UWdnpElpZY9AQBq8de//lUur1+/3q7nymdkZLz88svy\n7Gfjxo2Ts4xjQkJCZs2aJZUtFsuoUaMyMzMda8p1h6IKzZ07V86VN2/e7Nu3b6HfRb60SAix\nevVq+SxzUfbs2SOXa9So4VjfAADW1Hj28o033pDnANi3b9/f//535X2+efPmX/7yF/nlm2++\n6e3trXz1gpyYvgGXYoAQKMZ3330nl4cNG6Z8RbmyxWKxvkVdCCFfOCmEGDVq1L1795Q0mJOT\n8/7778svn3nmmXwVQkNDv/76a/llfHx8TEyMkoe0f/rpp/JteRqNZu7cufLNFkWRJxG9cePG\nnj17Vq1aJV2Yo9Fo5JvonctsNr/zzjtTp06Vl0ybNq1q1aqu+CwAgBPFxsZKB1dHjx7dvXv3\nlStXhBANGza0fkC9Eq7IyKJ0sycAQBU6dOggT5EthPjLX/6yYMECJSsmJyd379793Llz0st6\n9ep9+OGHJe9PbGxs9+7dpfIff/wxadIkh5ty0aGoQj4+PqtWrapWrZr08vDhwy+++GLB8b/I\nyEh5jDAxMdH2H3/nzp0HDx6UyrVr165du7ZjfQMA5KO6s5d16tT5+OOP5ZdTp0599913i73K\nRAhx6dKlDh063LlzR3rZtm3b1157rdi1iuXE9A24kAVA0a5evSo/Sr1du3Z2rWs0GuUjnypV\nquTm5spvpaamWo9s1axZc8uWLbZbu3DhgvXjdiMiItLS0gqtme8W+KpVq/7www95eXmFVj5+\n/Hi3bt2s63/wwQdKvl1ubq58p/y4cePkGwqffvppJatbLJZXX31V/tBVq1bZrrxz58727dtb\n9zM2NlbhBwEAXE3epdeoUaPQCgMHDpQqREdHS4XPPvusYDX5BJ8QYt26ddZvuSgjy1yRPe3K\ndACAMiUlJaVWrVryblyj0QwbNuzWrVs2VlmxYoX1fRIBAQH79+8vtKYDCSIxMVGel1ur1e7d\nu7fQamfPnpVb7tq1a8EKLjoUtesb7d+/33qO8YkTJxass3jxYrmCj4/PmjVrCm3qyJEj1l/n\nk08+sf3RAADl1Hj20mw256vZpk2bhISEojqcmZk5depUf39/uX7FihWvXbtWaGXXpW+OHOFG\negGgaN9//708Oczw4cPtWlen0w0ZMmTmzJlCiKSkpDVr1shPpw8MDFyxYkXXrl2lm+ivXLnS\nvXv3Zs2a9evXr1mzZrVq1QoICNDr9RkZGTdv3jx9+vSmTZs2b94s98TLy2vevHkBAQGFfu78\n+fM1Gs2SJUukl3fu3Hn55ZcnTJjQq1evFi1aVK1aNSAgICUl5cyZM9u3b9+/f7/1um+++eaU\nKVOUfDuDwTBy5MhPCzI8LwAAIABJREFUP/1UCLF8+fKHDx9Ky8eMGWPXX0ly+fLlY8eO5Vv4\n6NGju3fvHjp0aPPmzSdOnLB+q3///gVvAQEAlFkjR46UnlkrPXpBp9NZX46qhIsysszV2fPU\nqVOOPTS3c+fODqwFACihoKCg+Pj4rl27Xrp0SQhhsVgWLVq0YsWKmJiYvn37Nm7cuEqVKt7e\n3nfv3r19+3Z8fPyaNWusB+d8fX3XrVvnxKmn69at+95770n3I5rN5pdffvno0aMOzH7m0kNR\nhVq3bj137lz5/v7PPvusYcOG+ZL7kCFD4uLitm3bJoTIzs7u169fz549Bw8e/OSTTwYHB2dm\nZp47d27NmjVLly7Ny8uTVqlbt+7rr79eko4BAKyp8eylRqNZvXr14MGD169fLy3Zv39/+/bt\n69evb52+7927d/v27R07dmzdutV65s/IyMj169dHRESU7C/3Xw6kb44cUdrcPUIJlF15eXnh\n4eFSpHh7ez969MjeFk6ePCnHWo8ePfK9Gx8f78AMmRUqVNi0aVOxH/3xxx/bdbjo7+8fFxdn\n17e7fPmyfDOHJDw8vKiLfQqyvjpGOZ1ON2XKFLPZbFdXAQAuVewdhCaTqXr16vLOPCYmptBq\nRd1B6OqMLHNu9nQs0+Vj7zcFADjRzZs3O3bsaO+uu1mzZsePH7fRrGM3CuTk5DRs2FBe8b33\n3itYp9g7CCVOPxR14Bu99dZb8ipeXl67du3KV+HRo0fKR1jDw8MvXryo5HMBAHZR49lLo9H4\n9ttvGwwGu/rcpUuXpKQkG826Ln1z5Ag34hmEQJHWrVt369YtqdyvXz8HLt9o2rRpVFSUVN6y\nZcvly5et3+3cufPJkycnTJhgfSe7DcHBwa+99lpiYmKPHj2Krfz++++fP39+6NChOp3Odk0f\nH5//9//+X2Jior03ZNSsWTNfT15++WX5acBOp9frX3rppXPnzn3wwQcajcZFnwIAcAWtVmv9\n1MCXXnrJrtVdnZFlpZA9AQAqEh4evmPHjgULFsiPV7Ctdu3as2bNOnDgwBNPPOH0znh5eX37\n7bfyy88///zo0aOONeXSQ1GFPv/885iYGKmcm5vbv39/6WZNWUhIyO7du9977z3bndRqtS+8\n8MKJEyfq1KnjrL4BAGRqPHup0+k+//zzM2fODBo0KN+9DYVq2bLlb7/9tm3btsqVKxdb2V5O\nTN+AKzDFKFCk7777Ti5bn9a0y/Dhw6X9vsVimTdv3rRp06zfDQsLmzFjxkcffbR169bt27ef\nPn364sWLycnJGRkZGo0mMDAwKCiodu3azZo1a9++fa9evey6rKZGjRqLFy+eMWPGqlWrdu/e\nffr06evXr6enp2s0muDg4KpVq7Zo0eJPf/rTgAEDgoODHft2Y8aM2bhxo1TWarWjRo1yrJ1C\neXt7V6pUqXLlyo8//nj37t27d+/uijwNACgdI0aMkCamDgkJ6devn13rlkJGlpVC9gQAqIhG\no3nppZdiY2PXrVu3cePGI0eOXL58OS0tzWg0ShV0Ol3Hjh3btm3buXPnbt26KTkR6bBOnToN\nHz584cKFQgij0Thy5MiDBw86do2mSw9FldBqtUuXLm3Tps2FCxeEEA8ePOjTp8/vv/9ufRmQ\nl5fXtGnT3nzzzWXLlu3YseP48eMPHjxITU318/OrUKFCkyZN2rdvHxsbW6NGDef2DQBgTaVn\nL+vWrbts2bJ//OMfq1ev3rNnz5kzZ65du5aWlmY2m/38/KpWrVq/fv22bdv27t1bvpbURZyY\nvgGn01gsFnf3AQAAAAAAQB3MZnN4eHhSUpIQQqvVXrt2zXombQAAAEAVmGIUAAAAAABAKa1W\n++yzz0pls9k8b9489/YHAAAAcAB3EAIAAAAAANjhyJEjLVq0kMqhoaFnz55V+JxCAAAAoIzg\nDkIAAAAAAAA7NG/ePDo6Wio/evTo+eefz8zMdG+XAAAAALswQAgAAAAAAGCfWbNm6fV6qbxr\n164WLVosXbo0KSnJaDTev3//5MmT7u0eAAAAYBtTjAIAAAAAANht9uzZ48ePL/StBg0anDt3\nrpT7AwAAACjHHYQAAAAAAAB2Gzdu3Lfffuvj4+PujgAAAAB24w5CAAAAAAAAB12/fn3OnDmb\nN2++evVqVlZWcHBwREREjx49pk6d6u6uAQAAAEVigBAAAAAAAAAAAADwIEwxCgAAAAAAAAAA\nAHgQBggBAAAAAAAAAAAAD8IAIQAAAAAAAAAAAOBBGCAEAAAAAAAAAAAAPAgDhAAAAAAAAAAA\nAIAHYYAQAAAAAAAAAAAA8CAMEAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgAAAAAAAAA\nAAB4EI8eINy5c+fWrVstFou7OwIAgBuQBwEAnow8CADwZORBAIDGk9NAWFjYgwcPjEajTqdz\nd18AACht5EEAgCcjDwIAPBl5EADg0XcQAgAAAAAAAAAAAJ6GAUIAAAAAAAAAAADAgzBACAAA\nAAAAAAAAAHgQBggBAAAAAAAAAAAAD8IAIQAAAAAAAAAAAOBBGCAEAAAAAAAAAAAAPAgDhAAA\nAAAAAAAAAIAHYYAQAAAAAAAAAAAA8CAMEAIAAAAAAAAAAAAehAFCAAAAAAAAAAAAwIMwQAgA\nAAAAAAAAAAB4EAYIAQAAAAAAAAAAAA/CACEAAAAAAAAAAADgQRggBAAAAAAAAAAAADwIA4QA\nAAAAAAAAAACAB2GAEAAAAAAAAAAAAPAgDBACAAAAAAAAAAAAHoQBQgAAAAAAAAAAAMCDMEAI\nAAAAAAAAAAAAeBAGCAEAAAAAAAAAAAAPwgAhAAAAAAAAAAAA4EHcNkCYl5f37rvv6nS6li1b\nKqmfnJz8+uuv16xZ08vLKzw8fNSoUbdv37arAgAAZQd5EADgyciDAABPRh4EAJQFerd86tmz\nZ4cOHZqYmKiwfm5ubteuXY8cOTJgwIDmzZtfunRp0aJF27dvP3z4cGhoqJIKAACUHeRBAIAn\nIw8CADwZeRAAUFZYSl1KSoqvr2/Lli0TExO9vb1btGhR7CqzZs0SQkyfPl1esnz5ciHEW2+9\npbBCoSpWrCiEMBqNjn4VAADsRh4EAHgy8iAAwJORBwEAZYfGYrGU7oikePjw4SeffPLpp58a\nDAYfH5+mTZseOnTI9ipRUVGXLl26d++et7e3vLBevXqpqal37tzRaDTFVii02bCwsAcPHhiN\nRp1O55SvBgBAsciDAABPRh4EAHgy8iAAoOxwwzMIK1SoMHPmTIPBoLB+dnb2yZMnW7dubZ3k\nhBAdOnS4e/fu5cuXi63gtK4DAFBi5EEAgCcjDwIAPBl5EABQdrjnGYR2uX79uslkioiIyLe8\nRo0aQog//vjDZDLZrlC7dm154bFjx0wmk1Q2Go2u6PDIKYtOpOsHd4sa3KbWY8E+rvgIAIDn\nUF8e/GjxtjTfZvXCuzUJ/1OtCs2qB7niUwAAHkJ9eXDKoosZmr8O6vzMk9W9dG64JBcAUJ6o\nLg8O//vCRWmVhBC+5ly9sPhZ8vRajUar0Wh1Qqvx1gg/b71GpxNanVanC/DRG3RajU6v+d+7\nGP29dAVzqJdO4++l9zVofQz/U9nPoPXW/6dyqJ9BCOFn0MlLhBD+Xnov3X9uowzy0eu0hd9S\nGeit12s1Go0I8TVYrVtITwCg3FDBAGFaWpoQwt/fP9/ygIAA6d1iK1gvjI6OTk5OdlFXk5NT\nT56+dCfTfNgUcnjT5bc3XX4yPGhUm4jouhUbVfHXFnFHPwAANqgvD2aZrln8rl1IXnshWQjR\noLJ/y8eCW0WGPBke+FTNUA6uAAB2UV8ezDTvNlbe/e+Tldac792o8tinIptXDzboOBgEADhC\nRXlQCJF57bIpJ0cqZ2m9hBBpwlsIISxCmISQhiZzpddGIYxC5LiuMy4S4msomNSDfPT+Xjpf\nq5FLg04T4K0XQnjrtH5eOiGEXqsJ9P7PqXidVgT5GP5b00vnY9D5GrRB3nqdVuNr0AV46+TK\n1itKI6D5FgKAw1SzHyk4X7b09ER5ebEVJJ07d05PT5fKO3fuzMvLc2InHz1I7rbiWq62cttH\nZ/aFNhZCHL+VOn7VaSFEiK/hqZohzz1RrVv9sIgQbisEANhHpXlQCHH+bsb5uxn/PnJLCBHq\na+hSr2K3emG9GlWKDPV14kcDAMo3VeTBh/eTu668nqepLL28l54bd/BG3MEblQK8utSt2LVe\n2OCoapzLAwA4QBV5UAhxfcWSzOtZospjNuq0fXSm0OXyIWQZl5xVyB/tUWELS4FGI0J8/nu/\no06rCfL5zy8NjRAhvoYAb12or8Gg0wb76KV7V7RaEfx/q4T46iv5ewX56L10Wn8vXbCvwaDV\nBPnovfRafy+dEMLXoPPRc40vUJ6p4OAkKChIFLjgRQiRmpoqhAgMDCy2gvXCVatWyWXpYbxO\n7GqtOpG/PHVyypbEQ8ENrM+NCiGSs/J+O3vvt7P3hBCNqwT85akaw1tV5+AQAFAsdeXBtd3+\n+G7lzov6sPYPT5k02nzHeI+y8laeuLPyxB0hRPPHgrvXD+vdqNJTNUOLmuMFAAAV5cHadSOX\ntzw6aefVswE1rI8H76XnLj92e/mx22+tPdu5boVnH6/6QlS4N6fbAAAKqCgPCiHqvvJ2rwUr\nKt6+nW7Rmc2WtDxLXp7RYjKmmzRGk8liMgkhcnX/HdBK1/33stH6GTekQp5Wl631kspRKRel\ngkWIbK13nlZn1Pz3Lj21jCm6jsWSf2zyfkau0z8l1Neg02pCfPXBPgZpitcQH7009izdyKjX\naSr4GQL+c6OktoKfIcBbJw0u6nX/udNRp/nv4GWon4E7IIEyQgVxGBkZqdfrr169mm/5pUuX\nhBD16tWrWrWq7Qql009J74G9o9tc3v/uXzdkhvqYc3O0ht9Dm+SrcyYpffyq0+/9dv7pBmED\nn6zWq1HlAG9doa0BAKCuPPh0787R7Zqem/nR5b0J5wMiW6Wcv+VdcU3V9tZHcZIjN1KO3EiZ\nvv1SBT/Dn2pXGNqievf6YcE+KvhlAgAoTerKg/1j+7UJ/mXj1//YWDEqLCllfZV21u+m5RjX\nnb677vTdd389/3rHmqPbRYZaPeUIAICC1JUHdT4+o/4ydFTRFYxpqZk3rxnT08zZ2bkpj0yZ\nGebcHGNGuik7y5yTY87LzU1+aExLNSanmvPyzHm5uQ/uWczmgu3kafTZOoO4LIQQerPJrNHm\naAxCCItGk63Nn1tztF7JhgAhRJ5Wb/1urtaQK7/Uag2BQTpvn7yAUFNgaJZXgEav13p56wMD\nTVp9ljBovbw1+v85XM3INeaaLFLZYrEkZ//3mY7pOcY8k0UIkZ77n4K80F33GpaE1GdXDD16\n6bThwd6B3novnTbUzyBNx1ol0MvfS++t1/oZtP5eei+9Rpp5VQgR7GOQri6W7nH099KF+Xt5\n67WMNQIO00j3m7uLj49P06ZNDx06ZLta27ZtT548ee/ePT8/P2mJ2WyOiIjQ6XTXrl1TUqFQ\n0pUyRqNRp3Py+Jw5Lzfx6+k3Vi1N0/vd8Qq95ltlU6VWxwPrmDSFXCXqo9c+3bDSqDYR3eqH\ncdc2AHiU8poHhRB3Nq09N/MjU3aWsIg8re6Kb9V9IY1PRbY6LioazYX/9tBrNb0b/3/27jOw\nqaoPA/i92aPp3nu3UFo6GA5QwIG4J4qo8KqAiKgoKCioKCggIIgigiAogoKCKIKKKIpsWrro\noHvvpGn2vO+H1NCmBTpzM57fB+Wem978KYUnyf+ec3znjgm/OcqThTmFAABOwFFzUJJ5Lm/5\nImV9fTnfv4zvvz9gbLEwUE9YPgubST6cFDDjupCxkQg+AABn5Kg5OIAovV7T3GjU6wwKubZV\nohU36aStOlmbrlVi0Kh1ErFeKVdWlunapNe6UG+e9QqZzOQLeP6BDA6X4+bBEok47p78kHCu\npzfJZHJ9/Dle3iy+gOUiIros93p1Mo1eb6QkSp3WYFRoDQqtQas3qnRGtd60ZyMhUekkystt\nRbnWYGo6GilKqrrclezYetQbKZlGTxCERKmTqHRqnVGla7+aVK030toOGCSmVVL5bKangO0p\nYPu6cExbObry2C4cpoeA7evC4bIYAjbTU8AOcOUJOEzcoAxA2OYMQrVaXVBQIBKJoqKiTCPP\nPPPMzJkzP/zww7fffts0snnz5tra2qVLl/bwAVbGYHPi5i32vv7mil1bRZnnYhQ1tzRnSNnC\nHLfos0n3HFF7mG8eIQhCrTceyG04kNvgxmM9mhw4fWTQqFB3LLYGAOC0HCAHCYLwn3iv1/U3\nV+zcUvndDrbREKOoiVHUELVH1DzX6qlvHmeHHC1qqZd12pFeb6RMgSjgMG+K9LwvwW9UqFtK\nkFsv314BAIB9c4Ac9EgembZhR94HixkZZyJVtbe0ZLRyXH7zGZU3ZMIpOd/8qZzOQO2+ULv7\nQm2IO2/OjWFPpAUFuWG7egAAZ+cAOTiASBaL5x94zYcZdTq9rM2gVOgVMq1ErFcqNM0Nerlc\n19aqFTcblAp1fa2muVGvkF/jQlSH/3ZhUCoVpcUdiuv+YWw3D467B0vkynH3ZLmIWCJXtpsH\nx8OT7ebO9fLleHgxOByuj5/58abZb9ZfVICiiNo2daNc26LQEgQh0+g1emPbf21FgiBUOqNa\nb5SqdUYjodYbmhVarYGSKHWtKp3pO6QzGOUaA/Ffj9PK9VvQGoxalVGi0tW2qXv1hZ4Ctvt/\n33zzn4KHgB0g4go4THc+myQIdz5LwGH6CDlcFsNPxBVxWUIO0zSL0bTX4wD/Zq5l2e8lS34r\n7DjCZ7FV+itOThVyGPIP7hj8usAu0TCD8O+//z58+LDp16tXr/bx8Zk2bZrpcMGCBV5eXrm5\nuYmJibfccssff/xhGjcYDOPHjz9+/Ph9992Xmpqan5//3XffDRs27PTp06ZbY675gG5Z506Z\n2oPfF21crZe1tacLSRgSrz9zz/zDxa2nKyTdfvu9hJwpKQH/GxmcFOiKO0kBAByMs+WgNPdC\n6RcbxOmnL7/LYpBJy9b73HTr2crWny42/l7YdK7qivd7RnsL7hzie0e8z9gIT6zIDQDgAJwq\nB5uOH81bvkivkJvfDMrSbvl99LQvM5vVessF01gM8sEk/6UTY+J9XQapHgAAoJ1T5aCtMep0\nBqVcr5DrpK2mZiGl02nEzXqFTFFWomtr1bY0aZoaNC1Npu0SLfX5Q/SuH+6SJMfDk+cfxA8I\nZrt7CILD2G7uwvBoQUgYk8fv5go2T6E1aA1GgiDa1HqZRi/XGOQavXm2ovkXco1BZzBK1Xoj\nRWj0hja1XqYxtKp0Kp1BpTO2qfVKnaFBpqG93dhbrjyWp4Dt68J15bFcuSw3PsuVyzJNUjT1\nEXkspjufJWAzeWxmoCvXS8jpz/zFhQeLVv5V1HGEw2BrjQOzeu2keO9DM0YNyKXALtDQIFyx\nYsWiRYu6PVVUVBQdHd01CAmCkMvlS5cu3bt3b21tra+v7/333//uu+96enr2/AFdWS0IVbVV\nOYtfkhUVmN8Weo8Zn/Dmihod66eLDTvTa89Wtnb7hW481lMjgh8Z7n9DuAfmFAIAOAYnzEHK\naKz//eeSzes0TQ0ERRAkQTIY4U89F/nMC6YHVEpUB/MaPz1RkddwxTs62UzywUT/+4b53RTp\niQkWAAD2y9lyUN1Ql/f+G5KMM+Y3g/zg0Ig1O34s12w6WZFdJ7N4PEkSacFuU1MDnx4V4oqV\nrwAAHI6z5aBdoiidrE3fJtW2tmiaGg0atV7WppW0qBvrdRKxQaPStjTrFTJdm7SbPmLfPmjv\n8KEv282DJXRhuYi43r4sFxHHw4vlIuJ4enG9fdmu7hx3T7aHJ0vo+PcSmVdeVWgNbWq9eYlU\ngiD0Rkqq1kvVOoORaFPrlDqjRm9UaPVaPdWi1ErV+ia5VqbRyzV6iUrXcRk/m8JkkB58tgef\n7c5nufHZrlyWO5/lwmUFufFMHUQ2g3TlsZgM0oXDYjNJHxeOeavFQW0Q9tCKu+JenxBlzWeE\nQULzHoT0smYQUnp95XfbS7asp0zrR5OEKCY+5aOtbDcPgiAu1sv35dR/drKirk3T7ZcHufGe\nSAuaNiJoiJ/jBwAAAFiHld8QGtSqzPkzW7PSLW6XYbmIzI+5UNN25FLzrwVNx0vFV7lnMMJT\n8FCS/1MjghIDRFd6DAAAwNVZ70YZvb74szVV339NGYwEQRAk4TVqTMLbH7Jd3TKqpZtOVe7K\nqFVoLT9hdOEyx0V5zR0TflusN1bbBgCAAYcGYT8ZtRpVbbVRo9bJ2jSN9VqpxKBU6qQSvVym\nk0l1bVJdq0SvkOmk3U0L6e3n8Z1fCTDYbI6XD8fdk+vrz3Z1d40fJggJY4nc2K5ubFc3Jv+K\n00adkM5ASdW6GqlaoTUotQYjRdRI1S1KrVJrUOqMMo2+Ta3X6I0EQWj0RqXOQBAERVGVEnWj\nXCNV6691easScpheQo6/iNss15WKFR1PMRlMg7G7aa90Y5KEfvWddFcBV4MGoVWDsGrv15c+\n/uDyraNBISlrvuAHhZjOUhRxqkJyuKDpy7PVNdJulksmSSLRX3TvML+Hk/yHB7pap2YAAHBU\n1s9BrUSc9frstvwccxTy/APTNnzVdVcJqVqfXi3dm1V3OL+pQqK60gXTgt0eTQ6YGO+ThE4h\nAAD0kpVzsOXsvzmLXzaolKbJ9C5Rcanrt5luGJVrDF+n1yw7UtztrjmhHvwZo0OeuyHUW8ix\nQp0AAOAk0CC0EorSSlq04haNuEnb0mxQKrStEm1Lk7q5QdPUoGlq1EklHR7cp6fo3D5k8vi8\ngCCerz9L5Mbx8GRwuCwXEVvkxhK58vwCeL7+HXdAhKtT6QxqvdFopGraNAqNXqE1tKr1MrVe\nazC2qnQGimhT67V6Y71MI9PoW5Q603KpLQqdTGNbzUV7gQVOrQ8NQmsHYd2vBwrXvGtQtX/W\nyRKJUj/eIYqJ7/gYjd54slxyvFS85XRV9RU6haND3Z8dHfJYSqCQgxQHAIC+oCUHKaOhZNNH\nFd9+SZgmCJIE19s3Zd02YVjklb4kv0F+5FLzltNVufWW67CZJQWIHksJHB/tNTrUHdMsAACg\nJ6yfg7W/7MtfucScgIKQ8JR123i+/qazeiP1S17j7gu1B3Ibuu5QyGUxnhoR9MzokNGh7tap\nFgAAHBsahDZCr5BpJWJVTZWqrlpVW6VtadLJ2gxKpaa5QSdt1cs7vwvu5wf5/71ZZru68YPD\nOB5eXB9fjoc3zy+AHxTCdnFlubpxvX1JBqN/TwMEQRAyjV6rN5qmIbap9a1qnd5ANcq1EpWu\nSa5tUWrb1PpWlV6s1EpUOrFSp9YZW9U6J+7VdMNHyG589za6q3BwaBDSEITi9NM5i1/Sy2Wm\nf9OZQmHSsvWeI2/o9sFnKlt3ptfsyaxrlGu7nhVxWZOTAx5M9L8j3puBD0QBAKA3aHxD2Hjs\n9/wVS/SK9ihk8HgxcxYE3TeZZFytkgaZ5t8yye+FzT9dbKiXdb8od4Ar94FE/3uG+t4S481m\nIhkBAOCKaMnBhj9+yV/1tkGpNB1yvLxGbNxlXlTGpF6m+fp8zcG8xn9KxV2vEOkleDjJf86N\nYaEefGtUDAAADgoNQnuhFbdoWho1jfV6uUwnbdXJZZrGOr1cpm6s00rEmsYGyrS25AD1Dhls\nDj84lOfjzwsMEoSEs0WuLJEbS+jC9fbl+fozuLx+/nbgKlQ6Q6tKXy1VS1U6rYGSqttnIiq0\nhgU/5dvqdopWhSmGAw4NQnqCUHYpL2vhHE1Tg+nfbpLJCLzroajnXmG7unX7eJ2B+jmv4cec\nhsMFTc2KbjqFoR78aSOCbo/zuTHcA41CAADoCXrfEEovZmUvmqOViM3LjXqkjk56f0NPtls3\nzbHYcb7mUH6jpsscC5MgN95LY8Onjwz2ccGCbAAA0A06bxh98yXzhACut0/axp38wJCuj0yv\nlm47W/3V+Wq5xnJTGQZJTkkJeHVcZEoQ9p4AAIC+QIPQMRiUCkVFqaalSSdt1bWKdW1SraRF\nVVulbWnWSiV6WVunR/enD0ASBEFwPL24Xr6C0HCebwDPP1AYGcPz9We7ubOE2PXDehYeLFr5\nV1HHERaDpTc69aKmHCapWTWJ7irsEhqEtAWhqroy8/XZysoy8wejwojo1PXbOR6eV/kqg5H6\n6WLD9nM1hwsadd3dNhDtLXg0OfCxlIBh/vh3GQAArob2N4SK8pLMBc+p62vMUegSFTfktaWu\nQ5N6eAWdgfqjqHnHuepD+U3dLvHPYTIeSPR7/sawsRGeuIEGAAA6ojEHpRezshfO0ba23yXD\ndnePe+Utvwl3dP9gtX7L6cr1/5R3u/3EbbHe00cGPzzcn8PEamAAANALtL8fBCsw6rRGtdqo\n0xmUCnVTvbqhTl1fq1fK1XU16sZ6TVODpqmh/aF9bhGQBEEQpimGbHcPrpcPzz+IHxTCErpw\nvHw4Hl6C4DASP2MDqmuDkMNga406uuqxIyRBGNfcSXcVtgUNQjqDUCdtzX5zbmtW+uUeYXhU\n0vsbBCHh1/zaujbN5tOVuzJqLzUpun3AuCivF8eG3ZPgx2LgA1EAAOgG7TlIEIReISveuKb2\n4A+U4b+5ESQRdM8j0XMW9GQqoZnWYEyvkv6Y2/BdZl2FRNX1ARGegkeTA55IC0rw78VlAQDA\ngdGbg7Ki/KwFz2mam9qPSSLw7ofjF7xzpV1/DEbq3zLJ99l1uzJqxUrLD4B8XTizbwi7f5hf\nMiYUAgBAz9jC+0GwBTqpRFVXo26oMyjkGnGzqrpCVVttaiUOwOKlJEEymCyRiOcfxPXx5bh7\nCiOieT7+HE9vjqcXzy+AweEO0O/DiaBB2A8ktQYTDTtBg5DmIKSMhtpf9hVtWGnehYJksyKe\nmhU+bXYP94OWegUbAAAgAElEQVQ9VyXddrbq2wt1rapu/hWI8xW+NDZi2oggAQdhDwAAndhC\nDpo0//tXztuvGDWXtxXk+volLF7hkTq6D1fLqZMt+6P4l7xGhdZyQTaCIG4I93g8NfDBRP8A\nV7wPAQBwarTnoLy06MJL/9NK/ttokCRCHnky9sVFV/8qpdbwdXrN6mOlxc3KrmevC3N/elTI\n1NRAvAEEAICroz0HwcYZdTpNc4NBodC2inXSVq24Wd1Yr26oVdVUqWqq9AoZQfR340OSyRCE\nhLPd3Dke3lw/f0FwGFvkyvUL4Lh5cH39mTxst9w9NAj7AQ1CS2gQ2kQQitNPZy983qC6vGKM\nKG7osKVrBMFhPbyC3kidqWj9Or1m94XaNrXlGmueAva0EcHTRgYND8T9pAAA0M52cpAgiLb8\nnLzlixQVpeY3GCSTETrl6ahnXyRZrD5cUKLSfXuhbuOJitx6WdezJEmMCnF/LCXg0eRAdAoB\nAJyTLeSgVtxSuPbdxr+PmBeV8Ro1Ju6VJfygbrYk7EhvpPZk1n1+qvJ4mbjre3p3PvvFseFv\n3BLFZWHdUQAA6J4t5CDYL4NarSi9pKyp1EnE2laxpqVJ29ykbqjVNDfpFbJ+Ng4JgiBIgsnj\n8/wCuH4BXE9vflCoIDSC5+snjIjGfoc9N2tv3ubT5XRXYVNIas2kg3mNFqN3D/WlpRpbgAah\nrQRhW35Ozlvz1HW15hG2u0fCkpVeo8f06jpag/H3wuYPjpacLJd0PXtTpOdjKYGPDPf3FnL6\nWzEAANg5m8pBk6o9X5Vu+0Qvl5tH3BKTE99bx/Xu42s1iiLOVrXuTK/5LrOuSa7t+gAOk3Fr\nrNe9CX73JvihUwgA4FRsJwdLNq8r/3qz+aM0jofnkNff8x4zvidfe6lJseHf8q/O13S9T9TH\nhfPa+MgXxoTz0CYEAIAubCcHwcFoWpr0bVKdrE3b0qRuqFXX12pbxcqqCl1bq6apgTIY+rlm\nKdvNQxASLggN5/n4ucYnCqNiuN5+DDZ7wH4DzmrCxnN/lTRd+3H2j8NiPDMq5M4hPhbjztkm\nRIPQhoKQ0uuLN62t2vv15X2YGGTQfZNj5rzWhynVpgXWfsxp0BqMFqeYDHJCtNezo0PuT/TD\nVvYAAE7L1nLQRNPUkPvOq61ZGeYRfnBIyuot/ODQ/lxWb6QO5DZ8ebb6aFGzWm+ZjARBMBnk\n8EDXO4f43DXEd3SoO4kNfAEAHJ0N5SBFFX2yqnLPjsuflzHIqGdfDH9qVg8voDUYjxa1bDpZ\n+Ut+o8HY6T2+jwtnyW3Rz44O4bPp/m0CAIAtsaEcBKdh1OnUddXaVom6oVbXJpUXF6obanWt\nYq1ErGlu7E/jkOXqyha5cb19uL4BguAwrpcP28NTGB4lDI0g8PZ+QN3zRcbB/Hq6qxgYXA75\n/ZNpA3tNu+syokFoc0HYlpedtegFbUuzeUQUNzRl7Ra2m0cfrlYjVW86VbntTHVtm7rrWT8R\nd/LwgGevC0kKwNRsAACnY5s5SBAEZTSUf7W57MuN5jtmuD6+ie995DYspf8Xl6r1h/Ib9+c0\nHMxrVOm62aSQIIjUYLcn0wInxfvG+Qr7/4wAAGCbbC0Hm0/8lb9yiVZ8eUtCvwl3DFn0PpPH\n6/lFqqXqT/+t+PBYadc24azrQ1+4McxPhOnyAABAELaXg+Dk9HKZrlWiETdrmht1khaNuFld\nX6tuqNO2NGmaGw0qVd8uy3IRCSOieH4BXF9/nrcfPzCEHxzK5As4nl4MNhbYG0Qf/lX+2sE8\nuqu4OpLFZHgLWCwGOSLE7elRweRA9JLRILQnNhuEmubGvGULxedPm0dcE5JSVm9mifq4g6DO\nQB251Lzh3/KjRc06Qzd/4mnBbs/dEPrI8AA3Xl/2eQIAAHtkszlo0nL234tLF+ik0vZjkvCf\neO+QBe8wuL34nPQq5BrDrgs1312oO14m7jYcCYKI9hYsGB/51IhgLM4GAOB4bDAHNS1N+SuX\ntJz6x3wHvTAyevjKjfyA4F5dp6RFue6fsk0nK/Wd24RCDvPJEUEvj43AHTAAAGCDOQjQLUqv\nV9fXqpsbVNUViooydV21rLhA09Ro1Gj6c1mSxXaJjPJIu54fFCIMi3QdktSru7JgYFlrYiJJ\nXGGmqpDLejjJ7+GkgGteolGmnbk330Dpur8OhyH/4I5+1WhdaBDaahBSVOWeHSWb15v/peP5\n+cfOW+wzZkJ/rtqs0P58sfHr9JpjJS3dbmX/aHLAE2lBYyL6MlsRAADsi03nIEEQBCEvKUyf\nO03f1mYecU9OS3xvPcfDcwCfRabR78uuP1rUcqigqUXRzT6F7nz2lJSA22K970nwYzGwOAkA\ngIOwzRykjIbCte/VHNhj/uyC6+uX9slX/MCQ3l6qQqJadqR4x/nqrvfBjInwmDsm/MEkf+Qa\nAIDTss0cBOg5VW2VNDdT1ypRN9brpBKdvE3TUKeqr+34GUKvMDhsnl8g19efHxjsEhUnihvq\nNiSJZGE6DQ0WHixa+VfRIFz4ig1CgiCuD/N449aoa16irk0zc2/Olc5yWUz1yol9rI4OaBDa\ndBC2nD6etfB5Sn95S8Lo514Je/yZ/l+5sFGx9WzVN+m13S49ekO4x5NpQfcn+vlj/RkAAMdl\n+zlIEISyuiJv+RvSnAvmEa63T+onXwmCwwb8uYwU9Vth82cnK34vbNZ0t09hhKdgalrgzOtC\nQ9xxXyEAgN2z5RysO7S/YPVSo7b9thVBaHjaJ19xPL37cKlqqfrj4+Vbz1SJlZa3Ocf6CF8b\nHzk1LQgT5QEAnJAt5yBAf+jlMnVjvaa5oS0/V15coKqpUtXX9LFrSBJMnoDn5y8Mj+L5BwlC\nwoUR0cKwSLab+0BXDdc2a2/e5tPl/bsG+eatUYfyG00tMbXOWNAo73h63X1DoryvsdIGGoSO\nwy6CsPnfvy4uW6iXy8wjQfdNjpu3eEBuXjAYqd8KmzefrjyYZ7mVPUEQDJK8NdZr2aS4kSFu\n/X8uAACwNXaRgwRBUEZD9Q+7ij5dZb5jRhgembJuG9d7sBZ2l2n0R4tavr1Quy+nvuusCyaD\nfCjJf9b1oeOjvLDZOQCA/bLxHJTmZma/OVfb0mI65Pr6xb2ypM8rysg0+k9PVHz0d1mj3HKu\nvJ+I+/So4JfGhmN7QgAAp2LjOQgwsAxqtbqhVlVVoRE3GdQqrbhF3VAnyTijbWnuw9VYIpHr\n0CR+YLAwPFoYHiUMixy8Dyjg6no515Ck1kw6mNdoOhArddO/ze7YILsp0jPCi3/1S8jUhn05\nV1wNFQ1Ce2IvQaiqqy5Y+dblLQlJImDS/UMWvkcyBqzsJrl206nKL85UVUq62fH1hnCPOTeG\n3TnEx53PHqhnBAAA2tlLDpo0HT+at/wN8x0zwsjotA1fDfZde5US1cf/lv+S12RxT5mJt5Az\nfWTwi2PDMaEQAMAe2X4OthXkZsydZlD99x6NQca+9EbIQ1P7fEGdgfolv3HTycojl5qNnT8K\n4LIYU1ICZ98QOioUd8QDADgF289BACvQtUlVNZXSvGxtS5NW0qJpalBWV6hrayhjN6sKXQXb\nzZ0fHMrzCxCGRfIDg3kBwcKwqIHdHgUGirlBSBDEj7kN+3MaxMputpvpGzQI7YkdBSFlNOa9\n/0b9bz+1r5FLEsH3Pxb36lsD/kSH8ps2/Fv+x6VmfZcJhS5c5uMpQXPHhg3zFw348wIAgPXZ\nUQ6ayC7lpc95wqBqXxzbJTou5aOt1nnBXdAoX3+8/NsLda0qy/XZ2Exy2ojgdybGBLmhTQgA\nYE/sIgclGWeyF7/UcVGssCeejZ41j+jfHPas2rb3j5Z8n1Vv7PKBQEqQ6zsTY+4Z6odZ8gAA\njs0uchCAFgaVUl5ySZpzQd3coGlqUNfVKCrLDApFb6/D5PPdEoYLo2KFIRFsdw+ef6AwPIrJ\nu8YENRhspgbhM99ld11aY8CNiXQ/PueGwX6W/kCD0G6CkDIayrZvKvvyU/M+mtFz5odNeXow\nnqtJrv0lv3H1sdKL9ZYTJkiSGBfl9c7EmJsicQcEAIB9s68cNJFknst8daZRozEdst3dhy1d\n65l2nXWeXaE17Mms+/BYaX6DZT4KOMy5Y8Jn3xAa5oHX+gAA9sFeclBdX5v3wZuS9DPtxyQR\nNfPl8Cdn9v/KpS3KT09UbD9X3e32hFNSAqeNDIrwFPT/iQAAwAbZSw4C2AiDWq0oK27Lz1Y3\n1Mku5clLi7TiZqL3rRW2q5vnyOsFoZGucQmi+IQ+rE1a8fXG4i2fEAQhCA6/ftehXlcABEEQ\nxJuHClv+ew28L6e+acCahZdvsiNJYt5N4WvuHTJAVx4UaBDaVRBS1KWPP6jau9M84H3juPjX\nlnK9fAbpCX+62LD277LjpZKuN5amBbvNHRP2WEogFxvaAwDYJ/vLQYIgCEJ89kT2my+a11sj\nWcyk9zd43zDOmjWcq5Luz6nfeqbK4nYzLovxcJL/KzdHpAZj+14AAFtnRzlIGQy577za+Nfv\npkMGh524bP1AZZ9Mo//ybPXHx8tLWpQWp1gM8oUxYW/cEu3jwhmQ5wIAANthRzkIYJuMOq2y\nokxeViQvLlRUlmpbmhWlRQa1ulcXYbu6sd3cheFRgrBIfmCw65BEl6jYq+8sVrLxo/LdWwji\nciuKw+Nq1RqCIJhc/rgj6X377TizLaerZu7NeSDRb3JywDUfXC/Tzvsx70pnscSoPbHLIKSo\nnCUvNx47Yh7gevukbtghCAkfvOesa9N8nV7z2cmKcrHlDoXBbrx5N0fMuTEMbUIAALtjlzlI\nEARBSDLP5S6Zp5WITYckizlk4bKAO+6zchlKrWH7ueplfxTXtWksTt0c5Tl/XORtsd7IRwAA\nm2VfOUjp9QVrltYe/MF0ozrb3WPUF3t5/oEDdn2K+LWw6YOjJcdLxRaneCzG3LHhT48Kjvd1\nGainAwAA2tlXDgLYC01zo7qhTllRqqqtkuZmyosLta2S3l6EKRDwA4Ldk0eIYoeKouNcouPJ\nDn9PLzcIzY9nsg0GHUF0nL12GUkQE/65YkMLiP8ahJOTA55MC7rmg+vaNDP35lzpLBqE9sRO\ng5AyGgrXvFdzYI95hOcfkPjuR65Dkwb1eQ1Gal9O/frj5SfKLP9RC3Ljrb4n/rGUAXt3CgAA\nVmCnOWiiaWnKXjSnLS+3/ZgkfMfdHjN3Ic/X38qVSNX6j/4uW/t3mUyjtzjlKWBPHxm8YHyk\nv4hr5aoAAOCa7C4HjRr1uVlT5MWFpkNeQFDap18PbPBRFHGiXLLldOWPuQ1t6k65RpLk1NTA\nBeMjkwKwJz0AgCOwuxwEsFO6NqlOKlHVVqtqq1TVla05GfLiAqPWcoH3q2Dy+Fy/AI+UEfyA\nYJeouNazp8r3bu/0AHOD8Eq6axxyXD3GHjzR8zIcWHGzMuaDY2gQOh27DsKmf/8sWPnW5ckT\nbHb0zJdDH5vez83qe+JoUcuqv0qOXGqx+OGZmhr40k0RI0OwqBoAgH2w6xwkCEIrbs5+80Vp\nTqZ5hOPlNeydNR4po6xfjFxj2HKmcvOpqoJGy+0JOSzGw0n+jyYHTIzzwYRCAADbYY85qJWI\nTz95j+6/+9BZLi6J737kOerGAX8itd64/p+ylX+WSlSdPmwiSfKuIT7vTIxJw2LaAAB2zh5z\nEMBhqKorpXnZ0rwsTUOdoqJU09RoUFku9n4lJElSnTc/ZDLYBmMvOo7/XcjisswJf1+x7+XY\n0CB0UvYehLKi/MxXZph7hARBeF0/NmnZegaXZ4VnLxMr1/5d9vmpSp2h049QqAd/8a3RT40I\nwmegAAA2zt5zkCAIo1aT/eaLLaeOm0dINmvYO2t8b76Nlnr0RupgXuPHx8v/Km7pepbDYkxJ\nCXzhxrARuJkGAMAG2GkOthXkXnjlWX1bm+mQZDGTV20ajB4hQRASlW7F0ZKvztfUyzotpk2S\n5KR47/njIsdFeQ3+HaoAADAo7DQHARyVXi6TXcprzTqvlYg1TQ3Si1laScvlPqAVXnE5fb/w\nYF5j/y9y91Df/l/EmtAgtO8gVNVUZb0+W1Feah7hB4WkrNnCDw61TgHlYtWrP+Xvy6m3GA92\n480ZEzZ9ZDAWVQMAsFkOkIMEQVB6fc3B70u/2GCeTkGyWQlLVvlNuIPGqvIb5DvTa7aerW6Q\nWW5PSBDEMH/R2xNjHkz0Y+BTVQAA+thvDsou5WUtnKNpbDAdMvm8xGUfe40eM0hPpzdSuzJq\n3ztSVNxseWP7zVGe790ROzbSc5CeGgAABo/95iCAk9ArZLKigtas9Objf7YV5l77CwZWh48r\nmFz+uCPp1i7A6tAgdDqOEYQ6aWvRp6vqDv1oHmG7eyR/uMl1SKLVath6pur1XwpbFFqLcSGH\nOTU1aNEtUeGefKsVAwAAPeQYOWiiqq3KWTJPVti+7TbJIAPvmxz93KssoQuNVSm0hi/PVn9x\npiqrtq3r2TAP/iPDA6aPDE7wp7NIAACnZdc5qJO2Zi6Y1ZbXfls3yWJFz5oXOuV/g/eMBiO1\n+0Ltmr/LMmssQ21ycsD6+4fi3lAAAPti1zkI4ISO3pRA0NXK6XJvM/YvdBhoEDpIENYd3l/w\n4VKjtr1Fx+TxY+e9GTDpfpJhpXU+DUbqn1LxtrPVuzJqjZ1/qDgsxszrQl4aGxHtLbBOMQAA\n0BOOlIMEQRiUigvzZ0mzM8wjotghw1d9xvWm/+6t4mbl/pz6L85UXWpSWJwiSfLOeJ8Z14VM\njPfhYXVuAAArsvcc1DQ3Zs6fJS8uNI/4jrt92DurSRZr8J7UYKT2ZNWtOFqSXSfrOB7sxvv2\nyZQbIzwG76kBAGBg2XsOAjitko0fle/eQnMRXVqGJEFO+OciHaVAv6BB6DhBKCvKz3x1hlZ8\neUtC/zvuHfrGcpJh1d9dtVS9/I/i7Wer1Xpjx3EGSSYGiKamBs6+IcyF6wjfcAAAe+dgOUgQ\nhEGlzHn7lZaT/5hHmHxB/IJ3/G+/m8aqzIwU9celltXHSv8oau76+sudz35hTNiUlMChfphQ\nCABgDQ6Qgzppa8ZL/+vYI/RIHTV8xadMgXBQn9dIUX8Vi5f8eulUucQ8aNqYcMH4yHFRXoP6\n7AAAMCAcIAcBnFPXBiGTyTYYdHTVcxlp+g86hfYEDUKHCkJNU0P6i9NUVZXmEffkEcPeWW39\nyRNyjWHdP2Wfn6qslqotTrlwWFPTAl++KTzeFx+AAgDQyfFykCAIgqKq9+269MkqSnf5xXH4\ntFlRM16isSgL2XWyL05XfZ9dV9dmuUMhSRKThwcsnRgb5zu4n+0CAIBj5KBO2lr0ycq6wwfM\nI54jrx++ciODM+gLflIUsftC7dz9F8XKTh9I3RLjtWxS3HVh7oNdAAAA9Idj5CCAE7LdBqFZ\nh/mFguDw63cdoq8UuAY0CB0tCHVSSdEnqzq+P2S7uw9f+ZlbwnDrFyPT6Defqlp9rLRe1vUD\nUPLuoT4zRodOGuLDYnSZkwwAAIPPIXPQRJJxJnfpAm1Ls3kk4n+zI/73vJVn1V+daZW2T/6t\nONlh+oUJSRL3Jfi9e0dsYoCIltoAAJyBI+Vg1Q/fFK1/nzK2v7v3Gj0m6f2PGVyeFZ66tEU5\n9ZvM0xWtFuOT4n0WjI8cH43ZhAAANsqRchDA2eS9taDur1/MhzbXIOyo8wf/0bNeCZv6LE2l\nQDfQIHTMIKzc/WXxZ2soY/sin0w+P3ntFvfEVFqK0RqM316oO5TfuD+3Qdt53VGCIGJ9hAvG\nRz6RFoSNlwAArMyBc5AgCL2sLX/lW43HfjePeI8Zn/jeOgabTWNV3SppUW4+Vfnxv+VqnWVK\nPpYS+P6dsRGe2MQXAGDgOVgO1v/+88VlC4n/eoQuUTEJb692iYyxwlPrjdTWM1WfnazMqm2z\nODUuyuvDe+JHhLhZoQwAAOgVB8tBACdnExsT9gR5+f8T/smjtRQgCDQIHTgIxWdP5L4zX9cm\nNR2SLHb8/LcC736IxpLKxMqvztdsPlVV22a57qiIx3oyLejNW6MCXa1xlysAABCOnoMEQRAU\nlfvuaw1HLt9VFzb1mejZr9JY0VVo9MbdF2qX/l5ULlZ1HGcxyKlpQS+PDU8OcqWrNgAAh+R4\nOVh3eH/+B0vM94lyPDyT124RxQyxWgEH8xrf/q0oo1racZBJkrNuCH1tfGSYB99qlQAAwDU5\nXg4CgAXJ+dMZ856mu4orw56FNgANQkcOQk1Tw/nZj6vr60yHJJMx/MNNXqPG0FuV3kjtyaxb\nf7z8bKXlKjRcFuOJtKClE2OC3NAmBAAYdA6fgwRBUEZj8cbVld9tJ/57vRP57NyI6bNpLepq\nFFrDvpz69/8oKWiUW5wKdOVNGxl0b4Lf6FB3EotzAwD0m0PmYN3hH/M/WGzuETI4nIS3P/S9\n+TZr1rA/p37Fn6UWb/c4TPL+RP+5Y8LHRHhYsxgAALgSh8xBAOiJ+sM/XXx/Id1VdEB2+iVm\nFloTGoQOHoSapoas15+XXco3HTI4nOS1WzySR9JblcmFmrbVx0r3ZNbpjZ1+CDlMcsXd8bOu\nCxVwHPbPBQDAFjhDDpoUb1xdsWub+dB33G1D3/yAybfddTv1RurLs9ULfs6XqvVdz3oJOU+l\nBU1JDRyJFdsAAPrBUXNQXnopa8Fz6ob69mOSGPL6u4F3P2zlMn6+2Lj096L0zrMJCYK4LdZ7\n9g2hDyT6W7keAACw4Kg5CAC9Zcv9QhPsXDh40CB0/CA0qNUZLz7VlpdrOmRwuPEL3g6YdD+9\nVZnVSNVbTldt+LdCrNR2HA/z4L99e8wTaUFsJmZJAAAMCifJQYIgKKPh4ruvNfxx2DzikTIy\nefXnDK5NT1jXGoxbz1Sv/LOkQqLq9gHjo71eGht+T4IvAzMKAQB6z4FzUFlVnr3oBUV5qemQ\nZDCGLl7hf/vdVi5Db6Q+P1W55PAliUpncWpspOebt0bdFuuNCAMAoIsD5yAA9IfN9QuJyy1D\nr1Fjk1d/TmspjgYNQqcIQk1zY8bcacqqCvNI+FMzo2a+TGNJFprk2m1nq94/WtLWeaqEr4jz\n1m0xT40IEnFZdNUGAOConCcHCYKgDIact+Y1/f2HecT7hpuHvbuWybP1/ZD0RurvEvF3mbV7\nMuu6nVAY4y1ccnv0PUN93fls65cHAGC/HDsH9XJZ7juvtpz+13RIMhixL78R/ODj1q9EpTNs\nPl217p8yi012CYIIcuOtuCvu8dRAtAkBAKzPsXMQAAZE4cql1Qe/o7uKDrq8ZhQEh1+/6xAd\npTgINAidJQi1EnH681M79gij58wPm2Jbm5TKNPpXDuRvPVtt8WPpymO9Nj7yibQgbGsPADCA\nnCoHCYKgjMaan/ZcWrvMvDOTICQs9ZOvuF4+9BbWQxRFHC8T/3yxcfu56maF1uIsh0nOuj7s\nrdujvYUcWsoDALA7Dp+DRp32wrxnWjPTTYckk5G8ZovniOvpqmdvVt364+UnyiQW4+Ge/KUT\nYx9O8sceEwAA1uTwOQgAg6Fk40flu7fQXUUHJLYt7Bc0CJ0oCDUtTQWr32k+/pd5JPLZFyKm\nP09jSd2qlKheO1iwJ6vO4meTxSBvCPd46abwB4b54wZTAID+c7YcNKk9+EP+iiXmQwaHm7zm\nc4+UUTSW1FsURRwuaFrxZ8nxUrHFKQ6L8cAwv3k3R4wOdaelNgAAO+IMOWhQq7Neny1JP2M6\nZLm6pq7/UhQzhMaSfi9s/uBoybGSFotxEY/13h2xM0aHoE0IAGAdzpCDAGAFNrEkKdqEfYUG\noXMFIWU0FHy4tPbn780jPmMnJCxZyRQIaayqWwWN8pV/lu5Mr9EbLX9EA0TcxbdFTx8ZjLeO\nAAD94YQ5aFK9f/el9R9Q+vblOkkWK3nVZ56jbqS3qj44U9m65PClo0Utxi4v526J8Vp739Ck\nABEthQEA2AUnyUGjTpv+wlNtF7NNhxx3j+Q1m0VxCfRWdaaydeWfpT/m1lskmBuP9fkjiY8m\nB9BUFwCAE3GSHAQAq5GcP50xj9YFC0nLI7QMrwkNQqcLQqNGnfX68+Lzp80jbkmpKWu32OYm\nTA0yzaq/SjeerFDrjBanRFzWnBvDnhwRNNTPhZbaAADsnXPmoEnzyWMX33tdL5OZDpl8wcjN\n3wojoumtqm9q29Q702vf/u1S16x8Ii1owfhItAkBALrlPDmoaW48/9wUdX2d6ZBkMROXrfcZ\nM4HeqgiCOF8lXfFnyb6cBovPJR5M9F9+Z2y8L97oAQAMIufJQQCgRc78OY1n/rr24wYVZhZe\nCxqEzhiElNFQsOrt2oP7zCPeN45L+uATksGgsaqrUOkMW89Ub/i3/FKTouvZR5MDPrgrLsJT\nYP3CAADsmtPmoIlWIs6cP1NW2P4yke3unvbpTmFYJL1V9ZlEpdt+rnrD8YoysbLjOEkSacFu\nyyfF3R7nTVdtAAC2yalyUFFRmv78VJ1UajpkcNgp6790T0yltyqTqlb10t+Ltp2t6vjhBItB\nvnxTxBu3Rnnw2fSVBgDgyJwqBwGAdpkvPN2SdfrajxsM5OX/o1loAQ1C5w3Cul8P5K9YTOkN\npkPvseMTl65lcLj0VnV16dXSjScqdpyrMXT+uWWQ5KPJAfPHRaQGu9FVGwCA3XHyHCQIQidt\nPTdjsqq22nTokTIyee0XDLYdfxBJUcSPufWvHSwoblZanIr3dfns4YRxUV60FAYAYIOcLQdl\nhRezF81VN9abDtmubmmffWM7d8aUiZUv7Lt4KL+p46AHn73p4WGPDA/AJvQAAAPO2XIQAGyE\nqrry5JQ76Hr24Ss2djz0vnEcTYXYCjQInToIG44eyn1nPvHfj0DII0/EvvQGrRX1SI1UvfFE\nxacnKqRqfcdxkiRGhbgvvi36jngfFgPvIAEArgE5SBCEqqbq3MxHddJW0yE/MGT4yk/tdK1R\nMyNFbVP0oPsAACAASURBVD9X8/rBgmaFtuM4SRLRXsIlt0dPSQlEUAIAOGEO6qStF16dISu4\naDpki9yS125xHTKM3qo62nGueuEvhfUyTcfBGG/h5snDbo70QpsQAGAAOWEOAoBNoWXPQosG\nYZ85TGcRDUJnD8LynVtKPv+ovUdIEkH3TY6ePZ8ltIPNHrQG47cX6l7cf9GiTUgQhI8LZ/Gt\n0bNvCGMz8Q4SAOCKkIMmzSePZb3+vPl2GQaHm/rxNrdhKbQWNQCMFPVdZt1bvxYVN1su0O0t\n5Lx5a9QLY8LRJgQAZ+acOaisrjj37CN6udx0SDIYicvX+4y9hd6qOtIZqA+PlS47UqzSGTqO\nB7hy37495uEkfy8hh67aAAAciXPmIADYLOv0C9EgtIAGIYKQKN32adm2T82HvICgEZt2cb18\naCyp59R6496sujcPFVa1qi1O+Yu4Gx5MeDDRj4EbTQEAuoMcNKv5eW/hh0spo9F0yOQLRnz2\njUt0HL1VDZS/S8TP/5Cb1yC3GA905W2fknRbLPYmBAAn5bQ5qCgvOTdrikHxX4+QxUxZ+4VH\n6mh6q7JQIVG99GPegdwGi3EeizF3bPjcMeEh7jxaCgMAcBhOm4MAYEcGfOdCkiTY7pc/BmGJ\nXAPverBvq+47Ro8QDUIEIUEZDRfffb3hj0PmEY6H18gt3/L8g2isqlcMRmpPVt2iXworJCqL\nU95Czpwbw567IdRfZNPbKwIAWB9ysKO2gtzsRXM1Te0fRDIFgqGLlvuOn0hvVQOFooiDeY0r\n/iw5VdHa8bUfSRLXhXlsenhYUoCIxvIAAGjhzDkoLy7MWjhHXV9rOmQJXUbv+JHnH0hvVV2d\nKJPM/zn/dEWrxTibSd4U6bXp4WHR3gJaCgMAcADOnIMAYI8KVy6tPvjdQF6RIgiC4PkHxs1b\nPFCXtLuuIRqECEKCIAiCoqr37Sr6dJVRqzMNcDw8E5etdx+eRm9dvZVV27b+ePmOczXGzj/Y\nHCb5RFrQG7dGR3nhDSQAQDvkoAVNU0P6nCdVtdXtxyThNfLGpJUbGWw2rXUNpKzatk/+rdh6\ntrpzm5AcHih667boexP8mFh0FACchpPnoEGpyHj56ba8HNMh19dv5Offcn386K2qW6fKJQt/\nKTxRJjF0fpfHIMn7hvm9MzEGt7kAAPSBk+cgANi7nPlzGs/81a9LUARBECyhS8Jbq3r+RTpJ\ny6WNq3zG3OJ78+1dz6JBaE8QhBZaszMyX51pUClNhwwON/alRUH3Taa3qj4oaVG+9nPBvpx6\ni3EOk0wJdnvzlui7h/pi2VEAAORgV8rqivTnHte2SswjPP/AtE++ssFJFf2RWy+bujMzu05m\nMR7gyn3vjtgn0oK4LAYthQEAWBNyUCtuPjP9fq1YbDr0n3h3wpJefDhiZc0K7bp/yj87WSFW\n6jqOs5nknBvDFk6I8sOaMQAAvYEcBAB7p6quPDnljl59iSg63vQLdX2dTiYlCILJ5ye8vZrs\ncbdA29yUv/pt3wl3BNx+b9ezaBDaEwRhV20FuelznjJqLu/n5z12fMLiFSyh/d2SmV0nW3z4\n0pHCJrXeaHEqxlu4+t74exNs8fZYAACrQQ52S9sqznxlhuxSvnmE5+s/avt+tqsbjVUNOIoi\n9mTVzf8pv1pquYmvB5/99sSYaSOC3PmOM3USAKAr5CBBELLCi+kvTjcoFKZDr9FjEpd/zOTZ\n7vZ+Kp1h8+mqFUdL6mWajuMcJvncDWHLJ8W5cJ33TxMAoFeQgwDgMM5Pe0hamn/txxHE8BUb\nTb+o/G6HJOOM6ddRM19yiYrr4XOhQeg4EITdUlaVX3j5aXXD5el3LlGxIz7fzeTxaayqz+Qa\nw7azVcuPFjfKtBanrg/32Pn48EgsOgoAzgo5eEUUVb5zS+nWDZTeYBrg+QWkffqVHe3O20NG\nitqf0/DO70W5XWYT8tnMV8dFzLspwlOANiEAOCbkoEn1D98UfrTcfOg6NDFlzRaWyJXGkq5J\nZ6C+yah569dLVa2dbnNx57MXToh8YUy4kOPUf6YAAD2BHAQAR3WVmYXmBmHj30fqDu03/Tpk\n8jS3oYk9vLhW3HxpwwqCJEiCSPpgo8VZNAjtCYLwSgxKRdbrz0sunDOPCMIiRm7abePvEq9C\noTV8ebb6k3/LC5sUHcc5TPKNW6NfvTkS95kCgBNCDl6d9GJWxtynOu7Om7ZxpyAknNaiBkt+\ng3zOvov/lIgNXTbxHRHi/uat0XcO8aGrNgCAQYIcbEdR+SuX1B7cZx5wTx6R/OEmJt/W76RU\n641rjpWuPlbWquq06Kg7n718UuzsG8KwrwQAwFUgBwHAsUnOn86Y97TFoLlBqCgvKf5sTR8v\n/d+LTPPVzNAgtCcIwqur/+2ni8sWEv/9gPADg1M37OD5BdBaVH/9WtD02sGCnM7zJFx5rAXj\nIufdHIH7TAHAqSAHr0l89kTma7Mpvd50yPX2HbHpG8ebR2hWLlZ9cLTky3NVOoPl68Mob+Hy\nSbEPJvqzmfi0FQAcBHLwMoqq+n5n0acfmiPPNX5Yykdf2MUdogqt4ePj5e/+XmSxtcQQX5dd\nTyQnB9nBbwEAgBbIQQBwZtLczPOzHyd62By71gchUTNfdomMJdAgtC8Iwmuq/+2nvOVvUMb2\nN1o8X/8Rn+/m+tj91n27Mmrn/5Rf13nXCn8R94O74h5PDeQwGXQVBgBgTcjBnmjLy854+WmD\nUmk6ZIvcUtZ9IYpLoLeqQSVW6j4+Xv7BnyXaLpv4egk5E6K9Nj6U4C3k0FIbAMAAQg5aaD7x\nV/aiueZ3f/ygkJQ1W/jBofRW1UN1bZp3jxRtO1Ol7XCPC4tBXhfmse7+IWnBDrWRMADAgEAO\nAoAz08vaTjxym15uud/KFXXXI/QaPcb0C5+xt3K9fQk0CO0LgrAnmk/9nb3oBfMmTBwPz5T1\nX7pExtBbVf8ptYZlfxSvPlZqMUnCx4WzcELUnBvDuCy0CQHAwSEHe0heXHj+uccNapXpkCl0\nSf3oC9ehSfRWNdjqZZrvs+rXHS8vaVZYnOKzmeOjvVbcFZcYIKKlNgCAAYEc7Kru1wN5yxeZ\n76RmCl2Gr/jEI2UUrUX1QqVENf3b7L+KWyzG04LdNj8yLBVtQgCADpCDAODkFBWl5Ts2GbXa\nXn1Va8ZZray1/aBL15Dj6jH24ImBqM5K0CBEEF5ba9b5C/OeNf9V4Xh4pX22UxAcRm9VA6Je\npln7d9nHx8s1nSdJeArYL4wJf218JBYdBQAHhhzsOVlRQcYLT+kVctMhk8dLfG+d1/U30VuV\ndZwqlzy/72JmTZvFOEkSsd7CuWPDn7s+lMnAuqMAYH+Qg92qO7w/f8VblKH9DlGSwUh4+0O/\nWybRW1WvnCqXPLErq7RF2XGQJIlbYry3P5YU5MajqzAAAJuCHAQAaD5xrIePzFr4fE8exhQK\nx/16ru8FWR0ahAjCHmnLz8l4cbpB1T55guPpnfbJDkFoBL1VDZTsOtmcfRdPlkmMnf86BLhy\nl02Keyw5QIA2IQA4IuRgr6jra84+84hO2n6bGMlgDHvvI9+bb6O3KqspbFS8/kvBH5daFFq9\nxakhvi4T470X3xrthXVHAcCuIAevpDXrfPaiubo2qemQZLOTV33mOfIGeqvqFY3euDO9Ztkf\nxeViVcdxBkmOifDY+mhStLeArtoAAGwEchAAoHcNQvOt0VduqaFBaE8QhL2iKC85N2OyuUfI\n4HBSPtrqPjyN3qoGUEmLcs4PuUcutVi0Cbksxrgoz/X3J8T5CumqDQBgMCAHe0vdWH/u2Ue0\n4vaFy0gGI3LGi+FPzqS3KmtqVelW/lm69WxVk9xyCQ4em7H23qEzrwvBbEIAsBfIwatQ1VZl\nLpitrCg1HTI47OTVmz1SR9NbVW8ZjNT+3IZXf8qrlKg7jjNI8pnRwR/dNxQLxgCAM0MOAgAQ\nvekRmmiaGgrWLL3SWTQI7QmCsLdkhRfT5zxl3oSJZDHjXn0r6J5H6K1qYJWJla/+lH8ov8li\n0VEmSd4U5bnm3iEpQa501QYAMLCQg32glYgzXpyuKCs2j0Q++0LE9B4tNOEwDEbq57zGFX+W\nnK1stXghGebB//iBofcM9SPRJQQAm4ccvDq9XHZm+gPq+lrToZ32CAmCoCjiizNVr/6cL1N3\nmgTv68L56vHhE+N86CoMAIBeyEEAAKL3DUKCorIWzum6+6AJGoT2BEHYB7Kigsz5M7UtzaZD\nkkEOWbQ8YNL99FY14Aoa5U/tyrpQ06Y3dvoLQpLEyBC3b6amYEUaAHAAyMG+0Stk6bOfkJcW\nmUe8rhszfNVnJMPpvo3HSlrmHcjvuj1hkBtv2aTYJ9KCWJhNCAA2DDl4TdpW8blnJ5t7hEyh\nS9onO0QxQ+itqm8UWsPuC7WvHywQK3Udx8dHe+2YMjzEHRsTAoDTQQ4CABA9bhBmv/ECZTRe\n+3Gd+Yy9Jen9Db2uyYrQIEQQ9pqmqf7880+q62raj0liyMJlgXc9SGtRg6KqVf3m4cLfCpoa\nOy+kxmKQE2K81t47NMHfha7aAAD6DznYZ5Ref2HeM5ILl28Kc0sYnvbp1ySLRWNVdKmXaR7f\nmXmspMXiRWWAK/eeBL9Vd8e78Zzx2wIAtg852BM6qeTsM49c7hHyBcmrN7kPH0FvVX2m0hk2\nnqhcdKhAZ7gcWhwW456hvlsmJ3rw2TTWBgBgZchBAACixw3Cos9Wm5ffv4b/7pQmSTLy2Zds\nfGMaNAgRhH1h1GnPz54qK7hoOiQZjCGLljnePEITnYHamV7z1q+XqqWdNq4gSSLRX7RgfOTU\n1CAspAYA9gg52B+U0VDw4dLan783j7gOTRyx8Rvn7BESBJFdJ3v62+yMGqnFS0tXHuuJ1KC1\n9w3hshg0lQYA0D3kYA9pmurPPv2wViI2HTKFLiM+2+kSGUtvVf1RJlY+uD3DYga8l5CzfFLs\nM6NDMP0dAJwEchAAgOjDEqMEoSgqLN66vttTWGLUniAI+8OoUZ9/7nFZUYHpkGSQQ9/8wH/i\nvfRWNXiMFPXzxcZZ3+c2yDQWp0aEuN2T4LtoQjSbiXeSAGBPkIP9V/rFx2U7NhH/vZhyG5qU\n8vF2Js95lyk7W9n6yoH80xWths6vMANcuTOuC33rtmgmPnUFAJuBHOw5dX3NuRmPmnuEHE+v\nkZu/5fkH0VtVf1AUse1s1as/5Us7b0wY4s5bcVf846mBdBUGAGA1yEEAgL6RnD+dMe/pbk+h\nQWhPEIT9ZFCrz82YrCgrNh2SDEbsK4uD73+M3qoGlUZvXPdP2cfHK2rb1Ban/EXc76el3hjh\nQUthAAB9gBwcEFU/fHNp3XJzj5AfGDJ6+z6mQEhrUTS7WC9/+UDe3yUtHRdwIwgi1IN39Lnr\nsI8vANgI5GCvqBvrz/7vQZ201XTIFLqM3PytMCyS3qr6Sa03fvJv+du/FSm1ho7jQ3xdlt0Z\n+2CiP12FAQBYAXIQAKBvHKlBiLWeoO+YPN7ILXtcotrXlqGMxsLV7xZ/tobeqgYVl8V4fUJU\n1Vvjf5ieOsxf1PFUvUwz9tPTt39+tq7NcoohAAA4sJCHpsbMWWA+VNVWFaxZShkNV/kSh5fg\n73Jk1qiKxRNuifFmdliGu1KiHr7m+P++zVZonfr7AwBgj3i+/mmffs3k8U2HBoU8/bmpbQW5\n9FbVTzwWY/64yKxXx94e583oEFj5jfKHtmdc//HJ4mYljeUBAAAAAAwqzCDEnTL9ZdSozzzz\niLK8xDwS+/IbIQ8/QWNJVnMov2n2DzmVkk6zCQUc5r0JfhseGOot5NBVGABATyAHB1Ddrwfy\nVyyh9O3LlHmNHpO8+nMCW9QSRHGz8oHt6bl1so6DngL2M6NDVt4Vj+8QANAIOdgHssKLF+Y9\nq2uTmg6ZPN6Iz3e7RMXRW9WAyKmTzdibc6aiteMggyRHhri9e0fs7XHedBUGADBIkIMAAH12\npZ0LvW8cZ9U6+g0NQgThANDLZZnzn5PmXjCPxL26JPiBKTSWZDUURZyukDy5O7ukWdFxnMdi\nTE0LWn//UCEHP10AYKOQgwOret+uwrXLzIduw1JSP97G4HBpLMl2nCyX3P9lepNc23EwQMSd\nGO+z7v6hbjwWXYUBgDNDDvaNvPRS+vNP6OVy0yFL5Jr26VcukbH0VjVQjpW0vHqgIKNGajGe\nGCD6asrw5CBXWqoCABgMyEEAgD5Dg9ARIAgHEkWlz53Wmnm+/ZAkfG++PXHZOlprsh6Dkfom\no3begTyxUtdxXMhh3ZPgu3VyogBtQgCwPcjBAVe2fWPpF5+YDwXBYakbtnN9/GgsyXbUyzSz\n9ub+Wtik1Rs7jrvxWJOTAz+6bwhuqQEAK0MO9pm6vvbczMe04mbTIdvVbcTmbwXBYfRWNYC+\ny6ybtTdHqtZ3HCRJYnSo+5ePJcX7utBVGADAAEIOAgD0R7c9QjQI7QmCcGAZNeqcd15tPv6X\necR9eFrK2i0MLo/GqqxJrjFM/zbrUH6TStdpayVPAXvpxNjnbwxlYCU1ALAlyMEBRxmNRZ+s\nrNrztXmE4+E1csu3PP8gGquyKVWt6sd3Zp4oF1u8AvUWcqaPDF51NxYdBQDrQQ72h6q68tys\nx3TS9gU5WSLXUdu+5wcE01vVANLojQt/KTic31TY1GmpGAZJ3pPgu/PxZBcufmwAwL4hBwEA\n+gMNQruHIBxwBrX6/KzH5CWXzCP8wOARm3ZzPL1orMrKxErdk7uyfi9s0hs7/eWK93XZ8MDQ\nW2OxdwUA2Ark4CC5tG559Y/fUvr2m0W43r4jNu3i+QfSW5VNOVvZ+sahS8dLW7SGTlkZ5S38\n38jgN2+NoqswAHAqyMF+UlSUnpsx2aBUmg653r7Xff0TS+Roi3D+Vtj03Pe55WJVx0Ehh/VQ\nkt+GBxJcsUo2ANgt5CAAQH+gQWj3EISDgTIasxe+0HzymHlEEBI2csselouItproUCNVzzuQ\nf+BiQ8eF1EiSfHS4/47Hh3OYDBprAwAwQQ4Ontas9MzXnjMo2ucccLy8R+/4kePuSW9VtqZB\npnl2T86vBZa31MT5CtfeO/TOIT50FQYATgI52H/y4sLzc540KNr3I+T5BYz4fDfX25feqgac\nkaJ+yK6fdyC/RqruOC7kMCdEe+9+MhmrZAOAPUIOAgD0BxqEdg9BOHgKPnyn9uAPlKF98oQg\nJGzUl/uZPGdZa9SsqlX93Pe5hwuaOv5FC3HnTUkJ/OCuOKw4CgD0Qg4OKlnhxfOzHzdq2/em\nFYRGjN6xn8Hm0FuVDSoXq574JvNkhcTiNekQP5f7h/m9f2ccTXUBgONDDg4IWeHF888/adS0\nd8443j7X7fiR7eZBb1WDwWCknt2T801Gja7z9PcIT8FDSf5v3x6DRUcBwL4gBwEA+gMNQruH\nIBxUzaf+zl74grlH6Do0ccSmXSTDGb/V/5SKZ+3NLWiUdxyM93X5Zurw1GA3uqoCAEAODra2\ngtyMF6YZ1O2LkoniEkZs+gY9wm4dLxW/+GNeZk2bxfgwf9GBp9MivQS0VAUAjg05OFCa/vkj\n56155rW1RTHxaZ/tctTbQ2vb1HP35x3Ma+y4VAxBEJ4C9g/TU8dFOdHmGgBg75CDAACABiGC\ncBC1nPona9Ec8xtFz7TrUtZvo7ckuhiM1OLDlz78q9RAWW5MuO7+IRPjsIoaANAAOWgF4rMn\nMufPpP5bQtMzbXTKum0EZpBfwV/FLS/uz8utl3Uc5LEZjyYHfDE5icXA9w0ABhJycAC15mRk\nznvWoG6fR+iWmJL68XYGm01vVYOnSa59Yd/F/bn1HWcTMkny3mG+X01JxlRCALALyEEAAECD\nEEE4uOoO7c/74E3iv5+yqJkvhT81i9aK6JRdJ5uxJ/tcldTir93YSM/lk2LHRmJvKgCwKuSg\nddQe/KFg1VvmHqFH6uiUj74g8T2/siOXmhf8nJ9V26lN6C/iPpEWtPJuLNANAAMGOTiwGo4e\nurh0gTnvRDHxIzbtYnAdcx6hSWZN21O7s3LqOgWWr4iz5ZHEexP86KoKAKCHkIMAAIAGIYJw\n0FXu/rLo0w/Nh+HTZkXNeInGemh3slzy2NcXqlrVFuO3xHgfeDoN+9sDgNUgB62met+uwrXL\nzIeeI29IXrOZZDBoLMn2/V0invxVRqNc23EwwlPw3VMpI0OwQDcADADk4ICr+WlPwap3zIeC\n0PARm3azXR38H+2CRvndW9NLmhUdB4cHir6flhbtjSWyAcB2IQcBAAANQgShNWS9Nrv55N/t\nByQR8shTsS8upLUimlEUseTXS/uy6/M7b0zoK+JMGxG88q54zI4AACtADlpT0YaVld/tMB+K\nYuJT1m1ju7nTWJLtk2n0T3+b80NOfcfXqyRJjgpxuz/Rb+GEKBprAwAHgBwceBRVuu2T8h2b\nzPMIeb7+I7/Yw/H0preuwaYzUM//kLszvUbdYWNCLosxIcbrs4eGhXnwaawNAOBKkIMAAIAG\nIYLQGiijIWPu/1qzzpsOSRYrcNID8a8vpbcqW7AzveaNQ4UWswkjvQRTU4OWToxBmxAABhVy\n0KooKmfxy41/HzEPcDy9hq/6zDV+GI1F2YXsOtlz3+eeKpdYjI+J8Nw+JSnKC5MzAKCPkIOD\npGjDyqq9X1PG9laZIDR81NbvmXzH/+e6UqJ6cHtGerW04yCHxXg4yX/zI4lYKgYAbA1yEAAA\n0CBEEFqJUac7P/NRWVGBecTrujGJy9Yzec5+NyVFEXP2Xdx6plJr6PSXMdSD91BiwOp747HZ\nEgAMEuSg9WW9/nzzyWPmrXkZHO6ITd+IYofSWZOdOFPZOvWbLIsF3DgsxiPDAzY/PEyAT10B\noPeQg4OndMvHFbu3GbXty0S7RMaM3LqXwebQW5V1vHuk6NN/KyyWyPZ14cwfF7lgfCRdVQEA\ndIUcBAAANAgRhNajV8jPTH9AXVdjHuEHhoza9j3LRURjVTaiTKyctjv7eKnYYjzQlffTM2lp\nwQ6+bwcA0AI5SIvSrZ9U7Npm1LTPHWe7uY/c8h0/MITequyCkaIW/lL4Q3Z9aYuy4ziPzbgv\nwW/L5EQRl0VXbQBgj5CDg0p8/lTmKzPM8wg9R1yfsm4rvSVZjVJreOnHvP25DS2KTm3C68M9\nfp85yoWLnzcAsAnIQQAAQIMQQWhVBpUye9Fc8flT5hFBeNSoL/YyeTwaq7IdGdXSZ/bkZNa0\ndRxkMch7h/l9PWU4pkcAwMBCDtJFXlqU+coMTXOj6ZDj7nHdNwfZbh70VmUvKIp443Dhl2er\nG2SajuMBrtxHkgLW3jeEycDMewDoEeTgYGv654+cxS+be4QxcxaETvkfvSVZk1Jr+N932Qdy\nGzQdNiYMduP9MmNkUgDukQUA+iEHAQAADUIEIQ3yVyyp+/UApdebDgX/Z+++45q8FjeAnzcJ\nYQsqIHvjoO69fgqutqh1bxERRaXOUue9vd111bonbqq46i5a66wLFREVEYWwl4CIbEKS9/fH\nizFVayEETsbz/dz7KeeYl/t4qz4m5z3vsXfqsu8ET6hPN5X6WH016fTj538lvlT87WlmIBjW\nynrLyJYGAh7FbACgTdCDFJWmJt0JGCUtq9oJJzRv2Hn3MX3LJnRTaZBSsXTKoYe/PcyWyP72\nV1nXxkZj2tp890lTAZYJAeDfoAfrQeqhPfEbVnJfMzymzc/bGnfuSTdSPUt5WdZ/6514hUdk\nC3jMIE+rvePaNDDAxncAoAk9CAAAWCBEEdIhClmfErpdfjOpoZ1D512/CYxN6KZSKw8yC4fv\niXrrKWp2Zgbze7kEe7nQSgUA2gQ9SFfRs9jImRPlzxo1sLHruu8k39CIbirNkvii9ItTT87F\n5SpuziCE2JkZHJnUrpszNmUCwIegB+vH/fkB+XerHiHDE+q3W7vTvHV7upHqmVTGfnn6yZab\nqYptZWUiDOrh9PUAD4rBAEDHoQcBAAALhChCarLPn479cSkrlXLDBp6tOm07SBjc7/9GpZSd\nduThr5GZUoXfp3yG8XJvvGtMK8eGhhSzAYAWQA9Sl3/35sMls6TlVWuEJq4eHbbsx+0yNfU0\np2TakUdvnePLY5jhrax3jcXBhADwj9CD9YOVSO4EjCwWPeOGAmOTznuOGdrY001V/yJSCkbv\ni0orKFecdLcw9uto99/+7rRSAYAuQw8CAAAWCFGEND1b+1P6iTBWUrVGaNG1V5tVW7BG+Jbk\n/LIvTsWeic2plL753arHZ8a0td01prUeH/93AYCS0IPq4FXM/Xuz/OSP3RY2tuiwcZ+RgzPV\nUBrpVvLLGUdjHmYVKU5am+qPb2+7YlBzPHEUAN6FHqw34oL8235DxS/yuKGhnWPHbQeE5o3o\npqp/FRLZ9KOPDt3PKlfYSsgwZEBTi11jW9s2MKCYDQB0EHoQAACwQIgipCzr3MnYH5bIh2ae\nrdut3803wN64tz3NKRm8M1Lx7ApCiGtjo/m9XGb1dKKVCgA0GnpQTTy/8Pvj7xbJH7utZ2rm\n7DfDcawf3VQaauP1lLXXkkV/r0sHcwO/jvbffdIU9yABgCL0YH0qy0i77TdUWl7GDYUNG7lN\nnWs7ZBTdVFQk5ZcO2XXv0d/vaNEX8CZ1tN82siWqCgDqDXoQAACwQIgipE+0bU1yaIh8aOre\nrN36PXoNzChGUk+VUjb41JPQexkFZZXyST7DdHYyH+RptbSvG8VsAKCJ0IPq4/mlc7E/LJaJ\nxdyQp2/gNHay67Q5dFNpqEopO/Xww8MPssor/3YwoXMjwzFtbZYPbE4rGACoG/RgPSt4cC9q\n7mT582P4hkYtv/3ZorsX1VDULLsoCr2X8eR5seJkB3uz6d0cp3V1oJUKAHQKehAAALBAiCJU\nAywb8+2Xzy+eJa9/MRrY2HXeeRRrhO9VVimdcvDh0YfZEtnffvP2a2oRNrGthbGQVjAA0Djo\nk6c5NwAAIABJREFUQbWSfnR/4s6NlUWvuCHD49mPmNB07pIPXwX/JD6vZML+6HtphbK//13X\ns4nJ6LY2Xw/woBUMANQHerD+5f514fH3i6VlpdyQEQjar99j3ro93VS0sCyZffzxr/cyXpVL\n5JNCPjPQs8nusa3NDHCGLgDULfQgAABggRBFqC6erf0p/dgB+QPWhBaWXXYfFzbUuXMpqikq\n/dWIvVHJ+WWKk4Z6/NFtrbeObGUg4NEKBgAaBD2obsrSU+/N9qvIfc4NGR5jO3Bk80Xf0k2l\n0TbfSA25nRqdUag4yTCkl2ujrSNbNrcyoRUMANQBepCKYtHTqDn+la8KuKHAxKRTyGFdPny3\nuEI6cu+9P57mKU4aCwXj2tmsG+ppJMQvTgCoK+hBAADAAiGKUI2Itq1NCdvNSqqen2lgZd1x\n+0F9Cyu6qdSWVMbOPv74XFxeUn6p4rypvuCzj6z2jGsj4OH8CgD4EPSgGhIX5EfPCyhKeCqf\nsRsyuvmCb+gl0ga/XE06/CDrdkqB4qSAx4xqY/PrhDY8HPcEoKvQg7RUvnp5d9qYssx0bqhn\natbl11P6jS3ppqLrTGzO9CMxmYXlipMWxsKALvZ4ODYA1BH0IAAAYIEQRaheEnduTNm/Uyau\n4Ib6FlZd9p7QMzOnm0rNzTr+eF9kRpHCc2kIIa6NjWb1dJrfy4VWKgBQf+hB9SQTV0QGTSyK\ne8wNGR7jOG6K+8xguqm0wPd/Jhx9kPUwq0hxsoWVybRuDqhLAN2EHqSoPCf7tu9nkpKqE/iE\nDRt12XdKx58fUyqWBh2LOfIgu1QsVZwf5Gl1eFI7Qz38KgUAFUMPAgAAFghRhGoned+2pL3b\nZBVV904aWNt23vUbziP8sIKyyklhD8/F5VRK3/yO5jHMQE+rCe1txrS1pZgNANQWelBtsTJp\n1Bz/guhIbsjw+bYDhzdf8A3BXrfakbHszN8e/x6bk/Hqb1s0erk28u9sP7mTPa1gAEAFepCu\n4sT4yMCx0vKqQxNM3Jp23v0bw9P1fxc5xeIpBx+ef5ar+M7Owdzgi94u83A7CwCoFHoQAACw\nQIgiVEevYqKj5vjL9xGauHp03H6Ib2BAN5X6S31ZNu9k7MmYHJnC72sDAW94a+udY1rjYEIA\neAt6UJ2xUundqaOK4uPkM4279Gz78zasEdZepZQdE3r/REy24t+C9QW8T5pbbh3Z0tpUn140\nAKhX6EHqXt6/82DhTGlZ1RqhRbdebVZtpRtJTey6k77jdtqt5JfyGYYh3u6NT/p3NNHHL1cA\nUA30IAAAYIEQRaimUn4NSdy1USauOo/QyMGpw5b9QnOdfuZMNUWmvRq1Lyo5v0xx0sJYOL69\n7TKfZjjlHgDk0INqTlJSHDl9XEmySD7TqEO3tmu2Y3eFSqy4JNpxOz0hr0RxUl/AG93WZsfo\nVkI+7qoB0H7oQXXw4tZfDxbNZGVVn0s07vp/rZdt5Onp0U2lJqYdfhR6L6NCIpPP2JjqL+zj\niq2EAKAS6EEAAMACIYpQfYm2rkk5sEP+XtGgiXWXPScEpg3optIIUhk787fH+6My3jq+wsJY\nOLGD7fKBzfWxmxAA0IOaQCaueLh0zouIa/IZ06aeHTbu5RsZU0ylNWQs++WpuNB7GXklYsV5\nSxPh5z2cvh7gQSsYANQP9KCaSNq9KXHnJvmwYbtO7dbtZnh4w0IIITHZRYN2RKa8fHP3p5DP\nDPqoyb5xbYxx6ycA1A56EAAAsECIIlRr8ZtWpR3Zx0qqVrkMmli7zQi27j+QbipN8bKsMvBw\nzPFH2dK//zZvYqo/r5fz4j5utIIBgJpAD2qKB4tn5V2/JB8KG1u4TJ5pP2wcxUjapLBcMu3I\no/NP8wrKKhXnvd0bH/JtZ2kipBUMAOoaelBdsGz0ghmKd8OYt+nQfsMe7JjnyFh29rHY3XfT\nyyrf3P3Z2Fg4uyfuZQGAWkEPAgAAFghRhOouOTQkafcmmbjq1n5hw0YufjPtR06gm0qD7Lyd\nti8y43rSS9nff7O7WxjP6uE4F0+nAdBh6EEN8mTZfzN/PyYf8o2MOmzcZ9rUk2IkLXP0YXbY\n/cxTMc8lsjd12dhYOKxlk00jPsITRwG0EnpQrTz+bmH2+TPyYQPPVh23HGDwr+a1+LySAdvu\nKB4kwTDkk+aWv/m1N9TD/0sAoAz0IAAAYIEQRagBEkPWp4Ttkq8R8oRCl8kznSdNp5tKs+y8\nnbYnMuNW0kvF3YRCAW9sW5vto1rhiaMAugk9qFkSNv+cdnS/TFzBDflGRu6B83HHjGqF3E5b\nfy05JqtIcdLB3GBYK2tv98ZDWzahFQwA6gJ6UN3E/rA469wp+dCsdfsOG/ZijVCuVCwNOhYT\ndj9LrHAqoWNDgwnt7X74tCmPYShmAwBNhB4EAAAsEKIINUPS3m3Je7fKPxVlBHwXv5ku/kF0\nU2mcLTdTf7malJBXojhpY6o/ubP9Tz7NaKUCAFrQgxon/fjBpN2bxfl53FBo3tDFP8h+BNYI\nVYllybwTsbvupBeLJYrz5oZ6w1tZ+7SwHNHamlY2AFAt9KAaiv1hSdYfJ8nrTynMW7dvv3Ef\nziNUtPtO+qYbKffSXylOOjU0nNfLeR4eDwMANYEeBAAALBCiCDVGxsnDSXu2VOQ+54Y8odA1\nYLbThAC6qTTRTxdFIRGpik+nIYS0sjH17Wi3wMuVVioAqH/oQU2UeeqoKGSt+GU+NxSYmLhN\nm4s1QpUTvSidfiTmquiF4hNHCSENDfU+bWG5fGBzB3MDWtkAQFXQg+rpybL/ZoYfk68RWvXu\n3+rHdVQTqR2WJTN/i9l9J00sVXg8DJ/xaWG1b3wbU30BxWwAoEHQgwAAgAVCFKEmEb/Mvxs4\npjwrgxvy9A2cxk12nTqHbipNVCKWTg57eCIm+63PPdvbmU3t6jCzuyOtYABQn9CDGqrwSUzU\nnMnSslJuKDA2cZvxhf2wsXRTaaWN11NC76XfTSt86y/Mhnr8WT2dVg5qTisYAKgEelBtxa34\nOuP0EfnQYfSkpnMWU8yjnh5lFY3fH/3WY7EbGemNbWu7ekgLA5wiAQD/Bj0IAABYIEQRapiK\nvJzI6ePKn2dxQ0ag5+If5OKH8wiVse1W6p676REpBYqTfIbp5txwRnfHCe1taQUDgPqBHtRc\nZZlpd6aMkBQXc0O+oZGLf5DT+Cl0U2mrnbfTTj7OOf80t0LhzCdCiGcTkzn/5zy9G+6qAdBU\n6EF1FvN18POLZ7mvGT7faay/28wv6EZST79cTdpwPfmtx8PYNNAPn9qprV0DWqkAQCOgBwEA\nAAuEKELNU5aeGvn5RPGLqhOY+AYGbtPnO4zypZtKc333Z3zIrbT0V+WKkwZ6PP9O9uuGfqTH\nx1n3AFoLPajR0n/bn7hrU+Wrqps8ePoGLn7TnSfhjpm6Enov40BU5vXEl4pnEwp4jE8Lq73j\nWpsb6lHMBgDKQQ+qNZaNnDH+1eMHVUOGOIz0bTp3CdVMaqpcIgs6GrM/KkPxiaMCHhPQxWHL\niJYM3s8BwD9ADwIAABYIUYQaSVJSdNtvWHl2JjdkBHpOEwLcpuFZo0piWfLdn/EhEWkZf18m\nbGZpHNDFYYE3DiYE0E7oQU1XkiyKnDlBUlTIDRmBwH1GsONYP7qptNvB6MytN1OvivIVJ+3M\nDOb1cv4S5/gCaBr0oJqTFBfdnTa6NC2FGzI8nov/5y7+M+mmUlv7ItP3RmZcTciXKnzI09HB\n7PMeTpM72VMMBgBqCz0IAABYIEQRaipx/ovbU4aL83K5IcPnO4yc6DF7Ed1UGk0slS04Hbfz\ndnqJwt4IQkj/Zhbj29niXSWA9kEPaoGs8BMJ29fI21CvgZn7jGDbz0bSTaX1ll8SrfsrObuo\nQnGyrV0D/072c/7PmVIoAKgx9KD6k5aV3pvlV/T0MTdkBHyXyZ+7TJ5BN5U623Yr9ccLCWkF\nb+771OMzn33UZFw72xGtrSkGAwA1hB4EAAAsEKIINVh5dkbkzIkVuc+5IcPjufjNcAmYRTeV\npssvrRwTev9S/AuZwh8OfIbp6mQ+oo31/F4uFLMBgGqhB7VDVviJxF0b5bvqBaYNXP2DHEZP\noptK6xVXSOeeeLw/KlPxYEKGYT5uanFoUrsGBgKK2QCgmtCDGkFaXh7hO7g8K4MbMny+wyhf\nj1kL6aZSZ+US2eCdkRee5SlONjISTupou3JQCxwhAQBy6EEAAMACIYpQs0mKi+5OH1uaksQN\n+cYm7jPm2w8bRzeVFlh2UbTjdlrii9K35tvYmn7czPLrAR5GQvyuAdB46EGtUZ6dcdtvmKSk\nmBvyDQxd/IOcJgTQTaULNl5PWX8tOT6vRHHS3sxgXi+XYC/cUgOg7tCDmqIi9/m9zyeVZabJ\nZ+yGjW0e/D+KkdTf13/Eb7yekl8qVpx0bGgwr5cLbvoEAA56EAAAsECIItR4soryO1NHlyQl\ncEO+oaGL3wynidPoptIOQb893heZ8dYTRwkhlibCBV6uOJsQQNOhB7VJUXzc/Tn+lUWvuCHf\n0NB9+hf2IyfQTaULWJb8749ne++mKz7PjRDSy7XR1K4Ovh3saAUDgH+FHtQg4vwXkTPHl2W8\nXiNkiONYf4/PF1ANpe7KJbLAI4/CojIlsr997NPJ0ezL3q6j29rQCgYAagI9CAAAWCBEEWoD\n8cv8iAkDKwurPhVlBHqOoya64+2iKvz2MPuqKP9ETPZbn3syDPF2bxzQ2WF8e1ta2QCgltCD\nWibz5BFRyFpxwUtuyDcwcJkyy2n8FLqpdIRUxn5+7PHeyPTyyjdPHDUQ8AK7Oa4b6kkxGAB8\nAHpQs0jLSqNmTy6Mi+GGjEDgGjDb2Rc3hv6L3XfSQ+9l/CXKlyp8+GMiFAxr1SRkdCt9AY9i\nNgCgCz0IAABYIEQRaomSpISouf7i/BfckBHwXfxmuvgH0U2lNU4/zonKeHUoOuvJ82LFeWOh\nYExb622jWgl4OMoCQPOgB7VP1rmTCZt+Fr+sakOeUM/ZL8jFbzrdVLpj843U1VcTFR/QzTCk\nk4PZ1K6O07o4UAwGAO+FHtQ4skpxZODYovg4bsg3MnKdMttxrB/dVBph/bXkX64mpbwsU5xs\nZmm8uK/b5E72tFIBAF3oQQAAwAIhilB7ZJ09mbhjffnzLG7IEwpd/IOcfQPpptIy2yNS119L\neZxdpDjZoonJQm9XvLEE0DjoQa2UcfJw4o4N8jVCRsB3mzYP5xHWGxnLLjgdt/tO+suySvmk\nvoA3qo3NrjGt9fi4nwZAjaAHNZGkuOjOlJHy8wj5xsZdQ08bWFnTTaURWJYs+j1u/bXkCsmb\nze6GevyALg7rhrbgMWgoAJ2DHgQAACwQogi1Ss6lc/FbVpdnZXBDRsB3GjvFbcZ8uqm0jIxl\n5598suduemH5m7MJ9fhMX3eLoa2aTO/mSDEbANQIelBblWWkRc32K8/J5oZC84ZugfNtPxtJ\nN5VOORSdueZq8u3UAsVJdwvjiR1s/9ffA5/BAqgJ9KCGKk1PiZw+rvJV1Z+x+hZWXfefFhib\n0k2lKbKLKj4/9vhUzHPFgwlb2ZjO+T/nqdjsDqBj0IMAAIAFQhShthEX5N+dMlL+qSjD4zn7\nzXANmEU3lfbZH5V55EHW6cc5MoU/Q3gMM7CF1RG/djjKAkAjoAe1WPYfp0U71svvmOEbG7tM\nmoF9hPWJZcl/zj7dcTstt1isON/WrsFCL9dxOMEXQA2gBzVX+fOsiElDpCVVxx8YO7t13HpA\nYII1wur66aJozdWkvJI3DWUg4I1uazPkoybDW2M7JoCuQA8CAAAWCFGEWkicnxc5c2JZRio3\nZPT0XHynu0zBeYSq9/2fCeuuJb8o+dtHnx4Wxgv6uOKwJQD1hx7UbunHwxI2rZKWl3NDvpGR\n0/ipLpNn0E2la44+zD76IOu3h9mKGzXMDfUmdrBbM6QFTvAFoAs9qNFSDuxK3LFeJq56J2Li\n1rTjtoN8AwO6qTRIYblk+J6oSwl5ip8JNTISTu/m8JNPM3q5AKD+oAcBAAALhChC7ZRz6VzS\nni3FifHckOExtp+Naf7l/+im0krlEtmc47EnYrIVd0gIeMyoNjbDW1uPxP2nAGoMPaj1ikVP\nI2dMkJaVckNGwHf2nY5d9fXv5yuJO2+nx+UUK062s2uwsI/r2LbYSghADXpQ04m2/JJ8YAd5\n/ZGGiVvTTjuO8PT0qIbSMD9eEK2/npRT9Lc7Pls0MfnSy3VKZ5wxD6Dl0IMAAIAFQhSh1hK/\nzL87dVT586yqMUOa9Pm05berqYbSWidinp9+/HxfZIbiDgkzA0FAF4fVn7WgGAwAPgA9qAuy\nwo/Hb1olP6iJJxQ6jpviNm0O3VS66atzz9ZeTS4WvznB18pUOLOb0zcfe1BMBaDL0INaIGHT\nqtRDe9jX70Ese/ZpvXwj3UgaJ+x+5q/3Mi/E54klMvmkUMCb3Ml+8/CP+NjsDqC90IMAAIAF\nQhShNhO/zI+cMV7+rFFCSJN+A1t+s4piJO32y9WkFZdFb91/2snRbEZXpyldcP8pgNpBD+qI\nrLMnE3duKM/OrBozxGHExKbzllINpaP23E3feTv9RnK+/C/gDEP6elhM6+Iwuq0N1WgAugg9\nqB2erV+RfjSUlckIIYQh9sPGN/viv7RDaZ49d9O33UqNSClQnGxtYxrUw2l6N0daqQCgTqEH\nAQAAC4QoQi2Xe+1SStiuVw+j5DNWvfu3/H4Nw+NRTKXFSsVS/0MPT8Q8V7z/1FjIH9PWZvBH\nTYa2bEIxGwC8BT2oO7LP/56weVVFXg43ZHg8j1mLHEb70k2ls77+I371lcQSsVQ+49TQcEY3\nx8V93SimAtBB6EGtEfvD4qxzp+RDuyGjmy/4hl4cDfbDnwlr/krKL62Uzwh4zORO9gM9rfBW\nDkD7oAcBAAALhChC7Zd77VL60dD8e7flM406dmu3Zgdh8LCUuhJ6L2PzjZS37j9tZWM6ob3t\noj749BNAXaAHdUr2H6dT9u+Qn86r18DM/fMFtgOH002ls7bcTN0ekRqdUag4+Ukzy4CuDji+\nF6DeoAe1BiuTRk4fX/jkkXzGduDwFkt+oBhJcxVXSEftjfrjWZ7ih0UWxsJBnlYDW1iNbIOS\nAtAe6EEAAMACIYpQJ7AyadQc/4LoSPmMRU/vNss2Yo2wTi0Nf7rtVqri/aeEkO7ODYN6OE1o\nb0srFQDIoQd1Te6V88/WLy/PyeaGQgtL9+lf2Hw6hG4qncWy5ItTsVtvppYr7Lm3bWAQ7OXy\nRW8XQsj1xJe9N0fIWNZYyCte9gm9pABaCz2oTWQV5VFzp7yKia4aM8Rl0gxXnLmrrG/+iN92\nKzW7qEJxspGR3pi2tgOaWWA3IYB2QA8CAAAWCFGEuoKVSWO+/jLn8h/yGas+n7T67heKkXTB\nwejMg/ezTj3OUfyjxkCPN6yl9c4xrQz18FsPgCb0oA4qS0+97T9cWlbKDQ2sbd0C51oPGEw3\nlS5bfy15663UJ8+L5TM8hhnQzMK3g10TU/1+W988/6CZpVHcYi8KEQG0F3pQy8gqyu/N9iuM\nrdpHyOjpuU753Nk3kG4qzXUi5nlIROrZuNy3PjQyFgoGe1run9iWh9ttATQcehAAALBAiCLU\nLQ+XzM69dlE+bNLPp+U3P1PMoyO+PR//673MhLwSxckWTUwWebv6dbKnlQoA0IO6qfBJTNQc\nP2lZGTfUt7ByC5xr4zOMbiod9/lvj3fdTSuvfLOV0FRfMKCp5W+PshRfJuQzFSs/rfd0AFoL\nPah9WInktv/wkqQEbsgI9Fwmz3CZPJNuKo228XpKeFzOpfgXFQr73QkhLW1Mv+jl4t8Z7+YA\nNBh6EAAAsECIItQ50V8Gvoi4XjVgiHX/QR99tQLPGq1rZ2JzriXmb7uV+qpcIp9sZKQ3u6fz\nNx97UAwGoMvQgzor9eAe0fY1MnHVI6CFjS1c/GbaDx9HN5WO23wjdeVlUcrLsg+8hs/jSVbh\nWaMAKoMe1EqVrwruTBlR/rzqBgtGIHCf8YXj2MlUQ2m80HsZYfcz/4jLkyk+GEbAm9LZYcNw\nT2wlBNBQ6EEAAMACIYpQ97Bs9IIZLyKuySesevdv9eM6iol0x8HozEP3s04/zpEq/MnTy7XR\njO6O49rhVEKA+oYe1GVJuzanHNgpLa9ajhKYmLjPCLYbOoZuKh0nlsrmn3jya1RGocLNNIr4\nDE/KygghDCGy1T71mw5AC6EHtVVFXk7kjPHl2ZncUNiosfuML7BXvva2R6SefZJ78vFzxY+R\nmluZfNHbZVpXB3q5AEBJ6EEAAMACIYpQF7Ey6b0g3zcn2BNi0dO7zfJNFCPplGUXRSsuiRS3\nEtqbGXzh5TK/lwvFVAA6CD2o41IO7EratUm+RqhvYdV07lIr7wF0U+k4vQVnJbLq/uXcWMgr\nXoYNhQDKQw9qsezzp0Xb1ymuEbpMDsJeeZVYdlH0y9WkvBKxfMZYKJjf27mLo/kgTyuKwQCg\nptCDAADAox0AgAKGx++wKbRx5x7ymbzrl58s/4piJJ2ypK/bysHN29uZyWfSX5V/eSpu1N77\nJ2KeUwwGAKBTnMZPcf/8Sz0zc25YkZeTHLot9+oFuql0XGdHs39/0WslYhkTHO4Tcqfu8gAA\naCjrAYOdxgfwhPrcUJz/ImnXxowTh+im0g5L+rptGdmyj0dj+UyJWPLDnwlLw59uuJ5MLxcA\nAAAA1Bh2EOJOGd3FyqQPF8/Ou3mFGzI8npNvoNu0OTQz6ZhFZ+LWX0suVzju3rWx0ZyeTm4W\nxoM8ra4nvuy9OULGsnyGSH7Gg9QAVA89CISQ9N8OPNu4gq2sOo/QwMbO1f9zG5+hdFPpsgZL\n/yiqkNboEhQlgHLQg1ovZf9O0Y718o7jGxt7BC2wGzKabiqtsfJy4qrLiYpbCXkMM7CF1XH/\n9nweTiUE0ADoQQAAwAIhilDX3Z8/Lf/uDe5rRsB3GOnrMWsh3Ug6ZdONlA3Xkp/mlshn9PjM\nJ82thrVs4tjQsN/W2/L5T5tbhE/rTCMjgNZCDwLn2foV6UdDWVnV7Rr6FlbOfjPsh42lm0rH\n6S88K5bW7G/pWCYEqCn0oC5IPxaWsG2NtKSYGwrNG7pNn287eCTdVFpj7930DddT7qW/Upxs\naWO6uI/bhPY4Yx5A3aEHAQAAC4QoQl3HSiR3p44qSngqn7EdOLzFkh8oRtI1px4/PxyddSg6\nS/HUJT0+M6hFk+Mx2YqvFPKZipWf1ntAAK2FHgS5Z2t/Sj8RxkqqNq7xjU26HzonNG9EN5WO\nuxj/QvFGmWqyNNbL+a5/XeQB0D7oQR2RfjxMtH2tpKiIG/INjdynz7cfOYFuKm3y3Z/xOyLS\n0grK5TMNDAQzujmuGNScYioA+FfoQQAAwBmEoOsYgaD9plAjR2f5TObvxx59NZ9eIp3z2UdN\nfp3QdvnA5jam+vLJSin71uogIUTK4kk1AAB1oum8pW6B8+VnNUlLiu/P8WclErqpQAm5JZW8\n4HDaKQAA1Ij9sHGuU2bzDQ25obSsVLRzfVb4CbqptMn/+nusH/bRpI52DFP1fq2wXLLycmLH\nNTdCItLoZgMAAACAD8AOQtwpA4QQ8vziufRj+wse3JPPOIyc2HTeUoqRdNCxh9nnnuYde5T9\nQuEcC0V8hidlZQRPUQNQEfQgvCXtcKhoxzppaSk3tOjeu83KLXQj6bhVl5MXnolV7lo8mhvg\nX6EHdUra4X1Ju7dUFlU9DNPAyrrr/jN8QyO6qbTMD38mrLiUWCx+c4NRIyPhl14uS/q6UUwF\nAP8EPQgAAFggRBFCldyrF5L3hxTGPuKGDI/nMjnIZUoQ3VS6Rm/BWcUHjX5YM0ujuMVedRkH\nQMuhB+FdSbs2Je3ZIj+P0Lr/wI++XkU3Eiw+E7/icrwSFzKEyFbjfhqAf4Qe1DWZp4/Gb1wp\neX0eoWlTz047DjE8/NtXpX2RGZtvptxOKVCcHNjCyr+z/YjW1rRSAcB7oQcBAAALhChCeIOV\nyaJmTSp4GMUNeUI916lzncZPoZtKp/TYcPNmcsG/v+41fPQJUBvoQXiv2B8WZ507JR86jJzQ\ndN5/KOYBuX2RmX5h0TW9CvfTAPwT9KAOSgnbLdq2lpVUckOLbr3arNpKN5L2ORObcy/91Zqr\nSa/K/7aVcHFf1wVerhSDAcBb0IMAAIAzCAHeYHg8xzF+8vMIZeLKxB3r0w6HUg2lW27M7t7d\n2bz6r2cJYYLDmy+/UmeJAAB0ToulP5m37Sgfph8/mBy6nWIeqKVnuaW0IwAAqAuncf6Oo33J\n65PN8279FfPNAqqJtNAgT6uvB3is/qxFS2tT+WR+qXjp708/3n7n13sZFLMBAAAAgCLsIMSd\nMvA28cv8uwEjy3OyuaHQvKHH7MXWHw+mm0rXCL4Ml9bwDydjIa942Sd1EwdAO6EH4Z+wEsmd\ngJHFomfckNHTcwuc5zTOn24qIIQk5JV6LLtSw4sYQliCbfcA70AP6qzYH5ZknTspH9p8OtTz\nPz9RzKPFph5+FHovQyyRyWcaGur9p597sJcLxVQAwEEPAgAAdhACvE3YsJHLlFlC84bcUFzw\nMmn35ucXz9FNpWskP/tcmNGlRpeUiGX6C8/WUR4AAJ3CCAQdNu4zsLblhmxlZdLuTcmhIXRT\nASHE3cKIXe2zyNujJhex8n9g2z0AACHE8z8/NWzXWT7MOnsidhkepl0ndoxutW1kS9fGRvKZ\nl2WVC87Efbz9zsHoTIrBAAAAAIBggRDgvWwHDXeeNIOnb8ANS9NTkvdueX4Ri0/qTixlmeBw\nwZfhtIMAAGg8gWmDjlsP6FtYcUNpaWnizvVJOzfSTQWc5YM82NU+3m6WSlz7NLeUF4yiBADd\nxjDt1+9u1KGbfCL77InEHRsoJtJikzvZ/zy4RVB3pwYGAm6GZdnzT/MWno7beTuNbjbRNuzt\nAAAgAElEQVQAAAAAHYcFQoD3cxjt6zxhKvP6MQvFifEJm1ZV5OXQTaVT+no0rukmQo6UJfjo\nEwCg9vQtrNwC5wobNuKGrESacnBP5qmjdFOB3KWgTnvHtVXiQm4rIbbdA4BOY5g2P281b1N1\n5i4rY1MP7ck8jY6rE8NaNdk04qPVn7VwtzCWT6YVlAefevLt+XiKwQAAAAB0HM4gxLO24UMS\ntqxODdvNyqqOTDBycum69yQjENBNpWumH4ndHpGsxIU8QqQ4bAngn6EHoTqywk8kh24rTUvh\nhgZW1m7T5+NoXrWy6nLywjOxyl3LZ4jkZ3Ql6Cj0ILAy6Z3Jw4sTq9aohBaW7oHzbXyG0k2l\nxaQyNvBIzIGojPLXpxIyDPm4mWVAF4eRra3pZgPQQehBAADADkKAD3GfGewwepJ8RbA0Jenh\n4ll0I+mgbaM82dU+7GqfwZ5NanShjBAmOHzFJVEdBQMA0AU2PkNd/GfpmZlzw/Kc7KQ9myUl\nxXRTgaIF3s7sap/Ars5KXCtlCRMcbrIEZy0DgC5ieHwn38A3x8/n5T7bsCz9WBjdVFqMz2N2\njmm1anCLhoZ63AzLknNxuf8Jf7rrdjrdbAAAAAA6CAuEAP/CY9ZC14DZDK/qN0texF+Pv11A\nN5LOGtnGRomrlvz+VOVJAAB0ivWAgc6+gTxh1Wd5pWkp0cGBudcu0U0Fb9k2yjN+iZdy15aI\nZTjBFwB0k3X/gc6TZvANqo6flxQVJYasTzsSSjeVdpvV02nFoOZtbE3lM89yS4KOxcw5Hnsm\nFod6AAAAANQfPGIUW+mhWmJ/WJx17pR8aDdkdPMF39CLo7v2RWb6hUXX8CKGEJb7hwxPHAVQ\ngB6EGknaszVpzxZWUskNG7bv0n79brqR4L36bL57WZSr3LXNLI3iFnupNA6A+kIPglxyaEjq\ngV2VRa+4Id/AsNuhc/qNLemm0m4sS2Yff7ztVqpE9uZTqe7ODT/v4TS+vS3FYAC6Az0IAABY\nIEQRQvWwbHRw4Is7N7gRw+c7TZjqFjiXbiidNS704cFoJR9B82lzi/BpnVWbB0BDoQehpp6t\nX5F2eK98aOU1oNX3awjDUIwE/6TbuoiI1HwlLsT9NKA70IOgKPPkkWcbl0vLyrihkZNr130n\nGfzaqGPLL4nW/5WcVVQhn7EwFs7s7tTZ0czcQK/35ggZyxJClg9stqiPG72YANoJPQgAAFgg\nRBFCdbEy6f25AS/v3+GGfAND95nB9iPG002lsxLySj2WXVHuWnz0CcBBD4ISYn9cmnX2hHxo\n5TWg1Q9rKeaBDxi8I+rMk2z5Tvoa4REiRVeCtkMPwlsyTh5O2PKzpLjqnF2L7l5tVm6mG0kX\nHH2QvflmyuWEF4qTLW1MB7ZosuJSgnzG0lgv57v+9Z4OQJuhBwEAAAuEKEKogdyrfyaErC9N\nFnFDvpGRR9ACu6Fj6KbSZbXZSmgs5BUv+0S1eQA0C3oQlBMdHPji9nX50GHkxKbzllLMAx9W\nmyeO4pYa0G7oQXhX0p4tSbs2sTIZN7QfMb7Z/P/SjaQjFp6J23QjpVQslc+YGQhflYsVXyPk\nMxUrP633aABaCz0IAAA82gEANIll7/6uk2cKGzXmhtLSUlHIuqyzJ+mm0mVhvq3Z1T6BXZ2V\nuLZELGOCw5svv6LiTAAA2q7Nqi0WPfvIh+knwkTbsIlQfV0K6hS/xEu5a1lCmOBwn5A7Kk0E\nAKC+XCbPbNL3zRJUxvGDSbu3UMyjO1YOar5mSIuuTubymbdWBwkhUhZPNQcAAABQJewgxJ0y\nUGPpxw8mhqyrLKw6wd7I3sl12hzFt5FQ/y7Gv+i39bbSl+NgQtBN6EFQWt71yylhuwoe3OOG\njJ6e4+hJ5q07WPTwopoLPqQ22+4JIc0sjeIWe6kuDgB96EF4P5aNnDnhVUw0N+IbGzeb91+b\nT4fQDaUjzsTmRGcUrrySWFQuefdH+QxPysoINrgDqAh6EAAAsECIIgRlZJw4lLBltaSk6nQK\nYxd3t2lzLXv1pZsK9kVm+oVFK3ctnyGSn/EmE3QLehBqI+fyH6Lta0vTUuQzdoNHNV/0LcVI\nUB3d1kVEpOYrdy2e7QZaBj0I/0RaXh7hO7g8K4MbGljbugXOtx4wkG4qXaC34KxEVt0PqXDn\nCkAtoQcBAACPGAVQht3QMU4TAsjrB5yUJCWIQtY9vxBONRSQSR1t2dU+bW3N//2l75CyeIoa\nAEANWHl/7DZtroGNnXwm4/SRx98uoBgJquPW3K6LvD2Uu1YsZZngcKv//anaSAAA6oZvYOAy\naTrf0IgblmdnJu3b+vziObqpdEFnR7Pqv/hpbikvGO/BAQAAAJSHHYS4UwaUl7BpVcrB3eT1\n7yEjJxe3qXOsvD+mGgoIqd0TR/G8GtAd6EGovezzZ9IO7yuMi5HP2A0Z03zB1xQjQTWtupy8\n8EyscteiK0E7oAfhw5L3bUvctZGVSLmhgY1dp5BDQvNGdFPpAqaGy344MAJAOehBAADAAiGK\nEGolbtW3macPs6+fgmLk6OwaMBvnEaqJ2jxFjUeIFB99grZDD4JK5F79M3n/jsLYR9yQEeg5\n+05zDZhFNxVU0/QjsdsjkpW7Fk8cBU2HHoR/Jdq+LuXXEFYm44amHs077TzK8PAopjrXYOkf\nRRXS6r8eb98AlIAeBAAALBCiCKG2RNvWpuzfIX/TaNaynfPEqRY9vemmArk+m+9eFuUqdy0O\nJgTthh4EVcm9din96K/59yK4IcPjuQd96Th2MtVQUF1Kn+DLEMISYmmsl/Ndf5WnAqgH6EGo\njviNK9OOhsr3EdoOHN5iyQ90I+kIJZ4KYyzkFS/7pI7yAGgf9CAAAODGN4Dacps+z2GMHyMQ\ncMNXMfeT9m3NvXaJbiqQuxTUKX6Jl3LXcgcTrrgkUmkiAABtY/l/feyGjjVycOKGrEyWcnB3\n9rnTdFNBNXEn+A5qYV3TC1nCEEJySypxBBQAaDGPWQudJwbKj5/POns8YdMqqongH5WIZThX\nHgAAAKD6sIMQd8qAasRvXJl6cI98aOX9sc0nQyx6eFELBO8YvCPqzJNs5a7FYUugldCDoFrP\nL4QnbFtTnpXBDYUNG7sHfWnz6RC6qaD6EvJKPZZdUfpydCVoHPQgVN+DhUF5N69wXzM8nrNv\noOu0OTQD6Qzl3sQ1szSKW+xVB3EAtAp6EAAAsIMQQDU8Zi20HjBIfmNpzuU/nl8Mz7txhWYm\n+LvTU9tfmNFFuWtZQpjgcP2FZ1UbCQBAmzTp5+M0fgrfwIAbil++SA7dJikpopsKqs/dwohd\n7VPLrmy+/IpKQwEAqIVW3/9i4taU+5qVyVKPhqYf3U83ko44PbX9ykGeNb3qaW4pdrcDAAAA\n/CvsIMSdMqBKMd98+fzCm/chVn0+afXdLxTzwHtNPxK7PSJZ6ctxOypoDfQg1IWk3ZtTwnZJ\nS0u5oZG9k/vMYMve/eimgpqqzW5CHiFSbCUETYAehBrJuXw+ac/mYtEzbihs2Nhj9mLrAQPp\nptIpn+28dzr2eY0uwUG5AB+AHgQAAOwgBFClJv18GrRoJR/mXDr36H9fUMwD77VtlKdyhy1x\ncDsqAMAHuPgHOYyaxPCq/pJZmp6Se+0C3UigBG434SJvDyWulRHCBIejKwFAy1h5D3AaN0Vo\n3pAbil++SNy5PufyH3RT6ZSRbWxqekluSaXJknN1EQYAAABAC2AHIe6UARWTVZQ/WBiUfy9C\nPuMaMMvFP4hiJPiAPpvvXhblKnetkM9UrPxUtXkA6hN6EOqOaOualAM7WZmMEMLwGLth45rN\n/y/tUKCk2nQlnyGSn7GbENQUehCUkHHy8LP1y2UV5dzQtKlnp5BDDH4J1aNu6yIiUvOr/3oc\nkQvwT9CDAACAHYQAKsbTN7AfObFRpx7ymbQjoRknD1OMBB9wKajT3nFtlbu2UsoyweG4IxUA\n4F1uM+ZbdPfivmZlbMbxsKRdm6kmAuVdCuqkxPlPHClLmOBwn5A7qo0EAECL3ZDRTuOnMIKq\nD9OLnsU++mo+zp6vT7fmdh3b1r76r+eOyMXWdgAAAIB3YQch7pSBOpF7/VJiyHr5ARUGVtZu\nM4Ot++OACvWl1PYIhhCW4KZU0FjoQahTskpxZODYovg4bsgT6rsGzDJ2drPo4UU1Fyivlof4\n4iAoUDfoQVBawpbVqWG7WBlLCCEMsR86rnHX/0PB1Selz8r9tLlF+LTOqo4DoJHQgwAAgB2E\nAHXCsmcfh5ET+cbG3LA8Jzv1wM7cK+fppoIPuBTUKX6JVw0vYuX/wB2pAABv4ekJO249YOzs\nxg1l4oqk3ZtK05KphoJa2TbK88KMLkpfnltSyQSH6y88q8JIAABUuM8MbtLv9d2fLMk4fbQw\nLgb7COsTd1auEufKn43Lwxs3AAAAAA4WCAHqiu3gka7+n/OEQm5YFB+XcnBP7l8X6aaCD+De\nZCr90Se3TGj1vz9VmwoAQHPx9A2cxk8RWlhyQ2l5uWj72qSdG+mmgtro69FY3pXGr/+SUyNi\nKYtlQgDQAi2W/NigRSvua1ZSmbx3y8v7eJxyfTs9tX3N7/KseuOGx18DAAAAYIEQoA45jp3s\nONqP4VX9RnsVE51yYGfuVSwgqTXuo0+lDybMLank445UAIDXbHyGuQfO17ew4oYysThp37ak\n3VvopoJa4rpysKeV0t+BWybEHg4A0Fw8PT2n8QEGNnbckJWxaUdCRdvW0E2lg7i7PJV4+3Y2\nLg93qwAAAICOwxmEeNY21Lm4Vd9mnDwkHxq7uLtNnWPZux/FSFBNtTlsSchnKlZ+qtI4ACqG\nHoR6k3nmWNLujeXPs7kh38jIffoX9iPG000FKtFtXUREan5tvgMaE2hBD0LtZZ8/nRwaUpKU\nwA0ZHs9lcpDLlCC6qXTW4B1RZ55k1/QqHJELOgs9CAAAWCBEEUJ9iF32n6zw469PrCNmLds6\nTZxq2bMP1VBQXZ4rrj/JKVTuWh4h0tU+qs0DoCroQahP2X/+nrR7U2lqMjcUGJu4+Ac5jp1M\nMxOoSEJeqceyK7X/PviIFuoZehBUIufSOVHIutK0FG4oNG/oNuML20Ej6KbSWcqtETKEyPCu\nDXQPehAAAPCIUYD64LnkR4cRExWfNZp6YFfu1Qt0U0E1xS7quXKQp3LXygjBI9QAAAgh1v0H\nukyeKWzUmBtKSopF29ekHNhFNxWoBPd4t0EtrGv5fXJLKgVfojEBQMNY9fnENWC2sYs7NxQX\nvHy2YUVW+HG6qXTW6antlThUnjuVsPnyK3WQCAAAAEB9YYEQoJ406tTdfsQEhsdww4KHUfGb\nf84+d4puKqimBd7O7GqfsW3tlbucxTIhAAAh1gMGuwXM0TMz54YycWXKryEZJw/n3bhCNReo\nhnKfyb5FyhLUJQBonCb9fBxHT+Ibm3BDaUlx2pHQ3OuX6abSWdxBuYFdnWt64dPcUtynAgAA\nADoFjxjFVnqoP3k3ruRdv5xx+oh8xsjJxW3qXCvvARRTQY3si8z0C4uuzXfA42tAfaAHgYrM\n00eT9mx+cx6hsbGr/yzHsX50U4EKXYx/0W/r7dp/n2aWRnGLvWr/fQD+CXoQVCv96H7RjnWS\n4mJu2KhDF/tRvjhXgiKlT5TH4bigI9CDAACABUIUIdSrvBtXXty+nnHiICuTcTNGzm6u/p83\n6fsJ3WBQI9xHn8ZCYYlYrNx3wDIhqAP0INCSeebYs3U/SctKuSFPKHSeNMNl8gy6qUC1Vl1O\nXngmtpbfBEf5Qp1CD4LKiULWJ+/bKj973sr741bfr6GaCEifzXcvi3KVuPDT5hbh0zqrPA+A\n+kAPAgAAFghRhFDf8m5cKXoam7h7o/x9o5Gjs8vkmdYDBlPNBTWm9B2pioyFvOJlWB4GOtCD\nQFHa4dCk3Zsri15xQ0ZPz23aXGMnV4seXlRzgYop/bGsouUDmy3q46aSPACK0INQFx4unpV7\n/ZJ8aDdsbPPg/1HMA4SQhLxSj2VXlLgQt3WCdkMPAgAAziAEqG8WPbxMm3k6KJxHWJqanLhz\nY87lP+gGg5raNsqTXe3T1bFRbb5JiVjGBIdb/e9PVaUCANAIDqN93Wcv1Lew4oZsZWXS3q3l\n2Rl0U4HKXQrqVJtDfDmLf3+KgwkBQFO0Xr5R8WaXzJOHUg/upRcHCCHE3cKIXe0zqIV1TS/k\nzpJfcUlUF6kAAAAAqMMOQtwpA9SItq1NObCTlUq5YYPmLZ0nTbfs1ZduKlCC0nekvoXPEMnP\nuEEV6g96EKjLOnsyceeG8uxMbsjTN3CZPNPZdxrdVFBHFp+JX3E5XunLsY0DVA49CHUk96+L\nKWG7Xj26zw0NrKzdps+3/hgPjKFP6VNy8chr0EroQQAAwA5CAGrMWrZ19g1kBFV/DyuMi0kO\n3Z579QLdVKAE7o7UWm6PIIRIWYIdEgCgU2w+HeLiHyQ0b8gNZRXlSXu2pB0OpZsK6sjyQR7s\nap+VgzyVu5wlRH/hWdVGAgCoC5a9+jqO9jOwtuWG5TnZyaHbcy6fp5sKCCF9PRqzq3283Sxr\neqGM4J0aAAAAaCHsIMSdMkBT3o0rL+/fST20R34eoYlbU9cpsyx796OaC5Sk9B2pbxHymYqV\nn9b++wB8GHoQ1ETmySOiHevFL19wQz0z86Zzl+BoXu1W+8336EqoPfQg1Km0I7/Gb17FVlZy\nw0adejiMGG/R05tuKuCsupy88EysEhdiKyFoE/QgAABgByEATRY9vBq262z32RhSdRwhKRY9\nyzh9mGooUB53R+oib49afh+xlGWCw3HcBQDoCNsho9wC5xo0qToZqPJVQWrY7twr2GmhzbjN\n9/FLvJT+DhKZ6tIAANQBh1ETnScEMLyqT13y797IOnsi78YVqqGgygJvZ+XeuMlwKiEAAABo\nEewgxJ0yQF/ejSu51y5mhR9nZVWfddkPH9/si//STQW1tC8y0y8suvbfp5mlUdxir9p/H4B3\noQdBrWSe+e3Zup+kZWXcsFGnHg4jJ1j08KIaCurJ9COx2yOSlbsWWwlBaehBqAdPlv038/dj\n8qHt4BGWPfui3dSH0jva0T6gBdCDAACAHYQA9Fn08LL8v742A4fJZzJOHU7as5ViJKi9SR1t\n2dU+F2Z0qeX3eZpbarLknEoiAQCoM9tBIxxGTZJvqc+PvJEfeQs7LXTEtlGee8e1Ve5asZRt\nvvyKSuMAAKiMZa9+Ft295MPM07/lXDqHdlMfSh8nL5ayfJxKCAAAABoOC4QAasGih5dlz77m\nbTpyQ1YiST8amn3uNN1UUHvcQ0fZ1T5dHRsp/U1KxDKfkDsqTAUAoJ7cAufa+Ly+XYYl6ccO\nFCU8xaeoOmJSR1ul76p5mltq9p8/VJsHAEAlLHp42X42yrxtR/lM1h+n8u/dRruplTDf1isH\nedb0KhlhmOBwLBMCAACA5sICIYC6sOjh5TByoqFt1a2L4oKXCdt+yT7/O91UoCq35nZlV/t4\nu1kqd/nZuDycdQEAusBz8Q9mLat2krFSadLuzUVPY+lGgnojv6tGiZ0cheVSfEQLAOrJsqe3\n42g/8zYd5DPpx34tFj2lGAnexZ1KWMNlQpa8PpUQe9kBAABAE2GBEECNWHkPcPYN5OkbcMOK\n3OeikLXZf2KNUHtcCupUm92E/z2LzxEAQNsxjNPYyUb2TtyIlVQm7duSenAv3VBQz8J8Wyvx\nxFEZIfh8FgDUk2Wvvo7jppi1ascNWYk0ae+2lP076aaCd3HLhINaWNf0wqe5pTzcpwIAAACa\nhmFZlnYGanAYL6inlP07RSHrWUklNzRydHabNtfK+2O6qUDlFp+JX3E5XunLhXymYuWnKswD\nOgg9CGor+/wZ0dZfynOyuSHf0NBt2jyH0b50U0H967P57mVRbo0ucWpssHFoy0GeVnUUCbQJ\nehDqWe6V8wnb15WmJnFDnlDoGjDbaUIA3VTwXgl5pR7LrihxoaWxXs53/VUdB6BOoAcBAIDO\nDsKCgoJ58+Y5OzsLhUJbW9upU6dmZWV9+JKUlJSAgAA7OzuhUOjk5BQcHFxUVCT/0T179jDv\n88MPP9TxTwVA9ZwmBDiNn8IIBNywNDVZtGP984tn6aYClVs+yEO5p6hxxFJWfyF+VWgq9CDA\nh1kPGOQWOM/Aqur+fWlZWXLotszTR+mmgvrH7bxva2te/UtSXpQP3hmJIwnVHHoQdJOl1wAX\nvxn6lk24oUwsTg3blRV+gm4qeC93CyN2tU9gV+eaXphbUolHXsO/Qg8CAICaENT//6RYLO7b\nt29UVNSIESPat28vEon27dt36dKle/fuNWzY8L2XJCUlde7c+cWLFyNHjmzVqtXNmzd/+eWX\nmzdv/vXXX3p6eoSQgoICQsi4ceMcHR0VL+zRo0c9/IwAVM7sozaOY/xSD+1hJVJCSGlKUtrR\nX628BzA83NWlbcJ8W4f5tt4XmekXFl3Ta8VSlhccLlvtUxfBoO6gBwGqw/qTz2RSiShknTgv\nlxAifpmfenifnllDy159aUeD+nY/uHu71TejMwuqf0mJWHYmNof7GrsJ1Q16EHSZ9ceDZVJJ\n0o4N3C55ccHLhM2rWJnMdtBw2tHgPbaN8hzdtkm/rbdrdBV3KiGe+AL/BD0IAADqg8IC4aZN\nm6KiolasWLFw4UJu5uOPPx4zZsyPP/74888/v/eSpUuX5uXlhYSETJ06lZuZN2/eunXrQkJC\ngoKCyOsi/OKLLzp27FgvPwmAumXRw4sQwhAm5dAeViIhhLx6dD/2+8VN+g3kfgi0zKSOtt2d\nzZV4iA1LiP7Cs3jnqVnQgwDVZDtwuKyiQrR9jaS4mBBSkpSQdfYEFgh108fNLGu0QCiVsZMO\nRe8b05YQgpVCdYMeBB1n6zOMSKRP1/4oE1cQQsQFL0Xb1rCSSruhY2hHg/fo69GYXe3TbV1E\nRGp+jS4US1kmOJxHiBQ3dMLfoQcBAEB9UDiDsF27diKRKDc3V19fXz7p4eFRWFiYnZ3NMMy7\nl5iZmZmYmKSnp8t/tKCgwNbWtk2bNrdu3SKvezE+Pt7d3b36SfCsbVBzeTeu5N+9mXb0V27I\n8Hgu/p+7+M+kmwrqmnK7CXHWhQZBDwLUSNLuLUm7N7IylhBCGGL32ejmC76hnAmoWnU5eeGZ\n2Oq8cuBHljO6OsmHWCBUE+hBAEJIcmhI8t6t0vIybihs1Nhj1iLrAYPopoIPuBj/oqZbCeWw\nmxAUoQcBAEB91PcZhOXl5Y8ePercubNiCxJCevbsmZOTk5SU9O4lJSUlhYWF7u7uih1pbm7u\n4eERFRUllUrJ6ztlzM3NpVJpenp6Xl5eHf88AOqDRQ+vRp26W/bqxw1ZmSz14O60I7/STQV1\nbVJHW3a1T1fHRjW6CmddaAr0IEBNufjPtB4wuGrAkoxThxN3bMi7cYVmJqCqiamwmq+MSHmp\nODwTm8P9pw5CQXWhBwE4zr7T3ALn8g2NuKE4/0XKryG51y7RTQUfwG0lrNGxuHLcbkKTJedU\nngo0DnoQAADUSn0/YjQtLU0qlTo4OLw17+TkRAhJTEx0dXV964cMDQ0FAsG73WZkZCQWi7Oy\nsuzt7V+9ekUIWbt27ebNm1++fEkIadq06ddffz1+/Pi3rlq7dm1FRQX3dVlZmYp+WgB1xaKH\nFyupLElNKk0WEUIkJcWibb/w9Q1sPxtJOxrUrVtzu/KDw2U1uURGSPPlV+IWe9VRJFAJ9CCA\nElos/bEkNakw9hEhhLAk7Wiox+cL825cwWO3ddOkjraTOtoSQph/uzPmRbFk8M5IQkhXF7P/\n9PGoj3Dwb9CDAHKGdo5u0+aItq+VlpcTQooT49OOhBKGsezpTTsa/KP7wd2rv5H9LSViGc4m\nBPQgAAColfpeICwqKiKEGBsbvzVvYmIi/9G38Hi8bt26Xb9+/dGjR61ateImnz59eu/ePUJI\ncXExeX2nTFhY2MKFC+3s7J48ebJp06YJEyYUFRVNnz5d8bt9++233IsBNIVl7/6SkpJnG5ZL\nigoJIdLy8pQDO/XMzC1796MdDeqWdLXP4jPxKy7HV/+SZ3ll3MYIPEVNbaEHAZTA8PjO4wOS\n9m4tio8jhEiKixO2rHYNmE07F1DW3dn8ZvKH/0BjuP82bWSiOItTCSlCDwLIWfTwyrtxxWnc\nlKS9W1mZjBDyMuo2K6m07OFF3veMQVATC7ydF3g7E0Larb5Zo/NxOdxuQiwT6iz0IAAAqJX6\nXiDkvPtAbe4oxPc+aJsQ8u233/bp0+ezzz5bs2ZNixYtoqOjly5d6ujoKBKJuC35X3311axZ\nsz755BN5xU6cOLF9+/ZLly719/cXCt88hujrr7+W3ynz3XfflZaWqvxnB6ByNj5DZeIKUci6\nylcFhJDS9JSUAzsJIVgj1HrLB3k8zi468yS7mq9nWXbWiZiNQ1ueic3Bh57qDD0IUFOWXgOk\n5RVxa76TlpQQQioLXyXu3MDw+XZDx9COBtTcmN2dEDIu9OHB6PT3vuDrAe4dHczqNxRUC3oQ\ngMNthbf+dEjW78e5mYKHUU+Wf9ViyQ80Y0H1zO/trMTh8RxumZAhRLbaR7WpQCOgBwEAQE3U\n9wJhgwYNyPvuiCksLCSEmJqavvcqb2/vDRs2LFq0aNiwYYQQExOT77//PjIyUiQSNWzYkBDS\np0+fty7x9PT08fE5fvz4gwcPOnXqJJ+fN2+e/OtVq1ahCEFT2A0dwz1flJWxhJBXjx+khO0i\nPJ7l/739ix+0zOmp7Qkh3dZFRKTmV+f1KS/KB++M1OMxx/w7cDNYKVQr6EEApVl/MrgiPzdp\nz2ZpaSkhpLLwlWj7Wp5QaOMzjHY0oCnMt/X3n7p7LLvy7g+dfPz8cXaxS2PDXq41O9kX6g56\nEOAt3BqhtLQ058ofhCWEkKw/Tho5uzmN86cbDP4V98jrD9yn8q9YQpjg8E+bWyGrqOEAACAA\nSURBVIRP66zabKC20IMAAKBWePX8v+fo6CgQCFJSUt6aF4lEhBAPj388GmTWrFnZ2dlXrlz5\n66+/MjMz582b9+TJExsbG3Pzfzwg2srKirzeaw+gBYyd3WwGDpcPX8VEJ+/dinPsdURvt8Y1\nen2ljJ10SMm7WaFOoQcBasNp/BT3mV8KXn90Uln4KvnXHTmXz9NNBdS5WxgNamH97nx0RuHR\nh1mrLieef5pHCMkpEvseeHD0YZb8BfJnjUK9QQ8CvMuih5fNJ0MsunlxQ1YiTQ3blXX2JNVQ\nUF1hvq3Z1T5tbf/xz6J/dTYujwkON1lyToWpQG2hBwEAQK3U9w5CoVDYoUOHO3fulJaWGhkZ\ncZMymezq1asODg6Ojo7/dKFUKjU1Ne3duzc3TE1NvX//vq+vLyGkuLg4NDTU3Nx83Lhxipc8\nfvyYvD7mF0ALWPTwsujhxTC8jNNHuHtLC+NiMn//jeHxuNtOQYstH+SxfFDVW4VVl5MXnon9\n10teFku2RqTM6OqEUwnVCnoQoJYMrKzdps4VbV8rKSkmhJSmJmX+fpQnFKIKddy83k4feCL3\ntaR8IyFPwOMVlFWWVcrqMxi8BT0I8F4WPbxYSWVxUnx5VgYhRJz/Iv34Ab0GZmg3TXE/uHtt\nthISQkrEMiY43FjIK172iQqDgbpBDwIAgFqp7x2EhJCAgIDS0tJVq1bJZ7Zv356ZmTl16lRu\nWF5eHh0dzd07w1m0aJGhoeHdu3e5oUwmmz9/PsuyM2fOJIQYGRn9+OOPgYGBcXFx8ktOnjx5\n/fr1du3aubq61sfPCqC+WPTwth04Qj7Mu345P/IWxTxQ/xZ4Owd2df63VzFGQr5bwzcnn5+J\nzZH/py7Twb9DDwLUhkUPLwNrW8dxUxhB1Y1uLyKuowqhr0djdrXP6YCOpwM6Dm9tzf/7ET7R\nGYUrLiX+eCGBVjxQhB4EeC/L3v2dJ07jCfW4YWHso9y/LuTduEI1FNRAmG/rCzO61PKblIhl\n/OBwleQBtYUeBAAA9cFwp+DWJ6lU6u3tfe3atSFDhrRv3/7JkyeHDh1q2bJlREQEd+9MTExM\nq1at+vbte+HCBe6Shw8fduvWTSgU+vn5NWrU6PTp05GRkQsWLFi5ciX3glOnTg0dOtTIyGjs\n2LG2trYxMTEnTpwwNTW9fPly+/bt/ymJhYXFixcvJBIJn8+vh584gKrk3bjy/GJ49vkz3JAR\nCNymzXWaEEA3FdSzhLzS9563pMipscHGoS3fncduQrrQgwC1l3fjSu5fFzJ/P8YNGT7fLXAe\nqhDeuglmwv7ownLJW68Z1qrJxPZ2QkHVjZLoxPqHHgT4ANHWNcm/hnBfMzzGedL0Bi1aYx+h\nZll8Jn7F5fjaf59mlkZxi71q/31A3aAHAQBAfVBYICSEFBcXf/vtt0eOHMnMzLSysho6dOh3\n333XqFEj7kffLUJCSERExDfffHP37t3S0lJPT89Zs2b5+//tyO5bt259//33t27dKi4utrKy\n6tev31dffeXu7v6BGChC0Fx51y8n/7rjVcx9bsg3NHIP+tJ+2Fi6qaCeMdW+t7Sri9l/+rw5\nzAAfhlKHHgSovdzrl5P3bS2MfcQN9UzNPGYvtPEZRjcVqAlupXDn7bQTMc/f/VEBj5nZ3WlA\nM4u35tGP9QY9CPAB9+dPy797g/uaEQjcps5xmjiVbiRQwr7ITL+w2p4Kb2msl/Ndf5XkAbWC\nHgQAADVBZ4FQTaAIQaPlXD6fsGV1WWYaNzS0c3CdOse6/0C6qaA+9dhw82ZywQdfwnD/9e1g\nO6qtzbs/jE9CdRx6EDRdzuXzCVt/KctI5YbCRo2bzfuPVR+c3ANvthL6hT3IL638wCt/Gtis\nlbUp9zVqUdegB0E95V6/lLDll9KURG7I0zfwmLUQN4NqqNrvJsQaIdQd9CAAAAhoBwAAJVl5\nD5CUFou2/iJ+mU8IKctIS9j8M18otOyNNw+64sbs7twXIRFpgUcevfuCeb2c+nq8vT1C0ZnY\nHHwYCgCay8p7gKS48NnGldKSYkKIOP9F0t6tjJ7Q8v/60I4G6qKfR+PCCmlCbknCi1LFeX0B\nz9u9MSGkkaEepWgAAO9n2bOPrKIiYfOq8ufZhBBZRXnSzg08fX1b7JLXQMsHeSwf5DH9SOz2\niGTlvkNuSaXgy3DJzz4qzQUAAABACHYQ4k4Z0HSpB/ckbP2FlVSdr2P2URsn30DLnt50U0H9\nG7wj6syT7LcmGxgIjPT4To0M5/R0bmDw/+zdeXxU9b3/8e8kkz0hECaBkJAEAiKboqKCE2CS\nKJtsbogIAi644IKX9trrvb/b6629tbbW1qUoiIhgQKWAQhWUkISwKfsWxZB9Jfu+zsz5/XHS\nKUVgDoE5Z5bX85E+Hvl+853pu//w6Tmf8/2eiz8RQoPQk1EH4R4K1q3M/fAda0fXLjHDHROi\nZj7I65pw/vsIrZK0N6/2bFXLppNdtTLIV79h/ii7X0KVdG/UQTiz0r9vsj0MKoQIGjBo4KJn\n2CXv0q5mN6FOCOsb9AhxjVEHAQBeWgcAcFVi5iyMfXCh7h//Z67+9PHyHV9W7U3XNBScRUOb\nubyx/buCui9OnRNCVDR2zE85vvFE2flrtmVV2H40igkAVyV23hMxDy4Suq5h1b6M2mMHKYU4\nn5dON25g2OTrw20zLZ3mP6TlZuTUaJgKAC6j3933Dnj0WX1QsDxszjtbuu1vVDeX9tq0wdIb\nU1+fNqwbn5WE0C376ve7cq55KgAA4Mk4YhRweaE33Bzd3lq08RN5WJG+I6BftBCCzRMeZemE\n2J/vILTJyK1p7bQmDOhV19rZ2mlVMxgAqCB0xKjISTPKtn8pD4s+XePToyd1EJchSWJ3bs3u\n3JrIHn7XhQddatmlnp5hZyEAFUTfM6eztjrvo+WS1SqEqP5+b/CgIVQ3V/fLxLhfJsadrWoZ\n/Lv0K/3sy38/81JSvANCAQAAD0WDEHB58iVie1VlRfo3QgghicINH/n2utyb5+B+kgf3lt6Y\nKt/HPFXeuP3HSotVHCioNVslIcS5xvatWeeyK5sv/yU/vw3KDVAALsFgNAlJasrPafzxtBBC\nsloL1q306REaNXO21tHg7Erq2y7TIAQAbQ14dEl7ZUXJ1s/lYfHmDf6R0dH3zNE2Fa7eIEOg\n9MbUKz101CqEbtlX8u++3rr216c4Jh0AAPAUvIOQs7bhJqr2pOWufrfxTJY81If0GPzUsn4z\nH9A2FVR2QYfvic9Olje224YBPvrWTvPo/qGJg3qPje3l46372RcoRePQPVAH4WYqdm3P+eDt\nlsI8eejbK2zg48/TI8T5xbGx3fzn3Xk51a3VzR3yzOQh4UsSYq/0O6mD7oE6CJdQtSctf+2K\n+tPH5aF3UNCQF/4zcuosbVPhGnry86wVB/K78UF6hLhK1EEAAO8gBNyEISExbt4T/pFR8tDc\n2JDzwVslX3ymbSqobNqwCPlHHj51R0x0qL/eq6sR2NppFkIcKqr/Q1ru23vytQoJAA4SkTQ5\nbt4T+uCu1zV11Nbkrn63Ut5eDwghhAjx0/+/uwb/dsp1tpmT5Y0a5gEAuwwJidH3zfUJ7SkP\nLc3NRZ+t4WWE7uT9B4ZJb0x9KXHwlX6wwyJ5/WNDIQAAQDfQIATcR0TipAELnj7vxmg1N0Y9\n3C3RoR0Wq3zK6AXSzlZPX3Vo+qpD3BgF4E4ip86Kf+IF76CuEyM7qirz1q6ozPhW21RwNv16\n+A/sHSj/XlLftnxfgbZ5AODy+k6cPnDREn1Q14Ve49kzZTu+pEfoZl6bNnjNQ6Ou9FOSEH7/\n/rUj8gAAAE9AgxBwK/2m3Rv/xAvegV33vDqqKvNTVlVm7tI2FTRkig8bG9dL73Xhv/Z+eq/J\n14dPvj48LMBHk2AA4CDR9z08aPGLOn3XP26NZ7IKP12jbSRo64Lt9UIInU5EBPvaht/+VKVF\nLgC4AtH3P9x/9iO2YcWu7ZV7UukRuplHRveT3pgqvTF1zqho5Z/qsEjXv5busFAAAMCd0SAE\n3E30fQ8PevJFnV4vDxuyThb/7RNtI0F9ttug80dHv5wc/+kjN62cPfK3U4fYFkhCLDHGLjHG\nRoX6a5QRABzFv2+/qBkPiH+8aLXuxJG8Ve9omghOZ0xsT9vvF91qDwDOpsf1I3rfnmAblv19\nU/V3ezTMA8dZP/+GK+oRnqls0S37ypvjRgEAwBWiQQi4If++UVHT/3ljtObQ/rzVyzVNBI35\neuv6hviFB/1zt0SH2Trrw8O/3XmWu6IA3I/BaOp9e0LkpBm2maJNKeXf/F3DSHA2yYMNU4aG\ny79LksitbtE2DwDYZTCaombN6XnjLfJQskolW9bnffiutqngIOvn33ClN+ysQrCVEAAAXBG9\n1gEAXHsGo0kI0dlYd25n19sIij77OCAyqu/kGZf7GDyMRZIOFNQdLq6/Paan/dUA4FLkUtiY\n/WNTzk9CiM76uqKNH+sDAw0JiRong3Zs2+u3ZVUIIeJ7BwlRKc+8npYb7Ot9W2zP2TdGapYP\nAOwJH5ckJMnS3tb442khhGSVClJW+fYOj5o5W+touPYsb0z9+FDpgvXHlH/kp6pWucadf7A2\nAADApbCDEHBPBqOpz53TguOvk4edjfWFG1ZX7UnTNhXU9PNXLl3UmoPFO3n3EgB3ZDCa+j+4\nwMuv6yDlhqyTFek7eF0TbEL9//msZEl925nK5rWHSk6VN2oYCQDsCh+fPGD+4uCBg+Whpa2t\ncMPqyt2p2qaCg8hvJRzVT+kDnZIkPbvllPjHozAAAACXR4MQcFvhCYkxDy7wDgiUh41nz5R9\nvYUbo54ssoff1sdGvzh+QPJgg22yqK7trT355Y3tGgYDAAfpN/WeqJmzbWdul23/siL9G0oh\nZBHBvj+frG7uVD8JAFyR8Al3xc57wrdXmDxsKSoo3fo51c2NHV12x5iYMIWLC6rbpq869PAn\nR7dlVcg/Ds0GAABcGkeMAu4scuo9LcWF+WvfF5IQQlRkfCu8vMQ/Dl6DZ0oa3Pum6B7pZ6st\nUtfbByVJrDtcEh7kd3N0j5GRIdrGA4Br67rnf9VaXFi1L10eln29xSe0p6AUQoiBvQOfuiPm\nQEFdS4flp8pmebKkvs224PXU/Mz8i2+y1wlhfWOqGikB4GL6TpzWdq4sd+VfJKtVCFG1f3dA\nVAylzY1NiO99oLBG+fqGNssjnx77+MFRjosEAADcAA1CwM3FL36hpSi/Im2HPKxI2xEQGS24\nMerZegX4vDhhwMYTZfk1rfJMRk6NEGLTyfJ37h3ev2fXcXzcGAXgHvrNeMDS2lx79KA8LN6U\n4h8RWbU3nVKIu4dG3D00oqyhffHnJ+WZI8X1Mb266mBpU9ulPijZ9qUCgEbi5j/RnHe2/Jut\n8rBk68bA/rHR9z2sbSo4yGvTBr82retcWd2yr5R8pLbJ/N6BgqfGxPJWQgAAcCk0CAH3Fzlp\nhrWttWr/bnlYvGV9YEycpomgKvlS8IKzZSbEh/UK9PnPr86cP2mVpO0/Vg7tEyQPuTEKwD2E\nJyQKIVnb2+uzTgghrB0d2cv/GP/EC4LHZSCEECKyh58hyLequUMIcaay+fe7crVOBACK9Eme\n0naurO74ISGEtb3t7Iq/+PQM65M8RetccCzpjalPfp614kD+ZVfpAn294nsF2cbnXw/SLAQA\nADIahID7MyQkCp2us7Gh/tQxIYSlpSX7nd9LZnPUrAe1jgYtjegbPG5g2L68WttZo0KIL0+f\n+/K0hqEAwCHCE5Ks7e2tf/6/jtpqIYTU2Zm35r3rnv13rXNBG7Ybo7a7pX56Xs0OwPUYjCZL\nW2tLQU5HXa0QwtLcVLB2hZevX/i4JK2jwbHef2DYLxPjBv8u/dJLpJYOyxc/lN81xHDpNQAA\nwNNxJQx4BIPRFH3vQ/qgYHlobmrK+2j5udSvtU0FbXnpdP+eOHDLo7e8fc9wrbMAgMP1SZ4y\nYOHT/hF95aGlualg/WpKIWRTrg/XsTcegAvqkzxlwMJnvHz95GHj2TNlX2+p2puuaSioYZAh\n0O6aguq26asOTV916Le7slWIBAAAXA47CAFP0Xfi9LZzZYUbPuqsrxNCtFdVlH75ubefvyEh\nUetoUMP5x8hccNxoTC//oRHBP1Q0qR4KAFQVfd9cL3//s+/8obOxXgjRUph39q9/1Hl5RSRO\n0joaNDZzRJ874nrVt3W++MUPyj4hnf8KqN7B+qpXJjooGwBcXvT9D7dXV+avWyEkIYSo2pMa\nHH+d4BhtD3BHXM99+XWXXaKT/3NdWPD5s7brQc4aBQDAw9EgBDxI3PzF3v6BZ5f/wdrRKYSo\nOXzAOyBQ6HRcOno4L53ud9OGFNa2WqwSN0YBuDffnmExDy3MXfWOZLEIIdrOlZVs+dTL149S\niPBg3/BgX8XL/2W/4dDwkGueBwCUCx0xqk/y1HM7vxJCSFYpf+1KjtH2BHufu0P+ZeWBosWf\nn/z5gl+YBkyID1M3FAAAcCU0CAHPEtAvOnLyrJIvP5eHlXt2+ffrL3i81ON563QDwuyfUXMe\nbowCcElyvYud+1jB+tWSuetxGX1ID0EphBBCiK2PjZZ/MVulX2w9k1N1ye310htT1AoFAHYY\njCZJkppyfmrOOyuEkMydeetW6Hv06DtxutbRoIYnxvT/8lTlth/KL5jfcLR0Z3bVgLCAeTdH\n+V7sbbvbsirYRAgAgCejQQh4FvnuZ3tNVdWeNHmmeHOKPihIcGMUQojzbox2WqRffHkmt4Yb\nowDcjVzvoqbfX7x5vTxTkf6N8PISlEKcR++l6+WvfEMhAGgsPCHR0tqSs/yNtopyIURHVWXe\nmvd13j59kidrHQ2aKa5vK65vO1bSEOynn31jZEVjx7KtP8wcEXH/DZG2Nee/foJmIQAAnuYi\nDxABcG8Goylq2v09b7xFHkqdnflrV9SdOMyr7HE+H29dWCA3RgG4J4PR1HvMOMOY8baZil3b\nizevtz09Aw/BnVAA7qTvXXfHzl/s5esjD1sKcgvWraC0eYilE2Iv89cD+XVf/VDR0mmpa+1s\n7bSqlgoAADg5dhACnsiQkGhpb2+vPNdaWiyEkMzmwvUfWlpaBJsnAACeQT6NzWrurDm0X56p\nPpCpDw7m1bwAANcVfc+cztqavDXL5VftNmb/eG7XdkNCota54HDJg3tLb0yVtwOm59RsO33O\nIonc6harJAkhsquas6uab4kK1TomAABwLjQIAQ/VJ3myZDHnrX63pahACCFZpZIvNngHBAp6\nhB7AtmHi/PNkAMDThCckCknS6b2rD+yRZ87t/Frn5S0ohRBCCPHrSQOFGHjRP7H1EIDTChky\nLHbuY/lrV8jD8m+36oNDhvzbf2mbCmoyxYeZ4sOEEAvWn6hp6bDN/1TVLIQ419iRW90ysPdF\n3kD/88tD6h0AAO6NBiHgufpOnKbz1ud//F5Tzk9CCMkqFW740NrRJrgxCiEEN0YBeIDwcUk6\nLy+dzqtq/255pvzbbT49wwSlEADgmuT6FXbLmJrDB4QQQhJlX20KHXFT34l3axsMKrjgSdC5\nN/dbsb+gwyLJk43tZiFERk51Rk71/TdELrg1SqucAADASdAgBDyat7//wEefzfvor43ZPwoh\nJKtUvClFp/cR3BgFAHgGg9EkWa2W9vbaI98JIYQkSrZ8GtA3qmpvOqUQAOCKDEaTJFk7G+sb\nf/pBCGFpayvdtlEfFERd8zSThhg+PVZa2dTx8z9tPFG28USZEOL/7h4ysm/Ipb7hUkfO8MAo\nAADuwUvrAAC0ZDCadHp93PzFIYOGyDNyj7ClKL9qb7qm0aAGrusAQAgRPi6p/wPzewwdKQ+t\nHe05K//cVl6ibSqoY9qwCNuP1lkA4JoJT0iKmbPQOyBAHtYe+a4+6wSXeB4oMT7s5uhQIXQX\nzPvpvSZfHz75+vCwAB9NggEAAGdAgxDwdAajycvPf8CiJSGDr5dnrB0dOSvfaiku4AISAOAh\nwsclxT60yLdnL3loaW3NXfVO+fat2qYCAKDb+k6c3u/u+2zDoo3rzM2NGuaBmmxPvcwfHf3K\npMErZo/4zeTrXhw/wLbAS6dbYoxdYoyNCvXXKCMAANAeDUIAwmA0hU+4M+6Rp2w3Rq3tbbmr\n3u6ordE2GFTAzgkAkEUkTR74+PO+YQZ52NlQn7PqrfJv/q5tKgAAuu26F/7DdlSMpbkpb837\nFbu2axsJmogM8RsV1WNon2DbTJvZ8m9f/JBypFSSNMwFAAA0RoMQQBcvX9+Bjz/vH9FXHlpa\nWnJWvFm2/QttUwEAoBq/8D4DFj3tHRQkD9vKSgo3rK7ak6ZtKgAAukmn6z/7Ee/AQHnUUpCb\nv3ZFZeYubUPBGUiSyK5qXn+09GQ5+0oBAPBcNAgBdDEYTX7hfQY8/pxtH2FHTXX+2pWVe7iA\nBAB4BIPR5B8RGTt7gZdv1/t4Gn/KKvt6Cz1CAICLipx6T+xDj+q8um7+NGb/WJn+De+SgM3m\nk+U/VTZrnQIAAGhDr3UAAE7EYDRV7U2PmftY3uq/WlpbhBAtBblFn64RQoQnJGmdDg7381NG\nt2VVaJIEALRiMJqEELFzH89bs1xIQghRkfGtPjhE6HTynwAAcC0DFj1jbW8vSFklWa1CiPKd\nfw+MHSD+UfLgrmwXd7ZrusgefpsW3rL2cHFWedOZfzQFDxXVnyhr/PDBG0L9uUMIAIDHofwD\n+BfyVWLcI4tzV74lX0DWHj2oDwnV6by4gAQAeAK53oWPv7MyY6c8U/b1Fr+IvoJ7qe6OB2UA\nuKvQkTcZxiXJdU2yWHJXvTNg0TOCuuZ5fLx1j97W/1xj++OfnbRNdpitX/9YGdPT//qI4LBA\nHw3jAQAAlXHEKIALGYym4IHXRU6ZZZup3L2z6sBuDqIBAHgIg9HUb8o9YbeMkYeS1Vq44aOO\nmipKIQDAFRmMpsiJM/zC+8hDyWIpSFnVUVOlbSpopU+I37039PXT//OW4CeHS36XmvPsptM1\nLR0aBgMAACpjByGAi5CfJO1sqK/MTJVnSrduDOjTT/CQqYf5+V4KAPAQhoREyWJuq6poKcgV\nQlhaW3JWvT1o8dKqvemUQgCAywmfcGdnfV1ByqqW4gIhhKWlpWjjOp8ePcMn3Kl1NDiWfE13\nwZ74RbdG3xAZ8j87ss+fbGw3Z5U3JQwMUzUfAADQDg1CABdnMJokSeqor60/cUQIIZnNOR+8\nNWDB04IeIQDAM4RPuMvS3vbTm//X2VgvhOioqsxf98GgxS9onQvq4UEZAO6k34z7dT4+2W+/\n1tlQL4Royvkp/5OVwts7PCFR62jQwPA+IdGh/sX1bedPtpqtWuUBAADqo0EI4JLCExKlzs7s\nivK28lIhhGQ2F25YPfCxZ9k8AQDwEH0nTu+sr8tZ8WdLa6sQoqUwL2/tSuGtDx+XpHU0AACu\nmE+P0Oh7Hspf+75klYQQDVknq/dn6HQ6ru88kL+P11v3DC+qay2qa/tjeq48eaK04a7rDPLv\nr6fmZ+Zf/BxanRDWN6aqFBQAADgMDUIAlxORONHS2pL30V9bS4uFEObmppxVbw9+5pda5wIA\nQCUB/frHzV+cu+odyWIRQjSeOZ2/5j0hSeHjk7WOBgDAlZEbgVGzHirenCIkIYQo/ftm/z6R\ngnNi3N35e+Jtx436eOsG9g7sF+of6Ovd0mERQhwoqHvis5PyX2tbpEt9myR0jgwLAABU4mV/\nCQDPFjl11oCFz/j0CJWHlubms++9UfbVFm1TAQCgDoPRFBw/pP/983ReXffCGn48Vbb9i6q9\n6ZrmAgCgOwxGU+/bEwy3j5eHkrkzb837LUX51DWP5a/3Cvbzln9vM1vLG9vln3ZLh7bBAACA\no9EgBGCfT2jPQU/+m61HaG5szF+3sjL9G21TAQCgDoPR1Ovm2/tNf8DWI6zcvbP26PfcSwUA\nuCKD0RR5970BUf3lobW9LfeDt+gRerKoHv5aRwAAABqgQQjAPoPR5GsIj1+81DsoSJ5pKcwr\n/WoLF5AAAA9hMJoMd5jCJ0y0zRRtXNt49gylEADgiiISJw5ctMTP0HXspKWtLXf1u+1VFdQ1\nz/T8uLipQyMSBoTZfny9OUQUAAD3xzsIAShiMJqq9qbHznk076O/yi9hqtqX7hPSQ/CyCgCA\nZzAYTUKSWovyG8+eEUJIZkvhhg8HPbVM61wAAHRH38kzrBZzzntvdtRWCyEszc05K/488PHn\nq/amc4nnaQxBvk/fESOEmL7qkLJPSLplX9kGvYP1Va9MvMxqAADgnNhBCEApg9EUct3Q3mPH\n22bKv91an3VCw0gAAKjJkJAY89CjAVEx8tDc2Fi4YXVFGmduAwBckm/PsPinXvTt2UsedtbX\n5X34bmdDvbap4Ap05/8MDQ/ROg8AAOgOdhACuAIGo0mSJMncWX1gjxBCskolWzYERvWPnHqP\n1tEAAFBD30nTrebOs3/9Y2d9nRCipaigeFOKl68vmy0AAC5HPidmwMJnzq78i6W5SQjRUVud\nv3aFPqRHeEKi1ungKNOGdR0tuy2r4oI/bX1stO33V3bkHiquudSXSG9McUQ2AACgJnYQArgy\n4QmJUdNnB8dfJw876+sK1q+u3JOmbSoAAFTj2zOs/30P67y6/o907dHvaw7t56VNAABXZDCa\n/COjBj31ord/gDzTUphXsmV9FZd4AAAA7o4GIYArFj7hzv73zdMHBcvD5ryz5du/4MYoAMBD\nGIymkCHDo2Y+aJsp3baxvfKchpEAAOg2g9HkHxEZO3+x0HXNVB/YU7F7J5d4AAAA7o0GIYDu\n8O1tiJmzyHYBWbl7Z+OZLC4gAQAewmA09R4zrsewkfLQ0tqa/8kHFbu2a5sKAIDuMRhNIYOG\nhBuTbDNlX29uyv2JSzz3ZjtrFAAAeCbeQQigO+Q3LUWMv6si41shhGS1BiGWsgAAIABJREFU\n5q9bOWDR07Y/AQDg3gxGU2dD/dnS1zvqaoUQbWUl+WtX6Hx8w8cl2f0sAADORr6Os5o75PfN\nC0nkrV4+6Ol/0zYVNPTrSQOFGHjRP9FZBADAPbCDEEA3GYymvhOnBQ0YJA+tHe35H7/fXnmO\nh0wBAB4icsrM2HlP6Hx85GFj9o/l32ylDgIAXJTBaIqa8WBgzAB5aO1oz1+7siLtG21TAQAA\nwEFoEALovvAJdw1Y8JR/RF95aGltLUj50NLWyr1RAICHiJmzMPbBhbYztyvSd1Ts/pY6CABw\nUeHjk2PnPuoX3kcedtRUFaxfVZm5S9tUcJxpwyJsP1pnAQAAaqNBCOCq9Llz6sDHn/cN6y0P\nW0uLcle+RY8QAOA5Qkfe1Cd5atdAEmV/31x79CB1EADgonx79R6w8Gkv36798Q1ZJ8u+2kxd\nAwAAcD80CAFcLZ/QnjEPLtR5df170lJcULRxnSRZuYYEAHgCg9HUJ3Fyj2EjbTMlWz9vKyuh\nDgIAXJHBaPIzRETNesg2U7kntebQfuoaAACAm6FBCOBqGYymoLj42Icf1+n18kz9yaOF6z+S\nLBZtgwEAoI7wCXfGPfKkrUdoaW7KWfmXtvJS7qUCAFyRwWgKu2VMROKkrrEkSr7Y0FZRTl0D\nAABwJzQIAVwDBqMpdMSo6FlzbDN1xw/lffxeZcZODVMBAKCa8ISk/vc+7BPaUx6am5vOvvcG\n91IBAC7KYDT1nTQjdPiN8tDa0Zmz4s22c2XUNQAAALdBgxDAtWEwmsJuvaPf3fcKXddM44+n\nizau5QISAOAh9CE9Bj29zNYjtLS2Fn26RjKbtU0FAED3hCck9p+9wDfMIA/NjY0FKassba3a\npoLjTBsWccGP1okAAIBj0SAEcM0YjKbw8XdGzZxjex9h7dGDVfvS6RECADyBwWjy7dV74OPP\n+/bqLc+0FBcUb0qp2pOmbTAAALqnT/LkAYue9ukRKg/byktzP3ynMv0bbVMBAADgmqBBCOBa\nMhhNhrHjo2Y+aJsp3bqx7vgheoQAAE9gMJr8I/rGzFloe1am5vCBki8/ow4CAFyUf0TkgIVP\ne/n6yMOWgry8j9/nXRIAAABuQK91AABuqPeYca0lhdXf7xVCSFZr4Wcf+0dEah0KAAA1GIwm\nIUS/6feXfPGZPFO1LyPkuqG2PwEA4EIMRlPV3vS4h5/IW/OeZLUKIRp/+qH8m606vZ665vY4\nZRQAAPfGDkIA15jBaDIYTVEzHwwZfL08I5nNBetX8ZApAMBDGIwmwx2miKTJtpnCz9eZm5vZ\nRwgAcEUGoynk+hH9Zz9i2x9fkfFtQ9YJ6hoAAIBLo0EIwCHCJ9wZ98iT/hF95WHbufLyb7Zy\nAQkA8BAGoyly0oyQ64bJQ0tzU+GG1ZIkaZsKAIDuMRhNvW66LXzCXbaZws8/bisr0TASAAAA\nrhINQgCO4uXrFzv3MZ23tzysyPi25vB39AgBAB7CYDTFzH7E2z9AHjb+lFW+40vqIADARRmM\npr6TpgfGDpSHlpaWgvUfnkv9WttUAAAA6DYahAAcxWA0+UdGnf+QafHmlKacM9wbBQB4CH1I\nj/4PzNN56eRhRfqOqj27qIMAABcVnpAU+9Cjvj17ycO2c2Wl2zZS1wAAAFyUXusAANyZwWgS\nktReVVF/4ogQQurszP3g7dh5T3T9CQAAtyYXu3DTpIpd24UQQhIlWzdKVqugDgIAXFO/afda\nWpqzl/9R6uwUQtQc3B80YLCgrgEAALggdhACcCxDQmLM/fN8wwzyULJaiz5b01ZRznOmAABP\nYDCa+k6cHhx/nW2mbPsXjdk/UAcBAC4qIKp/v8mzbMOSLZ92VFdR1wAAAFwODUIADheRNDl+\n8dLAmDh5aGlrK/psjSRJXEMCADxBeELiwEXP9LrpVnkoWSxFn6+1tLVRBwEArshgNBmMptAb\nbpaH1o72gg2rJYtF21QAAAC4UjQIAajBt1fYwMee8w3rLQ9bigqquSsKAPAY4aaJ/e+fH9g/\nVh521teVbNkgJEnbVAAAdI8hIbH/vXN9eoTKw5bCvNKvNvHgCwAAgGuhQQhADQajyds/IGbO\nIp2XTp4p/WpTZWZq1Z40bYMBAKAOnV4fO+8JLz9/eVh79Puiz9dVZuzUNhUAAN3T586p/R94\nxHZ9V7UnrSJtOz1CAAAAF0KDEIBKDEZTUOzA3mPGy0PJYind9reyr7dwDQkA8AQGo8m3Z1jU\n9PttMzWH9xesX13JszIAANcUct3QvhNn2IZlO75syDrB9R0AAICroEEIQD0Go6nf3fcFxsXb\nZioyvq0/dYxrSACAJzAYTWG33mH4x7MyQoj6U0er9++mDgIAXJHBaIowTQwbPbZrLInCjWvb\nK89R1wAAAFwCDUIAqgqfcGf8o0vCbh1rmyn627q28hKuIQEAnsBgNEXdMydy8kzbTOnfNzZm\n/0gdBAC4IkNCYvS9c0OuGyYPLc3NOSv/0lFXQ10DAABwfjQIAagtImly9H3zQoYMl4eWlpa8\nj5abm5u4hgQAeAKD0RSROKn3bUZ5KJktBZ980FKUTx0EALginbd39L1zvQMD5WFnfV3J5g2S\nJFHXAAAAnBwNQgAa0Ol0MQ884tvbIA87amsK1q2ULBauIQEAHqLf9AcCY+Lk3y2tLTkr32qr\nKKMOAgBcjsFo8u0VNuipZfqgYHmm4cdTxX/7REiStsEAAABweTQIAWjAYDTpQ0IGLHzG2z9A\nnmnKzS7enCKE4N4oAMDtGYwmL1/fuPlP+oZ1PStjbW/LW/VOZ2M9dRAA4HIMRpN/n8joe+fa\nZmoO7ivauK5qT5qGqQAAAHB5NAgBaMNgNPlH9I2Zs1Dn1fUPUc3B/SVffCrxnCkAwAMYjCaf\nHqHxTy795376utqc9/9sbmygRwgAcDkGoyl0xKi+E6fbZmoO7a9I30FRAwAAcFo0CAFoxmA0\n9Rg6MvLue2wzVfsyij79qHJPGpeRAAC3ZzCafHuGDVj4jJefvzzTXnku54O3pM4O6iAAwOUY\njKY+yVMiEifZZsq//Xtzfg5FDQAAwDnRIASgJYPRFJ6QbLhjgm2m9ujBil1faxgJAADVyPvp\nBz72rJevnzzTVl5a+vUWwZnbAAAXZDCaIifPNCQkyUPJYslft6KjrkbbVAAAALgoGoQANGYw\nmqJmPtj3rrttM+d2ftV4Jqts298yZ44r+OQDDbMBAOBoBqMpKHbgwEeX6PQ+8kzV3vSaw991\n1lZTBwEArqjflFmBMQPk382NjbkfvF2Z/o22kQAAAPBzNAgBOIU+d94dMeEu+XfJas1d/U75\nt9s6aqrPvv+ntMQbtc0GAIBDGYymoAGDIifPsM0UfbambPsW6iAAwOUYjCadXh8373F9cLA8\n0155rjz1a3bGAwAAOBsahAC0ZzCahBB9J80IjO16zlRIoubwd/IvVktn5jSjZuEAAHA8g9Fk\nSEjqMXSkbab22GEhqIMAANdjMJp8QnsNWLREp/eWZyozvm0tLaZHCAAA4FRoEAJwCgajSeft\nPWDB07azaP5JEh0NtdwbBQC4t/CExLiHH+sxbOSFf6AOAgBcjcFoCoyOjTBNloeS1VqQssrS\n1kaPEAAAwHnQIATgLAxGkz4oePAzv+h54y0X/k0SHQ216Xf9bB4AADcSbpo44JGnwkaPvfAP\n1EEAgKsxGE19kib7GSLkYXvlucINq4UkaZsKAAAANnqtAwDAP53586tt5aVCCKH72d8kYWlr\nrT36fa+bblM9FwAAatj7wJ3UQQCA2wgfn9xeWZ797h+tHe1CiIYfThZ9vk6SpPBxSVpHAwAA\nADsIATgTc1PD5RcceX7hdwtmqhMGAACVUQcBAG7Gv29U/wfm2R58qTm8v3TbRg4aBQAAcAY0\nCAE4keh75tpd05SbfeLl51QIAwCAyqiDAAA3YzCaet5wi2GsyTZTtS+9/tRReoQAAACao0EI\nwInEL17qF97H7rLKzFTujQIA3A91EADgfgxGU9SMB/pOnNY1lkTJF59ZO9rpEQIAAGiLBiEA\n55KwKU2n97G7rDIz9fCSeSrkAQBATdRBAID7MSQk9kmaEjJkuDzsbKgv+3qLtpEAAABAgxCA\n00lKO+4dGGR3WcMPp1QIAwCAyhTWwaazZ1QIAwDAtaHTRd8318vXVx5V7c+oSNtetSdN21AA\nAACejAYhAGdk2nEwetacy6+xmjsypxnVyQMAgJqU1EFza/P+uVPVyQMAwFUyGE2+ob0iJ83s\nGkuibPuXpdv+xkGjAAAAWqFBCMBJDVn238Nffu1yKyTRUV975s1X1UoEAIB6lNTBlqJ86iAA\nwFUYjKbeRlPI9cNtM5V7dtWfOkaPEAAAQBM0CAE4r75TZngH2DljrXhTyr7Zd6mTBwAANSms\ng98tmHn5NQAAOInwhMQB85/sPWacbaZ4U0p75Tl6hAAAAOqjQQjAqZm+OWh3TWtZyeEl81QI\nAwCAypTUwabcbPYRAgBcRfiEO6NmzQkZ0rWP0NzclP/x+9b2NnqEAAAAKqNBCMDZ+YX3sbum\n7sSREy8/p0IYAABU5h1oZxOhEKJ4Uwo9QgCAq9DpdP3vn+fbs5c8bKsoL0j5UJKs9AgBAADU\nRIMQgLNL2JSm0/vYXVaZmUqPEADgfkw7Dgqdzu4yeoQAAFdhMJp8eoTGPfKkzqfrQq/hx1Nl\nX23RNhUAAICnoUEIwAUkpR0XXvb/varak6pCGAAAVJa8+7SSHmHJ5hQVwgAAcPUMRlNAVEz/\n++eJf9S3ysyd1Qcy2UQIAACgGhqEAFxDcsYpuz1CSRK7xg9TJw8AAGpS0iOkDgIAXIjBaOo1\n6tY+yXd3jSVRvHl91d40eoQAAADqoEEIwGUkZ5yyu4Z7owAAd5W8+7TdNZIkdk0YoUIYAACu\nnsFo6nPn1B7DRtpmSrdtbMrNpkcIAACgAhqEAFxJ6IhRdtfQIwQAuCu/8D5210hW664Jw1UI\nAwDA1dPpdHEPP2G70JOsUuGG1eaWZnqEAAAAjkaDEIArGb08JTkzy+4yeoQAALeUsClNWY9Q\nSkuy/0gNAACaMxhNOr0+du5jQXHx8kxnfV3uyrfqTxxOnTA8dfywY794UtuEAAAA7ooGIQDX\no3AfYfqdN6kQBgAANSnsEVo7O/bNvkuFPAAAXCWD0aTz9o6Zs8jbP0CeaS0tKtm8QVglIYma\n7/doGw8AAMBd0SAE4HpGL09Rcm/U0t7OvVEAgPtR2CNsLSuhDgIAXILBaPLtFRY791Gd3lue\n6Wxpln+RJGnXhJGX/igAAAC6iQYhAJeUsCnNJ7Sn3WXcGwUAuKWETWk+IT3sLmstKznx8nMq\n5AEA4CoZjKaQIcMHPbVMHxR8wZ8kyUKPEAAA4JqjQQjAVY3fto/9EwAAjzX+qwNKeoSVmamH\nl8xTIQ8AAFfJYDQF9o+LeehRnZfuX/4gCUmypCXeqFEuAAAA90SDEIALU76P8LsFM1XIAwCA\nmsZ/dUDodHaX1Z04UvjZxyrkAQDgauwyjTz+q2dyV70lSZK4oL5JwmruTB03jIoGAABwrdAg\nBODaxm/b5+Xra3dZU272mTdfVSEPAABqSt59WkmPMPvt12qPfq9CHgAAuq3HUPvniBZtXKtC\nEgAAAE9AgxCAy0tMPabztv+vWdnXm1QIAwCAypJ3n1ay7PSrLzk6CQAAV2P08pQLNw7+TBuv\nkAAAALhGaBACcAdJ6afsrrG0tu2+e6wKYQAAUFlyZpbdNe0V57ijCgBwcnHzFttdw2vmAQAA\nrgkahADchJJ7o50N9YeXzFMhDAAAKgsdMcrumtaykhMvP6dCGAAAuid+8VKFFY3XzAMAAFwl\nGoQA3EfcfPtPm9adPFLwyQcqhAEAQE2jl6f4hfexu6xqT6oKYQAA6LbRy1OUXNm1nytTIQwA\nAIAbo0EIwH3EL14qvLzsvLVCEmff+1Pt0e9VygQAgFoSNqUJne7ydVCSRPpdt6iVCACA7ohf\nvDQ5Mysy8e5/mZX+ZdTZ0sSjnwAAAFeDBiEAt5KccSp5t/2zRo88v5AeIQDA/STvPm23Dlra\nWtOS7J/eBgCAtgYs/tdjsS94AkYSZ9/705k3X1UxEQAAgFuhQQjAQx19YaHWEQAA0Ia1s2PP\nrPFapwAA4HIComN8Qntefk3xphReRggAANA9NAgBuKHkTPubCCVJ7JowQoUwAACoTNGrm6qr\n9s2+S4UwAAB02/ht++yuacrNZh8hAABAN9AgBOCeFPUIrdbUccM4axQA4GbiFy8NHWH/ENHW\nshJ2XQAAnJx3YJDdNcWbUugRAgAAXCkahADclpJ7o0KIk//9oqOTAACgstHLU5TcUW3KzT68\nZJ4KeQAA6B7TjoNCp7O7rHhTCo9+AgAAXBEahADc1ujlKUr2EXbW1XJvFADgfkw7DirpEdad\nOFL42ccq5AEAoHuSd59W0iM88fKzKoQBAABwGzQIAbg5JfsI604coUcIAHA/ph0HhZf9/8Nf\nkPKBCmEAAOi25N2n7a4xNzVxdDYAAIByNAgBuLnRy1N0eh+7y+pOHOGtFQAA95Occcrumo7q\nqt13j1UhDAAA3abk0c+m3OwTLz+nQhgAAAA3QIMQgPtLSjuu8K0VnLEGAHA/cfMX213T2VDP\nrgsAgDNT+OhnZWYql3UAAABK0CAE4BEUvrWiaONaFcIAAKCm+MVLFe66oEcIAHBmSWnHlRyd\nnf32axwPAwAAYBcNQgCeQslbK9rKSjiRBgDgfkYvT/EODLK7rCk3m10XAABnlpxxSuHxMLVH\nv1chDwAAgOuiQQjAg/iF97G7pjIzlStJAID7Me04qORkNjbTAwCcnJJHP4UQR19Y6OAgAAAA\nro0GIQAPkrApTcm90aNLF6kQBgAAlSWlHRf2Nl20lZUcXjJPlTgAAHRTcmaW3TWSJHZNGK5C\nGAAAABdFgxCAZ0lKO253jWSVdplGqhAGAACVxc1bbHdN3YkjvIwQAODkFPUIrdLuu8eqEAYA\nAMAV0SAE4HEUXUlaLLsmjFAhDAAAaopfvFR42b8E4GWEAADnp+TKrrOhnh4hAADARdEgBOCJ\nlD1tas2YdKsKYQAAUFNyxinvwCC7y7Lffo0eIQDAycXNt78zvrOhft/su1QIAwAA4FpoEALw\nUEquJM0tzbyHCQDgfkw7DipZlrvqbUcnAQDgasQvXho6YpTdZa28YRcAAOBnaBAC8FDxi5cq\n6RHWnThy5s1XVcgDAICalGymt/CgDADA6Y1enqJkZzxXdgAAABegQQjAcyl8D1PxphTOWAMA\nuB8lPcK6E0foEQIAnJxpx0Gd3sfussrMnSqEAQAAcBU0CAF4tOSMU0Kns7ss++3XeNoUAOCG\nFDwow5YLAIDzS0o7Luxd2LVXVvDUCwAAgA0NQgCeLnn3aSXLSjanODoJAAAqS844pWTLRfGm\nFHqEAAAnFzfP/isk6k8eUSEJAACAS6BBCAAiOTPL7j5CSRK7xg9TJw8AAKpJSjuuZDM9D8oA\nAJxc1yskLlvTJCHS77pFrUQAAABOjQYhAAihbB8hPUIAgFtK3n2aB2UAAG4gOeNU8u7LvmFX\nEpa21rTEG9RKBAAA4LxoEAJAl7j59k+k4fYoAMAtKX5QZrgKYQAAcCir2bz77rFapwAAANAY\nDUIA6BK/eKl3YJDdZfQIAQBuSdmDMtKuCfQIAQBOLTnzspsIhRBCdDbU75k1XoUwAAAATosG\nIQD8k2nHQaX7CLk9CgBwL/GLl+r0PnaXSVaJB2UAAE5OyWVde3XVdwtmqhAGAADAOdEgBIB/\nEb94qZIHTiWrxDFrAAA3k5R2XOGDMmlJo1TIAwBA98QvXuoX3sfusqbc7MNL5qmQBwAAwAnR\nIASAi/D2D7C7RpKkfbPvUiEMAACqiV+8NHSE/eaftbNjz0xOZgMAOK+ETWlKXiFRd+JI4Wcf\nq5AHAADA2dAgBICLMH17OOymMXaXtZaVcMwaAMDNjF6eIrzsXya013AyGwDAqZl2HFRS0QpS\nPlAhDAAAgLOhQQgAF3fTWx/6hhnsLpMkkZZ4gwp5AABQTXLGKSXvI2zKzd41YYQKeQAA6J7k\njFN213RUV+2+e6wKYQAAAJwKDUIAuKRxX+xWciiN1WzOnDlOhTwAAKgmKe24ogO3rdbdU+3v\nuQcAQCtKXq/b2VDPtngAAOBpaBACwOWYdhzUKTiUpqOmOn3SaBXyAACgGtO3h3Xe3naXdTY2\nnHnzVRXyAADQDQpfr9uUm33i5edUyAMAAOAkaBACgB1JGaeUvLjC0tpS8AnvrgAAuJWk9JNK\nlhVvSvnxD792dBgAALpn9PIUJWfDVGam1h79XoU8AAAAzoAGIQDYl5xxysvX184iSZx9709p\nSfYfTQUAwIUkZ2YpWVa69XNHJwEAoNtMOw4Knc7usvyP31chDAAAgDOgQQgAiiSmHhv81C/t\nLrN2duyecrsKeQAAUI2SHqEkidRxww4vmadCHgAAuiF592m7a2oO7WcTIQAA8BA0CAFAqZiH\nFyk5a7SzqTF94i0q5AEAQDXJmVlxDz1hd1ndiSMH5k1TIQ8AAN2g5KDR4y89rUISAAAAzdEg\nBIArkJxxSskyS2trmukGR4cBAEBN8c+8qGRZS2Guo5MAANA9ph0H7a6xtLZmTLpVhTAAAADa\nokEIAFdG4auYrBbzoScfdHQYAADUpPysUc5nAwA4JyW1zNzSvGfWeBXCAAAAaIgGIQBcseTM\nLCXvt6/POnno6bkq5AEAQDVx8xcrWXb0hYUODgIAQDcp6RG2V1ftm32XCmEAAAC0QoMQALpD\nyfvthRD1p47RIwQAuJP4xUsV7iPcNWG4CnkAAOiG0BGj7K5pLSs58fJzKoQBAADQBA1CAOgm\nhWeN1p86xlUlAMDNKOoRWqXUccMKP/tYhTwAAFyR0ctTvAOD7C6rPWb/nYUAAAAuigYhAHSf\nwh5hZWZqWuINjg4DAICaFJ41evad1xydBACAbjDtOGj3zRHmxgYOGgUAAO6KBiEAXBWFPUKr\n2cxJawAAdxK/eOkd67fbXSZJYtf4YSrkAQDgSil5c0RrWcnhJfNUCAMAAKAyGoQAcLUU9ggl\nq7R7yu2ODgMAgGoComMUvo8wdfywY794UoVIAABcEb/wPnbX1J04wmsjAACA+6FBCADXgMIe\nYWdTIz1CAICb0el97C+SRPX3mfvnTnV8HAAArkDCpjQlhawyM5W36gIAADdDgxAArg3lPcK0\nxBsdHQYAANUkpR0PuU7BIaKSaCnOZx8hAMDZJKUdF17274/xVl0AAOBmaBACwDWj+H2EnemT\nRjs6DAAAqrlt1UYlt1bZRwgAcE7JGafsruGtugAAwM3QIASAa0lhj9DS0rJrwghHhwEAQDVK\nbq0K0bWPsOCTDxwcBwCAK6PwrbpcxwEAALdBgxAArjGFPULJauX5UwCAO0nOzFL4PsKz7/2J\nNzkBAJyNd2CQ3TVcxwEAALdBgxAArr3kzCydgpPWOKMGAOBmktKO973zbiUrs99+jSIIAHAq\nph0HFe4jTEsapUIeAAAAh6JBCAAOkaTspDV6hAAANzP813+InvagkpWSJHZNGO7oPAAAXBEl\nPUJrZ8fuqWNUCAMAAOA4NAgBwFGUnjVKjxAA4F6GvPTriNsTlayUrNLe+5MdnQcAgCui5KzR\nzsaG7xbMVCEMAACAg9AgBAAHSs7M8vYPsLuMLRQAADcz8o/vDn7ql0pWtp0rS0++ydF5AABQ\nzrTjoD4o2O6yptzsA4/MUCEPAACAI9AgBADHMn17WMkyySqljh+2f+5UR+cBAEAdMQ8vumP9\ndiUrLR3taYk3OjoPAADKTdj+vZJ9hM15Z0+8/JwKeQAAAK45GoQA4HDJmVlCp7O/ThKtxfkO\nTwMAgFoComMUHrhtNXemjh+WOc3o6EgAAChk2nFQeNm/b1aZmVr42ccq5AEAALi2aBACgBqS\nd5/29vOzu4z3EQIA3E/c/MWK1kmio6H22C+edHAcAACUSs44pWRZ9tuv1R793tFhAAAAri0a\nhACgEtPOoz4hPewuo0cIAHAz8YuXJmdmeel97C+VRM33mY5PBACAUgq3wh99YaGDgwAAAFxj\nNAgBQD3jvzoQHBtvd5kkie8WzFQhDwAAqklMO+7tH2B3mSSJtMQbVMgDAIBCSnqEkiRSxw1j\nHyEAAHAhNAgBQFW3r9saMmio3WVNudmp44adefNVFSIBAKAO07eHlbyU12o286AMAMCpJGdm\nRU970O4y9hECAAAXQoMQANR22+q/6bwV/fNbsjnF0WEAAFDTHSlfK1kmPyhz4uXnHJ0HAACF\nhrz0a7trJEnsGj9chTAAAABXjwYhAGggKf3U8Jdfs7tMkkTq+GEFn3ygQiQAAFQQEB2TnJml\n8EGZyszUws8+dnQkAAAUipu/2O4aSZLSkm5UIQwAAMBVokEIANroO2VG9Kw59tdJIu+j5Y6P\nAwCAehQ+KCOEyP/or44OAwCAQvGLl3oHBtldZu3s3DVhhAp5AAAArgYNQgDQzJBl/x1y3TC7\nyyztrWwiBAC4mb5TZsQ99ITdZZ2NDQcemaFCHgAAlDDtOCi87N9Mk6zWPTPHq5AHAACg22gQ\nAoCWblu10c/Qx84iSZx9709pSaNUSQQAgErin3nR2z/A7rK20mIVwgAAoFByximd3sfusvaa\nKl6mCwAAnBkNQgDQWMLmNL9wez1CIaydHWmJN6iQBwAA1Zi+PWz3QRlLe1vquGHfLZipTiQA\nAOxKSjuu0+vtLqvMTD28ZJ4KeQAAALqBBiEAaC9hU5qSLRRWszl13LDao9+rEAkAAHUofFCm\nKTf7zJuvqpAHAAAlktJOKFlWd+II+wgBAIBzokEIAE7B9O3hm9/8UMnKmoP7HB0GAAA1JWxK\n8w4MsruseFMKT8kAAJxHcmaWkvcRVmam7pt9lwp5AAAArog2DcJLbeVkAAAgAElEQVS6urql\nS5fGxcX5+vr269fv8ccfLysru/xHCgoKHnvssaioKF9f39jY2GXLljU2Nl7ldwKAU+k1eoyS\nHmH+2hXcHnV11EEAuIBpx0Ely448v5Ai6AaogwDcRnLGKaHT2V3WWlay974kFfLAJVAHAQBO\nQidJksr/lR0dHWPHjj1y5Mh9991388035+TkrF27Njo6+vDhw7169broR/Ly8m677bbq6ur7\n779/5MiR+/bt2759+5gxY3bv3u3j49O97xRCGAyG6upqs9ns7e3tqP+1AHCFUscNU7Is+t65\nQ178L0eHgSNQBwHgUpQUQX1g0ARl3UQ4J+ogAPeTOn64sHt7TSd63zZu1B/fVyURnBd1EADg\nRCTV/elPfxJC/P73v7fNfPrpp0KIZcuWXeojc+bMEUKsXLnSNvPCCy8IId59991uf6ckSb17\n9xZCmM3m7v+PAQAH2JkwVMlPzZHvtE6K7qAOAsBl2K+A44drnRFXhToIwC0puogbNzR/3Ur7\n3wW3Rh0EADgPDXYQ3nTTTTk5OZWVlX5+frbJwYMHNzQ0lJeX6y52MkNoaGhwcHBxcbHtr3V1\ndf369bvxxhv379/fve8UPCkDwIkp2UIRPPj62z/cpEIYXFvUQQC4DCUVUOfldcP/vWMwmhwf\nB9cedRCAWzr09Nz6U8fsr2MfocejDgIAnIfa7yBsa2s7efLkbbfddn7FEkIkJCRUVFTk5eX9\n/CPNzc0NDQ2DBg06v5717Nlz8ODBR44csVgs3fhOAHByyZlZdtc0Zf+Yv3aFCmFwDVEHAeDy\nQkeMsrtGslqP/+qZg089pEIeXFvUQQDuavTylLj5i+2vk0T1d5m8T9djUQcBAE5F7QZhUVGR\nxWLp37//BfOxsbFCiNzc3J9/JCAgQK/XV1VVXTAfGBjY0dFRVlbWje8EABfgZf+f6JwVfz72\n70+rkAXXCnUQAC5v9PIU78AgJSsbfzxdtTfdwXFwjVEHAbix+MVLlTzoKYQ48vzCM2++6ug8\ncELUQQCAU9Gr/N/X2NgohAgKuvCaPzg42PbXC3h5eY0dO3bPnj0nT54cOXKkPHnmzJnDhw8L\nIZqamlpaWpR/56JFi5qbm88PAwDOKTnjlJJj1lryz55/e5Tz1pwcdRAA7DLtOCgUnDUqWczH\nf/VM77ETRr2+XJVcuAaogwDcXnJmlpLruOJNKQFRMTGzH1EhEpwHdRAA4FTUbhDKfn74tfwq\nxEsdiv3KK68kJSXNmDHjzTffHDp06LFjx15++eWYmJicnBw/Pz+5ECr8zi1bttTV1V2r/yEA\n4FBKri1by0pO/MeSG373rjqRcE1QBwHALr/wPu2V5+wuszQ1yA/K8IiMC6EOAnBvN7/54ZEX\nH7W7LPvt14o+/cj4t10qRIJToQ4CAJyE2g3CHj16iIs9otLQ0CCECAkJueinEhMT33777Zde\neumee+4RQgQHB//mN785dOhQTk5Or169LBaL8u/cvHmz2WyWf7/vvvvkNQDgtHR6H8ncefk1\nkpDOvPHKkGW/FkJU7U3nDqkzow4CgEIJm9JqDx2we4O17uTRhv98fuRv36JN6BKogwA8Qa/R\nY+5Yv33fQ5PtrmyrKC/87GP2EXoO6iAAwKmo3SCMiYnR6/UFBQUXzOfk5AghBg8efKkPPvvs\nswsWLDhy5IiXl9eoUaNCQkJuueWWyMjInj17BgYGKv9Ok8lk+93Hx+fq/tcAgMMlpR3PmHKb\nuanpcosk0VZ57vh/PCOE8PbxNaUeUykcrhx1EACU6zV6jJJlVov51H+/OOJ/33R0Hlw96iAA\nDxEQHaPwrNHsd16r+X7vqD++r0IqaI46CABwKjp5v7maxowZc/LkycrKysDAQHnGarX279/f\n29u7sLDwUp+yWCze3t62YWFhYVxc3Pz589esWdPt7zQYDNXV1Waz+fxvBgBnk7Piz/lrVyhc\nrPPW3/Dbt9g/4cyogwBwRVLHDxcKrll0OnHD7/5KBXR+1EEAHkVJj1CnE0m7s1QIA2dAHQQA\nOA8v9f8rH3vssZaWlj/84Q+2mRUrVpSWlj7++OPysK2t7dixY/JzLrKXXnopICDg4MGD8tBq\ntb744ouSJD399NMKvxMAXFf84qXJmVnJmYquGCWrOW/1u/Ixa3BO1EEAuCLJu0+LS7yS53yS\nJLJe/39UQOdHHQTgUUJHjLK7RpLErvH2+4hwD9RBAIDz0GAHocViSUxMzMzMnDlz5s033/zD\nDz98+umnI0aMOHDggPycy6lTp0aOHJmcnLxz5075IydOnBg7dqyvr++CBQvCwsK2bt166NCh\nX/7yl6+//rrC77wonpQB4FrSJ95qaW22u8w7MHDEf/+RLRROizoIAN2gZAeGEMJL7zPy1b8I\nXkboxKiDADxN+qRbLS32r+OEEDovr6SMU47OA21RBwEAzkODBqEQoqmp6ZVXXvn8889LS0sj\nIiJmzZr1v//7v2FhYfJff14IhRAHDhz4n//5n4MHD7a0tAwbNuzZZ59dtGiR8u+8KAohAJej\n9Paoj8/I3/yFe6NOizoIAN2Qlnij1dxpd1mP4TcOmP8kRdCZUQcBeCCFl3KB/ePGpnzl6DDQ\nFnUQAOAktGkQOgkKIQCX01pcuO+hycrX97zh5lveXee4PHBp1EEALkfh3dXeYydEz3yQHiEu\njzoIQGUKq9jg534VM/sRR4cBqIMAAA3eQQgA6LaA6BiFLyMUOiF0wie0V9Xe9PN/HJsPAABH\nuvG1vypZVr0/4/Rvf+XoMAAAXJGb3/xQybKz77zm6CQAAACCBiEAuKIbX/tr7AML7SyShJBE\nZWZq5Z5damQCAMDxDEaTogdldCIgMoqHYwAATqXX6DGDn/ql3WWSJHYl3ahCHgAA4OE4YpSt\n9ABc1XdzpjeV5FzyzzohhNAHBcc8uChk8NCLLuHsNQ9HHQTgoqr2pp/+zb+bm5vsrgyMix/8\n1DJBycPFUAcBaEXhWaPBAwffvuYLR4eBx6IOAgDYQQgArur2DVvDbx13yT9LQkjC3NSUu+rt\nvLXvq5gLAADHMhhNYbcZ7SzSCaETQf3j1AgEAMCVUPjaiKbc7DNvvuroMAAAwGPRIAQAF9bv\nvocu+TfdP38udXuUU9cAAC5q5P++aed9hP961DbHjQIAnEpyZpZOwbatks0pKoQBAACeSa91\nAABA9xmMJtvt0ar0nSXbN3X9QRKRk2dFmCZqlgwA8P/Zu/P4qOp7b+C/ISthl4ACArIIymYN\nVtuigmL7oLUvF9yxotaqV2xrX231ts/16b1drdrqrRd9ql21j4jaurXaBcUNFBUQAVERERTB\nGNawBLLM88dpxzQJIUAyk5nzfr982XN+c+bMNzPzy6fmexbaWOm4CR2Kiup27mz64X9earv4\nwD7prAoAWujEpxfv8VqjyWR49pRPHf/4i+kpCQCIFWcQAuSKRKL+Wvnsv7TkSXt7LoXTLwBo\nP0b/1y27fWw3l9qWYgC0Hy251mjN1i1pqAQAiCENQoDsVjpuwj8Wxk/sOuiw1HhtVVUymcxM\nTQCQFqkQbEILLrUNABl3yBcvb36DZDI8edyIZz//6fTUAwDEh0uMAmS91J9H1z70wJaVb6TG\nqzesL+xZusenV8x5urk/sAJAOzbxudejkwIrnnlyzRN/+MdoMuQVdRxyxdc79j248VNSJxGK\nPwAybsjl16z9yyM7P/qw+c2qt2x++qSyCbMWpKcqACAOnEEIkDtG3zy99/GfDf88b3D9vOcy\nWg4ApEPpuAmNW321VTs2LpiXiXIAYO8c+8fZezyPMIRQu7Nq7jmfTUM9AEBMaBAC5JSSAYNS\ny3XVu1r4rOjOgm7LBED2Kh0/sduQEfVHkrU1zT9F8AHQTgy5/JqW3I9wx9o1q++/Ow31AABx\noEEIkFO6jfpEIv8fl4/e+s7yZE11ZusBgPQoHTehqPTA+iObly6qrdqRqXoAYG/lFXfc4zZv\n335zGioBAOJAgxAg5yQS0f9Wrftg64rle/VU51IAkL1G3zz9iBtu71BQFK1Wb960beXbzT9F\n8AHQfkz4+/w9bpOsrVn2k/8jvwCA/Zef6QIAaGWdhwyrfGNptFz14Qf5nTvXfzSRl1fUu0+i\ngwNEAMhN3Y84asPLc6LlyjeWVm/Z3KGoqOtho1pyWgYAZFZRrwN3fvRh89t88KcHt65cHkJo\nfAteAICW0yAEyDUHTvhcqkH4wZ//2HiDkoMHDv23b6SuRNqAY1EByGoHjD0m1SCsePHZaKG4\n90HDrvnfiby8zNUFAHt27B9nP3nciD1utmXpoiX/5+ujvneLHiEAsM+cQQKQU0rHTQgd9vDX\nz+3vr9q+ZnV66gGANGvyCJiq8nW7NlQ0uX3FnKcdHANA+zHxuddTt41oRu2una99e5oIAwD2\nmQYhQK7p2Ofgwu49mt9m+6p3Kpe/sW3l28mamvRUBQDp0bHfgJKBgxuP12zflv5iAGAfTHx2\naUt6hMlkcvntNznSBQDYN4lkMpnpGjKmtLR0/fr1NTU1ea41BOSQijlP12zbtm3l8lBXV398\n+5rV5U//rcHGJf0HDp32rURi744XcR2b3CAHgdwT/YU0mUzuLF+XrKnevHTRh08+ET1U2L3H\nYd/6r91dYTsi4GJFDgLtXEuuNRoSoaCk84jrb4zWBBktJwcBcAYhQA7K79Sp26hPdBtTVv+f\nzoOHNd5y+3urdn5Unv4KAaAtRH8YTSQSxQf26dhvQHHvg1IP7dq0sXrzpoxVBgB7aeJzr+95\no2So3r71zZ/+V9uXAwDkGg1CgFyzu4NGSwYOavrSo7W1bVoPAGRK18NHd+zXP7W69q+PrHns\ngW2rV+5ue5doA6B9acGFRkMyVH304WvfvqrtqwEAcooGIUBc5BV3HPb164dc/rXBl3219/jP\npsYrXnwmg1UBQNvpUFR8wNHjUqubFs2veH72il/cWlO5Zd926D5PAKTTxGeXhg4t+ttdMhle\nv/F6IQUAtFxzd+AAIMfkFRd3HjI8hFC7rTI1uGXp4nBG5moCgLaUX9yxwUiyprrqo3Wdu3Rt\ncvvd/WnVXZ0AyIiJzywJLbsfYfWG9Yv/42ujf/DfMgsAaAlnEALEUedDDy/o1j1aTta5xCgA\nuaN03IT6fxjtNvKIroePTuTl/ctGyWSaqwKA/THxudc75BfscbO6muqV9/wiDfUAADlAgxAg\nB+3xiNH8Tp2jUwlDCLU7d1Rv2dzmNQFAJiQKCgdd/G9jfnTboIuvTA1Wrf0ggyUBwD448LjP\ntWSzLUsXvXrtv7V1MQBADtAgBIipDvn/uMp0sqZ2+3vvZrQWAGhzeZ26pJZ3ri/f26e7+yAA\nmTXiezf1+uRxLdly/QvPPH/68W1dDwCQ7TQIAWKq64jRqeWdH32YwUoAIA06DRiUyP/HhUY3\nLZr/1s9vWPGLWza9Nj+zVQFAy/WdfP4RN9y+5+0SobBnr7YvBwDIbhqEADGV17FTanntEw9v\nXroog8UAQOvazdW2E9H/1GzbumPN6q3vLF99329rtlWmsS4A2HfRfXaPuOH2/E6dm9suGSrf\nWvbkcSNe+OIXnP4OAOyOBiFAbtrjbQg7FBbVX922akUbVgMA7UBBt+4NRpK1tTVbtmSkGADY\nN6XjJhxw9Lg9bJQIIRE69T8kHQUBANkpP9MFAJAZHfv06zambPNrC6LVbe8sX/vEwx0KC3se\nfWx+l66ZrQ0A2sKA8y758G+P1WzfXrt9266N66PBnes/Ku7TL7OFAcBeGf29WyrmPL3o36/a\n7RbJEEL46LknC7r1qD+8xwNJAYD4cAYhQFwlEodc8KXU2vb3VpU//bd1f/vTyt/dkcGiAKDt\ndBowaPBlXx321X8/8LOfTw2u+9tjGSwJAPZN6bgJHYqKdvtwIoREyO/cufjAPmksCgDIJs4g\nBIixRCKvuLi2qqr+2I4172WqHABoRamTJBrffqmoZ6/Ucs1W9yAEICuN/q9bdnsSYTKEEGq2\nbn3nV7d1HXnEoC9eEQ3Xz0RnEwJAzGkQAuSsJv97r8EfSfuccubax//YoEcYeX/mr9a/Or/B\nYCKRGPOj6a1WIgBkQqdDhnQdMXrL64tDCMna2mSyLpFwbRUAskxzHb7Ex4vuRAgANEmDECDW\neh5zbM9jjg0hrHnsgYrnZ4cQknV1m5cu6jbyiNpt1dFhp/UlG40AQDbKKy6JFmqrdmxdsbzL\n0OGZrQcA9sHE516PjgGteObJNU/84R+jydB7wv/qM+m05p9bMedpJxECQJw5ThaAEELIL+mU\nWt5ZvjaDlQBAGnTs0y+1XL15U7KmOoPFAMA+Kx03oXGf76Pnn3J0JwDQPA1CAEIIoUfZManl\nja++8u7/++X2Naub2jDpXk0AZJcmT48oGTAotfze/b9bfP3Xy2f/NX01AUCrKh0/sduQw1Or\nyerqlrQHG9+mFwCIDw1CgHiJDi9tfJBph8Li1HLVug82v7Zg19ZNTTw/GT7404NtXCMAtL1E\nov5asq5u3aw/J51sAUB2Kh03oaj0oPojVWvXZKoYACAraBACEEIIeUVFHQoLQiL8yz+NJcLG\nV19+8rgR0T9zz/lsugsFgNZQfGCfvI4l9UeSNTXVmzdmqh4A2E+jb57ee/znUjeS37hgXkbL\nAQDaOw1CAEIIIZGf3//si1q26cf/dBk2oo3rAoA2kVfc8dCrr+37+TM7DxmWGlz24/9Y+5dH\nMlgVAOyPzocenjrQM1lb05KnuMooAMRWfqYLAKC96D5mbPcxY1Orq379fze99VrDjZKh5OCB\nn57xRForA4D9k7qwdv0/gxaV9u51/Ek127dtXfFWarBizuw+k05Lb3UA0Dq6DB2eyMtP1tSE\nELYsW3LQ/zotr7h4j88CAOJJgxAgvkrHTXC4KAAx12XY4R898/dkXV20Gv1RNYTw/sxfrX91\nfmqzRAhjfnx7BuoDgL2R6NAhusjoro3rt737dtfDRu3xKRVznm5wi3oAIA5cYhQAAIivzoOH\nHfqVf+9y6GHRajJZV1W+LoRQu606JEPqn2Sy2b0AQPvQfXRZannrO29tfm3BlmWL63btymBJ\nAED75AxCAAAg1jr2Pbi4z8GVy98IIYRk2PLG4uLeB2W6KADYFwd88jMb5r8YLX/0zKyPQggh\nFPfpN+yr30502O15AtGlZZxHCACxokEIQNMGXnrlwHqrb9/x023vrshYNQDQGnZ3ee2uh4/6\n6NlZ0fKO99/b/NqCmspNDbZJJusSCZdgAaD9Kh03Yft77zYer1q7ZteGiqLS3mmvCABov/z3\nLUCsOUQUAEIIxQf2Sy1vWvTKu//vl1s/WP0vWyTDmofuS3dZALCXOvY5uGPf/o3HN7368vp5\nz2945YXqzQ2PgElxi3oAiBVnEAIAAHHXoSA/hBASu98iEda/9Pz6l56P1gq6djv+zy+kozIA\n2BuJ/PxDp32rqnxtSCY3L1304ZNPROPr/v7naCG/S5fDvvmfecUdM1cjANAuaBACAABx16Gw\nqEfZMRsXzGu+R5jS6ZAhbV8UAOyLRH5+dBJhVfm6xo/WVFZWrX2/06BDm3zu7k4ijK4941aF\nAJBLNAgBAIAYSf1Zs8HfQAecO/XAEyfV7doZra595MHK1W9//HAy5HfuOvI/bgj+MApAO1b/\nbrtdDxtV3Pugxm3CjQte2rZqZSIvr9uoIwt7HJDuEgGA9kGDECDu6v8HJADEWVGvA1PLecUl\nGawEAPZfXseSYV//j+pNG0IIW1e8+d6D/y8aX//SnGjho2dmHX7dfyUKCjNWIgCQOR0yXQAA\nAEC7lwg127a89p1pma4DAPZCokOHwgNKo38aP1pduXnn+oqW7KdiztOOKwWAHKNBCAAAxNFe\nXyk0GZJ1bVIJALS1TocM7XLoYY3H62qq018MANAeuMQoALu9GxMAxNbAS68cGEIIYfV9v9m4\n8OWQyHA9ANBCTd5FIpGXN/iyr9ZWVYVk3cZXX1nz8H3R+Lq/PTb40qvTXSIA0A5oEAIAALRQ\nMtMFAMC+yysuDiEUdOmaGtmxZnXmygEAMsklRgEAAFpq85JXM10CAOyXroeNKu7T7x8rDn0B\ngLhyBiEAABBTTV6ELbLo36/6eKXe9UXf/f2d7/7+zmi5Y59+n7n/721XHgC0hUR+fsc+B1et\nXRNCqN2xrap8bXHvPpkuCgBIN2cQAvCx1M0IAYAQQkiEhncfTHz8T5dhIzJTFQA0a4//ZZdX\nUhItJOuSO8s/bPOCAID2xxmEAAAADR1xw+2p5bdvuWHbh6tDCCEZSg4e+OkZT2SsLABoDd1G\njKl4fna0vOX1xV0PH53Iy8tsSQBAmjmDEAAAoDl5HUsyXQIAtKZE3sfnDGyY/8L6l+ZksBgA\nICM0CAFosUQIibB9zaqnjh+Z6VIAoHWUjpvgCtsAxE1Bl271r6G9a0NF5moBADLDJUYB+Be7\n+yPpqnt/+Y+lZEiGZNrqAQAAYG+l/suuYs7TjR8t7Fna79Sz1jz2YLS6eemrXQ8f1XnwsHRV\nBwBknjMIAQAAmjPoyq92GjjE4TEA5JLScSeklnetr1h1768yWAwAkH4ahAAAQNy50CgAsZNI\nFHbvkVqrqaxM1tRksBwAIM00CAEAAAAgdgZc8KXi3gelVpdPv6nyzdczWA8AkE7uQQhAc548\nbsQex4t6lh778LPpqggAAICWqn+KfIP7EXYaOLjryCOqytdFqzs+eO+9B+8Z8b9/nMbqAICM\n0SAEoDmJ/IJkTXVIhBDCv9x7KfHxYuchw9NbFAAAAK2gqGev+qs1Wyujhfdn/mr9q/NT44kQ\nxvz49rRWBgC0MQ1CAJpz4uxFqeUVt9/y7oy7ouWJz7ryDAC5pnTchAanVgBAbutx1Kdqtm7Z\n8MqLOyvKQwghJOt2VnUoKq7dVl3/CNHkbp4OAGQv9yAEAAAAgDhKJDr0PmFSl8NGRqvJuuSG\nhS9ltiQAID2cQQgAAAAAuW939yPseFDf1HLd9u1prAgAyBhnEAIAAABAfHUd8YnU8tq/Prro\nuqs2vflag202vTY/AAA5xBmEALTUkKu+3u2II8O/HnYKALlkdxn39h0/TW8hAJBGiXr/3o1V\n9/5q1b2/ipYLunY7/s8vtHlVAEBbcgYhAAAAAMRXfseSwtJeIdnsRomP/+l0yJA0VQYAtBln\nEAIAAABAvJSOm/DxbQgTiSGXX7PxlRfqdu2KBipfe3XHxvKPt06G/M5dR/7HDcEVZQAgV2gQ\nAgAAAECsFXbrceDEU1Kru9au+5cGIQCQc1xiFAAAAAAAAGJEgxAAAAAA2L1EqNm25bXvTMt0\nHQBAq3GJUQAAAACInX+5DeG/GnjplQNDCCGsvu83Gxe+HBIhJEMymcbiAIA25gxCAACAFkiE\nkAjb16x66viRmS4FAAAA9osGIQAAQAsk//HvpBMoAIipZPXmTZmuAQBoHRqEAAAAABBHpeMm\n7MXWybDmTw+2VSkAQHq5ByEAAAAA8LFF/37VxyuJjxc2L17w5HEjorWOffp95v6/p7syAKCV\naBACAAAAAI1ErcFko5EQQghdho1IbzUAQGvSIAQAAGha6iSJEP7lT6L1x4t6lh778LNpLAoA\n2twRN9yeWl75f3++5d03QgghGUoOHvjpGU9krCwAoPW4ByEAAEDTEvkFIYSQ+Jfu4McjiRAS\nofOQ4ZkoDQBax97dhhAAyBXOIAQAAGjaibMXRQsVc57+8PFH1j3712h14rOvZ64oAAAA2F/O\nIAQAANiD0nETivsNyHQVAAAA0Do0CAEAAACApg268qudBg4JyUzXAQC0Kg1CAAAAAIiv0nET\n3IkQAOLGPQgBAAD2bMhVX+92xJEhBH9CBQAAINs5gxAAAAAAAABiRIMQAAAAAOLOKfIAECsa\nhAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECP5mS4AAAAAAMi83d2G8O07fpreQgCANucM\nQgAAAAAAAIgRDUIAAAAAAACIEQ1CAAAAAAAAiBENQgAAAAAAAIgRDUIAAAAAAACIEQ1CAAAA\nAAAAiBENQgAAAACgWYkQEmH7mlVPHT8y06UAAK1AgxAAAAAAaFbyH/9OJpMZrgQAaA0ahAAA\nAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECP5mS4AAAAAAGh3njxuxMcriabHi3qWHvvws2ks\nCgBoHc4gBAAAAAAaSuQXhBBC4l+6gx+PJEJIhM5DhmeiNABgfzmDEAAAAABo6MTZi6KFijlP\nf/j4I+ue/Wu0OvHZ1zNXFADQOpxBCAAAAADsVum4CcX9BmS6CgCgNWkQAgAAAAAAQIxoEAIA\nAAAAAECMuAchAAAAANCcIVd9vdsRR4YQSsdNyHQtAEArcAYhAAAAAAAAxIgGIQAAAAAAAMSI\nBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADESH6mCwAgm5SOm5DpEgAA\nAAAA2C/OIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACA\nGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAE\nAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAA\nAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjRIAQAAAAAAIAY0SAEAAAAAACAGNEgBAAAAAAAgBjJ\nz3QBAAAA2aF03IRMlwAAAACtwBmEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAA\nAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQ\nIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAkSE2wAACAASURBVAAAAAAAECMa\nhAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAA\nAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAj+ZkuAAAAAABo\n70rHTch0CQBAq3EGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEA\nAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAA\nAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxEhm\nGoSbNm265pprDjnkkMLCwr59+1522WVr165t/ilvvPHGF7/4xT59+hQUFPTq1euMM8546aWX\nUo/+9re/TTTlBz/4QRv/KACw1+QgAHEmBwGIMzkIQDuRn/6X3LVr18SJExcsWDB58uSysrIV\nK1bcfffdTz311Pz583v06NHkU5YuXfrpT3+6oKDg6quvHjp06KpVq6ZPnz5u3Li//vWvJ554\nYghh06ZNIYTzzz9/wIAB9Z84bty4NPxEANBychCAOJODAMSZHASgHUmm3c9+9rMQwk9+8pPU\nyMyZM0MI3/jGN3b3lAsuuCCE8NRTT6VGFi1aFEKYMGFCtPrd7343hPDyyy/vVSU9e/YMIdTU\n1OzlTwAA+04OAhBnchCAOJODALQfGbjE6N13392lS5evfe1rqZFzzjln6NCh99xzTzKZbPIp\nK1asCCEce+yxqZExY8Z07dr13XffjVajI2W6d+/edmUDQKuQgwDEmRwEIM7kIADtR7obhFVV\nVYsXLz766KOLiorqjx977LHl5eUrV65s8lmHHXZYCOHNN99MjVRUVGzduvXwww+PVlNBWFtb\n+/7771dUVLTVDwAA+0EOAhBnchCAOJODALQr6W4Qvvfee7W1tf37928wPnDgwBDCO++80+Sz\nrrvuuh49elx44YXPP//8unXrFi5ceN555xUXF0dn0IcQNm/eHEK49dZbe/Xq1b9//169eg0f\nPvzee+9tyx8FAPaaHAQgzuQgAHEmBwFoV/LT/HqVlZUhhE6dOjUY79y5c+rRxg4//PAXXnjh\nzDPPPO6446KRAQMGzJo165hjjolWoyNlZsyYce211/br12/ZsmXTp0+fMmVKZWXlFVdcUX9X\ngwYNilIz9SwASBs5CECcyUEA4kwOAtCupLtBGEkkEg1GoqtsNx6PLFu27POf/3xNTc1Pf/rT\nYcOGlZeX/+xnPzv55JMffPDBk046KYRw/fXXX3311ZMmTUpF7IUXXlhWVvad73znkksuKSws\nTO1q06ZN8g+AzJKDAMSZHAQgzuQgAO1EuhuEXbt2DU0dEbNly5YQQpcuXZp81qWXXvrhhx++\n9dZb/fr1i0bOO++8YcOGXXzxxStXriwoKDjxxBMbPGXEiBGnnHLKQw89tGjRok9+8pOp8Y0b\nN6aWS0tL169fv98/EwC0lBwEIM7kIABxJgcBaFfSfQ/CAQMG5Ofnr1q1qsH4ihUrQgiHHnpo\n46ds3bp13rx5xxxzTCoFQwglJSUTJ05cs2bNW2+9tbvX6t27d/T01ikdAPabHAQgzuQgAHEm\nBwFoV9LdICwsLBw7duxLL720ffv21GBdXd0zzzzTv3//AQMGNH7Kjh07kslkVVVVg/FopKqq\nauvWrXfccceMGTMabLB06dLwz9v8AkB7IAcBiDM5CECcyUEA2pV0NwhDCF/60pe2b99+0003\npUbuvPPODz744LLLLotWq6qqXn311ejYmRBCr169Bg0a9Morr9Q/KGbTpk2zZs3q2rXrqFGj\nSkpKfvjDH15++eVvvPFGaoNHHnnk+eefP/LIIwcPHpyWHwsAWkQOAhBnchCAOJODALQfiegu\nuOlUW1t7wgknPPfcc6eddlpZWdmyZctmzpw5atSoF198saSkJISwZMmS0aNHT5w4cdasWdFT\nHnroobPOOqtHjx5XXnnlkCFD1q5d+8tf/nLlypXTp0+/6qqrQgiPPvro6aefXlJSct555/Xt\n23fJkiUPP/xwly5dZs+eXVZWtrtKomtt19TU5OXlpednBwA5CECcyUEA4kwOAtCOJDOhsrLy\nm9/85sCBAwsKCvr16zdt2rT169enHl28eHEIYeLEifWfMnfu3NNPP71Xr175+fk9evQ46aST\n/vznPzfY4OSTT+7evXt+fn7fvn0vuuii5cuXN19Gz549Qwg1NTWt+KMBwB7JQQDiTA4CEGdy\nEIB2IgNnELYfjpQBIM7kIABxJgcBiDM5CEAG7kEIAAAAAAAAZIoGIQAAAAAAAMSIBiEAAAAA\nAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSI\nBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAA\nAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAAxIgGIQAAAAAAAMSIBiEAAAAAAADEiAYhAAAAAAAA\nxIgGIQAAAAAAAMRIfqYLyLxhw4ZlugQA2tCSJUs6duyY6SraLzkIkNvkYPPkIEBuk4PNk4MA\nua35HEwkk8l0VtOubNq0qV+/ftu3b890IQC0oW3btpWUlGS6ivZIDgLEgRzcHTkIEAdycHfk\nIEAcNJ+DsW4QhhA2bdrUuu/Af/7nf/785z+/5ZZbpk6d2oq7JT3efffdsrKyI444Yvbs2Zmu\nhX0xefLk2bNnz5o1q6ysLNO1sNcee+yxqVOnTpky5bbbbmvdPXfv3j2RSLTuPnOGHKQ+OZjt\n5GBWk4MZIQepTw5mOzmY1eRgRshB6pOD2U4OZrVM5WDcLzHavXv31t1hcXFxCKGkpKRHjx6t\nu2fSYOPGjSGEvLw8H1+WKigoCCF06dLFJ5iNOnfuHEIoKiry8aWTHKQ+OZjt5GBWk4MZIQep\nTw5mOzmY1eRgRshB6pOD2U4OZrVM5WCHdL4YAAAAAAAAkFkahAAAAAAAABAjcb8HYavbsWNH\nVVVVSUlJUVFRpmthr9XV1W3evDkvL69r166ZroV9sXXr1urq6i5duuTnx/36ydmourp669at\nRUVFbiCf1eRgVpOD2U4OZjU5mBvkYFaTg9lODmY1OZgb5GBWk4PZTg5mtUzloAYhAAAAAAAA\nxIhLjAIAAAAAAECMaBACAAAAAABAjGgQtppNmzZdc801hxxySGFhYd++fS+77LK1a9dmuiha\n5Le//W2iKT/4wQ8yXRq7VV1d/e1vfzsvL++oo45q/Kj52P418wmaklnKvMteJl02koPZTg7m\nHvMue5l02UgOZjs5mHvMu+xl0mUjOZjt2k8Oul9l69i1a9fEiRMXLFgwefLksrKyFStW3H33\n3U899dT8+fN79OiR6erYg02bNoUQzj///AEDBtQfHzduXIYqYg+WLVt24YUXLl++vMlHzcf2\nr/lP0JTMRuZdVjPpso4czHZyMPeYd1nNpMs6cjDbycHcY95lNZMu68jBbNe+cjBJa/jZz34W\nQvjJT36SGpk5c2YI4Rvf+EYGq6KFvvvd74YQXn755UwXQots3ry5Y8eORx111PLly4uKisaO\nHdtgA/OxndvjJ2hKZiPzLquZdNlFDmY7OZiTzLusZtJlFzmY7eRgTjLvsppJl13kYLZrbzno\nEqOt4+677+7SpcvXvva11Mg555wzdOjQe+65J5lMZrAwWiJqy3fv3j3ThdAiNTU1V1111dy5\nc4cOHdrkBuZjO7fHT9CUzEbmXVYz6bKLHMx2cjAnmXdZzaTLLnIw28nBnGTeZTWTLrvIwWzX\n3nJQg7AVVFVVLV68+Oijjy4qKqo/fuyxx5aXl69cuTJThdFCqVlXW1v7/vvvV1RUZLoimnPA\nAQfcfPPNBQUFTT5qPrZ/zX+CwZTMQuZdtjPpsosczHZyMPeYd9nOpMsucjDbycHcY95lO5Mu\nu8jBbNfeclCDsBW89957tbW1/fv3bzA+cODAEMI777yTiaLYC5s3bw4h3Hrrrb169erfv3+v\nXr2GDx9+7733Zrou9oX5mANMyaxj3mU7ky6XmI85wJTMOuZdtjPpcon5mANMyaxj3mU7ky6X\nmI85IM1TMr+N9hsrlZWVIYROnTo1GO/cuXPqUdqzqC0/Y8aMa6+9tl+/fsuWLZs+ffqUKVMq\nKyuvuOKKTFfH3jEfc4ApmXXMu2xn0uUS8zEHmJJZx7zLdiZdLjEfc4ApmXXMu2xn0uUS8zEH\npHlKahC2mkQi0WAkuqpv43Ham+uvv/7qq6+eNGlS6rfnhRdeWFZW9p3vfOeSSy4pLCzMbHns\nA/Mxq5mSWcq8y14mXe4xH7OaKZmlzLvsZdLlHvMxq5mSWcq8y14mXe4xH7NamqekS4y2gq5d\nu4amOvBbtmwJIXTp0iUDNbE3TjzxxMmTJ9c/tmLEiBGnnHLKhg0bFi1alMHC2AfmYw4wJbOO\neZftTLpcYj7mAFMy65h32c6kyyXmYw4wJbOOeZftTLpcYj7mgDRPSQ3CVjBgwID8/PxVq1Y1\nGF+xYkUI4dBDD81EUeyv3r17hxC2bt2a6ULYO+ZjrjIl2zPzLieZdFnKfMxVpmR7Zt7lJJMu\nS5mPucqUbM/Mu5xk0mUp8zFXtd2U1CBsBYWFhWPHjn3ppZe2b9+eGqyrq3vmmWf69+8/YMCA\nDNbGHm3duvWOO+6YMWNGg/GlS5eGf97BlSxiPmY7UzIbmXdZzaTLMeZjtjMls5F5l9VMuhxj\nPmY7UzIbmXdZzaTLMeZjtkv/lNQgbB1f+tKXtm/fftNNN6VG7rzzzg8++OCyyy7LYFW0RElJ\nyQ9/+MPLL7/8jTfeSA0+8sgjzz///JFHHjl48OAM1sa+MR+zmimZpcy77GXS5R7zMauZklnK\nvMteJl3uMR+zmimZpcy77GXS5R7zMaulf0omohtUsp9qa2tPOOGE55577rTTTisrK1u2bNnM\nmTNHjRr14osvlpSUZLo69uDRRx89/fTTS0pKzjvvvL59+y5ZsuThhx/u0qXL7Nmzy8rKMl0d\nDT3zzDNPPPFEtHzzzTf36tVr6tSp0eq3vvWtnj17mo/t3B4/QVMyG5l3Wc2kyy5yMNvJwZxk\n3mU1ky67yMFsJwdzknmX1Uy67CIHs127y8EkraSysvKb3/zmwIEDCwoK+vXrN23atPXr12e6\nKFpq7ty5J598cvfu3fPz8/v27XvRRRctX74800XRtB//+Me7+4WW+tTMx/asJZ+gKZmNzLus\nZtJlETmY7eRgrjLvsppJl0XkYLaTg7nKvMtqJl0WkYPZrr3loDMIAQAAAAAAIEbcgxAAAAAA\nAABiRIMQAAAAAAAAYkSDEAAAAAAAAGJEgxAAAAAAAABiRIMQAAAAAAAAYkSDEAAAAAAAAGJE\ngxAAAAAAAABiRIMQcs2tt96aSCQuu+yyTBcCABkgBwGIMzkIQJzJQdgrGoSQHW644YZEC0ya\nNCnTlQJA65ODAMSZHAQgzuQgtJH8TBcAtEjPnj2HDx9ef+Stt95KJpMDBw4sLi5ODfbv3/8r\nX/nKlVdemZ9vdgOQO+QgAHEmBwGIMzkIbSSRTCYzXQOwL4qLi3fu3Pnyyy8fddRRma4FANJN\nDgIQZ3IQgDiTg9AqXGIUAAAAAAAAYkSDEHJNg5vx3nbbbYlE4rvf/W5FRcWll17ap0+fTp06\njR079k9/+lMIYfPmzVdffXX//v2LioqGDx9+1113NdjbnDlzJk+efNBBBxUWFh500EGTJ0+e\nO3duun8kAGgxOQhAnMlBAOJMDsJe0SCEHBddiXvTpk0nn3zynDlzxo0bN2DAgAULFpx55pkL\nFy783Oc+99BDD5WVlY0aNeqtt966/PLLH3vssdRz77zzzuOPP/7hhx8eOXLk1KlTDz/88Ice\neujYY4/99a9/nbkfCAD2ghwEIM7kIABxJgeheRqEkOOiu/Lec889w4cPX7p06YMPPrhkyZKT\nTjqpurr61FNP7dGjx/Llyx955JH58+dfcsklIYTf/e530RPffPPNq6++Oj8//69//euTTz55\n1113zZ49+/HHH8/Pz582bdrq1asz+VMBQMvIQQDiTA4CEGdyEJqnQQg5LpFIhBB27Nhx6623\nRqGYl5f3xS9+MYSwdu3a//7v/y4pKYm2vPjii0MIy5Yti1anT59eXV19+eWXn3TSSam9TZo0\naerUqVVVVb/5zW/S+3MAwL6QgwDEmRwEIM7kIDRPgxBiYcyYMaWlpanVfv36hRAOOuig4cOH\nNxisrKyMVp966qkQwqmnntpgVyeffHII4dlnn23jkgGg1chBAOJMDgIQZ3IQdic/0wUA6XDw\nwQfXX83Lywsh9O3bt/FgXV1dtPruu++GEKZPnz5jxoz6m1VUVIQQ3nnnnTYsFwBalRwEIM7k\nIABxJgdhdzQIIRYKCgoaD0Zn1jcpmUxu27YthFD/3rz1pQ6oAYD2Tw4CEGdyEIA4k4OwOy4x\nCjQhkUh06tQphDB//vxkU6LjZQAgJ8lBAOJMDgIQZ3KQ+NAgBJo2ePDgEMKqVasyXQgAZIAc\nBCDO5CAAcSYHiQkNQqBpJ5xwQgjh/vvvbzD+5ptvPvHEEzt27MhEUQCQJnIQgDiTgwDEmRwk\nJjQIgaZdeeWVBQUFDz744H333ZcaLC8vP++880455ZQ//OEPGawNANqaHAQgzuQgAHEmB4kJ\nDUKgaYcffvhtt91WW1t7wQUXjB8//tJLL/3CF74waNCgV199dcqUKRdccEGmCwSANiQHAYgz\nOQhAnMlBYiI/0wUA7dcVV1wxevTon/70p3PmzJk7d25JScmRRx558cUXX3rppR06OLwAgBwn\nBwGIMzkIQJzJQeIgkUwmM10DAAAAAAAAkCZ63QAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAA\nECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqE\nAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAA\nAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAj\nGoQAAAAAAAAQIxqEAAAAAAAAECMahAAAAAAAABAjGoQAAAAAAAAQIxqEuemVV15JJBKJROLt\nt99urX2++OKL0T7ffffd1tpnDmiLtzptfv3rXx922GFFRUWdO3e+6667Ml0OQKuRg2kjBwHa\nITmYNnIQoB2Sg2kjByHb5We6gPalpqbmgQceePzxx+fNm1deXr5t27YuXboMGjRo3LhxU6ZM\nOeaYYzJdILSal1566Utf+lIIoWvXrkOGDMnLy8t0RUDmyUHiQw4CjclB4kMOAo3JQeJDDkLE\nGYQfmzVr1rBhwy644ILf//73y5cv37x5c01NzcaNGxcsWHDbbbd96lOfOu200yoqKjJdZpo8\n+uijiUTit7/9bWpkzJgxCxcuXLhwYd++fTNXF63mD3/4QwihtLT0nXfeWbBgwaWXXprpilpH\n468u0EJysD45mPPkINCAHKxPDuY8OQg0IAfrk4M5Tw5CRIPwH37/+99PmjRp5cqVnTp1uvba\na+fNm7d58+a6urry8vL777//uOOOCyE8+uij48eP37JlS6aLTYe5c+c2GCkpKfnEJz7xiU98\norCwMCMl0brWrVsXQigrK+vZs2ema2lNjb+6QEvIwQbkYM6Tg0B9crABOZjz5CBQnxxsQA7m\nPDkIEQ3CEEJ47bXXvvzlL9fW1g4fPnzJkiU/+clPjj766K5duyYSiV69ep199tnPPvvsj370\noxDC66+/fs0112S63nSYM2dOpkugbdXW1oYQCgoKMl1IK/PVhX0gBxvzyyTnyUEgRQ425pdJ\nzpODQIocbMwvk5wnB+EfkiSTp556agihU6dOy5cvb2az888/f8iQIdddd11dXV0ymfz73/8e\nvYdr165tsOU999wTQsjLy0uNzJ8/P9q4urp66dKlkydPPuiggzp27Dh8+PAf/ehHtbW1yWRy\n+fLlF1100cEHH1xYWNi/f/+vfvWrW7duTe1hr17u5ZdfjjZu8BOtWLHiK1/5ysiRIzt37pyf\nn9+zZ88JEyb8+te/jn6iyBVXXNHgSxLt+YUXXohWV65cmUwmP/vZz4YQjjvuuCbfq5///Och\nhIKCgvLy8mikqqrqjjvuOOGEEw444ICCgoJevXqdcMIJv/jFL6qrq5t5zxu/e++///60adMG\nDx5cVFTUrVu3E0888W9/+1v9jdP8uaTe6rfffnvx4sXnn39+3759CwsLDzzwwLPPPnvRokWN\nf5wWvhXz5s2L9lxbW/vAAw9Ed8298847m3+vKisrb7zxxs985jPRznv27Hn88cffeuut27dv\nT20zderUxr8KbrrppmZ225Ka2+gr0fJPf3df3WQyuW3btptvvnncuHEHHHBAfn5+aWnpmDFj\nrrvuuhUrVjT/fkJMyEE5KAflIMSZHJSDclAOQpzJQTkoB+UgsaVBmFy9enUikQghfOMb32h+\ny127dtVf3atfuEuXLo02fuaZZ7p169arV6+xY8f26NEjGrz22mtfe+21Aw44oHv37kcdddSB\nBx4YjX/hC1/Yt5drMgifeuqpkpKSEEJ+fv6YMWOOOeaY3r17R5udccYZqSz85S9/ee6553bo\n0CGEcPTRR5977rkXXHBBslEQRi+aSCTef//9xu/Vpz71qRDC6aefHq2Wl5eXlZVF248ePfrE\nE08cOnRotLdjjjlmw4YNzb/zqXfv5Zdf7tu3b3Fx8dixY8eMGZOfnx9C6NChw+OPP56pzyX1\nVs+cObOkpKS4uLisrGz06NHRG1hUVPT000/Xr6Hlb8XixYuj8Tlz5kQ/aQjhlltuaeaNWrFi\nRbS3Dh06HHrooSeccMLQoUOjSkaPHp16Q26//fZzzz134MCBIYS+ffuee+6555577mOPPba7\n3baw5jb6SrT809/dV7eysnLMmDHRa40cOfKEE04YO3ZsdIhQSUlJgw8IYkgOykE5KAchzuSg\nHJSDchDiTA7KQTkoB4kzDcJk6qad8+fP36sn7tUv3GXLlkUbDxky5Pvf/35NTU0ymdyxY8fk\nyZOj2ThmzJhp06ZVVVUlk8na2tqvf/3r0fZvvvnmPrxck0EY/aL55Cc/mTpUoa6u7n/+53+i\nLe+77776+ywqKgoh/OY3v0mNNAjCrVu3du7cuclfze+880605cMPPxyNTJw4MYRQVla2ePHi\n1GZz584dPHhwCOGcc85p9p3++N0bNmzYJZdcsnnz5mh86dKl/fv3DyF85jOfSW2c5s8l9Vb3\n7t37sssuq6ysjMaXL18eveFDhgyJdru3b0WqtkmTJn3uc5974YUXVq5c+eGHH+7uXaqtrY2i\nZfjw4anyksnkq6++2qdPnxDCySefXH/7KVOmhBA+//nPN/ve70XNbfSV2KtPP9nUV/fHP/5x\n9AEtXbo0Nbhhw4YzzjgjhHDYYYft8R2A3CYH5aAcbJ4chNwmB+WgHGyeHITcJgfloBxsnhwk\nt2kQJq+77roQQmFhYf3fVi2xb79wTznllPpbLlq0KBofNWpUdOJ2ZMuWLVHD//e///0+vFzj\nICwvLz/nnHPGjx/f4MTzZDJ5xBFHhBAuvPDC+oN7DMJkMnnRRReFED71qU812OEPfvCD6PdO\ndGzRrFmzonf4vffea7Dl008/He3z7bffTu5e6t07+uij679LyWTyxhtvDCEUFBSkzr9O8+eS\neqvHjBnToLbHH388eujvf/97NLJXb0WqtkMOOWTHjh3NvD+RRx99NNp+3rx5DR6aMWNG9FD9\n1GlhEO5VzW3xldirTz/Z1Ff3rLPOCiFMnTq1wWtVVFRcd911t99++86dO5t/EyC3yUE5KAeb\nIQch58lBOSgHmyEHIefJQTkoB5shB8l5HULsrV+/PoRwwAEH5OXlpeHlzj777Pqrhx56aLRw\nxhlnRL9hI126dDnooINCCBUVFa3yur169Zo5c+bTTz8dXRC5vsMOOyyEsHbt2r3d5xe/+MUQ\nwosvvrhq1ar649Gv3SlTpkRnKz/88MMhhOOPP/7ggw9usIfx48dHp/P/5S9/ackrfvnLX67/\nLoUQRo4cGUKorq7esmXL3tZf3/5/LlOnTm1Q20knndSxY8cQwvPPPx+N7NtbMWXKlOLi4j3+\nCH/605+iyo8++ugGD51xxhlRPLTwfa5vr2pu06/EPn/6BxxwQAjh+eefb/Al79mz5w033PBv\n//ZvhYWFzTwdcp4clINBDu6eHIScJwflYJCDuycHIefJQTkY5ODuyUFyXn6mC8i86ELbtbW1\n6Xm5QYMG1V+NflE2Hk89VF1d3YqvvnPnztmzZ7/++uvl5eXRKckhhIULF4YQampq9nZvJ554\nYr9+/dasWXP//fd/61vfigYXLVoUXRz54osvTo2EEF577bUJEyY03sn27dtDCG+88UZLXjH6\nxVdfdPXwEMKuXbv2tv769v9ziU5jr6+goGDw4MFLly5dsWJFNLJvb0XjYGtSdG3u6LinBoqK\nioYMGfL666+nrlvdcntVc5t+Jfb50582bdp99923YsWKESNGnH322SeffPL48eOjdASCHJSD\nIQQ5uHtyEHKeHJSDQQ7unhyEnCcH5WCQg7snB8l5GoShtLQ0hLBhw4aqqqqWHI+wn7p169bk\neOoGsG3nkUceufLKK9etW9daO+zQocOUKVNuvPHGmTNnpn7r3XvvvSGEsrKy6PanIYQNGzaE\nEMrLy8vLy3e3q02bNrXkFVP51Or2/3Pp1avX7nabeWtNyAAAIABJREFUOo5j396K1D2Tmxft\nfHcFR5Vs3LixJbtqvNsW1tymX4l9/vTHjBkza9asq6+++qWXXrrrrrvuuuuuRCLxiU984pxz\nzrniiivSMPWgnZOD+0wO1icHgxyE7CQH95kcrE8OBjkI2UkO7jM5WJ8cDHKQ7OQSoyGanLW1\ntXPnzs10LW1o3rx5Z5111rp168rKyh544IF169ZFVz1OJpNTp07d591G11aeP3/+22+/HUJI\nJpP33XdfqHdMRPjnsUhTpkxp5lq30VWws1qTl2KIfvbo32Ff34q9+v9nqddqIDoqaneP7nGH\nLa+5fX4lPvnJT86bN++VV1753ve+d9xxxxUWFi5cuPDb3/72kCFD/va3v7XiC0E2koNysFXI\nwUj7/ErIQWiGHJSDrUIORtrnV0IOQjPkoBxsFXIw0j6/EnKQZmgQhvHjx0cX8P3Vr37V/Ja7\ndu26/fbbKysr97jPHTt2tE5xLdOSl7v11ltramoGDhz41FNPnXXWWQceeGB01ePwzzOX983I\nkSOPPPLIEML9998fQpgzZ87q1asLCwsvuOCC1DbRsUhr1qzZ51dpLW36uTR5sM/mzZtDvcNw\n2vSt6NmzZ/jnteMbi46R2Yfzx/e25vb8lRg7duz111//7LPPbtiw4b777hs8ePDGjRvPP//8\nFh6oBblKDsrBViEHI+35KyEHoUlyUA62CjkYac9fCTkITZKDcrBVyMFIe/5KyEGapEEY+vTp\nc+aZZ4YQ7rvvvueee66ZLa+//vpp06YNHTo0+u2WCpKqqqoGW+7DFY33aD9f7vXXXw8hTJo0\nqcE547W1tXPmzNmfwqL7rz744IMhhJkzZ4YQTj311OiXciS6+vPSpUvTc0HzNH8uKUuWLGkw\nUlNT884774QQhg0bFo206VsR7Ty6jHUD27Zti6733eSVuFuy272qub19JRorKSk599xz58yZ\nk5+fv2HDhhdeeCEjZUA7IQflYKuQgynt7SvRmByE+uSgHGwVcjClvX0lGpODUJ8clIOtQg6m\ntLevRGNykPo0CEMI4Yc//GHnzp3r6urOPPPMF198scltvv/97994440hhK985StRlkTd/hDC\nm2++WX/LDRs2/O53v2v1Ivfz5aKTlxtnw/Tp0z/44IPQ6HbE0fYtuUPvBRdckJeXt3Dhwvfe\ne++hhx4KIVxyySX1NzjjjDNCCB999NEDDzzQ4LkfffTRyJEjr7rqqujiy60izZ9LyowZMxqM\nzJo1KzoKafz48dFIm74Vp512Wgjh7bffbvz/bGbOnFlTU9OhQ4fPf/7ze7vbfag5s1+JBl/d\njz766Oqrr/7c5z63devWBlv27t07ukxBmg9tg3ZIDgY5uN/kYIochKwjB4Mc3G9yMEUOQtaR\ng0EO7jc5mCIHyTLNXOs2Vv74xz8WFhaGEPLy8i677LLZs2dv3Lixrq6uoqLi/vvvP/roo6O3\n6wtf+EJ1dXX0lOrq6u7du4cQxo0bV15eHg2uXr36uOOOGz58eLSr1P6XLVsW7WHhwoUNXjoa\nf+ihhxqMDxkyJIRw00037cPLvfzyy9Fuly9fHo18+ctfDiH06NFj1ar/396dh0dRpnsfv5vs\nCWFLgIAEUNkSAkISlDGsgiCrIsoiShQxMMrxiCAygKKMKChyuSEXeL2IytEDRmEURUbHgAIu\nHEUERIgs0dGgkAMhkJCkk37/qHf67ekk3U93Vy/V9f1c/mEqxdPVdfddv6p6Ot1F9gFXrFiR\nmJg4ZcoUEUlJSbE/NZvN1q5dOxG555577Evs7yY4ceKE06aOGDFCRKZPny4irVu3dhxHc911\n14lI06ZNP/74Y/vCwsLC7OxsEenVq1dtbW3doqjsvYKCAu1XxcXFXuwo3+vy9ddfa2s2a9Zs\n6dKlVqtVW/7rr7+mpaWJSEZGhuOzU98VLratXrW1tX/6059EpHPnzj/99JN9+Z49e7R3qdx5\n552O62t1HzVqlNuRvSifji8Jj6pvq/PStVqtHTt2FJGxY8c6rnbp0qV58+aJSGxsrP11ApgZ\nOUgOOo1MDnqxzXbkIGA45CA56DQyOejFNtuRg4DhkIPkoNPI5KAX22xHDsJAmCD8/3bt2qUd\nueoVHR39l7/8xamfly1bpv02ISEhOzv7qquuioyM7NGjx9atW0XEYrHY1/T9gOvRw9UNwqNH\njyYmJopI48aNhw8fPnLkyOTk5Ojo6E2bNv3jH//QVr7qqqvuv/9+bX3tKCkiHTt2vPzyy7/6\n6isXQai9SUT7yPI5c+bU3bfalwBr/7xr167XX399z549tfXbtWv3448/ui6Np4fCQNbF/h3O\nb7/9dmxsbJs2bYYPHz5o0KC4uDhtb3/99dfe7QpPg9BmsxUVFWlhHxUV1bNnz+uvv75z587a\nIEOHDi0rK3NcWT0IvSifji8JT6tf96W7c+fOhIQEbXvS09MHDBjQp08frR0aNWq0bt06t3sA\nMAlykBx0pFgXcpAcBMIGOUgOOlKsCzlIDgJhgxwkBx0p1oUcJAdhdEwQ/hur1bpp06Y77rij\nc+fOTZs2jYyMbNGixbXXXvvoo4+ePHmy3n+ybt26Pn36JCQkxMbGdurU6eGHHz537ty+ffu0\nVqysrNRW0yUI1R+ubhDabLb9+/ffeOONLVq0iI6O7tix45QpU+wbM2fOnKSkpPj4+EmTJmlL\niouLx44d26RJk7i4uK5dux4+fNhFEJaXlzdp0kT77YEDB+rdUZWVlatXrx40aFBSUlJkZGST\nJk369OmzdOnS0tLSetd35OmhUH1H+V4X+wZcunRp3759t956a0pKSlRUVOvWrW+77bZ6Q0Jx\nV3gRhDab7cKFC08//XTfvn21F3DLli2HDx/+xhtv2N/CY6cehOrbbKfjS8LT6td96dpstuPH\njy9atKh3796tWrWKjIyMj49PS0ubMWPG/v37VZ4+YB7kIDloRw56sc125CBgUOQgOWhHDnqx\nzXbkIGBQ5CA5aEcOerHNduQgDMRi+1fDAwAAAAAAAAAAAAh7jYK9AQAAAAAAAAAAAAAChwlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlCAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlCAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlCAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMhAlC\nAAAAAAAAAAAAwESYIAQAAAAAAAAAAABMxNQThHffffeECRNqa2uDvSEAAAQBOQgAMDNyEABg\nZuQgAMBis9mCvQ1Bk5ycXFJSYrVaIyIigr0tAAAEGjkIADAzchAAYGbkIADA1H9BCAAAAAAA\nAAAAAJgNE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAA\nAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAA\nAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAA\nAAAAAJgIE4T6sNlsq1evzs7OTkhISExM7Nev39tvvx3sjTKvoqKi3NzcNm3axMbGdurUaf78\n+RcvXnRcQb1e27dvb9u2rcVi2bFjR93flpWVLVq0KC0tLS4urlmzZsOGDdu5c6c/nlF4c72T\nz549+9e//rVXr15NmjSJj4/v2bPn448/Xl5e7uk6p0+ffvDBB7t06RIbG6uts2TJEscXRkpK\niqUB2dnZ/nnqYcJFBT/++OOG9urJkyfVxxG1tlV5JcBPyMEQodh0bvNLx+aFW4HJQfWTFgrq\nqcDkoKMjR47Ex8dbLJbvvvvOcTmnpkFEDoYU19eDio1ZW1u7Zs2aq666Kj4+Xju0PvXUU1VV\nVY4PRN114fvRz9OrgIbGoaDecVtBt7do9B1H01CV4Se0T8jSK/W4aRZIviejymmMp48FdS72\nqmIrub2PLZ5U2Q2biSUlJYmI1Wr1fai8vDwRadWq1W233TZx4sRmzZqJyNNPP+37yPDUwYMH\nmzdv3qhRoyFDhuTm5nbt2lVEcnJyampq7Ouo1Ku8vHzWrFkiEhUVJSIFBQVOD3T+/PkePXqI\nSGpq6sSJE8eOHRsdHd2oUaN33303AE8zPLjdyadPn05LSxORyy+//JZbbhk5cmTTpk1F5Oqr\nr66qqlJf57fffmvXrp2IDBs2bMGCBXPnzs3KyhKRXr16VVRUaOtMnz59fB0jRowQkUGDBgVq\nlxiM2wpu2rRJRDIyMuru2z/++EN9HJtC26q8EuCEHAw/Kk2nkl86Ni9cCFgOKp60UFBPBTIH\n7axWa9++fbVLuX379tmXc2rqBXIwLLm9HlRpzNra2pEjR4pI8+bNx44dO2rUqCZNmmhXE7W1\ntfbHou4+0uXo5+lVQEPj2Cio51QqqHKLRq9x7FxUGY7IQTPQK/W4aRYYuiSj4mkMV3/+4Hav\nqrSSyn1sxSqrCN0JwtrfT1Vv3ez1fzaFeNMrCAsKCkQkMzOztLRUW1JcXJyamhodHX3s2DEf\nB4dHamtrMzMzIyMjP/zwQ22J1Wq9+eabLRbL+++/ry1RrFfPnj2joqKWL18+derUevt5wYIF\nIjJy5Mjy8nJtya5duxISElq2bFlWVubXpxk23O7k3NxcEXnggQfsJ/0lJSXdunUTkbfeekt9\nndmzZ4vIggULHAcfPXq0iKxZs8bFFs6bN09Edu7c6fNzDU9uK7h27VoReeGFF3wcR6VtVV4J\nxkIOwgsqTaeSX3o1L1wLWA4qnrRQUE8FLAcdLVu2TLs4dLoREH6npuQgvKByPajSmNo6ffv2\ntdf01KlTHTp0EJEPPvhAW0LdfafL0c/Tq4CGxqGgXnBbQZWW1HEcu4aqbCzkIHShV+rVi5tm\nutMlGRULytWfP3i3V51aSeU+ttdtW1fofsSoreR0zWefev2f1FgDtqlaPZYvX67N04pISkrK\nwoULq6qq1q9fH7DNgIgUFBR8++2399xzjzbxLiIRERGvvfba+fPntS4S5Xo1atRoz5498+bN\ns1gs9T5Wfn6+iDz33HNxcXHakpycnD//+c+nT5/esmWLX55e2HG7k5OTk2+66aYlS5Y0avT/\nDlYtWrTQrgCPHDmivk5hYaGIjBo1ynFw7UWi/ape33///cqVK3NzcwcMGODDswxnbit47tw5\nEdHePOjLOCptq/JKMBZyEF5QaTqV/NKreeFawHJQ8aSFgnoqYDlo98MPPyxevHjy5MnXXHON\n06/C79SUHIQXVK4HVRrzgw8+EJFly5bZa9q6desZM2aIyBdffKEtoe6+0+Xo59FVgItxKKgX\n3FZQpSV1HEfjosrGQg5CF3qlXl3cNPMHXZJRsaBc/fmDF3u1biup3Mf2rm3r32aP1ka9duzY\nERcXN3DgQMeFw4cPFxG+9iPA3n//fRGZPHmy48LGjRs3btzY/qNivfbs2eP6Q7RPnjyZkJDQ\nuXNnx4WDBw/WHsLrp2AqbnfyihUrNm/enJiY6Ljw1KlTItKpUyf1dbp37y4ihw8fdlzn2LFj\nIpKRkVHvQ9tstry8vMTExGeeecaT52QubiuonYk2b97cx3FU2lbllQA/IQdDh0rTqeSXXs0L\n1wKWg4onLRTUUwHLQU1NTc2dd97ZtGnTF154oe5vOTUNInIwdKhcD6o05pYtWy5cuNC/f3/H\nhS1atHD8kbr7Tpejn/pVgOtxKKgX3FZQpSV1HEfcVRl+QvuEMr1Szwk3zfxEl2RULChXf/7g\n6V6tt5VU7mN70bYNYYLQV6WlpcXFxR07dtQ+WNauQ4cOMTExToWEv+3fv19E0tLSFi9efOWV\nV8bExLRv3/6BBx7Q4lA8qZf9zdcNiY2NraystFr/7T1ZWuIePXpUl6cT9tzuZEdWq/X48eOP\nPfbYiy++mJ2dPWHCBPV1Zs+e3bFjx7lz565evfrQoUP79+9fvnz5yy+/3LdvX6drDLtNmzZ9\n9dVXDz/8cMuWLb14aibhtoJa6xUVFY0bN6558+axsbHp6elLly69dOmS+jheHGZVXi3QCzkY\nUlSaTiW/dGleuBWwHFQ8aaGgngpMDtotW7Zs7969L7/8cnJyct3fcmoaLORgSHF7PSjKjZmQ\nkGD/izTNRx99JCLXX3+9UHed6HL0c+Q6K12MQ0G947aCKi2p4zjiyasFeqF9QpwuqVcXN838\nRK9kVCkoV3/+4OlerbeVFO9je9q2DWGC0Fdnz56V+qZnLRZL06ZNtd8iYH755Zfo6Oi8vLw1\na9YMGTLkrrvuio6Ofv755wcPHlxRUSG61isrK8tqtWpvZLN799135V/pCx3dcsstUVFRV155\n5bp161auXLlr1y6nU0/X67Ru3Xrv3r39+/e/9957MzIyevXqNX/+/LvvvrugoCA6Orruw9XW\n1i5ZsiQ5Ofm+++7z+3MLa1ovzJo169ChQyNGjOjXr9/PP/+8aNGiYcOGVVVVKQ7iaduqvFqg\nI3IwpKg0nUp+6dK80JGPOchJS7Do2EoHDhxYsmTJxIkTx48fX+8KVDlYyMGQ4vZ6ULxtzPz8\n/C1btowePVr79CfqHjBuj352rrPS9TgU1E9UWlLHcdRfLdAR7RPidEk9J9w0Cy4vjnWuC4pg\naaiVPL2PrfG6ypFebj7+RTsXqbc2MTExVqvVarVGRrKfA+TChQtVVVUnTpz46aeftM+aqKio\nGDt27CeffLJq1aq5c+fqWK9HHnmkoKBgxowZNTU1Q4cOvXjx4tq1azds2CAi1dXVuj4tSHZ2\n9sWLF3/77bcDBw48++yzLVq0uOOOO9TXKSsru/3227dv3z5lypThw4dXV1dv27Zt1apVv//+\n+4YNG2JiYpyG2rhx4w8//LBs2bK6n1gCj3Tr1m3UqFFjxozJy8vTPn27qKho5MiRn3/++fPP\nP//QQw+pDOJp26q8WqAjcjCkqDSdSn7p0rzQkY85yElLsOjVStXV1bm5uc2aNXvppZcaWocq\nBws5GFLcXg+KV425cePG3NzctLS0119/XVtC3QND5ehn5yIH3Y5DQf1EpSX1GsejVwt0RPuE\nOF1Sr+4K3DQLFi+OdW4LimBpqJU8vY8tvlWZvyD0VXx8vIjU+56LysrKqKgoUjCQIiIiROSp\np56y91VcXNyTTz4pIu+8847oWq/Bgwc/+uijJSUlt956a/Pmzdu1a7dq1apXXnlFRJy+/wC+\nmz9//rZt2/bv33/06NHExMSpU6du3rxZfZ1FixZt37792Wef3bBhwx133DFt2rS333774Ycf\nzs/Pf/755+s+3IoVK2JjY2fOnOn3JxbuHnnkka1bt86YMcP+3bwdOnTQPiH9rbfeUhzE07ZV\nebVAR+RgSFFpOpX80qV5oSMfc5CTlmDRq5WWLl26b98+1x+YRpWDhRwMKW6vB8XzxnzyyScn\nT56cnp6+Y8cO+3c4UffAUDn62bnIQbfjUFA/UWlJvcbx6NUCHdE+IU6X1HPCTbMg8vRYp1JQ\nBEtDreTpfWwfqxy6x+hGaRkxyw3wlcLaH9GXlJQ4La+pqTl79mxSUlIwNsq8mjdv/uuvv6am\npjou7NGjh8ViOXHihOhdr8cff3zSpEkffvjh2bNnO3fuPG7cuKKiIhFp166dT08DDevUqdOb\nb77Zq1evlStXjhs3TnGdN998MyYm5v7773dc7b777lu+fHl+fv68efMcl3///ffffvvthAkT\nmjZt6r8nYmbXXnutxWI5fvy44vpet63KqyWUkYPQS92m8y6/PG1e+IN3OSictIQST1vpu+++\ne/LJJ2+//Xa3HyIUZlUmB+EFt9eDDam3Mauqqu66664333xz7Nix//Vf/+X45m7qHgDqRz8n\nTjmoMg4F9ROvW9LTcbx+tYQychD+42nqOeKmWRB5dKxTLCiCxUUrqd/H1qXKoTtBaBSJiYmp\nqaknT56srKx0/APPn376qbq6umfPnkHcNhPq1q3bwYMHf/311+7du9sXVldX22w27esHdK9X\nWlpaWlqa/cevv/5aRHr16uXT04CIiFRUVOzcudNqtY4ePdpx+RVXXCEihYWFiutcuHDhzJkz\nbdu2dXrbmvZem59//tnpcbVv63EaEDqqqKiw2WwuPjXbiUrbqrwS4CfkYOirt+m8yC9Pmxc+\n0isH7ThpCRGettI777xTXV29YcMG7fNCHfXu3VtECgoKBg0apC2hyoFHDoYUt9eDDanbmFar\ndeLEiVu2bJkzZ87TTz/dqNG/ffwSdQ8AlaPfNddc4zYHFY+iFNQfvG5JT8dxW2WbzebTM0HD\nOB4akaep54ibZkGkfl2gXlAES0OtpH4fW68qM0Gog6FDh7766quffPLJqFGj7Avfe+89Ebn+\n+uuDt11mNGTIkPz8/K1btw4bNsy+cO/evSJiv1eiV70OHjy4Z8+eMWPGtGnTxr7wjTfeEJEx\nY8b49jzw/9x4442RkZGnT5/WPrNC8+OPP8q/Dosq68THx8fHx586daqsrMzxI7aOHTsmIq1a\ntXJ60I8//lhEBg4c6KcnZR6VlZU33nhjRUXFjh077J9lISKfffaZiHh0naDStiqvFvgJORgi\nFJvObX7p2LzwkS45KJy0BIlerZSTkzNnzhynhZ988sn+/funTp3asmVL7S8qqHIQkYOhw+31\noHpj5uXlbdmy5Yknnli4cGG9j0Xd/U3x6Oc2BxXHoaD+oHKLRpdx3FbZl2cBt2ifkKVj6tlx\n0yyIFBNNPCkogqWhVlK/j61blW0mpv2du9Vq9XGcr776ymKxZGRklJSUaEsKCwuTkpISExNP\nnTrl82bCA+fOnWvRokVcXFxBQYG25OzZs1dffbWIrF+/Xlviab1yc3NFxD6g3apVq0Rk2rRp\n9iXa18Ned911ej+t8NfQTtbuZ+Xm5l66dElbUlpaqr0XZv78+err3HrrrSIyd+5c+8hWq3Xy\n5MkisnDhQsdHrKmpiY+Pb9y4sR+eZThrqILXXXediCxatKi2tlZbcvz48U6dOonIhg0b1MdR\naVuVVwKckIPhR6XpVPJLr+aFIn/noKcnLRTUU/7OwbpmzJghIvv27bMv4dTUC+Rg+FG5HlRp\nzPz8fBGZNGmSi8ei7jry5ejn3VVA3XEoqC8aqqBKS/pjHE3dKsMJOWgGeqWehptmAeNLMqoX\n1NPHgjrXe9V1K6ncx/a0yi5YbCb+K/vk5OSSkhKr1ap93bEv5s2b98wzzyQlJQ0ZMqSqqurj\njz8uLy9/9dVXtZcCAmnz5s233nprRETEqFGjYmJidu7cWVxcPGLEiK1bt9r/0tZtvXbs2KHd\nUhGR//mf/ykqKhowYID2prP27duvXLlSRC5evPinP/3pwIEDmZmZvXv3Pnr06Oeff96mTZs9\ne/Z07NgxCM/caFR28smTJ3Nycn777be2bdtmZ2fX1tZ+8cUXJSUl6enpu3fvbtasmeI6RUVF\n11577W+//da/f//BgwfX1tZu27btm2++6dGjx65du5o0aWLfqn/+85+pqalpaWk//PBDEHaK\noahU8NixY9dcc01JSUmXLl169+597ty5Xbt2Xbx4ccqUKfbPQ1AZRxTaVuWVACfkYPhRaTqV\n/NKxedGQQOagStEpqKcCnINOZs6cuWbNmn379tk/PpRTUy+Qg2HJ7fWgSmP26NHj4MGDAwcO\nrPtBFFdeeeXy5cu1/6fuvtDr6OfdVUDdcYSCekixgm5bUq9x6qq3ynBEDpqBjqkn3DTzM72S\nUaWgXP35g/pedd1KKvex1dvWPd/nGI1Lr3fKaNatW5eVlRUXF5eYmDh48OC///3vugwLL+ze\nvXvEiBHNmjWLiYlJT09/6qmnKisrndZxXa9XX321oZbp3r27fbVTp07NnDkzNTU1Ojr6sssu\ny8vLKy4uDsQzDAuKO/n333+fPXt2586dY2NjY2Nj09PTFy5ceP78ecehFNd58MEHu3TpEhMT\nExcXl5GR8dhjj5WVlTlt1YEDB0SkT58+/nviYUOxgidOnJg+fXr79u2joqKaNGmSk5Ozfv16\n+zvX1MexKRxmVV4JcEQOhiW3TWdTyy8dmxf1CnAOui06BfVU4HPQUb1/FcGpqafIwXDl9nrQ\nbWNqr416ZWVlOQ5F3b2m49HPi6uAhv62jIKqU6+g65bUa5y6+AtCt8hBk9Ax9bhp5ld6JaNK\nQbn68wf1veq2ldzex1ZvW7f4C0J93ikDAIDhkIMAADMjBwEAZkYOAgDq/zN8AAAAAAAAAAAA\nAGGJCUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAA\nAEyECUIAAAAAAAAAAADARJgg1IfNZlu9enV2dnZCQkJiYmK/fv3efvvtYG+USZ09e/avf/1r\nr169mjRpEh8f37Nnz8cff7y8vNxptaKiotzc3DZt2sTGxnbq1Gn+/PkXL150XOH06dMPPvhg\nly5dYmNjtXGWLFnitI5m+/btbdu2tVgsO3bs8N/zMgnF3e62fGVlZYsWLUpLS4uLi2vWrNmw\nYcN27tzpNAht6w8qe16lyirjKDY7AoOGCh1hAfu/AAAgAElEQVQqreF2nY8//tjSgJMnT2rr\npKSkNLROdnZ2IJ9yOFE5QtbW1q5Zs+aqq66Kj4/X1nnqqaeqqqrsKyiWhqOoP6jkl6MjR47E\nx8dbLJbvvvvOcbnKK4EKhhRyMDQ11GIaF9dxKjkonrc83FLcpa6vBxXLx1FUL65viagcHnWp\nO6emwUUOhj63dy91vFMKveh7Ye62xNCdjtXx32mnxWaz6TKQ7g6XV/yf4t+9/udPXt4hupHF\n9TrJycklJSVWqzUiIsLrB9LMmDFj7dq1rVq1Gjp0aE1Nzfbt28+dO/f0008/9NBDPo4Mj5w5\nc2bAgAGHDx++/PLLs7KyysvLd+/eXVpaevXVV+/atSsqKkpb7dChQ/379y8tLR08eHC7du2+\n/PLLI0eO5OTkfPbZZ40aNRKR4uLiq6+++p///OewYcOys7OrqqoKCgq++eabXr16ffHFF7Gx\nsdo4FRUV8+bNe+mll6KioqqrqwsKCgYNGhSs5x4GFHe72/KVlZXl5OQcOHAgNTX12muvraio\n+Oijj6xWa35+/rhx4+wPR9vqTmXPq1RZZRzFZjc0chBeUGkNlXXefvvtCRMmZGRkdO3a1ekh\nVq9e3bJlSxG55557zp496/Tb8vLybdu2DRo0qKCgICDPOKyoHCFtNtvo0aM//PDD5s2b9+/f\nv6am5vPPPz9//vywYcM++ugji8UiaqUxw1E08BTPQOxqamr69ev35Zdfisi+fft69eqlLVd5\nJZihguQgfNRQi4nCdZxKDnra8nBLcZe6vR5UKZ8ZjqIBoHJLxO3hUa+6h9+pKTkIvai0ql53\nSqEvHS/M3ZYY/qBXdfx72mkLVe+fKZGCXV7/V2a1un2IpKQkEbEqrOmaVsvMzMzS0lJtSXFx\ncWpqanR09LFjx3wcHB7Jzc0VkQceeKCmpkZbUlJS0q1bNxF56623tCW1tbWZmZmRkZEffvih\ntsRqtd58880Wi+X999/XlsyePVtEFixY4Dj46NGjRWTNmjX2JT179oyKilq+fPnUqVNFpKCg\nwN9PMLyp7HaV8i1YsEBERo4cWV5eri3ZtWtXQkJCy5Yty8rKtCW0rT+o7HmVKquMo9LsRkcO\nwgsqraGyztq1a0XkhRde8HQD5s2bJyI7d+7U49mYjsoRUitN37597e126tSpDh06iMgHH3zg\nYnCn0pjhKBp4KvnlaNmyZSKiTVrs27fPvlzllWCGCpKD8FFDLWZTuI5TyUFPWx5uqexSletB\nlfKZ4SgaAG5bSeXwqFfd62XoU1NyEHpx26o63imFvvS6MPf6KAp/8KI6fj3tZH5YB1qvLl++\nvEmTJtqSlJSUhQsXVlVVrV+/PphbZj7Jyck33XTTkiVL7O99aNGihXbqf+TIEW1JQUHBt99+\ne88994wYMUJbEhER8dprr50/f14LNhEpLCwUkVGjRjkOrq2v/UrTqFGjPXv2zJs3T3vDPnyk\nsttVypefny8izz33XFxcnLYkJyfnz3/+8+nTp7ds2aItoW39QWXPq1RZZRyVZkfA0FChQ6U1\nVNY5d+6ciDRr1syjR//+++9XrlyZm5s7YMAAPZ6N6agcIT/44AMRWbZsmb3dWrduPWPGDBH5\n4osvGhq5bmk4ivqDSn7Z/fDDD4sXL548efI111zj9CuVVwIVDCnkYAhy0WKicB2nkoMetTxU\nqOxSletBlfJxFNWF21ZSOTzqVfe6ODUNGHIwxLltVR3vlEJfel2Ye3cUhT94Vx2/nnYyQaiD\nHTt2xMXFDRw40HHh8OHDRYRvIAiwFStWbN68OTEx0XHhqVOnRKRTp07aj++//76ITJ482XGd\nxo0bN27c2P5j9+7dReTw4cOO6xw7dkxEMjIy7Ev27NnDZ9nrSGW3q5Tv5MmTCQkJnTt3dlxn\n8ODBImL/pHXa1h9U9rxKlVXGUWl2BAwNFTpUWkNlHe06pHnz5uoPbbPZ8vLyEhMTn3nmGR+e\ngampHCG3bNly4cKF/v37O67TokULF8PWWxqOov6gkl+ampqaO++8s2nTpi+88ELdcVReCVQw\npJCDocZ1i4nCdZxKDqq3PBSp7FKV60GV8nEU1YXbVlI5POpVdyecmgYSORji3LaqjndKoS+9\nLsy9OIrCH7yujl9PO5kg9FVpaWlxcXHHjh2dPqS+Q4cOMTExTsdNBJLVaj1+/Phjjz324osv\nZmdnT5gwQVu+f/9+EUlLS1u8ePGVV14ZExPTvn37Bx54QDvmambPnt2xY8e5c+euXr360KFD\n+/fvX758+csvv9y3b1/HdrVP2kMXKrtdpXyxsbGVlZVWq9VxcC1Njx49KrSt37jd86JWZZVx\nHDXU7AgMGipkqbRGQ+toB9WioqJx48Y1b948NjY2PT196dKlly5daujhNm3a9NVXXz388MPa\nFyHAC4qnHwkJCU7fEvHRRx+JyPXXX1/vsG5Lw1FUL+r5tWzZsr1797788svJycl1x1F8JdhR\nweAiB0OQ6xYThes4lRz09JQVbqnsUpXrQU9PYziKes11KykeHvWquxNOTQOGHAx9blNPxzul\n0JdeF+ZeHEXhD15Xx6+nnUwQ+kr7nsm6b9y2WCxNmzat+y2UCIxbbrklKirqyiuvXLdu3cqV\nKx2/ZvyXX36Jjo7Oy8tbs2bNkCFD7rrrrujo6Oeff37w4MEVFRXaOq1bt967d2///v3vvffe\njIyMXr16zZ8//+677y4oKIiOjg7e0wpzKrtdpXxZWVlWq1V7/4Xdu+++K/9KVtrWT9zueVGr\nsso4di6aHYFBQ4UmldZwsY7Wa7NmzTp06NCIESP69ev3888/L1q0aNiwYVVVVXUfrra2dsmS\nJcnJyffdd5+/n1oY8+70Iz8/f8uWLaNHj67347PcloajqI4U8+vAgQNLliyZOHHi+PHj6x3H\no1cCFQw6cjDUuG0xFSo56NEpK1So7FKV60GPTmM4ivqP4uFRr7o74tQ0kMjBMMCd0pCl14W5\np0dR+IMv1fHraWekj/8eWp3qPRTGxMRYrVar1RoZyX4OtOzs7IsXL/72228HDhx49tlnW7Ro\ncccdd2i/unDhQlVV1YkTJ3766Sftb3UrKirGjh37ySefrFq1au7cuSJSVlZ2++23b9++fcqU\nKcOHD6+urt62bduqVat+//33DRs2xMTEBPO5hS+V3a5SvkceeaSgoGDGjBk1NTVDhw69ePHi\n2rVrN2zYICLV1dVC2/qN2z0valVWGcfORbMjMGio0KTSGi7W6dat26hRo8aMGZOXl6d9U0VR\nUdHIkSM///zz559//qGHHnIaauPGjT/88MOyZcv4iBJfeHH6sXHjxtzc3LS0tNdff73eMd2W\nhqOojlTyq7q6Ojc3t1mzZi+99FJD43j0SqCCQUcOhhSVFlOhkoMenbJChcouVbke9Og0hqOo\n/ygeHvWquyNOTQOJHAwD3CkNWXpdmHt6FIU/+FId/5522kwsKSlJRKxWqy+DnDx5UkRycnLq\n/qpVq1ZRUVG+DA7fFRYWpqeni8i7776rLbnssstEZNu2bY6rff311yLSt29f7cf7779fRJ59\n9lnHdR5++GERWb58ed1H0b7MvKCgwC/PwTRUdrtK+Ww226OPPur48WtJSUnamyz69Oljo239\nyfWetyk3l9tx6qrb7HCLHDQDldZQbJ9PPvlERHr37l33V5mZmbGxsefOndNhi03M09OPpUuX\nWiyW3r17//777w2NqV4ajqK6cJtfixcvFpH8/Hz7P5kxY4aI7Nu3z77E01eChgp6gRwMPyot\n5sij67i6OejFKStcc7tLFa8H63JxGqPhKOqLeltJ/fCoe905NVVEDppNQ6nnjzul8B8vLsy9\nTk/oyMfq+O+0kwlCX4Pw/PnzItKtWzen5VarNSoqKiUlxZfBoYvvvvtORPr166f9qH137sGD\nBx3XqaiosFgsrVu31n5MTk6OiYmprq52XOfnn39uqOuYINSFym5XKZ/mhx9+WLFixcKFC9ev\nX19aWvr999+LyLhx42y0rZ+52PM2T5rL9Tj1cmp2uEUOmoRKa6isU15ern1SkNNy7RPzJ0yY\noMO2mpv6EbKysvK2224TkbFjx5aVlTU0oKel4SiqCxf5tW/fvqioqNtvv91x/bqzF56eiNpR\nQU+Rg2FGscUceXQdV28OenHKCtdc71L160EnDZ3GOOIo6rV6W8mjw6OOdefUVB05aDYNpZ4/\n7pTCf7y4MPc6PaEXXarjp9NO/sTbV4mJiampqSdPnqysrHT8e+qffvqpurq6Z8+eQdw2s6mo\nqNi5c6fVah09erTj8iuuuEJECgsLtR+7det28ODBX3/9tXv37vZ1tITTvmzgwoULZ86cadu2\nrdNnIGhfca+FH3SnuNvdls8uLS0tLS3N/qP2zotevXoJbetnLva8R83lYhzFZkdg0FChQ6U1\nfGmfiooKm81W9+ODtA++dxoQnlI/Qlqt1okTJ27ZsmXOnDlPP/2047sInTRUGo6ifuUiv955\n553q6uoNGzZonwbjqHfv3iJSUFCQnZ3t9pVABUMKORg6VFps0KBBXo9fbw66aHl4x/UuVb8e\ndOJYPo6igeHR4VHHunNqGmDkYBjgTqmxeHFh7nV6Qi+6VMdPp50N3lCAuqFDh166dEn78167\n9957T0Suv/76IG2USd14440TJ04sLy93XPjjjz/Kv0JLRIYMGSIiW7dudVxn7969IqL1WHx8\nfHx8/KlTp8rKyhzXOXbsmIi0atXKj0/AxBR3u9vyicjBgwfXrl1bXFzsuM4bb7whImPGjNF+\npG39we2eV6yySgVVmh0BQ0OFDpXWcLtOZWXlDTfcMHDgQJvN5rjOZ599JiJ1L/I//vhjERk4\ncKC+z8Vs1E8/8vLytmzZ8sQTT6xYscLF7KC4LA1HUX9wm185OTlz6rjqqqtEZOrUqXPmzElN\nTVV8JVDBkEIOhgiVFlMZRzEHVU5Z4RGVXer2elCxfBxFA0Pl8KhL3R1xahp45KDRcac0NOl4\nYe7RURT+4GN1/Hva6eNfIBqaLn9Kb7PZvvrqK4vFkpGRUVJSoi0pLCxMSkpKTEw8deqUz5sJ\nD2gtkZube+nSJW1JaWmp9i7R+fPna0vOnTvXokWLuLg4+9/Unz179uqrrxaR9evXa0tuvfVW\nEZk7d659ZKvVOnnyZBFZuHBh3cflI0Z1obLbVcq3atUqEZk2bZp9nJdeeklErrvuOvsS2tYf\nVPa8SpVVxlFpdrhFDoYfldZQWee6664TkUWLFtXW1mpLjh8/3qlTJxHZsGGD4yPW1NTEx8c3\nbtw4EE8v3KkcIfPz80Vk0qRJbkdzXRqOov6gkl911f38Q5VXAhXUBTloBt59xKhKDnrX8nBB\nZZeqXA+qlI+jqL4aaiWVw6NedddwauoRctBsGmpVf9wphS70ujBXP4rCH3yvjl9PO5kg1CEI\nbTbbQw89JCJJSUkTJky46aabEhISLBYLDRZ4J06caNu2rYi0bdt27Nixo0eP1qqcnp5+9uxZ\n+2rvvvtuREREdHT0uHHjJk2a1KZNGxEZMWJETU2NtsLJkye1cfr37//oo48uWrQoKytLRHr0\n6FFaWqqtU1BQMP5fOnToICIDBgzQfpw9e3YQnrzxqex2m0L5Lly40KNHDxHJzMy8++67+/fv\nLyJt2rQ5ceKE48PRtrpT2fMqVVYZR7HZ4Ro5GH5UWkNlnZ9++klb2KVLl4kTJw4fPjwhIUFE\npkyZ4vSIv/zyi4ikpaUF9HmGKZUjpPb9BAMHDhxfx7x58xxHc10ajqL+oHgG4qTu7IXKK4EK\n6oIcNIO6LaZyHaeSg961PFxQ3KVurwdVysdR1HeKt0TcHh71qruGU1OPkINmoNiqutwphe50\nvDBXPIrCH3yvjl9PO5kg1CcIbTbbunXrsrKy4uLiEhMTBw8e/Pe//12XYeGp33//ffbs2Z07\nd46NjY2NjU1PT1+4cOH58+edVtu9e/eIESOaNWsWExOTnp7+1FNPVVZWOo3z4IMPdunSJSYm\nJi4uLiMj47HHHisrK7Ov8Oqrr0oDunfvHoinGo7c7naN2/KdOnVq5syZqamp0dHRl112WV5e\nXnFxcd2Ho211p7LnVaqsOI5Ks8MFcjAsqbSGyjonTpyYPn16+/bto6KimjRpkpOTs379evv7\nFu0OHDggfC+9ftweIbW2rVdWVpbjUG5Lw1HUHxTPQBzV++dNKllJBX1HDppB3RZTvI5TyUEv\nWh6uKe5St9eDKuXjKOoj9Vsibg+PetXdxqmph8hBM1BvVd/vlMIfdLwwVzmKwh90qY7/Tjst\ntn//EFtTSU5OLikpsVqtERERwd4WAAACjRwEAJgZOQgAMDNyEADQKNgbAAAAAAAAAAAAACBw\nmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBE\nmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBE\nmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATCQy2BsQfK+88kqjRkyU\nAkDYmjZtWmQkedcgchAAwhs56Bo5CADhjRx0jRwEgPDmJgdtJvb4449HRUXpu7sTExNTUlLi\n4uL0HRaBERERkZKSkpSUFOwNgZeaN2+ekpKie18jMGJjY1NSUpo2bar7yBcvXgx24IQochBO\nyEGjIwcNjRwMPHIQTshBoyMHDY0cDDxyEE7IQaMjBw0tWDlo6nfQPProo1artaqqSscxCwsL\ni4qKhgwZ0q5dOx2HRWBUVFTs3r07MTHxmmuuCfa2wBv79u0rKSkZN25ckyZNgr0t8Ngff/zx\n/ffft23bNj09Xd+ROTdqCDkIJ+Sg0ZGDhkYOBh45CCfkoNGRg4ZGDgYeOQgn5KDRkYOGFqwc\ntNhsNn0fz+ReeOGF119/fcGCBTfffHOwtwUe+/XXX2+88cZu3bpt2LAh2NsCb8yaNevLL798\n7bXXunfvHuxtgcc+/fTTefPmjR079tFHHw32tsB75KChkYNGRw4aGjkYHshBQyMHjY4cNDRy\nMDyQg4ZGDhodOWhowcpBPmMaAAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATiXjssceCvQ1hpaam\nplWrVn369GnVqlWwtwVeyszMzMjICPZWwBvV1dWXX355nz59GjduHOxtgcdqa2sTEhKysrKu\nuOKKYG8LvEcOhgFy0LjIQUMjB8MDORgGyEHjIgcNjRwMD+RgGCAHjYscNLRg5SDfQQgAAAAA\nAAAAAACYCB8xCgAAAAAAAAAAAJgIE4QAAAAAAAAAAACAiTBBCAAAAAAAAAAAAJgIE4S6OXfu\n3AMPPNCxY8fo6Oi2bdtOnz69uLg42BsFJevXr7fU54knngj2pqFB1dXVf/nLXyIiIrKzs+v+\nln4MfS4qSEsaFH1nXDSdEZGDRkcOhh/6zrhoOiMiB42OHAw/9J1x0XRGRA4aXejkYKQ/BjWh\nqqqqIUOGfPvtt+PHj8/MzDx27Njrr7/+6aeffvPNN82bNw/21sGNc+fOicjkyZPbt2/vuDwn\nJydIWwQ3Dh8+fPvttxcWFtb7W/ox9LmuIC1pRPSdodF0hkMOGh05GH7oO0Oj6QyHHDQ6cjD8\n0HeGRtMZDjlodKGVgzboYeXKlSKyfPly+5KNGzeKyJw5c4K4VVC0ePFiEdm7d2+wNwRKSktL\n4+LisrOzCwsLY2JisrKynFagH0Oc2wrSkkZE3xkaTWcs5KDRkYNhib4zNJrOWMhBoyMHwxJ9\nZ2g0nbGQg0YXajnIR4zq4/XXX09MTPzP//xP+5IJEyZ06tTpjTfesNlsQdwwqNCm5Zs1axbs\nDYESq9V677337tmzp1OnTvWuQD+GOLcVpCWNiL4zNJrOWMhBoyMHwxJ9Z2g0nbGQg0ZHDoYl\n+s7QaDpjIQeNLtRykAlCHVy6dOnAgQNXX311TEyM4/J+/fr98ccfJ06cCNaGQZG962pqav75\nz3+eOXMm2FsEV1q0aLFixYqoqKh6f0s/hj7XFRRa0oDoO6Oj6YyFHDQ6cjD80HdGR9MZCzlo\ndORg+KHvjI6mMxZy0OhCLQeZINTBL7/8UlNTk5qa6rS8Q4cOInL8+PFgbBQ8UFpaKiLPPfdc\ny5YtU1NTW7Zs2bVr1zfffDPY2wVv0I9hgJY0HPrO6Gi6cEI/hgFa0nDoO6Oj6cIJ/RgGaEnD\noe+MjqYLJ/RjGAhwS0b6aVxTKSsrE5GEhASn5Y0bN7b/FqFMm5Z/66235s2bd9lllx0+fHjV\nqlVTpkwpKyubMWNGsLcOnqEfwwAtaTj0ndHRdOGEfgwDtKTh0HdGR9OFE/oxDNCShkPfGR1N\nF07oxzAQ4JZkglA3FovFaYn2qb51lyPUPPLII7NmzbrhhhvsR8/bb789MzNzwYIFd911V3R0\ndHA3D16gHw2NljQo+s64aLrwQz8aGi1pUPSdcdF04Yd+NDRa0qDoO+Oi6cIP/WhoAW5JPmJU\nB02aNJH6ZuDPnz8vIomJiUHYJnjiuuuuGz9+vON7K9LT00eOHPm///u/+/fvD+KGwQv0Yxig\nJQ2HvjM6mi6c0I9hgJY0HPrO6Gi6cEI/hgFa0nDoO6Oj6cIJ/RgGAtySTBDqoH379pGRkUVF\nRU7Ljx07JiKdO3cOxkbBV61atRKRCxcuBHtD4Bn6MVzRkqGMvgtLNJ1B0Y/hipYMZfRdWKLp\nDIp+DFe0ZCij78ISTWdQ9GO48l9LMkGog+jo6KysrK+//rq8vNy+sLa2dufOnampqe3btw/i\ntsGtCxcurF69+q233nJafujQIfnXN7jCQOhHo6MljYi+MzSaLszQj0ZHSxoRfWdoNF2YoR+N\njpY0IvrO0Gi6MEM/Gl3gW5IJQn3cfffd5eXlzzzzjH3J2rVrf/vtt+nTpwdxq6AiPj5+6dKl\neXl5P/74o33h3/72t127dvXu3fuKK64I4rbBO/SjodGSBkXfGRdNF37oR0OjJQ2KvjMumi78\n0I+GRksaFH1nXDRd+KEfDS3wLWnRvqASPqqpqRk8ePDnn39+4403ZmZmHj58eOPGjRkZGV9+\n+WV8fHywtw5uvPfeezfddFN8fPykSZPatm178ODBLVu2JCYmFhQUZGZmBnvr4Gznzp3btm3T\n/n/FihUtW7bMzc3VfnzooYeSkpLoxxDntoK0pBHRd4ZG0xkLOWh05GBYou8MjaYzFnLQ6MjB\nsETfGRpNZyzkoNGFXA7aoJOysrK5c+d26NAhKirqsssuu++++0pKSoK9UVC1Z8+eESNGNGvW\nLDIysm3btlOnTi0sLAz2RqF+Tz31VEMHNHvV6MdQplJBWtKI6DtDo+kMhBw0OnIwXNF3hkbT\nGQg5aHTkYLii7wyNpjMQctDoQi0H+QtCAAAAAAAAAAAAwET4DkIAAAAAAAAAAADARJggBAAA\nAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAAAAAAAAAAAEyECUIAAAAAAAAAAADARJggBAAA\nAAAAAAAAAEyECUIAAAAAAAAAAADARJggBMLNc889Z7FYpk+fHuwNAQAgCMhBAICZkYMAADMj\nBwGPMEEIGMOyZcssCm644YZgbykAAPojBwEAZkYOAgDMjBwE/CQy2BsAQElSUlLXrl0dlxw9\netRms3Xo0CE2Nta+MDU19T/+4z9mzpwZGUl3AwDCBzkIADAzchAAYGbkIOAnFpvNFuxtAOCN\n2NjYysrKvXv3ZmdnB3tbAAAINHIQAGBm5CAAwMzIQUAXfMQoAAAAAAAAAAAAYCJMEALhxunL\neF988UWLxbJ48eIzZ85MmzatTZs2CQkJWVlZW7duFZHS0tJZs2alpqbGxMR07dr1lVdecRpt\n9+7d48ePT0lJiY6OTklJGT9+/J49ewL9lAAAUEYOAgDMjBwEAJgZOQh4hAlCIMxpn8R97ty5\nESNG7N69Oycnp3379t9+++3NN9+8b9++YcOGbd68OTMzMyMj4+jRo3l5ee+//779365du3bA\ngAFbtmzp3r17bm5uWlra5s2b+/Xrt27duuA9IQAAPEAOAgDMjBwEAJgZOQi4xgQhEOa0b+V9\n4403unbteujQofz8/IMHDw4dOrS6unr06NHNmzcvLCz829/+9s0339x1110i8tprr2n/8MiR\nI7NmzYqMjNy+ffs//vGPV155paCg4MMPP4yMjLzvvvt+/vnnYD4rAADUkIMAADMjBwEAZkYO\nAq4xQQiEOYvFIiIVFRXPPfecFooRERF33HGHiBQXFz///PPx8fHamnfeeaeIHD58WPtx1apV\n1dXVeXl5Q4cOtY92ww035ObmXrp06dVXXw3s8wAAwBvkIADAzMhBAICZkYOAa0wQAqbQs2fP\n5ORk+4+XXXaZiKSkpHTt2tVpYVlZmfbjp59+KiKjR492GmrEiBEi8tlnn/l5kwEA0A05CAAw\nM3IQAGBm5CDQkMhgbwCAQGjXrp3jjxERESLStm3bugtra2u1H0+ePCkiq1ateuuttxxXO3Pm\njIgcP37cj5sLAICuyEEAgJmRgwAAMyMHgYYwQQiYQlRUVN2F2l/W18tms128eFFEHL+b15H9\nDTUAAIQ+chAAYGbkIADAzMhBoCF8xCiAelgsloSEBBH55ptvbPXR3i8DAEBYIgcBAGZGDgIA\nzIwchHkwQQigfldccYWIFBUVBXtDAAAIAnIQAGBm5CAAwMzIQZgEE4QA6jd48GAR2bRpk9Py\nI0eObNu2raKiIhgbBQBAgJCDAAAzIwcBAGZGDsIkmCAEUL+ZM2dGRUXl5+f/93//t33hH3/8\nMWnSpJEjR77zzjtB3DYAAPyNHAQAmBk5CAAwM3IQJsEEIYD6paWlvfjiizU1NbfddtvAgQOn\nTZs2ZsyYyy+//LvvvpsyZcptt90W7GjdTtcAAAEkSURBVA0EAMCPyEEAgJmRgwAAMyMHYRKR\nwd4AAKFrxowZPXr0ePbZZ3fv3r1nz574+PjevXvfeeed06ZNa9SItxcAAMIcOQgAMDNyEABg\nZuQgzMBis9mCvQ0AAAAAAAAAAAAAAoS5bgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAA\nAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAA\nAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAA\nAAAAAAAAAMBEmCAEAAAAAAAAAAAATIQJQgAAAAAAAAAAAMBEmCAEAAAAAAAAAAAATOT/AjlS\nTSScJgIJAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 1500, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plots_km" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Competing Events" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "competing_endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fit5 <- survfit(Surv(CompetingEvents_event_time, CompetingEvents_event, type = \"mstate\") ~ 1, data = data)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "options(repr.plot.width=10, repr.plot.height=10)\n", - "ggcompetingrisks(fit5, palette = \"jco\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ggsurvplot(fit5,data, conf.int = TRUE, ylim = c(0.70,1), cumevents=TRUE, cumevents.y.text = FALSE)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.3" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": true - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization_lifetime.ipynb b/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization_lifetime.ipynb deleted file mode 100644 index 6a80897..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/5_dataset_visualization_lifetime.ipynb +++ /dev/null @@ -1,3837 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Exploration" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:53.068218Z", - "start_time": "2020-11-04T14:16:47.983Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "-- \u001b[1mAttaching packages\u001b[22m --------------------------------------- tidyverse 1.3.0 --\n", - "\n", - "\u001b[32mv\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.2 \u001b[32mv\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", - "\u001b[32mv\u001b[39m \u001b[34mtibble \u001b[39m 3.0.3 \u001b[32mv\u001b[39m \u001b[34mdplyr \u001b[39m 1.0.2\n", - "\u001b[32mv\u001b[39m \u001b[34mtidyr \u001b[39m 1.1.2 \u001b[32mv\u001b[39m \u001b[34mstringr\u001b[39m 1.4.0\n", - "\u001b[32mv\u001b[39m \u001b[34mreadr \u001b[39m 1.3.1 \u001b[32mv\u001b[39m \u001b[34mforcats\u001b[39m 0.5.0\n", - "\n", - "-- \u001b[1mConflicts\u001b[22m ------------------------------------------ tidyverse_conflicts() --\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\n", - "\n", - "Attaching package: 'lubridate'\n", - "\n", - "\n", - "The following objects are masked from 'package:base':\n", - "\n", - " date, intersect, setdiff, union\n", - "\n", - "\n", - "\n", - "Attaching package: 'glue'\n", - "\n", - "\n", - "The following object is masked from 'package:dplyr':\n", - "\n", - " collapse\n", - "\n", - "\n", - "\n", - "Attaching package: 'cowplot'\n", - "\n", - "\n", - "The following object is masked from 'package:lubridate':\n", - "\n", - " stamp\n", - "\n", - "\n", - "Loading required package: ggpubr\n", - "\n", - "\n", - "Attaching package: 'ggpubr'\n", - "\n", - "\n", - "The following object is masked from 'package:cowplot':\n", - "\n", - " get_legend\n", - "\n", - "\n", - "\n", - "Attaching package: 'arsenal'\n", - "\n", - "\n", - "The following object is masked from 'package:lubridate':\n", - "\n", - " is.Date\n", - "\n", - "\n" - ] - } - ], - "source": [ - "try(library(tidyverse), silent=TRUE)\n", - "library(lubridate)\n", - "library(glue)\n", - "library(cowplot)\n", - "library(survminer)\n", - "library(survival)\n", - "library(ggsci)\n", - "library(arsenal)\n", - "library(yaml)\n", - "\n", - "#setwd(\"/\")\n", - "#path = \"/home/steinfej/projects/uk_biobank/\"\n", - "#dataset_path = \"data/datasets/cvd_big_excl\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:53.090072Z", - "start_time": "2020-11-04T14:16:48.270Z" - } - }, - "outputs": [], - "source": [ - "dataset_name = \"cvd_massive_from_birth\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = glue(\"{data_path}/2_datasets_pre/{dataset_name}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:57.477187Z", - "start_time": "2020-11-04T14:16:49.046Z" - } - }, - "outputs": [], - "source": [ - "data = arrow::read_feather(glue(\"{dataset_path}/baseline.feather\")) \n", - "data_description = arrow::read_feather(glue(\"{dataset_path}/baseline_description.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:57.520779Z", - "start_time": "2020-11-04T14:16:50.668Z" - } - }, - "outputs": [], - "source": [ - "phenotypes = names(read_yaml(glue(\"{dataset_path}/phenotype_list.yaml\")))\n", - "family_history = names(read_yaml(glue(\"{dataset_path}/fh_list.yaml\")))\n", - "medications = names(read_yaml(glue(\"{dataset_path}/medication_list.yaml\")))\n", - "endpoints_ph = names(read_yaml(glue(\"{dataset_path}/endpoint_list.yaml\")))\n", - "endpoints_death = names(read_yaml(glue(\"{dataset_path}/death_list.yaml\")))\n", - "endpoints_scores = names(read_yaml(glue(\"{dataset_path}/scores_list.yaml\")))\n", - "endpoints = c(endpoints_ph, endpoints_death, endpoints_scores)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:58.275310Z", - "start_time": "2020-11-04T14:16:57.351Z" - } - }, - "outputs": [], - "source": [ - "covariates = (data_description %>% filter(isTarget==FALSE) %>% filter(based_on!=\"PGS\"))$covariate[-1]\n", - "targets = (data_description %>% filter(isTarget==TRUE))$covariate[-1]\n", - "pgs = (data_description %>% filter(isTarget==FALSE) %>% filter(based_on==\"PGS\") %>% filter(!dtype==\"Date\"))$covariate" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:58.756284Z", - "start_time": "2020-11-04T14:16:57.831Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'age_at_recruitment'
  2. 'sex'
  3. 'ethnic_background'
  4. 'townsend_deprivation_index_at_recruitment'
  5. 'overall_health_rating'
  6. 'smoking_status'
  7. 'alcohol_intake_frequency'
  8. 'body_mass_index_bmi'
  9. 'weight'
  10. 'pulse_wave_arterial_stiffness_index'
  11. 'pulse_wave_reflection_index'
  12. 'waist_circumference'
  13. 'hip_circumference'
  14. 'standing_height'
  15. 'trunk_fat_percentage'
  16. 'body_fat_percentage'
  17. 'basal_metabolic_rate'
  18. 'forced_vital_capacity_fvc_best_measure'
  19. 'forced_expiratory_volume_in_1second_fev1_best_measure'
  20. 'fev1_fvc_ratio_zscore'
  21. 'peak_expiratory_flow_pef_f3064_0_2'
  22. 'peak_expiratory_flow_pef_f3064_0_1'
  23. 'peak_expiratory_flow_pef'
  24. 'systolic_blood_pressure'
  25. 'diastolic_blood_pressure'
  26. 'pulse_rate'
  27. 'basophill_count'
  28. 'basophill_percentage'
  29. 'eosinophill_count'
  30. 'eosinophill_percentage'
  31. 'haematocrit_percentage'
  32. 'haemoglobin_concentration'
  33. 'high_light_scatter_reticulocyte_count'
  34. 'high_light_scatter_reticulocyte_percentage'
  35. 'immature_reticulocyte_fraction'
  36. 'lymphocyte_count'
  37. 'lymphocyte_percentage'
  38. 'mean_corpuscular_haemoglobin'
  39. 'mean_corpuscular_haemoglobin_concentration'
  40. 'mean_corpuscular_volume'
  41. 'mean_platelet_thrombocyte_volume'
  42. 'mean_reticulocyte_volume'
  43. 'mean_sphered_cell_volume'
  44. 'monocyte_count'
  45. 'monocyte_percentage'
  46. 'neutrophill_count'
  47. 'neutrophill_percentage'
  48. 'nucleated_red_blood_cell_count'
  49. 'nucleated_red_blood_cell_percentage'
  50. 'platelet_count'
  51. 'platelet_crit'
  52. 'platelet_distribution_width'
  53. 'red_blood_cell_erythrocyte_count'
  54. 'red_blood_cell_erythrocyte_distribution_width'
  55. 'reticulocyte_count'
  56. 'reticulocyte_percentage'
  57. 'white_blood_cell_leukocyte_count'
  58. 'alanine_aminotransferase'
  59. 'albumin'
  60. 'alkaline_phosphatase'
  61. 'apolipoprotein_a'
  62. 'apolipoprotein_b'
  63. 'aspartate_aminotransferase'
  64. 'creactive_protein'
  65. 'calcium'
  66. 'cholesterol'
  67. 'creatinine'
  68. 'cystatin_c'
  69. 'direct_bilirubin'
  70. 'gamma_glutamyltransferase'
  71. 'glucose'
  72. 'glycated_haemoglobin_hba1c'
  73. 'hdl_cholesterol'
  74. 'igf1'
  75. 'ldl_direct'
  76. 'lipoprotein_a'
  77. 'oestradiol'
  78. 'phosphate'
  79. 'rheumatoid_factor'
  80. 'shbg'
  81. 'testosterone'
  82. 'total_bilirubin'
  83. 'total_protein'
  84. 'triglycerides'
  85. 'urate'
  86. 'urea'
  87. 'vitamin_d'
  88. 'fh_alzheimer\\'s_disease/dementia'
  89. 'fh_bowel_cancer'
  90. 'fh_breast_cancer'
  91. 'fh_chronic_bronchitis/emphysema'
  92. 'fh_diabetes'
  93. 'fh_heart_disease'
  94. 'fh_high_blood_pressure'
  95. 'fh_lung_cancer'
  96. 'fh_parkinson\\'s_disease'
  97. 'fh_severe_depression'
  98. 'fh_stroke'
  99. 'coronary_heart_disease'
  100. 'myocardial_infarction'
  101. 'stroke'
  102. 'diabetes1'
  103. 'diabetes2'
  104. 'chronic_kidney_disease'
  105. 'atrial_fibrillation'
  106. 'migraine'
  107. 'rheumatoid_arthritis'
  108. 'systemic_lupus_erythematosus'
  109. 'severe_mental_illness'
  110. 'erectile_dysfunction'
  111. 'hypertensive_disorder_systemic_arterial'
  112. 'hyperlipidemia'
  113. 'depressive_disorder'
  114. 'gastroesophageal_reflux_disease'
  115. 'diabetes_mellitus_type_2'
  116. 'essential_hypertension'
  117. 'obesity'
  118. 'diabetes_mellitus'
  119. 'asthma'
  120. 'coronary_arteriosclerosis'
  121. 'allergic_rhinitis'
  122. 'hypothyroidism'
  123. 'upper_respiratory_infection'
  124. 'hypercholesterolemia'
  125. 'backache'
  126. 'abdominal_pain'
  127. 'osteoarthritis'
  128. 'low_back_pain'
  129. 'anemia'
  130. 'anxiety'
  131. 'urinary_tract_infectious_disease'
  132. 'chronic_obstructive_lung_disease'
  133. 'pneumonia'
  134. 'chest_pain'
  135. 'congestive_heart_failure'
  136. 'headache'
  137. 'pregnant'
  138. 'knee_pain'
  139. 'osteoporosis'
  140. 'polyp_of_colon'
  141. 'otitis_media'
  142. 'sinusitis'
  143. 'cough'
  144. 'sleep_apnea'
  145. 'insomnia'
  146. 'inflammatory_disorder_due_to_increased_blood_urate_level'
  147. 'tobacco_dependence_syndrome'
  148. 'malignant_tumor_of_prostate'
  149. 'constipation'
  150. 'hearing_loss'
  151. 'fatigue'
  152. 'obstructive_sleep_apnea_syndrome'
  153. 'malignant_neoplasm_of_breast'
  154. 'delivery_normal'
  155. 'irritable_bowel_syndrome'
  156. 'tobacco_user'
  157. 'neck_pain'
  158. 'cerebrovascular_accident'
  159. 'asthenia'
  160. 'shoulder_pain'
  161. 'acne_vulgaris'
  162. 'benign_prostatic_hyperplasia'
  163. 'dyspnea'
  164. 'carpal_tunnel_syndrome'
  165. 'bronchitis'
  166. 'pharyngitis'
  167. 'arthritis'
  168. 'diarrhea'
  169. 'dizziness'
  170. 'alcohol_abuse'
  171. 'dementia'
  172. 'eczema'
  173. 'syncope'
  174. 'acute_sinusitis'
  175. 'iron_deficiency_anemia'
  176. 'allergic_rhinitis_caused_by_pollen'
  177. 'gastritis'
  178. 'cataract'
  179. 'hematuria_syndrome'
  180. 'disorder_of_the_peripheral_nervous_system'
  181. 'viral_hepatitis_type_c'
  182. 'palpitations'
  183. 'eruption_of_skin'
  184. 'diabetes_mellitus_type_1'
  185. 'renal_failure_syndrome'
  186. 'peripheral_vascular_disease'
  187. 'hyperglycemia'
  188. 'seizure_disorder'
  189. 'fever'
  190. 'osteoarthritis_of_knee'
  191. 'actinic_keratosis'
  192. 'urinary_incontinence'
  193. 'hemorrhoids'
  194. 'seizure'
  195. 'laceration_-_injury'
  196. 'glaucoma'
  197. 'body_mass_index_30+_-_obesity'
  198. 'breast_lump'
  199. 'viral_disease'
  200. 'abnormal_cervical_smear'
  201. 'viral_exanthem'
  202. 'talipes_planus'
  203. 'idiopathic_peripheral_neuropathy'
  204. 'foreign_body_in_pharynx'
  205. 'jaw_pain'
  206. 'renal_impairment'
  207. 'ataxia'
  208. 'age-related_macular_degeneration'
  209. 'uterine_prolapse'
  210. 'renal_mass'
  211. 'pneumonitis'
  212. 'coordination_problem'
  213. 'blindness_-_both_eyes'
  214. 'primary_hyperparathyroidism'
  215. 'musculoskeletal_pain'
  216. 'mycosis'
  217. 'primigravida'
  218. 'urethral_stricture'
  219. 'leukocytosis'
  220. 'ventricular_premature_complex'
  221. 'ulcer_of_foot_due_to_diabetes_mellitus'
  222. 'chronic_headache_disorder'
  223. 'hemangioma'
  224. 'lymphedema'
  225. 'postmenopausal_state'
  226. 'chronic_ulcer_of_skin'
  227. 'left_heart_failure'
  228. 'excessive_and_frequent_menstruation'
  229. 'thrombocytosis'
  230. 'disorder_of_liver'
  231. 'disorder_of_carotid_artery'
  232. 'altered_bowel_function'
  233. 'abscess_of_foot'
  234. 'malignant_tumor_of_head_and/or_neck'
  235. 'streptococcus_group_b_infection_of_the_infant'
  236. 'concussion_injury_of_brain'
  237. 'feeding_problems_in_newborn'
  238. 'bipolar_i_disorder'
  239. 'viral_pharyngitis'
  240. 'lower_respiratory_tract_infection'
  241. 'hydronephrosis'
  242. 'borderline_personality_disorder'
  243. 'esophageal_varices'
  244. 'hypersomnia'
  245. 'sensorineural_hearing_loss_bilateral'
  246. 'varicocele'
  247. 'subarachnoid_intracranial_hemorrhage'
  248. 'incisional_hernia'
  249. 'varicella'
  250. 'pain_in_testicle'
  251. 'transplant_follow-up'
  252. 'tinea_cruris'
  253. 'laryngitis'
  254. 'hypertrophy_of_nail'
  255. 'amblyopia'
  256. 'polyp_of_cervix'
  257. 'cyst_of_kidney'
  258. 'hepatic_encephalopathy'
  259. 'blood_glucose_abnormal'
  260. 'postherpetic_neuralgia'
  261. 'frank_hematuria'
  262. 'cramp'
  263. 'interstitial_lung_disease'
  264. 'complete_atrioventricular_block'
  265. 'malignant_tumor_of_kidney'
  266. 'otitis'
  267. 'septic_shock'
  268. 'disorder_of_thyroid_gland'
  269. 'hypertrophic_cardiomyopathy'
  270. 'respiratory_distress_syndrome_in_the_newborn'
  271. 'infectious_gastroenteritis'
  272. 'subdural_intracranial_hemorrhage'
  273. 'hepatitis_b_carrier'
  274. 'manic_bipolar_i_disorder'
  275. 'secondary_pulmonary_hypertension'
  276. 'gonorrhea'
  277. 'derangement_of_knee'
  278. 'appendicitis'
  279. 'polyneuropathy_due_to_diabetes_mellitus'
  280. 'neonatal_hypoglycemia'
  281. 'prolonged_rupture_of_membranes'
  282. 'vasomotor_rhinitis'
  283. 'renal_disorder_due_to_type_1_diabetes_mellitus'
  284. 'tuberculosis'
  285. 'feeding_problem'
  286. 'chronic_tonsillitis'
  287. 'acute_duodenal_ulcer_with_hemorrhage'
  288. 'hammer_toe'
  289. 'malignant_tumor_of_cervix'
  290. 'prolapsed_lumbar_intervertebral_disc'
  291. 'hematemesis'
  292. 'perianal_abscess'
  293. 'nonvenomous_insect_bite'
  294. 'spondylolisthesis'
  295. 'malignant_tumor_of_esophagus'
  296. 'aphthous_ulcer_of_mouth'
  297. 'ventricular_septal_defect'
  298. 'oropharyngeal_dysphagia'
  299. 'injury_of_knee'
  300. 'traumatic_brain_injury'
  301. 'osteoarthritis_of_glenohumeral_joint'
  302. 'fetal_or_neonatal_effect_of_maternal_medical_problem'
  303. 'stomatological_preparations'
  304. 'drugs_for_acid_related_disorders'
  305. 'drugs_for_functional_gastrointestinal_disorders'
  306. 'antiemetics_and_antinauseants'
  307. 'bile_and_liver_therapy'
  308. 'drugs_for_constipation'
  309. 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents'
  310. 'antiobesity_preparations,_excl._diet_products'
  311. 'digestives,_incl._enzymes'
  312. 'drugs_used_in_diabetes'
  313. 'vitamins'
  314. 'mineral_supplements'
  315. 'tonics'
  316. 'anabolic_agents_for_systemic_use'
  317. 'appetite_stimulants'
  318. 'other_alimentary_tract_and_metabolism_products'
  319. 'antithrombotic_agents'
  320. 'antihemorrhagics'
  321. 'antianemic_preparations'
  322. 'blood_substitutes_and_perfusion_solutions'
  323. 'other_hematological_agents'
  324. 'cardiac_therapy'
  325. 'antihypertensives'
  326. 'diuretics'
  327. 'peripheral_vasodilators'
  328. 'vasoprotectives'
  329. 'beta_blocking_agents'
  330. 'calcium_channel_blockers'
  331. 'agents_acting_on_the_renin-angiotensin_system'
  332. 'lipid_modifying_agents'
  333. 'antifungals_for_dermatological_use'
  334. 'emollients_and_protectives'
  335. 'preparations_for_treatment_of_wounds_and_ulcers'
  336. 'antipruritics,_incl._antihistamines,_anesthetics,_etc.'
  337. 'antipsoriatics'
  338. 'antibiotics_and_chemotherapeutics_for_dermatological_use'
  339. 'corticosteroids,_dermatological_preparations'
  340. 'antiseptics_and_disinfectants'
  341. 'medicated_dressings'
  342. 'anti-acne_preparations'
  343. 'other_dermatological_preparations'
  344. 'gynecological_antiinfectives_and_antiseptics'
  345. 'other_gynecologicals'
  346. 'sex_hormones_and_modulators_of_the_genital_system'
  347. 'urologicals'
  348. 'pituitary_and_hypothalamic_hormones_and_analogues'
  349. 'corticosteroids_for_systemic_use'
  350. 'thyroid_therapy'
  351. 'pancreatic_hormones'
  352. 'calcium_homeostasis'
  353. 'antibacterials_for_systemic_use'
  354. 'antimycotics_for_systemic_use'
  355. 'antimycobacterials'
  356. 'antivirals_for_systemic_use'
  357. 'immune_sera_and_immunoglobulins'
  358. 'vaccines'
  359. 'antineoplastic_agents'
  360. 'endocrine_therapy'
  361. 'immunostimulants'
  362. 'immunosuppressants'
  363. 'antiinflammatory_and_antirheumatic_products'
  364. 'topical_products_for_joint_and_muscular_pain'
  365. 'muscle_relaxants'
  366. 'antigout_preparations'
  367. 'drugs_for_treatment_of_bone_diseases'
  368. 'other_drugs_for_disorders_of_the_musculo-skeletal_system'
  369. 'anesthetics'
  370. 'analgesics'
  371. 'antiepileptics'
  372. 'anti-parkinson_drugs'
  373. 'psycholeptics'
  374. 'psychoanaleptics'
  375. 'other_nervous_system_drugs'
  376. 'antiprotozoals'
  377. 'anthelmintics'
  378. 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents'
  379. 'nasal_preparations'
  380. 'throat_preparations'
  381. 'drugs_for_obstructive_airway_diseases'
  382. 'cough_and_cold_preparations'
  383. 'antihistamines_for_systemic_use'
  384. 'other_respiratory_system_products'
  385. 'ophthalmologicals'
  386. 'otologicals'
  387. 'ophthalmological_and_otological_preparations'
  388. 'allergens'
  389. 'all_other_therapeutic_products'
  390. 'diagnostic_agents'
  391. 'general_nutrients'
  392. 'all_other_non-therapeutic_products'
  393. 'contrast_media'
  394. 'diagnostic_radiopharmaceuticals'
  395. 'therapeutic_radiopharmaceuticals'
  396. 'surgical_dressings'
  397. 'statins'
  398. 'ass'
  399. 'atypical_antipsychotics'
  400. 'glucocorticoids'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'age\\_at\\_recruitment'\n", - "\\item 'sex'\n", - "\\item 'ethnic\\_background'\n", - "\\item 'townsend\\_deprivation\\_index\\_at\\_recruitment'\n", - "\\item 'overall\\_health\\_rating'\n", - "\\item 'smoking\\_status'\n", - "\\item 'alcohol\\_intake\\_frequency'\n", - "\\item 'body\\_mass\\_index\\_bmi'\n", - "\\item 'weight'\n", - "\\item 'pulse\\_wave\\_arterial\\_stiffness\\_index'\n", - "\\item 'pulse\\_wave\\_reflection\\_index'\n", - "\\item 'waist\\_circumference'\n", - "\\item 'hip\\_circumference'\n", - "\\item 'standing\\_height'\n", - "\\item 'trunk\\_fat\\_percentage'\n", - "\\item 'body\\_fat\\_percentage'\n", - "\\item 'basal\\_metabolic\\_rate'\n", - "\\item 'forced\\_vital\\_capacity\\_fvc\\_best\\_measure'\n", - "\\item 'forced\\_expiratory\\_volume\\_in\\_1second\\_fev1\\_best\\_measure'\n", - "\\item 'fev1\\_fvc\\_ratio\\_zscore'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef\\_f3064\\_0\\_2'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef\\_f3064\\_0\\_1'\n", - "\\item 'peak\\_expiratory\\_flow\\_pef'\n", - "\\item 'systolic\\_blood\\_pressure'\n", - "\\item 'diastolic\\_blood\\_pressure'\n", - "\\item 'pulse\\_rate'\n", - "\\item 'basophill\\_count'\n", - "\\item 'basophill\\_percentage'\n", - "\\item 'eosinophill\\_count'\n", - "\\item 'eosinophill\\_percentage'\n", - "\\item 'haematocrit\\_percentage'\n", - "\\item 'haemoglobin\\_concentration'\n", - "\\item 'high\\_light\\_scatter\\_reticulocyte\\_count'\n", - "\\item 'high\\_light\\_scatter\\_reticulocyte\\_percentage'\n", - "\\item 'immature\\_reticulocyte\\_fraction'\n", - "\\item 'lymphocyte\\_count'\n", - "\\item 'lymphocyte\\_percentage'\n", - "\\item 'mean\\_corpuscular\\_haemoglobin'\n", - "\\item 'mean\\_corpuscular\\_haemoglobin\\_concentration'\n", - "\\item 'mean\\_corpuscular\\_volume'\n", - "\\item 'mean\\_platelet\\_thrombocyte\\_volume'\n", - "\\item 'mean\\_reticulocyte\\_volume'\n", - "\\item 'mean\\_sphered\\_cell\\_volume'\n", - "\\item 'monocyte\\_count'\n", - "\\item 'monocyte\\_percentage'\n", - "\\item 'neutrophill\\_count'\n", - "\\item 'neutrophill\\_percentage'\n", - "\\item 'nucleated\\_red\\_blood\\_cell\\_count'\n", - "\\item 'nucleated\\_red\\_blood\\_cell\\_percentage'\n", - "\\item 'platelet\\_count'\n", - "\\item 'platelet\\_crit'\n", - "\\item 'platelet\\_distribution\\_width'\n", - "\\item 'red\\_blood\\_cell\\_erythrocyte\\_count'\n", - "\\item 'red\\_blood\\_cell\\_erythrocyte\\_distribution\\_width'\n", - "\\item 'reticulocyte\\_count'\n", - "\\item 'reticulocyte\\_percentage'\n", - "\\item 'white\\_blood\\_cell\\_leukocyte\\_count'\n", - "\\item 'alanine\\_aminotransferase'\n", - "\\item 'albumin'\n", - "\\item 'alkaline\\_phosphatase'\n", - "\\item 'apolipoprotein\\_a'\n", - "\\item 'apolipoprotein\\_b'\n", - "\\item 'aspartate\\_aminotransferase'\n", - "\\item 'creactive\\_protein'\n", - "\\item 'calcium'\n", - "\\item 'cholesterol'\n", - "\\item 'creatinine'\n", - "\\item 'cystatin\\_c'\n", - "\\item 'direct\\_bilirubin'\n", - "\\item 'gamma\\_glutamyltransferase'\n", - "\\item 'glucose'\n", - "\\item 'glycated\\_haemoglobin\\_hba1c'\n", - "\\item 'hdl\\_cholesterol'\n", - "\\item 'igf1'\n", - "\\item 'ldl\\_direct'\n", - "\\item 'lipoprotein\\_a'\n", - "\\item 'oestradiol'\n", - "\\item 'phosphate'\n", - "\\item 'rheumatoid\\_factor'\n", - "\\item 'shbg'\n", - "\\item 'testosterone'\n", - "\\item 'total\\_bilirubin'\n", - "\\item 'total\\_protein'\n", - "\\item 'triglycerides'\n", - "\\item 'urate'\n", - "\\item 'urea'\n", - "\\item 'vitamin\\_d'\n", - "\\item 'fh\\_alzheimer\\textbackslash{}'s\\_disease/dementia'\n", - "\\item 'fh\\_bowel\\_cancer'\n", - "\\item 'fh\\_breast\\_cancer'\n", - "\\item 'fh\\_chronic\\_bronchitis/emphysema'\n", - "\\item 'fh\\_diabetes'\n", - "\\item 'fh\\_heart\\_disease'\n", - "\\item 'fh\\_high\\_blood\\_pressure'\n", - "\\item 'fh\\_lung\\_cancer'\n", - "\\item 'fh\\_parkinson\\textbackslash{}'s\\_disease'\n", - "\\item 'fh\\_severe\\_depression'\n", - "\\item 'fh\\_stroke'\n", - "\\item 'coronary\\_heart\\_disease'\n", - "\\item 'myocardial\\_infarction'\n", - "\\item 'stroke'\n", - "\\item 'diabetes1'\n", - "\\item 'diabetes2'\n", - "\\item 'chronic\\_kidney\\_disease'\n", - "\\item 'atrial\\_fibrillation'\n", - "\\item 'migraine'\n", - "\\item 'rheumatoid\\_arthritis'\n", - "\\item 'systemic\\_lupus\\_erythematosus'\n", - "\\item 'severe\\_mental\\_illness'\n", - "\\item 'erectile\\_dysfunction'\n", - "\\item 'hypertensive\\_disorder\\_systemic\\_arterial'\n", - "\\item 'hyperlipidemia'\n", - "\\item 'depressive\\_disorder'\n", - "\\item 'gastroesophageal\\_reflux\\_disease'\n", - "\\item 'diabetes\\_mellitus\\_type\\_2'\n", - "\\item 'essential\\_hypertension'\n", - "\\item 'obesity'\n", - "\\item 'diabetes\\_mellitus'\n", - "\\item 'asthma'\n", - "\\item 'coronary\\_arteriosclerosis'\n", - "\\item 'allergic\\_rhinitis'\n", - "\\item 'hypothyroidism'\n", - "\\item 'upper\\_respiratory\\_infection'\n", - "\\item 'hypercholesterolemia'\n", - "\\item 'backache'\n", - "\\item 'abdominal\\_pain'\n", - "\\item 'osteoarthritis'\n", - "\\item 'low\\_back\\_pain'\n", - "\\item 'anemia'\n", - "\\item 'anxiety'\n", - "\\item 'urinary\\_tract\\_infectious\\_disease'\n", - "\\item 'chronic\\_obstructive\\_lung\\_disease'\n", - "\\item 'pneumonia'\n", - "\\item 'chest\\_pain'\n", - "\\item 'congestive\\_heart\\_failure'\n", - "\\item 'headache'\n", - "\\item 'pregnant'\n", - "\\item 'knee\\_pain'\n", - "\\item 'osteoporosis'\n", - "\\item 'polyp\\_of\\_colon'\n", - "\\item 'otitis\\_media'\n", - "\\item 'sinusitis'\n", - "\\item 'cough'\n", - "\\item 'sleep\\_apnea'\n", - "\\item 'insomnia'\n", - "\\item 'inflammatory\\_disorder\\_due\\_to\\_increased\\_blood\\_urate\\_level'\n", - "\\item 'tobacco\\_dependence\\_syndrome'\n", - "\\item 'malignant\\_tumor\\_of\\_prostate'\n", - "\\item 'constipation'\n", - "\\item 'hearing\\_loss'\n", - "\\item 'fatigue'\n", - "\\item 'obstructive\\_sleep\\_apnea\\_syndrome'\n", - "\\item 'malignant\\_neoplasm\\_of\\_breast'\n", - "\\item 'delivery\\_normal'\n", - "\\item 'irritable\\_bowel\\_syndrome'\n", - "\\item 'tobacco\\_user'\n", - "\\item 'neck\\_pain'\n", - "\\item 'cerebrovascular\\_accident'\n", - "\\item 'asthenia'\n", - "\\item 'shoulder\\_pain'\n", - "\\item 'acne\\_vulgaris'\n", - "\\item 'benign\\_prostatic\\_hyperplasia'\n", - "\\item 'dyspnea'\n", - "\\item 'carpal\\_tunnel\\_syndrome'\n", - "\\item 'bronchitis'\n", - "\\item 'pharyngitis'\n", - "\\item 'arthritis'\n", - "\\item 'diarrhea'\n", - "\\item 'dizziness'\n", - "\\item 'alcohol\\_abuse'\n", - "\\item 'dementia'\n", - "\\item 'eczema'\n", - "\\item 'syncope'\n", - "\\item 'acute\\_sinusitis'\n", - "\\item 'iron\\_deficiency\\_anemia'\n", - "\\item 'allergic\\_rhinitis\\_caused\\_by\\_pollen'\n", - "\\item 'gastritis'\n", - "\\item 'cataract'\n", - "\\item 'hematuria\\_syndrome'\n", - "\\item 'disorder\\_of\\_the\\_peripheral\\_nervous\\_system'\n", - "\\item 'viral\\_hepatitis\\_type\\_c'\n", - "\\item 'palpitations'\n", - "\\item 'eruption\\_of\\_skin'\n", - "\\item 'diabetes\\_mellitus\\_type\\_1'\n", - "\\item 'renal\\_failure\\_syndrome'\n", - "\\item 'peripheral\\_vascular\\_disease'\n", - "\\item 'hyperglycemia'\n", - "\\item 'seizure\\_disorder'\n", - "\\item 'fever'\n", - "\\item 'osteoarthritis\\_of\\_knee'\n", - "\\item 'actinic\\_keratosis'\n", - "\\item 'urinary\\_incontinence'\n", - "\\item 'hemorrhoids'\n", - "\\item 'seizure'\n", - "\\item 'laceration\\_-\\_injury'\n", - "\\item 'glaucoma'\n", - "\\item 'body\\_mass\\_index\\_30+\\_-\\_obesity'\n", - "\\item 'breast\\_lump'\n", - "\\item 'viral\\_disease'\n", - "\\item 'abnormal\\_cervical\\_smear'\n", - "\\item ⋯\n", - "\\item 'viral\\_exanthem'\n", - "\\item 'talipes\\_planus'\n", - "\\item 'idiopathic\\_peripheral\\_neuropathy'\n", - "\\item 'foreign\\_body\\_in\\_pharynx'\n", - "\\item 'jaw\\_pain'\n", - "\\item 'renal\\_impairment'\n", - "\\item 'ataxia'\n", - "\\item 'age-related\\_macular\\_degeneration'\n", - "\\item 'uterine\\_prolapse'\n", - "\\item 'renal\\_mass'\n", - "\\item 'pneumonitis'\n", - "\\item 'coordination\\_problem'\n", - "\\item 'blindness\\_-\\_both\\_eyes'\n", - "\\item 'primary\\_hyperparathyroidism'\n", - "\\item 'musculoskeletal\\_pain'\n", - "\\item 'mycosis'\n", - "\\item 'primigravida'\n", - "\\item 'urethral\\_stricture'\n", - "\\item 'leukocytosis'\n", - "\\item 'ventricular\\_premature\\_complex'\n", - "\\item 'ulcer\\_of\\_foot\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'chronic\\_headache\\_disorder'\n", - "\\item 'hemangioma'\n", - "\\item 'lymphedema'\n", - "\\item 'postmenopausal\\_state'\n", - "\\item 'chronic\\_ulcer\\_of\\_skin'\n", - "\\item 'left\\_heart\\_failure'\n", - "\\item 'excessive\\_and\\_frequent\\_menstruation'\n", - "\\item 'thrombocytosis'\n", - "\\item 'disorder\\_of\\_liver'\n", - "\\item 'disorder\\_of\\_carotid\\_artery'\n", - "\\item 'altered\\_bowel\\_function'\n", - "\\item 'abscess\\_of\\_foot'\n", - "\\item 'malignant\\_tumor\\_of\\_head\\_and/or\\_neck'\n", - "\\item 'streptococcus\\_group\\_b\\_infection\\_of\\_the\\_infant'\n", - "\\item 'concussion\\_injury\\_of\\_brain'\n", - "\\item 'feeding\\_problems\\_in\\_newborn'\n", - "\\item 'bipolar\\_i\\_disorder'\n", - "\\item 'viral\\_pharyngitis'\n", - "\\item 'lower\\_respiratory\\_tract\\_infection'\n", - "\\item 'hydronephrosis'\n", - "\\item 'borderline\\_personality\\_disorder'\n", - "\\item 'esophageal\\_varices'\n", - "\\item 'hypersomnia'\n", - "\\item 'sensorineural\\_hearing\\_loss\\_bilateral'\n", - "\\item 'varicocele'\n", - "\\item 'subarachnoid\\_intracranial\\_hemorrhage'\n", - "\\item 'incisional\\_hernia'\n", - "\\item 'varicella'\n", - "\\item 'pain\\_in\\_testicle'\n", - "\\item 'transplant\\_follow-up'\n", - "\\item 'tinea\\_cruris'\n", - "\\item 'laryngitis'\n", - "\\item 'hypertrophy\\_of\\_nail'\n", - "\\item 'amblyopia'\n", - "\\item 'polyp\\_of\\_cervix'\n", - "\\item 'cyst\\_of\\_kidney'\n", - "\\item 'hepatic\\_encephalopathy'\n", - "\\item 'blood\\_glucose\\_abnormal'\n", - "\\item 'postherpetic\\_neuralgia'\n", - "\\item 'frank\\_hematuria'\n", - "\\item 'cramp'\n", - "\\item 'interstitial\\_lung\\_disease'\n", - "\\item 'complete\\_atrioventricular\\_block'\n", - "\\item 'malignant\\_tumor\\_of\\_kidney'\n", - "\\item 'otitis'\n", - "\\item 'septic\\_shock'\n", - "\\item 'disorder\\_of\\_thyroid\\_gland'\n", - "\\item 'hypertrophic\\_cardiomyopathy'\n", - "\\item 'respiratory\\_distress\\_syndrome\\_in\\_the\\_newborn'\n", - "\\item 'infectious\\_gastroenteritis'\n", - "\\item 'subdural\\_intracranial\\_hemorrhage'\n", - "\\item 'hepatitis\\_b\\_carrier'\n", - "\\item 'manic\\_bipolar\\_i\\_disorder'\n", - "\\item 'secondary\\_pulmonary\\_hypertension'\n", - "\\item 'gonorrhea'\n", - "\\item 'derangement\\_of\\_knee'\n", - "\\item 'appendicitis'\n", - "\\item 'polyneuropathy\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'neonatal\\_hypoglycemia'\n", - "\\item 'prolonged\\_rupture\\_of\\_membranes'\n", - "\\item 'vasomotor\\_rhinitis'\n", - "\\item 'renal\\_disorder\\_due\\_to\\_type\\_1\\_diabetes\\_mellitus'\n", - "\\item 'tuberculosis'\n", - "\\item 'feeding\\_problem'\n", - "\\item 'chronic\\_tonsillitis'\n", - "\\item 'acute\\_duodenal\\_ulcer\\_with\\_hemorrhage'\n", - "\\item 'hammer\\_toe'\n", - "\\item 'malignant\\_tumor\\_of\\_cervix'\n", - "\\item 'prolapsed\\_lumbar\\_intervertebral\\_disc'\n", - "\\item 'hematemesis'\n", - "\\item 'perianal\\_abscess'\n", - "\\item 'nonvenomous\\_insect\\_bite'\n", - "\\item 'spondylolisthesis'\n", - "\\item 'malignant\\_tumor\\_of\\_esophagus'\n", - "\\item 'aphthous\\_ulcer\\_of\\_mouth'\n", - "\\item 'ventricular\\_septal\\_defect'\n", - "\\item 'oropharyngeal\\_dysphagia'\n", - "\\item 'injury\\_of\\_knee'\n", - "\\item 'traumatic\\_brain\\_injury'\n", - "\\item 'osteoarthritis\\_of\\_glenohumeral\\_joint'\n", - "\\item 'fetal\\_or\\_neonatal\\_effect\\_of\\_maternal\\_medical\\_problem'\n", - "\\item 'stomatological\\_preparations'\n", - "\\item 'drugs\\_for\\_acid\\_related\\_disorders'\n", - "\\item 'drugs\\_for\\_functional\\_gastrointestinal\\_disorders'\n", - "\\item 'antiemetics\\_and\\_antinauseants'\n", - "\\item 'bile\\_and\\_liver\\_therapy'\n", - "\\item 'drugs\\_for\\_constipation'\n", - "\\item 'antidiarrheals,\\_intestinal\\_antiinflammatory/antiinfective\\_agents'\n", - "\\item 'antiobesity\\_preparations,\\_excl.\\_diet\\_products'\n", - "\\item 'digestives,\\_incl.\\_enzymes'\n", - "\\item 'drugs\\_used\\_in\\_diabetes'\n", - "\\item 'vitamins'\n", - "\\item 'mineral\\_supplements'\n", - "\\item 'tonics'\n", - "\\item 'anabolic\\_agents\\_for\\_systemic\\_use'\n", - "\\item 'appetite\\_stimulants'\n", - "\\item 'other\\_alimentary\\_tract\\_and\\_metabolism\\_products'\n", - "\\item 'antithrombotic\\_agents'\n", - "\\item 'antihemorrhagics'\n", - "\\item 'antianemic\\_preparations'\n", - "\\item 'blood\\_substitutes\\_and\\_perfusion\\_solutions'\n", - "\\item 'other\\_hematological\\_agents'\n", - "\\item 'cardiac\\_therapy'\n", - "\\item 'antihypertensives'\n", - "\\item 'diuretics'\n", - "\\item 'peripheral\\_vasodilators'\n", - "\\item 'vasoprotectives'\n", - "\\item 'beta\\_blocking\\_agents'\n", - "\\item 'calcium\\_channel\\_blockers'\n", - "\\item 'agents\\_acting\\_on\\_the\\_renin-angiotensin\\_system'\n", - "\\item 'lipid\\_modifying\\_agents'\n", - "\\item 'antifungals\\_for\\_dermatological\\_use'\n", - "\\item 'emollients\\_and\\_protectives'\n", - "\\item 'preparations\\_for\\_treatment\\_of\\_wounds\\_and\\_ulcers'\n", - "\\item 'antipruritics,\\_incl.\\_antihistamines,\\_anesthetics,\\_etc.'\n", - "\\item 'antipsoriatics'\n", - "\\item 'antibiotics\\_and\\_chemotherapeutics\\_for\\_dermatological\\_use'\n", - "\\item 'corticosteroids,\\_dermatological\\_preparations'\n", - "\\item 'antiseptics\\_and\\_disinfectants'\n", - "\\item 'medicated\\_dressings'\n", - "\\item 'anti-acne\\_preparations'\n", - "\\item 'other\\_dermatological\\_preparations'\n", - "\\item 'gynecological\\_antiinfectives\\_and\\_antiseptics'\n", - "\\item 'other\\_gynecologicals'\n", - "\\item 'sex\\_hormones\\_and\\_modulators\\_of\\_the\\_genital\\_system'\n", - "\\item 'urologicals'\n", - "\\item 'pituitary\\_and\\_hypothalamic\\_hormones\\_and\\_analogues'\n", - "\\item 'corticosteroids\\_for\\_systemic\\_use'\n", - "\\item 'thyroid\\_therapy'\n", - "\\item 'pancreatic\\_hormones'\n", - "\\item 'calcium\\_homeostasis'\n", - "\\item 'antibacterials\\_for\\_systemic\\_use'\n", - "\\item 'antimycotics\\_for\\_systemic\\_use'\n", - "\\item 'antimycobacterials'\n", - "\\item 'antivirals\\_for\\_systemic\\_use'\n", - "\\item 'immune\\_sera\\_and\\_immunoglobulins'\n", - "\\item 'vaccines'\n", - "\\item 'antineoplastic\\_agents'\n", - "\\item 'endocrine\\_therapy'\n", - "\\item 'immunostimulants'\n", - "\\item 'immunosuppressants'\n", - "\\item 'antiinflammatory\\_and\\_antirheumatic\\_products'\n", - "\\item 'topical\\_products\\_for\\_joint\\_and\\_muscular\\_pain'\n", - "\\item 'muscle\\_relaxants'\n", - "\\item 'antigout\\_preparations'\n", - "\\item 'drugs\\_for\\_treatment\\_of\\_bone\\_diseases'\n", - "\\item 'other\\_drugs\\_for\\_disorders\\_of\\_the\\_musculo-skeletal\\_system'\n", - "\\item 'anesthetics'\n", - "\\item 'analgesics'\n", - "\\item 'antiepileptics'\n", - "\\item 'anti-parkinson\\_drugs'\n", - "\\item 'psycholeptics'\n", - "\\item 'psychoanaleptics'\n", - "\\item 'other\\_nervous\\_system\\_drugs'\n", - "\\item 'antiprotozoals'\n", - "\\item 'anthelmintics'\n", - "\\item 'ectoparasiticides,\\_incl.\\_scabicides,\\_insecticides\\_and\\_repellents'\n", - "\\item 'nasal\\_preparations'\n", - "\\item 'throat\\_preparations'\n", - "\\item 'drugs\\_for\\_obstructive\\_airway\\_diseases'\n", - "\\item 'cough\\_and\\_cold\\_preparations'\n", - "\\item 'antihistamines\\_for\\_systemic\\_use'\n", - "\\item 'other\\_respiratory\\_system\\_products'\n", - "\\item 'ophthalmologicals'\n", - "\\item 'otologicals'\n", - "\\item 'ophthalmological\\_and\\_otological\\_preparations'\n", - "\\item 'allergens'\n", - "\\item 'all\\_other\\_therapeutic\\_products'\n", - "\\item 'diagnostic\\_agents'\n", - "\\item 'general\\_nutrients'\n", - "\\item 'all\\_other\\_non-therapeutic\\_products'\n", - "\\item 'contrast\\_media'\n", - "\\item 'diagnostic\\_radiopharmaceuticals'\n", - "\\item 'therapeutic\\_radiopharmaceuticals'\n", - "\\item 'surgical\\_dressings'\n", - "\\item 'statins'\n", - "\\item 'ass'\n", - "\\item 'atypical\\_antipsychotics'\n", - "\\item 'glucocorticoids'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'age_at_recruitment'\n", - "2. 'sex'\n", - "3. 'ethnic_background'\n", - "4. 'townsend_deprivation_index_at_recruitment'\n", - "5. 'overall_health_rating'\n", - "6. 'smoking_status'\n", - "7. 'alcohol_intake_frequency'\n", - "8. 'body_mass_index_bmi'\n", - "9. 'weight'\n", - "10. 'pulse_wave_arterial_stiffness_index'\n", - "11. 'pulse_wave_reflection_index'\n", - "12. 'waist_circumference'\n", - "13. 'hip_circumference'\n", - "14. 'standing_height'\n", - "15. 'trunk_fat_percentage'\n", - "16. 'body_fat_percentage'\n", - "17. 'basal_metabolic_rate'\n", - "18. 'forced_vital_capacity_fvc_best_measure'\n", - "19. 'forced_expiratory_volume_in_1second_fev1_best_measure'\n", - "20. 'fev1_fvc_ratio_zscore'\n", - "21. 'peak_expiratory_flow_pef_f3064_0_2'\n", - "22. 'peak_expiratory_flow_pef_f3064_0_1'\n", - "23. 'peak_expiratory_flow_pef'\n", - "24. 'systolic_blood_pressure'\n", - "25. 'diastolic_blood_pressure'\n", - "26. 'pulse_rate'\n", - "27. 'basophill_count'\n", - "28. 'basophill_percentage'\n", - "29. 'eosinophill_count'\n", - "30. 'eosinophill_percentage'\n", - "31. 'haematocrit_percentage'\n", - "32. 'haemoglobin_concentration'\n", - "33. 'high_light_scatter_reticulocyte_count'\n", - "34. 'high_light_scatter_reticulocyte_percentage'\n", - "35. 'immature_reticulocyte_fraction'\n", - "36. 'lymphocyte_count'\n", - "37. 'lymphocyte_percentage'\n", - "38. 'mean_corpuscular_haemoglobin'\n", - "39. 'mean_corpuscular_haemoglobin_concentration'\n", - "40. 'mean_corpuscular_volume'\n", - "41. 'mean_platelet_thrombocyte_volume'\n", - "42. 'mean_reticulocyte_volume'\n", - "43. 'mean_sphered_cell_volume'\n", - "44. 'monocyte_count'\n", - "45. 'monocyte_percentage'\n", - "46. 'neutrophill_count'\n", - "47. 'neutrophill_percentage'\n", - "48. 'nucleated_red_blood_cell_count'\n", - "49. 'nucleated_red_blood_cell_percentage'\n", - "50. 'platelet_count'\n", - "51. 'platelet_crit'\n", - "52. 'platelet_distribution_width'\n", - "53. 'red_blood_cell_erythrocyte_count'\n", - "54. 'red_blood_cell_erythrocyte_distribution_width'\n", - "55. 'reticulocyte_count'\n", - "56. 'reticulocyte_percentage'\n", - "57. 'white_blood_cell_leukocyte_count'\n", - "58. 'alanine_aminotransferase'\n", - "59. 'albumin'\n", - "60. 'alkaline_phosphatase'\n", - "61. 'apolipoprotein_a'\n", - "62. 'apolipoprotein_b'\n", - "63. 'aspartate_aminotransferase'\n", - "64. 'creactive_protein'\n", - "65. 'calcium'\n", - "66. 'cholesterol'\n", - "67. 'creatinine'\n", - "68. 'cystatin_c'\n", - "69. 'direct_bilirubin'\n", - "70. 'gamma_glutamyltransferase'\n", - "71. 'glucose'\n", - "72. 'glycated_haemoglobin_hba1c'\n", - "73. 'hdl_cholesterol'\n", - "74. 'igf1'\n", - "75. 'ldl_direct'\n", - "76. 'lipoprotein_a'\n", - "77. 'oestradiol'\n", - "78. 'phosphate'\n", - "79. 'rheumatoid_factor'\n", - "80. 'shbg'\n", - "81. 'testosterone'\n", - "82. 'total_bilirubin'\n", - "83. 'total_protein'\n", - "84. 'triglycerides'\n", - "85. 'urate'\n", - "86. 'urea'\n", - "87. 'vitamin_d'\n", - "88. 'fh_alzheimer\\'s_disease/dementia'\n", - "89. 'fh_bowel_cancer'\n", - "90. 'fh_breast_cancer'\n", - "91. 'fh_chronic_bronchitis/emphysema'\n", - "92. 'fh_diabetes'\n", - "93. 'fh_heart_disease'\n", - "94. 'fh_high_blood_pressure'\n", - "95. 'fh_lung_cancer'\n", - "96. 'fh_parkinson\\'s_disease'\n", - "97. 'fh_severe_depression'\n", - "98. 'fh_stroke'\n", - "99. 'coronary_heart_disease'\n", - "100. 'myocardial_infarction'\n", - "101. 'stroke'\n", - "102. 'diabetes1'\n", - "103. 'diabetes2'\n", - "104. 'chronic_kidney_disease'\n", - "105. 'atrial_fibrillation'\n", - "106. 'migraine'\n", - "107. 'rheumatoid_arthritis'\n", - "108. 'systemic_lupus_erythematosus'\n", - "109. 'severe_mental_illness'\n", - "110. 'erectile_dysfunction'\n", - "111. 'hypertensive_disorder_systemic_arterial'\n", - "112. 'hyperlipidemia'\n", - "113. 'depressive_disorder'\n", - "114. 'gastroesophageal_reflux_disease'\n", - "115. 'diabetes_mellitus_type_2'\n", - "116. 'essential_hypertension'\n", - "117. 'obesity'\n", - "118. 'diabetes_mellitus'\n", - "119. 'asthma'\n", - "120. 'coronary_arteriosclerosis'\n", - "121. 'allergic_rhinitis'\n", - "122. 'hypothyroidism'\n", - "123. 'upper_respiratory_infection'\n", - "124. 'hypercholesterolemia'\n", - "125. 'backache'\n", - "126. 'abdominal_pain'\n", - "127. 'osteoarthritis'\n", - "128. 'low_back_pain'\n", - "129. 'anemia'\n", - "130. 'anxiety'\n", - "131. 'urinary_tract_infectious_disease'\n", - "132. 'chronic_obstructive_lung_disease'\n", - "133. 'pneumonia'\n", - "134. 'chest_pain'\n", - "135. 'congestive_heart_failure'\n", - "136. 'headache'\n", - "137. 'pregnant'\n", - "138. 'knee_pain'\n", - "139. 'osteoporosis'\n", - "140. 'polyp_of_colon'\n", - "141. 'otitis_media'\n", - "142. 'sinusitis'\n", - "143. 'cough'\n", - "144. 'sleep_apnea'\n", - "145. 'insomnia'\n", - "146. 'inflammatory_disorder_due_to_increased_blood_urate_level'\n", - "147. 'tobacco_dependence_syndrome'\n", - "148. 'malignant_tumor_of_prostate'\n", - "149. 'constipation'\n", - "150. 'hearing_loss'\n", - "151. 'fatigue'\n", - "152. 'obstructive_sleep_apnea_syndrome'\n", - "153. 'malignant_neoplasm_of_breast'\n", - "154. 'delivery_normal'\n", - "155. 'irritable_bowel_syndrome'\n", - "156. 'tobacco_user'\n", - "157. 'neck_pain'\n", - "158. 'cerebrovascular_accident'\n", - "159. 'asthenia'\n", - "160. 'shoulder_pain'\n", - "161. 'acne_vulgaris'\n", - "162. 'benign_prostatic_hyperplasia'\n", - "163. 'dyspnea'\n", - "164. 'carpal_tunnel_syndrome'\n", - "165. 'bronchitis'\n", - "166. 'pharyngitis'\n", - "167. 'arthritis'\n", - "168. 'diarrhea'\n", - "169. 'dizziness'\n", - "170. 'alcohol_abuse'\n", - "171. 'dementia'\n", - "172. 'eczema'\n", - "173. 'syncope'\n", - "174. 'acute_sinusitis'\n", - "175. 'iron_deficiency_anemia'\n", - "176. 'allergic_rhinitis_caused_by_pollen'\n", - "177. 'gastritis'\n", - "178. 'cataract'\n", - "179. 'hematuria_syndrome'\n", - "180. 'disorder_of_the_peripheral_nervous_system'\n", - "181. 'viral_hepatitis_type_c'\n", - "182. 'palpitations'\n", - "183. 'eruption_of_skin'\n", - "184. 'diabetes_mellitus_type_1'\n", - "185. 'renal_failure_syndrome'\n", - "186. 'peripheral_vascular_disease'\n", - "187. 'hyperglycemia'\n", - "188. 'seizure_disorder'\n", - "189. 'fever'\n", - "190. 'osteoarthritis_of_knee'\n", - "191. 'actinic_keratosis'\n", - "192. 'urinary_incontinence'\n", - "193. 'hemorrhoids'\n", - "194. 'seizure'\n", - "195. 'laceration_-_injury'\n", - "196. 'glaucoma'\n", - "197. 'body_mass_index_30+_-_obesity'\n", - "198. 'breast_lump'\n", - "199. 'viral_disease'\n", - "200. 'abnormal_cervical_smear'\n", - "201. ⋯\n", - "202. 'viral_exanthem'\n", - "203. 'talipes_planus'\n", - "204. 'idiopathic_peripheral_neuropathy'\n", - "205. 'foreign_body_in_pharynx'\n", - "206. 'jaw_pain'\n", - "207. 'renal_impairment'\n", - "208. 'ataxia'\n", - "209. 'age-related_macular_degeneration'\n", - "210. 'uterine_prolapse'\n", - "211. 'renal_mass'\n", - "212. 'pneumonitis'\n", - "213. 'coordination_problem'\n", - "214. 'blindness_-_both_eyes'\n", - "215. 'primary_hyperparathyroidism'\n", - "216. 'musculoskeletal_pain'\n", - "217. 'mycosis'\n", - "218. 'primigravida'\n", - "219. 'urethral_stricture'\n", - "220. 'leukocytosis'\n", - "221. 'ventricular_premature_complex'\n", - "222. 'ulcer_of_foot_due_to_diabetes_mellitus'\n", - "223. 'chronic_headache_disorder'\n", - "224. 'hemangioma'\n", - "225. 'lymphedema'\n", - "226. 'postmenopausal_state'\n", - "227. 'chronic_ulcer_of_skin'\n", - "228. 'left_heart_failure'\n", - "229. 'excessive_and_frequent_menstruation'\n", - "230. 'thrombocytosis'\n", - "231. 'disorder_of_liver'\n", - "232. 'disorder_of_carotid_artery'\n", - "233. 'altered_bowel_function'\n", - "234. 'abscess_of_foot'\n", - "235. 'malignant_tumor_of_head_and/or_neck'\n", - "236. 'streptococcus_group_b_infection_of_the_infant'\n", - "237. 'concussion_injury_of_brain'\n", - "238. 'feeding_problems_in_newborn'\n", - "239. 'bipolar_i_disorder'\n", - "240. 'viral_pharyngitis'\n", - "241. 'lower_respiratory_tract_infection'\n", - "242. 'hydronephrosis'\n", - "243. 'borderline_personality_disorder'\n", - "244. 'esophageal_varices'\n", - "245. 'hypersomnia'\n", - "246. 'sensorineural_hearing_loss_bilateral'\n", - "247. 'varicocele'\n", - "248. 'subarachnoid_intracranial_hemorrhage'\n", - "249. 'incisional_hernia'\n", - "250. 'varicella'\n", - "251. 'pain_in_testicle'\n", - "252. 'transplant_follow-up'\n", - "253. 'tinea_cruris'\n", - "254. 'laryngitis'\n", - "255. 'hypertrophy_of_nail'\n", - "256. 'amblyopia'\n", - "257. 'polyp_of_cervix'\n", - "258. 'cyst_of_kidney'\n", - "259. 'hepatic_encephalopathy'\n", - "260. 'blood_glucose_abnormal'\n", - "261. 'postherpetic_neuralgia'\n", - "262. 'frank_hematuria'\n", - "263. 'cramp'\n", - "264. 'interstitial_lung_disease'\n", - "265. 'complete_atrioventricular_block'\n", - "266. 'malignant_tumor_of_kidney'\n", - "267. 'otitis'\n", - "268. 'septic_shock'\n", - "269. 'disorder_of_thyroid_gland'\n", - "270. 'hypertrophic_cardiomyopathy'\n", - "271. 'respiratory_distress_syndrome_in_the_newborn'\n", - "272. 'infectious_gastroenteritis'\n", - "273. 'subdural_intracranial_hemorrhage'\n", - "274. 'hepatitis_b_carrier'\n", - "275. 'manic_bipolar_i_disorder'\n", - "276. 'secondary_pulmonary_hypertension'\n", - "277. 'gonorrhea'\n", - "278. 'derangement_of_knee'\n", - "279. 'appendicitis'\n", - "280. 'polyneuropathy_due_to_diabetes_mellitus'\n", - "281. 'neonatal_hypoglycemia'\n", - "282. 'prolonged_rupture_of_membranes'\n", - "283. 'vasomotor_rhinitis'\n", - "284. 'renal_disorder_due_to_type_1_diabetes_mellitus'\n", - "285. 'tuberculosis'\n", - "286. 'feeding_problem'\n", - "287. 'chronic_tonsillitis'\n", - "288. 'acute_duodenal_ulcer_with_hemorrhage'\n", - "289. 'hammer_toe'\n", - "290. 'malignant_tumor_of_cervix'\n", - "291. 'prolapsed_lumbar_intervertebral_disc'\n", - "292. 'hematemesis'\n", - "293. 'perianal_abscess'\n", - "294. 'nonvenomous_insect_bite'\n", - "295. 'spondylolisthesis'\n", - "296. 'malignant_tumor_of_esophagus'\n", - "297. 'aphthous_ulcer_of_mouth'\n", - "298. 'ventricular_septal_defect'\n", - "299. 'oropharyngeal_dysphagia'\n", - "300. 'injury_of_knee'\n", - "301. 'traumatic_brain_injury'\n", - "302. 'osteoarthritis_of_glenohumeral_joint'\n", - "303. 'fetal_or_neonatal_effect_of_maternal_medical_problem'\n", - "304. 'stomatological_preparations'\n", - "305. 'drugs_for_acid_related_disorders'\n", - "306. 'drugs_for_functional_gastrointestinal_disorders'\n", - "307. 'antiemetics_and_antinauseants'\n", - "308. 'bile_and_liver_therapy'\n", - "309. 'drugs_for_constipation'\n", - "310. 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents'\n", - "311. 'antiobesity_preparations,_excl._diet_products'\n", - "312. 'digestives,_incl._enzymes'\n", - "313. 'drugs_used_in_diabetes'\n", - "314. 'vitamins'\n", - "315. 'mineral_supplements'\n", - "316. 'tonics'\n", - "317. 'anabolic_agents_for_systemic_use'\n", - "318. 'appetite_stimulants'\n", - "319. 'other_alimentary_tract_and_metabolism_products'\n", - "320. 'antithrombotic_agents'\n", - "321. 'antihemorrhagics'\n", - "322. 'antianemic_preparations'\n", - "323. 'blood_substitutes_and_perfusion_solutions'\n", - "324. 'other_hematological_agents'\n", - "325. 'cardiac_therapy'\n", - "326. 'antihypertensives'\n", - "327. 'diuretics'\n", - "328. 'peripheral_vasodilators'\n", - "329. 'vasoprotectives'\n", - "330. 'beta_blocking_agents'\n", - "331. 'calcium_channel_blockers'\n", - "332. 'agents_acting_on_the_renin-angiotensin_system'\n", - "333. 'lipid_modifying_agents'\n", - "334. 'antifungals_for_dermatological_use'\n", - "335. 'emollients_and_protectives'\n", - "336. 'preparations_for_treatment_of_wounds_and_ulcers'\n", - "337. 'antipruritics,_incl._antihistamines,_anesthetics,_etc.'\n", - "338. 'antipsoriatics'\n", - "339. 'antibiotics_and_chemotherapeutics_for_dermatological_use'\n", - "340. 'corticosteroids,_dermatological_preparations'\n", - "341. 'antiseptics_and_disinfectants'\n", - "342. 'medicated_dressings'\n", - "343. 'anti-acne_preparations'\n", - "344. 'other_dermatological_preparations'\n", - "345. 'gynecological_antiinfectives_and_antiseptics'\n", - "346. 'other_gynecologicals'\n", - "347. 'sex_hormones_and_modulators_of_the_genital_system'\n", - "348. 'urologicals'\n", - "349. 'pituitary_and_hypothalamic_hormones_and_analogues'\n", - "350. 'corticosteroids_for_systemic_use'\n", - "351. 'thyroid_therapy'\n", - "352. 'pancreatic_hormones'\n", - "353. 'calcium_homeostasis'\n", - "354. 'antibacterials_for_systemic_use'\n", - "355. 'antimycotics_for_systemic_use'\n", - "356. 'antimycobacterials'\n", - "357. 'antivirals_for_systemic_use'\n", - "358. 'immune_sera_and_immunoglobulins'\n", - "359. 'vaccines'\n", - "360. 'antineoplastic_agents'\n", - "361. 'endocrine_therapy'\n", - "362. 'immunostimulants'\n", - "363. 'immunosuppressants'\n", - "364. 'antiinflammatory_and_antirheumatic_products'\n", - "365. 'topical_products_for_joint_and_muscular_pain'\n", - "366. 'muscle_relaxants'\n", - "367. 'antigout_preparations'\n", - "368. 'drugs_for_treatment_of_bone_diseases'\n", - "369. 'other_drugs_for_disorders_of_the_musculo-skeletal_system'\n", - "370. 'anesthetics'\n", - "371. 'analgesics'\n", - "372. 'antiepileptics'\n", - "373. 'anti-parkinson_drugs'\n", - "374. 'psycholeptics'\n", - "375. 'psychoanaleptics'\n", - "376. 'other_nervous_system_drugs'\n", - "377. 'antiprotozoals'\n", - "378. 'anthelmintics'\n", - "379. 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents'\n", - "380. 'nasal_preparations'\n", - "381. 'throat_preparations'\n", - "382. 'drugs_for_obstructive_airway_diseases'\n", - "383. 'cough_and_cold_preparations'\n", - "384. 'antihistamines_for_systemic_use'\n", - "385. 'other_respiratory_system_products'\n", - "386. 'ophthalmologicals'\n", - "387. 'otologicals'\n", - "388. 'ophthalmological_and_otological_preparations'\n", - "389. 'allergens'\n", - "390. 'all_other_therapeutic_products'\n", - "391. 'diagnostic_agents'\n", - "392. 'general_nutrients'\n", - "393. 'all_other_non-therapeutic_products'\n", - "394. 'contrast_media'\n", - "395. 'diagnostic_radiopharmaceuticals'\n", - "396. 'therapeutic_radiopharmaceuticals'\n", - "397. 'surgical_dressings'\n", - "398. 'statins'\n", - "399. 'ass'\n", - "400. 'atypical_antipsychotics'\n", - "401. 'glucocorticoids'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"age_at_recruitment\" \n", - " [2] \"sex\" \n", - " [3] \"ethnic_background\" \n", - " [4] \"townsend_deprivation_index_at_recruitment\" \n", - " [5] \"overall_health_rating\" \n", - " [6] \"smoking_status\" \n", - " [7] \"alcohol_intake_frequency\" \n", - " [8] \"body_mass_index_bmi\" \n", - " [9] \"weight\" \n", - " [10] \"pulse_wave_arterial_stiffness_index\" \n", - " [11] \"pulse_wave_reflection_index\" \n", - " [12] \"waist_circumference\" \n", - " [13] \"hip_circumference\" \n", - " [14] \"standing_height\" \n", - " [15] \"trunk_fat_percentage\" \n", - " [16] \"body_fat_percentage\" \n", - " [17] \"basal_metabolic_rate\" \n", - " [18] \"forced_vital_capacity_fvc_best_measure\" \n", - " [19] \"forced_expiratory_volume_in_1second_fev1_best_measure\" \n", - " [20] \"fev1_fvc_ratio_zscore\" \n", - " [21] \"peak_expiratory_flow_pef_f3064_0_2\" \n", - " [22] \"peak_expiratory_flow_pef_f3064_0_1\" \n", - " [23] \"peak_expiratory_flow_pef\" \n", - " [24] \"systolic_blood_pressure\" \n", - " [25] \"diastolic_blood_pressure\" \n", - " [26] \"pulse_rate\" \n", - " [27] \"basophill_count\" \n", - " [28] \"basophill_percentage\" \n", - " [29] \"eosinophill_count\" \n", - " [30] \"eosinophill_percentage\" \n", - " [31] \"haematocrit_percentage\" \n", - " [32] \"haemoglobin_concentration\" \n", - " [33] \"high_light_scatter_reticulocyte_count\" \n", - " [34] \"high_light_scatter_reticulocyte_percentage\" \n", - " [35] \"immature_reticulocyte_fraction\" \n", - " [36] \"lymphocyte_count\" \n", - " [37] \"lymphocyte_percentage\" \n", - " [38] \"mean_corpuscular_haemoglobin\" \n", - " [39] \"mean_corpuscular_haemoglobin_concentration\" \n", - " [40] \"mean_corpuscular_volume\" \n", - " [41] \"mean_platelet_thrombocyte_volume\" \n", - " [42] \"mean_reticulocyte_volume\" \n", - " [43] \"mean_sphered_cell_volume\" \n", - " [44] \"monocyte_count\" \n", - " [45] \"monocyte_percentage\" \n", - " [46] \"neutrophill_count\" \n", - " [47] \"neutrophill_percentage\" \n", - " [48] \"nucleated_red_blood_cell_count\" \n", - " [49] \"nucleated_red_blood_cell_percentage\" \n", - " [50] \"platelet_count\" \n", - " [51] \"platelet_crit\" \n", - " [52] \"platelet_distribution_width\" \n", - " [53] \"red_blood_cell_erythrocyte_count\" \n", - " [54] \"red_blood_cell_erythrocyte_distribution_width\" \n", - " [55] \"reticulocyte_count\" \n", - " [56] \"reticulocyte_percentage\" \n", - " [57] \"white_blood_cell_leukocyte_count\" \n", - " [58] \"alanine_aminotransferase\" \n", - " [59] \"albumin\" \n", - " [60] \"alkaline_phosphatase\" \n", - " [61] \"apolipoprotein_a\" \n", - " [62] \"apolipoprotein_b\" \n", - " [63] \"aspartate_aminotransferase\" \n", - " [64] \"creactive_protein\" \n", - " [65] \"calcium\" \n", - " [66] \"cholesterol\" \n", - " [67] \"creatinine\" \n", - " [68] \"cystatin_c\" \n", - " [69] \"direct_bilirubin\" \n", - " [70] \"gamma_glutamyltransferase\" \n", - " [71] \"glucose\" \n", - " [72] \"glycated_haemoglobin_hba1c\" \n", - " [73] \"hdl_cholesterol\" \n", - " [74] \"igf1\" \n", - " [75] \"ldl_direct\" \n", - " [76] \"lipoprotein_a\" \n", - " [77] \"oestradiol\" \n", - " [78] \"phosphate\" \n", - " [79] \"rheumatoid_factor\" \n", - " [80] \"shbg\" \n", - " [81] \"testosterone\" \n", - " [82] \"total_bilirubin\" \n", - " [83] \"total_protein\" \n", - " [84] \"triglycerides\" \n", - " [85] \"urate\" \n", - " [86] \"urea\" \n", - " [87] \"vitamin_d\" \n", - " [88] \"fh_alzheimer's_disease/dementia\" \n", - " [89] \"fh_bowel_cancer\" \n", - " [90] \"fh_breast_cancer\" \n", - " [91] \"fh_chronic_bronchitis/emphysema\" \n", - " [92] \"fh_diabetes\" \n", - " [93] \"fh_heart_disease\" \n", - " [94] \"fh_high_blood_pressure\" \n", - " [95] \"fh_lung_cancer\" \n", - " [96] \"fh_parkinson's_disease\" \n", - " [97] \"fh_severe_depression\" \n", - " [98] \"fh_stroke\" \n", - " [99] \"coronary_heart_disease\" \n", - "[100] \"myocardial_infarction\" \n", - "[101] \"stroke\" \n", - "[102] \"diabetes1\" \n", - "[103] \"diabetes2\" \n", - "[104] \"chronic_kidney_disease\" \n", - "[105] \"atrial_fibrillation\" \n", - "[106] \"migraine\" \n", - "[107] \"rheumatoid_arthritis\" \n", - "[108] \"systemic_lupus_erythematosus\" \n", - "[109] \"severe_mental_illness\" \n", - "[110] \"erectile_dysfunction\" \n", - "[111] \"hypertensive_disorder_systemic_arterial\" \n", - "[112] \"hyperlipidemia\" \n", - "[113] \"depressive_disorder\" \n", - "[114] \"gastroesophageal_reflux_disease\" \n", - "[115] \"diabetes_mellitus_type_2\" \n", - "[116] \"essential_hypertension\" \n", - "[117] \"obesity\" \n", - "[118] \"diabetes_mellitus\" \n", - "[119] \"asthma\" \n", - "[120] \"coronary_arteriosclerosis\" \n", - "[121] \"allergic_rhinitis\" \n", - "[122] \"hypothyroidism\" \n", - "[123] \"upper_respiratory_infection\" \n", - "[124] \"hypercholesterolemia\" \n", - "[125] \"backache\" \n", - "[126] \"abdominal_pain\" \n", - "[127] \"osteoarthritis\" \n", - "[128] \"low_back_pain\" \n", - "[129] \"anemia\" \n", - "[130] \"anxiety\" \n", - "[131] \"urinary_tract_infectious_disease\" \n", - "[132] \"chronic_obstructive_lung_disease\" \n", - "[133] \"pneumonia\" \n", - "[134] \"chest_pain\" \n", - "[135] \"congestive_heart_failure\" \n", - "[136] \"headache\" \n", - "[137] \"pregnant\" \n", - "[138] \"knee_pain\" \n", - "[139] \"osteoporosis\" \n", - "[140] \"polyp_of_colon\" \n", - "[141] \"otitis_media\" \n", - "[142] \"sinusitis\" \n", - "[143] \"cough\" \n", - "[144] \"sleep_apnea\" \n", - "[145] \"insomnia\" \n", - "[146] \"inflammatory_disorder_due_to_increased_blood_urate_level\" \n", - "[147] \"tobacco_dependence_syndrome\" \n", - "[148] \"malignant_tumor_of_prostate\" \n", - "[149] \"constipation\" \n", - "[150] \"hearing_loss\" \n", - "[151] \"fatigue\" \n", - "[152] \"obstructive_sleep_apnea_syndrome\" \n", - "[153] \"malignant_neoplasm_of_breast\" \n", - "[154] \"delivery_normal\" \n", - "[155] \"irritable_bowel_syndrome\" \n", - "[156] \"tobacco_user\" \n", - "[157] \"neck_pain\" \n", - "[158] \"cerebrovascular_accident\" \n", - "[159] \"asthenia\" \n", - "[160] \"shoulder_pain\" \n", - "[161] \"acne_vulgaris\" \n", - "[162] \"benign_prostatic_hyperplasia\" \n", - "[163] \"dyspnea\" \n", - "[164] \"carpal_tunnel_syndrome\" \n", - "[165] \"bronchitis\" \n", - "[166] \"pharyngitis\" \n", - "[167] \"arthritis\" \n", - "[168] \"diarrhea\" \n", - "[169] \"dizziness\" \n", - "[170] \"alcohol_abuse\" \n", - "[171] \"dementia\" \n", - "[172] \"eczema\" \n", - "[173] \"syncope\" \n", - "[174] \"acute_sinusitis\" \n", - "[175] \"iron_deficiency_anemia\" \n", - "[176] \"allergic_rhinitis_caused_by_pollen\" \n", - "[177] \"gastritis\" \n", - "[178] \"cataract\" \n", - "[179] \"hematuria_syndrome\" \n", - "[180] \"disorder_of_the_peripheral_nervous_system\" \n", - "[181] \"viral_hepatitis_type_c\" \n", - "[182] \"palpitations\" \n", - "[183] \"eruption_of_skin\" \n", - "[184] \"diabetes_mellitus_type_1\" \n", - "[185] \"renal_failure_syndrome\" \n", - "[186] \"peripheral_vascular_disease\" \n", - "[187] \"hyperglycemia\" \n", - "[188] \"seizure_disorder\" \n", - "[189] \"fever\" \n", - "[190] \"osteoarthritis_of_knee\" \n", - "[191] \"actinic_keratosis\" \n", - "[192] \"urinary_incontinence\" \n", - "[193] \"hemorrhoids\" \n", - "[194] \"seizure\" \n", - "[195] \"laceration_-_injury\" \n", - "[196] \"glaucoma\" \n", - "[197] \"body_mass_index_30+_-_obesity\" \n", - "[198] \"breast_lump\" \n", - "[199] \"viral_disease\" \n", - "[200] \"abnormal_cervical_smear\" \n", - "[201] \"cellulitis\" \n", - "[202] \"senile_hyperkeratosis\" \n", - "[203] \"anxiety_disorder\" \n", - "[204] \"vertigo\" \n", - "[205] \"dysphagia\" \n", - "[206] \"edema\" \n", - "[207] \"malignant_neoplasm_of_colon\" \n", - "[208] \"hip_pain\" \n", - "[209] \"posttraumatic_stress_disorder\" \n", - "[210] \"inflammatory_dermatosis\" \n", - "[211] \"psoriasis\" \n", - "[212] \"myopia\" \n", - "[213] \"senile_cataract\" \n", - "[214] \"heart_murmur\" \n", - "[215] \"liver_function_tests_abnormal\" \n", - "[216] \"angina\" \n", - "[217] \"impaired_fasting_glycemia\" \n", - "[218] \"chronic_ischemic_heart_disease\" \n", - "[219] \"chronic_sinusitis\" \n", - "[220] \"menopause_present\" \n", - "[221] \"basal_cell_carcinoma_of_skin\" \n", - "[222] \"raised_prostate_specific_antigen\" \n", - "[223] \"impaired_glucose_tolerance\" \n", - "[224] \"smoker\" \n", - "[225] \"hypertriglyceridemia\" \n", - "[226] \"irregular_periods\" \n", - "[227] \"herpes_zoster\" \n", - "[228] \"sensorineural_hearing_loss\" \n", - "[229] \"rectal_hemorrhage\" \n", - "[230] \"peptic_ulcer\" \n", - "[231] \"tinnitus\" \n", - "[232] \"bipolar_disorder\" \n", - "[233] \"vitamin_d_deficiency\" \n", - "[234] \"transient_ischemic_attack\" \n", - "[235] \"streptococcal_sore_throat\" \n", - "[236] \"onychomycosis\" \n", - "[237] \"deep_venous_thrombosis\" \n", - "[238] \"presbyopia\" \n", - "[239] \"neonatal_jaundice\" \n", - "[240] \"bacterial_vaginosis\" \n", - "[241] \"impacted_cerumen\" \n", - "[242] \"foot_pain\" \n", - "[243] \"sciatica\" \n", - "[244] \"vomiting\" \n", - "[245] \"benign_prostatic_hypertrophy_with_outflow_obstruction\" \n", - "[246] \"type_ii_diabetes_mellitus_without_complication\" \n", - "[247] \"calculus_in_biliary_tract\" \n", - "[248] \"epigastric_pain\" \n", - "[249] \"late_effects_of_cerebrovascular_disease\" \n", - "[250] \"gastroenteritis\" \n", - "[251] \"pulmonary_embolism\" \n", - "[252] \"inguinal_hernia\" \n", - "[253] \"verruca_vulgaris\" \n", - "[254] \"sepsis\" \n", - "[255] \"disorder_of_kidney_due_to_diabetes_mellitus\" \n", - "[256] \"nausea_and_vomiting\" \n", - "[257] \"hyperthyroidism\" \n", - "[258] \"abscess\" \n", - "[259] \"dental_caries\" \n", - "[260] \"gastrointestinal_hemorrhage\" \n", - "[261] \"rosacea\" \n", - "[262] \"parkinson's_disease\" \n", - "[263] \"menorrhagia\" \n", - "[264] \"malignant_tumor_of_lung\" \n", - "[265] \"joint_pain\" \n", - "[266] \"morbid_obesity\" \n", - "[267] \"hiatal_hernia\" \n", - "[268] \"arthralgia_of_the_ankle_and/or_foot\" \n", - "[269] \"restless_legs\" \n", - "[270] \"thrombocytopenic_disorder\" \n", - "[271] \"old_myocardial_infarction\" \n", - "[272] \"neuropathy\" \n", - "[273] \"cardiomyopathy\" \n", - "[274] \"atopic_dermatitis\" \n", - "[275] \"pain_in_pelvis\" \n", - "[276] \"contact_dermatitis\" \n", - "[277] \"indigestion\" \n", - "[278] \"nicotine_dependence\" \n", - "[279] \"sprain_of_ankle\" \n", - "[280] \"degenerative_disorder_of_macula\" \n", - "[281] \"exacerbation_of_asthma\" \n", - "[282] \"alcohol_dependence\" \n", - "[283] \"hypokalemia\" \n", - "[284] \"mitral_valve_regurgitation\" \n", - "[285] \"hyponatremia\" \n", - "[286] \"abdominal_aortic_aneurysm\" \n", - "[287] \"cyst_of_ovary\" \n", - "[288] \"otitis_externa\" \n", - "[289] \"threatened_abortion\" \n", - "[290] \"scoliosis_deformity_of_spine\" \n", - "[291] \"seborrheic_dermatitis\" \n", - "[292] \"spinal_stenosis\" \n", - "[293] \"dysmenorrhea\" \n", - "[294] \"acute_otitis_media\" \n", - "[295] \"alzheimer's_disease\" \n", - "[296] \"neuropathy_due_to_diabetes_mellitus\" \n", - "[297] \"acute_pharyngitis\" \n", - "[298] \"degeneration_of_intervertebral_disc\" \n", - "[299] \"attention_deficit_hyperactivity_disorder_predominantly_inattentive_type\"\n", - "[300] \"unplanned_pregnancy\" \n", - "[301] \"secondary_erectile_dysfunction\" \n", - "[302] \"spinal_stenosis_of_lumbar_region\" \n", - "[303] \"proteinuria\" \n", - "[304] \"urticaria\" \n", - "[305] \"genital_herpes_simplex\" \n", - "[306] \"malignant_neoplasm_of_female_breast\" \n", - "[307] \"nausea\" \n", - "[308] \"chronic_rhinitis\" \n", - "[309] \"multiple_sclerosis\" \n", - "[310] \"chronic_kidney_disease_stage_3\" \n", - "[311] \"panic_disorder\" \n", - "[312] \"attention_deficit_hyperactivity_disorder\" \n", - "[313] \"amnesia\" \n", - "[314] \"otalgia\" \n", - "[315] \"tremor\" \n", - "[316] \"retention_of_urine\" \n", - "[317] \"non-hodgkin's_lymphoma\" \n", - "[318] \"alcoholism\" \n", - "[319] \"dysuria\" \n", - "[320] \"generalized_anxiety_disorder\" \n", - "[321] \"paroxysmal_atrial_fibrillation\" \n", - "[322] \"peripheral_venous_insufficiency\" \n", - "[323] \"nonproliferative_retinopathy_due_to_diabetes_mellitus\" \n", - "[324] \"shoulder_joint_pain\" \n", - "[325] \"moderate_recurrent_major_depression\" \n", - "[326] \"diverticulitis\" \n", - "[327] \"solitary_nodule_of_lung\" \n", - "[328] \"hyperkalemia\" \n", - "[329] \"recurrent_major_depressive_episodes\" \n", - "[330] \"multiple_myeloma\" \n", - "[331] \"regular_astigmatism\" \n", - "[332] \"secondary_malignant_neoplasm_of_liver\" \n", - "[333] \"ulcerative_colitis\" \n", - "[334] \"vaginitis\" \n", - "[335] \"acute_renal_failure_syndrome\" \n", - "[336] \"amenorrhea\" \n", - "[337] \"tendinitis\" \n", - "[338] \"rhinitis\" \n", - "[339] \"bleeding_from_nose\" \n", - "[340] \"crohn's_disease\" \n", - "[341] \"nuclear_senile_cataract\" \n", - "[342] \"muscle_pain\" \n", - "[343] \"epidermoid_cyst\" \n", - "[344] \"impaired_cognition\" \n", - "[345] \"acute_exacerbation_of_chronic_obstructive_airways_disease\" \n", - "[346] \"eustachian_tube_disorder\" \n", - "[347] \"internal_hemorrhoids\" \n", - "[348] \"substance_abuse\" \n", - "[349] \"melanocytic_nevus\" \n", - "[350] \"pain\" \n", - "[351] \"barrett's_esophagus\" \n", - "[352] \"cerebrovascular_disease\" \n", - "[353] \"malignant_melanoma\" \n", - "[354] \"folliculitis\" \n", - "[355] \"mitral_valve_prolapse\" \n", - "[356] \"chronic_hepatitis_c\" \n", - "[357] \"hypermetropia\" \n", - "[358] \"endometriosis\" \n", - "[359] \"gestational_diabetes_mellitus\" \n", - "[360] \"cirrhosis_of_liver\" \n", - "[361] \"injury_of_head\" \n", - "[362] \"dehydration\" \n", - "[363] \"herpes_simplex\" \n", - "[364] \"fracture_of_bone\" \n", - "[365] \"overweight\" \n", - "[366] \"right_inguinal_hernia\" \n", - "[367] \"adjustment_disorder\" \n", - "[368] \"tinea_pedis\" \n", - "[369] \"aortic_valve_stenosis\" \n", - "[370] \"viral_hepatitis_type_b\" \n", - "[371] \"umbilical_hernia\" \n", - "[372] \"ingrowing_nail\" \n", - "[373] \"postmenopausal_bleeding\" \n", - "[374] \"goiter\" \n", - "[375] \"secondary_malignant_neoplasm_of_bone\" \n", - "[376] \"pulmonary_emphysema\" \n", - "[377] \"left_inguinal_hernia\" \n", - "[378] \"snoring\" \n", - "[379] \"polycystic_ovary_syndrome\" \n", - "[380] \"polycystic_ovary\" \n", - "[381] \"microscopic_hematuria\" \n", - "[382] \"pain_in_wrist\" \n", - "[383] \"pleural_effusion\" \n", - "[384] \"false_labor\" \n", - "[385] \"bleeding_from_vagina\" \n", - "[386] \"acquired_hypothyroidism\" \n", - "[387] \"premature_rupture_of_membranes\" \n", - "[388] \"human_immunodeficiency_virus_infection\" \n", - "[389] \"contusion\" \n", - "[390] \"secondary_malignant_neoplasm_of_lung\" \n", - "[391] \"problem_situation_relating_to_social_and_personal_history\" \n", - "[392] \"hypercalcemia\" \n", - "[393] \"occlusion_of_carotid_artery\" \n", - "[394] \"prolonged_second_stage_of_labor\" \n", - "[395] \"lipoma\" \n", - "[396] \"poisoning_caused_by_drug_and/or_medicinal_substance\" \n", - "[397] \"paranoid_schizophrenia\" \n", - "[398] \"hypersensitivity_reaction\" \n", - "[399] \"dysthymia\" \n", - "[400] \"fetal_or_neonatal_effect_of_maternal_premature_rupture_of_membrane\" \n", - "[401] \"noncompliance_with_treatment\" \n", - "[402] \"falls\" \n", - "[403] \"muscle_strain\" \n", - "[404] \"schizophrenia\" \n", - "[405] \"left_bundle_branch_block\" \n", - "[406] \"disorder_of_nervous_system_due_to_type_2_diabetes_mellitus\" \n", - "[407] \"preinfarction_syndrome\" \n", - "[408] \"conduction_disorder_of_the_heart\" \n", - "[409] \"lateral_epicondylitis\" \n", - "[410] \"burn\" \n", - "[411] \"pyelonephritis\" \n", - "[412] \"intermittent_claudication\" \n", - "[413] \"varicose_veins_of_lower_extremity\" \n", - "[414] \"hemiplegia\" \n", - "[415] \"chronic_pain\" \n", - "[416] \"bronchiolitis\" \n", - "[417] \"mild_persistent_asthma\" \n", - "[418] \"secondary_malignant_neoplasm_of_lymph_node\" \n", - "[419] \"mixed_hyperlipidemia\" \n", - "[420] \"female_urinary_stress_incontinence\" \n", - "[421] \"localized_primary_osteoarthritis_of_the_ankle_and/or_foot\" \n", - "[422] \"hypesthesia\" \n", - "[423] \"hand_pain\" \n", - "[424] \"psychotic_disorder\" \n", - "[425] \"menopausal_syndrome\" \n", - "[426] \"acute_myocardial_infarction_of_anterior_wall\" \n", - "[427] \"bronchiectasis\" \n", - "[428] \"lumbar_radiculopathy\" \n", - "[429] \"osteoarthritis_of_hip\" \n", - "[430] \"deviated_nasal_septum\" \n", - "[431] \"paresthesia\" \n", - "[432] \"hypoglycemia\" \n", - "[433] \"deep_venous_thrombosis_of_lower_extremity\" \n", - "[434] \"complication_of_surgical_procedure\" \n", - "[435] \"mild_intermittent_asthma\" \n", - "[436] \"generalized_ischemic_myocardial_dysfunction\" \n", - "[437] \"lumbar_spondylosis\" \n", - "[438] \"acute_tonsillitis\" \n", - "[439] \"esophagitis\" \n", - "[440] \"aortic_valve_regurgitation\" \n", - "[441] \"malignant_neoplasm_of_skin\" \n", - "[442] \"altered_mental_status\" \n", - "[443] \"atrial_flutter\" \n", - "[444] \"alopecia\" \n", - "[445] \"high_risk_pregnancy\" \n", - "[446] \"missed_abortion\" \n", - "[447] \"malignant_tumor_of_urinary_bladder\" \n", - "[448] \"pulmonary_hypertension\" \n", - "[449] \"nasal_congestion\" \n", - "[450] \"hemoptysis\" \n", - "[451] \"viral_gastroenteritis\" \n", - "[452] \"right_upper_quadrant_pain\" \n", - "[453] \"primary_open_angle_glaucoma\" \n", - "[454] \"malignant_tumor_of_ovary\" \n", - "[455] \"incomplete_emptying_of_bladder\" \n", - "[456] \"pruritic_disorder\" \n", - "[457] \"fibrocystic_breast_changes\" \n", - "[458] \"tinea_corporis\" \n", - "[459] \"acute_pancreatitis\" \n", - "[460] \"acute_myocardial_infarction\" \n", - "[461] \"cerebral_hemorrhage\" \n", - "[462] \"urge_incontinence_of_urine\" \n", - "[463] \"megaloblastic_anemia_due_to_vitamin_b>12<_deficiency\" \n", - "[464] \"chronic_lymphoid_leukemia_disease\" \n", - "[465] \"disorder_of_lymphatic_system\" \n", - "[466] \"diverticular_disease\" \n", - "[467] \"tonsillitis\" \n", - "[468] \"tear_film_insufficiency\" \n", - "[469] \"abnormal_gait\" \n", - "[470] \"orthostatic_hypotension\" \n", - "[471] \"pancreatitis\" \n", - "[472] \"closed_fracture_of_distal_end_of_radius\" \n", - "[473] \"first_degree_perineal_laceration\" \n", - "[474] \"not_for_resuscitation\" \n", - "[475] \"gastroesophageal_reflux_disease_with_esophagitis\" \n", - "[476] \"intracranial_injury\" \n", - "[477] \"bell's_palsy\" \n", - "[478] \"bradycardia\" \n", - "[479] \"polymyalgia_rheumatica\" \n", - "[480] \"dysplasia_of_cervix\" \n", - "[481] \"serous_otitis_media\" \n", - "[482] \"angioedema\" \n", - "[483] \"venous_varices\" \n", - "[484] \"spasm\" \n", - "[485] \"sleep_disorder\" \n", - "[486] \"pain_of_breast\" \n", - "[487] \"malabsorption_syndrome_due_to_intolerance_to_lactose\" \n", - "[488] \"tachycardia\" \n", - "[489] \"acute_conjunctivitis\" \n", - "[490] \"malignant_lymphoma\" \n", - "[491] \"supraventricular_tachycardia\" \n", - "[492] \"hyperparathyroidism\" \n", - "[493] \"periodontitis\" \n", - "[494] \"renal_disorder_due_to_type_2_diabetes_mellitus\" \n", - "[495] \"nerve_root_disorder\" \n", - "[496] \"nonexudative_age-related_macular_degeneration\" \n", - "[497] \"tension-type_headache\" \n", - "[498] \"chronic_pain_syndrome\" \n", - "[499] \"abnormal_weight_loss\" \n", - "[500] \"pure_hypercholesterolemia\" \n", - "[501] \"acute_upper_respiratory_infection\" \n", - "[502] \"inflammatory_disease_of_liver\" \n", - "[503] \"colitis\" \n", - "[504] \"prolonged_pregnancy\" \n", - "[505] \"major_depression_single_episode\" \n", - "[506] \"croup\" \n", - "[507] \"skin_tag\" \n", - "[508] \"metabolic_syndrome_x\" \n", - "[509] \"adverse_reaction_caused_by_drug\" \n", - "[510] \"retinopathy_due_to_diabetes_mellitus\" \n", - "[511] \"female_infertility\" \n", - "[512] \"open-angle_glaucoma\" \n", - "[513] \"tietze's_disease\" \n", - "[514] \"gallbladder_calculus\" \n", - "[515] \"sarcoidosis\" \n", - "[516] \"neurogenic_bladder\" \n", - "[517] \"tobacco_dependence_in_remission\" \n", - "[518] \"wheezing\" \n", - "[519] \"elevated_levels_of_transaminase_&_lactic_acid_dehydrogenase\" \n", - "[520] \"ascites\" \n", - "[521] \"low_blood_pressure\" \n", - "[522] \"bursitis\" \n", - "[523] \"miscarriage\" \n", - "[524] \"methicillin_resistant_staphylococcus_aureus_carrier\" \n", - "[525] \"urethritis\" \n", - "[526] \"noninfectious_gastroenteritis\" \n", - "[527] \"malignant_tumor_of_thyroid_gland\" \n", - "[528] \"pressure_ulcer\" \n", - "[529] \"verruca_plantaris\" \n", - "[530] \"anemia_of_chronic_disorder\" \n", - "[531] \"hernia_of_anterior_abdominal_wall\" \n", - "[532] \"degeneration_of_lumbar_intervertebral_disc\" \n", - "[533] \"right_lower_quadrant_pain\" \n", - "[534] \"infertile\" \n", - "[535] \"hernia_of_abdominal_wall\" \n", - "[536] \"benign_paroxysmal_positional_vertigo\" \n", - "[537] \"pityriasis_versicolor\" \n", - "[538] \"injury_of_lower_leg\" \n", - "[539] \"dry_skin\" \n", - "[540] \"impacted_tooth\" \n", - "[541] \"acquired_trigger_finger\" \n", - "[542] \"chronic_osteoarthritis\" \n", - "[543] \"acute_stress_disorder\" \n", - "[544] \"peripheral_circulatory_disorder_due_to_type_2_diabetes_mellitus\" \n", - "[545] \"respiratory_failure\" \n", - "[546] \"allergic_disposition\" \n", - "[547] \"stress\" \n", - "[548] \"atrophic_vaginitis\" \n", - "[549] \"degeneration_of_lumbosacral_intervertebral_disc\" \n", - "[550] \"astigmatism\" \n", - "[551] \"sick_sinus_syndrome\" \n", - "[552] \"cocaine_abuse\" \n", - "[553] \"intermittent_asthma\" \n", - "[554] \"cervical_radiculopathy\" \n", - "[555] \"atherosclerosis_of_coronary_artery\" \n", - "[556] \"methicillin_resistant_staphylococcus_aureus_infection\" \n", - "[557] \"female_pelvic_inflammatory_disease\" \n", - "[558] \"pain_in_eye\" \n", - "[559] \"cervical_spondylosis\" \n", - "[560] \"prematurity_of_infant\" \n", - "[561] \"postmature_infancy\" \n", - "[562] \"temporomandibular_joint_disorder\" \n", - "[563] \"nocturia\" \n", - "[564] \"adjustment_disorder_with_depressed_mood\" \n", - "[565] \"visual_impairment\" \n", - "[566] \"male_hypogonadism\" \n", - "[567] \"closed_intertrochanteric_fracture\" \n", - "[568] \"pain_in_limb\" \n", - "[569] \"complication_occurring_during_pregnancy\" \n", - "[570] \"sprain_of_knee\" \n", - "[571] \"fracture_of_ankle\" \n", - "[572] \"injury_of_hand\" \n", - "[573] \"postoperative_wound_infection\" \n", - "[574] \"congestive_cardiomyopathy\" \n", - "[575] \"nocturnal_enuresis\" \n", - "[576] \"proliferative_retinopathy_due_to_diabetes_mellitus\" \n", - "[577] \"major_depressive_disorder\" \n", - "[578] \"chronic_bronchitis\" \n", - "[579] \"advanced_maternal_age_gravida\" \n", - "[580] \"recurrent_major_depression_in_full_remission\" \n", - "[581] \"pregnancy-induced_hypertension\" \n", - "[582] \"epididymitis\" \n", - "[583] \"impetigo\" \n", - "[584] \"schizoaffective_disorder\" \n", - "[585] \"candidiasis_of_mouth\" \n", - "[586] \"mild_recurrent_major_depression\" \n", - "[587] \"cerebral_palsy\" \n", - "[588] \"squamous_cell_carcinoma_of_skin\" \n", - "[589] \"hypogonadism\" \n", - "[590] \"greater_trochanteric_pain_syndrome\" \n", - "[591] \"graves'_disease\" \n", - "[592] \"malignant_neoplastic_disease\" \n", - "[593] \"moderate_persistent_asthma\" \n", - "[594] \"steatosis_of_liver\" \n", - "[595] \"obsessive-compulsive_disorder\" \n", - "[596] \"mood_disorder\" \n", - "[597] \"degeneration_of_cervical_intervertebral_disc\" \n", - "[598] \"corneal_abrasion\" \n", - "[599] \"anal_fissure\" \n", - "[600] \"heart_failure\" \n", - "[601] \"adjustment_disorder_with_mixed_emotional_features\" \n", - "[602] \"febrile_convulsion\" \n", - "[603] \"degenerative_joint_disease_of_hand\" \n", - "[604] \"chronic_type_b_viral_hepatitis\" \n", - "[605] \"blepharitis\" \n", - "[606] \"cyst\" \n", - "[607] \"heartburn\" \n", - "[608] \"intellectual_disability\" \n", - "[609] \"exudative_age-related_macular_degeneration\" \n", - "[610] \"hypoxia\" \n", - "[611] \"influenza\" \n", - "[612] \"intervertebral_disc_prolapse\" \n", - "[613] \"swelling_of_first_metatarsophalangeal_joint_of_hallux\" \n", - "[614] \"genuine_stress_incontinence\" \n", - "[615] \"opioid_dependence\" \n", - "[616] \"antepartum_hemorrhage\" \n", - "[617] \"pneumothorax\" \n", - "[618] \"kidney_disease\" \n", - "[619] \"atopic_conjunctivitis\" \n", - "[620] \"dermatophytosis\" \n", - "[621] \"influenza_caused_by_influenza_a_virus\" \n", - "[622] \"cystitis\" \n", - "[623] \"moderate_major_depression_single_episode\" \n", - "[624] \"furuncle\" \n", - "[625] \"cannabis_abuse\" \n", - "[626] \"conductive_hearing_loss\" \n", - "[627] \"neutropenic_disorder\" \n", - "[628] \"injury_of_finger\" \n", - "[629] \"intestinal_obstruction\" \n", - "[630] \"lymphadenopathy\" \n", - "[631] \"mass_of_pelvic_structure\" \n", - "[632] \"myelodysplastic_syndrome\" \n", - "[633] \"jaundice\" \n", - "[634] \"severe_recurrent_major_depression_without_psychotic_features\" \n", - "[635] \"inflammation_of_cervix\" \n", - "[636] \"sickle_cell_trait\" \n", - "[637] \"squamous_cell_carcinoma\" \n", - "[638] \"small_bowel_obstruction\" \n", - "[639] \"compression_fracture\" \n", - "[640] \"premenstrual_tension_syndrome\" \n", - "[641] \"fracture_of_proximal_end_of_femur\" \n", - "[642] \"developmental_delay\" \n", - "[643] \"drug_abuse\" \n", - "[644] \"left_lower_quadrant_pain\" \n", - "[645] \"hordeolum\" \n", - "[646] \"disorder_of_lung\" \n", - "[647] \"migraine_without_aura\" \n", - "[648] \"open-angle_glaucoma_-_borderline\" \n", - "[649] \"disorder_of_refraction\" \n", - "[650] \"acute_appendicitis\" \n", - "[651] \"amyloidosis\" \n", - "[652] \"hodgkin's_disease\" \n", - "[653] \"hydrocele_of_testis\" \n", - "[654] \"cellulitis_of_foot\" \n", - "[655] \"pancytopenia\" \n", - "[656] \"pain_in_elbow\" \n", - "[657] \"peripheral_nerve_disease\" \n", - "[658] \"eating_disorder\" \n", - "[659] \"hernia_of_abdominal_cavity\" \n", - "[660] \"secondary_malignant_neoplasm_of_brain\" \n", - "[661] \"late_effects_of_respiratory_tuberculosis\" \n", - "[662] \"alcohol_intoxication\" \n", - "[663] \"abrasion\" \n", - "[664] \"breech_presentation\" \n", - "[665] \"premature_labor\" \n", - "[666] \"raynaud's_phenomenon\" \n", - "[667] \"posterior_rhinorrhea\" \n", - "[668] \"acute_gastritis\" \n", - "[669] \"polyp_of_nasal_cavity\" \n", - "[670] \"essential_tremor\" \n", - "[671] \"candidiasis\" \n", - "[672] \"ocular_hypertension\" \n", - "[673] \"aortic_valve_disorder\" \n", - "[674] \"diaper_rash\" \n", - "[675] \"cholangitis\" \n", - "[676] \"primary_malignant_neoplasm_of_lung\" \n", - "[677] \"impingement_syndrome_of_shoulder_region\" \n", - "[678] \"idiopathic_urticaria\" \n", - "[679] \"arthritis_of_knee\" \n", - "[680] \"ulcer_of_duodenum\" \n", - "[681] \"peripheral_neuropathy_due_to_diabetes_mellitus\" \n", - "[682] \"hypervolemia\" \n", - "[683] \"cholecystitis\" \n", - "[684] \"deficiency_of_glucose-6-phosphate_dehydrogenase\" \n", - "[685] \"acute_pyelonephritis\" \n", - "[686] \"musculoskeletal_chest_pain\" \n", - "[687] \"melena\" \n", - "[688] \"cigarette_smoker\" \n", - "[689] \"infectious_mononucleosis\" \n", - "[690] \"hypertensive_renal_failure\" \n", - "[691] \"cocaine_dependence\" \n", - "[692] \"abdominal_aortic_aneurysm_without_rupture\" \n", - "[693] \"right_bundle_branch_block\" \n", - "[694] \"alcoholic_cirrhosis\" \n", - "[695] \"fibrosis_of_lung\" \n", - "[696] \"neoplasm_of_uncertain_behavior_of_skin\" \n", - "[697] \"malignant_melanoma_of_skin\" \n", - "[698] \"urgent_desire_to_urinate\" \n", - "[699] \"bursitis_of_hip\" \n", - "[700] \"chronic_alcoholism_in_remission\" \n", - "[701] \"chronic_pancreatitis\" \n", - "[702] \"gastroparesis\" \n", - "[703] \"ectopic_pregnancy\" \n", - "[704] \"muscle_weakness\" \n", - "[705] \"recurrent_major_depression\" \n", - "[706] \"pilonidal_cyst\" \n", - "[707] \"pain_in_toe\" \n", - "[708] \"pulmonary_tuberculosis\" \n", - "[709] \"celiac_disease\" \n", - "[710] \"cramp_in_lower_leg\" \n", - "[711] \"secondary_malignant_neoplasm_of_pleura\" \n", - "[712] \"fracture_of_hand\" \n", - "[713] \"cyst_of_breast\" \n", - "[714] \"nephrotic_syndrome\" \n", - "[715] \"polyp_of_nasal_sinus\" \n", - "[716] \"chondromalacia_of_patella\" \n", - "[717] \"spinal_stenosis_in_cervical_region\" \n", - "[718] \"disorder_of_artery\" \n", - "[719] \"vitiligo\" \n", - "[720] \"female_cystocele\" \n", - "[721] \"dysphasia\" \n", - "[722] \"retinal_disorder\" \n", - "[723] \"epiretinal_membrane\" \n", - "[724] \"recurrent_major_depression_in_partial_remission\" \n", - "[725] \"infection_caused_by_trichomonas\" \n", - "[726] \"osteomyelitis\" \n", - "[727] \"polyp_of_nasal_cavity_and/or_nasal_sinus\" \n", - "[728] \"mass_of_neck\" \n", - "[729] \"idiopathic_thrombocytopenic_purpura\" \n", - "[730] \"complete_miscarriage\" \n", - "[731] \"gastric_ulcer\" \n", - "[732] \"papilloma_of_skin\" \n", - "[733] \"fetal_or_neonatal_effect_of_breech_delivery_and_extraction\" \n", - "[734] \"secondary_malignant_neoplastic_disease\" \n", - "[735] \"hypoxemia\" \n", - "[736] \"paraplegia\" \n", - "[737] \"perforation_of_tympanic_membrane\" \n", - "[738] \"ventricular_tachycardia\" \n", - "[739] \"mixed_incontinence\" \n", - "[740] \"disorder_of_eye_due_to_type_2_diabetes_mellitus\" \n", - "[741] \"trigeminal_neuralgia\" \n", - "[742] \"retinal_detachment\" \n", - "[743] \"leukopenia\" \n", - "[744] \"vitreous_hemorrhage\" \n", - "[745] \"ischemic_ulcer\" \n", - "[746] \"intramural_leiomyoma_of_uterus\" \n", - "[747] \"viral_hepatitis_type_a\" \n", - "[748] \"mnire's_disease\" \n", - "[749] \"fracture_of_phalanx_of_hand\" \n", - "[750] \"muscle_atrophy\" \n", - "[751] \"incontinence_of_feces\" \n", - "[752] \"mitral_valve_disorder\" \n", - "[753] \"atherosclerosis_of_arteries_of_the_extremities\" \n", - "[754] \"spondylosis\" \n", - "[755] \"pterygium\" \n", - "[756] \"ulnar_neuropathy\" \n", - "[757] \"lung_mass\" \n", - "[758] \"foreign_body_in_respiratory_tract\" \n", - "[759] \"chronic_kidney_disease_stage_4\" \n", - "[760] \"myocardial_ischemia\" \n", - "[761] \"non-toxic_multinodular_goiter\" \n", - "[762] \"pain_in_finger\" \n", - "[763] \"cervical_spondylosis_without_myelopathy\" \n", - "[764] \"body_mass_index_25-29_-_overweight\" \n", - "[765] \"clouded_consciousness\" \n", - "[766] \"mixed_conductive_and_sensorineural_hearing_loss\" \n", - "[767] \"tooth_eruption_disorder\" \n", - "[768] \"hyperuricemia\" \n", - "[769] \"closed_fracture_of_neck_of_femur\" \n", - "[770] \"bipolar_ii_disorder\" \n", - "[771] \"disturbance_in_sleep_behavior\" \n", - "[772] \"relationship_problems\" \n", - "[773] \"sprain_of_wrist\" \n", - "[774] \"personality_disorder\" \n", - "[775] \"external_hemorrhoids\" \n", - "[776] \"abnormal_vision\" \n", - "[777] \"hyperprolactinemia\" \n", - "[778] \"hemochromatosis\" \n", - "[779] \"lumbosacral_radiculopathy\" \n", - "[780] \"heart_valve_disorder\" \n", - "[781] \"cardiac_arrest\" \n", - "[782] \"infection_caused_by_molluscum_contagiosum\" \n", - "[783] \"chronic_kidney_disease_stage_2\" \n", - "[784] \"secondary_malignant_neoplasm_of_peritoneum\" \n", - "[785] \"thoracic_back_pain\" \n", - "[786] \"blood_in_urine\" \n", - "[787] \"adhesive_capsulitis_of_shoulder\" \n", - "[788] \"diplopia\" \n", - "[789] \"sjgren's_syndrome\" \n", - "[790] \"ureteric_stone\" \n", - "[791] \"bronchospasm\" \n", - "[792] \"chronic_fatigue_syndrome\" \n", - "[793] \"cannabis_dependence\" \n", - "[794] \"neck_sprain\" \n", - "[795] \"multinodular_goiter\" \n", - "[796] \"ptosis_of_eyelid\" \n", - "[797] \"failure_to_thrive\" \n", - "[798] \"torticollis\" \n", - "[799] \"acute_bronchiolitis\" \n", - "[800] \"viral_exanthem\" \n", - "[801] \"talipes_planus\" \n", - "[802] \"idiopathic_peripheral_neuropathy\" \n", - "[803] \"foreign_body_in_pharynx\" \n", - "[804] \"jaw_pain\" \n", - "[805] \"renal_impairment\" \n", - "[806] \"ataxia\" \n", - "[807] \"age-related_macular_degeneration\" \n", - "[808] \"uterine_prolapse\" \n", - "[809] \"renal_mass\" \n", - "[810] \"pneumonitis\" \n", - "[811] \"coordination_problem\" \n", - "[812] \"blindness_-_both_eyes\" \n", - "[813] \"primary_hyperparathyroidism\" \n", - "[814] \"musculoskeletal_pain\" \n", - "[815] \"mycosis\" \n", - "[816] \"primigravida\" \n", - "[817] \"urethral_stricture\" \n", - "[818] \"leukocytosis\" \n", - "[819] \"ventricular_premature_complex\" \n", - "[820] \"ulcer_of_foot_due_to_diabetes_mellitus\" \n", - "[821] \"chronic_headache_disorder\" \n", - "[822] \"hemangioma\" \n", - "[823] \"lymphedema\" \n", - "[824] \"postmenopausal_state\" \n", - "[825] \"chronic_ulcer_of_skin\" \n", - "[826] \"left_heart_failure\" \n", - "[827] \"excessive_and_frequent_menstruation\" \n", - "[828] \"thrombocytosis\" \n", - "[829] \"disorder_of_liver\" \n", - "[830] \"disorder_of_carotid_artery\" \n", - "[831] \"altered_bowel_function\" \n", - "[832] \"abscess_of_foot\" \n", - "[833] \"malignant_tumor_of_head_and/or_neck\" \n", - "[834] \"streptococcus_group_b_infection_of_the_infant\" \n", - "[835] \"concussion_injury_of_brain\" \n", - "[836] \"feeding_problems_in_newborn\" \n", - "[837] \"bipolar_i_disorder\" \n", - "[838] \"viral_pharyngitis\" \n", - "[839] \"lower_respiratory_tract_infection\" \n", - "[840] \"hydronephrosis\" \n", - "[841] \"borderline_personality_disorder\" \n", - "[842] \"esophageal_varices\" \n", - "[843] \"hypersomnia\" \n", - "[844] \"sensorineural_hearing_loss_bilateral\" \n", - "[845] \"varicocele\" \n", - "[846] \"subarachnoid_intracranial_hemorrhage\" \n", - "[847] \"incisional_hernia\" \n", - "[848] \"varicella\" \n", - "[849] \"pain_in_testicle\" \n", - "[850] \"transplant_follow-up\" \n", - "[851] \"tinea_cruris\" \n", - "[852] \"laryngitis\" \n", - "[853] \"hypertrophy_of_nail\" \n", - "[854] \"amblyopia\" \n", - "[855] \"polyp_of_cervix\" \n", - "[856] \"cyst_of_kidney\" \n", - "[857] \"hepatic_encephalopathy\" \n", - "[858] \"blood_glucose_abnormal\" \n", - "[859] \"postherpetic_neuralgia\" \n", - "[860] \"frank_hematuria\" \n", - "[861] \"cramp\" \n", - "[862] \"interstitial_lung_disease\" \n", - "[863] \"complete_atrioventricular_block\" \n", - "[864] \"malignant_tumor_of_kidney\" \n", - "[865] \"otitis\" \n", - "[866] \"septic_shock\" \n", - "[867] \"disorder_of_thyroid_gland\" \n", - "[868] \"hypertrophic_cardiomyopathy\" \n", - "[869] \"respiratory_distress_syndrome_in_the_newborn\" \n", - "[870] \"infectious_gastroenteritis\" \n", - "[871] \"subdural_intracranial_hemorrhage\" \n", - "[872] \"hepatitis_b_carrier\" \n", - "[873] \"manic_bipolar_i_disorder\" \n", - "[874] \"secondary_pulmonary_hypertension\" \n", - "[875] \"gonorrhea\" \n", - "[876] \"derangement_of_knee\" \n", - "[877] \"appendicitis\" \n", - "[878] \"polyneuropathy_due_to_diabetes_mellitus\" \n", - "[879] \"neonatal_hypoglycemia\" \n", - "[880] \"prolonged_rupture_of_membranes\" \n", - "[881] \"vasomotor_rhinitis\" \n", - "[882] \"renal_disorder_due_to_type_1_diabetes_mellitus\" \n", - "[883] \"tuberculosis\" \n", - "[884] \"feeding_problem\" \n", - "[885] \"chronic_tonsillitis\" \n", - "[886] \"acute_duodenal_ulcer_with_hemorrhage\" \n", - "[887] \"hammer_toe\" \n", - "[888] \"malignant_tumor_of_cervix\" \n", - "[889] \"prolapsed_lumbar_intervertebral_disc\" \n", - "[890] \"hematemesis\" \n", - "[891] \"perianal_abscess\" \n", - "[892] \"nonvenomous_insect_bite\" \n", - "[893] \"spondylolisthesis\" \n", - "[894] \"malignant_tumor_of_esophagus\" \n", - "[895] \"aphthous_ulcer_of_mouth\" \n", - "[896] \"ventricular_septal_defect\" \n", - "[897] \"oropharyngeal_dysphagia\" \n", - "[898] \"injury_of_knee\" \n", - "[899] \"traumatic_brain_injury\" \n", - "[900] \"osteoarthritis_of_glenohumeral_joint\" \n", - "[901] \"fetal_or_neonatal_effect_of_maternal_medical_problem\" \n", - "[902] \"stomatological_preparations\" \n", - "[903] \"drugs_for_acid_related_disorders\" \n", - "[904] \"drugs_for_functional_gastrointestinal_disorders\" \n", - "[905] \"antiemetics_and_antinauseants\" \n", - "[906] \"bile_and_liver_therapy\" \n", - "[907] \"drugs_for_constipation\" \n", - "[908] \"antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents\" \n", - "[909] \"antiobesity_preparations,_excl._diet_products\" \n", - "[910] \"digestives,_incl._enzymes\" \n", - "[911] \"drugs_used_in_diabetes\" \n", - "[912] \"vitamins\" \n", - "[913] \"mineral_supplements\" \n", - "[914] \"tonics\" \n", - "[915] \"anabolic_agents_for_systemic_use\" \n", - "[916] \"appetite_stimulants\" \n", - "[917] \"other_alimentary_tract_and_metabolism_products\" \n", - "[918] \"antithrombotic_agents\" \n", - "[919] \"antihemorrhagics\" \n", - "[920] \"antianemic_preparations\" \n", - "[921] \"blood_substitutes_and_perfusion_solutions\" \n", - "[922] \"other_hematological_agents\" \n", - "[923] \"cardiac_therapy\" \n", - "[924] \"antihypertensives\" \n", - "[925] \"diuretics\" \n", - "[926] \"peripheral_vasodilators\" \n", - "[927] \"vasoprotectives\" \n", - "[928] \"beta_blocking_agents\" \n", - "[929] \"calcium_channel_blockers\" \n", - "[930] \"agents_acting_on_the_renin-angiotensin_system\" \n", - "[931] \"lipid_modifying_agents\" \n", - "[932] \"antifungals_for_dermatological_use\" \n", - "[933] \"emollients_and_protectives\" \n", - "[934] \"preparations_for_treatment_of_wounds_and_ulcers\" \n", - "[935] \"antipruritics,_incl._antihistamines,_anesthetics,_etc.\" \n", - "[936] \"antipsoriatics\" \n", - "[937] \"antibiotics_and_chemotherapeutics_for_dermatological_use\" \n", - "[938] \"corticosteroids,_dermatological_preparations\" \n", - "[939] \"antiseptics_and_disinfectants\" \n", - "[940] \"medicated_dressings\" \n", - "[941] \"anti-acne_preparations\" \n", - "[942] \"other_dermatological_preparations\" \n", - "[943] \"gynecological_antiinfectives_and_antiseptics\" \n", - "[944] \"other_gynecologicals\" \n", - "[945] \"sex_hormones_and_modulators_of_the_genital_system\" \n", - "[946] \"urologicals\" \n", - "[947] \"pituitary_and_hypothalamic_hormones_and_analogues\" \n", - "[948] \"corticosteroids_for_systemic_use\" \n", - "[949] \"thyroid_therapy\" \n", - "[950] \"pancreatic_hormones\" \n", - "[951] \"calcium_homeostasis\" \n", - "[952] \"antibacterials_for_systemic_use\" \n", - "[953] \"antimycotics_for_systemic_use\" \n", - "[954] \"antimycobacterials\" \n", - "[955] \"antivirals_for_systemic_use\" \n", - "[956] \"immune_sera_and_immunoglobulins\" \n", - "[957] \"vaccines\" \n", - "[958] \"antineoplastic_agents\" \n", - "[959] \"endocrine_therapy\" \n", - "[960] \"immunostimulants\" \n", - "[961] \"immunosuppressants\" \n", - "[962] \"antiinflammatory_and_antirheumatic_products\" \n", - "[963] \"topical_products_for_joint_and_muscular_pain\" \n", - "[964] \"muscle_relaxants\" \n", - "[965] \"antigout_preparations\" \n", - "[966] \"drugs_for_treatment_of_bone_diseases\" \n", - "[967] \"other_drugs_for_disorders_of_the_musculo-skeletal_system\" \n", - "[968] \"anesthetics\" \n", - "[969] \"analgesics\" \n", - "[970] \"antiepileptics\" \n", - "[971] \"anti-parkinson_drugs\" \n", - "[972] \"psycholeptics\" \n", - "[973] \"psychoanaleptics\" \n", - "[974] \"other_nervous_system_drugs\" \n", - "[975] \"antiprotozoals\" \n", - "[976] \"anthelmintics\" \n", - "[977] \"ectoparasiticides,_incl._scabicides,_insecticides_and_repellents\" \n", - "[978] \"nasal_preparations\" \n", - "[979] \"throat_preparations\" \n", - "[980] \"drugs_for_obstructive_airway_diseases\" \n", - "[981] \"cough_and_cold_preparations\" \n", - "[982] \"antihistamines_for_systemic_use\" \n", - "[983] \"other_respiratory_system_products\" \n", - "[984] \"ophthalmologicals\" \n", - "[985] \"otologicals\" \n", - "[986] \"ophthalmological_and_otological_preparations\" \n", - "[987] \"allergens\" \n", - "[988] \"all_other_therapeutic_products\" \n", - "[989] \"diagnostic_agents\" \n", - "[990] \"general_nutrients\" \n", - "[991] \"all_other_non-therapeutic_products\" \n", - "[992] \"contrast_media\" \n", - "[993] \"diagnostic_radiopharmaceuticals\" \n", - "[994] \"therapeutic_radiopharmaceuticals\" \n", - "[995] \"surgical_dressings\" \n", - "[996] \"statins\" \n", - "[997] \"ass\" \n", - "[998] \"atypical_antipsychotics\" \n", - "[999] \"glucocorticoids\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "covariates" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:16:59.684813Z", - "start_time": "2020-11-04T14:16:58.773Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. 'chronic_alcoholism_in_remission'
  2. 'chronic_pancreatitis'
  3. 'gastroparesis'
  4. 'ectopic_pregnancy'
  5. 'muscle_weakness'
  6. 'recurrent_major_depression'
  7. 'pilonidal_cyst'
  8. 'pain_in_toe'
  9. 'pulmonary_tuberculosis'
  10. 'celiac_disease'
  11. 'cramp_in_lower_leg'
  12. 'secondary_malignant_neoplasm_of_pleura'
  13. 'fracture_of_hand'
  14. 'cyst_of_breast'
  15. 'nephrotic_syndrome'
  16. 'polyp_of_nasal_sinus'
  17. 'chondromalacia_of_patella'
  18. 'spinal_stenosis_in_cervical_region'
  19. 'disorder_of_artery'
  20. 'vitiligo'
  21. 'female_cystocele'
  22. 'dysphasia'
  23. 'retinal_disorder'
  24. 'epiretinal_membrane'
  25. 'recurrent_major_depression_in_partial_remission'
  26. 'infection_caused_by_trichomonas'
  27. 'osteomyelitis'
  28. 'polyp_of_nasal_cavity_and/or_nasal_sinus'
  29. 'mass_of_neck'
  30. 'idiopathic_thrombocytopenic_purpura'
  31. 'complete_miscarriage'
  32. 'gastric_ulcer'
  33. 'papilloma_of_skin'
  34. 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction'
  35. 'secondary_malignant_neoplastic_disease'
  36. 'hypoxemia'
  37. 'paraplegia'
  38. 'perforation_of_tympanic_membrane'
  39. 'ventricular_tachycardia'
  40. 'mixed_incontinence'
  41. 'disorder_of_eye_due_to_type_2_diabetes_mellitus'
  42. 'trigeminal_neuralgia'
  43. 'retinal_detachment'
  44. 'leukopenia'
  45. 'vitreous_hemorrhage'
  46. 'ischemic_ulcer'
  47. 'intramural_leiomyoma_of_uterus'
  48. 'viral_hepatitis_type_a'
  49. 'm\\u00e9ni\\u00e8re\\'s_disease'
  50. 'fracture_of_phalanx_of_hand'
  51. 'muscle_atrophy'
  52. 'incontinence_of_feces'
  53. 'mitral_valve_disorder'
  54. 'atherosclerosis_of_arteries_of_the_extremities'
  55. 'spondylosis'
  56. 'pterygium'
  57. 'ulnar_neuropathy'
  58. 'lung_mass'
  59. 'foreign_body_in_respiratory_tract'
  60. 'chronic_kidney_disease_stage_4'
  61. 'myocardial_ischemia'
  62. 'non-toxic_multinodular_goiter'
  63. 'pain_in_finger'
  64. 'cervical_spondylosis_without_myelopathy'
  65. 'body_mass_index_25-29_-_overweight'
  66. 'clouded_consciousness'
  67. 'mixed_conductive_and_sensorineural_hearing_loss'
  68. 'tooth_eruption_disorder'
  69. 'hyperuricemia'
  70. 'closed_fracture_of_neck_of_femur'
  71. 'bipolar_ii_disorder'
  72. 'disturbance_in_sleep_behavior'
  73. 'relationship_problems'
  74. 'sprain_of_wrist'
  75. 'personality_disorder'
  76. 'external_hemorrhoids'
  77. 'abnormal_vision'
  78. 'hyperprolactinemia'
  79. 'hemochromatosis'
  80. 'lumbosacral_radiculopathy'
  81. 'heart_valve_disorder'
  82. 'cardiac_arrest'
  83. 'infection_caused_by_molluscum_contagiosum'
  84. 'chronic_kidney_disease_stage_2'
  85. 'secondary_malignant_neoplasm_of_peritoneum'
  86. 'thoracic_back_pain'
  87. 'blood_in_urine'
  88. 'adhesive_capsulitis_of_shoulder'
  89. 'diplopia'
  90. 'sj\\u00f6gren\\'s_syndrome'
  91. 'ureteric_stone'
  92. 'bronchospasm'
  93. 'chronic_fatigue_syndrome'
  94. 'cannabis_dependence'
  95. 'neck_sprain'
  96. 'multinodular_goiter'
  97. 'ptosis_of_eyelid'
  98. 'failure_to_thrive'
  99. 'torticollis'
  100. 'acute_bronchiolitis'
  101. 'viral_exanthem'
  102. 'talipes_planus'
  103. 'idiopathic_peripheral_neuropathy'
  104. 'foreign_body_in_pharynx'
  105. 'jaw_pain'
  106. 'renal_impairment'
  107. 'ataxia'
  108. 'age-related_macular_degeneration'
  109. 'uterine_prolapse'
  110. 'renal_mass'
  111. 'pneumonitis'
  112. 'coordination_problem'
  113. 'blindness_-_both_eyes'
  114. 'primary_hyperparathyroidism'
  115. 'musculoskeletal_pain'
  116. 'mycosis'
  117. 'primigravida'
  118. 'urethral_stricture'
  119. 'leukocytosis'
  120. 'ventricular_premature_complex'
  121. 'ulcer_of_foot_due_to_diabetes_mellitus'
  122. 'chronic_headache_disorder'
  123. 'hemangioma'
  124. 'lymphedema'
  125. 'postmenopausal_state'
  126. 'chronic_ulcer_of_skin'
  127. 'left_heart_failure'
  128. 'excessive_and_frequent_menstruation'
  129. 'thrombocytosis'
  130. 'disorder_of_liver'
  131. 'disorder_of_carotid_artery'
  132. 'altered_bowel_function'
  133. 'abscess_of_foot'
  134. 'malignant_tumor_of_head_and/or_neck'
  135. 'streptococcus_group_b_infection_of_the_infant'
  136. 'concussion_injury_of_brain'
  137. 'feeding_problems_in_newborn'
  138. 'bipolar_i_disorder'
  139. 'viral_pharyngitis'
  140. 'lower_respiratory_tract_infection'
  141. 'hydronephrosis'
  142. 'borderline_personality_disorder'
  143. 'esophageal_varices'
  144. 'hypersomnia'
  145. 'sensorineural_hearing_loss_bilateral'
  146. 'varicocele'
  147. 'subarachnoid_intracranial_hemorrhage'
  148. 'incisional_hernia'
  149. 'varicella'
  150. 'pain_in_testicle'
  151. 'transplant_follow-up'
  152. 'tinea_cruris'
  153. 'laryngitis'
  154. 'hypertrophy_of_nail'
  155. 'amblyopia'
  156. 'polyp_of_cervix'
  157. 'cyst_of_kidney'
  158. 'hepatic_encephalopathy'
  159. 'blood_glucose_abnormal'
  160. 'postherpetic_neuralgia'
  161. 'frank_hematuria'
  162. 'cramp'
  163. 'interstitial_lung_disease'
  164. 'complete_atrioventricular_block'
  165. 'malignant_tumor_of_kidney'
  166. 'otitis'
  167. 'septic_shock'
  168. 'disorder_of_thyroid_gland'
  169. 'hypertrophic_cardiomyopathy'
  170. 'respiratory_distress_syndrome_in_the_newborn'
  171. 'infectious_gastroenteritis'
  172. 'subdural_intracranial_hemorrhage'
  173. 'hepatitis_b_carrier'
  174. 'manic_bipolar_i_disorder'
  175. 'secondary_pulmonary_hypertension'
  176. 'gonorrhea'
  177. 'derangement_of_knee'
  178. 'appendicitis'
  179. 'polyneuropathy_due_to_diabetes_mellitus'
  180. 'neonatal_hypoglycemia'
  181. 'prolonged_rupture_of_membranes'
  182. 'vasomotor_rhinitis'
  183. 'renal_disorder_due_to_type_1_diabetes_mellitus'
  184. 'tuberculosis'
  185. 'feeding_problem'
  186. 'chronic_tonsillitis'
  187. 'acute_duodenal_ulcer_with_hemorrhage'
  188. 'hammer_toe'
  189. 'malignant_tumor_of_cervix'
  190. 'prolapsed_lumbar_intervertebral_disc'
  191. 'hematemesis'
  192. 'perianal_abscess'
  193. 'nonvenomous_insect_bite'
  194. 'spondylolisthesis'
  195. 'malignant_tumor_of_esophagus'
  196. 'aphthous_ulcer_of_mouth'
  197. 'ventricular_septal_defect'
  198. 'oropharyngeal_dysphagia'
  199. 'injury_of_knee'
  200. 'traumatic_brain_injury'
  201. 'osteoarthritis_of_glenohumeral_joint'
\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 'chronic\\_alcoholism\\_in\\_remission'\n", - "\\item 'chronic\\_pancreatitis'\n", - "\\item 'gastroparesis'\n", - "\\item 'ectopic\\_pregnancy'\n", - "\\item 'muscle\\_weakness'\n", - "\\item 'recurrent\\_major\\_depression'\n", - "\\item 'pilonidal\\_cyst'\n", - "\\item 'pain\\_in\\_toe'\n", - "\\item 'pulmonary\\_tuberculosis'\n", - "\\item 'celiac\\_disease'\n", - "\\item 'cramp\\_in\\_lower\\_leg'\n", - "\\item 'secondary\\_malignant\\_neoplasm\\_of\\_pleura'\n", - "\\item 'fracture\\_of\\_hand'\n", - "\\item 'cyst\\_of\\_breast'\n", - "\\item 'nephrotic\\_syndrome'\n", - "\\item 'polyp\\_of\\_nasal\\_sinus'\n", - "\\item 'chondromalacia\\_of\\_patella'\n", - "\\item 'spinal\\_stenosis\\_in\\_cervical\\_region'\n", - "\\item 'disorder\\_of\\_artery'\n", - "\\item 'vitiligo'\n", - "\\item 'female\\_cystocele'\n", - "\\item 'dysphasia'\n", - "\\item 'retinal\\_disorder'\n", - "\\item 'epiretinal\\_membrane'\n", - "\\item 'recurrent\\_major\\_depression\\_in\\_partial\\_remission'\n", - "\\item 'infection\\_caused\\_by\\_trichomonas'\n", - "\\item 'osteomyelitis'\n", - "\\item 'polyp\\_of\\_nasal\\_cavity\\_and/or\\_nasal\\_sinus'\n", - "\\item 'mass\\_of\\_neck'\n", - "\\item 'idiopathic\\_thrombocytopenic\\_purpura'\n", - "\\item 'complete\\_miscarriage'\n", - "\\item 'gastric\\_ulcer'\n", - "\\item 'papilloma\\_of\\_skin'\n", - "\\item 'fetal\\_or\\_neonatal\\_effect\\_of\\_breech\\_delivery\\_and\\_extraction'\n", - "\\item 'secondary\\_malignant\\_neoplastic\\_disease'\n", - "\\item 'hypoxemia'\n", - "\\item 'paraplegia'\n", - "\\item 'perforation\\_of\\_tympanic\\_membrane'\n", - "\\item 'ventricular\\_tachycardia'\n", - "\\item 'mixed\\_incontinence'\n", - "\\item 'disorder\\_of\\_eye\\_due\\_to\\_type\\_2\\_diabetes\\_mellitus'\n", - "\\item 'trigeminal\\_neuralgia'\n", - "\\item 'retinal\\_detachment'\n", - "\\item 'leukopenia'\n", - "\\item 'vitreous\\_hemorrhage'\n", - "\\item 'ischemic\\_ulcer'\n", - "\\item 'intramural\\_leiomyoma\\_of\\_uterus'\n", - "\\item 'viral\\_hepatitis\\_type\\_a'\n", - "\\item 'm\\textbackslash{}u00e9ni\\textbackslash{}u00e8re\\textbackslash{}'s\\_disease'\n", - "\\item 'fracture\\_of\\_phalanx\\_of\\_hand'\n", - "\\item 'muscle\\_atrophy'\n", - "\\item 'incontinence\\_of\\_feces'\n", - "\\item 'mitral\\_valve\\_disorder'\n", - "\\item 'atherosclerosis\\_of\\_arteries\\_of\\_the\\_extremities'\n", - "\\item 'spondylosis'\n", - "\\item 'pterygium'\n", - "\\item 'ulnar\\_neuropathy'\n", - "\\item 'lung\\_mass'\n", - "\\item 'foreign\\_body\\_in\\_respiratory\\_tract'\n", - "\\item 'chronic\\_kidney\\_disease\\_stage\\_4'\n", - "\\item 'myocardial\\_ischemia'\n", - "\\item 'non-toxic\\_multinodular\\_goiter'\n", - "\\item 'pain\\_in\\_finger'\n", - "\\item 'cervical\\_spondylosis\\_without\\_myelopathy'\n", - "\\item 'body\\_mass\\_index\\_25-29\\_-\\_overweight'\n", - "\\item 'clouded\\_consciousness'\n", - "\\item 'mixed\\_conductive\\_and\\_sensorineural\\_hearing\\_loss'\n", - "\\item 'tooth\\_eruption\\_disorder'\n", - "\\item 'hyperuricemia'\n", - "\\item 'closed\\_fracture\\_of\\_neck\\_of\\_femur'\n", - "\\item 'bipolar\\_ii\\_disorder'\n", - "\\item 'disturbance\\_in\\_sleep\\_behavior'\n", - "\\item 'relationship\\_problems'\n", - "\\item 'sprain\\_of\\_wrist'\n", - "\\item 'personality\\_disorder'\n", - "\\item 'external\\_hemorrhoids'\n", - "\\item 'abnormal\\_vision'\n", - "\\item 'hyperprolactinemia'\n", - "\\item 'hemochromatosis'\n", - "\\item 'lumbosacral\\_radiculopathy'\n", - "\\item 'heart\\_valve\\_disorder'\n", - "\\item 'cardiac\\_arrest'\n", - "\\item 'infection\\_caused\\_by\\_molluscum\\_contagiosum'\n", - "\\item 'chronic\\_kidney\\_disease\\_stage\\_2'\n", - "\\item 'secondary\\_malignant\\_neoplasm\\_of\\_peritoneum'\n", - "\\item 'thoracic\\_back\\_pain'\n", - "\\item 'blood\\_in\\_urine'\n", - "\\item 'adhesive\\_capsulitis\\_of\\_shoulder'\n", - "\\item 'diplopia'\n", - "\\item 'sj\\textbackslash{}u00f6gren\\textbackslash{}'s\\_syndrome'\n", - "\\item 'ureteric\\_stone'\n", - "\\item 'bronchospasm'\n", - "\\item 'chronic\\_fatigue\\_syndrome'\n", - "\\item 'cannabis\\_dependence'\n", - "\\item 'neck\\_sprain'\n", - "\\item 'multinodular\\_goiter'\n", - "\\item 'ptosis\\_of\\_eyelid'\n", - "\\item 'failure\\_to\\_thrive'\n", - "\\item 'torticollis'\n", - "\\item 'acute\\_bronchiolitis'\n", - "\\item 'viral\\_exanthem'\n", - "\\item 'talipes\\_planus'\n", - "\\item 'idiopathic\\_peripheral\\_neuropathy'\n", - "\\item 'foreign\\_body\\_in\\_pharynx'\n", - "\\item 'jaw\\_pain'\n", - "\\item 'renal\\_impairment'\n", - "\\item 'ataxia'\n", - "\\item 'age-related\\_macular\\_degeneration'\n", - "\\item 'uterine\\_prolapse'\n", - "\\item 'renal\\_mass'\n", - "\\item 'pneumonitis'\n", - "\\item 'coordination\\_problem'\n", - "\\item 'blindness\\_-\\_both\\_eyes'\n", - "\\item 'primary\\_hyperparathyroidism'\n", - "\\item 'musculoskeletal\\_pain'\n", - "\\item 'mycosis'\n", - "\\item 'primigravida'\n", - "\\item 'urethral\\_stricture'\n", - "\\item 'leukocytosis'\n", - "\\item 'ventricular\\_premature\\_complex'\n", - "\\item 'ulcer\\_of\\_foot\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'chronic\\_headache\\_disorder'\n", - "\\item 'hemangioma'\n", - "\\item 'lymphedema'\n", - "\\item 'postmenopausal\\_state'\n", - "\\item 'chronic\\_ulcer\\_of\\_skin'\n", - "\\item 'left\\_heart\\_failure'\n", - "\\item 'excessive\\_and\\_frequent\\_menstruation'\n", - "\\item 'thrombocytosis'\n", - "\\item 'disorder\\_of\\_liver'\n", - "\\item 'disorder\\_of\\_carotid\\_artery'\n", - "\\item 'altered\\_bowel\\_function'\n", - "\\item 'abscess\\_of\\_foot'\n", - "\\item 'malignant\\_tumor\\_of\\_head\\_and/or\\_neck'\n", - "\\item 'streptococcus\\_group\\_b\\_infection\\_of\\_the\\_infant'\n", - "\\item 'concussion\\_injury\\_of\\_brain'\n", - "\\item 'feeding\\_problems\\_in\\_newborn'\n", - "\\item 'bipolar\\_i\\_disorder'\n", - "\\item 'viral\\_pharyngitis'\n", - "\\item 'lower\\_respiratory\\_tract\\_infection'\n", - "\\item 'hydronephrosis'\n", - "\\item 'borderline\\_personality\\_disorder'\n", - "\\item 'esophageal\\_varices'\n", - "\\item 'hypersomnia'\n", - "\\item 'sensorineural\\_hearing\\_loss\\_bilateral'\n", - "\\item 'varicocele'\n", - "\\item 'subarachnoid\\_intracranial\\_hemorrhage'\n", - "\\item 'incisional\\_hernia'\n", - "\\item 'varicella'\n", - "\\item 'pain\\_in\\_testicle'\n", - "\\item 'transplant\\_follow-up'\n", - "\\item 'tinea\\_cruris'\n", - "\\item 'laryngitis'\n", - "\\item 'hypertrophy\\_of\\_nail'\n", - "\\item 'amblyopia'\n", - "\\item 'polyp\\_of\\_cervix'\n", - "\\item 'cyst\\_of\\_kidney'\n", - "\\item 'hepatic\\_encephalopathy'\n", - "\\item 'blood\\_glucose\\_abnormal'\n", - "\\item 'postherpetic\\_neuralgia'\n", - "\\item 'frank\\_hematuria'\n", - "\\item 'cramp'\n", - "\\item 'interstitial\\_lung\\_disease'\n", - "\\item 'complete\\_atrioventricular\\_block'\n", - "\\item 'malignant\\_tumor\\_of\\_kidney'\n", - "\\item 'otitis'\n", - "\\item 'septic\\_shock'\n", - "\\item 'disorder\\_of\\_thyroid\\_gland'\n", - "\\item 'hypertrophic\\_cardiomyopathy'\n", - "\\item 'respiratory\\_distress\\_syndrome\\_in\\_the\\_newborn'\n", - "\\item 'infectious\\_gastroenteritis'\n", - "\\item 'subdural\\_intracranial\\_hemorrhage'\n", - "\\item 'hepatitis\\_b\\_carrier'\n", - "\\item 'manic\\_bipolar\\_i\\_disorder'\n", - "\\item 'secondary\\_pulmonary\\_hypertension'\n", - "\\item 'gonorrhea'\n", - "\\item 'derangement\\_of\\_knee'\n", - "\\item 'appendicitis'\n", - "\\item 'polyneuropathy\\_due\\_to\\_diabetes\\_mellitus'\n", - "\\item 'neonatal\\_hypoglycemia'\n", - "\\item 'prolonged\\_rupture\\_of\\_membranes'\n", - "\\item 'vasomotor\\_rhinitis'\n", - "\\item 'renal\\_disorder\\_due\\_to\\_type\\_1\\_diabetes\\_mellitus'\n", - "\\item 'tuberculosis'\n", - "\\item 'feeding\\_problem'\n", - "\\item 'chronic\\_tonsillitis'\n", - "\\item 'acute\\_duodenal\\_ulcer\\_with\\_hemorrhage'\n", - "\\item 'hammer\\_toe'\n", - "\\item 'malignant\\_tumor\\_of\\_cervix'\n", - "\\item 'prolapsed\\_lumbar\\_intervertebral\\_disc'\n", - "\\item 'hematemesis'\n", - "\\item 'perianal\\_abscess'\n", - "\\item 'nonvenomous\\_insect\\_bite'\n", - "\\item 'spondylolisthesis'\n", - "\\item 'malignant\\_tumor\\_of\\_esophagus'\n", - "\\item 'aphthous\\_ulcer\\_of\\_mouth'\n", - "\\item 'ventricular\\_septal\\_defect'\n", - "\\item 'oropharyngeal\\_dysphagia'\n", - "\\item 'injury\\_of\\_knee'\n", - "\\item 'traumatic\\_brain\\_injury'\n", - "\\item 'osteoarthritis\\_of\\_glenohumeral\\_joint'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 'chronic_alcoholism_in_remission'\n", - "2. 'chronic_pancreatitis'\n", - "3. 'gastroparesis'\n", - "4. 'ectopic_pregnancy'\n", - "5. 'muscle_weakness'\n", - "6. 'recurrent_major_depression'\n", - "7. 'pilonidal_cyst'\n", - "8. 'pain_in_toe'\n", - "9. 'pulmonary_tuberculosis'\n", - "10. 'celiac_disease'\n", - "11. 'cramp_in_lower_leg'\n", - "12. 'secondary_malignant_neoplasm_of_pleura'\n", - "13. 'fracture_of_hand'\n", - "14. 'cyst_of_breast'\n", - "15. 'nephrotic_syndrome'\n", - "16. 'polyp_of_nasal_sinus'\n", - "17. 'chondromalacia_of_patella'\n", - "18. 'spinal_stenosis_in_cervical_region'\n", - "19. 'disorder_of_artery'\n", - "20. 'vitiligo'\n", - "21. 'female_cystocele'\n", - "22. 'dysphasia'\n", - "23. 'retinal_disorder'\n", - "24. 'epiretinal_membrane'\n", - "25. 'recurrent_major_depression_in_partial_remission'\n", - "26. 'infection_caused_by_trichomonas'\n", - "27. 'osteomyelitis'\n", - "28. 'polyp_of_nasal_cavity_and/or_nasal_sinus'\n", - "29. 'mass_of_neck'\n", - "30. 'idiopathic_thrombocytopenic_purpura'\n", - "31. 'complete_miscarriage'\n", - "32. 'gastric_ulcer'\n", - "33. 'papilloma_of_skin'\n", - "34. 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction'\n", - "35. 'secondary_malignant_neoplastic_disease'\n", - "36. 'hypoxemia'\n", - "37. 'paraplegia'\n", - "38. 'perforation_of_tympanic_membrane'\n", - "39. 'ventricular_tachycardia'\n", - "40. 'mixed_incontinence'\n", - "41. 'disorder_of_eye_due_to_type_2_diabetes_mellitus'\n", - "42. 'trigeminal_neuralgia'\n", - "43. 'retinal_detachment'\n", - "44. 'leukopenia'\n", - "45. 'vitreous_hemorrhage'\n", - "46. 'ischemic_ulcer'\n", - "47. 'intramural_leiomyoma_of_uterus'\n", - "48. 'viral_hepatitis_type_a'\n", - "49. 'm\\u00e9ni\\u00e8re\\'s_disease'\n", - "50. 'fracture_of_phalanx_of_hand'\n", - "51. 'muscle_atrophy'\n", - "52. 'incontinence_of_feces'\n", - "53. 'mitral_valve_disorder'\n", - "54. 'atherosclerosis_of_arteries_of_the_extremities'\n", - "55. 'spondylosis'\n", - "56. 'pterygium'\n", - "57. 'ulnar_neuropathy'\n", - "58. 'lung_mass'\n", - "59. 'foreign_body_in_respiratory_tract'\n", - "60. 'chronic_kidney_disease_stage_4'\n", - "61. 'myocardial_ischemia'\n", - "62. 'non-toxic_multinodular_goiter'\n", - "63. 'pain_in_finger'\n", - "64. 'cervical_spondylosis_without_myelopathy'\n", - "65. 'body_mass_index_25-29_-_overweight'\n", - "66. 'clouded_consciousness'\n", - "67. 'mixed_conductive_and_sensorineural_hearing_loss'\n", - "68. 'tooth_eruption_disorder'\n", - "69. 'hyperuricemia'\n", - "70. 'closed_fracture_of_neck_of_femur'\n", - "71. 'bipolar_ii_disorder'\n", - "72. 'disturbance_in_sleep_behavior'\n", - "73. 'relationship_problems'\n", - "74. 'sprain_of_wrist'\n", - "75. 'personality_disorder'\n", - "76. 'external_hemorrhoids'\n", - "77. 'abnormal_vision'\n", - "78. 'hyperprolactinemia'\n", - "79. 'hemochromatosis'\n", - "80. 'lumbosacral_radiculopathy'\n", - "81. 'heart_valve_disorder'\n", - "82. 'cardiac_arrest'\n", - "83. 'infection_caused_by_molluscum_contagiosum'\n", - "84. 'chronic_kidney_disease_stage_2'\n", - "85. 'secondary_malignant_neoplasm_of_peritoneum'\n", - "86. 'thoracic_back_pain'\n", - "87. 'blood_in_urine'\n", - "88. 'adhesive_capsulitis_of_shoulder'\n", - "89. 'diplopia'\n", - "90. 'sj\\u00f6gren\\'s_syndrome'\n", - "91. 'ureteric_stone'\n", - "92. 'bronchospasm'\n", - "93. 'chronic_fatigue_syndrome'\n", - "94. 'cannabis_dependence'\n", - "95. 'neck_sprain'\n", - "96. 'multinodular_goiter'\n", - "97. 'ptosis_of_eyelid'\n", - "98. 'failure_to_thrive'\n", - "99. 'torticollis'\n", - "100. 'acute_bronchiolitis'\n", - "101. 'viral_exanthem'\n", - "102. 'talipes_planus'\n", - "103. 'idiopathic_peripheral_neuropathy'\n", - "104. 'foreign_body_in_pharynx'\n", - "105. 'jaw_pain'\n", - "106. 'renal_impairment'\n", - "107. 'ataxia'\n", - "108. 'age-related_macular_degeneration'\n", - "109. 'uterine_prolapse'\n", - "110. 'renal_mass'\n", - "111. 'pneumonitis'\n", - "112. 'coordination_problem'\n", - "113. 'blindness_-_both_eyes'\n", - "114. 'primary_hyperparathyroidism'\n", - "115. 'musculoskeletal_pain'\n", - "116. 'mycosis'\n", - "117. 'primigravida'\n", - "118. 'urethral_stricture'\n", - "119. 'leukocytosis'\n", - "120. 'ventricular_premature_complex'\n", - "121. 'ulcer_of_foot_due_to_diabetes_mellitus'\n", - "122. 'chronic_headache_disorder'\n", - "123. 'hemangioma'\n", - "124. 'lymphedema'\n", - "125. 'postmenopausal_state'\n", - "126. 'chronic_ulcer_of_skin'\n", - "127. 'left_heart_failure'\n", - "128. 'excessive_and_frequent_menstruation'\n", - "129. 'thrombocytosis'\n", - "130. 'disorder_of_liver'\n", - "131. 'disorder_of_carotid_artery'\n", - "132. 'altered_bowel_function'\n", - "133. 'abscess_of_foot'\n", - "134. 'malignant_tumor_of_head_and/or_neck'\n", - "135. 'streptococcus_group_b_infection_of_the_infant'\n", - "136. 'concussion_injury_of_brain'\n", - "137. 'feeding_problems_in_newborn'\n", - "138. 'bipolar_i_disorder'\n", - "139. 'viral_pharyngitis'\n", - "140. 'lower_respiratory_tract_infection'\n", - "141. 'hydronephrosis'\n", - "142. 'borderline_personality_disorder'\n", - "143. 'esophageal_varices'\n", - "144. 'hypersomnia'\n", - "145. 'sensorineural_hearing_loss_bilateral'\n", - "146. 'varicocele'\n", - "147. 'subarachnoid_intracranial_hemorrhage'\n", - "148. 'incisional_hernia'\n", - "149. 'varicella'\n", - "150. 'pain_in_testicle'\n", - "151. 'transplant_follow-up'\n", - "152. 'tinea_cruris'\n", - "153. 'laryngitis'\n", - "154. 'hypertrophy_of_nail'\n", - "155. 'amblyopia'\n", - "156. 'polyp_of_cervix'\n", - "157. 'cyst_of_kidney'\n", - "158. 'hepatic_encephalopathy'\n", - "159. 'blood_glucose_abnormal'\n", - "160. 'postherpetic_neuralgia'\n", - "161. 'frank_hematuria'\n", - "162. 'cramp'\n", - "163. 'interstitial_lung_disease'\n", - "164. 'complete_atrioventricular_block'\n", - "165. 'malignant_tumor_of_kidney'\n", - "166. 'otitis'\n", - "167. 'septic_shock'\n", - "168. 'disorder_of_thyroid_gland'\n", - "169. 'hypertrophic_cardiomyopathy'\n", - "170. 'respiratory_distress_syndrome_in_the_newborn'\n", - "171. 'infectious_gastroenteritis'\n", - "172. 'subdural_intracranial_hemorrhage'\n", - "173. 'hepatitis_b_carrier'\n", - "174. 'manic_bipolar_i_disorder'\n", - "175. 'secondary_pulmonary_hypertension'\n", - "176. 'gonorrhea'\n", - "177. 'derangement_of_knee'\n", - "178. 'appendicitis'\n", - "179. 'polyneuropathy_due_to_diabetes_mellitus'\n", - "180. 'neonatal_hypoglycemia'\n", - "181. 'prolonged_rupture_of_membranes'\n", - "182. 'vasomotor_rhinitis'\n", - "183. 'renal_disorder_due_to_type_1_diabetes_mellitus'\n", - "184. 'tuberculosis'\n", - "185. 'feeding_problem'\n", - "186. 'chronic_tonsillitis'\n", - "187. 'acute_duodenal_ulcer_with_hemorrhage'\n", - "188. 'hammer_toe'\n", - "189. 'malignant_tumor_of_cervix'\n", - "190. 'prolapsed_lumbar_intervertebral_disc'\n", - "191. 'hematemesis'\n", - "192. 'perianal_abscess'\n", - "193. 'nonvenomous_insect_bite'\n", - "194. 'spondylolisthesis'\n", - "195. 'malignant_tumor_of_esophagus'\n", - "196. 'aphthous_ulcer_of_mouth'\n", - "197. 'ventricular_septal_defect'\n", - "198. 'oropharyngeal_dysphagia'\n", - "199. 'injury_of_knee'\n", - "200. 'traumatic_brain_injury'\n", - "201. 'osteoarthritis_of_glenohumeral_joint'\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] \"chronic_alcoholism_in_remission\" \n", - " [2] \"chronic_pancreatitis\" \n", - " [3] \"gastroparesis\" \n", - " [4] \"ectopic_pregnancy\" \n", - " [5] \"muscle_weakness\" \n", - " [6] \"recurrent_major_depression\" \n", - " [7] \"pilonidal_cyst\" \n", - " [8] \"pain_in_toe\" \n", - " [9] \"pulmonary_tuberculosis\" \n", - " [10] \"celiac_disease\" \n", - " [11] \"cramp_in_lower_leg\" \n", - " [12] \"secondary_malignant_neoplasm_of_pleura\" \n", - " [13] \"fracture_of_hand\" \n", - " [14] \"cyst_of_breast\" \n", - " [15] \"nephrotic_syndrome\" \n", - " [16] \"polyp_of_nasal_sinus\" \n", - " [17] \"chondromalacia_of_patella\" \n", - " [18] \"spinal_stenosis_in_cervical_region\" \n", - " [19] \"disorder_of_artery\" \n", - " [20] \"vitiligo\" \n", - " [21] \"female_cystocele\" \n", - " [22] \"dysphasia\" \n", - " [23] \"retinal_disorder\" \n", - " [24] \"epiretinal_membrane\" \n", - " [25] \"recurrent_major_depression_in_partial_remission\" \n", - " [26] \"infection_caused_by_trichomonas\" \n", - " [27] \"osteomyelitis\" \n", - " [28] \"polyp_of_nasal_cavity_and/or_nasal_sinus\" \n", - " [29] \"mass_of_neck\" \n", - " [30] \"idiopathic_thrombocytopenic_purpura\" \n", - " [31] \"complete_miscarriage\" \n", - " [32] \"gastric_ulcer\" \n", - " [33] \"papilloma_of_skin\" \n", - " [34] \"fetal_or_neonatal_effect_of_breech_delivery_and_extraction\"\n", - " [35] \"secondary_malignant_neoplastic_disease\" \n", - " [36] \"hypoxemia\" \n", - " [37] \"paraplegia\" \n", - " [38] \"perforation_of_tympanic_membrane\" \n", - " [39] \"ventricular_tachycardia\" \n", - " [40] \"mixed_incontinence\" \n", - " [41] \"disorder_of_eye_due_to_type_2_diabetes_mellitus\" \n", - " [42] \"trigeminal_neuralgia\" \n", - " [43] \"retinal_detachment\" \n", - " [44] \"leukopenia\" \n", - " [45] \"vitreous_hemorrhage\" \n", - " [46] \"ischemic_ulcer\" \n", - " [47] \"intramural_leiomyoma_of_uterus\" \n", - " [48] \"viral_hepatitis_type_a\" \n", - " [49] \"mnire's_disease\" \n", - " [50] \"fracture_of_phalanx_of_hand\" \n", - " [51] \"muscle_atrophy\" \n", - " [52] \"incontinence_of_feces\" \n", - " [53] \"mitral_valve_disorder\" \n", - " [54] \"atherosclerosis_of_arteries_of_the_extremities\" \n", - " [55] \"spondylosis\" \n", - " [56] \"pterygium\" \n", - " [57] \"ulnar_neuropathy\" \n", - " [58] \"lung_mass\" \n", - " [59] \"foreign_body_in_respiratory_tract\" \n", - " [60] \"chronic_kidney_disease_stage_4\" \n", - " [61] \"myocardial_ischemia\" \n", - " [62] \"non-toxic_multinodular_goiter\" \n", - " [63] \"pain_in_finger\" \n", - " [64] \"cervical_spondylosis_without_myelopathy\" \n", - " [65] \"body_mass_index_25-29_-_overweight\" \n", - " [66] \"clouded_consciousness\" \n", - " [67] \"mixed_conductive_and_sensorineural_hearing_loss\" \n", - " [68] \"tooth_eruption_disorder\" \n", - " [69] \"hyperuricemia\" \n", - " [70] \"closed_fracture_of_neck_of_femur\" \n", - " [71] \"bipolar_ii_disorder\" \n", - " [72] \"disturbance_in_sleep_behavior\" \n", - " [73] \"relationship_problems\" \n", - " [74] \"sprain_of_wrist\" \n", - " [75] \"personality_disorder\" \n", - " [76] \"external_hemorrhoids\" \n", - " [77] \"abnormal_vision\" \n", - " [78] \"hyperprolactinemia\" \n", - " [79] \"hemochromatosis\" \n", - " [80] \"lumbosacral_radiculopathy\" \n", - " [81] \"heart_valve_disorder\" \n", - " [82] \"cardiac_arrest\" \n", - " [83] \"infection_caused_by_molluscum_contagiosum\" \n", - " [84] \"chronic_kidney_disease_stage_2\" \n", - " [85] \"secondary_malignant_neoplasm_of_peritoneum\" \n", - " [86] \"thoracic_back_pain\" \n", - " [87] \"blood_in_urine\" \n", - " [88] \"adhesive_capsulitis_of_shoulder\" \n", - " [89] \"diplopia\" \n", - " [90] \"sjgren's_syndrome\" \n", - " [91] \"ureteric_stone\" \n", - " [92] \"bronchospasm\" \n", - " [93] \"chronic_fatigue_syndrome\" \n", - " [94] \"cannabis_dependence\" \n", - " [95] \"neck_sprain\" \n", - " [96] \"multinodular_goiter\" \n", - " [97] \"ptosis_of_eyelid\" \n", - " [98] \"failure_to_thrive\" \n", - " [99] \"torticollis\" \n", - "[100] \"acute_bronchiolitis\" \n", - "[101] \"viral_exanthem\" \n", - "[102] \"talipes_planus\" \n", - "[103] \"idiopathic_peripheral_neuropathy\" \n", - "[104] \"foreign_body_in_pharynx\" \n", - "[105] \"jaw_pain\" \n", - "[106] \"renal_impairment\" \n", - "[107] \"ataxia\" \n", - "[108] \"age-related_macular_degeneration\" \n", - "[109] \"uterine_prolapse\" \n", - "[110] \"renal_mass\" \n", - "[111] \"pneumonitis\" \n", - "[112] \"coordination_problem\" \n", - "[113] \"blindness_-_both_eyes\" \n", - "[114] \"primary_hyperparathyroidism\" \n", - "[115] \"musculoskeletal_pain\" \n", - "[116] \"mycosis\" \n", - "[117] \"primigravida\" \n", - "[118] \"urethral_stricture\" \n", - "[119] \"leukocytosis\" \n", - "[120] \"ventricular_premature_complex\" \n", - "[121] \"ulcer_of_foot_due_to_diabetes_mellitus\" \n", - "[122] \"chronic_headache_disorder\" \n", - "[123] \"hemangioma\" \n", - "[124] \"lymphedema\" \n", - "[125] \"postmenopausal_state\" \n", - "[126] \"chronic_ulcer_of_skin\" \n", - "[127] \"left_heart_failure\" \n", - "[128] \"excessive_and_frequent_menstruation\" \n", - "[129] \"thrombocytosis\" \n", - "[130] \"disorder_of_liver\" \n", - "[131] \"disorder_of_carotid_artery\" \n", - "[132] \"altered_bowel_function\" \n", - "[133] \"abscess_of_foot\" \n", - "[134] \"malignant_tumor_of_head_and/or_neck\" \n", - "[135] \"streptococcus_group_b_infection_of_the_infant\" \n", - "[136] \"concussion_injury_of_brain\" \n", - "[137] \"feeding_problems_in_newborn\" \n", - "[138] \"bipolar_i_disorder\" \n", - "[139] \"viral_pharyngitis\" \n", - "[140] \"lower_respiratory_tract_infection\" \n", - "[141] \"hydronephrosis\" \n", - "[142] \"borderline_personality_disorder\" \n", - "[143] \"esophageal_varices\" \n", - "[144] \"hypersomnia\" \n", - "[145] \"sensorineural_hearing_loss_bilateral\" \n", - "[146] \"varicocele\" \n", - "[147] \"subarachnoid_intracranial_hemorrhage\" \n", - "[148] \"incisional_hernia\" \n", - "[149] \"varicella\" \n", - "[150] \"pain_in_testicle\" \n", - "[151] \"transplant_follow-up\" \n", - "[152] \"tinea_cruris\" \n", - "[153] \"laryngitis\" \n", - "[154] \"hypertrophy_of_nail\" \n", - "[155] \"amblyopia\" \n", - "[156] \"polyp_of_cervix\" \n", - "[157] \"cyst_of_kidney\" \n", - "[158] \"hepatic_encephalopathy\" \n", - "[159] \"blood_glucose_abnormal\" \n", - "[160] \"postherpetic_neuralgia\" \n", - "[161] \"frank_hematuria\" \n", - "[162] \"cramp\" \n", - "[163] \"interstitial_lung_disease\" \n", - "[164] \"complete_atrioventricular_block\" \n", - "[165] \"malignant_tumor_of_kidney\" \n", - "[166] \"otitis\" \n", - "[167] \"septic_shock\" \n", - "[168] \"disorder_of_thyroid_gland\" \n", - "[169] \"hypertrophic_cardiomyopathy\" \n", - "[170] \"respiratory_distress_syndrome_in_the_newborn\" \n", - "[171] \"infectious_gastroenteritis\" \n", - "[172] \"subdural_intracranial_hemorrhage\" \n", - "[173] \"hepatitis_b_carrier\" \n", - "[174] \"manic_bipolar_i_disorder\" \n", - "[175] \"secondary_pulmonary_hypertension\" \n", - "[176] \"gonorrhea\" \n", - "[177] \"derangement_of_knee\" \n", - "[178] \"appendicitis\" \n", - "[179] \"polyneuropathy_due_to_diabetes_mellitus\" \n", - "[180] \"neonatal_hypoglycemia\" \n", - "[181] \"prolonged_rupture_of_membranes\" \n", - "[182] \"vasomotor_rhinitis\" \n", - "[183] \"renal_disorder_due_to_type_1_diabetes_mellitus\" \n", - "[184] \"tuberculosis\" \n", - "[185] \"feeding_problem\" \n", - "[186] \"chronic_tonsillitis\" \n", - "[187] \"acute_duodenal_ulcer_with_hemorrhage\" \n", - "[188] \"hammer_toe\" \n", - "[189] \"malignant_tumor_of_cervix\" \n", - "[190] \"prolapsed_lumbar_intervertebral_disc\" \n", - "[191] \"hematemesis\" \n", - "[192] \"perianal_abscess\" \n", - "[193] \"nonvenomous_insect_bite\" \n", - "[194] \"spondylolisthesis\" \n", - "[195] \"malignant_tumor_of_esophagus\" \n", - "[196] \"aphthous_ulcer_of_mouth\" \n", - "[197] \"ventricular_septal_defect\" \n", - "[198] \"oropharyngeal_dysphagia\" \n", - "[199] \"injury_of_knee\" \n", - "[200] \"traumatic_brain_injury\" \n", - "[201] \"osteoarthritis_of_glenohumeral_joint\" " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "covariates[700:900]" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:01.632846Z", - "start_time": "2020-11-04T14:17:00.584Z" - } - }, - "outputs": [], - "source": [ - "data = data %>% mutate_at(c(\"sex\", \"overall_health_rating\", \"smoking_status\", \"ethnic_background\"), as.factor)\n", - "data = data %>% mutate(sex=fct_relevel(sex, c(\"Male\", \"Female\")),\n", - " overall_health_rating=fct_relevel(overall_health_rating, c(\"Excellent\", \"Good\", \"Fair\", \"Poor\")),\n", - " smoking_status=fct_relevel(smoking_status, c(\"Current\", \"Previous\", \"Never\")))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Missing values" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "#na_count <-data.frame(sapply(data %>% as.data.frame(), function(y) sum(length(which(is.na(y))))))\n", - "#na_count %>% filter(sapply(data %>% as.data.frame(), function(y) sum(length(which(is.na(y)))))>0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Covariates BIG" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Table 1" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "mycontrols <- tableby.control(test=FALSE, total=TRUE,\n", - " numeric.test=\"kwt\", cat.test=\"chisq\",\n", - " numeric.stats=c(\"meansd\"), numeric.simplify=TRUE,\n", - " cat.stats=c(\"countpct\"), digits = 2L,cat.simplify = TRUE,\n", - " stats.labels=list(N='N', meansd='Median', Nmiss=\"Missing\"))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(arsenal)\n", - "table_one = tableby(sex~., control=mycontrols, data=data %>% select(all_of(c(covariates, targets))))\n", - "write2html(table_one, glue(\"{dataset_path}/table1_big.html\"));\n", - "#summary(table_one, text=TRUE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# BASELINE" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "base_size = 25\n", - "title_size = 30\n", - "facet_size = 22\n", - "geom_text_size=7" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size)))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(pgs))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\")\n", - "plot_pgs = ggplot(temp, aes(x=value)) + ggtitle(\"Polygenic Scores\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=6, scales = \"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(covariates))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\")\n", - "plot_cont = ggplot(temp, aes(x=value)) + ggtitle(\"Measurements\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=4, scales = \"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(all_of(c(covariates))) %>% select_if(is.factor) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\",values_ptypes=list(value=\"character\"))%>% \n", - " group_by(parameter, value, .drop = TRUE) %>% summarise(count=n(), ratio=round((100*n()/502504), 1)) %>% ungroup()\n", - "plot_cat = ggplot(temp, aes(x=value, y=ratio)) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " geom_text(aes(label=paste0(ratio, \" %\")), vjust=-1, size = geom_text_size) + \n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + \n", - " facet_grid(~parameter, scales = \"free\", space=\"free\")" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "library(forcats)\n", - "library(ggrepel)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "options(repr.plot.width=40, repr.plot.height=8)\n", - "\n", - "plot_cat = ggplot(temp, aes(x=parameter, y=ratio, fill=factor(parameter))) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=\"fill\", fill=\"gray70\", aes(alpha=ratio)) + coord_flip()+# #, fill=\"gray70\", width=0.5) #+\n", - " geom_text_repel(aes(label=ifelse(is.na(value), \"\", paste0(ratio*100, \" %\")), vjust=1), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " geom_text_repel(aes(label=value, vjust=-0.5), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " scale_y_continuous(limits=c(-0.05, 1.05))+ xlab(\"\") +\n", - " theme_void(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), legend.position = \"None\")\n", - "\n", - "plot_cat " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "\n", - "plot_cat = ggplot(temp, aes(x=parameter, y=ratio, fill=fct_rev(value))) + ggtitle(\"Basic Information\") + \n", - " geom_bar(stat=\"identity\", position=\"fill\", alpha=0.5) + coord_flip()+# #, fill=\"gray70\", width=0.5) #+\n", - " geom_text(aes(label=paste0(ratio*100, \" %\"), vjust=1), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " geom_text(aes(label=value, vjust=-0.5), position = position_stack(vjust = .5), size = geom_text_size) +\n", - " scale_y_continuous(limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + facet_grid(~parameter, cols=1)+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), legend.position = \"None\")+\n", - " scale_fill_d3() + theme(axis.line=element_blank(),\n", - " axis.text.x=element_blank(),\n", - " axis.text.y=element_blank(),\n", - " axis.ticks=element_blank(),\n", - " legend.position=\"none\",\n", - " panel.background=element_blank(),\n", - " panel.border=element_blank(),\n", - " panel.grid.major=element_blank(),\n", - " panel.grid.minor=element_blank(),\n", - " plot.background=element_blank())\n", - "plot_cat " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(c(any_of(phenotypes))) %>% \n", - " pivot_longer(everything(),names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_conditions = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Conditions\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5))#, strip.text.x = element_text(size = 16))" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "temp = data %>% select(c(any_of(medications))) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_medications = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Medications\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "outputs_hidden": true - } - }, - "source": [ - "options(repr.plot.width=30, repr.plot.height=100)\n", - "plot_1 = plot_grid(plot_pgs, plot_cat, plot_cont, ncol=1, rel_heights=c(1,0.7,10), align=\"v\")\n", - "plot_2 = plot_grid(plot_conditions, plot_medications, ncol=2, rel_widths=c(3,2.5), align=\"h\")\n", - "plot_grid(plot_1, plot_2, ncol=1, rel_heights=c(5,1.5), align=\"v\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Covariates Union" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:04.842258Z", - "start_time": "2020-11-04T14:17:03.935Z" - } - }, - "outputs": [], - "source": [ - "mycontrols <- tableby.control(test=FALSE, total=TRUE,\n", - " numeric.test=\"kwt\", cat.test=\"chisq\",\n", - " numeric.stats=c(\"meansd\"), numeric.simplify=TRUE,\n", - " cat.stats=c(\"countpct\"), digits = 2L,cat.simplify = TRUE,\n", - " stats.labels=list(N='N', meansd='Median', Nmiss=\"Missing\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:05.316730Z", - "start_time": "2020-11-04T14:17:04.385Z" - } - }, - "outputs": [], - "source": [ - "f = list()\n", - "f$pgs = c('PGS000011', 'PGS000057', 'PGS000058', 'PGS000059')\n", - "f$basics = c('age_at_recruitment','sex', 'ethnic_background',\"townsend_deprivation_index_at_recruitment\")\n", - "f$questionnaire = c('overall_health_rating','smoking_status')\n", - "f$measurements = c('body_mass_index_bmi','weight',\"standing_height\",'systolic_blood_pressure','diastolic_blood_pressure')\n", - "f$labs = c(\"cholesterol\", \"hdl_cholesterol\", \"ldl_direct\",\"triglycerides\")\n", - "f$family_history = c('fh_heart_disease')\n", - "f$diagnoses = c(\"myocardial_infarction\", \"coronary_heart_disease\", \"stroke\", \"diabetes1\", \"diabetes2\", \"chronic_kidney_disease\", \"atrial_fibrillation\", \"migraine\", \n", - " \"rheumatoid_arthritis\", \"systemic_lupus_erythematosus\", \"severe_mental_illness\", \"erectile_dysfunction\")\n", - "f$medications = c(\"statins\", \"antihypertensives\", \"ass\", \"atypical_antipsychotics\", \"glucocorticoids\")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.758624Z", - "start_time": "2020-11-04T14:17:04.775Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "\n", - "processing file: table1_union.html.Rmd\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " |......................................................................| 100%\n", - " ordinary text without R code\n", - "\n", - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "output file: table1_union.html.knit.md\n", - "\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/home/steinfej/miniconda3/envs/python/bin/pandoc +RTS -K512m -RTS table1_union.html.utf8.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/table1_union.html --lua-filter /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmarkdown/lua/latex-div.lua --email-obfuscation none --self-contained --standalone --section-divs --template /home/steinfej/miniconda3/envs/python/lib/R/library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable 'theme:bootstrap' --include-in-header /tmp/RtmpTrIitW/rmarkdown-str5f0b16f2aa34.html --mathjax --variable 'mathjax-url:https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' \n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "Output created: /data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/cvd_massive_from_birth/table1_union.html\n", - "\n" - ] - } - ], - "source": [ - "library(arsenal)\n", - "table_one = tableby(sex~., control=mycontrols, data=data %>% select(all_of(c(f$pgs, f$basics, f$questionnaire, f$measurements, f$labs, f$family_history, f$medications, f$diagnoses))))\n", - "write2html(table_one, glue(\"{dataset_path}/table1_union.html\"));\n", - "#summary(table_one, text=TRUE)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# BASELINE" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.778888Z", - "start_time": "2020-11-04T14:17:08.887Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:10.814098Z", - "start_time": "2020-11-04T14:17:09.367Z" - } - }, - "outputs": [], - "source": [ - "base_size = 25\n", - "title_size = 35\n", - "facet_size = 25\n", - "geom_text_size=7\n", - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size))) " - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:12.517888Z", - "start_time": "2020-11-04T14:17:11.602Z" - } - }, - "outputs": [], - "source": [ - "library(ggplot2); \n", - "theme_set(theme_classic(base_size = base_size) + \n", - " theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.5), \n", - " axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.line.y = element_blank(), \n", - " strip.text.x = element_text(size = facet_size))) " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:12.887887Z", - "start_time": "2020-11-04T14:17:11.969Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "
  1. White
  2. Black
  3. <NA>
  4. Asian
  5. Mixed
  6. Chinese
\n", - "\n", - "
\n", - "\t\n", - "\t\tLevels:\n", - "\t\n", - "\t\n", - "\t
  1. 'Asian'
  2. 'Black'
  3. 'Chinese'
  4. 'Mixed'
  5. 'White'
\n", - "
" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item White\n", - "\\item Black\n", - "\\item \n", - "\\item Asian\n", - "\\item Mixed\n", - "\\item Chinese\n", - "\\end{enumerate*}\n", - "\n", - "\\emph{Levels}: \\begin{enumerate*}\n", - "\\item 'Asian'\n", - "\\item 'Black'\n", - "\\item 'Chinese'\n", - "\\item 'Mixed'\n", - "\\item 'White'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. White\n", - "2. Black\n", - "3. <NA>\n", - "4. Asian\n", - "5. Mixed\n", - "6. Chinese\n", - "\n", - "\n", - "\n", - "**Levels**: 1. 'Asian'\n", - "2. 'Black'\n", - "3. 'Chinese'\n", - "4. 'Mixed'\n", - "5. 'White'\n", - "\n", - "\n" - ], - "text/plain": [ - "[1] White Black Asian Mixed Chinese\n", - "Levels: Asian Black Chinese Mixed White" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "unique(data$ethnic_background)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Basic Information" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:13.873348Z", - "start_time": "2020-11-04T14:17:12.784Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(all_of(c(f$basics, f$questionnaire))) %>% select_if(is.numeric) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "labels = c(age_at_recruitment = \"age\", townsend_deprivation_index_at_recruitment=\"townsend\")\n", - "plot_age_te = ggplot(temp, aes(x=value)) + \n", - " geom_density(adjust=1.5, fill=\"gray70\")+ facet_wrap(~parameter, ncol=1, scales = \"free\", labeller=labeller(parameter=labels))+\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:14.547997Z", - "start_time": "2020-11-04T14:17:13.377Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`summarise()` regrouping output by 'parameter' (override with `.groups` argument)\n", - "\n" - ] - } - ], - "source": [ - "temp = data %>% select(all_of(c(f$basics, f$questionnaire))) %>% select_if(is.factor) %>% select_if(is.factor) %>% drop_na() %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\",values_ptypes=list(value=\"character\")) %>% \n", - " group_by(parameter, value, .drop = TRUE) %>% summarise(count=n(), ratio=round((100*n()/502504), 1)) %>% ungroup() %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_seth = ggplot(temp, aes(x=value, y=ratio, fill=parameter))+ \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " geom_text(aes(label=paste0(ratio, \" %\")), vjust=-1, size = geom_text_size) + \n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.2))+ xlab(\"\") + \n", - " #theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + \n", - " facet_grid(~parameter, scales = \"free\", space=\"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:16.659027Z", - "start_time": "2020-11-04T14:17:14.329Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Removed 623 rows containing non-finite values (stat_density).\"\n" - ] - } - ], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "plot_title = ggplot(temp, aes(x=value)) + ggtitle(\"Basic Information\")\n", - "title <- ggdraw(get_title(plot_title))\n", - "plot_basics_raw = plot_grid(plot_age_te, plot_seth, ncol=2, rel_widths=c(1, 4), align=\"h\", axis=\"lr\")\n", - "plot_basics = plot_grid(title, plot_basics_raw , ncol=1, rel_heights=c(0.1, 0.9), align=\"v\", axis=\"lr\") " - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:18.391317Z", - "start_time": "2020-11-04T14:17:17.305Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "temp = data %>% select(all_of(f$pgs)) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_pgs = ggplot(temp, aes(x=value)) + ggtitle(\"Polygenic Scores\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=4, scales = \"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:19.147957Z", - "start_time": "2020-11-04T14:17:17.792Z" - } - }, - "outputs": [], - "source": [ - "options(repr.plot.width=20, repr.plot.height=8)\n", - "temp = data %>% select(all_of(c(f$measurements, f$labs))) %>% pivot_longer(everything(), names_to=\"parameter\", values_to=\"value\") %>% mutate_at(vars(parameter), list(~ factor(., levels=unique(.))))\n", - "plot_meas = ggplot(temp, aes(x=value)) + ggtitle(\"Measurements\") + \n", - " geom_density(adjust=1.5, fill=\"gray70\") +\n", - " scale_y_continuous(expand=c(0,0))+ xlab(\"\") + \n", - " facet_wrap(~parameter, ncol=5, scales = \"free\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:19.829906Z", - "start_time": "2020-11-04T14:17:18.264Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(c(any_of(f$diagnoses))) %>% \n", - " pivot_longer(everything(),names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_conditions = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Conditions\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " scale_x_discrete()+\n", - " theme_classic(base_size = base_size)+ theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35))#, strip.text.x = element_text(size = 16))" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:20.135005Z", - "start_time": "2020-11-04T14:17:18.560Z" - } - }, - "outputs": [], - "source": [ - "temp = data %>% select(c(any_of(f$medications))) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value==TRUE)/n(), .groups = 'drop') %>% mutate(category = fct_reorder(category, ratio)) %>% mutate(ratio=ratio*100)\n", - "plot_medications = ggplot(temp, aes(x=category, y=ratio)) + ggtitle(\"Medications\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$ratio)*1.3))+\n", - " geom_text(aes(x=category, y=ratio, label=glue(\"{round(ratio,1)}%\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+ #nudge_y=+3000, \n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35)) + \n", - " scale_x_discrete()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:17:28.906077Z", - "start_time": "2020-11-04T14:17:19.409Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Removed 60836 rows containing non-finite values (stat_density).\"\n", - "Warning message:\n", - "\"Removed 241285 rows containing non-finite values (stat_density).\"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAA4QCAMAAAD1Fs8TAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd6DUVNrH8ecWOoiALDp0QYog\nYC+oiIgoOiAKIvaCFRtYUCzYGwJ2BRt2FCvXVVfUXV372lbltVcsILo0kX7zJpmamWTKTSZn\nZvL9/MEkJ5nkJOfczI9MJhENAAAAnhLVFQAAACg3BCwAAACPEbAA1M2vYljl1+q+uWC7NvUa\nb9b/Pb9WmB+f9waAYkfAAlA3/kaKGxpKRI1PK8wTAQuABQELKEtviUVls8167H/Wg797uQo3\nkeI446298njD3fFNIWABKAUELKAspQSsqKoBz3m3Cj8D1tIWBCwAJYWABZQl+4ClG/irV6tY\nWGVYXaf35huwHjDr3mvO19/827P6uzZ18uTn4yNu9gaAMkTAAsqSY8CSjp+rrpuWf8A60Zi/\nzf8KV6E6WF4hcobqSgAoVgQsoCxFAtaZ06OmXnrGvptEE1afNaorl3/A2tOYf0Lh6lMX/xQC\nFgBHBCygLEUC1lvJRetfHhhJWFeoqlRCvgFra2P++wpXn7qYQsAC4IyABZQlm4Clu8As7ayk\nRhb5BqweRXh5+yEELADOCFhAWbIPWJGv2kT9vTrzDVjdjfmfzz6fn7oSsAA4I2ABZckhYD1p\nFs9WUSOLMghYSysIWACcEbCAsuQQsH4zi6elFq9+/+Hbr73ylgffsb/NwILn7pp++XW3Pf35\n+qzrrf3kselXTL//zbWZZ3MOWL8+e8uVU+56YZm11CFgLXjugelX3THntZVO61lWM/3Ku36w\nlq15c+Y1V932UtIals679cqps9613TrHXfOy5BCwslbQaYMBlDoCFlCWHAJWbaVRfLWlbMWd\nu1fH7uFQf+Ds1Gj0zsl/i9/iYeMxLyYm2Nxa8+MTWkfnbHLgvzNVzxqwFhljA4yhJ3atiLy/\nMn5L1E9SbjMRvxLr69N7xKu9x9TkCPOjUTZI39qrmhlDU5JXsezclpH3NBjzTXQFo+pHSlpM\nWpJSTadds8BapXn2e8O5ghk3GEBZIGABZckhYK02i+9MLnp4M2ta2PLD5KkLD07JN7t8HZuU\nFimWjK1InnNohluCWgPWCmNsG01bPCT5/UdFbifhELAWn1RtKd701tr40hcbBTtp2smRSVOS\nVvFhu8Rbmv1Dn1B7RVWipMs3llo67ppcAlamCmbcYABlgYAFlCWHgPWZWfxuUsm5kqp+0lmq\n77qkTW4eW2hqpPimR8qcrf/rWD1rwFpvjHXTFm9pff8R5kT7gPXtFmkVOyb+Fd+fkaU/E50w\nJbGKz1skv6PZl5o23rKMLZJPQTnvmhwCVsYKZtxgAGWBgAWUJYeAdZNR2mpdomB65KO95f6n\nX3TRqbvVM0c2it/rff02ZkG93U6afM3EY3aNfJW2afTMVEqkWNg5sqg+w44d3df8JlJaf605\nSLkGy5i93YZB+r9Nhhx32pHbRE8qmVnq6766Bsbo5sZQ39eMwm82NWeo3uW8m+65/uTukdkP\nji1ugzHWUYvFlynxVaztK1Kx41GnHdYtMmWE9qARmwYfP25k9GTVJTntmkV6Pcz7tm5iVunt\n9L2RuYIZNxhAWSBgAWXJPmCtNkPQ2YmCHxuZseHeaOT69VjzbQfEJt9hjFWc/Ud09I+LzIh1\nSnRma6SI3MX0xO/MkR+ONsd2S3wrZpUSsIz8tMktIn+bGVnc92Hz7YPjM6Rc5L5hN3P6QbFv\n9P7e1Rx/IDbdyC+bGleh7z51zqM3vxpfxXUi+0Xe82Irc9M+bilVZ5lXXm2YYX6j1y5e4yy7\nRjvDGE1c5G7dG9kqmHWDAZQ6AhZQlmwD1rrR5lmX3xMl55mnWV5PFJxqvu//omO7GyOXJy3h\nH0YKqb/UHLZGillmYHkwPucV5lSnG0KkBCwjyzTYWHr9HCtYb665clFsPCVg3WgufHxieb+a\nM7SKbVlDY+QYafZsYg5zFc1lXGz8FXMR7aTqkVjJNOsuy7JrMgesbBXMusEASh0BCyhLdgHr\n1e2MsnovJBWZJ1YOSSr4s7lREr2Pw3rjm6uGfyYvY4Ix+TFz0BIpas0lJZ0bi5zR2tGheikB\nq4m5qBY/J2aI1D/+wzprwFpvXqneP/n02Dvm9fVTo2OR/FLxj6QZIqvYMfGeXc2CpCqvMX9e\neFtsNPOuyRywslYw6wYDKHUELKAsRT6vr5oT9ehdU46MXK/efG7SXMt7t64UeSj5jYcbMx0Y\nGf7FGO5qWe4XR158zyuLzUFLpHjOGG7yR9KcL5qTf7Svnm3AmpE8R1uj5JrYmDVg1Zizv29Z\nonlyro9lecckT48UvZkoiJxi22hFomSkUXBqdCTLrskcsHKsYIYNBlDqCFhAWYoErDSVh3yb\nMuP6Xz603OPyBmO2nSPD5v2kNnZahSVSjDWGj7QsuKnU27T3i3bvtA9YrSw3kdrXKIp/x2YN\nWOatI/pZlxj5yeCnScuT+cnTzaItkwoiN7U/LqnkQqNgdNIWZNg1mQNWbhXMtMEASh0BCyhL\ntgGr4oAPs77xYWPGbpHhdeaP2550mNMSKToYw7Ms03/OcHNyu4BliWfaKUbR2NiYNWCZX8BZ\n75aqrWpsFN6etLyelulm0VlJBe+Z1X8sqWSGUbCfc6WTd03mgJVbBTNtMIBSR8ACypLDGSzp\nd12W66jnGnN1jI7sYIxs5HBhUHKk+DX9lFFGdgHrNssc5xhFY2JjloBl3gddUu8Uv4tReELS\n8k6xTDaLkr/x+z9zKck3knjAKNjDudKWXZMpYOVYwUwbDKDUEbCAsuQUsESaXbEu0xtrklPE\nrMhbhj5rd4/x5Ejxmjm8wmYue3YB6x+WOS42iuLf11kC1gvmyv7QrI4yCgcmLe8Wy2SzKOk3\ngdq35lKSnzA4xygY4Fxpy67JFLByrGCmDQZQ6ghYQFlK/RXhhmULXrlxn8idQveyPnKv9r/X\nH7ZT242SnhgTTxG1+0cLNhp+wwcbUlaRHCnMJOZ4tVY6u4D1jmWOyc4B615jpHHqIs0rqLon\nLe/vlslm0SdJBd8ZBQ2SZ0kPWBl2TaaAlWMFM20wgFJHwALKkv2NRhdE7pa51/pE0erbN5c0\nHWNTl++bKGwx8s7FyQtLjhTmfZ/a5V49u4D1iWWODAHLvNi8feoipxqlrZKW94Zlsln0VVKB\nGbCaJ8+SGrAy75oMASvHCmbaYACljoAFlCWHR+Vot5rl18bHP++ZniGSUoS2YcpGSeXVe89J\n3NspOVJcZQxab+iQkauAdakx0j11kbcZpY2Tlme9oD//gJVl12QIWDlWkIAFlDMCFlCWnAKW\ndoR5HiV2tdT7sfjUsscu+4827GYNWJr2+7WWhzj3i994ITlSmOnA+rO9jFwFLPMhzFtqKWYa\npfUcl5d3wMq2azIErDpVkIAFlBcCFlCWHAPW5+aERyMjyyI3H20/JfFjOuuV3BFfTt+rfjxh\nVVwcLU2OFNcag51zr56rgDXJGOmmpTDPzTVxXF6+ASvrrskQsOpUQQIWUF4IWEBZcgxYWjdj\nQvR+S2eac41O/vWfXcDSrfz7+N6xiBV9WkxypDC//mqTe/VcBSzzHuxpF3xNMUpbOy4v34CV\ndddkCFh1qiABCygvBCygLDkHrEHGhEHm4JpmxnB/y20bHrMPWIbvrmlvLrXBd+ZocqR4yBis\nXm/7NjuuApb5XVvD1EWel7RI9wEr+67JELDqVEECFlBeCFhAWXIOWEONCVubg5G7V71imTzd\nOWBp2uqzzHdMMEeSI0VkdQ4PHrThKmBFbjOVesPUQ43CIY7LyzNgZd81We+DlWcFCVhAeSFg\nAWXJOWBta0zYyRy83RhsUWuZfGCmgKVpJxqTIz+QS44UKyqM4X84vi2Vq4D1g7nil1MW2c8o\nHO+4vDwDVvZdkyFg1amCBCygvBCwgLLkGLBWNTUmHGgOX24MbmWZvKxZ5oBlPv+5ygwelqfv\ndTaGz7fM+sIUXWrKiHIVsLRNjbHJ1iUurTYKH3ZcXp4BK/uuyfQswrpUkIAFlBcCFlCWHAOW\nmSLkUnPYvF/TLpbJV4o1YH2f+vgb85HFfxlDlkhhPqq4t2VO89l7N9tXz13AOtIY62Fdonn3\n9IpfHJeXZ8DKvmsyBay6VJCABZQXAhZQlpwC1srI3QfeN0duMgY3T578ufnJL23NkW/PGdQy\nNSGtq9QnNzMHLZHiVXPkpaQ5fzYfMPORffXcBax/mSuz3ql9D6NoN+fl5RmwsuwaLRqwTotP\ntuyNulSQgAWUFwIWUJYcAtbywZJ0auYZc+S7xOSFvcT8Hqyh+R3gL0aYav+nZQEvGpP7mYOW\nSFFrfkfYZ1ViTvOclvVLtgR3AUvb0hjdIfkKqafMyjzkvLw8A1aWXaMbb4wdEZ9u2Rt1qSAB\nCygvBCygLNkGrGV3dTCLG3wcGf/dvDT9qPj0/3YRMe9FIPPNcfOky35/JS3hz75G0eXmsDVS\nRN43enVsznvNZd/tUD2XAet+c2UTEnP/n3nVU8/YXRXcB6xsu0bTLjbXGJ/BujfqUEECFlBe\nCFhAWYoErDOnx11z4dG71JOIG2NzmffEkvGRk1SfnVYlcoi2iVF0nFnyb3Nyj8fWRmevfcE8\nM9N0gTlmjRSRNCbbvmietvnqGHNsuw0O1XMZsLRh5uLH/BQZWz/LrHTVaxmWl++NRrPsGk27\n05xhpjG4IX1v5F9BAhZQXghYQFl6SxxVxvOVNi9S0mLk2acf3MsY6rIkcjMC2eWcU2s07aTI\n9KaDTr7oykvOGP63yOgdkTenRIpfu0amhgaOGdHDPP8jrb9Kq1eU24C1sJ25goZDLp1x5zWH\ntzVHKm7KtLx8A1a2XaN9GplhywOH9tktfW/kX0ECFlBeCFhAWXIOWN1eSJptnHVa+2817R+x\nkematn6UzQKujr43JVJoP3RKmbHNu47VcxuwtK+6pFar/oOJqV487DnLrtG07ePTdrTZG3lX\nkIAFlBcCFlCWnALW9jMsT39Zd3LyxCHmzcdPTE4RN22UsoCe8XyWGim0ZSdXWJb2q3P1XAcs\nbckxlpVJ/+TrzbwIWFl3zX8axCbaBay8K0jAAsoLAQsoS2kBq17LzrufcscPaTM+v1s0B1Tv\n+1y06MGBLauadRz6T3Nk2dRdq+MLaTbyyUQ+S4sUmvbuoc2iczYZ/pqWgfuApWnzT+8Wq9cm\no56zTPIiYGXfNf/uEV39cM12b+RXQQIWUF4IWEDQ/f7MbVdeO+OfyxxnWPHeY7dce9n1M5/8\nqtZxnph17z049fJp97+2xssaOvrx2XunXD3zyQ+z16tusuyaDW/eevlVtz//u/MCCl1BAEWL\ngAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA\n4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIW\nAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDH\nCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAA\nAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNg\nAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4\njIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUA\nAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DEC\nFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACA\nxwhYKGW/hEKhS3Oe+3197tvzXcWn+ptuzvdNni/CO/P0yjyquhIlL96k2do2vx6abW2eL9lZ\nnf5YEBC2PZIuk4aAhVJGwMobAcsLBCwEGQErNwQslDICVt4IWF4gYCHICFi5IWCh9Bwa2i06\nlN+HzI+TJk36d74rI2AhnbKAVde+n6PE4uv0x4KAsO32vnSZRA91M4tfCFgoObU9C/shY0XA\nQjpVAavAfT9p8YAzZYe0HHpoMXViAhZKzjchAlbdEbC8oCpgFbjvJy0ecKbskJZDDy2mTkzA\nQsmZQ8BygYDlBVUBq8B9f04RfTahiCk7pOXQQ4upExOwUHImEbBcIGB5QVXAKnDfn1REn00o\nYsoOaTn00GLqxEEMWL/eduSO3dt33/n4B1cmF780btdunXY56yNNW6p3njvi5W9ePKRPh14D\njn98he81RfrufzQU01eLfMhcrr9cvf82HXvvfcWC6Js+0ovf0LQlNw3t3mHLIZf+EC22/Mpl\n7VMn7rllx34H37YkcwWMQ8kt+svkwVt13GbUXcm9wKEnpS3ZcjR6sV0otOOiyLBNn3tPH3hL\nW3LRjh23+joy0/rnzt2zT4eeuxxzz+LYMoyQ9FB8fcYueSXDZutq/378Tpv3HHjGG0EIWGk7\n7Bh9kz9KmuEJfXxKdDj9zzu9BWzaOa+AZdNDHdadeW059X0HOWyVdfHxPxbnXuV4zCw1399w\n6PZbtO+281F3/55cnNo+6waFQu0SHelGfZvP97We7qRvZbRpvxi/Q8fN+5/zuVG04dkxvTv0\nHHrD8qQ32hyBbA9pnneZ1Bpbe6ghSyd2OFDa7oyCCF7AWndFh3gT9H4hXrxoTKzwqtrv9X/v\ni5Z/uX987n7PqKlxkKXv/vQPmau1OZtHizrPibztC314nlbTJVrcYXakODlgvbZjbDld78lY\nBeNQctv6ibG5t3szNsGhJ9ksOflo9N+u+tzfmIO2fc6Y96XlA4zST825Xt09vpauU9ZHFuJw\n3HDYbH1NI2OLGLO87ANW+g6ba+zipDmO1scjTWD3553aArbtnFfAsumhDuvOvLac+r6DHLbK\nIWA59yqHY2apWX1eu0SPubU2VmzTPp/o+2yfDdHpC/Q9stOfCupbN3ZbGWnaaW2jLfuE3qZ7\nRWfZ9pv4O+2OQLaHNI+7THqNUwNW1k7sFLAcmtx7gQtYtUeZO7X79j2Ml7bPRotXDDJGtxiw\ns97XzpmvDz4cKX+1m9nZhvRvb7zeoqzaAWWz+/918MH633OXgw8++AQt8iEz/Qm90Tr2NP9i\n2r1lvu87fbDmab2k45bmX2C7d8zipIA1x1xi+85mb5icqQ7GoWTGecZhoqd5INri40i5Q0+y\nW3LS0WhBP/0v+kNz0L7Pfa0PzL3MfLP5QTjbXNx2Q3braLyOXWe+1eG44bDZ2grzqNlzrwH6\nEW/YC6HyDlg2O2zVFqFQ/8QcKzqFQvuaQ7Z/3iktYN/OeQUsmx7qdGjJuLac+r6DHLbKuvj4\nH4tjr3I4ZpaaWvNDv8N2O3e3HAxs22eKPnhvdAZ9D7Z9M31xRcp2K82mnaFvR89ORmHHr5fu\nrM+zpbnFe0WjlP0RyPaQ5m2XsamxtYfm0IkdDpQOTV4AgQtYs/T92ecB47ub78412mZppNj4\nAO1bo/edXya2DU2NfwR9r7dcu4t+1IeWzzIa8VnH5aIAHHb/QOt1KJO7tD3zk1pt7T/31EeG\nm8ULjD//7m3Pnq9pa/9t/FGPNIsTAetD/e++09TvN2iLZm5hfPJkqIRxKDkp1P78+bXamhd2\n0Uf2jvyHx6En2S05cTRarte9Q/QstX2fM/9f1y004Mrbr/5JH/1AP7q1u/QXfeivR/vqk643\n3+pw3HDYbG2ycYB8ST9grqnZPnRIqKwDlu0OO1Uf+Cw+y+P62J3GgH3/SmkB+3bOK2DZ9FCn\nvp1lbTn0fQc5bVXy4uN/LE69yuGYWXKMP5+hrxm5YdHdRku8Z5bat886/b8q3SPf77+oF16g\nqMp1YLuVRtNO27zHrOXahneNHnTuuaEhr67X/nrCCJcvRt5ofwSyPaR522Xs2yWph+bQiR0O\nlPaLLoTABSw9obf7JDo8Kf55+7MezrtGj8B3hjrEW17/MGr7RHTuL/W0u8Nqf2sbcA67P+VD\nZvO2j0dG/uilz28e/X7Wi7vG3vp7T73Y/KI9EbCG6AeF6P8+X9f/o7V97H9rNj41/3f0dHQV\n2+sjz5uD9j3Jdsnxo9G6Ufqiol/lOPS5n/SBUaFLo2etawcmHYW+0ndBR+OQ73TccNjsRfp/\nT7t/G91h24RK96MwB/Y77KX4B4NB/39v+9+MAfv+ZW0Bh3bOK2DZ9FCnvp1lbTn0fQc5bZVt\nwHLoVU7HzJJzcCjUL/ZN33f6bjzFHHJon0/1DR1nDKzaMRTa+S+/61p3tltpNG2XLeabhT93\nDoW2aDtslTli/B/kHHPI4Qhke0jztsvYt0tywMreiR0OlPaLLoSgBSzj/3EHxUaMI9Sh5tAd\noaSLNI6KfwR9rA+cGX/vvfpY5usc4Cmn3Z/yIROaGJvFOFPzz3jxubHi8/WRV42B+AHgTX3g\nwtjkCfrIy861MAPWuNiYceQx/xwdepLtkuNHozP0gduiEx36nFn1g2Kfg6/rI4fHq3Kr8R9O\nY8DhuOGw2ffoA9fESp8u74Blv8PWbRkK7RkrXN4p2lgO/cvaAg7tnFfAsumhDuvOtrYc+n6m\nemTbKtuA5dCrHPpv6ekXCp0WH7ljn+NvNF4dD/3X64Ov669X66nhbV/r6Y7tVppNe2u00Lgy\nsd1XkeF1W4RCQ80hhyOQ7SHN2y5jW+PkHppDJ3Y4UNovuhCCFrC0NQs+SHxXsF0otKs5MFrf\n89/FSj+Nt/xF+sCX8blXdQmFjvWrnnDe/SkfMu3iv58yfh32QKy4bfy3K4/G/sriBwDjkvUv\nYpP/ue3g0U8518LsDvGfDq3Ta9HTHLLvSbZLjh2NjJPik2MTHfqceWz6V6x8vCX8/d4+FNrD\nGMgQsGw2+1B94KtY6fpepftRmAOHHWZ8gxC7andO7NPSoX9ZW8ChnfMKWDY91KlvZ1lbDn0/\nQz2ybpVjwLLpVQ79t/T0DIWOSSt0PPQbXxLutlb7qmModLFfNfSC7VYaTdsx+sWadl0o/lWe\npg0NhbY2Bxz+oGwPad52GdsaW85gZe/EDgdK+0UXQuAClsWQUGgrc6B3KLRdonjPWMsPDoV2\nTppd/6Da0s/qBZ3T7k/5kNk7Pofxv60ZseL4GQvtNX1spjEQPwD0T/zONyvjQNAvMTpKH12Y\nNlO8J9kuOXo0Mj7ZT4n/YsWhzxlV32JdrHj3UKjTusRc++ofqcbPkTMELJvN1v+/1iexjJNK\n96MwBw47zDixeFO0TP+vcxfz+wGH/mVtAat4O+cVsGx6aE6HlvS15dD3M9Qj61Y5BiybXuXQ\nf0vP3nrI+DC10Ll9jC8JbzQOA/1X+VM/b9hupdG0+8dGjCuapsdG9D+SbuaAwx+U7SHN2y5j\nW2NLwLKw7cQOB0r7RRdCsAPWfqFQL+N1ub7jD0kUnxtt+VXtLMXapXp5pssc4CnH3Z/yIXN6\nfI7/xD6HjOJT04tjB4A1+pIPyLUanybOPRvOCUW+IrCK9ST7JUeORm/q/+kdHT9WOfQ5s+oj\nYqUr9cXtlbSg0/WJ72sZA1b6Zi/TX4clljG9dD8Ks3PaYRu2DoX2iRQZ3xCaX/I69S9LC6SI\ntXN+ASu9h+Z2aElfWw59P0M9sm6VY8BK71VO/bf0GF9cbX7195ayTO0zVZ/9Rj1nvOtbDb1g\nt5Vm006IjTyij9TERk7Qc5Xx6vQHZXdI87jL2NbYOWDZdmKHA6X9ogshgAFrTc3Z+/WN3Twm\n0iZfJvezSJQ3Wt7oJl12SOgZ7VzwhePuT/mQSZypfz85YF2YXhw7ABi/Ij4x12oYh5JJidGp\nicOQTU+yX7J5NPqyRyg0OHFHSYc+Z/3YNBaX/K20cRbfuMQ+Q8BK3+yv9NcTNMvcJfpRmJ3T\nDjMvUTKvzjX/021+5+HUv6zBRbNt5/wCVnoPzXBoybi2HPp+hnpk3SrHgJXeq5z6b+lZN9zc\nA7uf/+zSeFmmQ/+6web8l6ipbV3ZbaW5mfHtMA4Mr8ZGTooGLKc/KLtDmsddxrbGKQErWyd2\nOFDaL7oQghewntw6lMxsE+PGsxclZnk62vKfhdL9y2Gx8Jzj7k/5kEk8LsQSsGyKYweAT0LJ\nV7BmYRxKrkmM3qaPRu6bZ9eT7JdsLGKycfvRHRL3R3boc2bV47/+Ni61PS1pQbeEIpcPZQhY\n6ZttrOmMxDJqSvejMDunHaZ9GIp9g3ZkKLSV+Z9up/5laQHNvp3r+qicWJs4H1oyry2Hvp+h\nHlm3yjFg2fcqu/5bglaeFt0J7YffE/3AzXjon2/8/m3XkvqCULPdSrNpr4zNYBxG4vf1igUs\npz8ou0Oa113GrsbWgJW1EzvdaNR20YUQuIB1g7lbdxx+9Km63tE2eTtkPnQiJnav6/dt/sr+\nrqjeAeS4+10HLOOxIefkWg3jUJL0K5O79NH7jQHbnmS/ZGMRkTsHJ34P7NDnrFV/J2Vxd0ZX\nnlfAetu6kLK+0ajTDtO0XaLfky7vGAsaTv0r5Rl/tu3sNmA59u0sa3MXsLJuVR4By6n/lqQP\nT+8ebYTu0807tmQ89K/cVh87Ql1t6yptK3MIWE5/UHaHNO+7THqNLQEreyd2flSOzaILIWgB\n69/Gzbgn/RQdi31t+0HIcjfXudGW/zyUclYdfnLc/a4D1vx8GtY4lCTuoWSewTL+C2ffk+yX\nbP5gJtRrt1DSfT4c+py16sYJsVOTFnSTPm7c+CivgGWcvEk6g/VkSX8UZuG0wzTt2lCorfHj\nBOMbwsiXPU79y7oX7dvZbcByWne2tXkVsBzWk0fAcuq/JWrdvy/ZM/J5e4Rxw6uMh/4LzPke\n97F2XknZyhwCltMflN0hrVv54+QAACAASURBVBBdJrXGyT00h07sHLBsFl0IQQtYxm2sZ8bH\n9o22iXFC+NzETA9EW964XZpPv+ZEOsfd7zpg/ai/Hp1rNT61LMu8Bsv4v6x9T7Jfsnk02vW7\nzzuHQt1iV1Y69Dlr1X9I2QXXhCI3WLYeNx7IHLCMB4MlXYN1X4l/FGbktMMie+Fe/fWI+M/D\nnPqXdS/at7PbgOW07mxr8ypgOawnj4Dl1H9L2KKHDjD+UG/QMh/639I/17cPhXqW6O+dkrYy\nh4Dl9Adld0grVJdJrnFyD82hEzscKO0XXQgBC1jGbyJ2Sjzacetomyy0fixeGG35dZ1CoYF+\nVxExjrvfdcBa1yEUGpxrNYxDSdJ168avCP/j2JPsl2wsYv8lmna3/rpf9Ec3Dn3OWvVV7UOh\nQUkLOkWfaDwK0ThuJG56dFPmgPVbyPIrwsll8FHoyGmH6QaFQqMi3xBOiRQ49S/LXnRoZ7cB\ny2HdWdfmUcByWk8eAcup/5a2v+uBoetfGQ/9f+0SCoV/7R4KHeVnxTwV28ocApbTH5TdIa2A\nXSZe46QemksndjhQ2i+6EAIWsIwnno6Pj30TirZJbRfLn9OQWMsPDYU6LNegiNPudx2wjCV0\nTFyk+vVXX/3iXAvjUJLUOUbqo0sce5L9kuOfj4eH4hfMO/U5a9X31Be3Vksb/Vco+jQ900mZ\nA5bWw3IfrFHl8VHowGGH6W7We9My7bFQ4o6jDv3Lshed2tllwHJYd9a1eRSwnNaTR8By6r8l\nbpq+HcZDs50P/RfrUz4zzwOX7mM9YluZPWA5/UHZHdIK2WViNU7qobl0YocDpf2iCyFgAcu4\nHCXxy+bJ8TbZOxRq979YsfFlQqTlL7H+FX1N2PKV0+53H7Am6QP/iE02vg6IP3EknXky/OfY\n2Fr9ILGt5tyTbJccPxr9tpXe0aJ/zA59zlp148bwL8bHjGeoho0B484yl8VKV/fKErCM3yTH\n7+S+vISfGpcDhx2mRb69nasdE3sEiObYvyx70amd3QYs+3VnXZtHActpPXkELKf+W4J++ikx\n/Gq0/zge+t9tZwaK2nAo1CP9hsNFzG4rcwhYDn9Qtoc0j7uMXY2TemgundjhQGm/6EIIWMAy\nYm78G+VPOupjXczBy/ShWbHyE+Itb3xpPCD+E4PV23YYxY8IfeS0+/dM3BC4jgHL+D3LgbHJ\nt+sjzzrXwgxYlkf5nac59yTbJSc+H41T1tstMwcd+py16sZ1oYl7810ZSnoUUHwtxg97Mgas\n6cmH0RtL+aMwO4cdZtA/Es9YtXkodFeswKF/WfaiUzu7DVj26866thz6fi71cFpP8uKzfVo6\n9N+Sc0nv5BuwPqVvxwea87FnVf9QaBfjmujPOpTULwnttzKHgOXwB2V7SPO0y9jXOKmH5tKJ\n7Q+UDosuhIAFrPXdQqHu0YsTP9+66zB915qJ+l19YJvFkfIHQt3iLW88POnc6Ne864weUZO2\nSBSOw+7fNxTqEH0Weh0DlvH/z9i9F77oHgr1SzoJnsoMWF2iF/Is20UfMZ7x6tSTbJec9CF8\nXih2xblDn0v5Ob2xuNhVmu/rB5Fekfv69db/Lxit0jtdumYJWF+2DYW6fh4p/KBr6X4U5sRh\nh2nm5SJbvxwKtf8tPq99/7LsRad2dhuw7NeddW059P1c6uG0nuTFZ/u0dDpmlhrjf0H3xkbW\n6buiu/mbModjj3Fm69/m0FUltcX2W5lDwHL4g7I9pHnaZRzaJdFDc+nE9gdKh0UXQsAClnmn\n/+HGrx4WTts8dO/V8V5yoD408C3972nRRW073B5v+R+20AdHvaOXr67ZJ5T07G74wWH3jzWO\nfb+v/3FpnQOW9pHxRdnJH6yq/fFW43Yoma6m+K8+/dBQj/uN48oHe+sjY8xip55kt+Sko9Gq\nAaHYjUrt+1xKwPqis36EuMLIBMvvNI5I0VNtxon7fs+u1HfRtZ3bGbfmeinDZmsn6kO9Z+sb\n8OMNXUPjS+qDIW8OO0z3W3v9/+Kh0GGJee37l3UvOrSz64Blv+5sa8uh7+dUD6fem7T4bJ+W\nTsfMUrOir171098zLtRe+bLxKX2FWWzfPu+1i9/yZNXO+gfzr4oqnTf7rcwlYNn/Qdke0jzt\nMg7tktRDc+jE9gdKh0UXQtAC1nfGn037/gf01/9Qzqx9KWQ0+H7f6AnYvOtYr8FG+W2vJFr+\nNWP+UNdd+hi33AjtsVht7QPHfvcbv7Y1vFb3gKXNjdwlL/Jv4pt8G8abHpyg/6do172Nv8tQ\n38hT4p16kt2Skz+EjXPZW3xrDNn3uZSApT1rnPtuu/M+O5sLjN3xdIG5Y9r17KL/O8X4OuOF\nDJut/bqtWZke+qEydLBxb+ZHctn5Jcp+hxlGm3sh+f5Ftv3Luhcd2tl1wLJfd7a15dD3c6qH\nU+9NWnzWT0unY2apeaOTsR3tt96hm7npw6O/UbFrn9W76/9T+SP6PuMC6sMV1Tl/tluZS8Cy\n/4OyPaR522Xs2yWph+bQiR0OlA5NXgBBC1jav2L3b21/naatG2QOfqaXv7NdtLzLfVpyy88/\nIBTTdvwylTUPJNvdv3rPbB8y2QOW9sYusQV3uzdjFd7SZ3l63dmxuQd8Fi136kk2S7Z8CBt3\nKt3X/GGzbZ9LDVja2wPju2D7xDfUr8bXfrN5r5r0L7eSP3K/GhRbxOErjLnvz7jFJc5+h2mR\np9mGuqxMLrLrXyktYN/O7gOWfd/OsrYc+n5O9XDqvUmLz/pp6XjMLDUf7hFviFCHyfEPW5v2\nuTyUfLZ7XKiU/qtit5U5BSzbPyjbQ5rHXca2XZJ6aA6d2OFA6dTk3gtcwNIWXbNP9/bdh1xm\n/lZ74Um9Omx94u/G4PKZB/br0H2fa37VNCMLPxF/wxuTh/Tr2GXr0VN/UFTjYLPb/X9M3KZ9\n552O/95NwNJWzz1x9x4d+426bUnmCrwcMr+4//jCvXp33GbMg2viE5x6UvqSLUej2lHxo5pd\nn0sLWNqGv5+1R68OW+5++pPJV4r9PiXcq0OXAZN/1Adjh33nj9x1jx21fecee5z5RuSZ9jO1\ncma/wzRtmfH/1nEpM6f3r9QWsG1nDwKWfd/OvLYc+n5O9XDsvYnFZ/+0dD5mlpjaV87fr2/n\n9t13PnqG5YeBqe3zYftQ6ODE5MU9Q6HuP2ulwmYrcwtYdn9Qtoc0r7uMbbskemgOnVizP1A6\nN7nXghewcmD8rGCe6kogUOhzKGX0X+QpEF2GgGXj1lDscWWAP+hzKGX0X+QpEF2GgBW1/tvE\nmcKjQ6H2KzPMC3iBPodSRv9FngLXZQhYpi/26Bg6KTayqEPS3Z6BwqDPoZTRf5GnAHYZApZp\nXe9QqMNr0eEjQslP4AYKgj6HUkb/RZ4C2GUIWBF3GL8cnbZI09a/NUIfHFCwO7uiON1xqL3b\nCrhK+lzZUNB9lNeD/os82XSZYvnLKRACVsSGo8xbYnTbbnPjZcvPsr8DZeWMkL1TC7dK+lz5\nUNB9lNeD/os82XSZYvnLKRACVtS6SzrE23b/71TXBn5T8XdOnysbxfIx4Ws96L/IU3qXKZa/\nnAIhYMX9eMPorTt37DPkgtdV1wRBQZ9DKaP/Ik8B6zIELAAAAI8RsAAAADxGwAIAAPAYAQsA\nAMBjBCwAAACPEbAAAAA8RsACAADwGAELAADAYwQsAAAAjxGwAAAAPEbAAgAA8BgBCwAAwGME\nLC/99b+IWtUVAQAAKhGwvLNhajOp2KRNtcg2r6iuCwAAUIiA5ZnlQ6XpUQ/W1Dx1+c4VFSf8\nqbo6AABAGQKWV5ZuL33uq4mY0l56f626QgAAQBUClkfWDpTdn6qJeWJvaf226ioBAABFCFge\nOU22e7omyQkVTV9WXScAAKAGAcsbT0jbR2ssJlY3mqe6VgAAQAkClicWbVLvppoUF1Y3/pfq\negEAABUIWJ4YI0en5quamguqm3EdFgAAQUTA8sJL0uWZ9IBVc05ly49VVw0AAPiPgOWBdb0r\nrrfJVzU14yo2424NAAAEDwHLAzNloG2+qqk5Wjr/pLp2AADAbwQs9/5qW/8eh4BVM0p6LlJd\nPwAA4DMClnvT5ACnfFVTs7/0/V11BQEAgL8IWK79tWnDB50D1tzBsjUJCwCAYCFguXajjHDO\nV3rCGiR9FqquIwAA8BMBy6017evfnylg1czdW7b4VnUtAQCAjwhYbt0rQzPmKz1hjZA276iu\nJgAA8A8By6XaLavuzBKwamqOq2j0kOqKAgAA3xCwXPq77JY1X9XUXNBQxq1SXVUAAOATApZL\ne8q0HAJWza3tZKuPVNcVAAD4g4DlzkfSK5d8VVMzZ7DUu2i16uoCAAA/ELDcOVom5Rawamou\nbCndXlBdXwAA4AMCliuLGrR5JteAVTN7aIUM5+HPAACUPwKWK5fK2JzzlW5ad2lw/p+qKw0A\nAAqMgOXG6jaNHs0nYNXMHd9S2j+hutoAAKCwCFhu3CfhvPKV7rEDq2UEj84BAKCsEbDc2Lpi\nRr4Bq6bmlu7SukZ1zQEAQAERsFx4VXbIP1/V1DxzdHXFxPWqKw8AAAqGgOXCAXJlXQJWTc30\nNrLfCtW1BwAAhULAqruvqjrXLV/V1DzcR7ZbrLr+AACgQAhYdTdOxtc1YNU8NUB6cak7AABl\nioBVZ4sbt3qqzgGrZu4+0otzWAAAlCcCVp1NlmPqnq/MhLXdctXbAAAACoGAVVcrWjXJ7yaj\naQlrgAxZq3orAABAARCw6uo6OdhVvqqpeaqfnKB6KwAAQAEQsOpoZZuGD7oMWDWPdpQbVG8H\nAADwHgGrjq6XA93mq5qau5tXz1O9IQAAwHMErLpZ3tr9CSzd1dWbfK96UwAAgNcIWHUzWQ7x\nIF/V1Jwo265SvS0AAMBjBKw6+bXpRrM9CVg1e3ChOwAAZYeAVSfHygne5KuaOR3kftVbAwAA\nvEXAqou3Ktu7uIm71e0Nm8xXvT0AAMBTBKw6WNtXrvAqX9XUnCW9VqreIgAA4CUCVh1cLgO9\ny1c1NUPkWNVbBAAAvETAyt+H9Td+yMuA9UQneUD1NgEAAA8RsPL2Z0+50Mt8VVNzW8OmX6je\nKgAA4B0CVt4Ol6He5quamvHSl7thQa1Xju3WrNHmhyceLbB+zsGbN6rfZsBlCxze8UUjkedT\nyl7dv1W9jqcuTBQ8IFXveV5XACh+BKx8TZcuT3gdsGoGyYmqtwuB9r+hEnXo6kjJZ1vFShpM\nt33Lhl0kLWA9WiV7HtVVOi2OFfzWSs4tWKUBoIgRsPL0TFXzezzPVzWPd5BHVG8ZAmzVdiL1\nxkybfkg9kZFmyfetRBofNnnq6Z30GDXT7j1TJS1grWgh12ra2v5yXKxktGzByVkAgUTAys9r\njetf532+qqm5tUEzLsOCMpNF2n5qDHzYRmSOMbCfyG6/GQNrx4q0Wpv+li8byaapAWuWbLxG\nf3lKGkfvPPKMVLxayHoDQNEiYOXlzY2qLihEvqqpOVO24m5YUGRdC5FXIoP/FOmlv/xcIU3+\nFylZExJ5Pe0tG/pLu0mpAet4GWK8LBR5wxxfGpJTCldrAChmBKx8/KtZ5TmFyVc1NYPlaNWb\nh6B6S6RPbLi/yHxNm3/40LNjJSNFHkt7y1SRRy9PDViDot8N1pdZ5utYab+8MDUGgGJHwMrD\nk42qCpavap7obH+lC1Bw90viVxaXiaRc1B4WmZf6ji8byQgtLWBtL6eZrxvLTcbLKxXynPeV\nBYCSQMDK3XWVDS4qWL6qqZnZpOF/VG8igukWkYmx4UdExlomLmwqTVekvGHDrtLi1/SAtUP0\nG8FmcrP+78ouckRBqgsAJYCAlauVh8nG1xcwX9XUXFjRcXH2egCeuy/pDNYckQHJ097vIzIl\n9Q3TRO7X0gPWYDnMeFlbaT6bYLy0+UP7csKAHcc8U5BaA0AxI2DlaH4v6XpvQfNVTc1oGbRO\n9XYiiN4Q2SY2rKemvtHBL88647AeIk1uTJ3/y0ayn2YTsMbJDsbLfJH/aNo7lTJHe76BeSst\nLnUHEDgErJzU3tJIhnh/f9EUc7eVs1RvKYJozUYib0UG/+ok0iVaPM/IRs0nLkmdfcOu0vwn\nzSZgPSbVi/SXKdJyjbamt4zQlv1Nhv+48o4KmVvYDQCAokPAysVXA6XJuYWOV7pHNpMHVW8r\nguhska4/GAPL9q8S2TxaOi9yJ/eeD6fMPV3kbuM1LWCtaScHrtT+28q4omuytPhFmyFNl+nl\nY2RQobcAAIoMASu7vy5pKNsW+uvBiFsaNuLBbfDfss4iG53xwENnt5Hxia8INW3dL69PbCoy\nwTLzV41lb3MgLWBp8xpI404V0vdP7ZP6co+mHSTDjOJHpHp1gbcAAIoMASubDQ91lOYTfIlX\nukkV7RdmrxPgsW97Rh88eOoPIrtaJn3RRuTZpPHa3aSZebbLJmBp7x3Qqn7XiUu19TvIYH20\nR+TXiR+KfFDAygNAESJgZbbhiT5SPXy2X/mqpmaM7LpG9UYjgNbcunvLhl2PfkN7U+RI66T7\nJHKD9qgbRO6KDNkErJjrpen3+kvryA8QF9jcSQsAyhsBK5M1s3pJxe4z/ItXNTVzd5bjVW82\ngmymyPXWkp9FNk6MLWgs3eZEHCJywZw5n9ks5OvGkVuNRl8WiTxVsAoDQFEiYDlbeNlmUrn7\nLX7GK91jHeUO1VuOADvIfPLgvOsmvBkrWSLSIDH935Li8vRl1A6U/huMgZaRsLZA5IVC1xsA\nigsBy8lrY+pLw/1n+hyvdDOb1n9L9cYjcGL3uF3cWNrVatqpIifFJr0r0iExYy4Ba4Y0+Nwc\n6CIXGC8fmTfGAoAgIWDZWnZLL5HQWB+vvUpySUW731TvAATL8KZV30aGxolcrL88K7Lxj9GJ\nJ4kcavsup2uwfmouV0WGwjLKeJktVSs9rS8AFD0Clo1PTmoqVTtfNldJvKoxLnTfp1b1PkCg\nXCCyx1/GwDSRTY0HD67vKbKT+YPW2hsqRF42hs4cN+4ny7ucAlZYto4+kuAGaWXcn+EI2b1g\nVQeA4kTASrXh6T1FWh4yS1W60s3tI9NU7wYEyh8hkbbn3n7ldiL1zTClvdNIpPHoy687s7uI\nHGUWNRD50PIuh4D1sFTH5vu9uYzfoL1YLY8Vru4AUJQIWFZ/3dZVpNfEpxTGK92sZg3nq94T\nCJSP2kWvqNo0Fpne3jx2kVXF6WvNkhwD1uLWMik+8lClbKpHtDGFqjcAFCsCVrI/Lmst1QNv\nUJuuDOfKzhtU7wwEyvJrd25R3Xrn6/4XL1k766BOTatb7XTO59GCHAPWodIj6bbtrwxu3rDf\nzesLUGMAKGoErIRfz24mjQ9U+d1gwk5ym+rdAQAA6oqAFfPdKQ2l+ZFqfjeY7t6GLX5XvUcA\nAEAdEbAiPj68Wlqf+ITqXJVwpJyuep8AAIA6ImDpal/cp0LanqH4ynarJzZp8L3q/QIAAOqG\ngKUtu3VLke7nK7vrlYPT5BTVewYAANRN4APWW2ObSlX/61THqXRPtW64UPXOAQAAdRLsgPXd\nlT1EWh1yr+owZWusTFa9fwAAQJ0EOGD9cvMuFVK980VPq05SDh5tvOla1fsIAADURVAD1q+3\nDqiUii1PeVh1jMpgqMxRvZsAAEBdBDJgfX/D7pUiWxx7j+oIldlNso/qPQUAAOoicAGr9v1L\nthGp6H7s3arzU3abV/2iencBAIA6CFbA+t9jx24mUtXnhOK8rD3VcTJd9R4DAAB1EJyAtf7t\nS3auEmm6+4Rivu7K4t6KnVXvNQAAUAcBCVhLHh7TSqSi2+jrnlGdmvKxZcUC1XsOAADkLwgB\n6487h9QT2XjQOQ+pDkz5Giu3qN55AAAgf2UfsFbNDuvpqtMh04rtUTi5uEsGq95/AAAgf+Ud\nsGpfG9tcpP3hd6hOSnXVscEK1fsQAADkrZwD1vwLOou0GH6j6pTkwgiZq3ovAgCAvJVtwPrv\nJb1F6u9+cbE+CCc3V8g41TsSAADkrSwD1poXT99cpHrb8Y+qDkhuPVG/p+qdCQAA8lZ+AWvR\n3Qc2FWm48/hHVKcjL/SVn1XvUAAAkK8yC1g/TutfKfK3oZc8oToZeeQIeUj1PgUAAPkqp4C1\ndMZuFVLR/ahbVKciD10nJ6rerQAAIF9lE7BqXz60oVT0PGGW6kjkrSfrb6l6zyKY3HRb1XUH\nAPXKJGD9clUXkTaH3ulVrikevSsWq965CCQ3vVZ13QFAvXIIWOvmDq8n9Xa/shTv1Z7VwdwJ\nC0q46bWq6w4A6pV+wPr47M1EOox92KtEU2QulvNV72EEkpteq7ruAKBeiQesr6/qI9Jk7+u9\nijPF5+GKAap3MgLJTa9VXXcAUK+UA9YHl/QTqdru7HK5JYO9tk3Wq97RCCI3nVZ13QFAvVIN\nWItnH9dWT1d9xz3kVZApVgPlv6p3NoLITadVXXcAUK8UA9Y3D526VYVIk10nlOuFV8lOkDtV\n73AEkZtOq7ruAKBeaQWsvz544NzBrUSkXq8x15X2Y5xzdj23GoUKbjqt6roDgHqlErBWvXff\nuft3qdSzlWyy01FXl/dlVxZPVG+neucjiNx0WtV1BwD1SiBgrf/wlqN6VxvRqkn3vcde/qBX\nyaVUdG6wRnUTIIDc9FnVdQcA9Yo8YNV+dP1+G+nRqv4WQ064vMyegpOrwfK+6mZAALnps6rr\nDgDqFXPA+u2hw9vo4epvA0+5MSDXW9k6kavcoYCbPqu67gCgXtEGrA8u37FSZKPdTr/bq6BS\nqq6TcaobAwHkps+qrjsAqFeUAWvdi6e0E6nsfti0sny8YJ4eq+ivukEQQG76rOq6A4B6xRew\n1r9wbEuRxrtOKPtbiOaqbdMNqhsFweOmy6quOwCoV2wB6+PxbUSa73PZU16lkzKwq3ylulkQ\nPG66rOq6A4B6RRWwVt61g0iTwVc+41U0KQ9HyOOqWwbB46bLqq47AKhXRAHru7M2lop+5wTo\nHqI5ukguVt02CB43XVZ13QFAvaIJWB+MrpKNRt7pVSgpJ3fLAapbB8HjpsuqrjsAqFckAeuT\n4RXS/jROXtma26SL6vZB8LjpsqrrDgDqFUXAWnJKlXS9kFsyOOlZ+afqJkLguOmxqusOAOoV\nQ8D6R1vZbBLxytm+8q7qNkLguOmxqusOAOoVQcC6qrJqNF8OZnKS3K26kRA4bnqs6roDgHrK\nA1btOGl5nVdJpExdLRNUNxMCx02PVV13AFBPecA6Xdrf61UQKVcPyRDVzYTAcdNjVdcdANRT\nHbBukLYPepVDytfGbRU3E4LHTYdVXXcAUE9xwPp3dfO7vEohZayvLFHbTggeNx1Wdd0BQD21\nAWtZp4orvAoh5SwsryttJwSQmw6ruu4AoJ7agHWaHOhVBilrp8gMpe2EAHLTYVXXHQDUUxqw\nPqrajPsz5OIaOUNlOyGI3HRY1XUHAPWUBqy95EKvIkh5e1gGq2wnBJGbDqu67gCgnsqA9ZJs\n5VUCKXf8jBB+c9NfVdcdANRTGbB2F+4wmqM+/IwQPnPTX1XXHQDUUxiwXpN+XuWPsrefvKmu\noRBIbvqr6roDgHoKA9ZwudKr/FH2Tpa71DUUAslNf1VddwBQT13A+qZyc6/iR/m7kqcRwmdu\n+qvqugOAeuoC1tlyulfxo/w9IPsqaygEk5v+qrruAKCesoC1pnVT7oGVu2YdVTUUAspNd1Vd\ndwBQT1nAmiP7exU+gmDLij9VtRSCyU13VV13AFBPWcAaKjd6FT6CYIi8p6qlEExuuqvqugOA\neqoC1q/VnbzKHoEwVh5Q1FIIKDfdVXXdAUA9VQHrRjnWq+wRCJfIJEUthYBy011V1x0A1FMV\nsHasuNer7BEId8sIRS2FgHLTXVXXHQDUUxSwvq/o5VX0CIa5DburaSkElZvuqrruAKCeooA1\nRU7yKnoERNfq1WqaCgHlpreqrjsAqKcoYO1UcZ9XySMgBsqnapoKAeWmt6quOwCopyZg/VTR\n06vgERRHymNKmgpB5aa3qq47AKinJmDdKsd5FTyC4kK5VElTIajc9FbVdQcA9dQErL3lTq+C\nR1DMkNFKmgpB5aa3qq47AKinJGAtrc9dRvP1TP2tVDQVAstNb1VddwBQT0nAmi2jvcodwdGp\nwToVbYWgctNZVdcdANRTErAOk6lexY7g2F2+UNFWCCo3nVV13QFAPRUBa32rjed6FTuC43B5\nUkFbIbDcdFbVdQcA9VQErNdlkFepI0DOlysUtBUCy01nVV13AFBPRcC6QCZ6lToC5A4Zo6Ct\nEFhuOqvqugOAeioC1jZVs71KHQHydP2+CtoKgeWms6quOwCopyBg/cqDnuukMz8jhI/c9FXV\ndQcA9RQErFlypFeZI1D2kM/8bywElpu+qrruAKCegoB1iNzoVeYIlCPlcf8bC4Hlpq+qrjsA\nqOd/wFrfqgU3aaiLi+QS3xsLweWmr6quOwCo53/AepubNNTNXTLS98ZCcLnpq6rrDgDq+R+w\nLpVzvIocwTK3UXffGwvB5aavqq47AKjnf8DapeJBryJHwHSv+sv31kJguemqqusOAOr5HrCW\nVHf1KnAEzd7yvt+theBy01VV1x0A1PM9YD0uo70KHEFzgtzjd2shuNx0VdV1BwD1fA9YJ8g1\nXgWOoLlaxvvdWgguN11Vdd0BQD3fA1bnRk95FTiCZnbFnn63FoLLTVdVXXcAUM/vgPWF7OhV\n3gieTTbxubUQYG56quq6A4B6fgesm+Vkr+JG8GwvC3xuLgSXm56quu4AoJ7fAWs/melV3Aie\nQ2Suz82F4HLTU1XXHQDU8zlgrWnaxqu0EUDny2X+NhcCzE1PVV13AFDP54D1sgz1Km0E0J0y\nwt/mQoC56amq6w4A6vkcsM6VC71KGwE0t1lHf5sLAeamp6quOwCo53PA6lv9mFdpI4j6yWJ/\n2wvB5aajqq47AKjnkMHS6QAAIABJREFUb8D6uWIrr7JGII2UF3xtLwSYm46quu4AoJ6/Aese\nOcqrrBFIE+UKX9sLAeamo6quOwCo52/AGiU3eZU1AuluGeZreyHA3HRU1XUHAPV8DVjrNm45\n16usEUwbb+pneyHI3PRT1XUHAPV8DVivyWCvkkZAbS8/+NlgCDA3/VR13QFAPV8D1kQ536uk\nEVBHyGw/GwwB5qafqq47AKjna8DqVY+bNLhzpZzhZ4MhwNz0U9V1BwD1/AxY30o/r4JGUM2p\n2t7HBkOQuemnqusOAOr5GbBulBO8ChqB1bXenz62GALMTTdVXXcAUM/PgLWX3OVVzgis4TLP\nxxZDgLnppqrrDgDq+RiwltTr5FXMCK5JcpF/LYYgc9NNVdcdANTzMWA9JId4FTOC66GK3fxr\nMQSZm26quu4AoJ6PAWuk3OBVzAiwzvW5CAt+cNNLVdcdANTzL2CtbNKG27i7dwDPe4Yv3PRS\n1XUHAPX8C1iPywivQkaQTZYJvjUZgsxNL1VddwBQz7+ANVKmeRUygmxO/S19azIEmZteqrru\nAKCebwFreaPN+IbQC/3ke7/aDEHmppOqrjsAqOdbwJolo72KGME2Vm72q80QZG46qeq6A4B6\nvgWsQXK7VxEj2O6UwX61GYLMTSdVXXcAUM+vgPV9ZTevEkbQdar3u0+NhiBz00dV1x0A1PMr\nYF0ip3gVMILuCJnpU6MhyNz0UdV1BwD1fApY69s3mO1VwAi6mRUD/Gk0BJqbPqq67gCgnk8B\n62kZ7FW+QM+Kb/xpNQSZmy6quu4AoJ5PAWsPHpPjndNkkj+thiBz00VV1x0A1PMnYL0nvb1K\nF6iZ06TNal+aDUHmpouqrjsAqOdPwDpILvYqXaCmJix3+9JsCDI3PVR13QFAPV8C1ocVm3MX\ndw/dVdVjvR/thiBz00NV1x0A1PMlYA3mBJa3Bsl9frQbgsxNB1VddwBQz4+A9ZRs5VWygOnO\n6vYrfWg4BJmbDqq67gCgng8Ba0m76ps9ChaIGiHnFL7hEGhu+qfqugOAej4ErDFysFe5AlGP\nta56tfAthyBz0z9V1x0A1Ct8wJouXZ/yKlcg5srKTb8veNMhyNx0T9V1BwD1Ch6w7qtsfrdX\nqQIJx0rXHwvddggyN71Tdd0BQL0CB6wNl1U0mepVpkCyERJ6vbCNh0Bz0zlV1x0A1CtswHpr\nF2nJM3IK5MiKqpMXFLT5EGRu+qbqugOAei4D1mWjHI3cu18rkZY77IoC6d1QKjbbdshI5zbQ\nedNNEDwELABww2XA2ktQ3LzpJggeAhYAuOFzwKru2LFju4IEiVSt9DU182NFxia19WNFsom+\npqb5vsmbboLgIWABgBs+B6z62267bd98M0KddNLX1NqPFTXQV9THjxVJZ31Nm+T7Jm+6CYKH\ngAUAbrj8AH52Rn6m6hmhf57vqZsx+prO8GNF1+kr2t2PFc04WF/ThHzf5E03QfAQsADADZ/P\ncPyqZ4RBvqxpsr6mOX6s6Ed9Rfv4sSJtkr6mp31ZE0DAAgBXCFhuEbBQlghYAOAGAcstAhbK\nEgELANwgYLlFwEJZImABgBsELLcIWChLBCwAcIOA5RYBC2WJgAUAbhCw3CJgoSwRsADADZ8D\n1h8nn3zyOb6s6T59Ta/6saLf9BWd78eKtLv1Nb3hy5oAAhYAuMKdvgHYIGABgBsELAA2CFgA\n4AYBC4ANAhYAuEHAAmCDgAUAbhCwANggYAGAGwQsADYIWADgBgELgA0CFgC4QcACYIOABQBu\n+BawFh0cDr8WH/tp5uljRhx56T/We7eCD8NJxhdwRabPbzlx5JhTp3+aKPF+Te+GLY4v2IqA\ndAQsAHDDr4BVe2E4KWDNOSAaGk5e6NkaXrcLWIVYkW7dbcOiy72ttnBrsg9YBdokwIqABQBu\n+BWwngsnBayn9eGL5jx7z7Hh8DHLvVrDC+HwpQ/HvFDAFelp8fpweNSNc+dcqseshwu3pp8e\nTpgZDl9QsBUB6QhYAOCGTwFr0ajw0fGA9etB4QPeMQZWXx4O3+TVKp4Ih19OKSrMijRtXjh8\nxmJj4P2DwiP+V8g1xd0cPuB7X1YERBCwAMANfwJW7QXhw+fEA9Yd8fM+qw4PD/+fR+u4Pxx+\nO6WoMCvS1hwVHv1HZPCRi+/8sYBrivt4WPhBzY8VAVEELKWelySDYqX/PnaLxi22OiblSFcj\nFjtaJr66f6t6HU9Nup7gAal6r6BVBxDhT8D6ezj88rOxgLX+sPCIFdEJD4bDT3q0jtvC4U+s\nJQVakfZmOPyQP2uKWXNS+Pg1fqwIiCFgKfWITcBaPTZWMNEyb6aA9WiV7HlUV+m0OFbwWys5\n14f6A/AnYC0cFZ6sxQPWZ+HwebEp88PhSR6tZEo4/K21pEArMtb0kz9rirk/HH7flxUBMQQs\npW4XGTY55j6zaMNBIhuNvfGqwRUiNyTP+8XkhBNFRiVNWtFCrtW0tf3luFjJaNlilT+bAASd\nHwGrdlJ49OJEwNIH7olNWjMsPNqjtVwSDi+ylhRoRdpx4SP1f1d883+/FnpNUT8eEL7SlxUB\ncQQspa4WmZ1SdJvIDj8bA09USVOnX7iMlEbJ/9GcJRsb576fksYrIwXPSMWrXtcVgC0/Apae\nCv6hJQLW3eHws/FpR4TDHv0W7hx9Sf+87MgDDjn9nmjwKdCKVg0LT9I+vdC4UcMxs1cXck0x\nl4YP+FnzY0VAHAFLqYkiL1hLVv5NWkX/D3n2vmd9b/+2uSJXJY8fL0OMl4Uib5jjS0Nyisc1\nBeDAh4C1cFT4Ii0pYE0Nh1+PTzwtHP7Rm9WcHA6fEr1D1AGzawu4ou/C4WueGx5d1RlLCrim\nqI/D4RnRwcKuCEggYCl1okjKpeyzRa7M9q4V7WXLtckFg6LfDdaXWebrWGnP/8oAnxQ+YNVO\nCh9s/L8rHrCuDIffjU89Kxz+0pv1HKnHnUOmznnmjmP0gQcKuKL54fBpBxwz75e1i589PBw+\nv7Zwa4qaGD4w9nPBwq4ISCBgKTVa5HNrySiRb+3nTThNKl6zFGwvp5mvG4t5U5dXKuQ5r2oI\nIIvCB6yacNj8k44HrMvC4Q/iU88Lhz/zZj0HhcO3m5cZrJupJ6yvCrei94y7qi81B385JBx+\ns3BritAD3S2x4YKuCEhCwFJqiEjKoxraSzv93z8+eN05Zr1fKUdbS3aIfiPYTG7W/13ZRY7w\ntpoAnBU8YP06KjzJ/MLO/gzWBM/Owqz8c2Vs8PJw+LrCreg/4cQdt54Khy8v3Joi9K1ZEBsu\n6IqAJAQspXYUWT5raJt6LbY57wezYJnIXtorAytEpMN1q+3fNFAapfzAebAcZrysrRTjrP54\nafOH9uWEATuOeaaQdQdgKnTAqj0vPCryH7F4wJqWfB3RqWm3PPDAl+Hw6NqCrejTcPiA2IOW\nF4fDY7TCbtL/hofPjo8Uft8BEQQspbpLZY/ofa3qTzUKPhIZc2NltGjnJXbveVYk9c4t42QH\n42W+yH807Z1KmaM938BcApe6AwVX6IA1N/oFYVLAujccThyADw2H//R8pbUHhsPLCrai78Ph\nxGn2keHw2sJu0pz4HtT82HdABAFLqTZ6CGp55NXTT9lMH7haL3hNpG9Vp1lfr/5+WguRYXbv\n2U6apj7c4TGpNq6AnSIt12hressIbdnfZPiPK++okLkF3wQg6AocsBaPDJ/wesRN4fCdrxuX\nD7wQDt8Vm74yHD6sAKsdEw4vLtiK1g4PJ+7kp4ecVYXdpDPC4T/iIz7sO8BEwFKqgcgZ5kMb\n/horUvmZpv1dD1o9IoeCT5uI/DP9LS+KTEgtW9NODlyp/beVce/3ydLiF22GNNX/86mNSTx+\nB0CBFDhgzQ+nmKlpX4cT33m9Hw5f6v1a1wwLh9cUbkWnJG5pqoetA7WCbtLv4XDSyfzC7zsg\ngoCl1JIly6JDtXuKnBAJWM9HiyaLHJP+lr2lMv2+LfMaSONOFdL3T+2T+nKPph0UOfn1iFQ7\nXMcFwCsKAlbtsYmnFN9m3oPUC2/fMvmV2LAePcZphVqR+T1d7BLRT8Lhswq4Jt28cPiOxFgB\nVwRYELCKxYsiHTXtVZGGsWs/PxHZIm22HyplL5t3v3dAq/pdJy7V1u8gg/XRHpHnGH4o8oHN\nzAA85M/Dng3xa7CMJ+vdHRn6fWR45Ernt+TjxXD45DWRwdrzwuH7C7YiTfsmHD76r8jgleHw\nIwVck2bGqOQb1xRuRYAFAatY/CVSuV77WKRtrGStSNO02S4VuT/DUq6Xpsbd31vLFGNsgcg8\nzysKwEJFwFp6SHiY+Tis5edE84kHVh8eDl9lXrOw5qZw+OClBVuR7ppw+GIz2zweDo9aUsg1\nadq54fAnSaOFWxFgQcAqFrWVIqu0VZXSPF5UJQ3SZusllamXuCf5unHkVqPRl0UiT3ldTwTW\n85IkenXf+jkHb96ofpsBly3IYeaYV/dvVa/jqUl3gHtAqt4raNULS0XA0l4ZFg5f8Ojc2/VM\nNGGdV8t/Z3g4POa2p5+5/chweNibBVyRpv3vuHD4qHtfeOyscDj8UkHXpGmHpzzDumArAiwI\nWMVCD0NN9JduIrGPqsVJZ7NifpDIHRns1Q6U/huMgZZyvfGyIO1Rh0CdPZKemT7bKjbeYHrW\nmWMerZI9j+oqnRbHCn5rJecWvvqFoyRgaS8eFL0k6wIP7zPw1qGxC70O/09BV6Rpv5wZXezI\nFwu8Jm1E6hOdC7UiwIKApdLTxw95KDasfyDtqhl3CZXYIx2eFtkv9R0zJNNH0QxpEHnyThe5\nwHj5yLwxVonK63yJ7p0Tem5Ub5NdJ6dNKrfzJcrcLjJscsx9Rsn3rUQaHzZ56umd9DaamWXm\nmBUt5FpNW9s/+gBNzXhi1BarfNmCAlETsLTf7j3jkAOPueYtT9fw5zMXH3ngQcdc+vekn8cU\nZEX6X/PLlxwzYsyZ9yduoFCgNa3Rk1TKiaoCbRJgQcBS6U6RXtHj2NptRIwnU7wn0jF61eVe\nIremvuP4TJdg/dRcrooMhcW8ycxsqSrdKzjzOl+irTwiNqnxXdYpZXe+RJmrRWZbS/YT2e03\nY2DtWJFWazPPHDNLNjYupH5KGkc75zNS8arnlfWTfwELQAkhYKn0ZyuR0eaVpCtGi2xi3rJh\nhMj+xmWmtRfpH1nm9aZnjhsXf5jDjiLv2i7KEJato/9Pu0FaGcHtCNm9YHUvuLzOl2wYrBft\nMfGa4zuIVDyRPKX8zpcoMzH1G+efK6RJ9IrANSGR1zPOHHe8DDFeFoq8YY4vDZX6EwcIWABs\nELCUerJSz1Xjpk87cROR6siVCD+1F2l//ozLt9aTwpNmSQORD2NvaJn2dOiEh6U6Nt/vzWX8\nBu3FanmsgJUvsLzOl9yiRy/zB5NrDhLpsCFpSvmdL1HmRJG3LQXzDx8av2PjSLF2trSZ4wZF\ns259mWW+jpX2y+3nLBUELAA2CFhqPd4y9s1W239Fi77oGy1pFs0XyQGrSsTpS7/FrZOeUfhQ\npWzaXWRMgarth7zOl3SNf3W6pLXIm0lTyu98iTKjRT53nBhOuSWI88zby2nm68aRn7q+UiHP\n2c9YMghYAGwQsBT7Y+rgTRs0aj9sZuKa0rV37922fsvtL479sDgpYC0XqXRa0qHSI+m61FcG\nN2/Y7+b1TjOXgHzOl+jZq2XstNUYiZ4ZiSi/8yXKDMlw+nRhU2m6IreZd4gm3GZys/7vyi5y\nhP18pYOABcAGAQtFKq/zJWt++L/YoB7Mkh6LUYbnS5TZUWT5rKFt6rXY5rwfUia930ci97bN\nYebBYj5ed22lPKAZP5tt84f25YQBO455RitVBCwANghYKFJ5nS9JMljkpaTR8jtfokx3qewR\n/fq6/tR46ZdnnXGYXtzkxlxmNoyL3MptvnkPkXcqZY72fANzvpL96paABcAGAQtFKq/zJQk/\nVUvrNUnj5Xe+RJk2eghqeeTV00/ZTB+4OlY6z8hGzScuyWlmw2NSbXz7PUVartHW9JYR2rK/\nyfAfV95RIXP92IoCIGABsEHAQpHK63xJwjCRacnj5Xe+RBl9v51hnjf8a6xI5WfR0nmRNur5\ncC4zG9a0kwNXav9tZTyQfLK0+EWbIU2NO5SMSX2iTskgYAGwQcBCkcrrfEncRJE9LZf2l9/5\nEmWWLFkWHardU+SEePm6X16f2FRkQk4z6+Y1kMadKqTvn9on9eUeTTtIhhnFj0j1aq0kEbAA\n2CBgoUjldb4kqvZMkb7LLEXld76kGLwo0tFS8IWeh5/Ndeb3DmhVv+vEpdr6HWSwPtrDaBtN\n+1DkA+9r6gcCFgAbBCwUqbzOl0Qs219k69Qr48vufEkx+EvPvNZ7gNwnkRuO5TRz1PXS9Hv9\npXXkgroFKb8MLR0ELAA2CFgofjmeL/lmS5G90m9yVW7nS4pBbaWI9XlDP4tsnPPMEV83jtw6\nI/qySOQpTyvpGwIWABsELBS/3M6X/KuVyMnrnJdSLudLioEehppo2rzrJsRvmr9EpEHGmdPU\nDpT+5t1hW8r1xssCx6cXFjsCFgAbBCwUv5zOlzxeT6pvz7CQsjlfosrTxw95KDb8iMiumnaq\nyEmxkndFOmScOc0MaRC5k2wXucB4+cj8oWcpImABsEHAQvHL5XzJk1Wy0T8yLKN8zpeocqdI\nr+hla2u3EblO057VY+6P0akniRyaceZUPzWXqyJDYRllvMyWKqfnbBY5AhYAGwQsFKe8zpdo\n2lsNZaOM5z/K53yJKn+2Ehm91BhaMVpkk2Watr6nyE7mjwpqb6gQedkYOnPcuJ9sZ04Vlq2j\n3+feIK2MLHaE7O7HZhQAAQuADQIWilNe50u0pR2l0euZFldG50uUebJSj0rjpk87cROR6heN\nkncaiTQeffl1Z3YXkaPMmWKPJk+f2ephqY49wvz35jJ+g/ZiteX53aWEgAXABgELxSmv8yXa\nyRK5sspRGZ0vUefxltFb60vbf0VK3t48VlJx+lqzJBawbGZOtri1TIqPPFQpm+oRbUzBN6BA\nCFgAbBCwUKTyOV/yXT2pumBy3J1pCyun8yUK/TF18KYNGrUfNjN+C7G1sw7q1LS61U7nfB4t\niAcsm5mTHCo9kopfGdy8Yb+bbe+VVQoIWABsELBQrPI4XzJHLHZMXVRZnS9BsSFgAbBBwELR\nyv18SbaAVVbnS1BsCFgAbBCwAMANAhYAGwQsAHCDgAXABgELANwgYAGwQcACADcIWABsELAA\nwA0CFgAbBCwAcIOABcAGAavo0CJASSFgAbBBwCo6tAhQUghYAGwQsIoOLQKUFAIWABsErKJD\niwAlhYAFwAYBq+jQIkBJIWABsEHAKjq0CFBSCFgAbBCwig4tApQUAhYAGwSsokOLACWFgAXA\nBgGr6NAiQEkhYAGwQcAqOrQIUFIIWABsELCKDi0ClBQCFgAbBKyiQ4sAJYWABcAGAavo0CJA\nSSFgAbBBwCo6tAhQUghYAGwQsIoOLVIUvmgk8nyWEu15STLIOu3V/VvV63jqwkTBA1L1XoEq\nC6UIWABsELCKDi1SDDbsIilxKr1E0x5xDliPVsmeR3WVTotjBb+1knMLWGE1OH4YCFgAbHCA\nLDq0SDGYKqlxKr1E024XGTY55r7kKStayLWatra/HBcrGS1brCpkjZXg+GEgYAGwwQGy6NAi\njvzbNV82kk2tcSq9RHe1yGz7BcySjdfoL09J45WRgmek4tU8K1ECXLRIGfVWAhYAGxwgiw4t\n4si3XbOhv7SbZIlT6SWGiSIv2C/heBlivCwUecMcXxqSU/KrQ0lw0SJl1FsJWABscIAsOrSI\nI992zVSRRy+3xKn0EsOJIm/bL2FQ9LvB+jLLfB0r7ZfnV4eS4KJFyqi3ErAA2OAAWXRoEUd+\n7ZovG8kIzRKn0ktMo0U+t1/E9nKa+bqx3GS8vFIhz+VVhRLhokXKqLcSsADY4ABZdGgRRz7t\nmg27SotfLXEqvSRiiMjC1HdH7BD9RrCZ3Kz/u7KLHJHfppYIFy1SRr2VgFVo80Kh0KOqKwHk\niwNk0aFFHPm0a6aJ3K9Z4lR6ScSOIstnDW1Tr8U25/1gnTJYDjNe1lbKA/rLeGnzh/blhAE7\njnmmjptepFy0SBn1VgJWoRGwUJI4QBYdWsSRP7vmy0ayn2aJU+klUd2lskf0Llj1p1qmjJMd\njJf5Iv/RtHcqZY72fANzvvK61N1Fi5RRbyVgFRoBCyWJA2TRoUUc+bJrNuwqzX/SkuNUeklM\nGz0xtTzy6umnbKYPXJ085TGpXqS/TJGWa7Q1vWWEtuxvMvzHlXdUyFxXu6DIuGiRMuqtJRyw\nDg3tproKuSBgoSRxgCw6tIgjX3bNdJG7jddEnEoviWkgcsYKY+CvsSKVnyVNWdNODlyp/beV\nTNS0ydLiF22GNF2ml49JfaJOaXPRImXUW0s3YNX2JGABBcMBsujQIo782DVfNZa9zYF4nEov\niVuyZFl0qHZPkROSJ81rII07VUjfP7VP6ss9mnaQDDOKH5Hq1XXa9uLkokXKqLeWbsD6JkTA\nAgqGA2TRoUUc+bBraneTZpHr1WNxKr3E1osiHS0F7x3Qqn7XiUu19TvIYH20h3EuS9M+FPkg\nv40uai5apIx6a+kGrDkELKBwOEAWHVrEkQ+75gaRuyJDsTiVXmLrL5HK9XYTrpem3+svrWWK\nMbZAZF6udSkBLlqkjHpr6QasSQQsoHA4QBYdWsRR4XfNgsbSbU7EISIXzJnzWXqJ/TtrK0Xs\nHub8dePIrUajL4tEnqrLphcpFy1SRr21RAPWo6GYvtGS9c+du2efDj13OeaexeZ4ba9Q6P/Z\nOxM4qYnsj785mOGUYzybU0UBLzxWvFYUFXXVGob7BlEQBeQSRERFxAMRBEQRUORSREbkEI+/\neCwqrqwieC2KqCCIICDnOAwwk3/SSbrT3VU93V1JqpJ+3w8fklQyefXeq6r+dTqp9DYP/7ue\neuTP5ta4QKDOXmW9WrRaUfY+c1OjemfdMMYyV8nmyV0uPqPumZf1nLXbavOzh244r97ZV/V5\n/aBZwj5F2Vt9Lj2tSYtBq1FgIR4FB0jpwIwwcT40n0AUY2NL6H+pKqcqlOKyFnBFqbZSCyZo\ni63Mtxd6Eo6M+Ki1+kVgrWoeKmn4VPBybN9A4Fzz8FVa+cvmVqtA4CZF+VEtWqm8ebrxV/XM\nV58fvq9O+FTPlZl/tPGWUOn55oxwrFMoO9uZx3Y+gAIL8SQ4QEoHZoSJ86FJTmAt7XPDK+b6\nqwD/pJxwBuTqL9M5HUZpi/XBibF8A0dGfNRaPSqw/t2hQ8NA4PQOHTroj2csrKupmX/ccGV9\nbdn7qFr0irqyyTj8Ca30bmOjWD1mnKL8qha9uVQVU/XP0q5vBeqsCe4t6xzUSv+4rFFQII02\n/mjVmdrWRTdcETT0rF7IOIVy8Dptq8l1V6nSK/9dFFiIF8EBUjowI0xcDU3sHVcxJS8AnG08\nE3jkQoDxsSfZVh0e19cItNcWCyGrKPm6SAtHRnzUWj0qsFRaWO7B+kqVPXXGbFfX/n6tqSpo\ntCuuW9Wl+R3ilsCp/wj8w9j4RN3xub5/aqPaw75Xe8An16ob7YJ7tWtjN32sKbSdsxqr618G\nSzerq3Ue/E1dOzBHK10RLGWcQhmtib33jylKyZsXBzqhwEK8CA6Q0oEZYeJqaOIJrMH9+2sz\njx7KA+i4Tys42BHg+P1KDAQuOKqvTYY8TYt1h+bJV0VeODLio9bqC4FV1sIiYn5qFAjU16TQ\n5YHAQL3oUL3ALb0Dgd/0rfGBwJlqy/5d+wmw9mK9bHeTQKB28I6rDoHA+YeMU/16diCgv75A\nVUnmocpG1UCz4JcTxil2NggEGv2il26/MIACC/EiOEBKB2aEiauhiSewcgHWacs3MlVd1X/S\n032PB8h+L/YcCyB7nbG6uzoMKVXey4ZFyVdFXjgy4qPW6guB9amqYbqFdjynbj2tLu8LBC7V\nSz4IBB6YEggU6lutA4Fb1cV2Tfnca/7RSHVjlbZyfvi3REWZfmOfKdryG3Xv4FDp7IBxLsYp\nXgoEf4PUWYoCC/EkOEBKB2aEiauhSURgKa/XMm/Nqv3v2FPsOgHuD228kgknNwLonHxNJIYj\nIz5qrb4QWENUDfNBaMfuuoHA1eryLbX0j2DJ2EBg8apAYGhw43CDQGC2oquj2qEH/14zf1Bs\nEgj0irH1oLp3Y2ir+PRA4DaFfYou6spPZumxs1FgIV4EB0jpwIwwcTU0CQksZc/ElifnVqqb\nP5M2P3sXaGwp/rBl9YrnT6XOleVZODLio9bqC4HVPBBocDS851+BQJ0iRdmvCq2lZsGW/XUC\nlwc3VquC51dFV0fXhP7mY3VrprZyfSBQf50SRctA4DLLpqqgzlLYpzg/EDgvfPCdKLAQL4ID\npHRgRphgaGSDIyM+SokfBFZRnUDgOsuegaqkWasubw4ERmrbB+oGLlSU6wKBHdrWBOOXQ00d\nDQj9zRfa/eraynR15bQnNkeYKlYNdLJsj1GP2ck8xX51mR8+eBIKLMSL4AApHZgRJhga2eDI\niI9S4geBpc2WcJtlz3h1W7teO864vrQyEOivKKOM61ltjdumNHX0QOhv1poC62ir4PQMzUeu\n2BfaqR16erMwTQwFRz/FT+rS8m7P11BgIV4EB0jpwIwwwdDIBkdGfJQSPwisbwLWG9MV5Vnj\nJvTPAoHamkp6OBCYryjLA4H71I2SUwOBt7SjNHU0JvQ3IYGlFN1tzBFat9VLhsbaEIjl38xT\naPO7DwrX5k0UWIgXwQFSOjAjTDA0ssGRER+lxA8Ca40qYYZb9rygbs9Tl0caahOtB2+r+klR\ndgYCLZSg6qp7QDuKJbAUZd3ARoaKajTpmLkzmreYp/g8sjo40SjiSXCAlA7MCBMMjWxwZMRH\nKfGDwPo24lawuEf3AAAgAElEQVQoRXlG3X5dW+kWCDyqKPvq6PecXxaovUdRJpo3SLEFlqIc\n/eTha3Qd1V171OOHQGhKrQjop1gXeQXrDRRYiBfBAVI6MCNMMDSywZERH6XEDwJrSyByaoVx\n6nZwZreZgQBRlHeMW6IGBwJvK0q7QGBi8Kh4Aktj5ysFmsKarOgTisbO3cA6xY+R92DNRYGF\neBEcIKUDM8IEQyMbHBnxUUr8ILCK6wYC11r29FMlzTfayoZAoF6xNonVS9rWq9qbBY+cZr79\npjyBpfLWqYFAw78V5WgD/efFaOin+DPyKcLRKLAQL4IDpHRgRphgaGSDIyM+SokfBJZyTSBQ\n/0h4T3jz/EDgM21zg7bxSyBwvXaDVGN9PrcEBJbytFr6H3V5k6rUDsRWgXGKxhHzYLVHgYV4\nERwgpQMzwgRDIxscGfFRSnwhsEaYvwkG0V7BTPTVuwOByXtrB84qC241DdQ9MCUQ6KPvYwms\nbdvCNlYZJ344EHrRjsamA3FPoU30EJrJ/UA9FFiIF8EBUjowI0wwNLLBkREfpcS7AuuaQOAf\nxupXAetEoI8FgtMyaBQGAt3fDt0/1ScQ+Kh7aB9dHT18TqB12MYStfQrRZ+n4arQiwwOX1Sv\nfbyZHrSpRR8zS6cEUGAhXgQHSOnAjDDB0MgGR0Z8lBLvCqx/BQL1DhnrJGC8BlBlbf1A4OyD\n+vqOQOC8h40X2CjKi4HAk+cFAr/pW3R19HxAf1NhkKP5gUCj4BujOqrF95YZpXeoG2+yT6Fs\nrB0INPxBL/yqIQosxJPgACkdmBEmGBrZ4MiIj1LiXYHVW9M8u4/9pk0G+uOpgUCdR/9U1w68\ncKZavsI86OpA4DLjjvfgdA7/VP8Zu+jq6GBTbUqGL7U3GxZ9oOorbZ4HlS1nqKvt16gS6/Cb\nN6qrbeOcQlH6qmvnLFRF3m+TGwaGoMBCvAgOkNKBGWGCoZENjoz4KCXeFVjzjRk/P9Y2VtRX\n12pfduNldbSiKaGDHgpOF2r8uFcanD90lLGLoY5WN9AOqntBszODZ29VrO//WFNYgYaXn1db\nW169K94plD8uCv5tY1X2BTpo88y/6kwIEMQ5cICUDswIEwyNbHBkxEcp8a7AOnyNRWApn7cI\nzbF+sSU972sF3cytrgHL3fAsdbTu6tCZAvVGF5sHfF8QKq09ZH/8Uyg/XWse2+2gNkvXPFs9\nRxAXwAFSOjAjTDA0ssGRER+lxLsCS9kz4sK6p17aZ7O+VfrWPVefXe+s5gPfsEzYoBzSnuF7\n1tzSbjgP3bfFVEdlH468uempdRtdduuMHVZ7q0ffcH790y/oOHGLUt4plKOLel58auOrB69W\nlAOB0E1gCOIdcICUDswIEwyNbHBkxEcp8bDAQhDEOXCAlA7MCBMMjWxwZMRHKUGBhSAIBRwg\npQMzwgRDIxscGfFRSlBgIQhCAQdI6cCMMMHQyAZHRnyUEhRYCIJQwAFSOjAjTDA0ssGRER+l\nBAUWgiAUcICUDswIEwyNbHBkxEcpQYGFIAgFHCClAzPCBEMjGxwZ8VFKUGAhCEIBB0jpwIww\nwdDIBkdGfJQSFFgIglDAAVI6MCNMBIWGw6zfU4Kh0UCBhSAIBRwgpQMzwkRQaDjM+j0lGBoN\nFFgIglDAAVI6MCNMBIWGw6zfU4Kh0UCBhSAIBRwgpQMzwkRQaDjM+j0lGBoNFFgIglDAAVI6\nMCNMBIWGw6zfU4Kh0UCBhSAIBRwgpQMzwkRQaDjM+j0lAkJzrLDDaZVyTrrqka2R5T9WAngn\n6thVt+RVqD9gR7hgPmR9maLdOKDAQhCEAn52SAdmhImg0HCY9XtK3A/NhnPBIHeStbz0cogR\nWK9lwTU9G0KDXWbBn3lwb2pm44ICC0EQCvjZIR2YESaCQsNh1u8pcT00m/MAKncdPXFgA1VP\nzbTsmAgxAutgTXhSUY5cAbebJR3hjOKUzMYHBRaCIBTws0M6MCNMBIWGw6zfU+J6aG4GuPJP\nbeVIb4C8I6HyjZXg5GiBNQdqlKiLJVC5SC9YBhmrUvMzPiiwEAShgJ8d0oEZYSIoNBxm/Z4S\nt0PzewZU+UtfLQkAfGqWl14Bde6PFlh94AZtsQNgdXB7XwD6peZmOaDAQhCEAn52SAdmhImg\n0HCY9XtK3A7N991uGmautwNYZK5PBHhtbLTAutb4bTAH5gSXvaHugVSMlgsKLARBKOBnh3Rg\nRpgICg2HWb+nRGRoCMBKY3VjJWitxAisi+Hu4LIGPKMtPsyAt3lt0kGBhSAIBfzskA7MCBNB\noeEw6/eUCAzNjqpQ9aC+WvpPqPlHrMBqZvwiWA2mqv8XnQ7dOU2yQIGFIAgF/OyQDswIE0Gh\n4TDr95SIC83a8wCeMtafBpinxAqsltBVWxzJhPnqYgictEfZOPSqSzov47Mci3QCq2z1PXfc\ncceNN95xx5MlouuCIOkLfnZIB2aEiaDQcJj1e0qEhGbjPYO6NgaoMsXcrgQ3KxSB1R+aaYvv\nAb5QlDWZUKi8kxucQcvuW93lElglHw1roEaneb+H729dDS7+XXR9ECRtwc8O6cCMMBEUGg6z\nfk+JkNCs1ERS9RF7jc3Sf0L1bQpFYC2C7J3q4imoVaKUnAOtlf0nQqvfiqZnwPKUbVORR2Ad\n+2TMtVUAcps/uCQY44XNoeF20ZVCkHQFPzukAzPCRFBoOMz6PSVCQrNSn8m9yQJ9cxLALG0Z\nI7BK6kCbIuXrPBihKKOh5nZlBlTdr5Z3hmtTtk1FFoG1a+RJalxq3zjq9XCUW8NFf4uuF4Kk\nKfjZIR2YESaCQsNh1u8pERSao9s/HVEVYKi2/lNluD5YGCOwlJW5ULlBBjQ9pHybAy8pSlvI\n14pfhezDHMZjkURgzakBVa67d15klJdfDXeIrhiCpCn42SEdmBEmgkLDYdbvKREYmh9PAlih\nKGVXQrUtwYJYgaV8WZCX03DEPuVYM2ipbjbWrmUpyjqArziNRyKFwCobAhVvLYwN8+v1tDAh\nCOI+AgdIhA5mhImg0HCY9XtKRIZmLmgztU8GeFHfpggskwlQdbO6OEF/7nBreAIte5BCYA2H\n2tOpcZ6SVfeg6MohSFoicoBEqGBGmAgKDYdZv6dEZGh+B6ihbK0MZxbqdAIYVVi4gXLkpsr6\nVKPGYifAEl7jEcggsObBKfMYgW6rX7hDEMRlRA6QCBXMCBNBoeEw6/eUuB2aleOHfmau7wXI\nVT6BKMbG/lFZC7iiVFupBRO0xVaAd1Nzl4EEAmtztYrPswJdmJf7i+j6IUg64vYAiZQLZoSJ\noNBwmPV7StwOzQCAO831/wLUS0hgzYDcH4Irp8MobbE+ODGWjUggsG6BAexID4JuouuHIOmI\n2wMkUi6YESaCQsNh1u8pcTs0KwBq/Gas3wnQxbqPdQ/WturwuL5GoL22WAhZRakYZyJeYL0H\nTZazI72sbtb3omuIIGmI2wMkUi6YESaCQsNh1u8pcTs0x5oAXLpDWyubnAHwgXUfS2ARuOCo\nvjYZ8rT5GbpD81RssxEusMouzpgQL9QjIqUogiCu4PYAiZQLZoSJoNBwmPV7SlwPzZpKAJU7\njh0/uBEA9IzYxRBYCyB7nbG6uzoMKVXey4ZFKdlmIlxgrYBL4oZ6ed2sn0TXEUHSD9cHSKQ8\nMCNMBIWGw6zfU+J+aD4/zbzbKmPgkYg9dIG16wS4P7TxSiacrCqzzqmZZiJcYF0FT8eP9ZDw\nrWsIgriF+wMkUg6YESaCQsNh1u8pERCaI3PaNqianXfp8B+idtAFVhdobJm2/cOW1SueP/VY\niqZZiBZYX8G55cR6yfGVdgmuJIKkHwIGSCQ+mBEmgkLDYdbvKcHQaIgWWL3h/vKC3QseE1xJ\nBEk/cICUDswIE0Gh4TDr95RgaDQEC6wDVY9fWl6wX61Y56jYWiJI+oEDpHRgRpgICg2HWb+n\nBEOjIVhgvQgdy4/2jXbf2Y8gSHngACkdmBEmgkLDYdbvKcHQaAgWWM0zZpYf7anQQmwtEST9\nwAFSOjAjTASFhsOs31OCodEQK7A2ZzRJJNxNMmivaUQQxDlwgJQOzAgTQaHhMOv3lGBoNMQK\nrCfhrkTCPRSGCq0mgqQfOEBKB2aEiaDQcJj1e0owNBpiBdY/MucnEu7F1Y4/XP7JEASxDxwg\npQMzwkRQaDjM+j0lGBoNoQJrc0Z5k2AZEFgosp4Ikn7gACkdmBEmgkLDYdbvKcHQaAgVWFPg\njsTiPRVaiqwngqQfOEBKB2aEiaDQcJj1e0owNBpCBdY1GS8lGPCGmVtEVhRB0g4cIKUDM8JE\nUGg4zPo9JRgaDZECa1+F0xIN+F0wVmBFEST9wAFSOjAjTASFhsOs31OCodEQKbBegw6JBvzV\nnIZlAmuKIGkHDpDSgRlhIig0HGb9nhIMjYZIgXUrPJVwxK+ETwTWFEHSDhwgpQMzwkRQaDjM\n+j0lGBoNgQKr7JSqyxKO+GjoI66mCJJ+4AApHZgRJoJCw2HW7ynB0GgIFFhfQfPEI760ZvW/\nxVUVQdIOHCClAzPCRFBoOMz6PSUYGg2BAutJGJREyAtwKiwEcREcIKUDM8JEUGg4zPo9JRga\nDYEC6zqYnUTIp8DN4qqKIGkHDpDSgRlhIig0HGb9nhIMjYY4gVVcqU5SMW9QYaewuiJI2oED\npHRgRpgICg2HWb+nBEOjIU5gfQg3JxXzW+EZYXVFkLQDB0jpwIwwERQaDrN+TwmGRkOcwHoA\nRiYV87mZzYTVFUHSDhwgpQMzwkRQaDjM+j0lGBoNcQLriowFyQW9KfwgrLIIkm7gACkdmBEm\ngkLDYdbvKcHQaAgTWEU5pyYZ9EHwgKjKIkjagQOkdGBGmAgKDYdZv6cEQ6MhTGC9DyTJoC/K\nPRVfl4MgLoEDpHRgRpgICg2HWb+nRFBoJMuIMIH1YJK3YKk0x9flIIhbSDZSISiw4iAoNBxm\n/Z4SQaGRLCPCBNbVGS8n6/5o6CuqtgiSbkg2UiEosOIgKDQcZv2eEkGhkSwjogRWSeW6Sbu/\ntEbNw4KqiyDphmQjFYICKw6CQsNh1u8pERQayTIiSmCthhuT95/AYkHVRZB0Q7KRCkGBFQdB\noeEw6/eUCAqNZBkRJbCehKHJ+/80FAiqLoKkG5KNVAgKrDgICg2HWb+nRFBoJMuIKIFVADNT\nCECdnN2C6osgaYZkIxWCAisOgkLDYdbvKREUGskyIkpgnVgzlQB0h2cF1RdB0gzJRioEBVYc\nBIWGw6zfUyIoNJJlRJDA2gSXpRKAlzLwdTkI4gqSjVQICqw4CAoNh1m/p0RQaCTLiCCBNQ9u\nSykC58EGMRVGkDRDspEKQYEVB0Gh4TDr95QICo1kGREksPrDkylFYDCMFFNhBEkzJBupEBRY\ncRAUGg6zfk+JoNBIlhFBAuvC7MUpRaCwYt1SMTVGkPRCspEKQYEVB0Gh4TDr95QICo1kGREj\nsP6ucHqKIbgW3hNSYwRJMyQbqRAUWHEQFBoOs35PiaDQSJYRMQLrE7gpxRA8Bl2F1BhB0gzJ\nRioEBVYcBIWGw6zfUyIoNJJlRIzAmgiDUwzB8pMq7RVSZQRJLyQbqRAUWHEQFBoOs35PiaDQ\nSJYRMQKrAzyfagw6wzQhVUaQ9EKykQpBgRUHQaHhMOv3lAgKjWQZESOwTq28PNUYzMq4WEiV\nESS9kGykQlBgxUFQaDjM+j0lgkIjWUaECKw/oWnqQbgA1ouoM4KkF5KNVAgKrDgICg2HWb+n\nRFBoJMuIEIH1NrRLPQgj4G4RdUaQ9EKykQpBgRUHQaHhMOv3lAgKjWQZESKwxsDI1IOwpHqN\nIhGVRpC0QrKRCkGBFQdBoeEw6/eUCAqNZBkRIrDyYRZHFApgvohKI0haIdlIhaDAioOg0HCY\n9XtKBIVGsowIEViB6jxReD7jShGVRpC0QrKRSiRr7mhyXIXj/zl6a6jkh4Hn1cgJkDnHoo58\nByxcG7lv1S15FeoP2BEumA9ZXyZVD8wIE0Gh4TDr95QICo1kGREhsLbDRTxRePMc+E5ArREk\nrZBspBJHUXdTMVV+0Sh6NMsoafp75LGvsgXWa1lwTc+G0GCXWfBnHtybXE0wI0wEhYbDrN9T\nIig0kmVEhMB6EzryROHN4TBAQK0RJK2QbKQSRmlLVStdPWJcn3oAGYuDRePVtZvHPTskAHDm\noYiDnwfIH20y17rnYE14UlGOXAG3myUd4Yzi5KqCGWEiKDQcZv2eEkGhkSwjIgTWwzCKJwpv\nLqlx3EEB1UaQdEKykUoYzwJUXqmtlLQFqKe9a35TRcgNlhy4HmBYxMFPACykn2YO1ChRF0ug\nsvGMzjLIWJVkVTAjTASFhsOs31MiKDSSZUSEwMqH2TxRePPNDvC8gGojSDoh2UgljIYA8/S1\nvScAfKYu+4F2MUpjz3FQ6YD14BEA79JP0wdu0BY7AFYHt/cFoF+yVcGMMBEUGg6zfk+JoNBI\nlhERAqsO1z3uKrOzzi4TUG8ESSMkG6lE8XsG1Co11jsDzFGUI3lQxbyEPgjgJevRfQE+p5/n\nWuO3wRztFCq9oe4B+pFsMCNMBIWGw6zfUyIoNJJlRIDA2gkX8gRB4wpY6X69ESSdkGykEkbJ\nlv+Zq6p8mq4on4J+MUrjHYB21oM7AvxAP83FxgTJNeAZbfFhBryddFUwI0wEhYbDrN9TIig0\nkmVEgMB6B9rzBEHjCbjF/XojSDoh2UglAy0B3leUqQCjzJLdAKdZj7gBYEfs32k0M34RrAZT\n1f+LTofuydvHjDARFBoOs35PiaDQSJYRAQLrMRjBE4Qgp2cyviciCGILko1UErAtG04oUZQh\nADNDZVUhyzoX1iUAB+bcdFKFmhfetyXyj1tCV21xJDM4T/IQOGmPsnHoVZd0XpZEBTAjTASF\nhsOs31MiKDSSZUSAwGoLM3mCEOQe6Ot+xREkjZBspJKAfICn1UU3gCWhstMAdloOaQSZjY1Z\nsHImRvxxf2imLb4H+EJR1mRCofJObvC4JG51x4wwERQaDrN+T4mg0EiWEQEC67TKy3mCEGTJ\n8ZV2lm8JQZBUkWykEs8IgGu0q1UFAO+ECs8C+MVyzEmqYqrV44lJ/U5RV56w/vUiyNaGrKeg\nVolScg60VvafCK1+K5qeAcsTrgFmhImg0HCY9XtKBIVGsoy4L7D2ZpzDEwOD2+EB12uOIGmE\nZCOVaMoGAzTdr63dAvBBqPgCgB8tR+UCDAo+Yfh3b4DMDZY9JXWgTZHydR6MUJTRUHO7MgOq\naqfrHP1GnThgRpgICg2HWb+nRFBoJMuI+wLrI8jniYHBoqo1k37IGUGQhJFspBLMflVWXaDf\nvx5xBatJ5BWsvXv3G2tl1wDcYT3Dylyo3CADmh5Svs3R5nZoC/la8auQfTjRSmBGmAgKDYdZ\nv6dEUGgky4j7AmsSDOaJgUknc64/BEEcQLKRSiw/nwVwnfGVrjvAG6Ed9QF20//kPYD6EQVf\nFuTlNByxTznWDFqqm421a1mKsg7gq0RrgRlhIig0HGb9nhJBoZEsI+4LrJ7wDE8MTF6peFKR\n63VHkLRBspFKKP/OA7jrqLExHGCauaMsFyqU0v/mb4DMY7QdE6DqZnVxAjylbW2FxCf1w4ww\nERQaDrN+T4mg0EiWEfcFVtMKS3hiEKI1TCzfGIIgqSHZSCWS1ytAdvjtXDMAhpvrWwAaM/6o\nLBOA9jLnTZX1qUaNxU7rM4nlgBlhIig0HGb9nhJBoZEsI64LrJIKp/GEIMzLFU86VL45BEFS\nQrKRSiBvZMFx/xfeXAtwpbn+KkAPxl+pyqkKpbisBVwRvOZVCyZoi63MtxfGghlhIig0HGb9\nnhJBoZEsI64LrK/gOp4QWGgH49yuPIKkDZKNVOL4T0U47gvLdlk9yNllrHeJvP60tM8Nr5jr\nqvb6J+VsMyBXnyT5dH0++PXBibESAzPCRFBoOMz6PSWCQiNZRlwXWLOhD08ILCyonLfP7doj\nSLog2UgljH31odKnESX3A9yvr/1cAY4/YtnzAsDZxjOBRy4EGB97tm3V4XF9jUB7bbEQshK+\nmRQzwkRQaDjM+j0lgkIjWUZcF1iD4AmeEFjpEn4lGIIg9iLZSCWMu0C/WSrMzhqQtVhb+eMC\nCL5ZUFEG9++/TV0cygPoGPzad7AjwPH7lRgIXGDcLD8Z8jQt1h2aJ1wVzAgTQaHhMOv3lAgK\njWQZcV1gXZ2xkCcEVhZVr7Ld7eojSJog2Uglil8rQNao0SFe0MrmZQBc/9ikvrUAWujPEOYC\nrNOWb2Squqr/pKf7Hg+Q/V7s2RZA9jpjdXd1GFKqvJcNixKuC2aEiaDQcJj1e0oEhUayjLgu\nsGqdyBOBSO6InMkPQRDb4OmZoutuI4UQwSXBwpmVjM2bjQdtTIGlvF7LPLL2v2NPtusE88dF\nlVcy4eRGAJ0TrwtmhImg0HCY9XtKBIVGsoy4LbC2wCU8EYhkSSDrO5frjyBpAk/PdK5WH9Wz\nzqOu8sltZ1SueW6vzxM6WGfVLXkV6g/YES6YD1lfsgxSBZayedh51XPrd1phHhUSWMqeiS1P\nzq1UN38mbX72LtDYUvxhy+oVz59KnSuLjpQZkQNBoeEw6/eUCAqNZBlxW2Ath048EYhiJPzL\n5fojSJrA0zGdqlPx0AyI0EyHe5vKZ0T5Bxu8lgXX9GwIDcwnAZU/8+BeZ+prMxJmRBYEhYbD\nrN9TIig0kmXEbYE1FkbyRCCas2hfUBEE4YanXzpUpa/OBsixaqbStgDH9Z7yeEtVSk0u72CD\ngzW1t2wduQJuN0s6whm0GUHlQ76MSIOg0HCY9XtKBIVGsoy4LbDaw0yeCETzdMZZR8s3iiBI\nsvD0S2dq9HQFqDi1o1UzTQNo9ru2sjgLqh4o52CDOVCjRF0sgcrG9AjLIGOVMxW2G+kyIg+C\nQsNh1u8pERQayTLitsA6s9JyngjEcC1McdkDBEkLeLqlMzVqCud+p1g1U9GJkLdTXx32r3s2\nxz/YpA/coC12AKwObu8LQD9n6ms70mVEHgSFhsOs31MiKDSSZcRlgXUoswlPAGKZW6nmrvLN\nIgiSJDzd0pkanT+gWInQTAsBHkv4YJNrjd8Gc2BOcNkb6h6IPkZSpMuIPAgKDYdZv6dEUGgk\ny4jLAus/cBNPACjcCn3ddQFB0gKeXulMjdZr/1k1U3uAXxI+2ORiuDu4rKHPH/phBrxtcz0d\nQ7qMyIOg0HCY9XtKBIVGsoy4LLCmQz+eAFBYUpv9hDWCIKnC0ysdrJZVM9WFOur/e776lCWz\naAKrmfGLYLXgJOxFp0N3J6rpCHJmRAoEhYbDrN9TIig0kmXEZYHVD57iCQCNh+GyMnedQJA0\ngKdTOlgti2baD3Cd8mELbTKGeuNp005RBVZL6KotjmTCfHUxBE7ao2wcetUlnZc5V2e7kDMj\nUiAoNBxm/Z4SQaGRLCMuC6wrMgp5AkDlEnjJXScQJA3g6ZMOVsuimdYDdJ6SacyDddne+AeH\n6A/NtMX3AF8oyppMKFTeyQ2eQf5b3eXMiBQICg2HWb+nRFBoJMuIuwKr7LhTePyn82LOiX+5\n6gWCpAE8fdLBalk008cATbMazNl0ePPTNQHy4x8cYhFka08ePgW1SpSSc6C1sv9EaPVb0fQM\nWO5gtW1BzoxIgaDQcJj1e0oEhUayjLgrsH6By3n8Z9DVA989EcRj8HRJB6tl0UxvAUDjPcHV\n76oAfBT34BAldaBNkfJ1njb3+2iouV2ZAVX3q+Wd4Vrnam0PcmZECgSFhsOs31MiKDSSZcRd\ngbUEuvD4z2DxKXifO4LYDE+XdLBaUQLLXB8N0CvuwWFW5kLlBhnQ9JDybY52e0Fb/eLXq5BN\nvY9LIuTMiBQICg2HWb+nRFBoJMuIuwJrDIzi8Z/FGLg4iTemIghSPjw90sFqWTTTKoCKZsf/\nFuCMuAdb+LIgL6fhiH3KsWbQUt1srL/HcB3AV47U2D7kzIgUCAoNh1m/p0RQaCTLiLsCqy28\nwOM/kyvgWVf9QBDfw9MhHayWRTN9A1DbLD4CUDXuwRQmQFVt9vcT4CltayvASjsr6gByZkQK\nBIWGw6zfUyIoNJJlxF2B1bCyvS/KMZlTufp2Vx1BEL/D0yEdrJZFMxVnQvVQeRbkxj04lk2V\n9alGjcVOgCU21tMJ5MyIFAgKDYdZv6dEUGgky4irAuug3S/KCXEHtHfTEQTxPTz90cFqWTXT\nmQBbjdVdlqtZ9IOjKWsBV5RqK7VggrbYCvCurTW1HzkzIgWCQsNh1u8pERQayTLiqsD6zPYX\n5Zgsawh+b68I4io8/dHBalk10xAI3RuwFODm+AdHMwNyfwiunA6jtMX64MRYUiNnRqRAUGg4\nzPo9JYJCI1lGXBVY06E/j/vxmJJVd7+briCIz+Hpjg5Wy6qZvgSoX6SvXgfwXPyDo9hWHR7X\n14h++XshZBXZWlP7kTMjUiAoNBxm/Z4SQaGRLCOuCqy7YAKP+3FpB3e66QqC+Bye3uhgtSI0\nU2uAWw6qy7IHAfK0FWVw//7bGAdHQuCCo/raZMjT5mfoDs2dqbF9yJkRKRAUGg6zfk+JoNBI\nlhFXBZYTL8oxWVw740M3fUEQf8PTGx2p0CejNc4G6KottTc1K9vqAtQdOWPsBQAZbwQPygVY\nxzg4ggWQvc5Y3V0dhpQq72XDIkeqbSOyZUQiBIWGw6zfUyIoNJJlxE2BVVYtwON9OYzPOPWA\ni84giL/h6YyOVOgJsNIoWPZjU2Oz2kL9IFNg0Q62sOsEuD+08UomnNwIoLMjtbYT2TIiEYJC\nw2HW7ykRFBrJMuKmwNoEV/B4Xx6tobeLziCIv+Hpi45UiKqZjsy6vnZOrYsf2mkclKDA6gKN\nLdO2f9iyesXzp8o/WbFsGZEIQaHhMOv3lAgKjWQZcVNgLYZuPN6Xx+J60s9jgyCegacviq67\nT8GMMBz8LogAACAASURBVBEUGg6zfk+JoNBIlhE3BdZD8ACP9+XyTIVav7noDoL4GZ6uKLru\nDiMqNJgRJt7LiN9TIig0kmXETYFVALN4vC+fO+DyIy76gyA+hqcniq67w4gKDWaEifcy4veU\nCAqNZBlxU2CdWtWZF+WEWH45DHDRHwTxMTw9UXTdHUZUaDAjTLyXEb+nRFBoJMuIiwJrb8Y5\nPM4nwmt1YYZ7DiGIj+HpiKLr7jCiQoMZYeK9jPg9JYJCI1lGXBRYq4DwOJ8Q06tWYL/cFUGQ\nhOHph6Lr7jCiQoMZYeK9jDiYko/qRU6w+8PA82rkBMic2OdkjxV2OK1SzklXPbI1es+qW/Iq\n1B+wI1wwH7K+TKYSgkIjWUZcFFhTYBCP84nxeIWqn7nnEoL4Fp5uKLruDiMqNJgRJt7LiGMp\nKR6aAREC69EsY7aSpr9HHbrhXHMik9xJkXtey4JrejaEBrvMgj/z4N6kqiEoNJJlxEWBdRtM\n5nE+Qe7LrI4KC0G44emFouvuMKJCgxlh4r2MOJWSr84GyLEKrPEAGTePe3ZIAODMQxGHbs4D\nqNx19MSBDVSJNdO652BNeFJRjlwBt5slHeGM4qTqISg0kmXERYF1YfYbPM4nytDMqvgrIYLw\nwtMJRdfdYUSFBjPCxHsZcSglT1eAilOt7+DcVBFyV2orB64HGBZx7M0AV/6prRzpDZBnfQJ/\nDtQoURdLoLLxAvRlkLEquYoICo1kGXFPYB3JbcDje+KMqJD9nGteIYhP4emDouvuMKJCgxlh\n4r2MOJSSpnDudxEvOe8H2sUojT3HQSXr6+R+z4Aqf+mrJQGATy27+sAN2mIHwOrg9r4A9Euy\nIoJCI1lG3BNYX8M1PL4nwePVoOeh8iuEIAgbni4ouu4OIyo0mBEm3suIQyk5f0CxYhVYR/Kg\nykFjfRDAS5ZDv+92U+iKVjuIeNf5tcZvgzkwJ7jsDXWTfdOvoNBIlhH3BNZc6M3jezLMPA0a\nJ/XAA4IgUfD0QNF1dxhRocGMMPFeRhxKyXrtP4vA+hT0i1Ea7wC0Y/wZAVhp2bwY7g4ua8Az\n2uLDDHg72YoICo1kGXFPYA2Gx3h8T4rFN0GFh0pccw1B/AdPBxRdd4cRFRrMCBPvZcTJlFgE\n1lSAUWbxboDT6H+woypUPWjZbmb8IlgNpqr/F50O3ZOug6DQSJYR9wTWVRkLeXxPkodqwdn4\nNCGCpAxP9xNdd4cRFRrMCBPvZcQlgTXE+nxgVciKnQtLZe15AE9ZC1pCV21xJBPmB89x0h5l\n49CrLum8LPE6CAqNZBlxTWCVVT+Zx/WkefW6jMwB+93yDkH8Bk/vE113hxEVGswIE+9lxCWB\n1Q1gSaj8NICdUYduvGdQ18YAVaZElPaHZtrie4AvFGVNJhQq7+QG58tK/FZ3QaGRLCOuCaxN\ncDmP6ynw2ClQZ6lb7iGIz+Dpe6Lr7jCiQoMZYeK9jLgksAqsU2KdBfBL1KErNdlUfcTeyNJF\nkK0psaegVolScg60VvafCK1+K5qeAcsTrYOg0EiWEdcE1iLozuN6Kixunw1tt7vlIIL4Cp6u\nJ7ruDiMqNJgRJt7LiEsC6xaAD0LlFwD8GHXoSn0m9yYLIkpL6kCbIuXrPBihKKOh5nZlBlTV\nfg/qDNcmWgdBoZEsI64JrPvgYR7XU2PqmVDjhTK3XEQQH8HT8UTX3WFEhQYzwsR7GRFxBatJ\n7BUsRTm6/dMRVQGGRhSuzIXKDTKg6SHl2xxtboe2kK8VvwrZhxOsg6DQSJYR1wTW9fAyj+sp\nsqx3RWjxk1s+Ioh/4Ol3ouvuMKJCgxlh4r2MuCSwugO8ESqvD7Cb+gc/ngSwIqLky4K8nIYj\n9inHmkFLdbOxdi1LUdYBfJVgHQSFRrKMuCawjj+ex/PUmXUhVBp31C0vEcQv8PQ60XV3GFGh\nwYww8V5GXBJYwwGmmcVluVChlP4Xcy3TZUUwAapuVhcn6E8Zbo2cLisegkIjWUbcEli/wiU8\nnvMw5Dho+rlLbiKIX+Dpc6Lr7jCiQoMZYeK9jLgksGYADDeLtwA0ZvzF7wA1aOWbKutTjRqL\nndZnEuMjKDSSZcQtgfU6dOPxnIuXW0DmnX+55CiC+AOeLie67g4jKjSYESbey4hLAmstwJVm\n8asAPSxHrRw/NDRX5F6AXMqJylrAFcFrXrVggrbYCvBugnUQFBrJMuKWwBop4h73EI/WhhNn\n483uCJI4PB1OdN0dRlRoMCNMvJcRlwRWWT3I2WWsd4m8/jQA4E5z/b8A9SgnmgG5PwRXTtfn\ng18fnBgrIQSFRrKMuCWwrhNyj3uIN7rmwKWJtgwEQWQbqWSqo6jQCDLrBbyXEZcElnI/wP36\n2s8V4PgjlqNWANT4zVi/E6BL7Hm2VYfH9TUC7bXFQsgqSrAOgkIjWUZcElhlNU7kcdwGXrgE\nMm/7wx1vEcT78PQ2n9dRVGgEmfUC3suIWwJrZw3IWqyt/HEBBN8sqCiD+/ffpi6ONQG4dIdW\nUDY5wzpdVggCFxgPiE2GPG1+hu7QPNE6CAqNZBlxSWD9CFfwOG4LY+pCtXGJTuKBIGkOT1/z\neR1FhUaQWS/gvYw4k5JPRmucDdBVWwb11DxVPF3/2KS+tQBa6M8Q5gKs05ZrKgFU7jh2/OBG\nANAz9mQLIHudsbq7OgwpVd7LhkWJ1kRQaCTLiEsC62XoxeO4PSzpUw1Oe6P8yiIIIttIJVMd\nRYVGkFkv4L2MOJOSJ8BKo2DZzErG5s2H9INMgaV8fpp5ZMbAIzHn2nWC+eOiyiuZcLKqwzon\nXBNBoZEsIy4JrLvhCR7H7WLBzVlw7ffuuIwgnoano/m8jqJCI8isF/BeRtwTWMrmYedVz63f\nKTSTaEhgKUfmtG1QNTvv0uE/UM7VBRpbfvH5sGX1iudPPZZwTQSFRrKMuCSwmmUV8jhuH882\nhQpD97vjNIJ4GJ5u5vM6igqNILNewHsZ8XtKBIVGsoy4I7CKc07j8dtW7jsBTnnFFa8RxMPw\ndDKf11FUaASZ9QLey4jfUyIoNJJlxB2BtRr+xeO3vbzeoQJc/Z0rfiOIZ+HpYz6vo6jQCDLr\nBbyXEb+nRFBoJMuIOwJrAgzh8dtupl8AFYbsc8VzBPEoPD3M53UUFRpBZr2A9zLi95QICo1k\nGXFHYLWBGTx+28/IE+DEGYnfr4cgaQdP//J5HUWFRpBZL+C9jPg9JYJCI1lG3BFYJ9dYzuO3\nA7zeKRfOWVF+zREkTeHpXj6vo6jQCDLrBbyXEb+nRFBoJMuIKwJrI1zO47YzzG6RAVd+4ob7\nCOJBeDqXz+soKjRCzP5YyTItePm7Vt2SV6H+gB3hgvmQ9WXq1hPFexlBgeVIaCTLiCsCaxb0\n5nHbKaZcCHDDf90IAIJ4Dp6u5fM6igqNCLOllwNLYNF2vZYF1/RsCA3M9wsrf+bBvSkbTxzv\nZQQFliOhkSwjrgisnvA0j9vO8cRZkJH/jRshQBCPwdOxfF5HUaERYXYiMAUWZdfBmvCkohy5\nAm43SzrCGcUpG08c72UEBZYjoZEsI64IrHpVlvG47SRjzoDMrr+6EQQE8RQ83crndRQVGgFm\nN1aCkxkCi7ZrDtQoURdLoHKRXrAMMlalajsZvJcRFFiOhEayjLghsH6Gi3m8dpblo+pBxeE4\nZwOCRMLTq3xeR1Ghcd9s6RVQ5366wKLu6gM3aIsdAKuD2/sC0C9F08nhvYygwHIkNJJlxA2B\n9QLcxuO10ywbmAcnzix1IRAI4h14+pTP6ygqNO6bnQjw2li6wKLuutb4bTAH5gSXvaHugRRN\nJ4f3MoICy5HQSJYRNwRWB5jK47XzFHbOhQtXuxAJBPEMPD3K53UUFRrXzW6sBK0VusCi77oY\n7g4ua8Az2uLDDHg7NcvJ4r2MoMByJDSSZcQFgVWaV1O2WbBieOmfkNH9d+djgSBegac/+byO\nokLjttnSf0LNP+gCi7GrmfGLYDWYqv5fdDp0T8lw8ngvIyiwHAmNZBlxQWB9Di14nHaJx+pD\n1Uf/dj4aCOINeHqTz+soKjRum30aYJ5CF1iMXS2hq7Y4kgnz1cUQOGmPsnHoVZd0XpaS/STw\nXkZQYDkSGsky4oLAGg3DeZx2i6V3VoM6s446Hw8E8QI8ncnndRQVGpfNbqwENyt0gcXa1R+a\naYvvAb5QlDWZUKi8k6tN5uD4re7eywgKLEdCI1lGXBBY/8hcwOO0e7xaUAHOmHPE+YggiPzw\ndCWf11FUaNw1W/pPqL5NoQos5q5FkL1TXTwFtUqUknOgtbL/RGj1W9H0DFiemsuJ4r2MoMBy\nJDSSZcR5gbUt4xwen11l1nVZUG8iztmAILKNVDLVUVRo3DU7CWCWtqQILOaukjrQpkj5Og9G\naD9d1NyuzICq+9XyznBtKg4njvcyggLLkdBIlhHnBdZzcDuPzy4z68YcqNp3reNR8Twf1WNM\nP/jhbWdWq3Rat5UxOwS9pAxJEZ5u5PM6igqNq2Z/qgzXB1diBVacXStzoXKDDGh6SPk2B15S\nlLaQrxW/CtmHk69CEngvIyiwHAmNZBlxXmC1gBd4fHadl7vWArjwmV3le5bGFA/NoL9A46+b\nwKBL1IAq6iVlSIrwdCKf11FUaNw0W3YlVNsSXItRUXF2KcqXBXk5DUfsU441g5bqZmPtWpai\nrAP4Knl/k8B7GUGB5UhoJMuI4wLrj6yGPC6LYMnIizIhJ39hkdOx8SxfnQ2QQxNYxf8AqND5\n6UmdKgC0i9hj10vKmFfOlE9uO6NyzXN7fR5djlfOUoOnC/m8jqJC46bZyQAv6msxKirOrjAT\noOpmdXECPKVtbQWIvaZtJ97LCAosR0IjWUYcF1iToRePy4KY07MuQLVuK/COdxpPV4CKUzvS\nxtbRALW/01bWnQRQaN1jz0vKmFfOlMO9zUtnIyJ34JWzFOHpPz6vo6jQuGh2a2U4s1CnE8Co\nwsINiewKs6myPtWosdgJsCRVrxPCexlBgeVIaCTLiOMC68LMOTwui2NK6+MBju8fc0EEUZrC\nud8pNIF1tCbAh/rqRwBnW3fZ8pIy5pUzpbQtwHG9pzzeUhVgk6077Lpyln7wdB6f11FUaFw0\n+wlEMTaRXSHKWsAVwbeP1YIJ2mIrwLspu50I3ssICixHQiNZRpwWWOvhQh6PhbL8iRurqTJh\nCj5VGMX5A4oVqsD6D8B55voVAN9bdtnxkjL2lTNlGkCz4Ez8i7OgqvXE9lw5S0d4uo7P6ygq\nNC6a5RRYMyD3h+DK6TBKW6wPTozlIN7LiBc6iSCzXuybDJwWWP1gJI/HolnywKXZUG3wbw5H\nyWOs1/6jCZ15AH3N9UcAJll22fGSMuaVM6XoRMjbqa8O+9c9my17bLlylpbw9Buf11FUaMSY\njXOjFWvXturwuL5GoL22WAhZzt7S6r2MeKGTCDLrxb7JwGGBta9qzSU8HkvA3C41IefOrc7G\nyYPQhM6zljugXgXobdllx0vKmFfO1PEbHqP/jR1XzkTxw8DzauQEyJxjlH3O39LP02lSMuid\nOooKjRizYRU1uH//bYxdkRC4wHgnxmTI0x4n7g7NOWqQAN7LiBc6iSCzXuybDBwWWBOgK4/D\ncvBG/5Og0n37nY2U56AJnbmWK1iFAFdZdtnxkjLmlTOlPcAv9L+x48pZHKVzrLDDaZVyTrrq\nkRgFzq90Hs0yfoJpGvMacjdu6efpMqlZ9EwdRYVGjNmwisoFWMfYFcECyDaP210dhpQq72XD\nIo4aJID3MuKFTiLIrBf7JgNnBdbh2rkv8zgsC0vuqgknv1TqaKy8Bk3orAa40FxXx96mll22\nvaSMKrDqQh31/z1ffRojs+y4csZWOhvONYVO7qTIPfxKZzxAxs3jnh0SADjzUOQuV27p5+kw\nqVn0TB1FhUaM2aQF1q4T4P7QxiuZcHIjgM4cFUgE72XEC51EkFkv9k0Gzgqs5+EWHn8lorBj\nDlyCsydZoAmdkuMA/qOv/t0A4HTLLtteUkazux/gOuXDFtoUDvXGR05wasOVM7bS2ZwHULnr\n6IkDVWdhpnUPv9LZVBFyg1MHHbgeYFjkPldu6efpLima9EodRYVGjNmkBVYXaGzphB+2rF7x\n/Km0n7ntxHsZ8UInEWTWi32TgaMC63DdnNk8/krFrMsg887dTobLW1CvJA0DaBic43n/LVkA\np1n22PaSMprd9eo35CmZxrWky/Zad/FfOYujdG4GuPJPbeVIb4A866Rp/EqnH2gSTWPPcVAp\n4r4xd27p5+ksqdr0SB1FhUaQWS/gvYx4oZMIMuvFvsnAUYE1CQiPu7IxpjbkTXP6m5hnoAqs\n/acCHDdo/ivDToIhkT8R2vaSMprdj1VbWQ3mbDq8+emaoJ/XhP/KGVvp/J4BVf7SV0sCAJ9a\ndnErnSN5UOWgsT4ItICFceeWfp6ukqpNj9RRVGgEmfUC3suIFzqJILNe7JsMnBRY+46vOJ/H\nXel4o0dFaPq+gxHzEvT5qH5pYlxHGrAF4J8Ru2x6SRnN7luqwcZ7gqvfVQH4yLKL+8pZHKXz\nfbebQle02kHEbbzcSudT0CWaxjtR7x1y+JZ+A56ekrJRb9RRVGgEmfUC3suIFzqJILNe7JsM\nnBRYI6Azj7cyMvuqDLj5Owdj5h3oAkspea55rYoNb12tfAbQg/qHnC8pYwkss3A0QC/rPt4r\nZ/GUjgUS6Qe30pkK+gyNGrsjf211+JZ+E55+krpVT9RRVGgEmfUC3suIFzqJILNe7JsMHBRY\nmyvWKuTxVk4mNIGsHpuci5pnYAisEDNBf0lGNLwvKaPZXQVQ0fzt9luAMyJ2cl45i6d0wuyo\nClUPWra5lc4Q613zVSHL8tO0s7f0h+DpJSmYSwlBdRQVGkFmvYD3MuKFTiLIrBf7JgMHBVYX\nuJvHWVlZfn9dyL51o3Nx8wjlCay2kTclmXC/pIxm9xuA2ub6EYCq1D9M8cpZHKUTZu15oJ/W\nhFvpdLMKz9MAdoZ3OXpLfxieTpK8tdQQVEdRoRFk1gt4LyNe6CSCzHqxbzJwTmB9kdFgGY+z\n8rJsaACyOqb7nA0MgWXO+7SrMtQpo+znfkkZzW5xJlQPbWRBLu3vUr1yFkfpBNl4z6CujQGq\nTIko5VY6BVY3z4q46crRW/rD8HSRpI2liKA6igqNILNewHsZ8UInEWTWi32TgXMC6xp4mMdX\nqVk6rB5Ai+VpPfMoVWC1qpplKIH+AA9R/or/JWVUu2cCmFOp77JczbKQ8pWzOEonyEpNNlUf\nsTeylFvp3ALwQWjjAoAfw7ucvKXfAk8HSdpYigiqo6jQCDLrBbyXES90EkFmvdg3GTgmsN6D\n83hclZ3lD54D0HDSPqfCJz8RQsd8SdkogKv/1laeBjj5IOWv+F9SRhVYQwCeNVaXAtxM+bOU\nr5zFUTpBVuo/1TVZEFHKrXQidF2TCF3n5C39Fni6R7K2UkVQHUWFRpBZL+C9jHihkwgy68W+\nycAxgXUJTOBx1QNMapENVfp+41QA5eWT0RpnA3TVltpN3KEpnvcEAGrf+/xj/wDI+YDypza8\npIwqsL4EqG9cCLsO4LnYv0r9ylkcpWNwdPunI6oCDI0o5FU63QHeCG3UB7BMcevkLf0WePpG\nsrZSRVAdRYVGkFkv4L2MeKGTCDLrxb7JwCmB9TZczOOpN5jftRZA89eOlB8OX/EEWGmkFYXe\nobG+jlF8MvUGLRteUka9cqa0BrhFu2JW9iBAHuXSWepXzuIoHQs/ngSwIqKEU+kMB5hmrpfl\nQgXLz9FO3tJvgadnJGsrVQTVUVRoBJn1At7LiBc6iSCzXuybDJwSWJfD0zyeeoUlI85RP+3G\n7nAoinIST2ApB568rGb2CZeN/4v2l3wvKYtz5UzZVheg7sgZYy8AyHgj9k85rpzFUTpW5lqm\ny4ogRaUzA2C4ub4FoLFll5O39Fvg6RfJ2koVQXUUFRpBZr2A9zLihU4iyKwX+yYDhwTWKriQ\nx1Ev8ey/KkJuj3R/ptAN4gq7H5sa5dUWxv4lz5WzOErHyu8ANWjlqSqdtQBXmuuvRs3Z6uAt\n/RZ4OkWytlJFUB1FhUaQWS/gvYx4oZMIMuvFvsnAIYF1CzzO46i3WNj7FIDmb6T1M4VuEFdg\nKUdmXV87p9bFD0VPo6DBc+UsjtJZOX7oZ+b6XqBeSkpZ6ZTVgxxzyosuUarMwVv6LfB0iWRt\npYqgOooKjSCzXsB7GfFCJxFk1ot9k4EzAmtDRkMePz3H8gfOAzh9Ku2xOcTjxFE6AwDuNNf/\nC1CP8tepK537wbzq9nMFOD7iPj8Hb+m3wNMhkrWVKoLqKCo0gsx6Ae9lxAudRJBZL/ZNBs4I\nrLtgGI+fXmTKNdlQ877fHQknIhK20lkBUOM3Y/1OgC6xf8uhdHbWgKzF2sofF0DwfTuu3NJv\ngac3JG0sRQTVUVRoBJn1At7LiBc6iSCzXuybDBwRWHur1lrC46c3mdu+GuT0WO9EQBGBsJXO\nsSYAlwYfcCibnGGdLisEj9KZp57y+scm9a0F0EL/+dmFW/ot8PSFpI2liKA6igqNILNewHsZ\n8UInEWTWi32TgSMCaxJ05XHTsxTeeQpAy3dob4hBvAtb6aypBFC549jxgxsBQM/Yv+RTOjMr\nGbeb3XxIiTDr4C39Fnh6QvLWUkNQHUWFRpBZL+C9jHihkwgy68W+ycAJgVV2ZvY8Hjc9zPKR\nTQDOfrHYgagiwmArnc9PM++5zxgYOx0ar9LZPOy86rn1O4Xm13Lhln4LPP0geWupIaiOokIj\nyKwX8F5GvNBJBJn1Yt9k4ITAWgnNebz0OBP+mQknjNrmQFwRUbCVzpE5bRtUzc67dPgPlD+z\nSekIgqcT+LyOokIjyKwX8F5GvNBJBJn1Yt9k4ITAagdP8HjpeWYVVIHs1u/gtA2Il+HpAj6v\no6jQCDLrBbyXES90EkFmvdg3GTggsP6oUHc5j5c+oPCuetpdyN/ZH1wEcQmeDuDzOooKjSCz\nXsB7GfFCJxFk1ot9k4EDAutx6M3jpE948tqKAOc+8r398UUQN+Bp/T6vo6jQCDLrBbyXES90\nEkFmvdg3GdgvsEpPzVnA46RvKBx6UTZAo/s+x6cKEQ/C0/Z9XkdRofGeWS+0BEFmMTSO2BVk\nloX9AusdaMHjo69YMOjiHIDa/VYetT3MCOIsPA3f53UUFRrvmfVCSxBkFkPjiF1BZlnYL7Ba\nwXgeH/1G4YjmVQBq9Vj6t+2RRhAH4Wn1Pq+jqNB4z6wXWoIgsxgaR+wKMsvCdoG1NbsBj4t+\nZMnDN9YAqNzqhe12BxtBHIOnyfu8jqJC4z2zXmgJgsxiaByxK8gsC9sF1hi4i8dFn7J8XOtT\nADLOH/HB4fJDiCASwNPefV5HUaHxnlkvtARBZjE0jtgVZJaF7QJr7lmFPC76mGm3npMNUOWm\nZzbZHXMEsR+etu7zOooKjffMeqElCDKLoXHEriCzLOy/B4vHQb/z2qibTgGAs+7/yvawI4i9\n8DR0n9dRVGi8Z9YLLUGQWQyNI3YFmWWBAsttZva9sALAmWN+sT3yCGIjPI3c53UUFRrvmfVC\nSxBkFkPjiF1BZlmgwBLAouGXVoCMa17Bd0Ij8sLTwn1eR1Gh8Z5ZL7QEQWYxNI7YFWSWBQos\nMbzavzFA3lDaK4IRRAZ4mrfP6ygqNN4z64WWIMgshsYRu4LMskCBJYxprapBRovXSmzPAILY\nAE/b9nkdRYXGe2a90BIEmcXQOGJXkFkWKLAEsnhoE4CTRuBThYiE8LRsn9dRVGi8Z9YLLUGQ\nWQyNI3YFmWWBAkssz95SBTJbevYyFofnoquOlANPs/Z5HUWFxntmvdASBJnF0DhiV5BZFiiw\nRFM4sBHACUO+tT0RbsDht+iqI+XA06h9XkdRofGeWS+0BEFmMTSO2BVklgUKLAl45pYqABdN\n+t32XDgOh9MeNJtecATZC58dXhzEvWfWCy1BkFkMjSN2BZllgQJLChYPPz8TMptP+dX2dDgL\nh8seNJtecATZC58dXhzEvWfWCy1BkFkMjSN2BZllgQJLFub2PjMD4KzBy/fanhLn4PDXg2bT\nC44ge+Gzw4uDuPfMeqElCDKLoXHEriCzLFBgScRLd5xfASDznN4z/vu37XlxBA5nPWg2veAI\nshc+O7w4iHvPrBdagiCzGBpH7AoyywIFlly8/nC7JqrIgqwz29w/7/NdtmfHZjg89aDZ9IIj\nyF747PDiIO49s15oCYLMYmgcsSvILAtOgbXxyxgmIZxMGNL+8vq5oFHlzOYd+j00afYb738e\nG+mESCGpJYmfncPLFP0RaVYQHN7yuOuK2Q20BrhDrjpKY9aD3S1xuwcpDaHMlTqmEBE7zCZu\n9wCtk6x1o46phMQGs9L3ze0Jf5hyCqzrAJGbFJK6VXSdkbShGa0BPiW6Voj7fEJpCMdEV0oO\nPqB1kizRtUpnHkn4w9RFgZVRWcUxl9PJGiRhLYWk2iOwctQ6ZttypqTIVs3mum82UzVbyX2z\nwZaQ4b7ZiqpZW0Z4BwWWoNDk2hWa5Kigmq3gvtks27qbcwJLYGgq2nIm5wSWFpocO06UHPaF\nJins+5SWUmBlX3TRRRfY4l4iZKnWLvSptUzV2kUJHptCUu0RWPXVOp5oy5mS4njV7Knum62k\nmj3HfbNwgWpXgIxtpJo9zo4TOSiwzlfrKOBz9QzVbA33zdZWzQbcN1tDNXuGLWdyTmAF1DrW\ntuVMSVFdNXumLWdyTmCdotaxjh0nSo7jVLON3Ddr36e0awLrrosQuUkhqTtF1xlJG3rQGuB8\n0bVC3GcdpSGUiq6UHPyX1kkuFl2rdOaFhD9M7X+KkMletWJXuGZtv2rtMtesFanWLnbNWrGW\nY9espcijah0XuG92iWp2lPtmN6pmC9w3q1ym2t3vvtk+qtnV7ptNiuZqHXe7b1b7zrnKfbPP\n12TPpgAAIABJREFUqWanuW/2I9Vsf/fNJsUMtY7PuG/2U9XsHe6bTYpZah0num/2c9Xsbe6b\nPaiavcRlmyiwbAEFVgwosNwABRYTFFgugAKLCQosJiiwnAAFll2gwGKDAssNUGAxQYElGyiw\nmKDAchoUWLaAAisGFFhugAKLCQosF0CBxQQFFhMUWE6AAssuUGCxQYHlBiiwmKDAkg0UWExQ\nYDkNCixbQIEVAwosN0CBxQQFlgugwGKCAosJCiwnQIFlFyiw2KDAcgMUWExQYMkGCiwmKLCc\nBgWWLaDAigEFlhugwGKCAssFUGAxQYHFBAWWExz73//+94Nr1kpVa9Q3yfrE2v9cs5Yi29U6\n7nHf7F7V7O/umz2smt3kvlnlB9XuMffNblbNHnLfbFL8qNbxqPtmt6hmqW/ndZadqtk/3Td7\nQDW7xX2zSfGnWsed7ps96IHQ7BITmkOq2c3um3X3U1rHRYGFIAiCIAiSHqDAQhAEQRAEsRkU\nWAiCIAiCIDaDAgtBEARBEMRmUGAhCIIgCILYDAosBEEQBEEQm0GBhTjEvYRsdcPOSEISfeQ3\niUMjeZSQ76OK3HIvhtQMTyTkvzYYlykQiWPkPeX0cyBXdGxqBb7DhZYhovEhVNzsk24KrHXE\nwhBHTW2bObBz6x5j/s+FKYLc8+r7PoR8ai1w0UsK96j+bouz3/5mvN4Mc0Gn/k+uPGyU2i6w\njn0xc0ivNm27j3jxW7PIbV2hedq+2Fryu+Z3SeqGE/toHU3I3PDW7YS8F9r4u4CQn90MxHoS\nTcoz9jghsGKqV0I9zK7oHFs7657b2xd07jduBcfsqckLrLCbrbrc/dy35f+BwyQY9iRJpWXE\n66M2mUgByuDlHlpIxlu23yDkY/stcDdHvwqsT12TIoUFhpW7djhpJohbXh2dnU8iBZabXsby\ns2Z5VpwDJg8caPMcdpGDa7cv9FK7BdYHvcM2BhlqgqIr7HfPQtDTldaSeaHBOzXDiX20riBk\nYGhjm2pxXGjrc0J6lsULxHOkMPlqxUG0wCrHnwQ/6W1qJu/3CRsqmJLyRKY8AivISAGTmcar\nj2CBxeqjNplIHtrgZTfsjhEMyZfhbScFFkdzdHTojsJNgfUuIWMWmLzroKGlaugfLFzx0m2E\n9HJ8UmWXvPplACGtIwSWq17G8iwhXUiXI26aVHtXl2CY5z07VFWbrb4LltorsErGax2397jn\npz3WQ13JXx4spegKR1E9zSf3WgrKeqkFPB8miX207lTt/mVuLFf971xqbk0jZGrcQAyyX2B1\nmRXBwVRPlZLAKsefmOo5eB358DitUfZ5YtqMiYO1r1m3/ZHiiVISWHqfWzB30h2aaQFvZ4iu\nj/1hT1FgJdNH3RBY9MHLbtgdIyh/bj8c2nZEYEnVHMvFTYG1mJAP3LDzR1tSsEZbOTyWEMdf\nQuWOV2+2Jm2WTrIKLHe9jOHv9mTAbEL+7aZNtXfdaa7/on6l10c3WwVW2Ri11479WV//bz91\n4yNtVYDAGhzxA+w6Qvq7ILAU1eP3zfWHSUdCQq+WUOP9n3iBOFxgv8C6s/yjEiIVgVWePzZW\nrzxKH9CuJRqvXdk7txUh/VJ8B1BKAivs5mdqg3gyNct24UzYUxRYyfRRFwQWY/CymTgdQw1J\nT0JeCm07IrCkao7l4qbAmkfI527YmU6I8Zbh4m6k1V/xD+bGHa+GkH6/KBECy10vY3ibkIU/\nEXKfmzYjepf2bSn4XclWgbVI/d63NLRV/CAhHfYpQgTW7HwyJ1wwgdw+xg2BNTt8E8WRdmR6\ngdnGlO2EtC6OF4jviL8EVnn+uCiw5hNSYPkt6pv2oa6fLJwCS1mjdo+9qZm2CakEVjJ91AWB\nxRi8bCZOx1BDsrg7KfjZ3HZYYEnQHMvFTYE1jRA3brw71pW0Nn9MeJmQNxw2545XQ6apHdcq\nsFz2MoaBhGxX7rLeLVj678f7tG/VceB046XHoVsJD789ple7gq4jFpq9XR1rSpVfpvQqaD9g\ndjIjQETvOqoKrD+Ns22m21H5dmrf9u36PvtzyLAxyKlC4m7K24oPtLd+AVOUQ91I1/8oQV2x\nQfl5cp+2HQbMOxjhHt2XX2fc3bF1z/sWh366jQ4O7ZhITxffQ3qEfp8raktmPmC9yX1/d5Jv\nXlwaT8g01il3Tu/bttOAubsT/WhVR88uZaE6fDaYDDN2rCDkwTiBWGDcFDG6XNcShvZRSnc7\nMskU+zECi3JAZBYj/Um0epQ2aDSTESS/rHhmt9YLE3I9kr/aRH2kfTBg1jfm+jdT7+pY0H3Y\n/F3h3bFFybYCC1Fuhp+zScAwj9MJ1seEmtC1o3u17fOM9ur3757o3brrmFDQaCMSo2XErQmz\nj9pkIjlYg1d/QsyMqALwB21pyUxkkvg6hhqSZasIGWqMIFaBFXni0YSE76Z5wLzSFm2c0n7o\nzTGeDxRT4Zvco1ssJVS0oTsJ3BRYTxHyiwtmNliuq3xPyP0Om3PHq6AJq8By2ctoVPPDgz+P\nvmiW7BkUuvVQLzOb8U+9zPIuxgintvnit1vpZbcmcbthRO8qJqRV8Bkec+SKtaMUPWqU5OvP\nxoUGOVUu9KFd9FtISK+IX1+++SY4gKrn+elt45mC2/60ukfz5ei0UE0+ZQSHckyUpwsXWz4M\n3yXkf/dFPEWofnkboN9+slb1pZhxyi/a6wVdv0vwo/VYZ3NcUV4iZO8M0sqQUY8QsjxOIKzj\nbnzXEob6UUpxOzrJFPtRAiv2gJgspiiwYtug0UzUkf3w/ST+UyEs5quWSum7/h5r2muzjF2U\ndCuwEOXmWL0ZJGaYx+kE66NDTejfc42izcprRgP5RN8ZmyV2y4hbE2YftclEcrAGL4pqsGTG\nmiTejrFe+yYw2mgiikVgRZ/4I/3rWpB9rfSHMWONU9oPvTnG84Fiyvxkim2xlFDFDt1J4abA\nepjjOaAkWGHR8SX5pKPD5lzySsMqsFz2Mpqngw/Q/FUQvs19BCFD3lz7zcfT1NH8Ta3AaMb7\numo7vvhm5WBCOuhPmKtt9wPSp/A/n87tQMhjiRuN/AGekJHBFWPkotgpVTvd7QtWvTulwPhN\nxRzkPssnPahPXt5DyGu0cvUzfHGwxrPVGo9VLO7RfBlPSI/X1m5aM6UVabWGHhzKMVGeLvgz\nnzxubg8nt5eNiJymYZJxWaOkD8n/H+OUO9qp0vvTTd8u7NJjTIIfreNDPz8NIHcpqwnRP5SO\ntteuWLIDcWC7qsde2r79r3JdSxj6tYoYt2OSTLEfJbBiD4jJotWfxKtHaYNGttRR4n3SZsQD\nS1IIhDrCM/6sVG0TPV//7ucvpqnOv8UqSqEVhIly8xH9pIkZ5nE6wfroUBP6Fhm1cs2y21Qt\n8BkZ+vaad9Uwdgtqc0qW2C0jbk2YfdQmE8nBGrwoqsGSGWuSeDuGGpJXtZuDOxj2QgIr+sTF\n7UmBeZ3qLUIm0Y6hth96c4znA8WU0ScpLZZ6sS966E4KNwXWcEIOfPRIj4JOA19K9SmYRJhF\nyIrQRnfVpoO2FNe80rAKLJe9jOJAW/1bx9jQfZS/EjJI11q/dSA9tGvERjNWv/LcF9xRNs7U\nhOpfdRwbLPuWkFaUX+oYWHvXzz1Jga4rjJGLYudtQoYFL3J8U0AKdoYP3dCWdKbeD1Gs9jTq\nhWBVV3R4JDh0bsgnrYKxNtyj+KJ+Zxqop+OLVqRnMTU4scdEe7pA/V5WYPy+sE3bvDdSYBX1\nIm21Bqd+T9fvA6GcciIhjwYv1//RjST40aqe5Z7gyh5CpisH8smU4NY3RujZgSg0f8cqx7WE\noQusGLdjkkyxHymwKAdQsliYwj1YlDYYbib3DEntRsmifEK20HctJeQuvYl8Tkj7vxhFKbSC\nMFFu9ibki4QNczidaH2CMBIavKC5ow3J7/aU5n5xL0LWa0WULLFbRtyaMPuoTSaSgjl4UVSD\nJTOWVe6OEQyJdsCj+rYpsGJPPIGQ/zP+6D49LXTj0e2H3hzj+hBryuiTlBYbG6rYoTs53BRY\ndxHSz7jYVrAw+aomykTrreB3E/KbY5aCuOSVhlVguexlFEuMBxfXhH6o/JiQecbOla+s1EYZ\noxkvHj3I+KK2QW2rwRX1U7prkV42IJk72NTe1W2ZxuLZ9+eTjp/ppcbIRbHTJ3Tbw2RCFoYO\n3daFtN8Qc3KNzYS0pv4Yo9a4m1Fj9Tvpj0rYPYov/Ui+mY0p+kN5scGJPSba0wXaXxnf3eaS\n/J3RAktZn08eUpQtBWSA/rtA7ClL2pF8Q/S/m+hHqyqp8oMD1MrgwxtDyK3B4jnGhXp2IELj\nbjmuJQzjbptot2OSTLEfKbAoB1CymIrAorTBcDNpneKF7p8JaUsfV8puNySDyuOELKYXpdIK\nwkS6uVatS3GihnmcTrA+OvSE9tV78mj1w1P/DjfL6E+ULLFbRtyaMPuoTSaSgjl4UQSWJTOW\nVe6OoQusY+qR+thsCqzYE39BtF6ssSef3FrGNB7dfqjNMb4Psab0PklrsbGhih26k8NNgaVN\nzdFpYuGy6drv0/MdM/OYdRC5h5CNjlkK4pJXGlaB5bKXUdxpPL9/rIcp7daYvxiFiJkv9xAh\n3YMran94wSh7Kmpy+rhYZ5lrNS3qDuZYO+qXjwFG0Zb3/7vNPHRvb9J6Ld2A+i2tB3XHo+Ef\nZFVlu8biXqwv20h4dpxvSPAnhJjgUI6J9nSBcqSzUf+yXmSUEiOwtOdI/102grT+hXXKb8zB\nXVH+bp3oR+twY1AcTwr+Dl4oCl49GUjI1/EDYY675bmWMDFTShqtKdLtmCTT7EcILNoBlBaZ\nisAKE2rr4WbyRKKOxxrqRd+jSq/bTOn1qf5Vh1KUUiuwWg+7+V03QmYmbJjH6cTqo8NIqPFL\n98zQc7H/F/GaAo1QltgtI25NmH3UJhNJwRy86ALLzEx4lb9j6AJLu7h9a1CVGQKLcuJj3cwf\n7pYRMpttPLr9UJtjfB9iTBl9ktZiY0MV+7mWHG4KrLaEPB+M+1G10ZOfnDLzCCFfhTbus8zk\n4wwueaVhFVguexnJ14T009fmmB3wgBqHib9aD4oQWMeKDh3aS4xbxR417+wJPoOZ+CxikR+5\nXefqF9gjBJbVzkrjx/0w2qHFg0M3u8agftnpQ92h1nh1VI3Dn5xRvqwMPd2mfqIRcodCCQ7l\nmGhPFwSlRPAakfpF7UOKwDrcl3RbHBrtKKdcYQnAgEQ/Whfpf1TWxfx01r6h/5VPOhyLHwhz\n3C3PtYRhCawYtyOTTLMfIbBoB1BaZAICK4KJoT0RbT3cTFKd9fFzy2fK2pA57a7c/7PMtL9D\nNVhGLUqpFYTQrhoXBlk4Y4hqd0BxwoZ5nI5Xn+iwMxJqXEJ6OZTHj8NiQYnKErtlxK0Js4/a\nZCIpmIMXXWCZmQmv8ncMQ2Bph07XlobAop14ujkL/jD9KxzDeHT7oTbHcnyINmX0SVqLjQ1V\n7OdacjgtsP7zjI7mYdGhIrN4bOQ7i2wl4trOUMev7bjklQbzCpbzXkYyLnRh/HdCuuhDykpt\niuk7p32y3zwoJAS+mdK/S74+HIYElvmc3/RkLpOHvr6U7fvl3YFq7wraCgmsaDsvx3xjVQ/9\nebRxNZjG96o31B1qjb+LqnH4kzPKl4WRnwCttV3RwaEdE+XpguB3rOe0rfGkw2GKwFI2aI/3\nDC9lnnKuJQCPJPrR+gsJ3mrwo/5729H2wWdwPjC/IrIDYY675bmWMNqkzfOtmMGLcDsmyTT7\nEQKLdgClRaYmsGLaeriZpDojkPXKRKTAetn4Rq5RppYVUYtSagUhotwcG7wWkJhhHqcTrY8W\ndkZCjfnaFhDyjr72qXG9g5IldsuIWxNmH7XJRFIwBy+6wDIzE17l7ximwCrqQfI12WkILNqJ\nNxgPIu40rq8yjEe3H2pzLMeHaFNGn6S1WEqoYj7XksNpgTXf8DTqUsJGQzE6wdPWX50GxH8h\nsb046ZWGVWCJ81JR9haEbu3ULp59pK99PTyY6fz7P9ZjYHy0FD9uafAhgWXOVpmawNIonWA8\ntWd8esbaeSHmqRr10BHq3gdYSdqqVp963ymlxuFPzqg9syL7OAneKhQVHOoxkZ5qI9Ug0rEk\nOMHOVIUmsJQZJHzzHeWUM3SRFGR8wh+tvbSXOiuvGt/MHyZtS4I3iq4sJxDmuFueawnD/g3O\n6nZMkmn2IwQW7QCKWwkIrE7TLWjf7iltPdxMvk4pCoqyhZAC81HdLfrX1WG6wJppya92JX0X\ntSi1VmBx0yC/U/9pxnXyxAzzOB2vPtFhZyTUmG1kQegeZ1NgUbLEbhlxa8LsozaZSArm4EUX\nWGZmwqv8HcMUWNrFwruPhQQW1ek+pECbAWax3pRZxqPbD7U5luNDtCmjT9JaLG0erOjPteQQ\nJLDK2hCSoiQsl9nWxym7EJL4U2q8OOmVhlVgifNSMaeVMRlhlv84f0jwS9vwoPoyPlqeJKTD\nq5v2qt2txFaBpb2sh2iTCBqfnrF21M72cuQJRmq1a894mlnlWDtC1tF2JCOwXlJb+zcWjEst\nEcFhHGP1VBupVgTV6zv6D8CxAuuI9nSFOUhQTjndMoQ8kfBH63OEvK5Z0SccXUbIWqWsm/mK\nwvIFVnmuJQxTYEW4HZNkmv0IgUU7IDWBFVM9SluPbSbJcrRtzA0Ay+gCaze1KLVWYELNQmKG\nHXn/AaU+jIQyBRYlS+yWEbcmzD5qk4mkYA5edIFlZia8yt8xQgJLmzhhcUhgUZ1+WT/dYOO7\nejnGLRYog0J8H6JNMQTWbnqolOjPteRw8x4sK53DntjNu5YZwYoI6eqQGRoOeqVhFVgCvdQe\nv4jA8gTjgU+fKjCmPdWb8WZC2hm3SBXbK7CUUfplFX3koth51bh6H0Y9NH/RL23MCR5iUU/5\nbGTJYVaNmQJrIXNmxXBw2MeEPNVGqoNttKOH6V7HCixVXPQIvZiCcso5lh+HHkz4o3WNNjPf\n3wXGDQq/aaf9lZAh+s7yBVZ5riUMU2BFuB2TZJr96J8IYw6wR2DR2jq/wFLuj6mwIbBescyF\nV6r2w2JqUWqtwISahcQMuyWwGAllCSxaltgtI25NWH3ULhPJwRq8LKphdDyBxd8xwgJrZzvS\n7g/tYfOPGSfWbkcfE3wD15hEjFssxBVYiZgy+iStxVJCpWP5XEsOQQKrJM5rx3nZRELv99Du\nWRjjkBkKTnqlYRVY4rzU7qbstSLE6NCdDQZbuuv36ejNWO1jU4wdm20WWOp3DO3NW/rIRbHz\nUcwspiODkmw5IbcdVKi8TUjbiIlXfuow/U96jZkC69/xnjsxghP3GCU8Uo0n+X9tNwa0GIH1\nv3wy+rc2pL/++xHllEsJedpc753wR+vhtqTt0S9DH0u3ksFaxIyBs3yBVZ5rCcMSWJFuxySZ\nZj9CYNEOsEdg0dq6DQJL/S7VKbK9GgLrPctjaGor6UwvSq0VmFCzkJhhtwQWI6EsgUXLErtl\nxK0Jq4/aZSI5WIPXgPBU2IPiCSz+jhEWWNrvcQ9pV/c+ZpxYmwGm4JD2Y8jHiRi3WIgrsBIx\nZfRJWoulhCqE+bmWHC4KrM+fHf2hua5Kgv5O2Sm7Lfzu42nhScYcwi2vNKwCy10vI3jEem1V\n+Ultm5GqcqE+B6rejGeF35O40GaBdSch/1YsNzdE2/mNkO7Gz+a/PfPM8tChmgOM56MPdyHk\nYctP7cUD9DshkxFYamftxL61Qg9O/GPCI9U6NbOFJH+3YTBCYB2+g7TfqV3BmR38E8op1fZ4\nt7G6Oz/xj9aHVZfmGS961GaXalX0ROjx2PIFVnmuJQxDYEW5HZNkmv0IgUU7wB6BRWvrNgis\nkm7RD88s0QXWr4T0NBvrR/psP5SiFFuBATULiRl2S2AxEsoSWLQssVtG3Jqw+qhdJpKDNXgN\nCT1mrc1FyhZY/B3DIrCO3a2Ozit1TUN3eqm2c2DwDrbyjVssxBVYiZgy+iStxVJCFWahdW7v\nRHFRYKmK8S7Dw7L7wtN32c+80GXC3e1Iu6L4B/PimldKpMBy10srf+aTgj2W7cHaA8plcx96\nyixQh//3FLMZzwv9QLFH7f/tg2v2CKzvCCHaBIr6yEWzc2dwrkyNefoUZcYH7f4e5qsRYlDT\nSSYeM7cODCPk9iJ6jZkCS/vuY75e9Js7ZqoGKcGJOSbG0+BIVXY7GXev8d6vaIE1Pfhs8rH+\nJF+vQOwpDxWQ/N/1Eu3pmkQ/WtXvnYX3k7uMLfU74druIRETV2AtZNQjNRgCK9rtmCRT7EdO\nNEo5gP45EvclxZTq0dqgDQJLu2WYPG/55Py8oy6wyu4g5Euj7AH9YTlKUYqtwICahcQMuyWw\nGAllCSxaltgtI25NWH3ULhNJwhi81C9Mq/QiVWjEEVj8HcMisJQf80m3/zMuGlGd/iufTPrD\nmLC6XOMWC3EFVkKmjIlGKS02JlSUoTs5XBRYh9UvYo8HL3WXPENIhxRuGEuQfZ1IfjBMB4Zr\n70ZyFte8UqIElqteWpkf9aPM28G53e4LTWh1eKB+V5bejNUPh37BPr/r7kFdCQlGyhaBtV4N\n/MPaij5y0ey8S0iv4BXfn9qSgrAWC84G3vZXuo2Jasca8EXw3sjS1X3UjP7EqDFbYKlfhzrq\nF3x29NHfXhEbnNhjoj3VR6pXSJcCYyaaKIH1dT4Zpn3o/pBvvPSYcspHCBkdDMqP7Vsl/tG6\nUw1s+9DvvvvyycTwLx7sQLxtPslSjmsJQx9LY9yOSTLFfsyrcqIPoLj1dsyTOeVWj9YG7RBY\nyvNqoxyyXpdYJV9or7W9a5dRxzv0EUf9bO1ezChKrRUY0LOQmGG3BBY9oSyBRcsSu2XErQmr\nj9plIlnog5cq9+4Llm1o3zGuwOLuGFaBpTXavuFX5VCcfoB0Wxp+kUd84xYL8QVWIqbCI1Z0\ni40NVezQnRxu3oO1Ru3enactXfZ8D0LyP3PQ0If5hIx6bfnz6kfwUKeux4ZwxavvF2ioGR6n\nLfXLz656GUabvD1iInTtab4tyndqGB56a803n718uzGBm96Mi9WvcKO+3PL17A5tfh1ByHOb\nd3EJrC7BQCx48SntSbKewU8ZfeSi2SlTP4o6vfjB25MLol72rN34e9dhqo3Sadpt+13GTJ02\nVntzWw/9+a2kBJY2TVib6f/93+qZHYzbTmODE3tMtKf6SLVTTXJn/W6jSIH19+2ktd7dZ5gn\niD3lz6rdwW9/8fGzrXtNTuKjtT9ppb/jK8ggUhCeXZQdCLXKred/sKisPNcSRsv2rAiW09yO\nSTLFftTLnmMPoLgV9odZveihntYGbRFYZfO0Rtn10edeeGpkW211on7Fukz95t1r6YZNn03I\nJ63WsopSbAVMNxM27JbAoieUJbBoWWK3jLg1YfVRu0wkC33w2qLW776Vaz9+pmDo9LgCi7tj\nRAisIu0dJ8ZtT1Sn3yfkNnJ76DxxjVssxBdYiZgy+iSlxcaGijJ0J4WrN7n/p4v53Fm3L8o/\nmoP32hp2Rrkwe4EbXhVGPLWnv3vBXS9DqMPU7ZGda0pw4Pq4fah+TwS1i9GM17TWCzt+q/32\nFHxFL4fAsvKg/sCHMXJR7CjFY41D8+daD1VV4j3hizLRrO4bspA/aa9elpzAOvZsvnmCmfpz\n2DHBoRwT5akxUj1gTIocLbCeCR1RfJtxqZtyyg8K9IKuG2ab7wdLAPVY0rrYulVg/gTNDkSp\n/kbOY+W5ljAxM7lrTzJS3I5OMsV+lMCKPYDiVtgfZvVihnpKG7RFYKnWhobDkP9A6PWdxU+Y\nhV2+YBel1goMw/QfahMy7JrAoiaUOU0DJUvslhG3Jsw+apOJ5KENXqFpdQbsnmNcxmEILN6O\nESGwtHibAovqdJH2+RV+uVxc4xYL5QisBEyZN1lQGnFsqGKH7qRw9ynCQ8se6tGmba8xb6VQ\n06T4c/agTm16jfuPw2Z0XPCKKrDc9dLkgZhppH4kpJM6rOwtHHVrm1adBj5ntHWzGf/8VM+C\ndgMX7lPb/txebfp+bIfAat1t+Ivm3EDmyBVrR2XtxD7t297x7C+RhyrKHx1Cv7bHcGztzCG9\n2rS99aFFoTeNJiew1LrMGNCpoNPgF0L3WEQHh3ZMpKfGSLUqdH95hMD6kpD+5mXLLwjpeYBx\nyt+e6d22Y//Zu7Snev7N8DcG7e628BPJWtRHlR8I5c/Hu7W5dXRZea4lDE1g0d2OTDLFfpTA\nij2AlkWLP4zqxQ71sW3QJoGlKP97+b4+HVp17DduZcRtCN9NubN96x4PLCmKV5RSK9BhTpaR\ngGHXBBY1oUyBRckSu2XErQmzj9pkIgUog5eifPlI94J2g5YXa/ohKCUYAou3Y0QKLO0x79BU\n7DSnx5HICbLjGLdYKEdgJWAqPNFNbCOOCRVt6E4CUfNgIQiCIAiC+BYUWAiCIAiCIDaDAgtB\nEARBEMRmUGAhCIIgCILYDAosBEEQBEEQm0GBhSAIgiAIYjMosBAEQRAEQWwGBRaCIAiCIIjN\noMBCEARBEASxGRRYCIIgCIIgNoMCC0EQBEEQxGZQYCEIgiAIgtgMCiwEQRAEQRCbQYGFIAiC\nIAhiMyiwEARBEARBbAYFFoIgCIIgiM2gwEIQBEEQBPl/9u47Popq7QP4s+kQQgdhQwIEpAso\nSFGKSEcFUUQRAVFAEUXEgihKk96UJlVAivRA1t6v7V6vXnt5rajYUBEFpKXsuzNbsr1kz8wz\nc/b3/UN3ZzbLOU+eT/LL7MwZwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAA\nBEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCw\nAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMATwA0vW\nAAAgAElEQVQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIA\nAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAE\nQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAA\nAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAA\nwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQs\nAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAA\nQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwB\nCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAA\nABAMAQsAAABAMAQsAAAAAMEQsAAgpCOkOMI9DIdf1JGc5B4GAECUELAAICTJAtbpT/auW/LQ\nQ/PX5L93QsywAABCQMACkNK/yV/Fuq0HL30vtneRKWD9576WyaXVSG47/WNhgwMACICABSCl\nwIDl1Gx1LMdu5AlYz7cPrEX/DwUOEADABwIWgJRCBSyiBm9H/y7GCVi/JitOlfGrT10XtBSp\nq4SOEQCgFAIWgJRCByxKWR/1uxgnYMXlWAf33Gu07z6gb5f6Se7ns7iHBgCyQsACkJIzYE1Y\n4jF38vAWrlyR/HS07yJJwBrmnHfPTT+7Npx4aniKuikp6lIAAMQEAQtASs6A9W/fjQcfLKdu\nrnQ4yneRI2DtUWdR52WfjV+cp27NO8M0KACQHAIWgJSCBiy7/cuG6vZJUb6LHAGrrTKJ6t/6\nbT3p/NxwNcuQAEB6CFgAUgoRsOzfVla2Z0Z5OZ4UAeugOokVgdvVw3ltGUYEAAkAAQtASqEC\nln2uuuO56N5FioCVr5539mfgjjvUs7C+139EAJAAELAApBQyYP1uUXbc5bf14NObl8xeteu1\nf3w3xxyw/nhmxew5a94Ms5zC3y88vmTmok1vHA/9kl+eXD5rwbpn/474r5V8vHPJQ0sefyv8\neVTL1DOwguz46KLx6972m3GE9wxRp1J/25bMWueT2cJP+ODT65bMnL9y3/8VhZ0DAJgOAhaA\nlEIGLPs5yo4rvbd8Pb6Je9mCtIsWeWeH0oB1VfCP0yYpmxu5nz3ZxXWdYqWbDzqePqU8HOL9\n8l9mtHGvpp560eOFXnsOKdu6Ko/2dLI4X5HU1esSvyALjX40pobrvTKveD1MKRYqL6kb5gXR\nvmfoOv2gbOvuSGezs5RHC6KYsOLtsTXdb0iVhzwf3RABwBwQsACkFDpg9VV2dCl9/vvNKeSt\n1ooSz77SgPWC+ugT/zfLU7bOcT7+c6jXu5Rfb7dvUB7cVPriwunlff6lRq+U7jumbDjPMZre\n3q8Ycdq9PyBgHRll8X5lv19ClmKdsj+qNUrDvme4Ov2ubOhgt4917nIHrHATttt/HUy+Lvg6\nijECgEkgYAFIKXTAGuyKMi7fnk3+Rno+rioNWCUNlEf+nyy+o2YX5+pSx871fZfZ9iXK/+7w\nvPhwJ/9/KGmhZ2eRGkDsvzfzfcUw937/gPVNE7/3qhHyvjfPq/vXRK5Z2PcMW6fjytPm9v2u\nHQuimLD9QIOAN6wU7PsFAOaEgAUgpdABq6eyo6f72Te11BemXHDv0scWjm3s/EU/2L3X6xys\nOcqjWn5nCt2tbLxEfVjSx/m19cbNXXpPK+VR/gzlv54VIVwBzHLhPSvXz7++rvPVj3jeSvlw\nsU5xd8d/M3vfeNvw81yfrNlcu/0C1q/1nbtb9r/h6lbOzyVrhDr+c0w98lTj00glC/ue4etU\nrDyra3enwwVRTLjIuQ5Xauebp86dNLJTmvqsVujjcABgMghYAFIKHbAaKTuGup4Ud1Zfd+U3\nrudPOdfJ2ux66hWwfk1VHj7l+171lG171YdPqC+t9oRzx+vNic66Xdlyv/u116gv6O+KLMW7\nrMrTZM8xonTHs+rLiWqucaao7y4j7yToF7C6qU9vOqA++f569Vnn0o/sfA1yhqXdIXZH854R\n6qTGw1ovOf7TZdGuHcv+FcWEV6nh6y73kq+HH1Aj1i0RxggApoGABSClkAHLmVQWuZ49oj67\nw2u3enCm2h/OZ95XEV6pPLzK573+owYX9Xq7IvXrKnzg3nW8k+OZd8B6Un2rqV7/kvqBXFf3\nU2VRqvTK1Pwn94aiLsr+pEPew3YHrI1qOtniea+H1L3bQ9TiQ9fJU513nw7xiojvGaFO9gzl\nyUjKerL0FREmrM5upte//5wyyrS/wowQAMwEAQtASiEDlvq5HX3sfFJUR3lyofehn7ctXgHM\nO2A9qzxM91lOaqKyaaL60Hmi06Ol+/6u40w17oDVUnkyzPurP1cOWpE7kmSqr67yU+l+5xRc\nVxL6BKwS9fiR9wlh6tGn9qGKMZNcsgav/iLEa8K+Z6Q6ueKhxXt5sfATLlI+As3wWbpBrebO\nUHMAAJNBwAKQUqiA9V0VZXtj1zOb+qr/+bziamVTS+dj74BVop6i5L0gekmussV5ZaH6caDV\n+wjRXp+A9aryuNJvPv/SLcq2a11PnAHL58Y12cqWuc7HPgHraeVxpvcNFZ357odQ1biDStUc\nuPidIItOhX3PSHVyjX6k1+4IE/5ZedjQZ+8Xwx987OXfQ00BAEwGAQtASiEC1o/qcRXPuUPq\nFYWtfV/ivBTOGZt8FhpVPzNr5/XKt7w2qNfY3ebzRo29A9YY5fFo33/pY2VbRdf6CWpEqeaz\n0JW6oITrYzmfgDVKeTzc+6VFFSi1VovQK0ltrkbesvo8csDvFWHfM1KdXAHL+zz6CBNWV86q\nHHK8AGB6CFgAUgoasI6tcOaM89xHcNRPvub4vuikunaT88M+n4D1s3oq02elr7y99JiTuk4B\nFfi80TzvgJWjPPa/QY+60bWeZ2ZAwHEe8BnlfOwTsNQjZxt9XvtThHXfjz5UlXy1mO2zQn3Y\n94xUJ+fomwbMLfSEC9WrJPeGHzQAmBgCFoCUnAFr8lqPR+feeZHzOAvVcN/KRV0+nfxXLL9A\n2ThGfeh7q5zLlSf3eF5XosSO8s4Q8r76woM+7/ORV8D6VX38k93XQGXjKudjdWwrfXari0C4\nVoL3Dli/BBwuisbf6/qk+kasChN+9OwN+54R6+QcvfclgBEn3E55WPFpOwBICgELQEr/ppBq\nve1+kXreOh32+9IRysZu6kPfgKWepmT1nL/0uvLUdRb3TuVxWrHP+xR7XUX4YpD9dvu9ylbX\n54qZgUd8HlQ2Xe187B2wXlMfH4ulHE5Htt/Swmet9qwN7l1h3zNinZyjX+61M+KENzpH0O/J\ncFc2AoB5IWABSCl0wOr8s+dF6r1syvt/6RRlq/M0eN+AVax+jOY56HKb8uwV52P1hsp5fm/U\noTRgbQyd9/o7X6xGlLd9vn5qiIClvllZz1/6s+DuDl73vJnu2hz2PSPWyTl670XCIk645FLX\n04oDHn7PP4gBgPkhYAFIKVTAOn+/14seVrbk+H/pImVrNfWhb8CyT/dKPPZiZeHMPNfKBXOV\nPS393qhfacCaHzpvXOR8sRpRPvb5+lABS12Uqk4ZiuJ2/LkJDd3//DZ75PeMWCfn6N/02hl5\nwkf7lm6qMmgtLh8EkAwCFoCUAgNWuTqtBi79zOdFamBq7P+lK5WtzuM1fgHrR3XxJtfTV5Vd\nD7n2PKA88V+H6trSgDU9dN5o43xxDAFrtvLQd4mD2L3syjeV/or8nhHr5Bz9+/5fEnbC9uIF\nFb22pvTaFWolegAwIwQsACmFvlWOl3uU1zTz37pG2ZqqPvQLWHb19jWuC+eUa/yS3Ke1q+/U\nxe+NbiwNWFND540mzhfHELDU7T6X7JXJTvUyQNfFgWHfM2KdAkcfecIOf8zzub1069DLTACA\n6SBgAUgpqoB1n/KaRv5bVyhbM9WH/gFLXXDTeaCq+CzHwz7uHWqeuNDvja4qDVjqx2kBH7J5\niyFgqes/1A8/tWg8o57w3jbye0asU+DoI0/Y6cslPdI8CcvyYIwzAADjQsACkFJUAUtdOjTg\nxKMFytYa6kP/gOW8Zcz/KQ9fVh55buyi5pNz/d6oZ2nAWqc8DHteegwBS/1s7qzwU4uKuu5E\n0tGI7xmxToGjjzxhj3+euqOFO2Itjmn8AGBgCFgAUooqYKkfcmX4b1XXEmiuPvQPWM6VE6Yp\nj8Y6HlTzLDGwPNgBoHNKA9Yu5WFyYZixxBCwtioPU4Lc7iZW29U3/TLie0asU+DoI0/Yx4G5\n6hqklH4g+tEDgKEhYAFIKaqA5Vzf6ZDfVvXc9N7qw4CA9UMSOU9VKqzheHC7Z7uaJzJ8z9I+\nnlwasP6rvpHvKfa+YghYzrmFvPFg9N5W3+jtiO8ZsU6Bo488YT+n7lS/YmL0XwEAhoaABSCl\nqALW9+qLXvLb2lrZ6LwFYEDAci694EgSzyj//9Cz+YMg+UT9ENEVsE6pJxrtCDOWGALWMfXc\nKf/b0IRy9JUFgxv+FnSXejNF+iLie0asU+DoI084wE3KVwRcqwgAJoWABSClqAKWvZbyoqm+\n2/5Sl+F0Lg8VGLD2KRsesNuHUul6Aw7/qPlku88bjfIKWPbzlMfXhxlKDAHLXl95PNnntc8u\ncPCPQIr31JGtCPpvblPf9Fjk94xUpyCjjzjhAOr9n5OxVgOAJBCwAKQUXcAarryoie82ddly\ni3O598CAVWRVD7P8k+mXWtT1Bm70fp+/Mr0D1h3K42qnfP+pj70+dYslYKl3gW7h81r1xoDL\ngkyxpLayp27QG9KotwbMi+I9I9UpyOgjTtj+nf+NedRlI04EGygAmA8CFoCUogtYr6qvetNn\n20XKps7Ox4EBy3mDmA+UYz8Z3tsnKptdi3Y63UzeAesT9ckSn3+pqFFS+4c+cD2JJWD9S33y\notdLf1LP9/rAHsQE9cXjgux5Wz0GdXcU7xmpTkFGH37C397dvap/HixUzm/LCjYFADAhBCwA\nKUUXsOzNlFe18/5YKl/9wq3OJ0EC1ndKDLhPWXH0Wu/NzhOuvD5iK7D4BCzn4aBq33l/zSxl\nk3v591gCVon6eV7Lk6UvVY8/nRN0ir9WcA4t4H5/X6gX7lk+iOY9I9Qp2OjDTvhnpYo5x32+\n4Hllb+ugcwAA80HAApBSlAHrcfVlXpeufaaebtTUtb5AkIBl7+3Ykpfmd7THXtJKTSub3M+f\nSKPyl3oHrBfUwNXM6zOyteqWfa5nsQQs+0712dWeD+A2qG+1Pvgc5ziTXpf/+Gw9tTJL3Xyd\ne0PY94xQp2CjDz9h9fjXJd6fBx5XKzgz+BwAwHQQsACkFGXAsvdXXzfkR+ezoo3VlafJr7n2\nBgtYe5x5her5no5d4Nw66MXTdvvpp5WLDRfc5B2wnAeEqOZ2Vyb5aoj6vJd7d0wBy5lPqM3z\n6hi+Gqk+axtwjMqpZLBrxOfPe8M5leJv828+y7mtcenkwr5n+DoFG334Cb+uPmmy84x7kM+q\nB8kqHLQDgBwQsACkFG3A+lVdm50yek9fvXbuddnqE8tS995gAauwljOaTPN7pxGuGJNUw6qe\nvDSwxDdgHT/Xub/G8PuXzLq5jfNJjmf9hNgC1i8NnV9v7TZkYBPnh5E1vgo1x5P9yaNSduOG\ntUpvTtPUa2WJsO8Zvk5BA1b4CbtOUavQfewDs6bdPqCm8+mqUHMAALNBwAKQUrQBy/5VA/KT\ntsWzM1jAsk92povv/N7oTF+fdxl80u4bsOyHO/n/S9TkgGdvbAHL/n09v7c667+h51gyKyXg\nn1YN8z4rP/x7hq1T0IAVfsJFVwUZz5zQcwAAk0HAApBS1AHLfmSkxeeX/IVeXxQ0YH2jvr5n\nwBsVL8ksjSbKuUtqwJpS+oIzM8r5/Espdxwt3RljwLL/PdZn2L1/CTvJb68PjFiWXm/4vSrs\ne4arU/CAFX7C9qUV/QbU9NmwcwAAU0HAApBS9AHLbv90fCP37/jqVz3tvSdowLJ3VjY+EeSN\nDm8c2Lx6SuWmw7ary06pHxrO8n7BoRnNPXGi0dTvvXfFGrDs9v9em+V6q8wBr9kjObRuQHWv\nMFOu65yvg7wq7HuGrlOIgBV2wo48t6hTaezLGrQ36jsXAoAJIGABgN3+w5MbFsxZs/f9aNYR\nP1VNSRinIr9wgBIc/NdQP/Tc6rkzlzz27B9lGaafwne3LJq5+PHXgq4iGsTvr21dtXDGrEWP\nPf1FyDAT/j1jqZNL2Akfe3fn8nkzFq7Z+xVWcAeQDAIWAMRGXcL8nihe2E554TbNxwMAYEAI\nWAAQk5KWjtiU9E3kF55OVwJWmHPPAQDkhYAFADFR19wcHGTHT69u8Hn+jHqu05kgrwQAkB4C\nFgDE4jd1Gaz/+W/+oVWm/0n1lygvvFi/kQEAGAgCFgDE4NTFSmy6KnBHrrK9k9e54zvUi+O2\n6zc0AAADQcACgOj91l1JTRn+i4w6zFfz1KBj7ufb1SWgcrH0AAAkJgQsAIhG0U8nj344oyoF\nW3pBceJsdddZ0/7zd8mJrzZ1VZ8lPa/7OAEADAEBCwCi8UvpIp3XBX3Bp5Xd+0tXPJ+p8yAB\nAIwCAQsAolEasIaG+Njv0zzylb5W3yECABgHAhYARMMdsCosLg71kn+mV/WKVylDP9FzfAAA\nhoKABQDR+DMvmZKtFy74OdyLTu8b3zWnYnLFum1GbfhRr5EBABgQAhYAAACAYAhYAAAAAIIh\nYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAA\nAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBg\nCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYA\nAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAg\nGAIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAF\nAAAAIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAgmU8C6z1qqTpMOwx75JuAlh7bc3qdV/ZxGrS+Z\nsOVX/50lHyy58aLm9XIbt7niHttR333/mdG3dW6zi+55tkj8Zrv9m36OIX8VMNoQm0E3Zmyp\nyVZfV6pbO1oDHI6tFiCEPC2lOLnj1s5Nc5t0HLUW3cRFro4qenLiRc1zW/ed81n0FTAwWQOW\nKvu6gz4v+PKWOt57R37ss/fZ7t5fe/ack6W7frzSs/2ijwRvdtjYQNkYkKRCbAb9mLGlxvkN\nGQHLUORpKYfNTT3b6s8+E29poEyk6qgXS39Q3e0X9kxJ6oBltTZ+q3R34QN1/PbmLCjx7C15\nwP9re/3u3vdda6/NDd8Wutnx18VQ5za/JBViM+jJjC11nd8/ioBlKPK0lL1kovKkTsceHXOV\nB5efEF8tiEyijrKvzvba2Pe48FrpTraAteYTp/dfXn2V8r1q/K1775FB6jet24wtz7z23IZ7\nOqjP7vF88RL1O7rm3T9OFx754DHlsznrFcXOXacvdjy5YMMXf35fMNDx6JzfBG62259s7vgZ\ndYHVP0mF2Ay6MmNL9bdae3zi5YC69ctPfFxutV5SrGnpIDh5Wsq+xvGSFluOOR6dyD/f8fgu\nDcsGIUnUUc8pYx+w74c/P1vS2PFouJZl04dsAesZr+fvnOfYcKPrSZF6oHLop569r/VUNjzm\nevZzjtWau730a3cpf5PtdD5eoXyh86+zkqmOxxMFbrbf7nh83ltz/ZNUiM2gLzO21EVW63WR\n5vWSY2ifR54+iCdPS510/A5sfMD15FBrxx+E30VfBhBGno4609bxirnOxz9d6Hj8Uix1MCSZ\nA5b9c0e3ZB9yPp7j2Jm9zntv4a2OTfV/cj55xPF4nvfetY4NFztf18pqbe3+OLjoEkdD/ips\ns93uaPAbjtgDklSIzaAvM7bUuVbrLRGm9U97z88x0Jk8LfWs4x+f43mm/CZdHVUFQCx5OmqX\n4x8f5n5yoL7V2iu6ChiY1AHLfotjyw710Xc5XrHdpbCP1XrubufjsY7dPn9/FZ2f3f56tTOU\nnyPLPdufczxbIWyzI0nlbXL8NzBgBd8M+jJjSzWwWu+NMC3Hn5IdT0V4DWhDnpZa4XOI4R2r\n9ydPoB95Ouomx/4PPc+UA16BF0SajNwB63HHlvmefdf6f8G3qzwfkygfVPueUvf9MdeDOx27\nfvZsLmpstQ4Qttlu7/V/yn8DklSIzaAvE7ZUoTXi0amPcmQ4+G5S8rSUcvSj9GTqTx3PJgSd\nMWhLno5qa7W2Ln32keNFS4NN2EzkDlg2x5YHlAcnGvhk40A3OPZ/FHxXZ6v1Aq+nI6zWuqdF\nbbbbnf8NSFIhNoO+TNhSvzv+2ZVhJ1XU22q9IewrQDvytNQez3ESxcuOZw+HGTtoRZ6Oqmu1\nXlX6rKih1Xp9mLGbgtwBa7Njy0LlweuOB/3Cfa3y19gw//U/VaeyrdaxXs8XOl75iaDNHiGS\nFAIWMxO21DeO/29RNhSF+hBwrdVa/2CIfaA1eVrqt1yrdbTn2ZzQv6pBU9J01GnH1pFez7v4\npjNTkjtg3eHYsld5sMDqdy6fv4PK1RNDgl0F86Xf0UzlRLwnBW32QMAyJhO21PuO/9tOPH5d\ns2zr2b1nBzmH4e/mVutD4QYOWpKopSa7B+7wccMgn0WBHuTpqHpW6yCvV/eyWnPMvnqt1AHr\nUAOrtc4fyqMRjl3Ph/1iJcpbc4Zv/9F/x5uO7d5XYbzqeL5B0GYPBCxjMmFLKf+fdI7VJefO\ngNUfZ1qtzf4OO3DQkEQtdbyP1Zo9/o0/C/9+f7ZjEu1/iTB10IQ8HXW+1drK69XKEqW/281N\n5oD1u7Js2jj14WWOR1+E/+o1Oc7vdttbNn7qvQTjk1bPwiCq/zmeLxG02QMBy5hM2FIFVl89\n/vId1C+OPxMfjTRv0IxMLXVsQuki4dljzP670Kzk6SjlKsIPPC/+TNlj9qXVZA1YhX++PbeF\n43mT79WnnR0PA25y6ee9az3f78ajdxxxb1ZO5dzv9bKPrepRTyGbPRCwjMmELaWcf2HNu++t\nQ2cOPTtceTykxO5tqmMGEtyCwrTkaqln2rkG03Kj2T/MMS15OmqH1fu0duXwm9Xst3yWLWD5\nOfsN5642jsdeH4t09nrJC6WbP5lduqPBva7s7H+61OeO5zMFbfZAwDImE7bUcsf/r3QtI2jP\nz/V7lf1IQ+/VIUF3MrXUZ/0dj7NbdWqtHAVp7X2oAvQjT0edbuV49Ihza+GD6njMfr8JuQPW\npV+7dik3RPK6cCpEozn8sv+BPrnOHfWc67PttQYN4UI2eyBgGZMJW+qfQ4cOlV4WtNqx9RLv\n0SyxWuseirkOIIxELfVGA6u1xVrl7nJHCy72+4kGupGoo5TXW6996c/CH7ZdbM1WDmEFnBtm\nMhIHrPYTXvfsUm7I5HUNcehGU/zz2kNd1F3rlWdPW71Xe3GuWPywoM0eCFjGZOKWcip0/A2b\n/Ufp8+K2WAOLlzwtdai51Xq++9f3qescL3456iqAOPJ0lHP1dpfsFcqvv78CXm0usgWsDV85\nff3rae9dt/h+o1/a5zQ7aKMp3lCyf10lPr/leLDGa89LjuePC9rsgYBlTCZuKRflUnqvVdtf\nsfpf0g36kqellM9w/uXZ+mcDq/XSSJMHDcjTUQ7rG7vyVfPnlc25hdFUwMBkC1ghfnmsd+y6\nK3DzyyEbzX7iUqvzaOa3Vt/TpbY6nj8naLMHApYxmbilXNZZfa7juclqbWb2n1nmJk9LtbZa\nO3ptHuPYjA+fGcjTUYo/Vg/u0OT863adtNuvslovCj5K80iQgKXcKKvl6YDNYRrN/rZj3xWO\n/xfm+n6oMsMZeoRs9kDAMiYTt5SLcr3ONs+z0w2C3sUe9CNNSx1y/O9mr81LHM9fCTFM0JA0\nHeWvpe8y8KaUIAGruL1j366AzeEa7XS21dpZedDT5w6U9v5Wa+NiUZvdELCMycQt5fKwYzzP\n+oxue4jRgS6kaakvHP+b6LV5peN5QYhhgoak6Sg/yjpYpl+xL0ECln2NY1/bgPWr3Y1WuPP+\nS/1v2XTCsa+X8kA57650sbajjkw+TNhmNwQsYzJhS/396fPelzYrV+L8n+fZFKv3ze2BgTQt\n9ZPV985xs3AEi4c0HeVnsWPrgRDzMo1ECVjHmzt2jva/q+VWd5Lv6Hjwlu++fzk23ag8+Lfj\nwQzPZuVT7R3CNrshYBmT+VrqI6vPPeEON7BaW5Y+vdhqPS/shEFr0rTUmXqOZvJaxHao42Vf\n20F30nSUveTn1zcedm890dJq7R124maQKAFLvWDUOvKk96bCR3Ldjabc5bvjH947Tyv3G1A/\nTSnpbLU2di+He/R8q7XJCWGb3RCwjMl8LVXc2mqt86Hn37zH8U9O8Tw74xjd1TFMH8STp6UG\nW70XZjjkGOa5UVcBxJGno5SLDD33pp7hfxTClBImYKmfjljb5Xs+AT629UJly8Cj6hPlvpLt\nXyt99bcDlWOrzluK7HY8vNS5HseJYY7HS+3iNrsgYBmTCVtKOZ+hret4e4nypG7pWn2f+sQt\n4CBPSyk3lOvgvm7wjLIO1uLYywFxk6ejCltZrXmuI2obHFt7Bjlfy2QSJ2AVT1JKlyoAACAA\nSURBVFP6ynrO7ZuefOvVvYuG1Fef3nXKufe/9ZRnPRc+8+l3B7/415qhyk1M677q3FdyteNJ\nm0c//vXzjUpv9jwjcPPXn6juUobufHgmzGbQmQlb6pSyWGD9Sa98f+jzzb2UEWwqHbCyULL3\nze1Bf/K0VMkVjoetNyn3eD75Ql8lbR0VXSyIgjwdZX/M8bDB1PcP//qiktcblh7kMq3ECVh2\n+7YmVj8dS5dgfKu1/85mr7r3He3ntbnLIZGbu/n/q87T+kJsBp2ZsaW+a+e11Zo932u4foti\nAQOJWurPi9XnrTq3Ve+y0rr0bGbQkUQdVTLca2uuDDcGSKSAZf9rdkPvb2v/Xd5LLh6e4bOz\n8QNHSvcdvbOOe/vNvwvdjIBlaGZsKfuf4z1brZ2f9x6tslTRU7FVAASTqaVOTa3v2VxntNe7\ngI5k6qgz92S7t/b6NOZKGFBCBSy7/Z+Cyf3PzavToPWlE7YF3EbyxHMPXt2+SW7d5h0GT3/a\nb3W2z+b0a5V7Tu+ZHwjejIBlaGZsKYcfHr62bcPcVj3ufdb3+qHpjum8agdOcrXUH+tGX9As\nt3G7ax/+NvycQDNyddTn0/s1y23S7faX/C99NCeZAhYAAACAISBgAQAAAAiGgAUAAAAgGAIW\nAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAA\nIBgCFgAAAIBgCFgAAAAAgiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACIaA\nBQAAACAYAhYAAACAYAhYAAAAAIIhYHn5cddOlydPcY8FEsGpJ90d9zQ6DrR1+ilXr33NPRIw\nhQOufvmIeyAmhoDl8dbAZKI6F/Tp1aYKUY1Zx7nHA7IrWpXt6LSOjo6rRFRzxl/c4wGZ5ecR\n5XTpc34mpd59knswYHhnHkynzPZ9LqxMScN+4x6MaSFgubzdg6je6I021cP9y1P2Hu4hgdw+\nO5/SLlumNlzB4kvLU7VlRdxDAlkdu46S+zyq9Fr+hOrU4kvu8YDB/dSBqty219Ev+++rS2c9\nzT0cs0LAUn1/jYVazLSVeuKKFBp2jHtYILGtmXThhtKO2z4kg9rgYDxo4odzKG+Zu9V29aQq\nr3KPCAzt0zp0wROuftk3LMUyGX/8lQkClkPhvPKU5x2vFMvzqNk33CMDWZU8YMm407fjNnWm\n9OXc4wIZfZlDPfd6tdq45PQC7jGBgX1Qja4tKO2XRTWp95/cYzIlBCy7/at2lHVrgc3f3j5U\n8x3usYGcim+imssCWm5yFl1/mntoIJ0Ddeha3057MC0Vp0BAKJ9Xt4z16Zdtrensz7lHZUYI\nWPaCSnThloDfdYrRlopvcY8OZFR8A9XdFKTj1udRD3wwDWL9fjYN8++0Wemp+7nHBQb1Yw7d\n5Ncv+wZQ5ee4x2VCCFjLk9PGB41XDhOTKr3LPT6Q0C1Uf2vQjtvVhjrh+lUQ6XQnujyw02al\npb/IPTIwpKOt/A94KsanpKzhHpn5JHzAWkSVFoTKV46EZamJRWNAtAcoJ/gxU5stvwP1wqeE\nINBN1DHwBAibbWpKFv56hEDFl1HPYD+aZmfRVO6xmU6iB6z1liorQ+crm20UNTnCPUaQzKNU\nc0PIjss/l27gHiBI5HHK3RW00+6ynHWAe3BgPPfTOflBG2ZlTRpfwj06k0nwgPVSaoXl4fKV\nzXYpXVrMPUqQypPJWY+G6bid9Wgp9xBBGl9WyAjVbTdQ86PcwwOj2W+pEerw+oY6dBv38Ewm\nsQPWDzWSHwqfr2z7WtIs7mGCTN6rkDYvbMutz0p9m3uQIInC82lCyE7rQwNwRAJ8fFs5bXHI\nhnm8Dj4ljE1CB6yiznRjhHxls22umvIm90BBHj9lW+6O0HLTLHl/cw8T5DCdOodutPzmNI97\ngGAoZ9rRLWF+NG2oQRu4h2gqCR2wZlP7YGd/+plpaYAr50GQE21paMSWuxynYYEQH6RW3Ram\n0TZVTvk39xDBSCZRp7A/mlZkpv+He4xmksgB65P0yqE+bPYxgMZxDxUkUXINdY0c6vfk0lPc\nIwUJFLWhKWE7bQb+egQvrybV3B7+Z9ODlpw/uEdpIgkcsIo70ORo8pVtjzXpde7BghzmUqM9\nUbTc4uQcfEgIcVsS7gNCVX+6lXuQYBh/17PMjfSz6Wrqzz1ME0nggLWSOkaVr2y2OZYWZ7hH\nCzJ4PrnKxqhabhAu14G4/ZiV+XiERttdOwmnmILLjTQw4o+mfc0IC45GLXED1m9VyoVejMhP\nd1rEPVyQwMEaKRH/QHTaUzsZ98GEOA0JuONJoFmWcwq5xwnG8KwlJ4rj6+vKZ33HPVLTSNyA\ndSPdEN3vOoctmZUOcY8XTC+qq1ZdplPbIu7xgrm9YcnbH7nTutEj3AMFQziamxx6hQYvt1JP\nrO4RpYQNWO8m1Qm+XG1QN9LN3AMG05se1VWrLp1oJfd4wdRK2tKcKBptU7kqOGsZHMbRlVH9\naCpoTRu5x2oWCRuwOtO0qH/X2Wz5tVM+4x4xmNw7KVWD3+E5qI0ZVX7jHjGY2dYoTzIdQRO4\nhwoG8HqSNZoLcBzWpFdHJo9OogasXdQ2+t91DpNoIPeQwdxON7dMjaXlRtKN3EMGEzuTl7Iq\nqkbbUyPtG+7BArtTTS2zo/3ZNBw/m6KUoAHrVIPksPd4DlDQ0ILbl0A8pgW/R31I+XWS/ss9\nZjCvldQnyk6bQNdxDxbYTaNe0f9syknCArVRSdCAtYj6xfTLzmabQb25Bw1m9mVG5SdibbkO\nOJcUyuhkdlp0K4LYbPtzkz7mHi4w+zy9Sgw/n2ZRm2LuEZtCYgasw1XLR7WGu7dm9Ab3sMHE\n+tHEWFuuA23iHjWY1VLqH3WjTaZB3MMFXiVd6J5YfjZ1wmJYUUnMgDWRhsX6y86R2XtyDxvM\n6xlqFv0VhC5rUq24jwmUyek6aZuibrSCPMuH3AMGVo9Rm5h+Nm1Ir3GEe8xmkJAB69v06lFe\nLuGtOb3FPXAwq6JzLFEtMeNrEE3hHjiY01q6JIZGux+HsBLbb9XS18f2s2kI3ck9aDNIyIA1\nlG6PrZlUM+kS7oGDWW2ki8rQcjsrl/uBe+RgRsWNk2P5hVlQP+kT7iEDoxE0IsafTburp33N\nPWoTSMSA9V5SvSgWOA7U2PIe99DBnE7XS1lXlpYbR8O5hw5mlE/dYmq0STSUe8jA51+WujEs\nu+10B13FPWwTSMSA1ZMejLWZVA+go6BsHo35qlWnfTlJH3CPHUyoMz0SU6MV5CTjeETCOtPc\nMi/mn00FeZb/cA/c+BIwYL1ILWJuJmdH1Uv+gnvwYEZn6qZGfWNxX1OoH/fgwXzepVYxNtod\ndBP3oIHLQupehp9NM6kr98CNL/ECVkk7y4IydJPiThrNPXowo/XUt4wtZ2tKr3GPHkznupgP\n0ufXzPiFe9TA45eKmTGvWqRoTU9zD93wEi9g7aEOZWkmxb6a6T9zDx/Mp7hRSoyX6JSagz8T\nIVa/pNWOeU2QMTSZe9jA43oaU6afTYst52Il5AgSLmAVNUtaUaZucv4Qupd7/GA+u2M849hH\nK3qJe/xgMjNoVMx9tiur8lHucQOHd5Jy9pXtZ9OFtJt78EaXcAHr8Xh+2eGHEJRBe8vysvfc\nfLqIe/xgLoXZGdtjb7SraQn3wIFDF5pWxp9NK5Oa44Y54SVawCpsmLymjN2kuIYWc88AzOb1\nGBdJ9tOKXueeAZjKnqhv8+zt8dR6hdwjB/3tp3PL/LOpC23nHr7BJVrA2kA9y9xNDlvS6uKH\nEMTmcnoonp6bhQsJISY9YlyjwaUn7eIeOeiuqLmlTN2iWmnBIazwEixgFTYs24KPHr3pCe45\ngLl8lZQXV8vZGuNGcRCDryyNy9Rny+hC7qGD7rZQ1zh+NnXGWVjhJVjAejy+A1hKZG/HPQcw\nl9vojvh67j4s5w4xuJsmlK3RWtG73GMHnRU2Sl4dx8+mZbiQMLzECljFTeM6A0vRlt7gngWY\nyV8VqsR8FwpfBda0H7lnAaZxumbm7rI12hQawT140NnmMq0xWqo9PcM9BUNLrIC1u0y33PUx\nE/edh1gsoqHx9txYLFEEUdtBl5Wxz/bXzPide/Sgq+JmSfEcwLLZFlIX7jkYWmIFrLbxXC/v\nVFAv+QD3NMA8ivJSN8fbc7syq53gngeYRXdaVtZGu57mcY8edJVPXeL84dSScEfCMBIqYL1M\n58fZTQ7j6S7ueYB57IvzELxqIK3jngeYxNdlPMVdsTWtPi4KSygdLUvj/Nk0ja7knoSRJVTA\n6kdz4uwmhz1ZVY5zTwRMo1vZLpn3tc5yLvc8wCQm0/iyN9rF9BT3+EFHb8axBpZLQb3kr7in\nYWCJFLA+s5wdbzcpBtGj3DMBs/iImovouXb0JvdMwBQKa5ffVfY+W0CXcU8AdDS4zIu4l5pA\n47inYWCJFLDG0N1xd5PDY8nNuWcCZjGa7hXRc9PoOu6ZgCnkl2kVd496yT9wzwB0czAlJ+ab\nggfIr5r5J/dEjCuBAtbh8tXLeE9LPxfQK9xzAXP4Q1DPFdRO/417LmAGl9LieBptLE3jngHo\n5gEaK+CH0zBcGhFaAgWseTRcQDfZlHuXXMU9FzCHeTRCTM+NpPnccwET+DG5flx9tj09p4h7\nDqCTM7XK7xTws2lrWi7uHxdK4gSsonppWwV0k0NBTurP3LMBMyiqK6rntqY2xIrJENFDdFN8\njdadnuaeA+hkF/UT8sOpF+6XE1LiBKwCEdfLO42hGdyzATPYHe+dmUp1oRe4ZwOGV5KX9kR8\nfTafruCeBOikZ9lXTPOxjLpyT8WwEidg9Y3v5ARvOI4OUekq6CeYw2wazD0bMLyX4rpzryon\n9RD3LEAX3ySVfcU0Xy3oY+7JGFXCBKxvkxoK6iaHHlTAPR8wvg+ohbCWK8hOwy8+iGAIzYq3\n0W6ghdyzAF1MiWfFNB+T6BbuyRhVwgSsyXSboG5yWITlYiCyG2myuJ4biV98EMHhjNpxX3a/\nJaUZ9zRAD0U5GSJOcVfkV806yj0dg0qUgHWmVjzr7wXISz7IPSMwuj/K1dwvruW2pDThnhAY\n3FIaFn+jdaS3uOcBOniWesTfLC5XY/HtEBIlYO2Jb/09f2NpOveMwOjm0vUie+4Cep17RmBs\nrZI3xt9nD9Bo7nmADoaIuHGcy2NJrbmnY1CJErD60RJh3eSwPa0u7ooKYRXVTdsmsuem0fXc\nUwJDe1fEzext+6pU/Id7JqC5v8rVin8Vd4/z6b/cEzKmBAlYB5PzxDWTohs9xz0nMLa94tZo\nUBXUyPybe05gZGPpPhGNdgVt5p4JaG4tDRHRLC4P0CjuCRlTggSsmXSzwG5ymIOr5iG8HvSw\n2J67hlZzzwkM7ETlyvki+mwldeeeCmiui2WNiGZx2V+twjHuGRlSYgSs+Nff81dQO/0w96zA\nyD63NBXbcra1lg7ckwID20wDxTRao6TvuecCGjsg+MfTYFrPPSVDSoyA9Sp1EdpNNuUOl0u5\nZwVGdhvdKbrnWtKn3LMC4+pGK8X02ViayT0X0NhDNE5Ms7issVzAPSVDSoyANYKmC+0mhw1J\n53HPCgzseKVKe0X33ES6m3taYFhfCzsm8UTa2bjxpeSapAi9AsdmO4c+556TESVEwDpWobrA\nCyZc2tAH3PMC41pNVwlvuT2ZZ+G29RDC/cIW5rZ1oje4ZwOaeoc6iGoWlwk0iXtSRpQQAWuj\nBr/sbJNoAve8wLjaWNaL77ne9CT3vMCgiupkCFtK+UEawz0d0NQdNElUs7jsKpeNG/QGSoiA\ndRGtEtxNDnsq1DjDPTEwqneorfiWs82nq7gnBgb1tMBVQfZVqXySez6goeLs8nuEdYtLD6xc\nFEQiBKwDwu4a7qMf5XPPDIxqDN2vQcsVZOPaVQhuEM0X12gDaAf3fEBDL1B3cc3iMoeu5Z6W\nASVCwJpJY4V3k0254/Pl3DMDgzqWVXWfFj03jFZwTw0M6fe0bIF99ghdyj0h0NBImimwW5wK\nziqPhZADJELAapQq+IIJl5zU37inBsa0lgZr0nIbktpzTw0MaQmNENlodfGzTWInK1UVeBt6\nt6vpMe6JGU8CBKx/0wXim0lxPT3MPTcwpg6Wtdr0XCtcDA3BtEzeJLLPRtAy7hmBZnbRAJHN\n4rKKunFPzHgSIGDdQlM06CaHTUnncs8NDOlTaqVNy9km0H3ckwMDEnOf51IbLDhUKq8raLHQ\nbnFpnHSQe2aGI3/AOlO9opA7dAXRhj7knh0Y0Z10l0YttzO9LtaAhADjaLLYRmtJX3LPCTRy\nJMMqtllcxtA87qkZjvwBaz/106SbHO6hO7hnBwZ05qxM4RdBu3Wlf3FPDwznVFXRf0XeRtO4\nJwUaWUdDxDaLy5bkltxTMxz5A9ZgWqBJN9mUlbVrYiksCLCP+mrVcrZpNJp7emA4O6i/4D7b\nntqQe1Kgke5arAupaEsfcc/NaKQPWH+Vqy3+NjlufWk/9/zAeAbSQs1abl/lKqe45wdG048e\nEd1oHekd7lmBJn5Kbii6WVzuwu1y/EkfsNbTNRp1k8NCGsg9PzCc39NytGs5W3/awz1BMJif\nU/KE99m9NJF7WqCJxXSj8G5x2pWRW8w9O4ORPmBdrNXhUFVO2u/cEwSjWSp2SSI/i+lK7gmC\nwSygUcL7bE+mFfeWk1Jby0bh3eKCM0T9yR6wfkxqpFUzKUZgKSzw19ayQcuey844wj1DMJZz\nUraI77OL6VXueYEGvqCW4pvFZSruEu5H9oC1gMZo1k02ZSms1twzBIP5jFpr2XK2a2kt9xTB\nUP4neBEsp6k0lntioIGpNF6DbnHaV6nKae75GYvsAat18mbNuknRht7nniIYy700UdOWW0MX\nc08RDOV2mqRBn+Vn1SjknhmI1yh1uwbd4nIJ7eOen7FIHrA+ofO0aybFJBrPPUcwlOLcjF3a\n9tzZST9yTxIMpFCjZdd60XPcUwPh/ksdtWgWl/k0mHuCxiJ5wLqf7tCwmxz2ZlXHMVHw8gp1\n07blbKNoIfckwUCeoj6a9NlMupF7aiDc7aLX/PdRUKv8Ue4ZGorcAaukftpODbtJcSnt4p4l\nGMmNNF3jltuU1JZ7kmAgQ2iuJn22r1JVrKMsm6Ja5TW7y4TiatrEPUVDkTtgvUmdtGwmxcPU\nl3uWYCAnK1Xdr3XPtaYvuKcJhnEss6ZGSyn3pWe4JweCPUc9tWkWl0epJ/cUDUXugHUrTdG0\nmxR5ybiFOHjspMs1b7nxNJV7mmAYj9NgjfpsFt3APTkQbAQ9pFG3uDRM/pl7jkYidcAqrFlB\n8C1QgxhDs7jnCcbRnx7WvOW2p53NPU0wjD60UqM+24/PCGVzoqLWB9hH0WLuSRqJ1AHrGeqt\nbTMptqXllXBPFIzisKa3yXG7gP7LPVEwiEMa3CbHrS89yz09EGqH5gfYNyWdxz1JI5E6YI2g\nWRp3k6ILVjwGt1U0TIeWm0wTuCcKBrGcrteszx6i0dzTA6EupyWadYvLufQp9ywNROaAdbJi\nVY3O/vQxk4ZxzxSMopNlvQ4ttyezNu4TByotO25fpepYa1Qmf6Zna9YsbhNpMvc0DUTmgLWb\nBmjeTTZl6Y9yuDkcqA5YmunRcraeWAMSVD8kNdWwz3rTi9wTBIHW0FANu8VpV0ZuMfc8jUPm\ngDWIFmneTYqh9Cj3VMEYHqJbdGm5WTSce6pgCAvoJg37bDruRyiVi2iVht3ichG9wj1P45A4\nYB0tV1uPTwhttg1Y+BGcmqds06XlCqpnHuOeKxhB26THNeyz/Aq1cTRCHgeTGmnYLG7TsbpH\nKYkD1hbN1ofx14Y+4J4sGMH/qL1OLTeItnBPFgzga2qpaZ9dTK9xTxGEWUCjNe0Wp/1VK/7D\nPVPDkDhgXUrLdOgmxb10G/dkwQjuoHt1armV1Jt7smAAD9E4TftsCt3OPUUQ5lzLJk27xWUg\nbeWeqWHIG7D+1GVFIlV+paonuacL/IpqZ2p6ny9veVgwGez2VslbNG2zPRm5WOVPFp9Ta02b\nxW0Z/vrzkDdgrdPhggm3AbSNe7rA73mN7/PlbRQt4J4usPuCztW4zzrR29yTBEEepNs17haX\nvOSfuOdqFPIGrB60Wp9uclhOPbinC/yG67KwrdOWlBbc0wV2M2i8xn02iSZxTxIEaZS2XeNu\ncRlN87jnahTSBqzfUhrq00yqRpZvuCcM3P7Jqq7PZauq9vQO94SBW0vNr1rdhfteyuIdukDj\nZnHbktKUe7JGIW3AWqHhHSQCjaOp3BMGblvpSh1bbjLdwj1hYPZ/dJ7mfdaePuKeJggxUbdL\ncGwd8MGyi7QBq4su9yxx255WF+vFJLq+ul22qsivVAVXViQ47T8htNkm0DTuaYIIxdnldbsE\n53789ecia8D6MamxXs2k6kYvcE8ZeP2SUl/XlsOVFQnvHB3Wtd2e0op7miDCy3Sx5s3ihr/+\n3GQNWA/Tjbp1k2IWDeWeMvBaTDfo2nK4siLR6fEJoc3Wmr7inigIMJqm69AtLgPoCe75GoOs\nAesCywb9usmhoGb5v7jnDKzOS9JlFb9SjZO+5Z4zcJquwyeENttYXBImg9NVK+3ToVtcllEv\n7gkbg6QB6weLlveYD2YIreGeNHD6RPMlifzdRvdzTxo46fEJoc22ydKee6IQvwLqp0OzeDRM\n+oF7xoYgacBaQGP07CaH9ZZO3JMGTpNoos4tt6t8rTPcswY+n1MbXfqsqeUg91QhbtfQfF26\nxeVmmsk9Y0OQNGC10+emS95aWHCqQgIrzsnYpXfL9aF87mkDH30+IVRuGrCUe6oQr+OZNXRc\npM9meyKtAe6xZJc1YH1raaFnM6nG0wPc0wY+L+p4jY7bI9SHe9rAp3nKE7q02XpLV+6pQry2\n6bpIn0NnepV7zkYgZ8CaS2P17SaHHel1EdkT1/U0U/eWs52N09wT1yc6fUJoszVMPsQ9WYjT\npbRUp25xmU4juOdsBHIGrDZJm/XtJkUX+hf3vIHLP1nV9uvfcrfRvdwTBy4P0gSd2mw4LuAx\nu8NpOTo1i1tB9cyj3LM2ACkD1tfUUuduUkyj0dwTBy6baRBDy+3OrHGKe+bApEmqTrfuta2i\n3tyThfisoaE6NYvH1bSOe9YGIGXAmkXj9O4mh31VKp3gnjkw6UUrGFrOdglt55458PiQ2uvW\nZnXT/uSeLsSlm2WNbt3issZyIfesDUDKgNU6eYve3aQYQLu4Zw48fkxuwNFxtuV0EffUgcdk\nuku3NruGNnFPF+Kh953jVC0sX3DPm5+MAetLaq1/Nzksocu5pw485tFolpazNbV8zj134FCS\nl67fsiDLaAD3fCEeCzh+Pt1Ok7nnzU/GgDWTbtO/mxS5aX9wzx1YtEhhOWZqs02kCdxzBw7/\noU46tpk14xj3hCEO5yY9rmO3uOzKqFPEPXF2Mgaslslb9e8mxXW0invuwOF/1I6n42x7K1X+\nh3v2wGACTdaxzQbhXD8z+4znM50e9Cz3zNlJGLD0uoNEoLVYkS8xTaBJTC1nG4jTYxJRkbX8\nHh27bAldxT1jKLspuq3o4WMOXcM9c3YSBqypdDtHNykaW77jnj3o70zNTD1/2/lYhWt1EtFL\n1F3PLis4KxMHSk2rJC9th57d4uma2hkJf/WphAGrmU53kAhiDM3nnj3or4D6cHWczdaSPuae\nP+huFE3XtcsG0m7uKUNZvaXr+XpehtJK7rlzky9gfUTn83STw5bkc7mnD/obpO+N6n3dTeO5\n5w96O1Wl8j5du2whPu0xr3E0Rddm8Vhvac89d27yBawpdAdPNynOo8+45w96+zO9tq43qve1\nt2LVk9wVAJ3l02X6dllBzQpYRdmkzlTPyte3WzxaJfzvQ/kCViPd7iARxAR6gHv+oLdH9b8N\nhbcBtIW7AqCzQbRQ9y7byz1pKJsC6qdzs3hMpEncs2cmXcB6jzpwdZPDjrQGJdwVAJ11tKxn\nbDnbSurGXQHQ118ZtfXusvl0LfesoWwG853BsKucNcGXwpIuYN2r4x0kgriQ/sNdAdDXF9SC\ns+OU1dy/4q4B6GotXat3kxXUyMJnhKb0dznGMxh60jPc8+clW8DS9Q4SQUzGytqJZgqN5+w4\nm208bkmRYC7S/9a9tv6Uzz1tKIv1dI3uzeIxl67mnj8v2QLW21xXpLrszayV4MdEE01x3XSW\nRWZK7crIRs8lku85bt2LzwhNqhut1r9b3ApqZxzhLgAr2QLWnXQvXzcpetCL3DUAPb1CXXk7\nTum5p7irADqaTWP1b7KCGriO0Ix+4EjjpYbSo9wVYCVZwCrJKce2prbTDLqBuwigpxt0XvIx\niHm4kUlCaZbCcbPVAbSHe+IQu7l0M0OzeCT6UliSBazXqBtnNznsr1IRf+glkH+yqu5nbjlb\ngTX9MHcdQDf/o/YcXbYg0U+nMacWLGm8VIIvhSVZwLqVHmDtJptyMihuKpFAttBA7o6z2YbR\ncu46gG4m8JwGUVCz/HHuqUOs3qd2HM1SKsGXwpIrYBXVqsC1Zq3HYrqCuwygn960jLvjbLYN\nlnbcdQC9FNZiurX4QNrJPXeI1Z00iaVZPHYn9lJYcgWsF6gnbzcpstPweU3C+Ck5j7vfFK3p\nU+5KgE6ept48TbaEruSeO8SoqDZTGi/VM6EvwZErYI2imczdZFOum1jNXQfQywIaxd1vigQ/\nDp9QhtAcpi6rXe4Y9+QhNs/xH3KYR4O4q8BIqoB1pmolfe8xH9RaSyfuQoBezknezN1vil3l\nsBRWgvi7fE2uhbkH466XZjOMZjE1i0dBdtrv3GXgI1XAstEl3N2kaGr5hrsSoI/36XzubnPq\nQc9x1wJ08RhdzdVky+gy7tlDTI5XqM53mxy3EfQwdx34SBWwhrEdPPcx61gzoQAAIABJREFU\njmZwVwL0MZHu4e42p1k0lLsWoItutIqty3LSE3tZbtPZSoPYmsVjU1Ir7jrwkSlgncgyQFx3\n2J7WsIS7FqAHtgu6AhTUzDzKXQ3QAevC3ENpPff8IRb9jHCNs+18epe7EGxkCli76HLuVnLq\nTG9w1wL08Az/KaRug2kDdzVAB7M5F+ZeQz255w8xOJRSj69ZSt1Ht3BXgo1MAesKWszdSk5T\n6UbuWoAerjXGZ9KKVXQxdzVAB01ZF+ZukPwrdwEgektpJGOzeORXqpywdzeRKGD9nVGbu5Nc\n9lXNwprHCeAo3wVdgRol/cBdD9DcOzy3yXEbScu4KwDRa2fZwNktHgNpK3cpuEgUsDbSNdyN\n5DaINnFXA7S3gQZzd1qpm2gOdz1Ac+NpMmeTbbBcwF0BiNqX1JKzWUqtpG7cteAiUcDqTSu5\nG8ltlaULdzVAexczXtAVYGtKM+56gNYKa1bYy9plzS0HuGsA0ZpK41mbpVRTy1fcxWAiT8A6\nlGKIm5Y4NafPuesBWjuY1Ii7z7y1p3e4KwIas1Ef3iYbi+Ok5tEobTtvt3iMp8ncxWAiT8Ba\nStdzt1GpCXQPdz1Aa3NpDHefeZtMt3FXBDR2Fc3nbbKtKS25awBR+jddyNsspXaVr13IXQ4e\n8gSsjgY5oU+1O7Pmae6CgMZapGzh7jNve7NqnOEuCWjqSEZt7qsq2tDH3FWA6NxKU5ibpVQf\nyucuBw9pAtY3lhbcTeTtUtrJXRHQlmFuk+PWl/Zx1wQ0tYqu5W6yiQn7YY/ZnKmRlc/dLR6L\n6RLuevCQJmA9RLdwN5G3ZViWSHZ3GuU2OW4L6ArumoCmLrSs5W6ynen1cJsKU3iS+3w9H3nJ\nibmKjDQBq1nKNu4e8tHE8gV3SUBLRdbyBrlNjkd2+mHuqoCGvjLCUfouuE2FOQyhedy94uVm\nms5dEBayBKz3qR13C/m6gyZy1wS09Dz14O4xf9fRCu6qgIYeMMJl9w8m8H1PzMRQqyDbbNvT\nc4u5S8JBloBluM9r9lSs8g93UUBDw2kWd4/5W29pz10V0E5J/fQd3C1ms+VXrI5rKUxgo5FW\nQXboTk9zl4SDJAGrKNtwn9dcSeu4qwLaOV6hupH+QHRqSf/HXRfQzCvUlbvBFP3Ixl0JiKw7\nreDuFB/zaSB3SThIErBeoO7cDeRvraU1d1VAO1vpSu4OCzSB7uOuC2hmBM3kbjDFfLqGuxIQ\n0Y9JDbkbxU/dlJ+4i8JAkoA1gh7i7p8A59Pr3GUBzfSl5dwNFmhXRk5CnuiQEI4Z5JhpQa3y\nR7lrAZHMM9YqyA5jaCZ3URjIEbD+yapmiJ89PmbQ1dx1Aa38aqQbM5XqTs9zVwY08phRTqq5\nmjZy1wIiMdgqyA7b0+om4F9/cgQsQ35eU5CTcpC7MKCRh+kG7v4KZhZdy10Z0Ehny2ru9nJ6\nlHpw1wIi+J/RVkG2KX/9PcVdFv3JEbD60jLu7gliLBY9llbbpE3c7RVMwVnl/uIuDWjiS0sz\n7u5ya5iciGfTmMrtNIm7SwIsoP7cZdGfFAHLoJ/X7M6qcpy7NKCJz6g1d3cFN4RWc9cGNHGf\nERbBchpNC7irAWGdqVnBaFfVO9RLTryPdKQIWIvoRu7eCWogfttJajJN5G6u4NZbOnDXBrRQ\nlJ2xi7u53DYnt+IuB4S131C3yXEbS1O5C6M7KQJWq+THuXsnqMeSm+K+XTIqzjXObzs/Lekz\n7uqABp6mntytVaoNfchdDwhnIC3k7pEgdmTUKeSujN5kCFgfUBvu1gmhSyKe1pcAXqZu3K0V\nykS6h7s6oIFBNJ+7tUrdTXdx1wPC+C0th7tFgupFe7lLozcZAtZEupu7c0JYRBdzFwc0cD3N\n4G6tUHZn1kq4vxITwG9p2dyd5WV3eWsRd0UgtCU0grtFglpCvbhLozcJAlZhrUwDntDn1Ize\n4y4PCHc8q+p+7s4KqQ/t564PCLeIRnI3lrce9Bx3RSC0lsmGvMbZZmuU9BV3bXQmQcB6inpz\n901IU+g67vKAcJvpCu7GCm1RIl4MLb1mKZu5G8vbLPxcM7B3DbgIltOEhPtsWYKANdhIZyf4\nKchO/YG7PiBaTyPeJsejXsrP3AUCwd6gjtxt5aOgRuYx7ppAKLfQfdwNEsKerKonuKujL/MH\nrCMZtY13mxyPcTSRu0Ag2I/JRruPqo/RNJu7QiDY9TSNu618XYXb5RjWicqV87n7I5SB9Bh3\nefRl/oC1iq7j7pow9lbJOsJdIRBrDt3E3VbhbEurn4D3/JLaX+VrGOykv5W4fMewNtNA7vYI\naY2lLXd59GX+gNXRsp67a8K5juZwVwjEapKyjburwupKL3KXCIRaSUO4m8pfo6TvuasCwXWl\nldzdEVob+jd3fXRl+oD1f3QOd8+EtS2j1knuGoFIb9IF3E0V3my6mrtGINR5SY9xN5W/sTSL\nuyoQ1JeWptzNEcZUGspdIF2ZPmBNpgncPRPeANwvRy6j6EHunoogJ+0Qd5FAoHepLXdLBdiW\n2pi7LBDUPYb+jVhQO+0X7grpyewBq6iOYW9a4rIh5WwsyieR4xWr7uPuqQhuoLncVQKBbqL7\nuVsq0IX0FnddIIjTNTN3c/dGOKMS64aEZg9Yz1F37o6JpDvt4K4SiLOBruLuqEi2peXhNHd5\nHMsyYqR/kMZwFwaC2EX9uFsjrB3lap3irpGOzB6whtAc7o6JZKXlPO4qgTidLKu5OyqibvQM\nd5lAmNV0NXdDBbGvSqV/uCsDgXrRUu7WCO8y2sRdIx2ZPGAdKVfLwItguXSgZ7nrBKJ8Si24\n+ymy+XQZd51AmDbGvE56IG3lrgwE+CapMXdjRLA6oQ44mDxgraJrufslsoXUhbtOIModdCd3\nP0WhQdK33IUCQd6lNtztFNQK6sFdGghwL43nboxI2tGr3FXSj8kDVgdj/nHnpyW9yV0oEONk\ntSzD3lncy600ibtSIMhomsLdTsGdnfQdd23Az5namQa/6Eu5keUA7jLpx9wB6zNqyd0t0ZhJ\nl3JXCsTYQgO4uykae7Kq4AQZOfxdoZoBT3FX3ELTuIsDfnbQJdxtEVle0hfcddKNuQPW3TSR\nu1mi0tjyAXepQIjOFgOvkuzlClrLXSoQwoCruLtsT6+Hi1UN5mJ6hLstIruDxnLXSTemDliF\ntYy95IfHFKytLYePDX7fAI91Sedw1wqEaJW0gbuZQulGz3NXB3x8YehV3N3yq5X/nbtSejF1\nwNpHfbl7JToF9ZIT56CozG6hSdy9FKWO9BJ3sUCAt6gddyuFNIcGc5cHfEw0x0c6IxPnw2VT\nB6z+tIi7VaJ0F43kLhbE7++sKvncrRSlOTjvTwrDaSp3K4VUkJ32G3d9wMuJqqa4BMe2vXyN\nE9y10omZA9bPKfW4OyVa+2un4ubz5reUruHupKg1TPo/7nJB3P7IqGnghf6up4XcBQIvG2gg\nd0tEZyCt4K6VTswcsGbTaO5GidqtNI67XBCvksYpm7gbKWp30U3c9YK4zacR3I0UxtbUxiXc\nFYJS7SxruFsiOhtTGiTIDXpNHLBKGqRu426UqOVXz0iom4hL6Rnqwt1H0cuvUe4Qd8EgTiUN\nU7ZwN1I4negV7hKBh1GXpA2iB23nrpY+TBywXjTTrzvbGLqbu2AQp760gLuNYjCKHuAuGMTp\nOerK3UZhPUTXcJcIPEYadUnaQCst5ybGsU8TB6xraBZ3m8RgT+Wsw9wVg7h8ZmnE3UWx2JlZ\n9Rh3ySA+l9M87jYKq8CajtPcjeJwuZr7uRsiah0S5H705g1Yv6VbDXz6Z6ARNJW7ZBCXm+hu\n7iaKyVW0hLtkEJfvk41+Gc8NNJe7SOAyn4Zzt0P0FlFX7nrpwrwBaz7dwN0kMdlRocpR7ppB\nHH4rV92g9ywJYXNandPcRYN43EvjuJsogifS6ybI2cqGV1Q/1dDn6/lplRg36DVtwCpukLqV\nu0dicw3+2DO1aSZL9DZbP1rPXTSIw6maxr9zb3eycZcJVAV0MXczxOIhuoS7YnowbcB6hrpx\nt0iMtmWclSirq8nonxrld3C3UIzWp5yNwwsmtskEdxZfRH24ywSqnrSYuxli0tjyPnfJdGDa\ngNWf5nN3SKwG0lLuqkGZLTfLIn5eutM27rJB2Z1vhmWNzrZ8yV0nsCuX4JjhNoRepiTEjZbM\nGrAOJNfnbpCYbUrLwTkxZlWYl7KRu4FitiqpeTF34aCs3qK23A0UhTvodu5CgcPNJrsEx1ZQ\nL+lz7qJpz6wBaxLdyt0gsetH67jrBmW0lXpyt08ZdKFd3IWDsrqapnP3TxT2VqqIi3f4/ZlZ\nzSy3SXW7m4ZxV017Jg1YJ6pX2M3dH7HDOTGmVdLKsoq7fcpghaVVYqznJ6GDqXVMsQ7NNTjz\nwQDm0TDuRojV/uyUr7nLpjmTBqx1JjwhxqacE/MEd+WgTGx0IXfzlEkn2stdOiibSXQLd/dE\nZUtaQ3wOza0wN81kF9XblE+XR3HXTXMmDVgtk9Zzd0dZPGo5BwcUTKmD5WHu5imTZZbW6DhT\nOl41y/BrNDh1o33cxUp4O6gXdxvEbl/t1APchdOaOQPWi3QBd3OUTSf8LDKlF8xzG1U/nWgP\nd/GgLJbSIO7eidLD1IW7WAmvvWUldxuUwXgazV04rZkzYF1Kc7l7o2wesZzPXTsog67mWxTE\nZbnlHHyAY0JFeSmbuHsnWi3pv9zlSnBvmvMPwPxaaQe4S6cxUwaszy0NuVujrNrRs9zVg5i9\nSq24G6fMutB27vJB7HZQd+7OidqDdBV3uRLcFTSTuwnK5HbpD2GZMmCNMduSH6UW0oXc1YOY\ndac53I1TZo8mNcGlq+bTxrKCu3OiVlA3Wf7LwYzsqyTzrQqp2lc79Rvu4mnLjAHr14wa5rrr\nrrfW9DJ3/SBGr9M53G0Th+60kbuAEKvnqR1338TgDrqZu2AJ7WaayN0CZTSBRnAXT1tmDFhT\naBR3X5TdXOrGXT+I0cUmPoBls61NqYcbCJhNN1rA3TcxyK+R8TN3xRLYoXLVzbbIqNu+7JT/\n4y6fpkwYsI5WrbCTuy/i0JJe464gxORVasndNHHpS8u4SwixedNkx0zH0F3cJUtgU+hG7gYo\ns7vpau7yacqEAWshXc3dFfGYQxdzVxBi0oXmcTdNXDaln3WMu4YQkz4mO2l5T+UKv3PXLGEd\nrZJl3iMOBfWSPuAuoJbMF7BOZadv4e6KuLSkV7lrCDF4ns7lbpk4DaIZ3EWEWLxNTbh7JkYj\n6V7uoiWsBXQN97c/Dg/QJdwF1JL5AtYauoy7J+IzF+vymUlJe8si7paJ0/asrEPcZYQYmO0A\nls22qxIOYTE5WTvDfHfJ8dKU/sVdQg2ZLmAVNkjZwN0ScTqXnuOuIkRtH7Xnbpi43UjjuMsI\n0XuDmnJ3TMyup3u4y5agltMA7m9+XOZRB4nv5mW6gPU49eTuiHgtspwvcUdJprilZSl3w8Rt\n71mpX3AXEqLWlWZxd0zMdlXO/JW7bgnpdG7qRu5vfnza0U7uImrHbAGrqEnyGu6GiFtH2s1d\nR4jSFurC3S4C3E39uQsJ0XqWWnP3SxmMpvHchUtIa6gf97c+TiuSGsq7jozZAtY26sbdD/Fb\nkdToDHchISqn81JWc7eLAAWN6UXuUkJ0is+zLObulzLYWyP9AHfpEtCZ+imPcX/r49WHlnCX\nUTMmC1jFTZNWcbeDAD1pBXclISpLqQ93swix0HJOIXctISpbqBN3t5TJ7TSMu3QJaI0EP6A2\nl6v6B3cdtWKygCXFASybbWNGjb+4SwlROHZW+ibuZhGjG1YbNYeTdVPMeRLE/tyk97mLl3BO\n5aaa/gCWzTacbuUupFbMFbCKGifL8IGNzTYEKx+bwlQazN0qgmwqV+U37mpCFGabdhmaB6kn\nd/ESzlK6hPvbLsCes1I+5q6kRswVsDZSd+5eEGNXtTRc1mV8v1SouIO7VUQZSSO5ywmR/ZyV\ntY27VcqqJT3DXb4Ec7xWhhRH2O+T9g69pgpYZ/JS1nK3giB3UV/uakJEY2gMd6MIk59reZ27\nnhDRCBO33MOW5jjRT1czaRD3N12M1vQEdy21YaqA9agEJ/S5FLSgvdzlhAg+Traa9S71Qcyx\nNJf3amhZ/NuSu4+7UcquOy7e0dVvFbO2c3/PxViVYv2bu5qaMFPAOpGdZvZF3EstT8nBHXgN\nrjdN5m4TkXrgloRGV9SGHuJukzhszKj+J3cJE8k4uoH7Wy7KVZIuo2amgDWPLuduA4EG0e3c\nBYWwnqIW3E0i1LZK6Z9z1xTCWm7SJRrchuKHmo4+Tz1rL/d3XJTdZyX/l7ueWjBRwDpStbyp\nb2rpx9FR/+EuKYRxurHlEe4mEeseurCYu6oQxs+Vy5n7tid7aqZ+yl3ExHEJTeL+hosznVrJ\nuPq2iQLWvXQddxMINdPSAufEGNgC6s3dIqK1l3jJZBkMplHcLRKne7FUg26epuYF3N9vgbpJ\neQaDeQLWwXJVdnH3gFg9aQp3USGknytmbuHuENE2ZZXH6iDG9SQ13M/dIvFqRXu4y5ggTje2\nPMz93RZpW6V0CRfDMk/AGknjuFtAsO3VU6T82FkO15r4evmQJlIHXEhvVH/nJpv/M+kVKbn/\ncBcyMcyV55p6p8nURr4fTqYJWB8m1zHx9cvBTbc0wQ8jg3qB8kx/NCGIC2gmd2UhhJvpSu72\nEOBymsxdyITwQ2aWTKckK7rQdO6qCmeagNWLpnB//8XrJ+89mEzu5NmWhdzdoYWtVVLf4a4t\nBPWyJXsPd3sIsLNqGq5V1cHl0n2iY9tWVb4fTmYJWE9Ldsm8065sy9PclYVg7qd+3M2hjWmW\nRse5iwtBHKtvmc/dHELcQ91KuIspv/3UWKYz3J2mWRrL9pGOSQJWYTO5TuhzW5xy1q/ctYVA\nH6RWk2SJ5ACX0Q3c1YUgxtBA7tYQ5FzazF1M6R3NSV7K/X3WQD+6ibuygpkkYC2jHtzfe22M\noN5Ymshwzpwn4wfSTnvq0Xbu+kKApyw5MnxAqFiTVvMwdzllN16K8/UC7M6hfO7SimWOgPV7\n1XJS3DQ8UEErmsddXfA3jbpwN4Z2VqRX+oa7wODnt1opi7kbQ5hhNJK7npL7d3Lt3dzfZU08\nklrtR+7iCmWOgHUzDef+zmvl8cqpb3KXF3y9k1p1G3dfaOg2aosVbg2mPw3lbgtx8utaXuQu\nqNRONbPM5P4ma2QUdS3iLq9IpghY7yXXluaeSwFmWur8zl1g8Ha8iWUqd1doqgvuGGcwK6mZ\nTIuCLLTk4UoKDd1PPbm/xVopOJ8e5C6vSGYIWMUdSeZfeNdQT6kyu+mNlvUKQrcdVguW2zaS\nj8plruduCqEGIMJr6N2U6rJegmOzbaue9Dx3gQUyQ8BaQ+25v+ta2t+a7ucuMZTaSbmynG4c\nyiNplb7iLjN4HG9K93K3hFi7aye9zl1VaZ1sbpnG/Q3W0PyUGge5SyyOCQLWr1UzHuP+pmtq\nSw3LXu4ig9tXldKWc3eE5sZTqxPchQa3ofIdMp1jaYAPCTVyJ/Xi/vZq6gbqKM85oiYIWEPo\nBu5vucYeTqsg4W0uzelEaxrP3Q866E7Xc1caXFZQA/kOmfaXbkUjo3g1qeYO7u+upgouoFu4\niyyM8QPWk5Qn3U0I/U2kPJzobgwjqDt3N+hhTx6t5C41qN5Mq7COux3E25NjKeCurJSO5Frm\ncH9zNbYzl9Zwl1kUwwesI3UkuMV8RIOo8ynuSoPDUhmPJgSzNivtDe5ig8OPteU8o+bhlBo/\nc9dWRoPoKu5vreZWV0j7F3edBTF8wBpOg7m/3Too6EDX4AZe/F5KzZLrcq7QZiTVkuhcUtP6\npy2N4G4FbdxA3XGTCuFWUuN87u+s9mYmV/uCu9JiGD1g7ab6CdBPNtvus+lO7lrDF1VTZnF3\ngm6upzay3VnVfIqvoK7y3bRXVdCGpnGXVzrvZsj4eXKgsdTgEHethTB4wPqhatoy7u+1PrbU\nxj1zuP1+No3j7gMddaMrcYiB2e3UVNqPpLdUS3qOu76SOVzfIu1NUn0NpLZHuastgrEDVmFn\nGsP9ndbL2qqW5dz1TmwnLqDLubtAT3ua0l3cNU9w8yh7K3cbaGd+SrUD3BWWSlEvGsT9TdVJ\nQTe6SIaVZIwdsO6h9pIePw9iRUXLo9wFT2SF/enCxOk2xZba9Ah31RPaKktVqT/wuYlaYTUs\nge6g1jLdUSms/HbU5yR3weNn6IC101LrCe7vs44eybLg9x2b4mHUQtpPa0JYUylpC3fdE9hj\nSVnLuFtAWz1oID6FFmY1WWW+Cb2fPa2pj/mPYRk5YP0vM30p93dZV0sr4bRQLiU3UwN5b/AV\nypJyqfu4K5+w1iZlLuZuAI3tbYZrd4R5JrXCKu5vqJ4cCavbMe6ix8vAAesHq0WyO3RF9Gh1\nGlPIXfeEVDKOciU+Gyak2WlpNu7aJ6iHLRVkz1fqp9BLuQstiXcqpMzm/nbqa8/51M7sC3Ab\nN2D90YyGc3+HdbehLvU+wl35BFR8M+Vs5v7ms5iRloYbYTIouY8qJcAKyrZVlZK2c9daCp/X\nsNzN/c3UW34Xavwtd+HjY9iA9Xc7+e6AGoXtranRp9y1TzhnhlHu49zfeiYz01Me565/4jk1\nlP6fvfuAc5p+/wD+7XFs2Yga4NgbAQVEEBkyBcPeMmWIsoeAyBRB9t4IyFKUfedGRf/iFjfi\n1h8ORHCwZNzoP0lX2ma2uTxp+3m/Xkqa3OX7JN/1XJsmNyTG5z1L8+bEe6TR+6FU4nyhPiC1\nA7vhfepTHxWnJljnGrEmifWVLq+DPLsOFx7b61J7VjERPx/0eDy/ayF1DSSaU41YxUTJ6Ofm\nyvMS9fmOeT+XZf2oK5LEYFe+PdQnPxoOTbD+asAaxf0jnlVMyMPuw5ebbXT6NlYrvp9Pr21F\nUXY/rvyz07ulWKO91NVum5k58zxHfcZj3A9lWE/qaiTycG7XnBh+ipwzE6xfarI7EzW/Sktb\nW5ZVepe6ChLHl+VYk/3UdU5qcwprcZa6GhJH1opcrnsT6e35mblyPUt90mPalxzrRV2JZJYV\nY91j9w0HRyZYn5ZibRPmhmoK9vGuHJPj4CZrMSGtIOueSLOdkt11Wdlj1BWRKM50YgVmUte4\nvebkybGW+rTHsLeKuOL0geCGbKvCbv6Oug4i5cQE69B1rnupK5XYnOKsOt7EskHWo0k5x1HX\nNr1D3Vx5MAXa4rmbWPUt1PVtt8UF2ETccTRCO/MkjaSuQFL7W7HCsXq7PuclWFmzk3JNpK5S\ncs+0cSWNifm7rDne2Xas2GLqunaER/Kzbn9TV0f8+3sgS743Ad+dX38Tu+df6pMfkzImufLO\noK4+aiNzucZdpa6JiDguwfqbZ8WWUNenEzx2IyvzPHVtxLk3S7NaiXn7q3BPVGGlX6OukHj3\ntNCpl1HXNIldN7NKn1Kf/hh06i52wyrqyqO3/CZW92vquoiE0xKsD8uxmpjyJHs752Ddf6Wu\nkDh2ZXKOpF4J+G6CioM9k1yjYvdq0hjwbWuWs88B6nomcoBneVbH8NfBaDx/A6ubQM8fVPdM\nU5ZvVQw2H2clWFlLc7m6Ju7XB0Mtr8gKLL5GXSnx6v2arMTj1FXsKItuYuVfpa6WuHVhSm5W\nax11HRN6+DrW5iR1LcSUc8NcyQMS/Rs4PhPys2axd627oxKsU3ezggn/cbPcoeH5WRXcBzk7\nnBudg7VKvKc7a9vbweXqd5q6auJS5jaOFZ2Y2JPl1lqs4Gpc627YgVKsdPw/rtKwrXVZ3jlX\nqCvFJCclWPuvZ7WepK5Fh9nZysWaHqWumbiTtf0mduOj1JXrQIvLssKLY20QiwFH6rGc3fZQ\n1y611AfysbrvUNdFjPjuHpaj2z7qKnOU8YVY5Ri7Ltk5CdafvVnOgYn9F56iFbcw1uIwde3E\nlyP1Wc4eiXMrbTMODM7PyjwRm9/YcaxP2zN2xybqqnWCbY2Zq+cP1PURA/6akJtVW0VdXU7z\nVFsXa/MZdd2Y4ZQEK2tLMVZhFXX9OdO8WozVWo97Nljl/baMNdxIXauOtfOeZFZ64V/UtRQ/\nPu+exKotpK5Wp5hbjuUcjkuxtF2cV5gVG4+3G8Itr8mSeh2nrh/jHJJgHW3Acg/A1e1qFjZK\nYgXuewOXL1jgtdaMVcd0p2Vzu1wsT7/DGdRVFRfe4F2s3HTqKnWQ1PE3sFz3xdAcabvz869n\n+fvhHXZl08qypC4x8zmzIxKsD+5h7PYnqCvO0Tb3KMpY6fFHkWNF5eLGWkJ6hYuv9OzsV4Ix\nbsw7Mfi9aEf5Z63Q3ipOw1sRQQ6Muom5Wh/A96MV/TqlMMvbA/dmUJU6uRxj9TfHxkc69AlW\nZmoLxqrMo641xzs0q3lexkrct/cf6hqLVVlvDyvIXLcvoK7JmJA6t0U+xkqNPIL3sSJ14dlu\neVhSg7nUVelAhyZXYeyGce8jgQ+R9XrPnKxAH6RXmlJn13Wx6/q9GAMpOnWC9f3MMozVmEVd\nY7Fh39TmBRjL0XDaq5eIqy0GfTK1PGNFu2+mrsTYse+RZkKOVXzgftx91LxvVrbNw9hNfbZS\n16JTLWubn7GUES/+R11TDnJiZgXGSg5P+G+bGrCxR3FhOB94wOljE2mC9fWC+ozlaoFbfRh3\naEH3ii7hpDWaeBD3KzIs/cgEYeTKdecMXOZnzv4ZrQoxlqftyti7wx+h33YNFv5sZKW6YWTT\nsm9KYyEHzdNy/vt4l9TtvvrGlOrCGNVkLj5PNiZ1XltxbGq54CMnNx+yBOvMvgeEOS/p5pG4\n2aNZT03lyycJA3jFfqs/iIE3SYllfr6yY0HGcjec+Cx1xcWkQwu6lBQaW/lhT/1GXZUxIPOr\nLfdVFk5XvgYP4Huq+vbP7lBaOFsF2y94J5HvDPLPy7Na5mcsue6bP0i4AAAgAElEQVQYzIZm\nHHq8S4rQfAq1m/OyU7/1TJFgZXy59f6aLiH5vG0EHjsYod2zetUW/vxjuW8bvv7dcwSVGAuu\nffXsw62Fv3JY8bbT8J2cKGy8v77Y2Mr1Wvzqn9SV6lSZJ19fP6KJkMqzPHX6LcJbpYY9Oa5F\nCeGs5W08/qmvnPxeRPb48/DC3pWFyZCVvHsq/gKMwNaxzcXmw8p0mLrrmPMufLc3wco6eXjV\n/Q2FXJ3lrNFr7n7quolxh1aNaFU2h9i4St015LHtrx8/Y2tlOlf6r+/uXTq6fZWc4rkp0fTB\n9dQ1FQcOLLj31nzi+Sx+x4BZT752wunXPtjl0g9H966c2r95xdziyXHd1GTIYiRXpm0e36a0\nS8pNe07f9tbJRMizMk8e2TC21U1iq8lTo/PD26irIJZtndy51nXimWQlmwycve3NH5zzLAq9\nBOv5Z6O3a8OSWeMGdW12803SjOcqVqNFv4mTwRIT+rW5JSU/80gqVLJK3SZ3dx/w4MTp81du\n3GZB5Zn3inaLupY9pT61ccnsh4b1bNe4ZulC3rOR64bqTbuPoq6geDLkngblCrk8Zzf3jVXq\n39W53/Bx0+ctXbN1V/bUqtcH2k3qz2wtPNQzW1fNnz7u/j5883pVbszjbWss7w2VG9zddxx1\nDcWwsT2bVbte+nuR5ShWpX6b7oPHPDJv+Ybt2VOL32o3qW+zpdBdm5bPfWTM4J5331HtRmku\nZNeVbcAPmUR96uPCg92b1y59nbc7Fix9853teg4dN33Bqq27s6Uuwym+ua+XYJVnAKbU0W5R\n56jjg5gzSLtJvUEdH8Sc5dpNajl1fBBz3lBqSCYTrDxFihTJRxO+pLBQfhJd8bmF4vPr/1i2\nKSSUn4Ou+FxC8dfp/pTjEizqRhsmpxBQAeog5JKEgApTBxFE7Ogu/yvbE6xkofiClu/VEs6r\nq4AiQbXmKIVCZg5zCVYO4bcLMTvkNDTGWsG+YTG/UFJuW0oqIJSUbEtJCpmIFQnWDXXr1k2x\n5QCU1RbKz0VXfHGh+HJ0xbOaQvl56YovKhRfQfenHJdgUTfaMIWEgCpTByGXSwioNnUQQW4R\nIgqMlLYnWPmF4qtbvldLOK+uAoTQ6hL+/aullhCafJI3l2DlFX67pi1xFhZKqmRLSTcKJZW2\npaSyQknX21JSVaEke/50VchEIkqw+rUMcqew24Yt6dQXyr+LrvgEP/wmQvG36/7U/dot6pIN\ngQZrLITdyPZSNTQTAmpAHYTcXUJA9amDCFIvqKUv0m5Sn1lefHOh+Nss36slWgih1aMOQpkY\nWl3qIFTUCxk692s3qf3Bv93ctg5ibIy1gjgs3mFLSY2Eku60paQGQklNbSlJbE8tgld9ptSQ\nTH6LcJew27nmfsVSLYXyf6crfr9Q/DS64t28UP4PdMW/KBQ/ga74SO0Qwn6cOgi5t4WAhlIH\nIfe7ODFSBxFE/FOG8NY2XwrF96ArXstpIbTm1EEoyxQTLIfez6q1ENqvEf/298Jvd7AwGnWv\nCSWNsqWkLUJJi20paZZQ0rO2lDRIKOl9W0oSU24jt/pGgmUGEiwkWBZAgqULCZYaJFgRQYIV\nCglWNJBgZQckWEiwLIAESxcSLDVIsCKCBCsUEqxoIMHKDkiwkGBZAAmWLiRYapBgRQQJVigk\nWNFAgpUdkGAhwbIAEixdSLDUIMGKCBKsUEiwooEEKzsgwUKCZQEkWLqQYKlBghURJFihkGBF\nAwlWdkCChQTLAkiwdCHBUoMEKyJIsEIhwYoGEqzsgAQLCZYFkGDpQoKlBglWRJBghUKCFY1s\nSrCunjt37nJEAVnjvFB+Jl3x4uH/R1e8+wLt4V8Tir9EV3ykqBttmHSnncdMIaDz1EEEETt6\nFl3xGULxF+mK1+K8ugo4R1trWqIbOsWTfsHCaNTZNzbYNyz+J5RkT959SSgpw5aSjGYiJhMs\nAAAAANCDBAsAAADAYkiwAAAAACyGBAsAAADAYkiwAAAAACyGBAsAAADAYkiwAAAAACxmKsH6\nfu2Inp36PLTjj+yKRlvWOwuHduvcd8pOIzf4yi6ne/D8/xGU+wkvM44gALf769X3d+s9ctmX\nJIVHyhGNJhxVMwrjgHalgK6pfcAHcdT9YIXW/OGSYd2F1rz7b+pIFHy5aniPrkMWfkgdh8zx\noTx/VL7i142je3fuP/tlUzdLsm3es3uwyv5RyN7hxZZhw9wIYSLBurrKt8/OB6ILMTK/j/WV\n32kPRfmSrGk8zcx4lHoiTF/bwVv6WofeS1CJIxpNOLJmFIa8XSmgbGqOTrDOTPLF1TWVOpZQ\nl+b4YpvrlLv6pm8V25E8wdrTyRvjA8aTJfvmPbsHKxtGITuHF5uGjexKsLJmC3ubsnXf6v7C\nvy9HGWQEzvQVhpWFuw5sGiaUT5LhiV7giWbGl3h+9lM+L9lfftZinu++InXPbKERP2V/8RFy\nRqMJR9aMwlC3KwWkTe3XpwI28vwjdpev5ZLQikc+9/mJd1YLecJz1NEEuzZBSAsWHEhd2pXn\nZzrjL7AfRwo5UVCCdVDoddP3PLflPp4fZPRu+PbNe7YPVjaMQjYOL3YNG+ZGCOMJlnCqun4k\nLlxewfN97H/i1GM8P1F6YzxTOKruRE8aOd2dH0gzM+7j+dcIivU7zPNjzogLx7rynZ34AYUi\nRzSacHTNKAx1u1LgmKa2iu/0M2HxYbYJuYvns61jHfjuznpezm6e7/+TuPDLfSR/f4dL68x3\nObhMnmCd6sp3kp5Ud2UOz680uBv75j27Bys7RiEbhxeKYUN/hDCeYD3A8y94ljKELvRRFFFF\n5O8OfNdznsXMoTxvzxMdQ2U9wvfdQzMzbuf59wiK9bk6gO/pffju0zM2nSSMxAxHNJpwhM0o\nDHG7UuCYpvZ5B34nXekKhCb8jXdxMs+/QRpLiMx7ef6YZ/G7DvwgJ7yFNY5/8Ed3UIK13v/W\nxuW+fEeDc7Bt857dg5Uto5B9wwvFsGFghDCcYP3bge/i+2x9Nc8fijyqyJxcMvsJ3/Jyf5u3\n2fNCPv4czcy4lue/ICjW5x2e30VYfIQc0WjCETajMMTtSoFTmtrV4fxQ+9+o19KR531D8Bqe\n300aS4hveH64b3k2z5+gjMVr3Fqh9uQJVsa9fGffE5t38vx+Q3uxb96ze7CyZRSyb3ghGDaM\njBDG38HKOOPPCjfz/N5Ig7LCIqLJ6Y/u/Ew30cwoHPOPBMXKiv+VsHgLUDWacJTNKAxxu1Lg\nlKa23f+ejFP04HnfB0drHHVJodt9hOeX+ZZTnXGVptSs5QnWCZ6f4ls+zvNTje2GZN6zYbCy\nZxSyb3ghGDaMjBAR3QdrHs+/HcnvWeRCH74TxaUZWVP5nmeoZsZZPE95o4HBfH/h/xd++OoU\nYRDRoGo04UibURjidqXAIU3tZCd+LmkA4Wbz/GfexSmBTwsdQWjOG33Lx3h+PmUscvIES4hx\ni2/5age+p+md2Tbv2TBY2TQK2Te82D9sGBohIkmwznflexBeL/zzeJ7fTlHwc9LVm0Qz40M8\nf/7Io/079Rq9hWDiudxB+IPvy2ni12AH7b5if/lRI2s04UibURjadqXAKU1tNt/pN7rSFX3F\n8+M8A+8HHfhpxMEEe032DtanPD+aMhY5eYK1Wf7Vy35Cuze5L9vmPTsGK5tGIduGF4Jhw9AI\nEUmCtZjsLeDTmzcuGcnzXZ+lKPyP7vx0N9nM+ADPP+i7Scpu268h/Un4o/SFjt7yx/xjd/FR\nIW004WibURjadqXAIU3tc57fQFW2qv08f9/ej788uqwjP+IsdTBBTvD8CN+y0LQHU8YiJ0+w\nlsgveB/F82YvhLZj3rNrsLJrFLJteLF/2DA2QkSQYO3m+Ynp5n/NCsfFs9dz8zmKsrOm8j3E\ndzuJZkbxLiy9luw5tH6QsLDD7tKFEz+q06DDv18781xfnn/YCROxYZSNJhxxMwpD264UOKSp\nTea7OOMT5SAfTvXMIIO2X6QOJVh6T5733kA7YwTP96GNJkCeYM3l+Q/8Gybw/LfmdmXLvGfT\nYGXbKGTb8GL/sGFshDCfYO3g+eFUk9Vxz/Ay/DBB2WneL3YQzYxdeX6d9P50+kbhDHxnc+kf\nibes/Vda/L0Xz79jc/FRoWw04YibURjadqXAGU1NaDSraUrWcmlrf09j7jDBEY1HZgvPD5Hu\njn55focOzkywHuX5j/0bppj9qqM9855Ng5Vto5Btw4vtw4bBEcJsgnVlPs8/eCaSgKyR+feJ\nHcIfS8ttL/hUd36qlBYTzYyXLvo//p/D8wttLv1DPnA/kwM8P8fm4qNE1mjCUTejMLTtSoEz\nmppwLn6hKVnD2ft5ftlX/6Wfee1Bnl9LHU2wS0N4vvuG19/cOoBf38mZHxEGvYM13tw7WPbN\ne3YMVvaNQrYNL7YPGwZHCJMJ1p9jeH7yBf2fy1Z/Drb/7tNZU/junsdX0c+M3/J8T5s/OfmS\n5zv5no96hud721u6FSgaTTgnNaMwBO1KgSOa2t8d+YkkBWua6r9K+8pExzWf0yO8F8CsOM/z\nI6mj8ZEnWEvl12CNNPWtfpvnvWwerGhGoewdXuweNoyOEOYSrON9hdT6WkQBWel9+x9Lm+q/\n8xv9zJjVhedt/pD2Z57v53/Rjefp24BpBI0mnJOaURiCdqXAEU1tj3PuShvwjezbeZ/z/ATK\nWBRkvDC1T5ehS75wn3TQW9zyBGsrz6f5N/TheeOXsdk+72XvYEUzCmXv8GL3sGF0hDCVYL3b\nme/ghNvbXeH5Dhn6P2ahM934YUc9VvL8pqNHSW/O2Jvnbf6U9lpHvrv/RZ/ADaVjiP2NJpyz\nmlEY+9uVAkc0tTE8/xdFuZr28fxW3/J/DmjNao7yznnEkDzBeonn/bdKv8Tz9xreif3zXrYO\nVlSjULYOL3YPG0ZHCDMJ1rud+G5kzy37dN/m477lrA52j7veaw8DNur/Tra5Khy+3c/weDBw\nwzihKXexufRI0TaacI5qRmEo2pUCBzS1szz/IEW52rbJHo+T2dH8fZzsIszaH1LH4CNPsL7n\nA5/qHOP52Ub3YdO8Z9tgRTQKZfPwYu+wYXiEMJFgfd2V7/5VhPFEbyPPr/It/8bz3ewtnXxm\nfG/1zNd9y8dk95yxy9bAY7i+cN6nE2poG0048mYUhrpdKXBAUzvM8+spytW2T9aaT/N8R/rr\n5YL86/33vz58L6Lb+ISTJ1hZ9wWe8LxWus+mIXbNe7YNVjaOQjYOL/YOG4ZHCOMJ1qXBfOfP\n9H8suwjV09OXoQp/ys0gC4Tm4plXeP4Bb/qfNYXgpuQ/8PzA/zyLc3n+abuLj5BjGk04h1yD\nRd2uFDigqa114iVY4nVXA3yZy+u8w67Cn9u9g/dW3U864O8GP3mCJT47brNn6Ww3vpvBm7Lb\nNu9RDFbZPQrZOLzYO2wYHiGMJ1hrjT5/PHtkjeT58Z5PPQ93lPcau9HMjFf68vw86WssV1fy\nfI9/9X7ecvOFLi8NSXt5vnus3MrdMY0mnEMSLPJ2pYC+qU3i+S8oytWWcT/Pr/W8bXV6oPF3\nYOyxi+enSE8oebED35P+qxI+QQnWv734Dm+KC+cfMj4F2zbvUQxW2T0K2Tm82DpsGB4hDCdY\npzvxHbY/5ZcacWiR+q4bz3ed//T+zUI75B+zvXg/opnxfaHP9V578NC6/jzfgeDui38PFv5+\n3vrSsxOEs/+q/cVHyCmNJpxDEizydqWAvqn1ddwTsCWfd+L5cWmff/3B1l48/4izrnG/OIjn\nB259YY+QunR8nzoY0XFpnhrN8/PFfz050usdhPP2TOo6oX7HG/wU08Z5j2CwyvZRyMbhxdZh\nw/AIYTjBOhr8se3QiEOL2LfD/KWvJLwWl2pmfLeP7+j7klxC+vtYb/HdXqEoPkIOaTThnJJg\nkbcrBeRNrbNDryD/dIC/NS/+jzqYED8P8kbWxxlp+p6g+cr7Ff5XunpfP2L0Hg12znv2D1bZ\nPwrZOLzYOWwYHiFiKMFyZxyZP6RHpz7jn/iZoHA/spnx4qEZ/bt0HTT7eXueFR4m47VZgzr3\nHrvded9f1+KMRhPOMQkWebtSQNzUrgoDnGMu0w5y9ZV5g7t36jN2ww/UkYS7vH9S7473Ttjj\niI+ZVRIs959bx/TqMmj+u4Z3Y+u8Z/tgZcMoZOPwYt+wYXyEiOBhzwAAAACgBQkWAAAAgMWQ\nYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkW\nAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEA\nAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAA\ngMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABY\nDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQ\nYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkW\nAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEA\nAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAA\ngMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABY\nDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQ\nYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkW\nAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEA\nAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWAAAA\ngMWQYAEAAABYDAkWAAAAgMWQYAEAAABYDAkWQEJ6l0lcP6ps3+HZXtfWoAAA4gYSLICE5E2w\n2EyV7a2QYAEARAEJFkBC8iVYZbMUN/+ahATLtCUzZ75IHQMAOAUSLICE5Euw2OuKm+czJFhm\nnXcxNoY6CABwCiRYAAnJn2D1V9xcHQmWaUcYEiwA8EOCBZCQpASrsvBf/gsKWz8QNuS9EQmW\nKYuQYAFAABIsgIQkJVgPiv/brLB1pLD+7mJIsEzphQQLAAKQYAEkJCnBmn2z8L87wzdeE3Or\nlbmRYJlSEQkWAAQgwQJISFKC9fBU8f/fh23cL63GNVim/OtCggUAAUiwABKSlGBNeF/8/7Sw\njZ2EtTUuKydY5w5vXzZnybajF5X3e+XYU+sWzF298/0ript/eeGJZXMWrj34dUZkYZ9LWzb3\nif+ZiEdw9Z2N8+etffVcYM2/h9fMXfLkB8ox6O/Qfeq51XMXPfHSuaCVrzGlBCvaAwaAWIUE\nCyAhSQnWyKySwv9TQm+FdTansHbqOYUE69SjdXN4v1+Ys9n29NCdXtjUJNn37cRczXdfC9n8\n/gMlfFtZ4d6vhARTKPiHW4jrNnmWT4rLLdzurHkFxKVFBuI5La5rKiycm1TU8wO5e//g2fRF\n91yeNUWm/hN6BAZ26N7X2OX5iaSmL3g3/sKCHNY7YACIf0iwABKSlNMMc48S/3k1ZNtKceVH\nf4UlWOmz8wXlEZWPBP/eUzcF5xnVP5Fv/aNH8FbWyP/ZpF6CdUZcvt3tfsDzi74ESyueC+KK\nW93uT0oFthd4WdiQ9ViOwJoKPwSVaWSHZ9rIf2LAVWmjYoKlccAAEP+QYAEkJCmnuc99VPzn\n3pBt9YR1ldx/ipvkCdZfjUMSBpa0WP5rk0I3s1yyN21+qhC2udC78mA0EqyL4nIN9yHv7y0y\nEE+GlCC5vy4i317gW7d7XNBvVLps9AC9OzxTPfgn+kkblRIsrQMGgPiHBAsgIUk5zUB3Vnnh\nn7zBFxN9JW561P2H+I8swbpwi5QkuO6YtHbzwoFlPCnDisD2ZZ41Re8ZPX36yDtzSi8Kfu3b\nmnGrtCLnncNnzp88qLHnQ7obT8mC0UiwMsXlMv67ny4yEo/4rJ9S12oLP9BgwKh7K3s2d3bv\nFP6fq9XQEd2877bNMnyA0g4zxbDytxk8qv+t3jfC0sRtp2vXrl1cfFW8tug9vQMGgPiHBAsg\nIUk5zQC3e7Ysj/GaLGYZP7lPhSRYvaQUoYP3Y67MPZz4Msdnvs0n80oZ1VbvdUun7pN+vJNv\n83opd5n4l/flX9OljONBWTAaCZaU3NwoXkXeZMmeZ1a9aSQe8SYTxRcy1t7zKeArxaQAPi/K\nckyQrrzK3CBdLlYqcAGakR2uZqzERs+7Xj/z0s+38m0fI74KXOSuecAAEP+QYAEkJF+C9bN4\nwXYj+ZZM8cL3Zu7QBOs5KZ2YGfi5U1XFFU19L6eIr5KPBraPlH7hK++rJuKLObJiXhbzm1z/\nBoLRSrDyCMvFBrECzwW268Uj5nu5C7ERvtevSz9fiuV42rdmqbTG/6mdoR0WZjV+863IkI4p\n6bT3ZUiCpXnAABD/kGABJCRfguVuLi58K9vysrhia1iCVUt82U++ixPiezrMl/OIt9lkvWSb\nLxYS1yz1vMgQP1DLE3Tng/Hi5mcDwWglWJ7kxvWybLtePPmlfKlB4A0q7wVWE/0rrkpfL1xr\nbodFfgts9zzP0fdNwuAES/uAASD+IcECSEj+BGu7uDBVtuVe4XW+C6EJ1htSDvRn0D6kJ+30\n8Syfr3l9EmO75Jv7ipu7eJZ/F5crBv32N/1nbHn9TCAYrQTLk9wMkm3Wi8f7K+8Etj4mrSgo\ne/RiN3HFSHM73CDfLr7Xx+Z7XwQnWNoHDADxDwkWQELyJ1iXxFtLlcr0bzifz/tGTnCCNUx8\nNTR4H19IGYv/jqIZv38SdLX8cnFzQ8+ydCerwprB6CdYx2WbdeORfqW6bKt0e3o2WLZmmrii\np6kdFpN/69B9t7hqnPdFcIKlfcAAEP+QYAEkJH+C5ZauRg98+LZZfCneGSs4wSod/FOylW+p\nFfGUuLWyZzld+s7dfq1gdBOsamFFa8Uj/coE2caPWOhHdBvEFe1N7bB/0GbpHa4h3hfBCZb2\nAQNA/EOCBZCQAgnW/4lLvf0bmgqvSotvaAUlWNI9G9hvITvpLK5cr1ZEqri1jPfFbdKbQS8o\n/6SxBEv+DTz9eKRfkX9kKd19IujBizvEFc1M7XBt0OaH5Kcu5CJ3zQMGgPiHBAsgIQUSLOny\n9Dy+b7f9JH6rULokKyjBelV8kSszZCfSNwdHqRWRJk+wnpQSGNbuuatqwegmWKtlW/XjkX5F\n9qVG949SAPJHJO4RVzQ1tcPgt7hmiKt8nzGGJFiaBwwA8Q8JFkBCkiVYc+TvQ0n3xZJuDxqU\nYHnTBSUdAjvN+mzxvbeXLCh7Fo0/wcq6x7uiYMflH4fmMcYSrOdlW/XjkX7lC9mv/CSuyC0v\nQp5gGdzh+0ExztRIsDQPGADiHxIsgIQkS7BOirfxvN27vqJ/OSjBWqiefzTz7fLKuvLhW8v4\ntp6/O7CySLdNQd+mM5ZgvS3bqh+P9CvfyX7lp7BC5AmWwR3KMzbtBEvzgAEg/iHBAkhIsgTL\nk8uckBalZxOukxaDEqzZ6vmH70e+rqa0tYy/xMxFBWXrk1vvCdyiyliCJX90tH48JhMsgzs0\nkWBpHTAAxD8kWAAJSZ5gSRd7T5YWhwpLuf+WFoMSrJnq+UdVz08c82UTRas2uqen6M7gBMvt\nPrugqvwX6/gfBW0swZInN/rxmEywDO7QTIKlccAAEP+QYAEkJHmC9Z+YG3EZwtLlwsJSd8/a\noARrifiitMb+zlWQcojSiwJf0wu6yN3r22Utc/kTDtcMeTCmEizdeMwmWAZ3aC7BcqsdMADE\nPyRYAAlJnmC5h4gvxDsK7BYXvBeTByVYT4gvtO6bOVbKIHrK7pOumGAJLj0/rqYv41gqC8ZU\ngqUbj9kEy+AOTSdYbsUDBoD4hwQLICEFJVjSlVficwTbCf/ekO5ZGZRgSblIjnTV3V0V7wfP\n7gj6gWeVEyzRT/OlW3iy3D8FgglJsBpqJlh68ZhOsAzuMJIESyo8+IABIP4hwQJISEEJlruS\n8OK6K+6zySxw9/OgBOsDKT34SnV30t1K2etB65apJ1hu95UJ0m+MDwQTkmBV0Uyw9OIxnWAZ\n3GGkCVbIAQNA/EOCBZCQghMs6UHIL7u3iP987l0XlGBdkS4kekZ1d+vEzUWCvybXRSvBcrvv\nFzdXkRbfExdzBW1Nz6eZYOnFYzrBMrjDyBOsoAMGgPiHBAsgIQUnWNKtsMa5Owr/v8W3LvhZ\nhLeKrwaq7k66WenNQavOFdBOsKTHIeeQcjLpocrsmnzrh0wzwdKLx3SCZXCH0SRYsgMGgPiH\nBAsgIQUnWO5WwqsaV8QcYrlvVXCCNU58VexK8E6+OO1bkm4j1Sho41wWnGD9fMEdTHqP6j9p\nEwvNhtyTdBIsnXjMJ1jGdmgmwdI4YACIf0iwABJSSIK1S3y5Xfgv+U/fquAE60sp4VkWtI+M\nykkNHvtUWlwpbi0v3/i1lJCwktKLHx9qUZStCo4gXXzXrIC0eEl8ACLbK9t4vrhOgqUTj/kE\ny9gO9RIs34MZdQ4YAOIfEiyAhBSSYP1XSHgp3oo98GTB4ATL3Uh6h+dn+T6k96gaSIuHpPTk\np8C2P2ow6SPCPNJHYr+LuUXpi0ERvCJuruNZFh/Qw+6Vbc2BCk4AACAASURBVBzKdBIsnXjM\nJ1jGdqiRYElvgfXzvtA7YACIe0iwABJSSILly2jYPv+akATrsPQuU3XZZ2abpDUHpeWzruD9\nfVaBMek2Dey49LqZuNhe/vHYxdriqjmeF73F5RyBZ+HMYayEuGqj97VCcqMdTwQJlqEdaiRY\nM8QX1XybdA4YAOIeEiyAhBSaYL3jya+KXvWvCUmw3A9KP1Bit/deUd9JSRFr7d0q3ReUjfO8\nZ3NiVA7xvlrSx3yDpTVvSZurPuu7kD3rperiiut+8bxM8+z7Bc+rL9sLPzpNXLPe++MKyY1O\nPOYTLEM71EiwNjF/Spipe8AAEPeQYAEkpNAEy3PfKTYisCI0wbp4iycHu77/I8vmDq/reVHa\nd8nWYc/rIt0mju5RQ1yq8I/nPg2s0UMj09zu4Z7t17V4YPrcWWM6lvC89CVQGZ7SWbkeI8fd\nK35SmfPDBeLrld7tSgmWdjwRJFhGdqiRYHku4mLVu7Srdadb74ABIO4hwQJISGEJ1jwpAfgg\nsCI0wXL/1ZiFqvqTf+uI4C2lf3S7X/a9WCakUN3Dfpmxx/2//X5y0AbXdvca8d/F3s1KCZZO\nPOYTLCM71Eiw3PX9vyVetqVzwAAQ75BgASSksATrV/Gy7GqyFWEJlvvao3mD0oXkcecDG9Mf\nkG9qI13KdH8gwXK7VxYMyTaqvSTb90uFZFsK7Xe7t4kLc71bFRMs7XgiSLAM7FArwfowtzzB\n0jtgAIhzSLAAElJYguVuI6yYL3sdnmC53acfreFPFyrP/F/wxhfvdHnzkru9F1O5dzYvmqNA\nmXZHpBfnljQOvE9VoNv+4Af//TLal4/c8JD4sdwBcXGad6NygqUZTyQJlv4OtRIs91tVvb/Z\n0W3ggAEgviHBAgAzTr+8Yf6cZVteOquw7eyhtXMXbDhyTvWXL3z07OoFjy7euP87hRuaZ3yy\nY8Wcxds+ybAsnohEscPMd9bMmbfuRdlvah4wAMQzJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOC\nBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgA\nAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAA\nAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAA\nFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAx\nJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOC\nBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgA\nAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxJFgAAAAAFkOCBQAAAGAxMwnWlxzHrYqwnMPC\n7z4T4e9SOCbEu87wT1t5dJGfZXMxxzG9E/G7sH22bdGANn/nsbb9mqtkNJkg/kEoojpRGcKi\nmT/8Ym0iiVA2dYoA1LA9kGApQ4IVwzBbxhIkWM6D6ZcYEqw4gQRLGRKsGIbZMpYgwXIeTL/E\nkGDFCSRYyk5OnTr1LcM/7YwEy1zMcUzvRKjOln24O7MppLhkzenydx5r26+5lCixmoxu0P5B\nKKI6wfQbtWg7BWrYIZBgWcEZCRYYpDZbZlWLxdmSjEWnK5uGBmvfc4qrJqMfdHSDEKbfqEV5\nmKhhp0CCZQUkWDFFbbb8gYvB2ZKORacrphOsmGwy+kFj+iUW5WGihp0CCZYVkGDFFLXZck8s\nzpZ0LDpdMZ1gxWST0Q8a0y+xKA8TNewUSLCsgAQrpqjNllNjcbakY9HpiukEKyabjH7QmH6J\nRXmYqGGnMJtgrRb+mdnq5jK3dn/igmxTxguT7qqVUq3RoC1nZGuznh96e/lqzce87T9r/YR/\nPpf9xBHh9QzVAj8Vtgq/+82428qUv+Ohr8VVmc/1rplSrd3y87IfO7W2f4Mqpas0HLrzkmzt\nz8v71K9UunLDAZvP6qxU4v9uhTeGf1a2q5JSvc3s/2kdndc7M9rUSqnRdOhe7xlKb8FxpT71\nb14h/PDD6iWrnGUD5yLuvkWYVYPjhvhe/JciHN4PvlfzhVP6j2cx9HSHnIhXRzSuXLbRBOH8\n/yusXi+uEmfLOcI/j99za5marR/7Rfq5Zzif2tl+YDEotOeEny6Fbmiu8xjoc0q1qUKxkr1i\nv8mEVof6wKpfcQqDt/J3zK4duP+u6mXq9Fj7j3ZwKkNY0PSrPGMYnkhUiQf+htv93ui7apat\n1327r+yPhNXvuv+Z3qDMzd97V4U3AoWzpbJSjGKXf7t4Sl83U4oqjU4hMjbToYa9q5xQw2YT\nrLUZk321V+8d/5Y3m/jrtOKiDN/a0918K3uf956154V/pst2OT5kXAj2jbD1sHtpSc9OUvYJ\nu2zp3WNd/1Sb/liKv/CaL/nWXplSKhDSmiyNlcr8zc4TQ1oF76+l7NY4Osm39/jLqHPIs+oL\nIcK2md7tvwi7uv2ieskqZ9nAuYi7BMt9P8fd7Ft+UzzUnb5XHTmunbSgcLrlJ+J0b9/WeVk/\nC//fJq4UZ8vH3XvKe7eU2yOuRIKlIbznhJ4uxW5orvMY6HNKtalCsZIlsd9kwqtDbWDVrzjF\nwVtx+v2/Bv6f26IZnsoQJp9+lWcM4xOJqveE7YcCZTf4MFD2q+ebiqu+lFYoNQLjs4bK9Gus\nFA3hhymrAKMzHWpYWmF/DStFazbB2jBF+F9KNWmer+RLjXaXls5ymzvLiP8OSfesvSAlANVa\nNhUGyg4vec5aek2hbaT795heneOaqxf4k/BLaRs4rmS1suKuynz/b0Oh8OpSaS29lZM1QDq4\nKvWriv+UfM67VhokU+o1rCJtnam+UoW/2UkxHBQqoEx1qXmXel/96ERvVhbX121zhxTlas/K\nRcLiVu+ehXhLvuNWp3KWDZyL+EuwdglH5PtD4XHxSEd5X1wWWtp8cUHxdAdOxIUW0ils2lA4\nlQ8dFxafEteKs+WyfcKqMtWknlXqXWHlGz16VOS4Cj169Bhm5yHGBIWeE3K6lLuhuc6j3+cU\na1OFYiWLYr/JKFSHysCqX3HKg7fS9LtH+sHS5fQHT5UhTDb9Ks8YJiYSVZ8I23fNEP5XtpoU\naKUT0urvhcXUR6U10sSo2AiMzxoq06+hUrRodArjMx1qWPXcZ28NK0VrNsEazpV++HiW++pL\njYQXrT3J3sfCzkvN/l1Y+u+Z2sLqxZ4fnymeyVeFuf9qWn2ul/esiSfGn3y7XxderVEv8Bdh\n89LyVZ8878784C5hedIkrs2bGe7/9olH9YrnZ54UFmvtEN/R/GmS2Pz+9Z+Qdv8nVt/pzWJ7\n/Eh1pQp/sxNjWFWl5MTjbve1t8Sxt5vG0bndPws7LjX9pLB0/kmxDE83SBcaUJXT0uIrwspH\nIjjLBs5F/CVYv8ha+T1cuXpcPe+Lt4QN77nVTnfgRIhjQO00ocp/n1ySW+KrJXG2nFmh5Ngv\nstzXjogns6Nnr81j8YIaOyj3HPnpUu6G5jqPbp9Trk0VapUcB01GqTqUB1b9ilMevBWm30+E\nXLfskp8z3ac3VhJnGY34VIawwPSrMmOYmUjUfCZsH8WVnv2d8FdYan3hxV1S2dJbkZW5pnPX\nPf6rW60RGJ81VKZfQ6Vo0egUZmY61DBJDStFazbB4koe9Lz4Szy0F8WlrOayM/KdkAWWEQt0\nny4rNIIfPWt/v5Xz/sxXwr+D/XscJ4T3h3qBvwk/XKHScc+ykFdXKtnhsvRir7DhIc/PNBR2\n8YX356f620oPjqvj+xjupxoc96DqShX+ZifGULHkPs/as0LOXPKs+tG53ULr8P2w+1vhXNx2\nxXPqhLY7Qly43IDjGv6nUbDaWTZwLuIvwXILfXe0Z+liCnfPEI476Xm1kOMqiz1C+XQHKk/4\nO6mi5w8c9yYuRT5bli+517P+L6EllPQkv0iwVCj3HPnpUu6G5jqPXp9TqU0VapUcB01GqTqU\nB1bdilMZvBWm3zbCH/ned96PluK4+oFPfcKoDGH+naoUamoi0Szbl8r8Wce3/Kuw0J2b7bss\nRLkRGJ81VKZfQ6Vo0egUZmY61DBJDStFazrBGuF7JU7sUihHhYW+/h9aI7xaKi5s4byf4ogO\n+s+aWIt/e9emC2Nnb40CxVHN/w7XQGG51HfeX6zkuwRHzCi7yn++j7RUJ/Bpktu9vu3QFaor\nVfibnRTDJN/qh4UXb2oc3efCwlj/TrYKr7yXfiwWFo+6pQ+6Sr6nUa7qWTZwLuIwwZrCcbd7\nll7juGkr/KezM8cNdKuebv+JWC8szPNtHuCvJelcTvatF/98OiItIcFSodxzZKdLpRua6zx6\nfU6lNlWoVHI8NBnF6lAcWHUrTmXwDp9+3xEWpvl+TrzC6zX1+FSGMP9OVQo1N5EYKvtZ4cVQ\ncUGqv66+eVGlERifNVSmX0OlGKHQKczMdKhhkhpWitZ0guX/Nlx6BY6rJi6MC6qLs6U5rpm4\n0EdY/Z1vbUYN31kTT6bvAjph0uT2udWJR1PmX++LhZz/owK3ux3H3eJZuvrLxyf8v1CP4xpL\nC8IAMyhsd4orVQQN9iX932N6xnfaVY5uurDwrX8nl4VTdJ9nUfyQ8M5r7u/KaH1rUqJylg2c\nizhMsMRrd09JS3OEpvImx42XXlwp67mmTeV0+09ET2HhJ9/mL4Nmy1L+r5XtE17tkJaQYKlQ\n7jny06XcDc11Hr0+p1KbKlQqOR6ajGJ1KA6suhWnMniHT7/iRcXf+H7uSN1WPQ+ox6cyhPl3\nqlKouYlEq+yPfa+uCmVXFb9eJE2Mb/hWqzQC47OG1vSrV4oRCp3CzEyHGiapYaVozSZYsivl\nuwsvxbehm3Bc2cDlle67hZFI/BKpkBfWCqwd7jtr/wpz493elWM5rrLWx2Xi0dzjeyF+BL3M\n90L407Kywi+08X3rrLWQjXwSulVxpYqgwf4u/+r/E15tFBdUjq4VxzWU7UVoOdW9i+KHhCvE\nc3aHYj0EqJxlA+ciDhOsc0If9LwRLTSr/50rxTWSXrztnQVVTrf/RNTk/FdtCe6Sz5at/avF\nP6s2SEtIsFQo9xzV0+XvhuY6j16fU6lNFSqVHA9NRrE6FAdW3YpTGbzDp987THxVUmUI8+9U\npVBzE4lG2bcGXnYVXooXy4j1V8m/c5VGYHzW0Jh+dUsxJLxTBNOe6VDDJDWsxGyC1Sfw8iFO\n+tTrUimOayn7qdHC6mPC1Cj80yGwdpn/rN3vT5TFN7LHujWIRzPe9+Jp4UWa78UwoaYUfqE9\nx9WQFsQ3+ss//nPwVsWVKoIG+5H+1R96W5DK0V0WzkUv2V5mC+tPe5eXCIWvEFrUBzolK59l\nI+ciDhMssUale4adLy12qpaefix+4Cp+cqh2un0n4jwXtH2SfLYc7V/tq1MkWKqUe47q6fJ3\nQ1OdR6/PqdWmCuVKjosmo1wdSgOrXsWpDN7h0+9V4Qc7GY1PZQjz7VSlULMTiXrZA4PLftvt\nqb/OvpVqjcD4rKEx/eqWYkh4pwimPdOhhklqWInZBGtq4OUSzywvfqda/tan+PHVi273d8I/\nsi8vP+M/a+IXXB6TlsQ3srVuWCAdzSz5Ht70vRguS7Cupk1sX9t3gxpvs0vvKL1o8vBz/wZ2\np7hSRdBgPy1otdiCVI5O/OEKtwVU87ZmqfRWUumz3DqUz7KRcxGPCdZ873sZh6WP3R/xvp/V\n1XOJjtrp9p2Ib+VJqed9P/9sGfig1lenSLBUKfec4NOl1A1NdR69PqdWmyqUKzkumoxydSgN\nrHoVpzJ4h0+/4g/ebzQ+lSHMt1OVQs1OJOply24IJpYt3gQpKEFWawTGZw2N6Ve3FEPCO4Xb\nxEyHGiapYaVozSZY8wMv1wovd3su9Bol+6nVnHRBmXg35jGBtWn+s5ZZl+Nukb6gMIbjbtO8\n26d4AHN9L57hZOmYLMHafwsn52l27kujvK9Ld9ziP22KK5UFDfazg1aLLUjl6E5w4fwf2B4X\nv5LUWOcDQrWzbORcxGOC9Q7HlRSrapZ00Usqx00RXlwtx3HPu9VPt+9EfBrcFQ9ystkyvE6R\nYKlT7DlBp0uxG5rqPEb6nFJtqlDeSXw0GcXqUBxYdSpOZfAOn36/4HQ+bZBTGcJ8O1Up1OxE\nol72ksDLdcLLp92e+vPfHUd1mDY8a2hMv/qlGBHeKUzNdKhhihpWitZsgiX75t0Twsvtbvf7\nnP+WCZJNntXvBa+W3T1sPuf5Ck561aBKUmAkwVouHVqDjgNHCmr6m53b/cnoKt7jrrIsQ3Ol\nEp3BXuXojinU6/O+H7okDIBcP80DFimf5URNsK5VFG/qLX1O/p3bfdpz+0Qh6yotPh9I7XT7\nToRYS3MC+/LfIthZs2VsUOg58tOl3A1NdR4jfU6pNlUo7yRemozSQKY8sGpWnMrgHT79fhTy\ng5pUhjDfTlUKNT2RqJa9MrzsoPrTGKYNzhoa06+RUvQp3GjUzEyHGqaoYaVozSZYiwMvxbR1\njyfzHSn7qZXC672e+63K0tL9gbMmvlEofstSfCP7B7cWA0nFW+KNZKf+6l3dXtbshIHmrVl3\neY683xXtleF0BnuVo/uak1+pEeIRqdS9mkfsVjvLiZpguftKn3v8W8pzGWRDruRf0rvC0mf2\naqfbdyI+5oJuSJzKOXS2jA1hPUd2ulS6oanOo9fn1GpThfJO4qfJhA9kagOrRsWpDN7h0+9x\nrZEtlMoQ5tupSqGmJxKjZT/rDqk/zWHa0KxhZPrVLEVPeKcwNdOhhp1Sw2YTLNkT5cUPP4Ws\n8H9c8Lccxb+jXvE8T0z2weo22VnrzHEVL0uXuN3j1mQgqRBv+7rR/wt3BzU70eldncSTtlx/\nZTCdwV7l6H7j1O8E8a7QQepzXDW96xyVz3LCJlgbOY53u1/0nu6xHPeC293N+x6x2un2nQjx\nLdxJgdU7nDtbxoqgniM7XSrd0FTn0etzarWpQnkn8dVkQgYyjYFVpeJUBu/w6fckF3RlsTaV\nIcy3U5VCzU8kBssW70MZVH9aw7REd9YInn53KE6/uqVoCe8UpmY61LBTathsgiW7DE68fP9D\nt/tyaY5rIfupBznpMaN/ckFfDZgpO2u7pVNypbL2w1rdRpIK8XsJtweu47olrNkJni8njDuh\nd4NQXCmjM9irHF16WdVnK/7XSMgUTlXhuAHqhUqUz3LCJljCjJdyWbzhiHSPn6fF9xeulfc+\nzkDtdPtOxB/BY8Y0Z8+WMSLQc4K/qqTUDU11Hr0+p1abKpR3EndNRj6QaQ+sShWnMniHT7/p\nKRzXymhMKkOYb6cqhZqfSAyWLY4VQfWnMUz7ac8a4vS7w796peL0a6QUVWGdwtxMhxp2Sg2b\nTbBk++smvBSfjHQXx5W5Fljte1k16OYW3WVn7WJF8earacLP/aNdoH5SIT57cZz/53/glJqd\ne6mw+l1DKwN0Bnu1o2snpAPnFXc4Q9hyQsrOdW7nq3KWEzXBEm+S8o7YqKSb7P0o3o3oPY6r\n6vmgXOV0+05EVoWgU9nG8bNlTPD3nMDpUuuG5jqPTp9Tq00VKmXHXZORDWQ6A6tCxakN3uF3\nSRJ+p0zgCzrff/fd7+ohqQxh/p2qFGp6IjFQtniXpDPu0PpTH6YDNGeNN4R/N/nXDlecfg2V\noiasU5ib6VDDTqlh03dy/8336powFNUVF8Q7wL7i/yHxQa28uCB+99F/e9bzQU8OG8txFf4b\nzHFDdArUTyrEj28D356eGWh2v/7qX+t+0xeg4kplegmWytHNCk6gvvef/Q9KSReeZvFCcqDx\n9EW36llO2ARrFMct/6ckV93z11ttrvT5Fd6HI6iebv+JaM1xpXyPD5HeiXb6bOlUij0ncLrU\nuqG5zqPX51RqU4XKTuKiyagNZOEDq07FqQ3e4dPvVGHhZd/PiZ+N+J8bFE5lCPPvVKVQ8xOJ\nbtnic8T8w2eg/tSGacOzhngjtEd9K6/UUJ5+VScDfeGdwtxMhxqmqGElphOsoGcGid+Zl64L\nDdxuay7nfWttmTwjWBE0HIpfG3iqrPzp78r0kwoxk/d/CvpFGeFVBXFpVs3A3cDc7gOcdGt9\nxZVq9AZ7laMTL+Fo6v9uwpW6Kd093124fAfHNRIvnjuRovdNQpWznLAJ1h7hhL3gr+WhHHek\nn//NW5XT7T8RjwoLT/o2D9OdLe8Kuos3+Kj0nMDpUumGJjuPXp9TqU0VKjuJgyajPpCFDqy6\nFac2eIdPv+Kuu/h+Tvxq/HPqAaoMYf6dqhRqfiJRK3uB79Uhzntbs+D6U24EJmaN3+VnQ/wy\nnNL0qzYZGBDeKczMdKhhmhpWitZ0glXhc8+Lc42EF57HFvNc4HqwY0LV17ggLn1bkuMqfu1Z\n+3HF4LMm/G51jqspu2u+Iv2kIqMyx1XxXjb+9S0VOwg/I/75KTaPrb6fTRfWVrmislKN3mCv\ndnTio8wmeT8qTxfHZ88N18VU9y1paZ5O81E7ywmbYP3BcbVm+a/vfELoW7U47qR3o/Lp9p+I\nD4SFW894Nu/gKuvNlndzXMpFN4RS6TmB06XSDU12Hr0+p1KbKtQqOfabjMZAFjKw6lac2uAd\nPv2K7737vpn/TRWOqyP7qCeUyhDm36lKoRFMJDpln7+d834KFFx/yo3AzKxRk+NKeQt5v0JF\n5elXbTLQoN4pzMx0qGGaGlaK1kyC9Zmwtz5c1e3iSfm4Ned9YLtQG+WEWB77UzzcTeKI5M18\nxUc31Nwt/PDJ5RW5cUFnTcpSZTdrVmEgqRDvtt9RvMv9H0vLc1sf91bwhdrCwuiPxHHm0mti\nW3xMbaUavcFe7ej+V0lY7P6+cM6vpLXlfM8//6iU/4uolxsKNXhKo2SVs5ywCZa7Gcc19FyY\n6Za+6dvY95xTt9rpDpyILsJS83eFzaenl0xZpzdbDhG7y9mMk/o3+k8sKj1HdrqUu6HJzqPb\n55RrU4XaTmK/yWgMZCEDq37FqQze4dOv+1Pxo5sHPr6cdXKNeM8grU9GVIawwPSrMmOYn0jC\nfSkvu4W/fkMmRsVGYGbWED/sqvPcJWFPC8qVEm/F9KrRUjRpdAoTMx1qmKaGlaI1k2CJVbFz\nvJAbN24txsTV/p93w3PiO5YlG7ZtWEpc7bsB2am6Um+vKpxTrod4E9en/Xv6XfrBT8NKCGEg\nqfhJPMLSd3S6Q9jj2KxXxd02b/+D++2y4lLpW26rLMXQUbp4T3GlxrFqDvZqR/d/YkBcxUa1\nxNuWcM2kv4WvNBHaz1/eXYhXz/XVKVnhLCdugjVDPAtVvG/EZko3hPPfS1fxdMtOxNfSj9do\nJTaPta/rzZY7OI//s+W4Yohyz5GdLpVuaK7z6PY55dpUobaTOGgy6gNZ6MCqW3Eqg7fC9OtO\nlX6A8/w/cDmQApUhLDD9qswY5ieScGIhGx8MlH2z52qdkIlRuRGYmDV+kX6/VLUKwv8XiZ8U\nvWS4FC0ancLMTIcaJqlhpWjNJFjvCvs4mD7RW3dc0xP+Le81963k6gfeBv2uhW9l3wviLTC2\nB3bVR/x93QINJBXuN3y3YC290O1O95QoBPZJM39EXMpM7wikuFKZ7mCvenTHO/nLKDnunLRq\nDif/e2CEdgNSOcuJm2BJY4k/Jb1XfCX7doLC6ZafiPfreTdW2ObWnS2veG81hwQrlGLPkZ8u\n5W5orvPo9znF2lShupM4aDLqA1kfLnhg1a045cFbafp1v93I93OVt2qGpzKEyaZflRnD/EQS\nRixk/bWxvl9o5v3kKXRiVGwEZmaNN/0NfpV0f6c046VoCD/MQAWYmelQwxQ1rBStmQRLvEPw\n627359Na1ixza++dV2WbMp+f0KxGSvUmo/fLP7hNf3ZA/XJVm4192/OU+sBt0qRL01a59RhJ\nsNyn57etUrpKm0elexf/MbxGyi33nxWWsl5/uH3tcqWrNBy4IfCtPcWVivQHe/Wje3tmmzpl\nKtzSc4n3Hb5PSgt5eWDXZ6pxXJXf3GpUznLiJlgXxXeuV/teiR+CBF/1Enq6g0/E+Y1d6qRU\naTv/lCdT2yeuU63TvybfWrrc7UNDn00Pyj1HfroUu6G5zmOgzynVpgr1ncRBk1EdyMIGVt2K\nUxy8Fadf95XU+5tULVOn+1qd2+uoDGHy6VdlxjA9kYQRC1kjzHuzWt1ctn6vZ3xXp4VNjEqN\nwNSscXYRXyOlQtOZJ4VFzvsHtMFS1Gl0CnMzHWrY7YwaNpNgWWi3MEvq3dIcwFLiF0QOUwcB\nFrGlNmOuyST8wPplaIYJcSa2apgowWrHcffRlAwJa43QM49RBwEWsaU2Y67JJPzAGlvTL5gX\nWzVMk2C9I5yjt0lKhsSS8WPgPd+BHFf6EmEsEC1bajOWmwwG1tiafsG82KphkgQrvRXHtaUo\nGBLLN83KcMN9L06ncFw7ymggOrbUZkw3GQysMTb9gnmxVcMUCVbWeOEUvUFQMCSY9Jocl+L9\ngld6P07+fHSIObbUZiw3GQyssTb9gnmxVcMECdYXvYQzNDjwen0fZWuzPxS6ogkPOpGsF5pa\nhaWn3e6MdzsLi0017t0PjqdQm9b3o9htMqEDazajHMLUy46t6dfZUMPRszvBGltbuptXQ9nX\nQMdwykZmfzR0RRMedCLJHCCd1cr1yov/VD+h/xvgXAq1aX0/itEmozCwZjPKIUy97Niafp0N\nNRw9uxOskdJZukt+GygkWDa33USSPivFf27v+Yk6GohOeG1mQz+KzSajMLBmM0y/8Q41HD27\nE6xZZbgq7Z/Qe8ozgFVOLu95S7kytdo8cpQ6EoieZWmVWQAAIABJREFULbUZi00GA6tHbE2/\nYF5s1TDRfbAAAAAA4hcSLAAAAACLIcECAAAAsBgSLAAAAACLIcECAAAAsBgSLAAAAACLIcEC\nAAAAsBgSLAAAAACLIcECAAAAsBgSLAAAAACLIcECAAAAsBgSLAAAAACLOSbBytqzQXCaOgzI\ndplHN/gcoY4FEtMeND6LfeHt0t9SBwJEftjkbQJvUUfiJI5JsCawgl1uZrXPU8cB2evbcTcy\n5kpp2nNAx0qM9T5HHQ8koOXs+s55kl+gDiOO7M7NqvS8t3F+ltTlGHUsQOCD9kksRzV+QLdq\nzDU2gzoa53BKgrWRcVvTUluyPtSBQHb6rW8Sy99iylNpksUVWLUfqEOChPNJroKb0x5PLvIT\ndSBx41COPA+LPXrf+HLM1ekEdThgsyujkljFkZ5hfQHHuqVTB+QYDkmwvs6bf6NQNwcqslTq\nUCD77C/CUsbtS/M70I7d+Cl1UJBg0uuw6ULje4A1uEodSpz4oWCuBd4unTq9Iss5HRNsQrnQ\njHGz/KP609XY/dQROYZDEqxmbIJUNytylL9CHQtkl6WuXEMOpQW5z1X0I+qwILE8zppJba8x\n5gFrZDVhowJdOnVSUdb8X+qYwD7pbVn9PbJBfXcK20Qdk1M4I8Hay2711k07toQ6GMgma1jh\nZWmhRriKfEwdGCSS7/MW3Ck1vWdS2JQs6mjiwTZWN6hPP12P1cfFtIljGqtzIKgBbMyf92vq\noBzCEQlWRrWkNd6q2Znn+gvU4UC2OJyj4Nqw/CotbbSr+FfUoUECacvGeZvelhtYn8vU4cS+\n/0rl3BTcpw82Ye0zqcMCm3yQo/hTIYP6RHY76l/iiATrGe979qLubBF1OJAd/rg+eUGakuEs\n5Xfq4CBhpLKaqb6mt60Sa44MK1pLWafQPn2gFnuMOiywR2ZdNiu0/tMasjXUcTmDIxKsBq41\n/prZlZvDVVjxqDMboJhfpaX1YvUxy4E9Mmu6VgWa3t767F7qiGLd5Rvz7Azr0zuLJuPaysSw\njTUOH9OfzFvkT+rAHMEJCdaH/iuwRDzbRh0QWC+VVU0N74eS1KZsKHV4kCD2yN4tF+yryHZT\nhxTj1rOOCp16JquNrxImgmvlkjcp1P9A9gB1ZI7ghARrGHtEVjMbXPWoAwLLXa2UtEqhG3rs\nLcP2UAcIiaGBa3VQ21uXXBLXY0cjs3LyVqVO3Ywtow4NbLCZtVWq/v03JuN2aG5HJFiXCxU5\nKK+augxvLsed1crd0Gt1ruvxhjLY4FjQu+Wibmw6dVAx7TnWRLFPb89X+Ax1bJDtMqvm2KxY\n/5NYF+rYnMABCdaekLeYH8abi3HnMpdrm0aClTaADaAOERLBA+zhkKb3TKH8v1JHFcvasMXK\nfXogG00dG2S71OCP3ANSK7jwRokjEqzubElQzRwoVBR3WI4zaxWv05DVeYrrXeoYIf5dLVbo\nQGjbe4D1pw4rhn3rqqzSp/ddn+tH6uggu7VkS1XqfyZrTx2cA9AnWFcKlAi5+vkedpA6KLBU\nRnnl6zQC5rA7qIOE+JfG2oU1vYNlXW9QxxW7xrOxan16DBtEHR1ks29cVVXH9CrsQ+rw6NEn\nWGmsQ0jFLGY9qYMCS+1nLbTzK/HKOzyFErLbADY/vOktdFXAzY0jdLlYgX3hZ9SbuZZM/p46\nPsheE/137Q03i3WkDo8efYI1nM0NqZjUEtf9Rx0VWKk5W6mXYK1w3YrHlkD2Si9WSOleIZ1Y\nH+rIYtVOrc/+x7PB1PFBtrpWIr9qfp2WVtH1JXWA5OgTrDJ5w66K6MT2U0cFFjruqqGXX6Wl\nNWJp1HFCnDvCWis1vf0V2Qrq0GJUE5fS46+8Dt6U8yR1gJCd9it85B4wBVc30idYx1nDsIpZ\niO+UxZXR7CH9BGuFqyF1nBDnJrFpim1vc8Gcb1LHFpNOuGpq9ekRbAx1hJCdOqle4i46xOX8\nhTpCauQJ1gr2YFjFpBYulkEdF1jmctEC+/UTrLS6DNcaQ7aqnfysctubm+PGU9TBxaKJbLxW\nl95f5Lq/qUOE7HM2VynNIf0BNpk6RGrkCVYHtiG8Ylox/EEZP57WuUeD1zx2D3WkENd+d92s\n1vj6sTa4BNA07UtwpNP6OHWMkH3Ws36a1b+3QJFL1DESo06w0guVUKiYR9hDxHGBddqwVUYS\nrLSKLjxcAbLRLvX5ILUOLsMybx9rr92ln8pd6hp1kJBtmrKN2vXfjW2gjpEYdYL1geIX+Pfk\nqkocF1jm1xwVDWRXgofY/dSxQjwbwhapNr4nr8uL9N6s9my5Tp9ui2dpx6/fkqroVP/mpNrU\nQRKjTrAWKd+nri7DHVTixQI2TKcbeh0onu8sdbAQx8qHf2E5YCK75TJ1gDHmt+Ryen16NbuT\nOkrILsvZYL36r8/eoY6SFnWCdQ97QqlehrGVxIGBVWom79Trhl4DcMUGZJ9fwx70HKQ564fL\nsExZyIbo9uma7HPqMCGbNHZt0av+mWwgdZS0iBOszCLFFetlI2tLGxhY5VNWX3cU9noqd0o6\ndbgQt3aze7Va354KrB9ucGzGzTl26PbpSWwEdZiQPX5LUn9Mjs+h6/Ofo46TFHGC9Rlrqlwx\nJXPj6RXx4SEjN8Hyas32UYcLcWtU2DMjgu2swGp+Qx1kDDnGGuh36QOFC16kDhSyxWp2n379\n90rwy9yJE6w17AHleumI+3rHh8zSefbqd0OvlawZdbwQt+ol79FufntaseJ4uIdh49lkA326\nG9tMHShki+auzfrV/0SC3z+aOMHqq/aQujlsOG1kYI03WHMDo7BPdYYJDrLH5VwVdNvfMFcl\nvHNuUAaXT/smWB4bE3yGjVt/Gvt2eC32NXWklIgTrHL5DilXy4G8pWkjA2sMZzONdEMvXLEB\n2eVtzeemefF4uItRryreYUdphsUfTfFok85dRr3GsGnUkVKiTbD+YHXU6qUhvn0SD9KLF9T4\nanyYA0UKnKcOGeLTUuU7wgTbd0PycepAY8RQNttQn57IxlOHCtmgHVtnpPqfyV02kb+cS5tg\nHWC91OplFFtAGhpY4kXW1tAo7NOTraMOGeJTb7bWQAOczDpRBxobrhUrdNBQl96Xv8RV6mDB\ncufzlDY2pN/J3qaOlRBtgjWZzVKrlm2upqShgSUG6nxzK9SWhL/1L2STynlSDTTA1EqJfmtE\ng14y/KdTO7afOliw3NOsh7Hqn8YepI6VEG2C1cy1S7Veyuf8lzQ2sMDVwoVVLrJTcxt7jzpo\niEf/umoYaoCPsSbUocaEoewxg116KZ7iHod6sKXGqv9AgRIJfHdD0gQr47qb1OulB3uWMjaw\nwgtGLiwOMoPdRx00xKMjrKOxFngrbsZmQMb1BY19Qigom3yKOlyw2JUC1xt5Q1jUmr1CHS0d\n0gTrc9ZMvVoWskGUsYEVBpn8hDAt7VDxBL/1L2SPJWy8sRa4JkeZS9TBOt8R1spwnx7MFlOH\nCxZ7jvFGq38OG0IdLR3SBGsLG6peLYcK3JTI3z6IC+nFCpn8hBC3/oXs0Y+tMtgCO7KHqYN1\nvjFshuEuvSP5ZupwwWKD2Tyj1X+oUJHE/ZYDaYI1nC3SqJc72SeUwUH0DrM2hkdhn82uBtRh\nQxyqmcvoR1rPFMuJOzfpKZfHyF1Gveqzj6njBUtllChg+BPitLbsZep4yZAmWHVzaHXSsWwe\nZXAQvQfVvyWqrg5uTAiWu5xs6L7Tkil4YpOeT1kjE136YTaaOmCw1JuspfHqn8OGUcdLhjLB\nupq7nFa1bMeNGmJcVql8Zu4y6jWBTaAOHOLOMdbaeBO8Bde565hj5K6tfvuvK3GNOmKw0jg2\nzXj1HyxQIoM6YCqUCdYxnesky+XE5c4x7SPW2MQo7LMv/w0J/LVeyB5b2TDjTXB1UtVM6oCd\n7bYk9RvsKGjLnqOOGKxk6hPitJbsCHXAVCgTrCfYcM1q6cYOEkYHUZvJJpoZhQOjcRp15BBv\nxhm/KFfQnO2mDtjR/kiqZqpLL2C9qEMGC31i6hPitBlsFHXEVCgTrAc1r3FPS5ub0LeAjQP1\ncjxlahj2WsS6UUcO8aYFM9MW17nqUwfsaFuNPejXL/WGfHjGaByZZfSeJx7785VK1DsCUCZY\ntyft1a6W3JUIo4No/W7w3tlhSub+mzp2iDMliptqgnXZu9QRO1l3ttJcl+7BtlHHDNapnfy0\nqeq/k31AHTIRwgQrI5/e0yJvZT/ThQfRepINMDcK+/TDE5/BWqdZXVNNcCYeKKAho2hRo7fx\n9lrH2lIHDZb5idU2V/2TEvbWcoQJ1lesiU613Mc204UH0erNVpjrhj6bXQ2pY4f48irrYqoJ\nHip+3QXqmJ3rqInbuHuVTz5NHTVYZTm731ztP5uzKnXMRAgTrF1skE61rGB96MKDKGUWL2Ly\nz1y/mq5vqaOHuLKcjTPXBHuw7dQxO9d0Ntlslx7A1lBHDVZp5tpqsvrrsxPUQdMgTLAmsUd1\naiW14A2Jem1cHPhI60mT2kaz6dTRQ1wZwpaba4JrWWvqmJ2rQZLpb69sdt1JHTVY5K/kCmar\nf1Si3jWcMMFqy3boVUtj9gVdfBCdx03dizDIM7nLIrMGC92eZOa+PaLyOU5RB+1Uf+eoYr5P\nV036lTpusMZ2dq/Z2t+Vox511DQIE6wbi+hWywNsJV18EJ1WzOz7yAFN2FvU4UMcySpY0mwT\nHMSWU0ftVHtYT/NdeihbRh03WKOb2e+QpolXffyPOmwSdAnWn+xW3VpZxzqTxQfRuZrf9JwW\nMIMNp44f4sj/WEOzTXCr6zbqqJ1qOHvcfJd+Et9ciRNXrithvvqHJujfK3QJ1quss361FC2K\nR1bEqKOsrflu6HOwUNEr1AcA8eN51st0G6zFvqYO26Eq5t4fQZ+u7sJNd+LC84w3X/tbE/TJ\nwnQJ1jIjN4Ntyj4mCxCi8hh7yHw39LuHHaA+AIgfC9kk001wLJtGHbYz/WzynmJew9hS6sjB\nCg+wORFUf6UcCXmfDroEa5CRD3JHolPGqjbsyQi6oc8i1p36ACB+9GdrTDfBZ/OUyqCO25G2\nsPsi6dLb8BlhfCiT70AE1T+AracOnAJdglUvh4H3mTeyDmQBQjQyCt4YQS/0S70xLx5eBla5\nNTmCOaEle546bkfqa/aWF17VXL9Qhw7R+4Q1jqT2N7JW1JFTIEuwMvKlGKmW4oXxV2RMOsZa\nRNIN/XCjR7BMRt4yETTBhfjrTlHJApHdQDhRr3OOM4+ZvWevV/nks9ShEyBLsL7RfVCOpDku\nwopNK9nIiLqhz2rWnvoQIF58y+6MpA2WzXGSOnIH+obdHlmX3upqTB07RK9h0s6Iqr8fe4I6\ndAJkCdZe1s9IrYzC3VNiUy+2NqJu6JeS8y/qY4A4sZ/1jaQJPojL3BVsYEMj7NJVk36jDh6i\n9WdS1chqfz1rQx07AbIEaxabbqRWNrBOVBFCNMrkj/RBhF73si3UxwBx4lH2SCRNcE++G69R\nh+48vSO4zaTHYLaKOniI1vbI/lgRlM2ZgJ8RkiVYXdkThmqlGO6EFYt+M3AbWW1rWTvqg4A4\n0YNtjKgN3s32U4fuPFyEl2CJzyNsSh08RKs3WxZh9fdjm6iDtx9ZglUlj7Fu2pR9ShUiRG5/\nBHd2DJGS6x/qo4D4UN3gYBNqGbuHOnTH+TbSS7AElfEZYazLKFYk0vx6fSJ+j5Aqwbps9Hmh\nI9gKohAhCpPZzAi7oV8vtoP6KCAuXEmuFGEbLJszIe+OqGUTGxJxlx7E1lCHD9F5N4pvh5dP\n/pM6fNtRJVjHWGtjlbKOdSUKEaLQzLUr4n7otYJ1oT4KiAufsFYRtsGBuGooVP8I74IlesLV\njDp8iM6sKB7Q0Z9toA7fdlQJ1najfwelFr4+iyhGiFhmwZsi7oZ+N+S/TH0cEA+2RfymyxZX\nE+rgnaZMvkORd+lK+Iwwxt0exV/OG1lL6vBtR5VgTTL8PKPG7DhRjBCx48bucqatI0ujPg6I\nBxPY3EjbYOWk36mjd5b/sXpRdOlBbDX1AUA0/slRMYrqT8DPCKkSrHZsu8FKGc7WEcUIEdvG\nBkfRD73msSHUxwHxoDWL7NaIaeJnhAn4zSctO9mAKLr0ZrwjGNv2sh5RVH9/tpH6AOxGlWCl\nFDJaKatYb6IYIWIj2eNR9EOvgwVuwqfDEL0bi0bcBtficTnBhrGF0fTpKviMMKYNZ/OiqP0N\niXevUaIE619XLaOVklqgJE2MELmGSXui6Ic+TdkH1AcCse90NPdkuykfLgSUq5orgsdmBwzB\nl8JjWsXc+6Op/rIJ93gOogTrKOMNV0oD9j1NkBCp9Hylo+mGPg+xmdRHArHvFdY18jbIs5ep\n43eSP43/Zaxoq6sR9SFA5H5mdaOq/nvZk9SHYDOiBGs9G2G4Uu7DM1NizWfsrqj6odfTOepR\nHwnEvoVsYuRtcAabQB2/k0R9A+Earp+pjwEitpndF1Xtr0m4T9yJEqxRJj7JX8oG0QQJkdrC\nhkXVD32qu3DFBkSrH1sdeRPcm6sGdfxOMs7wt79VDGcLqY8BInYvWxFd9ZfMc576GOxFlGA1\nd+02XCcH81akCRIiNYrNj64feg3Am5cQtZtzRnPZUC32C/UBOEj9HM9G16V3JNWlPgaIWOTP\nofTqyvZSH4O9iBKs6683USl1GN7HiC2NXFEOw14rWXfqQ4FYdzVXhWjaYH+2jfoInONizmhu\ngySpw76hPgqI0AnWKMraX8T6UR+EvWgSrD9MXSvXlz1DEiVEKOO6UlH2Q6/UYoXTqQ8GYtyn\nUTw9LU28QqEv9RE4x2HWMdo+PZo9Sn0UEKG17P4oaz+1SNHEGtFpEqzXWBcTlfI4G0kSJUTo\nK9Y0yn7o04r9H/XBQIyL/EE5ktQCHPUROMcM9nC0Xfrp5OrURwER6h7N1Ywebdjr1EdhK5oE\nazkbZ6JO9uWsTRIlRGhnlN81CXiYTaU+GIhx4yN/UI6kEfuK+hAc4y7Xjqj79G3sM+rDgIhk\nlSgU5SVYaWnT2Vjqw7AVTYI1jC0zUynVkv4mCRMiM549Fm0/9NqdfAv1wUCMa8meiqoNPsBW\nUR+CU1zLVzL6Pj2RTaE+DojIcdY46trfl7sC9WHYiibBauTaa6ZSuuGpvzGleZRTmkxN1ynq\no4HYVqJ4dE1wPetCfQhO8R5rFX2X3pOnLJ6AFZPWsOHRV3+DxHpDmCbBKnyTqTqZySaRhAkR\nySpSIvp+6NUv4W79C9b6jdWPsg0WL5pJfRAOsZiNsaBPN2FHqQ8EItEj+kuw0tJGsgXUx2En\nkgTrJGtgqk52J91OESZE5ifWMPp+6LWC9aQ+HIhpL7FuUbbB5uwY9UE4REe20YI+PY2NoD4Q\niEDWjdFfgpWWts11J/WB2IkkwXqRdTdXKeVzXqSIEyKyj/WNvh96pRYtklhf6wWLLWQPRdkG\nx7BF1AfhDFnXF7GiTx8ocD36dAyK/i5Ykoo5zlIfiY1IEqzFbIK5OunAXqWIEyIyjc20oiN6\ntMTnCRCNfmxNlE1wC2tHfRDO8BW7w5I+3Za9QH0oYN56ax6A1pvtoj4SG5EkWPeZfaLRw2w6\nRZwQkfZsmxUd0WMybtQA0bglOZoH5UhuKnCN+igcYSMbakWXTpuXaLfzjg992Eoran8p60N9\nJDYiSbBud+0zVye7XE0o4oSI3FTYin7otTu5DvXxQAxLz1M26jbYir1NfRiO0N/c3XVUpZbI\nj0s+Yk/paB9E6K39wkUzqA/FPiQJViFzXyIUlMn9H0WgEIFTpp6DpKum61fqI4LYdYI1i7oJ\njmdzqQ/DESrkPWhBh04TH/n7FPWxgFnfm/xqmqoWiXTVB0WC9Yv5mmrPjhAECpF43uxXGLQN\nYhupjwhi1x7WP+om+CRrSX0YTvA7q2NBfxatZO2pDwbM2mLV8zkS6qoPigTrFfNfnJ7CZhAE\nCpGYw6ZY0xE91rKO1EcEsWsmmx59GyyZ/yr1cTjAHtYn+lPpkZLzDPXRgEkDLPqAOLGu+qBI\nsJaZehKhZCcuwooZXS25WU7AjfkvUx8SxKyu7Inom2AbXIQlGMvmRH8qPfqztdRHAyaVzXfI\notpPpKs+KBKs+9lS03VSNvclgkghAuXzW3ItpB/Pnqc+JIhZVfNY0Bon4CIsQb0ce6I/lR6b\nXXdQHw2Y87N1l9YOZJuoj8Y2FAlWE5f5jsqzwwSRgnl/u2pZ1RE95rDh1McEsepKciULmuBW\n1pb6QOhdTK5owan0quH6gfp4wJRtbKBVlb86gZ7uSZFgXR/B01ensYcJIgXzXmOdreqIHgfy\nl8TDYSEyn7EWVrTBEgUT6JvlKl5lHaw4lR4P4D3BGDOYLbas9q8vkDDXNBIkWGfZLearZHdS\nA/sjhQgsYhMt64geTdj71AcFMeppNsiKJticfUx9JOQeZZOtOJUeTyVXpz4eMKVinqhv2OvX\nLnE+jyJIsN5ifAR1Ujn5X/tDBfN6s3WWdUSPSYn0tV6w1HQ2w4omOJKtoD4Scq3Zk1acSq/6\n7FPqAwITfonkbRE1M9g46uOxC0GCtZE9GEGddGMH7Q8VzKtixVXFQZ7JWY36oCBGWfIlQvFe\nIT2oj4RaZqESVpxJn4fYJOojAhN2sn7WVf7eXFWoj8cuBAnWePZ4BHXyGBtpf6hg2rmkGtZ1\nRK/67Cvqw4LYVC23NY/3KMBRHwm1z1lTK86kz548KbiyMoYMZQstrP267DvqA7IJQYLVju2I\noEr25apqf6hg2psRfQCsbTR7jPqwICZdy1nBmiZYn/0/e/cd4ES1/QH8ZHdZlrL0IqEXRYqI\nIqJYQVBEhyK9K01RQESRIiCoKIIgICCigBQp0ndtv2d/D/XZfYq9PjvPjgVkYfc3qZtsZjaT\n5N57Zibfzx+SjZu999xz78xJMuW/3LEwu5euEjOUQeem0w1TnO94gYdg5edfmTZfuTMUWE0q\nJpWTtvSl+r5CohbRZIELMWBz5incYYEjvSfgToR+w2grdyzMhtFSMUMZNAtfSTiIuNsk+a2l\nC7kjUkR9gXUos0VSObmc1irvKyRsCK0QuRID2qbNJ8og1A5RR47Mo2u5Y2HWuJyoC3kH7M6t\nWcAdE1gl9BAsXYOyv3OHpIb6Aust6ppUSpbSIOV9hYQ1zxG7Hfa7BlfNgWTcSjPEzMDtmadz\nx8LrO7EfYei6ps+5+s43WughWPn5fWgXd0hqqC+wtiZ5ZZq8KjWPKe8sJOi3jJZCF2LApsyT\nuQMDJxpCKwVNwSbZf3EHw2oHDRI0kiG30GjuoMCqpmVFHoKVnz+fRnGHpIb6Aivp29ufT68p\n7ywk6DmRl3sudgp9wB0ZONCpWaL2C93T/JjsG2iuoJEM2VO5+hHuqMAaoVfB8ic/97j0+LhE\nfYE1kO5LLieT8T2R/S2UcIx7vu88wjnckYHzFFasL2oGTqaF3NGw6ujZKmooQ7rR49xRgTUb\naLjg5J+XJrfnUF9gtc3ak1xKNnrOVd5ZSNAgYd/JRNlaBhfpgIR9QWeKmoGr0+gGtQYOlW0k\naiTD5tHl3GGBNVcIvBFhwBSayR2UEsoLrGPlGySbkyZlflPdW0jQ8eVEX8c9oANuBgcJe5z6\ni5qAeZXrcEfDaR91EzWSYXurVE2be/46XKNySX4qYmprVnocVqu8wPqMOiabk77pcuaBc/3s\naS1yFRa7kaZwxwaOs1jgF9Yd6FPucBjdKeOr/+70KHdcYMVndJrw5LdJj0v3Ki+wHqUByabk\nDhqrureQmCept8hFWGxHTr30OCgSBBpLdwubgSNoI3c4jHrRamEjGXY7jeCOC6xYQyOFJ380\nLecOSwXlBdYiuiHZlOypUE91byExd9AUkYswQid6jjs4cJpzPduFTcA7aRx3OHwKa1URNpDF\n8qpVOcwdGVgwTOAblZDV6XExd+UF1mhaknROOtLbqrsLCekj442u3xwawx0cOE3NGuIm4M4y\nJ3GHw+ej5A/sKM0llMcdGVhQr6KEq0c3yE6HQ6qVF1hnp/CmciLNV91dSEiDXDnHuOfn76lS\nFe92ISE/Cr16T0vPT9wBsVkn4TuifN/lJodyRwbxfUhnSEh+P9rGHZgCygusarWST8l6z3mq\nuwuJOCD8fhrFNJziAIn5p9Cr3vZL449bRgs/Td8vr3qlQ9yhQVyraKyE5N9Fg7kDU0B1gfU9\ntUshJ03L/KK4v5CIR8SdFh9jEfXhDg+c5T66RuAEnEPXcwfEpkW22DulhPTEuyYH6E8rJOQ+\nr1qVNLiSv+oC65mUTjMbQA8r7i8kYo6oe+sa8eaguoZETKL5Auffw5mncQfE5QdZV1+5iwZw\nxwbxFNasIuXAj270NHdo8qkusFbQxBRSspCGK+4vJOISWids+cUYRA9wxweOchFtEjkBT8j8\nlTsiJntkfTKdV6vC79zBQRz/oXOlJH8OTeQOTT7VBdY1tCCFlOytXBNXQ7Kx42SczB2y2nM+\nd3zgKPUrCZ2Al1E+d0RMbqA5QkeyWF96iDs4iONuGi8l97vKNeIOTT7VBVYn2pJKTi6gFxV3\nGKz7itqLWnxGmmd8yR0hOMhvgr/YSt+DsM4Uf6fnoHvoEu7gII5LZV175yx6kzs26VQXWLWr\np5SSqTRDcYfBut00SMzKM3Yl3ckdITjIv6m70Pm3PesU7pB4/JXdWOhARmpQ5gfu8KBUBZVS\nOPG/VJPpZu7gpFNcYP2Y4nn827LS+Gp/tjeDZgtaeoY2ZbXhjhAcZC1dKXYCtsj4kTsmFs/S\npWIHMsJwWsEdHpTqReoqKfdb0uCGz4oLrOdTvTJNW/pCbY/Bugtpo5iVZ+I0eoc7RHCOG2ie\n2PnXn3Zyx8RiLk0VO5AR1njO5A4PSnWLtNuf6Xvzz7ijk01xgXVvqsfLjaFlansMlhVWF3hn\nEiM30FTuGME5uok9iTA//zaawB0Tiy60QeybRrseAAAgAElEQVRARmrt+Zg7PijNeR5pb5uv\npLu5o5NNcYE1nhamlpI11FVtj8Gyz+hMMevOzPacBjiJFKyqX1nw/NtZpjV3TByOVKgreCAj\nTaRZ3AFCKf7IbiQt9+vcf2sWxQVWp5RPR2mUna4Xo7G9h2mYkGVnrhM9yx0kOMWvnjai519r\nzwHuqBi8SBeJHsgIW7MbFXJHCOYepV7ykt8s83/c8UmmuMCqWTPVlPSnLWq7DFbdSLeIWHSl\nmENjuIMEp9hHmuj5N5C2c0fF4A6aLHogI52Ld012dp20a6DphtFa7vgkU1tgHUjpToR+i2ig\n0i6DZRfQQwLWXGn2Vq2Mm8OCNauE3onQbx6N546KwUUy78+Qn38rbs9hZ63LbJeX+xXUgzs+\nydQWWE/RZammJK965b+V9hksKqxWW8SaK1VP2sYdJjjE1XSX6Om3s4z7zyuPcaRiHdHjGCWv\nZoXfuGMEM1+L/6I9krfcH9wRyqW2wLqbrks5Jd3pCaV9Bos+oY4CVlzpltKl3GGCQ5zj2SZ8\n/rXI+Ik7LOVeoAuFj2OUgXQ/d4xgZh2NkJn7y2gHd4RyqS2wRtOSlFNyK12ptM9g0Ra5SzGg\nUdZ33HGCM1SVcAHqfrSXOyzl5tH14gcy0gOeDtwxgplBAnbZpVhAQ7kjlEttgdUhY2fKKdmd\nW/uo0k6DNVPoVgErLo6RtJg7TnCEr6iD+Ok3h6Zwx6VcF3pQ/EBGOZne4g4SjB2rUSVPZurz\nqlU5wh2jVEoLrMKKIi6o0on+pbLTYNEFtFlAduPYkIl7JYEVj9AA8dNva0baXXf8cLl64scx\n2o00kTtKMPZv6iw39xfT/3HHKJXSAusTOktASm6i61R2GqwplPGVTKzT6RXuSMEJbpdyf5fG\n2X9yB6bYs4JvmW1gd+Wqf3GHCYZulnefnIBb6CruGKVSWmDtoiECUrKzXH1cmc5+VBzjnu8r\nr3EIHlgwkFZJmH6XpN1Fm2bRdAnjGK03PcgdJhg6PUPy1xK7Kxzn6rtzKC2w5tJNInJyDr2s\nstdgycM0XERy49ldtZLLT+wFIVqU3Sth+k2h27gDU+xMj+yr2+Xnr8Ydn+3pQMaJsnPv8iN+\nlBZYfegBESmZloZHmtrfVJorIrlx9aUHuEMF+/srs7mM2beOLuaOTK3fyjSVMY4ltKU3uQMF\nA+ul3/3M7Uf8KC2wTign5IyEHTmN8R2h7XSRfh33gAc8p3GHCvb3MnWTMv1qVXb1Nxox8qiP\nlHGMNp3GcgcKBvrRMtmp35nj6iN+VBZYf4j6vPEsfEdoO4XVlBzjrmuHw9whrvtonJTZdx79\nhzs0pSZKv8Goz57qFX7hjhRiHKlSQ+pFGvzOole545RIZYH1kqjzUabR9Qq7DVZ8quYYd91s\nGsEdLNje1bRQyuwbRyu4Q1OqZXbqly60YAiub2dDT0n6GDjKjTSVO06JVBZYq0W9qdyR08DN\nnyo60nb539YH7T2u7Pfc0YLddfQ8LGX23UODuUNT6Ws6WcowlrSxTNP0+urVEa6l2fJTvz27\nKXecEqkssK6hBYJych7tU9hvsGAazRGU3LhG01zuaMHmjgm5prGBvNwG3LGpJPlWdMU6UR53\nrFBS4xwVH192pNe4A5VHZYF1trA3lTNpvMJ+gwVdaJOg5Mb1cIVah7jDBXt7n86RNPtOo/9y\nB6fQYLm3oiu2mC7gjhVK+I+awz6muPk7QoUFVmElr6iU7M6tWaCu42BB9RqikhtfT1ypAUq3\nVdonLyNoE3dw6hyrVVn+Uc4BLdLs7AEHuIWuU5H57WVdfFUAhQXWx0JulBNwIT2uruMQ3+d0\nhrDkxrUms6V7VySIME3aVdkWpNMVBV6ncyUNY4zpdDl3tBDtlEwFd5fN9105/EXuUKVRWGCJ\nPAz6dhqqruMQ33YaKiy58Z1Le7kDBlvrKu0b691lW3AHp858miRpGGPsPa7sN9zhQqTPqI2a\n1M+kCdyxSqOwwLpJ4CkJeTUr4IYpdqLwGHfdUurIHTDYWk1531i38aTPSaydPeuljWNJV9I0\n7nAh0iK6Uk3md+XWOsIdrCwKC6zuJHCx9qMN6noOccn7xMDQqfQ8d8RgY19SB2lzbzBt4w5P\nlT/KNpI2jDF25Fb5jTtgiNDR86Ci1HejR7iDlUVhgVWnssCU3IuTTuyksFpNgcmN73bqxh0y\n2NgeGiRt7t1B47jDUyWfeksbxliDaAF3wFDsa/k3eg5ZQP25o5VFXYH1HZ0qMicnZHyurOsQ\nzyfKruMe1IJe544Z7GumxCsk7so+kTs8VcbTrdKGMdZDOXVw+RX7WEqjlaW+bvaP3OFKoq7A\neoz6iUzJ1XSzsq5DPNtouMjkxjebLuOOGexL6OEIJZ1M6XI09vFlldwnJ6QHreKOGMLO8axV\nlvmhrr0BlboC61aaLjIlW8s2OKqs7xDHFKVvdXV5TTL2cwcNtlWrmsS5N4w2csenxqd0msRh\njLUuqwkub2gX32Q0V5j5jFO545VEXYHVm9YIzckF9JiyvkMc53nUXDGl2NT0uiccJOK/dLrE\nqbcoXa7YtJLGShxGAxem00VcbW4pjVKY+dPcesiHugKrQa7YlCygXsr6DqU7lltHbHLjy6uf\n+RF32GBTO2iIxKm3t0I97gDV6EGrJA6jgfsyWuGWzzZxlmedwszfRFdyByyHsgLrALUVnJNG\nmV+q6jyUbr+6Cz6H3UAjuMMGm7pR7lXZzqR3uSNU4e+KtWWOopFzaRd31OD3haelysTvqZbr\nzmt0KCuwHhV7jHu+7zD3Gao6D6Vbq/CEk5C9dbM+4Y4b7KmT3G+sx9Hd3BGq8DR1lzmKRu7x\nnMYdNfjdSVcpzfxAlx7mrqzAmkMzBKdke4WaOKvXHq6iBYKTa8FkuoI7brClY5WPkzrz7qfu\n3CGqMIVmSh1GIx3oCe6wweeUzI1KE78usxV3yFIoK7AuJeFf6faiB1T1Hkp1apbS07kD8BEW\nGHuHzpc79eqUP8wdowInZW2XO4wG7qJzuMMG3ft0iuLMd6RnuYOWQVmBVauq8JSsyWxVqKr7\nUIq/yjQVnlwLJtMw7sjBju6XffbbJfQUd4zyfUUnyx1FQ23pOe7AoahoFl2rOPHz3HllQ1UF\n1ucybg52tntvYeQo/1J/sIbP3nqZ73OHDjY0hhbJnXmz6AbuGOW7n0bKHUVDd1BX7sChqLBp\n9lbVmW+U+QV32BKoKrC20jDxKVmMz5NtYSFNFp9cC26kAdyhgw21yt4td+JtL9OaO0b5etMK\nuaNorBW9yB05vERnKU/8BFe+a1FVYE2WcqnvtvS8ov5DKfrQfRKSG19eY88b3LGD7fySIf0M\n85PpK+4oZfu7ktr7t4fcivu48xvPcH7DzspVDnLHLZ6qAussj4yPHO+gzor6D6Wom5snIbkW\nzKaLuGMH23mcLpM98UbSau4oZXuGuskeRWMt6AXu2NPdkZq5kj8DNjLAjVc/UVRg/Z3TQEpO\nWuMjLH6fU3spybWgFT3JHT3YzSz5b79XuPOI3Eg3MHyI4Xcb3jVzy6eLGRK/oUwj992KUlGB\n9Qp1lZKT+XS2mgDA3EM0XEpyLbjL0xb31oBo53sekj7xalY6wh2mZC3LqL9IQ0AbvGti1p/j\nuob5+V1pC3fkwikqsJbSBDk5OY32qIkATF1Dd8hJrgXn4FpoEO3v8vXlz7tu9Ax3nHJ9pvxC\nSGF3edrhXROnX3PqsBzzsdJziuuuu6SowBpIK+Xk5J6M5m5/K2l7J3NcZjRoTXbtX7njB1t5\nUcXBQzNdecpThHtkX0usFGfRBu7w09r9NIgn8WfS49yxi6aowGpQUVZJfCEtUhMCmPg1o4Wk\n3FoxkK7lHgCwlfkqLhqyvUxL7jjluojulz+KJlaXqevC88mc4xzPap7EL6KzuGMXTU2B9RW1\nk5WTjRUqfaskBjDxKPWRlVwLdtbOep17BMBOLqa1CuZdO/qYO1CZDpZV8D2rqb50PfcApLHP\nPGzvmE9x3TfvagqsrTRUWk7G0kAlMYCJaTRbWnItmE3t3HfuCSStoFItFdPuKlrCHalMO1nf\nNW2vmfUW9wikrzl0DVfiF9C53NELpqbAmkDzpOVkb1P3fXHrKGdkKL+rQpSzaQH3EIB9vEwX\nqJh1az2duCOVaQTdqWIUzczCuyY2hU3U3yYn7BT6P+74xVJTYJ2atUNeThZnNPxdSRRg5Hee\nOz0X21ipHG5JCCHzaZKSadc08wfuUOU5Wr3yXiWjaOZcupV7DNLVc3QuX94Xedq760RCJQXW\nwczmMpPSmyaoiAIMPU69ZCbXginUAW93IagbrVEy64bQeu5Q5XmeuigZRFMPVSmDQyt5XE63\nMCb+DNrOPQBCKSmwnqDeMnOyo07GPhVhgJEpvIdg+ZyFt7sQdKRiHTWTbjlp3LHKM4nrMu5h\nsz0t/uQehbR0sEINzg8vV2ac4KrrLikpsGZKXq63e048pCIOMHBq1sNSk2vBQ1XLvMo9DGAP\n/1J2C726Ob9xBytLYcMcvkvbBV1MV3IPQ1q6nway5v0iWsY9BCIpKbDOk33vim40Q0UcEOtH\n1qtgBd3sORFvd8FnDt2oaNINoI3cwcryKp2taBDN7ahPO7jHIR118DzAmvf1OTV+4R4DgVQU\nWIck3em52NbqZXBaL4+tXFf9jdKdruIeCLCFsz2bFM255XQpd7Cy3EhTFQ1iKe7Jrvo590Ck\nn7epLXPeh9B13IMgkIoC63nqLjspM6n9UQWRQIyRPPcFLWFHPU8e90iADRws00TZpGuQ/SN3\nuHIUNinLdaPnSOPo9L+5hyLtXKPsE2AzO2pkf8g9CuKoKLDmKsjZ2bRYQSRQUmHdCnukJ9eC\nJVk1cUF/KMqny5TNuWF0L3e4cvzbBt8Q+pyN22Cp9nvlKru50z6FLuEeBnFUFFidPBukJ2VD\nxQqfKwgFSnjTJtvi/JHU9Rj3YAC7CXSrsim3xtORO1w5rqUZygaxNNvq0sPcY5FmVlE/7qzn\n57WkfO5xEEZBgXUoR8VtrSZSF3ddocwZ5im6rGNceafQfO7BAHbHl1V4+lsr+oA7XhkKjqvA\nfg5hwD1lc9/jHo30clKGiht5xrE0o6lrrgqgoMB6Rv4hWLq8tm79wN7WzvBsVJBcKzZUKfMi\n92gAs0/oNIVTbgLN4g5YhsfpQoWDWKrJdKJrr4VhR09TR+6U+3SnudwjIYqCAmsGTVeRlDXl\nK7jo2DiH+C7jRBW5teQWT8OfuMcDeC2jsQpn3LayDdz4tfQAukPhIJbuEuqFLybUuYTmc2fc\nZ0uVnI+4h0IQBQXW6RlblGTlOjrVNR8sOsVqGqEkt5b0p4vduL8D67rRapUzrrPbbk3r83NO\nnTyVg1iq3S1wlwZ13vEcz53wgMnU2SV1tfwC6ye5NyKM0Ikulx4NROlGqxQl14K9J9NM7gEB\nTn/k1FU64+6gftwhi7eMhikdxNJtqJbxCPeIpI1hdrj+md8ptJp7MMSQX2BtUXbp/R1NaJ70\ncCDCz9myLyGbkE21PFu5hwQY7aI+SidcXt3sA9wxC3dS5nqlgxjHXWWquOXrIrv7OKu+XT67\nXFMu93Pu4RBCfoE1gu5SlZV11T0rpMcDxdba4jLuxZbmlMOB7mlshOqr3o6k27ljFu15OkPt\nGMYzgVriQHclhtJk7mSHjaezXXHpcOkF1rHaldTdnHt5Jc9S2QFBsQvpXmW5tWRmRvV3uAcF\nuBypWlXxO/DN2Y1csRuI0E/hlcSs6U4ajq1U4O2M+up21XF1cMfxHtILrBfoAoVZWVaZZsuO\nCEK+y1J3XxKLrvHUeZ97WIDJ40ouCBPlAtrLHbVYX9jna6KQ3SfR9dzDkg4uppu4Ux1hc60M\nNywt6QXWjWou0hByb00aeUR2TBCwiEaqzK0lI6n2m9zjAjwup3mqp9sS6swdtViTabzqMYxr\ncx3CoR/SPUYtuRMdZXF2JRd8GyG9wFJ939D1jakrvrJXo429DocNGOPJfZR7YIDDocrV1H/F\n0Zre4I5bpJ8qVrHJVdwjrcrNwNkrkh0+3rOEO8/RJnsafM09KimTXWC9pvzSsA+fSm2cnxcn\neJnaK86tJdeXyZznkouoQCK2UG/1s20mDeSOW6Sb7XRhu2J35ZTZwT00LnczXcyd5ZIGU8sf\nuIclVbILrBvoRtVp2dOV6rvgs0X7G0UzVefWkgXV6GL3nT0P8XSh5eonW17DTBfdQOKXKrnb\n1I+hBbfnZD3IPTiu9k52VTXXA09Ed2rr9JtzSC6wjnrL71CflyGeKs/IjQuKin4qX2OP+txa\nsaENHfcE9/CAYp9kqLqicZQbaAh35OLcZKuLjEaaX8GDixzKU9CepnGnOFbeBXTKj9xDkxrJ\nBdYT1IUjMddmZa+XGxgU3WnbjXF+3rAsz3WHuQcIlLqeJnLMtb31M97mDl2UbypUVnvEbAKW\nVaMRWNKyzKWzuRNsRK+w2nzPPTYpkVxg9WW6eeQt5ekGt12gxmaO1Mt+iCW3liyqQyfv5x4i\nUOj3qrk8h2fPpAu5YxflCrqKZQgtWdeEOjp7Z2tf/86qtpk7v4byLqTmX3KPTirkFljfZddl\nuqjKijp0/rdSY0t36+x3UGSkhy+gnKU41j193E39mabaSbSLO3gxXsmot5tpDK3Y3pHqv849\nRq70axPPLdzZNZGnUUMnH+Qot8CaS6O5ErP5NKqVLzW49Ha0eeb9XLm1ZmpF6voV9zCBIofr\nZW9kmmjLM+v9yh2+CMdOpzlMQ2hN3kBPeVyuQbzCPhzn31o1kGq9xj1CyZNaYB2uk7OVLS95\nl2fRmIMyw0tr65VeoT8p69pSFRyKlyaWk8Y20frT5dzhi7CEzmIbQoum5Xim4NAP0RbSiXb+\n5HKMJ/cx7iFKmtQCay3jRk+3pD41wIdYchxulGXzD7B0eVfl0KW4Jlo6+KNONt9Fb3c1om3c\nA5C6TypUsOF1g0u45zjqhEM/xHo8s8o67ryWakqZrOXcg5QsmQXW0eaZD7AmZmefTLr0XYkR\npq876VLW1Fq0uhVVXoU7xbrfzdSHcZrdU7bSB9wjkKqCs2gS4xBahUM/RHu7Utad3FmN445c\nGnWIe5ySI7PA2sT/LdLSFpQxyDVnUdvHN7kVbXwKYYS8sTl0xivcwwWSfVa+Mt/BCLpJ1MLp\nh2HNpDM4R9Ay36Efwx1/gW/7+MzrsX9hfX8jauPMT0okFlh/N8m6jzsx+XnTG5Kn2z9wOplY\nvelK7sxatbYDeQY4c3GCVRfzXAOrmEYXFXAPQkoey6hhzxP1Yy1pRNVX4UgsMb5oTMO5E2rB\njguo3GInfhUhscC6yx7n8edNb07UcsUv8gJNP1uoufrb6iZtbiPKuOQJJ65OsOYBas10OZiQ\nPW1pDPcopOKDKmXu4h3BBOwenkOt8riHzBXerc92dZMETcmlDm9yD1fi5BVYX1eqsIk7KUEL\nzsqknL47/5IWa5r5rEr2vdw5TUTetGZEDWbgBpUu9V6FHPYzLrY2pFnc45C875vQBO4RTMS6\nTh5qvxvvmVL1eBUawp1Lq9Z3pMxxjrvHrLQCq/BSO32L9OCQOkQVB27/U1a46eSvdjSOO6GJ\nWtA5h+jEafvwzYL7/HQC3cA9v/R9fk1ayD0Syfq5LfXlHr8ELe3goabzcYpwKgpmZ2Qxf7We\nkFl1qOI0h13MX1qBtZxaMX9qHy3vrl41icr32/qbrIjTxbG+1Ik7m0l4eHL7MkRV+6x4j3sA\nQaiDZ1JP7snls6oq3co9Fsn54VTqYquNtSX3dCpDGWfNfwPH1yZp/+lUYwF3FhOya3Rlyrn8\n39wDlwhZBdbz2RXXcKejpLxFvWsTlb1oyTtYk8k7Nopa8Nz0LWUPT+tSjYjqDLrP8SfVQ8iP\nZ9DZ9jgg8N7qNNqJtyP+9ETqbI8RTNCmMc09RLWGbPof9xA60MEbs+lsp5zXELZ9TC2iVguc\n88mlpALr9aqZ9ry50eJ+9fVdbPVLb30Sn2Ql5fAgauS4ZRlh5ZUdc/UZcFyfRf/6g3ssIXVv\nNaWz7XIZ6rWNqO1/uAckYY9WJ815n18Frb/23MpEGWfc8ioOyErE4eW1qfp07uwlY++sDlmU\n2XWDQ7becgqsZ6p4ruVOhKkHrj6nur6LzWgxfNk+3EonQV+cQc2ccQUsc3nLxpypb5Up84R+\n8x77hntEIQUFC3PoMvtUB9s7UdYkZ12j6ddxnizHHVEZJW/xEN8HWTX6r3gbR1ha88vCupTd\nfzt35pK1aUwzoorDHv2bexwtkFFgFczLyrL5tcvWTe3VIlvfx3qaXHL9fc9+iXc/1hSsqExn\nO3ZdRlk16dIWOfoMoNoXTd38pkMvE5zmju1sRbn2ehs+syblTnHOLcb/XFKT6i7iHrTUbZp8\nfhV9LVc8Z/zqF51+xVfZjj0zojyV7WH/2yKVZmXfGkSV+654w+5FlvgCqzDvJKoyjzsBFuxZ\nNrF7q4q+fSxlNzln6E0PPPMJTjIszaEHT6RyV9vn84KU5a2e2v+0qr4JkNGw0+WzV+z657vf\nO/tykenk/VuakKfzRu5JVMLOkZUpq8cOR2xJXr+uOuUMcugBlSXlLb/q/Loe32Ku0/nKhTvf\n+Jl7dG3p73+M9xLVHOb0byH0fN/RXa+xqEzzHpOWP/GpbT8iEVxgHXtj7gnk6WSXC2BZsOH2\nay47s0klCihXs0nrMy+5fObyPS+8//XPts0ag592jqxKGRc8yJ0v8TbeMrLriZUppFKT0y8e\nMn7mgvsefvyF/V/hSD1b+mLLuGb6+6LOK7gnj4EdVzfSNyTd5j31I/colebTjWMaEuX2ddCm\n2oJtd159aZtqgYVcseVFl89ctnPfR1jDAd88cdvFFYkqXHCLW94krxjXpZn/awgqe1KfG5Zu\nefKV/Z/+ZK/PtOIVWOc1saZxw3p1alYpl0Hkyal+nPPUrlG1UoWc7DKZGR4q5snIKlM2p1yF\n3MpVq9esXadOXZ23js5bt179ho10FoeHRZfSU1tg6Y80bljfW6tqxTK+j3kq1OROkzz6BKic\nW6Fc2TJZGRQlOAUq5FaqXKVKtWrVa9SsXfu4Ov65UL9+YBIENJacziijS8/tRyr7okrjRg3q\ne4+rWTU3J9O3NstWrsU9acxUr5DlmzqZOblVa9SuU7d+g4Qmx+2l5/aJlMawYT1vrWq5Ob5J\n7smpUpt7pKSoXb1KbvmyWeEtuSczsIQr6Uu4arVqNXxL2LeA6/nXbyrDmbCtpef2XsHNNWpY\nv26d2jWrV84tn+3frmWWr+q2nNesVrlCTlbEbtuTlV2uYqXQHjuwkVaxcX7ZKKPxCqwmBE7V\nvPTUHuHuHyRPKz23+7n7B8m7ofTc7uTuHyRvdem5vZ27f5C854wyqqTAatiiRYsKIv5Qsmrq\nHajJ2YEKegcaqm5UfoFVRw+rWup/JmGZersnMrRLtbgm0ol6w5EfrbEWWL5RqCG1BRNN9YbL\nMrRbVm+3qbLWmAqsqnqQdST97ZAmehs5cpvwbWobyW2C6ultVIr/awasF1jKdhkqBkxtQ+VV\nNtQ4/BNfgdW8Xbt2yc1HQbx6B+pydqCS3oHmqhuVX2A11MOqlfqfSViW3u4pDO1SXb1hL0fD\nervtbFNg1dM7I3tXbKi13nA5hnbL6e22VtYaU4FVSw9S9h69ld5GeblNqNjUNtXbSO6NpfUC\nS9kuQ1lDuXpDSt4WK2uoot5Qi/BPSRVY77wmwCC9Hw+K+EPJmqV3YBZnBzboHRigutH9pae2\nMPUWrtXDWpD6n0nYP/V2OzC0+9pNesM3czTcXm94X8TPH5ee27+kdma63pk5Ulsw0U1veC9D\nu7v1drsray3OVR5+kdTsXXqQEyT97ZBL9DZ2yW1ik95EP7lNvDZKb2NlUq+Mc5G074p/c73e\nxkBB/S2VigFT29BmvaE+Khraojd0Wfgnw4tqSrsXYaQxej9eUNGQmZV6B1ZwduAlvQOjODsg\nx616WFsY2v1Nb/dMhnaL7tEbXsXRsK/Ass2p/0v0zsR5Ky5HT73hOKWlFB/q7fZmaFepbXqQ\ncyW30Udv4325TbysN3GF3CaKrtfbeFxyGy/qbcQ5lUUMFQPm94re0OUqGnpNb2i4iobe0Bsa\nWvqvoMBSAgWWUCiwWKHAciMUWJahwEoGCixZUGChwBIKBRYrFFhuhALLMhRYyUCBJQsKLBRY\nQqHAYoUCy41QYFmGAisZKLBkQYGFAksoFFisUGC5EQosy1BgJQMFliwosFBgCYUCixUKLDdC\ngWUZCqxkoMCSBQUWCiyhUGCxQoHlRiiwLEOBlQwUWLLsXLZs2X9VNGTmJb0DL3J24L96B3Zw\ndkCOp/Ww/sPQ7iG9XZaC+QW94X9zNHyP3vARjoaN7NM7Y3jjLdnW6w1z3EL5B73dDQztKvUf\nPcinJLexUW/jgNwmvtSb2C63iaJH9DY+lNyGsl2GigHz+0pv6GEVDX2tN7RNRUPf6A3Fubuk\nkgILAAAAIJ2gwAIAAAAQDAUWAAAAgGAosAAAAAAEQ4EFAAAAIBgKLAAAAADBUGABAAAACIYC\nCwAAAEAwaQXWJyuvGdBr8JSN3xc/9fXqiYN6D5/7f0dltWngQH9N+ydXDz5YfmXfQePv3l/8\nDMcQiPSmFuG60LNyo3p3jKbti3zCoDkpPYhuWFno1laOsplkk+EPkb+gS7Zb+Oqisf16D522\n9efi55y+jpVkVfr6UbFSSrYhdTNQ+OKCMX31qbYp4mKskqaaqn3T/nuu6t9n9IJXI54S21DM\nTJZVeSQ3nSUVWH/fE2q79+7Qc9t7BZ8a931pLxWqcKYWsT1W24OClT2Cza0sZOmABPuMppXU\nqArW+UYxcgUZNCejByUbVhS6xZWjaibZZviDpC/omHZ/uDGUkD55EttVSkVWpa8fFSsltg2Z\nm4FvJ4X+cK/wpdXlTDVV+6Y/bw1FNOax0fMAACAASURBVO9Q6DmhDcXMZFmVR7LTWU6BVThX\nb2Taup3Lh+v//l/guT36w1nbH1k7UtOuOCilVQOP+aINbY/V9qDwLk3rtzRv+1w9MZs5OiDD\nE5o2d3PIE4HnpEb12Xh9pUStIIPmZPQgpmE1oVtcOapmkn2GP0j2go5p98+xmjb+kbfff3G5\nvvF8RFq7SqnIqvT1o2KlGLQhcTPww1C9iF/w0O779Smn7Rb6p0tQtW86cr1eK965O29xH027\nuVBCQzGzTFblkfR0llNg6a33ec334NBSTRv8t+/Rd320Xv77lx3Wi9plUlqNdaCfdnl4e6y4\nB09q2rU/+B683kfr/TNDB2TYqWlPl3hKalT5vbXL9twdObENmpPRg9iG1YRubeWomkk2Gv4A\n2Qs6tt31+q4h8IH/6z20fgcltauUiqzKXz8qVopBGxI3A7dp2g3+HcWx1Xr986fIP12Cqn3T\nVk0b/rnvwVcjQ+WO0IZiZ5mkyiP56SynwBqnaY8FHh3VR9Yf8KpwrXxoqNbzZ7NXClV4kzZ0\ne3h7rLYHf4/QBvwUeLhl9v1fqu+AFBs0reS9jqVGdZ129WdFURPboDkZPYhtWE3o1laOqplk\no+H3k76gY9sdo2mh2/pO1bTnJLWrlIqsyl8/KlaKQRvyNgM/99D6/BZ4eEyfdS8L/NMlqNo3\nHRuiaa8HHn7cQ7uiUHhDsbNMUuWR/HSWUmD92kO7LPSV63JN26v/c3SI1vv34FObNG2XjGZj\nPKpXmY+EtseKe/Cipj0U/QzLEAi2UtPeiX5GblTXrdTfhERObIPmpPQgpmE1oVtbOcpmko2G\n30/6go5tt6emhRKyQtO2SmpXKRVZlb5+VKwUgzYkbga+XDT3gdDjJYE6QdJUU7Vv+lDTrgo9\nnqtp7wtvKGaWyao8kp/Ocj7BOvrDl6GHazRth/7P+5o2LfTUu5o2Q0qzJXzfT7u5KLw9VtyD\nhZr2dfQzHEMgmh7VZ9HPyI3K31jkxDZoTkoPYhpWFLqllaNsJtlo+H3kL+jYdvtr2p/BhysC\nR8Y4fh2ryKr89aNipcS2oWgzsDAwySVNNVX7pmc17e7Q47zAxztiG4qdZZIqj+Sns/TrYN2u\naS/o/+ibxbWhp/7uoQ2Q3ayucIY24Ifi7bHiHozShuv//f3T974LPcMwBMLN0bQD0c8oiCpy\nYhs0J68HUStKeejmK0ftTLLH8BepW9BR7ervvP8TfDgt8G2hG9axmqyqWj8qVkqwDTWbgd8H\na71+lvOnfVTtm/S/ujr0+HVNmy+nIYNDNf2EVx5JTWfZBdbBPlp/3zvANeFTcHTDNE3ByTeP\n+I+rC2+P1fbgUA+9hN0/03dq5xVbDzN0QI4perefvWV4r4ET1wYXp4KoIie2QXPyehC1olSH\nXsrKUTuT7DH8ReoWdFS772nadYGPsF7poc2U2q5SKrKqaP2oWCmhNpRsBr6YrGkb5PxpH2X7\npqcjPsF6S9MmymnIpMASX3kkNZ1lF1h3BQ/8WhTZuQma9qXpK0T5vp82qyhie6y2B5/rBftj\nPYNXxbj2F/UdkGOcpl0dulTLVv9BiwqiipzYBs3J60HJwyeVhl7KylE7k+wx/AoXdHS7uzRt\n5I439u+7u6d2zY9S21VKRVYVrR8VKyXUhuzNwIE1qxeN17Q+DxcJ/9NhyvZN72vaNaHH+rId\nJachkwJLfOWR1HSWXGBt1bQbCnwP5mnaK+Fnr9e0j+S26/8+ob/vM7zw9lhtD97VtAm9rnjy\n2yM/PDJU06YXKu+AHL6riwxctH3vqiv0Bxt9zyiIKnJiGzQnrwdRK0px6KWtHLUzyR7Dr3BB\nl9hivzojsB29YsMfcttVSkVW1awfFSsl3IbszcC7vpk2YE3wbEI5U03ZvqlggKYFLxV/9BpN\nGyynIeMCS0LlkdR0lltgbdS0qwJz5RZNeyP89LTAGQVS5QfP1wxvj9X24DV92Mf86n/47UBN\ne1F5B+Too2n3+j8pL1itB/hxkZKoIie2QXPyehC1otSGXurKUTuT7DH8Chd0dLt/rhseKLB6\nXM+xIZFFRVaVrB8VK6W4DdmbgXcDc+2qJ/0/yZlq6vZNazVttP+a5ofm9+jhL7AkNGRYYMmo\nPJKazjILrMPzNe3qHwKPo8q7yfLf9n3XT5vh/+DO+A2v9B68qhVfJ2O3pt2qvANy/PlH6JSq\nols1bUGRkqhM32xPjn2XKrQHUStKZehxVo7amWSP4Ve4oKPa/fFKTbv7vb8Kfnj6ak1bKbVd\npVRkVcH6UbFSItuQvxk49vP7Gwdo2pIi8X86SN2+6c/RmtbvvmeeXzdCW9XL/xWhhIYMCiw5\nlUdS01ligfW/azVtaujCEIsjOzc+5jRR0Qqnaf0CtwMKb4/V9mC/pvUK3fHxB00bpLwD0n2k\naQMKlUQVObENmpPXA7PzU2SHHm/lqJ1Jthh+lQs6Ku0zwoeuHr4h0LI71rGKrMpfPypWSlQb\nkeRtBv43KnCdcDlTTeG+6cA1weOUlh7UtPFyGoqdZZIqj6Sms7wC692hehl+JPTTOk3LD/+v\nwZr2h7R2/fLCF3QNb4/V9uALTRsW/qGvph1RPgSyFV6mab8piSpyYhs0J68HZitKcuhxV47a\nmWSL4Ve5oCPb/TBw8pPf25p2vcx2lVKRVenrR8VKiW4jksTNwMuBGwjLmWoq901HH5sx+LIx\ni94p+jLwUZmEhmJmmazKI6npLK3Aeqm31mN38Y9PaFr4MrV/atoQWc0G/NBXG7svYJmm3b9v\n32eqe3Ckp9Yv/MNg/9Wg1XZAvkGa9oOSqCIntkFz8npgtqLkhh5/5aidSXYYfqULOjLgnZq2\nLvT4L03rcdQt61hFVmWvHxUrpUQbUeRtBg7LnGos+6Z9mrapSEpDJWeZtMojqeksq8B6qZfW\nN/JePZ9o2g2hx69r2lxJzQYFDxUstlp1D4quLr4QmT6hLytS3gHZ/u6haX8riSpyYhs0J68H\nZitKaugWVo7amWSH4Ve6oCMDXh+4PY7fsZ7+i9u4Yx2ryKrk9aNipZRsI5LgzcBbO9e8G3pc\n2MNf90iaahz7Jv190atyGioxy+RVHklNZ0kF1gd9tH7vRT5ROLL4PosrQ3fWlsZoe6y2B74P\nDPcGH74T+GpBcQdk+Pfym58JPX49cJETBVFFHYsT25y8HkQ2rCp0KytH7Uyyw/ArXdAlPsG6\nJ/T4gKb1LHTFOi5Sk1W560fFSolpQ+JmYHXEVPtG0/oK/NMlKNw3/Rr896/B2sACOQ1F1z0S\nK4+kprOcAuvPUVrv/0Q/tUHT1gQe/dhX6/tn7GskCR+yobgHn2ra5X8FHs7TtC3qOyDDPzRt\n3N+Bh4XTglcblh9V1AoyaE5aDyIbVhS6tZWjdCbZYviLyV/Qke2+rWkjCoKPnwm+RXX+Oi5S\nk1Wp60fFSoltQ+JmQN9PDwh9sLRe02YL/NMlKNs3zevXI3iZ8wdDd80R31D0yX0SK4+kprOc\nAmtl7F2rfx2o9Xje9+DglGBO1SjeHivuwXx9jfgHeYem9fuFoQMSHB6qabf7T8/4e5mm9fe/\nPZEfVdQKMmhOWg8iG1YUurWVo3Qm2WL4i8lf0JHtHr1S01b6Lw9RdODy4NtS56/jIjVZlbp+\nVKyU2DYkbgYKx2va5J/8D5/sGRw5SVNN1b7pIU2b5r8Xz+M9tAGBy1KJbyhqJsusPJKazlIK\nrAO9tB4bNofl+Z98poem3bQt7169Z5ML4vwBgYq3x4p78PMo/c3vuicevl7TtKc4OiDDy/rK\nH7Ryz957h2tajxcDz0mM6l3//JmoafN9/+4ya058DwwaVhK61ZWjZibZafjDZC5og3bf7qVp\n1+W//cEr6wbqjR2V065SKrIqf/2oWClGbUjcDHzcV9P6zN+ya41eaWm3Cf3TJajaN/1xhaZd\nvu6x7XrB0fPlIuENxc4ySZVHCtNZSoG1L/p4iTGBZ//RJ/jzTSpPbI7YHivuwbeTgq31/QdP\nB2R4aXAoq0NfDT0nL6rtUfNomGlzwntg1LCK0C2vHCUzyVbDHyJzQRu1+9aI8BN3/SWpXaVU\nZFX++lGxUgzbkLgZ+GhsuK1lf4v90yWo2jd9cUXwjw5+MfycuIZiZ5mkyiOF6aywwCr637pr\nB152xfyXZDRpKnJ7rLgHR5+ec0XvQZM2/FT8FMsQCPXH3tnDL+tzxdxHDxc/Jy0q4x2tQXOi\ne2DYsILQra8cFTPJXsMfJHNBG7b79z9uH9Wv1+BJ931a/ItOXscqsip//ahYKcZtSNwMHH12\n/uj+vQZPfuAL4X+6ZEuK9k2Hdt04qOeQ67f/GvGcsIasFlgpt5jCdJZ8s2cAAACA9IMCCwAA\nAEAwFFgAAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAgGAosAAAAAMFQYAEAAAAI\nhgILAAAAQDAUWAAAAACCocACAAAAEAwFFgAAAIBgKLAAAAAABEOBBQAAACAYCiwAAAAAwVBg\nAQAAAAiGAgsAAABAMBRYAAAAAIKhwAIAAAAQDAUWAAAAgGAosAAAAAAEQ4EFAAAAIBgKLAAA\nAADBUGABAAAACIYCCwAAAEAwFFgAAAAAgqHAAgAAABAMBRYAAACAYCiwAAAAAARDgQUAAAAg\nGAosAAAAAMFQYAEAAAAIhgILAAAAQDAUWAAAAACCocACAAAAEAwFFgAAAIBgKLAAAAAABEOB\nBQAAACAYCiwAAAAAwVBgAQAAAAiGAgsAAABAMBRYAAAAAIKhwAIAAAAQDAUWAAAAgGAosAAA\nAAAEQ4EFAAAAIBgKLAAAAADBUGABAAAACOa4Autbr9c71/Jv79d/+x6JvbFv41ws5edJ/Ze2\n+R4kNUSYAg5jMgpJzoLwy17XH9wrqIuQlHgpkDX/TdoNTw0Ae0CBJU9a7l1RYNmmcdtAgeVW\nKLAASoMCS5603LuiwLJN47aBAsutUGABlAYFlpHB3nMSf5Goxp3NLQUWpoA4kgqsL2fMmPGv\nVPsmJs9uZzZK8VIga/6btIsCC2wGBZaBwhbYuybLJQUWpoBAkgosEQTl2eWSHiXF8x8FFtgM\nCiwDn3qxd02WSwosTAGBbFxgCcqzyyU9SiiwIL2hwDKwHXvXpLmkwMIUEMjGBZagPLtc0qOE\nAgvSGwosAzOwd02aSwosTAGBbFxgCcqzyyU9SiiwIL3ZvcA6svvKzi0btu2/8pfgE7696636\nP3dcemrD1hfe9lXE7x597MbObRq06HjF2h9CT0Uv8BdnX9SmQavzxuz4PeJVXywZ3P74+iec\nOWLNj/6ft3lDTjZ/3Wv6/36p6JdZHRqe9InFxtOEeX4KHx1zRpMWna59IcFdK6aA00WOQpKz\nwOhl4VPJYlNhnOeSU8kgzxAjepSixzrqbL6nrjn7hEYdr3+rqOhX/elVvqeCmR2m//N2xJ98\nVv95duBhzOr2i7fcIts1mhomf6Qodq0DyGTzAuufHUKLu9nawDO+vesdRdubBJ9uvD38u8+f\nG94SNFt4NPBc5Kb7o0vD/7/t3tCLDk+rV/yqFYVFBltdo9f5/u5TB8/zPbffUuNpwzQ/B/qG\nBmjQwUR2rZgCjhcxCknOAsOXhfeyMakwzHPsVEKBZUX0KEWPdUShc2BQ6NduL/xC/+/6oqJw\nZh/V/5kV8Scne0MFV+zqLrKy3CLbNZoaJn/EYK0DyGTvAmt7fd9KqN/YvyBu9j/l27vevbOu\n19uwhX+t1Hsp+Ltb/b972kXnNPT9O7rA/2TEpvv5E3zPt7voLP/vLQ88WejfKjQ47czm4Sae\n69+/mdfbtH///mPNX/eJ/jDvFm94kx6v8fRhlp/fu/h+atHlvKZeb48nvJZ3rZgCzlc8CknO\nAuOXhfeyJVNhmC+DqVQyz2AkepSix7q40Pn9At9Tx593pr4up7yrP9zsezaY2YLWXm/rgvBf\nLGjp9XbyPzJY3ZaWW0S7hlPD+loHkMnWBdabDbzeRou+OFZ0YPXxvvXle863d725ad1J7xQW\nHXm2s/5Dz8DvvqEvpHpzv9Uf/bXtZP3pu/zPFm+6vzhR//+zvtQfHXxQf+h9xP+s791Z93/6\nlv6BNb5nX/M/2ynikAPj1/nfop3gPW/evXd8baHxNGKWn5t91cdTR4uK/s5v7x1oedeKKeAC\nxaOQ5Cwwfll4L1siFcb5MpxKUXkGMxGjFD3WxYXONP3Ryfn6Mvp2al3vopKZna3/+0T4zz2j\n/7TC98AwJVaWW3G7xlMjobUOII2tC6yL9HcbLwYe7qvn9bb3fe/i27s2qbsj8OxPrbzeugd8\njwo7Fb95KfpYf4PS0Le4Ijbd+tqruzP4/z/S///ph32P+nu9bf8IPvu5/seu9j+K3Ooav+5r\n/e/2884NfsYct/E0YpKfA4283uafBX/lVK/lXSumgAuERyHJWWDysvBeNjoVJvkynEoosCyJ\nGKXosQ6n4JuGXm+z9wNP3u9tUDKz7+n/jgr/uev04ud73wPDlFhZbuF2TaZGQmsdQBo7F1gv\n6stlZugH39f2TxcF9q7eqaFnfe9fnvU92Kc/GBp+5Qr9p8W+B+FN99v6g0nh/79O/8l/5E5b\nr3dC+NlV3cYs9T+I2J6YvM7fiz6hLXq8xtOJSX7W6g/mh57dY3nXiingBuFRSHIWmLwsvJeN\nToVJvgynEgosSyJGKXqswylYpT+4PfTrI2Iz6yulfg7+74IWXu8g3wPDlFhabuF2TaZGQmsd\nQBo7F1hT9XXxYeiHZ9t1HbC7KLDQ6oVPHNup/7TR9+C60BbT78f6Xu/5vgfhBT5Lf/BR+P8f\naur1jvQ90Jf6FbENR2xPTF7nX+7PhZ6O13g6McnPYP3Bx6Fnj7ayumvFFHCD8CgkOQtMXhZd\nYIVTYZIvw6mEAsuSkgVWeKzDKRigP/g89Oz+2ALLVwiFjmJ/Wn/s/3TJMCWWllu4XZOpkdBa\nB5DGzgXWWUZn9/gW2oXhn3wfHNzne3Cu19uo+CjKoov1XfCfRRELvKvXe2bEX9HXZUvfvxd6\nvQ3fjGkjYnti8jpfL44Ptxev8XRikh/9vWOb4l+6yuquFVPADcKjkOQsMHlZVIFVnAqTfBlO\nJRRYlpQosIrHOpyC1l7vacW/3zkms7828novDv7fSV7vCX/5HhimxNJyC7drMjUSWusA0ti4\nwPq7ntfbK+ZZ30KbGP7p1eAC/lP/3S4RvzVRf/71ouIFfkj//wMj/v9c/XnfgTu+T7ab3PFF\niTaKtydmr/P1onfoyXiNpxXj/Pym/9uj+JfutrhrxRRwhf2pzQKzl0UVWOFUmOTLeCqhwLKk\nRIEVHutwCg56owb9xtjMXhn+tMr3DaH/6zvDlFhabuF2TaZGYmsdQBobF1if66vhyphnfQtt\ndvin14ML2Pe7IyN+a4H+8+NFxQvc96qmpxdrEdwBFvT0ffLsPXf6I79GvLp4e2L2uqh9fLzG\n04pxfj7W/404FX6bxV0rpoAr7E9tFpi9LKrACqfCJF/GUwkFliUlCqzidzehFHyk/zu5+Pcf\njM2s78zB2/yPfN8Q+o9sN0yJpeUWbtdkaiS21gGksXGB9Y438kDFkOj7pIT2rr6DGidE/NZy\nb+CwxtACf98by/+F/p8Tgj/V77k2vOiKtydmr/P14qbQr8drPK0Y5+ct/d9ri38p3+KuFVPA\nFUKjkOQsMHtZVIEVToVJvoynEgosS0oUWOGxDqfAl6KIK4nuic3ssXZe7yn+swSv9XpP9x+s\nbpgSS8stql2DqZHYWgeQxsYFlu/mCFNinjXeu75c4nfv13/eUFS8wF83WHGPBn71zYnNg080\nvzt4/e3i7YnZ66J6Ea/xtGKcn39HD5HVS0xiCrhCaBSSnAVmL4sqsMKpMMmX8VRCgWVJiQIr\nevH5UuBL0a3Fv290jf753sDZvgUnhs77M0yJpeUW1a7B1EhsrQNIY+MCy3c54IkxzxrvXX1v\nhsZH/NYy/WffhZJCC/wDw78VVPCvOZ0Da25Y4Io5xdsTs9dF9SJe42nFOD9veqPeae6yuGvF\nFHCF/anNArOXGRdYJvkynkoosCyJW2C94Y26LnqeQWZ9XwheUxT4hvBT/zOGKbG03MLtmkyN\nxNY6gDQ2LrC+1JfA5THPGu9d/+uNPgHX93bpH0XFC/wbb5wTdA881Mu35Jb4fyjenpi9LqoX\n8RpPK8b5+dAbdazEeou7VkwBV9if2iwwe5lxgWWSL+OphALLkrgFlu87uRuLf3+jUWZ7e73N\nDvnP/7g08IRhSiwtt3C7JlMjsbUOII2NC6yCBl5v15hnjfeuh+p7vRdE/NbV3sDdREMLvKBR\n6O5X5h5trG8B/KcPF29PzF4X1Yt4jacV4/z8zxt1ts/NFnetmAKusD+1WWD2MuMCyyRfxlMJ\nBZYlcQus76NrpZlGmd3q9d2x5vAJwftAm6TE0nILt2syNRJb6wDS2LjA8i3rhofCP33y8ce+\nO70Z7119V15peKT4paEfwwu8u9fb4GCc9hbrv/xSsOHQ9sTkddG9iNd4OjHJz4lR16vpZ3HX\niingCvtTnAUmLzMusMzyZTiVUGBZErfAKmwaVdFcZJTZP5p5vWN8x6E3/KX4z8amxNJyC6fe\nZGoktNYBpLFzgTVDXwH/F/rB96mv7/YoJnvXqcHvZAK+0n/SfA/CC3yON3i3hIBPQqvv66+L\nn3w+9Dciticmr4vuRbzG04lJfnznR4evuHww5l5lZjAF3GB/irPA5GUmBZZJvgynEgosS+IW\nWL5LeNYL3QrH/8WdQWYneb1N/xrl9Y4OPWGYEkvLLdyuydRIaK0DSGPnAst3ishloR/u9QZu\niW6yd/UdZVl8abl53uDtU8IL3HeQwHnhs0YOt2vQz3dWyZzWERevK9qt/84bvgediy9LbPy6\nEr2I13g6McmP7xKA80LPLjXeABvAFHCD/SnOApOXmRRYJvkynEqReQZTEaNkUujcoj94MPTs\nWOPM+jKwuZHX+0TkEzEpsbTcwu2aTI2E1jqANHYusAo1fQkE78f5YXOvt63vSxeTvWuR73cf\nCj3b0Ott9bvvUfEC990s68bgvUILfFuA/KLAol4X+lsFPbze5v7zSi72ehuEbrpu+LoSvYjb\neBoxyc9Hdb3eZh8EnnyjmeVdK6aAG+xPcRaYvMykwDLJl+FUisozmIkYJZNC5xX9wak/BJ7c\n6D3BOLMdvd6WXm/r8A1vjFNiZbmF2zWZGgmtdQBp7FxgFb3l+8h33BuHCr9c0dwbcVd1o73r\nh4293nq3/U9/dPD+E0LvTyMW+H+P1x/2e1lfc4fzu+kP+/ie/P1k/dHE13wr/s+n9QUXvNbw\naN/q/PHol7+ava7kJj1e42nELD++W2W03qpXHV8uaea9zuquFVPADfanOguMX2ZWYBnny3Aq\nReUZzESMkkmhU3SZ/qjTS/qYH5hVt8G9xpn1f8LknVn8dw1TYmW5FbdrPDUSWusA0ti6wCrK\nq+dfkoH/Bu6OYrZ3LXqkof647pndzvT/dvB9UcQC/6dvyXmbdWxT1/fv+YF3Wy808v1Q/5TT\nT/A30TNwyOVGb8A/TV9XYpMet/H0YZaf79r5h/REvQ7x9vdd+HyL79n4Q4Qp4HzFo5DkLDB+\nmVmBZZwvw6kUnWcwETFKZoXOB/7rd7bqepY+vCuf8RoWWN/6h/6tiD9slBIry624XeOpkdBa\nB5DG3gVW0Qsdg0vbe8K6wDOme9eif3cK/a63fX7wucgF/m6v8P+ve91vwSffPD/8pLfBzcEF\nd7hz5FbX6HUlN+lxG08bpvn5+ILQAA393XfZKN+Fzq0MEaaA40WMQpKzwPBlpgWWcZ6NplKJ\nPIOxiFEyK3SKXj4tOLZN1xeZFFhFg/Ufz4v6ywYpsbLcIto1nBomf8R4rQNIY/MCq+hw3pXn\nntiwbb+VoVN7zfeuRccevf78Vg1anjtxV/iE+egF/sLNF7Vt2PSUAYv+W9xA4TPTLzm5cf3m\nZ15+3/fhJ3+aemr9xmeM+cL0dTGb9PiNpwnz/BQ8PKJ94xPPn/RCUdFB/enVvuesDBGmgNPt\nT30WGL3MvMAyzrPBVIrJMxgqHiXTQqfo4OrL2jZo3m3+d0VFT+lP7/Q9VyKze2MTbZCSovjL\nLbJdo6lh8kdM1jqALHYvsAAAwEl8J+g9afD8Vq+3wQHlvQFggwILAADEWaEXWK8bPN/d6x2p\nvDMAfFBgAQBAao5+Vvyd2+Veb/0/Y3/lRb3uekFhlwC4ocACAIBUfHh+Q+9VoR8ONPB6u8f+\nTkFXr7ebyk4BcEOBBQAAqSho7fU2CJ6KWTDMW3zR3WKFk/Wnn1PcLwBWKLCA3arBxlZydwwU\nwixwslW+CzQsPlBUdPSl3r6LMcRcI/2dgfrTozi6BsAGBRawu9ZrbDx3x0AhzAInOzYicDWr\n05r4/mn5fvT/nXSy/9KeZ/5i/GIAl0KBBeywawXMAocrmNMgnLJLPy/xP8f7n+78DUfHAPig\nwAIAgFR9uWTAKY0btrnopn0x/2tOQ2/zSx4oMHgRgJuhwAIAAAAQDAUWAAAAgGAosAAAAAAE\nQ4EFAAAAIBgKLAAAAADBUGABAAAACIYCCwAAAEAwFFgAAAAAgqHAAgAAABAMBRYAAACAYCiw\nAAAAAARDgQUAAAAgmDMLrEdPanKcrkmTCb9ydwUS9M2kZqHk/cbdF1Drm8ubBHLf8wPurqSP\nD0/SB3wSdy8A0pEjC6xFnqzud2zavPSKWtRkP3dnIBGFd1egytrN67YsH1WLjn+fuzug0obK\nVHfMii33T2xGOSu5O5Mujran4Svr04Pc/QBIQ04ssB6gaovz/Xb29lR9jbs7YN2RQZR71a5g\n8npQ9be4OwTKFIyjnLF7/KnPu74iTSjk7lB6WE8d8/NXl632M3dHANKPAwusN8pWWJEfMt5T\n4xPuDoFlI6jZg+Hc5Y/z1P6M8g3mLQAAIABJREFUu0egyGGN6q8Kp/7+enQNd4/SQmGrjPv1\n8R5G07l7ApB+nFdgHTmZZhbvo/PH0kl/cncJLFpOTbZF5C5/JJ30B3efQIkCjVpvjUj9pvq0\ngLtP6eCfdLZvuLdXzsXhqgCqOa/AWkKdIvfR+RfSOO4ugTWflq+4Jip3+V1pJHenQImx1HpH\nVOrXVs18hrtTaWAszfEP9xDUswDKOa7A+rVa+Y1RG+qddT3PcXcKLOlFE6Prq/ydjWg3d69A\ngdXUYFuJ3N+RUfcn7m653tHqlQOHvT2U3eQYd2cA0o3jCqxbaXCJDfWdnlYF3L0CC16gE/JK\n5C5/WVYdfHXhfh+Ur7C6ZOrzB9Jw7n653j66IDja59P/cXcGIN04rcA6VKv81pIb6s60mrtb\nYMHFNC9mJ6vvZcdz9wtkKzybJsemfndj7PNlm0FTQx8Y0iDuzgCkG6cVWGuoV8yGel12vcPc\n/YK43vacGLuTzd9ZJ+sd7p6BZGvodIPU5y/OaHaIu2sud0ZG6P1o3nHl8FkxgFpOK7BO9zwQ\nu6HW6F7ufkFcY2i60V72JrqIu2cg18Ha2WuMUp/fnW7j7pu7/VmmaXiwB9Ea7u4ApBmHFVhv\nU1uD7fS6rGY4gNPufi1fY4/hXrY1Pc3dN5BqLvU3zHz+5tyK33J3ztWeoh7hwV5NXbi7A5Bm\nHFZgTaEpRhvqTrSHu2cQx700yHgvu4DO4u4byPRz5dyY4yaDrsRlOqS6haYVD3bTzAPc/QFI\nL84qsI7Vz9lutJ1eQl25uwZxdPAYf02Un9+O/sHdOZBoDg01yXz+nrqZOAJPoktpXfFgjyDc\nABJAKWcVWP+i84031M09H3H3DUr1saeN2V52IZ3H3TuQ54/qFcw+wMrPn049uPvnZnUqR4z1\n/dSJuz8A6cVZBdZ1dJPxdnoSTeXuG5RqbsxFRou1oRe5uwfSLKe+ppnPzzue/s3dQff6itpH\nDja+IwRQy1kFVqOcncbb6e3lj8PFRm2tVdYW073sLdSbu3sgy7Hjs9abF1h67nESqTR5NDBy\nrIfR/dw9Akgrjiqw3qKOZtvpbvQod++gFO/SaeY72bzGGR9zdxAkyS9x79CSWuAjLGlujzzG\nPT//XurO3SOAtOKoAusWus5sM72ABnD3DkpxG11byk52Ei7n7loX0t2lFlhzSePuomsNolVR\nY12/7G/cXQJIJ44qsE7PeMhsM51Xp9xB7u6BuXbmqdPtrloRV5l2p/cNr98f6XjPfu5OutVJ\n2Xujhro/beXuEkA6cVKB9X1GC/PNdH9az90/MPWVp3WpO9nBdDd3F0GKiXR9nAJrGo3g7qRL\nHcluGj3Ui3E/QgCVnFRgraNh5pvpFTi+wMZW0chSd7Iby+Ba/K70R5XKu+IUWHvrlP2Ou5vu\n9H7Jq9rkVa9yhLtTAGnESQVWf1payna6QfZP3B0EM5eWOBgkRiecpOBKq6lfnPoqP38szebu\npjvtoSElhvpiXNMXQCEHFVgFVavllbKZHkLruHsIJg6VrxNnJ3sXXczdSZCgbYbZ9fuLbSt3\n3N/c/XSl+TS1xFDPwdkkAAo5qMD6F3UtbTO9Amcj2dY/6NJ4e9lmuFKDC70YfaVLE5fQFu6O\nutIVdE+Jkd6Z05C7UwBpxEEF1ozoi7rEqJuD8wht6nqaHW8nO4kmc/cShBtGN1sosFbQ+dwd\ndaWOnpjrMnekt7h7BZA+HFRgnZppfkszn760nbuLYOykLMN7dEfaWanaX9zdBMF+yKlV2rf6\nYS09H3J31Y1q1owZ6Ul0K3evANKHcwqsb+Oc6Z+/gIZx9xEMfec5Kf5O9jJay91PEGwhjbBS\nX+m7/Ru5u+pCv1Hs/dU3ZZzO3S2A9OGcAmsdDS99K51XufpR7k6CkY2lXV8j5H7Padz9BLEK\nj8/aZKnA2lG+Dm4lKtybdGHsULfIwDUxAFRxToHVj5bF2Ux3oX3cnQQjV9BdFvay7egV7o6C\nUE/RuZbqq/z8C3GVDvF2GL0lHUFruPsFkDYcU2DFuUiDz3Sazt1LMNKo3B4LO9mZNJK7oyBU\nf5pnscC6E7cSFW8B3Rg70supN3e/ANKGYwqsf5Z+kQafbVknc/cSDHxOp1nZye6tUf4X7q6C\nQP/LrmvpEHdd3nHlcDNK0a6ixQZDXaviYe6OAaQLxxRY02h63M30SZ5vuLsJsR6kKyztZYfQ\ncu6ugkCL6HKL9VV+/kCc4iBcN9psMNKX0hPcHQNIF44psNpkbYu7lR6Bi7nb0UhaZGkn+2Bm\nG+6ugkCtsjZaLrBWURfu7rrOiTlGIz2XJnB3DCBdOKXA+soTe8pxjKU0kLufEKtZjpVDsHSn\n07+5+wrCvEwdLNdX+flNM3F2m2AVGhgN9K5yjbk7BpAunFJgrbbyNVNelRrHuDsKJX1DbS3u\nZGfRaO7OgjBX000JFFgj6R7uDrvMDyaHPp5B73J3DSBNOKXA6kUrLGylz6dXuTsKJW2jIRZ3\nsnuq5f7B3VsQ5O/qlXZbLq/y89d6zubuscu8Rt0NR3oC3cndNYA04ZAC6+/cWla20tfR7dw9\nhZIm0m1W97J96UHu3oIge+gSq2n3a+H5irvL7rLT5DL66z3ncncNIE04pMB6yuTdWMltB3Xm\n7imU1C4z7o0IQ1Z5zuPuLQjSnxZaTbvfaLqbu8vucjdNMR7pZlk/c/cNID04pMC6gWZa2krX\nz8Edg23mj6xm1veyLTyfcvcXhPi9fG2rF8EKWOc5i7vP7jKZ7jQe6YG0hbtvAOnBIQVW6yxr\nn4Jo9CR3VyHas6RZ38tOoJu5+wtCbKa+1tPu1yIDV7ETaQA9YDzQi2god98A0oMzCqyvDe4L\nb2gmTeXuK0S73eybCiNbs5sUcncYROhFS62n3W8UziMUqqPH5CSDvKrVjnJ3DiAtOKPAWmv1\nmtBbM9tz9xWi9aA1Cexlz6V/cncYBPi9nDeBrPut8ZzP3WtXaVDVbKS70D7uzgGkBWcUWANp\nmcWtdPNMHMBpL7VNt/NG5tAo7g6DAFuofyJp92uWeYC72y5yrIzpsY/TaQZ37wDSgiMKrGM1\nqlg9YLY/7ebuLUT6jM5IZCe7t1olnKbgAv3o7kTS7jeMHuDutot8Y77wtmWdzN07gLTgiALr\nDTrP6kb6Ntxpy142m1yNx0xv2szdZUjZodxaiZ1D6LOKLuHut4u8Usp1yE72fMndPYB04IgC\nayFda3UjvTO7FXdvIdK1NC+hvew9dDF3lyFledQjoawH1Ct7kLvj7rGHhpkO9Ehaxd09gHTg\niAKrWwLHSbfx4KaxdnKGZ1tie9kmmd9y9xlSNYpuTyzrfv1oK3fH3WNFKe9KV1IP7u4BpAMn\nFFhHKh5nfSM9DF8x2cmRnAYJ7mVH00LuTkOKjh2XuyfBtPsspgHcPXePWTTHfKRrVzjM3T+A\nNOCEAusF6mp9I72QRnP3F4q9Rl0S3MtuymrN3WlI0YvUKcGs++XVyMV+X5TRpZ15fQn9g7t/\nAGnACQXW7XS99Y30nnJNuPsLxe6lqxPdzXag17h7DamZRtMSzbqfRo9yd901LqaHzAd6Nk3m\n7h9AGnBCgdWN1iWwkT6NPufuMIRdQUsS3ctOp/HcvYbUtM5K8MC7oHk0hrvrrnFKVinnce7I\nbsHdP4A04IACqyA3gUOwfGfIrOHuMYSdlG1yvw5zuytVwxdFjvYFtU006QF7cmvhJi6C1KpZ\n2kifQp9xdxDA/RxQYL1KFySykV5Kg7l7DCF/ZDZPfDer0TbufkMqVtDYxLPudwHulCRIQUap\nK280LtQAIJ8DCqzFNDGRbXRepTq4X7Bd/KuUqx2aWkYXcfcbUnEJrU48634z6TruzrvEt9Sh\ntIFeSb25ewjgfg4osC6jVQltpM+m/dxdhqDFNCmJ3WyzTFxo2sH+Klc3iaT77cxpzN17l3id\nLi51pGtWOsLdRQDXs3+BVVircmJ33bialnH3GYIG04okdrPj6BbujkPyHkvqMu4BHelN7u67\nw2M0qNSBvpD+xd1FANezf4H1EXVMbBu9inpx9xmCmufsTWIvuzW78THunkPSJtDcJJIeMJlm\nc3ffHdbRuFIHehrN4u4igOvZv8BaRyMT3EjXqIJTkezh14xWSe1mO9GT3F2HpJ1QdmdSWffZ\nmnUSd/fd4XaaUepAb8nowN1FANezf4E1iu5KcCPdmV7h7jT4PUM9k9rN3o57pjjXZ9QuqaQH\nnEofcQfgCtfSwtIHunnmT9x9BHA7+xdYLRO+ktJkuoO70+C3MJFr8EfIq1P2R+6+Q5LupTFJ\nJT3gGrqTOwBXGEj3lz7QA+lh7j4CuJ3tC6xfMlomuo1+kLpy9xr8BtC9ye1mh9NS7r5DknrT\nyuSS7rfBcwZ3AK5wPm0vfaAX4KatALLZvsB6jPomvJGuWx6XAreFZuUSOwE0bH1mG+6+Q3IK\nKtdILudBLTxfc4fgBi1z4ozzngr1ufsI4Ha2L7Bm0U0Jb6O703Pc3QbdL57Wye1k8/Pb06vc\nvYekvEBdk0263yi6hzsEN6gR9/5iHeld7k4CuJztC6wutDHhbfR0nOttC8ke4+5P4TXcvYek\n3EJTkk263xpPJ+4QXOBoxonxBvoaupu7lwAuZ/cC62ilOolvozd7zuHuNxQlf4x7Pu747Fzn\nejYkm/SAZpn/447B+b4v/U45PmuoG3cvAVzO7gXWW9QpiW10k+w/uDsORUWDkj3GXdcDJzk5\n0h/ZjZLOecAweoA7COd7my6MO9B1y/3F3U0Ad7N7gbUqzgWJjfWix7k7DkVFJ+QkeYy7bild\nyt19SMLjyX8tHLSSunMH4XxPUv+4A90DW0kAuexeYA2npUlso2fRVO6OQ9FvSV7HPaBR1gHu\nACBxN9DNKSTdr36Zn7mjcLzNFi5GNpcmcHcTwN3sXmAdn7MniU301oz23B2HoudSuOlvfv4V\ntIQ7AEjcqZkPp5B0vwG0iTsKx7vbwqkGu3Iac3cTwN1sXmD94DkpqW308Zm/cXcdFtHkpJIX\nsD6jHXcAkLCf4p+9FtdS6s0dhuPNoNviD3QHep+7nwCuZvMCK5/6JbWNvowe4e46DKPlSSUv\nqC29xx0BJGq3hWN/4jquPM5RSdEYuif+OF9DC7j7CeBqNi+wptPspDbRs+lG7q5Dy7LJfL0b\nNolmckcAiZpIt6aS84DetIM7DqfrSRYulrHeczZ3PwFczeYFVifPQ0ltordlnM7d9bT3Z2bz\npHIX8nDZxoXcMUCCTiqzI6Wk+y2kwdxxON1Znt0WBvp4XHIMQCZ7F1gFFeomuY1ulnWQu/Pp\n7iXqnmTygs6hfdwxQGL+50nlxNGQvGqVcZXZ1JxQwcpAD6M13B0FcDN7F1iv0QVJbqN70RPc\nnU93K2hCkskLmklXc8cAiXmYBqaW84Du9Ch3JA5XxdI705WkcXcUwM3sXWAtp2uS3ETPpOnc\nnU93o2hJkskL2p1bs4A7CEjI1TQvtZwHzKPR3JE42xFPC0sDXTfnd+6uAriYvQusIVbOhTG0\nxXMWd+fT3SlZu5JMXkg3eow7CEhIizI7U8y5395KNVBap+JbOsPSQPejrdxdBXAxexdYjSsk\nfa+VRmVxoy1Wf2c3TjZ3IXfQUO4oIBHfJ3nZuhgX0PPcsTialVsR+txN/bi7CuBiti6wvqVT\nkt5EX0rPcXc/vb1OXZJOXlBejQq4IJKTbKXBqeY8YCZN4o7F0Z6mvtZWWK0Kf3L3FcC9bF1g\n7Uhhez2VbuHufnpbQ2OTTl5Ib9rCHQYk4Eqan3LO/XaWa4hLdKRgK422usJ2cvcVwL1sXWBN\nTuGqheupK3f309t4ATvbpdSDOwxIQPPsVA+7C+lIb3AH42TLrd6l6i4axN1XAPeydYF1hmdb\n8pvoOhWPcPc/rZ2VSvJC6mf/xB0HWPYNnZx6ygMm083c0TjZzTTH2jjn1cw9xN1ZANeyc4F1\nqGyjFDbRXell7gDS2bGK3hSSFzKE7uMOBCzbRMME5NxvS1Zb7micbAIttjjQPWgvd2cBXMvO\nBdY+ujiFTfQkWsQdQDr7kM5OIXkhqz3ncQcClo2ihQJyHtCGPucOx8EG0gMWx/kOGsHdWQDX\nsnOBtZCuS2ELvZp6cgeQzrbS8BSSF9Y840vuSMCqJuWs3ADPmrG0lDscB+tKVr+f31ulKg6l\nAJDEzgVWb1qdyia6Wg2ciMRnqtWjQEo3lhZwRwIWfUGniUh5wBrqzB2Pg51SxvJAd6N/cPcW\nwK3sXGAdVzmlTfQ5tJ87gjR2EW1IKXtBGzNxLI5TrKWRIlIe1LjML9wBOVe96pbHeS7u+Akg\ni40LrE8s3u7BzDhayR1CGqtdLaXkhbWjd7hDAWuGpnrzySgDcA205JWzfnrQ7gpefNIPIIeN\nC6yNdEVKW+jlNJA7hPT1DbVLKXlhk3HXbocorJOb9I2tDCzGFZqS9nsi18s4F6dbA0hi4wJr\nHN2Z0hY6r1Id7hDS1yPUP6XkhW3PaXCMOxiw4l06S0zKA/KqV8bR10n6nM6xPtBT6Cbu/gK4\nlI0LrLZZO1PbRJ9JH3LHkLZup6mpJS/sfNz31xmW0ThBKQ+4iJ7hDsmpXqfu1sd5a9ZJ3P0F\ncCn7FlgHM5unuIUeQ/dzB5G2+tF9KWYvZA6N5Q4GrOhJqwSlPGAWTeYOyameoIEJDHRb+oy7\nwwDuZN8C6ynqmeIWeikN5g4ibZ2QI+p4nD1VquJmHg5QULmmoIwH7SzblDsmp9qc0I3Wr6Ql\n3B0GcCf7FlhzaVqKW+i8XByExeT3jBYpJq9YD9rOHQ7E9yJ1EZbygPb0AXdQDrWMrk9gnNfQ\nBdwdBnAn+xZYF9ODqW6hz6T3uaNIUy8kchBIHHdTD+5wIL65NEVYygOuoYXcQTnUbJqbyEA3\nwiXHAKSwbYF1rGrq3ziMxZWwmKyg8SlnL6x+mR+444G4zvFsEpdyvwc953IH5VDXWL7Xs19/\nXHIMQArbFlj76dyUt9ArqS93GGlqLC1KOXthI+ge7nggnoNlmojLeFCzrB+5w3KmAbQmkXFe\nREO4ewzgSrYtsO5P6DhNY3nVquMaSixOz0jxEhuR1nlO544H4tlLfcRlPGgwbeQOy5m60MOJ\njHNe1WoF3F0GcCPbFlgjE/uU29j59Bp3HGnpaPn6qSev2Mn0HndEEMcEulVkyv2WUD/usJwp\ngXs9+3WlZ7m7DOBGti2wmmfvTn0LPYnu4I4jLb0n4PvdCJNpKndEEEfzbIGfWQbl1ah0mDsu\nR0rgXs9+M3HJMQAZ7Fpg/eg5ScAW+kFPZ+5A0tJmulxA9sK2l/Me5Q4JSvUFnSoy40Hd6XHu\nwBypvPV7PfvtwCXHAGSwa4GVT/1EbKEblv2DO5J0NI3miMheWFd6jDskKNVqGik04wG30Dju\nwJzoT2qT4EB3oP3cnQZwIbsWWNNotogtdC96lDuSdNSNNorIXth8HIxjc33pHqEZD9hdwYuz\nVBL3VcK33Z5I87g7DeBCdi2wzvNsFrGFvpUmcEeSjupUEZG8Ynnesjhh386OVqsm6tZIUc6n\nl7hDc6C3qFuC47wpoz13pwFcyKYF1pHy9YRsoHeWPYE7lDR0QPgBOcNpKXdQUIp/U2fBGQ+Y\nRjdyh+ZAT1H/RAe6tedL7l4DuI9NC6yXqauYLXQ7+pQ7lvTzD+HXRFqf2YY7KCjFLXSD4IwH\nbM9uxh2aA22jUYkO9Ghaxt1rAPexaYG1mCaK2UKPpRXcsaSfBcJvS5ffnl7hjgrMnS38PjlB\nHeg/3LE5zwq6LtFxXuc5n7vXAO5j0wKrD60Ss4FeRRp3LOlnKK0Qk71iM2kMd1Rg6tespqIT\nHjSZZnMH5zy3JnGG0PGZB7i7DeA6Ni2wjqss6pjZ4yriWoWqtS6zR1D2wvZUq3iQOywws4v6\nik540NYyLbmDc55JtDDhgR5BK7m7DeA69iywPqYzRG2hu9NT3NGkm8NlJHye0Z8e4I4LzFxF\n88RnPKA9rtCUsKG0OuFxfsBzHne3AVzHngXWWnGXLZyJ85BUe5O6iMpesQdwx2f7apIj4L5W\nxibRzdzROU53SuIaNydkfMPdbwC3sWeBNZruErWB3p6F888Ue5DGiMpehFPpTe7AwNjH1F5C\nwgO2ZLXgDs9xOmQkcYDFaFrM3W8At7FngXViWXHviNt48M5MrUl0h7DsFZuO26bY1XK6UkLC\ng9rT29zxOU3TSkmM83rPadz9BnAbWxZY//Mkei+tUoygB7njSTOdk/mGIq7d1Sr9zh0ZGOop\n6pxfI5NpJnd8TlOlbjIDfTK9x91xAJexZYG1kwaJ20AvpUHc8aSZ6jXFZS9Cf1rNHRkYKahc\nS0rCAx7ObsodoMMUeFokM9DX0XTungO4jC0LrGvpVnEb6LwqNXDDWJW+knREzhrPqdyhgZF/\nJnzru4R0pNe4I3SWA3R6MuO8PaceNpQAQtmywDola7vADfR52EAr9QgNEJi9CKfRy9yxgYGb\naLqchAdMpRu4I3SW95I8i/cC+j/urgO4ix0LrF8zTxS5gZ5Et3NHlFZup6ki01dsFl3OHRsY\naJ+5VU7C/5+9+w5wosz/OP5sYUEBQbCXs6FiOevp3e88z7Ne0e8WYOlVxQIIoiBYEUFBEBEp\nAkoVEF0RQcTC2RD1ED0VwXKCYkMRUER62flNSzbZTbKzmynJ5v36g51kJvPM80z7kMw8Y3m6\nzu9Kg65iWlmsiqrV0ENUy6AXHahZUjFgLXD3WcHTsi4MukYZpZVXlzzPO2ifn4OuHCpYn12t\nS36c+5t6M+g6ppW5qlO12nn+4Xk/Bb3sQI2SigGrj7rb1QP07/K4/cxHJ9WZ5+rqK9OBrnpS\n0CzVzqP1bbtLdQ+6jmnlMdWjeg3dRQ0PetmBGiUVA9Y52e7+5FCgng+6ShlkW86Jrq69CI/n\nHs+PRSmnk3u9Asc2t/5Bu4OuZDq5v7rXxM1g/wJclYIB69fcJu4eoO9WvYKuUwZ518N7yv7K\nZbgpp/TQ+l59YxlyGau9Km6pdke/7F+Aq1IwYC2o5jWacT1d65Sg65RBHlXXu7v6Ityv8oOu\nHsr5UJ3v2fq2DVZdgq5lOrlSja1mQ9+vCoJeeKAmScGA1UcNcPXwbPRR/G3QlcocPdQwl1df\nhGNyvgy6fog2VPXybn1b5jfab3vQ1UwjBWp6dVua/QtwUwoGrLNznnTz6KzrrCYHXanMcX7W\nUy6vvgg3qL5B1w/RLsya5t36tol6NuhqppHzsqr9JNee6uaglx6oQVIvYP3ibi9YhodVq6Br\nlTFKGxzq9uqL8HT9RtuCriEibc472sP1bRumWgddzzTStG61G3pOgwabg158oOZIvYD1rGrp\n4qHZNL9Roz1BVytTfKn+7Pbqi9ScBxKmlmdUCy/Xt2X+QfvS04pjBybxX5xWalTQiw/UHKkX\nsHq6+SBC28XqraCrlSme8bZXpEnZp3IneSq5ptq3rFVFC/VE0BVNG3tzTqh+Q0+vdQz/FwXc\nknoB6+Rac9w7MNtuUXcGXa1McZe6w/XVF+nP6t9BVxERfrdvtS/4qYJRqjDoiqaNjersJFr6\nUvVk0BUAaoyUC1hrs05z66hc5omcs4OuV6bIV5PdX38R7ldXBF1FlFnu7S/CYYfX/iXoqqaL\nz9WFSTT0uKxzgq4AUGOkXMCaoTq4dlQuc0rW2qArliGOqu/B6ovUJPuzoOuIsKGqp8fr29JG\nTQq6qunibVWQTEufo14NugZATZFyAauzJw/e6KweDbpimWGj8uALyCg3q+uCriTCzs+qdp9L\nVTJeXRJ0VdPFc6p9Mi09RP0r6BoANUXKBawj6nrx4I1xdAHuj1eT+++zA3MP2Hd90LWEbaPb\nj7WK67gcvoN2ZorqllRLn5j1cdBVAGqIVAtYn6o/uXREjnbYPluDrlpGGKFu8mT9Reis7gm6\nlrDNUG29Xt22K9XIoCubJoar/km1dH/VOegqADVEqgWshz16kl2Rmht01TJCBzXak/UXYfY+\nB9HZaIporUZ6vbptU7n42qF+6r6kWnreoXnfB10HoGZItYB1hZrg0hE52v2qQ9BVywi/z3vW\nk/UXqVCND7qaMO1q2Gi+56vbdrri5gZHrlJjkmvp61W/oOsA1AwpFrB21j/IncNxefMbNdwZ\ndOUywLbc471Zf5Gm5B5PZ4gp4d/qH96vbtuN6o6gq5seknjWs+Xp/RryvBzADSkWsF737Ij9\nL/V80JXLAEt9OeNeTGeIqeEGNcCH1W0pqXPU3qDrmxaSeNazrbV6IOhKADVCigWs29StrhyN\nK7pPdQq6chngEdXdo/UXaVzWWUFXFIaj67j/1IW4LqQPf0dOrP6znm0z8o7g637ABSkWsM7J\nfsKNY3EM8xo12BF07Wq+rupBj9ZflD+qF4OuKTTtA3WeH2vbNli1C7rCaaFxEs96tv1LTQ66\nFkBNkFoBa332SS4ciWMT9UzQ1av5zsr15SuNEer8oGsKTbvb+z45Isw/eJ+fg65xGtiTfWLS\nTf1ozolc5QgkL7UC1kzVzoUjcWwPqOKgq1fj7cg71rP1F+UM9VrQdYV2eu4sf1a3pYN6OOga\np4F16pzkm/pC9UTQ9QBqgNQKWB09eU6OZf6hdTYFXb+a7l11mWfrL8oQdVHQdcVqdYY/a9s2\nLeeUoKucBlaqS5Jv6keyT+aOAiBpKRWw9h68n4fd6rRWjwVdwZrukSSf0uHcqWpx0JXNeCPU\ndT6tbduf1RtB1zn1va6au9DUF6oZQVcESH8pFbDeUxe4cGyIZ2LWBUFXsKa70p9r3J8zbgq9\nMOjKZry/ZE31aW3bBqmWQdc59ZWoK11o6gm5x3EjIZCslApY93h70exJWV8GXcMa7rRayXbB\n49hp3LQfsB9cuJq6auYfmftt0LVOeePUjW609T/VQ0HXBEh7KRWw/i9rhhvHhnh6qLuCrmHN\ntjX3BC/XX5Rh6k+lQdcLqqE0AAAgAElEQVQ3sz2iOvu2tm3deIhLpQa60/nr9DqNNwZdFSDd\npVLA2pDj7fl5dm36gvbUYvUvT1dglHN4fHewLlET/Vvblqfr778l6Gqnuh4u/UzfQfUMuipA\nukulgDXDw04aTBeql4OuY402XPX2dgVGGp110u6gK5zJNtQ6xr+VHVKsRgVd71TXSk1ypann\nHJy7Iui6AGkulQJWK/WQK4eGuIao1kHXsUZrocZ7uwKjXKzGB13hTDbZ6/8OxTKt1tGk6sQu\nUiXutPVt6m/8CA8kJYUC1q79G3nYSYNh/qG1NwRdy5rsyHoer8AoU/IO3hx0jTPYFWqsjys7\n5DI1K+iKp7jf13arrc+iqwYgOSkUsF5R/3Dr0BBPJzUy6FrWYN+rs71egVFaqluDrnLm+rX2\nkb6ubNv4rNP4WiWhQw5yra1rHULXzEAyUihg9VZ3unVoiGd67slB17IGK/H5R6OnGtWh342g\nzFCtfF3ZIX9WC4Kuekrbm3u8a23dWt0QdHWAtJZCAevY2t4/KPj/1JtBV7PmukkN8nwFRuml\nmgdd54xVoB72d2XbRqrzgq56SvvJjUcR2uYckvNe0PUB0lnqBKyP1P+5dmSI627VMeh61lz/\nl/2k92sw0vzj6W00IJvrHO7vug47i+d8J7LCjUcRhtytzqFjG6D6Uidg3e3HPf7zD96H7vM8\nsi3P9/v2H8g6eVfQ1c5MM1VLv1e2bYi6JOjKp7JXVQsXG/s8NTboCgFpLHUC1u9zZ7l4ZIin\nA5e5e+V1dbkPKzDaJWp40NXOTAVqlO8r23aqeifo2qew2epqF9t66r4Nvg+6RkD6SpmA9T91\nposHhrim5zblLiRvDFZ9/ViDUWbUq/9d0PXORL8G9guh8cjnfwVd/RT2sLrZzca+RrUIukZA\n+kqZgHWv6u7mgSGuv3AJh0f+rqb4sgajXK+Kg653Jpoe0D2Epqbq3aDrn7pud/dOk3nH80Qq\noNpSJmCdljPTzQNDXPeqlkFXtWbaXf8QX1ZgtHlN1MKga56B/hVIL6O2u9XlQdc/dXV1+e7O\n0bmH/RJ0nYB0lSoB6xN1lqvHhbjmH1FrbdCVrZHeVRf7swajPZR9DM//9duGWkcFsa5DTlRL\ng26BlJWvprvb2K1Vp6DrBKSrVAlYd6ob3T0uxHWNujvoytZIw3xbg9EKVO+gq55xHlEdAlnX\ntnvU34NugZT1x+xn3W3suUereUFXCkhTKRKwSo/L86sPpdl1DuPWfg/8U03yaQ1GKzkoh7vK\nfHZ+1qOBrOuQU9QbQTdBqvpdQ7cbe1TuwT8FXSsgPaVIwFqi/uL2cSGuf/G8WA/srn+wb2sw\n2qCsptuCrn1m+TLrpIDWtW2I+nPQbZCiSmsf63prd1AFQVcLSE8pErCuUXe5flyIZ1zWH4Ou\nbg30trrUtzVYzj9Vr6Brn1nuUd2CWte2P3BvW2wbPXjg+ryT1ISg6wWkpdQIWNsaNJzr+nEh\nrrPVW0FXuOYZrPr4twajlRyazRNzfFTaJO+JoNa1bXRW091BN0NKWuHFrSaP1d13ZdAVA9JR\nagSsGarI/cNCXINUs6ArXPNcmOXy3UtVMCznCB6A5J831PmBreqQS9SYoJshJf1bFXvQ2n3V\nqVuDrhmQhlIjYP1NjfPgsBDP/GNy/hd0jWuaLbWDvHG/NZHZRx3UwADXtWVanQN+DrodUtEM\ndY0Xzf131TbomgFpKCUC1v98vmj2ZnV10FWuaZ5XBb6uwmjPNlXjg26BjPHzPgfND3Bd2zqo\nG4JuiFT0gOrnRWvPaaLuC7pqQPpJiYDVx+culJ49OO+boOtcw/RSd/u6Cst5rO6+K4Jugkzx\nYLCdYNnmHJz7UdAtkYJuVvd70txTGmVND7puQNpJhYC144B6czw5KsTVXXUPutI1zEl5T/u7\nCsu5Rf2evhp8sff43OCutotwhzqPx7ZX0Fo95k1zj9o354mgKwekm1QIWNN9/3lp7kG11wRd\n6xpljTrT51VY3qXq2qAbITMsUH8NeFXbzlGPBt0Wqef8rGc8au5h++Q8FnTtgDSTCgHrT1nj\nPTooxNWTB2y5ary62u9VWM7TR6qSoFshI1yqHgh4Vdsm1dn/h6AbI+Uc28Cz9h5eL4vrsIAq\nSYGAtSyAbz+ePTL7w6DrXZPkq0d8X4fljM5rsDroZsgAH6qAe3EvczX3jpZXWucY79p7dGN1\nw96gawikkxQIWB187MU97E71t6DrXYNsr3uo/6uwvB7q7B1BN0TN11rdHvSKDpnXVM0MujlS\nzHr1Bw8bfNIRqh39uwLOBR+wfqh9aBB3fZ/FEwnd87zKD2AVlncBl2F57oucI1OgjwbbI3n7\nfxt0g6SWj9TfvWzwmU1Us11B1xFIH8EHrLuCuXxnfK1D6P3bLdeqQUGsw3JKjlJchuuxq9RN\nQa/mCNeqv+0JukVSyvOqracN/uRJqmBn0JUE0kbgAWvbgfs+6ekxIZ42qnPQda8pSg+r6+Oj\nJOMbXzdvcdBtUbOtrnXos0Gv5Qjzz1F3Bd0kKeUR1cvbFi85RRXwHRbgUOABa7wq9PaQEM/c\no9WCoCtfQ/wnVe7cvzu78adBN0aN1tnnLoErM/OA7OeDbpNU0l8N9rjFjYTFd1iAM0EHrL0n\n5E7x+JAQz0O5h64PuPY1RD9vns9RDd3U774OujVqsE9zDk+lL7B0D9Rq+FnQrZJC2qiJXrd4\nyanqiu1B1xNID0EHrKfURV4fEeJqp5oHXPsa4vi8ksBWYjnt1HE8BckzLVTfoFdweTeoE7iW\nMuw8z/oZLVNymrrw16ArCqSFgANW6RlZ4zw/IsTz7IlqSrDVrxn+q/4U2DqsoLk65sugG6Sm\nejfr2NS5hTAkX11A7xwhRzTyocXnnKNO43tiwIGAA9Zc9WcfjgjxTKxTn74pk9c/pb7XKFaH\n89xnb/xNDQx67VY071zVjocSWnblnOhHkz97qTrolaDrCqSBYAPW3tOyRvtxRIinp/ozt3kn\nq/SY2k8FuRLL66ga/yfoNqmRnlNnBL1uYylpovoF3TQpYpVfd5tclZPdj0vdgcoEG7BmqvP9\nOSDE83/q7kAboCZYEvRKLK97dt0Xg26UGmj3SVmjgl61MT1+iHo46MZJDS+plj61+dAD1alL\ng64ukOoCDVg7jsn1/THP0WY2yl0SZAvUBNerO4JdiRX0q5XHM1Rc97C6OOgVG8eEBtmzg26d\nlDDWv140Zl+icvpyNyGQUKABa6i63K/jQTyDs37HTUhJ2b5/g5ToZTTS4H2yhgbdLjXN+kZ1\npgW9XuN5sE7eS0G3Tyq4SQ31r9EHHqSavh10jYGUFmTA+q5+vZn+HQ/iaKn+xRPikzFLFQS9\nDisa1UhdyTUirrpWdQx6rcY3KLfum0E3UArIV35m4Kf+kZXT67eg6wyksCADVrG61sfDQRzz\nTlP9A2yD9HehGhP0Ooxh8tHqT3SI5aJ3sw/3voul6rs1e793gm6i4J1cx99uNAYfog6fwS2c\nQDwBBqx5qsk8Xw8Hsc08mEcEJ+HTrJOCXoMxlZynGs8PunFqjt1nqXuCXqUJ3ZS9X8ZfTbkr\n71ifW/3pFrnqTB5WBMQRXMD6+bDc1LgpaVy9nCcDa4W01131CXoFxja/a62s67cG3Tw1xf2p\n8rjJuG7KrvtC0K0UsJXqb743+8Q/Z6lz5/MtFhBLcAGrjWrj+9EgtmF1cmcE1gxpbmPdRil3\niXvIQ0eoE94KuoFqhk/32W9G0KuzMrfWqjUl6HYKVkkgl8mNPCdLnfIo/5UBKgosYE1TTVLm\nzDxkn+yHgmqHNDcolS99fvqKrJwbuQo3eTv/kFKd9cdxb13VP6NvWLk7oA5TRv0lWzXs/m7Q\n1QdSTlAB69N6dQLuAivSgw1UL7p0r4bNjfd9IuiVl8i9B6sjS4JupPR3c8r/QGgae7D6ZyZ3\nulKsJgbU8pOaNVDq5OHrg24BILUEFLB+O0XdFNCxIKaJh6srNgfTFGltkGoV9KpL7OlmueoC\nupxOzjNZh8wOekU6MvM09bsM7q7h2LrBPYt77m1/zFV1rloZdBsAqSSYgFXaQv0jsENBTLN+\nr075XyBtkc5+2q9eSn+BZRh3psoq/DDolkpnH9bPS43bUSo3r2VWTr9tQTdYQDZknRZo48/o\nfJDKljeCbgYgdQQTsG5XTVPmAizb3H+ohk8H0hhprKvqEvR6c+CeJnrEWhZ0W6Wtrw7PStEb\nRWO590DVZEHQTRaMl1TzgBt/Xr/jlDr94R+CbgkgRQQSsMapg6YHfCiIoUee6pTJV3BU3VvZ\nh6daTo5p/h1NlLro+Yy+ALravjlOdQh6BVbFk5dnq4sy8ubRe1T/oBv/uecGn5utss+59QUu\nuACCCViTsuuPC/o4EMvoo9WBj3Ktu2NbTsy6L+h15tTdpyp1/LC1QTdZ+vns6MC/F6mqUacp\n9bcFmdc104VZjwfd9IYpVzbNVirn3Nve5FiKTBdAwHowq+7IoA8Csc3tkKd+/5z/LZKmOqsr\ngl5jVTDigloq57JJfEdZJa82TvXbGGIZrEesE8ZkWAcd2+ocFXS7hzxxR9Hxeshq1PKRD3cF\n3SxAgHwPWNuvUQ0eCvoAENfkC7LUH5/LvP/8VseD6tg5Qa+vKplx9bFK1bp07NdBt1zaKL0/\nN+f6oFdbtTz411zV4MaMum3lBSVBt3qk2bde2kgplXdqUZ/xr9J/AzKT3wHrw9PV7x4Net9P\nZNS5Weqk0XzPUamp2Q0mBb2yquyRdsfoB/1Tez/3a9DNlw7WXKwa3Bv0KquuqS0bqKxLZmZO\nD+NXq8FBt3k588dcd9Gxecpw2BUDF24IuoUAv/kbsDb2rqUuLgl6v6/EQ+fnqDyZ+rOvLZN2\nHsqu+2DQa6paHr36jFpK5Zzd62ludkpo14P11ZnTgl5dSZhz44lK1Wv5+LqgW9IXOw5o8GzQ\nLR7T1CE3FJ3RwEhZTdoOf+lLfjNEBvEzYK2/s6E68M6g93cHprY/Uqncix7KqF8YqmRzJ9Ug\nPfOVoeTuZifm6Af84zqMWboj6KZMUXtnn6jqdg+u40p3jCk6UKms3/eY+VXQ7em5qan1C2F5\nU25t8ft9zC+zDjr10s4Dprz6WYZdIoeM5F/AertLHVW/Y7pctTOm7bH6seDozo9+wP+4Knrm\nKHVMSv/QW7mSQW3OMA74ub9vM/jpDznYR9s46niVfWlK3JSWpPkj251ayzitX37n05/vDrpd\nvbPrpOygnpPj2LyxfYr/ctLB1o+GStU55Lizz7+8Y99Rc9/PjC8ZkXn8CVil791xvH6Mu/Kp\noHfxqph0/bnGGbjWyc36TVy0mpwVsm3G2SqnKF2SciLzRvf4RxPrcH/gOc17j3zyzS9IWpr2\n9aNSW+Ve+EjQq8c1c4Z0/KNxwbXKO7mg96h5H9TEi4EGqEuCbmbHnhx71/UtLjz92EPqhbKW\nyjvijAsL2l1/67BJ85Z8uo6vlVFDVBawlixK1twHr/trQ6VyT2l/z6B0M/C6y888rJZ5BMg+\n6NSLmnfte8+DE2bMfTnpRvFFJb0tllZjlgvH9fzrvirrpBuCXjPuGdirzWVnH9Mw2z7S1z74\npD9dWtT+6hv7D7h/zOQZc59zfbW44oPE63ZLNWf7xLBrLz7UyJuX3BL0enHbLe0v+f2hteyV\nfPip5+e3u67v3cPHTX/6eVdXjAsquTJhXYyPvHx91n63Bt3C1XHPrb2uanHJuSceWj9XRciq\nV6/BoYcf//tz//qPyy9v1art1d1uvH3A/fePHTdu2nTD03MNC3xfNUn7rpLzLWqYygLWsQrp\n6sTEq3ZX0MuH6pPE63ZF0MuH6uuTeN3OCXr5UH0TKznfooapPGDtp/Nr88vRy6rnV2G19ML2\n8auw2nphtf0qbB+9sFoBB6xcfRn29bIAu5Leqa8XkOXh/JNqIWcByyiirlvLm1CObyVl+3aM\n8K+kLL2k+uFXjgNWHf1jebHm54m6emk5vpW2n8d7XxT/tl4CVoapNGBlna3za0vfVy/rFJ/K\nUo30wo7zq7DD9cIO86uw4/TCGgUcsBrqy3C8lwUcoxdwgJcFnKUX4OUJpYE+/xOq+2FnAau+\nXkRTt5Y3obp6SSf7UtI+ekmn+lJSnl7S6b6UlKuXdGb4leOAdaT+sUN8WUBDU720+pVP5hLj\ntJNd+WTu8G/rJWBlmMoCVv7ZSFfNEq/a3UEvH6rvxsTrdnXQy4fqG5l43b4a9PKh+uZWcr5F\nDVPpXYS7jM3Cr6d2fnZ2pbHAPc/rhfX1q7AxemGP+FXYTXphL/pVWByv6Mtwg5cF3O714epP\negGbPZz/G/r8r/dw/rp39SI6e1uEbYVeUktfSjKyYyXf37lkrV7SJb6U9Ite0nlV/9j9+sem\nub80cXTUS3vPt9L+oJe2za/CVuqFFftVGDIJAcsfBCy3EbAqR8BKBgErCgELqCoClj8IWG4j\nYFWOgJUMAlYUAhZQVQQsfxCw3EbAqhwBKxkErCgELKCqCFj+IGC5jYBVOQJWMghYUQhYQFUR\nsPxBwHIbAatyBKxkELCiELCAqiJg+YOA5TYCVuUIWMkgYEUhYAFVRcDyBwHLbQSsyhGwkkHA\nikLAAqqq0oBV+p2u1I9F0e3Uy/rRp7K0rXphG/0q7Fe9sF/9KmyDXthWvwqLY5u+DBu8LGCj\n15X8Xi9gr4fz367Pf72H89ft0ItY520Rtp2+lbRLL+kHX0rao5e01peS9uolfV/1j/2if8zL\n/wJEW6eXtsO30vw87fi49SLDVBqwAAAAUDUELAAAAJcRsAAAAFxGwAIAAHAZAQsAAMBlBCwA\nAACXEbAAAABcVknA+m5izzZFHQe+5FdPo5q2rqXIYu+LKV024priovb9Z//sZSkru4osiXxj\n1bjurQrb9n3ci86+KhSmfTbm2hZteoxc4UFh1VgaV3nZkIbSt4d1baFvHzM87R7H7Y090e7q\n7q4ct/0/kAi9ky2mkrm5V6d3JUrXqixFFVTYK5JYY74em/3ZH8r4eehaMfq6ls2vHrbMj7KQ\nYRIHrJJC+6hyvV/df5beIX4ErPW3hI6Xzed7VsjuKfkSdTzdOTpUapHrfZBXKEzbPS7fLm2c\nbz32xV8aV3nZkKa1N4YKKCzxpACT2xt7ot3V1V05QfsvcTVgJZ6bi3VKGLDcqlPFvSKJNebr\nsdmf/SHMz0PX1kGhqt273euykHESBqxn9a3uzpIFk68U6eJTj8ELxd1zTmxbrxHpsWD5p2+P\n0Y9SCzwq5Mse+vkn8nhaOlCvW/8pc8Z01P++5HFhWukDIsWj5pcM1I9Vs9wtrBpL4yovG9K0\nvr2evIfNnPuovp2Id8/jcXljT7S7urorJ2r/F0UGzgpJ+nlNCefmZp2+m1VmosjtzpfCuYp7\nRRJrzNdjs0/7Q4ifh65dN+uh8f658x9sLjLA9/+IoqZLFLB+aC6FS42BHXrIf9iXxVlXLJ19\nCFjT9J3J+mb9/Xwp9ub49FyRNHt2ZOTxVD9ONzcf5rV9lEjbnd4Wpi0S6WU+ieX95lLk6Q+h\nTpbGVR42pGWwSB+zyfbqJ9tirx7I4/LGnmh3dXdXTtT+c0ReSXb+zubm2eFptBSucbwUzlXc\nK5JYY/4em/3ZH8L8PHTNFun4lTHw7ZXe/GcNGS1RwBof/v/D9vZS4Mc5uvR2aV/iQ8DqKvK5\nPdhP5HVPyugt3b7Uoo6n14sstIb26Duzq89NrVjYzk7Syn7S4hN3PfqNm4VVY2nc5WFDmn7O\nl+b2gyP36pvKUtcLMLm9sSfaXd3dlRO1/3SR/yQ5e4dz8+rwtDxfZjhfCucq7hVJrDFfj83+\n7A9hfh669rYTed8a/CJfuvAVFtyVIGDtaSdFv9nDM0Se8WFpntf/q7jAh4BVIBL6vX2syGxP\nyug9Tv+vfeTxdFO+NAuVOkZknqeFaW+LzHSzhOSWxlVeNqTpmxEDHwsNPxQOE25zeWNPtLu6\nuysnbP9xIh8nN3uHc/Pq8LTzOula7ktRd+pUYa9IYo35e2z2Z38I8/PQ9bnIdaHhgSKf+lUu\nMkSCgPWpSP/Q8EqR27xfmB+LZYDmR8BqKRL6nnusVxcVfGn8E5Uy9qwP/29sksjT3hY2XOQ7\nN0tIbmnc5WFDVjDcq83R7Y090e7q8q6cqP319voyydk7m5tXh6fp4a80nCxFFVTYK5JYY/4f\nm0M82x+iivDt0PWayMjQ8Hz/L1ZFTZcgYOkH/8mh4Z350srzZSm9TVqt9yVg6f9X+cge7F/2\na6EH4qWM+0Te8rawq6Sj/u9vqz/5wfVyqrE0nvGkISP81lYKPfkBxvWNPdHu6t2uXKH97xZx\n8U7+BHPzqE7fFMq9VViKqorcK5JYY74fm0M82x8i+Hno0htyYmj4fZGh3peIjJIgYE2KvMGu\ng4jn96osMK8y9CNgfSLS2/oK6918ucPDguKkjM3NpaX7l4pGFrY9X/9v7Yo7jLudu8ze4XpR\nVVwaz3jTkGXW3CQy3ZM5u76xJ9pdPduVK7Z/X33ur93TsbB1z8kunB8TzM2jOg2Uwu+rsBRV\nFblXJLHGfD8227zbH8r4euh6JeIbrA9FenpcHDJNgoA1IvIMeYOI1xdK/1gsd2r+BCztGZEr\nn/7viiUjC6T7Bg/LiZMyHvDky+jIwr7S/ze2sMDu4KXXL+4XVqWl8Yw3DWlaN2niiB4izZ/y\nZO7ub+yJdlfPduWK7X+9SLdQl0mzk75mOMHcvKnTcpEJVVmKqorcK5JYY34fmzWv94cIvh66\nPhXpHhrWd8arvC0NGSdBwLpX5N3wi5tF/uftkpTeJi2NL+J9CVjastusHbjL9C1eFhM7ZcwW\n6bPb28JWitxQ2GXR2l3rF7QXuTWAu2P8CFgeNaRppbF5tJr0qycz92BjT7S7erUrx2h/o2us\n1iNK5o3vog88nmwBCebmTZ36SbOKv4C5WKfIvSKJNebzsdng6f5QriD/Dl27W4nY3cXv6S7S\n1tPCkHkSBKx7RP4bftHf8zssnrNvT/ElYG2d0tEKWPk3e1pYzJTxuMh1XhynIgt7z+iOepM5\nuLa1yNseFFeFpfGIVw1pWmltINct8mLmHmzsiXZXj3blWO3fXOQR80fD3RP11vsiyRISzM2T\nOukrfUyVlqKqIveKJNaYz8dmg6f7QyR/D12TRa42u8LfPjQ/n4AFlzn9Busmr/+X9EOx3Gb+\nZ8WPgLXhWpGRn2zbvf6VbiLjPCwoRsrYMVSk23qvC1smZX33zBUZ5EV5zpfGE941pG3vz58+\nrv8H9yH35+zFxp5od/VkV47d/lu3hK/JGiQyLMkyEszNkzrphXxbpaWoqrjfYFVtjfl7bLZ5\ntz9E8ffQtfVqkeIJr74xpZOML+QnQrgsQcB6MPIM2cPjW2dL+0ux9UwtPwLWbeFrRHf08bS4\niinjp14i/X6LPbWLha0QKQw9BXa9SBtPCnS8NF7wsCEjS7nK1Z7JLZ5s7Il2Vy925crb/38i\nrdz7gaf83Lyo088F0qdqS1FVkXtFEmvM12NzJE/2h2g+H7rWdbcv9xq1WaSHx4Uh0yQIWFNE\nngu/aCvi6cVK88P91/kQsD6PuF1kucjN3pVUIWWsbK//F3CX94WtEekQHtFCxKMiHS6NB7xs\nyEhLXXhkcXmebOyJdlcPdmUH7V/aTMS9X3DLz82Lw1NJpb1oJlunyL0iiTXm67E5ihf7QzS/\nD117Ft7WtlnXER9r3wTyTT9qtAQB60WRcP+9W0XaebkY61vINUssD4s8umSJi50VVjRHZEpo\neJtI/p4E0yanfMp4p0jyPXtYamRhuwqkODyibVnH9f7xNmB52pCRdri/fXizsSfaXd3flR21\nfxsRF3/CLTc3Lw5PvUQ2Vm0pqipyr0hijfl5bI7mwf5QTmCHriVS/hlJQJISBKxVUvZ9+fsi\nA71cDPsKyjITK/9M9U2LeDzO3gIve5EplzLeKZQWLj6pLVFh3co6R9SPWM08K9TZ0rjN24b8\ncM6klaHh0nzXD/HebOyJdlfXd2VH7b9Tbzr3nsRdfm4eHJ42iHSr4lJUVeRekcQa8/PY7Pn+\nUF5Qhy79fzvLfCsMmSFBwCq9suwpouM8ftK4vwFrjsjo0PA6kQLv7gSOThmfNZfiTzwrK7qw\nKWUPifvY019BHS2NyzxuyIkR28f3Ii1cnr03G3ui3dXtXTl++/9nzIBXQ8PvR/QxVD2J5ubB\n4WmRyPgqLkVVRe4VSawxP4/Nnu8P5fl86Npk/93WVlp71ecLMlWCgGU8lWuSNbShhbTwssPs\nSD5cg7VcpFNoV3pVKruuNRlRKWPrVVL0UYKJXS1stUjnbdbgvSJPeFisk6Vxl9cNqZ9FW4X+\nDz1N5C7vSnJzY0+0u7q7Kydo/5dFrre/4Sntn3Sv3wnn5v7haVzsS7DcrFPUXpHEGvP12Ozf\n/mDy9dB1b3G+3Tv/VI//W49MlChgbWot+W8YA5v7+niK9iFg7blWZJz1tdW6zp7+/y/qeDrO\n48feR0eaofqR0DzwPi1SHEBX7h4GLK8bsrSHyE3WxTiLCjy9lMzNjT3W7jpp/Ph18cZVX6z2\nt0va0V7kPvPewp0Pi7TcVOGzVRJzbt7UyXCLyMeRrz2oU9RekcQa8/XY7N/+YPHz0DVTpL/5\nPJ4X8qWV972oIsMkCljaq/kitz85/xH9AHOTb1+e+tFNw/JCkd7PLf/s3Smt9Rp6cs3mylmG\nniJDjb/G+WhdoeRPnxU239PCNO3nq0Q6TXnxqZtF5N8ullW9pXGThw1p+6KFSPOhTzwzST+z\nyGD35x/m6sYeY3ctFvks3rhqi9n+oZKW6mfgNuOenfdIR5H8pDuJjDU3T+pkal/uoc6u1inW\nXpHEGvP12Ozb/mDx89C1pYtI5ykLS/ScWrDU47KQeRIGLO3l5vZVIrf7dx+wLz25f9gpfAHM\nA9s8KaEk6iob4/TcwbsAACAASURBVL7jJdEX3nT1tDDd2hvt1y1edrGo6i6NizxsyJD/XROe\n/cPuXaddkbsbe8XdNXy6dnNXjtn+4ZLeaRsa0d6FS4ZjzM2TOpmKyt3v4mqdYu4VSawxX4/N\nfu0PNj8PXWu62GW1DeBxF6jpEgcs7acpvVo36zL0HX8WxuTPswh3vnzfVcWFbW+csNqjAoIP\nWNqeV+7uUtTmxumV3XnuthoQsLQ9rw29umVh25seW+PF3MNc3tgr7K5lp2sXd+XEAUvbMu+u\njs2adxn4/I7ki4o1N0/qZNipVybqyyBX6xR7r0hijfl6bPZpfwgX5+Oha/szt7QpaHdzSZI/\nZwMxVBKwAAAAUFUELAAAAJcRsAAAAFxGwAIAAHAZAQsAAMBlBCwAAACXEbAAAABcRsACAABw\nGQELAADAZQQsAAAAlxGwAAAAXEbAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZAQsA\nAMBlBCwAAACXEbAAAABcRsACAABwGQELAADAZQQsAAAAlxGwAAAAXEbAAgAAcBkBCwAAwGUE\nLAAAAJcRsAAAAFxGwAIAAHAZAQsAAMBlBCwAAACXEbAAAABcRsACAABwGQELAADAZQQsAAAA\nlxGwAAAAXEbAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZAQsAAMBlBCwAAACXEbAA\nAABcRsACAABwGQELAADAZQQsAAAAlxGwAAAAXEbAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxG\nwAIAAHAZAQsAAMBlBCwAAACXEbAAAABcRsACAABwGQELAADAZQQsAAAAlxGwAAAAXEbAAgAA\ncBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZAQsAAMBlBCwAAACXEbAAAABcRsACAABwGQEL\nAADAZQQsAAAAlxGwAAAAXEbAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZAQsAAMBl\nBCwAAACXEbAAAABcRsACAABwGQELAADAZQQsAAAAlxGwAAAAXEbAAgAAcBkBCwAAwGUELAAA\nAJcRsAAAAFxGwAIAAHAZAQsAAMBlBCwAAACXEbAAAABcRsACAABwGQELAADAZQQsAAAAlxGw\nAAAAXEbAAgAAcBkBCwAAwGUELAA1RCelu90a/sEYVttjT5hwJAC4gYAFwCM7Pnx27LBBIx4t\n+WinL+URsACkDgIWAC98ce+fa6uQ3NPvfN/7IglYAFIHAQuA+974hyrvjwu8LpSABSB1ELAA\nuG1tcYV4Zbj4e2+LjQxYP+YYdoTHjRgw4IXwi/IjAcB1BCwALnv14Jj5SqlG//a03MiAVc7m\nLKV6eVo4AEQhYAFw19O17Dx1Wv95n6zf8sOnc/udYr+zzyIvC04QsF5TBCwAviJgAXDVSzlW\nmPrLfyLefOcSO2F97GHJCQLWcAIWAH8RsAC46cuGZpLab2a592fua32r5eGVTwkCVmsCFgB/\nEbAAuOkiM0c1XlZhxHv7mWPu8a7oBAGrCQELgL8IWABcNNtMUXVj/RK4KNsYtf9mz8qOH7A2\nZRGwAPiLgAXAPXtPMgPWmJgjexijGr4Y/ea3Cx8fed/4ksVb48/0hwVj7h3+2Iu/xhj1y4tT\nht4/8fXfzBfxA9YrykHASm5Jvl342MhBw8Y9+9meSooBkBkIWADc84KZry4ojTlyY9367edH\nPTVnVc+moS4c8v42IjLZrDPnYwzN+UuWNUX2BQvLzfClf9k3LNYueFuL19Hot9FdRSzSYnY0\nmtySLL3+oHABDdu87KChANR0BCwA7rF6GH0lztgPojtPX39dblT2OWRsWTD7zXjjLH2av0dO\n0Skynv3aMWJMVvfdWudqB6zkluTHltFFqD+vqlbjAahJCFgAXLOznpEvToj9BVZ5Xx6vyusS\n/n1tjzkjbf3J0RN0KPv4jguiRxXuvaq6ASu5JfnquAqfbvBONRsQQI1BwALgmlfNeDHM0bSr\nDzEnzv1z/4cnP3D9iVYyaRkebVwRf8Tei/V/6/79qhs6nmX3rvVceIK21hun9Rv92JC2B+hD\nA66PGbDWnX766cZodcDphv9oFQJWckuy5yzzZa3zrxswtF+Xv+SZrw75odptCKBmIGABcM0Q\nM11U7KIhhr3nm9M2X22/fr6J+frx0PjaRiQao9RBE60gtEbM8ZeGxr9hBRn7Yqidw/dVeX+P\nGbAMvYwXZRe5R49McknGGy+y+my0X26804xY3Zy0AYAajIAFwDWtjGxRe5eTSUeZKaV32Rs/\nmF8dNd5gv9zHmFNDdUr4AdF7/mqMz15nv/yj8aru8vDHX9nH+mKp6gErySUxXwyKqNlLxvVc\neZucNAKAmouABcA1fzDCxp+cTLnnCGPS8yKv1lpq3qM3wn5V14w9+39fNv4d8x37K6uPVOTE\nhvurGbCSXJI9xi+GdbZE1u0mY+xTTloBQM1FwALgmkONaFHsZMrnzIzyftR75vdfp9kvrFgz\nIXL84cY7Q63hu43hRpG5ZudR1QtYSS7JWmOwSdSnP+941+RX11fSAABqOAIWANeYlx9d42RK\ns2eDM6Lfm2cmmRXWCzPWNI7q1+GfET/lmVeWd4j6+C3VC1hJLsk3xmBDJ1UGkFEIWADcUmrm\nklucTGr+Ljck+r3t5vOgH7FemLGmY9T4bsZbV5uDe8woNz1q9DvVC1hJLslu86bCZ5zUGUAm\nIWABcMsuM7gMcDCl2T26erPcu3+O+ALMjDXjokb3Nd5qYw5+Zn7+o6jRO/OqE7CSXRLtXGN4\nv/KdzAPIdAQsAK7Jjg4y8b1oxpqN5d41n3VzoTVsxpqXokbfZbzVyhyca36+3DMBT6xOwEp2\nSbSp5gzUvxbs1AAgjIAFwDVmFulQ+XTaFGPCfcu/e4fx7okRs1oaNXpAWawxO5/ar9zHL65O\nwEp2SbTSK6yEpfYreOi/eyutOYAMQcAC4BrzoTGXO5jwIWPCI8u/O8J4t7E1bMaaj6NGR8Sa\nB4zBw8p9vEV1AlayS6Jpm/+pwvZv8Si3DwIwELAAuMZ8POBRDiYcGPENUZlxEd8mJY41dxuD\nx5X7eLvqBKxkl0S3d/h+ZRFL5V5W4uxZjABqNAIWANdcZ0aM7yqf0OxS4eTy70403q1lDSeO\nNebnTyr38Q7VCVjJLolpw/1NIyKWOuPlhJUHkAkIWABc84iZL56sfMLbjOlOKP/uWOPdutZw\n4lhzZ6xvsFpXJ2AluyQh/xt5SV44YWXdFb/qADIDAQuAa1aa8aJ15RMONqY7ovy7w413D7SG\nE8eaocbg4eU+/s/qBKxklyTC1ud7nxqKWA/GqTiATEHAAuAe8xkytX6IN3rez/aA+RNcnfKj\n+xvvnmINJ441Y4zB8ncR/qE6ASvZJSnnq6FHmjOv/VWssQAyBwELgHvMJKPujjP2s9z97tpk\nDlm9T60rN76t8ebfreHEsWaW+fnN0R8/oDoBK9klqWDHzeYcb4o9FkCmIGABcM8HZrio/3XM\nkaWX6uMamj+efW1O90q5Cc4w3rQfNpg41rxvfn5F1GjzsctVDljJLkkM1xpjK9yYCCCzELAA\nuOgSM69cEnPcg+a4+8zhQ4zBAdHjN+Uab86yXiSONVuyjOHoZxFOr1bASnZJYjCf/5xDXw1A\nZiNgAXDRW1lxfyR8wUwtR2wzX3Q0hptGT2B2qp611npRSaw51hi+Mmp08+oFrGSXRNPW/Fau\npuajorfFaAIAmYOABcBNXczwom6tMOIlM6hkvWC9et2c6q2oKf5mvHW+/aKSWNPNGG60JWLs\nmtqVBKwbwpNGjUxuSb7se3EjNTq6pruNRzLWr9AAADIKAQuAmzY1sRJWq+hbCfeONL+/Kvsa\n6WTj1bmRv6NZD3Ceab+qJGAtMiceETG2lYofsHobL8qekRg9MqklWWuEqSO3RI192Rh7RvmG\nAZBZCFgAXLW8gZV06g8v++WsdNEfrDf/tSv0lnXFVMS9dp+YF0OdtNt+WUnA2m32hlBnWXjk\nPUrlxA1Yd5mzDk8bPTK5JTG/7Lo88vfALacbbw2K20AAMgIBC4C7/hN6Ml+9VuOXrNnw7fI5\nNx9vv3PR9rLJ8s132tjP1dkz1exkIWdxaHRlVz5NsVLcY1Zi+7RAL+66uAHrUfPVRGNwb4WR\nyS3Jm+aHmz4VSo6lL5rfiNX7tmqNBqCmIWABcNnKUJ4q7/qdEVP9eIT5Xp2/D5zw6ND2Zg+l\nKuvh8OjKAtbec6157l/YrWfrE42hEfca//a3RkdnqBXWtCc3+9dp51cYmeSSXGenyYuvv/Pe\nu3sVHGS9HJ9MAwKoAQhYANy2uXt2jHh12Ozoqb44rvwUeTPKxlZ67966JtEfLi592Phj/9RX\nLkOdE57sjxVHJrcke4pj1HVIdZoNQE1CwALgvg+blY9Yje/aUn6iX7pkRU1y3jsRIyvvferr\nCyM/fN1ubarx93prZLkMtax2ooCV5JI8vJ+KdtKLVWkrADUSAQuAF74Zen6dcOI4qOipnbEm\nWtnzhNAkBxQvjBrlpHvP6X+xY1zeFcYVUy8Yg/a9guUz1JtN7XIKYoxMdkl+HfGX3HBd67d4\nZrcGIOMRsAB4ZMdHc8cOu2fklPlfJpjomwVThg+Z+MwH1ev4fN2CSUOGjH+1fE+fMex9e+yg\n+x55YYNHS/Lbe0+Nuf+eByY+8wU9uAMwELAAAABcRsACAABwGQELAADAZQQsAAAAlxGwAAAA\nXEbAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZAQsAAMBlBCwAAACXEbAAAABcRsAC\nAABwGQELAADAZQQsAAAAlxGwAAAAXEbAAgAAcBkBCwAAwGUELAAAAJcRsAAAAFxGwAIAAHAZ\nAQsAAMBlBCwAAACXEbAAAABcRsACAABwGQELAADAZQQsAAAAlxGwAAAAXEbAAgAAcBkBCwAA\nwGUELAAAAJcRsODcjmJd0AsBAEDqI2DBua1KF/RCAACQ+jhdwjkCFgAAjnC6hHMELAAAHOF0\nCecIWAAAOMLpEs4RsAAAcITTJZwjYAEA4AinSzhHwAIAwBFOl3COgAUAgCOcLuEcAQsAAEc4\nXcI5AhYAAI5wuoRzBCwAABzhdAnnCFgAADjC6RLOEbAAAHCE0yWcI2ABAOAIp0s4R8ACAMAR\nTpdwjoAFAIAjnC7hHAELAABHOF3COTNgPQcA8E/QR35UEwErbd0i8q2fn9MIWADgv2oesBE0\nAlbaImABQAYoOwZ/1vO0hnmHydQ99us3rmhc66geP5ZN8LjKea+ax3e4joCVth7q2XOdn5/T\nCFgA4L/wIXhwjrKc/r35+skcdVGnJuro9aEJfmqsbqnm4R3uI2DBOQIWAPgtdAQeplTW5UPH\n9D5MqRO26K9/21/dr2m7zlNXhaZopY7fHsjJAbEQsOAcAQsA/GYfgFfVUbUXGQObL1Oqj/53\nqmq4U/8zV+271Zpinsp6I5BzA2IiYME5AhYA+M0+AHdTxhdWho37qX02a1pX9Xfj1Y9KvWW+\nvekw1S2IMwPiIGCltFtF9mrvD+jSvOvDxk/uK4ZcXdRu4HJrXPhi9Z8mXV/cqtecrVqJyGvG\nG/0kv3T7xPZFs40XOxYO7NKisF2/2Zu0qM+Zs/5yVJfC4h5TNoUL/GrCDa2KOvWfsznm4hCw\nAMBv1vF3V2NV9zf7WNxLqcmadrH922Cemmr+vVodGfvQjWAQsFLaAJFt08TUdo32pDWU/6Y5\nLhSw3m1pvX3t95NFzP/H3CGy4zb9nUn68BddxNY2Opjps96+sMAa1dm+6n33uPDES2ItDgEL\nAPxmHX+XKOsLK8MLSrXQtHPUDearhuph48+rWWqh2+cgJIOAldIGijwvty9aOu9KkQFvy00L\nl77YS6S9eYuuHZS+aS5y82ufvztMuo0WedcYc7fIv6VZvzvmatqmdiK9n1u2fNGNIi03aBGf\n02f9inQteWfJND2g3WsVN0yk45Pvr1o6qkAKlsZYHAIWAPjNOv6OVur20LF4g1LHatq59i+C\n9dVo4/h8nOrgzYkI1UTASmmDRFpNMwZ+bCb57YeX6kPbu4h8aLxlB6WhIgP3Gq9fluZ2wNI/\ndXPvn80ZzBLpv8sYKNWnm6xFfM6Y9SBz1MciBcYdKdprIj2tL5iXFUinGPeiELAAwG/W8be3\nUhPDB+N6KmePdqlqZwzvylaPm+MP3qj976YL/thmnnvnICSDgJXSBotca6Yn4xe9YjMFaZNE\n5hp/raC0XU9eP1gTDxM7YOmfKrJ/9JszoJf9VdSnIr20ss8ZE7Wz7zzpIfKx8beb5H9jFzxK\n5N9li7G0n6XPsccQsADAV9ZxuL1Sc8MH5WOVWqd1V+cawyuVWqYfprNVifZCbbObLC51Tw0E\nrJSmp6BZ1tBEkWHW0Esi5pdaVlD6QKS3PfEXEQFrSIVZbRGxvj4uC1iP2qOGixiXXH0nEu6i\nbrnIfWWfnXN2yFkELADwlXUcLlTqhfBB+WSlvtSeUrnGf6WHq0Y7tZ2nqiLt14NUwTdbx2ep\n+cmdeeAOAlZK01OQ/QXUDJESa2ixnYysoLRAZExo6vZlASt699qzdcuWX0RaaWWfMyZ60x49\nTuQV/c8ikXGhT2wTuabs8wQsAAiKdRy+QqlXwgflM5X6XNt5hGq2VfuoseqnaQPU/mu1Care\nr/rINuripE8+cAEBK6XpKWilNTRLxP7PyxIR84d4KyhNE5kdmvqOsoC1ODyL5aO6t823bg0s\nH7Ds2wq18dbvgbMlSlHZYhCwACAo1nE46husk4xvsLRFtdW+R2ep07doH+cZ/TY0V/nGyCdU\n7g73TkOoNgJWStNT0GfWkB6wXrKGogPWRJFnQ1PfXxawPrLf2n5fRGQqH7Ds7BYKWJOiA5bs\nDi/Gd4ssC/bfn4AFAL6yjsMdlHomfFA+SinjtvD3ChvnNem3SdtzrrpUf9nU+C5L0z5Q6r8u\nnodQXQSslFZ5wBof8XPg8LKAFcpOeuZq+cSqX/Zo2s5KA9ZkkZHLI+ytsDjcRQgAfrOOv32V\nCl/EUVpb1Yo8Qj+g6q3R/xyohhuvvlVqUTInHriEgJXSKg9YU8LXZpl3GpYLWGtEWqyxBrdX\nGrBmW12TJkDAAgC/WcffCUr1DR2Lv1aqacShedW+Vlej9p91kfcbIjgErJRWecCaY78ydKkQ\nsOaKjLJHrqk0YL0uMijx4hCwAMBv1vH3faXODx2Ln1CqY9mRufRCdZ75fVYj9YDx51ulXqzC\neQZeIWCltMoD1tsioc59v5EKAWuSSOhH+9mVBqy1Iq3LrruKhYAFAH6zjr+lv1N56+1jcduo\n76gmqNrWieI4q6/3D82OsRA4AlZKqzxgbRRpZj/ec1TFgDXd7jNLn66tSLFW9rkYAUvrJRL6\nb8/yayauqbg4BCwA8Jt9AL5NqdusodW11AG7wgfm7xoou9tCUeZRfrbK2VqdEw5cRsBKaZUH\nLO3mUEdYb+S3rhCwFot0Mx9cuP6GXu1Efov4XIyA9ZpIqy/Md37sKrKq4uIQsADAb/YBeF1D\nlTPHGPjhTGU+fdAm6kz7t4eHVGOjf4YO6q9JnHbgGgJWSnMQsN4TkcH/WfX+g/n9R1YIWNvb\nitz+3tcfTWnZ7Kt+ImPXrE8UsIznGjYb/+4nb01sGdF9aQQCFgD4LXQEnp6l1GX3jry2kVIX\nlt1DOEvlfmAPbmigeu/VXs5VT7lyAkKSCFgpzUHA0p60uxG9eXPFgKUtLbK7wPrY6PNdZGrC\ngLVnjD0vyZ9YsZMGAhYA+C98CJ64j7JcviX83voDQz8c6mZmq0NOVKpNsqceuIKAldKcBCxt\nxdDOhS37/nuP9qDIe/anQtlJWz28U2GLnrM36elpWpdm1y5OGLD0ySf0aF3Y+sZHY1yApRGw\nAMB/ZcfgNX1Oa1D7qNYLIg7LbVXTiG7bX720QZ0zRu+p3gkHLiNg1SD3inzqaQEELADwm6eH\ndXiHgFWDXCeyvvKpkmAGLE9LAACgRuB0me4WDOtl/9T3tUgXb8siYAEA4Ainy3Q3SaTPdmNg\n+y0is7wti4AFAIAjnC7T3S/tRbo+s+yDudfofz3uXI6ABQCAI5wu097qLnbXCtJtrcdFEbAA\nAHCE02X627Hgjg6FzbsMfsXzW3MJWAAAOMLpEs4RsAAAcITTJZwjYAEA4AinSzhHwAIAwBFO\nl3COgAUAgCOcLuEcAQsAAEc4XcI5AhYAAI5wuoRzBCwAABzhdAnnCFgAADjC6RLOEbAAAHCE\n0yWcI2ABAOAIp0s4R8ACAMARTpdwjoAFAIAjnC7hHAELAABHOF3COQIWAACOcLqEcwQsAAAc\n4XQJ5whYAAA4wukSzhGwAABwhNMlnCNgAQDgCKdLOEfAAgDAEU6XcI6ABQCAI5wuB4usDHoZ\nbhH5NvqdESLvJjfPxPUqX2LFJYjFDFjPAWkpuR0KAKqGgEXAir0EsRCwkMbC2/FnPU9rmHeY\nTN1jv37jisa1jurxY9mG/rjKea8qOxsAVETA8i1gjZWSeKMe6tlzXfQ71Q9YoWIS1ytUYmjq\niksQCwELaSy0GQ/OUZbTvzdfP5mjLurURB29PjTBT43VLdXY9QAgEgHLt4DVK37Aqqj6AauX\no4BVrYUiYCGd2VvxMKWyLh86pvdhSp2wRX/92/7qfk3bdZ66KrSdt1LHb6/CbgEAsRCw/ApY\nOwp9CVjhYhzVq2oLRcBCOrM24lV1VO1FxsDmy5Tqo/+dqhru1P/MVftutaaYp7LeqMJeAQAx\nEbD8ClgrxJeAFS7GUb2qtlAELKQzayPupowvrAwb91P7bNa0rurvxqsflXrLfHvTYapbFXYK\nAIgtQwNWP8kv3T6xfdFsM4h8qq1+qGvzlj2m/xae4KsJN7Qq6tR/zmb7dXeR0BUaA0U+M/7e\nKrJXe39Al+ZdHzYu5Vgx5OqidgOXh2awY+HALi0K2/Wbvcl8OUssA8xXy0df36qwQ5/HQ7MM\nX2K+bvy1zVv3mLYhccAqN++I6kQUE6NeEbU2S4yYOrQEe1+/r2txQaue41fFKpiAhTRmbsO7\nGqu6of28l1KTNe1i+7fBPDXV/Hu1OnJzrK0fAKokQwPWHSI7btOjxSQziHyxsNBKGlf+ZI3e\nPc6OHtJ2ifVOjIA1QGTbNHuqNdqT1lD+m9ZEX3QJz8HMXJEBa9ug0Lhm86ypQ/FmWbH1frsV\niQJW+XlHVCc6YJWvV0St4wSsjb1Cs5bHYpRMwEIaM7fhJcr6wsrwglItNO0cdYP5qqF62Pjz\napZa6OwoAgCJZGjAulvk39Ks3x1zzSAyR7qWvLNkSkuRQdboYSIdn3x/1dJRBVKw1HwnRsDS\n/z4vty9aOu9KPaK8LTctXPqiHk/am7d+b2on0vu5ZcsX3SjScoP+xua1k0Umr137s6bt7SfS\n6ekVq5eN0+PP8+Ys7XjzYwuR25as+nh2244D4wesCvOOqE5EMTHqFVFrs8SIqe0l6GfM+v3l\ni8fpSS9Gt0EELKQxcxserdTtoe15g1LHatq59i+C9dVoYxs/TnWoziEFAMrJ0IA1SOTm3j+b\ng3oQaXmPcZGr9mm+FJi/Dbwm0tP6kWBZgXQy7yeKEbD0ebSaZgz82Ezy2w8v1Ye2dxH50Hhr\nlkj/XcZA6VA9wpgfKwld7vSsyPXWb3v/ESk2F8KONyNEBhuz0X5oL/EDVox5R1SnJOIarPL1\nipjMLjE8tfX6K5Fe5qy1b1pKx9IKRROwkMbMbbi3UhPDG3Q9lbNHu1S1M4Z3ZavHzfEHb9T+\nd9MFf2wzL84OCACOZGjA0tNH0brwYHv77qEbRT43/naT/G/sCUeJ/Nv4GyNg6R+8dq/5zgA9\nKG0xhyaJzDX+zhnQy/rmS/tUzyzmQCjLlF5lhzDdfSJzjL9WvNnZQvJ/sEa8mCBgxZh3RHUi\nA1b5ekVMFjtgLRaZbpeyaOaineEid/5q+TEnh4CFdGVuy+2VmhvesI9Vap3WXZ1rDK9Uapmm\nLc1WJdoLtc1usrjUHUAyMjdgDSkbnGwPjhAxost3IuFuBpeL3Gf8jR2wZlnvTBQZZg29JDIt\nuqQtItYvDqEss1rkytB3Q0tE+ht/rXizPJSXNG1bkZO7CMPzjqhOZMAqV6/IyWIHrKXhH0mj\nzTk75CwCFtKVuS0XKvVCeMM+WakvtadUrvHfjuGq0U5t56mqSPv1IFXwzdbxWWp+pbsgAMSV\nuQFrftngW/bgOJFX9D+LRMaFJtwmco3xN3bAsr9JmhHu7GCxyKNlpezZumXLLyKtzBehLKNn\nsKGhCX7URxphy4o3C0RGhsb0qCxgRc07ojqRAatcvSInix2wNjcXGfFVxcIIWKgBzG35CqVe\nCW/YZyr1ubbzCNVsq/ZRY9VP0wao/ddqE1S9X/WRbdTFCXdBAEgocwPW4rLBFfbgeOv3wNkS\npcgYFTtg2R1NzRKx/1O8RMS+wGP5qO5t860ZRAcsPY1NCS1GqT7W+BnPijfTIr7+uidRwKow\n74jqRAascvWKnCx2wNIWGbO9btybv0YXSMBCDWBuy1HfYJ1kfIOlLaqt9j06S52+Rfs4z+i3\nobnKN0Y+oXJ3xN0HAaAymRuwPiobDHXIaQeRSdEBS3Zr8QLWZ9Y7esB6yRoKBazt90V8Pjpg\nTRSZHV6O5tZsrXgzIWLMsPgBK8a8I6pTEqOj0YiAFZosTsDSPupr9TZx2+LIS9wJWKgBzG25\ng1LPhDfso5Qy7sN9r7BxXpN+m7Q956pL9ZdNje+yNO0Dpf4bZx8EgMplbsBaWXHQDiKTRUYu\nj2BcyV7FgHW/SMsnVv2yR9N2VhawjAO8FW/GR4wZEj9gxZh3RB0qCViht+IFLE37/PHe5rdj\nfUO9mEbgLkKkMXMb7qtU+AKA0tqq1t6I7fsBVW+N/udANdx49a1Si+LsgwBQOQJWxSAy2+yK\nM1pEwBpQKIYmugAAIABJREFUecBaI9JijfXO9vIBa2bZxefaXj3IGL1AWPFmasRPhHfGDVix\n5u1mwNJtXjK8UOS2imUTsJDGzG14glJ9Q9vz10o1jdi8V+1rdTVq/1kXeb8hAFQVAatiEHk9\nxr10PUTsDg60XpUHrLkio+yp15QPWC/b9yUa1oq0Mf5a8eZZkQdDY66OG7BizdvlgKX7ukPZ\nJVxlCFhIY+Y2/L5S54e25yeU6li2dZdeqM4zv89qpB4w/nyr1Iux90EAcICAVTGI6LGn9e5y\nH+gtEvraqLDygDVJJHSdx+zyAesrkU6h65teE7nL+GvFm/dFbrBHbMiPG7Bizdv9gGXMe0GF\nsglYSGPmNlz6O5UX+jK6bdR3VBNUbWuHPs7q6/1Ds2MsAKgmAlaMINJLJPRf1+XXTDSD1d0i\nb1jvPCuVB6zp4R/7NrYVKTaHSuwrrEqvEXnPnvsd9u2HVrzZUij531sjZsfvaDTWvKMD1ux4\n9YoZsGaXvS6ddtfwUDFzRV6uUDYBC2nM2ohvU8r+9Xt1LXXArvDG/V0DZX+1LMrcrWarnK2x\n90EAcICAFSOIvCbS6gvznR+7iqwyBvRY09/8+eDT4laVB6zFIt3MZxKuv6FXO5HfjMGFoV6u\n9IFrrAvIXxbpYD6Ix44794gMMD/2eXFB3IAVa94RdQgX4yhghae2Xve3O8zStB09RUK92Zch\nYCGNWRvxuoYqx3x+wg9nKvPpgzZRZ9rfWz+kGhv9M3RQf429CwKAEwSsGEFEGyrSbPy7n7w1\nsaXIGPOdr/P1hLXo/cUPF940vvKAtb2tyO3vff3RlJbNvuonMnbNek37UKTo8VeeKtVK7xDp\n8uynq95+IF8K3jc/Zsed1XqsunHhssVjiro8FDdgxZp3RB3CxTgKWOGprdcr9AW46/mly9+e\ncVVEd6hlCFhIY/ZWPD1LqcvuHXltI6UuLLuHcJbK/cAe3NBA9d6rvZyrnkp0DAGAxAhYsQLW\nnjF2P56SP9E+BD9pv9Fjw1SRj+0Pxu2mYWmR3U3Vx0b/7CJTNW1vN/OdPXpEGhLqxaqtfY1H\n6AqoVwqt99t9OkXk7TjLHmPeEXUIF+MoYIWntl8vLg73sDUkRieLBCyksdBmPHEfZbl8S3jT\nXn+gKrttdma2OuREpdrE2QMBwAkCVqyApWmrJ/RoXdj6xkfXhD/y3j0dClv0mr/diFrL7A/G\nDVja6uGdClv0nL1JD2vTujS71uhA/af72jfrPMC8vn3FqOuKizreMTd0iUf4EvNvHr66eavu\nU9Zrc0Rej7fwFecdUYdwMY4CVnjq0OtfSm7v3Kygdc+xK7UYCFhIY+HteE2f0xrUPqp15F0c\nbVXTiP9RvHppgzpnjN4Tbw8EAAcyNGChWghYSGNB7z4AMgsBC84RsJDGgt59AGQWAhacMwNW\n0AsBAEDq43QJ5whYAAA4wukyhW1dX8HPwS4QAQsAACc4XaawWVJBh0AXiIAFAIAjnC5TGAEL\nAID0xOkSzhGwAABwhNMlnCNgAQDgCKdLOEfAAgDAEU6XcI6ABQCAI5wu4RwBCwAARzhdwjkC\nFgAAjnC6hHMELAAAHOF0CecIWAAAOMLpEs4RsAAAcITTJZwjYAEA4AinSzhHwAIAwBFOl3CO\ngAUAgCOcLuEcAQsAAEc4XcI5AhYAAI5wuoRzBCwAABzhdAnnCFgAADjC6RLOEbAAAHCE0yWc\nI2ABAOAIp0s4R8ACAMARTpdwjoAFAIAjnC7hHAELAABHOF2mphEi7xp/bxH5NvYUt4qs8XOJ\nDGbAeg4pzu/NAgBQEQErNQUVsFaN696qsG3fx3+MOZaAlRbKVthnPU9rmHeYTN1jv37jisa1\njuoRsXIfVznvub8VAQAIWCkqFLAe6tlzXewpHAassVLivNSdo8VWNDfWeAJWWgivr8E5ynL6\n9+brJ3PURZ2aqKPXhyb4qbG6xfnmAQBwjoCVmkIBKz6HAatXFQJW6UA9WvWfMmdMR/3vSzEm\nIGClhdDqGqZU1uVDx/Q+TKkTtuivf9tf3a9pu85TV4WmaKWO3+548wAAVAEBKzW5FbB2FFYh\nYL0o0tz8wWj7KJG2OytOQMBKC/baWlVH1V5kDGy+TKk++t+pqqGxUueqfbdaU8xTWW843joA\nAFVBwEpNbgWsFVKFgHW9yEJraM+VIjGuzSFgpQV7bXVTxhdWho37qX02a1pX9Xfj1Y9KvWW+\nvekw1c3xxgEAqBICVkpZN/7a5q17TNtQ8SL3HQsHdmlR2K7f7E32pHrA+lpbOrhLUdt+z+0J\nz+CrCTe0KurUf85m89Us+4qqATHG6fa+fl/X4oJWPcevMl9uypdmoR+MxojMq7h4BKy0YK2s\nXY1V3d/sFddLqcmadrH922Cemmr+vVodubniSgYAuIGAlUqWFVuBqN2K8gHriy6hy8/bLrem\n1QPWN2Pt93rZJ9Ld48JTLTFeRwas8uM0bWOv0DvymPnGnvXfhJZkksjTFZePgJUWrJW1RFlf\nWBleUKqFpp2jbjBfNVQPG39ezVIL3dluAQAVELBSyI8tRG5bsurj2W07DowOWJvaifR+btny\nRTeKtNxgTqwHrKlyXcnbb05oJjLQmsEwkY5Pvr9q6agCKViqv968drLI5LVrf44xTtP6GfN8\nf/nicXqsK9930n0ib1VcQAJWWrBW1milbg+tuA1KHatp59q/CNZXo42VeZzq4NaWCwAoj4CV\nQkaIDC41Bn5oL9EBa5ZI/13G69KhemIyJ9YDVuEg87fBTwpFPjEGXhPpaf3ms6xAOpm/9pWE\nrsGqOO4rkV7mPLVvWkrH0qgl2dxcWm6tuIAErLRgrazeSk0Mr7l6KmePdqlqZwzvylaPm+MP\n3qj976YL/tgmxo/BAIAkEbBSx84Wkv+DNfhiuYA1Z0Av61sn7VM9FpkDesBqZV9BM1pkvPG3\nm+SHfuMbJfJv4284YFUct1hkuv3OopmLou8ZfEBkVsTLL+dYnjjgAAJW6rNWWnulyjozO1ap\ndVp3da4xvFKpZZq2NFuVaC/UNrvJ4lJ3AHAdASt1LA9lJ03bVhSvJ/ctItYPO3rAGmm/955I\nD/3PdyLhXiP1ed1n/A0FrBjjlooMirMks0X67I54PefskLMIWKnPWmmFSr0QXoMnK/Wl9pTK\nNXqtHa4a7dR2nqqKtF8PUgXfbB2fpeZXZTsFADhAwEodC8oik9YjVsDas3XLll9EWpkv9ID1\nov3+BpGivZq2SGRcaNJtItcYf0MBK8a4zc1FRnwVa0EeF7nu18g3CFhpxVppVyj1SngNnqnU\n59rOI1SzrdpHjVU/TRug9l+rTVD1jPXcRl1c5Y0VAJAYASt1TBOZFhq+p3zAWj6qe9t865a/\ncMCy7yfUSvURm83vnSIVGaNCASvWuEXG/K4b92ZUltK0HUNFuq2PeouAlVaslRb1DdZJxjdY\n2qLaat+js9TpW7SP84x+G5qrfGPkEyp3hytbMAAgjICVOiaIzA4ND4sOWNvvi0hH4YD1RWjq\nFiI/mV0rRDF+5AsFrFjjtI/6msP5ty2OuMT9p14i/X7ToiztZ+lz7DEErNRnrbQOSj0TXoNH\nKWXcfPpeYeO8Jv02aXvOVZfqL5sa32Vp2gdK/detjRgAYCFgpY7xEQFrSHTAul+k5ROrftmj\naTsjAtaXoamLRdZr2mSRkcsj7NXKAlascbrPH+9tfi3WN9R9qbayvchDu+IsIXcRpgVrZfVV\nKvyrcGltVWtvxIp8QNUzHgNwoBpuvPpWqUXV3WgBALERsFLH1IifCO+MClhrRFrYz8XZHhGw\nPrEnNn4i3GL+DDip/DwjfiKsMM6yecnwQpHb7FfvFEn+3NgTagSsNGGtrAlK9Q2tuK+Vahqx\nHlfta3U1av9ZF3m/IQDAFQSs1PGsyIOh4aujAtZckVH2iDURASv0oN6NIsWlmvZ6jNsCQwEr\n1riwrzuIrDCH3imUFv+Jv4QErLRgraz3lTo/tOKeUKpj2WosvVCdZ36f1Ug9YPz5VqkXNQCA\nqwhYqeN9kRvswQ35UQFrkkjocprZEQHrsbIP9tb/rBVpvVuLFgpYscaV0We6wPj7WXMp/iTu\nVASsNGGtrNLfqbzQvQpto76jmqBqf2YOHGf19f6h2TEWAMBNBKzUsaVQ8r+3BmdHdzQ6Pfzj\n4ca2IsXmkB6wOtvXSo0VmWL87VXWc8PyayaavymWhK7rqjCudNpdw0MlzxV5Wf+z9Sop+ijR\nEhKw0oK9tm5Tyv7ld3UtdUDZdXXfNVD3WUOizG1ptsqJ0W0/ACAZBKwUco/IAPPhN58XF0QF\nrMUi3cwR62/o1U7EvMfv1vAzmlc3k3zzevfXRFpZdxb+2FVklTGwMNS3VsVx/UXsfpJ29BQx\nunkfV/ZFWWwErLRgr611DVXOHGPghzOV+fRBm6gz7S8zH1KNjf4ZOqi/Vmt7BQDER8BKIav1\nWHXjwmWLxxR1eSgqYG1vK3L7e19/NKVls6/6iYxds94cM14GLP7i05JW4Q5Kh4o0G//uJ29N\nbCkyxnznQ5Gix195qjTGuBV6aXc9v3T52zOuEhmqv7GuUPKnzwqL0bs3ASsthFbX9CylLrt3\n5LWNlLqw7B7CWSr3A3twQwPVe6/2cq56yovNGQAyGgErlbxSaPVS1e7TKSJvG+/Y3TQsLbK7\nwPrY6O9dZKqm9RH5ZaTdq9Vtdj+Re8bYfZFK/kTrjLq3m/lyT6xxi4vD3WINMWawJLqrrK4V\nl4+AlRbC62viPspy+Zbwe+sPDP1wqJuZrQ45Uak2Lm/HAAACVmr55uGrm7fqPmW9NkfkdeON\nUE/uq4d3KmzRc/YmPShN69Ls2sWadoPRW+jb93QpanvrS2X9hK6e0KN1YesbH10TeuOn+9o3\n6zygNOa4X0pu79ysoHXPsSvNlwSsGqJsha3pc1qD2ke1XhCxDtuqphHdtr96aYM6Z4zek9RG\nCwCIgYAF5whYaSHozQQAQMBCVRCw0kLQmwkAgICFqjADVtALAQBA6uN0CecIWAAAOMLpEs4R\nsAAAcITTJZwjYAEA4AinSzhHwAIAwBFOl3COgAUAgCOcLuEcAQsAAEc4XcI5AhYAAI5wuoRz\nBCwAABzhdAnnCFgA/p+9O4+uqrr///9GENTaglLbLr+fVpfa1vbbpbVdtX+42v6sS/uHvjNB\nCAQCUgQUkUgLoshHakGgoh9l/AJWBlGM8qGIA6ARh4i2FHAIKFpBBhVBQDESA5hk/854h9xz\nk52QwE3yfPyRM+1z7j77Zq39WmfYF4AVukvYI2ABAGCF7hL2CFgAAFihu4Q9AhYAAFboLmGP\ngAUAgBW6S9gjYAEAYIXuEvYIWAAAWKG7hD0CFgAAVuguYY+ABQCAFbpL2CNgAQBghe4S9ghY\nAABYobuEPQIWAABW6C5hj4AFAIAVukvYI2ABAGCF7hL2CFgAAFihu4Q9AhYAAFboLmHPC1hP\nIcKJ/moAAJmFgNV+3aa6o3F7ELDSapmvCADQWhGw2i8CVjOKN9K7Iy7q1vlsXVgdLL98TfeT\nzxm+J15gsXTccMxfHgAgsxGw2qJZutSiFAGrGcXaaGJH8V38sbf8WEf5/YAL5Nx9YYFPu8st\njWt2AEDrQ8Bqi4oJWMdb2ER3i3S4esrMkWeL/OiQs/zlGfI3Y45eJoPCEgXyw6rGNTsAoPUh\nYLVBh3MIWMdb0EJbT5Eupe5MxVUio5zpQul2xJksl9Mq/RIrpMPLjWt1AEArRMBqgzYrAet4\nC1pomLgXrFwHviWnVhgzWP7gLu0RedVbffBsGda4RgcAtEYErDag5qVJg/OzC0bM2eouLVHf\neGPGaFZt1bx+uSVesfIZNxTkFI1aHD4NFA9YC1RvOuTNbZ97U0HugFuXVUR+EAErLb+BjnaX\nb3wZNFaxyHxjrgjuDXaWhd70Ovl+dNsCANoUAlbrd6BYQ383SQFrnOrhsc7sg87qryaEhfJW\n+PvFAtbTqoM/c2e+nh2WKVwb9UkErLT8Blor/gUr1yqRnsb8Sm7ylrrJdHfyQgdZ2SL/BACA\nzELAav3GqI58amN52ex8Vaejr9g9X3X+7t1OZPqL6vOaN2bccmNqnFID/nfztvWzc1Sf8fYL\nA9ZrWdrfH0XgbtX+j23cum5atmavi/gkAlZafgPNELk9bKz9IucZc2lwR/CbMsNtwPOlqAX/\nEwAAGYOA1eptVy0+6s3t6qX9a53p0vAZrAmqfx7pXZsyT6jecNCb+5dqvrcuCFhbemgf/0rW\ni6oj/PtX67N1QMSrbgSstPwGGikyL9Zap0vHanOl9HXnj54ki73t3z1g/vOn3/26z4rm/ScA\nAGQYAlarV6b6UDBb+kip+8paLGBNVM3d683VDlJ9Myg1SXWZO/UD1keFmr/F3zBMs3YFZaap\nPh//iFdu8A354Q8JWNH8huonsjzWaueJ7DU3yqXu/Nsi641Zd5IsNau6eMNk8ag7ALRpBKxW\nb53qhOQ1iQFrsr9qm+ofa4PNa1VvdadewPr8Os3d6K//SDU2Ama56qT4AZf9MvQLAlY0v6Fy\nRFbFWu2nIh+Yx6WTG3GnyplHzJGfSa754juSvatyTgd5svn+BQAAGYeA1epV9FC9d3vimsSA\nFXTjz6pOCTfvUS1ww5YbsKpu1qxXgvWlqrPDMl+pDokfkIDVIL+hrhFZE2u1S0TeM0f+S/Iq\nzVvdZYwx4+WM3WaunP6Fs7GPXNF8/wIAgIxDwGr9SrNU9frZr3wRrkgMWGX+qodVF4Sba53i\n7qiXTsDaNj64Xegq0SS58U8gYDXIb6ikK1g/ca9gmdIuctq5HeTiQ2ZTZ3fchh6S5W58VDod\nbv5/BQBApiBgtQFvjfYSUdbYMv8uYGLAessvMk+1JFa+h6o7FpYTsMY4u40Lbx0+mByw9OvY\nDnvX+cq+9U0CVjS/oYpE/hFrtXNE9juTDTndO18w5qCpvlSudBYvdK9lGfOGyOst8s8AAMgI\nBKw24b3FI93LWDrae1EwMWC97ReoG7Dcnv82d4981ceC1fNV7ytPUJPyMbxFmJbfQKNFYndZ\na7vIyYlNeI+c7r6seZZMdZc+FCltpi8fAJCBCFhtRcXaqTmqY93ZiID1iOr8sGSNk6vcMRic\ngJX1+Ad5mvOOv77EH5G0HgSstPwGmisyOmysnSIXJrTd1tP8oUaDyd7E9w0BAG0OAasN2Vmk\nutlEBqznEt4K3K3ax506AavUmCdV/+j/ustLKa8j1kXASstvoI0ivwkb61GR/vGmq71cLvOu\nZ50p97iTD0VWH9OXDQDIaASstqRE9WkTGbC2qw4In7V6UfUOdxoMNPrXMHs5wav316Y+BKy0\n/Aaq/YF0Dn/qsTDpGtVc6fKuN3O+P9b7m97AWACAtoqA1drVLrpjaji/XPU54wUs/4GreMCq\nHaK6ISg1TtV71S0IWF/0D387p1g1vKpSPmTejtTPImClFbTQWJGx/ty2k+XbR2Mt91FXCa4g\nquS7kxLpWHlsXzwAIJMRsFq9W1WDsZcOj1B1h2JfqXqftyIesNx1Q/yfynlOtcj7GZzwtwjf\nzNIe292ZF1UL3vfK7BmsujX1owhYaQUttLebdPTGvfjkEvF+fTCgcklwcfB+6e6Oz1Akv22O\nLx8AkKEIWK3e5mzVO55ZV/7aw4OC0UTfVM1dvObx2sSAVTtOdeATW7a+dk+WZvtDt4cByyxU\nvcEblGmKat6cf7/z6rxeqjMjPoqAlVbYRA91ELnqrvuGnilyefwdwiXS6Y1gdn9XGVljnusk\njzf3PwIAIIMQsFq/svzY0FWTvZxUM8xbqE4MWKZqclioMHj4Jxawqv+sOs2bmZkVlMmalzpI\nAwGrHrE2mneq+K4+FFu376zwxqHjkZPkez8W6dOM/wEAgIxDwGoDPl96+7V52b1HzArT1KeT\n+uVdOz7pCpZj87Tr83P7j1sePvsTC1jmk16qL3tz2+YO753T++YHIh7AMgSsesQbaceoi7p2\nOaf30wntVigXJgzb/sKVXU/5+YzqY/rKAQAZjoAFewSstE70VwMAyCwELNjzAtaJrgQAAJmP\n7hL2CFgAAFihu4Q9AhYAAFboLmGPgAUAgBW6S9gjYAEAYIXuEvYIWAAAWKG7hD0CFgAAVugu\nYY+ABQCAFbpL2CNgAQBghe4S9ghYAABYobuEPQIWAABW6C5hj4AFAIAVukvYI2ABAGCF7hL2\nCFgAAFihu4Q9AhYAAFboLmGPgAUAgBW6S9gjYAEAYIXuEvYIWAAAWKG7hD0CFgAAVuguYY+A\nBQCAFbpL2CNgAQBghe4S9ghYAABYobuEPQIWAABW6C5hj4AFAIAVukvYI2ABAGCF7hL2CFgA\nAFihu2w596r+253eovphdInbVHdEb0m/jzEvj+6V07e8ydWq79AN8ALWU4jQ5K8DANAmEbBa\nTgsFrNXq+meTq0XAagnxRnp3xEXdOp+tC6uD5Zev6X7yOcP3xAsslo4bmvrlAQBaCQJWywkD\n1v0jRuyNLpE+YKXfxwxTvW3N2nRb05ulSxs6dEMIWGnF2mhiR/Fd/LG3/FhH+f2AC+TcfWGB\nT7vLLU1sfwBAq0HAajlhwEovfcBKrzZXcw81pTrFQcA6BgSstMImulukw9VTZo48W+RH7tf0\n5RnyN2OOXiaDwhIF8sOqY/0iAACZjoDVclomYFWpDmxKbQ7nELBaUNBCW0+RLqXuTMVVIqOc\n6ULpdsSZLJfTKv0SK6TDy8f6PQAAMh4Bq+W0WMAa1HCpVJuVgNWCghYaJu4FK9eBb8mpFcYM\nlj+4S3tEXvVWHzxbhh3r1wAAyHxtP2A5IabGbBw/sMfg6e5DMZsnX5fb907vHbxxqs/Gik1W\nXeXNlM+4oSCnaNTiffFDbJoxNL/n0JnbwuXDK+8c2DOn75iSg8GKMZpVWzWvX26Ju7B3ztAe\nvYcv2p/6kHvKfg0+5O5V/oNpA3Pyhy/wdlqogX82WI+kai8Jdhuf+JB73VNN+bS6CFhp+Q10\ntLt848ugsYpF5htzRXBvsLMs9KbXyfcror9yAEBb0vYD1njVrxb56aJwh3nMn8t6xdlSpjo6\nLFXVQ3u493C+mhAmmLwVwabKicGarEX+ivcHhmUKg8ESnKh2eKyz/KAzvz7f39Z3c92Albpf\ngwHLqXzVymx/p2vdR9MTA1b99UiudkTASj3VlE+ri4CVlt9Aa8W/YOVaJdLTmF/JTd5SN5nu\nTl7oICsb/JcFALR+bT9g3an6jN5eum7FH5148Zr+aeW61cWq/aqN+bpQ9aOg1EuqU51JzRjV\nAf+7edv62TnObt6WGiexDFry8uppzpol7oqDfVVHPrW+vPRm1V77vTJ/UX1e88aMW27Mnp6q\nY9du3VRS2P/O5IAVsV+DAcs5xBodvPSfaxf1Ur3LWVGxe7sTfnbv3l3VQD3qVLti93zV+bt3\nfxY7dMSppnxaXQSstPwGmiFye9hY+0XOM+bS4I7gN2WG24DnS1Hj/4UBAK1P2w9YE1QLvEtP\ne/I0q9/UWmeuaqDqm870AdWF8VKvO5MnVG/wb479SzX/M3dmpeoo762v8hzNcS/rLFG99ai7\nonaKk1nCvf880ivt3hec6H6G+aSfJgesiP0aDFhu5Sd4O21SzfZeHow9g1V/PVKqvTR8Bis4\ndMSpRnxaMgJWWn4DjRSZF2ut06VjtblS+rrzR0+Sxd727x4w//nT737dZ0Vq6wIA2pC2H7Am\nqg6t8ebGO0HCTw0Pqi53JjtV+/ubKvN0oBOLagf5ycs1SXWZOx0cC0H3q7oPNy0bX7zOX7FF\ntTj8jFz/ltqRnpr1ib91dZ2AFbFfgwHLOXDf4O2z4aqb3GksYNVbj9Rq1wlYUaca8Wm+I1/4\n9nTsSMCK5jdUP5HlsVY7T2SvuVEudeffFllvzLqTZKlZ1cUbJotH3QGgTWsXAWuJPzdP9W5/\n7llV76LWn1XXeyueV33ImWxT/WNtsN9a1VudyXbV4cGanc//+yOT6JBqUfgZk/1V5WHWMear\n3HQjucf2swlYDwRrpqqudacRbxFG1CO12nUCVsSpRn2ab9kvQ78gYEXzGypHZFWs1X4q8oF5\nXDq5kXeqnHnEHPmZ5JovviPZuyrndJAno795AECb0C4CVnCh5+HYQAVlQZJwgtYkb8V41Y/9\n5SnhfntUC5wEUqp6X9RhqysPHfrcKRJ+RtBdPp1QfHhUwErazyZgvRKsma26xp3WCVhp6pFa\n7ToBK+JUoz7NR8BqkN9Q14jEm+0SkffMkf+SvErzVncZ4/yXyRm7zVw5/QtnYx+5IvqbBwC0\nCe0iYL3tzy0JR2JwL9l4j8pU5WuO29tV5Kj36yVOBFsQ7lerqpXeqkV1D1k+7cbCLP9lu1iw\nKfM3LUoo/te6AStlP5uAFf6q8xzV5706xwNWPfVIrXadgBVxqlGf5iNgNchvqKQrWD9xr2CZ\n0i5y2rkd5OJDZlNnd9yGHpLlbnxUOh2O/uoBAG1BuwhY7/pzS2LjXoUBy0xXdZ82Xq36nLs4\nz39cyddDdZ/3IPxjyQesmqRxsWDzlr9xbsIR7k4OWBH72QSsIB2mBqx665Fa7ToBK+JUoz7N\n99Tlvv/v5xcTsKL5DVUk8o9Yq50j4r7cuSGne+cLxhw01ZfKlc7ihe61LGPeEHk9+qsHALQF\n7TxgbVF1hykapz2/chfrpo793vPwDycf8G+qvR7d+nm1MUcSgk2QTOYkHGFycsCK2O+YAla9\n9UitdgMBa3/0pyXjLcK0/AYaLTI7bKzaLnJyTULj3SOnu1/2WeKOB2I+FCmN/uoBAG1BOw9Y\n5kY34nyWrf/jLT0SjnfgqFHVKmMeVZ2VdLwdqj2DVFSVGmwWJtya+++kgBW137EErPrrkVLt\nugEr4lQJWMfAb6C5IrGxa3eKXJjQdltP84caDSZ7E983BAC0Oe09YD2hutgsD++sPRc+9O7Y\nrdqIU1dYAAAgAElEQVTHmbxYd8hNp/C0YHZHarBxjvc/YcnrkgJW1H7HErDqr0dKtesGrIhT\nJWAdA7+BNor8JmysR0X6x5uu9nK5zLuedabc404+FFkd/dUDANqC9h6wKnJ1iLlZB/kjFmxX\nHRCOXeBElDucyS7VomDVrunTn/RuvoWP2ZSkBpuN/j1H1/6spIAVtd+xBKz665FS7boBK+JU\nCVjHwG+g2h9I5/CXHQuTrlHNlS7+v+H5/ljvb3oDYwEA2qr2HrDMFFUnXzziL9QOUd0QbBgX\nvHN4veq//DUPuVe73L/BTcADhar54WcEyeRQjmZ97M+WJA80GrXfsQSs+uuRUm03YJUkHDrq\nVAlYTRe00FiRsf7ctpPl20djLfdRVwkuGKp431WJdKyM/uoBAG1Buw9Yr6v2iQ2+7v7AzBD/\n92OeUy3yfmpmtepAb3T093tozifeGFrDqt3lfTcV91X9MviMMJn8VXW8t/m9/OykgBW137EE\nrAbqUbfa7qndl3joiFMlYDVd0EJ7u0lHb1T8Ty4R79cHAyqXfO3P3S/d3fEZiuS30d88AKBN\naPcBy/3JGL0tLFw7zsklT2zZ+to9WZq90V81VrX339esvD/4seeqQtXbN+x8a0GvvO1jVGft\n2JeUTLY5sermlevLZuYOvD8pYEXtdywBq4F61K22eVM1d/Gax2vDQ0ecKgGr6cImeqiDyFV3\n3Tf0TJHL4+8QLpFObwSz+7vKyBrzXCd5PPqbBwC0Ce0+YLnv2yUMWl41ORxZqjB8RKZqQrAm\ny78lty43GHpqkztuu/d70QnJxKzJ8Tf33bJA9TV3TZBoIvY7pmEaGqhH3WrXDPOWqmPjnqae\nKgGr6WJtNO9U8V0d/7XsfWeFNw4dj5wk3/uxSJ/oLx4A0DYQsPZlaX5VQvnN067Pz+0/bnnC\nEzIb7x2c32PIzA+CxW1TB+T0HFFy0JjqRQPzhpYlBxuza/p1PQpuXLDPLFN9yV0RJprU/Y4p\nYDVUj7rV/nRSv7xrx9fGB5ZPOVUCVtPFG2nHqIu6djmn99MJ7VYoFyYM2/7ClV1P+fmM6ugv\nHgDQNrT9gNWQXaozGi4FFwErrRP91QAAMgsBa6bqthNdh9aCgJXWif5qAACZpd0HrF05evuJ\nrkOr4QWsE10JAAAyX3vvLj8fFntECw0iYAEAYKVdd5dvri8pVJ1zYitRuS/FZye2RukRsAAA\nsNKuu8sid4yCiV+f2Eos0RRFJ7ZG6RGwAACw0q67y2Hac+Tq2obLtSgCFgAAbQ7dJewRsAAA\nsEJ3CXsELAAArNBdwh4BCwAAK3SXsEfAAgDACt0l7BGwAACwQncJewQsAACs0F3CHgELAAAr\ndJewR8ACAMAK3SXsEbAAALBCdwl7BCwAAKzQXcIeAQsAACt0l7BHwAIAwArdJewRsAAAsEJ3\nCXsELAAArNBdwh4BCwAAK3SXsEfAAgDACt0l7BGwAACwQncJewQsAACs0F3CHgELAAArdJew\nR8ACAMAK3SXsEbAAALBCd9lK3Ka6I3rLLaofxgukL9cMvID1VMZosfMEAOAYEbBaCQJWqnjF\n3h1xUbfOZ+vC6mD55Wu6n3zO8D3xAoul44YWaxYAAOoiYGWSWbo03ab0wen+ESP2mvYdsCZ2\nFN/FH3vLj3WU3w+4QM7dFxb4tLvc0mKtAgBACgJWJiluSsBKLtAeA9bdIh2unjJz5NkiPzrk\nLH95hvzNmKOXyaCwRIH8sKrFWgUAgBQErAxyOIeA1RhBrbaeIl1K3ZmKq0RGOdOF0u2IM1ku\np1X6JVZIh5dbrFEAAEhFwMogm5WA1RhBrYaJe8HKdeBbcmqFMYPlD+7SHpFXvdUHz5ZhLdYm\nAABEaIMBq+alSYPzswtGzNkaW7V97k0FuQNuXVbhLY1XXR3bNE71xYgyxozRrNqqef1ySyK3\nRnCiTY3ZOH5gj8HT3SeBNk++LrfvneVp6hAU/2DawJz84QsOuiuWqG+8u3B45Z0De+b0HVNy\nMF68MQ+5pxw9+ixS2iqi8RJkZMA62l2+8WVQwWKR+cZcEdwb7CwLvel18v16vjcAAJpf2wtY\nB4o19Hd/zdezwxWFa93lF1X/Oyx9MFvzqyLKeMnr8Fhn+cHIrRGc3PbVoqDUDvOYP5f1SnQd\nvOJVK7P9dde6T6knBqz3B8aKBxGtkQEr5eiRdUhpq9TGS5KRAWut+BesXKtEehrzK7nJW+om\n093JCx1kZdpvDQCAltD2AtYY1ZFPbSwvm52v6nfBd6v2f2zj1nXTsjV7nbNcla854RWNZ1Tv\niypjzF9Un9e8MeOWR26NcKfqM3p76boVf3RC0mv6p5XrVjtxpV91ZB284mt08NJ/rl3US/Uu\nZ0XF7vmq83fv/syJfX3dk1hfXnqzaq/9XvFGBqyUo0fWIaWtUhsvSUYGrBkit4cV3C9ynjGX\nBncEvykz3EqfL0XpvjMAAFpGmwtY21WLj3pzu3pp/1rjXbAa4eep9dk6wL1cdY/qs0HxW1Xf\njCxjJqj+eeRn3rqIrRGcHQoWuTN78jSr31T3o6sG+odPc/yCCV5NN6lmuy+/maXhM1hLVG/1\nNtVOcTKXt6qRASvi6Kl1SGmr1MZLlpEBa6TIvFgNT5eO1eZK6evOHz1JFnvbv3vA/OdPv/t1\nnxVpvjkAAJpbmwtYZaoPBbOlj5S6L5MN06xdwZppqs87k/Wqd/grDmTptbWRZcxE1dzg3lrE\n1gjODkNrvLnxqvlepjEPqi5PcwSneN/gJbfhqpvcaSxgLRtfHFwo2+JEHm+mkQEr4uipdUhp\nq9TG87230PfA976beQGrn8jyWE3PE9lrbpRL3fm3RdYbs+4kWWpWdfGGyeJRdwDAcdLmAtY6\n1QlJKz5SjY0xWa46yZlU9wvvEa5QXRBdxo0ok9MeIYqzwxJ/bp7q3f7cs6qL0h//gWDVVFXv\noailqW8RHlL17281PmDVOXpEHVLaKmVFYNkvQ7/IvICVI7IqVtOfinxgHpdObjSeKmceMUd+\nJrnmi+9I9q7KOR3kyegmBACgmbW5gFXRQ/Xe7QkrSlVnh/NfqQ5xp3NUvYGTzCjVnWnKOBHl\nyfRHiODsEFx2ejgWlMr8nJPm+MED8Ga26hp3WidgVVceOvS5aoG30PiAVefoEXVIaauUFYGM\nDljXiKyJ1fQSkffMkf+SvErzVncZY8x4OWO3mSunf+Fs7CNXRDchAADNrM0FLFOaparXz37l\ni2C5RJPkuuu2BIMh7A1uwEWVcSJKWfojRHB2eNufW6IaXFNZqzov/fHDMRzmBHcNEwJW+bQb\nC7P80k0NWHWOHlWHum2VusKX0QEr6QrWT9wrWKa0i5x2bge5+JDZ1Nkdt6GHZLkbH5VOh9N8\neQAANKu2F7DMW6P9ARLGlnlPaT+YHCz0a3flYM1xh05aproiXRknorzlHzDyCKmcHd7155bE\nHqIPAlaa4wd5LDVgVU1KKNzUgFXn6JFnUaetIlZ4Xr/Ld+c5P8i8gFUk8o9YTc8Rcd+63JDT\nvfMFYw6a6kvlSmfxQvdaljFviLwe3YYAADSvNhiwjHlv8Ujv6s9od4jN+ar3lSfwnkN/2A8d\nN2uONwpnVJl4RIk8Qqp6Alb9x08NWH9T7fXo1s+rjTnSbAErzVkktVXkigQZ+RbhaJHYvc/a\nLnJy4tdzj5zutsZZMtVd+lCkNLoNAQBoXm0yYDkq1k7NUR1rvFtjD6Zs/kj1TmN2e3/TlIlH\nlMgjpKonYNV//JSAtUO1Z5CmqpotYKU/i3hbpVsRysiANVdkdFjBnSIXJtR362n+UKPBZG/i\n+4YAALSgthqwHDuLVDcb81Lkm3EjNeeQO9q6/5hVVJl4RIk+Qop6Alb9x08JWMtVpwWbdjRb\nwKr3LIK2qmeFJyMD1kaR34QVfFSkf7y6tZfLZd71rDPlHnfyochqAwDAcdCGA5Z7zeZp7zJV\n79Snpp5ws9UILfDHeooqE48o0UdIUU/Aqv/4KQHrQdXwqaKSZgtY9Z+F31b1rXBlZMCq/YF0\n3hdUsDDpGtVc6eJ/I+f7Y72/6Q2MBQBAy2trAat20R1Tw/nlqs85k+L4bzuXD5kXpJTPsvS+\nT1SnBxsiyiRElMgjpKgnYDVw/ISA5f209EP+6FmOA4Wq+d7cMQes1DqktFVE4yXLyIBlxooE\ntzO3nSzfPhqr7UddJRizTMVrxBLpWBndhgAANK+2FrDc374JRkU6PELVHbr8RdWC9701ewar\nbg3KjdN+TwRDnEeXSYgo0Ueoq76AVf/xwwi0MvhhxDLVYd5PGO67qbivqvu+YzMErNQ6pLRV\nauMly8yAtbebdFzmznxyiXi/PhhQuSS4ZHe/dHfHZyiS36b57gAAaF5tLmBtzla945l15a89\nPEh1irdqimrenH+/8+q8Xqozw3LPq/5RB8XGIkgtkxBRoo9QV30Bq/7jhxHoTdXcxWser60q\nVL19w863FvTK2z5GddaOfc0RsFLrkNJWEY2XJDMDlnmog8hVd9039EyRy+PvEC6RTm8Es/u7\nysga81wneTzdlwcAQLNqcwHLlOXHhnqa7A8rWT0zGLJTs+bF+t/KHs7y4theqWUSA1bkEeqq\nN2DVe/wwAtUM80pUm3W5wRBYm8zT7nRhswSs1DqktFVq4yXJ0IBl5p0qvqsPxdbtO0vi70E+\ncpJ878cifdJ9dwAANK+2F7DM50tvvzYvu/eIWbF8ZLbNHd47p/fNDyRGlClOiPgoYblumcSA\nFX2EOuoNWPUePxaBPp3UL+/a8bVO4akDcnqOKDnopKJFA/OGljVLwIo4i5S2imi8BJkasMyO\nURd17XJO78TH8gvlwoSI+MKVXU/5+Yzq6BYEAKC5tcGAhRaTsQELAIDMQsCCPS9gnehKAACQ\n+eguYY+ABQCAFbpL2CNgAQBghe6yCSr3pfisLX9uvAIELAAAbNBdNsESTVHUlj83hoAFAIAV\nussmIGABAID60F3CHgELAAArdJewR8ACAMAK3SXsEbAAALBCdwl7BCwAAKzQXcIeAQsAACt0\nl7BHwAIAwArdJewRsAAAsEJ3CXsELAAArNBdwh4BCwAAK3SXsEfAAgDACt0l7BGwAACwQncJ\newQsAACs0F3CHgELAAArdJewR8ACAMAK3SXsEbAAALBCdwl7BCwAAKzQXcIeAQsAACt0l7BH\nwAIAwArdJewRsAAAsEJ3CXsELAAArNBdwp4XsJ7KGCe6OQAASIeAlZnuVf23O71F9cPoErep\n7jieNXIRsAAAsELAykwnLmC9PVh1bZptGRuw3h1xUbfOZ+vC6mD55Wu6n3zO8D3xAoul44aW\naC0AACIRsDJTGLDuHzFib3QJy4A1S5c25nO/XpClrS9gTewovos/9pYf6yi/H3CBnLsvLPBp\nd7mlMc0AAMCxIWBlpjBgpWcZsIobFbA+GK6a2+oC1t0iHa6eMnPk2SI/OuQsf3mG/M2Yo5fJ\noLBEgfywqhHNAADAMSJgZabmCliHcxoTsJ7K1bwn7mttAWvrKdKl1J2puEpklDNdKN2OOJPl\nclqlX2KFdHjZvhUAADhmBKzM1FwBa7M2JmCN1GEfmFYXsIaJe8HKdeBbcmqFMYPlD+7SHpFX\nvdUHz5Zh9o0AAMCxI2BllL1zhvboPXzR/tSH3A+vvHNgz5y+Y0oOBkWdgLXTrJs4MLdwzFPV\nsQNsn3tTQe6AW5dVeEtL1Dc+Ypuj5qVJg/OzC0bM2RqsGDn7iGl1Aetod/nGl0EFi0XmG3NF\ncG+wsyz0ptfJ9ysizgYAgBZDwMok6/P9QNR3c92A9f7AICtpYblf1glYu2YF64qDgPH17Fgp\nLyMlBqy624w5UByu0b/7az5w/7S2gLVW/AtWrlUiPY35ldzkLXWT6e7khQ6ysjm+HQAArBGw\nMsienqpj127dVFLY/87kgHWwr+rIp9aXl96s2mu/V9gJWAv1+qWvvTI3T/VO/wB3q/Z/bOPW\nddOyNXuds1yxe77q/N27P4vYZswY95gby8tmO7EuYciD1hawZojcHlZwv8h5xlwa3BH8psxw\nK32+FDXXNwQAgB0CVga5V3VirTvzST9NDlhLVG896i7XTnESk1fYCVg5E7x7g+/kqL7jzryo\nOsK/F7Y+Wwd4r80tDZ/BSt22XbXYO6bZ1Uv718Zq0doC1kiRebEani4dq82V0tedP3qSLPa2\nf/eA+c+ffvfrPiuO4bsBAKAxCFiZ40hPzfrEn11dJ2AtG1/sX3UyW5xY5M04AasgeLJohuoc\ndzpMs3YFx5qm+rw7jQWs1G1lqg8Fa0ofKT0Sq0ZEwHqhn6/wJxdmXsDqJ7I8VtPzRPaaG+VS\nd/5tkfXGrDtJlppVXbxhsnjUHQBwnBCwMkd5mJ2M+So33Ujuh1T9G15OwLovWLdBdbgz+Ug1\nNpqmc6xJ7jQMWBHb1qlOiKpGRMBa9svQLzIvYOWIrIrV9KciH5jHpZM7OutUOfOIOfIzyTVf\nfEeyd1XO6SBPNuLrAACg6QhYmePpeGQyw6MCVnXloUOfqxZ4C07AWh2s36+aW2NMqerssOhX\nqkPcaRiwIrZV9FC9d3tqNVpbwLpGZE2sppeIvGeO/JfkVZq3ussYY8bLGbvNXDn9C2djH7mi\nsd8JAABNQsDKHItUF4Xzf60bsMqn3ViY5b/yFwtYwfuEptbZUGFMiSbJdTeFAStqW6l7vOtn\nv/JFcjVaW8BKuoL1E/cKlintIqed20EuPmQ2dXbHbeghWe7GR6XT4Wb4ngAAaBABK3PMVS0J\n5+9ODlhVkxLSUSxgvR+W7qn6qTEPJoco/drEA1bUNvPWaG8+a2xZbUI1IgLW3nW+sm99M/MC\nVpHIP2I1PUfEfclyQ073zheMOWiqL5UrncUL3WtZxrwh8nrzfFUAANSPgJU55iQErMnJAetv\nqr0e3fp5tTFHEgLWB2HpfNV9xsxXva88QY2JB6yobY73Fo/0LouNPhirRat7i3C0SOzuZ20X\nObkmocL3yOnucPdnyVR36UOR0qZ9NQAANA4BK3MsTLhF+N9JAWuHas/gd3GqEgLWO0Fh9xbh\nIe824IN1j5lwizBlm69i7dQc1bHxFa0tYM0VGR1WcKfIhQn13XqaP9RoMNmb+L4hAAAtiICV\nOZ5Q/Z9w/rqkgLVcdVqwYUdCwAp/wPiAan6tMS9FvBYYBqyobTE7i1Q3x5ZaW8DaKPKbsIKP\nivSPV7f2crnMu551ptzjTj4UWW0AADgOCFiZY6PqTcHs/qykgPWgaviYUUlCwPp7fMeRzmS3\nau+v6xwzDFhR2+Kcgz4dW2htAav2B9J5X1DBwqRrVHOly7vezPn+WO9vegNjAQDQ8ghYmeNQ\njmZ97M+WJA80+lDs5uGBQtV8b84JWNf6A7GbWaoL3GlxfOSG8iHzvHuKS8PnulK21S66Y2r4\nyctVn4tVo7UFLDNWJLjDue1k+fbRWG0/6iqT/DkVr81KpGOl5XcBAMAxIWBlkL+qjvd+/Oa9\n/OykgFWmOszbsO+m4r6q3k873xb7jeZteZrlPe/+omqB/2bhnsGqW92ZleHYWqnbblUNxo86\nPEI1HOa9FQasvd2k4zJ35pNLxPv1wYDKJcFFu/uluzs+Q5H8tknfCwAAjUXAyiDbnFh188r1\nZTNzB96fFLCqClVv37DzrQW98raPUZ21Y5+3ZY6OL3t/y9KC2AClU1Tz5vz7nVfn9VKd6a15\nUzV38ZrHayO2bXY+7Y5n1pW/9vAg1SnumreXuJy0NcWd/iO1gpkZsMxDHUSuuuu+oWeKXB5/\nh3CJdHojmN3fVUbWmOc6yeMt8K0BAJCKgJVJ1uT4o1T13bJA9TV3TTBMw7rcYAisTe5476oL\njRml+vl9wahWY4PxM6tnBmORatY8P2nUDPMWq6O2leXHhsWa7B1gadJQWUWp9cvQgGXmnSq+\nqw/F1u07S+KvRj5yknzvxyJ9mvfrAgAgHQJWRtk1/boeBTcu2GeWqb7krghHct82dUBOzxEl\nB52gtGhg3tAyY25yRwt97a8DcwtvezY+Tui2ucN75/S++YEd4YpPJ/XLu3Z8beS2z5fefm1e\ndu8Rs972l1ttwDI7Rl3Utcs5vZ9OqGuhXJgwbPsLV3Y95eczqo/luwEAwB4BC/YyNmABAJBZ\nCFiw5wWsE10JAAAyH90l7BGwAACwQncJewQsAACs0F3CHgELAAArdJewR8ACAMAK3SXsEbAA\nALBCdwl7BCwAAKzQXcIeAQsAACt0l7BHwAIAwArdJewRsAAAsEJ3CXsELAAArNBdwh4BCwAA\nK3SXsEfAAgDACt0l7BGwAACwQncJewQsAACs0F3CHgELAAArdJewR8ACAMAK3SXsEbAAALBC\ndwl7BCwAAKzQXcIeAQsAACt0l7BHwAIAwArdJewRsAAAsEJ3CXsELAAArNBdwh4BCwAAK3SX\nsEfAAgDACt0l7BGwAACwQnfZsm5R/TB6y22qO9Lt9fLoXjl9y8Od6ytp6hSqv2wDVWqQF7Ce\nyhhNPAsAAFocAatlNSlgrVbXPwlYDYhX7N0RF3XrfLYurA6WX76m+8nnDN8TL7BYOm5o4kkD\nANB4BKxmNEuX1l11/4gRe6ML1xOFhqnetmbt3nDn+kNTcqF6yoa1S1+lBmVqwJrYUXwXf+wt\nP9ZRfj/gAjl3X1jg0+5ySxPPGQCAJiBgNaPi1ICVXvooVJuruYesSqYWqqdso2oXLUMD1t0i\nHa6eMnPk2SI/chvuyzPkb8YcvUwGhSUK5IdVx3ryAADYI2A1n8M5zROwqlQH2pVMLZS+bONq\nFy0zA9bWU6RLqTtTcZXIKGe6ULodcSbL5bRKv8QK6fDysZ47AACNQMBqPpu12QLWILuSqYXS\nl21c7aJlZsAaJu4FK9eBb8mpFcYMlj+4S3tEXvVWHzxbhh3rqQMA0BgErCY7vPLOgT1z+o4p\nOegtLlHfeGPGaFZt1bx+uSUJT5TXKZ0+Ci0MjpP0kPtOs27iwNzCMU8FT3GnfkLdgJW+dvGH\n3Mtn3FCQUzRqcfiokrNzjflg2sCc/OELDpoIGRmwjnaXb3wZVLBYZL4xVwT3BjvLQm96nXy/\nojHfLAAAx4qA1VTvDwyTUGG5u5wQYcapHh7rzD4YTzN1SzcyYO2aFaws9qNE6ifUCVj11C6s\n0lcTwiJ5K/yPHq9atTLbX3dt1IPwGRmw1op/wcq1SqSnMb+Sm7ylbjLdnbzQQVY27TsGAKCJ\nCFhNdLCv6sin1peX3qzaa7+zomL3fNX5u3d/ZsxfVJ/XvDHjlsfSTErp9AGrYvd2J97s3r27\nKiE7LdTrl772ytw81Tu9QqmfkByw6qtdsEPNGNUB/7t52/rZOarPeEe9U3WNDl76z7WLeqne\nFVG3jAxYM0RuDyu4X+Q8Yy4N7gh+U2a4lT5fio712wYAoHEIWE20RPXWo+5M7RQnuXirloZP\nOU1Q/fPIz7zZIM1ElLZ4BiuenXImePcG33Gy0DvRn5AcsOqrXbDDE6o3+PcB/6Wa/1lw1IIJ\n3m6bVLMTX2QMZGTAGikyL1bD06VjtblS+rrzR0+Sxd727x4w//nT737dZ0WD3yoAAM2DgNVE\ny8YXr/PntqgWezOxCDNRNTe4wxakmYjSjQpYBcEzRDNU50R/QnLAqq92/g61g1TfDD5wkuqy\n4Kh9g/fuhqtuitfo0Ee+97t0ybyA1U9keaym54nsNTfKpe782yLrjVl3kiw1q7p4w2TxqDsA\n4DghYB2zQ6r+LajEgDU52JgybHqsdKMC1n3Bpg2qw6M/Id1bhKm183fYpvrH2qDMWtVbg6M+\nEKyaqro2fpBlvwz9IvMCVo7IqlhNfyrygXlcOrnpc6qcecQc+Znkmi++I9m7Kud0kCejWxwA\ngGZGwDom1ZWHDn2uWuAtJAassCdPClhJpRsVsFYHm/ar5tZEfkJUwIqunb/Ds6pTwnJ7nDK1\n/lFfCVbNVl0Tr1FGB6xrROJVvUTkPXPkvySv0rzVXcYYM17O2G3myulfOBv7yBX1fJcAADQf\nAlaTlU+7sTDLf+UuNWCVBYViASuldKMCVvDmoal1DlER+Ql1A1b62vk7PKy6IPzAWqdQpX/U\n8IPmqD4fr1FGB6ykK1g/ca9gmdIuctq5HeTiQ2ZTZ3fchh6S5W58VDodbvBrBQCgGRCwmqhq\nksalBqy3gmJB/Iko3aiA9X64rafqp5GfkByw6qudv8M81ZLYJ/ZQ3ecf9e1gTXLAejbLpz/7\nv5kXsIpE/hGr6Tki7kuTG3K6d75gzEFTfalc6Sxe6F7LMuYNkdcb/mYBADh2BKwm+ptqr0e3\nfl5tzJGogBUGlSD+RJRuVMD6INyWnxKFIgNWfbWLDlj7TT0BK5SRbxGOFpkdVrC2i5xck1Dh\ne+R0tznOkqnu0ocipdFNDgBA8yJgNc0O1Z5BPqpqOGBFlW5UwHon2OTeIjwU9QnJAave2vk7\nPBIO3+CoUdUq01oD1lyR0WEFd4pcmFDfraf5Q40Gk72J7xsCANCCCFhNs1x1WjC7o+GAFVW6\nUQEr/KniA6r5tVGfkByw6q2dv8NzqpPCD9yt2qdOvVtRwNoo8puwgo+K9I9Xt/Zyucy7nnWm\n3ONOPhRZbQAAOA4IWE3zoGr44E9JwwErqnSjAtbfg00bVUdGfkJywKq3dv4O21UHhMM0vKh6\nR52jtqKAVfsD6Rz+mmJh0jWqudLlXW/mfH+s9ze9gbEAAGh5BKymeUh1kT93oFA135tbGj7W\nlBJ/oko3KmBde9TfNCt496+BgFVv7YKBRoeobggOMU51VZ2jtqKAZcaKjPXntp0s3z4aq+1H\nXSW4SKfitUGJdKyMbnIAAJoXAatpylSHeb9es++m4r6q3k8wrwwHBE2JP1GlGxWwgktY2/I0\n64PIT0gOWPXWLtjBWR7i/1TOc6pFVXWO2poC1t5u0tEbif6TS8T79cGAyiVf+3P3S3d3fJB5\nRZgAACAASURBVIYi+W267xMAgGZFwGqaqkLV2zfsfGtBr7ztY1Rn7dhnzJuquYvXPF6bGn+i\nStsHLGcyR8eXvb9laUHaCJccsOqtXbBD7TjVgU9s2fraPVmavbHuUVtTwDIPdRC56q77hp4p\ncnn8HcIl0umNYHZ/VxlZY57rJI839nsGAKBJCFhNtC43GGRqk3nanS40pmaYt6Y6Iv5ElLYP\nWKNUP78vGNNqrD9SZkPDNNRXu3Ds06rJ4UBZhcGTSa01YJl5p4rv6vgvVO87K7xx6HjkJPne\nj0X6WH+9AAAcEwJWU22bOiCn54iSg8ZULxqYN9QdWP3TSf3yrh0fcQUrqrR9wLpJ9Wvz2l8H\n5hbe9mzwXHpDAau+2sV/vWfztOvzc/uPWx4+mNRqA5bZMeqirl3O6f10Ql0L5cKEYdtfuLLr\nKT+fUV3vNwoAQLMhYMFexgYsAAAyCwEL9ghYAABYIWDBnhewTnQlAADIfHSXsEfAAgDACt3l\niVS5L8VnJ7pO9SFgAQBghe7yRFqiKYpOdJ3qQ8ACAMAK3eWJRMACAKBNoruEPQIWAABW6C5h\nj4AFAIAVukvYI2ABAGCF7hL2CFgAAFihu4Q9AhYAAFboLmGPgAUAgBW6S9gjYAEAYIXuEvYI\nWAAAWKG7hD0CFgAAVuguYY+ABQCAFbpL2CNgAQBghe4S9ghYAABYobuEPQIWAABW6C5hj4AF\nAIAVukvYI2ABAGCF7hL2CFgAAFihu4Q9AhYAAFboLmGPgAUAgBW6S9gjYAEAYIXuEvYIWAAA\nWKG7hD0CFgAAVlphd3mL6oeWRW9T3dGidTkGE1XfPtF1aCwCFgAAVlphd0nAOmGSAta7Iy7q\n1vlsXVgdLL98TfeTzxm+J156sXTccJwrCABAZjiRAWuWLm3KbvePGLHXsmgmBqzwrFsmYDWx\nTS0lBqyJHcV38cfe8mMd5fcDLpBz94WFP+0ut7RgXQAAyGAnMmAVt2gYcGViwCpu0YDVsm2a\nELDuFulw9ZSZI88W+dEhZ/nLM+Rvxhy9TAaFhQvkh1UtWBcAADLYCQxYh3PaY8CKnXWLBKwW\nbtN4wNp6inQpdWcqrhIZ5UwXSrcjzmS5nFbpl10hHV5uwaoAAJDJTmDA2qztMWDFzrpFAlYL\nt2k8YA0T94KV68C35NQKYwbLH9ylPSKveqsPni3DWrAmAABktGYLWDUvTRqcn10wYs5Wd2mc\n6rOxTZNVV6WUWKK+8V6R7XNvKsgdcOuyimAXJxnVmI3jB/YYPN19wmfz5Oty+95Z7m+LP+S+\nacbQ/J5DZ25LW6kgYN2oGj4ZdKfqu+60WLXa/PPOa3P7jVkZPKUdUapOndOpW/sxmlVbNa9f\nbklKMySctROwtpht9w/u0Wv4Q1+mPVR9DWHM4ZV3DuyZ03dMyUGT2qblM24oyCkatTj2UFTd\nk2n8CccC1tHu8o2w0sUi8425Irg32FkWetPr5PsVUYcAAKA9aK6AdaBYQ393FstUR4ebqnpo\nj8qUEolh4OvZ4ZbCtf4+41W/WhSs2mEe8+eyXvG2hQGrcmKwU9aidLVKH7BGqX4xM9j/z4e8\nTRGl6tQ5WmrtnVx1eKyz/GBKMyQHrPdX5viLf/w03aHqawjz/sBYcS9zJbbpVxPCbXkrIr+i\nppxwLGCtFf+ClWuVSE9jfiU3eUvdZLo7eaGDrEzbYgAAtHXNFbDGqI58amN52ex81aecpFCo\n+lGw6SXVqaklKnbPV52/e/dnzqa7Vfs/tnHrumnZmr3O28fp8J/R20vXrfijExde0z+tXLfa\n6fr7edeagoBV40SYQUteXj3NCSlL0tQqfcByavOI3rT8X2X/L1f1Tm9TdKnEOkdLrf1fVJ/X\nvDHjlqc0Q8JZOwFrmQ5e+s+1C3qpTkh3qPoa4mBft3rry0tvVu213yS1aY1T9QH/u3nb+tlO\n8zwT9RU15YRjAWuGyO3hyv0i5xlzaXBH8Jsywy14vhSlay8AANq+ZgpY21WLj3pzu3pp/1pj\nHlBdGGyboPp6RAmzNHxe6EXVEf7tpPXZOqAq2KfAuy61J0+z+k11i1cNVH3TXRUErJWqo7yy\n5Tmak2bchvQBy9mSM8WLKZucBLLJRJZKrXOE6Nr/eaSbHFObIX7WTsDq9Vf3uXCzJUuzK5rQ\nEEtUb/WqVzvFyVXefrGjP6F6g3/f8F+q+Z9FnkzjTzgWsEaKzIutPV06Vpsrpa87f/QkWext\n/+4B858//e7XfVZEtxoAAG1aMwWsMtWHgtnSR0qd2LBTtX+Nt1yZpwNrI0rEw8AwzdoVbJqm\n+rw7ddLHUH/38U4+8G/hPai63J0GAWtw7AH2+1VLoqtVb8DqFTwjNF11tokslVrnCNG1z/Uj\nX0ozJAWsfsELdzervteEhlg2vti/zGW2OMHImwmPXjsoCGGOSarLIk/G/oQ3T/fd+3/+jx+w\n+oksj209T2SvuVEudeffFllvzLqTZKlZ1cUbJotH3QEA7VAzBax1sbtcoT+rrvdmnvc77dQS\nYRj4SDU2IGW56iR3OjF222+e6t3+3LOq3rUcP2BtVx0e7LTz+X9/ZCLVG7DuC1atV/VCQGqp\n1DqnSlP7yWmaISlgzQ8K3au6rgkNEXdI1b8jFx59m+ofwwtQa1VvjTwZ+xNe9svQL/yAlSOy\nKrb1pyIfmMelk5spp8qZR8yRn0mu+eI7kr2rck4HeTLqiAAAtGnNFLAqeqjeuz1xzbNBQnCv\nvHwcWSIMA6XBFSTXV6pD3OlEP3I4Ho4NPFCm+oA79QNWaTwhpVdvwFodrPpMNbcmslRqnVOl\nqX2YKuo2Q1LAejUoNFt1TRMawlddeejQ56oFJvHozsdOCQvscTbWRp2M/QmnBKxrRNbEtl4i\n8p458l+SV2ne6i5jnHOVM3abuXL6F87GPnJFuqYDAKDNaq6H3EuzVPX62a98Ea6oytccd6Ei\nJ7gsk1IiDAMlmiTXXRcfJGqJP8aD8a7EeM/9+AHr4ZTLOBHqDVjhYAe1TsW+iC6VUudUaWpf\nlq4ZEgPW5qDQHP9+YGMbwpjyaTcWZvmlkwOW0zoLwhrWOlsro07G/oTrv4L1E/cKlintIqed\n20EuPmQ2dXbHbeghWe7GR6XT4fStBwBA29Rs42C9NdofQWBsWXBrarqq+4DzatXnokuEYeDB\n5FyhXxsvV/jjMrm5IhhKKjlgPaD6WIOVqjdgvR+WylfdG10q9axSpKn9W+H2us2wNGKg0SBg\nNbYhqiYlFE4OWPMSH0vrEZxY3ZOxP+GUZ7CKRP4R23qOiPsO44ac7p0vGHPQVF8qVzqLF7rX\nsox5Q+T1NE0HAECb1Ywjub+3eKR3NWW0//baFlV3ZKRx2vOr6BJhGJivel95Avd2XcMBy0kj\nDzdYpXoD1gdhqZ7+5qi8kXJWKdLUPjZIe91mqCdgNbYh/qba69Gtn1cbc6ShgLU/6mQaf8Kx\ntwhHi8TuZtZ2kZNrEgrdI6e7jX6WuINzmA9FSqNbDgCAtqt5fyqnYu3UHNWx/sKNbrr5LFv/\nJ02JhFuED9Y9UMMB61HVWQ3WJzVgjY8HrHeCVe4twi+jS0WcVV1pah//FZw6zVBPwGpkQ+xQ\n7Rm8R1lVN2A9En+C3tQ4aSn+q8sJJ9P4E44FrLkisRFUd4pcmFBm62n+UKPBZG/i+4YAALQT\nzf5bhDuLwmeLnlBdbJYn3C2rUyIMAy9FvLrWcMB6UfWuBisTBKzh/j1AV3E8YIU/RfyZE1RM\ndKmIs6orTe3jAatOM9QTsBrZEM4xpwWldtQNWM+Fz9Y7dqv2iTyZxp9wLGBtFPlNuPJRkf7x\nIrWXy2Xe9awz5R538qHIagMAQDvT/D/2XKL6tDdTkatDzM06KOXppaBEGAacAND76zpFGg5Y\nu1SLgiPvmj49zVAAQcAaGRsyqyonHrDCq0Ubg0GkIkpFnFVdaWofD1h1mqGegNXIhnhQNXwO\nqqRuwNquOiBsdyeK3hF5Mo0/4VjAqv2BdA6vfhUmXaOaK138I53vj/X+pjcwFgAA7UvzBKza\nRXdMDeeXx55qn6LqdO6PpCuxNHxOqDg+ZEL5kHlen99wwDLXq/7L3/CQe40oUhCw/hK7XPWE\nxgPWQH/McjMruJ2WUir6rOqKrn08YCU1Q8JZpwasRjbEQ7H3KA8UquYnHb12iOqG4FDjvNcP\nI06m8SccC1hmrEhwC3HbyfLto7ESH3WV4NKZilelEulYmdpoAAC0bc10BetWfyQnx+ERqsFw\n5K+r9tGsT9KVWBmOZOXEjwL/lb49g1W3ujMWAWu1E5G8O1zv99CcT6KrFQQsJ4rc6t222pJf\nEA9YWf7PGb+fq1ne8+6ppSLPqq7o2icErKRmiJ91RMBqXEOUqQ7zfuxn303Fff3HyOJHd2aG\n+E+pP6daVBV5Mo0/4XjA2ttNOrrjw5tPLhHv1wcDKpcEF+Hul+7u+AxF8tvodgMAoA1rpoC1\nOVv1jmfWlb/28KD4EJfu77XobWlLvKmau3jN47XeNZ68Of9+59V5vVRneqUtAlbtWNXef1+z\n8v6Gf+x5Z5YTJUo3lk3P+dOceMCarePL3n+7JF+D589TS0WeVYrI2icErKRmiJ91RMBqXENU\nFarevmHnWwt65W0fozprx76Eo9eOc/LnE1u2vnZPlmZvjP4CGn/C8YBlHuogctVd9w09U+Ty\n+DuES6TTG8Hs/q4yssY810keT9dwAAC0Wc31DFZZfmxEpsmxgSUf1dgVkYgSNcO8hWpjqmcG\no2Vq1jy/s7YIWKZqQrhT2hFHg4BlHgtKDt+/MPhlZ2fLrqnB2rFBhVNLRZ5VXZG1TwhYyc0Q\nO+uogNW4hliXGwyBtck87U4XJrZp1eSw5oXr031FjT7hhIBl5p0qvqsPxbbvO0vi7x4+cpJ8\n78cifQwAAO1Osz3k/vnS26/Ny+49YlZCtNiXpflV6Ut8Oqlf3rXjvWext80d3jun980PBA9d\nWwUsYzbeOzi/x5CZsQGtUoQBy2z4a1FOz+Inq9xMsT7Yssu8OmFgbt9bV8eewk8pFXlWqSJq\nn1g+uRnCs44KWI1rCLNt6oCcniNKDjrJbNHAvKFlJqlNN0+7Pj+3/7jlsUegUk+msSecGLDM\njlEXde1yTu/ER+EL5cKEWPbClV1P+fmM6nStBgBA29X8bxEm2KU6o+FSJ0Qseh0HGdwMjZQU\nsAAAQDot2l3OVN3Wksc/BsczYGVwMzQSAQsAACst2V3uytHbW/Dwx+Q4BqxMboZGImABAGCl\nBbvLz4eljF6ZOY5fwMroZmgkAhYAAFZaqrt8c31JoeqcFjp6qsp9KT6rr3xTAlZjP8Mc/2Zo\nYQQsAACstFR3WeS+6T+x7g+/tJwlmqKovvJNCViN/Qxz/JuhhRGwAACw0lLd5TDtOXJ1yq8Q\ntpwMDVjHuxlaGAELAAArdJewR8ACAMAK3SXsEbAAALBCdwl7BCwAAKzQXcIeAQsAACt0l7BH\nwAIAwArdJewRsAAAsEJ3CXsELAAArNBdwh4BCwAAK3SXsEfAAgDACt0l7BGwAACwQncJewQs\nAACs0F3CHgELAAArdJewR8ACAMAK3SXsEbAAALBCdwl7BCwAAKzQXcIeAQsAACt0l7BHwAIA\nwArdJewRsAAAsEJ3CXsELAAArNBdwh4BCwAAK3SXsEfAAgDACt3lMbpF9UNncpvqjqbsfq/q\nv23Lvjy6V07f8qZ8SpKgxk1BwAIAwArd5TE6fgFrtbr+2ZRPSdJcAevdERd163y2LqwOll++\npvvJ5wzfEy+9WDpuaHo1AQBoxQhYTTRLl3rT+0eM2GuOS8AapnrbmrV7m/Ipnjo1borEgDWx\no/gu/thbfqyj/H7ABXLuvrDwp93lliZXFgCAVo2A1UTFQVwJtHzAqs3V3ENN+YhQnRo3RULA\nulukw9VTZo48W+RHbrW+PEP+ZszRy2RQWLhAflh1rB8IAEDrRMBqmsM5xztgVakObMonhOrW\nuCniAWvrKdKl1J2puEpklDNdKN2OOJPlclqlX3aFdHj5WD8PAIBWioDVNJv1BASsQQ2XSq9u\njZsiHrCGiXvBynXgW3JqhTGD5Q/u0h6RV73VB8+WYcf6cQAAtFbtNmBtn3tTQe6AW5dVBMtj\nNKu2al6/3JLIrY5NM4bm9xw6c5s7v0R94yMeco/YNdXeOUN79B6+aH8QsMapPhvbNll1lTOp\neWnS4PzsghFztrorFwafqP80N6qGzzndqfqu8T+9xnwwbWBO/vAFBy1r7CifcUNBTtGoxeHh\nog+TIBawjnaXb3wZrCwWmW/MFcG9wc6y0JteJ9+vtwUAAGjL2mnA+np2GFgK1/prnIxzeKyz\n/GDkVlM5MViTtcjUF7Aido2wPt8v03ezH7DKVEeH26p6aI9KYw4UhwfSv5uGAtZ41aqV2X6B\na/fa1dh8NSE8Zt4Kf5eowySJBay14l+wcq0S6WnMr+Qmb6mbTHcnL3SQlRbfAwAAbVM7DVh3\nq/Z/bOPWddOyNXudt+Yvqs9r3phxyyO31jjZa9CSl1dPy1FdYkzF7vmq83fv/iwlYKXuGmFP\nT9Wxa7duKinsf6cXsL4uVP0o2PiS6lTjXlHTkU9tLC+b7WSxp9xP3O6Ent27d1dFBSxnukYH\nL/3n2kW9VO+yq3GN8wkD/nfztvWznRLPmDSHSRYLWDNEbg9X7hc5z5hLgzuC35QZbsHzpajR\nXwoAAG1G+wxYL6qO8G9grc/WAd67bhNU/zzys3RbV6qO8mbKczTHvbazNHyiKTlgRewa4V7V\nibXuzCf91H8G6wHVhcFGpyKvG+PEqeKj3vKuXtrfLRx7BisiYDn7FEzwim9SzT5kVeMnVG/w\n7wP+SzX/szSHSRYLWCNF5sXWni4dq82V0tedP3qSLPa2f/eA+c+ffvfrPivStAEAAG1Z+wxY\nwzRrVzA7TfV5dzpRNXdv2q2DY49Y3a/qPqaVJmBF7JrqSE/N+sSfXR0ErJ2q/Wu8NZV5OrDW\nu2n4UFC89JFS9/28+gKWU/m+wct7w1U32dS4dpDqm8FhJqkuS3MY37NZPv3Z//UDVj+R5bGt\n54nsNTfKpe782yLrjVl3kiw1q7p4w2TxqDsAoB1qlwHrI9XYEJjlqpPcqRMuJqfdul11eLBm\n5/P/dm/mRQesqAOncrYUB7Nf5QZvEf5Zdb235nk/Wa1TnZC8VwMB64Fg1VTVtTY13qb6x9qg\nxFrVW6MPE1j2y9Av/ICVI7IqtvWnIh+Yx6WTm0+nyplHzJGfSa754juSvatyTgd5MroVAABo\nw9plwCpVnR3Of6U6xJ064eLJtFudVfclHyI6YEUdONXTCUcbHgSsZ8M4Nl7VHRm9oofqvdsT\n92ogYL0SrJqtusamxs4HTgk37VEtqI08TCAlYF0jEt98ich75sh/SV6leau7jHHOQc7YbebK\n6V84G/vIFdGtAABAG9YuA1aJJsl11znhoizt1odVFyUfIjpgRR041aKEo/01CFhV+Zrj5pGK\nnOAaWGmWc4DrZ7/yRViygYAV/gj0HP/OZIM1dgosCDfVOh9VGXmYQP1XsH7iXsEypV3ktHM7\nyMWHzKbO7rgNPSTL3fiodDoc3QwAALRd7TJgPZicg/Rr44WLt9JufUD1seRDRAesqAOnmus/\nFOW5OxxodLqq+zz4atXn/C1vjfYHWRhb5t/JayBgvR2sCpJRgzWel1AJ08M/ZOphAp+/43v9\ntNP8gFUk8o/Y1nNE9juTDTndO18w5qCpvlSudBYvdK9lGfOGyOuRrQAAQBvWLgPWfNX7yhO4\nj5fHw0XEVic4PZx8iOiAFXXgVHMSss3kMGBtUXUHkhqnPb8Kt723eKR7GUtHey/7NS5gNVjj\nugFrf+Rh6oi9RThaJHYvtLaLnJx4ovfI6e7j9WeJO9qE+VCkNLIVAABow9plwCrxxxNNEg8X\nEVsfVZ2VvCbtLcKUA6damHD77r9jP5Vzo3uEz7L1fxKLVqydmqM61p2NCljj0wasBmv8iOr8\ncFONk+KqIg9TRyxgzRWJjYy6U+TChDJbT/OHGg0mexPfNwQAoJ1olwHrpZRX9BLDRcTWF1PG\n3YwOWFEHTvWExlPUdbGA5axdbJbHblTG7CxS3WwSAtZw1XCU9eK0AavBGj+X8JLjbtU+0Yep\nIxawNor8Jlz5qEj/eJHay+Uy73rWmXKPO/lQZHX6pgAAoG1qlwHLCRS96z4eFQ8XEVt3qRYF\nYxrsmj7dfdswOmBFHTjVRv9uoGt/VixgVeTqEHOzDqqtW7xE9WmTELBGxka4qspJG7AarPF2\n1QHhRzlp7I7ow9QRC1i1P5DO4WW0wqRrVHOli1clc74/1vub3sBYAAC0L+0yYLlXfsLLKuVD\n5nlxJSFcRGy9XvVf/pqH3AtNXlzxH2FKHmg0YtdUh3I062N/tkRjActMUXWSziPefO2iO6aG\nxZf7z73HAtZfVF/2tzyhaQNWgzWuHaK6IdhnnP/z0o0IWGasyFh/3baT5dtHYyU+6irBhTGV\nfO8MpWNldDMAANB2tc+A5QSZgve9uT2DVbe6MwnhImLratWB3n2593tojjsK+8pwnKmUn8qp\nu2uEv6qOr3Zn3svPjges11X7xIZ4vzU2DtXhEaru6PCxgOUEplu9m3Bb8gvSB6wGa+wsD/F/\nKuc51aKqNIdJFg9Ye7tJR2/0908uEe/XBwMqlwSX8O6X7u74DEXy2zStAABA29U+A5Z7tShv\nzr/feXVeL9WZ3pqEcBGxtXasau+/r1l5v//Tyca8qZq7eM3jtXV/7Dl11wjbnFh188r1ZTNz\nB94fD1juj9fobcHCZqfIHc+sK3/t4UHBiKCxgLUzy0lYpRvLpuf8aU76gNVgjWvHORHsiS1b\nX7snS7M31m2DhgKWeaiDyFV33Tf0TJHL4+8QLpFObwSz+7vKyBrzXCd5PF0zAADQZrXTgFU9\nMysYqiprnh8PEgNW6lZTNSFc478AWDPMW6quG7Aido2wJscv03fLAtXXwrWPasLw6WX5sdG0\nJnsjdcYClnksWD98/8LgFwOjklFDNTZVk8MPKAyekmpMwDLzThXf1fFfhd53Vnjj0PHISfK9\nH4v0SdsKAAC0We00YBmzbe7w3jm9b34gfE4qMWClbnVsvHdwfo8hMz8IFj+d1C/v2vEpV7Ai\nd021a/p1PQpuXLDPLFN9KVy5L0vzq2JFPl96+7V52b1HzAqqFQ9YZsNfi3J6Fj9Z5Uat9XUq\nn5CM6q+xY/O06/Nz+49bHj4k1aiAZXaMuqhrl3N6P52wvVAuTBi2/YUru57y8xnV9bUDAABt\nU7sNWBlol+qMhkudSEkBCwAApEN3mTlmqm470XWoHwELAAArdJcZY1eO3n6i69AAAhYAAFbo\nLjPF58OCVwIzGAELAAArdJctqnJfis+iyr25vqRQdc7xrl5jEbAAALBCd9milmiKoqhyRe6W\niQ3/ys4JRsACAMAK3WWLsg1Yw7TnyNUpv0KYcQhYAABYobuEPQIWAABW6C5hj4AFAIAVukvY\nI2ABAGCF7hL2CFgAAFihu4Q9AhYAAFboLmGPgAUAgBW6S9gjYAEAYIXuEvYIWAAAWKG7hD0C\nFgAAVuguYY+ABQCAFbpL2CNgAQBghe4S9ghYAABYobuEPQIWAABW6C5hj4AFAIAVukvYI2AB\nAGCF7hL2CFgAAFihu4Q9AhYAAFboLmGPgAUAgBW6S9gjYAEAYIXuEvYIWAAAWKG7bDYTVd8+\nTh91r+q/3ektqh8ep4/0ELAAALBCd9ls2lvAenfERd06n60Lq4Pll6/pfvI5w/fESy+WjhuO\nZ+0AAMgYBKxm0ywBa5YutSgVBqz7R4zYe8wf2QiJAWtiR/Fd/LG3/FhH+f2AC+TcfWHhT7vL\nLcezcgAAZA4CVrNploBV3KiAdbwlBKy7RTpcPWXmyLNFfnTIWf7yDPmbMUcvk0Fh4QL5YdWJ\nqCQAACceAavZNEfAOpzTSgLW1lOkS6k7U3GVyChnulC6HXEmy+W0Sr/sCunw8omoIwAAGYCA\n1WyaI2Bt1lYSsIaJe8HKdeBbcmqFMYPlD+7SHpFXvdUHz5ZhJ6KKAABkglYasDbNGJrfc+jM\nbbEV5TNuKMgpGrU4fAJojGbVVs3rl1sSufU21RrzwbSBOfnDFxwMD3F45Z0De+b0HVNysO4x\nxqk+G/ukyaqrIuvkBKwtZtv9g3v0Gv7Ql7G12+feVJA74NZlFbE16T9nifrGpznrvXOG9ug9\nfNH+lIfca16aNDg/u2DEnK2N+Vy73RLFAtbR7vKN8ByLReYbc0Vwb7CzLPSm18n3o48BAEA7\n0CoDVuXEIIlkLfJXfDUhWKF5K/w1TiY6PNZZfjBy63jVqpXZ/rprg8fE3x8Yliosr3OMMtXR\n4WdX9dAelZG1cir1/soc/xB//NRf9/Xs2EHXmgY/p4GAtT7f39x3c52AdaA4PKT+vRGfa7Vb\ncsOHAWut+BesXKtEehrzK7nJW+om093JCx1kZfRZAADQDrTGgFXz/7N3J3BSVOf+/59hVURR\niMvPPWqM241boknMZrxe/0l8ZoZ9ExQRF0AQl0DESBAFFHcRERcEFFGCaEREcUVcCK6g4gKy\nuIGALILDwDD1r72ruqt7iuluZunP+/W69KlzTp2qPvad+qaqutpMIz0nvzrrDjPNTLYrBqqe\n++8Pl8wfY9Y8Y/f5l+oL2mbgNdMjW4eqvqi9pr45d0IH1RvsqvVdVQc8PX/B7MtUO6wJj7Gt\ni+pX7sZfUR0VvVtmwJpmDzreHHSYU3eTavfH3lk8744SLZlX5XY2fvOg6oPffPN95Pgr26le\nPXfxwildug8NB6yB1pDvLJgzxkxgT8ffbpzVwvyAdZfIYK9yjchhhnGKe0Vwd7nL6ni4dIue\nJQAACkFdDFgzVa+0v5+2oFRLrfNPT6pe4lz3eku1vR1PhqleMcAJKtGtHYdttUoLq+g50gAA\nIABJREFUVUusL8EZk1UH2TWVI82QY4THuE/1IXfjZuW70btlBqwO11k3ehuLirXEvj72smo/\n50LZ/BI9t6zK7RhTM9yDdYvq9ZVW4dtzNBSwlqr2t4c0VnTQ7pVxtxtrtTA/YA0QGefXNpeG\nFcaZ0tUqb20gk+z2fdcan13+x1M7P5Xu7QAAUI/VxYDVS3WZU7pddYoZGXqqvu+2DVedZr2a\naae1c+0vTWtX9zpfX9WF1uu0If3dczaLzOBhhMdYrtp9u13a3EZ7VEbvltn9HHfQy1Q/tV57\na/EKt/UO1Req3E6mgFXeTou/dYqzwgFrjupEt9PsR2aXx91urNUc6z52vNusmROwzhGZ7rce\nJrLK6COnWOWPROYbxrwGMtV4tqn9mCxudQcAFKA6GLCWqvZ1i8tf+O9XhrFE9Xwv9MxVHWS9\nmqFlhFOTpvU+t2qUatLtRptUnctbiTGMK1Tn24UXEqkk2fXeGSn7ZJOVZr5S9R+1uUB1eNXb\nyRCwFnh5zDB+bB0KWPP8K5KueNvdgdWmnew5yQlYpSKJO/2PEfnCeFwaWSFxlLQsN8qPk9bG\nhn2kZMXmsUXynzRvCACA+qsOBqzZqreFKp5THemVV6p2tOKUGVr+k7H1NbdqjOqLiaEqNm/a\ntM7sZC8kxrAGcfLGENWv0+yX2f318KDmno7xWn9UvbDq7WQIWDMCb7tvKGBtbKt6y9JA13jb\n3YHVUgLW2SKJWTtR5FOj/EBps9n4oJUMNCdJ9vrGuFeabzAbO8sZad4QAAD1Vx0MWA+rTkiu\nGO+VK1XVuk5nhpY5GVvdb9IZY/1rYQvu6NOl2PkOnR983DGMsvZaasWFjaWa9udfzO4fhged\noiGtq95OhoA1IfC2rwvf5D7bGu7iMa9tcJtjbjfeapbMZ7COts5gGbObSrNDi+T4TcbCJtZz\nG9pKsdX4qDTakm7GAACor+pgwLpP9bFQxTj7TixXW1XraVdmaPkgY6v3TFAvYJUND2QLP/h8\n4K14p6p1u/Ys1efT7VfqoA+EE4tuq3I7GQLWvYH3cVPSc7A+uMoervjqOfbF0JjbjbOa46Vz\nHF2OPsoJWN1EnvBbDxGxvpb4dmmrJkcMXG9UnCJnmotHWeeyDOM9kTRfCgAAoP6qgwHLzAEP\nhyqSI5R1tE+kncytfsC6UbXDo4vXVRhGeSD4+I9mX6RqPefpGm33Y7r9Sh30QdXbFgRsr3I7\nGQLW2MD7GJEUsAzj00kD7LNTV62Pv904q4X53yK8SsS/mljZVBoHu94sza3vIOwt9uMsvhSZ\nnW7GAACor+pgwHpU9e5QxSOJu8uN7WZasJ4vkAgtmVu9LLRMtZ371cSyqIBl9LG+uvh9id6a\ndr9SB53iPOg0qIrtZAhYDwUuEf4zJWCZNs4dVap6dfztxlgtiR+w7hXxH726XOSoQJ/FzZxH\njbovq4LfNwQAoEDUwYD1svdsUM/zgW+8faPa2XpNhJbMrV4Wmq56h1uzLDJgPak6yerlXzRM\nkTroK8nf06tyOxkClrkDfri7ICpgmZZ3s+8Di7ndGKsl8QPWOyK/9yofFeme6FJ5upxmn89q\nKTdbL1+KzMo8KAAA9U8dDFgrVLu5z11Yceed/7Gf23Cu9yAGM31da70mQkvm1sDtUt5NRVMi\nA9bG1nqhcZn2TPMQrMhBzTzXaVu4UxXbyRCw3nEuUlrWFKcJWNaYM2JvN8ZqSfyAVXmwNPF+\n2LFL6BzVvdL0E7twuPOs9/ftB2MBAFBY6mDAMi5WfcspTbROKxmVF6q+7bZd4/4UcyK0ZG71\nstBE/wLc2i6q7Y2kXqaRqmY+eyT9bkXc2NVf1Tt9s+DCccuq3s7U4A1jYZtKtdh9QoT1db9E\nwKqccK3/4z3TnZvw42w31mpJ/IBlXC1ytVO3pLH8ZKvf46sW4p4vVLHf3RRpGP3TjQAA1GN1\nMWDNUu1hP/n887Zaaj3cfKbqhc6P4Tyv2s3+iZdAaMnc6mahOaq9K6zl1Zf276r6Q1Iv07uq\nnf1nqUeJCFhmIuv4uV2zspfq4qq3MzP5GV8B16kOsVf9tH1J6AzWIP9RXlv6qa6Iu904qyVJ\nBKxVe0pD+6H4354o9q8PulROdE+C3S6trOczdJM/pJ8yAADqqboYsCqvVu10/4szb/d+7Lny\nGjNyPblo8Rs3F2vJO3afQGjJ3OpmobIuqoPfXv7B+A5tlg5UvXvZ6uSAZf3kjv4jw25FBCzr\ntFebsf/9+PVxHVRHG1Vv533V1pNefDzyOuQSM1ZdNnP+nNGte9weClgfmg3XPjNvwRsP9/Qe\nqhpnu3FWS5IIWMbEIpH/u+G2i1qKnJ74DuFkafSeW1zTQgZsN55vJI9nmDMAAOqnuhiwjLJh\n7pOait3LXmUjvGc3dXFv+AmGo4ytXhaa19p9RNRC65np9o87hwOW9e3F4EPfU0QFrIrRxd6u\njnNiSObtbO9tN1ZEbuDFUmfVrovGq75h1bj3YM1p7z+7asSW+NuNs1pYIGAZ43YVx982+e2r\n9/YuHJoeaSD7/Vykc4YpAwCgnqqTAcsw3rmlV/u2F47+wq/48I6L27fufs10736fcDjK0Opn\noSWjzi1t12/KejNmTOjR5qI5KQFrdbG2L8uwT1GDmsPe27dTaafL7vPvaMq8ne+Gn9PmvCFp\n7qRfcecFbTv2Gb/amKb6ilXh3eS+burg89qUdOp3d2J/Y2w31mohwYBlLLvyFy2aHtJpRqC9\nixwVeGz7S2e22OWEu6LDIgAA9VodDVg1YYXqXVX3qtdCAQsAAKTD4TK20apLanofahgBCwCA\nWDhcxrWiVAfX9D7UNAIWAACxcLiMaV1v1U9qeidqGgELAIBYOFzG8f78KV1Ux3qLm1en+D6X\nm8v3+NVGwAIAIBYOl3F0s55ccL3/MzKTNUW3XG4u3+NXGwELAIBYOFzG0VvbDZiVeHYCAQsA\nAGTC4RLxEbAAAIiFwyXiI2ABABALh0vER8ACACAWDpeIj4AFAEAsHC4RHwELAIBYOFwiPgIW\nAACxcLhEfAQsAABi4XCJ+AhYAADEwuES8RGwAACIhcMl4iNgAQAQC4dLxEfAAgAgFg6XiI+A\nBQBALBwuER8BCwCAWDhcIj4CFgAAsXC4RHwELAAAYuFwifgIWAAAxMLhEvERsAAAiIXDJeIj\nYAEAEAuHS8RHwAIAIBYOl4iPgAUAQCwcLhEfAQsAgFjqyeHyetWPsh3j76pfxuz6D9VlVax7\ni+p/s92jtLzBd2CXc4KABQBALPXkcEnA2ilCAeuTfr/Ys8n++lCFu/zq2a0aH9J3ZaL3JGn4\n9s7cOwAAag0Clu/2fv1WxeyaErBS190pAWsHdjknggHr+obiOP5re/mxhvLnc4+QQ1d7nb9r\nJX/fmTsHAEDtQcCqjpSAlWqnBKydLRCwbhIp+tvI0QP2Fzlyk7n8w15yo2FsPU16ep07ys/K\namInAQCoeQSs6iBgLd5Fms62Chv/T+RK8/Uh2bPcfJkuzTY7fZ+SoldrYh8BAKgFCFjVQcDq\nLdYJK8vaPWTXjYbRS86yllaKvG5Xr99fetfELgIAUBvU2YC18K6L2re7aPQSZ8kMWIuMJbf3\natuh78QfnKqBWlxZNu6c1lPspQV3XdKxtNuVk7w7hMyItN344o4epe37jl/vVCXuGA+PHSER\nsMarXropsO6qsRe17dR3who/A0VsyLT03ks7tj530LSN9tI1qs/5TSNUn02z2ZTBvc1uf2V4\nr/YlHfuNXZxmC5YtM4f2aFfadeAUfzdirRbkB6ytrWQ3d56N/iIPGsYZ7rXBJvKQ/XqBHBQ9\nBgAABaCOBqzNZqKyFU+wl83Fz2eWOlXnf2dXmally9Xm4gNm+cdhbndt85QzwBDVspklTt15\nzo3iXlpJHjuCH7BmqPb6PrDu/PbOql0/9DJQxIaMbWO83eky11qeo3qVN3RZW227OXqrqYO7\nm13b3xtP74/egunzHn7VAqcm1mrhafcC1lxxTlhZnhVpZxi/kkvtpT3lTuvlpSKZmW72AACo\n9+pmwNpuJqeek1+ddYeZqSZbFWYmmqa9pr45d3wH1WF2n3+pvqBtBl4z3ew+UPXcf3+4ZP4Y\ns/8zdutQ1RftFSaYK9xgV7lpJWXsCF7AeqNYu68MrLuynerVcxcvnNKl+1A3A0VsyLhJtftj\n7yyed0eJlswzl7d1Uf3KHfoV1VHRG40Y3N2s+fYGPP3OgjljzAT2dOQWDGN9V6vT/AWzL1Pt\nsMauirNamB+w7hIZ7FWuETnMME5xrwjuLndZHQ+XbmnmDgCAAlA3A9ZM1Svtb6gtKNVS67SQ\nGbA6XGfdZG0sKtYS+9rUMNUrBnxvd39S9RLnuthbqu2/d1s7DttqlRaqllhfg/PSSsrYEdyA\ntaitdnbOZLnr3qJ6faW1/O056magiA29rNrPuXw2v0TPtbZ1n+pD7tBm/3ejNxoxuLPZpar9\n7S0YKzpo98rILRiTVQfZnSpHqj5oFWKtFuYHrAEi4/za5tKwwjhTulrlrQ1kkt2+71rjs8v/\neGrnp6LfDAAA9VrdDFi9/Hugble1brIyA9Y57oW1y1Q/NZyq1k4+quyp+r675nDVaW5rV3eF\nvqoLrVc3JKWMHcEJWF910faLnApn3fJ2WvytUzHLy0ARG+qtxSvcge5QfcF8Wa7afbtdsbmN\n9qiM3GbU4M5m56hOdDvNfmR2eeQWjGlD+rvnpBaZwcp6jbWa490bHEMPOdgJWOeITPdbDxNZ\nZfSRU6zyRyLzDWNeA5lqPNvUfkwWt7oDAApQnQxYS1X7usXlL/zXurh2vXtWxrBP9NhJwqwa\n4dQsUT3fCy1zVQe5rfe5VaNU7RuO/NNBSWNHsAPWugu09TtuhbPuAje6mH5snQhYSRv6StV/\nAKe5xnDr9QrV+XbFC4nUkyRqcGez87yrop6oLSRsUrUv3+3AatNO9pzkBKxSkcSd+MeIfGE8\nLo2sODtKWpYb5cdJa2PDPlKyYvPYIvlP9PsBAKAeq5MBa7bqbeEaM8a87hbHqL7oVrmH9udU\nR3odV6p2rHRaX0tawUkrqWNHsAJW2WVa7A3hrjsjsG7fRMBK2pC5hTFerx9VL3R30ckzQ1S/\njt5m1ODOZje2Vb1laaBr1BYcFZs3bVpnToFV3oHVUgLW2SIv+q0ninxqlB8obTYbH7SSgeab\nkL2+Me6V5hvMxs5yRvT7AQCgHquTAeth1aQv+Jkx5kO3ONa9uGVWzfG7j/c6VqrqZqd1QdIK\nTlpJHTuCGbCWDHEvNhqJdScE1r0uEbCSNjRFQ1pbTWXttdSKIxtLNd3Py0QN7l7VnF1sjnPx\nmNc2uM1RWzCMBXf06VLs1NgBK+ZqlsxnsI62zmAZs5tKs0OL5PhNxsIm1nMb2kqx1fioNNpS\n5XwCAFDP1MmAdZ/qY+GawINGAwHrA6dmXPBeqraqq6NXcNJK6tgRzIA10Iwg1/h3Sznr3hvY\n0E2JgJW0oQfCOUa3WW13qlq3g89SfT7NNqMG954O8cFVznMlrp5j71HUFsqGByqcgBVnNcen\nDznu229fJ2B1E3nCbz1ExPpa4tulrZocMXC9UXGKnGkuHmWdyzKM90TS3LQPAED9VScDlpkE\nHg7XRAcstyo5YK2JXsFJK6ljR/iHlT/aB6KYs+7YwIZGpA1YD6retiDAvrt9kar1HKlrtN2P\nabYZNXji2aifThpgn526an2aLdyo2uHRxesqDKPcD1gxVgvzv0V4lYh/NbGyqTQOdr1Zmlvf\nEthb7MdNfCkyO/NkAgBQ/9TJgPWo6t3hmowB65HEHfDGdjNNlEWv4KSV1LEjmAGr+PEv2mjp\nx26Fs+5Dgat4/0wbsKY4Dz9N0se6b/77Er013TajBk8ELNPGuaNKVa+O3sIy1XbulyPLAgGr\nqtWS+AHrXhH/0ajLRY4K9FnczHnUqPuyKvh9QwAACkSdDFgv+4/s9GQMWM8HvhH3jWrnNCs4\naSV17AhmwJptGP9RPd/9vRhn3Sc1kY8uSBuwXkn+9p7NXHeSMd2/rBnZIWXwUMAyLe9m34sW\nsQVz5Dvc4rJwwMq4WhI/YL0j8nuv8lGR7okulafLafb5rJZys/XypciszIMCAFD/1MmAtUK1\nm3v704o777S+K5gxYC1VPde7W8rMT9ca0Ss4aSV17Ajug0av85Obs+47znU+y5ritAHLzHid\ntiWPaGxsrRcal2nP6IdgGdGDJwcs6yTUjMgtPKD6RKJPUsBKv1oSP2BVHixNvJ917BI6R3Wv\nNP3ELhzuPOv9ffvBWAAAFJY6GbCMi1XfckoTrRM/VQSsygtV33Zbr3F/SjltwEodO4IbsDZ0\n9355x1l3U6kWuw9ZmKJpA5bRX9U7qbPgwnHuhTtjpKqZ/h5J+56jBrc3WznhWv/HdaY7N8mn\nbmGif4FxbRfV9tasxFktiR+wjKtFrnbqljSWn2z1e3zVQtzMqdLe3ldpmOanFQEAqL/qZsCa\npdrDfkr752211Hq8ecaAZf36zYXOT+U8r9qtzIhewQ1YKWNH8H6L8P1ibbs0sO51qkMqrOVP\n25ekD1hmjur4uV2zspfqYrf1XdXO/rPao0QM7mx2kPsgL8PY0k91ReQW5qj2tldefWn/rqrW\nlc04qyVJBKxVe0pD+ykV354o9q8PulROdE+C3S6trOczdJM/pH9LAADUU3UzYFVerdrp/hdn\n3h74secMAavyGjM0Pblo8Rs3F2uJ8/D19AErZewIXsCy7jy/ZEti3SVm8rls5vw5o1v3uD19\nwLJOVrUZ+9+PXx/XQXW0/556quo/MrzpiMGdzX5oNlz7zLwFbzzc03ukasoWyrqoDn57+Qfj\nO7RZOlD17mWrY62WJBGwjIlFIv93w20XtRQ5PfEdwsnS6D23uKaFDNhuPN9IHs/wngAAqJ/q\nZsAyyoa5z2oqdi58ZQ5YRtkI79lOXdwbgtIHrJSxI/gBq+IK5+Zxb90XS51Vuy4ar/pGmg0Z\nFaOLvU2MS4STR9U/pRQtdXB3s3Pa+8+uGrElzRbmtXYfgbXQeia8/ePScVYLCwQsY9yu4vjb\nJr999d7ehUPTIw1kv5+LdM70lgAAqJ/qaMAyjHdu6dW+7YWjv3CWqghYhvHhHRe3b939mune\n/UAZAlby2BH8gGV820H11cC6K+68oG3HPuNXG9NUX0mzIdOSe/t2Ku102X3B+5xWF2v7sozv\nOWVwb7Prpg4+r01Jp353J95xyhaWjDq3tF2/KevNGDWhR5uL5sRcLSQYsIxlV/6iRdNDOs0I\ntHeRowKPbX/pzBa7nHBXRca3BABAvVRnA1b9s0L1rqp71ahQwAIAAOlwuKw1Rqsuqel9qAIB\nCwCAWDhc1hYrSnVwTe9DVQhYAADEwuGylljXW/WTmt6JqhCwAACIhcNlZptXp/g+91t5f/6U\nLqpjd+5Gq4GABQBALBwuM5usKbrlfivdrHGv93+mZudstBoIWAAAxMLhMrOdk3V6a7sBsxK/\nQkjAAgCgbuNwifgIWAAAxMLhEvERsAAAiIXDJeIjYAEAEAuHS8RHwAIAIBYOl4iPgAUAQCwc\nLhEfAQsAgFg4XCI+AhYAALFwuER8BCwAAGLhcIn4CFgAAMTC4RLxEbAAAIiFwyXiswPWhQAA\nIOHTqEMmAQvx2QELAAAEvBJ1yCRgIb4fu3Q+4ICa/hzXY80POOCAvWp6J+qxfcz5bVLTO1F/\nNTGnd9+a3ol6bE9zfpvX9E7UY+b0HlBU/dUJWMhS2cmm3H2gkWQfc3oPqemdqMeOMed3t5re\nifprN3N6j6npnajHDjbnlwCbPyeZ89uw+qsTsJAlO2CNRL70NKe3XU3vRD12hjm/V9X0TtRf\nA83pPb2md6Iea2/Ob8+a3ol67Jfm/F5f/dVXRB0yCViIzw5YNb0T9dij5vQOq+mdqMc6m/P7\nQU3vRP31kTm97Wt6J+qxG8z5faSmd6IeO8Wc3005HpOAhfgIWPlFwMovAlZeEbDyi4CVXwQs\n1CwCVn4RsPKLgJVXBKz8ImDlFwELNYuAlV8ErPwiYOUVASu/CFj5RcBCzSJg5RcBK78IWHlF\nwMovAlZ+EbBQswhY+UXAyi8CVl4RsPKLgJVfBCzULAJWfhGw8ouAlVcErPwiYOUXAQs1q/wc\nU03vRD32nDm999f0TtRj/zDn9/Oa3on6a4k5vQNreifqsQfM+X22pneiHutuzu+POR6TgAUA\nAJBjBCwAAIAcI2ABAADkGAELAAAgxwhYAAAAOUbAAgAAyDECFgAAQI4RsAAAAHKMgFXovhrX\nr3Pr7kOfq4jXVu2qQpX7+X1PAwbkc9/rgOyn1zA+6qU6N+6gBSb388vHNyD76V08pk/H0i5X\nTVoZb9ACk/v53cGPLwGrwE0tdT8rl6yM01btqkKVh/mdyxHKl/30GtvGF2s4YPHx9eVhfvn4\nJmQ9veV3eTPZenqcQQtMHuZ3Bz++BKzC9qT5Kfnn1BkPnq/aY2PVbdWuKlT5mN9ZqkMne2bt\nvPdSC2U/vcYXfc0/nqGAxcfXl4/55ePry3p6K4eaVYPGTxvd3Xx9rupBC0w+5ncHP74ErIL2\nbVstnWcVtgxTvbPKtmpXFaq8zO801Rd3yt7XetlPr/F0a23z5G3BAMDH15eX+eXj68l+es2j\nfdu3rULZHapdyqsatMDkZX538ONLwCpoY1UnO6Wyc7Tk+6raql1VqPIyvxNV38r7ntcJ2U+v\nMUB7f2GEAgAfX19e5pePryf76b1EdaZTVXG+6ttVDVpg8jK/O/jxJWAVsoqu2voHt/yw6hNV\ntFW7qlDlZX6NMaoL873ndUL202sGgDHm/y4NBgA+vr68zC8fX0/207u+WNuUuVWjVZ+qYtAC\nk5f53dGPLwGrkC1SHeSVP1K9uoq2alcVqrzMrzFK9Yt87nWdkf30GoY9k8EAwMfXl5f55ePr\nycH0Vqxe4VU9oPrvKgYtMHmZ3x39+BKwCtkM1Qe9cnmxdqyirdpVhSov82v8S3VVPve6zsh+\nel3BAMDH15eX+eXj68nZ9NqGq75eda9Ckpf53dGPLwGrkJmpfIa/0E11Y+a2alcVqrzMr3GV\n+fLydd1LO/V78Nt87n2tl/30uoIBgI+vLy/zy8fXk7PptWxsqx02VzFogcnL/O7ox5eAVchu\nCf7hu1R1Rea2alcVqrzMr3XnZW/3OSylUyrzuf+1XPbT6woGAD6+vrzMLx9fT86m13Kze4c2\nH19fXuZ3Rz++BKxCdoPqf/2FK1Q/y9xW7apClZf5NaxnsnS6ZepTY3uYhUn53P9aLvvpdQUD\nAB9fX17ml4+vJ2fTa5qieuW2qgYtMHmZ3x39+BKwCtl1qu/6C4NUF2Vuq3ZVocrL/BptVe+x\nz1ZvG2f+//jn+dv92i776XUFAwAfX19e5pePrydn02sYk1Qv3lDloAUmL/O7ox9fAlYhC4X2\nyzNk/MtTM/6OVBWqvMyvsXnTZq9mmOpN+dn1uiD76XWlPYPFx9dfyNX88vH15Gx6t4xU7b26\n6kELTF7md0c/vgSsQnZr8A9fX9WvMrdVu6pQ5WV+gz5T7Vi4t7FkP72uYADg4+vLy/wG8fH1\nF7KY3u/6qw78If2KhSov8xsU5+NLwCpk41Wf9he6qG7K3FbtqkKVl/kNqmyjuiHnu11XZD+9\nrmAA4OPry8v8BvHx9ReqP70fnaN6+9Y4gxaYvMxvUJyPLwGrkM1Svd8rb1btWkVbtasKVV7m\nN6Sz6urkuoKR/fS6ggGAj68vL/MbwsfXVf3pfbO1Fk+PN2iBycv8hsT4+BKwCtli1Su98juq\nQ6toq3ZVocrL/AaVF6uW53y364rsp9cVDAB8fH15md8gPr5eudrT+2aptnsr84qFKi/zGxTn\n40vAKmSV5yd+A3OM6nNVtFW7qlDlZX7fGj3kJW8Q8w9Bnzzufy2X/fS6ggGAj68vL/PLx9eT\ni+n9pK22/zjuoAUmL/O7ox9fAlZBm6j6gFNa007bba6qrdpVhSof8/u86iXu/26qHKQ6Mb/v\noFbLfnodoTMsfHx9+ZhfPr6+7Kd3c09t/UH8QQtMPuZ3Rz++BKyCtr6TFr9qFTZepfqoU/fA\n2LGr0rRVu6pQ5WN+t5yjOtz+Ukv5naod1u+8d1PrZD+9jlDA4uPry8f88vH1ZT+9Y1SfiDFo\ngcrH/O7ox5eAVdheKlYd/Nh/7jE/Npc7T6o12qt+kq6t2lWFKh/zO69EtfOYJ5+6p7tq8Rs7\n+x3VKllP70eTLf1UR1qvT6RbsVDlY375+Pqynd5VpVo8cbLvP+lWLFT5mN8d/PgSsArc823d\nH1Ya7H0t1f8IRrRVv6pQ5WN+3+zi1ug583fW+6ilsp3eqRrULe2KhSof88vH15fl9M4Nza72\nSrtiocrH/O7Yx5eAVei+G9+/U5seI9/0KxIfwdS2LKoKVT7md9NT13Zv07bH0Ge25HPP64Qs\npzcyYPHxTcjH/PLx9WU3vdEBi49vQj7md4c+vgQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlG\nwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlGwAIA\nAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAKhx74nIiJ23uTfNzY2K2bdMXC/H6t7W7d2z2jsH\n1A8ELACocQQsoL4hYAFApD6S0GDPn/7t+k/zt61aHrCOLDEttJaW9ju6WbPjBq4MdVm9tzR4\nyy3faHVtRMACCFgAECkYsGxFf12Wr23t5IC1tE+fPi/E7GsFrMHewrPNnKn4ydvBLl1EBoTW\naUHAAghYABApJWCJ7PFKnra1kwPWjggGrBW7S1HPp57qLHLwxkSPZ0QO2xxah4AFELAAIJoV\nsG59zzHv2Vv+XGQut/gsP9uqIwHrYpF/Wq/niYz0O2w8SCTpdBgBCyBgAUDw27D8AAAgAElE\nQVQ0K2BNDyy/foBZ0To/26obAWtrC9nVPnP1qcgxfodLUtMUAQsgYAFAtOSAZSxoJFL0TV62\nVTcClrmXf3JKB4qsc9tfK5L/ty5pHQIWQMACgGgpAcvobNaMtwpvmIVXjbX9Dm2y9ydu28v9\nT9qncauj201yb04qMbvMD6z7sLl8rVP86qazD92j4R6Htxu3yWsNB6zksQxjvtn+kmGsHf6r\nFo1annTFF4GByyd3OK5lk/3OuGltcFdThwjyv0WYYVxPIGBNFLnQKZ0uMsdt/nnyLBkELMAg\nYAFAGqkB6x5x70Gy8tCMDUdb972/Z7d8/Gv/Rvj9ptg1j5nFQYF1i81l+zkPW//e2O/7kyfd\n1mDASh3LMD4yF542Hne/wyeNH/THnX2o13m3u/zKqCGC/ICVflxfIGDdKnKNU+roT80gkfYp\n6xCwAAIWAERLDViPmzX9rMInZuGxK8UPWM/vbhUPPOlnDa1X+/7vH5uL/Cyx6samIr+0CpXq\nfB/x4D3tJz9MdZoDAStiLMP43Cw+/mgDkSYtG1nVDV5zx51o92q4iz3oZUaGIYL8gJV23IRA\nwBoqcr1TOk9korPjjaTlqpR1CFgAAQsAoqUGrHvNmiFWYYlZGLO7HD1w1D+WW4tmWGrQb6lZ\n2nC3lZv+bfXpahYW+KtOMpdutwp3m4V9xlqX8z6/yPpa4vd2cyJgRY5lLLPaWxRd8L5hlL/w\nC3PhdGfYeY1Fmv5r8Xbj21ubW6EvwxBBfsBKN25AIGBdJzLMKXUXmWS9bjtJZELq1BGwAAIW\nAERLDVg9zJpHrMJys/BnuaLSrT9TpOhht/zxHiKHlJmFGV4as6lIQ/vx54eZ4efdwBacB6on\nAlbkWMYK6xKgV//dXmaf7+yimW8avezUvthA5OCK9EME+QEr3bgBgYB1u8g/nFI7kaes1xEi\n/59hrB9y4u67HHHJUn8dAhZAwAKAaCkB65tmZjiyA8iX1uW0P3r56h1z4Ty/12hxLp9tbSly\nnFe5oanIWVbBOvf1J6/WGsauTQSs6LGcDV7kVfc2F563Ci+bhUu92vPNhWfSDxHkB6w04wYF\nAtajIuc6pV+LzDNfPttFmi83Fh/s3MHV7CVvHQIWQMACgGjJAWvVKWZFF7to55LnvIZ+5sLH\nfrcfzRhWahUuFPe2dsP+/p0bc7Yse2uh3/cgkSPtgh+w0oxlbbDI/47feHPpPqtwsVn4yKud\ndeAJ/zs5/RBBoYAVMW5QIGB97N5HZlTsIY3KDKPyDyJ3GRUniJx678OdRFqudtchYAEELACI\nFgxY29a8Nvgn5vKeThixcknzbV5HM2AcFljvLDNpWK/W6aXhbp2KNPshdRMniextF/yAlWYs\na4P+6TBjtrl0q1X4mci+KYOmGSIoFLAixg0KBKzt/08afuO+td+ZL2NETqs0Jpj/WnPRX+Qq\ndx0CFkDAAoBoEb9F2PxFp8nKJb/3+v3YQOTMwHpXmI3fmq/b9xc52amyrhB2jtjEqSKt7IIX\nsNKNZW2wq1/7utt7SwMn6ISkGyIoFLBSxw0J/lTOIJHzzZdtp4k8aK68hzT9xDDOEJltNa5q\nJPtvd/oRsAACFgBESw1Yv/aeKmrlkm5GYKHZIQl7mctvWg0DzMJSu8sE9/Yo25bHLzh13129\nMcMBK91YXwZvtrLzkdXbeshCh+TdTrs7AaGAlTpuSDBgfb+PyFlj7vylyAnbDONs+wxdxS6y\n61a71axe5PQjYAEELACIlhSwDj0v8YvGVi7p6y0sSD3T5dyf9V+zcIvdxYwie3tXFB/ZP9Qz\nHLDSjWVt8Ap/814QeleCt7NXtTsBoYCVOm5IMGAZb+3pDPjTL8w34sSsReaL03ieyKNOiYAF\nELAAIJoVsEYvcnzy9ZZgUyiXvBmRaKbZLUeI/NZ6Xd8kkceGOWnttOKupp8kB6x0Y0UHIesX\ne3ol73b63Qn3qVbAMr4dcNSuu50wdKNhrN5bGlnPm5gt8henbbDITU6JgAUQsAAgWupzsHyh\nXPKhBK4XhlwjUvS14VwhdK/SvVBklvssdzuk3IOVbqzoIPS++do9uWv63UmofsBK6OL+FNB0\nkXZOzXD3h4QIWIBBwAKANOIGLOthnSWR3axf+httvv5N5HC36kyz6ja/wy+TA1a6saKD0FLz\ntTi5a/rdSchBwHpG5Ej7AaaTvWdXGLf4YxGwAAIWAESLG7C2NhU5NrrfL0T+7FwhvNap2NRA\n5KeVfvv+yQEr3VjRQWhrY//+p4QMuxMaILuAtfEgKZpjlxJnsEZwBgtIIGABQKS4Acv4lUjj\nDZH9zMjRaJ3xkPhPHLV+JbqH3/ypJAesdGOlCULHijT50a/+ZNGiLzPuTmiA7ALWJSK9ndIL\n9q/lWLgHCwggYAFApNgB63IJ/RrNJ4l0Y13De8woEfmVWzHPrOjvN1+WGrDSjJUmCFm7+JRX\na10bvDjj7oQGyCpgzSmSgzY6xc9E/scpdRN53CkRsAACFgBEix2wrAcjHF3hLZUd2PjP/rf2\nfiNy7o+7itzhLn8avEHq3SbmUjO76AesNGOlCUJzzMIfvNpR5sK/M+9OcIBsAlbZz0VmuuXt\nu0kT59ekjxP53KkjYAEELACIFjtgGf9rLl7o3lm1tb34J3IM406R/WeKNFzpLlfsLrKH+1z1\nD/ff7bdm3zVW2Q9YacZKE4QqzQAn1zuVH5mpZr/yzLsTHCCbgDVI5Bx/QUVmWK9Livxb+QlY\nAAELAKLFD1hfNDeX//yamWnKHj/ZLP7Jb1nZUORM/yYlU3ez+bQlZuHrobvK6H94iSYRsKLH\nSheE5jc2i53e+rFy6Y17+FcG0+9OcIAsAta7jWSfNf7SEyK/tp6ieo7IDW4VAQsgYAFAtPgB\ny5htRRrZ7Yh9rKdcyTGrEi3W2SSRSf7y51bPhj/73c8aiJxXOcNqPPbUTwMBK3qstEHosQb2\nBpx/vbu70u9OYIDqB6xtJ4pMSSxWniby2/GTS0QO3exWEbAAAhYARNuBgGW8/zvxFPVYF2h4\nwKpqtilR8dwebr+G/zSjyi/s4sJgwIocK30QeukIr/Puo6vencAA1Q9YI5KevvX1Uc6m9v3I\nqyFgAQQsAIi2IwHLDDqXnbRfk2b7/++/vghVr2sq/oM4Hd8OPrlFwxYnXWk/uOHrjq0a79/h\nu1DAihorQxAqe6zDUXs22e/PN62NsTuBAaodsD7bRVp8HeqyefhJzXc9dlBiBwhYAAELAJBB\nup/KyYSABRCwAAAZELCAaiFgAQDSI2AB1ULAAgCkR8ACqoWABQBIj4AFVAsBCwCQHgELqBYC\nFgAgPStgHfE304JY3UdYXRsRsAACFgAgvTLvkaUvx+re1u1NwEKhI2ABANIjYAHVQsACAADI\nMQIWAABAjhGwAAAAcoyABQAAkGMELAAAgBwjYAEAAOQYAQsAACDHCFgAAAA5RsACAADIMQIW\nAABAjhGwAAAAcoyABQAAkGMELAAAgBwjYAEAAOQYAQsAACDHCFgAAAA5RsACAADIMQIWAABA\njhGwAAAAcoyABQAAkGMELAAAgBwjYAEAAOQYAQsAACDHCFgAAAA5RsACAADIMQIWAABAjhGw\nAAAAcoyABQAAkGMELAAAgBwjYAEAAOQYAQsAACDHCFgAAAA5RsACAADIMQIWAABAjhGwAAAA\ncoyABQAAkGMELAAAgBwjYAEAAOQYAQsAACDHCFgAAAA5RsACUPudK6bBTvlbqyxledhK/kYG\nUHAIWABqPwIWgDqGgAUgO2/asUSKvkjTPslpPzmbbRCwANQxBCwA2XEDlgxJ034mAQtA4SFg\nAciOF7AOrYxs/qpBjgPWyoaWLdkMl3DLkCHP+gs5HRlAYSNgAciOF7DkpcjmkZLjgJVLG4tE\n+ud+WAAgYAHIjh+wukc2H1ObA9bLQsACkBcELADZsQPWkeb/7fZDROt/zYZd96utAWsUAQtA\nfhCwAGTHDli9rX8eiGjta9b/pVVtDVidCFgA8oOABSA7dsAa+j/mP79PbdxqZas7m9bWgHUE\nAQtAfhCwAGTHDlj/uNr6d3FK4xN2dW29B2t9EQELQH4QsABkxw5YV8yz/r0mpbHUrD22LDpg\nbZg98bZht0yYuyly2HWzxo+8cdwrzn1dVQasyoWP33b9bRPf2BrVuOWdyffceMPoh+clP4Hh\nRYkRsL6cOem24WOnztmcvsu3M0bfMOr+WRsi177/tmE3jXnyk4oqNgOgfiFgAciOHbD6Vh5g\n/ntw8qOw1jQ2a6/eEBGwvr3u5Ibu9wsb/2nituRBn/trY6exackbRpUPGl1w4d7uWLu1eS1p\npB/u+0Mj73uOTU6f4iewLyVkdvTIi/sd5a/8p1uCGWuVVfdHqzTtd0VOjwZ/nBne9rxL9vE3\nsGfn56PnD0C9RMACkB07YF1oXGq9vJDUdqdV+fbalIC1bWizULw58uXQahu6B9qK+mwzzssU\nsNZdUBQc66/fBoea/P/CQeqY99yGOAFr9cWNQp32uzuRIH+wKk4y+5wV7HFueWLtlR3Cm5Df\npl5CBVBfEbAAZMcOWOcbc62XrkltvzTrfmZ8lxyw1v4uKXpIg5sDzVv+GG4s3d4zQ8BaclTS\nWHt/kBjq78kbkibuiaQYAeuLn6Ws3cO/0ldhLR5prD4m3KGbv/bSw1PWbvFmNecYQJ1DwAKQ\nHTtgnWdUHma+7Bq+Deljq+k6Y2VSwPrhRDtuFJ329zEP3HTeIU74uCPR3sWp+cXAu+4f0eUn\nZmnIJekD1sqfur2Lz+94vPOzPHv7Z4puc9pant3vn//s+3vnquMen9hNq44//nhrbPnJ8Za3\nUkdesp+93Oi3g+588OZLfu4M1cHfS2tbB24/w/x3t7N6Xtr9JPeK59Nuc8VJ9mLj3188ZOTA\nHr9rYi/tFzq7BqAeI2AByI4dsM41jKHW632hpoFWjFrqBJdAwOpkh41iNwZtn7q/tdjQP+/0\nqpNF3PuZykc1kyZnpQ9Yp9uLFy21F5afZy/93r2St2JXO1GNd2/x+vZ8u7XU35H+1mLiJvfw\nyNt/by+2XeIuP3OEvTzJ6209e+Ino0X2GeessUzt9jPd5rF2hrxyrbu49p92xOpdxWQCqC8I\nWACy4wWsZdadUL8Ntmy3bnz/k5EcsGbYQWRIot+39kW+P3qLp1pLuy3wm1/c1Tk3FBmwHrJz\nzMN+5+vt1inOwiD7DNTcxJb62q0fe4sZA9Yd9tKAwG7aJ7FarXEXrb1quqcc+7XXXvEHq73B\nKmfJXhgWmI3nrPu5mqw3ABQEAhaA7HgByzmX9Fmg5TmrYnxKwPqFtdgtOMQi62yQzHAWPrCD\nzS2B5hvTB6xK+7TSlYHO9l6c6pTtxk6Bxk0trJpbvcVMAaviQGvhtOD3IucVBfdsN7v3Xl8n\n2p1fZXTOvFVYVwx3CT2B4nKr9XEDQEEgYAHIjh+wJlqFqwMtXc3lZj8kB6xXrKUW34XGsH9p\np4tT/pdVbhmMJuWHpA1YM+2zXWsDnZ+3m1dYxY3H7d1A5JHghs6xGtt4S5kC1tP2wjuh3exo\nVf3CXXAC1r3BduuMnYy0i99YxSNCa3/a/doHX1ptACgIBCwA2fED1ubdxbrt22/Y2Mw9UxUO\nWBdaS73CYyy06vZwngN6UsoJLve7gFEB6wKr3D3Yt6K5NN7vOO+ZUxXfvBe67/52q/9vvKVM\nAct+xsIJ4d18yu7wobNgB6xWoadm/cWqci4qrrCKexoAChUBC0B2/IBl2PeQP+c3PGAtWk/G\nCgesg8K9ApX2M0Ir7JvBJ6ZuIjJgHWyVHwp1/jrqgeqeyVb/I72lTAHLvkI4Irx2mf30rnuc\nhd1Ssp1zIu4Cu7jN/lLhExl2BUC9RsACkJ1EwJpjlTr7DdbTrA6yTmiFApb9zAb5OmmQ1lbl\nWKv0id3+Qai1vEmagOWUP4q/s/+x+h/iLWUIWPaD2iX5sfC/tSovdMp2wBoTar4qMAGn2Cfl\nkh7tDqBgELAAZCcRsOybynfxvie31Lol3L4lKxSwXrAWmmxPGsT+vt+lVmm6nWySzkL9PE3A\nsiOd/BB/Z5+OG7Bm2eW1SavbP9lzulPeLfVM3LVWVUen/JA9gPx1RrkBoAARsABkJxCwhvnn\noQz3uVj2Qz1DAcsNHlGKrXb7+VF7JG3jjDQByx4s851OlR/c3PXXB+zRMLCdQ7y2DAFrvFVs\nljzYNVbtz52yHbDmhZqHBAJW5dnu1vYouf3d5DwJoN4jYAHITiBgrbCebv5rt/4IvxwKWDel\nD1h/stpvtkr7J22jXZqAZT+r6sAMO7flnsNSt3OI15ohYNl3wx+UPNwtVm0rp2wHrIWh5mDA\nMjb+JbHFvdrdx9cHgcJCwAKQnUDAcs40LbKL9m8TOveDhwLW0PQBy+7yL6t0eNI2uqYJWMOt\n4hFGWp8cHbWdQ7zmDAHL3s2fJ483xqp1z2tVFbCM7aP2CGy00f9NrTQAFAwCFoDsBAPWJKs8\n0C72MktNv7eLoYA1JH3AOspqtx/JcHTSNrqlCVhDojonvOMlnJZH/fbsjpbfxw1Y9m4ckzzg\nOKu2sVOuMmAZxpobQz9EfcLzBoBCQcACkJ1gwPrRSjT7V5ilsj3NUnunNhSw7KtsKdfeEv4Z\ndQarU5qAZT/j/afphtpwuN31oFH+jz/Hv8n9aqt4pJHkbqt2N6ccI2CZPrvtf5v4Cavo2nS7\nCqC+IWAByE4wYDkP/rSeTTDFKjzjVIYC1v3WQob70kda7QckVf4lTcCyL9ntm26oy+yeHYNf\nMowdsOzfNEy5u2uUVbu3U44XsEybnxlwnBexbk1uBFBPEbAAZCcUsOw7r6xf//urlXy2OZWh\ngDXVWmi4Le1wo6325G8R/jJNwHrEKjaqiB6p3HqyvJwW2tTjcQOWfTFwl+Qh7adJHOuUYwcs\ny9KR9qNUpenS6H0FUN8QsABkJxSwjJ+ZC823GGsama9XuHWhgPVfO2h8nHY4+1nrsjFc+ZM0\nAct5xPuK6JGch2S9FKq7LW7Acp6DtSppyC5W5VlOeYcClmFsucIe8fLoVgD1DQELQHbCAcu+\ntPac8aD1ssCtCwWsLfYtSY+lHe4dO4d8GKqzfzk5KmD9UORsLtI9Vtte4a/utYkbsJbb5ReT\nhjzBqnR+bHBHA5ZhXGS1pnwxEUD9RMACkJ1wwLIfhTXAKDH/PdGrC/8Wof1jzuelHW6TnZnC\nv0U4MV3AMn5qlf8R6jxrlMlKRvZjT/8n1LZh97gBy9jPKg8J79t667ycTHYWdjhg2b//3JBn\nNQCFgYAFIDvhgGWcaS4du8VKH7d7VeGANcBaarUlPMjCxMU4+8mg54da26YNWPbPKx8X6mz/\nXuBdhvsoq9+G2m6Q2AGru1U+KryX9uPdi75xFqoMWMuSf8LH/qnoHw0AhYCABSA7SQHLvu/c\nOuXU6DuvKhywPrRjzG2hMSqObHDq9e87ZTsztdwUaF3WNG3AetVeeCHQ+Wv7R3Gsse60CocF\nN/OJHYoS31G0A9alfnNo5FfshddDu/knq+r37kLGgPXFVWe0tFNewDbr5N7uBoCCQMACkJ2k\ngPVjC3PReoB6sV8VDljOKaZWy4Jj2GeWTnXKs+1kc0ugtaOkDViV9jXCX5QlOvf2Lww+ZXdc\nmmhaeazYlwh38S7T2SfTuoX30xvZOMZaOCV4Rc/5HepH3KWMAesbK0wdtCnU+rzVeoIBoCAQ\nsABkJylg2Y9wt0zza5IC1mz7LqtjAt/Qu8+uedJZ2GY/0GCX+X7rdSIN0wUs57kL0tG/4jje\nHuoBq7imKLxnHxwu4nT/yK251lpIPAg+PLJz41fgW38f27dlHe099iHzJUL7ZNffgtcDNx1v\nVQ0zABQEAhaA7CQHrDecfNWy3K9JCljOSSbZZ4obVT7vbC//n9ds3+kku9+/1V5aVCLS/OK0\nActJMnLy8/apps972Eu/3G432b+MKAOc80iLLm1oPaHLfuBDT3fd++wO46zi9tSRi+3Fzl85\nSxUP2as2nOM1Zw5Yr9krH/X4VrepcpZ9Rqz5l1VNJ4D6gYAFIDvJAcv4uZ0t+iQqkgPWphOd\nDLZ398G33XDxyc7CQf4tW9tPcWr2Ku3dr5M92C32JcRBgdESMejbI5ze+5/eufVRRc64nztN\ns91x2l3Zr8OxVunwdc5zGuS3V/V92vBuB5Nj2vz1F79PHXnlgfbyLmcNvfe+keccYC8U3em/\niypucr/YGbv5GZf884Z/9S/Zx1kcW705BlDnELAAZCclYA23o8R/ExXJActY+ztJdtTSRPOq\nI8Jt7Svt+9UvD4yWiEHG8kOThtrX33SfcMNBXxjGc96CfZf9r/y2UyNG/vzw5L1s8nBiL6sI\nWBXtU96jyIgdmVgAdRkBC0B2UgLWV9YN3kcHKlIClrH1ul1DwaPRgNCj25efHmy8eJvxkPV6\nSWC0QAwyNlxSFOx+1rd+y7ZLQg32XV8XBQPW/KaZApaxrkdoZDntzcBOVvmYhjv3SIpXR8+q\ncjIB1BcELADZSQlYxllmxcjAcmrAMoxV1x3rB48jhyxPHnTi7xo4bU3Otm56etYqdguMFoxB\nhvHfLru7Q+1WMic0zrO/dyNSo7/MdKsePr1lw90P+evL9sJrR7krlkSP/FG/I729/En7maGh\nq37Q6IZbftfIf5O7t3si/Q8wAqh3CFgAasiq5+4dOey2B2etiW6d8cCIEWNfSn5YZxrb3n74\nlmG3TpxTntKy5qkxN9x478sb0qy4/Y27hw2/59nofbCtmDF+1IhxT7xXrUew//D246NvvO7m\ncU98zhPcgcJCwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcI\nWAAAADlGwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAA\nADlGwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlG\nwAIAAMgxAhYAAECOEbAAAAByjIAFAACQYwQsAACAHCNgAQAA5BgBCwAAIMcIWAAAADlGwEJ8\nP+5lqumdAACg9iNgIb7NYqrpnQAAoPbjcIn4CFgAAMTC4RLxEbAAAIiFwyXiI2ABABALh0vE\nR8ACACAWDpeIj4AFAEAsHC4RHwELAIBYOFwiPgIWAACxcLhEfAQsAABi4XCJ+AhYAADEwuES\n8RGwAACIhcMl4iNgAQAQC4dLxEfAAgAgFg6XiI+ABQBALBwuER8BCwCAWDhcIj4CFgAAsXC4\nRHwELAAAYuFwifgIWAAAxMLhEvERsAAAiIXDJeKzA9bTAICdp6b/8qOaCFgF6O+qX1ZrRQIW\nAOxsOT4CYGchYBUgAhYA1Bkpf4pfPljk2cDyS+cfufuuh50zO+KvdnLTq2e3anxI35WJDpOk\n4dvVOh6gSgSseuZunVpl2+39+q2q1uAELADY2ZL+EJddXiTBgPX9X8XVZUtS15SmxxrKn889\nQg5d7fX4rpX8vVqHA1SNgFXP9M8QsDK1xULAAoCdLfx3+N1jRZoEAlbZL0Uad771tk6NRdqF\nu6Y0/bCX3GgYW0+Tnl6XjvKzsuyOC0iLgFW/bClNH6IytcVDwAKAnS30Z/jWxrLLXR0DAWuI\nyAEfWoX39hUJ/41PaXpI9iw3X6ZLs81Oj6ek6NXsDgtIj4BVv3yo6UNUprZ4CFgAsLOF/gwf\nL//zoREIWNv2EnnJKb4scmywa2pTLznLWlop8rpdvX5/6Z3dUQEZELDqtu2vDO/VvqRjv7GL\nraXJ6hhiLWyZObRHu9KuA6esN5La3Jvc/6G63fjijh6l7fuOXx85XjICFgDsbKE/wyf0LTOC\nAetNkV94baeJfBTomtp0hnttsIk8ZL9eIAdtrN6xBzEQsOq0tf3Vc78RDlif9/BauiwwjKiA\nNUS1bGaJU3veqqjxkhGwAGBnC/0Zft/6JxCwJopc5LVdJ3JboGtq06/kUntpT7nTenmpSGZm\ncQBCFQhYddpA1QFPv7Ngzpj2qub/E2785kHVB7/55nvDWN/Vapq/YPZlqh3WGKE2N2ANVX1R\ne019c+6EDqo3RI2XjIAFADtb6t/iQMAaLTLQq35U5IJAr9SmU9wrgrvLXdZf9MOlW5bHIGRC\nwKrLlqr232qXVnTQ7pXm61TvPqvJqoPspsqRZq6yq/w2N2ANU+04zO6zULVkU+R4YQQsANjZ\nUv/2BwLWhMBpqqkifwz0Sm06U7paC1sbyCTzZYDsu9b47PI/ntr5qR079CAeAlZdNkd1oluc\n/chs68shfoiaNqT/PKdlkZma7EJywLpetav7TZK+qgsjx3Ns+srxedOmBCwA2KlS//YHAtbr\nIid51cNEjg/0Sm3qI6dYCx+JzDeMeQ1kqvFsU/sxWdzqng8ErLpsnuqwcM3U1G8KblLtFm5L\nBKz73D6jVOdGjueYdrLnJAIWAOxUqX+TAwGrfA+RN53ij4eKHB7oldr0uDSy7rcdJS3LjfLj\npLWxYR8pWbF5bJH8J8YRBzuIgFWXbWyresvSYE1SwKrYvGnTOtWO4bZEwHrN7TdG9cXI8RwE\nLACoKal/k4PPwbpS5IjlVmHD2Q1FDgt2S2kqP1DabDY+aGXdmzVE9vrGuFeabzDbO8sZO3Dk\nQUwErDptdrGqXjzmtQ1eRSBgLbijT5di5xuBaQPWArfvWNUXIsdzELAAoKak/ukPBqwNPxXZ\no/+kR67cVwaELxFGNM1uKs0OLZLjNxkLm8iDhtFWiq2Oj0qj5F/ZQfYIWHXbB1fZCar46jnO\nLel+iCobrglpA5b3yBQvYKWM53iu2KHHHUvAAoCdKvUvfzBgGV8c7f7eYN/lIr8L9Utteru0\nVZMjBq43Kk6RM83Fo5zvGb4n8m5WhyJEIWDVdZ9OGmCfp7rKflaoH//qX4QAACAASURBVKJu\nVO3w6OJ1FYZRviMBK3m8ML5FCAA7W+rf4lDAMsrv/kPLXY4473XjDZHu4Y5pm26W5svMl71l\nlLX0pcjsHTjsIB4CVj2wce6oUtWrraIXopaptlvmtJbtWMAKjxdGwAKAnS31b3E4YPnGidyc\n5jCR1LS4mfOoUfdllcj0NCui+ghY9cPybqrWb3p6IWq66h1u07IdDliB8cIIWACws6X+xU8T\nsNqKzE1zjAg3VZ4up223Ci2d2PWlyKw0K6L6CFj1xBTVGUYiRD2g+kSiZccDljdeGAELAHa2\n1D/44YC12nttJgcmPSA6TdO90vQTu3C4DLZe3rcfjIUcI2DVYZUTrh3llaerPm/YIWqKtThR\ndYLTsLaLanu75LWlDVgR44URsABgZ0v94x8MWCXNG37hlPqIXBvqlq7pqxYy3Cmp2IeHKdJw\nc8ajDaqDgFWXDXIeX2Xa0k91hfk6U9X+rc85qr0rrMLqS/t3Vf3BCLSlP4OVOl4YAQsAdrbU\nv/3BgDVY5E8/WoVbRfaz/9Ybl/Xp81WaJpvKiduc0u3Syno+Qzf5w44dfBAHAasu+7BE9dpn\n5i144+GeqiOtmvdVW0968fHKsi6qg99e/sH4Dm2WDlS9e9nqRFv6gJU6XhgBCwB2tuBf4deG\nWI4V6Wq9Wj/ZvHZ/kQP+fs8NvxRp4v4v5KYi7xnRTZbJ0ug9t7imhQzYbjzfSB7P4ZEJLgJW\nnTanvf+sqxH2Y+K297YXKox5rd1HYC00ZlivDwXa0t+DlTJeGAELAHa24F/hERL0c6vq/QPd\npf28s1pewIpoMq3eWxJfEn+kgez3c5HOOTkiIYyAVbetmzr4vDYlnfrd7UWl74af0+a8IZWG\nsWTUuaXt+k1ZbxgVE3q0uWhOoC3DTe4p44UQsABgZwv+FY4IWMbGG3+zV6O9f3PT914nP2Cl\nNpm6yFGB//380pktdjnhropqH4SQHgEL8RGwAGBnq+m//KgmAhbiI2ABwM5W03/5UU0ELMRH\nwAKAna2m//KjmghYiM8OWDW9EwAA1H4cLhEfAQsAgFg4XCI+AhYAALFwuER8BCwAAGLhcIn4\nCFgAAMTC4RLxEbAAAIiFwyXiI2ABABALh0vER8ACACAWDpeIj4AFAEAsHC4RHwELAIBYOFwi\nPgIWAACxcLhEfAQsAABi4XCJ+AhYAADEwuES8RGwAACIhcMl4iNgAQAQC4dLxEfAAgAgFg6X\niI+ABQBALBwuER8BCwCAWDhcIj4CFgAAsXC4RHwELAAAYuFwifgIWAAAxMLhEvERsAAAiIXD\nJeIjYAEAEAuHS8RHwAIAIBYOl4iPgAUAQCwcLhEfAQsAgFg4XCI+AhYAALFwuER8BCwAAGLh\ncIn47ID1dO1R0/MBAEAaBCzER8ACACAWAhbiI2ABABALAQvx1d6ANe/Co/do/JPfDfnSXX71\n7FaND+m7MtFhkjR8e6fOFQCgoBGwEF9tDVibu4mr2f12xWMN5c/nHiGHrvZ6fNdK/l4DEwYA\nKFQELMRXSwPW9jPN3frTwJG9DhYpmmZW/LCX3GgYW0+Tnt6ed5SfldXMnAEAChIBC/HV0oA1\nWqTZbKtQ3lbk4O2G8ZDsWW4uTpdmm50eT0nRqzUzZQCAwkTAQny1NGAdITLRKa3bW+QNw+gl\nZ1lLK0Vet6vX7y+9a2K+AAAFi4BVQLbMHNqjXWnXgVPWezXbXxneq31Jx35jF6erCKmdAevr\nImm53d3DziIPGcYZ7rXBJtaC6QI5aGN+phQAgEgErMLxeQ91dVng1Kzt79Xo/dEVYbUzYBnl\nyz/29vAikbGG8Su51F7aU+60Xl4qkpn5m1YAAFIRsArG+q6qA56ev2D2Zaod1thVA62adxbM\nGdNe9enIirBaGrACzhR5wTBOca8I7i53WXt9uHTL26wCABCFgFUwJqsO2moVKkeqPmgVlqr2\nt2uMFR20e2VERZJaH7C+aiR7l1sxq6u1tLWBTDJfBsi+a43PLv/jqZ2fytPUAgCQhIBVMKYN\n6T/PKS0yc5T1OkfVvTncmP3I7PKICtdzxQ497tjaHbCKRW41X/rIKdbSRyLzDWNeA5lqPNvU\nfkwWt7oDAHYOAlYB2qRqXzObpzos1JBS4Zp2suekWh2wBor8ucJ8fVwarTJfRknLcqP8OGlt\nbNhHSlZsHlsk/8nDdAIAkIKAVWAqNm/atE61o1Xe2Fb1lqWBxpQKV90IWJWXiRy/wSqVHyht\nNhsftJKBhjFE9vrGuFeaWw2d5Yz8zCoAAGEErAKy4I4+XYqd7wjaAcuYbS1dPOa1DV6PlApH\nnQhYG84WOdH99cHZTaXZoUVy/CZjYRN50DDaSrFV/ag02pLPCQYAwEXAKhhlwzXBCVjGB1fZ\nS8VXz6lMU2Hb9JXj86ZNa23AWnKMyP/6T7t6u7RVkyMGrjcqTpEzzcWjrHNZhvGeyLv5nWQA\nAGwErIJxo2qHRxevqzCMcj9gGcankwbYJ7WuWp+uIqAWf4vwlVYil2xL2eObpfky82VvGWUt\nfSkyO5dTCgBAGgSsQrFMtd0yp1gWCFimjXNHlapenaHCU3sD1r8bS6N7Und4cTPnUaPuyyqR\n6VlPJAAAVSNgFYrpqne4xWXhgGVa3k31w4wVtlobsJ5oKHs8l/qeK0+X0+wf0WkpN1svX4rM\nymoSAQCIh4BVKB5QfcItTkkJWFbVjMwVltoasN7cRfaYH/Ge75Wmn9iFw2Ww9fK+/WAsAADy\njoBVKCaqTnBKa7uotjdfKydcO8prna76fGpFsloasNYfIrvOjXjLX7WQ4U5JxXrDxhRpuDk3\nswkAQEYErEIxR7W39RBOY/Wl/buq/mCWBqm+6DRu6ae6IqIiSS0NWJeIc4tVMpUT3dveb5dW\n1vMZuskfcjmlAACkQ8AqFGVdVAe/vfyD8R3aLB2oevey1caHJarXPjNvwRsP91QdafZJqUhS\nOwPW0sbScPAQ333e3k6WRu+5xTUtZMB24/lG8nj+JxoAAAJWAZnX2n0E1kJjhvX6kGHMae8/\nGGuE/QTOlIqw2hmwpkrIqe7Ort5bEl+EfKSB7Pdzkc75nmQAAGwErMKxZNS5pe36TVlvGBUT\nerS5aI5ZtW7q4PPalHTqd/dHbp+UipA6FbC6yFGBjPjSmS12OeGuirxNLgAAQQQsxFc7AxYA\nALUOAQvxEbAAAIiFgIX47IBV0zsBAEDtx+ES8RGwAACIhcMl4iNgAQAQC4dLxEfAAgAgFg6X\niI+ABQBALBwuER8BCwCAWDhcIj4CFgAAsXC4RHwELAAAYuFwifgIWAAAxMLhEvERsAAAiIXD\nJeIjYAEAEAuHS8RHwAIAIBYOl4iPgAUAQCwcLhEfAQsAgFg4XCI+AhYAALFwuER8BCwAAGLh\ncIn4CFgAAMTC4RLxEbAAAIiFwyXiI2ABABALh0vER8ACACAWDpeIj4AFAEAsHC4RHwELAIBY\nOFwiPgIWAACxcLhEfAQsAABi4XCJ+AhYAADEwuES8RGwAACIhcMl4iNgAQAQC4dLxEfAAgAg\nFg6XiM8OWE/XmJp++wAAxEXAQnwELAAAYiFg2f6u+mXMrv9QXbazt1m161U/yv+2CVgAAMRC\nwLIRsGKpXQHr5YNFno3Yy+3/6XxY8yb7nj58pVvx6tmtGh/Sd2WixyRp+HY13j4AAHHV44B1\nt06N3ff2fv1WxeyadcDy9msHtlm1mAEry23XpoBVdnmRRAasFb8RV7NxdsVjDeXP5x4hh672\nenzXSv5ejXcPAEBs9Thg9d+BgLUDsg5YedmvmAEry23XooD17rEiTaIC1vojRI6/Z+68aec2\nEBlvVvywl9xoGFtPk55el47ys7JspgEAgKrU34C1pbR2Bqz87Fe8gJXttmtPwLq1sexyV8eo\ngDVI5K9b7dJjIi03G8ZDsme5uTRdmm12ejwlRa9mMwsAAFSp/gasD7V2Bqz87Fe8gJXttmtP\nwDpe/udDIzJgHS7ynt9JZhhGLznLWlgp8rpdu35/6Z3NJAAAULV6E7C2zBzao11p14FT1tuL\nk9Ux5BrV5/xOI1Sfta6TaYXx5tDzWp8zcGaF05C46XvhXRe1b3fR6CVpxs0csKI6bze+uKNH\nafu+49eH9svfZsTeGNtfGd6rfUnHfmMXW0sRbyFlR82AtchYcnuvth36TvzB77zgrks6lna7\nctLq8JxkeL/hLSerPQHrhL5lRnTAaigNyt1iV5G7DOMM99pgE3nIfr1ADtqY7j8gAAC5UV8C\n1uc93PSgXRZYy36YmKN6ldeprK223WwYV6puGO22X7HJbvECx+br3friCdHjZgxYqZ2HqJbN\nLHHqzltlRIWciL1Z298bR+83FyPeQsqOmoufzyx1qs7/zun74zBvlDZPGZHbThkmacvJak/A\net/6JzJg7S5F3g1WZsB6wDB+JZfaS3vKndbLS0UyM81/PwAAcqWeBKz1XVUHPD1/wezLVDus\nMSs2fvOg6oPffPP9ti6qX7m9XlEdZb4MVH1EL53+1px7WqsOtVvcwLH9atWek1+ddYcZVSZH\njpspYEV0Hqr6ovaa+ubcCR1Ubwjul7/NiL0ZaI3zzoI5Y9qrmqki4i2k7KgZlKbZGxpvbmiY\n3XW7Ocy5//5wyfwxZqdnIredMkzSlpPVnoBliwxYf/EuBRrGiVL0qWGc4l4R3N06nWVsPly6\nRf/nAwAgd+pJwJqsOsi+s7lypJkh7Kqp7v1G96k+5PYapvquYUek0pH21biFZrBYaBXcwDFT\n9Ur79MeCUi1dFT1u+oAV0dncYsdhdt1C1ZJNwf3ytpm6N0tV+zu3aa/ooN0ro95Cyo6aAavD\ndfalsUXFWmJfAntS9RLnUuVbqu2/j9p28jApW05SFwLWqyK/cU4EPiLS3nw5U7paS1sbyCTz\nZYDsu9b47PI/ntr5qej/igAA5EA9CVjThvSf55QWmRnBLnhhYrlq9+12zeY22sMKDWak6eDe\nhXOn6hjr1Q0cvfzwdLvqlOhx0wesiM5m7unqfnetr5vlIgJW0t7MUZ3oDjn7kdnlUW8hZUfN\nDZ3jbugy1U/Nl8qequ+7wwxXnRa17eRhUrbsevcGx9BDDq71AcsYIXL4rS+98e9uDeRE62Jp\nHznFqv5IZL5hzGsgU41nm9qPyeJWdwBA3tSTgJWwSdW5BOSHiStU59uFF9z4YEaa29ze81Xt\nw6wTOJaq9nUblr/w36+MIH/cON8i9Dubuec+t26U6tzQfiUCVtLezPMu8vmS30Lqjl7vnTMz\njFtUrZy3RPV87xzUXNVBEdtOGSZ1y45pJ3tOqv0By3j6dOc5o4cM3mAtPi6NrHN8o6RluVF+\nnLQ2NuwjJSs2jy2S/0S9VwAAcqBeBayKzZs2rVPtaC/4YeI51eF2YYjq19arGWlmuWt8r9ra\nOjfkBI7ZiayTftyqAlaos5l7XnPrx6i+GNqvRMBK2puNbVVvWRocM/ktpO6ouSHvziN3Q+Y6\nI73Wleb+VKZuO2WY1C076lTAWnflfk7AavxHe43yA6XNZuODVjLQnD/Z6xvjXmluJa/Ockbq\nygAA5ES9CVgL7ujTpdj5/ltSwCprr6XWAXVjqTo/kGJGGvdLfkaluYrV5gSOh1UnVDlupoCV\n0vn6xKbGqr4Q2q9EwErem9nWGBePeW2DN27yW0jdUXNDH4Y3ZPYZ77VWmuNtTt126jApW3bU\npYC14jAp6vnmxvJl434qMth+U02l2aFFcvwmY2ETedAw2kqxVf2oNNqSsjYAADlRTwJW2XBN\nSApY1q1N1g3Ns1Sft5fNSPO5t2J7Vev6kRM47lN9rMpx///27jxAiurc+/jDrogi4hZvEk00\n0VxzE2MSzRvzZjHxet+bPMMMMOwgqLgAgqgEBCISDRhxBSRooogoIEQBRVRQUVwJIsgiKiCL\niiIoi8CwDFNv7V3dVT2UdDU90/l+/rBOnTp16nRNaf3srj6dPWBFNA7M/1lNwMocjfF2P2fu\nhIHzqiJfQnig4QPd5zyc5Wiluil87HA34SPbPnjMMenYY2t8wPqFiPup7JYzReZYhTdLmzc8\nrf9Wo/IcucBcPcN6L8swFom8FdobAIBEFEnA+qtqm0mrtlQaxp5wwFqhas2ENFhb77LXzUjz\ngbdjayd5OIHjftWHD9hv9oAV0ThewMocjem9CX3tt8L6bY16CeGBHjhgbQ4fO9xN+MhpasG3\nCF8R+alXflzk98Ftt0kT6093nFgzXRgfuvELAIDkFUfAWqva2k09FeGAZfS0MtEXLfQOZ9WM\nNO+4W6wP5ayJz53AMUn1ngP2mzVgRTWOF7AyR+PY/sqIUtWBUS8hNNCIAz2Seuzd2G8Gporw\nscPdRBw5qBYErGEifbzyOpFmgU2rGjtTjbqLjSLTol49AAC5K46ANU31bre4NiJgTVedYLV5\n21k1I433Y79fmKHIWjqBY64zGWj1/WYNWFGN4wWszNH41nX2Hq1KfwmhgUYcaLb3YLxpg2r7\niGOHu4k4clAtCFj9RG70yltF6qa2VP1GzrMnuzhGbrMWH4o8k7k3AADJKI6Adb/q425xckTA\n2l6mlxlX6yXuY0VmpLnf3bLQnbDKCRzrVTu7bdaPHPlEdL9ZA1ZU43gBK3M0KWZHMyNeQmig\nEQdao3qR9xyVmaRuiDh2uJuIIwfVgoA1TKSrV14scmxqy73S6F27cKrz7Ptie2IsAADyoTgC\n1kP+1+E+76BabpemBp5BukXVzBiPuGtmpOnmzFdu3ON+juaGnStU3/B7nBDdb9aAFdU4OmA5\n40oFrPTRVI2/YYTX5zTvwfyMl5A50IgDVV2m+qZbNdj9hejMY2d0E33kgFoQsOaInOL9ZvbI\n4DNYHzUV9x09tSd4NyZLvZ2hVwgAQCKKI2DNU+1h31U3XdWno/sc06zAJE9vqbbXkk/cNTPS\nlDg/ZbyyTEvsJ8zdwPGMGXbsr/GtbKWln0T3mzVgRTWOCFj+uFIBK2M0A9wZswxjd2/V9VEv\nIXOgWQ50mfOg+mzVzhVRx87sJvLIATU5YF3ds6c14+reb4v0dd6We7e5yGP+dpUf7XNKd0lz\na36GzvLLyL8jAAC5K46AVdFBddCb694e16blmv6q96zdZBiLVcsmPD/FvtdaPxuj13utzUgz\nRofMW7l8crm6T427gaNqoGq7fzw/6y73x4+j+s0asKIaR+Qef1ypgJUxmmUtVG94av6S1x6+\nJDVZaPpLyBxo1IGqBpvxafqKVa/dVqItFhpRx87sJvLIATUmYL08xHKmSEdraf2Is9FIZJG1\nfK6ByLn3vPD6jKubiJT6k01MlPqL3OLmptJ3vzG7vkzJdj0BAJCj4ghYxvwyd/appcZMa/mg\nYezvYdc4HxdNUv+9GTvSrB/hTlc10Jlr0g0cRsVNbn3J+Gz9Zp+mIaJxRO7xx5UKWJmjmVfu\nT6c13J8LM+0lhAYacSCjYrjXSwf3YaPMY4e6iTxySo0JWMMl6HSrygtYxrNf8zdcusvbYdNx\nkvpW5CN15cTTRdpH/xkBAMhdkQQsY/WIi0pb95681TAqx3drefk8s+qzYZ1adh3ivIWxqUTL\nK7y2VqQxXr2pW1nHAc+473B4gcMwFt7evbzVZaM/yNpvNTO5hxtH5R5vXIGAlTEaY8vUQV1b\ntmjX+57lqc7TXkJooFEHMoxld19RXtZl8DT/WaOMY4dfb9SRU2pFwDJ2/b305CPqH/vTvktT\nO3SQMwKB8YULmh521qhKAwCAPCmWgHUA61VH+Stxfq750Ik7mrSXUCA1JmABAFCz/ZsErNGq\nq/2V2hmw0l5CgRCwAACI5d8jYK0v1UGptVoZsNJfQoHYAavQgwAAoOb7t7hdbumh+m5qtTYG\nrIyXUCAELAAAYin+2+XiBZM7qI4N1OQesHZuCvniYPuKMZrwSygQAhYAALEU/+2yszXnwM37\nAjW5B6yJGtL5YPuKMZrwSygQAhYAALEU/+2yh7bu689/YKt1ASv8EgqEgAUAQCzcLhEfAQsA\ngFi4XSI+AhYAALFwu0R8BCwAAGLhdon4CFgAAMTC7RLxEbAAAIiF2yXiI2ABABALt0vER8AC\nACAWbpeIj4AFAEAs3C4RHwELAIBYuF0iPgIWAACxcLtEfAQsAABi4XaJ+AhYAADEwu0S8RGw\nAACIhdsl4iNgAQAQC7dLxEfAAgAgFm6XiI+ABQBALNwuER8BCwCAWLhdIj4CFgAAsXC7RHwE\nLAAAYuF2ifgIWAAAxMLtEvERsAAAiIXbJeIjYAEAEAu3S8RHwAIAIBZul4iPgAUAQCzcLhGf\nHbCePCQK/VIBAMgFASsZf1T90FzcrLq80EMJcceWAAIWAACxELCSQcDKb8Ca+02Rp0PjeVoC\nfmtXvfSH5g1O7vVpqs0EqfdmMq8eAIDYCFi5uUen2su7evfeaOQrYHkHOUju2BJQqIBVcU0d\niQpYk0IB69F6cv5Fp8kpm7wmnzWXPybz4gEAiI+AlZs+6dknPwGrT24BKzkFClhvnSnSMCpg\n/U2kZIhnvFnxZTP5q2HsPU8u8Zq0le9U5P/EAACQjoCVk92lhyBgZR6kcAoTsO5oIIeNahsV\nsIaLTE6reFCO3mMupknjnU7FDKnzUv7OBwAAWRCwcrJMD0HAyjxI4RQmYP1Q/muZERmw+os8\nk1bRXS60Fp+KvGqvbz1JeuTvdAAAkA0BK6vds4Z2a13asf/krW7F9ar7jQ/u7lZa3mucXTdR\nHUOCD7mvMFbf1b1Vm14PfWk1Gaz6rN/jcNWnrQ/8tNJ4fWjXsk79Z1X629bce1XbsosGPLbd\nXe+vJVUV93Uqmxw4SESz0JhM+18c1r28RdveY1c56/bYhqimsog5qrmR3YX2TVeYgHVWrwoj\nOmBdLvJGWsVv3c8GG8qD9vJS+cb20F4AAOQdASubld3cZKMdljg1ZkapmNXCqetqPTYeGbBW\nzip1ai/+zKyYp9rP67GilbbaaRjXqW4b7e557Q5n074x/sFecWrMDLR7oLl+fzBghZuFxmQY\nn/fxGuk/7Ap7bHNV/+QNZGsLLa+I7C60b7rCBKzF1j8iA5ZZ+W5axU/lKnt5tIy0Fi/UkVnZ\n/8IAAOQNASuLrR1V+z65YMmcq1XbbLarhqo+r92nvv7K+DaqfzErtm94QPWBDRu+CAasx+wm\n48wmN5kV+zqofuR2+aLqCMN6b0of0aumvTHvb2WqQ51Nt6p2eXThqvl3t9AW8+2aG1Wf05b9\nB08LHCSiWWhMdv99n1y4ZN6YclU7p9hjqyjXUu/NnKdU74w+amjfdAWcBysyYF0o8mlaxTnu\nJ4JHyihruKdK5wP9nQEAyAcCVhYTVQfstQpVt5j5xq66SbXtTXbdUtUW9ntPU73Ho1IBq82f\nrcesjRUl2sIKNH9XfdDt0tz/LcP+VK/0FvuzwaWlqkutwlzV3k76WdBCL6pwG1/b9wsj7SDR\nzTLGtEa1j11hrG+jXar8sd2W+rBygOriyO7C+6araQHrXJHtD/7vCQ2anT1gnV1xgXS0Fnvr\nygRz0VdO+Nx4/5pfndt+RvgPDABAHhGwsnhsSB/nTR1jhZk67IKZnjq6X07r5SajiIDVyW1y\ntep75mKdapf9dsXOltrNyixmwGrjvpc0UnWMteyhJevd496t+px7sDJ39ir/INHNMsY0T/Uh\nt9GcR+bs8ce2QPUGp/rzEu1aFdldeF/HR3McM5s1q1EB63Spe4Y7C1bD262KnnKOtVgussAw\n5teVqcbTjezNPOoOADikCFgHtEPV+aDJDDN/d+tGqNpPLUUErAfcJrer2gntWtUFdsVzbnq5\n3v2AzrBDj3Xn/0jVnwxzieow92DD3SrvIFmaZYxpvvPZZIAztspO3meEM1THRXcX3tfx2I89\nZ9eogHWCGZ2O6TL8zh5fMwvW6Zoi9a1UOkKO2WPs+b6UGduOlxbrd46tI09EvS4AAPKEgFWt\nyp07dmxRbWuvmGHmZbd+jOrz1jIiYL2a0eRZNwpZz6N/bC2vT32f7wvVsv2GMcd9I8uyS/Uy\n92BeJvAOkqVZxpi2t1K9fU3wRbhjG6s6x16/TnVddHfhfR01NWA1Euljf1lz16UidVcYxp6v\nS8udxtvNpb95vqXZBuNeabLN3N7e/SEdAAAODQJWVkvu7tmhxPlGnR+w3O8TWmHF/oQuImAt\ny2hiPV1u3eO3l7pvGF2f6qbK7N/cNlnTlLkHm+e28g6SpVnmmOZYg75izMvbvBfijm2FO9XD\nRvcjz6juQvs6amrA2rLFG2jV+SJWRJzTSBqfUkd+uMNY2lAeMIxWUmJtniT1d0f8iQEAyBMC\nVhYVwwLhww9Y3iyi1QSszCbWg1bWM9bPqM62182AtdI7SrnqRsO4Pz3q6D6np7fdRt5BsjQL\nHfDtfvbmkoHzqoJjM7prqfV2z2POeCK7C+3rmN/fcd23v1WjAlbAbJGTreWbpc0bntZ/q1F5\njlxgrp5hvZdlGItE3qpubwAAkkXAyuKvqm0mrdpSaRh7cgxYK1StyZkGa+td9roZsD7wjtJa\ndZNhPKB655KA/ek9eQc5QDP/gIbx3oS+9ntv/bYGxmY87DS4Wku3ZusutG+6mvYtwoBdInUr\nA+u3SZO15uI4sWbGMD4UmVPd3gAAJIuAFW2tauu1TrEix4Bl9FRda3zRQu9wVs2A9Y7bxvqI\n8Ev7w7r7MwcQEbAO0CwQsEzbXxlRqjowMDbrqfahhrHBm3wrqrvQvulqcMCqqisS+FXnVY2d\nqUbdxUaRadXtDQBAsghY0aap3u0W1+YasKarTrA6dD/yMwOW9/vDX5gxzrBnIA19eS8iYB2g\nWXrAMq3r7DwR5gUso6+W7jAe9R7uiuoutG+6GhywzAh1RGqt6jdynv2O3DFym7X4MPNHCwEA\nyCsCVrT7VR93i5NzDVjby/Qy42q9xH2q6frUO0cLnefNN6i2gv818wAAIABJREFU25cxgIiA\ndYBmoYBljXymEQhY061s1VvbOhNcRXUX2jddDQtY07tf+IhXniTyi9SWe6WR8xs6p8oga7HY\nnhgLAIBDhYAV7SHV8U7p8w6q5XYpOmBNtiuqC1jGLapzVb0sYAasbs506cY97rRZfVIzNyy5\n7L61GQfzD1J9M+eAVeNvGOG9iGnOc/V+wPqiRO/8RHWkuznUXcS+6WpYwPq7yJnulwP3ni1y\nq7/ho6biTI1hqNh/u8lSb2fo1QAAkDcErGjzVHvYz0xvuqpPR/tBqcj0NMubNLTagPWWanst\n+cRdMwNWifNLyivLtMR+3t2MX22dbxZ+2l11VcbB/INU38w94AB3/i3D2N1bdb0RCFjGYO00\n3Z2DPrK78L7pakrAurpnT+sHHnc0F2lrP4v/pbn52NTcEio/ct+bu0uaWxGss/wy9GIAAMgf\nAla0ig6qg95c9/a4Ni3X9Fe9Z+2myPS0WLVswvNTqqoPWFWXqOr1XtdmwBqjQ+atXD65XL0H\n329RbTn2X++8el8b1dF2TaAn/yDVN3MPuKyF6g1PzV/y2sPmUW+xNqQC1nOqF/sfVUZ0F943\nXUEC1stDLGeKdLSW1o84WxOMLrKWj9c1c1XPO++4/FiR+qk33CZK/UVucXNT6bvfmF1fphzg\nDw4AQJIIWFnML3OnwFpqzLSWD0amp/097EaV1QcsY5L6bw3ZAWv9CHfuqYHuJ1yVo90pTbXk\nPme6hEBP/kGqb+YdcF65P7XVcLv7VMDa2UqtB+494e5C+6YrSMAaLkGnW1VewDL+eYxX/x8v\n+jtsOk5S34B8pK6ceLpI+2x/ZwAA8oGAlc3qEReVtu49eauZQ8Z3a3n5vOj09NmwTi27DjnA\nO1jGphIt9+cQsAKW8epN3co6DngmNZvn6nt7tSttd/Xf3bkhgj35B6m+mX/ALVMHdW3Zol3v\ne9wtqYBlvWelHwVfZEZ3oX3T1biAZXx++wUnNjr8GyX3BeJgBzkjsPbCBU0PO2tUcIosAADy\njoB1KKxXHeWvXG9Ni1U7FfAZLAAAahMC1qEwWnW1v0LAImABAIodAesQWF+qg1JrBCwCFgCg\n2BGw8m9LD9V3U6u1PWAVehAAANR83C7zbPGCyR1UxwZqCFgAABQ7bpd51tma8uDm4E/SELAA\nACh23C7zrIe27huYjcEgYAEAUPy4XSI+AhYAALFwu0R8BCwAAGLhdon4CFgAAMTC7RLxEbAA\nAIiF2yXiI2ABABALt0vER8ACACAWbpeIj4AFAEAs3C4RHwELAIBYuF0iPgIWAACxcLtEfAQs\nAABi4XaJ+AhYAADEwu0S8RGwAACIhdsl4iNgAQAQC7dLxEfAAgAgFm6XiI+ABQBALNwuER8B\nCwCAWLhdIj4CFgAAsXC7RHwELAAAYuF2ifgIWAAAxMLtEvERsAAAiIXbJeIjYAEAEAu3S8RH\nwAIAIBZul4iPgAUAQCzcLhEfAQsAgFi4XSI+O2A9aSn0SAAAqNEIWMm7XnXtoT/qH1U/POim\nt6v+K8aOBCwAAGIhYCXv3y5gvdv7B0c3PEkfrIzaZ+43RZ721176Q/MGJ/f6NLV5gtR7M+aw\nAQCoNQhYyTu0AesenWov7+rde2PMXcJNcwpYN9cTxw8/Du1RcU0dCQSsR+vJ+RedJqds8io+\nay5/jDlqAABqDwJW8g5twOrjBqyc5BKwbhWp8/tbRvc9SeS7OzJ2eOtMkYapgPVlM/mrYew9\nTy7xGrSV71TkOngAAGocAlbyDmnA2l1a4IC16jBpNMcqbP9vkevS29/RQA4b1TYVsB6Uo/eY\ni2nSeKdTMUPqvJTz4AEAqHEIWMk7pAFrmRY4YPUQ610py+dHyeHb09r/UP5rmREIWN3lQmvx\nqcir9vrWk6RHrkMHAKAGImDl7LP7ryxv2+exncZU1blWhRuweqp6jxoNVX3XLS4ddXl568tH\nr/Z3XzLqyralna+bsCnV4wHb9NeSqor7OpVNnqiOIcEn1w+4u99049jLW7XrNX5zKmDtf3FY\n9/IWbXuPXRX1UiMC1t7mcsSXbrmPyANp7c/qVWEEA9Zv3c8GG8qD9vJS+UZ6IgMAoDgQsHL1\nrzZOxrn84wdU7TdmqglYO292E1HJeGfLrpvcCm05w20co81g1d0DzfX7IwJWjN29pgvKnfqO\ny7yA9Xkfr63+I+K1RgSsV8R5V8rytEjrtPaLrX8EAtZP5Sp7ebSMtBYv1JFZBz7BAADUPgSs\nHK1vpXrt3Pf+dav2GOWmlOwBa7+Zii6Z+NIzd5eqTrQr+qte9M9lqxeMMWueMuK2uVH1OW3Z\nf/C07RvMVPfAhg1f+Kkpzu5u009bqw58ZdXSyR26DHWHbrbt++TCJfPGmNErYq6riIA1SmSQ\nV94s8u3wToGAdY77ieCRMsrq7VTp/BXPNgAAtQMBK0e3qA7dbxVma6sDBqxZqtfZX5pbUqql\n1kwJ01Wv3Go3eUO1/Iu4bW4yQ11fu2R9Luk8g+Wmpji7u01vV725ylr/pJM6Q1+j2mev3XZ9\nG+1SFXqxEQGrr8h9/koTqReeCysQsC6QjtZib12ZYO96wufG+9f86tz2M0I7AQBQqxGwclPR\nUks+cYq36gEDVnf/8fe7VCcbRtUlqovdNsNUH4vb5mbVMncmq8yAFWd3p+me1v7Qn3GHPk/1\nIbftnEfm7PFf5Z5tjk/r1csMWJ1Epvkr3xYJz8UVCFg95RxrsVxkgWHMrytTjacb2TNo8ag7\nAKC4ELBys0i1r1tcecCAtUa1l1uz7rl/fWQYq1Uv9t4nekV1QMw2VsAa7lZlBKxYuztNl6j2\ncTfsKnOGPl/1pqhX+diPPWdnBqzS4Dzt/ynyQWjnQMCaIvWtADZCjtlj7Pm+lBnbjpcW63eO\nrSNPRB0WAIDaioCVm5mqo71ypwMFrDmqd6bt/azqLV75U9W2VfHaWAHLSyQZASvW7k7TmYGm\nvZyhb2+levua8KusJmD9QeR5f+VHIu+Fdg4ErD1fl5Y7jbebS3/DGCLNNhj3SpNtZn17+W34\noAAA1F4ErNyMtz+Hcww+UMB6WHV82t5mxTivXKWqO+O1sQLWPLcqI2DF2t1pOj7Q9M/u0OeU\nmE2uGPPytvRXGfcdrO8d4B0sY04jaXxKHfnhDmNpQ2tKh1ZSYlVPkvq7Q/sBAFB7EbByc5/q\ndK/81wMFrL+rPpq5tx/PjFZ2+zhtrID1tluTEbBi7e40vTew5VZvHqy3+zlTPAycF3zE/cnf\nOH591g8zA1Znkcf9lZNFNodOUTBgGW+WNm94Wv+tRuU5coG5eob1XpZhLBJ5K7QfAAC1FwEr\nN2NTH9YZIw4UsO5XfTht78z0szleGytgLXdrMgJWrN2dpmMDW4anZnJ/b0Jf620s7bc1/Goj\nvkXYT2SMV65qJA32h3ZKC1ie26SJdY6OkxHW2ocic8JHAwCg1iJg5WZc4JdqhmQNWEOcgDVJ\n9Z60vR9R9ac+32+Gmop4baoJWLF2d5o+GPiI8E9pP5Wz/ZURpaoDw682ImDdK9LPK68TOSO8\nU1TAWtXYmWrUXWwMfhURAIDaj4CVm8dU/WmguqUHrF6q3pwFfZyANVf1L2l7z1Yd5pU3qLaP\n2aaagBVrd6fpdNU7vC2XZv4W4brOqstCrzYiYC0U+b9eeZJIl9A+UQGr6jdynv1W1zFym7X4\nUOSZ8I4AANRaBKzcvKbqTWS+PmOahr7+jFQVpU7AMlt0dh9tWj9y5BP2pAoXec86mdHohpht\nqglYsXZ3mi5UvcrdsLkk9GPPk1Vnhl5tRMCq+qY09N6o6xD5RlREwLpXGjk/HXSqMw38Ynti\nLAAAigYBKzefq7Z0f6/47oyAdaPqS86W6epONHqF6htO1UOqE8x0cpnqm25Pg1WfjtsmPWA5\nT1K5E43G2d1puqNUSz52Nkx2hl41/oYR3gubpjo79GojApYxUMT9MHF1Azl2b/gUhQPWR03F\nfVdNpdw+vtTbGd4RAIBai4CVo2u9ibBeKmmXHrDMgDPA/hxsRXlbN2A9o9rN/thwZSsttWZR\nn6V6mfMw+WzVzhVx2wQC1ixvNis3YMXZ3W36Z9Uh9i/bvFfewhn6AFV3UqvdvVXXh15sVMDa\neLTUs+eH/+RHYv/EoGFc3bPnR6kG4YCl8qN9TukuaW7Nz9BZfpn9DAMAUPsQsHL0pqre/Maq\nhXeUDLgzPWCtKzET1pyF80aWXjPWDVhVA1Xb/eP5WXd5v8RcNdjMQ9NXrHrtthJtsdCI2yYQ\nsBarlk14fkqVl5ri7O42XW3GqqtnLZg3uqzbXc7Ql5k1Nzw1f8lrD18SmJ80JSpgGQ/VEfnv\nv9x5+TEiv3G+Q9hIZJG1fHmI5UyRjtZylLfDRKm/yC1ubip99xuz68uUnP4IAADUMASsXD1q\nT2qgeu32jIBlPOps0F6bH1RdajeuuMmtK3G/wFcx3K3QDt5TSDHaBALW/h72lkovNcXZ3Wv6\nfKlT33HFONXXrJp55V5bHR4x9WdkwDLuO1wcv9/hVHgBa7gEne4233ScpL6g+EhdOfF0kfZf\n4YQDAFDzEbBytuyWrqVt+j1XadzhPu3kBSzjzT93Lm3d54kKK2p58Wnh7d3LW102OjXh+bK7\nrygv6zJ4WuAhpAO2CQQs47NhnVp2HeK/gxVnd7/p+pGXtmrbc9wm68uQL9o1W6YO6tqyRbve\n9/j9B0UHLGPtdT9o2ujkdv5D8dUHrA5yRiC7vXBB08POGlUZdTQAAGotAlZy/qK6otBjyK8s\nAQsAAKQjYCXnitTMokWKgAUAQCwErBzNvLWP+2naOtVuhR1L3hGwAACIhYCVo/tVr7PnPqj4\no/u1vSJmB6xCDwIAgJqP22WOtnRS7f74gkXTLjOXxT5bJgELAIBYuF3manU3b2KDHhsKPZZ8\nI2ABABALt8uc7Z45uHNpq243P1/8cw0QsAAAiIXbJeIjYAEAEAu3S8RHwAIAIBZul4iPgAUA\nQCzcLhEfAQsAgFi4XSI+AhYAALFwu0R8BCwAAGLhdon4CFgAAMTC7RLxEbAAAIiF2yXiI2AB\nABALt0vER8ACACAWbpeIj4AFAEAs3C4RHwELAIBYuF0iPgIWAACxcLtEfHbAmgIAAFI+i7pl\nErAQnx2wAABAwItRt0wCFuLb9b//06xZoa/j4lW3WbNmTQs9iOJV3zy9RxV6EMWroXl6mxR6\nEMWrkXl6jyj0IIrX4ebpPTy3LghYyFHFj03JXNAIa2Se3R8UehDFq4l5er9X6EEUr2bm6T2t\n0IMoXseZp/eUQg+ieJ1knt7/yK0LAhZyZAes3yFPzjfP7k8KPYji9Wvz9J5T6EEUr1+Zp/fc\nQg+ieP3CPL0/L/Qgitd55uk9L7cu3o66ZRKwEJ8dsAo9iOL1kXl2/7vQgyhei83T26HQgyhe\nz5un96pCD6J4PWqe3qGFHkTx+pt5ekfnoV8CFuIjYOUVASuvCFh5RcDKKwJWXhGwUHgErLwi\nYOUVASuvCFh5RcDKKwIWCo+AlVcErLwiYOUVASuvCFh5RcBC4RGw8oqAlVcErLwiYOUVASuv\nCFgoPAJWXhGw8oqAlVcErLwiYOUVAQuFR8DKKwJWXhGw8oqAlVcErLwiYKHwCFh5RcDKKwJW\nXhGw8oqAlVcELBRe1TZToQdRvPabZ/fLQg+ieFWap3dHoQdRvPaap3dnoQdRvPaYp3dXoQdR\nvHabp3d3HvolYAEAACSMgAUAAJAwAhYAAEDCCFgAAAAJI2ABAAAkjIAFAACQMAIWAABAwghY\niOuj+3q3L+sy9NnKQg+kCC3SgL6FHk1RWd5d9ZVgBddxktJPL9dxolaN6dm2tEO/CZ+mqrh6\nk5N5evNw9RKwENPUUvfKu/LTAzfGV/MKN6b82DeuRNMDFtdxgjJPL9dxgvaM8s5k2TSvjqs3\nMeHTm4erl4CFeKab19yfps584GLVbtsLPZii84zq0ImeZwo9muLxQS/zP59pAYvrOEGh08t1\nnJyqoealOmDcY6O7mMtnnTqu3sREnN48XL0ELMTySSstnW8Vdt+kOrLQoyk6j6k+X+gxFKEn\ny7Tl9DuDCYDrOEHh08t1nBzzdt/qTatQcbdqhz1Wias3ORGnNw9XLwELsYxVneiUKjppiy8K\nO5ji85DqG4UeQxHqqz0+MNISANdxgsKnl+s4OVeqznJKlRer2lmAqzc5Eac3D1cvAQtxVHbU\nMu93iB9WfbyggylCY1SXFnoMRajvGPP/TIMJgOs4SaHTy3WcnK0l2rLCLY9WnWFw9SYp4vTm\n4+olYCGOFaoDvPJy1YGFHEsxGqH6QaHHUITscxpMAFzHSQqdXq7jBFVuWu8V71f9p8HVm6jw\n6c3H1UvAQhwzVR/wyntKtG0hx1KMblTdWOgxFKtgAuA6TlxawOI6zothqq8aXL354p7efFy9\nBCzEYWb8mf5KZ1W+wZKsfuYpnfvnLqXtej/wSaHHUmyCCYDrOHFpAYvrOB+2t9I2Ow2u3jzx\nTm8+rl4CFuK4Pfhf0atU11fTFl/dlao93PlXSidXFXo0xSWYALiOE5cWsLiO8+E299l2rt68\n8E5vPq5eAhbi+Ivqv/yVa1XfL+BYipE1F0u726fOGNvNLEwo9GiKSzABcB0nLi1gcR3nwWTV\n6/ZZBa7efPBPbz6uXgIW4viz6lv+ygDVFQUcSzFqpfo3+13qffeZ/26vLPRwikowAXAdJy4t\nYHEdJ2+C6hXb7BJXbx6kTm8+rl4CFuJI+3+na/h/p6Tt3LHTK96kemshh1J0sr6DxXWchLSA\nxXWctN23qPbY5JS5ehMXPL35uHoJWIjjjuB/RXupflTAsRS591Xb8vRKgoIJgOs4cXdm/Ja2\nh+s4CZ/1Ue3vzX3F1Zu0tNMblNTVS8BCHONUn/RXOqjuKOBYilxVS9VthR5EMQkmAK7jxGUL\nWFzHCVjeSfWuvd4aV2/C0k9vUFJXLwELcTyj+g+vvFO1YyHHUuzaq246cCvEFUwAXMeJyxaw\nuI5z93qZlkxLrXL1Jivj9KZJ6OolYCGOVarXeeWFqkMLOZYit6dEdU+hB1FMggmA6zhx2QIW\n13HOXi/V1sEfx+PqTVTm6Q1K6uolYCGOqotTvy06RvXZgg6m+LwxesgLXtn8L2fPQo6l6AQT\nANdx4oKnl+s4Se+20vJ3ghVcvUkKnd58XL0ELMTykOr9Tmlza229s/rG+Ipmq17p/v9S1QDV\nhwo7miKT9hYL13HSgqeX6zhBOy/RsrfTq7h6kxM+vfm4eglYiGVrOy15ySps76c6qdCjKTa7\nO6kOs7/MsmekaputhR5PUUkLWFzHSQueXq7jBI1RfTyjiqs3OeHTm4+rl4CFeF4oUR306BN/\nMy/Ca/YVejBFZ34L1fZjps/4WxfVktcKPZpisXyipbfqLdbS+c8p13FiIk4v13FiNpZqyUMT\nfU/YlVy9SYk6vXm4eglYiGl2K/dnmgbx7eDkvd7BPbvaaUGhx1I0pmpQZ6eS6zgpUaeX6zgp\nr6SdXe3u1HL1JiTy9CZ/9RKwENdn4/q0a9ntltcLPY7itGPGDV1atuo29KndhR5J8YgMWFzH\nSYk8vVzHCYkOWFy9CYk+vYlfvQQsAACAhBGwAAAAEkbAAgAASBgBCwAAIGEELAAAgIQRsAAA\nABJGwAIAAEgYAQsAACBhBCwAAICEEbAAAAASRsACAABIGAELAAAgYQQsAACAhBGwAAAAEkbA\nAgAASBgBCwAAIGEELAAouEUiMvzQHe5183AjYratENfcWM1bua0vOejBAcWBgAUABUfAAooN\nAQsAIvWUlLpHf+v3N7+Xv2PV8ID13Rampdbamt7fa9z4+/0/TWuy6Tip+4Zb/qvVtD4BCyBg\nAUCkYMCy1fnftfk61iEOWGt69uz5XMy2VsAa5K083dg5Fce+GWzSQaRv2j5NCVgAAQsAIoUC\nlshRL+bpWIc4YH0VwYC1/kipc8mMGe1Fvrk91eIpkW/vTNuHgAUQsAAgmhWw7ljkmP/07efX\nMdebvp+fY9WSgHWFyJ+sZVeRW/wG278hkvF2GAELIGABQDQrYE0LrL/6H2ZFWX6OVTsC1t6m\ncrj9ztV7Iv/pN7gynKYIWAABCwCiZQYsY0l9kTob8nKs2hGwzFH+2il9XWSLu/3lOvK1LRn7\nELAAAhYARAsFLKO9WTPOKrxmFl4yPu99SsPj3nW3ze1z9vENmn+v9QT34aQWZpMFgX0fNtdv\ncIof3fqHU46qd9Spre/b4W1ND1iZfRnGAnP7C4bx+bCfNq1/zNnXfhDoeM/ENt8/puGJv731\n8+BQw10E+d8irKZfTyBgPSRymVP6jcg8d/PpmWfJIGABBgELALIIB6y/ifsMkpWHZm77nvXc\n+yJ7yzs/8x+EP3GyXfOoWRwQ2LfEXLfnedj7xwZ+22Onu1uDASvcl2EsN1eeNKa43+GTBg/4\n/c45xWt8xCi/MqqLID9gZe/XFwhYd4gMdkpt/VMzQKQ8tA8BCyBgAUC0cMCaYtb0tgrvmoVH\nrxM/YM0+0ip+/ezv1LOW9vPfu5qIfCe16/ZGIj+xClXqfB/xm0fbMz9MdTYHAlZEX4ax0ixO\nmVRXpOEx9a3qui+7/T5kt6p3mN3p1UY1XQT5AStrvymBgDVU5Gan1FXkIWfg9eWYjaF9CFgA\nAQsAooUD1r1mzRCrsNosjDlSvtd/xPXrrFUzLNXtvcYsbbvHyk3/tNp0NAtL/F0nmGt3WYV7\nzMLxY62P81Zebn0t8Qt7cypgRfZlrLW2N61z6WLD2PPcD8yV3zjdzm8g0ujGVfuNT+5oYoW+\naroI8gNWtn4DAgHrzyI3OaUuIhOs5b6zRcaHTx0BCyBgAUC0cMDqZtY8YhXWmYXz5doqt/4C\nkToPu+V3jhI5ucIszPTSmE1F6tnTn3/bDD9vBY7gTKieCliRfRnrrY8AvfrPmpltPrOLZr6p\nP9epfb6uyDcrs3cR5AesbP0GBALWXSLXO6XWIjOs5XCR/zGMrUN+dORhp125xt+HgAUQsAAg\nWihgbWhshiM7gHxofZz2Ky9fLTRXuvqtRovz8dneY0S+71VuayRyoVWw3vv6tVdrdWPXpgJW\ndF/OAS/3qnuYK7OtwlyzcJVXe7G58lT2LoL8gJWl36BAwJokcpFT+pnIfHPx/mHSZJ2x6pvO\nE1yNX/D2IWABBCwAiJYZsDaeY1Z0sIt2LnnW29DbXHnHb7bLjGGlVuEycR9rN+zv37kxZ/fa\nN5b6bb8h8l274AesLH1ZB6zjf8dvnLn2d6twhVlY7tU+8/WzfjcxexdBaQErot+gQMB6x32O\nzKg8SupXGEbVL0VGGZVniZx778PtRI7Z5O5DwAIIWAAQLRiw9m1+edCx5vrRThixckmTfV5D\nM2B8O7DfhWbSsJbW20vD3DoVafxl+BBnixxnF/yAlaUv64D+22HGHHPtDqvwHZETQp1m6SIo\nLWBF9BsUCFj7vyb1Nrgv7RfmYozIeVXGePOf1rnoI9LP3YeABRCwACBaxG8RNnne2WTlkv/r\ntdtVV+SCwH7Xmhs/MZf7TxL5sVNlfULYPuIQ54o0twtewMrWl3XAjn7tq27r3XWdoJMmWxdB\naQEr3G+a4E/lDBC52FzsO0/kAXPno6TRu4bxW5E51saN9eWk/U47AhZAwAKAaOGA9TNvVlEr\nl3Q2AiuNT05pZq6/bm3oaxbW2E3Gu49H2XZPufTcEw73+kwPWNn6+jD4sJWdj6zW1iQLbTKH\nnXU4AWkBK9xvmmDA+uJ4kQvHjPyJyFn7DOMP9jt0lYfJ4XvtrWb1CqcdAQsgYAFAtIyAdUrX\n1C8aW7mkl7eyJPxOl/N81r/Mwu12EzOKHOd9ovjISWkt0wNWtr6sA17rH94LQm9J8HH2Aw0n\nIC1ghftNEwxYxhtHOx1+6wPzhTgxa4W5cDZ2FZnklAhYAAELAKJZAWv0Cse7H+8ObkrLJa9H\nJJrH7C2nifzcWm5tmMpjNzlp7bySjqZjMwNWtr6ig5D1iz3dM4edfTjpbQ4qYBmf9D3j8CPO\nGrrdMDYdJ/Wt+SbmiPw/Z9sgkVudEgELIGABQLTwPFi+tFyyTAKfF6YZLFLnY8P5hND9lO65\nOma55zq3QegZrGx9RQehxeayS2bT7MNJOfiAldLB/SmgaSKtnZph7g8JEbAAg4AFAFnEDVjW\nZJ0tIptZv/Q32lz+XuRUt+oCs+pOv8FPMgNWtr6ig9Aac1mS2TT7cFISCFhPiXzXnsB0ojd3\nhXG73xcBCyBgAUC0uAFrbyORM6Pb/UDkfOcTwhucih11Rb5V5W8/KTNgZesrOgjtbeA//5RS\nzXDSOsgtYG3/htSZZ5dS72AN5x0sIIWABQCR4gYs46ciDbZFtjMjR/0txoPizzhq/Up0N3/z\ne5IZsLL1lSUInSnScJdf/e6KFR9WO5y0DnILWFeK9HBKz9m/lmPhGSwggIAFAJFiB6xrJO3X\naN5NpRvrM7xHjRYiP3Ur5psVffzNV4cDVpa+sgQha4gzvFrrs8Erqh1OWgc5Bax5deQb253i\n+yL/5ZQ6i0xxSgQsgIAFANFiByxrYoTvVXprFV9vcL7/rb3/I3LRrsNF7nbX3ws+IPVWQ3Ot\nsV30A1aWvrIEoXlm4Zde7Qhz5Z/VDyfYQS4Bq+J0kVluef8R0tD5Nenvi6x06ghYAAELAKLF\nDljG78zVy9wnq/aWi/9GjmGMFDlplki9T931yiNFjnLnVV920hE/N9tutsp+wMrSV5YgVGUG\nOLnZqVxuppoT91Q/nGAHuQSsASKd/BUVmWktV9fxH+UnYAEELACIFj9gfdDEXD//ZTPTVEz5\nsVn8tb/l03oiF/gPKZm6mJvPW20WPh56uIy+3ks0qYAV3Ve2ILSggVls98auqjV/Pcr/ZDD7\ncIId5BCw3qovx2/21x4X+Zk1i2onkb+4VQQsgIAFANEColjsAAACAklEQVTiByxjjhVp5IjT\njrdmuZL/3JjaYr2bJDLBX19ptaz3nV98p65I16qZ1sYzz30vELCi+8oahB6tax/A+af3dFf2\n4QQ6OPiAte9HIpNTq1Xnifx83MQWIqfsdKsIWAABCwCifYWAZSz+hXjqdNsS2HC/VdV4R6ri\n2aPcdvX+ZEaVH9jFpcGAFdlX9iD0wmle4yNHH3g4gQ4OPmANz5h96+MznEOdsNyrIWABBCwA\niPZVApYZdK4++8SGjU/63Y0fpFVvaST+RJyOTwb9uGm9pmdfZ0/c8HHb5g1OavNZWsCK6qua\nIFTxaJszjm544vm3fh5jOIEODjpgvX+YNP04rcnOYWc3OfzMAakBELAAAhYAoBrZfiqnOgQs\ngIAFAKgGAQs4KAQsAEB2BCzgoBCwAADZEbCAg0LAAgBkR8ACDgoBCwCQHQELOCgELABAdlbA\nOu33piWxmg+3mtYnYAEELABAdhXelKVzYzVv5bYmYOHfHQELAJAdAQs4KAQsAACAhBGwAAAA\nEkbAAgAASBgBCwAAIGEELAAAgIQRsAAAABJGwAIAAEgYAQsAACBhBCwAAICEEbAAAAASRsAC\nAABIGAELAAAgYQQsAACAhBGwAAAAEkbAAgAASBgBCwAAIGEELAAAgIQRsAAAABJGwAIAAEgY\nAQsAACBhBCwAAICE/X810Aq+gpFVmwAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 1800, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_width=20; plot_height=30; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "plot_1 = plot_grid(plot_basics, plot_pgs, plot_meas, ncol=1, rel_heights=c(2,1.3,2), align=\"v\", axis=\"lr\")\n", - "plot_2 = plot_grid(plot_conditions, plot_medications, ncol=1, rel_heights=c(3,1.8), align=\"v\", axis=\"lr\")\n", - "plot_desc = plot_grid(plot_1, plot_2, ncol=1, rel_heights=c(5,3), align=\"v\", axis=\"lr\")\n", - "plot_desc\n", - "\n", - "plot_name = \"1_dataset_characterization\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=plot_desc, width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# OBSERVATION TIME" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAALQCAMAAAAjXrvTAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdB3yTdf7A8W/SQRmlUMoGgcoW\nsIqAshQBRRQQZSkggoIgiogiomxE9hJElrK3UGic57g77zz36Z3j/J+enufeG5FR/s2TpE1K\nR9om+T7j83697kieJ02fpHny+5jnyfPISQAAAESUaC8AAACA3RBYAAAAEUZgAQAARBiBBQAA\nEGEEFgAAQIQRWAAAABFGYAEAAEQYgQUAABBhBBYAAECEEVgAAAARRmABAABEGIEFAAAQYQQW\nAABAhBFYAAAAEUZgAQAARBiBBQAAEGEEFgAAQIQRWAAAABFGYAGO9r14fa+9GKXzubHwvzny\ntwMwOQILsLejb3rWLpm74L5dL3xX0GwCy6K/HYDJEViAjb0/v0t5CXC1uPGPJ/LfgsAqUD8p\nhofAAlAkAguwrWcuOqUL0lcfCb0NgVUgAgtAGRFYgE39t2+BZXD6oyG3slpgLZ058/HcK1/E\neR0p4ualFU5gRe+3A7ABAguwp4NVCmuDW48F3cxigfWTS+SWGPyecAILAIpAYAG2tMblL4G2\ndx16+6tfvvvw2aWXJvgn9Q361MVigfVHiU1gbZ0SrKL3OeoUMulfMVgIAFZGYAF2tMnfUpe9\nFTTxm9sTfVMvz86dZrHAWhyjwApV0/sczYz5rwVgZQQWYEN/85VUg6fyTX//Ql9hzcidYrHA\nGkJgAbAGAguwn8NNjGxq8fEpc34fYMyJezkwwWKB1ZjAAmANBBZgP7ONamr6dQGzjg805p0d\n2EhorcD6wUVgAbAGAguwne9SjE+pXihw5vd1jaQ6ELgaFFjv7Fl2z6p9r2YX8FMfP7Zx+dxF\naw6+e7zAO/3xqa3L5y7d8tdfClukHz3L5238KNwHcOS1nQ8snLd6+0v5j4HwjIQRWB8/tm35\nvWv3Pfdr4Tf5/JHV8xZvfOLHMJenZIH1+9/WL7h3zdNBd/7DU/fPW7r55VI+dwAsicACbGeJ\nEU13FDL3MWNuZ/81X2D9kHNhVn3/jvF1bv4i9CdeGlcj9/AEVa76Q/47/HxO2zj/3IQLtgYf\nA+J/3mndT57MvjfZe2nxSGPD5SlLdLV38rmBaz9v6Bof+G2J3XYfDUz/WEJ4dy8r4FCf709o\nnvvDFywNbqwvvdPO917a39n/FUv3+Y8V8iSFKjiwQn577r3/eEeq787LXfUf36w3B/q/W1D1\nrlM+KSz8uQNgcQQWYDstvON10reFze5gjOf+4wz4Auunk3+qExQvVbcE3fyLQaFlIx3fD763\nY7MrhMxt+se8eV/7y2mcb9Zi4wMo+We+5TlcyTv1Af+1nbVDf1vL1/0zwgmsr8fGh9yo1v15\nH8f97J1wds5tLg6+xYjfw3hCwwiswL2/Xi/vvpOfzJmRfU9c3pTT/xNyD0U9dwAsjsAC7OZf\nxmA9vND5vkM4zPNd8QXW4T8mhebLg7m3/vB0yS8laOPjt53zz3UvyZ35i/f6GScP+ecsPmHU\nx7R8y7PHO7Gc/1TUd5zy2xL9H5mFEVgfNDnlp0fmbpc7biTMya9bht6g8OcpTxiB5b/3d6sG\n33fyv0+evDXktzUJ/rityOcOgMURWIDdLDfG6ucKnX+4sne+fxuhL7A+924DrNDz2psHt/CN\n9HF/8t/4+NnG9YQuY2cumDKys29jV63PA/f181nGBFenO9Y8uOjaBr4fXhmYe8J7rcHJQNIs\n9uVTs3zLc7l34sDgZZfUyyZMn35TF9+RUSu/a8z68swzz0zzXk870+vFk6cE1n9qGdfjO955\n30NLxjXz3dWg3N/jzrlW70T3nP+vePF1N19ztv+TpTCOyR5GYPnu/eiZOc9FhxE3D23qu+/+\nJ7fn/H9iz9HjB/g/mJuV9/NFP3cALI7AAuxmsHegTjpa+A2MbWRJvh1+jMAqP1qk9hbfHuWv\nnWMM9IGvGa41GuD2wPbGb6cbiXVj4K6GGDfu699oeGKfsaEx7h+B2d7qqOXdMNh16b49q/58\n8k3j5m+ELM0P5bzTHjEu/6+8UVSb/DsjfT7KuP3lube9xXs1byf30MQ50cW4emVgM9yjjY3r\n2wK39v6etNUiNdb7fuK/fYz5PQt/ogLCCSzj3heJXOr79X+oZjxx/0yVuNuMPa9OrDO2XtbL\n22ZZzHMHwNoILMBujE9Pzi3iBrOMkd03khuB5XJLi9xjOhy7wJi9x3etq/fy3KAfftLbCYk/\n+K48IvnS43NjF/PzA1e9Gx6rjZTkRwITzvTOvitkaR7yTqrpS6o7jU+g/po38ybjF7wTuFpk\nYK00rt0atDDGh1jVvvFf9cZbuSpyxqeB+ceNB+f+spCnKU84gWXce4qMD8x91phbT+J2BaYs\nM6bkbl4t7rkDYG0EFmAzJ4wNazcXcYsnjKF9v3HZt4lQKgQdQuFLY6fzy4zLx73b0ZJCjiAw\nyTt3r+9yG+/lkL2Y/hX0eVSgaVxP5s72nupGmoQszUXeSZN8l43PnIYEzfzFOOLEssDVogLr\nuLGDV6fgg0y8ZHxbcKn/mnFGQan6ad78F4wpxX+TMJzA8t17h7xf79/B6vbcCb8bXy9cE7ha\n3HMHwNoILMBmPjPG9UVF3MK3F/wK47I/sO4Onm8kVNLPuXfWOOSn/++aGQ896/u860/euSlf\nhcy+0Tvtav8VX3WMzJv7qXejofw96PZfGrtC+T5O+6lV9Zz5O4Lvbph37hWBa0UFlse48lrI\nwhhbS9uELMy64PnGMcEWnCxO+IH1t7zZ9xgTKv+cN8U4iv5N/ivFPncArI3AAmzGt5/T+iJu\n8YVxi+nGZV9guT4Lnv93Y1qW96JxJKsqhd3RGO/c0QX8+sr+I4T6quPtoNk9vBPuDJqw2jsh\nI/fq8c9eDzn85wrv7PMC14oKrEGhd2TwfX/xraCFqRZy1KxLvJNuPVmcsAOrZdDsA8bs64Km\nTPNOGOy/UuxzB8DaCCzAZl42Bva9Rdzid+MWtxmXfYEVusfWiSreafd6Lx4zPl86cOp9GIxD\nkz5Z0MS/+C4b1RFyZNHN3imnB03o5J2wvNBl3emd3TRwrajAMrYQzg/96d+M40w9ELQw14TM\nNz4yur7QXx4QdmDdFjT71VP+Duu8Ey71Xyn2uQNgbQQWYDN/Mwb2Ig8+YFTTBOOiL7DuDp1/\nQV6KtDc+VCl4NyXfJ2Gf5pva3ztxre+yUR03Bs/92UieV3Ovf+TdTSq+8P3Ms7w3bxC4VkRg\nGYdSPyVOOnonjglamDUhsyd7J11V6C8PCDuwgrduvmPMDj4o6zbvhAt8l4t/7gBYG4EF2Mxr\nxtC9vYhb/GrcYopx2RdYu0NvMMI7rYNx0fjESaT3IwUc8fxp75zEE/mmGt8E9O9jb1TH6pDZ\nV3kn5Z3GZ6H3at/Cl9UTbmD59tzPf/h645F0C1qY0M+MZngnDT5ZnLADK+j7jyc/MGYHb+/b\n551wvu9y8c8dAGsjsACbedcY2FcVcYtPjVvMNi77AivfeaGne6f5vuuXfZmvsKRyvxV/z9cD\n/vgqiD+ZjOp4NOSHjFMhNsq9ahxsc3/wDbL/sWTouXUrB51gJqzAMo5PXyH/QzV2e2oWtDAv\nhcyeGeHAejNo9ofeCeWCfyA4sIp/7gBYG4EF2MwPxig9p4hbvG3cwrcbvC+w3g+9gfGxUh3f\n5Z8uyRv6qw7Y8HXQzRYVHgn+DWFGdTwfct/HjRNHv+y/ZtRgatCnY0ceSD/13hoE5hYRWMbe\n8PXzP9Sl3qnVghbmzZDZkQ6s94JmG4GVEvwDwYFV/HMHwNoILMBukr2jdFE7Fvm+3/aEcdkX\nWPn2gbrPO62y/8qJxZWDRv/4i/blHuppduGR0NZ3C6M6Xg+98wneaYGjQxmFMz5v5rstCrq3\nBoHZRQSWsTD5z8Jzco13aoWghTFLYBX/3AGwNgILsJsO3lE6vYgb3G2M4x8bl32B9V3oDYyv\nu+Vt3fpmYfPgAMjwn33ZlycFa+67RQFNc/KV4GQyjrX+cu681wItl9q842WDvbqEG1jGaQ6D\nD5NgWO+dmlDowugFVvHPHQBrI7AAuxlrDNNfFX4DY6NfDd9lX2Dl2zfc+ASravCUfy/vkZhb\nAK4ZvonG9rdTtsoFKyiwThq19qJx0dghP+8wDj+ebtx//cV5myzD3sn9Lu/F3OM5BNzvnVqx\n0IXRC6zinzsA1kZgAXZjHDpKHip0/i/GqXAG+q74Aivf4QIWeKedlu/Hfn301laBxPKdu2aj\n92KhRyH1KjCw5non+o7uebv3Yt6R1Ccadz446ODn4QeWceD0evkXwDg1T/VCF0YvsIp/7gBY\nG4EF2M3Xxulo2hc6f7MRBlt8V3yB9VboLYxvEZ6yuS3HhwuMQ2FKuQ+914xgiDtWxKIUGFgf\neg99Vd+7J1f2aTmX3J8EZvxu7D3WKeQO94YbWMbGwKT8C2Ac9+CMQhdGL7CKf+4AWBuBBdiO\ncTqakBP+hbjAO7f8974rvsD6Q+gtrvFO61bgDx+5zfgB4+TMvmPGv1PEkhQYWL7TIHu/W/gX\n74WLcqc/Z9zfsyG3XR5uYPmOg5X/iKVXeydeXOjC6AVW8c8dAGsjsADb8W0jvLCQub4SGeG/\n5gus0GOB+groxvw/6HeDd6bxdb0jxm5Ze4pYkoIDy9iH3ntWGeNMNXlHP3/Ae7Vqdshtrwg3\nsD4yLj+T71dleCfeWujC6AVW8c8dAGsjsADbOdbIGPoLPt/zYWOmO3ACZl9gDQ25yYmq3mmF\nHarUOP9znJFBZ3svXlvEkhQcWN+X8yXa8eo5/1Y+nDvd2DmrdchNf0wON7BO1iqggn6I907c\nWejC6AVW8c8dAGsjsAD72WwM/ZUL2kiYfa0xL/ecx77ASgk5EY5v81XgtC///flkKONsgkYW\n3eq9VO1I6Ow3gzbTFRxYvlPuvXfyj95/gk61bBwbqmPILedJ2IFlbNfMd4gD4/Durs8KXRjF\nwCr2uQNgbQQWYD/ZxtGjpMqLp8w5MdKYk5Z7EAdfYMne4BtN8U6pfjzn0geTu6fm/yjrmHcf\n+mTj4lvGzy4PmX28qbvDPW/4rxQSWMaRTpf5vjQYdHpm4+gQIQfwete4A6kbuG4EVt65+kIS\n50/GldDDxl/gndSl8IVRDKxinzsA1kZgATb0gbGRT5I3hO7QdPKjPsZ016HcKf7Aanw070Y/\nGEf7vM578TNvTNX/JeQ+/uCdm+G73NH4GOa/wbONz5w6+K8UEli/exfv4pPek+KcHjT5kLEo\nH+ZN+OIMMTYRJgUehvGxz/Dc+aGJ09J7pX3wI8405gd28jJXYBX73AGwNgILsKMnEnzh1D74\nE52f7q3gmzo/b9q3vilyTW6YZBv7lfvP/2x8BHTp4aA7+eVM76S5vitPeY+4IC2DNmxtMKYc\n9F8rJLCMHeXLv+qdOTto6jfGz47Ivf6P00WMwzRIYI+xGd4reQcmDU2crca1SXn3946xW1aL\nwLEQTBZYxT13AKyNwAJsKdNfWNL6rkff//nEb1+8sHZwRf+kkKjxTojrk1NR/qOnfzvQuM0V\nvmvGgRSk+d7AB1zZTxifE1X62H/d+B6g1Njtj5j3rjKu5x55obDAMu62e87/XB8ET+5u/PSt\nvk/M/nVznMiQk2neSdf5b7DBuIGx9/6Jk/kT52Rf4+pV/uNqHd9s/Gjcc0UsjGZgFffcAbA2\nAguwp7/WkoKV3xJ8s8+8kyp8UFkkvsvdqx+cP9BXYSmBVPCdd0cqdR83fd6sW/rV8F1dG/jx\nX87yTah+zd3L541t67tSP3cPr8ICK7uRf2HOD5n8lG9i1QG3Txh0hvfS6d/7jtMgHSff5DkZ\n2HFJWl7Ru413z6p8gfVFPeN60sWz121YMKyuccV1X+69my2winnuAFgbgQXY1FdDC+yr80MP\nbmlkQI2TnoSQG5X7U2D+8YEF3EfwJsbOp8xt/mHu3MIC6+Q0/23zndBnfOg91f/g5MknA1eM\n/cHb5c7z7qqUL7BOvnd6/mVJ3J5352YLrGKeOwDWRmABtvXiZa78A3j7zHy3eds7tcnJk49X\nD7pVw+Cjqd9XOd99tHgi+A6OzikfMjf+1p/yZhYaWO/6blzhp9DJx8YF39XFxv5JNwQH1ivl\nigqsk9+PDH3EnV4IunPTBVbRzx0AayOwABv7771dknKH77iz73z9lFsYx7w6N+fC13cGtik2\nnhH6tcEfl3aOz72T5AEH8p9A78s5Z+TObjrzo+BZhQaW/6OoYadMf7yLP5HiL3nMP2l7t9S4\n5Aa9/2hc+Utz/2/qd7KAwMoJxglNA8uSNvCxkLs2X2AV+dwBsDYCC7C33/95aM3iOQtW7X3l\nl2Jumf3mriVzV+37ZwGzfn517+qFc5asP/BedgFzczrhyXUL5i5/6Ilvyry4J09+c2jNvIXr\n/vhjIbNP/O3+ufc+8HgRv+l/j2xaPH/9gdcLXlTTieRzB8A8CCwAAIAII7AAAAAijMACAACI\nMAILAAAgwggsAACACCOwAAAAIozAAgAAiDACCwAAIMIILAAAgAgjsAAAACKMwAIAAIgwAgsA\nACDCCCwAAIAII7AAAAAijMACAACIMAILAAAgwggsAACACCOwAAAAIozAAgAAiDACCwAAIMII\nLAAAgAgjsAAAACKMwAIAAIgwAgsAACDCCCwAAIAII7AAAAAijMACAACIMAILAAAgwggsAACA\nCCOwAAAAIozAAgAAiDACCwCc5Z8zLmzbtm1jv7ZtO9/59DHtZQJsh8ACAAf518wWIlKr88gZ\nC1dt2nrfzIkDm8eJnLbkB+0FA2yGwAIAx/jLpS6JbzdppyfY7mk9E6XyrZ9oLxxgKwQWADiE\np5NIk4m7PafafnWKJN93QnsBARshsADAEf7eVSRjXgF1Zdg/pqKc+0/tZQTsg8ACAAf4crRb\n2q4oLK+8tnSUhFl8iAVECIEFALaXvSZF6s4oKq+87q4m/X7WXlTAJggsALC7j3pIhesyi+sr\nj2d7K2n9ofbCAvZAYAGAze2tKhkPFZ9XOQ5eJtWe1V5cwBYILACwte/7SdKNWWH1VY4xceUe\n1V5iwA4ILACws9fSpeXGcPMqx8zEpCe1lxmwAQILgNXd36PHRdrLYFpbyrv6hLH3VZDZieWf\n1l5qwPoILABWd4tInPYymNSRa6TitBLlVY5p8RX+qL3ggOURWACsjsAqzFedJH1DSfvK47kr\nvuIr2osOWB2BBcDqCKxCvNVIzttX8r7yeO5w1eHMhEDZEFgArI7AKtgTKTIg7G8Phhou5xzW\nXnzA2ggsAFZHYBVoc3z8xNLllceTdb4MytZ+AIClEVgArI7AKshiV8V7S9tXHs/+ZjJL+xEA\nlkZgAbA6AutU2ZOl6srS95XHsyXNlan9IAArI7AAWB2BdYrjI6XW+rL0lcezIjH1f9oPA7Aw\nAguA1RFY+R0dLOlby9ZXHs8Y6XJc+4EA1kVgAbA6Aiuf3y+X5rvL2leerPYyU/uRANZFYAGw\nOgIr1JG+0nJvmfvK49lV3f2s9mMBLIvAAmB1BFaIX3tIxsMR6CuPZ56r/rfajwawKgILgNUR\nWMEOd5e2+yPSVx7PIBmk/XAAqyKwAFjd0wsWLNReBtP4raeccyBCfeU52Fge1n5AgEURWABg\nH79fJhmR+vwqx5rEtC+1HxJgTQQWANjG730i2lcezzC5SvsxAdZEYAGAXRy9XNpEZv/2gIOn\nCwd0B0qDwAIAmzg+RM7YF9G+8nhWxdf6RvtxAVZEYAGAPWSPlKZ7ItxXHs9QGa79wAArIrAA\nwBayx0v6roj3lSezketp7YcGWBCBBQC2MFnqb498X3k8S1xNf9N+bID1EFgAYAdzpPaWaPSV\nx9ObcxICJUdgAYAN3CfVNkanrzx7UhPf0X54gOUQWABgfZtdKWui1Fcez2Q5P1v7AQJWQ2AB\ngOXtjqt0X9T6yuM5W7ZoP0LAaggsALA6T0LSkij2lWd9YvXvtB8jYDEEFgBY3DNJifOi2Vfe\ng2GN136QgMUQWACs7t2nnnL0kZpeTI6fHt2+8hyoG/e69sMErIXAAmB1t4jEaS+Don+kuidH\nua88ntnSkf3cgZIgsABYnbMD650arglR7yuPpz37uQMlQmABsDpHB9Z7dWRMDPrKsyGx5g/a\njxWwEgILgNU5ObD+11CuiUVfeTxDZKL2gwWshMACYHUODqxPG8uQ2PSVZ3+N+De1Hy5gIQQW\nAKtzbmB92UL6x6ivPJ675ELtxwtYCIEFwOocG1hft5ZLs2IWWJ4M2af9iAHrILAAWJ1TA+v7\nttIzhn3lWRNf/xftxwxYBoEFwOocGlg/tJPusewrj6efzNJ+0IBlEFgArM6ZgfVDe+kW277y\n7E6p8F/thw1YBYEFwOocGVg/dJCuh2LbVx7PBBmo/bgBqyCwAFidEwMrp6+6HIx1X3myGsuz\n2o8csAgCC4DVOTCwvm8vXWPfVx7PYlfrY9qPHbAGAguA1d1ZtWqa9jLE1g8dpLNGX3k8F8oq\n7QcPWAOBBQAW8+05Cvtf+Wwpn/q19sMHLIHAAgBr+epM6abUVx7PtTJW+/EDlkBgAYClfNFa\nLorx8RmCZNZ1v6L9DABWQGABgJV81lJ66fWVxzNHOmZrPweABRBYAGAh7zeS/pp95fG0kx3a\nTwJgAQQWAFjH23VksGpeeTzrEur8pP00AOZHYAGAZbxWXYYq95XHM1Amaz8PgPkRWABgFS+l\nukZr55XH83CN+H9qPxOA6RFYAGARj1aIm6RdV15TpLv2UwGYHoEFANawIyHhLu228smQvdpP\nBmB2BBYAWML97qQ52mXlty6h3s/aTwdgcgQWAFjBbKm8TDuscl0hd2o/H4DJEVgAYH4nbpK0\nB7SzKs/etIS3tJ8SwNwILAAwvSODpP4m7aoKNlU6czx3oCgEFgCrW9y2bTvtZYiuny+WJju0\nmypUB9mo/awApkZgAbC6W0TitJchqr5oK+c8rF1U+TyYlPqV9vMCmBmBBcDq7B5Y/06XCzO1\ng+oUI+Ua7ScGMDMCC4DV2TywXq4hfXRP71ygg+nytPZTA5gYgQXA6uwdWI9UdI3RjqkCLXY1\nPaz95ADmRWABsDpbB9bG+IQp2ilViN6c9BkoHIEFwOpsHFjZM6TifO2QKszeGnEvaT9BgGkR\nWACszr6BdWyMVLtPu6MKN8/V/DftpwgwKwILgNXZNrB+vkQamurwovn1lOnazxFgVgQWAKuz\na2B9fKacvVe7oYq0OzXhDe1nCTApAguA1dk0sN6oKz3Nd/irUNPlrKPazxNgTgQWAKuzZ2A9\nkewapt1PxesmU7SfKMCcCCwAVmfLwFoXn3Cbdj2FYXcN97PaTxVgSgQWAKuzYWCdmCyVTHt4\nhhAL3fW+1X62ADMisABY3fPr1q3XXobI+m2I1FqjnU5hGiL9tZ8uwIwILAAwmc/aSfPt2uEU\nroPN5UHtJwwwIQILAMzljfpy/gHtbgrfhgqV3tF+ygDzIbAAwFQOVnJdlaVdTSVxmzT7UftJ\nA0yHwAIAM1nhTpiknUwl1Ef6nNB+2gCzIbAAwDyOXCupS7WDqaQyW8pc7ScOMBsCCwBM4/OO\nkm7qsw8WbGuq+zHtpw4wGQILAMzi1XrSaZ92LZXG4viq/9Z+8gBzIbAAwCR2lncNtdTu7XnG\ny+lfaj99gKkQWABgCscnu5Lu0g6lUusv5/ys/QwCZkJgAYAZfNNTaq3SzqTSyzpfeh3Vfg4B\nEyGwAMAE3mgkrS1z9PaCZJ4lQ7O1n0XAPAgsANC3rYJrwCHtRiqbPelyK4UFBBBYAKDtyI2S\ndKd2IJXZljpyI4UF+BFYAKzu+XXr1msvQ5l8fJ7UXa2dRxGwraEMPab9ZAImQWABsLpbROK0\nl6EsnkyTLpY8+tUptjeSqykswEBgAbA6awfW8Wnu+NHaZRQpOxtLH078DHgRWACsztKB9dkF\nkrZIu4siZ3crackx3YGTBBYA67NyYD1VU9rt1K6iSMrsLVUf135WARMgsABYnXUD69hUd9wI\ni54cp1A3xcfNO679zALqCCwAVmfZwPrwPKluo82DAYuqyjn/KPGT8dPfMzfMmzTm6oEDB90w\ndfHGJ95nb3lYG4EFwOqsGlj7qsh5tto8GLCtsyRMPxL28/DL8/df37Gm5Bff+LJZj3wRxecf\niCoCC4DVWTOwfhktieO0UyhapqVK850nin8Sst958LqW7pyaclVv02v4hGmLHtiQ4755U28a\n3LVJsjezGoza+WX0/xhA5BFYAKzOkoH1WjM5bZV2B0XP7ovd0mxrkVv5jr20pG9qTkIlNut9\n07L9Bd3JprsHnV0hJ74yZv4zVn8WIGIILABWZ8HAOrEo0XVpgVFhG2svjJP06W8V/Ph/fGLG\nhRVz4qpal9FLMou8m4OLh7aKF2lyZyH3BJgVgQXA6qwXWB9fKCkzYhQ6ejZclCByxqxnvg95\n7N88t3x4y7icuKrbc+KG8O5o18QOiSLtVn+r9OcCSoPAAmB1lgusPVWl7dboxo057J54TnxO\nSqVfOWHm8s0PLp81acg5Vb07VpVrcfnd20t0T3tvy3BJuaEvav/pgLARWACszmKB9cNwSRxj\nt4NfFWrn5P5tKgZ9NbB2274TVx8szT1tGl5bpP228L+dCKgisABY3Zz09CbayxC+PzeQ9DWR\nzhiTe3Dp7DvGj58ye/H6UqVVQNasti6ps/gn7T8hEA4CCwBi5/c73K4ri96tG0VY26ecpM74\nRvvPCBSPwAKAmHkzQ2rM144Ua9s+uKIkT/u++Oca0EVgAUCMnFiaJN12axeK5e0ZUVmqzvtZ\n+68JFI3AAoDY+KibJE/RrhNb2Du0otRYw8kKYWoEFgDExNYUabtFO03sYtegctLyUe0/KVAE\nAgsAYuDrKyVpnGMOzhADmy50Sc+3tf+sQKEILACIvkdrSbN12k1iMytaS8LtHLMBZkVgAUC0\n/TTGFT+sTIeAQkHurC51diHecCkAACAASURBVGRr/3WBAhFYABBlf24k9Vdox4gtPTwoQbr9\nn/bfFygIgQUAUfXbbW5Xv/3aKWJX686WcrM4fQ5MiMACgGh6pSXHFo2qyVWl2Z+0/8rAKQgs\nAIie36fFy0V7tRvE3nb3crnG/KD9lwbyIbAAIGreOFOqzdIOEPtbVF/qZGr/rYFQBBYARMnR\nWYlyIafGiYEDQ+Jl4Jfaf28gGIEFwOrurFo1TXsZCvJaG0mdpp0eTrGqqaTt0P6LA0EILABW\nd4tInPYynOq3qfFy4S7t7nCOQyMTpe+n2n91IBeBBcDqTBlYf2omaTO1o8NZ1raQKpu1/+5A\nAIEFwOpMGFjfXedyXbJHuzicJmt0Oen9ifbfHvAhsABYnekCK3tHTam/SDs3nGh9K6nykPaf\nHzAQWACszmyB9dYFkjA0U7s1nClrTBIfYsEcCCwAVmeuwPrp9gQ5e512aDjXhtZSZZP2iwAg\nsABYn5kC6/iG2lJ9qnZkOFrWDUnS+2PtFwJAYAGwOhMF1hOtJXHgPu3EcDrvh1jsiQVtBBYA\nqzNNYL18kbjOf1A7L2DsiXUJH2JBF4EFwOpMElhv9HXJGcu02wKGDa0lZWO29ksCjkZgAbA6\nUwTW6wNd0pjzOpuGd0+siz/SflXAyQgsAFZngsD6Yy+XNJqWpV0VCLKxjVRey4dYUENgAbA6\n7cD6fVcHkRbkldlkja8gF36g+cqAoxFYAKzu9b179+n99s9m1RbXOQu0awIFeOhsqbTqhN5r\nA45GYAFAqR1/fGCiJPVeo10SKFjWhIrS9T3tVwmcicACgFL697R6InVH79bOCBRuczupsIwP\nsaCAwAKA0vhk2TkiST0WahcEijEpWTr+S/vVAgcisACgxD5a0dUt7jYT9mrXA4q39VxJWnhc\n+yUDxyGwAKBk3prfziWuZqO3aJcDwjS5spzLh1iIMQILAML325M3NxJxtxr9kHY0oAS2d5Sk\nxXyIhZgisAAgTP9e1buCSNJ5E7ZrBwNKanKydPy39gsIjkJgAUAYvtk7upGI1L5s1n7tVkBp\nbO0gFVZzYHfEDoEFAMX4+bHJbd0iSe3HrtfOBJTerRWl58faryU4B4EFAEX46fE7O8aLxDUf\nsiBTuxBQNg+dKVV2ar+g4BgEFgAU4ssDt7bLiSvX6f1ncDwGO8gakyhDf9B+WcEhCCwAONWJ\ntzaMbC4i7saXT9+l3QWImDXp0vAv2i8uOAOBBQChPjt4V4+UnLgq13rIHD65spnMK1xxMzhg\nA2KAwAJgdU8vWLAwQnf1+WNz+tXLaSup0XXMsoPaMYBomJcmXdnXHdFHYAGwultE4sp8J8ff\n3TP1ktretqp89pAZHOjKxna2lzRPBF53QJEILABWV9bA+vqZFdefU97bVlXaDpz6oPb4j2jL\nuj7edevRSL38gIIRWACsrvSB9esrD03qaXxsFVe/64hZnFzQKZbXlo5sJkR0EVgArK40gXXi\n/f2zrmwS522r1LP6T1xxQHvIR0ztPleqPxWNFyMQQGABsLoSBtZ3f1o1ukNFb1qVb97rhnt3\nao/10JA1Ki5uDmfOQRQRWACsLuzAOvb27jsvre9NK3e9zsOnbczSHuWhaEGq9Psxyi9NOBmB\nBcDqwgmsDx9dOCwj0fiS4Jn9blnOCZvh2dpSWrwbixconInAAmB1RQbWsf87uODa9snetIpP\n73btbHZkR0Bmb0nJiuELFc5CYAGwuoID66d/Hlo54ZImCcYWwbodh0xZw4FDkc+EBPe97IiF\n6CCwAFhdcGAd/+zvj2ycc8NlbaqJoWLjrkOnrOI7gijY0lQZ+pvmixf2RWABsLqcwHI/smn+\nrcN6tKrp8nWVJNZu03PopMUckR1F29xYOnym/QqGLRFYAKzqi1cPrZp6Tc9W5SUgsUazDr2u\nHj99JWGFMO3vIvX+rv1Shh0RWACs5rtX984fc3HzpEBVVRRxXT3u7kVr92oP1rCgrKGuSuzq\njsgjsABYxpF/7Jt37Xlpvq4q36Bd7+G3zluz2zMuI+Ms7VEaFnZHYtxK7dc27IfAAmABXz+3\nflKvdLc3rFw1Mnpde+dKDsCOiFmUIjcd136Nw24ILABmduKDx5aO7uL7SmClZj1G3HU/3whE\nxG2oJ31+0X6tw2YILADm9MtrO2cMOjPJ96HV2f3G38uO64iaXa2l3ZfaL3nYC4EFwGw+emr1\n+B6nGR9aJTToNOj25fu0h1/Y3oGukv5/2q982AqBBcA0fn9z79yrzq5opFVKq4tHzVh/SHvc\nhVNkDZBqz2uvAbATAguACRx5fcfUy5vGG2cMrHfegFuW7NIeb+E449zlM7VXBNgIgQVAVfb7\nB+YMaGakVfkmF464a22m9jgLp5pWLm6N9voA+yCwAGj55YW14zome9MqqWnP6+Y8pD2+wukW\nJ8vdnPsZEUJgAVDw5ZMLBjeP835BsE7noXdvyNIeWQGvtTXk2mPaKwdsgsACEFPZ7++7+9K6\nxsdWzS4Zv4QvCMJMtqRLbw6IhYggsADEyuFXNtzUpbLxFcGMKyc/wDcEYT57zpQOX2uvKbAF\nAgtA9GV/kDVvkG+TYO2Ow2Zs0h5FgcJkdpVmH2qvMLADAgtAVH321PLrO/j2ZG/Wa9yivdrj\nJ1C0rH5S+w3t1QY2QGABiJLPn145pnOqN63cdTtdPXU9e7LDGq51pTyrvfbA+ggsABH3zR/v\nH9u1mu8sgu0GTFq5P7rjYd+chIvub4CzTIovt0d7JYLlEVgAIujnlzbc0r2mP62unLgsJl8S\nJLAQYbOS3Pdpr0uwOgILQESceO/hmVec7va2VdpZ/SfEJq18CCxE2rIUuZNDjqJMCCwAZfXD\nc6vHnFvJm1YVW14ybkHMTyNIYCHi1tWSEUe11yxYGoEFoPSOvrn7rj6NfPuxdx4+7UGdsZDA\nQuRtPV0u4ZCjKAMCC0Bp/PzarhkDWiR426pS6z43L4vyfuxFIrAQBXszpP1X2usZLIzAAlAS\nRz/667Y5155vnOtGyp3ebeSszdoDIYGFqMg8X5q8r73CwboILADF+vXjN57ZvWrG6D4d6hh7\nsYtUbd1r1AyznKOZwEJUZPWXmq9or3ywLAILwCm+/+Dvzx7YtGLObaMH9uzQvGaiBLirNe/U\nb/S01eY6RTOBhSi53lXpce21EVZFYAEwfPf2s9uXTx3V57xm1d0SrFLN09t07DXo+ltnrdpq\nzvMzE1iIlikJCZu0V01YFIEFONrxT57ft2LSVV0al88LqtpN23a9ZOCI8XfMWrR6027tES4M\nBBai5t6KrtnaaymsicACnOjYJ8/vXT5xYMe6cf6qqtywbfcBoyfPW23SD6mKRGAhelanyXXH\ntFdYWBGBBTjIt2/9Ycu8m/q1r+PvKldqs459R01euFHzIAtlR2AhijY3lEt+1l51YUEEFmB3\nxz977ZGNc8Zf3rFhkv/jqrhqzb1dteihTO2xKzIILETTngw561Pt1RjWQ2ABNvXF649smDXm\nsrNrB7YCSpWG5/QYMm7asi0W3ApYpE3Ll6/QXgbYWGY3Oe1N7RUalkNgAbZy5IO/7Fo6cVCn\nBoFDK8RXa9rhkqvHT1+22SYfVwExlzVEUp7WXrdhNQQWYAO/f/zioQdmXn9pmxr+rHJVTW93\nydAJM1dtM8mxQAFLmxCfuEV7NYfFEFiANf3wv3/++eDmpXeNuaJL86qBjYCJtVp2vfz6KbbZ\nuQowizkVXDOytdd6WAqBBVjAL5++88JTex9cOW/KuGuu7NG+Zf2U4COBVqjbsmOfYRNnrt6h\nPQgBtrWqulx9RPudAFZCYAHm9Mt//nZww7xbr+l9XrMa8RKqUlr9Zmd1vvjKETdOmbdqs7UP\nsQBYxJbG0vlr7fcFWAiBBZjJz+88u23xxMFdmlbMy6mKtRpndOzZb8io8XfMuHf5+q3mOg8g\n4BQPnyuN39V+i4B1EFiAvsPvPbd7+e3DLmiem1UV67fu2nf4hGmL1u5gL3XAHLL6S1W+TIhw\nEViAlsPv/2X3ituHdWuRkpdVGRcOHDN10YNs9QPM6Kb4hLXabxywCgILiLHf33tm8+zre7eu\nFsiqpHqtu/W/fvKC9WQVYHLzKsnE49rvIbAGAguIlaPvHlx4XbcG/gOrJ9ZpdUFOVs1fyy5V\ngHWsrSO9vtd+L4ElEFhADPznwNxBLROMsEpp1nXAuBmrdmqPEwBKY2eGNGNXd4SBwAKi6987\nbutWxVtW5RqfP2zKyr3awwOAMjnYR6o8rv2+AgsgsICo+fGJmb1SvW1Vq+Owu9fzbUDAHibE\nxy3kqO4oDoEFRMWH28a2due0VVrHEfN2a48Hdjd9wICB2ssAJ1lURQb9ov0eA7MjsIBIy35r\nzVX1ctoqoUX/u7ZojwSO0FfErb0McJTNzaT1e9rvNDA5AguIpGMvLe3nPf5CxXYjFh3QHgQc\ng8BCrB24SKo+qv12A3MjsIBI+fHJmd29h2JP7Tp2FTtcxRKBhdgbH++exhGxUAQCC4iE/9t6\n45neA1zV7TlxvfYbv/MQWFCwpLp0/1L7nQcmRmABZfRZ1vRLvFsF45tdPnWb9nu+MxFY0LCz\nrdT5i/b7D8yLwAJK78MD0y+r6z0OQ1qnUYs40Y0aAgsqsoa64+eymRCFILCA0vjpxfU3nW8c\nP7Ry2yHT+K6gLgILSualSrdPtN+NYFIEFlAyP7606Y5LG7py0spV89yrp23SfocHgQU928+R\ntCztNyWYE4EFhOvjZ+6/qWd944SCya1637hoj/Z7O/wILKjJui7edQMHHUUBCCygWN++uG36\n4LMq+c7V3OqSMXPZJGguBBYULa8vjV/QfpOCCRFYQKFOfPznTdOvam+cTlDi65175YRFO7Xf\nzFEAAgua9vdxxU/7XfvtCqZDYAGn+uyF3QvG9mpWziiruNpnXTpm1vqD2u/iKBSBBV1z06TV\ny9pvWzAbAgvIdfjdpzfNGtmjaZIRVlK+4bmXj521PlP7zRvFIbCgbFd3ibv9sPY7GMyFwAJO\nfvbi3iUT+p1d3ddVUrFh+z6j7lzO1kDLmNi5cxftZYDDza4hTZ7WfiuDqRBYcLDvX9mz4IaL\nAx9Yxdds1W3QuBmr+XIggBLbe6lLrv5c+00NJkJgwYl+eW33nKH+ndelQsP2l42asngL52cG\nUAZL0iVlFQd2RwCBBWf55s9rJ1zUwHuYUHHXzOg1cipbAgFExsHrK0jGn7Tf5GAWBBac4tvn\n1t50YQ3jM6vKZ1w8atpadl4HEFlburrkyg+03+xgDgQW7O+b59bd0qO2kVZpGX3HL+QzKwBR\nsqiJJE35XvtND2ZAYMHGTnzw+PKx3XyfWqVm9Ltp8W7tN18ANpc1MVVSF/+m/e4HfQQW7OjI\nu4+vub1fy3L+T636jF+4S/tdF4BD7BteQU576Jj22yC0EViwkaP/+9v++24f3LGOsRO7JDXq\nNGjSMo66ACC2dvSLlybbT2i/I0IXgQWr+/rd5w89OG/isO5nBA4U6kptccHgCfdu1n6TBeBU\nD3aPk5Z7SSxHI7BgLd9/85+3X30qc9ua+VNuGNKrfZM0twSUq92ic9+Rk+Zv5OuBALStvcAl\nrfeQWA5GYEHX0Y9fenTrsrtvHjmwR+e2rdPT01Or+tVMD9WwatVkyceVXLvZORf2G37ztEVr\n92m/nwJAkPu7uuSMXSSWYxFY0PHZ8zsX3HhZm5qu4F6qWKlKrSA1KwXxzklv3DLj3M69+gwc\nMW7StPkrN/KlQAAmtuZ8l7TYwcHdHYrAQmwd+dcj991yWcvyvqJKrNmiU5+rx06eu3ztZr7n\nB8BuHujmlmZbSSxHIrAQI9++smf+9d1O8+0ylXhauz7XT122TfvND/awc8OGDdrLABRs7YVx\n0nQ7ieVABBai68SnL+xdNqFvmxTfR1YpzS4YcuuirdpvebCXviJu7WUACrO+e5w038m+WI5D\nYCEaDn/0YtaGOTf1P69egi+sEuqedcnIqSs5JhWigcCCua3r5pZWmdnab8yILQILEXLsi3f+\nkrlxwW0jLu3QqGJgr3V3apMOfUbdsWhLlvYbHOyMwILZre3qkg5Pa79NI6YILJTa4U/f/qtn\ny4oZN1/dq116StCxE1JOa9XlsqE3T1+65ZD2uxocgcCC+a1qL9Ljde23bcQQgYWw/PbdB/96\n9dnH9j5434IpN424ske7JjXKBR1fwZ1Sr0X77v1HTLh7wZrtfFqFGCOwYAWLW4l75Cfab+aI\nGQILBfn5vy8/tnPNvMljBl/atW16nar5D/ApruRap7fp2LP/8HGTZy9bz/GooIrAgjVMrycV\nZvyq/f6OGCGwkOfoB89tX3BT/44Nk4JbKrFSrdMaZ7TrfPFlA4ZfN/6O6fcsX7eFo6bDTAgs\nWMTBcSnSYL/2Wz1ig8BCjl9e33fvqG4N4/1JldKgTdfLrhozafqCVRt2HdR+RwKKQ2DBMnb3\ni5OL3tV+z0csEFjOlv3hEyvGXljX11WVm3TuP/qupZs5VzIshsCChaxuLeVm/6795o/oI7Cc\n6sg/984ecpbvjDVVW1907dRVe7XfdoBSIrBgKZOrSqsXtccARB2B5Tw/vLRpSt8mcd6yij+t\n46BJy9hFHRZHYMFadvV0xd3Czu52R2A5yadPr76xex3jQ6sKTbqPmLaO/atgCwQWrOae2tL0\nJe0hAdFFYDnCif94Fo7s4DsWaNU2vcfM3aT97gJEEIEFy3n4Ulf8zGPaYwOiicCyu08eXzj8\n7ArGwUBrt79iwhK2B8J+CCxY0OxUaf9v7RECUURg2dfxt7ZN6pZq7GpVv9OQO+47oP12AkTJ\nzg0bNmgvA1BSOztL5T3aAwWih8Cypw92TepSydtWNdoPvON+jrsAAOYzIVHGH9EeLhAtBJbt\nHHtp2ZW1vSezqXv+qHt2ar9/AAAKs6qetP2P9qCBKCGwbOX4SwsvSfYeMrT9NXPZ2QoATG7f\n+VLtGe2RA9FBYNnHf9cP8O5xVbP7LWu13zMAAGEZGx+/Wnv0QFQQWPZw/C9TWuXEVeqFtz6k\n/W4BAAjfvGS54aj2GIIoILBs4LesEdVEEjJGrdJ+owAAlNCGBnLBd9rjCCKPwLK6I/sHJ4uk\n9JjKqQQBwIr2tpOWH2mPJYg4AsvSTjw7qopIWp/5h7TfIAAApXSol9R5XXs8QaQRWBb24Yz6\nIlX6LMnSfnMAAJTFcFflP2gPKYgwAsuqju7p6ZakC2fz2RUAWN6k+MR92sMKIovAsqav59UV\naTp+j/Z7AgAgEuYkxW3WHlkQUQSWFb17XZIk9Vql/X4AAIiURRVdHBDLVggs63ljkFtqjNyl\n/WYAAIigFZVlvvb4gggisKzm1ctc0nAye14BeSZ27txFexmAMluTKnO1hxhEDoFlLf8e7JJm\n0/jaIBCsr4hbexmAslufJvdqjzKIGALLSj4fmyCNZmm/BQBmQ2DBJtZVk4XaAw0ihcCyjqNL\nK0ut2/j0CsiPwIJdrE2VJdpjDSKEwLKMZ8+Qitdnaq/9gAkRWLCNB6oK3yW0CQLLIr4ZKq4L\nt2qv+oApEViwjzWV3Tu0BxxEBIFlDftrSqNF2us9YFIEFmxkWfmER7SHHEQCgWUF342R+AFs\nHQQKQWDBTu5NLP9n7VEHEUBgWcAfaknjVdqrPGBeBBZs5e64lDe0xx2UHYFlesfudMcNO6i9\nwgMmRmDBXia66nykPfSgzAgss/uok1Rn7yugKAQWbOYaafmd9uCDsiKwTO7xqtJxt/a6Dpgb\ngQW76SUX/q49/KCMCCxzWxQXP057RQfMjsCC3RxsJ8OztQcglA2BZWaHr5aqbB4EikNgwXb2\nNZbp2kMQyobAMrFPzpbGm7TXcsD8pg8YMFB7GYDI2lrDtVN7EEKZEFjm9dZp0m2/9joOANCw\nKqn8y9rDEMqCwDKtv1WTAdorOABAyTRX7Y+1ByKUAYFlVvuT3OO1V28AgJrhcvav2kMRSo/A\nMqlV7qRZ2is3AEBP1gUyhK8SWheBZU4LJWWZ9roNANC0v6ks1h6NUGoEliktkCqrtNdsAICu\nLalxT2qPRygtAsuMpkv1ddrrNQBA27y4ah9qj0goJQLLhG6R2g9qr9UAAH2jpP0R7TEJpUNg\nmc+dUnez9joNADCBrM4yRntQQukQWKYzR2px+HYAgNe+02SL9rCEUiGwzGaFpG3QXqEBACax\nrkLFt7UHJpQGgWUya1xV12qvzgAA07hNzuB4o1ZEYJnLXnfl1dorMwDARC6Wa7XHJpQCgWUq\nfyxXbrH2qgxYzqbly1doLwMQNfvTZZP26ISSI7DM5PWUeM6PA5RYXxG39jIA0bO2fAV2w7Ie\nAstEPqjtmqS9HgMWRGDB5m6XMzkaluUQWObxTVMZqb0WA1ZEYMHuusst2kMUSorAMo0jXaWf\n9joMWBKBBbvbW9v1mPYghRIisMwie7icc0h7HQYsicCC7S2Lr/659jCFkiGwzGK2pO/TXoMB\nayKwYH/D5eJs7XEKJUJgmcROV9oW7fUXsCgCC/aX1Ubu0x6oUCIEljm8kFR+pfbqC1gVgQUH\n2FSpwrvaQxVKgsAyhU9qu2Zor7yAZRFYcILJ0v6Y9mCFEiCwzOC39jJCe9UFrIvAgiN0kVna\noxVKgMAyg1HSKUt7zQWsi8CCI+xOi39Je7hC+AgsE1gk6Q9rr7iAhRFYcIa5ruaHtQcshI3A\n0vdEXJVN2qstYGUEFhziEpmoPWIhbASWug+rxS/SXmkBSyOw4BD7arv/oj1mIVwElrbf2so4\n7XUWAGAFi1yNftYetRAmAkvbKDlfe40FAFhDHzYSWgaBpewBacgO7gCAsDxcx/1n7XEL4SGw\ndL1UrtJ67fUVAGAV812Nf9UeuRAWAkvVtw04gjsAIHx95BbtoQthIbA0ZV8mg7TXVQCAhTxc\n2/289uCFcBBYmhZIq0Pa6yoAwErudTX7TXv0QhgILEUvJKRs0V5TAQDWcrFM0x6+EAYCS89X\ndV1ztddTAIDF7EmL/7v2AIbiEVhqTlwkQ7VXUwCA5UyTc45pD2EoFoGlZoFkZGmvpQAA6+ks\ni7SHMBSLwNLyQkLKVu11FABgQduSK7yvPYihOASWku8bumZpr6IAAEuaKD21RzEUh8BScpVc\nob2CAgAsKkO2aQ9jKAaBpWOdNM3UXj8BuxiXkXGW9jIAMbU+sfo32gMZikZgqXinQsUN2qsn\nYBt9RdzaywDE1jUyQnskQ9EILA1H28nt2isnYB8EFpznYLo8pT2WoUgElobbpZv2ugnYCIEF\nB1rianJYezBDUQgsBU+5a+3RXjUBGyGw4ESXcsYccyOwYu+7+nGLtVdMwE4ILDjRntTEd7TH\nMxSBwIq9yzlFDhBRBBYcabJckK09oKFwBFbMbZAWh7RXS8BWCCw401myRXtEQ+EIrFj7T3LS\neu2VErAXAgvOtD6x2tfaYxoKRWDF2LHzZKL2OgnYDIEFhxoqY7QHNRSKwIqxuXKe9hoJ2A2B\nBYc6UNf9vPaohsIQWLH1SkLVHdprJGA3BBacap5kHNMe11AIAiumfm3umqm9PgK2Q2DBsc6X\nFdoDGwpBYMXUBOmtvTYC9kNgwbG2VKj8mfbIhoIRWLH0jKvWPu21EbCfe0aMuFZ7GQAdo+Vq\n7aENBSOwYujHBq4F2usiAMBGDqXLM9qDGwpEYMXQSBmgvSoCAGxlmavpEe3RDQUhsGInSxoe\n0F4TAQD20lMWaA9vKAiBFTNf14pfqb0eAgBsZkdypY+1BzgUgMCKmcEyTHs1BADYzo0ySHuA\nQwEIrFjJlPRM7bUQAGA7WU3lCe0hDqcisGLk6xoJq7VXQgCADS1ztTyqPcjhFARWjAyQEdqr\nIADAlnrIEu1BDqcgsGJjhzQ7pL0GAgBsaWdy8ifawxzyI7Bi4vNqiQ9or4AAAJsay/HczYfA\niol+Mkp79QMA2NWhRq7ntAc65ENgxcIOac4GQgBAtCxwnXlce6hDKAIrBr6qnrBGe+UDANhY\nV7lfe6xDKAIrBq5gAyEQTSunTLmzBDdf2LNOuUoNeywxrsyQEM2is4RAtG1Oqvq19mCHEARW\n9PENQiC6+oq4w77xgYsCMWWcfJ3Agk2MkLHaox1CEFhR91WNhPu1VzzA1koSWFkdRSpcNOaa\nDJfI6Jzra6/K00ukcxQXE4imzLrul7XHOwQjsKLuSrlWe70D7K0kgTVOpOkW74WpbknaGzqv\nkyRujOySAbEzUzplaw94CEJgRdseNhACUVaCwHo4RZK3+y72b9v/wZB500WuieyCAbHUTrZp\nj3gIQmBF2ddsIASirQSBdYfI8EJm7UuT+sFnZM8QmZh75WyRO4wLK3s3qJBQrfV1u3N/bGzb\ntMT4lFbX7vJdbybxnt29kuOvz7l8cNJ5NZPcFdP7rgr7sQCltj6h1o/aYx7yEFhRNoj/JAai\nrQSB1VmksK2AfcS1IPh6Tou1ClzeGScV93uC95BPmeWbsyQ1MCV1qTGhtciBFjlXr/J4NjcK\nzHMNLuljAkruSpmqPeYhD4EVXYckPbP4lQJAWZQgsNIkLef/d65cdEpmrXBJ95AJB5LFtd5/\nebzIJd5/O4qkjZiz4u5uLkmY752wNVmkyQ0zZ41tkNNcxmdY3g++JLHVmeM8npzOajLunvl3\nXpIocktpHxwQtr2pif+nPeohF4EVVd/UjF+lvcYBthd+YO0RyfDMa+MSkeojD4TMaiOJm0Nv\n3EdkcO5M8X4+NTGnmHzbBie7pK73P54Gi7Qx/iPqUFuREd4LOf82a27s5rUq59a+37EyQeqU\n5oEBJTNR+moPe8hFYEXVUBmqvb4B9ndKYK2dt2x3gbe8T6TrGJd/u13z4NvMEBmU78Y5gZSW\nZVza5pb6Of9k1RF34DOtjiIzcv4Z0Tbdv61wrrfdPN4djSXR+JqidxvjEP+tbxo2iS+7IPqy\nmsmT2uMeAgisaGIDI2vx9AAAIABJREFUIRALoYGVNSHNu9dT+vCHjKv7RwbdcoFII3eNiesP\nPHh9JZEOQXOaSNKu/PfbRGSuceEGMY62cr/ImYF5d4tcHHLjTSKnef/NCayuvinTRc4ry8MC\nSmypq8VR7ZEPfgRWFH1XO36l9toGOEBoYA3L3bO81bWzZ16dVi3oljNzJtfbaVy8P0nk3twZ\nc0UuP+V+xwdaqaW4t/iu9wvMy+mpprk3zNy9e/cGkdreyzmBNdY3dWeiyAW8ByCmesgK7aEP\nfgRWFA33fo8IQLSFBtag+rdsOvDgXd2TA1sCg27pDSz/Jj3PVSI9cmecJa5Np9zvnnKS6N2M\nuNkl5/h/IlgV40b39Kgf+E2BwJrq//kJ3o2RdXpP3RmxRwoUY3vFKl9pj33wIbCi5xFpyAZC\nIAZCA2uVf73LvPv86vFJja8P3pd9vkhiYGeo1ZK35/lDLt8OVPl0F7kx55/rRaZ4r/YJDazE\nnEl7OwRNCATW/MDPz21mTHdn3JUVkQcKFOtaTkloFgRW1PxQL2659poGOMKASpUqh3fLVSLV\nApczRZICl4eKTCrg5gt82wGbSSWj0vqJ9Lw3j7ejzhWpOHzl9oMez468wFqSdw9LBqUb+9Rn\nFLzTPRBpmXXj3tAe/mAgsKJmRO4XiACYxH6XVMy94paEwMXTxHXKLu5edUXWeTaK9DauXSVy\nZej8FTmRtsZ3cVuBgZVjxx2d4kTOLfvCA+GYJp05JaEpEFjR8igbCAHzySmmwL5WO/I+zXoo\neI/1YNeKDPMMF1lmXLv1lK8FjhDp5b+4pLDAyrEiWWRVGZccCFOGPKw9AMKLwIqS7+uygRAw\nn3653/HL+Q99aee/OP6Uj6b8tsVJg5woO8137QGR5IMh8/uKXO+/OKCIwPJcWfAmSCAK1sQ1\n+k17CMRJAitqRgjnHgPMZ7lIjYd9FzNExvmnXlxo/5ybM0dklP9ag7zzP99dv/9aI5z8uwJs\nLC9S3XshN7CyBmZ0C9zN1XlfLQSirY/coz0E4iSBFS18gxAwp/NE2u3L+TdriEjyPv/EZoGN\ngKeYkXMrcW/1X5soUmmVcemBahK33uPJia+GxrcSH6zXLEkSvbvC532CdYa4Jvsubatd0FEg\ngOjYVbnC/7QHQRBYUfJ9vbhC3q4BqNqcJpI2cPywdBHXXYGJySLbCr75oVTJ25Jo5Fliv5mL\n7uxdTmRgzvW9FUUyZt1/z+Xlktbm3GP/1VuDAmuBW1xtx02fN3VgNZGLovmggBBj5RrtURAE\nVpQM4xCjgEmtbeQ/alX5O3KnuUUeLuTmgyR4615mz8CJDOMGGYe2mhrvu1p5iXeHd+/GxKB9\nsCYn5R4iq9uBgu4ciIpDDV0vag+DILCi4pA0YgMhYFKZE86qFp/cZMj23Cl7RVyF3Xq9SHLw\n6rz80tMqxlVqcuXawPUuqXFJ6SN25txvv9TE+jNDdnLfNrxNaoK74umXnrrbOxBFc+U8DtWg\njsCKgq9rcQ5CwCZWiPTVXgagpDrIdu2REARWFAyS4dorF4DI6C6uNdrLAJTU+oS6v2gPhY5H\nYEXeTml6sPiXPwALWOUO2sUdsIz+MkN7LHQ8AiviPk1NvF971QIQEVvqiYsN/rCgvanl/6s9\nGjodgRVxvWW09poFIALmzhhaSaS/9mIApXGzXKU9GjodgRVp66V1lvaKBSACkr3HV+jEBn9Y\n0qF011+1x0OHI7Ai7L1KFTZqr1eAwwytVatOFO62jpRrMoH/XoJFzZd2J7RHRGcjsCLr2Hm5\npyoDECN9RdzaywCYTSfZrD0kOhuBFVmz5VztdQpwHAILONXGxJo/ao+JjkZgRdTLCak7tNcp\nwHEILKAAA+Uu7UHR0QisSPq1mWuW9hoFOA+BBRRgX2rSh9rDopMRWJE0Tnprr1CAAxFYQEEm\nygDtYdHJCKwIOij1H9ZenwAHIrCAgmQ1lj9pD4wORmBFzidpCRzyGVBAYAEFWuzKOK49NDoX\ngRUxJ7rLGO2VCXAkAgsoWFfZoD02OheBFTHzpC2HJAQ0EFhAwTYl1fhBe3B0LAIrUl5ISN2u\nvSoBzkRgAYUYIpO1R0fHIrAi5LtGrrnaKxLgUAQWUIh9aYn/1h4fnYrAiozsfnKl9noEOBWB\nBRTmNumjPUA6FYEVGUulWab2agQ4FYEFFCbrDHlce4R0KAIrIl5KTH5Qey0CHGvR+PE3aS8D\nYFIrXC2Oao+RzkRgRcJ3DTlFDgDAjLrLSu1B0pkIrAg4cakM0l6DAAAowJbyVb/RHiYdicCK\ngFnS+pD2GgQAQEFGyI3aw6QjEVhl53GnbdNefwAAKNCB2nH/0B4onYjAKrN/V0lYqr36AABQ\niGnSOVt7qHQgAqusfj5DbtZeeQAAKFRb2ac9VjoQgVVG2VdKL+1VBwCAwq2Jb3BYe7R0HgKr\njGZKC44wCgAws74yW3u0dB4Cq2x2utK2aq84AAAUZXdKhf9pj5eOQ2CVySsVku7TXm8AACja\neBmsPWA6DoFVFh/WdE3XXmsAACjGoXTXn7SHTKchsMrgx1ZynfZKAwBAsRa62hzTHjQdhsAq\nvd+7y8XaqwwAAGG4QFZpj5oOQ2CVWvY1ciZfIARMYNH48TdpLwNgclsrVP1Ke9x0FgKr1CZJ\n433aKwwAj/cr6OLWXgbA7K6V0drjprMQWKW1RGpzBkLAFAgsoHiZdd0vaY+cjkJgldJ2d5X1\n2msLAAOBBYRhtpzLKQljiMAqncz48su11xUAPgQWEI4O8pD24OkkBFapPFmu3HztNQWAH4EF\nhGNjYo3vtIdPByGwSuP5SvEztFcUAAEEFhCWoXKT9vjpIARWKbxcOe4u7dUEQC4CCwjL/tpx\nf9ceQZ2DwCq5l6u4JmmvJQDyEFhAeGbKeeznHisEVom9WMU1QXsdARCEwALCxH7usUNgldSr\nVV0TtdcQAMEILCBMDyVV+0Z7GHUKAquEnq/sZvsgYC4EFhCuoTJOexx1CgKrZJ6u5L5Ne/UA\nEIrAAsK1vw7Hc48RAqtEDibF36G9dgDIh8ACwjZXzj6uPZY6A4FVEjsSEu7WXjcA5DeqceMm\n2ssAWEUXuU97MHUGAqsEVrsrcPx2AICVbalY+VPt4dQRCKywZU+Xypx/EABgbWNksPaA6ggE\nVriOjZLqa7RXCwAAyuZQY3lSe0h1AgIrTL/0loZbtNcKAADKapn79MPag6oDEFjh+bK9tNmt\nvU4AAFB2fWSK9qjqAARWWP6VLl0OaK8RAABEwN60hDe0x1X7I7DC8dc06ZOlvUIAABARM6Ud\nB8OKNgIrDLuT4sZprw0AAERKR1mpPbTaHoFVrOxprgpztNcFAAAiZkvF5P9pj652R2AV59eB\nUmOV9qoAAEAE3Sh9tIdXuyOwivHpOdJ8m/aKAABAJGW1lB3aA6zNEVhFe7WudNuvvR4AABBZ\naxPTvtQeYu2NwCrSngqu4Xx9EABgOyNloPYYa28EVhGyZ7iSpmqvAgAARN6hpvKw9jBrawRW\n4X67WqpxdmfA/AZUqlRZexkAy3kgsfpX2gOtnRFYhfrfWdKC3dsBC+gr4tZeBsB6hskw7ZHW\nzgiswvytlnTn7DiAFRBYQGlkpssB7bHWxgisQuws77pK+7UPICwEFlAq9yemfaE92toXgVWg\n47dLhZnar3wA4SGwgNK5Ri7XHm/ti8AqyI+XSu012q97AGEisIDSOdRcNmuPuLZFYBXgP2dI\ny+3aL3sA4SKwgFLakJTykfaYa1cE1qn+nCa9MrVf9ADCRmABpTVWemRrj7o2RWCd4qHEuDHa\nr3gAJUBgAaWVlSHLtIddmyKw8jlxh1Sco/2CB1ASBBZQapuTy72uPfLaE4EV6pf+UpPd2wFr\nIbCA0rtbWvyqPfbaEoEV4pOz2b0dsBwCCyiDXjJWe/C1JQIr2Ov1pBtHbweshsACyuDh+nJQ\ne/i1IwIryCOVXEOztF/pAEqKwALKYmVC2ifaA7ANEVh5VsUl3K79MgdQcmvnzr1HexkAC7tO\nuh7THoLth8AKOHGrVF6o/SIHACDWstrLndqDsP0QWH6Hr5S667Vf4wAAxN7OGu5HtYdh2yGw\nfL7tIs34+iAAwJGWxVf9UHsgthsCy/B+E+m4X/v1DQCAjtFy3lHtodhmCCyvl2tIP74+CABw\nqqyOMlF7LLYZAivHIxVdo7Vf2wAA6NlTR7Zqj8b2QmCdPLkpIWGy9isbAABNaysmvaw9HtsK\ngXVyplRaoP26BgBA11RXg6+0R2Q7cXxgHR8t1Tm7MwDA8QZLN443GjlOD6zDfaXhFu3XNAAA\n6rLayc3ao7KNODywvu0orXZrv6QBADCB3XVltfa4bB/ODqyPWkinA9ovaAAATGF9cvxj2iOz\nbTg6sN6sK5dy+CsAAHwWJFT+h/bYbBdODqwXqskA7dcygLK7Z8SIa7WXAbCHO1x1P9EenW3C\nwYF1IClugvYrGUAE9BVxay8DYBND5JyftMdne3BuYK2NS5yu/ToGEAkEFhAxWRdI9yPaI7Qt\nODawZkryIu2XMYCIILCAyMlsKwOPa4/RduDQwDo+VlJXab+IAUQGgQVE0P6WcoP2KG0Hzgys\nw/2k4WbtlzCACCGwgEjaeZpM1x6nbcCRgfUNhxcF7ITAAiJqUw25V3uktj4nBtYHzaTTfu2X\nL4CIIbCAyFpXTRZqj9WW58DA+kdd6cPhRQEbIbCACFuXKvO1R2urc15gPV7JNUr7lQsgkggs\nINIeqCrLtcdri3NcYK2NT5is/boFEFEEFhBxa6q42A+rTBwWWCcmS/J87VctgMgisIDIW5Mq\nt2drj9pW5qzAOnKV1HpA+zULIMIILCAKHqwjw49pj9sW5qjA+qyDNN+u/YoFEGkEFhANWxvK\nlZw1p9ScFFiv1ZPOHJ4BsJ9xGRlnaS8DYEO7Wkjnr7THbstyUGA9XMF1NYdnAAAgTA+fJ43e\n0h69rcoxgZU921VuivZLFQAAC8kaICmPaw/gFuWUwPqxn1Rbrv1CBQDAWibGxy/jy4Sl4ZDA\neruZtNyq/SoFAMBq5qdI/++1R3ErckZg7UuWPpnar1EAAKxnU0s5/TXtcdyCnBBYRya4Eidp\nv0ABALCkg1e4yt3HZsKSckBgvddW6qzUfnkCAGBV0ytJ94+0R3OrsX9g7aos5+/Vfm0CAGBd\nm86Syg9pj+cWY/fA+uEaKTdB+4UJAIClZd2YJL0/0B7TLcXmgfX0adLofu2XJQAAVrehlZSf\ny5lzwmfrwPp1gss9gG8PAgBQZlm3pEiTJ7RHduuwc2A9ni61F2m/IAEAsIedvVxy0d+1B3er\nsG9gfXGVuPvs0341AgBgG8vOEPdV/9Ee4K3BroF17P6qkr5M+5UIIBYe3rVrl/YyAA4xo4Ek\njnpXe5C3ApsG1uMtJem6g9ovQwAx0VfErb0MgFNkTawt7gEc2r1YtgysNy8WV/fN2q9BADFC\nYAGxdOj2hiLn7/5de7A3ORsG1luD3dJqufbrD0DMEFhAbGXNaCVSa9qH2gO+qdkusN4a4paG\nd2u/9gDEEIEFxNz9l1YQV+e132mP+uZlr8DKfuwil/x/e/ceH1V553H8CeF+CVguYkRALlWQ\nblnUZbdg9WW1/OH+kgCJcomReGMBC0iogloksliXy9qNMQoWs6JSFGgB0Soo1q0il6IWKEIB\nFauwyEXBQEiCOfucM2dmcqMzmT3kmcN83n8wv+d3Zng9efF7Md/M5Zzu01ebnjsADYmABRiw\nbELfJNVMFn1l+rk/Tp1PAetY4WVKXUa8AhINAQsw49fZXZRK/vHcjypNJ4A4dN4ErIpXspqr\nxj+eZ3raADQ4AhZgTFFO7ySlLhz17G7TOSDenB8Bq/TVuzspddHoYtODBsAAAhZg0n9PvCZF\nKdUpfc76b0zngThyHgSsvc9ktlaq9ZA5vDcIJCYCFmDY6l/d8S8X6JCV1OvmR1fu+850MIgL\n/g5YZ7Yvyu1mx2aZzVlFgYRFwALiwcK89H4t9XOyajVgxIwXNx4ynREM823A+nbzorxrW+t/\nx5b/dOcTpocKgEkELCBerF4wffTgSxorJ2f9QCb88vl3dpWYTgxm+C5gle7745LZt1/XNcn+\nx0u99q75q0xPEwDDCFhAfFm5cOadN111SVMV0OqywUPHzSh44feb9x5NnLcPIwWstCvN6t//\nB/36Xt6756VdL+7coV3r5o3df63kFm07XnxpLwDo1U7/n2B6DwBq695FP3W3adG0kQpLbtqi\nVcoF7Tt2Tr24a7cePXr37tOnb79+P+zff4DhwPH/UOeVGSMFrB4KAAAAZ/MHAlZtl/fp06dR\n5LsBNTTTk9PT9CbgR2316HQxvQn4USc9Oh1NbwJ1ImDVwX5FMtn0JuBDLfTk9DO9CfjR9/To\nkM0Rg4v16KSa3gTqFFPA2v6n89tVemDfM70J+NBqPTlDTG8CfvSkHp07TW8CfvSAHp2ZpjeB\nOp2IJWCd767WA3vS9CbgQ3v15KSZ3gT86DU9OlNNbwJ+VKBHZ4HpTSB6BCwCFmJBwEKMCFiI\nEQHLZwhYBCzEgoCFGBGwECMCls8QsAhYiAUBCzEiYCFGBCyfIWARsBALAhZiRMBCjAhYPkPA\nImAhFgQsxIiAhRgRsHyGgEXAQiwIWIgRAQsxImD5TKIHrMKCgoIy05uADx3Vk/Oc6U3Aj3br\n0XnV9CbgR+/p0dloehOIXqIHLAAAAM8RsAAAADxGwAIAAPAYAQsAAMBjBCwAAACPEbAAAAA8\nRsACAADwGAELAADAYwkXsD6UKu4Ndr9YOHHk0Jz8N86Y3Bri367CsZkj73l8R7jD6CCSzVLN\nXW6b0UFklVvm3501NHva0mPhHpPjFwkXsN6tK2Aty3Ab4/7X6OYQ3yqK0txBKap0W4wOIqo7\nYDE6iOzwfcGxGb462GNyfCPhAtbrIvlLgl4P9FbqUf3FsjXP3i6Se8Ls9hDHKueJZP3X6mX5\nOmYtCbQYHUT2xZKwhSIPOk1GB5GdvFvknjXbPt5QqEPVmkCPyfGPhAtYK0TeqtE6OFwyNtnF\n6VkiBQb2BH9YJzLpsF1sHS5DnRfsGR3U0xOS8Zl9y+ggCs+JPBx4I3BrmmQ5cYrJ8ZGEC1iL\nRWpeLPPp0OsRpdmSfqzWQwBb2W1yy9FA+ZsZz3xu3zI6qJ9tafKCUzA6iMJdIrvd8n6RP9i3\nTI6PJFzAKhLZXr1zZrQM/datXxD5bYNvCf6wQeTF6h1GB/VT9m9yV5ldMDqIRrpIqVs+KbLU\nYnL8JeEC1lyRT6p3PhaZFqz/IvJAQ+8IPqFH54vqHUYH9bNYZKtTMDqIxs0iJ91SB6zfWUyO\nvyRcwJopcqh6Z43Is8G6LE1uaegdwSfukBz957f7dh4Mdhgd1MvnGTI7UDE6iEa+yJ/dclrg\n3UImx08SLmD9XOTE24/kZIyY+Kz7PLko9O0M7VZ92NDOEN9K0/Rvizsesk/UkLv0tNNidFAv\n+ZLxZaBidBCNnSL3Bl7C2pwmD9m3TI6fJFzAGicy3j2JSMZS52RG80XeDR3+mcjnxvaGePap\nyGOvpbuzM+lru8XooD62iSxwS0YHUfmtyO3LP9jx7uPpMuGI3WBy/CThAlaOfnYcMX/Zqqdz\ndfG83Zktsjl0OE/kr8b2hnj2F5GfZeSuO1B+eE22yHQ7nDM6qI/7ZVjwS1+MDqKz5YHA73S5\ni0ucNZPjJwkXsIaLPOW85FqxUA/tHl08IvJB6PA0kY9NbQ1x7U/2Obi/ccoDI0Q2WIwO6kVH\n9MJgzeggKieLcwIBKy3vf5wGk+MnCRewTpYEv5RhzRKZY9X4jWAKvxGgblskfAq134nMshgd\n1Iv+D+dvwZrRQTSOjBV5fOepisNvjRcpsjtMjp8kXMCq4q8it1Ra1n9WfU/7nlpfxQccO0Qy\nghdXPSwy0mJ0UB/H0mVqaMHoIBoPhD7SfnqqiP0aFpPjJ4kcsCqHiRy3rGKRV0K9USIlBreE\n+PWZyK2hRaZIOaOD+lgm8lpoweggCrtFJgbrbSJ5FpPjL4kcsKyRIoedyz//Otg5KTLa5I4Q\nv8rTJSu0GOWcYJnRQfQmiRwNLRgdRGGFSHGwPiWSdobJ8ZdEDlhlaSJllrVXwq/cbxXJN7kl\nxLHx4XPU6rA1zGJ0UA9HRMaHV4wOovBc4PI4ju/SnZNeMTl+kmgBa2Phw+uDtZ7OCfqm8vbw\nFTOLRN4wszHEvWKRVW65PfBqPaODqK0TeTq8YnQQhRUiTwTrQyLplUyOvyRawForMq4sUFZO\nE1lsF4tFFgVaRzIl8+TZHooEt09kzKlAOVvkN/Yto4NoFVX9CBajg2hsE7mtwq3Xuy9dMTk+\nkmgB63S2yKPOtcjLCkRudk5r9M0ISXvHLk783H3eBOrwmMgM5/+z5SJZzqncGR1E6z6R7VWW\njA4iOzNWpMi54Ih1aIz7chWT4yOJFrCsTekiI4tWrnoqRyRtQ6C3Pk3kwZdWP6XD15SKv/9w\nJLBjd+jfJ4tffzlPRN4MtBgdRCm7xmXmGR1Eti1D5N5Xtu3aXDxCj0vgNDFMjn8kXMCy3h/l\nXk5OsrcEe2uHu60H+c4rzu7AZHdOMtcGW4wOojO05nV5GR1E9tFtwecrmed+QIHJ8Y/EC1hW\nyaoZOcOG5+a/ejrc+6p40ohhuY+9b25X8IMzb83MHTpy8uLw1+0ZHUSlTD8f1ni5gdFBZGVr\nH70jK2PU5AX7wj0mxy8SMGABAACcWwQsAAAAjxGwAAAAPEbAAgAA8BgBCwAAwGMELAAAAI8R\nsAAAADxGwAIAAPAYAQsAAMBjBCwAAACPEbAAAAA8RsACAADwGAELAADAYwQsAAAAjxGwAAAA\nPEbAAgAA8BgBCwAAwGMELADmVF6nlHq4Zvcm3cwzsBsA8AwBC4BBe1oo1XRn9d5LOl/1OmVm\nPwDgDQIWAJPm6DR1TWXVzjcXKZX0tqHtAIA3CFgATDpzlU5YC6p2xurGWFPbAQBvELAAGPXn\nJkq1Oxhev5ekVJfj5vYDAF4gYAEw6yGlVFZoVX6FXq4xuB0A8AIBC4BZZX10pHoluPp3vcgO\nLt6eNKBTk/Z9Mp8/UfUBX8z51+4pySk9MxeWBFsb9KPesY5O7N604y6nsXfWkK6tk9v0lIKv\nGuBHAICaCFgADNvQSKmu3wbqPc2V6nQkUO/8ZxXUeWno3uX3NQm1O6x0mx/aL3sdt5Oa+lAv\nS8c1Ct2n1X9U+wg9ADQIAhYA0ybqHDQ5UP5Ely8FyrVt7HzUZUDvZPv2Mfe+leLEppSu7eyb\npGWB7i77YVOVG7Aqf2oXjS/p2dbp3NvgPxAAELAAmFbSXankLXb1nM5DGYHmPp2gGk38VFfH\nn7TD1PJA+0lddnr6qK722F83bHsscGddFrVRfe6fO32/ZRXr1dXrynX/QIH90A0N/hMBSHgE\nLADGrdUpqH+FZR3poFS7A4HejUolveAe35miVLdSp+yhY9cHbnuCfthcp9qvq+tVnvtm4E+U\nush9y9Ha016pkQ3yQwBAFQQsAOaN0QFpjmXdpm8WBTpbdTkmdLxQrxbbhf1S1XXB7t/0Ykio\nUtcGP2zVucrn5K15V2bOPtfbB4CaCFgAzDumM1HLT9brlHSD27E/lxW+hM6plsG3Dk9/tnF7\nqH2JUt93CidgvRFsX6BUegNsGgDOjoAFIA4st7PV95Vq9anb6K9UjyrHhyj1vdqPGqBUR6ew\nA1brimD7H5Vquvnc7RUAIiNgAYgHwwInVShwl6caKXVjlcN5+tjBWg8aqFR7p7AD1jWh9jy9\najF93zncLQBEQMACEA8OXmDnqx995y7txNSyW5h99P3AodMv3znwwhbB01yFA9atob+rfJBz\n6PLxy4818E8BAC4CFoC4YJ9bodnHwdU2VVvgM1YvplZrhgPWPeG/qyTbPZo86AkyFgATCFgA\n4sLXOg/9MLR6v46AtcI+MMspuw9KG611qBqw8qr+bZtuTXEf1faRMw35YwCAg4AFIC5UD1g7\nqr3nF/Zmkj4wYb+7GnjWgGVZ5W9O6ReIWDeVnpsdA8DZEbAAxIXqAetzVfepFm7U/cdDq6v+\nTsCyHXxmsJ2wZnm9VwCIhIAFIC5UD1jlzZS6ovadShopdWn44s2pEQKWtqK5Uq1OertVAIiI\ngAUgLlQPWNbVSjU5XutO9kWdc0Or3SpywLLy9aF3PN0pAERGwAIQF2oErCnBi+ME7AqErU26\nOynUnHy2gLV/f7i2r3O4+pzsGADOjoAFIC7UCFj2eRr6hL7/V9qlyfX2lwh3V/1o1gdN7ZNl\nOWW1gDWlQ5WTjlpL9KGN53LjAFAHAhaAuFAjYFk36PXd7setyrP04mVdnGmjVIp7Rvcdqa1+\npNtH7LpawJqrF4XBRYW+TwpfIwTQ0AhYAOJCzYD1SWvduP6POmKVvnylLq9zujm6GmRfBOfL\n/BaqcLpe/dJuVwtYJy7Uq5wN5bosec3OYPc15M8BADYCFoC4UDNgWevshKVa9epkn/pK9T3k\nNPfYzeTeg3s3UmpM5Rr7yBUDd9f4DNb6Zs5Z3FO7tXHOgzXoVMP+JABAwAIQJ2oFLOujwaGT\nuCflfu023wieoT35F5ZV8Q9Oub3mh9w39Q2f/73xZPIVgIZHwAIQF2oHLMtaP3lA56YtU2+Y\n+Um4d/DBK9smtx0wdbe9+PKW9k1Sb/6q1mkaKn8/fuCFzZNTeqTN//Lcbx0AaiFgAQAAeIyA\nBQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYAAIDHCFgAAAAeI2ABAAB4jIAFAADg\nMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcIWAAAAB4jYAEAAHiMgAUAAOAxAhYA\nAIDHCFgAAAAeI2ABAAB4jIAFAADgMQIWAACAxwhYAAAAHiNgAQAAeIyABQAA4DECFgAAgMcI\nWAAAAB4jYAF9B4q8AAAACklEQVQAAHjs/wAlgStTjLnhZAAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 360, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_width=20; plot_height=6; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "temp = data %>% filter(QRISK3_event==0) %>% select(c(eid, QRISK3_event_time))\n", - "mean = round((temp %>% summarise(mean=mean(QRISK3_event_time)))$mean, 1)\n", - "obs_time = ggplot(temp, aes(x=QRISK3_event_time)) + ggtitle(\"Observation Time\") + \n", - " geom_density(fill=\"gray70\") +\n", - " xlab(\"Years\") +\n", - " geom_vline(aes(xintercept=mean(QRISK3_event_time)),color=\"black\", linetype=\"dashed\", size=1)+\n", - " #geom_text(x=mean, label=mean, y=0.15, hjust=-0.5)+\n", - " #ylab(\"Prevalence in [%]\") +\n", - " scale_y_continuous(expand=c(0,0))+\n", - " #theme_classic(base_size = 25) + theme(strip.background = element_blank(), plot.title=element_text(size=24, hjust=0.5))+\n", - " annotate(\"text\", x=mean+1.5, y=0.015, label=paste0(\"~ \", mean, \" years\"), size = geom_text_size)\n", - "obs_time\n", - "plot_name = \"2_observation_time\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# ENDPOINTS" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Frequencies" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "plot_width=20; plot_height=6; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "temp = data %>% select(c(any_of(targets))) %>% select(!contains(\"_time\")) %>% select(!contains(\"cancer_breast\")) %>% \n", - " pivot_longer(everything(), names_to=\"category\", values_to=\"Value\") %>% \n", - " group_by(category) %>% summarise(ratio = sum(Value!=0)/n(), count=sum(Value!=0), .groups = 'drop') %>% mutate(ratio=ratio*100) %>% arrange(desc(count)) %>% mutate(category = fct_reorder(category, count))\n", - "\n", - "plot_endpoints = ggplot(temp, aes(x=category, y=count)) + ggtitle(\"Endpoints\") + \n", - " geom_bar(stat=\"identity\", position=position_dodge(width = 0.8), fill=\"gray70\", width=0.5) +\n", - " coord_flip()+xlab(\"\") +\n", - " ylab(\"Number of Events (%)\") +\n", - " scale_y_continuous(expand=c(0,0), limits=c(0, max(temp$count)*1.3))+\n", - " geom_text(aes(x=category, y=count, label=glue(\"{count} ({round(ratio,1)}%)\")), position = position_dodge(0.8), hjust=-0.1, size = geom_text_size)+\n", - " theme_classic(base_size = base_size) + theme(strip.background = element_blank(), plot.title=element_text(size=title_size, hjust=0.35)) + \n", - " scale_x_discrete()\n", - "\n", - "plot_name = \"3_endpoints\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAALQCAMAAAAjXrvTAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd3gVVf4G8G8qxVCDyqoIP0BF\nWUR3V1zbuq6ij8o3hRACoUYIKESaKChoFlFAkF6EIEVRpCwqilgQQhUREQQUqdKL9BJCIMn8\n5ky7U1NMbgLc9/MH98yZM40H5r535swZkgAAAACgWFFp7wAAAADA1QYBCwAAAKCYIWABAAAA\nFDMELAAAAIBihoAFAAAAUMwQsAAAAACKGQIWAAAAQDFDwAIAAAAoZghYAAAAAMUMAQsAAACg\nmCFgAQAAABQzBCwAAACAYoaABQAAAFDMELAAAAAAihkCFgAAAEAxQ8ACAAAAKGYIWAAAAADF\nDAELAAAAoJghYAHAZaIdyfoVz7oOiXVRZvGsDACg0BCwAOAygYAFAFcPBCwAKJTVlKcVf37N\nCFgAcPVAwAKAQkHAAgDIHwIWABTKlRGwDocIFwrcfnhq6pfFs2UAAAEBCwAK5coIWIV0Joio\ne6lsGQCuUghYAFAoasBq08fD7j+/5lIMWOmEgAUAxQoBCwAKRQ1Yq/2w5lIMWMMQsACgeCFg\nAUChXJUBqwUCFgAULwQsACiUqzJg1UXAAoDihYAFAIVyNQasU0EIWABQvBCwAKBQCh+wDi0Y\n9+awd7867TLr5FfThryVtvSsMuERsHI3zBw+cOi07y+5rnzfwhkjB02cuzyjKDuzmNwC1r6F\n744cOHTCp79lF3DdAAAGBCwAKJSCBawjotHDojTvwSB1AIfghxfaGn39VJg6q0z0d5I1YK0T\n5fvlwrG+12oDQFTqesi+lR3d6unDQ4T/e7g5Y1kGGs1zZ/ZZh5lYpFWvee46o65yy28K+JcD\nAKBBwAKAQilYwDorGv1Nko4+YU4v7bJMTU63Nc0J6npJam8KWNtE+TZJSq9ualRtnmUbR58N\ntWSj6uNzjXmWgJXnzrgGrMPNrbV0/46i/J0BQOBBwAKAQilYwMoWjW6Vjt5hzSltfC0uPGyd\nFZPTwRSw9iqJSVpa1tpoimkTu24huyTjZp4lYOW5M24B6/c6jlVX8kevMwC4eiFgAUChFLAP\nVrDc6KacR+U/r3miw/Nt/xai5pTPjQaJasWdfca+OzixmlxKfc4UsA6LcsRRcf2q8lOde7TQ\nslG4b6D4neq1rdD7+46Z+vZzt6nzm+tzre8izGtnjjRs2FBsnqo1FL6Xq7L/pswOe+jZ1CF9\nkh4MV6aqO25QAgB4Q8ACgEIpYMAqIyLLOKLr0tSUs5uV5Rrr85epqUXrCZU1rDyFP2EKWMeU\n8NSFqM6sHKXi+zuVBf6q3wXMeUiZjtupTX9RV5meoU1aA1Z+O9NdTPk6uU8Uk0G9j2uTx19V\nIlaXAv4FAQBICFgAUEgFDFjl5EZlKlP9A3pF9r/EcsFHtMl7xdQ1G432i8upV5W0gHVcmQii\nu//QG5xXE9UcbXK0MtXTt8FDykWsyGPalCVg5bcztoClzBxoOpivRWev8FP5HTMAgAEBCwAK\npYAB6xqlWZUDvhp1Qe2S1c/KxHDTAm9ZAtZJdarSfl+DvRVEzb/VieybxMQDuaYVrAkyrdIa\nsPLZGVvAyhZ3EMueMx9NL3O2AwDIHwIWABSKGk26DHa13GimZppJ5iVvFDVD1PJ/RbmqOcRk\n1XQJWK+bl39e1ISpY2Z9rsxeZ9mzBFF1p1p2C1ieO2MLWAfFVF3Lqre2fW3qkqP5/M0AAPgg\nYAFAoagBy4NvmFAl00Rmmpd80nRTT+lG3say4pecASvkiLnBBqXuM6WsDKNwl3XP5ivzNytl\nl4DlvTO2gKU8wVi5oH8fAABuELAAoFAKE7DaWpbsIqo6KsVspdv4+y4rtgSshy0NciuLuv8q\nZeUO4WDrnmWWF5XvKGWXgOW5M/aAdUl5yPDjAv1tAAC4Q8ACgEIpTMCaYFnyRVHVUin+prT+\n2TI7K9wRsPpbNy3GWaDWoqSMzU4rrLOl+0VlJ6XoErA8d8bRyb2RmKxoH3ceAKAQELAAoFAK\nE7C+tiz5mqhKUIqfKK1tbye8zRGwZlkbJIm6+0TpK2X2cets9V07jyhFl4DluTOOgDVdPZin\nFmRJAAB/DgIWABRKYZ4iXGOpSvVlGmWkqYq2RR51BKzvrQ1eFXV1RGmaKJW3b7O/qL1NKboE\nLM+dcQSs3CZaXqwYPeqnnPyOFADABQIWABRKYQLWJkuVKdO8LYo32BZp5ghYthcADhV11UVp\nlCjVsG9zuKiNVIouActzZxwBSzrzpO+iXJVmk/H4IAAUGgIWABRKsQSs/xrXokxaOQLWYWuD\nsaKugigN8F2rMpngu65VtIAl5Qyr6ItYFPr43FwJAKAwELAAoFCKJWApQzLcblukjSNgnbA2\nmCTqyhjL32HfZpqoDVOKRQxYknTsrXqmiEV3fZPfAQMAmCFgAUChFEvA8vWmMmnhCFhHrA3G\nKLfsROkVUbrVvs3xovYapVjkgCXbNvKxcCNhBb2W3xEDAJggYAFAoRRLwBoiijfaFnnSEbB2\nWhsofbBuEqU3jJLZMFF7rVIsjoAly/ii51/1iDUi7wMGADBDwAKAQimWgDVOFO1PEf7DEbA2\nWhv4nhJUbgaWtW+zr6itrxSLKWAJvw+poayszO+eBwsAYIeABQCFUiwBa6aykjPWRao5AtYC\nawNlHKzHROkrtzuIUqKofEIpFmPAkqQLLyhr6+V9tAAANghYAFAoxRKw1ikr2WyZrbxj2Rqw\n3rau8zFR96wo7VFmL7Zt8y5Rqb5fsFgDliR1Nq6dAQAUCAIWABRKsQSsc0GibH0X4fvOgNXK\n0iC3iqgbrpSri2KqdZOnQkXlTKVczAFLef9zCMZqAIACQ8ACgEIploAl1RblZyyz45wBq/JF\nc4NfTFtuK4r1rJtUhncPOqiUixiwdp+1HY7yHunzeR4xAIAJAhYAFErxBKwuolz1nGnu7jLO\ngEX/My+vDH5VOVspL1Vmr7Ks/9+i6iG1/CcC1vPaxK4XH61KY61HcymYtCFOAQAKBAELAAql\neALWIvLd7lMlkEvAutV0Cet4pDkT3SEmGplv2qkvkP5QnShcwOopJtpoEwdFmKpxztL6G9Hg\nrvyOGQDAgIAFAIVSPAHrkjL0Qdm1xszXiUKcAYvaGxEqJ1ap0F/ZrPbYMj3Y96vSLev2S+pU\n4QLWa8qi+izlStjT5vuB5xqKqoH5HTMAgAEBCwAKRQ1Ybfp4+UFtll+mUTpMUYV31UtUW6KJ\nIp61B6ywJkRNtMFGjzylLPC4sbYoZbrlfnUqe7oyyEPIcm1u4QLWZKV1mijmSNIKZareHP3q\nWe5XyuWyiH1/8m8MAAIRAhYAFMpqyttktVl+mSankdq8SkyXbi1uE6Xhb4o/+6qz1StYv5Qn\nCn2o37h3BzZVX1pT1Te2++GblJqyTwyYNHlI6xuViaAx+tzCBazN6r7c0fSpO0UfrmfVyYhH\nn3v1zf92j75OnZxYTH+BABAQELAAoFCKKWBJR+pal4vPVV41qN30UwPWhZnBljahX5tWt72O\nfdPhHxgzCxewpHuMddwrT2XHuxzX4KL/1QFAAEHAAoBCKa6AJe15xLzYs5ek6eLzOXWmGrDO\nSh9XNbWp+Z1lfSeTgixbfsDUMayQAWttGXPAkqQxFW1HdftXRfk7A4DAg4AFAIVSbAFLkt5/\nULtAFd5E9J36UhS1Z/nUgHVako72r6GtuFqfk/Z9+aXbrfpmq8UvNM8pZMCSVtTT1hOtTp8e\n/mCocUgVmn18qfB/UQAQ0BCwAKD0HFkwZfDgiUvsw3rqAUtNVFtmjxj41vS1Oa5r2Ltg2rDB\naR+vL+oo6znfjR846J0vj/lqzv44Z9xbr7+d9vF2jOAOAIWGgAUAlyFzwAIAuPIgYAHAZQgB\nCwCubAhYAHAZQsACgCsbAhYAXIYQsADgyoaABQCXIQQsALiyIWABwGUIAQsArmwIWABwGULA\nAoArGwIWAFyGELAA4MqGgAUAlyEELAC4siFgAcBlCAELAK5sCFgAcBlCwAKAKxsCFgAAAEAx\nQ8ACAAAAKGYIWAAAAADFDAELAAAAoJghYAEAAAAUMwQsAAAAgGKGgAUAAABQzBCwAAAAAIoZ\nAhYAAABAMUPAAgAAAChmCFgAAAAAxQwBCwAAAKCYIWABAAAAFDMELAAAAIBihoAFAAAAUMwQ\nsAAAAACKGQIWAAAAQDFDwAIAAAAoZghYAAAAAMUMAQsAAACgmCFgBSr++9//vrO0dwIAAODq\nhIAVqP6PiDaX9k4AAABcnRCwAhUCFgAAgN8gYAUqBCwAAAC/QcAKVAhYAAAAfoOAFagQsAAA\nAPwGAStQIWABAAD4DQJWoELAAgAA8BsErECFgAUAAOA3CFiBCgELAADAbxCwAhUCFgAAgN8g\nYAUqBCwAAAC/QcAKVAhYAAAAfoOAFagQsAAAwN1kohF+3cAkopF+3cBlAAHLKnvt5F5JcfEd\nXpy+Mdeo3MCGqIRn316Zrc9IZN6plzdO6ds2Lrr5M/0/3ONb7Fnfmicwt92vlHK/G5rcLLZ1\n3w+O+Plg8oSABQBwJVrxzC3lqzRI+t6oWPLMrRXK1W69yKjIntu8drnw6x9+fZ91ya3liL7M\np0aRHkbtjPLNliZe65blfNaydkT49Y8MOqxVLGsSGVYz5bCvxQwK+VErdqXgL/I8zCsfApZZ\n7qKOviyV8p1ebQpYik5btBm+gLW7pymEDT+vL+YLWFOZW+9VSgd76A1j5pbEQY1n182IgDX+\ncwAAuPx4n9IvdCRNH7XixFN6ReIFtWZLA72mjOUqUc79ZItTzhrF8Ruozjm1mNkryNLEa92y\nvffps8qnKRWzQ+g/7epSraN6iz8i6SXjOOpTtUPeh3k1QMAyyRwkYk/ykAnjB7UTpQnapSo5\nKSXOVM0Y112e0exXdYYRsHY0kysHzfpq8eeTOsnzX7ykLWYErA/lVfyulI62Zo4b+uEnk0XD\nT0rgqLojYAEAXFk8z+g5cUQVO44e1FjOPaNEReY/iMJajhjZIoyomdJkd6QccVqlDu9WSz7N\np5mWHU72OOWsUSQQrVBLP9UnCjc18Vy3JJ2qS9TwnZVr5rULJpomV5ytQm9J0sUHqINvvbdk\nGu3XBVMTz8O8KiBg+WS/LEeet7QbfL/1lyeGqmXrvb7tz8qTavQyAlZX5oGn1Nm538Qwz7Mt\nNo+5hXat6w3m3idEISeNOT7Dj8ejuhCDgAUAcGXxPKVPIGp0QBTmhVDEGfkzlehGpbvH+uuJ\nlLP900QP/SEKFzsSRV40Ft1Wjqpb45SzRrGcKF4tjQijsmMTTE281i3rS/SUWjGbqKr85Tad\nKmfJU59Qee2bbj4FLTMt0J7o6r5JiIDlM405ZrFv8iM5YS1QStaAJR1pxrxeKekBaxtzuyxj\n/hzm9rmWxRYwJ2xTiyeiOO60WsxJZl7jlyMx28wIWAAAVxavM3rGdRSpdd/t/eQLuyXpUhWi\nJWpFOlF9+eNAEF1zQq3JuoFopb5ozgN00yuWOOWsUd1Hwdo3VkNqsFkyBSyvdQt1iNZL+mIk\nf3sm0xNi4jDRKqX21A3UxbzA3lD6q9dxXhUQsAxHY5g/NVdMYG6h9KayBSxpCPOHSkEPWOnM\nw3yzM4bN+v6SebFFURyvd9vaO3zAu3rDUcwLvffn90nPJ8S26zvvjDKVyvyVMas/c7pLG0l6\nmTlH2jU6KSY+ZZpyRW2m1t0r1bF6BCwAgMuV1xfDLKI3LRWrie7Uyw8Q/SJJv7R+qrde04xo\njl4eTjR7oCVOOWsUq4iitOJdKZmSOWB5rVsIoWD9QkMrorGS9Kh2bzCcpiufHanGGfMCUnOi\nr70O9GqAgGWYwtw911xxobXWScoesKYxv6MU9IC1mHmAc4X6YsujuJnr83rDmJd77c2lCXpX\n+ETlN4Kc4V7V552K5vhMlzZKDMtcGK3WtRe/chCwAACuPF5fDfFEuywV7xN11suvO4Y+YCL9\n2cJt5ShWssQpZ42qDZG+/Q3ijwTXBw3N61ZUoCC9g5UcsKZI0j30vDJVmcaIjyVBZLuksIio\nqdtBXi0QsAzJzIusNR8wK09p2APWGGY1j+sBaztzjPXfvGmx72M47me3DZ5N5JgTXnszlLnt\n7HU71oyO5mhxHzEznmP07P8F80i3NpI0gHkxJ89dvfK95sziZ86Zg1OZpx486NwOAhYAwOXK\n66uhBt0k/3n8p5X6V84442lCSfqIqKOl9eEIijirFnMepCqHLHHKWaPKqkQRF8wV7gHLtG7V\nk/qtQEm6m4K2SlIj7Y5gBXE5S8qoQ21sq7hUlcqd8zrSqwAClu4oM9tiyG/MseKfmS1gZT/D\nrF4xMjq5v8KcMP+8bY3qYutiuelPbhvc3Yv5fa+9SWfupuaptdHcTvwqeJtZv5bal3mDaxtp\noLwfA5VehpuYo5V/uHPRBwsA4Arj8dVwmugxackjYuSEm4cqKeg90xWsuUQPm1uvu5NI774y\ngkj+wjHHKWeNaikRWypcA5Z53aplRPepcelDtZN8Y2olpi4G0wz5oyddf1za1uvhe1vONxZp\nrvTVumohYOl+Yk6yVV2KYd4tOQLWFOaWarw3Atb+JDmexQ2YuzHT1E5ZbFMcx661b+vIlLTh\nKfICc+wzDF04aq9WHM38rfyxlvk1teJ4lNqJ3tlGPKLYSntcQ17/JvFpC1hbW2vuuj0cAQsA\n4LLk8dWwgajl6GBttKn7TkpKh6m/6XPlsNRQK257oXurekTXjNany9HTkiVOOWs0g+3dvOwB\ny75u04J1Riz57n9tgulu8aRhV2okqn8hkr8E1wTTXOnLMsqOG13dhxP19zjSqwEClm4Zc097\nXWvmjZIlYOWcXNOPjXuJvoFGTw6OUscO7Tltoz7Qu1hsa7xct9G+3l9E04Qppz13Zj+zMRrb\nRuZB8kd2a/0e4Xzmae5tRMCarFUN0y6z2QLWhr8byiJgAQBcljy+G5bLESqk1vQdF3aPqKJ2\nRc+qSLRanXm+lpxwtIaLRJCp1Oek/tX1IFUSrxLxxSlnja6lffQEe8Cyrdvn80fU5Fezn/Lt\nNodCRVfgYVQ1S8r6K8VKp6+j6L0ZE4PoM22BxfaLZVcXBCzdl8wv2+uSmcXLCOwjuUfpicX8\nqpy973XVZid9rIwzqoxP2oLl4NVyv229v6gNn7X1+fJZxDxBL59n7iQ+J+q5rjfzHo82csDS\nRocTz0AqY04gYAEAXGk8vhu+kONLveNKcfM1ROniG4GorjJ+4+kmIUS19S8RNercPlOdHKn0\nOjfHKWeN7n7lWUQT14DlW7fhZO/q6pywh5X9z7qJmmZIP0eKTmKpVOWgNIkiRPJqSY9qS+wy\nPQJ5FULA0qUz97DX+a5gmTR7c5s+3xywZKe+m/pSU9Gkl/JiAGWx5O1vyeHnjH3NOSe2zEhg\nHuWxM7OsiS5W1G3RngU8wtzdq80b6g4LE7W7hghYAABXGo/vhi9MA6+nEol+Laf/j6hi9xkf\n9r6eevpuEUrSpYMr+0QQ9RLl7eXpcaXSiFPOGkNtIuvFKWcfLPO6DXtrU1CH1WeydqfJe9RP\n1CwqQ+VrBVHDc9KmcJoqSXHq8A8fUajWif4iUTWPI70aIGDp1jG3tVVlxzCLJzXkpNR6rqoV\n8w++BraAJWT9KN63k5KtLsZvZkgXejD3veSyxT86aBeZnKbYrpkpiydzjHhkYx7zfK82csDS\nf3l4BKyMXzV1ywcjYAEAXJY8vqiWEZXVe6FsIrpFfO66XeuTlbKH6EFL863XK73Icx+iCupL\nSvQ45azxqU5kGaHd4ylCbd0+DxJpXVRO1tdGcPgxJjK8bp9TUnYjaixP1lMfeFxPpD/5FUrl\nPI70aoCApftDzihHrVU7mJuKf2emPljfMnfwdWR3CViytbHq+FbyYsli+mhbbVgFuzUu3b5U\nU+UlNprkiMoP1MjUg2NOebXJP2AZ8BQhAMDlyv2rQdpIdKNevkgUoRSyxv+ratm67VdJ3xHZ\nrhO8R2I09VFE2gDXepxy1vhUoSBrhcc4WOq6DSuJ7tHLH5PSgd7wNkWIB8auVZ873OcbQCuC\ngj2O9GqAgGVo5xhXXc4mL4pP81OEr5h6PnkELGk881jzYr81ZZ7t0u4Cc1S2S71y+2+Ko3K/\nMpzpQX1QU7c2CFgAAFcB128GScoMpkrGRAiVsc5NI3rbWnOAqLK0rzzdqt2EaUHUb+7cLc4a\n0zIFvIKlrttnEFF3vbyHqIpp1o7y6lCj2scRok+0ObiCFSDkRNLVMpJ7TiftZYTmgLW/KUdt\n0ieMgPXHXvOCC9Vn+nyLLZaTlNb5fMO8KUb3wdwoZvO4Dj5LmQc6a3tyzDlptj78u1sbBCwA\ngKuA6zeD7FaifVrxqOlqlipOeTvgoqG9vtNrTpIcwlaQzUBnjWktefXBcqzb50Wi/+rlU2S+\nMpX7CD2g3Iapqua/fUTam9/QBytQ7JPjzsfminnMCcqgUpZxsGYyJ+uD3GoB68fW3MEczT5g\nHmddbBpz3FallKZe3VIcYG7mvi8HmVs4u219KrJVN07I8myDgAUAcBVw/2oQw3XSOP0bQb8P\np3duOVqebpK/ilKIjG+sH4huLmzAyuspQse6fQYRtdfLGyzBaRKV+U0p1FH7vm9QBsYSdhE1\n8DrSqwACls945pgVvsmVMfr7lS0B6+KzzPrrmrWAdbKpdqlLdS6JeZl1sdwBzG2UN6Cvk1Ob\n9ip06T1j7FCH7r53O2/slLZbLZ2I4pGHmMd4t3EPWLPctoCABQBwufL4apB+JKqpjSb9mHwO\nlz+iI0K01+Z0JRJfKQuIKus3VZ4lSjQv7uxxVbhxsPJY9yKiWnqflzHmPlj7K9EgtcTKAO/S\nLArRDgHjYAWMzOeYoyacUidOT4xiHqpel7KO5L5RbqXdr9ZvEc6Qq6bpL2XaLgef5CzbYhld\nmFPEP6ncFOZe6igmi6L1V+44pcs5bLtSOpzMvEOr7c+tP9UGaHdv4xKwFnr0sEfAAgC4XHl+\nUcUSNRHfNrmvEkWKQj+ifysvahtBVF1UZN9O9M/DoiZ3VBCR5Vn1ggSsQaQHIo0pYLmtu0fX\nrmKsx4u1iXqq35m/RRLNMxZnulu72TKKIsX9nzb0L23WCG08h6sUApbJqefFWOz9pn/6ybRX\nYuTicC2N216VM5L5ObULoB6wct4UA1H1f3fuvGmj5ADFidsdix2S26aKu9DbmzHHDfno4ymi\n4Rue+zKEuenEH35dldZcvd+o+Jb5GdPdSGcbl4Al70XsjMVzLL3LBAQsAIDLled3w/4aRDVe\nnjTwbqIgpVPL8RuIbnzpnTf/QRSuhqk15YjKJwwc2uM2+TTfzrJ0QQJWujpEvLAiVahP1Ep8\njnVfdxmi9coXVBjRveOXrJ7fI4IoxvjOmUmh67XisUrUM0f6JpT018TJ0c37SK98CFhmmdNj\nfONKJS3Tq20B67Scld5TSkYn99x5LUwjUg085LLYRnnVE0VhWyej4Zgsz13JHheljxuflqNX\nZsTJ0zPyaOMSsHK6KC0cTysiYAEAXK68v6e2NtT6TVXQen9suEmrqK4npe9r632rgrpZHwgs\nSMDKqkQVtI7Ggy0dtW5zX7cesKSv/2I07XheX9vRa+kVY9UfBlN1OZm11CYvRVLZs9LVCwHL\n6uj8/snN5DzSddz3RqyxByxxISlGuUZlGqYhI31kj1ZNY1okD5x9wH2xL+TVKi9gyk4f0rF5\nTGKvd3fnuSs7J6W0iGnRY7K51RB5HfvzaOMSsKQ/BrVu2j7V9QrW5jx3AAAALjsXpzx+Y3jV\ne17Te/NKZ966r0rotfcNPeFrMj2uVkRo5D9f/M22bEECltTaGEHUJWA5120ELOn85Jia14RW\nu6fnJt/KEqneBd/UksaVyt41Vv/B/y1RbMGP+8qDgOWUm+TdN+rqgYAFAABOK4iiS2RDCcZ4\nDVcnBCwXM5h7uA8AehVBwAIAABf/pOAd+bcqsv1hVN9xc+VqgoDl4kQz5jE5+be7oiFgAQCA\ni6VELUpgM8/YXmZ41UHAcvMxM3eZu3TRlvybXrEQsAAAwE08Ba3y+0bWB9OTft9IqULAcpWm\nPpznOgR6Mcs46nAi/6WKDgELAADcHPsL3ZLh521caECRB/28jVKGgOVu/cDWMc27fpd/wyKb\nyQ5tSmCzCFgAAOAuPcz33hs/SaHgq/sGIQJW6UPAAgCAy8tkouF+3UAaketLRq4mCFiBCgEL\nAADAbxCwAhUCFgAAgN8gYAUqBCwAAAC/QcAKVAhYAAAAfoOAFagQsAAAAPwGAStQIWABAAD4\nDQJWoELAAgAA8BsErECFgAUAAOA3CFiBCgELAADAbxCwAhUCFgAAgN8gYAUqBCwAgFI3mWiE\nXzcwKQDeSXOZQsAqgA3MHJ9prjkgXhmYZap4QZ7eb1sse21az6SmcW36vLvJvCarI/7c8bwg\nYAEA5GnFM7eUr9Ig6XujYk2n2yuGVXswdZ9R81u3OyuH38DTs42aJc/cWqFc7daL1KnPyeJe\n+ybSw6idUb6Z6EvTPOfWrLaWM9ovaxIZVjPlsG/eDAr5USt2peAvCnS4UMwQsApAiUWLzDXv\n2wLWTjE9xbrU4o6+GNX9F9OaSjhgjee5btUIWAAAebjQUY9FfdSKjDZ6Rfl3tTZvhGg1DQ+o\nFSee0tskXhDT+QSs4zdQnXNqMbNXEJkDlsvWrHLuN9rPDqH/tKtLtY7q8/6IpJeM46hP1Q79\n6b8F+PMQsApAjkVR/JKpIjdJrjAHrHHMiZx40dQka6iITx2HvDPhzbZyIeozfU2JUyzO+n3v\nu3sHrPGfAwAENq9TZ04cUcWOowc1lnPPKKWisXzW/HefIck3EwXNU9oMlUtPDxnX8waiW5Wc\nlPkPorCWI0a2CCNqJiq2pvp0Joq3bSSBaIVa+qk+UbgpYLlszWY46QHrbBV6S5IuPkAdfOu9\nxXfXZV0wNfH8hgD/QcAqAPykDskAACAASURBVDkW9bDcAVzP3NUcsM7Hc8o05qW+FrkD5FQ1\ncKda/qGLPJGurenZEtllnwsxCFgAAF68zp0TiBopl6XmhVDEGflzHFF55VZGlhy9bs6RCzvK\nUhml5szjRL1FIZXoRuXWwPrrieyn3mZUbpe1ZrkRuUaEUdmxCaaA5dyazbZyVF1rP50qi++j\nT6h8hjpvPgUtMzVtT4SbhKUAAasA5Fg0LYqn+yre5g4DzAFrIfOs7cx9fS3mMEd9akxlvsrc\n/JRUKgFrMyNgAQB48Th1ZlxHkVoXjt5PvrBb/qhL9L5acfJaou/kzy4krhwJxytSOTmEXapC\ntEStSSeqb13jZ0SDbBu5j4K3qaWG1GCzZA5Yzq1Z5TxAN72itU+mJ8THYaJVyrxTN1AXc9u9\nofRXj8MEP0LAKgA5Fs17gdsaPyEy4jitvzlgdWM+KD3HbHRFPBPPPNW0hnOtudVqqXAB6/dJ\nzyfEtus774wylcr8lTGrv3ZBzNZGkl5mzpF2jU6KiU+ZJgKdNFPr6pXqWD0CFgCAZ8CaRfSm\npeJAEFXVvwVaEsk/uS9G0jV6L4/uRPI5fzXRnXr7B4h+MS9/tgbdYe5HIltFFKUV70rJlMwB\ny7k1m+FEswdq7R/V7g2Ga+06Uo0zlsbNib72OE7wHwSsApBj0ax5zD/o018x/9rXFLC2ML8o\nSXILoyfiLOakS+ZVbNyYo62pgAHr0gS9G3ziSjGdzvyqPu9UtPpQo72NEsMyF0arde3Fjy8E\nLACAvHicg+OJbPfzsvb8qhc7E02UpJWkXjkSvlT6XL1P1Fmved02PMLzFLTcto02RPrmN4g/\nzFewHFuz2laOYiU9YN1DzyuVlWmM+FgSRAutrRcRNfU4TvAfBKwCkGPRzD+i2Li4+yJ3yO1j\nClgjlGcMT8T4urm/wDzbY00FDFhDmdvOXrdjzehojl4jT2fGc4z+k+QL5pFubSRpAPNiTp67\neuV7zZnFr68zB6cyTz148IRjAwhYAACeAasG3ST/efynlbtcZjYm+laSxhL102uOEdVWOk71\n0Ws+IupoWmRdMLW3rSWrEkVcMFckWIdpsG7NIudBqnLICFiNtDuCFWis/GdGHWpja36pKpU7\n57Jm8CsErAIQAUvqzzGn1Mn9YvIlX8A6E6deUBqo37iTMmOYd3isqWABK525m5qn1kZzO7H2\nt5n1S7x9mTe4thG7kDBQSXmbmKOV/09z0QcLAMCT+zn4NNFj0pJHxMgJNw+9YJu5P5Sulb8A\nehKlGXURFJItvWe6gjWX6GHTMo9QOftYiUuJ2FLhHrC0rVmMUHpo6QGrMbUSHxeDaYYkduv6\n49K2Xg/f23K+0b450QL3AwX/QcAqACVgLWf+RJ18j6OOmAPWJ8zKZdk1Rjf33cyxLg99FCJg\ndeGovVpxNLP48bKW+TW14ngUt891bSO9wdxKe4okhVkZ39QWsLJPa2qHBCFgAUDA8zjtE7Uc\nHawNRHXfSevMKHX09dZEnxh1tYmOiE5Vf9Mr5PTT0LfIAqJX7NsYbO/m5R6wopxjvW8rR09L\nvoDVlRqJj1+I1srfRME0V/qyjLLjRlf34UT93Q8U/AcBqwCUgHWxJacoU7lJ3E8yB6xnmbeI\nz+y2zGri2cTc1mtNVh4j9O5n37hbG1m5OZndWr9HOJ95mnsbEbAma1XDmJWOWbaAteHvhrII\nWAAQ8NxPwsvleBRSa/qOC7tHVPF1RVf1IfqPGLk9xpyH7hB9trIqEq1Wp8/XIqrjW+YfFOHo\nqdHSPnqCa8DSt2aS8yBVEpfD9IA1h0JFn9thVDVLyvorxUqnr6PovRkTg+gzbYnF9otlUAIQ\nsApACVjSROatYmod8xJzwPqZWfuVMF2PN2uZk73WVKCAtYh5gl4+z9xJfE7UR5PvzbzHo40c\nsLRB66QJzIvFJwIWAIA395PwF0RU77hS3HwNUbpvTm4POXudFqUmRIuN6ruJ5G+I3kR1xflZ\nOt0kROmVpfmGqJdjG/fbnjN0C1i+rZmMJFLeHKIHrKybqGmG9HOk6ACWSlUOSpMoQizTkh7V\nlthlerwRSgoCVgGoAWsn83gxNZSbXzAHrCHGvcMDzIlK5S9ywWtNiTPM7P9vNLOsMSxW1G3R\nngU8wtzdq40csDZqq5io3TVEwAIA8OZ+Ev7C9NqaVKIkY8ZpOVbdrb70z3IF63blqcPT/0dU\nsfuMD3tfTz3Ntwgfp+C9kl1tIuu9R2fAMm3NZ3t5elwp6AFLWlSGytcKoobnpE3hYriIOPWa\n20cUqnUfu0hUzf1AwX8QsApADVhSd07IUgbBEs9pGAHrZIzR+130Pk8Xn/uYozI91lSgPlhT\nbBe6lCEfkjlGDLkyj3m+Vxs5YOk/iDwC1qZHNH+7qwwCFgAEPPeT8DKisvqNuU1Et+j1O+8g\nekx7orsN0cfGAjWJjskfu27X+m2l7CF6UJ+5J5gec26jOpF1YCxHwDJvzZD7EFVQrpL5Apb0\nY0xkeN0+p6TsRtRYnqynPsy4nugnbaFQKud+oOA/CFgFoAWsBUp8+lLtcWUErNnWmKP8q85u\nxrzeY00FClhTmUduNFF6zH+gRqYeWqBza5N/wDLgKUIAAK+AtZHoRr18kShCKy6NJHpOH+Tw\nRSKjn0ZuGQpTTtRZ4/9VtWzd9quk74iMvrgDjGHZzapQkLXCHrAsWzOMItLGXBzouOL1NkWI\nQeevpWFiah/RIm1GBAW7Hyj4DwJWAWgB62xTfkX0gFIikh6wcjvYLiQpl4H7MY+zruOCvqYC\nBaxZzFMclfuZB0jSQeVPjzYIWAAAheJ+Es4MpkrGRAiVUQv/C6PQd4zqSUQv6uU9RPWsa0gj\nelsv16dg52CE+V7Bsm5Nt6883TpX1YKo39y5W3zzdpRXhxrVPo74HnPEFaxSgIBVAFrAkoZy\n1ImDWl7RA9Za5qQFhlRmZViUhcxxlv9O25tP/EMqeMBayjzQWduTY86JK2bLPdsgYAEAFIrH\nWfhWIv0hpKP61ayPQ6ii6ZUz64ge0ssfma5XqeKItFdsiPTVyGUT+fTBsm1Nt4JsfF8EuY/Q\nA8pltKpqtttHpL1iDX2wSgMCVgHoAWs989dzOUrcZzcC1uvMs3wttzO3FNUXEpn/m+urz0xR\nh1YoaMCSY1wLx3Vh6VORrbopPcE82iBgAQAUisdZuCeRfh/iU1JGnZJWl6WKa01Ncm+m8KNa\nOVG/WKRXHC1PN+lfApOIXpKc8n6K0L41XR4BaxKV+U0p1FGHmN+gDIwl7CJq4HGg4DcIWAWg\nB6zcDjzkJe21flrA+iOKY46bmvZQxnCQpG+YebgxdMmZ3swdMqRCDDTa3fdu542d0narpRNR\nPPKQNqqpexv3gGVKgD4IWAAAngHrR6Ka2rDNj8knS/njVE0qt9LS5hVj9NCdYVRN3O6LjgjR\nXq3Tleg1vV2yaxesvMfBcm7NydYHa38l0t7oxhQvPmZRiHYIGAerNCBgFYAesKQPOTFGG2hK\nC1gz1Ff+GRbqo38OlxNWylrlYm3OqmTm5tu1NRX4VTkJyhLS4WTfa3f6c+tPtQHa3du4BKyF\n2osL7RCwAAA8A5YUS9REPLid+ypRpCg8RzTG2uRIZQqZJwqH7iblNYBSP6J/nxeFEUTVz+rt\n7iX6wWULg4gGWSrMAcu5NalH167Wt+3YAhbT3dpdjVEUKfr9tqF/abNGmF6bCCUFAasAjIB1\nJIq5pdopUQ1YYvD2deam5+PVUUClnAmix3vigLETBraWC2236GtKnGLxmeRuCHPTiT/8uiqt\nuam//LfMz3CHXO82LgFL3mTsjMVzciUbBCwAAO+Atb8GUY2XJw2Us1OQGI3h9zAK6ZdqUEaV\nfj+I6PE3R3auSvSI8nv6+A1EN770zpv/IAr3DUIqz7aPZSWk+4aIX6Gssz5RK/E51n1rZYis\nj6dbA9ZMCtVnH6tEPXOkb0JpjlYhRzfPAwV/QcAqACNgSf2ZJ6olNWCtZFPeUYzWurlL0qrO\nxpOFUSNPGmuy6emxzexxUfrCacZrDTPi5OkZebRxCVg5XZQWtjctIGABAAieZ/6tDbVOThWU\nbhZzrT2f7lXapJXTJp8+p53kb9IqqpuiTwhRhssGsipRBW0g0MGWdd/mvrW8A9bRa01vO/ww\nmKrfRtRSm7wUSWXPSlDCELAKwBewljGrN+W0gCUHrtnWtluZW2hDvGevS+uZ1DSu/WtzjpjW\nVMCAJUk7J6W0iGnRY/JuU90QeYn9ebRxCVjSH4NaN22f6noFa3N+Rw4AELAuTnn8xvCq97ym\nnsFdA5a0u/edlcrUbLHAWOjMW/dVCb32vqGm58jPkMcgVK2JtAWLIWAlUr0LvllLGlcqe9dY\n/Zf1t0Sxf+ZvAIoEAStQIWABAJSqFUTRJbKhBGO8BihBCFiBCgELAKB0/ZOCd+Tfqsj2h1F9\nx10M8DsErECFgAUAULqWErUogc08Y9yKhJKEgBWoELAAAEpZPAWt8vtG1gfTk37fCDghYJW2\njKMOLu+sKn4IWAAApezYX+gWtwcMi9OFBhR50M/bADcIWKVtpuPBQm5TEttFwAIAKG3pYdTe\nz5tIoWDcICwVCFilDQELACBgTSYa7tcNpBG5vs0D/A4BK1AhYAEAAPgNAlagQsACAADwGwSs\nQIWABQAA4DcIWIEKAQsAAMBvELACFQIWAACA3yBgBSoELAAAAL9BwApUCFgAAAB+g4AVqBCw\nAAAA/AYBK1AhYAEAAPgNAlagQsACAADwGwSsQIWABQAA4DcIWIEKAQsAoBRNJhrh1w1MwlsI\nSxcClpcXmHm/tWrjlL5t46KbP9P/wz3m6uy1aT2Tmsa16fPuJrViKPNo65KLmJNzpQ3ay5xj\nWnUeOGe7P3e+ABCwAAA8rHjmlvJVGiR9b6pKv5noS638OVncq1TmfNaydkT49Y8MOqw2+tLc\n5FHHJtLDqJ3buoU1nW6vGFbtwdR9jqWy5zavXS78+odf12ctaxIZVjPlsK/FDAr5USt2peAv\nCnXYUKwQsDzsFEloirlmd082RA0/b9Qv7uir7/6LqNnIHH/esrYXmf8nGQFL1WNVSRyHJI3n\nuW7VImCN/xwAIEB5nzUvdNRzUR+9KrNXEOUdsPbep0+WT1MafZRnwDp+A9U557ZuScpoY6zp\nXdtSWxros8qoF6dmh9B/2tWlWkf1Fn9E0kvGcdSnaoe8DxP8DAHLwzjmRE686KvY0Yy52aBZ\nXy3+fFInOR69eEmtzhoqwlLHIe9MeLOtSF6ficrnmL8yr2wvc+wpJWAlzpTNeGdgG7HU0MyS\nOJLuCFgAAA6eJ82cOKKKHUcPaiznnlFq1U/1icJ9IWhrqk9noni56lRdoobvrFwzr10w0TTR\n6B2iKKPVe/aNJBCtcF23lNNYPjv/u8+Q5JuJguZZFtodKYeuVqnDu9WSm4gYd7YKvSVJFx+g\nDr713uL7ZlkXTE3y+HYA/0LAcnc+nlOmMS/11XRlHnhKLeZ+E8Os/rPPHSAHpYE71fIPXeSJ\ndLk0n7mXeW3vymFKUgLWs3rV5jfltv0vSn53IQYBCwDAwfOsOYGo0QFRmBdCEWdEYUQYlR2b\nYL2Np2tG5XbJH32JnlLP6LOJqmbIn4OJZnluY7kay9zWPU4OUYtEIUsOejfnmJd6muihP0Th\nYkeiSHlz06lyljz5CZXPUFvMp6BlpgXaE+EmYalBwHK3kHnWdua+RsU25nZZxtQc5va5WiHq\nU6M681Xm5nIKOxvHvMu3skutmEX3LHPAkqSlckob778j0G1mBCwAAAevk2bGdRR5RC32fvKF\n3eKzITXYLLkHrM+IBonPOkTrtaqGRAvkjz5EXznba+6j4G16a9u66xK9r5ZOXkv0nWmhA0F0\nzQm1mHUD0UpJSqYnxNRhIrXPyakbqIt5M3tD6a+e+wB+hoDlrhvzQXGnz+himM48zDc7Y9is\n78U9wjPxzFNNi51rza1Wy5+jmCf6alcyK//krQFLWswcvdt7F36f9HxCbLu+85TfT1Kq+a5j\nf/VCmb2NJL3MnCPtGp0UE58yTbncNlPr8JXqWD0CFgAENK9z7yyiN21Vd6VkSu4B62wNukO5\ncBVCwfpv8FZEY+WPzkTfO9prVhFFeaxbTlFV9ctWLYmmm5b6pfVTvfVyM6I5kvSodm8wXGvX\nkWqckcyaE33ttRPgZwhYrrYwvyhJ85iNHoZyGhrgbDeLOemSuWLjRuU/xlbmlr7rXa8xK12z\nbAFL6sc83GsPLk3QO8MnrhTTcsB7VZ93KprjM13aKDEsc2G0Wtde/ARDwAIAcOV19o0n2mWr\n2iD+cA1Yz1PQcqVQgYL0vk9ywJqitv/NaxttiPTtO9adtedXvShntImSOyZaJEn30PPKVGUa\nIz6WBNFCa7NFRE29dgL8DAHL1Qhm+Z/uiRhfN/ftzDH2/3PKWA6zXVfQXb/GJDsSxXHKwyL2\ngLVOTka5HnswlLnt7HU71oyO5ug18nRmPMfoP0y+YB7p1kaSBjAv5uS5q1e+15xZ/AY7c3Aq\n89SDB084NoCABQABzev8X4Nukv88/tNK2ynfLWCtC6b2aulJ/S6dJN1NQVvljyeIDtvba7Iq\nUcSF/NYta0z0rfsaDkdQxFlJaqTdEaygXDPLqENtbO0uVaVy5zz2AvwMAcvNmTj1EtFAU0x6\nhTlhvnXwBSkzhnmH6xq+ZH5ZL3+oD4tlD1hZcczb3PcgnbmbmqfWRnM7sS9vM+sXevsyb3Bt\nI3Y4YaCSCTcxRyv/q+aiDxYAgJP7yVc6TfSYtOQRMXLCzUPNKcgtBD1C5bTxEpcR3acmmQ+1\n/uv3Ep2Z/tT1YVX+1nePbbGlRGypcA9Y+0Pp2ixntWzdnUSi10pjaiUmLwbTDPmjJ11/XNrW\n6+F7W843WjZXO4RBKUDAcvMJs3K5dY2pm/v+JGaOGzB3o2lshd3MsTnOxWWZzZkPqMVcecGt\nSskesKSezN/Zl1R14ai9WnE0s/gJs5b5NbXieJTaw97ZRnqDuZX2LEmK2rHeHrBOLtLcViUE\nAQsAApfH+X8DUcvRwdpoU/ed9M1wCUELiF7Ry4OJ6oxY8t3/2gTT3cqTfrdRcD1tNeG23iCD\n7d283ANWlNtY79te6N5KXu81yu/2rtRIfPxCtFb+xgqmudKXZZQtGl3dhxP19zhS8DMELDfP\nMm8Rn9ltmfUMI50cHKWOw95z2sZstWoTc1uPVUxgnqaWfmTurpYcASuV2e2qsJzmmI2h4jYy\ni2dUslvr9wjnq6t2aSMC1mStahiz0jHLFrA2/N1QFgELAAKXx8l7OVHDkFrTd1zYPaKKryu6\n5BqC/kERvv4Xnz+ipqma/U4r09fL5aptB4/s8he5MNiyXEv76AmuAasP0X+yHbWLxDYq9VGT\n3xwKFb1th1HVLCnrrxQrnb6OovdmTAyiz7Tmi+0Xy6DEIGC5+Fl76k+SpvsCi2zve121PuNJ\nHytd29cyJ3us43fmNur/jMHG83+OgDWI+VP7gopFzBP08nnmTuJzotIvTNabeY9HGzlgaUPX\niYS3WHwiYAEAuPA4eX8h55d6x5Xi5muI0o0ZzhD0DZFvyMOTvaurASvsYXXVZYi6n1VO0B2J\ngreYF7yf6BfLmlwCVm4POemddu7fInUrt88UE1k3UdMM6edIMeR8KlU5KE2iCLFMS2Po+F1E\nd3ocKfgZApaLIcyfqKUDzImWO+Cnvpv6UlMRsXqJFxP8Is/2WsmL2u2/UzGcoN1VdASsl7UQ\n5DDL8lIdjhV1W7RnAY9oV8Tc2sgBa6O2ionaXUMELAAAFx7n7i9Mr61JJUoyZjhD0OMUbNzj\n2FubgjqsPpO1O+3/iPqJmpMn9XiU+x+iTuYFaxOdNE+7rPt0E6K73TvJXzq4sk+Elu0WlaHy\ntYKo4TlpUzhNlaQ49ZrbRxSqdR+7SFTN40jBzxCwnE7GcIw2ZrvoT55un5/14yA50KRkS9I+\n5iiv190sZv6v+PyY+R2tyhGwOjOvdV14ijU8sXK9LJljxK+heczzvdrIAUv/WeQRsHb30TSo\nHYaABQCBy+PcvYyorH5jbhPRLcYMRwjaE0yPGRMPEmn3O07WV0ZQMPuGqKZ5ujqR9T0ejnXv\nvIPoMeuQVhZbr9c6r/8YExlet88pKbsRNZYn66mvT1xP9JPWMpTKea8G/AkBy2m2Nbj0cWmy\nNpZ5uSRlN2Ne7zJbyErkKHGV6zlmfTRRe8A6Ia/9mOvCU5lHbjRRetJ/oEamHlr8c2uTf8Ay\n4ClCAAhoHufujUQ36uWLRBHGDEcIGmAMuS5JK4nu0csfEz1tXed5omBzb6oqFGRtYF/30kii\n5y5JeXiP1EHcdW9ThPiquVZ5uFDa58t4ERSc13rAfxCwHHI72C4N7XVpNJ5ZjDrSj3mcdYbv\nod53mT9S7iK+qNfYA9ZCo6+X3SzmKY7K/cpYpwf1EU/d2iBgAQAUjPvZV8oMpkrGRAiVMcqO\ngFWfgo0u7oOIuuvlPURVrOvMDSYy3+3I7wrW/8Io9B0pTweIKpsmd5RXhxrVPo4QaR1dcAWr\n9CBgOaxlTlpgSGVOU6r/sOSshepje/JHnGUMz+3NJ/6hFfcrPeDHMi/RZ9oCVnYy8wfu+7CU\neaCztifHnBPX15Z7tkHAAgAoGPezryTdSqS/JO2o6WqWI2DJOaqRMfEi0X/18imyXzSS8841\n5ul8+mB9HEIV3V5ws2hoL2Nkn5Nkyn5S7iP0gHKnoyq9LT72Ge9BRB+s0oOA5fA6s+kN6NvV\nl9782Jo7mAdd/0C9dHUhkfm/pvrMFGN0BuXy1o7sRFMveVvAmsbc3OMW+0HmFs6rw5+KbNWN\nE7I82yBgAQAUjPvZVwzXSfqdiU/NN/vsAWsSkTFUjriC1V4vb1AyzafJT3yo13xE9KB50byf\nIlxdliq6ds9NITK+Q34gutm8L2XU1/LUUTvYb1AGxhJ2ETVwWxf4HwKW3R9RHHPcNN1DuQR1\nsimzaTTcc0nMy0ThG2YebtxaP9ObuUOGPrWSefpa8308a8D6JMp4WNGpu+/dzhs7pWmduE5E\n8chD2hio7m3cA5YpL/ogYAFAQPM6/f5IVFM7jz8mnyaNenvASjZ1wRKDJ9TSvwrGKLFsMlF9\n/Um+vxENNS+a5zhYp2pSuZWue7aAqLJ+L+VZIt9D7Psr0SC1xOoo8rMoRDsEjINVehCw7Gao\nL/EzLFTH85Sro6ad1eq2y9kmWb2ONFw8ULhWuTSbsyqZufl2Y8nsttxxJEcdMCrMAWvnAHnB\ntzz3Ip05QV3T4WTf63j6c+tPtQHa3du4BKyF2osL7RCwACCgeZ5/Y4maiLN97qtEkWeNanvA\nupfoB2PiYm2inurtjN8iiebJv8PljwTliaSz8pLVLCNaDSI9ELms+zmiMZJVj65dxRt5sm8n\n+qcydEPuqCAi3yg/THdr9zNGUaRIdW3oX9qsEdqgEVDyELBsxODt68wV5+OVcT1z3hRjTfV/\nd+68aaNS5GKiFqRyJoh+8IkDxk4Y2FoutDUPJvc+cwybXlIgB6zEmcLUEcliqbHWXo4WQ5ib\nTvzh11VpzU396L9lfsZ0q9LZxiVgyRuNnbF4juOl0ghYABDQPE+/+2sQ1Xh50sC7iYI+FhUr\nUoX6RK3E51itWVXLy5y/DSO6d/yS1fN7RBDFiDPux8Fyruo6ckTnakSh31i2kO4bIt6x7t/D\nKKRfqkEZ+6EMkfLA+ppyROUTBg7tcZt8Am9nrG4mherPsx+rRD1zpG9CaY5WIUc37yMFv0LA\nslnJ1s5Wynv+RDf33HktTE8WDjxkzF/V2aiNGmnpt3hEvFvHdKV3g+XhxGeX57Uf2eOi9JWm\nGa87zIiTp2fk0cYlYOV0UVo43reAgAUAAc37/Lu1ofYOwQpqB4vBZHab1iqEKMO00Nd/MVp0\nPK/U/K+qXnHjUusGsipRBe32oWPdcy0VdK9opAcs6fvaen1QN+MX+tFrfW9ElD4Mpupy/Gqp\nTV6KpLK+i3BQohCwbPozz7bWbGVuodwOzEgf2aNV05gWyQNnHzA3yF6X1jOpaVz71+Ycsa1s\nAHNbU7IxAlZM2+6T1jquKdnsnJTSIqZFj8m7TXVD5IX359HGJWBJfwxq3bR9qusVrM357AIA\nQCC6OOXxG8Or3vOadk53DVhn7M8Knp8cU/Oa0Gr39NS7cUjHhzeuXqZcjai0C5JNa22Y0MIG\nLOni9LhaEaGR/3zxN9/KEqmeaQNLGlcqe9dY/ZvnW6LYovxNQBEgYAUqBCwAgFKygii6RDaU\nYIzXACUOAStQIWABAJSWf1LwjvxbFdn+MKqf390S8BcErECFgAUAUFqWErUogc08Y9yKhJKH\ngBWoELAAAEpNPAWt8vtG1gfTk37fCHhBwCptGUcdTuS/VNEhYAEAlJpjf6FbMvJvViQXGlDk\nQT9vA7whYJW2mezQpiS2i4AFAFB60sN8L9fxkxQKxg3CUoSAVdoQsAAAAtBkouF+3UAaket7\nPKCEIGAFKgQsAAAAv0HAClQIWAAAAH6DgBWoELAAAAD8BgErUCFgAQAA+A0CVqBCwAIAAPAb\nBKxAhYAFAADgNwhYgQoBCwAAwG8QsAIVAhYAAIDfIGAFKgQsAAAAv0HAClQIWAAAAH6DgBWo\nELAAAAD85ooPWMOZfxCfLzHvc2/xMvNu9zney0jSshebx7Ta+Kd3K69VXx4QsADgijeZaIRf\nNzAJ7/ODPwsBy91XyluXV//p3ULAAoAA9iWZPKpVrul0e8Wwag+mqifHz8niXq3RimduKV+l\nQdL3ebUxpIdRO6N8M9GXpnm/dbuzcvgNPD07/11b1iQyrGbKYV+bGRTyo1bsSsFf/Mm/BAhw\nV03AGtWt2xH3Ft4By3sZqQvzy4tXes31Np7n5rfqkqbvko0IWOM/BwAoCo/zzkfOFJPRRp8u\n/66Ydg1PFzrq0308YnGVjgAAIABJREFU2/gcv4HqnFOLmb2CyBKw3gjRFmp4IL9dmx1C/2lX\nl2od1Zv8EUkv6eUL9anaobxPsgCurpqA5c07YHnLjeXYc39md7q7p5nS5LFLCFgAUHQe5513\niKJSde+JmpzG8jnn332GJN9MFDRPrtia6tOZKF5pFEdUsePoQY3ltDTKo41JAtEKtfRTfaJw\nc8AaKm/l6SHjet5AdKv1ZO7YtbNV6C1JuvgAdfCt95ZMo/26YGpSkFMtgA0ClqtM5qQ/szcX\nYi67gOW1SwhYAFB0HieewUSzrDXjiMovEoUsOUTdnGOd2YzK7RKfE4gaKRec5oVQxBn3Nj7L\njcg1IozKjk0wBawdZamMsrUzjxP1znvXplPlLPnjEyqfoVbMp6BlpvntiXCTEP4EBCxXcsDq\nkH8rp8182QUsr11CwAKAovM48fQh+spaU5fofbV08lqi7yzzPiMaJD4zrqNIrXNF7ydf2O3a\nxuQ+Ct6mlhpSg82SOWB1IXFVSjhekcpZoppj15LpCfFxmGiVMn3qBupinr83lP7qcZgAeSim\ngCWHmBxpXWpSXPIY8etj8+COsa0GKM/g9Wf+2mg2mFn9979x7HMJMW16zzjqW8WmsZ3jm3Ue\nt1OfvrBwQFKzmFZ9Zp3SKvpwVG5mWutY5bfHkYmd41qkvHfM2cndsVy+ndyVnd81OikmPmWa\nstB01qzOdz8suz1TWyzV3MndfqiOrXn5fdLzCbHt+s5TTw2pzL5zgvyXmu7SxmXlpl2yQcAC\ngKLzOH91JvreUnEgiKrql61aEk03zztbg+64KAqziN70WKHRxmcVUZRWvCslUzIHrIuRdM1Z\nrdydaGqeu/aodm8wXNurjlTDevGsOdHXEkBhFVPAkr/+z7+nfpUn7pZmq6UocXN8OfOLeqvM\nOI4Tl2DPD9QTTNP52qyMN7SaqPfUiu1JeptEbbAEOVVceEWeniKX18ar81pttgcs53L5Bix5\n5zMXRqsLtRe/nswBK+/9sO62S8ByHqpja+4uTTC2u1JMpzO/qs87Fc3xmS5tXFaOgAUA/uRx\nBpPDzm/Wmqw9v+pFOeJMNM96noKWK4V4IttdQGcbnzZE+uY3aNvUA9ZKUq9KCV8SNctz1+6h\n55XPyjRGfCwJooXWDS0iauqxWwDeiilgDWD+gvstWjP/Gfm7/DvutXDNV92ZW2fLISCReb/W\nainzMPkjpw9zu/9t3rl2Qoy8mDInR04sHWYu+2q0XDNTVJxqxdzz87UbF/Vgbn5MafNf5m+5\naZ/+n0jS4WbMr6zcsWlWYtsB1oDlsly+AUtexWJOnrt65XvNmcXPpzMHf5fzycGDBzPz2Q/b\nbp85OJV56sGDJ4xVuxyqY2vuhjK3nb1ux5rR0Ry9Rp7OjOcY/UfVF8wj3dq4HoqxSzYIWABQ\ndB5nsCeIDnvMkqTGRN+aJtcFU3u1VINukv88/tNKR8zytTFkVaKIC+YKU8AaS9RPrz5GVDvP\nXWuk3RGsQGPlPzPqUBvbli5VpXJ/6qknCGzFFLAGMicol54ON+Wo1sNy5VJmErP4VTGZebqv\n1U/yx6fMz6k3x75njle++hcy91Ye2tgYwzHalZe+yuXg3CFyQNCXfqGnGhSGM78htiEdas3W\ngOWyXL4BS+z8QGWhTczRyn8jow9W3vvh2O25eocnbdUuh+qyNRfpzN3UPLU2mtuJbbztu9fa\nV/2bdbZxW/lc9MECAL/xOIXdS3Rm+lPXh1X5W9899nn7Q+naLNP0I1RO/RV+mugxackjYryF\nm4daspOvjc9SIrZUmAJWT6I0oz6CQsxjYTl2rTG1Eh8Xg2mGsuj1x6VtvR6+t+V8Y5HmRAs8\nDhTAUzEFrDeYO6u311PlIKGmhinMn8gfe5jbqrMymnKSHItyO6j5QBjELB7XlZKNEDSKWXRu\nmpfaXb0mI21h7q5vI1a9pZbVjKO0cUm+sgUsl+XyDVjyiltpD4+kMG8Sn0bAynM/nLttC1hu\nh+qyNRddOGqvVhzNLH7srWV+Ta04HsXtc13buK3cFrB299E0qB2GgAUAReRxCruNgutpQ02F\nD7fNi7KOvr6A6BW1tIGo5ehgbbH7Trq28Rls77BlClitiT4x6msTmXtjOHatKzUSH78QrZWk\nNcE0V/qyjDLb6Oo+nKi/x4ECeCq+gDVTLaUxD1VLXzMrF7VeYF6rVHzLLB4i2cn8TK623Erm\nvvLH78wpWs2eb3+w/k45x9xG38ZgtWqjnnUk6Xys10juxnIFCViTtZphzEpvJpenCF32w7nb\ntoDlcqhuW3Paz2wMcycfrXh2Jru1fo9wPvM09zZuK7cFrA1/N5RFwAKAInI/hUnXy/mkatvB\nI7v8RS4MtszqQ/Qf8xWlf1CE1odhOVHDkFrTd1zYPaKKrwO7tY1PS/voCaaAFWMeEusOa88u\nx67NoVARwIZR1Swp668UK52+jqL3ZkwMos+0RRbbL5YBFEDxBSztQs8Hxvf5cu3L/mvty19c\n3DqgTg/RlzvMnCAnkEVapyK77Ixz507KTfRtaP/aF5iap7gFLMtyBQlY2lh10gTmxeLTFrA8\n9sO527aA5XKobltzktc8QS+fZ+4kPicyK8O6SL2Z93i0cVk5AhYA+I/7KUwqQ9RdeYzvfEei\n4C2+Gbk95BR12tTyG6JeWvELOfHUO64UN19DlO7Wxud+ol8sFaaA1YTId3K9m2hrXruWdRM1\nzZB+jhSDx6dSlYPSJIoQe9jSeMfPLqI7PQ4UwFPxBSztX/pMfSQGcclGuQkuumeLf6xnYtQr\nLh+oF2AUucycoVS9Z1/lxtFdE6PUR+CMYKM9RPKeqfnr9oDlWK4gAUt/q/NE7VabKWDlsR/O\n3bYFLJdDddua0yy2iBV1W7RnAY9o1+/c2risHAELAPzH/RQmnTyph6jc/xB1MupPy9Hnbksf\n88cpWO/r8IXpZTepRElubXxqE520VHhdwbrdegXLuWuLylD5WkHU8Jy0KVwM6RCnXj37iEK1\njmAXiap5HCiAp+ILWNpzrzONvth6wJLGMIvOgl8xfyMm09TuSqo45qNKR/jZ1hVmDjJlByPY\n/KzOnGRaw1BrwHJZriABS/8d5AhYee6Hc7dtAcvlUN225jTFGp74kqhM5hjxs2ue+tfp2sZl\n5baAdWyepl61EAQsACgi91OY2TdENfXyzjuIHrMMMrUnmB7Ty8uIyuo3DzcR3eLWxqc6kXVg\nLFPAakP0sVFfk+hY3rv2Y0xkeN0+p6TsRtRYnqynvghxPdFPWsNQKud9gADuSiJgbWEWo4z0\n52bnxaQ9dRxTssIH1hW+xdz8ox0n5f9rWaZgo4WHiaY1DLYGLJflihSw8twP527nE7COuW/N\naSrzyI0mylMCH6jNe3DMKa82+QcsA54iBICicz+FmZ0nCtZi09JIoucuWeYOMAZ4l6SNRDfq\n5YtEEW5tfKpQkLXCFLBeJDJ6UOSWoTDbm3lcdk3xNkWIb4trSQwoJO0jWqTNiKBg9zUAeCuJ\ngCV1FRHnRDSrD458qI93IMth5kxJ+oh5vGV9u5mbaako0xlspptuzb1qCVhuyxUlYOW9H47d\ntgcsl0MtWMCapY5jarWfeYAkHVT+9GiDgAUAJcr9FGaWG0ykvjr5f2EU+o5tbn0KNrqvZwZT\nJWNGCJVxa+OT1xWsSUTGCNd7iOrlu2uKHeXVoUa1jyO+RxFxBQv+hBIJWJ8yz5A+0e+sfaN3\nepeUtNBSUkZ0sj5uKzcerRV3O4ONvD7jId+OloDltlxRAlbe++HYbXvAcjnUggWspcwDnbU9\nOeacGCZ/uWcbBCwAKFHupzAzOadcoxQ+DqGK9lfOyOmnkW/qViL9YaWjvqtZ1jaGvPpgrSN6\nSK/+iKhtfrumyH2EHlAudVWlt8XHPuOlheiDBX9GiQSsM7HcSerBHdQRC35nbqePXZCuDu60\nl7mNVrV3zJjPlJtv+g30Wc5gs0695ygci7IELLflihKw8t4Px27bA5bLoRYsYMlprMUlR+2n\nIlt144QszzYIWABQotxPYZ8mP/GhXpYDzoPic3VZqrjW3nAS0Uu+qZ5E4/Q1ED3t2saQ11OE\nuTdTuP7+10TzmFjuu6Zvp4z6PVZHHQZ+gzIwlrCLqIHbYQLkpUQCljSEWc4X2j/q3E7MP2oz\n+mvPHD7LrL19831xtUv8qd0EPJ7IHK9vQ/vfdC6Gow6oxVnWgUbdlitKwMp7Pxy7LdLMLNOq\n3Q61QAFL6u57t/PGTmna/p+I4pGHmMd4t3EPWL5+YCYIWABQdO5nsMlE9fUn8P5GJAZHPFWT\nyjkH/ku2dK/6kaimNlTyY/IJyrWNIa9xsKRXjJFJd4ZRNfOtRJddU+2vRNodByblZD+LQrSd\nwThY8GeUTMD6ibmlMfi6eMFMJ/X9Md8wt1FugH/FnKQMtbs9jmMOKWNodVG6Hh59vnsr5rPa\nNvTw8DpzqjJ7a3y0JWC5LVeUgJXPfth3WxzaSPOqXQ61YAFLzqMJ25XS4WTmHVptf279qW/0\nd5c2Litf6DHGGAIWABSd+xnsXCRRgnLuOyvHnmpiXITniMY4G95L9INpMpaoiTjP5r5KFHnW\nvY1uENEgS4U5YB2pTCHKuzMO3U3KKwYlqUfXrvvdd03FdLd2T2AURYoI1ob+pc0aYXq1IUBB\nlUzAEq+M4Zf1xrn95Vzy6ZYd370dxdHr1KpXmFu8u3jhKO1lz5mJzP1+3PPztOZNf+/DPH73\nUUt42CnHqh4L1y4fF5s0yhKw3JYrSsDKZz/suy1tYI6dsXhOrr5ql0MtWMASF/2aTvzh11Vp\nzZn1a+ZiLPxn9Dutrm1cVm7skg0CFgAUnccZ7ONgObx0HTmiczWiUDFAz+9hFNIv1aC/cqKq\n9c3L+2sQ1Xh50kA5FQUZ4yxUdX9xdLpvsPcVyjrrE7USn0qeej+I6PE3R3aWF35EfYawDNF6\n111TzaTQ9VrxWCXqmSN9E0pztAo5iRWgsxmAVckELPG8nWnQ8szB+thNifod+cyBWk2Uektu\nTaw29NQmMW678r5oU3iQFseos1ttmcb8najREo3LckUapiGf/bDvdk4XZSrbGPfUeagFDFjZ\n46L0VacZTxhnxLF6K9KrjcvKjV2yQcACgKLzOoX9r6r2vj+6camYnksW92rNQogyzIttbag1\nqODr2mBvo8mqRBW0e32DLeu+TalLK6dNPq2+HdcIWI5dUxy91vS2ww+DqfptRC21yUuRVPas\nBFBIJRSwjkZxvOlhWGnz6GfjY9v2/8T0v2bd8OT4uE7j9AF3dw5rF9Os26xTcox4L6lp5+XW\nYCPtHdMxLqHrtKNi2E3lv4ieaJzLFSlg5bcf9t3+Y1Drpu1Tc30DyzsOtYABS97ypJQWMS16\nTDbv/BA5Ku3Po43byvVdshEBa7P31gEAiuL48MbVy5SrEZWmhiD3gHWG7ANMXZzy+I3hVe95\nzfd6ZmcbTWuiBWrJLWBJu3vfWalMzRYL9OZGwLLvmiKR6pmmljSuVPausfrv0m+JYgt38ABS\nsQWs/OxlHlsyW4ICQsACgCvaCqLoEtlQgjFeA0AhlFDAGse8s2S2BAWEgAUAV7Z/UvCO/FsV\n2f4wqu+4BwCQr5IJWHtjGI9gXGYQsADgyraUqEUJbOYZ41YkQGGUSMA62cXoogWXCwQsALjC\nxVPQKr9vZH0wPen3jcDVyP8Ba8PaWYnME/2+nTxlHHVwebVVqSitXUPAAoAr3LG/0C1uDxgW\npwsNKPKgn7cBVyf/B6w2YpCAN5zvfSlRM9mhTenukaG0dg0BCwCudOlh1N7Pm0ihYNwghD/F\n/wGrCzfr+VVpdxBEwHJAwAKAK95kouF+3UAakeu7MADyVUJPEcJlBwELAADAbxCwAhUCFgAA\ngN8gYAUqBCwAAAC/QcAKVAhYAAAAfoOAFagQsAAAAPwGAStQIWABAAD4DQJWoELAAgAA8BsE\nrECFgAUAAOA3CFiBCgELAADAbxCwAhUCFgAAgN8gYAUqBCwAAAC/QcCyGs78g/h8iXmfe4uX\nmXeX5B75CwIWAFhNJhpRjKubhNf4QUBDwLJCwAKAy9XWckRf5lWTfrO1wZJnbq1QrnbrRUZF\n9tzmtcuFX//w627nt/QwaqcUcj5rWTsi/PpHBh12tHHMWtYkMqxmiqnhDAr5USt2peAvCnxw\nAFcbBCwrPWCN6tbtiHuLAgas8Ty3GHerKDz2RASs8Z8DwOUkz//LOfeTLWBZazJ7BVkanHiK\nNIkX1JotDfSaMs5rS8dvoDrnRGHvfXqr8mm2No5Zs0PoP+3qUq2jeos/IuklvXyhPlU7lOch\nAVzFELCs9IDlrYABq/tlE7A89gQBC+Dyk+f/5eFkD1iWmp/qE4Wb89Y/iMJajhjZIoyomVKz\nO1IORq1Sh3erJS9mz05SAtEK8XmqLlHDd1aumdcumGiapYlj1tkq9JYkXXyAOvjWckum0X5d\nMDXJ85AArmIIWFbFFbAuxFwuActrTxCwAC4/ef1f3laOqlsDlqVmRBiVHZtgapBKdKPSDWD9\n9UTKWeBpoof+EIWLHYkiL1pXv5woXin0JXpKnTebqGqGuY1j1nSqnCVPfULltXbzKWiZaYH2\nRLhJCIEKAcuquALWZr5cApbXniBgAVx+8vivnPMA3fSKJWBZaxpSg82SKWBdqkK0RC2mE9WX\nPw4E0TUn1JqsG4hWWtd/HwVvUwp1iNZL+jppwf+zd+bxVVTn///kEghglCVYKHXhh1qxuLd1\nqW39Wmt9VX2SGyAJJKzKYiEQoGgQqamigCD7UpbKIgpISgEXVCKCbIqIYEBxYRcjyBYgISSE\nnN8sZ+6duffMzdJEktzn/Qcz88xzzpwhc2/eOXPmjD0naFcvPKhvHAY2GtHcluhrL3AwEjeG\nOCeGqc2wYBkcmdGnfcfU+ceCB7mfW/lsjw7elPTFuTJVE6wDYvPzPeKT098s9lWwb2b/pPhu\nQ5eeNrYWkkmGYp/GhbUjeyXEJQ2YsTtUm5zFMoje9e0aTrRGWbXWuAti76Qe3oTUubnBLbHD\ngsUw1Y8Q3wjjgNdHOATLGbk1tUDYBesj4GYr8x7gCyG+6PzQECvSAVjiqH4jEGuu1YGnUAZT\ngCn2pKBd98t7g/Uwz1j2xJWn7QVEIvBeiJNimFoMC5bOlgRTQ1J2BgrWtz2koVBytpmrOczB\naTKWdsaMnZ/uyzL+KLRrTeA+IY6nWRH6t2uTAoutIfqHtS83jhIKlFVrGlawMs6MdT8iWLAY\npmbh/i31TQPEC4dgBUS26//YBOsVoI+V+lzQhAkEZDkCXQB59EsRYY2i0izqZXtS0K7for+x\n1RiT9cUHEVjpPE4W0M79pBimNsOCpXG4A9GwDbt3LE7u+qxTsHJTiAa9uSU7ayBR4jEjWROs\nefR45qb1M9sRPWtWMIao6+tbd2+eFEdxm7Xt0zlziObk5JxQ7BMiXa9za/a66ZrWuX6fBhYr\nSCCv9Zfh20QTVDlCaM1fTb0yP9owP5HohYCWOGHBYpjqh+u31IXfo8kPDsEKjgiHYE0F0q3w\nIqCn80svGtFn7IHCRoiWjxr+1brfJ8RtiPjanhW06w55R/BSo6cr/xp0CWj3+aZokOd6VgxT\nm2HBEsbAq+dL9JUfOpNTsBYSDTWGdJaM1jzFSNYEyzvCuDf4pZfoS31lDdEAU362xFE34w+8\nTGvkU/C+fURp5jDRg4nUtUTdpOBiLxFZPe1DibarDzuCKGmEUfkOorg8R0sCYMFimOqH67fU\neOAV4dCp4IhwCNZ8Ww9WJnCvvbatNwNjHfWvBUiufgjcbTrRa9a4d+G26wGk6FtFHizQFoPQ\n/Lj4ZvC9d3Za4SuSGDCMi2HCBhYs7U+3DhQr52p5N0CwlmakmV1DYpemRcaKJlhJsitpCtEM\nfdmXYg/KuiYRva8vfVoTvG8d0SsykvValjWgIYDgYluInjEDx2Ope4n6sM8TpciHeVKJdjha\nYrLjPsntt0axYDFMNcPtW+qbBnhYOHQqOKJjE6yNwO1WWMu6xSr397SUNsAlk5wHGAW8YFu/\nZvwHm/7TxYPbfgxKc+zqhzv08BfAFiE2e5Ap3okypsnyDXUfBwx3OyuGqdWwYAmRbbmTEGfj\n3WZyzyMy+76fkvfnND4lStUWh4h8E+tpdY3Ul5bWKPZtJhpRWpMUxYo7W/cIVxDNdTmsJliz\nZWgs0QZ7SyTbf+2jPgsWw1QzXL4RLvwejQ4Ju04FRwxsglV4GfCRuXq2leZFMpyl60+j9JMB\nR+hkn0/hzfvMyUSvfvpUYEsCdi1BpD7YcyyaForCGxEvTv0McQfzZ0TgDVlgtb9rjGHCCxYs\nId7yK5Pe7xMsWMX5eXkniZKMjaf8j/MdI4q/oH1hEU23Us8S9daXltYo9p1uTzRuX+gmqaqc\nQWQOSh2iP8eoztEEa70MTSdabW+JhAWLYaoxLt8IE+Rgc79OBUcM7PNgDQGu1b8qxKlH6gCt\nrS8XU5BuWOg8wu+M5wxNTg5pYSbVvTewQYG7Cq9Au3zxeYw+3CsDTXLETETr5tUJ98sSe20P\nMzJMWMGCJcR8ovnW+nOBgpU9qV9yrPkknk+w5POEokTbcVqIxeQgXt9laY1qX5Ze3+PT1wf9\nbehHVWyXfBbwiOxwU+U872/cjMCblSYsWAxTjVF/IXzbEH8xVnw6FRwxsQvWqf8HXJa24LUh\nzTHIf4tQiPM5G9KjgcGOQ7QGrE6tg60R8dhHpwv3z9IqeNqRFbwrKwoNW0Xgljyxox7mCNHe\nnOxhESLlkPkioJn6rBimlsOCJcRMosXW+hinYBWMtCmMT7C+tbI7EP0oxMtO06Hzwq81qn3i\n8yeM9dhh61yGuKuL9SKv/tjPUqIVbjmaYFl/hboIVuEhybVRESxYDFPNUH4flPwBlxpdUT6d\nCo5I7IIl9t4g3xuYegD4vaPKr5sHjD1vAVgzu/8ekCMNTrYNmMxBsetTb0y9a9NzRfEdeEDb\nbGM+urgN+EyWiUQD5VkxTG2HBctQEZ9gjXIK1otEiYt2nyzWxMQmWHut7ASio0LMIZqQbeOC\n8GuNap/G1wsGGd1iT+QKJcpir5rKNJC8uW45pQuWD36KkGGqH8rvg4mAnDLP0qngiMQhWKJw\n2h+b1r+2+0axCejqrHM+zDnYLZogQq5tAH5rRf8LYyS9KH2XeAnR+jsuLjefTvzOb2bR8CjP\nimFqOyxYQsyz3SL8h0Ow9hN1kO/FKbAJ1pcyWb9FmGfcq3tZBGC7RRi0z+T0hrFeomHqncpi\nh4x5t3Ks2bdUOSxYDFOjUX1Wv2uIX2aadASezszcFRyxcp2C5WMW8JIz8j3Q2L7t78EaCVhP\n/YgDQBNbUohduxuaU43KxRFgmdzDPVhMuMKCJcRyovHWek+HYC0jsp5l3m8TLOtdpseJEkqE\nWKt4LNDSGtU+Hwe6EO1U7lEXG0TePPE60TrXHBYshqnRqD6r6xHAiOCIlesiWO2NNw9mjRm8\nyYqcBKLsGf4xWE8A/7SiuXB0P7nvKrkP9xgd7U1Nk/sOkA8D8RgsJmxhwRJiK1F/uXos1iFY\nLxP9V+5ZbBOsf/sLDhJGn1LH8wF1Wlqj2udHq1Q9BZ+62HLdrQZQUqFrDgsWw9RoVJ/VigvW\nUWvZEFdofwumAo9buz4BrrIfxP8U4UiguxXd7rQj910zEfWVsXKNOfZ9uzExls5e4CbVWTFM\nrYcFS4g8L8V+b64udk40+orv5uHxZCJzSmNNsLrLrvRp5oRUIs0/c0N271nGPcVMa1xX0L6S\n+c/4ZlBeRrRK3SZFlUKciKUJPxBNds9RC5ZvhJkdFiyGqX64fElZjAjqoAoxBisuuo4cL9oP\n0KcpfgtobE1O/DiQbK/HPw9WFtDKeo/9ZOdAK9ddhxphpLlG5tzvi1FHTnnM82AxYQsLljDm\nZsgwvjW+TohzCNY6or7GjqP901KIjFd3aYIlu7D2tKNY4/trDVGS+WTh4V5Eu/WVldbcWsH7\nhsoJqoQ4N4DI+roLQFGlxnDqvFxO0K7OUQjWStssX3ZYsBim+lHKd1W5BOtp4P/O6ivjgRb6\nt1fxDcBdh/VIycQIYLW9npGwFKmoNTDIfMD5qxhgqb4ysF+/Qy67DAi3ye70iYjR52fogj/K\nXeMDp3pgmHCBBUtjj6ZVA1duWTc1vsdEh2AVJBM9/emBz+cmttuXTjRt/1FjzwzKWPftrswk\nn7qMJmo345MvN85KJJpqRLYTxS9YvaREsW+ndrRn3t6cvenVx4hGu7UpuEqN94kepcdK3HMU\nguVviRMWLIapfpTyXRVCsNZn6LQFUvSl/url4y2BXzz5rxd+A9QzZWpzA6Bh0ogxA6/XPv7d\nHPWsgTmBlf49Uxe4c9oHH60YGA14ja+OKGCbyy6dhYjcJlePNcKgC2JVJJbIgKZ8pZ0Vw9RO\nWLB0VnvNqaRSds0lMkaBymkaNsfLKbB26PO9E80z5lE/OUFOPTVMTqVXPFXORUqxs8yJGC70\nNTaLVfvWJfjmrhp1zq1JwcU08ttr2wtC5CgEy98SJyxYDFP9KOWrKoRgjXIMyrpeD22/Qm61\nsAp93NpKiBhQ5KinsBEutb6O3vu5r56eRheYT7AUuzSOXg7/89CvedBC87dOcvN8DOqfKeWs\nGKZ2woJlcHByz/ZJ/eYe1WfxXKsHrJnc94zt5u0wYHGuZjPze7Trs06I/vqUnpue6xGf/NR7\n/m6hPTNTO3o7Dpy93wr8OLJzu+4ZJcp9JzOf7t4uruOAab5XU6gIKiaMPis6FCJHIVj2ltjR\nBUv9CCPDMNWU8gmWOP3i3U0iL797zAlfetG89q2iI2PueuKrwKo722YePTvbe/Ulkc1+O8ga\nj+ATrOBdGsloY/tT8YMHGtW/dYr1J937QHwFT5ZhajgsWOEKCxbDMH7WA3FVUG2Sb74Ghgk3\nWLDCFRYshmEiVtDtAAAgAElEQVRs3AXP7tKzysmhumjr9kYwhqnlsGCFKyxYDMPYWAt0rPRK\nHw145SHDhBEsWOEKCxbDMHYSELGxkqvc5sFfK7lKhqkxsGBdbPKPBnGi9FL/OyxYDMPYOfZz\nXJdfqTWeuwkxOZVaI8PUIFiwLjYLKYguP8VxWbAYhnGwpq7/TTiVQio8fIOQCV9YsC42LFgM\nw1QPZgPjKrG6WYDyNRIMEx6wYIUrLFgMwzAMU2WwYIUrLFgMwzAMU2WwYIUrLFgMwzAMU2Ww\nYIUrLFgMwzAMU2WwYIUrLFgMwzAMU2WwYIUrLFgMwzAMU2WwYIUrLFgMwzAMU2WwYIUrLFgM\nwzAMU2WwYIUrLFgMwzAMU2WwYIUrLFgMwzAMU2XUCsF6kug79Z6niPa7lfrwiURvSrZVOFSm\nCEgKnVtKk6oLLFgMU8nMBsaXt8xMfp0Mw9RSwlew3jVe+/cRCxbD1H6KMxNbN6jX/N7n5Mfy\nHdi4XyZ9NeDmxvVa0rxit1KqiI01ddFNiDfh4E59z4ePxNS9OvWwP3UB6nwqV/vB83ZlnirD\nMNWEmidY0ygzMDRxwIAj6uQQKtSX6KnVG45YhUNLkzMpRK7VOvcm/eQo/sN0dMGa9ibD1DZU\nV/uumyzfiTK7ixYpBOv5OnL7lu9dSikiNo63xDV5SsF6vQ7+1O1atDpqpf4Ygyet9XNt0eyH\nCnywGYap5tQ8wUpT+4IadxUqiaf4vDJlBieFyC1X634aXJrEgsXUThQX+/4YoGFKxrgBrbSr\nfpYe+RcQm2Ex30gaA0Q8PHrqoJbAL/PUpYIjdpKA9dri6ww/fYAEIc40wYtCFN2Dx/yp1xX4\nym314JGKf74Zhqmu1DjBOuetHMEqIOpRtszgJPfc8rXuJ8GtSSxYTO1EcbE/DPzhR32lqCcQ\nU6StjAIWO3N210dUlr5y+i/AEHWp4IiNdYZMOemABnuFmIfGhdrGMjTMN8MrEPGhLas7wDcJ\nGab2UeMEaydVmmA9VrbM4CT33PK17ifBrUksWEztJPha/z4Cl5wwVwtbAhu0ZTrwrjOpL/Ru\nJp3jl6HBaVUpRT027obnm4ADvwGM1Ba98KC+dRjYaIRzW6KvPe1gJG50/wQzDFNDqe6CdW7l\nsz06eFPSF+camwvJJEP7hqTYkoJZneMX20aUB2S7q9A8WY9jkPsBsfn5HvHJ6W/KMa7BRwgU\nLPfW+Qe5Z0/5W5K3y5AF1vALrfAFsXdSD29C6txcEYJ9M/snxXcbuvS0sZVB5P+FMJxojSJH\nUbmtSQGwYDG1k+CP0hedHxpirXcAlmiLPsDHjpyiGFxyRq6nAXNUpRT1+NkIxAYc98yV+JXe\nzXW/vDdYD/OMZU9cedqRmAi8F9xshmFqNtVcsL7tYZlQcra+bfMFTTLODdNWX/bbTGB2OQXr\n4DQZTDO/aIOPECBYIVpnNensCCul3Qrz0JopFayMM2Pd3QfCn5/uq9v4Q3kN0T+sfblxlFCg\nyFFUzoLFhBuhv1II0G8EJgFfOeIbYHYz6bwDdFCWChXpAgQeuj8i1unL36K/sd0Yk/XFBxFY\n6UzMAtqFbjbDMDWP6i1YuSlEg97ckp01kCjxmBY4nTOHaE5Ozgkh/kn0PrVLH77MZzNB2e6C\ndTpnn2YgOTk5BTZ3mkePZ25aP7Md0bNGUvARnIIVqnWywIV0om7/2blny3QvkTnM4lmi1dQr\n86MN8xOJXnA99TFEXV/funvzpDiK26xtFySQ1/qr922iCaocReW2JgXAgsXUTkJ+pRyORrT+\n99ODwGHHjinA09b6MaC1slSISGEjRJ9zHmurB92NlTvkHcFLMUX7N/8adAlo1fmmaJAnGIap\nXVRvwVpINNQYSVoyWtMEI5RpDSkaQfT3QaY3SJtRZJdhDJbfnbwjjHuDX2ou9KX6CE7BCtU6\nWWA50d/M+4AfEyWckLUmjTCK7SCKc/tWXUM0wPSpLXHUTe+ueonIuoswlGi7MkdVeSaPwWLC\nCpePlMHWm4Gx+sqdwOl5DzWv2+T2oQeMPYPsjwVGo06xqlSIyFqAAg52HxocMlYeQIq+KPJg\ngXGk5sfFN4PvvbPTCl9qIvBWqHYzDFMDqd6CtTQjzeyZEbuI0owVny88TxQv77BJm1Fkl0uw\nkmQP0RSiGeojOAUrVOvMAiWPmSqkM5Joqaw1RT5LlEq0w+XM+1LsQbk6ieh9bbGF6BkzcDyW\nupcoc1SVBwhW/peSaxt6WLCYWojLR+qbv6eltAEumWRsXQ9PGzlRVb1xeqAzsMyX2xo4oiql\njhiMAgL6o98Chplr/XCHvvgC2CLEZg8yxTtRxqF9Q93HAcNd2s0wTE2leguWnzwis1vdLlij\n5M6gadN92eUSLGvmwE+JUtVHcHuKMLh1ZoE9RI+WyJwNRENlrbNlaCxRwINIFoeIfPMQZhPp\nTyIVd7buEa4gmqvOUVUeIFjbf+2jPgsWUwtRf6T0cU5Ao/ST5lZzbaNp11ET+v5cW9E/5l7g\nHV/ur4C9qlLqiEGnoKkWfoNoeWd+CSJ1XxuLpoWi8EbEi1M/Q9zB/BkReEPmrg7u/2IYpqZT\nEwSrOD8v7yRRkrFhFyzr28khWI7scgmW9ZTeMaL4C8ojqARL3TqzwHtEo628w1pOiVnrehma\nTrRa3bosounW+lmi3vpyBpE5qnaI/sCjOkdROQsWE16oP1KmGAE3LDS2ogDzWZazPQHPLiEe\nAfwfxtuAr1Wl1BGD3wFfOAKrgMFytfAKtMsXn8cgXYgMNMkRMxF9SuhSZr2kZy9ws0u7GYap\nqVR3wcqe1C851nwQLliw1skkn2AFZZdLsOSTh6JEq+K08giBguXeOrPAq2Zfk1mrlpRv1mod\naIa8sRfMYnIQr8d2yWcBj8j7kaocReUsWEx4of5IaZzP2ZAeLbXn5MlT1gfzT0DvgB6sG3w9\nWM5SbhFh3FV0dmr9BR7rDr7IikLDVhG4JU/sqKfPANHenNFhESLluPgioJlruxmGqZlUb8Eq\nGGkziGDB+lymSf1RZJdLsL619nUg+lF5BKdghWqdWWAWkX+66PZER81arb903QXrZac80Xk9\n2Iu8+t/cS4lWuOUoKg8QrC9jJbfeGMWCxdRC1B8pydfNg4aTrwKuNmZZ+K8vdDVwLHSpoEgL\nwDGz+wEP/uzf+tQbU+/a9FxRfAce0Dbb6H1ZQmwDPpMJkWgQst0Mw9Q8qrdgvUiUuGj3yWIh\nClWCZbmE1B9FdrkEy/c3a0KQCikFK1Tr1IJ1TJRRsOYQTci2od+x1PvD9PSB5M11yyldsHzw\nU4RM7UT9kbKYb5vvyuQs4CkWTwC+O+4lUah7oZRSgZEmiHDsfxZ4JfjoLyFa/+q43HwE8Tv/\nXFrR8IRuN8MwNY5qLVj7iTpIPyooXbBU2eUSrC/lLv0WYZ7qCE7BCtk6s8Br1vQNGheIqECU\nUbAWG9ObBnDImKArx5qmS5XDgsWEPeqPlMX3QGNnpMQDFIiZwBNW5ADQprRSgZHAHqy28ARP\nPre7oTnVqFwc8T+5yD1YDFP7qNaCtYzIehZ6f+mCpcoul2BZr189TpRQojqCU7BCts4ssEo+\n3KejiVGngHa7C9ZaohHB0UHkzROvWyPDVDksWEzYE3ytZ40ZvMlaPwlEOfdqmnOJEFuBP1iR\nRUBXValQ9QSMwdIc7Y6gdpTch3uMnrGmeElffOd7ISKPwWKYWki1FqyXiaxhEYtLFyxVdrkE\n699y11aiQcojOAUrZOvMAvuIulnTNKyR81iVSbA0G+t4Pii6XHerAZRU6JrDgsWEPcHXeirw\nuLX+CXCV9lHq9eBrVkTTqd9r8nMV6lnvC002epaCSwVH/AQ8RTgTeFIEMhNR5vt5rjFnjd9u\nTIylsxe4SfUpZRimBlOtBesVovnm2vFkogRjLdMa1hSkP6rscglWd9nFP00++1eKYIVsnZxo\ntDfRp7KK4UTvBNTqLlgizT9rRHbvWfIcTsTShB+IJrvnqAXLPw7MBgsWUzsJvtbfAhpbT/Q9\nDiQLMRtoaz3AdzswRlsO880LuqcumhWpSgVH/ATMg9VLMQTrUCPIDm2C8X2xGHXktMA8DxbD\n1EKqtWCtI+prvLHiaP+0FCJj2pqV1oSgQfqjyi6XYMkurD3tKHav8ghOwQrZOllA2+5tvipn\nFVGXgoBaQwjWGqIk86nGw72IdsvocOq83D/7uyJHUflK/wyqDliwmNpJ8LVefANwl/HqwZKJ\nEcZ8V3kxQJLxyTyTBDTTp2w40hh1jHct/HAbjHcGBpcKjvgZCYy0bd4JfBLYDMJtsst5ImJ0\nveuCP8pd421vQmQYppZQrQWrIJno6U8PfD43sd2+dKJp+48KsZ0ofsHqJSXB+qPKLrtgaYsZ\nlLHu212ZSa4K5xSskK2TBUqGE/VYvmv3ppdiKW5rYK0hBEuMJmo345MvN85KJJpqBd8nepQe\nK3HPUVTua1IALFhM7UTxadrcAGiYNGLMwOu1q76bHvmvR/OqfhPG92kGRK4ykl7RnOkvL0zo\n0xS474K6VHDExxqYc1tJmga+TFqIhYjcJlePNcKgC2JVJJbIgGZ5pQzOZximxlGtBUtsjpeT\nTO0Qb+nLeUJc6GtEihX6o8guu2ANITo5Qc4oNcy8eVDaNA2hWmfNfVowypqmKlmOtiijYBVP\nlTOYUuws3xPj+e217QUhchSV+5oUAAsWUztRfZw+bi1fPIiIAeZIgP80tSK/WCuTZjWQkYfz\n3EoFRywKG+HSc/7NOkC+swlHL7duQWq85kELTdI6yc3zMah/RtVuhmFqMNVbsMSesd28HQYs\nztVkYn6Pdn30x+d+HNm5XfcMRQ+WKrvsgtVfn6lz03M94pOfek/29pQmWKFa5397z85JjyfE\ndx2+zPq6LaNgabXPTO3o7Thwtv0ERmuqdChEjqpyq0kB6IK10/3oDFObKJrXvlV0ZMxdT3xl\nRY6Pe6BFVIMrY2f5tWj/kJsbRV3d8a0QpYIjFp3tM4+eRtC8VsloYxOwDx5oVP/WKdafPe8D\n8RU+NYZhqinVXLCYKoMFi2EqkfVAXEXLJvnma2AYpvbAghWusGAxTGVyFzy7S89Scagu2gZ1\nMTMMU9NhwQpXWLAYpjJZC3SsWMlHg96PyDBMLYAFK1xhwWKYSiUBERsrUm6bB3+t7LYwDHPx\nCQPByj8aRPBLwi4eF6t5LFgMU6kc+zmuyy89LZBzNyEmp/JbwzDMxSYMBGshBdHlYrfJxsVq\nHgsWw1Qua+qie/lLpcLDNwgZpjbCgnWxYcFimFrCbGBcecvMApSvWmAYpqYTBoLFKGHBYhiG\nYZgqgwUrXGHBYhiGYZgqgwUrXGHBYhiGYZgqgwUrXGHBYhiGYZgqgwUrXGHBYhiGYZgqgwUr\nXGHBYhiGYZgqgwUrXGHBYhiGYZgqgwUrXGHBYhiGYZgqgwUrXGHBYhiGYZgqgwUrXGHBYhiG\nYZgqgwUrXGHBYhiGYZgqoyYJ1jiiTypQ7HmiLyp0vKeI9vsXtQ0WLCbsmQ2Mr8TqZvJrBRmG\n8cOC5Q4LFsNcJIozE1s3qNf83ue+swXXXAW8Y9v+asDNjeu1pHnF5uY7sHG/aylbfXXRTa6u\nf/S6hk1u6vFxcNLm3jdcVrfZ7zOshnz4SEzdq1MP+xMWoM6ncrUfPG+X/RwZhqnd1GLBmkaZ\nxjLcBcv6fwhAF6xpbzLMRcXlot11kyVKUb4+oYLBEXCo0vN1ZM4t3xvbi1SCFVTKz/GWuCbP\nWDvX0yqWHpCT38Xa0/DfRuD1OvhTt2vR6qiV8WMMnrTWz7VFsx9cTolhmHCjFgtWGguWQRoL\nFlNtUV+z+2M0oUnJGDeglXaVzjJjn7UF6tlVaQwQ8fDoqYNaAr80POlfQGyGxXyXUjaSgPXG\nyoX2wGU9J418QHOxiY6UCw9oDfi/9NG9rtIOtlQLnGmCF4UougeP+Wu5rsCXv9WDR0J+GhmG\nCR9qr2Cd87Jg6fj+HwJgwWKqAeqL9mHgDz/qK0U9gZgifW18XdSfkmRTpd31EZWlr5z+CzBE\nXxkFLA6oKKiUjXVAgrk2HbjD6ARbWgfRp+05UzXRMw5SqDnYVReEmIfGhdrmMjTMNzNWIOJD\nW4HuAN8kZBjGoPYK1k5iwdLx/T8EwILFVAOU1+z3EbjkhLla2BLYoK/cgpt2Crsq9YXel6Rz\n/DI00LUoHXg3oKagUjbuhucbYyX/Z4g5YsaG/PXvjg/7tcAr5trJy4FNQvTCg/rWYWCjEc5t\nib72AgcjcaPynBiGCTtqgGAdmdGnfcfU+cfsgrVvZv+k+G5Dl/r/2jy38tkeHbwp6Ytzjc2F\nZJJhCNYusWdir/aJqa+cCXGcgBoUgrVjSp+EDn2m7nEt0Y/IGprxLNFXxsqFtSN7JcQlDZix\n23ek4NarcGZlEPl/eQwnWqOsSWvrBbF3Ug9vQurc3ID/hwBYsJhqgPLS/6LzQ0Os9Q7AEn15\na2qBsKtSUQwusT7OacAcbdEHCBykHljKxkYg1lxbDLyg/gxqptf0glzvBMwT4n55b7CevqHR\nE1c6P8aJwHvqyhiGCTOqv2BtSTAVIWWnT7DOT5faQMkbZNa3PXyhbH3bKVjfrvSam4/+6Hqc\nwBqCBCv/ebk/dr5bCYVgHU+zksgcJKtqvYLArDVE/7D25cZRQoGyJk3DClbGmbHuRwQLFlPN\ncf8ESAgw7tFt1/+xqdIGmH1JOu8AHcy9XwWUDixlowsgj54A7HU5euGBL61VTd9mCPFb9De2\nGmOyvvggAiudJbKAdqWeFMMw4UC1F6zDHYiGbdi9Y3Fy12ctwRpD1PX1rbs3T4qjuM1GJDeF\naNCbW7KzBhIlHtMCp3PmEM3JyTlhCNZS6pX50Ya5iUQj3I4TVEOgYF0YRvTYwg/fnaS52kKX\nEgrBSteTtmavm6554psurVcRmFWQQF7rT+W3iSaoa9KOuto41/naub7g/H8IgAWLqQaU8vEX\nh6MR7e93tqnSFOBpK3wMaK0tHgQOCwVKwSpshOhz5uqVuEL79/hnG9w0y+AB4H0h7pB3BC/F\nFO3f/GvQJSDtfFM0yAt9TgzDhAfVXrDGET1foq/80JmkYK0hGmC6xpY46mY8wbOQaKgxFLZk\ntOYTxr5M2xisxOf0galiVyzFud2WU9TgFKyVREOMY2V7yXtEXSJYsPYRpRlJ4mAidS1Rt15B\ncNZLRNath6FE29U1jSBKGmEcbwdRXJ7j/yEAFiymGuBy/VtsvRkY69+0qdIg3+OFGtGoUyzE\nncDpeQ81r9vk9qEH7JUoBWstQObaKeDP4oP79Nkcrhpzzq0lhyJxeaGuWSn6VpEHC4xGND8u\nvhl8752dVvgSE4G3SjkrhmHCguouWIUdKFZOLPOuJVh9Kfag3D2J6H19uTQjTXYG7dKMxlix\nC1Zn+cTPQKKvXQ6kqMEpWL18Q7EmEi1WlwgWrHVEcpCsyHotq1DdegXBWVuInjEDx2Ope4m6\nJu1cU+S5phLtcPw/mByZJ/lVi0gWLOZi43L9a3zz97SUNsAlk2wxmyp1Bpb54q0B7W+e6+Fp\nIyetqjdOXcrPKN/Aq+1Ap0keWfDuky7NiTUnfe+HO/StL4AtQmz2IFO8E2UU9A11HwcMdz8r\nhmHCh+ouWNmWuwhxNt4UrENET9p2j3QWyCMyO+3tgjVH7hxH5H5TLqgGh2DtI0qVCQfe/+SQ\nukSwYG0OvCsZuvUhsoo7W/cIVxDNdalJO9fZMjSWyBiYFSBY23/toz4LFnOxcf8cZuna0ijd\nITw2VfLarelXxiiq5lqBpl1HTej7c21llLKUn06++RTWAbfUaTVv97n945v4Br4Hkg78SZ8w\nfgki9e7rsWhaKApvRLw49TPEHcyfEYE3ZOZqX9cYwzDhTXUXrLfkcCOdVFOwsoimW6GzRL39\nycX5eXkniZKMDbtgbZQJ04lWhzycowaHYGXZGuJaIliwTrcnGrfPlu/eelFK1gwiY7SvGEJ0\nwCVHO9f1AefKgsVUY9w/i1lml9INC20xmyo9Avg/y7cBXwsRBaQZ47XO9gQ8u1Sl/PwOkLO3\nvK0dpc1xY3XnJcAaRVtKBmoSdkpfK7wC7fLF5zH6lO8ZaJIjZiJa39HJN3X8XuBm97NiGCZ8\nqO6CNZ9ovrX+nClYi8lBvLkze1K/5FgzEixY1jv3Zrjfk1PU4BCsV20NcS2hGOSepSc8Pn39\nKRlXtz4QVdYu+SzgEdmpp8rRzjU74FxZsJhqjOvHUeN8zob0aGCwP+LWg3WD0YN18qT1KSv5\nE9BbVcpPa0B2jr1te5VOBtAjuCGnNJu7TY6fz4pCw1YRuCVP7KinTw7R3uzzWoRIOXyrCGgW\n6qwYhgkXqrtgzTTHOxmMMQXrZadY0HktVjDSFggWLGui0RCCpajBIViziV4vtYRqHqzPnzAS\nYoetM8bqq1ofjDKrF3n1v8+XEq1wy1Gca4Bg5UyW/OoXPAaLuei4fBx9fN3cPmbcpkpdgP/6\n4lcDxxzFVgFXq0r5aQGYT5+ID4H68nXRYgdwXVDqnl8Bf/Y9HfOpN6betem5ovgOPKBttjFf\nX7gN+EwmRKJBaWfFMEw4UN0Fa4ZNsEaZgjWHaEK2DX0iwBeJEhftPql9TRZWULAUNTgES9OZ\nV0stoRIs7XfEgkFGP9cTuS6tD0aZ9arZ+oHkzXXLKV2wfPBThEw1wOXj6Ge+bb4ruyo9Afju\nkJdEoa7zg3QW8BQrSvlpggi5lg38wooWAdGBmWtjgL8F/yH0EqL1r4fLzaccv5PTdQn9kUZP\naSfFMEw4UN0Fa57tztw/fLcIXw7I2k/UQT7iV1AxwVLV4BCsRUTTSi1hE6wMv2BpnN4w1ks0\nTN16BcqsQ0TPCpFj/OuSw4LF1CxK/Sh8DzT2bdhUaSbwhBU+ALRxlirxAAWKUn78PVgFHjTy\nhesgKiDxP3UR+a/gdu1uaE41KhdH/A81cg8WwzAG1V2wlhONt9Z7moK1Nni60GVE1sPc+ysm\nWKoaHIK1xpy4M3SJVCL5TjOR5hAsjQNdjLFgitYrUGcNIm+eeJ1onWsOCxZTs1Be/lljBm+y\n1k/Cpjw2VdoK/MEKLwK6OmvQfOcSVSk//jFY4pfAd3L1qK03y+S/dXCZ4t03JffhHqPTrCle\n0hff+d6DyGOwGIYxqe6CtZWov1w9FmsKVg5Rx4AO+5eJrPEYiysmWKoaHIJ1kKhLiZlwcPLk\nN9QlBvnmyirwBgqWnvWWsvUK1FnLdbcaQEmFrjksWEzNQnn5pwKPW+ufAFf5dthUqeQq1LO6\ni5ON7qPlvR58zUrUlOv3qlJ+/E8R6nOWTrU+YsDDjrSP6uOyLYomzkSU+fm+xpxQfrsxMZbO\nXuAm5VkxDBNmVHfByvNS7Pfmqv7UnDHRaJr/vcfZvWfpRvOK70bi8WSiBGMt0xq9VSbBUtXg\nnGj0caKPfbkL1CX+SfShGdNcSBeskvnP+OahXka0Stl6FcqsE7E04Qeiye45asHyjWKzw4LF\nVAOUV/9bQGNrDt3HgWTfDrsqDQOGmWt76qJZkRCzgbbWk3y3A2OUpXz458ESnwJXy+l5/6x9\nKOxZuVejgeqNoYcaQU5hRzA++4tRR1bB82AxDGNS3QVLn5shwxit+nVCnP9VOUnfGjsP9yLa\nLYz50vsaSUf7p6UQGXPhrLQmriqTYKlqcArWu0Q9jPt/37Yn7w/qEpp0DTXuG+xKSDJ7sIb6\nZt46N4DooLL1KtRZw6nzcjlBuzpHca4rXSbwYsFiqgHKq7/4BuAuY1qEkokR9vmu7Kp0pDHq\nLNVXfrgNxosB82KAJOP5jzNaXrNTylI+RgK+WX7jgUf0D3DJP4AY45M8sF8/YzLhvwGTg4oK\nXatuk73HExGjW10X/FHuGm97SSLDMOFMtResPZpWDVy5Zd3U+B4TrZc9jyZqN+OTLzfOSiQy\n+vYLkome/vTA53MT2+1LJ5q2/6gQ24niF6xeUlI2wVLV4BSskmFEHf+9euVE+bJnVYkDsZph\nZW1dN9k7eIYpWDu15j/z9ubsTa8+RjRa3Xolyqz3iR6lx0rccxTn6vt/CIAFi6kGqK/+zQ2A\nhkkjxgy8XrtKu+mR9Rk6bYEUfan7lHhFc6+/vDChT1PgPuPPmv96NK/qN2F8n2ZA5CqXUhZr\nbJO2H7oSuPKpmSM0U4sw7/tHAdu0xb66qPN0hg/rLQliISK3ydVjjTDoglgViSUyoOlc6UP3\nGYYJA6q9YInVXnOap5Rdc4nMoa/FU+X0nhQ7y3w6e3O8nI5qhz73O9E8IS70NSLFZZymQVGD\nU7BEwQjroPPdSugj0A1Sj82TPU3rEnwTVY0659J6Fcqs/PZk3J50zVGcq+//IQAWLKYa4HL5\nf9xavhsQEQOMh/1Gwc71RtKsBnLz4Tyz1H+aWgm/WCvcSkkKG+FS35udv75Fplwqb6dLwcp0\nlMedMv3o5dbdSY3XPGiheWAnuXk+BvXPuJwVwzBhRfUXLHFwcs/2Sf3mHtVn2FwrY3tmpnb0\ndhw42zeEac/Ybt4OAxbnatYxv0e7Pvpzdj+O7Nyue0YZe7BUNQQIlhBbx/VKaN976l73Y4pP\nn+vi7ZD2RoGuWuag15OZT3dvF9dxwLQv/IcKbL26QYqs0ZoqHQqRozpX6/8hAF2wdgYGGaZ6\nUDSvfavoyJi7npCPiihVaf+QmxtFXd3RPxHp8XEPtIhqcGXsrHMhSkk622cwLXr5L7+o1/S3\nz1gPAYcWrGS0Oeev6IMHGtW/dYr1F8z7gMvrGRiGCTNqgGAxVQILFhPWrAfiqqDaJN98DQzD\nhDksWOEKCxYT3twFj9szJhXnUF20DeotZhgmLGHBCldYsJjwZi3QsdIrfdR+45FhmLCGBStc\nYcFiwpwERGys5Cq3efDXSq6SYZiaShgKVv7RIE6EYXNYsJgw59jPcV1+pdZ47ibE5FRqjQzD\n1FzCUOG17SoAACAASURBVLAWUhBdwrA5LFhMuLOmLrpXaoWp8PANQoZhJCxYLFgME6bMBsZV\nYnWzAOVbExiGCUvCULAYAxYshmEYhqkyWLDCFRYshmEYhqkyWLDCFRYshmEYhqkyWLDCFRYs\nhmEYhqkyWLDCFRYshmEYhqkyWLDCFRYshmEYhqkyWLDCFRYshmEYhqkyWLDCFRYshmEYhqky\nWLDCFRYshmEYhqkyWLDCFRYshmEYhqkyWLDCFRYshmEYhqkyWLAuIuOIPrloB2fBYhzMBsZX\nYnUz+b18DMOENyxYFxEWLKaMrLkKeMe2/cGjv7y0QevOWb5AcWZi6wb1mt/73HflidiPUBfd\nSsu68Ean1tH1mt838rAMfPhITN2rUw/7MxagzqdytR88b5f3NBmGYWoPLFgXkZ9GsKZRpiqs\nC9a0N5nqhNuPsGBwBOyCdeIhSJLPmZFdN1mRqAllj9g43hLX5JWSdfBua1fDWUbg9Tr4U7dr\n0eqolfFjDJ601s+1RbMf3C9LhmGYWg4L1kXkpxGsNBasmoLLT/CztkA9m2AV/Aao22n8hI51\ngQ5GZH+MJj0pGeMGtNJ+qrPKGrGTBKwvJSv3WuCWf23YvLSbB5irBc40wYtCFN2Dx/y1XFfg\ny9/qwSNluUAZhmFqJSxYF5GfRLDOeVmwagrqn+D4uqg/JckmWBnAL4y7u9uaA8YP92HgDz/q\nK0U9gZiiMkZsrAMShLomH0OBh8zA60DTfCHmoXGhtrUMDfPNjBWI+NBWoDvANwkZhglbWLAu\nIj+JYO0kFqyagvoneAtu2ilsgnW+CfCBuboGaKstvo/AJSfMSGFLYEPZInbuhucboazJzzXA\nNl+T8JYQvfCgvnEY2GhEc1uir73AwUjcqD4lhmGY2g8L1v/Cjil9Ejr0mbrHF8ie8rckb5ch\nC6xBKWlExeKjZ7vHd05fWWwlHZnRp33H1PnHShGsfTP7J8V3G7r0tLGVQfSub9dwojWKHCGe\nIrog9k7q4U1InZurBxaSSUZQ9SxY1Q/1hXBraoGwC9ZHwM3WvnuAL4T4ovNDQ6xIB2BJ2SI2\nNgKxxkqorDrwFMrVFGCKEPfLe4P1MM9Y9sSVp+0FRCLwnvqcGIZhaj0sWBUn/3lpL7HzzcDZ\nETJA7VaYkSFEp6bK2N/zzNiWBHM7ZWcowTo/3aor2ehGWEP0D2tfbhwlFChyDA0rWBlnxrof\nESxYNQv1pbBd/8cmWK8Afax9zwVNhkBAVrkjXYDggwdmXYoIa4CVJlgvC/Fb9De2GmOyvvgg\nAiudNWQB7dTnxDAMU+thwaowF4YRPbbww3cneYkWGoF0om7/2blny3QtYg4+0SKvUf9lH6/7\nVzzRs0bocAeiYRt271ic3PXZEII1hqjr61t3b54UR3Gbte2CBPJa3QNvE01Q5Qih1biaemV+\ntGF+ItELWuB0zhyiOTk5J4IOwIJV/QhxtdkEayqQboUXAT0deYejEX2mvJHCRog+F3jEoKy/\nWrcChbgNEV8LcYe8I3ip3p0l8q9Bl4AqzjdFg7wQJ8UwDFOLYcGqMCuJhhh/0Wd7yav3Fi0n\n+ptxX058TJRgKM1TRN7Rxr3BHZp07dBXxhE9X6Kv/NCZ3AVrDdEA06e2xFE3/TAvEVm3W4YS\nbVfmiBFESSOMgcg7iOKM322ZPAarxhDiarMJ1nxbD1YmcK89bevNwFhR3shagAIPGJz1IXC3\nqUuvmUPiH0CKvlXkwQJtMQjNj4tvBt97Z6cVviKJxlgthmGYcIQFq8L0Itpvrk0kWixEyWOm\n9+iMJFqqLzXBSpT9TpOJpmuLwg4UK2cHejeEYPWl2INydRLR+9piC9EzZuB4LHUvUeaI54lS\n5BNdqVLoAgRrz98kN19XjwWrmhHiarMJ1kbgdis8ArhFrn7z97SUNsAlk3xlyhIxGAW8YNt0\nydLTrhn/wab/dPHgNv1Jw364Qw9/AWwRYrMHmeKdKGOaLN9Q93HA8BAnxTAMU4thwaoo+4hS\n5eqB9z85pKkL0aMlMrKBaKi+fErezBOGIOm/d7KJ0mTkbLyrYB0i8k3YqJUYqS2KO1v3CFcQ\nzVXn6II1W4bGEhkDswIEa/uvfdRnwapmhLjcbIJVeBnwkbyEWmnOI8NZuto0Sj/pL1OWiEEn\n53wKLllCvHmfOc/o1U+f0jeXIFLvuR2LpoWi8EbEi1M/Q9zB/BkReEMWWK3oGmMYhgkPWLAq\nSpbfnUzeIxptrR8mStJl6yn/s38niOIvCPGWrViqq2Blmd1dBmeJeuvLGUTmmOMhRAdccjTB\nWi9D04lW60sWrJpDiMvNPg/WEOBa/QoQpx6pA7S2rhlTfm5Y6L+KyhAx+J3xLGJpWeLkkBbm\nnrr3Gk0tvALt8sXnMfqQsAw0yREzEa2bVyfcL0vstT3wyDAME16wYFWUV4nmBwbmWuslRKTf\nqtMEK9sKxRJpv33m24o95ypYi8lBvB7bJZ8FPCL7wFQ5z/uPN0PeNWTBqjmEuNzsgnXq/wGX\npS14bUhzDPLfIhTifM6G9GhgsChXRKM14OyuUmYdbI2Ixz46Xbh/lnb8p/VIVhQatorALXli\nRz3MEaK9OdnDIkTKIfNFQLMQJ8UwDFOLYcGqKLOJXncEZhkjsSTtifS5sDTB+tYKJRAdEWKm\nLWuMq2C97JQnOq8He5FXf6prKdEKtxxNsKyuCBfBOr1Z8svLPCxY1YwQl5tdsMTeG+Q7AVMP\nAL935H3dPHBceRkiLYCAmd1VWb8H5P3nk23lDA6femPqXZueK4rvwAPaZhvz8cZtwGeyTCQa\nhDgphmGYWgwLVkXR/OZVRyBQsI4JQ7D2WqEOhnPNsGWNchWsOUQTsm1c0IOvmso0kLy5bjml\nC5YPfoqw+hHicnMIliic9sem9a/tvlFsAro6E+fDnF+9PJEmiFAcMiBrA/Bba/2/wMP21JcQ\nrT/wcbn53OF3/gm0ouFxPyeGYZjaDAtWRVlENM0ReI1ojrV+gYj0eRM0wfpShvRbhGeEmGe7\nRfiPULcIXw4KHjKm0sqxJtRS5bBg1WjcrjURKFg+ZgEvOSPfA43LG1H2YAVmjQSsxzPEAaCJ\nbdfuhuZUo3JxBFgm93APFsMwYQsLVkVZY87k6WeVfJJPR7OgTvpSEyzr7bcniDoIY7Ks8VZW\nT1fBWks0Ijg6iLx54nWida45LFg1GvXFYOAiWO2N9wVmjRm8yYqcBKLKFvHjH4MVIusJ4J/W\nei7sPVMl9+Eeo4+1qWl73wHy0Q4eg8UwTPjCglVRDhJ1kbMyHJw8+Q1j3oZu1jQNa+SkVU/5\ne5m2mmPTtUV/GTkW6ypYmqB1PB8UXa671QBKKnTNYcGq0YS43JyCZb3r8mhDXKFdc6nA49au\nT4Cryhbx43+KMETWSKC7tb7dIU4zEfWVsXKNOfZ9uzExls5e4KYQJ8UwDFOLYcGqMI8TfWyu\nvUK0QPs7vjfRp3LfcCLj16EmWD3kzZdp5h3EPC/Ffm9GFoeYaDTNP79Ddu9ZckLTE7E04Qei\nye45asHyDw2zwYJV/QhxtdkFKy66jhzZ1w/QRf4toLE15+zjQHLZIn7882CFyMoCWlkvLJ9s\nH4N1qBFk1y0ZE7yLxagjZ7vlebAYhglfWLAqzLuaPOnzLIpv25NXn5x9JVFv81U5q4i6GK+u\n0QQr9t9G6Nt4ijV+Kz5HlGH8nvo6IS7kq3KSzOcPD/ci2i2jw6nzcjlBuzpHIVgrA+frkrBg\nVT9CXG12wXoa+L+z+sp4oIX+YGnxDcBdh/VIycQIYHXZIn5GwlIkVdbAfv0OaYui1sAgs4v2\nqxhgqa804TbZkzoRMfr8DF3wR7lrvJzPgWEYJvxgwaowJcOIOv579cqJ1sueS4ZryrV81+5N\nL8VS3FYjRxOs6ZSx7tsvFidYY6/2aFo1cOWWdVPje0wM8bLn0UTtZnzy5cZZiURTreD7RI/S\nYyXuOQrB2k4Uv2D1khIRAAtW9UN5JazP0GkLpOhL/bXKx1sCv3jyXy/8BqhnitLmBkDDpBFj\nBl6v/VS7lTXiYw3MCazUWVHANuPqqwvcOe2Dj1YMjAa8vgtqISK3ydVjjTDoglgViSUyoGlh\nKGtkGIapxbBgVZyCEXIGqlj5XGDBKGtOqmQ5BkUTrINjZWyYnHxxtdfcTtk1l2iTumohiqfG\nWrXPumAF89uTcTfSNUchWBf6GhnFIgAWrOqH8koYBTvX66HtV8itFlav1setrYSIAUVljlgU\nNsKl51xrsgRLvPdzXzN6nrXKHr0cw3wVveZBC83MOsnN8zGof0Z5UgzDMLUeFqz/ha3jeiW0\n7z3VN9WV2Dnp8YT4rsOXySEohmCJjSN6xKcMfdf3J//ByT3bJ/Wbe1SfMnSte+V7ZqZ29HYc\nOHu/LTZaU6VDIXIUgiV+HNm5XfcMZQ/WznKcK3ORUAiWOP3i3U0iL797zAlfVtG89q2iI2Pu\neuKr8kQsOtvmFA3K8gmWODvbe/Ulkc1+O2iHv2gy2pzzb33wQKP6t06xbP59IL7iJ84wDFOj\nYcGqUjTB2l961kWBBYvxsR6Iq4Jqk3zzNTAMw4QdLFhVCgsWUyO4C57dpWeVk0N10Tao55Rh\nGCZMYMGqUliwmBrBWqBjpVf6aOBLEBmGYcIIFqwqhQWLqRkkIGJjJVe5zYO/VnKVDMMwNQcW\nrCqlDIKVfzSIE6UUqRRYsBgbx36O6/JLTysH525CTE6l1sgwDFOTYMGqUsogWAspiC4/RdNY\nsBg7a+r634RTKaTCwzcIGYYJY1iwqhQWLKamMBsYV4nVzQKUbxBgGIYJE1iwwhUWLIZhGIap\nMliwwhUWLIZhGIapMliwwhUWLIZhGIapMliwwhUWLIZhGIapMliwwhUWLIZhGIapMliwwhUW\nLIZhGIapMliwwhUWLIZhGIapMliwwhUWLIZhGIapMliwwhUWLIZhGIapMliwwhUWLIZhGIap\nMliwqpgyvCzn4sCCVfOZDYyvxOpm8tttGIZhKg0WrCqGBStcWXMV8I618Q5s3K+OaHzw6C8v\nbdC6c5a59SYc3Bl0hLroZqwUZya2blCv+b3PfVdqQ8SHj8TUvTr1sH/3AtT5VK72g+ftCp8v\nwzAMY4cFq8JMo8wyZF18wXJpJwtWlVIwOAI2r1kUpFPBEXHiIWs7+Zy+XYpgHW+Ja/L0lV03\nWSlRwT1QAQ15vQ7+1O1atDpqBX6MwZPW+rm2aPZDpZw+wzBM2MOCVWHSaohgubRTF6xpbzL/\nG27/6Z+1BerZvOZfQGyGxXx1pOA3QN1O4yd0rAt00ANfZ/jpAyQEHCMJWK8v98cADVMyxg1o\npf1IZ4VuyJkmeFGIonvwmL+W6wp82Vs9eKS064lhGIYpCyxYFeWct2YIlls7WbAqA5f/9PF1\nUX9Kkk2wRgGLnSnBkQzgF0af4rbmQODPrAMa7HVG1lnK9TDwhx/1laKeQExRyIbMQ+NCbbEM\nDfPNwApEfGjL7w7wTUKGYZjKgAWrouykmiFYbu1kwaoMXP7Tb8FNO4VdsNKBd50pQZHzTYAP\nzNU1QFtn9hvAyIBj3A3PN/ry+whccsIMFbYENoRsSC88qC8OAxuN7dyW6GvPPxiJG13OiWEY\nhikPLFhl5cLakb0S4pIGzNitby0kkwztNyXFlhTM6hxv9kdkT/lbkrfLkAXWGBe/YM0l6m8M\nmRH7ZvZPiu82dOnpkAd0ZmUQ+X8fDydao6xJO9oFsXdSD29C6tzcgHYGwIJVGbj87G5NLRAO\nweoDfOxMCYp8BNxsrd8DfGHfd+ZK/MrZNSU2ArHGyhedHxpiBTsAS0I25H55b7Ae5hnLnrjS\neRUmAu+5nBTDMAxTDliwysjxNLL4t3CIi2Y754Zpqy9r4bMjrKR2K8xyPsF6i6iX0dFwfrqV\nk7xBfSxV1hqif1j7cuMooUBZk6ZhBSvjzFj3I4IFq6px+elt1/+xC5a2/pUzJSjyCtDHWn8u\nYMKE/ohYF3CILkDw0QnICtmQ36K/sWyMyfrigwisdNaQBbRTnRHDMAxTPliwykg60aA3t2av\nm55ApP1iO50zh2hOTo6mTP8kep/apQ9fJsQFLavbf3bu2TLdS2SOZbEEa1MsdTWfjR9D1PX1\nrbs3T4qjuM2uxwvMKkggr9XX8DbRBHVNzxKtpl6ZH22Yn0j0gnC0MwAWrMog1CVjF6wHgcPO\nvUGRqUC6tb4I6GnbtdWD7gGVFzZC9LnAIx6ORvSZkA25Q94RvBRTtH/zr0GXgNzzTdEgT3k6\nDMMwTHlgwSob+4jSzHs0BxOpa4m2zLTGNo0g+vsgU2CWE/3NuDMnPiZKMGJSsHa1p05mT9Ya\nogGmKW2Jo24FQk1w1ktE1r2boUTb1TVpbUkaYbRzB1Gc8Ysyk8dgVSGhrhm7YN0JnJ73UPO6\nTW4fesAlMt/Wg5UJ3Gur6T40OBRQ+VqAAg+49WZgbOiGPIAUfVHkwQJtMQjNj4tvBt97Z6cV\nvuRE4K1QZ8UwDMOUCRassrGO6BW5mvValv4glk9cnieKP2KslTxmmo/OSKKl+tIUrEPJlLDL\n3NGXYg/KnElE77scLzhrC9EzZuB4LHUvUdektSVFPh6WSrRDCBasqiXUNWMXrOvhaSPnqqo3\nTh3ZCNxupY8AbvFX9BYwLLDyUcALts1v/p6WolV3yaRSGtIPd+iLL4AtQmz2IFO8E2W0wTfU\nfRwwPNRZMQzDMGWCBatsbCYa4YzYBWuUGdpD9GiJ3L2BaKi+NATrZE+K32rGDxH55nXMJgp8\nNEy4ZhV3tu4RriCa61KT1pbZMjSWaIOjnSbbf+2jPgvW/0yoa8YuWM01h2naddSEvj/XVkYp\nI4WXAR+Z2WdbAdf4K/oNooNu8XZyzqeQpUtSo/STpTVkCSL1PwbGommhKLwR8eLUzxB3MH9G\nBN6QGasVXWMMwzBMuWHBKhun2xON22eP2AVL/nJ6j2i0tfswUZIuW7pgFQyk2PUynkU03co5\nS9RbfThV1gwicwDzEKIDLjlaW6wDTSda7WinCQtWpRLqmrELVhSQZoyOOtsT8OxSRoYA1xp3\nC089Ugdo7atnFTA4qPLfOZ8zzDL7wm5YWEpDCq9Au3zxeYw+3CsDTXLETESfErqvWW/r2Wt7\nmJFhGIapMCxYZSQrlogen77+lBWwC5Z8wutVs2vJoERL12/WaYK1J0PeLtRZTA7i1UdTZe2S\nzwIeIUpzy9Haki2rmCHvGrJgVSWhLhm7YJ08aV04JX8Ceisjp/4fcFnagteGNMcg+y3Cv8Bz\nUATSGnB2V53P2ZAerVIxZ0OyotCwVQRuyRM76mGOEO3NyR4WIVIOmS8CmoU6K4ZhGKZMsGCV\nlc+fMDwmdtg68y6gXbA+N1NmEfkn525PpM+FpQlWulZsuHXr8GWnFtF55cGUWb3Iq3d5LCVa\n4ZajtcXq12DB+ikIdcXYvcbGKuBqdWTvDXJQVuoB4PfW3gMe/Dm4lhZAUVDw6+bKEeqOhnzq\njal3bXquKL4DD2ibbcxHF7cBn8mESDQIdVYMwzBMmWDBKjtfLxikd2PRE8aDgnbBklITKFjH\nhCFYRAlEr8vwHKIJ2TYuKA+lzHrVVKaB5M11yyldsHzwIPfKINT14iJYZwFPsTpSOO2PTetf\n232j2AR0tfY+C7wigmiCCEXd82HO1F6GhryEaP2x1svN5w6/80+gFQ2P+nwYhmGYcsCCVS5O\nbxjrJTIe6VII1mtEc6zMC5pX6TMnaIIVu2RvO/J+acYXmzOSloIy6xDRs0LkGP+65LBg/cSE\n+iG6CFaJBygoJTILeMlabwtP8Cxm6h4s8T3QuGwN2d3QnGpULo4Ay+Qe7sFiGIapDFiwysuB\nLkT6K3kVgrXK9lSg5kGd9OVTxtD0N4geNWeAXBv0OKIKddYg8uaJ160hX6ocFqyfmFA/RBfB\n0lzmktIi7f3vFDwAc2aFAPxjsLLGDN5kRU8CUWVqSMl9uMfoFm1qmtx3vjcj8hgshmGYSoEF\nq9wsJtLHuSgEax9RN2us1Ro5bZWcaPQ5y7008eqoHndlR521XHerAZRU6JrDgvUTE+qHaPOa\n5b0efM0KLzLGVwVHNKwXWB5tiCusC2km4JuNw4b/KcJU4HEr+glwVciGWMxElPminmvwtL7Y\nbkyMpbMXuCnUWTEMwzBlggWrTJTMf8Y3RfYyolXCEBdzwJVfakp6E30qs4YTGb/UpGCd6mq9\nOyfN/9bm7N6z9rscUJl1IpYm/EA02T1HLVj+gWE2WLAqg1AXjc1rZgNtraf0bgfGqCIiLrrO\nXjPSD3jGqqWXcgiWbR6st4DG1lOGjwPJIRsiOdQIsq+VkKAvFqOOnKCW58FiGIapFFiwysZQ\nOauUEOcGEOm/z1bKFwLapUaL9TZflbOKqIsxrMZ6F+H2WGq/T19ZQ5T0rZFzuBfRbpfjqbOG\nU+flcoJ2dY5CsHztDIAFqzIIdc3YvCYvBkgyrowzWrTZKVVEPA3831k9Mh5o4Xul4J3AJ4rK\nR8JSpOIbgLuM1xqWTIwAjMt0YL9+tnfrBAsW4TbZ+TkRMbrndcEf5S7t4E+HOiuGYRimTLBg\nlY2dcUTPvL05e9Orj8nZRLcTxS9YvaTELjUlw4l6LN+1e9NLsRRnTt1uCZaYR/Q3o8tiNFG7\nGZ98uXFWItFU1wMqs94nepQeK3HPUQiWr50BsGBVBuof3voMnbZAir7UX6v8X49mUf0mjO/T\nDIjUO0AVkeMtgV88+a8XfgPUW+2rq2nQa6IN1sCcwEpjcwOgYdKIMQOv136k3YxQFLBN3RCD\nhYjcJlePNcKgC2JVJJbIgGZjIbWRYRiGKRMsWGVkXYJvwqlRhidd6GtsFNulRhSMspKS5ZAW\nn2AV/53IeFNc8dRYmRM7Sz1Jg2tWfntte0GIHIVg+doZAAtWZaD+4Y2Cnev10H+aWpu/WGsm\nBUe2XyEDLWwdTnWAfMUhChvhUnmLUXzc2qopYoD5aKElWIqGaBy93PZuw9c8aKGZWSe5eT4G\n9X29ZwzDMEyFYcEqKyczn+7eLq7jgGmWwfw4snO77hmOHiyNnZMeT4jvOnyZ9UvRJ1jih0Si\nD421PTNTO3o7DpztNgBLuGaN1lTpUIgchWD52hmALlg7Sz1rpiKovOb4uAdaRDW4MnaWpUWK\nyOkX724SefndY2zTMpyGy7RUnW1zihbNa98qOjLmrie+koHQgpWMNuf8FX3wQKP6t06xBPx9\nwOXtAgzDMEx5YMEKV1iwajbrgbgqqDbJN18DwzAM87/AghWusGDVcO6Cx+0RiYpzqC7aBnV2\nMgzDMOWHBStcYcGq4awFOlZ6pY8qX2bIMAzDlBsWrHCFBaumk4CIjZVc5TYP/lrJVTIMw4Qp\nLFgXm/yjQShePVf5sGDVdI79HNepHjCsOOduQkxOpdbIMAwTtrBgXWwWUhBdforjsmDVeNbU\nRfdKrTAVHr5ByDAMUzmwYF1sWLCYijIbGFeJ1c0ClJP+MwzDMOWHBStcYcFiGIZhmCqDBStc\nYcFiGIZhmCqDBStcYcFiGIZhmCqDBStcYcFiGIZhmCqDBStcYcFiGIZhmCqDBStcYcFiGIZh\nmCqDBStcYcFiGIZhmCqDBStcYcFiGIZhmCqDBStcYcFiGIZhmCqDBStcYcFiGIZhmCqDBStc\nYcFiGIZhmCqDBUtjHNEnVX+UJ4m+q/qjlBkWLD+zgfGVWN1MfqcfwzBM2MOCJViwag5vwsGd\nqojOVwNublyvJc0rtgoWZya2blCv+b3PqX4Ea+qim2/9KuCdoIx37Me43wh9+EhM3atTD/tz\nFqDOp3K1Hzxv/8/nyjAMw9RkWLBEVQvWNMo0lhMHDDhSdUcp/fgB6II17c3qjKLRZRSs5+vI\nzVu+N8vtuslKiAruWzreEtfkmasFgyOgEqxFQYL1eh38qdu1aHXUSvkxBk9a6+faotkPZf35\nMAzDMLURFixR1YKVphacnwyX49dIwfo6w08fIEEVEWIMEPHw6KmDWgK/NMxpfwzQMCVj3IBW\n2knPCqw0CVhvrn3WFqinEqx/AbG+w8zXAmea4EUhiu7BY/5arivw5W/14JHy/IwYhmGY2gYL\nlqhiwTrnvbiC5Xb8GilYdjqgwV5lZHd9RGXp26f/AgzRVx4G/vCjvlLUE4gpcpZaJ7VMiPF1\nUX9KkkqwRgGLHYF5aFyoLZahYb4ZWIGID237uwN8k5BhGCacYcESVSxYO+niCpbb8Wu6YL0B\njFRH+kLvXdI5fhkanBbi+whccsKMFLYENjiL3Q3PN+baLbhpp1AKVjrwriPQCw/qi8PARmM7\ntyX62vcfjMSNodvPMAzD1GrCWbCOzOjTvmPq/GN2wdo3s39SfLehS0/L7aeILoitGT3a95qs\nD+fZOapnfMqz2b4qlOl7J/XwJqTOzdUDC8kkwzbI/dzKZ3t08KakL84N2Txn3RlE/l/xw4nW\nlPv4AdRwwTpzJX5VpIwUxeCSMzKWBswR4ovODw2xsjoASxzFNgKxcvXW1AKhFqw+wMeOwP3y\n3mA9zDOWPXHlaUdCIvBeyBNgGIZhajVhLFhbEkz3SNnpE6zz06WPULLs5tC85ux8GdovXjfX\nYuWQHWV6wco4M9ZdH9KuEKxve/hKZQtXAuteQ/QPa19uHCUUlPv4AdRwweqPiHXqyAaYvUs6\n7wAdnFkEZDkCXQDrSNv1f5SCpQW/cgR+i/7GsjEm64sPIrDSWSILaBfyBBiGYZhaTfgK1uEO\nRMM27N6xOLnrs5ZgjSHq+vrW3ZsnxVHcZiOi7Xqbns7avOJRTVI20eCVm99NI+pc7J6+mnpl\nfrRhfiLRC1rgdM4cojk5OSd8gpWbQjTozS3ZWQOJEo+5Ni+w7oIE8lp9JG8TTSj/8QOo2YK1\n1YPuLpEpwNNW8BjQ2vlTj0b0GXugsBGiz9kDSsF6EDjsCNwh7wheiinav/nXoEtAifNN0SAv\nl40xJgAAIABJREFU1BkwDMMwtZrwFaxxRM+X6Cs/dCYpWGuIBpgSsyWOuhnPhI0gStKfGhOH\n21Fs57F6gYIeRNtDpI8w7lztIIozfsFmWmOgpGAtJBpqZJSM1tTHrXXBdb9EZN1zGmo2oJzH\nD6BmC9Z9aHDIJTLI/qBgNOoU25K23gyMdRRbC5AjoBSsO4HT8x5qXrfJ7UMPGIEHkKIvijxY\nYByy+XHxzeB77+y0wlckEXgr1BkwDMMwtZqwFazCDhQrpyp61xKsvhR7UO6eRPS+vnyeqM8F\nI5JBlGB2SbxMtMw9PUU+VpZKtENfBgrW0ow0s7dJ7CJKc2tecN1biJ4xA8djqXtJ+Y9vcjJL\ncn2TOjVXsN4ChrlFOgPLfOHWgJx87Ju/p6W0AS6Z5Cw3CnjBEVAK1vXwtJGzYNUbpwf64Q59\n8QWwRYjNHmSKd6KM3b6h7uOA4SHOgGEYhqndhK1gZfvt5my8KViHiJ607TaeSNOMZaEZmUU0\nxlx7j2i+e/psGRpLZAyMChQsP3lEgTeWLBR1F3e27hGuIJpbgeObbP+1j/o1V7B+g+gTbhGv\n3ZB+Bci5HLJ0/WmUfjKgpk6B8ykoBau5VrZp11ET+v5cWxmlBZYgUhe3sWhaKApvRLw49TPE\nHcyfEYE3ZJHVgV1jDMMwTDgRtoL1lhzHpJNqClYW0XQrdJaot77UjEX2N73qE5V1psW4pMsB\n8GI60Wp9qRas4vy8vJNESS6tU9U9g8gcnj2E6EAFjm9SKwRrFTDYNfIIsNoXvw34Wv6Xmh1Q\nNyx0Fvwd8IUjoBSsKCDNGLp1tifg2SVE4RVoly8+j0G6EBlokiNmIvqU0H3tfllkL3Cz+xkw\nDMMwtZywFaz5ZjeUwXOmYC0mB/H6Ls1Y5O/fhUTyF+8Golnu6daTgTPkXbtgwcqe1C851izk\nJliqunfJZwGPyL638h7fpFYI1l/gOegacfRg3eDrwRLifM6G9OhANWsNODu1lIJ18uQpuVby\nJ0B32awoNGwVgVvyxI56+lQQ7c3JHhYhUg6ZLwKauZ8BwzAMU8sJW8GaSeSbm3uMKVgvO42F\nzgvDWOTz+Qt9g8ylYLmkW/0hboJVMNJWxk2wVHWLXuTVe1GWEq1wywl1fJM9f5PcfF29mipY\nBzz4s3ukC/Bf346rAceTml83Dxh73gJwTqelFCwbq4Cr9eWn3ph616bniuI78IC22UbvyxJi\nG/CZTIxEg1D1MAzDMLWasBWsGTbBGmUK1hyiCdk29MHtIQTLJb00wXqRKHHR7pPFQhS6C5aq\nbv0mpV7jQPLmuuWULlg+avBThM8Cr7hHngB8t05LolD3giNzvm2WLJ0miHBWVZpgnQU89gcT\nX0L0fm1xufl04nf+abai4QlVD8MwDFOrCVvBmme7RfgP3y3ClwPTQgiWS3opgrWfqMN+M6Mg\n5C3CoLr1Ue3PCpFj/FuB4wdQgwWrLTwn3CMzgSes9QNAG2fm90Bj+3a5e7BKPID/rc5id0Nz\nqlG5OOJ/hJF7sBiGYcKZsBWs5UTjrfWepmCtJRoRmBZCsFzSSxGsZUTWRAH73QVLVbcQg8ib\np88mv841JywES7OmO0JEtgJ/sNYXAV2FyBozeJMVOQlE2YuWbQyWDU2hLvFvldyHe4wusqZ4\nSV9853tpIY/BYhiGCWvCVrC2EvWXq8diTcHKIep4PiAthGC5pJciWC8TWSOEFrsLlqpuQwrX\niQGUVOiaExaCNRN4MkSk5CrUOyrXk40OpVTgcWvvJ8BV9qJleopwea8HX7PWNWf7vf3IUeb1\ncY05ffx2Y2Isnb3ATW5nwDAMw9R6wlaw8rwU+725utiaaDTN/0Ll7N6zjBt5IQTLJV0hOOZg\nL1OwXvHdmjyeTJTg1jxF3UKciKUJPxBNds8JdfwAaq5g9QoaguWMDPPNObqnLpoVGZOQNrae\nMXwcSLYXLdM8WLOBttbDgbcDY3w7DjXCSHONYPwsF6OOnOiV58FiGIYJa8JWsPS5GTKMwcpf\nJ8T5X5WT9K2x83Avot36SijBUqcHCs5Ka8ItU7DWEfU1Dnu0f1oKkeO9eDYUdWsMp87L5QTt\n5T9+ADVXsO4EPgkVOdIYdZbqKz/cBuNVgcU3AHcZ7xIsmRhhnyVLYyQsRZI4BGtgv376+3fy\nYoAk48mCM9ruZqd8+wm3yU7EiYjRFawL/ih3jbe9EpFhGIYJO8JXsPZoWjVw5ZZ1U+N7TLRe\n9jyaqN2MT77cOCuRaKoRCSVY6vRAwdlOFL9g9ZISKVgFyURPf3rg87mJ7falE03bb93NCiC4\nbo33iR6lx0rcc0IdP4CaK1hNA9+8HBh5RbOo/9/efQdGUeb/A/+kUUIUISA21LOcIGA9y+l9\n786C/u70kwQChBKqYAGkWeBsiCggitJEijRRRBAVCyqIIEVBRBBEVIqIiBSpEkMKeX7PM21n\ndmeTDe5mszvv1x/uM8888+wz2bnlfTOzz9zy1PN3yeobtBukVlUnSs0ZPLzPRXKnOzo2XUz6\nBFbSsoFKI6J26lUlMzXB6Fr1+maizFU9nn/urjpEyQusjWdS8lqj+FtN6ntcLEim2UaFTGKl\nPk0RAADimncDlliUpc8f1W7TVGb9JujiscYEoJwxUf91f6kBy7W5f8A53l1rUWxO07CqmTEF\n1gY1mzzzNPfRBfYt5WXL5RmltCnt/f3EbsBKIsorvWZidePBgbfpT48UK88zKiihl/NHgwU1\n6STj6t9QsrtIVZkBS7xR26w/c4m17b66ticivppIp8n81sZYLEqnasFOTwIAQPzzcMASO0Z3\nzc7pMXWfmrrT/Fdz64SerbNa95lk3PVUesBybe4fcMTeIbnNOw0ssWZy3/pMx6wWvWYdkgFp\neufmdy0NNjz/vpVhMirtLKVNae/vRwWsb4L+bSqxI+Q/wVRgzfb7L6lZ9ZzWvilFC6dln5uW\nnH7tA9/5d5drzTxaWsAS+0c0Pa1q9foZE4/5Nm1LDWxLnzStWe2yMWaQ/Zio2YntHwAAxAMv\nByxvi9mAFWbLiDIj0G2ONV8DAAB4EQKWVyFgGa6lxC1ltyqnnSnUKOCkIQAAeAcCllchYBmW\nELUOe6dd/B55CAAAHoOA5VUIWKaWlLAizF2uTaT/hLlLAACIKQhY0Za3L8CBsrf68xCwTL+d\nThfmld2sHI41ofRdYe0RAABiDAJWtM3kAO0r4n0RsCyLU6hTWDvsSYm4QAgA4G0IWNGGgBV9\nk4hGhLG7iUSuk+cDAIB3IGB5FQIWAABAxCBgeRUCFgAAQMQgYHkVAhYAAEDEIGB5FQIWAABA\nxCBgeRUCFgAAQMQgYHkVAhYAAEDEIGB5FQIWAABAxCBgeRUCFgAAQMQgYHkVAhYAAEDEIGB5\nFQIWAABAxCBgeRUCFgAAQMR4MGCNYP7iBDZ7knlj5RhJeHgtYE0iei6M3U3A8wYBAKAUCFih\nQsCqSMu6XJhaq0nnleZy8ZxW51WvUu9fT/ysLb5LDte4tXFanEIdrfLZRB+4tAno4NPb01PO\n6bnb12IGJX1pFHtQ4vt/YgcBACC+IWCV5QWeo73GbMAyd8CPClgvvBtt7kM+1tWMTv31ik1N\nzIqq2nkjt4Dl38Zh/xl0/lG9mN8vgVwDVkAHryfRjR0voHP3mS32ptOD1hgbUZ1fy/7rAwCA\nNyFglaV3rAes3jEXsI5nE53cddSQpjIJjVQV29OJUtsNHNHrXDnoibLi+4E+dxG1dGvjkEO0\nTC991YioilvACujg91r0tBCF19Mdvl4uzLfar0mk20P/FAAAwFsQsMpwLCvGA5a1A34qccAa\nR3T1L6owN4nSjsjX24j+b6+qKOxKlF7obN2Cqm8rq81SPYRJz6VQtTE5bgEroINpdEqBXHyL\nUvP0FvMo4VPbBp2IcJEQAADcIWCV4RuO8YBl7YCfyhuw8k6l9D168f7/3LddiF8SqMYBvaLg\nDKLljtbvEA0RZbQRf6fEH/TSpdTkG+EWsAI76Ea3qqXdRCu06kNnUHf7FjuSqbHrnxwAAMA7\nAWvP+LuyW/ec/ps91vw44d6cZh0HzD1itTo2f1DnFlnt+s86pC3OZN1ALWBtEltHdstu1fPl\n30t7ow1j7mrZ4q6xW1V5IPOH1opHmBcHG4kL5+BcewrYgf8xHxfbRnXOatlz6iG/HfBTeQPW\nLKKnHBUbc/97v1luQTTbvu73+nRxYRltxAqiDKN4Wc984RqwAju4ybg2WIWmaa9dqf4Rxyat\niD5y2wEAAADPBKzVLfWk0e4bK9YUjTPSB7c1T3hs7mxVrVfLzoC1eX6Wvthlb9D3yXvS2CRj\nulxazPyoueZQJrfMdx+JC//BufUUuAMyhuXPz9TrOu0RsRmwWhJtC/r3ZaKF9uV7KWFpWW1E\neyLzndap/7heIgzo4Cq6V1s6hUarl08SaL6z2UKi5qV1AwAA3uWVgLW7BfNDy7dsmNW2wyAz\n1gxn7vD6mi2rRmVy5iqt5lA75r7vrl6/sA9zq99kxZFdU5in7Np1QAtYc7nbnM+XT23FPDjY\n+xx/iPmOmZ9+OEpGsZlC5LfkLPOsx/vMzwcZiQv/wbn05LIDssdF2iCny0E+5dwBP5U3YNWn\ns+R/93+13CVm7U6jNPv5wzWJ1KmsNqKgJqUds1eUEbCMDq42rgieRGPkf/POp/Z+7YpqU/Wj\npfQDAADe5ZWANYL5yRJV+DWXjVizmLmXHllWZ3JH7ddhM5kHaLdHlwyTsURbN8d2D1arJ9RN\nz2JTBmceEe7mM9+vdbU+i7P2CPEss3kVaQDzOveRuAgcXGBPLjswmDlnsLYHG5gzjzp2wE+l\nDViHiW4Wn9yg5lI4e/gx57o1lxA9Y6+4garvFGW0EUuI2FFResAyO2hK7dRiYSLNkC99qd5+\n8UO/f13TZp7VshXRe8H7AQAAD/NIwCpowRnGpEUfmrGmO2fsMFaPYv5Yvc4d2Fs/EyQ2MffW\nCvaAlWv8mqwP8/dB3qgb83a9NJJ5low+zI/py/szuFOJ+0hcBA4uoCe3HZCDbGcMsifzBscO\n6H5+ytD4nJTKGbDWEbUZlWjMSPX3g2b1D/f1bteAqMYoe9v3iB6yLbq2EWKo/01dQQOWo4Me\ndLV62Ui0WohViTRHfFBVG5R1q/sIokdc+wEAAK/zSMBab+YlIf5opseancwP2lYPcW5wlFm/\nIGQPWFOMlSOYV7m/z4/MPY3iTx9/sVOI4lzzyt485qnuI3HhMriAntx2QA5yklH1DPNyxw7o\n1l1pqVY5A9ZSokuTzp225dj252r5bk5XNzwR1ex/0NH2b5Rmv/jp2kaINv7zKQQNWI4OZlOy\nuo3tGapdIAoaUzNx+FTK3JE3PoHeMZov8j81BgAAoPNIwHrPuGtJ6anHmoXM48yqP5jv9DUu\nzjt69CBzjrZgD1grjAbjmBe5v89C2/voxjPrN1zfz/yT+0jc+wkYnH9Pbm3kIJf5DTLmAtb7\nMuM02K8Vv6lBtNj8k+intBrOtDVdQNTP8WdzaSNdR+ScYaP0gGV2UHAWNc8TX6er6eQHUq1d\nYgKlHRYqr91kNN9GdIlrPwAA4HUeCVjTmaeb5Sf0WDOLHZrpK9eP6tE2Q68JDFjmo/vGGxfk\nAr1iex/dJuMXfHuMM1cuI3HhNjj/ntzayEGu9xtkTAYsM/4MJOpsrSjatbx/miNS3UKJO5wb\nB7aRziNyntQq5R4sewcLq1LquQl06VGxoQpNESJbP5/2GiUbt4YVEtUJ0g8AAHibRwLWBO2G\nKN1wPdZMduYTLpJ1+UNsFYEByzwNEjxgTWJ+3a+qG2epn7TNZZ4XZCQu3Abn35NbG5dB+gWs\nPdMMF5+WXDkD1qdE1YqN8gaiCx0rv69nu6/8p0S62aUDRxvlNCLnzO5l/IrQ6uDLrPQqF/Q/\nJIqvpqZysYH+aMS1RF8ZLZOpein9AACAd3kkYI23xZqheqyZwvz8epvjsu5p5lavbTko/3kv\nOLGAJUPPK35Vr+iN+3DWoSAjceE2OP+e3NqUHbAslfZXhOuJzjTLhURpzrXTSZ9fXRlE9LLb\nrtnbKLUowdmgrHmw/Dt4ltLUTxfq6r9O/Nk3zVYaJZbWDwAAeJZHAtY024W5R61LhJP9Wm1n\nbmH8BjD/xALWa8wv+FXtZB4kxC7tv+4jceEyuICe3NrEQ8DKT6Sa1kISVXWu/YXoFLPciBID\n5/fya6OU9wyWfwdbUvWpRo2XPURvGWtwBgsAANx5JGC9zfycWe6qx5olgdOFvsVs/sB/+4kF\nrMX69J4OfTnrqHideWmwkbhwGVxAT25t4iFgib8S/WwU92lnsxYO7/eZufIgWZHrJ9LnUdAE\naaMJ6R6s4B2U3EDXa6cQa9Oz6uVnIuOpRbgHCwAAgvBIwFrDfK9R/C1DjzW7mFsXOVtNZn7T\nKM46sYC1g7l9iVEcPVr/Nf/bKhH14pyCYCNx4TK4gJ7c2sRFwOpLNNbcY6LbhOhJdLe58gui\ns43iBCJrnopgbTQh/YoweAcTqOp3WuF8eli9rNMmxlK2ETVx2wMAAPA8jwSso1mc8YtenGVO\n79nb9/jk9XdOVJcGX7Yu3+1vy9xSK80x75kKKWCJu5lX6iXZ2QytcCCDn/+VeXTwkbgIHFxA\nT25t3AOWddOXXeUNWF8SnWPMlnqzHKM2negp5q8F7yZqaxS72W/BCtJGE9I8WEE72FmTjEnS\nmLRjYhYlGcPDPFgAABCERwKWmhFhoPbTtO9bZvoelZOzWVu5uxvzFvm6lLm71mjfvb3bMWvP\ns5tvzlsVWsD6kLmzmp1SbM7mLGPG9kc4921jWnX3kbgIHFxgTy5tXAY5P2BqLl3lDViiGdHt\n6o9f8ihRuiwUNyS6drdaUzIygcicg+waIt+fL0gbzRAi5zyyjoDVp0ePnaV1wHS5caJwJKWr\n+Rna0z+NVc+Rfk4LAADAj1cC1lYZZvrMX710bLPOI81YM4y5+fgvvl0xsRWzdk0qvy3zw1/+\n9PXUVs1/7M/8wvZ9QqxjbjZj0eySEANWyUPMrV9aNH+k/rBnzcfMXfiOklJG4iJgcIE9ubRx\nGaS1A34qccDaWZ+o/v8mDL6cKEG7ZruqOlFqzuDhfS6Sg+5oNqtNtNu3kXsbzWLfhPDLBiqN\niNqpV/UQZ1GVaG0pHcyk5LVG8bea1Pe4WJBMs40KGdTc9wAAALzOKwFLLMrSZ4tqt2kqs343\nc/FYY0pRzpio3cQsVjUzpsDaoGZcZ54mxPHuWk1xiAFL5A82+7R+LJiXzeblwiAjcRE4uMCe\nAtu4DNLaAT+VOGCJ7y81HkV4knF1c+V5RgUl9LJ+EJhElGfbyLWNpqAmnWRMDTqU7C5SVWbA\ncu9gX13b0w5fTaTTZPxqYywWpVO13933AAAAPM4zAUvsGN01O6fH1H1qos4lRt3WCT1bZ7Xu\nM2m72WjrMx2zWvSadUiGl+mdm9+lfq63d0hu804DQz2DJa0Z0a1l9p1jt/lqhsmAs7P0kbgI\nGFxgTwFt3AZp7oAfFbC+8a+sLAon33JmldpXPbbHqpiWfW5acvq1D3xntTlCfpNQubQx5Foz\nj5YWsFw7aEsNjvmWPmlas9plY8yw+jFRsz+1mwAAELe8E7DAqVIHrDBbRpQZgW5zrPkaAAAA\nnBCwvMpLAUtcS4lbym5VTjtTqFHAiUEAAAAFAcurPBWwlhC1DnunXfweeQgAAGBBwPIqTwUs\n0ZISVoS5y7WJ9J8wdwkAAHEDAetE5e0L4PpgvIrqp7y8FbB+O50uzCu7WTkca0Lpu8LaIwAA\nxBEErBM1kwO0j2Y/5eWtgCUWp1CnsHbYkxJxgRAAAIJBwDpRCFixZRLRiDB2N5HIdYJ8AAAA\nBQHLq7wWsAAAACoQApZXIWABAABEDAKWVyFgAQAARAwCllchYAEAAEQMApZXIWABAABEDAKW\nVyFgAQAARAwCllchYAEAAEQMApZXIWABAABEDAKWVyFgAQAARAwCllchYAEAAEQMApZXIWAB\nAABEDAKWV8VvwJpE9FwYu5uApw4CAEC5IWAFWD95QIfszFZdHnn1J3t18eqJfTs3z27f/6UN\nwlk/qV/n7BZd7pu6tsSqXOd7cnNGzt3PLi8OrDfsifj+BFEZAtYHZHOTXlc8p9V51avU+9cT\nP1vNVt3Z8OSUOv8YaNW4tPFZnEIdrfLZRB+4v7dz1ae3p6ec03O3b/UMSvrSKPagxPfLvWsA\nAOBtCFh+tve1ZaMRf1j1i7r66ntvtKpLPrzDV999uVntH6Tu3OReXxEB6wWe41atAtYL71Yg\nlzG8FhiwNjUxl6sa543y2ps1qS+JIG1s9p9B5x/Vi/n9EihIwPJb9XoS3djxAjp3n1mxN50e\nNMvHGlGdX0v9EwMAAPhBwHLa0oK5xZBZHy56d8KdMv48UKRXFwxXYajrsBfHPdVBJa93jOZ5\ng1V9t2HjXhjSUZXGGKeqZJBqO1M3Y2xvuaLFt1b9ZIffI75LvStvwHqRKGOgabqq2Z4uc1S7\ngSN6nSuHN1HVHG8qS//uP6zb2UQJc93b2OUQLdNLXzUiquIesPxW/V6Lnhai8Hq6w9fLhflW\n6zWJdHsof2kAAAATApZTD+bBh/RiyYIs5rl6cZDMSIO36uUvusuFxVq5+AEZtp42riR+94is\nH6qXZZC629fp5rvlYnFgfYU4llV5A9ZQolnOmtuI/m+vKhR2JUovlIWxMk0tVDUF2URnH3dt\nY7OUqKVeei6Fqo3JcQ1Y/qum0SkF8uUtSs3TK+ZRwqe29p2IcJEQAADKAwHL4QfmjgXW0mzm\nTiVGIeNtqzr/UeZWWgqbyJy12Lf16zJh6c38gtSeFsxrXeorwjdceQNWf6IPHRW/JFCNA3qx\n4Awidcn1AqKX9ZqDdYk+c21j83dK/EEvXUpNvhHuAct/VTe6Vb3sJlqhLR86g7rb2+9IpsZu\nf0MAAIAgELAcFjM/41vKe2bWSnWN8EhL5im2Vkdzud3n8nV3JvM79s3HM+do50D8g9Qw5lfd\n6kvz44R7c5p1HDD3iLY0kNmXRR4xT6E52wjxP+bjYtuozlkte07VIuBM41avgQHdV4aAdRfR\nSkfFxtz/3m+WWxDN1uJU7eNGTRuiaW5tbFYQZRjFy3rmiyABy3/VTca1wSqqf6kr1T/i2KAV\n0Ucu4wcAAAgCActhEfOgwNpZzJ2L7BXr12v/5ss81bfEXl/QgfkNVfAPUlOZX3SrD65onHkb\nfFvtHI2Mfo+a6w5lcst8lzZaDMufn6nXdVL3z1fugCUzzndB/wJMpC4NFvz0rVkj89h41zY+\n7YnMN1pnvINLwPJfdRXdq72eQqPVyycJNN+5wUKi5kEHCgAAEAABy2Ezc9a2gNr7mF93a92F\neZGzRuaZB9Srf5AazTzNrT644cwdXl+zZdWoTM5cJZfzW3KWeVblfebn3doIMUiOiLvN+Xz5\n9FbMT8mKI7umME/ZtetAwBtUhoB1K9Ful2rN7jRK8/sFQFOij0tvU1CT0o7ZK9wDlv+qq40r\ngifRGPnfvPOpvV/botpU/WiwkQIAAARAwHJ6iDln3h/Ouvws5i0ubXcz8yFn1fcyoKlzS35B\nqlhGMe0cU8gBazFzLz1Prc7kjqrLZ5nNq1QDmNe5thGD5fAHa7d9b2DO1CLBnEp8D9Y1REem\n/bdeSq0rBvzkt2rNJUTPOKt2JlPdgtLbLCFiR0VoAasptVMvhYk0Q770pXr7xQ/9/nVNm3lW\n41ZE7wXpBwAAIBACltPOzjI1ZQ+as973I32xnbnZcZe2a5i7+FUVyyz2owgIUpOZ22gnVkIO\nWN05Y4dRHMWsztusZn5Mr9ifod97H9hGPMnczvghXE9mbUZUv4D1bYbhssZVox6wLqLEBsaM\nVlVGWLU/3Ne7nayuMcqvdYZthvYgbYYSPeWoCC1g9aCr1ctGotVCrEqkOeKDqtqorFvdRxA9\nEqQfAACAQAhYfg4OzdBuWsrqO3W9ManVBuYObk0XM/f1r8tl/lo4gtTxg6selv3ptwoFTDTq\nNhW5tJPZmudyPfMQ+VKca14jnMc81b2NCliTjKpnjJNmfgFr3ZWWalEPWPVkhqndYejz3U+X\nhaFm7UIVbWr2P+jXuD/RjcVltGnjP59CaAFrNiWrG9aeodoFoqAxNROHT6XMHXnjE8j8DcMi\n/1NjAAAApUHACrBjeg8j/XR+U7u1fTVzN7eGHzD/z7+uG7O6G8o/SGUYGSfUgLWQeZxZ/oP5\nTvU63kxp9zP/FKSNDFjGLJtinHGDWGUOWFWJemv3UP3RlShxk7nz+jmthjPtTUv6EF162PcH\ncmsjxHVEGx0VoQWsgrOoeZ74Op36CzGQau0SEyhNvVcb8/k9YhvRJUH6AQAACISA5ebQZ1Me\nbK7yTz/17JSNzG3dWi1l7u1fl8usHvDnDFItnjKmZtJmcp9hd9i/A90sZwxrpuo2Gb8F3GO8\nrVsbGbDWG12MN64aVuaAdfCguf8lNxLdadUX7VreP42on6/l4duJLnfcEB/YRjqPyHlSK7SA\nJRZWpdRzE+jSo2JDFZoiRLY+2cNrlGzcMl9IVCdIPwAAAIEQsIIp+HKIjC09i4X4mTkj36WF\nTEu5flWFWcw7jFVzdO2Yv7BvEtI9WJP9TnRpZ9K6cZY63TOXeV6wNjJgmWdwggSsvG8NF6Qm\nRj1g2SwgOsdR8X09233lWy8muvmI/zbONsppRM6Z3UMMWOLLrPQqF/Q/JIqvpqZysYE6lyXE\nWqKvjAbJVL30HQAAALBBwCrF6mbMS4UoNudh93NIphq/hwB/z9xS3SdkC1IfM99hxbNQA9YU\n5ufX22j32L+iR6Y+nHUoWJuyA5alMvyK0OYPosRiR8100udXl5akE91TFLiRvY2mFiU4G4Qa\nsEzPUtp2+VJX/3Xiz75pttIosfQdAAAAsEHAKs0LzGpipIeZxzpX6BeOujO/5ax/1bhkbQEV\nAAAcUUlEQVSMZw9SD9nulQo1YM1inhxQuVObBXWXOReqW5vYDVgliUTO04S/EJ2il95IoeQX\nXbfytdGd8Bksw5ZUfapR42UPkfkB4wwWAACUBwKW094d9qX5+o/z5Eu2Y6bOza3Gq6cNz2Tu\n6jivUtCZeYEq2IPUzuacscEohxqwljAPDqzty1lH1QMPlwZtE7sBS2aZGkIsHN7vM7PmIFFV\nrfBmEp1se1CNaxvDid6DZSi5ga7XThbWpmfVy8/WsxJxDxYAAJQLApbdl7l8h/3ZN6/op66O\ntWV+3Faf31OfKOFQtv5qmcLcSUtcjiAlc1g3417pUAPWLubWgZfE3lbZqhfnFARtE1sB6+1u\nt75qll8j+ocQPYmsv88XRGer18+r0cmrbVu5tTGd4K8ITROoqv7onvPpYfWyTpsYS9lG1CRI\nPwAAAIEQsOwONme23TR9tDPzp6qwgJlHWHcIHbmf+Q5tOk8ZXvhNX3sZgIxZEhxBqvBu5pdE\nYH1pevue7bz+zonb9dKBDH7+V+bRwdu4B6xZbu9QCQLWJKJG5q/0riAaLsR7RKeY5xDvJlI/\n3jx0DlVfbt/KpY3lBOfBMuysSUP0ElNL9TKLkoxpWzEPFgAAlAsClsMM5oyp5tPtNssE000/\nWzRC/aBwtXb16PiKbsytNmvVJY/L+se36s23DeIgQWq97HWTS30pFjPn6O+xu5vvQT2PcO7b\nxgTt7m1cAtZ848GF/ipBwDqaTpSj3bD/u0w7dQ4LUdyQ6FptNoaSkQlEaiKve4hGO7ZyaWMZ\nQmZEMjhSVJ8ePXYGWaVhutw4JTiS0lXya0//NFY9R/o5LQAAgJAgYDkcf0rNKPXIS3PmTh3Z\nUxbbbjbqx6mJENoOGjNucK4sdDDnxCx8VtV3Gz5x/NNd1XyirxoXEv2C1PPM9xQa9W0nO7wj\n3A1jbj7+i29XTGxlu8P+Y+YutouYgW1cApZ8y2YzFs22X/nUVIKAJd5MlLmqx/PP3VWHKFm7\neW1VdaLUnMHD+1wkh9dRVvyYQkkPD7RMcmvjs5j0CaykZVr7RkTt1Kv6rYKa13RtkFXKTEo2\nfyz6W03qe1wsSKbZRoVMY2XcRAYAAGCDgOVUMre1bWqpwb5ZGFbc5ZuW/XnbjdSLu/qa3/+1\nWesXsA63ZZ5u1PsJeNiOoXhshvl2E60HIeZly+UZpbRxCVjHu2stnFMgiMoRsMQbtY1HEdKZ\nS/SaleeZNQm9VCadQw7XuLXxKahJJxkXHYc6trtIVZkBy2WVtK8uPWR19GoinSbzWxtjsSid\nqv0uAAAAQoWA5S9v8fN92jXPat1t8Ou/2OuL10zs27l5dqfHZu9xtC9eLeuzW97x4CubfJX+\nlwI/Zs7aLMoTsITYOqFn66zWfSZtt9UNk1vsLKWNS8ASe4fkNu800PUM1jdB37yi7B/R9LSq\n1etnTDxm1hROyz43LTn92gf0283dApZ/G5tca+bRcgesttTgmK+jT5rWrHbZGDOWfkzULLw7\nDgAA8Q0By6sqR8AKt2VEmRHoNsearwEAACAUCFheFZ8BS1xLiVvKblVOO1OoUcApQAAAgOAQ\nsLwqTgPWEqLWYe+0i98jDwEAAMqAgOVVcRqwREtKWBHmLtcm0n/C3CUAAMQ5BKxoy9sX4EDZ\nW/158RqwfjudLswLa4/HmlD6rrD2CAAAcQ8BK9pmBvywkNtXxPvGa8ASi1OoU1g77EmJuEAI\nAADlg4AVbQhY4TaJaEQYu5tI5DoVPgAAQHAIWF4VvwELAAAg6hCwvAoBCwAAIGIQsLwKAQsA\nACBiELC8CgELAAAgYhCwvEoFrIuvBAAAgD9njds/swhYXvUXAgAAgD9vids/swhYXtW1+aUN\nq0b7mIRoO6thw4YnR3sQEG115WFQN9qDgGg7WR4G9aM9iFiFgAU2fOWVV1aP9jEJ0Xa+PAxq\nR3sQEG1nyMPgzGgPAqKtljwMLoj2IGIVAhbYqID17pfgcZ3lYTA+2oOAaHtUHgaPRnsQEG0v\nysOgS7QHEauOuP0zi4DlVSpgbY32ICDa+srD4KNoDwKibZw8DF6I9iAg2j6Sh0HfaA8iriBg\neRUCFggELNAgYIFAwAo/BCyvQsACgYAFGgQsEAhY4YeA5VUIWCAQsECDgAUCASv8ELC8CgEL\nBAIWaBCwQCBghR8CllchYIFAwAINAhYIBKzwQ8DyKgQsEAhYoEHAAoGAFX4IWF41ffTo0fuj\nPQiItnflYfB9tAcB0fa5PAw+i/YgINp+kIfBu9EeRFxBwAIAAAAIMwQsAAAAgDBDwAIAAAAI\nMwQsAAAAgDBDwAIAAAAIMwQsAAAAgDBDwAIAAAAIMwQsAAAAgDBDwPKmnRN7tWnWYdBHxdEe\nCETGlnE9crLaPjBjt7G8lm2syZpdDoPQqiAGhPkzx2EQk75gh26qDt8GFQUBy5PmZBn/47pn\nd9mNIeYUjDG/PZu9pdcsd/tKdTkMQquCWBDezxyHQWxyC1j4NqgoCFhe9Lb838ejc96b0oW5\n85FoDwbCrmSQ/IAHTJ07toN81Z80+CHzoJmmD/VmLodBaFUQE8L6meMwiFE7Z/pMZH5Y1eHb\noKIgYHnQr9mctUoVjg1mHh3t0UDYye/P7C9VIX8Uc9sCVZrLvMivlcthEFoVxIZwfuY4DOLB\nGM7arl7xbVBRELA8aDzzTL2Un8uZB6I7GAi/e5jn66Vi+f80taj1MvNKv1Yuh0FoVRAbwvmZ\n4zCIA+sz+BWtgG+DioKA5T3F7bjZ70b5FeY3ozoYCL9DGdw83yiPZZ6nXscxb3C2cjkMQquC\nGBHGzxyHQRwouJu7aaez8W1QYRCwvGcT8wCzvJH5oWiOBSKheN8OsziZ+Q31+gzzNmcjl8Mg\ntCqIEWH8zHEYxIGXmdfoJXwbVBQELO95j3mKWS7I4JxojgUibAjzCvX6OPMe5xqXwyC0KogR\nYfzMcRjEvh1Z/JRRxLdBRUHA8p7JzO9ZC+2Z8WOQ+HUkm1vlqcID8nNe/ESHrNa9pvyqr3I5\nDEKrghgRxs8ch0HsG8RZvxhFfBtUFAQs7xnBvNxauJd5RyltIbY9a96Ueg9zd2MCm6xZJarG\n5TAIrQpiRBg/cxwGMW898wSzjG+DioKA5T1PMX9hLdzH/EMUxwIRNYv5/iKtpGbEaj1izrzx\nnWVhhqpxOQxCq4IYEcbPHIdBzOvPza1f/eHboKIgYHnPE8xfWQsDmDdFcSwQSTOY7z6sF7OZ\nX9SuFRZNlN+pm4XrYRBaFcSIMH7mOAxi3UbmsdYCvg0qCgKW9zj+b0g//N+QeHVsGHP3fcZC\n3tE8s34w83DhehiEVgUxIoyfOQ6DWCePgJ+tBXwbVBQELO95zn4hvSfzziiOBSJmb2/m/r+7\nrPiBOafE9TAIrQpiz5/9zHEYxLgDmXy/6wp8G0QUApb3TGV+11poy3w0imOBSNmYyzyy0G1N\nSXPmw66HQWhVEHv+7GeOwyDGzbEe7uAH3wYRhYDlPR8yv2SW85jbRXMsECGfN+OMt4Ksa8O8\nz/UwCK0KYtCf/MxxGMS43sz73dfg2yCSELC8Zwv7zhavYR4UzbFAZHyexS38nzZmKshgLnA9\nDEKrgtjzZz9zHAax7Tfm7u5r8G0QUQhY3lPSxfeYznHMH0V1MBAJ32Vzy2/tFSvHDvzELMtv\nxh7C9TAIrQpiQzg/cxwGsW0h83jfEr4NKgwClge9zDxZL/3Wglvkld4YYk/eHdzsa0fNAuZ7\n9Oe8ipIBzC+rgsthEFoVxISwfuY4DGLaOMctWPg2qDAIWB50qDVnfKoKRx5gfi3ao4GwGxfw\noPtjucxDtJ8UFoxmbnVIlVwOg9CqICaE9TPHYRDTHmTe4FvCt0GFQcDyok8ymB9+/Z0X5f/O\n+hVFezAQbnuyOOPlmZZ3VN2qTOY2496e92IH5ozP9HYuh0FoVRATwvqZ4zCIZbnOpzvj26Ci\nIGB50oJs40lUD+OHtvFnOTt00yo/b2su5642G7ocBqFVQUwI62eOwyCGNfN7MDO+DSoIApY3\n7Z3au3XzzsM+j/Y4IAJcA5Y4Ou+xDs2zOw96/5ivpcthEFoVxISwfuY4DGJWgfwacJ5vwrdB\nxUDAAgAAAAgzBCwAAACAMEPAAgAAAAgzBCwAAACAMEPAAgAAAAgzBCwAAACAMEPAAgAAAAgz\nBCwAAACAMEPAAgAAAAgzBCwAAACAMEPAAgAAAAgzBCwAAACAMEPAAgAAAAgzBCwAAACAMEPA\nAgAAAAgzBCwAgNCsJaKhEX2HHd0vTE059dGIvkc4zE2g5E9CavkqUdXPIzwagEoJAQsAIDQR\nD1jrapHSLpLvEQ7rahCNDLFtH6LTdkR0NACVEwIWAMSdHiqmLHbWXUl025/sNuIB61o17qQU\n/4Cl7U6ADZEcSamO/IUoWy/+2Kthamrj/rsd6/fVpcSV5kLRNURXF1Xo+AAqBQQsAIg7WiK5\nqMBRFwMBa7fsP21Oscjzq490wLqVLipX+85EdfZopQ9S9bHU+dK+vi1RX9/St1WJnvjzgwSI\nNQhYABB39EQyyFEXAwHrC9n/vS71EQ5YJbXKF7Dmyzd/VSvtOIkS7pg3rw3R2Ud8698nOs+e\nEZ8iSvk6HAMFiCkIWAAQd/REUvV7e10MBKx3Zf+TXOrV7gxe7O9ouN72eypXwCpqQHRViVa8\nm0i7Ib8T0TBr/ZH6RB/bN8g/i+jmMIwTILYgYAFA3JGJ5C+JRDfa62IgYL0l+3/NpV4FrLci\n97Yvly9gjZOj0X9BWFiTqmtnrmREu9hafw/RHc4tXpJbfPCnhwkQYxCwACDuyERyU3f5r/rL\ntjoErGB6lCtgFZ9DdJVelH+Pf+uls4gOGuuXJdDpB52bFJ5G9H9/epgAMQYBCwDijowMVx86\nnajufl+dFbCcF+KmmmdXVusnZjZ2PqdK9Qu7faOqjs+5pU5yrasHHzLaqoA1TL70uaxulTNv\nHGW77UiIxb2vODUlvWGLGVbtZ7L1p2J/r3Or1P0ucIjFb97Z+NSUWhdkjtFvFxcv+u6ucvsV\noWvAypQrVtuWX5HLjwUdkLGH+4dcVTO59hX3bbP2X1dPb7Vl8K1npyWddD6P3uv2luIN2XS6\nXnyZ6E69dAPRUr2Uf5HLWB+T26xz7Q0gfiFgAUDckYmkiZhFjmtVZQWsjbLwrhiUoKeN5FeE\n2HWpET3OMm7mUgFrePHdZiKpv8Tq5dtrrZxy2izha/3e4Yaqbm3ACBc0sDao8VixqjmRgPW6\nXDHAtpwhl78POiB9D2cbP/yjlCnm/tsCVv49ib6BPV3i8p5NiU4+phefI3pEL+VYAxxA1DJg\nmx2yt+5uOwAQxxCwACDuyETyVzX7ACUsterKClibZWH2CLlJraoqXVT57sD5MmfVTlILl2oR\nSItMI+5R2aSWlsPS1hidLDhJy2FXXKi1Nu73/k4WX7+fXAPWFK1h/SsuqqJemxeqYd100yWy\n3Pimm27yvwwZNGD9kUZ0oW/xiBz534IPSNvD12SAqlI7WVUnLpOVH910Uw2iVPmuKheV3KKl\ny/rn19TG3TfgHcXBFKIcozyI6Em91Mm8HLs2mWrvCdxK/vFPd0trAHEMAQsA4o66yV2IrdWJ\nLrYmwyorYG2XhUHVT3nhsDi+vIks33UnXbGgWOS9orLKO1pbFbByKKn7uhJx7O0L5MLlemjY\neopMK71+lKXDL8givaHXytK4k6hh/2f+95Pf+FbK3JN438+ylDe1nmw2UK8u/z1Y7eSa9dbS\nDDImWHcfkNrDoTUTuq4TouBjFeZu0Ddr5LsHS/01rlqo8t6u0WrDzwLeUV2FnGmUnyAarJc6\nEM1Qr0VXWNcPHZ6UW+GBOeAxCFgAEHdkIjlHaBMwmadYyg5Y6jJWapp+p9COakRpCdf9oS2o\n2NJNK6mARQlGBNp3thV7msraV4z+vj1Zvne+Kv0k199I97mcuCmRkYamGgub5AZVftSK5Q9Y\n7/nSmcRESbuDD0jtYQ2zfm8t2Ua/y8oWsG4iOv13o7w5nahNwDt2k53sNMojif6nl1oQzVOv\nQ4n+nxCHBl5+UrUL7vnRt9VSudXTrnsAELcQsAAg7hgBq/BiompbjLqyAtbPZAsB6mamxE16\nuTCN6GqtpAWstuaWKnhpAWSNLHSyOhxLxuUyrcN/uV0YWyRX/NdaeprMOVHLH7AKaxM1NhcO\nVyW6tawB3WVWq19ZLtBKtoB1GlGuteGzV7Z4KuAdLyU6wyy/RtRRL11LtEq+/FCN0n4SW87W\n7+FK9T0OOi/ZergOgFcgYAFA3DEClliaQNTUqAslYFU5YNQ+6ruAJsRVZqbQApb1q73CVKJa\nqtBL1n5rdfiHrM4yO6SP3IbXWa5431ram2TOIlVawPJXQ191J5m3tWs/6tOTVCkDSthm33H9\nz2ALWLWIMt1GbCmUSel2c+Fb85av4pMpOV+Ikn8SjRHFlxFdM+GV1kS191nbNSY6r9SOAeIO\nAhYAxB0zYIkuZD7VJaSAda1Z+wLZnp/HRCdpBRWwTve9y41y8Rf5epkzPNwqk4XZYZrrU44b\nEFUt9C3+jShRm5b9BALWYlkc4htnqnZ9r5QBWae7xEK59JxWsgWsy2XI/MJtyKZtZHuaz/HT\nKWmXMYp/CG0K0utLxHT5X7XbvYkesLa7nSjleGkdA8QdBCwAiDtWwPqtDlE9/bRUKAGri1k7\nWS7MNhdayjykFVTAutX3Lup2pEVC/JHoO02m3CerfzU6dJ1e86jc4FLbcgfzDvATCFjHzyC6\nUi+qK4TaJcvSBuSbAWIFmbOm2gLWs7Ky+v+2uo1at0Q2eNZaGqD/yYquJ5oi+z+Zqn6n3ce1\nUK3ck0xnWJlK7cLPwbsFiEMIWAAQd6yAJaaRORlmKAGrn712gbmQYw9YPXzv8riewtSGqef4\n1DLykqpv7zY6NV1Clm35UfMWq9IC1tOfO5nnmfrKdT9qpenmhcfSBuR7lvTnbgGr8HotvTXo\n/sYB4WoOGb8X1Bw4VSbOcaP/RnRZkXaWaogQxdWoun56TlZvMlsOltt96d4lQJxCwAKAuOML\nWOLfRAkrVCGUgNXfXrvYXHAErId87zKctBM3613OL31kdNjTbXTqHvRc2/IwMuY2OJFH5Xwh\n143QSjLf1NWuSJY2oPusDV0Dljiaa2yQdP0Yt4ylUtxc3+LKU/TWf9kmxKt6zNokX/SVnWx7\no06NLfXvDCCuIWABQNyxBazvqhA1VmdUwhSwrGkfhBglF1/Uk4q/ucI/z9gsI3PeB91IvZ8T\nfBbhBUTXqddDVcw8F9qA3AOWEKvan2xsU/OJ4oB3G0/O5zb/2rdB9RqXDToixL66lPyV0O7t\n+o++7mGi4WY79YToD4PtAkBcQsACgLhjC1jaBTgVJMIUsAb63mW4fubpG3K/FBg0YH1Fzqfh\nDDEvu51QwHqEKEHdaq/OLelzeYY2oGABS4jCj/s11iPWbfn+fbzoF7B82hpP7ZE70cLar0fN\ntQhY4D0IWAAQd+wBK/8CourbtMkW3ALW+HIGLFtkelw/M6Tm73Sb2yBowNrmt8HDZEwVf0IB\nSz1hcKx8vY3ofL0mtAEFD1jKr5P+oRLWYP/6ac5LhD7vE/1Vi2MzranCRtjeDpcIwXsQsAAg\n7tgDljYfwf8T4jp7wJpgrR1SzoDVyvcu6leEK4QorErUyGUQQQPWH0lEl9iW28iG2lMNTyhg\niUuIbtSvED6mV4Q2oNIDljS3GlGNPL/K2WS/yd3nSH3zuY++M1hDbWewcJM7eA8CFgDEHUfA\nUhevaJa6210PWB+R8cQ+TU45A5YtudwgF/cL7dxYyuHAQQQNWKIJUZUC32Jjc/HEApbMMckH\ntVNL5oyjIQ2ozIClnuVMn/rVqXm3nnVpew9Rd730sRZnFfs9WGoXdgTdBYB4hIAFAHHHGbB2\nn0J02qHbzIClJoC631yXn17OgOWLCQWpRGepQj8yZlDXfWdkm+AB627zmqBmu1z6u1Y6sYD1\no1z7usgkusqsCWlA7gHrJ9tzqRc4hqlTT7C+VwRYmkD1j+jFH4ia6KX2trnEbpcpMPCWeYB4\nhoAFAHHHGbC0+6zuaWMGLJUz/mmuUr/gK1/Aetisfk31qgpqWoSGVnrIPyvlxrlmh+4BayXZ\nZwLtL5fGa6UTC1ji70Qd/6hONMqsCGlAvoDVmKi+Xtevjn1q1JmyxUq/9ypIsj0qx5J/EdF8\no3y8BlXJN/vdbLaQ5b8E3wOAeISABQBxxy9glcgIkmj9ilDUkUtr9OKy1BrlDVipxqYHL7Du\n275Zlu40nupc2JKMEzfBA5aKRNZ99p9XIUrXz/6cYMAaTXTGfKKk3VZNKAPyBay/EaVoj9gR\nzxg3zGuKriM6OeBnhJfYHvZsGWCf2IuJ3lOvWxPMu+71hz03D74HAPEIAQsA4o5fwBLrk/VZ\nB/QldYXu9DlHhdj2SLVENZmVlgdCCFhfytpb6ZQXVRxaeblcuEVvsC1Nlm9cJhNN/myZ4+jf\nwuwwSMDaWE1mvAdVIDo08iTZ7A29urSANXhxAHP17iSiptadT6EOyBewmqs4trf4xwPiSD1Z\n7PCZmjbs6HyZr+jBgLGoO/t3+tV9lUyn/mYtvUl0rZrwNJfoKbNuqdxqmPvfAiBeIWABQNzx\nD1jiAXvA2q7iByXWSpX/fUxdTntb1YYQsFQmmdiFKOWvl6skQvW2GS0Waj3WuODUBPV68R5h\ndhgkYIk5VeTKhPOuPD9RbWBOXlqeZxFK1vqbtUX7j/tCGJAvYI03+lsoxCdVVSHpjHNO0mqu\n/yNgLDNk9UxnVdHl6kcElpLria6bOjOT6FzrN4hPyq0+C/K3AIhTCFgAEHcCAlbeObaAJRbU\nNCJF0lBtUirrAloZAetTFYCKupoBp+F6q/91/7BiT0Lng3pdaQFLLG1kbXC2dSf4iQYs9Whq\nSj1q36TsAfkCVn5jK2CJVRf7+k/uE5ivxIFkotbOqqFEGfblXxro29fbaFX9jej0kmB/C4D4\nhIAFAHEnIGBpk19ZAUvsfezv6cmpDfv8KItk/OIuhIA1n7T7tdbce2mdKmfeMvGY/Q0+6XPF\naVVSz7j5cfOsVukBSxyfe8fF6cm1G3R41Tdhw4kGrIPqvFNbv43KGpAvYIl9d5+ZVO0vLbao\ncskH3a+pVy3p5PMyRvziOvCmRDUL7BU/VKOazqZ5Q65Iq95owH6r4ucEaxYHAM9AwAIAgJC9\nQe5TjZZmoNxmbURGA1B5IWABAEDIis8muqZ8mxSdQfbpHwC8AQELAABC9wIRLSnXFlPIN00W\ngGcgYAEAQOiK/lrOU1j59YluitRoACotBCwAACiH98gxLUOZ1MMScQcWeA8CFgAAlEcnorp7\nQ279XTWigZEbDEBlhYAFAADlcfhcohahNi6+luiqokgOB6ByQsACAIByWVuDaGSIbfsS1dsR\n0dEAVE4IWAAAUD5vJFDyJyG1fJWoKh6SA56EgAUAAAAQZghYAAAAAGGGgAUAAAAQZghYAAAA\nAGGGgAUAAAAQZghYAAAAAGGGgAUAAAAQZghYAAAAAGGGgAUAAAAQZghYAAAAAGGGgAUAAAAQ\nZghYAAAAAGGGgAUAAAAQZghYAAAAAGGGgAUAAAAQZghYAAAAAGGGgAUAAAAQZghYAAAAAGGG\ngAUAAAAQZghYAAAAAGH2/wEelFV6JNAgIgAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 360, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_endpoints" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Event densities" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:29:06.050717Z", - "start_time": "2020-11-04T14:28:59.615Z" - } - }, - "outputs": [], - "source": [ - "plot_width=20; plot_height=10; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "plots = list()\n", - "for (e in endpoints[-2]){\n", - " temp = data %>% filter(!!sym(paste0(e, \"_event\"))!=0)\n", - " \n", - " plots[[e]] = ggplot(temp, aes(x=!!sym(paste0(e, \"_event_time\")))) + \n", - " geom_density(adjust=1.5, fill=\"gray70\") + \n", - " scale_y_continuous(expand=c(0,0)) +\n", - " scale_x_continuous(expand=c(0,0)) +\n", - " xlab(e)\n", - " #+ \n", - " # theme_classic(base_size = base_size) \n", - " #print(paste0(nrow(temp), \" events in \", nrow(data), \" people in observation time\"))\n", - " #print(paste0(round((nrow(temp)/nrow(data))*100, 1), \" %\"))\n", - "}\n", - "title <- ggdraw(get_title(ggplot() + ggtitle(\"Endpoint Densities\")))\n", - "plots_density_raw = plot_grid(plotlist = plots, ncol=4)\n", - "plots_density = plot_grid(title, plots_density_raw , ncol=1, rel_heights=c(0.1, 0.9), align=\"v\", axis=\"lr\") \n", - "\n", - "plot_name = \"4_endpoint_densities\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T14:29:06.952215Z", - "start_time": "2020-11-04T14:29:00.872Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAASwCAMAAABIeoGzAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdd2AU1doG8HfTSQESehMElCq9\nCIYmIAgMSEdpgvReDUoHkV4DSO9SpSV6LajXdm1Xv2vviGJFiiAdUr5tSXaTzdYz856ZfX5/\nXGdb9j1n3jv7sDuFMgEAAABAKOIuAAAAAMBoELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAA\nAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAAQDAE\nLAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAA\nAEAwBCwAcG0gmU0X87f+sPwtui7mj0nC7ZiMOGAA8AUCFgC4hoDlHgIWALiBgAWgb++RW2/7\n/5flDVjOYw6NLVm3U9Kzvwj6415DwAIANxCwAPQNAStLlRnfCvr73kHAAgA3ELAA9E0fAevP\nUIsbXj9/+ezZL+b/aH5jNj30PwG1eiv3mJxq9nXAAGA0CFgA+qaPgOWjf0xE4/N/OP8xh46/\npl2VzjzUDABBBgELQN9sYaN/Uj5+8v8vMwasf5MXAWvCSpsFU4d0KJodseqc0qxKZx5qBoAg\ng4AFoG+2sPGeCn+ZMWAt9SZgOY35+0317QmrjLZ7YmXzUDMABBkELAB9M2TA6uNzwDJ7v5Ut\nYZU9o2pt+fFQMwAEGQQsAH0zZMCq7E/AysxYEmF9oEW6mrXlx0PNABBkELAA9M2IAeuiya+A\nlZn5Zoz1kXXqlZYvTzUDQJBBwALQN98D1h/Pr12wdMtLl1w89PdL2xct3vTGZeuNfAJWxid7\nl89fsv392y7/+C//2r3y6Q2H3roaSDGvkZ8BKzPFEnOo8MXc9186sWvl/OU737niYyU2v/xr\ny8r5S9Yf+yYt/5d7qtmLMrx5GwDQCwQsAH3zLmCdsf50Zlk6nGiy7aoU0uJfuZ70codw20OR\nXd7NdA5YH1uWm5oXzk0rZt+ZvNDoP3K/yw/jqmYdzBfRcrljxnI676bbYn4hJyd8HPMY60ML\nnO77Y179UPufC2+5yzEYejMtH4wsnl1N4YdfcTUmFzW7ONFo/mW4fRsA0CcELAB98y5gXbY8\nqV5m5tl2jklg4E2Hp1wa4PCIafTtzEcdAtZ3luUqmZn/LunwpKKHnd7j7Igwp5xRcl1G9mNO\necNtMQEGrL8TLA+VcdgL6/bcaKe/ePe/fZmWP3s510NNf8g7Jm8Clrsy3L4NAOgTAhaAvnkX\nsNKsn+mZZ6s7f4z3z3nGjRbODz2U/pjlP/aAddqyXDLzjSjnJ211eIsf76LcBmX/1uWUN9wW\nE2DAypxufeyN7NvnE3NXFbLM+2k5VSnPoAplva9PActtGW7fBgD0CQELQN+83AcrxPyksumt\nzf8b0+6xsQPq2X+sSs1+wiO2O2olJW9Z+IjlvJ2zR1pu2wPWn5bl2LOW768Kdxg+oY89kUTk\nnCj+pO27rbCm09ZsWzayiu3xXlmPOucNd8WcqV27tvW0oUVrW7zv65hPWh+bmnXzcl3rbdN9\nj6/fuuTR8rY3Wu3ttKTVs94MbzZi9qKkQYm2gxRL/pF7TC5qzhWw3Jfh9m0AQJ8QsAD0zcuA\nFWn5+F9LVHyT7UP/J8X6urZZj79p+1C37390c2k0RbRzCFjnrOFpFFGl/bZf396vZX1Bzaxf\nAdObWW93P2m//UJl6+3d9pvOecNTMeMtt/zayd3MWljTrFt9rE/tbP/BLf1QacvN0E+9nJYN\n1lQ05bz95vmZ1uwzytWYctWcK2C5L8Pt2wCAPiFgAeiblwGrgPlJkYWpxm9Zd6Q1t7wuJOuk\nnI0tt2I+y37+awVs37LYA9Z52xcwVPevrCdcsyWqg/abq623Jua84R/WL7GKnLPfcsobnooJ\nKGBZv3grYA9+z1ufOduhLOtu+C28nBbrjfkOf/xly25mERddjMltwPJQhtu3AQB9QsAC0Dcv\nA5btBFHxv+XcY3uh/SurT603lju8YLFTwPrbdqvQrzlPOB1nuael7UZaWcuN+zIc/sAHJoc/\n6Zw3PBQTWMCyfh1E9t/XrF9n9Xd8+GvLl1b0vFeVpFl+MYxyOqfCpJxU6UPAcl+G+7cBAH1C\nwALQN1sgGLXQpbeyn2ZLEhsdX1nGcs8i2/Icy3KC42f8zfIuAtY8x9ePtdwTbjtnVqr14Y+d\nKuttuauWbdlVwMq3mMAC1r+sD35oXX7Dmgr/cnp8lOW+R7yq5HfLYmWnV387YNa218+6GJO7\ngOWhDPdvAwD6hIAFoG+2sJGPnNOEWpNEEafzMj1oucv+o169PF+xZD6eN2CFOl3l7xPrfSnW\nZetZBuo4V3bc+vgX1mUXASv/YgILWB9ZH3zVujzMsjjU+fHPLfcVvOFNJdZjJwvnV4X3ActD\nGe7fBgD0CQELQN98CVgDnF5p/Q5liHUxzbpX9S4Xf9gpYLVwekJGYct9c6zL1l8IFzpXdt16\n4qdnrMsuAla+xQQYsL50yH3lLIsv53qC9c63vanktvWgwiP5VOF9wPJQhvu3AQB9QsAC0Ddf\nAtZ6p1dOtdz1sHXxG+uzP3V6+GZEnoA1w/mtLWc3oH6WJesZ0elt54czm1ruHGZddBGw8i0m\nwID1tfXBY5ZF68kl6LdcT+hquXODV5U0siwXzH3GezuvA5bHMty+DQDoEwIWgL75ErCcv0SZ\nZbmrt3XxqPXZuS7DVyVPwNrv/IRBlvuaWJZesj583vlh27V2WlkXXQSsfIsJMGD9n/VB67Vm\nXrUsRaTnesI0y71jvapkh20aOzx/MzMvrwOWxzLcvg0A6BMCFoC++XIU4QdOd83OSRLWI+8K\n5npJ6zwBK9dZP2da7qtkWdpuWYrO/Z4zLPdWsS66CFj5FhNgwLJedZksF1PMCi6udPaqkoxO\n9qcX7LLq/3InJK8Dlscy3L4NAOgTAhaAvvkSsD53usshSSyzLJbO9ZIeeQJWruvjLbHcV9Ky\ntMqyVC73ey633FvEuugiYOVbTIAByxZnTmcX6FpL7yr558Gcl8T32Ox0XJ/XActzGe7eBgD0\nCQELQN+EBKw5lsVKuV7SN0/A+tP5CcmW++IsS3MtS1Vyv+d6y72277U0DFjWox/D0rLLcq2+\nd5Vkpi8t6PCqsAcO5XMBa3cBy3MZ7t4GAPQJAQtA34QELGsoqZbrJf3zBKwLzk/YaLkvMvv1\n1XO/5ybLveHWRQ0DVivLY7Vy/qhrVb2rxOzc4qqOL6zzStYDXgcsz2W4exsA0CcELAB9ExKw\ncvamctAnT8A64/yENZb74i1LT1qW7s79nuss98ZYF7ULWP9YD360Hbto/Y0yzy+XjrwIWGbf\nrWwTkR19TLPs93odsDyX4e5tAECfELAA9E1IwFpkWSyT6yUP5glYJ52fYN23qKxl6ansJUdL\nLfcWsy5qF7B2WB87YF3eYll0ewZP7wKW2dUXJtbMyj4rMl2MyU3A8lyGu7cBAH1CwALQNyEB\na61lMfdRhA3yBKzPnJ+Qc5Sg9cfAqNzvaT0RQQ3romYBK6OGtRTbBXwOWZZDb+f/h7wPWBan\nFllPDkqRp1yMyU3A8lyGu7cBAH1CwALQNyEBa6/1j/zj/JKieQLW885PsJ4Hq41lyXYerFy/\nIGY+YrmznXVRs4Bluz6P/VKDH1pvfJX/H/ItYGVm3phs/YuTXIzJTcDyXIa7twEAfULAAtA3\nIQHrY+sf+cLpYesliJ0D1jLnv9nGct8Iy9LP1odfy/WedSx32q7qp1XAumw9O6r9Us+ZN6y7\nNB3I/w/5GrAyM4dbHnV1bi83ActzGe7eBgD0CQELQN+EBKwrJsuy87UId+UNWH2dnpARb7lv\nuXW5pGVxtvNbXgyz3LnXuqxVwLJ+aUYdsm5ar2H9aP5/yPeAZb0wc2hG3jG5uxahxzLcvQ0A\n6BMCFoC+CQlYmRUty4OdHu6eN2AVvuX4hC8d3nmAZbGq0+ttp3c3/W5d1ihgWU+YSuFfZt2e\naLlZ5Ibzkz53+CnTY8D66XKut7Bewfpa3jG5C1gey3D3NgCgTwhYAPomJmCNsiwnXHF49KfI\nvAGLnnN8vfXkV4WtZ/TMfMP68H+c/n5Ly13NbMt+BKyx+Q8mnzGnPWGr8unse76w3l7p/Ky7\nQxo/9Yk3lfw4tXUCJTu/x+0Qsp9c1VXAyqnZ6UH3ZXh4GwDQJwQsAH0TE7BOWP/KcodHe5OL\ngHW3w1dY54s4ZqLqlhuNHH/Tsl1A+lnbDd8ClvUbn/75D8b1mP/X1FZkB4er+VnvKvKT49MW\nWO5q7E0lv1tSTrkrTo++Ynm0josx5arZ+UG3ZXh4GwDQJwQsAH0TE7BuW88MEPXf7AfnEYXm\nDVj0aHaESu9qvSPrQsm2PbYcjnv7yrpbVjX7yQl8C1izrC/1acw3jnUy2Ups7BhVTljvrO7w\na9xm6z3HvKqkpWWxo+MPdVdqW+6a72JMuWp2ftB9Ge7fBgD0CQELQN9sYaN/Un7sB9R5yjTW\nHaYobovtK6qvuxDFjsgdsMI7EXWyn2z0TAfrCx7I/mudrbcf/tV2K22H9SQPoW/ZH/UtYG22\nPnuTZTE90wXbmCestFs2d2hilD0BUjvnvZmsv31S8f32oPf9w85lu6/kbeuTqx7M+t4u4yXr\nF3Wxv7gYU66anR90X4b7twEAfULAAtC398i9zbaneco06Y1sT49/aNS4PtZzHSy3/og1zfaw\n7RusL6OJwppNX7tlfjfbNV0Scs7t/mdZ6z1R7eZu3LyoXxnrDdOarEd9C1i2fZaoercOtZr5\nNubQ2WnOT71S1/ZAsQHTVy4YUd92o9xfWQ97qGSE7fmxrUfOXDBnfJfitpsbXI0pV825Apb7\nMty+DQDoEwIWgL4JCliZZyo7v65nhvVSg/Yf/WwB68beEKfnhL3s8Oe+r5T7rSP2ZD/oW8DK\nbJj9NxpnupDvmO//JM9zzyfmeVbVU9mPeqgkraeLN1nocky5as71oPsy3L4NAOgTAhaAvokK\nWJk/t3J82Yjbtqv6jbQ9aAtYlzOPJDg8p/y7Tn/v70Emp3e+z2EnKR8D1n8jHcOKl2OO6/u+\nqyffmlfA6WlhEx3OWO+xkjUFc71LtZdcjylXzbkDlvsy3L0NAOgTAhaAvgkLWJmZuxLtX1BF\ndLLsO/WiZdF+XJwtYF3KzDw7o5z9DxdN+jt3LV+OuzvrbYv2/JfjIz4GrMy3q9r/ThdvxhwR\nX73TzJeuu3qqxZl5NbKfevfsnx0f8lzJpeWJYdmvjutxJOeSgrkzlFPNeQKW2zLcvQ0A6BMC\nFgBkO/P81oULN7ye+6yXWQHLlqi+PrBi/uId/3W5+3nm6ee3L1246cj/Aj0Jefq76+Y//cyL\n5wL8M1nOvLxx0fyV217y6+9d/ujg2sXzlm068r37UXmu2W0Z3r4NAOgCAhYAeOYYsAAAwCME\nLADwDAELAMAnCFgA4BkCFgCATxCwAMAzBCwAAJ8gYAGAZwhYAAA+QcACAM8QsAAAfIKABQCe\nIWABAPgEAQsAPEPAAgDwCQIWAHiGgAUA4BMELADwDAELAMAnCFgA4BkCFgCATxCwAAAAAARD\nwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAA\nAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADB\nELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwA\nAAAAwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABA\nMAQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAEL\nAAAAQDAELAAAAADBELAAAAAABEPAAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAEQ8ACAAAA\nEAwBCwAAAEAwBCwAAAAAwRCwAAAAAARDwAIAAAAQDAELAAAAQDAELAAAAADBELAAAAAABEPA\nAgAAABAMAQsAAABAMAQsAAAAAMEQsAAAAAAEQ8ACAAAAEAwBCwAAAEAwBCwAAAAAwRCwAAAA\nAARDwAIAAAAQDAELAAAAQDAELAAAAADBELCCwrXXT9i8fp27FDCai/beOvEVdyUQPM7aeu4S\ndx2gqVv/tq33L7gL8RICVhBISy5BVKJhYr0EopJrbnGXA0ZyY0EhMpVrnFgrmkzdfuKuBoLE\nieIU16hhLFX+nLsS0NDLlchUMbGheZPT/wJ3LV5BwDK+bxtQVNcNqRbJnaOoDjZJIMynNSju\nke2W3jr6RGWK28ldDwSFQxFh/Q+nph7sTMW+5a4FtHJrgimk/WbztiZlRgUq/z/ucryBgGV4\nx+MocWdqlp0tKXovd0lgFHujqe3erN5KGR1FE9K5SwLjOxER9ZSt54bS3Ze5qwFtXGxDpVfY\ntzXHepkKvsFdkBcQsIxufUjEhFRHj0eZFnMXBcawyBSV5NhbG8rQw7e5iwKj+zE+bH5Wy3Wi\nIdzlgCbO1KX6B3K2NZPDYv/DXZJnCFgGt5IKLkt1tjqBZnOXBUYwgxJWO/fW3ruoH77DAlXd\nakCjsjvu8B2mt7kLAg38VZNaH3Pc1iSFJMh/WA0ClrFtMRVen5rbpuK0hLsw0L95VHxz7t7a\nX5mmcNcFxjaLmjt03EJTXUR64/u7DrVPcd7WjKaKZ7nL8gQBy9BeDItJzpOvzAkrwbSPuzTQ\nu3VUdGve3tpTirZzVwZG9kV4kX2OHZdIB7lLArVdaUqtU3Jva7pTK9l3SEDAMrIvC4UvdJGv\nUlNXR0V9yF0c6Nvx0LhnXPXWM9FRuji+B/Qpoxk94dRw60NqZHAXBeq6+QAlHs+zqUlpIP3X\n5QhYBnbxbpqQpyltZpjKSf/tKsjs09iIpa576wlT1Svc1YFh7aMGuRquOT3PXRSoKr0P1T3q\nYlOzr6TpOHdt7iFgGVdGN1LyyVepqX2oI/7ZB347d6dpan691YFGcpcHRnWjfNiGXP22glpz\nVwWqGkVVDrnc1KwMTzjNXZxbCFjGtYaquUr9NsfvobXcBYJupbenHvn21uEyple5CwSDWuni\nX43V6UvuskBF06ncXhfbGYthlJjGXZ47CFiG9WlU3PZ8PwNTU7fHRH/PXSLo1XyqnXeXiGxL\nTZWvcVcIhnS5eNTuPP02mSZx1wXqWULFd+S3qUlpRHO563MHAcuobtTMtS9obhOpFX4kBL+8\nEZqwx11vdaIZ3CWCIS119c3p4biiN7gLA7UkmxI25b+peTYh7F3uCt1AwDKqKdTWbb5KTa1P\nW7iLBF06VzbE9dGpWQ7ER/3AXSQY0LWSUa6SfSc6wl0ZqOQZU6F17rY18013XuKuMX8IWAb1\nTkjxgx4C1tbIoue4ywQ96kp9PPTWBOrKXSQY0DPUxVW7LaMe3JWBOtab4ta439Z0pb7cReYP\nAcuYrt1tWuDhMzA1tT+O9gI/bKVqxzy0VspdhAuYgGhplcNc7leaUirqIndtoIZVpoKrXa1x\nB0cr0m7uMvOFgGVMj1MHj/kq9Uip0M+4CwXd+TGuQJ4r5OSxkJpw1wmGc5hau2633hJ/xoL/\nnqZCyR63Nc9EFZR2hwQELEP6OKyYpx8ILabTA9yVgt6kN6dxXvRWQ0rlrhSMJpHy+bloNX6S\nNqInqUjeS+nmNY4a3uQuNR8IWEZ0uy7N9qIvU1Nr0ivctYLOrKSG3rTWalNdHKQKQn1MtfJr\nt5LRV7mrA8EyxlEJz9+VWzSjidzF5gMBy4iWOV1u3o1lpvr4FARffB8du9Or3mpKKdy1grEM\npun5dVtXOspdHYiVMYLKuDuTo4P9pWS9ZA4ClgH9FBOb92R8rjWhQ9zVgp6kN6eJ3rXWalMj\n7mLBUC5EF8v37LYLaSh3eSBUxlAq7+3HWOrK8PgfuQt2CQHLgBQa621jrjPVTOcuF3RkXZ5L\n7earIb3OXS0YyXIakG+zHY0pg+/iDWU0VXB7MmNnI6nede6KXUHAMp7DVC3F68ZsTge56wX9\nOB0X7eW39pYvFR7kLheMpFqYm280EukT7vpAoCeonA/5KjW1FQ3kLtkVBCzDuVw2LNn7vlxv\nqo1/+YG3OtIo73urignX4AVh/k2JbpptAi3iLhDEWU0l8r3+oEvPVaQ13EW7gIBlOJOpuy+N\nmYh9kcFb+6im91+Opj5Ow7gLBuN4hJ5y02w7qDV3gSBMSmihjb58ipltLRj2GnfZeSFgGc2n\nYcUP+dKXq004IyR453zxiA0+tNaxYgXOc5cMRvF3gRJuw325yCvcJYIgn8dFLPXlQ8xqQVjC\n99yF54GAZTAZ99EM3/qyHi5qAt4ZRP18aq0BtJS7ZDCKZA/N15le4i4RxLhYiSb79iFmNYqq\nXuAuPTcELIPZQo18bMunqAt30aALr5vKH/WptfaEV8IxqiBG/RD3h1fMoqncJYIY3Vxf0tuj\nTtT6FnftuSBgGcu5IpFbfW3LiiHyfbMK8rl+t2mJj63VCt8qgBifUz33vbY/pCF3jSDEeqrm\n2z/kshyrT49xF58LApaxPEYDfW7LiTSOu2zQgRn0oK+ttYi6cVcNxjCZpnpotrtCL3IXCQJ8\nVSDG5y8J7A5UoIXc5TtDwDKUd0zlfM/+R+PjLnEXDtL7MiJhv8+9VS78D+66wQjSSsUc9tBr\n3XF5cSO4Vd9jlM7f9gTTAe4BOEHAMpJbNU1P+9GVfWg1d+Ugu4xESvK9tYbQYu7CwQheprae\nem0OTeGuEgI3z9sL6bq0KirqXe4ROELAMpLFdL8/TbkzrApONgrubaSGfrTWnrCq3IWDEfSn\nBZ567UDIvdxVQsC+iCi8148NTbaZIcVluiohApaBnIqJ8+nqAtma0avctYPc/oiP8mvHiKYk\n1T8oQZ+uxiXke53nbBXDr3LXCQFKv5ee8Gc7k2MIVZdoXzwELAPpSOP868mnqQd37SC33jTE\nr9aaQSO4Swf920ddPfeagquL614yNfVrO+PgQWqfxj2MbAhYxnGQavhwHRNHKdgXGdx6gSp7\n/gbBlaOFEm5wFw+615lWee61aTSHu04IzG8Fo327BKGrTU5tmsw9jmwIWIbxd6mw9f725BDZ\njm4FqVwuH+rFB5xLCh3mrh707u/Isl602k56gLtQCEwvGubndsbB3lK0i3sgWRCwDGMY9fG7\nJZ8Nr4zd3CFfE7z5hca1Zfj5GQK1lR7xptdKFJTntyHww8v+flHubH2BAh9zD8UOAcso3jSV\nPeJ/SzbH7guQrw9DSzznb2ellIqSaJ9T0KV29Iw3vdaCPuOuFAJw466QFf5uZ5w8aaogyWXm\nEbAM4noV08IAOnI+9eceAcjqVm2a539r9aEd3AMAfTsXXsGrVhtBG7lLhQDMow7+b2ec9CBF\njp9kELAMIsn365g4Sikeje8ZwLWnqHUArbWOOnAPAPRtM/X3qtVW0UDuUsF/JwsU9v1aEa4d\nv4eWcg/HCgHLGD4KK3ogoI7sQ5u5xwBy+jqqUECn/rsjXJKv60Gn2tIGrzrtWCROa6tj7Wli\nINsZJzsLhX/APR4LBCxDuFmL5gTWkJtMzbgHAVJKTwzg2mAWfWkr9xhAz86FVfSy1aqbLnAX\nC/46SDX9PM2QK3NMlf7hHlEmApZBTA/oRxyraqaT3KMAGa2hRoF11nr8RgiB8PYXwtTUrvQy\nd7Hgp4sBnGbIlS70KPeQMhGwjOHDsCIB/3g9muZzDwMkdCo2JtBT/90R8Tf3KEDHvDyG0CyJ\n5nEXC34aQb0D3M44O1KBjnCPCQHLEK5XMwX4A6HZ3nDsvwB5ZLShMYG2Vh95zvsH+nPBy2MI\nzbZRJ+5qwT9vhZQ5HOiGxllyeLEz3KNCwDKCidReQD/eSx9xDwSks4lqB7xjRDI9xD0M0K8d\n9LDXrZZQjLta8MvVuwI6zZBLA6g797AQsAzgtZBShwS04zSJruAEkjhdMGpr4K1VKvoq90BA\nt7pQsted1pBOc5cL/hhPnQLfzuRyvAod4B4XApbuXSgXskREOx4uUC6deywgmQdppIDW6orr\nEYK/rhQo5X2n9UWn6dIJk5AvCXJZH17iHPPAELB0rzf1EtOOregt7rGAXLbRPSKOnF6C6wSA\nv56jbt532hyaxl0v+O6v0qFLBWxn8ujPfuZZBCy920l3HRXTjbNoNPdgQCq/FIraIqKzUgon\n3OYeC+hUP/LhC/o91Ia7XvBZejvqK2I7k8fRCqYTvENDwNK5H+KivDvLsWdHYkriYvSQI6M9\njRDTWm3p39yDAX26FZ/gy5eoxRPkuAYd+GA61RF4ilFHy0yVr7EODQFL3241pnHCurE1PgbB\nwRaqJWi7N4Mmcg8G9OlV3y6y2oR+5K4YfLTfVHyPmO1MXp1oOuvYELD07Um6T1wzzsZvhJDj\n54JifiA0OxxZmXs0oE9jaK4vndaPnuOuGHzzdlTUakHbmbwOJER8xTk4BCxd+3dIsX3imvFo\nTCkcRwh2GW2FHEFo04hYN3OgWxWijvjSaLPpSe6KwSefxYfMELadySuJWnH+aIyApWdny4Qs\nFtmMreht7iGBLJ4RuWPEGFrCPR7Qo48p0adG20XtuUsGX3xT0jRW2GbGlXq0m3F4CFg6ltHZ\nh3Mce2MGTeAeE0jix9jobeI6a6epOfeAQI9m0yTfOi2hOHfJ4IOvStFj4jYzrmyMKMl4KVQE\nLB1bR9WPC+3Fw1HlcQwOWKS3FHj0hFnlsAvcQwIdqhOy17dGa0C/ctcMXvu4GA0SuZlxpQ+N\n5RsgApZ+fV4gRsBlTJzcRx9zjwqksIbqCz1yug/t4x4S6M9p0z0+NlovSuUuGrz170Km4SK3\nMi4dLhn6P7YRImDp1vWalK003ZUAACAASURBVCS6F6fQTO5hgQy+i47ZIbSzluFk7uC7dTTE\nx0Z7guZxFw1eOhYV6uMPwH6ZRU3YfphBwNKtsdRWeCvuD6vFPSyQQPp9vu764klKoaI4QhV8\n1Y42+thom6kbd9HgnV1hEbPEbmXy0Zi2co0RAUuvXjCVVuHymHXpJPfAgN9yaiy6s1rR+9yj\nAr25HFnO1z5LibmTu2rwyqaQmIWitzKubYkodp5pkAhYOvVXibAVKrTiSFrJPTJg902BuJ2i\nO2sqzeIeFujNEeruc6PVNF3kLhu8sMUUp8YnmEv9aATTKBGwdKoz9VejE7ebWnKPDLilNaEp\nwjtrb0hD7nGB3gwi38/zp9Bb3GWDZwdDY1cJ38jk50jpkA95homApU+bqIbYMzRkqYjD6YPe\nUmqiQmdVC/mLe2CgL+kl44753GfjaA133eDRf6KilqmwkcnPXGqQxjJOBCxdOhkbLeoycbn0\noWe5Bwe8vikQt0uFzurLekZl0KEPqKXvfbaSHuOuGzz5tUSINvu3Z0mkZJaBImDpUVoijVep\nEVdQH+7RAav0pjRVnc7qyz000JeZ/nTi4dAG3HWDB7ebqn9+UWc7ChT6nWOkCFh6tFj8QV5Z\nUhLib3MPDzitoHvV6axCxXCiBvBF3dD9fjRa+QLYgkluOjUVehpjLwylXhwjRcDSoc8jC+1W\nrREfoDe5xweMvo8WfwShTUv6iHtwoCe/mWr512dfcVcObr0XWnSf6K2LJ8cr0wsMQ0XA0p/b\n9ekJ9RpxOj3OPUDgk9GSJqjUWZNoAffoQE820mB/+uxRXJVJbjeqmeaL3rh4tiqk/GXtx4qA\npT9PUXMV+/BQeHXuAQKfDVRfrc7abWrOPTrQky70jD99Noee4K4c3JlPD4jetnijK43XfqwI\nWLrzWUS8jxeY900dOsU9RODya6EC21TrrIrhl7jHB/pxI7akX222kzpylw5unCpQSNUPsPw8\nVzLkXc0Hi4ClN7cb0JOq9uEQWs89RuDShYap11k96Bj3+EA/XqTO/vVZobLcpYMbvWmc2O2K\nt54yVbuu9WARsPTmaVV/IDTbQAr3GIHJYaqq4tE9C2gk9wBBP8bSXP/6rDZxXXkOPHvPVFHr\nIwiztNd+/2IELJ35KqrQsyq3YcmYG9yjBBYXS4etU7GxjkZV4h4h6EelqCP+9VkXeoO7dshX\nK3pK7GbFeweLh2r9IyEClr6kN6EktduwI73KPUxgMZJ6q9pZDekH7iGCXnzp9/nYxuNiOfJ6\nheoI3ab4ZIHprivaDhcBS19WqXQWSEczaSr3MIHDuyGlD6vaWUOxex94awmN8bPNVtAw7uIh\nP4mk5TUIc1O0bg0ELF05FROr0lkgHRwKu4d7nMDgdm21v7xfTw9xDxL0oqVph59tdjjkXu7i\nIR+vU12hmxRfW6OcxgfaIGDpSjtNDsCoZfqNe6CgvRX+XFrXN0UL4Som4JWL4ZX8brMyMbgo\nk6QeoMUCtye+Wx1e9Fctx4uApSc7qZYWB2AMpB3cIwXN/RIXo94FmOza0jvcwwR9OBDA/oD3\nYV8/Sf0fVRO4OfHHEGqZpuGAEbB05K8ikZu06MHV9DD3UEFzPWmk6p01lWZzDxP0YWAA++r0\nxQnXJPUwzRS4OfFHSkOapeGAEbB0pC89qk0PFi6Gr9iDzQmqfFz1znrW1JR7nKAL6cUL+f9l\n/RP0FHf94Mrp8DJc58DK9mzRkFe0GzECln68SBWPadODLekj7sGCtm5WNWlxdE/lsIvcIwU9\neI9a+99lG6kPd/3gylQaLW5b4q8lYcVOazZiBCzduFIhZIVGLTiBFnKPFrS1RJsLsPago9wj\nBT2YEcj5/lKianDXDy5cTYhT9zww3hlCjTQ7lTYClm5Mpoe06sAd1Jp7tKCp3+Ji92jRWQto\nFPdQQQ/qhu4PoM0qh+NiFBLaQD2EbUkC0YyGaDVkBCy9+Dis+CHNOrBc1DXu8YKW+tFwTRrr\nSORd3EMFHfjVdE8gbdaGPuUeAeR1T8g2URuSgDxXQbMzHiNg6URafZqlXQd2ppe5Bwwa+o+p\ngka799WnU9yDBfltpMGBdNljtId7BJDHG9RE1GYkQJviwt/UZswIWDqxkhI1bMCZ2l92HPik\nN6AFGnXWY7SJe7Qgv870TCBdNo+e4B4B5NGT7zLPuc0PLfaTJmNGwNKHn2NjdmnYfwfC6nGP\nGLSzjZpq1VnJ1It7tCC9a9GlAuqyndSJewiQ2+/h5djP0ZBtCNW6rMWgEbD0obPGx7dWCznL\nPWTQyj+lIrZq1Vgp8UVwjjXw4HnqElibxd3JPQTIbR4NE7MNEaINdcvQYNAIWLpwmKppG/77\n0CHuMYNWplEv7ToL51gDj0YE+mNSTdM/3GMAZ2nlogI5MFS0I9VohgajRsDSg0tlwtZq234L\naQT3oEEjJyMTtDs+FedYA48yykUfDazLOtB73IMAZ8eprZgtiCB7ipv2qT9qBCw9GEs9Ne6+\no1F3cw8aNNKdJmjYWTjHGnjyfwEf0TOStnAPApw9SFqdJ9tLq6MK/Ff1USNg6cCHoSU1PwFu\nPdLucgLA6U2qrOnPz+WirnIPGeQ2hyYF2GQLaSL3IMDJqZBKQjYfAj1hKvuH2sNGwJLf7bo0\nV/Pme5R2cI8btJBenxZp2lmd6SXuMYPcGoTsDbDJ9lIb7kGAkydojJDNh0h9qYnaZ/xHwJLf\nMmqufe+toAHc4wYt7KD7tO2sWTSFe8wgtV9NNQLusoRS3KMARzdLRGu4o6eXUu5T/Zo5CFjS\n+ykmdrf2vXc8phz3wEEDV8uFbdK2sw6G1eEeNEhtXWCncbeqQ+e4hwEO9lNHAdsO0Q5VoA3q\njhsBS3odaSxH7zWi77lHDuqbqf31V2uYVN/zAfSsHW0IuMm6kEbXQgGvtCSNj4P3zqbYCHUP\nN0XAkt1+qsly/tshuKZJEDgdXeiA1p3Vl/ZyDxsk9k9kucCbbByt4x4H5PjKVD3wdaqGOaay\nZ9QcOAKW5C6UDA/oqlx+W02PcI8dVNdP4ysEWCylQdzDBokdEHHe22U0mnsckGMsTQ18nari\nYWqdpuLAEbAkN5j68jReSlxp7rGD2j4wVTiueWcdw+594MbDtDzwJjtkasE9Dsh2uVDhAM8c\nq5qUujRHxZEjYMntNVM5rs5sQt9wjx7UlXEfzWforHvpa+6Rg7RuFi4iYp+I4kW4BwLZ1ml5\nMS4fPVs09DX1Ro6AJbWrlU1LuBpvmNoHWAC3/dSQo7NG0hrukYO0XqQOIpqsIf3OPRKwy6ge\nul3EOlXHotDSf6k2dAQsqU0mha3vkqkP9/BBVdfLhwV+uJYfNpLCPXSQ1lAx36r2oBPcIwG7\nE9RUxCpVS1/qlKHW0BGwZPZ+aHG+s7OlxOFcfca2gDrztFbxgre4xw6SSiseJ2SniEm0knso\nYNeJFopYpWo5XlO9Q04RsCR2o7qJYxeZLE3oW+4ZABX9Fhu3j6ezHqC3uQcPknqDWgvpsdWq\nn6QbvPRdSEUhq1Q122Ki1dorFAFLYtOoLWfbDcWZsAxtAI1g6qwkms09eJDUGJolpMcOhzTh\nHgrYjAr42t1qm0INVPpOHQFLXh+EFd3P2XWrqS/3FIB63jeVP8bUWc+amnKPHuSUXjrmiJgm\nKxOn2o414Itz0UVkPUdDtkS1ztWAgCWta1VN81ibLiW2LPccgGoyGrOcosGmcthF7vGDlN6m\nVoJ6rCn9xD0YsJhDAwWtUvXsTQj/nyqDR8CS1nh6kLnrGtNJ7kkAteyke/k6qwcd5R4/SEnU\nL4SpqX3oBe7BgNmVojGsP8R4ZybVUeVHQgQsWb0aUorvCEKbwbSNexZAJZdKRWzm66wFNIp7\nAkBGaaViRP2clESLuUcDZiu1v5y8P1rRPDVGj4AlqQvlQthOMZplBT3KPQ2gkinUm7GzjkRW\n5p4AkNFr1EZUj62j/tyjgczM66Uj94hapWraGx/5pQrDR8CSVE8JLi5wrEBF7mkAdXwVXpT1\n+9H69CP3FICEhtBcUS12NKwe92ggM3M1dRG1RtWVRE3TxQ8fAUtO2+kuCY68qE+/cE8EqKIN\nJbF21mO0kXsKQD43EwqJO7K1fIE07vHA1ZKRO4WtUXU1pvXix4+AJaXvYqM2cveb2QB6lnsm\nQA0HqTZvZ62lHtxzAPI5Rp3E9Vhz+o57PLCEuopbo+raXqCw+MtXImDJ6GZ9msDdbhaLaTj3\nVIAK/ikTtp63s1IS4vH1AuTWnZaJ67H+dIR7PEHvQkLMs+LWqMqGqnD1XQQsGU2kFtzNZnUk\nojr3VIAKJvMf2HM/vc89CyCbC5GlUsS12JM0n3tAQW8q9Re3QtV2vBK9InoCELAklGoqdYC7\n2WzuMf3FPRkg3GfhxbjPAJI6CZ9+kNsz1Fdgi22i3twDCnYnI4s8J3CNqm256e4bgmcAAUs+\np4uEr+BuNbs++JbdeDLuo+ncjZW629Scex5ANo1NWwW2WEpkDe4BBbuuNFHgClVfe1ogeAYQ\nsKRzqykN4260LPNpAvd0gGibqRF3X5ndGf4P90SAXL4UfOhF5fCb3EMKbi9TFYE/+Wpgb8Ho\nn8VOAQKWdKZSE2m68lBYfe7pAMHOJESJ/J7AX93oOPdMgFwm0yShLdaaPuMeUlC7frdJlp9i\nvDVG9NHNCFiySTGVlOjSTXeH4nsGg3mEBnN3lcV8GsM9EyCVm8VjxO6wM5j2co8pqM2iDkLX\npwZSKtNrQucAAUsyp+LDV3J3mYOu9BL3jIBQL1FFcedyDMDhiLu5pwKkckDkSbAs5tCT3GMK\nZp9FJEj0VYGXlplq3hY5CQhYcrnRkEZy95ijGTSde0pApCt3hkjytX09OsU9GSCT1pQstsN2\nkMI9piB2uyE9KXZ9aqIVrRU5CwhYchlDzbk7zMleHOxlLJOkuTQYrpYDjr42VRfdYnF3cg8q\niM2nZqLXpxZ2RhU5L3AWELCksp/KHuTuMGflo0SfGQQYfRBagv0UWHZrqTv3bIBExtEU0S1W\n04Q9SLl8HB6vn3O4O+pP4wVOAwKWTL6Ni1zL3V+5PEhvc88KCHPzHprH3VFZcLUccHAprvAR\n0S3Wgd7jHlawulrNNEv06tTG4eLh34ibBwQsiVyrJcclCB1NoYXc0wLCzKXW3A2VozU+/iDb\ncnpYeIeNpM3cwwpWI6m98NWpkcdF7rqHgCWRITJ9/Nltpw7c0wKifB4Rv5e7oXJMpbncEwKy\nuH1n+C7hHbaYxnGPK0gdN5WRZVcEn6VUpVeFTQQCljz2UHkJL9xUvHA698SAGGkN6QnudnLw\nrKkp94yALPZRW/Edtp/u5x5XcPq1aPgq8atTK8tMtYV95iFgSeOb2KhnuFvLhVb0CffMgBhL\nqSl3NzmpHPY395SAHDLqmtTY+BUtyj2woJTWkoaosDY105y2iZoKBCxZXK8t54UxR1My99SA\nEN8WiNvN3U1OetFz3HMCcniemqjRYQ3pd+6RBaO51ECaq735Y2t4mauCpgIBSxYjJdwBy2I9\n9eKeGhAhPVH8cfCBWUjDuCcF5NCEVLl+RQ96mXtkQejt0IQ9aqxN7XSl+YLmAgFLEs9ROTn3\nCkwpWJp7bkCEVdSYu5dyORpdnntSQAovUgNVOmwKLeUeWvC5cIdpgSprUzv74uL+FDMZCFhy\n+Ck+Ipm7q/JxL/3APTsQuB9iYnZyt1Ju99LX3NMCEshoZFLn+k3JNIB7bMGnG/VSZWVq6TEa\nJWYyELCkcPs+uS5B6GgwbeeeHghYegv5zrGWOopWcc8LSOAINVKnwY6G1eUeW9DZQFWluJp8\nQI6UCP9WyGwgYElhFt3L3VL5Wk6PcU8PBGwt1edupLw24yRrYP7nZTVTskodViHyFvfogsxX\n0TFbVFqZWppCPYRMBwKWDN4KLSrRCSBzORpVhXt+IFCnYmO2czeSC6Wjr3PPDLB7Rr3je1rR\n59yjCy436tJUtVamllIqmd4XMR8IWBL4+46QhdwN5UZtk6Ad/oBLRmsay91GrnSiE9xTA9wu\nFo9ULfwPpme5hxdcJtP9aq1Lbc2nliLmAwFLAr3k3ivwEZyuSO82UB0pT0wzi6ZwTw1wm0h9\nVGuwefQ49/CCyishJQ+otjK1VZdeEDAhCFj8ttPdR7m7yZ0FNJ57iiAgP8cV2MrdRS4dCq/J\nPTfA7IvwYupdIWw3teceXzA5Vzp0iWrrUmOrTLUEXDAHAYvdD3FRm7ibya1DYfW45wgCkfEA\njeJuonzUpl+4ZwdYZSSqeoHMwqW4BxhMutHDKq5LjTWn3YHPCAIWt9uNaTx3K3lQJfQS9yxB\nADZTLSl/IDQbRFu4ZwdYbVDrFA02dekM9wiDxxaqov8zNGTbFHbnzYCnBAGL2wxK5O4kT7rR\ni9yzBP77pVCUtAdOJ1NP7ukBTr8UKrBNzQbrRq9wDzFofBdbQO7fYnzUgdYEPCcIWMzeDC26\nj7uRPJlJT3BPE/gto728J7FNTSkSf5t7goCPuTlHqNpgU2gJ9xiDxa2GNFHVdam1nZElLgc6\nKQhYvC7cYXqau4882mdK5J4n8NsWeX8gNGtL/+GeIOCzQe3mXEd9uccYLB6n5qquSu31pKcC\nnRQELF49qSd3F3mhQuQ17okCP52W+AdCsySayT1DwOa7mGiVD289FoHjVLXxUkiJ/equS83t\njy18PsBZQcBitUXyMzTYdaQ3uGcK/JPRTuXfYAK0L7QB9xQBFy1+VKochn8cauG34mHL1F6X\nmhsQ8GnUELA4fRUTrYu9ApNoHvdUgX9U/w0mUNVCcJhXsJqiwY9K7egD7mEGg9vNabDq61Jz\nhwpH/x7YvCBgMbpeiyZzt5BXdlIb7rkCv/wo6ylGs/WjXdyTBDyeN5VU/0elkbSBe5zBYCI1\nlvsfcv4ZRqMDmxcELEbD1bvIqWBlYnBRej1Kb0FjuHvHg5X0MPcsAYufi4StUL+/ltFw7oEG\ngd1Uymg7YFkdKR5xKqCJQcDis5fKHeJuIC+1pfe4Zwv8sIwayP7vypTCRdK4pwkY3GhMwzTo\nr+dCGnGP1PjejSqwToN1yWA8DQpoZhCw2HwZG6WbppxEi7inC3z3WWTBndyt49H9CO9BaQQ1\n06S/yhXAmdZU9l2xkBmarEvtHSsT9k0gU4OAxeWfqjSJu3u8to0e5J4v8NmNWqpe5k2QqTSL\ne6JAe1vpDm2+v29Fn3OP1eBOl9fku0geUwPbhQEBi0lGV+rI3Ts+KFEQ/wzUnYnUhrtvvLA3\nBCdqCD7vRcZs0Ka/htAO7sEa2y+Vqbc2q5JDSoWQzwKYHAQsJrOpmh7OgJWlNX3IPWPgo5dM\npQ5y9403qoX8yT1VoLHfSptmadRei2gc92gN7bsK1FWjVcliOj0UwOwgYPE4aCq6i7tzfDGB\nlnJPGfjmzxI6OfNff3zFEGyuN6b+WrXXQdN93MM1sreLUi+tViWLlMqmj/yfHgQsFu8ViFrF\n3Tg+2UIduecMfJLelgZyd413VlNv7skCTWX0pWbaHd1aNgaHqaomOSJkuGZrkscs6uD//CBg\ncfi+mGk6d9v4qHghbKV0ZR7Vlf0MDXYpReKxg19QmUeVD2vXXy3oC+4BG9XvnShurnZrkkkV\netfvGULAYvB7Rf0ddYGdsPTlRGjCHu6e8VY7epN7ukBD+01FtDx7yBDazj1iY0pbV5hqbNNw\nTTKZT239niMELO2dr0U9uHvGZ9gJS1d+Lhq2mLtlvDadkrjnC7TzblTUai3ba3GglzsBl16t\nTQWG6uRb8sDUoLf9nSQELM1dbEjt9NeWW3EmLB25Vp+GcHeM9w6G1+CeMNDMd0U1PivlIZzL\nXQVfPEim5js0XZFsnqb7/Z0mBCyt/d2IWuovX6WmlorD5Qj1IuMRasXdL76oS6e4pww08mcl\n0nqv6AqRN7lHbTRnhoZSNX0cpCxCLXrDz4lCwNLYufrU/Dh3v/jjgQD29ANtPUV3abgTceCG\nUTL3lIE2LtWl7lq3V1v6L/ewjSV9XWEq/aTWq5HRImru51QhYGnrt5rUSpf5KnUKPcU9eeCd\nfdruRBy4TdSee85AE1eb0/2af38/mtZyj9tQfmxGBQbr6TTZgatDr/k3VwhYmvr2Tmqvx98H\nzXaZWnLPHnjljUhtdyIWoFzkZe5ZAw3caEeNj2neXaupP/fAjeRAIWq4XfOVyGsJJfo3WQhY\nWvqgGPXUab5KTS0feZV7/sALnxYOnc3dK77qToe5pw3Ud6Mj1WH47fpY1N3cIzeO9Mcpcoz2\n65BbPTrh13QhYGkoJcaku/Nf5ehMr3BPIHj2QynTOO5W8dliepR73kB11x6kWs9xtFdN03nu\nsRvFjR5UMpljHTJbRv5dcAkBSzvrQiOmcfdJAGbS49wzCB79XJ4e5e4U3x0vWAwXCjC6iy2o\nDku+Su1GL3IP3iCutaWqz7KsQ271/ft+AQFLK+lTKG4Jd5cE4kBYXe45BE9OV6Le3I3ij/v9\nP5Uf6MPpWtSY6djWJ2kW9+iN4XobqseTkdkto6b+zBgClkau9aBSG7ibJDDVQv7inkVw76eK\n2h8EL8QTNJV77kBV75eiB7Tfv91mN7XhHr4h3O5M9XV1/heRGtBLfkwZApY2zjXV/1erj9A+\n7mkEt767Q4cXYbI6FFGFe/JATesjTQP52qtUQfwCLcAQqhm0+Sp1BTXxY8oQsDTxw93UVPet\nuYQGc88juPNJSerD3ST+akhfc08fqOZCT4qdxdhdregT7ikwgKepwn7GlcitoT978iFgaeGj\nEtRFt6dnyHYstkwG90xC/t4sbBrM3SN+G0sLuecP1PJCGaqyhbO7RtE67jnQv8MhCcF2+isn\nK0yNfZ80BCwNvBJneoy7O0RIpE+5pxLy9VxU6ATuDvHfbn+2XqAHvz9Mob15T/y9lvpwz4Lu\nfRoTuZJ1JbJrRM/7PGsIWOrbFxE2lbs3hBhHi7nnEvKzIiSK80eYgFUz/co9haCCG0sKUsVV\nzM2VEleGex707nxFkzE+xfy30tTA559wELBUtzakwHzu1hBjB66WI6u0MVRoOXd/BOQxXPDZ\ngDL2V6SYYVxHD+ZoTCe5p0Lf0h/U6fHJIjWmFF/nDQFLbfOo4AruxhDlzvCL3NMJrvzTkcpu\n5u6OwGyhVtyzCKK93pBCO+zhbi2zwbSdey70bQ7VPs69EtmtNtX19SssBCx1ZUyiouu5+0KY\nnnSQe0LBhdO1qdY+7uYIVKWws9zzCEJ90p6oyTPcfWW1ggZwz4auvRhSVIaczK2pz9dMRcBS\nVdpgKrONuyvEwSXjpPTfUtSWdydiEQbQJu6JBIF+ezSEaizl7iq74zF3cM+Hnv1cJEyWNckq\n2XRPum8zh4ClphvdqeJu7qYQ6HhccR/7C9R3OJrzHI7CbKQHuGcShLmxIJbKzuDuqRyN6Afu\nKdGvGw1pGPcKlEMz2u/b1CFgqehyW6pmrDOztaJ3uCcVclkSEvkEd18IcWf4Oe65BEFeqkxx\nI/j3bc8xhDZzz4l+DaNm3OtPEhtCqvp2TQAELPWca0T1DnF3hFjT6HHuWQUnt4ZSvL4PH8zW\nnzZyzyYI8WcfCumwl7ufnKyhXtyzoltb6A6DfY75r7WPR0sgYKnm52rUXP97xjg7GF6Ve1rB\n0aUHqIJRdvLbhOMIjWF3Eaok25HTKYWLYO8G/3wQGbOBe/VJY0tYhZu+TB4Cllr+V5oU/V8e\nJ7eG9CX3xEKOn++huge4e0KYu0J/555QCNifXShisHyH9LeiD7lnRp9+K22ayb3yJNLBt/P1\nIWCp5F9xpgHcvaCCcfQU98xCto9LUzuZdnQJ0BBayT2jEKgjxaiajF94TKQF3FOjS1cbUH/u\ndSeTnZElr/gwfQhY6lgVGj6JuxXU8GxoPe6phSypsYY4fDDbzpAG3FMKgbk4kMIfle/rK7Nd\npkTuydGjtC7Uwng/xASih0/fMSBgqeHGICq4iLsR1FGLvueeXbBZExrxOHc7iFWHvuGeVAjE\n63dQhWTuLspH5dDz3NOjPxnDqcYR7jUnl32xhXw4IzIClgpONaAKW7j7QCWj8U27HNLGUsEl\n3N0g2AR6kntawX9XxppCekj7cdyH9nFPkP4k0R26v0SEaANpovcTiIAl3nOFqblhD2vdE1qb\ne37B7NKDVGYTdzOIdijqDhzqpVsvV6RSEkf+ZdSPe4Z0ZzqV3Mm93qRzuGik91cOR8AS7eIg\nihjJ3QMqqovjCCXwQ3UDXH0wr/vpBPfMgn9O96aQLs9xN5AbKQnxt7gnSV8yJlPxrdyrTUIT\nqLfXc4iAJdjz5eTdC0GISfgZh9/LCfSg0c6xZvE09eGeWvDH+Sei5Tv3VS7tkd59cnMglUK+\ncuH4nab3vJ1EBCyhfu5OofLuhSDEocgKGdzTHOQyngoNG8XdB6pIKRWJy+Xoz09TC1L8aCkP\nHnQwh0ZzT5Se/NmcKhnpQroCPUVNvP0MRMAS6PLsaLp7NffaV1sLep17ooPb2Q6UsJi7C1Qy\nAKfC0ps/Nj8QSoUGyr/X6dGYkr5dRy6o/bs0NZZ/nTJpRHu8nEYELGFuri1JhUYb/5wh86k/\n91QHtVdLU61d3E2gll1hVfH9qF7cOHkieXB1E1Gl0TLvfJWtNf5p6K1rk0NC+hn/s8xfm8LK\nXPZuIhGwBLmx/g6K7LGfe81rIKVY9EXu2Q5e1yaEhDws+48xAUik17inGNy78N6zC8f1al6t\nCFlE3DPwGe6m8dIcGs49dzrxYmUqbtATOYrRgx73biYRsIS4tLgUhXcMkiNaH6a13PMdtP59\nl9SHwgduAXXlnmPI14035ytlyCaqdPXmPSas1NGxFkcLFvHpQr3B6vOOZOp0kHttSe1Q0Qjv\nDqZHwBLg1KSCFNVlO/dK18r20JrcMx6k/uhvMnU0+I4RFUJPcU8zuPTHhk7R5mBVqHbHIdOX\nbTvM3Sh+6EhHuCdRpEBXLgAAIABJREFUfp/2CqFqkh8Qym8atfBqXwYErIC93i2UCvV9lnuN\na+heeoN70oPRjSUFqYKhv76yGEuTuCca8vprffMQolIdpm7jbpAALKeHuOdRchmvPGiiCtO5\nV5QO1Ket3kwoAlZgLq6pTlRhrB7/Oee/BdhOaS99z50UM+QY97pX3eFCcX9zzzU4u7q3YxiZ\nqjy6gbs5AlUu/HfuuZTZxeRqRFWmY+d2L2yNSvjDiylFwArEe4NjKLTp09zrWnMVQ3DFZ21l\nHKtFYR2D4mvSfvQ092yDg9sv9o8z/yNyoBHOOTmUnuKeTmllvDkgmsISDf8VuShDvNpbFAHL\nb2dX3UNU9JEd3CuawSQayj37QSUjpR6Zmhvu0oOu7S1Q1MtDoEF1N18cWsS8leuWzNwUguyL\nKH+be0rl9M2sikTF+gbJcVoiHK9Kuz3PKwKWf24e6xZBoY1mGviAeTeOlYz4hXsNBI+MI+Z4\ndW8y90rXTE9axD3lYPHz5h4FiQq2f9o4vxk9QPu5Z1VCXy+oSxTRfK5x1rMWNkQW/tnj1CJg\n+SHt9eEJRGUHBm/cH40zymglfd89ZGpi+OsDONgbnYC9sJhlfL1t8F1EVKzDU4b6N+R6U0Pu\nqZXMpdSxlYlC6owLhnM4ijWSEj1eGgABy1e3XhlRgqhQx2Xcq5fT0ZLhP3CviKBwa/vdZGqW\nzL2+tdWPkrjnPYhd+WjHxFaFLCe6qj84mbsVhGtIL3FPsDT+fnfj8NqhRBENx+7hXi96lNKY\nnvA0xwhYPvljey/zpie29RzjH83l3iTqyb0ugsDV1XdQ6P16OVG2MIcSok5yT30QuvpFyqox\nD1QwWc4iWrLZkGWG3MYtpybc88zs2k/vp25bMK57w6KWFR1Wpfv84DoGXqC9xU3HPcw2ApbX\nrr48pbZ541O0wzwdnbxYLSmV6U3uFWJ0f80uShEPbuFe1Qwm4Dwg2rnx49vPLh33UP1ithO0\nx1VvP2zBPu4OUE8D+i/3jPM488722QPurxprPxE/hRav03H0MoSrQKyIKPiV+1lHwPLK7f/M\naxlpjvs1B6zGjoBWi0w1cNkJNX02pADF9DDsVZ3dSqlCR7nn3+Bu//phyjOzBne4x56rKKxE\nzdZ9Jy3by73u1ZYcEnT/MvzjxKohTeJtqzmmXM1mSt/RM5btMOQXlFqbQBX/cjv3CFiefb6y\nUxyRqXznWQa/SolP2tA87hVjXNf3NCcqNvgA90rmkhxW5jz3OjCkC5+/sGXOsE71SobYc1VE\nqRrNuw6dtnRn0PzDsUPwBKyb376wYnhz60W5TSXqdxkxez0+wQTrQQ3dnlQGAcu9X7b3LWlu\nz+Jtp+7mXpWS2Rsf8TH32jGm9LeGm/+5WTMpmP+J2Yd6c68GQ/nr/b1PD2tfPSbr66qiVe/t\n1H/C3HWG/8IqrxSDnwnr0i9fvH1868LxfRLL2VJ08YY9Jq16jnvaDSqlObW+5mZtIGDl7/d9\nw6tYdkpIHB0kp3j0zSy66yL3KjKemydGlyEq9NB67tXL62hl2sC9Kowg7dRrm5N61I2z5aqo\ncvXaPjx2VnJwHzPGvU4CduXChZ9Onjz58UcfvX/ixNGDOzcuW5A05rGeD7aoX7l0IcoRX6VF\nn8kr8KWVqo42oLZX8l9XCFgu3fhwbf9K5haNrPvoyqD57txXCnX2eBoQ8EHG56uVWKKYVrNw\nGMXmmMjvuNeHjp394uVtcwa3rhRu/aQNL1O/42NPrg7Cr6tc4V43vvvnu/8c27xg4kClWa2K\n8VGUr7DYEndUqZP4QNf+Y6Yv2XqEe6KDw+F61ORsvqsOASuXtB9SF/WrZdkuRdXpuwgfdG4c\nrUljuFeXYdz4z7IuluOmS3SYgw2jxZzg2xk5UOe/eG3PymmDOjUsG2H/xI2tdF/3MQu24t+I\njrRfMRl/fPrK3nULk8YM69mzZ5c2Zop5oWevYcOGjU5KmrZo0aKNGzceOHjwhRPZXjx4cOPq\np5OG9Wpdu2xkToSKSihVuUqdOvcmJia2a9++fY8evQcOHj0hac6Clc9s2xfM+xQwOnIfVf4y\nv1WPgJXtr7e3JnWraW3m8EoPjF5jqDMYq2JvWZqQwb3aDOCXg5OaWvouodnojdzrVB7j/o97\nvejDte/eenbZ+J73Vcj+aiM0oWKDNn1Gz1obtAdJuKXdqjnz0dFVk3o2LRue/5dOnoUnVKjT\nskv/cTOWPLMHEUpGKV0pdlc+LYCAZfnSKmXxoHtth7FG3JnY5/F16GPv7CxDj7jbww88ufb2\nsu5lzH0XUqH9BOzp54x73cjs5m+fvLR7+aR+rWvYD78nU+EK9Vv3HDplwbo9+MLKLXXXzN+W\nfcy3LZrwSPO7CtjXTMJdjdv1HjppxoKV6zdv3rPPZtvmzZs3rVy5csn8+XOSkqaOHj1q4MCB\nfXtkGThw2OikWQvXbMMuVDowOYp6/OGyHYI7YF375OD8PnWs//IzlazfZeT8bdg2+WR3Zaqb\n77ej4FbaFztG1bf827Zgw37z8V1DXtwrSKy/L1z48+TJcxcuuPkXyd+nPnn7xYNbNi5atOgp\n6y9Hi9Zs3LjtoN3+jRsXzZ0yrGfbhhULZn+/EVm2ZqtuQ6ct2Y69GbwlZn1eOPnx68f3bFwy\nP2ncsH49O7VpUb9OxTvjox2+eoqr0LDDgEmLt2LNGN+Gu6mQy1OOBmXAuvnb/z2/adaA5mWt\nV4UIK5/4cNIa7Pjil8P3U+Sn3OtTd/5+d+Oo+yyHzIdW6jBxA/c6lBX3WnJ04cdP3nrh4MaV\ni6Y9PmzYIMsONB3b5Naup9WAYXaPmm+0adOkfpWKReLJUVR8+Sr1W7Tp2XOw7YlDe3Zv0+Se\n8oW9/dEopFC56ve27zMsadEGfL/huwDa4MqXL2+fN6ZrYtWiIXlXS1RssZKVq9VJbNu1/+gn\nl2zCOdKDyfEhMS73GTV+wLr423cfvfnSwe0bFs15fFjfh+6vVyH7n38JNdo+On0Dfg8MSFI8\ndkb21uVv39z11GMtSlm/Mi3bYshinJ3GDY41dN1yBPwPH3301onjBzcnL0oa3b9LizreRx9X\nwmOLlLyzcg3bnsmJDevUubtyqaKxobmfViChXJX6zdp37ztk9OSkpDnzzWYmJSWNGz165ECb\n0aOnJM1fkrwN33YGxp+++P5f66Z0q1cka2XFlKpSv3mHHgNHTkia9/TK5M1b9+3Dbx9B7tm/\nXTWOp4D1wkG57di+OTk5efGiRYsWzjSbPHHiyGGD+/bu0u7+JnWrVyxROO8xraExRcreVTfx\nwZ5DzNsxCNzE7/3YYMneV97Yv317cvIqc+stmGmTNDHHePvXGIP7mruxc5vmDWtWKJp1NFBc\n+Xrt+k3iXm/Sc38NCteeypr/yTNnzl20aGVy8sbtjraatxZLFi2aNfOJiROHDRvYt1uXdm3u\na1LrnooVShSLicmzsbAKiy1SumK1Ovc2b/1glx69+w0cNHz48FHj7SaOdzTcapg5DQ0abFka\nOz7/1Tx+7PDhtuQ0dPjYCRrOa7Dzp69KWj86CpeveV+77gNHT+UeAkjIZV95ClglA/m3GwSF\nN/zdYAG44U9fBXS8FgQFf/oqn+wNkM1lX3kKWAU9/111RcfHuzu1mjYKmYvI852+xkLMNRTy\n/DR1RZqLyLOt8WeDxd5XtpXqYk8KjcWYq4j0/DSVuVyvmgt1bnF99lVBCbYV4eYaYplrsE5E\nGHMNlomIy32nTv9BaNlSRHh+mrpM5iLiPT9NZVHmIqI9P01luf+f7lfAqshWvt0d9evXL8Fd\nRE1zEQWYa4g011CLuQYqZi6iQu47/dlgsfcVUS3zWPijzZ3mKopyF+F6vWqugLmKmjk39dlX\nNcyD4N74FzbXcBdzDVTNXAR3yitorqFK7jv12VdU0TyWIp6fpq5QcxH1uIugEuYq7uAuIs//\n0/0KWP3zHCujsabmUTTjLqKhuYj7mWtoZa6hIXMNbRLNRTTNfac/RxGy95VtpbbiLqLNveYq\nmnMX4Xq9as7S4o1ybuqzrxqZB9GSuYbm5hruZa6hTWNzES2Ya2hhrqFx7jv12VdtmsjwSdja\nXER97iIk2Vzl/n+6y76S/ijCp82j2MNdhGIu4iRzDT+ba3iQuYbMA+Yi5nIXIUh781hOcxeR\n+YS5iuPcRUiyXr8zV/EQdxGB6mEehMsz4mjoNXMNY5lryOxvLuJj5hreNdcwhLkGUaaZx5LC\nXcQVy7+BuIvI3G2uYiF3Ed79Px0ByxsIWHZyfBCLgYCVQ471ioAlCAKWHQKWYAhYORCwhEHA\nspPjg1gMBKwccqxXBCxBELDsELAEQ8DKgYAlDAKWnRwfxGIgYOWQY70iYAmCgGWHgCUYAlYO\nBCxhELDs5PggFgMBK4cc6xUBSxAELDsELMEQsHIgYAmDgGUnxwexGAhYOeRYrwhYgiBg2SFg\nCYaAlQMBSxgELDs5PojFQMDKIcd6RcASBAHLDgFLMASsHAhYwiBg2cnxQSwGAlYOOdYrApYg\nCFh2CFiCIWDlMEbAun7p0qWb3EVcNheRzlxDurmGy8w1ZN40F3GNuwhBZFipmZnXZOhvSdar\nFC0eqCsStNVtcw1XmWuwTkQacw1STIQgli3FLe4iMsxFXOIuwrq5us5dhHf/T5c+YAEAAADo\nDQIWAAAAgGAIWAAAAACCIWABAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIJJGbB+WD+690OP\nTN39Z85dv24a93DXAXNf1vjEKmd6KcpbnEV8s3Z4j4fHrPwi5x7Ni8j47/JhPbv2m7b/AmMR\ngsjTWfytJUVzGaO75Gkr7q6SoKUM0VF28jQWe2fptLckDFg3kxW7rkez7jv0kP2ukX+6e6lo\nGTMUh67Svojb6zvb33J9BlcRZx/PWh3ds88jzLQ6AiVRZ7G3lhzNZYjukqitmLtKhpYyQkfZ\nSdRY3J2l296SL2BlzDUXO2374bUDzP992XbfMfPizEPPbxusKIP+0bCWfykOXaV9ERnLFKXn\n6pRDc82ttZepiKvDFGXM8599/e5acyM9z1SEGDJ1FndrydFchugumdqKt6tkaCkjdJSdTI3F\nvr3Sa2/JF7BeMsfDjywL11cryiPWq4j80V156APLwo35irJGu1LO9FQeze4qhiJOKMr4s5aF\nj7srXS/wFLFTUWbbvvz8uLPS8x+eIsSQqLPYW0uO5jJEd0nUVsxdJUNLGaGj7CRqLO7O0m9v\nyRewRirKv2xLaeZUaG2wDdmh9Xo/pcuF/F4pWsZ0pd+h7K7SvoibA5Xe522L+2ZtPs1TxFBF\n+da+mKQob/AUIYY8ncXeWpI0lyG6S562Yu4qKVrKCB1lJ09jcXeWjntLuoB1sbPSLes6jmsV\n5bj5P2l9la5Z14DdoyhHtCrlBUV57fmsrmIo4l1Fedb5HoYiuihK1upYpyj7eYoQQqLOYm8t\nSZrLCN0lUVsxd5UULWWAjrKTqLG4O0vHvSVdwMpMO3s6a3Grojxn/s/XijIt664vFeVJjQr5\ns6cyOzO7qxiKWKoovzrfw1BEL0XJuhy9uamO8hQhhjSdxd9akjSXIbpLmrbi7iopWsoIHWUn\nTWOxd5aOe0u+gOXgaUX5j/k/5jW7Leuum52V3tq8ecaTSu+zOV3FUMRjygDz/14++dUfWfcw\nFDFXUT61L06zfUPKszrEYu0sCVpLkuYyWncF9wZLipYyWEfZBf32Sre9JXPA+qe70suSGLdm\n77Jv1l9RtDlu4XnrkRvZXaV9Edc7mxPxFzMsB6cO2n+DqYjMrxRloi22f9hZmcFUhGi8ncXf\nWrI0l8G6K7g3WHK0lLE6yi7ot1f67S2ZA9Yy+w5kyxXlnew7xyrK6XxfIdCfPZWZmQ5dpX0R\npxRl0b+62E+yMf5vniIyM48oyuDn/u+Ld1Z2UUaf4ypCMNbOkqC1pGkuY3VXcG+wJGkpQ3WU\nXdBvr/TbWxIHrP2KMuW2ZWGBonyYfe9kRflOgzfPeFLpdSbToau0L+JLRRn70KATv986+3w/\nRXkig6UIs/8+aevrQbuuWG+zFCEUa2fJ0FryNJeRuivIN1iytJSBOsoO2yv99pa8AWu3ooy4\nZF2apyj/l333NEX5WoN3T7UfIpvdVdoX8ZF5RQ69aF38vY+ivMtSRGbm1e0DbE3VeTLXTAjG\n21kytJY0zWWk7gr2DZYkLWWgjrLD9krHvSVrwLqxSFFGnbUtO8XESZpk1T96Kk9aT8jvOrZr\nUsR/zSvyffvyUUWZz1JE5rnhirLyq2u3z742SlHWZ/IUIRJzZ0nRWrI0l4G6CxssOVrKOB1l\nh+1Vpp57S9KA9dd4RUnKOsHECscfOsfkOV5TBRnTlJ62Kwtld5X2RXyhKA9lXUDyrKI8zFJE\n5pPZu/HdmGKbC4YiBGLuLDlaS5bmMk53YYMlSUsZpqPssL2y0G9vyRmwvuynKKtuZd3ariip\n2Q89oihXVH//lOxz6GZ3lfZF/KQo/bNv9FCUWxxFfKso47KWP1OUyZkcRQjE3VlytJYkzWWc\n7uJuKxm6SoqWMkxH2XE3lhSdpefekjJgvddV6Xw05+ZLirIla/mqovRV/f3P9lCGvWOzRlE2\nv/POjwxFZN7qovTMvvGI9SSy2hdxWFG2Zy1fU5TOaRxFiMPdWZK0liTNZZju4m4rKbpKipYy\nSkfZcTeWHJ2l596SMWC995DS432H2z8oypSs5Y8VZa7qBXyp5LKJoYjMzFGKcsa+aG6wbpkc\nRey0XRLAKr2L9UQfDDMhCntnydJacjSXUbqLva3k6CoZWsogHWXH3liSdJaOe0vCgPVNd6Xn\nV453ZAzOuYzieus5z1Tmqqs0L8L6/eNx++Lntm8ktS/CnNqTs5bPKEqXDJaZEIS/s2RpLTma\nyyDdxd9WcnSVDC1ljI6y428sSTpLx70lX8C6+pjS9VPnu3Ypylbb0rkeSo+reV+jnuwfnhmK\nOKkoj16zLS5QlH0sRXymKANv25dft8d1xtURELk6i7W15GguY3SXXG3F2FUytJQhOspOrsbi\n3V7ptrfkC1jr816U+mIfpfObloV/ptonVzM5XcVQxCJFmWVdZ88pSs+/WYpIG64o661H6Wae\nedQe0RlXR0Dk6ize1pKiuYzRXXK1FWdXSdBShugoO7kai3l7pdfeki5gnXlI6bxrb7YU652v\nd1aU6QdSnumnKJNue/gDYuV0FUMRFx4zZ+btLx2crCjKq0xFfPaQokxM/eybD7f3Mb9zGk8R\nQkjWWbytJUdzGaG7JGsrzq6SoaUM0FF2kjUW8/ZKr70lXcB6x/kn36G2e1/pbr89XeODbB26\niqGI3yfY37HHK2xFfDIwe2Usu8ZVhAiSdRZza8nRXAboLsnairWrZGgp/XeUnWSNxb290mlv\n6SRgZf61fXyfboMWvad1OY5dxVBE2mtzBnV9eMKu8zl3aV7EzVeefqznQ49M2HiSsQgBJOss\n7taSo7n0312StRVvV8nQUrrvKDvJGot9e6XP3pIuYAEAAADoHQIWAAAAgGAIWAAAAACCIWAB\nAAAACIaABQAAACAYAhYAAACAYAhYAAAAAIIhYAEAAAAIhoAFAAAAIBgCFgAAAIBgCFgAAAAA\ngiFgAQAAAAiGgAUAAAAgGAIWAAAAgGAIWAAAAACCIWABAAAACGbIgPUeES118/j/zI8vdP8n\nTo+6Kzq8+EyHv+XFi1w926uXeVk3BL1Uc4ts5y4CtMG6srExMrrs9hLweQn5QMBy6ZN4suiL\ngAVSQcAKIghYoCIELA0gYLl0ryVehYYjYIFcELCCCAIWqAgBSwO6DljtqIrL+0+NHj36VTev\n89gwf5qfEHsoLfOqw9/yqsvyPtvzy3JG4aluCHoIWEGEYWVjYxQ8stsr4M/LXPL7XA5Geg5Y\nGfF+rkiPDfOh+QljfX2R62d7fJnfo4AghIAVRLRf2dgYBRGv28vHgIUmcqDngPUtqRWwLK23\n2dcXuX62x5f5PQoIQghYQUT7lY2NURBRK2ChiRzoOWDtUi1gHTU/YZ+vL3L9bI8v83sUEIQQ\nsIKI9isbG6MgolbAQhM50HPAGm2IgOX3KCAIIWAFEe1XNjZGQUStgIUmcqCXgPXrkk4VCoYW\nrNRj0xXbHdspSwnzrXfN/30z8/y4ChHFvsl1VESeV3pqmGey/3Ke0zQsMv9nQp1iEWXuX/2P\n/dn5vLPrgOVhFE51px0ZVrN4eHzlLslnsu76r/nx1zMzzz/dsFBYQr3JP/o7maClm3t71UyI\nKNl6yXmHO12s3ZfMa/flzMy3BtQsGlnu/mf+yXlyxuEedxaIrzHwdQQs48t3Zf97fL3i4UWq\n9did3Rn27cGXg8pHFLhr6BeWu9IPPVA0LL7R/IuOfzLfVzpvSdxsjFxsREGXXLWXN5+XLj76\nrHL3lnMTuXyK1Q/z290RGxpXSVnzlzoDlYQ+Atatx8Oz11vRY9a7nFekpQWev1TNcvN/Tg3j\n4pUBBKwlaSOyHir3Rs7fcvHOrgKWx1E4NvorVbMfipmVZrvvS/ON1MyD0fb7w7cJmFpQ2YkK\n2esxOftOV2v3LfON/TkNVuE/WU/+o1XWfQ9cRMAyuPxW9lf3ZndMyf32+2zbg7km291hezIz\nf69tf07Zb7P/Yv6vzLUlyXdj5HIjCnrksr28+bx08dGX6aq38gQsV+2XeX1kSM4GcHGG+uNm\no4uAlaFY10TBOwpb/mM6ZLnv5datY4iiW7du3dN86xvz/QemWJ/lFLBcvdJTwEpt3bqW+Qk1\nzX96Ya7ItHykZWsUb92ixX5sfXY+7+wiYHkehUOjbwu1tnK9KhGW/3a7Zb3ze/PiwX3m1oxI\nCLPcHfK2wEkGVeyyrsjQKOu6n2C/0+Xa/cC8uHm8+X8ibWe5jf3M9uR/rB+a8bWrmT8Omx4j\nBCwjy29lvxJnub9svbusnbPIdqd1e7DcvC2Jj7Tc+//s3XdgFHX6BvB3s5ueEEqA0HuXIqEJ\nSJGODr1Jld6ki4B0EEFEBJEiCJEqvSSeZ9fz51nO3nuvgCK9JtnfzCabbJKZbJuZd2b2+fxx\n7I672W95bubd2SkRX56pJtZZxV0vaZhdthfyzvxrEqWVkfxKFExIPl6+bC9lNn2y2cobIoX4\nZXaWnjgqVEtwfdwM/QZAd6YosDaKk1Bqi/QLyzfjxYcJZ7IW18v9rfc7cfGmeKoz56F5P3kG\nRv6d/hyDladkGkj2SR9mOq8ery4+uTmzkE+WKbC89yK33W+JcQyb9Yv46FJKaXHpYtfSH6W/\nlWAb86HTee1FqQhsH9h4gm7eFr8QRi75NsP5x9o4qRR3LZSf3XfFR0PJPusLp/PygYpSiZ/1\nzW6GVIs9LW4vrx6sSJ1QYFmawmR/J27wwqb+ID46t1Ha9h12LZXWB0uji24858x4vb74ePw4\navx8uvPSHmmjlur08k65NYnsykhhxQXmIx8vX7aXMps+hWx5hkjhJdJurqYvSN8rf39UWvqG\nDl1nYooCq6o4Se9nP56cEwbPifxJXHobzcre15gbGPl3BlxgkS176WlpA3iskE+WKbC89yLn\n3Zn1PLajXxQRv2j+ID36WVwaa9uTtfhUMbE51v792gIai1/UXsl6+FIYUUVpv4LC7LoCRtlf\nGv9Mcq+Nfo8Uv1F+nbX0l3KEAsvKlCZb3Ba6/3/v/FxMTKUr0iNpfRAT96Fr6c9RRHG2lpdd\nT3aL/2Gs08s75dYksgWWwooLTEchXr5sL2U2fQrZylNgyb+kA1GZC9lLvylBdKfK/TQQMxRY\n0k6idu4nv4hPumQ99JhIaSm1df+WmxMYhXcGXmANdr9CWoXdWcgnFyywfOhFzrtfEh90z2nN\ng9IX1ZzPGu9ePEl88nxhvQB2r5DHFWtHiU/+5VSc3bwBe1J80k96sEF8MN+99CkUWJamMNnv\niQ/uynnRY+KzXdID1/rgweylPcTHYV9kPb4eR9TM6e2dMmsSuZWR0ooLTEchXr5sL2U2fQrZ\n8gyRwkvEb49Dc5auSe63QqX+GZAZCizn1R/f+iTnSQWimlmP8hdYz7lfkluRy78z8ALrHfcr\nrscQFSvkk2X2YHnvRc67R2ZvirOcshPVdX+WLefcQWk/a/6roYKxSAeGfuZ+8mz5Rh33ORVn\n1xWwt9yLr4oBK5rhlO47QfSFe2l6CRRYVqYw2VPFB5/nvOiyGI1e0gNpfRDh/sFuIXkcMtCU\nqKzTyzvl1iSye7AUVlxgOgrx8mV7KbPpU8iWZ4gUXlKMqKea/TIwUxRYeTQmKpn1KF+BFXfD\n/RKFm1fmvDPgAqtM7ktuE5/+pvzJ3q6DJduLnHfXJoq8nvviJuJ304vZn3VTztIXxGdrC+sF\nsKvhcbZyDoXZlZJSLndxW/HpT07Xt71SuUsHosCyMoXJbkRU1eNV4nayuPSvtD5o4V4oHT6z\nzP1EIIp3enmn3JpEtsDKI3fFBaajEC9ftpcymz6FbHmGSOElN4tfDP4XZF9MwnwFVnOiElmP\n8hVYt+a8RCEwOe8MuMDy2Dk+Vnz6kvIneyuwZHvhfvfFMKKGHi8eLi5/M/uzhuQs/a+3XgC3\nq+JEts6/UGl2paT0yF0sBexlp/Mf8Z+WuUuXocCyMIXJviwmppPHy2aJy/9wZq0PRrkXbhef\nHHQ/6S/W8E4v75Rbk3gvsHJXXGA2SusSX7aXBTd9StnyCJHSS9aI/0bP+06FLhmeSQqsqwfH\nNC8dTdnkC6xhOa/2DIzcOwMusCbnvmRJ9vpM4ZNlCyxvvXC/WzqJupdHc6S9/8eyPyv3HtRv\nosAyOmkiB8gtlJtdKSlTcxdLAdvvdH4h/tM/d2kKCiwLU5hs6f/3MZVyFfP4wjXT88U5h2QO\nzC6wCnun3JpEocCSXXGB2SitS3zZXhbc9CllyyNESi+53sr112tPOmz5M1LNUWDtLUue5Aus\nu3Ne7hEY2Xd+L7ZeAAAgAElEQVQGXGDdl/uS1eLTHcqfLFdgee2F+93SoYG5BwE6navE5zuz\nP2tWns9CgWVo75PnMZ7ZlGZXSsqS3MUPiU+3Z11ze0Tu0oMosCxMYbI/poKkwz6l9cEc94ul\nzeUr7ifuAquwd8qtSeQLLPkVF5iN0rrEl+1lwU2fUrY8QqT4kotDs5/ZW22wdo1ligJruWsu\nKrfqMUSUqFRg5V1hPFTIOwMusO7Pfcl68elm5U+WKbC898L97v+jnLOsXdYpfhYKLEN7I99E\nuijNrpSUB3IXZwfstbyvxoVGrUxhst+U2U4dcfpSYBX2Tp8LLIUVF5iN0rrEl+1lwU2fUrY8\nQqT4Eqfz7WFFshckLEt3WpcZCqwXpcvHTv4p+5niMVgyZY7COwMusBbnvkQq4+X3KikUWD70\nwv1uacdH7hESTucD4vPdsp+FAsvQPhSnaHj+hUqzKxOwJ7Ou7z4id+leFFgWpjDZn5LnYQi5\nvBdYhb3T1wJLacUFZqO0LvFle7k4933Zmz6lbHmESPElkusvzrwpq8S6/UqAHTIBMxRY0hVn\nH8l51sSPAkvhnQEXWLkf4fohWv67oEKB5UMv3O/+nvKexjqfsi7MjALLZH6gPMetZ1GaXZmA\nHcq6a5zHcRObUGBZmMJk/0zyp7V7L7AKe6evBZbSigvMRmld4sv2suCmTylbHiFSfInbH9ta\nSxXW8gA6YxImKLCks66q5N4PsqzvBZbSOwMusDwOWJZOpfiv4icXLLB86YX73ZftRA08mnOn\nuPw92c9CgWVo18OJGuVfqDS7MgF7w+n8k/Kc+TMDBZaFKUz29UiiejIv915gFfZOHwssxRUX\nmI3SusSX7WXBTZ9StjxCpPgSD0eiiGIv+d0XszBBgSXdTnlkzrOvyPcCS+mdARdYHmGR7kr+\nt+InFyywfOlFzrvrE0Vcy/2sm7KfosAyG3FyIy7nPPvyiy+kGxAqzG6+gLUTn54U/y2a59o1\nt6HAsjKFyW5KFH6u4Ku9F1iFvdPHAktxxQWmoxAvX7aXMps+hWx5hkjpJZ6Win/uP/72xDRM\nUGBJvxxPy3k23Y8CS+mdgV/J/Wf3K67FEJVX/uSCBZYvvch59wTKuVmrM+vOrLfIfxYKLGOT\n7ud1wv1E2mE+wak4u3kDJt3txBUw6YzmnKsvnwtHgWVlCpM9k9y3IXH5Mnub5UOBVcg7fSyw\nFFdcYDoK8fJleymz6VPIlmeIlF7y00+5C5/Pszq0GhMUWF95/pD7foT4LCbrsfjVv0L2Yvky\nR+mdgRdYeW7kNFH5kwsWWL70Iufdb5HnBdrmiM+2yH8WCixjk87baeN+Il14Qbp/s8LsugK2\nwL14P2VfRHKZ51b0fkKBZWUKky2d7l4n51yrK+XDb3Odi+VDgVXIO+XWJDIrI8UVF5iOQrx8\n2V7KbPoUsuUZIvmXzEz0uDa3cx953CHMckxQYKXHExX5I+vxp2VjW4rz8ZfrSROi8Ox7csuX\nOUrvDLzAinkva+k/1cUnryl/csECy5de5J4uewvl3mfwTTHpJc7LfxYKLGPLlCYy+wznzxKI\nklw/DcrPbp6AnatC2TvOP7cRxX6atfStWBRYlqY02R3FR+Oyj4653p+yr9nuQ4FVyDvl1iQy\nKyPFFReYjkK8fNleymz6FLLlGSL5l0jfNB9zt+mG+DFFrHsaoQkKLNe9RFpJ19X/bWk0PTYv\nZ23QR5q8U+k/nFEscxTeGVCB9a74oAsV3SxtDN+6WXzS2fXffT6L0Ide5BZYn0URhd37p/jo\n7Lr47B0fKLBM6B1pP/ygty5n/vCgdN2XrN3l8rP7gWfAGlDOfe0HiA8Td4hLf1geSyNRYFma\nwmR/Hyc+vO3/xC3VlYPJOdHwpcBSfqfcmkRuZaS04gLzkY+Xt6lW2PQpZMszRPIvOV9afDT8\nDel+rBefkcq4e3UdBF2ZocD6Rpoke43WNcKI7sp8Wiqn6zX/yuncQlleUCxzFN4ZUIElPdg6\nSizOa94s5YNKZ92M3ucCy4deeFxR95C0g9ZWNblaGOXuA0GBZT4HXBNIWf/rPsBBdnalpDxy\nZ27ASmYf9fBredd7i4pVGXWQLgO/naUjoAelyX5BWntQbPVS0pWKqO5J10JfCizld8qtSeRW\nRkorLjAf+Xh5m2qFTZ9CtjxDpPCSlyOlJ/ayleJdL2x1OX87rcMMBZbzOfdFX+0Lnc4bDVwP\nPxFr4pu8FVgK7wyowPqPtOzGmOy/R3U+zvrvvl/J3XsvPO8J9Vo99ydRRfc9XFFgmdDL1d3z\nGJ+zW1x2dqWkrLl2l3t53U/dL/6igXtZ9/PSRbQ2690F0I/SZH/YOicxtpH/ZC3zqcBSfKfc\nmkR2ZaSw4gITko2Xt6lW2PQ55bPlGSKll7xdN2chOaZbuL4yR4Hl/GN+coI9ofE9ru9Nvw0s\nEV52wCnx0ekJ5exRVfp9q1xgyb8zoALrGfHBv53O96Y0TIwo13nr1eyX+l5gee9FnruaZxwZ\nXbeEo3jt4XtzTulHgWVGVw4MqF00Ium21X97LJSZXSkpD4orpJmNSkZW7JTicVjCjSeFilFF\n6971stN5ljwvBQjWozjZL09vnBQRU7bjEvf+Ax8LLKV3yq5JZFdGCisuMCG5eHmbaoVNn0vB\nbHmGSPElmf+e1Lx0lL1I1R4P/6Zhb/mZo8ACsDyvZT8AAJgICiwAQ0CBBQBgJSiwAAwBBRYA\ngJWgwAIwBBRYAABWggILwBBQYAEAWEkIF1hrushbzd0wCEkosAAArCSEC6wRJG8Id8MgJKHA\nAgCwEhRYKLDAEFBgAQBYSQgXWABGggILAMBKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAA\nAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAA\nqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDK\nUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwF\nFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGAB\nAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAAAIDKUGABAAAAqAwFFgAA\nAIDKUGABAAAAqAwFliVcfPOFfH7lbhKElg/dyfuIuyVgAOlvea6NvuBuDpje6Rc9E/XqBe72\n+AYFluldSJ2e7CBRbMX6t7Ru3bpJzeLSs5tX/MLdMggZL7ckCq/esnWdSKL273K3Bpi9NylR\nXAUVrSOuj5pWjRIf1lj0A3ebwMTOb2trJ7KVqtu8devkavFioiI6bf2Hu1U+QIFlbn9u7ixu\n0hw1bp+y5qm0HAdWjWhgJ3s/bOlAD6cGigX9vMNS9I4uaEBhs65ytwgYPduGKL7TnJ3Za6PU\nTZOaR1BYzze42wUm9efsBLLVuHPlIfcGbueC3pWIou76gLtlXqHAMrGLOzuKZX2FPssOpRW0\nb3wlsvX9lruNYH0vJFG11bnJW1qaWv7J3Sbg8o5YXjW871jetdGByVWIur7P3TYwoQvzYylh\nwLb8G7jHB5ci6vImd+u8QIFlWh+OL0JU9a6tMsVV9jfHRdUpatk17naCxa22O4ad8AzewZZU\n7XvuVgGLf8aHUeOH5VZHy+pS2OjT3O0DszlejoqOPSKXqBPz6xD1MfY+BBRY5pRxvC1R8X6b\nFaurrBJrRgLd/Bl3W8HK0sdS8Qfz5643VfqRu2HA4NlyVG6J0upoUXkqsYe7hWAq54aRo99B\nxS3c8uoUtcTIBySgwDKj9F1i6d5g3jHF3OXY145inuRuLljXtd5UOaVg7gZRjVPcTQO9XZ9l\nsw84qrw2OjYignojF+Cz96pS1Q2FbeBSZxSlOm9zN1MZCizzyTxYi8LarvdeXbncE01TbnA3\nGSzqmkB198vFrie1NPIXS9DA760oaU3ha6MtdajMS9ztBLPYHWXr7W03wv7ONsfyDO6WKkGB\nZTrvtqSwDspHXhWwuTx1M8lFQ8BkbvSmBnJnWIjfLFvSSO7Wga7eLUe3yBbbnk4MsduXZ3I3\nFcwgcyHFLPBhC7ekGHU06n5RFFgmc/7uMGq6yffySrS/ITX7m7vdYEGZw6mufH2VlnaoCm3j\nbh/o6ESMbUiqD6ujlcWpN77wgVfpo6nURp+2cHtupgoGvSQRCixzebUSlVE8iFTJsTbUEKfv\ngOpmUTXlXRZbY2NwAe/Qsc0eMce31dGuutQQF0EGL673p8o7vafJJXWQLfogd4NlocAyk4zF\n9rDesmesFu5EJ7rZDJe9BVNZR2X3FJK6eygZB/+FijW2uNWFZCGPYx2o3IfcDQZju96Lanv9\nwTnXvKiwh7mbLAcFlomc606JK33PnIfUDtT6MnfzwVqOhSUUfihgG1rO3UbQx/1UbIMf66Nh\ntoRXuJsMRpbej+opHX0ga20xuseAx/ahwDKPn+pRg8L2GBTmREvqbdgzLcCM3ouJ8HLK2N6i\nkfiRMCTcT4lb/FofzXREneBuNBhX5iiq41d9lZa2rQyNNd4mDgWWaXxZnroe9y9zHo7UpXu5\newAW8ls521xvobuX2hrwSyWo7SFK9OO0ZpdFEeEHuJsNhjWHqvrx+2CWXZVpuOEqLBRYZvFZ\nKRrib+Q87U2ivdx9AMu43JSGeg9dMu3mbihoboutmH/7ryQPRDme4m44GNRGStrl/yZuXzW6\ny2gVFgosk/i6NI3xP3KeHouK+ZS7F2AVQ6mND+fkbw0vc567paCxA2HxjwWwPnow2mHME7+A\n2zP2eP8rdtG+qjTBYLvMUWCZw++VaVQgkfM0m+pd4u4HWMNqqu7T2awDaB53U0FbL0dGeTkW\nT8GDUeFp3I0HA/q0SHj+u5v6aG9Fmsvd+rxQYJnCxWQaEFjkPHWlidwdAUt41l5U5gaEMg4V\nj8Jdny3tkwSH3xfmy7YiIupl7uaD4fxdjaYHmKi0nUlkrKs1oMAyg8x+1M6XiyR7cbic7Vnu\nroAFfF3M4etFj6bScO7WgoZ+r2ibGvAKaZGjyHvcHQCDSe9CvQNOVNrWorZ93D3whALLDB6g\nWgFcXrSgtfaKOCQGgnWuLt3ta+ROVAj7mLu9oJnLTWlQECukmbak77m7AMYynxqdCCJSj0RF\nvsbdBQ8osEzgJXtxX+8Z4EVfupu7M2B2GT2pu++Ru496cTcYtJLZn9oGtWt9FNXGbVLBQ5qt\n1L5gEpW22F7iW+5O5EKBZXx/JNlXBRW5XEeS7O9wdwdMbiHVO+Z75FKr2wx6H1YI2mKqHeSu\n9Tuo3TXuXoBx/FAsfG1wiUqbSHWMc184FFiGl9mZRgQZuVxLqLnBzmMFkzlkK+nX/QQWYxeW\nVR2xJQZwuaI8TjSlUdzdAMO43pwmBpmotLTbqWs6d0fcUGAZ3lpqqMIB7m63UAp3h8DMPoiN\nXO9f5KrbPuJuNGjhk7iIdUGvkA5VNth5X8BoNrUKOlFpxxsa564lKLCM7tOoeJUOwHJ5IqLs\nRe4ugXn9WdE2x8/ILaBB3K0GDZypTrNUWCNtT7A/x90VMIZ/25L8vkOOjH1JNqPchwkFlsHd\nSCZ/N2iF60tLuPsEpnXlFv/PGkutaP+Gu92guozbqacqa6SVjhI4lRBEf5Z2BHbN2vw2RMZ9\nxt2ZLCiwDG4ZtVElcjn2x8ef4u4UmFTmYGrl/+/VM2gCd8NBdUuofuD3ns9jIt18mbs3wC+z\nOw1XJ1Fps6i2MS5IhALL2D6NKBrcSasFjaJp3L0Ck1pM1Q/7n7hjidGo6a3m2bASu9VaJd2G\nA93B6dxAN6l2tPHtdCd3d1xQYBlaRguaq1bk3I4kRv3K3S8wpSdtiQEdDzgKP0tbzU+JPl/M\n37vDlelJ7g4Bt8+j43y7/5YvjtWkzdwdkqDAMrR11FK1yOWYRJO4+wVm9HxE7IaAEncguvRV\n7saDmq61oHEqrpK2RMca5JgZ4HI9mWarGKntcVEfcHfJiQLL2H6Ki1XzDMJsx0pFYhcW+O29\nIo77A4ycgD0U1jKNWqu6TrqHbsJhWKFtIbVVNVLzbTUvcPcJBZax3UGTVc1ctkk0lbtnYDpf\nl7bdE2jittqacDcfVHSIyh1Qc42UltYJJ0KEtrccJZ5SN1ICjeDuFAosQztMdVW8xGiuoyWi\nT3L3DUzml8o0JvDIJdNb3B0A1XybEPGoeqsjl0MV6Dh3t4DP5Vq2pSpH6mhV2svdLRRYBnau\nnGOjypnLNpru4+4cmMvJ2jQgiMQtomHcPQC1XE2mu1VbF7mtD0/8nbtjwGaaPzeQ99HmqCLs\nF1hDgWVcU4LapBXmUHxRY1wlBEzirwZ0RzCJSy0d/Td3H0AlU6idWmsiD6OoG26TGqpeCStz\nSP1ITaaWN5g7hgLLsN6xlwnyTvXKBtFa7u6BifzViDoH92v1MFrH3QlQx2Eqp8HGMC21gTFO\nrAf9XahiW6VBpNJuoaXMPUOBZVTpyaT2j9K59kRU4i7twTxONqCOQR4NuNNRj7sXoIrvi0Zs\nUGUllN+O2LhvuTsHLCZQL00itbe4g/nYTxRYRrVO7Xvk5NGF9nN3EMzi19rUKeizLVrQm9z9\nABVca0aT1FgDyZhGt2Zwdw8YvGgrr9GPNctsNS6ydg0FlkH9HB+7S5vMuWyyNefuIZjEN5Xp\njuDPZl1EY7k7AiqYqfIVsDw1xe/Ioeh8pTB17vEsQ6DxrH1DgWVQvWiiVplzSaY3uLsIpvBu\naVVOtjhevMgl7q5A0NJsZfarkAZ5O+NivuHuIOhuHPXVLFJHKtie4ewbCixjOka1NLkEVo6l\nNJC7j2AG/4qzBXH9Kw99aTd3XyBYvyQ61qqSBnnTqR3OJAw1z9sqaHY2V1raI44yfzF2DgWW\nIZ0v79igXeYkqeXDcb8c8OoxR/i96iRuE3Xk7gwE6catNFadNChIpse5+wj6OldRux8IJYNp\nAGPvUGAZ0hTqp2XmJBNpAXcvwehuTKZ41c6frhGGkt7k5lNzbXes74hO+I27k6CrsRpv645X\n5zyhCwWWEb0Zpt0lsNwOxZa6yt1PMLZT7aj8VtUSN44e4u4QBOWFsMR9qsVBKSS9uXsJenrO\nVuGotpHaFFGC7x4BKLAM6NpNtvu1zZykB+3i7igY2v8qUlMVj2jebW/I3SMIxh9J9tXqxUFe\nai06wd1P0M+5CvaHtc7UaBLY+ocCy4CWUQetMyfagis1QGG2RNoGqvqDUDJ9yt0nCFxGBxqu\nZhzkbXBUvMDdU9DNGO0PhklLrUcpXP1DgWU8n0cW1XpHvMvN9A53V8GwLgyh2AXqBm4GDvsz\ns2XUWNsDsLL0pZncPQW9PGurqPEPhJKtUQm/MHUQBZbhZLSkOdpnTrSARnH3FYzqo9pUTb3D\nr7IciKjG3S0I2Kv24ntUDoSsQ6UcH3H3FfRxtoJdy6t+5JhAXZgu/4ECy3DWU3M9MpeWdqJk\nzBnuzoIxPRZFt6v/1bIl9pma1qmyYQ+oHghZC6gVLoYVGkZRf10ildqAtvH0EAWW0XwfG7tT\nl9ClpQ2jR7h7C0b0d2+KnadB4ObQvdxdg8BkdKUhGiRCVjO+Q2ZAT/+iSjr8QCh5IqrITyxd\nRIFlMJmdaao+mUtL2+Woha+KUMD/VaQ627UI3KHIKgicOT1AjfQ4AMvliYhS/3D3F7R3ppz9\nEb0yNZE6s6x6UGAZzBM6rsjSWtNL3P0Fo0lfarcNOK5N4FrhN0Jzes1RfLc2kZAzhO7m7jBo\nbygN0i1SXD8SosAylt+KRmmy70DeCta7CIAR/daOiq/QKnCzaR53/yAAJ8uFaZYJGUeS7DjO\n3fKOUdVj+mXqiaiEnxk6iQLLWHrQOP0yl5ZaLuJP7h6DoTxbkprs1SxwByNqcncQ/JfRWb8D\nsFzmUzvuPoPGTpXS+n67eU2grgw/EqLAMpT9VEe/HwjTpGvcruLuMhhI+vwwxygtE9gU1xo1\noeV6Hrfg0ogOcXcatNWXhukaqdT6tEP/XqLAMpK/SoVv1jV0+yKqZXB3Ggzj5G1UUtM726dN\no/u5Own+esmu5wFYLpvsla9wdxu0tIdqanSgp5JtUUX1v5E4CiwjGUFD9c1cWjt6jrvTYBRv\nl6dkje8hsDesCXcvwU+/l7av1DYVMgRawd1v0NCvxSL03ZeQJt1IXP97EqLAMpAXbJV1POrP\nZRX15e41GERKpG2w5r8E3WTjumkFBOZGWxqhdSoK2hcf/wd3z0EzmV11Pdg4S2pd2qt3R1Fg\nGcflajZtf5+Ry1z5cKzHQJQ+g2IXah+4MbSRu6fglznUTOcDsFzG0RjunoNmNlMDhlBtiShx\nUueOosAyjnkk6J+50bSSu99gAOe7U1k99tlvpa7cXQV/nLCV0uXW8/kdK2f/kLvvoJGvY2N3\ncIRqpO7XJUKBZRifhZc4oH/k9oZXx8W14ZcG1ECf7WiFyAvcnQXffV8sXJfb8Ra0gDpxdx60\ncaMFzWDJ1PHqdEzfrqLAMorMtjSXI3NtcDV3+KQ8ddLp8L++dJS7t+CzK8k0SZ9cFFSfnuHu\nPmhiGbVkytQGR5kzunYVBZZR7KJklsjdT4O4uw7M/lPUptuFJFfRaO7ugs/GUju9glHAI7YG\n6dz9Bw28E15cu2sZezGIRunaVxRYBnG2dMRWlsSllon8i7vzwCo12j5Nt7wdjy+D36TNYgdV\nOqRbMgpoQ09yDwCo71It2xK2TB2taNP1FxsUWAYxXccbX+Y1nNZxdx447XZELNIxb23pXe4e\ng2/ej47ZomMy8nvCURFXG7WeiXQ7Y6jWhFW7pGNnUWAZw2fhpQ4zJW6n/Sbu3gOjLWExul5H\nchYt5e4y+ORMVds8PZNRQA96iHsMQG1P2ypwbepcetI9OvYWBZYxdOI5wt2lOb3N3X1g84gt\nXt/TxPbabuHuM/gi43bqo2syCtgTXeIs9yiAuv4s5VjHGqpDpezv6NddFFiGcIIa8CVuIY3j\n7j9weYgSNuict1p2HPRnBkupgc53iytgMC3gHgVQVWZ3jvsC5LGEbr6hW39RYBnBtZphG/gC\nd7x4kYvcIwA8VlPxTXrn7U7ax91t8O5fYYl79I5GfgcT4vS+9DZoagPdxHFfgDza0mrd+osC\nywjWUlfOwPXF2Toh6mEqrv9RzGtoBHe/watvizl0v3FXQWNoGvdAgIo+jY5L4c5U2p74mO/0\n6jAKLAP4u3j0bs7AbaY23EMAHDZQUd1vaZ+WdgIXajC+Sw34rjDq4Uhi5M/cQwGquVKf5nBH\nSjSNuujVYxRYBjCThvEGro7tW+4xAP1tsyVs5IjbrYS7zBndYOrIEY0CJtNY7qEA1UwxRqpS\n6+t2lAIKLH7fRyYe4Q3cVFrIPQiguz1hcY8yxU2/YyAgIGupBvM6KduxpHB8+bOKNFtZxuvW\netgSnvSPPl1GgcVvEE1nztuBqIoZ3KMAOjvuiHmYJ24p1JG781Colx0JO3iyUcB0uot7NEAd\nv5d0MN04vIDBNEGfPqPAYveurTL7eRXt6UXuYQB9vRQVoev1RT1ViLrM3X0oxI8l7Su4spHf\niXKOb7jHA9SQ0YFGcafJ7Wi5sLd06TQKLHYdiO/OTG4raBj3MICu3ol36Hl/nLwEep67/6Ds\ncmMaw5aNAmbRcO4BATWspMbsexJy3E8363IncRRY3J7jvMaoW2rJ2PPcAwE6+rKk7R6+uC2k\n2dwDAMoGU3u+bBRwojx2YVnBm+FFWc+Vz6ctrdej1yiwmGU0shnhd+kBlMI9EqCfXyvROMa0\nHXQ05h4BULSaqhvjAPdsM3EUlgX8U8W2lDtJnnbGJPyhQ7dRYDHbTa25oyZ53HYb90iAbs7W\npwGscasThrvlGNWz9qL814L0dKKc43vuQYFg9aO+3EHKawwN1aHbKLB4Xavq0P9S2nJqhf3E\nPRagk6vtqDPv0RCD6BD3IIC8r4o5HmTNRkHTcS0s09tMtY5x5yiv45Vtr2nfbxRYvDZQN+6g\nZZlAK7nHAvSRMZCaneBN20oazz0KIOtsbbqbNxsFHU+KwOXcze3DqNjt3DHKb5WtgfbHuaPA\nYnWhdORO7pxl2euoxz0YoI/ZVOswc9qORdXgHgWQk96N7mDOhozJdDf3wEAwLtSiedwhKqgd\nbdC85yiwWC2l/twpc2tGH3CPBuhhI5XZwx22tMaEfRJGNIsaHOfORkFHE6P/5B4ZCMJQI5bt\naTujip3WuucosDidio/fz50yt9l0D/dwgA7+ZY9/nDtraWl30U7ugYCCUqjMPu5oyBlDc7iH\nBgK3jaod5Y6QnBHaX88dBRanKca5tG3a4eiyulx5DVh9GB9uhGOY19II7pGAAv4vMnYTdzJk\nHSpSRKd7x4H6Po6O2cqdIFlHy9g/0rjvKLAY8d/l2VN7epl7QEBrv1fgvMBorhOxFbiHAvL7\nvmQY/00l5A2hFdyjAwE6X4vmcudHwQLS+upEKLAYDWG/y7OnJTgZ2vIuN6PB3DnL0oxweW6D\nOVfPSHfIyeup6FK4faVJDSKBOz6KGtFRbTuPAovPe2GVmc+Wz+N4QvFr3EMCmsocRG0Mcjuw\nMbSNezQgjxtdqSt3KpT1pk3cAwQB2Ug1DXYFLA8bwqpru9FDgcWnI/HdbldOd0rjHhLQ1P1U\n0yi/Sa+nIdyjAXlMpkbG3RCmpTiq4RBRM3o7Mt5wV8Dy0JXWatp9FFhs/k31udOV14PY5lnb\nibASBrnqWlpaanw57uEAT+upgmHOaJbTgQ5yDxH4769KNmPtRshnd3Txv7XsPwosLga5y7OH\n1FLxOM7Bwj4vEvEwd8ZyNaevuQcEcqXZE7ZxR6JQG21NuccI/JbRzThXepQ3jGZqOQAosLhs\npzbc2cVq6FoAACAASURBVMqvNx3mHhXQzNmaNIM7YR5wEJaRvB8XsZo7EV40pVe5Rwn8tYQa\nGuk4YxlHEiO1vJU4CiwmF8uGP8Gdrfwepn7cwwJayRCMdTIPDsIykJ/L2u7lDoQ3D9Ad3MME\nfnomLJH/rhFeTKc7NRwBFFhMllAf7mQVkFo65gL3uIBGltJNhjqGOTWuPPeQQLZz9Wk4dx68\nq277nHugwC/fF3es4U6NV6mVbe9oNwQosHj8GptgwENK+9JT3AMD2hC/S+7mjldezelb7kEB\nl+udqDN3GnwwGxfqM5dLjWgid2h8sIQ6aDcGKLB4DDdk9B6hPtwDA5r4wXjfJUfRDu5RAUnm\nSEo24B2eCzheMuoU91iBH4ZQB+7M+KQ+PafZGKDAYvG2raIhV2llovEboRVdbUrjuLOV31q6\ni3tYQLKEqh7kDoNPRtFS7rEC362l6ka56l7h1tiSM7UaBBRYHDJvoWXcqZLVjw5wjw1o4G7j\nnbKadjymKvewgFM6nTnRMFdHK9z+6KSr3KMFvnrRkbCDOzE+aqndNdZQYHHYTc25MyVvLfXn\nHhtQ30EqZ8B9FMn0C/fAgPPf4bGPcSfBVz0ohXu4wEfflXA8wJ0XX20Kq63VbQJQYDE4XzZ8\nK3em5KWWjr3EPTqgtm8TIjZwJ0vGcNrLPTLwbly4abaDaVttDbnHC3xzob7xDkpQdhs9qdE4\noMBicC/1406Ukt50hHt0QGVXk2kqd67kPEjjuYcm5H1X2vgXwPLQnF7hHjHwRUZv6sQdFj88\n4ahyXZuBQIGlvy8iEg9xJ0rJGhrMPTygsinUjjtWso5G1OUemlB3qiaN5o6BP1ZQb+4hA18s\noLqGuuqeN91oszYDgQJLfx1oDneeFKWWKILjSK3luK2sAQ/AktS34bR7VhebU0/uEPinsl3L\n+5qASvbaShn+Cu55PBlR/oomI4ECS3f7qSF3nApxBz3NPUCgpl9KhK/nDpWCQXSUe3RC2o3b\nqXUqdwj8M5VmcY8aePVmVNQG7qT4SaBHNRkKFFh6O1fWsZk7TYVYQaO4RwhUlN6WxnJnSsly\nmsE9PKEsczQ1OMqdAT8dKVLsIve4gRc/lLYt4A6Kv3ZGlr2sxVigwNLbNBrAHabCHC9SUqsz\nVoHBcmpq2J0Uh+xNuIcnlM2nKga8XZcX/bU6WAbUcrYejeKOif960TotBgMFls7es5c+zJ2l\nQnXCiToW8oajuIEPhqjpOM89QKFrE5UyyQVGPaXY62l21W1Qw/WO1JU7JQHYHVlGi11YKLD0\nld6UlnBHqXCLaCr3IIFazlaxLecOVCF6a3gTMCjcEXu8kQ9VUNSKXuIeOiiEWe5sWYA2u7BQ\nYOlrHbXmDpIXR6Ir4iuiVQym3tx5Ksx8Wsg9QqHqP1GRRrv7t29WUi/usYNCLDbLnS3z2xVZ\nVoMTCVFg6ern+FjD75ZvTe9yDxOoYxdVM/TVaPba2nEPUYj6qKh9EffsB6iy/Ufu0QNF20xz\nZ8sCetJj6o8HCixdCTSJO0ZezaYF3MMEqvi+SNQW7jQVrkLMNe5BCkk/lLUZ8uL+vphMc7iH\nD5SkOmI3cgckUDsjKqi/NkKBpadDVMewp3Tl2O+4iXucQA03bqEp3GHyoiu9wT1KoehUTRrO\nPfUBOxSXqM01ISFor0dHrOTOR+C60+OqjwgKLB39U8axiTtEPkimb7hHClSwmFpyR8mbmbSa\ne5RC0IVmJHDPfBB6anZnXgjOx8XC5nOnIwg7HFVvqD0kKLB0NJYGcWfIF5NoDfdIQfBed5TY\nxx0lb7ZTD+5hCj3Xu1Ab4+9IV7bV1pR7CEHOdyb+4dmlM+1Se0xQYOnnVVsFU1w4eaftVu6h\ngqCdrWxbwZ0k7xKL45RVnWUMoUaGPvXBq2R6m3sQoaBfq9JI7mgEZ2tYnQyVBwUFlm6u1LI9\nyJ0g39S04ya8pjeY+nLnyAdt6FPugQo106jGIe5pD84iGsE9iFDAqTrUnzsZwWpLR1QeFRRY\nullA3bjz46NhtIN7sCBIu6i6GXZTTKBN3CMVYlZQOQNf298nqaWj/uIeRsjn74bUnTsYQXvM\npvbNu1Bg6eWTiOJmufPXRurJPVoQnO8Mf4WGLI/SEO6hCi1bbSW2c0960O7CuRFG808T6mjm\nA/uyNadn1R0XFFg6yWhJ87jT47MyMZe4xwuCcb2F4a/QkCU1tiL3WIWUg/Z4016nKNfeiKpq\nHysDQTnbnNqd4I6FCtZQW3UHBgWWTjZTc+7w+K4XneAeLwjGfca/QkO2ZPqJe7BCyHMRUea8\nQU4+7elf3EMJHsT66lYr1FdpaQ1UvjIfCix9/FE0OoU7O75bSaO5BwyC8Iq95FPcGfLRMNrL\nPVqh481YxzLuCVfFGrqdeywh1z/N6FZT3uC5oOUqXzgGBZY+BtEY7uj44Xh8aeyCN6+/yoet\n4o6Qr1bSRO7hChkfFQ+bwz3fKqkW9j33aILbX42pjUXqq7S06jZVz2tGgaWL56mqqRLYHrcw\nMa/MHnQnd4B8diQcN2bSyddJNnMcmOeDqbghoWH8cRPdZo3fByVzaLiag4MCSw9Xa9ge5g6O\nX+bQXO4xg0A9SvVMtL6rE/Y394CFhp8q0ijuyVbN4bjEq9wDCi4/1qCuFjh/0O1E2XA1jwpF\ngaWH5dSVOzf+ORhej3vMIEDvR8ab6HC/tH6Uxj1iIeH36ua4UZePetJu7hEFyeflqZeF6qu0\ntLtpqorDgwJLBz/GJBj+rnD5NKZvuUcNAnK+pm0Bd3r8sQg/9ujhVF3qzT3Vatpia8k9pCB6\nqwQN4c6Cuo4Ui1XxMrYosHTQm0x3D8wJ9Aj3qEFAhpDAHR6/7Le14h6yECBdZ9tS+xnSGtEH\n3IMKzqdjwyZxJ0FtI2ipegOEAkt7z1Et063bdtjacw8bBOIJqmaKO4rnqhJ5mXvQLO+fZOpk\nunVQ4ebROO5RhW2OCPNcPttX+2NKqnedbRRYmrtex7aWOzP+qxp+hnvgwH+fxMRs5Y6On26n\nV7lHzer+aUbtLVZfpR0vEXeWe1xDXOZ9FLeSOwca6E0bVRsjFFiaW0cduRMTgEG0j3vgwG8X\n69C93Mnx1710P/ewWdw/TamNic4r9dEQepR7YEPb5YFUahN3CrTwpKNqulqDhAJLa6eLRe/i\nTkwA1tJg7pEDvw2jbtzB8duT1IV72KztTBMr1ldpOx11M7mHNpT90Zxq7eYOgTY60gG1RgkF\nltYm0wjuvAQitXixG9xDB37aRtWOcAfHf0lFVPu+CAWdvpnaW7C+SktrRa9wj20Ie7cCtTbh\nysYnm2zJag0TCiyNfeFIMmcMO2P1ZTYfRMWa7QAsSQd6l3vkLOz3etTBasdfZVlB/bkHN3Tt\nibYNsWasJM3oJZXGCQWWxu6gudxpCcwCmsU9duCXs9Vt93GnJhBTaR330FnXjzWom0U3hKkV\nwn/nHt4QdX0aRVnv9MFcq6irSiOFAktbL1Adk67eDkfU5B488Edmb+rFHZqAbKE+3GNnWV9U\nsNh1tj2NU/OCReC731pT2ce4Z19TtWwfqTNUKLA0ldHQtoY7K4FqSl9yDx/4YQ3VOcadmcAU\nK4WjlbXxv0SrXWfb0/6ocjhOlMFLpan5fu7J19Y8GqbOWKHA0tST1IY7KgGbTGu4hw9895oj\n4UnuyASoNX3OPXrW9GycbQL35GqpKx3mHuLQk77Ebr/LsntFs6WWC/9ZldFCgaWly+XDn+CO\nSsBSbO24xw989keZsPu5ExOocfQ49/BZ0s5wh+muiuaXDXQb9xiHnF/aUolV3BOvvck0U5Xh\nQoGlpQdMelRMlqoOXMzdLG60pWHceQnYozSEe/ys6H5brGlrbh/VtWHfp74OF6eme7mnXQdH\nEuL/UWO8UGBp6FSRuH3cQQkCLuZuHrOoqXn32qfGVeAeP+u5NpJKbOCeWa3Npinc4xxSzo2k\niHHmXdH4Yyg9oMaIocDS0N00ijsmwcDF3E3jmK2UmUv5pvQ99whazem2VDWFe141d6xokfPc\nIx1CXq1ClTdwz7lO9kUlXVVhyFBgaeer8FJHuWMSjNTixXGSjil8ER+xnjstwRhFT3IPocV8\nUpWaHeKeVh0MpE3cQx0yLk8Ps/U29RbNLz1oqwqDhgJLO33oHu6QBKczvco9huCDC3VpOndW\ngvIwjeIeQ2s5Gk99QuKXnBR7Pe6xDhX/V4OSQuDo9hzbHbUygh81FFiaeZ2qm3wdt4Du4R5E\n8C5zgAlv8ZzH8ahq3INoJenzbBGzuOdUJy1xRy9dXJgaZrs9FPaJ5mpHR4MfNxRYWslsQSu4\nIxKkQxG1uUcRvHuYapn0CqM5GtMv3KNoHSc7UKl13DOqlxXUl3u8Q8GzlanMA9xzrbNHbbcE\nP3AosLSyn5pxJyRoyfQN9zCCN686Ekx/NPNw2s09jJbxSllqbOYzHvyTWsGhzhUhQdnp4RTW\n+zD3VOuuMb0W9NChwNLI1SqOLdwBCdpEeoR7HMGLX0uHmX1PaVraahrDPY4Wkb7IHjbE5Icm\n+GUi3cc95la3uyRVXss9zwxW0B1Bjx0KLI2sIoE7H8HbQR24xxEKd60FjeSOSfCORdXgHkhr\n+L4VJa7knk1dHYotpcbp9KDku84UMdzsxyAEpobtk2BHDwWWNv6Ij7PC9W6rhJ/lHkko1ARq\nZYX9FTfjICw1bI+nW0Ln58EsPWkn97Bb2PVVMdRgK/ccM5lHw4MdPxRY2hhFY7jToYYBdIB7\nJKEwKVThIHdI1DCcdnEPpfn92p2ip3DPpO622ppwD7x1vd2Aiky3wje4gKSWC/8pyAFEgaWJ\n/4WVt8RO1TU0lHsooRDvRsWY/0g/yUO4ElawMrcVpZu2cU8kg6b0X+6xt6jzU8Ko/R7u+WV0\nN00NcghRYGkhowUt5c6GKlKLlkjnHkxQdLqibQF3RNRxLKoq92Ca3JdtKSpEbhOXz1IaxD34\n1nSiPJVZzj27rI4Wjzkd3BiiwNLCdmrBHQ2VdFThTFXQyI0ONIA7IGppQj9yD6eZXV4QScnb\nuSeRR2r58F+5x9+C/uxP9n5HuCeX2UhaGNwoosDSwF+JkVZZ191Hs7lHE5TMpGTL7LIYRTu4\nh9PEjlSm4rO5p5DNBFypQX1PFqfqpr7BqSoOxhUL7m7iKLA0MIaGcQdDLbiYu3HtpTJPcedD\nNetwtF/APu5A9p4HuGeQz6HYxMvcc2AxP3WhyNEnuCfWAAbS6qAGEgWW+v5jq2CJI9xdcDF3\no3o/Juox7nSoJzW+HPeAmtRvY+zU0EJJCEAv2sY9C5aSuTk+dK/NkNeeyDJXghlKFFiqu1Lb\nZqGbjk+ktdwDCnJOVrLN4w6HmlrS59xDakbnFsZSOYuc6RCw7WE3ZXJPhIX82IFiJlvm4IMg\n9aDNwYwlCizVzaVu3KFQUYqtPfeAgoxrt9Ig7myoaiI9yj2m5nP1kURKGGed/eWBaknPc0+F\nZWRuiaebd3DPqGGkhFe+HsRoosBS21uOkpY6HKJq+BnuIYWCxlJza33H3EI9ucfUbK5vrUBR\ngyy1tgnQaurGPRlW8WsXisbuKw9d6ckghhMFlsou1bJZ69Ihg2gv95hCAeupkiWu4O6hZMIN\n7lE1lfQnq1G4EMqXgfRQ04YfmFWxtxg1sMop8OrYZq8VxLUgUWCpbBJ1506EutbSQO4xhfye\ndSQ8wR0MtXXEBbn9kL6nJjm64JecbLNpDPeMWMHfAyliLHZf5dWe9gc+oiiw1HXCVv4wdyDU\nlVoi4Rr3qEJenyaEW+g8imyzaQn3uJpGxt7aZO8QivfFUXC8VNRJ7kkxv+fKUY3N3FNpOJvD\n6mcEPKQosFT1c4nwddx5UFs3HEBqMH9UpuncqVDfHlsr7oE1iXSxvAq77XHuCTOU0bSYe1rM\n7vIUm30QTpgoqA0dDnhQUWCp6XorGsudBtUtobu5xxU8XWxinTvkeKrmOMc9tGbgKq/aW+Me\n3+o5EFsSFxsNyvt1qOwa7mk0pI22hgFfBQQFlpqm0y3W+wH7aFRF7nEFDzdup3bWS5moHx3l\nHlvjy0B5Ja8PbeKeGzNLXxlBXQ9xT6JBtQp8zYQCS0X7qMx+7ixooBV9wD2ykCNzJDWw5n78\nlTSee3CNLn0PyisFKY7qQZzsFep+uJUSFnJPoWFtCHwXFgos9bxnqXuX5JqJwxsMZC5VsWIV\nLzoWXZl7cI0tq7zCsVfyOtAh7gkyrZQi1AwX/FDWOuCjsFBgqeaPCra53EHQxFOORtxjC26r\nKWkndyC00py+4B5eA0vfXQt7rwqx0daUe4pM6nQfirqbe/oMbaPtpgBPJESBpZZLzSx275Jc\nDel77tGFLBttxa17E9ZJ9DD3+BrW9ZQaZL8N5VUhmtFL3LNkSqlJVNu6KxV1tKV9gQ0uCiyV\nZPSmNpY89Fg0Hjd8NohttiKW/BU6yw7qyD3ABnXt8Srk6ICtYKEeRHwCcPYucgw7zj13RrfF\nXjOw+0ygwFLJFKp7hDsFWkmx3co9vCDZGha3njsMWqoYeYF7iI3owtpy5OiCy4p6U5fe5p4q\n03m2AlW29DpFJR1pe0DjiwJLHSuo/D7uDGinph2XSTaAx2zxj3BHQVN96Bj3GBvPyYXFKUJI\n4Z4bE1hMvbgny2TO3EX2AdY8J1ll2x2VrgYywiiwVLGZSlj5DpnDaSv3CIPzAUqw+HfNlTSK\ne5CN5vNx0RQ7AGd4+SK1qu1T7vkylYNJVHkt96yZxB30SCBDjAJLDXvD4jdyB0BLW6gr9xCH\nvIwZVGITdxA0djy+dOB3/bKgjH91tVHJ0Qe558Us5tJg7ikzkR/uIMdg7L7y0e6okoHcaAIF\nlgoOO6If5p5/bVWM+Id7kEPclQFUzso7SbO0pze5B9o4Tj9UnajGbGwCfZZawf4V96yZxdUV\nMVTX6t/Y1DSIFgYwzCiwgnc0PGoV9+xrbBDt4h7l0HayJdXay50C7c2hudwjbRAZL94ZSeHt\ncXM4v9xDI7gnziTSqlORqVY97V0TBxNif/d/nFFgBe1geOQK7snX2gbqwT3MIe39StTSsiep\nejgYUZt7qA3hm8WVicqMwKFXfjpRzvEN99yZwQcdKaybhc/K0sR4GuP/SKPAClaKPcry9VVa\nWrmoQH6ABnXsjLYNDI1vm01xMXfnqY0tbRTRbkVozLi6ZmIXlnffDgmjBo9yT5XpHCtn/9jv\nsUaBFaSHbLGruWdeBwNoD/dIh6zLYyl6HncAdDKFHuAebl5/P9HZQbabplj0fpNaO1HO8TX3\nFBrcd6PDqdIi7okyo/nU2e/RRoEVlPQpVMzip85neRS/EXL5tD5VDJmDUffYk7nHm9FfT3QL\nJ6o6Ygf3NJjXLBrKPYuG9uEQB5WZiZ2jAalPT/s73iiwgnG2O5UPkQssl4s8yz3aISlzfTR1\nOsw9+/ppELL3vfxtY0cHUaUhuN9gME5UsONaWErST3QkKj8DN8YJ0PqwWtf9HHIUWEH4pCY1\nCJUjBQfRk9zDHYq+b09xc7jnXk8TaTX3mHP49qGWYURVh4XMrkrNzKPe3JNpUD8uqUhU5z7s\nvQpcZ1rj56CjwArcEzHUI2QuUrMJ1xrVX/q6WEp+knvqdbU7LPR+I/xgcQMiW+1RIbIzXFup\n1W24I2FBf21rF0aRHa19qy3N7Ykt4uelGlBgBepkH4qezT3hOqriwP0IdfZBM4oNuWvVNKKQ\nOko5/T8zqhA5Gk3cyT3wVrGMbuOeVKP5Zt1tDqJak3DmRLDG+XuvABRYgcnclUi1t3JPt55G\n0AbuQQ8tZ6c5qGXobXan0DLukdfNlbTRJYmiWs7Elk9FDegZ7ok1kN/3j69ORNWGhdTWSivH\nq9he8Wv4UWAF5NP2FDHiBPds62qHrTn3qIeSjJQkKhWKJ1M/FR4i1xo9s6tfLFGRjgtC4Qqy\nelprq5/OPbmGcPH1dUOricVVVJMJ1r/Llk5W22pf82cOUGAF4NQkB938OPdU660B4T5funm9\nKUUMCs0tbwt6h3v0tffj+g4OolI9Hwitb2n6aEtPcM8vs2ufHVrSv6ZdLK6iGw1ZGTIHCuuh\nKy31ZyZQYPnt4ooilBQqF370MI0WcA99qPhugI1aPsE94Uzm0TTu8dfYewsbiZu+qoNxMW1t\nbI8oc4F7jrn8+vLjs4SaYvFOFFW7+9QNKOBV9lTRSH9uNoECy0/XN5WhuFFHuaeZwcGoihnc\nox8S/poRQdUe4J5uNkfiSvq1E95crj0/qSKRo+E4XExUO/1oPvc86+7y+08tHnhznFRZUUz1\n9iMWbA2102N0ci+18mM7iALLLxn7qlNEn6e455jHbfQ89/iHgIv3J1DijFBeOd5OR7gnQSNn\nnxpYRNz8tb4nRNcgejlYLPoH7rnWT+Y3hxb2rh4mVVaO8s373P1A6J0Zo6vmtM73yUGB5Y8X\nG5O9Swr3BHNZQYO4J8Dyrq5Pori7QvPgK7e1dDv3NGjh542dIogSuy8Nxd3fOptGvbinWx8/\nH5jVLkEqrWJrdRq1aCuu0a6DnXExvh+NjALLd591I1urEL6RRWqZyNPcc2Bt17dVpMh+Ib97\no6r9J+6ZUNvHy5vYiCoPeiSUd03qJ7WW9S/VkPHRowPKiaWVrUzrYYtwlqCOZlHzG77OEgos\nX/092UF113DPLasR9DD3LFjZ9e1VyHHHLu5Z5jfZWqdTpP/fPdWIwuqPCdXTFhisC6t2mXve\ntfTdlv6JYnEV33TYclxDTXctfT+TEAWWbzIeT6TSc7knltkuR61M7omwrOtPVCVHVxz6LDoY\nnWSZw9wvp0rXEo1sMT1UblpqEHdY9zj3q89OqSEWV8XaTN6E/aEs9hZ3/NfHyUKB5ZMPW1DU\n0NA+MkbShl7gngmLuvJYJXJ0xo7+LALt5p4QVZxO6S1dS7TD/MPcIxpy9pcI/5h7+rXw966+\ncWLB3mTMRu4RDmXLbZXP+DZfKLB8cGm2g27BvoW0tFWhcuyozs6tSqLw7kiY2xZbE+4pCd4X\nD7a2EyX1XIlLEXG4j5pa7nruJ7d0CicqdccSfNdn1pd6+/ZjDgos716pRiUXcs+oMVSxf8s9\nG9bz+5wEiuqFc6s9NKVXuGclKNdenF6dyFZj2AbukQxdrWkldwxU9dfWDmLBXgWXpzWCY3Vo\njU+zhgLLm/MTbDbhIPeEGsR0mso9H1bzyahIih+MI3TyWEndueclcL890SeeKLLZZNTMnPYk\nRH7CHQXVXNp7RzhRtRG4Y7NBPFnU8ZIvE4cCy4sXKlH51dyzaRhHi8X9xT0jVpL5bBcbJY07\nxD2vhlPT9j733ATk+qtzG9mISnZfjF9xuM2hRle586CK9OeGxRFVHIbqykBWOhK/82HuUGAV\n6tx4W1gfrCpzjaAl3HNiHRc31yGqNQfH6BS0gPpwz47/fny8TxEiR/27NnAPH0ja00zuSKjg\no1lliBL7beAeTchrPNU76332UGAV5rmKVCG0L32V3/7YEiF7H1WVfT2jKNlbP8Q9o8aUWtVk\nu7CuPDdTrJapZJd5B7jHDrIdKGN7mjsXQfrj4QZEMZ1W4HoMxtONOl33OoEosJSdGYndVwUM\nsNiho0zSj3UJoyL9Q/a2S14tpG7cc+S7L9d1iyGKuHn0Ju5hA09rHcV/4M5GEC4/1c1OYcmz\nsQ0ypOONaajXUwlRYCk6kESVHuaeRMPZF5N4jntmTO+XpeWJak7HirMQdegj7mnyyYUTE6sQ\nUTlhMS52ZTjjqbFZL+ie8eqoBKIqo3FnB8M6WM37OV8osBR8250cdx7jnkIDutO6l0jWx/Xj\nd9gpqtNa7ok0uIds/+GeKe8+Wn1bBFFU84m4C44xtac7TXnziY/nViQq3guXZDC0PeXoXi8T\niQJL1oX5UVQP+/vlHCwa8zP39JjYp/eUFr+XTsANxLxqZ/AC6/T+UWWJqHKfFfgeZlhHapjw\nrJxvV9wkVu3tl+DsF6NLKeOtwkKBJePG1jJUbAaOK5Q3mQZxT5BZnXq0CVFsN+y88sWxK9zT\npezqy/OahBHFtZ76JPcwQaF2Jtp2cKfFL9+uSiZyNLkHl24xgx1l6O6MwqYTBVYBN3bVpIi+\nOBdIyYmqtue558iMLuy5PZxsjWbhyCsfcU+YgvS3V3WOIQqrfedD2MVgfBtiHce4I+OrzPcW\nNRCT1WAyrjtsFikVaGBhV1tDgZXPhceqkr0TbgtXiDVhVS9yT5PZXNjfN5qo0gicNug77jmT\nceOt1bcXkQ5p734ffuQ1iZWRkancufHF+ePjyxM5Gk3ewz1i4Ie9tajVSeVZRYGVx4dTEsjR\nGVfMLVwPmsA9UaZyakcPsbpK6r+Be+LMhXva8jn//OIOsWJxVarDDJTJZrIsIuIQd3i8uP76\nsrbhRLGtZ6FuN5vDLaniO4oziwIr19cPNCBKGIA7iHlzuLzNNHvduWX8b3mLMKKy/XDglb+4\np87Dt7snNbKLxVXZTtO3cw8L+Gt5lH0Ld4KUnXt+iVS426r2xdkSppQ6yBa5QelcVRRYWS7+\ne2ZtInvyHGTcB+siin7NPWNm8Pmm/iXEVWetYRu5Z8yMuGcvyz/PLbujpFhbOWr1nIdrEpnT\n6nialc4dJBnnXnt0RN0w6SfnLrN3cw8SBGxhHHX7VX6KUWA5nT8fntkinCgiGb9++2oK1fqb\ne9qM7fwrD/aUtsvF2s9CqgLDPYXOS/9dP6yWTZzE4reMfBDnJpjYljLUsZADZfR37n+75grS\nBWopok6veSiuTG5HAyq6WfZswtAusDK/PTz/9iQx5WFVe+JCzP4QqAXuSSgv4/unVw6qJX0v\nLdZ6PHZdBY5zEv9+ee3w+g5xDqPq9p6DU15Mb18ylTbEoe5/vLlv+cg20jaHKO4mYeqjx7mH\nBlSQOj6aXpOb75AtsP548dFxt8RLMS/WdPAyXJTBTydaU8t/uOfQYK5///IT9w1oFCOFKqpO\nMJddegAAIABJREFUj1k4VyI4PLN4+vVts7qUd+1bqNl96gZcicEaUkc46M7feSIluvrdq7uW\nj+taJ9pVWVFig25jl+FUCStJaf1fuYkPvQLr+tdPrxnTqrgUc1vZVkMX4UqBATnWmmrjOCzJ\n9V/eOLJ+9uDWFeyudaejYstBczZjuxw8fafx7KfPbJk3qGkx1yQmNOo1YwP2LVjK+qoUt1zn\n68tc/e61Paun9m6aZMsqrKIqNRVGz9+An5utSDYBIVRgnfvo+Nop3WqEu0qrUsl9pj+CHwWD\ncOJ2it9uyvt8qeKvz/9zYP38u7o3dK87qVjN1n0nLX8CpZVatJ/ECz998MJTjy2e3Ld1jZis\nSbSXSRYmrtjL3XXQwIlx8VRyqQ6HYqX//l7a1iVj72hUKnvVYC9Zp02fcQvW4/qhViabBcsX\nWJl/fvxMyrIJd9QvmpX12Opt7py9DqWVCqZFUZu3uedXBxlnzvz93Xcfv/vyvw8+sW7ZzJG9\n2tRLcmSvOim8VJ1WwsiZK7ce5Z4Oy9FgKtNPfvF62s51i6YMvf2W2qXDKUd8xcYd75y6fCtO\nIray/QNjKGKAwvleQbr007vP7Hp49vBuDZLC3OuGpHpteo+dt+ZJfOkKBbKxsGaBdeXXj17Y\nu+6+kbcnl3OvRCPKNew09J41+G6qom3JRJ2OXuOebT9dPfPLdx+8+8LzBw88/viaVQ/MmTN7\n3Lhxw/v379+ro6hFsqhWVVHZYqI4khNVsnqTDr1Hz1y+EXnSjkrzfear/57YvnLmiNtb1Cjq\nOYmxpas1at19wJiZSx5JQXUcIvaPLkcq3UT87M+fvfHMU5tX3ju2b/sG5aNzchWeWKt59yFT\nF2/A2cOhRTYl3gqsfx00jAMpKds2bHhk1aqVCxcuXDBDMnFclhFDRL17Ch3b3dKwVoUSkTlh\nD4tLqtawVZd+I6fMAQ0MLE8U83IAaydtcpXiisiG1atWrRAzMmPG9HHjRknB6Nax/S3N6tep\nWr50fKxsxZSHLUpSVFIySVS5cuVates1Sm7R5rYuPfsPHXP3PdzDHhpOBZir/Ts2PLho1oSh\nvTo0q1OhqD13XqOLl6tev2mbzj0Gjhg/jbt3wGTIJwHkaseqpQtn3D1uSP+eHW9tWr9auRIx\neVYZjviSlWo3btWp5+AxCFaokl1feSuwkrxvjyDErQ9ghVXK+5+FEPdqALmK8f5nIcQFkqtw\n738WQpxsrrwVWEW4Wx1WrFixBOY2hIttiGduQ5TYBu6tR6zYhsiCi18KYIXFnCu7AVIlijTA\npIrixGZEcDeCqKjYDJvHc5MVWPFi8xm3w1KWfNg9qxWb9IM638e71k0+ZjiQXDGMrMLaVkcO\n/u1eEbEJdu8v05DvG96ACqyqGjffq8jk5OQGzG1IENtQk7kNSWIbKjC3obLYhpIFFweywmLO\nVbTYk5t4myApJTajEncjiKqJzSjO3Qiim8VmODyemyxXtcTmM35vSBQ/vgrfx4dJxy7yfTxV\nFT++hG8vNUmuqog9StT/Yz3Eiy2ozdoCqic2gfcraGmxBRV9emVABdawjsxuE/vXhLkNbcU2\ntGBuQ2uxDS2Z23CL2IY2BRd/FMAKizlXUqqa8jZBcqsBJrVj1oH9bbkb0bFjE7EZt3k8N1mu\nmEeRO0tSgcX48S3k101yTJIrP3qkkXZiC5qxtqBjU7EJ7VlbIP3/6hafXimbK8OfRfib2L9O\nzG14TWzDBOY2pIhteIi5DQvFNhxhboM6vhN7InA3wul8SmzGcu5GOJ0zxGY8x90Ip1P6DnGG\nuxGBGys2X/Zizvo4In78Qr6PvyoVWIyXxZstfvy/+D5eA/PEHp1gbcG7YguGs7bA2Udswpes\nLdgrtmBF4G9HgeUDFFhZUGCpDAWWJxRYwUCBhQJLZSiwnCiw9IACKwsKLJWhwPKEAisYKLBQ\nYKkMBZYTBZYeUGBlQYGlMhRYnlBgBQMFFgoslaHAcqLA0gMKrCwosFSGAssTCqxgoMBCgaUy\nFFhOFFh6QIGVBQWWylBgeUKBFQwUWCiwVIYCy4kCSw8osLKgwFIZCixPKLCCgQILBZbKUGA5\nUWDpAQVWFhRYKkOB5QkFVjBQYKHAUhkKLKf1C6yMc+fOXWBuww2xDZeY23BNbMMV5jZcFttw\njbkN6jBCqpzGmFTRJbEZ17kb4XSeF5vBuIkOljSKN/g+XsrSZb6PzxQ//hzfx7vWTQbIsIr4\n17bp/Nu9i2ITMlhbEOQ62vAFFgAAAIDZoMACAAAAUBkKLAAAAACVocACAAAAUBkKLAAAAACV\nocACAAAAUBkKLAAAAACVGbPA+nbT5IG9Bs/e/Wfuol+3Tr2z9/Clz6Xr2pCTAwThNcY2fPnY\n+H533v3Ip7lLdG5D5jsPj+vfe+jc/R5XgOSZiuAZJlVO/mAZIFoSU8frA8HDDPdSfZvPN4v/\nE/IYq/PHO00eHhlGyJOTecXAnyqJiskyYoF1bYN7fHsfcy871Ct70cQ/C3uryjIXCB7bQd3b\ncGNTj+xP3OS+AKPObTh9r3sq+qa6l/FMRdCMkyone7CMEC2JueP1utwGUdfmc86i/KZQx+6b\nOzwy+PPkZF8xsKdKomayDFhgZS4VuzE35chjw8V/s+/gcVx8uPDQ0ztGCcLI8/o15RlpRN3b\nQd3bkLlGEPqvTz20VIz8PpY2XBonCHc//fEXbzwmxutpliaoxUCpcnIHywjRkpg8Xs8KwtJ9\nbs9mLdO1+ayz+Ou+XFsFYb7OH2/28Mhgz5OTf8XAnSqJqskyYIEl5qzvu9KDK+sFYbDrZgF/\n9BV6vS09uLpcEB7VrSUn+wt35WwH9W/DC4Iw7bT04L2+Qu8zHG3YKQiLs3aJvtdD6H+eowlq\nMU6qnOzBMkK0JCaP1xFBeCnfIn2bb4xZFG0Qev2o98ebPDwy2PPkNFCknDypkqiaLAMWWBMF\n4ZmsR+livejaKG7JKaevDBV66nVD2Mz5wtBDOdtB3dtwbYQw8O+sh08t2vYzRxvGCsJX2Q/n\nCMKrHE1Qi2FS5WQPliGiJTF5vHYJwlv5FunafIPMotP5cQ9hj1Pvjzd5eGRw58lpoEg5mVIl\nUTVZxiuwzvYQ+rhvrviYIEj3E08fIvR235p3jyAc1akl/xK/UTzt3g7q34Y3BGFv3iW6t6Gn\nILinYqMg7OdogkqMkyone7AMES2JyeO1SRA+ybtE3+YbZBad1yYIY6/p/vEmD48M7jw5jRMp\nJ1eqJKomy3gFljP99M/uh9sF4bD4zxeCMNe96DNBuE+fdvzZX1jszNkO6t+GhwTh17xLdG/D\nAEFw301djNoxjiaoxSipcvIHyxDRkpg8XuIofp93ib7NN8gsSnte3tP/400eHhnceXIaJ1JO\nrlRJVE2WAQssDw8Iwn/Ff8SN0Q73oms9hIG6fHbmfcLA07nbQf3bMFoYLv7vhe8+/8O9RPc2\nLBWEj7Ifzs3ab8oyFSrjTJXTAMEyRLQkJo/XEkE4mXeJvs03yCz+3EtYwfDxJg+PDO48OQ0T\nKSdbqiSqJsvQBdb5vsIAqZbcnnMwv2iYIOhygsjTrpPNcraDurfhSg+xUv50gXTS7Mj9V3na\n8LkgzMgq5v/XQ1jA0gT1sabKyR8sY0RLYvJ4zRbb98qy4b0GTd2RvT3StflGmcWlQq/fnPp/\nvMnDI4M5T07jRMrJliqJqskydIG1JvvQsocF4fWchVME4WfFd6jnz/7CQqfHdlD3NvwgCKue\n6Zl98Y1p/7C0wXlUEEYdfv/T1x/pKUz+i6cJquNMldMAwTJItCTmjtdEQZiUPYi99rsuGqRr\n8w0yix8LwuPZD/X9eHOHRwZznpyGiZSTMVUSNZNl5AJrvyDcc0N6sEIQ/pezdJYgfK39Z2fe\nJwyQ9tfmbAd1b8NngjCl18gXfr9++umhgjAvk6MNTuc792X9v23krouu5wxNUBlnqpxGCJZR\noiUxdbykK6oNevjQiS0jxQe7pSW6Nt8gszhH6OM+q0rnjzd1eGQw58lpmEg5OVMlUTFZBi6w\ndgvChHOuR8sE4f2cxXMF4QvtPzwt+6z+nO2g7m14V5zgsWddD38fJAhvcLTBeSlleFbUesxi\nGga1sabKaYRgGSRaEnPHq68gbHb9lHBjq9iFb5w6N98Ysyhukx9zP9b3480dHhnMeXIaJVJO\nzlRJ1EyWYQusq6sEYdLprMd5CsiZetSwf/QX7nPtpJXf0aBHG94Rci+LckwQlnO04a/xgvDI\n55dvnH5pkiBscnI0QV28qXIaIljGiJbE5PG6dNF9spFzuSCsdurcfGPMotjzX9yPdf14k4dH\nBnOenEaJlJMxVRJVk2XUAuvUNEGY4770xFrPn0DvLnAmqfoy5wr9s245lLMd1L0NnwpCL/eN\nJU8Lwp0cbbgv5+C+q/dkDYTuTVAVb6qcxgiWMaIlsU68vhaEgZk6N98Qs3imp3BPzhNdP946\n4ZHBkSenQSLl5EyVRNVkGbTA+myoIKy77n6WIghpOf9psCBc1PrjU3Mu+52zHdS9DT8KwrCc\nJ/0E4br+bfhKEKa6H38sCLOcDMOgJuZUOY0RLENES2KheGX2EYRzOjffELN4KCfQTn0/3kLh\nkcGRJ6dBIuVkTJVE3WQZs8B6s7fQ41ju02cF4Qn340uCMETrjz/dTxj3epZHBWHb669/r38b\nnNd7Cv1zngx2XVxW7zYcEYQU9+PLgtAjnWEYVMScKqdBgmWIaEmsFK87BeG0zs03xCxOE4S/\nc57o+fFWCo8Mhjw5DRIpJ2OqJOomy5AF1pu9hH6ed2X6VsjdY/ieICzV+vM/E/LZqn8bnM5J\nudedE4Pfx6l/G3Zm3SjAJaOn6/If+g+DarhT5TRKsIwQLYmF4nWthyBc07v5BpjFvwRhUu4z\nPT/eQuGRwZInpyEi5eRMlUTdZBmxwPqyr9D/c88FmaNyb7C4yXWZRm3JbQf1boNrv+SJ7Ief\nZO2p1LsNYi2/wf34pCD0zOQYBrWwp8pplGAZIVoSk8frrccWv+x+LK51Jzv1br4BZvEFQdiS\n+0zPjzd5eGSw58lpiEg5OVMlUTdZBiywLo0Wen+Ud9EuQdie9eivfkK/SwXfo5mcQ2X0b8N3\ngnDX5ayHKwThKYY2fCwII25kP345u4jnm4rgGCpVTtZgGSFaEpPH63lBmHgt62HmXEHYJT3Q\ntfkGmMVNngfL6PrxJg+PDPY8OQ0RKSdnqiTqJsuABdamgrerPjtI6PEf6cH52dnTrpfc7aD+\nbVglCItcc3lYEPr/w9CG9PGCsMl1UQHnybuyC3e+qQiOoVLl5A2WAaIlMXm8rg4VhAdcp6Re\ne1QQBrguH6Rv8/ln8V5B+MTjqY4fb/LwyODPk9MIkXJypkqibrKMV2Cd7CX02LUvR6pr4cs9\nBGH+gdTNYgZn3vDyB1SVux3Uvw1nRou1dMqzB2cJgvAiSxs+7iUIM9I+/vJ/KYPEz03naIJK\njJUqJ2+wjBAticnj9XZPQbhz0/ETm4cLQo83spbp2nz+WRya7/7EOn68ycMjgz1PTiNEysma\nKomqyTJegfV63qNUxmYtfb5v9vP5+p5867Ed1L8Nv0/P/sB+zzO14cMROROx5jJPE9RhrFQ5\nmYNlhGhJTB6vNwe7Wz/0HfcyXZvPPou989/4VsePN3l4ZLDnyWmASDl5UyVRM1lmKbCcp1Km\nDeozctWbOrfGczuofxvSX1oysved03flnrOqdxuuPf/A6P69Bk9//Du2JqjCWKlycgfLCNGS\nmDxeF08sGt6n78il/7qau0zX5jPP4jXx/0r5vs/r+PEmD48M9jw52SPl5E6VqwXqJct4BRYA\nAACAyaHAAgAAAFAZCiwAAAAAlaHAAgAAAFAZCiwAAAAAlaHAAgAAAFAZCiwAAAAAlaHAAgAA\nAFAZCiwAAAAAlaHAAgAAAFAZCiwAAAAAlaHAAgAAAFAZCiwAAAAAlaHAAgAAAFAZCiwAAAAA\nlaHAAgAAAFAZCiyXNCJKkR68KT54qJAXfiD+95WF/Hdv7xf9PKlGTHiphX63MfBPBPPxFjQw\nk5z1S+B+Ef/ErGDbkZMqxCvUGCWCXqnQUANBgeWiY4H1YTGSDPG/kYF+IpgQtoBWYpStGwqs\nkGWUCHqFAsuCdCywWkjllT0cBRYUBltAKzHK1g0FVsgySgS9QoFlQTmT+sPkyZNfLOSF3lZM\n3t7v/FP8A3GH0p2XAmilhy5Uy9dPBEPInTGfYAtoJQFvNHJTgwILgmGUCHqFAsuCfJ7UoFdM\n/xP/wJRg/oBLZjH/NtfAzd8ZwxbQSgLdaHikBgUWBMMoEfQKBZYF6VdgSZ+0LZg/4PIVocAy\nF39nDFtAKwl0o+GRGhRYEAyjRNArFFgWpF+BdUz8A08F8wdcdqHAMhl/ZwxbQCsJdKOxCwUW\nqMMoEfQKBZYFma3AmowCy2T8nTFsAa0k0I3GZBRYoA6jRNArFFjBeEccvZedzs9GVoqIrjH2\nU2lRxqHOiY5izZafdb3gdvEF73m84Vnx+bSsh+lHx91UKrxY9Z4bTnr+yWv7BtxUPCKpw+q/\nPRb+uvqOykXsRar123rRvegN8S/9x/n31MoRJb90Lcg80q9KdLF6I15WOotQ5o/4fBZhdkf/\nfqBpgqN441nfu/7rZsoxxPd25u9hSs4fKZ2/xTJDJNsQ0NS3y7tUjLPHVxMePeV6nnfGCk6w\nzLTlCVpqGFHl37OfvDKtcanwEnX67T6vW38gEHLrFxf5GSywKsibGmnrNlv8Z16LchGJN9/7\no/fPL2z1lSdevq5B8x7eIDXv39mP8we+0I6CbrgjmC9ZPcU/8I7Hf94jPl9UeEPNTu8C6zNx\n9NKcS21Zs+bY43T+3jB7Cst/Jb3giPhoqscbRuUUXM/Xzpnt2EXpOS94oXLO0g3uZdfvDc95\nbeLx7IXSOuXpc3WkZR9Iz/9o735J57NyBZbiH/GpwMrq6MGY7D8QvkNamL/A8qmdBXqoXGDJ\nDZFsQ0BDVyaG5U7Dg5nO/DNWYILlps0zaO/GivH4Kuvx5y1yXpu0X++egR9k1y9OpRmUWRUU\n3LrNc+6Mzl4UtdPLxxe++vKMl89rUKUCq2DgC+ko6Ic5ggWSdUB8NNfjv/cQn39VWEPNT+8C\n6xtx9A4+TGQrFikNZ8SXZ6qJdVZxu/SkobRtuZ4ozu71nNffKE5Uz/Voh+s1FRrXipD+7eN+\nyS7XYnuUa3amZy3LFFzPilQsKv1jO5S19Evx8YF7XP9F2q6ddxV2xRrWEUuPlsepQIEl/0d8\nLrBcHX1KXPFEFHdIfyDs/8SFaR06NBAf39ShQ4eVvrazYA+f69BB3OLGiH+kf54Wyw+RbENA\nO5mdpWF2VKiW4JqxGc78M5Z/gmWnzSNoPyaJK6i3sx4/Hy+9pnzjGq73rGLoHvhGfv2iNINy\nq4K8qZG2bsv2iN9MI4q5ypmw/xT68V5WXx7x8n0NqlBgyQReuaOgH+YIFkzW5TiiGh7tE2uA\nJoU11AL0LrB+FEdvaXTRjeecGa/XFx+PH0eNn093XtojzXmq9Ipp4oPjOa//t/jsQenBW+Jk\n/T979x3YRN3/AfxzaZuWbkoZZU8BGSIICCLKUBA4ypa995IhArJkCSJDZAoiG9mjde+9J4r6\nuH8ORNnKHs3vLqtJm0sz7u5zSd6vP57nci3td7z95tPLDdPE36Wt8xuLSztn2b7+oVR0xz70\n43XLX0sT5fct685V0laxtfJRyR+GSZspp6x7f5I2VydR9cmPTv0/6eV4+U3tGammu7S7LN1F\n+Qoszz/E5wJL7uiCFGHwFxbL5VfkqqqZ7Rtcz8HyqZ0ee1gj94Px3BZ7HiKlhoBG5Dee+i/L\nZdLRx+W16j3rXpcZyzPBnqctN2hnpH8abf8s5ifpB5rG/iJtnV0l/+y9+nUL/ON5fVGaQc9L\ngWtq5He38fFC/89yLJdfqCm9uM3rry9g+cqNlx8rqEKB5TnwiCo75gh6SFYv6f8PO79hq/Tq\nMS8NDQd6F1i/SaMXn/iFbVsqbROFxhesL+TBHiJvfCltdHR+/wApC39K/59Tw2XYv02Wiuhf\nrJt1pTef1217X5Wq6rLWD1gqSv/oM/v3jnLWH/8nbTWnifYj2Eel6jn5e9v276Uof4Hl+Yf4\nXGDJHU0Qttn2/lNY+pPAdnaCa4HlSzs999BTgaUwREoNAY20IMr4z779QxGiHtYtlxlzn2CF\naXMG7Upzacq22L8uLT6OqbR8I31vuYta9gQCp7C+KM2g56Ug77tbIWGr7cVxKVfCX95+fwHL\nV+465scKqlBgeQ48osqNO4IekvVM7qERiUgUdcxLQ8OB3gWWPEe2Q1IW20ewpm9t21ekIreB\ndUual5gT9u+4IhUEd8sbr0rf2sb5Ux6Rj4PJG6+Ty2075dO1nrXYjhDc6foLW+X+6jscdcsK\n6cU0xzc9nb/AUvghPhdY1t82zLF7pPTiJeuWS4HlUzs99tBjgaUwREoNAY2UIOrtfLG4Xpf5\n1o0861TuBCtMmzNo/aSNRfavfipt93d+70rp1RYLGJLC+qIwgwpLQb7UDHd8zzjpxQtefn1B\ny5dzw58VVKHA8hh4RJUdcwQ9JetKGlFNx76zsfZfotDQsMBRYJntBx8tM8jlA6v6RCWtG/Jw\nO062fE7athbbAxylhdU/UUQ3yhvDpd1HHHtfKF2n5Q5549KvH3zl/N4yRDc4fzW96NjdSnrx\nrePFtSL5j2B5/iF+FViC85K9jc6lyfUIli/t9NxDTwWWwhApNQQ0Iv1NkJl/b951yjnBCtPm\nCNpDlHtWi2Ws9OIb5/deiCfqoHbrQR0K64vSDHpeCvKmxuS8cEu+/uoJb7+/gOXLueHPCqpQ\nYHkMPKLKjjmCHpM1lOyntVusd9iy1XYKDQ0LHAXWrY4X8qe+cxwvRKIk68Ypx6lvkv7STutT\n+6oRxeae+m65RZpp+UrSKrbLG7ypS1TU+asTrzp2S392Fcv9pnvzF1ief4hfBZazVre8LL1a\nat1SvA+WQjs999BTgaUwREoNAY3cLP0J8VG+vXnWqdwJVpg2e9DkRaiH87qsOkQVXX6mtDCl\nqd16UIfC+uLTDDqXgrypudn5LfJxzyU+Nyb/8uXc8GcFVSiwPAYeUWXHHEGPyZIPaz1s35be\n8eP/89LQsMBRYA10vNggvdjteNFVeqOxbXVzlr7yJ4TWo5nnTEQ3ufyYvtK3vC8V3dLuJgX8\nxoZERZy/+nbH3tPSi8a53zSngALL+UP8KrB6OXe/6/xnigWW53Yq9NBDgaUwRIoNAY0sloa4\n0NSf8uzNs045J1hp2mxBe91M1NJZfl2Qvvcul++dKH2P17MggIvC+uLbDDqXgryp6ev8Fv/+\nO86/fDk2/FpBFQosT4FHVNkxR9Bzsq6XJKpn25Q/IezhpaHhgaPAmuB4If8n6jwh6F5ngSVf\nOfiAdetZaet1eUO+14DrIWb5w8UDtt3dPP2aS7sHNyzuuF+HS+HSx/EN30ovuuZ+/0ZPBZan\nH+JXgTXGbbenAqvAdir00EOBpTBEig0BjVy5zTqZ1UbuPeWyN8865TbBnqbNGrRvUonq5N4K\nUP6H8eVyFbYXY2A4CuuLlxn0tBTkTc19zh/ow3/HXpcvx4ZfK6hCgeUp8IgqO+YIKiRLvmDw\nF+vWZrKfG6H0XhwWOAqsyY4XGx31kyy3wLpemqik9WKWfkTlrJ+PyCfm9Xb5MQul15stls/I\n9Xy9XNtLkqvcwmW04zvk+5v3y/0Huz0UWB5/iF8F1kS33R4KrILbqdBDDwWWwhApNgS0cq63\nfT6jblvhfMvJs045J1hp2uSgjSsv/U+5M86vHab8XrSAASmsL8oz6HEpyJsaf/479r58OTb8\nWkGVbjTqIfCIKjvmCCok6yNyfLDYjqjoVS8NDQ9GLLAsD5Lt+oQrqY6rC94m+00c7B6TXq+x\nPXTEdbfdXGtAyt/Wvpck3bVwccbjLfd/6eFGo55/iKoFlg/tVOihhwJLYYhQYDH4sE+yfZVK\nmWO/M7vSOqU0bXLQbPfH7uH82vse1sZ92vcG/KewvijOoOelIIgCq4Dly7Hh1wqq/KicfIFH\nVNkxR1AhWZbK9s8Dz5gdf2YqvReHBUMWWPLRxZ4W2yeEtksO5HK4l8uPeVh6vdVi+YJcPxR2\neEV+EM+o/7O/auixcPmQ3Krm7ZS3wFL4IWoWWL6003MPPRVYCkOEAovFlVcm1LQtXm1td5lR\nWqeUpu1z6z8uUpVsB7SsviaXzxbByBTWF6UZVFgKAi+wClq+HBt+raDKBVa+wCOq7JgjqPDO\nZZlOJMh3tpQ/IXzfW0PDgyELLMvtRAkXLJY+zisOfyb3S4GnkfW+779I/9c+3++QbwW7zPnq\nFo+Fi/yEPpfPfVfnK7AUfoiaBZYv7fTcQ08FlsIQocBi89f6JvIbzlzrC6V1SmnarAXWDT98\nHUeU5Dh/+DfyeAcIMB6F9UVpBhWWgsALrIKWL8eGXyuoe4G11q3AkrkEHlFlxxxBhXcua7NW\nSv/flqiS14aGB2MWWE9JX9hjuZhEtNq240IUUW2XH9ODrI+AvhJDVCfvr5Cvy6rgvLLdUtJj\n4XKM3K5cGJ+3wFL6ISoWWD6102MPPRZYCkOEAovTPqk+SrDeZ0RpnVKaNjlot560WB6X/r+h\n/Z4OV2IdD+YEg1NYXxRmUGkpCPjdrcDly7Hh1woqF1i5dz56OF+BZckNPKLKjjmCCu9cFktt\noua2Twhnem1oeDBmgfVfAlFn+Ww380n7nlrS9uXcH1PT/lKaffMF597vvv32d9uzdAc49/2P\nPBYullS3e280z1tgKf0QFQss39rpqYee74OlMEQosDjNlsbb+khUxXVKYdqcQbuHcm9zXJ8o\n5qwezYZgKawvnmdQaSkI+N2twOXLueHPCvoi2Z8dZ3WvpwLLGXhElR1vBBXeuSyWBUQoF9qw\nAAAgAElEQVTRpy2bKPeOowoNDQvGLLDkG4zGn+9I1MmxY7j9kxObX6VXjeQN+ZlJhxx75YOf\nw20f6eZeTDpOoXCRLy123j32bEzeAkvph6hYYPnWTk899FxgKQwRCiy9/d//5W6/5JgUxXVK\nYdqcQTtWNPex9RPI7Ykj3+EdzLAU1hfPM6i0FAT87lbg8uXc8GcFle98dL9j98UizgLLU+AR\nVXa8EVR457J9drjLkklUv4CGhgWDFljyhQVPxhIddOz4gFxvjzZZerXW8X1NHXsfJeuTweXq\n2/kh82dm6VW881fnxmOOa0PmUd4CS+mHqFhg+dZOTz20Hucok/c3KgwRCix9TUjPvYuoxbJD\nGu8P5A2XGXOfEYVpyw2a/MFMmdPWTfkS6+rXHN97sXRMc1yZZVAK64vnGVRaCpRTU8B/xwUu\nX84Nf1dQ5/fKl7taCyzPgUdU2fFGUOGdS9KIqN+FQkTLC2hoWDBogSVfzJlGlJ77DBFpVpwn\nWL4vzX8R6/0Xc+Td82x7j6QQlbhssVxLIkq235v265IJjaXvOOH41bnx+EYgSvjatv1BQr4C\nS+mHqFhg+dZOTz20noMY81+e36gwRCiw9CUvJSsdL65Ks5psvYzQZcbcZ0Rh2lyCNoKcJ4G2\nlDaH2s+UuNKVXB6EAMaisL54nkGlpUA5NQX8d1zg8uXc8GcFtaQTmT617X87PsFeYCkEHlHl\nxhtBhXcui/W00pLPEUUdK6ih4cCoBZa1jnW5A7nlSJz0H/cD8pyceSwptxz+WD6g2P2DCzm/\nPCLficV66FN+2sht8pVXf84uRCunOnKQ531NfiBP+lPSm9kvcxNoQN4CS+mHqHkVoW/t9NRD\nSyf5v5F/rv1yyrXA8jxEKLD09W9xaYj7vif/aXDuOXmdsj2UwGXG8kyw52lzCdqF6tL2U9bN\nnxOlzeZvS6vjxd31pM07dewY+MXz+qIwgwpLgXJqCvrvuKDlKzdefqyg1o+zM/ack3oxPc60\nXHrxjEUx8IgqO94Ien7nkhyLIrqLqHWBDQ0HRi2wfrfeZPFjl3+5Rz5sKVSsV8n6lXmO3bts\nd2O0/a/tQ+Qf5ABFVWlSRdrZP+cZ+Qs1Gv4v7/vaH6Wt/yRVenujFvL9tDfIe53lisIPUbPA\n8q2dnnpovURa9rLbvec9DhEKLJ29FiuPflTJcknWKbrNdqKny4zlnWCP0+YaNPmIfeL31s2X\n5cxQQuVi8l1r6Ma/9esW+Mfz+qIwgwpLgXJqCvrvuKDlyyVevq+gll+tbTcVjpf+d6b8UZP1\nFA7PgUdU2fFG0PM7l6yldcfWghsaBoxaYMkP+abqbv/0rRrkUNblcPNrlR17kxwHql903FY4\naobFcrW2dfOrfO9r39Z2/MM2/8p3I5Lvn+1Srnj+Iareyd23dnrq4cWaztS7Pj3R0xChwNLb\nhzc6Z4Gix9nfblxmLN8Ee5o2t6Atkl7cYvu4/Ismzu8VBpzWp0MQCI/ri0VhBj0vBcqpKfC/\n4wKWL9d4+byCWiwvpTj2L7Dewc2WVo+BR1T58UbQY7JkG+Q98ed8aGjoM2yBtTP/9F3fN+jG\nItFp1fpuv+y6++KubtVSzSWaLzrp3PXXtHopUSl177deB/rnvUViSnb7J//72tVNYtm41Bv7\nv2axnCH7XdZcyhWPP0TdZxH61k5PPTw+vFRUXIUuP7oXWJ6GCAWW7nKeH9mweFxUcsX2S/50\n7sydsfwT7GHa3IKW09zlP5vXxtUtYY4v2fKhnzXuBgTH0/pi5WkGPS4Fyqkp+L9j78uXW7x8\nXUEl/8xsVCQ6vvq4X6RNcn7s4zHwCh0FHfFG0GOyJKflQ549fWtoqNO7wPLZU9IfQ0e5GwEA\nAAAQAMMWWPWJOnC3AQAAACAQRi2wXiei17gbAQAAABAIgxZYV+oQ1eNuBAAAAEBAjFlg5Qwk\nohe5WwEAAAAQEEMWWJ/dJdVXHblb4cXiVp4t4m4YAEQMrEPADBH0zngFVv/i1vvVVTxZ8Ley\n6Uee9eJuGABEDKxDwAwR9M54BVYv6/zU+o27Hd4gVQDADesQMEMEvTNegTXBTCkNl18p+BsB\nAAAAjMl4BRYAAABAiEOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgA\nAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAA\nAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAA\nKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAy\nFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOB\nBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBBQAAAKAyFFgAAAAAKkOBFSKuv/Oy3cc5\n3G2B8HXy45fze+cid7MgtFx53R6dV89zNwXCwJnXXNejV45yt8dnKLBCw2s1iNJuadKwfBRR\nuek/cTcHwtDX64Y2SiMbc3rF2g2bNGnSqFYZs/SyULtN/3I3D0LH/nJEGQ2a1ClMlDzuV+7W\nQGi7urettAgJxWo2btKkYVUpUyTUmfUNd6t8gwIrFFydKAh3LsmW7ZraNI6EZlvxhyGoKOf1\nIRnSwmUqUfeefhMWrNmdnStr/WSxJFHC4C+5Gwmh4eJAim6zxhqeFV1SKGbQL9wtgtB16fGy\nROW6zdvlWJB2zu9dO5qo/pMXuJvmAxRYIeDcPZTxaO473u6x1YiSeu//j7tdECauPiUnqsmw\nJfuyFazqlk5C24+4Gwoh4ORtVH6lMzn7R2eQefjv3I2CELW3PJlbLc+7Hj09ro5ARWef4m5d\ngVBgGd+5O6n2Tvd8re6UTmRuOm3/T9e5Wwch7/UbKer2OQeViiubQ1OqktD5B+62gtEdv4ka\n73VNzsH7ilHs6N+42wUh6Gg7im63xeOC9GTHeEqdd467hQVAgWV4l1tRg/354pW1qFN5gYhi\nq7UaNGv9s1+HwuFSMKJLowWh+ZPeqyubhyqTeQo+mwZvztaju7LyBOfAyHQy9/uCu2kQarKK\nUPXViuvRzt6JVHoHdxu9Q4FleP2pzgHPAds+s1eT8nH205LL3P3A7j+42woh589bqNQiX8or\nuaqfUITKv8jdYjCwK3dTs7z1lVxijc4gun0LqnPw3fVpQsxgD2HK9XTHaGr5I3c7vUGBZXSL\nqeIer+96T6+cNbZHi5opcpVVZcRzl7gbDKHkm9LU1Hu+3OzONAlDcfIfKBlOdT3/OXhoai2B\nkvu/cIW7hRAiLnSmYo8VtCCtrUPxjxv4xkUosAzu1ejUjb69922b0+vmWKKUAW8YOG9gLF8X\npV5e/0bMZ2kZuuFz7maDQa2lsrsUo7OmYxGitAHPXOZuJYSA07dT9W0+LEjjEqjVMe7GKkKB\nZWxHi0ct8OPdb//cdmlENzyGmxaBL37KEIb5ES+rfe2EuHXcDQdD+iA2cZ237GTNvyeVKHXA\nq7g2B7w7UZcaKV7U7GZjbcp4k7u5SlBgGdr1ZtTfz/e/Q7ObRFPqtBPcTQfjO1mVBvgZL9m0\nBBqCoxCQz4mywqwC16cFbQsTlZtr3IMOYACn6lCzQz6uR1l9TNGPcTdYAQosQ5tH9fz7AMdq\nS/ckSnrI6BewArerLUn0P12SdeXozpPcrQejyWlL3XyJz6G5zcwUOwTPowAl526lFn68881P\noUHGPLkPBZaRfRBT2JdPofPb0y+JSu3ibj4Y2xS62dc/EvPmqwFV+4W7+WAwi6mWr3naOagY\nxQzDUSzw6EprauLX0rShPLU8w91qT1BgGdi5KsJDAbz72VawTtHUBrdtAGXPCsV2BBqvQ22p\nVIg8DQx08mFMymbfE3RwXHFKXnyVu9FgRIPoJoVbEynZXY/q/MXdbA9QYBnY0AA/wbFZU5NS\ncRALlPxVLHpJEPHqQ0XxcELIdbqCn38OHhicQDd9wt1sMJ5FVF75WlQFB1tQ5V+4G54fCizj\nyqIyvl1GoSBrqJmG47ZY4Fk76hdMurKHCkW/4u4DGEcX6uxvhLY1o+hZOIgF7p41FX7K//Uo\nqxOVNd6TvFBgGdaxYtH5nnHpp1Vl6Naj3P0AQ3qKagZw/YSrEUIJ4y1owGQFVfXzUx3ZrDRq\n9Ct308FQfkiNeTSgBaknlTbcXd1RYBlVTtsgjzDI9jShsl9z9wQM6I/UuPXBpmsgVTDiaQ/A\n4KPYpA2BZGhHYyqcxd14MJALtWlUgAtSbyprtGodBZZRrQr6CIMsq7tQ+D3uroDxZNLQ4NPV\nherhZiAgOVlemBlgiIbHCDNw31FwGEQtAl6QelAlg31igwLLoL4qlBjA59AejDYlGvY2t8Bl\nH1VXo3xvRh3xXCawXL+HugScoqVFSTzL3QMwiO1Ubm/gK1InqnWauwduUGAZ0/kaNDnwmLmZ\nFJX4Dnd3wFj+LR29Uo1s7a9Os7j7Avym000B3lFNtq0m1fiZuwtgCD8mx60OYkHKakVNLnL3\nwRUKLGMaTK2CiJm7yaaUL7j7A4YyPogDDm62ppue5e4McNsjFNseTIoOtKZiOJEBLJart9LY\noBakQ7dSZyN94IwCy5C2BXWcNK9xQsYv3D0CA/kyupha8VoSnfYbd3eA12cJscFe7zzYVGgf\ndzeA32xqHGSS9lWjidy9cIECy4i+TgjqOGk+/ehGnOQADjlNaLpq2RpKt1/j7hBw+rO0EPzp\nDNNjTau4OwLcPolJC/jhEg7bM+gJ7n7kQoFlQGer0v1Br1hu7qE2RjpuCqy20i3qRSurIc3j\n7hAw+q8u9VIhR4uTaSZ3V4DXxRsDfzZcrrWJMa9y98QJBZbxXM8M6hE5nhyoTQ9ydwsM4mxG\nzDoVs7UtNeYz7i4Bm2vtqLkKF6RK74tFaTQuSY1oD6hz5vH86CKGueEoCizjmUU1Argnsnfb\niwnZ3P0CY5hI3VTN1gyqc4W7T8BlBNVSabXaWJoG4NPmCPZhVFG/H0Ho0Qiq+R93Z+xQYBnO\nfiF9qyoxc7M0Bicjg+ybmKJ71M3WHbSQu1PA5BEqs1OtHG2rSL1QYUWsSzWEOSolqTV1NcjB\nUBRYRnM40bxMpZi5GUp3YPECi6WlandYc9ieFI/bGEWmXaa0gJ6Q49nTlak3FqlINZPuUitI\nB6rRIu7u2KDAMpjjFYRJasXMTVZ9eoS7c8BvD9VWPVtjqT13t4DDe3Fxqv41uLMKDcDVOJHp\na3OaasdCszelRr/G3SErFFjGcuVO6qpaytxtTY79irt7wO1c2WhV7wBilVWNnufuGOjv/4qb\n1Lvfh9XTFWkMd6+Aw/XGNEXFIC2IKv4nd5dkKLCMZTTVV+WSHE+mUAMcf490k6mjBtFaJlS/\nyt0z0Nv5OjRQ7SRtK0OzufsFDFZTQ1WD1J9uN8KShALLUDZRafUOk+bTmJZydxB4fWsusluL\naLWkldxdA731oBbqJ2ljOj3J3THQ3dGUQhtVzVFWA5rK3SkLCixj+bxQ/BpVU+ZuS0Li/3F3\nEVg1V/0Md5vNccXwrIAIs4Kq7NMgSisTYl7i7hrorSsNVTlHO4qZXuDuFQosQzlTSZiqcsrc\njaIO3H0ETlupjkbRupdmcHcOdPWpOUnFCwhdzI9O/Za7c6Cv56jyIbVztDi62FHufqHAMpKu\n1EHtkLnLqkrPcXcS+JwsZn5Co2jtSk76h7t7oKNzNwgzNMrSWLrhNHf3QE8XKpqWqp+jAdSc\n/ZJUFFjG8SRVVf0O7nksE6pe5u4msBlAvTWL1kBDPcQetDaM2mmWpfbUlv2dEXQ0XfWHw8my\n6tFc7p6hwDKMHxPj12uQMnetaDF3P4HLq0I57Sr4fWnxx7g7CLp5QSijxQlYNgdr8b8zgn6+\ni1XxFlguthWOfo+5ayiwjOJ6ExqnRcjyRC4+9QR3T4HHuYrCoxpGazBN4O4h6OVs2SgNPtNx\n2poW9Tp3F0E3LUmbm2tnzxUqnOHtGgoso3hM5fuAKOhH93H3FHjcR+21TNa+tITj3F0EnYyi\nLlpmKXuBqSTCFCl2avBwCbuO1Iu3byiwDOLnhMTNWqXM1b6iZjw3LiK9bSqh8kOe8xhI07n7\nCPr4wJSh3QeEVr1wwXOk+LdktGY3JzpQibaxdg4FlkHcQ2O1Cpm7cdw1PbA4X0WYr22y9iSl\n/svdS9DDtZtpnrZZyj5UnTZwdxN0MUHLo6Fr45JZDyigwDKG3VRTs0fkuMsqazrM3VvQ32hN\nLtRxcy+uoIgMK+kOrbOUvS4uGXdFjgRfRRfV8sj6KLqN8wFxKLAM4b/SGjyCV8GDOPgegV4S\nSu7VOlnbzKWvcPcTtHc8rZAOpzOMpNbcHQXt5TSlaZrmqCHrFakosAxhKnXSNGSusioLn3H3\nF3R2urRJyysI7e5hPuEBdDGc+mufpeys2rSZu6eguS1UT9scbS8c8xFf91BgGcGPsWnann/s\nZiZlcncYdNaTuumQrLVCXe6Ogua+isrYr0OYsteZ03ElYbg7U9y8TuMcPSRUPc/WPxRYRtCJ\nxmscMjdVhM+5ewy6epoqaf2QAKsG9CZ3V0Frd9ODemQpO7svDeTuK2hsDHXXPEdtaQRb/1Bg\nGcBbVEWnM9xtZlBn7i6Dnn4vbNbnFL951Im7r6CxF6imLlnKzj5QRniXu7egqc+jimt8vw/J\n3tLCs1wdRIHFL6cBLdQ8ZK6yKpqOcHca9JNzFw3VKVnlonDpV3i7VkvQ8h7ubh6mungmYTjL\naUQzdcjRsugSXE+iR4HFbyfdqkPIXE2mPtydBv08TnX0OkI6mqZw9xY0tYHu1ClLkttpHXd/\nQUNP6vP4kuw+1JGphyiw2F2uFLVWl5TlyioV/Qt3t0Ev3xZK3KhXsvYmpl/g7i9o6Hwp8wa9\nwpSd/ZS52FnuHoNmTqbH6hOmQ9XpKZ4uosBit4Lu0SVkrsbSGO5ug06uNqCJ+iWrI23i7jBo\naB511C9M2dndaTJ3j0EzQ6m3Tjlax3VDdxRY3P4tFqfLQwjdHCgSjyugI8QCuk3HZK0TGnB3\nGLTzd1LS0zqmKXtPWhxO6gtXH5hK6XK/D9loaspyOh8KLG4z6V69QuZiAM3m7jjo4khsyjY9\nk1WXPuHuMmhmJA3WM0zZ2WOoL3efQRvXbqa5+gWpPi3i6CQKLGZ/Jabs0i9lTjvji+FcmUhw\nrSFN1jVZ02gwd59BK99El9DtmIPNoTJRX3H3GjTxGDXVMUhbUmK/ZOgkCixmI/S6gj6Pjrg+\nJyIspcb6ButgesIZ7k6DRtrpXK1LpuK5E+Hpz+QEXc+NmUq1L+nfSxRYvP4XU0KXW2znsyGq\neg5350FzvyQkbtE5WT1pFXevQRuvUHVd74gsy6oifMjdb9BANxqmb5Ja0AP69xIFFq/ONEnf\nlDk1oee4Ow+aa0Nj9A7WRtNN3L0GTVyrLSzWO03Z2XPobu6Og/qep8qH9A3SzmJRb+veTRRY\nrN4VKuv+J6HdYmrF3XvQ2h6qoX++GtIH3P0GLazS8x6juW4kPDAn7JyvaHpM7yA9LFT6T+9+\nosDilHMrPax3ypyqCnheTpj7r3S0Ps8gdDOTBnF3HDRwvEjcJv3TJD/gEoewws4Uaq9/kjrQ\nEL37iQKL0w6dnhTg0STGZ4yDLiZRF4ZgHSqS+C93z0F9g6gfQ5qy5UNYOCQaZg7HpO/WP0j7\nytAzOncUBRajC2Wj9X5IjosDRRJOc48AaOk7c/oejmTdiytUw9A7ptI81+Nkz6U23J0HVV2/\nlaZxJGlZdMYJfXuKAovRLMrkSJlDb1rCPQKgpXuYrqB4UmjI3XVQ2+UaAtvpDFWFz7i7D2pa\nQY14ktSLuunbUxRYfH4qlLqTJ2Y2W2Mqszw9APTxDNVkuoKiDuHmkOFmFrXkCVO2fFZfF+7u\ng4p+T05gOZsvO/tgFXpa166iwOJzD43jSZlDM3qWewxAM1eqCcuZgjWJxnH3HtT1RUzaDqY0\nZWdnVTB9yz0AoJ72NIIrSmvMaUf17CoKLDY72Q4wOCymttyDAJpZQXdxBWtfYtHL3N0HNV2q\nTdO50pQtV+wDuUcAVLOL4X61ToP1fdNDgcXlZPEYhkvo3VUy/cw9DKCR0+lxuj6Jwk1b2svd\nf1DTBMYPCCWHSpj/4B4CUAnvO19WTXpSx86iwOLSg3rxpcxuLMfDA0AXk6gnX7CW4dhoWHlO\nyGC4qt7FCLqfewxAJX153/meLJT8q36dRYHFZBdVYrro2cXehKIMz78EHfwal8Zyiwa7CtF/\nco8AqOa39OgljGGS7EtJxiPEw8PzVJ73nW8UtdDvMbwosHj8Xti8kjVlNu1pG/dIgCb66P8Q\nQldDaCH3CIBaLjWkwZxhkvWiR7mHAdRwtkzUUt4oZdWh1bp1FwUWi6tNaChvymxWC024hwK0\n8IWprM6PUnW3Pboa9xCAWgbS7cyX40iBii19hXscQAVDWJ4u4WZjQqJu5x6jwGJxP93KvmRZ\n1cQdi8JSa5rBG6zG9D73GIA6llF5zk+b7drQVu6BgOC9LJTZxx2l7LHUTK8PCVFgcdgllHia\nO2Q2k2gM92CA+l6jGszBmkHDuAcBVPFMVMoG5jDJ1gp1uUcCgvZvOdNi7iRlZ2fVpTU6dRgF\nFoNP42NXcGfM7kBK6gXu4QC15dSnR5mDdTAVwQoLXyTFLGLOkk0DeoN7LCBYQ6kjd45kT8Un\n6XQlIQos/f1eUpjCnTCnzrSJezxAbbvpVu5cZXekHdzDAMH7s7RwP3eUbOZTB+7BgCC9YIQP\nCGWjqJU+HxKiwNLdmVrUhztfuZ4QGnMPCKjs6g0m9nvYZq+ku7nHAYJ2vp4BbtdnVzHqR+7h\ngKCcLh3FfLsPh6za9JQuXUaBpbdLzagVd7xc1cZp7uFmDd9DclxUjvqdeyAgSDmdqZkxrsaR\njMMTLkNcH+rGHSKH9XGF/9KjyyiwdHa9G9U/yJ0uV5NoLPeYgKrOZ5g3cqdKMpQWcI8EBGkW\nVTfGRzqy/Skp/3IPCARhH1Xkv7m2w2DqrEefUWDp7D6qupc7W272J6Vd5B4UUNN86sQdKtkO\n3Aor1B0S0rdyx8hFd1rBPSIQuL+KxqzgjlCuQzfQAR06jQJLX0up1HbuaOWRSdu5RwVUdDwl\n0Rj3AGlMH3KPBQTj59QY5ptuu9scXVW/Z5yAynLa0QDuBLlaEV3qrPa9RoGlqwOm1PXcwcpr\nFTXnHhZQ0X1GWcem00jusYAgXGlAI7kz5K4pPc89KBCotVTTMKfzWXWl0dr3GgWWnr5IMBvk\nKgpX1YSfuAcGVPOTuahBTps5kFIEjxIPYdOpCXeE8lhEbbgHBQL0v4QEI9yv1sW+DJP2h9hR\nYOnoZAXhAe5UeTCWpnOPDKimO43nDpSDSPu4RwMC9lF0+k7uBOVVyYQ7NYSmK7fQBO705DWX\n6lzVut8osPST0446c2fKk91xpa9xjw2o5EOhomEOxC+j9tzDAYG6UpvmcAcon/toAve4QECm\nUlPu8OR3By3Rut8osPTzGNU01A0anFrSs9xjAyppQnO545SrbMw/3OMBAVpELbjjk9++pMLn\nuQcGAvC6qajhDodmZ29JSNT6Xn0osHRzJC5pE3eiPFtIXbgHB9Sxj+pxp8lFf1rOPSAQmD8S\nk7Zxx8eDzrSee2TAfydLmxZwR8eTEdRV456jwNLLtVtpMneeFGSVMp/gHh5Qw+VKUau40+Ri\nk3AL94hAYPrSCO70eLLBdDP3yID/OlF37uR4dKgyvaxtz1Fg6eVxaswdJ0X9cKQhPDxKbbiz\n5KYOHeEeEgjEZ6YyxjydoQG9xz024K9VVN2YacpeIlS7rGnXUWDp5K+U+M3caVK0CX8XhoW/\nUxKM9bnOBJrCPSYQiNY0kzs7nj1EvbnHBvx0OM5od2jIdTc9qmnfUWDpZDAN5s6SF/XoC+4B\nguANoYHcSXK3J67Mde5BAf+9RTdyR0dBVkYsLpwILeeq0xTu2Cjalph8VMvOo8DSx5dRpY3z\nnMv8JuNB9WHgU1Mpo4WsGb3CPSrgv+ZkyHOSZQNpIffogF/6G+y8BXdDqa+WnUeBpY82NIM7\nSd7sSyx6hXuIIEg5jWkWd5Dymkv9uYcF/PYO1eQOjqId5go4KBpKNlN5gzxawqODZQQt7+eO\nAksXb1N17iB514YOco8RBGkTNeCOUT6HiiThxkUhp42RbqaWV3N6hnt8wHdHEuLWckfGq7nU\nSMNHiKPA0kUL4x5yt1lCHbnHCIJzurh5HXeM8utEO7gHBvx0WKjCHRsvHqV23AMEPjtXg+7n\nTkwBGtJ27fqPAksP71At7hQVpIz5OPcoQVDGUA/uEHmwAs/nDTn9DHxSsqRi1K/cIwS+6kOt\nufNSkCeiy13QrP8osPTQhuZzp6gg/WgF9yhBMD6JyjDkqQ4Voo9xDw345a/YjEPcqfFmJB5O\nHzLWUiVDrkpuMmm+ZgOAAksHh4UbuDNUoE2mBtzDBEG4Vp8e4s6QRwPpMe6xAb/MoKHcofFq\nd6EMXJETGj6OTVjPHZeC7UhM/lurEUCBpYM+9CB3hgp2E33DPU4QuJVGfVDAJhMelxNSLhVP\n2M0dGu/uob3cgwS+OFFOMPTF8w6DaKRWQ4ACS3t/mktmcUeoYONpKvdAQcCOphTayJ0gBXXo\nW+7RAT9sJZE7MgVYQXdxDxL44For6sqdFZ/sLx7zP43GAAWW9h6kYdwJ8sGeuLK4v0zI6kpD\nuAOkZBxOmQkpjYU13JEpSFXhB+5RgoI9SHUMfTJfrknUWaMxQIGluYtFE/ZwB8gXzeg17qGC\nAD1DlQ27lO2OrajhfWZAZV/STdyJKdA4eoB7mKBAB4Ri27mT4qOsysIH2gwCCl7ILw4AACAA\nSURBVCzNbaZM7vz4ZA4N5B4qCMy5clGPccdH2e30LvcAgc9G0mTuwBRob0Kxy9zjBAU4kmQ2\n8KKUxzy6U5tRQIGluYaCse9k63AoLUW724GAliZSB+70eDFTu1NIQW3nUlKN9jxLD9rRTu6B\nAu9OV6EJ3DHxQx16QZNhQIGltc+oDnd4fNSBdnEPFgTi8+iiRv4Q+kByOi6rDxVPURfuvPhg\nNTXnHijw6to9IfLBjd1Soa4mJzKgwNLaMJrKHR4fLaf23IMFAbhWn2ZyZ8erNpTNPUbgo8bC\nE9xx8UV14XvukQJvJtFNB7lD4pfGtFuLcUCBpbH/ktJC4JC7TRnzCe7hAv89TrdxJ8e7RXQv\n9xiBb44Y/6FeVuNpEvdQgRdbKGMHd0b8s9pU7ZoGA4ECS2PrqRt3dHzWl1ZzDxf47Why/Cbu\n5HiXVSz+X+5RAp9MoIncafHJvsT0S9xjBYrei4tfxR0RfzWnTRqMBAosjTUQQuBZAXYbhCbc\nwwV+627wJ5tIutFm7lECX1wummj8R8dZiTjN3bh+LS4Y+6QFT9ZHV9TgVFEUWNr6MmROcZfV\nEH7hHjDw00tUybC3wHJYRa25hwl8sZfacGfFRyuoBfdggYJ/a9NA7nwEoDWtU38sUGBpayw9\nwJ0bP4zU8LHioInLVYXF3LEpWIVozZ6mCipqQ8u4o+KrqsKP3KMFHl1rQ3dxpyMQT8WUVf/u\naiiwNHUpLWk/d278sCO6BveIgX8WUCvu1PigH63kHigo2J9RFbiT4rOxNIV7uMCjUVQ7ZK7r\nctNWg3OQUWBpamdo3Qwkuz59wT1k4I8/EpNC4Wqdp4TbuEcKCvaw8U/nc9oTXwJ3VzOipVTm\nae5wBGaTuYzqV06gwNLU3bSCOzV+uZ8mcw8Z+KMnjeDOjE9uxNl9xpdTJSYUqnW71rSfe8Ag\nv32mlNC5rCsPUf1DWCiwtPSrqQp3ZvyzJ64cHswbQt4Vyhv+DHerEbSAe6ygIG/Q7dw58cNS\nasM9YJDPe4Vil3AnI2CbzKqfhYUCS0uzaBR3ZvzUlN7hHjTwWU4Dms+dGN9si6rNPVhQkD40\nlzsn/qho+j/uEYM8vitims6diyC0pbUqDwgKLA1dLxe7kzsyfppBo7hHDXy2jRpxB8ZX9egI\n92iBd2fii2Vxx8Qfw2kO95CBuz/Lh8gpCwo2xpRX+cQ+FFgaepGacyfGXweSil3lHjbw0cWy\n0eu4A+OrcTSDe7jAu1XUizslftlpLn+de8zA1enadC93KoJzD21Qd0hQYGmoKy3gDozfWtEL\n3MMGPlpI7bnj4rNd5ircwwXe3WzayJ0S/zSjF7nHDFxcaEp3hdQx0Pw2RFdW9wADCizt/GMu\nFXpxm0/9uccNfHMyNSGELvpqTJ9wDxh48wndwp0RPy2gbtyDBrmutqeGB7kzEay7aKuqg4IC\nSzuLqT93XPx3KC0VT1ENDROpH3da/DCZ7uceMPBmCE3jzoifskrFHuceNXDI6Us1Q+RBll6s\nM1VX9XNnFFjaqR61mTsuAWhPB7gHDnzxe1yRUFrP9hUqgzuAGNjZxCIhd/ihHy3jHjZwGE2V\nQu2SLk/uoL1qjgoKLM28SY25wxKIxXQv98iBL4aE2D1A7qS3uYcMlK2i7twJ8duWqJrcwwZ2\nU6jMNu48qGGlUFfNPwRRYGmmJ83hDksgsoonnOMeOijYD9EZofXErxk0mnvMQFnNqBA7xV3W\nkD7iHjewmkMlNnGnQR230rMqjgsKLK0cj80IvVPcZV1oB/fYQcF60QTupPjnQGLxa9yDBkpe\nD8nj7dNpKPfAgewRSn+SOwwqWUpNVBwYFFhaWUADuKMSmOWUyT12UKAjUWVD4yE5uVrSK9yj\nBko6hsozAdwcTEs+zz1yID/gOe0J7iyopg69pd7IoMDSyLVy5hC6ht5N6dgz3KMHBelGk7lz\n4q/ZNIR71EDBL1HlQvJ4e2fawj10YFkmpK7mToJ65tM96g0NCiyNHKCW3EEJVA/axD16UIDD\npvIh94Z4MLmIys+hALWMo7Hc8QjIWuEO7qGDpULKKu4gqKmq8JlqY4MCSyN30nLunARqtZoV\nPGiiMz3IHRP/tabnuccNPDqVmBpKt/xwUV34gXvwIt0iSg2r+ip7uoo3sEWBpY3PqCZ3TAJX\nPuYE9/iBV18KFUPuABaeEmBc86kPdzgCNJamcQ9ehJtDaWH0+aAsq1zU92qNDgosbfSm6dwx\nCVwfWsc9fuBV55C767bsUGrqZe6RAw/OFyv0NHc4ArQ7rjSuTeU0mdLXcodAbRPUO1sUBZYm\nfosJwccQOq0XWnAPIHhz2BSKB7Cys9tSNvfQgQePUWfuaASsBT53ZnR9BJXYwB0B1R0sFntU\npQFCgaWJsTSaOyTBqBx1jHsEwYuQPAMrW346b1/uoYP8LmSYt3BHI2AL8cRnPpe7U5lQfB5c\nQYbRAyqNEAosLRwrlLafOyPB6E+ruIcQlB02VQjJA1jZWWkpeJK48SyhDtzJCFxWRuxJ7gGM\nVP+1ohtC9WZEXu1NST6tzhChwNLCJBrMHZGgPCk05R5CUNaFpnInJEAiZXEPHuR1Nj0ulJ8i\n14dWcI9ghPq7PtXZwz392uhF89UZIxRYGvgrvvBe7oQE5wbTn9yDCEq+CsF7YNktpN7cowd5\nTQvBxzy72Giqyz2Ckem7SnRHaD0O1Xc7ChW/qMogocDSwBgayh2QIA2i5dyDCEq6huwBrOys\nIsnqrFugml8Lpe7mzkVQ6tGX3GMYid4sQp1C9Q+9gnWkNaqMEgos9f1gLhrSZ2BJNgq3cY8i\nKAjhA1jyZ4SHuMcP3HWlMdypCM4DNJ57DCPQ5tioEdwzr6GN0ZVUuf0HCiz1daXx3PEIWnXh\nN+5hBM86h+4BrOzsR/AZocE8T5VDt1632pdYDI9g0tn1Byj+Ie6J11RL2qnGQKHAUt0bVCnE\nVyzJEFrCPY7g0RcheRN3h6wiybiO0EjOVTAt5Q5FsNrQQe5hjDCn21DxldzTrq3Vws1qjBQK\nLLVdqSUs4g5H8DYLDbkHEjxqTzO4wxEMfEZoLKMpkzsSQVtCmdzDGFkOV6Ha27lnXWuN6EUV\nhgoFltoWUHPuaKihpvAL90iCBx8KVbmjEZRHqA/3EEKul4SMEL/gWVYm5m/ugYwk2xIo8yD3\nnGtuMTVXYaxQYKns20LJYVHbD6dF3EMJHrSkudzRCAruNWokx0tGhcHh9uwBtIx7JCPHhWEU\nN4l7xvVQiz4MfrRQYKnr6q0UHuHbYrqFeywhv1eoNncygtQOzyM0jJw21JM7D2rYHHUT91BG\njCO1qOxq7gnXxUPUOfjhQoGlrlnUmDsXKqlFP3EPJuSVU09YzB2MIOF5hMYxn2od4s6DKm6h\nz7nHMjLkrC5ELcPgQ2VfZFUwfRf0gKHAUtUbUUXC5dlMI2gB92hCXjtCv37PKpx6mXsYweqF\nqLTQfcizm8l0H/dgRoSjbSkhPD6h8cX9NCjoEUOBpaZjJU3zuVOhlm0mVS5TBRVdrBC9ljsX\nQWtDz3KPI8i+LxwdDidgyfYnFcWtsLS3owjV3MA91/o5WML8R7BDhgJLRVfvpF7coVDPTfQ9\n94CCu0eoLXcqgvcwDeAeR5CcrkajubOgmjZ0gHs8w97RDmQeGML34PPfCJoY7KChwFLRWKof\nRvkbRfO4BxTcHEtOCIMrVA+lpuFoA78rLUnkjoJ6llAH7gENczlPFqZqa7jnWV/7UpNOBjls\nKLDU8ySV2skdCRVtj6rNPaLgZiAN5g6FGu5R5Q5+EJyhVC+c7mVUxvwP94iGtW/uoLjB4XFF\nhB/60pwgxw0FlmreNCeE/gkyrm6mb7nHFFy8bypzgDsTaphHQ7iHEpZQ2V3cQVBTf1rOPaRh\n7PyDZqr3JPcc629nfPq54EYOBZZafkyPmsOdB3WNDbp8BxVdrUvzuCOhioPJ6Ve5BzPSHTKl\nhNfZyptNdbnHNHwdLE9pD3DPMIsuwd7CFgWWSk5Xo2HcaVDZjuga3KMKuZZQU+5EqKQVvcw9\nmBHui0RzqN9PLa96dJh7VMPU/1pTVGZYHe703VZz6eBuKoMCSx1X7wqHC7zyqEdfc48rOPyU\nkLiVOxAqmUPDuEczsv1dTgi7uxlNCv6KL/Dg3wfMVHMF9+yyaUtPBjV8KLDUMZpuDqdTRm3G\n0UzucQW7nGZ0H3ce1HIgqfg17vGMZJdvo+7cGVDdvoQS+OBZdTlbSlL6pDC6Nt5fG6KrBLVW\nocBSxVoqHU4XENrtjKnGPbBgt5zqccdBPS3pde7xjGSDqHEYvmW2xkMuVfdxI4rptod7Zlm1\noKeDGUEUWGp4KybpCe4gaKEBfck9tGB1pFDiRu40qGcWjeIe0Ai2ksqH43vmIurKPbJh5u/B\nJmq4jntema0RauUEMYYosFTwWzHTXO4caGICPcg9tiC7eBOF00kzBxIyrnMPacR6IyYpLC+4\nzyoVG+xdIcHF1eWpVDrMLowPRBM6GMQoosAK3sX6NJA7BdrYba7CPbggG0XNubOgqub0FveQ\nRqrfikWF51+D2X1oFffghpG3alOhgWFx370gLRfqBzGMKLCCNyhsrp/PpzF9yj26YLHsolLh\n9aHOTBrDPaYR6uIt4frXYPZTQgPu0Q0bx/oIQrPN3DNqDA2CefIECqygrQ/PUxqsJtMD3MML\nliOJsSu4k6Cu/Qkl8Rkhi37h+9dgdh06wj284eH6msJUfiH3dBrFYmoS+FCiwArWx3EJ4Xse\n4N64csGc4QdqOF2FJnIHQW3N6G3uYY1Ij1HFvdxzr5kJ+HNQFV82oriB4XfXoYDVpdcCHksU\nWEE6UU6Yzh0ADTWl97hHONJdvZsyuWOguuk0lntcI9HL0WH2hBw3e+NL4v5qQbswJYYahtEl\ny8FbRHcEPJoosIJzvRV14Z5/LeGNkN0Iqht+T7HfF18KnxHq7rvC0Qu4Z15Ld9Fz3EMc8l6v\nQunTuCfSYG6iNwIdThRYwZlON4Xfu5+L/bigntmjVCYM72GLzwgZnKhMo7nnXVOPUDfuMQ5x\nZ4cJQtsIfe6gsgXULNABRYEVlINC0W3cs6+tFkF8/gzB2yEUDssPdabTfdxDG2kuNKYO3NOu\nrayMuFPcoxzSni9DpR/hnkUDqh3wISwUWME4kmxexj33GptNQ7lHOZK9ZI4Lz4ThM0K9Xc0M\nyyfkuMGtsIJxZgBFddnHPYdGtDDgs7BQYAXhRCUaxz31WjuYXOQK9zhHrvcTo8P1XsrNcK9R\nXV3vSzXC/s1zo3AL9ziHrudLU7ml3DNoUHXo1cAGFQVW4C7fQR25J157begZ7oGOWF8WNk3m\nnn+tzKDR3MMbSa4PokrheC5fHnXoMPdIh6izg4Wobrhzu4JFdFtgw4oCK2A5PalBWJ/gbrOA\nenGPdKT6ppgwhnv6NbM/IQPX1OvmSi+qsIN7ynUwicZzD3VoerkslcXhK2X16PmAxhUFVsDG\nU+WwvYO7i6z0xPPcQx2Z/pdBQ7hnX0O4fEI/Z+6mypFQX2XvSyiGMxr8999wwdRlP/fkGdky\noV5At9xGgRWomVRyK/es66ITPc091hHpu5LUn3vutfQQDece4kjxXXW6ORL+GMyWz2jYzz3a\noef1ClRqMffMGVwj2hPI0KLACtB0KhqWl8/nt5wyuQc7En1dgvpxT72mDiQVvco9yJFhaxK1\njZQnnywlkXu4Q81/owShQ9hf/xCsVabqgZzSgAIrINdGUrH13FOulzLmk9zjHXk+TqeB3BOv\nsVb0AvcoR4Lj91Jc2F/snKt89FHuEQ8tL5enUou4Zy0ENKcNAYwuCqxAnGlDZSLnaU296Qnu\nAY84ryQLw7nnXWvzqT/3MIe/nM1FqfIa7qnW0RBawD3moeTUQMHUEYevfLAhpsxF/8cXBVYA\nPq9CtZ/mnm/9rBeaco94pNkWGz2Re9o1dygtJYAVC/zxSWMy94uUjwetdsRUCehs5Mi0qwSV\nxdlXvmlPi/wfYBRYfrv2SKyQGVFrVnXhV+5Bjyg5DwmFwvX+oq7a017uoQ5vxwaZqP467mnW\nWZPAn8wbaX5uQzE9cPGgj7bHF/b/QUwosPz1WX1Kmc491/oaQfO4Rz2S/NeF0h/nnnM9LKHO\n3GMdzq4uS6HSD3FPsu7mUB/ukQ8NF+fGU43V3NMVQvrQBL8HGQWWf46PiKImkXF7hlw7oqtx\nj3sEOXIjVdvCPeX6yIg7wz3a4euTmylhcATemjurWKHT3GMfCg5WopT7wv3hlKralx77k7+j\njALLH5cXp1LGLO551t+t9BH30EeM9fHUJlKO2ncP6MIc8MHVGdF0R4TU6Xn0ohXco298n7cg\nU5sIOpFYFeOpi7/jjALLD1mVKWFApLz5uZqG58bp5O8OVOh+7unWzVpqzj3gYeq3RlQkAv8S\ntNpoqsU9/Eb3c28T3bSCe6JCjlQA+PuEehRYPvu1HZlab+OeYxYHkotc5h7+iLAtnapHzP3V\nJDeYfuce8rD0djFqHBGPxvGoAb3PPQGG9ttwM5WZyT1LoWihUPe6f2ONAstHOWuSqPpy7gnm\n0o72cU9ABPjhbjIPiIDnh+caipsWaWFHrGlQBJ9dM4v6cc+Agf0wxEzFx0XUMqOeJrTev9FG\ngeWbkyLFj4rcNWsZteWegbB38aE4qr2We6b1tS26Ovewh6HHhUKRd/Ggi0PFCvl/PX2EeKdL\nFJUYHYHXPqjjqdii/l1BgQLLJ5+Xp5oR8uhBz/AACq0drEgp4yOuhG+IyydU9wilLOOeV159\naBn3JBjSuSfrEZUfj/IqcL38PB0ZBZYvshKErpF9THUwLeSehLD2XSuKEndyz7L+HqSR3EMf\nbh6ltEi/udHW6Kq4m3teOe8OSSbhlrkR90ecqvaViPrMn1FHgeWDDVHmB7gnltn2mBuwZGnm\nv8lmqrmCe445HEgpjMflqGoNFY6wz5k9aEovcc+DwXz+YEWiwl0i7bb+6ptJDf05zx0FVsEe\nFxIe4Z5Wdk3oTe55CFt7SlP6JO4JZpJJO7iHP6zsNCWt4p5TfgupPfdEGMiV1yZI1ZW5ycyI\nesCbVhrTKj/GHgVWgZYLKRHx4BLv5lIv7okIU7+0oejOe7jnl8tK3ApLTa+a45ZwT6kRVIj6\nmXsqDOK7VR2SiWIb3b+be07CxKb45D98H34UWAVZJ6TgT8Ls7KyMuBPcUxGOri9PiOwHglUV\nfuCeg/DxVUr0bO4JNYQxNJF7Lvhd+3JVj5JEVLT19L3cExJGhlOm73OAAqsAu6KSVnDPqCH0\no8XccxGGfridEkZH9GmnY+kB7kkIG3+WEcZxz6cx7EtK/Y97NlgdPfRgi2SpuEq6ddga7skI\nM1nV6Wmf5wEFlnevmOMWc0+oMWyLqeznTWyhQGsTqP5m7pnltSeh6CXuaQgT/9ahntzTaRRd\naSX3dHA59uzczNJSbUUZzUasjOg/3jSyxlz0b18nAwWWV58n45C7w530Avd0hJnj7SkeRxxE\n2sY9EeHhSitqifdTu03RVSLw78HfD85sJ38oSMn1us+IzMe66aE/dfJ1RlBgefNrSWEC92Qa\nxiLczV1db5ai6hF991qb1UJj7pkICzkDqA5uIenUjA5wz4iufj8wvXUxubZKrddtKpYVTR2q\nRpt8nBYUWF6cupH6cs+lgVQ2fc89I2Hk+twoU4/IvnutXR36lHsywsE0qrCLeyoN5PHIqdv/\nfWVe+xJybZXWoMf0jdwDHwnWxSX96NvcoMBSdukOuod7Jo1kPI3hnpLw8U8rSnuYe0aNYTr1\n5Z6NMPA4FYvws/nyqEdvcc+JDn7dOrx2lFRbpdTvMRPzr5sx1PCKT/ODAkvR9a7UEEcYXOwv\nnHCSe1LCxXulqQ7OkbA5lGH+k3s+Qt4mUwpu4O5mPt3DPSka+2F97zJSbRVdLfMBfCaos9t8\nvPgZBZaiUVQVdw9x04ce5p6UMPGYWcDHg07DaCr3hIS67VEJy7mn0WiqhfNHz8e2DSgrFVcJ\n9fs9so97oCPRzuLCM77MEwosJTOpzA7uWTSYHXHFL3BPSzg424WScHFqrj1Jqf9yz0lo2xgV\nj7vJ5DWTOnDPizauvD65jiAVVw0GL8dVo1yWRBf5xYe5QoGl4BEqhtMF8+oQuTeXUdFnlanq\nU9xTaSjdaRH3pIS0xULCo9xzaDxZlYUwPIT198YuyUTRNXsvxiFwVsPp5vMFTxcKLM8WURoe\nPJ7Pppiyl7lnJtTlLI8VMnE5vZvtcSV8WKvAs6sjKRWfD3owk9pxz43Kvn74VhNReutpeLAg\nvxbUNafAGUOB5dEsSsMDBjxoS6u5pybE/dWGkqZzT6PhdKRl3BMTso7eQWWe5J5AY6pGb3PP\njnquvzOpMpFQre8K7mEFq31VaUaBs4YCy4Orwygdl+R4sslcCmdhBWNnEaqFj57z2Rpb/Bz3\n1ISoQ8Wo/k7u+TOoBdS44GMMIeHKi8NKEJkbjsWlx8axpZiwsaCJQ4GV38m7qSzeBD3LpEe4\npyeE/Z5J5oE4L9WDLjSPe3JC0l89KXoAEqWkPu3iniEVXDzYtzBRYrOpuKrdWFYmxDxbwNyh\nwMrnwwp0M/4kVLA9vvAJ7gkKVZcWJlL11dwzaExPJ6b4/PxUcDg3P5kq4vQrZWuiy4f6Eff/\ndt2bRJTaeg7O2zSeh83xBdzNFgVWHpdnxQhdcH2Gon40mnuKQtP1bRUoaRQONigYRMO4ZyjU\nnJhXlBKGHOSeOUPL9OE0GQM7tTkzjqho+4VYN4zpwaik97zOIAosdy9XpzTcosiLfcWjv+Se\npBB0dXsNim67nXv2jOtAyaiPuScppLw3sBDFd8Wt+rzbWTj2O+6ZCtSfq++KIcrovATVlXHd\nb0r2eiEFCixX77ci4S6sWV5Np8bXuecp1Jx4tDyZ7niCe+oM7SG65Rr3PIWMH+ZWIyraD2cy\nFGgSNQ3J5eqr+Q0EovI9VnAPIHh3vynhRS/ziALL6cqepkQ1cEPkgjTE3Ub9cvXZe2PJ3AqX\npRagCT3KPVWh4Zv5dYmiG83EiQy+qB96dwC5+OKYCkSmGgNxK8YQMDXavE15LlFg2X0yvhhR\n7XncsxUCNiUk/sg9WyHjQvbgIkQZ/XB1dYG2JhX6mnu6DO/a2w9Uld57bxqN4+w+2pxU6Cvu\nWfPH96vEBKK4RrghQ6iYW0iYoXg3EBRYkuvvPlCJKKHNCu6pCg330a1XuKcsFOR8/VibQkTJ\n9+AUVZ9MptoXuefM0P7e1lOq1s31x+JcPj9Mphqhco+1YzuHVCCiEm1n4wHOIeTxdMo8ozCl\nKLBO7+5fTFq1Gk9Gpn11G03gnjWju/rJ8i5SrKhk5nx8kuOrFjSIe94M6+yz998sEKW0nLqH\ne5pCTWvqHgK3G/112/Dq0oIRV38oTiYINVtvpEoKl+hEdoF17cO5TaKJkptj1fLHzgxhC/fU\nGVfO9zsn3p4grZUpTUat556qkLK3PC3nnj0DuvbN5pE3RxFF39hrKY6F+m/fDTSbew69OvPa\nI51KSguGuXavR3C3q1B0oIMQM8fjxzqRW2DlfPV4p8JEQuVuj+IYg59Wxptf5p4/Izr30frR\nTZOlpVIo3WIMbinqtydTovZxz6Gh/PXqqmGN5GI9umrHWfgjMECb04W13DOp4JfseV0qCdIE\nJ9fv+8h+7oGCgM0sTG96muDILLBOvji3rVRcUVrziTiVMBBzohPe4J5EQzn/6dapmZVMcm2V\n0aTfXFw/H5hH42KzuafSEE59tGN2rwYpJAeqVNNBC3H+QjBWJpmMVmFd+mrfgr71E+UJLlQj\n837cwiXUbW/+rqd5jrQC6/h7G6e0KyvHOr3pyDXckxK6pkYVOsQ9l8Zw9PUnJrSuIJdWlFC9\n9YhHdnFPTUibY46J7E+fL3yxe17fW4vIcaKojPodxy7FgavgLUsSZhvkPKx/Pty5YEjzstYF\nI6pk4+5T1uFj3/DgcbojpMC68P0bWxeMEmsnWReupNqdJuNpzsGZbo5aYJAli8fl719c+0CX\nOom2RFW/e9AcREoF8+OFiZF5jerxN58Y37q8/HERmYrXaTN4xlqcj6OalenU5Szn7OYcfX/X\nolHtaiRY1wtKrd6iz5SVmOBw4nHew7zA+vuDnYtGizel21JN5lL1xGFzN3PPRFh4NJXu/pV7\nfhmcPvzM6ik9bytl/ROUYso07DhqAT5nVs/KElTvC+5J1tXfH+6c379xEXulflf/aatxMo7q\nNlelci8wTO6JL7PXTu97ZyWz/R2ozC1tBk5dvpt7OEB9Huc/TAusM18eeuy+9jXtfy7EZNRs\n1nnotKVbuKcgrGyuQ/EzlW7/EWZO/fzx81uWTOzdrLo9UkJa9abdxszfgMP7qtvZlKKG/cY9\n45o6f+KnL995fsfK2WPuvb1KnC1QxepmolLX0IEuJmqv02NUr/11+MUtj47vcXvlOPuf9kkV\nG4oDJy/Zyj0KoB2PUQifAuv8qZ++eOvQxsWT+t5dI9nx50L9tgOnLEFdpY2sMcmUPOZT7okP\n3sVTx3766ctPPnnz5Zef3717xxNPLF+4cOrkMUP7d+3Y8vZ6N5ROIaeEMnXv6jlu/hM4xqCh\nGRkU0+PlEH4y4el/fvrmk7dezt69+4knVi5cOHPy5OFD+3Xt2rJl/bqVyhVOJFdJ5eu3GTht\nJQKluaVVSWj59HktJvzssZ8+eT1r66p5Ewa0b1K9qHNyk8vfcnfP++au3svdd9Cex2QUVGA9\nu5vTro0bV65YtHDOjGnjx48ZOnRQr169OmZmii1btryzUaNGN9eqVatixYqlihdPSohxXbNi\nipSvfXu73qMmg7bG3x5PVNTr08SNkqttG59cseKRhbNm3D9+xNDePTPbtrytQa0bKhQv4h6d\n/KLiUtJLVaxe97aWmT2HTOAe8cgwqXVhqfJ4Pahc7di48YkVCjZstNvqDh7DxAAAH3VJREFU\nttZ42JvXTsf3yD/m8YULF86YMXn8WGll6pJ5V7NGdWpULFnUa6Bi4pJSi2eUr1K9ToPbW7br\n0mfERO6xjiSdSxHF3qxwS0ivdq9asWTh/BkzJo4fPXRwr16dM9u1bNGo0U21qlTMKJ4Q6z7H\n5sKlKtdu3LJDr+GY3Ejyj6fgFFRgpXl/9wEI6OaQ6QX/WIhwgeQqmbvRYHiB5KqAv8IAyOON\niwoqsOK5W20qXLhwSsHfpqkYqQ1JzG2Ik9rAPRkJUhti8+9+KYAFi7sryJWdgXP1KnIVGOTK\nRiFXz4RGrhRar6No/hwlS02IYm2B70EOqMCqqHHzCxRbr1692sxtSJHacANzG0pIbSjD3Iby\nUhuK5t8dyC1HkStCrhyQK3UhVzahnasKUut5D/QnSS2oxtoCqiE1gbdOLy61oKxP3xlQgdWn\nJbPmUv9uYW7DHVIbbmVuQxOpDY2Z29BIakPT/LsDuTQHuWqJXDkgV+pCrmxCO1e3em69ju6U\nWtCAtQUt60tNaMbagtulFjTy6Ts95srwVxH+KfXvLuY2vCW1YThzGzZKbXiUuQ0zpDaEy7Pi\nkCsb5EpdyJUNchWsqVLreZ+W8YnUgr6sLbB0kprwHWsLtkstmB/4P0eB5QMsWDahvWC5Q65s\nkCt1IVc2yFWwUGBZUGBpDwuWDRYsdSFXNsiVupArG+QqWCiwLCiwtIcFywYLlrqQKxvkSl3I\nlQ1yFSwUWBYUWNrDgmWDBUtdyJUNcqUu5MoGuQoWCiwLCiztYcGywYKlLuTKBrlSF3Jlg1wF\nCwWWBQWW9rBg2WDBUhdyZYNcqQu5skGugoUCy4ICS3tYsGywYKkLubJBrtSFXNkgV8FCgWVB\ngaW962fPnv2PuQ1XpTZo8hB2P1yW2nCRuQ0XpDZcZm6DWpArG+RKXciVDXIVLP7WX+PP0Tmp\nCddZWxBkkA1fYAEAAACEGhRYAAAAACpDgQUAAACgMhRYAAAAACpDgQUAAACgMhRYAAAAACpD\ngQUAAACgMmMWWD+uHnVvh56Tth7L3fXHurE9Ovad/eI1XRvydzdRfIuxDd+tHNalx+hlX+fu\n0bkNOR8vGdq1Y+8pO0+xNUFFyJUdcqUq5MoOuQrC56KL8Y69ureedQ4/Et0M0b8FMhVTZMQC\n6/IKx/h2PODYt6eDfdeIY97+qcpyposuC5bubbi6ur39N67O4WnD8QccU9E5y7GPZypUgFzZ\nIVeqQq7skKugvONaWjgKLL1bzzyHngusEE6RAQusnNlSN6Zs3Leyr/T/L9r2HZQ2Z+x55qmB\nojjgX/2a8pzosmDp3oacxaLYdXnWntlS5HewtOH8UFEc/czhb99bKcXrGZYmqAe5skOuVIVc\n2SFXwXlBFGfvcHjBtk/v1nPP4R87cq0TxWn6t0DlFBmwwJJy1vkTeePiclHsaX1YwF+dxQ4f\nyhuX5ori47q15O+uYn/ngqV/G14WxfuOyxufdhY7nuJow2ZRnGU7JPppe7HrvxxNUA9yZYdc\nqQq5skOugrNPFF/Ns0v31vPPYa4VYodfOVqgaooMWGCNEMXnbFvXpHrRunStdZbTF3uLmaeU\n/qXKcqaJvfc4Fyzd23C5n3jvSdvm0zPX/8bRhiGi+D/75mRRfIOjCepBrmyQK3UhVzbIVZC2\niOIHeXbp3XoDzKHT4fbiNgtHC1RNkfEKrDPtxU6OhyuuFEX5eeLXeokdHQ9Q3SaK+3VqybPS\nXxTPOBYs/dvwnihud9+jexsyRdExFatEcSdHE1SDXNkhV6pCruyQqyCtFsWv3Pfo3noDzKHD\n5eHikMssLVA1RcYrsCzXjv/m2Nwginul//tWFKc4dh0RxQf1acexruIsi3PB0r8Nj4riH+57\ndG9DN1F0PE1ditoBjiaoB7myQa7UhVzZIFdBkgbwZ/c9urfeAHPosEUUP+VpgaopMmCB5eJh\nUXxX+j9p1XjKsetye/FeXX53zoPivcdzFyz92zBI7Cv9738/ffOXY4/ubZgtil/aN6fYjpuy\nTIXqkCvkSgvIFXIVuIdE8W/3Pbq33gBzaPdbB3E+UwtUTZGhC6x/O4vd5Fpyg/NkfkkfUdTl\nYpBnrJcEORcs3dtwsb1UKX89Xb5odsDOSzxt+EYUx9uK+Y/ai9NZmqAF5Aq50gJyhVwFYZLU\nvNfn9O3QfexT9vpG79YbYQ7tZosd/rTwtEDVFBm6wFpsP7VsiSi+49w5RhR/U/wX6jnWVZxh\ncVmwdG/DL6K48LlM+8037jvN0gbLflEcuPezr99ZlimOOsHTBA0gV8iVFpAr5CoII0RxpH38\nOuy03oRK79YbYg6tDoviE/bN0E6RkQusnaJ4/1V5Y74ofuTcO1EUv9f+d+c8KHaTj9c6Fyzd\n23BEFMd0GPDy0SvHn+ktilNzONpgsXz8oO2/tgFbzllfMzRBdcgVcqUF5Aq5CoZ8H7XuS/Yc\nWjtA2tgq79G79caYQ9lksZPjWr3QTpGBC6ytojj8rHVrjih+5tw9RRS/1f6XZ9uvvXYuWLq3\n4RP5RrZnrJtHu4viexxtsJzf2NcWtfYTmYZBfcgVcqUF5Aq5CkpnUVxj/Wjq6jqpBz9Y9G+9\nIeZQJlV6Kx3boZ0iwxZYlxaK4sjjtm23AnKCHjXsX13FB60HaT3/RahHGz4Wc2+LckAU53K0\n4cQwUVz2zYWrx18dKYqrLRxNUBtyhVxpAblCroJ0/pzj4jXLXFFcZNG/9UaYQyup/787tkM7\nRUYtsP65TxQnO249sdT1I9DR+a4kVV/OFLGr7ZFDzgVL9zZ8LYodHA+WPC6KPTja8KDz5L5L\n99sGQvcmqAy5Qq60gFwhVyr6XhTvzdG/9UaYQ9mpTPF+54vQTpFBC6wjvUXxsSuOVxtFMdv5\npZ6ieE7rX5/lvDmzc8HSvQ2/imIf54suonhF/zb8TxTHOrYPi+JEC8MwqAu5Qq60gFwhV2rK\n6SSKZ/VvvQHm0GqPM8+WUE+RMQus9zuK7Q/kvnxBFJ90bJ8XxV5a//rjXcSh79g8Lorr33nn\nZ/3bYLmSKXZ1vuhpvbms3m3YJ4obHdsXRLH9NYZhUBVyhVxpAblCrtTVQxSP6996A8yh1X2i\neNL5IrRTZMgC6/0OYhfXpzL9KOYeMfxUFGdr/fuPiHms078NFsvI3PvOScHvZNG/DZttDwqw\nup5pvf2H/sOgIuRKhlypDbmSIVfqudxeFC8ztJ5/DmUnRHFk7qvQTpERC6zvOotdv3HdkTMw\n9wGLq63309OWpwVL7zZYj0sesm9+ZTtSqXcbpFp+hWP7b1HMzOEYBvUgV1bIlcqQKyvkKjgf\nrJz1mmNbehcfZWFoPf8cyl4WxbW5r0I7RQYssM4PEjt+6b5riyhusG2d6CJ2OZ//32jGeU6D\n/m34SRT7X7BtzhfFpxnacFgU+121b79mL+L5piJYyJUNcqUu5MoGuQrOS6I44rJtM2eKKG6R\nN/RuPf8cyla7noIV4ikyYIG1Ov/jqs90F9u/KW/8O8k+7XrJXbD0b8NCUZxpncu9otj1NEMb\nrg0TxdXWq78tf/e3F+58UxEs5MoOuVIVcmWHXAXlUm9RfNh6Ierlx0Wxm/V2VLq3nn0OZQ+I\n4lcuL0M6RcYrsP7uILbfssMpy7rztfaiOG1X1hopgxOuFvADVJW7YOnfhlODpFp64wu7J4qi\n+ApLGw53EMXx2Ye/+2hjd+n3XuNogmqQKwfkSk3IlQNyFZwPM0Wxx+qDh9b0FcX279n26d16\n/jmU9M7z1OtQTpHxCqx33E8nGGLb+1Jn++tp+l5o67Jg6d+Go+Psv7DLS0xt+KKfcyIWX+Bp\nglqQKyfkSkXIlRNyFZz3ezoa3/tjxz69W88/hxZLx7yPUw7hFIVKgWX5Z+N93TsNWPi+zq1x\nXbD0b8O1Vx8a0LHHuC2516zq3YbLLz08qGuHnuOe+ImtCSpBrnIhV+pBrnIhV8E5d2hm306d\nB8x+9lLuPr1bb4A5lP4zynOUKHRTZLwCCwAAACDEocACAAAAUBkKLAAAAACVocACAAAAUBkK\nLAAAAACVocACAAAAUBkKLAAAAACVocACAAAAUBkKLAAAAACVocACAAAAUBkKLAAAAACVocAC\nAAAAUBkKLAAAAACVocACAAAAUBkKLAAAAACVocACAAAAUBkKLAAAAACVocACAAAAUFlEFlgr\nSPJE/v05H8/peGOR2OiU0k2H7T6b78u/r+xxU5rZXKRqx/mHHfsGSj9pUf6f1FHavVb6/1Hk\nEF+yRtvZL1xQsxtgQNYZb513b04FeXe2+06lGFo8R83iGidXX6nZfjCUP1b3ujk9NiqpcqsZ\n7+a4fsE9CoUybhmx/0ruV7+V9rVw+W6llU3+KQdcf+w2k/TDXnO8+m9z96op0amVOj12XOV+\nAasA3ulyOTN597S3rrt+wXsmI3PxisgCq6Y8s/Xy7T5Y23XmE6e6V0NHugouX61nX5Y+krar\n5vtJ/8RI//5fS/5QpY79VosOgWFYZzzqzzx73yIPBZZCDJWiZonUNSpyfe0WhBu2ubydeYhC\n8Q3Or+YpsBRXtrwF1v5ootgX7S9ylhd2/pu4KZc16iPoL5B3OofDnV2/WmnTtdwvec9kZC5e\nkVhgvUtUJo7oM/e9OWPzzv3Nf+d+9dp4U56vdj5l/cLN0ubbeX/DYmnnUHkjf6iiZ17VsGvA\nzTbjC/PsHWzd615geY6hl6hF6hoVqa6MFPLMdI3cP888RqGnowJzK7C8rGx5CqwXzEQxjpRe\nvdft39x5Sdvegl4CfKezujw0byarfu38ovdMRubiFYkFVh+i8e2JhrvvnSNP9y1L3/vn0pWT\nH69oIL9q6vyL8Wwraxqq37/+0Is7Zza1hqzOCfkra6Wtfnl/w43Szk/lDTlUSz+XvZ21um95\n6w+55aSmvQNW0owXkoLivvNiCsVS3gLLcwy9RM0Wp7mv53VOu94AnxN3WINQ8/51B1/Y+kgr\nOUCU8rzjq7kri+SzNzcPTZO/PtH+VbcCy8vK5l5gvSUlN3qf49UD0tdMPQ7++Nd3u9vK/2ac\n1h0GfQT4Tic71ih/JpOecXzVeyYjc/GKwALrVBzRu1uIkt3m9vco6Y+3p3Jfb46R8rDJ/iKn\njTWFHzm++GNX+XUzOZX/JRHF5/kU+z3pi/WtW+4LWM6LzeV/d+t5dTsEBiLNeMNkog/ddu4k\napK3wPIcQ29R83DKDIStq7fJE3+P8xyYM1OkwFDsJ/aX+aJwpre0J/qI7YVrgeVtZXP7KR9J\nS5lph+PV9yYpm2/YX8h/RppxHlZYCPSdTnLZWo21y83kg/FyMByLnfdMRubiFYEF1jKiMjln\npOJ7g+veedL0T3fd8Zhcqdu3H5ZzNdP1q2vl0n6ZvDWMbOezuxgk7XrSupU3VDkrzNKebqr0\nA4xImvEGXYhGuO2UVq0H8xZYnmPoNWoRukZFpvHyAaRVrnu+zJB2VThte5E/Ctb3RvvhAtcC\ny9vK5vpTDqcRCZuc3zXB5W3XdtXODguEgYDf6SyWEdJm1HrXr35dWtpV1uUAu3ImI3PxisAC\nqzrRJItFqswbuu7tLk3/j647rpUVyrc/Y938U66KZrn/lPnSrqLywYfPnIerHM4lOo9L5A/V\ndjmv+U7agnAhzXjtrUSFXc9YORZNwqt5CyzPMfQatQhdoyLSV4LzrzSnH1OlfRNs2x6i8FHu\nG6VrgeVtZXP5Kd8Xl+orl2tabyFKzT1d9GnpG+cE1SEwiIDf6SyfytXXVvev/ip/DDjWtu09\nk5G5eEVegfWGNM9fWCzPSP/3pcvuZtLr/9y+8ed/HVuTpK81vOb2Rcv1OoX7HrJeWdMgz0+y\nbJB2jLJtegiV/JdhQwuEKWnGbzgVTbTbZd9SqQT///bOPEiq4o7jv93ZZZdDjkVcRNAVQTCW\nhkOjaIVweGCgjAdJCkTFSrRiFeW5ImiiURJF0dUSr1gF4oFSBWhpxQOVQ6PiFUAtohGMrAqs\noiAKwsLuvvTvnf3e69ezOzPWzkx/P3+w/brfNPPqfevX3+lzXcRgJchQLzUzY5SR8ODKudHM\nhSKzizPlWCWFCqJuTko2WLrIFtRS308k75Fu+nzN8hXB1aui9PrMngTkF5m3dDxcOCla3WKR\n2cnpwtJr0szgZZ7BmkQ0VPxpOphompR9Frnz0uM0dhVlr0Rzt3o/7+YFFt7hJJHhDlMrRPVt\nN5H3boZfHuQ74o33t04j+rWUN4Tozn9HDJZahmmkZmaMMpEG4dFLNsayhwkBzLFTKin0Iip1\nUrLB0kS2oJatA/yalXAPlnrLNlBgZNzSbS4V+vos9iHuYLjFTuk1aWbwMs5gbatwf6hNJ+ou\n7f/BI9Pjm5Qf+ZcoGpxc427hmKqkESEObiPctEpUl+PHYBEj3niN9RhRaquf9SFvjPVe2GAl\nyDCN1MyMUSbChub0ePZ8kX2KnVJIYa8wZT2dZHQOVkJk82v55miRmKX5PmeIdvJ/bXkAkK9k\n3NI9KkonxLNFsKNRdkqvSTODl3EG63aiDnaH5sehSZzWJl5LcVr8N6PlKPIqTZXTRPmTwWWt\nuHzETatE9ZwvSFB8iDd+mPVjV3l//1re2v3dsMFKkGEaqZkZo0yEl87MjWdv4/EYe3dshRRe\nEFljnKRssDSRzatl5/DoxOcwTTNF+UVtfQaQl2Tc0vGpJffHs7eXEFXaHQx6TZoZvEwzWC0D\niSY6yRFEJ0slLC5KTZhfH/vMOaJgsabOD0neNnl/NVEPr09CJapdIq93Jt8dFAC2wbIuITra\ny2nqQ7QoYrCSZJhGambGKBPhscD3FPmDRP5aTsSlsI/HauqcdGgfrOTI5taym/cQqU34Jk0N\na+fymQOjf0i4ARQYmbZ0QzztRTiapF0fkzVpZvAyzWC9LN6yuzHaQyK5XiqqS5FNv0n3rQsd\nsTTSmY+czElEJX7/+dPi7su9C6WoDhCZ+6KZoDhwDNZqaZ7di0Td90QMVpIM00hNtRly55/g\nIUB7w1POVY6GJ9DYR9nEIsv2M0VOT3fT7fBROYmRzall76nq8UjmWldl1XNwAEXRkGFLd4go\nVe0Lylt4vMgJvSbNDF6mGayJRAe74887O0lOiHnrdP/Fdz334WC/dXboil9/AY/KHewTxMV/\nvAulweKDf3dk/AQgr3EMFm/C4C4ktSbbu7WHDVaSDNNIzcwYZSJCFGWq/IvI3Y+KpXDvRx7v\nLJnGa2dKFrm3Rc4iTIpsdi2Lf8P5ZbG5zTaOwTropu9y81ggL8ispaskKlfl87aPCzmh16SZ\nwcswg9VQTjTdu5gSnpwuWDtjkP/uO13qDVPXiCvtLsZ7qoj6uj8FNotfByP9EqXBOipdfaBw\ncQ3WbUJbzvG434u28q2IwUqUYRqpmRmjDKSJ/NXtYXiFjL2tsUoK5Q94t0UMVlJks2vp7+R2\n/1j1/3k9WF3+ED2/HBQyGbR0Wk3aK0z1mjQzeBlmsHijWr97ifd+fDx6x5eLLhte5rz9CneW\n6c9FeoO22ivEHc8F/8NCv0BpsA4SmTgtp0hxDdZWoaEldsZ8Z2FOyGAlyjCN1FhOt60O807y\n7aBgqSRKtSjyeaKx34MVYVQghZjBspSRza2l/J6rxb8DvrHifLpy+eL7Lq7mtnWFohgULm1u\n6boQlao0OZXcbf/0mjQzeJllsJoPlzf5bKmRO5skdr08fbAtD2fjPd6ZbbW2Xo5n5zjJAUQH\nBt1iSoNVboJzNxXXYPFIsbOkeRTRbCtssJJlmEZqZs4TNZE+4k2rhuV4vot94HOsMbvpI+k2\nlcFiIpHNqaXvaqt5nPg7sjHp2zTeKlriLv/N4nlAXtKmlu5QUbpdkc9DzMs5odekmcHLLIP1\nQtxiKzvGBcuPEYUd7AHp80TqgYTbXH4lfgZ+xYlVFFqPoxLVepKWmIEiwzNYS4nKGsTf+hJK\n8eiKbLCSZZhGambGKBMZltDU/YzcTYxDUrhdXEyRb0syWIwU2exaRn8tEjuOFKmpyd+HN+A6\nu22PAAqDVrd0J4rSVxX5vEet3R+v16SZwcssg3VWvGW7Oune3awne0PQe0Risr7iJ8jdB/l8\nopJPgnyVqO4VeRdk+AAg3/EM1r4Die607DXR4/haNljJMkwjNTNjlInwPlh3xbN/KCXqYq+O\nCElh/7Hkz1Gw0RksKbJJtXzME5JnJ3+hoUQpzHQvSlrb0l2hVsh2kV1lDx3qNWlm8DLKYG0u\ni7dsByb2i/O2tvbQDR/n3O37WLm8wLWxlzPT5ruO/r5qNipRjaVgI1JQbHgGi6d+HmPZGxfZ\ny2gkg6WRYRqpmRmjTGQBdy3Fs5f4xikshdUlRH13BvdpDVYQ2eRanhfereSpxM9cKe7ELKzi\npJUt3VJRelz80w+TNz9Gr0kzg5dRBusm8YqXfiFxN7nNn4q9QiCDONHcV9x2d7T4i8NukAak\n+ZTMNy3rHxQ+5lchKj6UriN2aShWfIP1PvGeMm/bm2BZIYOlkWEaqZkZo0xkC5vw9bHsM/wx\nnIgUuMfrkuBSb7D8yBaqZY5IdwoOqfth4+vyiv2/s2jb/BigEGhlS7ejE6nGrU8WufPslF6T\nZgYvkwxWcz+iQ0PLIHZ6HU77F0w78fjI7bvJOY/XsmZzJ2h0mbKIdQes8q82CI1eac8SPEje\nQzQuquYxIuuK7B4E5C++weJpNDfwD/8/2VeBwdLIMJ3UzIxRRjKRFAe/vVEqlOD0MESksKOa\nqCToYQoMlj6yhWo5X1wc4mmP90u+RvoMerCKg2xaOlbLidFTDFkofZxlXXpNmhm8TDJYz1Ls\nlOVJQgL2ulTeDGZluOwl8uZ1bue910eHt8zi33t9pcOix4rLloYU0Qz5rrio/swdWFstUKQE\nBmsu0XDeWeYt+yowWDoZppGamTHKSHjYhh4K5+3iFV8znXRUCgvFdX9/8xepB0sb2UK17OFz\nTYa7ddSL9EDpZ8Dx4vrTrJ4I5AVZtHQbuVs1cmTll71F3h1OWq9JM4OXSQZrvHjDkaXGvJ7r\nWk7cKBJHfC0X7eVwM99J84wIGiXP8eSdjEqelzIWi4zXHpDPzGGiomqezjXVZf0oIF8JDNa3\nFVT6mn86fWCwdDJMIzUzY5SZ8I5Xqflyzo4RbHr2OBcxKZwq94xLBksb2cK1bD6Yp9O4rmqY\nP/LDrOK2MutnAu1PNi3drVw6Q+5931jDvVruoI1ek2YGL4MMVn0p0YhIXpMIKdUsj+/ZiNe8\nHJR88kuR0c87DozXr1Lved55XO+fwtd/kWvaV000bUz0TK+IqF7l8ep0KxJBIRMYLOu34seg\nv+7GN1haGVp6qZkZo8xkJ5+oVXLBFj9jCbdlXd52r2JS2FBJVPqmeyEZLG1ki9TydiX5XfCP\niWTlM27BGq7klhw9GWhPsmnpWuyrE97wPvrj3zqL656fu5d6TZoZvAwyWDw492A0s5bc88Nf\nr2DtDLnx6XUbN61/6a5xohmkDsu82xqncCn1OK/uiWcfm3mCfXFVuKaZRL1SROF1OCyqurU2\nKxbVHmt/7uwfLVC0SAbL3u4q5c5o8A2WXoZ6qbGcZq2M8dM+EWgfNh3Br77TOQveqW/4YNkM\nPmCLOq70SuPN1c0i5yh3dEee5K6LbNFa+FRVWmAnW3i1M53xyLrP1i+9oFwkByBuFQXZtHS7\nJtgZR9bOf+6VJ+vO5FnvdOgHXqlek2YGL3MM1v4+RBWx1Xsfird+mp1a2ZsiVC2TbpxVES7s\nvCBS02csVOoTPnQ+fnhA6mbVaQOgWJAMVjMfPz/OvfAMVjoZWjqpqY7zEvyUzwPajc0joy96\nyPt+Ybwxa+QZWtc56dAqQk1ki9XCZ+Z0eM1O7vhF6DN9NlqgKMimpWu6pjzy2TFf+YV6TZoZ\nvIr9+QKeEi/zd/Hsof60qW21neUX3+2yb0M3bpqSCgorL94Sq4lPmwgPG8ZFVTZVf6ghKHQk\ng8Wdmv4uIJ7BSitDSyM1M2OUsbQ8XC2/5v510gJlxYDLKg4wa+xkeJuG5MgWq8U+M6en46Ua\nrws+VjpJdVIhKEiyauk2/L5U+uxx8jxkvSbNDF7F/nwBp4uX+c94Nu9B5Fpsa/czl59S0728\nQ8/Dx1791N7YrVvvn3Rsj/IOvY6ZOk+1pzGvVy2tD+dJoqroO+zCx79SfA4UE7LB+sTbBMsK\nDFYrZGglSs3MGGUwjUv+OKwHr91KjZ65TN7ZWDmj5UKRN8TuQo/ug5UU2eK12GfmDHa7WL+5\nd+LAqrKuNeNv2ZSzRwJ5QFYt3Zb7Jw+pKk8dMHD8rDWhAr0mzQxexf58AABQyDRXi19uX7b3\ntwAAtBkYLAAAyGMuFT/0/9reXwIA0GZgsAAAII/h07V6NLT3twAAtBUYLAAAyGdGC4c1cnf6\n+wAAeQUMFgAA5DNreZ774Cca9m/7IP3NAIB8AQYLAADymrnemqtB7f1NAACtBwYLAADymwcr\nYbAAKDhgsAAAIM/5/NqhVR17H399e38PAEDrgcECAAAAAMgxMFgAAAAAADkGBgsAAAAAIMfA\nYAEAAAAA5BgYLAAAAACAHAODBQAAAACQY2CwAAAAAAByDAwWAAAAAECOgcECAAAAAMgxMFgA\nAAAAADkGBgsAAAAAIMfAYAEAAAAA5BgYLAAAAACAHAODBQAAAACQY2CwAAAAAAByDAwWAAAA\nAECOgcECAAAAAMgxMFgAAAAAADkGBgsAAAAAIMfAYAEAAAAA5BgYLAAAAACAHAODBQAAAACQ\nY/4PRK+4IHWLHjQAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 600, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plots_density" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Kaplan Meyer estimates" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "options(warn=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Removed 4 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 3 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Removed 4 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 3 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Removed 6 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 5 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Removed 6 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 5 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Removed 4 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 3 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Removed 4 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 3 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Warning message:\n", - "\"Removed 4 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 3 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Removed 4 row(s) containing missing values (geom_path).\"\n", - "Warning message:\n", - "\"Removed 3 rows containing missing values (geom_point).\"\n", - "Warning message:\n", - "\"Vectorized input to `element_text()` is not officially supported.\n", - "Results may be unexpected or may change in future versions of ggplot2.\"\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n", - "Scale for 'x' is already present. Adding another scale for 'x', which will\n", - "replace the existing scale.\n", - "\n" - ] - } - ], - "source": [ - "stratum=\"sex\"\n", - "plots = list()\n", - "tables = list()\n", - "plots_tables = list()\n", - "expand = expansion(mult = c(0.05, .1))\n", - "for (e in endpoints[-2]){\n", - " #print(e)\n", - " #fit = survfit(Surv(death_cens_time, death_cens)~sex, data = data)\n", - " fit = survfit(as.formula(glue(\"Surv({e}_event_time, {e}_event)~{stratum}\")), data=data %>% select(all_of(c(\"sex\", targets))))\n", - " plot = ggsurvplot(fit,data %>% select(all_of(c(\"sex\", targets))), conf.int = TRUE, ylim = c(0.6,1), cumevents=TRUE, cumevents.y.text = FALSE) #, risk.table =\"percentage\") + scale_color_\n", - " plots[[e]] = plot$plot + ylab(\"\") + theme(legend.position=\"none\") + \n", - " ggtitle(e) + theme(plot.title = element_text(size=facet_size, hjust=0.5)) + \n", - " scale_color_nejm() + scale_fill_nejm() + scale_x_continuous(expand=expand)\n", - "\n", - " tables[[e]] = plot$cumevents + ylab(\"\") + scale_color_nejm() + scale_fill_nejm() + scale_x_continuous(expand=expand)#+ scale_x_continuous(expand=c(0,0))\n", - " plots_tables[[e]] = plot_grid(plots[[e]], tables[[e]], align=\"v\", nrow=2, rel_heights=c(4,1))\n", - " legend <- get_legend(plots[[e]] + guides(color = guide_legend(nrow = 1)) + theme(legend.position = \"bottom\", legend.title=element_text(size=base_size), legend.text=element_text(size=base_size)))\n", - "} " - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [], - "source": [ - "plot_width=20; plot_height=25; plot_dpi=300\n", - "options(repr.plot.width=plot_width, repr.plot.height=plot_height)\n", - "\n", - "plots_f = plot_grid(plotlist = plots_tables, ncol=round(length(plots_tables)/3, 0))\n", - "plots_km = plot_grid(legend, plots_f, ncol=1, rel_heights=c(0.05, 1))\n", - "\n", - "plot_name = \"5_endpoint_km\"\n", - "ggsave(filename=glue(\"{dataset_path}/{plot_name}.pdf\"), plot=last_plot(), width=plot_width, height=plot_height, dpi=plot_dpi, device=\"pdf\")" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAu4CAIAAADq3RRSAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeVgUR/748R5hQAUREcELQUUD3ke8osYDr82TxM1G45V4rUYT47EhibfZ\nJGaJwdXdqNGY3YDHJsY7amIQIlmUeETFWxEPPELwBnQAueb3R/+2nv7CzAAzPTNAv1+Pf9R0\nV1fVNN1dVn+mq3VGo1ECAAAAAAAAAAAAoA3VnN0AAAAAAAAAAAAAAI5DgBAAAAAAAAAAAADQ\nEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAAN\nIUAIAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQ\nAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0h\nQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAC\nhAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFA\nCAAAAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKE\nAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAI\nAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQA\nAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgA\nAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAA\nAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAA\nAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAA\nAAAAAAAAgIYQIAQAAAAAAAAAAAA0xNXZDQAAAABQunuJP6tYmm/PviqWBmjHnvN3VCzt+VZ+\nKpYGAAAAAGXHE4QAAAAAAAAAAACAhhAgBAAAAAA408mTJ3X/88knnzi7OYCDcOQDAADAiQgQ\nAgAAAAAAAAAAABpCgBAAAABlZTQajx079tFHH/3pT39q3bq1r69v9erV9Xq9t7d3QEBAnz59\npk6dumXLlqysLGe3FHCCt956S2et7t27O7v5QBVR7Ez8wx/+UN4SjEZjs2bNlIXs2bPHHk0F\nAAAAnIgAIQAAAMrku+++69ChQ5cuXRYtWrRjx47z58/fv3//yZMnBQUFmZmZt27dSkhI+OKL\nL1555ZVGjRrNmzcvJyfHQmlDhgzR6XQhISEOa3+pKmCTAAA2io2NTUtLK9cmBw8evHbtmp3a\nAwAAAFQQBAgBAABQCqPROHPmzD/+8Y+nT58uS/7Hjx9HRET07Nnzzp075go8evSoqm20VQVs\nEgDAdoWFhRs2bCjXJuvXr7dTYwAAAICKw9XZDQAAAEBFt3jx4s8++0x8fPrpp0ePHt29e/fg\n4GAvL69q1ao9evTo6tWrhw8f3rBhgwizJSUlDR8+PD4+vlq14j9KS0lJefjwoeO+QBlUwCah\nUvvoo4969epV9vxeXl72awygTTVq1JCfZV+3bt3s2bPLuFVubu6WLVskSXJ3d3/y5Ikd2wcA\nAAA4FQFCAAAAWHLr1q0PPvhATuv1+i+++GLChAnF8vj4+Pj4+Dz99NNvvfXW+vXrJ02alJ+f\nL0lSQkLChg0bxo0bVyz/kSNHHNDycqmATUKl1qZNm759+zq7FYCmtWvX7sKFC1lZWRcuXDh6\n9GjXrl3LstV3332XmZkpSVKXLl0OHjxo5zYCAAAATsMUowAAALBk3bp1hYWFcnr27Nklo4PF\njB07NjIyUnxcunRpyTwVMBpXAZsEALCF0WgcNGiQnI6Oji7jVmJ+0WeffdYerQIAAAAqCAKE\nAAAAsOTs2bMiPX78+LJs8tZbbzVp0kSn0wUFBTVr1kx+FEOSpOjoaJ1Op9PpVq1aJS9JTk7W\n/U/9+vVFCYcOHRLLExISJEl68ODBzJkzmzZt6u7u7ufnl5ycXLLe3377LTIy8oUXXmjatGnt\n2rVdXV1r164dHBw8fPjwL7/80mAwlNyk7E2ysaIq78qVK4sXLx4yZEhgYGCtWrVcXV29vLyC\ng4NffPHFFStW3L17tyyF/Pzzz7NmzercubO/v7+bm5uvr2+rVq2GDx++cePGR48elcyfn5/f\nvn17+Y/l4uJy7NgxC4X/7W9/E3/ZadOmWfk9naG8u0V27Ngx8X3j4+PlhefPn584cWJQUJC7\nu3vNmjVbtmz5+uuvnzt3TrlhUVHR1q1bBw8eXK9ePb1e7+Pj061bt8WLF4sT2QIHnBrW7Q3t\n4ExUys3NHTp0qJzetGlTWeYLvX379r59+yRJ0ul0YWFhZayIIx8AAACVkhEAAAAwr1+/fuK/\njo8ePSrjVlevXs3Kyiq2MCoqysL/S/39/UXOpKQksXzPnj2ZmZmhoaHKzElJScqS8/Ly3nvv\nPb1eb6F8X1/fnTt3Wt0kGyuy3d2D8Sr+U7FhOTk5b7zxRsk3TSp5eHgsWbKkqKjIXCHnz5/v\n3r27hRLq16+/adOmkhueOHHC1fX/vzehc+fOhYWFJstPTU2tWbOmnK1p06ZlP5LLRRnt2LFj\nh+0FWr1bjEajMuy3e/duo9H4wQcf6HS6koW4urpu3LhR3iotLa19+/Ym62rcuHFycrK5ptp4\naihP+YiICNX3hop2n7ut4j8VG8aZKIgzsWXLlg8ePBAN27x5c6nbLlu2TM7cpUuXkydPii8u\nn0QlaefIBwAAQNXDE4QAAACwpHbt2iJ96dKlMm7VtGnTWrVqFVvYsGHDsLCwsLAwDw8PeUnN\nmjXD/kc5mVuNGjVE2mAwfPTRRxcuXDBXl9FofPnllz/99FP5xYcyLy+vJk2aeHt7iyX37t17\n6aWXtm7dal2TbKyoqjIajUOHDl29enVRUZG8xNXVNSAgoHnz5sojx2AwzJ49Ozw83GQhsbGx\n3bp1O3z4sFjSuHHjTp06tWjRwsXFRV6Snp4+cuTIJUuWFNu2Y8eO8+bNk9PHjx9fvXq1ySqm\nT5+enZ0tSZJOp/vqq688PT3FqurVq+us9eOPP5Zrd5WLLbtFkiQ3NzeRzsnJWbZs2fvvv280\nGnU6XZ06ddzd3cXagoKCiRMnJicnP3z4sHfv3qdOnZIkydXV1cfHR1QkSdKtW7deeeUVMeGw\nkgNODRv3RpXHmWiyuoKCgjp16vTv31/+WJZZRsX8oiNHjjR5tCtx5AMAAKBSI0AIAAAAS55+\n+mmRXrRoUak3TC0YNGhQXFxcXFxcUFCQvCQgICDufzZv3ixyKp/GuH///hdffCFJUmho6OzZ\nsyMjI+fOnevj4yMyrF69evfu3XLaz89vzZo19+/fz8zMvH79+sOHD1NSUqZMmSKvNRqNkyZN\nevjwoRVNsrEix8h/eP/cx7Pv/Hefw2pct26dPB2fJEldunSJjY3Nzs6+cePG5cuXMzIy0tLS\nPvvsM3GjfPny5YcOHSpWwtWrV1955RV5irxq1arNmDHj2rVrN2/ePH78+KVLlx48eLBq1SpR\nwpw5c7Zt21ashAULFoiH3ubPn5+enl4sw+7du8Ufbtq0aX379lXlu9uV7btFeRJduHBhwYIF\n3t7eq1atysjIePDgQXZ29sGDB9u2bStnyMvLW758+Zw5c65cudKpU6d9+/bl5ubev38/Kytr\n48aNIth/6tSpH374oWRr7X1q2L43HOzOo7zXvj619fTvDquRM9EkOVz62muvyR9jYmJKtkrp\n7Nmz8lODLi4uI0eONBqNlsvnyAcAAEDl5pTnFgEAAFBZpKamKiMNgwYNunz5so1ltm7dWi7t\nqaeeMpnh+vXrokb54Y/w8HBz0+I1a9ZMzlmtWrUTJ06YzKOc+zEyMtKKJqlVkdXKMnHobzs3\nx/UKPb3oLw6bYlS8o6tBgwbmZgtMSUmpW7eunG3UqFHF1g4cOFBepdPpxESXxZw/f97Ly0vO\nFhgYmJOTUyxDUlKSOEpHjx6tXJWdnS2iv82bNzcYDMW2VT5LV1579+5VFqXiFKO275YbN26I\nxtSsWdPT0/PkyZPFSrhx40b16tXlPJ6enjqd7plnnsnOzi6WbcOGDaKoyZMnl2yJ7aeG5YkW\nVTlI1FKWiUPXHrohvf39K+tPOGyKUc5EZVHiYAsMDJSrFs3+9NNPLezGd955R842ZMgQo9H4\n66+/iipMTjGqqSMfAAAAVQ9PEAIAAMCSwMDA999/X3zct2/fU0899cILL0RFRSkjEOpSvkZr\n//79ffr0iYyMNPn6tKtXr169elVOP/vssx07djRZ4Jw5c0Q6Li7OiiY5rKLKRbzoLiwsTDlb\noFJwcPDcuXM7d+48bNiwNm3aKFedOHEiNjZWTo8bN27MmDEmSwgNDf3b3/4mp69fv75ly5Zi\nGTp06CCmN/z666/3798vVn300UepqamSJOl0uqioKPH+M+H69eu/W0tMXaguVXaL8nzJzs5e\nuHBhyZcLBgQEDBo0SE4/fvxYp9P9+9//Vk7wKxsxYoT448oTkCrZ+9RQ6yCp2jgTLeycGjVq\njBw5Uk6vW7fOXLbCwsKvv/5aTo8fP95CgTKOfAAAAFR2rs5uAAAAACq6+fPn16xZ891335Xn\nFy0sLNyzZ8+ePXskSQoICOjVq1evXr169uzZtm1bZWBPRfPmzTMZHZQkqVmzZrm5uenp6enp\n6eI9giU1btw4ICDg5s2bkiRdu3bNijY4rCIL8jIf5ly3VGbBoyxJkp7cTs88fcJcHlev2h5B\nzdVq0pMnT+SEPAmeOeHh4SZfe6a8Wf/ee+9ZKGHixInvvfee/Pay7du3izkDhfnz5+/cuVMO\nX7355punT592c3O7ePHi3//+dznDjBkzevfuXbJkf39/C/U6hYq7Rebm5jZ58mSTq9q3b79r\n1y453adPn5CQkJJ59Hp9aGio/DTVrVu3iq2196mh+t6w3Z3HeZfuPraQ4WFOgSRJNzNyD157\nYC6Pr4dbiJ/pSJ4VOBMtmzBhwtq1ayVJOnfu3LFjx5RTZwtxcXFpaWmSJHl7ew8dOrTUMjV4\n5AMAAKCKIUAIAACA0v3lL3955pln3n///ZiYGOXymzdvfvPNN998840kSV5eXgMHDnz++edf\nfPFF5TsCbeTp6Wn56RB3d/fAwMDAwEDL5dSrV0++RWv1qwEdVpE52alXrn/9VSmZdFLm2ZOZ\nZ0+aW+/Vqm3ToDfUalJQUJD8Nffu3fvrr7926dKlXJsnJCTIiWbNmoWGhlrIWaNGjd69e8uH\nn9hKSa/XR0dHd+3aNT8/Pzk5OTIycv78+dOmTcvLy5MkqUWLFhEREeVqm42OHTvm6lqO0VbX\nrl39/PzktIq7RdapU6c6deqYXFW/fn2R7tevn7kSRDaT8Se7nhqq7w3bnUt/tOy/pUd6DqU+\nPJRq9ps+E1RnbphqAULORMu6d+8eGhp64cIFSZKio6NNBgjXr18vJ0aOHCmm3rVMa0c+AAAA\nqhimGAUAAECZdOvW7ccff0xKSpozZ85TTz1VMkNWVta2bdsmTJgQEBDw5ptvXrlyRZV6O3bs\nWK5AiznizVhFRUW2l1YRKvr/dP/3n8kldiNmvcvLy+vTp8+8efPEnHulysnJOX36tJxu3rz0\nhxrFpIgPHjxIT08vmaFDhw7z58+X0x9//PHHH38sz3BYrVq1qKiokjNn2tXHH3/8QnkcPXpU\n3lD13SJJUqtWrcxtrgyEmHx8sFg2OcxjHStODXvsjSqJM7FUYtbQb775puRh/OjRo507dxbL\nqRaOfAAAAFRMPEEIAACAcujQoUOHDh0iIiJ+++23gwcP/vLLL4mJiadOnSooKBB5srOzV69e\n/dVXXy1duvStt96yscagoKCyZHvy5MmuXbv27dt35syZ1NTUrKysnJwcG6t2bkVlZbR7FNCC\nGTNm7NixIzExUZKknJyciIiIiIiIkJCQ/v9j7sE1SZLu378vbpcnJiaW+ofOysoS6dTUVOWj\nb8K8efN27tx58uTJnJycBQsWyAtnzZrVs2fPcn4zp7HHbvH29ja3uXJa4DJmM8cep4Y99kaV\nxJlYqrFjx86fP7+goODBgwe7d+9++eWXlWu3bt0qT9EZEhLSrVu3cpXMkQ8AAIBKigAhAAAA\nrNGoUaMRI0aMGDFCkiSDwXDo0KHY2Nhdu3ZdvHhRzvDkyZPp06cbjcbp06fbUlHt2rVLzfP1\n11+/++678uuj7MphFZnk2SK05Yw5FjLkZzy8tuELny7P+HZ/1lweF3c1H9/R6/UxMTFTp07d\nuHGjWHjx4sWLFy9+/vnnLi4u3bt3Hzly5JgxY0rGJ5Sz7WVnZ1+/fr3s9SrvhhdrT3R0dJcu\nXfLz8+UlLVu2XLx4cdlLdjo77ZaybF7GbCbZ6dSwx96w3dONay8famnKx3uG/I/jLg9s6ftc\naD1zeTzd1RyMcyaWqn79+kOGDJHfnhsdHV0sQCjmFy3v44OaOvIBAABQxRAgBAAAgK08PDwG\nDBgwYMCAJUuW7N+/f9asWWfOnJFXvfPOO0OHDm3SpInVhbu7u1vOsHjx4oULFyqXBAUFNWrU\nqG7durVq1RILY2Ji7t27Z3UzHFmROa41PVxreljIIAf/XGt51Whk/Q4vLw8Pjw0bNkyfPn3l\nypXfffed8t50YWFhYmJiYmLiggULwsPD582b5+LiItYaDAarK338+LG5VcHBwf7+/rdu3ZI/\ntmjRwilTGu7YseOPf/yjFRvaabfYlf1OjYq5N2pVd61V3dJQ2sPtiSRJdWrqg30tnbDq4kws\n1YQJE+QA4Y8//nj79m1/f395+Y0bN/773/9KkuTi4vLaa6+VvUCtHfkAAACoYggQAgAAQE39\n+/c/fPhwWFjY4cOHJUnKy8tbu3at/R4c+emnnxYtWiQ+Tps27b333jMZj+zevbstcTuHVVRJ\nde3adf369fn5+QkJCT/88MO+ffvOnj0r1mZmZi5atOjIkSNbt24Vb7NT3kB/7bXXxBM8Npoz\nZ46ISUiS9P3332/cuPHVV181l//+/ftGo9G6umrXrm3LU3cm2Wm32I9dT41KtzecjjPRghde\neMHX1/fevXsFBQX/+c9/3n77bXn5hg0b5KoHDhzYsGHDMlbKkQ8AAIDKjgAhAAAAVFazZs3I\nyMjevXvLHw8cOGC/upYsWSLuKS9fvnzWrFnmchYWFlaKiio1vV4fFhYWFhYmSVJ6evqePXvW\nrVt38OBBee3333+/dOlS8UIyLy8vsaFac+IlJCSsWrVKTjdp0uTGjRuSJM2YMSMsLKxBgwYm\nN2nUqNGTJ0+sq27v3r1Dhgyxbltz7LFb7Mqup0al2xsVBGeiSXq9fsyYMf/85z8lSYqOjlYG\nCOVEueYX5cgHAABAZVf6q+YBAACA8urSpYtOp5PTt2/ftlMtBoPhp59+ktNNmzadOXOmhcy2\nvCPKYRXZyM23XvtPPm8w6EVnNUCpfv36kyZNOnDgwLZt28SzSp988kl2drbIIOaPvXz5su01\nZmdn//nPf5Zv2ffo0eOXX36RX2D58OHDKVOm2F6+Y6i+W+zK3qdG5dobQgMv991/fvq1zo2c\n3RBJ4kz8vyZOnCgnzpw5c+rUKUmSjh49mpycLEmSt7f30KFDy1gORz4AAACqAAKEAAAAMK2g\noGDdunXTp0/v0aNH165dy7VtYWGheLSiZs2admidJEnSrVu3ioqK5HTfvn1FSLKkS5cu2RK3\nc1hFVdKf/vSnuXPnymmDwXDs2DE5rdfr27VrJ6cvXbpk+1My8+bNk++k6/X6tWvXNmrUKCIi\nQl61e/fuyjJHn+q7xa7sfWpUrr1RwXEmSpLUrl27Tp06yent27dLkrRp0yb548iRI0UAtVQc\n+QAAAKgCCBACAADANFdX1w8//HDlypWHDx/+9ddff/7557Jvm5iYKNJBQUGqt02WmZkp0soJ\n2UpavXp1paioMrpx44Y8f6AFPXr0EGnlzhTz0Obn53/33XeWC0lOTrZwlzwxMXHFihVy+t13\n323Tpo0kSVOnThVVz5w50+Rt+tzcXKO1VJ9fVKbibrE3B5walWhvOBdnYhlNmDBBTnz//feS\nJO3YsUP+WK75RTnyAQAAUAUQIAQAAIBZr732mkhPmjTp7t27ZdnqyZMn4u1WkiS98MILxTKI\nhy3EHHfW8fb2FunU1FRz2ZKSkj7//HPxMScnp2Qey01SsaKqJDw8vF69eoGBga+++qrlnPfu\n3RNpPz8/kVbekY+IiLDwpq7c3NwBAwb4+vqGhYXJz/0o5eTkTJgwQX6gJzg4eOHChfJynU63\ndu1avV4vSVJGRsbrr79exq/mXGrtFgdwwKlRifaGs3Amlsvo0aPl2TuTkpIOHDggH7chISHd\nunUreyEc+QAAAKgCCBACAADArPDw8Pr168vpK1eudO3aNS4uzvImKSkpAwcOPHr0qPwxICBg\n+PDhxfKIadzS09MfP35sdfOaN29eq1YtOR0fH5+enl4yz7lz555//nm9Xv/MM8/IS7Kzs+/f\nv1+uJqlYUVXSoEEDOd5w4MCBVatWmctWUFCwcuVKOe3l5dW+fXuxqm3btgMGDJDTFy5cePPN\nN8XMtEr5+fljx469detWfn7+/v37S94oX7BgQUpKipxes2aNcp7ANm3ahIeHy+nvv/8+Ojq6\nnN/SCdTaLQ7ggFOjEu0NZ+FMLBcfH58XX3xRkqSioqL3339fXliuxwcljnwAAABUCQQIAQAA\nYFatWrW2bt0qP2whSVJqaurAgQM7duz417/+defOnadOnbpy5cr169fPnz8fGxv7j3/84w9/\n+ENISMiBAwfk/G5ubv/61788PT2LFdukSRM5kZ+fHx4efvfu3cLCwtTU1IcPH5areS4uLi+9\n9JKczsrKGjZs2NWrV8XatLS0Dz/8sEuXLmlpaUuWLOnTp49Y9eWXX5arSSpWVJVMmTLF399f\nTr/11lvjxo07dOhQfn6+yGAwGPbu3dunT59ffvlFXjJ16tRib/lau3atOELWrl07YMCAgwcP\nivvgubm5W7Zs6dGjx5YtW+Qlffv2LRZyPnTo0D/+8Q85PW7cuLCwsGLtXLRoUbNmzeT0rFmz\nfvvtN9u+tyPYvlscwzGnRmXZG87CmVheEydOlBPx8fGSJLm4uCgfly8LjnwAAABUBVbP8g8A\nAACNiI+PF88Rlp2Pj09MTIzJAtesWWNyk9jYWDnDzZs3xcLw8HALbUtJSVEGIF1cXFq0aNGr\nV68WLVpUq/b/fww3fvz4oqKiPXv2KOtq3bp1t27dkpOTy9gktSqy2t2D8Sr+s7Exwv79+0X8\nWOyZhg0bBgYGisdrhJ49e2ZnZ5csJDY2tlgU2cPDIzg42M/PT0z9KmvVqtXt27eV2+bk5ISE\nhMhrfX197969a7KdMTExopA//OEPan39YqZNmyZq2bFjh42l2bJbjP/3JJo9e7a5WqKiokS2\n+Ph4c9lGjBgh53F3dy+2SpVTIykpSSyPiIhQfW+oaPe52yr+U6tVnIlK4kwMDAw0maGwsLBR\no0aiJUOGDDGZ7ddffxV5du/eXWyt1o58AAAAVD08QQgAAIBS9O3b98yZM++8846Hh0dZ8teu\nXXvGjBkpKSmDBg0ymWHcuHFt2rRRpW3BwcHbtm3z8vKSPxYWFqakpBw8eDAlJaWoqMjFxWXh\nwoVRUVE6nW7w4MHt2rUTG547d+7IkSN5eXllbJJaFVUx/fr1S0hIaNWqlVhSWFiYlpZ2/fr1\nR48eiYWurq6zZs2KjY2tUaNGyULkx2J69eollhgMhsuXL9+5c8f4v2dldDrdhAkTEhMTlS9O\nkyRp0aJFFy9elNPLli3z9fU12c5BgwaNHj1aTu/du/err76y5ts6li27xZEcc2pUlr3hLJyJ\n5VKtWrWxY8eKj+WdX1TGkQ8AAIDKztXZDQAAAEAl4OvrGxkZ+cEHH8TFxe3fv//cuXOXL1/O\nyMgwGAw6na5WrVpeXl7NmjXr0KFDz549n3vuuWLPshRTvXr1+Pj4hQsX7t69Oz09Xa/XN2jQ\noHPnzk2bNrWibYMGDUpOTl65cuWPP/54+fLlx48fe3p6Nm/evH///pMnT27ZsqWczdXVde/e\nvW+//XZcXFxWVla9evV69eol5uUrS5NUqajq6dq169mzZ2NiYnbv3n38+PHU1NTMzMz8/HwP\nDw9fX982bdr06dNn5MiRDRs2tFBI+/btDxw4EB8fv2vXroSEhLS0tAcPHri6unp7e7dq1apX\nr15jx44teXgcPXp02bJlcjosLMzyJIHLly/fu3evPGfs22+/PXDgwICAANu+ut1Zt1sczzGn\nRmXZG87CmVguEyZMiIiIkCTJ29t76NCh1hXCkQ8AAIBKTWc09ZprAAAAABXKvcSfVSzNt2df\nFUsDtGPP+TsqlvZ8Kx75AgAAAOAcTDEKAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDmGIUAAAA\nAAAAAAAA0BCeIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAA\nAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAA\nAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAA\nAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BJSlS8AACAA\nSURBVBAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAA\nAAAADSFACAAAAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAA\nAADQEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAA\nAAANIUAIAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAA\nANAQAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAA\nAA0hQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA\n0BAChAAAAAAAAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAA\nDSFACAAAAAAAAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQ\nEAKEAAAAAAAAAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAAN\nIUAIAAAAAAAAAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQ\nAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0h\nQAgAAAAAAAAAAABoCAFCAAAAAAAAAAAAQEMIEKLqOHz4sO5/li5dqnr5J0+eFOV/8sknqpcv\n3Lx5c9q0aS1btvTw8HBzc/P391+0aJG8ysJ3dFjzbGmJgxtpkr2PEwCAxu3Zs0d0NNHR0c5u\nDgCgfLiMOwXDNACoyCx0jlXmfiygTa7ObgCA/+PUqVP9+vV7+PChWHLnzp2rV686sUkAAAAA\nAAAAAKAqIUAIVCxTp05VRgddXFyqVeNJXwAAAAAAAAAAoBoChHC+IUOGxMTEPPXUUxcvXrSl\nnPr160+bNk1Od+zYUY2mOdrt27cPHz4spz09PaOiol566SUXF5fs7Gx5YcX5jhWnJSVZPqIq\ncssBAAAAoEpimAYAVZLWLuBq3ccGKggChHAyo9F49OhRVYoKCgpauXKlKkU5y40bN0R6woQJ\nw4YNk9M1a9aUExXnO1aclhRT6hFVYVsOAAAAAFUSwzQAqKo0dQFX8T42UEEwdSGcLCUlRTmj\npsbdvn1bpNu1a+fEllReHFEAAAAAUKEwTAMAVAF0Z6h6CBDCyY4cOeLsJlQgBQUFIu3p6enE\nllReHFEAAAAAUKEwTAMAVAF0Z6h6CBDCybiwQl0cUQAAAABQoTBMAwBUAXRnqHoIEEIFv/32\nW2Rk5AsvvNC0adPatWu7urrWrl07ODh4+PDhX375pcFgKLlJdHS0TqfT6XSrVq2SlyQnJ+v+\np379+iLnoUOHxPKEhARJkh48eDBz5symTZu6u7v7+fklJyfLOQ8fPixyLl26VMXW2tuaNWvk\nZr/00kti4ahRo8TXefXVV+WFZfyOOp1OTpw8efIvf/lLx44d/fz83N3dGzduHBYW9tlnnz16\n9MjkhqrvbevY9YgqY8sLCwt37NgxZcqUtm3b+vv7u7m5+fj4tGjR4o9//OPKlSvv3LljbsNj\nx46J8uPj4+WFDx48iIiI6Nq1q7e3t16vr1u3bufOnd95551r165ZuY8AoBLKy8v75ptvRowY\n0bZt27p167q7uzdo0GDAgAGRkZEPHjwodXOrr8wxMTHiyrxv3z554YEDB8aNG9e2bdt69epV\nr169SZMmYWFha9asMddFCkajcfv27cOHD2/WrFnNmjV9fHzatGkzfvx4cc0HAFRkKl7Gf/75\n51mzZnXu3FnulXx9fVu1ajV8+PCNGzda6E1MjhfOnz8/ceLEoKAgd3f3mjVrtmzZ8vXXXz93\n7pxyw6Kioq1btw4ePLhevXp6vd7Hx6dbt26LFy/OzMx0cGvLPrpRfZhWAYfzAFAF2NI5OvIC\nbvUNz2LK2yeWvTuzsaJirly5snjx4iFDhgQGBtaqVcvV1dXLyys4OPjFF19csWLF3bt3y/Jl\ngVIYARvk5eW99957er3ewjHm6+u7c+fOYhtGRUVZ2MTf31/kTEpKEsv37NmTmZkZGhqqzJyU\nlCTnPHTokFgYGRmpYmtLtiQiIkKlXWg0Go2rV6+20CRJksaMGVPqd1Q279NPPy0oKJg6daq5\nAgMCAn7++WfL39HqvW1hR5W6Dx1wRJV6nBiNxn379oWEhFgo0MPDY9GiRQUFBSW3VQ7jd+/e\nbTQaN2/eXLNmTZPl6PX6r776ymQbAKCKiY2NDQoKsnBdXbFihYXNbbkyyz95kW3atMlyFxkU\nFJSYmGiuGb///nu/fv3MbTto0KCMjIzdu3eLJVFRUbbvOgCAWtS6jJ8/f7579+4WeqX69etv\n2rTJ5LYlxwsffPCBuOOp5OrqunHjRnmrtLS09u3bm6yrcePGycnJFr61uq0t1+hGxWGajcN5\nAIA5NnaOjrwfa/UNT8G6PrHs3ZmNFQk5OTlvvPFGtWqWHu7y8PBYsmRJUVGRhe8LlMrVwkEG\nWGY0Gl9++WVlDyFJkpeXl7e3d1ZWVkZGhrzk3r17L7300ubNm4cNGyayNWzYMCwsTJKkw4cP\nyz8SqVmzZo8ePeS1Pj4+ImeNGjVE2mAwfPTRRxcuXHBwa+1N/p2LJEl37949ffq0vLBNmzb+\n/v4iXa4CXVxcpk+fvmbNGvmjXq/39PTMyMgwGo3ykps3bz7//PP//e9/O3XqpNxQrb1tHccc\nUaWKioqaPHlyYWGhWBIQEFCvXj2DwXDt2rW8vDxJkgwGw4cffnj27NlNmzYV+y+Om5ubSOfk\n5GzatGnMmDFFRUXyKk9Pz6ysLPGyyfz8/EmTJrVo0aJXr15lbyEAVDobNmyYMGGC8tLq4uKi\n1+tzc3PljwaDYfr06VeuXFm+fHnJzW28Mru7u4v0o0ePwsPDRRcpP6ihfM98amrq4MGDf/nl\nl7Zt2xZrxqNHj4YMGXLq1CmxpE6dOk2aNMnLy7t+/Xp2dva+ffuee+659957r5y7BwDgCGpd\nxmNjY19++WXlD/8bN27s5+f36NGjq1evyr1Venr6yJEjU1NTZ8+eXWzzYuOFZcuWvf/++5Ik\n6XQ6b2/v7OzsJ0+eyGsLCgomTpz49NNP+/n59e7d+8qVK5IkyU8PZGZmim7x1q1br7zyyvHj\nx11cXOzd2vKObtQaplXk4TwAVGr2HuOoewG3+oanzOo+sbzdmY2dr9FoHDp0qJj8RpIkV1fX\nBg0auLm53bt3T8wcYDAYZs+enZ6evmzZMgs7DSiF82KTqPTEU9WSJPn5+a1Zs+b+/ftibUpK\nypQpU0SG2rVrP3jwoGQhrVu3ljM89dRTJmuRR0Gyzz//vFatWpIkhYaGzp49OzIycu7cudev\nX5dzWv7Fiu2ttd8ThMKOHTtEFd98803JDGV8bm/EiBGSJLm4uLz55psnT56Uf0uSm5u7c+fO\n4OBgka1jx47Ffmaiyt62+glCxxxRlo+Tw4cPi3F1tWrVwsPDb968KdYaDIaoqCgRuJUk6f33\n3y9WQmpqqvI71q5dW6fTTZo06eTJk3KGJ0+exMXFtWvXTmTr16+fyaYCQNVw5MgREbFzd3f/\n61//evny5cLCQqPR+Pvvvy9btszT01NcEr/99ttim9t+ZT527JhYK8/a7eLiEh4efuHCBTlD\ndnb2t99+26RJE5GtTZs2JX+J+Ze//EVkCAgI2LNnj3hgMTc3d/PmzXIJAwcOFNl4ghAAKg5V\nLuNXrlzx9vYWvdKMGTOuXbsm1mZmZq5atUpkkCRp69atxUpQjhc++OCDGjVqeHt7r1q1KjMz\n02g0FhYWHjx4UPkjlSlTprz++uuSJHXq1Gnfvn1ymw0Gw8aNG+XxmmzXrl0lv7K6rbVldGPj\nME2VoSIAoCTbO0dH3o+1+oanUY0+0ViG7kyVipQPLHbp0iU2NjYvL0+sTUtL++yzz5Ql/PLL\nL+YaA5SKACGs16xZM3GxO3HihMk806ZNs9BJGMtwYb1+/boooX///pIkhYeHm3x62nKHZHtr\nK1GAUJIknU5nsoS7d+8qb4Du2LFDuVaVvW11gNAxR5SFlhcVFYnNJfN3dS9cuODl5SXncXNz\nU3bzRqPxxo0bogQPDw+dTifmBVK6c+dOnTp1xB/rzp07JusCgCpA/HjT1dU1Pj6+ZIaffvpJ\nzJ3SpEkT5TShqlyZi3WRkiRt2bKlZCHp6enKt0cUG6elpaWJJxG9vLwuXbpUsoSbN282atRI\nWREBQgCoINS6jIs7pOb+n280Gs+fPy96pcDAwJycHOVa5XihZs2anp6eItimzFO9enU5j6en\np06ne+aZZ7Kzs4tl27Bhgyhq8uTJJVuibmttGd3YGCBUZagIAChGlc7RkfdjJWtveBrV6BON\nZQsQ2l6R/LSiJEkNGjR49OiRyRJSUlLq1q0rZxs1apS5xgClsjSPLWDB1atXr169KqefffbZ\njh07msw2Z84ckY6Li7OiIuVsy/v37+/Tp09kZKTJNzRY4LDWVhyjRo0aOXJkyeW+vr4ff/yx\n+Lh582blWlX2tnUqwt8oPj5evGPjueeeGz9+vMlsISEh8+fPl9N5eXnr169XrlXuLoPB8Prr\nr48ZM6ZkIfXq1Rs1apScNhqNJ0+etLn5AFAR/fzzzydOnJDTb7zxRt++fUvm6d+/v7jk3rhx\nIyYmRqxS5cpczOjRo01OXOPv7//JJ5+Ij5s2bVKu3bZtm5jzbfr06S1atChZQuPGjZcuXWqh\nagCAs6hyGT9x4kRsbKycHjdunMn/50uSFBoa+re//U1OX79+fcuWLcq1yvFCdnb2woULS75c\nMCAgYNCgQXL68ePHOp3u3//+t/J9ELIRI0aIp/CVs8PZqbXOGt1UhKEiAFRJ9h7j2OMCbt0N\nT1X6xLJQpSIxBA4LC1NOt6MUHBw8d+7czp07Dxs2rLyvpgKUCBDCSs2aNcvNzU1NTT18+PCK\nFSvMZWvcuHFAQICcvnbtmu31zps3z4p4lbNa60TKKQKKGTFihHir/I8//mihEOv2tnUqwt9o\n48aNIq38+VJJEyZMEPPdffvtt+ay6XS6kjOJC126dBFp5bObAFCVKC+SFl4m/8orrzRu3LhD\nhw4DBgwQ71SQ7HBlliRpxowZ5laNHDlSdJFxcXHyO5Zke/bsEWl5nlKThg8fLn7ICQCoOFS5\njK9bt06kLb+NaeLEiaJD2b59u7lsbm5ukydPNrlKGTXs06dPSEhIyTx6vT40NFRO37p1y96t\nddbopiIMFQGgSrL3GMceF3Drbniq3ieao0pFImqrfIthSeHh4ceOHduyZcu8efPK205AIEAI\n67m7uwcGBnbr1s3y7xTq1asnJx4+fGhjjZ6envK8l1ZwfGudqEGDBk8//bS5tXq9vnv37nL6\n4cOHaWlpJrPZsret4/S/kZgVwd3dXTm7usk2iN89Xbx4UX5BcUmtW7du2rSpuUIaN24s0pa7\nfACovH766Sc54e/v36pVK3PZBg8efPPmzaSkpNjYWPEIgmSHK3OjRo26detmrhB3d3dxfzMj\nI0N5s1U8meHn52fyLq3MxcVlwIABFtoJAHAKVS7jCQkJcqJZs2YiMmdSjRo1evfuXWyrkjp1\n6iRm5ixGOet1v379zJUgspUcUKjeWieObpw+VASAKskBYxx1L+BW3/BUvU80R5WKgoKC5MTe\nvXt//fXX8rYBKBcChLA7vV4vJ5Q/w7dOx44dXV1dbW6RJSq21omUr4g3qXnz5iJ98eJFk3kc\nsLetY6e/kcFguHTpkpwOCQkRtZgjbnMXFRWdOXPGZJ6SkwUpiR8KSYofBwFAVfLkyZMrV67I\naZPz1Vhmjytz586dLRfSsmVLkRaNz8jISE9Pl9PBwcGWS1C+NBEAUBGochnPyck5ffq0nFaO\np8wRd0IfPHggai/Gwk9nxDsIJUmycNNWZMvLy7N3ayv+6KZqDOcBwDEq1BinjBdw62542qNP\nNEmtisTEpHl5eX369Jk3b56YqRVQXUW8+4/K5cmTJ7t27dq3b9+ZM2dSU1OzsrJycnLsVJf4\nAYXVHNlaJyq1X1e+Xvj+/fsm89i+t63jrL/R77//Lv4XYuGHsUJgYKBIm/vvgo+Pj4USlG98\nBIAq6ebNm+LS2rBhw/Jubo8rc6m9m7KLvHPnTsnSlBlMEtPjAAAqCFUu4/fv3xe9UmJiYqkd\nSlZWlkinpqYqnwgUvL29zW2uHCyUMZu9W+v00Y1GhvMA4BiOHOOodQG37oanPfpEk9SqaMaM\nGTt27EhMTJQkKScnJyIiIiIiIiQkpP//mJt+ALACAULY5Ouvv3733XfNzVGputq1a9uyuYNb\n60Sl7ijlrzsfP35sXSH24MS/kbJXNvcGYCUPDw+T2yq5ubnZ3jAAqLyUM4wpu54ysseV2fLN\nzWKFiHlKlX1lqV9EWQIAoCJQ5TKunPQsOzu7XK/ZM9crlfpwfLmyKdmjtc4d3WhnOA8AjuGw\nMY6KF3Drbnjao080Sa2K9Hp9TEzM1KlTN27cKBZevHjx4sWLn3/+uYuLS/fu3UeOHDlmzBgi\nhbAdAUJYb/HixQsXLlQuCQoKatSoUd26dWvVqiUWxsTE3Lt3T5Ua3d3drd7W8a11olL7deWe\nNDf9iy172zrO/RtlZ2eLdI0aNUrNr5zzR7ktAEDIzc0VaStubtrjylzqzU1lBjFdm/L3reUq\nAQBQEahyGTf3dtuyMPejTPupXK0tlaaG8wDgGI4Z46h7AbfuhqfD+kQVK/Lw8NiwYcP06dNX\nrlz53XffKcOHhYWFiYmJiYmJCxYsCA8PnzdvnouLi9X1AgQIYaWffvpp0aJF4uO0adPee++9\nJk2alMzZvXt3p/8fvXK11nb5+fmWMyiDglY80mEPTv8bKX8MVZaAnzJPWZ5rAQANsvF1RPa4\nMpfaDGUGEZVUjjOLveSpJFuGhQAAe1DlMq68j/naa6+tX79elbbZSeVqrWVOHyoCQJXkgDGO\n6hdw6254OqxPVL2irl27rl+/Pj8/PyEh4Ycffti3b9/Zs2fF2szMzEWLFh05cmTr1q3KH8sC\n5UKAEFZasmSJ0WiU08uXL581a5a5nIWFhY5qlFmVq7W2K/XnLRUwuOX0v5HyxR5l+X2Q8v9G\nTpmOFQAqPuXlMSMjo7yb2+PKXK4uUkQolX1lqaHKzMxMyxkAAA6mymXcy8tLpMs14ZhTVK7W\nWub0oSIAVEkOGOOofgG37oanw/pEO1Wk1+vDwsLCwsIkSUpPT9+zZ8+6desOHjwor/3++++X\nLl26YMECtaqD1tj9JdKokgwGw08//SSnmzZtOnPmTAuZnf6SgMrVWlXcvHnTcobffvtNpMv+\nrl37qQh/o/r164tH8q9du1Zq/qtXr4p0qS9zBgBtatSokZhZ9MaNG+Xd3B5X5nJ1kaKQunXr\nmsxgUkpKiuUMAAAHU+UyXr9+ffGwxeXLl9Vqm51UrtZaUBGGigBQJdl7jGOPC7h1Nzwd1ic6\noKL69etPmjTpwIED27ZtE08NfvLJJ7z8CFYjQAhr3Lp1q6ioSE737dtXp9OZy3np0iWn/x+9\ncrVWFefOnbOcQdlLhYSE2Lk5pasIf6MaNWq0atVKTl+8eLHU2RXOnDkjJ9zc3Nq0aWOPJgFA\nZafX61u2bCmnz58/r3zLRUnJycnye9dv3bolL7HHlbnULlI59G3evLmc8Pf3F48zljrSO3Xq\nlOUMAAAHU+Uyrtfr27VrJ6cvXbpUwR/Lq1yttaAiDBUBoEqy9xjHHhdw6254OqxPdGTn+6c/\n/Wnu3Lly2mAwHDt2zH51oWojQAhrKJ8rVz49XdLq1avt35xSVK7WquLcuXMWflOTl5d35MgR\nOd24cWMfHx9HtcusCvI36tmzp5zIy8uLiYmxkPP69eti1u/OnTtb/a5mAKjy+vbtKyfy8vJi\nY2PNZbt582ZISEhoaGhoaOjHH38slqt+ZbbcRebn54uRVePGjf38/MSq1q1by4k7d+5cvHjR\nXAlZWVkHDhyw0E4AgFOochnv3bu3nMjPz//uu+8s15icnOzcsFzlaq05FWSoCABVkl3HOPa4\ngFt9w9NhfaJaFd24caPUOXh69Ogh0rznAlYjQAhrKN8JlJqaai5bUlLS559/Lj6afG5A/H7E\nfo9Cq9jaSuSLL74wt2r79u1ib7/wwguOapElFeSIGj9+vEivWLHCQk7l/13GjRtX3ooAQDtG\njBgh0n//+9/NZfv2229FesCAASJtjyvz2rVrza3avn27eK3FoEGDlKsGDx4s0tHR0eZKWLFi\nRX5+voXaAQBOocplXNkrRUREWHhhUm5u7oABA3x9fcPCwrZv317e1qqiQrXW6mGaNofzAOAY\ndh3j2OkCbt0NT7X6xFK7M9srCg8Pr1evXmBg4KuvvmpuW9m9e/dEWvnbVqBcCBDCGs2bN69V\nq5acjo+PT09PL5nn3Llzzz//vF6vf+aZZ+Ql2dnZ9+/fL5ZNTJecnp5e6ptmnd7aSmT58uUn\nTpwouTwjI2PhwoXi46hRoxzYKLMqyBHVrVs38eub2NjYf/3rXyazHT58ePny5XK6bt26o0eP\nLlctAKApvXr1EpfWhIQE5dOBwvnz5xcvXiyn69evrxzL2ePKvGzZMpNdZFZWlpikRSoRZRw2\nbJgYDa5cudLk5DZHjhyJiIiwUDUAwFlUuYy3bdtW/IrlwoULb775ptFoLJktPz9/7Nixt27d\nys/P379/v4Wbg3ZVoVpr9TBNm8N5AHAMu45x7HQBt+6Gp1p9Yqndme0VNWjQQI78HThwYNWq\nVSW3lRUUFKxcuVJOe3l5tW/f3lxOwDIChLCGi4vLSy+9JKezsrKGDRt29epVsTYtLe3DDz/s\n0qVLWlrakiVL+vTpI1Z9+eWXxYpq0qSJnMjPzw8PD797925hYWFqaurDhw8rYGsrMmVfMnjw\n4Ozs7LCwsDVr1jx69EgsP3LkSP/+/cV83IMGDRJPvjtXxTmi/vWvf4nOfsqUKbNnz759+7ZY\nm5mZ+c9//nPQoEHiPVhffPGF+O8OAKAknU732Wef6fV6+eOCBQtGjRp15MiRnJwco9GYmpr6\n6aef9ujRQ8yI8umnnxabHVTdK7OFLrJ3797Xrl2TP/bt2/fZZ59VbhgaGjp8+HA5bTAY+vbt\nGxUVJUpITU1dvHhxWFiYwWCYMGFC+fYRAMD+1LqMr1271tPTU6QHDBhw8OBBce8vNzd3y5Yt\nPXr02LJli7ykb9++ol7HqzittXqYppHhPAA4hV3HOGpdwNW64alKn1iW7szGiqZMmeLv7y+n\n33rrrXHjxh06dEj5BKfBYNi7d2+fPn1++eUXecnUqVPFkBkoNyNglZSUFHGxkyTJxcWlRYsW\nvXr1atGiRbVq/z/wPH78+KKioj179igPudatW3fr1i05OVkuZ82aNSaPzNjYWDmDcmrp8PBw\nC006dOiQyBkZGal6a5OSksTyiIgIe+zVHTt2iCq++eabcn1H5aq1a9dOnDhRTuv1+pYtW3bs\n2FH0LjJ/f/+rV68WK1+VvW1hR1lY5bAjykLLZVu2bFHem9bpdM2aNevcuXPz5s1FS2SLFy8u\nubl1+9BORxQAVBDffvttsUuoJEkll8ycOdPk5jZemZW9z/Lly8WPSc11kfXq1btx40bJcm7d\nutW4ceNibfb29lYOxsLCwo4fPy4+/vvf/1Z5VwIArKXWZTw2NlY5cpEkycPDIzg42M/PTzyH\nIWvVqtXt27eLba4cL8yePdtca6OiokS2+Ph4c9nEVN7u7u4mM6jYWltGN7YM09QaKgIASrK9\nc7T3BVyVG54yG/tEYxm6M1Uq2r9/v7u7uzKbi4tLw4YNAwMDS/4WtmfPntnZ2Vb86QEZTxDC\nSsHBwdu2bRPvmC0sLExJSTl48GBKSkpRUZGLi8vChQujoqJ0Ot3gwYPbtWsnNjx37tyRI0fE\nz/zHjRvXpk2bytLaikzZyFq1an3xxReTJk2SJCk/P//SpUtJSUnK5y1CQ0NjY2ObNm3qhIaa\nUXGOqGHDhsXFxYkXNRuNxqtXrx4/fvzKlStFRUXywiZNmmzevHn+/Pm2VAQA2vHKK6/ExcUF\nBwcrF4qLqiRJtWrVWrly5T/+8Q+Tm6t4ZS4sLIyOjpbfDGGyi2zVqlV8fHxAQEDJbRs1ahQb\nG6vsgyRJysjIyM3NldPPPffcjh076tSpI9ZWiv9CAIBGqHUZlx8F6NWrl1hiMBguX758584d\n4/+eD9DpdBMmTEhMTHT6O4EqSGttGaZpYTgPAM5i1zGOKhdwFW942t4nlrE7s7Gifv36JSQk\ntGrVSiwpLCxMS0u7fv268rlJV1fXWbNmxcbG1qhRo9QmAea4OrsBqMQGDRqUnJy8cuXKH3/8\n8fLly48fP/b09GzevHn//v0nT57csmVLOZurq+vevXvffvvtuLi4rKysevXq9erVS/y4o3r1\n6vHx8QsXLty9e3d6erper2/QoEHnzp1Vj12p0tqKzGAwiLS3t7erq+uXX375xhtvREdHJyQk\n/Pbbb/LXad269bBhw8aOHVvspygVQcU5onr37n369OmdO3f+8MMPhw4dun37dmZmppeXl5+f\nX9euXQcPHjxs2LBiM+ABACzr16/fmTNndu3atW3bttOnT6enp2dnZ/v4+LRq1WrIkCF//vOf\nfXx8LGyu1pW5sLDQzc0tKipq1qxZ69ev379/v9xF+vv7P/XUU6NHjx45cqSF6VlCQkKOHz/+\nn//8Z9u2badOnbpz50716tUbNmzYtWvXsWPH9uvXT/q/gU8xrgYAVARqzatgSAAAIABJREFU\nXcbbt29/4MCB+Pj4Xbt2JSQkpKWlPXjwwNXV1dvbu1WrVr169Ro7dmzF+TlmRWitjcO0Kj+c\nBwAnsusYx/YLuLo3PG3sE8vendlYUdeuXc+ePRsTE7N79+7jx4+npqZmZmbm5+d7eHj4+vq2\nadOmT58+I0eObNiwYVn+CoAFOqOp92QCAAAAVcPJkyc7duwopyMiIubMmePc9gAAAAAAADgd\nU4wCAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAgBAAAAAAAAAAAADTE\n1dkNACqxv//977GxsbaXExYW9u6779peDgAAAAAAAAAAQKkIEALWO3PmTExMjO3l+Pr62l4I\nAAAAAAAAAABAWTDFKAAAAAAAAAAAAKAhPEEIWC86Ojo6OtrZrQAAAAAAAAAAACgHndFodHYb\nAAAAAAAAAAAAADgIU4wCAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQAoQAAAAAAAAAAACAhhAg\nBAAAAAAAAAAAADSEACEAAAAAAAAAAACgIQQIAQAAAAAAAAAAAA0hQAgAAAAAAAAAAABoCAFC\nAAAAAAAAAAAAQEOqcoAwIyPj4cOHzm4FAADOQT8IANAy+kEAgJbRDwIASqUzGo3OboO9+Pr6\n3r9/v6CgwMXFxdltAQDA0egHAQBaRj8IANAy+kEAQKmq8hOEAAAAAAAAAAAAAIohQAgAAAAA\nAAAAAABoCAFCAAAAAAAAAAAAQEMIEAIAAAAAAAAAAAAaQoAQAAAAAAAAAAAA0BAChAAAAAAA\nAAAAAICGECAEAAAAAAAAAAAANIQAIQAAAAAAAAAAAKAhBAgBAAAAAAAAAAAADSFACAAAAAAA\nAAAAAGgIAUIAAAAAAAAAAABAQwgQAgAAAAAAAAAAABpCgBAAAAAAAAAAAADQEAKEAAAAAAAA\nAAAAgIYQIAQAAAAAAAAAAAA0hAAhAAAAAAAAAAAAoCEECAEAAAAAAAAAAAANIUAIAAAAAAAA\nAAAAaAgBQgAAAAAAAAAAAEBDCBACAAAAAAAAAAAAGkKAEAAAAAAAAAAAANAQpwUI8/Pz586d\n6+Li8vTTT5clf0ZGxqxZs4KCgtzc3Bo2bDhp0qTff//d3o0EAMBO6AcBAFpGPwgA0DL6QQBA\nReDqlFovXLjw6quvpqSklDF/Xl5eWFjYiRMnXn755U6dOl25cmX9+vX79+8/fvx4nTp17NpU\nAABURz8IANAy+kEAgJbRDwIAKggnPEGYlZXVuXPnatWq/T/27jzOjqpM+PhTVXftvZPOCoRI\nCEtMYhIghCUxpMMg4Ii8zqvjuDCOiCMjryirUQdQdoIyg4yvOvoqKjNugwsGlSyQhigQQkIg\niGQjIZCl03v33arqvH/cTqfT2z13q7v9vp/+aHf1qaonM+Y+Oec5y6ZNm/x+v84tDz300KZN\nm+65555f/OIXK1as+N73vvfjH/94165dd9xxR76jBQAgt8iDAIBKRh4EAFQy8iAAoHgYSimP\nX9nW1nbnnXfeddddfr8/FArNnj1748aNY98yf/78HTt2HDp0KBgMDlycOXNmV1fX/v37DcMY\n8a6mpqbDhw/btm1ZVi7/AAAAZIE8CJST3W2RRf++4fNLpt+0bEahYwFKA3kQKCdD8uDutshZ\nDzwTtd0Pn9bwvS2HXBn5r+eIQm7ssRe+JCKGyLL12/IVMVBo5EEAQPEowBaj48aNW7lypX77\naDS6devWpUuXDs6CInL++ef/4Ac/2LVr10knnZTrGAEAyBfyIFBObFcd6I51x5zkj2MMjBrK\nfWLjjUd/ZPQTlYo8CJSTIXnQdlVrb1xEuqNOWtVBEYmaweVnHflwuG5V9rENybxHr5OCUVDk\nQQBA8SjMGYRp2bt3r+M4J5xwwpDrJ554oojs3Lkzr4nw6//5m5+92pa/5xecYY3wvwFLVLVh\nZ/nkGp/hG2US04Cg6QbFzeYtfkNVGY6IiGGYgUCKkExlGiMvmQ2KCpvKDIWGXK+1lCliBgKG\nzyciIVOCVv8TAoZUmSr5al91TdCSkNn/5w2aEh42PctXWycihmX5qqqTV6zqGsM0rVDY9PdH\nbobCpt7+EgAqB3kQKYXF9o+5J4Thz/0/+arFHpzrTJ9fUuX9gOGGjDTyvuHzGaYVNNyQOcJd\nhs8X9FlhU4mI6feblq/Op0TEZ0hddcgwTBER06itqQqYIiIhv6+mpkpEQj6jKhw0g0HTMMaN\nazAMQ0zTV12jH9gYxhgYVYZ5dNwz6cjo5/ARTMYugQEVmwdDygmM0VcyDSPTFSFVhuNTSkQM\ny2eYqY8d6e+1GWL6g2O3NETVWc7AT2YgRfs6SxlG/8e4/h8naBrVVaGxk44ZCBjmMQ/0m0b1\nKMnQClWNWMlqDPutcHiMt4QsM+Qbdqdh+EfJKUG/WdtQP8YDDZGGMP3BnBkh8w4YvQA5WllR\nyM4okOLJgz7lVolTJQlLVEDckDg+caskYfj8hmWFxfUbjoj4VP9IXZXPDAV8IlJrOoaIGQyE\n/L6Q4ZqGNNSEa3yGb9AYXXKIbOBHX3Vt8kfDsqwjw2gi4jvSzAwEzSMVU19NnRUKpUw6AIDh\nSqBA2N3dLSLV1dVDrtfU1Az8dsA73vGOzs7O5PcdHR3Zv337gc5nZWL2zyleTuomGcq2wlha\nRu2619oREVXjREQOVjmxoJsIuXERqXYiyfJiyI35XMev7JCbqHKiPmVXOzG/KVWWGIZZEzBD\nyg6rRMjvD/mk3oiHq6qqQn7TH/BVVRuWzwwE/HX1ZiBo+gNWVZWvulZErKrqZAfbClf5qqrN\nYNAKV/uqq73811J0/77nP3FZvLdP6EcB2SEPQsvYtTkPknLR5f2B1Dz470j7iE1rnKihVMiN\n1ap4QNxaw6423GrTqTftkN8XMKU66KsNWNVBX011uC7k94dDdUFfY1315PG1fY4lIsrO6s8/\n4gim8YXHqBoCUsl5cOwPdpWLD96i++jWp0TGPi0lms7TerKKJf/Cbtyn3IGaqClutRsf+K1h\nGsn/uZhKVUsiebFKJXyGOlp2NQy/afRPrhUxTMswzWrTSU5/NSzLME3DlFrDFZFgwFc1qLpq\nBYJiSMiSoKlMn9/w+ep8RtCUKr9hhcJvR5SI7Nj5ZsszvSKyr6f/Fd09vfn6P0eejVVWFJHr\nVo1RQRxgWv4L1m3JcWSoVEWUB0dLTM4oo4sxEY1PAp/rhN24iPiVHTzy4eZTfWEneTERdO3B\nzURUjR1JNgsou8aJ1Np9QTdRn+hp8rkBcarcmKlUWMVD4bDhs+rCIUtc0x+wkqsCDMNXU9v/\nluoaw7TMYDA5XGYNmrVv+P1WKCwihmkmh9oGlyqNQfMLfdW1Ypn+mrrkjwNPA4CSUAIFwqTh\nG2onT08ccr2joyMn+S8p7rg/7GjM1dNQxha1pz1alxDfn8fNyux1wWgi1BdvbO1uTHTX2ZGw\n2xpy4tVONOxEGxI9DXbv+Hhng91T5cSrncjgGw3T8tfV++sb/A3jrHDYClf5qmutUMhXW++v\nb/CFq/x1Df6GxsC48YHG8Va4KrPwkpTtxHv6+r8XWbNk5D8sY52ApoLkwb69uztf3ixTm3P1\nQMAbp/bsHfF6Y6J/AOXPjcdkpR4rJCLdEj40/J7k6Hl8xF90ivSPv3xz9bZHf9cyXqJBQ6Rq\npohs/+sOkXGZ/glERhqgNJT7xLH5lDSKylGQPHj2td97zpqSq6chh0b7nM+312qGruDxRsQc\nullOpznW0sYRqBxODh5cne2vrf73zuh/73x7cKO1b/SIL8UePyVqjAqiodwnnr9RRFwnQRcY\nuVWQPLjhQxc9Nv7DkubnTbps0+oe9pk24jhbzOgfx475/TLsn/RjMETV2NHkBMJqN1J1KBp2\n48kZ/H7XCbrxoNtX7UQt5YSdmE+5NXZf2I35XSfs9g+shd24z3UCKhFwEyISduI+leJT1fQH\nzFAouW3YQHHRF65K7pJiVVf7qmtNv9+qqjYG1SzNYCi5QZqvpi75/1wzFDL9ATEMf02tcaTM\naYWrTb9/4C4AyFgJFAjr6upk2IwYEenq6hKR2tpjPgrb249ODE8expvNqwOW+flpsV/u6Mvm\nIUVEKeWOvNAtblgDWTZjvWbAVVpnDHRbQ3fyLHX6/yjJiZjpj5n+Tl/17vDkwddH/PeTTzn1\nid69VRPGxbsb7N7GRNe4vu5xnd219qF6u3dSrH20f9Mk/ynjC1dZVdWBhnG+2jpfbV1o4hRf\nba0VCvuqa6xwVWjycQcC4877z80Dh9KPapQJviPWDq1geOkTL4z1NKCSFDAPVp0w/ZT5c057\nK6uHVDLXMHpl1I3ClFIy5r6gxaDbHDNlpxN/xPTbRoa74aUrfwO4ySHpnVVTEuYx/3Dq8lV1\n+Y6ZWPNKoibn/9AePCKZHIIckkYZc0RZKmAe/NZHF372kY3tbu57zd3G0cLJaH207PWawWP2\nOtb40FaG9Iz9yV8cClWoq0CL2re1+4cOQA/Pg8NFyrQ6ODZlmMsXDtsS4EjVsL/NSF1gMjjG\nUMA8+M6v3P3331v1W8cSEVuMiOGPixU1fEqkx8jv3/HcjrMpMbp9/TXIbgmLRuwpVwKYSgXd\nREjFLNcNuom/1J6QXOkoIgG3f9VjtRMxlKpyo5ZSNd0RUcrX6YbdWLXTE3LaapxIvd0bcBNV\nTrTWjoz5tlFZoZAVrrLC1WYgYAZDAwcbJbcWM33+5Ox/X3WNmKYVCpn+gK+6VkzDV1NnhcP+\n2jrTHzB8vmQz0x/w19WbwRL4lwCAXCmBAuG0adN8Pt8bb7wx5PqOHTtEZObMmXl9++3XfOD2\nvL4AWeiNO3EndXe6L+7E7BGadfbFE5FRq799vX290f7tWTrjrjq2O90Td21XiYjrOMqO2470\nJFxbSU/imGZdccd1jajr9kUTMUcittsZtZUYPbayXaVEehLiKCUiXa6Z/ShxZv9+qrUjjXb3\neYe31tu9NU5kXKK7MdE9LtHdYPdY3V12d5eI9MqO0W7fF2o6MPfmv/zskRcfeyM0acrBmsl/\nt3f6Z2b6rpmpPQo87A/uxCIMdwIDCpsHb7nxH2/J6wuAkfTFndjoKd6NxdxEXEQ6o7Zj23Y0\n0hntn+wSjbs9Pf2rGWKu6unuT/RuIt4ZdSKORB3lxqK9rpFQhkokRLmdtunaTsx1exNul2N2\n2Ybtql7l6xJ/97CBD/0h6XwPjA4Zgjw+cvAHW++lXoiyVMA8uODMORvOnJO/55eNjkh/L0i5\njtOXYn6t66qu2NEZinZf79glUmXIwIe8iLiJhEocs6zbtW03dsyGognX6B2pA3j0mY7jxmLD\nr8eURAZe5brOsY/tdgx3pD6bchw3kRhyMeIacfeY6bNuPDbirMnuqG2POdG2R1mOo5Rji0hM\nzJiYIiKuUs7R/7P0iWUbR87uUtLrii1Hu2PKdURJrxnoLxgrNyFWdGBVolIikjAHXRkkrT6m\noVxlGKm2x604w6uGISf22AtfOqbNsKohSRwDCpgH62fPv/cb8+8dvcHAuFxv3Inb7uArPTEn\n4bgiknBVT8wWkZjt9iWcaMLtjUT7YnZypK4rZjuuqEQi5rh9CVeS0ygdp9d2E66ISEck4SpJ\n2E7vkW2xOxNKiYhStpJeJ18fOB6vBBCR89u2Bt1E0E0EXdtUTsBNhNy4pZSIBN24KSrkxAKu\nbYkTdG1T3IBr9/jCdXZvMJ6ojkQCblej3eNzc7Ba3LAsX02dv67eV1Pjq6711dQaPr+vqtoK\nV/nr6pOrIQ3LSq4cMANBK1xlBgK+6horVJU8VHjwsZEAipyhCjp1PRQKzZ49e+PGjWM3W7Ro\n0datWw8dOlRV1T8123XdE044wbKsPXv2jHZXcqaMbdtWpoe3A16yXdUdszsjtqtUeyQhIh0R\nWynVHbMjCbcnbsdt1RO3OyJ2RyTRHbP3d8UO9sQ7IonemN0Rs3P+V9nnOo1298R4+6RYxwmR\ng++IvD0ldnha5KD/2H9t7As1XfGumz/y1ppPvPl4/49zbw658eWHXlg1aZErRnLIMttojKP/\nTTcJ5YQ8CBS5uOP2xh3XVR1Ru7W1vbOjOxaNdUfjvT197VGnrTe+ryfx431WQJRpKNtVtpgy\nbAMojx2zUoEEiuJGHgSKTTwS6eyJiIgTjSg7oZR0HCnQurbd0xtJuEpE2rv6HMcRkde71E0v\n9F461Xz/FBGRNyNy2zZXRBaEopuirEHRMmSJ4aBfHPMtebwskQez1xt3WnvjPTGnI5LY3x3r\niCQcpWK22xd3Eo7qiTsiErOdvniyfmnHHdURSXRF7ZjjdkXtuO32xp2euJ1win1zF00+5YSd\neNiNBZ14cifVKida7UTf2b3bUk7AtUNuPOjGfa4TVImgmzCVCrkxEQk78YBKBN2EP9XuqSkl\n9yQz/QFfdY1VVe2vrfPV1vlr64MTJgbGNflr601/wN/QaAYCvppaf10De6UCBVSMKwij0ehf\n/vKX2traGTP6dyz85Cc/edVVV91333233NK/jOE73/nOW2+9ddtttxUuTCDHfKbRGPY3hkfd\njG5snVG7M5LoitmtvfE97dHW3nhv3OmNOx2RxL7O6N6O6MGe2MGeuOPq/ovHNq1DgYZDgYZX\nao5etJQ7Id4xJXb4lN43j48emhxrb0j0DL83agYivlByguqb4YnJ+ZKjdnt0qKP/zdoIlD3y\nIFA8ApYZCJsiMr46MGP8CKfzbm/t+/FdT96wfObtF5+S/HHmXU96HOQQAysVBmfewQnUtPwX\nrNtSsPiAVMiDQAEFwuEJ4WMOA5s6ZvvtrX03vfDkvFknXXkkD9627UkROeXEKZteax/zVvQb\nvMTwmF7zoL774DxOL7jskQfTUh2wqgO5OSaxO2bHbLcravclnOQ3XVE77rhR240knGTRUUSS\ndcfOaCLZpjNqi0h7X/9SciXSEUmISE/MTjgq+aichKfJNqxuX7h72NGRa8fP13xCrR0Zn+ic\nFGufFG8/LtramOixlO1X9qRoh6WcoJuocSI+5fiU4x9lwaIbjyd3fIm3tWq90jACDY3+uobA\nuCZ/fYOvpjYwrik4rik4YVJo0hRfbV1w/AQ2PgXypAAFwqeeeurxxx9Pfm/b9r59+26++ebk\njzfccMP48eO3b98+f/785ubm1atXJ6//0z/9049+9KNbb731xRdfXLBgwauvvvrTn/50zpw5\n119/vffxA8WpPuSrD6X+G32gO3awJ76vM9oZtfd3x97siB7qjR/oju3tiOzvjrf1xcdeiegY\n5v7guP3BcS/W9e9iYRkiSjZMXVhdW/Xu3evHONpkxPHKTNBNQokjDwKV4O9PbfzvQg+MDs28\nRxKo6ySS2ZPUiYIgDwLAaEYtFsoIs2bJ4yWKPFi0aoO+2qA0Vef+pICemJNw3UjCiSbchKO6\nYnZnJNEZtQ/3xaMJt60v0ZdwOiN2b9yO2W5H1O6NO70xO7n8sTNqu65KFilzHtiIun3hbl94\nd3hyypaGUjVOpMaJ1Nt9tXZfQ6K7we6ptSMT4h3jEt1+1x6X6K6ze2vtiCFqpG22j1Aq3t4W\nb2/rfWPnaE3MQLDq+BMD45uqjpsWGN8UaGyqnzOv+sQZRlkvkAU8UIAC4Z/+9Kd77rln4Mf9\n+/cP/HjllVeOHz9++C2WZa1ateq22277+c9/vmrVqokTJ1599dVf/epXB1bWA9A0qTY4qTY4\nZ8rIi/ejtru7re+vh3p3Hu7beTiyrzO6uz3yRnvkcG98xPYiktyDYZfUfqf2nO/MOUcnhrH6\nPBmgm4RSQx4E4LHRKoWkThQEeRAAdCTT98hdZtX/H/153LCWPbXV8wCRIfJgBaoJWiJWxnuG\nDWiPJJILGZPrFLtj9uHeRNxxu2N2b9w50B3viiZPfpT2SKIjknBc1Rm1u2N2W1/CcVVHNJHb\n84mUYXT7qrp9VW8HR/jf7YCQ2MfF2qZEDk3r2z851j411joldrgu0Rd2RzgPWGTEE3vFjcV6\ndv5Vdv617fkNAxd91TWNZyxqeNcZtSefVjPjFH99Y1Z/HqAiFfgMwryqkL22AQ+82Rndtr9n\nV1vfy/u732iPPLWjrStqp74tHTmoFB7zuP7/DtQ1Ln7smZw9Figp5EHAewNbjBbDCsIxjJB2\njf7/oFKIskEeBEqF74bVjjvqnFQkjdVlJoljJORBDNcXd3riTk/M7oraCVd1RhK9cSe5jWp3\n1O6O2V1Re09H9K3O6N6O6M62Pv2DijJQZalJfneCmWiSSJPT2xTvqOlqDXe3jou2TWrfU+NE\nR75tSESDjms1/f7gxMnhKceHJk8NTZwcmnJ89fQZNe84me1JgTFQIASQid6489dDvS+82fnU\njrYfv7Avh0/OU6WQzhIqEHkQKBLVN6/uSxTpuCeVQpQx8iBQsRq/tKYjOsrClBKXor9skMFx\nFHkQWYrZ7t6OaGc04SrpjCS6Y7btqp6Yc6g33hvvP5SxPZLoitptffHDfYlDPfHW0XcgS9eE\nsHVSrTkrGDvZFz3BaZ/Ye7CpdVfi4P7IW2+6g/tWo9cLj1wxqo6bVnPyqTUzTqmadlL19JOq\nTphu+nO/kSxQoigQAshKcqnEedMbj28I/f4vhzpzt7Iwx5VCYcQTFYc8CBS/4qkd1id6fvni\nrcdcYpARJY48CCAtJbSQcezOsmGQviFCHkQh2K5q60vs7Yi09yXaI4nDvYn93bE32iO72vpe\nPdBzsCerz1i/ZZzYGJ49ufbkBv9pRvfSvr92PdfS8fJmNzZsreHwcsegwqFhWoFx40OTpoSP\nmxaeenx4yvHh46aFJk0OTpxsmPxlQcWhQAggK8kC4ZeWn3z7xaeIyBlff3rTvq4cPj/3ZUKh\nUohKQR4ESlQBByhZUIhyQh4EkFvFVkEce9NRcjfIgyg2nVF7b0fktYO9ezsibX2JfZ3Rgz3x\nNzujB7vjb3WNsqHo6E6ZUH3jBSd9dMFk+629Xdteih54O95+OLJvT+zQgchbbzrRyDGtxywZ\nJvmqaycsXjb5b/62Yd6ZLDFE5aBACCArQwqEA2cv5VZeyoRCrwlljjwIlA2PRyRHTrskTZQa\n8iAAzzR9Ze3hvrRHt3OCMiFGQx5ECYk77ttdsdbeeE/M2dMR+cuBnh2H+17c17W9tc8ds3gx\ns6n6axef8qF5U4Y+sL0t8tbenu2v9e7e3rPjrz07Xkt0dQ69eZSqoa+mtuncpU3nvrv+nfNC\nk6dm9QcDih4FQgC5NFAg/MiC436yKZdnEwplQiBN5EGgLP3tf2567NX9HryIMiFKHXkQQGF5\nNr8n5cGEJ3/6Cyd+5EoPIkFRIQ+iDEQSzuutfbvb+ra39u1q63tlf8/rh3rf7Bw6IeM9p034\n6ntOWXBcnWUOP4SwX7y9rWfHa5E39/Tu3RU7dCD69r7IW3uHVg0H6iRHHuOrras7bXbDnPkN\n7zqz9tR3+qprcvZnA4oDBUIAOZasEeajQJiUvzKhsIUaygt5EKgE+R58HK1MKCRNFD3yIIBi\nk9eszVJCDEEeRLna0x65ffX2hzfui9nu4Ot1Id8Zx9e/c3LNvKl1ZxxfP3dqrWmMWi9Msnu7\nI2+9GXlzT9/e3Qef/GP366/2/2JwweTIMwzLapizoH7ugoY5CxredYYVrsrZHwkoHAqEAPJl\nzeuHl//fZ/P08HyVCYW+E8oHeRCoNPkbdhw17ZI0UcTIgwCKXD4S95V7f/f3b68b8VeGQcqu\nLORBlLedh/tu+cPrj2x6a7Q9SKc1hi+fPelTi6a9c7Lusr/eN3a2PrPu0PrVndtekoHHjlIs\nrDt9zoTzl025+PLAuPHDHxXdv+/5T1wW7+0Tkarjp5/zyCrNGACPUSAEkHcFGK/MwaMZ8UTJ\nIw8CFevhjW9d8V+bc/5YyoQoLeRBACUkh73mMbrJ1AgrCnkQlWDd9sOf+9W2rW93j9Hm5Kaq\n98+e/MF5U844vi7lmsKkeHtb1ytbure/2vXaK12vbIm3t/X/Ylix0DCt2lNObzp/WeOChfWn\nzzV8vuQvI2/u2fDh9wy0pLuEokWBEICn8lEspEwIjIg8COC+dbtvfCyXWYzty1BCyIMASlT2\nvWZqhBDyICqGq9Rzezqf2nF4497Ol97u3t7aN9qawkm1wfOmN559YsO50xsXTqsPWKbO85Xr\n9u3Z1bXtpdYNT3W+/GLs8KEjvxjUyBARscJVjWecPW7BonFnnmP6A0cLhEfaWMHw0ideSP+P\nCOQRBUIAhZHzSqEh8szr9/W1H8jhMwcezYgnShF5EMCASbesO9gTydXTKBOiJJAHAZS6LHvN\n9YmeX7546wi/IFlXBvIgKlNv3Nm8r+vXrxz45Uv7dx7uG61ZTdB6z6kTPjR/6sWnTagOpPF3\nJLJvb/uLz7W/+Fzrhiftnm6RkfcgDdQ3xjvbh97cf5S7sWz9K/pvBPKKAiGAAsvlVioi7v2X\nJL9vWfyuuCRy8tiBp9OJQmkhDwIYzn/Dajv/O5iRNFEMyIMAykP4xtVRJ8PcPUaybm4hTZc5\n8iAqnFKy+vXWx7Yd/PXLB95oH3WuZFXAWjpj3PtnT/7bd06cXBvUf74bix58anXbxg2Hnl5r\nd3cdeeugFmPsZkqlEEWDAiGAYpGrSuHgMqHkvFLIiCdKB3kQwBhylnYpE6JYkQcBlJOME/cY\nRwgH6hoXP/ZMtpGhWJEHgSSl5Pm9HatePbR+Z9uzezr64s6IzXymce2Sd9x16ak+U+ucwqPP\nd52eHa+3bdyw83sPurFYesHRY0KhUSAEUHRycOLCsTXCpFxWCsnfKAXkQQA68nrQkQhJEwVD\nHgRQfjLO2qNtNxqop0ZYtsiDwHCuUi+91b3m9cO/enn/ht0dw08rXHRiw08+Mu+k8VUZPHzH\ndx5447++r2w77TvpMaFwKBACKFJNX1l7uC+azRNGLBNKDiuFhhgIoKA8AAAgAElEQVSGteyp\nrTl4FJAH5EEA+rIvE57V8Ze7/vqfo/3WMOjxwmvkQQDlKrOsPdqEnpP/+QsnfuTKXMSF4kIe\nBMa2pz3ym1cOrnr14OrXWxPO0RJJY9j/44/Mu+T0CZk9ds3iWRkGRJkQhUCBEEBRu/mx1+9Z\n93rGt49WIxSRjVd8oHPnqxk/eeAFJG8ULfIggHRlWSZkKSGKCnkQQHnLIGuvfu76Ea8zj6cs\nkQcBTZ1R+/vP7b35sdfijpu8YpnG195zyg0XnJTudqNJmdcIhU4TvEaBEEAJ2N7aN/OuJzO+\nfYwy4Wv33PbmYz/N+MkDLyB5owiRBwFkJpsyYYoaoZA04R3yIICyV/vF1T3xNFK2Ie4Tz42c\npq1QeOkTL+QoLhQF8iCQlhf3dX3o4Rdfb+0duHLG8fX/Z/H0D8ydXB1I+y9R5M09Gz78nsyj\nMfr/g34T8o0CIYCS8emfb/vOn3dndu8YNcKkHOw7yognigx5EEA2sikTjnbQ0QBWKsAD5EEA\nFeKcf/vzn/e0aTYeo0Y4YXHz3DsfzF1cKDDyIJCuzqj98Ue2/OaVA4MvTqwJfPzM4z+yYOq8\n4+r0H5VtgXAAg43IMwqEAErM/Ps3bH6rI4MbU9YIReSZi8+L9rRnFNeRtzDiiaJBHgSQvYzL\nhCwlRMGRBwFUlLRS9nkdW2/76w+HX6dGWE7Ig0AGHFfduWbH7U9sH9hudMCsSTUfO/O4j55x\n3PH1oYGLu9sii/59w+eXTL9p2YzhT8vBaoQkuk7IGwqEAEpS6IbVsczGKzXKhJs+9Q/tf9mc\nUVz97zDEWLb+lcyfAOQCeRBArmRWJkxdI2RiDfKJPAig0qSVr8fbnT/d9LXh1xf8+w8a5y/M\naVwoDPIgkLEtb3Xd9sftv33lgO0OLZ1YpvHh+VNvvOCkOVNq5cihSF9afvLtF58y4qOyX4pw\nFGVC5AEFQgAlLMPxSo0aoYi0LDsznujLKC4RRjxRBMiDAHIrX2VCOrrID/IggAq07D+eX7fj\nkE7LMfYa9VVVv/sPz+c0LhQAeRDI0oHu2INPv/GjF/btaY8M+ZVhyMWnTVjRfPKk2uDYBcKk\nnC0lFHpPyDEKhABKXgbjlZo1QhHZ85P/9/r/vS+juKgRosDIgwByLjlDNt27WEqIgiAPAqhY\nmn3kMWqEDXMXnPHQj3MdFzxFHgRyQil5csfh/37x7Z9tebsjMrTI1zyzac3rrSkLhEm5LROa\nlv+CdVty8zRUMAqEAMpB01fWHu6LpnuXKeLolQmf+4e/7d67I/24RAyxguGlT7yQyb1AdsiD\nAPIks6WE9YmeX7546xgNqBEit8iDACqZcd3jIqlH/EarEZKUywB5EMitmO3+8qX9d6/dsfXt\n7iG/uvi0ib+78kzDkN1tkbMeeCZqu19ePmPEUwmTclMpZCkhcoECIYDykdelhJJx/iZho0DI\ngwDyKpO0y3aj8BB5EECFO/62tfu6Us+jpUZYrsiDQD4oJZNvXX2wJ0U/6ONnHP/jTfsuOnX8\nqk+NeqrrhkuXRLpasw2IlQnIjlnoAAAgZ+z7lq/+57PTukWJmNet0my8uGVLc8u2gPjTC0uJ\nUrJ2yaz07gIAoLjZ9y0PmoG0blGGeeFZ947ZgqQJAEBuvHnLMp1mSswLF94zwnUlay+Ym+ug\nAKC0GYZcefYJnz5n2iWnT6wN+gb/ymcac6fUJr93lHKVevy1w5d897nRHnXu79Y3t2zLZKRx\nMCVOLEIHChljBSGAMpTumoa01hEmZbCakAmY8Bh5EIA30k67HEkIT5AHAUBEzOtW6Qz8GeI8\n8dxNw69bwdDS1ZtyHhU8QB4E8i1qu1f/4pX/9/ze4b/64LzjfrZ5X/J7nVHHTZ/6h/a/bM4q\nGvZiQUZYQQigDNn3LT99Yp1++7TWESYtbtky5YJL07qFJREAgLJk37fcSmcpYep1hCRNAABy\nRHMurBLrfWd+bYTb46k3KQWAyhTymSuWzxCRpuqhvaHfbTs48L3OqOOC7z7S3LKt8bR5mUfD\nXizICCsIAZSztNY0ZLCOUDJYSmjI+IWL5638drovAtJFHgTgpZPvXL/jcI9+e511hEyDRTbI\ngwAwwNCbEeuX+OPPrRh6L8v6SxN5EPDA9ta+mXc9qdNSpTPkmMG+ZUfRh0I6WEEIoJzZ9y0f\nXxXSbJzBOkLJ4GBCJYefbWFGDwCgzGxfsUTdf4n+UkJlmBcuTLGOkGmwAADkhObAdEICW+pm\n5DsYACgzk2uDsybVGGO2Ma5b9UDLLs0Hpj3YOJgSpWTNkll0o6CDFYQAyt9963bf+JjuxJnM\n1hGKSMsFZ8TtiH57pmEi38iDAArCf8NqO43l++4Tz6VaR0jSREbIgwAwhM46whEPIyQRlyLy\nIOCx8x7csGF3x9htvvH+069d/I60Htvy7vlxN5ZhTKwmRCoUCAFUCv3tRjOuEUqamwDQy0Je\nkQcBFIr+TjtCjRB5Qx4EgOEyrxGa5rKnXs5PUMgL8iDgPfO6VSlrLYYl7r35P+Fo8BvpSWF0\nbDEKoFLY9y2v8mvte5bZXqNJi1u26O8AwLZpAICydHJTlf52o0o09holaQIAkAvnTm9I2UaJ\ndeHCe4ZddfMSEACUkfnH1aVsoxxpuuWP6T45m01H2XEUY6BACKCC9N69XPPohSxrhLUn6B7b\nwHAnAKBc2fctn1pXpdOSGiEAAN545ppzdZopsd535teOuUIWBoBUfvrxBTrNDvfYmY06Zl4m\n5HB3jIICIYCK40GNcOEjv21u0V28T4YGAJSrfbcs1U67ujXCNUtmbb7+01mHBgBAhdJMzZFh\nOwEoJS+tuCYPEQFAmUjupKLTMtvdy8xgBjcyAonhKBACqEQeZGsR0Z/UQ4YGAJSx3NYIRcnh\nZ1uyjQkAgAqmk5pH3Gi09ek1+YkIAMqH/qijcd2qDJcSPvViZksJ2W4UQ1AgBFChvKkR6h9J\nSI0QAFDGclwjFJImAAB5p8T61JwvHHOFfisAaLAM3ZbZLiUM1aZ9G9uNYhAKhAAql2c1wlBN\no9aLSM8AgPKVj71GyZsAAGRGMy/vDk/KdyQAUH7slVqfsUlZ1QifeJalhMgGBUIAFc2bGuF5\njz8z5YJLtV5EjRAAUL5yvtcoeRMAgIxlttEoyRcAdGj2ffobZ704YeLZF6R9G/0pUCAEAG9q\nhLO+el9zyzatF5GbAQDlK+d7jZI3AQDIKyXW/zrj1mOukHwBQIOXNcI5Kx9qbtkWMALp3shH\neoWjQAgAHtUIRYQaIQAA1AgBACgSmkm52wrnOxIAKEvq/kuuWjRdt3HWA4+L12/OYMdR+lOV\njAIhAIikVSO8kRohAABZoUYIAECRYKNRAMirb//vWSFLd2GfEjGuW5VtmbBlS7plQj7VKxYF\nQgDopztY6VAjBAAgW+nUCO9J3Y68CQBAPimxPrTgK8dcUfLURWcVKh4AKCGRe5dbZhqbf2a/\nlFDSP5iQ/lRlokAIAEdRIwQAwDPaNcKhqxZGbUneBAAgfZoZuc1XM+SKE+nNQzgAUIbs+5bX\nBb2uEfYfTKi9lJD+VAWiQAgAx6BGCACAZ6gRAgBQDDQ3Gr30rDuOuaJkwwcvzFtQAFBWOu9c\nru6/RH8pYU62GxWRxS1bqBFiNBQIAWAo/Rph0y1/zOZF1AgBANCvEV56/v1aLcmbAADkR9zw\nDbkS3b+vIJEAQImy71t+0wUz9dvnartR/aWE9KcqCgVCABiB7hYrETvLF1EjBABAM+3G4uqf\nltyl9UDyJgAAadJcRDhkTb9Ssvbds/MWFACUobvfO1OzB5SUkxqhpLOUUClZs2QWXapKQIEQ\nAEam1TvKeqNRoUYIAIB2jXBvwp9G3lw6J7ugAACABuUWOgIAKD2FqhFOPPsCzVcyFFkJKBAC\nwKhqg1bKNl7XCBnrBACUKf2pObp503Ho0AIAoC/zRYQkXABIX7pHEuakRjhn5UOa/Sk5spRw\n8/Wfzv69KE4UCAFgVF13XqTTzNMaoeO0v/hclu8CAKA45b5GyJAlAADpWNE8o9AhAEAFse9b\nHvS8Rija45DJtx5+roVeVbmiQAgAY9Fc768cqV7x+yzfpZmbX/zcP2b5IgAASloy7VIjBAAg\n5+645NSUbVhECAA5FL1veZW/2GuEfM6XKwqEAJCCZo0wYufg3AWd3ExKBgCUsbTSrn6N8Nkr\nLssqLAAAKsbx9cFChwAAlaX37uU//PA8zcZKcrCTWVIaNUK2Gy1TFAgBIDX9Hc9y8DIz9Scz\nNUIAQBlLK+1q9ml7d72ebVgAAFSGvf/anLKNEut9Z37tmCv0UgEgCx8/c6r+kYQ5G4RMs0bI\ndqPlhwIhAORMbg4jfOplw+dP/S4la5e8M8t3AQBQutKqETJqCQBAbkWGjWIrJe0vPleQYACg\nPNj3LS9IjTBU06jbmu1GywsFQgDQon8Y4dz712f5rmXrtug1VFm+CACA4qSfdvV7xfRjAQDQ\npLWaX6z/mbx4yMWXVnw2PxEBQKWw71uej97Q2M57/JmAv0q/PX2rskGBEAB0aabnlw/0ZP8u\nFkMAACqcfq/4yR2H9Q8jJHUCAJAr35r23iFXnN4cdIcBAN7XCBev3VjdNFW/PX2r8kCBEADS\n4OVhhNM/dlXqd5GMAQDlS7NXvOzbz4r24RlKyfpLz8kqLAAAKoBmFh56F11UAMiRzD6Hs7Ho\n0dXp1gjXLJnFx35Jo0AIAOlZ0TwjZZuc1AhnXHWtTjOlZO0Fc7N8FwAAxSmtqTmaNUK7uzPb\nsAAAgIgS68KF9xQ6CgAoW14uVEha9Ojq5pZtAfHr3sCRhCWOAiEApOeOS07VaaYcCdycbXrW\nHOgUx87yRQAAlDTlSP2X/yDs0Q0AQO7ozI4djjwLADl07vSGlG1yWyMUkcUtWwJGQL89n/yl\niwIhAKRNc42/7ebgXQx0AgAqnGba7Yo4U7+6WveZpE4AAFLRmR3LIkIAyKtnrjm3IO9dvH5z\nWksJ6WGVKAqEAJAJL9f4W1XVqd+l5KmLzsr+XQAAFCHNGuH+nrikcxjhk8sXZBUWAADlrjZo\nZXAXSRYAcsj7jUYHLG7ZQo2wvFEgBIAMGRptcpKel/7heZ1mdl/vs1dcluW7AAAoTvk4jNCJ\nRTnHFwCAMXTdeVHKNiMuInTj0fxEBACVSGfPZ+XI3PvX5/zVi1u2VDVO0mxMjbDkUCAEgAy5\neqsZlCMz7lqX5bs0Bzp7d72e5YsAAChpaR1GKMI5vgAA5AWb3ABADuns+SwiL7/Vk4+3n/Ob\ndc0t2wyttRLUCEsMBUIAyJzmjme72iPZv4vDCAEAFU4z7XbHneQ3pE4AALKntYh/pEWETqQ3\nPxEBQCXS+zQW87rcbzSatKzlFc3tRpWSNUtm0c8qCRQIASArBdwHfOR3KVm7dI437wIAwGPp\npt362fNSt6dGCAAAAKAsKMnjIGQaRxIq+lmlgQIhAHhBObL4oQ1ZPkR3tzTXyfJFAACUtIEa\n4ZnfekSrvZJ1y1KXEgEAqEyaiwj/1xm3HnOF9AoAOaW5pYpyxH9THmuENZOnaTamRlj8KBAC\nQLY00/Mzb3Rk/y52SwMAVDjNtDtAc3qNsuMZhQMAAPp1W+EhV0ivAJBbmr0h25bqFb/PUwxn\n//z3C77xfc3GjFIWOQqEAJADXm40GpwwKfW7yL4AgPKVbtpleg0AAFlKd4IOACBPND+Q+2Ju\n/Zf/kKcYGs9cpLvPGV2t4kaBEAC8k5Ma4fn/sy4nwQAAULo0a4RNt/wxjWfScQUAIAtKrAsX\n3lPoKACg/GnWCLsizgMtu/IXBjXCMkCBEAByw8sJlayEAABAR1vETn6j33cFAAAjClhGurfQ\nLQWAPNEch/zCr17Naxhp1QjXLJlFUig2FAgBIGeKcKPR175xe/bvAgCgCLHRKAAAXorde3HK\nNiwiBADPaHWIRMzrcjAOOYbmlm0B39AzaEeLhg5XsaFACAC5tKJ5Rso2ypGpX12d5Ys0Nxrd\n9+gjWb4IAICSRo0QAIBcSX8NoSglT79/SR5iAQBo8aBGuHjdC42nzdONhw5XMaFACAC5dMcl\np+o0298Tz/5dmqOcTy5fkP27AAAoQnna31sp2fDBC/PxZAAASpq9Ume1ivXg9PcPvhJva81b\nRABQ0TQ7RB7UCBd895GaydM0G1MjLB4UCAEgx7zcaFSHG4968yIAALyXj41GRSS6f19WYQEA\nUMF+M/GcQocAAJVC3X+JzvJuJXkfijz757+f/uFPaTamRlgkKBACQAljqzQAADT392ajUQAA\nspfB8n2yKgDklb3ykuPrgymbebBcYcbVn9eckSlkh+JAgRAAcq/YFhECAFDGNPf3Thf9VQAA\nMqPEunDhPYWOAgAqyN5/bdZp5s1oJDXCEkKBEADyQnM1Q/WK32f5IpZBAACQp41GSaAAAAyn\ns5fdEErJnp89nIdYAAD9dM8j9KpGGDBTL2oU+lyFRoEQAPJCczVDxHazf5dmjXDdsnnZvwsA\ngOJEjRAAAG/YKzVyrlhb6o6ZNbvzew/mLSIAgEg6NcIZd63LdzCLn3oxIH6teJSsWTKLbldB\nUCAEgHwpto1GlR335kUAAJSEdGqE78x3MAAAlJnrT7tq8I9upLdQkQBA5dCsEe5qj+Q7EhFZ\n3LKlqnGSVlPF1MzCoEAIAAWmHHmgZVeWD2GjUQAAMpiao308hso0KAAAypDmAPQxtyh5acU1\n+QgGADBYUa1YOOc366Z/+FOajRm69B4FQgDII81e0xd++2q+IwEAAEnKkdAXHx/4kUk2AADk\ngxLrPQvvGnyl9ek1hQoGADBETlYs6Jhx9ee152XS8/IaBUIAyC/NaTtz71+f5YsY3wQAQHNq\nTtxJe0UgORQAgHQ5DDwCQCEU4YoFaoTFiTwNAEXh5QM9hQ4BAIBykL+NRpWSPT97OPPIAAAo\nI1oJV6xbTrni6I9Knn7/knwGBQDoV1QbjSalVSNcs2QWZUIPUCAEgLzTTMlTv7o6yxexiBAA\ngMxodla3f/PufEcCAEA52dBwTPcz3tVRqEgAoNIYGm2UI5f/YGPeQzlCv0YoijFML1AgBIBi\nsb8nnv1Dpn/sqpRtlJLXvnF79u8CAKA4ZTZblnk2AACkRXMLu2NuSdhPLl+Qj2AAAEO4ep/S\nv952MN+RDNbcsq26aapmY/pf+UaBEAC8oDlSWf/lP2T5ohlXXavTbN+jj2T5IgAAillt0ErZ\nRjkS+uLjHgQDAEDFUmI9OP39g6+48WihggGASlOEG42KyKJHV8/85xs0G1MjzCsKhABQRLrj\nTvYP0VwA8cK/fDT7dwEAUJy67rxIp1ncUYN/ZBEhAAA595uJ5xQ6BADAWLyvEU77yCfeuUL3\n+Aa6YPlDgRAAPFJsc3Y6t27y5kUAABREZpk3OGFS6rvooAIAICKZ7TKqZO27Z+cjGADAcJof\n1N7XCCdf/L7j3/shzcZ0wfKEAiEAlCHNBRBPv3+JB8EAAFBCzv+fdTrNlJL2F5/LdzAAAJQB\nJdbfLLzn2EtugWIBgEqkXyO8/Acb8x3MYKfedEtzy7aA+HUaUyPMBwqEAOCdYltEGG9r9eZF\nAAAURGaZV2eejYi8+Ll/zCwqAADKiaHRRqVuAgDII80a4a+3Hcx3JMMtbtmiXyNcs2QWZcIc\nokAIAJ7S6TvlhOYiwg0fvNCDYAAAKGbDp8pyGCEAAJrc9HcZ9dWPy0ckAIAxFNu6hcH0a4Si\n6IjlEgVCAPCUTt/Jy2Qc3b/PmxcBAFAQeZ0qq5SsWzYvgxsBAKgoSqxrZ1098GOio23Pzx4u\nYDwAgNEUsEZYM3maZmNqhLlCgRAAyhYnEQIAINo1wiE0NxpVdjyDhwMAUGleqTlx8I/bv3l3\noSIBgIqVWc/IM2f//PeavTChRpgjFAgBwGvFtqKfkwgBABgx87LRKAAAOrQ6uWJtqZvhQTAA\ngDEU27DkcNQIvUSBEAAKoNhOInztG7d7EAwAAIVyfH0wZZuRu8EmPSYAAHLj+tOuKnQIAIAS\nQI3QM3R3AaAAiu0kwn2PPuLNiwAAKIi9/9qc2Y3NT72csg2dUgAA0t22rvodM/MUCQBgbMW/\niFCoEXqFAiEAlDn9hAoAQBnLuBs8/WOplzvQKQUAICUl1sfm3Zz8vmfn66ROAMAYmlu2BQLV\nOi3pjmWMAiEAFEZRzdZRStYunePBiwAAKDkzrrq20CEAAFAmWgN1hQ4BAFBcw5JjWLzm+VBN\no05LaoSZoUAIABAREdcpdAQAAORXxt1gzTN96ZECACqZTp59R98BDyIBAKQUsIxCh6DlvMef\nCdc16bSkR5YBCoQAUDCaw5SBm7OdrcOwJgAAWdJMpi/8y0c9CAYAgBJV4/QNfE8nFAAKKHbv\nxSnbKEf8NxV4EaGInPu79TP/+QadlmSWdFEgBIBiZ7uFjgAAgHKR7710OrduyuxGAAAqwYu1\nJxc6BABAGhxV6AhERGTaRz6hM2VTqBGmiQIhABSS5jDl4oc2ZPki7UWE78zyRQAAFDmdvXTY\naBQAAABAeSuVkwgHUCPMOQqEAFACnnmjw6tXFce8IAAA8kZnL53RGD5/yjZ0RwEAGI0S68KF\n91RPPyn59a6V3y10RABQ0bROInTyH4c2aoS5RYEQAApMZ7ZOTuiue1g6x4NgAAAooIyPAV62\nbkt+IgIAoBxodm97d+9Mfm2+7lPrLz0n31EBAEajdRKhiHldsSwiFGqEOUWBEABKgKfL+d1i\nmhcEAEDhjHgMsOaEmw0fvDD3AQEAUHbs7s5ChwAAFa02aKVso6SINhoVaoS5Q4EQAAqvqBYR\nAgBQCfJ93kZ0/77MbgQAoLwpsd6z8C4xJPllamzfDQDIn647L9JpVlSHEQo1whyhQAgApUE5\nEvri4168iMQJAMCYdHftJp8CACqPxmFW4ogpSpJfrp3Ie0wAgDFpLl2gRlh+KBACQMmIOyr7\nh7CIEACApHwvIlRK1i2bl9m9AACUKFdzg5yBFYRm6q3tAAD5Ro2wMlEgBICi4NkuozqUkqcu\nOqvQUQAAULx0O6J2PN+RAABQcpRYFy1a2bx+W/P6bUuf3FrocAAAIunUCOfevz7fweijRpgN\nCoQAUDK8nKTjRHq9eREAAAWUzSJCzY1Gn73iskwiAwCgrLmOs2bxrOQXuRIAioRmjfDlAz35\njiQt1AgzRoEQAIrFudMbvHmR5oAmiwgBAJVA56ikbPTsfH3tu2fn+SUAABQRrfk3Yl248J7k\n9727Xs9zRAAAXfk+iCFPqBFmhgIhABSLZ645N2Ub5Uj9l//gQTDCIkIAQGXQOSopm0WEIiLK\nTTcqAAAqQv8xhIxPAkCJUY5Ur/h9oaM4hn6NkKPiB5CAAaDEdMed7B+iuYjw6fcvyf5dAAAU\nudqglbKNcsR/U+YbjTJNFQBQUTQXEX5q9hdESWDiFA9CAgBo0txoNGIX3TxIzRqhm4izy0sS\nBUIAKCKaq/hn3LXOg2BEJN7W6s2LAAAooK47L9Jp5qh8BwIAQGVpineJIbWnMI0GAIpLiW40\nKuzykiYKhABQena1R7J/iG6+BACgAmh2gEfc6JtFhAAADKeTW1+tPUGUHHzqCVZyAEApUo48\n0LKr0FEMRQdNHwVCACgumgOUl/9goxfBkCwBABgkm42+yaoAAAzRFOtOHkPor28sdCwAgGNo\nbjT6hd++mu9IMmD4/Cnb0EETCoQAUKJ+ve1g9g/RSZYAAFQIzTk6gZszPIlQ6IICAHCscXan\nKBEls2+7v9CxAACGKt2NRpet26LTjA4aBUIAKDqaM3Syp5MslZINH7zQg2AAACgJ9ihnVVAj\nBAAgXZsbTj7usg8ed9kHg00TCx0LACBDxVkj1O+gPbl8Qb6DKVoUCAGgJHmZeqP793nzIgAA\nCivLGbKc7wsAQFqq/YHTrr/1tOtvrTpheqFjAQCMQHMZg3Lks4++nO9g0qXZQXNi0T0/ezjf\nwRQnX6EDAACMIGAZcUd58KLmlm1rFrOOAQCA3NBJrErJmiWzRMQQmXvXf4zWrOm8pbmNDQCA\nYtMTjSfz5oTFzXPvfLDQ4QAARqDuv8S4LvUqhf/4055vXj7bg3jSojnyuf2bd0/74Mc9iKfY\nsIIQAIpR7N6LU7bxbBGhUrL2grkevAgAgILL/pgNrSN+lYgS5cVcIAAACssQMURERsp6tU7M\n9PtNv7/u9DkehwUA0Fe6hxGK3jrCij0JggIhAECDYxc6AgAAPGIZWd2uc8QvAACVQN1/Sf+k\nGOmvEg7RZVU1z7/dTSR2fvcBj2MDAOSccuTyH2wsdBQZqswaIQVCAChSmnNzHmjZleWLNOfR\nPHvFZVm+CACAkmCvLOHpsQAAFJ+xpt6YjoghZjDkWTQAgAxoHkb4620H8x1JBjgtfjQUCAGg\ntH3ht69686LeXa978yIAAApuRfOMlG1yUiN86YtXZ/kEAACK3lh7ajuWdeGilUuf2ORZNACA\nzLDRaPmhQAgAxUtzbk72mEcDAMBgd1xyaja36ydWpWTLzVf3f33x6oF6YaL9cMtli9/4yX9m\nEwYAACVBOXL6v/660FEAAHKjaGuE9bPnpWxTaTVCCoQAUNqUI5YnSbfSEiQAoMJpTo8d7YyN\n5pZtac+/UaKOLLFQjhtvO2z39ab3BAAAiozmtNc5gVjrM08O/spzXACATGh+qitHfMVXIzzz\nW4/oNKuoIVAKhABQ8sbarkUbiwgBAMjA2GdsNLdsC4jfs2AAAChCOqPJv+iq8SASAED2NGuE\nbr7jyIjm+Gfl1AgpEAJAUfNsl1EdSsnaC+YWOgoAADySmyxsGGk1P/jkHw8++cfDzz6dg1cD\nAFAkVIp5rWbc8SYQAED2yv4wQqmYUVAKhABQ8nKVcbUSpGNn/yIAAMpGyiy8eP3mqsZJ2o+T\ntx//1duP/+rg+idyEBwAAMVh9fM3rH7++qnR9mHXr+//2vl7qoYAACAASURBVPqVggQGAMhM\nJdQIK2EU1FfoAAAAKaxonnHnmh2FjgIAAGTonN+sE5E1izX2qDl2teHuh7+9++FvD/y44N9/\n0Dh/YY6DAwAg/z550UNvtEeGX19+1srkN79aEvQ2IgCAF5QjoS8+Hr3r4kIHMlRzy7aUHbTk\nRqPL1pfzqUysIASAYnfHJaembKMcqf/yHzwIpnL24AYAQAo+MdY0j7vsgwNfwaaJeXkLAAB5\n9pEFU9978M/JL2PQsVQDFzu++dWXVvxL4QIEAKRN80SGuJNil+lC0VlHWPYDoawgBIAy0Z2L\nMxumf+yq3T/6TvbPAQCgbFiG5KRLO7j/2bL4XXFJjNjs9Bu/KiKJ9rbt331g+kc/NeNTn8vB\nuwEAKKg7Ljl1zV2/SC6Uf3zcIufIgoXfTVj4xMYbk9/bNfV/3H+0V1u37eBoT3vvLGbMAEBR\nUPdfYlyXYq5kcj6le28uzncvBKVk7btnL3vq5UIHkheFWUHY0dFx7bXXTp8+PRAITJ069cor\nr3z77bfHvuWNN9745Cc/edxxxwUCgRNPPPG6667r7u72JloAKDjNKTnZm3HVtSnbKCUbPnih\nB8GUMfIgAJQQe6WniwgD45oC45r89Y05eVpxIg8CQKUxrlu1fOHK5WetXH7WSmfQagVlmMmL\ny89a+Z7ZlXIMIXkQQDmxjNRtSv0wQuW6a5fOyXcwBVGAFYTxeLy5uXnTpk0f+MAHFixYsGPH\njocffnjt2rUvvPBCY+PI3eBdu3YtXLjw8OHDf/d3fzdnzpwNGzZ8/etf37Bhw/r16/1+v8fx\nA0Bx8nI+TnT/Pg/eUq7IgwCASkYeBIAKlhxFViNdFLMyDkIiDwIoM/bK1IsIRUQ5Mvf+9S9d\nt8SDkNKicxihiIibg53bilABCoQPPfTQpk2b7rnnnhtv7N9D4KKLLvrQhz50xx13rFy5csRb\nVqxY0dra+t3vfvfKK69MXrn22mv/7d/+7bvf/e7VV1/tUdwAUFC1Qas75kUq0s2LyBR5EABK\nTiXsnOMZ8iAAVCB1/yUD3cy/XXB3xHd0QHL1c9clv3ENOXT2gwUIzlvkQQDlR6e7JCIvH+jx\nIJgM6IyFJg8jXLZea8VhCTGU8vqIyPnz5+/YsePQoUPBYHDg4syZM7u6uvbv328YIyxJra+v\nr6mpefPNNwd+29HRMXXq1He9611/+tOfRntRU1PT4cOHbdu2LCvnfwoA8J5Orl139dlLZ4zP\n8kU6BULDkPJLit4gDwJAKfrSqtfuXLNj7DaGJWkVCFufeXKM3zadt1T/USWEPAgAlWnN4lnJ\ntYLvm39Xn+/ourfVz1+f/MbxBVr/5f6B63Wnj7qZW0mfQUgeBFCudMYt0+0xeakyh0O9Xrwf\njUa3bt26cOHCwVlQRM4///yDBw/u2rVr+C29vb1dXV0nn3zy4BzZ0NAwc+bMTZs2OU55Lu0E\ngMws+/az2T/EqqrO/iEYEXkQAErUHZecmrKNcqTplj96EEzpIg8CQMUaOINwcHVQRAbOILxo\n/p0ffTZWqPC8QR4EUOGUI5f/YGOhoxiZ5nmEZcbrAuHevXsdxznhhBOGXD/xxBNFZOfOncNv\nCYfDPp+vtbV1yPWqqqp4PJ7yFF8AKBvqfo+m2Cz9w/Mp2yglz15xmQfBlBnyIACUt7aIXegQ\nihp5EAAqnjFw6OCwi0ZQynytG3kQQBnTHLf89baD+Y4kf5IbjRY6ilzy+gzC7u5uEamuHro2\npaamZuC3Q5imec455zz99NNbt26dM6d/e4HXXnvthRdeEJGenmM2rv3EJz7R29s7+F0AUFGS\naxdab/sbD97Vu+t1D95SZsiDAFC6NE8iDNy8Kn53kW6bU3DkQQCoWAMDx13bXhr37TedQUOS\nPzk3UJiYPEceBFDeSv3s9vrZ8zpf3jx2G6Vk/aXnLPndqDs8lxavC4RJwzfUTh6FOOJG2yJy\n2223LVu27H3ve983vvGN008/ffPmzStWrJg2bdqOHTuGLMn/1a9+1dHRkaewAaAk5GTtgs7x\nvMgYeRAAypjtFjqCokceBIAKdEwHc8HKwb+a9MA1yW9cQw597kEvoyoI8iCACqcc+eyjL3/z\n8tmFDmSoM7/1iM5wqN3d6UEw3vC6QFhXVycjzWHp6uoSkdra2hHvuuCCCx588MGbbrrp8ssv\nF5Gampqvfe1rGzdu3LFjR2Nj4+CWjz76qG33j4x/4AMfSD4WAMqGzkwczyglL624Zu6d5d9/\nyyHyIACUtNxOiW06b2luwiod5EEAqHQjlsCOXFRmmW8xSh4EUPY0hy7/4097irBAKHpLJpIb\njS5bXw5nFnpdIJw2bZrP53vjjTeGXN+xY4eIzJw5c7QbP/vZz15xxRWbNm0yTXPevHm1tbVn\nnHHGlClTGhoaBjdbunTpwPd+v3/oUwCgAni5VL/16TUevKWckAcBAJWMPAgAFau5ZdBA6ueO\nGTve/3/+fbTFc2WGPAigEpT6RqNiGKLU2E2UkrVL5yx7cqs3EeWPoVL9UXNu0aJFW7duPXTo\nUFVVVfKK67onnHCCZVl79uwZ7S7HcSzr6DSiPXv2TJ8+/WMf+9gPf/jD0W5pamo6fPiwbduD\nbwSAUhe88fG4k+Kj27AkJyk25ZQZw5DymC/jJfIgAJQ6nSmx42t83hwJXHLIgwBQsXQSqGXJ\nw2cHRaTu9DmjtXnvrIm5DMtb5EEAlUBz/7NcDWDmnM5Go+UxKGp6/8pPfvKTfX19991338CV\n73znO2+99daVV16Z/DEajW7evDk5dybppptuCofDzz//fPJH13U///nPK6U+85nPeBk5ABSD\n2L0Xp2yjHGm65Y8eBIMMkAcBoBLk5EjgskQeBICKN3yxoDHwVecr82oWeRBAJVD3F2PZT98x\nq95Hkdxo1INg8qoAKwgdx7ngggtaWlouu+yyBQsWvPrqqz/96U9nz5795z//OTl35uWXX54z\nZ05zc/Pq1auTt7z00kvnnHNOIBC44oorxo0b99vf/nbjxo033HDDvffeO8aLmCkDoFzpTMPJ\nyRwcnfkypj9wwdrNWb6oopAHAaAMsIgwY+RBAEDL4nddtOBrEV//yUcPzjPHVQ3dD7NcVxCS\nBwFUDs8GMPOhQhYRFmAFoWVZq1atuv766zdv3nz77be3tLRcffXVTz755MDK+uHmzp27Zs2a\ns88++0c/+tFdd93luu73v//9sbMgAJQxz6bhWFXVKdsoO+5BJOWEPAgAFYJFhCMiDwIAzvjJ\nr9QI6wgrAnkQAAZTjlSv+H2hoxhBhSwiLMAKQs8wUwZAGSueRYRlMFmmXJEHASCvUubiop0M\nWyHIgwBQtPr27Bp//8vRI7uJfv3E9knHTR7SplxXEHqGPAigGJT0IsKNn/mHzpdT75pW0kOj\nBVhBCADIXvHs5a2U7PnZw4WOAgCAoqMc8d2Yuj8MAECFWLN4VvLrTx+51JCjKxbm/vyOSQ9c\nk/ya8G//p4ARAgByS2cAUzliFmW/6cxvPVLoEPKOAiEAlC3lyNSvrvbgRdu/ebcHbwEAoOS4\nhQ4AAICiY4gY8ttNN9+0879FZEK8M3kl+aVq6godHwAgl1Y0z0jZpmhrhGW/0SgFQgAoZ/t7\nsj0gUCcRAgBQgTQnw/pvKsaOLgAA3mtu2dbcsq15/bbm9dv6qo5uE/rskisPfO7B5FfrJ28v\nYIQAgJy745JTdZopRy7/wcZ8B5MB3Rrhu2d7EEzO+QodAAAgQ+r+S3Q28vZAMgsue+rlQgcC\nAEDRccr2zHcAANJ2tA87+8bkfx8K1H8pUi8bYskf/2aKecU7/AWJDQCQJ5pjmL/edtCDYPJF\nleT2MawgBIBy5t0K/dLMggAAZKN4jgQGAKAkHF8fbAz7G8P+WjcacuIiYogExK32GcmvE6sZ\nqwSAMlTShxGW8UajrCAEgBJmiHiwLKG5ZduaxaWX4QAAKAbJXq57L6VEAABk7782J79pee8F\nv/OfcM9Jf98U7/yvLV9LXjzwuQcLFxoAIL90hjGLtvdk+PzKTozdJlkjXLa+lE5rYlYOAJQw\nl4ULAAAU1LnTGwodAgAApef4h37Sbdb2/6BElCg25QaAsqY5jKkcmXHXunwHk65l67YUOoS8\noEAIAGXOm+X5JbqOHgCALD1zzbkp2xTtVjkAABTQryecIyKHAvXLF65cvnDl382/tdARAQDy\nS/OMhl3tkXxHkoGy3GiUAiEAlDbL8OItwQmTvHgNAAAliJMIAQDIgG0dc/JRwvQrVhECQLkr\n6cMI62fPS9lGKVm3LHWzIkGBEABKm73Si0HJ8/+n6Jb2AwBQQpQjix/aUOgoAAAoInV235Ar\nPTteK0gkAAAvBTSWOxRnjfDMbz2i08xNxPf87OF8B5MTFAgBoPx5tsvo+kvPyfdbAAAoUc+8\n0VHoEAAAKLA1i2clv3Z+dLlPEkN+e/JjD0164JrkV/AzywoSIQAg32L3XqzTrDhrhDobjYrI\n9m/ene9IcoICIQCUPG92GZ3+satStrG7Oz2IBACAYqO5T07oi497EAwAAKXKOPql6hsLHQ0A\nIF80j2ko3RphqRxG6EvdBABQ3OyVlxjX5T1Zzrjq2t0/+k6+3wIAQBmLOxytBACoaMsXrhzt\nV31WcPlZR3+76B31X/IkJABAQaj7vRjPLKBkjXDZeq0Vh4XCCkIAqAjKEf9NXuwyWipbbAMA\nkFuac2ABAMCY+pcQnjKuptCRAADyS3MjlhJdRFgSKBACQDmoDVop23izaKFUttgGAMB77DIK\nAKhw6v5LBr7mJA4P/lWVE1sZ2PKTcwPJr/89b0qhggQAFJXSrREW/0ajFAgBoBx03XmRB28p\nm9kxAAAUCruMAgAAAECS/mGETbf8Md/BpKsMRkopEAJApfAmlRb/1BgAAPKkdHfIAQDAe9Uz\nZg7+MWoFChUJAKCANGuEbRE735HkQ5GPlFIgBIAKUqKpFACAckKNEAAAAAAGlO5US8PnT9mm\nmGuEFAgBoExoTrfJUhmsnQcAIH+8SccAAJSBP31u0U/ODX56Ys+pPXtP7dk7s+fNQkeE/8/e\nvUfJVdX5At/V1emEkAfBThwCCcHwMBmQIbw0ECbSzHDTAyjiUueqI5I4y8XgGq5AQGdGHgoM\nIa2uK2GuqKPC6Lr4VljN4A0JGAKCSQgGE0FiCAiJSZqEvNPd1ef+UdA0nUdVkqpzqnt/PqvW\n4tSpXef88g+/1fU9e2+AmlaDGeG585/OuoSDIiAEiEhSCA3XVb2PJkl49P3nVPsuAFCb+u7T\nrwAAAJkofzPCWvtLqpzZFDU7iVBACBCXzq407tL+6oY0bgMANSlXxpikEMbfOr/qpQAAAPQF\n5S7HUqhyHfuvzIzwoSkTn/jE+1Kop3z1WRcAQMUkLc25q6r+EE3TguUPTanFZ14AoEZ0tTQP\nnPlAeyHZ97BVG3fcv3zdAVz/gomjDqguAACA2lXOb5tJCHUzW7tm9cnNHbat+kPWJbyFGYQA\ncUkKIV9jM/EBoP/ZNWtayTFJIVz0nUUpFAMAANAnNORLL8hSmwuN9sW1RgWEAP1KWWuaVb2K\nmut2AFCbZIQA8HzDUc8OGfPskDFXt5989ZJdIYQn1icXfmvRp3+0rNfIdVvaP/79p2+btzKL\nMgFIw65Z0/poRtgXCQgB+pWuMlfrBgCqrMwtNJJC+Id7l1a7GACoXXVv/hDc3pULIXSEEELY\n1dn76dZCkmza0bFlV+1tPwVA5ZSzHEuoyYywz00iFBACRCcphOH/+uDBXKHMbldr++4CQMrK\nzAg3bu288FuLiq/ibIniDIkf/XZNr5FmTgAAAP1e+U9b1tdYRti3CAgB+psyZuGHLe1pPHFZ\na/vuAkD6yvzLtltxtkRxhsSOjq5en5o5AUB/MmzCSb3OFJKwcXvHtl2dxeO1W3b1fK3f1p5F\nmQBkoMy/pHr/yZS1vjWJsD7rAgCosM7Zzbmrqv7sTNOC5Q9NqYlOBgAAQP+wtb3za4++8lr9\nkDBoxMbt7Z/6Qe9tCAGIR9JS+kfO4kKjXbP63qZLGxY+vI9PG8+amkINZhACxCgphNE3za36\nXZLwyPmnV/suANBHlDHHHwDikLuqNXdV64XfWvT1dUMKPeYvdObyzw4Zs3bQiH189+a5zxe/\nXnw9vLKt6uUCUMMOfjelyipzEuGqe76eQjH7ZgYhQKTWbk1jbZbCjm0p3AUAaln32jj118wt\ndJXovxu2tV/4rUXF4x8sXfODpb23IQSAyE06avjpY4Z3vx09bFCGxQBQVeVMIgwhbN5RGH3T\n3Fe+cF4KJVXKluVPZ11CyCVJknUN1dLY2NjW1tbZ2ZnP57OuBSBtJXtnLh8OfvZ9yVVGc7lw\n7q9KPzVDNeiDALWjqqt/z7/8zKnj31a96/dR+iBAn/C9H/zykws7Oupfn2c/NJ986shdy7fV\n/3db/ZCB9Z84/cieg1/b0flfi1/+l/OO/dK047Moti/RB4H+pJy/pyryU2cF7cfeTLk3//uu\nW+8MIXRsbHv+G18d+6FPHP3RGdWp7nVmEAJQRcVNd2WEAFBBZk4A0J/0XIO7IV936lHDd6xP\nQlv7oPq6/3HCyJ4j12ze9V+LX065PAAy1yc3I8zlQpnT85Je/w1Joav91bbO7VVfmE1ACBCp\ninTN/OBDC9XvVQDQ15W/yujgAfnmCaO27ir897PrJowa8pd/MbTnp8Xz09450swJAACAmtX0\nq98VD/ZjKmHq6rIuAICq6P4hsqqmPvib0pUkYfE/fSyFYgCg9nXefl5DXcM+BgxuyH/i9CM/\n8K63hxBOGj30E6cf2fNVPA8AABCVcn7qLE6HSKGY6nnhe9984Xvf/NMvfpDO7cwgBIhXUghT\n5jy24J8mV/tGry1bUu1bAAAA0Bd9YeW3iwfD3zXp8FPPDCGcPTLXfM5pu488YtjA+6afdsHE\nUanWB0Bt+HzT+FseWrnvMTW30GgITQuWL5hycnvoKD00Ca/99o0fUXP7HFkhZhACRG3h6k0H\neYWmBaX3F0yS8NvPf+YgbwQAAAAAxOnm5hPKGZYUQr7G5hGWlQ6GEHI9XiG8cPfXH5oysfu1\n8aknK16YGYQA/VY5+/emZsOjD2VdAgDUhF23nxdCuH/5un2MKc6Q2Nt5MycAAIAIlflrZ5JC\nKVVSnDhY/AfU1R154Qe7PxnYWPk/AwWEAFFLCuGrC1ZdOeWYg7lI04LltbzdLgAAADVrWNf2\niVtf2JQfsiZMyroWAGpdORlhrS002r0AW8m1Rk++9c4QQvuG9StmXz/uY58a/6l/rmphlhgF\niN1n71uRwl2SJMx777tSuBEAAAB9SK6QhCTkk0LWhQDQN0wed1jJMcWMMIVi9suUBU83hAFZ\nV/EmASFAf5a01MqTMiGEUOjMugIAAAAAoA9b+JnJ5QxLCuGKnz5T7WL6NEuMAsQuKYSLv7Po\np5fuYaOj8pWzymiShMc+9DeTf/D/DuZGANA/2EcQAADgwJS5GeGdj794x8UnplBPHyUgBCD8\nfPm6dG60c+3L6dwIAACAPiZJsq4AgD6jL25GGEKYsuDpEMKGhQ/vY0xD48jubQurSkAI0M+V\n+UDNwStnEiEAAADMm3pSUiiEEP4ihL8IIYQwtLBjwqPfC49+rzig40NXdDZ9MLsCAegniguN\nmke4RwJCANKTJGHeOX957q9+l3UhAAAAZGbYhJM6t24uHm9b/UJIurpCXcchh+YPGVw82XXE\n0dlVB0Df0HcXGm08a2rWJYQgIAQghJAUQv3M1s6Dn25fVxe6ukre7WDvAgAAQF922n98v/v4\nkfNO69y1fVt+4Isn/m33D6bDJpyUTWUA9CllLjSan9laqKWFRmtEXdYFAFB1DflcyTElY71y\nND3yTMkxSRLmnWMlUgAAAAAgDV2FMGXOY1lXUXMEhAD9365Z07IuoZfSgSUAAAAAwL4lLWVN\nDVy4elO1K+lzBIQAhBBCUgjjb51/8NdpWrC8nLsd/I0AAAAAAMrJCJNCqJtZesPCqAgIAXjd\nqo07si4BAACAyNTX/fqwib8bckzWdQDQzyWFMOBaGeGbBIQAUShzrn06bEMIAAAAAFRKmT9+\nFqxr1oOAEIDXVaolDBz59gpdCQAAAACgNAuN7i8BIQCvKxTCoM89cPDXOfsnpfcyNIkQAAAA\nAKigXBljkgr9BNoPCAgBYlFOg2yv0DT7/OBDK3IdAAAAAIBydJW30GilfgLt6wSEALEos0FW\nxNQHf5PavQAAAAAAgoVG94eAEIA3JYXQcF1K3TFJwos/uDudewEAAAAAMciXsZCajDAICAHo\npbOrMtcZOPLtJces+u5/VOZmAAAAAAAhdM5Obx21Pk1ACBCRcqbYV8rZP5lfelBXhdJIAAAA\nAIAQgoVGyyMgBCAznVu3zJt6UtZVAAAAAADRiTwjFBAC8BZp98WuQnr3AgAAAAAikOZSan2U\ngBAgLmm2xqYFy0uOSZIw75y/TKEYAAAAACAeFhrdt/qsCwCgP2tasPyhKRNLjUo2LHx497ON\nZ02tfEEAAAAAQByGDsxv2VViAbNiRtg1K7oZh2YQAtBbUghX/PSZSl4xt5eTuRByoa5OMwIA\nAAAAKmzzLeeXMywphIu/s6jaxdQav8kCsAd3Pv5iJS+X7OVkEkISupI9fgwAAAAAcFDK3HHp\n58vXVbuSWiMgBIhOre3Qm3Qlv7v5uqyrAAAAAAD6IZsR7pGAEIDqGn7iX4XwxoKivbyxyugh\nRxyZel0AAAAAAJESEAKwB0khDPrcAxW51Gn/8f0Q3lhQtPdtXn9t/eNzFbkXAAAAAEAvJhHu\nTkAIEKPd5/Ltrr2Q3taASWfht5+7PLXbAQAAAAD0khRC4/W/zLqKlAgIAWLUlck2hPtcZbSu\nTksCAAAAAKqinEmEIYRXd3RWu5IaUZ91AQDUqKQQrvjpM3dcfOLBX6ppwfLiwcZFv17yvy7r\n+dFJN361rqHh4G8BAAAAALAPSUtz7qoSi4gWFxrtmpXF/Ip0CQgB2Kv/fPKligSEIYSHzpm4\nhz0IQ1j2hSu7j3O58K5b76zI7QAAAAAA2BvruQFEqpw59Tsrtw3hwMa3h7CvJUZDLiQhdO9E\n2LGxbcH7pqz+3jcrVQAAAAAAELlyfhQtTiJMoZhsmUEIQBrO/sn84sGCKSe3h443P3hrBNn9\nLil0tb/a1rl9WyrVAQAAkJHOXe/etjyEkFu0/F2XNIUQOja2Pf+5S8Z+6BNHf3RG1sUB0A8N\nHZjfsquw7zExLDRqBiEAe5UUQuP1v6zsNacseHrM+/5nZa8JAABAX9X5+lIzyRtPjHpgFICq\n2nzL+VmXUBMEhADxasjvvuJnb6/u6Eyhkp7anni07YlHNz29OOX7AgAAAAAxsNBosMQoQMx2\nzZqWu6rGmlwS/vST779+XDq+BAAAoP9oe+LREEJh69asCwGg/0tamkv+NJoUwvB/ffC1L/XP\nGYcCQgBS8tCUiaUHvTUUfOHur79w99e73076398ZccoZla4LAACAGuCBUQBqz5b2ErsV9l0C\nQgD2JSmEhuta2/89o/146+qOvPCD3e8GNo7KpgwAAAAqZ8/Pj3pgFIB0lTmJcPRNc1/5wnnp\nlJQmASEAJXR2VeY6TQuWdx8/ftF7t2/88x6HTZh5UwihY+Orz3/jq+M+9qnxn/rnytweAACA\nGlFXF7q6Xk8Ek72O8cAoALVg7db2rEuoCgEhQNTKeUwmZQ2HN4YQQtfe/kYEAACgb2t65Jnu\n42dvu/FP999bPPbAKAApK3MSYd3M1q5ZGS2xVjV1WRcAQK1LCmHKnMeyrgIAAIB+ruHwxobD\nGwcMH5F1IQDwFkkhXPHTZ0qP61MEhACUtnD1pqxLAAAAAACosKSlrKmBdz7+YrUrSZklRgFi\nl8kqo+/5xfwQwoaFD+9tQEPjyJ57FgIAAAAAVEOcC40KCAEAAACAbJxw7fUnXHt9z+dHPTAK\nACmwxCgApdmGEAAAAADor8pZaLQ4iTCFYtIhIASgLLYhBAAAAAD6q883jS85pj/NoxAQAlDu\nTrwAAAAAAP3Szc0nlDOs38yjEBACAAAAAAAQuzIXGm24rj8sNCogBAAAAAAAgLJ0dmVdQSUI\nCAEoS1IIgz73QNZVAAAAAABUS5mTCOtm9vlJhAJCAEIIYfK4w0qOaS8kKVQCAAAAAEBVCQgB\nCCGEhZ+ZnHUJAAAAAAAZi2QSYX3WBQDQZySFMP7W+Ss/995KXbDxrKmVuhQAAAAAAGUygxCA\n132+aXzJMas27kihEgAAAACArMQwiVBACMDrbm4+IesSAAAAAACyV05G2KcJCAEAAAAAAGD/\n9OlJhAJCAPZDUghX/PSZrKsAAAAAAODACQgBeFM+V3rMnY+/WP1CAAAAAACy1L93IhQQAvCm\nztn9fGVtAAAAAAAEhAAAAAAAANBbP55EKCAEYP8khdB4/S+zrgIAAAAAoOrK2ZUpKYSvLlhV\n/VoqSUAIwH57dUdn1iUAAAAAAFRdmbsyffa+FdWupLIEhAC8RTmz5gEAAAAAItEvFxoVEAIA\nAAAAAEBEBIQA7LekEKbMeSzrKgAAAAAA0tD/JhEKCAE4EAtXb8q6BAAAAAAADoSAEIDebEMI\nAAAAANBTP/vVVEAIAAAAAAAAB6sPrTIqIATgQCSFcMVPn8m6CgAAAACAlEwed1jJMX0lIxQQ\nAnCA7nz8xaxLAAAAAABIycLPTM66hIoREAKwB/1sQW0AAAAAgINXzg+nfWISoYAQAAAAAAAA\nIiIgBAAAAAAAgLL0j0mEAkIADlBSCPW13eQAAAAAADJR4xmhgBCAPTtq+MCSY7pSqAMAAAAA\noJaUM4mwxgkIAdizl77QlHUJAAAAAAC1qK8vNCogBODAJYUw/tb5WVcBAAAAAFCLkkJovP6X\nWVexBwJCAA7Kqo07si4BAAAAACBtZS40+uqOzmpXuvvVBQAAIABJREFUcgAEhADsVT9YShsA\nAAAAoErKXGh0ypzHUihmvwgIAQAAAAAAoFoWrt6UdQm9CQgBOCi2IQQAAAAAotVHl2ETEAJw\nsF6wDSEAAAAAwF4khVA3szXrKt5CQAjAvpS1iHYKdQAAAAAA9Fm1lhEKCAEAAAAAAOAAJS3N\n+VzWRewnASEAAAAAAAAcuM7ZZazEVgjvavlVCsWUQ0AIwMGqtdnxAAAAAAA1aNkrW2vkp1QB\nIQAlTB53WNYlAAAAAADUtKSl9CTCUDPTLQSEAJSw8DOTsy4BAAAAAKDWlZkR1gIBIQAVkBTC\nxd9ZlHUVAAAAAABZKicjrIVJhPXZ3h6AfuP+FeuyLgEAAAAAoG+4f/l+/6B6wcRRlbq7GYQA\nlFbOYy+FJIVCAAAAAABqWpmTCK9tXZFCMXsjIAQAAAAAAIBUrVi3LcO7ZxMQbtq06corrxw3\nblxDQ8Po0aNnzJixZs2afX/l97///cc//vEjjjhiwIABI0eOvPjii5988sl0qgWAytIHAYiZ\nPghAzPRBgEiUOYnwH+5dmkIxe5TBHoTt7e1NTU1Lliy55JJLJk2atHLlyrvvvnvevHmLFy8e\nMWLEHr/yu9/97j3vec+AAQOuuOKKY489dvXq1XPmzDnrrLMefPDBc889N+X6Adij4s66XbNK\nd77I6YMAxEwfBCBm+iBAlHIh7L45U674n3HDBqdcTbcMAsI5c+YsWbLktttumzlzZvHM+eef\n/+EPf/jmm2+ePXv2Hr9yyy23bNmyZd68ee9973uLZy666KKTTz75i1/8okYIkI6kpTl3VWvW\nVfQH+iAAMdMHAYiZPggQlTd+UN09HQzdJ5f+eXOaJfWUS5I9VlZFp5xyysqVK9evXz9w4MDu\nk8cdd9zmzZvXrl2by+V2/8q73/3uJ554or29fcCAAd0nhw8ffvjhh69atWpvN2psbGxra+vs\n7Mzn85X9JwDEqWRAmMsHMwhL0gcBiJk+CMAebVj4cM+3jWdNzaaOKtMHAWJT5oyLXD784tLT\nyhl5wcRRB1fRm9Leg3Dnzp3Lli0744wzenbBEMLZZ5+9bt26vXW1d77znSGEZ599tvvMhg0b\ntm7dOmHChKpWC8B+SQrhqwv2+vcJQR8EIG76IAAx0wcB4rb7UyC57lddyOB5jrSXGH3ppZcK\nhcKYMWN6nT/66KNDCH/84x/f8Y537P6ta6+99he/+MXHPvaxO+6449hjj12zZs0111wzaNCg\n66+/vtfIn/3sZx0dHcXj9vb2KvwLANiX2+avvHLKMVlXUbv0QQBipg8CEDN9ECBCScvry601\nXDO3o6v3/5zvm35q6hW9Ke2AcMuWLSGEQw89tNf5IUOGdH+6uwkTJjz++OMf+MAHpkyZUjwz\nduzYuXPnnnnmmb1GfvKTn9y0aVOFiwYghFDeNoR/3uqPkH3RBwGImT4IQMz0QYCYtd9+Xv01\ncwtvzQjXbNl1xNCBe/tKtaUdEBbtvqB2cSvEPS60HUJYsWLF3/3d33V2dra0tBx//PHr1q37\n8pe/PG3atB/96EfnnXdez5GXXnrp9u3bi8d33333zp07q1A+ABwUfRCAmOmDAMRMHwSI0F4m\nXST/+INlb44pexvCSkk7IBw2bFjY0xMxmzdvDiEMHTp0j9+67LLL/vznPz/33HNHHnlk8cxH\nPvKR448//tJLL121alXPHXq/8pWvdB//+Mc/1ggBqCn6IAAx0wcBiJk+CBC9XAjJbmdeVxfq\nUq4m7fuNHTu2vr5+9erVvc6vXLkyhHDcccft/pWtW7c+8cQTZ555ZncXDCEMHjy4qanp5Zdf\nfu6556paMAD7JSmEupklliGNmT4IQMz0QQBipg8CRCtpaU5ampOWafdNPy1f19B9/sQjhtw3\n/dTi62eXnpJyVWnPIGxoaDj11FOffPLJ7du3Dx48uHiyq6vrkUceGTNmzNixY3f/yo4dO5Ik\n2f2Zl+IZz8IApOmo4QP/9NqurKvow/RBAGKmDwIQM30QgNBzzmAIz6zZcuG3FnW/PXL4wP/z\nwZOWr912XevvJx059Ibzj+/5xXVb2q+6b8V1577j2nPHV6SStGcQhhCmT5++ffv222+/vfvM\nXXfd9corr8yYMaP4dufOnUuXLi0+OxNCGDly5DHHHLNo0aKeD8Vs2rRp7ty5w4YNO/HEE9Ms\nHiByL32hKesS+jx9EICY6YMAxEwfBGAfdnUmIYSOrq4kSbZ3dPX6tJAkm3Z0bNlVqNTt0p5B\nGEK47LLL7rnnnhtuuOGpp56aNGnSihUr7r333pNOOunqq68uDnj++edPOeWUpqamuXPnFs+0\ntLR88IMfnDx58qc//enx48evWbPmm9/85quvvjpnzpyBAwem/08AgAOmDwIQM30QgJjpgwCR\nu2DiqHwInVmXUZRBQJjP51tbW2+88cYf/vCHra2to0aNuvzyy2+66abumfW7u/jiix999NFZ\ns2bdddddGzduHDp06KmnnnrHHXc0NzenWTkA5UgKoeG61vZ/97/oPdMHAYiZPghAzPRBAHbe\nft64Lz28euP23T/a1Zk8uurV1Rt3hhA27yw8uurVnp9u3FHhYDGXJEllr1g7Ghsb29raOjs7\n8/l81rUA9B/DPv9gyZnsuXzomuVvlYzpgwDETB8E6Fs2LHy459vGs6ZmU0d/oQ8C1LK9BYTl\n+Jfzjv3StONLjytDBjMIAejTNt9yfu6q1qyrAAAAAADoG8Z9af7qjTsO/jo3z33+5rnPd7+d\nf/mZU8e/7cAuJSAEAAAAAACAavnopNG3PLTy4K8z6ajhp48Z3v129LBBB3wpASEAlZcUQuP1\nv9xw499mXQgAAAAAQMZubj7h5uYTisff+PVL//jDZbuPGTZowDVTj/lj245v/+alsSMO+dSZ\nY3p++ur2jq/8atW0d460xCgAmcmFUHID21crvWsuAAAAAEB/1ZDP/dWRw3K5XAjh0Ib8Xx05\nrOenazbvquzt6ip7OQBi0NXSnHUJAAAAAAB9z3uPPcBdAytLQAgAAAAAAAARscQoAAAAAAAA\npOHYxsFJS/P9y9ft8dOTRw+9b/ppu58/YtjA+6afdsHEUZUqwwxCAKoiKYT6ma1ZVwEAAAAA\nQG8CQgAORD5XekxX9csAAAAAAGB/CQgBOBCds5uzLgEAAAAAgAMhIAQAAAAAAICICAgBqJak\nEAZ97oGsqwAAAAAA4C0EhAAcoKED8yXHtBeSFCoBAAAAAKB8AkIADtDmW87PugQAAAAAAPab\ngBCAKsplXQAAAAAAAL0ICAGooq5CGHBta9ZVAAAAAADwJgEhAAeuIV96iqBdCAEAAAAAaoqA\nEIADt2vWtKxLAAAAAABg/wgIAagu2xACAAAAANSU+qwLAKCf6yqE+pmtnbOasy4EAAAAAKAm\nXDBxVLYFmEEIQNV1ZV0AAAAAAADdzCAE4KAkLc25q1qzrgIAAIA+rPGsqVmXAABxMYMQAAAA\nAAAAIiIgBKDqkkIYcK1ZhgAAAAAANUFACMDBasjnSo4pJCkUAgAAAABAaQJCAA7WrlnTsi4B\nAAAAAIByCQgBAAAAAAAgIgJCANKQFMKUOY9lXQUAAAAAAAJCACrhqOEDS45ZuHpTCpUAAAAA\nALBvAkIAKuClLzRlXQIAAAAAAGUREAIAAAAAAEBEBIQApCQphLqZrVlXAQAAAAAQOwEhAJVR\nzjaEAAAAAABkTkAIQGWUsw2hrgMAAAAAkDk/1QIAAAAAAEBEBIQApKde2wEAAAAAyJpfagFI\nz66OkJ/ZmnUVAAAAAABRExACUDGTxx1WckySQh0AAAAAAOydgBCAiln4mclZlwAAAAAAQAkC\nQgBSlRTCxd9ZlHUVAAAAAADxEhACkLafL1+XdQkAAAAAAPESEAJQSUlLc9YlAAAAAACwLwJC\nANKWFMKUOY9lXQUAAAAAQKQEhABU2ORxh5Uc8/t1W1OoBAAAAACA3QkIAaiwhZ+ZXHLMyCED\nU6gEAAAAAIDdCQgByMCazTuzLgEAAAAAIFICQgCykMtlXQEAAAAAQKQEhABkYNxhh2RdAgAA\nAABApASEAGRg6ctbRt80N+sqAAAAAABiJCAEIBtrt7ZnXQIAAAAAQIwEhABUXtLSnHUJAAAA\nAADsmYAQAAAAAAAAIiIgBCAbSSGMv3V+1lUAAAAAAERHQAhAVUwed1jJMas27kihEgAAAAAA\nehIQAlAVCz8zOesSAAAAAADYAwEhAJlJCqHhutasqwAAAAAAiIuAEIBqKWeV0bqQS6ESAAAA\nAAC6CQgBqJZyVhnNyQcBAAAAANIlIAQgSzvbkylzHsu6CgAAAACAiAgIAcjYwtWbsi4BAAAA\nACAiAkIAqihpaS45RisCAAAAAEiTX2UByNjpY4ZnXQIAAAAAQEQEhABkbNFLr2VdAgAAAABA\nRASEAGSssxDqZ7ZmXQUAAAAAQCzqsy4AgEjk3jhIdjsT3nZIQ8rVAAAAAABES0AIQHUlLc3d\nx/XXzC10tRePt936t4Mb8hkVBQAAAAAQLwEhAFU37kvzV2/c0evkoZ97sPt4/uVnTh3/tnSL\nAgAAAACIlIAQgKr76KTRbds7Qgh3/frlJCkUT553fOP4tw0uHo8eNiiz4gAAAAAAIiMgBKDq\nbnlo5e4n5z63Ye4bx3/euvOnl56WZkkAAAAAANESEAJQdUMH5tsLSQih0JV0diXFk/V1uVwu\nF0Koy4UzxozIsj4AAAAAgJgICAGous23nF88+MqvVn325yuKx9/40EmNhzZ0j7l/+bryL3jB\nxFEVLA8AAAAAICoCQgCqLndV6+4nP/l/f9t9fPTbBt3x/hNTrAgAAAAAIF4CQgCqLp8LXSEX\nQghJSMLrS4zmimdCCCEcd/iQTAoDAAAAAIiQgBCAqiskIbyRC3ZLepwZ2JALAAAAAACkoi7r\nAgAgzH++LesSAAAAAABiYQYhAOnoniOY7H7+hLdZYhQAAAAAICUCQgDS0XuJ0Z7nl/55c5ql\nAAAAAADETEAIQDp67jKY9DpZZ8lrAAAAAIC0+EEWgKpLWppDSHq83vyk+CoUChd9Z1Fm9QEA\nAAAAxMQMQgBSs/s2hG9OKzwk75kVAAAAAIA0+DUWgNTsdQZhCMn2dpMIAQAAAADSYAYhAGkq\nThlM9njeToQAAAAAACkQEAKQhqSlufu4/pq5ha72Hh/m7pt+avolAQAAAADEyVwNAAAAAAAA\niIiAEAAAAAAAACIiIAQge8+u25Z1CQAAAAAAsbAHIQApyV3VupdPkqvvW9H9pi4ffn7paemU\nBAAAAAAQITMIAUhJQz73xmEuhNxbP8x1v4Y1DEi7MgAAAACAmJhBCEBKds2a1n38we8u/fFv\nX+l+O/3Mo95/4tuzKAoAAAAAIDpmEAIAAAAAAEBEBIQAZO9bT7x04bcW3fDgc1kXAgAAAADQ\n/wkIAagV2zu6si4BAAAAAKD/ExACkIFLTx/97Y+8K+sqAAAAAABiJCAEAAAAAACAiAgIAagV\nbds7si4BAAAAAKD/q8+6AADikruqdW8frduy68JvLep+O+M9Y9438e2pFAUAAAAAEBEBIQAZ\nyoWQvPXt6+pyYcywQekXBAAAAADQ7wkIAUhV0tLcfTzpy4899fKm7re5XPjFZadmURQAAAAA\nQETsQQhAZvI5bQgAAAAAIG1+mQUAAAAAAICICAgBAAAAAAAgIgJCADJz/fnvuG/6ac0TRhbf\nDsjnsq0HAAAAACAGAkIAAAAAAACIiIAQAAAAAAAAIiIgBCAzF0wcdcHEUVlXAQAAAAAQFwEh\nAAAAAAAARERACAAAAAAAABEREAJQKzo6u7IuAQAAAACg/xMQAlArkpDLugQAAAAAgP5PQAgA\nAAAAAAARERACAAAAAABARASEANSQP2zYlnUJAAAAAAD9XH3WBQAQqdxVrbudSz778xVvDsiH\nX1x6WpolAQAAAADEQEAIQIZybxwku50Jh+RNcwcAAAAAqDwBIQDZSFqaiwf3L1/3/m//ttDV\nHkI4Y+ywf/ub4zKtCwAAAACgnzM5AwAAAAAAACIiIAQAAAAAAICICAgBAAAAAAAgIgJCALL3\n9iH6EQAAAABASvwgCwAAAAAAABEREAIAAAAAAEBEBIQAZOyCiaMObchnXQUAAAAAQCwEhAAA\nAAAAABARASEAAAAAAABEREAIAAAAAAAAEREQAgAAAAAAQEQEhAAAAAAAABARASEAAAAAAABE\nREAIAAAAAAAAEREQAgAAAAAAQESyCQg3bdp05ZVXjhs3rqGhYfTo0TNmzFizZs0+xg8aNCi3\nFy+88EJaVQNAZeiDAMRMHwQgZvogADWiPv1btre3NzU1LVmy5JJLLpk0adLKlSvvvvvuefPm\nLV68eMSIEXv8yjXXXNPR0dHr5L333rt27dphw4ZVv2QAqBh9EICY6YMAxEwfBKB2ZBAQzpkz\nZ8mSJbfddtvMmTOLZ84///wPf/jDN9988+zZs/f4lS9+8Yu9zixevHj27Nk33njj4YcfXt1y\nAaCi9EEAYqYPAhAzfRCA2pFLkiTlW55yyikrV65cv379wIEDu08ed9xxmzdvXrt2bS6XK3mF\nQqFw+umn79y5c+nSpQ0NDXsb1tjY2NbW1tnZmc/nK1M6ANVx/K2P/GHDthDCGWOH/9vfHFdy\n/AUTR1W/qGrRBwGImT4IQMz0QQBqR9p7EO7cuXPZsmVnnHFGzy4YQjj77LPXrVu3atWqci7y\nta997amnnrrzzjv30QUBoAbpgwDETB8EIGb6IAA1Je2A8KWXXioUCmPGjOl1/uijjw4h/PGP\nfyx5hW3btt1yyy1NTU1Tp06tRoUAUD36IAAx0wcBiJk+CEBNSTsg3LJlSwjh0EMP7XV+yJAh\n3Z/u2x133LF+/frrr79+j5+OGDEi94a2traDrheAVD354ms3PPhcCGH52m0X/efi4nFP67a0\nf/z7T982b2UW1VWAPghAzPRBAGKmDwJQU+ozuevuC2oXt0IsudD2jh07Zs+efc4550yZMmWP\nAw477LDui2zatCn9HRYBOEjbO7pCCB1dXUmSFI97KiTJph0dW3YVsiitYvRBAGKmDwIQM30Q\ngBqRdkA4bNiwsKcnYjZv3hxCGDp06L6//pOf/GTDhg3Tp0/f24Ceq3UXN+M98FoBoNL0QQBi\npg8CEDN9EICaknZAOHbs2Pr6+tWrV/c6v3LlyhDCcccdt++v33vvvfl8/qKLLqpWfQBkraOQ\nrN2y69XtHd3HPT9dv609o7oqQx8EIGb6IAAx0wcBqCm59Cebv/vd7162bNn69esHDx5cPNPV\n1TVmzJh8Pv/iiy/u44vt7e2HH374hAkTfvOb35Rzo+KTMp2dnfl8vgJ1A1A1x9/6yB82bCt/\n/L+cd+yXph1fvXqqSh8EIGb6IAAx0wcBqB116d9y+vTp27dvv/3227vP3HXXXa+88sqMGTOK\nb3fu3Ll06dLiszM9LV++fNu2bSeffHJ6tQJQTbmrWouv/UoHQwg3z32++7u5q1ofXtmXFk7R\nBwGImT4IQMz0QQBqR9pLjIYQLrvssnvuueeGG2546qmnJk2atGLFinvvvfekk066+uqriwOe\nf/75U045pampae7cuT2/+Oyzz4YQjjnmmPRrBqCaipuo78eM9klHDT99zPDut6OHDap0SVWk\nDwIQM30QgJjpgwDUjgwCwnw+39raeuONN/7whz9sbW0dNWrU5ZdfftNNN3XPrN+bjRs3hjI2\n7AWgr0hamosHHYXkkOseKnS1hxBGDR047Z2Naza3//LZ9cXjnl/ZsrPwk2Vrp71zZN9dYlQf\nBCBm+iAAMdMHAagdGexBmBprbQP0IQOvmdve1R5CmPD2IbMueOfTr2z51weeLR73HLZm865/\n/OGyPr0HYWr0QQBipg8CEDN9EICSMtiDEAAAAAAAAMiKgBAAAAAAAAAiYolRAGrC/cvXlT/4\ngomjqldJv6EPAhAzfRCAmOmDAJRkBiEAAAAAAABEREAIAAAAAAAAEREQAgAAAAAAQEQEhAAA\nAAAAABARASEAAAAAAABEREAIQE24YOKorEsAAAAAAIiCgBAAAAAAAAAiIiAEAAAAAACAiAgI\nAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAA\nAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAE\nAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAA\nICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAA\nAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACA\niAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAA\nAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAi\nIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAA\nAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiI\ngBAAAAAAAAAiIiAEAAAAAACAiNRnXQAAvO6CiaOyLgEAAAAAoP8zgxAAAAAAAAAiIiAEAAAA\nAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICIC\nQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAA\nAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgI\nAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAA\nAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAE\nAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAA\nICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAA\nAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACA\niAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAA\nAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAi\nIiAEAAAAAACAiAgIAQAAAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiAgIAQAA\nAAAAICICQgAAAAAAAIiIgBAAAAAAAAAiIiAEAAAAAACAiGQTEG7atOnKK68cN25cQ0PD6NGj\nZ8yYsWbNmpLfeuCBB/76r/966NChhx122Lnnnvvwww9Xv1IAqDx9EICY6YMAxEwfBKBG5JIk\nSfmW7e3t73nPe5YsWXLJJZdMmjRp5cqV99xzz1FHHbV48eIRI0bs7Vvf/va3L7vssvHjx//9\n3//9zp07v/vd77722mvz58+fPHny3r7S2NjY1tbW2dmZz+er808BgP2mDwIQM30QgP/P3n3H\nR1Xl/x//THoPaTQJxdBCCSEgoNQAghQL0gTUgCKwgLsiCK7ioriugMhiQRfcL8LKd6UprCDo\nigaUjgpIE0KAIBoInUBImWR+f9zvzm82ZXInczPl3tfzwcOHOTlz59xz75z3uTkzd4yMHAQA\neBCLyy1YsEBE5s6day1ZtWqViEydOrWih1y4cCEsLKxt27Y3b95USjIyMsLCwiZOnGjniWJi\nYkTEbDZr1XIAAJxHDgIAjIwcBAAYGTkIAPAcbvgEYdu2bTMzMy9evBgYGGgtbNKkyY0bN86f\nP28ymco+ZP78+c8999wXX3zRt29fa6HFYim3shXvlAEAeCByEABgZOQgAMDIyEEAgOdw9XcQ\n5ufnHzp0qEOHDrYpKCJdunTJyck5ffp0uY/asmVLcHBwz549RaSgoODGjRsiYj8FAQDwQOQg\nAMDIyEEAgJGRgwAAj+LqBcJffvmluLg4Pj6+VHmDBg1E5NSpU+U+6ueff27UqNHhw4e7dOkS\nHBwcGRnZuHHjZcuWVXdrAQDQFjkIADAychAAYGTkIADAo/i5+Plyc3NFJDQ0tFR5WFiY9bdl\nXblyRUQGDBgwcuTIKVOm/Prrr2+++eaYMWMCAgJGjhxpW3PQoEE3b95U/l95Qw0AAJ6DHAQA\nGBk5CAAwMnIQAOBRXL1AqCj7KXjlqxAr+nR8YWFhVlbW8uXLH3/8caVk6NChTZs2nTp16vDh\nw21vpb1169Zr165VT6sBANAGOQgAMDJyEABgZOQgAMBDuPoWoxEREVLeO2KUd7WEh4eX+6iw\nsDBfX98hQ4ZYS+rUqdOvX7/z588fPXrUtmZ6evr3/xEZGalx6wEAcA45CAAwMnIQAGBk5CAA\nwKO4+hOE9evX9/Pzy8rKKlWemZkpIk2aNCn3UQ0bNjxw4IC/v79tYVxcnJTJ1OTkZOv/+/m5\n5/ORAABUhBwEABgZOQgAMDJyEADgUVz9CcKAgIB27drt3bs3Ly/PWlhSUrJt27b4+Pj69euX\n+6i77767uLj4xx9/tC08efKkiJT9Xl8AADz5BmwyAAAgAElEQVQWOQgAMDJyEABgZOQgAMCj\nuHqBUESefPLJvLy8N954w1qyZMmS3377bezYscqP+fn5Bw4cUN47oxg9erTJZHrhhRcKCgqU\nku+//37Lli1JSUkEIQDAu5CDAAAjIwcBAEZGDgIAPIdJ+RZcVyouLk5NTf3uu+8efPDBlJSU\nY8eOrVq1qlWrVrt37w4JCRGRw4cPt27dulevXlu2bLE+asqUKQsXLkxOTh40aNC5c+dWrFhR\nXFz85Zdf9ujRo6Inio2NvXz5stlstv22XgAA3IscBAAYGTkIADAychAA4Dnc8AlCX1/fTZs2\nTZs27cCBA3/+85+/++67iRMnbt26VUnBiixYsOBvf/ubxWJ5/fXXV69enZqaun37djspCACA\nZyIHAQBGRg4CAIyMHAQAeA43fILQZXinDADAyMhBAICRkYMAACMjBwEAlXLDJwgBAAAAAAAA\nAAAAuAsLhAAAAAAAAAAAAICBsEAIAAAAAAAAAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAA\nAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAAAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAA\nAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAAAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAA\nAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAAAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAA\nAAAAGAgLhAAAAAAAAAAAAICBsEAIAAAAAAAAAAAAGAgLhAAAAAAAAAAAAICB+Lm7AdXukUce\nMZlM7m4FAMBtPvroo8DAQHe3wm3IQQAwOHKQHAQAIyMHyUEAMLJKctCiX+vXrzfyDAAAoLh1\n65a7E8k9yEEAgJCDAABjIwcBAEZmPwdNFovF3S2sRunp6cXFxVV++IoVK5YvXz5+/PghQ4Zo\n2CrD2rFjx8svv9y3b99p06a5uy168Ouvv44ePbpZs2bvvvuuu9uiE/379/fx8dm4caO7G6IT\nEydOzMjIWL58ed26dd3bktTUVF9fX/e2wV3IQY9CDmqLHNQcOagtctATkIMehRzUFjmoOXJQ\nW+SgJyAHPQo5qC1yUHPkoLa8JQd1fovR1NRUZx6+c+dOEWnatGnv3r01apGh5ebmikjdunXp\nT01kZGSISEREBP2pFR8fHx8fH/pTKxERESLSuXPnhIQEd7fFuMhBj0IOaosc1Bw5qC1y0BOQ\ngx6FHNQWOag5clBb5KAnIAc9CjmoLXJQc+SgtrwlB33c3QAAAAAAAAAAAAAArsMCIQAAAAAA\nAAAAAGAgOr/FqJOGDBmSmJjYpk0bdzdEJzp06LB69eqGDRu6uyE6UadOndWrV0dHR7u7Ifrx\nv//7vyaTyd2t0I85c+ZcvXq1Vq1a7m4Iqo4c1BY5qC1yUHPkoLbIQR0gB7VFDmqLHNQcOagt\nclAHyEFtkYPaIgc1Rw5qy1ty0GSxWNzdBgAAAAAAAAAAAAAuwi1GAQAAAAAAAAAAAANhgRAA\nAAAAAAAAAAAwEBYIy3ft2rVnnnmmYcOGAQEBdevWHTt2bHZ2trsb5U2uXr06bdq0Bg0aBAYG\nNmrU6KGHHtq9e7dtBXq4yp599lmTyTR27FjbQvrTUZs3b+7evXt4eHiNGjV69uy5detW29/S\nnw75+eefH3vssTp16vj7+8fFxQ0aNGjv3r22FehPb8RRcxI5WH3IQU2QgxoiB3WJo+YkcrD6\nkIOaIAc1RA7qEkfNSeRg9SEHNUEOasjrc9CCMgoKClJSUkRk8ODBr7322hNPPOHv79+oUaMr\nV664u2ne4fLly8o37g4YMOCll14aNWqUn59fUFDQTz/9pFSgh6ts3759vr6+IvLkk09aC+lP\nRy1dulREEhISZs6cOW3atLi4uICAgB07dii/pT8dcvjw4fDw8Ojo6D/96U//+Mc/Xn311dq1\na/v5+X399ddKBfrTG3HUnEQOVh9yUBPkoIbIQV3iqDmJHKw+5KAmyEENkYO6xFFzEjlYfchB\nTZCDGtJBDrJAWI4FCxaIyNy5c60lq1atEpGpU6e6sVVeZNKkSSLyzjvvWEs++eQTEenfv7/y\nIz1cNUVFRcnJyW3atCkVhPSnQy5cuBAWFta2bdubN28qJRkZGWFhYRMnTlR+pD8dMnLkSBH5\n5ptvrCUHDx4UkR49eig/0p/eiKPmJHKwmpCDmiAHtUUO6hJHzUnkYDUhBzVBDmqLHNQljpqT\nyMFqQg5qghzUlg5ykAXCciQnJ4eHh+fn59sWNm7cuGbNmiUlJe5qlRd55plnevXqVVhYaC0p\nKSkJDg5u0KCB8iM9XDVz5swxmUybN28uFYT0p0PeeOMNEfniiy9sC207iv50SMeOHUXE9vVu\nsVgiIiIaNmyo/D/96Y04ak4iB6sJOagJclBb5KAucdScRA5WE3JQE+SgtshBXeKoOYkcrCbk\noCbIQW3pIAf5DsLS8vPzDx061KFDh8DAQNvyLl265OTknD592l0N8yJ//etft2zZ4u/vby0p\nLCw0m8316tUTeriqMjMzX3nllQkTJnTq1Mm2nP501JYtW4KDg3v27CkiBQUFN27cEBGTyaT8\nlv50VPPmzUXk+PHj1pJLly7dvHkzMTFR6E/vxFFzHjlYHchBrZCD2iIH9Yej5jxysDqQg1oh\nB7VFDuoPR8155GB1IAe1Qg5qSwc5yAJhab/88ktxcXF8fHyp8gYNGojIqVOn3NEor7d48eKi\noqJHHnlE6OGqGj9+fI0aNV5//fVS5fSno37++edGjRodPny4S5cuwcHBkZGRjRs3XrZsmfJb\n+tNRM2bMiIqKevTRR7dv337+/Pn9+/c/8sgjQUFBs2bNEvrTO3HUqgM56DxyUCvkoLbIQf3h\nqFUHctB55KBWyEFtkYP6w1GrDuSg88hBrZCD2tJBDrJAWFpubq6IhIaGlioPCwuz/hYO2bZt\n23PPPdelS5cJEyYIPVwly5Yt+/rrr995553IyMhSv6I/HXXlypVbt24NGDCgU6dOa9aseeut\nt4qKisaMGfPPf/5T6E/HJSYm7tq1q6ioqGvXrnXq1ElJScnIyNiyZYvyEXv60xtx1DRHDjqP\nHNQQOagtclB/OGqaIwedRw5qiBzUFjmoPxw1zZGDziMHNUQOaksHOejn7gZ4KOvnaq0sFku5\n5bDv448/HjNmTKtWrf71r3/5+f3/840eVi8nJ2fq1KkDBw4cPHhwRXXoT/UKCwuzsrKWL1/+\n+OOPKyVDhw5t2rTp1KlThw8frpTQn+odO3ZswIABZrP5zTffbNq0aU5OzoIFC/r167d27dre\nvXsrdehPb8RR0wo56DxyUFvkoLbIQb3iqGmFHHQeOagtclBb5KBecdS0Qg46jxzUFjmoLR3k\nIAuEpUVEREh567fKDXnDw8Pd0CbvZLFYXn755dmzZ993332rV6+2dh097Kg//OEPhYWFixYt\nKve39KejwsLCzGbzkCFDrCV16tTp16/fmjVrjh49Sn866oknnrhw4cKJEyfuuOMOpeSRRx5p\n2rTp6NGjT58+TX96I46aVshBrZCD2iIHtUUO6g9HTSvkoFbIQW2Rg9oiB/WHo6YVclAr5KC2\nyEFt6SAHucVoafXr1/fz88vKyipVnpmZKSJNmjRxR6O8j8ViGTt27OzZs59++umNGzfanu70\nsEM2b968cuXKKVOm+Pj4nDt37ty5c7/99puI5OXlnTt37saNG/Snoxo2bCgitl8WLSJxcXEi\nkpubS3865ObNm3v27OnYsaM1BUUkJCSkV69ev/7664kTJ+hPb8RR0wQ5qBVyUHPkoIbIQV3i\nqGmCHNQKOag5clBD5KAucdQ0QQ5qhRzUHDmoIZ3koAVldOzYMSQk5NatW9aS4uLiunXrxsfH\nu7FV3uUPf/iDiPzlL38p97f0sHpTp0618/qdMWOGhf500OTJk0Vk9+7dtoV9+vQRkbNnz1ro\nT0fk5OSIyN13312qfNiwYSLy/fffW+hP78RRcx45qBVyUHPkoIbIQb3iqDmPHNQKOag5clBD\n5KBecdScRw5qhRzUHDmoIX3kIAuE5ViyZImIvPzyy9aS999/X0ReeeUVN7bKi3zyySci8oc/\n/KGiCvSwekePHt3w31auXCkiffr02bBhw7Fjxyz0p4O+//57k8nUs2fP/Px8pWTfvn0+Pj5J\nSUnKj/SnQxo1auTv73/8+HFrydWrV6OjoyMiIpQepj+9EUfNSeSghshBzZGD2iIHdYmj5iRy\nUEPkoObIQW2Rg7rEUXMSOaghclBz5KC2dJCDJovFYmcd3piKi4tTU1O/++67Bx98MCUl5dix\nY6tWrWrVqtXu3btDQkLc3Tov0Lhx48zMzKeffrpsd82YMSMqKooedsa1a9eioqKefPLJv//9\n70oJ/emoKVOmLFy4MDk5edCgQefOnVuxYkVxcfGXX37Zo0cPoT8dtG7duiFDhkRFRU2YMCEh\nISE7O/vvf//76dOnFy1aNHHiRKE/vRNHzUnkYLUiB51HDmqIHNQljpqTyMFqRQ46jxzUEDmo\nSxw1J5GD1YocdB45qCE95KC7Vyg9VG5u7rRp0xo0aODv73/HHXdMmjTp8uXL7m6U17Bzvp0+\nfVqpQw9X2dWrV0XkySeftC2kPx1SUlLyt7/9rU2bNkFBQZGRkf3799+7d69tBfrTITt37nzo\noYfi4uL8/PyioqJ69+79+eef21agP70RR80Z5GC1IgedRw5qixzUJY6aM8jBakUOOo8c1BY5\nqEscNWeQg9WKHHQeOagtb89BPkEIAAAAAAAAAAAAGIiPuxsAAAAAAAAAAAAAwHVYIAQAAAAA\nAAAAAAAMhAVCAAAAAAAAAAAAwEBYIAQAAAAAAAAAAAAMhAVCAAAAAAAAAAAAwEBYIAQAAAAA\nAAAAAAAMhAVCAAAAAAAAAAAAwEBYIAQAAAAAAAAAAAAMhAVCwLstXLjQZDKNHTvW3Q0BAMAN\nyEEAgJGRgwAAIyMHASexQAh4ojlz5phUuO+++9zdUgAAtEcOAgCMjBwEABgZOQi4jJ+7GwCg\nHDExMc2aNbMtOXHihMViadCgQVBQkLUwPj7+6aefnjBhgp8fr2UAgH6QgwAAIyMHAQBGRg4C\nLmOyWCzubgOAygUFBRUUFOzbt699+/bubgsAAK5GDgIAjIwcBAAYGTkIVBNuMQoAAAAAAAAA\nAAAYCAuEgHcr9WW877zzjslkmjVr1qVLl5544ok6deqEhoa2a9du48aNInL9+vXJkyfHx8cH\nBgY2a9bsgw8+KLW1HTt2DB48uHbt2gEBAbVr1x48ePDOnTtdvUsAAKhGDgIAjIwcBAAYGTkI\nOIkFQkBXlDtxX7t2rV+/fjt27OjcuXP9+vV//PHHhx9+eP/+/X369Fm3bl1KSkqrVq1OnDgx\nbty4DRs2WB+7ZMmSbt26rV+/vmXLlmlpaYmJievWrevSpcvSpUvdt0MAADiAHAQAGBk5CAAw\nMnIQcBQLhICuKN/K+9FHHzVr1uzIkSNr1649fPhw7969i4qKBg4cGBUVlZGR8a9//euHH34Y\nM2aMiCxfvlx54PHjxydPnuzn5/fll19+/fXXH3zwQXp6+qZNm/z8/CZNmnT27Fl37hUAAOqQ\ngwAAIyMHAQBGRg4CjmKBENAVk8kkIrdv3164cKESir6+vo899piIZGdnv/XWWyEhIUrN0aNH\ni8ixY8eUHxctWlRUVDRu3LjevXtbt3bfffelpaXl5+d/+OGHrt0PAACqghwEABgZOQgAMDJy\nEHAUC4SADiUlJcXGxlp/vOOOO0Skdu3azZo1K1WYm5ur/PjNN9+IyMCBA0ttql+/fiLy7bff\nVnOTAQDQDDkIADAychAAYGTkIKCen7sbAEB79erVs/3R19dXROrWrVu2sKSkRPnxzJkzIrJo\n0aKPP/7YttqlS5dE5NSpU9XYXAAANEUOAgCMjBwEABgZOQioxwIhoEP+/v5lC5VP1pfLYrHc\nunVLRGy/m9eW9Q01AAB4PnIQAGBk5CAAwMjIQUA9bjEKQEwmU2hoqIj88MMPlvIo75cBAECX\nyEEAgJGRgwAAIyMHYWQsEAIQEbnzzjtFJCsry90NAQDADchBAICRkYMAACMjB2FYLBACEBFJ\nTU0VkdWrV5cqP378+ObNm2/fvu2ORgEA4CLkIADAyMhBAICRkYMwLBYIAYiITJgwwd/ff+3a\ntStXrrQW5uTkPPLII/379//kk0/c2DYAAKobOQgAMDJyEABgZOQgDIsFQgAiIomJie+8805x\ncfHIkSO7d+/+xBNP3H///Y0aNTpw4MCoUaNGjhzp7gYCAFCNyEEAgJGRgwAAIyMHYVh+7m4A\nAE8xfvz41q1bv/nmmzt27Ni5c2dISEjbtm1Hjx79xBNP+PjwZgIAgM6RgwAAIyMHAQBGRg7C\nmEwWi8XdbQAAAAAAAAAAAADgIqx+AwAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAA\nAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAA\nAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAA\nAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAA\nAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAA\nAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAA\nAAAAAAbCAqFX+v77700mk8lkOnnypFbb3L17t7LNM2fOaLVNHaiOrnaZpUuXNm/ePDAwMCws\n7IMPPnB3cwBAM+Sgy5CDAOCByEGXIQcBwAORgy5DDgK65+fuBriU2Wxes2bNpk2b9uzZk5OT\nc+vWrfDw8EaNGnXu3HnUqFEdO3Z0dwMBzezdu/fJJ58UkYiIiISEBF9fX3e3CID7kYMwDnIQ\nQFnkIIyDHARQFjkI4yAHAZUM9AnCLVu2NG3adOTIkStWrMjIyLh+/brZbL569eqPP/74zjvv\ndOrU6cEHH7x06ZK7m+kin332mclkWrZsmbUkKSlp//79+/fvr1u3rvvaBc188sknIhIbG3vq\n1Kkff/zxiSeecHeLtFH21AWgEjloixzUPXIQQCnkoC1yUPfIQQClkIO2yEHdIwcBlYyyQLhi\nxYr77rvv9OnToaGh06dP37Nnz/Xr10tKSnJyclavXt21a1cR+eyzz7p3737jxg13N9YVdu7c\nWaokJCQkOTk5OTk5ICDALU2Cts6fPy8iKSkpMTEx7m6LlsqeugDUIAdLIQd1jxwEYIscLIUc\n1D1yEIAtcrAUclD3yEFAJUMsEP70009PPfVUcXFxs2bNDh8+PHfu3A4dOkRERJhMpri4uKFD\nh3777bd/+ctfROTo0aPPPPOMu9vrCjt27HB3E1C9iouLRcTf39/dDdEYpy5QBeRgWQwmukcO\nArAiB8tiMNE9chCAFTlYFoOJ7pGDgFoWAxg4cKCIhIaGZmRk2Kk2YsSIhISEGTNmlJSUWCyW\nr776Sumi7OzsUjU/+ugjEfH19bWW/PDDD0rloqKiI0eODB48uHbt2sHBwc2aNfvLX/5SXFxs\nsVgyMjIef/zxevXqBQQExMfH//73v79586Z1Cw493b59+5TKpfYoMzPz6aefbtmyZVhYmJ+f\nX0xMTI8ePZYuXarskWL8+PGlzgFly7t27VJ+PH36tMViuffee0Wka9eu5fbV22+/LSL+/v45\nOTlKSX5+/vvvv5+amhodHe3v7x8XF5eamrp48eKioiI7fV62986dOzdp0qQ777wzMDAwMjKy\nZ8+e//73v20ru/i4WLv65MmThw4dGjFiRN26dQMCAmrVqjV06NCDBw+W3R2VXbFnzx5ly8XF\nxWvWrFG+NXfJkiX2+yo3N3fevHn33HOPsvGYmJhu3botXLgwLy/PWictLa3sK/2NN96ws1k1\nba6mU0L90a/o1LVYLLdu3Zo/f37nzp2jo6P9/PxiY2OTkpJmzJiRmZlpvz8BgyAHyUFykBwE\njIwcJAfJQXIQMDJykBwkB8lBoCL6XyA8e/asyWQSkalTp9qvWVhYaPujQwPukSNHlMrbtm2L\njIyMi4tr165dVFSUUjh9+vSffvopOjq6Ro0a7du3r1WrllJ+//33V+3pyg3Cb775JiQkRET8\n/PySkpI6duxYs2ZNpdqgQYOsWfj3v/99+PDhPj4+ItKhQ4fhw4ePHDnSUiYIlSc1mUznzp0r\n21edOnUSkYceekj5MScnJyUlRanfunXrnj17Nm7cWNlax44dr1y5Yr/nrb23b9++unXrBgUF\ntWvXLikpyc/PT0R8fHw2bdrkruNi7epVq1aFhIQEBQWlpKS0bt1a6cDAwMCtW7fatkF9Vxw6\ndEgp37Fjh7KnIvLXv/7VTkdlZmYqW/Px8WnSpElqamrjxo2VlrRu3draIe+9997w4cMbNGgg\nInXr1h0+fPjw4cM3bNhQ0WZVtrmaTgn1R7+iUzc3NzcpKUl5rpYtW6amprZr1055i1BISEip\nAwQYEDlIDpKD5CBgZOQgOUgOkoOAkZGD5CA5SA4Cduh/gdD6pZ0//PCDQw90aMA9duyYUjkh\nIeHVV181m80Wi+X27duDBw9WXo1JSUmTJk3Kz8+3WCzFxcVTpkxR6h8/frwKT1duECoDzV13\n3WV9q0JJScm7776r1Fy5cqXtNgMDA0Xkww8/tJaUCsKbN2+GhYWVOzSfOnVKqbl+/XqlpFev\nXiKSkpJy6NAha7WdO3feeeedIjJs2DC7Pf3/e69p06Zjxoy5fv26Un7kyJH4+HgRueeee6yV\nXXxcrF1ds2bNsWPH5ubmKuUZGRlKhyckJCibdbQrrG277777+vTps2vXrtOnT1+4cKGiXiou\nLlaipVmzZtbmWSyWAwcO1KlTR0T69etnW3/UqFEiMmDAALt970Cbq+mUcOjoW8o7dV9//XXl\nAB05csRaeOXKlUGDBolI8+bNK+0BQN/IQXKQHLSPHAT0jRwkB8lB+8hBQN/IQXKQHLSPHITB\n6X+BcMaMGSISEBBgO1qpUbUBt3///rY1Dx48qJS3atVK+eC24saNG8qC/4oVK6rwdGWDMCcn\nZ9iwYd27dy/1wXOLxdKmTRsRefTRR20LKw1Ci8Xy+OOPi0inTp1KbfDPf/6zMu4o7y3asmWL\n0sO//PJLqZpbt25Vtnny5ElLxay916FDB9teslgs8+bNExF/f3/r569dfFysXZ2UlFSqbZs2\nbVJ+9dVXXyklDnWFtW0NGza8ffu2nf5RfPbZZ0r9PXv2lPrVxx9/rPzKNnVUBqFDba6OU8Kh\no28p79QdMmSIiKSlpZV6rkuXLs2YMeO9994rKCiw3wmAvpGD5CA5aAc5COgeOUgOkoN2kIOA\n7pGD5CA5aAc5CPiI3l2+fFlEoqOjfX19XfB0Q4cOtf2xSZMmyv8MGjRIGWEV4eHhtWvXFpFL\nly5p8rxxcXGrVq3aunWrckNkW82bNxeR7OxsR7f52GOPicju3buzsrJsy5Vhd9SoUcqnldev\nXy8i3bp1q1evXqktdO/eXfk4/xdffKHmGZ966inbXhKRli1bikhRUdGNGzccbb8t549LWlpa\nqbb17t07ODhYRLZv366UVK0rRo0aFRQUVOkubNy4UWl5hw4dSv1q0KBBSjyo7GdbDrW5Wk+J\nKh/96OhoEdm+fXupkzwmJmbOnDm/+93vAgIC7Dwc0D1ykBwUcrBi5CCge+QgOSjkYMXIQUD3\nyEFyUMjBipGDgJ+7G1DtlBttFxcXu+bpGjVqZPujMlCWLbf+qqioSMNnLygoSE9PP3r0aE5O\njvKRZBHZv3+/iJjNZke31rNnzzvuuOPXX39dvXr1c889pxQePHhQuTny6NGjrSUi8tNPP/Xo\n0aPsRvLy8kTk559/VvOMysBnS7l7uIgUFhY62n5bzh8X5WPstvz9/e+8884jR45kZmYqJVXr\nirLBVi7l3tzK+55KCQwMTEhIOHr0qPW+1eo51OZqPSWqfPQnTZq0cuXKzMzMFi1aDB06tF+/\nft27d1fSEYCQg+SgiJCDFSMHAd0jB8lBIQcrRg4CukcOkoNCDlaMHAT0v0AYGxsrIleuXMnP\nz1fzfgQnRUZGlltu/QLY6vOvf/1rwoQJ58+f12qDPj4+o0aNmjdv3qpVq6yj3j//+U8RSUlJ\nUb7+VESuXLkiIjk5OTk5ORVt6tq1a2qe0ZpPmnP+uMTFxVW0Wev7OKrWFdbvTLZP2XhFDVZa\ncvXqVTWbKrtZlW2u1lOiykc/KSlpy5YtkydP3rt37wcffPDBBx+YTKbk5ORhw4aNHz/eBS89\nwMORg1VGDtoiB4UcBLwTOVhl5KAtclDIQcA7kYNVRg7aIgeFHIRO6f8Wo8qLs7i4eOfOne5u\nSzXas2fPkCFDzp8/n5KSsmbNmvPnzyt3PbZYLGlpaVXerHJv5R9++OHkyZMiYrFYVq5cKTbv\niZD/vBdp1KhRdm5lq9wF26uVeysGZd+V/0pVu8Kh+Zn1uUpR3hVV0W8r3aD6NnvmKXHXXXft\n2bPn+++/nz17dteuXQMCAvbv3//HP/4xISHh3//+t4ZPBHgjcpAc1AQ5qPDMU4IcBOwgB8lB\nTZCDCs88JchBwA5ykBzUBDmo8MxTghyEM/S/QNi9e3flBr7/8z//Y79mYWHhe++9l5ubW+k2\nb9++rU3j1FHzdAsXLjSbzQ0aNPjmm2+GDBlSq1Yt5a7H8p9PLldNy5Yt27ZtKyKrV68WkR07\ndpw9ezYgIGDkyJHWOsp7kX799dcqP5WOJpQAACAASURBVItWqvW4lPtmn+vXr4vN23CqtSti\nYmLkP/eOL0t5j0wVPj/uaJs9+ZRo167dSy+99O233165cmXlypV33nnn1atXR4wYofKNWoBe\nkYPkoCbIQYUnnxLkIFAucpAc1AQ5qPDkU4IcBMpFDpKDmiAHFZ58SpCDqBr9LxDWqVPn4Ycf\nFpGVK1d+9913dmq+9NJLkyZNaty4sTK6WYMkPz+/VM0q3NG4Uk4+3dGjR0XkvvvuK/WZ8eLi\n4h07djjTMOX7V9euXSsiq1atEpGBAwcqg7JCufvzkSNHXHNDcxcfF6vDhw+XKjGbzadOnRKR\npk2bKiXV2hXKxpXbWJdy69Yt5X7f5d6JW81mHWqzp50SZYWEhAwfPnzHjh1+fn5XrlzZtWuX\nW5oBeAhykBzUBDlo5WmnRFnkIGCLHCQHNUEOWnnaKVEWOQjYIgfJQU2Qg1aedkqURQ7CIfpf\nIBSR1157LSwsrKSk5OGHH969e3e5dV599dV58+aJyNNPP61kibLaLyLHjx+3rXnlypXly5dr\n3kgnn0758HLZbFi0aNFvv/0mZb6OWKmv5ht6R44c6evru3///l9++WXdunUiMmbMGNsKgwYN\nEpGLFy+uWbOm1GMvXrzYsmXLiRMnKjdf1oSLj4vVxx9/XKpky5YtyruQunfvrpRUa1c8+OCD\nInLy5MmyM5tVq1aZzWYfH58BAwY4utkqtNm9p0SpU/fixYuTJ0/u06fPzZs3S9WsWbOmcpsC\nF7+1DfBA5KCQg04jB63IQcDrkINCDjqNHLQiBwGvQw4KOeg0ctCKHITe2LkZrp58+umnAQEB\nIuLr6zt27Nj09PSrV6+WlJRcunRp9erVHTp0UHrj/vvvLyoqUh5SVFRUo0YNEencuXNOTo5S\nePbs2a5duzZr1kzZlHX7x44dU7awf//+Uk+tlK9bt65UeUJCgoi88cYbVXi6ffv2KZvNyMhQ\nSp566ikRiYqKysrKsm5w/vz54eHho0aNEpHatWtbd81isdSrV09EnnrqKWuJ9d0Ep0+fLtXU\nfv36icjYsWNFpFatWrbbUfTs2VNEIiMjv/rqK2thRkZG+/btRSQ5ObmkpKTsQVHTe+np6cqv\nsrOzq9BRzh+XvXv3KjVr1Kjx2muvmc1mpfzXX39NTEwUkVatWtnunfqusNO2cpWUlNx9990i\n0qRJk5MnT1rLd+7cqbxLZfTo0bb1leM+YMCASrdchcOn4Snh0NG3lDl1zWZzw4YNReSBBx6w\nrZafnz99+nQRCQoKsp4ngJGRg+RgqS2Tg1VosxU5CHgdcpAcLLVlcrAKbbYiBwGvQw6Sg6W2\nTA5Woc1W5CD0xCgLhBaLZfv27crIVa6AgIA//vGPpV7Pc+bMUX4bGhravn37Nm3a+Pn5tW7d\neuPGjSJiMpmsNZ0fcB16urJBeOLEifDwcBEJCwvr27dv//79Y2NjAwICVq9e/fXXXyuV27Rp\n8/vf/16pr4ySItKwYcNGjRrt2bPHThAqbxJRblk+derUsn2rfAmw8vBmzZrde++9SUlJSv16\n9er9/PPP9g+No0OhK4+L9Tuc16xZExQUVKdOnb59+/bo0SM4OFjp7b1791atKxwNQovFkpWV\npYS9v79/UlLSvffe26RJE2UjvXv3zs3Nta2sPgircPg0PCUcPfplT91t27aFhoYq7WnRokW3\nbt3uuusu5eXg4+OzdOnSSnsAMAhykBy0pfK4kIPkIKAb5CA5aEvlcSEHyUFAN8hBctCWyuNC\nDpKD0D0DLRBaLBaz2bx69erHHnusSZMmkZGRfn5+0dHR99xzz5/+9KczZ86U+5ClS5fedddd\noaGhQUFBjRs3njFjxrVr1/bv36+8FAsKCpRqmgSh+qcrG4QWi+XgwYMPPvhgdHR0QEBAw4YN\nR40aZW3M1KlTY2JiQkJCHnnkEaUkOzv7gQceiIiICA4Obtas2bFjx+wEYV5eXkREhPLbQ4cO\nldtRBQUF77//fo8ePWJiYvz8/CIiIu66667XXnvt+vXr5da35ehQqL6jnD8u1gbk5+fv379/\n6NChtWvX9vf3r1Wr1siRI8sNCZVdUYUgtFgsN2/enDdvXqdOnZQTOC4urm/fvh999JH1LTxW\n6oNQfZutNDwlHD36ZU9di8Vy6tSpmTNntm3btmbNmn5+fiEhIYmJiePHjz948KCa3QeMgxwk\nB63IwSq02YocBLwUOUgOWpGDVWizFTkIeClykBy0Iger0GYrchB6YrL8Z0QAAAAAAAAAAAAA\noHs+7m4AAAAAAAAAAAAAANdhgRAAAAAAAAAAAAAwEBYIAQAAAAAAAAAAAANhgRAAAAAAAAAA\nAAAwEBYIAQAAAAAAAAAAAANhgRAAAAAAAAAAAAAwEBYIAQAAAAAAAAAAAANhgRAAAAAAAAAA\nAAAwEBYIAQAAAAAAAAAAAANhgRAAAAAAAAAAAAAwEBYIAQAAAAAAAAAAAANhgRAAAAAAAAAA\nAAAwEBYIAQAAAAAAAAAAAANhgRAAAAAAAAAAAAAwED0vEL799ttz5861WCzubggAAG5ADgIA\njIwcBAAYGTkIAKiUScc5ERsbe/nyZbPZ7Ovr6+62AADgauQgAMDIyEEAgJGRgwCASun5E4QA\nAAAAAAAAAAAASmGBEAAAAAAAAAAAADAQFggBAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggB\nAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggB\nAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggB\nAAAAAAAAAAAAA2GBsBwWi+X9999v3759aGhoeHh4ly5d1qxZ4+5GeZOSkpLFixe3adMmJCQk\nJCQkKSnp9ddfLywstFaoXbu2qQLt27d3Y8s9QaW9p7LO1atXX3311eTk5IiICKXOK6+8kpeX\n59q9cTU1e62+Z7788su6deuaTKatW7eW/a1eBwr7e62m99T0DKOEh9Pr6e1eWVlZaWlpderU\nCQoKaty48fPPP3/r1i13N8oLfPXVVxWNBmfOnFFfxyDcNYs4fvx4SEiIyWQ6cOBAde2bO1y8\nePHZZ59t2rRpUFCQ0g+zZ88u9cpVU6fS/iT1PA056AzGbU3YmZOrHDGMeT1YLpVzMPvXQeq3\noyeVnkUOvZaNeX3tpTgcDtFqpqdmVqlXlY7AVhVdd+Tm5s6cOTMxMTE4OLhGjRp9+vTZtm1b\nqceqqePtKt1Hzedp6o+dt3ByDqZVHXHhmOCn+RZ1YMKECUuWLKlZs+ZDDz1UXFz85ZdfDhs2\nbN68ec8995y7m+YFLBbL/fffv2nTpqioqHvvvbe4uPi777574YUXtm7d+sUXX5hMJhG5//77\nr169WuqBeXl5mzdvDg8Pd0erPYWa3lNT59KlS926dTt27FijRo369u2bl5e3Y8eOl19+edOm\nTdu3b/f393f3jlYLNXutsmdu3749ffr0d999105f6W+gqHSvVfZepT3DKOH59Hd6u92RI0e6\ndu16/fr11NTUevXq7d69e+7cudu3b//22299fHi3lj3Xrl0TkVatWjVr1qzUr0JDQ9XXMQJ3\nzSKKi4tHjx59+/ZtN+xzdcrOzu7QocO5c+f69OkzdOjQwsLC9PT0WbNmrVu3bteuXUFBQSrr\nqOlPUs/TkIPOYNx2UqVzcjUjhjGvB8ulZg6m5urPgHM5NWeRyteyMa+vvRqHQz2tZnpqZpW6\npGZ8sKrouiM3N7dz586HDh2Kj49/8MEHb9++/cUXX3z99ddr164dNGiQ+jreTs0+ajhPc+jY\neQVN5mBa1XHpmGBxk5IL54s2rqvyP4vZXOlTxMTEiIhZRU1b6enpIpKSknL9+nWlJDs7Oz4+\nPiAgIDMzsyq7ajBLliwRkU6dOlk78Pz58w0aNBCRzz//3M4Dp0+fLiLbtm1zSTM9lJreU1Mn\nLS1NRJ555pni4mKl5PLly82bNxeRjz/+2LX75Dpq9lplzyQlJfn7+8+dO/fxxx8XkfT09FLP\npcuBotK9VtN7anqGUUJBDhpHSUlJSkqKn5/fpk2blBKz2fzwww+bTKYNGza4t22eTxkx3n77\nbSfrGIG7ZhFz5swRkeTkZBHZv39/9e6kC02ZMkVEXnjhBdvCgQMHisjixYvV16nyrExnqVcW\nOahXjNtOqnROXq5SI4YxrwfLUjkHq7TPjTmXU3MWqXwtG/P6ulLkoD5oNdNTM6vUJYdSr6Lr\njhdeeEFE+vfvn5eXp5Rs3749NDQ0Li4uNzdXfR1vp2YfNZynVW3G4sk0mYNpVceVY4Lb3uhk\nuXyx+NtvqvxPis3V1DDlNTB37tyIiAilpHbt2i+++GJhYeGyZcuq6Un15PPPPxeROXPmWDuw\nVq1a48ePF5Fdu3ZV9KiffvppwYIFaWlp3bp1c007PZOa3lNTJzY29qGHHpo9e7b1zYzR0dHK\nrOX48eMu2x0XU7PXKnvGx8dn586d06dPVz5LUZYuB4pK91pN76npGUYJBTloHOnp6T/++ONT\nTz3Vr18/pcTX13f58uU3btxQpnewQ3n3Yo0aNZysYwRumUUcPXp01qxZI0aM6NixY3XunBtk\nZGSIyIABA2wLlVex8iuVdao2K9Nf6pVFDuoV47aTKp2Tl1V2xDDm9WBZKudglfa5Medyas4i\nla9lY15fV4oc1AetZnpqZpW6pD717Fx3rF27VkQWLlwYHByslHTu3Pl3v/vdxYsX169fr76O\nt1OzjxrO06owY/FwmszBtKrjyjGBW4yWtnXr1uDg4O7du9sW9u3bV0T0d2Pi6rB+/fpbt25Z\nRyJFdHS0nYdYLJZx48aFh4e/8cYb1dw6T6em99TUmT9/ftmNnz9/XkQaN26sWXM9jJq9Vtkz\nO3fuLNXDpehyoKh0r9X0npqeYZTwcLo8vd1rw4YNIjJixAjbwrCwMDc1x8soFydRUVFO1jEC\n188ilJv8REZGvv322zNnznSy/Z6mZcuWGzduPHbs2D333GMtzMzMFJFWrVqpr1OFWRmp517k\noJMYt51U6Zy8lHJHDGNeD5alcg5WaZ8bcy6n5ixS+Vo25vW19+JwOESrmZ6aWaUuqUw9+9cd\nZ86cCQ0NbdKkiW1hamrq/Pnzt27d+uijj6qs4+3U7KOG8zRHZyyeT5M5mFZ1XDkm6PNW6VV2\n/fr17Ozshg0blrrVbIMGDQIDA48dO+auhnmX0NDQUnfh/+KLL0Tk3nvvLbf+6tWr9+zZM2PG\njLi4OFe0z7Op6T2HethsNp86derll19+55132rdvP2zYsGppt4dRs9d26tjPA70OFA6lYLm9\np75nGCU8ll5Pb/c6ePCgiCQmJs6aNSshISEwMLB+/frPPPOMMu2GfUovZWVlDRo0KCoqKigo\nqEWLFq+99lp+fr5DdQzCxbOIOXPm7Nu377333ouNjdVwLzzElClTGjZsOG3atPfff//IkSMH\nDx6cO3fue++916lTJ+vfiNXUsaVyVkbquRE56DzGbSc5+re2SkcMY14PKlTOwSrtc+ZyFZ1F\nKl/Lxry+9lIcDmc4M9NzdFapGypTz/51R1BQUEFBgdn8Xx+rVda3Tpw4ob6Ot1OzjxrO03S2\nOijVMAdzpo4rxwQWCP+L8v2QZT/IYjKZIiMjy357JNRYu3bt+vXrBw4cWO4HaUtKSmbPnh0b\nGztp0iTXt83z2e+9SusMGTLE398/ISFh6dKlCxYsMMg30qvZa2d6hoGiot6rcs8wSngOTu/q\n8MsvvwQEBIwbN27x4sW9evUaM2ZMQEDAW2+9lZqaWvb71VGKcnEyefLkI0eO9OvXr0uXLmfP\nnp05c2afPn0KCwvV1zGmap1FHDp0aPbs2cOHDx88eHB17YBb1apVa9++fV27dp04cWKrVq2S\nk5Off/75J598Mj09PSAgQH0dK5VzD1LPvchB5zFuu1KlI4YxrwettJqDGXwuZ+cs0uS1zMDr\nUTgcVebkTM+hWaXRVHrd0a5dO7PZrHza2+rTTz+V/wxTKut4OzX7yDxNK2qu2pyp48oxgVuM\n/hdlblduLwcGBprNZrPZ7OdHpzlg1apVaWlpiYmJ//jHPyqqcPTo0Tlz5uj+Bh1VUGnvVVqn\nffv2t27d+u233w4dOvTmm29GR0c/9thj1dlkj6Bmr53pGQaKinqvaj3DKOFROL2rw82bNwsL\nC0+fPn3y5EnlNL59+/YDDzywZcuWRYsWTZs2zd0N9GjNmzcfMGDA/fffP27cOOWbALKysvr3\n7//dd9+99dZbzz33nMo6BlSts4iioqK0tLQaNWq8++671bUD7pabm/voo49++eWXo0aN6tu3\nb1FR0ebNmxctWnThwoUVK1YEBgaqrGOlcu5B6rkXOeg8xm1XqnTEMOb1oJVWczCDz+XsnEWa\nvJYZeD0Kh6PKnJzpOTSrNBQ11x0vvfRSenr6+PHji4uLe/fufevWrSVLlqxYsUJ5uPo63k7N\nPjJP04qaqzZn6rh0TLC4SfHRQ/nTn67yP0tBfqVPERMTIyJms1l9q86cOSMinTt3LvurmjVr\n+vv7O7CHsFhee+01k8nUtm3bCxcuVFQnJSUlKCjo2rVrrmyYV1DTe2rqKDIyMlq0aCEin376\nqdYt9Vxq9tp+HeWbpdPT020LdT9QlLvX5SrVe1XoGSOPEuSgcdxxxx0isnnzZtvCvXv3ikin\nTp3c1SqvtmXLFhFp27atk3V0rLpnEbNmzRKRtWvXWuuMHz9eRPbv369J+z3B73//exF58803\nbQtnzJghInPnzlVfpyz7cw+9pl5Z5KChMG5XgZo5ufoRw5jXg47OwSrqc+ZyCpVnkZ3XsjGv\nrytCDupV1WZ6VZtV6klFI7DK644//elPtl+jEBMTo3yQ7q677nKojrer2j46OU9T/1dEb6HV\nHMyZOq4cE9y2QOgCVQjCGzduiEjz5s1LlZvNZn9//9q1a2vaQD0rKCgYOXKkiDzwwAO5ubkV\nVVNu5T9s2DBXts3zqek9lT1s68CBAyLSpUsXTRvr6dTstZ065UaC7gcKh6Ldtvcc6hlGCRcg\nBz2E8g3Shw8fti28ffu2yWSqVauWu1rl1fLy8pTbHDlZR5dcMIvYv3+/v7//o48+altBfwuE\nsbGxgYGBRUVFtoVnz561vcBWU6dcFc09SD1tkYOeg3G7Ciqdkzs6YhjwetDROVhFfc5czkrN\nWWTntWzM62s3IgfdpQozvSrPKnWj3PHBoeuOo0ePzp8//8UXX1y2bNn169d/+uknERk0aJCj\ndbxdFfbRyXmaARcI1czBnKzjyjGBT4X/l/Dw8Pj4+DNnzhQUFNh+VPPkyZNFRUVJSUlubJsX\nMZvNw4cPX79+/dSpU+fNm2f7zoVSlPsgDxw40IWt83Rqes9+ndu3b2/bts1sNpfq2DvvvFNE\nMjIyqrX97qJmr7XqGWMOFGp6T33PMEp4LGOe3tWtefPmhw8f/vXXX1u2bGktVOZ5hvoeIA3d\nvn3bYrHYv/O+mjr645pZxCeffFJUVLRixQrlfjW22rZtKyLp6ek9evTQdM9c7ebNm5cuXapb\nt26pm2jFxsaKiHJhpqaOo3MPUs/tyMFqwrhdHSoaMYx5PVgureZgBpzLOXMWOfpaZuD1KBwO\nh2g101MzqzQmh647EhMTExMTrRWUz3knJyfbPkpNHW9XhX1knuYoNVdtztRx8ZhQ4d9kDat3\n7975+fnKx2atPvvsMxG599573dQoLzNu3Lj169f/+c9/nj9/vp2/+4vIV199JSLdu3d3VdO8\ngJreq7TOgw8+OHz48Ly8PNvCn3/+Wf4zlOiSmr3WqmeMOVCo6T2VPcMo4cmMeXpXq169eonI\nxo0bbQv37dsnIrYTd5RVUFBw3333de/e3WKx2JZ/++23IqL8hUJNHeNwzSyic+fOU8to06aN\niDz++ONTp06Nj4/Xft9cKyQkJCQk5Pz587m5ubblmZmZIlKzZk2VdcTBuQep5wnIQWcwbruS\nnRHDmNeDZWk1BzPmXK7Ss0jD1zIDr0fhcDhEk5meylmlAam87jh8+PCSJUuys7NtH/vRRx+J\nyP3336/8qKaOt6t0H5mnaUXNVZszdVw9Jmj7gUSPUoWP0lsslj179phMplatWl2+fFkpycjI\niImJCQ8PP3/+fDU0U2/Wrl0rIo888kilNYuLi0NCQsLCwlzQKm+hpvfU1FHG/bS0tPz8/7sr\n/fXr15X31Dz//PNattiTqNlrR3umog+V63ugqGiv1fSemp5hlHAZctBDXLt2LTo6Ojg42Pqy\nunr1aocOHURk2bJlbm2aF+jZs6eIzJw5s6SkRCk5depU48aNRWTFihXq6xiBe2cR+rvF6NCh\nQ0Vk2rRp1hKz2TxixAgRefHFF9XXUd+fpJ7myEG3YNzWiv3bW9kfMYx5PViWo3OwivrcmHM5\nNWeRo69lY15fuxE56AJazfTUzCr1Tf1tKstedyxatEhEnnjiCWvJu+++KyI9e/Z0qI63U7OP\n1TFPM9otRtVctTlfx5Vjgsny36vBehIbG3v58mWz2ezr6+vQA6dPn/7GG2/ExMT06tWrsLDw\nq6++ysvL+/DDD5WTA/a1bt368OHD3bt3L/tOmYSEhLlz51p/PHfuXHx8fGJi4tGjR13bRs+l\npvfU1Dlz5kznzp1/++23unXrtm/fvqSkZNeuXZcvX27RosWOHTtq1Kjhmt1xMTV7rabO1q1b\nlQQVke+//z4rK6tbt25xcXEiUr9+/QULFii/0tlAoWavVZ5XlfYMo4TLkIOeY926dUOHDvX1\n9R0wYEBgYOC2bduys7P79eu3ceNG+x+iRWZmZseOHS9fvty0adO2bdteu3Zt+/btt27dGjVq\nlPU+M2rqGIF7ZxETJkxYvHjx/v37dXOLnqysrHvuuee3337r2rVrampqSUnJ5s2bf/jhh9at\nW2/fvj0iIkJlHfX9Seppjhx0C8ZtZ6i8EpHKRgxjXg+Wq9I5mMo+N+BcTs1ZpOa1bMzraw9B\nDrqAVjM9NbNK/VGferbKXnfcunXr7rvvPnToUEpKStu2bU+cOPHdd9/VqVNn586dDRs2VF/H\n26nZR63maVU7dp5MqzmYVnVcOiZou97oUar2ThnF0qVL27VrFxwcHB4enpqa+u9//1vz5umV\n0u3lateunW3NQ4cOiWG+a1clNb2nsocvXLgwZcqUJk2aBAUFBQUFtWjR4sUXX7xx44ab9sxF\n1Ox1pXU+/PDDinq4ZcuWtpvS00Chcq9Vnlf2e4ZRwmXIQY+yY8eOfv361ahRIzAwsEWLFq+/\n/npBQYG7G+UdTp8+PXbs2Pr16/v7+0dERHTu3HnZsmXWNzOqr6N77p1F6O8ThBaL5cKFC88+\n+2zTpk0DAwODg4NbtWr18ssv5+bmVqGOmv4k9TRHDroL43aVqb8SqXTEMOb1YLnsz8HU97kB\n53JqzqJKX8vGvL72EOSga2g101Mzq9QZ9eODrXKvO86fPz9hwoT4+PiAgIA77rhj3Lhx2dnZ\npR6opo63U7OPmszTqnbsPJmGczCt6rhsTOAThAAA6BM5CAAwMnIQAGBk5CAAoFL6vBMCAAAA\nAAAAAAAAgHKxQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuE5bBYLO+//3779u1DQ0PDw8O7dOmyZs0adzfKm5SU\nlCxevLhNmzYhISEhISFJSUmvv/56YWFhRfWPHz8eEhJiMpkOHDjgynZ6pqtXr7766qvJyckR\nERFK773yyit5eXm2ddT0sJrt6MxXX31lqsCZM2es1XJzc2fOnJmYmBgcHFyjRo0+ffps27bN\nzmYrOj/118PqX7lffvll3bp1TSbT1q1by/724sWLzz77bNOmTYOCgpTtzJ49+9atW9YKKo+U\noyMJNEQOas7RkQdWKkcMW0aeV2g7Q7Az2lfhuHgL+xnn6PDozCyCodiN6HwNVfQqqHTGaHD2\nxyJb9lNP/XZ0SWVaqTkbOWMrOtPUDJhqUo8e9ijkoHpa/X1Dx7Nr+9Rcv6g/Ie2nnv7+jqdw\n/qpNq6Pg7SO5yr9DZmVlpaWl1alTJygoqHHjxs8//3ypfXT0TLMzl6v0ubRh0a+YmBgRMZvN\njj5w3LhxIlKzZs2RI0cOHz68Ro0aIjJv3rzqaKT+lJSU9O/fX0SioqIeeOCBAQMGREREiEif\nPn1KSkrK1jebzZ06dVLOxv3797u+wR7l4sWLiYmJItKoUaMhQ4b0798/MjJSRDp06FBYWKjU\nUdPDarajP6tXrxaRVq1aDS4jJydHqXPjxo3WrVuLSHx8/PDhwx944IGAgAAfH59PP/203G1W\ndH7qr4dVvnLz8vImT54sIv7+/iKSnp5eaju//fZbvXr1lAe+8MIL06ZNa9eunYgkJyffvn1b\nqaPmSDk6kqBc5KCHcHTkgS01I4YtI88rNJwhVDraO3pcvEKle21xcHh0chbBUOw8ctDtKnoV\nqJkxGpaascjKTuo5tB29UpNWas5Gzlg7Z1qlA6aa1KOHqwk56AJa/X1Dl7PrSqn8y4+aE7LS\n1NPf3/EsGl21aXUUvH0kV9kPR2aTowAAIABJREFUhw8fjoqK8vHx6dWrV1paWrNmzUSkc+fO\nxcXFSgVHzzQ7CVvpc2nFbQuER2/lTT15usr/Coor/wNx1YIwPT1dRFJSUq5fv66UZGdnx8fH\nBwQEZGZmVmVXDWbJkiUi0qlTJ2sHnj9/vkGDBiLy+eefl60/Z84cZbAw4B/yykpLSxORZ555\nxvpSv3z5cvPmzUXk448/VkrU9LCa7eiP0jNvv/22nTovvPCCiPTv3z8vL08p2b59e2hoaFxc\nXG5ubtn6FZ2f+uthla/cpKQkf3//uXPnPv744+VOPqZMmSIiL7zwgm3hwIEDRWTx4sW2z2X/\nSDk6kngjctA4HB15YEvNiGHLyPMKDWcIlY72jh4Xr1DpXjs6PDozizDCUEwOGkFFrwI1M0bD\nqnQssmUn9Rzajl6pSSs1ZyNnbEVnmpoBU03qGbOHyUF90OrvG7qcXVdKTc+oPCErTT39/R3P\notFVm1ZHwdtHcjX9UFJSkpKS4ufnt2nTJqXEbDY//PDDJpNpw4YNSomjZ1pFCavmubTitluM\nZt6+/eYvv1b5X6GlpJoappwNc+fOVVaJRaR27dovvvhiYWHhsmXLqulJ9eTzzz8XkTlz5lg7\nsFatWuPHjxeRXbt2lap89OjRWbNmjRgxomPHji5up2eKjY196KGHZs+e7ePzf6/N6OhoZWQ5\nfvy4UqKmh9VsR3+uXbsmIsp7WCqydu1aEVm4cGFwcLBS0rlz59/97ncXL15cv359qcp2zk/9\n9bDKV66Pj8/OnTunT59uMpnK3U5GRoaIDBgwwLawX79+1l+JuiPl0EjipchB43Bo5EEpakYM\nK4PPKzScIVQ62jt0XLxFpXvt0PDo5CzCCEMxOah7dl4FamaMhlXpWGRlP/XUb0fH1KSVmrPR\n4GesnTNNzYCpJvWM2cPkoD5o9fcNXc6uK6WmZ1SekJWmnv7+jicaXbVpdRS8fSRX0w/p6ek/\n/vjjU089peyXiPj6+i5fvvzGjRvKUqg4eKbZSVg1z6UVvoOwtK1btwYHB3fv3t22sG/fviLC\n1wWpsX79+ps3b3bt2tW2MDo6umzN4uLi0aNHR0ZGvv32265qnaebP3/+unXrwsPDbQvPnz8v\nIo0bN1Z+VNPDarajP0rsRUVF2alz5syZ0NDQJk2a2BampqaKSKlbdds/P/XXwypfuTt37mzf\nvr2d7bRs2VJEjh07ZluYmZkpIq1atVJ+VHOk1I8k0Bw5qDn1Iw/KUjNiKJhXaDhDqHS0V39c\nvEile61+eHR+FsFQ7EZ0vibsvwrUzBgNq9KxSFFp6qncjr6pSSs1Z6ORz1j7Z5qaAVNN6hm5\nhz0QOegQrf6+ocvZdaXU9IzKE7LS1NPf3/FEo6s2rY6Ct4/kavphw4YNIjJixAjbwrCwsLCw\nMOuP6s80+wmr5rm0wgLhf7l+/Xp2dnbDhg2VW/daNWjQIDAwsNQpjoqEhoZaF8kVX3zxhYjc\ne++9toVz5szZt2/fe++9Fxsb69L2eQmz2Xzq1KmXX375nXfead++/bBhw6y/UtnDlW5HZ5TY\ny8rKGjRoUFRUVFBQUIsWLV577bX8/HxrnaCgoIKCArPZbPtAJSlPnDhhW6j+/NRND6s5r6yf\nf6rIlClTGjZsOG3atPfff//IkSMHDx6cO3fue++916lTJ2uqqTlSKtsDzZGD1UH9yIOyVI4Y\nwrxCRLSbIVQ62qs/Ll7E/l47NDw6OYtgKHYjOl8r9l8FamaMhlXpCKyodJxRuR19U5NWas5G\nI5+xds60KgyYFc09jNzDnoYcdJRWf9/Q5exaDfs9o/6EdCj1dPN3PK2u2jQ5CjoYySt9nR48\neFBEEhMTZ82alZCQEBgYWL9+/WeeeUbp57Lsn2n253KOPpczWCD8L1evXpXyPqRiMpkiIyOV\n38JRa9euXb9+/cCBA7t162YtPHTo0OzZs4cPHz548GA3ts1jDRkyxN/fPyEhYenSpQsWLNi+\nfXupUdhWuT1che14O2WInDx58pEjR/r169elS5ezZ8/OnDmzT58+hYWFSp127dqZzWblXRhW\nn376qfXhCvXnp4572M55ZUetWrX27dvXtWvXiRMntmrVKjk5+fnnn3/yySfT09MDAgKUOmqO\nlFbtgaPIweqgcuRBuVSOGMwrylV9M4SqjeReTf3w6PwsgqHYjeh8TVT6KlAzY4QdpJ5KatJK\nzdlo2DPW/pnm6IBpZ+5h2B72QOSgo7T6+4YBZ9flKtUz1XFC6vjveGVpcn6qPAr6G8nLvk5/\n+eWXgICAcePGLV68uFevXmPGjAkICHjrrbdSU1Nv375d6uH2z7RK53IOPZeT/LTdnLdT+rfc\nszYwMNBsNpvNZj8/Os0Bq1atSktLS0xM/Mc//mEtLCoqSvt/7N13fBRl/sDxZ1vKpoeE3psE\ngggooOBRBUVQUVCaCMgBVkBQzoblhyIqlgPOeoLIiQoICIo04UAElKKCVIFQpCklCamb7Pz+\nmLu5cXez2TK7k+x83q/8MZl5ZuaZZ2af7zzzTLnnnuTk5FmzZumYt4rs6quvzsvLO3Xq1O7d\nu2fMmJGamnr33Xd7TOmxhANYTgRo1qzZzTff3Ldv39GjR8tv3z527Fjv3r03bdr05ptvPvro\no0KIp59+ev369WPGjCktLe3Ro0deXt677747f/58IYTD4ZCX49fxGakl7P248iI3N3fo0KGr\nVq0aMmRIr169HA7HypUrZ8+effbs2fnz50dHRwvf9pRW+YG/iIOh4EvNg7L4UmNwXuFRSM8Q\nAqjJKzsfq0dNziKoinVE4QfPl1+BL2eMKAtRz3e+RCtfjkZjHrHlHmn+Vphezj2MWcIVE3HQ\nX1pd3zDg2bU795IJxQEZqdfxPNLk+PRxL0RYTe7xd3r58uXi4uKjR4/++uuv8qs+CwoKbrnl\nlrVr186ePXvSpEnqJXg50nw5l/NrXcGSdLL8j/Ni/bcB/+WWlJS7iipVqgghSnxIqcjKyhJC\ndOzY0X1S1apVbTabH1sISXrhhRdMJlPr1q3Pnj2rHv/MM88IIRYtWqSMkb/5uWvXrrDnsaI7\ndOhQ8+bNhRCff/65+9SyStjf5USwtWvXCiFat26tjJkyZYr6gfEqVarIj/Vcc801coLAjs9I\nKmFfjiv5+7rr1693Gf/www8LIWbMmKEeOXnyZCHE9OnTvazUfU/5lZ/KiDhoKOXWPPCLS43B\neYU7rc4QyqrtPfJSk1cuHrfax+pRk7MIg1TFxMFI5cuvIOAzRkMpqwb2t57xqyY3Apdo5cvR\naMwjttwjLeAK0/3cw5glTByMYFpd34iYs2tfeCyZAA5I36NeJF3H06rVFsxeiKSavKzfaa1a\ntYQQK1euVI/8/vvvhRAdOnQoa2nuR5ov53KBrSswunUQhkEAgTAnJ0cI0axZM5fxJSUlNput\nevXqmmYwkhUVFQ0ePFgIccstt+Tm5qon7dq1y2azDR06VD2SC3le/Pjjj0KITp06qUd6KWG/\nlhPx8vPz5Wfe1SP37t376quvPvnkk3Pnzs3Ozv7555+FEP369ZOCOz4joIR9P67KOvlIS0uL\njo52OBzqkcePHy+3I8TjngrgOIcacbBC8VLzwF/qGoPzChfaniH41dT0WJNXRh632pfqUauz\nCKpirRAHw8/HX0HAZ4yG4rEuCqCeoYPQhUu08uVoNOAR68uRFkyF6XLuYcASDg/ioF60ur4R\nMWfX3nkpmQAOSL+iXgRcx5MF32oLfi9ERk3u/XeamZkphNizZ496ZEFBgclkqlatmpfFqo80\nH8/lAl5XAOggdFWnTp2YmJjCwkL1yP379wshevbsqWkGI5bD4bjtttuEEBMnTiwtLXWZ+tRT\nTwmvDNt0yc/PX7ly5fLly13GyxWx+sfvvYR9X44RnD9/XgiRnp7uJc37778vhHjuueck347P\nSC1h78eVC48nH7m5uUKImjVruiTOz88vt2Tc95Rf+YFHxMGKTF3zwF/qGoPzCjXNzxD8amr6\nEnMrhbK2utzqUcOzCKpiTRAHw8+XX0EwZ4yG4rEuCiDq0UHoQh2tfDkajXnE+niklVth+hL1\njFnC4UEc1ItW1zci5uzai3JLxt8D0mPUi9TreIogW23B74XIqMnLLYf+/fsLIVatWqUeKR9F\ntWvXlnw70nyMsOWuS0O8NtpVjx495syZs3bt2ptvvlkZ+cUXXwghbrjhBv3yVZmMHj166dKl\nU6dOffLJJ92nduzYceLEiS4j165d+9NPPw0bNiw9Pb1OnTphyWZFdOutt1qt1t9//91utysj\n5Qo3LS1NGeO9hH1fTiQpKiq69dZbCwoKNmzYIL9WW7Zx40YhxJVXXin/u2fPnu+++65v3741\natRQ0nz00UdCiL59+wqfj8+ILOFyj6ty2e12u91+5syZ3NzchIQEZfzhw4eFEFWrVhU+7ylN\n8oPAEAc1V27Ng7L4UmNwXqEWnjME32vyCFNu9ajhWQRVsY4o/GD48ivw5YwRZSHq+c6XaOXL\n0WjMI9bHI82XCrPcqGfMEq7IiIO+0+r6hmHProUP7RetDsiIvI7nnYbX38rdC5FRk5dbDt27\nd1+0aNGKFSt69uypjPzhhx+EEBkZGfK/5R5pPkZYX9alGW37GyuUwO6U2bZtm8lkyszMPH/+\nvDzm0KFDVapUSUhIOHPmTAiyGWkWLVokhBg4cKBfcxn5VWBq8pXie+65R7kpIzs7u0uXLkKI\nv/3tb/IYX0rYl+VEnm7dugkhnnrqKafTKY85cuRI48aNhRDz58+Xx8yePVsIMXLkSGUu+Xuw\n3bp187Jk9+Mz8krY319uWXcnDRgwQAgxadIkZUxJScmgQYOEEE8++aQ8xpc9FVhNAhfEwQoi\nsJoHMl9qDHfGPK8IxRlCWbV9YPulsihrqwOrHgM7i6Aq1gRxsIJw/xX4csYI358G4BWjZfEl\nWvlyNHLEytyPNF8qTF+iHiUcIsTBMNDq+kZkn12XxZeS8feALCvqRd51PLVgWm1a7YXKXpP7\nUg6XLl1KTU2NjY1VivrixYvt2rUTQsydO1ceE9iR5h5hfVmXVkySJPnTn1iZpKWlnT9/vqSk\nxGKx+DXjY4899sorr1SpUqV79+7FxcVr1qzJz8+fM2eO/GODdy1bttyzZ0/nzp3d779o1KjR\n9OnTPc41duzYd955Z9euXVdddVXo81hxZWVldezY8dSpUzVr1rz66qudTueWLVvOnz/fvHnz\nzZs3JycnC99K2JflRJ7Dhw+3b9/+/PnzTZs2bd269aVLl7799tu8vLwhQ4bMnz9fTpOXl3ft\ntdfu3r27TZs2rVu3Pnjw4KZNm2rUqPHdd9/Vr1+/rCW7H5+RV8K+HFcbNmyQezWEENu3bz92\n7Nhf/vKX9PR0IUTdunVfe+01IcSxY8euu+66U6dOXX/99V27dnU6nStXrtyxY0fLli2//fbb\nxMRE4dueCqwmgQviYAURWM0DmS81hjtjnldodYbgS20f2H6pyHzZahFQ9RjwWQRVcfCIgxWE\n+6/AlzNGY/KxLnLhXsKBLSfy+BKtfDkaOWJlHs+vyq0wfYl6lHCIEAfDQKvrG5F3du0LH6/8\nlHtA+hL1Iu86nlatNq32QmWvyX0shyVLlgwYMMBisdx8883R0dH//ve/T58+fdNNN61YscJs\nNotAjzSPEbbcdWlG2/7GCiWwO2VkH3zwQdu2bWNjYxMSErp27bp69WrNsxep5GL3qG3btmXN\nZcw7/T06e/bshAkTmjRpEhMTExMT07x58yeffDInJ0dJ4GMJl7uciHT06NFRo0bVrVvXZrMl\nJiZ27Nhx7ty5ym0ysjNnzowdO7ZOnTpRUVG1atUaPXr06dOnvS/W4/EZYSXsy3E1Z86cstK0\naNFCWdTZs2cfeeSRpk2bRkdHx8bGZmZmPvvssy6f9i13TwVWk8AFcbDiCKDmgcKXut2FMc8r\ntDpD8LG2D2C/VGQ+brXkf/UYzFkEVXGQiIMVRFm/gnLPGA3I97pIzb2EA1tORPIlWvlyNHLE\nSmWfX5VbYfoS9SjhUCAOhodW1zci7OzaF75f+fF+QPp+tSqSruNp1WrTai9Ilbwm970cNm/e\nfNNNNyUnJ0dHRzdv3nzatGlFRUXqBAEcaWVF2HLXpQmeIAQAIDIRBwEARkYcBAAYGXEQAFAu\nTZ9GBAAAAAAAAAAAAFCx0UEIAAAAAAAAAAAAGAgdhAAAAAAAAAAAAICB0EEIAAAAAAAAAAAA\nGAgdhAAAAAAAAAAAAICB0EEIAAAAAAAAAAAAGAgdhAAAAAAAAAAAAICB0EEIAAAAAAAAAAAA\nGAgdhAAAAAAAAAAAAICB0EEIAAAAAAAAAAAAGAgdhAAAAAAAAAAAAICB0EEIAAAAAAAAAAAA\nGIhV7wyE3M6dO81m+kEBwLhat25t5EBAHAQAgyMOGnnzAQDEQSNvPgDAexw0SZIUztyEU/fu\n3Tds2OB0OgNegs1ms9lsDofD4XBomDHDslgs0dHRJSUlxcXFeuclEphMptjYWKfTWVhYqHde\nIoTdbhdC5Ofn652RCBETE2M2mwsKCnQPNHl5efLONRriYEVDHNQWcVBzxEFtEQd1RxysaIiD\n2iIOao44qC3ioO6IgxUNcVBbxEHNEQe1VVniYCQ/Qbhu3bq+ffsGU0cUFBQUFhba7fbo6GgN\nM2ZYxcXFeXl50dHRxjwz01xpaWlOTo7FYklMTNQ7LxHi0qVLkiSlpKTonZEIkZubW1JSkpSU\npPvtihaLRd8M6IU4WNEQB7VFHNQccVBbxEHdEQcrGuKgtoiDmiMOaos4qDviYEVDHNQWcVBz\nxEFtVZY4GMlPEAbvvffee+eddyZMmDBkyBC98xIJ1q9f/+ijj95yyy1TpkzROy+R4Pjx47ff\nfnvz5s3nzZund14ixHXXXWcymTZv3qx3RiLE3XffvW/fvqVLl9auXVvvvCBAxEFtEQe1RRzU\nHHFQW8TBCEAc1BZxUFvEQc0RB7VFHIwAxEFtEQe1RRzUHHFQW5UlDvISagAAAAAAAAAAAMBA\n6CAEAAAAAAAAAAAADCSSv0EYvPT09IyMjNTUVL0zEiESEhIyMjKqV6+ud0YiRHR0dEZGRv36\n9fXOSORo1qyZ3lmIKA0aNBBCREVF6Z0RBI44qC3ioLaIg5ojDmqLOBgBiIPaIg5qizioOeKg\ntoiDEYA4qC3ioLaIg5ojDmqrssRBvkEIAAAAAAAAAAAAGAivGAUAAAAAAAAAAAAMhA5CAAAA\nAAAAAAAAwEDoIAQAAAAAAAAAAAAMhA5Czy5dujR+/Pj69etHRUXVrFlz1KhRp0+f1jtTlcnF\nixcnTZpUr1696OjoBg0a3HbbbVu3blUnoIQD9sgjj5hMplGjRqlHUp7+WrlyZefOnRMSEpKT\nk7t167Zhwwb1VMrTL/v377/77rtr1Khhs9nS09P79ev3/fffqxNQnpURey1IxMHQIQ5qgjio\nIeJgRGKvBYk4GDrEQU0QBzVEHIxI7LUgEQdDhzioCeKghip9HJTgpqioqE2bNkKIO+6444UX\nXhg5cqTNZmvQoMGFCxf0zlrlcP78+fr16wshbr755qeffnrIkCFWqzUmJubnn3+WE1DCAfvh\nhx8sFosQ4t5771VGUp7++uCDD4QQjRo1euqppyZNmpSenh4VFbV582Z5KuXplz179iQkJKSm\npk6ZMmXevHn/93//V716davVum7dOjkB5VkZsdeCRBwMHeKgJoiDGiIORiT2WpCIg6FDHNQE\ncVBDxMGIxF4LEnEwdIiDmiAOaigC4iAdhB689tprQojp06crYz799FMhxMSJE3XMVSXywAMP\nCCFmzpypjFm8eLEQonfv3vK/lHBgHA7HVVdd1apVK5dASHn65ezZs/Hx8a1bt758+bI85tCh\nQ/Hx8ffff7/8L+Xpl8GDBwshvvnmG2XMTz/9JITo0qWL/C/lWRmx14JEHAwR4qAmiIPaIg5G\nJPZakIiDIUIc1ARxUFvEwYjEXgsScTBEiIOaIA5qKwLiIB2EHlx11VUJCQmFhYXqkY0bN65a\ntarT6dQrV5XI+PHju3fvXlxcrIxxOp2xsbH16tWT/6WEA/PSSy+ZTKaVK1e6BELK0y+vvPKK\nEOLrr79Wj1QXFOXpl/bt2wsh1L93SZISExPr168vD1OelRF7LUjEwRAhDmqCOKgt4mBEYq8F\niTgYIsRBTRAHtUUcjEjstSARB0OEOKgJ4qC2IiAO8g1CV4WFhbt3727Xrl10dLR6fKdOnc6d\nO3f06FG9MlaJvP7662vXrrXZbMqY4uLikpKS2rVrC0o4UIcPH37uuefGjh3boUMH9XjK019r\n166NjY3t1q2bEKKoqCgnJ0cIYTKZ5KmUp7+aNWsmhDhw4IAy5o8//rh8+XJGRoagPCsn9lrw\niIOhQBzUCnFQW8TByMNeCx5xMBSIg1ohDmqLOBh52GvBIw6GAnFQK8RBbUVAHKSD0NWJEydK\nS0vr1KnjMr5evXpCiCNHjuiRqUrvnXfecTgcAwcOFJRwoMaMGZOcnDxt2jSX8ZSnv/bv39+g\nQYM9e/Z06tQpNjY2KSmpcePGc+fOladSnv6aPHlySkrK0KFDv/322zNnzuzatWvgwIExMTHP\nPPOMoDwrJ/ZaKBAHg0cc1ApxUFvEwcjDXgsF4mDwiINaIQ5qizgYedhroUAcDB5xUCvEQW1F\nQBykg9BVbm6uECIuLs5lfHx8vDIVfvn3v//96KOPdurUaezYsYISDsjcuXPXrVs3c+bMpKQk\nl0mUp78uXLiQl5d38803d+jQYeHChW+++abD4RgxYsTHH38sKE//ZWRkbNmyxeFwXH/99TVq\n1GjTps2hQ4fWrl0rP2JPeVZG7DXNEQeDRxzUEHFQW8TByMNe0xxxMHjEQQ0RB7VFHIw87DXN\nEQeDRxzUEHFQWxEQB616Z6CCUp6rVUiS5HE8vFuwYMGIESMyMzOXLVtmtf7veKOEfXfu3LmJ\nEyf26dPnjjvuKCsN5em74uLiY8eOffjhh8OGDZPHDBgwoGnTphMnTrzrrrvkMZSn7/bt23fz\nzTeXlJTMmDGjadOm586de+2112666aZFixb16NFDTkN5VkbsNa0QB4NHHNQWcVBbxMFIxV7T\nCnEweMRBbREHtUUcjFTsNa0QB4NHHNQWcVBbERAH6SB0lZiYKDz138ov5E1ISNAhT5WTJEnP\nPvvs888/f+ONN3722WdK0VHC/ho3blxxcfHs2bM9TqU8/RUfH19SUtK/f39lTI0aNW666aaF\nCxfu3buX8vTXyJEjz549e/DgwVq1asljBg4c2LRp0+HDhx89epTyrIzYa1ohDmqFOKgt4qC2\niIORh72mFeKgVoiD2iIOaos4GHnYa1ohDmqFOKgt4qC2IiAO8opRV3Xr1rVarceOHXMZf/jw\nYSFEkyZN9MhU5SNJ0qhRo55//vmHHnpoxYoV6sOdEvbLypUrP/nkkwkTJpjN5pMnT548efLU\nqVNCiPz8/JMnT+bk5FCe/qpfv74QQv2xaCFEenq6ECI3N5fy9Mvly5e3bdvWvn17JQoKIex2\ne/fu3X/77beDBw9SnpURe00TxEGtEAc1RxzUEHEwIrHXNEEc1ApxUHPEQQ0RByMSe00TxEGt\nEAc1RxzUUITEQQlu2rdvb7fb8/LylDGlpaU1a9asU6eOjrmqXMaNGyeEePHFFz1OpYR9N3Hi\nRC+/38mTJ0uUp58efPBBIcTWrVvVI3v27CmEOH78uER5+uPcuXNCiGuvvdZl/J133imE2L59\nu0R5Vk7steARB7VCHNQccVBDxMFIxV4LHnFQK8RBzREHNUQcjFTsteARB7VCHNQccVBDkREH\n6SD04N133xVCPPvss8qYt956Swjx3HPP6ZirSmTx4sVCiHHjxpWVgBL23d69e5f/2SeffCKE\n6Nmz5/Lly/ft2ydRnn7avn27yWTq1q1bYWGhPOaHH34wm81XXnml/C/l6ZcGDRrYbLYDBw4o\nYy5evJiampqYmCiXMOVZGbHXgkQc1BBxUHPEQW0RByMSey1IxEENEQc1RxzUFnEwIrHXgkQc\n1BBxUHPEQW1FQBw0SZLkpR/emEpLS7t27bpp06Zbb721TZs2+/bt+/TTTzMzM7du3Wq32/XO\nXSXQuHHjw4cPP/TQQ+7FNXny5JSUFEo4GJcuXUpJSbn33nvff/99eQzl6a8JEya88cYbV111\nVb9+/U6ePDl//vzS0tJVq1Z16dJFUJ5+WrJkSf/+/VNSUsaOHduoUaPTp0+///77R48enT17\n9v333y8oz8qJvRYk4mBIEQeDRxzUEHEwIrHXgkQcDCniYPCIgxoiDkYk9lqQiIMhRRwMHnFQ\nQ5EQB/XuoaygcnNzJ02aVK9ePZvNVqtWrQceeOD8+fN6Z6rS8HK8HT16VE5DCQfs4sWLQoh7\n771XPZLy9IvT6Xz77bdbtWoVExOTlJTUu3fv77//Xp2A8vTLd999d9ttt6Wnp1ut1pSUlB49\nenz55ZfqBJRnZcReCwZxMKSIg8EjDmqLOBiR2GvBIA6GFHEweMRBbREHIxJ7LRjEwZAiDgaP\nOKityh4HeYIQAAAAAAAAAAAAMBCz3hkAAAAAAAAAAAAAED50EAIAAAAAAAAAAAAGQgchAAAA\nAAAAAAAAYCB0EAIAAAAAAAAAAAAGQgchAAAAAAAAAAAAYCB0EAIAAAAAAAAAAAAGQgchAAAA\nAAAAAAAAYCB0EAKV2xtvvGEymUaNGqV3RgAA0AFxEABgZMRBAICREQeBINFBCFREL730kskH\nN954o945BQBAe8RBAICREQcBAEZGHATCxqp3BgB4UKVKlSuuuEI95uDBg5Ik1atXLyYmRhlZ\np06dhx56aOzYsVYrv2UAQOQgDgIAjIw4CAAwMuIgEDYmSZL0zgOA8sXExBQVFf3www9XX321\n3nkBACDciIMAACMjDgIK3Am1AAAgAElEQVQAjIw4CIQIrxgFAAAAAAAAAAAADIQOQqByc/kY\n78yZM00m0zPPPPPHH3+MHDmyRo0acXFxbdu2XbFihRAiOzv7wQcfrFOnTnR09BVXXPHee++5\nLG3z5s133HFH9erVo6Kiqlevfscdd3z33Xfh3iQAAHxGHAQAGBlxEABgZMRBIEh0EAIRRX4T\n96VLl2666abNmzd37Nixbt26O3fuvP3223ft2tWzZ88lS5a0adMmMzPz4MGDo0ePXr58uTLv\nu++++5e//GXp0qUtWrS45557MjIylixZ0qlTpw8++EC/DQIAwA/EQQCAkREHAQBGRhwE/EUH\nIRBR5K/yfvTRR1dcccUvv/yyaNGiPXv29OjRw+Fw9OnTJyUl5dChQ8uWLduxY8eIESOEEB9+\n+KE844EDBx588EGr1bpq1ap169a9995769ev/+qrr6xW6wMPPHD8+HE9twoAAN8QBwEARkYc\nBAAYGXEQ8BcdhEBEMZlMQoiCgoI33nhDDooWi+Xuu+8WQpw+ffrNN9+02+1yyuHDhwsh9u3b\nJ/87e/Zsh8MxevToHj16KEu78cYb77nnnsLCwjlz5oR3OwAACARxEABgZMRBAICREQcBf9FB\nCESgK6+8Mi0tTfm3Vq1aQojq1atfccUVLiNzc3Plf7/55hshRJ8+fVwWddNNNwkhNm7cGOIs\nAwCgGeIgAMDIiIMAACMjDgK+s+qdAQDaq127tvpfi8UihKhZs6b7SKfTKf+blZUlhJg9e/aC\nBQvUyf744w8hxJEjR0KYXQAANEUcBAAYGXEQAGBkxEHAd3QQAhHIZrO5j5SfrPdIkqS8vDwh\nhPrbvGrKDTUAAFR8xEEAgJERBwEARkYcBHzHK0YBCJPJFBcXJ4TYsWOH5Il8vwwAABGJOAgA\nMDLiIADAyIiDMDI6CAEIIUTDhg2FEMeOHdM7IwAA6IA4CAAwMuIgAMDIiIMwLDoIAQghRNeu\nXYUQn332mcv4AwcOrFy5sqCgQI9MAQAQJsRBAICREQcBAEZGHIRh0UEIQAghxo4da7PZFi1a\n9Mknnygjz507N3DgwN69ey9evFjHvAEAEGrEQQCAkREHAQBGRhyEYdFBCEAIITIyMmbOnFla\nWjp48ODOnTuPHDmyb9++DRo0+PHHH4cMGTJ48GC9MwgAQAgRBwEARkYcBAAYGXEQhmXVOwMA\nKooxY8a0bNlyxowZmzdv/u677+x2e+vWrYcPHz5y5EizmZsJAAARjjgIADAy4iAAwMiIgzAm\nkyRJeucBAAAAAAAAAAAAQJjQ+w0AAAAAAAAAAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAA\nAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAAAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAA\nAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAAAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAA\nAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAAAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAA\nAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAAAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAA\nAAAYCB2EAAAAAAAAAAAAgIHQQQgAAAAAAAAAAAAYCB2EAAAAAAAAAAAAgIHQQQiE1ooVK0z/\nNXfuXPWkrVu3KpNeffVVzVf9448/Kst/6aWXNF9+qPOvOHHixAMPPNC0adO4uLioqKhq1apN\nmTIldKvTV9hKFQDgLtShEwDgpX1UuZw8eVLZkEmTJumdnWB5iYAERwCIJARiw4qYXQ9tWfXO\nAAB489NPP3Xt2vXixYvKmHPnzh05ckTHLAEAAAAAAAAAUKnRQQigQhs7dqy6d9BisZjNPPoM\nAAAAAAAAAEDg6CAEdFO9evUHHnhAHm7durW+mQlAGPJ/9uzZrVu3ysPx8fFz5szp16+fxWLJ\nz88PxerC48Ybb1y1atUVV1yxf/9+96mV/agAAH95rxUBANALEQoAAB0RiIEwoIMQ0E39+vVn\nzZqldy4CF4b8Hz9+XBkeMWJE//795WG73R7S9YaOJEnff/+9lwSV/agAAL+UWysCAKALIhQA\nADoiEAPhwZv6AFRcZ8+eVYavvPJKHXOilUOHDqnfmAoABketCAComIhQAADoiEAMhAcdhAAq\nrpKSEmU4Pj5ex5xoZdu2bXpnAQAqEGpFAEDFRIQCAEBHBGIgPOggBIDw4fwGANSoFQEAFRMR\nCgAAHRGIgfCgg7BC2759u+m/1q9fL4/cu3fvyJEj69evHx0dbbfbmzZtOnr06F9++UU9o9Pp\nXLRoUa9evdLT0202W2pqavv27adOnZqdne2yij59+iir2LlzZ7lZWrVqlZJ+/Pjx7glKS0uX\nLFkyZsyYli1bVqtWLSoqKjU1tUmTJrfddtusWbPOnTvny4YXFxcvWLDgrrvuatmyZZUqVaKj\no2vUqNGjR49XXnnlwoUL5c7+22+/vfLKK3379m3QoEFSUpLVak1KSmrcuPGAAQPee++9vLy8\nsmbcsmWLsnUbN24UQly4cGHcuHENGjSIjo6uWrXqgQMHXGaRJOnzzz8fMGBAw4YN7XZ7ampq\nZmbm8OHDlf3lxdatW5XVvfrqq5pvTqh5yb/HQ/fChQvTpk1r165dcnKyzWarUqVK27ZtJ02a\ndPToUZclv/322/K8/fr1U0YOGjRIWebQoUPd8xPO/S78PErnzp0rL3/27NnymAMHDigrrV69\nui+lqhbwDy3IXQMAHh0+fHjq1Kk33nhjvXr1EhISrFZrYmJi48aNb7nllpkzZ/7+++8u6X2v\nFQOrojU5G/Fi+fLlFotFzlWDBg1Onz7tMdmGDRvGjx/ftm1bOQ9paWnNmzcfMGDA/Pnzc3Nz\ng8wDAFRMwbSPXARfiwbQQPA9QqmZzf+5tHLy5Mknnnji2muvrV27dnR0dHp6eps2bSZPnnzs\n2DF/Nz8wOjYe9WrFr1ixQtlB77//vpdVKDvXZDJ9/fXXHtP4e0rjEScAAHREINY3EPsVDW+7\n7TZl07Zv317uwv/1r38p6Z955hmXqRruehiLhApM3e23fPlySZKee+45k8nkvh+tVuv8+fPl\nuU6dOtWqVSuPu7t27doHDhxQr2Lx4sXK1IcffrjcLI0cOVJJv2PHDpepq1evbtasmZfjLS4u\nbsqUKSUlJV5WsWbNmvr163tZwsyZM8uat7i4+LHHHrPZbF7ykJaWtnTpUo+z79q1S0m2YsWK\n7OzsjIwM9by7du1Spz99+nTXrl3LWlHPnj0vXbq0fPlyZcycOXPUs2/ZskWZ9Morr4R0c6ZN\nm+alzAPjJf/uh+5nn31mt9s9boLNZvvggw/Us7/11lteNlkIMWTIEHX6MO93yf+jdM6cOV7y\nVq1aNV9KVRHMDy3IXQMALgoKCu677z6lPVZWpTR9+nSn06nM5XutGEAVHUwl6Uvo3L59e1xc\nnJwmLS3N5cxKtnfv3g4dOnjJQ/Xq1T/55JNAShwAKrAg20eK4GvRgBsIvkeoEydOKOMff/xx\nSZI+/PDD2NhYjzPGxMR8+OGHwZavV6FrPPoSHHVsxauPqPfee89LEal37sqVK12mBnZK44IT\nAAD6IhDrGIgl/6Php59+qkz929/+Vu7yb7nlFiW9SztUq10PA6KDsEI7dOiQ8rv97LPPZsyY\nIQ+bTKaUlJTo6Gj1Tz0qKmr//v0XLlxo1KiRPMZqtaamplosFnWyVq1aqa+IFRcXp6WlyZPS\n0tKKi4u95MfhcKSmpsqJW7Ro4TL1gw8+cFlXnTp12rRpc8UVV0RFRanH33777WWtaN68eS4L\nsVgsMTExLvXa+PHj3ed1Op19+/Z1SZmYmFi3bt3k5GT1SJPJtHDhQvcl7N+/X0nz6aefTpo0\nyWVp6quQOTk5Lh2xKSkprVq1ysjIULpbrrvuuqVLlyoJ/OogDH5zdOwgdDl0FyxYoDS05Mc4\nrFarehPMZvOmTZuU2ZcvX969e/fu3btfeeWVSprMzMzu/6XenDDvdymgo3TVqlVyzpVryna7\nXdmcAQMG+FKqsiB/aEHuGgBQczqdPXv2VFcaVqu1Tp06jRo1SkpKcqkVJ0yYoMzoe63obxUd\nZCVZbujMyspS7lqNi4vbtm2be5rVq1cnJCSo11W7du02bdo0adLEJW8vvfRSUDsAACqS4NtH\nsuBr0WAaCL5HKPV1yeeff37+/PnKvbxRUVEpKSkuXU1ms/nf//63pkWuzSbLgukg1LcVr0kH\nYcCnNGqcAADQF4FYx0AsBRQN8/Pz4+Pj5fFNmjTxvvycnBylL+Dqq692maTJrocx0UFYoWVl\nZSm/2+eeey42NjY5OXn27NnZ2dmSJJWWln777bctW7ZU0owZM2b06NFCiDZt2qxevVruCMzL\ny5s/f766Zv/iiy/Uaxk3bpwyqayb8mQrV65UUk6fPl09aevWrUolaDabJ06ceOLECWVqXl7e\nnDlzqlWrpsz+zDPPuC9/27Ztyq0l0dHRzz777K+//lpaWipJ0unTp1977TWl0hRCfPrppy6z\nK8+eCyGqVq369ttvnz9/Xpl66NChMWPGKAmSkpIuXLjgsoTDhw8rCf7xj3/IhZaRkTF58uRX\nXnnl8ccfP3bsmJJ4woQJSuI6deqsWLFC6XktLCz87LPP6tatK4S44YYbyqp8vXcFBb85OnYQ\nqg/dadOmJSUlmUymUaNG/fjjj3KCoqKitWvXqvv/unbt6r6KJUuWKAkWLFjgMRth3u9BHqUt\nWrSQJ11xxRX+lqqkxQ9Nq10DANKfL7Rdc801a9asUXe5nTp16u9//7u6Bfjdd9+5LKHcWtGv\nKjr4StJ76Lx06ZKSYavV6v7wgZxhZZPNZvPDDz989OhRZWp2dvbs2bPVZbJo0aKyCxgAKpPg\n20eSRrVo8A0EyYcIpb4uOWHCBLvdbjKZhg8fvnPnTvkJs6Kioq+//jozM1NJ1rFjR7+K1Hch\nbTx6D466t+I16SAM/pSGEwAAuiMQ6xiIA46GQ4YMUcb//PPPXlbx0UcfKSnfeOMN9SRNdj0M\niw7CCu348ePK79Zut8fHxysX8dVplJsR4uPjTSbTddddl5+f75JMXYn89a9/VU/66aeflEn9\n+vXzkp8RI0YoEeK3335TxjudTqXW9lLF7Nu3LzExUU4TFRWlDjCyNm3ayFOtVuv69evdl7Bu\n3Trl7o+6deu6vBysYcOGSvZ27tzpMQ8PPPCAkk/33hf1C6m7desmhJg4caLH94ecOnVKuWsj\nMTHx4MGD7mlOnDhRq1YtoeJXB2Hwm6NjB6H60I2LizOZTMorcNXOnTuXkpIiJzOZTOfOnXNJ\n4EsHYTj3uxT0URpMB6EmPzStdg0ASJLUvXt3uaKoUaNGbm6uxzSHDh2qUqWKnGzQoEEuU8ut\nFX2vojWpJL2EzuLiYjkDcsU4b948j8tXGl1lVbCSJO3du1fJQ7169QoKCjwmA4BKRJP2kaRR\nLRp8A0Hy87pkbGysyWT66KOP3JP9/vvvShw0mUynT5/2uLQghbTx6L1dqXsrXpMOwuBPaTgB\nAKAvArG+gTjgaLhixQplKzw+TqNQHsq0WCxnzpxRxmu162FYdBBWaOqaTrg9tKdQv4DYbDbv\n27fPPU1xcbFyq0K7du1cpiq1mM1m++OPPzyupbi4WOkw6Nmzp3rSunXrlAz07t3byxZNnz5d\nSfncc8+pJ6m/mPrQQw+VtQT1RxC//PJLZbz6CYMuXbqUNbu6SHv16uVlqhCic+fOZfUSzZw5\nU0n25JNPlrW6BQsWeKl8vXQFabI5OnYQupTkmDFjylrI/fffryRbvXq1y9RyOwjDvN+DPEql\n4DoINfmhabVrAECSJOVlm0OHDvWS7NVXX23btm3//v1feOEFl0l+tfq8V9GaVJJeQuc999yj\nTHr55Zc9LnnHjh1KmuHDh3vJw6xZs5SUZfU1AkAlokn7SJNaVJMGguR/hBo7dmxZ6xo/fryS\n7Ouvv/ayXYEJdePRy6SK0IrXpIMwyFMaTgAA6I5ArGMgDiYaFhcXK9/zyszMLGve7OxspRfQ\npbg02fUwMm+fX0aFEhUV9de//tXjJPVbhjt37tysWTP3NDabLSMjQx4+efKky1Tl0UCHw+FS\nXyjWrl178eJFeXjYsGHqSfPnz1eG1TeAuBsxYoTy7i/1h1hd/h07dmxZS7jzzjtr16591VVX\n9ejRIzs7WxnfsGHDwsLCrKysrVu3qmtGF7Vr165Tp448fPToUS9ZFUI88cQTyturXajv7xg6\ndGhZSxgwYIByl4pfQrE5ejGZTJMnTy5r6jXXXKMMqx8T8VGY93uQR2mQNPmhqYV01wAwgqKi\nInkgNzfXS7KJEydu37594cKFTzzxRJBr9FJFa15Jqj333HMffvihPDxhwoRHH33UYzIljRDi\nscce87LAkSNHKl+D+Pzzz33JAwBUZJq0jzSpRXVpSZnN5r/97W9lTb366quV4VCcV+vYeKyA\nrfjABHlKwwkAAN0RiHUMxMFEQ5vN1r9/f3l4z549Bw8e9DjvsmXLlFClfiupCP01akQ8Oggr\njTZt2igP8LlQbnYTQnTt2rWsJSjJ3E95hwwZotyGoA4Gap999pk8kJCQ0K9fP/Uk5Zmn6Oho\n9euM3aWnp7du3Voe3r9/f15enjJJufG/WrVqzZs3L2sJvXr1OnHixK5du9asWTNo0CD1pOjo\n6Hr16rVv3179dmmPeZAHlP5Oj+Lj45U3iblT3statWpVjz2yMovF0qNHDy9r8ULbzdFRixYt\nGjRoUNbU2rVrK8PeG2NlCed+D/4oDYYmPzS1UO8aABGvfv368sDKlSt/+OGHUK/OexWteSWp\n+Oijj5599ll5eNCgQTNmzCgr5caNG+WBhg0bKjdmeRQbG3v99de7zAUAlZcm7SOtatHwt6Ra\ntWpVr169sqbWqFFDGb58+XKQ6/JIr8ZjRWvFByzIUxpOAADojkCsYyAOMhqqhxcvXuxx3oUL\nF8oDdrvd5bJ8GK5RI7LRQVhpeKlflG8QCiG8VARKsuLiYpdJKSkpt956qzy8ffv2vXv3uiRw\nOBzLli2Th++44w7lJhEhRF5ennJ3Q7NmzZQvspa7IU6nc/fu3fJwUVGR8gR6kyZNvC8hSEoO\nnU6nl2StW7e2Wq0eJ126dOnMmTPycOPGjb2vTv09pFDwcXN0pH7C1Z36WFLuhQmF4Pd7OI9S\nd5r80FxUkF0DoPJSbl0sLi7u3LnzE088ceTIkdCtzksVHYpKUrZhw4ZRo0bJwz169Pjwww/L\neoSxoKDg559/locbNWrkPQNCCKW1fOHCBeW8AgAqI03aR+GvRTVsSbVs2dLLVHWD3b0xHk7a\nNh4rYCs+YMGc0nACAEB3BGIdA3Hw0fAvf/lLzZo15WGPHYQ5OTmrV6+Wh2+99VblI2Kigl2j\nRiXl+SILKqDk5OSyJinfOPU9mbsRI0Yozwh++OGH6s/zCCHWrFmj3M2h/gaPEOL06dNKPe7l\naSSF+oYOpQo7ceKEshClTgxMUVHRF198sXr16t27d2dlZeXk5BQUFASwHOUWQnfqsOfyiVd3\nyvPygdFqc3SkvErbI++Hpe/CsN81PEoDoMkPzUV4dg2ACPbwww8vWbJk8+bNQoiCgoJp06ZN\nmzatWbNm3f6rrJcfBMZLFR2KSlIIsW/fvn79+sltyKuuuurzzz/30vV4/vx5JQ+bN2/2kltZ\nTk6OMpyVlaV+IQQAVC6atI80r0XD2ZLyHu/Cdl4d5sZjBWzFByyYUxpOAADojkCsYyAOPhqa\nzea77rrr9ddfF0Ls2LEjKyvLpfCXLl2q3Ljv8hLRcF6jRqSig7DSKPdeeL+SuevZs2ft2rXl\nzxPOnz//xRdfVD7PI1TvF61Xr17nzp3VM6rjgfoWhrLExcW5z6t+gaH6uSV/ffzxx48++uip\nU6cCXoIiKSmprEnqp9HLza16e/2l4eboKCoqKtSrCM9+1+ooDYwmPzQXYdg1ACKbzWZbtWrV\n2LFj1d//279///79+//xj39YLJYOHToMHDhwyJAhmvQUeqmiQ1FJnj17tnfv3pcuXZL/vXjx\novc7W9UvxsnPz/fr4xZl5QEAKgVN2kfa1qJhbkmV9YB7OIW/8VgBW/EBC+aUhhMAALojEOsY\niDWJhoMGDZI7CIUQn3/++SOPPKKeqrxfND09vWfPnupJYbtGjQim/1ksKgiz2Txs2LAXX3xR\nCHHq1Km1a9f26tVLnqR+v+jQoUNd3qyVn5+vDMfGxpa7IvVj3cq8hYWFysiA+zinTp369NNP\nq8fUr1+/Vq1aVapUSUhIUEauWrXqjz/+KHdpykcZ3alveCm3iyXgPhhtNyeChW2/a3KUBkyT\nHxoAaC4uLu6jjz566KGHZs2atWzZMnXLsLS0dPPmzZs3b37qqacmTpz4xBNPqO89CoCXKjoU\nleTf//53dY/gsWPH7rvvvo8//risZZb7LUMvQvRJKgAID03aRxrWogZsSemyyRWwFR+MgE9p\nOAEAoDsCsY40iYbXXHNN48aNf/31VyHE4sWL1R2E2dnZyvtF77rrLpeu0PBco0Zko4MQ/zNi\nxAi5g1AIMW/ePKWDcM2aNcrt88OGDXOZS333gS/9EOo0yj3+wX/tbN26dVOmTFH+feCBBx57\n7LG6deu6p+zQoUOQ4Ud9gbLcV1cHFl/DuTmVWjgLSt9v8mnyQwOAEGnXrt28efMcDsfGjRu/\n+uqr1atX79mzR5manZ09ZcqUbdu2LVq0SN0zp6FQVJJy72CVKlXS0tIOHDgghFiwYMGNN97o\nfi4kU7d177777nnz5vmWdwCo9DRpH2lVixqwJaXXJleuVryPAjil4QQAgO4IxDrS6mrhwIED\np06dKoTYsmXLqVOnlLeVLlu2TNmnyhdzFWG4Ro2Ixyem8D+NGze+/vrr5eFly5Yp9yB88skn\n8kCHDh2aNm3qMpf6q4e+3P6mroyUd4WpXxqmdEb6Zfr06ZIkycOvv/76rFmzPMYeIURpaWkA\ny1dTX0ks9ypkdnZ2AKsI5+ZUauEsqOCP0mBo8kMDgJCy2Wzdu3efMWPG7t27T58+/d5773Xq\n1EmZ+uWXX7766qshWnWIKsmmTZtu3bp18eLFykXABx988MiRIx4TJyYmKsO8MQyAoWjSPtKq\nFjVgS0qvTa5crXjhz3Vbv05pOAEAoDsCsY60ulo4aNAgeUCSpCVLlijjlc9+NWrUqEOHDi5z\nheEaNSIeHYT4kxEjRsgDeXl5X375pRCisLBw6dKl8kiPt8xXr15deb3G0aNHy12F+rKa8vXU\nWrVqKU9hHz9+3N9s5+XlrVu3Th5u0KDBuHHjvCQO/v3XVapUUYZ/++0374kPHTrk7/LDvDmV\nV5gLKsijNEia/NAAIGyqV68+atSoTZs2qXvXXnrppRC99DgUlWSHDh22bNnSuHHjFi1avPzy\ny/LI3NzcwYMHl5SUeMyDcv+m/HIYADAITdpHmtSiBmxJ6bjJFbAV7/1rwRcuXPA9e4pyT2k4\nAQCgOwKxjrS6Wti8efMrr7xSHv7888/lgezs7DVr1sjD7o8PitBfo4YR0EGIPxkwYIDyki75\nwcHly5fLX1uNioq666673GeJjY1t3ry5PLx///5yH2fevXu3PBAVFZWZmSkP22w25dnEvXv3\nql+g7O7AgQPy18JPnjwpjzl58qTSEujSpYvLVxLVDh48GHz4qVatmvKkQrkh86effvJ3+WHe\nnMorzAUV5FEaJE1+aAAQfrfffvvjjz8uD+fl5W3fvj0UawlFJXnrrbempqbKww899NBNN90k\nD2/btu3ZZ591T2+z2ZQW3cGDB3mGAIBxaNI+0qQWNWBLSsdNriCtePUXlbznIYC2uVpZpzSc\nAADQHYFYRxpeLVQeIty4caP8MOLSpUu9vF9UhP4aNYyADkL8SXx8/IABA+ThlStX5ufnL1iw\nQP63T58+ymUyFx07dpQHiouLV61a5WX5x44dU97g37ZtW/WpfJcuXZSFKDdHuDtx4kSzZs0y\nMjIyMjJeeOEFeaT6EWn1E/Hu3nrrLS9TfdeiRQt54Ny5c/v37y8rWU5OzqZNm/xdePg3p5IK\nf0EFc5QGT5MfGgBo6/jx4+XeJnnttdcqw6F7q0moK8k5c+akp6fLw9OmTdu4caN7GuVV7Q6H\nY9myZd4XeODAAa4hAogYmrSPgq9FDdiS0neTK0IrXv12NS93ZxYWFq5du9bLcoI5peEEAIDu\nCMQ60upq4cCBA+WBkpKS1atXCyGUd41ec8017p/9koX0GjWMgA5CuBo5cqQ8IPcOfvXVV/K/\nHt8vKhs+fLgyPHPmTC8LV9f+99xzj3qS+vHEGTNmlLWETz/9VBnu0aOHPKD+8lBWVlZZ8+7a\ntesf//iH8q/3ezq869WrlzI8d+7cspLNnDnT4XD4u/Dwb04lFf6CCuYolSk3TwXwkj1NfmgA\noJWJEyemp6fXq1dv6NCh3lOqvzxftWpV9aRgakUXoa4kq1Wr9sEHH8jDTqdz6NCh7l+YUOdh\n2rRpXj6qUVhY2KNHj7S0tO7duysvkAGAykuT9lHwtaiGDQQNI1RI6dt4rAitePWnrb7//vuy\nlvPOO++cP3/e46TgT2k4AQCgOwKxjoK/WiirX7++cifKV199VVBQIHcTCiG8RKiQXqOGEdBB\nCFfXX39948aN5eHHHntM/o53Wlpa7969y5qlffv2Sv21Zs2a999/32OyrVu3vv766/JwlSpV\nBg8erJ7aqVMnZSEbN270eCfF3r17p06dKg9Xr169b9++8nCjRo0SEhLk4fXr1585c8Z93l9+\n+aVPnz42m+26666Tx+Tn55fVQihX//79lUA1a9asX375xT3Ntm3bpk2bFsDCw785lVT4CyqY\no1SmfLXizJkzl352ri8AACAASURBVC9f9mvtmvzQAEArNWrUkC+Tbdq0afbs2WUlKykpmTVr\nljycmJjYqlUr9dRgakUXYagk+/Tpc99998nDJ06cGD16tEuCli1bKi29ffv23X///ZIkuS/H\n4XAMGzbs5MmTDofjm2++8dLwBoDKQpP2UfC1qIYNBA0jVEjp23isCK342rVrp6WlycPffvvt\nzp073Zfz7bffPvHEE8rnVFwEf0rDCQAA3RGIdRT81UKF8pbRNWvWbNiwQe46tVgsHj/7JQvp\nNWoYAR2E8EC5YUT5iPegQYOUD6569P777ysV95gxYyZPnnz27FllanZ29ptvvtmzZ0/lvcnv\nvPOOEjBkJpPp73//u7KWp556atCgQdu2bSsoKJAkKSsr6+WXX7722muVZ9Vffvll5Z1gFoul\nX79+8nBOTk7//v2PHDmiLPnUqVPPP//8Nddcc+rUqenTp3fu3FmZ9N577/lcKn+SkZGhvIs1\nLy+vS5cuc+bMkT/WKITIysqaOnVq9+7d8/LyRowY4e/Cw785lVT4CyqYo1Sm3N/qcDgmTpz4\n+++/l5aWZmVlXbx40ZcMBP9DAwCtjBkzplq1avLwgw8+eM8992zZskV9T2JeXt7KlSs7d+78\n3XffyWPGjh2rVGKyIGtFF2GoJGfMmJGRkSEPL1y4cM6cOS4J3n33XeVdZ++++26PHj2+/fZb\npV1dWFi4cOHCa6+9duHChfKYLl26KGcUAFB5adU+CrIW1bCBoG2ECh19G48VpBXfv39/ecDp\ndPbp02fRokV5eXnymKNHjz799NM33HBDYWHhiy++qMyivpytySkNJwAA9EUg1lHwVwsVd955\np8ViEUKcOnVKubH1hhtuUOKUu5Beo4YhSKjATpw4oeypyZMnl5VMfXFq/fr1ZSVT7jWIjo4u\nd71m8586j3/44Ydyc7tw4UJ17WYymRo2bNi2bdtGjRq5LG3q1KllLeTTTz91SSyEcB8zbtw4\nlxkPHTqk/vaAxWJp0qRJp06dmjRposw+fPhwp9O5YsUK9aJatGjRvn37AwcOSH8u8IkTJ3rf\n3pMnT9auXdslY8nJyep2Qvfu3Xfs2KH8+89//lO9hC1btiiTXnnlFc03Z9euXcr4adOmlbsH\n/eUl/76XpHoh7plU3rUthFiwYIH77OHf71IQR6kkSW+//bbwZM2aNeWWqizIH5pWuwYAJEn6\n5ptvoqOj1TWPxWKpWbNmvXr13DveOnbsmJ+f77KEcmtFf6voICtJX0Lnzp07lVXEx8cfPHjQ\nJcGaNWvUsUkIERcX17hx46pVqyq3dsqaN29+9uzZ8gsaACqD4NtHsiBrUU0aCJKmESrU59Wh\nbjyWGxz1bcVLkpSVleVyzJjN5pSUFLvdroyZMmXKzz//rPy7dOlSdU6CP6WROAEAoDcCcVnC\nc4ErmKuFau5vH/3oo4+8z6LVrocx0UFYoenVQShJkvr9xRkZGT5meOPGjcqXUT2qW7fuZ599\n5n0h33zzjfKOU3cJCQmzZs3yOOOqVavK+v6txWJ5+umn5WQOh+PKK690SbB7927J/6uQ+/bt\nc1+Uonfv3jk5Oeo7Zd566y317N67goLfHCN0EEp67HcpiKO0oKAgMzPTfRbfOwil4H5oFe38\nCUBlt23btubNm3upkYQQVqt1/PjxHi+llVsrBlBFB1NJ+hg6X375ZSXZ1VdfXVxc7JLgxx9/\n7NSpk5c8mEymESNGXLx40ZctAoDKIsj2kSLIWjT4BoKkaYQKw3l1SBuPvgRHHVvxstWrVycl\nJZW1HDnb6mPP/UwgyFMaGScAAPRFIPYobBe4Ao6Gav/85z/Vc9nt9suXL5c7l1a7HgZkLeu4\ngcGNGDFi1apV8vCwYcN8nOv666//+eefly5d+tVXX23ZsuXs2bPZ2dmJiYlVq1Zt165dr169\n+vfvX9Yz1IquXbvu3r37iy++WLx48c8//3zmzJn8/PzU1NTmzZvfeOON9957b2pqqscZe/bs\neeDAgVmzZn399de//vrr5cuX4+PjGzVq1K1bt7/+9a9NmzaVk1mt1pUrVz7yyCNr167NyclJ\nT0/v1KmTlye1vWjWrNmOHTv+9a9/LV68+Keffjp37lxMTEzNmjXbtWs3bNiwrl27CiGcTqeS\nvrCw0PeFh39zKildCirgozQmJmb9+vVPP/308uXLz5w5Y7PZatSo0bZt2wYNGvi+dk1+aACg\niXbt2u3Zs2fVqlXLly/fsWNHVlZWdna2w+GIi4tLS0vLzMzs3LnzwIEDa9as6XF2TWpFF2Go\nJCdNmvT1119/8803Qojt27c//fTTL730kjpBq1atNm3atH79+i+++GLjxo2nTp26cOGC1WpN\nTk5u3rx5p06dhg0bFsw2AkDFpFX7KMhaVJMGQigiVOjo3njUvRV/ww03HDp0aNasWWvWrDl4\n8GB2dnZUVFS9evV69eo1bty4+vXrCyHUT7S4H3tBntLIOAEAoC8Csb4CjoZqt99++/33319U\nVCT/e9ttt5X1DV21kF6jRmQzSZ6+NQrMmTNn5MiRQgir1Xr8+PEaNWronSMAAAAAAAAAAABo\nwPU1uIDsrbfekgf69OlD7yAAAAAAAAAAAEDEoIMQHmzYsOGHH36Qhx9++GF9MwMAAAAAAAAA\nAAAN8YpRuHI4HO3atfvxxx+FEG3btt2+fbveOQIAAAAAAAAAAIBmeIIQfyJJ0tixY+XeQSHE\niy++qG9+AAAAAAAAAAAAoC2r3hlABbJr167JkyevWbNG/rdfv349e/bUN0vQ1owZM5T9G4zu\n3bs/+uijwS8HAAAAAIyGdhkAADoiEAMKOgghRowYsXLlyvz8/NzcXGVkw4YN33//fR1zhVDY\nvXv3qlWrgl9OWlpa8AsBAAAAAAOiXQYAgI4IxICCDkIIh8Nx9uxZ9ZiWLVt++eWXqampemUJ\nAAAAAAAAAAAAIWKSJEnvPEBnEydOnDVrVnFxcVJSUrNmzQYPHnzffffZbDa98wUAAAAAAAAA\nAADt0UEIAAAAAAAAAAAAGIhZ7wwAAAAAAAAAAAAACB86CAEAAAAAAAAAAAADoYMQAAAAAAAA\nAAAAMBA6CAEAAAAAAAAAAAADoYMQAAAAAAAAAAAAMBA6CAEAAAAAAAAAAAADoYMQAAAAAAAA\nAAAAMBA6CAEAAAAAAAAAAAADoYMQAAAAAAAAAAAAMJBI7iC8995777zzTqfTqXdGAADQAXEQ\nAGBkxEEAgJERBwEA5TJJkqR3HkIlLS3t/PnzJSUlFotF77wAABBuxEEAgJERBwEARkYcBACU\nK5KfIAQAAAAAAAAAAADggg5CAAAAAAAAAAAAwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAA\nwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAAwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAA\nwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAAwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAA\nwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAAwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAA\nwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAAwEDoIAQAAAAAAAAAAAAMhA5CAAAAAAAAAAAA\nwEB06yB0OByPP/64xWK5+uqrfUl/6dKl8ePH169fPyoqqmbNmqNGjTp9+nSoMwkAQIgQBwEA\nRkYcBAAYGXEQAFARWHVZ6759+4YOHXro0CEf0xcXF3fv3n3nzp133HFHmzZtDh8+PG/evG++\n+WbHjh0pKSkhzSoAAJojDgIAjIw4CAAwMuIgAKCC0KGDMCcnp23bti1atNi5c2dmZqYvs8ye\nPXvnzp3Tp09/7LHH5DG9evW66667XnjhhVdffTWUmQUAQGPEQQCAkREHAQBGRhwEdJF1oaDD\n37+b8Jf6k7s1kv+95o3NhSXOTvEFX5+3eZzFJDnXbH9MqwyYhOi2ca9WSwO0YpIkKcyrvHDh\nwosvvjht2jSbzRYTE5OZmbl9+3bvs7Ru3frw4cO///57dHS0MrJJkyY5OTlnzpwxmUwe50pL\nSzt//nxJSYnFYtFyAwAACAJxEABgZMRBQBfuF0blf+/O3bZvxlR1SpMwddv4i07ZBCIfcRDQ\nxa9/5DeZtuHJHo2n3tRU+VcI0SnB8W2u5w7CgJkk55ofPPUsev6xBrEik6Xbv3drvFAYjA5P\nEKampvp1e0thYeHu3bu7dOmijoJCiE6dOs2dO/fo0aMNGzbUOo8AAIQKcRAAYGTEQUAXJU7p\nbG5RblGp+t//W3P4m5jY1de4/iRNj6zw+MyEvXb9az/+KuR5BSIacRCIeJLJ3KOdTz/zMrsS\nfVyRKF33l+Y+rYi7f1AGfb5B6JcTJ06UlpbWqVPHZXy9evWEEEeOHAlpINywaef3e7N8SZlo\nEWXcsuM3k9lsjo7xdy6LSSSE/ZYgk8mUaAvwIdQEq7CUUWKWWLsw/29j4q0mq/lPCeJtJuuf\n57XExJpt/t3uYbHHmTzdRWWNT/Rw+5XZbI2L92v5AKCJyhIHNaFhMPXCZLGYo6LLTyeEECJZ\nu3OleJtr4LPExJrM5jKSC2E2W2PtHqfEWkzRZQRRm8UUZzMJIUxmq8Ue62PeLCaREGURQpis\nNo8rtSYk+rgoo3F5IAOA5gwVB2FAJmFKtErCJCwxf4q/sTaLPTZaCGGJsQuTsJhNiVFmIURU\ndFSCPcZmMcVHmaMTEhOj/3emYo6K8vdKQl5xSX60h1MRyWTu4d5rKDnXbH/M/UIk70wDQoo4\nCIMzR8ck2MxlXUP+XzIhEv8bEhOjTCbxv+vVNrMpziKdKBBCiFO/Ht75zVlhNp8v/E+CksIi\nITR+gtB3XroSR534cuDp9eXN7/OKhOSxK5EgjkrQQZibmyuEiIuLcxkfHx+vTFVMmDAhPz9f\nHs7Lywt+7Z9t/OWtC1WCX47/nHqstOK47P8sF6OdjihnicdpNskR7XT8eUxpTGmxEEIIKb60\nUB4ZU+qwSf9ZQpSzOMpZEu10REklQgirsyTGWSyEsEpOe2lRXGl+lLM01mZKECUJpQUWyWmX\niqwmU2JslMcMWOMT3K95W2PtJut/foMmq9WiuiBrtceZLFbx3wuyJpPJGp8g5EvJNpvJbLbG\nJZhjYqxxCZaYGGt8gjU+0RIba7Z5XjuASs2ocTDUKkicLXcfZYcjF376b3D8T1wzCSneWfjf\niSaXeGeXHBbJaTKbhMlsElKCVCyEkMOfVXLaRakwm+T7deJNJWZhstmscaZSIYTJYomxmmPM\nTpPVmmizRJul+BirxWJNsAlrjN1mEQn2mOgoa6zFFJ8UH2s1x8XGxNpjbAlJJovFYnf9vYSO\nywMZyqcsBjVL/udPvzuFqXbhubm7X/5v6dD6AvxGHIRhON3+lduw5bSOLZLTXlpkElJcaYFZ\nkuJKC+MlR7zJkWAqqW4uTrGUxlulFIuUZ4sVIvPotu9/urA1OcF+ISr5P6spLfXxwqh7r6H8\n3IMkhMs1R+IdoCHiIKBh+31OljQn60+/mqO5pcLv53TC4f06N79f52b1mCAfN/TYm0gQRyXo\nIJS5P9Elfz3RZfzcuXMvXbqkyRpPXCqcuubXf/8uBG/qDosOFzWoeramlPVUta+PUATPXlpo\nLy1KLrlslZypxblJJZcTS/IScvOTSvISS/LTi7OTSi7LaSySxpenTWaLJS7ObLXaEpMtcfG2\nhMSo1DRbYrI1Ls6amGxLSDRHRdsSk6xx8bakFGtcfFnPUAKogMIfBxE6V1w+4TImxZHrMaWL\nssNcWBWZbUV/vpKYYwkozsoHrySE+vYeh+e0fyYH0Pz//vu/blQ5vMaVFtidxVaTFOssjjGJ\neIszTpTYzc4Yi8luMyfGWONio5KsUlxsdKw9tkpCTFycPSU+pkpSfFx8rDU+MSolNeB7bkqc\n0h95xUKI3MJSpzAJIU7GVP3T5dSJ/3kzm8sX72mGAd4RB2E06rOFA/GuTw6plZrMudZYIUSO\n1fOLB4QQwilEkRBCfJyb+vFOIYSILc0VlmghxOk/soU9wCuj6uce1FctudoIaI44CITI2Zgk\nvbPgK/fHDYPtMvzPcl3/8/S2AN5QGrEqQQdhYmKicLsjRgiRk5MjhEhISFCPnDNnjsPxnwtL\n9957r/tcvquRGP3L2dwDFm6TCZMKctEzePmWmHxLzB9RSUIIUfYDDGbhTCgpSCjJjy8tTHbk\nJpbkVy+6UL3oQoojN92RXaPwvMsjj//j8eFxkxBCSM7SktwcIUTxxQs+5tYcHWOLT7AlJduS\nU632uKi09JiqNawJidFpVWPSq0VXrRGVnBLY+/4Kz/z2w4hbi/PyoxJTrl+xOYAlAJDpFQcR\nOt4v88EL975V8efuVfl0Qr5O6lmJEJfdH8YoEqJIiGyTJMWXFtpLC5OchdFmKVGUxFpFqk2q\nGiXFR5njLKaU+Og4e1TNJHutqslVkhMSUlNKzQG2Jz28vW3iV/QaAu6IgzCmUJ8tFFj+87r1\no/ZqmiywrM7C/0z989VGAhzgO+IgoD1JCsfXTULPe/ANYrnuI/73hlKCeIQxyfeb6CUmJiYz\nM3P79u1e0hQXF8fFxXXq1Gn9+j+9dXfw4MELFiw4duxY3bp1Pc6YlpZ2/vz5kpISS6DPSDkl\n6ef9x3Mv+NrXEozCEqmgpIK87kwIIYqcIvj8FJRIRU5vB5izqEh9BOY6pFKv6yxxistFJZKz\n9M9rEUVlzFUqSbnFpZLTdbJDEvmlpv9n796jq6ruRY/PtXcevMMjoCICx4C0CEgRaUWDkOBV\n0tZH29vbl4f2aO2plauVKyp6tD5QC+boONVa7al12B7PUTvqaW2xWkggARREkIegh0d4yyMh\n7+xkZ6897x8bYwhJ1lxr7/X+fkaGTXbmWvtnxzC/veZv/uY89U3iVD5okyKmy9RfwKSQjYmI\nEKJe7/loKDtpQg5tbzqntfrctuqRrdUj4nXntJ0c2/JJx26opvVcVjSIJBLNzsvLHjQ4Z9jw\nPmeP7DPinL4jz+1z9rl9zxmVO+LsXo7Oih06sO7bV5/5LmQRoDOP50EhRNXeg4c+qbZ8uZfF\nErLV5swr9UQyHhdCxJNai8n30ltjiaRo1lU/p0mp1bUlZLtx/50utEb9tD/NMpEQp+fWUyPb\n4qdfKJr1iBBCCinbP2v6axLRVLZPJj5792aZpX+aAGRSF1IKIVplNC4jUiaFEFKIJi0nlaOl\npjVpual/jTYtKx5xbgVb54pjR6FRfdFSbrJ9kN5yIjvv3ETdlMSx4TmiX3b0V/o4IcT/ymt9\nuz4DW9V0KRmeepFkiqAgDwJnSkpxsu5USkq2tUo9KTVRF0sk2+NNuqZLKYRoaNfi8XiTrsV0\nrU2XCV1v0iNCiJak1qJrzUntRCLaJLNiHtgQqcf5Su2z/yWpIbTIg0Camtpl++mzyU3tMiGl\nSE0jd3oMP94YX7K5ac7Z2YVnZQkhTrbJpz9qFUJMkA0fa4Ocjdp2mSwWdv8Gp/5BBg8AHxQI\nhRBf+tKXtm3bduLEiX79Tu2YkUwmzzvvvGg0euDAgZ6uykgiBIQQrYlkrP3UzGlja6K6OS6F\naGrTY+368aZ4rF2vi7W367Iprksp62KJE83xxrZEfaz9RHO8tqW9vrX7kxEtOHdA9ueH5U4Y\nFJk8JHrFsOTQRHOyrTXR0qy3NCeam/RYSzIeTzQ36i0t7Y0NiebGthPHEk0m14t1+ZPQcxEx\nkp3d99zRfUee1+fskf3HnN/vvLH9xxbkDj+1/vSzAuGZeBQEPkUeBHoSa9dbE8l4a7yhsTkp\nxcn6RqnrzfFErKlFCq22uU0m2hva9MZYW5suElI0xOKx9mRbu94c11t00ZSQ7VKLJbWYLpqT\n0ZiINmtZukh33U+qoLi33zntRlXMvol4LCvzZwN/9qTXKUGTT+Ff5EHAVo1tiRNN8aa4XtMc\n31PT8sNXt/3D0L75fSLvH2l2fnlyb5OVzDMirMiDgGN2V7eMf2zVvXPHPTLvgo4fhRCXD2xf\n06h0Fq9P2VssJIP7nxe3GG1tbf3oo48GDhxYUFCQeuXGG2+8+eably1b9sADD6Reef75548c\nOfLggw+6FyZCpE9WpE/WqSnFIX2zRw8xd9JSWyJZG2s/0RSvaYkfqmutjbU3x/VjjW3Vze31\nre3HGuMnW+KfNLQ1x7vp3ujicFP74ab2FUIIIaIRbdLZAwvPP7d4fH7hPwwZ1r/7WUiZ1PXm\n5vaG+kRTg97W1t5Ql2yNxetqk22t7fV1ieamREtze31te0N9oqG+reZEMt7WWwSdyofJ9vbm\nfXua9+3p/PucofmDPjdpwLgJfYefY3iTzvvMkEuADuRBQAjRNzvaNzsq+mafNSS1YfeI9O8p\npTjRHG9qSzS2JeKtrbWNLXX1za0tLTX1LXWtem1LvKU13hJvP96sN8cTDXqkMRlpktEWkdOm\nnZpVUd/wzY7qoOhhDxn2bUPAkAeBTBmYmzUw99S0z3mD+wohvjPtXLcmRjtSWDczlfLUPzo9\nHnLWEcKLPAggg3rLvxm4+6l/pDI4j6J+5EIH4erVq998883U90888cTw4cPnz5+f+vHOO+8c\nNmzY9u3bJ0+eXFxcvGJFqg4idF2fM2dOZWXltddeO23atJ07d77yyiuTJk169913O9bOnImV\nMvCX6ub4kYa2Q3WtB+tiHx1vOljXuqemZU91S2ObcQNiRNPGD+838ayBXzh30BdHD5567qAR\nAyzNS0rZ3lAfrzsZrznRevRIW/XxeN3J+Mma9vraturjsU8OJ9u62+O081+RdHbwZtUJwoE8\nCPhOfWuiLtbeHNdraxuO1zacONl4vK7lZFPsWENbVaP+TnOfqJBSiIhMJjR3/nPr+rB3ejqO\nRLPnlG9xOCSgJ+RBwBUe7JwwmKnk8RABRR4EXOHBPOgWegrRmQsFwscff/yee+7p9le7du0a\nN27cmYlQCNHU1PTggw++9tprR44cGTFixHXXXffQQw8NHTq0lzciESIYTjTFD9TFdhxr+vBo\n04dHG7cfbTxY16r3erijEOL8Yf2uuXDEDRefO21UXgaDSTQ1xj451Hr0SMuh/bFDB5r37209\nerit+rjUjdsfTfh0WjOa23f239/P5J0BDyAPAkHS+TmzJa7PeGrth8ea3A2pm+c9zgOGl5AH\nAVd4eWLUsFJI5kKQkAcB78u6c4WejLsdhe2oFEK4fgahrUiECKqTLe1vf3yifPfJir0nPzpu\nMAs5clCfKyfkf2vqOXMvyM+KpNPf16Nke3vs8IHmqt0H//C7um2bRQb/qlApBNJAHgQc0NN8\n67cmDPmvj2tdDq6XRz7OA0YIkAeB3qVyVvH44St3nXA7FiGEGBU7/uK2pT3+mnlGwCTyIOA8\nP1YW7S0TChb6eB0FQsDfDtW3Vuw5+c7+2h1Hmz440nCypb2nkf1yol8aPbho/LCSz4+YOnKQ\nZkutUAghVhZONB5kFk+DgHnkQcABHi8QdujtqY9iIQKKPAhY0JHI3GI8Tck8I6CGPAh4mQdL\niXY3FJK+vYkCIRAcUordNc0fHG54Z1/d69uP7jsZ62nk0H7ZVxQM++rEEddcOGJYf0unFRqJ\nHTqw7ttXZ/6+VAoBZeRBwHmeLRB2UDnwSZBqEQjkQSBTxjy8+kBds5PvqFImFGQroFfkQcCn\nXKwd0k0YQhQIgWCSUqzdV7t85/G3P65+/1B9T8OiEe2Lowdf/bnh108+a9LZAzMYgF0Fwg5k\nFMAIeRBw18pdNXN/td7tKHqkOPcqmH6Fb5EHAfs4M3epNE3JgyHQA/IgEBjOlwzpJgwPCoRA\n8O041vS3j05U7D1ZsedkbazHPUjPH9bvlpljbrlsdN/sDPwnY3uBMEUTQohxP7pjzHdvsv29\nAL8hDwLe1P/uFS3tHtpMRnH6VVAphN+QBwFnjHu0Yk9Nk333p0wIWEMeBALMoZU6QqzecE9c\n9DiZnObdyd1eQIEQCJGklJV7ayv2nly1u6ay6mS73s1//sP65/zTjFG3FY49N69P+u9YWXiR\nXVmkM2Ytge6QBwEf8cIRFOqVQkHahR+QBwHn5dy5ot2edKZaJtSiRau32REA4DvkQSAkbH2W\n1IRIlpakvrdlmlcTQohhMwqnPvFchu8MNRQIgZCqjbX/ZcfxN3ee+Pv/VFc3d80ig/pk/eSy\nMbdcNmZUJsqEKU4UC1l7AnRCHgR8zcWSYVYy8beNdxuPY4EOvI08CLjLjkSmsj82iQlIIQ8C\nIWTTU2TnMqEQonLW1LjM6LvwaOkeCoRA2CWSsnLvyf/efuyFDQeb2vTOv4po2hUFQ/9pxqhv\nTj0nJxrJ4Jt+cOs/1Wx5N4M3PA3PhIAQgjwIBIsr9ULVkyd4nIMnkQcBj8hsCmPHUUAReRAI\nuQzn39NrhCkb53+9fu/OTL2FEELTSN9Oo0AI4JTq5vi/Ve57YcOhw/WtXX41clCfBYVjfjxz\nTF6frIy/r12dhTwTIvTIg0BQOVwsNHFAPZVCeAl5EPCavMUrGtoyk7/66G1/ef/e3scwyYiQ\nIw8C6JCRR8hua4QpmawUMqPrLAqEAE7THNefXF31izX7jjd1s+/obYVjfzxzzDmDcu146w3f\n+WrjwT0ZvilJBSFGHgTCYOWumrm/Wu/AG5koEwoqhfAE8iDgWZmZpqSVEOgVeRBAF/3uWhFL\npJt/c6Ja29J5Pf02U5vGscrHMRQIAXSjNZH88/ZjL28+8ubOE3E92flX2VHt218YeVdRwcSz\nBggh9p2Mfenf1v101ti7igoyGECG2wp5LEQokQeBsHGgs9BcmVBQKYSbyIOA96WZuRSzEpOM\nCCfyIICepJt/e24l7JCBqV2mcx1BgRBAbw7Xt5auqnphw8H61kTn1zVNXHPhWQ9eNb5/Ttb4\nx1bdO3fcFkLPeAAAIABJREFUI/MusCOATFYKySsIGfIgEGZ2FwupFML7yIOAXzhQJqRGiBAi\nDwLoXf+7V7S0W8y/KjVCIcS7189trj5i7S1OvREZ3GYUCAEYq4u1P71m/5MVVSdbTqvVRSPa\nj2eOeXrNPvsKhCl7fvnkvv/8dWbuRZkQoUEeBCCoFCLEyIOAv6STsNhuFDgTeRCAIsspWLFM\nuOP+Oz8p/6uF+3e8zbgf3THmuzdZvwN6RoEQgKrWRPLVDz55bOWej443dfnV92eM+u3/mSKE\n2HcydslTa1sTyfvmFmR209GUTDUUsvwEYUAeBNCFfcVC02VCwUQtbEceBHzKWrZiu1GgC/Ig\nAFMs5l+1GqFIs/1DE5oWLVq9zeLl6BkFQgDmJKX8y47jD/9998aD9R0vakL77sUjH776gkRS\njn9slRDC1p7Cd66Z01J7LN27MC+JoCMPAuhWzp0r2r1UJhSChz3YgjwI+NeYh1cfqGu2cOFN\nB//6rU/Kex9DjRAhQR4EYIGFMqF6jVAIETt0YN23rzYflxCaKCZ924ACIQDTxj5Svr821vuY\nf7x41O83Hb5qwrDlP5xhXyTpNxTycIgAIw8C6N2Qe1fWtbZl/LbWy4RCK6r4MOPxILTIg4Df\nWWtloEYIpJAHAVhmNgWbqhEKITbO/3r93p1moyJ924ECIQDT7l3+cU1LuxCioTWxclf18aZu\nEsZ3p537H5sOp77PiWptS+fZF0+6ZUJaCRFQ5EEAiuzYetRKmVCQlJFJ5EEgGMwnKbliw52G\ng5hkROCRBwGkY+A9K5ri5h4S530u32yjiOlJXR4YM40CIYC07DrRcsHjq4b0y65tOe2v+Zxx\n+eW7qzt+NLuQxII0y4Q8HyJ4yIMAzMp4pZAyIVxEHgSCxFSG0kTy7xsUsg/pBoFGHgSQPrtb\nCVPMTuoyi5tBFAgBpGV3dUvq0EFDDtQIhRBrrrq0raXeeFx3yC4IGPIgAMsyWymkTAhXkAeB\ngBn3aMWemibFwao1Qh4DEVzkQQAZkXvnirj9NcJNP/xO7UcfmHgX0neGUCAEkJZUgfDsgblD\n+2U3xfUj9a2JZI9/VZypEYp0ugmZi0SAkAcBpKnPnSvaKBPCt8iDQCCZWsJS+tGzFzXsMRzG\nJCMCiTwIIINMtvJbnAE2NaNL+s6IiNsBAAiCG7943oeLZvVeHRRCSCEiC5c7EE9h5Zbiyh0D\nzh5t+koppBRlsybaEBQAAD7TumyuLC2JRnIycjepRebOeOLKS5aavExIKVbOmkh2BgAIIRLL\n5mYrJ6aFn/vxlkEFhsN4BgQAoHeJZXPVHwwtzwAXVm45Z86XVd+F9J0JdBACyJjLfrFu3b46\nlZGPf3nCXUXGz2kZYbGbUBORaPac8i02RAQ4hDwIIIO+/but//XBoUzdzVo3IUtEYQp5EAiw\nlzYemf+fShuRqe81Ou6f7xjz3ZvSiwvwEPIggIxzpo9QCLGyULXyx0NimigQAsiknDvfbO+1\nibCDY9uNplgpE7KnGXyOPAjADmc9UH68KZb+fdhxFHYjDwKBpzhNaeI8wmi0aNW2tOMCPIE8\nCMAOd/9l18/LdykOTmf6t2zWJCmTim8z7kes8rGIAiGATEodSag42OEaobBUJmQdCvyLPAjA\nVqZWj/bEeplQixatZg4XvSEPAmGQ8RphJDtnTplSbyLgceRBAPZRfxhMc/qXVkK7USAEkHma\n8jbTLtQIr/hCPNlm7hpNRHP7zv77+/ZEBNiFPAjAAa6VCWklhBHyIBASio+fJvoINa2o4sP0\nggLcRx4EYCtqhMEQcTsAAAEklf/oWz601rLC1ZuLK3fkiGwT10iht8U49hYAgDMlls2VpSU3\nf2lsOjeRWuTKS5aavIZD6QEAQig/fkoRuXKGUq6RUq6+6pL0ggIAIOASy+aOHNRPZWSa0799\nBgxRHBncVjgbUSAEYAsv1wiFEIWVW4Z8bqqJC5iFBACgZ8/974mytORbU0dZvoPUInNnPGG2\nTCilWDlrIgkaAELOTI3w5yojEy3NtZs3pBcUAAABd/iB2XfNGa8yMp3p38veXDvtyRcUB/Ns\naBZbjAKwkZf3Gk0xeyohverwEfIgAFeMeXj1gbpmy5dbO5WQBI0zkQeBsFHda1TT/77+LoVh\nZBb4G3kQgGOUt/t2aK/Raf/24pAvzLD8RqFCgRCAvRzbkNqyytnT4nqriQs49Ag+QR4E4KI0\nzya0UCZkJhddkAeBEFKdoIyKv7/z/4yHkVngZ+RBAE7yWo2QJK6IAiEA2/VdtKJV93SN8MB/\n/HbXr5aZuoQ0A+8jDwJwXTplQiuthCziQSfkQSCcFCcohyXqX9n0sPHdeO6Db5EHATjMmRqh\n+m5wWlZWUfnWLi9Wr1115sj8y2ZbjsfvOIMQgO1iS+f2zcpRGenKeYRCiNHf/UFx5Y4cka1+\nCUcSAgBgKLFsriwtiUaUPgZ0IbWI2SMJOTMYAKB4HmFNVl70xUrju5FWAABQo3wkcFrTv4WV\nW1SncPWE5XcJDwqEAJzQ8vO5U0cOVhnpVo1QmEowQgieFQEAUGO5TCi1yNwZT1w9/XFzV5Gg\nASDcFCcoi55br3Q30goAAGpM1AgX2V4jJIOroEAIwCGbF850ZiFJOgort5hqJSTTAACgyHKZ\nMBHJunKGuVZCEjQAhJzKs6fUxZWXPqF0N9IKAABqZGmJplB1knq6NUKlYKQomzPF8ruEAQVC\nAI7yfo1QmGwl5FkRAAB1iWVzvzV1lNmrpIhcOeMJs43+K2dNLLtistn3AgCESnGl0hGDUooD\nr75kdzAAAARAsvRqlWFp1ggVMzgbjfaOAiEAp/mlRjjii3MUB1MjBABA3X/eMMVCK6EU4ooZ\nj5k7M1gKmdTJ0QAQTopNhJFFyxVnGHc/bW7LawAAQkt1+lcXWTbXCJm27R0FQgAukKUlWZpm\nPMzVGuHkJ55Rn4U81aZAvgEAQI2FHUelENrC5VfMeIwzgwEAKjJbIyShAACgTrFGqOtiSmmF\n3cGgJxQIAbij/Yl5KsPcrREKU9uNSp4YAQAwJ7FsbsGwAaYukULMnvHYgLNHm7iEdTwAgJ5J\nXWTftTxv0lTjkTzxAQCgTLFGuP1Ik+W3YIlPmigQAnCNL/YaFakaYU5/xcFSCo47AgBA3e7F\ns8y2EiaFuHT0/zW93SiPhQAQPqrtC1JMf/ZlpRuSTQAAUKbUzW//3C/puycUCAG4yTc1wpXv\nXbhY9cAJmdRXXXmxrfEAABAwiWVzc0xuNxpZuNxEo3/qKh4LASB8Mn4YIQAAUDdz7GDDMenM\n/RZX7hh7w83GbyHFe//8bWtvEWAUCAG4zC81wrPnXaP+uKi3xt75jtK/FwAASGkzeSphR41Q\nfRGPoEYIAOgVO5UBAJBZaxfMzIlqhsPSmfstuPl2lWENO7ZsueeWbfcusPYugUSBEID7/FIj\nFEKo72bWcnAfD40AAJiVWDY3y0yNUFu4fOSKLFPbjTKxCwBho95EKIQQmsIkJqkEAABlbUvn\nGSfX1NzvIut9hEpvIEUyKa29RSBRIATgCSZqhFbzRKYUVm7RhEpSE1KKstmcRwgAgDnty+bO\nKRiuPt7CdqNM7AJA2Cjtb6aLnLuXF1d86EA8AACESlJx7ld3f+43VCgQAvAK1RqhB/JEUeWH\nOdn9VEZKXV/3zSvtjgcAgIApu+USa9uN5kRyVS+hRggAYbJ2wUyVYYmkEGw0CgCADXw09xse\nFAgBeIiP8kRh2cacnP4qI2OfHH7/J9+zOx4AAIInsWyu6Rrh6s3nzPmy6iXM7QJAmJjaaFSx\nRrj6qksyEBkAAOGgPvcbtXHuly1GP6NJGdj/O/Lz82tqahKJRDQadTsWACZoagcNDuobrX/k\nKruDMbSyUGlicdTXvjPhp/fZHQzQGXkQQDDk/0tZTUur4mDt071rKgsviot2pUs0UVShcF4F\n/IY8COBMig+b5+f33XPPHJVnPZIIPIs8CMCzTKVj9duunHWhMF/tyj175OWvrTB7VWDQQQjA\ncxTXkjTE9CmlFXYHY2jaky+oDDv0x5c/fvIRu4MBACB4qh8u+srnz1YcnOojFEIUVm7J0ZS6\nD+kjBIDwUHzYrKqNCTYaBQDAHqrpuDpm6rYmThHWPvvqP2qMqXcJGDoIAXiUyloSLSqSS5Uy\nit0U+wjHL7h79Df/0e5ggBTyIICAUVxnKjr1Ea7/31c3HT2gdAktIIFDHgTQE5WE0i830vzo\n1YoPepHsnDllH6QdF5BJ5EEAHqc09/vpk51Zve8oc9Hjv+z8Y/5lsy28RTDQQQjAo0ydD+E6\nlbWlQojdTz9udyQAAASVLC1RPJJQCtHnnjeFEF987W+KOZoWEABAZ7FEUig/6MlE3OZwAAAI\nmpljBxuOkcLi3O/Aiy62cFUIUSAE4F05Uc1wjL9qhEw+AgCQjsSyuYo1wra47PiEQI0QANCZ\n4mrU1JEWqg96c6ZkIDIAAEJj7YKZKsOszf3mDB1mPqIwokAIwLvals5TGSZ1kXffW3YHkylM\nPgIAkA71GmHnJ0lqhAAAs7YfazIxWk/YFggAAMEkS0sG5hpvg2yhRjjxoWU5IttqXCFCgRCA\npykeWtsY1+2ORAWTjwAAOCCxbO6XRg9VGUmNEADQLcUmwpy7lwvlJsLVV12SgcgAAAiThkev\nUhkmdRE1WSMsrNxy0eO/7PgaMvUSIYWQImvAIEuRBhMFQgBeF8jDCJl8BAAgHe/c9iXFVURS\nFyMfWpH63kSavmKS9eAAAEGRSJoYrMeabQsEAIDAUnyyS+riqcoqU3fOv2x2x1fu8LOE8WFW\noUOBEIAPLC4uMBxDjRAAgLBRfJI8Wh/v+F41TSeT6755pcWwAAB+YGopKkfOAwBgH8Unuzve\n2Gl3JGFDgRCADywpmaAyTJpfSGITaoQAADhDaXpXiMjCz1YRKabp1qOHrYcFAAAAAFCmuHCn\n4LFyB4IJDwqEAPzBdwtJTNQIZ0+2OxgAAEJOitN2GqARBAAgaCIEAMBvqmpjbocQKBQIAfiG\nvw4jFOo1Ql0vL5pqdzAAAASV+mGEnT8k5A4/y/gS5nkBAAAAwBGKc78dZ8xboYlEc8OWe27Z\nes8tQoj22poPl9y1/z/+3foNfY4CIYCgkbrIudtnNcJke3zr4gV2BwMAQFBZqBFe/sdyoRkf\nUk+NEACCjSZCAAD85WhT3HhQL6QQUkgphBBSTyYaGxMtzRkJzI8oEALwE8Xpv0TS7kBMUKwR\nVq9ZaXckAAAEmIUaYXHFh0qXSPH+T75nPTIAAAAAgALfbSDndxQIAfiMH/ME60wBAHCAeo3w\n+hc3pr5XXMdTt3VT7eYN1iMDAHiY4jNm/gNvCx7uAAAIiuOr3q5Zv8btKFxGgRCA/4zKyzUc\n47UaoQoeIwEASJNijfBPO453fK9YI9x82/ethQQACIaTsYTbIQAAEHwONYdI8cmb/3284u9p\n3cT/KBAC8J+D9xerDJO6WLWnxu5gFClOPkopKr58qd3BAAAQYBaeJ1XbQWZPTisyAIBXKa4v\nSaGJEAAA1ynWCFcWTkx9Hf37X077hfbplxD7XnquY9jKwomh2jyGAiEAX1J8fit6br3dkahT\nrBG2N9R//OQjdgcDAECA5UQ1wzFSF33uedPcfZO6xYAAAP7XeSJSy8p2NxgAAALM1MIdVb0+\nI2YPGnTutd9MfeXmj8j8u3uVJqV0Owa75Ofn19TUJBKJaDTqdiwAbKEtNF4nokVFcqkNScWq\nlYXGy0g1TRRVKFUTgV6QBwGEmcqHBHH65wRydMCQBwGYZZg7TGeNSKRo9fYMRAaYRx4E4HcZ\nn/h955o5LbXHOn78/KKH2mtP7v71U2P/8UcFP7zNYpQ+RwchgIDrOEzeI9iOBgAAByiuOe28\nIXnepKnG46UI1YYzAIDOpC6yTJ14JJO2xQIAANKSMzQ/O2+I21G4jAIhAB9TnPvz42Hy1AgB\nAEiT2Q3Jpz/7ssr4zbd933JIAAC/66j4sfQTAABbWThdHmZRIATgb35MFYqHEUopVl91id3B\nAAAQYGY/JzDbCwBhZsuJRwAAwKrFxQWGY6Quol6a+PUXCoQAQsH0VjA2U6wR6rFmuyMBAABm\nPydIKT5+8hH74gEAeJaFZSVbFy+wOSgAAIJpSckElWFJXTxVWWU47NI/l1/0+C87voQQOfnD\nL3r8l6E9gFBQIAQQAIrLPL12+AM9CgAAOMDs5wTFRTyHX1fajxQA4C92NBFWr1mZ8XsCABAS\niqn5jjd22h1JIFEgBBAEftxoVAghNM1wCDVCAADSxEajAIAMkrroc8+bqe8Vl5UAAADL2APc\nPhQIAYSI1EXBY+VuR/GZ4ooPVYZJKdbPv9buYAAACLBRebmGY7y4lggA4ElxXaoPZk0JAAB2\n42nOGgqEAAJCcS1JVW3M7khMUVxw2ly1y+5IAAAIsIP3F6sM63iqpIkQAELLdJtChLk1AADs\ntbi4wO0QgokPMQCCw6cbjTIFCQCAAxQnfKUuRj60QgihZWUbDyZBA0AonbYx9ertxuOlKLti\nks1BAQAQWEtKJhiO8eCsr/dRIAQAf2AKEgCANCnWCI82xYUQReVblO5JggaAwDE+K77rBQpX\nyKSVUAAAgBDCQnaGAgqEAAIlwE2EQggpRe3mDXYHAwBAgJn6qKCYoAEAAZM0ucuoyunyUoqK\nL19qNSIAAMJOJTt7cNbX4ygQAgiaqMraTV0UPFZufywmKE5Bbr7t+zYHAgBAwI3KyzUcw2GE\nAIDeWZiCTDTW2xQMAACABRQIAQRN4gmlxZ5VtTG7IzGLKUgAABxw8P5ilWFSFzl3m6gR0hcC\nAEGiuCt1B8VksX7+tVYjAgAg7Hy6dZyXUSAEEEBkCwAA0AvFad+EmeOi6AsBgLCxsDNNc9Uu\nm4IBACAMBuZG3Q4hUCgQAoCH0EQIAIAzMn4YIQkaAEKo8840ismCc+UBALCs4dGrDMfQFqKO\nAiGAYPJvE+HYG242HMMUJAAA6cv4pwUSNAAEidldRhVxrjwAAOlQaSL05qyvB1EgBBBYi4sL\nDMdIXeQ/8LYDwagruPl2lWFSijXXzbI7GAAAIHXxVGWVSl+IoEYIACHTZZdRxWQBAAAsU2ki\nhCIKhAACa0nJBJVhJ2MJuyMxS/GpMn6y2u5IAAAINsXukDve2CmY9gUAdKfzLqMqpBSrr7rE\npmAAAAgDm7r8Q4gCIYAg8+9Go6pnHc2e7EAwAAAEGIcRAgB6YtP8ox5rtuO2AACgg9RF9l2e\nm/L1GgqEAOBnSd3tCAAACBlNczsCAICHSF30uefNjh9pNwcAwAGj8nINx+jSgUD8jQIhgIAL\nfhMhPQoAAKTHXBNhxYfGg0nQABAmcZMTkKQJAADSdPD+YsMxUhfXv7jRgWD8iwIhgOCLstAf\nAABkjuIinvXzr3UgGACArSzsMhrt19+OSAAAgFl/2nHc7RA8jQIhgOBLPEETIQAA6I0dWw40\nV+1KIyIAgG9IXUQ7JYjZb71nfIkUtZs32BkUAAABZ9NRwaFCgRBAKCwuLjAcI3Vx6+vbHQjG\nFC0r23CMlKJs9mQHggEAIMBMPV6yiAcA0JmFQ4423/b9jIcBAAA682ZPiHdQIAQQCktKJqgM\n++U7B+yOxKyi8i1K45K6zYEAAADTj5fUCAEgACw0KKisIwEAAHAXBUIAYaG4dVjO3Z5bVEKP\nAgAAHsTkLwCgg9RF3n1vmbtEinXfvNKmeAAACAN2GU0TBUIAOE0i6XYEVlEjBAAgTWZPIlRc\nxLN18YJ0IwMAuEolQTTGTW/r0nr0sKVwAACAKnYZ7QUFQgAhYnbWzzvoUQAAwL+q16x0OwQA\ngNN4iAMAAB5HgRAA/IGNRgEAcIAdTYQAgDCwcGKFlKJszhSb4gEAIAwUn+Cuf3GjECL/stln\nftkeoodRIAQQLv5tIgQAAM5Q/LSgftaUlGLNdbPSCwoA4ANWTqzQE5mPAwCAMMmJaoZj/vrR\ncSHEX3Yctz8cP8lyOwAAgKriyh0rCw0aBFNNhEUVdDMAAGAvU2dNxU9W2xcJAMABsrREW2hu\nIanKExwAAEhT29J5hjm6YxGPYo3wKxNHpBmVL9BBCCB0fN1EmDdpquEYKcWBV19yIBgAAIJK\n8dNC/8V/E2wDDgD4lNTFlNIKc5eQIAAAgEsoEAIIo1F5uW6HYNH0Z19WGbb76cftjgQAAMSs\n7CUHAAiy7ceaOv+ossQTAADYzbPdIO6iQAggjA7eX2w4xrNpQ7FNYf38ax0IBgCAoFJsIix4\nrFzQRAgA4aCSGrpQWeLJHjAAAMAVFAgBhJTC4bX+1ly1y+0QAAAIvqramPpgKUXZrAvtCwYA\n4FPsAQMAQDoU13de8+JGB4LxEQqEAEIq8YSPTyJUbFNYc90sB4IBACCoTJ1brJKdU1ekFxQA\nwNPOfIpUThAAAMBeUhfXUSPshAIhgPAKfBNh/GS12yEAABB8UhdPVVYJVvAAQAjMHDvY7RAA\nAEA3Oq3v7HbOV0t9Dc7NcS4mz6NACCC8wtBE+P5PvudAMAAABJXicVN3vLFT/Z6s4AEA/1q7\nYKYdt+WcWgAA0vfp41u3u7bI1FdWtqMheRwFQgChtri4wO0Q7FW/bZPbIQAA4G+KNcIU9pED\nAEhd9F/8t86v5A4/y61gAAAIFe3UP7QzXj71VTC4vxtxeRQFQgChtqRkguEYvzcRls2Z4kAw\nAACEmalPC1KKA6++ZGs8AAB3xRLJzj9e/sdytyIBACBU5Kl/yDNePvX1zv5aN+LyKAqEAMIu\n8CcRCj3hdgQAAPhbTqY/Lux++vHM3hAA4BhTneUmbssuowAAZIbWXRPhKbKH18OJAiGAsAvD\nSYRlV0xyIBgAAIKqbek8wzEdnxbYZRQAIHXxVGVV51fyJk11KxgAAEJGdtdE+Nlvv/PyZkfD\n8TAKhACQ+bYAz5FJ4zEAAKBno/JyDcecOR3c40jaRADAz1QeIe94Y2fnH6c/+7Jt4QAAgFO0\nz/63pyZC7byBfR2MyNMoEAKAubYAr1FtImQWEgCANBy8v1hlWGo6ONrP+Nx7KcXWxQvSDQsA\n4AaVR0gLpBRlsy60484AAIREsrRElpbI0nmydF40kt3tmJ9/9XMOR+VZWW4HAAAAAAA+IEtL\ntIUGq4VSK4qSb723stB4ac6JypVlsyYWVbAlKQCEgpaVLRPtRqN62g8NAAAoMXpqk1/9zcaO\nH87Ky/n3b0yxOyTPooMQAIRQO2eeJkIAAKBI8SRC+ggBIKikLrJOf34sKt/iVjAAAKCTjg1I\ntYLBxru/BBgdhAAAAACgRLGJcEppxdaFs4ord2z88Xfqt3/Q41BNaJFIVv8B1WtXnfnL/Mtm\npxUrAMBOmkKvn4Wj4KUUZbMnF63aZiUmAADQqQ/k27/b+l8fHDpzwCs3TO2XE3U2KI+igxAA\nTqGJEAAAZMRHJ5pS30x/9uXexkkh9eTJD95zIiYAQEYlFZ4frd5at+vOAACEyX/eMCUayXE7\nCk+jQAgAQRHhTzoAALZTWVGUMNMzEq8+Zj0aAICHpXrKO7+iuAE1AACAA5hNBoDP+LuJcPV2\nwzE0EQIA4ACpi6jypwWZ0LfcfcvWe26xNSQAgCu2H2sye4mU4v2ffM+OYAAAADqjQAgAwTH2\nhpsNx/C0CQCAA7o5mErr7pVPv6IDBjoQFQAgg1QWmHZDOzMfdFW/bZOVOwMAgNMlls1948bp\nb9w4/dtfGOl2LF5EgRAATuPrJsKCm29XGcbTJgAA6TA1I1xcuaO4cocWjXZTM5SffSWaGrfc\n81kfYXttTeW1hfv/498zFDIAwCuKKz50OwQAAAAhKBACQMConGnBRqMAANity3KiQZ+f3H/s\n+b31jEghpJCfFhGlnoyfrEm0NNsaJADAblIXBY+Vux0FAAD4zLd+t9ntELyCAiEAdOXrJkIA\nAOCAnKjxBnGd1W//oHnf3m72HQUABF1VbczsJazpBADAPrKb4x9CigIhAAQNTYQAANitbek8\nwzFdlxPxEAoAgWPtGEKVRzYAAAC7ZbkdAAB4kSwt0RYaNAhKXfS5583Wx4znBwEAQPDMHDt4\n3b663sdIXWQtWp5YWtIxF3z0b3/+8JG7eykWbv/Z/xNCiCTdhgAAAACQrq9MHCGE2Hiw3u1A\nvIgOQgCwLq57dPJOtYnwikkOBAMAQCCtXTBTZVhSCCHEysKJqa8Pl/RWHRRC6K0temuLHo8J\nIfa99FzHhSsLJ9Zu3pB+2AAAh6WWlpq+iuc1AABgMzoIAaB7ik2Ehc+sq/yJ0vygw7SsbJlo\nNxgkk47EAgBAMKl8WkhLJHLuV7/R8VNu/ggb3wsAYIkmhOG6UYtLS3leAwAgPT08r8mv/mZj\nxw9DBmS99H+mOhaSp1AgBIC0rN1vsLeYW4rKt6wsNDhlMHUSYVEFB2AAAGCX1EmEyU7N/ZWF\nF8VFj4t4hs24XAiRbG2t3bpx7Pd+WPDD25yIEgBgVdLSYpHiyh2Gz2sAACBDUru4yDNeEUKI\nsYP6ORyNd1AgBIAeKTYRPlVZdXvhPzgTEgAA8B2piymlFVsXzjr1c06OiPdYIBz1te8IIeLV\nJ2q3buxpDAAgDKQUHz/5yISf3ud2IAAA+JUsLUl9067LvHtXxtrjqR+XlFww5ZyB7sXlFZxB\nCADpuuONnW6H0D3VkwhnsXAVAACLOh44e7f9WJPdkQAAPEvqIu++tyxcePj1lzMeDAAAIZQd\n1fpmUQ7riv9HAKA3irN+nhXt19/tEAAACDi/f1oAAKRJJRE0xvUur6gs6AQAALAPW4wCQLpO\nnS201IuTg7Pfek/lJMJVc6fNXrHJmZAAAAghqYucu5fHHy8RQhSufK967arex+fkD2fiGAAA\nAABgHzoIAcDAzLGD3Q7Bdsl4q9shAAAQcInkZ9/nXzbbtTgAAP6RWs3pdhQAAATBi9+e5HYI\nnkNpYWjhAAAgAElEQVSBEAAMrF0w03BMqonQgWAsUDyJsHbzBgeCAQAgkFQ2l5O6yL7Lo58W\nAAB2k7qYUlrR9dWI8bwcqzkBAIBNKBACAIQQYvNt33c7BAAAfGxUXq7hGF06EAgAwKO2H2vq\n8krx6u2uRAIAACAoEAKACsW2AF83EQIAgHQcvL/YeJBufxwAADeoPDMCAAB4CgVCAIAQQkgp\nyq5gJ24AAGwkhdAWLvfsiiIAgAdJKcpmXeh2FAAAIICy3A4AAPxBlpZoCw2m86QuCh4r33PP\nHGdCyjyZdDsCAADCIv+y2W6HAABwlNTFra9vf/r609ZlFlfuWFk40fBS+6ICAACh5U4HYV1d\n3e233z527NicnJyRI0fedNNNn3zySe+X7N+//8Ybbzz33HNzcnLGjBmzcOHCxsZGZ6IFAHVV\ntTG3Q+ieyi6jUor18691IBiQBwEgkGRpieK25FnhbiIkDwIIrV++c8DtEOA+8iAAwCNc6CCM\nx+PFxcWbNm36+te/Pm3atD179rz00ktlZWXvv//+kCFDur2kqqpqxowZNTU13/jGNyZPnrxu\n3bp//dd/XbduXUVFRXZ2tsPxAwgtxSbCVXtqZhcMcyakjGuu2uV2CMFHHgQAhLlnnzwIIKhU\nHhgB8iAAwDtc6CB85plnNm3a9POf//wPf/jD4sWLf/Ob3/z+97+vqqpasmRJT5csXry4urr6\n+eeff/XVV//lX/7lzTffvO222959991f//rXTkYOACqKnlvvdgjdU2kihAPIgwAQbIpNhNrC\n5YXPrHMgHq8hDwKAWRwYHyTkQQDwgnuXf/zPf9i2dm/dV3+z8Z//sK3Lb483xs/+2cqfl+1x\nJTYnaVI6vY/5F77whT179pw4cSI3N7fjxfHjxzc0NBw9elTTtDMvycvLGzBgwKFDhzp+W1dX\nN3LkyIsuuuidd97p6Y3y8/NramoSiUQ0Gs34vwWA0DJcE6pFRXKp8cygKxQOtxCaJooqKCXa\niDwIAIGn2EHi5c8M9iEPAggwlb//100e8fr3p3d+Zc3X5rSdOGZwZx7TgoI8CABueePD49e8\nsLHjx/z+OTdMH/Xk6r35/XN++60pnUd+0tB282vb7p077pF5FzgepqOc7iBsbW3dtm3bjBkz\nOmdBIcTll19+/PjxqqqqMy9pbm5uaGgYN25c5xw5ePDg8ePHb9q0Sdd124MGADOkLvLue8vt\nKLqXO/wst0MIO/IgAISB4mGEIUQeBIA/7Tje5ZXL/1juSiRwHnkQAOApTp9BePDgQV3Xzzvv\nvC6vjxkzRgixd+/e888/v8uv+vbtm5WVVV1d3eX1fv36xePxTz75ZNSoUR0vrlq1KpFIpL5v\nb2/PcPQAIERUE7pR63Vj3KOf0S//Y7lhE6GUomzWRFan2oQ8CAAIM/IggGCz7xhCKcXHTz4y\n4af32XFzOIY8CADwFKcLhI2NjUKI/v37d3l9wIABHb/tIhKJXHrppWvWrNm2bdvkyZNTL378\n8cfvv/++EKKpqanz4Ouvv76urs6OyAEgJfGE8SOf1EXhM+sqfzLTmZBM0bKyZYLnBNeQBwEA\nHcbk9XU7BKeRBwHAssN/foUCod+RBwHAO2pb2l9Yfyj1zQ9fPe0YQj3p9MF8bnG6QJhy5oba\nqaMQu91oWwjx4IMPFhUVXXPNNU8++eTnP//5Dz74YPHixaNHj96zZ0+Xlvzrrruuubk59f2f\n/vSneDxuQ/gAYGztfo9+KC8q36LURHjFpKLV250JKYTIgwAAIcS+k7HrX9zY5SSqMCAPAkAX\nxZU7jA+MZzPJoCAPAoCTeur00KWsb42nvjna2HbmgCUrdi9Zsbvjx/Jbvji7YJhNQbrF6QLh\noEGDRHcrYhoaGoQQAwcO7PaqOXPm/OIXv7jrrruuv/56IcSAAQMefvjhjRs37tmzZ8iQIZ1H\n/va3v+34PnUYb2bjBwBh574xHiKTbkcQTORBAAgPTQjDdaebDzc4EYpnkAcBQOoia9HyxFKO\nqg0j8iAAuErlEe0z00blXXJeXsePIwf1sSEklzldIBw9enRWVtb+/fu7vL5nzx4hxPjx43u6\n8NZbb50/f/6mTZsikcjUqVMHDhx48cUXn3POOYMHD7Y3YgCwROoismh50pNPfUqrU2EP8iAA\nhEdSYUXRgfpWZ4LxCPIggMAbmBttbDNo9bO2GFNK8f5PvnfxM7+3dDU8gTwIAM6TpZ9Nz2bd\nuUJPnuquzo5GzhnU50BtS3Y0cuHZAzpf0pZI7jzWNO9zwx+Zd4GjsTrO6QJhTk7OxRdfvGHD\nhpaWln79+qVeTCaTq1evPu+880aPHt3ThbquDxw48Iorrkj9eODAgc2bN99www1OBA0AZ1Bp\nIpS68O++YVKKslkTiyp2uB1I0JAHAQBhRh4EEHgNj15l334z9ds22XRnOIM8CADu6ryVc16f\nrK9POfvJ1Xvz+mQ9fPVphcBPGtpufm2bCIGI82954403trS0LFu2rOOV559//siRIzfddFPq\nx9bW1g8++CC1diblrrvu6tu373vvvZf6MZlM/vSnP5VS/vjHP3YycgAw6087jrsdQve0rGy3\nQwgv8iAAoENqywG3o3AUeRAAuj1orriS1ZmhQB4EAHiHljoF10m6rs+ZM6eysvLaa6+dNm3a\nzp07X3nllUmTJr377ruptTPbt2+fPHlycXHxihUrUpds3br10ksvzcnJmT9//tChQ994442N\nGzfeeeedS5cu7eWNUnttJxKJaDTqxL8YgPBRWRnq2QNsVXYZHfW170z46X0OBBMq5EEACBWV\nTwtaVHhzW3I7kAcBBJ7KX/7cHK31sXldXjR8RtM0wS4vfkceBAAXZd+5IvHpFqP5/XNumD7q\nydV78/vn/PZbUzoPS3UQ3jt3HFuMZl40Gl2+fPmDDz742muvLV++fMSIEbfccstDDz3U0Vl/\npilTpqxcufJnP/vZ7373u5aWlokTJ77wwgs/+MEPnAwbAKwpem69f6f8Dr/+MgXCjCMPAkAo\npdpF5BmvCCFE/6zIX8zsOvCViSMyFJULyIMAAm9xccGjK/f0PiauO71eHx5BHgQAF73+gyld\nXikaN/TMYecMyu18cmGAudBB6BhWygBwgOHiUC/3BLBANdjIgwDgESqfFv5s5tBiXxcIHUMe\nBOAia8+JKru8RLJz5pR9YD0yhAZ5EADOpL4uMyTPXC6cQQgAoSJ1EfXt2UJSirJZxs+oAAAA\nAIA0Rfv1NxwjE3EHIgEAAGFAgRAAbOfZTm0tK9vtEAAACL6oJjRN0zSt87aiQghNCE1omtCK\nz893KzYAgCukLgoeK+/y4uy33nMlGAAAEE4UCAEgLSobUktd9LnnTQeCMauofIvhGClF2ezJ\nDgQDAEBQ6VJIKaWUXVYNSSGkkFLIFbuql5Ttcis8AIArqmpjbocAAEC4hGTjUHUUCAHACf4+\ngj6pux0BAAABoH36deYr2gVDB7gWFwAg01QWklq8Mys4AQBAhlAgBIB0KTYRrtpT40AwZhVX\n7nA7BAAAAk6WlmRFtFMdg6c1EXa8InNyeDQDAIi8SVONB7GCEwAAZAJPoQDgkKLn1rsdgkVS\nirJZE92OAgAAH5sxOm/iWQMmnjWgSwfheYP7nvoa1Me14AAAnjH92ZfdDgEAAIQFBUIAyAD7\nNpBxgJaV7XYIAAAE3Lp9dTuONe041tSlg/BgXSz19cBbu655caNr8QEAHCd1kXffW25HAQAA\nwosCIQA4ROoismi521F0o6h8i+EYKcXWxQscCAYAgEDrcgah6HwMYVRE3QkKAGCDUXm5hmMa\n41Y2C5VSrPvmlRYuBAAA6CzL7QAAICC00zsCgqd6zUq3QwAAwK86NhuItesDF5fryXjHr964\n8WKXggIA2Ojg/cXaQrtWiLYePWzTnQEAQHjQQQgAmZFU2GVU6uKpyioHgjGruHKH2yEAABAK\nfbO7tgnWxtpdiQQA4E08nQEAAGdQIAQAR93xxk63Q7BISlE2a6LbUQAAEDDyxfcOuR0DAAAA\nACB02GIUADJGlpbYt4eM7SIRkUy6HQQAAIHV04eEsl01ZbtqTo2Jij9/f7qDQQEA3CR1MfKh\nFUfun+t2IAAAIIzoIAQAR0ldRBZ5sYhYvHq72yEAABAG2qdfZ76iRUTXDUgBAP41c+xgwzFH\nm+KGY84kpVg//1oLFwIAAHSgQAgAmZQT1YwH+ZaUYvVVl7gdBQAAviRLS2RpiSydJ0vnRSPZ\nnX/T8aXr+j//YZsQYu3euq/+ZmPq+86ON8ZveHnLz8v2OBg4AMCitQtmWrwyYjxf11y1y+LN\nAQAAhBAUCAEgs9qWzjMcI3UxpbTCgWDMyps01XCMHmt2IBIAAEKrLSGFEG3JZMf3nelS1sXa\nG9t0FyIDADiF/V0AAIADKBACgAu2H2tyO4RuTH/2ZbdDAAAAAAAAAADYjgIhAGSYLC1xOwQb\nSSnKZk10OwoAAAAACAKpiyxPnlIPAAACL8vtAAAgjKQuIouWJ5d6rpQ49oab9/3uebejAAAg\n4P77B1Nu/eOO/bUtZ/6qujn+1d9sPPN7AIAfydISbaFB/S9p7c5SlM2ZUlS+1dLVAAAAFAgB\nAJ0U3Hy7YYEw1URYVLHDmZAAAAiMsY+U76+NpX+fJSt2L1mxu+PH8lu+OLtgWPq3BQB4R+7w\ns9pOHDMYpCcciQUAAAQTW4wCQOap7DIqdTHyoRUOBGOaprkdAQAAwfTdaSMzcp9po/J+dOno\njq+Rg/pk5LYAAO+4/I/lbocAAAACjg5CAHDN0aa42yF0o7jiw5WFnDIIAEDmLSmZsKRkQur7\np9fsX/D6h2eO6ZcdLfn8iP0nW987VJv6vvNvm9r0v318fN7nhj8y7wInIgYA2E/qouCx8j33\nzHE7EAAAEC50EAKALVSaCP0rtcuo21EAAOBjuVndP4v1y4nOv+TcywuGdHzf+etrU85yNkwA\nQLpmjh1sOKbK0gbUPJcBAIB0UCAEANdIXUQWGZxX74q8SVPdDgEAAAAAgmDtgpnWLoz265/Z\nSAAAADqjQAgAdsmJ+vUwv+nPvux2CAAAAAAQarPfes/tEAAAQJBxBiEA2KVt6TxtoUGDoNRF\n/8V/a370amdCyiApRdmsC4squjk8CQAAGDpnUO4bN07v6bdF44YWjRva01VfmTjizF8BAMIo\nysweAACwiA5CAHBZLJF0OwTLpNsBAADgV1+ZOII6HwAgReoi/4G3rVyYSGxdvCDj8QAAgDCg\nQAgANpKlJcZjdHH9ixsdCMaU4sodbocAAAAAAEEwMDdqOOZkLNHNq5rxuRXVa8sshAQAAECB\nEADc96cdx90OwQopRdmcKW5HAQAAAACe1vDoVdYuLFY500GyswsAALCCAiEA2EulidCjFBar\nCr27Va4AAAAAAAAAAA+jQAgA7pO6iCxa7nYUXSktVgUAAAAApE3q4tbXt7sdBQAACBEKhABg\nu6hCJ55PSSnKZk10OwoAAAAA8L3n3z1g4SoeygAAgDUUCAHAdoknjHcZlbrIu+8tB4IxRcvK\ndjsEAAAAAPA9lbMnEt0dJpg7/KzMRwMAAECBEAC8ozGuux1CV0XlW9wOAQAAAADC6/I/lrsd\nAgAACCYKhADgBJXloj7FhjYAAAAAAAAA4C8UCAHAK6QuIouWux1FV2xoAwAAAAAOkLp4qrLK\nyoVSbF28IOPxAACAYKNACAAO0dwOwBo2tAEAAAAAZ9z5l51nvqhyNnz1Oh7cAACAORQIAcAh\nSYVdRqUuppRWOBBMZrHLKAAAAAD0TuXgCV1286LS2fDJpPmIAABAqFEgBABv2X6sye0Quhp7\nw81uhwAAAAAA6Jnm0z1rAACAa7LcDgAAQkSWlmgLPXfKoKGCm2/f97vn3Y4CAAAAANAD2V3v\nIQAAON1XJo5wOwQPoUAIAN4idZG1aHliqfHmM54ipVg1d9rsFZvcDgQAAD/h6RQAkBFSitrN\nG4Z8YYbbgQAAAN9gi1EA8Bwvnh0RMc4XyXirA4EAAAAAQFBJXfRf/Ddr126568eZDQYAAAQb\nBUIAcJTKufRSF09VVjkQjLri1dvdDgEAAAAA/G3m2MGGY2KJbpaMFlfuMLww2RqzEhMAAAgr\nCoQA4EV3vLHT7RBMk1KUzbrQ7SgAAAAAwKPWLpjpdggAAACnUCAEAKepNBH6lnQ7AAAAAAAA\nAACAAQqEAOBFUhcjH1rhdhSnUdnTRkpx4NWXHAgGAAAAAAKpT9TiZJ2U4uMnH8lsMAAAIMAo\nEAKARx1tirsdghW7n37c7RAAAAAAwK9i8WR00XJr1x7+8yuZDQYAAAQYBUIAcIFPdxlVaSIE\nAAAAAPRk5tjBhmO6PblB5XEskp1jPiIAABBSFAgBwKOkLgqfWed2FKZJKcqumOR2FAAAAADg\nRWsXzLTv5snWmH03BwAAAUOBEAC8a+3+OrdDsEQm3Y4AAAAAAAAAANAjCoQA4A52GQUAAAAA\nZJCU4v2ffM/tKAAAgD9QIAQA75K6yLnb4un0LpJSlM2a6HYUAAAAAOBLUhdPVVZZu7Z+26bM\nBgMAAIKKAiEAuEZTGJPw3m6dNBECAAAAgK0W/XXnmS/yLAYAADKIAiEAuCapsMtoOktHAQAA\nAABeo3LehAeXigIAgIChQAgAXnfHG90sHfU4KUXZnCluRwEAAAAAAAAA6AYFQgBwk8rSUb/S\nE25HAAAAAADhIqXYuniB21EAAAAfoEAIAF4ndZH/wNtuR3Eajr4AAAAAAG+qXrPS7RAAAIAP\nUCAEAB84GfNfNx67jAIAAACANVIXkUXLz3ydxZoAACBTKBACgMvYZRQAAAAAQiXIj4EAAMAn\nKBACgA9IXRQ+s87tKE7DwlUAAAAAAAAA8CkKhADgD2v317kdgmlSirJZE92OAgAAAADCJMJ0\nHwAAMMYnBgBwn0+3l8mbNNXtEAAAAAAgmKQunqqssnRhcv38azMeDwAACBgKhADgDz2dUe+i\n6c++bDhGSvHxk484EAwAAAAABMyiv+60dmFz1a7MRgIAAIKHAiEAeMLA3KjbIdjl8OvGdUQA\nAAAACBWVjWT0ZDcvch48AADICAqEAOAJDY9eZThG6iLvvrccCEYdj6YAAAAAYBNp+cpoYFeg\nAgCATKFACAB+0hjX3Q7BNClF2awL3Y4CAAAAAEJD99+TIwAAcBgFQgDwCpUdZnzL+spXAAAA\nAIA5EWb8AACAAT4uAICfSF1EFi13O4rTsMsoAAAAANhB6qLwmXVWrkx2d3ohAABAJxQIAQC2\nk1KUzZrodhQAAAAA4CGawpi1++ss3FlKsWruNAsXAgCA8KBACAAeorLLqNTFU5VVDgSjLm/S\nVLdDAAAAAACfSVo9ZmLsDTcb3zzeau3mAAAgJCgQAoD/3PHGTrdDOM30Z182HCOlKJt1oQPB\nAAAAAECwFdx8u8IolQZFAAAQXhQIAcBbVJoIfUu6HQAAAAAAhATPXwAAoDcUCAHAf6Qusu9a\n7nYUpymu3GE4RkpRu3mDA8EAAAAAQDCMH9rP7RAAAEAwUSAEAF/S/bkYdPNt33c7BAAAAADw\njf850WJxeajGpB8AAOgNnxUAwHN8usuoShMhAAAAAKDDqLxcwzHdLg+N9uvf+1UymVz3zSut\nRQUAAMKAAiEA+JLURWSRt3YZVSGlKJt1odtRAAAAAIAnHLy/2NqFs996z3BMornJ2s0BAEAY\nUCAEAC8amBt1OwQrDBexCiGE8OfuqAAAAADgK8n2NrdDAAAA3kWBEAC8qOHRqwzHSF2s2lPj\nQDDqVBaxAgAAAAAckGxtdTsEAADgXRQIAcDHip5b73YIprHLKAAAAACok7oY+dAKt6MAAABB\nQ4EQADxKlpa4HYIlEZXMwi6jAAAAACCEEDPHDjYcc7QpbuHOWk6uhasAAEBIUCAEAB/z4ErS\n4tXbDcdIKQ68+pIDwQAAAACAx61dMNOmOyfb2j5+8hGbbg4AAPyOAiEA+Ju1laSu2/ubX7gd\nAgAAAAD4maYZDjn69p8dCAQAAPgRBUIA8C6f7jJaXLnDcEwy1uxAJAAAAAAQVMUVHxqO0Zub\nHIgEAAD4EQVCAPA3qYucu5e7HQUAAAAAwC5R415BAAAAcygQAoDvJZJuR2AexxACAAAAgKJE\nQuQ/8LaVKyNM/QEAgO7xKQEAPM2nu4yq2P30426HAAAAAADuG5gbNRxzMpZwIBIAABAeFAgB\nwPekLrLv8tYuoyrHEAIAAAAAhBANj15l162TPtxwBgAAOIICIQB4ncphE7q0PQwAAAAAgL9I\nKWo3b3A7CgAA4EUUCAHA65IKu4xKXTxVWeVAMBkkpSi7YpLbUQAAAACAX0X79Tccs3XxrQ5E\nAgAAfIcCIQAExP1v/Y/bIZwmb9JU40GS7W4AAAAAwKLZb71nOEZvbnIgEgAA4DsUCAHAB6RC\nE2FTXHcgEnXTn33ZcAxNhAAAAACgQupiSmmF21EAAIDgoEAIAAEhdVHwWLnbUZimZWe7HQIA\nAAAAuGxxcYHhmB3H6AUEAAAZQ4EQAIKjqjbmdginKa7cYThGxtsciAQAAAAAvGxJyQTDMdZO\naJBSbF28wNKlAAAgyCgQAoA/qOwy6kua5nYEAAAAABBk1WvL3A4BAAB4DgVCAAgOqYtbX9/u\ndhTmRPsPdDsEAAAAAPArlY1bhJT2BwIAAHyGAiEABMov3zngdgjmDDh/vNshAAAAAIAPWN59\nJdKnbybjAAAAgUCBEAB8w5e7jEYMnmHrtrxfu3mDM7EAAAAAgH8lre4Zk2z11nH1AADACygQ\nAgBslDfxIsMxm2//gQORAAAAAIDf/crSnjGRXDoIAQBAVxQIASBQpC4ii5a7HcVnpj/7suGY\nSJ8+DkQCAAAAAF6msmeMtbMEk/FWS9cBAIAgo0AIAH6yuLjA7RAyLxljuxsAAAAAMBa1NJMX\nyWFRJgAA6IoCIQD4yZKSCYZjpC6uf3GjA8GYoH361d3rkUikeu0q54MCgP/P3r2GyVXV+eJf\n1dWXkCuBDgyRhGBMlAwXCYIDEgZoZ5Co+Aeco4M6h0vOPHMy+gyeQBTkeOMmkCDzH2FGHnUE\nnTMHUdFRAzgBAhEUBkIQSEBoAnJJSAi5J92d3rXPi0o6ne7qrk7SXXtX7c/nqQd3rdq7+5s3\n/nrXb6+1AACqS2ehxGAun+//qkPPOW9I0gAA1UyDEKAG/XzZ6qQj7C7e+So1HkWFp744+48/\nuj2BYAAAANWj5Bd5cRT1f9XbT/x2KMIAAFVNgxCgygxkX4p0qdtZa/qYQVh8jZhUg6unAgAA\nDKJpB43sPZirb+j/qk3PL3v+m1cNTSIAoFppEALUoDgKDV9YkHSKHVoefKZl8bIQ+pxBWHw9\ndcn/eOvhRd1flQ4KAACQbk+v3Nx7R4nTH3iq7IVrFi8cmkQAQLXSIASoTVHvblzi+p1BWFen\nJAEAAJnWmO9919TTr57bmx0lOt5K2T4UAEDS6pMOAMAei+fPzM1JywTBASpOInz+uq+99ss7\ndo3G4Zhv3JJYJgAAgDRpv/7Msvd6UWGvfnSufOsRAMgUDUKA2hRHYcTl92y55kNJB9nhvhnT\nSo4/9cXZxYO6pqajvvbNCiYCAADIimHjD006AgCQLtZzA6hKh45pKnvOts69e7J0yHQtKNp9\nsdGdg03NBycWDAAAoErU7dVUwFx942AHAQCqmxmEAFXp1S+3VNcqo8UlRkMIbz28aPkX/6Ej\nbO/+6eipf3r4BX+fRC4AAIBqEqdwv3kAoAppEALUrDgKwy67u+3aM5MOEkII950yLZS8j41D\nCGHj888+9cXZuVw4+lpbEgIAAPQpZQvFAADVyhKjALWsI0rLw6U7VhDdtcpoL7lQV6cqAQAA\n9CeOQuMXq2k5GQAgncwgBKhW8fyZVbTK6Mk/faDr+JGP/Pm2DWu6fzr8sHdO+Z+XVDwUAABA\nupw0af9HXl7f/zm9t5vPDx8Rb+8oHhe279rQoa6hoXhwyF9+dNAiAgA1wVwNgFoWR6Fubuqa\niM2n/UWPkY631yaSBAAAIFUe/txJe3FVtHVLYfv24qv7eNdg6603/f7yzw1SRgCgFphBCFDF\nDh3T9NqG9qRTDNR9M6b19VHnpg1PfXF219vxH/n4uJNPr0goAACATNj4wvKkIwAAKWIGIUAV\ne/XLLUlHGDy5Xa9hBx+SdBoAAICq0bJ4WdlzGkaNqkASAKBamEEIUOOKq4wWrp+ZdJDdblkX\nzzimI+y2McZRV/5jEqEAAACqzIj6Ek/85/L5OIr6uerA408eskQAQPUxgxCgusXzk+/8AQAA\nUDGb2wtnf//xHoP9dwdDCGsWLxyyRABA9dEgBAAAAIBq8qvnVu/pJdtee2UokgAAVUqDEKD2\nxVHIz12QdAoAAADKG8g6MZ2FCgQBAGqZBiFA1RvVlC97TlyBHHtixuKnjvnGLaPe/afFt3Hn\n9v7PBwAAoEtuzy9pbD548HMAAFVLgxCg6m285oykI+yDOIQQ4rQ1MAEAAFJsLxqEe3UNAFCz\nNAgBMiGOQsMXrDIKAABQC0qsMJor0wBsX/3m/adMG5o4AED10SAEyIrILD0AAIAa1fLQsyGE\nkOs1UzC361VX55tAAGAHfxYA1IKBbGKfcm2rXk86AgAAQHWIozD52gdKfdBrC/p416tQKDHz\nEADIpvqkAwBQIcVVRrdfl3wr8b4Z3Za12flw6/M3Xb1rrKHh6Cv/sbKhAAAA0mJUU35Te9T/\nOSvWbSsx2jV9MC4xWDd85D5HAwBqhBmEABmSolVGc72Wvum27k3TAc2JBQMAAEjaxmvOKHtO\n7y0Hc/n8rvmC3e0cfOeFnx2shABAtTODEKBGxPNn5uYsSDrFgLQsXhZCeOvhRZ1bNj379S+E\nXAhxOOSMsw467UNJRwMAAKgO+V6P/cdRmUmHL958/cT/9jdDFQgAqCpmEAJkSHGV0aRTAKZO\n0zIAACAASURBVAAAsK/2Yj/BuFC4/5Q/HYIsAED10SAEqB2jmvJlz0nRKqMAAAAMnlx9Qwi9\ndnMIu23oUD96TBLRAIDU0SAEqB0D2aYiPZo/cOoBJ3ygxL4ZAAAAlNP74c/TH3hqxwd97EEY\n4tC5eVNF0gEAaadBCJAtcRTGXHFv0il2Z1IjAADAHipEYdhld5f4INffJMLGsQdWJB0AkHbJ\nNAjXr19/8cUXT5o0qbGxcfz48bNmzVq5cmX/lzz33HOf+cxnDjnkkIaGhnHjxp199tmPPfZY\nZdIC1JhNHWU2rmeoqYMAZJk6CDAQA9lColAo9bhl3N8kwo61qwcnH3tLHQQgJeor/ys7Ojpa\nWlqWLFly7rnnTp8+vbW19fbbb7///vufeOKJsWPHlrzk2WefPfHEExsaGj772c++613veuWV\nV26++eYPfOAD99577+mnn17h/ABpFs+fmZuzIOkUeygXQgirfv0fB532oaSjVII6CECWqYMA\nA7TxmjPK39yV3LKhazAuMVhXZzmxJKmDAKRHAg3Cm2++ecmSJdddd93cuXOLI2ecccYnPvGJ\nq6++et68eSUvueaaazZt2nT//fefdtppxZGzzjrrmGOOufLKKxVCgD0VR2HYZXe3XXtm0kF2\nE2dmoVF1EIAsUwcBBlHv26hcPh9HpdaM2XlmFBXuP2Xa6Q8tG9pk9EEdBCA9cnHFv5E99thj\nW1tb16xZ09TU1DU4ZcqUjRs3rlq1Kpcr8ezTn/3Znz366KMdHR0NDQ1dg2PGjDnggANWrFjR\n1y9qbm5eu3ZtZ2dnPl9+TQaAmtE09+6OqMz/t+fyoXD9zMrk6UfH+rcXf/TkrrfHfOOW7p82\nf+DUSgeqCHUQgCxTBwEGruwMwnw+dO5+Z/f4/zxvwzNLd8wXLDWDMISQb2w6deGTgxWSPaIO\nApAelV5VoK2t7emnnz7hhBO6V8EQwsknn7x69eq+qtp73vOeEMLzzz/fNfLWW29t3rz5iCOO\nGNK0ANWo/fp0TQ2kO3UQgCxTBwEGV12vdtL7/vn/tCxe1vLQspaHljWGnf2kOPzpFdcdc+0t\nxXHdwaSogwCkSqUbhK+++moURRMmTOgxfthhh4UQXnrppZJXfeELXxg7duynP/3p3/zmN6tW\nrXryySc/+clPDhs27Ctf+cqQJwaoRXEUJl/7QNIpelq35NGkIww5dRCALFMHAQbX2OGNvQfv\nmzGt+OoI23cM5cKzV37hqS/OLo4/8t/+oqIp2UkdBCBVKr0H4aZNm0III0aM6DE+cuTIrk97\nO+KII37729+ec845M2bMKI5MnDhx4cKF73//+3ucefjhh2/YsKF4vH79+kFMDlBjVqzbltSv\nvm/GtJLjf/zRbX/80W3F41wu1OSuGOogAFmmDgIMrtUbO8Zcce+Gq87YbTSX27W6aNcqo93m\nGo6aWvqOjKGmDgKQKpVuEBb1XlC7uBViyYW2QwjLly//8Ic/3NnZOX/+/KlTp65evfrGG288\n88wzf/zjH3/wgx/sfub69evVP4B4/syym1UkKZcLcdz/rhh1w/arbKaKUgcByDJ1EGCADh3T\n9NqG9v7Pae+Meoy0PPRs8aD1lnkv//v3QgghDu/+hy8NO+QdxfFa3e69WqiDAKREpRuEo0eP\nDqWeiNm4cWMIYdSoUSWvuvDCC998880//OEP73jHjj9lPvnJT06dOvX8889fsWJF9x16161b\n13Vc3Ix3cPMDsO+67ldDCM9e/g+rFv9nCCHEoenAg95z6VeTSlUZ6iAAWaYOAuyRV7/cUvbR\nz0KvkRJLtuTC8/94dde7htFjTvnVb/c9HntKHQQgVSq9B+HEiRPr6+tfeeWVHuOtra0hhClT\npvS+ZPPmzY8++uj73//+rioYQhg+fHhLS8vrr7/+hz/8YUgDA9SqOAojLr8n6RQhV19iz4wa\npg4CkGXqIMCg6+zdIQwh5Ha+eo/kwohJkysUjt2pgwCkSqVnEDY2Nh533HGPPfbY1q1bhw8f\nXhwsFAoPPvjghAkTJk6c2PuSbdu2xXHc1tbWY7w40nscgDCwVUa3lb6VZAipgwBkmToIUAEt\ni3fs5r7+qSee+PvPhFwIcZj06b8dc+R7i+OWGE2KOghAqlR6BmEI4aKLLtq6desNN9zQNXLr\nrbe+8cYbs2bNKr5ta2tbunRp8dmZEMK4ceMOP/zwxx9/vPtDMevXr1+4cOHo0aOPPPLISoYH\nqCVxFI6e/1DSKTJHHQQgy9RBgMGVL71v3U65Hf99+d9ufeqy2b+/bHYlMtE3dRCA9MgVd8Gt\npCiKTjvttMWLF3/sYx+bPn368uXL77jjjiOPPPJ3v/td8dmZZ5555qijjmppaVm4cGHxkrvu\nuuvjH//42LFj/+7v/m7y5MkrV678zne+s2LFiptvvnn27D7/simutd3Z2ZnP5yv0bwNIk7Iz\nCEMIuXwoXD+zAmH68V9/+4mNy54OITQ177YHYa0+1qoOApBl6iDAHil7W1dfH7Zft9s9XYk9\nCHv8zFw4/aFl+5qMvaIOApAelV5iNISQz+cXLFjwta997c4771ywYMFBBx00e/bsr3/9610z\n63s7++yzf/Ob31x//fW33nrrunXrRo0addxxx33rW9+aOTPhL7UB0mwgq4xSeeogAFmmDgIM\nrs7OMOPmRxb//Um7jXZNK4xzIcQ9PqrLJ/B9IEXqIADpkcAMworxpAzAQBqE3/z/jrh4xuEV\nCNOXrM0grBh1EIAsUweB2tA09+6OqMx3d8Mac9uuPbPkR4tnHNMRtncfOeYbt7jVygJ1EICy\nEtiDEIBU+V+/WJ50BAAAAEpov75056+7zsIePP0fR9E+xAEAaoclBQBqmVVGAQAAaluPGYb9\n70H4+y99ruu4YfSYU3712yFKBQCknAYhAAAAAGRDbtfhiEmTk8sBACRMgxAg6+Io1M9d0Hm9\n7c0BAACqXsviZV3HSz974dqnfrfrszgccdnV42eenUAsACBl7EEIUONOmrR/2XMKFcgBAADA\nEIij8Nm7nkk6BQBQZTQIAWrcw587KekIZTQe0Jx0BAAAgCr2nUf/mHQEAKDKaBACEOIoDLvs\n7qRTAAAA0FM8v/x+EB2WhQEA9pAGIQAhhNARxUn++lwIudD+9urfXza7OLB93drFH5vxyr99\nJ8lUAAAA1ey93/reMd+4ZfxHzt3xPheeu/7LiSYCANJCgxCg9g3kgdOExTv+G+9sU8ZRoePt\ntZ1btySXCQAAoDqU/4Kv61arYLIhABCCBiEAAAAAVDVNPwBgT2kQAhBCCHEU6uYuSDoFAAAA\ne6yfL/iaP3BqxWIAAFWkPukAAFRCPH9mbk419P/i8NQXdmxDGHKJJgEAAKgSURRuWrzi4hmH\nlz81TnT7eQAgNTQIAdihwv24+2ZMK/G7dw/x8u3ffvn2b3e9nf7/f3/ssScMfTQAAIAUaczn\nOqIyjb0vLniuR4Ow9D3X7uMj3znl/bf9fFBCAgDVRYMQgB0KURhx+T1brvlQRX9r8Ta1j1vd\nXL5+/EfO6Xrb1HxQJSIBAACkSfv1Z5ZdEqbPDmLve65uzcLR7zly36IBANVKgxCAXbZ1Vm5v\n+5bFy4oHhe3bHz79fR1he/HtgSecHEIotLWt+/3jh33qosn/4x8qFgkAAKBK9V4Spuue662H\nFy2/Yk5H57Yd4w8tq2AuACClNAgBsiK12xDWNTSEfD5EOxqEh55zXgih4601637/eKK5AAAA\nAABqU13SAQAAAACAfVJmi0IAgN1pEAKwSxyF/Nw0zjIEAAAAAGCwWGIUIENyA3iqNJHHTo+4\n+sYeI43N47o2zAAAAKB/cRSav/Lrt772lyU/HXHkkR1P/lcIoX7U6MrmAgBSygxCgAwpzJ+Z\ndAQAAAD22KFjmsqesz2yzigAMFAahADsJo7CmCvuTToFAAAAu7z65Zay52zuiEqON3/g1KZx\nBw92IgCgumkQAtDTpj7uKgEAAEgt8wcBgIHTIATIltgqowAAAAAA2aZBCEBPcRRGXH5P0ikA\nAADoIbfzVWJw3H7l9ykEACjSIASghG2dhaQjAAAAsEt9XS6EeOerux2Dl33wnckkAwCqkAYh\nQOZYZRQAAKDqdBbKbDL4+Z8t/+xdz1QmDABQ7TQIAQAAACDt8rny5/zbktf7PyGOOgcnDQBQ\n5TQIASghjkLd3AVJpwAAAGCHznnlF4PZ2B6VHM+PGFE8iLZujQulzwEAMkWDECCLDh2Trr3r\nmz9watIRAAAAql5fkwzr9xtR0RwAQOppEAJk0atfbkk6AgAAAIOskHQAAKBaaBACUFochcYv\nWmUUAACgauSTDgAAVAsNQoCMiueX374i9vQpAABA9YiTDgAAVAsNQgD6ZOd6AAAAAIDao0EI\nQJ/iKJz9/ceTTgEAAMCARFEY//WFSacAAKqABiEA/fn5stVJRwAAACCEEC5vmVz2nNWbOyqQ\nBACodhqEANk1kG0IAQAASImrZ7677Dn1+VwFkgAA1U6DEAAAAABqxPCGfOkPcjte95961KK/\nOK6yoQCA1NEgBKA/sR0sAAAAqseGts7SH8S7DgpRH+cAAJmhQQhAGavsYAEAAFAlrDAKAAyE\nBiFAptmGEAAAoJY05H3dBwCU5y8GAAAAAKgRjfUD+LqvUBj6IABAqtUnHQCAtIujUDd3QeF6\ncw0BAADSLi50bTYY7psxbdcH3ZYejaOo+0f7Hz39uJt/WIlwAEBqmEEIkHU2qAAAAKgZG7ZF\nzV/5dc/R3vd9uV2v0UccVZFoAECKmEEIkHWd82bm5ixIOgUAAADlHTqm6bUN7f2fs7kjKh60\nLF5WPChs3/7wh07q6NjSdc7JP13U1HzQEIUEANLPDEIAyoujMOaKe5NOAQAAkHWvfrml7Dkd\nUdxjpK6hoX7EyKFJBABUJQ1CAAZk085HUAEAAEgz+0gAAGVpEAIQ4vkzk44AAADA4BjZmE86\nAgCQdhqEAAxIHIXP3vVM0ikAAAAoo+QCMCf+xwPjZ54Tei4+CgBklAYhAAN1y2//mHQEAAAA\nAAD2lQYhACFYZRQAAKBWxFG4afGKpFMAAKmmQQgAAAAAVaMxnyt7zj8ufnnogwAAVUyDEIAd\nyt5ixlHIz11QiSgAAAD0of36M8ue8+r6bRVIAgBULw1CAHYoDGCVUfvZAwAApF9d+UmGAECm\naRACAAAAQE2ZMHa/pCMAAKmmQQjAHoijcPb3H086BQAAAP3p6IySjgAApJoGIQB75ufLVicd\nAQAAgP68sbEj6QgAQKppEAKwSzyAbQgBAAAAAKhqGoQAAAAAAACQIRqEAOyZOAqTr30g6RQA\nAAD0qRCFz971TNIpAID00iAEYI+tWLct6QgAAADZNaopX/ac7z32agWSAABVSoMQgN3YhhAA\nACDlNl5zRtlzOgtxBZIAAFVKgxCAPRZH4ezvP550CgAAAPqkPwgA9EODEIC98fNlq5OOAAAA\nQJ8KSQcAANJMgxCAnqwyCgAAUO32y/veDwDokz8UANgbcRRm3PxI0ikAAAAobdIB+yUdAQBI\nLw1CAPbSI6+sTzoCAAAApS1bteWmxSuSTgEApFR90gEASKN4/szcnAVlzhnU39j8gVMH9ecB\nAABk3Z1Prbx4xuFJpwAA0sgMQgAAAACoMgPZPP63f7TuCwBQmgYhAHspjsKi1rVJpwAAAKC0\nxrpc0hEAgJTSIARg753+7UeTjgAAAEBpwxvzSUcAAFJKgxCA0gayXg0AAACpFRUGd+94AKB2\naBACAAAAQA3auj1KOgIAkFIahADsvTgK+bkLkk4BAABACY15X/0BAKX5KwGAfWLBGgAAgHQa\n3uCrPwCgNH8lANAn2xACAABUr8gTnQBAHzQIAdgncRQWta5NOgUAAAA9/dnEsUlHAABSSoMQ\ngH31wW8/mnQEAAAAetpeKCQdAQBIKQ1CAPozkFVG3XECAACk0MLn1960eEXSKQCANNIgBAAA\nAIDqc9Kk/cue88CLtoQAAErQIAQAAACA6vPw504qe87y1ZsqkAQAqDoahADsqzgK47++MOkU\nAAAA9PTKum1JRwAA0kiDEIAycgM4Z9XmjiHPAQAAwB6atP/wpCMAAGmkQQhAGYX5M5OOAAAA\nwF7x5R8AUIq/EQAAAACgNm3Y1pl0BAAgjTQIARgEcRTGXHFv0ikAAADYTb0v/wCAUvyNAEB5\n+QHsQ7ipIxr6IAAAAOyBlZtsGA8AlKBBCEB5nfNsQwgAAFB9RjTkk44AAKSRBiEAAAAA1KZ3\njRuedAQAII00CAEYHHEUblq8IukUAAAA7PL86i1JRwAA0kiDEIBB879+sTzpCAAAAFmT6/bq\nOTh9/JjEcgEAKaZBCMCAxPNtQwgAAJBCcbdXz8HWt3fNIBwxafJuPUQAIMM0CAEAAACgNq3c\n0GEzCACgNw1CAAaNbQgBAAAqaSBrvVxiMwgAoBcNQgAG05ULX0g6AgAAALvU1VlXFADoSYMQ\ngIEayKOpG9s6K5AEAACAAYrjuPxJAEDGaBACMJgiN54AAABp0pj3BSAA0JO/DwAYTHEURlx+\nT9IpAAAA2GF4gy8AAYCe/H0AwCDb1llIOgIAAAA7HD9hbNIRAIDU0SAEYA8MZBtCAAAA0uOA\n4Q1JRwAAUkeDEAAAAABq1mOvrks6AgCQOhqEAAyyOAqNX1yQdAoAAABCCGFrR5R0BAAgdTQI\nARh8diEEAABIic3tGoQAQE8ahADsGdsQAgAAVJHhTfmkIwAAqaNBCAAAAAA1a+X6jrO//3jS\nKQCAdNEgBGDwxVE4ev5DSacAAACofaMGMEHw7ufXVCAJAFBFNAgBGBLPvLk56QgAAAC1b+M1\nZ5Q9J4riCiQBAKqIBiEAe8w2hAAAAFUkn88lHQEASBcNQgAAAACoZSMbyy9DCgBkigYhAEMi\njsKi1rVJpwAAAKh9ZacHnv6u5krkAACqhwYhAEPl9G8/mnQEAACA2ld2g8Hf/nFdJXIAANVD\ngxCAvWEbQgAAgGrxzrEjko4AAKSLBiEAQ0WNAQAASINVm9uSjgAApIsvbwEYKlEU6ucuSDoF\nAABA1r3w1takIwAA6aJBCMAQKiQdAAAAgDgKi1rXJp0CAEgRDUIA9pJtCAEAANKgMZ/LhZDL\n5XK5XAi5rvHcTkcfMmr86GEJJgQA0kaDEIAhlCt/CgAAAPuk/foz4xDiOI7jOIS4azze6fcr\nN530rYcTTAgApI0GIQBDqGAbQgAAgBRYt60z6QgAQIpoEAKw906atH/Zc2xDCAAAkLiDRjQm\nHQEASBENQgD23sOfOynpCAAAAJT3zgOHJx0BAEgRDUIAhpZtCAEAABLXunZr0hEAgBTRIARg\naBWiMOyyu5NOAQAAkGlvb+tIOgIAkCIahAAMuY4oTjoCAABApjXV+RoQANjFXwYA7JN4/syk\nIwAAAGRdYz6Xr8vl63J1dd33edgxmK/L/e2fHZZYOAAgfTQIAQAAAKC6dURxVIijQlwodF/B\nZcdgVIhvfHDFpCebE8sHAKSMBiEAQy6OQt3cBUmnAAAAyDTfAwIAXfxhAMC+urxlctIRAAAA\nMm0guz+MyVcgCABQHTQIAdhXV898d9IRAAAAKGNLlHQCACA1NAgBqIQ4CjNufiTpFAAAALUt\nt/NVYvCEETqEAMAO9UkHACArHnt1fdIRAAAAalvcz+Aa/UEAYCczCAEYBAPZ7mJ7oQJBAAAA\nKO35NpsQAgA7JNMgXL9+/cUXXzxp0qTGxsbx48fPmjVr5cqV/Zw/bNiwXB9efvnlSqUGYJ/E\nUTh6/kNJp0gFdRCALFMHAZJiokAaqIMApEQCS4x2dHS0tLQsWbLk3HPPnT59emtr6+23337/\n/fc/8cQTY8eOLXnJpZdeun379h6Dd9xxx6pVq0aPHj30kQEYHMve3Jx0hOSpgwBkmToIMHRy\nIcS77T4Y7xze4S9GdVY4Ej2ogwCkRwINwptvvnnJkiXXXXfd3LlziyNnnHHGJz7xiauvvnre\nvHklL7nyyit7jDzxxBPz5s372te+dsABBwxtXAAGJp4/MzdnQf/nWGQ0qIMAZJs6CDB04q7/\n9B4OIYRwz/qmR4776k+f+GrFItGDOghAeuTiuOTexUPo2GOPbW1tXbNmTVNTU9fglClTNm7c\nuGrVqlwu18+1RVEUHX/88W1tbUuXLm1sbOzrtObm5rVr13Z2dubzFlgHqISyDcJcPhSuL79b\nYW1TBwHIMnUQYOiMvvzeTe1R/+f8ScfbP1x6TQjh5LsWNTUfVJFc7KIOApAelV57vK2t7emn\nnz7hhBO6V8EQwsknn7x69eoVK1YM5If80z/905NPPnnLLbf0UwUBSKE4Cvm5ZZqItU0dBCDL\n1EGAIbXxmjNOmrT/tINHTjt4ZLeVRXPFkWkHj5yyX+fFK36SZMRsUwcBSJVKNwhfffXVKIom\nTJjQY/ywww4LIbz00ktlf8KWLVuuueaalpaWU089dSgSAjCkKj1vPWXUQQCyTB0EGGqPvLx+\n2Zubl725udu9V1wcWfbm5he21f927BFJ5ss2dRCAVKn0HoSbNm0KIYwYMaLH+MiRI7s+7d+3\nvvWtNWvWfOUrXyn56QUXXLBly5buvwuAihnINoRxFM7+/uN3nf++ykRKG3UQgCxTBwGG2qFj\nmrZ0FEIIm9o7OwvFHmFu7H47vgAsbG+fsuWN5NJlnToIQKpUukFY1HtB7eJWiGUX2t62bdu8\nefNOOeWUGTNmlDzhZz/72fr16wclJABD5OfLVicdIWHqIABZpg4CDJ3XNrT3GovXbdu+87ju\n395x+ofWPFbRTOxOHQQgJSrdIBw9enQo9QzLxo0bQwijRo3q//Kf/vSnb7311kUXXdTXCXfd\ndVdnZ2fx+Nxzzy3+WAAqZoCTCD971zPfOvvIykRKFXUQgCxTBwEStyU/LOkI2aUOApAqlW4Q\nTpw4sb6+/pVXXukx3traGkKYMmVK/5ffcccd+Xz+rLPO6uuE7gtwNzQ07H1QAIbSbY+/ls0G\noToIQJapgwBDrTGfi+IQQojjUIh3bEOYC6GuLhdCiOP4L9csSTBexqmDAKRKXYV/X2Nj43HH\nHffYY49t3bq1a7BQKDz44IMTJkyYOHFiP9d2dHTcf//9xx577P777z/0SQHYS/H8mWXP2bK9\nUIEkKaQOApBl6iDAUOuI4qgQR4W4qzsYQohD2DkYHmg+JsF4GacOApAqlW4QhhAuuuiirVu3\n3nDDDV0jt9566xtvvDFr1qzi27a2tqVLlxafnelu2bJlW7ZsOeYYf8cAVL04CsMuuzvpFMlQ\nBwHIMnUQYOjldr5KjEza+mZSsQjqIABpUuklRkMIF1544Q9+8IOvfvWrTz755PTp05cvX37H\nHXccddRRl1xySfGEF1988dhjj21paVm4cGH3C59//vkQwuGHH175zAAMuo4oLn9SLVIHAcgy\ndRBg6PW+1do1smT05EpGoQd1EID0SGAGYT6fX7BgwSWXXLJ06dKrrrpq8eLFs2fPXrRo0fDh\nw/u/cN26dWEAG/YCkLiBrDIaR2HytQ9UIEzaqIMAZJk6CDD0cr0mEe56WxclGAx1EIAUycVx\nzU7gaG5uXrt2bWdnZz6fTzoLQObk5iwoe84h+ze+8b8/WIEw2aQOApBl6iCQTQO5EZv/3D8f\ns7H15LsWNTUfVIFIJEIdBKCsBGYQApAFA5lEuGpTRwWSAAAAZERu1/+WnkH4J+1vH9ixMZlw\nAECaJLAHIQAAAAAw6ArdntSsv3RhVNjxUOYvLjouhHD0U7964ZYbkkkGAKSMBiEAiYmjMOaK\nezdcdUbSQQAAAGpEqVVG449+9/EQQggHhxPmHdi54Y4lV1Y6FgCQMhqEACSpvTNKOgIAAECN\n6VpcNO79dtLWNysfCABIG3sQAjBUBrIN4Tv2368CSQAAALIk3vkq8faFEeOTigUApIcZhAAk\n6Y9vb0s6AgAAQI3pMYOwayQOIUzY9lblAwEAaaNBCECSohB+uWx195GPTDsoqTAAAADVrmsp\nl8sXPH/tfa3F45+eP70hnzv6qV+9cMsNyUUDAFJEgxCAJMVROOv7j//H+e9LOggAAEAtmHTV\nA6+s67lSyznffyKEEMLB4YR585/752M2tlY+GACQKhqEAAyhUU35Te1R/+c01tkQFwAAYHB8\navr4tVu3hxD+69UNS17bUBz8i6nN+bpc28rXR76w5MCOjYkGBABSQYMQgCG08ZozcnMW9H/O\nqCYNQgAAgMFx9cx3Fw++fM8fujcIjzh45JqHXpj4nz9OLhoAkCIahAAk7K3NnVYZBQAAGBQl\nn9Gc+8vnQggh7B9OmJcL0X8+9oUKpwIA0kaDEAAAAABqSW7nQbz7SBxCqCuzCwQAkAkahAAM\nrXj+zNycBd1vR7vZcddaF6wyCgAAMAji+TOLBx1RoWnuPcXjjx/9J//9+HeseWjhxH+7Krlo\nAECKaBACUBlxP4NRFFllFAAAYIj8+Pcrf/L7ld+dEn63/7TiyMYXNzSs7vP8j0w7qELJAICE\naBACUDG9JxF2rXtjEiEAAMAgKLkHYQghDuHCF/YPUy8cXth2+Yv/XuFUAEDaaBACMOS6lrip\nv3RhVOjo/knXURRFH/3u47kQCjtPBgAAYK/kuh1334YwDiGM69hU+UAAQNpoEAJQCX09xNpD\nvNt9LAAAAHsm7vbMZY9nNL83Zf0bv/ppEqEAgNSxnhsAlZQLWoAAAABJ6CgknQAASA0zCAGo\nhK6HWN959UMr3t6cbBgAAIBa1ffyLfHfte4fpl6447SfvvAf57+vYqkAgLQxgxCAinrpS6c0\n5RuTTgEAAFDz+lvBpSnkKxkFAEgbMwgBqJCBbUMYdz8tlw+F62f2czYAAADddd+D8KPfWfLL\n5au63l7yjs37P/Cj4vG0L11b6WQAQJqYQQhAquS6v4bVeaYVAABgcMx/fXjSEQCAGIrU8gAA\nIABJREFUtDCDEIAK6f4ca/2lC6NCRx+nnVmpRAAAABkSmyoAAOzkzwIAAAAAAADIEA1CAAAA\nAKhBv5g1/St/OSXpFABAGmkQAgAAAEAmrGwam3QEACAV7EEIQAI6b/jgL5etTjoFAABAbcrN\nWVBy/ObDzt5xdOcLuXz4j/PfV7lMAECaaBACAAAAQE3K7TyIe380ot7SYgCQXRqEAAAAAFBT\n4vkziwe/XLb6wv/7zJotbcW3E9ve/Ns//iqEMO1L1zaMHpNYPgAgaR4UAgAAAICa1VSfTzoC\nAJA6GoQAAAAAUJs+Mu2gpCMAAGmkQQgAAAAAAAAZokEIAAAAADXrnz9+xLvHjUg6BQCQLhqE\nAAAAAJAJrzWNSzoCAJAK9UkHACCj7IQBAABQYYWc2QIAQAhmEAIAAAAAAECmaBACAAAAAABA\nhmgQAgAAAAAAQIbYgxAAAAAAalBuzoLeg1dMvTCEEO58IYQw7ZAR1808osKpAIA00CAEAAAA\ngBrUmM9FcYiLrxAXB3MhDiHkcnUhhKkHjEwyHwCQHA1CAAAAAKhB7defWTw474dL//3JN4rH\nV7z4w6bC9mlfurZh9JjkogEACbMHIQAAAAAAAGSIBiEAAAAAAABkiAYhAAAAAAAAZIgGIQAA\nAAAAAGSIBiEAAAAAZMVVkz+VdAQAIHkahAAAAACQFXHO94EAgAYhAAAAAAAAZIkGIQAAAAAA\nAGSIBiEAAAAAAABkSH3SAQAAAACAwZebs6Dk+BVTLwx3vlA8PqB++23//cQKhgIAUsEMQgAA\nAACoYbkQcn0NHl63rfKBAIDEmUEIAAAAADUonj+zePCLZ1d/5v/8fkNbR/Htz5/4UvSNHzW1\nbW7635/aPvPTneH05DICAMkwgxAAAAAAalkuF4Y15JNOAQCkiBmEAAAAAFDLPjLtoOENz3Uf\nefGWG4Z1tk9LKhAAkDQNQgAAAACoWfedMi3Eoe7IS8LwPymOjIjap6/4TfG4YcEPGxb8sOvk\n9jk3Faa+N4GUAEBlaRACAAAAQM1qaj44atv6Ly/9y+aOzv2ijvq4EEIo5EKIc3UhDnV1hSlH\nFQ6eWDw5HnNgomEBgArRIAQAAACAmnXyTx8IIfzi2dVnf+/xv1zzxNwV/76tacTL7z+7cdum\nyf/18+0fOq/zY7OSzggAVJoGIQAAAABkSF3TfpM+Natu9evhv36edBYAIBl1SQcAAAAAAAAA\nKkeDEAAAAAAAADLEEqMAAAAAkAm/Hnfcr8cdd/XMdx8dQuGgd2z79qKkEwEAyTCDEAAAAAAy\n5EsLnv+7Hz+9bNWWs773xFfv/UOPT1dv6viTr9533f2tiWQDACpDgxAAAAAAsqW9M95eKMRx\nvHV7ocdHURy/ual9U3uUSDAAoDI0CAEAAAAAACBDNAgBAAAAAAAgQ+qTDgAAAAAAVNT6bZ3/\n/MgfQwgr3t72+Z8v7/7R9ihOKBQAUDm5OK7Zkt/c3Lx27drOzs58Pp90FgCoNHUQgCxTBwGK\ncnMWDMrPeWD2+0+dfOCg/CgqQB0EoCwzCAEAAACg5uVC2IN5AtMPHXP8hDFdb8ePHjYEkQCA\nxGgQAgAAAEBtiufP7DpuuHRhZ6Fjx3G+buLY/Vrf2jKisX7KuOHdL2nvLCx/c/OZ7xl31ZlT\nK5oVAKggDUIAAAAAqH35XOjceTxmWP0Fxx96xd3PTxw77MoP7dYIXLmx/W/vfLry8QCASqpL\nOgAAAAAAAABQORqEAAAAAAAAkCGWGAUAAACA2vfj84/uMfKLi97X+7RDRjd137kQAKhJZhAC\nAAAAAABAhmgQAgAAAAAAQIZoEAIAAAAAAECGaBACAAAAAABAhmgQAgAAAAAAQIZoEAIAAAAA\nAECGaBACAAAAAABAhmgQAgAAAAAAQIZoEAIAAAAAAECGaBACAAAAAABAhmgQAgAAAAAAQIZo\nEAIAAAAAAECGaBACAAAAAABAhmgQAgAAAAAAQIZoEAIAAAAAAECGaBACAAAAAABAhmgQAgAA\nAAAAQIZoEAIAAAAAAECGaBACAAAAQO37yLSDko4AAKSFBiEAAAAAAABkiAYhAAAAAAAAZIgG\nIQAAAAAAAGSIBiEAAAAAAABkiAYhAAAAAAAAZIgGIQAAAAAAAGSIBiEAAAAAAABkiAYhAAAA\nAAAAZIgGIQAAAAAAAGSIBiEAAAAAAABkiAYhAAAAAAAAZIgGIQAAAAAAAGSIBiEAAAAAAABk\niAYhAAAAAAAAZIgGIQAAAAAAAGSIBiEAAAAAAABkiAYhAAAAAAAAZIgGIQAAAAAAAGSIBiEA\nAAAAAABkiAYhAAAAAAAAZIgGIQAAAAAAAGSIBiEAAAAAAABkiAYhAAAAAAAAZIgGIQAAAAAA\nAGSIBiEAAAAAAABkiAYhAAAAAAAAZIgGIQAAAAAAAGRIfdIBAAAAAIBK+Mi0g5KOAACkghmE\nAAAAAAAAkCEahAAAAAAAAJAhGoQAAAAAAACQIRqEAAAAAAAAkCEahAAAAAAAAJAhGoQAAAAA\nAACQIRqEAAAAAAAAkCEahAAAAAAAAJAhGoQAAAAAAACQIRqEAAAAAAAAkCHJNAjXr19/8cUX\nT5o0qbGxcfz48bNmzVq5cmXZq+6+++4///M/HzVq1P7773/66acvWrRo6JMCwOBTBwHIMnUQ\ngCxTBwFIiVwcxxX+lR0dHSeeeOKSJUvOPffc6dOnt7a2/uAHPzj00EOfeOKJsWPH9nXVv/7r\nv1544YWTJ0/+67/+67a2tttuu23Dhg0PPPDASSed1Nclzc3Na9eu7ezszOfzQ/NPAYA9pg4C\nkGXqIABZpg4CkCJxxd14440hhOuuu65r5I477gghzJkzp69L3nzzzZEjRx577LGbN28ujrzw\nwgsjR46cPXt2P7/owAMPDCF0dnYOVnIA2HfqIABZpg4CkGXqIADpkcAMwmOPPba1tXXNmjVN\nTU1dg1OmTNm4ceOqVatyuVzvS+bNm3fppZfec889Z5xxRtdgHMclT+7iSRkAUkgdBCDL1EEA\nskwdBCA9Kr0HYVtb29NPP33CCSd0r4IhhJNPPnn16tUrVqwoedXChQv322+/008/PYTQ3t6+\ncePGEEL/VRAAUkgdBCDL1EEAskwdBCBV6iv8+1599dUoiiZMmNBj/LDDDgshvPTSS+985zt7\nX/Xcc88dfvjhzzzzzOc+97lHHnkkjuPJkydfccUV559/fo8zf/azn23fvr143NHRMfj/AADY\nB+ogAFmmDgKQZeogAKlS6Qbhpk2bQggjRozoMT5y5MiuT3t7++23Qwgf/vCHzzvvvM9//vOv\nv/76/PnzL7jggsbGxvPOO6/7mRdccMH69euHJDoA7DN1EIAsUwcByDJ1EIBUqXSDsKj3LPji\nVoh9zY7v6Oh45ZVXbrvttr/5m78pjvzVX/3V1KlT58yZ84lPfKL7Utrnn3/+1q1bi8e33357\nW1vb4KcHgH2jDgKQZeogAFmmDgKQEpVuEI4ePTqUeiKmuHz2qFGjSl41cuTIzs7Oj3/8410j\nhxxyyJlnnnnnnXcuW7bsqKOO6hr/5je/2XX8k5/8RCEEIFXUQQCyTB0EIMvUQQBSpa7Cv2/i\nxIn19fWvvPJKj/HW1tYQwpQpU0peNWnSpBBCQ0ND98Fx48aFvmffA0AKqYMAZJk6CECWqYMA\npEqlG4SNjY3HHXfcY4891jXhPYRQKBQefPDBCRMmTJw4seRVJ554YhRFS5Ys6T744osvhhB6\n7+sLAKmlDgKQZeogAFmmDgKQKpVuEIYQLrrooq1bt95www1dI7feeusbb7wxa9as4tu2tral\nS5cWn50pOv/883O53OWXX97e3l4cefzxxxcuXHj00UcrhABUF3UQgCxTBwHIMnUQgPTIFXfB\nraQoik477bTFixd/7GMfmz59+vLly++4444jjzzyd7/73fDhw0MIzzzzzFFHHdXS0rJw4cKu\nqz7/+c/fdNNN733ve88+++zXXnvthz/8YRRF995776mnntrXL2publ67dm1nZ2f33XoBIFnq\nIABZpg4CkGXqIADpkcAMwnw+v2DBgksuuWTp0qVXXXXV4sWLZ8+evWjRomIV7MuNN974L//y\nL3EcX3vttT/60Y9OO+203/zmN/1UQQBIJ3UQgCxTBwHIMnUQgPRIYAZhxXhSBoAsUwcByDJ1\nEIAsUwcBKCuBGYQAAAAAAABAUjQIAQAAAAAAIEM0CAEAAAAAACBDNAgBAAAAAAAgQzQIAQAA\nAAAAIEM0CAEAAAAAACBDNAgBAAAAAAAgQzQIAQAAAAAAIEM0CAEAAAAAACBDNAgBAAAAAAAg\nQzQIAQAAAAAAIEM0CAEAAAAAACBDNAgBAAAAAAAgQzQIAQAAAAAAIEM0CAEAAAAAACBDNAgB\nAAAAAAAgQzQIAQAAAAAAIEM0CAEAAAAAACBDNAgBAAAAAAAgQ+qTDjDk7rvvvro6fVCA7Drt\ntNPy+XzSKRKjDgJknDqoDgJkmTqoDgJkWZk6GNeuCy+8sL6+9jugAPRvy5YtSVekZKiDAAR1\nEIBsUwcByLL+62At14nvfve7HR0d7e3te/0Tli1b9uyzzx5zzDFTp04dxGCZ9frrrz/yyCOT\nJk06/vjjk85SCzZv3nz33XcfcMABLS0tSWepET/5yU9yudw555yTdJAasXDhwnXr1p155pkj\nR45MNklmHxdVB9NGHRxc6uCgUwcHlzqYOHWwSt19992bN28+66yzmpqaks6SFWvXrr3//v/H\n3n2HR1nl//9/T0gvQIDQQzG0UCKEutKLIFWQJqBEEYEVXEEQ/FgWxQYILhbwg/pRVK6lKqyo\nyIoGlCIgRrqU0ETA0AkQkkwyvz/u3853dpLMnJm5p2Tu5+Pi8jInJ2fOfe4z53WXKd9XrVq1\nY8eO/u6LgWRkZBw7dqxt27a1atXyd1+CHDnodgvkoF+Qg75HDvoFOegzTnLQZ69bKY1efPFF\nEZk/f76/OxIkPv/8cxF5+OGH/d2RIHHkyBERad26tb87EjwiIiKioqL83Yvg0bJlSxE5duyY\nvzsC95GD+iIH9UUO6o4c1Bc5GATIQb+oX7++iGRlZfm7Iwayfft2Ebnnnnv83RFjmThxoogs\nXbrU3x0BSkQO+gU56HvkoF+QgwGCD6EGAAAAAAAAAAAADIQbhAAAAAAAAAAAAICBBPN3EHqu\ncePGQ4cO5YO29VKjRo2hQ4e2atXK3x0JErGxsUOHDk1KSvJ3R4LH4MGDTSaTv3sRPHr06HHH\nHXf4/YuX4AlyUF/koL7IQd2Rg/oiB4MAOegXvXv3bt68OV+85EsVK1YcOnRo8+bN/d0RY2nR\nosXQoUNr167t744AJSIH/YIc9D1y0C/IwQBhslgs/u4DAAAAAAAAAAAAAB/hI0YBAAAAAAAA\nAAAAA+EGIQAAAAAAAAAAAGAg3CAEAAAAAAAAAAAADIQbhMW7evXq5MmT69SpEx4eXr169bFj\nx547d87fnSpNrly5Mm3atNq1a0dERNStW3fgwIE//fSTbQVG2G1PPvmkyWQaO3asbSHj6ar1\n69d37tw5Li6ufPny3bp127Rpk+1vGU+X/Pbbbw8++GC1atXCwsISEhIGDRq0c+dO2wqMZ2nE\nXvMQOeg95KAuyEEdkYNBib3mA46zcsmSJabivPzyy37sc2mnMqpMfn1FRkYWO+Ymk+nkyZPC\nVEegYinwAXLQ98hB3yMHA1+ovzsQiPLy8rp37/7LL78MHjw4NTU1MzPzk08++f7773fv3h0f\nH+/v3pUCly9fbtmy5cmTJ/v27ZuWlnb8+PEVK1Zs2LBh586dzZo1E0bYAz///PNbb71lV8h4\nuuqjjz4aM2ZMUlLS5MmTb9++/fHHH/fq1Ss9Pf2uu+4SxtNFBw4c+Mtf/hIWFjZp0qR69eqd\nOnVq4cKF7du337BhQ7du3YTxLJ3Yax4iB72HHNQFOagjcjAosdd8wGlWXr16VURGjBhRq1Yt\n2z9s3769f3ocFJyOKpNfd0899VR+fr5d4YoVK86fP1+2bFlhqiMgsRT4ADnoF+Sg75GDpYAF\nRbzxxhsiMmfOHGvJihUrRGTq1Kl+7FUpMnHiRBF5++23rSWfffaZiPTp00f7kRF2T35+fvPm\nze+8804ReeSRR6zljKdL/vzzz9jY2BYtWty4cUMrOXr0aGxs7GOPPab9yHi6ZOTIkSLy/fff\nW0v27NkjIl26dNF+ZDxLI/aah8hBLyEHdUEO6oscDErsNR9wmpUzZ84UkV27dvmpg8HJ6agy\n+X3g559/LlOmzMsvv6z9yFRHAGIp8AFy0C/IwUBADgYabhAWo3nz5nFxcbdv37YtrFevXuXK\nlQsLC/3Vq1Jk8uTJ3bt3z8vLs5YUFhZGRUXVrl1b+5ERds/s2bNNJtP69evtLowyni55/fXX\nReSbb76xLbQdKMbTJW3bthUR2+e7xWIpW7ZsnTp1tP9nPEsj9pqHyEEvIQd1QQ7qixwMSuw1\nH3CalU888YSIHD161D/9C1JOR5XJ721ms7lFixbJycm5ublaCVMdAYilwAfIQb8gB/2OHAxA\nfAehvdu3b+/bt69NmzYRERG25R06dMjKyjpx4oS/OlaK/OMf/9i4cWNYWJi1JC8vz2w216xZ\nUxhhd2VmZr744osTJkxo166dbTnj6aqNGzdGRUVpn/qVm5t7/fp1ETGZTNpvGU9XNWrUSEQO\nHz5sLbl48eKNGzeSk5OF8Syd2GueIwe9gRzUCzmoL3Iw+LDXfMNxVsp/Pm+qfPnyBQUFZ86c\nuXjxon86GlwcjyqT3wfefvvtjIyMRYsWhYeHayVMdQQalgLfIAf9ghz0O3IwAHGD0N7vv/9e\nUFCQmJhoV167dm0ROX78uD86VeotXrw4Pz///vvvF0bYXePHjy9fvvxrr71mV854uuq3336r\nW7fu/v37O3ToEBUVVa5cuXr16i1ZskT7LePpqhkzZsTHxz/wwANbtmw5f/58RkbG/fffHxkZ\nqX1EAONZGrHXvIEc9Bw5qBdyUF/kYPBhr/mLbVaKyLVr10RkwYIFCQkJiYmJCQkJDRs2/Oc/\n/+nXPpZ6jkeVye9tN2/efPXVV7t3796lSxdrIVMdgYalwF/IQR8gB/2LHAxMof7uQMDJzs4W\nkZiYGLvy2NhY62/hks2bNz/11FMdOnSYMGGCMMJuWbJkyXfffbd69epy5cppL6ywYjxddfny\nZRHp27fvyJEjp0yZ8scff8yfP//hhx8ODw8fOXIk4+mq5OTk7du333fffR07dtRKatWqtXHj\nRu0j1xjP0oi9pjty0HPkoI7IQX2Rg8GHveYXdlkp/3k5+bJly6ZPn16jRo1Dhw4tXLhw1KhR\n2dnZ48eP92tnSzHHo8rk97Z33nnnwoUL2itIrJjqCDQsBX5BDvoGOehf5GBg4gZh8ayfs2Rl\nsViKLYdjy5Yte/jhh5s2bfqvf/0rNPT/zTdGWF1WVtbUqVP79es3ePDgkuownury8vJOnTr1\n8ccfjx49WisZOnRogwYNpk6dOnz4cK2E8VR36NChvn37ms3m+fPnN2jQICsr64033ujdu/fq\n1at79Oih1WE8SyP2ml7IQc+Rg/oiB/VFDgYr9povFZuVzz///KRJk+655x7rdboHHnggNTX1\nmWee0V7T4L/+lmKOR1UrYfJ7SU5Ozrx58zp16mR9QYmGqY7AxFLgS+Sgz5CDfkQOBiw+YtRe\n2bJlpbgXBWhf0BIXF+eHPpVOFotl5syZI0eO7Nq166ZNmypUqKCVM8KueuKJJ/Ly8hYuXFjs\nbxlPV8XGxpYpU2bIkCHWkmrVqvXu3fv8+fMHDx5kPF01ZsyYP//8c/v27U8++WS/fv3GjBmz\nc+fO2NjYhx56KD8/n/EsjdhreiEH9UIO6osc1Bc5GHzYa75UUlaKSLdu3QYPHmz7Kv7GjRv3\n6dPn8uXLe/bs8Udng4HjUWXye9Xnn39+8eLFRx55xK6cqY5Aw1LgS+Sgj5GDfkQOBixuENqr\nVatWaGjoqVOn7MozMzNFpH79+v7oVOljsVjGjh07a9asxx9//Msvv7RdQxlhl6xfv3758uVT\npkwJCQk5c+bMmTNnzp49KyK3bt06c+bM9evXGU9X1alTR0RsvwhaRBISEkQkOzub8XTJjRs3\nduzY0bZt2xo1algLo6Oju3fv/scffxw5coTxLI3Ya7ogB/VCDuqOHNQRORiU2Gs+4yArS1K5\ncmURuXHjhvd7ZyDWUWXye9WKFSvKlCkzYMAAlcpMdfgRS4HPkIMBghz0DXIwcFlQRNu2baOj\no2/evGktKSgoqF69emJioh97Vbo88cQTIvLqq68W+1tGWN3UqVMdPH9nzJhhYTxdNGnSJBH5\n6aefbAt79uwpIqdPn7Ywnq7IysoSkb/85S925cOGDRORn3/+2cJ4lk7sNc+Rg3ohB3VHDuqI\nHAxW7DXfcJCV2dnZixYt+uc//2lX3qFDBxHJzMz0SQeDjcqoMvm9JDc3NyYmplWrVnblTHUE\nJpYC3yAHfYwc9CNyMJBxg7AY7733noi88MIL1pJ3331XRF588UU/9qoU+eyzz0TkiSeeKKkC\nI6zu4MGD6/7b8uXLRaRnz57r1q07dOiQhfF00c8//2wymbp163b79m2tZNeuXSEhISkpKdqP\njKdL6tatGxYWdvjwYWvJlStXKlSoULZsWW2EGc/SiL3mIXJQR+Sg7shBfZGDQYm95gOOs7Kg\noKBGjRqxsbHaOq9Zu3atiLRo0cJXfQw2KqPK5PeSjIwMEXnkkUfsypnqCEwsBT5ADvoeOehH\n5GAgM1ksFgevyzamgoKCrl27/vjjj/fee29qauqhQ4dWrFjRtGnTn376KTo62t+9KwXq1auX\nmZn5+OOPFx2uGTNmxMfHM8KeuHr1anx8/COPPPLBBx9oJYynq6ZMmbJgwYLmzZsPGjTozJkz\nS5cuLSgo2LBhQ5cuXYTxdNGaNWuGDBkSHx8/YcKEpKSkc+fOffDBBydOnFi4cOFjjz0mjGfp\nxF7zEDnoVeSg58hBHZGDQYm95gNOs/KLL74YOHBgdHT0/fffX7169f37969duzYuLi49PT01\nNdUvfQ4CTkeVye8lK1asuP/++19++eVnn33W7ldMdQQglgIfIAf9ghz0F3IwoPn7DmWAys7O\nnjZtWu3atcPCwmrUqDFx4sRLly75u1OlhoP5duLECa0OI+y2K1euSJHXXDCeLiksLPzf//3f\nO++8MzIysly5cn369Nm5c6dtBcbTJdu2bRs4cGBCQkJoaGh8fHyPHj2++uor2wqMZ2nEXvME\nOehV5KDnyEF9kYNBib3mbSpZuW3btt69e5cvXz40NLR69eqjR48+evSoX3sdDJyOKpPfG7Q3\noLz55pvF/papjgDEUuBt5KC/kIN+QQ4GMt5BCAAAAAAAAAAAABhIiL87AAAAAAAAAAAAAMB3\nuEEIAAAAAAAAAAAAGAg3CAEAAAAAAAAAAAAD4QYhAAAAAAAAAAAAYCDcIAQAAAAAAAAAAAAM\nhBuEAAAAAAAAAAAAgIFwgxAAAAAAAAAAAAAwEG4QAqXbggULTCbT2LFj/d0RAAD8gBwEABgZ\nOQgAMDJyEPAQNwiBQDR79myTgnvuucffPQUAQH/kIADAyMhBAICRkYOAz4T6uwMAilGxYsWG\nDRvalhw5csRisdSuXTsyMtJamJiY+Pjjj0+YMCE0lOcyACB4kIMAACMjBwEARkYOAj5jslgs\n/u4DAOciIyNzc3N37drVqlUrf/cFAABfIwcBAEZGDgIAjIwcBLyEjxgFAAAAAAAAAAAADIQb\nhEDpZvdlvG+//bbJZJo5c+bFixfHjBlTrVq1mJiYli1bfvnllyJy7dq1SZMmJSYmRkRENGzY\n8P3337drbevWrYMHD65atWp4eHjVqlUHDx68bds2X28SAADKyEEAgJGRgwAAIyMHAQ9xgxAI\nKtoncV+9erV3795bt25t3759rVq1fvnll/vuuy8jI6Nnz55r1qxJTU1t2rTpkSNHxo0bt27d\nOuvfvvfee506dVq7dm2TJk3S0tKSk5PXrFnToUOHDz/80H8bBACAC8hBAICRkYMAACMjBwFX\ncYMQCCrat/J++umnDRs2PHDgwOrVq/fv39+jR4/8/Px+/frFx8cfPXr0X//61+7dux9++GER\n+fjjj7U/PHz48KRJk0JDQzds2PDdd9+9//776enpX3/9dWho6MSJE0+fPu3PrQIAQA05CAAw\nMnIQAGBk5CDgKm4QAkHFZDKJSE5OzoIFC7RQLFOmzIMPPigi586de/PNN6Ojo7WaDz30kIgc\nOnRI+3HhwoX5+fnjxo3r0aOHtbV77rknLS3t9u3bH330kW+3AwAAd5CDAAAjIwcBAEZGDgKu\n4gYhEIRSUlIqVapk/bFGjRoiUrVq1YYNG9oVZmdnaz9+//33ItKvXz+7pnr37i0iP/zwg5e7\nDACAbshBAICRkYMAACMjBwF1of7uAAD91axZ0/bHMmXKiEj16tWLFhYWFmo/njx5UkQWLly4\nbNky22oXL14UkePHj3uxuwAA6IocBAAYGTkIADAychBQxw1CIAiFhYUVLdTeWV8si8Vy8+ZN\nEbH9bl5b1hfUAAAQ+MhBAICRkYMAACMjBwF1fMQoADGZTDExMSKye/duS3G018sAABCUyEEA\ngJGRgwAAIyMHYWTcIAQgInLHHXeIyKlTp/zdEQAA/IAcBAAYGTkIADAychCGxQ1CACIiXbt2\nFZGVK1falR8+fHj9+vU5OTn+6BQAAD5CDgIAjIwcBAAYGTkIw+IGIQARkQkTJoSFha1evXr5\n8uXWwqysrPvvv79Pnz6fffaZH/sGAIC3kYMAACMjBwEARkYOwrC4QQhARCQ5Ofntt98uKCgY\nOXJk586dx4wZ079//7p16/7666+jRo0aOXKkvzsIAIAXkYMAACMjBwEARkYOP1bGAAAgAElE\nQVQOwrBC/d0BAIFi/PjxzZo1mz9//tatW7dt2xYdHd2iRYuHHnpozJgxISG8mAAAEOTIQQCA\nkZGDAAAjIwdhTCaLxeLvPgAAAAAAAAAAAADwEe5+AwAAAAAAAAAAAAbCDUIAAAAAAAAAAADA\nQLhBCAAAAAAAAAAAABgINwgBAAAAAAAAAAAAA+EGIQAAAAAAAAAAAGAg3CAEAAAAAAAAAAAA\nDIQbhAAAAAAAAAAAAICBcIMQAAAAAAAAAAAAMBBuEAIAAAAAAAAAAAAGwg1CAAAAAAAAAAAA\nwEC4QQgAAAAAAAAAAAAYCDcIAQAAAAAAAAAAAAPhBiEAAAAAAAAAAABgINwgBAAAAAAAAAAA\nAAyEG4QAAAAAAAAAAACAgXCDEAAAAAAAAAAAADAQbhACAAAAAAAAAAAABsINQgAAAAAAAAAA\nAMBAuEEIAAAAAAAAAAAAGAg3CAEAAAAAAAAAAAAD4QYhAAAAAAAAAAAAYCDcIAQAAAAAAAAA\nAAAMhBuEAAAAAAAAAAAAgIFwg7BU+vnnn00mk8lkOnbsmF5t/vTTT1qbJ0+e1KvNIOCNofaZ\nDz/8sFGjRhEREbGxse+//76/uwMAuiEHfYYcBIAARA76DDkIAAGIHPQZchAIeqH+7oBPmc3m\nVatWff311zt27MjKyrp582ZcXFzdunXbt28/atSotm3b+ruDgG527tz5yCOPiEjZsmWTkpLK\nlCnj7x4B8D9yEMZBDgIoihyEcZCDAIoiB2Ec5CCgyEDvINy4cWODBg1Gjhy5dOnSo0ePXrt2\nzWw2X7ly5Zdffnn77bfbtWt37733Xrx40d/d9JEvvvjCZDItWbLEWpKSkpKRkZGRkVG9enX/\n9Qu6+eyzz0SkUqVKx48f/+WXX8aMGePvHumj6NQFoIgctEUOBj1yEIAdctAWORj0yEEAdshB\nW+Rg0CMHAUVGuUG4dOnSe+6558SJEzExMdOnT9+xY8e1a9cKCwuzsrJWrlzZsWNHEfniiy86\nd+58/fp1f3fWF7Zt22ZXEh0d3bx58+bNm4eHh/ulS9DX+fPnRSQ1NbVixYr+7oueik5dACrI\nQTvkYNAjBwHYIgftkINBjxwEYIsctEMOBj1yEFBkiBuEe/fuffTRRwsKCho2bLh///45c+a0\nadOmbNmyJpMpISFh6NChP/zww6uvvioiBw8enDx5sr/76wtbt271dxfgXQUFBSISFhbm747o\njKkLuIEcLIrFJOiRgwCsyMGiWEyCHjkIwIocLIrFJOiRg4AqiwH069dPRGJiYo4ePeqg2ogR\nI5KSkmbMmFFYWGixWL799lttiM6dO2dX89NPPxWRMmXKWEt2796tVc7Pzz9w4MDgwYOrVq0a\nFRXVsGHDV199taCgwGKxHD16dPTo0TVr1gwPD09MTPzb3/5248YNawsuPdyuXbu0ynZblJmZ\n+fjjjzdp0iQ2NjY0NLRixYpdunT58MMPtS3SjB8/3m4OaC1v375d+/HEiRMWi+Xuu+8WkY4d\nOxY7Vm+99ZaIhIWFZWVlaSW3b99+9913u3btWqFChbCwsISEhK5duy5evDg/P9/BmBcdvTNn\nzkycOPGOO+6IiIgoV65ct27d/v3vf9tW9vF+sQ71sWPH9u3bN2LEiOrVq4eHh1epUmXo0KF7\n9uwpujmKQ7Fjxw6t5YKCglWrVmnfmvvee+85Hqvs7Oy5c+feddddWuMVK1bs1KnTggULbt26\nZa2TlpZW9Jn++uuvO2hWpc9emhLqe7+kqWuxWG7evDlv3rz27dtXqFAhNDS0UqVKKSkpM2bM\nyMzMdDyegEGQg+QgOUgOAkZGDpKD5CA5CBgZOUgOkoPkIFCS4L9BePr0aZPJJCJTp051XDMv\nL8/2R5cW3AMHDmiVN2/eXK5cuYSEhJYtW8bHx2uF06dP37t3b4UKFcqXL9+qVasqVapo5f37\n93fv4YoNwu+//z46OlpEQkNDU1JS2rZtW7lyZa3aoEGDrFn4wQcfDB8+PCQkRETatGkzfPjw\nkSNHWooEofagJpPpzJkzRceqXbt2IjJw4EDtx6ysrNTUVK1+s2bNunXrVq9ePa21tm3bXr58\n2fHIW0dv165d1atXj4yMbNmyZUpKSmhoqIiEhIR8/fXX/tov1qFesWJFdHR0ZGRkampqs2bN\ntAGMiIjYtGmTbR/Uh2Lfvn1a+datW7UtFZF//OMfDgYqMzNTay0kJKR+/fpdu3atV6+e1pNm\nzZpZB2TRokXDhw+vXbu2iFSvXn348OHDhw9ft25dSc0q9tlLU0J975c0dbOzs1NSUrTHatKk\nSdeuXVu2bKm9RCg6OtpuBwEGRA6Sg+QgOQgYGTlIDpKD5CBgZOQgOUgOkoOAA8F/g9D6pZ27\nd+926Q9dWnAPHTqkVU5KSnrppZfMZrPFYsnJyRk8eLD2bExJSZk4ceLt27ctFktBQcGUKVO0\n+ocPH3bj4YoNQm2had26tfWlCoWFhe+8845Wc/ny5bZtRkREiMhHH31kLbELwhs3bsTGxha7\nNB8/flyruXbtWq2ke/fuIpKamrpv3z5rtW3btt1xxx0iMmzYMIcj/f9Gr0GDBg8//PC1a9e0\n8gMHDiQmJorIXXfdZa3s4/1iHerKlSuPHTs2OztbKz969Kg24ElJSVqzrg6FtW/33HNPz549\nt2/ffuLEiT///LOkUSooKNCipWHDhtbuWSyWX3/9tVq1aiLSu3dv2/qjRo0Skb59+zocexf6\n7KUp4dLetxQ3dV977TVtBx04cMBaePny5UGDBolIo0aNnI4AENzIQXKQHHSMHASCGzlIDpKD\njpGDQHAjB8lBctAxchAGF/w3CGfMmCEi4eHhtquVCvcW3D59+tjW3LNnj1betGlT7Y3bmuvX\nr2s3/JcuXerGwxUNwqysrGHDhnXu3NnujecWi+XOO+8UkQceeMC20GkQWiyW0aNHi0i7du3s\nGnz55Ze1dUd7bdHGjRu1Ef7999/tam7atElr89ixY5aSWUevTZs2tqNksVjmzp0rImFhYdb3\nX/t4v1iHOiUlxa5vX3/9tfarb7/9VitxaSisfatTp05OTo6D8dF88cUXWv0dO3bY/WrZsmXa\nr2xTRzEIXeqzN6aES3vfUtzUHTJkiIikpaXZPdbFixdnzJixaNGi3Nxcx4MABDdykBwkBx0g\nB4GgRw6Sg+SgA+QgEPTIQXKQHHSAHARCJNhdunRJRCpUqFCmTBkfPNzQoUNtf6xfv772P4MG\nDdJWWE1cXFzVqlVF5OLFi7o8bkJCwooVKzZt2qR9ILKtRo0aici5c+dcbfPBBx8UkZ9++unU\nqVO25dqyO2rUKO3dymvXrhWRTp061axZ066Fzp07a2/n/+abb1Qe8dFHH7UdJRFp0qSJiOTn\n51+/ft3V/tvyfL+kpaXZ9a1Hjx5RUVEismXLFq3EvaEYNWpUZGSk00348ssvtZ63adPG7leD\nBg3S4kFxnG251GevTgm3936FChVEZMuWLXaTvGLFirNnz/7rX/8aHh7u4M+BoEcOkoNCDpaM\nHASCHjlIDgo5WDJyEAh65CA5KORgychBINTfHfA67YO2CwoKfPNwdevWtf1RWyiLllt/lZ+f\nr+Oj5+bmpqenHzx4MCsrS3tLsohkZGSIiNlsdrW1bt261ahR448//li5cuVTTz2lFe7Zs0f7\ncOSHHnrIWiIie/fu7dKlS9FGbt26JSK//fabyiNqC58t7dPDRSQvL8/V/tvyfL9ob2O3FRYW\ndscddxw4cCAzM1MrcW8oigZbsbTP5tZe92QnIiIiKSnp4MGD1s+tVudSn706Jdze+xMnTly+\nfHlmZmbjxo2HDh3au3fvzp07a+kIQMhBclBEyMGSkYNA0CMHyUEhB0tGDgJBjxwkB4UcLBk5\nCAT/DcJKlSqJyOXLl2/fvq3yegQPlStXrthy6xfAes+//vWvCRMmnD9/Xq8GQ0JCRo0aNXfu\n3BUrVlhXvX/+858ikpqaqn39qYhcvnxZRLKysrKyskpq6urVqyqPaM0n3Xm+XxISEkpq1vo6\nDveGwvqdyY5pjZfUYa0nV65cUWmqaLOKffbqlHB776ekpGzcuHHSpEk7d+58//3333//fZPJ\n1Lx582HDho0fP94HTz0gwJGDbiMHbZGDQg4CpRM56DZy0BY5KOQgUDqRg24jB22Rg0IOIkgF\n/0eMak/OgoKCbdu2+bsvXrRjx44hQ4acP38+NTV11apV58+f1z712GKxpKWlud2s9tnKu3fv\nPnbsmIhYLJbly5eLzWsi5D+vRRo1apSDj7LVPgW7VCv2oxi0bdf+K+4OhUvHZ9bHsqO9Kqqk\n3zptUL3PgTklWrduvWPHjp9//nnWrFkdO3YMDw/PyMj4n//5n6SkpH//+986PhBQGpGD5KAu\nyEFNYE4JchBwgBwkB3VBDmoCc0qQg4AD5CA5qAtyUBOYU4IchCeC/wZh586dtQ/w/b//+z/H\nNfPy8hYtWpSdne20zZycHH06p0bl4RYsWGA2m2vXrv39998PGTKkSpUq2qcey3/eueyeJk2a\ntGjRQkRWrlwpIlu3bj19+nR4ePjIkSOtdbTXIv3xxx9uP4pevLpfin2xz7Vr18TmZTheHYqK\nFSvKfz47vijtNTJuvH/c1T4H8pRo2bLl888//8MPP1y+fHn58uV33HHHlStXRowYofhCLSBY\nkYPkoC7IQU0gTwlyECgWOUgO6oIc1ATylCAHgWKRg+SgLshBTSBPCXIQ7gn+G4TVqlW77777\nRGT58uU//vijg5rPP//8xIkT69Wrp61u1iC5ffu2XU03PtHYKQ8f7uDBgyJyzz332L1nvKCg\nYOvWrZ50TPv+1dWrV4vIihUrRKRfv37aoqzRPv35wIEDvvlAcx/vF6v9+/fblZjN5uPHj4tI\ngwYNtBKvDoXWuPYx1nZu3rypfd53sZ/ErdKsS30OtClRVHR09PDhw7du3RoaGnr58uXt27f7\npRtAgCAHyUFdkINWgTYliiIHAVvkIDmoC3LQKtCmRFHkIGCLHCQHdUEOWgXalCiKHIRLgv8G\noYi88sorsbGxhYWF9913308//VRsnZdeemnu3Lki8vjjj2tZot3tF5HDhw/b1rx8+fLHH3+s\neyc9fDjtzctFs2HhwoVnz56VIl9HrNVX+YbekSNHlilTJiMj4/fff1+zZo2IPPzww7YVBg0a\nJCIXLlxYtWqV3d9euHChSZMmjz32mPbhy7rw8X6xWrZsmV3Jxo0btVchde7cWSvx6lDce++9\nInLs2LGiRzYrVqwwm80hISF9+/Z1tVk3+uzfKWE3dS9cuDBp0qSePXveuHHDrmblypW1jynw\n8UvbgABEDgo56DFy0IocBEodclDIQY+Rg1bkIFDqkINCDnqMHLQiBxFsHHwYbjD5/PPPw8PD\nRaRMmTJjx45NT0+/cuVKYWHhxYsXV65c2aZNG200+vfvn5+fr/1Jfn5++fLlRaR9+/ZZWVla\n4enTpzt27NiwYUOtKWv7hw4d0lrIyMiwe2itfM2aNXblSUlJIvL666+78XC7du3Smj169KhW\n8uijj4pIfHz8qVOnrA3OmzcvLi5u1KhRIlK1alXrplkslpo1a4rIo48+ai2xvprgxIkTdl3t\n3bu3iIwdO1ZEqlSpYtuOplu3biJSrly5b7/91lp49OjRVq1aiUjz5s0LCwuL7hSV0UtPT9d+\nde7cOTcGyvP9snPnTq1m+fLlX3nlFbPZrJX/8ccfycnJItK0aVPbrVMfCgd9K1ZhYeFf/vIX\nEalfv/6xY8es5du2bdNepfLQQw/Z1tf2e9++fZ227Mbu03FKuLT3LUWmrtlsrlOnjogMGDDA\nttrt27enT58uIpGRkdZ5AhgZOUgO2rVMDrrRZytyECh1yEFy0K5lctCNPluRg0CpQw6Sg3Yt\nk4Nu9NmKHEQwMcoNQovFsmXLFm3lKlZ4ePj//M//2D2fZ8+erf02JiamVatWd955Z2hoaLNm\nzb788ksRMZlM1pqeL7guPVzRIDxy5EhcXJyIxMbG9urVq0+fPpUqVQoPD1+5cuV3332nVb7z\nzjv/9re/afW1VVJE6tSpU7du3R07djgIQu1FItpHlk+dOrXo2GpfAqz9ecOGDe++++6UlBSt\nfs2aNX/77TfHu8bVpdCX+8X6Hc6rVq2KjIysVq1ar169unTpEhUVpY32zp073RsKV4PQYrGc\nOnVKC/uwsLCUlJS77767fv36WiM9evTIzs62rawehG7sPh2nhKt7v+jU3bx5c0xMjNafxo0b\nd+rUqXXr1trTISQk5MMPP3Q6AoBBkIPkoC3F/UIOkoNA0CAHyUFbivuFHCQHgaBBDpKDthT3\nCzlIDiLoGegGocViMZvNK1eufPDBB+vXr1+uXLnQ0NAKFSrcddddf//730+ePFnsn3z44Yet\nW7eOiYmJjIysV6/ejBkzrl69mpGRoT0Vc3NztWq6BKH6wxUNQovFsmfPnnvvvbdChQrh4eF1\n6tQZNWqUtTNTp06tWLFidHT0/fffr5WcO3duwIABZcuWjYqKatiw4aFDhxwE4a1bt8qWLav9\ndt++fcUOVG5u7rvvvtulS5eKFSuGhoaWLVu2devWr7zyyrVr14qtb8vVpVB9oDzfL9YO3L59\nOyMjY+jQoVWrVg0LC6tSpcrIkSOLDQnFoXAjCC0Wy40bN+bOnduuXTttAickJPTq1evTTz+1\nvoTHSj0I1ftspeOUcHXvF526Fovl+PHjzz33XIsWLSpXrhwaGhodHZ2cnDx+/Pg9e/aobD5g\nHOQgOWhFDrrRZytyECilyEFy0IocdKPPVuQgUEqRg+SgFTnoRp+tyEEEE5PlPysCAAAAAAAA\nAAAAgKAX4u8OAAAAAAAAAAAAAPAdbhACAAAAAAAAAAAABsINQgAAAAAAAAAAAMBAuEEIAAAA\nAAAAAAAAGAg3CAEAAAAAAAAAAAAD4QYhAAAAAAAAAAAAYCDcIAQAAAAAAAAAAAAMhBuEAAAA\nAAAAAAAAgIFwgxAAAAAAAAAAAAAwEG4QAgAAAAAAAAAAAAbCDUIAAAAAAAAAAADAQLhBCAAA\nAAAAAAAAABgINwgBAAAAAAAAAAAAA+EGIQAAAAAAAAAAAGAgwXyD8OrVq1euXPF3LwAA8A9y\nEABgZOQgAMDIyEEAgFMmi8Xi7z54S6VKlS5dumQ2m8uUKePvvgAA4GvkIADAyMhBAICRkYMA\nAKeC+R2EAAAAAAAAAAAAAOxwgxAAAAAAAAAAAAAwEG4QAgAAAAAAAAAAAAbCDUIAAAAAAAAA\nAADAQLhBCAAAAAAAAAAAABgINwgBAAAAAAAAAAAAA+EGIQAAAAAAAAAAAGAg3CAEAAAAAAAA\nAAAADIQbhAAAAAAAAAAAAICBcIMQAAAAAAAAAAAAMBBuEAIAAAAAAAAAAAAGwg1CAAAAAAAA\nAAAAwEC4QQgAAAAAAAAAAAAYCDcIAQAAAAAAAAAAAAPhBmExLBbLu+++26pVq5iYmLi4uA4d\nOqxatcrfnSrdsrOzn3vuueTk5KioqPLly/fs2XPz5s3+7lSAKiwsXLx48Z133hkdHR0dHZ2S\nkvLaa6/l5eW5WkezYcOG6tWrm0ymTZs2+WgD/Ofbb781leDkyZPWaleuXHnppZeaN29etmxZ\nbfRefPHFW7du2bV26tSptLS0atWqRUZG1qtX7+mnn75582ZJD3348OHo6GiTyfTrr796aet8\nxsGcqVq1akkj3KpVK2s1p/NTcU+pz3PojhzUheMVWHEtMiBvZFwwrdKOubpyljQyerVTqimm\nnsbxbOTIDYD44/jK6eKj40LnmOO/vXDhwpNPPtmgQYPIyEitn7NmzbI7+dLrFEPj+FxPx/NK\nxzvd8+xQ6YPTqzEuTQO9doTKNSJOSYAgEwhPan2T0ROOI0BlkdTxYrsuQazL0PnggEFcn4qe\n90qUrzP753zQErwqVqwoImaz2dU/HDdunIhUrlx55MiRw4cPL1++vIjMnTvXG500guvXrzdr\n1kxEEhMThw8fPmDAgPDw8JCQkM8//9zfXQs4hYWFffr0EZH4+PgBAwb07du3bNmyItKzZ8/C\nwkL1OhaL5datW5MmTRKRsLAwEUlPT/fPJvnQypUrRaRp06aDi8jKytLqXLhwITk5WUTq1q07\nZMiQPn36lCtXTkTatGmTl5dnbWr//v3x8fEhISHdu3dPS0tr2LChiLRv376goKDo45rN5nbt\n2mkrakZGho+21guczpmxY8cWHdvevXuLSJcuXbQ6KvNTZU8pznM4Rg76i9Nnk+JaZEDeyLig\nWaWdcnXlLGlk9GqntFNJPYvCbOTIzY/czkHAG3x8fKWy+Oi10Dng9G/Pnj1bs2ZNrWPPPPPM\ntGnTWrZsKSLNmzfPyclR3xaVUwyN03M9Hc8rS9rpumSHSh9UrsZYp8HAgQOTkpJEJCTk/38v\nge000HFHKF4j4pTEc+QgAorfn9Q6JqMnnEaAyiKp48V2vYLYw6Hz2QGDxZWpqEuvLGrXmf14\nPui3G4SFf57P/3KN2/8sCvHmXhCmp6eLSGpq6rVr17SSc+fOJSYmhoeHZ2ZmurOphvfMM8+I\nSJ8+fW7duqWVbNmyJSYmJiEhITs72799CzTvvfeeiLRr1846/c6fP1+7dm0R+eqrr9TrWCyW\nlJSUsLCwOXPmjB492iCXmbSReeuttxzUSUtLE5HJkydbl+BLly41atRIRJYtW6aVFBYWpqam\nhoaGfv3111qJ2Wy+7777TCbTunXrirY5e/Zsbekv7RdG3Zsz06dPF5HNmzdrP6rPYcd7SnGe\nl2rkYBBz+mxSWYuMyRsZFzSrtFOurpwljYxe7QQlu9SzKMxGjtxKErA5CHiD74+v3D6cdmOh\nc8Dp306ZMkVEnnnmGdvCfv36icjixYvVt0XlFMOidq6n13mlg53eqFEjz7NDpQ8uXY2x21l2\n00CxVyqjp9IrI5ySkIMwlEB4UuuYjJ5wmowqi6SOF9v1CuJiqQ+dzw4YXJqKuvRK8TqzH88H\n/fYRo5ZLFwp++N7tf1Jg9lLHtJk0Z84c7Q6ziFStWvXZZ5/Ny8tbsmSJlx40uK1evVpEFixY\nEBUVpZW0b9/+r3/964ULF9auXevXrgWcr776SkRmz55tnX5VqlQZP368iGzfvl29joiEhIRs\n27Zt+vTpJpPJh1vgT1evXhUR7XUfJalUqdLAgQNnzZplfVFkhQoVtDOrw4cPayXp6em//PLL\no48+qr3ORUTKlCnz8ccfX79+XVvibR08eHDmzJkjRoxo27atvpvje27Mmb17977xxhtpaWmd\nOnXSSlTmp8qeUpznpRo5GMScPptU1iJj0j3jgmmVdsqlldPByOjVTvApmnqiMBs5citJwOYg\n4A2+P75y73DavYXOAad/e/ToURHp27evbaF2Iqb9SnFbVE4xRO1cT6/zSgc7/erVq55nh0of\nXLoaY91Z2gj06tXLdhoo9kpl9FR6ZYRTEnIQhhIIT2odk9ETTpNRZZHU8WK7XkFclEtD57MD\nBpemoi69UrzO7MfzQb6D0N6mTZuioqI6d+5sW9irVy8R4Wvz3HPy5MmYmJj69evbFnbt2lVE\n+HoVO2vXrr1x40bHjh1tCytUqOBqHRHZtm2bvp+OHfi0U5H4+HgHdebNm7dmzZq4uDjbwvPn\nz4tIvXr1tB/XrVsnIiNGjLCtExsbGxsba9daQUHBQw89VK5cubfeesvj7vufq3PGYrGMGzcu\nLi7u9ddftxaqzE+VPaU4z+EN5KDnnD6bVNYiY9I344JslXZKfeV0PDJ6tRNkik09UZiNHLkB\nEH8cX7lxOO32QueA079t0qSJiBw6dMi2MDMzU0SaNm2q/ajXKYaonevpdV7pYKfXq1fP8+xQ\n6YNLV2O0nWWxWLZt2yYiEyZMcKNXKqOn0itOSYAgEwhPah2T0RNOk1FlkdTxYrteQWzH1aHz\n2QGDS1NRl14pXmf24/kgNwj/y7Vr186dO1enTh3tw16tateuHRERYbezoSgyMjI3N9ds/q8X\nN2nHi0eOHPFTpwJXTEyM9QWAmm+++UZE7r77bpfqWF9CYhzaqcipU6cGDRoUHx8fGRnZuHHj\nV1555fbt28XWN5vNx48ff+GFF95+++1WrVoNGzZMK9+zZ4+IJCcnz5w5MykpKSIiolatWpMn\nT9batzV79uxdu3YtWrSoUqVK3twyH3F1zqxcuXLHjh0zZsxISEiwLXc6PxX3lMo8h+7IQV24\n9GwqaS0yLB0zLshWaRWKK6fTkdGrnWBSUuqpzEaO3ACD89fxlauH054sdCVx+rdTpkypU6fO\ntGnT3n333QMHDuzZs2fOnDmLFi1q166d7aU0vU4xVM71dDmvdLzTVT4xwqXdV9LxpEtXY7Sd\ntXLlyosXL0oJ7wLUZUc47RWnJECQCZwntV7J6AmnyaiydOt4sV2vILbj6tD55oDB1amoS68U\nrzP78XyQG4T/5cqVK1LcDXCTyVSuXDntt3BVy5YtzWazdrfc6vPPP5f/HDvCgdWrV69du7Zf\nv34O3o6tUscItOk0adKkAwcO9O7du0OHDqdPn37uued69uyZl5dnV3nIkCFhYWFJSUkffvjh\nG2+8sWXLFms2/P777+Hh4ePGjVu8eHH37t0ffvjh8PDwN998s2vXrjk5OdYW9u3bN2vWrOHD\nhw8ePNhn2xg4CgsLZ82aValSpYkTJzquWXR+urSnHLQDbyAHfczBWgSN2899g6/SmmJHz42R\n0aud0ks99VSQaIDRBMjxlePFR9+FTl2VKlV27drVsWPHxx57rGnTps2bN3/66acfeeSR9PT0\n8PDwkv7K7VMMlXM9Xc4rdd/pDnafg+NJV6/GaNMgIiLC7V6pjJ7TXgXIUwaAXgL2SR2Yyaiy\ndOt4sV2vILbljaHTpZ+6T0WVXileZ/ajUH93ILBoe6XYWRUREWE2m3sx9GEAACAASURBVM1m\nc2gog+aa559/Pj09ffz48QUFBT169Lh58+Z77723dOlSEcnPz/d37wLaihUr0tLSkpOTP/nk\nE0/qGESjRo369u3bv3//cePGaZ/XfOrUqT59+vz4449vvvnmU089ZVu5VatWN2/ePHv27L59\n++bPn1+hQoUHH3xQ+9WNGzfy8vJOnDhx7Ngx7e3eOTk5AwYM2Lhx48KFC6dNmyYi+fn5aWlp\n5cuXf+edd3y+oQFhxYoVBw8enD17dtFPXrWrVnR+urSnHLQDbyAHfczBWgTx4LnPKi0ljJ4b\nI6NXO6WaYuopNkWiAUYTCMdXThcfHRc6l2RnZz/wwAMbNmwYNWpUr1698vPz169fv3Dhwj//\n/HPp0qXF3qny5BRD5VxPl/NKfXe6493n4HjS1asx2jRo2bLl7t273euVyug57VUgPGUA6Cgw\nn9QBm4wqS7eOF9v1CmK7CroPnS791H0qqvRK5djDv3gH4X+Jjo4WkWLfwpKbmxsWFsYhiBu6\ndu3697///dKlS0OHDo2Pj69Zs+bChQvff/99EbH7uHzYevXVV0eMGNG4ceNNmzaV9An+KnWM\n4/nnn//yyy/Hjx9v/TbX2rVra9+KtGzZMrvKTz/99Pr16/fs2XPkyJG4uLjRo0evWbNG+1WZ\nMmVE5LXXXrPGWFRU1Kuvvioin332mVbyyiuvZGRkGORD1Yo1b968yMjIot9LYauk+enSnnLQ\nDryBHPQxB2sRPHnus0qXNHqujoxe7ZR2KqmngkQDjMnvx1cqi49eC52rnnvuuQ0bNsyfP3/p\n0qUPPvjgmDFjVq1aNWPGjNWrV7/55ptF63t4iqFyrqfLeaWOO93p7nNwPOnq1RhtGjRo0MDt\nXqmMntNe+f0pA0BfAfikDuRkVFm6dbzYrlcQ2/LG0OnST92nokqvVI49/MwSvCpWrCgiZrNZ\n/U+uX78uIo0aNbIrN5vNYWFhVatW1bWDxnLw4MF58+Y9++yzS5YsuXbt2t69e0Vk0KBB/u5X\nIMrNzR05cqSIDBgwIDs72+06mrS0NBFJT0/3Sl8D3q1bt7T3iTuo8+uvv4pIhw4dtB+1b5Hd\nv3+/bZ2cnByTyVSlShWLxZKRkREWFvbAAw/YVhg/fryIZGRk6L0FfuB0zmgfnz1s2LCSKqjP\nT6ti95Qb7cAWOeh3Lq3AdmuRkXmYcUG/SjvmYPRcGhm92gkCTlNP4/j5zpGbX7iRg4A3+PH4\nSnHx0WWhc+9vK1WqFBERkZ+fb1t4+vRpEWndurVtoS6nGE7P9dSbKsr2WE5xp+uVHcX2wUrx\naox1Gujeq2JHz0GvOCXRCzmIABFQT2p9k9ETjhdblaVbl4vtugexh0Pn1QMGt6eiJ71y9djD\n9+eDvOjmv8TFxSUmJp48eTI3N9f2ranHjh3Lz89PSUnxY99Ku+Tk5OTkZOuPO3fuFJHmzZv7\nr0cBymw2Dx8+fO3atVOnTp07d67dF6uq14EmJyfHYrFobx7PycnZvHmz2Wzu16+fbZ077rhD\nRI4ePar92KhRo/379//xxx9NmjSx1tHWeu27HD777LP8/PylS5dqb9631aJFCxFJT0/v0qWL\nF7fK37SPNbcbRiv35qftnvKkHXiIHPQBxbXIsDx/7ht5lXY8euojo1c7wcFx6qkg0QCD89fx\nlfri4/lC554bN25cvHixevXqdi/Y196erl1f0+h1iuH0XE+lKZVjOc93uuNNdul4UvFqjHUa\nfPfdd+71qiRFd4TjXnFKAgSZwHlSB34yWqks3Z5fbPdGEHtj6PTqp75TUbFXbh97+Aw3CO31\n6NHjo48+2rhxY9++fa2FX3zxhYjcfffd/utXKbZ///5t27b179+/WrVq1sJPP/1URPr37++/\nfgWocePGrV279uWXX3722Wc9qWM0ubm59957b05OzqZNm6wfZiIiP/zwg4hYl/h77703NDT0\nwoUL2pvKNb/99pv8Z/kWke7du69evfrLL7/s2bOntc6uXbtERMvd9u3bT5061a4DGzdu3LNn\nz+jRoxMSEhITE72xjYHj22+/FZHOnTsX+1vH81NxTzltB95DDvqAylpkWJ4/9428SjsePfWR\n0aud4OA49VSQaAD8cnylvvh4vtC5Jzo6Ojo6+vz589nZ2bYfiZaZmSkilStXtpbodYrh9FxP\nx/NKD3e6092n0geXrsZYp4GDG4S67AiVXnFKAgSZAHlSB34yitoiqdfFdr2C2JY3hk7Hfuo4\nFRV75fTYw/989l5F33PvrfQ7duwwmUxNmza9dOmSVnL06NGKFSvGxcWdP3/eC90MfgsXLhSR\nMWPGWEveeecdEenWrZsfexWYVq9eLSL333+/h3VsGeeDqrp16yYizz33XGFhoVZy/PjxevXq\nicjSpUu1Ei0m09LSbt++rZVcu3ZNe5fD008/rZVcvXq1QoUKUVFR1kG7cuVKmzZtRGTJkiUl\nPXowfbSa4zlTUFAQHR0dGxtb7G9V5qfKnnJ1nqNY5KDflfRsUlmLjMl7GRdMq3RJ3Fs5i46M\nXu0EB8epZ6uk2ciRmx/x0WoIHL4/vlJffDxf6FSU9LdDhw4VkWnTpllLzGbziBEjROTZZ5/V\nSvQ6xbConevpdV6pstM9yQ6VPqhfjbGdBp70SmX0VHrFKYkuyEEEjkB4UnsjGT1R0mKrskjq\neLFdryDWeD503j5gcG8qetIrV68z+/580GSxWFy/q1g6VKpU6dKlS2azWfsqSHXTp09//fXX\nK1as2L1797y8vG+//fbWrVsfffSRtnvgqps3b/7lL3/Zt29fampqixYtjhw58uOPP1arVm3b\ntm116tTxd+8CS7Nmzfbv39+5c+ei7yBJSkqaM2eOYp1NmzZpwSAiP//886lTpzp16pSQkCAi\ntWrVeuONN7y+Jf6QmZnZtm3bS5cuNWjQoEWLFlevXt2yZcvNmzdHjRpl/Qy0kydPtm/f/uzZ\ns9WrV2/VqlVhYeH27dsvXbrUuHHjrVu3li9fXqu2Zs2aoUOHlilTpm/fvhEREZs3bz537lzv\n3r2//PLLkt5EP2HChMWLF2dkZJTSD85VnzNnzpxJTExMTk4+ePBg0XZU5qfKnlJpB06Rg36h\n8mxSXIsMyHsZV9pXaRXurZxFR0avdoKD49RTmY0cufmR2zkIeIOPj6/UF3PPF7qSqPztqVOn\n7rrrrrNnz3bs2LFr166FhYXr16/fvXt3s2bNtmzZUrZsWcVtUTnF0Dg919PxvLLYnT5jxgzr\nR4B6kh0qfVC/GrNq1aphw4bFxcX17NnTk16pjJ5irzgl8Rw5iIDi9ye1XsnoCZVkVFkkdbzY\nrlcQa9wbOl8eMIjyVNSrV6Jw7OHn80Gf3Yr0PU9eKfPhhx+2bNkyKioqLi6ua9eu//73v3Xv\nnqGcP39+woQJiYmJ4eHhNWrUGDdu3Llz5/zdqUCkTdpitWzZUr3ORx99VFKdJk2a+G/7vO7E\niRNjx46tVatWWFhY2bJl27dvv2TJEutLFzV//vnnlClT6tevHxkZGRkZ2bhx42efffb69et2\nTW3durV3797ly5ePiIho3Ljxa6+9lpub6+ChS/s7J9TnzL59+6TINwBbqcxPi8KeUmwHjpGD\nfqH4bFJci4zGexlX2ldpFe6tnEVHRq92goPj1FOZjRy5+RHvnECg8eXxlfpi7vlCVxL1g6In\nn3yyQYMGERERUVFRTZs2feGFF7Kzs13dFpWTQY3Tcz0dzyuL7nS9skOxD4pXY15++WW9eqUy\neoq94pTEQ+QgAo1/n9R6JaMnFJNRZZHU8WK7XkFscXfofHzAYFGbinr1SuP42MO/54O8gxAA\ngOBEDgIAjIwcBAAYGTkIAHCq+M/KAwAAAAAAAAAAABCUuEEIAAAAAAAAAAAAGAg3CAEAAAAA\nAAAAAAAD4QYhAAAAAAAAAAAAYCDcIAQAAAAAAAAAAAAMhBuEAAAAAAAAAAAAgIFwgxAAAAAA\nAAAAAAAwEG4QAgAAAAAAAAAAAAbCDUIAAAAAAAAAAADAQLhBCAAAAAAAAAAAABgINwgBAAAA\nAAAAAAAAA+EGIQAAAAAAAAAAAGAg3CAEAAAAAAAAAAAADIQbhAAAAAAAAAAAAICBcIMQAAAA\nAAAAAAAAMBBuEAIAAAAAAAAAAAAGwg1CAAAAAAAAAAAAwEC4QQgAAAAAAAAAAAAYCDcIAQAA\nAAAAAAAAAAPhBiEAAAAAAAAAAABgINwgBAAAAAAAAAAAAAyEG4TFsFgs7777bqtWrWJiYuLi\n4jp06LBq1Sp/d6o0uXLlyksvvdS8efOyZctGR0enpKS8+OKLt27dcrWOMWVnZz/33HPJyclR\nUVHly5fv2bPn5s2b7eqoTFHjTOMNGzZUr17dZDJt2rTJ7lfffvutqQQnT560VissLFy8ePGd\nd94ZHR2tzcbXXnstLy/PtimndRQfK5A5fVYqbqPKs/vChQtPPvlkgwYNIiMjtTqzZs26efOm\nXZdOnTqVlpZWrVq1yMjIevXqPf3000XrwBuMs4B4iRFWDG9zsLaLWlYa80hDJdFEYXVlDmtU\n0kqv1FOZ1QBKNd8fX+l4Yu72Ybkup1qisJBWrVq1pGBq1aqVbVPq663nRyO2Dh8+HB0dbTKZ\nfv31V5X2Fc+YPG/HpUxX71VJW22lOKkcbx2AUiRArjM4Xny8fZqj3r7TRdLVBdlKJXZ1uULo\n9mA6yA5d6iieNau05tI2Ok4093qlD0vwqlixooiYzWZX/3DcuHEiUrly5ZEjRw4fPrx8+fIi\nMnfuXG90MvhcuHAhOTlZROrWrTtkyJA+ffqUK1dORNq0aZOXl6dex5iuX7/erFkzEUlMTBw+\nfPiAAQPCw8NDQkI+//xz22oqU9QI0/jWrVuTJk0SkbCwMBFJT0+3q7By5UoRadq06eAisrKy\ntDqFhYV9+vQRkfj4+AEDBvTt27ds2bIi0rNnz8LCQvU6Ko8VyFSelSrbqNLO2bNna9asqQ3g\nM888M23atJYtW4pI8+bNc3JyrF3av39/fHx8SEhI9+7d09LSGjZsKCLt27cvKCjw8eCUXuSg\nXxhhxfAqp2u7SlYa80hDZe5ZFFZX5rBGJa30Sj3FI0C4yu0cBLzBx8dXOp6Yu31YrteplspC\nOnbs2KKR1Lt3bxHp0qWLtUuK660uRyO2zGZzu3bttKtwGRkZTttXPGPSpR1rpg8cODApKUlE\nQkJCRKRTp052ma7Yq5K22vZXKpPK6dbBKXIQASUQrjM4XXy8fZqj2L7Tfrq6IFupxK5eVwjd\nG0wH2aFLHcWzZsXWFLfRaaK51yu9+O0G4cGbt6YeO+H2v9wC50PjXhCmp6eLSGpq6rVr17SS\nc+fOJSYmhoeHZ2ZmurOpBpOWliYikydPtq5Zly5datSokYgsW7ZMvY4xPfPMMyLSp0+fW7du\naSVbtmyJiYlJSEjIzs7WSlSmqEGmcUpKSlhY2Jw5c0aPHl3s8vree++JyFtvveWgEa1Ou3bt\nrGN1/vz52rVri8hXX33lah3HjxXIVJ6VKtuo0s6UKVNE5JlnnrH9w379+onI4sWLtR8LCwtT\nU1NDQ0O//vprrcRsNt93330mk2ndunU6bbSfkYPByggrhlc5XdtVstKYRxoqc09ldWUOa1TS\nSq/UU5nVwSdgcxDwBt8fX+l1Yu7JYblep1oqC2mxpk+fLiKbN2+2liiut7ocjdiaPXu2dt1W\nu7DotH3FTdalHWum69WrkrbaWq44qZz2p7QjB2EogXCdQf1UyHunOSrtq/TT7WRUiV29rhC6\nN5glZYdedVRGwNXWnG6j4hVsV3ulF799xGhmTs783/9w+1+epdBLHdP2x5w5c7T7tCJStWrV\nZ599Ni8vb8mSJV560GBSqVKlgQMHzpo1S3vRmYhUqFBBW1kOHz6sXseYVq9eLSILFiyIiorS\nStq3b//Xv/71woULa9eu1UpUpqhBpnFISMi2bdumT59uMpmKrXD16lUR0V6UVJKvvvpKRGbP\nnm0dqypVqowfP15Etm/frl5H5bECmcqzUmUbVdo5evSoiPTt29f2D7WX92q/EpH09PRffvnl\n0Ucf1cpFpEyZMh9//PH169e1I54gQA4GKyOsGF7ldG1XyUpjHmmozD2V1ZU5rFFJK71ST2VW\nB5+AzUHAG3x/fKXXibknh+V6nWqpLKRF7d2794033khLS+vUqZO1UHG91eVoxOrgwYMzZ84c\nMWJE27ZtFdtX3GRd2rFmul69KmmrrRQnldP+lHbkIAwlEK4zqCw+3j7NUWlfpZ/uJaOoxa5e\nVwjdGEwH2aFXHZURUG9NcRudJpobvdIR30Fob9OmTVFRUZ07d7Yt7NWrl4jwRSAq5s2bt2bN\nmri4ONvC8+fPi0i9evXU6xjTyZMnY2Ji6tevb1vYtWtXEbF+PLHKFDXINN62bZvd90nY0Zbp\n+Ph4B3XWrl1748aNjh072hZWqFDB1ToqjxXIVJ6VKtuo0k6TJk1E5NChQ7Z1MjMzRaRp06ba\nj+vWrRORESNG2NaJjY2NjY11ccvgMoMsIN5jhBXDq5yu7SpZacwjDZW5p7K6Moc1KmmlV+qp\nzGoApZrvj6/0OjH35LBcr1MtlYXUjsViGTduXFxc3Ouvv25brrje6nI0oikoKHjooYfKlSv3\n1ltvqbevuMm6tGPNdL16JSVstZXipHLaHwClSCBcZ1BZfLx9mqPSvko/3UhGjUrs6nWF0NXB\ndJwdetVRGQH11hS30WmiudorfXGD8L9cu3bt3LlzderU0T4Q1qp27doRERF2zzo4ZTabjx8/\n/sILL7z99tutWrUaNmyYe3WMIzIyMjc312w22xZqq8yRI0dEbYoaZxpbX61ZEm2ZPnXq1KBB\ng+Lj4yMjIxs3bvzKK6/cvn3btlpMTIz1RTGab775RkTuvvtu9TqKj1UqlPSsdHUbS2pnypQp\nderUmTZt2rvvvnvgwIE9e/bMmTNn0aJF7dq1sx4A7dmzR0SSk5NnzpyZlJQUERFRq1atyZMn\na32A9xhnAfEqQ60YunO6tjvNSjuGOtJwOvcUV1fmsKillS1PUs/VWQ2gdPH78ZUnJ+YeHpbr\ncqrl6oIsIitXrtyxY8eMGTMSEhJsyxXXWx2PRmbPnr1r165FixZVqlRJvX3FTdalHWumjxw5\nUst07U2QeXl57vWqpK22UpxUTrcOQGnh9xzUqCw+3j7NUWlfpZ9uJKOVSjRbeXKF0NXBdJwd\nOtZxaQQct6a4jSqJ5lKvdObtzzAtybqLlyR9i9v/shU+QduNz9o+ceKEiLRv377orypXrhwa\nGurCFhre4MGDtTmWmJi4YMGC27dvu1fHULSXHNp9sfm0adNEpFmzZha1KWrAaay9z73oJziP\nHDlSm2D169cfMWJE9+7dY2JiRKRjx465ubkltbZq1SoR6devn4NHLFrHvccKQA6elS5to+Nn\n94ULF/r3728bRhMnTrT9IuV69eqFh4cPGjSoSpUqjz766Pjx45OSkkSkefPm1u/5KO3IQeMI\n4hXDq0pa251mpS2DH2kUnXvura6GncNO08rKw9RzaVYHjcDMQcAb/Ht85eGJub6H5e6dallc\nWZAtFktBQUHjxo0rVapU9OsAXV1vPTwa2bt3b3h4+PDhw7Uftc8Ks/3uopLad3WTPWmnaKaH\nhoaKSEpKStFMV+mV0612dVI52LpSjRyEcQTIdQaVxcfbpzkq7Ssuki7FhAMOotnDK4QuDabT\n7NCxjvoIOG3N1Qmjnmgqh0x6CRXYyMnJEZHw8PCiv4qIiDCbzWazWTtUglOtWrW6efPm2bNn\n9+3bN3/+/AoVKjz44INu1DGU559/Pj09ffz48QUFBT169Lh58+Z77723dOlSEcnPzxe1Kco0\ntmrUqFHfvn379+8/btw47VOeT5061adPnx9//PHNN9986qmniv7JihUr0tLSkpOTP/nkk5Ka\nLbaOG48VmBw8K13aRgftZGdnP/DAAxs2bBg1alSvXr3y8/PXr1+/cOHCP//8c+nSpRERESJy\n48aNvLy8EydOHDt2TPsUhZycnAEDBmzcuHHhwoXauTe8gQVEd8G9YviF06y0ZeQjjWLnnhur\nq2HnsEpaWXmYei7NagCljn+Przw8MdfxsNztUy2XFmStkYMHD86ePbvo56Dqtd6qtJOfn5+W\nlla+fPl33nlHvWX3NtmTdopm+pAhQz777LO9e/faZbpKaypbzbkeYDQBcp1BZfHx9mmOSvsq\n/dQrJhxHs4dXCNUHUyU79KqjPgIqrXlpwqgcMunJBzchixWYr5Q5efKklPyKhrCwMBe2EP9x\n9OjRxo0bS5GX17laxyD+/ve/276huGLFitpnT7du3dqiNkUNOI1dekXhxo0bRaRFixZFf/XK\nK6+YTKYWLVr8+eefJf25Sh2Vxwp8is9Kp9tYtJ2//e1vIjJ//nzbajNmzBCROXPmaD/WqFFD\nRNavX29bZ+fOnSLSrl07NzcpwJCDRmCcFcMbHKztjrOyWEY70ihp7rm6uhp5DqukVVHupZ7F\nrVld2gVmDgLeECDHV+6dmOt1WO7JqZarC3JqampkZOTVq1eLfRSX1ltPjkZmzpwpIqtXr7b+\nifo7CF3dZL3asW2taKartKay1a5OKt5BSA6itAuQHHQ70bx9mmPXvko/3Vve7aif6+l1hbCk\nOirZoVcdW45HwNXWHG+jRiXRXDoH14XfbhD6gBtBeP36dRFp1KiRXbnZbA4LC6tataquHTSQ\nX3/9VUQ6dOjgYR2DOHjw4Lx585599tklS5Zcu3Zt7969IjJo0CCL2hQ14DR26YTh1q1bJpOp\nXLlytoW5ubnau8IHDBhQ9INo1OuoPFYpovKsVNlGu3YqVaoUERGRn59vW+f06dO2p9Palyrv\n37/ftk5OTo7JZKpSpYo7G2NI5KAfGXDF0J3jtd1BVpbEIEcajuee+urKHFZJq2K5kXoaN2Y1\nHOPCKAJE4BxfuXFi7vlhueenWi4tyNpXNw0bNsxBl9TXW7ePRjIyMsLCwh544AHb+uo3CF3N\nIL3asW2taKY7bU1xq12dVMF6g9AHyEEEiADJQbcTzdunOXbtq/TT7VMVjRvnenpdISxaRyU7\n9Kpj5XQEXGrN6TZaOU40N/aLLrhBaC8xMTEyMtLuc/l/++03EenZs6euHQxCt27dWr9+/bp1\n6+zKtSTQVjGVOrD1wQcfiMiLL76o/agyRY02jV06Ybh06ZKIJCQkWEvy8/MHDhwoIlOnTi0o\nKCj2r1TqqDxWYPLkWWm7jSrtZGdni0j16tWL9sH2sYYMGSIiGzZsKNpOzZo1Xd9EgyIH/SW4\nVwyfcWltt81KIx9pOJ17iqsrc1glrXRMvWLZHQHCDVwYReDw8fGVjifmHh6We36q5epCqr3e\n/5NPPnHaNysH663bRyPPPfecOKS1WWz7bmSHXu3YtmaX6SqtKW61q5OKG4RuIwcROALhOoPb\niebt0xy79p3205NTDIuz2NXrCqF6HZXs0KuOygio98qNcXCQaO6dg+uCrxGy16NHj48++mjj\nxo19+/a1Fn7xxRcicvfdd/uvX6XGvff+f+zdZ2AU1eL38bMt2VQSOoHQpSggTQFBIDRpghCQ\nGHp5gKugoihcUVFEBVGuBVSKEIS/gIJUpUOo0hHpYOgtAUJIgbTdfV7MvXP3pmxmd2d3k+z3\n8+rs7JmzZ2cn88vMmdJTr9ffuXPH399fniht8UuXLq28jnc6efLkvn37nn/++QoVKsgTFy9e\nLISQHzyrZBVlNRZCZGRk9OzZ89GjR7GxsdJtoCW7du0SQjRo0ECeMnLkyNWrV0+dOnXSpEn5\ntWa7jvLPKrQK/KtU+B0LbMff39/f3//27dspKSlBQUFynbi4OCFE2bJlpZft27dfsWLF+vXr\nO3XqJNc5dOiQEKJu3bpqf3v8DzYgziv2WwzPUpKVXvufRoGJpnDryjqsMK3USj0lazWAIs39\n/1+ptWPu5L/lzu9qKdyQyrZs2SKEaNOmTZ6fpdb2tsB2WrZs+eabb+aYa+vWrcePHx80aFCZ\nMmXCw8Pza9zer+xMO/llusQ605W0pvBbs68HeKHCcJyhwI2Pq3dzFLZfYD+djIkCo1mVI4TK\nF6aS7FCrjsIloLBX6q4wSnrlKu4cjXQzx86UOXDggEajqVev3r1796QpFy5cKFWqVFBQ0O3b\nt13QzeJG+m948ODB8lkhDx48aNu2rRBi4sSJyut4p9mzZwshhg0bJk+RnoParl07eYqSVdTb\nVuP8zr9o166dEOLdd981m83SlIsXL9asWVMIsWTJEmnKihUrhBBRUVE22ldSR8lnFWZK/iqV\nfEcl7fTt21cIMX78ePnTs7OzX3rpJSHEpEmTpClJSUklS5b08/OTf9b79+8//fTTQoiYmBjX\nLYdihhz0CG/YYrhHftt2JVnpnf9pKFn3lGxdWYclStJKrdRTslbDAVw5gcLD/f9fqbVj7sy/\n5WrtainZkEpMJpO/v39gYGB+Tdm7vXXmv5HclN9iVPlXdr6d3JkeGRkpHTDMken29iq/b23v\nSsUVhA4jB1F4FIbjDEo2Pq7ezVHSvpJ+OrZBtiiLXbWOEDqzMJXczNOxOkqWgPLW7P2O+SWa\nM71ynsZiseQxbFgslC5d+t69e9nZ2Tqdzq4Z33777RkzZpQqVap9+/aZmZlbtmx5+PDhwoUL\n5dsswIbLly+3bNny5s2bYWFhTZs2NZvNf/zxx7179x5//PG9e/eGhIQorOOd0tLSWrRoceLE\nicaNGzdq1Oj8+fO7d++uUKHCvn37qlatKldTsooW+9U4NjZW2gcTQhw+fPjKlSutW7cuU6aM\nEKJy5cozZ84UQsTFxTVr1uzevXu1atVq1KhRUlLSnj170tLS+vfvv2TJEmne+vXrnzx5sk2b\nNrmvKalRo8b06dMV1lHyWYWZkr9KJd9RSTtXrlx55plnbt68/U7gHAAAIABJREFU+eyzz0ZE\nRJjN5g0bNhw5cqR+/fp79uwJDg6Wmlq1alXfvn11Ol23bt18fX137tx569atLl26rF+/XqvV\nempBFS3koEd4wxbDdZRs25VkpXf+p6Fk3RMKtq6swxIlaaVW6in8DxD2cjgHAVdw8/9XKu6Y\nO/xvuVq7Wgp3H4QQ169fDw8Pr1u37unTp/PskpLtrVr/jeQ2evToOXPmzJs3b+PGjbbbV/KV\nlfRTSTtypgcGBoaEhGRlZSUkJFgslrJlyz777LP2tpbftz527FjDhg3liQWuVEq+HQpEDqJQ\nKQzHGQrc+Lh6N0dh+wX207ENslAWu2odIXRmYeaZHarUUbjXrLA1Jd9RSaI50ysVeGRY0j2c\nOVNmwYIFTZo08fPzCwoKioiI2Lx5s+rdK8bi4+PHjRv32GOPGY1Go9H4+OOPT5o0KTk52d46\n3un27dujR48ODw/38fGpWLHiyJEjb926lbuaklW0eK/GCxcuzG+z9sQTT8jVLl26NGLEiMqV\nKxsMhuDg4JYtW8bExMindVj+s6HIU5MmTZTXUfJZhZySv0ol31HhFuCNN96oVauWr6+vn59f\nvXr1Pvjgg9wP4N27d2+XLl1CQkJ8fX0ff/zxTz/9NCMjw0Vfv1giBz3CS7YYLqJw264kK73w\nPw2F656loK0r67BMSVqplXoK/wOEXbhyAoWNm/+/UnHH3LF/y1Xc1VK4+3DixAkhxFNPPWWj\nVwVub1X8byQH6cqDDz/8UEn7BX5lhf1UsuguXbrUunVrtVrL81vnvsLD9kql8NvBNnIQhU1h\nOM5QYKK5ejdHYfsF9tOBDbLFnthV5QihwwvTdVcQKt9rVviJBX5HJYnmTK+cxxWEAAAUT+Qg\nAMCbkYMAAG9GDgIACsRd2gAAAAAAAAAAAAAvwgAhAAAAAAAAAAAA4EUYIAQAAAAAAAAAAAC8\nCAOEAAAAAAAAAAAAgBdhgBAAAAAAAAAAAADwIgwQAgAAAAAAAAAAAF6EAUIAAAAAAAAAAADA\nizBACAAAAAAAAAAAAHgRBggBAAAAAAAAAAAAL8IAIQAAAAAAAAAAAOBFGCAEAAAAAAAAAAAA\nvAgDhAAAAAAAAAAAAIAXYYAQAAAAAAAAAAAA8CJ6T3fA5Z5++mmNRuPpXgAAPGbPnj1Go9HT\nvfAYchAAvBw5SA4CgDcjB8lBAPBmtnNQY7FY3Nkbdzp+/HiLFi0ePXrkcAulS5cuU6ZMfHx8\nYmKiih3zWkFBQZUqVUpKSrp165an+1Ic+Pj41KhR49GjR5cvX/Z0X4qJOnXqWCyWc+fOeboj\nxUS1atWMRmNcXFxmZqZne5KWlubv7+/ZPngEOVjYkIPqIgdVRw6qixz0OHKwiKpRo4aPj8/5\n8+dNJpOn++It/Pz8qlatmpqaeu3aNU/3xYuUL18+NDT05s2bDx488HRfijly0OEWyEGPIAfd\njxz0CHLQbWznYHG+gvDJJ588deqUMyOgK1as+PnnnydPnty9e3cVO+a1Dh48+Pnnn3fr1u0f\n//iHp/tSHNy6deu1116rX7/+tm3bPN2XYqJ///4ajSYuLs7THSkmJk6cePHixdjY2HLlynm2\nJ35+fp7tgKeQg4UNOaguclB15KC6yEGPIweLqNdee+3WrVuHDx8ODg72dF+8xfnz5999991n\nnnnmnXfe8XRfvMiCBQs2btz41VdfPfvss57uSzFHDjrcAjnoEeSg+5GDHkEOuo3tHCzOA4RC\niGrVqjkze2hoqBCiVKlS1atXV6lHXu3KlStCiKCgIJanKvR6vRDC19eX5akWjUaj0WhYnmrx\n9fUVQoSHh1eqVMnTffFe5GChQg6qixxUHTmoLnKwMCAHiyKDwSCEqFKlirT84QZpaWlCCH9/\nf1Z1d5IO/ZctW5bFDtchB4sictD9yEGPIAcLCa2nOwAAAAAAAAAAAADAfRggBAAAAAAAAAAA\nALyIxplbURd7ycnJKSkpJUqUCAwM9HRfioNHjx4lJib6+/tzjbwqsrOz4+PjDQZD2bJlPd2X\nYuLmzZtCiLCwME93pJhISEjIysoqV66cdBtAFEXkoLrIQXWRg6ojB9VFDhYD5KBHxMfHZ2dn\nV6hQQavlhGY3yczMvHPnjtFoLFWqlKf74kWSkpLS0tJCQ0P9/f093Rcgb+SgR5CD7kcOegQ5\nWEgwQAgAAAAAAAAAAAB4Ec5EAAAAAAAAAAAAALwIA4QAAAAAAAAAAACAF2GAMG9JSUmvv/56\n1apVfXx8wsLCRowYcevWLU93qii5f//++PHjq1Sp4uvrW61atRdeeGH//v3WFVjCDnvjjTc0\nGs2IESOsJ7I87bVhw4Y2bdoEBQWFhIS0a9cuNjbW+l2Wp13Onj07cODAChUqGAyGMmXK9OrV\n6+DBg9YVWJ5FEb+ak8hB1yEHVUEOqogcLJb41dzAdlbGxMRo8jJ16lQP9rmoU7JUWfnVZTQa\n81zmGo3m8uXLglUdhRWbAjcgB92PHHQ/crDw03u6A4VRZmZm+/btjx49GhkZ2bhx47i4uB9/\n/HH79u1HjhwJDQ31dO+KgMTExCZNmly+fLlbt26DBw++ePHi8uXLN23adPDgwfr16wuWsBMO\nHz789ddf55jI8rTXwoULhw0bVqNGjddffz09PX3RokXPPffcjh07nnnmGcHytNOpU6datGhh\nMBjGjBlTs2bNK1euzJ49u2XLlps2bWrXrp1geRZN/GpOIgddhxxUBTmoInKwWOJXc4MCszIp\nKUkI8dJLL1WuXNl6xpYtW3qmx8VCgUuVlV91b731VlZWVo6Jy5cvv337dnBwsGBVR6HEpsAN\nyEGPIAfdjxwsAizIZebMmUKI6dOny1OWL18uhHjzzTc92Ksi5JVXXhFCfPPNN/KUlStXCiG6\ndu0qvWQJOyYrK6thw4ZPPvmkEGL48OHydJanXeLj4wMDAxs1apSamipNuXDhQmBg4Msvvyy9\nZHnaJTo6Wgixfft2ecrx48eFEG3btpVesjyLIn41J5GDLkIOqoIcVBc5WCzxq7lBgVk5efJk\nIcShQ4c81MHiqcClysrvBocPH9bpdFOnTpVesqqjEGJT4AbkoEeQg4UBOVjYMECYh4YNGwYF\nBaWnp1tPrFmzZtmyZc1ms6d6VYS8/vrr7du3z8zMlKeYzWY/P78qVapIL1nCjpk2bZpGo9mw\nYUOOA6MsT7vMmDFDCLFx40bridYLiuVpl2bNmgkhrP/eLRZLcHBw1apVpTLLsyjiV3MSOegi\n5KAqyEF1kYPFEr+aGxSYla+99poQ4sKFC57pXzFV4FJl5Xe17OzsRo0a1a1bNyMjQ5rCqo5C\niE2BG5CDHkEOehw5WAjxDMKc0tPTT5w48fTTT/v6+lpPb9WqVUJCwqVLlzzVsSLkX//619at\nWw0GgzwlMzMzOzu7UqVKgiXsqLi4uA8//HD06NHNmze3ns7ytNfWrVv9/Pyku35lZGQkJycL\nITQajfQuy9NederUEUKcO3dOnnL37t3U1NS6desKlmfRxK/mPHLQFchBtZCD6iIHix9+Nfew\nnZXiP/ebCgkJMZlM169fv3v3rmc6WrzYXqqs/G7wzTffHDt27Ntvv/Xx8ZGmsKqjsGFT4B7k\noEeQgx5HDhZCDBDmdO3aNZPJFB4enmN6lSpVhBAXL170RKeKvDlz5mRlZUVFRQmWsKNGjRoV\nEhLy6aef5pjO8rTX2bNnq1WrdvLkyVatWvn5+ZUoUaJmzZoxMTHSuyxPe02YMCE0NHTAgAF7\n9uy5ffv2sWPHoqKijEajdIsAlmdRxK/mCuSg88hBtZCD6iIHix9+NU+xzkohxIMHD4QQX375\nZZkyZcLDw8uUKVO7du2ffvrJo30s8mwvVVZ+V0tLS/vkk0/at2/ftm1beSKrOgobNgWeQg66\nATnoWeRg4aT3dAcKnZSUFCFEQEBAjumBgYHyu7DLzp0733rrrVatWo0ePVqwhB0SExOzbdu2\nFStWlChRQjqxQsbytFdiYqIQolu3btHR0ePGjbtx48YXX3wxdOhQHx+f6Oholqe96tat+8cf\nf/Tu3fvZZ5+VplSuXHnr1q3SLddYnkURv5rqyEHnkYMqIgfVRQ4WP/xqHpEjK8V/TidfunTp\n22+/XbFixTNnzsyePbt///4pKSmjRo3yaGeLMNtLlZXf1WbNmnXnzh3pDBIZqzoKGzYFHkEO\nugc56FnkYOHEAGHe5PssySwWS57TYdvSpUuHDh1ar169NWvW6PX/Xd9YwsolJCS8+eab3bt3\nj4yMzK8Oy1O5zMzMK1euLFq0aNCgQdKUvn371qpV68033+zXr580heWp3JkzZ7p165adnf3F\nF1/UqlUrISFh5syZXbp0WbFiRYcOHaQ6LM+iiF9NLeSg88hBdZGD6iIHiyt+NXfKMyvfe++9\nMWPGdO7cWT5ON2DAgMaNG7/zzjvSOQ2e628RZnupSlNY+V3k0aNHn3/+eevWreUTSiSs6iic\n2BS4EznoNuSgB5GDhRa3GM0pODhY5HVSgPSAlqCgIA/0qWiyWCyTJ0+Ojo6OiIiIjY0tWbKk\nNJ0lbK/XXnstMzNz9uzZeb7L8rRXYGCgTqfr06ePPKVChQpdunS5ffv26dOnWZ72GjZsWHx8\n/B9//PHGG29079592LBhBw8eDAwMHDJkSFZWFsuzKOJXUws5qBZyUF3koLrIweKHX82d8stK\nIUS7du0iIyOtz+J//PHHu3btmpiYePz4cU90tjiwvVRZ+V3q119/vXv37vDhw3NMZ1VHYcOm\nwJ3IQTcjBz2IHCy0GCDMqXLlynq9/sqVKzmmx8XFCSEee+wxT3Sq6LFYLCNGjJgyZcrYsWPX\nr19vvQ1lCdtlw4YNy5YtGzdunFarvX79+vXr12/evCmEePjw4fXr15OTk1me9qpataoQwvpB\n0EKIMmXKCCFSUlJYnnZJTU09cOBAs2bNKlasKE/09/dv3779jRs3zp8/z/IsivjVVEEOqoUc\nVB05qCJysFjiV3MbG1mZn7JlywohUlNTXd87LyIvVVZ+l1q+fLlOp+vRo4eSyqzq8CA2BW5D\nDhYS5KB7kIOFlwW5NGvWzN/fPy0tTZ5iMpnCwsLCw8M92Kui5bXXXhNCfPLJJ3m+yxJW7s03\n37Tx9zthwgQLy9NOY8aMEULs37/femKnTp2EEFevXrWwPO2RkJAghGjRokWO6S+++KIQ4vDh\nwxaWZ9HEr+Y8clAt5KDqyEEVkYPFFb+ae9jIypSUlG+//fann37KMb1Vq1ZCiLi4OLd0sLhR\nslRZ+V0kIyMjICCgadOmOaazqqNwYlPgHuSgm5GDHkQOFmYMEOZh7ty5QogPPvhAnvLdd98J\nIT788EMP9qoIWblypRDitddey68CS1i506dPr/tfy5YtE0J06tRp3bp1Z86csbA87XT48GGN\nRtOuXbv09HRpyqFDh7RabYMGDaSXLE+7VKtWzWAwnDt3Tp5y//79kiVLBgcHS0uY5VkU8as5\niRxUETmoOnJQXeRgscSv5ga2s9JkMlWsWDEwMFDazktWr14thGjUqJG7+ljcKFmqrPwucuzY\nMSHE8OHDc0xnVUfhxKbADchB9yMHPYgcLMw0FovFxnnZ3slkMkVEROzevbtnz56NGzc+c+bM\n8uXL69Wrt3//fn9/f0/3rgioWbNmXFzc2LFjcy+uCRMmhIaGsoSdkZSUFBoaOnz48Pnz50tT\nWJ72Gjdu3JdfftmwYcNevXpdv359yZIlJpNp06ZNbdu2FSxPO61atapPnz6hoaGjR4+uUaPG\nrVu35s+ff+nSpdmzZ7/88suC5Vk08as5iRx0KXLQeeSgisjBYolfzQ0KzMq1a9e+8MIL/v7+\nUVFRYWFhJ0+eXL16dVBQ0I4dOxo3buyRPhcDBS5VVn4XWb58eVRU1NSpUydNmpTjLVZ1FEJs\nCtyAHPQIctBTyMFCzdMjlIVUSkrK+PHjq1SpYjAYKlas+Morr9y7d8/TnSoybKxvly5dkuqw\nhB12//59keucC5anXcxm8/fff//kk08ajcYSJUp07dr14MGD1hVYnnbZt2/fCy+8UKZMGb1e\nHxoa2qFDh99++826AsuzKOJXcwY56FLkoPPIQXWRg8USv5qrKcnKffv2denSJSQkRK/Xh4WF\nDRo06MKFCx7tdXFQ4FJl5XcF6QKUr776Ks93WdVRCLEpcDVy0FPIQY8gBwszriAEAAAAAAAA\nAAAAvIjW0x0AAAAAAAAAAAAA4D4MEAIAAAAAAAAAAABehAFCAAAAAAAAAAAAwIswQAgAAAAA\nAAAAAAB4EQYIAQAAAAAAAAAAAC/CACEAAAAAAAAAAADgRRggBAAAAAAAAAAAALwIA4QAAAAA\nAAAAAACAF2GAECjavvzyS41GM2LECE93BAAADyAHAQDejBwEAHgzchBwEgOEQGE0bdo0jQKd\nO3f2dE8BAFAfOQgA8GbkIADAm5GDgNvoPd0BAHkoVapU7dq1raecP3/eYrFUqVLFaDTKE8PD\nw8eOHTt69Gi9nr9lAEDxQQ4CALwZOQgA8GbkIOA2GovF4uk+ACiY0WjMyMg4dOhQ06ZNPd0X\nAADcjRwEAHgzchAA4M3IQcBFuMUoAAAAAAAAAAAA4EUYIASKthwP4/3mm280Gs3kyZPv3r07\nbNiwChUqBAQENGnSZP369UKIBw8ejBkzJjw83NfXt3bt2vPmzcvR2t69eyMjI8uXL+/j41O+\nfPnIyMh9+/a5+ysBAKAYOQgA8GbkIADAm5GDgJMYIASKFelO3ElJSV26dNm7d2/Lli0rV658\n9OjR3r17Hzt2rFOnTqtWrWrcuHG9evXOnz8/cuTIdevWyfPOnTu3devWq1evfuKJJwYPHly3\nbt1Vq1a1atVqwYIFnvtCAADYgRwEAHgzchAA4M3IQcBeDBACxYr0VN7FixfXrl371KlTK1as\nOHnyZIcOHbKysrp37x4aGnrhwoU1a9YcOXJk6NChQohFixZJM547d27MmDF6vX7Tpk3btm2b\nN2/ejh07fv/9d71e/8orr1y9etWT3woAAGXIQQCANyMHAQDejBwE7MUAIVCsaDQaIcSjR4++\n/PJLKRR1Ot3AgQOFELdu3frqq6/8/f2lmkOGDBFCnDlzRno5e/bsrKyskSNHdujQQW6tc+fO\ngwcPTk9PX7hwoXu/BwAAjiAHAQDejBwEAHgzchCwFwOEQDHUoEGD0qVLyy8rVqwohChfvnzt\n2rVzTExJSZFebt++XQjRvXv3HE116dJFCLFr1y4XdxkAANWQgwAAb0YOAgC8GTkIKKf3dAcA\nqK9SpUrWL3U6nRAiLCws90Sz2Sy9vHz5shBi9uzZS5cuta529+5dIcTFixdd2F0AAFRFDgIA\nvBk5CADwZuQgoBwDhEAxZDAYck+UrqzPk8ViSUtLE0JYP5vXmnxCDQAAhR85CADwZuQgAMCb\nkYOActxiFIDQaDQBAQFCiCNHjljyIp0vAwBAsUQOAgC8GTkIAPBm5CC8GQOEAIQQonr16kKI\nK1eueLojAAB4ADkIAPBm5CAAwJuRg/BaDBACEEKIiIgIIcTPP/+cY/q5c+c2bNjw6NEjT3QK\nAAA3IQcBAN6MHAQAeDNyEF6LAUIAQggxevRog8GwYsWKZcuWyRMTEhKioqK6du26cuVKD/YN\nAABXIwcBAN6MHAQAeDNyEF6LAUIAQghRt27db775xmQyRUdHt2nTZtiwYc8//3y1atX+/PPP\n/v37R0dHe7qDAAC4EDkIAPBm5CAAwJuRg/Baek93AEBhMWrUqPr163/xxRd79+7dt2+fv79/\no0aNhgwZMmzYMK2WkwkAAMUcOQgA8GbkIADAm5GD8E4ai8Xi6T4AAAAAAAAAAAAAcBNGvwEA\nAAAAAAAAAAAvwgAhAAAAAAAAAAAA4EUYIAQAAAAAAAAAAAC8CAOEAAAAAAAAAAAAgBdhgBAA\nAAAAAAAAAADwIgwQAgAAAAAAAAAAAF6EAUIAAAAAAAAAAADAizBACAAAAAAAAAAAAHgRBggB\nAAAAAAAAAAAAL8IAIQAAAAAAAAAAAOBFGCAEAAAAAAAAAAAAvAgDhAAAAAAAAAAAAIAXYYAQ\nAAAAAAAAAAAA8CIMEAIAAAAAAAAAAABehAFCAAAAAAAAAAAAwIswQAgAAAAAAAAAAAB4EQYI\nAQAAAAAAAAAAAC/CACEAAAAAAAAAAADgRRggBAAAAAAAAAAAALwIA4QAAAAAAAAAAACAF2GA\nEAAAAAAAAAAAAPAiDBACAAAAAAAAAAAAXoQBQgAAAAAAAAAAAMCLMEAIAAAAAAAAAAAAeBEG\nCAGlZs2apbEyd+5cx9qxWCyHDx/+6KOPevfu/cQTT5QuXdpoNBoMhpCQkPDw8DZt2owePfqX\nX35JTk52oPHr16/Pnj07Ojq6YcOGpUqV8vX19fX1LV26dJ06dXr37v3JJ5+cOHEiv3mHDx8u\nf7sZM2Y49u169+4tNzJnzhx5+pgxYzT5CwgIqFixYr169bp37z5lypRNmzY9evTIsQ4AANwg\nx1a9S5cu9rZgsViqV69u3cj69euVz65WKMucCVCZ7bBT4uTJk05+EQCAWm7cuPHdd98NGDCg\ncePGZcqUMRqNer0+ODj4scce69y58/vvv79v3z6LxaKkKeUB4e/vHxYW9tRTT7388surVq3K\nysqy3fLZs2fleTt06FBgT9TaG7X+RqtXr1ayEP7v//5Pp9PJX3PHjh351UxNTf3xxx9feuml\nOnXqhISEGAyG0NDQmjVrRkZGfvXVV3fv3lXycQAAZxTao5e22cju55577t133929e7fZbFbS\nlOuym91GFC4WAMrUq1fP+m+nSZMmDjSyevXqBg0aKPnbDAwM/Oc///nw4UOFLZ86dapv374a\njabAlps0abJq1arcLRw8eFCuU7t2bQe+XUJCgsFgkPufnJwsv/XKK6/Ys2USISEhr7766pkz\nZxzoBgDA1XJs1XU63Y0bN+xqYdeuXTm2/OvWrVM+uyqhLHE+QGX2hl1uJ06ccPiLAADUcvLk\nSYXRUKtWrSVLlphMJtsNOhwQ5cqV++GHH2y0fObMGbly+/btbXdDxb1R629kOxwlv/76q16v\nl+r7+vpu2rQpz2pms/mrr74KDQ210Tej0Thx4sSMjIwCPxQA4JjCfPQyP3/99VdkZKSSlmvU\nqBETE5OdnW27QddlN7uNKFQYIAQU2bt3r7QJDg8PNxqNUvno0aPKWzCbza+++qq9W/xGjRrF\nx8fbbjk7O3vcuHFarX0XBEdGRiYmJuZoqlGjRnKF3bt327uUPv/8c3n2kSNHWr/lWPjp9fr3\n338/KyvL3p4AAFwq91Z92rRpdrUwYsSIHC0oHyB0PpQlKgaohD09ACjqMjMzX375ZSWHF609\n8cQTtk9tdDIgoqOj8xuDVDhAqPreqF0DhBs3bvTx8ZEqGwyG/BI/KyurX79+CvvWtm3b9PR0\n258LALBXkTh6mUNGRsbIkSPtze7atWufPHnSRrOuy252G1Go6J1cHQEv8f3330uFPn36xMXF\nrV27Vggxd+7c7777TmELU6dO/frrr+WXTZs2jY6Obt68ec2aNYODg7VabUpKysWLF/fv3794\n8WL5Yr5jx4717dt3x44d+SVocnLyiy++uGnTJuuJdevW7datW+3atcuWLWs0Gu/fv3/69OnY\n2FhpzE+qs3Llyri4uK1bt5YqVUqecdSoUaNHj5bK8+fPb9WqlcJvJ1mwYIF1U/lVmzlzZkRE\nhPWU1NTU+/fvX79+ff/+/bt27bp8+bI0PTs7e8qUKb///vumTZtKlixpV2cAAG7g5+cn3RR6\n0aJFEyZMUDhXenr6L7/8IoTw9fXNyMiw90OdD2WhdoDm9tFHH9kbo0KIatWq2TsLAEAt9+7d\ni4yM3Llzp/XEevXqde7cuVatWlI03Llz5+bNm9u3b4+NjZUj7NSpU82bN1+2bFnnzp0L/JTc\ne0Myi8WSkpJy+fLlvXv3rlixIjExUZr+008/VahQwfp0THu5aG9Uid27d/fq1SszM1MIodfr\nly1b1r179zxrTpo0afny5VJZq9X269evX79+9erVCwgIePDgwV9//bVo0aLffvtNqhAbGztx\n4sR//etfDncMAJBbkTh6aS0+Pr5Xr15//PGH9UQl2X3u3LkWLVosXbq0W7duBS4W12U3u43w\nPI8OTwJFQ2JionyBwt69e3/88UepHBwcnJqaqqSFa9eu6XQ6aS6DwbBgwQLb9RctWiTfq1MI\nERMTk2c1s9nctWtX67/o1q1bHzx4ML9m//777759+1rXj4iIsD6fJSUlJSgoSHrL39//wYMH\nSr6dZN++fXKzTz31VI53lZ9hajabN23a1K5dO+t+Nm/ePC0tTXlnAAAuJW/VmzVrFhwcLJUP\nHDigcPZly5ZJs1jvCym8gtD5ULa4IEAl9t5vDQBQeGRlZbVs2dJ6U9+lS5e//vorv/pJSUkT\nJ06UI0kI4evre/jw4TwrOxAQSUlJAwYMkOfS6/WnTp3KXU3JFYSu2BtV+I0OHjwo72Bqtdqf\nfvopv5rnz5+XDysHBwfHxsbmWU0+SUgI4ePjc+fOHdvfBQCgXFE5einLyMh4+umnrWt2797d\ndna/8847/v7+1lGS326s67Kb3UYUKo6fBQZ4j0WLFqWnpwshwsPDW7Ro0aNHD19fXyFEcnKy\nfIZjgS2YTCapPGHChKFDh9quP2jQoBkzZsgv8zvfZNq0ab///rv88v3339+5c+dTTz2VX7M1\natT4+eefv//+e/m6+x07dlifGRQYGBgdHS2VHz58uHTpUtv9tPbDDz/IZRuXDxZIo9F06tRp\n69at33zzjXwjmv379xe40AAA7mexWDp16iSVY2JiFM4lj+q1bt3a3k90PpSFCwIUAFDUvf32\n2/ItrLVa7ezZs3///ff69evnV79EiRKffvrpgQMHKlQ7J2IbAAAgAElEQVSoIE3JyMjo27dv\nUlKSKv0pUaLEjz/+KB9Rzc7Otr5fi11ctDdaoBMnTnTu3DklJUUIodFoFixY8NJLL+VX+fvv\nvzebzVL566+/btOmTZ7VRo0a1atXL6mcmZm5ZcsWx/oGAMitqBy9lL3++uvyVYw6nW7evHnr\n1q2znd0ff/zxwYMHK1WqJE3JzMzs27fvvXv38v2S9lAxuwG3YYAQKNjcuXOlQlRUlEajKVGi\nRI8ePXK8ZdvJkyfl8pAhQ5TMMmbMmMqVK2s0mqpVq1avXv3Bgwc5Kty8efODDz6QX06ePPnD\nDz9U0vKoUaOmTp0qv/zkk0/S0tKs35XL1mN+tqWlpcmHZYODg6OiohTOmB+NRjNmzJiFCxfK\n/w38/PPPe/bscbJZAIC60tPTe/bsKZWXLVum5H6h8fHxmzdvFkJoNJr27dvb+4nOh7KLAhQA\nUHSdPHnyyy+/lF/OnTv35ZdfVjJjgwYNdu/eHRISIr28dOnSRx99pFavNBqNdWDluDObcq7Y\nGy3QhQsXOnbsKN1pTaPRfP/994MHD7ZRf9euXVIhJCSkf//+Nmq++OKLcvnvv/+2t2MAgPwU\noaOXQoijR49aP2MiJiYm93Pu8/TEE0/s2bNHfpLR1atXp0yZomRGJdTKbsBtGCAECrBz5075\nti3yjoq8b3PgwIG//vqrwEbi4+Plcrly5ZR8rk6ni42NffDgwaVLl9asWVOiRIkcFb788kvp\nQQ5CiGbNmr333ntKmpVMnDixYcOGoaGhgwYNmj9/vvUNARo1aiRfnn/o0CEl304IsXz58tTU\nVKk8cODAgIAA5Z2xITo6ety4cfLL8ePHq9IsAEAt6enp3bp10+v1Qoj79+9LjwO07aeffsrO\nzhZCNG3a1PZj/HJTJZRdFKAAgKJr+vTplv887igyMnL48OHK561Ro8bs2bPll3Pnzr1//75a\nHXvqqaekC+WFENeuXXOsEVfsjdp29erV9u3by5/71VdfjRw50vYsv/7669GjR7dt2/brr79K\n/1fkJywsTC478CRjAEB+itDRSyHEtGnT5PJLL71kfW/PAlWpUmXOnDnyy/nz56t1EaFQKbsB\nt2GAECiAHBiNGjV68sknpXLnzp3lO8nMmzevwEasA/L8+fMKP7patWryAxtyyMzMtE6yjz/+\nWL5LuBJarXbDhg0JCQmLFi3q0aOHfCdPiQMXEap1f9HcJk2aJC+9AwcOHD58WMXGAQBOys7O\nDg0NlR8cq+Quo/L9RaOiouQ72CjkfCi7NEABAEVRfHy8/HBcjUYzffp0e1uIjo5u3LixVE5N\nTVV+IxYl5Gf9SvfqdIDqe6O23b59u3379vIh0RkzZowdO7bAucLDwxs1atSuXbuIiAjbNW/e\nvCmXK1eu7EAPAQB5KkJHL2/evLly5Uq52ieffKK8WUmfPn3kCyQePnyo8G40Cjmf3YDbMEAI\n2HL37t1ff/1VKlvfelun0w0cOFAqL1my5NGjR7bbadq0qVx+//337T0emtvBgweTk5Olcp06\ndRy4RVv58uXzOzEzKipK/p9gyZIlBZ6Vefbs2X379knlFi1a2LjZtwNKlixpfVuD1atXq9g4\nAMBJ0uOC5EzctGnT7du3bdQ/efLkn3/+KYTQ6XRRUVHy5RpKqBLKLg1QAEBRtGPHDunSdiFE\np06datSo4UAjY8aMkcsq3k8sIyNDvh4xNDTUsUZU3xu14d69ex06dJDv/PnRRx+pfhsY+Uwj\nrVbbsWNHdRsHAG9WhI5ebtu2TX5ybdeuXatWrepA96zPX5GegqEKVbIbcBsGCAFbFi5cKA2P\n+fj4REdHW781bNgwqZCUlPTzzz/bbmfAgAHyhfC//fZb165d4+LinOnYzp075bL88Fu1+Pv7\ny0daExMTV61aZbu+9Rmyo0ePVrczQohOnTrJ5b1796rePgDAYdIIX2RkpHSOpMlkWrx4sY36\nixYtkgodO3YMCwuza4BQlVB2aYACAIqi2NhYudy9e3fHGnn++efl8r59+7KyspzslcR68FK+\ndN5equ+N5ic5Ofm55547deqU9PLdd9999913VWzfZDK98847GzZskF4OHjy4WrVqKrYPAF6u\nCB29tM5uh1vu1q2bRqORyvv371frttWqZDfgNgwQAvmyWCzyncp69OiR4zlJtWvXbtGihVQu\n8IZmVapUmTx5svxy8+bNtWvXfv755xcuXHj16lUH+nb06FG5LHdDRda3CZ0/f76NmtnZ2fKx\n4NDQ0L59+6remTZt2sjls2fPqt4+AMBJfn5+UVFRUlkeAszNZDL99NNPUlnhQ+9laoWyqwMU\nAFDkHDp0SC47HA2lS5euXbu2VH748KE8SOaMrKws671IhwcvVd8bzdPDhw+7det25MgR6eX4\n8eM/+ugj55s1mUzx8fF//vnnrFmzGjZs+Omnn0rTIyIivv76a+fbBwDIitDRS1VaDg0Nffzx\nx6Vyenp6ocpuwG0YIATytW3btgsXLkjlPI9jyvc327t37+nTp223NmnSpJkzZ8r32jaZTOvX\nrx82bFiVKlUqV64cHR397bffHj9+XL5A3ra7d+/K5ccee0zJLHapV6/eM888I5W3b99+6dKl\n/GquX79efojxoEGD/Pz8VO9MQECAfDfz27dvq3U2LgBARXImnjp1Kr/nxW7dulV6blBISEjP\nnj3tal+tUHZ1gMp69eqlsUdgYKDrOgMAsOHOnTtyWR7kc0DdunXlckJCglN9EuL+/ft9+vQ5\nePCg9LJUqVL2nltjTd290dwyMjJeeOGFPXv2SC+fe+65GTNmONxbycSJEzUajV6vL1++fKNG\njcaOHXvy5EkhRLly5WbMmLF582aiEwBUV1SOXlpntzMt16pVK882HeNAdrPbCI9jgBDIl/wc\n3QoVKnTu3Dl3hX79+vn7+0tlJQ+zHTdu3N69e5977rkc069du7Z06dJXXnmlYcOGoaGhffr0\niYmJSUxMtNHUvXv35LKL7mct3yzUYrEsWLAgv2rW9xe1vu5QXaVLl5bLaWlpLvoUAIDDmjdv\nLh8YjYmJybOO/NCgqKgoo9FoV/tqhbIbAhQAULTI0aDX65057mYdK9Zxk8ONGzfO5u/QoUMr\nV64cO3ZstWrV1q5dK82i0Whmz57tZGypuDeaQ3Z2dr9+/bZs2SJP2bZt27Zt25zpbZ7Kli37\n4Ycfnjt3bvz48TwPGABcpEgcvZRbNhgMAQEBDrdTsmTJ3G3m5qnsBtyAAUIgb/Hx8WvWrJHK\nAwcOlM+dsRYcHNy7d2+pvHjxYiX3qm7WrNnGjRuPHTs2ceLEPM9OTU5OXrly5dChQ8PDw19+\n+eX8bvZtPUgmHw9VV9++feWYjImJyfPkoJs3b8pPgGjdurX1ObPqsj6OLN/IGwBQqMhnRy5d\nujQzMzPHuykpKatXr85RUyEVQ9kNAQoAKEJMJtPDhw+lsjNHGIUQ0uN4JcnJyflVGzNmTN38\nPf3003369Jk1a9aDBw+k+gaD4dtvv+3Xr58zfZOotTeaw4QJE+SYlmRnZ/fp0+fcuXPO99la\nQkLC5MmTK1WqNGLECOmeBAAAVyjkRy9NJlN6eroqzVqfGJSamppfNQ9mN+BqnHIF5G3BggXy\nrSxtHMccOnTokiVLhBCJiYkrVqzo37+/ksYbNmwoPT7hxo0be/bs2bdv3969e48fP2499PXw\n4cPvvvtuwYIFn3/++ZgxY3K0UKJECbmclJRkfYGdWoxG46BBg7788kshxPXr1zdu3Jj7qb+L\nFi0ymUxS2XWXD4r/PYuH47kAUDgNGjRo0qRJ2dnZiYmJ69ati4yMtH53xYoV0hHYOnXqNGvW\nzK6WVQxlNwSoZPr06a1bt1ZeP89RTwCAq+l0OqPRKB1nTE1NtVgsGo3GsaZSUlLksvVgoTPa\ntm372WefPfXUU6q0JnF+bzSHixcvCiEMBsMXX3xx5cqVL774QgiRlJTUvXv3/fv353hssHIj\nR47s3Lmz2WxOTExMSEj4888/165dGx8fn5qa+sMPP6xYsWLVqlURERGONQ4AKFChPXqp0+kC\nAwOl8byUlBRnslse0hPqXeNoV3az2wiPY4AQyIPZbJ43b55UbtasmY0L4yIiIqpWrXr58mUh\nxNy5cxUOEMoqVqzYr18/6YyStLS0P/74Y8uWLWvXrj179qxUISMjY+zYsRaLZezYsdYzWl8C\nf/fu3Zo1a9r1uQqNGjVKGiAUQvzwww+5BwjlW4+WLl06x4Fgdd2/f18qBAQEMEAIAIVT+fLl\nO3fuvH79eiFETExMjlyQ7y9q7+WD6oayewJUCFGrVq3mzZu7qHEAgIpKliwpXY5mMpmSk5Ot\nj2baRd5nEWocZPzwww9ffPHFOnXqONmODQ7vjeZWqVKlX375pXnz5maz+dSpUxs3bhRC/P33\n3717996yZYuPj48D3atevXr16tWtp8yaNWvmzJnvvfdednb2gwcPevToceTIEevHRwEAXKEQ\nHr0sWbKkNEBoNpuTkpIcjl3r7Hb4jBaZA9nNbiM8jluMAnnYvHnzpUuXpPKBAwdsPBtWq9VK\nByKFELt27XLmJioBAQEdOnSYPn36mTNntm3bVr9+ffmt8ePHX7161bpyWFiYXP7zzz8d/lDb\n6tSp06ZNG6m8bt26hIQE63d37tz5999/S+UhQ4b4+vq6qBunT5+WLxypWrWqiz4FAOC8oUOH\nSoWNGzfGx8fL069evbpz504hhE6nGzhwoF1tqhvK7glQAEARUr58ebl85swZh9uxzp2KFSvm\nV23VqlWWfHz22WdytQsXLrh0dDAHu/ZGc4iIiDh69Kh0fFOr1S5dulQetNu1a5eKd5rx8fGZ\nOHGi/KTh1NTUiRMnqtU4AECJQnL00rrlEydOONzOqVOn5HKFChXyq1Y4sxtQBQOEQB7mzJnj\n2IzyJQ5Oateu3f79++VTSDIzM+W9IIn1zdl2796tyofmSd6dy8rKki/+kPzwww9SQaPRjBw5\n0nV92LFjh1xu0qSJ6z4IAOCk559/XrpvTHZ29v/93//J0xcvXmyxWIQQHTt2tN6XU0LdUHZb\ngAIAigrrm4Dt37/fsUZSU1PlCykCAwMff/xxBxoZN25cgwYNpPKSJUt+//13xzrjpAL3RnN4\n9dVXy5QpI78MCQlZu3atfCFmTEzM9OnTVeze0KFDGzVqJJXXrl1rfXc4AIA7efDopfVVd3/8\n8Ydjjdy/f1++8qFkyZKOje0VkuwGHMYAIZDTzZs3pdujOWDRokWZmZmqdMPf33/GjBnyyxw5\n2qpVK7n822+/WT/uQjmz2VxgncjISHlnTx4RFEI8ePBgxYoVUjkiIuKxxx5zoAMKrVq1Si63\nb9/edR8EAHCSwWCQb+wZExMjT1+8eLFUsPf+oqqHstsCFABQVLRo0UIur1271rFGNm3aJKdD\ns2bNHHtEkF6vnzNnjvwgpVGjRiUnJzvWHyfZ3hstUO3atZcuXarV/vuI0z//+U/rfTrntW3b\nViqYTKajR4+q2DIAwC6eOnr57LPPymX5+KS91qxZI5fbtm3r2IMMC092A45hgBDIaf78+fLj\ndleuXHlNAflBfXfv3lVxz+epp56SA8b6Rm1CiCeffLJSpUpS+cGDB/KzAJW7fv169erVJ0+e\nbH277dx8fHzkg7lnz56Vz8pZvnz5o0ePpPLo0aPt/XTljh49um3bNqns5+fXo0cP130WAMB5\nw4YNkwonTpw4fvy4EOLgwYPSXddCQkJ69uxpV2uqh7LbAhQAUFR06tRJr9dL5R07dpw+fdqB\nRqxPpuzTp4/DnWnevLl8d5br16+/9dZbDjflJBt7o0p06dJFvnDQYrEMGDDA9kheampqXFzc\n3r17bd/OVCLdrkBCHAOAZ3nk6GW7du38/f2l8uHDhx27AcD8+fPlcrdu3RxoQVJ4shtwAAOE\nwP8wm81yPFSuXLlXr16VFBg6dKifn580V46r6bOzsxctWjR27NgWLVo8/fTTdnXGZDJJN2QT\nQsixJ9FqtWPGjJFfTpky5ebNm3Y1PnLkyCtXrkyZMqVKlSrSc6Fs1JST/pdffpEKy5Ytkwpl\ny5Z94YUX7Ppo5cxms3Wsjho1KiQkxEWfBQBQRYMGDRo3biyVf/31V2EVGVFRUUajUXlTqoey\ncG+AAgCKhAoVKljv0UyYMMHeFvbt27dp0yapHBQUJF9M75hp06aVK1dOKs+bN8/6gQv2ctHe\nqELjx4+XHzz88OHDHj165Je5q1evDgoKqlmzZqtWrWbNmlVgy3fv3pXLoaGhDvQNAGCtyB29\nDAkJGTp0qPxy3LhxJpPJrpZXr169d+9eqRwWFlZ4shtwMwYIgf/x22+/Xbt2TSoPHDhQ4dXl\nwcHB8i7ljh075BtYCyH0ev2UKVNmzZq1f//+Q4cOxcbGKu+MHFRCiKpVq+Z4d+TIkUFBQVI5\nMTFxwIABGRkZClv+/PPPN2zYIJVLlChhO/tr1qzZrl07qfzLL79YLJb4+Phdu3ZJU4YNG2Yw\nGBR+rr0mT568fft2qezn5+fAvjoAwP3kXbXffvtNWN0p2t77i6oeyhK3BSgAoKh47bXX5PL6\n9evterR8Wlra8OHD5RugjRkzRk4Zx4SEhMycOVMqWyyWESNGPHz40LGmXLc3qtDcuXPlrLxx\n40aPHj3y/C7yqUVCiNWrV8sHmvOzZ88euVylShXH+gYAkBXFo5fjxo2TbwCwf//+Dz74QHmf\nb9y48Y9//EN++cYbb/j6+iqfPTcVsxtwMwYIgf8xZ84cuTxo0CDlM8qVLRaL9SXqQgj5rEkh\nxIgRI+7cuaOkwYyMjHfffVd++fzzz+eoEBoa+s0338gvd+zY0blzZyVPaP/000/ly/I0Gs3c\nuXPlKy3yI99E9Pr163v27Fm1apV0Yo5Go5EvoleX2WyeMGHC1KlT5Skff/xx+fLlXfFZAAB1\nRUdHS/tXx44d27179+XLl4UQderUsX5GvRKuCGXh3gAFABQJrVq1km+RLYT4xz/+sXDhQiUz\nJiUldezY8ezZs9LLxx577P3333e+P9HR0R07dpTKFy9enDRpksNNuWhvVCGj0bhq1aoKFSpI\nL48cOTJw4MDc43+VK1eWxwgvXLhge+Hv3Lnz0KFDUrl69erVq1d3rG8AAGtF7uhljRo1Pvro\nI/nl1KlT//nPfxZ4iokQIi4urlWrVrdv35ZeNm/e/NVXXy1wrgKpmN2AW1kA/MeVK1fk56i3\naNHCrnmzs7Pl3Z5y5cplZmbKbyUnJ1uPbFWtWnXLli22Wzt//rz143bDw8NTUlLyrJnjEvjy\n5cv/8MMPWVlZeVY+fvx4hw4drOu/9957Sr5dZmamfKX8mDFj5AsKn3vuOSWzWyyWV155Rf7Q\nVatW2a68c+fOli1bWvczOjpa4QcBANxA3qpXqVIlzwp9+/aVKkREREiFadOm5a4mH+ATQqxb\nt876LReFsswVAWpX2AEACpUHDx5Uq1ZN3oxrNJpBgwbdvHnTxiwrVqywvlQiMDDwwIEDedZ0\nICAuXLgg35dbq9Xu27cvz2pnzpyRW27fvn3uCi7aG7XrGx04cMD6HuMTJ07MXWfx4sVyBaPR\nuGbNmjybOnr0qPXX+eSTT2x/NABAoaJ49NJsNueo2axZs7179+bX4YcPH06dOjUgIECuX6pU\nqatXr+ZZ2XXZzW4jChW9APAf8+bNk+8MM3jwYLvm1el0/fv3//zzz4UQ8fHxa9askR9NHxQU\ntGLFivbt20sX0V++fLljx44NGzbs2bNnw4YNq1WrFhgYqNfr09LSbty4cerUqU2bNm3evFnu\niY+Pz/z58wMDA/P83AULFmg0miVLlkgvb9++PXz48PHjx3ft2rVJkybly5cPDAx88ODB6dOn\nt2/ffuDAAet533jjjSlTpij5dgaDYdiwYZ9++qkQYvny5YmJidL0UaNG2bWUJJcuXfrzzz9z\nTLx//35CQsLhw4c3b978119/Wb/Vq1ev3Nd/AAAKs2HDhkmPrZWevqDT6azPSFXCRaEsc3WA\nnjx50rHn5rZt29aBuQAATgoODt6xY0f79u3j4uKEEBaL5ccff1yxYkXnzp179Ojx+OOPlytX\nztfXNyEh4datWzt27FizZo314Jyfn9+6detUvPV0zZo133nnHel6RLPZPHz48GPHjjlwAzSX\n7o0q9PTTT8+dO1e+vn/atGl16tTJEe79+/ePiYnZtm2bECI9Pb1nz55dunSJiop68sknS5Qo\n8fDhw7Nnz65Zs2bp0qVZWVnSLDVr1nz99ded6RgAQFYUj15qNJrVq1dHRUWtX79emnLgwIGW\nLVvWqlXLOrvv3Llz69at2NjYrVu3Wt/5s3LlyuvXrw8PD3duyf2XA9nNbiM8z9MjlEBhkZWV\nFRYWJv1d+Pr63r9/394WTpw4If9lderUKce7O3bscOAOmSVLlty0aVOBH/3RRx/Zta8YEBAQ\nExNj17e7dOmSfCWHJCwsLL+TfXKzPjtGOZ1ON2XKFLPZbFdXAQCuVuAVhCaTqWLFivL2vHPn\nznlWy+8KQleHskzdAHUs7HKw95sCAFR048aN1q1b27vpbtiw4fHjx20069i1AhkZGXXq1JFn\nfOedd3LXKfAKQonqe6MOfKM333xTnsXHx2fXrl05Kty/f1/5CGtYWNjff/+t5HMBAMoVxaOX\n2dnZb731lsFgsKvP7dq1i4+Pt9Gs67Kb3UYUKjyDEPi3devW3bx5Uyr37NnTgdM36tWr16hR\nI6m8ZcuWS5cuWb/btm3bEydOjB8/3vpKdhtKlCjx6quvXrhwoVOnTgVWfvfdd8+dOzdgwACd\nTme7ptFo/H//7/9duHDB3qsxqlatmqMnw4cPl58GrDq9Xj9kyJCzZ8++9957Go3GRZ8CAHAR\nrVZr/dTAIUOG2DW7q0NZ5oYABQAUIWFhYbGxsQsXLpSfsGBb9erVZ86cefDgwQYNGqjeGR8f\nn++//15++dlnnx07dsyxply6N6rQZ5991rlzZ6mcmZnZq1cv6WJNWUhIyO7du9955x3bndRq\ntS+99NJff/1Vo0YNtfoGAJAUxaOXOp3us88+O336dL9+/XJc25Cnpk2b/v7779u2bStbtmyB\nle2lYnYD7sEtRoF/mzNnjly2PqZpl8GDB0vbfYvFMn/+/I8//tj63dKlS8+YMePDDz/cunXr\n9u3bT5069ffffyclJaWlpWk0mqCgoODg4OrVqzds2LBly5Zdu3a167SaKlWqLF68eMaMGatW\nrdq9e/epU6euXbuWmpqq0WhKlChRvnz5Jk2aPPvss5GRkSVKlHDs240aNWrjxo1SWavVjhgx\nwrF28uTr61umTJmyZcvWr1+/Y8eOHTt2dEVOAwDcZujQodK9qUNCQnr27GnXvG4IZZkbAhQA\nUIRoNJohQ4ZER0evW7du48aNR48evXTpUkpKSnZ2tlRBp9O1bt26efPmbdu27dChg5JjkQ5r\n06bN4MGDFy1aJITIzs4eNmzYoUOHHDtN06V7o0potdqlS5c2a9bs/PnzQoh79+517979jz/+\nsD4NyMfH5+OPP37jjTeWLVsWGxt7/Pjxe/fuJScn+/v7lyxZ8oknnmjZsmV0dHSVKlXU7RsA\nQFZEj17WrFlz2bJl//rXv1avXr1nz57Tp09fvXo1JSXFbDb7+/uXL1++Vq1azZs379atm3wi\nqYuomN2AG2gsFoun+wAAAAAAAFBImc3msLCw+Ph4IYRWq7169ar1nbQBAACAoohbjAIAAAAA\nAORLq9X27t1bKpvN5vnz53u2PwAAAIDzuIIQAAAAAADAlqNHjzZp0kQqh4aGnjlzRuFzCgEA\nAIDCiSsIAQAAAAAAbGncuHFERIRUvn///osvvvjw4UPPdgkAAABwBgOEAAAAAAAABZg5c6Ze\nr5fKu3btatKkydKlS+Pj47Ozs+/evXvixAnPdg8AAACwC7cYBQAAAAAAKNisWbPGjh2b51u1\na9c+e/asm/sDAAAAOIwrCAEAAAAAAAo2ZsyY77//3mg0erojAAAAgLO4ghAAAAAAAECpa9eu\nzZ49e/PmzVeuXHn06FGJEiXCw8M7deo0depUT3cNAAAAUIoBQgAAAAAAAAAAAMCLcItRAAAA\nAAAAAAAAwIswQAgAAAAAAAAAAAB4EQYIAQAAAAAAAAAAAC/CACEAAAAAAAAAAADgRRggBAAA\nAAAAAAAAALwIA4QAAAAAAAAAAACAF2GAEAAAAAAAAAAAAPAiDBACAAAAAAAAAAAAXoQBQgAA\nAAAAAAAAAMCLFOcBwp07d27dutVisXi6IwAAeAA5CADwZuQgAMCbkYMAgAJpinFOlC5d+t69\ne9nZ2TqdztN9AQDA3chBAIA3IwcBAN6MHAQAFKg4X0EIAAAAAAAAAAAAIAcGCAEAAAAAAAAA\nAAAvwgAhAAAAAAAAAAAA4EUYIAQAAAAAAAAAAAC8CAOEAAAAAAAAAAAAgBdhgBAAAAAAAAAA\nAADwIgwQAgAAAAAAAAAAAF6EAUIAAAAAAAAAAADAizBACAAAAAAAAAAAAHgRBggBAAAAAAAA\nAAAAL8IAIQAAAAAAAAAAAOBFGCAEAAAAAAAAAAAAvAgDhAAAAAAAAAAAAIAXYYAQAAAAAAAA\nAAAA8CIMEAIAAAAAAAAAAABehAFCAAAAAAAAAAAAwIswQAgAAAAAAAAAAAB4EQYIAQAAAAAA\nAAAAAC/CACEAAAAAAAAAAADgRRggBAAAAAAAAAAAALwIA4QAAAAAAAAAAACAF/HYAGFWVtY/\n//lPnU7XtGlTJfWTkpJef/31qlWr+vj4hIWFjRgx4tatW67uJAAALkIOAgC8GTkIAPBm5CAA\noDDQe+RTz5w5M2DAgAsXLiisn5mZ2b59+6NHj0ZGRjZu3DguLu7HH3/cvn37kSNHQkNDXdpV\nAABURw4CALwZOQgA8GbkIOB+lxMfNf9637jWVTND9O4AACAASURBVCe0q2E9/eaan858MdWx\nNjVCtNt1Wo3eAR7jgQHC5OTkJk2aPPHEE0ePHq1Xr56SWWbPnn306NHp06e//fbb0pTnnnuu\nX79+H3/88eeff+7KzgIAoDJyEADgzchBAIA3IwcBj8g2W+JTMlIyTNLLy4mPnvpyb3q2+Rlf\nv81POfF39ObvOSZoLOYth992vEE1MHIJ5TQWi8XNH5mYmPjJJ598+umnBoPBaDTWq1fv8OHD\ntmdp1KhRXFzcnTt3fH195YmPPfZYcnLy7du3NRpNnnOVLl363r172dnZOp1OzS8AAIATyEEA\ngDcjBwEA3owcBDzi77sPH/s0dlKHmlO71JJfCiFaBWXtSTF4sGMai3nLIRcMKOa9YchZhXFE\neOAKwpIlS9p1ekt6evqJEyfatm1rnYJCiFatWsXExFy6dKl69epq9xEAAFchBwEA3owcBAB4\nM3IQgDWLRtvh6by3CU6NHSq4KMwixLbWj+f3LsOHXsIzzyC0y7Vr10wmU3h4eI7pVapUEUJc\nvHjROgj//PNPk+nfVwpnZ2c7/+kvf7z4u8RS+b1rNGcazCb5pcGS5WvO+u/bGk2Os3j0ZrPR\nkplfa/6mTJ0w5/tZlkyDxazVF/CTBZgztPZcFKoXJj9LzgWl9fGxfmkQJmOuOgUKsGTl+XU0\nOp3W4COECBJ5LwqjMPv5+eaeHqATvkaj9ZRArUkrLEIIH2Hx0/73s7S+vnqDIVCbx6drDT66\n/21ECCG0Wn1AoFTU+wdodHqh1egDgv79po+v7n//CdP6+Gr/M0UfGCz9ylqjn9bgyfNNABRX\nhTkHJTnS0Aa9MPvln4NO0los/uYMe+cyWExG6+z+XxqtRqPN+3xbncXsb/O7+FmyDPmndqDO\nrNdqpbJemP1FlhBCY/DRaLVCCO1/CkIIjU5XwkdrffafzmIJ1JmFEDofX4Ne66+xCCH8/XyN\nPv+eRas3aH18A3Qag/Q/gUar8w8I0AuDVqM1GHRGo49W46/XCCH0AUFCq9FodVIOan19tT55\nRDAAeFDhzEG9xeRn+m8KGC1ZBpEzCo3mLL0l33wMFpkajVZ+aTCbjCLfPJJaM1jy2r3S6w1a\nS459ugCRpc2rcm5aYQm0ijN5Z00IYRSm3F8qBx+NJsCYR9j5CLNRY9b6GrW6/3nXqDH76rXS\nHlmA1qzTCI1Wo/cP1AlLoE7KLI0+8N87Yv/eNRNC5+evySdSdX7+0j6yLiBQjk6d0U/+Ftb7\negBQFBXOHAQ8RWcx+5sK2PH3N6Vr8zgorRG+Jb/bcOyXNbFCo83SGYRvGSHElYQHwq+0azrr\nrDzHDlW+4jD/cYTcw4caoWm365RqH43CoQgMEKakpAghAgICckwPDAyU35VFREQkJSWp8rlp\nmaazCam3H9pK03StT7rWeoKfKh8NkZ7P9DRnG5ZSRG8xGc0ZQjoubMoUwixEkp8pQyfMvuZM\nH7PJ35QeYHrkb8oIND2SBn2N5ky9OdvXnO1jzgrKfhhoSjeaM3zNWbkzSWf00xgM4t+DkX5C\nCI1Wq5MOvBoMOj9/eY9Xqzfo/PyFEFofH62v8T+zGLW+Rq2vryEwWGs0ag0+Oj9/na9RHxik\nDwi03u8F4CUKcw5KcqWhLfdFzi+C/5IXtgqjqOb/LT/Is5KPOcvXnC2ECPj/7N15nFTVmfDx\nc6uqq/cNugGbrZVVBEVwA2kEGhcwcZmYzJjNmVezubxZjBpNohPHLS4xn0l0ErO8iWZMNJmY\njMYlYW9AEGSRTYSmgQZ6offq2uvWff8obJru6q5Ty12q6vf98EmgOFX3YT6Tfuqc5zznhL2K\nphWoAUc4VCQCQrEpdnueFirQggWKKuwOIUSpXc2xKYUOUerQSvNySm3qiDylPNdemaMWFRcJ\nIRxFJUI5tXWmr9boKCxWbIqjuMTmzLXn5g2zyAsAUVkzD4YUu8txevbnyuaZ4FBzNyGEN/lP\nVx1hNT/cG/mDXVPzP94MZNO0QtVn18KRV/LUYM7HVVK7Fupfvs3RQqc2A9lseTaRawsX2hWn\nphbbQkqOUwhRmGNz2m15+bn5Nq00P6e4qKCwuKg8zx6ZuNlz82zO3FNbSBUlp6g4ku9suXmO\ngsLIhA4A9GNWHgSsSVVs/b+DRTXMgI6c4o6c4v6vVAa7Gq1aIIxqcNVQr0NKxcDyoSa0vpIh\n/YUZI20WaAYfqB25PXHA64sWLertPTV5WLt2bTA43B7M4XkC6hXPbXIHRif8CbCgflkkyjbS\nyzr3akLxKw6/o6jTEXuf6abyGXnhQGnQbRPhAtVv18KFqq8w5C1RPSUhT4HqK1R9ZUHXyIDr\nrNbG8kBvtN0rcVNstpySMueIkQXjz84fO75g/MSC8dXOkZV5o886vU8WQMYhD0LetN7GAa+U\nB11RRwohNpXPEHEtbatCqEIM2rJZqHptmsgP+0tDjWXB3pGB7hwtNDLoKgm6y4O95UFXechV\nHnRFNtY4CosdhYW2vPzIuqo9L9+Wk2Nz5jqKiux5BY6iYnt+vqOw2Jaba8/Ns+XlO4qKIwuy\njuISR1Exe2WALEQezCqXdca93hQWYu2I85N6aiS1eYXoEEIIRdNKVE+B6itQXXZNdWhqXjhQ\nEPI5tdCIYM+IgKsk5C5U/RXB7vJQb2mevSTH5sjJcRQW2QsKbDlOW16ePTfPUVisOByOwiJn\n2QhbXl5Ocak9v8BZPsKWm+coLqG+CECe8XkQyBLbSiabHUKyBpQMbZr69y336faw0/9NsTAz\npEGBsKSkRAzaESOE6OnpEUIUF59R83/ttdf6fh+5jDfh51YWOdfecdl/v73F3dzc92JAE75w\n9DUpt6oF1ehNuR7NFhQxVrJcqhIOR397j5A6uDKkKR5tyGuHe0VOCmpTmS6ySBoXn83py5Uq\nyznCamWwa4K3dYy/ozTkHhXoqgx0lQVdI4KusqBb6b8lY6jmbkUIIbRwONDVEejq6D10YMDf\nR5ZWc0rLc0dW5o4aUzBuYsH46rzRZ+VWjnaOGDnUKXkALM5SeVATWk/IpskdVhMSYpjEFC9V\nU3pFQp8WVrWw5tbsqswl3YP0ao7woNl4VD5NCYSHiVDThAgJm1fR/dvX/qKBBxAZYFZPQ/8/\ndjmKhBAnc8r6v7ipfEZxyDs60FEU8paG3BWB7pE93RWBnvJg9xh/x2h/p+ROGkdhcU5JaWRz\njLN8RG7FqNxRY3JKynJKy3JHVuaUlEb68gFkBivkwR719GxO07QBedCt2fpSjEuzh4dONwFN\n8Wk2LRwW2hnf+P3C5h86x/WE+yWOQTMFj2IPxZpspp0E5mUpd2nXvsEvhhR7SLF7ciuP5VaK\naHEWhzzlod4yt2tUZ3e+6hsR6CwPuSoD3eN8J0f5u3Ki3dyhOBz2/AJHYbEtJydSNXQUFeeU\nlDnLR9jzC+x5+c4RFY6SUmf5yJzikpyyEVxsAWQbs/JgxOJZ49UPjiX5IUC8XJrkWelRuDVb\nSFM0LSxUVQgREopbswshfJpte6AoR2gORfNqikhofSAthBV7X71Qx+ZCEb1YKKgXpps0KBBO\nmDDB4XAcOXJkwOv19fVCiClTpuj36LnjSufetlS/z7e4Xr8aDMf3w7jHF1KHKHNG+ENhTzDK\nPRaegOoPDfkslz8UOvNjXX419HFsLt/p35+KYVAIvf5QIBDSPr4iyxVQA6FwT0DVVDUyOXf5\nwyFN08Jalz/U7Q+HNa07EM9djhJCNntT7sim3ChHtzvDwbKQe6zv5Bh/5xh/x2h/xyRP0wRf\ni10mGfaFqYhwwB/o8Ac62t0NBweMsuXm5VeNy60cnV81rqh6cv64iXmjxuSdNTZyCCoAKyMP\nZrahsm04rHX7Bi4jBtSwO6CG/T5NVTVNdHlPDfB4vR7/qd3BWjgc9vu6Ah9/Zlj4fb7e4Kls\nEfb7XCERFooaFj2+YGTfcW8gFAoLbzDkC9v8YeFTNRHW/JrwCXuv5ohE51Ic2rAzKMnFXJcj\n3+UYG/WvHJpaGega4+8c5zt5See+imD3Wf72otCgo+sUEXK7Qm6Xt+lY9+7tUT/Knl+QN2pM\nbsWovLPG5VeNyxtTVTB2Qv7Y8Tml5TJBArAU8mBchkormia6vLJ9JD2+kHpmCbPbFxpqP2sf\nbzDsCw15Z6EnoPrV04FFJnHhgD8Y0nr7ZoiaFg4GhBDhUEiEw5qmdfs1TQ1p4bAqhCt4OoDe\noBYKh7Vw2BsSgbDwqapXVYSmCU3rUZW+2FVN9A6xwTemxIqULkeBy1FwNG/UgNcv69yrCK08\n2FsZ6Brt7ywOecpC7pHBniLVWxDyhVw9IVeP5CMcRcV5o87KqxpbdM7U4qkzSqadlzf6LCG3\nmQlAOjIxDwohPn3dok9fp+sTAIMcbPNMeXzNvUunPLJsat8fhRALioPrXRm7+aZ/c6ExxULR\nr15IpTAtpEGB0Ol0zp0797333vN4PAUFp87fCIfDa9euHT9+/IQJE8wNL4MV5dpFnL0a5fmZ\n8/NU00SXL9jtDYU1zRcKe4OqEKLLGwqo4XZ34KQ7EAiFO72hNnegxxcKquFuX6jHF9KE6PIG\nm11+T2DIufFgAVtOq7Os1XlGm0WOTUwpsU8pEucVaVNzfGcL13jFrXo9qtcT6u3xn2z1NB72\nt7UOt1rb70dz2O9zNxwcWDhUFGf5yLwxVfljqvLHTsivGl8668LCiecIAFZCHsxsw2TbkYVD\ndaiX6hfP8Dq9wZCqtXsCrb2BXr/a6w81ufzNnW6vP9TrCwRDoU5PsNMbbPGqJz2qN6T549lo\nFFJO7aTZXjL59VHzIi+WB3sneY6P9bWN9bdNdR+b6j7mDA9a4B60ZK16Pe4jh9xHDg143ebM\nzT9rbH7V+LwxVc4RI3MrxxSMm5BbMTrvrCr67AHLIg/GZZi0MqIgcyZrCegrnQZCYXdA7Stn\n+oJhb1CNzOOCqtbjC3X7gh6Pt7Xb6/IF272qPxgSQnR5gyE13BPQ/KrWPOic7ZiGKTcWqb4q\n38mx/vZqT9N438mzfO0Tfa3OcHCoc2VCva7eXlfvoY/a1q+OvJJTUlowcVLB+InO8pG5FaPy\nx4zNqxpXMG5C5DJgAOmOPAggJYwrFopTk3QqhWnBigVCn8/34YcfFhcXT5o0KfLKrbfe+uUv\nf/mpp5566KGHIq+88MILJ06c+MEPfmBemMhwiiLK83MSLnlqmuj0Bk/0+Lq9ocYu77Fu36F2\nz6F274etvS0uv2/odsk+wbDY26Xu7RJ/FUIIpxAjRxdXzZtYNm9a+eXV5XPGleTn2FWf19N4\n2Nd8wtfSFOhoC/W6Qu7eYFenr7XJ19Kkej3RIjsjykBHW6CjrWfvB32v5VaMKp97Wfnsi8vn\nXpp/1rjE/vkAkkEehGVF0mJlkXP6wNaI6E70+DyBcFOPr6U30Nzjb3b5Gzo8x7t9Pb5Qs8vf\n4gqEtRj9KJ05RVtLp20tnRb5o10RM5zec2095wVaFnbvsTcfCXS0xTgb5oztMv6ohUPFZs8b\nU5VbOapgfHXh2ZMLxlcXVk/KG13FZYeAKciD0EMC+1+Hooa1Ez3+bl+wyxs62umNbA/tDaid\nnqA3qLb2Bppd/hM9vl6/6o12fM4Avfa8jwrHf1Q4XoyYHXnFJrRqb8u5rsPT3MemuhsneU8o\nUdPlx68Fe7q7d23r3rWt/18qNlte1biSaecVnj2lsHpS8aRp+eOoIgDpgTwIQG+RYqHuZUJB\npTANKFqsdZmUW7t27VtvvRX5/dNPP11ZWXnLLbdE/njPPfeMHDly9+7ds2bNqq2tXbFiReR1\nVVUXL15cV1d3/fXXz5kzZ9++fa+88srMmTM3bdrUt3dmsMhZ26FQyG5nSzispdsX+uiku80d\naHMHjnX5jnX7jnR4Gzo8DR1emTmkEKI413HH5RO/d+XkQueQ/+/tb2v1Hm/0tTQF2k/2HvrI\n337S39rsOX40+uVh/Y4q7eMsH1F0ztTCsydHVkuLp5zrKCqO8l4A8SAPAhFqWGvp9Tf1+Bu7\nfPVtnsOdnsMd3oNtnoYOzzAHj/cpdNqXTa/81Pljrhqt2DtbQ25XsKsr0NkW7O7yt50MtJ/0\ntZzwtTSpPm+UNw/+/juoyugoKi6ecm7BhOrC6sn5Y8YWTKguGF/NGW5A8siDyB6RDaP17Z7D\nHd4PW3sPtLl3NbmaeuLrQCzKsV1QKmbkBy529lwSbnV0tfpbmjyNh/3tJwcOHZDdzkxZjuKS\nwomTiiZNKT1vdsn0mQUTzlb4nwZgBvIgYAV9R4zWTqlceWBQSs0yRlQKTz/s1H9QKbQIEwqE\nTzzxxP333x/1rw4cODB58uTBiVAI0dvb+4Mf/OCPf/zjiRMnRo0adcMNNzz88MMjRowY5kEk\nQqSjNndgT3PvzhM9u5td+1p6dzW5Bt9B1aeyyPmdJZNuu3R8SZ5sN7AWCnmbjnmOHfG3tniO\nH/G3NnubjnuPNwa7O/sN+vg3Z04pFZu98OzJJdPPK5o8vWT6eYVnT3EUFsX3zwNAHgRiCara\nwTb37mbX7uberY1dB056Dnd6goNvGP5YgdO+dErFJ2aMWnB2+bmjByYmf/tJX9NxT+NhX0uT\nv73Ve+yot+mYv7Ulcs3VQP0fMqgUaC8oLJx4TtE5U4omTSuaNLV42nnD5EFf8/Et/3Z9wO1x\nlpTXvLEh5r8ayB7kQWQ5Xyjc1OPb3+o+0eM/3OGpb/fUt3n2tfb2DD3v62O3KQvOLl8yeeQ1\n0ysvKAi4Ptrr+mif+/BBd0O9r7Up1OuK8p4hUpstJyd/3MTiKecWVk8qmjyt6OwpeWOqkv7H\nAYiNPAhkKsc9K9RwtGlmmjC0TCiEUCgTWoIJBULDkAiRGQ53ePe29G460vnuka7NR7pc/oHz\nxpGFzm/UVH91/oSKIW+rik31uHs+3N2x9d2O9zf1HtgXDva74WmIKaVisxVWTx69dHnpeReU\nnT9XcZxRpOxbGBXsCgFMQh5Exgiq2p5m15bG7rpDHTtO9Oxr6Q2Fo3+DPask95rplXPGli6d\nOnL6qOF2sQS7u7xNx/xtrd4Tjb6WJu/xRn9rs/tw/cDC4bDdGAXjq8tnX1w0eVrZBXOLzpna\nv7/Qe+zoxpuv6f8WsiFgMPIg0suJHl+kUri1sXtLY/euJpc6RLKL+MSMUT+7aebY0ry+V8IB\nv6+lydfa7D121HO0oXvfLvfhgyFXzxlvG3orjKOwaMTF8ytraisuX+Qo5OQYIO2RBwGLs2xB\nkYbCrEKBEEgnalj7oMn1zv6Tj62oH1AptCnKtFGFy6ZXXj2tcl51WXFu4jeMql5P146t3Xt2\nuA7u9xw55D3RqIX7HfUWbUppLygsu2BuxWULK2uW5FaOEf0XRj8eyc96wGDkQWSqTm/wpa3H\n//RB84aGzmFuMZwzrvSbC6s/df6Y/BzZ/wloquprbfIcPdyzb5dr/x5P42HviWPDlQz7La1G\nUmHZrDmVC5cWTjxnYB7sN56ECBiDPIi05gmoO0/01DV0bm3s3nasu749ygXzBU77Q1dNufPy\niQVDXzzha2lyH6nv2bvLfbje3XDAfbh+yMmdOJWnbDnOsgvmjq5dVjF/kXNERWr+PQAMRx4E\n0pcVaofGNxQKITiAx3gUCIG01O4OPLO24SfrD/f6o9xZmGNXLh5f9uXLxn9u7liHLdnbklSf\nz3viaO+BD7t2bevZt9t9uD4c+PjajMGLpIpSPHlaxfxFJdPP33n/7QM/izIhYCDyIDJei8v/\n6s6m1/e0rqlvH+oM0kKn/YaZo2+/fOL86vIEHqGpqvdEo6/5RM/+Pe6Gg+7D9e6Gg2eUDKPV\nC/PPGld67qzmVW8N+blUCgH9kQeRSRq7fCs+avvbvtY19R3t7jNWDMeW5j22fNrn51bZJC7K\nVT3unv173IcO9DYccH20z33kkOpxn/7rMy+bUGy2/KrxpTNnl11wUfG084omTVVstpT9kwDo\njDwIZBhTqoaKEOFnltfVXBAQwdijU/E8pskGo0AIpLFuX+gndYefXnNoqHsKq0fk3z5/4hcu\nGjumODdVD9VUtbd+f2/9R507tpxct+L0RRdD3FwYRWRfqj1n8eqdqYoKwGDkQWSPXr/6XmPX\nio/a/r6/bVeTK6CGB4+ZNLLghlmjr5pauWTKyGR2z2iq6j5yqPfAvu69H3Tv2tZ76ICmfrxZ\nZ9grDKOjUgjohjyIjKRp4u8fnfzqn3Yf7vD2f/3sEQVXT6+4+cKqBWeXy1QK+3hPNPYeOuA+\ndKDj/U1dO7eeSmrRMlpOafmIi+aVz7mkbNacwupJIp6nADAeeRDIeAfbPFMeX2PAgyJlwsjv\nd337jtbNq3V/HtNko1AgBNJety/0t72tdQ0db394csAsMcJpt/3LhWd9dd6ESyeWxTVXjEkL\nq54jDe2b6zre39S5fUvY7xNCulLIz3pAZ+RBZKeAGl5zsOO3W4/9cWdT1LbCcaV5180c/U+z\nxiyaNMKedJ99OBjo2bure/f2rp3vt22uE+EotUkp7JQEUo08iAzmD4UfX1n/zNpDg0+UGVXk\nXDKl4rrzRv3TrDG5jvga/gJdHW3rV7VtWNO+ef3pdvloxUJn2Yiy2ReVz73srGtusOflCQDW\nQx4Eso2uLYb9a4R9mt/63z2PfUenJ0aeyjRZbxQIgYxyoM29rr7jnf1t/7unxR8auEY5ujj3\nqqkVN10w5tpzRyW/JDqA6vNt+HRtsKsz7nfysx7QB3kQWe54t++PO5t+9/6J9491Rx0wtjTv\ns3OqPj937PlnFafkifU/+9GRP/xai9a/KIsmeyB1yIPIeCd7Aw+989ELmxrVcJSFnbNKch9d\nNu2LF41NYOoXcvW0b67r3r2je89O10f7tPCQvfL2vPzyiy4bs/TaissX2/Py+/7S13x8y79d\nH3B7uEwIMAt5EMhmufesCOhQLIxaJuzz7nWLPZ0tqX+owrqxjigQApnpaKf3R2sb/t+WYz3R\nTh+tKHR+8rxRX5s/8eLxpSl8aP0LPz7y+19roejnncZAmRBINfIgELHxcOerO5r+vKu5scsX\ndcC5o4vuvHziZ+dUleXnJP+4lTUzkv0ImuyBVCAPIkvsa+n95ebGN/ed/LC1d/DfTq4o+NYV\n59x66TinPcHrA1Wf13VgX+f7mzq2bOze+8Hp6d6ZJ8fYnLmjrrhyzJWfGHHpAsVm8x47uvHm\na/r+lqQGGI88CCBi9EOrW3ujnDmXmOFrhBEpv7OQGqF+KBACmcwXCv9h+4ln1zZ80OSKOqB2\nysj/W1O9bPqoHHvKGgqTWhilTAikDnkQGGB/q/sXm4/+bW/0JdQCp/2Oyyd+/8rJxbmO5J+V\ngjKhIC0CSSEPItvsON7z2u6WVQfaNh3pCp3ZUzihPP9bV5z9+TlVIwudyTxC9Xl79n7QtXNr\n5/Yt3Xs/iHrHRN6YqrGf/HT5hZdsvf1zZ7yZpAYYizwIYLBUHUMqUyYUQmy6cam77UTyj4s8\nUhHKknV7UvNp+BgFQiArbGns/t89LX/f37alsWvw/+jPKsm9c0H1V+dNGFGQgs6JiCTLhEII\nzqIBkkQeBIayq8n18rYTv3v/+LHugT2FIwud9y4+52vzJyRZJjzdOZE8VlSBhJAHkbWOd/se\nW1n/i01HB9zF67ApiyePvP3yidedNyr5y+kDXR0tf3/j5IbVXTu2aJErePtVChXFpmlRztym\nAwAwDHkQwFCWPL9ldf3JJD9EskYY8d5nP+lqrE/yiYIvEjqgQAhkl30tva/ubHptV8vOEz0D\n/qo41/HY8ml3LpiYkgelYGGUe5iA5JAHgeGpYW19Q+fv3j/+u/eP+868uHdqZeHvPz97zrjE\nD+JOZYEwgjIhECfyILJcQ4fn6TUNv9rcOPhy+nGleZ+fO/b2yyeOL8tL/kGBjrbWNX9veud/\ne/Z+IMTAhsIoyGiAIciDAGJK/qrCuMqEIhWnj1IjTC0KhECWWlPf/sTKQ//4qC185g+Bmy+s\n+tlNM0vykj1dLWULo1xZASSKPAhIcvlDv9zc+Mg/DnZ4Tk9UbIpy0wVj7r7i7EsmlCX8ySm/\neoFFVUAeeRAQQhzv9j25+tCv32vs9asD/sppt/2fS8d9d+nkcaUpKBMKIdbfuMjf1io7mowG\n6Iw8CEDSzS998IcdxxJ+e7w1QpH8TJlvEalDgRDIagfbPD9798jP3z3af7o4sTz/lS9eeGkS\n66F96hbODmgpONhaCH70A3EjDwJx6fIGH/77wV9sPjpgCfXKqRXfu3LywnNGJPzJ27702c4P\ndyQdYD/kREACeRDo4/KH/ueD5j/tbH7rw5MDdojm2JUbZ415+Oqp00YVJvmU+hd+fOT3v9ZC\noTjeQ0YDdEMeBBCvwu+s8AQTWchNoEYYsfHahd6etgTeKGglTBEKhACEO6De/7f9P1l/uO+V\nAqf9l5+ZdfOFVSn5/K23fKr70L6UfBQTSEAeeRBIwME2z7/+YeeGhs4Br185teLJT0yfPbYk\nmQ+vq704EHAn8wlnICcCwyIPAoPtae797dZjL2093uzy93/dYVO+eNHYR5dPG1Ocm+QjErmN\nnowG6IA8CCAxCTcUJlwmFIn2FFIjTB4FQgCnvLar+dZXdnV6T/8s/qdZY569/twJ5fkp+fzN\nn76mt/loSj6Kn/6ADPIgkBhNE3/c2fTk6kPvH+vu/7pNUW69dNx/XDN1dNKLp+REwADkQWAo\nQVV7edvxB985cLTT2//1ieX5b37p4hmji5L8/ERqhCJSJlSWrNuT5NMBRJAHASTDec+KYPzX\nEyZTI3zvs590NdbH/Ta2GSWHAiGA0070+D71m22bjnT1vZLrsH1uTtXD10wdm6J7KUSqLmRS\nxOSvfGvi525LRURAZiIPAklaeaD90RUHVx9s7/9irsP21XkT/v3qKWX5OUKIwx3ey/5z4zcX\nVt+3ZFICj0hVTmRGBAxGHgSGF1DDr+xoMdg6PwAAIABJREFUenLVod3Nrr4XC5z2V75w4Sdm\njErywxO+k56NL0CqkAcBJM9xzwo1zjJhMjXCiESmyYqw2XMWr96ZzHOzEwVCAGfwBtU7/7zn\n1++d0Uhe4LTfu/ic+5ZMynPYUvWgFCyJsh4KDIs8CKTEqoPt9/9t/3tHu/q/WJ6f8+BVk+9c\nUH24wzvl8TXfXTr5kWVTE35E3eK5gZA39rjhkRaBM5EHARlBVfvDjhP3vfFhU8+pQ0cVRfzH\nNVO/u3RyMh+bcIFQCDIakBrkQQApkdiJo0674n9yWTLPjXvpWBG1fHmIHwVCAFG8sbf1G3/Z\nW9/u6f/i1MrCH11/7rXnJruZtL8UnLGmCHtu/qJ/vJ+iiIDMQR4EUiWsaS9tPf7Amx+d6PH1\nf33uuNLHr51+1c83J1kg7JOS3TN02AMR5EFA3qF2z43/7/0Pmk63Ej501ZSHrpqiKEl9bFJ5\njTIhkBzyIIAUireVMPk+QiFE3aI5AdUXe1zfQzmHIH4UCAFE5w+FX9524pEVBw+dWSa8aHzp\nw9dMXTa9MoXP2nrLp7oP7Uv8/UwdgWjIg0BqeYPqb7Yc//7bH7W7T8+LCpx2T0BNVYEwItky\nIWkREEKQB4E4uQPq5/97x192t/S9svzcyp/dNGt8WVKXTWy8dqG3py3x9yti5CU1s5/+eTIx\nANmJPAggtXLuWREy/LjRXd++o3Xz6jieSI0wThQIAQzHFwr/eF3DI/846A6ofS8qivjcnLGP\nLJs6sTw/ybuX+kvwKtrTYTF1BM5AHgT00OMLPbGq/pk1DQE13PfiJePLNvzfeQ6bksK0mHyZ\nkA57ZDnyIJCAu/9334/WNvT9sdBp/9YVZ9+7eFJRblL/O6KVEDAeeRCAHsxpJYzniwQ1wrhQ\nIAQQ26F2z7df//C1Xc39XyzKtT/9yXNrp1Qkf/fSAInPHpk6Av2QBwGdVD+y+kjncFcG5uXY\n//2qycnXCIUQdQtnB7T4NmmeRlpEdiMPAol5dMXBh945oIZPLxZNLM9//lMzl5+b1Cky9c8/\ne/j3v0j8/SQ1IE7kQQA6eWr14XvfiCMjG18jFEIUnTPl0t/+NcmHZgMKhABkbTrS9eiKg2/s\nbe3/4hcvGvfi1mOpLRBGJFwmZJ8IEEEeBHTy3Tf3t3uCobC2oaHzw9bevteddtu8iWVrD3UI\nIVKbGbd96bOdH+5I8M2sqCJbkQeBhL2z/+TX/rSnoeOMyyb+7ZJxT31i+shCZzKfnFRGY64H\nxIM8CEBXxrcS7n3wnqbVf5N93BDfGdo2rBn8YsXli5KIK71RIAQQB00Tf9hx4sG3PzrYdsZc\n8e5F5zz9yel6PDHBMiGLoQB5EDDEg28f+I9/HOj7o8OmhMKaEOKLc8f9btvxq6eNfPNLl6Tq\nWXVXXhrwuRJ7LyuqyELkQSAZ7oD6/IYjj6442O0L9b1YPSL/h9dOv+mCMTZFSebDvceObrz5\nmgTfzFwPkEMeBKC38u+u7PL55ccb3EoYdRZMgXAAm9kBAEgniiJuvrBq1z0L71wwsf/rv91y\nbF9LrxDicId3zL+v/OGqJK4SPFNN3c7aur1OkRPf2zShaWLVwhmpCgMAgKi+eNFYIURl0al2\nitDHB7IFwlpY0976sE25+83lv3gvJc+q+cfmRHKiEEIITRMrF84gMwIAJBU67fcsPmfvfQs/\ndf6YvhcPd3j/+aXtC5/bdKLHl8yH54+bUFu3d86zv07kzcz1AACwhs5Ha39782z58ZoQtrvf\nTPKhNXU7JSfFfGGQQQchgLgZefdSf4l0E7K9FFmMPAgY4GCbZ8rja4Yfk5JtkgNwEDcQE3kQ\nSJXfbz/xf1/b2+Y+fYxYaZ7jmevOvfXS8Yc7vJf958ZvLqxOePZHRgN0Qh4EYJi4jht94tpp\nyS8aJ9xHSAfhAHQQAojb5+ZUfWXehK/Mm3DdeaOd9tM/RhRFuWhcqRDCF1RdfjXlz62p2+nM\nKYjvPWwvBQDor382HCwl2yQHqKnbWX3zlxJ4I2kRABCvmy+s2nH3gpsvrOo7WbTbF7rt1V23\n/H6nN6i2uPzJzP4SPDOGjAYAgGWEnlpaVSK7Zvudv+1P/omR7w/Jfw7oIASQlH/sb7/qhc19\nf1QUEfmhosfdS30S2GTK9lJkIfIgYJjvvrm/3RMUQuxqcm083Bl1jB59hCKJy3onf+VbEz93\nW8rjAayDPAik3KYjXf/80vaj/Y6TWTRp5Jr69u8unfzIsqnJfviNS91tJ+J9FxM9YCjkQQAG\nkzlfp49iF+EnUzBBXlkTe7dQ/28LdBAOQAchgKScPTJfCDG1sjDyx74tB55gOHL30vQn1qT8\noTV1O52KM663RO5eWnPl3JQHAwDAo8un/eymmb/a3DhUdVDo00cokris9+DPf0TjBQAgLpdN\nLNt378I7Lp/4cSehWFPfLoTwhcIp+PDXViSQ0bhkFwAAi5hcUaBJb4rV1NRMkBVH7G8OmiZW\nL4njrsSsQoEQQAp8dNI94JU/fXBq7+f+kx5d1kPX7Yh79qgJ1e9l6ggA0MklE0qHH6AJodz9\n5o/rGlL+6ETKhJzCDQCIX4HT/tN/Ou/Fmy/IsSt9L/5+24kOTyL3CA5GRgMAIK1pzyy326T6\nOlKyiXbJ6p0yw8LBAF8VoqJACCAFjL97KaKmbidTRwCARWy4a36OTYk57Ft/2adTAAlc1kta\nBADEq/qR1V94eWdQPX1hzYke38jv/0O5+83Ir6/8cVeSj0igTEhGAwDAIkJPLTWyRshlhMmg\nQAggKZHm8W8vOvsr8yZ8Zd6E2ikVUYfpd9kpU0cAgHUEnloWc4x++2aEEDWrtpIWAQC6+tyc\nqsjs77rzRtv77YwpyXN88rzRQoiXtp344ar65B8U735QMhoAABYRemppWV6uzEjDaoSaJrZ8\n9eYkH5R5FE3Tb93eZFzGCxgs5563QuHhfqQ8e8O536g5W6en19VcEBBxHGvDbfbIeORBwBSX\n/2TjxsNdMYcpQoSlr2dIwPqr5/k93fLjSYvIPORBwAB/2NF080vb+/44sTz/SKdXCPHdpZMf\nWTY1VU+Jb66nCEWQ1ADyIADzPbX68L1vSGXk5CfIK2skNgkpQghhs9lnPfqT/i9XXL4omUen\nNToIAaRMzLuXvvmXfXe+tlunp9fU7ay++Uvy49leCgDQw4a75hfnxl6FidxH6Pi2Xq2EC955\nN65WQtIiACABF40rFUIUOR2RP0aqg0KIxk6f/dtvLf/Feyl5Sk3dztyCGJPN07hXAgAAa7hn\ncfW4UoP6CKUOGtWE0ER42P6WbEOBEEDKbLhrfswxz60/artXr8XQSbd/k8VQAIDpeh67WpPb\n/Khqouj+t/WLpKZuZ15RueRgTRMrF8448t+/1C8eAEBG+vzcqtHFZyz/dXiCYU1768O26U+s\nSckj2PgCAEA6anywdn51mczI1FzGocQegv4oEAJIJZmf+Joq8u5/S78Yaup2lp5zruTgyGLo\nu5/V8ZA3AACG4Q6Edf38y9/aEMeKqiYO/uxHusYDAMg8P3v3aIvL3/+VN/a1RH6z/6QnhTfv\nxnUrITVCAACsYMNd8yV30CZZI1TsdkFzYJwoEAJIJZkmQiFEQNX3p/VFv/2fuBZDPY2HVy08\nT9eQAADZRnIKJFKyTTKWuFZUWU4FAEiaXFHwQO2k4lzHMGM0IdbUt6fqidQIAQBIRwbUCDVV\nlRun7ybd9KJoWsYWVbmMFzCLIvFzXLGL8JO69+3VXXlpwOeSHCx1VjWQPsiDgBXI5ESRiivZ\nZWy8dqG3p01qqCIUoSxZt0fniAAdkQcBw3z3zf3tnqAQosXl/8vulsEDUp7mNn/6mt7mo5KD\nFUUsWcdcD1mHPAjAal7ceuKW3++QGZnYN4eVC88T8Ve7csdULfjjinjflTHoIASQejLXz2qq\nyLlH/4aJf2ye8tV7JAeztxQAkHLaM8ulzt8WQrn7zUmPr9Y1mPl/Wye7G0YTmqatumKWrvEA\nADLDo8un/eymmb/a3Bi1Oig+TnM/rmtI1RMv/ePb8vs7uWQXAAAr+OJFVSu+eqnMyMT6CGvl\nd7gqp38VjpsY74MyCR2EAHRhqYYJIcTKGqniH3tLkUnIg4B1OL79lir3rXvBOWV1d0id150M\nybQoyIxIZ+RBwGCX/2TjxsNdw4+5Y8GEn944M4UPrau5ICCCkoM5MwZZhTwIwLIMWDfecef/\nad+5aai/veCJ5/v/seLyRYk9JQPQQQhAF8bcPStPciqoaWJlzYz9zz6idzwAgKwSenrZqKJ8\nmZEbDsVYWk2JuLou6LAHAMiQuZD+ufVHc+5L5QSQS3YBAEg7cawb32vEunE2o0AIQC/yP+uN\nIb8YeuzPL6+/YaGuwQAAsk3LDxaPLMiLOcywKVBt3V6nPXY8ghohAECazKnaaqpngDV1O515\nxTIjyWgAAFiE7LqxmuAE2TliZALvykIUCAHoSOYyQmFUE6GILIbKbS8NdLTpHQwAINu0/ccS\nRWJYwlOgeNWs2SY5khVVAIAMmSZCPdJczT82l55zrsxIMhoAABYhXyN0fifubw4zHn5K/oyB\nbEaBEICOGh+slflZH7my/s7XdhsQUk3dztyC0tghMW8EAOhA8gYFw2qEtXV7FZvUjIDMCACQ\nIbNJVFNF4QNvp/a5F/32f+K6V6Jz+3upDQAAAMRLskYYDIqa5zbG++E1dTsveOL5vl/lsy8W\nmhCacBSVxB9pxqJACEB3kj/rn1t/tPR77+gdjBBiwTvvVt/8pZjDWAkFAOhBfptkam9pGsqS\ntbvpugAApErjg7Uyw7yhsB5Pr63bqwiZdn2x/ev/qkcAAAAgLpIT5PWHus5/Zl28H15x+aK+\nX7mVo+W+I2QXCoQAjCD5s77Hq6Z8J2lUk27/pswwVkIBAHqQTIuhkJj0+Gq9gxFxdl2QGQEA\nw5M6RUa3fTBL6vbIHClGRgMAwCIkJ8i7W3r1jiQLUSAEYJDf3jxbZphOO0kHq63bWzozdkjM\nGwEAepCcAjW0efWOpM+Ur94jM4zMCACIqTjXHnNMKCR0OkKmpm6nzDAyGgAAFiG5u8iYmziy\nCgVCAAb54kVVVvtZf9F/vSwzTNPEyoUzVi++QO94AABZRfKaXsPS4oTP/dt5DzwhM5IVVQDA\n8Hoeu1pmmMur6hRAbd1eIXGOGBkNAACLkLzG2Pmd5CbIigi5e3bef/sH998uhAh2tu959L4j\n//3LpD4znVEgBGAop11ikmZgjVDyRDWhiXAomM3ZAgCgB5kGCyPT4phl13HWKAAgJWT3wdyt\nV46rrdsz59lfx46BjAYAgAVIXmOcgrPnNCE0oWlCCKGp4ZDLFfK4k/7QdEWBEICh/E8ukxlm\nxRqhEAd/9iNdIwEAZBvJBguDj1KhRggASInYm0N1rhGWX3SZ4uA+QgAA0oPVDp/LBhQIARhN\n8tYl/W6tH0y+Rsi8EQCQWvJpMdmjVOJBjRAAkLywZI7T8zztJau5jxAAgIyiqeLO13abHUWG\noEAIwASSi6Gqpncgp9XW7RUKd1QAAEwgmRaDQXH+M+v0DqYPNUIAQPLk98HoVyOsrdur2GIv\nf5HRAAAwneQ3h+ffPZr0k8TO+27f99RDyX5OmlM0zcAFeGNVVFS0t7eHQiG7PfblLgCMp0ic\nJKPYRfhJqcSQEuuvnuf3dMuMVOz2JWt26R0PkAzyIJBeLJgWhRAra6SWShVFLFkn244PGIM8\nCFiHTI4TOqc5MhqyDXkQQPpK4exY8gtAf3P+8zflF14S77vSFB2EAEwzv7os5hiDz5Ve8M67\nzrximZGaqnZuf0/veAAA2cOa1y3QRwgASJ5F+gilYiCjAQCQDuL+2jDsyXE5JSVjr/9M5Fdu\nxagkY0sjdBACMJMVdpIOJtlHyN5SWBx5EEg7l/9k48bDXTGH0UcIyCAPAlYjOfu7Y8GEn944\nU6cYyGjIHuRBAGkt9UfsaFrdVZcFfK6+F0ZdcZXq9bS/t776i1+Z9KWvJxZnuqODEICZrLCT\ndLAF77w75av3xBzG3lIAQGptuGu+zDBNFYUPvK13MP3F0XWxaJbewQAA0pRxtwoNjYwGAEBa\nSP0RO4pid+b2f+GsZTeMWnhlArFlEgqEAEwmOUs02ITP/ZviyIk5jBohACC1JNOiNxTWO5IB\nZFdUVXX1ktl6BwMASFNWOE9bMqOJsKpfDAAAICWMv4Yjw1AgBGA+K8wSB1uyemdu5eiYwzRN\nrKyZ8cEDdxkQEgAgG1gzLQrpFdVwMMA1vQCAZGiqyLv/Lf0+XyajsRkUAABzWbOrJMNwByEA\nSxj/8Mpj3f6Yw4y/dan+hR8ffumFmMO4owIWRB4E0pfkLU05OSLwhNFTJsnbm3JHViz4yzq9\ngwGGQR4ELCv1twrFj4keMh55EEBmSO3XhrYNawa/WHH5ojiDyhx0EAKwhMYHa63ZMDHpy99g\neykAwGCSOyUNP2dUCOk+Qn9729qrL9Y7GABAOrLC1G/Sl78hM0zTxLpr5+kXBgAAGJ7TrsQc\no6nCwUGjCaFACCDNmPMT3xb7pyU1QgBACllh8XQokjVC1evWOxIAQJqaX10Wc4xFLiMM9nSv\nv2GhfmEAAIBh+J9cJjPMjN2zmYACIQALkWyYMP4nfu3a3YqdGiEAwHKsXCMkLQIAhrLhrvlm\nhyBEPG3xR199Ue9gAABAVFbePpvuKBACsBbL/sRfsma3zDAWQwEAqWLxK9lLZ86OOYa0CAAY\nikWmfpI1woM/fULXMAAAwDBiHzOKhFAgBGA5VjhtJirJqSOLoQCAVLHI4mlUF/3XyzLDSIsA\ngKE8UDsp5hiL1AhJZwAAmChs4alxWqNACMByJE+b0VRR89xGvYMZgBohAMCCNFX8uK7B+OeS\nFgEAyXh0+TSZYZoqcu7Teb1Pid2ZQDoDAAAZhgIhACuSPFRtw5EuvSMZjMVQAICRJHPit17f\np3ckUcmnxbVXX6x3MACAtCOZ5lRN3zBq1+1RHDkxhzHLAwDALFY+Xyd9USAEYFFW/qFPjRAA\nYCTJnOj8jjkTIcm0GPK4O7e/p3cwAIC0Y5Gp35LVO+kjBAAg3WmqqHjo72ZHkTYoEAJIb0ac\nNhONfI1wzdI5egcDAIAQIhQ27dGSaXH71/9V50AAABnLiMsI1+2RioQaIQAAZpA8eKDDG9I7\nkoxBgRCAdVnktJmhSC6GhgM+vSMBAGQ8ye4KUzbNRMikRVZUAQBRSU79DLiHntNiAACwMosc\nPJAxKBACsDSLr4eyGAoAsJRQSNz52m6zoxgOaREAEJV17qGXrxFu/MyVegcDAAASoKmi6uEV\nZkeRBigQAsgEZjURCiHsBYUxx7AYCgBInuTK6fPvHtU7kqHIr6iuv2Gh3sEAANKOdXoCJDOa\nr/m43pEAAIABJKfGzb0BvSPJABQIAViddWaJUS16Z4vMMGqEAIDkWTwnCukV1UBHm96RAAAy\nlaaKSY+v1vspnBYDAIBlSdYIERMFQgBIFtdUAADQhxVVAEDCJNf7Gjq9ekcihKj+wpdjjiGj\nAQBgTcbsKEp3FAgBpIGMaZjQNLH/2Uf0DgYAkMGsnxMFK6oAgCRYJ9NN+vI3ZIaR0QAAsCZj\ndhSlNQqEANKD5Czxx3UNBgQTlWSN8PhrL+sdCQAgs9mV2GPMzYnyK6pcRggAsDJOiwEAwJok\n14pv/M1WA4JJXxQIAWSUb72+z8Snc6gaAMAAoaeljl+zfk4UXEYIAIjGOk2EIp4aIbteAACw\nmr/ubTU7BEujQAggbUjOEp3fMfNQNRnUCAEASZLMiaXfe8eAYIbCvhkAgK4Mu1uIXS8AAFiQ\n5NXFGAYFQgCZJhQ28+kcQQMAsA5XQDU5Alvs6QY5EQAwmOSSn2F3C7HrBQCAdGTYkQNpigIh\ngHRiqaNmhiJfI1yzdI7ewQAAMlV65MS1u2WGaZpYvWS23sEAANJLWmS6AagRAgCANEKBEABS\nT7JGGA749I4EAJDlTL+VXXbfTCigdyQAACSDnaAAAFgNp4wmiQIhgDSTLttIOYIGAKA3ybmQ\n6beykxMBAImRnP3l3GfQ7E+yRqj6fdQIAQCwCE0VdrMXii2LAiGA9DO/uizmGCvUCBVHTswx\nrIcCAJKRLvtmZJATAQCJUTXjnsVpMQAApB0DvymkGQqEANLPhrvmmx2ClCWrd8oMYz0UAJDx\nJJdTAQAYQHIrjMPArTB0xgMAYB2SXxXMvXrDsigQAkhL6dIwIX9NxcbPXKl3MACAjJRJOZHl\nVABAYsLGPi63cnTMMSQ1AACs428ftgohNpXPqLh80YBfZodmJgqEADKZpoof1zWYG4NkjdDX\nfFzvSAAAmao41x5zjCW2TNpizz5YTgUADCC5FcbI64UW/Hm1zDBNE1xGCACA3mS+KoQ+3kz0\nxt5WmV/6RmwZFAgBpCuZH/1CiG+9vk/vSGKiZwIAoKuex66WGfZXsyc5tWt3mxsAACCDGXy9\nEJcRAgCAdEeBEEAak9xJmnf/WwYEMzx7QWHMMdQIAQAJk8yJhQ+8bUAww2DTDAAgAZJpzuDz\nY0hqAACkCyvcu2FBFAgBZL6AavBe0igWvbNFZpimifU3LNQ7GABA1vKGDL6kKQrFkRNzDMup\nAIAEWOH8mMFIagAAwJooEAJIb5I7Sa2wQ0TyCJpAR5vekQAAMpJkTnSYnROXrN4pM0zTxNFX\nX9Q7GABAurDgTYRCepanaWLjZ67UOxgAALKW5PeE636z1YBg0ggFQgBZQVNFzXMbzY6CI2gA\nAOYzv4VQejn14E+f0DsSAECGMf70GMmk5ms+rnckAABgeJoqbqBG2A8FQgBpT2aHiBBiw5Eu\nvSNJFU0TqxbNMjsKAED6kdw1mXNfejTWs2kGANCfNZsIBUkNAAAL6Pc9QYn290rkV1mu07iY\nLI8CIYBMkC6Hqgn5I2hUdf+zj+gdDAAgO1ngcl4AAPRiSpbjhl0AAEz38RJx1O8CWuSXRMbO\nIhQIAWQRKxyqJqRrhMdfe1nvSAAAmSfDNs2wlgoA6M+yl9BL3rALAAB0pZz6D2XQy6d+TSor\nNCMui6JACCBDWPa0mahYEgUAmMsim2ZkaJpYtfA8s6MAACAGZnkAAJhOO/Uf2qCXT/1690in\nGXFZFAVCANklvc5U0zTBQaMAgHhZtrtiMMmu+nRL4AAAHVk5zdkLYjclaJpYe/XFBgQDAEC2\nUqI1EZ6iDfF6dqJACCBzWHmiOBgHjQIAIOi3AADEz27Vlb1F72yRGRbyuDffcr3ewQAAkK20\naE2Ep//2sy9vNzQcC6NACCCjjCvNNTuEOLAkCgDQSeZtmiEhAgD6hJ62bpqT3AnqbjigdyQA\nAGQh5fR/D9VEqIwvzjcwIkujQAggozQ+WBtzjHXWQyVpmmB7KQAAAAD0kWki1FTx47oG/WMZ\niI0vAACYJfzMcu2Z5dozy7RnltltOVHH/PCT0w2OyrIUTcvY+zwqKira29tDoZDdbjc7FgCG\nUu6OXf979oZzv1FztgHBxLSyJva0UFHEknWStzQBp5AHAcgkxJwcEXgidh+GAUiISC3yIJDx\nZNKcYhfhJ01IczJJTQhhy3EuXrVD72CQnciDALKWzDeEPqNLnb+86fzBr39ixqjURWRddBAC\nyFLfen2f2SGcwvZSAIBOZLorQmH945CTWzk65hhNE/uffcSAYAAA1id5nnbNcxsNCGYAyYNG\ntVBA70gAAMAgfQeQKpPKCs0OxkwUCAFkIJmJYtrhoFEAQLwkr2jKu/8tA4KJacGfV8sMO/7a\ny3pHAgDIJBuOdJnyXHaCAgBgCu3UKaPL/2X2uKgDXvnC7NdvnRv5df/SSQaHZykUCAFkKUvd\nRMg99gAAEwVUq1w6ILuWujjKCTAAgCwk2URY+r13DAgmMdQIAQDQye+/cL7d5jQ7CkujQAgg\nMz1QG3v3h6aK859ZZ0AwMtheCgDQg+TKacVDfzcgmJRRQ2ZHAABIJ66AaspzZQ8a1UTn9vf0\nDgYAAGAACoQAMtOjy6fJDNvd0qt3JKnF1BEAoIcOr1VKbuyYAQDERXIrjFnnx0jWCLd//V91\nDgQAAGAgCoQAMpbkRLHq4RUGBCODqSMAQA+SCfHG32w1IJhU4aBRAEC6YO8LAABmCT219PVb\nL3r91otuvrDK7FisiAIhgGzX3BswO4TTJKeOa5bOMSAYAEBW+eveVrNDOEVyxwwHjQIAIize\nRChJ08T+Zx8xOwoAAJBFKBACyGRp10QoKRzwmR0CACCdSCbENfXtBgQjQ3LHzOolsw0IBgBg\nfU67YnYIw5Hc+3L8tZf1jgQAAPzLS9vNDsEqKBACQFo2EXL+DAAg5Zb8fLPZIcRHC1kogwMA\nTOR/clnMMeY2ETLRAwDAIjRh6X1FRqJACCDDSfZMTHp8tQHBpJCmifU3LDQ7CgBA2pBJiJYi\nu5C6aJYBwQAArM/iTYQAAABWQ4EQAIQQoqHTa3YIp0mePxPoaNM7EgBAVrH+/UxRhFWzIwAA\nWAJNhAAAYLBPzBj1iRmjplYWmh2IFVEgBJD5JJsIKx76uwHBSJKdOi4+34BgAACZYX51Wcwx\nmirufG23AcHIYCEVABCXcaW5ZocQg2RqW7N0jgHBAACALOcwOwAAsIoOb8jsEOKnpmHMAACT\nbLhrvnJ37LaJ5989+tMbZxoQT6pomtj/7CPTvvk9swMBAJis8cHamJku0kQYftLSJ2+HAz6z\nQwAAIBMM8cVA++Svtvb9obzI8eI/zzYsJEuhgxBAVpBsInR+x0LnqtE2AQBIuYy8iVAIcfy1\nl/WOBACAlGCiBwCA4RQhlGivKEIo1SUFpsRkBXQQAsBpobDZEQAAYDartVbU1u1dWRNjkVTT\nxMbPXDn/1X8YExIAwLK0Z5bLNBE6v/Nm4AnzMp3NJsIxJp+aJlYvmb141Q5jIgIAICP17ZHV\nNFH8wAp3IBD546PLp55/VrF5cVknREJlAAAgAElEQVQFHYQAsoVkE2HOfTQRAgCQfnzNx80O\nAQCQNszdG1q7Vuq6Xy0U0DsSAACyhKKIXDvlsIH4vwgAnEHVzI7gTFxiDwBILckdM7Z72TED\nAEhLkplu0uOrDQhmKKQ2AABgOgqEALKI5ETRbqUlUUlcYg8AAAAA8ho6vWaHAAAAYCYKhAAw\nkMV6CGX3lq69+mIDggEAZADJHTN3viZ1AJox6LQAAMiTzHTnP7POgGCGQmoDAMBIv7l5ptkh\nWA4FQgDZRXKimHf/WwYEk1qq1212CACAjPL8u0fNDgEAAB3tbuk1O4TY2AwKAAB0QoEQAKII\nWOwqQvaWAgBSS2bHjNWQDQEA8tIi08mkNsFmUAAAoA8KhACyjmQT4Y/rGgwIRp7iyIk5RtPE\n+hsWGhAMACAbaKpwpOG9vAAASNJUYTM707H9BQAAmIUCIQBE963X95kdwhmWrN4pMyzQ0aZ3\nJACA7BE2O4ABWEUFAMhLiyZCIYRQlJhDNE28f8fnDYgFAABkDwqEALJR2kwUzyS9KnqeAcEA\nANKdZEt9zXMbDQgGAABTWKKJcN0emWHdu7bpHQkAAMgqFAgBIDorTBQTZa0LFAEAaW3DkS6z\nQzgDTYQAgMzDZlAAAGA8CoQAkE5YFQUApFCattQDACBJsl0+7/63DAgmFdgMCgAAUoYCIYAs\nJTlRPP+ZdQYEAwCAZVmwpZ7tMgCA1Aqo5hfeyG4AABjmu2/u/+qfdm041PXJX2396p92Dfjb\nVldgzL+v/OGqelNiMxIFQgAYzu6WXrNDGIh5IwAgheyK2REkJLdytNkhAADSg+Te0EmPrzYg\nGAAAYBH+kOYPhyO/GfBXqqa1uPwuv2pGXIaiQAgge6XxuWpKeq7mAgCsJ/S01LJpzn3WaiJc\n8OfYy7hslwEAyGvo9JodAptBAQCAoSgQAsBwrHkdRe26PTHHMG8EAKSQBY5eAwAgQZJNhHe+\nttuAYGJgMygAAIbwh7QDJ92R36xv6Oj/a+uxbrOjMwgFQgBZrTjXHnOMFa6jGEzmaDVNE0df\nfdGAYAAAaU1y2XRNfbsBwcijzQIAkFrPv3vU7BDYDAoAgEFc/uAbe1siv/nhqkP9f71gga8E\nxqBACCCr9Tx2dcwxmiqqHl5hQDBxkTlaTQhx8KdP6B0JACBLLPn5ZrNDGIQ2CwCAnDS6YKJ0\n5uyYY6gRAgAgSbn7zciv6369Na43PrriYN97lbvftNqW2ZSgQAgAsTX3BswOIQrJzol1184z\nIBgAQFpLo2XT/mizAACkkKYK273m37l70X+9bHYIAABkJEWIOPaYzhlX+pV5E/p+VZXk6ReZ\nWRxmBwAAJtOeWa7cHWMSqKmi5rmNdXfMNyak1Aq5suXUbACAriLLpuEn07KUCABAca7d5VfN\njkJKbd3elTUxdrdomlh1xcwlay1wbyIAABbWfztszj0rQuFTfSBl+TnXnjvqv7cdL8vPeeiq\nyf3f0uYOPrri4LLplY8sm2porIYzp4Owq6vrG9/4RnV1tdPprKqquu2225qamoZ/y5EjR269\n9daxY8c6nc6JEyfefffdLpfLmGgBQAix4UiX2SFEIdlEuPmW6w0IBvLIgwAsaH51mdkhJIKb\nCNMReRCAKSQvmLBCE6EsLWx2BEgEeRAArMBhU0YV50Z+M7misP+vieX5ZkdnEBM6CAOBQG1t\n7bZt2z71qU/NmTOnvr7+xRdfXLVq1fvvv19eXh71LQ0NDZdcckl7e/tNN900a9asjRs3/uhH\nP9q4ceO6detycnIMjh9A5pFpIkxr7oYDZoeA08iDAKxpw13zZVrqS7/3TvcjsRdYgaGQBwFA\nhmwT4cLzlkgcuA3rIA8CAKzDhA7C5557btu2bT/84Q//9Kc/PfDAA7/61a9+97vfNTQ0PPro\no0O95YEHHmhra3vhhRdeffXV73//+2+99dbXv/71TZs2/eIXvzAycgDZzLI7SWU7JxbNMiAY\nyCAPAkhrroDlDmejiTC9kAcBmEjmzl1NFXn3v2VAMCmimR0A4kMeBABYh6JpRn+TuPDCC+vr\n60+ePJmbm9v34pQpU3p6epqbmxUlyi2RpaWlRUVFx44d6/vbrq6uqqqqCy644N133x3qQRUV\nFe3t7aFQyG63p/xfASDD2O5+M+ZPQ8UurHnxUsyNpUIIRRFL1sVeP4UByIMArCxmE6E1syGp\nMI2QBwGYS+bwGOskOxJc5iEPAoCJ3tjbKjnyEzNG6RqJRRjdQejz+Xbt2nXJJZf0z4JCiAUL\nFrS2tjY0NAx+i9vt7unpmTx5cv8cWVZWNmXKlG3btqmq5bYwA0hHYbmdpOndREjnhAWQBwGk\nO2tmQ1JhuiAPAjCdTBMhoBPyIADAUowuEDY2NqqqOn78+AGvT5w4UQhx6NChwW/Jz893OBxt\nbW0DXi8oKAgEAjFv8QUASVH26QGpRh4EYHHjSnNjDwISRR4EkBassxuGHTAZhjwIALAUowuE\nLpdLCFFYWDjg9aKior6/HcBms82bN2/fvn27du3qe3H//v3vv/++EKK3t7f/4AsvvHDSx7q6\nulIeP4AMJtlEmHOfJSaKAzBvTBfkQQAW1/hgbcwxmiqc37FcNiQVpgXyIAArcNrTaXeo4sgx\nOwSkDHkQAGApRhcIIwYfqB25CjHqQdtCiB/84Aeapl133XV/+ctf9u/f/8orryxfvnzChAlC\niAEt+YcPHz70MbrsAehB5Q54JI08CCDdhcJmR4B0Rh4EYC7/k8tijtFUsaa+3YBgYlqyemfM\nMeyASS/kQQAwS5bcLCjP6AJhSUmJiLYjpqenRwhRXFwc9V2LFy/+yU9+0traeuONN06fPv22\n22676667LrvsMiFEeXl5/5ENDQ0dHxsxYoQu/wYAmUvmOgpNFZMeX21AMPGicyItkAcBWJ9k\nNjz/mXUGBBMXUqH1kQcBpJElP99sdgin5FaOjjlG08T7d3zegGCQDPIgAMBSHAY/b8KECQ6H\n48iRIwNer6+vF0JMmTJlqDfeeeedt9xyy7Zt22w22+zZs4uLi+fOnXvWWWeVlZX1H9b/j0Pt\nuwGAJDV0es0OAemKPAggY+xu6Y09CDgTeRCARWjPLFfuttxx2UNZ8OfVK2ti727p3rXNgGCQ\nDPIgAMBSjO4gdDqdc+fOfe+99zweT9+L4XB47dq148ePj3THR6WqanFx8RVXXFFTU1NcXHz0\n6NHt27dfeeWVhkQNIItItk3UPLfRgGDiReeE9ZEHAaQFmWxoTaRCiyMPAkgjmipu/M1Ws6M4\nRTLBrb36YgOCQcLIgwAASzHhDsJbb73V4/E89dRTfa+88MILJ06cuO222yJ/9Pl8O3bsiOyd\nibjvvvvy8/O3bNkS+WM4HP7mN7+padrXvvY1IyMHgD4bjlj0um+ZG+w1TRx99UUDgkFU5EEA\nmUFThe1eS/Ze2My5Zx2SyIMA0shf97aaHUJ8VK/b7BAQA3kQAGAdSuQWXCOpqrp48eK6urrr\nr79+zpw5+/bte+WVV2bOnLlp06aCggIhxO7du2fNmlVbW7tixYrIWz744IN58+Y5nc5bbrll\nxIgRr7/++tatW++5554nn3xymAdVVFS0t7eHQiG73W7EPwxABol52oxiF+EnLdpdIXP4jKKI\nJetib0GFHsiDANKCzMFrls2GpEIrIw8CsI60m/dJJTibbcna3QYEg8SQBwHAXG/I7f75xIxR\nekdiBSbsrrXb7W+++ea3v/3tHTt2PPLII3V1dbfffvuaNWsiWTCq888/f+XKlZdeeulLL730\n+OOPh8PhX//618NnQQDQlXXbJqQPn+nc/p4BwWAw8iCAtCB55nbVwysMCCZeuZWjzQ4BQyIP\nAkgjlr1dYjha2OwIMBzyIADAOkzoIDQMO2UAJOy7b+5/bGX98GOstpm0PzonIMiDAJKW8U2E\nRedMufS3fzUgGJiCPAggpnTMdMz1IIk8CABR0UHYH/dzAEAUjy6fFnNMujcRAgAwPJkmwrTm\nbjhgdggAADNlfKYDAAAYBgVCAMhSmiZWLZpldhQAgPRm2e0ykgdur79hoQHBAADSl9UynWSC\nW7UwdqMhAADIchQIASA6ybuXCh9424BgEqA4cmIPCqv6BwIAgHUFOtrMDgEAYKbiXE5fBAAA\nWYoCIQAkxRuy6A3wS1bvjDmGjaUAgOFJbpepeniFAcHES7LHYu3VFxsQDADAmnoeuzrmGKtt\nDKWJEAAApAQFQgAYkuSq6J2v7TYgGAAALKu5N2B2CIlTvW6zQwAAWJ3VNobmVo42OwQAAJD2\nKBACQLKef/eo2SFEx8ZSAEDyZLbLWJZMKgQAZLl0zHQL/rw65hjmegAAYHgUCAFgOOk4VwQA\nwGCaKmz3vml2FAli/RQAEFNaZzoAAICoKBACQLKsPFeUbCJcf8NCA4IBAKSp4ly72SEAAKCj\ncaW5ZocQNw6MAQAASaJACAAxZMOqaKCjzewQAADW1fPY1THHaKo4/5l1BgQTL9ZPAQAxNT5Y\nG3OMFTeG2ljWAwAAieObBADEILkqarfaXPFjkgujR1990YBgAAAZbHdLr9khAACQRWrX7o45\nhk0wAABgKBQIASA1NLMDSNLBnz5hdggAAOtK60t5JffKrF4y24BgAADWlNaZDgAAIAEUCAEg\nNpm5omWPVhNyC6MAACRJU4XDqv30MrRQwOwQAACWZsFTRjlJGwAAJIwCIQCkTFofrcakEQCQ\nvLDZAQyFvTIAgJhoIgQAAFmFAiEASEn7uSLX1wMAkpP2qTAW9soAAGKyYLs8TYQAACAxrBcD\nQMpY8MCZPpLX169ZOseAYAAAmcrKqZC9MgCAlLBsuzwAAEBcmCQDgCzF7AAMEA74zA4BAGBd\nD9ROMjuExEnulXn/js8bEAwAwJokr5+f9PhqA4KRRxMhAABIAAVCAJAVlpsrWrZzQnLSuP/Z\nRwwIBgCQjh5dPs3sEHTXvWub2SEAAKyuodNrdggAAADJokAIADjD8ddeNjsEAEAaS/e9MgCA\nLJemd+7SRAgAAOJFgRAA4pCmc8U+LIwCAJKU7qkwJhZPAQAxWXk3DAAAgCQKhACQYuk+V2Rh\nFACQJE0Vefe/ZXYUQ7AxAwIAxFCcazc7hETQRAgAAOLC9BgA4pPunRO5laNjjuEmQgBAkgKq\nZnYI0dWu3R1zjKaJVVfMNCAYAIA19Tx2dcwxmiqqHl5hQDAAAAA6oUAIAKln5SbCBX9eLTOM\nmwgBAENJ970yUrSw2REAAKyuuTdgdggD0UQIAADkUSAEgLiNK801O4SkcBMhAEBvVt4rI7l4\nuvmW6w0IBgBgTem7G8ZeUGh2CAAAID1QIASAuDU+WBtzjKWvX5LArlIAwDDmV5eZHYLu3A0H\nzA4BAGBp1twNs+idLTHHMN0DAACCAiEA6Mey1y8BAJCkDXfNjznGmsumETTTAwBiSuOTY2ws\n9wEAgNj4xgAAiZA5cEZTReEDbxsQTAIkT1dbd+08A4IBAMCCNE2sWny+2VEAAEwjeXLM+c+s\nMyCYuNSu3R1zjKaJzu3vGRAMAACwLAqEAKAjbyhsdghJCbm6zQ4BAGBRkntlJj2+2oBg9KKG\nzI4AAGB1u1t6zQ4hQdu//q9mhwAAAMzkMDsAAEhX2jPLlbtjnJymqWJNffuiSSONCSkutXV7\nV9Zw7QQAQF8NnV6zQ/j/7N19kF1VnTf6dbqT7kgMAQ0wIC9xMsgYeRFkVAKJMT2KRB+B0as+\nNVpDCWNZjFwZdQLkWjCiBMFkxpkRfPB6S4oprWJmSoZxngAWhJCQOEFeNYTBxxgQkfASEvJC\nJ53eve4fDSEknT47p8/Za+9zPp/qsrpPr4av//hz799avzUydRCAuvI89JWTMgcAI/rI9ENT\nRygRJwgBWmvODatSR2icu+sBGEWeQ4SVpg4CUFeZ79wdnTIHAB1OgxCgcVV/MTr1M59LHQGA\nNhezMOWKn6ZOMbI8N/IC0OFqqQM0zOMeADA6DUKA1opZ6Lm0pPtJp33u4rpr7CoFYIxe7K/w\nTX4xhiWz3pE6BQDJDFX2zl2PewDA6DQIAVpucCh1AgBojaofps8npg4AQNmV887dyce/M3UE\nAKC8NAgBxiTPi9GYhRMXLSsgTAPyTFeLMTzwV58uIAwAbSlmobuslzOZMgpAXdXdDXPqd39U\nd02MYcn7TywgDABQNhqEAEVY/ezW1BHG5KVfPpg6AgAl1Z3jdqZKH8Ezfg2Ausq8G6a+rMLD\nwAGAhmkQAoxVdfeTDnN4AoCxGFyoDgJASXfD5JwZc8+Zf1JAGACgVDQIAYoQs9BV3f2knhgB\nGJs2qIPLPnxa6hQAJFP1XaF1Zf3bUkcAAIqmQQjQBJN6u1NHaDlPjADsy/y+aakjtNzglpdS\nRwCg1Eq7G8ZZeQBgRBqEAE2wecGZddfELPRcWsbHxeCJEYCxuWrucXXXxCxMueKnBYRpgDoI\nQF3tfYjQhbsA0IE0CAGKMziUOsEYeGIEYIxe7B9MHaFx6iAAdcUsjL+kjLtCJx//ztQRAIDS\n0SAEaI723k8KAKNTBwEghJDF1AlGcup3f1R3TYzh7jn6iADQQTQIAYpT2kspQr7pajGGjQ/d\nV0AYANqSKaMAVFrb74aJgwOpIwAAxdEgBGia7lrqBK330BfPSx0BgAqr+pTRe878k9QpACi1\nmIXuUu4KtSUUANiDBiFA0wwurL+fNGZh5nUrCwjTAIcnABiLqp+ryFMHs/5tBSQBoLTm902r\nu6aUQ0bzsiUUADqHBiFA0VY8uSl1hMbFGFZ+4gOpUwBQVaU9VwEAeVw197i6a0q7K9SWUABg\ndxqEAM1U9cMTeWxf/3TqCABUWKXPVcQYlsyanjoFAGVX3V2hKh0AdA4NQoCixSwcceWdqVOM\nzJZSAMaiEzbKANDhFDsAoD1oEAIksH7rQOoIjYsxLPvwaalTAFBVNsoA0PZiFsZfUsaR2nkq\nXYxhyfuOLyAMAJCWBiFAk3XCftLBLS+ljgBASXXX6q+p+kaZu+e8M3UKAMouq/ZM7aHUCQCA\nltMgBEggZqFrXhn3k4bcW0of//tvFBAGgMoZXFjtjTLdB0ysuyYOVrjBCcDY5dkVGrMw7eq7\nCwizv3I+8d17zqwCwgAACWkQAjTf/L5pqSO03NO3/Ch1BACqqswbZWbf8fPUEQBoE+s29qeO\n0LiBF19IHQEAaC0NQoDmu2rucXXXuIEJgHbV9tO2YwxLZr0jdQoAUqp0sfPEBwAEDUKAhKp+\nA9Oqvzg7dQoASKXSV0sBUIQyn5ivK8awZPYJqVMAAC2kQQjQEpXeT5rTtnX/J3UEAKqqzO9M\nnasAoP3VavXXDGWtzwEAJKNBCJCMd6MAtKsjJ/emjtBaMYaVn/hA6hQApFTpXaF9yx6tu0ax\nA4D2pkEIQINiDPeeMyt1CgDK6KnL+1JHaLnt659OHQGAsivzrtA8FDsAaGMahACtkmc/aczC\nzOtWFhCmRQZefCF1BACqqszvTJ2kByCP+X3TUkdonGIHAB1OgxAgsRVPbkodYWQeFwEYi0oP\nXssjxrDsw6elTgFASlfNPa7umpiFExctKyBMK8QYlsyanjoFANASGoQALdQJ70Y3PnRf6hQA\nVFXMwhFX3pk6ReMGt7yUOgIAFbD62a2pI4ysNm586ggAQDIahACJxSyMK+uAtTwe+uJ5qSMA\nUGHrtw6kjjAyJ+kByKPSu0Ln3P1I3TUxhl/Mv6iAMABAwTQIAVqrlmPNUMtTNMi7UQDGotLv\nTPOIMTzwV59OnQKAsotZ6Lm0wrtCX7j3rtQRAIDm0yAEaK2hDng3eu85s1KnAKCqYha6qnyS\n/qVfPpg6AgAVMFjWbaF2hQJAx9IgBEiv6u9GB158IXUEAErqyMm9qSM0zjtTAPLIc2I+ZmHp\n2g0FhGmFGMOqvzg7dQoAoMk0CAFabn7ftNQRGufdKABj8dTlfakjtJabmQDIac4Nq1JHaNy2\ndf8ndQQAoMk0CAFa7qq5x9VdE7MwrrKHCGMM95z5J6lTAFBVVT9J72YmACp97a5doQDQmTQI\nAcqirHdS5JL1b0sdAYCSmjH1oNQRGuedKQDNErPw7eXrUqdoUIxhyewTUqcAAJpJgxCgCPaT\nAtCxVlw0o+6amIXJX72jgDAAkNCXfvJY6ghjMJSlTgAANJMGIUBZVHrAWoxh40P3pU4BQIVt\nGajqa8cYw5JZ01OnACAxu0IBgGrRIAQoyKTe7tQRWuuhL56XOgIAJeWdKQCEEGIWZl63MnWK\nBtkQAwBtRoMQoCCbF5xZd03Mwrk33l9AmP3l3SgArRaz0F3Zk/QAkNOKJzeljjAyD30A0Gk0\nCAHK5dY1z6WO0KAYw7IPn5Y6BQAlVcuxJrY8RavEGJa8/8TUKQBIrNIn5gGATqNBCFCctn9c\nHNzyUuoIAJTUUKWLYC1HfzMbbH0OACovZuGIK+9MnaJBpowCQDvRIAQol5iF8ZeUccBanoEz\nMYbf/stNBYQBoC2VtwguezR1BADax/qtA6kjjKw2bnzqCABAcTQIAUonq+6EtRB+/Z1vpo4A\nQEn1dNc/h1fdIuhQBQCh4mNj5tz9SOoIAEBxNAgBClXpx0W31gMwFjuuPSt1hMZNPv6dqSMA\n0CZiFiZcdlvqFA2yIQYA2oYGIUDpxCx0zSvjgLU8PC4CMBalLYKnfvdHddcYtQ1ATgNlPTLf\nfcDE1BEAgIJoEAIUbX7ftNQRGjf1M59LHQGACsszZbTSjNoGoNJjY2bf8fO6a2IMj//9NwoI\nAwC0lAYhQNGumntc3TUxC+feeH8BYfbXtM9dXHdNjOHuOeawATCCPFNGYxaWrt1QQJj9lWfU\ndoxh5Sc+UEAYACqt0lNGQwhP31L/YD0AUHIahAAldeua51JHaFwcHEgdAYAKm3PDqtQRGrd9\n/dOpIwBQAaWdMurueQDoEBqEAAlUeuaMx0UAxqLti6BDhABUutgBAB1CgxAAAKCZHCIEoK6Y\nhfGXLE6dokExhiWzpqdOAQCMiQYhQEnFLHTN87gIQCcqcxF0kh6AZinrkFHFDgA6ggYhQBrV\nnjlTq6VOAECFVbsIAkAObV/sYgyP//03UqcAABqnQQhQXjELR1x5Z+oUI+hb9mjdNTGG3/7L\nTQWEAYCyiTEs+/BpqVMAUHZlPjGfx9O3/Ch1BACgcRqEAKW2futA6giN+/V3rkkdAYCqilno\nubTC70wHt7yUOgIAiR05uTd1hMaZMgoAbU+DECCZSs+cyfe4WNYrNQCogsGh1An2wTtTAPJ4\n6vK+umtiFk5ctKyAMAAAe9AgBCi1qs+cAYARVXqXTB4xhqV/ekrqFABUwOpnt6aO0KAYw5LZ\nJ6ROAQA0SIMQIKXuWuoEreQGJgDGosy7ZCYf/866a4YGtheQBIAyq/SGmDzFLgxlrQ8CALSE\nBiFASoMLK/y4mIcbmADYl0m93akjNO7U7/4odQQA2kTMwsT5t6dOMQLFDgDamwYhQNmV9vyE\nG5gAGIvNC86suyZm4dwb7y8gDAC0SJ6xMf2lvXe3nhjDklnTU6cAABqhQQiQWKVnztTlcRGA\nMbp1zXOpIzTIqG0AQsXHxkz9zOdSRwAAWkWDEIDGeVwEYCyqvUumq/7DlFHbAORR2rEx0z53\nceoIAECraBACVIDHRQA6VszCiYuWpU4xgr57VqeOAEA1zO+bljpCCxkbAwAVpUEIkF61z0/U\n43ERgDFa/ezW1BEaFGNYMusdqVMAkNhVc4+ru6a01+5OPv6dqSMAAC2hQQhQDaU9P9F7yGGp\nIwBQYZXeJZOvCMaW5wCgLZTz2t1Tv/uj1BEAgJbQIASojHKenzjjx3enjgAAaSiCAORU6Q0x\ndcUYlrzv+NQpAID9o0EIUArt/7hoyigAjYpZGFfKu3jziDEs+/BpqVMAUAGlHRuTSxxKnQAA\n2D8ahACVEbMw4bLbUqcAgCbLs0um0i8dB7e8lDoCANVQzrExfcvXpI4AADSfBiFAlQxkZbzH\nyOMiAK0Ws/Dt5etSpxiBIghATu0/NsaUUQCoFA1CgLJo/8dFU0YBGIMv/eSx1BEAoLVKOzZm\n8vHvrL/IlFEAqBQNQoAqiVnoKuUlTN0HTEwdAYAKs0sGAIaVc2zMqd/9Ud01MYbf/stNBYQB\nAJpCgxCgRGqpAzRs9h0/r7smxvDAX326gDAAUKRchyoAoN03xIQQfv2db6aOAADkpUEIUCJD\n7f64+NIvH0wdAYCqKu0x+pyHKhwiBCCP0tY71+4CQJvRIASoGI+LALSl+X3TUkcYg1p1pwAA\nQNPYEAMAFaJBCFAuR07uTR2hhWIM954zK3UKAMroqrnHpY7QuL5lj9ZdowgCECo+ZdSuUABo\nJxqEAOXy1OV9ddfELPRcWsZDhHkMbN6UOgIAVVXaY/Q5Dbz4QuoIAFRApetdjGHJ+45PnQIA\nqE+DEKCSBodSJxhJrv2kg4OtDwJAJc2YelDqCI1zqAKAnLqrPJe695DD6i+KpXxeBQBeT4MQ\noHQqPXOmLpdSALAvKy6aUXdNzMLStRsKCNMKpowCEEIYXFjhJ74zfnx36ggAQHNoEAJUUnln\nznSpLAC01pwbVqWO0DijtgHII2Zh8lfvSJ0CAGhnXuMClFF1R8703bM6dQQAKqzSx+iN2gag\nibYMZKkjNCjGsGTWO1KnAADq0CAEKKOhKr8erSvGsPITH0idAoCqiln49vJ1qVM0SBEEIFR8\nQ0y+sTGx5TEAgLHRIASoqvJOGc1h+/qnU0cAoMK+9JPHUkdonCIIQB4xC+NK+cSXZ2xMjOEX\n8y8qIAwA0DANQoCSqu6W0jwD1mIMS//0lALCAFA51a2AIeeUUQDIZyh1gLF4YcWS1BEAgNFo\nEAJUWMzC0rUbUqdo0NDA9tQRAKiqSldAAAj5NsSUdqp2rg0x0ZRRACg1DUKAaptzw6rUEUbg\n/AQArVbOCpiHawgByK/SUxaUCzUAACAASURBVLUBgDLTIAQor0rPWAOAhlW6Ak4+/p1117iG\nEIBQ8XpXV4xh1V+cnToFALBPGoQAAED1lHbK6Knf/VH9RTUPYgDkErNw4qJlqVM0aNu6/5M6\nAgCwT55LAaotZqFr3uLUKRoRY1gya3rqFABUWHWnjIY4lDoBAJWx+tmtqSOMwL0SAFB1GoQA\npTZj6kGpIzTI4yIAY9H2U9eWzHpH6hQApNf29c6UUQAoLQ1CgFJbcdGMumtKO2OtLocIARiL\nmIVvL1+XOsUIug+YmGNVbHkOAEjNlFEAKC0NQoB2UM4Za/lejwJA4770k8dSRxjB7Dt+njoC\nAO2jtPdKGBsDAJWmQQhQdtWdOeP1KABjUd0KmEetqzt1BABKob3rHQBQWhqEAO0gZuHcG+9P\nnaIhXSoRAJ1oKMvM2QYgp5iFmdetTJ2iEa7dBYDS8loWoE3c9vjzqSOMpFYLtfDK1+s+f+Xr\nkDP60gQDoC2UdupaHjGGVX9xduoUAFTDiic3pY4wklw7Pl27CwBlpEEIUAF5Zs4MZGV86Jpw\n2OEhhle+dvfqh0d+7M/TJAOgCo6c3Js6QoNyXsu07al1rU4CQPlVd8po3z2rU0cAABqkQQjQ\nJso5ZXT7c8+MvuDB//u8jQ/dV0wYACrnqcsrfNA8V49wcLD1QQBoBzELJy5aljoFANA+xqUO\nAEDT3LrmudQR9jR5+kkvrX549DUPffG8E6++fu/Pp5w+uyWZAGgvMQsTLrtt+9VnpQ6yD8ND\ntuNIH4bQ5S5eAHJb/ezW1BEaEWNYMmv6nGW5ztYDAIXxOApQDRWdOXPqd3+UOgIA1Varv6Sk\nc7Zfsfec7fDaqO2eQw9PEAmA8qnoEx8AUF0ahAAkFmN45NILf3HZhamDAFBGQ239wrT30D9I\nHQGAyijnlNE8I7WHDxEWEAYAyE+DEKB9xCx0zVucOsVedg1P2/sMSO21LzPWAGhYzMLkr96R\nOsVIuuocgNz0yAPu4gUgv4pOGQUASsgdhACVceTk3t+9tCN1iv3Wd8/q4W823v9fD/71Z1/7\nRQyHf+icQ2d/ME0sANrLloEsdYQR5LmL9/f/+W8Hn/zuYvIAUGZx0dzal8u34zOHvuVr7prp\ngCAAVEya4xqbNm26+OKLp06d2tPTc8QRR1xwwQXPPPPM6H/y3//935/5zGcOP/zw8ePHH3LI\nIeeee+5999lpC3SWpy7vSx2hcXfNmv667mAIoRaeuf3fH7n0wuGv3916c6JoCaiDAPulutcy\n5bmL99kltxWQpFTUQYCGxSxMuKyShSPGsGT2CalTlII6CEBJJDhBODAw0NfX9+CDD37sYx87\n5ZRT1q5de9NNNy1ZsuSBBx44+OCDR/yTRx999LTTThs/fvwXvvCFP/qjP3ryySevu+66008/\n/Y477pgzZ07B+QHKbHjK6NC1pXuR2jvlsGz7y4Nbtuz+Ya0Wuia8Yfj7A95ydIpcCaiDAK0Q\nszBx/u3bFnwodZD91v1qKewQ6iDAGA1kMXWERg2V8bh/wdRBAMojQYPwuuuue/DBB6+55pp5\n8+YNf3LmmWd+8pOfvOqqqxYuXDjinyxYsGDLli1Llix5//vfP/zJRz/60ZNOOunrX/+6Qgh0\nlBlTD1r5xKbUKRpxxo/vDiE8fs3Xfvefr50UjDEcf8WidKHSUAcBWqR/cCh1hEZk2zrrNil1\nEGAU7T1lNMaw8aH7OnywtjoIQHnUYix629HJJ5+8du3a559/vre3d9eHxx577ObNm9evX1+r\n1fb+k/e+972rVq0aGBgYP378rg8nT578pje9ad26dfv6F02ZMmXDhg2Dg4Pd3d3N/a8AkFCe\nx8VzTjj0lvNOLSBMfnfNmh5GLThvPu19R579yd0/mXL67JZGSkUdBGhM3QpY6w4lPEN/18zp\nYdf/tO9RCmshhNDd1TV76epiQ6WkDgKMLs8TX3lLXj21rtqcex4tIExpqYMAlEfRdxBu3779\nl7/85bvf/e7dq2AI4Ywzznjuuef2VdX++I//OITw+OOP7/rkhRde2Lp169vf/vaWpgWoqFvX\nPJc6wp56pxw2btKkcZMmdb/hdYPUut/whuGvDhkxqg4CtE7MwtK1G1KnGEl89Wukz3uPemuC\nSImogwB1dY/QIaqGvuVr6i8q/KBCqaiDAJRK0Q3Cp556Ksuyo446ao/PjznmmBDCb37zmxH/\n6pJLLjn44IM//elP33vvvevXr3/ooYc+9alPTZgw4Yorrmh5YoCSiYtKt1E0jzN+fPf7Fq96\n3+JVs3/6wO6fZ9v7s+39E4/+wzedelqqbEVSBwFaas4Nq1JH2MtIRwF29/ITa++aOX3JrOkv\nrFi6+1ch4YqmDgLUNbiwkk98OcUYVn7iA6lTJKMOAlAqRd9BuGXLlhDCxIkT9/j8jW98467f\n7u3tb3/7z372sz/7sz+bOXPm8CdHH330nXfe+Z73vGePlX/913/98ssvD3+/bdu2JiYHqJCY\nhXNvvL9UU0b3OW0mhhDC5scffeTSC2u1cOLV1xeZqnjqIEDDKnot09RP/+UT//y9EEKojTxi\ndFhXV9F7N5NQBwGaImaha97iEk4ZzWP7+qdTR0hGHQSgVIpuEA7be6D28FWIIw7aDiE89thj\nH/7whwcHBxctWvS2t73tueee+7u/+7uzzjrr3/7t3/70T/9095U33njjpk2bWhQboEJKOGU0\nhFffhI44VKbWKe9GgzoI0Emmfe7iaZ+7ePj75TNPGgg7X/lFDId/6JxDZ38wWbJ01EGA0c2Y\netDKJyr5v2Z9y9fkuYmww6mDAJRE0Q3CAw88MIy0I2bz5s0hhEmTJo34V5/97GefffbZX/3q\nV295y1uGP/nUpz71tre97bzzzlu3bt3uN/T+4Ac/2LnzlUfu888/f19bbwAqrYpHKHa/jmL5\nB947sH3z7r89YOq0Yz//5cJDJaAOArRUaU9UjPC2tBaeuf3fn7n934d/6v2DI/744q8WHatw\n6iBAHisumlG5Jz7yUAcBKJWiz2ocffTR48aNe/LJJ/f4fO3atSGEY489du8/2bp166pVq97z\nnvfsqoIhhAMOOKCvr+/pp5/+1a9+tfvic8455/96VU9PTwv+GwBUQ8zCiYuWpU4xsu7X38ce\nQhjasT1JkuKpgwBjMam3O3WERnV1hdrrZoqGEF75pBZCLUw88pg0wYqlDgI0y/CemNQpGtHJ\n1xCqgwCUStEnCHt6et71rnfdd999L7/88gEHHDD84dDQ0D333HPUUUcdffTRe/9Jf39/jHH7\n9j3fHQ9/svfnAJ3gyMm9v3tpx+hrVj+7tZgwOY0yamb7M08/cumFu3484iMfP+SMOYWEKpo6\nCDAWmxecWdETFX33rA4h9P/utyv/54de+zSGk77Z5pfv7kEdBMipimNjhk39zOdeuXx33zr2\nGkJ1EIBSSXDb0/nnn//yyy9/61vf2vXJ9773vd///vcXXHDB8I/bt29/+OGHh/fOhBAOOeSQ\nt771rffff//um2I2bdp05513Hnjggccff3yR4QFK4qnL+1JHaLbdTlFMOOzw1GlaSB0EaKmY\nhXHlO1Fx18zpd82c/rruYAghhEcuvXD465dX/HWSYMVTBwGaJWZh6doNqVPsadfNu4xIHQSg\nPGrDt+AWKcuy97///cuXLz/77LNPOeWUxx577Oabbz7++OP/67/+a3jvzOrVq0844YS+vr47\n77xz+E9uueWWj3/84wcffPDnP//5adOmPfPMM9///vfXrVt33XXXXXjhhfv6F02ZMmXDhg2D\ng4Pd3ZWdRASwb3n2k55zwqG3nHdqAWH21/KZJw2Enbt+7Bo//oSv/8Mea6acPrvQTEVRBwHG\nYtxXFmf1nmBq3aFs1xDeNXP6a/NFYy2EV/87vPrhG444+m0XXbr7n6iD6iDQ4fI88ZWw5IVR\nh8fsUquFOcvW1F3WftRBAMqj6BGjIYTu7u7Fixd/7Wtf+9d//dfFixcfeuihF1544ZVXXrnr\nZP3ezj333Hvvvffaa6/93ve+t3HjxkmTJr3rXe/6zne+M3du6f4/EECp3LrmudQR2JM6CDAW\ngwsrOXKtb/lr70B33yVz0tWdNWI0qIMAuVV3ymj3AROzl7elTlFS6iAA5ZHgBGFh7JQB2l7d\nx8Vy7icNnX2CsDDqINCu8rwtHT8+DHyzRBXwrlnTQ92Dj7Vw4m79QnVwjNRBoA1U94mv7iHC\njj1BWBh1EIC6EtxBCEBhYhaOuPLO1CkAoGiDQ6kTvF7vlMNCePW23RHVQleXpzMA9k/MQlf5\nbt4FACohwYhRAIq0futA6ggjmLn8kRdWLP3ND67b8t+PhhB6Dnpz6kQAVEYVR66d8eO7d32/\n8iPv63/p+d1/e8DUacd+/suFhwKg7Cb1dm/ZkaVO0RIxhiWzpjtECAAJ2aMKUGFxURmHyeyf\nWgi1sP2F9Y9cduEjl134i8teuWJ958YNy8+e+eQPv582HQAVFbMw7eq7669LYcr7P7DHJ3Hn\nzhFXAtDhNi84M3WEBu1++S4AUE4ahABtLmZhyhU/TZ1i3+Kr/xlDiGHXxbgxGxp4ccOgm+0B\nGMmRk3vrrlm3sb+AJE0x8OLz9RcBwEhiFsZfUrGD9cNiDEved3zqFADQuYwYBWh/L/YPpo4A\nAM301OV9lZsyetfM6fv6Vdbf/8ilF+768YiPfPyQM+YUEgqAsuvprg1kcfQ19X6fRvcBE7O6\nOz5jyS4NBoBO4gQhQLW1w5TR13vih99/4off/91//EvqIABUW8zCzOtWpk6RW+21rwmHHZ46\nDQBlsePas1JHaNDsO34ewqvVbQ+vlryuLm8mASAZJwgB2l/MwreXr7t45ltTB8khhpd+8eAr\n3+/9GAkA+2PFk5tSR3jN7rcxLZ950kB47d7BrvHjT/j6P6QIBUA7iFmY/NU7XvpGKS8sHPF0\n46sf9hxqTwwAJKNBCNARvvSTx8rTIHzdjLU9uoCv//GJm2544qYbdv14yj/eePDJ725lNAAq\nIy6aW7kpowDQgDxTRrcMZMWEaa7eQ/8gdQQA6FwO8gNUXrtNGd1tBE2te9xbzv7Erq/eKYcm\nTQZAxcQsLF27IXUKABiT6k4ZDV11xsJseuSBjQ/dV0wWAGAPThACULThGWsvrFgaQnjs8r8Z\nGHjdxfUnXX19CGHghecfW3jFMX9+/rS//GKKjAC0iTk3rBq6tr120gDAXmIWei5dPPDNcpW8\nydNPemn1w6OveeiL581Ztmb0NQBAK2gQAnSEmIXxlyzeeU25HhcBYCyqO2V05vJHXlix9Dc/\nuG7L44+GEOLgzrp/AgCjGxxKnWAvp373R6+7YGIfhjeP7mHK6bObngcA2J0RowDtYFJvd901\n9S6tAAAKF0MIIarRAIyq3e6VAABKQIMQoB1sXnBm6gj7bcrps6ecPrs2zll2AFooZqF7XiVP\nGQLAfolZmHb13alT7Kk2bnytq6vW1RVqe91HWKuFrtqUM/pS5AIAjBgF6BgxCxPn375twYdS\nB3mdM+742YjzZHqmHDJ8VSEAjGJSb/eWHdnoaxzPA6BDrNvYnzrCnnqnHLJ9/e9H/l2MIYbn\nl9/1/PK7arVw4tXXFxsNADqdE4QAHaS/hLdSAMAYVPEM/Yi2PbE2dQQASq2iU0b/4AMfeeW7\nvQ4QhtprX11dXlECQNGcIARoE3HR3NqXjVADgD0Nj1xbe9n7Uwd5xV0zp7/2w6tvS3/9vxbt\n+qyrt/eEr/19saEAaAcxC+feeP8t552aOshrpn3u4mmfu3j4++UzTxoIO1/5RQyHf+icQ2d/\nMFkyAOh4GoQAHaScU0YBoNVKN3Jt1ymKuNcnIfROOazYNAC0j1vXPJc6wgjumjV9z5HftfDM\n7f/+zO3/PvzTm09735Fnf7L4YADQyTQIAdpHdy1k9e5ZMmUUgDZTuTP0w5fsvrBi6eC2LY9e\neUmohRDD4Wd+9ND328EDwGgqV/J26Z1yWLb95RCHBrdu2/VhrRa6Jrxh+PsD3nJ0omgA0Lk0\nCAHax+DCqj4uAgAAMHYlnDIaQjjjx3eHEPp/99uV//O13TAxhuOvWLTvPwIAWkuDEKCzxCzM\nvG7l8r+akToIABQnZqFr3uKha+emDgIALVfCKaMjjBgNIYTwyKUXDn9jxCgAFK8rdQAAirbi\nyU2pIwBAM8VFOn8AdISKlrzeKYeNmzRp+Gv3z7vf8IbhLyNGAaB4ThACtJXqXkoBAB1lyumz\nBza9OHwBIQA0UczCF25Z/Z1zj08d5DXDI0aH3TVz+q7vs+39IYQD3/aON516WoJYANDZnCAE\n6DgxC0vXbkidAgAKFbMw+at3pE4BAEW4/me/TR3hde6aOX3X1+t+EUOIYfPjjz5y6YW/uOzC\nROkAoENpEAJ0og/+v6tSRwCAom0ZyFJHGEkthFp45qf/8chlr70b3blxw/KzZz75w++njQZA\nCVV0ymgIr5S8ff2qq8tbSgAolBGjAO0mz5TRwaFisgBAQSo/ZDvu+o8QQojZ0MCLGwZf3pYu\nEAAVFrPw7eXrLp751tRBXtG3fM2u75d/4L0D2zfv/tsDpk479vNfLjwUAHQ6e3MAAICOELNw\n4qJlqVMAwFh17+sc3m6+9JPHWh+kEd29vXt8kvW/nCQJAHQ4JwgBOlHMwvhLFu+8prKjaQCg\nIauf3Zo6Qh3DL0mzHf2pgwBQXoMLq3dufs/bB3ez49lnHrn0tQsIj/jIxw85Y04hoQCgo2kQ\nAnSoLNZfAwAVUvkpoyGEGFb/7Vde+T7H6RAAaBO7Vb0Jhx2eLgcAdBANQoA21A5vSAGgTY1y\nhGKPpuATN93wxE037PrxlH+88eCT392yXAC0lZiFrnmLh64ty9iY111DOPOkgbBz149d48ef\n8PV/SBEKADqaBiEAANApSjFku6srDA3lWVjrHnfER/5s14+9Uw5tWSYAKsauUABgjDQIATpU\n2faTAsDYHTm593cv7Rh9TfIh2333rN71/WN/e+nv7/qP3X976Ps+GELI+l/ecN+9x/z5+dP+\n8otF5wOgXcQsLF27Yfa0N6cOAgCUUVfqAAC0RFyk8wdAx3nq8r7UEfZP1xvesMcnh591zuFn\nnXPorA8kyQNAm5lzw6rUEQCAktIgBOhcMQsT59+eOgUAFCpmYdrVd6dOAQBjVd1doTOXP3LS\nN6+fdNw7Qgwhhp6DnHEEgASMGAXoaP2Due5AAoB2sm5jf+oIAEAItRBC2P7C+kcuu3D4pxOv\nvj6EsHPjhuVnzzz6E39xzJ9fkDYgALQxDUKAtlWVW+unnD47dQQA2kdVyt+w4y654s1nvG/v\nz3umHNK3fE3xeQBoM2W/ez6GUAshvvbTK99kQwMvbhh8eVuiWADQEYwYBehow7fWp04BAADA\nfpvfNy11BACgqjQIATqdW+sB6DQxCxMuuy11CgAYq6vmHpc6QpM98cPvP/HD7//uP/4ldRAA\naH8ahADtrLq31gNASw1ksf4iAKi+mIXJX70jdYp8YnjpFw++9IsHtzz+aOooAND+3EEI0OmG\np4zOnvbm1EEAoDmqdQ0hALTaloEsdYTX3DVz+ms/1F7/u9f/+MRNNzxx0w27fjzlH288+OR3\ntzIaAHQWDUIAwge+t2rnNc4aAgAAVEy7bYsZ7hHGEEKodY874iN/tus3vVMOTRMJANqUBiFA\nm8vzuGjKGgCdJmZh3LzFg9faHwNA+4tZ+MItq79z7vGpg4QQQt/yNSGEF1YsDSE89rXLBvpf\n2v23J119fQhh4IXnH1t4xTF/fv60v/xiiowA0BHcQQgAALSbPLfwDhWQAwDK4fqf/TZ1BACg\nXDQIAQgxCz2XttFQGgDIYfg4ReoUADBWebbFAADsQYMQoP111+qvGXSMAoDO890SHKeYcvrs\n1BEAoGhTTp895fTZ3ePHpw4CAJ3LHYQA7W9wYXvdWg8AOeS5hdclvAB0iJiF8Zcs3nlNuc4a\nzvjfy4YvI9xDz5RDhq8qBABaxwlCAAAAAKiwHFNjQmZfDACwGw1CAEIIIWaha55ThgB0luHj\nFKlTAMBYDbmGEADYTxqEAB1hxtSDUkcAgKL15LiG13EKADpEzMLE+benTgEAlIUGIUBHWHHR\njLpr8gylAYAK2XHtWakjAEBB8myL6R8cKiAJAFAJGoQAvGIoC1Ou+GnqFABQqJiFmdetTJ0C\nAMbKthgAYL9oEALwmhf7B1NHAICirXxyU+oIAFAE22IAgF00CAE6RXRrPQCdJ0/5cwshAJ1j\nhW0xAEAIQYMQAAAAANqAXaEAQH4ahAC8Jmahe97i1CkAoFAxCxMuuy11CgAAACiOBiFABzly\ncm/dNcasAdBmumv11wxkCiAAHcG2GABgmAYhQAd56vK+1BEAoGiDC81bA6BT5JkyalsMABA0\nCAHYQ8zCEVfemToFAAAAAACtokEIwJ7Wbx1IHQEAChWzMM4tvAB0hpiFExctS50CAEhMgxCg\ns+QZOAMAbSbPNYRDrY8BACWx+tmtqSMAAIlpEAKwp5iFifNvT50CAJomzzWEOXqIAFABdoUC\nAHloEAIwgv5B5ygAAAAAANqTBiFAx7GfFAD2NpSFLtcQAtAZYhaOuPLO1CkAgJQ0CAEAgPY3\nY+pBqSMAQEHyXL67futA64MAAOWlQQjACGIWplzx09QpAKBpVlw0I3UEAChInst3AYAOp0EI\n0IlybCcNL/YPtjwHAJRJzMKJi5alTgEARYhZ6DZbGwA62LjUAQBIYGjR3NqXPQoCwJ5WP7s1\ndQQAaIIZUw9a+cSm0dfEYqKMasrps1NHAIAOpUEIwMiGp4y+8LUPpg4CAM0Ry7o/xrtRAJpu\nxUUzyln1AICSMGIUgH3amZVhRykAAADNF7Mw+at3pE4BAKShQQjQoeKi+rfWbxnICkgCAOUR\ns9DlQiYAOoaHPgDoWBqEAABAp8izPwYA2oOqBwCMQoMQgH2KWZg4//bUKQAAAGiJmIUv3LI6\ndQoAIAENQoDOdeTk3rpr+geHCkgCAOURs9BzqSmjAHSK//Wz36aOAAAkoEEI0LmeurwvdQQA\nKFpPd63uGttjAGgPeaaMKnoA0Jk0CAEAgA6y49qzUkcAAACAxDQIARhNzMKEy25LnQIAAICW\nMFsbADqTBiFAR5vU2113zUAWC0gCAOURszD+Eq9KAWgHZmsDACPSIAToaJsXnJk6AgAULc+r\nUttjAGgPZmsDACPSIASgjpiFExctS50CAJrGq1IAAAA6nAYhAPWtfnZr6ggAUCgXMgHQOWIW\nuuapegDQWTQIATpdXDQ3dQQAKNqRk3vrrukK9SeRAkD5zZh6UOoIAEDpaBACAAAd56nL++qu\nGRhyDyEA7WDFRTPqrvGKEAA6jeoPQH0GzgAAALSxLAuTv3pH6hQAQHE0CAEwcAYARuAaQgA6\nypaBLHUEAKA4GoQA5Bo4AwBtJs/+mMGhAoIAQMu5ex4A2IMGIQC5xCycuGhZ6hQA0DT2xwAA\nANCxNAgByGv1s1tTRwAAAKAl3D0PAB1FgxCAEAycAYCRuIYQgLYxv29a6ggAQIloEAIAAB3K\nNYQAdI6r5h6XOgIAUCIahADkFbMw4bLbUqcAgKZxDSEA7M7ReQDoHBqEALwiz5TRgSwWkAQA\nyiNmYeZ1K1OnAICCODoPAB1CgxAAAGA0K57clDoCADSBu+cBgF00CAHYDzEL066+O3UKAGga\nr0oBYHemjAJAh9AgBGD/rNvYnzoCAAAArWLKKAB0Ag1CAF7jFAUA7C1m4Ygr70ydAgCawEMf\nADBMgxAAAKCO9VsHUkcAAACAptEgBGD/xCx0z3MjBQDtw1kKANhdzMLE+benTgEAtJYGIQCv\nc+Tk3rprYgE5AAAAaIFajjX97iEEgHanQQjA6zx1eV/qCABQOg7QA9A2hhydBwA0CAFoQMzC\n+Eu8JAWgfczvm1Z3jQP0AHSOmIXJX70jdQoAoIU0CAFoROYtKQBt5Kq5x6WOAADlMjTkqQ8A\n2pkGIQB7igbOAMBeYhamXX136hQA0AR5Hvpedg0hALQ1DUIAGhGzMHH+7alTAEDT5HlVum5j\nfwFJAKAMnB8EgPamQQhAg/rtJwUAAGhTdoUCQHvTIARgBKaMAgAAtLEjJ/fWXWNXKAC0MQ1C\nAACAXGIWjrjyztQpAKAJnrq8L3UEACAlDUIAGmTgDABtppZjzfqtAy3PAQAAAC2mQQjAyLpz\nvCU1cAaAdjJkwjYA7CZmYfwli1OnAABaQoMQgJENLvSSFAAAoG3luYYwiwUEAQAS0CAEoHEx\nC1Ou+GnqFABQnJiFExctS50CAJrANYQA0Mk0CAEYkxf7B1NHAIBCrX52a+oIAFAQO2MAoF1p\nEAKwT9FVTAB0GLUPAPZgZwwAtCUNQgAAAADoRHbGAEDH0iAEYExiFqZdfXfqFABQnJiFrnmL\nU6cAAACAxmkQAjBW6zb2p44AAE0zY+pBqSMAQInELPRcamcMALQbDUIARmPgDACdZsVFM1JH\nAIDi1HKsGRxqeQwAoGAahAAAAPsnZmHi/NtTpwCAJhiyKxQAOpIGIQBj5RpCANrM/L5pddf0\nO0wBQMeIWfjCLatTpwAAmkmDEIAmcA0hAO3kqrnHpY4AAOVy/c9+mzoCANBMGoQA1OEaQgAA\ngDbmoQ8AOpAGIQAAwH6LWZhyxU9TpwAAAIBGaBACAADsqbtWf82L/YOtDwIApRCzMPmrd6RO\nAQA0jQYhAE0QszDhsttSpwCAphlcaNgaAB0kz5TRLQNZAUkAgGJoEAJQ3/y+aXXXDGSxgCQA\nUB4xCzOvW5k6BQAAAOw3DUIA6rtq7nGpIwBAGa14clPqCAAAALDfNAgBAABGkGfYGgB0jpiF\nrnmLU6cAAJpDgxCA5jBmDQAAoLpmTD0odQQAoDgahAA0jTFrAHSamIVvL1+XOgUANMGKi2ak\njgAAFEeDEIBcjFkDR1MgNwAAIABJREFUgBF96SePpY4AAAWJWVi6dkPqFABAE2gQAtA0TlEA\n0GbsjwGAPcy5YVXqCABAE2gQAtBM8/63UxQAAACVZGcMAHQODUIA8srzrDg4VEAQAAAAAAAa\nl6ZBuGnTposvvnjq1Kk9PT1HHHHEBRdc8Mwzz4yyfsKECbV9eOKJJ4pKDQDNoQ4CtJOYhSlX\n/DR1iipRBwEqLWaha97i1CkqTB0EoCTGFf+vHBgY6Ovre/DBBz/2sY+dcsopa9euvemmm5Ys\nWfLAAw8cfPDBI/7J3/zN3+zcuXOPD2+++eb169cfeOCBrY8MQF4xCxMuu2371WelDlJe6iBA\ntXTXQhbrrHmxf7CQLO1AHQQouVoI9eoejVMHASiPBA3C66677sEHH7zmmmvmzZs3/MmZZ575\nyU9+8qqrrlq4cOGIf/L1r399j08eeOCBhQsXfu1rX3vTm97U2rgA7GbG1INWPrFp9DUDdV+j\ndjZ1EKBaBhfOrX3ZOYmmUQcBSm5okcLXQuogAOVRi7Ho17gnn3zy2rVrn3/++d7e3l0fHnvs\nsZs3b16/fn2tVqv7T8iy7E/+5E+2b9/+8MMP9/T07GvZlClTNmzYMDg42N3d3ZzoAIRQ91mx\n1h2GrnWz/T6pgwCVo/Y1kToIUH55GoQH9HZtW/ChAsK0GXUQgPIo+g7C7du3//KXv3z3u9+9\nexUMIZxxxhnPPffcunXr8vxD/umf/umhhx66/vrrR6mCAFBC6iAAnUwdBKiE+X3T6q7pHxwq\nIEmbUQcBKJWiR4w+9dRTWZYdddRRe3x+zDHHhBB+85vf/OEf/uHo/4Rt27YtWLCgr69v9uzZ\ne/926dKlg4Ov3P+x93huAAoQs3Dujfffct6pqYOUkToI0JZcwZuTOghQCVfNPW7BXWtTp2hD\n6iAApVJ0g3DLli0hhIkTJ+7x+Rvf+MZdvx3dd77zneeff/6KK64Y8bfnnnvupk11LscCoNVu\nXfNc6gglpQ4CVNGk3u4tO7LR17iCNw91EIBOpg4CUCpFNwiH7T1Qe/gqxLqDtvv7+xcuXDhr\n1qyZM2eOuOCcc87Ztm3b8Pe33nrrwMDAmMMC8Doxx5X19a9N6GzqIEC1bF5wZp7bmMhJHQRo\nAzEL3fMWZ67g3X/qIAAlUXSD8MADDwwj7YjZvHlzCGHSpEmj//mPf/zjF1544fzzz9/Xgh/8\n4Ae7vh++jLfxrAA0yhmKfVEHAehk6iBAVeQ5Pe+5b3+pgwCUSlfB/76jjz563LhxTz755B6f\nr127NoRw7LHHjv7nN998c3d390c/+tFW5QOAVlIHAdpVt+PzOaiDAFWxecGZqSO0IXUQgFIp\nukHY09Pzrne967777nv55Zd3fTg0NHTPPfccddRRRx999Ch/OzAwsGTJkpNPPvmggw5qfVIA\nGhezcOKiZalTlJE6CNCuBgfDxPm3p05RduogQDsZnjKaOkWVqIMAlErRDcIQwvnnn//yyy9/\n61vf2vXJ9773vd///vcXXHDB8I/bt29/+OGHh/fO7G7NmjXbtm076aSTissKQKNWP7s1dYSS\nUgcBqmhSb3fdNf2DQwUkqTp1EKCdmDK6v9RBAMqj6DsIQwif/exn//mf//lv//ZvH3rooVNO\nOeWxxx67+eabTzjhhK985SvDC37961+ffPLJfX19d9555+5/+Pjjj4cQ3vrWtxafGYDdxUVz\na1+2UbRB6iBAFW1ecKba1xTqIEBVeO5rBXUQgPJIcIKwu7t78eLFX/nKVx5++OFvfOMby5cv\nv/DCC5cuXXrAAQeM/ocbN24MOS7sBYAyUwcB2lXMwreXr0udouzUQQA6mToIQHnUYmzbYQBT\npkzZsGHD4OBgd3f9cUAA7Je6O0lr3WHo2rnFhGFE6iBAcx04/44tO7LR14wbF3Zeo/yVgjoI\nMHZ5ThD29tS2X31WAWHYL+ogAHUlOEEIQCeIWehyXz0AbWTzgjPrrsnadvslAJ0oLqq/62VA\n8QOAatIgBAAAaI6YhaVrN6ROAQAAAHVoEALQiDw7SQGgA/2PH/w8dQQAAACoQ4MQgFaJWRhn\nyigAbSTP/phtA0MFJAGAkohZmPzVO1KnAAD2mwYhAC3kFSkAAEB11XKs2TKQtTwHANBsGoQA\nNMiUUQAAgPY25LkPANqUBiEALdSdOgAAAAAAAHvQIASghQazMOGy21KnAIDixCx0uYIXAACA\nctMgBKBxR07urbtmIIsFJAGAYszvm5Y6AgCUS8xCz6U2xwBAxWgQAtC4py7vSx0BAAp11dzj\nUkcAgEJN6q1/d8TgUAFBAIBm0iAEAAAAAEa2ecGZqSMAAM2nQQhAa7mKCYBOE7Nw4qJlqVMA\nAADAPmkQAjAmPd211BEAoHRWP7s1dQQAKE7MwhduWZ06BQCwHzQIARiTHdeeVXdNzMK3l68r\nIAwAFCAumps6AgCUzvU/+23qCADAftAgBKAIX/rJY6kjAAAA0AibYwCg/WgQAjBWnhUBAAA6\nnMkxAFAtGoQAAABNFrPQNW9x6hQAUKj/57bHU0cAAPLSIAQAANg/3bXUCQCgWHkmx/QPDhWQ\nBABoCg1CAIrgIAUA7WRwofHaAAAAVJgGIQBNkGczaczCiYuWFRAGAMogZmHi/NtTpwCA4qh9\nAFAhGoQAFGfNs1tTRwCA4gxkJq0B0D56cozYNmUUAKpCgxCA5shziNCTIgBtI0/hy2IBQQCg\nIDuuPSt1BACgaTQIAQAAAAAAoINoEAJQnJq6A0AniVk498b7U6cAgOKofQBQFV7UAtA0XfUu\npBjKhrrnLS4kCwC0XP2LmEK4dc1zLc8BAGWi9gFAJWgQAtA07z3moLprXMYEQNsYynENIQC0\nkzxX8ObZQAMAJKdBCEDTrLhoRt01MQtdDhECAAC0KbtCAaASNAgBaKYZU+sfIgSAzmFnDAAA\nACWkQQhAM+U8RPiFW1YXEAYAAICCxSyce+P9qVMAAHVoEAKQwPU/+23qCADQBHmuYopZWLp2\nQwFhAKAkfrLmudQRAIA6NAgBaLI8r0oBoKPMuWFV6ggA0Bx5nviGCsgBAIyNBiEACZg5A0Db\nsDMGAACAytEgBCCNu35t2BoAAAAAQAIahAA0X56zFFsHsgKSAAAAULCYha55i1OnAABGo0EI\nQBqeGAHoHKoeAAAApaJBCEBCtV3f/eea5/5zzXMJowBAw1xDCEBHUfgAoA1oEALQEnmeGA9+\nQ3cBSQCgDGIWei51iBCAThGzMOGy21KnAAD2SYMQgGRe3Dp47o33p04BAE1Qq78kDA61PAYA\nlMdAFlNHAAD2SYMQgJRuNVYUgLYwZNgaAJ3ElFEAqDoNQgBaxRMjAABAx+rpynPAHgBIQ4MQ\nAACgCDEL3fNcQwhAp9ixM7pUAgBKS4MQgJTe2NOdOgIANMeMqQfVXeMuJgDaRp7jgS6VAIDS\n0iAEIKUt/VnPpYv/00MjANW34qIZqSMAQHHcvwsAlaZBCEALTerNc0DQvRQAdIqYhWlX3506\nBQAAAJ1OgxCAFtq84My63b/3HFl/IBsAVEKeKaPrNvYXkAQAyiBmocv9uwBQShqEALRW3cuW\nxnU7QQhAmzBlFAAAgErQIAQgsd9ucpACgA4SszDzupWpUwBAE8Qc1xDGLHx7+boCwgAA+0WD\nEIDWmtTb3Tuuq3dcV1fXHicFa+O7u8Z3d51xzJvSJAOARFY+uSl1BABojp4cI2G+9JPHCkgC\nAOwXDUIAWmvLjmzH4NCOwaGhoT2mjcad2dDObOifH346TTIAaIE8ZymGsnDujfcXEAYAWm3H\ntWeljgAANGJc6gAAdIJdW0pHuJEwZuF//H/3hxDeMrn3d5f3FZgKAJK569cbUkcAAACgczlB\nCEBrjeuqhRBf/RrNjsE6CwCgEvIcItw6kBWQBAAAAEakQQhAaw3uOVkUAAgxC9Ouvjt1CgAo\nQsxC17zFqVMAAK+jQQhAYWq7zRoFgE63bmN/6ggA0AR5js4DAGWjQQhAa8VFc1/9Oqu7a/wo\nK7dsN2wNgDaR51XpOI9jAHSMmIWeSx0iBIASGZc6AAAdofbl+o+CO7Js92V/dcbR3zn3+FaG\nAoCUDprYnToCADTHkZN7f/fSjtHXDA4VkwUAyMWWVQDKo7brq1arnfKWg1LnAYAWen7zznNv\nvD91CgBogqcu70sdAQDYP04QAlCE4Ulrf7Rg2doNW0dddlZRiQAgvVvXPJc6AgAUpOagAgCU\nicIMQHF+PX/WT84/dVJvT+ogANByea4hBIC20VWrs2AoG+qe5xpCACgLDUIAAAAAYEzee0z9\nSyJiATkAgHw0CAEo1EemH5o6AgCURczChMtuS50CAJpgxUUz6q6JWVi6dkMBYQCAutxBCEDR\nfvTpE3f/8bsrn1z82PMhhJ5x9UbSAEClTOrt3rIjG32NPZsAdJS+G1Zl15rCDQDpeRoFAABo\nic0LzuzprnV31bq7/n/27jy+iTr/4/gnbdK7tAXKJafcV4VyqiCn3KLIDcqtsICrLAqeP1dW\nERFdWAQXdRVWHkIBBZUFWVFQAbkrcslRLlGwXC2l0CNpfn/Mms2mbTppJpk083o+fPgg33wz\n+eYz0+877TczMYn893MwIab/NIaGmP5wZ239BggAgJbUfP8uVxkFACBAsEAIAPC3fk0qcaFR\nAIBBVC0XYSuw2wrszn8RLbDblUZbgf2+pmQiAMBA7DaZuvaQ3qMAAAAsEAIAAACAz5y9dst9\nh/d2/eyfkQAAECCW7T2v9xAAAAALhAAAAACgnyPpWXoPAQAAzai5ymh2foEfRgIAANxjgRAA\nAAAAfCU2PDTcHBJuDrGE/veXL5OIJTTEEhoSbg4Z3LyajsMDAMD/7DapNmuz3qMAAMDoWCAE\nAOhD+SbCfk0q1UqIVFryrAUh0zfoOyoAALSVlWvLtRbkWgvybf89W8Iukm8ryLcV5FoLXvzy\n2Poj6TqOEAAA/7PZS+4DAAB8igVCAEAAsYtJ7yEAAKA50+//FdGeGBmhw4gAAPAZNVcZvZSd\n54eRAAAAN1ggBAAAAACfsv/+XxHtNSuE6zAiAAB0ZbdJyAyuHwMAgJ5YIAQAAAAA3Vhteo8A\nAAA9mPizJAAAuiKJAQAAAEA3e89l9l+6V+9RAACgJTVXGa0QHeqHkQAAgOKY9R4AAMCgTNOL\nvJ6M3bndFCoFc0v+xRIAgIDn+AJCe+HGED64CQAwnkvX8wcs3bt2TGu9BwIAgEHxiygAQF8m\np7+ZOm7+57+4MItu4wIAQAu/n0JR5NcQ/qfRZrPxPUwAAAP69Ei63kMAAMC4OIMQAKAP52vO\nlH/+q2u3cn9v763TiAAA8CnlAzFFnEEonEQIAAg69jf6FHPZGAAAEBBYIAQA6C/SEnrtlt6D\nAADANxyfibntpa2/Xr/pfI9J5LPxrUWkX5NKegwNAAAAAGBQLBACAAAAgG8VdwqFXeS+f+z9\nTx++eRcAYDB2m0Q8szHnVa4iAwCADriODQAAAAD4h8s374rzN+9Gm0P1GRQAAL4RG65Em7v4\nq1kuUoeRAQAAziAEAASCX17svP5IunCBNQBAkHJcZbTlGzt++DXD+a7Px7cSEhAAEIyuz+5p\nmr7hf79/V/HfFovFtP5IOjkIAID/cQYhAAAAAPhJ6vS7Isxhzi1nrvI1vACAoGUqqUP5iLCS\nugAAAJ/gDEIAAAAA8LlivobQ/tjaw//tw9cQAgCCS+GTB12YQ0tcQwQAAD7BAiEAAAAA+I3y\nZ1B7oRYRkRAu8QIAMJhzGZxJDwCAPlggBAAAAACfc3wN4foj6Q988KOtIE+52axqzKt9GvLd\nSwCAoBQbHppns4tIgV3ybQVKoznEZDL95/MxHWqV121wAAAYGwuEAAAAAOA/rAUCAIzj+uye\nyj8+P5ze//29yr+tBXaT2D8b31q/cQEAABYIAQAAAEA/hy5k3fePvSLSMDHqp6c76z0cAAC0\nVMxX8IpdRIk/i0U+GcVKIQAAOuArLgAAAABAf9n59pI7AQAQXCwhoXoPAQAAg2KBEAAAAAD8\nyvp691oJUXqPAgAA/d3Mtd33j72m6Rsazdmq91gAADAWLjEKAAAAAPqz2jiDEAAQbO6qHZ9x\ny6r8+8hv2SLFhh1n0gMA4GcsEAIAAACA/q7czNN7CAAAaGzHmQy9hwAAAIrGAiEAAAAA+EPt\nl7ecvXaruHvzbQWm6RscN6d0qPnWgGZ+GRcAAH5gEhE3ZxByJj0AAH7GAiEAAAAA+MPI5Gqz\nv0or/n6T87+Sb4v3w5AAAPAp+xt9HP9OeO6rjJzc4npyJj0AAH7GAiEAAAAA+MMrfRq+0qeh\n8u93d/786OqDzveaRAre6K3HuAAA8C3nU+SLw5n0AAD4GQuEAAAAAAAAAPTldCa9iTPpAQDw\nORYIAQAAAAAAAPiKcqHRerO/Tbtyo7g+nEkPAICfheg9AAAAAAAAAABB7uSz99jf6BMXEa73\nQAAAgAhnEAIAAACA/1UtF/75+NYi8vaOsxuOXhKRCAsf3wQAAAAA+Am/ggIAAACAv/VrUqlf\nk0p6jwIAAAAAYFCcQQgAAAAAAADAH5aPbO58kzPpAQDQC9ELAAAAAAAAAAAAGAgLhAAAAAAA\nAAD8gYtsAwAQIFggBAAAAAAAAAAAAAyEBUIAAAAA0N+tfFvI9A16jwIAAAAAYAgsEAIAAABA\nQLCLSe8hAAAAAAAMgQVCAAAAAAAAAAAAwEDMeg8AAAAAAAAAgIH0a1JJ+ceGo+nKP5RLbRe8\n0Ue/QQEAYCycQQgAAAAAAABAZ1xqGwAAf+IMQgAAAADwN9P0DUU1253bTaFSMJcTKQAAAAAA\n2mOBEAAAAAD0opwqYf/fm/8RF8bvawAAAAAAn+AXTgBAQHB8BQUAAEZgf6OPiKw/km63y/Dl\nP2bn5f3e3lvXcQEAAAAADIEFQgAAAADQjckk4aEh2XoPAwAAf1Jzqe2QULFxqW0AAHyGBUIA\nAAAAAAAA/ue4trb9f2+KiCSEW/w8GgAADIUFQgAAAADQh3KF7QhLiNzSeygAAPiRcqltRY1Z\n35zPzP69nUttAwDgJywQAgAAAICefnmxs95DAABANyGmkvsAAADNheg9AAAAAAAAAAAAAAD+\nwwIhAAAAAAAAAAAAYCBcYhQAAAAAAACAPs6+0EnvIQAAYEScQQgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAAAAAAAAAAgIGwQAgAAAAAAAAAAAAYCAuEAAAA\nAAAAAAAAgIGwQAgAAAAAAAAAAAAYiD4LhBkZGU888UTt2rXDwsKqVas2YcKECxculPiojRs3\ndurUKTY2Nj4+vmvXrlu3bvX9SAEA0B45CAAwMnIQAGBk5CAAIECY7Ha7n58yLy/vzjvv3L9/\n/8CBA5OTk9PS0j788MPq1avv27cvISGhuEd98MEH48aNq1u37vDhw3NycpYtW5aZmblly5a7\n7rqruIdUrFjxypUrVqs1NDTUNy8FAACPkYMAACMjBwEARkYOAgACiN3v3nzzTRF57bXXHC0p\nKSkiMn369OIe8ttvv8XExLRs2fLGjRtKy4kTJ2JiYiZPnuzmiSpUqCAiVqtVq5EDAOA9chAA\nYGTkIADAyMhBAEDg0OEMwpYtW6alpV26dCk8PNzRWL9+/evXr1+8eNFkMhV+yLx585566qkv\nvviiZ8+ejka73V5kZwc+KQMACEDkIADAyMhBAICRkYMAgMDh7+8gzMnJOXjwYNu2bZ1TUEQ6\ndOiQnp5++vTpIh+1efPmyMjIrl27ikhubu7169dFxH0KAgAQgMhBAICRkYMAACMjBwEAAcXf\nC4Q///yzzWarUaOGS3utWrVE5NSpU0U+6qeffqpTp86hQ4c6dOgQGRkZFxdXr169pUuX+nq0\nAABoixwEABgZOQgAMDJyEAAQUPy9QJiVlSUi0dHRLu0xMTGOewu7evVqdnZ2375927dvv3r1\n6gULFuTn548dO/ajjz5y6VmnTp3yv7t69aoPXgEAAKVHDgIAjIwcBAAYGTkIAAgoZl2etfBZ\n8MpXIRZ3dnxeXt7Zs2eXLVs2atQopWXw4MENGjSYPn360KFDnS+lnZGRkZGR4ZtRAwCgDXIQ\nAGBk5CAAwMjIQQBAgPD3GYTlypWToj4Ro1w+OzY2tshHxcTEhIaGDho0yNFStWrV3r17X7x4\n8ciRI849r127Zv9dhQoVNB49AADeIQcBAEZGDgIAjIwcBAAEFH8vENasWdNsNp89e9alPS0t\nTUTq169f5KNq164tIhaLxbkxMTFRij/7HgCAAEQOAgCMjBwEABgZOQgACCj+XiAMCwtr1arV\n7t27b9686WgsKCj45ptvatSoUbNmzSIfdeedd9pstv379zs3njx5UkQKf68vAAABixwEABgZ\nOQgAMDJyEAAQUPy9QCgi48ePv3nz5uuvv+5oeeedd3799dcJEyYoN3Nycn744QflszOKMWPG\nmEymZ599Njc3V2nZu3fv5s2bk5KSCEIAQNlCDgIAjIwcBAAYGTkIAAgcJuVbcP3JZrN16dLl\nu+++u//++5OTk48ePZqSktKsWbOdO3dGRUWJyKFDh5o3b96tW7fNmzc7HjVt2rT58+e3aNFi\nwIAB58+fX758uc1m27RpU+fOnYt7oooVK165csVqtTp/Wy8AAPoiBwEARkYOAgCMjBwEAAQO\nHc4gDA0N3bBhw5NPPvnDDz+8/PLL33333eTJk7du3aqkYHHefPPNv//973a7/dVXX121alWX\nLl22bdvmJgUBAAhM5CAAwMjIQQCAkZGDAIDAocMZhH7DJ2UAAEZGDgIAjIwcBAAYGTkIACiR\nDmcQAgAAAAAAAAAAANALC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngZj1HoDPNWjQQO8hAAD0dOjQocjISL1HoRtyEAAMjhzUewgAAD2Rg3oPAQCgJ/c5aLLb7f4c\njT9lZGTcdtttN2/e1HsgAAA9ZWdnR0VF6T0KHZCDAAAhB8lBADA2clDvgQAA9OQ+B4N5gVBE\nMjIyvHmBc+fOnTNnzssvvzx58mQNR2VY69evHzVq1MiRIxcuXKj3WIJBWlpamzZtWrZs+dVX\nX+k9liBRtWpVk8n066+/6j2QING1a9cffvhh3759derU0Xck8fHxJpNJ3zHohRwMKOSgtshB\nzZGD2iIHAwE5GFDIQW2Rg5ojB7VFDgYCcrAsatOmTVpa2vHjxytWrKj3WIxi7969PXr06Nat\n2+rVq/Uei4HMmDHjvffeW7JkyeDBg/UeS5Bzn4NBfonR+Ph4bx6unHoZGRmZkJCg0YgMLSYm\nRkTCwsKopybi4uJExGw2U08NmUwm6qmV0NBQEYmLi6OkOiIHAwo5qC1y0BfIQQ2Rg4GAHAwo\n5KC2yEFfIAc1RA4GAnKwLAoJCRGR+Ph4yu43sbGxImKxWKi5P4WHh4tIdHQ0ZddXiN4DAAAA\nAAAAAAAAAOA/LBACAAAAAAAAAAAABhLk30HopZycnFu3bkVGRkZEROg9lmCQn59/48aNsLCw\n6OhovccSDAoKCjIzM81ms3IiPLx37do1k8nk5SU44HD9+nWbzRYXF6dcHwNlETmoLXJQW+Sg\n5shBbZGDQYAc1BY5qC1yUHPkoLbIwSBADuoiMzOzoKDAyN+d6X9WqzUrK8tisSiXQ4d/3Lx5\nMzc3Nzo6OiwsTO+xGBoLhAAAAAAAAAAAAICB8CkeAAAAAAAAAAAAwEBYIAQAAAAAAAAAAAAM\nhAXComVkZDzxxBO1a9cOCwurVq3ahAkTLly4oPegypJr1649+eSTtWrVCg8Pr1OnzgMPPLBz\n507nDlS41P70pz+ZTKYJEyY4N1JPT23cuLFTp06xsbHx8fFdu3bdunWr873U0yM//fTTww8/\nXLVqVYvFkpiYOGDAgN27dzt3oJ5lEXvNS+Sg75CDmiAHNUQOBiX2mpfIQd8hBzVBDmqIHAxK\n7DU/cJ+VS5cuNRXl5Zdf1nHMZZ2aqnLwaysiIqLImptMpjNnzgiHegDgOwiLkJeXd+edd+7f\nv3/gwIHJyclpaWkffvhh9erV9+3bl5CQoPfoyoCrV6+2atXqzJkzffv2TU5OPnXqVEpKitls\n3r17d/PmzYUKe2Hv3r3t27e32Wzjx49/7733lEbq6akPPvhg3LhxdevWHT58eE5OzrJlyzIz\nM7ds2XLXXXcJ9fTQ4cOH77zzTovFMnXq1Hr16p09e3bRokWXL1/etGlT165dhXqWTew1L5GD\nvkMOaoIc1BA5GJTYa14iB32HHNQEOaghcjAosdf8oMSsnD9//rRp04YPH16zZk3nB/bs2bNL\nly46jbrMK7GqHPyae+GFF/Lz810aU1JSLl68+Msvv5QvX55DXX92FPLmm2+KyGuvveZoSUlJ\nEZHp06frOKoyZMqUKSKycOFCR8vHH38sIn369FFuUuHSyc/Pb9GixR133CEi48ePd7RTT4/8\n9ttvMTExLVsK0gx6AAAgAElEQVS2vHHjhtJy4sSJmJiYyZMnKzepp0dGjBghIl9//bWj5cCB\nAyLSuXNn5Sb1LIvYa14iB32EHNQEOagtcjAosde8RA76CDmoCXJQW+RgUGKv+UGJWfniiy+K\nyJ49e3QaYHAqsaoc/H6wd+/e0NDQl19+WbnJoa47FgiL0KJFi9jY2JycHOfGevXqVapUqaCg\nQK9RlSFPPPFEt27d8vLyHC0FBQWRkZG1atVSblLh0pkzZ47JZNq4caPLL4TU0yOvv/66iHzx\nxRfOjc6Fop4eadeunYg4/7zb7fZy5crVrl1b+Tf1LIvYa14iB32EHNQEOagtcjAosde8RA76\nCDmoCXJQW+RgUGKv+UGJWfn444+LyIkTJ/QZX5Aqsaoc/L5mtVpbtmzZuHHj3NxcpYVDXXd8\nB6GrnJycgwcPtm3bNjw83Lm9Q4cO6enpp0+f1mtgZchf//rXzZs3WywWR0teXp7Vaq1evbpQ\n4dJKS0t76aWXJk2a1L59e+d26umpzZs3R0ZGKlc7yc3NvX79uoiYTCblXurpqUaNGonIsWPH\nHC2XL1++ceNG48aNhXqWTew175GDvkAOaoUc1BY5GHzYa94jB32BHNQKOagtcjD4sNf8w31W\nikhGRoaIxMfH22y28+fPX758WZ+BBhf3VeXg94OFCxempqYuXrw4LCxMaeFQ1x0LhK5+/vln\nm81Wo0YNl/ZatWqJyKlTp/QYVJm3ZMmS/Pz8YcOGCRUurYkTJ8bHx7/66qsu7dTTUz/99FOd\nOnUOHTrUoUOHyMjIuLi4evXqLV26VLmXenpq5syZCQkJDz300LZt2y5evJiamjps2LCIiAjl\nEgHUsyxir/kCOeg9clAr5KC2yMHgw17zBXLQe+SgVshBbZGDwYe9phfnrBSRzMxMEZk/f35i\nYmKNGjUSExMbNmz40Ucf6TrGMs99VTn4fS07O3v27NndunXr3Lmzo5FDXXcsELrKysoSkejo\naJf2mJgYx73wyDfffPPUU0916NBh0qRJQoVLZenSpV999dXChQvj4uJc7qKenrp69Wp2dnbf\nvn3bt2+/evXqBQsW5Ofnjx07Vske6umpxo0bf//99/n5+R07dqxatWpycvKJEyc2b96sXGqG\nepZF7DXNkYPeIwc1RA5qixwMPuw1zZGD3iMHNUQOaoscDD7sNV24ZKX8flrVihUrZsyY8c9/\n/vOZZ565ePHiyJEjlyxZoutIyzb3VeXg97W33nrr0qVLyidIHDjUdWfWewABynF9CQe73V5k\nO9xbsWLF2LFjmzVr9umnn5rN/z3eqLB66enp06dP79ev38CBA4vrQz3Vy8vLO3v27LJly0aN\nGqW0DB48uEGDBtOnTx86dKjSQj3VO3r0aN++fa1W6xtvvNGgQYP09PQ333yzd+/ea9as6d69\nu9KHepZF7DWtkIPeIwe1RQ5qixwMVuw1rZCD3iMHtUUOaoscDFbsNX8qMitfeOGFqVOn9urV\ny7Fe9dBDDyUnJz/77LNjx451XJ4RHnFfVaWFg99Hbt26NW/evHvuuadjx47O7RzqumOB0FW5\ncuWkqA8FKBemj42N1WFMZZPdbv/zn/88a9asXr16rVq1ylE6Kuypxx9/PC8vb9GiRUXeSz09\nFRMTY7VaBw0a5GipWrVq7969V69efeTIEerpqXHjxv3222/Hjx+/7bbblJZhw4Y1aNBgzJgx\np0+fpp5lEXtNK+SgVshBbZGD2iIHgw97TSvkoFbIQW2Rg9oiB4MPe82fistKEVG+KtVZkyZN\n+vTps3bt2gMHDrRp08a/Iw0S7quakJAgHPw+88knn1y+fHn8+PEu7RzquuMSo65q1qxpNpvP\nnj3r0p6WliYi9evX12NQZY/dbp8wYcKsWbMee+yx9evXO8+hVNgjGzduXLly5bRp00JCQs6f\nP3/+/Plff/1VRG7evHn+/Pnr169TT0/Vrl1bRJy/CFpEEhMTRSQrK4t6euTGjRu7du1q166d\n47dBEYmKiurWrdsvv/xy/Phx6lkWsdc0QQ5qhRzUHDmoIXIwKLHXNEEOaoUc1Bw5qCFyMCix\n1/zGTVYWp1KlSiJy48YN34/OQBxV5eD3qZSUlNDQ0P79+6vpzKHuV3YU0q5du6ioqOzsbEeL\nzWarVq1ajRo1dBxV2fL444+LyOzZs4u8lwqrN336dDc/vzNnzrRTTw9NnTpVRHbu3Onc2KNH\nDxE5d+6cnXp6Ij09XUTuvPNOl/YhQ4aIyN69e+3Us2xir3mPHNQKOag5clBD5GCwYq95jxzU\nCjmoOXJQQ+RgsGKv+YebrMzKylq8ePFHH33k0t6hQwcRSUtL88sAg42aqnLw+0hubm50dHTr\n1q1d2jnUAwELhEV45513ROTPf/6zo+Xtt98WkZdeeknHUZUhH3/8sYg8/vjjxXWgwuodOXLk\n8/+1cuVKEenRo8fnn39+9OhRO/X00N69e00mU9euXXNycpSWPXv2hISEJCUlKTepp0fq1Klj\nsViOHTvmaLl27Vr58uXLlSunVJh6lkXsNS+RgxoiBzVHDmqLHAxK7DUvkYMaIgc1Rw5qixwM\nSuw1P3CflTab7bbbbouJiVHmecW6detEpGXLlv4aY7BRU1UOfh9JTU0VkfHjx7u0c6gHApPd\nbnfzeTRjstlsXbp0+e677+6///7k5OSjR4+mpKQ0a9Zs586dUVFReo+uDKhXr15aWtpjjz1W\nuFwzZ85MSEigwt7IyMhISEgYP378e++9p7RQT09NmzZt/vz5LVq0GDBgwPnz55cvX26z2TZt\n2tS5c2ehnh5au3btoEGDEhISJk2aVLdu3QsXLrz33nunT59etGjR5MmThXqWTew1L5GDPkUO\neo8c1BA5GJTYa14iB32KHPQeOaghcjAosdf8oMSs/Oyzzx544IGoqKhhw4ZVq1bt0KFD69at\ni42N3bJlS3Jysi5jDgIlVpWD30dSUlKGDRv28ssvP/fccy53cajrT+8VygCVlZX15JNP1qpV\ny2Kx3HbbbVOmTLly5Yregyoz3Bxvp0+fVvpQ4VK7du2aFPrMBfX0SEFBwd///vc77rgjIiIi\nLi6uT58+u3fvdu5APT2yY8eOBx54IDEx0Ww2JyQkdO/e/V//+pdzB+pZFrHXvEEO+hQ56D1y\nUFvkYFBir3mDHPQpctB75KC2yMGgxF7zNTVZuWPHjt69e8fHx5vN5mrVqo0aNerEiRO6jjoY\nlFhVDn5fUE7EXLBgQZH3cqjrizMIAQAAAAAAAAAAAAMJ0XsAAAAAAAAAAAAAAPyHBUIAAAAA\nAAAAAADAQFggBAAAAAAAAAAAAAyEBUIAAAAAAAAAAADAQFggBAAAAAAAAAAAAAyEBUIAAAAA\nAAAAAADAQFggBAAAAAAAAAAAAAyEBUKgbJs/f77JZJowYYLeAwEAQAfkIADAyMhBAICRkYOA\nl1ggBALRnDlzTCr06tVL75ECAKA9chAAYGTkIADAyMhBwG/Meg8AQBEqVKjQsGFD55bjx4/b\n7fZatWpFREQ4GmvUqPHYY49NmjTJbOZnGQAQPMhBAICRkYMAACMjBwG/Mdntdr3HAKBkERER\nubm5e/bsad26td5jAQDA38hBAICRkYMAACMjBwEf4RKjAAAAAAAAAAAAgIGwQAiUbS5fxrtw\n4UKTyfTiiy9evnx53LhxVatWjY6ObtWq1fr160UkMzNz6tSpNWrUCA8Pb9iw4bvvvuuyte3b\ntw8cOLBKlSphYWFVqlQZOHDgjh07/P2SAABQjRwEABgZOQgAMDJyEPASC4RAUFGuxJ2RkdG7\nd+/t27fffffdNWvW3L9//4MPPpiamtqjR4+1a9cmJyc3a9bs+PHjjz766Oeff+547DvvvHPP\nPfesW7euadOmo0ePbty48dq1azt06PD+++/r94IAAPAAOQgAMDJyEABgZOQg4CkWCIGgonwr\n74cfftiwYcPDhw+vWbPm0KFD3bt3z8/P79evX0JCwokTJz799NN9+/aNHTtWRJYtW6Y88Nix\nY1OnTjWbzZs2bfrqq6/efffdLVu2bNiwwWw2T5ky5dy5c3q+KgAA1CEHAQBGRg4CAIyMHAQ8\nxQIhEFRMJpOI3Lp1a/78+UoohoaGPvzwwyJy4cKFBQsWREVFKT3HjBkjIkePHlVuLlq0KD8/\n/9FHH+3evbtja7169Ro9enROTs4HH3zg39cBAEBpkIMAACMjBwEARkYOAp5igRAIQklJSRUr\nVnTcvO2220SkSpUqDRs2dGnMyspSbn799dci0q9fP5dN9e7dW0S+/fZbHw8ZAADNkIMAACMj\nBwEARkYOAuqZ9R4AAO1Vr17d+WZoaKiIVKtWrXBjQUGBcvPMmTMismjRohUrVjh3u3z5soic\nOnXKh8MFAEBT5CAAwMjIQQCAkZGDgHosEAJByGKxFG5Uzqwvkt1uz87OFhHn7+Z15vhADQAA\ngY8cBAAYGTkIADAychBQj0uMAhCTyRQdHS0i+/btsxdF+bwMAABBiRwEABgZOQgAMDJyEEbG\nAiEAEZHbb79dRM6ePav3QAAA0AE5CAAwMnIQAGBk5CAMiwVCACIiXbp0EZFVq1a5tB87dmzj\nxo23bt3SY1AAAPgJOQgAMDJyEABgZOQgDIsFQgAiIpMmTbJYLGvWrFm5cqWjMT09fdiwYX36\n9Pn44491HBsAAL5GDgIAjIwcBAAYGTkIw2KBEICISOPGjRcuXGiz2UaMGNGpU6dx48bdd999\nderU+eGHH0aOHDlixAi9BwgAgA+RgwAAIyMHAQBGRg7CsMx6DwBAoJg4cWLz5s3feOON7du3\n79ixIyoqqmXLlmPGjBk3blxICB8mAAAEOXIQAGBk5CAAwMjIQRiTyW636z0GAAAAAAAAAAAA\nAH7C6jcAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAA\nAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAA\nAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAA\nAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAA\nAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAA\nAAbCAiEAAAAAAAAAAABgICwQAgAAAAAAAAAAAAbCAiEAAAAAAAAAAABgICwQlkl79+41mUwm\nk+nkyZNabXPnzp3KNs+cOaPVNoOAL0rtN++//36jRo3Cw8NjYmLeffddvYcDAJohB/2GHASA\nAEQO+g05CAABiBz0G3IQCHpmvQfgV1ardfXq1Rs2bNi1a1d6enp2dnZsbGydOnXuvvvukSNH\ntmvXTu8BAprZvXv3+PHjRaRcuXJ169YNDQ3Ve0QA9EcOwjjIQQCFkYMwDnIQQGHkIIyDHARU\nMtAZhJs3b27QoMGIESOWL19+4sSJzMxMq9V67dq1/fv3L1y4sH379vfff//ly5f1HqaffPbZ\nZyaTaenSpY6WpKSk1NTU1NTUatWq6TcuaObjjz8WkYoVK546dWr//v3jxo3Te0TaKHzoAlCJ\nHHRGDgY9chCAC3LQGTkY9MhBAC7IQWfkYNAjBwGVjLJAuHz58l69ep0+fTo6OnrGjBm7du3K\nzMwsKChIT09ftWpVx44dReSzzz7r1KnT9evX9R6sP+zYscOlJSoqqkWLFi1atAgLC9NlSNDW\nxYsXRSQ5OblChQp6j0VLhQ9dAGqQgy7IwaBHDgJwRg66IAeDHjkIwBk56IIcDHrkIKCSIRYI\nf/zxx0ceecRmszVs2PDQoUOvvfZa27Zty5UrZzKZEhMTBw8e/O23386ePVtEjhw58sQTT+g9\nXn/Yvn273kOAb9lsNhGxWCx6D0RjHLpAKZCDhTGZBD1yEIADOVgYk0nQIwcBOJCDhTGZBD1y\nEFDLbgD9+vUTkejo6BMnTrjpNnz48Lp1686cObOgoMBut3/55ZdKiS5cuODS88MPPxSR0NBQ\nR8u+ffuUzvn5+YcPHx44cGCVKlUiIyMbNmw4e/Zsm81mt9tPnDgxatSo6tWrh4WF1ahR449/\n/OONGzccW/Do6fbs2aN0dnlFaWlpjz32WNOmTWNiYsxmc4UKFTp37vz+++8rr0gxceJEl2NA\n2fL333+v3Dx9+rTdbr/33ntFpGPHjkXW6m9/+5uIWCyW9PR0pSUnJ+ftt9/u0qVL+fLlLRZL\nYmJily5dlixZkp+f76bmhat3/vz5KVOm3H777eHh4XFxcV27dv33v//t3NnP+8VR6pMnTx48\neHD48OHVqlULCwurXLny4MGDDxw4UPjlqCzFrl27lC3bbLbVq1cr35r7zjvvuK9VVlbW3Llz\n77rrLmXjFSpUuOeee+bPn3/z5k1Hn9GjRxf+SX/99dfdbFbNmH10SKjf+8Uduna7PTs7e968\neXfffXf58uXNZnPFihWTkpJmzpyZlpbmvp6AQZCD5CA5SA4CRkYOkoPkIDkIGBk5SA6Sg+Qg\nUJzgXyA8d+6cyWQSkenTp7vvmZeX53zTown38OHDSudvvvkmLi4uMTGxVatWCQkJSuOMGTN+\n/PHH8uXLx8fHt27dunLlykr7fffdV7qnKzIIv/7666ioKBExm81JSUnt2rWrVKmS0m3AgAGO\nLHzvvfeGDh0aEhIiIm3bth06dOiIESPshYJQeVKTyXT+/PnCtWrfvr2IPPDAA8rN9PT05ORk\npX/z5s27du1ar149ZWvt2rW7evWq+8o7qrdnz55q1apFRES0atUqKSnJbDaLSEhIyIYNG/Ta\nL45Sp6SkREVFRUREJCcnN2/eXClgeHj41q1bncegvhQHDx5U2rdv3668UhH561//6qZQaWlp\nytZCQkLq16/fpUuXevXqKSNp3ry5oyCLFy8eOnRorVq1RKRatWpDhw4dOnTo559/XtxmVY7Z\nR4eE+r1f3KGblZWVlJSkPFfTpk27dOnSqlUr5SNCUVFRLjsIMCBykBwkB8lBwMjIQXKQHCQH\nASMjB8lBcpAcBNwI/gVCx5d27tu3z6MHejThHj16VOlct27dv/zlL1ar1W6337p1a+DAgcpP\nY1JS0pQpU3Jycux2u81mmzZtmtL/2LFjpXi6IoNQmWjatGnj+KhCQUHBW2+9pfRcuXKl8zbD\nw8NF5IMPPnC0uAThjRs3YmJiipyaT506pfRct26d0tKtWzcRSU5OPnjwoKPbjh07br/9dhEZ\nMmSI20r/t3oNGjQYO3ZsZmam0n748OEaNWqIyF133eXo7Of94ih1pUqVJkyYkJWVpbSfOHFC\nKXjdunWVzXpaCsfYevXq1aNHj++///706dO//fZbcVWy2WxKtDRs2NAxPLvd/sMPP1StWlVE\nevfu7dx/5MiRItK3b1+3tfdgzD46JDza+/aiDt1XX31V2UGHDx92NF69enXAgAEi0qhRoxIr\nAAQ3cpAcJAfdIweB4EYOkoPkoHvkIBDcyEFykBx0jxyEwQX/AuHMmTNFJCwszHm2UqN0E26f\nPn2cex44cEBpb9asmXLituL69evKgv/y5ctL8XSFgzA9PX3IkCGdOnVyOfHcbrffcccdIvLQ\nQw85N5YYhHa7fdSoUSLSvn17lw2+/PLLyryjfLZo8+bNSoV//vlnl55bt25Vtnny5El78RzV\na9u2rXOV7Hb73LlzRcRisTjOv/bzfnGUOikpyWVsGzZsUO768ssvlRaPSuEYW+3atW/duuWm\nPorPPvtM6b9r1y6Xu1asWKHc5Zw6KoPQozH74pDwaO/bizp0Bw0aJCKjR492ea7Lly/PnDlz\n8eLFubm57osABDdykBwkB90gB4GgRw6Sg+SgG+QgEPTIQXKQHHSDHARCJNhduXJFRMqXLx8a\nGuqHpxs8eLDzzfr16yv/GDBggDLDKmJjY6tUqSIily9f1uR5ExMTU1JStm7dqlwQ2VmjRo1E\n5MKFC55u8+GHHxaRnTt3nj171rldmXZHjhypnK28bt06EbnnnnuqV6/usoVOnTopp/N/8cUX\nap7xkUceca6SiDRt2lRE8vPzr1+/7un4nXm/X0aPHu0ytu7du0dGRorItm3blJbSlWLkyJER\nERElvoT169crI2/btq3LXQMGDFDiQWWdnXk0Zp8eEqXe++XLlxeRbdu2uRzkFSpUmDNnzh/+\n8IewsDA3DweCHjlIDgo5WDxyEAh65CA5KORg8chBIOiRg+SgkIPFIwcBs94D8DnlQts2m80/\nT1enTh3nm8pEWbjdcVd+fr6Gz56bm7tly5YjR46kp6crpySLSGpqqohYrVZPt9a1a9fbbrvt\nl19+WbVq1VNPPaU0HjhwQLk48pgxYxwtIvLjjz927ty58EZu3rwpIj/99JOaZ1QmPmfK1cNF\nJC8vz9PxO/N+vyinsTuzWCy333774cOH09LSlJbSlaJwsBVJuTa38rknF+Hh4XXr1j1y5Ijj\nutXqeTRmnx4Spd77U6ZMWblyZVpaWpMmTQYPHty7d+9OnTop6QhAyEFyUETIweKRg0DQIwfJ\nQSEHi0cOAkGPHCQHhRwsHjkIBP8CYcWKFUXk6tWrOTk5aj6P4KW4uLgi2x1fAOs7n3766aRJ\nky5evKjVBkNCQkaOHDl37tyUlBTHrPfRRx+JSHJysvL1pyJy9epVEUlPT09PTy9uUxkZGWqe\n0ZFPmvN+vyQmJha3WcfnOEpXCsd3JrunbLy4ASsjuXbtmppNFd6syjH79JAo9d5PSkravHnz\n1KlTd+/e/e6777777rsmk6lFixZDhgyZOHGiH370gABHDpYaOeiMHBRyECibyMFSIwedkYNC\nDgJlEzlYauSgM3JQyEEEqeC/xKjyw2mz2Xbs2KH3WHxo165dgwYNunjxYnJy8urVqy9evKhc\n9dhut48ePbrUm1Wurbxv376TJ0+KiN1uX7lypTh9JkJ+/yzSyJEj3VzKVrkKdplW5KUYlNeu\n/F9KWwqP3p85nsuF8qmo4u4tcYPqxxyYh0SbNm127dq1d+/eWbNmdezYMSwsLDU19Zlnnqlb\nt+6///1vDZ8IKIvIQXJQE+SgIjAPCXIQcIMcJAc1QQ4qAvOQIAcBN8hBclAT5KAiMA8JchDe\nCP4Fwk6dOikX8P3HP/7hvmdeXt7ixYuzsrJK3OatW7e0GZw6ap5u/vz5Vqu1Vq1aX3/99aBB\ngypXrqxc9Vh+P3O5dJo2bdqyZUsRWbVqlYhs37793LlzYWFhI0aMcPRRPov0yy+/lPpZtOLT\n/VLkh30yMzPF6WM4Pi1FhQoV5PdrxxemfEamFOePezrmQD4kWrVq9cILL3z77bdXr15duXLl\n7bfffu3ateHDh6v8oBYQrMhBclAT5KAikA8JchAoEjlIDmqCHFQE8iFBDgJFIgfJQU2Qg4pA\nPiTIQZRO8C8QVq1a9cEHHxSRlStXfvfdd256vvDCC1OmTKlXr54yuzmCJCcnx6VnKa5oXCIv\nn+7IkSMi0qtXL5dzxm022/bt270ZmPL9q2vWrBGRlJQUEenXr58yKSuUqz8fPnzYPxc09/N+\ncTh06JBLi9VqPXXqlIg0aNBAafFpKZSNK5exdpGdna1c77vIK3Gr2axHYw60Q6KwqKiooUOH\nbt++3Ww2X7169fvvv9dlGECAIAfJQU2Qgw6BdkgURg4CzshBclAT5KBDoB0ShZGDgDNykBzU\nBDnoEGiHRGHkIDwS/AuEIvLKK6/ExMQUFBQ8+OCDO3fuLLLPX/7yl7lz54rIY489pmSJstov\nIseOHXPuefXq1WXLlmk+SC+fTjl5uXA2LFq06Ndff5VCX0es9FfzDb0jRowIDQ1NTU39+eef\n165dKyJjx4517jBgwAARuXTp0urVq10ee+nSpaZNm06ePFm5+LIm/LxfHFasWOHSsnnzZuVT\nSJ06dVJafFqK+++/X0ROnjxZ+J1NSkqK1WoNCQnp27evp5stxZj1PSRcDt1Lly5NnTq1R48e\nN27ccOlZqVIl5TIFfv5oGxCAyEEhB71GDjqQg0CZQw4KOeg1ctCBHATKHHJQyEGvkYMO5CCC\njZuL4QaTTz75JCwsTERCQ0MnTJiwZcuWa9euFRQUXL58edWqVW3btlWqcd999+Xn5ysPyc/P\nj4+PF5G77747PT1daTx37lzHjh0bNmyobMqx/aNHjypbSE1NdXlqpX3t2rUu7XXr1hWR119/\nvRRPt2fPHmWzJ06cUFoeeeQREUlISDh79qxjg/PmzYuNjR05cqSIVKlSxfHS7HZ79erVReSR\nRx5xtDg+TXD69GmXofbu3VtEJkyYICKVK1d23o6ia9euIhIXF/fll186Gk+cONG6dWsRadGi\nRUFBQeGdoqZ6W7ZsUe66cOFCKQrl/X7ZvXu30jM+Pv6VV16xWq1K+y+//NK4cWMRadasmfOr\nU18KN2MrUkFBwZ133iki9evXP3nypKN9x44dyqdUxowZ49xf2e99+/Ytccul2H0aHhIe7X17\noUPXarXWrl1bRPr37+/cLScnZ8aMGSISERHhOE4AIyMHyUGXLZODpRizAzkIlDnkIDnosmVy\nsBRjdiAHgTKHHCQHXbZMDpZizA7kIIKJURYI7Xb7tm3blJmrSGFhYc8884zLz/OcOXOUe6Oj\no1u3bn3HHXeYzebmzZuvX79eREwmk6On9xOuR09XOAiPHz8eGxsrIjExMT179uzTp0/FihXD\nwsJWrVr11VdfKZ3vuOOOP/7xj0p/ZZYUkdq1a9epU2fXrl1uglD5kIhyyfLp06cXrq3yJcDK\nwxs2bHjvvfcmJSUp/atXr/7TTz+53zWeToX+3C+O73BevXp1RERE1apVe/bs2blz58jISKXa\nu3fvLsOM9zMAACAASURBVF0pPA1Cu91+9uxZJewtFktSUtK9995bv359ZSPdu3fPyspy7qw+\nCEux+zQ8JDzd+4UP3W+++SY6OloZT5MmTe655542bdooPw4hISHvv/9+iRUADIIcJAedqdwv\n5CA5CAQNcpAcdKZyv5CD5CAQNMhBctCZyv1CDpKDCHoGWiC02+1Wq3XVqlUPP/xw/fr14+Li\nzGZz+fLl77rrrv/7v/87c+ZMkQ95//3327RpEx0dHRERUa9evZkzZ2ZkZKSmpio/irm5uUo3\nTYJQ/dMVDkK73X7gwIH777+/fPnyYWFhtWvXHjlypGMw06dPr1ChQlRU1LBhw5SWCxcu9O/f\nv1y5cpGRkQ0bNjx69KibILx582a5cuWUew8ePFhkoXJzc99+++3OnTtXqFDBbDaXK1euTZs2\nr7zySmZmZpH9nXk6FaovlPf7xTGAnJyc1NTUwYMHV6lSxWKxVK5cecSIEUWGhMpSlCII7Xb7\njRs35s6d2759e+UATkxM7Nmz54cffuj4CI+D+iBUP2YHDQ8JT/d+4UPXbrefOnXq+eefb9my\nZaVKlcxmc1RUVOPGjSdOnHjgwAE1Lx8wDnKQHHQgB0sxZgdyECijyEFy0IEcLMWYHchBoIwi\nB8lBB3KwFGN2IAcRTEz232cEAAAAAAAAAAAAAEEvRO8BAAAAAAAAAAAAAPAfFggBAAAAAAAA\nAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAA\nAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAA\nAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAAAAAAA2GBEAAAAAAAAAAAADAQFggBAAAAAAAA\nAAAAA2GBEAAAAAAAAAAAADCQYF4gHD9+/JAhQwoKCvQeCAAAOiAHAQBGRg4CAIyMHAQAlMhk\nt9v1HoOvVKxY8cqVK1arNTQ0VO+xAADgb+QgAMDIyEEAgJGRgwCAEgXzGYQAAAAAAAAAAAAA\nXLBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACAgbBACAAAAAAAAAAAABgIC4QAAAAAAAAAAACA\ngbBAWAS73f7222+3bt06Ojo6Nja2Q4cOq1ev1ntQZdWxY8eioqJMJtMPP/zgTR9jKrIyVapU\nMRWjdevWSp8vv/yyuD5nzpzR58X4xaVLl/70pz81aNAgIiIiKioqKSlp1qxZ2dnZLt3Onj07\nevToqlWrRkRE1KtX7+mnn3bpk5WV9fzzzzdu3DgyMjI+Pr5Hjx7ffPONy0bU9ClbCgoKlixZ\ncscdd0RFRSnVe/XVV/Py8gr33LRpU7Vq1Uwm09atW13uUnnsqame+vFAc+SghtxnnJufJiMr\ncZZ2VlyFDXgYq3mHIOqyUs0MTA66/8n1PivJQR0ZcALRlpp5hiIXR83sqr56Rnin4eWcLOrq\nqWZOLutHdYmv0Uf5Vdx7uWvXrv3lL39p0aJFuXLllO289NJLN2/e9MFLB+APgTNJug8F/7wJ\n9z68VP4JtERq5naVv2l6Xzr3L1lNLniaHWpWJbwcld+qV3r24FWhQgURsVqtnj7w0UcfFZFK\nlSqNGDFi6NCh8fHxIjJ37lxfDDK4Wa3W9u3bK0daampqqfsYU3GVmTBhwsBCevfuLSKdO3dW\n+qxatUpEmjVrVrhnenq6Ti/I53799dfq1auLSI8ePZ599tknn3yyVatWItKiRYtbt245uh06\ndCghISEkJKRbt26jR49u2LChiNx99902m03pcP369ebNm4tIjRo1hg4d2r9//7CwsJCQkE8+\n+cSxETV9ypaCgoI+ffqISEJCQv/+/fv27VuuXDmlmAUFBY5uN2/enDp1qohYLBYR2bJli8t2\n1Bx7aqqncjxwjxzUnZuMK/GnybBKnKWduamwAQ9jNe8Q1GSlmhmYHHTzk6tJVpKDmiAHdaHy\nPTlFLpLK2VVN9YzwTkOTOdmuop4q5+QyfVSreY2+yK/i3stdunSpcePGIlKnTp1Bgwb16dMn\nLi5ORNq2bZuXl+eHggSHUucg4AuBMEmWGAp+eBOuSXipfLulhpq5Xc1vml6WrsSXrCYXPM2O\nElclNBmVH6rnJd0WCAt+u5i/fm2p/7OriLfSBeGWLVtEJDk5OTMzU2m5cOFCjRo1wsLC0tLS\nSvNSDWzOnDnK3ORm8U9NH2PyqDIzZswQkW+++Ua5+c4774jI3/72N98PM4BMmzZNRJ599lnn\nxn79+onIkiVLlJsFBQXJyclms3nDhg1Ki9VqffDBB00m0+eff660PPvssyLSp0+fmzdvKi3b\ntm2Ljo5OTEzMyspS36dsUY6Z9u3bO6a+ixcv1qpVS0T+9a9/ObolJSVZLJbXXntt1KhRRUaj\nmmNPTfVUjqdMIweNwM1MXuJPkzGpmaWdFVdhDmMHl3cIarJSzQxMDrr5ydUkK8lBcrDsUjPP\nUOTiqJldVVbPCO80NJmT1dRTzZxc1o9qNa/RF/lV3Hu50aNHi8gTTzzh+IjYlStXGjVqJCIr\nVqzw/vUGgoDNQcAXAmSSVPlG3advwjUJLzVvt1Qq9d+Qi/xbdKlLV+JLVpMLnmZHiX9712RU\nRdK2el7S7RKj9iuXbN9+Xer/xGb10cCU/fHaa68p67QiUqVKleeeey4vL2/p0qU+etKgdOTI\nkRdffHH48OHt2rXzpo8xeVSZH3/88c033xw9evQ999yjtGRkZIiI8mEc4zhx4oSI9O3b17lR\n+USGcpeIbNmyZf/+/Y888ojSLiKhoaHLli27fv26kqMismbNGhGZP39+ZGSk0nL33Xf/4Q9/\nuHTp0rp169T3KVv+9a9/icicOXMcU1/lypUnTpwoIt9//72jW0hIyI4dO2bMmGEymYrcjppj\nT031VI6nTCMHg577mbzEnyZjUjNLO7ipMIexovA7BDVZqWYGJgfd/ORqkpXkIDlYdqmZZyhy\ncdTMriqrZ4R3GprMyWrqqWZOLutHtZrXqHl+uXkvV7FixQceeGDWrFkhIf/5u2X58uWVv8Me\nO3as1C8zoARsDgK+ECCTZImh4Ic34ZqEl5q3WyqV7m/IhX/T9LJ0Jb5kNbngUXao+du7JqMq\nTPPqeYnvIHS1devWyMjITp06OTf27NlTRMr6F6v4k81mGzNmTFxc3N/+9jdv+hiTR5Wx2+2P\nPvpobGzs66+/7mhUJveEhAQfjjLwNG3aVESOHj3q3JiWliYizZo1U25+/vnnIjJ8+HDnPjEx\nMTExMY6bZ86ciY6Orl+/vnOfLl26iIjjYtNq+pQt69atu3HjRseOHZ0by5cv79Jtx44dzhfI\nLkzNsaemeirHA18gBzVR4kxe4k+TMamZpRXuK8xhLMW8Q1CTlWpmYHLQDU2ykhzUEROIl9TM\nMxS5OGpmV5XVM8I7DU3mZDX1VDMnl/WjWs1r1Da/3L+Xmzdv3tq1a2NjY50bL168KCL16tUr\n4cUACDwBMkmWGAp+eBOuSXipebulUin+hlzkb5pelq7El6wmF9Rnh8q/vWsyKhe+qJ6XWCD8\nH5mZmRcuXKhdu7ZyYVmHWrVqhYeHu/zUwY05c+bs2bNn8eLFFStW9KaPMXlUmVWrVu3atWvm\nzJmJiYmORmVyP3v27IABAxISEiIiIpo0afLKK6/k5OT4cNx6mzZtWu3atZ988sm333778OHD\nBw4ceO211xYvXty+fXvH35oPHDggIo0bN37xxRfr1q0bHh5es2bNJ554QqmYIiIiIjc312r9\nn4/jKUl5/Phx9X3KnOjoaMcHXhRffPGFiNx7772OFsdnmYuj5thTWT0144HmyEGtlDiTl/jT\nZExqZmmFmwpzGCuKfIegJitFxQxMDrqhSVaqHA80xwTivRLnGYrsRomzq/rqGeGdhvdzsvp6\nup+Tg+OoLjF3tM0v9X/3sFqtp06d+vOf/7xw4cLWrVsPGTKklK8QgE4CZ5JUExy+fhOuyS8U\nKn+tU6MUf0Mu8jdN8a50Hr1vUZML7vuozCDNRyW+qZ6XWCD8H9euXZOilmdNJlNcXJxyL0p0\n8ODBWbNmDR06dODAgd70MSaPKlNQUDBr1qyKFStOmTLFuV2Z3KdOnXr48OHevXt36NDh3Llz\nzz//fI8ePfLy8nw1dL1Vrlx5z549HTt2nDx5crNmzVq0aPH000+PHz9+y5YtYWFhSp+ff/45\nLCzs0UcfXbJkSbdu3caOHRsWFrZgwYIuXbrcunVL6dOqVSur1aqcxeLwySefyO+FVdmnrFuz\nZs26dev69evnOOFdDTXHXumqV7rxwFPkoCbIuFJTM0tLSRXmMJbi3yGoycrCCs/A5KA3Svc+\njRz0DyYQ75U4z1BkN0qcXametkpdT5c5OSj3S+Hc0TC/1L9bHjRokMViqVu37vvvv//mm29u\n27bNZYEBQOAr05NkYL4JL92vdUXydG4v7jfNwnxUOjW54L6PL/5iozKtdK9ekcy+foKyRfnb\nU5E/SOHh4Var1Wq1ms0UzZ38/PzRo0fHx8e/9dZb3vQxJk8rk5KScuTIkTlz5rhce61Ro0Z9\n+/a97777Hn30UeUqyWfPnu3Tp8933323YMGCp556yiej11tWVtZDDz20adOmkSNH9uzZMz8/\nf+PGjYsWLfrtt9+WL18eHh4uIjdu3MjLyzt9+vTJkyeVot26dat///6bN29etGjRk08+KSIv\nvPDCli1bJk6caLPZunfvnp2d/c477yxfvlxE8vPzledS06dMS0lJGT16dOPGjf/5z3969EA1\nx14pqlfq8cBT5KD3yDhvqJmlS6wwh7EU/w5BTVYW3lThGZgc9EYp3qeRg37DBOK9EucZiuxG\nibMr1dNW6epZeE4Ovv1SZO5olV8evVtu3bp1dnb2r7/+evDgwTfeeKN8+fIPP/ywFi8RgP+U\n3UkyYN+El+LXuuJ4OrcX95tm4W4+Kp2aXHDTx0d/sVGZVrpXr0icQfg/oqKiRKTI5fHc3FyL\nxRKYs1VAeeWVV1JTU92foqumjzF5Wpl58+ZFRERMmjTJpf2FF15Yv379xIkTHd+hWqtWLeWq\nyitWrNB2zIHj+eef37Rp0xtvvLF8+fKHH3543Lhxq1evnjlz5po1axYsWKD0CQ0NFZFXX33V\nMRFHRkbOnj1bRD7++GOlpUuXLv/3f/935cqVwYMHJyQkVK9efdGiRe+++66IOC4qraZP2TV7\n9uzhw4c3adJk69atnn6TpZpjz9PqeTMeeIoc9B4Z5w01s3SJFeYwluLfIajJSmfFzcDkoDc8\nfZ9GDvoTE4j3SpxnKLIbJc6uVE9bpahnkXNykO2X4nJHq/zy6N3y008/vXHjxgMHDhw/fjw2\nNnbUqFFr16719hUC8K8yOkkG8ptwT3+tc8PTub243zSd+bR0anLBTR8f/cVGZVrpXr2i2YNX\nhQoVRMRqtap/yPXr10WkUaNGLu1Wq9VisVSpUkXTAQah1NRUi8Xy0EMPOTdOnDhRRFJTU9X3\nMSZPK6N8UdOQIUNUbv/mzZvKyfsajDUgVaxYMTw8PD8/37nx3LlzItKmTRvlpvJVvYcOHXLu\nc+vWLZPJVLlyZefGI0eOzJs377nnnlu6dGlmZuaPP/4oIgMGDPC0T9mSm5s7YsQIEenfv39W\nVpabnqNHjxaRLVu2/H97dx4eRZXvf/zbZE8IEAKYBAMoCCQsQoKAArKKhs0FFRAVWS5yFa8i\nuFxRQcYZwe2CDHpRH0HlGUVRMi7DOKIBhaigIoIgRFZRwjYsIYQknfTvj7rTv55Ouvt0d3VX\nd9X79fiHqRTVp06d+n6q6qS7VTZb79hT6T319qBe5GD4BZBxfp1NpuezSqv0MMPYyxWCSlZq\nVCowOej9zA0+K8nBIJGDhvBZZ+hkn7xU1wB6zwpXGgHXZL/600tNNs2oDiB3/M2vYJ4I/fDD\nDyLSt29ftb1BIDkIhEIEFknvwRGei/BgbijUb+sC4+kZss9n0cF3nV/XLSq54LpOwBmkS6vC\n0HuBicT5eQOlpqZmZ2fv37+/srLS9d24v/zyS3V1ddeuXQ1sW1R47733qqurV6xYoX0Kiqvu\n3buLSFFR0WeffeZznQEDBoSlvZFFpfdce0b7LooRI0Yobr+iosLhcPj7UdTR4uzZs8ePH8/K\nynL7syPt70G0jBSRjh07bt++/bfffuvUqZNzHS1Q3T4bOicnJycnx/njpk2bRKRbt27+rhNF\n7Hb7mDFjCgsLZ86c+fTTT7t9NW4w6h17PnsvdO2BF+RgkPyt5HDjs0or9rDFh7GnKwTFrBTl\nCkwO6qhuVpKDhiAHg6RSZ+hkn7xUV3pPX+r96b0mm+O4BJY7/uaXyrVcr1691q9fb7fb3S5m\nLr74YhEpKSkJbAcBGCW6imTkX4Sr39YFzNMzZO/PokP6XNFnLqiso+8TG5VXdGVU7/nEBKG7\nIUOGLFu2bO3atcOHD3cu/OCDD0TkqquuMq5d0aFPnz4zZ850W7h27dqtW7fefvvtzZs3z87O\nVlknXO2NLP72zKeffioi/fv3d/snlZWV1157bUVFxbp165xvDxeRL774QkQiLXf1kpycnJyc\nXFpaWlZW5vrhZnv27BGRFi1aaD8OHjx41apVH3300dChQ53rbN68WUScN+Hbt28vLi4eOXJk\nZmamc50333xTREaOHKm+TtSZOnVqYWHhk08+OXv27MC2oDj2FHsv+PYgMORgMMi4IPms0oo9\nbPFh7OkKQTErRaECk4MBU79OIweNYvECEiTFOkMne6JSXek9fSn2p8+abILj4n0f9covxWu5\na6+9NjY29tixY9onE2p+/vln+dcTcADRJYqKZORfhKvf1vnk7zNkT3eampB2nUou+FxH9yc2\nfqWVgb3nQ9jeqxh+gb2V/ptvvrHZbJ07dz5x4oS2pKSkJD09PTU1tbS0NATNND+VN+ryEaOe\neOqZmpqa5OTkhg0b1vuvBg0aJCKPPvpobW2ttmTv3r3t2rUTkRUrVoS2xca56aabRGTWrFnO\nJXa7fdy4cSIye/ZsbcmpU6eaNm2alJTkfFf4yZMne/bsKSLLly/XlixZskREJk2a5NyO9r21\ngwYNci5RWSe6rFq1SkTGjh2ruL6nN9erjD2V3vO3PagXORgh+IhRdSpVuq66PWzlYez9CkEl\nK1UqMDkYzCcCqWQlOagLctAQKnWGTvZEpbr623tWuNIIpiar9KdKTY72Ua2yj6HLr7rXctqM\n+IQJE86fP68tOX36tPaujocfftivjVsZHzGKyBFpRdJTKITzIjyY8FK53FKk/gzZ+52mXl3n\naZdVciGw7AjmI0bVXzE8vRcYm8PhCGxmMfI1a9bsxIkTdrs9JibGr3/44IMPPvPMM+np6YMH\nD66qqvr000/PnTu3bNkybSjAX9OmTVu6dOmWLVu8fOSUyjrW5KlnDh06lJ2dnZOTs2PHjrr/\nas+ePb169Tpx4kT79u27d+9+6tSpDRs2lJeXjx8/vu57qE3jwIEDV1xxxe+//96vX7+BAwfW\n1tauWbPmu+++69Kly4YNGxo1aqSttnr16ptuuikmJmb48OEJCQnr168/fPhwQUHBRx99pL19\nu7y8/PLLL9+2bVteXl737t1379795ZdfZmZmFhcXt2nTRtuIyjrRpUuXLtu3b+/fv3/dv3Bp\n27btggULRGTdunXaEwoR+fbbbw8cOHDllVc2b95cRFq1avX888+L2thT6T2V9sAncjBC1K3k\nKmeTZfms0nXVm5WWHcberxBUslKlApODns5cvbKSHNQFOWgIxWtyOrleitXVZ+9Z4UpDr5os\nCv2pWJOjelSr7GPo8qvutdz+/fv79Onz+++/Z2Vl9ejRo7a29quvvjpx4kRubu7GjRubNGmi\n586bV8A5CISC4UVSJRRCfRGuV3gpXm6pUH+G7P1OM5iuU9lllVwILDs8PXvXq1Wh7j0dGDIt\nGR7B/KXMa6+9lp+fn5SUlJqaOnDgwH/84x+6N886eAdhMDz1zLZt28TrF8/u27dvypQprVq1\niouLa9SoUZ8+fZYvX+78YxCzOnLkyP3339++ffuEhISkpKTOnTvPnTu37te6bty4saCgoEmT\nJgkJCbm5uU899VRlZaXrCqWlpdOmTcvOzo6Pj2/ZsuXUqVMPHz7sthGVdaKIVjDrlZ+fr62z\nbNkyT+t06tTJuSmVseez91TaA5/IwQhRt5Irnk2W5bNKu/GUldYcxj6vEHxmpWIFJgfrPXP1\nykpyUBfkoFEUr8np5HopVlfvvWeFKw0da7LDV3+q1+ToHdWK+xii/Kr3Wu7IkSMzZsy45JJL\nEhMTExMTc3NzZ8+efebMmVDsvlnxDkJEGmOLpEoohPoiXMfwUrzcUqH4DNn7nWYwXae+yz5z\nIYDs8PQ8QcdWhbT3gsc7CAEAMCdyEABgZeQgAMDKyEEAgE/1f1ITAAAAAAAAAAAAAFNighAA\nAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAA\nAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAA\nAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAA\nAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAA\nAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAA\nAAAAAAAAAACwECYI6+FwOF566aUePXqkpKSkpqb27dv33XffNbpR0aSsrOzRRx/NyclJSkpq\n0qTJ0KFD169f77bOsWPH7r///vbt2ycmJiYnJ3ft2nXevHnl5eWGNNhwn3zySVZWls1mW7du\nXd3fnjx58g9/+EO3bt0aNWqk9dUTTzxx7ty5UKwTjbz3nspoVNmOq127diUnJ9tsth9++CGw\n14p8nvZRpTwqltADBw5MmDAhMzMzMTGxXbt2Dz/8cL0VQP24QEfkYPBURrjiWWAFKmd68NW+\ntrZ26dKll156aXJyspaDTz31VFVVla67YgDvPaNyxaXSMyrbMVPpCDgHMzIybB706NHDuZri\nNQNVwihmGsxhE/wdjStP56BZ+cxBv6qBFe5WNOrJ7qWHdazbZiodnkaRyrmsY8aRg4CZGF4k\nP/30U08Ff//+/c7Vwvn41FOxDenNl0p6+rtxL1duipVcpdtVusXfGQfv15y6pJ7iwNMY8xTU\nYZAd5edm/rIv4P8qa2p9vkR6erqI2O12f9s2depUEWnRosUtt9wyZsyYJk2aiMjTTz8d0I5a\nzpkzZ7p06SIi2dnZY8aMGTVqVHx8fIMGDd5//33nOr///vuFF14oIkOHDn3kkUdmzZqVn58v\nIt26dauoqDCw8eF37ty56dOni0hcXJyIFBUVua1w7NixnJwcEbnoootuvPHGYcOGNW7cWER6\n9uxZVVWl7zpRx2fvqYxGle24stvtvXv31urnli1b/H2tqOBpHx1q5VFlne3bt6elpTVo0GDw\n4METJkzo0KGDiPTp06empsa5jl/HJRqRgyamMsJV1rEClTNdl2pfW1s7bNgwEUlLSxs1atTw\n4cMbNWqkXYrU1vo+myKTz55RueJS6RnFKzfTlI5gcnDKlCmj6ygoKBCRAQMGaOsoXjOYvkqQ\ng6ahyx2NKy/noPmo5KBf1cAKdysaxWT32cM61m3TlA5Po0jlXNYx48hBA3MQCAXDi+Q777wj\nIp07d65b9o8ePaqtE87Hp56KbUhvvhTT06+Ne7lyU6zkKt2u0i3+zjh4v+bUK/VUBp7D0Keg\nhk0Qfnj8hBRtCPi/MoV4CywIi4qKRCQvL+/06dPaksOHD2dnZ8fHx+/ZsyeQXbWYRx55RESG\nDRt27tw5bcmGDRtSUlKaN29eVlamLZkxY4aIPPLII67/cMSIESKydOnScLfYUF27do2Li1uw\nYMHtt99e78k/YcIEEbnvvvucpfPEiRMdO3YUkbfeekvfdaKOz95TGY0q23E1f/58LVrcwkPx\ntaKCp31UKY8q69TW1ubl5cXGxv7tb3/Tltjt9htuuMFms3344YfOl/PruEQjctCsVEa44llg\nBSpnui7V/uWXXxaR3r17Owd2aWlp69atReTjjz8O0d6Fms+eUbniUukZle2YqXQEk4P1evDB\nB0Vk/fr12o8qI9YKVYIcNA1d7mhceToHTcln7/lbDaxwt6JRTPbA7ikCqNtmKh2eRpHKuaxX\nxpGDBuYgEAqRUCS14HjhhRe8rBPOx6eeim1Ib75U0tPfjXvaEfVKrtLtKt3i74yD92tOvVJP\nZeA5DH0KykeMutOO2YIFC7T5cxHJyMiYPXt2VVXV8uXLjWxZlFi1apWILFy4MCkpSVvSp0+f\n//zP/zx27FhhYaG2pKSkRESGDx/u+g+1v9HTfmUdDRo0KC4ufvDBB202W70rNGvW7Lrrrps3\nb16DBv93tjZt2lSrULt27dJ3najjs/dURqPKdpx27NgxZ86ccePG9erVK7DXinxe9lGlPKqs\nU1RU9P333//Hf/yHdtaLSExMzOuvv37mzBkttjXqxwX6IgeDpDLCFc8CK1A503Wp9h9//LGI\nzJ8/3zmwL7jggjvvvFNEvvrqK/12KKx89ozKFZdKz6hsxzSlI8gcrOvHH398/vnnJ0yYcOWV\nKtIYsAAAIABJREFUV2pLVEYsVcJAphnMYaPLHY2Tl3PQlHz2nl/VwAp3K06KyR7APUVgdds0\npcPLKFI5l/XKOHIQMJlIKJKnTp0SEe3NcJ6E7fGpl2Ib0psvlfT0a+NedkS9kqt0u0q3+DXj\n4POaU6/UUxl4YuhTUCYI3a1bty4pKal///6uC6+++moRifYP6A+P/fv3p6SkXHLJJa4LBw4c\nKCLOD8/t1KmTiOzcudN1nT179ohI586dw9POCFFcXOz6xQZ1Pfvss6tXr05NTXVdWFpaKiLt\n2rXTd52o47P3VEajynY0NTU1d9xxR+PGjV944YWAXyvCed9HlfKoss6HH34oIuPGjXNdp2HD\nhg0bNnRdonhcoDtyMEgqI1zxLLAClTNdl2pfWFh49uzZfv36ua7TtGnTANocOXz2jMoVl0rP\nqGzHHKUj+Bx043A4pk6dmpqa+swzzzgXqoxYqoSBzDGYw0mXOxqN93PQlHz2nno1sMLdiivF\nZPf3niLgum2O0uF9FKmcy3plHDkImEwkFEltniYtLc3LOuF5fOq92Ib05kslPdU37n1H1Cu5\nSrerdIv6jIPKNadeqacy8MTQp6BMEP6b06dPHz58uE2bNtqHvTq1bt06ISHBbXihXomJiZWV\nlXa73XWhdg7s3r1b+3HGjBlt2rSZNWvWSy+99NNPP23dunXBggUvvvhi79693aqG6Tn/vkCF\n3W7fu3fv3LlzFy9e3KNHj5tvvjl060QFn72nMhpVtqOZP3/+5s2bX3zxxWbNmgX8WhHOyz6q\nlEfFErp161YRycnJmTNnTtu2bRMSElq1anXfffdpkenk19kBvZCDwVMZ4YpngRWonOl6VfuU\nlBTnn/5p/v73v4vIVVddpd7giOKzZxSvuHz2jM/tmKZ0BJmDdb3zzjvffPPNQw891Lx5c+dC\nlRFLlTCKaQZzOOl4R+P9etuUfPaeejWwwt2KG5Vk9/eeIrC6bZrSoX4OejqX9co4chAwkwgp\nkloBOXDgwPXXX5+WlpaYmJibm/vHP/7x/Pnz9a4fusen3ottqG++vKenXxv3viOBVXJP3a5y\nb6s+4+DvNWcwqac48Ax8CsoE4b85efKk1PdHZzabrXHjxtpv4V1+fr7dbtf+RsDp/fffl3+d\nDyJywQUXbN68uV+/fnfddVfnzp27dev28MMPT548uaioKD4+3oBGR4Mbb7wxLi6ubdu2r732\n2vPPP79hwwa3Sq3jOqahMhoVbdu2bd68eWPGjBk9enSoX8so3vdRpTwqltBff/01Pj5+6tSp\nS5cuHTx48MSJE+Pj4xctWjRw4MCKigrd9wt+IQeDpzLCOQv0FVgFXrVqVWFh4YgRI5wfIGY+\ngV1x1e0Zn9sxR+kIPgfd1NbWzps3r1mzZnfffbfrcpURS5UwijkGc8Tyfifi83rbmhSrgRXu\nVnwKPtkDrtvmKB3q56CXc1mvjCMHATOJkCKpVaHp06f/9NNPBQUFffv2PXjw4KOPPjp06NCq\nqiq3lUP3+NRnsQ3zzZdbeqpv3OeOBFDJvXS7yr2t4v2vv9ecQaaeXwPPELFGNyCyaKOz3icm\nCQkJdrvdbrfHxtJp3jz22GNFRUV33nlnTU3NkCFDysvLX3755RUrVohIdXW1tk5ZWdmtt976\nySefjB8//uqrr66url6zZs2SJUuOHDmyYsWKhIQEQ/cgQvXo0aO8vPz333/ftm3bc88917Rp\n09tuuy1E65iGymhUUV1dPWHChCZNmvz5z38O9WsZxec+qpRHxRJ69uzZqqqqffv2/fLLL9oH\nC1RUVIwaNWrt2rVLliyZNWuWnjsGP5GDwVMZ4ZwF+gqgAq9cuXLChAk5OTlvvPFGeBsbVgFc\ncdXbMz63Y4LSoUsOuu3jypUrd+zYMX/+fLdP0VEZsVQJo5hgMEcyL3ciKtfb1qRSDaxwt+KT\nLskecN02Qenw6xz0ci7rlXHkIGAmEVIkO3bsOHz48JEjR06dOlX7mrcDBw4MGzbsyy+/XLRo\n0QMPPOC6cogen6oU23DefNVNT8WNq+xIAJXcS7er3NuqrBPANWeQqefXwDOGw7zS09NFxG63\nq/+T/fv3i0ifPn3q/qpFixZxcXH6tc7MHn/8cde3Kqenp2sT6Zdddpm2wn/913+JyHPPPef6\nrx566CERWbBggRFNNp72HadFRUU+1ywpKcnNzRWR999/P9TrRAsvvedzNKpsZ86cOSKyatUq\n5xLt+3u3bNkS8GtFGp/7qFIeFUtoy5YtRWTNmjWuK2zatElEevfuXfffqp8dcEMOGkJlhPt7\nFliBypmuV7X/4x//aLPZunfvfuTIEZ2abzBPPePvFZennvG5HROUDl1y0E1eXl5iYuKpU6fq\n/srniKVK6IIcDLNg7mgUr7dNzFPvqVQDK9yteKeS7CrjM+C6bYLSEdg5WO9TBV0yjhzURQA5\nCIRCJBfJtWvXikj37t09raDv41OVYhu2m69601Nx4yo7Ekwlr9vtKve2KusEc80ZWOrVy8vA\nC/9TUCYI/82ZM2dEpGPHjm7L7XZ7XFxcRkaGrg00sx07djz77LOzZ89evnz56dOnf/zxRxG5\n/vrrtd82a9YsISGhurra9Z8cPHjQHDcngfHr5P/hhx9EpG/fvmFYJyp47z3vo9HndrZs2RIX\nF3frrbe6LvQUHuqvFVFU9lGlPCqWUO2bgbdv3+66TkVFhc1mu+CCC+o2jwnCgJGDhlAZ4f6e\nBVYQ5AShQ60CV1ZW3nLLLSIyatSosrIy/ZpvME89o37F5b1nfG4n2kuHXjnoSvvKjZtvvtnT\ni3ofsVQJXZCDYRbwHY1f19tm5an3fFYDK9yteKGe7D7HZzB1O9pLRzDnYL1PFYLPOHJQF0wQ\nIkJEcpE8d+6c9uGZXtbR6/GpYrENw82Xl/RU2bjijgRZyd26XeXe1uc6wV9zBpB69fIy8ML/\nFDSiP+Ig/FJTU7Ozs/fv319ZWen6sUu//PJLdXV1165dDWxbdMnJycnJyXH+qP11QLdu3UTk\n7Nmzx48fz8rKcnuzs/aloNpJC01FRcX69evtdvuIESNcl1988cUiUlJSouM6JuZlNKp47733\nqqurV6xYob1D3FX37t1FpKioaMCAAbq8llEU99FneVQsoR07dty+fftvv/3WqVMn5zpafpv4\nGzGjBTkYPJURzlkQCj4rsN1uHzNmTGFh4cyZM59++mm3L2Y3H/UrLu89o7KdaC8deuWgK+2b\nJ9wuvVx5H7FUCaNE+2COQCp3In5db1uNz2pghbsVT/RN9mDqdrSXDpVR1KtXL/WnCsFnHDkI\nmEkkF8mKigqHw6F9omaoH5+qFNsePXqE+ubLe3qqbFzx2kOxkqt0u8o9qco66ldNfg2GAK6v\nXAee4ZggdDdkyJBly5atXbt2+PDhzoUffPCBiFx11VXGtStqbN++vbi4eOTIkZmZmc6Fb775\npoiMHDlSRJKTk5OTk0tLS8vKylJTU53r7NmzR0RatGgR9iZHtGuvvTY2NvbYsWPJycnOhT//\n/LP8q8DpuI75+ByNKvr06TNz5ky3hWvXrt26devtt9/evHnz7OxsvV7LKIr7qFIeVdYZPHjw\nqlWrPvroo6FDhzrX2bx5s4i4BiqMQg4GSWWEcxboS7ECT506tbCw8Mknn5w9e7YBrQw79Ssu\n7z2juJ2oLh065qDTp59+KiL9+/ev+3IqI5YqYaCoHsyRyeediOI5aE0+q4EV7lY80TfZg6zb\nUV06FEeRylMFvTKOHARMxvAiWVlZee2111ZUVKxbt077HjjNF198ISLOSbWQPj5VKbZhuPny\nmZ4+N66YGuqV3Ge3q3SLyjp+XXPqknqKA89gYXuvYvgF9lb6b775xmazde7c+cSJE9qSkpKS\n9PT01NTU0tLSEDTTbJYsWSIikyZNci7RvvNz0KBBziU33XSTiMyaNcu5xG63jxs3TkRmz54d\n1uZGDE9vH9aqyYQJE86fP68tOX36tPa3DA8//LC+60QvT72nMhpVtlNX3bef+/taka/uPqqU\nR5V1Tp061bRp06SkJGdXnzx5smfPniKyfPnyui3hI0YDRg4aQmWE+3sWWEEwHzGqUoFXrVol\nImPHjtWz0RHDU8+oXHGp9IzKdsxXOgLLQU1NTU1ycnLDhg3r3bLKiKVK6IIcDLNg7mjq4iNG\nNYFVAyvcrfib7N6vNIKv2+YrHXVHkcq5rFfGkYO64CNGETkioUgOGjRIRB599NHa2lptyd69\ne9u1ayciK1as0JaE//Fp3WIb0psvlfQMbON1d0S9kqt0u0q3BDbj4OmaU6/UUxl4rvgOQj0F\nHIQPPPCAiKSnp998883XXXddSkqKzWbjEkTR2bNnu3TpIiJ5eXmTJ0/u16+fiGRmZu7bt8+5\nzv79+7OyskSkX79+jz/++KOPPpqfny8iXbp0OX36tHFtD7eioqLR/9K6dWsRufLKK7UfZ8yY\noa2zb98+ra+ysrJGjRo1YsQIbWDn5uaePHlS33Wii0rvqYxGle3UVTc8VF4rutQbkCrlUWWd\n999/PyYmJj4+/vrrrx87dqz2hzYFBQU1NTXaCoEdF7ghB43ic4QrrmN6Kme6XtVe+/6D/v37\nj67jwQcfDP++B0+lZ1SuuFR6RvHKzWSlI+AcdDgcv/76q4jk5OTUu2XFawaqRPDIwTDQ646m\nLitMECpe8QZQDaxwt6KSX+r3FLrUbZOVjrqjSOVc1jHjyMHgMUGIiGJ4kfzll1+0k6J9+/Zj\nxoy5+uqrU1JSRGT8+PHOdcL/+LRusQ3pzZfifXEAG6/3yk2xkqt0u0q3BDbj4OmaU6/UUxl4\nxj4FZYKwfq+99lp+fn5SUlJqaurAgQP/8Y9/6N48EystLZ02bVp2dnZ8fHzLli2nTp16+PBh\nt3WOHDly//33t2/fPiEhISkpqXPnznPnzvX+peLms2zZMvGgU6dOztWOHDkyY8aMSy65JDEx\nMTExMTc3d/bs2WfOnHHdlF7rRBHF3vM5GhW346be8FAZ+VHEU0CqlEeVdTZu3FhQUNCkSZOE\nhITc3NynnnqqsrLS+dvAjgvckIMG8j7C1dcxN5UzXa9qr50O9crPzw/rbutE/SrC+xWXYs8o\nXrmZqXQEk4Pbtm0Tkcsuu8zTxhWvGagSQSIHw0DHOxo3VpggVL/i9bcaWOFuRSW/1HtYr7pt\nptJR7yhSOZd1zDhyMEhMECLSGF4k9+3bN2XKlFatWsXFxTVq1KhPnz7Lly93vq9LE+bHp56K\nbYhuvtTvi/3duKcrN8VKrvhk22e3BDDj4OWaU6/U8znwjH0KanM4HJ5ePto1a9bsxIkTdrs9\nJibG6LYAABBu5CAAwMrIQQCAlZGDAACfGhjdAAAAAAAAAAAAAADhwwQhAAAAAAAAAAAAYCFM\nEAIAAAAAAAAAAAAWwgQhAAAAAAAAAAAAYCFMEAIAAAAAAAAAAAAWwgQhAAAAAAAAAAAAYCFM\nEAIAAAAAAAAAAAAWwgQhAAAAAAAAAAAAYCFMEAIAAAAAAAAAAAAWwgQhAAAAAAAAAAAAYCFM\nEAIAAAAAAAAAAAAWwgQhAAAAAAAAAAAAYCGxRjcg5F555ZUGDZgHBQDrmjRpUmys+fPOE3IQ\nACyOHCQHAcDKyEFyEACszEcOOszriSeeiIuLC6bvGjZsmJGRkZKSEsxG4JSYmJiRkdG4cWOj\nG2ISMTExGRkZ6enpRjfEPC644IILLrjA6FaYR3p6ekZGRkxMjNENkfLycqMTyRjkYKQhB/VF\nDuqOHNQXOWg4cjDSkIP6Igd1Rw7qixw0HDkYpZo1a5aRkcG0bjjFxcVlZGSkpaUZ3RBradSo\nUUZGRmJiotENMT/vOWjmv6B5/PHH7XZ7VVVVwFvYu3fv3r1727dv36pVKx0bZllHjx798ccf\ns7KycnNzjW6LGZw7d664uLhRo0Y9e/Y0ui0m8fnnn4vIHXfcYXRDTGLTpk1nzpy5+eabk5KS\njG1JkDdF0YscjDTkoL7IQd2Rg/oiBw1HDkYaclBf5KDuyEF9kYOGIwejVHFx8blz58aNGxcf\nH290W6zi9OnTmzdvbtasWbdu3Yxui4Xs2rXr119/vfrqqzMyMoxui8l5z0Gbw+EIW1Oiziuv\nvLJ06dIZM2aMHz/e6LaYQVFR0QMPPDBq1KjHH3/c6LaYwcGDB2+44Ybc3Nw33njD6LaYxBVX\nXGGz2TZu3Gh0Q0zitttu27lzZ2Fh4YUXXmh0WxAgclBf5KC+yEHdkYP6IgdNgBzUFzmoL3JQ\nd+SgvshBEyAHDXHDDTccPHjw008/5Q1tYbNt27aJEydeccUVL7zwgtFtsZCnn376nXfe+cMf\n/lBQUGB0WyyNdysDAAAAAAAAAAAAFsIEIQAAAAAAAAAAAGAhMXPnzjW6DZGrpqamWbNm+fn5\nmZmZRrfFDBwOR3Jycn5+/sUXX2x0W8zA4XDYbLa8vLxOnToZ3RaTqKysvPTSSy+77DKjG2IS\n1dXVl1xySc+ePfnC4ehFDuqLHNQXOag7clBf5KAJkIP6Igf1RQ7qjhzUFzloAuSgIaqqqjp2\n7NizZ0/Lfn1m+Dkcjri4uLy8vA4dOhjdFgux2+2ZmZmXXXZZenq60W2xNL6DEAAAAAAAAAAA\nALAQPmIUAAAAAAAAAAAAsBAmCAEAAAAAAAAAAAALYYIQAAAAAAAAAAAAsBAmCOt36tSp++67\nr02bNvHx8VlZWVOmTDl8+LDRjYomJ0+enDVrVuvWrRMSEi666KLrrrvu66+/dl2BHg7Y/fff\nb7PZpkyZ4rqQ/vTXmjVr+vfvn5qa2qRJk0GDBq1bt871t/SnX37++efbbrstMzMzLi6uefPm\n119//aZNm1xXoD+jEUctSORg6JCDuiAHdUQOmhJHLUjkYOiQg7ogB3VEDpoSRy0MvGfl8uXL\nbfV58sknDWxztFPpVQa/vhITE+vtc5vNtn//fmGoRwCbw+Ewug0Rp6qq6vLLL//+++9Hjx6d\nl5e3Z8+eN99888ILL/zuu+/S0tKMbl0U+Oc//5mfn79///7hw4fn5eXt3bt35cqVsbGxmzZt\n6tKli9DDQfj222979+5dU1MzefLkV199VVtIf/pr2bJlkyZNatu27bhx486fP//666+fPn26\nqKjoiiuuEPrTTz/99NPll18eFxc3ffr0du3aHThwYMmSJcePH//kk08GDRok9Gd04qgFiRwM\nHXJQF+SgjshBU+KoBYkcDB1yUBfkoI7IQVPiqIWBz6xcuHDhjBkzxo0b16pVK9d/ePXVVw8c\nONCgVkc9n73K4NfdY489Vl1d7bZw5cqVpaWlv/32W9OmTRnqxnOgjueff15EFixY4FyycuVK\nEZk5c6aBrYoid999t4gsXrzYueS9994TkWHDhmk/0sOBqa6u7tat26WXXioikydPdi6nP/1y\n5MiRhg0bdu/e/ezZs9qSkpKShg0b3nXXXdqP9KdfbrnlFhH5/PPPnUu2bt0qIgMGDNB+pD+j\nEUctSORgiJCDuiAH9UUOmhJHLUjkYIiQg7ogB/VFDpoSRy0MfGblnDlzRGTz5s0GNdCcfPYq\ngz8Mvv3225iYmCeffFL7kaFuOCYI69GtW7fU1NTz58+7LmzXrl2LFi1qa2uNalUUue+++wYP\nHlxVVeVcUltbm5SU1Lp1a+1Hejgw8+fPt9lsa9ascbshpD/98swzz4jI3//+d9eFrh1Ff/ql\nV69eIuJ6vjscjkaNGrVp00b7f/ozGnHUgkQOhgg5qAtyUF/koClx1IJEDoYIOagLclBf5KAp\ncdTCwGdW3nvvvSJSUlJiTPtMymevMvhDzW63d+/ePScnp7KyUlvCUDcc30Ho7vz589u2bevZ\ns2dCQoLr8r59+x49enTfvn1GNSyK/M///M/atWvj4uKcS6qqqux2+4UXXij0cKD27NnzxBNP\nTJs2rXfv3q7L6U9/rV27NikpSfu0k8rKyjNnzoiIzWbTfkt/+qtjx44ismvXLueS48ePnz17\nNicnR+jP6MRRCx45GArkoF7IQX2Rg+bDUQseORgK5KBeyEF9kYPmw1ELD+9ZKSKnTp0SkSZN\nmtTU1Bw6dOj48ePGNNRcvPcqgz8MFi9evGXLlhdffDE+Pl5bwlA3HBOE7n799deamprs7Gy3\n5a1btxaRvXv3GtGoqLd06dLq6uqxY8cKPRyoO++8s0mTJk899ZTbcvrTXz///PNFF120ffv2\nvn37JiUlNW7cuF27dsuXL9d+S3/666GHHkpLS7v11ls3bNhQWlq6ZcuWsWPHJiYmah8RQH9G\nI45aKJCDwSMH9UIO6oscNB+OWiiQg8EjB/VCDuqLHDQfjppRXLNSRE6fPi0iCxcubN68eXZ2\ndvPmzTt06PCXv/zF0DZGPe+9yuAPtfLy8j/96U+DBw8eMGCAcyFD3XBMELorKysTkZSUFLfl\nDRs2dP4Wflm/fv0DDzzQt2/fadOmCT0ckOXLl3/22WeLFy9u3Lix26/oT3/985//LC8vHz58\neO/evd99991FixZVV1dPnDhRyx760185OTlfffVVdXV1v379MjMz8/LySkpK1q5dq33UDP0Z\njThquiMHg0cO6ogc1Bc5aD4cNd2Rg8EjB3VEDuqLHDQfjpoh3LJS/vW2qrfeeuvBBx984403\n/vu//7u0tHT8+PFLly41tKXRzXuvMvhD7c9//vOxY8e0vyBxYqgbLtboBkQo5+dLODkcjnqX\nw7u33npr4sSJnTt3/utf/xob+//HGz2s7ujRozNnzhwxYsTo0aM9rUN/qquqqjpw4MDrr79+\n++23a0tuuumm9u3bz5w5c8yYMdoS+lPdzp07hw8fbrfbn3vuufbt2x89evT5558vKChYtWrV\nkCFDtHXoz2jEUdMLORg8clBf5KC+yEGz4qjphRwMHjmoL3JQX+SgWXHUwqnerHzsscemT59+\nzTXXOOerbr311ry8vEceeWTixInOj2eEX7z3qraEwR8iFRUVzz777JVXXtmvXz/X5Qx1wzFB\n6K5Ro0ZS3x8FaB9Mn5qaakCbopPD4Zg7d+68efOuueaad955x9l19LC/7r333qqqqiVLltT7\nW/rTXw0bNrTb7TfeeKNzSWZmZkFBwbvvvrtjxw7601+TJk06cuTI7t27W7ZsqS0ZO3Zs+/bt\n77jjjn379tGf0YijphdyUC/koL7IQX2Rg+bDUdMLOagXclBf5KC+yEHz4aiFk6esFBHtq1Jd\n5ebmDhs2bPXq1Vu3br3sssvC21KT8N6raWlpwuAPmffff//48eOTJ092W85QNxwfMequVatW\nsbGxBw4ccFu+Z88eEbnkkkuMaFT0cTgcU6ZMmTdv3j333PPRRx+51lB62C9r1qx5++23Z8yY\n0aBBg0OHDh06dOj3338XkXPnzh06dOjMmTP0p7/atGkjIq5fBC0izZs3F5GysjL60y9nz579\n5ptvevXq5bwbFJHk5OTBgwf/9ttvu3fvpj+jEUdNF+SgXshB3ZGDOiIHTYmjpgtyUC/koO7I\nQR2Rg6bEUQsbL1npSYsWLUTk7NmzoW+dhTh7lcEfUitXroyJiRk1apTKygz1sHKgjl69eiUn\nJ5eXlzuX1NTUZGVlZWdnG9iq6HLvvfeKyJ/+9Kd6f0sPq5s5c6aX8/ehhx5y0J9+mj59uoh8\n/fXXrguHDh0qIgcPHnTQn/44evSoiFx++eVuy2+++WYR+fbbbx30Z3TiqAWPHNQLOag7clBH\n5KBZcdSCRw7qhRzUHTmoI3LQrDhq4eElK8vKyl588cW//OUvbsv79u0rInv27AlLA81GpVcZ\n/CFSWVmZkpLSo0cPt+UM9UjABGE9Xn75ZRGZO3euc8lLL70kIk888YSBrYoi7733nojce++9\nnlagh9Xt2LHjw3/39ttvi8jQoUM//PDDnTt3OuhPP3377bc2m23QoEHnz5/XlmzevLlBgwZd\nu3bVfqQ//XLRRRfFxcXt2rXLueTkyZNNmzZt1KiR1sP0ZzTiqAWJHNQROag7clBf5KApcdSC\nRA7qiBzUHTmoL3LQlDhqYeA9K2tqalq2bNmwYUOtzmsKCwtFpHv37uFqo9mo9CqDP0S2bNki\nIpMnT3ZbzlCPBDaHw+Hl79GsqaamZuDAgV9++eW1116bl5e3c+fOlStXdu7c+euvv05OTja6\ndVGgXbt2e/bsueeee+p210MPPZSWlkYPB+PUqVNpaWmTJ09+9dVXtSX0p79mzJixcOHCbt26\nXX/99YcOHVqxYkVNTc0nn3wyYMAAoT/9tHr16htvvDEtLW3atGlt27Y9fPjwq6++um/fviVL\nltx1111Cf0YnjlqQyMGQIgeDRw7qiBw0JY5akMjBkCIHg0cO6ogcNCWOWhj4zMoPPvjguuuu\nS05OHjt2bFZW1vbt2wsLC1NTU4uKivLy8gxpswn47FUGf4isXLly7NixTz755OzZs91+xVA3\nntEzlBGqrKxs1qxZrVu3jouLa9my5d13333ixAmjGxU1vIy3ffv2aevQwwE7efKk1PmbC/rT\nL7W1tf/7v/976aWXJiYmNm7ceNiwYZs2bXJdgf70S3Fx8XXXXde8efPY2Ni0tLQhQ4Z8/PHH\nrivQn9GIoxYMcjCkyMHgkYP6IgdNiaMWDHIwpMjB4JGD+iIHTYmjFmoqWVlcXFxQUNCkSZPY\n2NisrKzbb7+9pKTE0Fabgc9eZfCHgvZGzEWLFtX7W4a6sXgHIQAAAAAAAAAAAGAhDYxuAAAA\nAAAAAAAAAIDwYYIQAAAAAAAAAAAAsBAmCAEAAAAAAAAAAAALYYIQAAAAAAAAAAAAsBAmCAEA\nAAAAAAAAAAALYYIQAAAAAAAAAAAAsBAmCAEAAAAAAAAAAAALYYIQiG4LFy602WxTpkwxuiEA\nABiAHAQAWBk5CACwMnIQCBIThEAkmj9/vk3BNddcY3RLAQDQHzkIALAychAAYGXkIBAIp2MG\nAAAE30lEQVQ2sUY3AEA90tPTO3To4Lpk9+7dDoejdevWiYmJzoXZ2dn33HPPtGnTYmM5lwEA\n5kEOAgCsjBwEAFgZOQiEjc3hcBjdBgC+JSYmVlZWbt68uUePHka3BQCAcCMHAQBWRg4CAKyM\nHARChI8YBQAAAAAAAAAAACyECUIgurl9Ge/ixYttNtucOXOOHz8+adKkzMzMlJSU/Pz8jz76\nSEROnz49ffr07OzshISEDh06vPLKK25b27hx4+jRozMyMuLj4zMyMkaPHl1cXBzuXQIAQBk5\nCACwMnIQAGBl5CAQJCYIAVPRPon71KlTBQUFGzdu7NOnT6tWrb7//vsbbrhhy5YtQ4cOXb16\ndV5eXufOnXfv3j116tQPP/zQ+W9ffvnlK6+8srCwsFOnThMmTMjJyVm9enXfvn1fe+0143YI\nAAA/kIMAACsjBwEAVkYOAv5ighAwFe1bed98880OHTr89NNPq1at2r59+5AhQ6qrq0eMGJGW\nllZSUvLXv/71u+++mzhxooi8/vrr2j/ctWvX9OnTY2NjP/nkk88+++yVV14pKir629/+Fhsb\ne/fddx88eNDIvQIAQA05CACwMnIQAGBl5CDgLyYIAVOx2WwiUlFRsXDhQi0UY2JibrvtNhE5\nfPjwokWLkpOTtTXvuOMOEdm5c6f245IlS6qrq6dOnTpkyBDn1q655poJEyacP39+2bJl4d0P\nAAACQQ4CAKyMHAQAWBk5CPiLCULAhLp27dqsWTPnjy1bthSRjIyMDh06uC0sKyvTfvz8889F\nZMSIEW6bKigoEJEvvvgixE0GAEA35CAAwMrIQQCAlZGDgLpYoxsAQH8XXnih648xMTEikpWV\nVXdhbW2t9uP+/ftFZMmSJW+99ZbrasePHxeRvXv3hrC5AADoihwEAFgZOQgAsDJyEFDHBCFg\nQnFxcXUXau+sr5fD4SgvLxcR1+/mdeX8gxoAACIfOQgAsDJyEABgZeQgoI6PGAUgNpstJSVF\nRL777jtHfbS/lwEAwJTIQQCAlZGDAAArIwdhZUwQAhARufjii0XkwIEDRjcEAAADkIMAACsj\nBwEAVkYOwrKYIAQgIjJw4EAReeedd9yW79q1a82aNRUVFUY0CgCAMCEHAQBWRg4CAKyMHIRl\nMUEIQERk2rRpcXFxq1atevvtt50Ljx49Onbs2GHDhr333nsGtg0AgFAjBwEAVkYOAgCsjByE\nZTFBCEBEJCcnZ/HixTU1Nbfcckv//v0nTZo0cuTIiy666Icffhg/fvwtt9xidAMBAAghchAA\nYGXkIADAyshBWFas0Q0AECnuvPPOLl26PPfccxs3biwuLk5OTu7evfsdd9wxadKkBg34YwIA\ngMmRgwAAKyMHAQBWRg7CmmwOh8PoNgAAAAAAAAAAAAAIE2a/AQAAAAAAAAAAAAthghAAAAAA\nAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAA\nAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAA\nAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAAAAAAAACwECYIAQAAAAAAAAAAAAthghAAAAAA\nAAAAAACwkP8H3u12wSz0tNkAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 1500, - "width": 1200 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "plots_km" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Competing Events" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "competing_endpoints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "fit5 <- survfit(Surv(CompetingEvents_event_time, CompetingEvents_event, type = \"mstate\") ~ 1, data = data)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "options(repr.plot.width=10, repr.plot.height=10)\n", - "ggcompetingrisks(fit5, palette = \"jco\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ggsurvplot(fit5,data, conf.int = TRUE, ylim = c(0.70,1), cumevents=TRUE, cumevents.y.text = FALSE)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.2" - }, - "toc-autonumbering": true, - "toc-showcode": false, - "toc-showmarkdowntxt": true - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/6_imputation.ipynb b/neuralcvd/preprocessing/ukbb_tabular/6_imputation.ipynb deleted file mode 100644 index 0d48dad..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/6_imputation.ipynb +++ /dev/null @@ -1,2051 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. Imputation" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "from tqdm.auto import tqdm\n", - "import matplotlib.pyplot as pl\n", - "import pathlib\n", - "\n", - "import numpy as np\n", - "import pandas as pd\n", - "import lifelines\n", - "from lifelines import CoxPHFitter\n", - "from sklearn.model_selection import StratifiedKFold\n", - "\n", - "\n", - "from joblib import Parallel, delayed\n", - "from tqdm.notebook import tqdm\n", - "import neptune\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "import shutil\n", - "\n", - "dataset_name = \"cvd_massive_excl_emb\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/2_datasets_pre/{dataset_name}\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Read data" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "data = pd.read_feather(f\"{dataset_path}/baseline.feather\")\n", - "data_description = pd.read_feather(f\"{dataset_path}/baseline_clinical_description.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idcovariatedtypeisTargetbased_onaggr_fn
01eidintegerFalseeidNaN
12age_at_recruitmentnumericFalsebasicsNaN
23sexcategoryFalsebasicsNaN
34ethnic_backgroundcategoryFalsebasicsNaN
45townsend_deprivation_index_at_recruitmentnumericFalsebasicsNaN
.....................
37413742ASCVD_event_timenumericTruescore_ASCVDNaN
37423743QRISK3_eventintegerTruescore_QRISK3NaN
37433744QRISK3_event_timenumericTruescore_QRISK3NaN
37443745MACE_eventintegerTruescore_MACENaN
37453746MACE_event_timenumericTruescore_MACENaN
\n", - "

3746 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " id covariate dtype isTarget \\\n", - "0 1 eid integer False \n", - "1 2 age_at_recruitment numeric False \n", - "2 3 sex category False \n", - "3 4 ethnic_background category False \n", - "4 5 townsend_deprivation_index_at_recruitment numeric False \n", - "... ... ... ... ... \n", - "3741 3742 ASCVD_event_time numeric True \n", - "3742 3743 QRISK3_event integer True \n", - "3743 3744 QRISK3_event_time numeric True \n", - "3744 3745 MACE_event integer True \n", - "3745 3746 MACE_event_time numeric True \n", - "\n", - " based_on aggr_fn \n", - "0 eid NaN \n", - "1 basics NaN \n", - "2 basics NaN \n", - "3 basics NaN \n", - "4 basics NaN \n", - "... ... ... \n", - "3741 score_ASCVD NaN \n", - "3742 score_QRISK3 NaN \n", - "3743 score_QRISK3 NaN \n", - "3744 score_MACE NaN \n", - "3745 score_MACE NaN \n", - "\n", - "[3746 rows x 6 columns]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "covariates = data_description[data_description.isTarget==False].covariate.to_list()[1:]\n", - "targets = data_description[data_description.isTarget==True].covariate.to_list()\n", - "data_description" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidPGS000011PGS000013PGS000016PGS000018PGS000039PGS000057PGS000058PGS000059PGS000116...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
010000183.17077014.18216125.478597-7.9100040.1960993.6902758.5132304.0602352.543097...010.625599010.625599010.335387010.335387010.335387
110000203.93556514.20360925.508855-7.3382070.3820544.1700008.6655293.6400002.575014...012.355921012.355921012.065708012.065708012.065708
210000374.22365414.24817625.549722-7.5330610.1899884.2886278.5409085.5414512.441255...011.627652011.62765217.96988417.969884011.337440
310000433.52957514.17650225.394145-7.7686480.2893884.1300008.5154474.2610982.740589...011.069131011.06913115.12251915.12251915.122519
41000051NaNNaNNaNNaNNaNNaNNaNNaNNaN...014.050650014.050650013.760438013.760438013.760438
..................................................................
50249960251504.18180014.05358925.402026-7.4991640.2729564.4700008.4254114.6602352.419166...012.996578012.996578012.706366012.706366012.706366
50250060251654.31574314.13147725.417482-7.7364210.2751033.9009418.0469614.0001962.721753...011.819302011.819302011.529090011.529090011.529090
50250160251733.09667114.18622525.488755-8.0798150.3529183.5078047.9946973.6907062.687853...011.778234011.778234011.488022011.488022011.488022
50250260251823.69964614.13469325.439013-7.9629280.3438604.0200008.1512773.9600002.692526...09.99315509.99315509.70294309.70294309.702943
50250360251983.66378914.32534025.449361-7.4299060.2083673.7400008.7433724.1100002.428418...010.420260010.420260010.130048010.130048010.130048
\n", - "

502504 rows × 3758 columns

\n", - "
" - ], - "text/plain": [ - " eid PGS000011 PGS000013 PGS000016 PGS000018 PGS000039 \\\n", - "0 1000018 3.170770 14.182161 25.478597 -7.910004 0.196099 \n", - "1 1000020 3.935565 14.203609 25.508855 -7.338207 0.382054 \n", - "2 1000037 4.223654 14.248176 25.549722 -7.533061 0.189988 \n", - "3 1000043 3.529575 14.176502 25.394145 -7.768648 0.289388 \n", - "4 1000051 NaN NaN NaN NaN NaN \n", - "... ... ... ... ... ... ... \n", - "502499 6025150 4.181800 14.053589 25.402026 -7.499164 0.272956 \n", - "502500 6025165 4.315743 14.131477 25.417482 -7.736421 0.275103 \n", - "502501 6025173 3.096671 14.186225 25.488755 -8.079815 0.352918 \n", - "502502 6025182 3.699646 14.134693 25.439013 -7.962928 0.343860 \n", - "502503 6025198 3.663789 14.325340 25.449361 -7.429906 0.208367 \n", - "\n", - " PGS000057 PGS000058 PGS000059 PGS000116 ... death_cvd_event \\\n", - "0 3.690275 8.513230 4.060235 2.543097 ... 0 \n", - "1 4.170000 8.665529 3.640000 2.575014 ... 0 \n", - "2 4.288627 8.540908 5.541451 2.441255 ... 0 \n", - "3 4.130000 8.515447 4.261098 2.740589 ... 0 \n", - "4 NaN NaN NaN NaN ... 0 \n", - "... ... ... ... ... ... ... \n", - "502499 4.470000 8.425411 4.660235 2.419166 ... 0 \n", - "502500 3.900941 8.046961 4.000196 2.721753 ... 0 \n", - "502501 3.507804 7.994697 3.690706 2.687853 ... 0 \n", - "502502 4.020000 8.151277 3.960000 2.692526 ... 0 \n", - "502503 3.740000 8.743372 4.110000 2.428418 ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 10.625599 0 10.625599 0 \n", - "1 12.355921 0 12.355921 0 \n", - "2 11.627652 0 11.627652 1 \n", - "3 11.069131 0 11.069131 1 \n", - "4 14.050650 0 14.050650 0 \n", - "... ... ... ... ... \n", - "502499 12.996578 0 12.996578 0 \n", - "502500 11.819302 0 11.819302 0 \n", - "502501 11.778234 0 11.778234 0 \n", - "502502 9.993155 0 9.993155 0 \n", - "502503 10.420260 0 10.420260 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 10.335387 0 10.335387 0 \n", - "1 12.065708 0 12.065708 0 \n", - "2 7.969884 1 7.969884 0 \n", - "3 5.122519 1 5.122519 1 \n", - "4 13.760438 0 13.760438 0 \n", - "... ... ... ... ... \n", - "502499 12.706366 0 12.706366 0 \n", - "502500 11.529090 0 11.529090 0 \n", - "502501 11.488022 0 11.488022 0 \n", - "502502 9.702943 0 9.702943 0 \n", - "502503 10.130048 0 10.130048 0 \n", - "\n", - " MACE_event_time \n", - "0 10.335387 \n", - "1 12.065708 \n", - "2 11.337440 \n", - "3 5.122519 \n", - "4 13.760438 \n", - "... ... \n", - "502499 12.706366 \n", - "502500 11.529090 \n", - "502501 11.488022 \n", - "502502 9.702943 \n", - "502503 10.130048 \n", - "\n", - "[502504 rows x 3758 columns]" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize missing values" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib as mpl\n", - "from matplotlib import gridspec\n", - "import matplotlib.pyplot as plt\n", - "from scipy.cluster import hierarchy\n", - "import seaborn as sns\n", - "import pandas as pd\n", - "import warnings\n", - "\n", - "def nullity_sort(df, sort=None, axis='columns'):\n", - " \"\"\"\n", - " Sorts a DataFrame according to its nullity, in either ascending or descending order.\n", - " :param df: The DataFrame object being sorted.\n", - " :param sort: The sorting method: either \"ascending\", \"descending\", or None (default).\n", - " :return: The nullity-sorted DataFrame.\n", - " \"\"\"\n", - " if sort is None:\n", - " return df\n", - " elif sort not in ['ascending', 'descending']:\n", - " raise ValueError('The \"sort\" parameter must be set to \"ascending\" or \"descending\".')\n", - "\n", - " if axis not in ['rows', 'columns']:\n", - " raise ValueError('The \"axis\" parameter must be set to \"rows\" or \"columns\".')\n", - "\n", - " if axis == 'columns':\n", - " if sort == 'ascending':\n", - " return df.iloc[np.argsort(df.count(axis='columns').values), :]\n", - " elif sort == 'descending':\n", - " return df.iloc[np.flipud(np.argsort(df.count(axis='columns').values)), :]\n", - " elif axis == 'rows':\n", - " if sort == 'ascending':\n", - " return df.iloc[:, np.argsort(df.count(axis='rows').values)]\n", - " elif sort == 'descending':\n", - " return df.iloc[:, np.flipud(np.argsort(df.count(axis='rows').values))]\n", - "\n", - "\n", - "def nullity_filter(df, filter=None, p=0, n=0):\n", - " \"\"\"\n", - " Filters a DataFrame according to its nullity, using some combination of 'top' and 'bottom' numerical and\n", - " percentage values. Percentages and numerical thresholds can be specified simultaneously: for example,\n", - " to get a DataFrame with columns of at least 75% completeness but with no more than 5 columns, use\n", - " `nullity_filter(df, filter='top', p=.75, n=5)`.\n", - " :param df: The DataFrame whose columns are being filtered.\n", - " :param filter: The orientation of the filter being applied to the DataFrame. One of, \"top\", \"bottom\",\n", - " or None (default). The filter will simply return the DataFrame if you leave the filter argument unspecified or\n", - " as None.\n", - " :param p: A completeness ratio cut-off. If non-zero the filter will limit the DataFrame to columns with at least p\n", - " completeness. Input should be in the range [0, 1].\n", - " :param n: A numerical cut-off. If non-zero no more than this number of columns will be returned.\n", - " :return: The nullity-filtered `DataFrame`.\n", - " \"\"\"\n", - " if filter == 'top':\n", - " if p:\n", - " df = df.iloc[:, [c >= p for c in df.count(axis='rows').values / len(df)]]\n", - " if n:\n", - " df = df.iloc[:, np.sort(np.argsort(df.count(axis='rows').values)[-n:])]\n", - " elif filter == 'bottom':\n", - " if p:\n", - " df = df.iloc[:, [c <= p for c in df.count(axis='rows').values / len(df)]]\n", - " if n:\n", - " df = df.iloc[:, np.sort(np.argsort(df.count(axis='rows').values)[:n])]\n", - " return df\n", - "\n", - "def matrix(df,\n", - " filter=None, n=0, p=0, sort=None,\n", - " figsize=(25, 10), width_ratios=(15, 1), color=(0.25, 0.25, 0.25),\n", - " fontsize=16, labels=None, sparkline=True, inline=False,\n", - " freq=None, ax=None):\n", - " \"\"\"\n", - " A matrix visualization of the nullity of the given DataFrame.\n", - " :param df: The `DataFrame` being mapped.\n", - " :param filter: The filter to apply to the heatmap. Should be one of \"top\", \"bottom\", or None (default).\n", - " :param n: The max number of columns to include in the filtered DataFrame.\n", - " :param p: The max percentage fill of the columns in the filtered DataFrame.\n", - " :param sort: The row sort order to apply. Can be \"ascending\", \"descending\", or None.\n", - " :param figsize: The size of the figure to display.\n", - " :param fontsize: The figure's font size. Default to 16.\n", - " :param labels: Whether or not to display the column names. Defaults to the underlying data labels when there are\n", - " 50 columns or less, and no labels when there are more than 50 columns.\n", - " :param sparkline: Whether or not to display the sparkline. Defaults to True.\n", - " :param width_ratios: The ratio of the width of the matrix to the width of the sparkline. Defaults to `(15, 1)`.\n", - " Does nothing if `sparkline=False`.\n", - " :param color: The color of the filled columns. Default is `(0.25, 0.25, 0.25)`.\n", - " :return: If `inline` is False, the underlying `matplotlib.figure` object. Else, nothing.\n", - " \"\"\"\n", - " df = nullity_filter(df, filter=filter, n=n, p=p)\n", - " df = nullity_sort(df, sort=sort, axis='columns')\n", - "\n", - " height = df.shape[0]\n", - " width = df.shape[1]\n", - "\n", - " # z is the color-mask array, g is a NxNx3 matrix. Apply the z color-mask to set the RGB of each pixel.\n", - " z = df.notnull().values\n", - " g = np.zeros((height, width, 3))\n", - "\n", - " g[z < 0.5] = [1, 1, 1]\n", - " g[z > 0.5] = color\n", - "\n", - " # Set up the matplotlib grid layout. A unary subplot if no sparkline, a left-right splot if yes sparkline.\n", - " if ax is None:\n", - " plt.figure(figsize=figsize)\n", - " if sparkline:\n", - " gs = gridspec.GridSpec(1, 2, width_ratios=width_ratios)\n", - " gs.update(wspace=0.08)\n", - " ax1 = plt.subplot(gs[1])\n", - " else:\n", - " gs = gridspec.GridSpec(1, 1)\n", - " ax0 = plt.subplot(gs[0])\n", - " else:\n", - " if sparkline is not False:\n", - " warnings.warn(\n", - " \"Plotting a sparkline on an existing axis is not currently supported. \"\n", - " \"To remove this warning, set sparkline=False.\"\n", - " )\n", - " sparkline = False\n", - " ax0 = ax\n", - "\n", - " # Create the nullity plot.\n", - " ax0.imshow(g, interpolation='none')\n", - "\n", - " # Remove extraneous default visual elements.\n", - " ax0.set_aspect('auto')\n", - " ax0.grid(b=False)\n", - " ax0.xaxis.tick_top()\n", - " ax0.xaxis.set_ticks_position('none')\n", - " ax0.yaxis.set_ticks_position('none')\n", - " ax0.spines['top'].set_visible(False)\n", - " ax0.spines['right'].set_visible(False)\n", - " ax0.spines['bottom'].set_visible(False)\n", - " ax0.spines['left'].set_visible(False)\n", - "\n", - " # Set up and rotate the column ticks. The labels argument is set to None by default. If the user specifies it in\n", - " # the argument, respect that specification. Otherwise display for <= 50 columns and do not display for > 50.\n", - " if labels or (labels is None and len(df.columns) <= 50):\n", - " ha = 'left'\n", - " ax0.set_xticks(list(range(0, width)))\n", - " ax0.set_xticklabels(list(df.columns), rotation=45, ha=ha, fontsize=fontsize)\n", - " else:\n", - " ax0.set_xticks([])\n", - "\n", - " # Adds Timestamps ticks if freq is not None, else set up the two top-bottom row ticks.\n", - " if freq:\n", - " ts_list = []\n", - "\n", - " if type(df.index) == pd.PeriodIndex:\n", - " ts_array = pd.date_range(df.index.to_timestamp().date[0],\n", - " df.index.to_timestamp().date[-1],\n", - " freq=freq).values\n", - "\n", - " ts_ticks = pd.date_range(df.index.to_timestamp().date[0],\n", - " df.index.to_timestamp().date[-1],\n", - " freq=freq).map(lambda t:\n", - " t.strftime('%Y-%m-%d'))\n", - "\n", - " elif type(df.index) == pd.DatetimeIndex:\n", - " ts_array = pd.date_range(df.index[0], df.index[-1],\n", - " freq=freq).values\n", - "\n", - " ts_ticks = pd.date_range(df.index[0], df.index[-1],\n", - " freq=freq).map(lambda t:\n", - " t.strftime('%Y-%m-%d'))\n", - " else:\n", - " raise KeyError('Dataframe index must be PeriodIndex or DatetimeIndex.')\n", - " try:\n", - " for value in ts_array:\n", - " ts_list.append(df.index.get_loc(value))\n", - " except KeyError:\n", - " raise KeyError('Could not divide time index into desired frequency.')\n", - "\n", - " ax0.set_yticks(ts_list)\n", - " ax0.set_yticklabels(ts_ticks, fontsize=int(fontsize / 16 * 20), rotation=0)\n", - " else:\n", - " ax0.set_yticks([0, df.shape[0] - 1])\n", - " ax0.set_yticklabels([1, df.shape[0]], fontsize=int(fontsize / 16 * 20), rotation=0)\n", - "\n", - " if sparkline:\n", - " # Calculate row-wise completeness for the sparkline.\n", - " completeness_srs = df.notnull().astype(bool).sum(axis=1)\n", - " x_domain = list(range(0, height))\n", - " y_range = list(reversed(completeness_srs.values))\n", - " min_completeness = min(y_range)\n", - " max_completeness = max(y_range)\n", - " min_completeness_index = y_range.index(min_completeness)\n", - " max_completeness_index = y_range.index(max_completeness)\n", - "\n", - " # Set up the sparkline, remove the border element.\n", - " ax1.grid(b=False)\n", - " ax1.set_aspect('auto')\n", - " # GH 25\n", - " if int(mpl.__version__[0]) <= 1:\n", - " ax1.set_axis_bgcolor((1, 1, 1))\n", - " else:\n", - " ax1.set_facecolor((1, 1, 1))\n", - " ax1.spines['top'].set_visible(False)\n", - " ax1.spines['right'].set_visible(False)\n", - " ax1.spines['bottom'].set_visible(False)\n", - " ax1.spines['left'].set_visible(False)\n", - " ax1.set_ymargin(0)\n", - "\n", - " # Plot sparkline---plot is sideways so the x and y axis are reversed.\n", - " ax1.plot(y_range, x_domain, color=color)\n", - "\n", - " if labels:\n", - " # Figure out what case to display the label in: mixed, upper, lower.\n", - " label = 'Data Completeness'\n", - " if str(df.columns[0]).islower():\n", - " label = label.lower()\n", - " if str(df.columns[0]).isupper():\n", - " label = label.upper()\n", - "\n", - " # Set up and rotate the sparkline label.\n", - " ha = 'left'\n", - " ax1.set_xticks([min_completeness + (max_completeness - min_completeness) / 2])\n", - " ax1.set_xticklabels([label], rotation=45, ha=ha, fontsize=fontsize)\n", - " ax1.xaxis.tick_top()\n", - " ax1.set_yticks([])\n", - " else:\n", - " ax1.set_xticks([])\n", - " ax1.set_yticks([])\n", - "\n", - " # Add maximum and minimum labels, circles.\n", - " ax1.annotate(max_completeness,\n", - " xy=(max_completeness, max_completeness_index),\n", - " xytext=(max_completeness + 2, max_completeness_index),\n", - " fontsize=int(fontsize / 16 * 14),\n", - " va='center',\n", - " ha='left')\n", - " ax1.annotate(min_completeness,\n", - " xy=(min_completeness, min_completeness_index),\n", - " xytext=(min_completeness - 2, min_completeness_index),\n", - " fontsize=int(fontsize / 16 * 14),\n", - " va='center',\n", - " ha='right')\n", - "\n", - " ax1.set_xlim([min_completeness - 2, max_completeness + 2]) # Otherwise the circles are cut off.\n", - " ax1.plot([min_completeness], [min_completeness_index], '.', color=color, markersize=10.0)\n", - " ax1.plot([max_completeness], [max_completeness_index], '.', color=color, markersize=10.0)\n", - "\n", - " # Remove tick mark (only works after plotting).\n", - " ax1.xaxis.set_ticks_position('none')\n", - "\n", - " if inline:\n", - " warnings.warn(\n", - " \"The 'inline' argument has been deprecated, and will be removed in a future version \"\n", - " \"of missingno.\"\n", - " )\n", - " plt.show()\n", - " else:\n", - " return ax0\n" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC1QAAANPCAYAAABns39AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzce5BcZZk/8KenJ5NM7uGShEwSAogh4SJeWBRXbaLihV0XL8sWVbpSWIAuFnt1F3G9/fDCWqVbay3rloq4lu5qFYpCKctF6MAiuoKLiIQQgSTknsBMLnOf7v79sdtTM5Pume6kZ87pyedTdeqc8573PefpM1Pnr289mVKpFAAAAAAAAAAAAAAAx6KWpAsAAAAAAAAAAAAAAEiKQDUAAAAAAAAAAAAAcMwSqAYAAAAAAAAAAAAAjlkC1QAAAAAAAAAAAADAMUugGgAAAAAAAAAAAAA4ZglUAwAAAAAAAAAAAADHLIFqAAAAAAAAAAAAAOCY1Zp0AUdr9erV74mIN0TEuRHxsoiYFxHf2bhx43sTLQwAAAAAAAAAAAAASL2mD1RHxN/H/wapD0XEtog4I9lyAAAAAAAAAAAAAIBm0ZJ0AQ3wlxHx0oiYHxEfSrgWAAAAAAAAAAAAAKCJNH2H6o0bN95fPl69enWSpQAAAAAAAAAAAAAATWY6dKgGAAAAAAAAAAAAADgiTd+hutFyuVyp2rV8Pl+eU/FapfG0SHt9AAAAAAAAAAAApEs+n88kXQM1qZp75Ni1a9eu+Na3vhWHDh2K/v7+6OvrG7UfeVwsFmu+78knnxzf/OY36ymlKb4jAtUNUA4rTxRarhbIriXs3IhAtFA1AAAAAAAAAAAAQGOUSqUoFotRKBSq7stbpfGJ5oy9Pt6csXOffPLJeOyxxxr6e7///e/HvHnzGnrPtBCoboBqIeVygLqW8Wpzx86pNxA9co0wNQAAAAAAAAAAAMDR+9WvfhXXXXddDA4OJl3KlNm1a1ds27YtDhw4EGeddVYsXLgw6ZIaRqC6DhMFksdeF2AGAAAAAAAAAAAAmH5OPfXUeO973xv9/f2jukSP7UA9UUfpSmuqra11vFQqTcpvvuaaa4aP58+fHz/60Y8m5TlJEKiuQ7mLdKWg9MhO0OPNm2ppqAEAAAAAAAAAAABgOlm4cGH86Z/+adJlVFQqleoOYReLxRgcHIyrr766pmf09vbG9ddfH3PmzIm5c+fGunXr4uyzz57kXzZ5BKrrMF44eeQ1IWYAAAAAAAAAAAAAkpDJZCKbzUY2m61rXalUigULFsT+/fsnnDs4OBgPP/xwRES0tLTEwoULBaqPFRN1ni53qU5Th2oAAAAAAAAAAAAAmEipVIrW1vGjxWeddVacc8458drXvjZOPPHEmDt3bsyaNSsymcwUVTk5mj5QvXr16ksi4pL/O136f/vXrF69+pv/d7xv48aNf9OIZ9UakBakBgAAAAAAAAAAAKCZtLS0xK233hoREffdd1+sX78+tm7dGps3bx6e88QTT8QTTzwRDz30UHzzm99MptBJ0PSB6og4NyLeP2bs1P/bIiK2RERDAtXVOk+XO1OnPUhdrhMAAAAAAAAAAAAAKnnxxRfjhhtuOGz8ggsuiFmzZsW+ffviAx/4QAKVTZ6mD1Rv3LjxUxHxqSRrEFIGAAAAAAAAAAAAYDo47rjj4otf/GLcddddcffddw+PX3fddTFv3rwEK5s8LUkXMJ2UO1in6fkju2oLfgMAAAAAAAAAAAAwkVe84hVxxRVXjBq75JJL4sMf/nD853/+ZwwMDCRU2eTIlEqlpGtIlVwuV/WFjAwnN5t8Pt+UdQMAAAAAAAAAAJCMfD6fSboGaiIISkMNDAzEli1bYvfu3bFv377YuHFjPPjgg9Hd3T08Z82aNfEv//IvtdyuKb4jrUkXMF2MDCw3c/AaAAAAAAAAAAAAgGPLr371q3jooYdiw4YN8bvf/S4GBweHr2Wz2Tj++ONj1apVcfzxx8fevXvjve99b4LVNp5AdR2qBaTLAeqkg9S6UAMAAAAAAAAAAAD8r1KpFMVicXgfEaPOR+6rjU3G3HpraWTd1cb/4z/+47D396UvfSlWrlwZCxcujGw2O3V/uAQIVNehWmB67HnSwWoAAAAAAAAAAADg2FYsFmNoaCgGBwdjaGgoBgYGhs/HbpXGK62pZf3Q0FDdQePJCitTXUtLS2QymeGtkiVLlsTxxx8/xZUlI1MqlZKuIVVyuVzdL6QcoB5xj4rjaST0DQAAAAAAAAAAQCX5fL5yypK0Gc49XnPNNfHkk08mWUvTyGQy0dLSEi0tLZHNZkft6z0eOVY+HztWbbyesWrPOpIaR4apJ9qKxWLVbfXq1dHW1jbuq56qv+nR0KG6AaqFktMUVs7n86mqBwAAAAAAAAAAAGisN73pTeMGqltbW6O1tTWy2ezw8cht7PjI82w2O6pb9NjO0RExaceTvRUKheHO2iM3Jvbyl788vvSlLyVdxlHToXqMI+lQPZVq6Xqdy+Vq7o4tZA0AAAAAAAAAAEAlOlQ3jVTnHptZo4PbQ0NDcdlllyX9s45KR0dHzJs3b7jD91/8xV/ES17ykvGWNMV3RKB6jPEC1eWQcrUQchq7QJdrSmNtAAAAAAAAAAAApJdAddMQBG0ie/bsiX379kWhUBjujD04OBgDAwMxMDAQ/f39w8eVzqvNGRwcHDXe398fhUJh0n7Hn/zJn8QHP/jBWqY2xXekNekCmslEgWSBZQAAAAAAAAAAAABuueWWuPfee4eD02O3YrE4fJxWLS0t0d7eHjNnzoze3t7o7e0dvrZ///4EK2s8geoGSEv350p1pKEuAAAAAAAAAAAAgGPJ8uXLY/Xq1cNdqKsFq0duY+dVWlcsFqfsNxSLxejr64vzzjsv3vWud8VZZ50VmUxTNJyuW6ZU0ul9pFwuV/WF5PP58pyq19MaYE5zbQAAAAAAAAAAAKRPPp+fnsnJ6UcQ9BhSLBZHdbeuFryuJcRdy7rdu3fHXXfdFd3d3XH66afH+973vnjd615XT8lN8R3RobqBBJYBAAAAAAAAAAAAmCwtLS3R0tISra2TFwEeGBiIv/3bv41f//rXo8Y3bdoUn/nMZ+InP/lJZLPZSXt+ElqSLmA6KHeuLu/TJI01AQAAAAAAAAAAAJAOpVIpent7Y9++fbF169Z4/PHHDwtTlw0MDMSb3vSmuPDCC+PCCy+Mb3/721Nc7eTQoboO1TpQ53K5moLL5Tlj75PP5yfsbl3LnGq1VXomAAAAAAAAAAAAAMe2j3zkI/HII48c8fr29vYGVpOcTKlUSrqGVMnlcqVq4eXxAtGVxpNSqf4jDWQDAAAAAAAAAABwbMrn85mka6AmgqBNqlQqDW/FYnHUvtLYyGsTXa90LSIOG7/22msnrHPRokWxePHiWLRoUbz73e+OV73qVfX8zKb4juhQXUG9weO0BZVH1iNIDQAAAAAAAAAAAKTBL37xi3jiiScmJRjcrPdsBp2dndHZ2RkRET//+c/j/vvvT7iixhOobqCx4eVy5+qplsvlRj27fFypHmFrAAAAAAAAAAAAYCr85Cc/iQceeCDpMhhHNpsdtbW0tERLS0sMDAxET09PrFu3LukSJ4VA9SRKMqw89tk6VQMAAAAAAAAAAABJ+vSnPx0RUXMH50Z3jJ6sbtNJdL+ud20j7vnCCy/EfffdFx/96EejtXV6RZCn16+hKmFqAAAAAAAAAAAAIA0ymUxks9mIiOE96XfLLbfEt771raTLmBQC1XWoFkoud39Oc2hZh2oAAAAAAAAAAAAAJjIwMBC7du2Kbdu2xZYtW2Ljxo2xYcOG2LNnT8yYMSMymUzSJTacQPUERgaR8/l8ROj2DAAAAAAAAAAAAEBz6u7ujr1798a+fftG7Xfs2BHbt2+PPXv2RLFYHJ5/0kknxVlnnRVr1qyJV77yldOyq7hA9QRqDU+nIWw9XhfqXC6nSzUAAAAAAAAAAADAMWj9+vXxqU99qur1BQsWxEknnRRnnnlmXHTRRbF8+fLo6OiI5cuXx/z586eu0IQIVDdAEiHlSuHokefl6+Wg98jrgtUAAAAAAAAAAAAAx462traK4/Pnz48VK1bEwoULY/bs2TF79uwYGhqKPXv2xKFDh+L555+POXPmxOzZs2PWrFnR0dERCxYsmOLqJ1+mVColXUOq5HK5qi8kDV2oj5QQNQAAAAAAAAAAAPXI5/OZpGugJoKg1GRgYCDWr18fmzZtip6enlFbd3f3qONCoVDxHq2trXHPPffU89im+I7oUF2HaoHkZg5aAwAAAAAAAAAAADD9tbW1xZvf/OZ485vfPDz2wAMPxKOPPhqdnZ3R1dUVXV1dUSgUoru7u+I9/v7v/36qyp1SAtUNkESQeqKO0yOvlwPfta4FAAAAAAAAAAAAYPq755574r/+67/GndPS0hIveclL4rWvfW3Mnj07Dh48GPPmzZuiCqdGplTS6X2kXC5X9YU0cyfqZq4dAAAAAAAAAACAqZfP5zNJ10BNBEE5KgMDA9HV1TXcpXpkt+rnnnsuHn/88ejr6xu15oILLojPfvaztdy+Kb4jOlQ3kM7PAAAAAAAAAAAAADSTtra2WLx4cSxevHjU+MaNG+N73/texTXnnXfeVJQ2ZQSqG2gqw9T1hrdzudxwl2oAAAAAAAAAAAAAqKa3tzc2btw4fH7hhRfGxz72schmswlWNXkypZJO7yPlcrm6X8jIoHJaO1Trng0AAAAAAAAAAEA98vl8JukaqIkgKEfty1/+ctx2223jzrnrrruira2t3ls3xXekJekCppu0dYFOWz0AAAAAAAAAAAAApMujjz5a9dof/dEfxfe///0jCVM3DR2qxxivQ3U5nFyt03Oau0CnuTYAAAAAAAAAAADSR4fqpiEISkMUCoXYu3dvbNu2LbZt2xbbt2+P3/72t7Fhw4aYNWtWvPWtb413v/vdsXz58npu2xTfEYHqMcYLVFfTDGHlZqgRAAAAAAAAAACA9BCobhqCoEyKoaGhuOeee+KHP/xhPP300xERsWjRovjBD35Qz22a4jvSmnQBzWSiDtUAAAAAAAAAAAAAMB089thj8YUvfCEiIlasWBHr1q2L888/P+GqJkdL0gU0k1wuVzVMXQ5bp0GaagEAAAAAAAAAAACg+ZxwwgnR1tYWERHPP/98/Nu//Vv8+Mc/TriqySFQXYd8Pl8xrDxe0DoJaaoFAAAAAAAAAAAAgOZRKpVi9+7dsWXLlnjHO94Rc+bMGb62Z8+eBCubPK1JFzAd5PP51IaY01wbAAAAAAAAAAAAAMnZvHlzfO9734vu7u7o7u6Orq6u2LFjR/T19UVExIwZM+K0006Ls88+O97+9rfHqlWrki14kghUN8jIztVpCjCnqRYAAAAAAAAAAAAA0uO6666L3bt3V7w2b968eOUrXxnd3d1x0kknTdswdYRAdUPkcjmdoAEAAAAAAAAAAABoKjfddFM8/PDDMWPGjDhw4EB0dXVFZ2dndHV1xdatW4cbDv/yl7+MVatWxapVq2LhwoWRyWSSLbzBBKqPQvmfJJfLpT5Mnfb6AAAAAAAAAAAAANKsUCjE0NBQFIvFKBQKUSgUolgsDm+VzqvNGTlez7pGrR07p9LaQqEw6vf/1V/91fDxq1/96vj85z8/1X+CSSNQfRTGhpTHdqkuB64n85njPX/stYnWAwAAAAAAAAAAAHC43bt3xxVXXBE9PT1JlzKlWlpaIpPJHBauXrNmTUIVTQ6B6gYaG1ae6vDyRM8TpgYAAAAAAAAAAACo36JFi+LKK6+M/fv3V+z6fLTdqWu5Nl4n6ZH7Rqp0v/vvv7+hz0gDgeo6pCmQPF436rHXK3XOTtNvAQAAAAAAAAAAAEiztra2uOSSS5Iuoya1BL7Xr18fN910U2QymSiVSlXv1d7eHscdd9zw1izvoF4C1Q2U5qBymmsDAAAAAAAAAAAAoDFaWlqipaVl3DmbN2+OiBgVpj7ttNPizDPPjJe+9KWxePHiWLhw4fA2Y8aMySw5cZnxUuXHolwuV/WF5PP58pwpqqZxmrl2AAAAAAAAAAAApl4+n88kXQM1EQSlbqVSKX7zm9/E7bffHlu3bo2urq7o7OyMoaGhqmvuvffeyGaz9T6qKb4jOlQ3UNJdoCs9f+SYMDUAAAAAAAAAAAAAmUwmzjnnnDjnnHOGx0qlUnR3d8dzzz0X11577WFrbrvttlixYkUsX748lixZEq2t0yeGPH1+SQokHViu9PykawIAAAAAAAAAAAAg/TKZTMydOzfOOuusuPbaa+MXv/hFtLW1xa5du2LLli1x0003Dc9taWmJk046KTo6OqKjoyPe8pa3xOrVqxOs/ugIVNdhonBy0h2qx5PWugAAAAAAAAAAAABITl9fX2zatCk2bNgQTz/9dHR1dUV3d3ccOnRoeBsaGhq1plgsxvbt22P79u0RETFz5kyB6mNFPp+PiMPDydXGp9p4ge601AgAAAAAAAAAAABAOnzqU5+K9evXHzY+Y8aMWLVqVaxZsyZOPPHEmDNnTsydOzfmzp1b8XjmzJkJVN84AtXTyHhhaUFqAAAAAAAAAAAAAEY666yzKgaqBwcHY9OmTbFp06b4wQ9+EIsWLUqguqnTknQBNE65C3W91wAAAAAAAAAAAAA49rznPe+J+++/f9w5119/fVx99dXxgQ98IO67774pqmxq6VDdAGnp/pyWOgAAAAAAAAAAAABoHl/96lfjgQceiFtvvTX6+vpGXXvqqaeGj2+44YZYt27dVJc36XSoboB8Pp+KDtBpqAEAAAAAAAAAAACA5nL66afH5ZdfHitWrIiWlurx4te85jVRKpWmsLKpoUN1A5Q7Q+fz+US7ROtQDQAAAAAAAAAAAEBExJNPPhkHDx6MTCYTEREDAwPR19cX/f390dfXd9h5f39/dHR0xKJFi2Lnzp2xbdu2w8LTDz/8cBQKhWhtnV4R5On1axJS7gw9lYHmicLb5euVulYnHfwGAAAAAAAAAAAAYPL87Gc/i4997GMNude6deuivb09Zs6cGatWrZp2YeoIgeqGSCKcXOmZI4PSI6+PDVYLUwMAAAAAAAAAAABMX6961avine98Zzz//PNRKpXiueeeixdffPGI7nXNNdfEcccd1+AK00Wgug4TdYQ+0jm1dIyuZY6gNAAAAAAAAAAAAABtbW1x7bXXDp/fdttt8eUvf7mmte973/uio6MjstlsrFq1atqHqSMiMqVSKekaUiWXy1V9IeOFpkcGnmsJVwMAAAAAAAAAAECa5fP5TNI1UBNBUGoyMDAQ+/fvj66urrjxxhvj2WefrTjvggsuiDVr1sTs2bNj9uzZMWfOnMOOFy5cGK2tNfV1borviED1GOMFqidSSxfppKS5NgAAAAAAAAAAANJHoLppCIJSt/vvvz/+3//7f8Pn8+fPj9mzZ0dvb2/09PTE4ODguOtPO+20+PrXv17Lo5riO1JTNJz/NVHnaYFlAAAAAAAAAAAAANJq69at8elPfzoiItauXRszZ86MmTNnRiaTib6+vujt7Y3e3t44cOBAdHZ2Vr3PwYMHp6rkKSFQXYeJAtNT2QV6omeNvF4OgpfHdKsGAAAAAAAAAAAAOPbccccd8eyzz9Y8f+7cubFixYpYuXJlrFy5Mk466aSYM2dOrFy5chKrnHqZUkmn95FyuVzVFzJRh+p6500lIWoAAAAAAAAAAADqkc/nM0nXQE0EQalZsViMbdu2RW9vb+zfvz86Ozujq6treF8+7uzsjBdeeCGKxeKo9a2trXH88cfHKaecEu94xzvi937v9yKbzY73yKb4juhQXYdaA8lpCi4LUgMAAAAAAAAAAAAQEdHS0lJzd+lCoRBdXV2xb9++2Lt3b+zatSsefPDBePzxx2P37t3x85//PNatWxcf//jHJ7nqySdQ3QBCywAAAAAAAAAAAACMp1QqDW/FYnHUvtJYtf2RzK91brVnbN++PW6//fbYt29fRESceOKJUSqV4qKLLkr4rTaGQPU0UinYLegNAAAAAAAAAAAApMk999wTzzzzTEMCwEcSGI6ISZ0/Xmi6mb3qVa+KD3/4w3H22WfHcccdl3Q5DSVQPYny+Xwiz8zlchWfXWlM4BoAAAAAAAAAAACYSnfeeWc88cQT0ypsfCx45JFHIiLiDW94Q8KVNF7GP+BouVyu6gspB5KbMYRcqXs1AAAAAAAAAAAAVJPP5zNJ10BNpk0QtJEdqY+m6/THP/7xOHToUMJvI51OP/30+OpXv1rPkqb4juhQ3UBCywAAAAAAAAAAAABHJpPJRDabTbqMuPLKK+Ppp5+OQqEQxWJxeCufVxuv9XzsWLX7loPfafGNb3wjTj755KTLmBQ6VI8xXofqatIcpC7XluYaAQAAAAAAAAAASB8dqpuGIOg0Ve6afaTh7aMNgBcKheju7o477rgjnn/++cPqmzFjRnzxi1+Ms88+e7yf0RTfER2qGyDNQeU01wYAAAAAAAAAAABAZeWO3ZPZtftHP/pRPProo9HT0xPd3d3R29sb3d3d0dPTE729vTFe4+bBwcH44Q9/OFGguikIVDepiTpOj7yez+frWgsAAAAAAAAAAADA9Ldx48Z46KGHolgsjhqfMWNGnHvuuXHuuefGwoULY86cOTF79uzh/ezZs6O9vT0WLFiQUOWNlRkvOX4syuVyVV9IOZg8NozcDAHlZqgRAAAAAAAAAACA9Mjn85mka6AmgqAcld7e3ti0aVNs2LAhNmzYEI8//nh0dnYOXz/jjDPi6quvjnPPPfdIbt8U3xEdqhtgZCdooWUAAAAAAAAAAAAApkKpVIpf/vKXsWvXrhgYGIiBgYHo7+8ftR87PtG1sZ566qn4y7/8y7jrrruira0tgV85+QSqG6Ba5+rJfuZ4nbLLx+Xaxo4JfgMAAAAAAAAAAAA0t76+vvjEJz4R/f39Db/31VdfHQsXLozBwcE4+eSTp22YOkKgumGmOqBc6Xkjx8YejwxRC1MDAAAAAAAAAAAANL/29vb43ve+F52dndHf3x99fX017wcGBobPH3vsscPu/frXvz6WLVuWwK+aegLVDZLWrs8ja0prjQAAAAAAAAAAAAAcmQULFsSCBQuO6h7XX399PPzww8Pnv//7vx8//vGPY9myZdHR0RGnnHLKUT8jzQSqGyDNIWUhagAAAAAAAAAAAADG87nPfS62bt0ad955Zzz33HOxefPmePjhh6NQKAzPueuuu6KtrS3BKiePQHUDpDm0PLKutNYIAAAAAAAAAAAAQLJWrlwZV1999fD5xo0b44Mf/ODw+ec///l4zWteExdddFES5U0qgeoGKAeV0xysBgAAAAAAAAAAAIBarV69Ov7pn/4pnnrqqXjyySfj17/+daxfvz7e+MY3RjabTbq8hmpJuoDpRJgaAAAAAAAAAAAAgOninHPOiUsvvTQ+9alPxbve9a4olUpx5513Rl9fX9KlNZQO1XWYKDCtQzUAAAAAAAAAAAAAadXX1xd33313tLS0xIwZM6JYLEZvb2/09vZGT0/P8HFvb2/09fWNOt+2bVtERHzxi1+M22+/Pb761a8m/GsaR6C6Dvl8PiIOD1aXxyealwQhbwAAAAAAAAAAAAAiIv75n/85fvzjH9e15pxzzokVK1bEy172smhvb48tW7bEu9/97kmqMBkC1Q2Q5sBymmsDAAAAAAAAAAAAYOpceeWV0dbWFn19fTE4OBiDg4MxNDQUQ0ND0dvbGwcPHoyDBw/G/v37Y3BwMCIinn766Vi1alW8613vipNPPjnhXzA5BKobqNwNOk0hZh2qAQAAAAAAAAAAAIiIWLBgQVx77bU1ze3v74/NmzfHD3/4w7jzzjvj9ttvj9e97nXx6U9/OjKZzCRXOrUEquswXjA5DcHlSjUkXRMAAAAAAAAAAAAA6TIwMBDbt2+PQ4cOxaFDh6K7u3vc4/b29hgcHIwHH3wwCoVCtLZOrwjy9Po1kyyfz0fE4SHl8ni161Ol/Nw0hLsBAAAAAAAAAAAASKfPfvaz8cADDxzR2n/4h3+ISy+9NE4//fQGV5WcTKlUSrqGVMnlckf8QtIcZE5zbQAAAAAAAAAAAKRPPp/PJF0DNREEpao9e/bE3/zN38SePXuira0tZs6cGW1tbbFnz54YGho64vvOmzcvbr/99lqmNsV3RIfqOiTdgXqkiQLS5evlmutZCwAAAAAAAAAAAEDze/LJJ+P555+PiIj+/v44ePBgTesWLVoUp512Wpx66qlx8sknx+zZs6NUKkWxWIyhoaE477zzJrPsKadD9RjjdaiuFqhOU9A6onJgWogaAAAAAAAAAACAeuhQ3TQEQRnXwMBAHDp0KPbv3x8HDx6MAwcOxIEDB4aPR47t378/du7cGb29vcPrs9lsrFixIt72trfF2972tpg3b149j2+K74hA9RjjBarHk9bA8shO1WmsDwAAAAAAAAAAgHQSqG4agqA0VKlUikceeSTy+Xz893//d+zbt2/42qxZs+LOO++s53ZN8R1pTbqAZjJeh2phZQAAAAAAAAAAAACaXWdnZ/zd3/1dVGraPF3zsjpUj9HMHarHqyEN9QEAAAAAAAAAANA8dKhuGoKgNNyTTz4ZmzZtim3btsWOHTti27ZtsXPnzigUCnH33XdHNput9VZN8R3RoboO1TpUl8eSDi0LTAMAAAAAAAAAAABwtNauXRtr164dNfbtb387br755oqdq5udQHUDCTQDAAAAAAAAAAAAMB1lMv/bbPqjH/1orFmzJlavXh0vf/nLY/bs2QlXdvQEqusgMA0AAAAAAAAAAADAseiNb3xj7Nq1K37+85/HI488EhER559/ftx4440JV3b0WpIugKmTz+eTLgEAAAAAAAAAAACAJtHX1xe7du2Kp556Kp577rlYu3Zt9PT0RETE0qVL48orr0y4wsbQoboO5UByM3aqbsaaAQAAAAAAAAAAAJgapVIpPvnJT8aDDz4YixYtit7e3ujr66s49+yzz44vf/nLU1zh5BGobqB8Ph+5XC6VwetybSU9iaIAACAASURBVAAAAAAAAAAAAABMrKenJ1588cXIZDIREZHJZKJUKkWxWIxCoRDFYnH4eOz5kY5X2o9dU+t4vfcaGBiInTt3RkREZ2dnvO51r4szzjgjFi5cOLwtWrQoFi5cGO3t7Un+aRouUyqVkq4hVXK5XN0vpBygHnGPiuONUG8oemSQWqgaAAAAAAAAAACAWuXz+UzSNVATQdBJcuGFFyZdQsO0trZGe3t7xS2bzUZLS8vwfsOGDXHSSSfFJz/5yZg7d+7RPropviM6VNeh1s7TOlQDAAAAAAAAAAAANLdrrrkmbrvttoiIKJVKw1tZuVv1yPPJmFPuIn00hoaG4uDBg3Hw4MGa5m/fvj3+8A//cFTYunw88vwTn/hEnHXWWUdVWxroUD3GkXSobgYC1QAAAAAAAAAAANRDh+qmMS1zj4xWLBbj1ltvja985StJlzLKq1/96vj85z8/3pSm+I7oUD2Jyp2qI/63W/XY80rzRho7RyAaAAAAAAAAAAAA4NjT0tISTz311KQ/58wzz4yzzz471q5dG3Pnzo3W1tZobW2NGTNmDO/L3amLxWKccMIJk17TVNCheozxOlSXg89jg83VxtNEIBsAAAAAAAAAAIB66FDdNARBj1GFQiEGBgaiv79/eKt23tfXN3zc29sbPT09w1t3d3ccPHgwfve738XIXPHXvva1eMlLXnK0ZTbFd0SH6gYoB5WTDi2Xn590HQAAAAAAAAAAAABEPPvss/H0009HoVCIQqEQQ0NDo/Yjx2u5Vuk+412rNFar/fv3T+KbSRcdqsc4kg7VU6lcw3jKoepaCF4DAAAAAAAAAABQiQ7VTUMQNMU+9KEPxVNPPZV0GXXJZDIxb968OP/886OtrS2y2ezwtmrVqrj44ovrut1k1dlIAtVjjBeoribNHaHTXBsAAAAAAAAAAADpJVDdNARBU6y3tzf27t07qoP0kW5jO1HXs65YLB7R2u7u7uju7h7+PaeeemrcfPPN9byCpviOCFSPcTQdqtMcXk5zbQAAAAAAAAAAAKSPQHXTEARlUuzYsSOuuuqq4UD1RRddFB/60Idi4cKF9dymKb4jLUkXQOOUA9+VCFMDAAAAAAAAAAAAUKv58+fHhRdeGCeffHJkMpm4++6749JLL43Pfe5z8dxzzyVdXkPpUD3GeB2qJ5LmLtBprg0AAAAAAAAAAID00aG6aQiCMukOHToUd9xxR9xyyy0xODgYp556atx88821LG2K70hr0gU0k3IH6GrBZIFlAAAAAAAAAAAAAKaT3bt3xw033BC//e1vY9asWXHxxRfHe97znqTLaiiB6mmkUhdqnakBAAAAAAAAAAAAklUsFmNoaCgKhcK4W6U5tY4dzf3GW7tx48YYHByMiIj58+fHn//5nyf8NhsvUyrp9D5SLpc74hcyFeHlcpfs8eRyuZrmlecCAAAAAAAAAADAWPl8PpN0DdREELQJXHjhhUmXcJiZM2fGvHnzYtasWZHNZiObzUZra+vw8cixgYGBeOyxx+Kyyy6Lq666qp7HNMV3RKB6jCMJVCfRBXqiZ468Xg5XjzwXpAYAAAAAAAAAAGA8AtVNQxC0CXz3u9+Nm2++OYrFYhSLxaTLGSWbzUZ7e/uobfbs2dHe3h6zZs0aNR4RsXXr1rj00ktj7dq1tdy+Kb4jAtVjjBeoHhtMbiZC1AAAAAAAAAAAANRDoLppCIIew4rFYgwNDcXg4GBN+4GBgRgYGIje3t5RW09Pz2Fj5W3nzp1RKBRGPXfZsmXxne98p5YSm+I70pp0AUwuQWoAAAAAAAAAAACA6amlpSXa2tqira2t4ffu6+uLffv2xUMPPRT/+q//OuramjVrGv68JAlUN5DwMgAAAAAAAAAAAMD01tnZGb29vVEsFqNQKEShUBh1PHKrNudo5lda24h1I88HBwejp6en6js4/vjjp/CNTz6B6gYoB6nHhqnz+XzDn3WkgW1BbwAAAAAAAAAAAICjs2HDhrjmmmuiVColXcqkmzFjRsybNy/mz58fF198cVx88cXR3t6edFmTInMs/EHrkcvlqr6QckC6Wjg5zR2q01wbAAAAAAAAAAAA6ZPP5zNJ10BNBEGn0ODgYDzwwAPR3d0dxWJxuKPz2H2lsVquHc36St2me3t7G/bb77333shms/Uua4rviED1GOMFqqtJIqxc6Zkjx8Yel+VyOeFqAAAAAAAAAAAAJiRQ3TQEQanqvvvuixtuuOGo73P66afHn/3Zn8XLXvayyGTq+jQ0xXdEoHqMo+lQnWZC1AAAAAAAAAAAANRDoLppCIIyroGBgejp6Yne3t7DtvL4oUOHYseOHbFr167YuXNn7Nq1q+K9VqxYEd/61rfqeXxTfEdaky5gOhjZATqiOQPXAAAAAAAAAAAAAEw/bW1t0dbWFgsXLqw658ILL6zpXm94wxsaVVaqCFTXYaKgtCA1AAAAAAAAAAAAAEkqFAqHbUNDQ6P2Y4/f+MY3xk9/+tMJ771kyZIp+AVTT6C6DuVO1GOD04LUAAAAAAAAAAAAAIynVCrFv//7v8fOnTtrDj1XCj9PdL1UKk3ab7jpppviD/7gDybt/kkRqK5DGoLT5VD3eHK5XMV5lcbS8JsAAAAAAAAAAAAAprtisRjr16+PnTt3xtDQ0PCWNscff3wsXbo0lixZEkuXLh3elixZEieeeGLS5U2KzGSm0JtRLpc74heSz+dTF1Au15TG2gAAAAAAAAAAAEivfD6fSboGaiII2sRKpVIUi8UYHBwc1aF6cHBw+LjSVigUJlxTy5zyNjAwEAMDA9HX1xcvvPBC7N69u2K9K1eujFtuuSVaWlpq/YlN8R3RoboO5Q7P1YLJaQ4sp7k2AAAAAAAAAAAAgDQrlUrx2GOPxf79+6NYLEahUIhCoRDFYnH4fOS+0vHI81rHannG2HvUUt/YNbXaunVrTMdmzgLVdagWSi4HrcfOGTk+2TWUnzf2+th6BKsBAAAAAAAAAAAA6rNjx47467/+62kZJq4kk8nEjBkzhrfFixfHO9/5zjjppJMim80mXV7DCVQ30Hhh5iSeP5IwNQAAAAAAAAAAAMCR6ejoiO985ztx8ODBqh2ix+scPXJOLV2sj3a8lo7WtdTX398f3d3d0dXVFc8880wsXbo0ent7o729Pek/SUNljpWkfK1yuVzVF1LuOD1ep+o0h5bTXh8AAAAAAAAAAADpkc/nM0nXQE0EQWm4Q4cOxd69e+OFF16IX/ziF3HrrbeOuv7a1742PvOZz9Ryq6b4juhQXYc0hZErhaPHC0yXw+AAAAAAAAAAAAAAUM3+/fvjkksuGXfOb37zm7jtttti/vz5MXPmzDj33HNj7ty5U1Rh4+lQPcZ4Haqbme7UAAAAAAAAAAAA1EOH6qYxLXOPJKdQKMTNN98c69evj7a2tpg5c2a0tbVFX19fHDx4MHbt2nXYmre85S1x3XXXVbpdU3xHdKgGAAAAAAAAAAAAACIiIpvNxlVXXRXvf//7Y9OmTbFhw4bYtGlTbN++PXp6eg6b//KXvzyuuuqqBCptHIHqOuTz+YiIqp2e09gFOo01AQAAAAAAAAAAAJBO3d3dcfnll8e+ffuGx0444YRYsWJFvP71r4/ly5dHR0fH8NbW1pZgtY0hUD3NjQxTC1cDAAAAAAAAAAAA0NfXF5s3b47Ozs7o6uqKrq6u4eMdO3aMClN//etfj9NOOy3BaiefQHUDlDtXl4/TFFoeWU+a6gIAAAAAAAAAAAAgGZ/5zGfioYcemnDenDlzYuXKlVNQUbIEqhtAUBkAAAAAAAAAAACAZvGhD30oXvOa1wx3pf7+979fcV53d3ccPHgwjjvuuCmucGoJVNfhaIPT5U7WY+9TS1frI+18LewNAAAAAAAAAAAAwEgdHR3R0dExfP7EE0/Exo0bD5t3wgknxLe//e1Yvnx5LF++PDo6OmLp0qWRzWanstxJlymVSknXkCq5XK5Ub3i5WlA6Dcq/5UgD2QAAAAAAAAAAAByb8vl8JukaqIkgKOPq6uqK3t7e6O/vj/7+/ujr6zts39fXFzt37oxnn302nnnmmTh06FDV+2Wz2Vi3bl1cf/31tTy+Kb4jOlRXUC14XC04XQ4sT6VKAemRY+XjSrUJVwMAAAAAAAAAAABMf3fddVfceOONDb1noVCI3/zmN/GNb3wjLrnkkjjuuOMaev8k6FA9Ri6Xa4oXciRdtIWoAQAAAAAAAAAAqJUO1U2jKXKPJGP//v1x7733DnejHhgYGO5KXT7u7++PRx555Ijuf+6558Y//uM/jjelKb4jAtVjjBeortahemwHaMFlAAAAAAAAAAAAmp1AddMQBOWoXX755bFly5aa58+ZMyfe8573xDve8Y6JOlQ3xXdEoHqMZulQXa9qYXAAAAAAAAAAAACoRKC6aUzL3CNTo1QqRV9fX7z44ouxdevW2LZtW2zbti127NgR27Zti127dlVcd/7558eNN95YyyOa4jvSmnQBzaTZO1SntS4AAAAAAAAAAAAAjk6pVIqhoaEYGhqKwcHBw/b79++P7du3D2/btm2L7du3R19fX9V7zpw5M+bPnx/z5s2L+fPnx9KlS+Piiy+OM888cwp/2eQTqJ4EukEDAAAAAAAAAAAAsHHjxnj22WeHg81jQ87lrVIIeuTxwMBA1Wsj97XIZrOxbNmyWLZsWZx77rlx/PHHx/z580cFp8vHM2fOnOQ3lA4C1Q0wlcHpsd2wK8nlchXnVRoT+gYAAAAAAAAAAACYHB/96Eejs7PzqO7R0tISs2bNipkzZ0Z7e/tw1+hZs2YNj8+aNWv42sjxGTNmRFtbW7S2tsacOXNi+fLlsWTJkshmsw36hdODQDUAAAAAAAAAAAAATIJTTjnlqAPVxWIxenp6oqenp+57tbS0RGtra2Sz2cP21cay2WzMnDkzTjnllFizZk2sWbMmFi9eHJlM5qh+R5plSqVS0jWkSi6Xq/pCyh2eq3V1zufzqe34nObaAAAAAAAAAAAASJ98Pj9905PTiyBokyiVSlEoFKJQKMTQ0NCofaWxI73WiPk9PT3xzDPPRLFYjIiIWbNmxVvf+ta47LLLYvHixfX87Kb4jghUjzFeoDrtxgtNTxQGBwAAAAAAAAAAgJEEqptG0+Yej0XPPvts7Nq167Ag89jj8cLP9a4de59isThhsLocpK7k/vvvr+cnN8V3pDXpAqhPORg93vVcLld13thxAWsAAAAAAAAAAACAyVcoFOLqq6+OoaGhpEupyYwZM2Lu3Lnx0pe+NNauXRsHDhyIV7/61UmXNSl0qB5jvA7V1bo8j9cZOi2aoUYAAAAAAAAAAADSQ4fqpiEI2kR27doVe/fujaGhocM6RFcbq2fO0a4fuR8pk8nEypUr4/Wvf31cccUV9fzkpviO6FDdAILKAAAAAAAAAAAAAExk6dKlsXTp0qTLmFCpVIrdu3fHZZddNny+ZcuW+O53vxtvf/vb48QTT4xsNptwlY3TknQBzSSXy40bni53sAYAAAAAAAAAAACAZpXJZKK9vT1OOOGEUeODg4Nx2WWXxUc+8pGEKpscOlQ3QD6fnzBsnQblOgEAAAAAAAAAAACgrFQqRXd3d+zduzf27t0bu3btiqeffjrmz58fL774YhSLxYiIWLZsWZxxxhmxbt26hCtuLIHqBil3pxZYBgAAAAAAAAAAACDNfvazn0U+n499+/bFvn37Yu/evdHX1zdqzrx58+KMM86I3//93481a9bEmjVrYsGCBQlVPLkEqutQLTSdRIi6UrfpkWPVjqutBQAAAAAAAAAAAODY8Oijj8ZPf/rT4c7TYy1ZsiQuuOCCWLNmTaxduzaWLVsWmUxmiqucOplSqZR0DamSy+XqfiFp6049UdgaAAAAAAAAAAAAJpLP56dvenJ6EQTliBQKhXjxxRdj7969sXv37tizZ0/s3r07du/eHTt27IjNmzePmn/RRRfF+9///li2bFk9j2mK74hA9RjjBaonCk6nObSc5toAAAAAAAAAAABIH4HqpiEIWqfe3t74n//5nygUClEsFof3pVKppuPymkYfj7cd7frxtnrdf//99Uxviu9Ia9IFTGflAHYjlUPREwWky9cr1SBcDQAAAAAAAAAAAByrbrvttvja176WdBmplMlkorW1dXibOXNmnHDCCbF48eIoFovxlre8JUqlUmQyTZGTrpkO1WMcTYfqpFUKSo8MVqe1bgAAAAAAAAAAANJHh+qmIQhap0KhEL/73e8qdqCu1h262ryx3aLL4/XMnagbdT2dqxsxt3ytFh/5yEfi7W9/+3hTmuI7okN1HdIeSK5UX9prBgAAAAAAAAAAAJhK2Ww2Vq9enXQZqVcqlWJgYCB++ctfxsc//vGKc3bv3j3FVU0Ogeo6pL1DNQAAAAAAAAAAAADUa8uWLfGzn/0sCoVCFAqF6Onpic7Ozujq6oqnn3561NyvfOUr0dHREfPmzUuo2sYTqD4KYwPW+Xw+dWHrNNYEAAAAAAAAAAAAQHpcfvnlNc1btmxZPPbYY7F9+/Y444wzYtmyZZHJZCa3uCmQKZVKSdeQKrlcrmlfyHjhacFqAAAAAAAAAAAA6pHP55s/JXlsaNrcI+mxcePG+OlPfxrZbDay2WwMDg7GgQMH4sCBA3Hw4MFRx0NDQ4et/8IXvhDnnXdepVs3xXdEh+ppRGAaAAAAAAAAAAAAYOqUSqUoFotRKBSiWCyOOi4UCjWNjx0bu2ai8aNdM9G9WltbY+HChTF//vzo7u6OZ5999rD3sHHjxmqB6qYgUF2HfD4fEYcHl8vjZZMZbB77rEpyuVzFeZXGhLABAAAAAAAAAAAAavPcc8/FFVdckXQZDXHcccfFjBkzoqWlJbLZbLS0tIw6LnerLo/PmDEjli5dGq94xSuio6MjOjo6Yvny5bF48eLIZrNJ/5yjIlBdh/HCx1MVTC4/J5/PT/jMkXPrXQsAAAAAAAAAAADAaCeeeGKsWrUqNm/enHQpR+3Nb35zfPCDH0y6jFQQqK5DtQ7V1TpWCy0DAAAAAAAAAAAA093+/fvjjjvuiL6+viiVSlEsFivuC4XCuNfH7svH5a2etUe6pta1zWrOnDmxaNGiWLJkSfzxH/9x0uWkhkB1A5Q7PlfqBD3Zz63n+shzoW8AAAAAAAAAAAD+Pzv3HhzZWd8J/9vdI2lu0lwsG3tkG9vYCGMDBnZd2Am4TTYQQhFgQzaYkEAqrwmLs06gdpOFDbVeLi6WogLeClu7xRICzBuyLGxCAsRc8k6vDWaxMZd4bI/sAdswvszFc9HoOlJ3v39gqSSNbj0jqVvy51N16pzznOc553eOZvqvb/1gKfz0pz/NZz/72Zw4caLZpTytFYvFlEqlya29vT1nnnlmNm/enGKxmEKhkGKxmH379uXuu+/OAw88kKuuuqrZZbcEgeolMlu4uRXCylPD3q1QDwAAAAAAAAAAALC2PO95z8vXvva1ya7Ss3WZbrQz9amua2RNktN6xnLWdqrfYbZ3OnHixOT5/fffP/l3e8973pPXvva12bZtW7Zu3ZqtW7dOHm/fvj2bN29uyr+nZhCoXkKtGFhuxZoAAAAAAAAAAACAtadQKKRQKCRJSqVSk6thNv/3//7fvPe9782OHTtSKBTypS99ac65f/mXf5lnPvOZK1hd8whUL6GJLtVCzAAAAAAAAAAAAAC0mpe85CX5xje+MXn+m7/5mzlw4MCsc2+++eacccYZ6ezsTFdXVzo7O3PxxRfn6quvXqlyV4xAdQPmCkq3SoC6Uqm0TC0AAAAAAAAAAAAAtK5arZabb745X/nKV1IqlXL06NHs378/+/fvz4EDB/LAAw/Muu6b3/zmmutALlDdAB2oAQAAAAAAAAAAAFhtvvWtb+Uv//IvMzw8PLmNjIw0dI+2trZceumlKRaLy1Rl8whUryGC3gAAAAAAAAAAAADMtGHDhmzbti3r16+f3IaHhzM0NJQTJ04s6h5jY2M5dOhQ6vV6CoXCMle8sgSqGzBXYLlSqQgzAwAAAAAAAAAAALBotVot3/3ud9Pf35/x8fFUq9VUq9WMj4/Per7YsdnOp+4njmu1WtatW5darZbx8fFF1fzYY4+lXq8v85dZeQLVDahUKklODlavZJh6oob5lMvlWefNNiYIDgAAAAAAAAAAALDyHn744fyH//AfWj6g3NbWlo6OjnR0dOTqq69OqVRqdklLrtDqf4SVVi6XV+0Hma9T9lxhcAAAAAAAAAAAAJhNpVIpNLsGFmXV5h5JDhw4kIGBgXk7Sc93rdGO1o3OGRoaysDAwGS9F154Yf7iL/6ikVdcFb8jOlQvgamdn5sZWF7o2cLUAAAAAAAAAAAAAK3jrLPOyllnndXsMmb1xBNP5G1ve9vk+YUXXpjrrrsu9913Xy666KKsX7++idUtLYHqJTARVJ4arAYAAAAAAAAAAACA1eSee+7J97///axfvz779+/P8ePHJ6899NBDufnmm5MkPT092blzZ7PKXHIC1Q2YCEwv1Ol5sfMAAAAAAAAAAAAAoBVUq9XceOONc16/7LLLUiqVMjg4mLe//e0rWNnyE6heIlO7UwtSAwAAAAAAAAAAANCoer2earU65zY+Pj7v9YW2metrtdq08xe96EX5/ve/P2tt9957b17+8pfnlltuWeGvsvwEqpeIEDUAAAAAAAAAAAAAU3384x/P9773vUUHnmu1WrNLnqZYLKatrS2jo6NJkiNHjjS5ouUhUN2AuULTE92pWzlU3cq1AQAAAAAAAAAAAKxFZ555Znbs2HFaXaVndpheSbVabTJMnSSPPvpoarVaisXiitax3ASqGzBXcHo1hJUrlcqqqBMAAAAAAAAAAABYmx566KH09fWlVqulXq+nXq9PHs/cz3c9ybzrTuWeM68txz0Xu2biHev1egqFQorF4uR+3bp1qVarGRsba8rf8MCBA6nX60159nISqF4iswWWJwLYK61cLs/67NnGhKwBAAAAAAAAAACAlXDLLbfkRz/6UbPLYB6lUmnaViwWUyqVUigUcvjw4bz61a9OqVRqdplLrrAWU+Kno1wuz/lB5upQ3comgt46VAMAAAAAAAAAANCISqVSaHYNLMqqCYKOjIzkySefXNFO06fT2Xo57tnIOyznOzZyz/7+/sm/YVtbW77+9a838mdfFb8jOlSvIbOFpoWoAQAAAAAAAAAAgFawfv369PT0NLsM5nH48OE8/PDDOXDgQPbt25d9+/bl//yf/5Mkecc73pHXve51Ta5weQhUL4FW6Vw98XzdqAEAAAAAAAAAAABoRLVaza//+q/Pef0nP/lJ+vr6cvnll69gVStDoHoJtFp4udXqAQAAAAAAAAAAAKB13HPPPdm5c2d27NiRwcHBDA4OZmBgYN41t956a2699dbs2rVrhapcOQLVDVgoqLySnaEXetbU6xMdtBe7FgAAAAAAAAAAAIC162/+5m9y5513njR+wQUX5FnPela2bNmSTZs2ZfPmzdm0aVPa29szMjKSF77whU2odvkVm13A00mlUjkp3Dwxvpi1Uy0UiJ56feZcYWoAAAAAAAAAAACAp6/3vOc9ee9735sXvOAF2bBhw+T4ww8/nEqlku9+97t54IEH8sQTT2R0dDRbtmzJi170opxzzjlNrHr5FOr1erNraCnlcnnODzIRal6NgWRdqQEAAAAAAAAAAGhEpVIpNLsGFkUQlNNSr9dz5MiRPProo9m3b9/k/rHHHsu+ffsyPDw8Obe7uzv/83/+zxSLi+7pvCp+R9Y1u4DVZK5A8moOWgMAAAAAAAAAAADw9FOv19Pf3z8Znn7yySdz9OjRHDlyZDJEvWnTpmmB6sOHD2ctNnMWqG7AfMHpVg1TT+1MrUs1AAAAAAAAAAAAwNPX3Xffnfe///3p7OzMkSNHMjg4OO16e3t7tm3blm3btuWMM87Is571rGzdujXbtm3L1q1bc9FFF6VUKjWp+uUjUN2AhcLICwWW5wpkLybo3EgYeurcqWuEqQEAAAAAAAAAAACevn70ox/l2LFjOXbs2OTY5s2bc/HFF+f888/P9u3bs2HDhmnbxo0bp50fP348GzZsyLp1ayeGXFiLbbdPR7lcPuUP0sodoFu5NgAAAAAAAAAAAFpPpVIpNLsGFkUQtAWdOHEiBw8eTK1WS7VaTbVanfN46raY+Y2snW3unj17sn///iV5z1e+8pX59//+3883ZVX8jqydaPgKmKvDdDNqmE+5XJ513mxjQtYAAAAAAAAAAAAAS+sDH/hAbr/99maXsex+4Rd+odklLAkdqmeYr0N1KwSqT5UO1QAAAAAAAAAAADRCh+pVQxC0Bf30pz/N7t275+0ivZjtVOcfPnw4AwMDy/Juu3btamT6qvgd0aF6lZotID11bObxzHnJ6gyGAwAAAAAAAAAAALS6888/P+eff37Tnv+DH/wg73rXuxpet27dunR1daWzs3PW/S/8wi+kXq+nUFgVOelFE6huQKsHkBeqb2rIutXfBQAAAAAAAAAAAIBT88IXvjD/8A//kCeffDIHDx7MwYMHc+jQoWn7gYGBDA8PZ2hoKMPDw0mS8fHxHD58OIcPH571vp/85CdTKBRSr/+8Mfqb3vSmXH/99Sv2XsulMPFC/Fy5XJ7zg6zmzs6zdbQGAAAAAAAAAACAuVQqlbXVgnbtEgTltD322GN58MEHs3///hw4cCAHDhzIE088kf3796e/v3/Ode9617vymte8Zr5br4rfER2ql8BE0HqC4DIAAAAAAAAAAAAAq0G9Xs9b3vKWjI+Pn3Stq6srl1xySbZs2ZKurq50dXWls7Mz5513Xl72spelo6OjCRUvPYFqAAAAAAAAAAAAAHga27hx46ydqPv7+3P8+PFs3Lgx+EJnfQAAIABJREFUmzdvzqZNm1Kv17Nv377cfPPNuemmm3LNNdc0oeKlVajXdXqfqlwun9IHqVQqOlMDAAAAAAAAAACwZlQqlUKza2BRBEE5bSMjI3nyySczMDCQgYGBDA4OTjt+6KGHcvvtt5+07vWvf31uvPHG+W69Kn5HdKheAhNh6lYOVVcqlSRp2foAAAAAAAAAAAAAaI7169enp6dn1mv33XdfPvOZz0yeP+c5z8kb3/jGvPjFL87mzZtXqsRlVWx2AatJpVKZDCZPNRFSbvWwcqvXBwAAAAAAAAAAAEBrecYznjHtfM+ePfmrv/qrNROmTgSql9RsYWsAAAAAAAAAAAAAWK1+8pOfTDt/85vfnHe9611NqmZ5rGt2AatJq3d4rlQqLV8jAAAAAAAAAAAAAKvHjh07UigUUq/Xc9555+X3fu/3ml3SktOhugGVSqWlu1ALUwMAAAAAAAAAAACwVA4fPpxdu3alXq8nSYrFtRk91qF6CUyErAWaAQAAAAAAAAAAAFjt6vV67r///txwww3Txq+99tomVbS8BKqXQCsHqSuVSkvXBwAAAAAAAAAAAMDK2rNnT2666aaMj49nfHw81Wp1cl+tVlOr1U5a87WvfS3t7e1NqHb5rc2+28ukXC7PG06e6FS9EhZ61tSu2TPnrmSdAAAAAAAAAAAAADRfvV7P6Ohojh8/nj//8z/P/v378+STT+bYsWMZGBjIyMhIxsbGZg1TJ8krX/nKXHvttbn22muzc+fOFa5+eelQvUot1HV64vpsHap1rAYAAAAAAAAAAABYe5544olcd911y/6cH/zgB3nzm9+87M9ZKQLVS2Bqx+fZAsytoFXrAgAAAAAAAAAAAGBprFt3+tHgHTt2ZMeOHenp6UlPT0927NiRSy65JGedddYSVNiaCvV6vdk1tJRyuTznB5kITrdqMHm+0LRANQAAAAAAAAAAAI2oVCqFZtfAogiCsqDx8fEMDg5mYGBgcj/1eP/+/bnnnnuyd+/e1Gq1k9a3t7fny1/+ctra2hp99Kr4HdGhegnMDCs3K3gtMA0AAAAAAAAAAADATOvWrcuWLVuyZcuWJMmdd96ZO+64I/v27ctjjz2WI0eOnLTmGc94Ri6++OJccsklueKKK04lTL1qCFQvkYkQddJawWadqQEAAAAAAAAAAACY6tvf/na+/vWvp16fu8H5/v37s3///nz7299OsVjMhg0bJrdjx46lv78/N954Y17/+tevYOXLQ6B6CbRyYLmVawMAAAAAAAAAAABg5b3zne/MH/3RH2V0dDTDw8MZGhrK8PDworavfvWrk/fZv39/E99i6QhUN0A4GQAAAAAAAAAAAIC1oFAoZP369Vm/fn22bduWJLn33nvzyCOPpKOjI/39/Tl+/Hj6+/unHU/16KOPNqP0JSdQ3YBKpZLk5GD1XOOtoFKptGRdAAAAAAAAAAAAALSOarWaP/iDPzhp/IwzzsiWLVuyZcuWPPOZz8zll1+erq6uHDlyJK973euaUOnSE6heAhOB5VYML0+tpxXrAwAAAAAAAAAAAKD5CoVCNm3alMHBwWnj73vf+3LJJZekra2tSZUtP4HqJdBqHarnCk63Sn0AAAAAAAAAAAAAtJZ6vZ56vX7S+A033JAk2bp1ay6//PK8733vS6FQWOnylpVA9RJotaByq9UDAAAAAAAAAAAAQGsrlUr5yle+knq9noGBgRw6dCgHDx7MwYMHc+jQoezcuTPf+ta38vGPfzxveMMbcvbZZze75CUjUN2A1RhUnqtbNQAAAAAAAAAAAADMVCgU0tnZmc7OzvT09GRgYCADAwO54IIL8pGPfCRf/OIX861vfSt//dd/3exSl4xAdQMqlUqS1RWsXk21AgAAAAAAAAAAALBy/v7v/z5/9md/dtJ4sVhMsVjM+Pj4rOvWr1+/3KWtKIHqBrRSOHmhztMT1ydC4I2sBQAAAAAAAAAAAGB51Wq1VKvVVKvVjI+PTx7PHJt6bb55c62Zb94XvvCFOWur1WrTxj74wQ+ms7Mzmzdvztlnn70Sn2jFFOr1erNraCnlcrmlP8hsAenTIVgNAAAAAAAAAADAbCqVSqHZNbAoLZ175Of+7b/9t9mzZ8+0gPPMwHIr27x5c/7u7/4uhULDPwur4ndEh+olslJdnxfTlXquawutBwAAAAAAAAAAAGDp/eIv/mJ6enpOudv0RDfr+bpRL2dAe2BgIOPj42lra1u2ZzSTDtUzzNeheqFQ8kqFqk+FQDUAAAAAAAAAAACN0KF61RAEJUlSr9fnDWYvJrg9dc4DDzyQv/qrv5q8/9lnn51isZj+/v68+93vztVXX72YslbF74hA9QzzBapXo4mQdyuHvQEAAAAAAAAAAGg9AtWrxprKPdJa7rvvvtx99935i7/4i2njvb29+W//7b8t5har4nek2OwCVpNKpTLZ6Xmu661GiBoAAAAAAAAAAACAU3H++eeno6Nj2tgnPvGJfPzjH29SRctjXbMLaEVzdXOeK5w8EaQWXgYAAAAAAAAAAABgLdi7d2+uv/76aWNvetObcvHFFzepouWjQ/Us5gtOz9aFemJ+K3aoBgAAAAAAAAAAAIBGHT9+fNp5d3d3vv/97+eP//iP80d/9Ef5gz/4g/z4xz9uUnVLS4fqBszXgbpcLgtUAwAAAAAAAAAAALAq1Gq1DA8PZ2hoKENDQxkcHJw8HhoaysDAQF7wghdk7969GRwczKFDh3Lo0KFp9/j0pz+d973vfU16g6UjUP00UqlU5g2FAwAAAAAAAAAAALD2fOc738lnPvOZaYHpoaGhRa/fvHlzLrjggpx77rnp6elJT09Ptm/fnksvvXQZq145AtUNmOhAPVcoudXDyq1eHwAAAAAAAAAAAABLr1Qqpb29PdVqNbVaLfV6PUkyPDw8eTyfgYGB7N69O4899li++MUvLne5K06gugFzBZIXClqvlNk6UOtKDQAAAAAAAAAAAPD0duWVV+bKK688abxWq2V0dDTDw8Mnbbt3785nP/vZafNf8YpXrFTJK6qwmFT500m5XJ7zg7RKcPpUrObaAQAAAAAAAAAAWHmVSqXQ7BpYFEHQNa5er6dWq6VarWZ8fDzj4+OTx/ONLWb+zPMTJ05k//79efTRR/Ozn/0s/f39k3V87WtfS3t7e6Plr4rfER2ql0ErhZendqhuhXoAAAAAAAAAAAAAni4+//nP50c/+tFkaHmuIPNC4eeV1N3dnXPPPTcvfelL09PTkx07duTiiy8+lTD1qiFQvUgzQ9IT51PNDC5PnVMul086n3nvue43MedUAtFC1AAAAAAAAAAAAADNceDAgTz66KMLdo+uVqtNq7FYLGb9+vXp6OhIe3t7Ojs7UywWMzAwkMcffzwDAwPZv39/Ojs709nZma6urslty5YtKZVKTat9qRTqdZ3epyqXy2vyg5xqIBsAAAAAAAAAAICnp0qlUmh2DSzKmsw9Pt3U6/UFQ9cT+7GxsYyPj2dsbGzebXx8PCdOnJhz7sT4iRMnps0/fvx4jh07luHh4QXrvuaaa3LTTTfNN2VV/I7oUL2EhJYBAAAAAAAAAAAApnvooYfywx/+MPV6PbVaLfV6fc7jWq2WJNPOZ5szMTbX+GLudzprF3O/5XqPVvK6172u2SUsCYHq01CpVJIk5XJ51jD1xPWVNlHPTLONCYADAAAAAAAAAAAAy+lzn/tcvvGNbzS7DKYolUrp6OjIhg0bsnHjxmn7ieOJberYhg0b0tbWlu7u7lx44YXNfo0lU6jXdXqfqlwuz/lBpgaoZxufco8lrmpx5uuQrXs2AAAAAAAAAAAAjahUKoVm18CitHwQtFqt5tixY7N2YZ5v38jcqWtOZd3pPvNUnletVhfsXr3YtXPt5/o+tVot4+PjGR4eztjY2Gn/jf/dv/t3+dVf/dXZLq2K3xEdqpdIK4SVF6pBqBoAAAAAAAAAAABYaaVSKdu3b292GWtKtVpNtVrN2NhYxsfHU61WMz4+nvHx8YyNjWVkZCTDw8MZGhrK8PDwtG3q2MjISAYGBnLkyJEcPnw4/f39p1TP+vXrl/gNV5ZA9RJZ6bDybM+bOjbzOMms1wAAAAAAAAAAAABYnGq1ms9+9rP58Y9/PNkBOsm0jtCzbUkmu0RPHM+2TYSip24TYemxsbHJ44l7noqOjo5s2LBh2tbd3Z3zzjtv2lhXV1c6OzvT2dmZLVu2pLOzM11dXenq6kpHR8fpf8wWIlC9hGYGl5fzGTOPp47NDFLPt1awGgAAAAAAAAAAAGBx9uzZk09/+tPNLmNRNm3alM2bN5+0tbW1pVQqTW7FYjGlUimdnZ3ZunVrtm3bNm3f3t7e7FdZdoXTSaivReVyec4PstgQcrPCyvN1nhagBgAAAAAAAAAAoBGVSqXQ7BpYFEHQFXbvvffmySefTKFQSKHw8/8mxWJx2nmtVku1Wl1wW+y801kzc/7Y2FiGhoYyOjra8LtfffXV+eAHP9jIklXxO6JD9WmYrUN00rzQ8kLPFaYGAAAAAAAAAAAAOD2XXXZZs0tIktTr9Zw4cSIjIyPp7+/P0aNHc+TIkVn3R48ezeDgYIaHhzMyMnLKzzx8+PASvkHrEKg+DRMB5bmC1ctpvm7UM6/PrG+htQAAAAAAAAAAAACcvp/97Ge59dZb5+0gPT4+Pu/YiRMncuLEiYyOjk7bj42Nzfvsrq6ubN26NVu3bs0FF1yQzs7ObNy4MRs2bFhwm5jX1ta2Ql+quQr1uk7vU5XL5Tk/yEQwuZlh5MWEt8vl8qJD3oLVAAAAAAAAAAAAzKZSqRSaXQOLIgjawn7lV34lo6OjK/a8YrGY7u7ubN++PR0dHSmVSpPbunXrpp3Pts02Z926ddm8eXOuueaabN68udGSVsXviED1DPMFqhfS7M7PE8+frY5m1wYAAAAAAAAAAMDqIlC9agiCtrBHH300u3btOimgXCwWUyqVUiwWT6lr9XKvqdVqJ73L+vXrUy6X8/znPz+XXnppzj///BSLxYU+war4HVnX7ALWklYJLM8WpgYAAAAAAAAAAABgZfX09OTNb35zs8toWL1eT61WmwxY/+xnP8vf/u3fplKp5NZbb02SbNq0Kb/xG7+Rt7zlLU2u9vQJVK9xU7tWAwAAAAAAAAAAAMBcDh48mEceeSQHDx7MoUOHTtqPjIxMzu3u7s6WLVuaWO3SEahuwEQoea4O0M3uUN3s5wMAAAAAAAAAAACwOlWr1bz5zW/OiRMnTrpWLBbzrGc9K6961avy4he/OL29vdm8eXMTqlweAtVLYCLIPNENupW0Wj0AAAAAAAAAAAAAtJ5SqZSPfOQjuffee7Nv37489thj2bdvXw4ePJharZYHH3wwDz74YL761a/m3HPPzY4dO/Lyl788L3nJS5pd+mkTqG7AQuFk4WUAAAAAAAAAAAAAVqvnPe95ed7znpd6vZ7HH388e/bsyQ9/+MPcfvvtOXr0aJLk2LFjOXbsWO699960t7cLVD/dVCqVJCcHp+caBwAAAAAAAAAAAIDVpL+/P6997Wsnz9vb23PJJZfkJS95SXp6etLT0zPZoXrTpk1NrHTpFJtdwFpQLpdTLpcng9XN0uznAwAAAAAAAAAAALC6rV+/Ps9//vMnzzdt2pTt27enu7s7V199da699tpccsklayZMnehQvabokA0AAAAAAAAAAADA6Whvb88tt9ySw4cPZ9euXbnrrrty++235/bbb88Xv/jFfPWrX212iUtOh+ol1CqBZp2qAQAAAAAAAAAAADgd27dvz2tf+9p0dnYmSS677LLccsstTa5qeQhUL5FWCjG3SrAbAAAAAAAAAAAAgNXpwIED+eVf/uV885vfTJL8/u//fi688MImV7U8BKqXiBAzAAAAAAAAAAAAAGtFR0dHzjvvvMnzG2+8Mb/zO7/TxIqWz7pmF8DSqVQqgt0AAAAAAAAAAAAANOT73/9+9uzZk0OHDuXQoUM5ePBgDh06lMOHD0+b9y//5b9sUoXLS6B6CU0EmiuVSpKV71q90PMErgEAAAAAAAAAAABaU61Wy/j4eKrV6uQ2cT4+Pr4s16rVasbGxvK//tf/SpJs2rQpZ555Zrq7u3PhhRemu7s73d3d6enpyRVXXJFSqdTkr7Q8BKoXaSIkPfV8Ipw8M0DdqqHlVq0LAAAAAAAAAAAAYC34xje+kS9/+csnhZanhpnnular1ZpWd7FYzB//8R/nla98ZdNqaCaB6kWa2nl64nzmcat0gG6VOgAAAAAAAAAAAACeTur1eur1+uR5oVCYthWLxWldnifGJzQrVF2r1fKhD30o//k//+eUSqXJbePGjSmXy3nta1+bc889tym1rQSB6gas9pCyoDUAAAAAAAAAAADA8nnFK16RV7ziFae8vl6vp1arTetcPdc2s8P1YrfFrLvrrrvy4IMPZmhoKF/4whfyhS98IV/72tfS3t6+hF+rdQhUN2CiQ3WrhpInAtOtWh8AAAAAAAAAAAAAcysUCpPdoZvl8OHD+dznPjdt7DnPeU4GBgayffv2JlW1vASql1Czg8zNfj4AAAAAAAAAAAAAq9v27dvzP/7H/8gPf/jD7NmzJ/fff3/27NmTN77xjbnqqqty0UUXZceOHTn33HPT09OTrq6uZpd82gSql8hEd+hW1cq1AQAAAAAAAAAAANA6Lrroolx00UVJknq9nr6+vnziE5/Ibbfdlttuu+2k+TfccEPe8IY3rHSZS0ageom0emC51QPfAAAAAAAAAAAAAKysJ598Mj/5yU9y9OjRHDlyZNp+6vHo6Oi89znnnHNWqOLlIVC9BCqVyrTzZgeXZwtPN7smAAAAAAAAAAAAAFrLv/k3/yaPP/74SeM7duzIjh07cv7552fbtm3ZunVruru7c+aZZ6a7uzvd3d3p6OhoQsXLQ6C6AXOFkifGF+oCPRG8njlnMd2jG+kwPds8HaoBAAAAAAAAAAAAmGrDhg2zjj/22GN5/PHHs2nTpmzatCmbN2/O5s2bJ49f9KIX5ZWvfOUKV7t8CvV6vdk1tJRyubxqP8h8oWmBagAAAAAAAAAAABpRqVQKza6BRVm1uUeab3R0NIcOHcrb3/72DAwMLGpNW1tbXvayl+VP//RPFzN9VfyO6FDdgLk6TLeKpexyDQAAAAAAAAAAAMDaUK/XJ7darTZtv3Xr1jzzmc/MvffeO+89Lr/88vzhH/5hLr744hWqeuUIVD+NCFMDAAAAAAAAAAAAreKBBx7I448/PmvId+o+ybzXZ9vPFR5ezLpTmdvos1b6ner1029kvnv37lx//fXZtWvXad+r1RSW4gOtJeVyeck+yERH61YmZA0AAAAAAAAAAMBsKpVKodk1sCirNgj6q7/6qxkeHm52GcyhVCpN2wYGBvLc5z43z3/+8zM+Pp79+/fnsccey7Fjx/KBD3wgvb29s91mVfyO6FC9jFoprFypVFqqHgAAAAAAAAAAAODpbefOnTl8+PCiukTPN77YDtCNdouea3wpalzO95xrzem858S8++67L/fdd99Jf8vbbrttrkD1qiBQ3YCJjtOCyQAAAAAAAAAAAACnZ/v27dm+fXuzy2CRdu7cmU9+8pN5+ctfnnPPPTfnnntuenp60tPTk66urmaXd1oEqhswV5Ba92cAAAAAAAAAAAAA1pp6vZ6RkZEcP348hw8fTpK8+93vzrp1ayuCvLbeZpnN1aFamBoAAAAAAAAAAACA1aJWq2Xfvn3p6+vLgQMHcvz48fT396e/v3/yeGI/NjY2ua69vT2FQqGJlS8PgeolMDNoPVfwGgAAAAAAAAAAAACa5c4778yf/MmfzHm9ra0tO3bsyDnnnJPLLrssXV1d6ezsnNw/85nPTKlUWsGKV4ZA9SwqlcqsYejFBqTnmjdX0Hqu5zU6BwAAAAAAAAAAAADm8pOf/GTe62NjY3nkkUfyyCOPTBs/55xzsnPnzhSLxeUsr2kK9Xq92TW0lHK5POcHWWzn6VbsUC2QDQAAAAAAAAAAQCMqlUqh2TWwKIKgNKxer2dkZCQDAwMnbY8//ng+9alPnbTmD//wD3PVVVflGc94RiOPWhW/IzpULwPBZQAAAAAAAAAAAACabXh4OHfccUeGhoYyMjIyuQ0PD087nzo2MDAw671uueWW3HLLLdm1a9cKv8XyE6heQivZBXqhZ029PtExe2JMt2oAAAAAAAAAAACAte8b3/hGPvrRjy7Z/a688solu1crKdTrOr1PVS6X5/wgE8Hk1RhGFqIGAAAAAAAAAACgEZVKpdDsGlgUQVDmVK/X88gjjzTUofrYsWP53ve+N+c9G+xQvSp+R3SoXkJCywAAAAAAAAAAAABr2+DgYEZHR1OtVlOr1WbdL8e101k/9fpC1wYHB2d9789//vPp7u5e4a+9MgSql9BEmHqik/VyPgMAAAAAAAAAAACAldXX15d3vOMdqdVqzS5lRXV1deXOO+/MZZddlgsuuKDZ5Sw5geplIPQMAAAAAAAAAAAAsPZccMEFede73pWhoaGTujtPPT+V8bm6TC80vtCzliL83d/fn4985CNJkl27dp32/VqNQPUSqVQqTQ9St0INAAAAAAAAAAAAAGtVR0dHXv3qVze7jIbU6/XJoPVsIexqtZpjx47l6NGjk9uRI0fyT//0T9m9e/fkfa655pq88Y1vbOKbLB+B6jVEmBoAAAAAAAAAAACAqQqFQkqlUkql0uTYzp0788lPfnLR9+ju7s573/veafdYSwSql4DO0AAAAAAAAAAAAACsFlu3bl3UvPb29uzcuTNnnnnmMlfUXIV6vd7sGlpKuVye84NUKpWJOStUzdJZzbUDAAAAAAAAAACw8iqVSqHZNbAogqCctmq1muPHj+fIkSM5evRojhw5kn/8x3/MHXfckbPOOiu/8zu/kyuuuCI7duxIodDQT8Oq+B0RqJ5hvkD1XFZDWFkXbQAAAAAAAAAAABohUL1qCIKy5CYC1p/73Ofy+c9//qTr73znO/Nrv/Zri7nVqvgdWdfsAlaTuYLTgsoAAAAAAAAAAAAArEb1ej233HJL+vr60t/fn+PHj2dgYCDzNW2+7bbbFhuoXhUEqhvQSsHphTpOT70+EQRf7FoAAAAAAAAAAAAA1q4TJ07khz/8YR566KHcd999ue2225Ikv/RLv5Surq50dnams7MzW7ZsSWdnZ7q6uibHN2/enFKp1OQ3WFqF+dLjT0flcnnODzJXh+qZgeVWDCvPVTsAAAAAAAAAAADMplKpFJpdA4siCErD/uN//I+TIeoJl19+eV74whemu7s7Z599dq644oq0t7ef7qNWxe+IDtUNmC+MvNJB5UY6VE8QpgYAAAAAAAAAAABoXL1en9xqtdq8+8XMmW2fpOF1p/Kser2eM84446R33L17d3bv3j1t7KUvfWluuummFIvFFfnOzSJQ3YBW6vK8UA2tUCMAAAAAAAAAAADAhM985jP51Kc+1ewyaMDtt9+eo0ePZvv27c0uZVkJVC+BucLLEwHsVjFbPYLXAAAAAAAAAAAAwErYu3dvs0toWevWrUtHR0fWr18/uW9vb592PnV86thcx+vXr0+pVEqxWEyhUJjcTz1eaL9u3bqsW7f248aFer3e7BpaSrlcbviDzAwqLxSwnnm9UqksGGxezJzlXA8AAAAAAAAAAMDTS6VSKTS7BhZlzQZB6/V6arXatK1araZarU47n7qfbWwx86eezze2FPcdGxvLiRMnpm1zjZ2u9evXZ+PGjdm0aVM2btx40jZzfOJ806ZNOfvss7Nly5bTLWFV/I6s/cj4EporED3X2GLnnM7ahQhSAwAAAAAAAAAAAKtRoVBIqVRKqVRqdilNUavVMj4+flLQeqEg9sT46OhohoaGMjg4mKGhocnt8ccfnzweHBxMtVqdt45NmzZl8+bN2bhxY97ylrfkmmuuWaEvsHIEqpdAKweWW7k2AAAAAAAAAAAAAE5Wr9cnt4lgeVtb2+Rxe3t7xsbGMj4+nmq1mvHx8QW3ueYNDw/n2LFj2b9/fx599NEcPXp0Wi2Dg4MZHBxMktx0003ZtWtXMz7JshKobsBc4eSJztULzWsGHaoBAAAAAAAAAAAAll+tVsvRo0dz8ODBHDp0KIcOHZp2PDIykmq1umAQemLOSiiVSlm3bl3WrVuXzs7OnH322bn00kuzdevWbNu2LVu3bp083rRpU3p6elakrpUmUN2AieD0XAHllQguzwxvz1XH1HkTx7OtFbYGAAAAAAAAAAAAOD1/93d/l49+9KPL/pxisZiOjo50dHSkvb19cj/1eObYXHPa2tqybt26FIvFlEqlFIvFyeOJbea1J598MkePHk2pVEq1Ws0555yTtra2ZX/v5Vao1+vNrqGllMvlU/4grdwNupVrAwAAAAAAAAAAoPVUKpVCs2tgUQRBW8CDDz6Yt73tbUmSbdu2Zdu2bdm+fXu6urqSJNVqNbVabd79UsxZaVdffXU++MEPzjdlVfyO6FDdgFboUA0AAAAAAAAAAABAa7nkkkuya9euptZQr9dnDVlPDWMvdG10dDQDAwMZHBzMwMDAtONbb7112vO6u7vz1re+tTkvu8QEqgEAAAAAAAAAAABglSsUCimVSimVSnPO+fa3v50//dM/nfVasVhcdJfrF7zgBfnYxz52SnW2IoHqBszVgXqhztXLoVKpzPu8qddnzl1oLQAAAAAAAAAAAABrz8GDB+e8NjVMfd1116W3tzcbNmyYdVu/fv1KlLtiCvV6vdk1tJRyuTznB5krON3KAeWJ2lq5RgAAAAAAAAAAAFpPpVIpNLsGFkUQtAWMjY2lr68v1Wr1pG18fHzW8YmtVqvNe32h9YtZO/MZJ06cSH9//7zv9OlPfzrnn3/+6X6aVfE9xUJyAAAgAElEQVQ7okN1A+YKJM8VWJ4IYK9EDUs1HwAAAAAAAAAAAIDGfOYzn8nOnTubXcYpaWtrS3t7e7Zu3ZozzjgjSXLuuefmzDPPbHJlK0eH6hnm61A9l5nB6VYMMc/VXRsAAAAAAAAAAABmo0P1qiEI2gKGh4dzzz33THaEntpVerYO07PNW+z12e49tRP1QjXUarVTfs83vOENueGGGxpZsip+R3SoXiKrIai8GmoEAAAAAAAAAAAAWG02bNiQK6+8stllLEqtVpsMXn/4wx/Orl27Fr32m9/8ZqOB6lVBoLoBc3V5buWgcqVSmaxv6jEAAAAAAAAAAAAAa8cjjzyS/fv3p1QqpVAo5MSJExkdHZ3cTxyPjIxMHjcapi6VSsv4Bs0jUL0EJoLWMwkvAwAAAAAAAAAAALDcnnjiibz1rW9dsvtt3749IyMjGRoaSpK85jWvSbFYXLL7txqB6iUwswP0XAHrZpga6hbwBgAAAAAAAAAAAFh7zjrrrLztbW/L3XffnVqtlmq1mmq1mnq9Pnleq9VSq9UyPj6e0dHRDA8PZ2hoKNVq9aT7jY6O5jnPeU6e85zn5BnPeEbOPPPM7N27N2eeeWa2bNmSQqHQhLdcPgLVS2QiTJ20VnB5al0AAAAAAAAAAAAArD3FYjHXXXddrrvuuobXjo2NZWhoKMPDwxkYGMjevXtz//335/77789f//Vfp1arTZvf1taW7u7udHd359prr83rX//6pXqNpinU6/Vm19BSyuXyKX+QVg4vt3JtAAAAAAAAAAAAtJ5KpbK2WtCuXYKgnLKxsbEcOXIkIyMjGRoamtwGBwczNDSU48ePZ9++ffnpT3+aRx55JCMjI9PWX3DBBfnUpz413yNWxe+IDtUNqFQqSU7uQD0xPnEsuAwAAAAAAAAAAABAq/vd3/3dPProo4ueXygUctlll2XTpk3ZuHFjXvKSlyxjdStHoHoJCFADAAAAAAAAAAAAsNq84x3vyJ/92Z+lWq1mfHx82r5Wq500v16vZ/fu3bn55ptz1VVXNaHi5SFQDQAAAAAAAAAAAAAroF6vT4aVq9XqtG1ibOZ+ruuLmTPX9anHr3rVq+asaXR0NHv37s3DDz887T0++9nPClSzelQqlckO2lOPAQAAAAAAAAAAAGjM448/ng996EMZHBxcMLw827V6vd7sV1iUtra2tLW1Zf369enp6cmrX/3q9PT0TG7nnXfeou/V29t7Q5LfT3LBU0P3JvlAX1/fV566PtdH+a99fX03PDXnbUmuS/LCJFuSXNjX1/fwjOc8O8mHk/xiko6nnnNTX1/frQvVKFC9xk0NUAtTAwAAAAAAAAAAAJy6devWZdu2bWlvb0+tVpszVD3btYXGq9Vqs19v0tjYWMbGxjI0NJTDhw/nnnvumby2a9euRm+3L8mfJHkwSTHJW5L8bW9v74v7+vr+Kck5M+b/syR/n+TzU8Y2Jvl6ki8l+egcz/lykp8k+aUkg0nenuRLvb29z+3r6/vxfAUWVkvSfaWUy+VT/iAr2QF6oWfN7EydRKdqAAAAAAAAAAAAFq1SqRSaXQOLIgi6hkwErmcLWy/F+MT5f/pP/+mU6nvrW9+at7zlLSeNV6vV3HnnnXnwwQdzySWX5Morr0ypVEqSWX9Hent7Dyd5d19f33+f5donkrysr6+vd5Zr/yzJXZnRobq3t7c7ycEkL+/r69v11Ni6JKNJfrOvr+8L872XDtUNmBlMnmklQ8oLPWtmeHqi9sWsBQAAAAAAAAAAAGDlFYvFFIvFZX/Os5/97PzoRz/K8ePHc+zYsRw/fjz9/f0n7YeHh6et+9KXvpQHHnggz372s9PT05Nzzz03Z599dt7//vfn/vvvz8jISNavX59LL700H/7whydC1ZN6e3tLSX4jyeYkd8ysq7e3d3OSNyZpNPH9ZJL7k/x2b2/vXUmGk7wtyfEk315osUD1GjcRnhaiBgAAAAAAAAAAACBJduzYkR07diw478SJEzl+/Hh++tOf5q677sp3v/vd3HHHHbnjjpOy0JOGh4dz33335c4778xVV12VJOnt7X1eku8kWZ9kIMnr+/r67pll+ZuSdCT5dCPv09fXV+/t7f3lJH+TpD9JLcnhJK/q6+t7fKH1AtUNmBlKXqhjdSuY2qG6lesEAAAAAAAAAAAAoHU88cQTue66605p7ejoaPbu3TsZqE7Sl+SKJFuT/HqST/f29pb7+vp2z1h6fZK/7evrO9jI83p7ewtJ/mt+3qn6pfl5h+r/J8kXe3t7/3lfX9+j860XqG7AzAD1aggor4YaAQAAAAAAAAAAAGi+e+65J3fddVdKpVIefXT2DPLHPvaxdHV1pbOzM11dXbn77rvz/ve/P8PDw5NzOjo6cvHFF0+e9/X1nUiy96nT7/X29v7zJO9M8nsTc3p7e69I8s+SvOcUSn95ktck2d7X13f0qbF3PNW1+neTfGC+xQLVS6BVOlXrQg0AAAAAAAAAAADAYtXr9YyNjWV4eDgDAwO58cYb55z73Oc+N//qX/2rvOAFL5g2fuWVV+bSSy/Nfffdl9HR0XR0dOS5z31urrzyyvkeXUzSMWPsbUkeTvLNU3iVjU/tazPGa089a14C1UugVULMs9UhZA0AAAAAAAAAAADw9PTQQw/lc5/7XAYHBzM8PDxtGxoayvDwcKrV6qLu9V/+y39JqVQ6abxUKuXDH/5w7rzzzuzduzcXX3xxrrzyysm5vb29H0rylSQ/S9KZ5E1JyklePXGP3t7ejUl+K8mH+/r66jOf0dvbe3aSs5M8+6mh5/b29m5N8tO+vr7DSb6T5HCST/X29r4vyXCS65NclOTLC73bgolrFjbRobqVnjm1a/bMuc2oFwAAAAAAAAAAAICVdejQodxzzz3ZvXt37r333uzZsyePPPJIDhw4kIGBgUWHqZPkX/yLf5F//a//9azXSqVSrrrqqvz2b/92rrrqqpnB67OT7EzSl+Qfk/zzJK/q6+v7hylzfjPJpiSfmuPxb0/ygyT/71PnX3nq/NeSpK+v71CSX0myOcn/l+R7SV6W5HV9fX3fX+jdCvX6SSHup7VyudzwB5kaUG61btATHap1qgYAAAAAAAAAAKARlUql0OwaWBRBUBatWq1mdHQ0IyMjGR4ezsjIyOQ2cX7gwIF84hOfmHX9S1/60rzvfe9r5JGr4ndkXbMLWE2mdn2eauK8FTs/C1EDAAAAAAAAAAAAkPy8k/TGjRuzcePGaePf+c538vnPfz7j4+MZHR2dde3Xv/71tLW1rUSZK06H6hlOt0P1U/dYomqWzlxhcAAAAAAAAAAAAJiNDtWrhiAoDZsITk90q/6t3/qtRa1705velOuvv76RR62K3xEdqhuwUIfqVrda6gQAAAAAAAAAAADg1D3yyCP58z//8wwMDEwLTk/sq9XqKd33i1/8YqOB6lWh2OwCVpNyudzSoeSZnbIBAAAAAAAAAAAAePqp1WoZGxvL+Ph4xsfHU61WJ7d6/dSbmo+Ojubaa6/NTTfdtHTFtgAdqhswV4fq1WA11gwAAAAAAAAAAABA4y688MJ87GMfm/VavV7P+Ph4RkdHc+LEickO1jO3mdf+9//+3zlw4ECSpLe3dyVfZ9kJVK8h84WmK5WKUDUAAAAAAAAAAADA01i9Xk+1Wp3sXl2tVlOr1Sa7VhcKhRSLxZRKpZRKpaxbt27y+oUXXpgDBw7kq1/9ajZs2NDkN1laAtUAAAAAAAAAAAAArBoTAd9qtfr/s3PvMXLd5f34n5nZHXu9l9iJ7Zg4sXMniUCk2CRAoJpAgZAKCuIakbaEpiikJTThpggV0XJRyrWoEKRwCQK1AamhlEtouMRDCzSCcFEIIXdCYscxu/bevevZnZnvH/3N/HbXe5mxZ+bMrF8v6eic8zmf8znPnF2dv956olwuR6lUWnJs7rWFY/Wss9zaS62/1DpHe/9idczMzEShUKjuF25zx0ul0hG/+xNPPDHWrFnTwL9mexCoboB8Pj/vvFWdoBd2na7UsdTz59aZy+V0rQYAAAAAAAAAAABa5n3ve1/88Ic/TLqMVS2bzcbatWtjzZo1sXbt2li3bl0cf/zxh43PPa9sC88Xjq1duzZ6enri0KFDsWbNmkin00n/3IYRqK7DcuHjJILJC59Zb33C1AAAAAAAAAAAAECrbN++PekSVr1KF+pm27x5c3z1q19t+nNaRaC6gZbqGN1I9YagKzXpRg0AAAAAAAAAAAAk6Yorrogrrrgi6TKOWLlcjlKpFBH/l8/8wAc+kHBFrZFKpSKdTkcqlaoeX3nllUmX1VAC1XWoBKRr7QwtwAwAAAAAAAAAAACwOqRSqchkMhHxfxnR/v7+KBQKUSwW522lUqmu43ruPdL7lrq3EhBfzjXXXBOnn356rF+/PjZs2BB9fX2RSqWa/bpbKlUul5Ouoa3kcrnyUt2clwpULzUOAAAAAAAAAAAAnSqfz6+uxOTqJQjKEat03Z4bsB4eHo4///M/r+n+t7zlLfHa1752uSkd8R3RoXoR9QajOyFILfQNAAAAAAAAAAAAwFyVrtuVztsREb29vbFr166YnZ2N0dHRuPPOO+OjH/3okvevBgLVxxBhagAAAAAAAAAAAAAWeuSRR+L++++PkZGRGBkZieHh4erxo48+Om/uLbfcEps2bZoXwu50AtUNUOn+XCG4DAAAAAAAAAAAAECnuP766+MPf/jDivMuvfTS2LJlSwsqai2B6gZolwB1Pp9vm1oAAAAAAAAAAAAA6Aw33nhjPProo9Xu1KOjozE4OBj33Xdf/P73v6/Ou+222+K6665bVd2pIwSqj0qlM3W7hJjbpQ4AAAAAAAAAAACA1aZQKEShUIhisRilUimKxeK847lji40vvF7LnOWe08y5hUIhBgcHo1QqVX//unXr4vzzz490Op3gX6E5BKqPQiXAvFSwujLejGcuRodqAAAAAAAAAAAAgMbbt29fvPGNb4zp6emkS2m4dDod2Ww2uru7I5vNxvr16+Okk06KF73oRXHyySfH1q1b4+STT47jjjsuUqlU0uU2RapcLiddQ1vJ5XJLvpBaO1K3W+fqiPasCQAAAAAAAAAAgPaVz+dXZ3Jy9REEbYGZmZn47ne/G6Ojo4t2eV6p+/Nyx/Xcu1SX62ZIp9Oxfv36WL9+fWzYsGHefvv27fHsZz87urpW7O3cEd8RHaqboF1Dy+1aFwAAAAAAAAAAAEA76+7ujj/90z9t2fPK5XLNoevZ2dmYnZ2NQqEQhUIhZmZmYmZmpnq82FjleOGcQ4cOxcjISOzfvz/2798fBw4ciAMHDixZ5/XXXx8vfvGLW/ZemkWgug4CyQAAAAAAAAAAAACs5Oabb44vfelLSZfRMOl0OjKZTGQymZiZmYlisRgREQ888IBA9bEmn89HxOHB6sp4RbsGr/P5fNvWBgAAAAAAAAAAALBarF27NukSVvTMZz4z/vZv/zbWrVsXXV1d80LTC49TqVTS5TaVQDUAAAAAAAAAAAAANNBll10Wl112Wd33lcvlKBaLMTs7e9hWLBZjZmamejw7O1vtFr3Y/Ln3LJzz5S9/OX7xi1/Em970puju7o7jjjsu+vv7o7+/PwYGBmJgYKB6nEql4uyzz44dO3Y04U21B4HqBqh0fW73DtDtXBsAAAAAAAAAAADAsS6VSkVXV1d0dTU34vuCF7wg7rnnnhgfH4/R0dEYHx+P8fHxGBsbiz179sSPfvSjw+65/fbbI5vNNrWupAhUN0AlSC2wDAAAAAAAAAAAAEBSisViHDp0KKanp2Nqaiqmp6er28LzytjMzExERHR3d8fatWtj9+7d89a84IIL4i//8i9XbZg6QqC6YfL5fPW4FcHqlbphz70+t7Za7gUAAAAAAAAAAACg/R06dCguueSShq7Z09MTF154YTzjGc+Ic845J9atWxfZbDZ2794d2Ww2uru7o6+vL7q7uxv63CSlyuVy0jW0lVwud0QvpN1Dyu1eHwAAAAAAAAAAAO0ln8+nkq6BmgiCHsNmZ2fj7W9/e9x9990tf/Z5550Xf//3fx9btmxZblpHfEcEqhc40kB1u6oEqQWqAQAAAAAAAAAAqIdAdcdYVblHWqNcLkexWIyZmZkoFApRKBRiZGQkfvCDH8Tu3btj//791a1UKi25zrOe9az48Ic/vNyjOuI70pV0AZ0kn89HRFSDyYudt1toud3qAQAAAAAAAAAAACBZqVQqurq6oqurK3p6euJjH/tYfOtb3zps3sDAQGzbti02b94cAwMD0d/fX913d3fH+eefn0D1jSdQfRQWhpWXClq3ykqB7nYMfAMAAAAAAAAAAADQfKVSKaanp2Nqaqq6HTx4MKamphYNU0dEjI2NxT333FM9P+uss+Kmm25qVcktI1DdIHPDykuFlpcKWtcSdK5lzkqdsoWpAQAAAAAAAAAAAI49//mf/xmf/OQno1wuH9U6W7ZsaVBF7SV1tC9mtcnlcku+kKQ6T9dqudC17tQAAAAAAAAAAADUI5/Pp5KugZoIgrKi3//+9/Gd73wnpqamYnJyMg4ePFjdJicnq+OFQmHJNXp7e+Pcc8+NjRs3xite8Yp46lOfWsujO+I7IlC9wHKB6pW0c2i5nWsDAAAAAAAAAACg/QhUdwxBUBpmdnZ2XtC6cjw0NBT5fD7uuuuuiIg466yz4qabbqplyY74jnQlXUAnWalDtcAyAAAAAAAAAAAAAJ2qq6srBgYGYmBg4LBrw8PDcdddd8VrXvOaeP3rX59Adc0jUA0AAAAAAAAAAAAAxNjYWPzhD3+IoaGhGBwcjKGhoerx7373u4iIePOb3xxdXasrgry6fk2TLdWButK5eqV5AAAAAAAAAAAAAJCk2dnZeOSRR+L3v/997N69O/bs2VPdxsfH581NpVJx/PHHx6ZNm+Kcc86J8847b9WFqSMEqutSCU63a2A6n8+3bW0AAAAAAAAAAAAAJGPPnj3x7ne/O/bs2TNvPJ1Ox+bNm+Pkk0+Oiy++OLZu3RonnnhibNq0KTZu3BjHH3/8qgxQL7T6f2EDLQwrL+xM3e4ErgEAAAAAAAAAAACOPf/93/99WJg6lUrFjh07YvPmzdHX1xd9fX3R3d0dhUIhRkdHo1gsxuTkZPT19UVvb2/09PREKpVK6Bc0l0B1HRZ2qF4qnNxOnaznhqjboR4AAAAAAAAAAAAAWuv1r399/Mmf/Ens2bMndu/eHXv27KluDz/8cExMTEShUFh2jXQ6HaVSKSIiXvGKV8Tb3va2VpTeEgLVTZBUcHmx5wpRAwAAAAAAAAAAABzbUqlUbNq0KTZt2hTnn39+RESUSqUoFovV/fT0dIyNjcXo6GiMjo7G2NhY9XxsbCz+67/+q7remjVrkvopTSFQDQAAAAAAAAAAAABHYXh4OO688855AeWFx3O3peYsnL/Y/YvNP5JnlsvlI/qtX/va12LDhg0NfoPJEqhugHw+HxGt6QZdedZycrncovMWG9PBGgAAAAAAAAAAAODofOMb34gvfvGLSZdRlU6no6enJ9asWRP9/f2xdu3aWLt2bfT09MTatWtjzZo11ePKeDabjUwmE5lMJtLp9GHH6XQ6nvKUp6y6MHVEROpI0+WrVS6Xa9oLWSp4nc/nVww2rzRnsbWXCl9X5tTyXAAAAAAAAAAAAI5N+Xw+lXQN1EQQtA2USqXYu3dvFAqFmJmZqe4rx0uNL7y+3L3LXWuEVCoV3d3dkc1mF913d3fHaaedFtdee22kUjV/HjriOyJQvcBygerlOlELJwMAAAAAAAAAALCaCFR3DEHQY1y5XK6GrBcGtVcKd09MTMTjjz8e+/fvr24jIyPLPu973/tedHV11VpeR3xHav41LG1hmHq54HVSBL4BAAAAAAAAAAAAVp9UKhXZbDay2Wzd915zzTXx61//uub527dvj9tuuy127NgRW7durft57UqH6gWW61Ddydox5A0AAAAAAAAAAED70qG6Y6zK3COtcd9998U999wTk5OTMTExERMTE0sel0ql6n3bt2+PL37xi7U8oiO+IzpU16HTQ8mdWjcAAAAAAAAAAAAAjXfOOefEOeecs+K8crkct99+e/zTP/1TRESce+65zS6tpdJJF9BJcrncsqHkSuA6KUk/HwAAAAAAAAAAAIDV57HHHov77rsvuru7IyJiZmYm4YoaS4fqBsnn8zpAAwAAAAAAAAAAALCq3HXXXfHOd74zIiIuueSSeOUrXxlnn312wlU1lkB1HSodoBcLTudyucRD1QLdAAAAAAAAAAAAADTS6Oho9fjOO++Mxx9/PLZu3Rpbt26Niy66KM4444wEq2sMgeo6dHJguZNrBwAAAAAAAAAAAKB1pqenY8+ePbF79+544okn4vjjj48DBw7EyMhIjIyMxG9+85uIiHjwwQfj/e9/f8LVHj2B6jos16G63SXdPRsAAAAAAAAAAACA5BWLxThw4EAMDg7G4OBgDA0Nzds/8cQTMTQ0NO+eDRs2xNOe9rTYunVrnHzyydUO1aeeemoyP6LBBKrrsFQgudaw8lKB7FruF4gGAAAAAAAAAAAA4Gh86UtfiptvvnnZOaecckq89KUvjR07dsQpp5wSW7dujd7e3hZVmAyB6jqs1KF6pcDzkd5X65zFCGIDAAAAAAAAAAAAHJtKpVLMzs5GsViMYrEYp59++or3PP744/H444/Hd77znYiIOP300+MNb3hDvOAFL2h2uYkRqK5DpwST54aoO6VmAAAAAAAAAAAAgNXqjjvuiEcffXReuHmp44Vji11b6XplrFwuH3XtjzzySLz//e+PP/7jP46urtUZPU414kWtJrlc7oheSKs6QVe6ZC8nl8vVNK8yFwAAAAAAAAAAABbK5/OppGugJoKgHeDNb35zPPjgg0mXUbdsNhsRESeeeGKccsop0dvbG2effXace+65cdZZZ1WvL6MjviMC1QscaaA6onWh6iPRzrUBAAAAAAAAAADQfgSqO4YgaAcol8tRKpVq6ki93Jxm3FPPfSMjIzE0NFT9Xa997WvjLW95y3I/vSO+I6uz73aTVLo+LxVMbufAcjvXBgAAAAAAAAAAALCapVKpyGQykclkki7liJXL5ZicnIx/+Id/iLvuuisiIrZt25ZwVY0hUH2M0KEaAAAAAAAAAAAAgJWUSqW444474ne/+10MDQ3F4OBgdT89PR0REV1dXfHtb387stlswtU2hkB1A6zUuTpJgtQAAAAAAAAAAAAA1KJYLMaePXvigx/84LLzLrnkklUTpo4QqK7LUsHkXC5XDVW3G2FqAAAAAAAAAAAAABbz0Y9+NL797W/Xfd+TTz7ZhGqSI1Bdh+U6Uc8da8eO1e1UCwAAAAAAAAAAAADJ6+npWXHOunXrYufOnfHMZz4znve858UJJ5zQgspaK1Uul5Ouoa3kcrkjeiH5fL5tQsuL1dJO9QEAAAAAAAAAAND+8vl8KukaqIkgKA0xOzsbBw4ciKGhoRgcHIzBwcHYu3dv/OY3v4n7778/IiK6u7vju9/9bj3LdsR3RIfqOtTaoTppC7tlt1NtAAAAAAAAAAAAALSfrq6u2Lx5c2zevHne+M9+9rN417veFRERMzMzcfHFF1evffjDH45nPetZLa2zGQSq67BSMLkdw8vtVg8AAAAAAAAAAAAA7Wt6ejre+MY3xr59+1acu2vXLoHqY81yHaqXG2+Vdgx0AwAAAAAAAAAAANA5SqXSsmHqF73oRfH6178+TjrppFi7dm0LK2segeo6tHuHamFqAAAAAAAAAAAAAI7GunXrYteuXVEul2N0dDR2794du3fvjieeeCJ+9rOfxfe+97146KGH4gtf+ELSpTaMQHUDtWOgOemQNwAAAAAAAAAAAACdJ5VKxfr162P9+vXxtKc9LSIi3vSmN8U//uM/xs9//vOEq2ssgeoGadfgcjvWBAAAAAAAAAAAAED7mp2djf3798fg4GAMDQ1V93fffXfcd999cfrppyddYkMJVNchn89HxOIhZcFlAAAAAAAAAAAAADpVqVSK97znPfHAAw/E8PBwlMvleddTqVScdtppcc0118RLXvKShKpsjnTSBawWlbB1uxL4BgAAAAAAAAAAAGA5mzZtis2bN8fxxx8fqVRq3rVyuRxTU1PxZ3/2Z7Fu3bqEKmwOgeoGaffAcrsHvgEAAAAAAAAAAABIxr333htf//rXY/369XHWWWfFeeedF0996lMjm83Om/fkk08e1rl6NehKuoDVYGFYuR3D1e1YEwAAAAAAAAAAAADJe//73x9PPvnkivMuvPDCyGQyLaiotXSoboBcLlcNLLdbcFlnagAAAAAAAAAAAACWc9NNN8WnP/3pFefdeeedsX///igUCi2oqnVSq7Ht9tHI5XKr8oXk8/m2C3sDAAAAAAAAAADQvvL5fCrpGqjJqsw90jrlcjnGx8djdHQ0/uIv/qLm+9auXRsve9nL4uqrr15uWkd8R7qSLmA1WNgFup2Cy4LUAAAAAAAAAAAAAMe2qamp+PKXvxxDQ0Nx8ODB6jY+Ph5DQ0PLdpxOpVLR29sbfX191X1le9rTntbCX9E8AtV1qASnFwaUK+etDC+v9KzK9Vwud1jgW8gaAAAAAAAAAAAA4Nhxyy23xC233FLT3DVr1sTmzZtj06ZNsXnz5ti4cWMMDAzEU57ylDj55JPjpJNOimw22+SKWytVLuv0Plcul6v7hbRLQHm5OtqlRgAAAAAAAAAAADpDPp9PJV0DNREEZUWFQiG+973vRTqdjq6urpiYmIjh4eE4cOBADA8Px8jISAwPD8fw8HBMT0/XvO473/nOuPTSS5eb0hHfER2qG6BdgsrtUgcAAAAAAAAAAAAAyfvlL38Z1113XdPW37t3b9PWblzvT7kAACAASURBVCWB6jrk8/mIEFwGAAAAAAAAAAAAoP319/c3fM1du3Y1fM2kCVQ3QD6fb4uQ9Up1tEudAAAAAAAAAAAAADTfmWeeuWwAulwux8zMTExPT8fBgwfjsssuW3a9Zz/72Y0usS0IVNeh3cPIK9XX7vUDAAAAAAAAAAAA0DqpVCqy2Wxks9kYGBiIz3zmM/Hggw/G4OBgDA0NxeDgYDzwwAMxNjYWERE/+9nPEq64OQSq65DP5yPi8GByOweVdaUGAAAAAAAAAAAAICKiWCzG1NRUHDx4sLpNTk4edlwoFKKrqysGBgaqYeoXvvCFceWVVyb8C5pDoLoOSwWTlwpaN9NKQenK9VwuV62v1nsBAAAAAAAAAAAAWD1uu+22+MhHPnJUazzrWc+Khx56KB577LFYs2ZNdSuXy7F9+/bIZDINqrb1UuVyOeka2koul1uVL0SIGgAAAAAAAAAAgHrk8/lU0jVQk1WZe6SxHnroofjrv/7rZeekUqno6uqKTCYTs7OzMTs7W/P6L3/5y+Paa69ddNn6Kk2GDtUN0g6B5XaoAQAAAAAAAAAAAID2cuaZZ8auXbuWvP61r30tbrzxxpidnY2ZmZma1+3t7Y0tW7bE6173ukaUmRiB6jrk8/mIiMNCywuDzEvNazZhagAAAAAAAAAAAADq9S//8i91zX/zm98cl112WZOqaT2B6josFViujFeC1e0UbJ4b9tbBGgAAAAAAAAAAAICFbr/99nj00UfjkUceiYcffjh+97vfxSOPPBLDw8OLzv/tb3/b4gqbS6C6Dst1qJ573E6h5bm1tFNdAAAAAAAAAAAAALSHl73sZVEoFA4b37p1a2zcuDFOPPHEeOpTnxrnnntunHHGGZHNZhOosnnSSRewmrRbd+qIpUPgAAAAAAAAAAAAABARcfXVVy86Pjw8HAcPHoxCoRAHDhyIgwcPrrowdUREqlwuJ11DW8nlcku+kHYPJ7dbd2wAAAAAAAAAAAA6Vz6fTyVdAzURBP3/lMvl6lYqlQ47LpVKERHzzhebs9g6nbBeo2oZGRmJe++9N/bt23fYO96yZUvccsst9fxZOuI70pV0AatJOwea2z0MDgAAAAAAAAAAAHSm3//+9/HJT34yDh06VFOw92gDxUvN0WS4dqlUKtLpdGQymUin05FOp6tjqVQqMplMnHPOObF169bYunVrnHzyybF169Y49dRTky69KQSqG6QdwtSLPX9uXUnXBwAAAAAAAAAAAKw+6XQ6stlsRERNHZHrCUg3InjN4crlchSLxSgWi0vOGR4ejvvuuy++8Y1vRH9/fwuraz2B6gaodH9eeC7ADAAAAAAAAAAAAKx2p5xyStxwww1Jl7GkRnS/rmfOYvesNKeRQfTl5lTOP/e5z9X8/j772c/GwMBA9Pb2RjabjX379sWll166qrpVp7Q3ny+Xyx3xC2mHLtVLaefaAAAAAAAAAAAAaD/5fD6VdA3URBCUuj322GNx4403Rjabje7u7shms5FKpeLgwYMxNTUVk5OTcfDgwTh48GDs27fvsPtPPPHE+MpXvlLLozriO6JDdR1W6jzdjoFlQWoAAAAAAAAAAAAA5tq2bVvNXcXvvffeuOaaa6JYLFbHLrzwwmaVlgiB6lVOmBoAAAAAAAAAAABoJ7OzszE9PR2lUinK5XJ1P/d4sX1ELHu9ljUqc5q9RqPqrXWNZv+egYGBGB4erv4NC4VC6/9xmihVLuv0PlculzviF7KwG3Slo3U7E7gGAAAAAAAAAABgMfl8PpV0DdSk44Kgb37zm+PBBx9MugyWkclkqls6na4eb9iwIS699NI444wzIiLitNNOi+OOO265pTriO6JDdRO1Q1h5YcgbAAAAAAAAAAAAIElXXnllPProoyt2UI5YujtzPV2W6+3I3Mjn1tMxeqXntrKJcrFYjGKxeNj48PBwfOpTn6qeX3jhhXHDDTe0rK5m0aF6geU6VFc6TndiQFmwGgAAAAAAAAAAgHroUN0xBEGPEYuFtJsZ5J6YmIgbb7wxHn744Xl1bNy4MXbu3BnnnntuPPe5z42NGzcuV3ZHfEd0qK5DrYHkpILXQtMAAAAAAAAAAAAAq1MqlYpU6v/yyZlMpunPe/LJJ2NycvKw8aGhobjjjjvi7rvvjvHx8XjDG97Q9FqaLZ10AZ0kn89Xw9JLXY/4vyB1EsHmxZ65XL0AAAAAAAAAAAAAsNA999wTn/vc5+LAgQOHXUun07F+/fpYv3599Pb2JlBd4+lQXYelQtLtElperEO1jtUAAAAAAAAAAAAA7aNcLkepVFpxHxE1zZu7r2fu3Hvmng8ODsYnPvGJeTVfdNFFcfnll8emTZti/fr1LemQ3UoC1XWY24F6rlwut2iYudWSfj4AAAAAAAAAAADASn7wgx/Eww8/XHPAN8nwcTNCy53oxz/+cbzvfe+Lrq7VGT1enb8qAYuFmZPqXF0JeC+02JgQNgAAAAAAAAAAANBK3/zmN+Oee+7p6IDxapNOpyOTySy6lUqlOPvssyOdTiddZtMIVK9CSQW5AQAAAAAAAAAAAJbyiU98In784x9HqVSK/v7+eV2ci8VidV8sFpMu9ZiyXJi6p6cnenp6oru7O+kym0qguola3f05n88f9szK2GLXAAAAAAAAAAAAAFrlvPPOi5mZmWqIulwuzztebuxI5ix2T733RcSK1ztdqVSKUqkUMzMzi17/93//9zjhhBNaXFVrCVTXoNYwctKhZYFpAAAAAAAAAAAAoF295CUviZe85CVJl9FQjQpuH+09MzMzMTs7GzMzM/OOlxtbas6+ffvi0Ucfrf7GV7/61RERkUql4u/+7u/i5S9/eUJvu3kEqmvQyUHlSu26VAMAAAAAAAAAAAA0ViqVikwms+K8r3zlK/Hwww9HsViMYrEYs7Oz1eOltsXmLDbWqk7Z5XI5PvGJTwhUH+vaIYycz+dXnFMJT9dyfzv8JgAAAAAAAAAAAIDV7J577okHHnhgySB1q0LRR+M//uM/Yt26dUmX0RQC1Q3UinBy5Rm1dJteGKyu514AAAAAAAAAAAAAGuMDH/jAstdLpVJNXamXOl44ttK8z372s3XV39/fHwMDA5FOp4/mNbQtgeoGSCKgXEuYeu7xYsFqAAAAAAAAAAAAAJKXTqcjnU5Hd3d3S5533nnnxf/+7//G2NhYjI2Nxfj4+Lz97OzsvPnj4+MxMjISxx9/fEvqazWB6jpUQskLA8mVwHI7BpXbsSYAAAAAAAAAAAAAIsrlcpRKpepWLBYX3S83Nve81rFisRjbtm1bdP1SqRQTExMxMjISIyMj8ZOf/CQiIl71qlfFq1/96vibv/mbhN9a4wlUN0g7BJfbNdQNAAAAAAAAAAAA0MnGx8fjYx/7WIyOji4ZUD6S4HOpVEr6p60onU5X6/zpT38qUM3ilupc3Q6ErAEAAAAAAAAAAACOTqlUiunp6Th06NC8cPRKx3O3TghPR0T88z//c5x77rmRyWQinU5HKpVKuqSmE6iuw0rB5KSD1YLTAAAAAAAAAAAAAI133HHHxQ033HBUa5TL5cM6WNcSxj6S4Ha99371q1+t1nnttdfGtm3bYmBgIAYGBqK/v/+w4zPOOCNOOeWUo32tbUOgug5LBabbOcjczrUBAAAAAAAAAAAAHCtSqVRkMpnIZDJJl3KYnTt3Rj6fj4GBgRgbG4vx8fEYGxuLvXv3xgMPPBDj4+MxPT1dnX/iiSfGV77ylQQrbiyBagAAAAAAAAAAAABY5crlcszOzsahQ4eiUCjEoUOHqtuaNWsil8vF9PT0vGtzj8fHx2NoaCjuu+++mJqaSvrnNJRAdQMs1bm62c9c7nlzr1fqq/VeAAAAAAAAAAAAADrXgw8+GDfccENMTk7OC06XSqWjWndgYCB6enpi586dDaq0PaTK5XLSNbSVXC635AtJIjjdKELUAAAAAAAAAAAA1COfz6eSroGaCIIeoUKhEI888kiUSqUoFotRLperx6VSKcrlcvW4nm3uWo1Ye6X1Flt79+7dMTo62pT3tmvXrnqmd8R3RIfqGs0NUy/s+FyxMLC81LyjcaShaGFqAAAAAAAAAAAAgP/fTTfdFLfeemvSZXSU1daZukKH6gV0qAYAAAAAAAAAAAAdqjuIIOgRGh8fj7vvvnvFrtBLdZWee36kHafn3t+I7thH+jvqoUM1y0o6tJz08wEAAAAAAAAAAAA6RX9/f1x00UVJl5G4SuB64bZ79+646qqrqvP6+vriyiuvjP3798cJJ5yQYMWNp0P1AquhQ7VgNQAAAAAAAAAAAEdLh+qOIQhK00xMTMRtt90WP/jBD+Khhx6KUqkUERHPfe5z44Mf/GAtS3TEd0SgeoHlAtVL6YQAcyfUCAAAAAAAAAAAQPsQqO4YgqC0xLe//e346Ec/Wj1/9rOfHW9729tiy5Yty93WEd+RrqQLWA3aLagsPA0AAAAAAAAAAADAkSgWi/GlL30pfvOb30R/f3+MjIzE8PBwPPHEE/Pm3XnnnVEul+OGG25IqNLGEahugHw+P+886TBz0s8HAAAAAAAAAAAAIHnlcjlmZmZiamoqpqenq9ty5/v27Yvbb7+9usZZZ50V27Zti2c84xmxfv366pZOp2PHjh0J/rrGEahuoUrwemHguZaO0kfadVq3agAAAAAAAAAAAIBjw549e+Lyyy9v6JpXX311bNiwIdasWRPZbDay2Wz09PREJpNp6HOSlCqXy0nX0FZyudwRv5B2Di+3c20AAAAAAAAAAAC0n3w+n0q6BmoiCErV8PBwvP71r49CodD0Z+3YsSPe/e53x6ZNm5ab1hHfEYHqBY4mUN3OBKoBAAAAAAAAAACoh0B1x1iVuUda4+c//3l8+tOfjq6urujq6opMJhPj4+MxMjISo6OjK95/wQUXxD/90z8tN6UjviNdSRfQSfL5fETEYcHkynhFOwWXBakBAAAAAAAAAAAAmKtcLsf09HRcf/31MTMzs+zciy++OI477rhYt25d9Pb2Rk9PT/T29kapVIodO3a0qOLmEqhugHYJLC8Wnp57LlwNAAAAAAAAAAAAcOz5yU9+Eu95z3uO6N5rr702+vv7G1xRexGorsNSYeR26VC90nOFqQEAAAAAAAAAAABaZ2pqKgYHB2N2djZmZ2ejWCzO2y82tvDacnOXmjP3fHZ2Nu6+++6aa/7Qhz4UO3bsiGw228Q3014EqutQCU4v1wW6VTUsJ5fLLTpvsTEhawAAAAAAAAAAAIDmePvb3x6//e1vky5jSV1dXbF27dooFosxNTUVp59+epx33nnHVJg6IiJVLpeTrqGt5HK5jngh+Xx+2TD03Otzg9SVsLUgNQAAAAAAAAAAAMvJ5/OppGugJh2RezxWPfzww/Hggw/G7OxszMzMRLFYrO4Xjs3tKL1wO5J59ejp6YmNGzfGpk2bYuPGjXHSSSfFa1/72ujp6TnaV9AR3xGB6gWWC1Qv1aF67vV2CypXalqpdgAAAAAAAAAAAJhLoLpjCIJymHK5HKVSackA9szMTIyNjcXQ0FAMDg7O2z/55JNx4MCB+NCHPhTPec5zjraUjviOdCVdwGpQCS23Y1i5HWsCAAAAAAAAAAAAoHlSqVRkMpnIZDJ133v//ffHVVddFbt27YrTTjsttmzZ0oQK24tA9TFEuBoAAAAAAAAAAACA5Wzfvj0uvvji+MEPfhDf+973YuvWrXHuuefGOeecEzt37ozt27cnXWLDCVQ3gKAyAAAAAAAAAAAAAKvB2rVr473vfW/s27cv7rjjjvjtb38bv/rVr+L73/9+ZLPZuO22246o83U7E6iuw0rB6Xw+L1wNAAAAAAAAAAAAQMc78cQT47LLLquef+ELX4gvf/nL8dhjj8Vpp52WYGWNl066AJorn88nXQIAAAAAAAAAAAAAHe7cc8+Nrq6ueNOb3hQf/ehHky6noXSorkMlnLxUF+p27E7djjUBAAAAAAAAAAAA0B6KxWLs27cv9u/fHyMjIzE8PBwjIyPzjiv72dnZ6O7ujuOOOy7pshtKoLoBVgpat7KOhTUsNgYAAAAAAAAAAADAsWdwcDB+9KMfxe7du2PPnj2xZ8+e2Lt3bxSLxcPm9vX1xYYNG2L9+vWxbdu2eMYznhEnnXRSvPjFL44NGzYkUH3zCFTXYblgcqtDy4sFpeeeV67ncrlq4Hu5ewEAAAAAAAAAAABY3b70pS/Ft771rcPGe3t744wzzoht27bFtm3b4pRTTokTTjgh+vv7Y2BgIHp6eiKVSiVQcWukyuVy0jW0lVwut+QLWaoTdTt3qJ57LSL5GgEAAAAAAAAAAOgM+Xx+9aYnVxdBUGpWKBTi/vvvr3anrnSqfuKJJ2JycrLmdV772tfGW97yllqmdsR3RIfqVWSlsLQwNQAAAAAAAAAAAMCxK5vNxtOf/vR4+tOffti1QqEQ4+PjsXfv3njrW9+67Dr79u1rVomJSCddwGqQy+WElQEAAAAAAAAAAADoWNlsNk444YQ4++yz43Wve11ceOGFccYZZ8TAwMBhc3/4wx/GlVdeGXv37k2g0sbTofoYIfANAAAAAAAAAAAA0P7K5XIUi8VFt1KptOS1o92mpqZiYmIiJicnY2JiIgqFQqTT6ejt7Y1Dhw7FoUOH5tX58MMPxyc+8Yn48Ic/nNCbahyB6josFUrO5/M1zUtCPp+PXC5X3QMAAAAAAAAAAABwZIaHh+N1r3tdzMzMJF1KU6xbty76+vqir68vent7Y+PGjXHqqadGb2/vvPG+vr7o6uqKpz3taUmX3BAC1Q3QzkHldq4NAAAAAAAAAAAAoJNMTEys2jB1RMTBgwfj4MGD8Yc//KGm+Zdffnn81V/9VZOraj6B6jpUOlEvDCm3c4dqAAAAAAAAAAAAABrjlFNOiV27dtU8v1wuR6lUimKxGKVSqboVi8VFxxbOree+pdZYbvzzn//8Ub2PDRs2HNX97UKgugGWClgLVgMAAAAAAAAAAAAcu1KpVGQymchkMkmXMs+jjz4aH//4x2ua+2//9m+xZcuWSKVSTa4qOQLVdVgpIJ3P5yOXy7UkSF15Vi3XF3bQXuleAAAAAAAAAAAAAFavm266KX7961/XNPfaa6+N2dnZmJ6ejkKhEDMzM9VrH/rQh+I5z3lOs8psmVS5XE66hraSy+VW5QsRogYAAAAAAAAAAKAe+Xx+9bajXV1WZe6R5ioUCnHvvffGxMRE7NmzJx577LHqNjY2VvM6L33pS+Nd73rXclM64juiQ3UDtTK0XGuH6oXdqWu5FwAAAAAAAAAAAIDV66abbopbb711xXnbtm2L7du3x5lnnhknn3xybNiwIdavXx/r16+PgYGByGQyLai2+QSq61AJJ7dDGHmlGirXK/u5wep2qB8AAAAAAAAAAACA1iiXyzE7OxvFYjFmZ2fj9NNPr+m+Stfq//mf/4lvfvOb0dfX1+RKkyFQ3UBJB5UX6zxdGUu6NgAAAAAAAAAAAIBjWblcjs9//vPx9a9/PVKpVHWLiEilUpFOp6vHi20REel0et49la1YLFbD0nOD05XxUql01PU3Yo12lSqXy0nX0FZyuVxbv5C5naaXksvlappXmQsAAAAAAAAAAAAL5fP5VNI1UJO2zj12unK5HKVSqRpKrmwrnS92bXZ2Nq655pqkf9JhXvGKV8R5550XXV1dkclkoqurq3pc2Y4//vjYunXrkSzfEd8RHarrUAkpLxVCXtghutZQcz0q6y/XjXru3Lk1LHcvAAAAAAAAAAAA0Nkqod16w7/FYvGIg8O1BIsb+bwjranyvHrvPxYaFz/rWc+K5z73uUmXkSgdqhfI5XLluYHjZoSi24lgNQAAAAAAAAAAAIvRobpjVIOg119/fdx5551J1nLMmNvBeWE358XGl5pTz9xa5qRSqSW3dDodEdGQ41KpFIODg3HBBRdEb2/vcq+qI74jAtUL5HK5VflCdKUGAAAAAAAAAACgHgLVHaOae7zrrrvit7/9bZTLZduCLSLmdZxuxfGxYOfOnfGRj3xkuSkd8R3pSrqATlLpVr1UMFloGQAAAAAAAAAAAEjKzp07Y+fOnUmXwRzlcrkarm51oPtIj4vFYoyOjsaBAwdieHg47rjjjtizZ0/1N61duzZOOumk2Lp1a1x11VWNfWEJEahuIGFqAAAAAAAAAAAAACpSqVRkMpmIiOq+HV133XXxy1/+csV52Ww2vvzlL0dfX1+sWbMmUqmOaEC9IoHqOghMAwAAAAAAAAAAALDadHd31zSvUCjEa17zmur5y172srjuuuuaVVbLCFSvIvl8XugbAAAAAAAAAAAAgMOUSqUoFovV/dztHe94x2FjU1NTMTo6GqOjozE2Nlbdf+tb36quuXHjxgR/UeMIVK8iwtQAAAAAAAAAAAAA7eP222+PD3/4w5HJZCKVSkU6nY50Ol09TqVS865V9gvH5s5LpVJRKpUWDUYvHJt7Xi6XG/77fvOb3zR8zSQIVDdAKztD5/P5FefkcrlF5y02JoQNAAAAAAAAAAAA0Bw333xzNfzcTnp6emJgYCD6+vqiv78/+vv7Dzvv7++PNWvWVAPec7d0Oh3lcjlOPfXUpH9KQ6SakTbvZLlcbskXUgkkd2IIuZWhbwAAAAAAAAAAADpfPp9PJV0DNREEbWPlcjlmZmaiWCzGzMxMzM7OHrYvFAqLji+2r2XOUnMPHToUBw8ejMnJyZienq7rd5x44onxr//6r5HJZOp9BR3xHdGhuoGSDi0v93xhagAAAAAAAAAAAIDWSqVSkc1mI+L/ukK3i2KxGFNTU9WA9dTUVExOTsbBgwerY/fee2/s2rUrIiImJiYSrri5BKpXkeVC00mHvQEAAAAAAAAAAABoD5lMJvr6+qKvr2/JOYVCITZv3hxf/epXY3JyMiYmJuK4445rYZWtI1DdQO0YWBakBgAAAAAAAAAAAOgc5XI5SqVSFIvFKBaLMTs7O2+/8HixsVrnLnZt7vi+ffsiIiKbzUYmk0n4zTSPQHUDtHNouV3rAgAAAAAAAAAAAFjtPvvZz8bPf/7zusPN7SCdTkdfX1+86lWvile+8pXR29ubdElNI1Bdh6XCyZXxdg5WAwAAAAAAAAAAANBaPT090dfXt2gX6Lnb3I7US3WMbrVSqRRjY2Nx6623xq233jrv2h/90R/Fxz/+8ZbX1CwC1Q2UdJh6sUC3kDcAAAAAAAAAAABAMi6//PK4/PLLG7LWwtD1SiHsekPbC7fp6el48skn4xvf+MZhtTz/+c9vyG9qFwLVdcjn8xGRfHB6Ke1aFwAAAAAAAAAAAABHJ51ORzqdju7u7iNeo1wux/j4eIyMjMTIyEgMDw9XzwcHB2NoaKi6Hxsbm3fvTTfdFGeeeWakUqmj/SltR6C6gSrdoNspeN0ONQAAAAAAAAAAAADQevfff39cddVVNc/PZrOxbdu22LFjR2zbti22bNkSGzdujG3btsXmzZubWGmyBKqbQIgZAAAAAAAAAAAAgKRNTU3VNb9QKMRDDz0UDz300GHXvv/970cmk2lUaW1FoLoB2qUjdaVD9mKSrg0AAAAAAAAAAACA1jr//PNj165d88aKxWJMT0/H1NRUdTt48GCMj4/He9/73kXXueCCCyKVSrWi5EQIVK8iy4WmlwtbAwAAAAAAAAAAANC+SqVSdSsWi/P2C4+P9DydTseZZ565aHfqn/70p/HCF74wIiL6+vri3e9+dzzvec9r9WtoGoHqOnRi92dBagAAAAAAAAAAAIAjMzs7GzfffHMMDQ0tGUZeKbC8WAC63uBzO5mYmIhPf/rTAtXMl8/n551XAswLxxuh3nC0MDUAAAAAAAAAAADAkZmdnY1f/OIXMTQ0tGTYuVwut2XwuZG6urqiq6sruru7I5VKRXd3d1x55ZVx0UUXxRVXXJF0eUdNoLoBOrFzNQAAAAAAAAAAAADLW7t2bXzmM5+pef6RdJ+u93xugLvWe4/2+b/+9a/jySefjOnp6YiIGBsbi4iIcrksUH2sqXSc7qSgdD6f76h6AQAAAAAAAAAAADpVOp2OdDqddBkN9fOf/zxuv/32eWNr166NF77whfH85z8/oaoaS6C6DoLJAAAAAAAAAAAAABxLzj///HjDG94Qv/rVr2J4eDieeOKJ6Ovri3e84x1Jl9YwqysCz2HmhsArHbYBAAAAAAAAAAAAoBaZTCauvPLKeOtb3xrFYjEiIrZs2ZJwVY2lQ3UD5fP5tu5i3c61AQAAAAAAAAAAANBe9u/fH48//njs2bMnvvvd78a+ffsiIqK3tzfhyhpLoHoVWSzQPXes3QPfAAAAAAAAAAAAALSHRx99NK644opFr1100UUtrqa5UuVyOeka2koul1vyheTz+cqcFlUDAAAAAAAAAAAAycjn86mka6AmgqA0RbFYjE996lPx9a9/vTq2YcOG+NrXvlbPMh3xHdGhuoHasQN0paZ2rA0AAAAAAAAAAACA1isUCjExMXHYNjk5Oe/4sccei4iI7u7ueMELXhCvec1rEq68OQSqG6iVgeXlAtJzO2lXwtS13gsAAAAAAAAAAADA6vLDH/4w3ve+9x3RvZdcckm85jWviac85SmxZs2axhbWJlLlsk7vc+VyuSVfyNygcqcRogYAAAAAAAAAAKAe+Xw+lXQN1KTjgqCjo6Oxb9++KJfLUSqV5u0XG5u7j4hlr9eyRmVOo+c1ou5GPGuxtfbu3duwv9+uXbvqmd4R3xEdqptoYWfoVlmsK3XE4vUIWQMAAAAAAAAAAACtdPXVV8cTTzyRdBlERDqdjnQ6HaVSqRr8jojo7e2Nvr6+yGazUSgUYmpqKg4dOhRXXHFFgtU2j0B1g8ztAN0OnawXPluHagAAAAAAAAAAAKAdfPCDH4zH3cqPzQAAIABJREFUH398xS7Ly+2P5t6j3Td6zXqeW8ta9VgYpK6YnJyMycnJyGazsXHjxjj11FPj4Ycfjmw226h/g7YiUN0EgssAAAAAAAAA8P/YuffouO76XPjPzMi6JLZjOU7cxAYS11hJCCRAGhpo2kloOCm3EnjpYgEHaEvpKV2c0B4CPbxcekopEKAtqz15m3KyyiIUejucFsopARJPuCS84XIgWXEQxrk5cp3Y8UW2LMnWzLx/EOmVZUmW7JFmRvl81tprZvb+7b2fGWntv571BQCA6Z1zzjk555xzmh1jSRovVZ9owXtsbCwDAwP54Q9/mB/84AfZsmVLduzYMTFR/NOf/nSuueaaJn/LxlOobpDJJepWmFA9zmRqAAAAAAAAAAAAgCeHQqGQQqGQJCmVSvM6t1qt5s1vfnMefPDBY45t3Lgxr33ta3P55Zc3ImbLUaheAM0uME8uUTc7CwAAAAAAAAAAAACtr1gs5sorr8y9996bgYGB7NixI7VaLUnyk5/8JH/0R3+UNWvW5Nxzz81b3vKWbNy4scmJG0eheh6OV05ulWnQU6dlt0ImAAAAAAAAAAAAAJpjYGAg73vf+5Ikq1evzqpVq3LkyJGMjIwcsw0PD2dkZGSiTD3Z7t27s3v37jz88MP5u7/7u8X+GgtGoboBKpVKksWdBn28ovT48XK5PJFvrucCAAAAAAAAAAAAsHTccccduf/++5Nk4nU6a9asyYYNG7J+/fqsWbMm3d3dR209PT0ZGRnJM5/5zMWKvigK9Xq92RlaSrlcnvcP0ioF5elyjO9rlYwAAAAAAAAAAAC0h0qlUmh2BuZEEZTjqtfr2bt3bwYGBvKjH/1oYtuxY8dxz/3iF7+Y5cuXn+it2+I5Umx2gKVgvKg8dRL0QjrevSZPzZ5uQjUAAAAAAAAAAAAATw6FQiGrV6/OnXfemRtuuCG33XbbnMrUSfLP//zP+dKXvpTbbrstd955Z37wgx9k3759C5x4cZlQPcVsE6onl5QBAAAAAAAAAABgKTOhum0ogjJn3/zmN/Pe9773pK+zadOm3HjjjXNZ2hbPEROq29RcJ1SPv5/6GQAAAAAAAAAAAIAnl+9///sNuc6Pf/zjXHHFFfnmN7/ZkOs1mwnVU8w2obqdVSoVk7UBAAAAAAAAAACYMxOq28aS7D2yMKrVah577LGMjIwctQ0PDx+zb8eOHbn11ltnvd4v/dIv5X3ve1+KxRlnPLfFc6Sj2QEAAAAAAAAAAAAAgIVXKpVy1llnzWnt3r17j1uovv322/PCF74wb3rTm/LGN76xERGbQqF6HiqVSpKY9AwAAAAAAAAAAADAktbb25vNmzfn4MGD+bd/+7d8/vOfz86dO6dde9FFFy1yusZSqF7iKpWKAjgAAAAAAAAAAADAPNTr9dRqtYnXJEd9nsvrfNae7L1O5p6znbdr167ceuutGRkZyYUXXpg3vOEN2bBhQ9atW5fly5c380/UUArVDdDKpeVWzQUAAAAAAAAAAAA8udx00035zGc+0+wYzENnZ2euvPLKXHPNNdm0aVOz4ywYhep5mKmcPNP+SqWyaBkAAAAAAAAAAAAAWtmOHTuaHaHldHR0TGzLli3LsmXLJt7Ptu94azo7O4+67vi+Uql0zJrprtPd3Z3u7u4UCoUUCoVm/0wLrlCv15udoaWUy+UZf5DxgvTUUnOrTKieLUerZAQAAAAAAAAAAKA9VCqVpd+iXBqWdBG0Xq+nVqulWq1ObJM/z/T+RNbOdf1czj3eNjY2Nqd9U6+/mNasWZO3vOUtueqqq07mMm3xHDGheglRmAYAAAAAAAAAAACWkkKhkFKplFKp1OwoTTdTYXu2IvaePXvy3/7bf8vo6Oi877d79+78yZ/8SZ797GdnzZo1C/CNWodCdQOMF5kXcwr08e41+fj4ZO3xfaZVAwAAAAAAAAAAALSXYrGYYrGYZcuWzfmcL3/5yydUpp7sIx/5SHp6etLd3Z0NGzbkNa95zUldrxUV6vUlPel93srl8rx/kHYoKLdDRgAAAAAAAAAAAFpHpVIpNDsDc6IIyqwGBgZSrVZz+PDhjIyMTGzDw8NHfR7fNzo6OvH5wIEDuffee1Or1Sau99WvfjUdHXOe6dwWzxETqudhfNLz1GJyqxSVlaYBAAAAAAAAAAAAmGzdunXzPqdWq+Wee+7J29/+9ol9p59+ep7//OenVCo1Ml5LUKheQqYrU08uWStcAwAAAAAAAAAAQGP09fX9bpLfTnLOE7vuTfLH/f39X5q0ZlOSDye5Mklnkh8leV1/f/99Txz/5BPHzk5yMMkdSf5g/PiU+3Un+X+TPCvJz/X39393Yb4ZTwYDAwP5q7/6q1Sr1VSr1dRqtYyNjWVwcDD79u3Lvn37JqZSv/GNb8xLXvKSrFmzJoVCWwycnjeF6gYYn1w9rlml5ekK05M/K1MDAAAAAAAAAABAwzyS5F1JtiYpJnljkn/u6+t7bn9//919fX3nJvlWkk/np6XpfUnOy0+L0+O++8Tx7UlWJ/nDJF/r6+s7p7+//8iU+33siXs+a8G+EU8a//2///fceeedx13X3d2dO+64I8uWLctrX/vaRUjWHArVDaCoDAAAAAAAAAAAAE8u/f39/zJl1//d19f3O0kuS3J3kg8m+Up/f/9/mbTm/inXuHHSxwf7+vrek+SHSTYk6R8/0NfX96tJrkjyfyV58XR5qtVq7rrrrmzdujVPf/rTc+mll6ZUKp3gt2Ope+9735u77rorpVIpIyMjOXDgQAYHBydeBwcH89BDD2Xnzp3ZunVrtm7dmle/+tXp7OxsdvQFoVDdQNNNiAYAAAAAAAAAAACWtr6+vlKSVydZnuSOvr6+YpKXJflwX1/fl5M8N8mDST7W39//9zNc49Qkv57k4SfWju9fn+T/yU+L1MPTnVutVvPOd74z9913X0ZGRtLd3Z3zzz8/119/vVJ1m6vX6xNbrVY76n2SY/aNjo5mZGRkxtfDhw/PeHzqvp07dyZJXvGKV+S3fuu3lmyZOlGobohKpXLU+8UoVU93n8mfJx+fnG+mcwEAAAAAAAAAAID56evre2aSO5N0JzmY5Jr+/v57+vr6fiY/LVe/O8l7k/xBkiuT/G1fX99Qf3//v066xluTXJ/k1Px0KvUL+/v7R584Vkryt0k+3t/f/4O+vr5zpstx11135b777svw8E/71sPDw7n77rvzx3/8x1m/fn3q9frE2snvp3O8tTOdf7y1c73vfMrD0+2bXEBu5LWmu/bJnDfXPAupq6srXV1d6e7uPuq1p6cnq1atytOe9rSsXr16yZepk6RwvH/QJ5tyuVyfrYy81ChWAwAAAAAAAAAAMJ1KpVJodoZW19fX15nkqUlWJXlVkt9KUk6yJ8lAks/19/e/dtL6zybp7e/v/5VJ+05LcmaSs5K8I8lTkrygv7//UF9f33uT/FKSq/r7++tPFKofSPJz/f39333iEvVPf/rT+dSnPnXc0jJLX3d398TW09NzzPuenp709PSkq6srxWIxhULhqK1YLCZJCoVCjhw5kv3792ffvn3Zv39/9u/fn1e/+tW5+uqr5xOpLZ4jJlRPY3LJeOrU56n72oWp1AAAAAAAAAAAANBY/f39h5P85ImP3+3r6/u5JL+X5HeSjCXZMuWU+5K8Zso19ifZn2RrX1/ft5PszU/L2TcneWGSy5Mc6evrm3zat/v6+v6+v7//dUny9Kc/Pd3d3RMTqpOko6Mj5XI5T33qU5P8tCA7m8nHp1s70/nHWzv+frrJ0TNNkx5fP9378UnOc3m/mNvJ5h7fGvFdjhw5ksOHD2f//v3HzTrfEv5HPvKR+Raq24JCdQMpLQMAAAAAAAAAAMCTWjFJV39//+G+vr7vJOmbcnxTkodmOb/wxNb1xOdfT3LqpONnJ7klyeuSfGt856WXXprzzz8/W7ZsyejoaLq6unLBBRfkD/7gD1IqlU7yK83PeGF3ujLx5HLw1KLwdMemnr+Q15665mSuvZj3mu38ud6rVqvlhz/84XH/tn/1V381UdBfahSqG2BykXrq+1YyXR4FcAAAAAAAAAAAAJi/vr6+Dyf5UpLtSVYkeW2ScpKXPLHk+iT/0NfX940ktyW5Ij+dTv2KJ87fmJ9Oov5akl1J1if5gySjSf41Sfr7+x+Ycs+DT7zd1t/f/8j4/lKplOuvvz533XVXfvKTn2Tjxo259NJLF61Mfc899+S6667L6OjootyPk1coFFIsFlMqlVIqlXLqqaemVCrl0KFDqVarx0yuPu+887Jp06bjTjpvVwrVDTLddOpmlZWny2J6NgAAAAAAAAAAADTUzyT5zBOv+5PcneRX+vv7b0mS/v7+f+7r63tLkncn+USSrUne0N/f/6Unzh/NTwvY/yXJqiSPJvl6ksv6+/t3zjdMqVTKZZddlssuu+ykvtSJeOpTn5rXve51GR0dnXaC8vGmI8916vJ8rzHTtOjjTZc+kWtMl7GV1ev1VKvVVKvVaY8Xi8X09PSkp6cn3d3dqVarefvb357XvOY1TfkfW2iFqQ3yJ7tyuTzjDzI+4bkdi8kK1QAAAAAAAAAAAMxHpVJZmqNolx5F0Ba1GGXwEy19f+c738m3vvWtDA4OZmhoaF7fa/PmzfNZ3hbPEROqG2C8aD2uVYvLStUAAAAAAAAAAAAAi6NQKKRUKjU7xrTuuOOO7Ny5M/MZzPyxj30s55577gKmah6F6gaYWlJu1UnWrZYHAAAAAAAAAAAAgMX39re/PW9729syNDSUwcHBDA4O5sCBAxkcHMyOHTvyqU996phzOjs709XVtfhhF4FC9QJQXAYAAAAAAAAAAACglZVKpaxcuTIrV648av/hw4fzox/9KN/+9reP2v+f//N/TpJs3rx50TIulmKzA7Si8QnTU5XL5WnL0pVKZcZzmqGVsgAAAAAAAAAAAADQPjo7O/OhD30on/zkJ485dvnllzch0cJTqJ7GTBOmZypOjxetW6XIbEI2AAAAAAAAAAAAACdj48aN+Yu/+Iu8/OUvn9j3wx/+sImJFo5C9TzMNKF68vHFNLXAPZdCd6uUvgEAAAAAAAAAAABobRdeeGE2bdqUJFm1alVuuummJidaGArV8zDThOpmmVrgnq7QPTWv6dUAAAAAAAAAAAAAzObhhx/Obbfdlptvvjm33HJLkmTfvn1505ve1NxgC6Sj2QGWgvHSciuWlVsxEwAAAAAAAAAAAACtac+ePfn1X//11Gq1Y479wi/8QhMSLTyF6gZQWgYAAAAAAAAAAADgRNVqtYmtWq1ObOOfF+PY5PcXXXRR+vv7c+jQoaNy3nLLLbnuuutSKpWa9EstDIVqAAAAAAAAAAAAAJiHBx54IDfccENGRkaOKihPV1qe7nXqvnq93uyvNK1isZhSqZRisZjDhw9n48aNKRQKzY7VcMVmB2gn5XJ51mnUlUpl0bKciFbPBwAAAAAAAAAAANAuxovQU7ckR73Otmby51ZUq9Vy5MiRjI6Opl6vZ8eOHSkWl1792ITqeRgvJE8tVVcqlVmL1gAAAAAAAAAAAAAsHeeee24+/vGPN+Ra9Xo9tVrtqInVkydZT51mPd2x6SZgz+fYX/zFX8wp69DQUD73uc9l+fLlWb58eS688MKcccYZDfkdmqnQyq32ZiiXy0vyB1H6BgAAAAAAAAAAYD4qlUqh2RmYkyXZe2RxfeMb38g//dM/paOjI8uWLUtHR0f279+fn/zkJxkZGZnxvOc973n58Ic/PNul2+I5YkL1PMw0oXrycaVlAAAAAAAAAAAAANrJ5Zdfnhe84AX5y7/8y9x7770ZGBjI0NDQxPFCoZCzzjorZ599dtavX59169Zl3bp1ufDCC5uYunEUqhtImRoAAAAAAAAAAACAdrVt27b8+Mc/PmZ/vV7P/v3787M/+7O59tprm5BsYRWbHaCdVSqVianV458BAAAAAAAAAAAAoN3U6/Vs3759xuOHDh1KoVBItVpdxFSLo1Cv15udoaWUy+UZf5DxwnQ7TaKuVCptlRcAAAAAAAAAAIDWUKlUCs3OwJwogtIQ9Xo9X/nKV7J169bs2rUru3fvzq5du/L444+nVqsds37NmjX50Ic+lI0bN8522bZ4jihUTzFbobqdtWMZHAAAAAAAAAAAgOZRqG4bS7L3+GRSr9dTq9VSrVYbuo2NjZ3wuUeOHMng4GD27t2bPXv25JFHHpk2+y/8wi/kAx/4wGxfry2eIx3NDtBOZiolt8sU6HbICAAAAAAAAAAAANBu7rjjjnz2s5894WJzKygUCuns7ExHR0eWLVuWlStXZtWqVfnZn/3ZPPe5z01vb29WrVqVVatWpbe3NytWrMj69eubHbshFKoBAAAAAAAAAAAA4CR0dHSks7Nz2rJ0qVSa8wTqWq3WtO9Qr9czOjqa0dHRlEqlHDp0KPv3788555yTV7ziFTnnnHOalm2hKVQ3QLlcbpsp1QAAAAAAAAAAAAA01qWXXppLL730pK9Tr9fnXL6eXMJu5NqxsbHcfvvtefjhh3P48OF84QtfyBe+8IXccsst6ezsbMCv1XoUqhugUqk0OwIAAAAAAAAAAAAAba5QKKRUKqVUKjUtw+OPP56bb7554vPll1+eq666asmWqROF6icN07MBAAAAAAAAAAAAnlxqtVpGR0czPDyckZGRie14n9etW5eBgYEkyete97r09fU1+ZssLIXqeZhaSp48mXqxC8uVSmXaPOP7pr5PMu0xAAAAAAAAAAAAAJaGRx55JP/xP/7Hhl5z586dOXLkSDo7O7Ns2bJ0dnams7MzpVIpp512WlOnaTdKoV6vNztDSymXy0vyB1GiBgAAAAAAAAAAYD4qlUqh2RmYkyXZe+TE7Nu3L69//eszNDS0KPe7/PLL80d/9EezLWmL54gJ1fMwddLzdMfL5fJx1wEAAAAAAAAAAABAo61atSr/+q//Oq9z6vV6jhw5kpGRkfzqr/7qvO716le/er4RW5JC9TwcryA9frxZRWpTqAEAAAAAAAAAAACYi1qtltHR0Rw6dCjDw8MZHh7Ob/zGb+S2227LwYMHc/DgwYyMjEx77tOf/vT89V//9SInXjgK1fMw0+Tp8f1TLXa5WZkaAAAAAAAAAAAAgKm+/vWv5/3vf3+SpLe3N8PDwzOWpadTKpVyyimnZM2aNbnqqqvy0pe+dKGiNoVC9TzMVlhe7DLz8aZRTz4+tfBtkjUAAAAAAAAAAADA0lWv1ye2Wq2Wer0+cWzv3r0znnfKKadk9erVWb16dXp7e7N69eqcfvrpWbFiRXp6enLRRRflzDPPXIyvsKgKk38gknK5POMPMtOE6nagRA0AAAAAAAAAAMB8VCqVQrMzMCdtUwR9+OGHs3Xr1omC79TC79TXubyf7py5XnPya5JFv+Zs55/sd1zIfvDmzZvns7wtniMmVDfQ1NLy1MnQi6VcLk977+n2KVkDAAAAAAAAAAAAi+HjH/947r777mbH4AnFYjGlUmliO+WUU7JixYosX748XV1dE8c7OjpSLBZTKBRy9dVXNzv2gjCheorZJlTPZGpRuRVLyu08XRsAAAAAAAAAAIDFZ0J122ibIujw8HAeffTRWacrn8jr+HYi5zciQ7VanXgdGxvL2NjYjO/ne6zV/c7v/E5+7dd+bbYlbfEcMaF6AS3EhOqTKUQrUwMAAAAAAAAAAADN0tPTk3POOafZMeZlZGQk1157bXbt2nVUebtarR71uVarNTtqUwwPDzc7QkMoVM/DTFOeZyoqKzADAAAAAAAAAAAAtK+Ojo5ceuml2b179zEl6vHPc9l/Mue2Wll78+bNzY7QcArVDTBT0Xqh7znb/SYfnzop+3jnAgAAAAAAAAAAAPDTQvVv/uZvNjVDvV6fcxn7nnvuyZ/8yZ+c9D2LxWKWLVuWjo6Oo15f//rXN+AbtR6F6gZazGL18e4x+Xi5XD6qVK1MDQAAAAAAAAAAANAeCoVCSqVSSqXScdeuXbs2pVIp999/f0ZHR4/aDh8+nEOHDuXAgQMZHBzM4OBgDh8+fNT5K1asyLp167J+/fqsW7duYlu/fn1Wrly5UF+x6RSqG0BBGQAAAAAAAAAAAIBmKxQKufLKK3PllVfOaf3IyEgeffTRPPLIIxkYGJjY7rnnntx6662p1+tHrb/44ovzZ3/2ZwsRvakUqhuoUqm0XLm6FTMBAAAAAAAAAAAA0Hzd3d152tOelqc97WnHHNu2bVve/OY3H7Xv9NNPX6xoi6rY7ABLSSsWl1sxEwAAAAAAAAAAAACtbf369bn44osnPp9yyinZs2dPPvnJT6a/v7+JyRqvMHUU95NduVxekj9IpVJJomANAAAAAAAAAADA3FQqlUKzMzAnS7L3yP+vVqulWq1ObGNjY0d9nmmbbt3x9tVqtWPW7Nu3L7fffnsOHDgwkWnTpk258cYb5xK/LZ4jHc0O0E6OV0quVCotXVhu5WwAAAAAAAAAAAAAS83NN9+c//N//s8xJeX5lKKbPTy5VCrl1FNPzSWXXJLzzz8/5513Xp71rGc1NVOjmVA9xVKbUN3qJW8AAAAAAAAAAABakwnVbaMleo/79+/P4cOHU6/XU6vVUq/XJ7bJn2u1WpIcs2++6xtxjfmsP9Fr/uM//uNi/ykW1Ytf/OJcd911sy1pi+eICdXzMNOE6vHS8tTj45+bbbYcytYAAAAAAAAAAADAyfje976Xd7zjHc2OQRM897nPbXaEhlCoboDJpeSZ3i+G2aZRm1QNAAAAAAAAAAAALIQLLrgg73rXuzI6OnrMtOapk5znMiV6PpOk57rmRM6ZS/bp1pzIObOtabb/+T//Z1avXt3sGAtKoXoG0xWQZysrz3beYlGYBgAAAAAAAAAAABZbT09Prr766mbHWLIaWdSe+vnmm2/O1772taPut27duqxfvz5nn312nv/85y/5MnWiUD2j6crJ48Xp6Y6Vy2VToAEAAAAAAAAAAABoqEKhkFKplCQTr43S1dV1zL5HH300xWIxp556ah544IF0dXVl06ZN065dKhSqG0CJGgAAAAAAAAAAAGhH1Wo127ZtS7VaPWqC8eRJxkmOmXY8dd/xzjnZay7ktU/2mq38W8zlnGXLluXIkSMT/xNjY2PZvn17tm/fnttuu21i/1e/+tV0dCzN6nGhXq83O0NLKZfL0/4g49Op53iNeZ/TLMrgAAAAAAAAAAAATKdSqRSanYE5Oaki6D/+4z/mhhtuaFQW2lChUEixWEyxWEypVEqxWJyYij04OJgkOeOMM/L6178+IyMj6e/vz6te9apccMEFc7r8goZvEIXqKWYqVM+mUqkoJgMAAAAAAAAAALCkKFS3jZMqgo6Ojub73/9+qtVqkhOftHwia+c7vflk8p1opqVyz0Zbu3Zt/u7v/m4uS9viObI0524vkPGJ01PL0+VyueVL1a2eDwAAAAAAAAAAAFh8XV1dueyyy5odgwU2U/F6thL2448/nt/4jd846joXXHBBrrjiirzoRS9a9O+wkBSqG0RZGQAAAAAAAAAAAIBWVCgUUijMb1j02NhYVq5cmcHBwYl9W7ZsyZYtW/Ld7343H/7whxsds2mKzQ6wlIxPsAYAAAAAAAAAAACAdlStVvP444/nsccey5vf/OZs2LDhmDXPf/7zm5Bs4ZhQ3UDNnlJdqVSOyTDdPgAAAAAAAAAAAAD4xje+kQ9+8IPp6upKZ2dnkmTPnj2p1WoTazZs2JC3v/3tefazn53169enWFx685wVqhtg6mTqZhWYp7uvMjUAAAAAAAAAAAAA07n55pszOjqa0dHRY46dfvrpOe+88/Kc5zwnK1eunCha9/b2ZsWKFUuqWF2o1+vNztBSyuXykvxBTKoGAAAAAAAAAABgPiqVSqHZGZiTJdl7ZHHUarXs2rUrAwMDeeSRR7Jjx44MDAxkx44d2bt3b/bv33/UtOpxxWIxK1asyIte9KK89a1vne0WbfEcMaEaAAAAAAAAAAAAAJ6EisVi1q5dm7Vr1+Y5z3nOMcer1WoOHDiQvXv3Zt++fdm9e3f6+/vz5S9/Ofv378/3vve9JqRuPIXqeahUKknSVpOexydTt1NmAAAAAAAAAAAAAJprbGwsf/M3f5N77rknXV1d2blzZ/793/891Wo1SXLBBRfkTW96U3NDNohCdYO0atl6PM94sRoAAAAAAAAAAAAAjmdgYCCf/exnj9pXLBZz3XXXZdOmTdm4cWOTkjWeQnWDKCsDAAAAAAAAAAAAMJN6vZ5qtZpqtZqxsbGJ97Ptm8uauZw33bq5nLd27do8+uijE99h3bp1efGLX9zEX3FhKFS3mfFJ2LMpl8vTrptunyI4AAAAAAAAAAAAwMJ4//vfnzvvvDPVajW1Wq3ZceatWCymu7s7p512Wl784hfnBS94QR566KGceeaZ6enpaXa8hinU6/VmZ2gp5XL5hH+QSqXSsgXlVs4GAAAAAAAAAABA66lUKoVmZ2BOFEFbWKVSyZYtW447CbpWq81pyvR8zllIGzZsyE033TSXpW3xHDGheolTpAYAAAAAAAAAAABojnK53JQeZ71eP6ZwPd/S9tT1X/rSl3LHHXckSfr6+hb9Oy0kheolTpkaAAAAAAAAAAAA4MmlUCikVCqlVCo15HpDQ0MZGBjId77znRw5ciQDAwMNuW6rUKhugPEp0K1YXjahGgAAAAAAAAAAAIDZjI6O5rHHHsvu3buza9euo153796dBx98MCMjI3nGM56Ra665Jr/4i7/Y7MgNpVDdIJVKZeK9AjMAAAAAAAAAAAAArejQoUMZGBjI1q1bc9999+W+++7LAw88kFqtdtS65cuXZ82aNVmzZk3+w3/4D7n66qtz3nnnNSn1wlKoPgnjJepWKFDPNcvkidWanSbzAAAgAElEQVSmVwMAAAAAAAAAAAAsXfv27cu73/3u3HfffTOuOeecc/Lyl788GzduzFlnnZUzzjgja9asSU9PzyImba5CvV5vdoaWUi6XZ/xBZiotN6OYfLx7Ti1OJ1GkBgAAAAAAAAAAYM4qlUqh2RmYE0VQZvTlL385H/nIR+a8vlgspqurK93d3anX6xkZGcnIyMgx6377t387r3nNa+ZyybZ4jihUTzFboXom44XlJ85vYJr555jp/q00TRsAAAAAAAAAAIDWp1DdNhRBmdWePXty+PDhjIyMZHR0dOJ18vvx4vRNN900p2s++9nPzp/+6Z/OZWlbPEc6mh2gncxUSm6VknKr5AAAAAAAAAAAAACgNaxevXpO62q1Wr7+9a9n69at0x7v6+vL7/3e76Wvr6+R8VqCQvWTiMI1AAAAAAAAAAAAAOO2bduWb3zjG+ns7Mzg4GA2btyYtWvXZt++fbn//vtz6NChibX9/f35T//pP2Xz5s1NTLwwFKqnUalUJsrHk6dSz1RInmlydauZ/L0AAAAAAAAAAAAAeHL70Ic+lG3bth2z/8wzz8wzn/nMnH766Vm5cmVWrlyZI0eO5JJLLmlCyoWnUD2NyaXjye/bvTjd6rkBAAAAAAAAAAAAWDwf+tCH8jd/8zf5+te/nqGhoYn9jz32WB577LGcdtppWbNmTc4888ycffbZ6e/vz8GDB7N+/fqsXbs2pVKpiekbp1Cv15udoaWUy+UT+kFMfwYAAAAAAAAAAGApqVQqhWZnYE4UQTlp9Xo9Q0ND2b17d3bt2pXdu3dPbLt27cqjjz6aHTt2ZGRk5KjzXvnKV+Ztb3vbbJdui+eICdUN0upl6naZrg0AAAAAAAAAAADAwjt8+HAeeOCB7Nq1K0NDQzl48GAOHjx41PvxzyMjI+ns7DymUN3X19ek9I2lUL2IZio1z2W69YlOwJ58njI1AAAAAAAAAAAAwJPX/fffn7e97W05dOjQjGt6enpy6qmnZvny5Vm+fHl6e3vzlKc8JcuXL5/Yv27dulx22WVZtmzZIqZfOArVDdDK059bMRMAAAAAAAAAAAAAi+/f/u3fZi1TjxeoV65cmRUrVuT000/PC1/4wlx88cUpFAqLmHRxFer1erMztJRyuTzjD9LKxenjaefsAAAAAAAAAAAALL5KpbJ025NLiyIoc1av17N3794cOHAgg4ODE68zvd+xY0eGhoZy7rnn5pWvfGV++Zd/Od3d3fO5ZVs8RxSqp5itUH08lUqlqYXl2e7f7GwAAAAAAAAAAAC0F4XqtqEIyoIZHR3Nrbfems9//vPZtm1b1q5dm89+9rMpFotzvURbPEc6mh1gKWiV6c/Nvj8AAAAAAAAAAAAAS0dXV1euvPLK7Nq1K9u2bcvu3buzFIc5z7kezuzK5fJEsRoAAAAAAAAAAAAAloLbb789n/rUp3LJJZfkox/9aEqlUrMjNZwJ1TOoVCpznvg8XqZuxQnRrZoLAAAAAAAAAAAAgNZz6NChDAwM5JFHHsnAwEC++93vJkmuu+66nHnmmU1OtzAUqmcwXQl5fAL11GOtPJl6clblagAAAAAAAAAAAACmU61W88u//MszHt+6dWu6urpy2mmnLWKqxaFQPQ8zlZHH9yssAwAAAAAAAAAAALSmWq2WWq2WarU68Tr5/XTHGnV8oe4x27oTudds3vOe9yRJNm/evBh/rkWlUN0A40XqxZhcfTKFbWVvAAAAAAAAAAAAYKHs2bMnt9xyS44cOXLS5eCFKBjX6/Vm/0TTKpVKKZVKKRaLE+8nfy4Wi0e9n2lNV1fXrMenez3euiTZv39/9uzZk7179+alL31pk3+thaFQ3SCTy9MLWVw+mZL2dOcqWQMAAAAAAAAAAACNcM899+STn/xkyxaXm62jo2NiW7Zs2VFl5kKhcFKvSVIoFJIk9Xo91Wo19Xo9hUIh1Wr1qPXd3d3p7e3NqlWrJl4nb8uWLWvmz9QUBf+0RyuXyzP+IOOF5JkmUbdyOXl8ijYAAAAAAAAAAADMRaVSKTQ7A3PSUkXQw4cPT0yD9npyrwt17eHh4ezbty9jY2PT/g1PPfXUrF27Nh/4wAdy9tlnn+y/RFs8R0yoBgAAAAAAAAAAAKAhOjs7mx2BOajX6xkaGsq+ffuyd+/eo16/973v5e6778673/3uXHvttbn44osnpl8vVQrVDTA++dkUaAAAAAAAAAAAAABaXaFQyPLly7N8+fKsX7/+qGOvfe1r8+lPfzr/8i//kt///d/Pueeem2uuuSZXXXVVuru7m5R4YRWbHWApaXaZulKpNPX+AAAAAAAAAAAAALS3QqGQV77ylbn++utz1VVX5aGHHsqf/umf5td+7dfyt3/7t82OtyBMqF5Cml3oBgAAAAAAAAAAAKD9XHfddfnud78765qhoaF8+9vfzute97pFSrV4TKhe4kytBgAAAAAAAAAAAGA2xeLsleJSqZSXvOQlefe7371IiRaXCdVLnKnVAAAAAAAAAAAAAEynWq1m586dedWrXpUrrrgie/fuzc6dO7N169Zs3bo1Y2NjE+u++MUv5ktf+lJuvfXWJqduPIXqBTA+FXohy8yVSiXlcnniFQAAAAAAAAAAAABm09/fn7e+9a2p1Wozrunq6kpvb282btyY3t7enHbaaent7c3IyEh+8Rd/cRHTLp7Z53NzlHK5PKfy8kzrKpXKRNl66v7jmbpm/PqT73O868zlPgAAAAAAAAAAAAAsTV//+tdnLVMnyYoVK3LKKaeku7s7XV1decpTnpJLLrkkv/mbv5mLL754kZIurkK9Xm92hpZSLpdP+Adp9rTo2e7f7GwAAAAAAAAAAAC0l0qlUmh2BuZEEZQ5q9frGRkZyeDgYA4cODDx+vjjj+ehhx7K9u3b8/DDD+fxxx+f9vx169blM5/5zHxu2RbPkY5mB+DETFeQnjqtevzz1LXK1QAAAAAAAAAAAABPPoVCIT09Penp6cnatWsn9l9xxRUzntPT05Ph4eEkyfOe97wFz9gMJlRPMduE6kqlMr5mkdKcvPHytBI1AAAAAAAAAAAA82FCddtQBOWE3X333bnxxhuzZcuWGdf80z/9U04//fQTvUVbPEdMqJ6H4xWSj1danqmQPZey84kWopWoAQAAAAAAAAAAABhXq9Vy8ODB7Nu3L9dee+0xx1/wghdkw4YNqVarecYznnEyZeq2YUL1FO0yoXq6gvXkfVPfJ5n2GAAAAAAAAAAAAEzHhOq2oQjKcX3rW9/Ke97znjmtveaaa/LMZz4z3d3d6erqOuZ1fFu2bFkKheM+JtriOaJQPcVshep2pkQNAAAAAAAAAADAfChUt40l2Xuksb7zne/kne98Z8Ov+yu/8ivHu25bPEc6mh2gFc23fNwqk6uVpgEAAAAAAAAAAACY6ud+7ueyefPmGY9Xq9UcPnw4IyMj+fd///f87u/+7pyu+4IXvKBREZtKoXoa7VpKni63kjUAAAAAAAAAAAAAsymVSunp6UlPT09WrVqVN73pTfnUpz41cXz58uV55jOfmfPPPz/nn39+zjvvvCxfvrx5gRtMobpBWrW03Kq5AAAAAAAAAAAAAGg9hUIhb3zjG/OGN7whW7duzZYtW3LfffflRz/6Ue68886JdU996lNzzTXX5BWveEUT0zaGQvU8VCqVJMeWlJWWAQAAAAAAAAAAAFhKCoVCNm3alE2bNuUVr3hFvve97+Ud73jHxPHHH388+/fvb2LCxlGonod2LE5XKpW2zA0AAAAAAAAAAADAianX66lWqzly5Eiq1WrGxsam3cbXjI2NZWhoKAcOHMjg4GAGBwdz4MCB7N+/PwcOHMiBAweydevWiet3dXXlC1/4QorFYhO/ZeMoVM/DTBOqm2G6ovTkfYrUAAAAAAAAAAAAAK3hrrvuyoMPPjhjsXlqyXkua2YrS1er1ZPKWyqVsnLlyqxYsSIrVqzImjVrsmHDhqxYsSK7du3Ky1/+8iVTpk6SQr1eb3aGllIul1v6BxkvdTeK0jUAAAAAAAAAAADTqVQqhWZnYE5auvfIT73hDW/I9u3bmx1jVitWrMiqVavS29ubFStWpKOjI6VSaaJc/aIXvSibNm2a72Xb4jmiUD3FbIXq2SZUt+pE6FbNBQAAAAAAAAAAQGtTqG4biqBt4PDhwzl06NDEROnJr5O3yftmej/f49Otq9Vqsx4f3w4dOpRdu3ZNfI+LLroof/7nfz6fr94Wz5GOZgdYKsrlckuXl1s5GwAAAAAAAAAAAMBS1tnZmc7OzmbHmJeHH344b3zjG4/at2HDhialWVgK1Q3SqoXlVswEAAAAAAAAAAAAQOu566670t/fn4GBgdx///1HHbvlllvarhQ+VwrVDTK5uFypVI7ZtxhatdQNAAAAAAAAAAAAQGvbv39/3vWud018PvPMM3P11Vent7c3z372s5dsmTpRqG6IqQXqZpWax+87uVg9/l7RGgAAAAAAAAAAAICZdHV1pbe3N3v37k2SPPbYY/nqV7+as846K4888kjGxsbyvOc9L8VisclJG69Qr9ebnaGllMvlGX+QZk2ebgTTqwEAAAAAAAAAAJiPSqVSaHYG5kQRlIap1+vZu3dvHnnkkQwMDEy83nvvvdm9e3c2btyYv/7rv06hMOfHQ1s8R0yoBgAAAAAAAAAAAABSKBSyevXqrF69Os961rOSJNVqNV/84hfziU98Itu2bUutVkupVGpy0sZaejO3m2h8gjUAAAAAAAAAAAAALAWbN2/OJz7xiaxYsSLvec97llyZOlGoBgAAAAAAAAAAAABmsHLlyiTJ0NBQvv/972fbtm1NTtR4hXq93uwMLaVcLi+pH6RSqaRcLk+8AgAAAAAAAAAAwFxUKpVCszMwJ0uq90hruv/++/O//tf/yi233JIjR47kRS96Uf7rf/2vczm1LZ4jJlTPQ6VSSaVSaXaMeVGiBgAAAAAAAAAAAOBE1ev1DAwM5JFHHsmRI0fS2dmZn/mZn2l2rIZSqJ6Hcrk8bUG5VUrWrZIDAAAAAAAAAAAAgKXhO9/5Tt73vvflBz/4QZJk5cqVueSSS5qcqrEUqudhpgnVrTIFulVyAAAAAAAAAAAAANDetmzZkr/8y7/MP/zDPxy1f/fu3fmzP/uzJqVaGB3NDrCUVCqVlis1t2ImAAAAAAAAAAAAAFrT8PBwXvziFx+z/2lPe1qe8YxnZNOmTfn5n//51Ov1FAqFJiRsPIXqeTheMbkVi8utmAkAAAAAAAAAAACA5jly5Egee+yxDA8PH7Pt2bNn2nMeeuihPPTQQ/nf//t/T+x72ctelt///d9frNgLRqF6HiqVSpJjS8rj+6c7ttB5Jt9vLtOoTawGAAAAAAAAAAAAeHL74Ac/mNtvv/2kr3Puuec2IE3zFer1erMztJRyubwkfxBFagAAAAAAAAAAAOajUqkUmp2BOVmSvUcW1gMPPJAf/OAHGR4ezuOPP55du3Zl165d2b17d3bv3j3n61xyySX56Ec/OtuStniOmFA9DzNNqJ58fLFKywrSAAAAAAAAAAAAAMzF3XffnWuvvfaEzj3ttNNyxhlnZM2aNVm5cmVOPfXULF++PKeeemquvvrqBidtDoXqBlrMgrMyNQAAAAAAAAAAAEB7qFarOXz4cKrV6ozb2NjYrJ9n2jeXNV/72tdOOPv+/fuzf//+/OQnP8lZZ52Vz372sw38ZVqDQvU8tEKJeXxKdqPObYXvBAAAAAAAAAAAALCUveUtb8n999/f7BgnrVar5Zvf/Gae8YxnpLe3t9lxGqZQr9ebnaGllMvlGX+Q8UJyO5aQK5VKW+YGAAAAAAAAAACgOSqVSqHZGZgTRdA28I1vfCMPPvjgcadLn8hE6mq1mlqtdtzzx8bGGvZ9zjzzzPz93//9XJa2xXPEhOoGUloGAAAAAAAAAAAAYKrLL788l19+ebNjHFO8Hhsby/DwcA4ePJihoaGJbfLnb33rW9m+fftR17noooua9A0WhkJ1Ay1mmfp45e3x4+NTtedzLgAAAAAAAAAAAABLx5133pnPfOYzGR4ezsjISEZGRjI8PJzR0dHU6/Mfcn7gwIEFSNk8CtXHMbl8fLwS8mIWlY93n6mZJxerlakBAAAAAAAAAAAAnjxKpVI6OjrS0dGRUqmUYrGYYrE47+ts3LgxN9544wmd28oKJ9IqX8rK5fKMP8h4KbkdC8mmUgMAAAAAAAAAADAflUql0OwMzIkiKCesVqtldHQ0w8PDs26HDh3K5z73uQwNDaW3tzcf/OAHc/7558/lFm3xHDGhGgAAAAAAAAAAAACehIrFYnp6etLT03PMsZGRkXz0ox/Nt7/97axYsSJDQ0NJkr179+ZjH/tYbrrppsWOu2CW1rztBVYul6ed8jw+ubrZpsvRKtkAAAAAAAAAAAAAaB87d+7MbbfdlkOHDuXRRx+d2P+BD3wgH//4x5uYrPFMqJ6H8XLydKXq8eMzHVsM0927mXkAAAAAAAAAAAAAaC8HDx7My172shmPd3V1Zffu3Tly5EhWr16dUqm0iOkWhkL1PMxUTh7fr7wMAAAAAAAAAAAAQDvr7OxMqVRKtVqd9vg73/nOifdXXnll3vve9y5WtAWjUD0PM02oPt7k6mZq9tRsAAAAAAAAAAAAANrHwYMHjylTd3d354wzzkhvb29OO+209Pb2ZtWqVXne857XpJSNpVDdAOOF5WaXl6e7vzI1AAAAAAAAAAAAAHO1evXqXHfddbnxxhszODiYJBkZGcn27dvz8z//83nrW9/a5ISNV6jX683O0FLK5fK8f5DxCdWTrtGgNAAAAAAAAAAAANAclUql0OwMzIkiKA116NChvP/978+Pf/zjiUL1uKc85Sn59Kc/PZ/LtcVzxITqeRgvTrfjFOhmT88GAAAAAAAAAAAAoPUVCoWceuqpWb58eQ4ePJharXbU8VqtlmKx2KR0C0Oh+klEqRoAAAAAAAAAAACA2fT09OQP//APkyRHjhzJzp07MzAwkBtuuCHbt2/PS1/60lx//fW58MILmxu0gRSq56Edy8iTS9TtmB8AAAAAAAAAAACAxbdt27bcdttt2b59ewYGBrJ9+/YkyfDwcP78z/88/+N//I8mJ2wchep5qFQqSWYuJrfiBOjJeVoxHwAAAAAAAAAAAACLo16vZ2hoKIODgzlw4MDE6/79+3PgwIGJ9zt27Mi9996bjo6OnH322Vm3bl2e85znZN26dTnrrLNy/vnnN/urNJRCdZs6Xjl68vGpRXDFagAAAAAAAAAAAIAnj6985Su54YYbcuDAgdRqtVnXFgqFnHXWWXnLW96Sl7zkJVm5cuUipWyeQr1eb3aGllIul2f8QWaaUN3KBeXxbK2cEQAAAAAAAAAAgNZTqVQKzc7AnCiCclxbtmzJ5z//+aOmUg8ODubgwYOZqUtcLBZz2mmnpbe3N6tWrcqqVauOer9q1aqcd955WbNmzWy3bovniEL1FLMVqtuZQjUAAAAAAAD8f+3ca5BcZ3kv+n+PNKORNNYNKRohTCyCaYtgTLkSB+M47hMbc1KBgM3e5hIDRYoqEi65mFRqO4TifMitEjapEziVQ2Kgcio2TipUYgNJHMymvcnG+BLhKmzJHVsIfAuyLiON56aeme7zwZrZM6O5Sj3T3aPfr2rV6vW+73rXs3qk/vSvBwAAWAqB6raxKnOPraher087arXavNczxyY6Qy9mbKX2HR8fnwxXnzx5cvI4ceJE+vr60tfXN2fgOkkuueSS/MVf/MV8X1tb/I6sbXYBAAAAAAAAAAAAALSfkydP5q//+q8zODi4qJDvYgLDZxsOXq4A89T1nGnz5s3NLqEhBKqXoFwuJ8mcnZ5buQt0q9YFAAAAAAAAAAAAtKehoaF897vfzdDQ0GQIWWB5ddu+fXtuu+22FAqFFAqFbNiwodklNYRA9RLMF6Seb36hdYsJYp9rWLuVw94AAAAAAAAAAABA+9m1a1e++MUvNmy/cw1kL7ZD9Xx7LbXbdaP3mquz97ncP/XzXXfddU5/oy1btqyartRTFer1erNraCmlUmlVfSETQWqBagAAAAAAAAAAAJaiXC4Xml0Di7Kqco8sr8cffzzlcjnDw8MZHBzM0NBQBgcHp10PDQ2lWq3OuccVV1yRm2++OZdeeuliHtkWvyM6VAMAAAAAAAAAAADAeeCSSy7JJZdcsuC60dHRDA0NZXh4OP39/Xnssceyb9++PPDAA3nwwQdz7Nix3HbbbStQ8coQqF6CcrmcJG3V6XlqrbpUAwAAAAAAAAAAALCQzs7O1Gq1vOtd7zpj7pd/+Zdz4403NqGq5dPR7AJYOcLUAAAAAAAAAAAAACxGvV6fdfxLX/pSPv3pT69wNctLh+olWCiQrAM0AAAAAAAAAAAAAKvBpk2b8tWvfjUjIyM5cuRIDh48mIMHD+bb3/52vve97zW7vIYSqAYAAAAAAAAAAACAVej48eO55557Mjw8nJGRkZw6dWrWc7VaPWN8bGxszn17e3tX8C2Wn0D1EpTL5SQLd6peCbN1w546NvPz1DGdtAEAAAAAAAAAAABWv3379uUv//IvG77vFVdc0fA9m0mguoFmBpiXM7Q8295Tx2YGq6eGqIWpAQAAAAAAAAAAABpjbGws4+Pj53Q0Yo+5jiuvvDKDg4MZHBzM0NBQBgcHMzw8nNHR0bN+58OHDzfwG2w+geplMDNYvRx7L9d6AAAAAAAAAAAAABbnG9/4Rv7gD/4g9Xq92aU0TEdHRzZv3pytW7fm8ssvz5VXXpmtW7dmy5Yt2bRpU9asWdPsEhtOoHoWU7s5TzVXOHmujtTCzAAAAAAAAAAAAACr16WXXpr3v//9GR0dTa1Wm9YZeub1+Ph47r333maXvKBarZa+vr709fXl+9//ft71rndl27ZtzS5rWRVWUyK+EUqlUkt/IYvpel0qlRbdHVvoGwAAAAAAAAAAgNmUy+VCs2tgUVo698j/Nj4+nuuuu67ZZUzT2dmZ9evXZ/369enu7s769euzYcOGdHd3p7u7Oz/zMz+T66+//lwe0Ra/IwLVM8wXqJ6rE/VcHa2X00LPnDo/s+5m1AsAAAAAAAAAAEB7EahuG4KgbeTIkSN59tlnU6/XU6vVUqvVUq/XU6/XMzY2ltHR0YyOjqZarWZ0dHRybOJ66vxs6+c6qtVqqtVqRkZGGvIeb37zm/Oxj31sMUvb4ndkbbMLWC2mdoReibDyQs+YOj+zY7UwNQAAAAAAAAAAAMDK27FjR3bs2NG059fr9Zw6dSojIyMZGRnJhz70ofT19S15n/Hx8WWornkEqhuolYPKrVwbAAAAAAAAAAAAAMuvUCiku7s73d3dSZL3vOc9+fM///N57/n85z+fPXv2pFBoi2bTZ0WgegnmCiXP7AC9Esrl8oIh6YmaJuoTqgYAAAAAAAAAAABgwg033JAbbrhh8rper+fkyZP5jd/4jTz11FNJkgMHDqSrqytbtmzJxo0bV2WwWqB6CaYGlGeaGlqeb12jLGZvAWoAAAAAAAAAAAAAFqtQKKRer0+GqZPkU5/61OTnzs7OjI6OTl7/zu/8Tn7hF35hRWtcDgLVy0CQGQAAAAAAAAAAAIB2tHXr1nz961/PiRMncuLEifT19eWRRx7JHXfcMS1MnSTPPfdck6psLIHqBmrFIPVE12wAAAAAAAAAAAAAmM3hw4ezf//+9Pf358iRIzl69Ojk+ejRoxkaGkpnZ2euvvrqXHbZZdm7d2/27NmTtWtXRxR5dbxFk5XL5WnXrRRgbqVaAAAAAAAAAAAAAGg9733ve1OtVievN23alJe97GW56KKL8lM/9VPZvXt3rr322mzevLmJVS6fjmYX0IpmBqQXq1QqCTADAAAAAAAAAAAA0Fb+6I/+KDt37py8HhgYSLVazY4dO/LBD34wN95446oNUyc6VM9qqaHoUql01iHslVQulwW+AQAAAAAAAAAAAJjm8ssvz5133pm+vr4cOHAgBw4cyN13350vf/nLKRQK+cAHPpB169Y1u8xlU6jX682uoaWUSqU5v5CJ0HSrhpLnC0wLUwMAAAAAAAAAALAU5XK50OwaWBRBUJbFkSNHcuutt+bgwYPp7u7Ozp07s2PHjmzfvj3bt2+f/Lxjx45cdNFF6ezsnG2btvgdEaieYb5ANQAAAAAAAAAAAJwvBKrbhtwjZ6Ver2d8fDyjo6OpVqtzHg899FD+9V//NX19fXPu9Za3vCW33HLLbFNt8TuyttkFtJNW71A9m4nO1DpUAwAAAAAAAAAAAKwe99xzT5566qkzAtBzBaRnG6/Vakt6Znd397Qu1RMdqq+88splesuVIVDdADPDyisRvF4oID11fqIe4WoAAAAAAAAAAACA1eH222/P008/vSLPeslLXpIvfvGL6enpSaHQFk2nl6RQr+v0PlWpVFryF9IqnavnC0wLUQMAAAAAAAAAALAU5XJ59aUmVydB0PNUvV7P+Pj4orpTL7aLdbVaTV9fXx5++OEznnfvvfdmzZo1Sy2zLX5HBKpnmC9Q3SrB6aXQlRoAAAAAAAAAAICzIVDdNgRBaahqtZrPfvaz+e53v5tnnnkmSdLZ2ZlSqZSbbropr3zlK5eyXVv8jqxtdgGrSSuGllutHgAAAAAAAAAAAABaV1dXV2655ZYkSX9/fx5//PF85zvfyb/8y7/kvvvuyz/90z+dTafqltbR7ALaSalUmjWg3I6dqwEAAAAAAAAAAABgNuPj4zl69Giee+65nDp1KhdeeGEuueSSVKvV1Ourrym6DtVLMFdweuJ6okO1gDUAAAAAAAAAAAAA7aRWq+UTn/hEnnjiiRw7diy1Wm3a/Nq1a/Pa17521XWnTgSqG2IiSD0RoBakBgAAAAAAAAAAAN3C1PcAABfDSURBVKCd1Ov19PT0ZHR0dFqYeuPGjXn961+fK6+8Mq973etSKBSaWOXyEKhuAAFqAAAAAAAAAAAAANrZmjVrcuutt6Zer+fw4cPZv39/Dhw4kAMHDuSb3/xmvvGNb2T9+vX5yle+suq6VAtUL8FcwelyuTzvPAAAAAAAAAAAAADQmgSql2C+4LQwNQAAAAAAAAAAAAALGR8fnzzGxsZmPS9lbur4ue5VrVZz8ODB9PX1JUm6urpy8cUX58Ybb8zevXtz2WWXrbru1IlAdUNMhKnL5fKyB6snQt0L1TPbutnGBMEBAAAAAAAAAAAAGuvTn/50vvKVrzS7jFl1d3dnw4YNWbt2bdasWZO1a9emo6Mja9euTWdnZ376p386e/fuzd69e/MTP/ETWbt29ceNV/8bNtBc4eOJIPVKhJOXEt6eunap9wIAAAAAAAAAAABwdl796le3bKB6ZGQkXV1d2bJlS3bs2JHt27dPO2/evDmbNm3KBRdcsCq7Uc+mUK/Xm11DSymVSsv2hcwMNk8dXyjgLAQNAAAAAAAAAADASiqXy4Vm18CiCIKucrVaLWNjY2cco6OjGR8fz+jo6KLnR0dHMzg4mCNHjuTo0aOT576+vlmf3dHRMRmu3rRpU3p6elKv19Pf35/BwcHceuut2bt373zlt8XviED1DMsZqG4mgWwAAAAAAAAAAACWQqC6bazK3CMra3R0NMeOHcvRo0fT398/eZw4cSL//M//nBMnTsx6X6lUyic/+cn5tm6L35G1zS6gnczVYXrqfKuFlluxJgAAAAAAAAAAAABaR2dnZ3p7e9Pb2zs5duTIkdx0002T19u3b88b3vCGXHjhhXnZy16WnTt35uUvf3kzym04geoGasXgcivWBAAAAAAAAAAAAEBr6+zsnHZ99OjRfO9738tv/dZvNami5SNQvYot1FEbAAAAAAAAAAAAAGbT19d3xtihQ4fyzne+M+vWrUtXV1e6urqyYcOG/PZv/3Z27tzZhCobQ6B6CdotmNxu9QIAAAAAAAAAAACw8u6+++4cPHgwQ0NDGRoayuDgYAYHB2dde/jw4TPGbr/99txyyy3LXeayEahegrk6PrdaJ+hyudwytQAAAAAAAAAAAADQumq1Wv7sz/5s1rmurq7s3Lkzvb292bVrV3p7e7Nly5Zs2LAhGzduTFdXV8bHx3PppZeucNWNJVC9BHOFlFstvDy1HuFqAAAAAAAAAAAAgPZVr9dTq9UWPE98Hh8fT7VanXacOnVq1vPE57lUq9U8/fTTefrpp6eNv+Y1r8lnPvOZ5X71FSNQ3QATHaonrESAeaGg9MR8qVQ6oz4hawAAAAAAAAAAAOBc1ev1PProoxkYGFhy6Pdszmd77/j4+Lzz8z1vJeuc696V0NnZma6urskjSUZGRnLq1KmcOnUq9Xp92vqf+7mfW5G6Vkph5gue70ql0pxfyEQweWYYea5A9czxViRYDQAAAAAAAAAAwGzK5XKh2TWwKE0LglYqlfzqr/5qsx7PHAqFQtatW5fu7u7J89TPM89dXV1Zs2ZNOjo6UigUUigUJj+vXbs227Zty/bt2yeP9evXL6mc5XrPRtKhugGmBqinBpRXOqw8X+dpXakBAAAAAAAAAACARioWi/nCF76QwcHBaZ2ek8zbBXq265kdmZd6/0o+a677W/FZw8PDZ/x95vsOF6Onpyc7duzI9u3bc+211+ZNb3pT4/5RNYlAdQO1YmBZkBoAAAAAAAAAAABYLnv27Gl2CTTI1GB1vV7P4cOHc/PNN5+xbmBgIAMDAzl+/HiKxWITKm08gepVZLbgtDA1AAAAAAAAAAAAAAspFAopFAqT1z09PbOuu/jii1MsFrNr16784i/+4kqVt6wEqpdAOBkAAAAAAAAAAACAdvWjH/0oDzzwQEZGRs44hoeHzxjbuXNnDh8+PG2PJ554Ik888USS5JFHHsmf/MmfNONVGkqgegnK5XKS1ghWl8vleeuYOj9R92LvBQAAAAAAAAAAAGD1+bu/+7v8wz/8Q8P2u+KKKxq2VzMJVDeAgDIAAAAAAAAAAAAAreaxxx7LRz7ykWXb/9ChQ8u290oSqG6AZoSpF3rm1PlSqTStS7XwNwAAAAAAAAAAAABL1d3dneuvvz7ve9/7sm3btmaX0zAC1QAAAAAAAAAAAADQAPV6ffKo1WpnfJ46Ntf4uayt1WpJMu36U5/61Kz3DA4Opq+vL8eOHcuxY8dy/PjxHD9+PMeOHcvAwMCs7zcyMpK77747jz76aD7/+c+v5Fe7rASqG2Ci+/NE5+eZ1ytZx8xnzjYGAAAAAAAAAAAAsFS1Wi333HNPnn/++QVDvPMFfxe7drmDxo3aY+Ze7aq7uzsbNmzI1q1bs3v37mzYsGHasXHjxmzYsCH9/f255pprml1uQwlUN0ipVJoMUk+Yeb0SZnvmxNhsc8LWAAAAAAAAAAAAwGKMjY3ltttuy/Hjx5tdCmepo6Mja9asSUdHR9atW5eenp7JoHRnZ+fkmkKhkEKhkHq9nqGhofT19eXhhx/Ou9/97vzar/1ak9+i8QrtnIRfDqVSac4vpFmdp8/FRIdqnaoBAAAAAAAAAABYinK5XGh2DSzKigZBa7Xa5DFxPVs36dmuZ+sAPdse7bTvYvY623rOZt9G1TMwMJBnnnnmjL//rl27cscddyzln0xb/I7oUL0MWil43Qo1AAAAAAAAAAAAAKtDR0dHOjo6ml0Gy+jkyZN529vedsb45ZdfnmuuuSb3339/LrroouzatasJ1S0PgeolmC+cPLUDtBAzAAAAAAAAAAAAAO2gXq9nfHw8o6OjqVarGRkZSalUSrlczgUXXJAXXnghSbJv377s27dv2r2f/exn85M/+ZPNKLuhBKobRIgaAAAAAAAAAAAAgGYYHh7O3/zN3+T48eOpVquT4eip59nGJs71en3WfSfC1HP50pe+lN///d9fjldaUQLVq9zUztkAAAAAAAAAAAAArD7Dw8P51re+NS1QvVy6urpy4YUX5sYbb8wb3/jGZXvOSirMlSg/X5VKpVX5hQhWAwAAAAAAAAAAsBTlcrnQ7BpYlFWZe+Tc1Gq1jI2NpVqtLuqY6FY91/jBgwfz5JNPZmRkZNpzrr/++tx6663zldIWvyM6VC9BuVxOkrYKJgtSAwAAAAAAAAAAAJxfOjo60tXVla6urnPea9++fbnrrrtmnbv44ovPef9W0NHsAtpJqVRqu3Byu9ULAAAAAAAAAAAAQGuoVqvp7e3N29/+9rzyla88Y/6hhx5qQlWNp0P1KqIbNQAAAAAAAAAAAABno1ar5cMf/nAef/zxBddu27YtP/uzP5v3v//9K1DZ8hOoXkWEqQEAAAAAAAAAAABWXr1ez8DAQMbHx1Or1TI+Pj7t88xzo+emzp/NXK1Wy9jY2KLC1Ely/Pjx3H333VmzZk1+/dd/fZm/3eUnUL0E5XI5yZnB5bnGl7OG+ZRKpVnXzTYmhA0AAAAAAAAAAABwbv72b/82n/vc55pdxrLo7OzMunXrMjQ0lFqtNm1u7969TaqqsQSqG2AilFwul5c9oDzf/lOfP9u6lagPAAAAAAAAAAAA4HxTKpXS0dExrRP0zGNmp+jFHIu9p1qtplqtZnR0tOHvNjo6Om3f9evX5+Mf/3iuuuqqhj+rWQr1er3ZNbSUUqk05xeykp2oG02YGgAAAAAAAAAAgKUol8uFZtfAogiCtqD77rsv3/nOdxYdjp5tbjFjtVrtjK7RK+GlL31pbr/99sUsbYvfER2qVzlBagAAAAAAAAAAAICV9fjjj+ehhx6aNTw9NjbW7PIWbc2aNenq6kp3d3d+7Md+LL29vdmxY0de8YpX5JFHHsn27duzffv2dHd3N7vUc6JD9QzzdahuZ4LVAAAAAAAAAAAALIUO1W1jVeYeV7uJTtNjY2Nzdq1e7mNsbCxjY2MZHh5Of39/Tp48mRdeeCH9/f3p7+/P6Ojoot/nPe95T37lV35ltqm2+B3RoXoFlcvlJDkj2LyYsLNANAAAAAAAAAAAAMDq0NHRkY6OjnR2djZ03/Hx8Xz729/O8ePHMzg4OOcxNDQ0+Xl8fHzBfdevX5+NGzdm48aN6ejoyNDQUIaHhzM8PJxarZbXv/71DX2PlaZD9QzzdahebCB6rnWNtFDAeur8zHqEswEAAAAAAAAAAFiIDtVtQxCUSfv378+HP/zhc96nq6sr27Zty9atW7Nly5asX78+XV1dWbt2bfbv35/3vve9ueaaaxazVVv8jghUzzBfoLodTYSnhagBAAAAAAAAAABYCoHqtrGqco+cux/96Ed54YUXcurUqVSr1VSr1Wmfp17PHJ9v7plnnpn2nK997WvZsGHDQuW0xe/I2mYXwPISogYAAAAAAAAAAAA4f/T29qa3t7fh+z722GP5yEc+Mnn95je/OTfccEM++tGPNvxZK62j2QW0k3K5nHK5POccAAAAAAAAAAAAAKxGzz///LTrer2enTt3NqmaxtKhegnm6/asEzQAAAAAAAAAAAAAq81TTz2Vb33rWzlw4MAZc//+7/+em266qQlVNZZA9RJMdKGeGZ4ul8stH6hu9foAAAAAAAAAAAAAaB0nT57MH/7hH+bBBx9MkrzkJS/Ja1/72uzevTu7d+/OunXrcu211za5ysYQqF6C+ULJrRCqnq+GVqgPAAAAAAAAAAAAgPawf//+PPjgg3n729+ed7/73dm2bVuzS1o2AtVLMFeH6nYJKgtVAwAAAAAAAAAAADCXer2e/v7+HDp0KP/4j/+YJHnjG9+4qsPUiUD1kswMI08ErGeba4aFamiFGgEAAAAAAAAAAABorh/+8If50z/90wwPD2dkZCTDw8OTnyds3Lgx73jHO/KKV7yiiZWujEK9Xm92DS2lVCrN+YXM1aF6arB6tvlWMFftAAAAAAAAAAAAMJtyuVxodg0siiAoS/aJT3wi//Zv/zbvmu3bt2f79u3p6enJxo0b09PTk97e3rzpTW/Kjh07FvuotvgdEaieYb5A9ULK5XJTA8vNfj4AAAAAAAAAAACrh0B12xAEZcmq1WoOHDiQjo6ODAwMZHBwMAMDAxkYGMgLL7yQ//zP/8zTTz+dZ599NqOjo2fc/9a3vjW/+Zu/uZhHtcXvyNpmF9BO5utQ3QpB5tlqmKitVWoEAAAAAAAAAAAAoLm6urpy2WWXTRsbHx/Pddddt6j7169fvxxlNY1A9RLMFUgWVAYAAAAAAAAAAACgnXV0dOTHf/zH88Mf/nDONbt27codd9yxglWtjI5mF9BOyuXyZJfqVjRbbVPD3q1cOwAAAAAAAAAAAADNU6vV8txzz805XygUcvnll69gRSunUK/Xm11DSymVSkv+Qsrlcst3qW6HGgEAAAAAAAAAAGgd5XK50OwaWBRBUBrm2WefzaFDh3LkyJEcPXp08vzMM8/kyJEjSZJ77703a9asWeyWbfE7srbZBdB4U8PTgtQAAAAAAAAAAAAALMbu3buze/fuJC92rD58+HDuuuuuPPnkk0mSSy+9NB0dHc0scVkIVC9BuVxOkjMCyq0cXm61egAAAAAAAAAAAABWq1OnTuXgwYMZHx9f9mNsbGxZ96/XX2x+3tHRkauvvjo33nhjLr300hQKbdF0ekkEqhtgIki9EuHliVD3fEql0qzrZhsTuAYAAAAAAAAAAABojM985jP52te+1uwyzllHR0fWrVuXnp6eXHvttent7c0PfvCD1Gq1vO51r2t2eQ1XmEiP86JSqTTnFzJXh+p20IrdswEAAAAAAAAAAGhd5XJ59bWhXZ0EQVvIyZMn8+ijj6ZWq03r9jzzeq6x+ebPZc/5njVzbj47d+7MnXfeuZSvpC1+R3SobqBWDC23Yk0AAAAAAAAAAAAAq9HmzZtz1VVXNbuMczIRsH7++efzsY99LIcPH87WrVvzlre8Jb/0S7/U7PKWxaIC1cVi8b8kuSbJ65JcluSCJLdXKpWb57nnDUl+L8nrk3QneTLJF5J8plKpzBpfLxaL70vy4SSvTjKe5LtJPlWpVL46x/r1Sf5bkncm+fEk/UnKST5ZqVQOLObdGklwGQAAAAAAAAAAAIBW8Pzzz2dgYCAjIyMZHh7OyMjI5DHzerax5557LidOnEiS9PX15eabb05nZ2eT32p5LLZD9e/lxSD1QJJnklwy3+JisfjWJF9OMpLkb5McT/KWJH+W5Kok/3WWez6V5GOn9/+rJF15MSj9lWKx+NFKpfLZGevXJfn66f0eTvJ/J7nw9N6/WCwWf75SqTywyPdblLkC0+VyeUnrZs4vpov02XaaFvIGAAAAAAAAAAAAOL/cf//9+d3f/d1z3qejoyMvfelLc80112Tt2sXGjttPoV6vL7ioWCz+H3kx6PxkXuxU/c3M0aG6WCxuOr1uc5KrKpXKw6fHu5P8jyRXJnlXpVK5c8o9b0jyv5IcTPLTlUql7/T4RUn+PcnGJJdUKpUfTLnn1iR/mOTvk7yjUqnUTo+/Nck/Jtmf5NKJ8cUqlUoLfyEzTA1Ut2qA+WwD2QAAAAAAAAAAAJyfyuVyodk1sChLzj2y+p06dSr33Xdf+vv7J7tPTxxDQ0OTnx999NEF9/ryl7+cbdu2nW0pbfE7sqioeKVS+ebE52KxuNDy/5JkR5L/byJMfXqPkWKx+HtJvpHk15LcOeWeXz19/oOJMPXpe35QLBb/nySfSPL+JJ88XUNhyj2/MzU0XalU7ioWi99KcnX+d/i7IebqMD1zjeAyAAAAAAAAAAAAAM2ybt26XH/99Quu+8AHPpCDBw/Ou+ZDH/pQNm3alAsuuCCvetWr8sEPfrBRZbaM5ei9/fOnz/8yy9z/TDKU5A3FYnFdpVI5tYh7/jkvBqp/PqcD1Ul+IsnLk/xHpVI5NMc9V5++p2GB6rmC0q0SoJ4tzC3gDQAAAAAAAAAAAMBs/uqv/iqDg4N54YUX0t/fn/7+/snPM8fuv//+7Nu3L8eOHctrXvOavPrVr86ePXuyZs2aZr/GOVuOQPVEC+v/mDlRqVTGisXioSQ/meQVSQ4Ui8WNSXYnGahUKv85y35PnD6/ajHPmOeeVW+24LQwNQAAAAAAAAAAAACzKRQK6enpSU9PT3bt2jXv2kOHDuVzn/tcHnjggXz9619Pklx33XX5+Mc/vhKlLqvlCFRvPn0+Ocf8xPiWs1x/tvcsSrlcLiz1nnZRLpebXQIAAAAAAAAAAADQWKs290hr2bNnT/74j/+42WUsi44mPHPiP259ifctZf3ZPgMAAAAAAAAAAAAAOI8sR6B6ojv05jnmN81Yt9D62bpRL/UZAAAAAAAAAAAAAABnWI5AdeX0+VUzJ4rF4toke5KMJfl+klQqlcEkzybpKRaLu2bZ7+LT5/9YzDPmuQcAAAAAAAAAAAAAYJrlCFT/j9Pn/3OWuZ9LsiHJtyuVyqlF3vMLM9YkycEkTyV5VbFY3LPIewAAAAAAAAAAAAAAplmOQPXfJzma5J3FYvGnJgaLxWJ3kt8/ffkXM+75f0+fP14sFrdOueeiJB9OcirJFyfGK5VKfco9f1IsFjum3PPWJFcn2Z/kvga8DwAAAAAAAAAAAACwShXq9fqCi4rF4tuSvO30ZW+SNyX5fpJvnR47WqlUfnvG+r9PMpLkziTHk/xSkuLp8ZtOh6KnPuO/J7klyTOn13QleUeSlyT5aKVS+eyM9evyYgfqNyR5OMk3krw8yX9NUk3y85VK5YHFfAkAAAAAAAAAAAAAwPlpsYHq/yvJJ+dZ8sNKpXLRjHuuSvLxJFcm6U7yZJIvJPnzSqUyPsdz3pfkI0lenaSWZF+SP61UKl+dY/36JP8tybvzYpi6P0k5yScrlcr+BV8MAAAAAAAAAAAAADivLSpQDQAAAAAAAAAAAACwGnU0uwAAAAAAAAAAAAAAgGYRqAYAAAAAAAAAAAAAzlsC1QAAAAAAAAAAAADAeUugGgAAAAAAAAAAAAA4bwlUAwAAAAAAAAAAAADnLYFqAAAAAAAAAAAAAOC8JVANAAAAAAAAAAAAAJy3BKoBAAAAAAAAAAAAgPOWQDUAAAAAAAAAAAAAcN76/wE3WdDl55c5lAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC2MAAASrCAYAAACl7oEbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5RkdZnG8W/3JMkiICKwIKy+ggQVMYssKpIzogRRDMiCiiIrUQQkSQaVRcFAFEGSCrLKCiYMCwor6qOiIipKUOIMMKH3j3uLLYtRcOju6vD9nDOnq+793Ttvn5lTN9Rz39/A0NAQkiRJkiRJkiRJkiRJkiRJkqR/zmC/C5AkSZIkSZIkSZIkSZIkSZKk8cgwtiRJkiRJkiRJkiRJkiRJkiQtAMPYkiRJkiRJkiRJkiRJkiRJkrQADGNLkiRJkiRJkiRJkiRJkiRJ0gIwjC1JkiRJkiRJkiRJkiRJkiRJC8AwtiRJkiRJkiRJkiRJkiRJkiQtAMPYkiRJkiRJkiRJkiRJkiRJkrQADGNLkiRJkiRJkiRJkiRJkiRJ0gIwjC1JkiRJkiRJkiRJkiRJkiRJC8AwtiRJkiRJkiRJkiRJkiRJkiQtAMPYkiRJkiRJY1xVDfS7BkmSJEmSJEmSJEmPNbXfBUiSJEmSJOnvq6qBJEPt65cCqwKrAFcAtya5q3uMJEmSJEmSJEmSpNEzMDTk93SSJEmSJEljXVW9FTgWuB94GjAP+DJwdJKb+1mbJEmSJEmSJEmSNFkN9rsASZIkSZIk/WNV9XrgFOAjwMZJlgBOAHYC/r2qpvezPkmSJEmSJEmSJGmymtrvAiRJkiRJkjR/VTXQvnwt8C3g/CR/bpetA/wSOD3JI1U1I8nD/ahTkiRJkiRJkiRJmqzsjC1JkiRJkjSGdAWwSTKUZAh4ETCtE8SuqitpwthvSHJTVb0S2LqqpvWlaEmSJEmSJEmSJGmSsjO2JEmSJEnSGNKGr6mqvYClgcOBO4BnVtVTgIuBNYDNk9xYVUsCbwXuAi4HZvelcEmSJEmSJEmSJGkSsjO2JEmSJEnSGNDdEbuqXgEcBTwlyVzgc8ArgADPBTZN8uOqmg5sAbwW+GGSmaNfuSRJkiRJkiRJkjR5GcaWJEmSJEkaA7o6Yi9HE7y+EDi6Xf0N4EhgWeCbwP1VtTbwXuATwGlJLhr1oiVJkiRJkiRJkqRJbmBoaKjfNUiSJEmSJAmoqlcDVwK/Ai5PclDXun8BdgYOA24HFgZuAz6X5MR2zGCSeaNeuCRJkiRJkiRJkjRJGcaWJEmSJEnqk6oaSDLU9XNx4HxgY5pu2Dskuatnm+cAqwIzgT8k+VW73CC2JEmSJEmSJEmSNMoMY0uSJEmSJPVZVS2R5N7Oa+BTwDbAnsC5SR5o1803cN0Jc49mzZIkSZIkSZIkSZIMY0uSJEmSJPVVVb0eOB3YJskN7bJOh+xXAu8HLugEsiVJkiRJkiRJkiSNHYP9LkCSJEmSJGmSWw6YB3yuqtYGSHIf8EbgO8AJwPZVtVj/SpQkSZIkSZIkSZI0P4axJUmSJEmS+qCqBgCSfBY4GBgALugKZN8P7ABcC5wG7FJVU/tTrSRJkiRJkiRJkqT5MYwtSZIkSZLUB0mGqmpG+/pc4BhgNk0ge612+f3AzsAPgXlJ5vSrXkmSJEmSJEmSJEmPNTA0NNTvGiRJkiRJkiaNqtoe2DHJ1u37GUkebl+/GTgSuBfYPslP2+XTkszuV82SJEmSJEmSJEmS5s/O2JIkSZIkSaOgqgaqajrwPGDLqjoXIMnDXR2yzwLOB1YDvlRVL2qXz+7soy/FS5IkSZIkSZIkSZovw9iSJEmSJEkjpCc8PZjkEeA04ABgh6r6PDwayJ7ejrsJCM19m9W695fEKc4kSZIkSZIkSZKkMWRgaMjv8CRJkiRJkoZbVQ10wtNVtSGwPnBCkruqaingXcChwBeT7NDZBvgQ8BBwSZJf9KV4SZIkSZIkSZIkSU+IYWxJkiRJkqQRVFW7AscA3wLOSHJVu3xp4J3AIcDXgYuAZwIfBN6e5AvtuAE7YkuSJEmSJEmSJEljk2FsSZIkSZKkEVJV2wKfBT4MnJfk9p71TwW2AQ4E/gW4AzgpybGjW6kkSZIkSZIkSZKkBWEYW5IkSZIkaQRU1SLAxcCtwJ5JZrfL3wQsD9wMXJ3kkaqaDjwXeDDJLe24wSTz+lO9JEmSJEmSJEmSpCdiar8LkCRJkiRJmqBmAM8B/guYV1VrAScDzwfmAUsCuwGfTfIIcFNnw6oaMIgtSZIkSZIkSZIkjX12xpYkSZIkSRpGbZB6qH19DrAFTdB6BeAOYC/gN8D5wELA+p2u2ZIkSZIkSZIkSZLGFztjS5IkSZIkPQnd4WuA7tfAu4E/0XTJviDJqe02iwD3Ar80iC1JkiRJkiRJkiSNX4axJUmSJEmSFlBPF+z1gVcDzwG+BlyY5K/AB3rGLQ5sBrwSeF9fCpckSZIkSZIkSZI0LAaGhoYef5QkSZIkSZL+rqp6C3AUcAtwO7At8DHg9CQ3d417HbAesBdwbJIjR79aSZIkSZIkSZIkScNlsN8FSJIkSZIkjWdVtQVwAnB8klcCH25X7QUcVFXPbcctDWwNbATs1wliV5X3ZyRJkiRJkiRJkqRxys7YkiRJkiRJC6gNWH8CuC3JPlW1OvB94GzgJpru2OcARyf5eVU9A1g8yS/a7QeTzOtT+ZIkSZIkSZIkSZKeJMPYkiRJkiRJC6iqFgbeRBO8/h3wPeAa4L3APOA8YJP251FJfta17UASb8xIkiRJkiRJkiRJ45jT4EqSJEmSJC2gJDOBy5L8ENgKuBc4Msl9SR4AfgHcDuwMPKtnW4PYkiRJkiRJkiRJ0jg3td8FSJIkSZIkjXXdXayraiGaeypzksxKclc7bAVgOWBWO25R4KnAAcDVSf44+pVLkiRJkiRJkiRJGkl2xpYkSZIkSfoHeoLY2wOfB24CLqmq/bqG/gZYCNi9qjYEdgA2Bx7oBLGrynsxkiRJkiRJkiRJ0gQyMDTkjLiSJEmSJEmPp6p2Ac4AzgPuAZYHtgIuBd6YZF5VnQG8ieYB+JnAcUmO6lPJkiRJkiRJkiRJkkaYYWxJkiRJkqTHUVXPBr4MfA74RJJ7qmph4GZgDvC6JL9tx27RbnZvkmvbZYNJ5o1+5ZIkSZIkSZIkSZJG0tR+FyBJkiRJkjQOPA1YCvh2knvaZRcAQ8B2SX5bVasn+WmSy7s3NIgtSZIkSZIkSZIkTVyD/S5AkiRJkiRpHFiOJpD9M4CqugJYG9g6yY1V9TzgyKpap3dDg9iSJEmSJEmSJEnSxGUYW5IkSZIk6e+oqoH25S+A24F9q+oqYA1gyzaIPQPYBHgqMKs/lUqSJEmSJEmSJEnqB8PYkiRJkiRJ/E3wmqpauqoWBaYAJPkp8E3gA8ALgB2T/KiqFgd2APYHPt+OkyRJkiRJkiRJkjRJDAwNDfW7BkmSJEmSpDGjqt4I7AUsBfwXcHGSa9t1VwIvB64GbgBWAzYCTkhyRDtmIIk3XCRJkiRJkiRJkqRJwDC2JEmSJElSq6o2A84DLgemA68DbgGOSHJJO+YIYE1gDeAbwNVJzmvXDSaZ14/aJUmSJEmSJEmSJI0+w9iSJEmSJGnS6nSx7oSoq+qDwOLAkUkerKrtgEOAAeDgTiC73XbhJDO73hvEliRJkiRJkiRJkiaZwX4XIEmSJEmS1A+dIHb7dumqWhhYG7g1yYMASS4CDm7HHF5Vm3ftYlZVDXTeGMSWJEmSJEmSJEmSJh/D2JIkSZIkaVLqBLGrakfgGuBa4NXAku3yqe24S4GDgDnA8VW1TWf7rjC3JEmSJEmSJEmSpEnIMLYkSZIkSZpUurtZV9VrgTOA7wC3AA8C76+qdZPMqapBeDSQfRiwUPtHkiRJkiRJkiRJkhgYGrKBkyRJkiRJmnyqajngLTSdsPdPMrcNZx8NLAdskeT6qhpMMq/dZpUkv+5b0ZIkSZIkSZIkSZLGFDtjS5IkSZKkSaeqtqDphr0lcEuSue2qbwDvA/4EXF5VL0wyr6tD9q/b7Qfms1tJkiRJkiRJkiRJk4xhbEmSJEmSNBndCCwBvBhYrbOwDWV/G9gb+D1wVVW9pNMZu2ucU41JkiRJkiRJkiRJMowtSZIkSZIml6qamuRWYA3gVmCXqtq+s74NWn8b+A/g3nacJEmSJEmSJEmSJD3GwNCQjZwkSZIkSdLkUlVTksytqhWAHwCzgA8muahrzCDwjCR/7FedkiRJkiRJkiRJksY2w9iSJEmSJGlSajtkz6mqFYHv0wSy901y8XzGDrQdsyVJkiRJkiRJkiTpUYaxJUmSJEnSpNUTyP4OMEDTIfu8PpcmSZIkSZIkSZIkaRwY7HcBkiRJkiRJw6mqBjo/O6//njaIPTXJbcArgaWAaaNQpiRJkiRJkiRJkqQJwDC2JEmSJEmaaKa0PweSDP0TgezfAU9P8rmRL1GSJEmSJEmSJEnSRGAYW5IkSZIkjXtV9ZKq2gseDVe/D7iuqgaTDD3e9u02A8DMdn/eM5EkSZIkSZIkSZL0uKb2uwBJkiRJkqQno6qmACsAJ1TVOsDVwDHAof/svpLM6/4pSZIkSZIkSZIkSf+IXZ4kSZIkSdK4lmQu8C1gf+DNwGeAPZMcATxuV2yAqhrodNCuqu2rauuRqleSJEmSJEmSJEnSxGEYW5IkSZIkjXtJ7gB+DQwAU4AN2uVDVfUPZwbrCWK/FzgfmDOyFUuSJEmSJEmSJEmaCAxjS5IkSZKkcamqBnpe/xbYGTgMeENVnQuQZE5VTenZdmpnu64g9ruB44A9knxpVH4JSZIkSZIkSZIkSePawNDQE5qtV5IkSZIkaczoCVFvCLwMODHJfVW1FLAncAhwQZIdu7Z7DfCdJA/17O/dwEnA7knOGK3fQ5IkSZIkSZIkSdL4ZmdsSZIkSZI07nQFsXcFzgLWAl7arrsb+E/gUOCNVXV2Va1YVTsCXwN26d5XG8Q+EYPYkiRJkiRJkiRJkv5JdsaWJEmSJEnjUlVtB3wG+DBwXpLbe9YvDewOHAzcAywMHJPkiK4xewKnAu9IcuYolS5JkiRJkiRJkiRpgjCMLUmSJEmSxp2qWhS4BLgF2CvJnHb5DsDywP8CV9MEsF9M0zX7p0kubcdNbdedD1yU5DOj/ktIkiRJkiRJkiRJGvcMY0uSJEmSpHGnqpYCbgBOpOlsvTpwMvCCdsgSwK5Jzp7PtoNJ5rWvF0ty/+hULUmSJEmSJEmSJGmiMYwtSZIkSZLGpar6ArAhcCOwEnAnsBfwG+ACYCqwQZLZfStSkiSNiKoaSOIXHJIkSZIkSZL6bmq/C5AkSZIkSfp7uoNWVTUNmAE82C7bDTgKGAS+mOSUdtwiwD3AHw1iS5I08fScH6wMTAMeSHJ773pJkiRJkiRJGml2xpYkSZIkSWNST9BqW2BHYG3gJuA7SY5v101JMrd9vTiwGXAisHeS8/tSvCRJGnFVtRNwALA8EOCiJMe26wxkS5IkSZIkSRoVhrElSZIkSdKYVlW7AJ8CLgbuBFYH1gW+kWTrrnGvBV4FvAc4NsmRfShXkiSNkJ4HtTYGLgDOBH4PbAGsBpydZJ/e8ZIkSZIkSZI0UgxjS5IkSZKkMauqngNcCZwBnJbknqpaDLgZGAJemeS2qloG+AiwDvCpJKe32w8mmden8iVJ0ghozwXWA14NHJrkwapaCTgQ2A74XJL3tWMNZEuSJEmSJEkaUYP9LkCSJEmSJOkfeDqwKPDfSe5pl50LzAG2aIPYqya5E/gwsKNBbEmSJq6q2gC4FzgeuLMNYg8kuZXmwawvArtW1XEABrElSZIkSZIkjTTD2JIkSZIkaSx7OrAM8BuAqroCeD6wdZIbq2pN4JCqWjPJ7Ul+0Y4bMIgtSdKENA+4BngWsEi7bEr7ENbvgMOBLwB7VNXp/SlRkiRJkiRJ0mRiGFuSJEmSJI1lfwDuAXarqquANWk6Yt9YVTOAzYAVgEe6N7ILpiRJE1OSa2g6YH8LOLCqXpdkDjDQFcg+CrgMuKF/lUqSJEmSJEmaLAaGhvxuUpIkSZIk9UdVDcD/h6erahFgAJjZ6WxdVRcDWwF3Adsk+XZVLdYuOxnYP4mdLyVJmkDaWS465wfTganAvCQPtcvWBw4DXgZslOTqqpoCDCWZV1WLJnmgT+VLkkZAz7FhwIdwJUmSJEljhZ2xJUmSJElSX7QhqSFgSvt+e+Ai4Hrg/Kraqx36BuByYEmaDtkHAafSBLGP7wSxO8FuSZI0vvWE7bYEPgv8ELiwqt4Pj3bIPgi4DvhqVW2QZC7NQ110gtieH0jS+FZV3d9nT++8SDLUs06SJEmSpL6xM7YkSZIkSRp1baD634CdkvypqnYGPg1cBfwFeD6wJvCpJLu325wEPBd4HvA14L+TnNOuG+x00pYkSRNDVe0KnA58HbgHWAtYAzgryVvaMesDHwLWBzZJ8tV+1CpJGl5VNSPJw13vtwTeQdNs7KYk+/WtOEmSJEmSevi0sCRJkiRJ6oflaULVp1bVisCLgA/ThLN3BbakCVa9vaqOBUiyN7AxsHqS3QxiS5I0sXR3sa6q1YHDgUNpzg92BjYDDgB2qqpT4dEO2YcCNwH/Oto1S5KGX1UdAxxTVU9t328PfJ5m9oOlgH2q6utVtWQfy5QkSZIk6VF2xpYkSZIkSaOmqgaSDLWvjwJ2AX5M0/F6vyQXdY1dFjgQ2BXYOMl3+1CyJEkaYVX1vCQ39yxbH/gyTbfrb3YtX4bm/GAPYMMk17bLn5nkj6NXtSRpJFTVDOAY4D3AUcDHgBOBG4ETgGnAtsBHgZ8DWyf5S3+qlSRJkiSpYWdsSZIkSZI0apIMVdWU9vX+wPnA6sCywB0AVTWtXf9n4DPAYsC/9KVgSZI0oqrqcOD0qnpad2ds4GnAwsA97bipAEnupDk/mEbX+UEniN2zD0nSOJPkYeBgmtkR9gP2orkmvDbJw0keAC6kCWuvBlxSVU/rV72SJEmSJIFhbEmSJI2CzpfmXe89D5WkSSzJ3K5A9r40000vApxUVc9IMrvr2HE3TQhrsf5UK0mSRtgNwAfarqbLdC3/X+APwEeqaqkkczrnD8B9wF+A2b0768zAIUkaf7oezL0fOAI4Dtgf2ADoHANIMhO4DHg38Gzgy1W11KgXLEmSJElSyxCMJEmSRkxVPQsgyZz2/SZVtWSSef2tTJLUbz2B7ANopp9eEfh0Va3QBq4WATYCFgJu6V+1kiRpuHU6WCe5JMn3qur1wDVVtUm7/JfAxcDLgUOr6unt+cNCwIbAEHBrn8qXJA2jrnuIs9v3G9NcBx4CHATMAHasqiU72yR5iCaQvQ+wLrD+6FYtSZIkSdL/GxgaskmEJEmShl9VrUQzpei8JO+sqp2Bs4Btklza3+okSWNFVU1JMrd9fTRNZ7N7gGuBAeA1wElJjuxflZIkaST0nAdsA5wA3AEckuTKdvm5wOuBO4GvAcsCmwJHJDmqL4VLkobNP7iHuHWSy6pqCZrA9UG03bKT3Nu1/ULACu1DPJIkSZIk9YWdsSVJkjRS7gNmAjtV1TU0X6LsDlzZz6IkSWNLT4fs/WhCWAsB/wZcB2zaCWJXlfcxJEka56pqjaparaoG2/OA7apq2yQX04TtFgGOqKpNAZLsBBxOM0vGNsDCwHs7QWzPDyRp3HsQmMVj7yFeBdAGr48FjgQOBPZtA9q062d1gtgeEyRJkiRJ/WJnbEmSJI2YqpoGXEHT1fS6JK9olz/a/UySJHhMZ8wTgN2AHZJc1S4bTDKvnzVKkqQnp6oWAY4DXgDsCqwHnA68JclZ7ZjtgQ8DDwMHJbmia/vFgZlJ5rTvPT+QpHGqql4G3JzkvqqaAXyZx95DnNr1mb8Y8EFgX5qHeI9Jck9/qpckSZIk6W/5dLAkSZJGRNvldAlgGvBN4HlVdQY82gV1aj/rkySNrH+2I1l7bBhsX7+fpiP2VV3rDVpJkjTOJXkQ+DSwKk3o7jRg7yRndZ0HXAgcAkwHPlJVr+/axf1dobwBzw8kaXyqqncB3wHe3Ha5HgRm8Nh7iHPaZg8kuR84BjiRJpS9Wj9qlyRJkiRpfgxjS5IkadhU1UDndZK5Se4C3gjsDJwNbFdVZ7br57SB7U4H7b/ZXpI0PlXVy6EJTy9AIHte59iQ5Dvt/jw2SJI0gST5IXAmTSD7NuCmdvm8zkO7SS6i6Y49BTi+qjZrlw917cdpPyVpnErynzRh7MOBnZLMAjYBduGx9xBndzV1mJlkP+CVSa7rQ+mSJEmSJM2XYWxJkiQNi7Yr2VD7eoWqWrOdYvSuJL8HjqL5MmWbri9T5lbVtsCXq+opfStekjQsqupY4EtV9V5Y4ED23J6He4Y6AW1JkjRh/BU4BVgIOLaqXlVVg90P7baB7MOBJYHF+leqJGk4tfcLSfIq4HrgmKraC5iS5Dbmfw9xTlVtD3ylqmYk+W67L7/rliRJkiSNCQNDQzaPkCRJ0vCpqp2BQ4HlgN/TTDt9VpK7q2p5YD9gV+AHwLXAAcBxSQ7uU8mSpGHQTjN9AjCTJmB1cpKPtesGk8x7gvvpfrjntUm+PlI1S5Kk/qqqdYCv0Fw7vh/4VteDWE9PcntVrZzkt/2sU5I0PHqu91YClgG+C9xK85DO55LcV1XPBPbnsfcQj09yUF+KlyRJkiTpH/BpYUmSJD0p3d1Lq2oD4D+By4B3A78DDgL2q6plkvyBprvNScCKwFuBgzpB7O59SZLGj6p6DrAj8A1gG5ow9gfa7mZPuEN2zxfz7wb+q6rWG7nKJUnSSOq5XnxGVT2nqqqzLMn1wObA8sDxwMvbWZO2Aq6sqtU7QWyvFyVp/Ou63tsV+B9gb+A6YAZNc4c3V9XiSf4IHMlj7yEe1G7vMUGSJEmSNKbYGVuSJEnDou1msy7wYuDgJA+3y88BXg+cBRyd5M6qWhSYAiyd5JZ23BPumipJGluqahXgM8AxSa6oqhWBS4GlaGY/6HTInpJk7t/ZR28Q+yTgnUnOHJVfQpIkDaueY/ubgPcCRdMF+2fADl3rXwRcTnOdeD2wPs0sG/v3oXRJ0giqqpcBV9E0bPgUzcO8KwLnAGvRdMA+q+2QvQgwFe8hSpIkSZLGOMPYkiRJetLajthnAbOBM5IcUVXTkzzSrj8b2IgmqHdskjt7tn/0S3pJ0vhUVU9L8peqmpZkdlWtQDNTwlLAccDHuwJXf/O53xPWeg9wIgaxJWncms/n/NQkc/7eek1sVbUT8EmaB60upZlN473Ad4D1us4BVgU+DjwEXJnk9Ha5/18kaZyqqqWS3N2z7F3AYcCrkqRr+TSaLtkrAIcD5yS5t2dbjwmSJEmSpDHpcacIliRJkp6AmcCfgGe0f0jySFXNaF/vAnwFeBdwaGd5h1+iSNL4VFUDnemh2yD2lDaIPSXJ74EtgbuBDwB7tttMB7arqrU7++jpiH0isLtBbEkan3o+1zerqk8A11bV0VW1BTTn/53jhya2qloXOBA4PMmBwF3A24BvAi8Avt11LnELsBmwU1cQe9DrRUkan6rqVOCTvfcBgbnADGChrrHTkswGjgCeBnwQeHtVTe3e0GOCJEmSJGmsMowtSZKkJy3J92iC1jcAu1bVnu3yh7sC2W8BrgZ+nOThftUqSRo+SYbaQN16VbVIkrnt8rldgeytaALZ+1TVPsC7gQuA53X2AVBV7wdOpumIfUY/fh9J0pPX9bn+FuBCYFWaAO4bgJOr6vDucZpY5hOyXwG4Fjilqp4NXA+cT/P/4RTgZcBVXYHsOUke7OwrybxRK16SNGzaz/WrgFPa+4MLda2+GVgM2LqzoA1iAzwM/IRmloSHumfWkCRJkiRpLBsYGvKetyRJkp6Yni53M4DpSe5vu5XNq6qXAscBzwSOTXJaZ6wBbEmamKrqecB3gYOTnNJzrJiaZE5VLUszQ0IBi7Rjj+jax2rAOcAnO50wJUnjV1W9gOZz/0Tg00nuboO4NwA/AzZLckc/a9TIqqqNaB7GCrA28G3gcppw3R5J7qqqJWgCec8Efpmk+lWvJGnkVNWWwHuAdyT5dbvsKP5/BqXzkjzQzqK0F7Bqkj37VrAkSZIkSQvAztiSJEl6QnrCddsDlwI/qaprgAOqarG2Q/a+wB+B/6iq3eHRDtmD3fsa9V9AkjRSfgPcCmwMTafT7u6W7c8/A1fQBLHf1wlidx0bbgHeaBBbkiaMVYGZwJeS3N0u+yhwJ00Q646qembfqtOIqqqdgItoZsG4P8m3aDqgFnBjkrvaoasADwIfAY7uR62SpOHXfQ+wNQ1YDzipqp7VLvsYcDZwGnBWVX2UpsHDR4Bfde3Le4iSJEmSpHHBztiSJEn6p1TVzsCZNFNL/wZYF1gLuA3YMMmDVbUucCzwbJoO2Sf1q15J0sipqilJ5lbV5sCFwNuSnNszZgbwduBU4MAkR7XLO7MqPPqwjyRpYqiqfYBDkyzavr8CWAPYPMmNVfVi4A3ASUl+38dSNcyqagpN8P5+4Jgks9rlywI/B85J8u6qWgTYBngT8M7O/wPPCyRp4mhnQPoDzTFhC+CzwPeA3ZP8rj0W7Aq8C1ga+DPwOe8jSpIkSZLGIztjS5Ik6QmrqlWAg2m6lr0nyaFJNgMGaDqdPQMgyQ+B/Wmmpb6nT+VKkkZYkrnty58APwM2q6rpPZ3QpgHLAfv0BrHbfRi4kqQJoKqmd739IzBYVZu2Qew1gS3aIPZTgM1oHtzUBFJVWwHXAK8FftwVxB5sZ8k4HNijqr4JfAH4T+Ab3YF8zwskafyrqoGqegFwM/Di9rP9KuCtwEuBT1bVSkkeTPIJ4DU0syls0gliz6e7tiRJkiRJY5oXspIkSfpnLAssCVyV5D6AqroMGAJ2TnJLVa1eVTOSXAe8Lsln+1euJGm4VdVWVbV9Va3cWZbkNzSzJuwArNXpeN2ue4CmM+aJ7faPBrElSRNDVe0AHFJVywMkOZ/mIZ0vAWsDWyX5cVUtDGxP0wHzMrtij29t2G6g85pm1qR/BVam6W5KVU3vOu6fBX4XDIUAACAASURBVOwBLN6+3yfJsV3bS5ImgCRDSX4EXAcc3V4DPgRcQRPIfglwWlU9qx1/Z5K/An+CR2dJ8JpRkiRJkjSuDAwN2WhCkiRJT0xVvQ74KrBmkp9W1Vdoutx1phtfG9gTOD3J9Z0ppp1qWpImhqpaCjifpuPljcB5wNnAHTQdsH8A/ALYLcn9/apTkjSyus/v247YpwDvpJkd59wkv2+vDT4JrEQzs869NNcOb6d5SOeI3n1pfGgfyHooSSc09zqa8PUtwL7AB4H/BV7aPqA1Ncmcru0XAobaYJ4PaknSONdzXrBQklntQzabAh8HPg0c1t4jnEozQ8angB8Duyf5db9qlyRJkiRpuNgZW5IkSf+MO4FHgO2q6qvAWsBmbRB7GrAhsBowC/5/imnDFZI0MSS5O8mGwNY0YexDaR7S+SgwHfg6TQfU5cEul5I0UXUFrt4IXEQTuJ4LHAK8raqWSXIj8AbgR8A7gJOAVWi6IXeC2INeK4wvbffzY2g6oS9UVW+hORdYKcmDwHHt+gIu7QSx2/AdAElmdQWx7X4qSeNc13nBdsBnq2rtdtl/A98FtgWe046dQzNzxu7Aa4A1+lK0JEmSJEnDzM7YkiRJ+hs93WwWB6Ylubtr/QnA3sB9NB2xv9WO25KmI94BSU7rQ+mSpGHUczxYElgEmNU5JlTVosDKwIeAVwIPA1cC7wLOTPKOftQtSRodVbUt8HngcOBamuPEjsCb2mWnJflzO3ZpmhkU/mo35PGvqg4FDqb5d38l8B6aLuhDbSfsRWm6Y78L+B6wdSeQ3d0hW5I0cVTVEsA1NA/nzqR5QOusdvXNwCVJdu8aP4XmQR67YkuSJEmSJgTD2JIkSZqvqnoT8F6a7qZfAs5Ocl1VLUYzzfgewNnAXcAyNFOMHu9045I0/vUEsd8E7Ak8F/gjcBPwtiQPt+ufAiwH7AtsQNPx7ANJTuhH7ZKkkdXOerAQcAlN2GqnJDPbddOBY4F/Bw4DPpvktvntw2uF8afn/ODrwKuAHwK7JflFu7zTCbsTyH47zWwamyeZ3afSJUnDrPdY3s6YtwewDRDgdcDPac4XHgQ+Drw9yRfnsy8f0JIkSZIkjXuGsSVJkvQYVbUpcD5wOfAIzXSitwAHJrmyHdMJ3a0CXA18O8l57Tq/RJGkCaCqdgQ+Q9Pt8pfAisAuwF+ADZL8qWf8i2hmVLhutGuVJI2uqvof4LdJtutZ/gzgUmA14Cjg9CR/7UOJGgFt2G4OcD3wAE1n7E8CH+10N62qKUnmtoHs/ds/Wyb5Up/KliSNkKp6OnB/kllVtTxwBU0A+0yaGRJ2BAaA2cBPgb3m96CWJEmSJEnj3WC/C5AkSVL/td3tHv0JFHAC8NYkuwGvBp4FHF9VmwEkORbYGnh+kn83iC1J41tVvaGqVul6vzxNt+tjaR7GOSXJvsCfgIWBRbvGTgNI8j+dIHZVec9Bkia2PwP/WlULQxPABWgf1LkZmAocCmzYrve4ME51XSeSZHbbCXXdJOsBhwPvBD5YVau2Y+a2/96P0HRIf6lBbEmaeKrqtTTdrw+sqn9N8gdgL+AA4AVJDqQ5D/g5sCqwObBUv+qVJEmSJGkkeQNckiRpkuuZVnTZqloEWAd4IMnsdprpHwMvB5YDjqmqzQGSPJRkVvf+DGJL0vhTVWcCp/C39wkWBlYGfpDkvnbcl4CnAlsk+VVVrQNNMKt3nx4PJGn86w7hzscxwHOA46EJ4LbbLAzMBfYALgKOqqolPS6MT93Xi1X1nKparapW7/x7JzkEOAJ4B7BvVa3cbro1cC6wZJIftNv7fYQkTSzfBb4KbAV8raq2AW6iOUd4R3u8+GWSjWhC2ju39xglSZIkSZpwvPkpSZI0yXV9sb4T8F80002vQxOgABiqqmlJfkYTyF4GOKGqtu5HvZI0WXUHmB4nHPfP7ncHYFNgpzZgvVy7ahFgCeCv7bgrgLWBLZPcVFXPBg6uqtcPVy2SpLGjJ4S7alW9pKo26MyGANxIE7bavarOq6oXVtVawM40QdzbgOtoOmAu2YdfQcOg6//ALsDVwPeBH1TVvlW1WDvmYJpA9juBM6vqVOAC4Cdtp/TOvgzkS9IE0Z4nzEyyI82MSt+jeQjrOJpZlJ4CvLAzPsknumfV60PJkiRJkiSNKC92JUmSJqnuIF8bpDsd+AHNlydLA8dW1SZtx7M5XYHs9WmmFl1k9KuWpMmlJ3Q9vV02o2tGg+EwA1gIuK19MOd/q+pfgD8BPwX2qqqrgTVoOmLf2AbxNqOZMeGuYaxFkjQG9ASxdwYuBr4MnAl8v6pWSnIv8ElgT2BD4FrgO8CxwIlJvkETwv498Mjo/xZ6MnquF18BnAx8CvgP4CyaIP5hVbUMPBrI3p/m3GB94ANJDu3dlyRpYkgy1AlVJ7kyyZuAtwDrAhsArwEOr6ql57OtD+dIkiRJkiacgaGh4fz+VpIkSeNNVS1OM4X4UsCHk8ysqk2Ag4GVgbcn+Ur7BfrUJLPbacb/2r+qJWni6wnCbQXsSPO5fA9N0O27SR4chr9nI+BU4CGggL2B05PMraoDgI8A9wO7JLm8qpai6aR9KnBgko892RokSWNTVb2RJoB9DHAOzef/yUCAbZP8tB23PLAJ8DDwiyTfq6p1gcuBLybZqx/168mrqmcA29M8lPX+JA+215C7A0cBHwOOSHJn1/h5Se5o3w8aupOkyaOq1gY2ppktYWVg6ySX9bUoSZIkSZJGgWFsSZKkSaztiH028DvgM0k+3rVuY+BDwCrAW5Jc2d3RrNMBxy/WJWlkVdWbaTpRfh6YSvPwzAbA8cBJSf48DH/HJTQhut8BOyS5oWvdETQB7Z+0f5YD1gFOSXJEO+bR4LgkaWKoqjWBz9GEqY+oqmcD1wPX0Dy8MwXYLMnPe7ZbEtgJ2Ae4MclW7XKPFeNMVa0HXAX8DLg0yWFd6xYG/h04miagf1SSu3q2999ckiaJnoeJp9FcN740yRf6W5kkSZIkSaNjsN8FSJIkafRU1WBnCtHWb4FfAS8EVq6qGZ0VSa4EDgN+AZxXVVslGer8accYxJakEVRVa9A8GPMh4N1JdqLpMvYg8NJh2P+UdtroVwBfB6YDx7fdzABIciBN2Or7wJrATcC7uoLYgwatJGn8637wsrU48C3gk1W1CvBd4ALgzTQB3FWAc6pq9Xb7znXGs9s/l3UFsT1WjE8/Aq4Gng+s0wbtAUgyE/gE8B/A+4Aju68n2zH+m0vSJNHzmT83ye86Qeyee5GSJEmSJE1IdsaWJEmaBKrqhcDUJD9o378deGqS46rqecCpNAG7HYGru0PWVbUJ8FHg5CSfGv3qJWnyqqpNgTNppna+rl12BbB6u+xHVfXUJPc8me6TVfX0JHdU1XtoOpn+Btg7yY97xk1NMqfrvTMkSNI4V1XPAB5Mcn/7/iXA7cCdwOpJrq+qs2nC2e9Ickc77mZgNeA+YJUkf2mXDwBLdboke6wYXzrnE10/FwM+DWwJ7Al8vvN/pR2/MPB+4N4kp/anakmSJEmSJEnqL59EliRJmuCqaglgc+Dyqnp1VW0HfBJ4BCDJzcBeNB2yPwNsUFVTOtsnuQLY1CC2JI2s7o6kVfX89uWKwMJdQewrgTWALdsg9suB86tq2SfZffIugCSnACcCzwJO6tRRVQNtKGtO90aG6yRpfGs7Xn8UeEf7/m003bBXSjKrDWJPAZ4H/LkriL0KMIsmnLtbJ4gNTWfMriD2gMeKsa+nK/pTq2oR4GkAbfB6V5oZNI4HdmgD2rTrZwJHdYLY8+mwLkkaR3quSxfoe2SPBZIkSZKkycjO2JIkSZNAVb0OOAhYG1gU2A04j2ba0KF2zOo03VdXpPmy/Zokc3v2s8BdVyVJT0xVvRn4MPBG4CHgOuAjwIuAdYGtktxQVQsB7wK2pulUmif59z7aubSq3kvT5fKXwL5JfvRk9i1JGpuqairwKZrz/y8A29J8/n+icy3Qdj7+AfB74M3AHGAj4D3Arp3jjx2wx6fua7yq2gHYg+ahrLnAacClSX7ZnndcCKwH7A1c2N0hW5I0sbQz5b2W5uGcc4Ebktz9ePcGe44rKwF/TDJ7VIqWJEmSJKmP7IwtSZI0QVXVB6vqFQBJvgZcSzO1+CxgZpI57bTTU9oxPwXeBvwW+DywYe8+DWJL0vDr6Ty2FHAATfgpwG3AZTQP1GwAvLoNYi8MvAE4EDj38YLYbdjuH0oyr9P5LMnJwHE0nVDPqKqlF+R3kySNbe01wVuBG4BtgC8Bn+8KYk9pOx9/gCaE+13gSpoA96Xdxx+D2ONTV2BuJ+As4MfAZ2mC18cAp1TVWklmATsA36A5T3lzVU3rS9GSpBHVPiB8MfBvwGbApcCBVbV8ey9xvp2ve4LY+wJfA5YdpbIlSZIkSeorw9iSJEkTTFUNVFUB+9F0VO2YSROsuxH+j727DrOrOts4/JskhOAuxQoUeHEo0uIOxRuc4lBKgOIS3CUEggd3KW6FIqW4Q3ErD1CgBfrhHiRCvj/eddLNaSaZJDNzZjLPfV1czGw/k3P22vvsZ72LcyJiAwBJwyrhu1fJIco/B2Zq1wM3M+uiKg+rewMrkiGoGyR9Kelz4GSyIukQYN+I2KVMOx04VdJ5Zf3/eSAeEVuXIN3QWueb0RxLNZB9JnAaMFDSJ63xWs3MrOOJiCmBKYDXgHWArSNiKsh7hfL/u4C1gX+U5XaTdEJZf6SBLOs8ImIOYH/gBOAwSUdIOgB4E5gS+BJA0iBgC+AJ4EdXOjUzG/+UkRA2BvoCa0ialhxdb1vg0OYC2XVB7N2B44DTJb3Xvq/AzMzMzMzMrDGahg93cUMzMzOz8Unt4UdETCnpi4hYGfha0tNl/hrAYcC8QB9JN1XWnUvSmxExhaQvG/MKzMy6noiYEbgXmI+siL2MpM8jolsJSC9IPhDfDJgQeAa4TdLlZf1u9RVJI+I3ZPXSPwMbl8433WvButEcz8i2N8rhqM3MrHMY2fm8jIAwiKx4/DtylIZLJX06mm39T3thnU9E/JK8Dtle0p/LtDuAhYD1JD0fEbMD70saEhE9JA1t3BGbmVlbiIh1gNWBJYE/Ai9UAtYDyQ451wLHSnq/8h1kfRD7NGAnSRc15IWYmZmZmZmZNYDD2GZmZmbjqVKhZhrgI+A5YG9JD5V5awKHkIHsHSTdFhEbA1cAq0p6rLYNB+/MzFpfM0G43sAuwEpkePq2iOgBDKs82O4G9AKG1KpRNheEK5VO+wLbkxUsxyiQPbrjNTOzzqcuLDUbMBjoLun9Mq0HcDHZ+ecg4CJJX0bERsCvgP6SPmvM0VtbiYj1gGuARSW9ERF3AguQQewXImJhoD9wkKTnK+v5+sDMbDxQvkOcFLgdmB/4VFKUeb0kfV9+HghsAtwKHC3p3WaC2H0kXdiAl2JmZmZmZmbWMN0afQBmZmZm1nqqQ4RKGi7pE7KizbzAsRGxYpl3F3As8Crw54i4B7iMDFc8Vt1Gex6/mVlXUXlYvWREzF+m3QKcDrwE/CkiFi1VJ7uXZbtJ+lHSt8CwMq2pmSB2D0lfAEcB5wOLA9eWbQyLiO6jO8a6YadHu7yZmXV8lfZnC+Bu4AXggRK2prQ7O5DB3OOBkyPiKOB64BsHsTu3atseEbNExM/Kr48AnwPHRMTNZBCvdwli9wSWIzv6/uR5gu8XzczGD+U7xK/JzsFPAXNHRL8y7/uImLD8vBtwM/B7YK7augARsRcwAAexzczMzMzMrItyZWwzMzOz8VBELCHp6crvKwL3AI8Dh0l6sExfFlifDGvfWhs+1MONm5m1rRKGmgf4B3A1WVVMZd5aZABuTmBFSc+PSTXruspkCwIrAzsCCwFXAduOrkJ23Ta2B+Yoxzh07F+1mZk1St15fQ3gBuBcsjL2r4DVgD0kDSzLdAPOBLYCPgXOljSgEcduraPuPbAZGbh7iHwffAzsR46o0QtYSNKbETEZWQH1FODQ2vvDzMw6t1GNbBAR85GdhBcETpN0Ypk+oaQfys8r1r5bLL8vDTwK7Czp/DZ/AWZmZmZmZmYdkMPYZmZmZuOZErx7EfiTpK0r01cE/gY8QSWQXeZNIGlI+dlBbDOzdhIRB5MjFVwKnCjptTK9FsieDVhd0rNjse1tgTOAO4BBwFJk55tbgM2aC2TXhbX2IIeZ3kLSNWP3Ks3MrKOIiEmBXYEZyHDtdxExNxnE/QOwp6QzK8vPC/wg6e3yu+8VOrmI2JoMYJ8J3CTpqTJ9ZuAgYFvgGeBpYFYyqH+ypOPLcs0G+MzMrOOru99bHJidPN8/DkjSFxGxENkRZ15goKT+ZfkRgezyezdJP5ZOXItVC0OYmZmZmZmZdTUOY5uZmZmNZyJiRmBvYB/gUkl/qMyrBbIfBY6S9EDdun6wbmbWBurPrxHRU9Lg8vN+wIn8byD7N+QD8PmA6YFPW3qOjoj5gYfJMPbJkr6JiKmAw8iQ1b3A5uXB+YhAdt2D+d2BU8nqZh5m2syskyvtykXAe8AVks6qzJudDOL+Adi9Oq+yjO8VOrnScfd28pqjv6Rvy/TupZPWdMCy5PtgKuBZ4AFJN5TlHMY366RGUwnZ5/cuqIyAdALQHZia7MB7L/BHSe+XQPbJwNzABbVOOWZmZmZmZmY2cg5jm5mZmXVizT0wi4gZgN2AQ4CL6gLZKwAPkNWz15b0n3Y6XDOzLq8M+fy2pO/rRiWoBbIvAQZI+keZvj4wiaSrx3A/K5Nhq9UlPVoJWU1JVsLcErgS2L5MbwKoC2KfBvRxENvMrHWV6pG0d6g1IhYFzgeWINucw2sdg8r82YG+wM5AX0kD2vP4rO1FRG+yKvZakp6rTP+f+8r64LWD2GadV12Hy3mASYHJgeckfVmm+zPehZSRmG4EDiUD2G8DxwAbAf8CNpL0QenkezawOLCSpGcadMhmZmZmZmZmHV63Rh+AmZmZmY29ysO0mcv/a2G6D4GBwHHA7yPivMo6DwFrABc6iG1m1n5KZ5hHgYMjopekIRExAUAJvB0DbA/sVqqQIenWWhC7Ft5roUFAL7LCGSVw3UPSF8ABwCfApsBfaytU2pQ9yIrYDmKbmbWiiFgqIpaV9GMZmWCPiDi6jffZVPn1JbLi8ePkKAnLVNsWSe8AJwFXAYOx8dHMZADz8+rEyjXAYiW0T3mPNlWWcUjTrJOqfMa3Ja///wbcB9xdrv39Ge9Cyrl9bXL0g8uBFyV9RY6ydyZZCXvf0nn4VbLYw9YOYpuZmZmZmZmNmsPYZmZmZp1cRCwDvBsRm0gaXhfIPhs4D/hDRJxcW0fSPZIGlvWbRrZdMzNrdc8CL5MBuP0qgeyeZf5A4B2yIukhETFVdeUxDEh8ALwK7BoR85b1h5Z5MwLfANeS1bGrAY0/kBWxdx6fg9hu+8ysvUXExMDywMMRsWZEbEieb79t7XNS3fYmioimiJhE0jBydJxdgA/J0RiWqwtkvw3sIumM1jwm6zDeJztrrVI/IyKmAbYiQ/q1zmIeVtNsPFHanXPLfxsDCwLfAgMiok8jj83aTkScEBG/rZvcjfz3R9In5bvECcr95onAM8CawNCyzMuSbinb83NlMzMzMzMzs2b4ptnMzMysk6mGKyJieuBrsrLRxRGxQS2QXYah/T/gZOBTYO+IuKZ+e37AbmbW+urO1T+LiOklfQOsBfyDDMLtFxETS6pVH52aDMmdDTwl6fP67Y5iHzNGxKwR0QtA0r+B84FVgf0jYrGy3KTAQmU/B0u6tEyvfT8wM7BNI4LYETFXRCxZKoi3qdJWdm/r/ZiZ1Uj6FrgXuBm4HbgO2AYY0JrX4+UeoNbBZkOy081zwJ3l94klvQhsTVZHvgxYti6Q/XVtW611XNZ+6q4PutWC1QAlTHcn0C8iVoqICctyk5HXKFsBH0oa0s6HbWZtqHQI2hK4Gjhf0v2l4nET8BrwSCOPz1pf+V5wCqA38HHd7Nq/+1wRsQRAbdSmcg1xLzAbMF39dl1B3czMzMzMzKx5DmObmZmZdTKVcMWuwD1kddO+5MOSq2uB7EqoY0LgTbL60UMNOGQzsy6lLgi3CXAxsEVETCNpELAR8BJZAfvAslwPYFlgUmBPSafUttXcfir72IIM9j0L3BgRO5T5ZwDHA78FbomIa4FryPbgcUnvV7b1Y/n/kZKubK2/RUtFxPFkOORh4L6IuDwiZmyD/ZwbEX8CkDTMgWwza0+SniXPc03k97LDa6MWtFalyUrbsA15Xv2cbB8+IQPg/SJiRkkvAduRAa1rgJWb25Z1LpX3QG/yPfC3iNglIqYtixwG/BO4FTgnIo4FziI7cZ0q6cYGHLaZta2ewK+BD2odPiPiTmAuYGtJr0TEryLi1408SGtVTZK+BBaW9FhErBURm5Z71aHAHcD0wE4RMReMCGRPCPyCvF/9tmFHb2ZmZmZmZtYJOYxtZmZm1knUVTj7BfAH4CbyYdpLwCHAXcBVEbFZpQrar4B3gOMlnV2/LTMza12VENR2wIWAgCclfRoR3SuB7GeBnSNCZKXUs4C7q9XGRhaEq2sP1gcuKNs6F5gbOCQiDinrHwn8EfgLsEhZbW9J/eu31SgRcSqwA3ARWbHvAHLo9MNaeT99gZ2A30XExeBAtpm1n4joUc65g4CDyBDUFRHxu7LI8Ppz8tieoyNifuBQ4EjynL+DpA2Bz4DFKN8JlwrZOwHfA7OOzb6sYyrvq6uAGYGJgYHAqRHxi9IpYEuyavqK5HtgWrIzWL+yfod5blAb9an83GGOy6yjaqbt6Al8BdTuU+4AFgDWkfRCRMwC7AMs6M/ZeKN2XTG0jJ50JXAGsEFEdJN0G3nftSMwICJ+GxELkyM4bQNcVUZ2MjMzMzMzM7MWaho+3AVOzMzMzDqTiFiKDFhvTA4v/u9K8G9+4AhgQ7JS9nfA6sDhtSqrZmbW9iJiRTJgfSxwUalKRkT0BCYrwexJgD7A8mQw4jZJl5TlmkZXkTQiJgfWAwLoJ+m7iJgHOB2YH7hA0rGV5ScGhkn6ofzerdHDTJeq3oeRFcJvk/RjRExEBgh3BJaRpFbYz4pkMP5F4D1gd+AKSduW+d0lDRvX/ZiZVY3qXB4RSwCHA+sCW0m6qjJvAUmvjMN+VyGrXW8k6eEy7Q6ybdhA0nMRMa2kT0robipJn47t/qxjKRWwTwJeBs4hrzE2Iytf3wocJOmNsuzMwGDge0lfl2kd4fqgOspIE/y0g1pLrpPMurqIWJD8vuir8vslwDrkyGkzAetJeqmM0LMtsD+wh6S7G3XMNu4iYlJJ39TOkxExt6Q3yvn+YbJNOBC4sdx77QwcA0xDfof4OXBmtfOuz7dmZmZmZmZmLeMwtpmZmVknUYISMwDvk0OFPiVplTKvR2WI8+nJB2lbAR8AN0s6t8zzQxQzs3YQEQeTAbtlK2Gik4GFyHP5sZKurwWeImJiSd+W5UYbgoqINYA/kQ/LT5N0di1QHBFzk1XP5gPOlXTCSNZveHtQwujnAVMA20v6pDJvXTIwtrik58ZxP93ISuQnAZuSQ24fAhyMA9lm1kbqwqTLkZ0pvwSekfR8mf4rsoL1usDvyFFvegPXAqsAD47NuToi+gCnAFNIGhoRd5IVUNcrFVB/DRwH7CDp3yM7ZuucImJDYBlgKaCvpMcq8zYHLgf+DBwh6dWRrN/w90DdZ2d98rPxC+Bt4GLg0WrQsIGHatah1H125gD+CRwFDCwdQX9BjkSzAjnS2sVk9fzewADyvDCgIQdvraIUaNiTvMd5JCJ2JUdGWFjSyxHxM+ApYAjQF7ip3IvORwb0ewD/KaPvdYjOOWZmZmZmZmadiYcbMzMzM+vAqsPLSvpR0v+RVVAnAFaKiN5l3tCI6F5+/kjSScDSwLqVIHY3P6w2M2tXcwIrRsTGEfEisDnwMTAIODsi5q083P4ORoQoWvLAe2qywvNMwNAyrakEit8A9iArYu4ZEUfVr9wR2gNJg4AnyRDAJ/CTdu8V4EcyuD6u+/kReIIchv0pSd+RoYTjgK0j4rKy3LBaW1rTzDDvZmajVQnEbQv8FdgbuAC4vFShRNJT5AgKtwJXA4+Q4bijJT3QghESmio/TxsRk5VfHwSGAUdGxE1kELt3CWJPRN4n9AImGdkxW6f2O2AfYG7gIxjRKQlJ1wDbkJVxj4uIBepX7gjvgcpnZxvgOvLe9x/kSCBXAsdHxGQd4VjNOoq6IPbSZIeMj4CDgD6lE+Rb5EhqjwBnAc+S7dMBZLszoLat9n8F1kqGkm3+XyKiH3AqWfH81VLE4f/IzmETAP2Bjcp3hf+QdK+kv1aC2C29LzUzMzMzMzOzwpWxzczMzDqouodpi5KVQ5+WNKgMPX4P8ChwoKRHy3LdgOH1D6ZdNczGRET0kvR9o4/DrDOqDAe9ClntdCUyQPQ6Wf35i4jYjqzSvJSkf47DvjYmq93NDqwh6dHSDjSVYPE8ZKjvIkmXjMvram2ja5ciYlLgE/JvdnVl+jSSPh3Hfdeqkc8A7EZWya5WyJ6SrMD5vCtlm9mYqruGn54MvZ0HXA/8DDgdmBY4U9LpZbn5gbWAXwJ/lXRFmd5sRcq6/WwMbA3cCVwDNJGVsTclq18uLumfJYy3CXAycEit06Z1ftXRHSLiLGAXMvx/hKQP6pbdggw1ryPpznY/2BaIiIWAvwDnk5+Vr8r0wcDfgB1LqNDMKiJie+B44CFgMNmuzEd2Qjxe0vflfuH3ZJv0LqBaFX1XQu7cSpB+LvI8OTNZFX3vyvwepZhDrUL2t+Q96w3+ztDMzMzMzMxs3DmMbWZmZtbBRcRWwDFkxaILgGdL0G9N4A6y8t2hlUC2g9c21sr7bXZJxzb6WMw6urog3BTksM49JH1Ypi0KTAcMqgQcepAB4K2BjSW93dJ9lN97vA9q6gAAIABJREFUShpc+X0T8gH6FMCWIwlkTyHpy1Z82W2uHP9UZOXvrSXdUKZvCWwE7Cnp3Vba1wzA7sDBwGWSto+IPSn/RpKeaI39mFnXU67VJwM2APatBUcj4pdkUPrnwOm1QHaZVw3UtigQVypvDwQuAa6T9EiZvkDZzy+B24HngIWAjYEBko4ry/neoRNqQaemy4HafeRZkj6qmz93GUmjQ4qIDcmKrutJerFMu4ms6LqupOdLZ4dP3XHKLEXE4sDdZKfP8yV9Vjpn7gjsS54PTpP0RTPrO4jdSdWqmZfvCucn3wcAEwK/rd2LlmWrgewXyHvYJcelk7CZmZmZmZmZJYexzczMzDqwiNgUuAw4GrhZ0mtleq2qZy2QfR9wlKSHG3e01tlFxATAbcBQSetWA0Fm9lN1QexNgO3JwNvrwN9G1qEhImYFVgPOJCuSnl6/zCj2sS6wftnH88BjtWrXEbE5Obz4NMDmkh6r//x2prBdRHQnA4z/BvpIujoiNgOuAvpJOrSV9zc98EcykP0ysAjZph7Vmvsxs64jIn4O3EtWpfy7pBXqOsosApxW5p8j6dSx3M+S5LXbQOBUSYPK9Nq9wtxkJ5bNgUmAp4HbJV1ZXW6cXqy1u7rrg2WAxclKqPcCL9U6ekXEVeS//bFkdemPR9LJq0O+ByLij+ToH3NK+ioibgcWpISzI2JZsmNB//rK32ZdVUSsA1wLrC3pocr0aYH+wHbAQcB5na2zprVMRExdQvgLk511+wNzAxvUOmuV5WqB7FnIEZYubtAhm5mZmZmZmY1XujX6AMzMzMxs5Eo4bG8yjH1mJYjdVPu/pLuAtYFVgNNKZRuzMVKpojSEHKZ41vK7g9hmzaiEoLYGLgUE7Ad8BBwdESdVly+dZ46p/VcLYtc+f6PZx3bA9cA8wIfkef/ciDi9LHcNcELZ900RsVL957ezBLFhxLnnK2AYMEMJYl8BHFkLYo/q7zYW+/uobP9hMoi9Xy2IXcKTZmajVH9OkvQv4ETgVeBXEbFkLfBawq8vAHuS5+3DSjh7TPbXvfy4BPANcG0tiF13HG9IOkHSosDC5AgKDmJ3cpXrg+3JMP4+wGbALcA5JZCJpC2Aq4EDgb0iYob664EO/B54HZgaWC0ibibb5/VLEHtCYAXyPT1xA4/RrKOZgqyE/BXkiDoAkj4BrgGagH7ATmV+q11PW+NFxFrAfRGxfBlR4BHy/vQN4ObSiaXmtxGxraT3akFs3/eYmZmZmZmZjTvfXJuZmZl1XFMB8wOPSvqmNlHScEk/luFHe5ZA9obAZbXhz83GRF0o4zlg2oiYwg/jzEYtIpYjqzYeKWlvMsy7BvASsG9EnFxZfGYyGLGXpP5l/W6jC0mXgF5/4AhgQ0nrAqsD5wO7R8SxAJKuJYN/3wJztt6rbJgJgM/J13oZcLykY6Blf7cxERGTA72B5YG+kk6p7KejhtTMrAOphGMXKqMgIOl84FTgfeD6iFi0dDZpKueXF8lA9o4lnD1KdaG5Scv/5wYmIjvqVI+nFvyeLyJmL9O+G9ky1jlFxKrkSBv9gVXJDlvbAksBh0TECgCStgRuIqvhztGYox256ns6InqWUXpq7gVuJjujLQ+sIOmFiJiYrPa9L3CNpLfa85jNOpJqR/0y6S7gPfK8gKTBlc/VR+S9yoVA/4hYtjN11rQWmQmYFugXESuUf98n+G8g+8aI6BMRe5Dn1tmrK/u6wMzMzMzMzGzcOVxhZmZm1nFNAnSnmWpfEfFLYIuImFDSLZLOKNNd3chaLCI2j4irImK3UklpEPAzYB4/jDNrXgk2LATcDpwSEfOSIeyryeqUNwF7V8LSFwGHS7qhrN/SoO9sZDD5bkmflW29CpwM3ADsUIahRtJ1wOodaZjpsWmTSkeQicjqfmsBh0o6sjZvZH+3cWz7JgcOAE6UNGBU+zEza05ELAC8QFYgnhmgVKE+kry+uj4iFimB7G7lPPOMpJvK+qP8nrYS+N4ZeDYiJgH+SV63LVjm9agcz0zAzsAvK6Og+LzWyVXauzXIyuuXSHpL0leSrgC2IgPZm9beU5I2B9aU9ERDDroZlff0JsBfgHsj4vDS4fhH4DTgTvJ6YKOI2Bs4jgyhnyLpgrK+73+ty6h7v9d+rrUf35L3CMtExJ8gR78qbcNywFAyjP0+2RHRn5/xQKWNv4jseDMdcGIJZP8IPE6OoPACcBZwCHBQbSQgMzMzMzMzM2s9TcOHu/O7mZmZWSNFRNPIKhJFxGTAy2QFm40kfVmZNxH5kGUWYH9Jn7bX8dr4IyJ6AdcB05CV8qYHviYDD88AzwKfkA/vPgU+l/RaY47WrOMpVaunJj8jtUp0u0v6PCKWBh4EegBXSNp2LPexHXAxMKekd0qYYlgZHWFZssLdepJur1tvpG1Lo4xNuDkiDgKQ1K+l2xjbEHVE/FzSv8ZlG2ZmEdGPrNh7CjBQ0ntl+jbAgWRg7neSnmvpebq6XEQsClwDXEtW3e4O3Af0AlaW9J+y3MTAxkA/YKf6NsI6vxK0XBxYQNKwiOgODJf0Y0QcD+xChvT/r9qmdbQ2LiJ6A38i38eTAcuSHd12k/ReRCxIVvzuDUxIVnm9U9IlZf0O9XrM2lJde7A28BtyNLVXyDbnzYiYkRx1YTfgHeAxsoP/ZsAeks6NiLeAayUd1ICXYW2gFGn4ofy8DXAw8CWwn6SHy/RJgCWA7yQ9Vab5HGpmZmZmZmbWilwZ28zMzKyB6h6mTRsRs0TEFBExiaSvyUqdywEDI2Lustw05IO03YEnHMS2sSXpe2ADScsCiwFzkgGi18lKvIsAO5Chn0fJB71mXU5zFeMkvSDpfrIjwxzA/ZI+L7N7kRVLLwD+Pib7iIgZK9VNXyE7SfSNiCklDeW/9/JfkhXw/ucBeqOD2BGxVkTsGBE7RcTsY/KQv1LJs9/ogtjjsp8qB7HNbEzUtwuV89ZBZAC6L7BbRMxSpl8OHE920Lk7IqZt6b4q9wqLAL8AXgPOkvQF8BlZKXhC4MmI6BsRu5V9nQec4SB251Z3fVAdMek/5OgZSwCUius1H5LX8k31bVpHaeMqr2s58v36W2B9YDtgJeCCiJhN0suS9geWJ8Pl2zqIbV1VpT3YlrxHn57sDLomcH9EzC/pA+AkYHPg38BqwFxkB4dzI2JNcgQaNeAlWCuKiPUj4tZyLvwhInrCiGuOE8jvd06JiGXK9EGSHnQQ28zMzMzMzKztuDK2mZmZWQcQEVsC+wOzAsPJ4ZhPk/RMROwJHEMG7v5Fhu4WAE6QdHxZv0NVQLWOpy74Pxn5Pusp6bO65SYBXiQr+R5Zps0OTCHphXY9aLMOoO6zMx8wOVkN+6laZ5iIWIqsOrejpItLkPoPwDLk6AUf1G9rFPvYBNiDrHp6Xhla/CoypHQMcIGkT8sICdsBRwBrSXqu7f4KYyYizgHWJSu2dif/ZicBV9Wq67ek3aotExHd60JmbbUft6VmNkYiYg6y8vD31VBTRBwFHAb0B86W9G6ZviPwvaQrx3A/swNvAUOB+yStWZnXgwyv7kkGVruT13JXSTqrLOPAVSfUTBXcOyT9NSJmIKtE/xvYQtL7ZbkJgEPJYPM65PuzQ7Rtda9nEmAIcDrwsKSryvQJyGueC8lrq90kvVW/DbfZ1lVFxFrAJcAASQMiIsiOnz2B74FlJb1SWX4SSYPKz6uTn62nJW3U/kdvraW0/f3IURD+Qo66MTwiekoaXJY5mhxR70Wgr6R7G3bAZmZmZmZmZl2Ew9hmZmZmDRYRmwOXAWcAz5LVVbcgg9lLk9XvFgT2AqYtvz8u6eayvsMVNkojCXpuB8wHfATcCJwuaXAl3HAX8LWkTUayLb/frEsqFeiOIYf5npoSdANOKp+by4ENgKvJytWbAwdJOnMM9rENcE757x5Jd1Xm3U2Gu18A7gF+DmwCHCPphHF/ha0jInYh/05bAi+Tf68+wD7An8mORE+2YDvV89b0kj5qxH7MzJpTQm1/BvYGLi1VKauB7NOAPwLHApdJeqdu/RZfU5Vql1uQFYQBegN/rw+jRsSC5GgKP1Q6AvnarZOLiO3I0PLVZBj71lKNfSNgIFkl+2zgA7LT7hHAgZJOb8wRj1pEbAbsSFb17QUcKenqyvwe5Hv8XPL+eFdJbzbiWM0are5adXLgaGCwpL4RsRDZaeEa4G/k+QAykP1GOU8MJzssbkNeK78k6Xdle24fOrGImBLYj+wE/DCwqaQfI2LCck2yA3AUeW+6t6TrGni4ZmZmZmZmZl2Cw9hmZmZmDRQR0wG3klXNDpf0dZn+EtBEPkx5tUz7n8qgfnhmYyIitgIuIitpDQKmALYmA9n7VEI7J5PVZherVdEy68oiojcZgDoCeJysQnkusDqwr6TTI2IestPMxsC7wOW1EFQLqzMvDtwMnA+cLOm7Mn0CSUPKz8eR1U/nBZ4Drpd0XpnXIdqDiDgbmBHYqPqaS3j6OPLvd+ioKnnXhU76AocDs0v6pL33Y2bWnFLB90VgKuAQ4MoSfuouaVgJRt8HTEMG5A5uyXXVKEZRmJT/BlTvJINV75V5I20DXD2484uI1YDryQ5IF0v6ojKvF7AccCJ5bdANeAe4UNKAskzD3wN17e1GwBXAA2RIdC2yU9Uukh6trNMD2JAMmfaWdGt7H7dZI9V/dusCtv8AXgfuB54hPz/fR8SZZCegb4FlJL1YWX8p4Gfu1N+5REQTQOUcWrvGqHWknwroC+xABrI3qY0sBBwIfEKOqPFGg15CQ5Q2ZFij2z8zMzMzMzPrero1+gDMzMzMupLag5SKyckH549Vgti3AVOSw02/GhGLRcRstSB2dRt+eGYtFRFzAQeTlZEOkLQvWRnrPWARoHt5YAfwMVmpbqJGHKtZR1KCTpsD15Hhpocl/YscCvwfZNAOSa9L2hVYGFitEsTu1sKHwAsC3YFba0HsYmjtsynpEDJ0NS+wfkcLYhdTA7NVAgM9ACSdQwYCVgV2K52R/kddYGsPsvrfASMJSLfXfszMRqhdh5cw1BBgIbIqcX9gq4iYqK7z5NNkR7i3xjSIHRFzRsTCEbEMgKRvyBEZdic7zQ2IiFnKvJG2AQ4hjRdWB94Arq0FsSOiqbT930u6B1gcWAdYgQwu14LYLb0GaVOV93QTMBvQj+x0vA5Z0XVm4Ijae72sMxS4CZjHQWzraiLiV8DapRMOEdGHMjKCpIslPQ4sSX6fdJGk78uqr5Cj6PwfOaJONcz7hIPYnU85f3YHiIh1gTMj4ibgoIhYVNLnZIecC4HlgfvL6HsHAwcAX9WC2CP5PnK8ExFLRsQvJA0tofRdImLLRh+XmZmZmZmZdR0OY5uZmZm1o8qD6BUjYlqy+nUT0KNMv50Mxq4r6cWICGBPYP76bZg1JyJmHcnkKYAZyCHtvyzTbiXvCbaU9D4wR5n+d+AQhxLNAJgAWAr4VNJnABFxJzAPsJWklyJiqYhYAUDSB+WheC1UN8qgQ+Wh+MLk51FlereyveGl+tn8ETFl+f1jSd+2dB/t7GVgtohYHjJMVXkt55PVp7cDFoOfhgLqQoi7A6cCu0k6q4H7MbMuri68NHmpQtkrInqWwOivyRERTgC2i4juZZ1lyMq/e9Y66IxO5dy0NfAX4CHg9oh4NiJWBiaUdAmwM7A+0L+Z6z4bD5SORssBX5Rr9RFtWK3tj4ifl9/vl/SUpNcqy3WY64OIWJ/suLAx8GbpXICki8iqrosBR0XE0rV1SpjuzbK+n2NYl1A6YS5Ejl61eRn15Rzg3UrnaYAAfkZ2rq6dL+YC7gJWkXQujPz7o450buiM2uN8FBEHl1GRavc5O5AdVJYk70P3BR6KiA3LvedJ5OhAMwBXkh1djpF0dW2b4/t3iRExObAB8ExEzFpGYjiL/JuYmZmZmZmZtQt/iWlmZmbWzkqVmvvJB+tfAZ8BW0TEPWQYb21JL5QHbauWaV80tz2zqojoC9wdEb8uv9cCRLMCUwHPlul3kg95e0t6PiIWBC6KiIUl3Svp7LKc7xmsq5sAqHVgICLuABYgO828EBEzUzrN1AUkRvnAuxq2LpMeIx8Ub1h+H16pwDo9cCRZCfUnOuBD9XOBIcDBJbCIpB8r1b1PJMOF+5cg44hqmXUB6dOAPpIubPB+zKwLqztnbArcTlYpfoMMQi9dKmT/CvgncCzwCPAn8vxyT91oBy3Z58bABeSIDNuRozN8D9wArFgWu4oMZG8OnBsRk4zDy7QOqoT93wDmKqPc/KTdj4g5geMi4pcjWbfDXB+U65kpga/JIGEtSN4LRgSyDyDvTfpFxIr123B41LqKMrrCn4GBZJD0TGA/SafVjbzwZ/J7olMiYgtgL2BH4DlJ70LXqITcniJi0YiYtdIZZtuIWKsN9jMd0Jvs4HVgREwIbEqO/rOmpAWBzYAHgGsjYuUycsLZwC+BJYCVJZ1UttclvtOR9BX5Xeub5AhW1wHbkJ8jMzMzMzMzs3bRJW7CzczMzDqKiJgB+A1ZsfN+SR+RIb6VgFWAXSW9HBFTA1uTFfYukfREgw7ZOp8fgJ7AiRHx60oQ43myamO/EsSenwxiv1Ae7q1GGf62ysEH6yqaCyuUatgPAztExJPAfMA65bPTgzynLw68UxeQGOU+RvLZegF4Ejg6In5TqlwOL0Gl1ckKq4PG8uW1i4joXirq70oOkz0wIiaCDJZUXr+A6ShhrDK/FnbcBziZUQSk22s/ZmaVc8aWwBVkVf7TyarVOwKnRsRqJZC9HHAh8C157tlT0qll/dEG4iKiW0RMAfQBzgNOkXSLpL+WbX4BvFOOawgZMtoFuF1Sh24fbJw8CswObBkRM9YmRsQEZMfdRciOYx1SRPQqn6OrgaOAf5H3KTNI+j4iesKIQPZhZLs+VcMO2KwDKNe5z/Hfz3ZT7VoXRoRr3wP2JkfwuYLs0NBP0nWV7XSYThmdXam6vCVwb0RMHRHbAJcAs7X2viR9TH4f+ALZzp9EVkF/RNKnZZl7yO8VnyTvhWYsowl8L+l5Sf8sx92hRkloa5L+BtwBTAwMBl6X9ENXCaSbmZmZmZlZ4zUNH+7vY8zMzMzaQ6lytyKwLFnZ6L4yvSfwO3Lo2X8AHwJN5FDNp0s6vizX5Idp1hIR8XtyuO+PgX0lPVkC1wPJykCDgLXK9MnJSrynAIdIOqdRx23WKHWVTxclQ0CDJD1Vps0CXESGoncHzgemJyuWnQgcIWnAGOxjHfJzNyvwb+BUSa+UymonAzMBZwCfAz8HdiKHme7Xqi+8jZQKrdsBA4DbyCpub5dweRP5GoOs8PZt5e+yPHAfsJuk8zrKfsysa4uIWYG7gL+S10rflenbA0eQHT92l/R6md4ETCLpm/J7t5YGocp12evAgFq7UkZkWJAckeHFiFgBeFzSkOq2fa8w/oqIc8hrgQuBS8mRIVYhg3hH1aqfdjSlmvyvyHvad0uAfBOyw/FgYGlJH5cRLAaXdeaX9GrjjtqssUpodDgZsp6frCZfu78/v77zTenIPzfwjaRXatvoSgHc9lBG31mJvEebCpiRDEpfVEYxaI19HAzcRAaIf4yIKPsLMpi/oKTP686Zu5L3Qr+S9HJrHEdnVTpKNwH7kaMxrE5+NlaS9Ezp0DvKztNmZmZmZmZm48q9gc3MzMzaz9rAH4F5ga9gRGhisKTLyCpgjwFDyeHNd6wEsbs5XGGjEhFN5QEhwJXkUPYzkcMWLynpB2AfMkz0A1l991AyVHoycHItiO3hjK2rqYR0twUeAm4FnoiIMyNiDknvkYGnv5EVUZ8tP+9HhqBqgblmPzt1+7iBrJo6mOyk82BE7C/pTmAPctjx3ckKkkuQnSr6lfU7/H18CYlcCexGPgS/GTggItYgR4PoA9wmaVBd2/YBsFxLA9LttR8z6/KmJitfPibpuxL2QdIlwGlkdeL5aguX880gGKuKlBMDvSrr14LY65Ug9kzAMWRHlJ+MsuB7hfFPrc2XtAt5vb4FWSn7YTIEeEQtiN1Br9/XIO8/+kTELJWK7gcCEwKPR8S0kgaXjqOQnZM7xfWOWWupHz2njJDzeKVi/AVkB9A+ETFxZb1fAk2SnnQQu21JGibpXvI+bUbgE/K6oLWC2AFsC0xagtjdJIm8p3mNrIx9dDmWwaVzC+R9ac9yTF1O3WdnaGlnTpJ0ANnWvA48EBFLVEdQiohWr2huZmZmZmZmBq6MbWZmZtauIqIfOXzsjWS47t9lerMVWvwwzcZEqYq9AxnkmYoc1vxxYH9Jj0XEpMCuwArAXGTw/x5J15T1/X6zLiki5iGHND6LrHK6AHA8+cD94ErF063Jh93/B7wh6ckyfbSfnYhYHLil7OMcSV+W6T+W/fxe0mclgDR9WW1IbTjqzvb5LK9jfvL1zglMC7wFXCbpxLLMOFdyba/9mNn4b2TniohYjAy/jhgFISJ61AJYEfEu8FdJO47LfmrTgcuBlYF3yfZmA0nPl+DVDmQHlD1ro+xY11FG75iB7Fj5oaQRweWOdH1QNxrImWSH5P7AWZLeKx0aNgWOA7oDS0j6qGEHbNZAdZ+XVclODIOApyTdVabPQI7E8AeyM+gdwMLA9cBvJP2tEcfelZT7jQnIjrMzAmuRnUrWa41q/qX9n0LSFxGxCvAR8GoJZs9FjnK2BDBQ0pFlnZ7AXmToeGVJL4zrcXQmdZ+dJcn79w8ASXq7TF+TbGvmAVaQ9FxEbAJcCywCvOx7RDMzMzMzM2tNDmObmZmZtYNq2DoiziBDFAOA0yT9p0x3UMzGSUSsRQY6DwDuIQOlB5CV894mOwA8UXuvRcSEpWJ2bf0OFeQwa0v159yIWAg4BdhM0mdl2pbApWSl7MNrFedGt61R7HMbssL2+rWH9hFxC7AY8NvycHhSYFDlwXLt89rwNmJsj6FU7Z+JHC76y0pHpJGec9prP2ZmVXWhngWAbyW9HRGTAU8DXwJbA69XlpsVeAA4t1aheAz3E2QHul6Vzj2/IUNXM5Oh6wsiYhZgTbIS92GSTm2t120d36jasY56fVC9z4iIc8jRKuoD2ZsD5wC7lZGizLqs0uHzHP7bEacbcGyl+v0MZJXsXYE3yTbiZEmHN+aIx3/NnNtqoezlyRGTepH3dq9UlplB0odjsJ8R5/iImI4cIeB98hypEsiOsr/VyHvTV8u++wDHSTph7F9p51ZGnjqDHGVwKuBB4BRJt5X5a5JVxZcgR4pbHjhd0qGNOWIzMzMzMzMbnzmMbWZmZtZO6gLZZwM7k8NNn1oLZJuNrfJQ8CTy4dxqkj6uzNutzHsO2EPS05V1hjc6wGHW3uqCcEsAs5EPbleUtE2Z3q08+N4CuIwc0eA4SS+N7f4i4mhgO0mzlel3AAsC60p6MSJWBtYjg9/ftMJLbTURMZ2kj8c02Dymgev22o+ZWVVdu7AlWWXyX8BOkv4TESuR4acHgeMlPV46z2xABqS3kXT7GO5zW+AYspr/MDLwfaikRyNiM6AvMC/waFlmGjL03a/+mM06gtIxdE5JZ5Xfe0oaXH6uBbJPIEcHebdUe5+jNvqIWVdS1+7MANwOXANcQo5utSewFdkB57iy3ATAFmQF4L9Lur5Md8fDVjaS+8V5+W/V5XdLVeoVyWuAXsA65HXDumSofilJb47hPpcgg/ZLABeU/f0eeK3cl85DBrJXBb4AjgT+I+mWsn6XeB/U/dvMSY5ecgZ5nfZLsvPzD8DRkm4syy0NbEZWyL5J0oVlepf4m5mZmZmZmVn7cRjbzMzMrB2NJJDdh3yYcoqk9xp6cNbpRcSlwEqSZi+/VwMQ55IP8p4lK2Q/0qjjNOsoImI7svroMGAyYAiwtKRny1DRlBD15sBVwN3A7yR9PprtVh8Q95A0tPy8ARnqXp3skLMUObT18xExEbA3sBKwY62qc0dQzh8bkeeXV9rqoXV77cfMrDmlA84lZJDnPkl/L9ObgI2B84AfgbeAr4FfA/1qQbnRbLvaNqwBXE+2Qa8AE5GjmUwB7C7puohYhGwnliGv316SdF9Z3+fHVjSS0TLaJOjeGvvpKCH8iNgXeEzS4+X3SYC/k+/hIyVdUKZX70f+SgblLgHOlvSvyvb8nrYuKSLWISstbwYcLOntMn1uslPO76kEssu86v2FPzttqHScOhnoDkxInuf6SnqyEsg+hQzQ3w+sAgyUdOAY7mcbckSmNchw8TLAFWSl9Goge27yWmRRshP+s2X9Lvc+iIgVgJ5kB4X99N/RrdYFjiX/zY6sBbLLvIklfVt+7nJ/MzMzMzMzM2t7DmObmZmZtbO6QPb5wI7A8pIebeyRWWdVqeC7J1lhcRvgzyVEOoGkIRFxIBn0HEZWx76hkcds1gh1QbggK9BdQg5XvDawD/ASsFupVF0NZG8HTCpp4BjsYy0ydHQz8BowHXA1OTTyF8DCkj6IiF7kMNT9yRDGRa37ysdeRMwEvABMQlZ726z8bca0cnV9AO0n67fXfszMmhMRs5Ptwi3AsZK+K9Or5/W5gP2BWYF3gIckXVPmteh8ExHTkJUzlwf2lvR1mT4lcC8wObBycx01fV5rOyXAtSbwM7Iq6TPV0WYavZ+69+Jsjeq4FRGzkCPufApsCTxbrpXmIjuvTQUMkHReWb6HpKERcTLwRzI8t5ykxxpx/GbNqX5XU35v0/NtRExNnvcXITvmrFgLlJb5c5EddX4PHCHpmLY6Fkt159n5yX+fM4HbyIrUO5Kh7G0lPVYC2QsAewHTAzdLOr+s39LrghnJIg0vAmdI+rrch67EyAPZCwJz1Spid0XlXv4R8t7xHknr1777KvPXBo4HhpOjW91Qt36H6NhkZmZmZmZm459ujT4AMzMzs84uInrUAnstIWlYRHQvP+8ErOogtrVU9b0WEd0AKg/4bgG+JQOlS5fHJC9IAAAgAElEQVR5Q8pwxpOSw4Kv5iC2dVWVB+vLkQGoR4DzJD1Twg1HAbMBZ0bEQpXlmyRdWgtij+qcX1lnW7K62aLA5JKGS/oIOAt4mnxwvHYJeR9JVkc9vRbEHpN2pY19A3wOPF7+f0P52/xYa8tGpy7UsBj85LzV3vsxM2vOVGRly4drQex6kt4kO+ysXf4/pkHsZYGPyfbmy0oQewJJX5Adc6YnO9DV1vlJe+DzWtsoVUmvI6uRLgHcChxQQvoN309dG7c/8GJEzNyax9ZSpaPA2uSIIlcAi5fA9Zvke/hrYL+I2LksP7SMAAKwMrCMg9jWkUTEDJDf1ZTfa/fSbX2+/ZwM8f4FmIvspDPivF8+UycAlwFHRcQSHegeYbxUOc/+mnx++mfgHEkvSToNOJq8b7kiIpaRNFjSc5K2BTYfiyB2b2APYG5yRI6vK8fxALA12QHsPGC+st2Xa0Hs2ndC47uRvO/fIkPy7wGLRcR0le++kHQHcBAZnD8lIuasruwgtpmZmZmZmbWVLnGjbmZmZtYWImLxUpFsaKkE1iciNmzJutVANvmApcs8RLFxU1dxt39EXBARq5SHT/8CNibDn+dGxMERsQpZTWsv4P8kvVrW90Nc65JKNce/APcBMwEjqs+VB+ynAT8HTouIRUqI+icPa0f38La0BecA/YB9JD1ZWfcmssPEdWV+P2BBsjrq8WX9bh3hAXEJfn0F3Ag8AZwKNAE3RsTClcBKs2HpuvDYHsBtEbFQI/ZjZjYaMwATAR/CTzq91c4tq5Z2YUhZfsR5egwCe18C15PBqtkjYrJy/qpt802y4vD8lW03vD0YH9V1cJwSWIe8Zl6dDOUPINvrvhExRyP3U9fG7U6OhHOwpPfH9rjGlaS/A9uT7fXlwKIlkP0WeT/yFRnIPjoiFga2A7YlRxl5Anz/ax1DRMwDHBcRu5XfdwAejYgVWnk//3P/XT7XDwMnkuf+CyJi6fL9Ui2Q/U/yfmE1SU+7TWh75T3xOFmpempJn1euCa4jKy5/BVxSOllR5n1Z1m9q7rpgJO+DPYADyeuC98oy1euPB4CtgCDvH6esrtxVOmhV2sBfRMQ05bqpHxlSn4S895umBLJ7lnXuBA4GDixtk5mZmZmZmVmbaxo+3N/dmJmZmY2piJiC/FJ/B2BecvjQ64F9JZ06Dtv1sOM2WqXi7nmAyCq+PYBzgdMkvV+Grb0ImAeYDPgEOFVS/wYdslmHERG9gA2AvsC0wNqSXorKsOQlzHsgGchbTdKnLdx2E1mF/jrgLUl/rMz7PRn0+xi4UtJ3ETErMAgYWsLIHbIdiIiDyEpvi0TE1mT71x1YhTzPLAwMlDS0br368NjpwE6SLmzkfszMRiYiAngI+CvZkeaT2vmlVPU9kQz87Cbp23HYz0JkG7MpsKOkyyrzepEdhr4ANgGHsdta6eC4GrACsLOkZyrzjgIOIztYnSTpnfbez0jauNOAPh2ljYuIJckw9nBgG+D5Ugl7drJq6XLABMB3wCmS+jXqWM1GplTMPZXsIHETsAWwO3CBpMGttI/q53gR4BfkPfxbkp4u05cir2FnBzaQ9Fh1vcq2Oty9QmdX/3eOiGmAPsCOZBXs5SR9FRE9a++JiNiYHOViRmAB4MNRtdcRMX0ZJan2+1KVjil/An5HfsdzqKRP694zTWT7Mauki1v1xXci5TPyGNmB6XJJn5VK2HsBewJvA78t03vWf35H9nkyMzMzMzMza20OY5uZmZmNpYhYmxwy9udk+G474DpJP7Rw/erDlWWAV8vw5GbNioiJyeD/XcA1kj6OiEuB9YCrgf6S3o2Iqcig6QzAZ5WK2H54a11eCdWtQwaa3iUDDx/UBbIPJB+qXzKG256ArHD3FDk0cpT9zFsW6Q4MBI6phYorYb8O9YC4clxBnndWLJXhtgf2BaYhzzG/B66qtn/NhMd2knRRo/ZjZjY6EXE+Wb23H3C+pP+Ua6r1yQrG+0q6fCy3XT1fLUCGuNYn24q/AIOBVYGzyLDuGLU/NnoRcQwZsPx3+X0C4BGys8+7wAKlquaEtbamEpS+kLzO/md77acjBbGbu0aJHLViMeAK4Ed+GsieGlgI+BnwvqSHyzq+H7EOpVSlv5n8jN4gadMyvVXfqxGxHfkd0hBgcqAX2d6cKunLiFiaDIbPCmwq6dHW2reNXkT8AvhI0tclkL092VY/KGntskw1kL0VMEzS1aPZ7hzAscCjks6OiJ3IzvSrSrq/LHMLeX96CHn98cUozrsd6p6xvZSK19eQ10oHkd+H1QLZe5OB7DeADct0tzVmZmZmZmbW7jwUoJmZmdlYknQHGZyYjKz09YKkH6IFwy3XPVjfi6yiOndbHq91fqUDwDHkg9sHyYrXSNoOuIGspnRARMws6XNJb0h6pBLEbna4XLOuRNJ35Pl7L7L63E0RMaOkYSVUhKQTakG4kQwnTUQsVCqY1msiq3KtAjxBdpKYgHxoPDfwClldbUR151p70OiH6hGxSgkIUnc8/yY7d/y2TL+EHLp7OuBz4JVq+zeK8NhF7bkfM7OWqp1XJO0E3A7sD9wdEReSwZ8zyBFIxiqIXbY9vPLzK8DhwC3ASWQnnnOAXYHDRtX+2NiJHDlmfWCm2jRJQ4C1gQeAuYB+JWj3Qwl9IekI4HiyQuqs7bmfShu3D9kZoOFB7IiYLyJWi4jeEfFzScMk/R3YinzWcDmwaOng9pmkByVd4yC2dXDDyev1fwC/iYjdACT9WLs3GFcRsQ5ZLf504DfAEmQQ+3Bgy7K/x8lQ6QfA/RExY2vs20YvIlYGXgN2iIhJlSMjXQwcAawSEbcDSBpcOW9fWQtij+Z7wG/J7wwHRsQVZMfcvYGHIqJH2VZvcmSOY4E+ETFlrbNu/cYafc/YHupfd2k7BgObAXcAJwObR8TUpY09tfy3APnZmdBtjZmZmZmZmTWCK2ObmZmZjYXyQK4bWY1lcmBN8oH78pJeqVZXrazzP5VPK+GxXSSd376vwjqyiOgL3Firike+z+4gq+x+LGm+slwvSd+Xn88DepNVvY6W9J/GHL1Z51DC1OuSwYg3yQp0/9eC9c4E/kgOY35jeQA8ImBUqqgeRAY7/iXp7Mq6F5PDku8IDOkoD9Mj4jRgJbJjxxmSvirTu5eQ+g1kpctjI2Ib4FLgVjJgPgk5JPQLddvci3xQPqJSdXvtx8xsTEVED/13xIL9gWXJqr6PAXdJ+lOZ12ph0hLc3Zesxr0//8/eWYfZVV5f+E1IggUtUhxKYWGFAi1S3KG4u7skuFuRQCBocKfFvThFihapUKzAorR4gR9QoLj//tjfISeXmWQmmczcyez3efJk5th37p1zPl17bbjE9v+VfT8YT5Tt9bFEi8ckP6QI3iYubpkrAv+0/VLZNxlwHZHFYihwQnF2rjugLmz7sc4uR9IviGwbu9g+u6O+j1GhtMtHAJMB4xNu7gcTWSveLfd6CeH6u20RaSdJt0DSbMDkxDO9FHCI7dPKvuGciNvjTFybB7qYCOTfoQh9kXQ7UR+sbfuJsq03sAQwte2rO+wDJiNF0l+BWYgsBZcUh+zJgW0IkfSdttcox7arLyBpEiK72cLANbY3rO3rWxtP3gIsAwwCzrL9fsd8uu6JpGmq8XltrN2PGCOuBewDXGX7veKQfSCRiSHHhEmSJEmSJEmSJEmXkGLsJEmSJEmSNtLSglslhC0uR4OB6YAlbT9TW3SbzvYbjdeQNJBwbknxWDIcxTH2ZmA924/Xts9PPGcrAEfbPqxsr6c4v4BIp7uM7fs7/eaTpJtRBNm/Bs4H3gR+afvTERy/PeFi+ikhRNqVWFCvFtD7FGFVo2hjslLOacDuti8ZU5+pvUg6iXDk2x14oArkqIsMJB0KLAlcD5xBuMQdRwjSjwEOqDvGSlqcyPrwmyrYqLPKSZIkGVUaxc2SJqi3CWPC1VfSz4i6bjVga9tXtKUcSasBqwBTEQLYP9t+qyPvbWxE0tTA44SQeGnbr5TtkxNtz2xEWz2cULo2tmvTM9BR5ZTjZ2gMROpsJK1FZPs4DriHEJVuXP4NJtroz4AFgauA8YD5q+CCJGkWGuZkJgcmtP1abf9ChBh3CUKQfXrZvg6R3WavUSizD/Ak8EfbA8q2W4mAn9VsPyVpdeAj2/c1nJtu8h1MC+O0+nzKg8B8wAEML8jeishQ8JDtJdtaDoSTtaRpiKD5vsD8wG4NAbv1gLA7geWJcenfRvsDd1MkrUnMme5l+/dlW9U2jgtcQ7ynBwDX236n4f1uc9BEkiRJkiRJkiRJknQUKcZOkiRJkiRpAw0T+tMSAryvgP+ruRKvRqSZnQ5YzPZzktYnFqPnAl6sLa5Ujthdkmo6aW6KG9akxVFvKeBt4IWy6DQXIdyYAzjR9knlnPoC4rK2/9hV958kXUULIro2LcAWQfY6wAQjqpOLY961wHuEM+SuhMB6B4YXZDcu8K8C/BLYgxBdHTMqn29MIGlB4FJCCHij7S8U2R++o9RD5bhVCDfPfoQz3Im2Pyr75rT9XMN1fwTMavvPnVlOkiTJ6NIV4p3SvzsCWJ3ImHPRSI7fAjgHeAb4MSHIvhAYYvvfY/h2uzXFOXMlIrDqW2BV2y+XfZVQembgPOC4avzWrOWMaYqYsB8hevsM2Mb2J2VfX0KEvTuRueL2Mo5ZCJitmQLPkqQRSRsDexFOyA8Rwtvryr6FCYfsZYm69iUiC8tg24eP5LottiGS7gM+s72KpJsIQe5qtp+UNAVRV7wLHGb7sw76mMkIaHBdbosgexfgfdtntOHaw80h2v5PEWRPBOxPBNAPqF+rQZC9hu2bOvQDdzPK2PtJIoPVQbZvKdurjEpLA7cCnxNO4mdUf8MkSZIkSZIkSZIk6Sp6d/UNJEmSJEmSNDsNiygbArcDjwAvACdK+iVAWRg4EHgVeErSjYQoYrDt52uLKgOBUwlH7BRiJz/A9rdFiD014ZD9W2DW8iw+C+wJPA/sIWnvcs4XxR2ISohdxBBJMtYjadriKPlN+X0xSdO3VUxXgmququrkysWsBd4A/g2cUpzn9wXuAs4F1i+iJOpuXOW9HAisSrg6H1P2Ncv7OR0wAeHy9oWkiYk65zHgMUnHFqHC7YSY+hDgpCJKqNzenoNh31upq95rEEh3VjlJkiRA63X5COp4YFgdPqbLaSjzWSJY5VHC5XFE5Y1HtCn7AyvZngE4HdgQOEzSrG0td2ynpb9BCZy6ixBhjgvcKmnmsu+/RHDWf4CDCDFe05TTWTS0s9X7MCfwhe1Pqj5M+YwnAP8A9lM4yX9r+9FKiN2e9yBJxiT1Z7E47l5ABLScTzi6D5a0K4Dtx4CjgN8D2xLC7MMqIfaI6v3aOGBxSatJmq7svgOYT9LzhBB72SLE7gOsBSwOPJhC7M6hmCncVp6FxvmUJYDngN8Am0uauNTbQyrx9IjqtobnYD3gFkkDbL9p+wVCOHwRcJqkXWqnrivpxHIPN5Xzm2XM2CnU2p9xbP+TcI+fBji+vE+9asHXXwJ/Bv4OfJVC7CRJkiRJkiRJkqQZSGfsJEmSJEmSNiJpU8IV6VRiwW5nwhX1buBY24+W4xYHNgVmJZxSzyvbxyEW3W4GDk0hdjIyysLbKsRz9yLhvvvPkuZ2XiJl6yzA2baP77o7TZKuQ9IchNj5DduDJG1JONetb/vedlynrS7a49YXeiXNSGQ6WJF4R6+1/WXZ18f210V4PI1tl+1Nk268CAROJtqsvsATwPvAU8B4hLjvIWBL268WodWnzVpOkiQJ/EAINTMwBfAF8JYb0ti38RqtOZ12RDnfZ3WQNIPt10Zw7GqEe/Z8hKPmX2r7jgF2Am4CjuzpDtklSKtqj+cBpgc+Al61/ZqkfoTr7RmEq2bduXoKYKnKJbcZyukKKjfX8vOjhBh7qfJ7Xw/LCHIVIdZesNqWJM2KIqvKuoTAc3AR4c5AuNVPTgRdnlaOnYYIJpzY9t/LtpH24xXZC44FHiTmip6UNBWRNW0J4ALbO5ZxzDLE2OUw2yeMgY+ctIAiG89lRDDJYNu3lu3j2f5c0mLAH4D/EmO909pbv0naishqdgbwiO0ba/tmJYJPNwPOJlzRDyWyKB0wmh+vW9HQlxoX6G37Mw1zwJ4deJjIGHeo7euLaHsXIhPDtm7S7BJJkiRJkiRJkiRJzyPF2EmSJEmSJG1A4X59IfBb2ydImpsQjT0P/Bx4gFg8e6x2Tn/bH5ef64sL89l+stM/RNItKYLs5YHfAWaYIPvbIvg4k3gGl6oWiJOkJyFpQkI8sQAheFgT2I0QOXzZxmvU6+iJbH/UznNmJITGKwE72r5MUn9gI8C2H2zpvGZA0vLALcAawAzA9sBGtl8ui9yrAFcTzuHbNns5SZIkdYog7nBgMmAc4E1goO07R3JevY7fEvg/4I7W6u8OKmdz4F3bt7fUVkiaALiBcHD9EJiriAjHc2R4QNIgon69CziiOHD2KCSt2SB425Jwbx6fyBL5P0LIfk0Jll2BEMt9BqzVKGJvTXjZWeV0FZKWA84D1rD9jKStCSfh4+tCQYVT+/nAhMAmwOfN1M9JkjqSViaEz/2A42yfXwUWSJqeGFP8CDjZ9uktnN8WIfY6wOWE6/3Nxd232jcNcBYhIO1L1AefEuOWIeWYphorjM1IWoGY53sDONqR7a7atyxwJDAlMLRyxG7HtZcBrgSOIf6+1dzgZMCHZT5nGmBvYo7nXeAM2yeW43rEc9DQD1qH6MPMDbxDjA2vtf0vSbMBfwS+JZyw3wC2BvavBU/0iO8sSZIkSZIkSZIkaW56VIqrJEmSJEmS0WBK4FXgnLIIcB+xKLAocASxuH5gccUGoFGIrWHpnFOInbSZsth7N7AFIOBcYLbyXD1DOAJvmULspCdS3oNPbK9ECOXWAG4nAme+bEta54YF4H2AoUVIPULqC722XwX2ItzTzpG0LZE94VwiWKLF87qSIoDG9t3AnwhHtmWBpyrHTsKV7DZgMLCepLmatZwkSZJGJK1LZBe5DFiHEO38C7ijiKxaO6/eLuwGXARMNAIhdkeV81tgImi5rSjZAnYixiGzEIJCioPnuOXng8v9bgzM1FrZYytFyHWDpDPK7/MDpxPix5WAbYDHgCskDSyO5PcSQVyTAA9Kmqh+zVaE2J1SThczNTAz8axBiOB+B+wp6WxJ05XA0E2J5/5m2581Sz8nSVqhcrqeFqie1a+LIPt14ll+GzigjAuGY0TvqaReRWi7PSHGPr8SYpd9fWy/CWxJjFmOIkS4m9SE2L3zHepYqrFI+blvCeStvuu7iL/BdMDBktaujgPmItysNTIhtqS1JU3dsHkBYg7xUtsfS+ojaQhwDXCPpPVsv2l7HyKD3qo1IXaPeQ4aAtIuJzIn3UA4kh9KjM3nKu/S4oQRxk+I73efFGInSZKMHTS016lfSpIkSZKkW5PO2EmSJEmSJG1E0s9tPyHp90RQ2w6235I0JfA3wg3sGWAD22935b0mYx8NDtn/AHYFXqgvCDebo16SdAZlsbw/8CKxaNufSAV9fBFkj1NEUC2d2yiEGwrsavusUbyXaUvZa5ZNh9oeNCrXGhMoUqFPArwOfGL7g7LgsRYh6puZcATcooj+qvO2K/t/bvulZiknSZKkNYqL9PWEEGpf2x+W7fcDMwJr2n6qbKu3BfWfBxBZD3awfWFnljMiUZGkmYj2amHgPNuHlu3j2v6i/Lyo7UdG8evrtkiamXCjXY8Qt98GbAjsUQuUnQ44BNgOWM72A6UvsTIwue3fNks5XY2k24HpgUVsfyJpdmAXQmz6LfA58DVwmu1jyjkpiEuajsr9uvy8IeFi34voi/6xfoykGYjsAoNtXzyS6w73vEv6EZE97Uzbh7dyzvfZDEZ0rWT0aWhr1yKE8PMBLxEB76cVofQqRLvaB3iYEARvDRxk+9TGazWUsQWRrWzeesYDSUOB1YhMST8F9iWCAW4FliKCARax/V5r99xTkPRT4E7gCmBQNT6UdDgRhHY3Ibx+uwSf9QL62363HJfzYEmSJN2Yhvb6V8CsRFaqd7r2zpIkSZIkSUaNjCxLkiRJkiRpI0WIPQUwD+GQ81bZNRUhOLsIuCyF2MmYoOaQvTnhAnQFMHELxyTJWE/dMQWYwvb7hOhtISIoZhdg/yJ2+KY6XtL49Ws0COFOBbYbVSF24eNSPoQga1C5fpePvSWdAtxBOKoauFrSSuU7uI1wrH4dWAZYufquJPUDpgD+TQivmqKcJEmSOrV6vmofJiAyE/yjJpC+hXBTXNP2U5KWkzTrCATSpwA71YXYnVFOw/6FJG0i6RBJS0ma2vYrwJ7An4FtJB0FYPsLDXPIfqSc3+XtT2dRvreXgSMJ59EtKP3lIrYbB8D2G8BpRHuzc+krfAXcUgmkG/oZXVJOZ9HSPUjqU368gsgQtTaA7RcIp9KFiGwWewEb1YTYPcbNNek+SFofOL4IpbF9FbA/8AkwRNIyZftXRZD9GrDgyITY5Zyqrt6giId6l3+V8Ltvw70sCGyo4s7c0rWSjqP299kCuLJsvh2YDNgHuEbSxLZvJ8TX9xGBTr8A9q+E2PVrtVDG74Bf2P63pLlLcC7AEGA84EGivXgFmNP2tkRAyzTlX4v33MOYlhgH3m3706oNsn0E0c6uTQTzAnxZghneg+/b5Bw7JkmSdGNq7fWWwLVENr3MmJckSZIkSbelx0zIJ0mSJEmSdBDfEGK7X8H34rGFCUewQ22fW7Z3+cJ6MvZRFpnuATYDzrD9QRffUpJ0Og0itfWBiyQNBMYtoux1CPf4nYF9ijP2d5LWAE6QNHG1rVyjEsLt2JrzaRvvazxgW+Bg4BDbQ8v2LnfqknQYsDHh0LlI+X8i4DZJOxYn1VOB44mF7fOBQyXtSIhVDgd+VwSAXV5OkiRJRal7Ydgc5/Tl/4+J/vlU5bhbgHmB1YpAenpgG2DFmni2nimhahfO78xyGvZvTThonkzUj3cAl0hScd/cg8jOs4WkY8u5X9S/n65ufzqT0tb3sv06cDRwHeGeOW3Z/00Zu2H7WSJg6KfE3284AdyIxHCdVU5nUXve5it9pF62vy67rwXeJdr2io9t/8P2INuX2L6/nN/l/Z0kaaTUu3MBuxPjgskBbF8OHEVk1DlR0tJl+1dlLqdy5h3pvI6kdYBLiL7ve4TD7wGS5ijX612O60c4JW9OZJBJOgGFo//RRADJZrZ3BRYDzgLmB84qwTIPAbuVbWvZPr2c3+IaqqRZa7++IGkB4GlgT0nTFVH/PEQGhY1sr2X7/dKfWIRoG3rcfE4r71QfIrhtagDbX9cCGQ4s//+67Puupf+TJEmS7o2ktYm2+WTgsGqMkSRJkiRJ0h3p9d13OVZNkiRJkiRpK2UhpkqV+S7wIrAicLjt47vy3pLug1pIPTuqAoaWrpUkPQFJWxHC3ouAq2w/UkTW30iaGLgBmINwlH+SSEd+QL2urgnhdqoL4Ubjnk4APrR9VPm9S4VJZbF7XEIU8pDtg2r7FiSEfJsCe9o+tYhEfgnsCKxALIq/CFxq++Tqmi3UX51STpIkSR1JPwdWB26w/Yyk7QnB3RrAG8ClRDvwCTAdsJLtZ4s4bwdCdDXQ9j21a+5DBIxsV3Oq7pRyGj7bSkQ7djBRt74A/AbYBHgfWN/2vyTNRCxaLwUsZ/vR0flOxybKd3MQ4UB6ge3ta/vGJ/5uEwAb2P6o2csZk0iaB3iKyO5xGzAI+KwI4tYHLiNEjFd34W0myShRXKgHEM/1icBg2/8t+zYjxJ7fAXvZvrOd1+4DnE7MDR1n+yNJKxOu+H2ADYmgmWkIIfZg4CDbZ3bEZ0tGTnE+v5Fomx+R1KfUbeMDQ4F1gVVsP9Y4/mhtPCJpJ+BMYHnbf6xtv5gY8xwPnF0E2fXzpgZWBU4ihGZDO/rzNjMNQdU/Bd6x/aGkmYEngHuBXW3/p3aOgAeAA0cncDpJkiRpXiRNAFxNjKd3rMxncl4wSZIkSZLuSjpjJ0mSJEmStJFa+svBxOLKK0BfYEAl7ktH7GRkNCxALSZpXRh158KclEx6IsW97mRCmHa47UfKrt6SJrf9P2Jh/VFgGWBffijE3phYgN9hdIXYVd1ve59mEWLXGI9I6/wxgKRxAWz/jQguuhA4WdJGtr+0/SfbWwBLEO6ua9YE0r1HUOd0VjlJkiQV0wFbA0OLM/85wLnAq8UhejAwI7AQcFIRSE8HbEkE6JxfF0gXJgN2axD8jNFyWnHdXIFw2LwUeM72V7YPJoSE0wJ7FSfPV4BdgQ17ohC7PvYqrs4/ltS/9t0cC5xHuIdfKWlWSQsRYrlVgRvbIpDurHK6kNcIp9gXiAw8zwOHlECEO4mAqWUl9W3NJTZJmon6c2r7E0IcfSiwN+Fa/aOy71JibmcK4EftLGNd4v2YC3i8esdt3wEcCXxEjEWeJoJDjwKOr4TYOXfU8bTynY5DOKBPCsNcl21/BhxQti9c9g03/hjBeOQF4CEi+89yteO3IsY8BwI7Sfpx7d5WBS4mxq+DPSyLUo94DhrmwTYGrgLOlDSR7ZeBPYnAt4MkzVmOm4BwEe8FvNwV950kSZJ0Cv0Jw4anXMsC2hAgNV5LJyZJkiRJkjQj6YydJEmSJEmPpr0R9pW4rjpPUn/bH9f3jbm7Tbo7DQtQmxOLtM8TLj9PjMI1prD97hi74SRpUiQdAqwMLFF7H04gUkFPDRxp+4bieDYN0Ne2y3FVPT4bMI/tGzronurvZlO5t0i6C5jI9iLl9z62vy4/zwEMAeYDVrX9dCvXGOln6qxykiRJKopL9THA5IQr6UFF2NTbkSlhEcJlC+C/hPvp5MBZtgeXa7Slfhsj5Ug6Efiz7atq23oBtwI/tr1A2dbX9lfl56uBXwCqttXO7THjkQIZybIAACAASURBVIZ2dwNgICGK/BB4hAjCelXSLITgbnvCvfZN4CXgEdvHNV6rq8ppBorwbVbiM65MiFMPBZYElgcWaa39TpJmQdJawMTAtbY/rW2fkMjWchRRn59q+52yT9VYoY1ljANsy7B2YSvbv2vo+85OZFFbiBjz/832H8q+HlNXdxYNdfUswGtFeD03IZz+A7Cf7Ver44HZgYcJg4XL21neokTA6fJEZor7a/vOIdqCY4HTbL8laQlgc+BulywDPfE5ULjRX0DMhT1UfW8lkHcAEeD2L8DAN8Q7dIztQV1zx0mSJElHopLRsGHblMBfgDuIDAnfNLTr8wFrAic3eYBrkiRJkiQJkM7YSZIkSZL0cGqTOpO38fhv6+cR6dPqrtlJ0ioNTkBnE6ltB4yiEHsP4MTGZ7enOCslPZ5ehFhoMUnrSnoK2AR4H/gSOFvSHLY/s/3vmhC7V60e/2clxG5wvJxMkUKa2rZ2jZ2bRWilSJ0O8FtgNklHw/eOcH3Kz88Tbp4TEuK+FhnRZ+qscpIkSSDq7CKEgxC4TUgIYxeTNHetr9SnuEWvABxCOJSeQYjmKoF0q078Y7qcIjxaGvhPVV7Z1Rt4FphZ0uIAtr+S1Lfsvx+YCpiy8Z570nik9v1vSjiIv0CILB8BlgUekfQT2y8RgslzCJH864STeCWQHmE2hs4qp6spfaRPbT9te3tgPeBoYH/gV8D4hAg9SZqW0u/ci8hesGYJMAC+d8i+gBDlHgDsLmmKsu/7oM2RXL/KhvMNcA2wD/B/wPaSflT6vr3LMS/YPt32FraPSSH2mKNhnmRD4HpirqSP7X8QAt8NgN1KgChEm74o8C1RX7epnNoz8hZwMxGAdZekxarjbO9IjHsOBHaVNLXtB4Hde7gQew5CwD6IyCRSCbF72f7C9glEINDzRBaQTwlR3qByXK5nJ0nSo2iYq+xdDCfq+7tNvShpzzKG/qbxvktw3PPAr4EFi2C7atf7EePsRYjsUkmSJEmSJE1POmMnSZIkSdLjKc5JRwCLubhcJ8mYQtL0wO3A7wn33srlcHHCwetx4P8aF+YaFhh3A4YCO9k+t5VyZnake02SbktrDpKSliVSPC8OPAf8E9ja9vuStiVcyBYuwqj2lLcR4Zg3CyF2u8T2zWVfqwvmDe/nisCLtv/dnrI7CkU67CmB14BPbX9ZXGbOJVypT7J9ejm2n+0vy89/L/e9fjOVkyRJ0hoKN+r/EoKdhYGdCSfigbafrgniWqu72ySEGhPlaFiWhur/1QgX4suL8Hop4I/AVcDRtp8t5/UDjifEsSu6lsa5p1D/PiVNC9xNOIkfXrnglvZ8EPAZ4Vj6tqSZCXHxQ7bPLseNyBG7U8ppNhqfV0UmkbWAN9rrHJsknUn1nkmaFLiSSHc/ELjBwztkH0u4Fk8OLFVEsiO9bkMZVd09GbA2cAoxdtjU9v9aOnYMfOSkAUX2sXOJseBjlQC+7DuWCC4xMecyHiH8HWT7mHaWsx0h+v+QEHMvSnFxtn1v7bgzgZ2AU4GD689hT0TS0sBNRJakB2vbh2sjJfUHvgB61caQ+R4lSdKjaOh/rA1sDPwMeBK41/Y5jcc1K8Ww4SBi/nY928+1MB6eHbgLeIdYL7lJ0nTAKsCJwCG2T+uyD5EkSZIkSdIOuk3EXJIkSZIkyRjkl8BE7RFiNzgT/ETSeGPkzpKxkf6EgPFe4GtJM0i6CbgWuIWYeJyzfkLDBOwAYjFvuxEIsdcCfi+pb3dyyUiSOg3PvSQtKGkVSX1t/xHYBlgN2MH2WkWI3YcIaniVcKUcaRm1n9cCLiQcLy8DlgSOL4vtVIsEI7nP3Ym0mjOO1ocfRSQdCtxGLM48Rbi/9S8uM3sC7wJ7StoHoLa43R/4gBC1N005SZIkrSFpBuBhYHXb9xX34aHAT4DTiuvWt6XuXqGInYejjULsMVXOd6UN+k7hvn06cBqwgaRxi1vkzsBGwKmSNpNUCQu3B37X04TYkpZUuJzW2+NJgJmAR21/qmGZGq4mxJE/JZzUKEGKO41MIN1Z5TQrDULsXrb/SaQEv7xsy7FF0hTU+/EwzMW+1I3rA08Q9fXakiYs50xAjMf3A+ZspxB7FcJt+Zry/wy23yeE33sCSwGXSZqo4X5SQNoJSJqHCNY9FhjimhM5gO0Dga0JIdiChHh6QCXEbmvdVgTFpxGi741sL0a01X8D7izBVJQydwEuB17u6ULswizE+/c8QOn/1DNQLCVpKtsfF9OCr6oT8z1KkqSnUasbtyD6Gr2IYN1ZgEMkXVk/rlmRtAHR/t4P9AWukTRXXYgNkVGEyHjYH7hB0v8BDwLHAYMrIXZj/y9JkiRJkqQZycnTJEmSJEl6FK1M2DwCTCGpTWmXGxbk9iEc66buuLtMxhYahJ79yo9vEhOo+xPCz3sJQc8uxALujMCW9Ws0CLFPAXa0feEIip4JmBXom4tWSXel9txvSQic7yICFv4qaRvCofE2238qx00PbA4cRYjUXh7R9RverckIx9PBwPa29yJct78A9pO0Q7mn4QTZLbyfQ4j3876O+RbaTnFe2xm4AdgMeJpIjT0pfC8O2wh4A9hL0hWSppE0JyUVKCGsbopykiRJRsInRB9qKUmTANg+iQhYmxk4U9KKZfH3JkY9SKZDy6muUa7zHTCX7W8Il7OXiXZkA0VGgXOJBek5gd8CDwADgN94WOaBHrEYLWkn4A/AHoq01VX/9ktgfKLvi+2vS9DWt2XB/lNgoeo6VfDtCITYnVJOd6EmJv26ti3HFkmX09AH/5WkXSSdLGk1SdPb/ghYkxBkn0kEDi5H1KnrAm/Zdjm/1TWyWhlbAdcBcwAzEAGhf5O0QRHZXkVk1/kVITKapOUrJmOQGQi383tsf1bbXgU/Yfu3xDOwILBZNaei9rkuzwe8D9xMZAjC9tXAwUQ7fpekRauDbW9m+9TR+WBjEc8S7eU+ksaz/U31/pWg3a3Lvj7Q/ALDpDkYUV84A8iS7o6kOYhsrkcSpiy7AssC4wJzlMDh6timGxeW/tAyRBahAcRn6QdcXRNkj1MdX+Z3FwT2Bi4h1kA2tH1suV7vbBuSJEmSJOkO5EAkSZIkSZIeRW0xrX9tUvZlIup+0rKvd/3/Oi0I7wYDF9p+ZczffdKdaHhWliMWgOey/SGwAfBjIh39tbbnsX09sThl4K3qOrVr7MowIfb59XKq/2sTmNX5k47Jz5gkYxpJ6wDnlH8bEQKITwgH0c1rx61MiLCPBo6yPbRs/8FihKRxYbh3axXgPkJA8artL4oj5ouEWOMTYlH4e4fs6totBErsYvu8Dv4aRoqkg4HVCbfwY4t75eaES7iq42z/mxBQX0qIzf9FiAxPBY63fWUzlJMkSTIybP+XECivBsxV234ScDIwPSGOPo+or87s6nLKYvrJkla2/Z2knYGnJS1QhIOLAR8CxwMbKhyyrwSWKP9WAVa2PaRcryctRl9PuI7uQhFKl+0fA38BNqvEb7a/kjSOpB8TmRpebbzYCL63ziqnS2lGsUaStIdaH3xrog7eH9i0/HyOpOVLUMRKwN2E+Ocm4BjgNNu31a41QhGupIWAQcAhhIB3ESLAcApgc0mTlLKuBQ4AViQy7CSdy5zAhETmHuqC3tLmLixpAtuf2/7EwzL39GpnkMmPgUls/6uIyPqVcu4BLgD6AH+StFL9pKx3Afg78CdiLLm1pPHLdzgRMe5eGXi8HgCUJCOiYU5mUUnbStpb0pqQAWTJWMH0hHj5trKeAJHJ71NgS9uvSfoJNO244xPgcSJr0DO2LyPGun0ZJsj+pmqzy/j2E9un2N7b9lDbd9f25TudJEmSJEm3IMXYSZIkSZL0OCRtDDxGpBAdAixHCB8Wl/SjWnq0bxvOq0/yDmSYMPasTv0ASbfAw6cTvIIQKk5R9t0P/AJYz/YB5bgJicXi6ShpWyuKE9dphGPv+fV9tcnWcYuzIsQi1yeEqKe6Rvb9k25DCS6YkBD0XgKcY/tO2/8k6uuXiHSVFVMRz/weto8r1/iBSE3S+cC+De/DzETgwrSE8yXAt0WQ/S9gPeB/RBrQAdX9tSDE3rHx/ewMJM0CzA9cBNxfW7yekAjwmEfSKZI2kzSj7VeJFN6/BHYDdgDWt310uV6LdUVnlZMkSfeiM8VFlTBWUt+y6RZCODtQ0vgalu7+VELoswXhpHVkOa9N9c4YLOcLoq25UdLJRIDKPsCTpc35iHBX/oBYpK4csl+y/bDt+2w/V8por3is26JwqP4/wuX2dWAgIZTuY/ttInX1fMBhJTgLIkhoOSJ70XPNVE5noeEz9PSXNKWkvlUfpu5C15ZrJEmzIWl5Yox8PPEezg5sSwSv/EbSora/tr0usBawPjH+/t5dsY1FzU2Inm4vAToQ9fe/gcNtf1jq6v8B1wDz2L65Yz5l0g4eAb4hhPlVBoPKaGFiYD9gr8aTRkG8dlu55uHl/C9r/YXngWeIPsPso1nOWEUZm39JiK7fIAIcbpJ0JCFiPx0YmkG7SXtoCMy5g3jHDwculnSbIgNaknRnpiDGGW8ASLoVWABY0/aTkhYA9pakEVyjyyjzhhfYvrs2hj6f6LtVDtlz1+YX+7X23vaUsW+SJEmSJGMHvb77rkfPASRJkiRJ0sMokfYbEk5F0xIivBmIhfSXCFHZc8CLxOLak8SEbt0NdSDhhNclwruk+6BIWX8RcCjhgP0Dx7xy3CLAwoSr7yDbgxv2Twss2drClKT1gTOIhb9KrLorsC/h3P55x3yiJOk8FKmKnwGusr1/2XY7MA+wWll4WAT4r+0XJE1cRBAtOqYoHLH3BR6xfU8RV31d9m1BLAZ8Dmxq+09FgDROWcj/KXAn8Bvbv6tdc3/CkXtn2xeM0S+kBcp9P0ss9v/V9gu1facSzp7PEdkfpgLuAgbYfr2V67XoNNNZ5SRJ0j1oCEiZ0PYn1Xs9pt7v4nC3AA0ZaSSdAmxMiN/ekdTX9lctnN+m+xrT5UiakagjZwXOtb1LbV9fh9vyRMCfiXHJocDlLZXVE6gJh/uU9ngKwr16JkK4dXLZvjkhyuxFtEffAD8jsjEc3SzldBYN7+iGwE6Ea+xrwKPAPo5MIOPUgjlHdI0VgYcd7r9J0qXU3tchhPB6Ndvv1vavDVxHvKt7tCSCbU9bJWkosIbtmcvvtxHjkdXLeGQZIihn5/q4O/u7nYukqYisPD8l6uSzy/YJCAHwccCetq8azXKmBs4lMjadXCunLyH4ngk4urW5n55MrY2dgHCp/xUwC9EuXW/7onJcvjtJm5G0AhEIc1T5/20iqP88Imh+39b6OknSLDT0uycqQbqUPsYfCIODtRl+PrQfEdi7LOE8/WLX3H3bqdfvkrYlAqi+BNYp87oDgJ8AR9p+vwtvNUmSJEmSZLRIMXaSJEmSJGM19cmsVvb3IdKMXl7+P5twLJ6HcB44prjeVccPAE4EdkkhdjIiJE0KXA2YmPz/vGzfgHC2eNn2bZJmJxYIfgKcaXtoOa4SNX0vGB1BWTsTi1hTE8/v54SDLYRQ5HPgKSK44BPb53Xsp02SjqUIoacGHgIusX1EEWLPzTDhw3TAmUS6znPaeN3qvVoPWJBYqH+/7NsaOBh4j1iof7jcR58ijvte7F2On5gQ1F1q+7QO+/BtRNI5hCPr7MCbtj+vRFWSDgYOBLYiXKzfkXQs4fK5ne0rmq2cJEm6H0W4vDkwAZF2/gLbb3WEiKZhQboXcCtRb09EOCjea/t6SVMCfwFusL1nM5ZTrksRD85GOG33I/qD69n+Q+3YSqjUn+i3TQv83Lbb+9nGJiSNb/uz8nNdKH0GIYb7StLSwDKEOPMZQjx8ZTmnrWL8Timns5C0CREYejExJpmHyMTzCfAz21+0cl5LGaGWcWT36VRaG8+PbJyfjP1IuhKYF5jbw9zev60JtbcmAmjeaud1h3u2SuDzxcBGRJ/4F4Q4+++lrt6DyGqwS2uBiMmYpSbQn4cQZE8DPAA8QYxh1iXm9o7poHLmAn5LjFfvBf5IjFMHALtVQbpZT/2Q2jiy+i4nBT6uBUk3VTuaND+SjgMWATa2/Z+y7Q5ijnQT23+rHZvvZNJ0NPS7VwNWAO6yfUvZdhWR3eNdov/xaAneXYvoox9o+9yuufvWaRxn135uFGTvRwiybyfE5fvZPqGLbjtJkiRJkqRDyLTASZIkSZKMtTRM9EwraU5JM0qavNoP9C4LZo8D79k+CdiUWGCbtxJiS+qlSIN7KuF4lELsZGT0AeYCXirixZ9Lugc4i3DAvkXSZg6H2SOBLRuF2PB9Sr/vUQvpwm2fZXs/21sSz+7SwBXAy4SQ6EXCIeoIQlyUJE1DK8/0d0U48QdgH0mPEAvpaxQhdl9gZUBEVoM2UYTY4xBCu/2BgWUBmOLEdSwwOXCKIrX5d8DX5R4rZ5pKVPc/YLkuEmL/GlgHWNX2S8RCIzXHp8fLvmuJBRtsH0ikWF+i2cpJkqT7UUSeVxFC7OkIMdrVkmYsde0ozzk29OFnAyaz/Wuij3MksBjwu+JOuhUhiFVxq2yqcqoyiuBoeuArYE1CGPYIcK2kVarjixC7j8OBeH5ghxRia3ngGUkzAzgccNcBXiEywexRvrP7bB8OrGB74CgIsTulnM5C0gzAQYQb7L62T7K9DZFBZ3xgxtqxveo/196LAcAJxHPYpUJsSb+QtJmknSQtnGKqnkPD8zl+bdebRJazBeH7/mmv2r5xgXHaW0btGhUvENmnLgMWJTJW/V2RdWddon64PoXYXUdpY3vbfgbYAKiE+nsRwuzdKyH26PRPauU8S2TLuIFwJD0fWA84xLVsSVlP/ZC6ELv8/kFNiN2rmdrRpLkp8/TjEA7rH9WE2LcRwRHr2/6bpBVKfybfyaQpqfV1twR+R2h36tlo9iUCRCcG1pV0ENE/Pw04qRJitzS32tk03MP3fbDSflZzqdW8LKXNHEr05/YBDkohdpIkSZIkYwPpjJ0kSZIkyViPpM0It9OpiYmgx4Hf2L6/5sZyIDHpM3VL4tfaxNiSth/o5I+QdBManpV+RPratQlHphmA94EdCceHocB3wHLAdy25RYzk+rMQroqTAI/XFrAqp6HLgKlsr1A7/0e23xsDHz1JRomyGF6J1OYiggX6Ec/0J5JEpJddHNjW9kUKR+w1geOBw22fOArlTgzsCRwGDCIWMD4o+7Yl2oPPidTmnS4+GhmSVicc+jYBpiKc2eYtAoTWzpkNuAMYZPvCZionSZLuh6RLgH8AQ21/KmkvYGdC6Lmu7VdGRZza0NfZGDiAcMk6w/ZrZfuMwBzAoUB/YL5y+gYlOKQpymkoY0OibbkaON/2+5LmJ4SyixKCkTvKsesDP64H+zSb0HdM0vC9zQwsT/SpHwC2sP1q2Vd3rj4VONXtSEPfWeV0NrXx7bzAfcTzenfZdxPxHK9u+ylJ8wHPVJ+nBSH2KcCOXR2ILGkr4l35jAgAmYIQoVxo+/kuvLVkDNPwTK4CrAjcYvseSdMCjxGu75vbfrMc15fo468K/Bp4e0QCvIYyViWCMCYAXgOGODK/rE4Ibt8DTibE3r8inJCPrQl903W1C1EtuxjwDTFX8rmHZSnrkLa0Vs/2IeZ0ZgE+rYlBe0Sb3drz3lM+f9K5jOB5O50IiliGmDv6ORHE/4TCjOVgYo7pYNcynSVJM6HIOHUpcAhwpe23G/b3IzK1LgjMDNwN3GP7t2V/l9e7LfTZNiDax3eAgVU/reGc8YCdgJOAvWyfUrZ3+edJkiRJkiQZHdIZO0mSJEmSsZoiZjifcKzZFNibcCy+V9IvahO5fyeck37ceA0PS3lLCrGTRhpdH4pDFra/JFx2zyKcqU+xvaDtvwLPEy67z9r+tr6gMKLF29qk5uaE2PGR8u9WSeuVYypxyIPAXJJmKI4xvQgx+Gi5QSVJRyBpcUlTVM+/pK0JwdD95d/dkrawbUJM8QBwgaRHCbfsfYGjKiF2ex1gyiLcSYQQ+2BgLw1zyL6AEFlMTwttQpPwBiF4PIVwvx9g+5lGZ8vaz30Jx/wvCMFKs5WTJEk3QdJGRYg9EfCQ7U/LrpPLv0mB6zSKDtm1vs5mwIXAjcB1lUC6HPOq7TuJFM5bEBlHXgd2quryZiinod92IXAP8Jjt98v+vxNZGh4BrpS0j6S9CcfxKRuu1WMWoxvc4a4ANgf+BSwJ3FhE8nXn6n8T6a0PaE9/oLPK6Syq8Srhel39PynDMnvcyjCB0lOS5iQCBBYr+5tViL0yxfkPWAmYhxjT7wOsWo29krGT2jO5FfGeTgBMWHa/TbyTPwdukrSNIqvLXsQzcrHtt0Ymjq6VsQUxbzQnkeFqe+Cvkta2fTOwNdG/HQxcBCwM7FMTYvdOIXbXUmsrv3VkpfiAGJd0qOty7e/8re1vbL9YE2L3CHfnhjbjxwpmkDReW/t/zdiWJs1Jw/P2K0lr1Hb/FZiW6E/PDyxThNh9iCD+9YAHU4idNCulL7sWcBNwZiXElrSnpJMkDbH9pe0BRF94TmCrZhJiQ4t9tnGBPwGLEOsWS7Ywl7gS0cc/PIXYSZIkSZKMTaQzdpIkSZIkYxUNE7QTExNZ/wAOrCZei5hvKmBt20+WbT8DngQWtv2XLrn5pNvR8LytTYg45gReIiYer3O4Rfa1/VU5bmJgdWKycaDtq9pZ5vqEW8ZRwHOEw8SFRLrC3WxfXY77NXAzMFcRtCZJU6BwB72CENGcTYhq7iBEfH8nnONPJAREp9k+vixObATMCrxKBDI8XK43yhP1kiYihN0H80OH7LkcKaibEklnA9sR38dA27eU7cN9H5KmIRYhhxALHCc1YzlJkjQ/xbnqGMIJ9CNgyRKgMa7tSuy0CzCQqMvXtP3SKJQzG9GHvxE4sib4rh/TWAftRtQ/89j+V7OUU8YYNwKXAMdVZdSvK+nnhAvaGsC7RADf8W35DGMrRYB7I+FYfivhULsd0Xf4EFjNw5yrpwTuIhyrL2rScsaIW67CXX0m4HbbXxQx6aJE32ZqIpjtJuCnhMv7arafLMFTAwmB0s62n6hdcz/iPd+xBKiN7B7G1GerHG7PJcbu27pk+JF0I+HwvWY1nk/GXiStAFwDHEm4oX9Q2zc+sBSRMWc2oBfwCnCeS5r7tjyjpX17gBBjn0W8/wsQ9f28RBDDw2UsPy4R4P9ZbdyQwqEOprW/W0d/151VzthKCWrbD5gR+JgIatrW9osjOa8+l7Yu8EoxLkiS4Wh4VjYHjiACYw6ozemfSbjrXgMcRATuLE/M8Rxh+7iuuPckaQsloPJe4APba0hamjB3mQ34DzFneqXtTbruLtuGpJWI7Hon2j6hjIUfJvpn7xIBzg/VxsEixtXXld+z7U2SJEmSZKwgHfGSJEmSJBkrKM4YExWH1SrKfkLgZ8DfakLsW4DpgLXKQvRikn5KLLatl0LspD00LAhcQbgu3UGkwz0WuFhS/5oQezHCAfF0YOgoCLEnBbYlUm+ebvs6h1v760Sq5Kdqh/+TmOycZtQ/YZKMEa4HLiccRrcAFidSbA61fUtxIV0JeBbYUdIKtr+w/Vvbh9k+vybEHi3nMdsfESKLQcS7uZ+kycq+Z0sZTTduLoKwuQhx3wTAwYo0oBThUq9y3KrAUEJsflQlkG6rC1lnlZMkSffA9ufAqcBxRD9737L9C0XqZGyfCZxBONQtPIpFzUAISe9oSSBdyqkWcPuUTVcTAvBlmqyc2Yjv6tZ6GfW2qwhhNyAcmVerhNjN2P50IssSTtRX2n7B9mdEtqM9iGfrakkzAdh+B1ikvQLpMVlOY/vXKPTriPaxPB+rEq7RO0rakRA/PGH74xIscA6wI/EublfGv5MBGwOHApc2CLGnJgKrdq8LsRtc7CaRNLWkSarPNiba+9o7Mj/wv5oQ+9aybY3yedaUtGRHl580FSsRmaWurImfexXBzme27yCeidWJunmtmhB7pG7VkjYi3vn/EHX1Bw5X5b8R2dVeBs6U1Mf2/2y/Y/tNYg6pxzghdyb6oevyLJJmgbZnimhLvdRZ5YytSNqAyJ50BxHIdDwxF/a0pHlGcF5jJoZraN6MVEkXU3tWNiaC+c8i+ilPVu+f7V2I4P5fAk8T2Wi2Ag6qhNg9vF+dNBm1ubTejgyXVwJLS3qLGIt8BfyCGKucDvyyBIQ1LZImJDLl3VCE2PMQzthXACsSY+izgMU0LAOtU4idJEmSJMnYSA4+kiRJkiTp9pSF54eArSRNWFts+wr4mnBXrYTY8xIih6fKIssOwEKONOTXl+Oyj5S0GUlzEM4slYPcnrYXI4Q3PwYmK8fNSIghliGc2geV7S0+b5IWbWFzHyIN8+u1hejbCbe7LWw/L2mB8mz/B9jA9n0d9mGTpAMowQlbEc5zJxKC7LdtV4KGvo40zzsSju9rVueOTNw0ivdTCbJPJJwx1bC/GRcD3gPWt701kTJ9FuAwhSN+/Xt5g3DqH1AX97Xje+uscpIkaTJaExfZfoVYID4F2FzSGWX7lzVB9mlEivArR7H4aYDxgU/KvQzXV5I0bwlww/bXZfMcwHjA+81QTu37m51wUX2jbB+n4bh5JM1u+1vbj9p+vLqXJm1/OouZge+K4JEigvwM+ANwC7AQcFUJVAT4phzXXlFch5fTIDJbQdJgSddK2kvSnNAxAubyfJxBiFQPKz/vZfucKnjA9pFEgGh/YC+Fy/QFRJ9niO0zGj7PO4SQ9YxWPs9GhJP408AfJZ3bCe39u4T7d+WIPS+wehnPTwqsC2yocEhOxjIULu6LA/8t44Pvn8lasMyMtr+xfbftR2w/VztuhPVoCSrYlBjLL07MIX3fHpS64UyiD7xI/dzque8p/d3OFB3X6pxNiWxfjwP3S7pF0kwju5eGemu1qi3vqnLGRiRNIY1bjQAAIABJREFUTmRYOAM42va1tocCnwNvU9rLcmzv2s+NQuyTgO1dsi8lSUuU+dRDgBOIDDIvlF0LS/q1wgRjb2BlYv5oVWBd26eU83t6vzppAhralMb25fdEts3TiSCCJW2/bPtdQsvzHCFmbma+AB4FLiz9q8uJz7UX8BdiDDEnMRZZuvHkfEeTJEmSJBmbSKFRkiRJkiTdHtvnEGLsI4GtJfUvu74EXiQWZx8gRKyrFPeMcYBViNSzbzRcLyd/kvYwIyHKudXDHNhvIFK0DrD9mqQZHCnOjwG2tn12Oa7FBQFFmtY/Sdq1YdckwLcUAVARYs8NrFqe65kJYfgitj+xfW1VTod/6iQZDYqobSvgMkJUs3RZYMP2V0UM9TLwR2AZSePWF27HwP18BAwGfmX70TFRRkdS6o3/Kz/fDmxDiEQOrYTSZd8TwKG2fw/tX4TsrHKSJGkuGoQyi0natQhKty1ih5cJN94hwM6tCLKfLuePtA/SgtjpGULAvGYLx05CZAlZRtK4ZduEwPrAfZWzVleWA8OJ8x4lAotWL79/345J+hGwJ7B8o0i7p9WhLfxtbonNWqv8/o2kcRzu4vcDTxDO1TfA94FeIxVFdkY5tXdnq3LekkSA5lHAJYpA4tEScCpcgcex/T5wHTA5MfboX/pQXxcRK7YPBnYiAjUXIpzAd6kHhtZEpd86HMBb+jybAL8F/kG8+w8RQui/SJpiVD9L9XlGsPtq4GeSXibcj5ct454+wHrAYsA9RUSfjGWUd+5FYDYNcyyu16OzAoMkzdvCuSN9x0ow6JHA74j3aJ2yq37uG0SGmD70bCoXz19KWqNWb44RSvDHBcR4cB9ChDkHkVGpra7LuwM3EX+/Li2nu6NhLq5VfT0+Iar7u4fPRDgtkbngOUmLS5q4FjjRKMQ+BdjZtUwMSdIK/YEfEY7XX0uargRo3UD05R6S9FNHlpO7bP/F9ouQ2QuS5qCh/lsZOK3M6Z8vaXLb/7F9o+2jbV9djptckYlzE+D3jixVTUFLffcyz3un7b8SY46JgbMdGXu+Isbefyb6WLN05v0mSZIkSZJ0NinKSJIkSZKkW1OJI2wvCfwVGARsI2mSsiCwH7GAsjhwiO1/SJqKcGI9HrjA9v1dc/fJWMJkhEj6bfg+dfaChAP7k5J+CRwg6Se2n7ftctyIFgSeAi4ETqkLsh3pxh8DDpb0R2KRcM1STl9gBeAnwFv1i+XCQ9KMlMn4AcA5RFDBpqV+poiIxgcmIlKDf9VW0dKourY50o4/Wq7R5WPlStDYGq65atq+jWFC6YMkrVY77ovazy0FfzRFOUmSNA+1heKtgdsIwfCuRH39V0lz2n6dcEMcAuwo6Zxy7pcN12qxD9JQV49TEzz3sv0k4UR6kKQdayKeiQhR88bAy1W9Y/sTYKjtlcpxvTuznJG0O88TAq0TJa1bK2MCIjB0VeBdR3rqHkX9e2uhjf8zIfY9RtJyDhfcb0pbMhfwMOHuPJ+kJZqhnIYyFyXejSMIp+nFCSHxAsCSCkfRUaZ2n9MSz9jehHB8Z2A/Sf1KcFslyD7XkeViUdv72L6m3GebgqckzQDsTwSuHWR7iO3dCYH35ITYojq2Xf2wBnHKkpJ2kbRJ+WwAdxHiq8mAP9n+p6T5ymcdSog8rm9PmUm342FgVmCTaqwA37tmLwvMRwTWtIta//YvwKnA9cBRpT2onslxifmk/wIfjebn6HZI2kDS3BDteekX3AVcClyvcJBeYFTHX62U2av8nXcHTgYG2b7A4br8LjAO8Fnt+BG5Lg8hspfd1VXldHc0LFis+n+y8v931IIUyjxYPXPBzMAeRD+n8TvbjRBi72j7/M74HEm3522gH9HfORe4j8gQuDuwIpGJZsuWThyd4Lck6Shq9d+WwFVEcMHLwPLAA5Lmqh8vaRkiWOwk4ETbF5btnZalojUUgZ/V55lK0sySxpc0bi04cjpgSoa1EX2Jed9HgF9k3Z8kSZIkydhOr+++y3FIkiRJkiTdk4bJ/JmISZ6HgVeIhdnf2f6wOA5cA7wJvEc4C88MnG772MZrJUl7kLQ48ADhOLcGsRhcCbH7Een4VgZ28LBUmm257gyEM9OAcu75ZfuSxGLxfITj0C1lEXFtwsXpcNsnddgHTJIxTJmUvwDYiBDFnUekNV6cEPoNsH3uSK5Rbw/GI1KM92uPS2IztQOSjiWCKk4bmUiqBYedK4j2bhXbr3S3cpIk6Roa60BJyxJuc0cA1zgyfWxD9E0mJESd/yn9lT0Iwfaytu9rT1kKZ82tCLHb60Sf/dJSxqmE8+6dhOizPyHqGWT7mHL+cGLShmuP8XIayliMENtOBTxv+7KyfQUitfoSwPmEqG8KwuXs6KqMnkTD97YCsBoR6PMycIZtKzIwHEeM8QYRf7fZgUMJ99q3CAHyqo7sDV1WTmN5kgYSz9vaVRsp6SpgUUKo9qTCLfR/7frihi9rUUJIPn8Rvk1CvLNzEP2n44sguzchkHvH9hutX3GEZc0J/AnYrARmIelm4GfEeOQpST93ZMoY1c+zBeG4/xUhrH0DWM/2Mwr34/2B7x3MCbHkxbZPLOdnVo6xjIb39wJCaHcOcDHxDCwL/AY4wvaQDihjPuAwYlx9CfAaIf7bCTi2mjvqCRSx15LAvcR3cSQxj3YPMdf2d6KtO4Nw298LeGR0x1K1OnQ64GlgoO1Ly75biDqnEvsubPuxxnPLz5Xrcoti384qp7sjaX6i73K57XclbUcYW6xPCNVvKof2JtrWX9t+WpG5YGciw8iutv9Uu+b+RMa4HVxzxB7RWLyZxunJmGUkz8FKRP3zIvAP2/uV7VMQffiLSzBFkjQlklYBLgJOsH2CpJ8R/etxibm11Uq/d3LgQGI88nvbF5Xzu7SvK2lu2/+o/b4pMV6anlhvuw/4je2Xirj8z8CDwB+AvsDBwG619jbr9iRJkiRJxlq63O0rSZIkSZJkVGlwFfgb4YjxCDGJdSSwuaSJbN9BLHyfR0zaXglsXRNi987Jn2RE1J0nJPUrYk8AbD9ELAifDfyKECQ8Kak/IS7dD7iiLULs4s5U9dEnJxYG3wDOlbRt2f4IIbp+BrhK0t3AzYTIZ1AlxG4Gt4wkaQsOh+xtgcuAgYT7+8WEI+nBlRC7tWe6YUF8bWJx4y/AtZLWaemckVxjfklTj9aHGg0kDSGEjY+1ZaGlEgOWn+8gxF8ntUEg3ZTlJEnSNbTQF16c6INcTYhTIQRZexIOVxcXV6zXCEfJJdoixK6XVcSXVxCiunuJlPfHEWK7z4HtCUfuKYk+FsAurQmkGz9HZ5TTMB75PdF2rUxkNzm3HHMXw1yFVwS2BmYAdq+X0Zbvbmyh9r1tRQiIFwCmBTYH7pO0QxH97kIs7J9CCOj3IoSXdwK/BF4lFv+7tJzG8ohMNf1rQuxbifFoFbC5DLCdpAlHds0R0Af4H+WZtf0hEVTwfPk8+xaB0lrA7cDPR6OsiYBJgf8DkHQbERi6ZhErzg4cUYI42o0isHogcDiwCNFv+Bp4SNL8juxA+xOiwIOBTYFNUog9dlP6nr3Lz9sCpxP9z8cI8dJuhOhnCIza+Lehf/skcBRRB2xMiEn/AuxcnzsazY/VLXC4798PHETUl/sCyxGBKZfZvt/hsL8qMBNRdy46qnMQKi7+DHM4n5ioc/5b9t9GBJVUwR8zA8dKWrfsb5NAurPKGYuYh/jbnyxpd8KR+BoiuOd/RCD1kkS9fUgRYk9N1NHHABc2CLH7Em3R7q0JsSWtJOkoSddJ2lPSAvX3NBl7aXgOFpC0lqTdNSx72h+I52edmhB7AqJvPTXgLrr1JBkppc+/EnBlEWLPQ/RlrgbWI/r1V0uay/Z/iWyuOzeREPsg4NYy51oFR1xIjJ/2JIK1lgDuL6LtZ4lxyQLA0YSr/aBKiA3pWp8kSZIkydhNOmMnSZIkSdKtUTiC/YEQN5wDfEBE5F9CpII+CLjE9getnJ8Lt0mbKYtw2xET/bcC5zqcIkWIoTcmUgh+Wo7ZGBhie1A5v02uD0V4/RvgWUIktCzh3Li77dMUqWKnINzBZgD+BTxp+95yfj7XSbdD4SR/PCHGGUKknX+p7BvpM13EducSixm9iYX1lYnghcEjaAfqi357AwcAy9h+pkM+WDuQNAdwG3CM7fPLAsdrZSFjZOf+oH5prc7pDuUkSdI5lICJD20fXX6vxC5XA/PZnr1s72P7a4Xb4cnEovFCRYxdv16r9XVDfTsHxcXu/9k76zC9qquL/5KQ4O4uhWysuLsXDQ5BQnAorkWDQwTX4EGLEyRY8RZroWiRhZYWKc4HhKDJ98c6N3Pz8s7MO5GZd2bOep48mbly9r13juxzztprAwMlDU/Hz8Sqi7cCh0v6LgW4/Qwg6cd6sVOytznejO4vaVBErI7nJz2A2yRtXbp2WkwKHyXp21ptdERExAo4oPAsHNT4DfZrrwaWxsGzt0TExMCsOFDxs+R7Lw/cBjwiaad6sFNh83Dsyy+ICaRLY2XtlxJx6ARM2N5H0qe1llvFzi1YwXVRSb+kY1Pj9rsiVvWeFThb0nE1lNfYeD4nbkfPpfJ6YrLii8l/2xfYFpNGXmipnUQavwg4KhGvCWfhGIDVVtdorNxa51cZ9YWImFQtyGBTum8pYBY8R/5f4VNW60dbYqOSBIiJRQXp/8Z0fKKinXV0RER3OWC2UDLuD7yFgyt3Sse7Sfo1IpYGhuGMA4cDT9a45rE0sIKkC9Pvf8QZI9ZPl9wDdKMhs92mqc/pDuyFA5v2l/RUqcyjcP+6T0H2bS07HRFp3ekkHJgwFSZcDyj+9umaHXFWg09xHZgc99sXlgLOyu2r0XYUEbtgtfVncRDQtKm8PSXdMcFeNKOuEBF9cJaCbnhdpzsmct5fXtNJPtrymPh/iqQBbfC4GRlVUdHvzS/p7bCS9Jt4Df8xnGXij8BPeL6wJw6C3kzS89XKaiskv/xyPLc4Dc8Fpgf6SfohXbM1Dqz8Ab/DB+EMFFPjue/r6bpOOffNyMjIyMjI6FzoFJH8GRkZGRkZGR0aiwE/ArdL+kLSr7IC2VrA65gg2ydtSv8GnXHxJyJ6R8Se6eesLtMIwirVZUXsbXA6+1+Bz/BmwBURsbgkpd9PAdbEJOlJcbrbgohdkwJ72lA4GzgX6CNpU6z0ch1wbkTsm+r5J5IGSdpf0jmZiJ3R3iHpJ6wkfwfwXomI3aUGItwieMPuOLxZviMOhvgKWAcT4qrdV6lu1h84ri2I2AlfAl2AddJGzX3AArXcWCtBur3YycjImPBIxOA5sFo0MFoNcxTeIJ4vIjZLx38pEWiexgSZySrLrNZfR8S8hR9U8q3mxMSe+yQNTyRvJB2Kgzh6Y7Iqkr5L5Oif6sFOhc1ZgR0x6WhQRCyGSWk3YfXtLSNiSOmWb2Q1yYIU3uwY14GxJDACuEXSV8m//TdWXxXQLyJ6SPpR0r8TKeHniDgY+DNjkgKbmtNMEDvN2LwK+AgTLpbEQV4vhbPrbIOVZu+qhYhdzU4ijgNcgcnjfdPx7rJC9la4/t2FCdLHpfON7gVU+ESzR8SsETEpgBx0MRSTU5cG9k5kxelwGzoeB0A3S8RO5RV21kzEyNOwIuB7pWvux2rY7wEPRcSS1d6hrckpGS1HRJwGHJbGoFrvKRSyn5d0r6RHSkTs3/SjLbVRHjdSH3AmnpP8ORFE6SxE7IQiuGMSSQPxWscCwB+KtpiI2F0l/RMrZPfEfdIszRWeSL4LY0X9K9M3vgD3M9/LgVM3YQX+JXHQ1IthhdwdcZ9xdUGQjoYMY73StVe0pp2OhvSeBeH678AUWHBg6YiYLv3tewDIKqdb4L/9j8CdwO4aM7tIOWtJY0TsFXAAzlHA1pKWwmPlDHicnmICvW5GHSGROS/GmS2Xwv7NrLhP3jIipkzXBQ6I2BdnUxuQjmfOQ0ZdoOTr7gTcGVbCvknSszibwJRYgOL71C/+Ewei/Ijr/m/KaiskP+t+3CfPBByWfv5E0g8peAk5Y8aFOBh1tXTsQ0mvlYjYnXnum5GRkZGRkdGJkCcmGRkZGRkZGe0dv2KS3aTFgbQJ/QveOJkWk/v2LMgXnRlp434bvDE5fVsv6NUrImIGjanWNj1eSDwRbzRtCGyO05afH06d+qmkEzBx+vfAbpKuSfe3hCA9DzAKeKwgaEh6GjgVuD/Z61t6tjEIGnlRM6OtMS5BHomQvaWki0vHaumnZsabGU8kEhLAjcC3wB6SPg2nTB7jOSuI2OdgdbPBY/v84wHfY3Xv9TGR6wBJd9a6qVjx7ZvasG4XdjIyMiYcUh/4FdBX0pMRsVFElBXlXsSqXYdFxJowmpDdAwdDvgH8328K/q2do4HHgVUqgje64357+lLZ3dO5Q7ES4nrlspoaD1rRTpmMOw0OOnkDE/Zmw+S9W7CS5oWYjNs3Im5KZf+a/h/ZnK2OitI3nA2PIQXpr0uJ8H8qsBAOqCrjZ0zavVTSlum+qgGPE9pOyYfYJCIujoirIqIo5wscpPk2nq/OHs6wcyQmAp5Xmic06TeV7KwSEWukYz+m038HPgE2Tsd/Tu/2raRTJR2WiHLNzkdKdnbAgQovANdGxLbp/NHp2XsAx0TEYKwufgbOBFSoztbkB0bEznhucyImeW+Gg6hHB9BJegDP5T8B/hlW0O50baYjIfmAPTGBv28LyNLN1t3xYKNMyH4RE/1uxwHYq9VSRntGRCwXEfuGFcVHpfnRg+n3s4EDgRmBgxMREkkjU9/yPLAB7gs+bs5WGgvvx9nttsXzhf0lnYXVcElzstNwcO3AiLgBq/6firMenZeeu/ibjQRWLo63pp2OBjkw79dEHvwIE9OHACsDg9N62U8lAt6jkgZhJdTTJd0HLV4HWxj7VPeqIVDpSOxH7SFnMJlm/L1lRr0hIubH/cyAVJ9mx5lNrgJexv7GNomY/1/cRneWdG66PwtTZLQ5KuaKc+L5wJXAh6VglPnxGmYRnNsd94FPAKtIurxVH7oZFP6RLAKzCw7mXgi/QzH/KAJ0BgPfAWs0VlarPHRGRkZGRkZGRhsjb4BmZGRkZGRktHf8CxMstigOKKVTxWoCr+DFre/VuZSMqiJt3N+HCSkLw2i1oIyEiLgMEw8mSQuO22BluSWBZyX9JCvqPYBJA78HzoqIZQFkxb3vCrJNOtaSDYHpcJ3+KD1PsaAp4Jp0zZCIOCwdzwuZGXWDCoLzMmlTf6qWlFG6vyXz1Z7AtGpQLbsPt83NJb0QEcvgdj1vlecsiNh7tfWmh6TvsJL0VDi1Z9GvjGwuoKjinfakCQWx9mAnIyNjgqNLas8/JV9jHxy8eCKApCexQuH8wIWJoLUhcAhwAHCVpP/VYOcBTHg6k0SUTsf/jRWot4mIGZPNwoefFQfTfNiC92kVO6X+rw8eO3oAZ8oKrdum8vpLGinpg/RcrwBbR8RGLXifDouS7/p3YBoayPBdS/O1HzB5+quKe7/AROaB0DTxpjXsRMR2OPhreZwd5y8RcQSuizdihc+P089XAKsAf5LUv1RuLZlzZsV16daIeCQiNoiIuVNAxalYrXbD9OxV57y1zEciYj3gfOApPO9YHjg5Ig5IZRyA1fBeSeeElbebzQRUQU6ZGtgDB0Ssi1V13wSOAdYu+wiS/oIVsneU9Hme+7RvpHrYGxOTBgG71EqWLlBDAMNY26ggZL+Mx8GDJP21Jc/Y3pCIYNPj73VhROyNs3UNwwElSDqf1BaBo6sQsv9RzKWa+hulgJiukj7DgV/dk42VU3m/hLMIIKvd7ov7oxlwJo89VaG6XCKKjWxtOx0VEbEgJsDOJelm4CA8lq2K68j0iYDXJSJWDwsUjPFdWvidfo/n828l+/fi4L9tJT0fziB3XFgoIaMDoEo/MRyTUW+JiLmBh3CA477YXxiOCfrbY1/uCVm4IqvtZtQNSnPFPwC/A/4K3JB89gL34vlpv4jYFc+tdwH+IemTdH+9ZTIt1g4exkGUH2H/qjdYWCMiuqbAyS+pmFtlZGRkZGRkZHQ2ZDJ2RkZGRkZGRt2jYuN20oiYvPhd0jNAf+DIiNg7GlIW9sBp0f4haUElpa7OhMqFu2hIy34ZVhE5Iv3+62/v7pyIiH6YSNNf0g/p8KLArjh17YjStV0kPY4J2YsA54RTq7bUZpfy/5gs/ylWfSkWNAsFx/8Az+ENiZ9aaisjY0KjtPGwI3Ab8EdqSFVdoKLfajRQpEq7eQr4NiJOiIi7cZvcTNJLETEpVmWZCJPmys95CHA6dUDELqEbJlZdDWwcEVfBaMJA1W9ShVx+MfBKIkO3OzsZGRkTDhExU0RMkcjCo1IwWQ9gL+ARvKl6KoCkIXhz+GNM0LwT2A3oJ+mcVF5zpLh/YrXMWYBzgVUjolsiLx+LN3MPjojfpfImA5bGBNmWkKQnqJ2K+cgyWF3zRaCbpC/Tqd9jstf76bopgTmB64HFJd1T6/t0FFR8t0mipHqM69ttOOvLhsWcJF0T+O/ybWWZalCFHk30ai075fdKJL5emHC9GiZjn4vHvGPTfcMkrYQzRCwFbCfpolRGo0TyiveZXlaaXQQ4GLfXq7Bi7V54nH2bFPAULQhmq+JPzYEJrIdJ+hMOeP4fcEhEHJjeabCkvYHlZeXt25p7n3Rf4T+sj4M6RgD3SXpJ0mPAJlj1+lxg3QpC9t2S/tzS98uoH0TE0RHRC0YHDOwDXIvJzjWTpSt80TknhI3CTvrxv2pQRu6QdS+13Z/xOsO+mGx9PnC4pIEFwQpA0ul4HakPcEQi7P6mj2wqaCKRmkdGxEJ4DN4Dzyk2jIjr0jU/hLO6Ff3o8cCGkk6UNKz03CPL5baFnQ6M4TjwZv1Iauk4GKcgZA+OiIWBLTGxcPFaCq0Y38rBua8A3SJirUTE/j2waZrPTwFsin287mR0CJT68n0i4ojk61wk6Q1gP+BV4DhJI5I/L0xuvRiYq1pZGRn1gOSfXI3nIIHJycW5rpLexvsMawKD8Vyiv6Sbiuvauk6X1+rSnsRo/0vS37Cv8D1wbFikAZyNaD3cTl9o3SfOyMjIyMjIyKgvdBk1Ks9RMjIyMjIyMtoHImJrvCA7E/AYVqF7OyJmxmlFd8YpDN8CJsFkkWPklKpjbNx1JqQN/C/Sz13xJvcR+Fv2SioznfLblJE2Z28D3pS0dzgl98ySzouII3EdG4rV7N5J93RJRKY1gYeBrQtCQjO2ypvI0+EUft0kjQirCB8D7ATcKOngdF13vKG8BrCvpI/G6wfIyBhPCKvJXwP0A+6X9EqN95XbxU7AtHgz7ucq56cFvgYmSopcMwCXY7LTd8Aakv6Vgne2wkqpR0u6NN1fpC9/DdhH0sXj6fVbhKb63oiYCX/DHYC7JO2cjncrB9FUIUifg5XcrmiPdjIyMiYcwum/j8WZPi6MiN0x4WpdSU+kjePzMEn5WknHpPtmxH3ypMA3kt5Lx5skkyYfqWsiQy0G3AN8hgmlf8Mk0hPwBvRLwBtYTb8XcIqSImUz7zRB7YTVvu6T9H/p98WAGXHw3qGSvi1duytwGVY2ew1noRkA9FZSVW2OsNpRkeZxf8RztEeBkxMJbjn8jVbDZISPcTaFA4Hj5TT1dWGnYhzsikVO7gDOllXiiIhpcD07DDgZOEfS102V1YydLXF9uhW3yYJIvgUmcPTFmaJWwEGbKyYyU7OosDMXJlScCbwuq8QW1y2DFXLnAE6vhUzemD2sOPsQJmv8R9LS6dxEcpDW/Lj9/gocDjygnN2q3SMRdu8CpgB2ltXOCyLmJZjYeyQwRGMqR1aWU66zh+O2tqikjyaQjSPwusmiHXXuHRHHAAsAu6c2uAkOvBqFSbe7SPopXdut1AcdigNahwK7VevnmrG7GA5oWlXSk8nPOAr3d/dI2jFd1wVYHfdLn4zF+7WKnY6KcLaUQ4AFJX2YjnXF4+nOODioK16bPbGG8srta21gOeAaSR9GxDw4IGAqHAS0kaRXwoFP22DV9iMkXT1+3zKjtVFRD9bCvtSFwIlKohgRMQyYUtLq6fcZcCDkxcCvhd+VkVGPSETmPsDemIy9rqTnqqyxzYwDd0dIejUda9O5YkRMWTG/3RyPmVNgle/TSn7BWph0PjvwDB4TJgJulXRKaz97RkZGRkZGRkY9IZOxMzIyMjIyMtoF0obz9XhzFmAtTLo+WNJTSc1mF7z5PgPwCXC1pHPb4nnrBWkD/0SsxjAQ+FrS8LAq4MvAGUn9p1MjIqaR9HVE3A6shFWpBwF7FETDiDgJE5guxkSEgohUkIBmLzaoWmB3K2B/YGpM2jlV0quJDNUfE0tfx2SSWfFi7mGSLijbHtf3z8gYX4iIWXBQw/PAUUqKyc3V1SpE33NxSuJbqly7NVZt6wE8CVySAnMWAK7DGwF/Af6BCYVb4zZ7ahVb88uqNK2OiudYFqs7zYPV8T+W9FVEzIYJA1UJzI0QpMdQ+W5PdsbTpx0vyP1rRlugkuw5vjdiw0rA1+IglRswofgQTE4dmcjMc2CC9hiE7KaetRmb5XcqiNKfAwfIqlpFEM8emKD5OiY/F/5XTd9hQtiJiEvS9QtKejMilgKextlJ7pa0fSIljUq+4PTY394VBwZNRI2k8o6MiNgU+DPwIN7IXxUHMf5R0vthZc2d8Hfrjud410o6P91fa11rTTu9cIDC9Jis+G5pTjA1cDRwEK4PZxZk/pYgIvritngdcIukRyvraaqTy2N1uhWT3YFYva6m/iMi+gCn4Ho9JXAzDmQA9wujEiH7dEwoOUPSWTWW/Ztvmgh4p6Tn3l8pg1XJ5/gdJmxPDiwr6f1abGXUNyJiY0yGnhsTfx9Ix2siS1fxRU/HATEXlq6Z4DY6EhLJ9WZgGZx561D87RZP//dPx/coESRH90ERcTydSY8NAAAgAElEQVQO0Dp7LGzPjPvnZ4H90hrVGERp7J+sif2V3eRsHXVppz2jkX66h6yIPhcWwrgTBxlRzA2BzfG8+wNJQ9N9tfpsO+H2dT8mYxcBTasnWx8CZ6X/V8dCEv0LfyrP0zoGwgFsewDzYaL9N+l4D0y8XgH7Uq/gPYCT8BrRP9J1nTLAMaO+0Fh/FBZU2Qb7vKOAFSR9Gg0BiNXmnm1NxB6Ig6/7S/o4zZ2vBh7Hc6vlcSaEg4H30hxhVSzGMTkwBK/PvpvKy200IyMjIyMjo9Mik7EzMjIyMjIy6h5JAeNI4CtgYFq0Wg4T/r7AZNYnE4FkRuBnYBJJ/0v3d5rFn8pFwIhYASu+rYJVAZ8GLsIbKidikuLmcsrHTomIuAGrI/bFim9PYmLFQEnHxpgKUKfijbuLgUGS/l2lvFo3oLbEAQY3AdPgNKxTAhskxYxZ8AZXH2BBnPJ+iBrSJOcNqIy6Q0TMi9XHjlAjatPF5m7p90riw9mY6HtFlXt74Y3yuzCZLoCPgL6yctZ8WH1mLZxF4RlgmKRr0v2FcmrdtJ+I2AUTp37EwUTf4k3oAZLeCStKH4tJkw8qKbhVlFF8t73LBOn2aqetUVEn58QBMz/ggKbP2/ThMjocKurbZFjt7ccJbPMl7FvciYmqRQaVggxZELIXx1k6jh5LO71wVo9ealDQKojSXwAHYB/+14iYEvgFQNKIdG2tPtV4t5MIt1di0sdDaXz7GPvRGwJvSVq1/N3Sz5NiUtcMmKD0SEvepSOhRE4eiMnppwKTARtgX/pFTJgsAhznxn1tl5bM41rLTrpue0xKeAn/jecCbsek4o9L100NHIfJCisUxKFaERHL4/Z5PlbXHt7M9d1xhqhpJS3fzLXlPmdlHDR1KQ4eWBoTLbaXdGsi3JG+77I4C8nZkq5q4fusCHwo6T8lu+fgOdeJSkqnpT6oJ/5u17TETkb9oYK8uxH2AeegBWTpKnOFMYICW8NGR0Op35wWv+taeH3t0NQGp8fBk4OwMv9uhW+SAipeLfrPcnktfIYLgC2AhZWUtdPa3xFYZOE73JefLunkcXjXVrHT3hER6wPzAleUfKkeOMgpgKXkjFTdlTJXVdxf6zi6NSbsHQ/cJOmDivMrABfgLCTTYiL9LcXaQmf0pzoiwoq6Q3FWjxvVEDhfrNf0xOvWkwLf4LrQX1L/NnrkjIzfoMJ36AnMjLO7fJLWvrrjIOhBOOhxxUTIrjsxAoCIuAivpw7A8+DjsHDM2VgMY0M8F34Wz70LQvY6eD60s6TbU1l1s+aakZGRkZGRkdEW6NrWD5CRkZGRkZGR0RRSFP4FWOnrBaU0xWlDe2O8gXsesEpazPosbbB8ku6vWRWsvaNiEXDV9O0kaTtgIbzJPg1WjL0dE0UmwmQcwmn0OhUi4lhgHeCytLm4KCZEfw30joieaTOyO4CsDtkfL04eHVZuGwPV6ltBZCj93hUT5AcAe0raFBOF3gcei4hl0ubmpZJWwqmD1ygRsbvmRc2MOsVswMS4DRUbuKMREUsD6yVCRGPEh70ridil/mlFrJq9s5yy9gS8eX5LRPw+KbAcK2kZYGGgdyURG0wqGu9vPhaIiA0w0ao/DsSYFJO8dgP2jYiJJX0KnIz77e0jYt2KMvbG36RRwkh7slMPKNXJPjizxF9xNom7ImLDtny2jI6Fij5wK5ym+9WIeCEi9ggrEo5vm9NjQsO72JfeNhFHAUYmf/oDHOz4GnBAIsa01E43rGi3MnBjyZd6GdgI+/DnAiun/vlbSSNKBOmafPgJaGcqTNr+Kqzg+Foqqx/uv1aOiMuTrbKvOELSvZKu6YxE7Aqfd4pw9qLJ8Wb9SDljxlCsTr0EcGlELJD+Du9L+oQa5nGtZacK1sHq0+tJmge4CpMYjwkrsAIgK2GfDKzaEiJ26b2Ww+Sjm2ogYk+UiHEXAUuE1bIbRanPmQtYFqvZHSPpIDwfuRe4LiK2LF3bRdKzOM36VbW+T8nOk8BF4UAPJD2JVVY/B/qFVcCLttRN0ptl/60l9jLqC4lU1zX9fA8OlvgAuDwi/pCO/wLshTM3nAzsHhHTQW0k6daw0RGR+o6vMDn978CmwBnp+Bc4APZPmEh2aUQsHhE74OwDG5TLamxuVbkOUthNP56K542Hl8r5PB3vg+cUuxQE6ab6gtay09oov1e1dxyPdibD2eEGAm9HxJERsXwiZZ+AldL3BahGxE7Ha/HZpsZradcAFxRE7IjYKiL2jYi1JD2Dx9XlgMWweEQmYnc8fIgzmS0CLBgOliz6826S3sRrpufh+rJrQcSupzaa0blR8h364qwut6f/H4uIXVJ/eTMef7oDf4uImdSQYaCuIGkfvE9xBM4eMSvwN0k/SvoWB23tivvni4B5kw/1ELBIQcROZdXFmmtGRkZGRkZGRlshT1oyMjIyMjIy6gYRcVVE7FFxeG6c1m15rF5cXNtV0kuYZDENXgRavThfLPp0psWf0iLgTjid7EbA/Oncd5JOANbHathfA3Ni5Zsjw0q1dafKMCERTsu7PPCwpIcjojcmV+yCU5j/DNwbEQvKCkATwWhC9unA7vgbNmene7kehhWxH8LE7+cTCRxJw/BG6Bt44XbJtEDbFfgykTo6VYBBRvtARGweEcekX/+O08j2Sxv5PxWbZanN9cYqa8VmWzVF7ELlrrw5MXkiWk2BA3OKdnMx3jTuggnZC5dsDsfpQOuu3UREl/R+6+PU2ddL+ldxGngTK/b9mAjMn+FsBmtKerCiuO8wOb2aknh7tFMXSMTYS4Eb8bi5O/A9MCwiVmvLZ8voOCj1gTvibBn/xj7c65h8cH5YkXmcUfSpiWC1DCZhDsPkmz4RMY2kUYXvkQgye2Bl6Gdaaiv5lael8lcCbq1ClC58+DUqy6jFh5/AdgRMh5WAh+BN9I8kfYjTTV8CbBkRg1M5P0cjgY1tPf40tdk/vokApTq9LVZ2fh6PDROVrvkF171dMdHqUqBnZRlN1YHWslMgIraNiDuwGvbfJX2Z7t2VFFwEHFdByP46kY7Hhji0aHqXD6qdjIjfhTNNFO8JDiAYjhX5mnufdXCAwY5Ysbrwq17AqsIPANdHxBbl7yMHVLW03nwM7IwDJs4OZ5xA0uOY6PklcFRE7JqOj/H8bd1+MsYO5TpS/humOe8AGidL34p9+7nT8aKtH4L7+apzhQllo6Mijfe/pLWj44ElccDRgcCgNI/7DKsiH4bX5B7G2QaOkzSkVjsAEbFuaa2vaOMjcMDjmhExTZpPdEt951BJp0q6Ld3fJAm3tey0Birq9ahqP49PG6lP/hGT61bB4g27AA+GVVJXwQE1K0TEVONIhJ0Ei0G8nOaFv4+Ih4DLsC/3UERsK+kbSZ9I+rekb4pnbuu/Tca4ocJ3eBMHft6HA0HWLvxoNQRmvSvpeEn9JN2aymjzNprRuVHZB0bEZsBgPGfcKP17DLgiIrZOfu0teC45NfB6OJNSXULOiHUmzgq6CmlNNZ0r5la7YL/hMtK+E2nOkoMlMjIyMjIyMjKMLqNGdRp+UkZGRkZGRkYdIyJmxcSGGyuJWRGxG17geQQ4qCB4RUP6wiWAv2GF4Rta+dHrChGxOVYwOgYYKqvE/mbBOi38TYPVDrbDRJvHopOkkUubAJMAdwHzYRLFocAekq5Ii4frYCLURMBGkpQ2JX9JZawo6elm7JwFfIY3gwG6YTJCf0zw2UbSbTFmevt1sErTksBKkp4bj6+ekTHekNrRZFhBcRKsYPUDXpgfBLwIbCHp67AS62bp+FGSLi2VcwAmYu/ZCNG3N26fv2KV+NOAs2CMjfddMFFgEmDTEhG4bpH6mSeBzyT1SsfuwwSsjSW9FBErA7MAdyuliy7urXUTsqPZaQ2ElbmGAu8Af1JDMMxTOPXslpJebMNHzOhACGfZGAbcBJwhK/oSEZ9gsuTOkt4fy7LLap/dcT/aQ9IP6VihXr8x3iC+RtK3EbEFsDRwUkHSbGk7jZTGPiKmwITLPbAC3lZKqorjw4efEHaK7xYRF6fy3gR2L4i16ZrZMWl1e+BaSfuNzfNPaFTUgWUxGXkK4N3KOdd4tLMFVp99BNe5XjjYcB9Jj5Xu6ZbO3Yb9hTvqxU7ZHk7LfRxwCCasrSHpxYiYVA0K65cnG0OBEyR9XKuNkp2yX1P4RstIeqGo5+ncHJg8OVTSvenYTDh4aISkjaqVXznHi4hncTu/C9he0velc4sCJ2HfbYda22djc8lwUOs2mBB/P3CwpP+mc6th9fo5sJL4G7XYyqhfVLTT3+PMOZMC/y78p0ReOgL/3XeX9EA63h1YTdLDpfKWA57Bbfvi1rLR0REOPLwe929vAB/hficwCfvQRNieHGdaWwN4XVYfr9kvSPPAJ4Df4aDd24GrJX0QESvi8Xl7STeP4/u0ip0JiYp6vQEeV+bAc5KLcPaHqsrUY2ljW5wR4T7gkkTAL9rUSsBBmIi3IA5KXWNs1qcqbN6E/c5n8N/qc2A/4Cs8RnQB1lJDoFFGO0bF335K7EdNLqvyExHzA1fgPmYX4IH8t8+oV0TEUcCrku5Kvnt3rHz9DXCAnKmViHgEB3xtWfJJuuN5YzdJV7bJC7QAEdEPCyhcCRwvByQX58pzq80l3dk2T5mRkZGRkZGRUb/IEWoZGRkZGRkZdYG0Yb2/pAcjYpuIOLB07gq8QbAWVs1aOB0fmTaAXgTm6cxE7LC6z1R48fpW4IoSEXu0gkxJieSn9M0Px5sdW0LnURKXlaBGAJtjYuCBmPA/JJ0fiYkdB2CF7HsiomfajCwU956BxlUf0nVzAU+k79o1bSoUxO9PgQMiYlo1KGAjp/frB7yPVSszMuoSqR0Nx8ToZXHq+l8xGehMrEL5TkQ8jomGZwJnFUTsUtuZHSvQVSNib4SJgu9hZcURuJ9bTGMqhQ3B5IEpcCBDXaO0cfM50CMiukXEvZi4vEkiLk+PSYCLUzF3bwFBul3biWid1K1V7HQHlgBeLBGxh+FsCJsnEt4qEbFQazxfRofHrFht97ESEfsu7H8cLOn9iJgrnEK+ZlSQH3phxa5ngMGJlETyhfriPnoQMCBtvN4KfF8QsdO1tRCuehc+fCJId0/vNAirha2F1XYL5eqx8uEntJ1ExJ4b9wPXYGLa8RGxfOmaQiH7WmD3iLimJe/QWtCYQUt/wSTes4GbI+L6GE/KbCU7XTEpciCwnaTNcMaZGXHWjNVK9/yKicC/q5Ug3Rp2KseE1A4G42CwHpiEj6QR4awdSNodB6ftgetLsyjbST5VeR42DJPvboqIuUpE7EmBNYENKoobAZxbELEr5yel7zZx6diywKPAJsCu5T5GDmo7Hiv7TVfLe1T0OZHG/aK8X7Aq4B5YwfyMiJgrnfsrnpPul4nYHQOlerAzzgh1BZ4D3xER56Zr7sAByB8AFyfiKZJ+LkjSpXr8DrB0mSTdGjY6MlJ770tSu5Z0p6RncX/wOM4IMyAcjD5c0nOSzqiFiF3u2yJidjkjx0pYefkDHJz+RjhwfT5MBO4bEdO2xPdvLTutiYp6fRvOZDcxsBWu5/uO67hdstEHr389gbPFfRYNgUGvSLoE+1N7Y9L+SODQcLarJlFlHC2Pb/2wwvq7wDmSlpEzsHwAfAu8lMm4HQMVfsFWeJ3oZay6vns4K8/bOIPJa7g+rldac83IqBtExDmYnPwRjO7XJsEZp94sEbGHYRGJYt1o3YhYNvny1xRE7Mb2EuoFkk7GwjK7AvuERZSKc+W5VSZiZ2RkZGRkZGRUQVbGzsjIyMjIyKgrJKWMKzE5eAxVokS6OBsrP58i6fUq99eVumZrIiKmxQvYV0o6ppFrpi4Rywpl8TvxBn7fMummIyIiBgGfSxqUfl8BeAqr+RYKqPeVru8GrI3JplMB60t6rQY7haJi8f/GwApAf0nDI2IarDR3TrK/naT/K9ffiJhTSTEuI6OtERETV/YPpU3WSfFCfFesNva/tEm7FNAbqxy9CjwuaWi6t9m+OiJmS/dPhTc9JgFWw4ET/8MKdy9X3LNQtbGhLRGNqESmczsBV+H+pxuwmaSXE4FwB0yEOqT4bp3VTjgIa4506oNa+uGxQUSsD3yRnv9F4DJJJ6cNtcVoIJbPjevko1gRt1P6HRktR0W9LnyEzXHQyZKS3qkSyLAMDg47VZLGwuZOwIWYYP0lVrYMoJekR9I1PYBLMNnnS+ACSae30M5UmAw3hg8fDcrVU2HV4DUxaXULjYVCfivamRiYXdK7yY+7C5PW+iXSUHHdHJik+1S9kvgi4g+YCHsyrgdfA32wH3oKVnIe534sfaergLeBCyVdWzq3I57HvYLV1f5W5f5a/zatZacXDpS4XtKPiYSwF1aRvU7STum60T5SRKytktpuE2WX+4K1cEaewKruwyS9GhE7YBLEJJi81gUT8/YHTpQ0oLKspt4vHOB2JbC4pP+Vjj8NLAwcDQzRmArZ00n6spl3WUINqn9dsP/3bPpOF5XvT33NXlgJ+3LgNEn/riiv087nOxJSO70R+0v3At9hld0DgWMk9U/XbYRV2APXw/825me2hY2OgIg4FvibpMdLxybD7fRlSdulY8U4OgPui6bHJNwDaiXHVvRt2+L2/jfsVxSqywsA2+LA+DlwEM2HWHX5nabmGq1tpy0QzmJxB87SdqmkrxIBezjOorJfIp6Pi41FgbtxQNmAcr9fuqZybDkdz+cWlPRNE2WX/zarAqvg4OtnJV1duq6cHW5KHAhwFnCgpJvG5f0y2h4Va5t9sO9+JfATMCUOoLsW+9X/Te11MCa27gLcUY/tM6NzIvXLd+L+6ZbUtz0r6YeIeBWLsOwVEXdj8YFiHj8rzoz5CnB+eU7aXhARA3HQ5ADgvPIconRN9t0zMjIyMjIyMipQ15F3GRkZGRkZGZ0Pkr4FTsCLshdFxL6lc+cCBwPbASeGU2dW3t+ZF3+mxilEuwOFMvNopO+1QyJtF8ri8wIb4nS+HZ2IPSNWRHqydPhnYF1MlJ4dGBQRGxYn0+bQw8Bh+LvWpFRdbBokklVXvCl8AHBIREwuK2YMTcdXAm5IRPmR0aCQXaTurkvVpozOg7T43isFJxANSqNFPf8eK40tjdsYkn6Q9JSkAyStK+mgFhKxN8GbHTvj/qlQs38Ib9zNAlxeOQ4UROyoE5WZis3oFSJi+4jYKyIWiohJJV2DU07PB9wDfB5WW94fkycvHgvicru3A2OothWqfVdjMuSjEXFoLWW0BGG1rnuBnpjw9hawVUT8Davjrp821LphRdJlgfc7ud/RYdBaY22pXvcoEQxewUEtfSNiKPB7TJR+KREXV8HqWt1bai8i1sMbpydK2gW3w/kxEeLBiFg7PddP6fwKODX86en+RvvSGFORsmsi5hwPXEfJh1eDcvU3wIPAm8DqWB23/G1qUdicYHYqIenHRMTuImkYDqJbGzg5HMxXXPcB8McSKbwe/bYNgb9jNbb35NTwG+F+7s7x2I9NCXyGybhFXZ8EQNJ1eB63EHBaUffKaMFzTFA74YxDXTEp7Fxgm0S4/hireZ4E7BhJDT0RtQv7lWq7VVHqC3bBpLv18fhzEjA0InaQdD1WJH0OZxc5A9fpw0tE7K6VZKUm3m9KPL49EREzla5fEQf09sf9UFkh+8vimzTyrXYCng+T4Iv3ehGT5Y/GqvFlheyf0vu+i5V3B0fEFDU+f0Y7QaovW+K+eIikVyW9jwPb3kjHAZCVlk8DdpX0nxYQsSe4jfaO1JfNg9chKsm2P+G2ulhEzA+jx9GJJH0O/BWTf3sDK9dqs9S39cHEy+eA+zSm6vJbkk4BtsZre3/BxO/jayVIt5adNsISWCH6jjReg0nxHwCDJH0RLcyWUgU9se95RzUiNozxjYt1xSswoX3Npgou3bczcDOwKQ4kGhIRgxI5sVhrIyJWx0S/CzFZMROx2zEiYvPkjxdE7J7AUTho5k9pfWgXHBixEMmPk/QWsC8Oip6hjttnRufEcDwXXyT5vI8Dq6X+8WlgnYh4DmfpW6+0btQLz6//1R6J2ACSjgBOx/siB0fE7FWuyb57RkZGRkZGRkYF6mKDOiMjIyMjIyOjDEmvYuLIDcD5VQjZh2Hlvtna5gnbFo1thsuqYg8Du0XEAiqpFyUyz6ZYFWjydKwrJvxcIenIpspu70ibbZ8BO0p6MiI2johjJf1T0sOyuu6qmJA9sAoh+yFgeZWUfGpFWpTcGCuo7gMclgjZ/0cDIXs54NZwms6RFffnTYiMNkNYAetQ4GNJv4bVNV9PBNy5SoTsM4H/4GCa4t6CvN2l3LfUuFDfFZMPF8Wb5sW9v+KNj52wWuW1EbFk5c31shlQ2ozeFfcjF2HFp8eBM8MqYP2wiue+WCn/MZwKtJ+kgen+WkldHcJOgbAq6UXABZiothJWdz09bfCPF4SDdZbCm8R3yGpzB2EVvZUxkfW1iJgZ170zgMslPTa+niGj9VHRL41q7NwEsLs+8PdUn5DTcw/CRJT1MBn6xURQ3B4Tj6+V9K8W2pkYp5f/s6QzwiqIL2FVxe0xGfKBsLIX6VlelfROur9LUwTpUn/wB6BfRMwjq9YPAP5MyYdPBK8euE1dglUp76rhHVrFTlNQQ6aTu7AvvTYmcq1YumZ45fPWA9L4OxHuO7+U9Ek6fg9Wh91a0j8jYr1ECh5X3Iz9gHewPz2HrBjXA0YTpY8EVsRBpHVrJ9X9xZON04HeiZD9PxoI2b0j4oZ0/Q9V7m8SEbEyJnyfhse4xXGgzyigf0RsIukeSRukd1kUpzy/IN3fUhW6m4E/4swVz1YhZL+Ex++9Cx+udL6xev06Vle9JqzkXfhqe+AgqlMxIXuG0j1dMfn7CGCopO9a8A4ZLUAbzu0nxf3Ox4nYSzjrQ0+gt6TnImL1iNgSQNJtkm5O19W6X9UaNto90hrR7yQ9GxFrRcS66fgvwCOYDNk3nJEISb8kom83PM5urZKidi2IiMVwvzYIZ154JpU9OjNI+v1dOUPHlphQvQwwTb3ZaS2U6uUCQA/J2VDSmL0MsLGkF8JBRv3Catlji7lwG/o62Rijr4iIRdP3LeoKmFD9IyYlNvcum+Lx5GxJK+AxE7yWe2ox/kTEnMCOeAw8StKp6XinaaMdCRFxOe435iwdnhGYGfi7kqJ66qtHAntJ+qDof3Ag5dqSLmvFx87IqAWf4yCvvYEhwP6S/pL6x1OAifB60iWS3oiIubDC+1k4w8EDbfTc4wWJkH0+Xq+Yq40fJyMjIyMjIyOjXSBPajMyMjIyMjLqErK66SlUJ2SfhVO5t+vFrLFBBSklImLhsOpogcHAF8DDEbFaREwZTp++G974uFNW8CtIAg9I2juV9xtltQ6ELunb/RBWrjsQq1QfVVyQggDKhOz1S+d+kfQfaPmmdjj96g84Re7zePG2TMi+HZMR1gZWG6e3zMgYjwirGG2DNxqeCCsHTwm8j8mBz0TEgRGxVLrlMmDhsBIreIMNWdW6RX2LpDtx0M1nwD5hpezi3ChM/t0d+B0mXdQVYkwl14WB49K/1YCZMHFpU6zs+pOkwzAB6xC8Ib1VGuuaJFt1NDtle4kItj0wDBgs6SVJzwMLYhLpS02VUSsSWWAIJmi8IWl4WBXwlfROXwJHR8TzWJn7ZOAUSWcXzzo+niOjdVHhT60REUdFxJkRcQCM30CoivYzFzAPJl1elgIBwIqHV2FizHERMQinpz8bOF3SRZVlNWNnEax6+TRwZ0RMA1wD3AYcLOl+XO+7Ao9HxEaV5TX1DTSm6uF1ePN53nTuNUyOuh778MdFxDo4KKM38LKkf6b7aw0AmaB2mkOJkH03Vjj7A3B2JEJ95fO2FSrrRxp/f8HE1/kjYqqIuAsHY24s6eVEkt0QWDQqFIprsRMR3SJiorAK4q/ArZgo/RPwZETMJumnElH6amARSbfXo51076hEvB6OyZ6fAwP5LSF7ELBtye+pCSV7K2I/53pJnybbL2NS2iTAAdGQjeRlSe8BHxdlVBtLG+sjSmPvUOBP2Ef7RwUhe1VMPv8+feNmIelZ7A/ciQPkyoTs/YDL8Zz+jxExW3qftYCpgBslXdrUc2eMPSrGuTkjYp40NoxxzfiwU+XwCOA9YI7UdofhYIKi35kF99NRSShtQb0erzY6OL6PiOlwIOVZ0ZAV4wqs/n8MDjJaPqykvRPOAvOcalT7r0BgMvdQVVFdLo+Vaa1kOPZRFsSk43qz0yoo1cuXgHkiYrmIuAWrvfdK9boIQliCUsByc6jShoTn9Wuk37uWrp0B2AtYOZIqdkRMhevF05IeasbWLHj+d7mkQanfeQgT4Q8H+mJfdyY5G9wgYCc1ZBhpaaBRRh0gHNS3BXCAnFlmlnRqTmAK4B/puvtwX72pHHy6NHBjRETyW6sGCGRktBWSP/Up8DZe+/oGmK44n4Ke1sLzrb0j4h3gfjy2nlRaB2vXdVrSocCqkp5u62fJyMjIyMjIyGgP6DJqVEfl22RkZGRkZGR0BISJxsfitKIHSTovHe+SNso75UJ9OB1rf7yR3Q2Tw84EfgE2wZviSwH/Bn7Fyj9nSeqf7q+q3BcRMygpS3UEJJLT8GJzLi30vwrMCpyDN7Euk9PXFvcsglWsv8JpNO8cD8/RTVYVngQToZbCJI4zEvFvGmDWFISQkVEXCKesfhgTbV/D6sRbSbo9rB6/Cd5M/Qgrrd6HyThXSjp8LOxthQlhe6ghbfH6OCXyf4GT5TTjxfVdgNkkfTj2bzlhERFLYMLypsAOwCdp7OqBx7bdsMLMoMbIJ7WQ+zqCnQrSUHc8nr0L3KSG7A33YELCRomQsB4mfz/W3LM38U7HYzXvX4BtJN2V6lYXSSMTKaUX3jR+HnirTEzpjD5IR0Ii+Z4P/Atvrk4PvIVJhLRiMeEAACAASURBVM+Oz79vROyEg0hGYULxHMATwBaSPg8TtdfABJjJgGeBRyXdkO6vqb4lMsShuC99Oh1bBatI7ybpwXRsR0yKGYHJoOe38H02oEGh+OpK/zEiFkjvcjBuXyOAAZIG1KOdGp+lmH9sCcxezEvqDRGxBtCt1FcdiL/fZ5jwv4akd8JBL31xH3iYpNtqKLvcV2+Ks78sCrwCDEt9aDdMyBmECV4rSvooEZl/rGUe11p2Kmyunr7bI+n3HongPRkmEU0HHI1JxD+ElRznlPT35spuxN4APG4uKumTNPZMJCu874gDNFZuafmleUfhV+1W/g6JVLkVzjzxJbDS2Mz/Kv5GS+BAvU2BPpKuT8e74qCS/bEv+QmwPFaxPaOlNjNajlSXjgJmweTLu7Cvfu94KLtcB1YBpi/mzql+74fJS9MB60pSarc747Z0kBzk0qY2OjoiYlJJIyJiJTxfewM4tuQPnIAzwkwF/B8wMQ48PG0s7R2M16d6SvqoyvklgRGS3igd64XnfL2Lsate7ExoRMTWwNKl+c5cwI2YMP4lsISk/6W1pN5YefgoSUOaKXeMeVcxNpR+vxNYFwcwFOPe5Dib3hk4IPuW4l5gMUkvpN9Hj6sVbXQySd8nv+NR4FPgmfTzvjhbxW3ACjhY5xg5g13VZ85oP4iIk3Amwvkioi8O6u+DidjP4SC62YAlcZaP51Od3hOv9+8pB0NnZNQFKvq2iXCg9HAcVL0QcLGSmn+6Zhbcty2H5yv/kfRkOlc360bjo5+tp/fJyMjIyMjIyKhXZDJ2RkZGRkZGRt0jEbJPALbG5NlXOtsCfcUi4MqYHHkO8D9MTPsj3lA/Im1+TIcVRXsC/wFeVFKwaWzRLCL6482YVVSRars9IqzqeyTwlKTLI2J3/M3WlfR0RMyHCViL8ltC9qLAy5TIBOPheSoJ2b/H6bsHqpSeOy9qZtQTIuI8vIk2Nd70HVhxfiW8YbsXVlNcPJ2aF/hvrXU5kW8Px+qJg7GiUkHI3hCrbn8AnFiNPFJv7SaRj+bDqXY/Bv4pqVc6V5C7emCy+0SSVsx2RtvaApOFrscK6B9K2iYi7sb1axNJL6XNrpNx0NEZkn4cB5sH4PHhBUxaezEdn0gNqbkr76mrOpfRckTEang8HgBcl8iQq2PCyOXAgZJGjCdbGwJ3YL/kfkxI3AOrx7+D6/Xn6dpJcCDdryWiS62k1emAp7D64MVqSAe+EyZ2LiEHMnTDgXtT4vbzGxJTFTuFH9MVE8qH4NTjfSR9WTwLKZCh9HtgVbwvVVKqbuJ9WsXO2KIKuanNiUMVdWAWTLR7EY+Zj6bjN2JizDU4I8t02O8fgImxg1posy9wKXAP0B2YAZNsj5Y0IP39tsDBo1MCyyhl56kHOxHRG/hrUfcT+e1f6d+Rkv6ajhdj3JxYaf4LHJx2bXm+NDZ1LSL2xMGZ2xaEt9K5bfE8YTlZLbu5so7BxPAi49GkOECh8Kv2q0LIPgs4APtXy8mK30V5La7X4aDXY6kgZKdzewDrAF2Ae2Tl8rpoPx0ZEbENcC1uH28C3wKX4MCVfccXSTmNMafg7DkHyplMiIh7sdL7gHR+JhwgcDrud06vJxsdEeGApi2AwyV9HRHLAY/hvu7o0hrRcngMnRp4VynQcSz7tu2wH7+jpD9XnJsBk+TfwEEBvyQC8K3AJJLWrDc74xsVY/ZMuN7ujv9GZ6bjO+Jsbgtgf7EHJv8dBJxWEOUb60MrbGyEA3AWw3/3YTSsRw3GpO+r8fg2EyZ8n6wGIYcx6kATNnfDpNpewGRyoOF+OGPJ1pLeSdedg4O65wU2UCfMeNiREA2Bb5vievUUsAr2Ly7FvttAHPw3Clhe0uvhbCxbYV/kGEmD2+QFMjKqoKIPXRirYX8hBzbNh/vOhakgZDdXVluh4n0ml0VhRs8Jahnn6+E9MjIyMjIyMjLaEzIZOyMjIyMjI6NdIJFjZ+/sC/WJYFFspBwi6buImBKriQzEG/rHKqV2rHJ/Y0Tsrjit3veSnoqkaDPBXqQVkEgIN+LN2RuwiuuhmLQ+Mi06NkXInq4g/YzHZyoTsu8CVsXqhGOlqJeRMaFQWpjfFZMSh+PNtFMkfVVJUo2ImbHq3spYybjFaocRMT1WsRuAFcv2rSBkD8abxCdLGjpOL9hKiIh9MGkLYE1Jj6fj3WXly6Pwd1tA0ied0U4VssDdOMDoJkwW3Qaruc4ArC3pzUQk3RUT+A9WSTG9RptbAzNLuqB07DCsDvsQJu+8Uvl8GR0LEXEkDvTbQtL76dg9mNS7TUH0SsfHqR5ExAV4zF9HSQEwkRA2xcS4p4EdJH1a6n9bZDMiNsZq2xvigJZ/l85Ni5UJv8DEvBmBw3A/e21T75ja9eWqUC7EhJ4XJO1Y7d5wSvvhKqkwpuON+aKtZadZ4lJ7QkUfuiEwOVZumwwTsk8oEbKHAGviv/83uD5cqYb02bVuxi+O++pzgSGSvkxk5lexQu0firoMbIt970PUjIpna9mJiGWw0vUN6fpP0vEi85Cwr/FYOj5RIvLdhgPQRmAV0zeqlV9hawz1UJLyden84zjYaSsc6PRLREyM1X73xIEabzZjY3JMgFoMk8SPSMdnBnbEftWVwN4VhOzt8dxoTkxAv7KG9ynXt0mxgu4vSoGl6dsei8l4vwlqrbg/BzVNQCS/+maszni8pP9Lx58CJsHKwE3WrRrtbIEJsUcDd0p6t0TOmwq3sxVwkNF36f9LirlCLfWgNWx0VETEhZggu7YaVI2XxQGPr1BSyK5yb02BYOn3yrnhY8DvsJ/1zzRPmBLYDKsu713M55Jfv3DJ966qujwh7bQFwsES62NS9FI4WOVESSem85tggYV1cZ1+ARgq6ZJ0vpa20xePjU/j+fxSOEPGVTgwa24879oaE75fTDYua85GRX++AjAU+x+Di/XIiDgTBwOsKKt7T4XXLJ/AgTnvt+SbZdQ3wmrrG2G/fdnS8blxloyV8XzkKWARnPXkzILM2l598YyOhYq+rTdwEnA7Dt4vMsPND1xIBSG7coyqN4SDJvrieeKTwBVyVqExMidUua/8TZYD3h+XdcWMjIyMjIyMjM6ATMbOyMjIyMjIaHdo602TtkJYwfEvwOvAHcUmTTo3Kd5EGYSJcqdoLNJNp7LWx6THtSW9O84P3saIiNfwBt3twD6SvkrHC2J0QcheELim/F3TdeO1vpXsTopVuu8aX2VnZIxPpKCB/YHvgdXwRvAVwABJX5Tq8mjiIDBTidRUywZx5Qb7dFgZ7FR+S8jeBBN0d5F003h/4fGIChJBX6zsejfeYC+U/Hrg/np5YHU1EkTTWeyEg416YVLaSXKWh2kxWWRRnEXgqIiYB1gPb4YdpxYS/yNiMkx+3QETNC4tnTsSExMeTWX/qyVlZ7QPlPqs24FZlZTcw+qai+J07S8nf2gFSSeMg60u6ce7gVkkLZOOF/3n1Liv2wIHAmwi6cca+89yu5wZeAT7O29jBexfKvrnP2A/cSGcNv4cNaMYGhHrYiJsHzWoTRfP/gTws5K6ZHnzOSKWxIEUZ9bij7ainfJG8qKYhNQNeEvS683dX6WMSTWe1NPHFYlIfCkmXf2AN9kPBP6KicUPp+uWxO/9GVYRfz0dr9nfDRP/BwO9SuS+YdiX3lrSCxExW7G5D8wr6e2xeKcJYieNVzti0tgdwJ/UoJC9HR5fXsXfrSCyT43bz03AjM35IUXdKLXBzXBdnR+PMX+TNCysJn0lMDvOAvJfYDZMku5X6xgXVlc9B/trN0o6rHS8L3BasrO/rPTdFZNLRmKi+3s12CjX/S1SuYtjZe0n1UACXwoHU/XCQSY3VLm/TQlXbW2/NRARswEv4Xp8Xjp2HyZ+biRnGVkc+ErSf8ai/C7AVHiO/S4OjitI+V0BSmPUH4C5gI+Aj0rtucl+pzVsdCRUq9fpG74K/EfS+qXjBSH7RUzWr0rIbs5OWHl7Y2BJ4FngCUm3pLFmCA72uBn/XealQnW5StlVidgT0k5bIBwY+mecAfCfWDH4UJxB4FRJ/UrXzoeDDH4urWXV4icujtcPzwfOk/RNOEhjMA7MOherbI+MiFlxoNFINWRVqTVAqyf+5n1wFoavS+f2TfYPwf3R3Hg82l0p21Vb/y0yxh2pn1kQ9zX3kwQxJO1QumZ2HNC2Lc7O8izwQMlHyPUgo66Q1r0G46DGhyU9WXG+J+7fegJXVe4l1BvSHGcIzmY3Gw7iFp5/v9cYIbtiLD4EZ94ZPTfLyMjIyMjIyMiojkzGzsjIyMjIyJjgqEK2G5tUpx1+w7Q5hFXPbsCbUMOAnVVSbk7k3r1wmschmHj841jY2RAr4X4ObFrL5ny9IiJmxIpP3wEz40XDmyR9G6UU92mD62JgRWAtSc+2wEaLiQXxW0WnTl+/M+oTZaJZRNyAyXxXAP1lhcqqCq5N1eniXCLyTIE36soqkQUhewAmSh1enI+IeVRSe61nVPQNe2OC3DN44/tTrGA5EDhC0rmd2U4i0JyHFV3PkXRGNKhtT4+JrHNjxbjh6f9LJQ2qfLYa7f0O+BNO+72PpItL547EZIinMSH7xZa8S0b9obH6EVZiPhSn0u6P07RvIunFsHLfETg4YP9aiL7NPMN+2D/7g6RHyySyRFTZA5Mxn5S0WTNlTa2kcJp+7ykrxm+J/ZyV8AbpsOTrUGq73TEZe7ga0sU3pXrYFWem+W9ErAm8JumTVO6BuJ8+RWNmFukO7JbO95b0Ug3fp1XslO4tyKldcb8zEXAMJqU2GkhS0Q/ugcewwZJ+qNX2hEBEzAs8iLOuHKuU3SYidsQkghcw2e7RRu5vaR96KCZwTZx+LwIZNkkEz2Ww8vpR5XlES+eAE9JOImTvgMey2/gtIfts4E3gdDwebAKciNtwkwT2iBiAiXVnyMFrfbDv9CzwLQ5aKlTJTwur652MA40mxsSIa4qxtLm/T8kXmwmPpaswJiF7ZkySOxWPpw9hgusxmBB3Sy12Svb64Lni3cCHWGl1xVTuZpJ+SH+bI3GgyW5qoSr6hERFO54Pq8FODTxbjQTaHtAICXchHIxxoKQ/JyL2IjS0n99hAv9lGsvg4OSjvY375zPH9ZnbykZHQziI/w1Jn6bfN8fBGCcrZUJIx5cB/g68hTN3fNBCOztjZdAXsX++DPALViXvFw6gPBFYA4+XzwG3qwXKzq1pp7UQDngeht9le0nD0/Ge2PfcBTha0oB0fIz5dg1jQnHdNjhQdi1J/4qGILepgDtx8MKaKgVj1GqjdP0ieL1tBHC3pN7lZ04/X4mzXw3HAUADJZ3Woo+WUXeoGEunksn+gTOv7IWDsm6UtH2Ve7tXrP/UVRvNyAgH+tyOx54LS2uiCwA/Ad/IGQN74r2EZWnhXkJrIyKuAt7AwTnfR8SBwL54v2RLVSFkV7Tz/fH8aL/y+llGRkZGRkZGRkdAOEthL2CEpGHjo8yu46OQjIyMjIyMjIymUFq42SQiBgN3pJ9nquX+isWfeSfgo9YdChJN+gbDMWngFqw0slU4BSsAaXHwEqAf8KLGgoid8CDeAJoUuKc9ffPie6WfZ8aE8kUxSeBRTITaLm0WjEqbWl1lBfA98GZYs4unZTuUfOq0cdWtuftVkbYw3Zd984y6g6zq2C39vB1W19oNOCoipiu1oVEV91USQo4Np/gs6vtkWFHxKtyXdS/d+yVORf4wcABwVkRMlE6/n8qr+/ZSbtdps2JvnEL9Bkx+WQo4pEy26sR2psZ96QxA92Tj54joIekLHASwS7JzOO6rCyL2b+pfgcaeIZFQB+LApYvC5PLi3IBkZ2NMjs1o5yj5kBsk4nOBFzAx8nFMjlxFJmJ3xwTCnYBhqpGI3UydfwZ4Hvdny0kamfrPibGa1qPAmcDK4dS/jdlYBve/66ffdwduDxOyb8PKva8BV0fEGqV375J8yZ8lvawGInaXxsgPiSgxUiZIz4f9z/siYqZU7j24n94/Is6NiBnTs+8DnIEDJmohYreKnZK9jUkb69ifXhkTcs8ENmtsfKmYj+yHfe7P1MZE7IQpgVmB59Lmetf0vNdhsvIquN6sWe3msSAr/hMYHhF7RwNBetNE8JwM99lTVt40FkSbCWZH0k/Y19gH2BIYFFYSRlZp3A8rN96K2+65mHj/eqmMxuwshwl1eyfSxhbA0ViNeH1gddz/HBQRf5T0dvKxVsWBTZuVxtJGx7jycyTyxKfYb3oS6B0RZ6Tzn+DxbldMmj4LOAiTW28plVML8W5+THo8FWcqORDYLH3HlfA3RdJzOODhETzG1w1K7Xgn4D7gqfTvgUReHJs20aYovdPcpWOvY5LksRHxF6xaWrSf7sDawDxAizOmlDARJrNPUhwo96ERsUZE7NbUM9eJjQ6D1M8/BrwQEdslovK92M/YIpEli+Dw5/D4cN5YELGXwmPwiZjgvx5W5n8YOCAi/iTp35L64nF2EWCbsSBit4qdVkZ3nCXhA0nDi3mupDdxQM2XwGnhoMHRY01Rn2uo19Ok/ycHpqdhbvVr8rm+wYFs8+IxYTRaYKPAFziYaAQwX0TMVviWpTWEXYGt8Vxui4KI3R7m8xnVUeETbw5cEBHbAu9K+hj72CdjX+T60n0Tpx9/Kf/967CNZmTMhvvOu9Oa6LSJzHwPntefl+aqb+J1sT71QsSuXJOIiN4R8WdgWuAppaDdNNc4C8+lbgsLX/xa9N3xWyL2OcBemYidkZGRkZGR0dEQEVMAQ/Ha7Ralecs4IU94MzIyMjIyMloFYQWtm7BawCJYYeCYsCJTU/eVF38OB16JiLkm9PO2JSoWzqYJK2JPByDpW6wq8yDelOodvyVkD5B0fpWyGrWTnM1is+pnvIF3AF58bBeE7Iq6shVO+7o98EPacNoOE67OALZN3xVg04g4Hqczvjvd36SfXA4wAP4cETeF1ftQlbR+1Z619PMy6b68AZFRlygvyMtqV3/BROp+ETF9c3U3EXd6A+dGxKapnO+B/fG4cBmwTYxJyP4Q+BsmX++Llc7KG8Ttor0UZPX086V4ExqsejlY0kUwmhAx1oSR9monrEyKpJuxou9/gSNL9eSnRBr4VtJfJA2SdIekf6T7GyWSpvvLJNyVKs69C5xCAyF719K5U4FlJd1Ty3fJqE9UjLXTY1LAn8IKi0i6HytFTgG8B8weEatg8mqhgnV9ZVmN2SrVtyUjYouI2Dkilk+2nsNKspMAt0ZEn3Amkn1wO7oTK5hOD0zWhKkv8IbvwIg4G7g0/Xs/2bkLq92+B1wXJUJ2tTZZ7Vg40wpqyEgwa2ovA7Ca7tCImEXSW1j5tgjSeS/9fDBwkqSzm/p2rWWnZK9L6r+2x4qUgyW9JOkVTPJ9H3hBJWXc8r0Vm9HnYkXh65qy2Yr4HisR9iz1i0Vw4BDcRy+Byb8L1lJgM9/zX8A7mMS+BCbIvZAI0lthou9Q1ZBdpy3tJEL2jdjP2IoxCdm3AjviNnoJsJ2k/qmsRgn76d61MIm7Hw7qmAd4WtLX6e/zMm6nrwN7RMTs6b7XJL0r6b9FeY2NcZXvU8w/ZEL2gZhcXCZkf5H6s4XwfHx1Sac39T6NYFpgFuAfSpmG5KCpm7CK+KYR0SvZfB6r1p/TgvJbBWmueClwLe5XVsMqsRdGCh5sD6jopxYH3ouIsgrpQJxNZB2sUP5CGg93wQEoV0r66zjY/j9Mit0tItaABh89+fUrAbtGxBz1aqMD4jWsdD0d7iPPAtbEGWGWw8ETACOTv/50yX+vae0ooSfw/+ydd5RVRdbFfyCgYFbMOR4dc845ZxQRcx5zwJwwK6CCAcxZxogJMY/xczBnZWbcOuasM4ZRBwPK98euy7t9ed39HkJ3C3evxaLfDVU31K06VWeffX4FhsnZktpJGoH7vRfxO5kfQNJHkj5TyupRT982oeppTaQ1vVeAdSJiekmjsnmwHFx2G7Z1To6I/espO5wRY1D6+QH+/seIOKiiRjwVJlB/XUfZ1cbRz7B9ewGwDM4ykdmdv+bmjbdLuk3SI6mstkiSL1Ejcjbx7ngu9QMOLvgl7f8S226nYTGMwWn7T9n55fsv0RaR6+emwGNPj3DmtOHYVhyICdmb4jEVSW9KGprOb1XOTbL7u+d+T4GzSWyLr/+btH1yGCOyMACL8dwTEQumvrsxIvZVLXk/JUqUKFGiRIkSExqJG/M8tv/64CwgP40Pu67d6NGTnEBAiRIlSpQoUaKFERHT4hTZTwM3JCfKycDJOGXzWZL+VeW8/OLPIVjt7/DMWTQxonDPPTEBYF68CHgZTrf6ViKwDMEExV7AkOTUGZc6t8HEys54UfEuSe+lxbl18WLjL8Cmkt4b97trGUREpp76F+B25VKyJwL2EKw8dxXwJSbj9VadqVKTo/5q4DlgJkxuuBmrxDWqSl6lXR8HbKw6VB1LNI7C8y2dfOMRkUtZGRG3YaXHNSUNr+HcDXBk8SLAgZLuSNvnwov/mwH7ALelyW6XtP0trEz75oS4p/GFfLtrZH8+VfMBOGX0rThd+IhJsZ5EhNoEp+H+PG3bEuiLU1gfp5QS7Pd8yxExHe6npwS2ViJy5/Yvla59XuAASVc2dq8l/phIds6C2Kbqiomrx2fvOiKOxE7LZbFS9r+wvZoFttXcBsLBh/1SOdNih+dVkvqn/d2xzbU5tu2+Bc6RdFZYof0oYFtJL1cpO0sdPxMmDncArpR0QNrfQSnzRlilrjcmd++Rt4Wauf6VsUrio7J66p9xME1PrNR4aPr3CU5n/Gk4E8lsWGX1HeBjVQImqj67FqynvRxEkj27zsCrmNR1ZDrmXmAJYHNJr4WVsz+TCfTV7LbzsDP6ymJ9LYViH52IA49hNf+eOENO1kfPBVyH+8EjgV6SLqy1/HCAwqLp363AvyR9GQ7UfAyTvm/ECrwrA7sAZ8tBLU2OJ61Uz1x4PJgq947bY3LqRZgEd7SkTxopq8n+oPAdDsUpLr8Hlpf0ZlSC236NiHWBh4F1JP1fY2U2cz+r4Ge2IA46fUPS+xExGybHrQrcnLX3pspqpp7sG8queUNJD6f7ybINzQm8BxyhpOxdSz0tjbQ2cTPuR06QlBFTHsME1p6S3mjFS6wJhfezBLAcngO3x8TrW5M9vSMOaJkW9wNT4/YySJUAg3F+P2m8uRjb7P0lDQsrdK+Pbfnjf+/6TUvU8UdH7hudAts7y+L+ckYcAHsB8Cc8hq6tcVTwjIjAJN+dcEDDPHJmi4x0+1uYNP8oqZ9oy/VMSFT7rnJ2yf44KOc24GRVCOTT4DH7VUz064KzJYylYB8RXZQUTnPv/0HgH5IOS9svwuNbL2CopC+SLbQLcFIq+4V67iUiZk3X1T5bx0022gGYJH8ecGRb6fOroTi+AZOrbWQ6+cMgIjbBa6u98bzp37l9HeUsV7MDewOnYIXhrVrlYkuUaASN2T/hjAU34DnH18ALeB3zp7BA0Is4MPeuFr3gRpD6sc7Y73agpOG5cWFenB3naOwj2Smd00kOTM3W9E4FDpEzBGXlHoKDukoidokSJUqUKFFiokNYKOoOLEq47/jmv5Rk7BIlSpQoUaLEBEVY9W9DnP50/7zTJ5x280yspHKWUsr0tK9Z4kNbcuqOb0TETpjoewkm6kyOF87+ChyTiCtT4sXBTYAjgMtUUbqptZ5tgOupEDjmx478oyX9MyqE7HOxQbpR/j21NSSCwBAcwXilrIidqUG0k9MLToYd8Jtiws9AJWW4OuqZHrgWq84NxMpCO+L2/ACwczVnTqFdZ07RfVqT0DMxoPBcp8JEzp9Ug0r5pIxqZK7m+tRoSMjeWFaWramOiFgfO30Xojohe3PsqBuBCXdnALtLejAd1ygBqhky0QQj00ZE17zjsZlj8wTmfXH//ggmSjaZGnwirKc9JgX0J6lmyWqeGeHm9HToMapTnboRkuKyWIF9KmBXSc8UzrkcExinBpaWVUtLTASIiB3weN0P+BT4GfctP2Ii56XpuFlxv/MD8IOszl8vEbsHtmn7SuqX2vIQ4CdMHjslHTcVJv9PDXwh6e2IWBEv/j0kaY9q5adzO2F77W0cKPcGttmyfrKjKkrTW2G7ZF4gcAaQ5vr4jGh5K1bXPBl/q5epogqRJ0pvI6siViurqX55gtYTEdNI+m+O9LSopH+mfc8BH0jaNiKGYSXHzZNtPRO2eT8ATs0c1Om8A7HN1ypE7Cq2zq/Az7kxeT6srv4xcKKkh9JcoQeeJ6yAUy7OAqwEjKqhPeyKv53PsYO/Kw52HCjp3USG7IOVxWcHnsRE96vT+TV9Py1Yz4444GEBrBY6ApNUn5YzMeyJCdlDgGMlfdpcmY3Uk/8Or8Okt8F4TPs81y5XwEp73STdPw717IHH0R+B6fBc7RngMEkvhgnZ52NC39CMnDcO9WyF+51L0v8P4YDW3dL7ye5nDkz2PaktEzbCytAjMBm5T9p2Pw7K2Cz1BcsC/1WVgPG2htRuj8eBRKOxCnJ7YE9J16dxYzYc9Dgb8CbwkqS/pvPHyU4u9Em7p2uYJ5U/BW6T5+Wecd1rNy1Rx8SARIpcAdsa/4uIJXFWhFuTPbIm7ts6YHvgXmBH1RnMHw6cOhGPK11xVo8+qd78mLsSzrS2iaTHx+F+WqSeCYlC250bZ/wYhe2+rxLR71q81vYYXuvrAqyG73V1HCh4KrCIpA8K5Z+c9q+bzd3SOtfzmPR6cto2Ex4HeuK+++84MGMnPP/qV+d97YQzkyyAA43+jtd5342Irpj43xvP7Y9pi99j4d1sDWwHLAm8DDzWlsevtoA0t26P1zJnl7RNbt+JeN4xHSZ1fpxskcOwcvbAVrjkEiWqotAXrIznhF/iwMYRqU9dAPhftr4VDYPcdtA4BjaNb+TGxcnkgM/NcIDhzXJg0/RANwAAIABJREFUxFzA/vi6r5C0bzovT8heXElYIX3nSwHP4rXb0mdRokSJEiVKlJjoEM4eeTued99ORWyiHQ5mD8zNuafe9RMoydglSpQoUaJEiQmEZKxMhp0jywMfAUskMuzkSsrBUSFkX4fJK29GDUTsQl2zA/9RE2rEfyQkMsUdwDDscPoubX8Tp6ffXtL7aduU2Jl2i6RL6qgjW6AbCHwBnJscd72xcsnbwMGS/hEmZK+PnUWHqe2kZB8LEXEKsBFW681IEP0wEe9X4CZJg9P2pYCRSoq7dRA5umMy6WpYxeiltH1arOo4ABOyd8q3yUba9T6ls+f3ofBce+AF5vkwMeUS4F614QCCamiMSDCuZIka6lsSeE8peKGG48eoPtZyXQXS7gbYuV4kZM+Midj74ZTJP+L+r28N15NvA6vhSfIcWK3msTTujCGRjy9ExBbAn4H91IiCZpVz2uNJ/eiIOBoTf3ds5pyJqp7cuZ2xQs/5mMB6shoSsk/GpIRjs3ZSQ5n5tpCRDV9Mv5fBtsYUwK7Ac2lxZRrcVzwJvCjp2VrqmphQeG7tgE6NjV9/JCRSyAOYKHKApB/S9lVxCvdZMGn1msJ5mYpUzfcdEQtg5cbHJZ2e+tXhwIN40W5D3MbPKpw3KyaB9AJeltQ9fw1N1PcnTFp9HNtsx2VkzmiozLslVgC+sZb7SOd0w3bob1i1+7h8udGQKP0+sF2eYNra9UTEYsCBwJ0yIXkfTKJeWdIryVbcG/gvJsSvL0mJGLUHJuserqTMn8o8Emfo2VuJANySKHyj3TCpckEcXHA0JhN/ndr2YGBm/My+wcTr3pLOjoiHgK8k9ayhzq2x7X+apAGJTPYe8G/83vrKCsxTYILZtJi8mtnftdrVLVXPdpjgPQirxXbFY1CmGnsb0AnYAQfEDsMki5E1lN3c93oLJhWeCVwi6ZM0Bu4OnAVsUO/Yk+ypoZj0dl9qw8elMn/F6s6vh9VKL8bzo41VQzaT/H1RIa1/LWm1tL03JlbdjzNiKBwgsB0mh2+jNkKMrPZuImJ+4G/AmZIuDhOxFwO2kInY8+CMHzdIurnlr7p2JLv3QRzseKOkzyJiHeAQHOS4W1P9fw39aT2ZUlbC6z5rAa/gMe3+4nGtUcfEitya211USGQHSHoyHERxB1befyLNtXYG9sL9UJMZErLyc2PPzMAtOJDqHDmA5Q6stH04HnO/Sn11FiCwqWoIcGypeloKhfvZAc99u+KAmYdwIMjfIqIjcA6wLQ40+hbPU86QdGZEnI3J2ptI+jJXfgcc5NMffwc9VSFkP4v7ggty9uwU+Nlth+2Dv+OMe5ekc2odR3viudQFOBiwC7bROuCgotfS+9sPz+svk7T/uD3FCY9wINjleD3137hvmRnb8ru05rX9ERAR1+OxcyNgaRxEMBfOYLAgDmxcT9J3ETGFkljFH3VeWWLiRUTshvu1nzCBeQRwipLqda4vnR+L4fTF/fTZrXXNjSHZBR2Ad3EffQDOPjgqnMHmAJogZGdl5MawMQTtEiVKlChRokSJiQ3hALa7gWWUMpen+fb5wBZ4fgP2Gx4r6cl6yi/J2CVKlChRokSJCYLcYtXUWHl5C+zUPCYR4/LR9ydgFcwNJD2SK+MIvKDbIAq/sDC0Fnae74+j0/7wqSUjYmmcbnVPSUPTtvuwWtcWiUgyH1YW+SUKxMgmys0/tykx2fEm7Gi+K3fcUcBBWF0rT8ieRQVFnraGiOgLbIyJNFNhMt+sWG1oOUy82VHSW4XzanIIJIfZZZjo8BUm8LyS2z81JnGcjdUJe6b2XlTEPp9WTnE/sSEidgauwqTOL7FDc1dMVDtUksZTPRPUeVRoKwtjBTsAqRFV0N9Z38q4v1k5OVB/tzpetd+FYzcGjgMWBg6SdHtu39qYVDBS0lNpW60O4j3wt/UhVs37AfdjW0j6ut57qqG+HfH4tq2kO2q5zozYVDyumec10dRTHK8SOeDPWIn2KqymmRGyu+OgleNVQxBQ4dvZGdsPz2FS5Qdp+zKY9DcNVop9D0e5n4oJS8PTcZMMoafw3LYCtsIO9WeB4ZJuKB73R0FYpfVVHHDWJxqmtl8HK7l/jEmgV9RZdoM2EiZjn4BVt0fhRbq/StorIpbDNkEnoI+SWmE6b3ZMjBot6Yxi2VVsN5RI5WnbUphU+C5eFMxIaZsAM0u6rrFrrnJPme2+PP52wASvkzOSUzQkSh+E+/J/Y+XdH2u0pSZoPel5X4iJIIMx0f1w4OJkN8+NiV7LY0LaIWm8zTLBnCSpf6HM3YAuqiPwcUIgEYcuwvc1HPefgQm9gyV9EybFHk2FrH2fpCFh0uYQ4EI1E+iUnPVXAU9JOjW1s+E4I08nbAdfjtvzB7nz6gpkaIl60jg1A15cfwkryf8v7ZsDz4XmBlaVSdJTALsBHSRd1Nw9FOraAKcz/wUTH/6V23cbsA0meAzDC/qbkfqneupJ5Z2Bs/xsAnyZ6zP2xPPqB/E87ocwIXsZNZPNpIm6tsLv5CBJ16Zt/TEZ8DdsR04HrAn0k3TmuNQzIRERCysF4KbftwKrYtLY3EB3SS+nud5umGx+sKRHW+WCa0RYLXoAsLak13Pbl8D94Mp47nt7+hYAaKYP3Rt4W9Jj6XdzZOmaydQtWcekhNRvrYvHurVwv3oN7iNWxgHg7yen4nSqEHdr7avXS+Vuhr97yYH9XfD4vRYmTz+Jv6ddcHaJsxopslXraSmkudVleH56EV6zPAbbpidIejjZOX/CgVOjgTclDQ9nTrgLq5sfWqXszsCW+Dv/Bw74+Q8ORu5fbe4UDlIcjYNVv03bqn474UC251O/2I6KQvkTeEzOMtA9jYMbN1ZF5GAOHBDykaRB4/DoJjgiYlEcUHQ5tg+/CQfovo2FRLZQM5meJhVUW+dJf+4GHImVg9/Dz20XvBZ3KlZfX07SVy16wSVKNIPC/Ho+vGZ8Mc7YtCKeO86F7d4703Eb43n+NDjQZECxrLaArE8PZ/N8El/v0Xgs+SX1zwembYMl7dlUOS124SVKlChRokSJEq2AcKbSocB9WJhjVswpWQL7Wy7HfuaDgBGSNqyn/JKMXaJEiRIlSpQYL2iG4DU1JkwvhZ0QZ8spyPMpnJdTUq9Mv5fBBI2DlVLIF+tJxIk5MJnmeaxOcL/+QArZeTIB2DEaEZvi57W0rBReVOtaEpN9j5P0crGsGurcDivA/Ren+z5G0s3RUEnxKKxo8wkmw7+WO7/NLspFxPp4EbUrdkb9A6sYfpmc1RdgMsI7v6OO2bAC0NG4zfVTLkVNau87pevYXNJ9uX29sMO8VMQej0gL6Hdj9a+zJX2ftn8EvAPsKum931F+vt+ZCRPtpsw76Mb3Inwifp2CVTs7YpWWg3Ha4f+Nx3o6Y9WiIZIOrPGc/PNYQAXl8cL+xTChfFrgnazPSkTBYzEhe4xCdpW6aiVir4+dJ6dgxbQPkhP5UuBmrFQ/zu+nsfcbERnRYZXm+pXCc9kfkyMOwQqfo4vHTAz1FI7fBi9oXK+cCnsikOyDSZAX4T7107Rv/nr763D67KsxMfaxvG2R9kfavwpWjW2HlffqJsNNTEh9zmVYSfon7FgP4FJJR7XmtY0rwuTlx7Ats7Ok78Pphn9L9taD+B6/xqSY+5ooLiszMLkkU9neGi/GvRURc0n6MJyRY20ckJVlMrkTk20WAFaX9EyuzC45cmhjpJht8RgwNSbxHAF8k5ytS2NyzNu4bX+X/j9I0sX1PrdU3xrAorgPHYoJ66+kfVl2lXaY+PW1xlEtekLVk8odjBdML5Z0UNqekbwXwP3NMnhM/xkTaK+QdE46tq0519fG5LoLZQXpxYCncD82Cx5Tb1QKaMmdNw3OcDMAeFVSt7S9qblbB7z4fD9W2B6OCbd7p2/nSUz2vge/s/fH8Z5aqp4ZMOl2kKRTCuPXMvj7uUbSIWlbg2wBNc6vdsbt+Ctgejy2bKscAToiBmNl2jexbfKUpL+mfXUpB4fJ3YtLWiT9zs+rr8RkxgWVC96otZ4qxKt58dz0HRy4NDJt3wmr1a4KvAw8oBQA0trzxcI7XBQrwfaSNDBtWx0TJJcFtpZ0V5i0vjVWmz1J0rmtc/W1I5yV5HQcfPNtNAx43wu4Avdt26V7bI7UvBxeV3kEB8hkgZH1ZIpo9TomJRS/tbBC/vZ4XHgLB7kOknRT4bxag1mmA17D9scHkpZM+/J9zvmYKD0PtlFuzeyPtlRPSyKNLVfjzGxnp37oaaxkPT8mrB4m6YnCebPiIJuTaGbMDpPUt8TZP17HiqcPADfiTBC/AVPitYSfgRnVUPyisfng5UA3HOTxj7RtNir9aJZp7h4qghGvRcQqkp7Orm18rlmMb0TEhvj9bJ6zO4figNSt5HXX+SS925rX2doojKXz4HbUIc13psDf49zAZ5Luzp13GrAGVn3/qi19myVKZAgHZ3+LA2WOV8pAEA6u7I3XKg+QdGc4WO9InJHjgXRcq/tGmpnPTY/9ap0Zm5B9CBaxWV9tPPCwRIkSJUqUKFFifCEiOmEf5tdKggYRcTFeQ8nmziOw4Ntf5CyU7ahwQVZRHZkN24/n6y9RokSJEiVKTIIoLNCuFBG7RMRpEbF6RMwtE1W3w0bMAcDRETF5WgTqlIp5KZ2f2SfvAssqR8SGiopTIg09gBfNXsSLZOcBG+fKbPPILZp1zv39NCYSn5Ej73RLDoFOwOo4pXa7RspqFOF09ddjosDUmCB5eETMksgpk6WyzsHO26UwCSJfT5skYgNIehgToXfCRI6tZCL25MBMwD8x6aZZRE49rFDHp5g0eBk2wvdKjrBs/3fYAbaEGhKxV8WLt/urJGKPb8yMCb9/U4WInTmDDpH0XkTMG1aLrBu5fmcHrGb4d+D5iDgrIhbPHzM+EBHdgEuwg3BLnGb8r1i9ccPG2uY41NMeEzSGAGsnclpz5+T7+17AVYmkMwaFfvphTOC5FXgoOXeR1Vv7YkLSBYloOBbq6G/Wwu/lNlXUM7fBKZTPTeSicZ7/5u5po/R+MlyB1VoPzvcDRRSe28GYBPiIpG/zbWdiqyd3fHucSvxCoEc4aCW7lh9xnzkUk02PTUQElIjYtbb5cJBWb0zKH6hExI6IVSNi+eRUl6TVsKLsYcAOSkTs39NG/sgIK2iejp/dnpJ6YkLaz8A2iaDW5pFvJ8k5+gN2QK4HdIuIKSX9mvqDGbA64FXYPtiqhvK74nH/pvR7d+B2YAWARExoh4kc/1WFiN0Vq1JdDmyoHBE7nZcRscdSmU/bt8G222dY+X8rPCYsGSYXv4IJDzMBp2GCYW/VQMQuflvhAB0k/U3S5cC+mJBzUli1GJkgvQ6whqQBSgTppr7TlqgnItrlvuH/Yjv5Y6B7cqoD/JaIXW9jUuw2wCAcZLeTKkTs9q1NHMn3R+nvpbGdMyCRup6kovD9ECY194iImXPndcDp488AHs+Rusa6v+y5pn2jcPrtp7Da5ldAP6xWDVZA7IwVEJu1HVqjnlTHFOnPzvh7nyb9bp89XzlITJjcR9o21njZ1P2kb3wPrOC+Mv5GnwTuSN9vVtauOHBwYeAO1UDEzl9DRCwWEdOka/8HMEfWttO8umM65SlMbJyxSlnN1oOdD/nt72H7YFtgydz2G2RFvWUk7aC2ScReBpPFPwfOi4h902HPkAIUgJsj4lEc2HkCbpPnZmW19PXXgtx13Q2MxDY1kn7OtYO38Bj4V2BwRERz7TnZTXtiguXJYdJ6FjBe07NoC3VMSih+a3Lmg/2w83Bp3Ccdl427ueOafYaSRsvZhbbGqreLh7PXNehzJPXCQWiLYSJrRpCuaSxtqXomJLJ1tFwbnhXbIJelOfYTmAi3Nu57lgHODquB5zE/Doy9q5kxu2OyH+/BpLqlgDuByfF4NAKPE8/gQKeXcPDbGDQyZ8vWHnaVM+QtkNpOFzyufJOOuw+PB1vKROx58fplz1R2myViJ8yEAxY+BIiIe3FwTkbEXg44Is0tJ1nkxtIdccaNV4HHImJ7ST9KelDSFUpE7IiYJZzFpRdwi6T/tPa3WaJENaQ+axjwAjBX8htkc4OH8NrIm8DA1N5/kdRXFSJ21Xl7ayHsi9s+IvYPr31PncbVFXFW1LPxPLGjpI/xutxqKonYJUqUKFGiRIlJBGFuwE2Y27F9tmYs6QDsIzyJSraxi5SI2Gk+0wn4FAuJ1IxJ0tFYokSJEiVKlBi/yC3Q7o4dgv2x0fIIcH5ErCynwcxSM+8DHB8RUygpN2VlZItZkr5RLtVuHhGxFlYdvgSTJ9YEtsCOgUHAJmHy7R8C4XR3n0WFCDkSE9vWx6o460t6KaxstzPQB7hO0kt11jMzdsadid/FZvj5zQMMiYiZEvElI2T3w2o4VRVr2xoyx5ek5yXdL+n/0vZZ8XM7ESsGftBEMWPKyrXrldKCZu+wqjiy6uCxWKHwHGCfaEjI/q+kv6fzM5v775hUf3n+ehupv7TTG0Ejz60rnhB9lI65DzskN5P0SkQsi7+beX9HvTsA1+L0ROdhJ2ov7GBdcVzLLdTRLvVde2DFxEGSnpL0N+ws/ACn9M7a5ji3k8x5kIhQ1wELYcJic+dkdR+EJ643qorqeHLkXoqVutbH7+NuYI+wmiPJkXEGdoJen5y9zZIwoiHhMiPYrwj8mhwLWRtYDBNtXwirpPbK+rdxQViF9H5MrjonIv6UCGTDcADIoum4yQrnFYnL5wF/VlIVmxjrKb7HNLZ3x8T8C4AdoiEh+99YDe8zTMherHB+rU7cKYCpgBcSIWnO1N5uwWSEK1J/gKSrJF2nNqRs1IqYExNXH1IllfRFWDG6u6TPI2KuVru6JlBoazMlEkDXnD15EFYLHIDH6qnDROwtgEWw3TgEE3anb6a6HzChZf2IeAkTuQ9M55PqG43b8moRsWRYeWpDYD6sGvtouu6x+u9GSDHTAxtg220nTIbcBgfTXQcsESZkv4oJh9viVPHNBhgUvuUtI+IvwPCIuDYieoSVqa+gIVF6i2QLPUxhTG3sO22pehKZ67cwOXVqTCbqhcfOwRGxYWoXo9L3/m9JT0rqJ2mYpOdz19uaRNIu6X5+S7/nTX8/ClyYSFFX4RSKx8oqbjfhNtEH2DNSYGoa44fhIIs9UnlZ+up2he+nAVEPB2uB++Oukt6SMxtNib+FHYA1m3Pit1Q9VerdArg7IqZNtsEN2A7YRA7KyJ7vlFhNPrMf6rJDUnscma71CUmfpGs9Cs+Fbwgr6GfHb0sir+W21ZIBZGncly2Wjh8KdMDBU0uncrJA50VwMNoPjZXXRD1bAP+MiJ7RMEjvNty3HR2F4EYlpex67mdCItff7AnchQmew7H64SUR0St9G7fgYIXe+NnegAmI/dL5rU7wTNcxVpvMXdcXWAF364g4Ne37JRyIsSKeG12GgxHWbKaeDun8a3H2haVwgNxqWZ3NfR8FG33a1qhjUkZUiGRPS+qNA7Wex2tHI5s8mcb7P0kvADtigv++4UwARaL0t5I+Vcp+09RY2lL1tAQiBUBJ+jVtWiX9vh84Ma2D9sGEv5PSMQOxSMCcwEVpvpKtZT2F1ad7pfLHmp+keXbfiJheDkS/B8+f2uF5UHcs6LA8HlsXxkEzF9ZwS+1wIM8XyQ57FtuwnwGPA8dExBOp3C1l4nJHvLY4HWk9pq2g0F9Mndv1Oe4Xu4UzES5JJRNhJ2BjIIBfmQRReG4b4nWdYen/t4EbI+KQwjkb4sDAs4G+SsIqtdhVJUq0Aj7DQdYjgMUiYp40P8rmUA/jIOcPgWsjYsH8vLo17cOI2C6tMWR205448O4yvObxEp7zLCwTslfAc5U+mHjUUdKHqmQyKP0PJUqUKFGiRImJGmku+Bye616F5ys/5tYZrpN0lqTzk/2U+ZVGh/kly+GMgHUFHbcbPbrV1xRLlChRokSJEhMBImIjrMRyIlbMeBcvbO0N/As4NJEip8aEvJWAtSQ9Nw51HYPJL2sol646IubDxIR2mCh7v6SffteNtQCSg/4CnEJ2DUnvhFNAHgnshlOZPg/MhcmSA3Ikm1pTZ2+HFZImT+ffkbZPiQlJmUOou6R/J2LMr7nz2wRJrdb7zR3fE6vTrYmJrWfVU044wKA/JmlMh4kuw3Cq9JcSSaovfk+9gUtVSAeeyimmD84TkzYEVsNOrhGY3NqmnFhtEeFgjh/T33NiVcPL8XNcDjvTXkmL6fthEtuf8+SXOuqaC6ufPgSclXP+vopJRD00jils86SoNLmbCqtYXSnptHTMvVg9bnNZeWoT4J+qQoKuob5NsTr8cOUUqyLiJkze2UzSJ1XOKxJwzwf2URWV97SYPxgrlvdITujMWX0gHhtOz/VjmwBdJN1e573sgZUyB2Alw03Sv4upKHW9kr7Tk/DYcFL2/upFInxcjR2z0+EAiycwKf0RrIS7cTo2e5/Vntu+kq6cWOspHLMWMAPwpKQvwhHnN2Dy0+FYMevbMPnwTEwe+2st31O1fjwiVsE2yPVp0zrp/1MwOeEKYD+loJgSRkTsD1woKVP1uw9YnAopYRmc2aSfrCjcJlBoaz2w3TQ3JuL2A+6U9Pdk69yJSUmjMHltLuBkSX0j4rp03gaJoNdcvdfgcX8EDlr7Kn896XldiAk5H+O+8DRJZ9Z5fz0woXhOPPaMUdHFJLu/4EXA3YDX83ZbdlyNJM9dsfP2r1iZeGVsLz6Ms3n8muyhK7DidCegv6RT67yfCV5P6tc+wOqTe6dtW+D5yZzAbrLaGeGsALOrBgXxlkJYiXE94DFJz0fE3sBeQE/gw9S+lsDZgQ6UNDSdtyEeB7/DfejARspv0G+GifyjErFrFxzQ8iRwlawQNxlWsO2Dx9o7sCppHzy+P5bKabKttVQ9hTrPxgT/5SW9FSZ79seBRvukOrpiwtUgYC9JQxorr5E6NsLf+Tw4aG7bgm21RLqHtTAh/rbC+fXcT1dMhPtnKuu7cFaRm/A88S+YULw6bu/HNdYOmqlnL5zRanVsW98EXC3pPxFxPB67V5X0ZluZH1ZDRKyE7fbTMBH1y3Dw5H7A7pjs2OjzaSv3Vhjn1sd9/6KYXD5UDpYK3M7WwaroT+Axbh+8FnMLJh6eKun8GurZGKvIn4/nvk/jbAvPFI9tooyD8Hdxmpw1qkXqKFFBbo45ZbY+0dwaSO6c5bFycEdJw3L7l8N9wi/YJvxL/rxxuLYJWs+ERjhgpQ/wf5IuTmP25VhMIQu+mwYHhN4u6cS0LfB3+SDwmqQbGim/se/gLmwrnI/tpG9SPZvh8ewVoKek/xTLauoZhkmzy+GAzLnwuzkQjwGjImIfPI62w+sqN4ez52yK1zN7j8u4M6FQ6C82x8/sIaXsdRFxOw7W+RKvGzyb1mK2xs/2uEl9zpiex/44C90JkkZGxII4mGZf4DBJFyQ77hS8NnOfpOvT+W3qmy0xaaPKPKgzDgDqg5UOV0ltvJOScNC4rlVOKCT79mls92drH3fitYdHceDhcfi+rsPrrh9FxHRY2X5GnIX2zVa4/BIlSpQoUaJEiRZHWPzsAZwB9gDgnaKfM3dse6Bd5mOJiLkx72NbYHVJ/6in7jLirUSJEiVKlChRNyIpGqW/s5TgG+FF/+skjZD0g6STMRlmGWDHiJg8Ocq2xGqldRGxo6Ko0QWnTx6Vu4Z2ibx1MVZ+OQmTbtq8EoekO7ER+B3wTEQsIJPM+2DCwjeYsPIFJr2NUTtsyplWwM+Y1LAKJh5kdf+AFcMOwcq4wyJi5iKhpzUX0MOq1Fum66g5fXHCSExyP0IVInZNzy2srDgIO5zWxWl+98bt6tyImF+OkjwJkwvPwc9wLBSfX84ptAdWtlsTq1UcALwYEU0ql03qSO/m1UhKrTJ5vQ/wZ9wXrS+TcKfCJOzTgMEaByJ2wpTAgsAIVYjY92OS6d6S3o2IhSKpqNR4D1OkP7M52dzp/5HY8dw1HXcPJmJvIROxZ8HErB2iGZXn7FvJ/b8Injw+ANwZEcfmrmMIJl/OnY5tny9H1Qm4V+XLz6EL7vf/IxNt24UDPL7AJDsBa0ZFhf/+zLkRzai45v5eHpP6vsWkvacxOeXJ9Lw2SG2gIw7I6A48rXEgYkclZdW3mNgjrLb6SCr3RUyAWjMiDkzHjs7/H1aOOo8mCNITSz25Y3bBRIqe2JmPHECxMyYfXIDTP2+Bx7odgE/SWN5sW8jVs3ZEHJDKfxoTEjfCwQUPSlpU0i04QOANynUQACKXzQErnH0fEXulvm0JKmm6p8BBW3OQVAHaCgpt7VrgMUxEuR44Bjg0rPj+g6QNMWm5Px6zt5SJ2Cth9f6nVRsReypMgL4ZKzYPTgSY/HW9nOo6FCvI9VAiYjfVrqtgNvxtrIODCbLyf0uEtV0wYfkm3Oc2QC22W5gseiZOxbybrJ68LCaWLpiuIVMx3QArL3ZXIkjXej8tVQ/wPW4LK0dKLS+nTj8NqzXeEBH7hAmnt+JxvC2hK1ZU7h0Rp2NS1424b8xs12lxe5gdII2ly2Lif7emiFDJjj4nIq5Ov0el72cIDmKYDzv2h0TEHGk+8Cgmfh6PVUT648DOx3LljtXWWqqeJnA6/laPT+c+idvBC/j7/Weq81xM9quXiL0bViPdFavVb0xBNVrO8nQcJsgOiYZK03Xdj5xB4kFMks7s39twnzczHlMfwQTck7N2UO88WM4asRG2n1/H3+0TEXEGbos/4Tba6grYzWBurHr6uKweT1p76Avci7N37Z0dXOxj2sq95ca5XTF5cy18b8dgZdI5JQkT487E41JvTDo8UiaxbopT1L9TQz27YFLPanhsuR7Pg0+PiFWzY4vtKsYmSQ/EgaPftWQdJSrI2rCaIWJHxFYRMX92TlqfeAD310Mj4u6ImDetobyI7fWOwJEp1mbYAAAgAElEQVSpH6zV3miReloYP+N5+4XhrB9Z5r7huWN+wut868EY8t8KOHNBPyUidrW+uopjODumGxa42AcrVU+X5rh3AwdhVey707pBg7KaeoZyhpEX8NxwBrwOOSKzj2Vi8unAf4B+ETEEv78z072M07gzoZDrL3bD88CONFQyOwILLUyDswscg22PQcC5qiGj3cSMcMDZm5h48I6Sur6kf+F1/suA8yLikGTHnYYDnUoidok2g8L326Vgp4/Etu3xeK3jqYjoLGdYyxSya1qrbEG8ioNktgVOxQEQrwLXSnpBzjC0J7aR9sZ2I5K+wT6NA1QSsUuUKFGiRIkSkxZWw+vtZwHvZRvTutMs4czoy6dtv8liMdOFBSkuweu966pOIjaUytglSpQoUaJEiToREQOw2tIwNVQUGAbMJWmZ9LujpF/S34MxEXhh4Gc1VAiue4E2rKR0H1bRuyxyKs4RsQ1WA5scO0aWz66jLSGqKNOECcdnYaWClSU16jCt5bnlFx1TXetjNcLXsJrek7ljO2MiwbXA9mo7qg+L4ut9HjhFFVXImhWyI2JqVVHkauL47N1cgNXHNldDVaENsAP5GkkHp20zAYvnCSM1XNeqqZy+wA2yYttqwN+wY7KHqqhsT4ooON/nxUStyzCJZndZ6WMhvCh9EHaqfYC/pc2wYlRNavL5bxMYnf5eC7gfK9e/mMiKi1FRjV0UL3afkv+umqhjSUzUu1bS6xGxL24HK+O0zBdg8uO32BG6saR/hANh9sJO3sMkPdhEHcvifvBVSf+LiB0xgSsjd++NCX5f4PZ2ASanCNi6EWd9c4rY8wIfJdLVLdjRvK6k9zLHRXK+n4cJun9KToG6ECaVr5vKPywrIyJ6Yyfg7fh5jsKT5ZOxIky/cairR6rrZkn/l7Y9BvwgafP07Z+D29mMOF3VZpI+y5WxK1ag3k+NE6Qntnq2x+PJ8Vgd640qx1yD2wGYpHBeve8oXUsfHAx2tqQn0vZZsLL3yPQ7S9ndB9i5nr56YkRE7IC///6yumk7HNCwIk7Zu5Wsyjslfm7nYnW4K1rtohtBWA39GuAKSQMiYjEclPE2Jihfi9vW64XzZsH9w0lYVbpb2l5UzKqmktAF96/dcJ/4N2AnpSwA6ZgxSpS5bTXbbgUC3rXY7j286DxNtsRdOAPNjU2Vnb+fqKhSbo0DKzaXNCIdczvuX7Mxbm6SKnOt99NS9TRS9+p4rrK7pMG57ZtiEumquM8ZIKlvreW2FMJExQsx4XqApKML+6fFauLTYTvoGxzMd4ySyndjtk44cKA/tgEGSuoVETdiJ/6gZC8chdUOv8JKzx+kd7MsMCvwtirq4lXfTUvV09i9RkWJ+0ysDLdzZp+Fsw+tise5t4CXZMJ+zW0tHOg1DNtPw7C9MQQHhR2H7buRueOXxvPku2sou6n7mRaTyO+V9Ofc/lkwOb8z8KWkt+q5n2bucyEc5LQWDk6cAn8/q6gNZUooItnWlwBzSvokGqocdsfBGGB117Fs2raEtEZwDdAnjXOLYPvsV5zVpHuaC02WnEazAV9J+ikc4PsX4BlJPRutxPXMj/uWoVjh9n9p+954nvM0VkZtoF5dmKdlwXp/lnR1a9QxsaCJfny8ERwjYm08jlyCbeTp8HxwEO6v5wXOwDbVn4E30pi+LM4u0BFYr5qd3xr1tAbS93YXsDzOytEzbR/TdrEi/5k46Fp4DDqluXlPI+PB5OnbbofHnTVw/3CWrJA9FQ5EvpY61/XCwV2T4yyHT+DA1s7Yxn02d9ym6X5Xwzb3i5LuTfvaFAE3IrbCAR+9cUamzwr7p8D9yTK4HT4MPCwHB7a5+2lJRMRSOChwBWzT9c7G0bR/HmxXH4D77b65fXVlNCxRYkKgYDtsjVXeAwfDnAY8KmdvyxSy+wHv43XfkW31+w+rO+6B7abvgOckbZL25e3dR4CpJK0UbTT7aYkSJUqUKFGixIRGWGyqPzCvpM/TtnZ4bWIzLFAGXq84UdJXYSL23tjnc0a2zlov2kIkX4kSJUqUKFHiD4KImBpH0n+VcyxkjtpPgLkiYsW04PVLVBS0XwGmB6YtLvY05VjP/d0xGirAPoKdCxdGxJaqELE74YW157BzfxGsVtamkBzAQ8KE9d+iQlIcBhyLSeRPRFL9zZ5jNCRXN/bc2ueOGZ39S78fxo6ZJYFTE4EpO3YkJgYvVo/DZkJD0j8xSXxO4KSwOku9CtnfQ5MOzavDab4zZOUuAnQAvoqGChiPY2WdbSMp3En6UrkU6jVe15LAvzGh4su07QRMDOkt6YfkHKKOe50okVtA3w0rl+yMnYTrYiWtOdOE6GxM7pwWq8D/Fwdt1Kwmn9s/Xe7v53DU7NnhwJNFMWH51dTvrIVJ07UGfkyPSYB3RMRJWNH/dFKKJOxQ/QmrWl0jE7Hnwwvu5wJXqmkidgdMErwNWC0i9sNOyJ+xuuZ9uG9cCjvG18LtbhacmnjpVE5eHXtLTNhujIi9IValzRRin8JKp/tHxGxyVPFvYRLjrMBLNFSmqgmJVPIEJqR/l5zOHQAknYFJUGvgceIxrKp2fObsruP7zPAn/K5uiIhj07ZdgEUj4uT07e+OHTvD8Pv6rFDGzzgbRFXi8sRWT0TMgZXGzgIuyIgTEbF5RHSLiPUAZGXczdK/ret9RxHRE38752OFnyeyfZI+V4WIvRQOfrgQkwInOSJ2lTFkNbygtG9ELJz6nW5YMbYLHt/2xcT8gZjMfEUjZbUoYuyMAPMAI4CLIyJw/3CrpOXw9e+G+6HFC+ctgvuRR1QhYjcYIwoO3MUiYr1Uzm9yZow7gcNwn3NDREwVEZOltvl4RDRQXa7F5s3bben3YBxotClwXDg1eL7Mp4AlVAcRO/2cNf0/Cx6/PkrH3EtDgvTKWKV6rmJ5Td1PS9STq69T+j+zp4fj8e+QaKgKeR+VQKRuGWlkHMaFCYLcdfwLq0ePBBaPiOVyx3SQSf9b4We5Wfr7RDVDxAaQlTNPw4vQh0TEZfibH56RIoEBeLzvCtwWEXNJ+kDSUEmXqgaCdEvVk+rKvtHZc9sylfs7cGDROrl970u6SdLOkk5V/UTsbdJ9gUkc70r6ECtWCxM5dk/EjqzOV/L1NFV+7n7WiYjtCvfzI54DbxQRK+Su+3NJL0t6ShUidrvxQLIYJSu/7Imz+FwJfI0D3NokETvXnz4AfI7tZmSVw45p34fAs1gh/cLsWbZFhIPkegKXyETspXCQ8o3YcbQ4cFOytX9N7/1TYKqwyutlwLOqEESban/T4j77WTlgIstgcyUOrlsHq/ZnKouNkaT3VeMk6Zao4w+PKvbHOhGxRJiI+1sVW6hqGbm/q2ZvkvQ4fu774kxpywHP4Gx3D+M56Y7Y1roSWCT1OS/hdnmcaiBIt1Q9rYSOOHPMa0CPqGTrGZ3G7NF47ehAPD/+HAe0ZvOeRu3qXBvYJJzRA5mI3Snt65nKPBQ4KqyQ/T2ew9W0rleof/Y0Rs8lqQcVAvmN4Uwy2XXdJ+k0SRul/9sqEXtyvJZ4F3BxNqeNiEPD2Tv6SvpR0v7AhqT1Y5VE7Ayv4eCIJ/Ha0WrRcL35fWwPXY/JreT2lUTsEq2OXB+6K3AdnmPtj9fh+wF/DmcGzRSyj8YiQn8Pk5fb5Pcv6Sc8H9gfZwJdJiJWSLbDz9HQFzdXGhvaTPbTEiVKlChRokSJCY3C2tf32Ne+RUTMn9abnsMZ50ZhIa/bcRB1ll2xDxZLO0jjSMSGUhm7RIkSJUqUmCjQkovEkRSvI2Jz7FS/W1YMWAo7Au7CxLf3suPxItcawEbAN/UszIbVC/bC6nDDgVNT/UtjB+RGmIz1AXbuHY4XjJ+iogA9uFrZLY3k6OiIlUPOxSpVe6f7yStkn4kJhV9hhex/1VB2h5yjPiNObo/JL68CN+AUoz+F1WHuxETFMcpThfJa3fFQcEJujlVZ3sEEgAeLx9RQxgySvirsnxuTta5IjsD8vn74XS0h6f1oqPZ+LCbO/0nSJ+N4f1cC60haIP2+DysWb56ISWsA22Glw7pJqxMbImITrKJ2LFYI/Qh/60fixfTNJWUkr46YLFez8kehrWSqmitKeiE5sPfBqvvTA8vJitbTUVGN7S1pUB33szXuu2bGSlbHR0M17lUw2WAB4EscSNsRuFzSWcVrrlL+LJiMtigmwB0h6bxG7ndqnOZyG6w6fq6k4wvlTQWsqqROX6W+RbE633G56xuM09z/BX9nozDx+zycwrZuld0wmftuTNZ4Fquk/S8aZkhYBL+nX7BC5Ptpe81toLB9FfyeD8Hj0E2p/OUxSfXpdNy0Ssq4zbybiaqeKuXPigkWfSRdHhELY8Ldsqme9/H3ckuVc2slw3XFinrDcR85Km3fGBP7XsTjxfy4vYwCLpV0fj31TGyIiJ0x2WUUzljSmZRiWtLb6Tu/EpgP9z2PYWXza9L5rfbcimN4RCyVxspp8Xt+FY8NP+AgnC+SrfgYtg9vw8Ek3+TKWEg1KMgmB+4ZmNT5LVbNO1TS1xExPbA1JpZ+hPulHTDp46ga7ivfF28IbILTJL+B38XHMsHuQKwgeR1WZBiLCFnH97MfJk8snv4Nw33CXjhIJ7NDJsdO6TUw8e3d5spu6XrSWLozDsp4SUmNPNV9DrCJpOF5G65wfpvrC8Ik3pVx0N7JWCn2FEnPp/3ZXGwKrFI8tUwGrqcNzAn0wuR08Pj+j0T0+ykdczAmyP8AbJnVUee9tFQ9md12Aw5yvDn7tsJZnfbESs5v5M4Zl+xM02CbZl1smy2ebJDOaT7cDo9/CwCnAFfXa8OnMmbD730OnNVoMHCPpO/DSrFP4Tlx33rG53FBsfyImCdnV7Wq8mUzNtDU2ImyOzBE0qFpezYXXxf3qTcDZ0o6r7XvJ11fg3YZJt0ei4MMM7XaJ7Eq9K8RcQ8O1nkZB7Z9kDu3GzCDEmm5Bjs4C2i6UNLpaVumyj4lJvV0Bf6B1ew/zZ17IA7e2ldNBAW2RB0TE6rYHw9h++ObKKhcFs7L2xa74rngRflxsHDMCTgw+H3gcTlgcsxxeN41GLfB/bBy9a/VymrmWiZYPS2FKn1iBywcMC22ZXYADpF0YdpfVCMdkzmllnEoImbE3/+MeJ31L2l7J5l01w7Pe2YlBWkU7OWaMkuEsycdjLMG3CTp32n7jnhtcoxCdrZmAW2bdJvezf8Bn0vaJux074vJlp/hIOXrJbU5AY+WRDPf72Q4I9zVuG/eHXiiME6NyURYokRbQzgzw9V4bt4/nFHxBTymzgaciv0Bn6c52B44GPHy1rrmIppY15sG6IFFB+7Ea7GZjd4hbV8J27x1+eJKlChRokSJEiX+qEg20p04w+irycYbjoNv/4vXRz7ENuKlshJ2V+BSLLSxqprIWl8P2oT6S4kSJUqUKFFi3BARh0TE/MqpK0/AujL1nV+TE7MPJolsnBwKr2Ji1zbAZRGxSzh1+qE4Wn+wpK/rWfwJq4HdiG2W9ti5cVdEzC3pFexIPQ0TO07A5OMTJN2ASV/fAv/5vfc+PiGni7seOAgTba+JgkI2dkJmqrHrNldmRPQBDk1GZeYwuR07hdpjVcg7gAMioouku7AC5hpY6XeNKtfZ6sSUfFuRdA8mw84PnBg1KGQXnEuHAn3C5Nl8HR8Ae0l6OCJ6JKJahqG4Dd0REdOrQsSeHBMK/4lVkJpE/vqioSrV08C0EbF2RNyNiUpbpgnCNFidZ0asjlgC1sepi2+U8QMmEfYC5gZuSaQfgF8TQaFZNXkYq63Mj9PU/gw8EBFLp+92CFbt+hYr0F2CncV9MZl6UFZWUzeR+84/JSmvYxXaxdI1dkhO06cxaXIP4H7siN9NFaLzWCrfETEwOReQUy7diieX3wKfpbY75n6za5X0nUy23AO4CKt6zZcrdzJJ36sRInbCR3iS2y09Q5Jj82Jgc+B1TFI8HRMJa1bZzY5J1/G/VF6WDrp36teysQlJb0h6WtILBcJQrW1gjohYKJIaaSrrSKwKOQ0e6w7G7WS1rAzVSZCeWOqp8ndn3K63CSvJDwNmx2PeRsCUmGg4FuoYezrj7/4ZbJcsGBEPYCLedZjos5KcXaEXVqCb1InY3fAi03Dcb60LXIVtqcPDxOTvJW2PgyYCpzdvC0TsxYETkl1IWB3wwYhYVtK3kl7GJJQ/kdINp1PbY6WDgcAzyhGxAdSIgmyhXa+Gib7X4qCVLBjk9jBB/GtsY+2CyaRL4ACBo4plVUPuO909lbM0dgwfhEmYeyU78SKsqrgTzm4SVcqqJdvMQphIcQ7wdbKv7sF244pUCNJTYsXFQzGRsVmCdEvUU+V5ropJNf+H7bUj05zlMmxLHwegKkTstL3VAw9zf7dP49lISY9JugATelcBTomI5cH3Es4wsHFq01kgWs1KyHLw2iAc6NgFZzMYo7iZ/h6Ex/B58HOuGy1VD/AxnicuAVwVEfcDO4QDuK7Hc6pNoTKnHZd3Lyt+n4z7gXnx/BOZiD1F+p5XxkHCAzEpu946RsuBnhtRyQ50LvBU6sffTtfQKyKi1rl1RJweDm6t+3rS+ZnyfJsjYkfERun+7oqIwyNiwUQMuxCTV3eMiCcj4jScdvQcYJgciDsK2xStSioMKxouo0pw9j4RcZBM4uwnB09vgDM4DaSSyelVnN1mDtxXjOlXZJX5sYjYTYxL72AS7A4RsWQ6Jwv2nhmTF68BrtXYJOlBOMj8ypaqY2JEDfbHutj+mD7NfcZSyC58Gwen8z+pMg5m2dcmk3QmcBTuh1ePiMWyg1JZj+HAp0WAW6hkQsof0xhaqp4JjsKznS0i5gXaS3pPXg89Cwd4DExtlvSedoqIgamYMQE6tYxDkv6D5zLv43nvbmn7z+HAptE4QGcqbNMvUji/lswSu+M5wQs4sO3fuT7/xnRfI4HBEbGKnPFqdGu/j2rIrRtkfcvNwAYR8TG+x19xZpZ18Hiwcjh4Z5JEoU2vExGHRcRVEbFNpIwLOOB+TyyAcC2wRkQDhezvsrJa/g5KlGiI4twKr3E9JxOxF6GSXWReHGB9FJ5vzyYrZF+mRMRuC226kXW9ZWDMvOQ6LErUHbgk7ItbA6/x7YEz3dXliytRokSJEiVKlPijIsyreDX9/DitQ4zEXJjLsK9lAOYa9FcKZJaDkb/DPs2Px9f1lMrYJUqUKFGixB8U4XTeD2CH1taycu94J8qE05mNUd6JiCUlvRZOmXsHdjIfjBWyf46I7pjMNz1e6P4cp9U9O5VXk+M2rABzLlYGHAB0AjbGC+avYQLte+nYubAyy4/JcbAadt78TdIO4+9pjDsiYjOsnHhAek4zYtWcczAxZR9ZWa0ddrBnCrjvN1PulJhksDkmstyNCaJ/xYpT36V3NRS/q8Mx2WVUWD17KNBd0p3j/67HDwrO45oUsgsLlgdRUdG6IndMXum6CyZ3rgfsIOmWsJLEwZjcMTL93R4TwvthslXmVGvs2vPXsRl2ol+TCEjLY5LiVJgsu66ktxI5ZQdMljtWbUTZvbUREbcDC0taIv3Oq6hdiglqTwGbSvrvuPSHEbEHfs8/YpLDSthhup6sAjU9DvTYHZPlXgGGSxqazq+5zoiYA7elhbADoD1WgHs9Ckr3Vc4dqx+NiCWwg/EoSf+Xtm2Lv/tuWOn2EFI2gybK3g73IavKqaGbrDsaKlJviQnZPSXdljtmOUyW+wmrvD6btteq1DU1fh8/YaL9qPTN3o6dK5dhosrI3zsOhoNZjsDvZTR+x8cDL6c+elZMiNgOR0qDCTCf1ePgmBjqKbyjTbBT+/Q07myMyaQjcVaGU3PnPQY8JemEWm2CRup/GZgc2wlL48j2o3Bk+z3ACzKxuOo1TypIdsXkmKjeGdhOTmGe7e+L07JdiO2GN6uV0coktaVw/zYNVgfM0txflhvH5wUeBf4qab9EUNoP6CZpg1xZ9ai8z4+VDvfEaoTfpXKPwGPF28A22cJdshtmyghktfZHyaYfirMGXCnpP8l2+xzbeL1ydRyMleY3VCGjRw31rIZJOjvjcexDORhwRaA3JnmdismJ82AH7tmJPFWPDT9B6in0OUviDBgj0u/uOChzI9wH/B8OZlsK2FPOctFmv/8wyXZHnNFmCHCrUlBBRByCSdlPYxu4E1ZnPlDSVb+z3rnw/OFwYKCkXml7JzkQjWzu9wepZz5sp52Ig4A+wxlU+uEAypWbsq8KZTUViLRkqmMzPO71TdunkPRjIn/0UJUMEPXWG1ZA3w637/VwMOhHmEx2Fn6eTd5TsjmH4oCVbpIeqve62irCqr/n40Cj9rjv+Qp/9yMiYmZMat8ZZ4v5ACsgXpzmlVcCB0u6tVVuAAgHVPfCY/GG+B6upfK9ZPPgfnjNYIb0e3I8HrwJPCjp7zXUle9HZ8f95C/AD7Iq5CK4/3wTOFnSo2mu1QN/w+vKQUhjykpj2KKqBG9N8DomdtRgf/wL2x9fF+ZiRSL2eXgN5Kq0bSVgBVVUmw/DY8/Kaa2vF16Duxg4J78WlezJDYC5mht7Wqqe1kKaXx2JA0Ofx2N2FviwJFaz3x6vQX2GbZ5BcjBsU+U2Ne6sjcey6YG+kq5N2zsDZ+PAk5H19u9h0t4dqezLVSHWTgVMLpPBiYidgJOwWMBiwBdtxaYqtPv2yebM+o45cRDg4oDy43JEXIznvdspZeuYVJHG0v54Xt0Zr3U9hdcj34mKQvYVwFzArvXOQ0qUaElExHKSXkxrBLPhIN3HsB14sKQv0xr9HTig+hIsGtHoWmlrool1vWex720f/A1PmbZ9DjwkB3S3+npOiRIlSpQoUaLEhEaYiP0K5o7skvPPjBEma2K+PTcWBvgQizr9OD6uqSRjlyhRokSJEn9gRMQB2HH3HSbUvvd7iWiF8hfBjuabJN0TTvl9MXasvJiIIsOwosCBOC30TxExC16oBaeE/Hsqr1ZSyrZY2WkpnJZ7eNreAROyr8VG1T7Au7mF9xmwCvShWPkgU1BscTXHKkTC67FS2g2YxPtLmJC9PXaePIHJ9VNhR+w+km4ultVIXTNj4u6OWKFtU7xo/kJUSPRdsNLN98DaSimzI2JeJVJ7W0DhuXXFBMwp89cYEVtg8mVVQnYVJ+T5OJVz5iCbhZzzKCJWAEbgRc1TMHF1F0k3hInRO2Hi14qYDPoJTl9zTvGam7iv3bHD8RHs5Hoobe+O1YtfTPs/B9bGzvc+kvrUWsfEjojYE5OQuqX+qD3QLrXvvXEfNDPwjzzxro7y1wPuxd/f3cnptCt+Fwvh7+b5Js6viVjcyO/dsdO2He7LM3LZFkAH1RgsEREzJhLflsBbsiowqa++C5O/DwXuyiaUEbEg8K2kL9PvDTHJa9fs22qkrlUwsTqfDr09JmPPB2wgq3M3dn49KZMPxASi/2F1qyGSXkrEjdsxEfcS7Mz/X7Uya0FE9MRE9ItwevSumATRGRM/75WDaTpgUuhpwPtZXzAJ17M7duC/hElDD6TtU6kh6XcaYEvc1+0taVgNZRe/lXwQzUKY5PAV8E9JZ+TqGQo8KenEeu5lYkaYBD8q6x+jEtDSDrgPk/EvB86T1WzbFNJYfSsmvlwjaa+0PRv7O+DAnE0xwet9TOw6UdKAcahvOUyw+QanMD8kZ1N1BA7DhChhEsdXhfPrIX0fjG3arZTS4IUDkFZI216ORPJM+5aQ9Hqd9zMDdj53AV6UtEL+WnHgzpG4HcwEPI7JfWOpqrZGPYVxYWccuPgoDiB4PW3vghXSj8FjRqb03zuzp9oiImIHHGzwHO6fl8NjXd/cHOogbONPmU4boFyQy++sf048nzwck8UOTdvHEKXT798b7DTB6qkyVnTAgUa74MC6jpgQuq6kx+spLxw8OT8md7+Og31/joilMQliYxwQltnsY77Vcb2f3LljSJbpd0+s3rID/sZ2kTNC1VLWcjjLyurY1mwq20m185t1XrQ0wmTqa/DzHxAmsP4dZ7f5CAcHjsiR87oCX6W/18Zqgs9J6tFa95AhrHJ4Bs5M0Rkr3F5ZeP9rYsLlhcBtOCDxDGAnSfenY2oNmtkJ9ylzA1PgueiZkoZFxDr42UwDvIeD3VYCTi32pc3Y8xO8jokRddgfb2D74+uoqKEX10D2VUWtfDK8znETVgV9GGdMORWPNxnp/xi8tjQWUbpwnY0FTrVIPS2JwpiwJb63G3Cmq+2x+vdVuXFgCbx+tCNefxsoqX+xrCbqWAWvP8yGVb0eTePOusCZeM1jIF67WBf3A1vJmbXq+mYi4qh0nSulOibDYhjL477oBknnpmN3B36pddxpCRSe20ZYpGI+/G6OVMr0VDhnBjxfGAgcoUkkyKMxRMRWeCw9M42l8+CA029wFqqDJb2b2sbiePzpM6k/txJtFxGxC7YxNgAeS3bf4tjncpAqYhob4UDhX4E75axEbQ5NrOt1Id1Pmgf3wOs5DwK7qxLMPUnZUSVKlChRokSJSQ9RIWK/h9fIPs2tBU4GzK1cNs7IiaGFxapOI2WTl6TxdV0lGbtEiRIlSpT4A6JARtoXO2NGYoXsj8bXQktELIzTwW6Q/t+fpJ6Yqz9PyD4IeEDSD1XKaszpcD7wtBoqlPTHjvqRwEZKZOy0bzJgE6xi9QYm2WZp5qfDDsw5VYn+b9VFp+SEXBM7zqcHpsPP8qjk7JgOq4meg50tXwEXZM6aOuqZGZO6d8UO6LVUUZ/tlOpaDy/KbSXp3rQvc6y3+uJcwZGyHfBnTOr/FrhR0um5YzNC9pvAWdUc0GElwUwNKnNCLoYJT/+SNCishNwPE3yfTo7wU4AtMBn1+jDBtAtOnf4t8L3qCDCIiPWxw+JMrMT2Tf5ak/PjKKyCNhkmetwk6ZJa65hY0JSzNayMOgiYAS84P562d8KO3E447XVvYAtJT1WgAIoAACAASURBVNZZ9zGY+LAm8JEqCmOb4LY2LbCmrGqepWVtNj1voU2ujYkGS2L1/hfkVPSktngMduYeilWnrsFqaGc1U0dePX5W4Emc1n4JJZXbcBDCnZhQdDAOAFkNP9Pukp4Jk5vfwMTWDZuobylMBumEv58nJD2V9u2Jnf87SLo3mlH5bua+dsYEtcFYVWw+PCl+GThO0vDkdLgFk4uuSNt/baTIYvkZsaEddmjcjclwxyoXsIJVSqcDVpf0RbVvshkyykRVT+G4bfD7OQk766sS8BOpYDUc4NVPSUW0mbKLxIfNMPH+Gdzmbk/78osnU+H++1yciaLNZn1oSSTbaTAOKtowW3zKjUMDsUNvCuCwND62ibEnd42LYOXTH7F6VW8lJdPMLg6rA/bB4/UoTGK6JF9OHfUuiDNj9MBO3G0KdXXEffVRmPS3inKE0jrvcRCwvqRF0+97gSWAzeVsNBvggL6z9DtIq2Fl0eswwWdHrOT4a+GYmbBD+gcllcC2VE9EbI/HxjOAocopwebaSjtMvO2O7eK5cbt/u9Z7aCmEyaFnY8f6xVi9eTs8nt2Ng1KzAK11sQ30nSqBiONrzpcRpQ/DGY0O+r1ltlY9MTaBuTsmTL8o6dI6y9oDz9F+xcEDP2KF8i3k7BLLAMdhxerz83OV8YnCeDg5sCCwuJpR3k7X/y9Jf0u/l8V22yrUQcgu1D+TUgBfayIc1Nwf+FTS8WE12idxIMNrwOk4MKSHJKV+oR225/fFRP0Rknqm8lp9zIuII3B7+wlf9z2F/TNQUdBuh9tj31psqkI52+HAy0G4Pc+Lg4+XxgT2W9PzPRIH0IwEHlHK1lTLeNoSdUysGBf7AwfbZXPBTBF7v2wNJFf2TLjt98f92gGSrii2/6gQpQfhIL336ryHFqmnpRF28G6GA776yFmZFsIK9YvhtZ4sOHQ6vP43tVLWhxrtnD3w+/sUZw/5Fs/Pt5D0fZpTHYtJx99jhdSzxqEfyGymw/A67rE4u0BvbGvcCwS2oXpIeqFwfqv3mXlExG6YXP0g8DV+T//BAQvKHbc2tg+3x+N2XdlfJjakNaIrcNask8OBZn/DY+lXeF3+fuAQWfxlMmA6JcX0EiXaGsIZOS7HNuGlqmTaWA4H8p4uqX84cLMXsIikvVvtgqugznW96XFWwy/TWtheOHvUoHTcJNm3lShRokSJEiUmHSR/0Kt4fWRzvKY2WiZiT44zs92Fs3Lm14unwvPCjbFveWNJr4zPayvJ2CVKlChRosQfDAVn6KqYnLE7Vqh4Fju3PhiPzvnAhsrCWNF3vyrHZITsOXDatLtVQxqP5LgYAPSX9ERuezvsgOqLVbBPUk6lMUyE3BwTC7srqRqkffk0ra1NxN4WK+achFNKf4wJYn/C5MHDVUnNPQV2tvyiiipiveSX2bBz9hD8XM9QTgkmkXnuxo6cNpueOhEwL8dOuWewI2VP7JQ6Ovd+N8Nkn08wYSmv0HsgdsaMIWKn7TMB92B1uyewstxBwNWqKE7mCdk7S7qxketsTrE8c3ANwuTbHqqknG8HtM/dywxYeagTVime5BQsCn3b8tgxPwMmSmQkkp1wG++KSRaf4L7pJGBr7HB7EU+c6lX8uwC/7xnT70657/M07Jj8DitkvzwOxL7dMEnwQ+xUXQ8Tr66S9Go6Zlfchy6KnasDMgdhE+WOdR1hgv+pOIXsqpkDMhy0cQcmKr6AncYXSDo+d+4ykl5OfzdF/N0Ap1LfC5MebwMulhUI/4oVvdet9flUKX8erFxzDx4DRqbt+2MlyleAQ2UF8y7Y8XpdkXTQSNlbK5F0oxIhPRMO7uhffOYRsSJWb71Q0tF13MNEVU+VertgZfKPcF+bkUB2w33sm9gJBs4KMAqTFLKU5bUSvnfDiscPpzLmw/3D+copX4cVI1fG3+oYldJJCU31S+Egir/hd3awkmp5sj/64YWpjfGYu5iqKMm1NhJBYHZMxO0CnJyRESMXqJh+z/B7x9JkAx+CgxHPkHRSvq5EiDoOB/BcXUN5+XGuS86ZegAOYlkM274rA5vJwT9dMEFmafydfVrvfRSuYQVss3/E/7N31tF2VEkX/yWQAAkBBv1wpwZ3hyG4BZdAgOAOCRLc3ZPgDoPL4MEZCO4MLhsYBncGGBwCfH/s07mdzr3v3ft4RtK1VlbuazmnT/eROlW7dsEeSoFLUQCwVnvmjq4n6bnDsG64n1LwZ+G9FoFeq+F9zFqN6gVtLWGQ8FI4SGs/5YLIEpDxcvwOD1MOdJ67plV1xIiYFoP7BmBd58Fmbuns9dQab/WuPavh+fJQnD3gA7w/3Sn9XiIB8ebFDCrrAIsVAWutLVX6eC02+cUxCPZOzDacBek2BMguvMc9cLaSJdobiFWtnel5nsEZCu7Hc8OOaX6+FNgcs3tumOna6b6VgSmV2F07er+VwG1gsPJ0OFB7CQwivKNwbU8MbJ4N+Dj3Xevt1xPj/vwa1gWycbEk3v8uDqwt6cHcXjYf9FYPmLTN6xjTpaX6R1SC0XeQdGHueFdSEHE4qP3mdOoaSZvmy87dsw9wArbHDZT0TR3P3S71dISEs0ddiYG+QyWdGRXA3GzY9jQ3Bv+NBoyuU89ZGWeBORwHnL0dzoxxGtYJtkzvdho8B8yMMwU+mO6vO1NX7viy2K6yMLZTvIIJL74M2zMvwPaEV5p9SR0kEbEGZl8/WQZZzocDOMfHbeoj6dVwAMiB2H50oxrM/jImSGFNn0TSVxFxKF5D38B7xQdwH/gtIu7EhCcPYUKE16uVVUopnUHSujMHtg3vWtD9psBZDWbA+vFnWKc/UNJp6ZoO7dMRsa4qrN2N2PXOlLRP/r70uxyjpXQKKftiKaWUUkopbSnhLCIXYgzOEqpgLrpjm+HP2C/wYeG+i7HeOBwTfL3W2s/WtflLSimllFJKKaWUziQ5w+kWGJgUmLVkGDA/cENEzJiMNi1e6yOlOsVMK79hxtkdwgBYIqJrdo3MjrU2NmZdikHZ9bTlDZxe+cGIWCuc9jJr44mYSXgrYLfkcMju+y21eVblgNjp3K+F6zpEEnimP2ZeOEfSLZKewe9pOAYXH58caUj6UZYMiN2l0edPAJ3jsSNiILB19t7S88wOfI8BpZ1SImJp7Hw6TNJ+mNlsQ8yEuwcwJMxggczuvQMGk+aB2NtjIPf2GhWI3SX11aWBX4C+GGRxrqQfc+U+m55hGHBZGAA8mjRgSFoEsxh+mhszv+c2BZMD/5P0gcxWmjF3NNwH/sxSmNuGYQbdg4ELI+KwdM0V2IH2ME7ReD0G9Bwp6Z/YifgO6R3WI7m57jagZ5iVDplNvls69zwG/74K/D0i/q8RQ2IYHD0UGCxpCWA7vBfbCRiUgDzIbHBbAutjAEbG1FR1Li8405YMp9lE0s34PX0EPJoc+sjBAMvj9ObPYZayA9P946RrmgRiZ88i6Z5k8F8jtW0D4K6IuBGP28UTmKylMjkGpDyUwE7Z+Dwbg9hXw44WEsijt+oDYq8GXB8RZ6V7s1RV42OWwZ7punFz7/0Z7ACZud6HH9PqqSHj4iCi9/HYWSAi7sf9YQ8MJthA0seYHW87NQ7EXgADbw/GqVbXw+PjN2CT5JwiImbAgTVbYONJliZ8rLF5FOaDOSNiuYjYIKdnPI+BO5sCl0fE6mGGqO2ArTHb9HCc+nzGDmlEkty8TET0TOAJJD0n6XbgIMyieUQ2zyRw0toRkQUY5LNQ1OxrhbomjYjp0rqMJGG2w3OBgyPiiFxdGZjoqByYo8voNVTqyX2fPsDhYTAuGLT2Ks6MsRQGdD4fZm/IMoVcrz8IxE7P/hTOMDAjMDgilknHf632/C11mrVRPZNjXfZ+5bLw5O/NOZ8zcONdGDi7bFMFN/Xt2lA2xgzRs+M9VH6NvRYDSVcHjs30hLw0BbjK/e5ePFZLJGVBo39THQDpP0E9+X7xfe53vbr1GnhMXurb9D+8Nz0IAzmGpLXsRbxvWFNtDMSG0Z+/VntkkO4uWDc+JMxYj6R/4QCPx7D+0FQmlPy8tTtmuT1J7QjEjojpI2LZ3NjeObcvGCoHbC4DjAecjW0XYID2v4FuONPAyH6TdNgOBWLn+7CkX9O/S5P+sh/wKHBtGGSYl/+T9LKkm9UgEDtJDxwY/pLM7p7p149hEG8XvFfIS6P2lfao408vhbltooj4v3CAdkv0j0zf/T8KQOx0328yiHd+vEfYFAeRbBwRV+TKHjd3z0k4QOw51QmQbq96sjU+X047yCSYbX9qKv21SxiQ/SYGz78ADIiI0bIk1NJzCuvZ8tjucK0qLOF9sI54mioZ7T6U9KCkS9QgEDsi5o2I5cPBEaQ5dCDeW28laUMZiD1eautbOBi200hh7PQCVgWuloHY82Bb0bVYz5oAz6WR1q4TMWv8WAfEhlFsbtsDp4WDV49M/WgNzCI3BK+dYID2l8BCOJPfaGWVUkpHSW4tyOaEQTjDyBzkbAFR8QUMwAEnvfGcd5ASEBs6tk+HMzLe0EK73kxZOfn5rByjpXQGKegg03f085RSSimllDJGyu04o89sVIihwJiSb3Cm+A+r3Lcr9jNuozYAYkPJjF1KKaWUUkopf0oJpyN7GDOzHKYKY+heGAD1MbC+pPf/qHE5nKpjBsxQexhmc11H0rD8hjpdOwWwoqSr6yh3JCNOmD3pNmzg3U45JuKIOAaDh07EoNvRgCid0YAeBj8/AbwqaeN0rLsM8Jw0nZsGp1rfKx1vLTbzKTG7UH/MavIEMBlWLIeoGabd9pIwyPl2VdIGjovT2S+GjagzYaDAtbg9+2FA0nE4bfsvhfIyZq3ZgcUlXV6lznFxX34bsyj/itmHsxR++X65QKprVex4eKMlxsyI+Admrp8rPV++jrkxUOIkdfK0vO0hYfalC3Ha3xMSAOEm7ADMs330wONnEuAzSe+EGQCvxymut6xRflOssTNh9t3p8Pe4JB3PmMemwQDmk3Ak7f11tmkqzPT+qqT9k4Pw8XTsU8yWfQlm2Hq+yv31MND1x47udzEDzIvp+Bp47pyaHEN2Opdn/m547qky/0+GHbkrY8Y7MAvV7Y2WlY4thuevfVQB8ObHzscYnLhr1Mn+kvrXp5j5dxBwtqTdcufPwQEeK0i6PzenTIjT8z4raUBTdYyJ9TQlEXE1Bgu+hkG8HwO7Y8fQPdhptFzW19I9ddcXDmQ4HYPcsn59C2aP30jSc+HgiI8j4q/AeKowzXc63aCtpODg2BwD7SbDoPWvMJPe02FGzTXwO+0JjIOd7idKOi4MZN4OWKUzrElhoPWuWA+9A7PfZ+Cz1fH82QOz9n2S/j9Q0sl1lp9/b/0woD9wP34JG+O+i4hZ8RjbEesfRxbvb6BNW+GAhWuAq7K1JCK2xXPoVBiEOzHWHfbBrJjHtbTOGs+xOA58egOnPH7oj5bZ1vWEMwLdC2yrKllLwplN5sAgpuy7LobZ/AZKOqdw/UzAV5IyZ/3KwLv5tbItJEbN4nM67uMX4iwQHxWu3QTv9+paTwv3bouDQDfJ9ooN3l9v0Myfop5mys7PBZNJ+iIihgPdJS2djo8raUTSQa/F+5RFi89SLyCunuN/oD15vWhHDCJ/HM8lj6fjTTJkx+hA7KFUAXm2paR9267pOTfE69rf8bw4NDeODsJBWxOnPXV3rP++D9yiHJNnZ5DCu10aWBT4HHgxp8Msgr/bUrjtTwAr4b63uBzw0pK6JwReBh6WtFk6ltevn8J6w6ot1aHao44/uxT6wMaYAXtubJ/4Fx5r34UZl/emdfSPeTHQ92+SHk42o52wje8aSf1y166Ev9+PuWN11dlW9YQB3pNJui/9vRnW2Y5UYlVvawkH0R0BzIL770NhUFwXOdhsdkyMcJGki5soZwDwZrauR8qahnWcXyStnI7fjoNJ1pT0QjgL0ALA6S20S22JWbAnx07phyVtUOW66TBQcQjWTYY0WldbSBSyq0TEhJK+Te16GQPHH8BjaCdsQzoHB52+je3YL+buH2uYOgtzzlxYNz4ZZ8r6Jh0/Be8ZJ09/j4/7wBPA80pB+6WU0tESEZNL+jxn31pM0pPJ1nE23ksfi9mkv8rm2DRPT4Tn2wmVMrB2BrtRmnd3xzruWe1t1yullLaWiNgJ79dWAV7r6DFXSimllFLKn1siYgKcOffVpOP1xCRNJ+Jg5gmxfaV/0ceVrg2ZrKJNZaxhiSqllFJKKaWUMUwmwQb0B2XG0Iz1cDBm71oEuDoSQ3a9hUaBZSw5zb6V9IqkhzHr133AzRHRJ2fM3TQiBkn6TAmIHbWZXCdLzuzMGTcfZmveDxvOhyYgEalNB2FA7F7A3slANYp0tg18eo8/YuDmPMkpkzHtjivpvxhM/wUGRQ1J7zpjPvhDIrPf7o+ZlHpjUPbrmCm6Sabd9pLkeDsTg/cASE605zDo5DcMFrsDA6vewsD1XzEwdjQgQDJGjiPpDeWA2IV+PR1mH5wCp9v8FNgrOcRGYWqS9BxmLFxX0utNGTWLY6cgt6R6z87qSPd0xymoV8UsVnVJvq6I6BFm0hq/zmfptBIRM2MD88kyEHs+4GrgRhysMTAqrGDfS3pTZiD8KZym/CrgCSUgdpX5LO+AWiYito2I4yJihYjolTZlh+O+d3hEnJGc44fhPncXcB0GME7dRDvy32ccSZ+ke2+JiKkxKO0f2LF5fPp7A9wP5yuW19z8FgbknofZ07bLOxiTg3dfzJD9YIQZstO5n3O/G55D8+MhtfML7Jzujefr7eoBjhW+y5y5Of5NDK7sGxGzpuuysTMTBpC+UXz+WuM0Is7H6Z3fwszgJwO7RMQZucuuwc7b68IpTruEg4w2xI7vB5uqY0ysJ9VVbc6ZMN27CQYdPIzH7pJpXHbHc+1LeEyNlCa+Ub6eGdNcPB1mgcyA2LenZ99QBmIvDBwVETNIei0HYhpbMwv0xfPBlTiwaR8MXL8sIpaT9J2kfwDzYRb+rbBT77iIWBQH9N1bNFJ1hCTAyyV4nX4UB2udHWaVRtIdWNf5FM/dQ4AjVCcQO5UxUo/FOsbTOCvDLZhp9fmImFbSv7Ex7yy8PpyYv7+BNq2I5+qjMIP7/blnuTC14ykMtjsnPcMgVYDYXVvLwSqD2vtg8Nd5aX1qdWnlev6NGdw3SHPRKHMTntv+BkyUjnVLf9+v0YHYU+HvkL3b7fBaPdsfeL6qUtRHNGoWn93x3m1bPIdPVbj2amwgrms9zf1eBoMQHseMag0/a6059M9aT1OSmwu2Ao4LZxZ6CpgrKozSI9I+7nucnWpG4C9VyqqHmXSWpPMsVai/yedtoD2/ZddKOhezeS+BGXarMWRfHc60Ue1ZMyD2jmpHIHZ6xhFU9O8bsL6xMzkgdpLbcdajC9I8uwte395UAmJ3pv1R7t32x8++DwaZXxEOwCDpUlk2oDuAW9M1x6oOIHYT7f0Vr6krRsQmmX4dEeNExF/we3ypHh2qPeoYUyXXBzYDLsMBtUMxoLQP8ERETCczLg/hD+ofSV7FevkeETFBshmdjfdvfSPisjATfT/gbuzIHO2ZO6KeZOvYDDgzIjaKiG3we3tbrQzELu7lI2dnkXQ91tVex1lmMtb+kXYoHDxVFYgdZmidBn/ro9N8lc+a9iIwZURMExG34qC8tWQg9qTYZjAjdiw32palsC57PmaMvgxYISIeKdyzDiZCOBSzrw8pltUREg6uWy1StpzUBw5L+8Wr05y5NH43Z0n6IdkOnsT6fRcc+DJSWkun/jNIbs6ZHzOw3w+cp1HZ6O/D2a5OCtultsZ95UPlsqe164OXUkpBwv6VMyJi6+QD2B54PCKWkTMn7Yr38gPxnrFX6v+/JX3kf5K+UgWI3SnsRul5huJ5uk3seqWU0p5S0EFmwr7Jc4H3OsOYK6WUUkop5c8raY25HOtAC6e9+HfYvr4vttXOTgJiRw5zk3yaZwAPJB9nm+5zy81TKaWUUkoppfw55XNsTJ4TKulK0++DMYhtPuDeiOhVj0JRcLquHhFDgeERsX8yfCPpEQxMvBe4KSL2iYiBwBXkQLXp2tE21mGm4SOwQZcww9mtwDyp7GMxi87gGB2QPQQD/Gao8x21i1R7t8mZ8hswHDMqbxUR06ZzGaPaONjINhxYC7e5e8Gx3GJJANCjMChraswge2N65g5nfcCO5XklKSIWjIjJASS9IOlRzHw2B/CoKqmwf8f94yQMxhhNiu+v0K83xeDe84EeMsB7Azye9owKIHtERKwdEccC/5Z0S7q/VoBBvo6lImKniOgXBheDHeg3YUPwDWFZHqdIPB2z2VZtTzN1bZTa8wIG+h6cnv9PYYCt8j5/Bd7BgJDp8dzwD0l98bzxHU6zflLhvt8wMOd8JWanqAJYy723LTCoYyc8F10EnBRO0fo4NhDeA2yCAd5b4YCAGzFD1MfAe7XalatnADAsnOL30tSv18VpXo/DQShg1r4R2BFdN0gtOXMnxf3oIuxMez13rmt6ngzk8TXwakRM0tqbzGzcySnWf5LTxhfTZldtQ+599cNOhjMjYko5aGVnnDHhOBxklEUuL4tB8XWlj0pO5XWxM/t94GdJ++G5ZJeopAIdjtehV4CbMZDgPmAwcLyk68amelJdteacGyLi0FTPnpL2lnRmum4iPLeuBDxQL0giV8+OGHQ1J54TfoiI/hFxB2aHW0fS8+EI+D543BTBjn+KebA1JcxyNgg4RtKxeIycg+e7H4G/R8RyETGepE8l3SDpWuDtMCP21TigZedUXoeBLhLQYm6sx/STmTWXwTrgiRGxNoCkuzCTd28Mfmk44CwMDt4HBzQcLOksSQdgkPe4pJTAkv4DnIaNfdVS2zVVR/YuV8Tj8ao0x2Xnx0l13CCpDwYQL4AZgM/O2lRLd2vpt5L0JGbWH6wqmWc6op6C065XREweEd0jYvyk2x4MrIPXhenTdZNiZ/TOmBns61TvL1g3WDVdl+8XX2Fwzo4RcR8Gig3EwMhWk8Ic2jsi9o2Ic8NgslnSc26F91IHAbuHWURHSgJ3Nduvc/XMhAN378SApC9b8Kzzjg31FPrbfDhQ9DUcMPsg0A1/k7nSM41Iet0ceE/ybT3PUmjPFjjI8FHgnogYHhFrpD7eZOBnfk8TZgKt2Z58WTIg+1CqA7L3S225Penf+WfdEzgFA7EvqLetrSlyqtBH8bf4Hfihyn75TZwhZi0M3j4U6zk35crpcL2g0N+mx6DOYzA7+frAf3Fgen8ASc9gYPkRVLLfHJzur1e/ni0chLpcOHDtB/zNRwBH44wQ4EDlNbCe9UQ9bWnrOsZEyX+31AcOxmNs56S7bY4BkL2wrt0l7e+G0gL9oyC/4j3uYiTbnaTP8Pp3KF5Hn8K64yGSzu8s9cjM2X/H+/6h2Ma1u6SLWlNfLfTr9VKdT0XExRGxQ3qW6/D+6gvgyjAAMANkd8l0kFrPJadHXgSzeJ0QJinI5Ck8Ph5N/68sB5+OizNDrIt19W+oQ3JtmRHrszcCp0m6FX+LA4C5I+LRwq1fAntIOjHd32rBgH9AFsEB7eslO8sFmO36d0k/pWtmw/PMdzAyKG8uTPqxRGafGJuksO4shNN274HX0i8K1zyNSS92xfbW43Gw9cjMGbX2IqWU0o7yG/anXBgRF2HdfQ8ceEGaHzfHevwQHAQ0oeynGW0e6+i5raC7f4TbkwGyW82uV0op7S05HeRvwHrYZntVvTpMKaWUUkoppdSStMYMxn71S4FFwoDs77HdZCjOBHVVOv5rONB6Qmx/2QDoLQfptaku2OX33zt6H11KKaWUUkoppdSSvDOgcHxSbIieBBvJH0rHu2ID9C3YAfKopKsarHNLDEh5GvgPBiY+ilNhDkvXLImB0WtigN9gSUWAZLWyJ0rlTowNSNtio9l5mQE9IpbFjoH5gb00KsPxkpIea6Q9bSkFZ81SmLlmUszCdV06fhJOLXshBkx+jAGdR+HUXMLGts2BbSRd2lQ9LXjGqYH5EmCp00k49e7rmJFy35xDYEHspD1A0inJAbU9ZpHeOQPz1PtuEvDhPOxQuFvSYxmwKTlCb8AA8Fsxm9OZ6XnqZthMY2cwNg5PgL91f0mPpu+wL9AXOyV/ws7Uc7M6GvnOqT0XYPDOl8C02Lh1S6qzVdO3t6ZExJzAB5L+l/7eCKeoezEippb0UUQcicfJxsA7MuPJtdgpORuwvMzWn5U5fnLSNgdYWx+Pw6MlnZzANS9i8MMdwEBJX4YDJn7HKeg/TseWwmDFhxIwsFh2fj5YCPepK4HjVEn9ejwGDs4s6ZswsPhkPJ+/K7OfNfIup8Ls0AcoAWGbuHY9HIRwRTPXjdYP/8gcVI+EWeEuwsE+9ysFJ4QBiv0wG9x3uK3fY1DmsUrAyzrK3xA7/NcDZsaO9enxWB2Ix+a5qoBQA6eFXy3V+ZSkm9O5pvrXGFVPoc5ac86twBbJ2EFErIHBFwOw8/bYOsrOj53pUpnXYnD579ixtgBmeF9H0tNRYcE9Bff/DgGJdaQUv12Y6aw/djp2x2voTVhf+xvWu57DwOMHsnsjYg6sj40rae9qZbenhIMNdsR97AhJN4TZaEckneFxzJq/XwKTFO9v6NkjYlasm26dAfciYhheb9aW2QgXkwHFRMTEGdCmBW27E+glaelazyKzcGd/ZymI69V1Nsbj5JGWfL+OrqcwF2yEUzXPhQGvtwNDJL0REYdhxtj3MUCxC7AwdkaPBOQXxketOq/Hc9kjwMaN6pcNtHlrPDbfxSD/OfBe7SKZrZ6IuASveScDp0r6uAX1LICZ074GbpK0dZ335d/9XukZ5pb06lhSz4I4gHY1rAt+lY7vh4H/92Bd5H0cEHYM3ic0qXtVqWdD7Bg4Fu83PkvlTgrspBx4uIn2DMR9af389YVrZsPAfCOAdgAAIABJREFUuwmBV5QA7BGxKwb2Po514UzfWgyYplDeqnhfMUAGc7e7JD3wdzxGZ8C6zDp4vr6icO14ONNQAJ8px+LZUetZLYmIlYH/4b3tQXKgSQZWOATbQQbl7QL17nUK9WyBv/dkQA88l+4j6YJw0PAwvK/6DgcnT4V1t6MbaEub1zEmSESsohygMR2bE89vW0q6NuckHB8Dsk/Hmc0uTtdPlO2fW1B/pk9Mge1P50naP3d+YryOLoHnjEwfalSnapN6cnabg7Ad7TMM5D4vnR9HrURqkMrrj21Ht+I+HThI8GpJO6Rr1sfZBWYENpV0X51lZ995IQwWfA3vZe5J54/DwQxXkbJ34LXpCOBISSc02JZsHf0CuFbSrrlzPXBA+AnAi5KWTcd75ewXnWIODQOrz8DPOx5+ZycWrpkT7xuH4cCcSbFteUc5ALXN7RqdRYpjIsxS/0NEnIOz0X0ELCvprahk0vg97GuYA9sY3lOyuXWWflDK2CsRMb8qWdBmwvbWBYArJW2ejud14Qmx/XZJHHhydUvX0PaQiJgBs9CPSDax3WgDu14ppbSXhH3UE2P94zfgaUlLpHOtqreVUkoppZQy9kjeV4IzH12MA/W2xGvNr2Gf+xYYC/IqsEw6fj7OuLV0ZjNsaynB2KWUUkoppZTSSaVgRJoJp9x+H/g6KQ6rAddj8MDpkoYl50YfbFzdQtK7xbKaqXMNrLycKANgJ8WA0u8xYPZwpTTZycEyLdBNKVVuM+Cxkeci4rPUnquBHST9lN+IRwWQPTc2sl9Sq6zOIAlgcSpm8MwAcc8DG0r6IiIOxOCnibHjtTtO+ZmlRv8LsFHmTGqinmlkJp2WPmdne2+zYEfajpjN7GLgUFUA2edhkPpNmFlrA9wfTmuwnjkxA93F2Pn7QzreBeiaxtP0GAw6L1beT5F0fDPl5sfoX7Gz7rz0vBkYcV5gFUkPRUQvYHKcPvVD4HNJL6T76/42CWBxG3AJZgj8KswQ+zLue8tLqsnc3JESZjs9DphF0krhdPAXYSf0ZbnrhgETSVou/T0pdkjeBTwj6YEW1D0DTon3qKSjkmPyQWzE/x1vxC7HQSBf5e6bErNt9sNOyg3T8arfLJw2c0UcOLC9pM9z57bBDuTLMMBl7vQ+tm2JET2tDW/ioJwz8o60dH554P9UCMqpp44wIHKi/HdpCwkDIW/F7L3H5sdnrh3zYMbf6YC3MGD7ynSunrYsjVm3/4ud6XvjsfNbOFX0AAqOjhrlNAcUGKPqyV1X15yTDB1DMMji3BxAot56lsHzYx9sMHk3tWkGPF6mw6x6b2HG9C2Ak1QBX44tzvXpge+UmJUjYjncF14HZpX0Slo/p8FzSwbyeg5nTfkWmFPSB7kyq4IucuCXdtMfEtDmcBy0tJGkO9LcNq6cCWY24KHUjv0k3dBA2dWCTebFOttKku6LiNuppIV/PtV3MmZYvq2pspqqFwNwL8d9dwXg/fz9YdDaLhgo81S9bcrdvzoepwOAC5RAey0op8l2tUc9UQnQuRw7mufH7+wz3CdejYjemLlvMswO9pAqoOZ655xeOFvKhHjNvgDroZ+1pE1N1LMc1g2Pxt/3vbSPuz3VuX9uPF+JM3MspTqzphTqmh4Hum4PPIOD2j5v5pvm19vdcSDMHpLOGRvqiYhFcZ/+FbhP0mYR0U1mVicidkvPMAvwM+6Hp6vCGNrsXJDmgEnw2v0q7mcZe+rdeP+4jlKGk2baMxjYRTXYZMMgwsPxvvMvwGMYgHJ6Or8T7ouP4ACGxwr3Z/P+YjiI7/6m2tba0szcMBdu23oYkJ0P2p5L0iuF65vTp4pgtTbXI5JO8yz+NsNxFpG87t6kHaSBetbHe6eTgX9ioPrGmD38YEnHh4OFV8LA2HeBl7J1rk79us3rGBMkIvYGtgFWV7LPpeNz46Dg7VRheM5sE+PhueZMOVtHvrx6bXurYiD8+cCINK57YJD3Ivg7vQfVmUEbWEvbpZ507R4YYLsBZss/USkgs1hOS/tX+i634UCZ8+Wg7KlwZqDvMYD1/XRtXxxcc4waYF2O6oDsg5QIFCLiKGwj6w78gm1HF0sa2mjbCuvoQ8CmmCUsA9/2wHaQ04D/SJqrs+6pwpnursDv5CCsh2bBU9k73RjbfHrgdp6kBgHsf3aJiMXxmLxTtkfvjANzN0/v6CTcJ67Ac/X7YdBcVebgsWWuLqXzSjiL1wAcCHllsnndjvfXc2Gbx8VpHe2Ss2VMiDMCrIgzsr5SvYb2l4J+vyq2te0PXK4mANk1yirHaCmdTqICllsIZ7iaHO/fLsmf79CHLKWUUkop5U8nBR2qEUD2S9i/v4zaCYgNJRi7lFJKKaWUUjq9RMTm2CE3DWaqvpYEKA2za52Cgc1vYKP0wpgxpVk2ykI9E2MD/NeSBiQnxONYkRmOgd//woDsFjERJqfSxBjg/TV2ZuwDXJMUpHEljUjXLoNZx5bGzsjXO+MmPZxW9DoMJr4WM4xshplKz8JsYr9FxMKY0WsS4C0lMGlEdJf0c668WgDPNTEIbUElsHKdz9cpjRvhNK8nAMthYN122JF7Lu5jn4WZ1I/EaZs/wkbJDEjQCAhqJcw8vJqkmimRw0DhqYBxJL2YjtXTr5fARuDtMRPYp+n48rgPL4RBXg/XuL+hb5RAI3cAG+T60TA8TtZL4LGQpHrLbC9Jc8AGVNgF58QG5vOzsZ+uOxyzXi4HfIBZCI/FLKUZG0pzAItxC2X2wH3uMuzQfAiDbraNiIxFdjYMDN5FiUUw3bszML6kIU3VHQYNv4D7672S+qfjmXOwG06dtDJmLPwez+fHFctqTtJmM3MuTIsDcJ7One+GnZTLAf2U2D7rLHcSnBHhRUkbN+CMH6Uv1wlQWhSvMespMYLVKGs8DILqqkrgTiOO6L/jufk/+Pv+M3cuD2A+Q9KAdHyUPjS21FPl3S+GnV1NzTlzSHo9ObymlvRGuq6eObQL7sMvAT/g7BIZM1s3GYA7KQYtzpT+3Q/cmgEfxhYHVBiweywGSxwYDmg5BwOH8+PnEcxmtkn6e1o8950HfC/plhrld8Hz8i/4O/weZtX/HbilLd9xjAoC3w3rpE/g/p0xnGb9YXZsSNtKOTBeM+XnjXWzYIae/+F05vdgPXpSvA5kQOxuGPDbLz3H01ULr1FPlXOrYoDP8Zj1OwN7jodZMPfAc3lDYOwEEtoDM0QfLenbOu/Lv5NmA/7aqp7C+enw97gNs15mATrb4zntI2AzGdDcDQO/8vNVU4Gh1cD4PbEOtyXeU12U6v00d82E9ba1Wn0RcTDOhrNJ1vaIuBqDE9dJfW0k43pErJwfzy2odyYcRDYIB38e3twzpt8DcEDNjqoj28CYUk9at87BgMF3gcUlfZ/fo6U5YxoM/vtU0svpeN39La1jL2PW8+PTsTtw8Eef1A8WAd5WCuRrtD1hcOwVeP/0FGYiPh07JwaoEiS1A+7v/8KM8J/Uej/tKYX2/g3r/18Cz0l6NB2fB9tG1sXj9p9Abwx07y3pwTrqmUSjBl7OI+mlVm5Orbq74SwWO2MQ/t8kqdDflsGA+aVx/2jWDpLba3TBrLE34UCt7VTJXjI1cDAO3F+j1jzTxD6nzesYEyUctD2BpGcjYvacjjwF3sdNjMEpT6fjXTBg5RHgHEmD66wnP36WxHaIZTH4fzjOZvdJGKj5GCYOuKEFtoh2r6fKuTmxfac7Btuenzs3F86s9V29dRXKXhmD4vpI+lc6dgsG/G2Q5uqRmUyikNWkgXqaY8ieDwdt/IjZ/t9KxxseO2kd3QWvo4dLOjIdz/SUHtiW9ZOaCJDqaAkH0y8ELI8DPw4A/q4U0Ja7bmocxPuTWkB+8GeWNH+sh4lPjsd6wFBsdz9DlYyUp2Pii39g/8H7jY7RUkppLwmTEVyGdcLjJf0jHGgyFQYwr08KbKpy73g4GKpq9pmOkMI6OgPOsPAAZvY/DQfvFgHZf8h+WEopbS3N6G3zAw9j+/U+qgSfletOKaWUUkopzUqy3Q8G7sYZtl7NnRsX7xEvxf6K/owKyN4M2z+7A0uoHYHYUIKxSymllFJKKaXTScEoszJ20JyHQUqb45SBt2L21u/DQNDlMLjvfcwY+vdiWU3Vkzu2Ljb2P4U3yY9jJrGvI+JoDMB4DjtY6mYirNKu6THj4WPYkbcfBmSPiFEZshcHpm20rvaUcBrRZTDA4oN07E6c1rGfpGeauLcRIOHe+D3NoDpZCAvv/K845V2HpOWrYmy8BLgPp5z/NpyOd0cS+yRmaMlYAicDflYLU6WG2YgvwADBT4r3J4f3x5LeLNxXD4hwBgwImwC4S9LqhfO9MXBuPmBVSY/8UWNTRKyNnd/TSPo4RmfxnBs7RY9qqv91pETEudjh9zqwnCrMrZlDcB7MNr888Al2RB6lxIDbTNkL4b7+cfp7+/T3bRnQISL2xACOvhjU+HNEXIKZ23oAfSXdXWOebA4Efihm7XsPO3EzYP+4aY4bF6eV7IkBPcObKrcwdsbBoPDvcue3Bk7EgJrjJN2fjPar4I3mAS1xqkbEPhgIMq+qMDU285zrA29kbW/mvnXwOje3zHZaZClcAX+/14r11NmOLsCUeN18E6+VL2Eg5PDcddNgR8f+wCWStq63jjGxnlTGAlivWBgHgDQ15xyLx2g+IKDRb7UxBo1NgcdgxnKbAXAz8E8v4CtVgKxjhXM9kzDr9Xb4m6wCDMRp4LNgtgkx80yXdN2nwOrYiddPCXBW7b2FmYIHA7NjcPCKWAftJ+nqVm5Hk8EbaQ46EAPvD1clECfrDyPBq43UFRGbYPDGHXjO/DrVdQJm2+4v6aaImBxYA/fJgySd0WA9y2Jgdw+s83yPWRqOxmCYi3Aw37f4Pe+b2nlyPW3K1bkR1s/Hx07ai+sZe4VnHYD3Ertma2d71BMOxnlJDjDN1v/5MQCtn6RbYtRAzf2AI/D8cHPunkaf4694Df5RFVBtL2BbzKJ8IdZDP0/t3gjYWQ0EQxbqvhz4q6RF0t/ZHNpH0gtpnZsJ74Xy63sjQN+RTM7p7xnx3LAHcJiko5p5J7tjsM4oQN+xoJ6sD/XEe5BtMKh3x9QvR3mOWvUVjmfM0lnZvSR9EwZ0P4kZ/S8MA7HnprKWTo+DoC+WdEWhzAF4bt5JtYHYPTEQ+wtgkFJQYUQ8iMGe/bL+no7vgYNzmszM1BESZvc+E4PIpsPZpwZLOiudnxsDfvti28Qc6fyhdZQ9L3bOPJzmkW0xeH1NSc+1cjtq9ZHumAH/GLw2LCGz7+YB2csDk0i6sZk6dgVukvRBVMCdPfAe6wY5yD4/j86Js428hBlyf6pj/mzzOsZUidGzv12P7R9ZhrTtcJakp7FO8mBETAKsjfWPvpLubLDOrXCWmQvx2DkcOyenwvPb9Xg+7YUDnVu6trVZPTX0qZ6Y8ODHtKeeO9XTnUrAdR+8jm+X3xc12K6tU5t6SPqxyr5nAWB3nEntldx9Ddt4ohmG7CrX123frXcdza1V+b7a4eCoZtraDX+jvlinvzi35i0A/FejstCPbXvFCbE+c0o6dBAOWvi9MFefgcEJ12B297qz63WGPlLK2CE5vXoRHGTwAw4gyGxFC2KdcD0SQ3Y63g+YT9L+xbLavRE1JCK2xLrgcBwQPxsOcjsQuE4VQPYu/AG7XimltLVUsbVMigOZhwM/yP7rRbBt7w2cGawEZJdSSimllNKspL3f7dh3Al5H3sX+5LsxocWItM5chO0G/XB27RHJ3t8Xk7K91d7P37W9KyyllFJKKaWUUpqW3OZ1GgykOQsb5C/CzoW70v9DI6KHpMfltIurANuoAsTu2tRmNlfPWsmRgqSbkrNnKQwYOQPIQAE/YmfhAphBrlkJA6eq1f2ezDi3GAZln4AVIpIzok8YfPy0EhA7nDaxQyXfnuQkA7Pafa8KEPt27FjfSNIzEbFSROxVrbymABZVDj+OAT3z1/usuW88CDtEp6zn3raQ3LOsiFlsemIWlu/S+R8xK/YgDNI9IiKmTOe+UAWI3aVe42nuPb6HU49vFxE9M4BEumYi7AzfLDnG889cTz2fY8PoK8Bfk/N5ZH+VU3vvjx1rD0XE/9Xz7IXnJyKmDoN4AYTZogdFxF3YOZgxK46HwWMZi1KnkojoksAi3+Fo1SmAq8KA+5EigwW3xaxqgzGj1jGpjJpzQRqXmwPPRMT44ewB5wKzpr6TsdDPB/SU5ef0TGBHVR9Jd6fnGG0Oba5fyExTB2C2u22T8Zy0+RtX0ghJt0q6Ro0BsdcFLgdeiIiLk3OB5Gw4Hgjg9oh4AgMxT8ROt3Oyspp67lyd2fu9EQNxt4uIcZq6v/CcA3HK8hmK1+R+T5I79W/scNg7Iv6iCuMeCeixEbBHOGCj6jdpStL1n2MQwKaYiXAe4LAEdMmu+xADf87AwJ6GZEyrJ4GTbsZr/geYTb6pOWcS7BgrPmu1smvpBtfiMZ/1h5XS8V/S2Pld0o+SPlMFiF33mvBnl+y9SdoBg3ZWxM6NW3JO9a4yg+8+WMe6B7gXs75eqRzzZ7X3ltbayzEA/7Z030C1IRA7IlaPiKHA3RFxaBiYiqST8NzWG+sE86XjGTD/f1mbm6svV9fmGOx4Aw6g+jpX1xFY9z04HJxzOZ5HT1QCYjc3j+bq2Qq/vxMxmOphHFw0Auu8B+BUeTfjb7QFBsacXE89BfkSWBJYEDu8srTz9c7Zu2HQ6h2qAcRui3rC4NInsP41fm6+GIHZh2dNdYxIhlfSfudbHDg18n3Xsy7knmML/G0eBG6LiNPS+W+w0XYQDkT4R0SchfvBW6oDRFZY58bLnfoCmDLpJcOAeTGo64UEmFkfs4p2Kzxzs0DsiFgzHKDxREScGGYTRtI7OKhtKB4/BzbxTgZhIHJN4PIYUs+4uWumioipc33oOzxvXob712mpX/4SDoQbTar1u7Dxf6+ImCiNj92B+9Lfb2FHwQkR8QAGEK+rCgv/asD/4fU2X+Yuqd01gdhJxsPz/geqgNLuAGbBQSYvR8Si4UBuJA1VhSm7kTmn1aUwdqbEIJQjsU1iRRx8dkQ4mBIZVD4Igwqfxd/60HR/c2tCdxzIdlwa/+djMOzLTd7Vgjbl+ttsEbF0RCweETOl/cjVeC3oBTweEZOmPUn31MbhSkDsWm0KM0WeANwQEf+XdOiuMkv1Z8BfU1n5efRVvJeclkJmgY6qY0yUXJ/O+kBXnB3udWCbiNgXII3p47H96LaI+CcwDOvvJ6kOIHZh/MyEwciPAY/JYOF+2GZ1AgZ63YjnuZnwN6pLl2qveqCmPnUaSZ+KiAnSPNAX2yhPSucuA65QHUDsQnvytoi3sI65bZhkYV5Sdq60H+1DYl2u9syNSBpP48gM3H/D4+mIiFilxvXNArEbXUdz6+DIYOiOHrOF9syV9gprhwFepH3g9hhEfBywZUTMEQ4IfwSvryNlbNkrZpL2gv/B+5pxcIDExOlcfq7eDdvk+mPdpGf1EkeVwveZN+xTmD+cAaSUUlpN0jydzVFP4746Ad6vZ/bQZzGg+Ubgwog4PhxofQkF31VnmgsiYjmc/fR0vAf5G9ZPu+B1dKO0d3k/Xdciu14ppbSH5NaE/hgwdxfOHvwksFtETJXGcG9M/HB0RKyev7eUUkoppZRSasj4GFvxBrapXIP1w5MxAcCdEbF/OrYT8BXGAywUDlD+BrhQHQDEhpIZu5RSSimllFI6pSSD+V3YeX+epCOjwgQ4ITagr4YBtnsrpfBusI4u2On/JvCycoy+4dTF5wCzSHo7OR0OTtfeoTpSGRcMtKtgVsaZMLhvHyV25+T4eDI9y8VYoToztWtIo+1qD0lAjnkwu+HhOK318thAtgB21jyXjNEHYmPhgaqTwTFXzySY+efHMKDzPxiUmmcDHIVFNt1XZIYbjMFUZ/2BZv8hSf1tAvx9J8RMiPOlc3l2lvGxY+VU7BjYUSmVZnPl59rcHQcd/qoKYG84dnLuAQyTGep6YfaMk4DdlJg16qmjcHxi7JQbgh35G0r6InIA2zCo8C/N1VGjPRsBA/BG47zkqL8Ug44/T/U9GAaWr4vnh4MknV1PXW0t1d5b+s4ZiPN04AWcJv3z3DW90mYpf19zrNRdMJPYScBkGCC6FU7z+FPuui0xm9JAzI66Ajbgry/pkXrqqqPdhwGH4X4xJBnRW8T6kAyap2I25H9hwGp34GxVwHsrYwDlssAzwFOShtXblhrf6Ro8p82b+l21a4rzzRDMIHp+jWvWwazkF0m6NR27DIPRjgHOl/RZmv/Wwd9yL0mXN/LOmmpfRPTF60w1RukeqqRab8m3+lPWUyhvIgxWvRczTf4UBqduwR+ccwr1zIMdw+Ph/poF3fTFgIvXU3v+2dL3NKZJWt9+x0EMX+AArROAU2WAaxegawJ3LIaZ+77HDKCXpTLqYREeitedN4GtJD1a770Ntmcr3HefxKCWhUmGNUlHp2sG4cwgTwCHJsBKS+qaC2eVuAqnN/4hHR/JHBgRm6VnWBJn73hKKaVxU/NooV/Pkuo5HwN+J8T64cTArliP/jVdNyf+Ph+pwv5f13ydfnaRA8yWxCxDH2I2yHuLz1XjWTP24B0kXdie9YQDzJ7EAK0DMXjqx3DQ2v3A11gHfC57L+naB4HT6t0jFJ5jeczUeSYeQ71xQN7Nkvqma3phPeJYPN9dKunUWu2sUc/KGBR7v5wRJTBgrQs2Cq8u6bUwYHtTvJ/YV9KV9bQpV+eWWMd/CM//u6b/z5J0VbpmRpwlYW/c7w8slPFXDGA7tNY+4c9eT0SEJOWu6QccivXE9/H88lhubzAU66e34AxRde2zUx/tTWX9HI51ooOBk9O4XxXrNXNhvfeG1OfXxgyWh2Z9O42/8fH++E6lgOvsXJUxNzUeO1dJOjxGZ3OdAQMa7wQuK+4fO4NExJo4sGtz4BBVgp0XBg7BOu5Rkobm7snP4XXp7uGsSFdiQOX5knZMx1tdz0j9+kgciDwBnlcOlHRFGBC3Mf4uXwHLSvpvA+3ogvcyu2Fg9PqSPgoHEAzC+5ATJB2Ru6cHZlD/DjOn/tJUm9ujjjFNUn/tCfxLzgC2Jc72dmw4cPs0DFY+Rw4yIiLWAJbGwQfPAQ/k5r16+8MKGNy/Cbb9fFrs0+Fgh7mxjrcCcJukfg22r83qqVOfmiiVe4+cwWAOvF5Mgt/bRen+evW29XFw62WSLk3H7qWSoWtdSU+E7bDr4Xn9QNWRVaDeOSUqDNkLYt3oP8CKaoCpOJXzh9fRziRhu+vh2Fb8MwYW76gUOJ/2Redi28IbeE4fIungDnngTiBpbv4N6xlzY4D/YbhfHKdK9sG8DfZCvOdpKJta6m8n4bWtGwbDHq+UzaiUUlpLIqIP8KKkd8IZVC/He+gTsv1TmBV/V6xXfQMMVYMZp9pDsnUhIg7Adt1llWzF6fy0mIznO+AoKllkJ5QDLUq7WCmdUiJiPRxsejQmj/ga2/gXwT7m42Vf2ULYtvce0Fu5TBallFJKKaWUkkmymU+a7E8TYTKDTYBnJa2f7AXrA6tiP86P2Ff2JsYivYTJK5+uWkE7SQnGLqWUUkoppZROKOEI+UOAxTH4cu90PA/IHoydAXdioEyLHKrJwH02KR14OrYkZpX5D3ABZjg9GANWMzBPvU6hLTGI8F68EV8DeBvYVNJ/0jWTYWbAGUlRbZKOb0l72kJi1JSdi2O2lb2xY2hdzF7+FXYO9Jb07wQyyZwH+0q6psE6N8Tv7WPgeZx6ZbdU59m1jBWNgGzaU3IGxxmBf2LGw4HAmQngkwcuT5DOfSfp9HrLTr/XBzbEDEavAP+UdH5E/AWz0c2FgQpPYRDUGtgpcWwDdcwKTI5BNa9J+io5ndfFwOLnMTP6F9XGSb1jJ13bH4/Ps1Nb7syduxk7Ce/DAN05MUP+YFVYpDvUSFt4b/NiINUnwBvJOT0RDmY4FQOyN8CG8w3wnLOizKLfaL0n4TH6P2BRSW8UxvGs2Ci4MZ6XuuHUrMf9oQaP/hyHY8DPycDpjTpUUxkrYSDOqZJOjojJcSroL3AfHCJpcBP318O6vRYGw52HWXa/SMfnw6CmIySd0kwZzc43YeDlUOw8uUfSzblzdwHLYCa9x3DwzrLYwXJM7TdUvxSed2M8dz8PHKsEKhzb6wmzk6yImXm2zztTW3POCacAPxEDK8bDxvqLgXPTmpABsl/Bc/TdLWnPmCA1QHcTJADK+TiLwIkYoPphOl9r3NcL9D0SZy7oC7yIg+ieqPU8LWzXojjA5GTg73IQxhz4m98DbK3E1JyclcfgYLdbW1jf6hiIva6ctSJ/bpT3kgcoVDvfRB2L4wCWdfD4yYCE02Fg5+RYl7tHVQCeTb3b5t57GGh8N3ZsHSTpgeJ9NebsmizFbVVP9n6Trvw4MDOwLwaRfp++1bD0b6ikB3L6wunA5pJur/WMNZ57CipAtwNl4O3k2Al+JHCDpI1z108KjN/cmKpSz1Z4j/YP4HpJdye9dhcMHvsQgxOnxYDtgzC4tNl9T0FXXhX4O94znZL2Uh9gIOsHOH33tenamXCWllcknVYoswcwjaQ3x8R6IuJIYDs8Hm8LgwiH4YC8bzB4ei6sM96QdPpsn70B7uub17vPDoO5V8V6Tlfc104uXLMNngfmxuvp5JgR+6xMDy2MofGVgpirnFsAmDg3Di/HwMe3MChtLUkvprG2JWbe213SPc20Y5Rg3/bYT4Szgj2K7Q6P42/zS66tC2JA2ZJYN6yp+zZRR7YfnQeDO3/Ee/j9c3aQVkthHwYlXImZj+/CANZt8f5jA0k3pm+zMdZ5RgAzqr5A5K6qZHsagAOOP6YClp4Nz72LYGDEgThrzxJ4X7mzpEs6uo4xTcJBGQfgd7UNfh9n4DXgfBmUKqbJAAAgAElEQVRwOxfe+86G7Ton5u4fGVyQlVfn2jM78ABOC/+kpL9VW5dz/0+E59GNgFWU7HKdqJ7m9KnJcMBhBsgeFwfij2Qir/O9bYm/z0UYyJ1l5fsLDqxZFK8X/8bBLRvhdarmviciDsEZNa6odU2NZ8kA2YsBC6vBwPqIWA3vpf7QOtpZJO1tL8RBp4Nx8FoW7L1uNmenawfgdfR5Jbtra87lLZUa/aMtgn6a2j9MgNf+jCTgGFWyZywNvC7pszrLyo/1+bGN/1Rs310Vz3lvYWKVZ1qrfaWM3RIOJnwa7xP2T3rJoli/KgKy/4L16p7KBfR29FxQTcLZCQYCi8mZC0bqABGxHbbNPoMB2cPaWg8vpZSWSton9MT7359w0P43ufPXYgKjfqoQHSwKLNKorlNKKaWUUsrYIcmOcC/e/12UfAgTY9/BrthvtGk63hNnCV8L+5KXopKxeeZMz+ooKcHYpZRSSimllNKJJCImVmJPjoilMJB3JQxgOD8d7y4zlPbEQOl/qg6gbdExkjsewHUYnLq9KmDF/bHTdlbM4HSqEnNPA+1ZAzsETpJBhPNjYF8PzFzSJ+cs74md0j8pgb862mgWERspx2ScHGfzYTDaIFVYPE8B9sRMIIdgYOdK2Gh2RAveW1ecnq43BkP9FSuQ01Fhlv4PBmS+hoFLlwO/5UANA7CxfRSQTXtJM0b86TCI52f8Hq9Px/OgjDxwtl4HVn+soF8P/IIdMitjEOzA5KQ7AzvVMkf/jaqDPalQxyHYwAsG++4s6fZwtOb6GCj0LN4QfF69pOYlzBZwEzbCnqLqLJ6HAQti8Pl9wH1qkEWrPSS9t+MwM+gPmC1woCqRrRmz+Dc42GFDDNTft8F6xsVBEQdj1qzVUp1Ly0ES+Xc3LWaVnQmQKgyfrfreIuJgDPQ6Dzumvmvg3vHxPDKxpB3CbGpPYtb4izBb+pSYPTBj7hyNLb+ZOtbAbEb7AtNgxu3BmEn3kYi4H/gSA0WqphqPGqC+KvVcDhyBmUYzJ+AEub59ALAcBvk+CtyuBgOA6mhv3om4IV6j3sAgz/ebvHkMricZ0CfBAV6z4m8eydmV/0aHYXDEfDQw5xSec0kMhhuCHUw/4j43BU4ne0jSVzbAes57wJpqQTDDn10K723mdPhX5QKyYlRA9hBJn4QDk9bA7/Kjeuuocm5Z4GasZwyS9Hju3NTAf1UHaKxG2VthcMA6OV3wOgzqWkdmcp06e/6IWEh1smIX3tuCkp6NiB0xYGAWSR/G6IDrhYDPJb3bKFAi6W1T4776NfCQpLXTuQxcMw3u938B9sIM2XW9u0J71sbz8WyY7eFSKqy+K+Ax/DR2Vj9Yo7yqwTPtUU9uP5LtZ8bB+tgsGBh0paTvImJT7HT/JtX/A9bfjlODAToRsQReU95N5R+YOzcpsCNea6+TtEmV++vVQ1fH6XgPwwybeXDLZNgwfBhec3vgQIdrMiBUrTk03/dTX5sAz5m/S9op7U+ewPP/dRj0+Q7eg2Tz80g2tSaef4yqJ123AAbdvo0ZsOfHIMIDk9F+klTPSngvd72kL8OA7POBe+vZRxX2MH/DgZ+/4nGyqRyAmN/bzI7n6HlxVp3nJd1XLKuZOrfAe5KXMaD/X2lffwEOPNhG0t/DzNvr4cCXQ1UluC5XZs+8ntrIvNsaEg7E2hXrGSvLbLR53X0BzLa2BrCgWsi+mXSeBfF+8EjS3kHSjdn5RtaAGuV3x/PBl5hh/at0bjgOQF9fFaBQd8wG3kUNBFDHqGDp3XEf/gRnMHk/IubG8+r6mCn1exzIOVTNBCK3Zx1jmqR55SocODAR1p8Gp3PZ+5wT6yRzYFvFKel8i/pe+j77YPvd1DgY+d/V9oW5dXgpbJtbXdJdnaGeVP401K9P7Y33iw3rokk3uBF/h9NUySSUfaNuOKgg8He6F7hLKcCg2lwdDlC4Pr2bnVWxczUEyM6/jyZ09JH2XbyODqEN1tGOkHBw5oUYbH9kGi9PYKf7ZDhoeE1Jd+Tuya+xde1J27gNeb1gGjw/ohRo2or15HX3FTEL3Iw4gOA8/N3BwTKH4ywcVwGz4yCajVrQTxfCfW5zTDyS2cV3xmPyI2BPdTALXSljhqQ57g5gMkmL5o4vgvvy93h/eHW1e9tjvLdEkr3mOnL+vty5vpjUYxK8Hq6sQtbIUkrpSCmus2F/2PM4UK9/OtZd0s/p96s4+GedRnSdUkoppZRSxj4JYwWewwHFG8iZuLI9+kTYtrsjtvOvW2VPPjsmQPlA0hvt/PijSQnGLqWUUkoppZROIskQsytmH8wc1Etg4Nqi2MiZMcplAIZ8asF6DafVnAb7YcfmfJJezR2fCxt/fsw7zet0EPfCLFA/S9ozzED1KHZK3okZPN/Dxt+36nnO9pSIOA8zqYXMqpuBx37B6cx3KhgWjsUA0ulwOrkPMNPj0HT+DzkEwmD1K4CFMIveYhi8Pj1OcXtK7tqBGJS1az0AgtaWgkNgQaz8TosNqF9J+l+Yjecx/K72yzkAGgKS5uqcCzNsnoNZp74MMx6+jBmEV1ECJobZYXoA3+S+Xz1A7PXxNzgep37tjlmu+pCcQansdbDj4w0MAv6xRpHNtWmLVNcaGpWdtgvQtWC86pE5EJtqT86JWTU4o7Wk0AcWB27DQPgHcCr29TA75EaSPkjzxeK4b3fHYKkzi2U1V1fuWHfMLrc2foeTAMtIejP3DqZUgXW7readiDge+FAtYJ5Kzq5pMYD9AdynB6Y+vhF2sn6Oo4SPbLDsvtiBkbHzLYOZINfD4IGL8ByzEbCcpIeqlLEbZvPbvikASUScjsF2G2dAn3DQzxwYZHeCEsC0Chiooe/SSJ+JiM0wc06zqabH9HrS/YvhMdMbM6gdno6Plwc6RA6gnf6uVzeYAQN2lsGMKRk4aQrcl+cCBiixH4cBmT07Yi3rTBIRm5MCM/Dctg9wrSog+QyQfRPwOg6uOFTS0c2Um+87i+Agpt8l3Za7ZjkMVnkZO9ifw6DSQZi9+rUWtukwYBdJU6W/b8esg30kvRBma1sRr+kf5e5rNLvEkUA/rG88hgN99smXlYx5Z+EAt2Nbug5ExDoYhNMFg46yNOpZPVNjpt0ZgflVJ0NkrvwtsZ5zZ2rPghiUchVwuKSv0/e6A3+vAyT9s1BGPxwYU3PObo96YlSAZQbInhX33StlhuzFMTv7fPjbPKIWBJwlHXE/zKp4FWbD/gX39d/DgOztcdDYXZJWr6fcQh1dMGhrDgy+/SR3vEsOkDM+1ne+xMEMmW5aS2/bDe8F95R0ae54bwyEeQyD3J5O13wZEXvhfv8qZl29qI7nH6PqSWVmDOxzpXLfwPrGJZIuyOnCE2B2vZUwQ92Nqd6W7LOXxEFyP+Bgv5MxMHvztP9pst82sJb2xcEKh2NG7zfS8XFI6zcet69ihu5JMfP2CbXaExFTYVDtc5IuCTN4n4Dn5Ceae6ZGpKn3GQ7EOgrPOUtp9GDKRYCp8utUvXWlbz2BpP/mzq+T6hsHs/1njG1rArMpBTu2oI0T4UCms5RAyRFxKw4IWDOtcysDX8hA+vxzNmw3SHPNwPTvU6zbvx8G48+I96tvA2+rmQDU9qhjTJeI2AnrFd9hVvGrZQbnrgCqALIH4z5xVnM6W67spr7Pbnhe+BBYLe2zq9pXwkzKl2B9fFhH11MYA22qT6WyMrb31SWp0L78ut0NkyF8VecYXQnPpfPgzILX5dvZwPPVtNcU3tW06f0vh21crbaOdpSEA2+2w1lxxsNtug3YCQfb34IzKq6vXKatOsrNv7dl8b5zbmyjflUpO9gffPbpsN0n6z+bY6KAqbDueQlwhVIwTmtJOMj1dKyXT4CDKT/B69sVGAy+L7b7f4xtPSdJOqKZchcEXlbFbjo/tuuPwPrSVjGqXXwnvEd8D/swnmrNdpYydklOl18SM7APTDp8thYsgrO6AhyvTpaNozh/V7GpXQmsiW0V98h+vvHw2jQJtsE8hm0ul1JKKR0syW7yXdaPw0GZn+OgiOE4kH59ks6UG8OXY9/2vOQyH5VSSimllFJKXqICxH4L2EImcsv2xXkfzr5UANnry77+kXuSziRdO/oBSimllFJKKaWUkTICMy4fnozPyAyER2Im1JOTU5RkoOnanIM4IvqG03dkf68DPBsRq0fE9LlLL8UKzgERMV5yQCDpFUmPqgLEHumUqFJXl9zvmeSo/aeBK8JscFfjVJ+7Y9DsXdhJfGuY+WQU6UinXZhddENgVRmIPT02aj+JgVCzpWfMDGXILHtrYiaSVbES2BAQOyJmjoiFImLeMGtvds34MjDxX8D/ZKbYAZJWwCntMialrmHgyhDs+OkQ8FquPVsBt2OGtsG4P+wTEbNLehuDUXoCx4RBpVRz4BUlDNorylTY+fSAEuMuBil8i1OhvR+JVVTSD5K+yDkMavbrdL5rmCFvO+w8GSrpPkl3pud/FzsbkIFxt2Gn67lqARA7N5bmx8CA17LnSHX8njYYcyVDGBj0MVKK7UljEOy0AoP6R36r1pZcH4j0bFcDgyUNl7Qn7qNTA9cnB+I3MpBrBWA9VYDYXZt6xsL4WTAiNgkDiqeQ9FsCVByAU5A/HBEzp3e3MfBRRMweBq5kz93s/NbC97G/mgFi16pD0r+S4zowI/vlmCkM7Gj7Fhs/3612fxP1TQb0xwD4R1JdD6fvsxZmvlsDg+AAto2I7oW5fgYM3N5OBXbVQl3dMNv1OED3iFglIp7AgNLZ8dgakmvzKOzh9a4H2dzQXL/OHNvp9xVKwOV6v/OYUE8T/e1J7EB9BNghInZNx38KM89n1zU559SoczEM0tkJ+EwVIHY3mUF2e9yn18mVe5UqgWh/aBz+maQwznoDZ2JH+nGYkfxiYK8w+yKStscMxAvggIpBSqCept5bbv7cEutm1wA3RMTwXNkPAOtiwML1wD+w0/N+1QHELrSlV+7Ux8DEEbFYGKA2L7CWDFCbAOtUC1Z55qbW63xdf8FgmDOxDvcuBqv3j4i9s7IiogfucyvitPL19OVa4+dmHATUBdg3HFSZ1dNVBpWvjpmiGwViz4cBFUcBW0naXNLceF2YHeiZ6ngAA+IWxqyRRXkKA+hqAbHbvJ6I6AO8Ew6ay3S/JTCL34nAZuGgnCewgXUVSbupQSB2GFyKpFdSuZdjFr/Nk46QgZz+i3XVo7He2qxU6QPdUxs+UwJip7p/VwWQM62kHyU9IOkFVYDYTemhr+E92n7hIL2s3PtlRshF8Lx5LhXd4HfsCJ0FpwquR8aoepLO/Gsq+xUcADQLZoyeKR3PjPk/YBDEXTgIoV84qK/uDD0R0SXpvI/ggMm78Xy6JwZHXx4RvXJ9YZWImKVYTp39ekocGHM+ZtQdCcSW9KsMgu2drrkVB0NupgoQu5ZuPSnuw4dFxAV4TByO95+tJgXdfc6IWCkiVgw785EDdA/EuvsjETGrnLK9Wzr/tBIQO9sbNSW5ujbG7+PJiBgSBvBk8/Yh+HsfFxEDUt+8ARi3RrGjtanK4W/Tv+nSNcOwTp0FHE2D56Plkh408ps0sR/plmvPrBGxSPp/ynT8VBwgOSVwXZpzPpb0hKRDJF2o5oHYbV7HmChV+sC7eAw+iZloNwozEf8GZGvPq3iOeAcH8tdVj6rbjqZLx8/A9sNewE0RMU3a+45TKGc8rCO9pmaA2G1ZD4yyz5kvd+xmrGO0ij5V0A+nSz8XxJnllI7nbS2/RbJRSvpF0pdNjdGI2CzpT8g2jeMx8PmMsG1xlP1aPc+Jg7Gr7gNz32YnPE/+NekWrblet7vk9rPPYdD4R1gPfAVn+xkhB+zeiwkXbkzzU117xNx764/X6B2x/n8zcGjYtvFHnn8Qzvq0SPp7dbxW34mDmy7G88Lp4WCcVpEw+/wpGLy+Jga8LYwD/07E5A4j5MCgVfD43VQJiF1rLY2Ig/B7mjh3+GNsE/0O23eKdvFzUp2zAhcknaWUUhqS3FwwIv1+GxAerwBdkt77NM7UMDkOdug0UlhH+0TEJcBTEXFFRGyfLtsX6wnXAUPSHHIYZsV+Hdt5686sWEopbSlpr3Y0tneR+vG9wNSyD/hcnOly06zvpzE8Hs4g/Bppf11KKaWUUkopRQn7jJ7HRBpbyUDsrmkf3Q3oHSak+x/eW50LLIX9WOOokn2zU0nJjF1KKaWUUkopnUAyI00y1l6H2U8PVCV17VLYKbkCZs4+s44yV8OG00VkQHHGYLMZZml5ARuDr5GZuk5M55aUU7S3yHkWBvTsiVObvyMDuLLUyH2TsYwwwGtL7GQ4SNLfG62rrSTMknMgdkj3xo7oRbFD9jQMPhwqaVC6vmbUXT0O/HRdf8wUN1H69wJwiqQrc9dsg1n3plaO0atYT7RzSulqEgbaXIONiA/g9pyOwXaHYmDu98nh8Rxmallc0r+bKfco7NzYS6OyuG+NU5l2T8aejGFzLUnPhxlcDsV9rS7wWP67JePR2+m5T0rHbsPgscypvgpOM/5JtIxNr1jnehj4toWkK3IG6d+TU+MMYJgMzm+q3Dlw37pF0lURsQMGmyypVma6K9S7AAZwfItZLneKHDM3lVTXH+C54YPC/XWzR6V5ZwgONp0Ig6lOlnR/Or8edk7NnM6tggEsB9ZRdn5sLYWdzs+qwKpd53PWZBjLAx/wXDO+RmVEXxWzkK4g6f4wUGg37Bw7tTgnNPMcG2IWqGXxWvNkOl5MNTghTrG9FXZ4z6kcyCxdM23+2xXash7wq6Rb0u9/YHDNtxh0tyX+/vukf/Oqhal7w8z1W2Mg6ohG168Gxumfvp7CN1ocA9N6Ycb/dyT9mI6fBMyAx9IZ6foWA2uSo/ccDL5/HTuG30rniowpCwA/jS0gnloSBuRvib/RPjKr4uQYML8PdtadoQqwfUY85ppj2833gYUx6OxMHDQ1LwbOfAisnY3viJgXr+Pf47Xn7GJZzdSzFnbc3C3pH8mQ9hReqz/G/eGFMDh6Q9z/9muJfpjmm254/ByQ62cLYH10aQy8fAOzga+HGbGPraPs4nzdA5gCMzv/nPpxlnb4XgweeTxdX5xjG2F33gi/k7UkvZiOXY8D2/pIei4MPv4yGSBHmZvrra896gmzZp+GgTRLKTERRoUhexYqDNk/1CqnmXashQGWR6gC3PwrZifcBAO4LkrHs33YSLayBubqrXBA7TD8zXvhcVPMvDE7XrPPlPR6g21ZFvfbiXE/zTNKb4JZnReW9GzSV/fD7/aKbG4YW+pJY/y/qmTa2Ar31ZsjIjBb6M84JXiWgSFjV5kAs23ekM1vjUpEPIz7w2ppLe2F98RD8HxwPBA4YHS0tOR11jEb3jttI+naBu9tbmzOhd/BLPh9b5GOt3omnaS7H4d190mwfniCpCHp/DrYwTIh0FvObtOi50h672VYjx6BddqXMdP/nematfD+fwEcSHqKpGPqKDu/JiyKQY8vpnouwIEAX+Eg1JUkvZbmuu0w8+FAJdbfJupYDmcGyPaW/THYbRIcCPIItk1cH6OyV3+AM9J8WMe3b/M6xgZJ6/97SmywYWKE6zAwck/gOlUyBM2J9ZDModhIPdVsR0MlXZbbZ+8NfIQDo0YDe4eDlP+TftfSF9urnvmBZ7FOOyB3fG0cSNcq+lSadzbAINy1sT1lrdw8kOkD02Db0lmqASKv8uw34Kw0r6TjK+Gg5zmpgyG7MJfshgMFt5T0YY1rZsYB77fib/JNOt5q63VbS3NzeupjDwAfSeqbjk2H2WKvAl5qbv6sUuZ6eA0+UtIpYeKNd0jg7nT8/Ra2ZxmcWexnYAusb/bEDNHfp2tWxd/tYayLflSjuEbq3QOTQawgk15kx3thoOeXOEtcFhBWbyaGKYCZJD2VxsRXsg13Ctyn9sBz2ibp+rwePTBd36mYikvp/BLO/jI/cJ9ymZciYme8f1xa0pORy2IQVbIedhaJSsaph/FYXALPC9dL2iGcBfUIbP+YFNtFzpY0JM1XZ2Dyizs6pAGllJIkTNZwOw7Qvw7vZQZhXemXMFnQyXj9O5r/Z++8w7aojjb+o4OVqLG3fJbRWGPvvfcSFTtWFMVeULGggKIgFqKCLfYu9hJ7ixq7sWRiiSbG3ruI8P1xz/Iclqfs8/JSgjvX5SXvPrt79uyeM2fOzD33KJ71HYq/DAZ6ufulk+PZSymllFJKmbLFVEXycVT5ytz9cwvMjSkG/ibwKFp7Rob9Nz3ak+yFEn7W8xZUXJ/YUjJjl1JKKaWUUspklDAyxrKkhHNle5RJ3N8qDNl/RcHbF1Bgr4g8AizpAmIvjUCq57r7SsABKGAyDHjAzI5EZVS7oIBKM0ykKcvM74ABKNj5qVfKry2EgCrfxnkdUVDiIRQk+HPBPk0qeQqxPV2JnOmDUAnhD1DQ8TZgRzM7FcYygVTNuisI5NgGfYs/I/bJrVFg80oz2yQ59TUEWp6tWjvZM/hkBGKbmOE6oH7cDvzZxWA2EpWbfhO4JZz4nQMssSzQ2xsDsTujYPaqwHERwMzkFcQacaSZ3Y3AXVu6gNidUdB9Bgpm4SfBiS3i+4yJ/6aP43kWzznQvNrJEtb69F613lfyZ34MOSq109fMNnaxNI2J/qwf7+HbAt0ZhcBiV5nZMOTMPZRWZrqrIl9EWz+hjRReKRk0BoH6BiOA9H0mAN5YKfreTOCq0xF4bE0UiFoUON0EkMfdR6DvczUCFRzuAcS2Bqx6yVjYDYGJu1NlDhZ5VvQdGrVxH2JUesTMbjKxxrZHgbQngetMLEWnIKf9Bx5A7FxbtZ6nA2LvPxGNoZTtOB/U/tbd7wMOQ0HF/fP98tpA7F2Q8/VGM5sjvsEaKLnlAHdfNwKdHdD7fIEJY32ZDTFBLdKS9Ysa32ZqbCf5Rnuicq/D47+HgTPNrKsrUeNIxOx3iClJaYKqVsS1PRGr4sLArqbS9hljSmekp98hHCstbWtqEBNj2qvAdoix+QcAd/8UAdjOQDqgZ4B9cPd3vQDbbjIGFkKA+0eAi939QZT01QMxTN0ewXdcwNwNUfJMBsSuW70gaac7Yvb+Mf7D3X9GTrPn4vTFQm8cj4DhZ2f2YRHdlry3WZGeuRaxHn6VPOuLaC0YgMCGOyNW514eQOwm1oRdUSWMJ9E8egTYw8TScDMC+6yLKt6sEteOzt2rIct3Yl/OiQK3GbD8TpSctokLIL0aAjBnFTPez/enBgBqkrSTk+vQetIFsdTOHNdlDNlvID2xZy37uoC0R6DXI0wJqriS8fqhsTE8xuXYb5rsW2raIDn7Yy20T5jT3b9CYLHlgU0jsJ6d1wEFIVdBoMZCkqyzj6F3/hVwrCWM0iix5TXgfDPrgQKiRwA/eiVJo+6YnlraCUf8TsCDZjZL2FSXAHOa2H4d2YnTIgbkTeN5MqbVHxCIumkgdjIuRqD1bdm49zdovB+MEnz/gmzj470FQOyQDmiNT8dYOi5Xy73TsVJgbo5Ee51/A6sEgGQsi3gLn3c8MQEsz0f+h41QcuAIYHAyL29F4+Rn4FVTKdKWtDUTYtztC3Rz9+3Rt1gEOC3ba7sAl3uh5PfNPYDYTa4JNyBA9zyhz/qjb7UsAir8wwT8646qRl3ojYHY+6Nxc3j8vRx6b5eg/fYBaA95pZnt6RX26jPRHuv+2GPV21dN9DZ+DRL2x8nA02aWVaH6Cvn3nkNJGduY2VwmgNWjKDn667i+aOWcWr6jy8xsi/AZnIPsxPmAh8xsmvz9vTFAepK0E/IF0gkHmtmg5Nrbou0W2VM53bgoGrcPIR/KS0jXpczbY0zg5XVQRZiGviNX8vTOaN92kimpJWPI7k8BhuzcHroXAhxe4wkQO7s2zlkNgbVHIYD1N8lprzOB6/XElqT9zAbdwMz6W1K1AMb293PgD2Y2p6l64CpAJ+DuTH8W7U9c3wMRLAw2AelfQ/vgW1Bwv8UM2e7+OBoLHVH1ydURK/z3Jj9pO3e/FxFUbIpskhZLMo7mQolLI5Pf2se46Ifs+LWS52xYiSF++8QFxF4H+Vs3M7MuropWp6H5tL6ZXRXn/2QVhuyzPYDYzezjSvl1S+yZlkfz9Fozu9lU8XUaZGO9gqpcdSSA2HHpJ3H9FIV3MSWzD0S+223DBl0Z9WU7MzvD3b9zEf2sheIYq7qA2CuhPUNW9aCUUiaruPuX7r4KSlrdE8V+Lwq/HhGX6IfG7YkokfOvyDbu7wHELteEUkoppZRSUol1oQva2/6AKupmmJtpkC/lP4hQ7MfEh/sNsrOuBeZB8YwpTkpm7FJKKaWUUkqZTGLK9l8BOYIz1sGMiWUz5Jy5BzjFA1xrArQ1xZxhYsX9BwqkHOcV0F4XxDbQGwHyfkaAlE+R8+ffTbazLgLY7Acc4Ql7aji5n0TB6PsRKPckxARSlyGm0W+tLVZhR7sUsVG+AOzm7q8m58yNAiQrAZe4e58JaK8LAix+CBwaATvM7DHE1ri9u78Qx+ZChue67v5QS9tsbcl/nzCgnwNed/ed41gGkN7UBV5eHSUGPukJq3idYODVwHzuvqqZ9UEBpbsRc83rJhDfbcB6wEeIlfAZE7PvNihYfKy7Dy/aFxM75JUI3Htt3GMNBB75bfTlFRNQdm/EeHiIJ+wdRSWAAN1QwO95dz83ju+AWBznQQ6tz1Gwcx+kG04teP/fofKriwOXufsezT5jS8RUgv0ABP4+290PjeNZZmsbBPj82FvGfroyAqXsilhjswDjjgjQ9z1iRb0vuWaGJOhdlEVrWwQkPA64IwA9RZ4vHU97o293qleYkdLfNwauR+CHNwkWpejD4S5Wxy2Qjl0dAeCGu/vgIs+Se67Z0Xg9FumyEzPdU+P8GRFr8v3ufliBvu6D2F/uQsG/JVwA0vw1M6NA5FkoIaPu/GzQp7nRmvkYAkDnlV0AACAASURBVD39XG/daPRtpsZ2cucshr7P2QhA+CFyYKyHEjV2dvdvTKzJf0KgpTXc/eV6z11ETODK85EDfxhijvwJ2SJDgYPcfdiEttNaMiltkFy7syNgwAoo0LF/7nvOiMDMvRE4+0RPEoEK3H8RBED4ElVO6J781hEBr4eiNXVrb2H1AhNg9WYUmLnIE/bHaGcpBI5eAAHAH0PM2xfEOU0zbYYd3RON527ufnOs1b/k7JXp0NzKWNyKrgl/RMk9p6J3+AOaP7MgsNWZLlbcjNHxGZQgVpf538wWRwChd2M/sD3wlbvfG2vEnYjJcS8C9OtKOuuEQHTrAPtkwKfJ3U6NtjM7ux1iADsdOVyXT/Yo7RCYaHCzuiCn5zZHAJs3UQAwY75cBDgG2Q4HeMvAt3Mi229WoI+7fxkAgmsR8Po0ZN+3QQmBfdEcPbPJdqZJbIY10fsah1HaBNzqjipefIyYRU//tbUTAIy1kF0zM0pq2h8lmoyySnWWxVBw+D+IrXI8gENL9X7o5deQrdgjOd4BJSevDbzpAmO1VL/NiQLb/0Tj943kt87Irl4UraXj2V4F7r842uecht5jP08SY/J7vmbeU9j9bZH+HAP0TOb9A8h22S7b+8bx7YFO3qASUI32tkR6bD7EWHtrMg4WR8w77yAb9J4q1xddE7ZH6/SxwH2x1838OobWgenRWjESAbQvcPeB2Xup4weZDemSedHYHonWzV7JXFoB7VGWRRWVHmpmjzUp2vi1iIn1ti/ac6/p7s/F8a7IF7Y+AgEvjNiMj2vy/s34jrLv84k3yUQ4MdupNd5j73MYYts906MKXfy2OfJlFLKnqtx7FQRW3Tn6k+md/dH3+hjtd75ECfeHID/TaU200Q0BcG9BrPuFGLJzdksvtC/e190vTu6dndsWJcN9jPy3z7r7qnFOOw8mMDPriXRfi9friSVm1hvZZbeFP6g7StL/APmjZ0R+iqvc/TsTOPsaYG7EYD0fWpcaVi6o0nZ75CP6C9L9jwMPIpt2tJk9ChjaI5/cEjs32lkBjadl0Z73UK8QeIxGyS1/B55z910mdK9p8hleA+zi7lfnxsI2aM1dNdNHLbj/7OidzYDm6D1eYcg+BlXzut3dd4vzf/VVEkopJnXWgyyxsTeyRX9EvoSDkP93pdAPk8VPU1Ri7boMWDv20tk+eDbkL10OJYKm8aYZkR9jP+BpF4C7nFelTDbJ2SlzoiqXX6G9XC+k/3/KXbM68iN9h2KDj8bxchyXUkoppZQyVkykGuehGPg0aF+4JPIHnGlmL6O1ZDvPVS9KfHszIiLKTybx4xeSKSpTsJRSSimllFJ+ZbIuAij2tArrYOZgvxMBpLZEjGHLxe8fwNiAR0Mxs/mRU/t4FNTuY2KHwt1/cJX53AUxctyJQH+ne/NA7PlRsOYxxDT4efJbWxdbTA8EurgEAbEHZoGIrO817p1u+tcIYMtEk3CMGWJTvBYZfycEcCM75z3kBHwC2M/MzipybzNbN5xuqUwDLINKbGZBrjuB+RFzwgtmtroJEPcDKhE/RQCxzWz6MHqz77OgiQmwM3rWdnH8LhSQ3CyC07OgAMsa5Bi0qjllzOwYxJp2YpzTL/69Mfo2S7j7j4iF8nnEhtjDzA5A8+hsYIgH0LPe/En60hl9g0EIvPwVYoXqEH05zwXEnhfNrcEI7NESIPbOaP7Mj0AkA8zshnie69BmZARyyJ6EnNKHewCxrQ77R9LXNijw48DuESzExNAzQawE6fUmJsL5zWz2mPtvIzDfWcDBZnZm9GukBUO2u5/uLWM/XQwB8u8CZkyAULj7NYh9YRrgFAuG7PhtLPtYfrxl7af/D53ZA4EsLnQXELvRs1YJrA4nmJGSZ8l+nxEFFq9CwcUL3f0sBMIcg1i2fuNiB9sZ6aeNPYDYtcZArWeMAPbZKEh4ILC3JSyeVWR2VF79m1on+LhA4AsQAKofCnzPVeXZNkLz5nRgUJH5mf6e/D+rCPAeAidtjEA747GOpfdo9G2mtnbintk5SyEb5A005l52JVDth4JFywD7xxx+DoHB9/ZWAGLHc/wSbV2ExsnTyDbYHiXNDEvfyeQSM1vRzNZL3ltPi4oYE7HNtvH/NjFPt0SMy1shNrLO2bmxLg1EOvZDbwDErvI+P0Bg7g7Akma2QHLvkcC9KJlmXuDRvI5oIvC5FgI93pjq3xhfI939GXdfHwGUFgN29IJA7Do67g7kwHsBuMLMlo/3k73ftnHetwjMUnVNqNaeCVC1LwI9DHL360I3L4sAxAcj1r6M0XF74OpGwKFwQPZAtudvzWyv+Pfs0c+/oIojtwKroeSIl0wsEd3QnuK6RsCRSdVOrs3tzGx4vJOMweIXVN72aAS+eTzeLe7+i7sv7M0DsTNdmdkCt0df/w/tgdaP4/9AQNPbSKpDNNHO5ijJdCvgnbA/2rpYoQ6Ifp2CmO2fQgD2UzyA2E3s47ZB1TCy6iKPMC6j9B5x/FxgR5QkupkH4KqefTg1tuPuo13s/rciIPanwFOZbgwnffsAPKyK7JqzzGyrKvcqkmiytZn1NlXHya77Cq3Bm1lUuIrjP7v7a+7+J58AIHbc630EHlwPVQRaLu43G9I3h6PS7nWB2Dn7fXoTqy/u/krsNY8GPkNzp3v8NsbMNjOzE7K/m3z2MWifuALwllcAkXcicOo2sffdwJTIg7tf7wHELjrWElkO2ASxN2c27BgTU/orSMfNjaqCbF7leYsAsedAwM3zEcA6s5XaxHhz9K0ORvu5AQjMnAGxa1aYMO2zP0K65l1kO+0NfO0CwmW67m9ozeuC9tcU3WNNijamRsn3NbEr7kWJ1P9AVY4ylvwv3X1DZLc9AeznAcRuclwX8R2tEXZP9n1awkQ40dpJ7OpZ0/Nj7zMk/jvMzAYm19xOQXsqLyafwZ1obfitq+RxNq7PR3bNx8ie/jPaex3tAcQu+n3c/VpgNzSXTrLqDNlnmYCzYxmyc3u4s4AeHkBsU9JiKrOHbl8N+dtWNrOd4n6/mMDGuPt58b5atF5PLAk77xDkY9vQRBjQHfmr10B7hivQt9gnvtNzKHl7GAK67+GVygXN+I7ahD3Q392fQL7pL5A92CFO+zfScbugdaOl8izysTyPxsNKsR5kSaFdkY/nEyhsc6Rrdtvct7w7/htuZmt4BYjdEdnA7yJff2GpsifNSC/OBTYyJdd9ghJTLwK2NbNboz8l0K6UhpLTfwuZ2bJW8SP/0+XTXQ7p1ccRMHsW5C/IKrpOsUDskGnQfM/m75jQBR+hJJ25UH9SGYOSts70EohdymSW3DydByVszoNsxHfRmrClKYlvrLj7Y+5+prsP8xKIXUoppZRSShUxVb97DflvR7mqph+MklYPM7NPkB9vc1ShK712WmBfMzN3/8qnUCA2lMzYpZRSSimllDLJJd18mtk5yEl7OnCOJ2UozexAFEydDwUmb2mynR4ICLc22iDvjxylZyOWjy+rXLNAGD3jbLgLtNUJOdH3Q+VA1nb318LJNCo5bz7kbPrOBdCuuxnPbfp3RUGMd1Dw6rUiz9YSMYGdFnD3V01A2UuR4/+EAHBk580dv13rCXNNjXt2Q4wkfYE/ZQHyMBxfAG5x96PM7A4EAN/cBX6ZJ655yhPW2MntxIig1n7ACHd/0Mz2Q8HlVV1M1fuggMk/UJnObaM/GYvxcYgh5rYG7UyH2Kl/cPcd43ss6u59TAzZhyHA2KkuoPf0KKCyJGLZfASVMM3Y9hq+N1PZ8rOQE3Sgj8tKlAVR50LzqhMCmw5LAnbNzJ1pEWPoAyjoNA0C8hyDmNU2j/M6IyaaNojFMwMvFGVs64LABjOhd78ZwZxT5DkL9mVntGFaCAFg/oGCZZ+aQOuHxH+D3f3IZp6/RnvTocDdDogpZWkXE2lHD7Z1E1PdAPQt1/ZcBm2Ve67jAvKkx2aJvgzxGgxMljA9xt/5wOoQksBq7tq1UMWAt4Dr3f34ON7exeS4DAJ9DXD3vlWur8Umkz7DSggoODPwRgQ2sk3vQMS0fjQCkXxX5V7HAUtlwYBaEnr6MuBgdz/XlMTyCgKOp+zk06KgygZIhxSen8k9lnD3v+eOLYAY085x95NqXFf420xt7UQQdyE0nt9HbGpbxW8ZW31nxBA22t1Xq3KPemv2WBauIhKAgYEIBDEAraWvtORerS1h1+yJbKbdkK6/FAEHB7dm4C/3DadDLOEdvMJGOStwBwp6HISYZ35Mru/gURq0YHsLuvub8e+uiM3sDMRE0NfdP0vO7YicXjN4k2yHZjadu39rqowxk7uvmD8n/l7IE2bXavcq0NaSCDTeHvivuz8Tx9dHtu8iwDru/rcJHVuhN19F4PJ8tYeZ0Pwa4e49qvS1bhUYlBx5BVrT/g/p0qHJOeugvcF6SGePQfuEvYHT3H3AlNJOcq+OKHh+EnCuux8cxzNmsPbI5uqJbPwVPAGRFrWpTGzoe6M9wofpHsSUyHkDsrdP8EpZ+9+4+xeN7l2lrbkQwOa3wOWesMon56yDbMWMgTyrclTUbmuDkq8uj2c/wt3/E7+ljNKnepSBz19f8L1NNe2YgEPtkC06GwLhdkF7qpRxLmNPWQKBHXZ196uK9CHROV2Bi4GtEcDuObTvfgcBuF5Ba/Elrblnyz3D4Uh3f4ySqzqjNf70JufoDuidzYv2IxcBT8T8XIsK6/8VaO8zDLHBF2Err2Wj/g2BsXc0s9sRC3O2950dvcu3EBDlp/z1zUjynh5HTNyvxHhs7+4/J+Og0L6oil6fH33vw30CmPzrnJON19+iRI/VgYeB9eP4WBvAxOraDjEyN1MpY6K3MbWKifnvhbB3Uj/fumjuGPKPvJxck77PpvSDKTHqRRr7jp4E/tyMfTgp2wm9fz8CCt+b023zoYSmXRDD9MlVrm/G35L5DLZHyelLu6r/dPJKZZQZ0T65DfC9V0gwalVtq2dn7YjWuhGMy5C9TvRrOQS+eyvp88EoSTkFYi8N7IT8TG+Z/MMnAsu5+7umRJzHUAD7SA8fhuV8sC15ZxNTQmfegtasgei7HJTtBUy+l74ome5IRIIw3jowoWurmQ0DNnH3eeLvadE++lbgU3d/uqX3jvu1Qaygl6FxdTxKApwRAf6HAbu7yBeaue+WyJ86LfCAuw+K42sgW2ppZFd/jHx/RwDHu/sZRZ654J50LgSGzRiyZ0VECC80uw6WUorJh3gK2le9jZKEB+b1mKkqoiEb8U1ko7RojZtUYmarItv6QhSH+yT5bSlkm3Zz9ztz16VzMbUtFnb3f06yDpTyq5bcOOyG/DWPonX5/dD9tyE/0UHIZvw5fC/zAZe6yA9KKaWUUkopZRwxYTheRr7MPTypxmpmC6GKbasB57v7UXE881tNh/Y7W6Mqm29P8g40ISUYu5RSSimllFImshQAk5yPHM2nI5Duf0wgoOMQk+AIL1BiuEoA4wrgPgQg/DYCKgdSBZCdd9g3GdzISmZ2QsGC/ohFKysblwEKx3OWNwFI2BGxZh4H3OkuZtqJIdX6bma7IBDWCMYHZE/rVcCLNe59FbAdch6e7+6fBEjlJgQU+gSBrTZwAZrbIWDJIahMcNOsyxNLTODa61Hg/mrkeOmNQIOjIkDXH7EoDkYgnPkRw/UABPgqVCrVzK6J685FTFM93P3C+K0aIDszzGfwYOGMc4uOt4PRXJkDbQZuyAXrFkPs2Gsj1ps33f3hZtqIc7dD72QlNB+zBIWZ0HfvhwIcW6T3TuZcLYBD6qydFYHTPvIKQ87ywAmIYWhnrwBzdwQW9iqA3wJ96YYCTeehjdQ8KEGjC7CKu/8rxsRBCOA13N33a+L+tfo6HQowHYWCkVu4+082LiB7NwQsvbJBG3sjQPyCwPvxrtvG339DjNWDLAd8NDGeGdLVP+R0ccpwdVGNdpdDwauNUOJBD+DH5B4dkJP+PXffttlAqonNcDBinuwa/92J5uCzJkBRfwQ8PRE5Vms6TOuNcRNr8NvAJTEH50Lgt309SSiKIOuXQFevJKY0ZMBN3slKwD0I9HQ5cEOsnZ0RyOs3wHqeAFar3KPqt5na2qnxLg9GwWYQ6+3jcbxDOM/7oOD3QqjkeCOg0PbAX7zCDtsMqKQ9YlLfGQXeL/QEDDw5xcwWRPplLxREPxA9X6uBxHPf8I8oMWJ+BJI9CyXlvJcLdPQC7siPh4LtrYXW7MFeYdafASVXnYp04Mk+LiA7XVOKAi/3RLpzMFq3dwQ2zNa55Lx5o93zs3HYgj51Rzb0SBTE/RYBV46N39eLNhaKZygMrqhhE84NPIR0W/cEoJDZu3ciIOiKwJiCdkf6jk9H4+5dgiU2d+4fgN0RSL4zAkLd7RXwTj0dPdHbyY3pLrEudkVrW3+U9HNgeo+wsw9D4/sILwD8r9LukHjee1Cy30ehX34Jm+kwZFc9g8b/bcm1RQCRme2VfedZEbvpnIgp/er093r3aKJPHYBtEOg361cKYB4Q7fdvpPd/Ze10RIC71dHeYRpgS08Snsxs7tCtMxdZc3LjegHgYxeYbz4EZF4f6e7HkO4+DO2R1nax300UMbONkf24BAKEP+XuN8VvRRJQt0ZrwgjEmrk52scfj+za0SaA1wlIp/2EANIDCjxb3s7phObfD8gXsTXa+84KrOvuHnvfvZBuOsTd72rmfURb2wEze1RYiGPHoMSSvzAuODKze2bySHRtop2NkN3WFjH37ODuN1bZJ6wCTOeRBNISSfa2MyOQ0loIuDQg9FEbYHpU1eC/CFjeFEhxUrQxtUnM/zfQPm1zl+8rXWe3RXb8Z8i/80LtuxVuswPyHS1Kfd/Rge7+wJTaTuyfz4777+Du9+d0xlJIn2ZJ7/sXvG8jn8Ex6HttkvoMcm038rWk5y6I1piZgYeT4zsjlu08IHtjoIu735zc74+oUtGBHj6uOP4H5G8biXwEfZE/dAjybYw2gRMfQgklx2bfotn92KSWmDt3oe//CrBsTm/OhPTPnmgfUTVhfAKfYU8EBj8LjfU1kB2yvVeA7RP8Hs1sBeTLXhQlc76P7IMri6yluXt1Q37pJ5E+Xha4DiVVfmwC8O+N9tXtkH663N3PjuvrJms2sSe9HRE9HIB8AN+bWedsb9qsvVvKr1fCRroJ6cvX0PhdEOnOQ8NGG+vbjWvWRHpvs5bYia0tubkzE9DWx00sHoaS348FrnH3/5riczshPbeFRyJ5g3YOQ+vuvu5+z0ToSimlVBVTwsQFaF99s6taTvbbbCiJad4452vgTOAoj2ShUkoppZRSSknFlAT7JPAL2pdnidBZxawxsc8+F/k6z/dKZaSuaA+3C7C6B/HJlCyTtTRVKaWUUkoppUztknPKrGtm/czsVjM73MSiQwQWhiHg08BwCh+AQD/feQJUq9dW0s7aqORiJ+SY/S5+/x6BbI5BQePjzOw38duoavcqIkmg4icURDgWBVWfNLEijgpgwnhO7IIAlbkRyPcM4Gx3AbHNbB0z28TMFs4MtdaQan13gTj3QEHjE81s0eS37+J5aj5DgAJw951RIOV4YH8zmyOcigchoMtKiAHidRMrWHfkxLjQpyAgNoC7/xvYAhnNB6ExPNQrpcD/gwJsl6Lg98uIEaIHcKIXKJWavNPuyKFzDJXysdlz9EPvaEPgGDP7vVeAct+k36VoICWCFUNQGZxzzGyeCNZl5Wxfdffr3H0/d7/IK0DsNkXbiE3H1mjzsAoKcmQBn89RifM+wLomYNfY58/GaH6sWqVMepv4uxsC7z0HXBt/E47eUxCrzVVm1tfEGncFCng2JRGQOQy9sxPd/VIXg9XnCLTRKdr9DwJrD0fMoUXvn+rROc1sETObJwA03yKw3yDEAjQiCapm7V4ec7juPAX+igKB7xFlaV0l7/+JnP3Hmtl8ERDIyrZ2BLZEzLkzxjXVWIprgorc/VkEgr4dJWtsmPu2HYFRNFlaNp5hfbRxPQNYB72jPYCVgSEmhtwvUbLE5YhVfqHcPdKSuHXHuLsfA1yUzMGsnNS8cX07Ezj+n8DvkvWt4dzJBQe7o0SPf6P18iUzOxkFOfuiObVenXvU/DZTWzupZOM2dNy+cfiwADyQBbtQ4PVt4KdG9oCJnetKpCtn8EoSQyGJNWNfNP5OBg4JwMRkFxd79LMomN0GaOOtzNadfMNdkA31NkqWeB4BFs8wMUd/jHTN22i93TbAMM3KV2ic7WtmB8UzfI0CJ8cg27OPKWEie8bRyb/rsS1n/14WOB8lXHyB2HNmBfYI8EV2XkcEYFwGMS83LSY25KFo/G+AWBuHA71jXmTl4Y9BoOMnzWy2InZjbu1ZMeYqsUZcjcqOb5CdH/buNGis/CPGSqP5k431bE1ZHIFShqJxN8zMlszZMi+4+yFILywO7OaNAdKTqp30nW0ODDZVnPgSjefjgf3MbKgJsJjpi0XRGrictwCIHc97KPr2qwPnmtlsoV/axylfxX/Lo3U1vbbhuAY6xjNndu7HiGH8cwTy3i76P6qWDiyyv8pszTj/ZwRQ2AcBboeYEhhw90eQnfgjsrWakqmtnVTcfWR8p0fRnvd74FYzW9TMusRc/ruZGdJRDfcjybjeCbgGGGpms7v7uwjg9wekZ34C7kYMLvOg8UYjfW1mW5rYQguJVYIUd7vY5td39yO9OSD2LCgZuD9i59wb7UWnRwku28Z9HkXr9GooUJKxbhf1TeyGAIVHAPPF8VOQfbg0cJm7e/R/LwT6GuYtA2Jn+6vzTD6V7FlORXuFDYC+Zvb7+CkDGTccB7l2dkJ+lpURsO5vwMkxJn7OvnfsRbZB+/7fNNuf5Pl/MYGlP0P24pPIXhwcbfwe7ctXREypTYMHJ0UbU6F8hlgClwCuN/m+RmffP+bjvSip8jkzm7WI/VFLQhf9jHwvnajvO5oQIPZEaSdnYzwX938BuNnM1quyRr6Gkr0LVcQr6DM4Ddk0qc+gfdp2LV9L/vfQbXeiSmx3Ak+b2dYxDq5C7MVbAceH3ZXp7Jvj+kzfvIWqyF2Ya+qVuMdsaD94qruf4e6jsnHm7k+iPf5SwCmmBMTCfq/JIbGuvIuqVzxF2JimJGQAXP6w49H+8Axy/olWkvuQnXB0PMcglKw3tkpaK73HZ9Da9gTq6w3ATkXX0kxizd4S+Y02QevZXqji3bCwe190JTyuSOhsrwCx29azQ5vck26BkpEuBLYInfdT/l6llJKXKmvgNAh4PcDdr0Bj6wFgW+Ds2HuNNCXYZvIflBQ2/yR45IaSzJ0dkY/9eTM7L9HHPVA1zNORrTAY+V7ORmQ2DYHYIR+jpPNTTBU7SyllokvsmU5BNtTJHkDsZC/6EVqH/on2wscAx3gJxC6llFJKKaWKmAiBXkD7oq8QIcdY8QrW6E3kL/g78qcdF/Zgf7RHXs3/B4DYUDJjl1JKKaWUUsokERNr39nIYQkCHbyJsrrOjXNOQcyBcwEfIXbSQszBcX0bBKT8GAVNXnT3ZeK3tFT3NChodDoCLRzkCctASyULfgS4ZicEMv0vYt38Ng2ONHnfBVCZ3AORY2tuBB5ZHoF7Xgf29AksI1nwWXZCoLN7EKNww9LmuaDQEggA8ggKQJ+PglgfmJhvbkMgnq8RGGEWNA5Oy99rcknicBljKhnzV8TWMxoBUh9JgxYRXFgBAaQ+Bv7lFQbookzVG6NSpp8g8PcuiNEodXz2QQb6I4jx95UifUnfZwS0fkn+7okcSZ8AW7n7v3NzaYK+Rzi1eiCW0z6eKyluyvTcH20ytnD3O+rc63AUsFrTVTp4WwSuvg4B4rZBY+pP7n5OXLNctL0NGnNneYHypVXanp8K+/ENcewOFJje3MVWvjLwbAAUpvMWlKqLwNBxKCDZNto82d0fMpU2OgK9r6eAP4bTvggYZcHY4GV/rxD3ONzdh8SxrRHY7yeU7PIKMDsKFgxETFTnJffoifTUPl4BrzWqkrAcYmNamQrb+2iUaHAesHcEKIq8q2wMDUFAuk18XKbbdRB7xRXu3jOOzQIs7pFcMKESuqIjeldXuntfM9sBMUOd4wJuF+5L/HszFMA8CiV/jDGzZdAY3h6tny+j4OO9iE3ru9w8H+/bTI3t1HmfKWNfL2SbPIHAT58hXX06cHQWvG1wv04IkLE5Slo4yN2/Kqrf0+dC7+Ibd+9e9LqJJRFUHo0CC/OioPbOQE9v5fLLsZbegvT1EHf/Jo6/hwAaO7sAwJiYZx5GYIFGDOjjMPtZhYV4SfTd50N6P1sTZkCAu9PRPD3Qm2TfNrNFEChkBcRqmlVg6YvWqBvQ2vQFqi7RG+nxwvZurm+XATMg/fhZ/HYfCs7ukDrmzGwTYAZ3v7bJtnZDYNtn0fd5zMT6fyECJx6J2P1+RvNgMBonjaoxLIbm/nB3f8LM9gf+hFjuXgZWRTbnR9G/zHZqg+zfz2NNbcTgOEnaybXZHemFO4GLvZK0NgtiPDsZBaUfRIlMfZAt3xBIWsV2G+dcMxuEgIR/RfroQxMg+DDgQ+B+T8of1ulDqqu3Rfp3AaQnz0f27n9iLDyF7NMjgRtbahuaGH0NMUCmjGrt0ZpwMXpvx7qATJjZXEX6MzW30+AZ2iHQ/BD0/R5Cumeou/du8l67oHl/KnBvtb1nrGXLILDiFsAr7r5Jg/uugfT6eQjw+J9mnqslYkqk6oXmeH93v84qrO9zIHDxSKQ7RuTnYxN7uD8i/XIsYtZ/PdElKbsmKIG8LdJVWdJu03utWFN7o2+Qr0rSBwH0n0DVrl5u5t7Jfa5FPohBLjbkA9Ee5WW0H3rXzH6LxsDpQG8fH2jZknYz9upZgBsRk+u7aP35F2LmPXVKb+N/UeqssTOgBIBzkH9ih2yfGzbbFcD9KEnrtvz1LXiO7PssheZPWyaC76i12smtpV2RbT2du78fDQ68ewAAIABJREFUx5ZC+nlZYEd3vyv09h5o7B3TgrWnJT6DZitXbIsAq/1QgPhDKhW2eiBbYHTsfa9B/sNdvHkG/uWQrTQaeA/5Vv4Vv7VBDKy/hK/lCQSGWi/bN0wJ0mB8zIfG1/RoTbrXx2XIblX/RP6ZTMkFK6CKeG+7+33xe6syi4dtsCKyeXq5+43pcxS4fhuUvLQy8hs+Hcc7ItDqhajyw0Hpt2/Gdo/zW7InHVTEB1HKlCuN9lYTo53Yn4LiPKPcvVdyXlfkq9gA2SGH5fTC4ihJ4EB3H97az9kSMbNNka6/FfmMd0SJRGe4+/VxzgnAuii55EXg1syv1IRdvS1KzhmJ1sd7J0J3SillrJjZFmiN2dgbgN5MTPdfe8TjJpYuKaWUUkop5X9TrALEfhPFnYajxNXeLrKyarGshZCvZVFEtDE/sKq3QtWxSSUlGLuUUkoppZRSJrLEZvQuBKi83FU2ew0E1pgFla28LM5dDIHXRnvzgNXMQFkYsXzMg0DXw1IQTpw7DQIMfO4BBm+lvqaA7G7IUPoKWMBrlOyuc6+0DPjrKCj8OQJh/4SAG++joNcgdz+utfrR4Ln2BKZx96FNXrc7ArvdisqYzocACv3RN/ooHNpbIOPy7ygg8EhcP0U5MUwAwGURW81XyHieHQXOHvYANdcJXBYOeJnY3mdEDBjD0LzZDXgs5zQ+CZXR3sQblO3LOYI3Q+ycS6Ig1l892NgiuH44AjRv6QJkjwPaLvD89QJQiyA2nt1IQH7JXJoJmL+A02tfBDQCATlXQeCG011lQ/+AgFHzIYb5jCFnZgTE6JK10QwIKo4tjJiut3T3201M3hkQ+yUz+z/ENHS5u99Srx91+rcdCmafiUoWzw3sHv1c2d2fNrHhHR7/vYyA6Y2A2P2Qo7yHB/u8KWniRPQeD/ZKwkz2jhdCJWbboSDv2HLtyXfbD/jR3f+cf28mhpSVEFjnBgRSfyN+WxbphPWRfnuZShnbgQ36Mt53M7O7gd8ivTmWfdoETDsTMXGv5gkYvda9mhWrAD+fQBvr+1Bwr5+79222HROz6yYIOHgM8ENu/i+Evs0xKBDeCTGd/yv3/sf5NlN7OzXaTu2BAxB7Ogg4/yLwtLv/KX6vp786eIA00fq2OZqfvdz96yLfN/csk7W8cYO+LozAZLsCB7j7BclvSwCvtnTOmNlqaG50S/TQXVT06IsmwOcHMae6uPsPTdx/RhdAvj2VsuYZ+GV+pMOGxrkzAIfSAvvQVPHlZmSr/cXde9m4CUyHo/E8E2L7fxclJZ4ZvzcLhOmMyrLf6+4HxbE70Vq+qSsRaEOgo7vfnru2mYDnFWhNuM5VFST7bQkE9tkeJW19C3RFQPmGZcfD5h+OgBUDETioN1qjM7bWNZGd9RGyr94GNkZg5i3c/a0ppZ2kvbXROBiAEg6/zP3elQpAcQZkQ57pBZLBcrpvQypskE8DT2a2n5mdgb7LB9H3edH6fVCyLhcdA7sCFyE29C+QXl4HgYd6u/s7JvDqX5GePsobAPHrtHUJApAeDVzi4yZRzYDW7T3jWfpE200BbabGdgo8R1vEunIosttGeABjmxgHC6P9/JUIMP1DHK+V9NIF2al90RyqmzRsZkeiOTMM2e7/rnf+hIqZHYzm4GjEep8lU2ZMsdmYbo/G9DVN3r8N2q/diGyLo70CUG0DtA/7YUakm5ZBe4n/egVkVvfbNFizF0AJQLsyPiD7JLRf3NTd726yX92QrTMzGgcPJb+djFhKp0FViaZDe/1BXimpWu+ZC+0vrQKSnQkBf1ZFc6ivB2i11rubFG1MjZLZu/HvJZDPYzQiP/jM5FvbHoHHnkI+uJ/QezsS2NXdX4/rWzyu8+eYAP9boqTNpnxHk6Kd3Jr9R1QV4ffADwjseZ6LlGAJpI/WQqDln9A8O87dz6r3jFXanCg+g7RPyHa5BtlKfbySeHg3qq61lbv/I7lmd2B6b8J/mKwl80YfZkbj63vkc3mryrlrIuDyn4q2M7ElNwaWR++nE/CoV5Kw5kPraxeULHOPJ8DL5F6tDZCu5aecaEBUYFYXi2i98wajxMG7k2MXI/v8K2Btd38x+a098umch5i+e7XUhpjYe9JSpmwxVTXaCDEUDkd+yk8mQjvdkX+4LUpmfR7YAY3vLMGkK/JVbIFIebrHetQFxdJmc/dtW/vZikoV+/9QVAXjVHf/wRTzuwwlMZ2W2dGmhKAOyH/3fRwr4jPLr6cnUQKyS5kEYvI3D0H2xXg+IROZSFsPEF1y/FezTyillFJKKaWxhM/kQ4Tx2c3d3zfFyEfEsaO9NiB7QRSz+D9gA28hqcLkkhKMXUoppZRSSimtLFWCsQchp/LaORDHMgis8AawXR6skN6rXjs1flsQlZb9ArG73h7HU9BTU4DSopL0vxMKwI/2Jpmgwrm0EAJxfBpO4QtQ1tzrHoyqJiDOw8BNRUAcrS1FgQImRpu/oKDQUHf/0lSq+HzkOO8LXOTBEFTl+snuxMg5/xZADD3DEcPtNyawz6UoONndo7yniXlteuB6L8DAnmtnPIYOBLK6GAWkqgGyl/cGZf5ybXQnGA4R4GAuxIzT1yusyD0RgGMksJkHG1ERybW1CmK0mQ54192vi+O/Q87UXagCyE773yCoujNKUuiAgphnuvvFyZxcCgEm50NMN+MB7YrqHBNQ9DMEUu+KWHs/AqZFwNHNXEDsDiggnQEYm2awD6DGrQgAfYy7fx3Hn0JA8q29krwyPQJfvFFE75hYpB5CWbl9PEotx3g+BrH8H+oV8PoSiKl6WQQa+VsWKCvoRN8dBZsdseOvhRjxz0rAJ8ujwP0f0bu7PQE+jKe3Y/y8l4AENgKed/ePzaw/Wn+WdPe3c2CCI9F4+b23IgtllT5fgVhtuqJAxIlxvBkg9npIh76NAF0Dkt/y82RaBD4fjr7tfkX09NTSTtG1PWcP7IXYTjIWrKz05FggbZXrU33wewSkOhmtAVch26MuIDt3j92RXj8XsSNNNiC2ma2FmFO/Al7wAFuZkmd6I322HwJjro7e2/rewpLwpqobw4CFXCy+dwOLUUloWQ7N1SM9Ejfyz1zn3hsi+2nrCKC3A8aEfbo0AqzMiQAvF8Q1qZ5oBnjZGemz9RCL9Dquyihjx2SsHbMAY4BPsoBOS+0cEwv2KHff2MxuQ2ts9t5mRWPyI6R7mgILmMCityDQeC+vAAnzVTS2Q4DgL4GXvAlWvfgGIxBY+Bx3PzRvByFmyD8jgN+TKFlnqLsf3URfJlo7VgHtZfuegWhebOPuHyb3H6dsedjBcwMj3d3jWFFg7B6IgfL1OLQwCugf45UEqsNRYH8pIpmv2b2CCYB7BwLgpgyBnyO7oTvwfvR/LmQXHOTulxa4d/r+x4JZzGwoYtXsg/YGKYD5UMQcOT+RAPcrbGeC9q8WySnx72bskDWRftvY3f9a57w2RPKbaa//JLCTB+t7lfOrJUcNQokqhfYbzejp3HV7oPXhFWSjPxXHM0D2nMhePdAjcbyZ5zAxjv4TMVA3C6hsZu3ZCPgiv8eI/eoJaH+1h7tfnvzWcL9YpZ3OiBX9QLTPWt/dnzSzTu7+U5yzIbJ5l0U64lF3HxG/1QJIb+Duf6l3TpVrMr37W+ABxLx4RfxWLXF2oreRXDfZ/RatJWa2oScgp2QfNz0CkH2JdNhdccrWyN8zAwo0zoGAWf0btHMgAjk/6sUrUNTUhXXG2iRpp8p5uyD/zdXonc2Bkp4fRPuFV81sbrRWbIfe3fUeVaeK6gObiD6DXDszIMbT4e5+chy7GyX9ZD6QlYB3Mjsoubaor6Uz0jOdXcC+Dsi+Pg9VEdjC3d+Oc7dElYUeLNLO5JBYbwYjf1tblJR5InCzq8rIfKiaSkfkB7nbC1ZvrNXX1n4HrdlOnTm6GPLX9XX3x5PjHZDPuDeyf/t7Auo2AbK7IZDCZh7EEs0+g5ntiHwOrb4nLWXKFlPy6TC0l/kN8osPBc4tao/WuXeq25YC7kY++M+B5VDCzBnZnjOxP7qiteNuHzepbn53fyf+Pcltjlx/5kCA68tQYvDg7HdTHOsK5FMa4MGQXeteBdpN9wzbIR1aArJLmahiIi+6Dfmhh+d+mwmRE7yDfC0TXHW5lFJKKaWUqU9iL7Mk8tGf4+NW8lkfuAkRedUDZP8OxX8meiXB1pa2k/sBSimllFJKKWVqkpwjZbb4/8wIeDI28BvOpedRAGBdxBAynhR01C9jZpuY2Y5mNlMEwN9EQIiZgdNNZaWIwHC7+HerA7GzZ47n+wmBqTPmsTZN3GZfxA67m5nNFI7oFRCwIwNiT4eCOPOhgEtDqfcMTT4fUPv7VJEFEYvuXR6ge3f/wt27oeDdkcCeEbSu1s5kD2gm4215YDMUgLrYA5ji7q8itpYPgUvMrJcpEWEEMFcRp0xuXG8CnGFmt5tZfzNbOt7Dy4hF71MUbFgt/XZZYN0E3M7ff+GYe1kbGQvxsahs7HooANgJ2CeCz0QgcCgCrK3UwvfWHX3r/RE74+VmdouZLRjO7ZORo/YcE/h7vPFVaxxkfXX3qxDr5RdozGXAs/bhuH0JOAQBQI82gXGrPm+VNtJvsyP6rn2AGV3ldi9BLL8roDKSL8X72wk4BbgsD5JoQqZFbDzPJUHVO1CAYKtoa1UzWyjG47FF9E6MhScRa9mSwKkmkGw2nk9DQeMhJgZB3P3v7j7I3Xd0977eHBB7cxSgH+jua6CgQxfEPnp8BLeyMTwYMUmfFn3P2sgDsWdHYycLVu+JxtlqccoIBJq/ycxm8QrAshNaH15HzG6tLsm7/wyxcx/tLQBiJ/I40vfTxT3aw3jgvrbu/p2rlPHzCITX/tfQjpkdHHPgl2ydrydhD2S642KUcLIDcIgJXI3XqWiR6IPdEQvghiiT/Q0EUDzbzGZI28k9b6pTeqFknvfc/efJEcxNnmU3BL7cCc2/SzNd6WK5OxUBVoehOXopcIoXAGKn+sjMZo/gBWgsjEZ6+UYU9M50WyfEGjob0LnaMzeQORHw+QozWzJ0SJvQfy8iVsBOQG8z6x33HctG16iNrE8xVn9ETIY3A38A+pjZtDEmO8T93nD3J939Ka8Ascey9tdro8bxZ4BlzOzlaHPdeG/tEJPWeojVqyWsbdOhJIO/uUDlGaB4HD3s7je4e59YGwoBsZM+/Yy+/QfAfma2StjR7ZI58ihaX59HIJXDk2B1XZ/exGzHzM41M8veR9LfP6BEzLEAJHcfk8yxucxs+rCD/+4+Fohddxwk7a6AwKrHo0ooy6Fxdw/SO3tFm4MRu9tyCEB7RpF3lpO5UWWWB7wCxL4VMVMeHk7gOaI//0Usbc0CsTcBjo3/g4B9FwL9gL1NSQUZMGt2VHVoLm8eIP0/3U7Y8DN7JbFjS1OSYyFJ5u9X2bEm7ZA5EQDz/bjfOOPIzFY3s0VjrGf3nRbZ5OPo7twzpUlA/0X7qIOBA02MqA37lbz7Q0zsZbXO3d7M+mR/x1g9CPkhToi5hQuI3dGVJDybFwBix3XZc2xm2i92ROvLd3F8HPvFzFYxs63r3auRmIA6fwKuz+zo5B5vIVDbO8Dw2Itlv9XcL9aSWOPORmDc9giUjbv/ZKoKhrvf6+6Hu/ta7n6oNwZibwXcY2anxPVVbaYqz/JLrOOfACt4gKTjtzwQe6K3Ee10jXGTAYUWNVVg+p+UeG93m1lW/WhVlCxxAfKF7IWAzdcA+7p8HTcjBubhKDFxD09Y0Wu0MzfSg4OAlSwJOtZ7vrwtkvut2libJO1UaXcB5DMYiBLbDkX7hO3QHvzEuNd77n48WrM38goQu20T+4JpaGWfQY3jXZEOyPy7GWA1A2LPhfbnm+QvrNWXnC7fAu0vnkNj8I9AO5ffoSdaW0aY2Ramyl0jUAJIw3YmleT2PCugPdUg5PteDwXchwAHmfy97wKbxiWXom9WqJ3kvc1hZvOZmHMzv3RDXddoDkyMdmrNHZcPagd3fzzW0q3i+M8ouehPaAzsbeGrjN9HoeTgRbwBENvMljezZRNd3cO0FwdVCZxYe9JSpiDJzdGuaP4djRLNfodsnUOAo0yVDlssydxZBK2RDyIgzp/Q+jAAONKU0JvaH18CO3oAsa3iu3on60OTtnyrSNKfnaMvTyE/XaYHMv/74yiJf1rgJFNiUtV7VZMqummsHe2qaNMP2dqnmpIBSymlRVJvHXT3OxAYe4CZrRd7eEyJaZugMf6Bl0DsUkoppZRSqkisF7cC8yAioPfS3yOOsi0iohpolfh4CsRu4+7/8v9BIDaUYOxSSimllFJKaVVJnDL7A49E8OEDFLzdKglQZQ6Xr6kAJFrSzh4IDHQDAqY+D+xlZnO6QEOrIhaY/okjtxAIu95mvEDQJuvfmCrHGrbp7hsgI+1U1J+Z3P37xGG8MgLkDkNl1oswf6QOdDOztcxsDROLeFPPF/9uCHZL5Bdkd82QXJ850gYjoPZhwMGZY2NKEzNrE87ThxFob5RXGA8zgP+rKLj2Lgp+90EsDQOLtJF8n+4oQLM4Gr/bAE+Y2XbuPtoFKt4LsV1ejxhM8/fKs7xchQKQ0yWH/w/4EbjX3T+NY6ciBsWd3f0TEyscLmbkNb3JMt3R9roo2NQfAW8XQA6rLRDou30ABvqhuTzUzBYvev8Iqk8b//4zAo6/F/dZIoI3bawCyD4SvbvCJSeTb7MLCpBdB9zq7l/E7+fHfccgAN71KDh9GmIkzZgq6+qOGr+PRHNoxjjnDgSe3szdXzZlxu4LLBdO+7EA0nrz2itMns8Ba6Jg0wCrALJfYVxAds/kOdsVCagl58+CkhUudPczzWxJ4F8IRN0POTH7WgUI8zRi5n4auM7MtqzRxnfAS0hPPoyC/72QsxS0JpyBgmbPRtB2C5QUcDBwtbt/UO/Zq/SlUOJK9u7d/RAUVD8rrm8aiO0qk9sPBQgPN7O13H1UPvCZu+9zCAQ+69TejpmtiNj1bzSz33nLANlnI1BWN2BwpvvqSeipISjJYH9XgtEKKLFkMzRvpvckESyuywOxhwD7eBW2oIktuXV9JuAo9C5XRcHCl1BAug+Auztif9kXlT/f25Mkg3rtJH3eHunR/UM3fIzAPfugNWI1d3/elHS2E2JCu8Ld/95s/1xgu5OANkiXjAVkxylto/0vkb3aUHI6oKsJbNXJxKj9E2Ih/QvSeb1NgOyfa72fRkHI5L0tY2Y7BDhhyTh+MkoAWBy4EXgzbO990Jo/zAuASWvIL8g+nyt7zrQPZraSmR1Vo091dVzS5w+QjdMdeBF4wMxWi2+Uzc0x7v66u2+MbJOMwbyhLp1Y7cTcXx6BabNjmV37PjB39rcFED/+vTBKAJi/zrM2EkN2wZ0oMQ93fwQlfj0CHGFm88fxz12A7zei/WaD9rMiwMm/4/q7EPv6pi6m+RXQ/Mz0csYGXdfXmrN3r0Jr9PfZb+7eE63nAxBIdmdgb7T3+U+2bv9a2jGBCA8GLor9yI5ovs9d77mqPeMEyPtoz763RaJR8nzTo2omu5jAStneqD/wpitZsuozhV7pjsB026BKM0+jvdYRZjZPrQfK6ccD0FpcK3GzC6rGcrIlyZiuajx9gBWRHbp8HB8Z36PQmE7a2RHZzcsgIPojKOFw4dTOMYGXN0XJIb+tecMG4gHUQWvYFdnzJ7+/gPauI1Gy8OK532tW7qjR3jvARQiUvaOJ+T17X2P3Bqbk+yL7hFfQ+n+ctQws3Sb6Vu8bTfQ2TJWDTiHAp2a2D/JRNbQlp2B5Db233mZ2fBy7ARjs7g+GzdoNuBbtH5dxJRS+6wLkn+QCS9UFFLuCkSuid3UWsLJZMaB0MzKp2qki06LA62seFUaAn9z9VmQP/NEENs6e81tX4kNL1uyfEeNyq/gMcjp2ibD7OriqHd4OnGJmT6DqHBlgtQOy5edCPrFCkrSzO/JvdUKJJNPG3wNNyUz3on18O7QOnoaC2pO8SmA9SfqzOPoeDyOb/BlXQuZeVMCeq8Y176Ikul5ekIk3aWcnlJD+PHCLVRLz6uq63DfezJR0MVnasYov/HMzmw3t3y4zs03j+Cj0voYj23Pf2Edmz/izu/8z7lVLV3dBgPiHzGxlUxLy+UC7sFs+YiLtSUuZsiQZj5sgoP8CiNn5s/i9DxqDPRBQuiqBUBEJ2/0PaF09FPjSIznSlcw6lAoge0Acz5J9M/tjvPWgFWz7psTG9Ruti+biw6gSSjugn5mt7vK/t7UKIHsvVBGi8HqW0xmbmtnFwFNmdknsG3D3axkXkL1BK3SzlF+Z5MbaqmZ2mJkNMrNtktP6ovl7C0pwPRUlBw1H1cNunOQPXkoppZRSyhQvJiD2ywgb9bgn5D+peB1Advr//1UpwdillFJKKaWU0gqSc8r8H3K2XAX8O8AMTyIH16om5urREYRcEAE/v2tBOyshh9UgFPhaCZWUOw2Bemd2AbJXRqCH85p0oGXBxFXNrLuZ7WlmvykatMlt6DvUOif9O+7bKf69NQLz9EOs0V3jmoyloScKPJwWx4sCBXZHpXavR8GMRyJgWFdy/dkX2MmKA7JfQnbXTlZhh8yCP78gYMzLwIdZ8GlKkwAM/AMBC2YD1jeB4tNALe7+mruvicrbb+QBxG4iiL8CGtcZW/WKiK21C9DLVH4W9L72A75F7LL17nlEPM/pnjDiAYsgxrfX4ry7EKPFdu7+Qhj+fSyY6dz95Sb7ko3vDdEYuNLF+vQdAkT9C7guGwsuRvt+wIYuIHAhMbMdEIBi/rjPZYhl6mMEzlzKK2yobQOYsKELuF1YzMwQYOMMYJAL/DQWgOViodwVscrOithee7h7xihWl9mqSsAzYwT8CYHtdjCzRxEQamOvsJ9ujEAf//UmGP+tApho5yqBtBa1AdlXIHD7EXH8l2Y2gi6w/33AfRFcuwnpoKPcfRBwJQpEnpAF51zVE3ojJvNNa9z3G5TQMQJYAwF4LskALxGwOB8BTN9HztPrEZvfCe5+Tvou6r2npM0x1Y7XuDYbG1lp9Pb1guq5Na6DmXVJ1oRsPXgBsYStWivwGevwAODhCPBM1e14BbzfGbjZzBbwlgGyhyK22S9djJiNZF4U/LnLxRzc3gXG3Q8BzfdAwO4ZvcJmmgdin4VKXl5coL1Wl+RZtkR21LOoNPrHoReOA+4HDrMKIPtDF0PTQREEawiMTdrZDVUSeBV40N0/jXX/EsSo2A4YZGZ9UWDyTAT8GVuqvdr9a4y1ztH25chWHI0A2UuHjmiPkpL+jFiwGrKf5r5fN1Rm+DWkpwaY2fLRn20Ra/W+iFFr2nrvp5bkbLcHURLeTcCTZnZktLUesuu2R0lG96MEtxO9ZWzImXyP1p6trJIokyUFdkQVaNYwMSA2lPy3i/nyubu/5ErQ6INshftCH2RzppuZ7R3tf5Hdq9b7nBTtxNq4ibs/YmIoXiyxa69CIO3L49y0IsPqwFYkyYktkHmRHfpO6K/Mrn4JgSQNVSQaTxqt21Xm16vIadzNzEYgxs0tw/7oiKpQGNKDqaO4CFvo+ihh4BTEzvlw+gzufgBRJQgFOo9FttdNSX9+Fe24QISfoz3ts8hm2g/ZNIUkpyPnj+9X75xMj2bj6xFkxx0IbGtR2SD2JVshQPDLsQZmIJIt3H21OK8WMGpJxBh7FgKg7YFA2SdEW0eY2Xj7nCpr6TkoOWh4/tx4nh+QPTsEBTeOTn47D+mFZRCYY5U4PrqZMR2ydrRxZdioV8bxS2PtGW0q6b4bAhSOcDEvN5Q6duezCNgPqjy0fGLjz4j2kEcDqxTZX+Xe7dpmdqSZDTGxh07rAgkORetqT6sAstPklrHvrkE7b6J5cSYCSx+fXV903cq+TbVvNCnaCPkAJbCdF+/jPLRffL3I/ackMbOlAVygxtPRPqovSnTt6MG4HOd8jcBqHwLHmFn7auO0xrfZJdGPzyA9Mh+aP4WB0nm9NbnayZ+TyGxoDmYA647J3LgHJVUtVe36WnOozrOOBN6ilXwGiR7YBe21dwN+Hz9fDfwTJaGe6AKszoV00VmoglzDqjm5fi2BkgxPBnZ3923imU9AydY9YyzdD6yD1p2t3P3UuH6KivOamSGf3R3AtB4gz2R/2gcxyh5tleoCb3skMNXrT248bo4qcPwNJcrMi3TdcXHPIlWaDkZzfJrJ0U5cnxKZfIT8eS8AF0bb2TrTC9lRxwMHWFQcyd2rlj31A9q7PYzG0aVoLR7q8m/9xATuSUuZcsXM+ln4jOPvDki/9ESM/5m/O/NXnUwFkH2sBZFNs+KKJbyA5s2CwAbpvVwkL0ORb6y3mZ1T7R4tabs1JZnHsyC/0QXAIe6+G9qXPA/8JfbXo6gAsh8Ffu/uV7egre4oEex3KDl4Y1RB9II471q092oHnGlmm7VKZ0v51UjO33Y9SrxZGsWSTjSzrjF/d0O+lpWRn/c3wMFTqg1SSimllFLK5BUTEPtFFFfZ3t0/rbd/8HEB2f1N2KepQsoFspRSSimllFJaQZLN68qoVPYPwGVUMt8z0Oi1wGkmMO8p8d8FESRrpp0FkRPrSWC4uz/i7s+5+0YoUHAgcg5lgaQVgJO8AcOIme1tKpOcOZP3RIDlQWjTfS+weTiUagZtcg7noxGjR/v8eck5G5iYtHCV+s2cf5sjQPbJiEG4a/ThEKC7V4CEhZhWTWCr8xGYZ2ME0L0XGGYCtNa6Lu3PgcjpNpatITsn+feMFuDxOO+fCFS5F2IHmyXO64iCT/9xlTM+u1EfJrUkwewMVDkABbTHoODDknF8jInxIgv2PegCkxb+PiGLIgDUPT4uW/WbyNH5lQnYNwaBiVb2xiXhF0dsTA+a2b5mdkkcfxX42cy2NZWXTUE20yDm6vEYLOr1JTcnMrDRCsA3XmH+uzOeaesI3G1mUVbYMgnxAAAgAElEQVTc3f8Rm496wI10rHVGzrDDgF2tAhy/EoE3f0FOtIwNNQMJfFrleev1BcRAOCfwSARysvcxlunO3Ue4+3HAui5GsNuyvjR6b8kc2xkxPQ01s1kDzHEE+j6roSSMVyPwtCsKlF8cTu66kvYpggKjvcK68gwKbC7O+IDsQYitf9T4d63dhpnNZmJMxN3Pj6DsBghgPiS532doTm0IzJQ84wsoyLpvnSZnjPvdiTas51qAnk1A819iPKwTba+BxvlYkGK9YHfyXf5gZtuZWS8TUKEI0HdUbhyNF3is0daWKBD4FHCNifERF5DwWDT37zezVaoFPt39beAMF+tW/ptMbe1kQLEL0DhtD9xgZvN5QUA2MJbx1937u/uO+XZqyNfom84R144ygSxGIpbtT5BNdImZdcy9k4wRu4dH6dnJJWY2OwLD3YESMj6O421i/p+MbJGDzOyE7Dofl1GviA2yNFrPBqJkiCfjeFt3dxRU3w+x6W2J9HdPr5S4rzpX64y1q5Ox9udodyQaawNRQPR04DMPMFyjb560sxOyc/+KgrSXIobIy0ylrzNA9lOI0fbkanZgnXeVjvEl41kHoyoGmyCA32lmNjja2hTYmUpAuVtOxzUFBI93+g1i71oQsR9uHL/NhYJUx6NEhPESJGrcL7V5T0VJGD0TO+oBBP5/EQVy943vdzViKxsrBXX2RGkn0Tmfhz07BHjRzBaNU15AAfUtzexeE/PeJmgdPxc4z92fKPLOkn/PlPz0HGK/PNrEUPlzMrbeit86Nbp/tXaAzhZl56OPf0esT/0Rk+DaLkbsadEY6ANc5e6FAYeJrbwR+gbXJPbuOOLuJ6Bkg7WAzb2JBMeppZ1kX3E8Sjj7A7Lf7/cKe3PDZ0zmxRFU2LtrnZPq0etMez+A7dB6fQFaZwci3XcecJa7X5fcr62LtbmRDpoF7Ree8krC6GdozA0BDgB6WFIivspaehZaSy9J31leXGyuQxBw+1QbF5B9PvJLrIOqcDQlZra9md2LdMhTrsTTLBnobPS+nzSzJxEQbCAC42cM/M0keaf26B+AMa4qNzsjW/pqYAszWwpV6VgBAeWfiuuLJnDvgeyCbdG37ws8Z2a/d5VHPRvZXftbBRTTkgpkMyAG3ddRcu3Rca9mmFb3tKSCz6RqI5OY88uh978PSvK6MLWT/hfEzIYAF1uwtbuY0LM50x5VfcjKs2eVwd5FhAhzu/uoWutzrp2NUMLSjYmOewbZzGOB0nG8xT63SdVOlXMWNDOLnx5G6/ZpJlKKkcm1I4FvELN9IbBdrp35zGwpM5vLVLHga+Rzm2CfQdJeNwTAvRQBVl+KZ30IgVOfjffxANIXxwL93P3M7HmLtoX2U12Bv4YNCpX14BzkR1wqxtnH7n5T1peW2LqTQL5EycKfAgtapSJh5nsZhRI6Z6OKX6FWf3JjYEbEHn4m8hWejPYEr6G1M0ukbVSl6Qy0jt43Odqp1k93vxOtlW8jf3UKyD4Qze0TaUBMUeW+LwEPoSSJnxEhyKjkeVu8Jy1lyhUzWwzZRGOrGrkSZjdGSc0LID3dyRWTyRIkTkYg6b1QlYNm2sxiCdne8VDko14QEa1k5BsZIPs8ZNMWio9NDjGzjGhlC+BtryRh/gXp/xep+PVGUcHfZFVFC+Nxwo4diOzzbdx9K5T4djuwvZmdFm1fh9aJriiJuJRS6orlKgWZKimfjSoPL4fWANAa088Ui33HVfVyDeQz7ebuF8b1U6IN0urSpE1XSimllPKrFVMs/CW0j+nu7h9YBU/U3sx+X+262CNtgzA7vS0wQv/r0mbMmHLfVEoppZRSSikTKrEhmxWxAv0I/M3d18p+C0NjHrS5XRkFxF5HJf7OTs8r0NZiwN+RY/4Bd+8WxzMAFGb2MvCeu29iAcZLn7UGuGJ5FOR+AIEL3kDMlucBjyLWtxsRMPVo4MZwNo9zv5zD+cDo88Euxs3snLEb9XBsv4bYwY/1KG+VOAE7IbDPLCj4PczdP2/Un1zf2qAA2rUIKN/LK6x/DyIH9rbu/mK1a5P+HISCVvtkAe8q5+8AHIkC2S8gkNLLwHQoOHQUAtH/My7ZGejjYsctPA4mpuT6PB0CjHbJ3lkcPwoFVx5CQP+XJ7Cded393+FQ3NPdZ43jdyFw7OYukPTKqLT5UR7sOvl75drogIJXWyLg/e5x7aAYe88ix/P70cYLJiDOdijA3rvWt27Qt53RXD8UBW02RkHqPwPLonK5L5lA+ycgQO3hGXCjYBs7osAiCCREPPP5LhZBTCysR8T9t/YAyBe4d/ptlnP3Z01MCRcBC7r7uxYgqOSa5YDP3f3tlo5jE8DvUqSDHnP3pxIduiHSQR+goN5oxBAy1CtsDDXbzfVpU8SiuggCb12FAp9fmNmKaFy/AhzjwWplZjOluqdAG9shUOD1wLWJzjkR6dDfhI7rjIISjwOveKW8bE3dWqXdmZCO2y3udTkKmI1MzmnvOVBEE+vO7nHfDigQ2RGB6i70OiC03PvogcpjH+SVMtW12hqGvsE3KKBuKPFovzhnPaRbV0HguEeS6/NrXlXH8NTQTu79rhrvtzvSmc8AO7j7O/l75J4vvcf+CNB/CEogabS2GrIZngaO8CThK3T1NcheuckTJn6rgMf29cnAiF1t3JvKcPZE32BTd38onTMmoGk/YGtgBRdrdqF2sm8W+m0gqhrxanLeeGMnP1+LBDjqjLUL3b1HnLMpYtLbDOm+K9z9rEZ9ybUzJwoC3o8AJ9/E8TeAL5Bd82b0vTNae6/MgjVNtrUispl3Qbrjqzg+M/pefYHdXAkn1a5vsU2VfLdNkf3YFgVSRyGbdLBXKj80o0vPIKqhICfjfcA5yVqzNloj1gK+inZOb/LZW72dCMJ9mfy9qLu/bgJ79Ucs66u7+ysxRnZHbHuzofX6HeAiVxWNZtbrbRAA4HJ3vy7s0nvQ+t8HjeFRsV84EIH/13d3b/KdbYeAr/MiEMCViBlwJjT3d0H7kM+iT9ujiitNjYE4ty2apyPdff0a5yzg7m9VOf6ra8cECGmH9M7PwJLIfu/p7v9tYo3L1p4DXeDjaucXWbPPQTb979Ce7naPxNAiujrX3qbItt3W3e/KrTsroXk7LQKHH5LaT1bZZ1dNajIBt35A/oLUnpwb7VV7ob3HkOS3JVxJCIUlvs+xwOHITtzM3e83s84eFZ/MbHWUTLMyAqo85e63x2+F31kVe7QTskcvcHc3BXUuRd/nSzRuxs7TJvq0JqrC0B8lGHxoSiq5A9n13d39x3iXhyG7aR0PRvgm2tkz2ngpnnfT6Ncp7n5inFPNRqjmn9jF3a+ZHG3EOfOiYNtnKEm0F3C3C3w72f0bRcTEQj+vuz9mZnN6VIkxs4XR+nIgSiI4KrmmI9pHzohsxO8L6LSuyC+0G/K3bZ+86+WRrnsXONTd/1rjHkV8bpOqnfScnZB+eRCRILyN9ianI//nlq5krmlQUtNABOi5jybEzHZFa/OsiPTidWB/F/h6Y8Qk+j4t8Bkkbczx/+ydddhVVfbHP7Rgt2PXuAYbxe6xwQDE7lbGLixMVMQExcBAR7F1LOxRx+6u9bPGGJ2xFTvg98d3He5+DzfOfYGXuut5fPC999y9zj5nx9prfdd3IRbjZ4C+2fqbW6cXRklGyyKf5mteqgxR736wO2I87urySaX+3cw/caC7X1Jv2xNacmNgQVciAyYg/A5oDboB7b/ZuaEdGiNLoYSub6q9E1Plx9T/tz6yz79GALLzMnsg3svgaPvidA+osLaN2UdbSk+Za1ZANuhXwNPu/mN83g3tsQvH77O9sw2yux+u8mryz7ANqoC5DQLWroWq1mzt7ndWOCO3Bf5I7nOSGnsNKSbxHmeI9XdDdFZ/N76bEdk8iyOb6kxXsmu6Bq3o7s8U0JOO6fYIyN/OkwqgZnY2spsGA2e7kgWz7zp6QvwxqYkprncHOotcjGzzX5Lv10Hg6bH8egXazvt/ewCXAWu7+6uJb2IetFcsjvxKHtcv6gWJnhoy9YqZDUeJqivFejA3Sj7/P3fva4o5PwVcj9jYT0BxprNdSRP59iYLG39cJbe2zYcSClu7AIZTxTNoSEMa0pAiYsJVPIF8TkuH3ywjUumAEtmvA/p5heT9sKc+dVVpn+ylwYzdkIY0pCENaUgzxcZmWP0fytoClS3vnX0XB7OPXKUmV0dsyJt5CYhdD7PEhwi8OR2wfAQdiUBXVjL0aWCxCHLkWX3L6nGx5OyNnErHAVsD7yMQ1cvx/Qpx+RlAb7OmDNllAt6DENjq/Phs1gjMZkCyZVzAml5xn8eY2VZxP79EoOMXVO5tPuTEX7BIf/LvBwVrV0BOxwwUOQL4MwKpvmRiEVwpbSPXn8yBXgmIvSkC276GWDSXQYGgjVBA/xjErgUaB50RgG1SBWL3RMyXLwEjzGyz7DoXYGcAKkfdz8TaUJckenYHhkag81mgnZn1NLM7EagwY6ueDjH7zgRMU66tMjp+c/d9EXgjY1w+N777FjFaZADCDUxg+lOQE3qQ12CZyyT93sxWR0CAtxFr7GOIeeZVNAbXiP60RWO/F3Cv1wfE7oUAt08gUEJ3BBw6CpUrnS/6+Hc0btuiIFEhSd7NTsA/TKCEZxCo44i45rcI6GDKeD0A2DXmbXOA2AuigPFZwBAPBjugVYzLexHj/6UosHsDsGsSVK26jiZ92hnNyzkRYGBl5Gg80sTE/TQCpxlwVgR08QBiVxsLuec2DM2dNz1JZEAAom+Ai8xsTcQgt2v8PgNij9WXdK2Na6YxARJx96/c/TM0Jo5BQfcLzKyNibVya+A2E5vnWPdbTUxAoYuQg3YDBKQ5AwVQjjYBF8r9Lr9+Xgg85NWB2Eug+Xc8sK27b4XG9gmoOsIZcd8PxDVvoTUi7dMfub/LAaSnCD3J890RAbYWQ0ChW9F8v8XMFvYKDNll3tEQ9I6+Sz7PV334kwVLbQR+TkHgk0NM5bWJcdYZrRk7eQCxrcQENAcTCYgNTZ5bVzP7S3x2C9obHK15S7kAnllViDfRe+vmdQCx488Z49+FELC4SRAjsYmWjX2wScWB9Joq+qqNtT3M7MxoZ4S774Dez0YeQGyrg6UJmBUlMY1h7jOzO9A+t6e7vw10NrN5I/C6jjcPiL0UsqVuA+Z0VcbImCi/RPbJM6gqxLTl1uZxsamyZ+5iplsRMaQ/gdb2Hb0Ewi1kw8daeiZwuruvh/bM9mi/6WelyjQPoT3hr6gywsBMT5H7nhB6TOyzh5sYgzO77TYz+4u734NA0R8Bj5nZki4A2yCUfLYdAir18hIQu579+koEFhsZ330P9EDgq4GIAX5vtC+dBJwXa1NhiTPbtcgmuBcBsM+N/75FYMsD0DjohWyq/YqMgQo2wzSossAcpgoarXK/WQTYq5xtPTXqcfdfXcCMzd19YzQmugIXxjrzR3IWnTVtI7fHZUlAF5bTU2DPPivu5wAEYOqMwI01gdhVbMeH0Nw5PNpOgxEj0Rp3HvCqNwVi741ALHt6eSD29ChZ5UZgrdzz/BjZZK8iO/fQ5KevZX2pcL9jiQuocxE6j/yKQNm4gi4Zs+Kj7t7f3bu7+zHePCB2OXt0IErA6Gdm87n7G8iu3wc9023TeVq0T2iufwj8w0vAg/3R2e6M6FubeJaDqBMQF/fTFY3JsxHIeRsEirsi+nMcjM1eXWZcn438E+WA2C2hI2Nc/hAlua6I1tLzgO6mBPsUXNQu38akIHF+/cAFxN4EeMrMtoAx57PBiKTgMDO7yMTQvgywG/In3OzuP9SyB6zEmn8aeg9rAjckz7EJc7WZrZr8tpDPrSX1RFvZNdujc/rtKAnvnZjf16A92oC3wma8CfkozvICQOzcWr0eYqu+hVKi1KyIfX9Nd78bWI1m+gwSmRWdrR5O119vWvnpfXcf6u593P18rwOIXWZfuBeBx48OPSmL+LfID5NVHZhkwLC5cbIlqgJ1KoDLP3ElYtncFvi7mW1uSiLug97fVe7+dbV3YmaXoTUrZUebGSX6zUXJ590q1ub3kN32EqpsNFbinJWp0tRSejLxpr6jfyHg5T+BK7I56e53of31PWBIZou7qp89HL+vWWEk+c3v7n51zIe+wKOoCsimubXa4je/IwB31sYkM/YaUlzivX9lZnOitfFBM1sovvsWkZE4Sjo63ASa+TWz45CfvuZYS8b0Zmhtfhb5+tdK7uUQZJscABxkTRmyJzkgdtbn6N9H6GzwNHpm3ZJnlJ2vy/r1akny7JYwxT46ofUnTdBv46rK1Q/t339Jfv9Odp/N6GZDpgIxJdVtAOwR60EHRHbzGHCVKQntbmSjHYDsx5cRwc/hFlV+UxkXf9vkJMn83A75KF8GHjazzaeWZ9CQhjSkIQVlBVRZ+zcUC8gwBB2RXfgZqphZsYqauz/kUwgQGxrM2A1pSEMa0pCGjLNYsMYmf6+OAqvPIQaVrHRkExbZ5PpCzHC5z2dBAL5TUaDrNBcYPAtwDUOgnw0oxs4z5t5MAIsBiJHjbXffJD7PmKpnR4HhPxD44sYsCF4m4J06tjsjluBH3P1qM9sTBVA3cPdnTSDo4QhccZpHqWcTqOs0BJKY3lX+rbBEu6+5+w9m9hLworvvGkGgZSgxLv8JBeDfAs7xpoy/f0MBuLQ/edaC2VAweBRwUjyTRZETY2YUbHggnuH0lNimM4DnJMUwEgGBCxET29uIRXM95LS5PLnucBTsfxyxGn1Zprl8203Ky8ZvB6FnPC9ybMwLfA6s5+5vhZNoazRmjvIAPhTsyzKIpfwT9NzPcPchyffzI4f0PPHfY8Bt3oySaxG0mB+BE4/wEoPShYjZ8X4EEJgDATn6Ayd6lGov0H4rlFhwM5qD23iJNadttHc4WhsudZVOxgSYqusQY2YzoGdxNXKkj0bvqDti1+wf102LwElnIIa94UX7kptDyyKg23bufmul6yq0VegdhY67EZBjkLuPNIH7bkDJNKcgINePZrYiYoTY1pPS8wV0LIfAg0NRgDl7PxlLbifEAtYbrQ3fx3Wn1Wg3nTdboOB/F+QEvNvdB8d3cyAwdn/E2PgqYpMf4u6H19GP1ijwNgyxwG7jKv+cfX8gCiz2cfeLcvdXKQBZFXxrZusiIPHG7v5Y8vlcKOCwG1oTHo/P54lgRF0yJelJ1tBrgeOyAFa8n0NQUL+nq/LAGPbQIu8od81WaB9bAtkHLyJAxndmdjQab2+jYHQ7oFvcz8B8WxNbYh01xGA3HLFDZokQ3ZDNMT+wpouFqByrfNE1528o0L082kcvQwyo/8hdNzsCX7yMQAllWV6r6Cky1tb1MsyH9b4bE7jrwejH/abEtqUo2VNLRJ8vRoDtsdaFgnqyyhG9EMvmsu7+kzVl6boMAYyWdfcfirZdj1R713WMg5kRiOsTdz/UVBr2KbS+voDGxaPIHnhwUtNjAsbfgdaTJxGD9AGIdf2XuGYjZKPND6zmCft7rq2iLOKrAP+gVDI320szRo1ZEEBwdeTofRXNnSwBtKie2SiVxD49WUPPQ3bnpWiN+CkC478hhsCMFbMqADcZ/8ujxIwno60tUSJYX2QDZEkZ7dGe3QeB/l8s0IcpWc8iyAYZBXzuJbbNAag6zHMIkPyZKVHxUMT4+Emy35U7ly7sAlGl9llde3ale67Rn9kRW/NvwHcxlnsjW/suYHdXlZb2oW8HVK0hqwrQKn6/HYxJuqz0HJdAZ7mFkV34UM7uHhTtzIrY0Z6t1Fa1fibP70/orHMCAqZuHd+nLLJ1n3frtUcrtVGPXjO7GVjI3ZeLv+9C+1xW2WgddG44zuusYpFcuzl67+t4U1/SYmht6wYc7pHEEt9V9be0lI7cNbMCP0IJRGViDL8TJbYcANzpArBugs7af/dJCHCV68+06Hz2JgJgHuvut8V3iyB/1t7o/PYiWpvuq8fezcaJiY30SDTXH6E8c/W7KBH6CS+RPBQaAy2lJ65ZGK1ht6OqaWP8E/Hu2yOm0O2B5eL53uNR2aQOO2ch5EPpgiqYZWNuNWS/G7BKtr5Xeia19MS1KyO/7l7uflWZ75dDQLhroXCSc37uZODqn00+wsPQu7rM3fvEde3R2nocSmx7ssj9t7SYEuiGoLXlMU/8tmFr7UKJVORJdJ78p5cSQ6vto/si1s5/mlmnZHz1RL7IP6O9++Fsz/ASc/Uw4ApP/IdmdhTaq/p407Nvi+jJ9W1BYARKMHgKWBQB4B5Hc+mhuG6juIel0Hn83wXWmnS8rYjmzSzRx5vj8yUo2dNbonezLvKPrewF2JAbMvmIyWe8IfLdtkKJ5u/HdzOjJJeF0flngJeJYRXQsRNaC25AZ8d10Ljt6Uriza47A9ntl6EKDRVJG1pacnOnE/JFZGRBmZ0zAtkLBwB3edOqhM31H+6BfPk9UaL7XcgHf6oLPJvZ3MuhM30vF2lJQxpSU0wEDWu7e9eYp7uhON/sLobnQ1Di1JbJmftCdF6YD/kTH5o4dz9xJLcWbIgSnS9GZ/mV0PpW8QzakIY0pCFTo5iS8voj3+V+ruqzryHCid6VbCSrUvVwcpYGM3ZDGtKQhjSkIXWKNWVl+TPwjJkNzT6L4O2GKAvsFBPzaZYBVpi1L3fgm8fMFghHacbQOhgxwO0PnGlm3cMhszdyog73Guw8ZtYh9GRA7NnCSXwECpRtYGKeyZiq27v759G3jugAunDaD2vKnpQGaz6Oay8ws0sQWOR44KW4h6dRcGZaxJD9twi2bIfAEGQOfSvODrguAl7OEL95CljHzJ5Hjuj1I6DaBjEDrQa84k2B2AchwHsT5rFcMHsrxPjzV8RcloHT30Hgq6+RM3I9E6h9ZASOMobuVvUGpiekWKm03vHuvj96hisiZsJLzWyv7Fp3PwOBb27yAkDs+E02VtZACQPPIwDNL65SiTsj0PS3wPomJrST0DMc7CUGuqJs1d8g9rTVEFPX4TFOs/v5EAGMV0Ysd729eUDslRCQ7kZUivF7C/YvFzv3IJQk8TZ6pjsCR3sAscuNazM708yWTp+di2l0FmB0FiCK735HrNKPo0DxTiZgLh5A7FrPLNHbGzmA30KscN+5GFAHoizWY8zsPhOQ4zIE9hjsBYHYWV9C1yomoMvMiF3xw/i8be66tS0qAZRpq+j86YzOQLd5ALFdDEFbIEDPvoi5lgg8zeV1ALFDlkbA9X/k3s/oGE8/okBrTwQY2twTpq5KjSbPYUeUJPEfxE49M3CUmQ2M6zIGqn3QOr4WSmA4PH5fdgyUGWuj4gC8KBrP32X3GGvWIAS0ONDMpk/uL1+S91xgn3IBSCuxfWUyJ9oDvojvs/nzXxSU7IASNbJ7/E+1Pk2penIyEwInPeoCxGU6BoWOLsB1FgzZWftF3lFyzfbAVQiUciZa5zZErIHzu1gnt0EMQUshFp+DfRIEYsOYdfQtFBzfHu0JGfvXXajCwIeIMWppb8qAl7VRk/3UlIS2J3oPP6J5+RQw0MyWycaLCeC5EQp8fNVMx9Mc1B5r85X7YTU7tIKu91FAcmczuxuteRlArS0KSCwB/JK2Xc8YsBKj44kIML8oCg5nLKyY2TQI+P/f6N8EkWr7S9G9x1Ud4U7gXhMY82YUoD46bJrz0Vw9JoI8k5Qed38V2BwxcPVByV7nx9kg26vvQeeHDxFL0BIw9r5WxzhYCbEt35jupcDvsXd/hcBJS1Nies+A2EXZyrdEds1CwDO5NXR/xE64O7FOu/v3riD8mDlabS3IraE3o31/0bjkXmQ7DQDOMLPVTYkOh8U9DfP6gcuTvR4YiynyQTSmnwZuNwGlcPcj0dq2HPBPE2v1tajSzEfeFIh9Fk2B2IcBD8R5Jx2Ts1PHnl3unmv0Z7t4Tq+idXSIma3s7jch8N1awHNmdhM6Vw5CtuS3aVth7w/3AGJXWavfAPZCZ/C/ozNwWtFmRrTGLu91ArHNbH0zO87MLkeVMeZ290+Rb+AEYAszuz7u+XcrVTWo+7xbrz1aqY1afct99BQwV+zVt9M04WhGdH79E7LBCuvJSUc03jJ/QDbe/g/5UkBzaQxQ2pv6W8oyrbaEjuSardCZ9nlULWHB+P5j5AP5Co3j7Ox9OzCtT0JAbGjSn12Qv+F/iNFyDuB0KzHRvov6cx6ydT8BNkzs3UJVErJxEnP7dHSuK8dcvQmwOALFzZm717I+t5bSU0bmjd/elTv//h7z9Fd3f9jd90QAzx28fiD2XxGY/BTg19ye/TgCF3YAtso/i/wzKSjvoIDxFparwGIC52VVD2csattUmDu3m9lCLl/LZfHfPmb2pJldhBK8z0S+lkkViL0mev5HAwO95Led2cw6uvsXCGx8PFoXPkYJ+BkQu02NffRCF0C6N3CeifQCV3JrPwTuv8rM1o53PNqUCPAeWrsz/2Hr2I96oESU/Nl3guupsGd/DFzj7k/FvNgI+S5PslJFm3sQSHMnd3+/yJjLrW0j0Bm3L3Cjmd1kqgT1OgLEPoz20hHI5jnVG0DsyVoqrIG/I4KQQ1Cln7usxJD9NVrXPkJjpe7ql2a2PkqMOdHdd0ekHoYSmO4yJb5n93I4Wt9e90kXiL0FIth5FVWA2jZs3o9RDCGLzW1kTRmyi/oP031ldkTYcS7wnKt63nCUBL29mc3l8il3RBWCviXOLA1pSEH5EVjOzK5BCUQ3AaPiDAeK2c6I5itx5pkVAeoW86kIiJ3YydlaMB2wLFqzjnP3o1H86HIU5953Yt1rQxrSkIZMKpKsnbejs9Mo4Hwz+whhMsYCYsc5u5cJdzTFAbGhAcZuSEMa0pCGNKQuyTlllkfZwW+QlIAHcLHNbYgAoKkDtTAQJRfwvh0x7zxoZreYGOp+QQHv4xGA5w4UHNoUOXwvyO65Ql+WR4DNRSV0CwgAACAASURBVOLvPsA9ZjZHOJH3QQf1viZ2OjzK1IUzvQtwoKscfdZm77iHfcoE7Ua6yqV/hti5rkXMIRkQvLULkL0tcioNRMGJ04Fz08BDuSCKmW2aBQATmRkBcT+P35yMABRdEJDETayiuyGH11BPmBpCfo3+XB56hpnZSWUe6XrofWdAzgx4mQUjswBE9/yhvp5xMaHFxEC9LBpzZ5nAr88hME9P5Li9yAQIBcDdT3D3i+P3RcG+hhj0TgY6uft/I2jR1pXQsB6lst1XI7DFoV6jJHxO/zRxfx+4+9MulujNkPF/qKlEWyZ/xBj91AV2bg5I/jsUwPgDBW+zJIwO8f+HAxujoMzGiG0gC0CNFYQ0JXusRIypXP/+CyyWgQ6sBIb6HK1Jo9GhZ+Os/fi+KEvk4cg51zX6lQXJ3kSlK49D86snes5/82aUAY/A0E2UwP4fA8eb2YwRvM1KQk6DEjP6hvO5uTJD/Je9kz8Sp/mhKJC8fuhshdjZC/UpeTedgfbRl7GC4jGnZo5g261eYkUuUs54bZSY0N/d90IB6SWRs3RnMzs99Hzu7lcgNt5NXUCVavOm2lj7DFjQxJQDYoDK2ngPmB6Nt6yPKci3HEigq4kZLwvQ721mF8fXzyEARP8YA79ZCeD8FVrPx3pGFfo0RempIl+g5794/Pa3bEy7+/HA/yFg7ANmNkM6Biq9o1z/5gWOiev6uJJHdgR2RUCUW2NtuCE+64qcKxfG74uWAp9gkt+XkudzEgIN7I7KzqeA7CPRs33JxFxXSJJn2xXZBF8gcNpPMb+PQXbF3Qjgcxh6thcj9t/bi/bFlKg3Y/z5HNoX6hpr1fQkfZnVxHiKiZX4S/R8NkPr5bbu/krcy44IKHCFJyyc9Uqsla29BCAaAKxuZo+b2QqmZLtdUPLh9R5VRmr1qTnf1Stl3tFMAO4+3AVOWYtSpYmf49KRiF1nNQScm2T0RPut0bljVmSjL28lcNrvVgJD3YPsh6+AV2PfqGv+J/1aDgUHm5RcdoFR/zAxlHZw9x/DzmtOguMCaBytgpLcmqyhlBKeuqc/qhMAswOy/y8BLnYB23EBSvuj887BwAMICLMnYkI8K/c8pgo9mZhYKC9C4MDN0LnAEYB5m9B5DBrf3yF794hY1zMg1EboXLpvbo/7Gs2DU8OuyuQlmrFnF+zPNsiuvg8B1E9AgN4bzKwLSlJeHzHYL0gw7VV6bl4+uWoFM9vFzI6KfrV1JR7thGzS4cC2pnN9D2BtlET8YvbMqvUh0bMrqgCzLgIiHohA5KvFOeQi5J/Y3MyyJJrCQZXc2tYu+aoue7QePWXm9GvorHA/8hus7e4vxf30QHvdAy6fSF36Er3PoLPuADObKTfefgJeR6D8D3Lt7InG9Vi2W0voSK7ZDAH2XkFzZxFiHMAYQPbGqPz58ejseLS7n12uvYkhubG2FEpYegVVY/sAJWrPTFNA9tsIiDEceCE3F4sk58xlZn82sz/FO/kGgViHMTZQ+jn0DM9yJYVk7ZX1ubWUngoyK7Irxio37PKLLW8C6YGSqsYCjReQH9EaPQtKRM2fe+5AAPmumd6C7Y4lYYN+gezdbsgWnT++mwXZn33QGPimzrbTufMymjvPmtkaLpKAk9C6/Rt6L3Mhv2vN5O2JKEuiZLxrPAgJTEn7tyDyki3Dpr8G2fRbAOck9mPRPWIBdN48yMRGjYu5vj8aG8PNbK0YU6NiTmS+rFaIzOAPxJ4+uKX15Oboama2G/IV/+aq8JH5Qx+gFE84wZSIgLvf5krgKjwOzGwDlEByFiIPWQ75+tcDzjUlVr+GxvNxKFmsj7sfW4+ehkxaYorbZGNtSTPb2JQoOb8rsflB5NctB8jeDNihyFk+t492QufP69z9TFOFppeB61Ccx4E74xxP6NvHE3b88dL5cZTkue2I1qyPUYLuO2jvP81EdJDFej5DdkGP/HyptQ8lutZH56e5UEwhIwjaA7FjDwKuNbPTUNLYOShB5/lx7nBDpnhJ7L3j0BmnN0q8uT78btnc+xAlqfcys1VRMv6qwIeJT2aK3xPMbJZ07oZP4Q0U/3rXI6nUldx6CgJkDzGzvSfG/TakIQ1pyKQice7P9pzbgGORj25m4ErPJauZEl3ORXbNbBPlpltAWo0ePclgfxrSkIY0pCENmWwkgpCnA48hoM3GiIH0YhcDbnbdOshp8yoqZ/hJnXq2RkxWZyGn6G8oePsTsJu7P2lmMyDWqwEo+Hmml8pJlS3tEYfnrujw/Swqb3YyCjYM9hLr4O7RzxdQIP2J+HxMifisvTjAd0VMsndW6M9cyAH3DSpPeQDBHmslsOgoM5sPAYLnAd5293+mesq0uy4Klg6O/mcgyAMRo/WS2bOItu9A7Ge/IYBKe/TuMobisiyeEXg5EpWifSD33cbxPF9Czuuncs9mPgScPMmT0pWTosS4/QU5Tu9DAe793P1bU/nR7P4PdfdzxkHPsSgQMDOwuru/aCXmtD9MQOPWKLA30sUWVBS02hM5Ln9FrBKnJN/Ni0AEsyLmngua24cyejujg8a2qKzj0fF5kzmT+02l8dYKmCGee3fgU3d/Ib5bCQFdbnb3XZLfdELAvqeAjHl8uQBH1NOPDVBAZhNgF3e/Ot7N6PTZh75fvRnlxyNwOgKV/z3HxW41CDHVDkdz5UsTwKwHAvgc4QIZN0sCIPAoAjMfl/tudeAeBCTNJ2XUo2NrlGyyibvfZU3Ls8+FnHUPEI7PGm2lAbvWCDj6F3ffwcwMgSyGo3X6egRqHzPuKrVV7jsqj7U10XO53t13TX7THo21xZFT8rvkXncmWL1yIIGOaM73Q2w736AAx2Hufk7cx3moGsLVwMmucpwdEWP+SfFcq7I0TWl6Qle1fel65LQ4yN3/FZ+3RsH929H++IS7X5f8ruw7KtP+X5ANsKu7X5/spR0QiHEIAutclr/HamNuYkj05X0Xm287LyWDHYkAxJchIEpWSaAHSha6pk49c6Og3W/A4+7+1+S7Nggc3w8BYjuh53ujNwWwl7N10vVgKwQUvQk5/79DNtA4j7Wczu3QujM/SmS6GbjA3d8zs77IJn0GMfV3QACfc7yUnDNOYyCxoWZArMuHo339E+AJ4K1atlv+OzNbASXe/Ao86KUS91XvNddGxX27wju60qN6iJkdjBgO53T3L0zJRici+/FxFxCn1nNpET1l9C6D2GAvIUCr7n5rfJfudeuH3qvr1ZHoOjDuf3V3fzo904RNfQZwuQf74jjo2Q0Bfv+JwK9vJt8tjqqNHOYVysvXaHtRtAZfh+zNLNlvRVSu8U13/8bMlkXr9Q/Axy5QTGGbagrU0wElgX6DAGjfxOePIJDCNpmNEp9PC0zn7v+Lv9P58VdXknRex7YIdDQS2ZYPx755PgLZjc91dA507ngCnaez88zr6Ey/Q7bvxOdtEQN0tjYVOffsgnwBf6Az9vSoGsMgF4h4fpT0s2H0eRRwRrZW19GX1YB/oD3zGhd4bE0EvL8LvZvvTYmdf0Mg3O7ufnfB9tN3ty4CQj/k7s+HnruBG4rao3XoWRsBkv7tpQTj/dC++jCy3X9AAPSj0dp3Wp39mQXZBdO6kpBbIfbIXdCcOinGWweUKL4OWnuyikGtUQLs6cDTXmIVnuA6yvSrIxoD36N58muco05FNs7mruTq7Po1gG/d/ZVMT9HzYkuIqbqcIZ/e/nEeyuzdhdC5+mu0Vtwev5nBA3xZh54dkC9pbjQHX0CVyJ6Md3c4ei8PoUS30bnfF/W5tYie3G+6UCJSOBqagMxmQP6RH4HTfRyY0eNdnYeA8od6gPjiu+mR7+o1dL4ZZ2YtU0LmXmi/+C9KXGiFAK0DPPExVfh9/mxUbe4sCfRw90eS6zsh0oBf4u9Jau5kYiKrOACtkUsju3Q2BCpcCtkES7r75zEGd0V9vgPYqlqfbGx2yv0RMPFitI+9F5/3QqzPCyPW7fsrtVfJhm8JPfHdzsh3/zNiIQVYLeZo6g9N4wndvEJJ7wo6sjUsq4qzqSfJqyb/9c3ARe5+SPL5NIl9N0mOt4ZUFjPrkZ3N4u+d0XmqI/Ktj0T73A0x1tZDa+ovaO9+L9deJb9Ek1iTmU0X9l8P5DN4BQG+X0WxhO9NSegD4ydbuvvN46/n41fMzIBbkW/v3MR2/y9iyN/BS4Ci+YB/oTW9rlhPrDvTIvKludC5qXN8l/qrTkbr66LoLH+Lu18U300187TMnjrV9H18iClB4hkUX/4z8kkO9Uhqj2tuQgz5I5G9M6De8+LkLGZ2BqoouDOKdY02kZkNRXvpAGRTpxWVF0J2957UESetZic0pCENacjkJGXswtRHtRnyp7VClZvviM9nQHbhTsjv/8LYLU8Z0gBjN6QhDWlIQxpSp5iACP9CB7CL3f3rCE73QU7nC9x9v+T6DVE5p/MKtJ0FPlohZt1bEHDwVC8xbTyOHNubeLBSmxii9kegmDOB09LDdAUdHRFr6r2ozPtpKED3hzUFPOxBBOSAUzxYXOuRnAE2L3L0XY8c9QcjR9IP+Xssd99VdByHgiTnISDQhyag0PbuvnQ4Glu5GPzmQCywXVF284cezNsF9HRwAbm2REwnqeO6B3pn96GyVc+kbZrZtGk/J3UxlZi/FzjY3W+MzzZEwP33EZinGqNMpXbHPGMT2KYfAunv4e5vxrvKyuo2AT4VcVZEgORq5PxdADHMPebuGyfXzIuCD/MBZ7v7mWWaqtR+Op5nQI7t7xCjze8m8M4xCMg8yAP0mz+Y1KFvVgTknwdYy1Uiezo0509CQazTUfB9BcTYsw0Kep2FwNhvV2i7WpBoXTSnVgE2cAFVsqBO+g4Lv5uk7Z4ItLcsAgE8H5+3A65CQYEvEXBlHjRfB2YBzxr3na5fHYmS5sl9DkYA2v2Aa919pAmktgsKHm/hBcq1V+nbvGh9WxQFvbJ1oCNigRqIEjZurdzKWG12QXNkJvTMHkQB9PcQeOxLE0BmBHKa3ulJYlCNtlMn/0xorZ+T0libCe1t/RCY6CwE9lke7TcHZ4GApM0dkOPyhjL6lkHPeROUCLOXuw+zAPKZQEjDUbDhE7Sezo0Yek7xAuCXKU1Pbs2ZBwVtW6FkpV9NbFm3o3c32N1vi/fWDY31HTwB2sR+VPEd5XR3RsyJe7v7JWGftI51oB1KSLvI3fsWeV4TS8xsLbQ/D0YBhTwguz96j0NQf17P/b6uQI+ZbYpA0jOhdWCsBA9TNY/fgR+8xOpbBHS3E3Bh3OsILwHwx8uYTvRsgp7ZlSjo2BWxXX0C7Ojub8Vz3RfZpc8Az7pKeY+34Jg1BWQfhYCSH6Ikx18sSeYr0NYuaAyMRmDFuxEw6JH4vgjI+nAEND6sip6y7yi+WwcxIr6AQMCLIcDivu5+bdrnAv2ZIHpy/e2AgH1fJe9iI0qA7JNdjBcZsGNed78kaatZ48AE8L0KMXHvms3JuJ8t0bllLy8I8qyh62/o/HAVMMTdnzExvfdAz3YLd7+3Ge2ugOzoDdz9uVi/ByG7alaUxLCGl0nWrdOmmmz1xFh61ROAUZxrXwfO8xIT6Ah0buzuYuJfE/jdI1E4r8eS5IDc96n9ugOy10cixt4HYh29FoFUx3nPjr87A08i2++apD/LRH9eNrHyjvRSQnU9556N0JmmPwKO/IaYzM5AduEhXvIZbI3Wv688EovrmaMxV/ZFgMGMIe1uSqC05y2AXGY2JzB/c2zqWKvPRMDvG9z9/piTB1OHPVpQz8XoXDsL2rNfAnaKPa4PAmIugp7r28BV7n5+/L7is8uto1sDe6OzwU9ojJ2FAN6XUzr33IWShbYE+npUtsm129HLJBFNKB1lvuuFgPag9fKW7F7QOfRMBMjezMv4jcaXbTAukntumT/sNwT83y7Z61JA9mPIh9XXwy+Sb6uGzq0QycK56Hy7ALADembLuZImZkRA6f2Ap9x9o2b0rUX0VNB9JgLk7ofm7Teha9O4n4N8HJK0Ej3LIVtuEeR7Pdnkj10FJVbu4e5/H1c9ib6OCIBzALJ3Xwce9YShuJYtFX8XmTtLonPD4/l26tmvJ5RU2ctnRf6JpVBVpjeAnV1+lr+itXwdLyV7z4KqKszvSXJNLT3J9wej9S0PlO6N7MMBXiCJbmLoibF6A/IX3YrW5iPi0i3CvkoB2fXEE1I9M7oSS/6J7PiVczZQe5SA1h0lCH8wscdXQ8ZNYo25Cfky+ph8iI8gtsF7kO97W+S3OtTdB8W5am00xtsj4oeqiUYmYpDFgLtcfsh9kW93t8Q+WQWN8b0yP4gpEfJI5Du/0ZsRS2gpMVWYuQElizwcn2VnkU1jL50L+MzHIdaTrO+GzqFdgRPd/cT4PvVXTYcS5n529+/js4luU7WU5Na3jZBfqiuKh/zL3V+emPc3OYipMvAsLiKkW9BacBwCZKfJOjug8+LnHonvU8tYM7NjgIfd/fHsPBT+gaVQJav50Tr6aM7GWxiBDZ8ssrblxvOciATk/XLfj4c+TXT7sSENaciUJyZSjP3dfUD8XQ2QvTnyV44BZJuqCu+IElJfbPketJw0wNgNaUhDGtKQhtQp4Qy9BVjXg/04Pp8PAbS3RcyKh5f5bSXn9QpZoDJxxvwJsbr09WCtNLO7KAW3Xjaz5b0EYpwOAeZOQKCLQ9z9x5yefgiks54LJLYGApb/Gv/umziYU4a73VCw/TWgpyflS6s8p9TgygJZqSNp5niOS8V93xSB281RhvbFHuwDRSX6dyIKzpyIAk+bu/t6BX9fNJjWETnl90HA92OS7zIH6P3AseUC0JPLQdhKbN+93f0WE+DpMBQkOszdPxuHttNAwGEIWPwOYs14szmOnri/VshB8iky8juh93QcYvhaN7l+PgRoPcULMljkxvU2KKBmoe9Z5NT+1gRkPxoFH8929xPq6UteJ3I0no6C55uE82yOaL8/MANylv2OQMunmtlRKLt0I1ep5Wp9WRaVo2uP2Dgej8/XjvZXBDZ094fG1QkXQdnhyOn/DdDFxZKUObraIDDBumi9ewa4x0sAlkoBz9k9YQCPYPTfEEDkDTSWhyLw/BDEIHsn8C5yau+CElIGNLdvie4tEOjNEOvTzwhUvmfoKAyKjPX3XKCXl4Azf0EAoQO9BHzMQGOOgCJVx7SZzexNGTCWcPfXTexcZ9F0rM2FntfRCKjyK2KIuyA5dNcD6DoQBYV+RYkrA+PzDMDTBgVoN0J7xIuoisIlcV1RoOKUpmd7FKxdCM33D9C+/biJ0XwIej/vIsDI8mi8VWVti7Yr2SezoQD6zCjAliUXtELgu8eBS7yOhJaJISYgbwZAGorstF8sqhaEA/wpFKS8AYHmapYdrzbuzawbcCMC8ByRBYisMkiwCOhuaQS8H4ZAAT/G5+1cpdqzsbYx2qubO9bmAg6NP4/1EiPf3sAhCJC2j7t/HDpH5YIRtRLb6gW3Z8ComRAb3V6IrbR32MxFQMWLIHa5c9G+MhvaixwBMe/L/6ZMGxlT6v7uPqTCvVZ6R5l93xoltW2H9oWvURJhXXvPhNKT6++WiD1zcQRWfAAlmY2M89CliClyOErMuBKBrWoCRgr28QA03lqh881odEY4BDEMnz4+9CS6zkXP6V7EUtYFuNTdT2pmm53RmeB94C0E6B2FbNJZkH01yAUka7ZtNbnqMSXm3Yzs20HZ+dKUIPcsCoTub2Z3UgI/vGxKejsReA7tP2OtpzX0dkjWtBSQfYwL9NsWnU03YNz27PUROG0xtFfuEeepEdFu1p+/IIDx5R7VoAr2I1sXhyIAbq903zJVNrgareFlGc2asRZfAazq7ovF33dFXzaJvqyJEg+PSv0Q9egJe+Z6NK6GezCex3dzooTTo5BdUpc9mlvfZkFg1csQAGYkOlediNaaVV1JKPMjtvFRiN3503r6FLbbMHQ+/Q6dtQ5CZ9DdUFLLvggQsSLaX6/2EuC7iG0wwXVk1yG2vEtRYuDeniTfxDUroMTTFdC4eLhWuy0lefvLFED8HYHQeqKqJiu5GDzzgOyF0bq3u7tfVafemRBY6EU0HzOShWdQtbbNvcQaPjPa717LP9tJRU8V/Quj8+8OCAD4ERon6yF/y3hjVjSxdmfJQP+Hzto/InBg/yq/28yD3bwZOtsiluqa9q4JmP6HR7Lq5D53oKxNPSsi9fjUVTGnFTrrfuSlihjtEIh9JzT+/p20Nwa8mGs7/f8N0F48D/LnDAM+iblZCSi9iLu/W2d/JpienM6147ltjRKIMmbdbZGfZVoE/nwuxttorwBqqKFnd/TM/4piFHsCS7j7fyyp2GcCnR0KLO4FfPwNmbTFBLQ8BuiNknJGoLF2kJfAu/PENXuiuNC/Yp5uiECaVRNZYp5vjvwlZyD74lyU4DPISzGkzAbt6u4vhL/gGHReGOh1Vo1taTElPJ8PLOyqMHU38k1ntvsKCFh+uCds4rXmaA0b9c/onDUDijMNjc/HxNGKtjUlS7ybs5E/ZySqCPoO0M+TxPSGlBdrSl7zD5SQMxYgO/ebiQ7EtirkRuNjLpTxAXZD9su+7v6+lQDZw9C5cBdUfTKtHNucqjnbo7VkflRR4BLgOpePenz0KzvHtAWmyfaChjSkIQ0ZV4lzxMnA+e5+QHxWBJA9GvgKnXlX9ykciA0NMHZDGtKQhjSkIVWl3MHHSgDVzKk0xilvYsh8BjmlB7v7QQV0ZOWxxzjkA0DRGTEzbeLu95Zx/iyEGI9O9xIYbzoUAJnD3XfO6WmPgt3bI2DQVqik9GoomHlJ3Pt+XmK6SgGz+yBn8MX1PLc4wG4c9/4aYoHx+G4W5GxaGoGjvkIBiKO8mQALMzsWsQUPRofZdVB28uzIuf0LMvrmj742C1BsYrTcHzF0DXT3I5PveiHn5CMoEPZE2UYmAzGVBJ8PBcXbIZDsIYljsNnOgdz4ytiZHDmL3yjYRjrW2qNA+SmI2Spj4JgROUpORexPKSC7uQwW2yEnzGWIHWkJ5MRqg4IZ35nZYqgk79ZoPRgrQaNaf3KfZ3P1XFS+sHt2WDGz2UP3L8C7LkbHFRBI6xZ3/1u+vVzbuyBH+o/R9g8IzHtgfL8meqbLoUSQwkCRKjq7Iof9lohR6Oj4fExwKP4eA5iJvysFPM9CYJcjXGD+3mh9vAMxqK4ZfXsUjYVRqJrBXsjZ/SZKCMlKPTZrXOfG47ooGL0ZGhevICbuC2v0JW1jVrQ2P4fKY2Zgu+Xis13d/UoTo80eRKlBr5HIYmJg3AmxNtwSAbtTEAD+DTTWBgF/IsZa7EuzI7blL4D/eY79v+jzMbM9EWh4VRQkPNkDzFtmDMyGwC9ZIk8RgNcUpSeu25pgbUV79cJo/syPQNK3mphk10TB5I+BR9z9ivReq/Uj/n9ulLDQyd1fjc+2Q3vq82i+PmQCcWyCglTb+Hhgp51QYiVAzfQIWP4XBFg620tlmP+CbKRPEOP42QXaTZ+bIablWYEHk/fbA61FDyHA70v539bZl63Q3OzuuRJu+bFkAuX80Iyx1hsF5tuhxLhLrGky3VFob9vC3e+ppy+xH/+YtGVoLSkCfM/eY8bouDfwhruvVeC3XRGwdiPE0PVlfL4sstXeQcmP98fnY7EQmsC65wB7uvvlVXTVfEemQPZSqArBd+7+dPp9rf60hB4TSPUyNH7fR47SpRG4agN3/8HEdng+Aq+MBs70KiCoopKzD3dEbBlrIxbcN4ArPADf4zM4aGZ7obLxXyCb8Xl3f7QePfFecJX/7oBsja2RjfYsslNGmUClj6LEkJpnqylVj4kNJavCdJ67f2olduoVUbLjPMD6LqbiNsDuCJB/gEcSRR36tkQ2zsnJOjAWQ3ZyfX7NqmccXIeStEcAL6MzTht0xt/ExfDdFgFi9kYJLk9VaLKargeAju6+WnaPoGoBZnYlOgt3bc6ZN78Wxhw5BQFXj0DVWjYPO3EGSgljh3gCoq5DXxvkF5kbVfX4POnTaC8lmmRnn89pnj26KWIM7gb8zYOJzARIWhmde593902rPY8CehZCdsctyI7PwLFvojnUy5uCeGZFjIcZQLHIWj3BdeT0dUK27lDg34j99u3cNSsh4OIFHj6DiS1xTwsgJrtPw3ZfGc2/DugsvCdKots79rgxAAYXkUHdIIvQPS86Bx7oAeQ2JZlk7PivmNmqCPz5b2sKlqzHxmoRPTXuYTaUkLELAh2/CNzrAfAbz3t2F1TVYn40/secgcvpCZvlAZKAcTP11gLbdULnpivc/bHc55Pd3MmLCQh3Ekpq7IR8LRd7qZJFZoPOg86kg5BPtCxTZKXnafJRnY/On22Rv+1jZItfGXPyQDR3r0Q+2bdrtTsR9cyC5ufcqJrVmp4ALE2A7GNQMs327v5sHW2n55WV0J5wPjrvWvz9EQLfZnOkAwJErIYIV+resxsy6Uhin8yLzulborPZg+6+lTUFYHZGrOwvAru4yAPKJkRU0DUd8iVmlTWORfMiBTLOgBLefkLA8NlQ7GR/d7+yiJ6WlPy9mBJOXkF9XAydSXq4YoAdkN2+DfILvF6uzWo6TP76+dD+dR/wX1cCYGdkg3ZEyR9Z3GWig2EnBTElbA5DcdCzTLGQ/yCSlw/Q+ePRiXmPk4NYeUD2sSgJvSwge2JK7n53QHGPn5AvsFkJdgV0norm+cNoXH0Q59SlUfW5bB18soy9WdT33g3FxK9EduGOKK5wPiJR+GVc1snk/DIdWstGAv3d/YvmtNeQhjSkIamEH+pwRAAz3AN/YGMDstM1vDuKc0+DqiZNFVUtWk/sG2hIQxrSkIY0ZFKW5IDU01SuHeSQceBUM5vHlfmf7amtEKhvKLCDmW1WQM3biIGtfwQ4s1Lr76BD35lm9iAK3PZwAbHbI0BJBxSEzO73e+To3jnuu1Xy3a+IczTAhgAAIABJREFUdesCBBi7ETEZPojYYXdFDqYhptKJWRB3QzNbyd0vyoLrabs1ntvOKBA9C/AeYsV5yAQEJA75PRAb5UEI/HOkNwOInd2TCwRyHMpgXg2xZfVCgY9V4rOVUYC12czOLlaXQSjQcoSZnZ58dwsCKqwNzNFcHRNTskA+CqQ5YpfeDLG+jgkMjYvzNMZXBhg4Az3PpYErTUC/Im2k7I23IYfv9gh4m13zLSrPfBSwvJk9mnw3ho2nkg4z62Fiqs/+nhsxc56JxusQd++DHBujUIAFd/8/xERzNxr/VSXnlFnazDY3s15mtmwcWh5FCQCfAiNMgFzc/XN3v8LdrwXeMbP9UTLAU8lBqGz/wvlzXvRlfeRoPhfY38yOiPYfQUw9rwL3m9m8tdaAtE/lPnf351Bp19uAw0xgfFzZ/22T3/2aW8cqOaC/Qg7EY0zlpjdA2bnbu5JiVkNBgDWir7j7OQi4ujiwpZeA2K3z49rEildo7UvG9D9dZXeXQ0GwXl4DiJ21EddshAJyiwH3e9NKB++ioNoFZnYBYgYZALyXBNiq3WtbBLw+1czORwfh/sA7of9xxK77CTHW3H2Uu//P3Ye5+x2eMCRXCwzk3t/o+PeSmPMnoKD4ccl4+9XMWpnAk7j7F14CQVXUNaXpSfXFengQek9Hu/u1LrbrbREof6iZzefuz7hA4Bsi5r4roo2xxnQqyZjbDiVxvAA8amYPmip3XIPWgM7AHWb2ELIbhqAg0SQDxE7fj5nNEmv3DGY2XcyNXojZcF+0J2ACw62KAAV9PIDYddg6OyGw3X1oXr5gZtuY2OdvRclvayM7b7n0t83olyHb75P4fIxPJ/bUJRIb7pt6xloinwMrobVrgWjrt7A9cYEtfkA2QeG+mJicT0TrcwZ8vRcBLWtKZjPEnj4QBSrfLKNn9dzfSyDA9RHAr14CYLZ3geNXR6yyp8a6m63l5YDYe3sFIHYd72gpVJb9FXe/3+sEYreEHhO7ZT+0rxzg7ie6e3YOmh4l6hBniC3Q/tstbPAm99IcydmHVyEGti6I7X0znwBA7NA1FNm7swELoqDumHuq9XtTAsSewHVm1tuVTHYeGvM93P2w6Nu08VkHtJ/XJVOCHlMwE3ffG52bjwQOSM7W+yEg6YooceatsL93RXPxEq8fiN0GJeMcgM5us8Y9XI1soOmB00yAvUy+q3cdNQEDeqKg9gOu8/khaE1dHwFfXonnuxNaz4Z5DSB2bn/rkHz1H2DheD4A6bz4CAE6xmLUK6Ink2SdfwMlRdyJ5uS6LiB2++jzbqiaTXNBXdOg8/rHnlS7CRs0u4fZwx69vB57NOnfnxCQ8AwUzM8A323iXT+N2P67xFo4RhK7r2KAPffRDGgffdlLIOm70DvZxcUmu2jS/pfelCm2bNLmhNZRRuemZnahKaj/I7J190Xz6fy0/dDxNEraqQomzfqS/Nup1r2MgyyK3uuuZnYIAry+DLR1959QIHEY8hmdb0rY/iPGxe9xj2OAvrX6lJPfEChuhrhmBPJ5ZEkZCyPAx4qhb0wSZx1jbYLoqVfinHMx2hOWR4nD4x2IHbpeROC+DxCr/fbJ1+X68zryE+4d59/m6q3FevojshcfM7PuE2LuTCwxkU4MRUCkTeK/14BTzOw0GGPDrYsS+k4ETvUAYtfYX1I9qyAb9CTkQ1kNnUMXR/6c6eO3g5BfbndU/ahquxNLT8jXyEf8JEqUXD+zhaKda5H/ajRwr6kKXiFJziudURLEQ8CFrmTX55D/a0HgeZN/vztaC/ZDZAENIPZkLOmZ1d0/RgmlN8XX88bnfyRn+TfRGXpRVB2iyTiute+EXfsRSjBsg/zfMyXXtUb75UEoRnYWsg9P9gBiV9PTUmJl/HqJfIbWuoNQ7G1VFxB7WuSDOwERmBQCYqc6zGxX5DsahNafh4EBZrZovJveiCjlEDPrE79tALHlE90GnZnOCt/S+yiJ81iUSDPYVAF4qpUifpjMvo3/74mSMwYAB+bOmBNdYn3LQHw3ofPbFig2dk3YWO3Gpz4AF2HQIERIcJ6ZLRj38QqwM9rTr0dVbJtItTU0WQfmQkQeZ6MkytNRrPrN6NuhJnKi0RVs/lr9aB3nl+lRzH0RZAfXTUbVkIY0pCF5MRH2vI9INa4DdjSzIdB0j8n+jt/M7O4jUMLgCj6VALGhAcZuSEMa0pCGNKSiJEGheVHg5lcAVynBqxHDzElmtkAYGR2BrogZ5DK0z3appceVtd0POWX7mxhKiYD3DYi1eiUEhnghnLI7IGNnDNtKcmDMyi7nM/tbh9PsTORUWgW4KYynXxAgZldKB83uJoDR3dHX9J6LOLY3jns80d23R4HmeZGT7nETizju/p0L4LEm8Fd3H5jdb5W202B0W1M569TI649AN7MjZrWt3H0Fd1/e3VcG1oiDbk2wVTVx9w/RwXkwcLg1BWTfDCzqAmJNdpI5+9z9PXffCAUM1vASSG282JHeFHBzNgL3XeDuXxdtw8TieRVi8fwWvfedTACsTM9IBMg+EVgtAknpfVRyllyOgk0dkz7PjFgsHk2C3negYM0mLsDI8mbW0cXwvYsHCLeaJE6ZXdB8vAAFhZ8ys6OB6dw9Bcn+wwLYl4zjhVBA/h/hVKsELs6u74mcv5e7+/+5+wcImPYOChZm9/YocnBu5e4fF1wDUkfTyma2g5kdZmbrR0DyJQR+uQPoZyVA9u/IaY+7jy6iywVMPQhl4x6AAC+vuPtPoesn5DC/GznuOsdPv3AB+75J7jnPanAg8JqZrVLEEZb/vbt/EAGuDABYTscJJvaoDHzbATEP7osY/TOG4rbR5rdo7bkegUtXRWxgYxinqj23CF73QUCNPsBl7n6+i3mhjZcA2QdReazV1JMbA53NbCUz2yxz8MbBuz9wP3CsmR0a7fcGnrZSElRVXVOanjLXZACy/8SYzvY7R0HbDiipoXV2j7mAWhGgzTZovXkU7Z9nEGuJmXULUMDuKJjWHgFY9vLxBL4cH5J7P9sA9yDg9fsIsL5mrNm9UOWRfc3sLcSmNwQlPdQMROZ09kKAnssRCGRllBxyGdAt5tMdyNm0MQoQzVZv35J7eQbZURvG36k9NDsC/K2Tfx9Fg52xX/wLASB/BnYLey5LLGhtArKNJEkGrNFmdo//Q0kgQ8xsENrjzkHjuKiMjmf6HWLW2ifVETb0CEsSqCJIehZinlrfxIYN8FvsD6+ghJ2lUILL/PG7bCzth9bbvd390jL9yoDdRd/RQcAGqXMy9NVMAJlQesrsa3OgRMr7EjvntvhuB3d/x8wWNwWI3nT3xzyqwNh4Alt5idkbd//J3V93lYPPwOf1JBjUo3coAnfth2wTq+O336AkqjuAG8xsK3f/PZ5hZmcshQDfFwAXecLCPDXpibNzZv/vixjJ+wL7mZKL/ocSPt5BwOl30Jp+LHCSu58V+guf41xBgLMR8Psw4CgrAbKHo/17GuAcM9sgPq93T+gd/ZgPeMwj+QMlhByPnts5MZ+Go8TEU11Ar4r9ye1vG8QzyYK/56Az0NC4z6xEfHtk5/0f0KbIs8rp2RAlhV9gZoebWSeX3+EABPb8BFjWzNZG42QIYjfPGHmbc8YejezlBa1MYm7Mx76mClVNpOg+5+6fItspC0x3z3TH+vUrsnFmR6xnhSV5dmuZWFBnQs/q5fj8bpRUsrm7v2RmSwJXmxgSC/WnJXSkYgI47IgAMANj3/wZzcfMdzTExCKZtv1Z/L7SmO4KrGVm08f5amfgIBPQabxLzPGT0HlwIMHUG7ZNdlY8GK13GwGDLADZ8fsxtnW1/Tp5P0taKUHiZ5Soso2Z/Qv51jZ2kSy0QfZhF8RYXbYE+8TQMy7i7iPjmf6WfDYh9uxnke37MVoXM3/CWL6P2FcGoz1gLzMbWM/5pcialoyRP2Lu7Mx4njsTS+K8m4EIz3T3h939LmRvDgUONlUzAREUvAQc7O4D4vdVk4PjmqzPK6Jzw03JPno+es/nuvvXJh8wrgT7Lu7+UB19aRE9qUTfn0YEJB+hdahL+p7d/XoEpN3f3T8ruq9FnzojoNXtQAcPf2rM9fPRuP8W+cNuQj7F472U4DhJjbeGFJdkP5grzmYfIl/ijcDKZnZZXJdVQuiIEuu+QHZiXXpCXkVr27HozHRc5uPwSKCLM8FKaC9a00VeMCn6jdY1s+PMbFjYu+1c8YO/I5BqO5Ss2Q/tIeeiSkAZ0UbhuRN+lfOQ/b+xu08TevYA+pjZNC5Sl97IJj4x7LipXmJNewh4MMba9Shmelic34eiRJrBcYaZqsRUFaFJjK2aeFNA9lYo/vO5J5VJJwVJ5ukAlOS3bfy7EPJf740S95sl1eavu5+EWKuXReMqA2S/iqqs/kaQV9TQkSV2pWf5x9CZ5LM4i7R3xex7ob38b8iu6lCPLZDc+6iw2+5GZ/bdUSLDT2bWzsYjgL0hDWnI1CFm1inspMuAYSbyuA+Qj+UaREx5ATQ5C2e/XRT5V04Dngjf/lQjE93wbUhDikpLOAUsF6hsKZlQfWuJw62ZTZMEgVpMJuR4aKHn1iJjrSXfz5QyR02AuN2giaOpLTpgpexMmWMrY3oegsCgQ1AZuGdRlmxFx5YJcJeNt4+BfyEAz2ATCBp3vwQFpz8CLjGz4aH3ZGBAGrjNH87K/D3KBGD5Hjl+hyLHWAbI/hkBQHdGTukbkJOonxdgZrGmYJHpEfPXVa6M9aVQ2cfrUTDvh3huiyf395yLBaAqwCLnNOuBAE8vIQBNz6S9M9HB9igUmFkkftOaAKyUe271io8NyD4r+fr9ROdkKVYCSnzk7v+Nz8YrAMabArJPdvdhmZ4C9zcTsDACOHRDTpg9EZPNCbkx9j0aL11c7OW12t4asSz1dJV3zthp2qPAd5b4MAI5mDdzsU4ZCkqtFnrHAH0L6OyOgiWDEcBqJQQi64+AxlBiLf4WeMzMZk8Cf88Dp7n7IdFeWVBUBL3bo6SMT71UBnwEAir3diV/bGhiHcfdH3D3m7J2a/Ulmae7UgLQ9EfO5rvD0fw8OrTdDxxpZkfGb+spl52NncEIXLMjAmNnzC+/J2vcEeg9rpHeY/7fnHyN5vKVZrayN5OZoJIOE6PHlpRYa0aHA7QbctAtgJz/GTNbBsh+HAGpl0FJAOemz6OSJPf+HQKZfAqsbpGg4KVy3Bkg+8C4tslYqyW5tXp7xBh8Mwpo3GNifm/tAob3R2PkDLSeD0OJPHdObXoqyO8oYDYXNHlHo1yJEu8D83lT5sha/WmT9cuU5HUwcCFwjLtfHHbO+ihAfa4pg/1+dz8eWMvd+7j7ddHGJFE2NXk/26F15hnE6H0lmvN/N7ONXEDCbRD7y1vo2fbxUjJYIcBa2Dq7RPsXuPvdLmDvSMRU+oKXQDxZ9v81Pm5lIV9EY+s8E0g+YxjohPaMbsDXzX0f2X7sql6wLmJrOcVUOhu0fq6D2KxfLdjsdNH2/1DS4jQIvHkpMNQDOFhLsjkY4/9oZHvlbbmHgFXc/VNLwHru3g8lPnZCFRQ6x2+yufQq2g8Hhl2X6dwB7cdjAbGT8dYdJV8sFetv0XdUL+BqgulJdCwRbU+LEs8y+2UEAnBtGnbOMsjOWaJMWzXZ/mvdT/6+yn1Wa60bl7NpnK8ORkGr1ctdk28/sUWeQXbN3YhReovsfs1sVRR83w0BAU9Lfzs16cnOElYKAvdBZ9O+CIwwj7u/hdaMvugMORAlA2QJtTWBXfn7cTECD0Hg4YMZG5B9BqVkhObI6ggYuDKJz90FIBiG9qKn0L7zNLBH+twq9SeZo7sg5pl5USIWCGx9CvBXM/uXmW1kYvfeB9mJ17jYaosmgGV67kC+ju4omfVlU2LiDYjdcxTyU/wDsQkfUaQvNfT/iGzf1YF1LUBw0WY7xLa7CnWAh1LJxl+cAwciAPMlZrZx2FCj4nxkyD7+uRk6dkRAt3UQk/j7CIB/JwKJZJXOOiA2tdboWU5SOkJPKxdb+D6omtFWwFmxb/5CCVTaBT3HxfJtlBsHMSfXR3b0uibmx2HIF/Zj/vrxKC8j314rYDozmzPu8XcrAbIPQmO6Fwoyti3ScG6/3g69n/PNbDZXEm1f5GNbA1XWet2UOLUjskcv8yBZmFT0VPpsXPfx8a3H5Xs9FJFnzJ3/PteOoXPV28hv0L+Ijtxz38/MjipwX+N97kxkmQYBkj509+/NrE08l3dQQtZn6OwA8m2f4CKoqHpWzO3RWZ8NaOfywWV26ArI5/GSma2PWGPbxe9ezrc1EfWkfvGZzGxuM5vO5I/6HTFV74p8VVcAXdPfuPuVYY/U60f+EjG/f4OqZcyXteEC4V6BKjV1R3t2j+Ts26w9uyGTjpiqOz2HEo/bewmQnVVtvcHMFjWzFVECeXfgVo+qenXo6WlmA9z932EPno9s6gPQOXWW5NpVkY/qTRd74niPJTRXkvV8Z7SProz2j4NQNcj2Lr/eSYil1tA63gb5jU6J3xc9i2Txv42BfwLD3f21+HoxZMsPc/efTX7yt5EdcmBy3VQrif1+ubvfi8hI2iL/ZeZL+gr57mcjYWqfGsREIHOvme0DzQZkb+Duza4aMiElzmarorn6bNhRc6EY2dXAXc1oM3s+rePvbmZ2DiIj2ctK4PZ+NAVkLxD+tZcRs+sVNfRcDJxuTcHPHdG4nRv5J/ESIDur5vgKsm2PrdMWSGUZ5Nc4BVVR/T32ivNRTG6ruMdGMlZDGtKQqmKKfz2BfAproOpIj5vZdu7+CfILXwtsbyVA9m8mQp+FEWHjdsj+merOHK1Gj57q+tyQ8SwmYMgEY1QIY6MNMIeLjXZC6ZkOBRIeRgvCTxNIT3tUBmoO4C1vCmwbLxMyc3KZWDx+SD4fbzqivenQAvwfd994fLVbRs8Ef2bRXks+t5YYay3yfhJ9HSdUX6L9Cf7cwjC4BQHf9vUSyGgJFIBexd3/Ew70jHFqJ8ScsxZi7hru7kPDaXstcIhHWc4qendHYKH/oCDZmsD3KKB5UVyzHnKcLgs8iw6fd8V31RzbFcdvGFFHIODq0wh8mZVhngcFXz9w94er6cnrCMfRz+HUehsBnR4CXkBOq5/M7Gzk5PoFsS0/V+0ZVbj/nRBY/B+IjbwbYj3s6wHmjeuOQgfPSxEzywQpyRTO7r4o6L0GyvKbJAyt8bzHjGEsnhB6sjZi/6/KimwCJh2P2MD6ufuNyXfbIYfJbfHdm2V+XxVAaAIRD0DBiuVRkHgB5Kx5FI3reZFjtrsLoNQOMYNsg9aRF4r2O/737yjQtbe7fxXf3RM6errYpDMg5ZrAnNlaVa7NAgHQ2xGj93poLi2LwFYvR+D2BBTQObU5c8eU8X9DtHOru/87HIXnIGb/3eK6ZVCSySYIePNiPWMptUfNbC+0XzwN7JMEzVohBryngaO8jvK/JqbDY9BY297dnyo63mtdF2NmBnf/MvYOj+AJJsaPm1EZ9bOBs8NWGbMP1aOrzPVd0BjO2JWPTYKm6TNdGVjY3a8p2naiYxvEGnwyWodXQ3vtC+iwfkvM+b8gAOGSwCNeYlYsBPSdEvRUen8x389DyVK7p3M+9vI7gZfc/cAC421TF1NzavvOgdiJB3oAqZLrV0Fr3TnuXhN4MLHFBKy5l2D4zuzFZA4D7OTuryb7TScXAKzwOIhrp0UgqKvd/Zj47G4EUM3W0VURaOHj3G+bvV/GunoCChqejxJz5kBOsZPz77CZOrKxsRoKGLZHzK7tUPnrG1xMMbXaOR2t68siG3cBZC9/Ffe9P2Jf/r2GzdoEBIMA0gd6sLmVuX4FSnvA0OTz4xAA8z4EEnkz9oa2mQ2c9R+xUa0LzOSRiFRGzy4I0PcQYtB7Mj7fCNknKzEe3lFL6InzyMXIhv0FJeMMQMDHJWhq5xwI9EDs+G8UaDt9f9MjgGMnF3Cs6P0VsWnGqx4zWzs7B1W5fgPko/gwXT/MbHkUwN8YMdTeYQLKbwp85HUyiU8JenLPdq74OAOMZNcMRexwp6Mkl49qtVWjPz1QQP5Gb+rj6YTG8SlonJ/jpcREc/d6GPvT80srlAjcH7HDHJX1IVlXx7r3Iu8n5vsNaM5fnd1vfDcTmpNHI6aw31Ay1UWeVIMq+MymR3vocHT2+RKds49HiThruPt78Q7bxX/feSQa1bOP5vRmz2c6dCbpgmytW9DZaGP0XI93MZQ2S3LjsBsa18uhhJ3vUQLRUSiJ7ow6226LEkzvR3bbD2i/3h+BRtZ29+fNbEYUaD8H2d6FwQ8toSOnr50rkDZz6FsLvZNDXCCODgjUdRPQywtWBYv7uxqdZ6cHDvdgvB9fkh/zpiSt5RGg42DEQDvExZY+5uxjYg29CLHbX1Knzu3QvOkHPO7ujyfrw6ZoDv+bEtHDoohRPktkKDpPJ5ie3BxZAJ0R2wHvupKbi/hR6t2zm6unDTAq+j2nK/GvrH4T6cbpKOHjS5TMsFA8lwML3uf+qGz9Hu5+eZH+msCJg5E/92bg0LB7mzV3JpbE/vYIOhOs7+7fWVPf+PWoykzX7FxVo71FgY+Td70J8LK7fxS2/lmoMtQZ6MzTPc5WndBetxTymf13UtCTPaNkrGyFAKp/QayUIxCb7hexjndFvr8fEcPms0XPhpXGm8mPvyNKoBqG/O9l7Y5abTVk8hJTPOtBIKvy8KAL3DcfGsd7Iybs/6IKCk81wz6cFvm/tkB+o2Pj8xlRRb9TEGv0Ncjveh2wpYd/cVKT2CuHIaKjM02VAB9B4MhXgBW9xCae4RP+SM5GtfanJt/HfvU48D933zw+y6qZbBLrzmrAnMAITxiKm2tbT6liZgch/3gnV/yxPVr3PkDV7qYqxk0z+zMi7poG+YqyWHLR83+6d01yYy32tndRxeihJl/7E+gstJu7/2BmfYE3PHzdNdo7Dq2Hl8Y6uSsC9r8Tl/wZeA3Zh1fEb05CVaod+JtHEld8V2lPbgvsBPzb3R80sVxnpE4bovVyduSzzIiP2sc9TY98lpe6+2X1PbEx+teLNlZA/r2dEcD7CQQIXwoRrTzZnPYb0pCGTB0S69HLaI08DK2DqyAf1DLIXnrbzOZFRGzbIoLG/UwVvC5AsZU1PHANU5s0wNgNaZbE4auHJ5naE8JICyf8mcgxbsAlKKhYOJhWUM/0KFj7NXJYXuBJMHY867kJGXQLogXsHK8B1KxTx3QoUNsZGeD3onJrr8X348XJYmYzoIzr+ZCztGcRY7cZeib4Mws9LfXcWmqstdT7mRYFMbugAMpNnrDGjUc9LfLcQtfaCKyzHCoNeI2ZrYEcp50Rg+yoLCiV/G5mVwnDVsjJfgVypvauoW91dDA6Brje3T+JQGtfZMz0rRYAqrb+5g7Ty6Lg6fzIIfZt9KMiILuIHlOm8JzAQ+4+0sz2RmxMBycOqg0QG8NO7v5IfLYXctZNgw63F1R7TmX0ro+e8dku5u0/IeD3VyiAelguONIflX4aXI+eeiUCfPNn/ZwUJDcOVkGBuIVR5vi/3f3zWmtcro12FcZIi+jJXd8XBTimR07ee3MBue2Qs/g+BMguyuKZtd8djbP30Xw8FK0/o8zsUBSw+QnYyt1HRKBtExSoPsbrDHqHo+ZV4F53Pyg+G4EcJJu4QFCbIqbLx3K/bW5SxnHoGf4PAY3Xcfd34jnughz3hzY3OGgqJbcSAjB/Ep/diwDAO7v7c1YKHC8PzOVikK3Vbq2xlIH1bkZ2wxMmoMpmCGzW093vKaAnBSJtiZ5HYUB2bkx3Q3vIixWunQuxKI9E7+Hj+HwOSolCg1EQb1S1d17tPvL9ir+7I0BCezR2b4nPNwUWSMdynXqXREkR17v7QBML+CMowWltBBzsB9xcYY8p6jye7PXkxspiiJVzduDh2F+7oPVsVpQcMTSc0n9FjuPdXOxE1e6/O2K6HAM6iLk+Lwo4DXb3frEWZQyR7VBlizfdfetaz2hii5kZsoH3cffh1hQksAdiRN3L3a9M1p4m/9ahaw70bC5091PLBNP+hAJ8t2YBkRrt1bOerITYmbZG4JWXEUB6aHzfrD0hd10GjFsRJUP+gYBwd7r760X0IHDgZy6QUAd3/8VURvs3lCw1DTpL3OcR7Izfpu8tD4I5F9gztfPK6F4s7nUzBERIbcLjEHPtXUB/rwImrrF/9kBgxcyG/zT3/VIIVNobra2F31FL6Mk913mQrf4EMMjFeHgGsntGojH9qCnYvjkCIh3tUZ65xv2nenojNsBFEOhxCHCbR/JZwTZWR3vpu1WuGR961gA+cfd3qzzDPyGG8u+Av7r7xzm7YW2ULNMJ2Nrdb8zpKDoXpzQ92yMn/rwoEHgtcJ27/zO+vxCBRk5FdvcntdqsoKcNSmBYCY2HWz0BiJmSdy5HidWnkwCya/WnwHo9AJ2x82DP5gKVW6Fx3BnYxhPAIZCxjLdC7+b/2TvvcCuqq43/qCqIqFiixl6WvffYYkUFe0NRRLErop+KDTtYABsI9t5j77EX7MaaqEtjSdQYNfYuKt8f7xrOvsMpc24D8e7n8ZE7Z2avmT179l7lXe/aFAWYP/NSEmfR9WZztI+tg3whr8fxDsgWuib6XiOnVzZqH61yH/MiEPEWaO/5CrHenul1gocq9J/O2wzkvSTS404AfvTwwdQxr3dAiStLIyD383F8RuTX3hhVQ3sAgfPWjOfJ2BWLgFdbXEactxnQzUs+/wyQPTNK/NkYVZsa7AIvTwvM6QkwoUK/YxGo4G/xd5ZA+x3SBa5x9++aYx7l3vEGyC9xZ2JfnYbWoZORXpyRfqyMSBI+TNa+ouO2AHAb0m+GepLoRySZhz6/MUpSexLp1/dk5xX8TltLzs4ooDorSmq5GyWCXFPjunTs9wD+61X80c0kZ8+Qc1u592VK/H4QAW/Huny3CyMt/B9lAAAgAElEQVSQzFFIt/y/MtflddAzEDC3LDDG5PtcAfkkxwKfhO5bCZBd6NtpzVZj7zsFEQ8ci6rbfB17z/Rof/gSVbCotZbNhmIwnd19RxMQ6iK0v12fzPEFkY93JZevfBoU4B+Gkp0umxLklJHbFwEPLo5xORyB/+9GyaQfm+ztFVDljw7ACu7+cYG+0zk5N9KjfvBSMv/syC44Hvm9BnoLkmi1tcnfEpt9PmTfdkIJWhkg+48oyWxrpOdv7gnIuB69NNbNw1Gy17keyfphI+6FEhw/Qj764e5+fDM9ZrM2E+nFcLRvHGHy6z2OAK0vobX+SZTgNj7zTRQZr1jvv/US6HJJpDv/D1XV64DiBrcjX39vFxN/DwQwfhdVu6y7OsvvpZmA83ch//mZSIc/Gu3P18U5v4tEk0RHnw9hKLqSxFkLztkpeqxCz3gGeA297/uQrbN76CFLIVvuTmRnVEuS6IRspQ7IDngE6QW3ITvko7CD/g8l7B3o7jfHtSeh+NlO1fTa/L2HXr4VWjcPTfwCG6M1sxNKnM3iMBkguywJTwU5k7xnU3LpLaga0TuIWOrQODYvwgGc4C0cK29rba2t/XZbrCOOqsZtmfpmTRVUr0K2xug4lgKyb0Xxqk2R//B3CcSGNjB2W2tEM2WGP4Gcv4e5+4g43qyAbBNA8BlkqLyClIU9EYNVTRauOuR0QotCZ1SG9oNySk5TlVITaPVJ5NS9CmXFn48WsXWawzFiAhQ/hwCr/0Rjtn38e5S7nxPnNfVZZqCUCXMGAqo9iMrTft9cyntrjFnIaa1xa6251lrvpxtyVPyIgmPdELPDMe5eqNRjQTmtNW75QPMxKODYDzE7P4lYMt5JzmuPDKZ2rkzsrghEvTnKxu2T77uM3D1RwO9PqGRQCjQ4FwFaB7j7lXG87moEEdwYgsawE3pnhwAPuPuXVgJk90dzZwsvAHaPoOzOyME7CJV7HY0M1rO9xKi6HzKWF3UBGjoixgSA0V6B8SwnK3U4d43nmcbdDzIxlz+FmJVuREGOBZFRfmW1vmrJ8SawaDf3vtjUFoGH4eh7nQm9rzuBU9395SrXpWMyCJWH3qySQ6A15FhDxt790Hz6DwqqvGwJe3cEQi5HQKLGlC67EbH+OZpTzyS/HYUY2x5B7OwzoXXiLK8z6J30OQ6BJzYzsVYvRwnYNwsKtH+EWOFqOmdz47oiSpb4DrHePxvH/4qcM2PR9zt3/D0i5NTFCpfI7oj2n289KjSY2V3I4ZwxbK6F1trR6TjVWDfTZ1oGrZNdEKN0+n4yBu4f0dowMwIwXFDPPmUNQYHboUBGTUB2mTl9Egp8PFBBTifEPDgCvaNeXmJTzADZc6E197Si60vuPtZD35Yh1sPLvMRk2CvucdqQ8SlKhDwq0/frkRV/L4n2m2MRW9/jCAixe+xz96CA0BgExGoUG9RvXU5OZrZnz4HexftojbsI6QonIRbBdxBAqQdKTBpatsOGfc+DwC4HoXXqoOS3C1ECxjruPi5xGneL53rW3QdNSY76cvdiZvMT78Ddj4xjE5N7zOxt4El336kpcpLfzkYJbS+jkqjbuPsL8T33Q6DfQe5+b5X+J7Kw1hrfMnNyNgRs/tUjYbnS+lmPnOSaLLi7GgJkP44AYI/UujbXTy80h5f2EohwPqQfTIuCGneHrE3Q/L8K+CnRuwdSAsHUTP40AbKPRqWYG4C3zexolFzzMFrLP6/jWTLA4zUogLtn8tveaJ3+FJUa/tKUaPMjBd7RZJKzMdI1tka2wN/jPfRA9tABSMf+H5rjvVBSUL3gvp3RHLgYzdluyI64DM2pf1Uah2QPOxiBpjZx96cnp5w4rzMCu2X79qYuAHOqp16FnM8zIHDkP+u1D6YmOSYw6WUh4x3EmD8S6bYHukpPY2ajUbWhsxHwvwjLZvoOsyDm9CiZe1W0ztzkDQHZw9Aa3gPtfzUTanNy/gysgb7Hv0X/n8ZvI9Ae0ADs2ZhmAoY9hcZ72wrnzOVlqgnW8Y3Oihipl0dsusu5+2dWAqB0QDrwgcBaXqbqUJW+G6U7mJIC50JVet7O9Pwq+1xhObn32Avpd4aAhFliQKEgeOhKF6N19FMUbHJryG62GQrCz4N83Q95iQWtyFrd4jLivFlRkH4ZkkQ/K4E9eqBExD9SCr79nFxf6d0sivxbx7v7Q3FsI7SObAqsjHxKN7j7N7Xus2gzVVM7Ddk9J3tStcpKSUdD0dyfHwEjt3L32+KceubUcoh1eQdPQBpF+ij6flpLjikJ+Qo0Ni+i/fQUNEa7e+WKIeVYpHfxMn65VpazLtI5e6W2uImt6zgEXj0RxZwmSTAqooOG/nE+Yp6dE+1rhwL3hJ6WAbLXiHs5sMi305otW0/i3xkx0gdo/X0/dNPHkD/nPLS/zYCAxqOB/T1YJGvI6YrszrNQ5ceV0B59vpf8Lnug/aYHKms9U8g9DCVTFmF5bxU5OZmro2Tci1zJ2/Mghs130by4F62bGUN2VoGsLtIhk5/zaEr2wMvom/kk1um9ESB7DCJLmaIA2ab48kDEnNdilZCn5mZm3fM2X/hC7kSxn4EIkP1j2N0nokoKGWtu4aTDmKu/uPxDCyIbsTcCZB+ZnPdnNKf/7rlqbM0+AE1oJnDRAcD9aI17BMX99kDAoZuQT/xlYBVPWKpr9Lt49Puwu18X68tQYCOXjyiLT7yFwKBbeKny1E7Iz3iwB/izrZVvpkSmQYjkaU6UTHO6R8Lm76Xl9JQZ0Zw9F+khZ3opsbRofGVzVO3ooVZ5gEnvpWLM28zOQr4qEPv51qGTzIh8CcujGOK/y10ffWQ+7q4I39QD6WV9kK7wcjIW6yCipX8DO3upcu0q1fxDleQiv8Yo5Kca4qUk0E3RGjEN8nlkwO8Up1DLR5zZ6p1QlbxZUXzs+9hrd0A66Rvu/mZcszLSvw9z91vreZ621tba2u+nmSp23I/wc7u5GLAznXNxFCPax92vTdbYLAlwH1StcnX/HQOxoQ2M3dbqbLGhj0UO3ncQW/Fp7n5K/N4sxlUYRPeiD3UvD4YAM7sEgflWa6qMRNaCyNF8NHBbLBZLIyDfTMArXgIrNYXF5iTEuLM9Ygj92cy2RIGo+TxhaWqMnJBxBmI+2d7d/xnHe6IAbkf0rk7Mzm9kMGQGFGT6Nwpc/zcc2PsBy8Ri3CwsJrTwmCVyWnzc4trWmGut9X6mRaxYvyDGpDfCiX00Moz+lAY5miirVb7R/JiYAGtHo8STBxFA7iVk0GSly39F4L4d3P3+uG5ZYJEkaFWrbNlByGjs5iqrlAKGdkUBt++QQVZ3pqoJOHgJcsJeiMAW96E5ko3pVxG8OwIFo7Z29zsK9j8zClwegsZlsOfKy4YC9gyam9cjgM1RaH2/Ns4pBD6yEqtiTzT+TyHGs1eQQ/urcHadh0r2Hu3uZxV8ljyD7dqIofjBItcXeY7J1UwMPTcgh+nd7u5mdiRaZ89DQLFJnItlglxnIIbJ8yeXnAjYLYCAdl/HsYFo7r6D1qRXrCEgexF3f6PwgDFxf5gDBZtfR/vEwyQsZHFeXxRQWx5l5j/nUYax0vdfaZ6YEjyORMbKV4hhaL1YYzui9fVQxKRUV7UDM+uHHD/jo98JaH87Jn6/lRKL01do3bnQm5h0Z2ZjUOmijdEatDRykGXMH8cgprsTsvdZR9+7oLn1YzxPN+RIuiI5Zy+ku36EAoQPuPtT1Z6pwHq0PWKDqQjILjOnT0el7M7P/57re1pg/bjXL5kUkH0HYkVcu959NvaUUykFA/sh59s57v5cnLMJWp+XQ3r4RMBdnbL6I93tITObz93fNbMLENB/N5RYNz0CEiwFfIyM87pYwaZCOVsh/fMUtG+2R8HhdVCy27DQi1ZEwa/XUZnlwoEuEwPuILRmTgRkh94zAgV0+yEAdg8EvDwb6O9TUInZ3De2LPCNi9W/G3IUdUcB6cfjnPbIMf0gAsoXSu7NyVkcveeuwGNhm6yAgtzLE9+4iaVsU0oJLSMrdI+Z7YsAAlt4VAUoqkvk7q0qK2kT5WSOtjVR9aCX0Jp9d7V7A+3B8XdvZMN9iuyEj+P4/Ghdm4YSO+ZoFIQ8M+kv0w329gDBWMIIG3/PEqf/6qVgySIouWFHJgVkn4wSk2qylpcbE6QTONqXF477WwTtaV1QoOVoL7FiZeNYD7CrxeTE+LVHlWXmA94GFneB+rI+OqKA8oZI93oAGOfuV6eyCjzHIsieuwqBUr+K4++hZLoGDBvpPZbZSw+o9M5aUk4j9+2ZkR32KPCiV0jGqnQvU4OcXN+zo+S4p9Aakr2f55FfYUePAGEcvxz4WxFbLvcON0AMaU+5+5MmH8lfKIGwbnGxv3dB++1LaE2v11bYFa2rb6Kk58VQMOJsLzFbnYb23NPjeGNZvqdBDHozIga9j3K/LxTPNsaDzbqRcjZACVs90TeQERN0cDEgb4be4RpeMBBtZsciMMutRW2JamtLFf29MXLSedMb+Uf+iHSeiklUFfpaFgXaByAAX2Zj5Suq5avT1APCbXEZcf76CIi4DAKMZj6bDJB9OqrOMT1KNC2UoGVmM7r7Fya/7n89ymLHN5olTRyEqjt8G78Z8HWRb6eMPbYtAj0dgfxek+jlVgJkv4/03pHZuNbb4vu4BSWe/d1yYH4zWxtVXHizYidTgJxkzXwLsQJnYL+n0Vq3o5dJxiizl9ZikW4VOXFeL8R6uIq7P2sNQcerIhuuPUpw2z137SQ6aP5+0LdwA3ovdyH9bDSyDw5GiToZIHssshM28Smkop6Z7U4w08ff/dAzt0c+j3tQ9Yj74nlvR/ZpF2T3dkLfzrA65V6NQEJ/QxU5vraGAKRtESnLKkhPeAlVoCrM+NmacuLcvZDevC0iDXgaJXkchHSo7ZCeeqgrZlOowkiZ/eovyL/2Ckpq2Q75wLdz+drmQDb9MJSA379cv5OrmRJjT0A+ypO9CQlrv8dm8kn2R7GirEpGZr8tgOLq36O9/CEXgdD0HslORezE8C1sDbzv7k/bpIDsY1GC2Kme+FZyc3WKAWKX0RG6uKpxZBUStvUgkDGzIcCW6Nvaw6NSSAEZ3ZFvY3H0je6O4mVjQn/qhnzY+6OKNycj3X5jBJY/wX9ngOJ6WzI3OyN/7LyoeugL8fsUM+daq4VNOgzZ2PMChqqDHeNVqqXlvtWBiEhrEy9QRbS5mzVM/t4VJeX9A/m7PXSP+1Hy19lIR8kIBXoDa3qBarhWAi53RUlaiwLvARbrZBqX3wd9pwu6+zu5fupiHDfhnfoi3fAqtHangOwT0FpwVGZ3FWmJjd4NkdnNi8buJWQTH5feb/h6FkK+1/HA+j6FJWu1tbbW1qacFmvGuojw8xXkI3w1fjsTEZ8skaxn2R49L4pnnluvn3VqbO0n9w20td9cWwF9eDcgcOcDwGAzGwwQG3qT5lUoVgMQqOZ4BKzK2n+Bt81sCzPbPj7oprY/IrDVc7FIbIeyYc9FTo27zOx8mPh87eoVEErX0sjZ/E8EIAQ5eF4H9jezM00AwkaNY8hYAnjTS4DiDqE8H4LKlg0ws/2T8+tqEQD6ADmp+yJgE8C1KHB+TDg0mwxEbI0xS+S06LglrUXnWmu+HwRo6I4MvX/GPf8HZY63R0w8zdVaetxSw2gNE+AKV3D5OMJZi8Z1LAKUXoEYT85CYJH7s/7c/UUvCMSO9iwCPh5pZtOFc6Zj/PYFAk0/j5xodTVT+bhByLF5GhrHm1FA6l0UFN7MxKbwNQpGr+0FgdgALrDLyyhxAaCTKbCd3UN7BFIbhIJ5l6Bva2hqXJabl2a2spntEYbwhAiC3GoCZN/jCpAaAshfixwNIGDme4gZsyaLWv4eIvBwJSXAaqGWm0tLFL2uJVvyPayHwAHXuIsVE7FPvYnKtP4Ya0iDa8sEufb28gDp1pLTKWScDOwezgZciQpnIjDRaDNbMvrMwGBvxPVV94l0/YjrP0XBml4oOL8OcJwJfJedd6W7743AZUd4bSB25+R5lzOzrc1sTTObLc6/jFLC2+0uILYhho6zEItPTSB2+iwmAOEZiBVsTeS8GgscYWbnxXNsjpKfDkLg0u28IBC7xrr7PPr2n0Ag1Q0iONQROcy2AJ7x+oHY2yIn1rloHTgGmB24zMQYSjxXxtw/O/Co1wHEjj1hkJmdY2YbhPMMV9nDU9DafZWJGWFCNr/KzOkzSeZ0fq0wsw3NbDUzm9PFdn4f0rO7A3eYgJ24wIuboUzkeoHYvRAwdIS7Z6BbUIDuRBPzFS72+N3RvtfLS8ynhXUsU1LGRcAasX6/G9cvB/zP3f8Tz98NrQ29gcO9fuDyVCPHzNrHerYHCtYOd/c73f12d18f6VdHmtka7v6Wu1/n7n3d/SSvk3HIxTx1FkoEO9DEMJLpPUORXncncrI8gNaOU33KBWL3RYGuUSZW0K9Ridy5gGGmYDUISLAe0oVeKiorkbMrAnI/gr7RcWa2pbv/DQUinwTONbPHUAnqwQgoNTK75woi/osYBsaakiGyJKKa+myqO2X/rqLnN0XOrzG/HkNsO6vEf1XvLfrf38zGxjwdgMAaz5iSS3AFNTYGvkaByRNQACIFYu+E5uxENkIzmymeNVt3+yBgyMvAPaYSotn+fxxwNXBBvMfsHo/whBms1jiUaW8ilvqnUEAFpCcsiJIpVkeA6Uzer9nYTAly4h39gvbmpxDY+nAzmzazqdz9Z3c/A+09y7r7vl4nEDtaD5QM8bSXALh3Idt+L1dJ+DnSC6rspdXA8y0iJ3fOCiZf1NZmZrFv34MAkt2Bu8OGMQTGWQS430tMuxX306lRTu7Q9Aic8Gryfu5G72yAK3F8iUTv2cULJtXm7LhrkY+nc/z2FQJFPYMCqgeYQMc7AdsAHxa1FZJnWwvpUichfWlptC6uBaxnAhni7ochffUwFBxtVHMlW9yHkrF6mQLI2b10Qu9mdbTG1t2yd+Xu9yE7axww0sT0iivI2xnp9B9Tsrtr9dsDVQ27ENio6PhWW1sq6O+NlTMhefbbkQ/6PbSPLFmkj+T6FxE44GrgaCv5EMeHnpfdU4O9t8g62lIyKu19Lv/WaSiB8ywTo30mZzqk8x6LkvhrArFNrOq4gNgzID/i42a2Uhz/CtmhTyG9cxsz+6MJtD0O7Xe1ZHRP1oF2pgSt/RHQ7ywvkbzsYGYDTH5F3P1Q5D8di1jRM4B7Y2IbryDf17GmKms/W8k+nA7YBcVQpm1E3y0mp8yzdkPxn396CSB9F9Ktd3X318xs+fQbqbKXXpSc0ypysvNysh4HXkXzubsr8SxbL79Bft+z4v9pP/3J6aD5/uN+smpFz7j7v1wg8q3QvnMGsGXI/QzZ+Vv7lAPEXh9Vw7rFzKYxJe6eiqrdrYX0gUWQXbVp6I+90PMdgpIdtvYAYtexj3ZHyd83owSq800+8V+TNeMv7t4z7mN5oI/XD8RuFTlJuwQl6oLWlfsRIO57ZB9+hHwtF8f3OrFV092TeT8r0s9GIyKC81DC5rbIF35p3POHiNxlKPLJTVHNVanuXKSLHZ3Xz9taw2YN/budkO23IfIRLQsTbfYOsd8NQ7rwMGDD+C6zJKdKCZl7hn6c6Ud/QH7WJ81sRVfST4e4/i3kE/0f2otOzvrJ+SgmN9t/h+TPrrl9MYuzLYFAkP+Oa6ZFYMabUdJTISA2gLt/6e5rIt9GfxRbusgD3OnyVY1CNsT+yIf0EPLBD/EAYjdSB/ldtEx3d/efXL7RB/33DcReA+05ZyNin5UQIU4Wax4Ak2InyuhTI4A9fTIAseP+MiD2dURcENn0Y81so7jX9VHy5qYobjYcAfJrArETW+rn+P+3yK5+Lvo4yiaNy7+J4sKzlbnfmrZVbi38HuEJDkR2x7BYY3GRZRyHfJt12fJho3dBMTeQP3V9ZMMdbWYXZ/cb+tDxSDfoBGwY13co03Vba2tt7XfazGxaM9s0dMosTt0f4fVGmdmMZnYMWqf7uJJLM5sq26P/heyU3z0QG9qYsdtanc3MlkJOvWHu/nkYe0OQE+GUxGAoVMqxipyN0Id9lpeYCrohp1g3VMZnRlTC7qgIGDRW1pLRby/gDRScPx0ZXF+hrNRNEbBs/0bK6ITAj0ujQM07ptIx4xCr7utI6euB2BIG1Nl/O1Te+Q7keNk2FMrs900Qy96XqNzo5u7+fiOfZQBiO/0gOdYRAfRXQkDOfzbF+Inn6UgLjlnIaY9Y2Fp83KK/1phrLf5+os//Q4CKFVxZ5Gl25ZvAxe5+rFUpL1SHrBYft5DTL/p6AzgxCyqZylkORg7ZvTxYrspc31jW2M7IkFwZBXMvcZUR6oyc3gsghpGyJbVr9D0fMsQvQo66pxDAan/kTL8XOc5OQwxhXxZ5nrzjzhREWyyeYW/E7DvWc+DKMPoWQeyVr1WTEwrcpmhsLkABp7HR94jESN8SsXMt5+4vxXw/BO0V53id7GPR3xWIFeH6cGBXff78sfg+hgOLuU8EJLdaq3B/9yP2yPXi77tRIGJTV0m8NVASxV/C8VAuyDVJAKo15JR5vpmR7nEAAjZc4CWG7INQcOtjxFD6QmPGzZTs9T0wwd0/Sc4ZiNaJRxBD9t/ieJGM+B09AEzxdz/07U2LHC5PAIe4WL0XQA7a5RGg/Ae0T13o7sPz91tD7p/Q99AXlY39Io7PiEC3w9FYja01LrV+D1lLxfO8melnVirTfiUCeLRD4LsTaATzh4mF5XzEYnicKfnhSQSAnIYSYPnS5JrlvQ4Ac7yfk9D+/wViyj8euNJLwfzt0XrzB2R8jsv1UXVOh4zhiGWXkLOPu98Wa1lPNA8+Q2y27+WuLxqAnDnu43N3P9AEzn8arXUPowSAu5F+/1yZ6+vZD3qggOwEtJdmYKuu6P3PifSHtxDo4kjgz5l+VWVPmNrk7I7KsKf7bmek397v7nvGsYy1ozvShV5x9y3z/VVrlb5hU8nkAxAb4Gh3HxjHF0VJGxshnegZd7+l2vNMrmYC4F6K9uxHXEx3WRb+n5F+0AklK36BAm2nuoK/tfpO17a1ESD+LKSP/ITA7D3QXjA6HOnrI1DJa8BrLvBy2XEzs1nc/X/x741Rws98iHnprvw9FLnPCr83l5z2aH//xYIdvtb9xJ5/A3pHxyLmla3RugewsgdDdpy/DvCll4JpHdB+sQ0w3kvJToMRA+ya7v52zINLECj/P4jdZmPE4r2bq1z3okif70eVPa9IS+bYtKhKQjvgA0+SyMzsXASU6A/8WGS/nhxykjWmC9pH50L72tUuoFLdfp14bxPSOW9KmrgImMXFRng3+h57h/6+Agq67e65Sk5V9NBWkZN7tn5xTgdK5BaHI7/F18gvNpJIKkf61yleZ4WJ37qc/JpnZt3ifSyHklr6uvudJtDdkpTejyHdeJQnyc516LybINtxCPIN5NlZOiPdZ3MEnPsWMX2eXKnPMjKyvoagylnbJnv+XxAgO6sAkzJr/cmjUkO9LZHZCSVkbIKAcjch/aQn0lGP8yqVGIrKiX+vhfT0tdA38ynSsf8P6UOFdHeTb28hBIJfjqi8UY8ukTx/g4oLzSkn9+zbAUt649mRF0d6SR9UuWt0XkZTW3PIyD3zishP0wNVjLgtjq9LqWLOoche/RMC9/V292fivKI2yabIB7Uy0gWWBdZJ+umOfLA9UXLVwqjM+lE1+h2Oku1284YxhKejv5PQXnAmWs+6IF/isHJj11h9N/al0UhvuZSwHeK5tkTr26Huflm9fbeEHIuqc8nff0BA0TmRTjDC3c8us1YvgAB+NyJ7JrWd9mfSBLrWkpO+wx5onZ/e3d+PNWI/NJ8fR4Cjz0xEAf1iLPfw8LuG3tsZJXW/6xVYCk3xqw2Qr2YFF6AXK7HIZ+zfy6P99SZ3/zy5frLbVmHXHoKSWV9A+8suyDeV+Y62R6DMH1A1lrLVcao9T7n1KfTProjVeQRiddzNg6E7zpnWBQRosB9UWutaS06t5zdViByH/F0Xx7G1kI71DIrdXFK077h+PbT3f4t8g8dYKR7TEfnQr0OgzsxvOMlz1SOzJVpqX5jIIbZBa/VQL+ODb2ulZkqSW9vdB8R3eQ2az8d7UgLeVHHtKERwdHituWZmy6Dv/xFU2evROL4R+vaXC7nPhj76c3wjo5DdPV/83ihdt7lb6gOJv7dFIMjpEdvuIA9fv8lv9Fe0dz6MEsCGArt4yV9SDzv+nCg2+gWKbx+AqnP8kDtveQT6/gb4t9eIk02NrdKa9Hsag3qamc3qSYwqjh2E7LM1PIhDvMSQ/yTwM1ofUh9S3bG4lmrWkBF7Y+R72B/FsLdBPvZvUVJTVuFvHhQvfxP4NtNVCsrbCMWSskog06FxmidkXepiyO6M1ozBaG37R4G+03HdENkzsyF/9Gnu/mn8tjfSYa9ClWE+iuMV/aw15O6P4v99kB96fMgYjSrrnhXnrYZYbH9EdsLP1kQcV1tra21t6mphFz6P4g/Ho8qyv1iJAOJytIbMBPRz9+unFPtiSm5tYOy2VndLHEpZ4G4plLmVB2S3B6ZNHRt1ysn6b4eCQx8gJtdDUAnduRFjzyMuNsfGyGiHFo1bUHDpeaQkbQN86qUs4DORw3ltr5NNL5HVDymTX6CMuzVRsHgnF+tldwQw3RqVz32o6DMkSt4JSGncCRl538fxjRAI6jQ0ZgdlDuemtkTBXxo55s9x98HN1HeLjFkZOS0+bi091yoZqc39fnIG0h9cWU+ps7EjAhLd4O6HN0FOdt/tUeJFi36jJgDuVShwe60nYPb4fR0EIlkCOaQvb+yz5frNnrMLyoSfG4Gt7kbg5gGIeXtsnF+vI3gaYI4wxs+I+9/VA6BsZo8Ca8TphYDDuTVnfQTauNFV6nkmtB/sh76pc7xUXnYF5FxKgcmzpVwAACAASURBVK212HZ7IHaPUXHoEFTeOQ3CzIwCejOheTAHcnQN8mDHKTpuYYBnwPU9vRTI2xcFir7zhO0lmfd5J8bwkF932fvmbJmTxgTiuRTNr/VRMGspFOR60QTKHYmC7MflAhIHomDFPpWcMi0lJzeueYDkzGiu7cukgOxDENhsd28Ek6sJyHMMApy8jXSb25PfM0D2gyhYMAl4tUyf66Es0uvdfQczWww5eUeh/aUncoiMRwCVF02MNwshRgNHlSIKg7/jvMVRAGg64El3Xze3js+JmNVAbL7fNNZ4MrFGjUF79uwIzH4vAqn8bCrTvisKav6E1vSLPdhPC6wH6XxYGH3nw5Fx+CQaxz3QXpAxtO3rCetp7BlFgPNboLl8EiUQ0gvIiTkGgQLejXP7IEf98Z4EvGMtOAsFdSdZi8xs9RifM+P/8yLH2Qao5NO5sSati4Dn4xEwpCYTYU5OBoDqi4C178R4jUNgxp/QutcHBXEKzekKcrdA397P6Ju8KHcvO1J6Zx8gdszGgPF/03Ii6PIcYsnaOt5POwSofBKxw/UOHWhCIu9WFExbseh3ag0DnbOjIPRnqNz7L2Y2P9qzDyYBZFfoa4oKiJiYU29D38/xiTN9Ilgrnm8XtBe9jYDlN8R5RdfRORBwb00E4s1ACdOF7AUR8K7sd1NOjpmdggDDgzPdywQiPIo6gNK5+bgZSrh4rIXlbIl08EerjWGMWy+kZx6YjFt7GgKyV/JcQCk/bpZL7jSzg9Ee8AUCHfVB+9xpoY9mpX7HAne4e9+4bhHE4PWQu4+iCS1/T8nxmRFQchTSBZsMuGppOdawVOszqOLMYJR8NL7a3Mj1swoqXf1c/H0A0MXdTzUFzJ5DgKS5UEB/S3d/PvTHPVH5+L08YTUK/XBkHL+oNeXE8QYM0mjdHgnchWzUHVBi22nI9mmH9McBaN9+10ugxqLf2G9aTryfBRAQ9nNTed+Vkc7+A9KnvkFAyMXj/bxgcu7vFuft4+5P5Puu1KyUzD8W7ZO7eCR6pHtCcv7G8c9vvErSTCVZsb9cjUoWrxLH70R7TS9XAmpPtM6el5Pd1KT42ZF+unsc+jr+O9tVCatun0Gu/3SOrBmyVkFB8MEoMeayWnLMbC/gBXd/Jt7BgogBcxnqAEqX02lbSg5KOPrVVMUo8wM0FpSbgqUP8oIM75NDhqlixEgUVPsDAvjfh6okfWUCDx6A9u6MvGKY15HEEHK2QckSu7v7JSag98nou5kIyI5zT0IVTZ5x9yvjWDWd43jgPncfZwH8NTFjX4d035+BWdDasw/SH24DXnT3PvU8R5XnSwkqrkaJvB8iP+wfkT50qteZNNNScmKtXgmNm8e31AtVKfjIlGQ/JwJNL4DWtldMQPDdEEh5P3d/OOlzb2Qrp/Zva8nJJ1Tsh3TgXxFYcSxKnj0B+SR+RvN85rifI9z99DLj1ABInvttJxSQfgMlDrRHfoKD4/dMv8pKx6+Dyji/VuXVtGpL5tN0KOFib+Svecjdt7WGSUXbIb94BooqzJ6Zez8LoO9xWuBv7v5t6KD9kX1wK1q/xyN/8N6IHOerKUVOwWeeG7Gxj3X3w+Kb3Qn5d/ZIbdeie7ap2tlRKGlhtLsfYQ0TZjui+Xivq3rfFNusoV+yDZBdoeXm9KrI13k4Agx+HuvQFWg+D3OBpTsi/870qFLXTxW6z8vqg/SB19B7eDCOr498ng32azObHpHnPIeq2daslNEaLXwgSyIQopvZ5kgfuBklFmbx5d2QXdIJrX/Ho73hR1RhtpCek3tHPdz9U5Ov/VcUF1kIgTpv9Yg556+rdmxqbblxWxTtx58if+gvlfwgVfqYqkGlZnYB0tEHegLsD1/IMMTi/k5mF4cfZ3vEgvwOYmg/IzdmkxWInTZTrK098uEc4SU/dqZ7NEgGa8y3YiJeehnNsyWTfbgrSuBcFJH2PYC+2/5oLaw3lrArShB+Eq3D8yLdaQgiqwCtP6ejNeJwVwW3qolgJtK19p7DPpjZhcAy7r5S/J3tC0e6+ymmxMAV3P0hU4XBz+O8JpPotbW21tamrmZKns9wEK8g33AKyN4AxbsnILu9jfm6QGsrd9LWCrUsgAEqSxj/z0p6vIIAUQ+israHxalzA0fEx9sYOVn/ExCbwaXA9u7+mLt/4CozfzSwiakVLi2cBmRcJeLuQIHc3RCj1P9C8ensYtM5ESmCixaVkclJZF2GnIG3IOXuawTYeCMUny+RYTsDckAWegZKbIqg4PK9CLRzsJn1DEfNdcA7rlKy1yGQZ9Fn6GZmx1iUks63xBn+PpoD20dQoK5WTk5zj1mV5zmZZh63RF6rzDW0+U3Smuv9lJPjkwKx28fvPxElgeP49Ga2nTWi5Jy7/xrjdhct9412RU7XG4DzPYDY8Vv7uI+H0TrnqOTfIkXWnFrnhNO7Yxh/a6N5Ng8yxtZDzP9jk/MrBtbLHXP3H72UUbsEctBmQOxZkfG5MbCxezEG58Rg74cMux0QixJhzJ2IAiPDgH1ifd4GeBaxwTR4/hqyPkUAtw7x35JMqrt8jhxmHyAwbx8Eyroo6aeocT4BzaH2LjbANcxsXDzTdsBJZnZ2eu8VnBj7++QHYq8DvG1mC4ST5nJgVTSHF0VM1S+aMr03R+DpZ7whQHprxIS2byWnTEvKScZ1U6C3lcrIEuvCsSiodirQ35Sgg7uPQA7ixgCx10EGxS0oQaMDKtfaN5F9NgqAbAwMj2+pVst0pS3N7NLo9yYUQHnOxdJ6MprfV5vZMu7+ibs/6e6nu/udXgJit6v17STtXeA85Ghe0Mxm9lKZcWI9+Dti42hfjyMrXXdM4KfjEYh9dbQen4ICjveFrMMQ0+5WiLl6S68BxDazBU1JGRmwchMzW8rd30Sgk/cQoPhtxN7yqwtUcysqMT7GzJZOv9NaYxdO8wEoaDYC7f3jYhxPCXn7mdi5cfdrgI08AaaEg28ASYA4e4Y4Zwmkv12NnPyPuvsViI3qclQ+eRWXo/5+xApxnBcAYufk7AM8H463W11Bk42RE/NUd/8qvtt/xhhujvT3ms3MzjSzPPjvIzSXVqa0L0ywUqmqq5FedxOad3t6KYmz7H45tcmJ9gYCASwH/MUELprgAqueA2xqZgNiPmfvcloUGHobSMvQl22mYMZEeyqcsQ+iqkJPAVeaypq/g8pZjgT2N7ORSR8NShVW+naqPWut+2ximx4wFPhrkPybfO/vILbAbdz9MK8fiL0y0i8ORUDnDFDcOb7PzRAAcPfkmgbjUUHO+3Ht4SaAMC5Q9FC0bl9gAk1PLPFW5t5S/WMQ0iG7tIKcqxHwudqcWAWN21HAF8m4dYxrbkRj+jPwkglc2KClfXsuQOACy5yMEhjuREGSD7I1MuTdgvSEHU3MYLichP29iUDscvcUz9cLBVrPAoZ7E4HYrSXHS4w436L17mM0R/rFXC8CxO6KbJcnzWz1GPPMQQtKArkeJUesi/bN501B/B2QjnSFB0A69tKFkW6xj5fAVq0iJxmbbO5nlUpuQ8mmz7sACvshsOqhKPnwV1d56pHufraXgMtVdaypRU6s+XOjihv7h210DtKDf45rTkSAwZ7ADi4g9kwIEDUcJepVBWKb2QBr6DeagHTrVVCyyMfpb8lz/zGO3R3/1QXETscQBbUXMLPpzOwmBP7t7QJid0VBinUQsCC9vklJTe7+kbvvgeb3zmiu9/YSELsufb5M/ykD9WNoHX0IAUq+TPTdTpXkmCrlDEd20nJx3lvI5/ISmh89C+gy6f4zGHg1xrZF5Lh8M0cAb8Wakflr8ntrzebur6Jv6QbgjMweqXIPLS6jgtyeiDXtFOSPmhMBBVZEBAG42DH3ReClPZHv6OS4vpCeF3Z6n+j7tuj3QVR95hXg4dC5smc7GoGoqgKxLcqIu/uxLiD2psANZvZHFyPmQYgs4lUEQlnR3Z912ZKvIX9YTb9dkWeNuZKV8u2DQL/vAn+mVP1oaK2+WksO0hlPRzrikciv8kD0AQL7/YzmxUEugPQsSOc9A43nwyGnXazjSyA966LWlpOsFTuh6kX/QCDBG5EtfSWyvYbE30+gdXpmlNR2eiYjN96VgNjTI/3zMASAX5iSz31IXJvpV18jf/ZWPgUBsWHifGofds0INGY/AMuGrTjeSr6j69GeMBMw2gQ2Lionez99ke7+AGKifcXkD/wZuBDpH72AR9HadAmy9QoBpFtLTsH2CQLBDTKze1AC/NkogahuIDaAu9+BdNZXgcFmtnnoapm9MB3ykf9aay2ZHC29p9TGcfe9kE+lD3CUNSJ+NDW2nB6U+RAvQUQBnwO4+1WoCmIv4EwTEHlI/Peel5LLqukgmd53DWLYXRK9h3Xj+P3Irn8Z7de9TNWyt0Tr38Neqi47Jcy791HS8jExbhsg38HOKPFiSwTAvgJVWf3R5ZNfDvmrNyiq5+Te0VYoZrgl8h39F9gC+VvPBDbL1lNTIv3ATN/MWlN0+N9aS8ZtZ6Rz3ofW69GmRKhfLOeTTFtu7PsCe1Q7v6VbrXttBhGPAde5WJtTPMi/0NqwlZlNFzbN+PitA6r43R35SdJxPwL5gff0yQ/E3gzpIEORvfmzyQee6R7Ho8Sq40LXb+y38iGyDToBz2T2l5f8YC8g/+meiGBoV29IPFnkWVZF681xKLF1VRQnXQCt013i/VyGdJG+KEE99WOX87P0QHGH4RbxqKR9j8YHEwA/BWJ3jOfZ3My6ewmI3c5/B0DsxtjYba2t/c7bAyjucwsiWzsZ2C7sxfHI3j0Q2YNjLWJNba16a2PGbmsVmykrfll3fzL+rlUCeWnklFkXMZEsgIybxdz9rcbKqRYYMbMTUeb08p5klhaVAw0U0HMQQ8YvCMT1eCYfOTUvQ6xnVUvcV5DTADgVCtOrwIaJsdoBObevRPT+D1SR0RU5rZdFpU5Guvt18dtsSHndCoEDJiBgz36hyD6AAlTbVXuO6GsG5Lh+Ku7p6xrnb4YW6T3d/cJq766WnPy1TR2zWs9jAtONpHnGbbLNtRrfaGPfT1dkqCyMnLJ3AA96ifE4/66eQ87FPazEXt4fmNtzjNMF5DySOUNNZbj3pInjVkZuDwSMOtndR1QbRxNbeld3v6lGnysCr7gYeYqUfu8QToZ2CIw5N2Jhzhi9CpV6jPtbE62/f0flmd8Jw+NCxGJwIApMbEjJMKyXbXc7NN5HIoBfPiN3egTG3h8Bx+ZA61ThUr/JmKyMAOoLoeD9Jei7HJ979k4ILPedC3xVz7jNBPzg7t+bAr3HIBDeBMTeuyvKYM6YwVZ2sapMkdnkcT8bIzDxsQgE0QUFig5FbIHHoUSWDeLfJ7r7KXFtlom9FUp+uHNyyYl17uXoY1fg/sSphIn19BrkuBgCXJIGUGrN6TI6Rz9UjvsAd//OzFZCTufN0L5xRXLuYcBXXhB4bwoq7oPm1/fo29nZGjLC9Ivx+wVVgXilyBpSQV7KvH8wSmB7Bu2jWZnSadF7Wxytn5OwkxaQszYKiG6GHFVZSfhuSEcbjYA1B1S4vlLG/yxoX+7g7n3NbABKmtomXYPN7K+IIXOT+Ht2FHS9CQXUHi3wDOk76IwAB4+i7/8pBIg+ELGo3IoAN+cBY1IdN7cm/NGjbH1O1krR93jgTnfvk5O/FNqrn0CMYT/m+i3KeLksAmdeg4Drn8Xxw5AOuaq7e+y9wxFo5QaPsnk1xms6FDi/3xMW3vhteTT2E1Dp34fieEWWkkrf6dQmJ3dOF8QweDZKOMzYB+dHWedboz32GqQXrI/2mH28RnUOE2vwoSgZ4A4z642AOpeh97wyAsF9Bazn7v82MWzsE9dd6O57VpORyKqpgxTppzHNVE72AWAtFwCnwTuJ37+sVy/MyUgZSJ9CTP9Z0l7GdncLAhauRglsWKTv/kg3uxKxrbwRx2syV5fRP05HutH5k0NOmb10NqQH7oZAfH09GM6Svak9SnQ7F4FvLik4bmki6D7INlgc6V+XWkNG03nQnB/mUaq70j2X+y3//xr31QGtuXMh4FBW5aOmLtrScoo2a8iQ/QJKRlnaCwKHTIGnY9F61Q7pbddRKmM9HwJWrY5Ygp5E+kMvZCdk4LEGrIZl7IwWl5P7bTFkO01AJeV75e5nFqQbjEfl4b+rYx2YquTE9d1QpZKMQepIYEQif0b0zgYD36HKVzMg3eosL4EfKumHayA9qUG54Oj3HhRw3oZctRczMxTsvCQ/p6o8S7V1YlkE9OqGQIVrxH46DQITnYSqElxVRFbRVlQPbE45sZ8OQb6EgS6wTq3rD0Bsyv9Ba/wLVgdzdZn9Zzgqpzwqd15LyDnEoyKeCdT0C3CGJ+Xui7bQ6+d0979WOafFZVS59mykF/bKZJt8OVsiW+fKSjph0X3HzLZFlYuWQuQaj+T28owhe1Fkpz5d8N5PREkRVyb7/kjke7wPgbnfN7NpvSGDYHe0H5yFksGvryFnA+ApL+OnrnB+vppHXn4le6RV5OT62JwSQ9/JnvjrTH6Cnujd9EDJ9u2R3jjKcz6d+Hd3F2nK5JIzH2LyugvNtcxnvU4cewwlhKdMiOO9Tib8mNMLIsbvY93973F8ITSvlkFEHyfE8byNMtmrDVXZY7siMOZgpD/1dvlJU/26L4BHskQdMrdBvsORyP6dCekDK6L1fWzs5Rsi39V44DIXGULhPa615BR85kUQG/bWKPnjenc/pzFyct/ABkjPWBwl9N+AKttsgHxm/Yrs1a3ZbFKfVw/kd/+fhx/SxPy6FVMwQ3buPcyKfNnNCeLPdPU3kvFKfYg3u3s/y8WbTTG/wwBDiQAXuPsZRZ8n91x9kO/p7zRkyF4L+Ys2Rb6kjsjOHtaMj98szUo+kCuQr2aEB5t/+CFWQHFfkH3wQn5drmetDnmno6Tgaz2p3hzz5DZkW5+LbJWRyE4YXqa7qbrl5trayK4bgyoFb4kSr/+GfG8/5PWdMn0MRPN1W3e/0Uq4iTEehFSt8EypH2Ug0mn/CzzvgdloRllbo6SCY90nVr+7En2Xe6HKCF+ETboPWmuHeym+nvnjHgRuyfa+ydli3A5F9/sJYnH+Mad7bIOqwjmwiecIOcr0WRZjZIof90F+9/+hGG+mF06HmP7nQ4kab6TXFnyWfVE8fDN3/2ccux0luWzl7i8k53YBFsj0yIJ9n458Xycm/e9HJDAiYqAhif68ONILxnkTqpj/FltTbey21tZ+r81UpWx15Ge7AflrD0EJQdk6uiEi0H0BVUOdohKOp7Q2JWQqtrUpsIUC9ARwo4kpoyJbVpzfzt1fRkGxJ5DTZgNgFa8OxK4pxxuCPFMWxjmR0+EZKrAC15ITv2XfwSCk0HUAzg5jAASK7IPKGVYEktaQk7+/CYjleT0TCBBUOq0PymB/tYqMbggMsAEyen8FrjExZOHuH7v7Lshw2QDo6e57hUGwMGIsHlftOULODIg971UESvu60vtP2h3I6T3YzOYo6MQsK8dLQfr0vTdqzIo8j4uBdBcU1G3KuE3WuVbjHTXm/XRDRsg2yKGzKgrOXmwKymVMGqncX4DOsSmPQAbiSl4diF1JzgWmcmi4SuyNoQnjVqGNR9/RXCFnQvKuMLM1rcRs8lcPEGB6Tu5ZBqF1accwGmu9FzyA2K7s5V/c/V1PSitXe1fJ/OqPHBiroUDXAOA5M9swjMpTUdnZ69HcGYMAV39L+ioyJ2ZDc/hsVILz7Ti+lZntYmbroaD9QMTU9RfkCD4mzqvGApSOU8ZK/oyLyfJiBBrqD5wTjo7s2dcEurv7P7wExK44bjmnzZaUmEjbocy/vZDz91h3/5OLOelDNE9eRSXr0rE/BM31KQKIDWJ8Q86r3VxMKd+gMTwefS+PIBDbTqjMV2akT2RTc/ebvAoQuyXk5Pb5jq5Eq/XQtz0G2NAaMmS/g0AcHZDjYaHc/RUCYpvZ3CZmnzlRIsV3cf2z8Sy3AZeZmJayvk/zAGIX2B8Jw/9cxF71HbCIldgeMrahyxAz2XTAPWY2c8UOa8vLWI6+Q47erKzkk7Gu9URAuT4INNkYIPZCKNB1NNDNS0DsDq6Ep5vR+1/NcowfyX1W0uG+RPOnj5k9jsbuwOgzbe8CK5jZ4iYg6zooEPWABxC73LpjZkuYEmeyNXg7M9s/HH1XuwCcfdC3f6K7fx3v8HWUMHQQcuo3eJZsLngAscvMjS8RuPd7tCaTmwOvIOfiQmh/ajBGVcYrXZOWjutfQw7oz5LT3kbfy76mRIi+aJ/+3AOIXW2dDjnfowD3Y2bW2wRGzX57PvrrApxqAk1lzGBl+630nU5tcnLnfIfmwUCU5PMXM5s+1rSTUOBoGFpfx6Hvd6gHELvGmvMfpBsPNbGGzIvWxwNdwd/dkY4AcGusQ++ixIlzqaFT556jlg6yftG+GtFeRwyYQ8xs1vSdmAIP2wCHVVp7ijR3/wgl0IxB72m7sCmyOTANYlX5COkIFZuZjTKzic5vF/h4T/QNHmWVmas3juOVANIZSP/81pSTPFd63jxmNmPosEch9sN1gG1NgY10b/oV6aQrekEgdnp9/HssYvD7BDHEzO+qbJKxEn2P1tzpyvRTDoAyTfwz+7bnrHRumf5+QXtGX68BkG4tOfU2b8iQvTxinazpUE3eR5a81AE92zeuBLp20e+7KDB1EgoK7oK+m/08YfHM7aVvTwY56ZxeMMZgKGJZm9cEVsZKjKz/Q4m9c1BfQsZUJSdrof+9Ramy0SzIeZ/9/gUKCK6HwNMgwNfunrDQVZH7NLCUu//DzFYys0yX+gLp6+shRvQ0+NoZVQbZCCXW1dXMbD0zO8HMjrUSe+9ryKfzKfJDdDElJR2M9ozRHkDsInZC0VZED2wuOcn38RBKqn0ZuMqUEDFJM7ONkz1yFBqfuRFrc2Hm6gr7z/7RZ2vIGZ2cNgcCdAzIvpV6mru/4gGSrqJft4aMSVp888sRlefiWAeXPX8bqh64mgm0WE5uEd9Rh5AxEBEodM2uTdb0B1FS5NvITp2t1jcT7381pLtuldhR/4d0j9VRpaE5XUCeTD/8MwJ6nAOc7rWB2P0QS+NhJpbgmmyzXgLPZc/wo1n5GEdry8mdD7IZsr10IZPvO7v+BzQPVke+v5cQ+GMXL+PTiWsmAqRbS06uTYvAbq95CYjd0cWs3Q/5+rdKzv/OE9bYgnO6C0pCHxb3PD6Od3CBYgbGM+xmZsfH/TZI4G0Ona0pzSb1gy1hZrOaQO7fIqDPaQg4dLMJ6P9T8p1d6SXW+kKs8qYkiH1RcuhJ7n6ru1+KWGPvBoaZKqB9Ed/lKsDmXgJI16z60Fpy6mkuINcJCLi/lZeA2HXLye3L9yEb1dGzPo8AEYNRpcgpDYjdPlmzLkbJbA+iyggXmoDEuCp/ZAzZh5vZXPXKKXOs2XSw3LezLbJD98p0kmaScTICCad9fo7G5Qca2o1pRebbEOh/GZRgdUb0V2svyebh0smxa1DcJ8+Q/Sjy7W+BADqbeQCx69E/WqN5yQeyMyKO65789qvL178zYsu/DiWm5fsoCr7cAPncT0QA64zAoYPJ1/YJskNeQ9/oYOAIbwNiz438NZejRK2b0Ds7DyXP3Bj7TwOG7DL6e8bunFVHXR8lAw+zMhXYWuCZ2ocfpRvy3/ZFZFG9EVP6aEviWM3QZkGkBoPNzOLYIGRPX45ipoejOPBQ4BMvAbHbETgVd1/XJwMQu9xaEbrHcKSfzwPcZmL5TnWPG5AOv7vXAGLH+Wl8JPVDjkcx30PRWD5lJV/l90gv2Dv276yvSjp1x9zf7Yi11EtA6bvQury5K2m4p0VFSnf/zksJfbVY+Du4+5gYg77o/WeM2uegZMS9UBw+s5lXQgDtDihu16x74m+gNcnGbmtt7ffWkjXtREr72IoIC3MqqgCVraP3Ivt6feCUZt7nprrWxozd1iZpoeBcikqVf4xYXo50Aa4aKLxlrp0dAdmWB/7kKpvYLHLKKOvHIUNmXXd/vRnlHI+UmhmRM3gCCuJt6O4vNqOcCxAI6qY4f360sK3nUTa3jIwuwMMoqLy/u7up1OpNKIN3ryr3twBSPjYF1vTqIPnpUaDl7yiQ+V44fbqihbebR0mTMtfuixziO3sNFqB65ZjZRYjNoPCYFZQzgzcEKqXX1jNuU+Rcy11bz/vpgJx6cyNDJ5tvu6HEi+eAU9z95ji/k4ut+GlUgusjFAD7kydZn42Uc6qXQNAnRL91jVsiL11LOiCH/bXAYogZ597k3E5ozmyFggHvFOh/WgTGnhXNnWu8IEN2Y5uZrYYAiqciZqBPTCXin0RghW3d/UtTeba+KAjyt3A+V50zZWT1QGDuUchBsiAKmiyLnFufojKfWd8p+0VRppmeKBv+V8QOlJVD/gMCVAxFQLXRyKC9kgJzuoycXRFA7XpUsrxswoUpAWRTxHJzsCfl4E2MFU8AR4VR3Kqt3LuzyBw3gQbvQSDoM5PfF0bv7Tvgg2xdq/Z+WkNO7ttcB4FJn3L3v8e+fwdySO8P3Beyp0eOt8eAf1Rbayo1U0m8k5FzYvaQs2u6L5jZcshxsSViEL2oXF8F5c2GHCRDgJvcfYc4nmb874mCg3WxDVWQl2X/T4dYjo6Inz5E68NbmRO4MeuUiYX3ALSG/9kFaO0AZOW+D0E62+Lu/u9G3P+VwI5Ewk7Wh5XY8xdFDscVgfdQxZCTPABXFfrsjtaRlRBoZkG0r/bPfd+jEHPasrGGzoCcgzcBr7qLhaLgc6wPvOzuH5tYu4ag5JKx7r5fct50yDHYCdjeBYgo3EyA9LdQYPgBLzGGp2vxqShI2QkBiEZ6AKDqlNUR7Tt7I6b3HZPfVkbOwH8h4PoTjd0DpwY5lb6tmFObo330WcTW9m3Mg5UQaOC/wOseFWCK7KUmBrqhKEGu5tB86AAAIABJREFUO3Cuq0Rh9t10RvrAaGRTXBzXdQ1HeOFWQAfZqt55XIfsUxAD6w0o8PwfUxLLZsiZf5jXAfStIicrzdYX7Tl/Qd/OOmgM93P3C6pc/wcE2rjMo8JP8tvuCJhYjrn6cKSf7uHut+Sum6QiR2vJSX5L9+3t0R5zM2ID/DQZt53Qd3OJRzWr/DyuRwexSdkg90bg7x+ALVwgze4IkH8O0oNvL9d30seyqJzxTe7+upntgfSN3kX2rqLP01pykt8nVmgqusfbpAyORa+bH317MwBro8D35u5+e+gF5N7bdJ5UN6vDTmgtOf1R8GoJBPjfB+mCt7n7tsl5nVEiy6JIZ/i8zv1hqpGTzRUT4+FiBIgDgbpO8wo+pFwfRSsbZfrOjYit+cNYcy5EoM8jELixPfrmjgeO8RosgaYKIs+iCl2/mtkuyO79HzAzmncD3P0Sk3+uLxrL+Skl7l7nJeBwTbunyN/VxqPauU2VkxvzjRFL2CQMiKbKWRegAPS/k2sOQACB9yjPXL0E2sfv9iRBPbk2v8+1ipzcs40C9kPfy0WuRK1CrY71s0Vl5J534hpvZsORXbqOuz9vJYD0r/EtHIlsuELMguXkhL2+F1oHrkKM1RkLasqQvREwoxdkEDSB9M5E3/ceSHfPALiZzvY0IuP40MRMeSey+S90JXTVWnOmQTrmcijh/DR3/6boPlK0tZacnMy1gH8joMJSCMR+DUpCzpgWq41N0b20VeTEuX9CAM+B7n5ebq7PjACrd7v7PkW/zQpyDNmLAxGBw0npvZriCOciRvg/u/szjZHT0s3kBxuKfNc/o0T4U13+nOkRA9o+yA+ztUdiQ8H3nt9rOqN5cI27H5RbKxYK2Y8iv08DYHyde1yLyKnnnAL32KTYQO6ZMnbvJZCNerqXquBNdgb2fDOzy5D9PAS9p2UQMPVz9C3dEOeNQd/YCARa/aVshw37Tv1dswPTA+8WubYRz7ELSrw7H1WXe6IZ+14YmNXdnzD5jj93xdoWoERQM9pFgDOJXZzrq2hVvUynPg3FF7N9OWXIPskTtudcX1PcXMuame2I2LHvQ7Gq13O/r4xIBQ7z+tn+Mz18OGLaXj8ZuxOQrvoT8pHdFsdXQYnE/4i/p9ixa85mZot7ghOJcX8K2aSXu/uhyR7aBQFl90bx1e1j/8lXni6rv1upStFYpFsdUo9e3cjn64hs0m7IN/ha+CVuQfHENZqyTpR59oz5/SrkB30rzhmO8DJzocTri9399HL9NWUfamzLrdPLId3wQ1SN/N+J7pEl1G4e734ad/+xoIx0bVsCJf2c7e6D4lg2z6YNOaejubi+50DeVez4RdO1JOzTR939v2a2G9IB10DVClZBvr4XrVR9ZBXkey1qX2U2VRfAkF+jF4rLn+nubmbzxrP0RjHSLigJ9htUUWx8tf1iam1NsbHbWlub2lusSf1RIvMDyfF2aP3aBlXA7Y58pCC9PWPI7oz0+nc9SWBpa5O2NjB2W5ukmRiWxyBQymvIQP4JGb8VwZ6mgOf5iD1uWRdTdkvIORU5GZYFNnX3l5pDDg1LO/0JBY6WRVnmt3sVEG4T5IwkSqgiOv+hXoF9KpziwxD7x0EIfJ0pljchxTILnr/sDQOQ6yLn99qI8bka0LcDAjX1QSVfshJO66Ps1CXi1AtRebWsVHdmgHZFQLa9qi3Adcq5yd3/Fb+fjjK9a45ZU56n3nGL86eouVbO2Vf0/cQ10wOPowDtkOT+Z0TAij2RI/N4F9NIdt0dKCDyFUqWqFoevqCcR5GzPgMi1TVuOUNsWqCzJ2XkTGDSe5GhN8rdrw5n1LoIrHuEB4NFjWeZxqOMEgIhzYWcZVdljoMWcu7ugQCFm3sJXHMXArPu4AqsdfMS83w6N+py/MRaPw4BXj5HpZu+RuvSv5ABe7e771bPMyT990UB1pdQ8BTgLnfvF7/PjtgLTgY+I9hKPQIgdcjZCIGwj0WOnxR4O9HIN7EnbY6CeWd4rrR5GMJzudizJ1sLJ8ZP3rBc9xzI8fQV2pu/BSYykuSuLxoobnE5JmaoEYgh6VJ3fyyOZ4DsmRG7zAsooHccYuYuBFTMrQerIyD5BXH/q6Lvfj9kWHydXLc8cmzd5u5nVXuGWs2Ukb1P3Pv17t4njk8EZJe73ybISwHZh6Hg0//Q3va1JYH3evuMf++BGCj/gxxKz8XxaVBQaG1gAw/m7DpkdEVJEN2RQ+lGVFr2P8k57dBauwsKrv/DS8k71YIPGyKmvO8Qc/B+7n5e7pzByAl8Ikq6WBytPbsn+20RYOxyKIi5UrYnmtk8aP3ZmWDiR4lFyyLw4EDPMdAWaTHmO6HA6q+Itea5WK/SgPQ6aLy+z5zCjQkEmJJVDkVMyA+5+/bJbysjYObHCBjzcL3PMzXIsUhWi38vjN7zN8hZ8Y2JQWULSoDsrdO1J9dXPevbVmheLY50qElKZZvZJ0hHGVTkWSrILKKDTOcqcd0sTv/c+nMxWh++Rd/pHAjMMjy/ZzdR5mzou9odMfg8i6oU3ezuI2vJMbMu7v6dCSi/Yqbzxm+VgNK9kf13pidJQGa2P5ovkyQHtZacnMydUcBhFNLZHs2N2yloXToQAcW/L9tR+b7TOb0RYl1YBgXmnnAxfGNKOD0GBRyeQ3vc6sA5XqB0somR7SzgTWTfnIiAfeeU02cK3GvZQEdryKk13xtpa9Rae3qi/X41d//KlKRxAmIp3sIjAB3nLuGlAHS9JdpbTE5uXOdHe/OtCLT3iQnItzdaV/8a9zEezccRKNA7umznvxM5ZX7rjmzEIUiHPsXFYI0JjPCRu79bdM5aKfl7Rlf55b2j31sQwPNjU6LsUUjX/Q7ZrD8BZ7n7qdXu2VR97zm0xvdDQexrkc14NdIXDwS2RwDPMaFDd0KMep8ggEVWHaVIAupGKFi7JEpges7dny4wtmkfs3iZ0rvNJYfwX5kqeHxT7tniXc/m7m+amQEfeomFrRpQ+mK0Vi/o4fOLawYhUNC+3hBg0Vpy2qPE0gmhW49Cdu4wZJ/WrCiUG//5XKz96e8tLqPMOT0RYOju0M82R2CVpxAA6/U4bxoU0F8KMV9+Uee99ESJsne4wAfdEXD1ODTepyZrQbl9rBo4NwVyzEPJ1twPuNNLpcZTQPZAV8LefIiM4+UCcrLE8w4oCW8l5IM91QsCpQvqBa0iJ3f+EshfebCXEh12Qz6Ra5GPN9MR10TzdFwj9uwWkVNjzXoc2Vore0Of72zIr3yVu59Y8P6ryVkE+VV2Q4mtY+J45ndZGFgs1Usmd8vNk3VRcsJYZD8tjezReRHw7R6Tr/4gBBx6FRHU1AXiMfn2uiP/xhuIbGGn+C39lh9EPsR1GvlsLSanMXpzS/eZe5ebosTahZGf6s4i60BrN1NVuhsQiOwyL9nym6D9798ksSozOwMllNckQMi947HAWmgu/wclTt/ijSCGqCBrBfTtjEK2c12J7FX6zfaCTOftiWJ/+wAPhv47H9Kpt0agsv+La+t637n5szLSCw5BiYXHu/vxybkZIPtFpMeXBWRPyc1KwNVrUEW8N3K/z+ZRnbbOfrN3NRqN4UEoXnESYjB/Dq2tb6OKsf/KXf97AWKPoaRPfh7HlkJ+1y1QjKVvHM9svS7Ix3gQ8A+UaDshWTcOQPHavb18ImVGPjEG6VYtCsgOu3oc8vNcGN/ytggsfZS7D7c6AMXRZy1daA/kg7sK+XvfjONzIF9/O3d/L45N9rlmDX24lyP/zRzx8z/QO/qrNUwGexYRKxT2HybyFkZ+gH3RXDrT3QfHb+me8QLyf/wHmM9z1UzK9Ds7IiKZw903MiV8XInikpfG3L4Uscp+Byzv7h/EnNwRxZSOcFXtKPIcmV45A/Iffhn9/hHhWq5E63ZWufoAtP91RmvQVa5E5I61nm1qac1hY7e1tja1t/g2/oVIzT5Ela3PBV5ykUQthRI7jnH3s03kP08D7dD+fcOUZmtMya0NjN3WJmnhjN0JGfBfh+J4AmIQPsIrgE9CSd4ZeNJrALGbKOc4pMwclzeemioHGl8urgnPMy8KFv/ikb1eRcZ+qHzKUC+BKGZEgLT28VtHFGg4xUsA5qWRI+IejxIpNeTsgRzZ06PMl4XRYvxw3OuMqMTr5Shz+OO4LjNCCxkXdci5ApV5+m9cNzcCYdYcsyY+T73jNqXPtUx5L/p+5kQb7BXufmTOaBqEgrTtkNHXL55pgpUyDpf0Kuz4jZSzW72GQ87JtCUCdy+JyrJfjBSHr03AvIuR4/4TBGLrigC4w/J91ZAzO7AAMsRfRQ6Cq7wGQ3auj22Af7lKp9V6xrEo2WDe+Psu5Ojo5e4vmcDmOyEQY6PZKZNvfAEEzvkE+KcnDLQh+5XMwK2z/46IreBOlN0LcmJtjzKMt4vzuiGH1toh6/Y4XihQFf88G1jA3TdNfjsWMBRQP8PFRDEKAcpu8AAiTQlOjLSZAkGvIyaL21Dg9FNXAsA2qOTeVu5+65QuxwRSugY5mK/3ADMkv8+KABcrIqfKeMT+UhNoVUbWoshxsQZy+vxiYky6HK39BzMpILss2KExzRoCsq9JnI9F2YbqTaTIs0zsi9ihtvQ6WI4q3YMJCHd4/HQYqlrwB+RoOtrLsDGU6a9cEl5HVFJ+e+RIvQmtZWny1CRsvuWex8wGkgRiTAGegQhsM8hLlR5SsOpf0Xz4Of4bXu98MwV/3wd2dPcbkrV0XgQe7I+qCnwQ/z1eZN+pIm865GgaixIYDvZS8lxZB1yt919j75oZZUb3Z1IA86oo8L2zF2C6m5rkmNmaHskk8XdW2aEHWr/eR3rNc/HOtkF70xNAHxfQsDHfZapLbIbW6j8AfT1hPTYBz8ch4MphBfsuB5g5F9i4hg6yI9KxC+kgBffz1IG+GwrQLIMc9ve5+7W1+mrEOvoHtM4NRN/uNV6q+lAE/DI9SgLpjRzmqf5UCSg9EVwVNsRsaB8834PRfHLJiXOXRADPKxFwKANBpfvDbMjxvRsCdJxda6zKyOmPgumvov3FiHKbHlU5TMDM/ZDedgAwzkvAsiJzaj+0J88MDPMEyF7g/tLvbkekn9xU7jlbUk7u940QE9MfUfLq+ahC1M912CMNWH+q3NfSKEh/gJdKsK+KwObrobl4D6o2dB3SvZ5sxP7W4nJMSduzIPt2X08qIyW626FIN3keObCfd/fT4pyiCY6/eTm5ubIcStLtjphVMqDvTAjAPAQlZlyP/HnXIR20qt1gSobcGK0bX5vZPtHfqigJZ2ekH94IHJjp6TH/F0DJw29lNnUBfWd5BNiYBjEo9UV2wjvx+4II7L0rSuQbW2tsqsjK1rWXkP05D9IHT/WkUku1vk3sxUej4HGlam/NIWdwPPf87v5plWuyb/RYBICvBZReBDEv35z0sR7yCeztFRITW1FOH2AHlAC+Hppzw4ALqtmEubE7NO5zMQ9QRGvLiHN2RckLD6HvaVwcPw7tma8hv+I3qNrlaUh3q5mUUUXOWe7+eBzPwBWTJGc0ppl8e1uhPW5tNKczWy+rwnEKsiFfQd/re8n19TCGLor0nO/Q+jDCFaQsyuRfVi9oLTllrumE4gjvuHvv5HgGlL4a+eFnQr6Zndz9mkr9taac3PPOgWIgnVElth9MDP5XIvBbH3f/pynBewc073Z29zsL3HsqZwHkG54GcA//kAnocziyGScBZCd9TWn+w/kRAG5BtL9lTMrrI/tmDlSR7CWT72gI8LZXqQKU9J2O2yYIdD8c7f+D0RqzpzdMfpkO6QafIVvh1wL75+SQ82e01vRAPtExniNSKNDHPN58oOB8AszRyAba34NhenI2m7TSzkbA3cCq7v6MNfS57YriMRNJlBop82rESH8Gilesjb7Pm9C4NBmAFTrVEOT/KFwpr0afR6Fv8s9eSnpbDDH9f4zs50e8IUP2tsB57n5oE+T2R/7ax1HV3XURiO80dz88OW8HBNB5A+nuH5TpbopuViERKHdOoxKBYu8diqrnfIbGaYCrKsfB6H0t5QVZcFurZc9jOdblFpCzDDCTuz9sCfDdBPQ6CNlUh7n7iDieArKPQXHHdC0/EPk49/TqhAEZUUmzA7ItR6RjJabvtVxJZTsh/eYodz85nuU0FOd6tHyvDfpP1/f1gA3Rt/kGcAnwfoxRBshu4Nur1NeU0ExkGuuhPesZVA2yH7I9erv7XWEzDEI+s1vcfZs6ZQxAANzV0Bq6d8gb7km82hSTuQKttW+5+xUF+u6CKvKMQLbTkvH3VYk+NQDph+3QHJ9AKellqEdl0jr8OZ1QHHYmhAf5hwlPsR1KSr0S+RXL7kk2BSZotUZrrI3d1tra76GZkuVvQ3i56xDW4isUrzwaJX8ciMiqtnJ3N2GexiFbsZ+73zg57v232NrA2G1tYrOGAdNpPWFxNbOtESCuAdgzzk2N5yJBzsbKSVnluniubEhLyGmpcQsjp7MXL6+Sgg0mKvuhiL2DypefBHyE2F6Go/JeJ5bro6CcHVFJyjkQ0HsECsZ/Eg6sXRHjwL7ufm6R5/gtyqlXWW3JudYEOY3OfDSz2xHodYPUoDOxTqyJAC9jkMPo0ezekJH9YUvKacSzZCWGr0fgtGNRsPhqZIx9FY6AVZCx9nfEsHpvXF8UINkPZcg+gByh8yMA31HA1V4BkJ0ztA9A2dSbufsdVWRl738X5GzcAQWglkEMlS+YgMuHogDkIK+TmbaMzA4u0GqD+WvK0O2NGBP2rlcZC+fe3Mj4Huruf4/jM1NinHnYA5Bd5vp6AVXnIkO4P2IsOCX+/xoKUP8XOQRmBDr4FJRNXq6Zkgl6ouf5EmUunoQcqhcA06HgVt1sD60lJ9aOS1GQa4BHoD91ECbfSB/k1PjY3e+PY/WUsF0DgTZ+RCUDJyaCmIJ11yLH/SDgL55jqW0uZ5YJBLMXAhHd6UmQsso1MwHfJrrA4mgcajoSrCEg+/8QaO19xDDZ2P0o1YP2Ro6N6VFA/BLEWJeVai8a9F4MgdRmBh7wErhvD7SO34icWB8hVpjdkBFYcd6ZwDW3owDPS3FseNxrb5QFfKKXykem+taOaG6/7+5/zT93pedIjv0BBaJHuvuI1NltJUD2hsBj7r5j1g+50rn1tMTxfA5ic54IYG/K/I014E8I3Psw8KwryN0DrdXlAMyze51O79+6nNiXL0XjPtIUvL0TgaEeQ4mBfdDevLO73xaOkF4IMPkiKhnf2O8y/Z56I71kGpTRfpUJvLA+cBECaV9fo79FUIncrKz8FsBn7v5oc+ogpuovz7jYTYsA2Rro6WV0k0rfaV1yctfOgYJtfdA6dJEXSA5Nrl8cOAKBZM/0YCyP33anBCo80ZPqP7l3WpO9qRXlbIHmbG8P8GWF83qgQNEjXj+wa2UUvB+K9uyPTQyKB6AkholAOlPSzVEIlFkTkJ/+Ht/pXcj5+Dywj7u/UeD6cjr81p6A/lpTTvy+K1r/n0Sg9SWQY/V0gq2pgIyByEbe3mtUgIn3exPSDbfzUiBq1f9n76zDtSqzNv4jLWzH7lrW2IqBOnZgIHYAYgd2AoKBKCp2I3agY3eMiY4dI8a41Bmdzxpbx0aB74977fM+Z/PGfg+cA8J5rsvLw373ftaOJ1bc614oiLYJCvSviBIeB1brb1LJMSW6v4gASu+iihaNEmOsxCh9IKpWtkUcL7xvT4FyeiBb6ntkX3+LglxnJ/dxMGJD/ATZV0Pd/cQCfW9LKRHjTpS0dAz6vllpzIz5LCtFXXavqcOeXwklZy6LAMxdPEn6MwFhjkd61uEeALx6monV/S4EghnhKmv8F+RDeArto9+VuS4/R89ArOBlq3i1lJzkulmRXbM38rdc4uMDpd9HZAsv567N1sjlgZk9SWibFHJMycYjkG3zFALZ7IIAUwOpEMit8O6OKDdOWkJGnLMZAqKcQOyjud+PQDrvsohJ/gtUMa7e5I9acjJAdl80l0/1YEmsp5nZTgh4MBStcQsifWAFZFvf4SVA9plojdvJo5pGHXJ6If/W/UBGuDA/+l5negWgdD37dUvKifOyUucZQGlnb+w/7oVs+G+Q7XCmJyypRVtzyzHZ58ei/W1a5OMd5gLx9EDvbkZgFBrTnVECwOAKXaZ95/1OJ6B9a06kgwz3UtXNDJCdJe5cUPQZJkUzAWIvBMYgP9cAaxxv2wHZh/0yfd0ax1aKrgXTIb1iAZQ4+UPYJmehctb9kf0wR/z7IsSKfH2dz9NScnqjNesNNK4WQfrBIOBhrxA3yo2lQ5Geuq83JhaoGh+ocV95QPb5cT996nm+id1y9zUE+UXmQ/bcUQjI/nuyTsyE/JJnekHm+jIyt0DPfzDwiAuoOAcC4g0FBngdrLRV5JyC9pSFvAwrdugWX3lBwLKJfGIQsrleRfZNBsheEu0LvyJATArIPg5VB7za3fdvwnOshACIQ9Da+Y3JD7sH8t8MQUDS7Dv2QrHsmkkZk2szAbIvQfbEiV6l0nKZa/PJU52ATu7+bBz7C/An4H9e8hl3RO9yU6SDFI6TtkSzEug5m4fNUQUg3T+6IX/O0V6qbrYssut6oD00sx2ze0uvz/T381FV8EYVbcrZeLFH7IrW/gkCZIc9O68H8ZjJf9vT3S+Iv19BOsKbKLnkeC+RrGyM5uw5XiXOW0bmHmhdexsBShdDCaeDgZtcMea94/luoyB54aRqscY8iHS0K7yEKVo3ji2IEl3eNMXmDkJg7FrVvdP5OT/SY55G7/sHEzlEH6QTnIcStkCVvfdElQDfz/dVQ+YNyGZ7292XiWNpHGnn+H0jlGT5OgLjXxq/Vxqzs+ZtIxMA8kXgysx/kt1n2HBDiUqF9axrU3Jrqo3d2lrb1NRM/vWbke9hIIodbIDmyRPIv7sUcIoHuZMpxv0QStydpJXi/0it7aS+gdY2+TQvBWPaejAkJr/dhoIN0wCnhfMmC0L0NrFLFmL6nUA5S8d5VYHYEyhnDzOzWv1PiBzktOlZVE7O6BidyFgcZahs7+53uvuzrjLZ18VzzJqdW8kxVE5O/H0jAm68jxbkYV7KIP89ZPwd6GFmM1iJbbbw80zmctrl+6jWsvvyHBhjYo61CZDTuwlysjF2InLS3mpmG5vamsh5+xVia/kHsExyL780wcFQt5w6n+cvKPh7irvvg8r0LIEYVPoAR5rZjO7+ursPd/e93P0crx+I3QUZwOeizNf1EFPjV8iRtauJmbwh8zyuywdRzkaG4L3pOcnf2fjMjMM3UTnlOxD4YCMXCKojsC3K0H3AJxCIHTLHxP9TsNMGiHH8YsRSXBWIbWbHmtlayb9nRs6R0xEQPgPhdnAxfA1BjowuZnZ7hfsqCsLN3uOLaL48ixwbnwMrufv6aD1YGJjO3T/xEhC7ycDIidUqrYExVvsBhpy1K6Fxfhxi8VkCBfQmGzllZEyHgmQfesK4lo3zmDdzxd8j3P1GLwjELiPrExSYmwPIdIux4YT8EYEKH0OO2p6m5Kf0PUwUB2UY/sPQGH+41vkmBtJBCLCJCZz8CEokKCJvbLyrnyhlz7/gTQR8pn3G35ei8fE+qj5wh5eA2O2rvbeck/8+BJy+CRhlZj3DIXU5CrZ1Q8CSYQgsM8prJwC8BqzoYnhaxwQyPNrdD0DOt3mAAabqE4S+1d7M5ouxdoXXAGLnnmN5M1vQBIr+ErHDrZack+3n/0HOoYeBLc3srOScJo8zV6DpeuS83BYYYmbzpfdYbzMFIe9B6/U2aG++zczWjDl7Bgqqr5Ou1ZmzO9WRpwI5/4y++8e+PgPax05093tcQYbdkYP4CjNbyAWGugsF2q6dwHmZMtzcg+bl78B1ZvYsSkzri1iBagGx50Mg6+Fm1s4ESriFUknJ15gIOoiZ7Yiy8vuaqhA00pUqPGdeT/8993s553bdcnJ9for2vBvQOnpwfo8IOZX20bcQKO5B4DAzG5j8dgXSS3cmt5em8zZd71pKTpXnM6RPZcke7XLnLWdmi8ec6uk1gNimoHlexpKI6fF+tJ7iAs+dgtbWI8Pmwd3PR2PwpuQ5qupuye/vo/3lTKTPXGxihh5b6T1X0eHHA0K1lBwz64y+/ckooL8+eoeLosTtTgVlnIvAEu+m5+SuyWySr9CevCWx18Xx51Dy10CU9NTHAyBdbQ1tKTn55mJp3RXpgEugfblDOobChzAM2T2bmVj46tq3pyQ5JuDWhcCF7r4UJXb6k81sQHIfp6CA52UocfPEuL7W93kA7ceroeDpsS6fV7bHjUb6zoEIjDnElDRT7n0UsuPc/VUERnkK+R82NYFlst//jfTxm4ELQz+vty2Lxupdyf54GGJzPczdvzMlJTe0MnP0HDTWqwGkW0oOAK7g8UDkEzkVOMAEsiJsgrNRQGeYmf0pnevZ93H3UV4FiN3ccsysjQkAsB/SF05390fc/XYEfLoS+a/2MgX3i7y7i1taRvzeNubYdmg8X+NJZcNsXIdeuiliDdsEASEyIHbbWrZDATnZfP0BzeehaM1eulq/ZeS0MYFhjkCkCie5++2uChl7ULLft473i4s1dFOvH4i9KvITnYVYtTdCYO+RSFc/ylSdqcEWzu6x6H7dknKy5iWijldQUliX6COz569BlQeOQyxYJ6W/F23NKccEcLkK6bhHIHDnGsAFZrazi9kw8+uNRhUf9vEAYteSkbzXXZB9eCOq+nMI0t/6mRI7CR3pNLQfnGci+Jic20do/1wS7dW4AG8d4+9bgP9D6wBxLI2tFNELNkV2QS/g/2LeZ7bJSWjNG4qSxJ5A+vCpXj9AuqXkrIPWrZNRAtNyiDRmDZTUP32F69I52get1Xd6BSC2mc1tZgubQA7TpedUurewY7N1/EG0dk9qIHbb5JnORfNmerQ3/BPYC1jOEgAoslH+h1hfm9pSIzLeAAAgAElEQVQWR+9tVIzppRGA8TZEWPWrma1o8s9NSPsMkUasnf/B5K/ujfxHRday6WKtPAntAysgf1QnABcAsSuytc8D1gs9/t8ofnInipU1pc2JYmLPhk6FC8R3AaqwdRwCLhK/XeMBxK7Hd9IczcKvWW9zVfvqg1jFF6zz2mxM90DJP08B95vZyyYg6bPufouXfMZzoqTNYxAAc7IAYpvZ6mZ2ODSs/YcBL8W4muisjd7YX/ch0vsGmkgxcPc30Vi+Dhga95PdW5vc/pPp74d4YyB2Oy/hM9Y2s63MbJtYi35GOnX23YfGPK2rxTq7DfLbbBuH/wGsH/rm9whXcDCyq09y91NN/tMlkE7/A/JnFZW5NtINT0U29KrIHv4FvbNN430Mp+TbW6jeZ2vOltrP0WZByVOvxPqf6R4jkS9iHiL27+4/uvsZXhuI3S6Zn5sgP/vsyD/9Y/T1OfJXDEC+ipcQmPAylLzzftZfAZunXdicv6P9ZWEzeziuHZ3tMS5/5A7IR74i8svVAmIvC/ynjG9hOrReZ+O8vZf82H9Fe+s+wKCmro9TSpsQG7u1tbapoWX6aaxDX6EqYp8ibMLv7t4L7SfvIx10ZVQxOsPq/BdY2VuB2HW1VmbsqbyZmBH3QAbIF8C97o3LWeQcAzsg58OvyAjsikqGLulVMn5b5dQvp4iMOK9cufAbgEXdfc1Kz1BUTtz75+7+ZPw7ZVF6FLElbTAVypkGmNsFoqp0zsQYa5NUThhFWYm3pVEmZyfEctM7znkXMWr0q9R/0t+0CASwNNrkn3P3T0yZymuiAMIEy8nJbIcYU1Zw953MzIDnEYimLwrYLIOcq2e5yh83KRs8HBpHI/asfyfHZwmZ0yAn2wgvMbmVAz7slzoWsudwMVJvggzuNgiE+ZgrEaQbysD+B/r2HyPmj0OB07yUjT1RM91Nwdv7EDvIxV6hNGcmGzn9n0NAmZeT3zojdoleBJNoHM8ctDMjo/lQxBj+ADVa7t12QIbr7x5sGCa20JmAbz1KlcZ46YtYsXdE68VkoSzlnmdNlBG/CAosvJA8V1sEzt0L2Bo5tmdGiTtlweyTQk4irxcKkLyFwPEvR5+j03dvYrjpjrLnm+TIjHH0Q8ylBZHDe2PEGto/zsnGXCfkZL3ZK5QgT/qdoHllUe2gVl+mjNUH0B53G0qCOAq4yAtWQIh52LaM7tAm977rZYtN99ODUULKR4id9NWCfXRDmesno4SJD9H+sxFiELo65vJmKJj2LSoFV5N5O5ExHwKKP40CJf8JJ9ZmiN39v8hxeq+p6sSJiKm9IuNrGRldUAD9Z7Qfv4X2uFcQKPYLtLZ8YkrQ+dXErtIPrTu3uPveReXVuJeOCIh1JQE89jIMPhWubRQcRM7Mm+L+PjExyxyA5v7G7v6KiamwP01fq//wchJ5K6Dxsx4CAtzh7gck+3kbNC7uQjrJkXE8rTo0oWtL+sxdkdN+dgRguMQLVn0ws5OQM/NTBEbYD+lo2X6wJXJ0TpAOYmbXouD/jShY/uXE1lsmlpxw3A5DjOG9y/yeMfd0QbpPWxQw/Sa+87JobG3G+MzVy3gw7hS4jxaRk1yT3yvWQ4Dog939otxeMDvSr19FOuLYcn0kfZ2IqpYc6Y0r5RyLgC4zuPvP1pjBb2f0Hddw9xfKvZtazxH6TEdPkl3NrC9aD95B4CiP4xuhPfThIjp8S8lJn9fMDkLA1G3c/b347XYUwMtY66fzYA0tc5+ZjIqlf03Bwf+6+7+SY/OifeYtpJ+M9grM9bXWnJaQU2UctkcVm65AdkJP4Jn8uabEgf3ROv+Iu282NciJc7OxthhaB59w90EmNsCnUXBzGrTOHu9Rdjq9Nv93DTmbI9brcaic8VYuptj0W6f6zp0I8P1zpb4TGbXe25XIL9GL3HszBdcX8kgOrSYDGgd3zexsxBQ7b/z7flTmeCtX4uCaaN0+392/KrreTAo5MSfHAL+5Eqmz9b8fAn73ozFz9dHAF+5+dT3vrbnkVJDdFtmk73quMlfYEvciO/hcZJt+XuTdtbSMpL9XgX+7+3YVfp8d+M5z9mQTdKNacuZAifczAMt6HfZV0kcnBDq43d0PzenVq6P94RfkA7zLEzKXontPnNsD6bTruBj6MjntgWeQPjwEkRF8H9fU/X1aQo7Jpp0J+XLeTI6fhnT6NTK9q9w3r2PPbnY5pmoOdyGG4sO8VEFrbQS0aQ/s6e4vVri+6LOsiOylG939zNjfRqI9aDXkT+jvJXbPpYD5a+0Hk7Ile+riKLHWUIJT5ktpi77f3xBQar8mylkfgcc6I9vzeGhENDQXGtfboMSgt7xA0vsklNMXJZp0d/f/i2N3R9/dPfF1ZeO6CXr17sgPPQ/yWz+EbKdHa9xbKmdPYKSrytdEt5/rbTFnBqBEhXtdcYvVkY72IfLnPYCIUA5HOmOX7B3XISd758ejd7ygiVH6OUR4sLeLGbUXYvs7xpvIjBvypkfxnd+Q7+7fXqqwuB1ar/f2GglAZnYRWk9GuAB80yLf7gFofdvOSwzZhuIuvyKw51MusOpMmc7ThOfYDq0Dy7v7G9aY0XUdRP4F8o3WXR2huZqZHYN08l7u/lIT+6jbBxLXbY8SQIcgcpefkd20KAKAPhxjcScisQ3p10Pi+kk6L03xrq2QD/ROBAwejp5hSNE1sU6ZGXC/beg2KyEg+9uoAkNGgrUMGv97kDBKF+g/tSuvRYkyCyLQ6j+RLvhozLG9UBLniJBdV1wp5sUFyC6cAY2BnogJPwMWP4r2pIvQWFkTgfKnA1aN8wpVQzOzI9F6sKEn8XqTj/pF4GN3Xy853qRx3Vwttz9l7MTvITKPs939+Pgttee/R3Omf4Vu0/4HIF9utud3QMl3cyPf2tLxHlP/+nQokeoQFJd52t2vzd9vtWdJjnVC/o6sGsvf3X3j+C2LKzb43MrpB2Xk/Bntg5fkx4mZPYRisyvHnpbJaIv2h7FIh1uvOebyH6k1xcZu+btsba2tZVvMizZoj/wU7cuZHT0bsq+XRXGJEXF8EWRHPeJRxT6OT3I744/WWsHYU3EzlY1+ARlyMyGH1ZyIseZ6d/8gOTdVnrZDpVCWROVhN3T3V1rlTDw5RWVUUAQXRmVJRiFHztgqCl41OTd5BG+T81Mn96Io8D0SZUtPTXI6IcfY1+TAAmXOnZCxNknl5PqcFjmZOiBwx+1xfEVUbu4Ed7+rkow4d0Zk6M+DnG2/oSD6Tl4CCkywnAqy50WA66eQQ+nfCCD4RThw70JMe7cDx3lBUGMZOYchhqY13RvAFFlprd3jGf6NQOfDgHHJO+6DgjANQRQT+OkrF8sfpvJUlyKnxRIoq/om5ET40QQuPgqxQHVEBu5NXiPzNn5rMhDTzBYA5sic0JXkJIbnLO7+rYmxvI27Px6/r4zWre2Q8/LKOJ4ZmLMiY/qZAveUjt9tEVPaGmgMPOJl2FBMzvrNkHPlOG9CyemWaKaA3RkINDoncgDejcbBL7lnXxop0jN7Bcf/pJRjAsDejwJZp4VDugfQ1ROmsnBqHYKYEPf0JNmhDllboLm3K/BarP8Loe+9Mir3lbEoZmOuwWlTUMaaaO16u857qzfQ/REqgXgdcIgXqBiSl2Nm/RGAZN/c8TmA770EslwJMQ19VbHjUv+pI/RAtB6NRmxk1ZKK2iLn5HUoQH+0i0URM7sLrd/bpI7F2FOm94SluJbDycQq9qPJOX4hCqIcDHwQa9OmiBmhAwqArAuc4e4n1Hr2nJwsMWFuxG4zOyqHNi9yDi6EDN//Ip2lmwtgsTAao194E4OfFe6nI0pwaOsFWA3LXL8hAhRvhRzJbyffuStaJ/4F9HAxLBZeq6dkOdHfSggIuylwn7vvHMdTh/Pz6JtvWW//Be8hnd/bI3aVYz2Yg4s6nc3sTpR48yYCpr9vAoqM9RJY7jjq1EHMbBFPmEjM7BqUTHgtdQClc/fa8H6bQU5aKnUOj9KGYU/sDfzL3R+LY3uipJ+f0TrwKrJL7ok9JgNKb4QAZCfkZFV6Z/u0hJzk9/Td5vXFGVGgaWMUFL0ljk+PEqiGon2qKgN7XHM2WqvuBAYnNslmcWwI+lajk326M9LtN3L3pwvIyBJgMjuwW9znAgh0+ZSXbO0MKP0uep9zoPFyhCdJWhV0+JaSk36bedz9UxML3RbuvmQcvw8BRrZ091EmoHcXlCjxa66PIqCu5VCgcSbEYDQys8/MbBACgi/h7l+XG1tFdZ7mlJN75mXQd+kEvJrpmCb783oUZNuDygDmY4C5XAwiU6wcMxsK/JiuH6HvHI9YoscgRrCH3X0vM1sNzc32aD43GchhZqsgFv8V0Fx5C+lO3+d19RjD47wGC3+cm763lVCA83fgdS+VKl4J6acV31ucV24Mzg5M65EUb0qqHuPuj5rZochvsDlK1s4A0v8wAXpOAOYDDvfG1RAOR6CzA5N1oEXkxPHZYs5la/AuiOF4XrT3jPCws60xUPo44DLPgYYqzdOWklOphW3yIGK/7OKyfdP9/wbkt2oHdPYE+GkqF30aCmRVA+E2u4zs2dFcHOvuf4ljKTBhOeR/udIjSa8praCc7YHh7v5R+h6q6SBl5LRFCa7/5+5bx7FUr36AYAtE+vt4pCYF5WyHkiU3dPe/x7GOoYOsib7d1yhB+jg05yr69lpSTm5tmxGtYVsjhqv70V7wMvLf3Aec6e7nWRmylxr33qxyQl95w5PqOib/zavAye5+rpWYtsfG2ncf8uVl5A7jJakUfLY1kO68N9pPn0F69d4mEpSbUfzgfM8REdQ7pluyWQmQvSQaUzOhOTnIlGDVGYHQ9/EAKDVBRjvkRxkEGNI/n6+1DjdhLZjocsroFG0QcG8hD8KjMnr1VmityaoJ1KtX74jmzlkIYDcPwR4NbJCtC2WuS+UchPyaPdz9hkrP3lLNzK5GPrxOyCb5IJuLCCw5HOlcvyCm6emQD7gmy3Ol72eqvvk0sj33QGQivV3+v7kQ+Ht6YC9XRbKmPFcW09gCgS3HoPX7M7TO9UZr05Aa/XRAtt5l7v6ElezG6ZCuUwmQfRfSCQ5Be0NDRbQmrHGzo3XtY/TuGxKeTYDAy1Ci/T7USUrQnC30nz6Iwf8obyIgO/qq5QNJ48Yzo8TQN4CBXkr8exTFOLfI9A2Tr2ZLROxyYxFZLdXiu++KSE/Gocoql03M+8utTe2QXZaCSldB+mIekL0sImZ5ylXxpB6ZwxEA/hiULLUoqpyxALC/u99hijnvjHwxw5AOXVjnCTld0d45BvlUL4zj04Ye3xElQK+E1sBXkN26p9eIMSXrSzbusvjVipkelNhFvRCZzMYehHNJP5N8rFnj2NAFyJ7ZCn2brMriUe5+d5zTHvmR70Ng/Otq9L8OWnu394SQwQQofAQxUfdDoO/Reb0z/45q6AXpeF4ExXnGAe+7+2cmluw9GR+QvTNKdFgF+KlOO3QatIed5e63xrG1kE/0TRQfy9agFVB860B3f73W80wNLWyDB5BvvC4bu7W1timxmfx+g1GC0NLANyhpZRAiyxxtin1mgOxDgLtd/ta6/AOtrXxrBWNPpS02pOtQFkRv5ChbAhn7RyJlZognTAbJtXMg4OYiBHNDq5yJJ6deGTlFYm60gG6MlPGKpQIKyjndI+Ml50SfL+R0Bdb2HMh5CpczDTIatkSAsQeRo6VmWYY6x9pkIaea49oEcD4ZlX/8i1cJ3JgAGU8hB9UQSsy3R6Mg+76IsbicQ60eObWcrn9Ght1B7n5PHMvKhH8DXO5Rdq0pLZz/DyKD8uzcbxnD6hzAie5+WfLbscho28dLAOQF0bdZGoExhpvZSMTkeS0qtXQFcj4/iFhhfjQxxbRFAePvPcrNFTXEzGxed/8k/q4L/FTHNW1R0PFz5Jg43AN4ayXgWvd4H1fE8bxTvOjz9EBG6a0oA3sblKgw0JMgfTjQN0WByPN8MmEuyLcYR1cCg9x9aLyvlyglExyeOYA8WC1y1xcNfE10OWXGymyIKWU02te+MQWAbkBr+eGIbXN6tEadCgxw9/Nqvqjyz9QFzamPUFDtjXBwLYxAbKugNeDE/P1WGge5c/6E1rjrEcDpnwXvq15wwAIIKPo1AowcjECeo6v1lbvXLHB7uEeyRxxfDH2Tke5+pZntixJAxmMcrXJ/qdOtLzCnux9e4LppkZPyNlc5aUzB9GUpBbrWAT70JPEt/2xV+t8eMeEcghwuXdEYf5rGgOz1UMBhFhRwvayajKLfL/aay1GywTg0xrsg5rCLkvMagTtrjcGiLfddit5zOxR0GIUCZJ+6yvJijZlzhiA2zcU8B9ovslZPaXLKyF0JgZ22Bvq6++nJb9OjJJcvEcPP6AJjuSnBtnQsLeYJy2yBazugOXM3SqRbEe3dB7r7h/H77zF/ZkX6x7SIYbGqDmJm+6Fy8ut7EkSwOoHSuefrifSgG7wEzGkOOT3ivVyPgjGroKTQxxE40ZHuewkKNnVAukg7BKa5xRVIWQYB5LajwFprKmff7HIqPHNXVMJuaWRrXYMYx5ZDe0oXtK5+hRzfuwKneA1mo5yMExCg7l6kg7xjShx9AJWfPh64zkslQA+K8zfxGolQ0fdcaB5+F9/wMgTqmQGx4F4LnOPur8U1xyDQ71xIXznLG7OL90UA6lSHbxE5uWfrjRKgugDZfrMisj06o330NVOQ/1jEkr1vpvNHH4eihKBGzH257zOjyyG7PCqX2wsFOZ9FtvizKHB0g7sfU+17lHmGFpGTk9kT2ZkzI31zDNKDrnMlSa2EvlV7ZK/+Pb+WmVknLwElKukKf2g5psD9Zcg+O8YbM10vEHvB6cgu3clLzJF3ovViMeRnqcmCmxsH7aARy2UGUulDKRCZ3esmwEfeOHGvqL7TC439jogt5veQc2vM4ZrvrUyfMyJb/SdUJWJbtD5u4+73mHw2oyjZxFu7ANJZcvrpKMh/bdLnuqiq10GJftoicuL40XH+Eu7+LzPrHu/leuSb2AT5Ok73AFHE2DkWrU8nI2B+o2SpMu+uReTEddX2/I2R7+ii1JYxBbMuQPvUh94YJL0y2qP7eCkZrdllVHm+DHi5F9oX+nkCEjOBRvZBe+ku2Z5Ub5sEcvZGQJr+7n5a8vvMiADhTmTbPVm+p0KyVkP61TDkO/o2+W0TpHd9A1zqjYHQVffr5paT1/kRc+IvJnDxhmj9HI0SwE5A3+srd1+nzvfTrHKsVHXnJMQQ/EUcXwQl/tyJCDZ+s8ZxkecRKcmmUD8IO3cPS4Yeej1ac3q7kt6mQzrd3Ijhd2tPEj4n95bMo6VQefvlEChuHBprD7n7oAL9pGNgBgSs7RDjoD2lKptzonf0SqXrJ7UcM1vUG1e33BJ4wOUv7I9iF5m9szolvboT8l8b0p+/TPoowoidAR9eQ+tZBq56FekcO3v5GGM5wHehNaclmpkdgu4JQh/J/T4d8ovNifyzj3sV8obkunSuzwO091Klr47Ir7sHYsRdPdaHRZAuvDnyBdRFnFHhPjogQo9TEOhyWrQm3OTh27PaQN9Mx+6G1pKbXT7xagzZSyH/5WFehmCmzmdoh8CqhyEfwr4uttWOCFi4LdKnbkEJGwMnRN7EbCY/9VGI3OJIrwNIV3A92MRLAOFsvZwZ+V3O8Ij3WanaTOqv/nucP5uXqrhMVsBIM9saxXXaAne6e/c4XhcZTYW+07WpGyK/WAztlcNRUutX1hiQ3dfd/xbXNLy3GnJS//ZySF8YjBILM/nzIr/YHMAqLt/CtCgx8KV61oJkvh6C5sZsyKd8opcA9xkguy3y+SyOdKAfPcfQnPS7LPA90vXHmeIW37gSandDfo+d3P2W3Pq3Q/y2hhdIYmnJlhsDSyMf10gU6xkb3+splAhyOaV43L4o9reW52I+ZWRMB8zqqnC5IfCkl3Aes6DKCDOjdeKm2MsnaB6afHoDkb9uGqQvHeLufw1dYG+EL/kP8tX2RkQYRxfsP0uGaYPA6ncigPqursqt06N982Tgf0h/A/mzf0IYkDFFdasptSVzdUNkY19S1MZuba1tSmzhL3werVkvInzH+shenxutKVe6+39NWI07UDLRYajCbyECuNZWvbWd1DfQ2iZZmwGB0f7m7u+FIuehHPRBinJfE9NNQzOVYx6OGGnWK+cQaJUzwXLqkpEo4Uch5XUb5OioBdotIue4RE6m0PZHwMauiOmyInB5CpWzCwpsH4u+6TbAQFOJ2oqtCWNtspDj7g3MzTk5XRFrQzdUlq8aQLotykb9ARlBT7v7jy4A4JOIFaFDOYOoiJwwUjKnQWbsLWVma5hZ53AkZW0aZNAsEOdNgzLY70MGbE0gdiYv/u4YhjwA4ay5FDjFzHYK4zCTsyhwv7vP442Dmh0QKOPQ1HHqCmIfhgzUM82sHzK2HnT3r1wlzvdHwPvNgXNM5Y++AD6P6zNm2TaVDM7c83QFnjGxxjYwLFR7H/lzihh87j7W5aTeGAXoB5sAkLjYtQcjx9DlJkaBhjmb9lFLThhep6EEg71QYG45FJw5xQRIzdqKyBF8lJeA2G0nJwPWxAK0H2IUygDSTyLw8hPI0D8zHECjIzDRqHkxIHazyEnfpYmt/F7EVv6WB2APgbsOQ07nEciJ/jRyeJzqAcSuNS4rtL9TcppdDSwXzqwPEED3BeAgE/Nfo/utsA6mDqaNEND3Q8S0cLSJbahqy/VxpKnMWsVz414+RA6Z1ZDz+QJgq/ge6TvuUEHOwSiItI8nQOxo3yAg3+VmdiXaHw9HhlrRNs5K4JnTMqdHgW82ffw/Y+R+gBJ73ygTm81xwNb5vgrO041RCcGZXKzf96IgQxf0DheO9/QkShbq7iWgS9m1IPde1zazvczsNDPrYgoOpc/9O9JVPnH3h9z9cnfv5UmwJp6lKhDbzNYzs13CwVi4pWtmtfeVe7dtXY7w7misLWMCyBBzPxtjIxGr1oLV5E7Jcqq12NcGogDBIDM7xcxmNwXTdkJ60EPu/mutsZwbC4uZwA9F7iHdqzOW1JrraMj7LXSO7d29KyWml0vMbEEX2CnzK3Rw9//GulpTB0Fr/dPArZkeEPfbC+lmPYF+piSFsjpJmfXtasQ8koKwmkPONSHn99CXX6LEYjYQ7QX/B9zu7q+7gAGrIUD76cAOobu+hZz2m3sBgHRLyUnkZc/cCwWzssSjlRAr0CC0V++NEi43pAScPcQDiJ2tcZVkJPvGSWhN3hIYYCq3+gOyBb6LZxphZgcg5rNBwIVeLJi2LppzfU3Bub+giiybu/uKKDEnGwsrxv2cEc+2FwKQnRzP0y76nB8lNl3ZknJy+vvyCOh0LZqLf0OgjpcRQGV1F2Bkmriv/RDINAVib4b07/29MhC7G3Cxme3t7qNCX94C6VbTIuD3iwjQuorJ6VuotZScnMxtEMD4KuQL2BpVHDoDOMIUqPkH+lZtkG0yV74frw2Q/sPLcSUm9UXr/xmm5IGsfRLjcUWUhJMBsedAe+nlKFmiXiD2VkgPfczMLjABI35GvoELULLe3Wa2tIk1+UGki6fPUjGxJvl7daQXn4fWr+3Qfn0ZcFisXa/Vem/55u7fo6BHT7TPXI6AqPfFmvwlsqk+Q2ubmcBfAxDb4gWelE2Obj9D7E6XtbScaP9BCaFPmQgNZkFgqyPd/ciQ8yzyJx0e9/cVGoOXISBmTYB0S8mpocfP7QKGnAUcamZXmdmKJgDBrmiO/ewRwE32uH+j8tHjAbGbS0a1luhfjyJA1UlmdqaZLRxj/2C0r17uTQRITyI5DyLfxEAzG2Jms4VO3A3pJw1A7Gr6R24tmNbMZkn0kReRL+lAYN8Yi5j8f4uhhIW1PalUEV2Npxe0pJxkvO2MQJ4XmPwEz7n7YML/Rmk9mwlY2wT6KdRaQo6734vW5f7AAabEd1yg51fRt+4c61wWF5kd6UGvewVfdj3NSwmBKwL/dPdP46e5EIhoMGJd/MMAsaGBRbxt6M7dUcLOHGgP2ckDiF1t7kQ/2RjYDlUafRa42sy2dPlvR6Ikoc/Rfr1SuesL3G+zyjGz+ZF/OJtjPZEe0D1OeTz6fh0xyq0VenUHYAcEjrrdGwOxd0DjtyIQO9rMyKZ70UtA7HvR99jN3d80s1UtsfltfJs0Y96eJEDs3PrWHsDlZ9w9Dh+W2TtxTgd3/9ndh7n7Ke5+tRcDYrdJ5vqlyL/7ipndGvvpaKTX3IBiYn81+RSHo+SMzQraizWbyz/yvIsBdS3ElL6tFwRiRx/jYo7tiyoAbWuqIvoLsnEvQWPjtliHiPtf3CcciJ29ywsRoG9d4GUTg+21KL58t4uV/Wdkc03SZmZtrGQXX4P8EPMDZ5uYYQv14Y39qkuVOWcn4EEzOwUa1st2yJc7PYptYiUgduavng/tCXvFdV8nMic1S3EjHQStZzsiW2ArM7sVFHdL3nF2fqN/12rJ++2J7NCxiMhhbvTdTjWzP7n7y8gPuhhwlike2ei9lXmOmUzEGXm/7EwotvttMq8IX0f/+G2/OPaLu19fdC3I7iOxic939/VRnOQ7pO/ulvUd72t6d//e3V919x+8xF6fB2LPhHS/G4HZTAmNf0VVgADuQcQHw81sjWT96xjP9AFKTpqsWjIGhqCY9a5ILx8b6/8bqFLlWESONgbpkZsSlRQq9W1m65vZXLGHfGJKtrkXGJXsP9+idflHZBvuYor9jS03roq00D+Go3VnB/TdXgOuM7MDw39yNbLBv0Nju6+XiIaq6lOxZ/xmAkLejNbdPZF+81cz28oFiLwOYTfeRYlHu6BxsJ4LiN1uQnXfP3pLnv9F6rexW1trm6KaKQZwD/AJqp5zWOyBe6HEpJsRGHsfE64oi5m+idbnnS3wTa1twlrrIjP1trEow3pOGC/QcjFSHLDDwJEAACAASURBVHZFgdR0Q5oWZSyv5lH2olXORJdTt4ww+JZFhuF6BZ3bTZEzMwI8z4wYiotkXk5pcuZGgaHz3L0vCgQWAUrXO9YmKzlljJU2yPncpcB464TAxh8D72TGV/x2B3IyVgITFZHTGRoB7HuhkkSPI6PvBVPgaxoUuHoYgSOGIdDIKcC/vZRRXRN8HOdlgdpnzGywia0WFGR6ADE3XWZixxuMgAMfZ/0kBv1vqKz7hWV+ezbu7zkEUF0SGVyYyth9j5zODyKGqAtDccrGfqP/51vOETUPAkEuCBxoAsvWBGTn+uhazplV4bq27v4oAlesiQBqKSD7FKQsXmZmy9RrMIei+BeUeX2WiRHSkWOxJzJWzzexZRIBhz4eJR2LOE+bu5V55m/Qfd8f4+0OxHjZEzFN/QcFAi42s+nzjp5JJcfMzov5lrZvkcO6M8n8dwH1n3P3TdB3OhuxIXX3JoDkTZnjWd/jEFihBzAjcpT82UqA7CMQYK8Qo3Uy7nuhoPNGyDFzH9prTrAqgOzc3OmDjJwv8+eUua6du//bBcreGgEmzgO2yJxPJpDF3mY2Xfq+rEawJoyunsip1IMSC0qhuZA9UziBjjSzx81smtyzlp3LIftm4FgzewlVt9jKS4GurVBSyztNdC6didhaTw55o9EangGyz0UOTVyg2IwluaLzPHmm3tHXccj5fj8KSK+e3OtLKKFmhbimfa6vsbl/j5cMEGNtBPpGjRL/qjVr7Hyfqdq5iazMwYgLuLkrqi6wn5ntGcd/i2+zOhqH/yvb6VQgp8B9jEJgyQdQgtrLCDC3N2JTuapWH7l5tCty2h9lqqRR5B4albD1JFCRl5P8c2ZT0KOTR4DYxYp0NQImXGRm88Sc7w7caWYL5uWUkbFQ/PZ3FMh4M66tCyideycHI1a0fdz9ry0sJwv4XIXWgVWQfjbOS9VGpnGBxVZHTIGDkWOrgwtw+lDaV7nWUnLKyF0R6cynAju6+5aAoXXvYJTQ9J6790MsYUsi8H4GaigSkB6T/D2QEiC7r5ktG8+0Zsj8MwpSr4YYXRvKgle4/+z4xshG2AMBS1dErEjZ2L4IBep2CLkrxPFH3P1Gd78/ex5ke+LuB3kkNrWUnPh3Nh5XRbbUc4jN4it3/wgF0d9CCVYrmwLL/RFI4Xx3vzr3ml5Ge26jxNREzh4o+PMlSpzLfn/fBSbcOJ5nGGJ3Wh/pKIVaS8kJGW1MQczeKHg31N2fibmxL7LljgI2jPvKdKLDvATEqvgMU6ocV7L/GWjvGmIByHb3MXHu60AXM1vO5J/aBOlVD7j7Y3GvRYFdeyAddF5kn66J7JJDvATIPgcxtjyPkqEbVT0qKGd5xAR6J5oXL8R72wfZIP2BjWL9KvTe0ud097PQvr86AiKMdNk6me30KEqoAX2nm1Gi6rGeJLIk+6m7+3MtLSd5b39FjOE/IDDkfii4/mP8/hLSs59EyTSHxvEvEWj0gmrvbRLIqaTHP4D8Kn9GPonDEfBzJAJ/DUXj5YGkr2yt/jZ0vhaTUfBZP0DJS1ehPXsU8ov1QYnr58R9NgmkMAnkfIQAzJeid/cOSrq7GNmuTybnVkzYTL7PdsiOfwN42szOCpv7JATwHwLcYGYXhYyz1LVnScQpOUGj/bql5MSxTM7uSFcfgdhWf4njbWP8DHP3DdEeMRwx6m1a88W3vJzDEVjwBATInid+OgjpAJehRO0OpkTlrsiH8GxRGQXaGBTAXtvMZjQB2f6CdK8rPGy4CR3TLd28BMh+DyXqfY7e32bJaTV9LjEGRqB4zH8ROPFuM8tYdDMb7BPgIVNyRt2tmeX8gPwCe5rZk2j9OgD5o3H3Z+LYj0g/ndNE/HEUGp8X+vjg2GcQUVIlRuxMHxqLxti0cfw+FD/JmHYXR7bWctkYS+ZfH0q+veFMgmbjA79S/+uNaP9eHzg+sXd+S/XBInMnt45eiMbpNQh4vS7SEf/sioMdg8b0aPRtHwDW9QlIBKpwT5kO9k7YKSmpQhHymOy87VHCynnA9jY+IHsp4B6L5FOP6gn12PL55uEHCp36OKRzvYkSX+dHsZGLzGxT5Dt/q3JvLdO85GfeC+m1m6KY4dpIn1ql2vW5MXQE0slmLXPqKORn28/MMt/xGOQfvAfpnc+ghKOtvbG/elYUY21030195onRcs+9DVqz2rr77Wh8DQS2MbPboOSTMbONTZWqahL6lJG5LIrjDEI+s73dvTNikl4Q6Bjj71Vk2y+HxllDq/De9kF7cR4Y9h2yF9OklQxE/g/k1y33rWs9R7uYK+1MiXQLJff3GPLzfIdiP5mdNSdwk4k4oNbz/IDm/uJozxiGyAyui2v+h2xvR8nJp5iYuY9H73a4T6QEk2ZqXyKw+MwIfwAwxpRENwrN4a6IIK4Piv1XxGaYQO+PoljXbHH4MxTLmw14zkqA7K+RXfwz8ofuZgmJW9Fmwo90QjrBCOAkF7nOFciXPwIlE3SOtTnbk7pm9mgtX2j2e6wjNyJf5+wu0HpfhG+42QKQ7YqZbhHPtzpKBPrNkuTE1tYwfy6iDhu7tbW2KbCth6qWDvGoABRrTeZTOw5hmPqj2Diu2Et3ZBv2QzGF1jaBrc24cVN1osxU3UxZjysgEOrHYcQ1MAeY2WBUhmu11GA1BXh/bZXTfHKaIiMUw3bu/l1zPks4Hqf1pHTi1CAnM17DSTSDB2NU/HYKCjTchQIM7+avy2Rlzuk/sJy0DFRNOXFeBwRSfMXdP8vd63rIkFrLK7D0VZNjAiNdjxxFF5vKvN6OABwvICN4b2SQH+TuN5nK7h6IslS/Rg70c8v1X+WZdkCg3keRM3hdFPw5xlX2d0b0Dnshg/C/CCBxdh0yGrEoIeVncxRgzNiBO7rYPGdABsYOCEjxWJ3P0ws5Sp5Gjt9FEctiP3e/M38/Fe4xK0O4ibs/UlBuZnCuh1j8ngMGeInFaFVgTg9QSr3NzP6C2NCfQYxCbyHHxndhxF+LHAOnufsp5Z5rcmgmENTnrqzv6d39JzM7FjmYdwL+E+NgBBrXM6BShvWOg4kux0plOx9w95G539ZA8/UHYE93fzqOV3RU1HJi5M7dEYH9T/ak5Gj8tjYCInxIlH90sUDM6EpyKNRMIP+HEVPgUFfZuxkR4OES5Jg5xd09d13NsqK5czZD6+hSKHh7vpeAd/Mip/CcKCD9ffR3tAucQSLnbOAArxKsMQU5/xb/XIxgaqilw5R5pnOAA919WIVzVkEO13HJnO+MnI1rxv2fZ2YLo7VvKALanEWVluxv2fqS/XtaVLZ9eVSeNCt13A45zkegfWPLOsfARmgcDwTudff3zOww9K6vRPtTVkL3Q7TnHF+0/0ROt7jHfoh5qSZ7UFyXB/0vCAyq9ozxTt5GYJ69LMohxje7CRnyN6KxOB9yfp7kAYis45mmKDkF72V55DzfGLEMH+4lFtJC61vsX8MRoOouVxCjiOx0LOwOvOa5xL3cOd3R/F8UJXH3RSWE/xu/D0Jg0/+hdfBAYLAHo2+V+zgfsSvv5yUGsNXR3F8B6OYJiMbMrkFO+quB05O5W4kVbHhLyqnw7nqhQNd0iN0lK3Ob6W2zImDfrKhk6jvV3tmkkJPKMgWXzkegxFHWuETq34hqDdnYiOON1uACsnZAlQtSVuaTEQDhXuQ8fDPsio5Iv/7ek4B0tfmTzPu2aO5tgEAVK7n759k7i3P3RsGwO9B6Wbj0a0vJiesXQQC0dsBj7r5R7vetEUB3PQT0eBXtHxlja/aNar27LgisOgQYlsynRvttcv6fEYDsV6QP/VRwDLSInLi2A1rzX3L33ayxjfsnlFT1C2LR+zF3bT266BQhJ9ffkiho2hs4zkvJEKuj9XENlBw+F9LBBxd5hkTWSgggcQ5wtbt/bWKEfAMBRTZ39y9MAPQuCHj3ibvfU/R54rzlEODid+A+d9829/tcaO35FgGqfsr9XlTOfWiN/gtKNDg1swuSsd0Bva/pkS1WaF1rSTm5vacbGgOdEZv+sNzatiLSdTZDesFpRZ6hJeUk8mrp8fvGOrkwskd+QSWNH4nri7y7ZpdRx/POiJIkNkQJ1h+6AnF/VDkzIRDL9ijp9p0mrAU9kF59F0oCWgslUb2BgCFjzGxflMi5MAJ7jvCCoP9JIGdptIZeD5zhAtvl51Yj3cyUAHMJ8qXXrGLQknLiurMQOcVJwKWhT62KfDDLIdKLr5Dv4vR6950C8g9EdlA7RI7RGSXTDil4/SQneqjUEl1waWQXTwdc7AV85CYbezh6Jxe6+/9MpC57odjLwS4/fTvkP7wCrdV1MTi3hJzQKW5DtuBz7r5WdjzZc/ogfXNV5MN0NEcvjN+zd9lgJ1WQtRMwl7ufb/LlP4fG71ik02zu7m/E8+yDbOwDXMnFWR+HIj1p73rf58RqOXvwVAQKy9j8RwCPhu6xL/JT3o58LEWIgzIZ+bjeEig5+Dp3vzuOrYv20h8R69+oON7eCxKUxPnp2jXR52w1m9gELh2B9szDUQWjb00+zGMRwHw3j/jMRLynvG01U2J/bYjm0kvuvv3ElNvUZmaboz30WBSPewcBifZFIOhDvIxvzMb355yN/LT5CjDZ+UsgnW1LVEFmYBzvjuzU+ULWFaYE1M2RDTTAI+lscmux/56LSAiuc/cH4/js6P2djHwSxyD95Hrkz69ZhaWMrK1RjHLr7HuY2e1ojdjSFTedBzFZ/2xiyv6iQL9zIP/Pr2a2h0dyuYmEZxiKW3X18InFb0sS1Ttinyjqm8p8Op0osdQvgNaxsz1A0FaqyDs/8okujZi6/1x0/Qkd53BEILad5xJHzGw1onoa0kPeAa7xpHJsUR9Ic7VK66cpeWIIsqd3c/cXTFiEttX2ySp934LiNyejajtfxPq5G/KPv48qX2eEbZk/dHZUVcjLyagkL/7dDvgUvfOj073F5N+/F8XT9wB+z62pVb9NzkZfA7HVD0AYit/inD+jd7g+Isa4t8x7mWz1zMmhmRIpNkd+w2axsVtba5scm5n1QwQ+y7hA1uXOWQFhJP6HYj6ZHjgritEUij+3tuqtlRl76m79KZV7zDKA2piYddqg8pYfALtaUgrI6wAut8ppspx6ZLQN5esHrwOI3UQ5bV3lfAoDpKcUOYni3Mbdf4jrs297PAIobIOyYRcDMLNFgQ2tlL1eE7j8B5CzQT1y4rzfgCdcQOw8o+13JCwQIWcGM5s7ub6anLcQa9aFJrYhEKDqNHe/0wUC3AoB7M42swVdgNADERCna+ZktoKsAuGoWJdg60XO2m7IIXuBma3iKkc1GAEwlkXO1LPrkeMJK2M4XU9CLHunmsAbuIA2HVxB9T7I0VEvAHd95Bi9GDm0uiCH02zA6aYgaKP7ievyzqyhKJBYCIgdfWYAkCcRMG0N4MS4J9z9JW/MDljpGSox7T7hYjdbDGVh34KAqiBH90fI8f1Z7rrJCYi9PPAUMrpB7B6gwF17d383xkGnOD4AAczqHQfNIscFMhzg7iPNbGszuyn57TnkLJsDOM0Ezm4YFxX6q8dIng8xnR5tCm6n7UXEpNQZjf2srGFDafaCMjohp85rXgK3/uBiljweOYQOt4QxPl0HrQJTdczrFGx3M7AQGr/bA49bsOG6QNlboASKASG3nzcGYu+MmFb299qsOV8hUMPmyBl7MbC7KRDQ0KxU4aDcenBuyGrEiJ57pr8hR/BDJhAkrqDsmSjz/xwzex4x/x+FAD1nZfIq3Xwyf+dO/x17ySDkHO2dnD8Ggdl7o2BaISB2cg9/QevITS5mKdAe8R4Czf9iYhX+HfgCfafCzUpMDPugkoXDM0O41jjNfZc+aG9/u9ozWimo9g7SqQAyENzLaM5+gfbRI9Fa2ttrMNNO6XKKNldw8AzElP6yl4DYRRmUFkeVNs5GYIMsuFHPWDgYJSNZmfvLzukZ57yOwOn/QAGVPU0JILj7ADTXv0YMqMd4ALFr3M8/gUtcgfRZo68XUODnNcozV9+NgkSDTKw0+bFdDiDd7HLS50x1B3e/BiX6fI/Y/jOGgdGmoP43wEooCFgTIN3SchJ52bo/IwoqTRv9jzGBFkDr8zw0ZtJLGTwrBZ1TnXI2pFNfbmYNwV5vzJB9nJmZqyz0j+7+oZeAhDXnT6wD2X1tj8Cp8yBdd5ZMp45zhqP3um2cU7g1p5wy8+pbpP+/ByxmYqFq0Jnd/W4XwHRNlIi0i+eA2Mm9VmuroXXyNg/HbFyX7a9ZsC17rtcR68zawIx16NXNIic31jJ79zfE9LFI1nfS7xcI8DMb8Fu+v0rva0qWk54Ta8lZlBiyj43jL6BqI4ehgPiOHoC4ovZvtMXQXvyoR6lqpL98hBIXvzCVJx7t7o+5+2VeJ/gy2rdI5/wcWMjEqoqVGLU+Q0CreajjvWXNzLY3s0vcvau7b4AAYz2A/pld4MG2Bszs7h+52BULr2stKSe399yJxsDrwGAzWyK3tv0DgaWeRTpC4dZScgrq8RfEXJrB3T9w90vc/SovGMBtbhmWq7KT/3e55vJTve7u57r7HV4CSFccB5O5nP+5+yvu3s/dz6p3LTD5OE9GAI7e7n4s0mf6IZvxvuhrGKrCsDzyuTWw3dWS0ZJyos2DkrSf8ABIw3hzK18d5x2UBDDnpJRTyX5w9yPRPpAxZM8eY2pVFAe4H9nzuzdx3ynbsvtxVdvsjyovfor8nkPSc6r00S7RX7qY2ZpWvdplk++zKc1LPtl/Irt4FgQqqyVzWwRAWgH4h5eqv7yL1u2rgTPNbLnQjUcC63j9QOxmlxPvb0ake/wNWMPMrgg5o01VNnGBrjdDSY5rID2nERA7zqsGxO6A5vjxpvhE5stfFu0Vh7mA2LMjX+aZiNglBWLPhiqDlK1211LNS0DsW5Df8z2UiJqBeI+LNX8Ysq+7IwbRZWv1ndmZriofmS1+JYrrzY9iPFl7Cr2rTsC1ZrZ8yM3AclUrfSb/nNGismIduuR4/We6ee5YygS+jpkdambHmNm6VmKo3hEB2c+hMUP2GSiBZaICsaGRbZXd3w+mqmjHIn/Tsx5A7Imxpk5IC/kbozjg9a6KX7+4+4lob10NxeRWjPMb/Bo+vq/6AK8AxIaG9eVktPYcbCKtwsUmPRT5mc4zsweR/2gASgCZKNU/JnYzERWdjUDD+3sJiN3GBc66DMURuqJYySUojlMIiJ2860xvmxuR93wQx+9DFd22cAGx10L6z+xxfsYqX65q3/SmKrwd3f1LFxB7W+BKM7scwJUwew2qDnS7mfUys4XMbGUE1p8F6QmF4n0xJzMg9otozRmOAG17I5skq9L8KPKHPRPP+CmwvIvsZ7y1oIysDqg67SUoWfYSM1s2Z4e/6O77ozG+DEoSzoDYhSvHNlezpEJCjIHM746LaGEgApGfY6XqoWPrmCdZJWrcfQeCPA7YxwTk/xlhAY5FvpCUITvzhx7oXhuIHddkz7KLmR2NdIOvCeb1+LaZLToK+VnmJwfETvuqJivu9Xk0BmZ29+c9mK7jnNfROH4MuNHCX5rTt1sBxRVarHP/cfdL67HjW1trm0JaJ+TL/BHK6yeuBKAH0Bo3TXL8G28FYk+01grGngqaqUT9Fma2l5ltYMq6BmWKnQR0N7OroHHQ1FVe8Htgnvh31Wy1Vjn1y5lIMhocEy0gp1bAaYqXk/Q3NgyzFMB8AXKqnWjKjD0XlaepWsphCpezYcj5OZOTO/07pBBMF9fOhJxrL5vZNLUMM1cA7mQEULsCOWJ/9wRo5gqkHoX2vIyN9Jsw4v8v5BYNdu6AnDwrAy+6gsBjXFnX3ZAD9WxT1jKuYOdn7v5hPXKSe08B2S8gA3YkcjZngOzfwinxQzgBCjnJrHFw8COUGf+xK6D1BAoQzo6+/3bZ/STPkXdmHehlWCILPGMKyN4IObbPsQB7pedVeo7kXpYysyVNme9pmy/++9JL4IT5EPPLbp4ryT45tTDsX6DkyM4y658CljGzHiZQ7o7oW77pJZbhwnpeM8vJQFuboPJ3VyVyn6I0d4ZayaFVl0GcjjWT87idyxHaB5XG7GdikMzkjkbMGaMQIHHpOD4u/X+BNh0q39ohZHdIrr0bAZv3RYDsjnGfKbDvHBoD+3qG/CwDfgsUgBnkcjoNQox2iwHPWwmQ/Zm7r40CHxt5KTjYLtb10UB3z5VJzb23tvGdfou160ME6LgDMa/uGnMHk/PnmFjvC7HGJnKWQcHMUxCz0BnADmZ2j4mR/V4EjN4egbJPRww3p2f3WUDv2RD4wMwuskjuiPYumve7mkCtxPsbg0orZyC1ImtXdg8rAdN7iS34ARQY3t7FINsFBZ5A32DY+L1VlZPNhVWAj3P7W8rWkAfL57/LeZRhTso/a6K3vgGsaAFiRQDmdu7+CloH/oV0qndd5eTz479Rm9LlVDpWrrnAA7t4EtwoJ8eSxLSkzYcSWO73CsCHcvdVZo7u4+63Vjh/XQR2OMFVHvw9tO5/iXSuvUwMQLgSJDZDbPNVAwKJPnOJR4IOciavHserAaX3REwzr7iCbtnzHIvAGft4DiDdEnJy+seqZraGlYK416M1dAWkS6VA6Wnc/SsXmLrqPtqCclZG4IPpQv/cHe1foL2yI9rDs/ebJW11QuU/P6/Ud7mWPFN3FNScL366MWRn52WA7E2Bk0zMfWX7qtbMbJtEPx8L7I4AA1sh3Wcmbxz0uAwxGj1QsdMWlpO8s6XjO32DEg1PR+VfTzdV+GgU3HK1TwmwYr32CBpbHd39/ez63DMvG32mZcffR8wac01KObn5sx5KLlsmfr4cjfmh0Ej3mgaxJb8LtC+ytk/hctYxs0PM7Agz6xp9v4X006tQQuVxcfxtdz/f3U9x97vi+mpg0lQPXSx01kWBObxUyex+VK53e3d/NebXeLZiyC8iZwFT5a2P0Lp+VfR/fvSRgXc6oqTxb4AZiu7xcW17pJNvbaUEprPQ3rM70NdKYLxuwDBL7JQ4v8i61qxycu9tGjPrkOwBtyLf29fAU2a2WMzNLDj9CtJ1KoJdJoGchj0wee6VqazHvxZ76nYxjxq1cuOthWQsGb9lY3V7M5vV62QAzckpp7f9keUU3eNmR8Dgke7+o8k2+BGxrF6IWHY3jXO/d/nKMtBQPXtpS8kBWBIBS9+I6/Mg9zXMbOZcn6NRwt0MFG8TVU5u35nfzOa2JKE+bJILkI3Sx8zmcSXoDXH3/d19oJeYcicKwMITMLm7X+vuvZFf4tpETi2gTQZYvQ75If4O3GpmR0zo/UW/6XtbyMwWN1WYSM8p4h9u52L6XMrdj8r6rnBuR0Q8sgryS30VxzPQ8hcIGNWGEnhprJcquxVNqm4ROa54Uea32xMYDPQ2gX9xgf+y8f2jCyj1HmKvr2uOhm52J4pPrBuHnwP2R0lip5jZ4yjGcRqqcpERyGT74tfAsZ7zYxf5zhO7meISq6GqoIe6+9EImL0AqiKafasMyLgmigNV63M64EUz2yX30z/RO1uF8N9G3+NQUlYPtL7cjfzL6e9lWzJ3dkQ+gBfN7A4LX0etlpt/W5niX2OS3w+ItWpsrCd7IMBLX6SrPYFAvcu7bOsdEePzmcBOsRf+7O4vRn/N8o29cWzwfyjuNMjdd8nkpmM8P7fq0ZEn8B7/hFgaswpmGWj/PFQVpjNwqZmtGe+7Ll91Tt67yGd9L3CQif0dlz/3QOR/+SLk7ulRnaXIvtBSLfkumyJ/53Ue/uT0m8WachEiZDkT6Ok1EptMSQ+LZ88b83XL+PltBMjdwszuoJRgNirW73UQ03SW6N8o8TrXbkBzevtkHX4JrdN7Wilx5m/IV/kEsu3eRKDdDRBB1geFXhoNccqOiJziQ2AHd78I+XO+Qe9ziJUIhUYi5uq1gW3DTmnvBZifY08Ygpixd0ckPMNJ1jATydycwL9dceyPsuMTQ9eZkGaNKyQMRQlN75rZjbHe4e6XIH/f3Gi9WzX23SK27gC0LndK5vtOqJJFCsj+icaA7Ket5G8r7HdN/t4KfYdxSNe9CdjczI6MPjM/ywwoyfA9oG1T1sKwd25A1QZXtRJB2e+JDvo62jfeQmQOU23LfafCsbsJsBVbW2v7IzdHa293GF8nthLR2r0otrNQS+h0U2NrBWNP4c3EYPscMjYuQcG6V00gld+QUjkI6GVmN4Xykm1QcyAD+T+h9FXLJG6VU6ecKelZpjI5G4RjCJBj1UoA5v4oiLdlnL8OyvqtyNIzFcj5azk5SWuLwB3tQ+6ZBNO0u/9axDBz9zeRg+QaFOSYJ/u+ybO8iZwBC8W/x+X6qIexbU/EFtzAdh8G8EjEJr4UcL6ZrVnmXut2yGQOpPj7ORSMfA4FvveP46Nz19TDbtWGXDDEBEB7J2Qtj4Ckm+avLefMMrP+ZrZN/t5r3EsGyB6JmA6GZw70os9hArE+jrLW/24CumbtKZSlfpuZHYMYtE4E/uWloOhkpWhaY2Dl0Qh8d15y7AmkKGfZ/xcgFt4GhpAi46C55OTeZ4cYo4Pi+i1Nwajs+mzuLIGYLLrUuu+8rGQcdEPg3t3C+XUxAmTvjQDZS8R57VHA5h5gUReYraqMCj+NRIC+403AqN+Sc39BTsJBiNV4u8zhZGLyPx+xKmVz5xLgKgugWaynW6IS7UNN7OXPI5bsPRAQ/Ckza2Aucve/e6ksZ1tXssgY4E7PMank3tvWaM1+HiWUbBz9fYzGxe3o251ucob9FQGmfk76OBSxEzVybpd5d+1R+b0bXOxlZwIHo0SMW0ws0p+4++3ufpwrc/2Z5J6LOEx+Rs7Zbogd534TeKcdqgSwLAJRk+wTjVi8CsjIrv0cmN7MZjQBhpaj5GieGbH0rBLP9V6Fd1Kp/+njz2nS/8f+lrLrrIEChhlYvlLQYTzmpOS87czsVBOLtB1EnAAAIABJREFUyPJofx6LwPlZ4l8WpHkNOYpnRODC3eP4eMyRU6Kc3PtdPtvv69zjs2ByJTthGEq8mj7302wIdPlThevWMDHNlLvXdCxckZ6T62ZZtGeea2LVfArpgashJ/RxCAA4P4CLpfjzRF7ZOVrm/SyOgiPHmEqNZ0DpoxET913WGCi9vUcyQ3LP06ISsVcm57WoHFOQ4UlUmvIZ4MFY47PA87FIbxxgArrjuYpJ1da1lpATe2I39J3XDv3yWuCn2EueR+v7MYiRcKa4blq05n1LMBrV00xluv+KAkpnIiDCc8DVpgoK2X0PJJh2gQUL9p066WdDjFX3W7BlxbvYGek5e6F9fGZPmG5QsKOeoE2zyUlkrIO+f7/QO75GwaijEEDhRhPge7z1KDtWxx6X2cufAHOa2VrZmpI9t6nEcB9UoSPT6WdD7Fuvea7MbkvLSeZPLzS+s2RTULDwSsR4dqWZLRj7xe4oIewed/+poD06pcrpHf0eg0D/t5jZw6HTvI3WhStR5ab+Ffoqsr7tjdac5dC6PNrM9jQxqS2HGMBeiz1xU7RfV00Qz1puH9wBBej7mpKZP0ZAyNPQvna7iaVwLaS774TYjL+tZ493BVUvIgl8xPGh6F32QDr/ZWhfHeWRhFBPa245yXvrjmzBkcjPkdn6t6O951vgGRsfKN0AJp2UcsxsrhizGQPkqma2aJz/GbX1+JWoTUjQ7DKi37nRPpIlO+yG9tGuta6t0W/b3L+nKDlVWjtkU88EDf7Q9i6g9Onx2/LxW1N9iM0qJ9kns/H/AmK/Oj6ubwBzmFgeD0fVVNJjJwIPu/tNVGjNJcfMGiVTmeywh5Fu9IyZnWMllv/DkC1zArC3lU9crekHq7Um1ejr9yq/pTLaJX+fDmRMoLsjAN9xZnZy0fuocn/Z+tkDVRR7AQGX7jWxh9a6zzZeImfZAxEoZL6ksmPPS769axCT52lx/NdEt/0/FKOZtcz1heZOc8nJ6e4dYx3GRXDwMfKLDQb2sBIg+3cT2PDx7PpaenV+nFnJ73QL8iEenT2Pu98GrI6A2p8gwG5vrwDw9FyFV2vMwL66qdVV3aeJbUX0DV6M77I08h3eAgx1VYnL4jAXAAu4kuGqtYUQ+PK+9KC7n4lsqfbAvtaYXGGcy2e4L0reKusrKddC17gGAVZGIZ/H45k9UuW6vJ/lLgTGzH7/M9LRbgsdYUkUYxmEKpJ2RvbbgSiheqGw3XdB9v4lQGGSmuTvGc1sTlNyW7b+FiLsSfp5ziNx38YHYrfL2Wjtis7pprbk/l8BZk/0w4ZqKcjH/DXyFWTEAamv+hwS/3vSd/ruZjCzP5kqpLV3d0fxo3uQDyQDZL/gSvzv4aoA0kCMVGv/mURtFeBnd/8kXb+S9zOvi+BppLuf4TUSak0A1F6IuGVBkx13AzCblWJ7N6J5tR6wXmLH7YLWvhFeqhZTrfVGiRhnAjub7LcP0fw4lcaJM/ch+21TBNQ9AlVK+EcT3llWqWmou39pZjej+d0lnmEttI9nvuDvXIl0WRXG8RIKc2PtT6ZE5HmAtrHfPY1sggVQxbhlTLH07VCl5AVCVl0+neZsXgJi/xX56l5F694iqBJCtm9fjGJ1swHXmYggirSngC1dFSUbfOMuQPat6Dvva2ZzugDZN6B1dVng7fwaXtAvMQMCJV5OVFqMfp8GjjKzwWbW3lRJfDtEXPK4u/9e5JvkxkEGtj4L7V9tSPY3TyoHuwDZu6G4+VTVct8xTSTJV+Cpp89WbGRrm6Ja6C7dzOxCM1suDj+GiKd6ZPp42rwU91wN+Bh4b3LYW6bE1mbcuNb3OqW2MEbuQUbqUcg43gBlT62BnECXouByb8S4+glSZD5DCuYWwJphfLTKmUhypqRnmQrldA4517nYyLJrsoDxnxAYdEZkbL7RKqeqnEWRw6sXcg4cAKzt7q9WklNF/grAkci5faRHebD4bVrkEMyYBn6rR7FIHRAmMO8Q5Gg72hNwXbyz9RAoeIdwqFbrtyGDuMA9pI6+zsg5vAFi8nqrqYqSKeB1HSrpeWPut56IwXYO5Czu6sHEaWJAG4RKnF0Rxww5TWdEjuOH8vde417GY1soeN2q6HtcgoK0ayHgy2B3HxDnbIocMesi0M+lYexOdi2c/PsAh4fDqiMK0m2GQHQj47yFEdPWAsA/XQzthR2AzSUnN1Y3RY6wS939HVO5zX7IwfSgu/dIrsvmzk6uAEVdzQRMOR85SW72YO6O3w5ADqEHUYAflFV+kAcQu9J4yz3PgsghN9pL4MNNkKPRgZ3d/UMT20NPBCzbOX7/BAEl2iLGiek9ApEm8MEVwK7u/oAJZPAvM9sHBQT+hYBcL6I596uJAaI3cjh3dvd/1fGu2nuJfaxnvLf7UGBwfeQgOyxbw0xsewNQMsqnwIUuoEfWXze0xu7nCUNP7t2tjMAiywALufvByXmd0Np8LjIUe7n7dxPqzDYx2uyKvsWCCGw+GI3B+YEu6Z7URBnrxD1/gZJ0tnGBKzoiJ+0g4CgPtuU6+t0GvZMD411cFs+yk7vfn5zXAa1t3eO3D5LfDkLftir7iymQfTcKfGVJUj8jBrd70Pj7Byoz+R4a/1/GN70JBT+38QDNT8lycmO6BxpL/wSOdzGF1mz5tabc2mOqSPGNuz9mAvf8EMe7oDVsMHB6djx+mwnt2b+iYHXK7NwHJdpUY61fz92fDKfyrGjteQStXQe6+9emxI07EBDhHOBEV/ncwi33Dg9CDvSngFO8VMZ+tXiGtRBg6ZFq76sl5eT67YLG1DloTI1BgaLpgcu9xCjUCyW0vI3G1qd13n+zyUnkzYVAvUuhPSCvSy+C9oFeCCDwLzS3egEne1RkKCirDQpw/A0FTvfMxlE4DQeiNa2Hu49IruvsAobX7D95d1sg5tjO6Du/j8qKvxy/t0XAr7XRXj3IcwCHSS0nJ3MGtF8vgth6hrr7zyYgyXaU9tGeHqXc632WMr8tjxjn7gL6ZftM2Fe7IiDWnq7KOtk13V0Ayvx7ahE5uX63AUbE9bd4VCyK3xYBDkLBr3YokW40Sjw8rVq/U6Kc3LeaD62ZFyNQzf9QcuORwP+5++pxnqG9sAdy4r9S6zlycuZBiSbD0T41E1oblkc652bu/ropGL0DYtbq67lqL7VarI8XojXy4dw4mgf5IY5CAb5XgP8Cz7v7Gfl7rvQsybH2yF64ATF9bwv810v+hP2RjTAGuMbdz68moyXllJHbA9koT6O935AO3d9LlXi2Rfru/MgmKVQGuiXkmILZxwMvufuFJsDIBcCG7v7MxNDjW0JGImsGNFbPQPrACqgK1HWeS8Cq0kc6/5Z0JeFP0XKqXLso8BCyCQ52JZlkesr8KEFsYL3rTXPLyT3zNATjdOgDs6EkmVWBs9397DhvBqQnnA4ckdOvlvPw9Vpj32ezygEOQ/r5mrHOZ/vbcLT+z4YSsV5F6/6Tce0ZaL0+g4K2SO5ZOngkdMT/i/rPmmKDzI3AM18A17uANUuhfXMr5FcZUKvPGvJ2AK5H9uE/kX9oOIqN9PEKfuncfR6CEtx28cQXV2Nf+hNKlDkIuB+x/Y8LvW1PNAa29MQvV+UZWlxO7Cl7IZ/6uwg4eGuM73nR/tkf+ShfQgQCl7r7kQXkpGyhc3gpaai9C9jdDQG9+rv7MKsSGyg6PuPca5E9MgtaV85xVZ6b4JZbG9q5APy3oGom64c++CxKptjLVQXgEKTXne3uP9U7h8zsAuDbdI5Yybd7NWIOfy937bSV1oS8fDObBSWJfIf24jFoTbsU+UN6AM+U0b/KJbzv640T3qdDc/xs4B00Pw9CPuhPk/N2QXrcMR4+1rh2Axe4tNC7ir+3R+DuPyNb/V40Bn6sNo5yffSKZ7/Ic+QEyfjthPwSiyEf2w2oclvNJNx6nid/LPbSZ5Gv4zh3fzZ+74C+4xfA31yETNk+sxBKUunn47PJ5xM2D0AJc1+EnGNcPrBlECHBVsAFrkTxhvcxoc/cHC33bBciG2oZd/8q2/vityX5f/bOO8qqKuniPzISxCyYHUOZHT8DZkVRVEQxYVbMOYsKAoqOKIJizgFzzo55zGF0zDqhnDGNYcyKOfv9sevyTl9euA+7G2z7rOWSfu++Uzece06dXbt2KTZysovsWahvtOe7FOFRc6L4wenJMSujPeNAtM5/G8ftiHDM0fnzLGNnupiPu6Nk9K7R11WumMgc6JkdifY5O9Vxi2pdY4+4xgfQvvowhE09asJd743vn0dxnH/V6C99Hlsh/2cR4E20vhzswv07IsL3BBRf/yuKqZ3h7oc31vU1Zos93GgUj38qntmGCJM/C+1xMqzvYDSvbuJ1qJWbRPjuBVb0RBzKzK5GSedHIVz0AxPpfzCqnF1XZVKTMNHdKE5wkScYp4l3MBxVEf8SjemOwCkeeGyB/rM5tB16vjPl1oN9UQxnAsn6lvcR6vELWlKLcbUVUiz/q0uxvsjv0vdvGZ8C3klra23Tcot18lbkc3dEPtrlrqS1nZFfeykwyhP8OH47MxK/+RHxeQonNLa24q2VjN2Cm4kwdC8K9GVEo3YIzDoROUiHoYBHB1Ti6UQE4rdDIOEBHgqLrXYaz05LupbfqZ1tURbvBS4lk+x3c6Ogy3rAcl6FuNxqR3YCwP8HcqKnRxnLz1azU+MclkCg9lZog56Ri9dAwde9vIwyaJl+qgKEZnYs2uyfC4x199fS35myyqsqO5sy6t9DYO731Y4td14mYs7MHhnrdfyuLdAuBdVMZcNWQcS/R2Nj2AkBJ+0R8et+gmAeG9vbkNru6Tlb/RFINT+wq7vflT+Heq61GhCX/N0PBe0Gu/vnJrXOfdF8cIK7D4vj2qP54FtXaa9pbgMb9/1hBOp8hchWNyAC+cso23qHKr8vGkhqcjsmZZ1xiMx3jbvfFJ9XI2TXfHcq2FodqciMRgDMZKUvTeTGk1GywEQEZhUm5JsSF0ahwMY3iMR+fdzLrRH42xUBab8AfVHCxqlm9hTwkrvvEn3lx/CB6J4sjgDe/ZFa+FuugN1GCODfxqWQn4H+O6FkiT8VAZnM7CAEXGaK8P0QyDPO3U8KMPPfcX/aoznzhuT3S6BkFo+/syBMf+Bnd7+zgt0dUbLE92iu/x7o5w0J890QQHwOAr7XyYP/9bQyYNUhKCGrT3JYb4+Sn1Noow3a5B6CAOy7EFmxGwqCjURrYmGSYtL3uWhOXtjdPwxQ8GSkjn2Uu19lIn+sjdbYI939jOT3+6A1fBd3v7iCjTSg1sUVIOuJkqPmQIHNH5H/tDgK6LZBKu/Z+7wSsKmrJG2la2lRduK4rZC65ii0FlYF35PfpevxgcArnpDryxy/KQKSh3opqHQhUuvcF/hzjI8ZkJL+eOTrXpn0sR/yjXfzCiSPuJ4rUXA7IzYujIIPQ7L+Yq4dhdaKp10lYWtdc9X1wqRUNJLJidK9EXh/nrufO63YSfqbC/mby6Hg6+fx+TxobMyJ1LSzBKbdAaYgINAsduK3mWrURBTYuskTMpSJDLE5GnvTo0DoDe5+TnxfD8Ev+/3l7n6YNQwKroIIx11Q0OuatP86fJ1tEVHoLOTbLIFI3h0RaSMlSt+I3qE13P2xItfQ1HbK+AodXWBqF+SzLY3W1oyQPQMiY9a1jubmpdWRyt1CKHD9uJeSw85A78/1KHC4JiIVHONBWC3TdyVSV5PZyX0+HQKd26I58JPseJikNtQdvUcDUTLxW+7+SLV+fwd2+iAy9IZof/VOfN4VBSDPRoSlXeNzA+byUIYr2sLOksg/280jMBDrz4PIX7wU4QUrofXwRC8loBQl9ayB3r1RqOJMNo92BX4Jf2F2NM72RONxYGYDqFmZxVQ++ktPghexFzobEcofys1zs4TtrFJG0WfTLHaS+3M2mtfOc/fPTIHo3dEasVe2bppIbWchQun5lfpsbjsmUsMEtI5ehXzrg8PeTzSCH98cNsrYvAbtm15296Xis5qJ/rl5eH9EiNjKKyT1tgQ7uWNmJvx/D3XW8MdPRkTM09392fBRNkE+0ebufn+185iKdjZCewKjhG/cFL7jtfH5UwifWBDhDMcnc2heDKHSmt3odhBe0g9VWOiMktUHAbMi0lyGGa+IiDEPI6JwlqB6NhIKOG0K7tnGiET4DiIcVk30LdPHYsC7niTVmYjBc+bG3tHoHf8AJZvfnd0LU8W2EXGvTnP3o2qdQ4XzmhFVTnOUHDwxPn8Y+epbuk+euFLm3TkZJf1fUOGYvN/2mLu/FmvnYUgJ/UU0j3+F3uexHolgNa6hWezkbGaCBDcigvdRaBxeSsmv7oXG/R4IMzjH3U/Jn3Ou3xHIz8j8mc2Q73E3Ivt+Hb787Ii0/La796/WZx3XdBSKi41GfuAWiCh7YLaXmoI+2yFi4GvJNR2PMMUXzWw4io1klUceRESOL03Y4ulIHOkQD2GXOmzPiZ7HMmg+GZt8tzfaL0xAIiyFhSmSPrZAcaoeiIh6W3zeBvmmExD2ux3wRDJG8+9Oprg8Gc4S88IAdB9mQYklq8QYSH33i1HcaiV3fz/XR1H/cHt0Ty5DyfOHI1GVmxB2/WW5vnLXk+FGkwmkWGkf3g14BvgU+DvCJ9dC89xB7v5ArXOtcg3puayPsNuFgJcQ5vCCKcHtDpTQfRUiq66CfKxdvSR4kvY1t+fIRzm726GEwGsRPtE7+vwEWNmFty2K5qBBFEzKaM5Wbf4w4fWXovdzx2QdzZICj0b7vZoJLbl+j0Hk1P8hH+aJ3PeLo/s1CM2vfwXudvcJ8X21BIE0oWVFhOmejsbcWFS56HsrJc4MR/Hm3WvdjzK2KuEIGXH2SrSeDkjG1E1x3fOgJMuiQlvbIqwmqya9F4rr3IcS+T+L57IwWpd/Rnhz3XhbczUzOw75c6vF2rkwIs/fjfb3X5vZHz0Uys1sBq9TlMAkgjQerW1re+Br8V1GyB4BXOgiZKfjp56x0C/66Y3iySNMyR4/xvzXE/m8G6E56N9eUBjLSvGz7igZa1HEmXgExfuecyUIZrGcixEhu+71rSU2U+LShShpfla0NlyM1t+K71+ZNftwFI+synNpba3tt9LCL3sa7Wv/lPfDTPyrA5GfdCd6b25Fe/GlURLfZkiwrJDIVGurv7WSsVtwM6niPInIGedbQxXE9mjR3xI5y6nC3mwIZPjKE7W1VjuNZ6clXcvv2M6gsHNn4kyvhEC2w71Ahl2rHWuLyir/E5Ejl20MRzg2+8MQoPABylKeEbjR3cfEMUUVwfoi8GdBpNJ0v5fIUMchJ+Y8lNX9epm+Km3ouyOArD8CDS7zKSBk17JT5rcD0X2ZHW36r3WpgS6Bgpp/RKDAm3HMIcghexI5dSmwNV0KplrDwM0GCAiZhzoI2bl738vLKDrmjjEUyOwN9PRQJ8h+DxyAwLLR7j68Wl8VzmdSILupWoXnOQgRlb9EQEMbNF7eQ0Bq3crRzWUn6bsfGmPHIkDss/g8Cz5lhOxtgAfdfevc7+tSJzKzYSgAsLEH0b7cdZtUvtsAHd0nEYqLKHyvhZQaz0RBnxVQosph7j7eFKSYHyk0LYLu6TXufpmJaHIlAnLKEhdNhIMnEDi/EtoknQ6Tym4dhgDShdz9nQCDxsa5nOfubxa4V2ejNXItd3/eFBg4AYFKh8Y88ARSVboTgUEzIXXNW6vdnxr3bm7gMRQYeA4BJmeghI6j0/Ul5sbtEbH7nFrXVKTlzqUbCnIcjsDbsxrJxhwI/DsBAfbdkBLNZV4K2NWV+BFz2DPAbe6+R3y2KRpjKyJCcTsU/DjVc4qXsYYv4jkidu5+dKRCpYgAGZ9BKhZXmcpZTQfMUwlstMoB/JZmpycKAD2EfJ6v88eUa7k+MoB1kpq8KWA/m7vvnfwmq15xDQJV/m4iVp2HAnuPooDRHIjUM9oTlRm0lp+CFIIqEbFnDRsPoGSWjNy3HALQx7j7ieG3HQSshgIFVf0WKxFHszHZH4HW3RDJ9/rk2JQofayXyKuzeVQhmNp2cjZXjj7+Adzn7gfF55nC3oKIQHBJ9l3u90UJhM1iJzl+IAoubIJUpA5Ac9A3ueNmQokNbfPre1Fb8ZungC/cfe34u2M2rkxKa31R4KufJ6rlVfpLgy6zI+LOvTRU41kLJYrNhgJqz2Xnj4iMFZMjmttOYm9OL5FhU0L29SjIfjoiEWSE7G2YgnXUzHZC88VHaO/UDSVebBp+Q6a8PSsiAzvy8U7Nrq2g79YsduLYGRBp5zqvEDQ3sxm9TJWM36sd057+QUQg/a+7947PUzW8C1Glk9U8F0ydAjudUTnMVeLzbIwviAhFS6D36AkUjM4qMtVz3w5CPvDaHuqAiAC4ONoDHeLud4XPuhvax05w953j97XW97WQ73wjqrBxh5fI0E8AXwPrp2tV7vdF14RmsRPHbojU65ZCSr73JN/NjxLcVkP39B/Z514GE5lG7DyPgt63IsLhx8l3jeLHN5ONtmhdPBMlLG2AlN4HxPcVVRpzfmhGuNrdy1RMaSl2csdkiYyLoHflaaQa/D8TgXIYIpf9Nc5lFbR/r6l211x2cjZ3RNjdXWitnBvheachEYxZUIL3emif8DRKork4fl90rm4yOyYMZXWEDXRFfsHlyTuRrTsbocT7iknGRVpcy7noHe2CsI7/I3BdT8RJcr9Ln++hCCNdz0OF3YTNvB736bjk2I3i2LXQnHCRCRv/KfYsC6HxsCMwot4xEDZmQ0TFsV5S1b0TkUn7u8iLyyB14dfLXE+m6lutelIlv21Ld/9bnMNhCFvM1Krf9pKIwK/1DxvbTh9ERDjT3cfG/OyoAkhnRIDL/OrOSKRgNi+JsFTCD/ugeWgXj4R/UzLYwQg//Bat3xe7+8uxZ70lrq9qVc0K15EXH/gTImKcE+OrLyJKL4WqXNVNyDZhJpegezMY3be1gRXc/R8mwvRtaE643d03it/NiQRy+gJ93f3f9dqOfpZEPtk6aJ48Mflub0TOuxXhshX9AjM7Db0Dacwgw1mgzNxiqthzAZrXtnUlu6XvTs3KY3FcZ4RNjIi+BnguAcREpN8XKRd/WO2eVLCxKno257twmzlRrO1ttJ/KCNlfWQWSYswF4+N6KuFGbVFsbwmUgPZfV/zwfPRe7jAl46yMncGIrPowiht2R/duR3e/0YRdX4QIq92Aj9E7OybXT02/N3z/v6BE52NdxNF2CJc+Dr1TfV3CPwsjP+5uryOJv6lb7jmujmJkvVAsL6tqdwIi/b6C5tGZ0DoxHIl9jC3TdUV7aF7cE/kEG6Pkw8FIsCFP+J8JJdj+6CWspKhS+7UoIeNBlByxGvADWjuv8RIhe3eE853h7vvXcx0uXK0TmivbAi8k59kZkf57oUp6H8TccA5Ss87WnyIJhCug+XSCu4+J+fUlhPX9AVUk3txLSVVtgB7+K/C2xm65Z5Phr2eifdoisXd7BiUb7epKAtkBjbUxHlUiptB2X1TVcDFgdW9IyL4CxbtHIz+sruSfnJ310Nq5HBI3eDT13Sr8phYRO7tXmYDTR2h++wpVHuuI1ohLXDHTvZCffTvaQ7wzpdfTEpophnwJumdnoCSq7RFv5XqUBDbZfrGePWlra22/xRZ70MtR7G+wl6pL5vcIsyDexBi013kNrds/xt+DvBGqm7S2yq2VjN2Cm5UyItzdN47P0g3XTIgctAiwtJdRkWy10zR2WtK1tNppaMfMehS122rHJ4bDsBVSGfhPha7rbgHYHYDA2VMQWeqb+K4oQDuYUtb1LwhcfAEBp5kyU5YFfhECBgtfg4lodxwiTOwLXOoFCdnx+3rVAbMM0qdQ4GFZBCgc7e7/MZHLjkIg4QyIkHumu59sUowYj5y6imQYa0hc6482r4UI2TY5SW0DtJkqS44yBVLGIzJidxTMXM8bKtH0Qvd2KCobdXCB+zQD0NVLpJceiARUs2zwr2kBAH4aQMW8KEj0Ihpb66NN+bsoKPE2AjmnpAR0k9pJxuU56F0flD3DAJKASQTjWcLePsAGngTfi9jIfXYNsLi7L1HuGJOKxeueK1dZoa/8b2dGxIyeKDnlu3hfhiPw8TD0rnwXx2eE844oKHkaynDfpMY9uwiBly8AAz0hWJuZoYDtn1Egcm4ENO7qEbipBjTH+zgBqRLcbCqN+x/0nmVB4gcRWXq/GB9D0CZtIlJdvaxc39VagGVdkELoQR7koADjJqDAzShPKiJYw0SeRlF9KPNMp/eSKmKjAZrxfi2ElNP/l2yCKwXsOgHfe64KQLwrnRBQtBoCZDMCyiJoPVoLrU8veyhRJmOvSILBQKTyMx8ihYxFwPmnyfEvIrLvvvn+qt23lmTHzJbyXEWVeAZPA9u5+83lzi1/jmVAwFPQ+3hRfDYTCvatjeaTYUkfW6DSr7cif8ZNYPAwNMf0Qmv7nV5GZcaqEI1NBP8FgHXR/Ja+ix0R6WsRND98hEo5H+GJCnuFfo9BCXGXuPsXJqWmc1BQcAYUbDgBOMlLap0HxDU9jRRwn8zfx6llp4zdTmgO2xKtoRu6+9vx7rZzEUduQPPB8ijwVEgtp7ns1FgzZkXjbX5EsLnV3b8NuwsCE12BqIpVTAra2Qf5wmflxvwMKDj+MPJN2qJkq7J7EjPb3XNK4Kag3L+QeuopZg1Kgm6GiIz/QfNr/h2vNB80i53cMeuiYPQwLymEZ2TVzujdXBIFnsa7Asgpqb3omO6DCCEjURLDm2a2C3r+8yGVjJfCJ5oTPZOPvKT4WQ8BpsntJPZ6onH0GArS/pjzBxZHAeQLPadEV09rgXb2REm5CyAf/S4TAaONi3SxNyIzL+G/Qq0p7ByK5ur13P2e3PzWCe3DewCf533tOuwcg5KJlkEJbUMQOeVewML+oq7S3bMj8twI4JZy/nsZn231AiWgAAAgAElEQVQWlEi5Ikrk/gtKpBmL1pvN0J7o5XrOvbnslLHbHgV11kb3f1V3fyU3t2yAAsR9PafmW8d80Fx2ZkIqWl+jdW0IIkFPzB03N1rjvgfeqeXHN5eNcvO4KYF1OkTi/BMNCczZfiBL3GoD2n/H95kf2kDJs6XZyfW/LSKqXYKqQC2Eqgd8gIiQL5vZNqgSw0poT3yfu19a6/k0h538PTMRgW5HPu8ZLpLYbGjuGokwvmOSezY98I2Xkjemqp2czbZxP45GCrwnoYpAPybH9ECksofcfY8pmd/M7I8IRzmDEAuIa3kD7Qk28SSBotw9ibF2MsJGzs4dtxl6lhMtqfZmEik4Cu3f+7j7k9aQkL0Iwq5PcZ8ifC8TDhnmInvfSVRbcxGx50d41CWeJKgm1zOenCJ27phqftv8iBD1fOwdhiKl4bvcfcf4fSdPquxUuY4ms5PsV9oi/PhIwNx9azPLVN0vD9sPhL0TCL+6XF9VrmNOl3jC2sAbrqov3ZHPMQKN8XnROPwXwsk+QPjE57XuU2InjbUsj7Cjw9Ce6q7kuD5xXUuiKhP1inp0RAnglyCMpR0iJKZVfzZHvtyCaP6eC819K6K1uya5w6oQGU3CFcORr5AnZB+CnufiXkbMJY6ZBYmEXO055V9TwsQ1aAzs6+4vlbF9IyLpTkg+zyodVKw8luunC6o2czKlBIM347sOaD88AJHO3ymyd0v6boPmkJXcfUsTYfgpFO8Zhsb2+gj7P8zdv8h+V2YdrUUs74qqpt7v7kPjsy1RrG+oiwjeBZjeoxpjvc1UtexmVP3vMpeA0DKI4PkwSt79xIQXzIYISB97CS+td4+wFMLaB7n77Vbay3dAe4djEO53fRxfOE7a3M2U0DIeVUbqhN7Du9B7+RSaI7ZHe5/vURLR+e5+cvy+bkwn1rM/IrzyJ0T4fioZW3Oivfx3tebPMn0fgsbw5sAj8VwWRHGRbqgqb0bIngslBNzsNZQ9Y97v5IHNhO9yH5qbZ41/n+WB9Zr2q6cjoYpXURLdd2hdKoy9oXWrL9rDz4v8mmvjOo5DKtl3oPGWT3aeqorY8V7+4IEXm9lYVFn5FlOS2ki0DhyP7t9u4TP2QvfuYxQT+rq8hUn3KPXvp4uvvk/Wu35oPJcjZN+OEiUaVHCuZKuAnWORP7VW+G41Cfe1bKI9+yoovp4JRO2FklK38iT2bBJl2iiuc6qS8KdmM8Us5kN7hZFeUlifEcWAxgLXkSNkV1jjKu4VW1tr+y228PluRHuWIv7o/AgzNFR54REkkvd2k55oa6Pt1D6B1tZ0zaUAPArY0MyOiM9+MgUGAT5DgEx3FMhvtdNMdlrStbTakZ3su3o25K12wAXSX+GNSMSOfl+ipLz6lpeI2G2KbGBMSoTjEOiysbuvhEguKwCrBgCMS1XhRET6nrtAvweYCGMEUHgkAv7OAHYIoLNmy23CZy9w/CyIaDUCkS9Xj3MeBIwxM3P399x9LxTYXRqVzjs5NtynoMDHZETsbLMc1/Rz8u8/IwD7v8AFpszijITbJt9HboN0OlLT+SA9Jvn3UgjEPAMRec9FZIG9AoDJzuF/aEN7Ogqy1LpPHVCw7PqwASI/DU42543eTCpnzwGnmtl8AcqORCSIpd19PFKeeAUBassjdYhpzk48344IXHjbg6yVfZf9ZypL9hEiD/XxgkTsrJ+4nv3N7LJ4bh8Ds5nZInmQyszmQWTqFSv1lRzbLffb9dE92xip9n0Xv3sP3btz0BywpykhJSsz2RVl5Y9CoOEm0d9kvreXgnArIgBzIeDkAC2z9jp6TusjYtcIFIi4Ie2nym2bCYGVz5gSGW4BFnb3W+O9XgIR8C9HRGLQnP0mCiR3qtJ32WZmCyAS4TXA7O7+qZm1D3D8UhRsHwAMN7Nlk+v4Mfl3/vmMMbOqJNByLd+Pl4jYk60JU2ojrustd7/f3Z/wErmi7LpjZpehQGI2JibN5fGefIsIeAug55599y93v9rdd3f3Uz1HxI5jyq5zybuzAxpH36ASv+1QoP1oE9Era28CfyjXX7W1tKXYMbNTgQtNpMC0dUZJBh2SY9M1ajVTQH7SmlcGBNzDg4gdx32CwOvr0HwyJvnuOhQ02Qg4zswWdfcf3f0YVA5yaQTYTwgbGWklm3srEbE7UcqM742IUNl37VxEqI0RQWEFlAAwzIOInV/Lk992RIHE44FBAfYMQvPWWghEPQoFg4aHj4JL9XYMGu+zpn2Wm9+ay05ir032/1gLdkaEm6WArc1slnh3fzQFIbsi32MSqF+kNYed3Jic38x6m9lKJjIZLkWugWjtORX59rMhxeyMpDDpflW6bzk7fzSzzcxsb1PSJChweyews5mdbWZdTAG2AYg0cDsKvC5E8r7lbGwODDUpZGWftUWJRN8h4J64Xx3c/SdXkOMpRBq4M5snknem3HzQLHaSfrP/f4/UKoYm88r3ZtY51omdkNLeLsCI5N0lji0atOuNkvGuRyQBXGDuMJSIMc4UfP7Y3V909+e9RJAutL9qZjtE3++hwP1A4P9yPl5HVKVobUQCnOLWUuxkY8+lqj4KPauTzGx1d//ZtbfPSie/icber7VzNFKdG2tmqyTzW1t3/87dv485KU0wqDcgeSlKingFEXpeR0SsHZEf3xElXeIisZ+FcIsvypx7Oq+tg8jRbd39SBTY6Isq5OwL/A0FOhZB621Vv2Zq2Klg90eUcHoLIoCPj3nt+9h3gdR0vo3vG7QitpvDTjLXfoL2tcsjgs9YYEdTEDc7ti3wnrs/4O6P1fLjm8tGbhwsGD7myohE8gFSqBwOrGtmt2X3xcy2Qvu+zmjclPNDyxKkW4iddsm/50REl5OBA1xEvn3Ru9IR+Vi4+5Wu8vYrIPXNmkTs5rBjgU+YCE9ZmwMlqTzqJQLnhwi/PAsYaWaLe5Ci45g02Xmq2cm3OOah6PNJtOdZJndY2+j32+Q39bZ5kZLn/V4iOU0A/oee18cmQlbeF8+PtT09IWInc8ANLiL2BOB8U3IU7n432o+8DNxvZr1j7msb/f8LkburErEr7btcWPrTaK/zF7QObOwiYndAa8X8yMdK+9uDAqq+VPfbPkB4co9Yp0cjPKm/SaUSL0DEbio7yfuZjelZYqxOAC6K+eQyAjdwkfGHxLE7EX512meVPU+H+P4dUzW+K4DbzWxed//C3V9z953Q3vpoRMI+FOH0G6P3rHDzEmHsCpSYdRPa265iCXbtKlV+DMI0rzGzsgIRVex878IcX0ck61fQHJB9/zNSFN4LrX3bo3jDG6h6Sl1EbBPGO87MhpnZAvGOvIDId38BjjAR1DL7JwELeAUidhzzESIBPmRmG5vZ+OS7WxGBcyVgVPbeJt+/gFTAJyTnuwDaE+/pBUldLgLirYjcOy9wm5nta4oPHYLWivPd/e1KY6xK37+g9eVCK1WlvRuR1j5F4+xjhCVdaGYdysxtmSJ2LbXQLogAnc3zWyHS95EuIvZ0CONcw8pg3wVbVmnyLi+p6B6H/PiDXUTsHu7+mbu/4u6P+BQSsaP9hPC9bB/wo4mQ/UOs4z8jMSPi+1S1eJpppsSLk9C92sDdDWFl6yGSZ6aOvTpKDFgNicBkROy2lcaeTY7pbG4lTOcnd38akSLbobG4rJl1N2EXj5DDjupoS6L95qPxXNrFmtcHPbcjga1MyThvI+XlWkTs2dBcdZmV4n43EiI0SDBrceAYU+wk268OJ5KH45zW8IYx76otrv0WtP78gPaZ9wPDwycZjtbA1YC/WC4+PAX3rtGaCUc9FTgtnv8tKJ6TxfJPQclF5yDsLiNiz4UIzb2ROEY1InbnuMZ28ffmlBJlLjIJpmU+1TCkJv6wmf1f1oe7b+gFiNhxbDaeq9k5Muzcb2Yr1PO8q9hcBngt8/nMbDsUsz7S3a81s27Z3jHmn9ViH/S74PGZ2VEmUafs7yxmMQ6NoxTn/BRhPEMQNnZ55otV8N8rVn1oba3tN9z+D8Ub7obqvokJZ3vd3ce5+27uvoe7X+6tROxmab+LSfz30Mysk5ktYWZrWkJEQ4o5lwFHmconZeTI9rE5uQdogwKcrXaawE5LupZWO5XteA3yQ6udys+nGlBSzoEoCni4MiV3chFMs8+qbl6TvldA4OE1XlIVGw68BYxz9w+TzdERwMoBclbrewkESo2yEjH5f0QmNwUJ2bkNxRDgTZOCV3pM2+Tfm4WNhZAC+dfu/q27X4KA0gGI3LVYnNMrAW58a2bD4twed/dty/SdnsuiMR42tCDZBLA5hiqE7Fwf+1NSC704vabkmOWR2uXVwPHhNGZZxAcDB1lDQva7SKHhtGr3NY79AQUpugF/NrO3UdBkd/8VJa4KtAdQNvwfgWdNCjCOQNnDzGy5uI6tkQrRIM+VNZyW7LhIQG8AS5lKpf+SGzdLAuea2dzu/r67PxKfV/VL03c/xsFQpBryAwJ9pkOku67JcZ1RgGMgARhX6f9E4AYTYTiz9U9UkrM3sHj6frqC7iPR2BsP7GelRJavEOh4kLtvn11fpfnOFYQbhBQS9kAEy9OysRz39GIECvZBwN+YrN9q1xXtERRAeSj6ORMFUrI2H0ooeT2bs5Ha7iXAZgVA+XLX9CoCg18FepvZAgEAZ/foMjQHDUQEnFkrdoYCxIgUvrepBOuvbvk14dfYqPJsy5FIj0XBkEfjfq8IvGtm55rUebLfPo/Apf1N2c5pHw3WwqJBh1iLRqKg3N7uPtjd10aglsUx2Zh6Un/azEXX3hZm5zTgEFdwPiV1f46qR2xnIgCna9R0iAi3kZnNmFvj9qWK4pCr9PFoFBzYzRoSsq+hRMg+Jlmzv3D3z2MezI7NSPlVfR5X0PrQOKduwBYm5a7Md+vgSrTbDJVo7JutpVYlWBPz1TpozRmDyIEdgXvjXN9GRJWhKOBxpJWI0icDy7j77dXOvbns5MZJD1OiTZaQ9w2ar69DAeIjTG1htI72AW6r9Rya005mKxmT26HExdvRXHNXMqbfR/Pza8h3uA35+Jd6oiZerSV2dqSkrDgOEapOQgTrA6P/bRDZ4jHgPKTs+09EoPgvSbJArt2Pyoe+bEogzN6Bb9AaNjiuM/PziPXmawTcfw2cYAruVbuHTWrHzJY1sz6mQNTP0dcId38Q2C+uf5SVCNkZCXY2RCSaCLxaaw9XpS0KdHORAH6yEqnkz4jgsQIVCL5Fx14z20nn/rHEODazTcxsJlN1mN3Q/u4WD1LklLSWZMeTYJ+7X46SW6YLW7uYqg/si/zV830KS+aWsTMSETzGm4iZk/k12fOvdxxEexUl6WwAbO3uA13VFNqhwPobwBdWItW9j0gsO0DDOTqZ1wZTUnVeJL6e6FJv3g4l0DwY1wUi5jbw5aq15rJTxp/M7vNnyEe4BJGUzjMpVv8Q+6t1EEHlrWnYTnszaxvz6oexP9sJkSHGID+uexw7EBFLZ0z7qzBfN7mN/HemxMO7o987gBfMbGDcv3MJ1VAze8bMTkHVVu5x4T4Zye0ASqpgF7REO6bk88yPzebMTug9/7erekSW7PYoIlosa1I5zc7xm/SZlNtjNaOdw4GPzKyXl5Q6QdXnuqLkaeKd+SX6uBLtgxokolebQ5vLTqUWz/QBdJ8+QOII/c2sR/hSA1GgeUowsKwtDnT3kqrjnSghfVN3fy7WnkvNbFafPJk2wyknI3KUuU5HpNjDrETIvjeu7e8kpB4iLpvu48q13Ln8wURSnS85ZBwiL/ZB++Hn4r7tjPZCF4Y/iZm1MSmNr4yUGWsRU6r5bTeT+G1eEluYgBJI96rRd5PZMSnpjozn+UMc82SM8TfimRgiYF7hInmDxGPeR8lYNf1qU2Js6vvPFT7Yn1Ds44bw0Yjj/uHuo9Ge/kTkn5zk7kXXuDQB5CCEU+4f9+NxhOP2tSSpwhWrGIvUZKsSFSvY6YGewVEIEzg1HX+uBNRn3H1n5Gv1Rjjov4rYSub06xBRfSAi8F0PbGzCHVJC9iFmdnTy+0/zfeavw1XhqSPCXPc1s9HJ77PE9w2BY21yQnZWXSvzEV9FiTQNqiUVuM5v0X56fzSvnobu6R+AQz1RJ65yPZWSMia6BE7mRtjurcmYngvtV59BldR+qDC3NVivs3uX+Tjx8ReIjL+8me2K1oEjkb8DIs/2RXNtkcS8dmWuaZn4/T/jmDvQXL2Fuz8bc/VJJmXs/H2oK74Y7VPgJWAXC2JnrINtTRWw3kck2bytqUaOTVvyrq6NriMlVu2B/OdJ83z4qne4+9/cJxFCqyZP+eSYztkEpoOw/IXc/W9oXwLCTa5F+NK1ReeC5JqyZ/U98q16xHlkGOW7yC9cGM2jmehVTRzElfh3Mdo3nWFmq6Ok4CPc/Rp3vxrNBR2BIVYi545BY3tFVPEsI+1PZrPKe/pFrMUzxbk/5qWEg4URwfwK4FSvo3JyU7c4xyOQ33AnmuP7uvvfTdjWj2isPYnijceaBG4uQmvdAHd/pXzvYGbDkd83Q9zXHdB96IBI3isgovRJcT6ZT/Ui8JQFNpf0VyimYKpmU9TO46ak8bpFNpK/ZyCU/OPv7dA7Mtzdj4816kREdCfO4Zda72dLaSaRpv4o3gJMilkchpIBZgU2M2Hl2fcT0T0cgdb3PvF5NmcdSIU9aWtrbS2kfYfi7Fn8qNw+P/MT+uZ93KLzZWv79a2VjN0CWgC7DyEQ837gUTO70ZQl+l9EhLkHBf8OA20q4ue9UHCzZhCl1U79dlrStbTaabUzFeykgPP/mdkK0VdhUouLLFkPgTvre0Gga1wPZvZntOnMSj32QYHO6eP4J+O4iuuqu7+MgtcAx5sUd/E6CNm5e7IfAigP9CCMm9k5JmA/3aRtiUjKCxEKFlYKfmfkrg2A0Zao/SHg+J+oHOkW2e/SvnOAzH1I6eFW4D6ToijufgslhexzTKWG0w1lOTWGSuVll0Jj7s/o+XyT3St33y/u30GIuDhJqdyrZF/nm4uYdQIaqzMT6hRhv9Ed1AAufnH3vRF4cQMCtiag8uyvAGuaArzfufu1XiqPV9iPay47SfsrApV3N7Pps3FjCqqsgIJhs6U/KAcuZPc8N1bmQ+DPwwioAI3VkYjMdaWZbR3v2Ai0aT/H3R+tdLJxje8Ax8R8lQV/3kDvx99Qabz1rRSczOaYYxCB4MsUmHGp3zyYnH9VBUx3f9lFursOKcv0Q4GOueP7X1wK9o94lM/Mv5OVWlzHXxAw/y5wezIvg97fV1CwaDAKgA9B5Oy3smuoZafMNY1HWf7fAbeYFNl/sFJw7QpEHkqDBZWu4Uv0bo5GCqEnFD2f5Lza5P7fYGw3po3k77a5v2dExJKL3f0+k5rMJigpYh2kpHWrma1lIvZejFTLV4jfZwGlKQX/50PA81+8VKL0NhRkH+pS3cxIIh+i8owfT4G937wdd3/V3R82EeQfM7ON4/PXUPBhAHCARQKSSWVlc1Qm9iF3/zSZt/ZCAbfdqoGA0fefqE7I7o/W7MXL91K8uYh0J6JxdgiwrUWwLd7Vdi4V7omJr1ETDI53aRs0d56Gykh+nHz/FUoKOQLNd0dZKSEjKxdac+1pSju5dWdzFBB2FMgfYaFQHvZvQL7WM2g92A6B6udnfVW6huayk9yTzNZWiBx9PQp6XogC7E+YWZac+T5SGD8z7tc+7j6s2n0rc339w85ZaF1bGa3LB6E9w7coyLE6eq+OR/72sabEq61RoOrjXL9LmVQcP3H3/8R7+BczuynO/WcUBHwJJTDsHb/rGecxO/InX0LjppLydpPbiec2CCUa9jeVwr0UkaxxBdeHIhWlo03loDEpxSyMCG3LV5tbKrXkOT6BKoxsHTYnrdWIIN8VJUNOUWsuO2lL5ql/o3n5DfQOOUpSOxoldmZJJlPk57dEO4kfd3H0CyJIjkUB8UNcaoSNaed4tF6PM7NVp6TPKrZ+iTX5Lnd/DsCkYrsd2j9c6O7/TX0Db1hFJZ+81x/tO8cAu3iUvc+Oc/evwmffFxFzt0VkmOXrOe+mtpNbf1Yxsz3NbLyZbWRmC7qIsQcj8tB2wF/N7Gy03h4DHOfuT0yjdjZCe92nEAaxStyzb4HBlMjSY8xsJFoLv/MqpK7mslHG5iZoHb0U7Rk2R3PpjWY2IMbqeShx5ydEyBnm7ocmfWyA9jcVlTx/63bMbBuEQw2HSXNMG0TkmY7S+ts29tA/ovX5PaK6RZHWXHaivR2/e9zMenqJtHs3sdeJc/jeSuTLz5Bv9dU0aKdic+EoD6EkvU8QJvIoGgvDgFGxFyrU8vt+tE62Mal53oLwqIEufLcLUqOcDpFx80SOsZQnK6ZiAdke/XhEttweJVDmCdkvoDluWS9I6knOZTtEWn8aJTbuEYc8Fuf4L6R+fA+af0ag+XN8dr6xHk4E9vNQZa9w3+r226L/j9G8t60nCuJTwc4caB6+OZ7hGQiXej85pjPCQntFv50QmfUmYLlafrUpoX7f2K9gZrsBV8U7dAZaw2YgIWRbCQd7MfpfzFXtqujeNyMur42SJU5x9wnxjPdA4+sihFumhOx7gC3dqyuwR9+pUvVA9E4chebcXREh8RRLCNmm6kbzAF+4yNlVhTAyO8m/V0bquf1QYtaSqCLGSYh8lRGyjwWeR3GTilUczayXmXVPrmNl5GMOQxh4vhJZhrP0Q7GspfN9eiIq41Oe9PgtIrMegRIruyBl/LPiPIuqEy9nZuuZiKSTvkdJzHOgsYEJ15kfuBepI1+c2Ymf9UIktQbrtQXJ1ER6G4eqWM0W5z+CSJ4DjnL34+PeLIpIb18RlSAqNVNFyzlirPxiZpuaWb/4+jGgo5kNMOF6S1BS+++GxFZmoJSEWM1ONs+0T+7dXGa2kJVECN5FsajeKHl/jfj59Ci5YEYaCplM9Zbbe2Xz5JJAGw+VeFMcc0VKccz10D5hslZpzOVsVsJ0DkaVGeZ0EbI3QITdb1G88oj4fcX5LbeWpvuuR1GiTv/ku8w/+RHN1W8g5f+azUr7zhPR/DwXWhdWQftpTGTv51AstT1K/tghfvdu7Cd/Sfy7ya4lt+fZyswG5Q7rgOa3bF3oAhjC+EZ6qWLKVCfJmRK42rpiW/9Gcby3KflKP8X/n0Mk9tsQ5rUsWo9WdYnMVOq/LYrBLw+cbhIbWwmtOVu54tEbIZzgIDMbEfbuiWNeJVGuj++KjOdu6LnXY2eydaFK/+1jnHTI1v/Y7z6AEnUPQGvRSHfP4k6LoflumlFFb87m7s8A/d39KTPra2YbxudvoXVoAopVbmelBKGMkH0JEluZVHXZhCcdDuxVaU/a2lpbC2hZ8sJaVkG5P9lvHoCqZ6Tf/S7ml2mhtfnll9Z7/VtuARQ8iDJTxyJQYRtUYulLlKn7RGwih8R311Aq5b0FKofV291fb7XTeHZa0rW02mm109x2cja3R8722wgA/0+Nn2S/myxwWu2YHOB4JHLYF0aB52XRhiAD6o9B4NY+XoNAGP1NIkyaFO1GIULFMHe/Mz7vhUiAWyLS9qWeZELnzjUtsZOpABkKBh7rOZVuU0by3ihz/CjPlfAzAd5XABu6+x0VzrtS2dSN0TM+FhE6f0YBlK1RRn6mKNY/rntRtMF8K+n7AASy7lkN8DazmdAmeHNU4nfZ+LyTR1lKk3LS/ui5HeoiYhVqsVn+0cyOQKXHZkEA3Nbu/lgCvDaq85S/t/E8BiOls9mRovHqPoXqc81tJ+n/L0RmOZovZgNWReDGSA8SR40+lvaktKUpU/pvca73uFTRs+9mROTIExFRpA0qm3ahlwJQk41jM+viCWHfFNw9Gr3zWQLDvAg074bG110JCNhgDDZGs5JqyzlILewQL6iWU6avtghkvw8R2PuhOby/lxJO2iP12yMQ+PMecHqAlFN6Den8sSdaE75AQPqbcY0/pO9TpXk7Nz8vjJQChiIS4uj88RXOp0FpxTwg2Bw24vNZ0HN4FwWcR6G5/HwTAbIPArRnRYDwwQgo7gCsOKXjLDs3kzrzKGAuV0JLpjSTgfQrI9LqEBeRebJra8l2zOw4YG13XzH5zBCQ/C80d90anx+Lgupvo4SQ7mh9G+vux2V2UPD4EOBNb1jituK1xhgcinym89398OS7smv2r2kBeo9Ba/cBwAQvKe9OSX9tXeSU6dF6vCXy5c4MsDQ7rgslQGgNj0oJ05IdE/HhQkQa+gL5BtuhOfWo8Hs7EWR75Kfc5ErCazC3TAt24tglEZh9o7sfF3PPs2huMuT7rOhKDsh+0zHzSyv5hDkbbVHy/wQUxNzaSyXuMbNDkG+wp+eUxUzB9fVQYsIL7j4wPs/e+6wiylYomefb+E2miPKIu2eE5XWQX70BCtb9hMhQx8a1Xxnnt6nnqqA0l534fRdERJkb+TCHuvv43FraD/knC6MEqy+JMe85ok2FZ5KuUe09CSDG3u2OOPeR7v6X+LwjIqtughSQKpYBb2479bYYk4PRHu494B/u/nD2Xa0x/Xuzkxt7O6A16UtUIjyratPg+TaCncFon/018ofea+x9V9jpg/z55VHi8QnxeVUfJJnXLkMkrp1cgdXJfpvMV9n/76BE7PhhWrCT9LET2ot/Gb/tiggBQ9z9kdhjjUNr0oeU5uYnsvMtMt6a0c4OaO6+DpE610QYxMbufl8c0wFhJ1uiJK4z3X1srb6bw0a2nocP2TlsvIvu08Q45j5EXtgw8QM6oioKPb2UTJv5SXMAi2Zzbgu1syTyAddCBMXMF+8aNv+I9gfPJO/LTGg/dq27H1vr2TSnneizDVoXxyFS0Aru/p5JqXZI/Heuu++f3LNd4/w2dfe/Tkt2Cp5LO/Q+DUX3eAfgWXf/R3xfcR7I+R+dw2/LnsF8iCDYG81Bq7r7K6bk50HIJx3mJXy1DcKBn6K8r5piB0Rz/3QAACAASURBVB2A9ql/ZyXF2SuAE9z97/F5f7S/38drqIXmrmd1RHI6FSm5/h8i1h2H1s2fEKa3CyIY/wd4PvGzit63DBPN7tsfUTLBm6hiS1W/LW8nt8Y3i52sfzRGT0AY3giX8mR6PnOgMbEIEhX5HhGah7r76flzLnPfVkZkwdsRVnAkwsLP9RI+vTd63p+hinNv5q+9lp0ydo9C7+T7KFHrweQ+LohIsksiH/Huevy03Li+GL2DFwJj3P27GOubAecjEZ4jUHXJk9AeZqNy+5waNvdBz2BW5O98E5/3QsI3P6L4zA0x/y8BfOoVcGsTjjIC+Lu7nxC+x6lofX7AzP6A5q6BVMZZBrhU2Qvfr/i7KJbVBdgUicycW+v43G93RPe7C/KXH3b3TeO7HkgNfzuUkPElmt9GeqK8XcMHzdbs7iiJ5Rv0vC93JeT0QFjpMQib/zPC+vshDL63l5L6y6kG90Kk+IVRbGdD5O/u4O5XmtkiiMzbE/lOfd39XyYcZEuE9x/hCa5W5VoWc/d/JO/HtmhtmRtVQb3W3U+NY/dDCQffo/e5LVoDTsjW+WmtmaqdDnD3gSZBpIHuPq+Z3YzOfUMvkdiPRxjDfp7gZAVstEOqmxdRHdPZw0MgID7v7iWxjGrrT/4dmoQ5xd9XIEx0MFJ2/8qEXZ4O3O/u5xS9lvy5mGKRB6I1cw0X3tYWkdp/MglCXYXmpu3d/e467OyIcDvQu/oMej7vxfdHITzvYbQ+rIswv8J7kaZuZZ7NKIRTjkFzw3AP0aMya/Bk8Z4y/WfvZQc0hrZAPtcSCAu7JTl2ToSDbQas6+5Px+dzeUkJvuh1bYhiBIZibY1qJ1nju6H15ENUefteU+LuBWH7RHc/IvzNJdDa/R2KR0xptbvfZMv5Q3Oi9+JH4AB3vys+74Xmsaoxi2SvOAuwgBes6tjaWttvtZn4FwsAG2T75fg8fa+WRNjVJd6anDBVWisZ+zfeTNnX16DSYlngpQsKKpyMNkNbuvvjppLDayGHohvKVP0YkScrZqi12pkyOy3pWlrttNppbjuJvS2Jkj3AHR4AdoHfpc7GXsB/80Ba7pi1UCD7cRcg3xOV+OuJNk193f3fpszLrRBAc7i7X1bkfMrYq0XI3gwRtyYE4JkvkZkpSOeVWWZw98/MbFPgfXd/LPnuYgSY/QkFnT/I/XYhd/930euJ37RHZZOnR5nEmYLYHEjJ6KC4vgz02xjo6CoDmPWxJQLe9kmBmzK2ss3UDAiIPQSp+2agY+dsE2ZmFwIvufspBa8jDxp0R1n8GyOQcFYEOD2agAUNCLyN0XLPeWFEXB6JxuYW7n7Db8GONQTwr0Nqv9MjoPgTNP5OzJ9LmX6OQMGklYCP4763Q0GtfRD5cYAnZLH43YwIyPgO+NAj8aMcAGgiXn4OnOfunwYIcgQaXy8CgzzKxllDQvZ+iAz+fa6/wkGUWi3Aq81Rhvf9KNA5xcpTJqWaD5CSzekImE8J2W0RSLgQUrT5T/Z5JeC0gM0U6NwLBY0+QWX93qi3b5OS61aIpLhyfHycu4+o8bv8HHoisGy5NaWZbKyBFBF+Bsa7+5Ayx+yDAkSro+BqZxQ0/jXlmTElNDyFSEhrIrWUjVzljDujxJ2BwK5epZRgS7RjCvAMQcG7e919w+S7BZHi//to/b89Pt8K+TpLxnk8mq1xufGfT/pIx8uKKAA5D1J1eSTWckPzUTlCdt1rdq1mJUL25midvcgLBlNrzOXdURBjNeQXXOtStM6+7wqYR9nwacFO8psF0Lx/IzA6m4NNKmHXI1Xa3dz9cxOZYwIqTT4cgVyFAl3NZSex1wcFZoehoNqTSI39QKQKdhYqabu2F0yCrGLrr8Bn7r5e/J36CHegcb9i7ln1R+Sbj9x9n/gsfZ9mjfOdL875Dldgbib0zgwGHvASUXphlCgxCFXBeMzdb45371akmH90mXNvLjtZwGZfFLT7AjgU7QN+sITwamYroUDVAERmu9bdzyz4LLLg+nqINN4BESnuc/cv4vObEYHnKhQ0XCGu9UgPwve0Yqex2q/xc1q6ndx7tytaGz5GhOxf5Y9UsbMX8LW7X9JY/edtIQLMCsDfyq3ZNX7fDiXLPeDuu5Vbl0xq+l/mPrsYVQ3q60lC5zRgZ21E2BmO9tb/MamI7oaUubZ1KVT1QPPTGmi92i/2Zg1IE9OAnXXRGnmyu48zka6eQwHdGYD1vaFq1mJIrfrV+LtIslGT2DApRt/pIpBm2EdXNA7OdCnuYlI7XBKRbF40Jeq87DliWoJb5LGOFmUnd8yiCNfoB5zkJaL0Nkg84FOk1PioCTPYCO2Lt8l8+yKtOeyk14vwwTGIKN3b3f8Xe5Mh6B16HJHHpkNktT9l93dasVNPi/lvbURMOdJVTasw1mJmA5AwSAeU6HaRC+tZGRHKOgFXAn9H5OzBiBQzGeHOcuIA8Vm6Zo1H68n3SFDj4uS4lJB9vJcI5RWxRCsjAGGqvrQtSlg41JWAPBPyTY9E5JQT8utBufOt1sL/HoCwu9eAs939HTPriwiX/6YR/LamtBP3r234oX3QvZ8eVajZ0N0/Nimf/hDH90HJlKsiUvEF9VyPKZZwLyVc57D4PPXdM0L2Ryhe8mbR/uP3+bl1ATR+l0d7i31zxy+I9nJ9ETHjrnrsRR9Xo3djbzQfv5V81xbhZecgLPVdwJDf8bcqfU4PbOehAh2frYUSj/8HXO3uh8TnHV3E354IY/kGza1XFhzLNyEM5UaEBR2AMN/suVcjZNfEWUwxjw+T/lYB3sivWzX6SPfERee2xZEa8HnI71gHkQr/DqwW435ZNP8NRPjvlR7JBXWcW2eUaPAZej9ezfuUJhGTUUiQ4B20NhwWe9qqyZomrH8/hA0vCuxOkL3j+zWBu9BccBZK4l0DxQGO9xDLqHbf4r07A+HoN8e8cy1KwHgNzamzIJJk9t72R5jiqige8JC7XxnfNcs+rlqzhhjiqggjOh0lGyyKSOxtgYlAH3d/3RRX2BY9q8Pd/ap67CSfPQV84jUwHeCr3PpV7RmlfRyMqrTNhvz/U8M3MbTGDUQJ3Z8i9fdlED7+j3J9l7GVrtup3b3j3ryB8LbnrSEhezk0f2/vxYUP5kdzz8XIB1kGzTcTESH7VVN8aWNgZ5RUfYtHlYei80FTttw9GoR895fjnqyLxtojKNEpS9Luisbhs0XfFSvhRh1QrLs/MBPCIZ+2hoIQWQLUJp4QqOO7wqIuSMRjIPJ1121MO4lP3Q2tXR8gAuTtXko02gPNf3PGNS+E4gFtES5aMZnl99JMXIGhKCk3z5s4nhoxi2nhHWptra2pW4KvrIPWm4/R/vyV3L5hRpTwsjKwngcPoLU1b2slY//GW4AGtwH9XKqdk7KrERFpAgIdVvISmagHWuS/B97NPm+107h2WtK1tNpptdNcdnLAQk+0AX8YZdt+nT+mQB/7IGBiJ68Q0DWpGo1FG8lTXQSu9giQPxgB+IMRITdT/D7OS8GjehQsiihk90QqB1sDS3pC5Atw4gRgb0+I2LlN8sxILW8p9ByeTI67FCkkHIdUbz/In389AFNstJ9DJPbBVir59XOADxmQPrAMkJM5jKsAs+Q3uBXsZZvaGdCmbBeUCT8ovp9EyC54/m0RUP9jAFQLIRD9lRzoMBSYGRGVnzQBr5eioEGjEKTz15j8PTuwsrvf9FuyYw2DD70RsPAhUrh7Nj6vOtZMQfvPXKpSvbykgtMBjeFDkRrHmV5SsK6kvlEOTGyLSAH9EHHvSleQrj0idh6AlHk29YaE7JsRQLg/UhVtMmc6xuX2KImhYpnXGn3kn3UHROI7lRwhu9Zvp9B+Ou/tgYiuP6A56ss65s/NUDLQ0QgY64RKsg9Cwcdhta7BpHYyngoq/M1hI45ZExHsQfPkSFdZPywJDibntCMiAdal+lHBdjdKSq/fIFW5/5kSqwYhRbQjvU6FnpZixxQk3BkBfA+6+/rJdwshMP19pMZzW3zeBqmhpc+tHpXIk1HCWk9EvH8RKTe9ayWF7P7AZR4BynrtFG2mYP945IMs5aFOWOM3DUpxIl+pMyJsPBnrdhcUkFgJ+VbXeBnCQLXraS47ueP+iOaCnd392vgsCxjshoD8jZOx0BH5wgPR+nSqFyC0N5edxF474P/c/W8mtaHpkbLaB/H984hU3B4FQyZO6VpgKi+8ECL1TMz5rKfHNSziuWQjM1vAqxDXwt+9Galq7Qf82asQpXO/nR4Fr8dRRnl7atiJzweGne1QRYsjUGD6u7x/E/urDol/UoncdwwiAWZEscGIPPEyUs/4CQVyh7r7JyZSxChE8GiHgtXneg01teay09qav+X8uJ1QEkcWvGy0pKAK73mTjIPYA0znpcSXeva/bYDngdeTdzrd9yyL1uxTvJSoPB+qLvYXd99lGrMzCs3D/YAPkme9LfKFHkblfb+IPfipiOB1C3CQF6zY0hx2ApsYip7tISb1zMcRqe9GRPJeEFjL3R8q8/sildWaxIaZbY7IdRchFbDvYpx2QIkrV7jU025He6isAkxPpL79GCKH1yKStyg7FWynROnxHkrUpoSnvVGywlNxLouSVLSZ1uyYWdfwObIkkhOjv96xT5gbJYXujohQ/wSu8xA5qMPfbRY7dV57O6CX1694uC1S8n0EmBf5sc8iEugHJoGRXRHZuyvwNKo0c1H8PsMpiyRmnI+e/+MocW8FSlXgMl83I2TfivaPtdSwZ/Wk+qIJE7sOeBXd8xOT77ojfPpIRFQd73UmaCZ97YjUb59F5MpeKMFkZ3e/PfCLY/mVflsz2tkD2BORdZZC2N5baD/1oTUkZHdBirGdvYqQQ67/NkgFeAm0VgPcjWIXz8QxqY090XP6FhHzvipyHTmbqdLsXChhd16UyHt67lhD7/EQrzPxPZ7RUWg/8lcviaIsjQQ2XnOR2lcCDkOE2nHu/s8a/Y5E+6K1vaHy7W5ozf8KqYdnwj8pIftV4BVUyfGLKjZSn/XvaA9yD9rnfpg9t7imjJC9IXXgLCbl5v2At11q65lS9ebu/mC1e5Drp65qrvH3Yuj92NdLmNcOKE70L4Tp/xyfdwA6eWl/X4+vuwnC3LdAlXd+iXdzXRQbu8zdHzYliXdGYh6Zf1qRRGgN8Zxron9HmPs/Y97HhYGshtbYRdFc/SxKQj63yPWYknKGAvMjfK8zmleOdSW0zI7I2iuiRIAhyW/zmOy0QMROx/Z8aO7ZHPlYE+NZDEXX+i5ayxdC13w0cIxHJaA6bO6DyKHbm9mtCKeoC9MpeD3Xonnxb4i8uj+aE0bHezsdIuJvjObqNxGmUBOrjP6z2HV7tO60z62zB1JaI/b3EiG7rTes8FUo3hQ+00WI3P2GKQazDopPf4cSg16LY6cD2nlgltPIWEuf7QRE4DsX+VYTYz5YD8UyHkJz0tMI8zIUA/6sXntWUsjeH+Hu/V0iJR1cBOX50Xq7v/+KpO2wcwKKAza6nZjHLkZ46pZewjTTffyqKIaxIqq0+QxKNKmZzNKSWrV1MPaSR1NeyG4cdcQsWltra8nNlEC3LZqLv0bz6ENoD9UPEbQHIB/6hUr9tLamba1k7N94M2U7P4+c0ywrNHVmVyWy/T0hE7TaaXo7LelaWu202mlqO2a2vOcUFMLWC4hIfW2N3zcozxuf7YdA7908gPUyv9sSqc4OBW7zRP0vHJl1EFFgDqT+8gwqjXdm/tornVP8ezaUzdktA3fj80obizmBxdz93uTYlRF570CvQMizUMcyAfZHo6zytTxK+8Yxl6INy1jgNI8SWVPazOwWtNleyxWoaQf8HM/jbBQkXsKTMma/0l4WHJkRkVR2RQrFW8f3NdUlYmx946FaYQpi3IVAup4omHqRl0pjboGIB/MjYkkfBAAt6QUUx37FteaJN00CyhS1E2DUL7UA41r9xHf1JDGsidQ/dnH3G7NzRuDcnmisn5uCaUVbgDAXIdLmoYi490GAdAcikL0cIfsRFGSbUKe9Tl6QtJD8pmxp11/T4rrXQ4SBzxBYVkihx1TK7xGvT102vYaDUFnRCXWe7y0o4LW5l8gz86BndAgq6Xds7nfl1oTdvUxJpuawEce0R0D1V0iJ5RKUeHS0lxIVJiPdeamM96+eB2I9GYrGwMlIiWMBRPwf4wWUZlqincSXmB4l+4ymOiH7MC9QvraKvXXQ3DYCjYFXUUB9H5QY1Nvd3zepXx2NwJXVPKl60RTNFPBcMvVBCv5uMAowfIOIejOg53Gxu//dSuXbe6P1+2qvEkyd2nbCVl+UrDfY3a+I9/enGCc9UVDwKhchK/NPOqLn+ZYXJ8M1iZ0CY74jIgo94u77xWcLIfLxpUgF6/oC518NRO+DVIwuc/fdc7ZPQT7kJig55+d8XzX6LkKUvtfdt43j2yNS8A7IF34nu3c1fJZGt1PjujqhYOQciERymYuM0Dbu10R3f7fWPTIlD16FStkPd/dTzeweNNYmuBLQLkAA7YMomPuJSRG8K/J1P/WkgkYF/7BZ7NS41rrXxhrPoNVOhePCD5zHc6SVxrCT9tGM46DSuK52P4cjgsghnhCgwpfcI/7byiOpOvbm/bykvJf6js1ip4zdWdz9IxM2sJq7z5/17SXy2GnI9/hD4of2QHuwHaiQ8N5cdircs82Rj/YSSlB/CVXg+sqkxDg6Dh3o7rcW6bM5bJjwiNMQ4fUORED/NtbK0xAuNRHtHdYPf6c9wkL2QxhRTb+tpdmpYn8JRHzshxLWRsXnayDFy3XRc3vYS0lwUzJ/NJkdE1a5KlLefsMqEKWT47si3zGrFjdV7fyaebrM3FXPGnI98qHOiHdyOBpXbyNM5wMTUfEHVPHsm6L3LDe3zY585THufr+JHLsP8tvGIaJYhksejkiflt7LMv2PRqqsa6EEt1/CV7oBPaOrEc6QVpPpjnCKkYgQOszrxChN2Pe9SHjlgvDR1kD765WAdVyVC+r225rLTu7ZrIqIyueiypA/IWzvYOC/qIrWRyZibj8kAPHXcn3VsNPDRUpcAhGVL0O+79Ee8Q1rSL7aB5GwJ9S6V2XsjkdEipW9RK6dByUBzYySV/KE7A71joX43SFIDGBNpEK7FiKtzoAqKl2A1FA/NeGy7bxY5YpZEWn3WzPbwN3vSL7bGY3fJxHm9mR8nhGyZwem9wJJgLGPaofUtj9AiRIjEGb8qSW4tol0dwx14CwmMYCbEcn/EYTt7QtcWOQ+RB/pOJpEsq9yzPKIBL0G0MPd90yOSwnZLwNreI4wWm1MVzi/rRGZcFmkfr4nIt7/EyW4dA87z+d+V4Rg3gFhrjegRIzlot99XBVp26OY0s8mXK5d2PvMS8mHReecdRCOtiCqPHWOq6JJRs7tiXClFVEC9NACt6dZm+XipaYk/meRD3WTu++cfDcDwiX2QfMCKInhKnc/NY6pZx69Dq1zR6Lqc4UxnTquL5vbtnf3J8xsKEoEAM2ph7n7+3FsD0Q06+AFK9VaCXvpHtdjKAnoZiSuk/lmByES8H8RCfeFguM5LxixEMKi53H3HZPjOqAk0zNQLGBTz1Wgq/c9bepmqpCwAvLLn/Fc/NikJH8Diillc20fj4SkOm1lhOz2KF69AyIT7uZK/umC1qWT0L5hsoTXacWOKV59P6oONCz3XQOidX7+t9+RInbu3fk/NGd94+6PJsdsgZLDavImWltr+z02K2GnnVGi8RHAKij580vk+7yNfKzWxIWp2FrJ2L/hlrxopyBgaYtkQcoczc4IlNkHKdfU/cK12qnfTku6llY7rXaa2o6ZHY8ApYEZqBifL41Ulzd39xstV67RFGzslAF4OSc+I8Tt4ZWVSWdHAO1jiDiQAaRbAF1Qybms72UR0PG5F1AVyJ3LFkgZZ0EEIo1HZfA+i+8zQvY3CLT9c66v7N7+AZg5B8KkdnZAQa0dvKRacDzKLu/jDQnZV6GsuJU9AZ0rtWqAgJkdhgjrY5HadqZQ3BWpNnZAz7DRsnqTezIjIq7tj4hENRMATISRRxDAsq2LQP44clKvRADzCKRMeqKXVCgHICWgJRDAuannSsdXsdksgEpT2TERAb/xCByZyhF+50FWb+pmZhuiMTYLKlV9a3zeFgGne6Dg0wXpHFKjzxSAnw6N1TUQEH+tKzhTjZA9WVnwAjZ3QCWYhzbm+zClLcDAfihI9RMCMqpek4mI/jIijW7v7i/VYW+KFQ9NAZXnEQC4nTUMai2KCInzo1LJI/N9F1wTmtxGYisNMGwDXM7khOxyJYob7R03s6UQ6L0DWpueRmDhJfF9oyR//FbtmID+XVAgoBwh+xEEagxx95un8JxHI5X69QmVyBgbW6Eg/v2IgPSdKYloPne/r47+G1XZvlr/piD0nSi4cDNKQNsCZeZfg+7T26YgyI0IJFrCC5QVbQ47le6VlcjKP6JqI6lC0pxoHJzl7uNyv0vnj5qku8a2U6b/dZA/2AmVaM4CWh1QouF7KHmuOyIO7Yfm+Eyxp56AZwM7piBqptp3PfKDf0KB15MQ4WqKFfKtOlF6CPLBH3b3AclvOiMV/awiQRFiUKPZyY2JBVFwvVv8/rv4fDpESOiFiD23AqujxIMdvWBgyBTYGI7ehdNQUP3wbP2OtW8cCp7ej4KPkykZ1ZpPmsNO7r6tgXzyLigRo2aFpzJ9dPUy6l2tdsrbQepgP6XvS6X57bdwPdXs5L5fHL2HsyF/4N3Yl18EGPKjT0KB91XR/nu4B+mhjO1K96/J7JT5bne0BxiCStkPQ9jOn+P7TBlse6Rguqir1Hm6B9/C3c+rfJeb1k6BOWkVlCSyq7vfE59ti8hEX6FErdNqnH+T24jfZMSAboiA3g+RFTMC82porzoXUjY8LvZk68Txw919/O/VTvw7U7V9Pxk/SyGSZz+kIH9M8tsG70eN96VZ7JSxexoi+I1DlcDetMmJ0su7+3vJPZ9MpGJq2MnNbbMi//JrhLH+VOQ+1LuPMZEHV0XiCid6iczZAeGFGclqExfW08AnK/C+p+Ogc9g5HinUfhyf90RY+JFMTsie0d0/rXENOwP/dBHSJq1NZjYLwgtWRZjkTZ5UxDHte0aiBM2ac07O5iYoaL8c8smfj8/bIp/3EvT8VvDy1YaK4jnNZWcOYAPkM+9PScWzPVI+PRB4B/nti6D7erC7n1Kg73Rcb4ow9UcQwfNHU1XFq5HQx0h3fzqOXRv5UPeW66uA3fZIPGIs8AYaw1lcYl5EhpsZqVOfWaTPatdnSioagp7JrMh3vwX5IYNQ5bjlvIYSdtovNIjlZPjXME+Uek3q4cehZIqUkF2YVJ57RtO7++cmAZkNEKHrHFcSQHrcHAgLrYmz5H73T0S8vAOpn35T79xmIr4vihJVyyoKmxLRz0LVZqdHBPlNPdkLmgiE26E19DV3X7zWtVQ4n2yOXwHt2RdDasEzI4LPtYicfy2wjUe8ZAptZRUZhgJ7IYXsfdz9lWR+7uWlCpmF17ecr70BilOuivDW480aVEntGde6NvLb9q/nmpqyWZl4qSmBYD8Ul30avZMfU1J8b4fEpFZGiYMT3f2N+G1RTCebR1dDY/Oz8H8O5VdiOrkxsCRKYLzaJUhwGJoDBqMxdwoa+yd4nVUyUltWSnT/CiVRfofmsTZoThgTxx+A7u0PqGLLf8r3XNbWYOA8FDvOiPDbuPvVyTEd0Dg7P2wv5o0kXNXYzZSodxy6T4/HvDAz8Ec0vh6PuXRNhF//jAS/qlb/qGEzVcgeh/ydd9E62xaNyZM8KlU3gZ1H0XOpy45NLqYzH0qYGOchDJM7vjuwirvfVa+v2xKbqbrEGfFnV5TwNT7zMaxEyK7Km2jGU25tra3Z2pTsmWOPMgvyGR8F/p3tVVvb1GutZOzfUAsHoUf890YC6KyBNuSdUVDrwfg8y/KcCwFOg7yYslWrnTrttKRrabXTamcq2FkO6Ojuj5vZXNkG21TW6T5EgtzbG6pWd6JUrmwXlCGfbeb3RQBUVUKcKbj3LLHxNhF8xqONZWcEdB3pZVSoi26WTIHF8xCA8Bgiiu2GgIoTvURc3gwB+e0QsPXfav2b2bweKrbxnH5E5aGedffhyXFrRr9/ZHKF7HU9goY1rqGjh7qDmfVGZNIPUKm6/8TnN6LSfhOAMWjzuiZ6DgdUew6JnXqDLWmQ9hjgJa8REE5+exKwGVJeH4UUUo73kqrYBui5/Tc+zwjZ06ON4XsB6FQkYucApkkl0eL/RQGwerPwG91OvM9Ho3diL1QW7iL0fhcmINbxzqTX09Mj897M+iGSzwLAnt6QkH0KCiAej0oOflvHeW2JlExmp6T8chRSjvjYSoTsvYAPkYpOmjRSKQA5i5eI2+3Ru/0YcKVHidWC51f3faunmQiAA4DuXkChxxRIWQWppHyBVFxfrNPmJMVDaiit58bD1QjoXdoF2qdz01lobPZCZZfSTPqD0by0p5dXxG5yGwWuLSVkH+VB3GuKVmaT3hUBpz8l19oY6tu/CTvl3p1kjM6EAgGjgQe8ISF7YaTgs6O7X17gPPMKGO1RUHNud18qPstISe2QAs3KaCx+nuurKEG6ydae3PErISLc3shfez/5bmcEpu7v7mfEZ91RklhdipRNZSd3z+ZCQaVvPQgTsU5cgIixO7gIctMhYtkYlNh1d4G+m8VOme+2R1U9PkWBoU9Q+doHXUT/jdF4+xSRspdCa2ldQY4KdnZxBRlmRUr1wxDp+HsUqDrTIwg/petY/LYSUXpm5Oe94O7nl7NTj93GsJMbB9sh0l4vtKZ+gYKtr8f30wGPo/1OFvA/JfX1C573Msi3WQkFIRdzEeI6x/87IJL3gLC3t9dRWnYq2BmMfL9vkULfh0jB6IFqc1zu3h+IAodreQVlrVY7Ze0cjIL+a3t10shvdIN+VQAAIABJREFU5Xqq2jElUo5CKoDToXd0DEoGnR8pbm6IVGd+RkHCM7wU1C/qxzepndw1L4wU6s9w99Hx99PAXxH2kal5dkR7wA2Bvl4igVSsqDSV7PRCVTJ+Roltmdr2YLRnXcalbtcOJVxPj4LjFdVpm8tGzl6GbaQE5tsRgfkbM1sX7XXnQUTCDsgnOreedbQl2LEEC4u/t0Z4zvwoYfghYFSsz0sjAlk/ElJEfnxVuIZmsVPGbjr2TkTkp/GI5JISpUcjrHaZesZac9oxJSccDPwB+YeOEk2rVufLndvGiFz4UvL9ccBjXhLP6Ir8i92Aj4BVXYS+TuHrtkOYzt5orRjgdVRVy53P6SjxcH5E6BrggSPG97MjbOowSnuTn6q9Nza5MuJ6aH0b4KEEbCJk34gIxAcAN3tDQnZNwqqZDQHuc/fnTLjODEiQYlW0vizn7u9Yw8oF+yBC1lpesDJac9kpY3d5tI96C7jVS1V/sr1wO/RsDkF7lR/Q+/qnOu3sCJyJyMm3u/sDyXdboiSdOxA+3i7+3sXdLy7Yfzl8ohMiiJ1JSd07JWRfjYizQ7w4Ll5xfjKzK5Da96torF0cn/cBLiQ37uu4jh7xz6PRXmpEuue0EiH7cUTALKJUnb6fndBznS71U83sVpQAPxLtPz83JQisiXySL+O4mjiLCcfphsq/f4LWrjOAsR5YTpX7mp7rviiBdR93P7vCMXOiteZMtBecF80N96LEpReT33VBpMJvvUI11TLnk74bHYFZvaREvyoiAn+MEob/kXx+IVLpr5kcnLuemVAyfRt3/yQ5ZhhS3/bo93UTmWgYij38P3tnHXZVmbXxHyEh2F1juxwdY7ATA7tRLLBbRMVOFDFRBEXFFnWssbCwR0cdcxTbWWOO8zn22A36/XGvzXnezYl9kPeAzHmuywvfffZ+1o4nVtzrXm8VfJ4WIHsvEcpsiMbcCgjIflvu+edEPu4bvUJl3cnRrGW8dD53/3ccXwi9r8OQHjKwQF9FbZKy62j8Nheq+nU0Sp6py6djLZOaZkH7QR/EWL0mSgA5xN2vNMWE/4JiQNej2GI9+3YGuG2HKihmcZ03Yx6vgNaDJVEC+Y1x3dEoqXy7avpbbqzNhABvlyLg8CwIsP5PlJR1X3LdNGgtn9ELVv2ZHC3WpyPR+/kKsXqPQN+9K3re7VxA/XYA9eq7FeSmzNVnoKSD7xD5xhh3fzzO+1WxhDJy9kXr+WkIaD4+YayInNBDF3X350Nfexp9/145/a4N8qWsg3yuhZMMis7h31IzEVPchZIuXgMMAeTvQcDrjNSiLtxEszXbb72ZEn/bAd968US0qW6NmJpa28l9A81WrJmCyaORQvc68GAYKoThMxQ5L4eFgYGXAv6zAG8jh1RTziSWMzU9S1NOU85kkNPG3f8ejoUNgQdMDnvCyXAlMviOMAU4MLPZUdB0PwSC+CwxgPshZ9ZeXgYAHEZP9m8HguHYzB5ChvIsiBlwPVTCY7X0uqwVdGCsigz7412lzt5ABtdzQH/gOJOjHne/GTmGTnD3f1Xr38xOAG42MTHh7j/F+TMjUDamwAkuoPzRiO31vrin7BnuS88tI6efmc3jJTDbLsjhdxoCoow0Zafi7j2BaxA75evI6DwVMcheGte3mVBKqeWcpxXvKzn/5zCKP0Olmy+uJSd5L4ci4OMfEei6G3IyZ4b2aGTw/w44ylR6C3f/0t3fDyW4rRcDYm8GnG9m9wOXmlm3goZ82sfiJiB4w+WEY+A/iA3lPhRQOAAFUwu1vEM0c9TUOG9r4GoTKwsuANog9J0uNLPN4/jPyKl2JQLJ1wPE7oXK3r2Bgnc7I5DAmcCOZjZLfONhaJz8HjkIx7dyc9UE9r/EzCzOGetiuuyKAnZF7y99H/1MoK2yrd75k1z3IyrNNzKTWeP8XxCofFcUVBtpYgMr1NJncvefM4My/b2MvKzdgJIhLjEBu7K1qStau4cj4GoKkl4RBYD7eYCkGyGjSEuf3d2vRU7oTYBTTY7hwq3Wd8vLTa5r6+7fuAK5KbtuxQDU1CYnmTvrmNlxZjYSONLMFnEFiC5H++haZnZ3IvefwMxeA4htZouYWJmy+9k01uexCJC0sIlNGC9VWxiHAg9zIIBZ/pmLPE+r7T2583+HEufuR4DSLAmlbXyPy9G8OtAUcMHdv/KWCTU1W2vKSZ53R/TenweezfZ+tN8djUDKz5rZvUhnPAcxdpQFSKd9N1JO2qyUUHAYAkD0QEGBa4CNY67dg5KSXgReRQDZ0+L6QnOxipxrzaynu3/sSkRaGukQO6GqKVnQru2vcRq6WB62DJnDgY1MbFufIh2xLEA6ri0sd1LIScbB9gjEcSMKDA9BCY/3mFiiiLVsFRT4egIF64+L62vOnWSPGYPAnI+j8rGHxfHvTUlHP6F97G6UdDRRe1BrycnpCYsgpsMTEEBgA6THXQ9sUlDH7IeCPJd7AsBtyikkZ3DISQEuv+XnmUBOcu4WSP+/HNgc+QfuRWXgB6F1YF9gbbROH4iC0hlAutC61gg5yTMvF+/qWaQbtAl9Zntk41xoZoeYwFaHI8DfZZ4konou0J7qFpNBTm9knz6PQFFXWPimEGjxn8BFZrY/Suo9BHjeS+CcintcI2Skv3mJofdrZNvehwDqw8yss8t3swsaC4+isbtLkX10apJjOV+YCUx3JQJwDQO+RDbVQyaA6wvILzUaONbMTo77qwXEboic/HuLa34xJSng7kcg32t/pOPOH3PhFgT8nwaBjGq2RslJ5G2P1rWH0bp1CQJVvRRreMX7zK3TtwLzZL+Fnr8DAndnz/IN8ucMRX7RfnH8BxPgdxz6bhchn073Op6jbXI/VyFSh38hvXkB4CATGDa7lw8RMPN8tOZldkmleXM6GjOzJ4cXRoCna01V6nAl+vcE/oH2gi1MSXuZ3FpAbENr7XiWYpcvdSCyBeZAPvbxNmlc+goCm05gk05OORXav9B+Oh+wlIndFQ+waYyD4Wj87I9YS0+O+y5qk66K1quBCCj0UBxvF2P3BsSYvW7cy6VxXk0gtsmuTcd/p+w3lz9xNLKjfgfcZqV4wr9Q8u6zyMYs8hwpKHJfMzs3/ts7+uwNrIQqJWVA7NmRvfch8H6tZwG2MrPDkmO3IFKaL5DdMxw4xQR+zJ7zQmQPbwIcnL6DCnLy/o9LkM10gyV+SnffHL2/E4Bzzex4xCj+gSdM7EX8LGjef4fG8soIQNYXxa06eCRfxHWdyvURa9s5qLLGCJKWnLNWvIfngavd/R4X83BvVMnqlNwzfouqlV6Yyavx7trF3JgO+QaeBV42sztM1SmfcPdTUAXKV82so6mKyxkoIeDRav2Xeeat0Tt/HnjFzPY0gc1xJTBdiBKP7zMRYVyHwMATA8TeGrjSSvGEe5CO9hTS2baI42Njj/gAgbSnCCC2CbCLt4yX3m9KfifeyQVoDJ1gZjUTtevweZRdR6OP99E+uzQa83X5dJI15xYE6B+HiHC+RDriU2iMZDHhl1EyQncUwy3cYh52Qv7D/RATekYo1daVFHoSwkdtmVx3GgLQZkDuSv1nY21TYJu41xvim92L7LbFgdNNCYjZdT+hcZ1VcCzs+25ES/bkLxBY/goUN7sVzfmtUcxsBTQOcPdx1fTdpM+aLXvvLn/5kSiRq7N+qg7E/pVyLkfjcWXkUyDW80I+dDQfbzb5/j9BPrEewOGxxmZtUaQjzYiSUQu1uNdszE1jZh2y8VlUf5kSWpnxPg3CX1zj7ve5e6ajbQAMNLNlYTxuYiAFcBPN1my/9WZKrvsP8BKaB93SMV9pb2rOiym7NZmxfwMtnCtPIibS6xDL0B6ILe0vwNbhwMgYBxZGm9NdSFE9AGXcreLuFTf5ppz65UxNz9KU05TTaDll5K6CnP3vAWe7wGmY2ZnIyP8COW1mAmVKhmMoU+Y7oEDPp54AsfPOTE/AmmbWAwGkOyNm5cHJb6OBN9z9wJzjrdL95xnw+qCSXv2Rs/RJVMptADL0DkKMD+d7jhmmmjxTdvIg5KQ4KTFGX0Csu2eEIdYmcXSsjRzGfwTmBj6s9jymoNMDyCG+KWIcexEFFUahctCDEKPB6R5gtLhuUeSYfNeDibuSoVxG7mYEo54XLEMY101subpTURCwM9DN3d8J431c9LchCtj8iFgqn6jYcXlZuyCH4mgUTJkZBX8OR6W0v6twXTpmD0MMP5t4hRJprSUn9/tdyBh+HjnkC5ekTPo4AhnVG+XHfJnnuQAlVjzpwVoRv6UM2Xu7e2FQeHpP6D3dgYybPcJxjQl4eDEa90chZ9rHMS6W9gIsPWZ2UtzjSDQ//hnH30AJCiNrjdXce+uLAhV7e3W2/181f4qen12D9oSrgc8pwJCde6ajEWPt+hV+Xx0xVM+Fgil3oIDeacjh+yLaF6ZDzP+nxD3cG9dnbGxzAnN5KZu+1WXU23L3tBMK9G8+kWN7W6CLF2Rdmtg2FcrZDc2xN5GOMRva97Z393tNTCe7IV3nKXfvEdeNZ3mv4Az+HdrvZ3b3HUwg3JHADu5+synANgp4BDHaPBvXdUQgrNWBDTxhDSr4PA3Ze+K8LigR61BgdmBTD7bL5JyTUYLTEvU+S2vKyT1vD/QtRqBvvxIK+vR39wvimyyO9N5FUNLh3e5+TVxflK281eTkZcXf0yHgQ18vsbssjPbYFZB+f7tHyXgoBaGLPlMBOSsiJu7RLiBBvq9JVlbSBNC5Ca3Z/VDJ27KJc5NTjqkaz5UoGeoUM1sUBcAfQnp0JyZkWkxBE3Wx/Se/LYf0hB6oNPiwON7B3X80BX5X9TpZzlpTTq7fldH72Q7Yz0vsYAujObUcAomM9paMunnwwzCqVFBqyvnflhNrYUcU/P0J2N0ToI6ZnYtAXD29QuWFIutaI+TknvkPKGH6fQQW3jqOZ8xgqyMbaEEETHgXVRAbku9rcsnJydwOVXU4EwEgpkUArq7Ibr8/7MbBiC30I1RZ4MxafTdCRu6dzYrW/a+QH+LrsEnPQeD8u1D590r6W1EdZGqQcwACzzyDwM/rIcby01yM2x2RbnMcIkHYxpUQtCTSre90gdmqtkbJycncBDCPKlrWskLT2cjXeTbyH74da8hC1fT0ySXHVBHlTgSiOtmjyo+ZPY30+A3c3eNYJdb7fnEf+3mJ4CGzv7OKGxsAXV0gDUwg74OQDX+aux8bx9PqQ0t7Qbs9dz9dkL04EoEUf0re13BU0v7d5NrZURWwqkyeZnYZsjOPBy7xEtvxXsh2+waNr4w8YlaUyNctnvVqL8hGaWYzulgsuyP23KfieDdk526EWDzPjOOZj/0wYP1Mx59S5FSQPRdap/tGfxdma41VYCyuxxaJteFA5NN8s8p5qwDzAv919weryUnnYHLsMmQrHu1JlaxYe7ZAALknUOWkD+O3ipUbc32n4/omlPj5DtrbFkdz93BPQLCxd++F/KRrecJUX0FGB2QL7ItAbobGbE93fzrOmRfZ9gchduqUIXs3xE7qtZ4nzt8ZJUDcgPSPTVEcZnt3vz8572oEkvwZVQE4K/9OyvSdvq8d455fBY5yMbzPiGJZFvdwmstHtBkCTR+DmA0zO66IrrswSmRpj9hgN47j2RrYE+mPdyOw/wtF3lMZOV2QDfopSqb9GrFrT4NiSGe7AMuzoNjJdkh3WzXWwKKxnqyC1ggUV+yDKiUNRetepsv3RUQwsyEQ+PA4Xk8lq2rxhPVRTG4xFAfIqqCm33iyMkua2SBEDLVJsnal8dKz3P36OD4/WjsnmEO/8h7mRuvo/ky4jlZax6rpbqkfY5+4577Ao8nefCciRtkg9KwFUXLFWYiZvWylpALP8iKKYb6FKnx8FfJ+ibk0CPnefgd8Vk4fqdL3PGgOLgq86O4rxfHM57Ec0oNeBQa4kgLquffMdppk/rJKMpK/Mx93V6TjroFY0u9y96vjnLWQL2srrxEjKzeeC95XttZNA6zmUZW7FeRk7zir4LYVkUTodfiuTYkf/YH13P3F0EX6o7H1ECI16oLwEj8CK8TaWmScpfPnZETgMDeKWQ3xqFowpbfcOrsi8gV0RbHBPnG83B43KD/OJvc63WzN1prNVFHuH/Hnx8ivcjFwr7s/kJzXnAe/odYEY/8GmpltiTKGN/NSSaC5EYBwIGJx3NiV8b8uMox2QwbUF9HNlrWcGU059cuZmp6lKacpp9FycjIzY28FBAD/GpV4y8AnvVF26ooI1Pyou98Uv6XO+wmcmImMzVFgti0yWE4MBX9ab8m6NQNyCp2N2AFvKvoccf1GCCg9HXIgvYCcCp9Ff/81szWAB5Fj7UoUYKiH0Xc3FBR8DjjV3R82s5fRO7uywjVrIsDgDQX6b4OcOQci1osTEPvCoa4MX0xMnqehoOQp2bcq01dR51xbBOQ/CdjQ3Z8saJQWDdhmBl07YJrsfZtYj45AhvHu7v5/1hKQvSUaN1t7wSBH9NsNAa7OQUxfn8c8ejtkbe1iiKn4PFYKQB3k7hc0Uk4yJ9sigOrDyGGwHAqgDnSVfi1XenICcHwi42B3P7/Ke1sxeZ7hXgJJp86HzKG9FHJg35RcX3Q8TIPWgafcfdfcbwshEGNntBZe50kQrciYNpVmPYNSAN9RgGNfrwGyLfPehiG2/4osHa09f6rIXIUCgOwyzzQEOMzdzy1z7m7x+/vI4FwQuA0Fwl9AwY89ULnjb1FSyBleR3nZRsiop+Xez2IeAP6i18b/zoQqE+zrUWKxXtn/S3KS81cHbkcJRte5+wemwFl/BJRdN+bTTAjoewZyOt9WsdNS3+0QQGcn5PxfAdgHBc1/iHP2QEGGxxFz1uso0WEgKpc5vOizRH+ttvdUerehN20a1/wDsYy9F79Ng0ApG6Bg5PsTuy5NKjn5/k2szvsh5rqjXIGTedA32BkFiy7xUhnt/PWVAlINkVPhGddDwYjpgIXdfcu0z9jnRqAkvf0QaKhw5YZfIed2ryNZaGKaCaTyINIhKiYwTU45puTFXmjP6YrshlEo2LkFAvq8iJLfqoIdcv2m83gVSsDuF4Cn45usiHSotRGzTAaU7piOgWrjrVFycjJnQwHodsDD7r5u7veFUJB/abTO3unBTFdGp6oGfmjKacrJdJGXUbL29nEsDdY+gQByaxddlxspJ7Vl4+/pXOCDUymB+7q7+wtxD21D5iwoSXFa4BMPIFaVfa4hcsrInQUxtD2HwA0Z0PN5xGrWxyNxOHSxJYGv65HTCBlxXu94V/Mhe+NuYISLCXF6NFbXR3bKoS4Aat2gjKlJTthxg5FfckEETLrUAohoYkI8GvmztvNSIu1M5XTgKUBOW0Qs8RQwJyJcOD9+S4HStyOd60rgPG8JlCyaANKqchL9b35gDPJz3hC/3Yn8N5u5gCqrAM8lNlHhdTrWk87AB8gH3ddL1XAWRnbc/igx/pj8MxZ9Z8m5w5GNMRYlhKbvZEjIG47GyL+L9Jnr/2w0jk5AAMQP4vg+yC9RDpD9AALMX1Kj723d/c/x/+0psTGOAQ5w97/Hb91C/mbIv/Me8gMegPy9p08JcqKPvI3UAoRsSpYfhMCjh1ChAsbENDO7EIG95qtwL8sCr+Xtqir7aCc0J8/x8PeZCHIGom9/OvJD5QHZf0IMpS8BPVwEEvX6QU5ENuiuCLT6o6ki6slx/FqXD70fWtc/RD7zQraJCcw3Iu7zRwRSe8Za+nZTQPZRnhDk1PEc6yFw+lB3H2Jmv0f60ziU9LaNJyBIUxLsuInYr/sgv82pwD3xLFmcIQNkL4aYeF9E/sYWz2QC8w9DPq6q9qOZHYT8A3MB68Q+Op5x3hSruAWBPbdxVWoq3KKvwajqQS93/0ccnxH5wxdChCC3m8DU2yD/6QGxBxYF/6+ObNsR8X3+ADyG2FCXQGP8IhfDezb+p82ep861umg84ViUVL2n1+FrbO1mSmLYF72Tu1DiXwaCXhGBE79Ge1sKyO6H1rrxSUgFZKV77hwoMbSji/0622fOQL7MSbKOmvysiwBzuPtRud+ytWcQ8l2uiUgLursqthbpP7Oh2gDtveRXux35EU9ESZOZTt82nnFzBI79snzP4/svF//aHu1fq6K94e7ot23Mk25ojX8X2XPvTtBxFVkmhtTrUPL/dUWuLdpy82I/pKPNhnT3a70UN53BVdEgGyunIYD7Jl4l4azMeN7J64t9lwWKt5Yck+09BH3P/T2qDNS4NtsDOqK438MeMcaYQxsjUPuMiHX+JbSuFl5DE1k3oXF2GzArIqlaAmEw6gL6T85mSpgZgfSCrBLn6jX2uF4eeIRma7apvZnIbkYgLNTtyGe2B7JD70AJZy+k/oZ6bYBma3z7zZQw+B9vs6GN6TMYryD8BwXs+yFgVFbC5UHkcOqGMgz3Q9ljRUCRTTn1y5manqUppymnIXIyxTr+v2MYH79Ef88g0G9XVMqndxy/xt37IeX8IC8DxI7zKgGxt0es1J2QsdIP+Gtc/204izExbfVDjvRhXj8QezukJG3uKpvzd2QgLQ78zUtZtd8iUPlpwLNFjUQrsRZegdg2u6GSlj2Qo3FxM1vZzFYws+XNbFUz62Fm67n7I14KhFTc/61UVuyc+G9OZPjP5u6fZO/KxS5xVDzLkSaGiAlaUadZnHcdMsa2j2OFAVtmdpSpxGelZ8oyqh8H+oRjGHcfiIBdSwDnm9m8YQxnZSZHufuWXqNEWZm2UPz7oLt/Hv9/KXI4Hubun2X3kM0JKx+A2tcrALFbS05OgV8EsQ2t4QI8nItKJZ5oZuYtAw+zwXijuZKMikDsaEuhsXxHztH3c2KU34fYEf4PmCG9uA7Doy3wX2D+7Ltm/7qc8q+hIPIwlHGeyqgWgMzm6JlofuyMwFUroLE9l6ktaGbzx/8vY2JMSOdfPghZtVxia82f3Ho9g5nNZWZdYt3+GTkVd0KOpZGWlMmsICd7pv28PBB7HTQfT0NsQwsjx+gWiE34RwRu746YVvdA623h8rKtJcMU9Juols2Z+PP1Ws9iZmeZ2cHZtfF+26FAZj3B/xalPE1MaVOtnAptWcTcdztiNMTFkHMU+hYXm9nM4eS4GFVRKALEbuMq13goAvKsiCoL3OFRMjtkXYb0nhkQa9RDSJ8a4AkTUNF3QCvtPblzfmdmy5pZN1MZxi9Q0OsQ5JQfZWZ7m0p29ke64WXu/p8616VJLsfEpJfuW5sgBs+NgX9meqQL5H00SqgZBuxuCoTk52vZPaFRcio8404ogLJTvJfNzWxQur/EPrcvAgHeSJR/r6dNpJz56pVTb3M56Vf0VgRiTwI5Y4CrXOyHJyLAwHHu/oW7X4XYk5YGHjcBAoveUzZ3dkNA8bMRMPUu4Jr4Nk8jEMFDwPFmdmhc+0Our4rjrVFycud9jAB8/wesZmYbp/tkjLV9kP52K2K3Su/1YBRcqwjAbcppyklaB6QbzJvt1whYmpWX/gdid63HNmyIHBNYY3dgjvh7f+B6UwL6MQgE1xnNy8Xi3fwc8/ZTd3/Z3Z/2EkipTYV9rlFylrQJy05Pj2zGF70EqLgL+V12d/fXQn9YNHSxF6vJaYSMcs3ko7ocAbcOQGvpssDdZrZcyD0Q7bXbIp10YgDSU4Uca+kLOxrZ14shBk9cwIYs6f5UFLhcMbs+dPmaenUj5OR+ax99bYZKox8a+jgucGQ2Nl9Dc+pgcnpbpXfY2nISWyK7NivF3g7ZNhnI5y6k12zuAmIviMCdm2T9lLFFau0H36Lx1QYYbAJt4AIsD0WB6qPM7IzsGYu8s3wzAQPbxn/TEwQkJhAtYeudjfzIJ5rApXU1dz8E+aAHAnta+BVc7OpDEJviTSageaaDruy1gdiboXX5yrhubFy7MfKLn2kiRMHFOngiIhLpheyqV9B6d3r0V8kP0hA58Vs6VjY2s6HIt3+0ma0aMj5A4Kcr0bfZLbOvJkH7DzCrma2V2TzJPJgTsQpvnL+oynibG1XbuSk59zu0tpyAfBJHm5JZst9/QMC+e9Ecy3zblezfSu9z1ejj2VgDFkJ29rXAzck9n4cITLb04kDsdq5qH9/FPY5FPg+8BHrDBbIcgr7T6WbWv0DfqY+yE6omdouXgL5PIrtzS7TWXWvyARIyX5+I/XpR9D0Go6SLrELXLybf6OeIUfVpVBnoSCYEYu+I/OktKh5W2ivc/RxUne8T4GwzWz4Z+23cfRSqPHmT1wnEjv5/QT6V970ExO4Yz7IxYg/fOc69Gu0J+8Ue2M6LAbHbIv/UE8BwM1sceBR9n1WQn+oQYGczWyBkfeclIHah75O0ovGEwQgYOWMdfbd6i31qJEpOWA+N3S7x29OU4qVHhc6FC8R+HkoU+LAOWdlY2hGB718FHjSzk0zVDT5B+/TVTOQ6mq49ZrYVApEOIXSD9Bx3PxVVpj0W6QBrICb9okDs9rG2dEG+/vVNhBq4++bIJ3EMcIgJ6AbS7Xoge+urWjKSd7acqRIHLlD8YASyvdLM1okx+3Pc03NojWpRPaPAs2TkSLMgvW3vTM+ZFC3mVqaj3YTezSoofn0pcIspkQIvAbHXRd9vC5TIULXyR4znK5B+tBEaz52K3qOXgPXZ379YmbjsJJIzTdjehyHSjwmA2GbWNm8vumLNHdAedz2weuxDuPsnLt/eioicYj13390nDoi9P6rsug1KiOmFwOcdgLWtFNesJ3bQkJbbsxdFc/xkFHM7EsVmh9TY45pA7GabqpuZdbVSXPQrZCfNB7zp7vui+XIdAmiPBm43s3VM5Ev14CGabTK1Jhj7t9HeReWll4y/M5DT1yg76Hi06Q6C8U6Pl9z9Wne/24MxrCmnVeRMTc/SlNOU0xA5iWLdE4Gf/mpmQ8xs2pDzFCpZlgGyt0suH5vrq4jTrCMK9pwI9ETGywBSzOkmAAAgAElEQVQEvn0yHKhjw7F9OsqWPiYcAYXAfXFeZwRIOREFf7M2OwpEzGBm7cNAWgWBmIe6+3lxfU2DKYy8DAx9GXLM/jGeZylkEP8NsRjfE//ehxzgLfqpISMD0pyLggKfActbAJUTx+kDyCkLcrAvWusZzKxNuWcNw/djFDTZ1sQoUrWfZCwdgJzVE4y9MHAz43gxxCoxENjUSoCn45GjfnkEyJ4njOIW394LMGMnz7YU0MUjMcHM7kaOzp7u/lw4NUaamJMqgZf3ie/cMDm537dHiv7hJrYF3H0AGhMbAyfEvMnm81UmkHG7ep4l17oh5vKMlT9zzP0S979s/H0nCuZV7bPSvHIFMM5CbAvHxLHMEdUV+BI507t7HSUfc3N0MArg7hIyFkCsLy8jppRn498xaD0aPzetxJjSIgjZyPmTO6cXyr59CbGYnBBjaiwtAdmXmtkyFfqoOBaSZ1o/3sfVXnJU7ozK4mWs/+Pc/T13H+nuN7j7Q9FHTaau1pJhZhcAr9V679Vafn5WehYTE8VSKCCzV/LTNMiBXMgBn/s2ByPH4VQrJ463LzN/lkAJJ296KWknC3Zcj4JHc8SxL5K1tqpuEN+zXegGXdF+PDdwjpnN4irH2SHOvQ4xEi2HWGTX91LJ3PHA1lrPH//bKntPck4fpF88ggJpY8xsfXf/BiXqHRjv60KkD/0elTkemrvPiu+tteSY2VnAjdbSgf86Ar6tghLaxjvXY009Gjn2R6AAyPg9qdIzNEpOBdnTIAb3w9H+ljET7oze2fjm7m8jwEBPTxj+JrecSmOkqD4eMjOWxapgjtaWU0UH+TbmY8am+qGXSowviMqS90VsWDWD66kcU2DwBGSvrYaSKq9GAd2/WAkoPQiBFc40AQpr2iGNklOpucrT9kEMkUchvT39/W1UQr1n/H92r5ujIPIBXgA835TzvyOnhp0wDAGVjoxj4ytxIYDKG0DbImtGg+XMhBKqjzeBms5DJeHHRf+nIha4dRFwcLGws8rqneX2oQbK2Q3ZHpvn9tQOiMEvY/IdjfSfTVws3Iuh9zmBbyIvpxEyyjUTW9pByHY7yd2vi3cG8sd9F319jezHvwB/rWbrTO1yQk/P9KNLETDsR+AwU8l0Qr9ug/yZHwITVP2o9X1aW05O914X+Vp+H3ZpL5QceoiVgNIZC3dbtMeu4O6PVnuGRsgxsT3uY2Zd49o9EWB4ZlQ16xkELH4YAbE3jbnTHgGL5kfA1lT/PxIBqauCFRN7+S0EcpoJATlTQPbZKJH2cDNbpaj+YS3BYx1dwNhjkV04B3BdvNvvrQTIPixk9ULrRt3N3Q+mOiC7Iwq8LxbHM8bKas/1NPLpbmBmIxNZD8a9LouA7BlQegyqtHY32n9m8GCNNTGLV5qvjZKTjpWdkd65EEog6AsMNSXpEnr1cci+Gg7sbwXJNWq802uQnn5wyM7s/k4IBLYxpYqhNVuM4ZPd/UszG25mw+L453HfJyKf+zEWCZrx7zzADcCqqa5T5lk6A1eb2YbJsfbRx3LAO+7+jYlN+u8oyXIfd//OBMrcMfbu6714TCn1nf8Z+TnuR37KYTF/frKS3/T/UCzmTAQOr/QsmZ8mGwMzxzx4FoHvpkdA1lFA/1i/bkJ+yrvMbIsy91nU1p4TxXbujzVh/PUegDoXYLEP8ues5QHETtaUZxGD9Xiijdw6vaSJXGfxpP9Lka92NuRHyoPVbvBShYNCiUbJ311RtdYuFuBUF2lABsi+AljHzOaL3972kv+obGykzFqdEXgMQ76QEegbH+UCG92M9pwTgf6WA/vW8X2yVjSecBeq0lA1oaWRzQT0bONKXHsIvZMtEIg9A2Q/RUtA9nZx/B0qVJ4sIye157cBLkPkEVegNeBIlFy9uItQKvNTFVpHTTGLjOgms2nmQL69Y9H6uFLoCnmdaz/kV+gOrOEFYzEWyQExjh9FAOsFga+SdWZdlBQwAHjBzB5BOutPaF7+kp8jFWQtgvSbY00JLLgqc5yAAP5XW0tA9jTu/pQn5Ed1PMt96Ht8jGzFk0z27K9uyToyEPkod0bvfmUEgF0PGBDPi4mp/zRE2NTdK1RFLSPnK7QP9EexmMJA6dz62D36K7v2TAI5me62rJdY59vGv/Obko1/jm/T1cxOyL6Fu/8Y93Ur0m27Z/1G35+74kufJ/IKA7GjLYmqbb7iAo8viHzhf0KVi8fFnjjFATJz33BeNA8vcfcXXERWA5B+/av2uGZrtt9qC/31ZWDN+H9iHXoI6f9zufvjKK6yNPKrrIb21evM7HibkFig2aaw1gRjT4EtlO80M/NZpEieZXJgZ4psBo68ERkyG1qSKd2UM+nlTE3P0pTTlNNoOTmZvRDbwg9IgdgfAf0WMwXvn0ROrE4I9LcTTBQoZTvEJJCVMv7eFfTMgMyLUAJkv4ky8vdy9xFxfdFyddshB9k0KKg03vkazoNRyLi4AbEFnQGM9iSzs9KzlTE2xhue4Zg7Fhll76Ig6GIo63ZNBNT+vRcrrTQB+2Lc0zDkdGmDnP9zheM0c4T+BTmHD3X312vJiT4zg3YRM5snjmeG72OI+WX5OGcCXSVnkB+IAsF7erCIJuelTozRKCDzCXJkXgj0NDmncZVyuwIFCv5sZrNVMvLz95KTl33HR4COZra7mY1C32gLVwCqCwoadSWYGJLnOQiBhCcA4TZCTvL7Ligb/j5glLv/y0oOteORE3UD5OAYjsb24+GgHZfIKMI+l7ZngJnNbNuQNZ7BwsS8PSjuDS+VMawEqErHyapmtmO8p8xAeRg4HxhoZkPNbHFTQsF28WxfewQgy43DVE76d+pUcfczkPNyE+Q4GY7m5maoXOe6wCouppGsv/1RMGuv/Htr5PxJzumD1swxyBn8b8R2dq4JVJoBsvsgsOktFoGinJyzqTAWkvG8ZPydlea9CzkDN4sxvSFKrpmg1VqrW0uGmfUFdkOgjVFm9sdq91Gp5b7LUlaBDdUVWDwMzbmLTOWLQevaTOQCwMl4Hz9Wy4yBM1EZvrumRjlmtrRFMpHLyb6TlYJxD6BkqQPifsbvb0gfmgYx3rVolcZbbj1YAJWnXB2tKdeh+X+Bmc3qLVnovnH3Me7+N3f/Z/JcNeW05p6Qk9kLrQWjkbP+GARAucXMeruCoXegNe8NpOMdljhP0/us2FpDTuxf76Myz+OsFJT5JwoQv4jm/fo2IVD6ODQ+x9ZaZxolp4Ls7RE4+j+odPJ7rlLpm8c99bcc25i7v+FiHKm6z7W2nGQup8lcC8damDHb/mwFQBS5OZgfBw2Rk7VExnpmdoSZDTRVmMjeQSe0d8xvZnOYgpKrIF3/IXe/Na6vmfwR562EvsObCCzyTxf79gAUPFscsdDg7s+iIO/m7v58kbnZCDm5tW26eC/jq6CEXrY1AkWeFfeS3mO5sfYdqoRxcVNOU04mx2rbCQ8hlrmTzOxsM1vCBFbaDbFSjXL3HwrsCw2RE8/9C9ID9kSA9MHIVzDUBbDJ9qQByG+wMQJTW62+J4ccVJb4XgRyTMHSbwAfICDo/ZRKZb8Q56yN9J8igLhGyChnr86M1srHXQACzOwOpJ/1dvdXTZVBFnABc/p4kjz9vyIn37wlaOdPiAl/JjR/MjbaWZCNPTvgRftulJxkPdgV6X1GCdT5H0Qg8QHSp84wVdDaPf6bLvbVenSDSS4nvtlySHc9y2QPX4z0889cAK5LECBmJZQw+aKZzY6AZCcDI11+36zPTogJs78nSaG5NXQ5ExvyRslzvoNs+Twg+y3ki1rb3Z8ooufEdZn/+1ygtwls/jmyLwfHc99s8hV/byL/wMVatohHcl2lVmO896cyIPs8ZB/nE5Aq+ZHbxr2cgmzQTa0lUPphRD7wR1oCpf+OgLGPId/bQXG8UhXKhsjJydwIfY9T3X0L5NufDdnep2ZzNO7rBDT+v/eC/t1kvC1jZhua2V5mNr3JfngTxS/WQwnO/U1+hZPRtxvh8pHXbMka84uZzYVIVHY2sxPj+BfR5wDkc7/czM5EPsy1iRhHDTFrIRv0RDNbO/od60r2fBbZpMujGNADyC/4TezXywDzWUGAh5Wxn9z9AXf/G1GdFPlah2b3Yaq6t1f8faQHiLZM3ysBO1jYa2a2N/JHTufut8da8gcE6LrGFbsCrc3PxH91s9YnbU7E/J8lz7aYx2a2hpkt60q4fcNLTNPj/Tmudkvu/aTJBX9D3+AVk824QJxzAfKlzoUIDFZwH19NboK+yjUrkdR0zHTmeEf3ItuzR9JPllw0LfL9tljTqqw56dxZyUrgSY/9ZF6UwHaPl5KNv0RrwKXAW96SzXpi2iSLJzS6uYCev5jinxehRJZvgF3R3M/IhDJAdhYvzZ6nJrNznJd9o7YoJjoc7btHI6BXL+QzPDbOz2z8mutovMutkG6QHRuF5vz3KOY2BK1LA7J374n/xQVcfsHDX1/wmcaZYnt/RWRSfRDYc6y3jM+sjZKAFkAx1MHuvqJHckhBW+sN5AvrDRxhpYoVo1Bc+H3gCjNbN77pT7nrayUEjgt96FEU+7kJ7Tc7ojVgsE0iQHas7asBf3H3h2L+feeqqrw1Whd6xumXo31+K3d/uR45MTavpw6gdG496Qc8ZGarNEDOk1aqsvGziZjqQUQ8lMUFNiOSFMzsfjPbxcxmj7l5BUpamL/cOh391vKHdcjfIyKRaePuX5iSAJ5FSU77uSp+74PWg8KM4DkZ05hI8rLK4ZN0XTSx996I3uV8JBVQY487k1+xxzVbs/1Wmwlb9TzCDBwQfpKs3YrmRbbPj0X2ICiudCSKwx+K/BHNNgW3Jhh7CmuxqZ8EnGJmKwO4wHrXoHKIA7LNHGgTjoAPkCG+HDn206acSSdnanqWppymnEbLycmcGTkDT0LG3WZIgfg9csCkgOzdkDJR02kafaeB2w4oc/gQlJU6No63CwPzaqS0LAA8H8ef8yi7lzrNasjshJz/B4WcdslvmTNhVxSMWDKe80iPjPVqBk7OKNzAFBB4yMwGW8nBfFE8x7ToXc7g7q+4+6vxr8f1RUs9zmtiZDAT8Ppn5Jw5FQWcbjOzOb0lIPseL2UOVwLGHm1mJ8X548K4/Sdwp5kdZMrqxcW2fRfK/Jsp/w3KGMpDEXjs8rzskNMROTTboaBGdwQofRQ5uLZOnFrHobJpHwOFmAiTe9kYGY0zx89vIGV6OHJuruPuY2K8bIOcAzd6sJiYMqZXjudpwQzXCDnWEuC4PALTnASc4gqUAMxipcz/oxFw7xcUCDjM3QclfawVMvp6cSA2iJHhU6CvlZy3v8R33AiBLlqUQqtkkCfvbFdU3ud8tMY8Y2bLuEoIn4UCNPsBjyP2xmHAcBeTT9ZXEXaeDUxML0OsFKTFBcg+DAU/lwH+5e4Pu/tf3f2xcNhgSoyZBrED7e4tGVNaff6UezYzWw05Xk9294OQw3ItVB5+I8Q+lDFkP4MckoM8YfI0BUSHISfRBEyEVgK+ggLC88XxUSjjdzNX8HY6BP4qlAjUIBlLoWDcwwiQ8gn6JnUBsnPf5TDkIJ7AkLaSs/oltCbfCIwwAeY/QPNx2pj/2R7U3hTkmt7LMyEPRd/mkqlRjompbxfgHjOb0QT0vTJ5vy+idWcfKzHLZKzVKyN2k0JlX3P3sj3SpU40s7m9VPLwBgQ0OC+eYaypssAtZjZnOm4rrW2N2ntSeTEf+sW7O97dR7lK5+6EknbON7HnfImqngxEDuMbrJScUVWXay05VmJvOtvdHzOzTZAuNUOc/2a8m6/iPfSwCYHSu3lUMql2/42QU0H29Ci4fTL67p/F8Y4uFrOeKDB0QKwxE7SCOm9ryVkq/k2TgO5G+/JoM8uAveOsClA6Nze2RUGrySEnPXcnNFb7osSCx4GtTOCBb9C6sBpiiLkH2Qu3egTx435qgj1NTIl/QfNnnLt/EGtke1dg6jJUfnjtpN9nXJVGqtoJjZJT5r3eEn2NynSg6O9hFOhdCjgt1rAJmpfAD/e7+3imvaacppz4u5qdsLQLxHU6At8dgGyER1FywcleEEjaKDmJTvUd0kfbI5//IsivkwGfMqD08Ug/3wYx1xcq1d4oOXHtW8C+KOnzcgSW7hh77aHA7xAYdm93f8lUjnxXBPS43AUAm6wyrKUNkumlIP9WG/T+MCWHLoPYg180M0P+pcVNvrGf4rzx82NqllOteUug9JVoH10G2WB3IeDKicgmva2evhslJ3TE4cjncoiXEkjbeQkoPQbZl48if8VZ7n5Pen+TQ46ZdY5vdg1iNd0WJXcf7kruznygl6FqKWOB48zsFmQHnQacHuema8r3wNZeOUF8F+TnuBG41cweTHTstykBsk822Va4++vu/te4vnAM1OQfXAuRaGxqAmR/gdbpi1By7c0xfn+wAGST81OV6Tfd3xYzs+5mtpaVfGy/UBmQfQGy664t8gwxftuEfXEq8n+XA0pviYDSp1kJpPkMGguPIH/PBpNbTtbim2+LqpwNMflj3kH6Z3/k3z/bArDvil/sXtS+Sr7PTohl8yLkF/17PFdnV1Wrngj4ezIak+uiCptnxPVVx1vMwQz4397d30drzJ3AQSa2UryUCNAb+a22RoyvPVyJCLWe525kg0yPQHxrJz8/EH0+Cjzi7tu6+1cmm/pIFO+5wQsweMbzZKQcvc3sSFOSxzyxp36C9oCHEUP2CFPi2VnxfNPVEDEP2qP3M7PDEbnKM0TVhWgLItBKxhrfDumIz6O15fxaz1GlvY8qJOxhZjOk+5aJYbonsL3lgHBF9jczWxJVEjoVxcAGo8pDx1iJCf989J4WQgDAwqAbm5Ck5lQT+Bukj94bffaMczCzPyCf1RgKsv3n5s71KHlp8eSUGVAScuaLbYuSdb4DDnL5fH5tm2TxhMnRTCDby9E3ORAl3wxBsb6rrSUge1fk06y7GkPI+Q/Szd/0SF5wEVjdjuKovU2+U8JWKeKnaoNingea2cVmdmc8wzAXuPIDlLg1CPkSzk50gEJx3yptewRQ38fd/xF78ypmdmz81yPkbIJA2xvqVYzfvyeQn7e9knsdgtbrvVH1jQyQfWs82xeIzGreWvZbhbYxSgAZ5IodvejuNyOQ/CxIz9mq3k4t8W/FfXVAdk5G+NM29vR2MQ5GATuZGJe/cvfbYq+qJqNSNaiv0F6ZAqU7V+rDJ/Tx7+XuTzRIzuPJaR8hG3FVxNzcJXSAJdF6PS365s+bCF7aokomC0W/hSpyxLkrmNl8HklpJtKoVeMeHwIWMLM90N53H7JNvzHFA9elIHaijNxTkL/lOTQnl/SCTPF1tE9R7OzvyH+/dMjObIYRSOeue49rtmb7rTYTYdJTKMbeM2zzdH27BHgF6S+Y2bVo79oOuNlVGbYHsGh2bbNNua3NL79MMfrm/3wLg+dB5Lz8GzLiv0p+Px2xjtyJnPKvJ79thBwEa7sCvU05k1DO1PQsTTlNOY2Wk5PZC4FhF0dGZeYYbwesA1yFgER7Aq+HETiH12AXKSNnDnf/0MQksCvK6B7h7gfG723CsOiEQFojgB09AMX1tpCzS8i5HAFQM0fkeHZtK5V++yr/W43+d0WZby8hB+CyqPTnFe5+YpyzNzIAX0Ulih6eiOfog5x+8wKdkdPyTHe/Loywg+O//0POzPetQADNFKQbjZwJ57r7WXF833iWXYDXgRdQQGs95Hg61t1vLfeeEkN5X8+Bx3LvfCUEtNnHS6Uv2yKHw3DkYNwXuMMFiknHRz3f5wxUnvOCcHhjZmuirOg28a+jINGeKAB1apm+lvNgIWqEHDM7ATjNEwaacJ6eAPwxnPGdEVPzSugb3ujufePcmYD2ruBL6rzpCCyXc2IUama2GQrs/QMFQN5EDrx90Vp0Wo3rU4fK71Em6YWIcWNe5OTuAOyUOXNMDvANkeP+TY8AZB1joA9aR/6FgAizo9KLg5NzjgrZ16J3/kqFvtp7EvBo9PzJnbc/AlRti1hMnkJB1EMRWLJn/Hu4u3+Se/fZWFgH6JiM1/ScHsgR87S7P2kCf49GDuWvgHXd/S0TMLY3Ckoe7mJqqNgaISP6XphgiHD3+6yUhDA7Ah+MKdBH3gE4BAUjRhS4dim0Zm+DvsuGyKk+GwL1Zwb89MB24VDNri00BqYGOaYS9Mcg5/zciPHteg/WH1Og5nLEgv1nxDKxJApCHO9ythduJrDAeWjdvNXd/57Mh3aI2Wgb4D0UBD0M6USDKnZaXs6uNGDvid9nRPrZBe4+wCLgGk6iFRA4YhQCwo81BYq2jHfwHiqh/E2BZ2o1OYlDawDSZZ4CtvVgHjCV4Lwr3ls/4EHPBZ8L6jwNkVNG7nIo2L4ryf5jKo36k4mN5E4UWO/u7s/X039ryYn5eRmwg7vfYGbrowDKxWjsboV0gLvcffe4ZnzAP+knz5A/DDH33NZIOel5CFhwMwpu3IMqV1yA9qT+wC2uAMqaaB34GHjU3UfmZRVpJgD8QKTDr5PZApleYWZHoHFpXkep8UbLCZ3qArR+/QXYA+0HV7r7Xsl5a6L3+k9gg4mwF5ty/gfl1GsnxFz+Q8j+EHjH3R+J6yvaCY2SU0H2nGjf/x0COl0FHOelqjApaGowYiOsWUlrMsqZH9lZqyAdbhRaf7ZBetDXyF7MgFfnZPZi0XW0NWSYEgQWRuyl75nZ7gjEeRiyQ8agAFtnwBBz+8uhK+6DfHH7ecIeXOHepxo5VgK6FPlmqc9nR/T9vkQ6/Q0eDKsVbOGGyKnUX1w7F2IN/yS9J1RVZ5wpAW4p5AP4wAP4PznlmNkFCEjxJ1eFn22Rb+NbpOvs5+7fmcCXmZ21KdKvVkcAqDGeJGgVXEOXi/4z+UsjsOi/UQWgLHi9ABqHPyCb4K1a76mS3LBJbkIA/AORv/DrOH4EAuG8ikCx9ersvRHAtxNaU94BTnL30dk9EHYtSta52JMge717QlwzB2Jy7APc6SIMyX7rjnymrwEbZ/uoyZe6irsPm5LkmBKov0I21iPIFu4X32cQYi19AzjR3W9Kriu6H2yLdI+TkO3wRwSOfAf5/G9zMVFOh/bzdsCnHiC1Wt8ntzceg3xHx8X9L4Z06E2Q7++E5LpZUXLDL55U46wiJ792HY/2sqPc/cFYm69GZAT3IB9wNwT62BhY091frFPONchm/wpV4wKx5N7r7l+a2InPRKDyn9Bc3cTdnysg5wA0L9qgmMeg3O/TIzDZR0jnmhb5Lfu5EmqqjoHcmtMJxcp+StaymxG47xDk4/nElBywOfLv9PMCMaX8PZjZiuib7+ClWFFmY16O2HuzymmHorE2spacnMwuCMD3AUogeMKVVIeZdYtjG6Lk4O+Rz+x7YIWw7YrOnV5oTB0D3O3uryW/tUUJyiuiveATlHB/tOeScH5Ns18ZT0j6qdsf82ubmV2F/O4buRIxMJEu9Ebj4RpUAfDr+K3ueGlctxNaDxZBiVrDLHw58fu8aH29NF2D4req7yX2r+FIlx6L1vrHcuvE7IgQZwCa04f/2ndtio8cjcbxF0jnPBrFaOZGJBz7eLA6m9lDaL07Ha21FX2VpgqqH8Yalvffn4Pi40NcrNnZHtWmyHpQQd42SLda3d2fjmOZX3Q74E8owX+wJ1Unq/S3RNz/p/H3oSiu966Z/RkRA/zR3T+yJB4V6/nv3b1bwfvO621zo+SLe4B/u3yFMyL29aEIULyjJxUeyrzfYQh0XLFiSivKyXz4neP3TZEOc7CXqi9kvoheaOyBbKU7XJU7CrUYY0PRvrMjAmEuD2zo7q+FnjQaJR3e7+4bxHWzoyTHtZAf5I2iMuP665Hte1XI3hWtzbu4+3MTo29WkdUJvaOhiNRjC3f/d04n6o8q7IycFDKbrdmm1BY662PI/zcQkfp8law72Zq/L7J/30KVyLZDMaRJMi+brXGtCcaeQloYRY8B/0VOnZfCsdUOGdmZsjoE2AE5nA5DDodZEPhmNRTw/KQpZ9LJmZqepSmnKafRcsrIPQk54n5CDrcHkt/aokzOyxGgZg93f8WsbmDsushxumQoMfOj7MvDEdjphDgv67czsJBXAEbm+q7muFsAORNayInfqoI5ashcARmUZyIn/H/NzBCr1u8RWHpYnLsXCvJu7VGauWgLp9mfkIH5N+RU3gU5Uvd290vjGx2AHGufI8fFdwWfw6LvxVG5sFPjeFtgMWTw9UTBuzdRYO8Kd9+jTF87IQDoXl5iC1sFOXxWSt+1ma2H3t8G7v6AmXWIsd4WOZgzJuwD3P2mROkt6qTdChmtJ6Cg1Ee5c5dHoKV1UXb0syh7MbvvFkp2I+WYQKnXIJDY00lfW6Kgw6nIWX8wcmRfiRhJegO93P2OSvc7sS2Zl+uhtWJ5BJB8EY2H89PnqdHXMihQtxVyWGbAgGWBkQgk1QeBdMuxIBRdc+ZGJVlvR+vX3MjR2xcFgE5Kzj0GObo3cPf7a/WdXNeq8yeOT/D9TEDHVVEW/v1ENru7f2xicHoCOVifReOoVpnUtO9dUNDiVsRs9FdTQOsYtPa8Fc9kCOgxEAVdzphSZMSeObOXkhHaoUDzUMSU1AKQnYzvFv/GbwfGdS0cgOl1Fe5hGbSPbw28jYJDc6E5+z2aw+M8klHimr5ovaw5BqYWOWZ2IWIu+RAFzV8xsTb+HGvjymit2xgFxh0FH86pdc+5+18Rleg+E7jQS4GSGVHJ73/HODkeOXOnR8liQwu8m4bvPcmxzijp43533y2OpY76J5HTdKPkmmmRI7mbu+9f7XlaS07unWX7fyfEzNUPBel6egkovSjSC6alBLwo8t0bIqfSe0t+64bmz7YoMeHiOJ4BpedF4JQ/T0FyVkaBuA0QsP4bBEAY4AIqz4bW7J3Qe8rGRarP5NfSISTVGBolJ//OTPbWX1HJ7yyNLk4AACAASURBVOfj2MwI3LMsGh8ZIDufiFUIoFTmvvZF+97fUFJWFsDrQIkxfy13/2+Bb9MQOTmZqyMd5SJ3H2xm86D58xZiO7zR3fdMzu8BLOyqFNSU05RTWE4D7YSGyIlztwTWz/bCWIN2RfrlVWiuZuC37sC7HpUy4lhRXafV5OTWmbmBz12gt98hEOxqiOX0lrCD5kf76GzAy8ALXkpOK/vuGiEjftsDBdMHIfDumUgnuDj2ys0Q2KILCkjfEXvE5ijJ7DiPamrV2tQkx8S+999y+mmF81Nwzx7IF7aFl0CtlcZAo+TsjpKsUmKLLoj04EF337eCvJlcVbwq3kej5ZjsppHIPno4jq2E7Og1KIFUDnSBSjt4y4T/wnpOTu6iCCy+JdDf3T8NXWMjpG98hKpcZUDYhVGi2CWV+sz1X84WyuykmRCob2k01u90+ZhnQEDdTZCu839FZEXf26NEwLOQHrUbAnN9hPaIW+K8DNC2P/JxPlOg73RtmwnNxW8QoPRrM5sLgdjLAaWr7qO5OdBwOfnf4u8NkV+8N/Ccy/46EvkPvkV7USEm8aTPxZD+cae7n2IibXgC+ZMWQSCr/sBoLwOIrrWP5p7vRjS270UJPm8l9zAA+SWGeymGUWi9qiIvBWQf4+73x7w+HTHrLYkA528gcOTLdcq6GIGV+7jAlwND3nvIbszmz4xon50dJfe8XbHTlv1vgNYYUOL74GzuWSkhdCXkk10I+S6HeZBZ1Og7HdPbIN/C0kj3fNTdzzBVhrgLkVU8gRJDFkL+ltO8TMJ7DTnLIp/hfCgZYQ9LEoWsBPS8BIF0vFJftWSitWZtYBsvAUZTG3d6lLjfAxEAvYT8omPza3cVGbMg/8ZzCPD/TfJblvzTHsWdlkG+vcs82JYLzJ1CSfH+K+IJZmYIGHWL5/y1rdmyd4T8Bj+4+7qhf/4S9zEnSiJfDQHM93D5D+qKlybypkF+nONR0sSq7v5u8vusqFLPDe5+bD3PEN/5HLS3/UhUCHMlaqV+vdmRf/YkRBhxTB33X86P2BP5Zr5EVdDmRskzVyGg7BUohv14cs0YtA79oZwuFOesiRj9j0B26Ve5eTwA+WSHolhNfp5OTPLUugh4e4jnGP1N4OO70b6bsf5/UKWvhZBu/kQ8wy0oXrS8u79u8pHdhta6jZN5OwfaCz9FwPofi84FU8zpFJRsMxci9LoEON/dv7cSUHowwiZsG+OjHEB6H69A6tIIOYk+OG2ctzGKMR/kOQC/yUe6MMIFLIDshCfqWKsHoDnRFo3h7iiROdvDN0K6yGtINwWRZq2K9N4XasnIyTsd+Sd2dvenTAlPZyN99Fv0vp6vZwzn3u10aP39HMZXUumM9IThCPQ9ASC7XF/N1mxTU4u58RIik2iP4tHHIZ3oi9w8MhSTnw7t2/fVaws025TRmmDsKaCFsnoWCljt6pHtmjtnOi9lx/ZFQcIVUHbfd8gpvL5XYZ5qyqlfztT0LE05TTmNllNFfpbhfz3KgP9X8ltbxOo6CrFE3VS+l6r9L4gYYq9z933i2LwogJaxT2bOzLwztygzS3dk8MyMgosXxPE5EfPCoeQA2RPbTIGVk5CT/43EEJwfOTWyTPMs4LmEBztPHTKmQyyG7yBQybdxfHnknFkHgYjuj/FzBPCRu19RoO+2KCN8nMmRfQ4KaF7s7mem58Vz9UcBnb2RQb2puz+YnNceZQH+kI2PuKddUMb2kTn5syKGpts9WNSsBJSaGTGt/YIc68t69SoJ87n7v5Pn6ogcYZ8gZ1hmIO+OGMLeQE68b8PgnBaB17P3W8kB2Cg5HYBZXAznPVBpyh9D0T8KgSHfosQg8J2ZrYGM/63c/dFK72pim7V0Ps8Yz94F+NJLbE5FgNjzIyDn18AD7t4z9/syyLHUCTHtPT4xRr6ZbYzWga2BI73EWDIPAnYeyoSA7KoMtLn+W33+xPF0fVsKJeq8n4y1+YiS6V5i7FwbBWSfQUyiNdeDRN4miPn4eMRQ/H7y26zIcdsXOYbbojF+rZcST4qMgVaTUc4pZNaCwXdNcoBsU9C2B/Cyu3tRB2DuvIUQi2JXd/97cs7yaI/rg/b1qyrcd3tkwP8Z7ZGX/4/IaYcCtZ2Qo3Is2tP+YQpEjI01Z1qU0DALWnMywFQ9zsdd0B65nMsB3BEBUJZDc/MUdz/dSqy5Xb3E5jZZ94Qy763FWmBmZ6I5c5AnAAcT2GNUyO1LBI3it/FAjFzfrS4nJ2MdFPS7O757B7Q+92VCoPRiaL07vNLYq/LOWk1OGVkro6S8GYC3vcQAvQwKPG1DS6B0HhRTdBy0mpzknG4I3LURSii62t1PSva2FCh9m0eiUaozxN+1gimNkrMB0p1/QIxiWVnBDKw+IwqELYnAKjd7Up2oxrtKv80SKMDxo7dkHjsYJc7+CyWAfYfAAmcg26sm82Cj5ORktkeJrUsjPWYxxMp1HQqiDUWgvgvc/YBq99yU05RTQ0aj7ISGyIm+OiHWnN4oGeygOD4dsDN6byMRGGF+FJjv4/UD1VpNTm7d6YXAjzcCV7kCU/OH7NUQMOAODxa/Mn0VAWK3iozcOWci4F4blPxzSnYflNjPRqDA+odxXjcEzMuSb4uM6d+8HFPVhcHAIq6qRRMDlF7Sa5AsNEJOvI8eKEGzmyf+ubA9HkQ+qM18QqbFJZEddKIXKwff6nJSeaFjb4WATpeFvdMZ+Sk2QyCVAzyAYihR+SP3lgClgvJ+j3x5nyF/3m7Jbxkg+zwE9hxf3jk5px4b7hjgGY+E+UQ3nBHZH4ujsX9XvMvpUfWvj+t4niUQUPR2dz81/n4CgYRmR2vmbh5Ml/H+1vCoklCj7/Tbbo8AyYYAj08iYPLL1hIoPV7XrdTXFCJnTgTq6+AJ6MzM9kM2/qyu5IoOCMzwEXrH75bpumoz+Sf2Q4D5sej73IVsuSUQcPp9tIbc4mFfT4ScMxGoojcadz/k1pgMkL0+qghyeB19V1zTTOC1Y5BecqyrulsblCC+CNJZxmb2ah0yN0C2QAbyPiL+3h/56hdC8Zi7ivadGwNtEHt/N+RXORH5WM7Of+dY+xZACfwZwL1o8sdOwKUoXvUVWuc2R76mneKcMxBwZmFifHjJR1pPdc1zEKv6tGiNW9Hd38yNg4x04AYUq/m8Vt9lZLVBcY/33X3H3G8txoqZTZuO6aL7Y5w7NyI0OMyrJEdayQ/WwQv4+K2lL6wIK/NExRNMINcn0Bw4ChjlDQRkxz2cjPblld39VWsJXh6A1otFiYS3Av1NkNCCANNjY73shVh1x8b/v4zGY0+0tu7g7rcWkJMfR0sg22YfSsz7mV6QPtN0iPDpNi8Yx7RS4kVb5Evu4iXG594IgP8BSph5KY6vi9aLXVxVC1MW8Pk9iUtXkPkosksHAJd7S/bShRFQbl6UaHBAHWtctbX6RgTG7Qn8LVkL10fxp6vQvD7UI6GhQj9d0Dp8BvKjdgK29KhGYPKB74rW6w8Qy3dbhBnYACWKFI4xh211BSK6GYYICJ5C8eZLEYP4DzE/t0c212aeMHyb2SEo4XMCoppGyUm+b1ugncuHlwKy70b+6m/T8RTXzoEqp1zs7kcXeGfpXvcS0jWeQFVt/hV72ri4n7WRf2RFBHLOKlr/o5acnMyFkB5zs6sa9hEI2L49MCOy5d5GgOwXCtqI6XNsjWxsQ77+i1Bc7iNrCcj+ACUJ1a2vNVuz/RZb2I+voTViK1cS670ojnwcSur50lomZB2EEiU2cfd7GqmXNNuka00w9hTQTMGG+wB39/1yRldPVGZiQcRodkps/r9Dht9SKOvrPq+RSdyUU7+cqelZmnKachopp4CD5Gik5J+LDKR/J7+1BeZJjxWRkxhKnREQakfkBLojfp8bgSMPRoZKoezuMjJ3jfv+B3KYz4IcFn1dJXwmiZxEXn/kHLEwwtogQ3CsCUB7H7CeB+DSSgGSegIPmaE42MX4kDpH1kEZtyO8TKZ6UQXQzHZADAM7IifqOBTAOzt+z4N31gy557v7ibm+JmBmsBIQclrE6rxrGN6dEBBqYMg7NbmmO3KmnIKCIvcgJ/vP+WcyOVzXRY6VJ+PY9IgR8HZkxC6MAtBLoyziuRDIakj+fVV6bw2Uk86d+dH3fw8xAvxoAhN3BS0UcV4nFEw5FDnl6k7G+LWtHoMjxtzFKDC0hScMCPH7MgjYkTEhVGQTqNB/VxTgXAExua7hCTttrAX9EfPl6e4+IH2GOudoq82f3FjYEQHV7keBlP/G8fmRsXi2ux+XjIXuCIz2bb6vKs/SATli5kDO0IxVOmXSmAY5gddE4/JzryOQ0ggZcd6SwLvA1+l8CzndkbE8O3JodUPzd3dPACnJGn+AVwdib4+Aj7NFn9ci515Wwn5ZFFjbJvq6oMp9z+AJk9NULmcZ9H3ejL93Q8GVn1HQ/rVk/5jXc8xm9aw5yXNdiwIlXdEa0AWBp+dCc3gtzwXVJ/eeUOa9TbAWxDc5DwEFznH3s0I/7I4YAvd09+sKvKOGyEnk7YySEG8FrknGWAcUFN6fCYHSLcbUlCQnrtsNffP/IDatsahU6fau4NBSyJHXC+mnI+qV0Qg5ubGwEtIveiIWuP6mRApifs6GQB37APe4e6+cDdMv7nXfGmtpq8mJ33uj4NgbKFgKsgeOjN+zAOKMCDy1GrCE1x9A2RntMR1RIP8EtIZ+Eb9nya8gsPRdwD+8IPtYo+Uk8hZE7+1htC68h9a//8Z4exQFXu92962L9tuU05RTRkar2gmNlhN9zYd0nB1QguEBcbwrSjI5HwVEO6J16aRKfU1OObHuXIDe2+0eLLzxWwqW3hWBoMqCpSenjES33ASt9aC1dIjngK8mANCuCDz2JPCil3xYVW2SqUmOiY30FATSWsMFSqsLKF1Q322InDh/Phfj2wrIHnktjp+DKmnthYAQGRPhNIiddBeiUmCte2qknOwdIBbFTRAg5JZYm7sg/SgDZA9EoMmRiPH56qIyElldEFDreKRDb+cJeULo2Bsg4M2XwDI+EeBYE/u2Ix33mESHz7730vFMn8Qz3uhJifoq/eaBcCshcEp/ZCc+gdiC9zSz7dBe8BFRtS/XV1H/xA4oyedyYAwCKG2MwLbruJLE50TMjXsTum6tfiejnB2RXj4nsnOvQMmUb5uZAQ8gf8wQlLx1NBpv18T19eqhnYC5ov9zEAh/Ny8lT/8NgdTGoWqcE5DbVOg3tUVmQOC9+5BPL/XjpWzFiyMA3dIoubNmVdLc9RshgOD3SDd/Jo7vjN7T1yh58oH8tfW2mCMbIZtgO6QH7Ovu15iAkHcgBsBzECDruxr9pe9rA/QdbnP3d+LYsciH0CKmZGarAl95gDDzfdWQaXGfV6D4x+cmsOgr6B2u5wHajLWnM1pvs/ddT8J7JucvCFi5J9Jt93P3d3K25+GITKNmBYtyz2uKkY0B/u7ufcrcz/SIXfeKav1UkZfZtoZ8xnu6++WWAInivHWAGT3Y/4vIsfK+sIkGIVW61kTg9CfkP54F7SeH0yBAdqJTrIH82B+jdSfzT3dGY/0DxPD9VtE+4/83QuDHJdFeeoeXmPF7oaqoM6Dv9w7yu53v7qcVkJOuOcci3X+kK9mtE5rzGSB7P1cCVxdKCY/vFHpJiaywN85Ba2MXFJM91qM6SHLeNGhfuBh9002SeVWTiTf3bA8gYo+j4/kyX8iiaP95DXiv1jxN780Vb8/A0vOhNfJ5V2WBBZAPeUG01j2L9IaTkF28G2Khv8fd+9aQ2QZ91/mQntHPk+plcQ9rob22W7yr19G8eynfXxU5iyKdYLS7n2by6/4V+a0XRqQVJwNDYxzMjPbbV5I+/hD3eL67Xzg55CTzsSMat2ejyo3fW2VAdvZdM73xRkTctIkXqCAbc3EWNJa+RtVmXkA+1nesJYlMO+QH+YFIrqjVfwWZuyMG9iVR1eSjvJRYdBPS579Ce9+YSv2U6TfzBVyFEp4HoD38RlRF4sNY09ZDc/NrRI5WU69utmb7rTeT/3wHpPt9mOwx96FKUy0A2bGeLIds71dRgkTdiXnNNvlbE4w9BbRQCB5CpQ53jmNzo7IaPVDQ60uUlXQbCuBODCtLU06dcqamZ2nKacpplJycwb8uMvi/QaV370nOK+s8y/VV1OG8MVLsr3L3T0wsEqNR2bg+XgIWz40AMQej7N6nij5XXN8dARxPQ0CbD+IZ70cGxEEuAPA8COgxUXJyMrdBBvihiH3qu+S3HojReh3PBXar9FeO0bUTKo/ykgdjl7UEZD+GgGvrTIyRZwKnXYW+97/R+BqMnJfDPBh+EydeZvieB2wBLFVU0TSzzRFzzXOo1NqPJkad45BT+ErERjgDAsn+BwFyngNe8xxTRNJvT1RW/l7EHvRUHL88+nVgJsSS0tcVfLgDBQ1Wd/cfCt5/Q+TkZHZEgbgTkdNvBU8CAnHOwmh9OBs4wQuUeqwhs1Hl/nohp8LtKNDxau735QDzOtna4u+2iC10IBpDe6B1IQ2mpGvOyu7+9EQ8Q0Pmjykoc3E8z2OeMJ+Ho2QICuTegzLwe6J3OqTc+0muzb+3LohN+xl336XCvczpZcAok1NGmfOWQUGN1d39ccsF5cPhuRra4xZHDBQnuPuguL4tSnAaQ8IqW0HWjijIfDpawzaLfu9HQP+H4ryl0TzeEjmmX6lz//7Ny8npIL0RoHsMevcZIHsPlLT1M3KOvmVibjgPBR5en9j1KdbKgQh0/SJyluzhqiywLnL4buHuTxTsb3LsCdXWgtURiH59FAz6EYFZhnqwI05JcsxsWxToPB6BUP6V+70TYnTbGwFJN/eWwP6iemhD5MS56yFH9qD492OUHHMRCgwcGmvQUujdTuw8bZScWb3EVLUKCgJtDuzo7tdbyySa2VBg5dl0zTQxNJ+FkoMqsee0uhxTwP42BEi+Es3NSxDT3PiAZrJfz4ySM27J91XjnS2DgvjnI9DO8ojFbxhaQz+K8/ZDNsujKPDxeCp/csqptdeaEjCyihxXxLH1UODtEeAvlb51U05TTlEZsXb/iVawE1pLToX+04SSeSklyVznCXu4Cai5OgJl3R3H6tl/Wl2Omf0RraOXAmd5mYRPE1h6OLJNd3P3G4rcfyNlJLLmQvZAD6QDnIUSzd6L36uBt+r5NlOFHBPY+2QEIFzBBUAoCpTO24PV5mSryrGWzI0LI339z8BALwGln0RssUPQWJwVvdczSJKua9xLQ+SUkdsZ6b2bIv32Rnf/zARSOQslIo9DoKwh7j6wXhmJrBkQUPEMZKud5C1BRB2QPje9J1WS6ug/C3SvjsCxYxBA9ZHknGkpJeG/i0AjhZmDTQDRF1ysoH9wMUdfikBWO3lLoO+8KDlnKeDNOnXqOeIZHopn+C6Ob47Ge1dgXRfQeHYC4FXND9FoObl1eEvEUHwF8ClK4t4T+QyORT7cfgjItjCyVc5x9zPqkVPlnAeBn9x9w/h7dmS7jkAEKaNrXD8tAnT+yZX0kfmJMtDqtu5+U7m1x8w6h//AELj4P2VE5OWlAN7rEbiuKyIg+D+UPHVU/J4Bsj9HfpL7avWfyCm35nVG8/1rFIt5CYEjvzezmVCiw0IIRFh4/piqjg1GuuDp3rKa2nEImHgOWvfmiX+39mJsvvm1fDUUS9jK3R+LY3ciltKtXOygi3n56rJFfYgrID/uLog86LM4fiLyJ79ICXxXEyxapv8MENgejdEfTP7+a5Edt73n/FCmuNIRCIj3XK1nyF27FQJ4DkcxxNtRrKWPu7+YnDcNSuhdCdnehSoKWGVf2CSNJ5jZ/giQvD8CdT6Nkj+OoMEM2WZ2KEpC+hYl7vyIxuAg5FccFefVw8J+Adrb2qF5OCtwsLufG99mO7SXL4tiCM97UpmviF5nZtchtt6L0Frzf3E8A69uipJshyEgcW9U0eONgu8lWz+7oljv1wig3BklgnyN4i6jXSDn2ZGN0hsBV1eJ40Uq58wR72osYlX/Po4/iIjKBsY7/TaeZUe0RnyZ7ysnY3lgQ+BSVzx5ejTWZkTfeW7ERjzS3U8JW2Qw+ibtEYP+GwiwNzuyhS8op8dZSyD53Ghv/hHFdM5B5GuflrnuDyih9huvQRphExL9zInm0VAUt3oMkbntYapO+gKqpHYNWs/T+Hami00L/M4TooJGyUllxbxYBH2fd9D8eCTW1BSQPRrNpW+TvjugPesjtB+1iK/m76XcsdgT9qS0J7xtssPbAwtm9z0p1qXYS7dCPurMnrsJjcfvkO+z6DxdA+lsF7pIVRZA3+NjRBpzMfIXZgzZmwLTTYz+3mzN9ltsYbNP65F8YC0rNUwAyE6uuwnpUH+otTY325TZmmDsKaSZ2dX/z95Zh11VZX/8A0gIdnfrsh0DEwM7MFARC1CxA0UFu1BRxABzTOzCVmxHxc6xdamjjjHGT0fHxoDfH991uPs93DgXeV8c5u7n8ZH33HP2OnufHWuv9V3fhRSr65Dy2AM5725ETt32ce1UFOFdNjKsIWfSy5mS2tKQ05DTnHJMKbNGe7AKmSIhL0DG6jlRmqOT3f205Jkj0SH2IsSa9MFEtGUBZOjrhNLz9HNFEW+IQIO7eJL+3eQ4nN/dn5gIWUchsMk2Hil0zGwUYMiQ+mJy73zAvEXk5A79UyMwyA/J77ciZWwvlOL4P2FQ2wMZdzdz99fqlLMq+s7PAL8isMjmCDh6dRjw2iDw0x0IqF012rqCzOkRkOMzxAibKZuLo+++JHCSRyrznMHgJDRO1ylnJKggrwNy/pyGgNarxGF5cXS47IeMFt+i8bIxGjt/Q4foo6CUij7qzA7DmyCAzUPIEPhE/H4iSt/+vkc6vniPi5HxZk8vwKbVUnLiubzhuT0yIJ2GDOSreID4Yi7tgYy353kAsQsYgvNsG22QIyED+dd0eNYpI3MAjMkZW3ZAYObbkaOhLPNTHcbMtYH/uPtLcYhaFBnilkGGuHvTdv3BNadF5o+JSeCWaMe5ibFxSRRM8xmK0t8PgbD/D7jB3c+L+4o4s/aI5+5HBu7/Q6lZf8iNRUMG0xFeI9PD5JCR1DELckA6Yt/+ocw9MyAj4d5Af3cfHtdTo/WSXiXtnwkwcjlal4eaAMqjETPy+mgNP8FL2RFWAGb3AL/U0Z4pTU4GGj0FMR6+klsv+iIw5mxojm2DADnHFqg7rWcuIv1ptg+bAJbzoLUoyyzQDrEEHoT0hSJ7dovtCYnMSmvB0ogV42PEeLYGAj68Dbzh4YyuYx1tdjkmx++NyNk9INnTeiAH1IfuPir2v4FoPPTyAs7bySEnkXcacnTt4MFGaWb3IkDHju7+QnLv8sAc9c6f5pSTmz/boX3leC8FYayMziKb0RQonWWF6ZCMl2yOXIdAmRe3tJxEXg/EAroKCdgy9pvhKLvFBR7BBDahU6kQm1r8vRYaRxlD+XQIJD0YOcMHewkofTDSbZ+I9ld0sk8OOaYMEzMiJrKHEMPcbyaQ/8uIuek8KwUOrorm2Vf5uhpyGnJqyFgABcbNnOrkoS+MQOeECYDSyX1FGQ+bTU6Ze3ugs9W9cSZp5TrDz41YqHZG686hf0RWS8mJe3dGNqhNPQHylLlvXuRkv9brtIk1l4xa5yEzOw+toWei4LLM4b0ySj/9QqVnp3Q5lIKhFkQ2qVMR+LKLKztcVbtBbg5uhYLsvaXlZL8n/+/kAuAOQGDiq5Dd8zXTOf9mBJhsDfwHgR7Gg0lrrW0tJadCX0yNbCybUgJk/9t0FtkGnYX+4cHwXMca2hpo703tOXn940RP7BvW9GxdCKxY4be1END3eQQkfSSuL4bWuuOBn7KxXqSYUsrfiliUsznSFulLr7j77nFt/rjvFgTcvrNCldVkLYz2zL3d/Wpr6uDfFZ27DvLk3JjouoUBPS0hx3R2Ph7tp8d4idV9YwSYvc3dtzeBTudCgNBvPVg86xhvG6LgoQURA/K17v6hCWw1AgXV90MB1hsjQGkPD5bIGnL6UwqCGOwlVufpQ9YDiEX4d2tqx+uFAsT384kLrD4PnZ93DzmzIL/L2sj+1T/u2wEByl4HunkBVvnce04Vl8cl16ZHY+MuL2XNWAnNn/7Az0Xnj4mY5ioEGr/Vc8HOcU9G8vM5sh2c7u7HFak/qWNZRHrRBeloM7uCS+5G57fNXUDspRGg8XifiCyRoR86st/c6e5b5n4/Dtnd/478WhNrp5wagZdvQdmMfjQFmzyMmFxP8QBkm4hrLkEgzy2K6mqJrGeBqdx9hfh7L5R54mk05p802cs2RnPh8GxdqENGags7xutgyC6wHyyL/BRj0Xq2T1xfCIEp84DswvpsvSW3j/VB83cNZNf7Ae3pg6tUUa7OlZCf61TgCnf/KnS0vZFtsq+7j7ASIHtQyOviAku2L7IGmdnFiMG8N9q/vsvpXJ3iHXZE4/87NK/qBf+3RvvLishG9W5cXwIFvU4PbOLu75hA6AMQScvurnNlzYB0K2VjmBsFslwP3OhBLmYivlgLESy8j9h9j/EkK2GVui9HfXQCyvi3L8q0cBBiLF8SfYO1USDb4HhunWjbT2jfINq7Nsrw0mStyK3TXVHg0o+o7w9AutTZyEefkRV0RHbtbwrMqyWBj70EPu8JfODuz5jZjLF+noz0zp2Af7mIsh6glFlifY9sDUm9eVtUi8jJ95uJYOF6tC4sitjVP0Lr8yMhoyMCg2+MANu9XMFHrdD+ezZaU1+u0IfpN1oU7V+feEIYZGYnIAb5l9F3+xDZFVdA4+7Honpb1LcY8vF/SlNG3hFo3swRf8+I/I1XAg97FcZqK9lJWwPjkL60jrt3NzNDe8H1aKzfhQInhqP17F+5fmiRgJdGaZSWLiYb5iLelJ0/3fNTQsSygOzQS/ACmTEa5c9ZGmDsyVDiY32Z/wAAIABJREFUsLooArW84+6fx/U70USbDinKf0UbfAa8WQQBx4a5+9ENOZNezpTUloachpyWlGMCHj+IUvBshQyV9wM3IOaqBZBC3gsdUk9Ons2M2ut4wj5StJgAcWciI9l7KKryAmSo6YoORjuWOwAVNdBm9yLj+EzuvmZcy4xz3VxAr02AlTyYT4vIyd23HWJDmBsdrO9yOVDmQYegVZDh+TUEcN8dGQJPq1BlJTm9kRHxJeAwd3/TFDX+FIqyPccVwTonMqhcgCJh62brMrOZ0cHxBnc/xJoCXZZDEczfIzBWOi7mQmDKF929Z4W6yzpSwvi4A3JEfYrYjjJGiI6IufErZHRujwB7myAm7bLRvskBc1N0gHwIAXsnYCQ3GaC7UWKOvDJ/T6XSnHKsqdOhEzKMfZf83gH1WxNAtokhZC1kVKsLcBf39kTOs4VQn4/2EjtkUZBGF+DdnGEi/X0btL6sjMCcD7n7ucm9GSD7FuS8qwmErPBOiyLg6PtoTrwaa8MilMDREwCyk+frMt425/zJyVkfuJQwFiXr6qqIgegWgrklxs7UidGuCLPE+mhPGOTux5vZMcgh08OD2SPua4eMNDsggPNb+XpbWkYN+UPRuFvX3d/IGZI6IaPqCciZmzm7xxurCu4LqyPD24HIAPsEct70jXF9FdrDz3P3+3LP1jNPpxg5JqPtPUivOctLzt+FgWkyfcDEtNMTOW+vcvcLasnJjbntEWvN4gjY8BhyaOQZjBZG+shwpAMVZqBrqb0nqaPaWjAbAnMc5eVZ5esZB80ux8Ru/HfklB0Wa+YZwPJAK8RAs6u7XxH6wdJeEDg0OeSErDZobf+3u28R1+5GwUCbhS66AbC4u5+Te7Ze9tNJLqeMHrIj0sFuAs72EgtZZ7R+b4aAwDfG/pcPlisCwGw2OcnvnZAjuyfSO9dxOQEzh85iyCFjCAQxqFJdNdqyNDprLYyyXhyc3NeRknNtODAkOfMdgPaiN9GZqByYoUXk5GTughyOHdF+8D5ysF7lchZfgnSqq5FzpwdwtLuflX/nhpyGnBoydgIORzaJdghoNxSxaP0Yv1/OHz8ntIickDUzCiZbFdjQ3R+0pszVCyBdyBBQuu6g6haWk62XJyNn9xLx/ZvsKSbAxffu/pGZTZueZSenjNwa+hfkuJ8WeN4TO5SVAMxnIGKEBdAZdef0vPK/Iicnsy8CCLVGNpolEavcGi5W2Uq2n/RdD0Q2oO5eIUCsueSETrEacKkLGH0A0j/Wj78PRMCNqxFTXxa0tRkwHwoi/tAjk1YlfaoF5bRGIMtxJnvQiojQ4GkvMfLlAdk3ejC95usqqBtuCWyLbDoPo7TwN8dvKSB7OAL6fVmuzkolJ2sPBOJthda4d1wpoddCpB6vI93uVWR37UyNIHcTQP9Vj2xMSZuGI3sRXnK234Xm1dKIvXhDtH9smelP9ejucf/cwDsIxHVMXEuB0h8jco9ditY5OeSYWXae/Qq4zEug7mwN74Uy0PR095Flni+qf+yKsr88g4LBpkZEHdu7+99MWSseQICub1DmqcEetsyCbTkV7Te3oX3/g2TedEFAz+uScTELssfOjnTputjvTIyh9yHfxUlJvfOhIPV1gX28xK67DWLB/UeFKtO6U1vXIDR250DMnUNj/ZwJ6ThTo7n6Pjo3rABs4AmrfRU5rVCA3khkg07PIb3Q2fpblJXwtxgvi6E5fGfcV9Re0BdlUtsdAZLvRnraCmhv2NKVeaw9sl9tggiL3qxVdxlZ0yDimAFxadP8nmNiKO2HQNub1qPj5GS9g/rwKBRg8J3J33QNAq4/hda+pRDAcxWvwhpcRc4WqL/2dffr49phKAh6JmQjmQ4F55zppaDkan6AoQgQv1tyLbWFFQJkW21/whpofh/hQZoR1zu4QJXzIUb3n9E8vd1LpEWU0xMqvMdMrkClImQCKThrWjQOM1Kb5/L3FJDdE2WUWB8F/2T9sSjSEzoj4PU70a4eaJ34HYF8Py0gYzE0V4e6+9VxbV4EIp0HgTmvNfmbVkfj4jmvYSeoIu9x4FN375G7viTy1dzr7jvHNQPeDj2mCBnQ9mhvOQP5tadDWYrbI6KvB+O+I5B/tg1wi5eyNxU5k16OANlHRx2Po700++7zo/1vaaC3T8hkvwmyQXdG57KXcr+n68klyA49DDFoZ8D4A1DQxDB0Tv0WBbq1QYQeZZmco8454t2Xdfe1YoxdR9g7k/vuRozHmf98BmSfvwFlnLirRj+1iJwycjugef8N8pu/ifqwHzrj9EHYiTGxl1+OxsfWyTecC+nPZedP7hudG/XPidbkgcA9XmKWPx7NpTZoX1gFzdm/19muyxB4fy5EyHYJcL27P2tisx4V7X4QnTHWBlasNE+tlL0jYxJf0MXePT1i2H8CkZ59ioLqvzAR7TyEgkvujT79qYi+1iiN8t9akjVlMbSmPOhJlpfkvhSQfR+ag0cg/0GhbPGN8ucurSf3C/yvlVB4LkaH8CuAZeMwhrtvjhSpv7h7N3e/y92/j0Mo6ID7OYqUI7nekDMJ5ExJbWnIachpaTkulug+6JAyEhkV3wFucvevXKCTk5Cyf6KJvSB7dhCwstcJxDYB6nAZ4M8HDAF7NkGgz0HI0PgrsGV2f+69KxowEiPFUmGMGYtSYC1mZouY2KqXQUCiV+LAsSawhMmAWkhO0p6tEHD9ZxRxexIw1MxWjUPYFugbroIOZ8sDAz2A2NW+T05ODwQaHUYJiN3axWzXBTlnTjKzLNXTOciJM1FpkxFQ9C1gJTObNfp1bBw+X0aHs7FAf1PUflZmRMaCnuXaF0rq72bW0cx2MbOTzGx3M/uLi0XnWtRPcwLPWkT0u/vX7v6oy/m9IWKz3AgZMSqmXcq+oQuM3A2B1E8wAQvT9+qGjKtnIxBgXWC45pJjTQ2R3QlQv5m9aWY7mtnsLsDidajf5gaejLH/BArKmFgg9lXAlyFzemCQmY2Mdo6zMGZWed/+yKg2X66vst97IdaazxBTzfTAqSYHQXbvdYi1rQdwhslJUHdx93cQYHAWYJiZLRt98Q5K1fw6ml+bWokpJn2+XhaNZpk/Zcq08cyGJkaWRxELxzDkKNoFOUVx9x+8BMRuValNyfeZGa3FZ0d9oL3gAeBKM9vXzBY2GXH3Q8w213sBkHRLyCjXd8m3HYQM1YfE+4w37rrYm1ZChtUmQOz4vehYeAkF3XwR8p4lGPxRmseP0FpxmskxOr7UOd7+a+Vk3yj5VnMhY+VVLkfKDGZ2LXJM/j3+jbvfEnNkEy8AxI5nsjG3E9qzH0HsbyORUf26TM+K+7oSacCj3Wfm3rVqaam9JynV1oIr0FqwXMhsYkuocxw0ixwza5X07bdojTzBzB5BTukZUZBeVwSe7xP73JjQVSeQNznl5EusMS8DC5vZbGZ2ByXGrldib9sYWDT00vTZwt+nueQk86c3MkhugIK/tgWOzsa1y9k4CGVmud7Merv7OM8Z6vN/t7Sc5Pcf0L5yLtI7t4nrv8ea8jZyer0HDMzt11VL0pY+SC+/G513dow9LbvvR6SzH44CgU6KcyAuwPwZyAlb1qHSUnKyEueeC1CfbYOCYt5FDsGd4rbhaE1YD53zjvAA4Kbv3JDTkFNDxnbonHAnCsbbBwEBLgV2ijPiNSi4bqLPCS0lJysuQODhyGl6n5ltEGt3qzgnfICAK+8Ce4Q+8meWk+nQz6Nz1lrx93h9yZQ2/FC0t+IBUqpDp2o2Gbl951YEZukPPGUK/svu2w+B/w5BDJxXIoBSIeDylCYnKyZ22vMQgHgHd18aOem/D5kLeQKCSp5LbQYHoD3oAK8MxG4WOaHTzYjALRea2b4I6HQbSguPC+zVH9kkDjMFPuHuo9z9Ane/yYsBpJtVjpntZ2bzuPtYl61mF7SuHYHW6vvMbL2o8yd0/rkbnXd2MAFhmpQ6dMPL0RluBDrbn2Jm+8V936L9ItM/TjEBJKsWM+tkZkeY2SKJrFvRPrMnApGPAo4xszlcdun1ESPzWWhcd0UBBtWA2GsTAewmMFVW5kZgk9+8KSPnuSHjGwQ8vwKxi4/Xn2qdfcuUnxALYY/kG/1qZm1MwaPfADVBty0tJ5UXMtsgO35nYM7kPbL+uAexkq4ez+XPikX0j9URU+uRKGvVkkjvmAXp6tPFma0rpawWfT0hlahRfwbYPBzZDLqjMbZwzJt+wBgEWD7RzOYy2WnPinsH+sSlIZ8O+Sk+cQGkWsc8/xCdeaZBNiri/W72AkDsuDcDj92EwMtfIf/B6sDLZraeC2w9EIHWrkfAq81Qlr+KQOy0P+P7fY++xRgza2tmy5nZw2jtPREB1g+OtfkuZP+oCcRO5cQZtjfymT3pAjU+htaY5dEe8XcTKLZnXL/BJwKIHe36HtmMTkGEF+ea2fTeFOB7EhovI3wigNgmhmPcfVGUWWwIOst1cvcbkd4zGpEJTIPW9pVj/k5Vq9/ycw3ZC/6NmGmzdg5BAQhD0VpxN/r+GRC7daU5agq6mRbYxczGExh4U1vYiaZMr5k/oZy9tqo/wUQ8dD7yWQ43s3YWfjyX/bBNzJnV0Tp9GtDNZAfuDJxTbq8r8x5HAKNi3o8t039NStyTBYZ/5/Jd/c0nAogdZX5EzPVu9FU2Pt5B+tqsyPebze+RaJzPR9i4C5R2aM35zsymNgW5vIrW03WBq81sW3f/Odpyk08EEDvWsmlQoMp4dv6kvzJSsOWy85WrZIzmtYDYsyCQ8/nIB3q1u5+PGKU/Q3Zqot5T3H0rRPySAbErjuvsXePZXRBQ+CTkg/X47m2ijn+i7G0LE/bQpI7p0Lz9DgWHTcDQn6zTN6L+PxSRn/wev/+AztVHowCTu9Ac3QERolQEYkf5EgXZLGpmbyHfa1+03qflxbinW+gF3ZHP/N1Ys2vZQ1tKTv73Lmj/Ghrj9VPkN94d6R0XAWubbLuZDrx1Or/d/V9eJZAh+UbXoXVtMAq8eBetNX0tfCHufjzS+f+GCGA6e/1A7CuRXns8yp57BPr2Q01B1X9HvoTF0HhZGBEOVQJiLwucbPKH/mbKiPCimS3q7v9x90dRtpEFUFaLL+LRmVAG69dRQEZdzN6N0ij/paUz0rnao7l+p5ldaWaLhx6a6Sy/WQnrtBHSn88Adq515miU/47SAGO3YInD2/NoQzsfOTAfcoEfs836HcR4mh6gxpnSQ+yJQHoPZ9cbciaNnCmpLQ05DTmTQU7b+OfTyJD9MXIGLIMOCiSyhlACZB+X/PZ81FVoXzI5bv9mZlua2IqeRobUi9FhbU9kxJwJsSAfhAwQdRWTQX00YkQAHfJ+QiCFLBr1peiDrZFz9S6vg6ElafMK6IDV0903QYCRjRCodA13/97d90XG4KUQC8+5WR1Vvk/r+H+rMC4cgJzCF3nJiDjOxGTyKTqg9UJ9eS5i4zg5rauCnLKKoSul2ZPIiNXDzGZwOXZ+txKAZxiKMn8+ee51LzGeNWlf/P1bjPHn0EFyV2RcfsQEpvkZHdYHIOPSk6ZoxLRfOiEDZVkjRnJvTzM7P3m3PChu1bivAwHsRun3spRiRcd1s8lxb+LkugKBh/dGARenIOd5CsgegNh73op6f07qqgqES/49PZp/J6Lv2w8ZRg4BNjNF6aeO8fF1JO97AJrb+3g4DXP3roOMWIPcfW9kSOqM1qGDzGw8S72734DGyZ1enJEl/bt91DMUrakLAWeFAWIc6tO9gA8Qq+s8tWRUkpW88ySdP1XkZClxB6DAj6cQ4+n5yGDzBTL65Z+rBYDZHK2X6yFGim/iuU9R6r+70DrzEoqcH4AYfMazHVarvyVkJH3X1cSUgZccqWOQ03hDU7rH7J0yg3B3dz8srlU1nFf5Nj+6u5vAbsvr0nhGl6kRE9HuaE2vmfJ1SpMTdWbjcI74/7cIkL23KfvGMyiY4Fw0JraPtTB7/j/ZO1f7RknbVkbG6xNcmUM+RuvpY4gZ7urYn0DZJp5HaYaHxvNVDfWJnGbbEybFWlCwr5pdThkZmTNzDNrfLkQg2OHuvqLLmfUmcmK8Efte+m5FgQ/NIqeCrPTa3xGw4yk0h7qGLtoGGde3BR7zAg78lpKTq38TpGNeg+bRGgi0uCFwvImliui/U5AePmM9MppTTpUx/QbSDa5Azok943qWCeEdFAy0k5dhwqgmxwSkGoL2+23RWjYbcJRFusKQ9WO8wyAEiP4hOfOd7KXUy61aWk4qz8Qi1BM5Ii9xOZo/Q2mR30XOJtz9VXc/BLHrdHP3s6OOogETDTn/w3JCxsxo3l2GUjFf5e6XISDSu5Sc3bgY/QqfE1pSTpV1ZzQ6Z40G7jWzDV2Av99NLPazIXawru7+8J9FTk5mE10HBb+PBi4xszW95LCeGgXWbIJAWun71TqPNLuMeD5bN7NsSccgEM+NZjae4dHdD0CAguGI9e7YeL6ozWCKkhNldRQ0dTOaMyDQ9OFI3xptZvPFmJsq6s/bDIahzFUXt7Sc0OmeQeeBHnHPQHcf4sE2GvdlQOleCEi4RLmXrKQjNrec0AOGAzeb2ZxmtiCytZ2C9KhdUJr0e03AdrwERnkYjZdCNpB0fJiyrQxG6+eOyGY8DzobDjSzfULWt0jfzvSPMQVEbYvsrAeZ2bxmtjMCnGyO1uh50X6zM3Ccmc3oykC0KdJ390B237Kp5rPiAp8cHvcPNAFcQHMmGz+tk3X2YWA7tG+MRmyP41ljK8nJjcdFzGxlM1vSzDrGnnIiAsCcYGI9BjEJb4gAdq/U6rCWlpP82S5k3o/OiK8h0pcloMk63ArpCmPier2EByCQ21fAKHf/v7h2NLLpHeliSe8U3/0wdz/UBWYtdJaPNSSbjwOQDb47cKQJsPQpWo/eQQDAj9FauwywtiepzOss36Lz6KYmMofxfePujta9RSey7mwNXAkF0O3t7lsie21HYH0za+ey23ZF7ToSZaCsNX+ysbauma2CbCgfIRvHkwgM1zH+Xgqt42tkz6Xfo9p4SORsjOZre+TDydaS7VHwWXvgQDM7HJ15zkIkC3+N56vO0eTf7a1kF8rsTrci39lqKJA/D8g+PHTImrbK7JlkrP1qJTDP6sgWMQToZfKdPYXW8ZXcfWN3H+jyrbTxpsEilUrH9A8XWO98FHi+bHL9Pnc/AdjI3Y9w99uz96zxfb5F9v0z0Jp9TvJbIUB2mT27nD+hEwL13h9/PwV0zerJvocLkN0FreOnI1/GpSgjcBGw/PRoLxtmxQHZFdeWWmtd9v5JfzyOfDmD4vlfreTDfSd+axfPZIDlmxEr9qFl6k/37UzGx2hM34x8ppldrDPaR/+B9Ie6Sr6fXH6Q7xEYdzszWyfGbBo89xNaA/M6fJE9YnpEPvD3GIeY2ShkH+rr7m5my1piEyH2ICtgR455lgGyd0B6zoxonZkn+j7r07cRo/BCuTq+Rf72XT2ynpQrpiC2FVHWlDtcGRmmM7O/mFjRcQUW9Yk2fIVAvs9Va0O08zd3PwPpTYshH/woF1N0+i3uRr6xkchvex7K6Ppq0p5qGVOaVY6ZdTERTuR/nx4FNX0d97WNcfZW1D0v0pNXjft/dS+e+TSR3x+Nt+1dwdrbof3/aUTksruJYR53v9DdeyG8QMXvXkHOGsgXciAiJLof2StbIR/ZFy68wYVIL+qCfOTVdLiZkK53qwnbkdkF30vuaY36cvF4j3aAoW+0sZcynjRApo0ypZfHEYnT12hNfhrpEM8j32FXpHPi7r9YCXuwGdpbH6x15miU/47Saty4xndsiRIG6tEImLgX8I84LKT087N7KcVrenBYBQELtwHWqrYZNuTUL2dKaktDTkNOS8qxSLWV/L2ku78RBpFjkIFke3e/LVf/QsjIuQsCND9fr1JhSh05AjFjvIacn62Qgex9BJD60QQ+Ph141gXwqauYHKvvo9SIB8W14xHTw/PIENMWsQsciwChp8Z9RdOlzYiMOLeiQ/LF2e9WSsX2KHCsuz9Wra7c9dU80lkl9c0BOHCcuw/LP1OjL4qmFl0aRd93QmwcT8T12xHQeygyXv2CGDJORKykr9SSk5PZDjGijAMOdQGEFkLMDosCy7lYv9ujCO/LgCvdfZekP1ohg39FJ44J5HYqYi4Z5k1TJKap8o5ypXfqAMztwS5SR3uaXY4JuHwZinY/I4wwz6N1Yk50eL7Y3T+L+ncBfvfqDs2s7vFrS/y9GXLczYPG7pXJbzOiudMfsWz+LfmtkrPzkjK/t0dG7HndfV+Tk/EZxHR1IWJu7BLyTyrzzkXTl67oJSbT9tl4MaUA7o+MiwfE+tcaGRiW9EipW6D+Fpk/OTkLhoy2aH/IjI0GfO0RuW4CzO5IiTGoqnGujMylEdPUvAikcYBPCL7Pshl8jdgLqjKCtbSMWCfmQAb6eZBz5grktPnOlLr7KQTwPjldX5L+rjrWcveuhgBH0wAfeKTeNTGv3IUMy70R41QvtGas5U0BxUX2nv96OTmZayFD7Eru/paJheYo5Ah+FTlgxsY6cQ9wsLvfUqDe/YHbvJQmsDVyzK+H1rg5kTHlJgQi3hvpOFeFzB8tUp1mz0/uPaGl1oKWkJOTsTna75dBjuaRiInjJ5Nj+Je4bzoEwDgTrRc31tmWZpNTo9/ecTmgMLOLUNDCjdFXndAecTLSgYf8GeTkzh3Z2ngBcg5t5EkqexMb3M1ofp6a6bzpeeVPICfts7UpgbpeSvZhi77aGa0BF8X1JnOyjrVgFeQo3RMFW2QsrUPRt7kDfYv3kmea9Ac0AR9UOje0iJz4rT1al+9zgfgws3uQQ6qbu79sYiwcA7yY1lN0T2jIaciJ+2ZAZ99L3f3IuNbWBUZYEAWdXJXJzz1bT1uaTU4VnepDV6ApJvvLYJTOtDcCWCwZ17q7+zNxX1HdoNnk5GSW1XVMzMtHo6De01A64zkR4HeQBzNpkdJcMiyX7jy+82XAaHc/LvTNZ5FtIgvc7+1yuJerrxIT8hQlp1Ixpc/e0N3nib9Tfeo8FEz1NbCaK9tE+uwENoPJJcfMNkL6xVgUdJiRBDTp46hrOLIB9vU60w83lxxTQMJmyK76HpojeyDA92dxzxrIBrE2skPcH9c7IhBpWVbyRMZqXrJTtkFAsMHA1O6+t5ktiWw6VyJyhWsRU+oRXgJvtHX3X+PfNddqMzsE2VGGIIDILAhI+mtyzyUoQHQPD+BgkWJmq7vA29nfA0LOhcguvi2yi69T5tlydoOi62dvBFqcBQHQPkIArb+bgPJXEefv+H0x4DQvYxebXHJy7d4Ejb3h7v6OCTC4Icr69DOy+T+DAPpbIvDPzl7A5paTM5e7/8vM/orOCAvG9bvR2S7TP9ZEwNyBLibRQqWavh86dV80H0+Ndk6HwOuLo3PlJ14Ch1eT02TNzv12Hpq3/YAb3f3foafPg9aNG10ZSou0p8n8MrOLEQh/W3f/jyno4EVkm9jbZfto4isqKKc1Asd+gs4hp8U+NACx4P7DEx+GiVH0e2R7GVtDjxpvz4l+mBmBcOcDvnT3DCw2tSu4BDMbjPSgJVHgxIPZfleHLtUdnaGWQTbjEYiJ+UcTsUZ3tKc8BvRy928Krmfj17/4uyOaD7d5ZKWwpnbrZxFL6THA1R7n/FrFlC3pUVcGFEyZ2Eag9e1xFykSJnvsfcBf3f1EK3MuLyivNTAu1sQlgd2QvX+wiwAhuy+1hR2d6Z55edX2bJOvcASy6X2Ogox29BwZRKLLL4BsvrOjgL7V43olnSrdo45EftnXgH7u/o861vki4yFt87RoXnRw2aZminaugHTgM+K+dmhNPRgBI18vJy+3fqW6xXTADC6wOqZsEFsjneRVDx+Pid33DsT0fm6t9iZys35vi4J8pvJgGjYRY5yP7P/bu/vDMa8N2eUecxFZ1VVCz30MkWjcYAJiL4N8Vi+bmaFMrJdnek/Bequt1ZeiAN3TkJ/uo5gHy6DxfaIruK7etpyC/NTruZjeu6C9dHYU6HIOcHr81gmtoT8VrLst0tsuRUD41ZHffIvYa9KxvwLyyc2OmJCz9amIH6bZ5ITu2Q+Y38PXn/y2KAIpD8n2yWQ8zoeyr7aN/5bysGsX6Lf8OWsg0NHdjzf5Fk9FY+E2pPduiHSva9z9o3J1FpS7M8oqs4rLZ7k4CnB6COgT+9FawMteg2Qj05/i31tGvbMjne+I3Fo0A5qn6yIw6pfI33OMJ9lCi+4PjdIo/40lm/dxdn4MONDdz4n9ZAAiAJgNneUf9gj4a5QpszTA2C1UzOwwdMjaxyOVRO5wsi+KgDo8OczMijbf6ZDy0duTqK6GnEkjZ0pqS0NOQ05LyQljy67okHO9mfVF0c8bIODTaugwuRiwlbs/mVPKFwPm8QSEWaUtlUADbRDYoSdynB2BmPtWRCyxb8R96QGtsFMo6h+LDE09ESgoczAOQEw0yyEg9XvIwXpOPXJMLKsHhpxpkePvpjCM/OYCjm2KDmPPItDVowXq7YMMLv08Yc9GxomXgP1doO88gHZ1YHYXY2XdJeQOQYf7mRBg9Ap33yt+vwaNy6lQOsNZos0nT4SspZAz8DAEYh9jZj2R0+ZYdx9i4VwzOZW6Imd/1dRkFWTNg1g9BgJnp4f15Ps8hb7P48lvdR0sJ7Wc3JxrgwzVa7l7zziAP4VYBfZFxswuaN6OcDkoUmNbNVDNhcgxMiKRNwg5ADohJ8kdJhaAsTGuF0TOhn09iYj2CobT5ACTOaxmcBmrV0Cp9R5DxoR30bj/2sSwdEe85sUuZu4i3yF9j7+guXetK51c3rB9LAJgPogcNS/l6qpnzWm2+ZNr0w4oeGRGdOgbib7dvem9ZrYIAt2dhoyAQwu2o3V846yexRHwbSZkUL8/vmU1J0YtFulmlxH3pP22FHJinIzG3L9beTUMAAAgAElEQVRRP/4NjfVDEYPARKUtDRm7IOf3JyEjAywf7nLWHYrWh29Qirw1gOPd/bT/ZTkhaxPErrmXu18X1+ZAASX/F393QPv58Yid9skK1WV1dkb7zIaeBKbF+jUHWhtuQ6kr93P3L63kkJwBMbF3TffZOts0yfeelloLWnLNiTr6IGPwI4gNJ9sbbgIO8RL4e3XE0LMfckDUpX80t5w6++1sBFqYE+min8fvaVaEIo7iZpFTTjeI6yMQO8sKobu1BlrFmj0MZXC5BYEUXij3zpNDTk7mzoi97v+QI/Al5OC8Mn7PANnbAwe5+wXV6qsiZzHEwgMCTmyfO8+dhsDTtyA2ybpTwje3nHL9aWazo73zfnfvbwLgLkXJ2TkHmmcPI8dkTd29Iachp4KMBdA+eYe772UTOkJHA7+4+/pFz20tJaeM3F2YUKe6G+0975nZSijYtScCFgOc4pEt488mJ5GX6jrneQmYvx6yV2Vnn1cQo1fGSlnPGWuSyjCBtP4POD85ExoKZL4Q2XaeRqC3/RCL6AOIPGBvd7+84HtPUXJyMvNnua1Rdq79PQLBrQR+6I3OWdOhsXZhUk8GNt7D3S+djHIyW8VyKLB6fnSuvxMBV39M3yf+fQTwc6ZPFey3ZpOT1N0agaqGofPOo8AG3hRgujoCiayO7L335uqqNHcmsFPG9dWQbeMRRCryCtKfvo7vcgHSPy/0YgGHHdFeckNy7TBks/4ZjfVD43r2/dsgXehZd9+ploxcew70sAXH9QyQ/Ve0jm6C+mt2xCybkUHMh86uVYMBo85Ud18fffNz0XlzMaRzLoRAnXfGWr0OsGa06zl3vymeL3pGaDY5OZl9EInKfWgNviuut0M+hmHojPI2shmsiOx79e5vu6Hz2cEIIHQ62gP6I9v+li6Q+XRoLVgU6O+lLF616k/tp3MgANkYTzJnWlNA9inu/m7ZyqrLSe2RfdA68CYKXMsCs+9BAROXoExuM6FA0c1QsElNubn2LOXur4c+85O7b2QiQ3ke7Qe7uTLl7IMyLB7hEehSZ9uuQKQ9G7iAiXl9aoZow9loHb+uRn2V7DlrI7ve6gT4O66P79v4u5MnYPw6xnTveMebEXHEccg2fhWyDfxgAmRvifbZ5xFwsmqfmdnyyPc1wMVKjSlw4GEEsBvspTN8e9cZeDEEhvsCrVfneo2sAiaW65eQ7W6/+BbdETP15mgdfRStyY+b2bkEa/nEfPec7B1DhqF52Qo40xOmZivZwp5EgOzHrYo/oYKczZH9sC3ax0ZV0PHboew2dwKfIZvvb5bzpyX3ZzrVRdnYMbMssKkwIDvXntWAj70KKNOUzWQPtFZ+jvTdO02A6JFoPXsKnb0WQXbzokH86VqQkd4sjoJqr0QA5e9zusc8yMa0AbCuu79fQ8aswPdeCoiYDulrS6KAjJHufkT81h0Rb6yA7HBTUWKRXim+T00/We56O6R7fIz03sVRcM4rJl/W7ihgbx+vYUdO6sz0iw4I+P8Lyub5z+SeqxEZxWi01y6OgLjTZW0pIivqynTec9BedynKdLcL0uGvjXYsjfaBQpkoK8yLTihDRT/k1/4n2kO/TNo9jeeCP4rqH80pJ37v4CUw+ike/kIzmwbtDfsCu7v7FckzG6HM22ehsXmBJ4EiVWSl8+JAdx9usn1/i77zPQgg/1eXD3svpPeCgiJPLbLv5GT2d/ezkr1oPqRnP4+CkXaPObs1Gh+HuDL5VarvcjQvDnSREq2C9raxiOBra3d/NXTpsXHmWgp9t67R1iu8hJtoALEb5X+mmOyeI1FQ5Kbu/lZcXxadfTqhwNbRSLc6Jz07NMqUUepJGdcof6ysj6LHX4XxG07m3DoBKVuronRVnQFcwIEvEJBoC68BvmzImWg5U1JbGnIaclpKTmsUZXuiiVHiYsSq+5a7j4uD6QAU/X+biS1kfOowd3/bS5HSFfeinPFhITNbNf5bNAwBg5Hx6kZk3J4fOYfGA3i8KWNKxQNf7u/W7v57yL4NGTNWS+ocioxQXeK/bbwAEDuVY2IVuBxF9n6HDAwXmtnSYbxqHXXdjZwhqyMGhyLF0aHoWFN6qizt0gdIqTvazBYLA0XreJ920aa9wghSV4n2XIAOeesiA/mFwK5mdm28w06Icf1gxBTZ3UupOGulms7S72V9uBBi5HgyDIw7o8Pw8S4g9jTAYDNbxN1/cve7PUk3W7BN2Xj9GB2MzwD6mUA8xG/Z91kTOVpIfivKANEscpK5sy7qqzuBc0xMdJcihf/YuO88lHrvUGB/EyvI7/m6yrz7tMgw9kHM8Sy14rHoG7cFzsjGG6W0az8jA2WHMu87EDlG9nQBsVcEDjOzmUPGAcATJsaVF939PgSGmgetXxnjU0cUfX0/sRbWKrk1JzMujgA2NgG+iPHWIf49CHgZsapdbGazpPO8qMGkuedP0qYs7e/18c4Ho3F1eBiWsjSPa6PxcjAy0A7N+qdSvyV/Zikyx8X/30LBK2PQ2tzVZMytmKKxXL+1hIwycjqaWadYi193OQZXQSlNP0D9+AhyQLYCNqtnjcnJXR8Z9QYjh+3CiHUwY9TB3U8HTkAMiz8gx0jmOCqU3m1Kk5MVFwvbi8hAm137zEtA7KVRGsbzkdG0FhB7Dhcr819cBvjVTYwvuPv7Lka3aVDa5FcTQ8l0aF8/Ejkl6gZiN+fe09xrQUvLiXuWRuCKU1Hqxu2R4+42xHB3lClF8PyIlWhd5CAutH62pJyC/dYt7u2HdOCtkMNyGy8AxG4JOWV0g/Q7foD09RWj/rGJvvEvdBbZmlgnkvlQzmnWInISea1N4Ir9EbvYqshZ1go4xsz2iDocOXFuAs6LsVNXifHyKXLAvA8saUov/ZuVUhcORECf7YHTTE7LP42cnE41e+hIbVygo5uRvvkCAvds4QLgtkUgi6UQS3tdQN+GnP9NOVVkfICAL7uZ2XreFNDTCTnF/1m20skop4zcSjrVlujs3sbdn0fAivXi/5t6ANXq2OdaRE7cW07X2c8iJb27P+QKSF0BMOTkrQuI3Rwy4nsaOm/0TtZJR3rfByjY5210zv7ZFTD3ILL5XGZyTtd69ylKTshK9+j8nvs6Cqza18y2id8yVsTF0XmrqzcFSC+Azn9NANKTWc7L7n4HAicNQPrhCBM5AHE2Xd+Ukv6URJ+qqO+2lJxk3VoNfe9+iP1+ccTSOH6OxznqKATquNvM5rNiNpAJ7JRx/1Pufieyic4Y7crYBtuisfYtAsJVLfEeg4HrTCQkmYwh0aYOwFYmB3j2/TOg2XvAXLVklGnPMSb23UzWUGQv2BsBYj9He9qqiG13BaR3P+kFgNhRZ7b3LIDYoS9BGQ9vc52fd0Jj+9L47s+7ztpbufthXhAg3VJysmIC1Z2NvtnBHkDseJdfkC3vIDQmV0Q23y2K7DvpmDSxXZ6GAku+QEDTX9A57i/A+i4gdjtK9op7fOKA2GcisPVzwMMm1smsTQOQLbY7MNDMFi5Yf0czO8vM5vMSEPtGApSMQKUXWOl8vQnSsfqgeXolmtvre0EAeNKeW4EBZjYb8icsYgKBP4eA2Hu6wMULIdDVWCYec3AfAoytGH+Pryd0lP2QP+sMrw3ELmfPWSDa9igKLHsO2Vn6xvUxltjzol112XdNKedPQAGsfdGYWwitPQcCB5tZRxcL6e1ofF/jxUDMCyK2/TPMbN54p8fQHrAQWos2ydoSz/yA1s5FgI3RuK9V3kDnvi7AuaYMUrdGezZCwSarAiNNzNutEdhv9wJ1VyyxL1+BQLGHofXzDtRn5WxhaxG2MK/gT8jV3ypZM/ZHa/4b0Y7Onvg0kjJvvNPvBNGCVQZipzrVjvE3rkwBFyMQ7NlmtrBXsVXnzhsHo/Vk9ir9tiNwDfrW/0DBF7eZ2akuwO026JxiKLPFCijD7JBMXqW64/2zteA6ZA+6Gdm7PkNEFxebwK0Z4HR35GPaAvktagGxF0DEOvuYWdvQyR5AttXr0Rp2mJV8I7eiQPFBSD+ZHulvKyXfp5ztaKqkX+c0s3lCVrbfHILsu+ujbCKvmDK79kHfdITXtiMvaWbLxZ7wq8luMprIrgk8ZyIOyvp2Z+RzWiv6bHm0DmZtyY/HVFaT35L16XD0bfaI9hzs7tu6MkOOQGtAIb9FbiwuZGarmTIlzRFrzDAUrDg/GnPTRLu3BV6IPh7/npXW0JaSE/VP5ZFNBp1x9zezO+K579FcegDpOSeY2VpmtgVa179BZFDfoHlWpP+yeXEpcKqZLe/u77qyQy6GMAfPJ3vAODRejkIZD+oFYl+K/OFLo/NaG6QDPIt0qr4uIPasaD5PBXxVo9rHgetcQOypkf67JRprvwI3m9lysVa0jna/jkDtyyO9LcVNNIDYjTJFlnRft5It6nOkuy6A9KqsHIV05v2QvWXW+HfHFnrdRmnB0mDGbuYSB7gZkWJ/grufa01ZhrZDhoRu6EB1AjoInuyl1PRlFfyGnD8mZ0pqS0NOQ05Ly4n7VkQgg/mRo2a3uJ4aIVdDoMH5EbP045XqqyGrV7zrLAj89DlyBl2c3LMDchr2RAb7Vd392TrlbIAAGm+kBwNTqvPuKHJ4AiNCdmhMD4815HRCCtfvqO9/NrFQHY4cLD28FH09zgUint+T6OkCMlZA7AtdUF+dF9f7xvUPEfAtYx7rhozTR3jifCooqxU6KM5JpCuM67NQMloc5+4nVni+qKG+IzqAH4wMUS8jJfUnZKA52ktG+c2RIntCNrbraM/WiD3o7pxBYG5kKD0EpWE6PHmmru/TUnJMbBufokNz37i2DIq8PiCMWJhSjB6NIs7v8CQFZAEZWTT61mgMXO4lBojDoi3vIgaB18IY1QOBIrf0hEnJFC36LDA01q9WaAzfgoCWdyPD6tGIUSRba7KUP93d/XaTQW1vxP5wohdI9ZlrU8ZytByx3gA7oLSSGVN1K2TwvgaBSZ/yYMWsU1ZLzZ/lUbrpa919qMkBORoZNjsjZ+uRXko1fAACwGTMKhPISQ6W2djthvppEWTMGYYYer40OepHIQNxP+ARLwjiaW4ZFeT0QAbmhaK+CxB747vJMz2QoXZHFMncyyuk664mN/aPIQjovYOXUjDejQzmPdz9xdxzdWV9mFLklNtnrcT60wN9p709HMHx+8po31scMaGdUamuuH44cjT3djll50MgxQcRg8RHcd9CaO5fjBiKWsdzPXP3FdUNWmrvmeRrwWSWsyVyam8Q32sql+OiHdo7lkNZId43GaR/8xITQT3Mmi0lp0i/HeMV0sDXMd6aVU4Z3eAyV7rcaREr089oLXg/7m+PAM7/RHPpHGBlz2WcaGk5+XaGDnMRGrvvxbUuaK+eDTHXZGybSwJzu/sD1dpQRuZ2wFzuPizRBQYBo13givHrXvz7XOA1rzOtYQvK2Qk5aqdG56y9UPDUKcgB1N/FEDR//D0E6T2nN+Q05NQjp4yMPZFDcxgCjeyGHNxt0dl3GAJYXv8H29JcciZKp8rV0Wy6W71y4r4ius5Qdz8srdfqsLc0twwTIG0wSrfcD7jSk/Te0WdtEVD9V9P59gZkr3jFizPqTTFyct+hG7KtzYOCs09xMa52QXpJa2SzfB7pVochUNU1Zeqa1xOmyMksZ14E8szkdEAMuEMR4PN0BDa+kgoM2wX7bZLLSeRNj2wfl7v73jGXzkW2w63c/bN0rptAprO4AD5FZZS1U8Zvm6HgzFXd/dnQsQ8E2iPGwEIsYSYAz0AEbjrem7Jw90Nr8qUI0Jnp6rMgG9lbKHV7Ub09bc9xOVkZo/rpiI32wwp1FNXduyCA0I+IQXo/SzLIoSxTtyHb0gAoTg4wmeS0R3Pwe3R2/iWu90U+hHcpZaHaBAUL/QfZzN6vY99ZFe1j3ZBN8su43h2BCl+Muj9FYOL+iGE4sy3X2hPSeXo9Aj2fgubSmQhc0TudJ2Z2KpGtAek/tXw9+6NxeweygS8az+6P7OLrIDKHd+PdR8VzKyGG+38D//BiLOypT2cjtAbs4u5PmFjx70YgyfvdfeO4b1YUsLwOsJFPBON3Iv9Z4Dt3Xy/+boX8QHchgMqlXjtwqpo9Z49sLprsyKejM9zgbL2s5+yeyGyFQG9HAku6Mg0ZCl64BvmAHkbfbghwlgsQ1y4Z+7XG2lQIADcCMRwf6CWG7M3QGfUDmo6BVVFm237Ar6m+U6kdoQu1Q8HYl8Z7H+BNGX2nQiDfbnFfJ+B2d+9eT78l9bVF870NmuPfx/UFkQ9oP7TvHZU8M3/unZr4E3L1Z7peZsOZC/mSVkI60FKI9frZ3ByYD+n5x3sVIHYiZzY0F3ZGPqlr3f27+K0cQ3be1pBn+D4T9X3F87eJUf595CP5PvphX+Q3GeDuZ8b3/B2N9R+8lNGtHpvbcORnecTlx1wKEdgMQwzzv8Se2B+dkY7O9tgadc+K1pluiCDoFWRfHejub4Ru0hv5LO9A55RMD8mz10/wfSyY/ZO/d0I+5pnQOn0Y2vPGou82JK6/j4Cqy6MsaKfE85XsyJ2QTtkOzY3X0dyfMeqcE9lbuiDfwcjk2QvR2BjvU6g21nJjdCfkH/kVeMHd74v5OQPQ2gX6zfp5OPKnds/GQJFi5f3yx7n7RSHrYKSv/Yr0uN3RPDy2qIyWkJPoMrOg4KTrzewgtGc/7O6bxn2dkZ9nDzSWv0Pzdj3Urw8DV7v74CrjIdWXl0J79snAo8mavxU6kxyGdKppkH3yW3ffp56+KyPncZdddCCaVz8Cy7uyzhiaY5uide+NKnWma1JP5I87PNGf+yA8Q7Z2vxLXtwDauvvN5epqlEaZEouJ9f5zhOcZnzHCFNgzChEtroHW4o3RfnZ/8vycHna4RpmySoMZu5mLu//mAgB9A6xtcmalStQXaMO7x93PR47BjVGE4vg6GnImvZwpqS0NOQ05LSnHShHT3yMD3CdAl1DI8YR92MUc2R9F5D5sZnPWakMZeVsjoNO1KKp6J2QsvdDMDkne+zp0kOiFUpHVC8ReFBmuXo26t0p+Hon2zC3i3nz08bj0/zXkbIGYEdZCTOI/x7OXIwPQWBRRuow3ZRLOjIWF9m6Xs3QQil4dZHI64DIunoeMAE+b2ZPAvcgwcLoHEDv5zrXa0woZGpYHvnb3/5iYA1u5jNzXR3vXM4Gpy71rUSPnguig3d+VfvFlZIy5CoFiBofsRdFB9msExClcTGkPDwDuMrMNvSmj+yeIGfBVxGJyZvJoXd+nueTkv5sL2HsEsIUJqAgyJk2LjMCZEXVZ4F13X9frAGKHjF9NjpStkdEgZYAYEteWRmzWmdNmEDDIcyltXc6BFT0MpzGnXkTG4zWRk/Fodx/iTUG2LyDj/NUmIMFZyJjiXmLGLTqmM2PrkcDnLsPVychRtI2ZXRa3TgOsjIwyR3gAsYvKSe5tqfkzNVqvr4jD4QMIXL4+Sre3AmJD3SrqPcdLoMgJMguYmDNTo3EftFZOgxze8yLj2AATa9LriBGqHQLMbligf5pdRgU5OwNXI2fWtWgMngEMi/WF6KORyKmxMrC91wnEjpKNl1WQwS0Dv4xC86a7u79oZt3MbO/kuSzIqmLWhylRjpeMgCtbKbNHxvrzDJqP+e/+LfqOe3oJiF2NjWEsGmOnm9lfXM66Pgigeo6VWIjeQ2vSwcgpeSNa7+73BLBRUDdokb0nyiRdC/4kcmYi2ANcTrK2LgP3gSg15/rx22teMhrXI6Ol5dTqtwGhT05Qioy3lpBTRjfY2ZR14zs0Z2YF7jGzfU3OvQPjv29QUCkUYJtpbjnJmrOhyYF6PNJHsxS6rVzBpoegc9ah2drm7m94ALHr0A9bIYf24WY2Q+gCl6KgsHVMoLiMuS3L0rG/l0AJ9ejvLSGnK3KujkL7dwe0Xi6I9ulbgbPM7CUEkDgIBVKe3pDTkFOPnCoy5kF6/H2UAigfRfv3qV4/QLpF5ESpR6fas1wFzaC7TbScOnSdAZmuk9Vb1N7SEjLibHgk+s5nkzBKR/kSgWGXj/21K7K9vOABXC6yJ0xJcpK9tA8idJgBgYKWAZ40s4NjL+2N9PmMCXJvBIC6Jq0r+aYf/Ynk/BZynjCz/nHrlSFjC7S2nY8C3QoBpJtbTn5tddmODgO2NbMtXODRAxAw9laTg3g8m6e7j457/oidcr/k51cRWcjNJjbQ45HN+gsvAWhr7gfu/jRaj58ATrCmrNVnIxBsX8TmuacpJfwZKHB3cD16e649eVnnIFvcoSgrZWZ/a531l9UHTPkFAYBao7GQ2d/bujJUPo7AY4u4MsLUDZBuYTntEGvnv4BxZtbZzEYjcOwuKJPkvi67+P1If58OuN2ULbPIvrMUshMOAdq7AvjbhC3gVgRs/QmBCW9GTLwDPGHeLrAnZPP0aGRX7Rn68kII9PYuYmrvnjxzOMruea4X8/Wci+ybKyMdZAOkYzzp7t+4+23IZroAGmubx3PPu/td7l4PC3sG8NsX+YseQfOSWPN3QevqzGY2wMyOQAzqW6EME4WA2Ga2lZldaWZLmTJbZuUi4C9mtl783SrOddugQIkiWTKq2XPOtlLGsyfQ/PwC2Vn2jOsTM6ZniG95Bcoa0QGtzXej/eUbFLwwFvXhsSaw5Xim6mpjzQQi/A0BlvdAoMDhSVtGITv23Ih99WgTY/IwlOnkl1i/2xRcc9q7+40hq2vImi/epZXL/3iDu/dCgL5BwCYW7OwTUdoiH8XnLgBTm5DzPvJh/Qs4wqrYwjznT8iKlcBQbYFnYu/8xt2/jrP6Ucgu8IiZrRzrXSb/Q3c/2msAsa2UJfQLdJ6+Bp0BtjEFieMTMmQvFLrGBPuBCYg9DBFNZGN+qpzM7czsHvTNn/UAsKPxfCLSeQebwMi/uDIAf+olIHY9dqol0Nh92gXEXgKtDSORj+aXmGsvon1vNy8AxI5++T9KDP9nIj/yGA+AaOgmV6K5ugVwTaKnZgzH48dlro+OBR7L1l9TRr4LEah7OLKHXYvWz9ahN60RbfsRkf7s5iUgdrU94UcEgv8d2VWWQTrbEHd/0N2vQmfcUch3lfnocJH+nBR9ULYtuXZm6/RItL/tgObqKDMbCszo7l96CYidZZHeCAVx1APEruSX/6uZDYz3PAvpbO8if/dAD4B0Uf2wJeTE3O6Avu8RJqKFEShwYd2YT7iyKhyF9vStUEDYmujbDkX2w+vj3rLjwUtA7AvR2B0HPBNzJdNl7wbeRDrrI4jkYxNk16yrlJGTBdZeh84Fc6A17jkEAF8HEY1UBGLn6s98klsgPWOZaOcVKADld3RW2NzMeqPz1SJpHXXou43SKP81xcymNrNDzewhFEz0DvCAKWg5y77wNTqPLIqCxtZDa9yDUUeGpWoAsafQ0gBjN0Mxsw6hDB9sJZDBg2iCLZne6+6PuNIJZeVNdMB9viFn0suZktrSkNOQMxnkNGENdXdH0bw7owPnSSZ26gygkhkinkYGoV71KBRh+OgYz96GIuAfcYGuD0QHtKEWadRD1ifufqOXGOkKpSyMZ99Bhtd+6EByg5ndbmZbufvfCEbMuLcQ02o5OYjJoxOwOjBX+o4uMOcpyJhwpyl10W/xW9bvNZmtkr5/gZJj4DgzOzCuD4m2DEZglLsR00VNg3OZfhvnAsK9CaxqZnPHO2bv8AlydC2KGG0KF5swHdc7CHy9m8movhtSav8DfGOK8u6JjDSdgJ28Suq3Cu35Bo2B+4FbzGzj1DjmAoGPQunsDjKzdVKDWaXv01JyEsPdHMnlhxDDT8/oow+R4r+7mV2JDDfHo1SdZd+3QHvGIKPS5cg5sLOVANmD0Vj7FYGOH0XsoSdHXa1zdY13tEWbf0DA+vYILLCBydGePvMzOvzfjpj21kYOyPOSe4oAIjeNZ78Dbnb3L+IdPkWGsRFADzP7FAUxXIai578pIqel5k+57+dynBwWxrhByKh1TPx8O5pfKyAn4gL598zVfw0Ct7WNcbs8Mh6dDOzs7t0QoOMS5HDYyWS4fh0ZsmZF0cDV2tDsMirIWQQZj09FqRuPdvc+aK2chgnTev7m7m+6HBU1DYBlxkA2l98GljSz6U1BC8sCm7uyJMwArAt0NrGC1ASMTMlyzGweFKRwp5ndaGZrmNksLifbmWgsrJa801soO8BDWV3V9lJXCuahKNXqMFO6vauRYX09BMieP24fggyecyKQ7qGeMG9XkjG59p64d5KtBS0pp0p/Zsbjntne4MGyjlhovqdMWvN62tIccirJin4bGP12ApX77cRkHFYtk0tOGd2gT4zpB9E6/TnSD25CTrcTXUEuiyJ2uv9MTjmJvN6oT/ZDjq4VyQV9RH8ejMbByaGnpr8XcnTGeLkd2erWimvfoL3uaKCrmd0Z138uo0MVcnA0l5wyY20R5Kg62N37Iz39DeSgbIscn1vGPYOAHWMNrus80pDzvyenoIw3Q0YHdPbdHjGfXoNsE2XPIpNDTjlZybrhwBI1dKpVMp2qVpmMcr5Ba3Vdus7kllFBzhcoCOd6BGDexUpO6sMRgPlxdA6/DLFNP5c8X9Rm8F8tJydzRQQOOgYBWzZF9sROKPB4VpftcA8UcPsXYE13HxrPp3azarrV5JYzDTovTOMCEI6I6ycikGah9aAl5GTtswltR2+iMTATchxngOyRZjZXue9dawxYZTvlIAsAc5zlzkLnyJOA7VAA/0X5d65VcjLyIOnTkc62BgKrbYl0wVXc/c0i9VdpT15WdlbcEzjKzKbxBMBcqz0hJ1u/nkXj4HFgBwtyEi9ll+qI7Fg/mlm7ImvbZJKT+Ra+Q4H1hyKfxEhEHLEW8mVcD/SKPhtDCZC9MNIbytaf/Hsml23o/Kh3FTNbwGXPzwgQ7kTffzlkq9zK3S+I56syxqZzK/bFGYHz3P1pUzDBKfulaGoAACAASURBVAh02xexFV9tTf0Xx7q7F+izdnH/MWied0a6xseuoNR20Za70bq2AAoO3bJW3VXasxUCgu4MfOYCj2VybkMZTP6JAJTbIXvtGu7+cpX602+zENIp1kIBwbeZWWbnvRGBPteLdo+Nb/GlB2jM/rg9JwUxP4H2v++BU0yZjeoqZrYxsil2dvd/ulgOF0c2omu9lKlxOgSU/QZ42wsA8ZP2ZiDChd39BioDsvsigOkRyH/yA7CJlzJ/VPVnxX2bICDR8q5gwkzW2aZMEdneka2Bj6Gx+SGyp9dlC4s6fkTrwFqxz/xOyS7+FgL2vU8NW5jnMiiYbMRjYx4ZIqY5Etl0Mp/F/dFfbyAiqc7ZOpF7x4rfy0vg2G0oZQieBulU2yeyMkD24ghkupjn2MqtBMTey0ts7cOinlbxX3vE5r0mmkcZoHsql5/hN0QwMgaxf5f1R1RqT9J/2TPtgDbu/o3JZv4E0hf6uvuPJnvJnia77MdeEOyb7Af/h77BlSjIfj5LCL1cgOyr0VzthoJypkrHc4X2XI/WkyGxrq2CwNiHufsJyFZ0B/pmfc1sxliX93f37dz9ZC+xzFfdE0L+o8hXOTs6b6yAzlfZPa8hW8tdwFVmtm3y27FeAv1X/DbJODkV2aV6oX1hiWjbIWi/axX3HRP9sDzQNd6hZrFifvlTzWzL0A8uQTayDVzBaDX7rKXkZPtb9MmmKLijJ/BjjK1LEPi6q5VICX509/fc/U4X2dx6CCy9EbCxR5a8cu1J/t0WsdH3QbbH2aPucVYKxlkfjcFv0XmrixcESNeSE7I+QvvhKmi/fQrZLdautmcnz4+LPe652Hv2QrrB4dYUkH0y4UtF69exoQM3SqNMscUUbHU/2re+RH69O1Hww71A/+ScPRSRyc2Fzur3JufBQvpgo/z3llbjxjWCUSZlSSbfbIgZpS1KG3QoikL6HEUJ/zvuHx9RaUqPcTqaqDu5+1cNOZNOzpTUloachpzJICc1CmyEjCsLITDUTcigdB1i2Ts2jDWY2PQWcfczk7pqHZCydOMdXM7/z5CzZ2Du/ZdHxpjsoDu2iCGhTHvWQIfjBVF69vsR6HFjlG5yBgRIGY0MA4e4+1kTIWdNoIO7PxAyL0bGkh09l/LXzHZBoJHDPdh2i8qp8HtndNjvgpwZw6vcO8H3yerP9b8BmSP2RWSAHYaAHUd5Kfp6amQMmBmlN/6xVntyMjsgp8ijcX11xIT9kLvvaUqBdj5ypM2GjBxvA9uFEWN86q5KMpL2zIgMVa+g8T0cjfVt3f2euK8TYmV4Dfhb/ttNTjmJvK3R+LkRMXCMNTHXX4NA91eb2dLIUbc8OixfUm1cpO3IjYPF0Dj40pUqNPvePdEB5GqPlHEmppjdEDB8f3d/L5vvNfqsCzIwPYaYBc5EY257d/8qP/5NbB2/uPtn8XfRNWc2FIG/LnIsrOIBxkZsLFlaoVWQU+VblPZrPCN2uXnYUvOniJyYE51QEM497n5I3LcgMsbcj5inLisjIpNzFHJebuPuj8S19ZHzbENPHPPx2zUosn+5MAJhMnB+PTllVJGzLGKC6uEKxMEESFse6ObuL5mcHV96kg6xSCmzFkyPAgxeQIzeGYNLa+TM+sAUHd0bsasM9AB9/w/LydgovkQG2H1D7udoTZsGMbpd5krHWTWNaF4OYkP53eTcGITm5j8RK9cbZrY92r//Buzn7h/Hs9OgtK9j4u+K605z7wktuBa0iJwyfbYRAk8shfaFm5ETfTj69te5+yexfu6EvmN3d3+mmoyWklNlL50WMTT9I67NiJxcd7v7ofX2259ATjndYHukG1zqJUDHamjd+MLd3w2d9XbgPnfftSXlJDLStK9zIufMA+jMszRycK2K9JBRuXGzFjBHtbWtXFvieir3FQSy2DT5fXqkR52BmPC6VJLRknLy8uLfc6P+7gG088QRY2YLI9a75ZAD9/ZqdTXkNORMAhnLArtXkFF0v242OWVkZWv1f2K96obW5DEImDKpdKqWlDM9Wn//mfTXKkjXybJi1HX+bQkZZeQYJXbil5HdaHj0Tz9ghCujwMwIFP4zyoZ2c76u/yU58fcmaI/u5qUU1nchPWtrd/+7KbPfmFp1TQFyCq07zSknuaea7aiPu18T82YjdAb6HFjJC9j1qvVn/J7aKU9wsVZjslXPgoKe3y3Slty4TnXFlRCwuAtKdX9u8szeyJZ4Ispg8NOENU90e/KyjkFr7dnVZBSUswIKpNwIgV/ORoHoGbh8L1fmxT+9HJO9d19ky33b48wROv1FiOFxV8LebwJULuFlAES5MbBtPHe/uw83s+OR/v4E0jk+ycZJ7rlMd67VN6kuvaTLTrAm8h3Mjc6Ng4GLo75TESM7aN7eVqvfyshZIPbko9A4+whYz90/in36dy8BaW9FLJvbeAGbVU7OIqETHIV8IF+igJWPcnOrLQJo/ghM5WXsukn9+W+zZfTVqQhsty4CpL2EgmtXReNuXS8IHMzkUNye8xBiiP1nPLsOMNtE6DjToTWmN9ItDnL3V81sFQR629vdL4r32Qf5LgbUWpsTWRmrcxs0rhZBZ9DXqrRlDsTcOh1iTB5rVexiNdpzQJl+O8BLdtfxa7OJVfZXd58gs1Yyt8rZJjI9dCuUMedOxLac2cWnRWDvl4FRRXS3XN9Ni8COvyJdcRm0tvRHPosf4/4NUCBQZ2AprxKck7Qnbf92aO8cgr79nOjcsA4KarrGS/6R45Atupe735HU2w/5PPZy90vju7dCwTED3X100q65kG/iMMRYvVHu3RZDRDwDPEirCvRZWR9arCuj0NrTH9nMd3X3H0y+lOHRp3u5Am0mSpYpIGMwylhyCPDXdG+O8bk38tmuX0MvaOcKJJkVMSm/ivryKnf/a9JPbdG6szX6Jtd7DV9CGVl5e0sXxG68HArmvzn3+xJof90WreMPF5CRffdWiAjkAbTOn+juP5mCXJ5FWZp2z/rNzGYPOXe6gt5qyZkYv/zuSGdL9dda+2izy8ntCR0QmPrfSKfoHfe0id+nj/pPAh5I17HQSbZDxGrDqq0NyTM93H2kyVcwGAUvHQuclawDWR9kY7GdJ9kSipQicv5oMWXKOBdlWx9tChgZjrAgp7r7q3HfckgHGuMlMpyaZ5FGaZT/xhL70Qso4PIYxEif6VIror2yJ5qP5yAb23Foz97T3UdMhtdulMlUGmDsSVhi8r2ElLuT0STcEUVVvYkAPicg8GJ/ZGTInIMLoqjMbdAB9/WGnEknZ0pqS0NOQ05Ly8nJ3BUp3y8gA8ZMyPjWHaX2uxQBoS5F7IAXI2Dh0Br1rgis7CUGin3QIWdj4EmULrdr/NY2accoFO25er2HlaQ9ZyAw6rTIEfU8Mp49GUaA7khxyhjwdvQCaYZzxqxelL7RbiiafzUU1f1vxHDzUu75xb1ASq+cnPVRnxky/FzswcBgTR0Dx7j7+XG9Ilg5kdHZ3Z9LDoe90eF0VsQS+yoykhyI0tc9ixiU2qMI/LOB/u5+Ya325OS2RQCopdF4PjAMDHsgh9SG7v5gGBo7IYYUBz7MG/lqyMm3503kbATNk/URG+I/EGh/MDJ+PhbPFzpYtoScMC4MQYa+L4Gv0EH8STQG+yCQ8bsxvschNqVPaskoMw56oUPEHIhZ8nZ3P9TkILkUzeE8IPsoFO3+FppnExgwysydQch43ifasxU6xLyAALNfx70boW//Zrm6cjLya87eyEA2AH2LLVC09xXZ2pKvK2ccqqffmmX+1JAzBu0V+yOnx9UIANoVjYHtM/keLN/l+s5kxL4O+Le79zYZ5JdA69gQtJ88Z2IdyNhbVkbBLAe4+8W571su+KPZZVSQ0xMxML2GGN9WdPe3TawISyNmwJeTA/Vgr5OtIJGdHwOvIaPvvshI+ggaf7MjlpOTkYO6LlaBKUFOhb30Q7Q2ZkDo3ZCzblPkoFk9/t9lYoyPZtYXOZ+mQ3rOvGgv2t/lWMscUQ8gZswPKr1zDTnNsie0xFrQknJyMlM9dDoUqNIWGbMWjX4bjViNOqJ96ESPtKJFS3PKqbGX/gu4y90PjnsfRXr2uvzx7zM55FTTDa7yBMhjAoXvixwgL7r7NqnclpCDzhNPJPduihgzNwL28RIb2/KI7a4LYrQYVa5/qszRldz9+aQtc3gpgCy7ticCB+3g7n+zkvNtejSvvvEk+0e50lJyysjthQzOMyP9/FZ33z53z8IIENkFgWVuqXUeachpyPmDMtZEgIVbi5wPJ4ecRFa6to109yPNbAg6p9zDpNHdJoecz9A3HmjKiHEJsonszx87/za7jLgvr7e9jc7c/0I2uF3RvnO5K2tT/vn/VTl90Jl2DOr3eeJ6/oy1LmL03MMLBvA35PwxOVbMdtTZFUTfEQEoO3owddaoe2LslE0AzOXqqiCriU3TzKb1BAxWTYYpe+D9XgNYM5HtGW93LdqeOuSshLLbbYpAuZ8gkNldHqzok6g9zSnnQi9DChM6aDdEVnCIVyA/qKJn90Eg+3OA0S7GaMzsJLQ/v4D0+n8VXcdy9afA5fORDWlkpi+byFVOBDb1EkDpJBRA8SlwTq3xVkHOMuhcc5GZnYDOM08ikPF4cHncvwHwgSsD6B+V0w8BQff2GiD2ArL6ILDtOcCj2beJ3zZDBAs7ovP1VOg7XZyf4wXkFLXn3I/G2Ae554vub7ugdXIaZOtYKOT0Q3aCu9D4uBMFM+0JHOmlwJNaa1vW1x3Q+DkHgbHfQMQAr1tTkHQ/LwO2nATtKddv/VNZ/8/encfJVZX5H/9Wr0lnhewBImE7BARBg4qgtDqKMIICioiMQVaVccGRn2yyiSiKICgiiJG4weigMOqIzEKPyogiA4rCHLYIJGQlS3cn3enuqvr98dzqrq70UuutqtOf9+vVr6Srq+5z761bp+4957nPcXbzRofs+L5khGWPdy2fOQ/9oqwS929kfS+NsvO4z8uuVx8ocJtao/XaES3vT9HyPiwbW8hNkn6nbBzw3LHO4zPX2dH/m2Sz4/xS0ipZknJv9LdFsvPOk2Tfrz/KfD9l9kn0/4TsWPm9bKzk9ujx13nvf591jX6cLMn7e97Gx+ZF++ty2Y3mZ3vvN0ff2f8gK8L1bh8lRo6zr7Lbgk/KjrlXyJKwfxXFOT9ax2O8VcleLPvOO1aWqDlutf/MPouO7TbZ+eZ02TnInbJ+ty/Ixk8/KSu0kZ2QPUVW0Tidz3HgnHur7GaY10VxbvBDRSIy+7VZ1od0muw66CY/xg0mo2zLFFnl0//03t/t7Aad22Wf/WV+53Hfg2XjzZcXcs3obCxvQHbedo73/rvOkrsflPVRn+EtSf7KaF1+nccyYxmXjzHOFJ81FhAdZwfKzisOVzSDnh+6ESPTLmUXJfiK9/6CrL9lqsOPeeNe1nZ9XdJ13vvPRPG/Ift++6TsZtdMsnzRycoFxin4Ozsn1kOyKvNHRPsjk6B9p6ya+U43TpWybUAtczam/KhstrUz/ND4ZHa7tVB2nf0eSe/y3t/vnHOysaQO7/37qrP2qAaSscskOtn6i2yweZmkddGJ3GTZlEDnyJJ89pTdVbxD0r/JLl6OkE1Nc5CiinvEKV+ckLaFOMSJO05OzMNl0wVdI7tLeJ2z6m8dsmSGpVHn6mWyQYMe2YXLNeMst0l2kXC97E7XB2UXwBfKpqi8QlY94DrZ3ZbpqJNiiqR/lrRBVtmi0AHit8jujL9Udnfws87u7DxXVuH7A96mL808/1RJvd77nxQY5/2yxL5LJN3ns5L3nN0pfYds2ridLsyj5+TbqXm67L1/TJbs/SFZdZubvE0zmRkYuEiWWH659/4reSz3NNk0YedGnaBvl91J/DVZ4vpcWSfWVFnnxhGyzoQF0XZ1R+vwhUK2J3ruPFnFlaWyAcLJ0fr/Lvr3cNmd8KtGeG2+Vc5G2p5zZBf5mQ7Ui2XH6DZF05uNd1zHFWek/Rl9Lm+XVY5YJJtK60FZovrbZInQF/qcagVjvTcjHAdvlVXl+KYsmfhE2YDTf3nv3++GkqFOlHVkrcjq3LxY9rm+1EdTkI8SM/PZuVT22flr9HhDtJ9ukB3vV8oS8b8j6yTeacArZ7kjtTnLZcmjX5MNDn1T1sm9LNqmgtqXrFixfH7yjHOWbBDio7IpkS6UHWdPyz5LV3jvv5jHNv00ev4tsg7fzPTsf5QNqH0i5/lLZVWEl3nvf5rHboslxihxTpVV8P2rrJNuf1lV9uO8VcRukX0fvV/Wyf14nnHGaws+LLsh6AJZIvE7ZZ3enbIBzxXe+69Gry+lbaurODkxs79Lf+Vt4Cl3QPbtssTJD8k+x+d5728p8HvnWNm5zmdk1V58FPMsDVX1/4uzqjfflw0Svct7353HsuP4ToilLYizzcmKOdJ56FGy9+kR2bnNadHPfNl58r0+mtq8gGOtYnHy/C49QtYxd4qzRKkvy6o4lfL+VDPOWOcGy/3QQOVC2cDnXO/95dn7Mo44svP/62WDzhtkx6qXnV/8n2zmhcEBOWdVX66VVW77B2/TnI8ra1vO8t4vd1YB7HrZ4O3XJD3vbWB1P9mA1Le89xdF1z6ZaUIHK+bkcV5Q0Ti5f4uuBe+WDcr8TdYe7y67OferOa/bR9aOLs98fsbZd8SZ4HFC2pZRYr1F9l2a3bYdJeke7/1ZziqrflD23VrKuVs147xRlvh4mrOZB66XnecXdf1bqRgjxBntvG2hLLnm17LvhPfKvncGB78neJy3yvrcPi67rv2+LDnoPbKkmOO9VXZui+IeLfveWkmc8scZ6bvcjd939KSs76jbDU/Uqmo/Zdbys9fps7Lzsn1lSWk3+yjJ0uWRJJ1nvEK35wrv/XUVivMaWSW2w2Uz9nwy6/WFJF/WRJzoeUfLbkg+Q9L1Po+E75w4r5V9dr4i6Rs+58Zs59znZQnZD8kSV1cXsvycZf1IVkH3Ykm/yzrWLpLtrzfIZr6aJism8ifZGEmhVS+z4/zBD81ulLlhIju5fMSZBysQp5gk9hHfm9xlOSu2cqasQMYU2TVYIYnYxfTnvNvnWc03J85PZX0c/yXrv7ksiuM1lAx+pey6e6Ns1qaCZlp1lvDze1nCzxTZ+N7bo/X+mPf+z86SpG+TJRjuVCygTNszZj+Yc+4dssT2t2Wvf/T/fK7lj5LdyHi2c+7Tsu+/3WWV1xOyZL+rx9mGN0la7L1fkfXYodF++bj3/geZdZOd71wv66v8R1kyeHfO8kYs8JN7nR09NkX2ec/M4pr93XSI7NjPjGndlR0rZ1857y2hOSvO2d6qZDfIjuE9ZP3S/xxdz2fO4T4r+872krbIzhnGHZcdYR3uln2XvigrErO/rI/odlm/7vmyY2Cq7Bg/QHbzSV7jy1kxM8f2dFk72SS75vikhvpDT1dOUulI6zzGtvydLJn8dNm++Vm0TR/20fiuG56Q/S+ya4i8bkZ3Q1WVp8k+E9ujfy+SzRD5etm+2ixL2Ht0lOWMdqy9TVZkJNNv9UtZQbFTZd+nf5Alrj8kuyHjTO99l3PuQFlbe69sDGWsCuKxjMvHGKdNduPAnt7786PPzfOyNufbsnORo6J1+Vnuea2z4g1HS/qXkd6TfETfY1+VnQfc6S1ROnsWv/OVc5NBLcQZ5Tohc7PBR2VtzHlZn52PyG5G/xdZcZK8xsiAeuZsxorvysaGD/PePzLGcw+WXe/0yYrdvOyc+6bs8/kK7/3WONYZ1UcydplkffF8xXt/QfRYZiqUk2Unq6+XdTgcIKvyeIjs7tznZHet3ezHuWOZOIXHCWlbiEOcuOPkxDxTVr31eD80VeTPZQmLp/mhO8LnyJLAm7z3v4seG29KybmyC4SPyS6KP+GHKjfPlZ3UL5advFwoGyR4g6zj5qPZHS0FbM9lso6JoxUls0ePv1828PRbWadTX+7FVwEdzpk7yH8s6fN+qEpFu6wzaZUskec22cDgssx+LHBb3ikbPPmS9/7Lzu6I/rPswv8BSRf5obvtXye7UL/L5zcYvUB2p+sJss7EDdH/L/BDd/MvkFWunifrOG+UVdDqlO3bTCf+eMfBTp0PzpJHbpMlPb1W0nGyTqU1kvZT1JlbTIdztN4HyTr+Pp3VibhA0vdkCTlv9Fb94xjZsbnJR3eVF3AcVDxOdHL/kvd+Y/T71bLjd2/ZlHjvkVViaJAdd8u897/Pb0/tdBycJqtMe5JsIKvb2d3jF0Yx/9NbcleLpBWywe+DJT2R9Tk7zo+RuDTOZycpaatsn35JQ1Mr5zWwHi1n1DYn+vsSWSfNK2SddkUlZMf1+SkgzvdlU4a9RTYg8G5Z1YlfZNrR8To0o07G/5NVUfu6rH3Z4Zy7RnYMXOKHksdbZAMpF8uqmD+Uu9y4Y+QZ50pZ4oEkHeKtQvZUWULC9VH8ggdwx2kLso+BPtlA+1pZZYino+eVo82pxzijtQdHyT6/z2XOS6LHd5V0n6SN3vtjx1t+1usaZO/vUZLelmlPo799SkOd3B/1lgz+QUlTfFTVo4A4FftOiKMtiDNOTszRzkP3lVVJ+t/M8mQDOqmsdcl7wLiScQr4Lj072kfLnHMnyKrFNOa732owzqjnBj6rgoobXkUie8rfiseJzgvmeav6tdh7v9JZJa3/kB27l8qmJM2usn2wbODozZL28nkMfOdsy6mKpg6Ofh+QVSb9gmwQ77xou97o85gtpxpxcmLOl+Rkg9qXeRsc3k022DZXVoXqxpzXTPfedxKHOIXECWlbcmLtLbtmy23bzpUlSp/hbID4jbJkhWLOqWohztmy6Z/fHz33nbIEjEKvfyseI3reeOdt+8i+JzbLKka+XznfO/kINM4S2ftzgayy/LdkybA9smusVc4qfp4iu66/2EfVIIlTuTiuwn1HWXEq1k8ZvSY74erHsj7v+2Sz89wg6S7ZuVtukvS7FSUF1tL2lBDnYtn7dqn3/mu5+6YO4nzGe/9I1H5fLGt/7vBDlWELuY47Q3aT/dHZ57RueNXoy2R9gf8ru94rZiatc2VJSR+Q9JvoWiJzTbGLLMEwKbvRf66sL+S1voAxmDHiZF/HXCNLlH5IVk33xUK3Ja44o703ozy3UZaM/S1Z+/OLPGPE1Z/TIGtjjpBVdH05qy3KjrPMe/83Z4Vm2nx0w0wB5x+NsnPO3WVt8irvfb9z7jOyvuxnom15wtlY4F2yz9mFZd6ea2THdPZ+m+pH6RPN3b4CruXPld3k/iHn3OxoXZKS1njvO0ZadlaMZkWzz3rvP5L1+FtkY6DHe5vNKjN2mpDdfPQLWQLtJ7xVGM7n/DN7e87w3t8RPf6QpB4/cmXfn8iuJ5pkNxg8nrPMkWaNzI6TSchulRUo2kN2w8GdfniF7PMkZfbdDu/9b8fabyNs2yWyY+sESY9H7885siTZNlnhjcWyKvZTZX0JP/JZ/bHjLD+7Lf6e7Nj+tOx640DZDQAHyG5Ae0iWaHqyLFH3Ru/9jnziRMvPnE+9V/Z9tsXZrDl/kJ3jfsZ7f0/03Ez7XUzF4MmS/ls2hvMR2U3vfVl/P1JWWGSbrGp6vkXRWmQ3JVwluyl4lqRDZeflv5f0RVlf7FRZ/93J0etmyQotHCo77sdtr11M4/JxxInej89Er79bdiPZM4qq1zrnDpB9t+wp+157wI9yo6HLY8Zlt/PsLM1RO50ZZzpSNmNwpnL1LbL273JZbsZOsw/lo5JxnHP7y2bX6M16bK7ss/Mb7/0/ZD3+j7IZfY/x3v+qmG0B6kn0PXyibIaxTbIb+ka9udM59xXZuPWB3sb53iBprff+uVhWGDWBZOwyiS60L5R1lF0h6Wo/NHj4HdkA9Kt91vRb0WtmyqqrNPk8EsmIU3ickLaFOMSJO05OzBtliW4Lo99zp8d8g+wk/2rv/eas1+V7wX+KbPAnKbuQ/2DW33aTTbPzVlkSz6bo3xt8gZUyspb5PVnSwZ7R79mdJDfIEjAX+2h69iJj7CerKHCOrBLdHrLqQ6+Tdcg+IqsYOVmWVPwR7/2dBcaYKes06/Lefzy6qHxI1gn179G//ylLYPt99Jq53vv1BcSYJ0v+P1E2be1PvPcfz3nOQbLOh+/n/i36e77HwRTZPvlZpoPWOXe7bDD4kOjnJNmd8Q2yGw7e7EeYim+cOG+QJdxvkB1vHxthex6I/vbREran4nGcVWF7StYJ9n0fDSo5534le7/OkR1j75BdIM+VdIL3/t7x1j8nTvZx8LxsKr9LszqtspOh7vfefyC6QDnKe39/tIzcTorROlLH++z8XnYMvCxr71Z67/89330WPW/ENidre5bIOswWRuvxH764hOxYPj8FxvmOH5qWL7vyZT5x3ikbEHhZVpHhA977Pzjn9pINnp0ha3uekSX1fVB2h/wXxlpu3DFGiXOatykg95UdXx+WJQCvlnV8Hi+b/u2a6PWFVFzOpy34b9nn6mMjvD7fhNWg4kTPHa09eK0s4fsx2eDEI1kdkqfLOh8P9QUkFzrnfii7s33f6Pfsz8cdssGjP8iqED2S9bpy7rdSvxPiagtiiZO1rHzPQ6/JOf8taECl0nEK+C49R9K/eu8/FL1ukh+q7lzo+1MLcUY9N8hHjHFeL6sU/THv/c3OBsF+LxsIulDSd33WIKCzaoG7F3JOlbMtJ3vv/yU6/z1Pdk7zJtk1Qr/sprDPe6tuXegU3bHEiWJl2rY1km733l/uhipF7S4bCJsnu4HyayO8vtA2lDgTNE5I2zJCrJdkCWijtdW/lFXiz61YVeg21UKcs2R9FO8fIU4+3z0Vj5ETZ7zztju99x9zliD+Su/9f4y37AkU54fe+/Ojx/9eNnA5X5YoslaWLHKurApeQddYxCk8jouv76ji/ZRZsa6VJVgv894/5Jw7X1YRsk+2Py/yQ0nF58j6vAAAIABJREFUh8uSgK703qqP1tL2FBlnqeymwXZZgYJx+0RqMM6V3q7lZ0qa6YeqTBdUgTm6jjvVez9npNc75/b13j/tnPuCpGd9gTdLZC3nZtkMjm/2w2/UzFSQfKXss7pYdh7xMV/gDS3jxMm+nr5ENi70I0kfLPQcPq44ebw3h/isJEVn40CPy46NG3da4OhxKtqfk/X8O2Xjbm6EOMtlY0oPSDrfW/XqTEGIQs4P58pmo73He39x9j5zzl0oS5L+jaxq9ePOKk7/2hdXrCbf7fmYHz7jayX6QEY7Dx3vxvdp3qoCT5H0Vu/9vzrnpssqIv/aD92gl0nInhZtU1LSq2THTb6zH86TJUCepKGK36fK2rRhCfHROnxbNmPxkz6PAiKjxPmw9/42Z30cD8tm1MxOyJ4vS8i+RFY1e1m0jFafRxKzs+T/f5aNt54oKZ11vH1Q1qbd5b3/hMvqMyqUs0Inb5aN8z3qs8ZBo2P+x7LzndfICll9V9IusvapmP73H3qrkJy5jttL9j20RVZMYqfzmwI/p++TnaOd5L3/c/TYEbL+lrTsGGuQHQNt0XbkdWNO9Lm4VDY+0SOrkp2JMV92A8ZrZLMuXy7r3zlJVsjqjfkez9HyYhmXjyOOsxsWr5eN6bwku5Ex++ac7AJMwxKyi+Wce7UfKtyRGZeYKzuXbpdVqL7YWbL4D2VJ5vv7rByKWojjbDaBR2SVy/9NVrAuEX12zo3iHO+zEq+dcwcVcqwB9S76Hj5GNja5TpaQvSrnOZnP5zGyvJ83ZK5HMfE0VHsFQhF9mX1e9iV/hewkSc7utj5FlkTysnOuwdndppnX/C06sctrygviFB4npG0hDnHijpPjcUnNzrl2Z4kpB8mmJPtTdCH9TllHQEvOuubbcfqw7C6x2yQd55wbvNvV291lH4xiXCG7K/h9mQuxzDYW6AlJ85xzx0Ux+p3dSS/ZVK1tskripeiWVU08S1YJ5D9k1WbOk10gvUZWreHXkpb4AhOxs2LcJ+kHzioH3CubcvZC2UXTj2X77VJnAw/y0YCAi6YiH4/3fp1s2rbvyyrIzs+8Puv4elzSX2WVlEZaRr7HwTGyC70V0fEsWfLl87Lj/GHv/adl1VafkrReVq2nUM/J7rieIhtIH2l7npTdKV3K9lQ8jrcKBO2yTqqLnXO/cHa3/09kn8mjvPed3vsfRc87eqTOpjzirJMduz+QVTqdk/mbs0GHrbI78zOf4V9473f4oUTshtzOjTG2b7zPzuskvd17/4z3/jZfYCJ2ZMQ2xw9VQ3hSNn3qatlUdgvzXO4wcX1+CoxzQNbrMh3siTz33ZOySqPvktQra3te7+2O3s/K9tkCWeffPrLBh0wV63zb6jhijBTn+1GcpyV9TlaNY6Gssk6vrBJDZrC7Id/O2Ug+bcFfZcf5TgqIFVocafT24B9l782rJB0bLTcz8NQqq6Cf9+Bt5H8lzXGW9CBvgzSZc4NnZIn7eymnzS7zfiv1OyGWtiDGNicj3/PQppz1LPTu84rGKeC79JuSTnI2FalkCSWFvj+1FGfUc4PxYsQZR3bT6r9J+ppz7pzoeH297Fzzi5I+GHW8Ztbrkcw5VRHb8lNJP3LOne2tKt+XvffvkH33/FE2q8hiSeeNdA5VK3Eiz8mSU2fKErckKR11QK+SDQq+JDtP/cwI61pIG0qciR0npG3JjbWLxm6r3ylrn4qNVUtxbpMle44UJ59zgzhiZOLkc962T/T7Wh8lLhd4TRJynNmZB71VN/2UpHtkCUTXyc4Rzy/yGos4BcaJq+9IMfRTRs99hex4vc5bIvY/yfoTT5JVwzxS0iXOKjvL2+yNZ3iffyJ2nNtTZJw/yvrI/6JRriHrIM5VzrnXeu+3+KFE7EKvFSWb9Wy6sxl/Bvv2ouXNkXSlc+7d3vuL/FDl7ULen8zzM23k9uxl+KEKmrt574+RnWP/vS8uEXusOJnrtbd7Gxe5VJa0XEwidixxNP578ynn3GlZ8RfJrkvzroQbqXR/Tnacuc65TD9UdpynZDfNvELSx51zUzPLLzDOdlki4rzotSnnXFP0/y/KkjwPlHSdsxsN/tPb2FbTqEssbXv2lL1P0zIvqlAfyGjnoWO2B94SsROypNR7nHNneput5npJJzu7CWPwuJb1I3bJZkx4QdI/Oeea8mkT/FBf2N2SbnXOnea9/6FspuJPOee+6Zxb4KzC7Imy/oQXfJSIXWC/QSbON6P+iR2SDpPd6HGtpPc7S45eKzv3vVrSKc4S7OXzrybdKCt8Mc17n8w53r4ru3Hm+OhaqNhE7Mz7c6+sQnJP9HhjFGe9bLx7D0nv8TYD3ZmS3uKjmxnyDDXS+VTaWSL+c7L3Y6qkG51VlR+mwM/pfNlNbFucc3s75y6XFRM5Vfadeb2kZ2VVsx+K1i0v0edCsu/ShOxcMPO3tVGMe2SFY9bIbkRbpAITsSNxjctXPE50fM6SjSVPk+0XRcvIjPedGf19uaRjCtyGYZzdHPNHZ7M7D+YYRMfzJ2Tv/4XOuau99z2y6uaH+sITseOI42VjbdtlM0Y+IemTzrm9ZZ/bFyW9zTnX6KxwhWTnhcXmZwB1J/pe/TfZDb7zZOccu+c8JzM++XZJT0v6U6wriZpCZewyc3an42WyE6P/kfRqSad773/kipjmhDjlixPSthCHOHHHiWLtLbtgapMlwP69tzvvW2XJbNdKutDnOTXRGHHmyO7iXiar1Lcs629HyO4i35T1WEGVMrJet2+0PY/IKqVkpq5skXUMHC/p76KOj1K2562y6pxPSXrCe///oscnye7S/qH3/vpStsdFd7k75z4g23fv8VGlAufcZ2XJFvsoqopXwrYskF3AnqKoYmDW3ybJLsq2yY6HgWKPP2dVUD8nu6P7OVlH/XGyhKhPRRfNcs4tlE3rknLFVfGbL+sUqfT2xBnnXbIp3hKyO6CXyaaQOm2E5xf72Vkg2573KWt6VzdUBWampCsl/dUXOCVrTpzxPjs/8N7fUOzys+KM1ea0y25ebPPe/7zEOHF9fmKJEy1vqawCwyTZTUCZqklTZUmwjVHnaSnHW8VjjBOnVVaxIZnZVyVsS4htTsXjRMvLuz1wVj3mHkkbvffHFRhnb1kV3D9p+LlBs6wjeK2k/yqiYzs7RlzvT1BtToznoXHFyfe79C++wGnUazxOqecGFY/jrLLMzdq5AtUfZINtl8sqsRY1CJkVJ7vS1Vne++U5f18gG7T7sGxbf1rjcebLqh/mvjeZiiB7yKogXuu9/04xMYhDnNC2JY9Y5W6rg4kT87bkc952iqT+GM6r6ylO5v35qPf+m1l/S8hudFAUozt6vJi+MOIUH6eifUcuhn5KZ/23x8quB18lqxL5GUkrZNf1P5UVcvitpE947x8tJk5c21NKHOfcnn54IvN4VdJrOk4xouu4P0p6VHYtn+nTmSRr066Undv/cvSl5BUnM+X4e31UGCLrb6+UXRt/xRcwO0+Rca6XdJX3/re1HifP9+YcH1XbdJagt5/3/vAi4lS0PycnzmOSLs6Jc4WsH2G+LAH5AJ9TMTHPGC2y5OXXyKqR/zZ6vEFWCOnfZUUjDpR0m/f+inw+k9Xanmh5Fe+biGLcIOlkWd/unW6ouvePZd8TM2Szsq713h/vnPu9pFXe+5MKjJVd8fu9suqXV8gqGQ/IZqCaJJvF4upiticrzmgVsufIxoa/761C9izZtf1Vsqrp38gzRqMsGf5EWVvwX9HjmffmBtlNjof4/BO8R4qzm4aKn9zkh2bQy1RJ311288bl3vvsJNpCZ0oY8XzKDVVG3zuKc6a3ZPNit+dg2WfnRdn7PVfS/5PNIvBKSb+TVWp/IOs1eY9hOrvpbIGsnRxp3KpNdm64l6x9e9kXmOSbEy+ucfmKxone/xmyz8JOMaLnHCg7X1zrvX9noduQtZz9JH1LUdEY7/090eOZ858jZTeitUq60Xt/2ehLq36caJm7SNpPdk59eLTMT8uOw0MkLfUFzlINhCbrOnTECtnOOSfpRkl/lrV3JY2Non6RjF0Bzu4OvUTSxyX9stCTeOJULk5I20Ic4sQdJ4r1FlmC0/OyzsU1sqqUH5P0BV/gNJxjxJkrq4a8TNaR8U+yKYrulFUxuaOEzciOc7Ssc97LBh/+V3aBcbGs0y7vqfDGiTNFUm/mQjv6/d2yijYf8t7fV6Y4n5J1wLzBe/9EFOdLsqqUP/TebylDjOwOoM/KOrEaZMfBzbJOoZIGo6M4u8imUrpC1rHUIbs7+hve+3/MeW4pCZhxbU9ccRKyu/tvlrS/rMNmN1nVpLIcz1Gc7O05xw9Vlcl00mVPaVh0ezDOZ+d0nzUtVilGaXP+TtbxfWamzSnlWIteH+LxtlRWrbhVNuXnH7Per0xnainHQMVj5BmnXDcHhnYMxBInipXXd6mzqltv89FsE4W+d865N0v6uaxj/k5Zx/obZW3EGd4qxfHdU504cZ2HxhUnru9S4pQWI3vA8zFJTtJB3vu/FrP+Y8Q5M/M5yRokbJNV0fiJ9/5jdRYn+73JJK9O8VaduyTEIU5I25JHrLprQ+OKU6VtCeF8qhpxdnp/ov+X43qROMXFiavvqKL9lFmf92slHSG7kXJr9LfvyBII95fU7r1/vpRY0TIr3u9aSJzcY6CIa9+ailMq59zbZddxz8iqyT4p61s+S9LV3ioKlxrjANlNmg9Jusx7/z/R4/NkVV0Pl83kt5o4w+IU9d4U2u8SR39OTpwnZWNKf4jiXCpLzH1RlhT+dz5KbC0ixgHR+j8kS4j/TfT4vpK+Ieuf+Kys0u8SP1T1uSa3J4oT1/nhYJK09/5u59z5smJWC2Wz6D0qS6Jqk1V9/k9Z4mG6wLZtnuy9OEHSKd4KZC2R7bONklb66AaQUo65Mfon/iS7oeVgP3Sjy1xJh/sCZ7ZwdvPF72UFvy7zNpuEnHO7ymbE2xFtY9HJ2NHy5kv6qixh/jzv/S1Zf3u9bKz2Mu/9typ0PpXpA5nurXp6SZzNvnG6rELwr70Vc2iUVUS9XtKpvoSbwaIYIyYvO7uh5WxJd3nvN5QSIytWXOPyFY8zxn6bJzsn+bakx0r5LoiWt5dsPGk/SR/xUaJ09LezZFWqn5f1Jz9d63FyYr5ZVq38Q5LSspmpTsyODUxU0ffwMRpKyH6X9361syKaX9HQTFN5z4qA8JCMXSHO7uK8SNIFkq7w3l9FnNqIE9K2EIc4cceJYr1e1skwS3by/UdJP85cOJfamZUVZ66sE+TDkjplU0t92Xv/uVKXnRPncNldpXvJpuR6XtKtPrr7upSL/lHivU7SayVdI+nz5egIzlr2/rLOsu/Lkpd3lU1Pdp73/p+j55T8/kQXrDfJOpbWyjp+5siOg2uj55SzAvx1sio3b5JN0ff3vsRKJjnLz96e9bIOudmyhJQvRM8peXviipMV7yRJR8s6tgc7ncolp1NrsNJiuT8zWfEq9tmJlj9Sm3NdudvTuD4/McbJJDF/S1aN4TRfYmWeasSIOU5QbU7cbVu0vBHbgxEGiYut0nGorFN2H9ngzCZZdatry7H+UYxqvD8htDlxnYfGFSeW71LilBzjHO/97dFg14nepiEui5w4H/JR1XUXVUxyzt0lOyd5n4+mD6+jOMPeG8mm/S1jm0OcCRwnpG3JJ1a9taFxxYl5W4I5r445zqizM5QLcUqOV7G+oxj7KW+T3VBwlPd+rbPqm7fJ9uO/+yiRvVQxbg9xio/1elki5j6yqrR/lrTCe//1csVxzh0jSyheJ+k/JHXJqkUeIunN3vuyTEceYJxx3xtJyrw/xX4PxdGfkxVnuaxS6ZQozpe89192zn1YlgR4tI+SZIuM8XbZe/OypN9I2iBL/Onx3r/aOfcFWdLxq33pNztWfHuiOHGdH2aSpDMVsqdKOlR2nD8tOwZvkfT3shtFikpedMOTv0dMIi1TuzNa/8RJ3vsfjPKaQm9mOFbSv0haLUvOXy0bjztKto9KviE9ipO9LTfJEsAnySoZt0o6zBc4A24ecbKPtQZFiffl+u7JitksS5b9hqTtsnHMco2VXyxL/L5P0hdkFd7PkrR/scfvGLHiGJeveJyc/faApFtls93Nlu23ZJk+n3vJZlzdT3Zuc3d0/H1O0rOyMcZyHNNxxRm2T5xzr5HNJP6cL3GmSCAkbueE7A9I+oRsBogjy3UOjfpFMnYFObvz4TLZHZeXl/tEhTi1HYM4xAk1TlasNkmTJW3yQ1VHyn3xuoukt8imXHvCR1MWViDOrrIqMG2y6Zyeq1CcvWQdz7vKKjzfVO44zu5WvUfWcdEl62wsa9JqFGe+7KJ/maQvyyo0bIv+Vq4O9MFOOGdTLb1bVjXjjeW4qMyJNV9WleV9sqmmL8v6Wznfn4rHydlvLZL2LVdn2Qix5smm2zlZOdMclzlOxT870fLianMq/vmJOU5C0mGyAYJLfAlT/FUzRsxxgmlz4owTLS/O9mCurJray977v5Q7TszvT0htTlznoXHFieu7lDilxfhkpr2J/lbOYzo7TvY0uvvIZvD5ivf+/9VpnLo+BohT23FC2pa4Y4UUJ8ZtCeq8OsY4wRxrocWJq+8ojn5K59whsuqxP5b0uKSDZdXI3ui9X1nmWHH1uxKn+FjTJU2TXcdt8d5vjB4vZ9v2aklXSTpAUq/sZuSrvPdPlmP5Acep+HsTLa/i/TnR8naN4iyU9Iz3/gXn3GGSfiK7EeSMMsQ4QFah+tWSBmRt3AclJWUVnbfKKhb3liFWxbcnihPX+WEmSfps7/23s/52tKTzZP2/x3jvHytDrMz2DKv2XE5x9E9ESZdflrUFPbJq9udnPkPlkrUt75GUkHSt7Ng7z3u/w0U3jZcxThzXcbNkCeVHy/oSX+et4ns5i5f9UxRjQPb+vNOXWHl7lFhxjZFVPI6zCtnny6qIN0p6QnajUX+5jrMozl6yGzzeJrvRtUHSKyS9qZyfn7jijBA3e+aCsh4HQD2LrqOPlVXDXiy7EeeNlWibUX9Ixq6w6OLyElm12gu9918iTm3ECWlbiEOcuOOMErsi1XBHiBPLiX4ltsfZFFWvkdTkh6b9K/v2OOcWySp97/BDU4pVIs5CSbfLOuNuiB4rdwWqEafCdFlTtJYx1gLZNGnv1VCFgUrst1jijBC3IjGiQdzvSPqV9/6r5V5+FCOWz84osSu13yr++Yk5TkLSHO/9+nIuN+4YMccJqs2JMU5Q7UGM+y2oNmeEuHGdh1Zq9oeKf5cSp6QYd0i6L4ZtGYwTfRcdKekfvPfnRM8pR5XSOOMEcQwQp7bjhLQtcccKKU6M2xLaeXVccYI51kKMM0LcuuyndM4dJZvevkVWzfODvkLVyGLsdyVO+WJX4tq3RTaDY0rSgPe+v5zLDzXOCHGDGFOKEv4+I6se+hfv/YnR4+W4tmqWvTeN3vsuZ0nTX5EVrjnCl1itepSYFdueaDlxnB9mzwTyTu/9v0WPHycr+HOH996XKVZV+g0qFKNNdtOEJHX7EquujxFnvqQvym4uON1HBVGykz7LGCeO87a3S7pC0lOyStwD5R7DdM7NkCUuL5b0W+/98+Vadh6x67nvfZqk3STtLukBbxWxKzG+PFd2o+s7ZDNwf82X+aamOOMAyE90Dn2ipHMlfcJ7/+cqrxJqBMnYMYhOjj4t6c5KXBQRp7ZjEIc4ocZB6ULobHTOtfkSpjIvMmbF9ltOJ92wCgP1GCcucR8HcX12Ki2u/Rbi+1PviZdZyw+qzalG2xZCexDj+xNkmxOK0N6fkOJUa1uyz+HLeT5frTiVQhzihLQtcccKKU6M2xLUeTXnocSphkr1UzqrSjldUpePKu7GoZ4TlCZCHCAuzrkrJLV67y+Kfq9EUuHRkq6WNEvSCZW66SSKdYUquD0xnR8ukFXBviI78bLcCb/RMjk3KFCUKP11jVDBvMxx4jjWErJk31XeikmVreoyyqvS741zrklSutLvf1xxAIzPOTdJUrP3vqva64LaQTJ2TELrwAgpTkjbQhzixB0HyAghGS4jGoz8oaS13vsP1HucOIV0HMQplMRiFCe0NifEti0Oce432pzaFtr7E1KckLaFOMQJMU5I2xJ3rJDixBQjqPNqzkOJAwAorwoXxzlb0n9575+txPJHiVnJ7Ynru7TslXBHicO5QQGi89Cvyir9LvPef6+Cseq+OBYAAKgPJGMDAADkcM5N9953hhIHQG0Lrc2hbSsO+w0AAKA+hHZezXkoAADlUamEz2ol34aS9IvaFVUw/4KkL3lmewYAAAEgGRsAAGAUVDIAEKfQ2hzatuKw3wAAAOpDaOfVnIcCAAAgbs65Ru99strrAQAAUA4kYwMAAAAAAAAAAAAAAAAAAABAERqqvQIAAAAAAAAAAAAAAAAAAAAAUI9IxgYAAAAAAAAAAAAAAAAAAACAIjRVewVK5Zx7j6SjJB0i6VWSpkn6gff+tKquGAAAAAAAAAAAAAAAAAAAAICg1X0ytqRLZUnY3ZJWSdq/uqsDAAAAAAAAAAAAAAAAAAAAYCJoqPYKlMH5kvaTNF3SR6q8LgAAAAAAAAAAAAAAAAAAAAAmiLqvjO29fyDzf+dcNVcFAAAAAAAAAAAAAAAAAAAAwAQSQmVsAAAAAAAAAAAAAAAAAAAAAIhd3VfGLrf29vZ0tdcBAACMr6Ojo9qrUFbt7e3VXgUAAAAAAAAAAACUgPGrwsW1zxiLA4rX0dGRqPY6IC8TNu8xnU4rnU4rlUoplUoN/n+0f8d7TjKZLHkZmeeUY33Kvc7JZFI9PT3avn27tm/fvtP/U6nUmPu7ublZt956qxYvXlzI2xR8O0IyNgAAAACMg85gAAAAAADKJ7Tr7NC2JyS8N4hTaMdbaNsTl9Den5CSyzmmi8N+A1AOGzZs0Oc+9zlt27at6ITjsf6eTk/YPPRRNTY2jvjT1NSkxsZGTZ48WZMnT9a0adM0d+5ctbW1afLkyWpra9vp/7m/T506VW1tbdXexJpDMjYAAAAAAAAAAAAAAAAAAADKrrm5WfPmzStbMnY5K1GHKplMKplMjvi3hoYGtba2avLkyZo0adKwf0f7f/a/iURCAwMDmj17tg466KCYt6x2JUK6K8A51y7pAUk/8N6fVswy2tvbw9khAAAELKQ78SXu9gYAAAAAAAAAAEB+QqpWHNK2AKHq6OhIVHsdkBfyHotQTGJ4Op1WMpksKOm7nAnk+azPWM9JJpPq7e1VT0/P4L89PT169NFHC95/X//613XggQfm89Tg2xEqYwMAgLpEhwmAONEZDAAAAABA+YR2nR3a9oSE9wZxCu14C217QhPacRAHjunisN8AhC6RSKixsbHaq1F1K1eu1BlnnDHu8w466CBNmzZNzc3N2m+//bRkyZIY1q4+UBk7B5WxAQCoDyF1/kh0MADFoi0AAAAAAAAAAEw0ISXIhrQtQKiojF03yHvEuDZu3Kj3vve9Rb/+1ltv1d57711MAnvw7QiVsQEAAADULTpPAQAAAACoP6ElXYW2PSHhvaltob0/bE9x+PzUtpAKonBMF4f9BmCiGxgY0ObNm5VMJpVKpQZ/Mr+n0+lR/1bq7+l0uqzLS6VSWrduXUn749xzzx32+4oVK7Ro0aKSlhmKuq+M7Zx7t6R3R7/Ol3S0pOck/SZ6bKP3/tP5Lo/K2ABCxAUSACAjpI7TOPEdhzjxOQUAAABQLVz/AgBQmtD69qiMDdS2GNuc4CvaBoK8xwq49NJL9eCDD1Z7NWrWT37yE+2yyy75PDX4diSEytiHSFqW89he0Y8kPS8p72RsAAgRF5YIEZ1ZQHE41oDax+cUAAAAAAAAqE+hVS4HUNtoc4DKO/3003XYYYeNWHE696fUCtbjxcjn+fnEKKcnnnhCRxxxRFmXWa/qPhnbe3+FpCuqvBoAAAAAAAAAAAAAAAAAAAAIxD777KN99tmn2qtRNul0WqlUavDf8ZK3e3p6dOONN+rpp5/W9u3bd1re9OnTq7AVtanuk7EBAAAA5I8714tDpWIAAAAAAAAAAAAAQD1LJBJqbGzM+/mdnZ3asGHDYCL2jBkzdOqpp+rQQw/VggULNHXq1Eqtat0hGRsAAACYQEgqLk5cSey8PwAAAAAAAAAAAACAuPztb3/T+vXr1d3dra6uLnV1dQ37/+zZs7V27VqlUilt3bpVt956q771rW+RiJ2DZGwAAABgAqEydm0L7f0huRwAAAAAAACjoQACAAAAUF0rV67UGWecUdBrUqmUvvSlL+nggw/W2Wefrebm5gqtXX0hGRsAAACYQBh4AAAAAAAAAFAL6KsEAAAAipdMJtXf3z/sZ2BgYMTH+vr6Rvxbf3+/li5dqjVr1mjLli3atm1bXrG99/Le681vfrOWLFlS4S2tDyRjAwAwCioy1Db2G1Cc0Covo7bRVgMAAAAAAAAAAABAfh577DGdf/75VYnd0NCgSZMmqbm5WdOnT9fMmTM1Y8YMzZgxQzNnzhz8ffr06WppadHs2bP1ile8oirrWosS6XS62utQa9ghAIJDIhRCFFpCKZ9TAAAAAAAATBShFcIIbXtCwnuDOIV2vIW2PXEJbfwKheOYLk5o+y00HR0diWqvA/JC3mMA4kjGbmlp0fTp0wcTqzP/nzJlitra2jR58mS1tbWpra1NLS0tamxsVFNTk+bMmaM99tij2LDBtyMkY+dob29nhwAAUAdC68yigwFAiEJrq+PCdwIAAAAAAACAiYJkX6D2kYxdN8h7nAAGBga0Y8eOwZ/e3l719fVp+/btevDBB7Vp0yZ1dXWps7Nz8N9t27aVLf7y5cu1ePHiYl4afDvSVO0VAAAAABAfkmMRJzq3AQAAAAAjCS3pKrTtCQnvDeJE32tx+PzUtpCOa74TisN+A4Da0tTUpKblMbb0AAAgAElEQVSmJk2ZMmXY4w8++KDuvvvuisZevHixduzYoU2bNmnmzJlqaGioaLx6Q2XsHFTGBgCgPoTU+SPRwQAUi07A2hZaWx0XjjcAAAAAAAAAY6FvHECcqIxdN8h7nMDS6bSeffZZbdu2bVjl7GJ++vr61NvbO/j7wMDAmLFbW1v1ve99T3PmzBnracG3IyRj5yAZGwAAAEAuOrYBAAAAAACA8qLPDYBEWwDUA5Kx6wZ5j6iI/v5+bd68WRs3btQLL7yga6+9dqfnrFixQosWLRprMcG3I03VXgEAAIBihFZtlQ4gAAAAAAAAAMBEQr84UDwSmAEAQFyam5s1d+5czZ07V1OmTBl8/LjjjtOZZ56pGTNmVHHtagfJ2AAAAAAwDjqcAQAAAAAAAAAAAAATSTKZVFdXl7Zs2aKtW7dq8+bNWrBggdasWaOf/exnestb3qJDDjmk2qtZE0jGBgAAACYQqsoDAAAAAAAAAIBaQT8/AADV19PTozvuuENr1qzR1q1bB5OvOzs7lU6nd3r+kiVLdPzxx+vggw+uwtrWJpKxAWACYJoqAECo+I4DAAAAAAAAMJHQJ1rbQiuIEgeOaQBAPUulUoM/yWRy2L+Z/2f/nu9joy0r378Vuoz169fr0UcfzXu7r7zySs2ZM6eCe7b+kIwNABMAF5YAAJSGDvTicA4CAAAAAPWF618AqH1x9bnxnQAprOMgpG0BAFTP1772Nf3sZz8bTG4eqWr0RNDQ0FDtVag5JGMDAAAAEwjJscWhMgcAAAAAYCLguhQAkMF3Qm0Lqc86pG0BQsXNDMCQww8/XI2NjUVVuS60ena+1a2rkRC+ceNGzZo1K/a4tYxkbAAAAAAYB520xaFzrjgcbwAAAAAAAEB9ok8UAICwLV26VEuXLo09bjqdHpaEnfvT19en/v7+YT8jPTbW49l/W7VqlZ566qlR12f33XePcevrA8nYAACgLpGoBhQntI5g2oLaxvsDAAAAAAAAlBdVhGtbXPsttL5+AABC8etf/1qXX355tVej4jZs2KApU6ZUezVqCsnYAACgLoXWyUSnJuIS2rFGWwAAAAAAQPmEdp0NACEi2RdxCuk4CGlbAAC1q7Ozs9qrUJLbbrtNM2fOVGNj4+BPQ0PDsP83NDRUezVrUiKdTld7HWpKe3s7OwQAAKAO0GlWHJJ9i0O1GcSJ9q12hfYZ5ViDFN5xHRo+p0BxaNsghdeGclwDAIBsIfVZh7QtQKg6OjoS1V4H5IW8xzqUSqU0MDCgZDKpZDKpe++9V7fffnvV1uf0009XW1ubmpqa1NjYqKamJjU1NSmRSKivr08DAwPq7+9Xf3+/5s+fr/b2diUSeTURwbcjVMYGAABAXaLTDECoaN8QF441oPbxOQWA4tGGAgCAagjthjAAAFBZDQ0NamlpGfz9He94h377299qy5Ytg1WoE4nEYDXq7N/H+jeZTGpgYGDwJ/N7T0+Ptm7dOur63HHHHQWt/5w5c/TKV76yqG0PDZWxc1AZGwCA+hBaZxYDhIgLnx0AAAAAAFBtoVXADG17QsJ7gziFdryFtj2hCamvn2O6trHfIFEZu46Q94hxPfPMMzr77LOLfn17e7t22WUXtbS0aM8999TRRx9NZewIydg5SMYGAKA+hNTJJNHBAAAAAAAAAGBscfSJ0k8JAKVh/KpwJPsCtY9k7LpB3iPy8vLLL6urq0s7duzQ9u3btW3bNnV3dw/+P/P7tm3btH79ej3xxBODrz3llFP0mte8RgsWLNC8efPU1NSUb9jg25G89wQAAEAtocMEQJzoDAYAAAAAANVGvwEAAAAAoFSzZs3SrFmzxn3eypUr9eyzzw5Lxr7rrrt01113Df7+7W9/W3vttVdF1rPekIwNAADqEpUFgOLw2QEAAAAAAAAAoDLi6rMOra8/JBR3AQCEYN26dTrjjDPGfM6rXvUqzZ07N6Y1qn0kYwMAAAATCJ1zxWG/AQAAAAAAAADGQ5I0GE8AAIRg7ty5+vjHP67f/e532rFjh/r6+rRp0yZt2LBB6XRaLS0tmj9/frVXs6aQjA0AAAAAAAAAAAAAAACUiMrYAAAgBIlEQieccIJOOOGEYY93d3fruOOOU19fn371q1/pda97ndrb25VIJKq0prWDZGwAAAAAGAfTCgIAAAAAAAAAAAAAsiWTSa1atWowGTnzbzqdViqVGvxJJpNKJpPDfh/p37Eey/69UssYb7nbt28ftv1XXXWVrrrqKi1fvlyLFy+Off/XEpKxAQAAAGAcJEkjTlS1AQAAAFAtXP8CAAAAAJC/6667Tvfdd1+1V6NsDjzwQDU2NqqhoUHNzc1qaGhQQ0PD4GONjY1asmSJUqmUXnzxRT333HPaY489NHPmzGqvetWRjA0AAOoSA0MAgFDxHQcAAAAgdKHNQBXa9oSE9wZxCu14C217UJw4joPQjum4hLbfaAsA1KuTTz5ZTz75pNLptNLp9ODjmd8zj+Xz+1jPy+c1AwMDGhgYKGl7li5dqiOPPFILFy5UW1tbScuaaEjGBgAAdYkOEwAAAAAAAAAAAExEoSXihoQxPwCYWBYvXqw77rij2qsxTCqVUjKZ3OlnYGBgxMeTyaSeeeYZXXfddVqxYoVWrFghSZo5c6YWLFigBQsWaM6cOZo9e7Z23XVXzZ49W7NmzdKsWbM0adKkKm9t7UhkZ+NDam9vZ4cAAFAHQuv8oWMGcQntsxMXPqMAAAAAAAAAgFoRUrXikLYFCFVHR0ei2uuAvJD3iJJ0d3frpZde0ksvvaQ1a9Zo9erVWrNmjdasWaONGzeqv79/1Nd+97vf1R577DHW4oNvR6iMDQAAAEwgdDYWh85gAAAAAAAAAMB4KIgCAADq1dSpU7Xffvtpv/322+lvW7Zs0QknnDDqa6mQTTI2AAAAgDpGkjQAAAAAAAAAoFbE1ZdM0jcAAIjTtGnT1NzcPFgd+/LLL9eb3vQmNTQ0VHnNagfJ2AAAoC6RGAkUhw7a4pD0DQAAAAAAAAAAAAAIVTKZVFdX1+BPd3f34P8ff/xx9ff3a9q0aTrrrLNIxB4BydgAAKAuhZZQSgImUBw+OwAAAAAAAACAWkFhDwAAUA82bdqkL3/5y9qwYcNg0vX27dvHfM2kSZN04403avHixTGtZX0hGRsAAACYQOigLQ4d6AAAAAAAlE9o19mhbU9IeG8Qp9COt9C2Jy6hvT9xCG2fhXZMs98AIEzpdFoDAwNKJpNKpVJ5vaa3t1dnnXWWpk2bpj333FPOucGfhQsXKpFIVHita1sinU5Xex1qSnt7OzsEAAAAAAAAAAAAAAAABQkpSVqKJ0GWZF+g9nV0dEzsDMv6Qd4jSpJMJtXT06Nt27aN+bN161Y9++yzeuaZZ9Tf3y9JmjJlivbbbz8557T//vvryCOPVGNjY/big29HSMbOQTI2AAAAAAAAAAAAAAAAahUJzADiRDJ23SDvEbHasmWL7r//fv385z/Xiy++OOxv11xzjQ4//PDsh4JvR5qqvQIAAADFoLIAAAAAAAAAAAAAAAAAEI++vj7ddNNNeuyxx7R69erBx+fOnaslS5bIOaclS5boVa96VRXXsjpIxgYAAACAcVBlBAAAAAAAAACA8qP/HQCA2pVKpTQwMKCtW7dq69atWrt2rX7xi1/s9Lz169dr/fr1WrZsmRYvXlyFNa0+krEBAACACYSq8rUdBwAAAAAAAJgoSMAEAABAverp6dHKlSuVSqWUTCYH/839/2h/G+l1pTynlGWOtb6FSCQSmjJlSoX2eO0jGRsAANQlOk8BAKEK7aYJAAAAAPWDPjcAcaLNKQ5J7AAAANV37bXX6r//+7+rvRpl09jYqNbWVs2cOVMzZswY9u+0adM0ffr0wd8zf5s2bZoaGxurveo1I5FOp6u9DjWlvb2dHQIAAIBgkeSJODFgAwAAAAAAAGAsoSWXh9YHTx8vUNtibHMScQVCSch7jNGmTZv05JNP7lSBeqyfkSpWl+sn32WnUqmCt7WhoUFTp07V9OnTNXXqVE2bNk3r1q3TvHnzdMkll2jGjBn5LCb4doRk7BwkYwMAUB/ozAIAAAAAAAAAAMBEFFISe0jbAoSqo6Mj+CTKQJD3iHGlUqlRE7f7+/vV3d2t7u5udXV1qbOzc/D/XV1d6u7u1oYNG/T4448PLm/58uVavHhxPqGDb0eaqr0CAAAAAAAAAAAAAAAAAAAAQAiSyaTWrVs3auXq0RKix3reaP8faxljvSafdch9zvbt26u9a2sWydgAAAAAAAAAAAAAgpuNDgAAlCakc4OQtgUAUPtuueUW3X333dVejYrbddddq70KNSORTlOdPlt7ezs7BAAAAMAwTJMIAAAAAAAAAKgVIfVZh7QtQNxivMkgEVcglIS8xxqyYcMGPfzww4OVpWutMva2bduUSqVK3s6bb75ZBxxwQD5PDb4dIRk7B8nYAAAACFlolR/oPAUAAAAAoP6ElnQV2vaEhPcGcQrteAtte0ITWl9/SEI7pmkLIEkdHR3BJ1EGgrxH5O2FF17Queeeq97e3qJev//+++u0007TEUccke9Lgm9HSMbOQTI2AAD1IbROJjoYAAAAAAAAAADAeEiMhBTWcRDStgChIhm7bpD3iIJkKmRnfrq7u7V9+3a9/PLLWr16tVavXq2XXnpJL7300qhJ2ytWrNCiRYvyCRd8O9JU7RUAAAAAEB9uZECcQjve4sJxDQAAAAAAgNHQdwQAAIByaGxs1PTp0zV9+vTBx9atW6dLLrlk1NdMmjRJCxcu1N/+9jftueeemjp1ahyrWhdIxgYAAAAAVAQDQwAAAAAAABgN1XABSHxGAQCoJbNmzdKxxx6r+++/XwMDAzv9vbe3V319fWpvb9eSJUvU1tZWhbWsTYl0mur02drb29khAADUgdCqrdLRBAAAAAAAAACYSEjGBiDRFgD1oKOjI1HtdUBeyHtERQwMDGjdunVatWqVnn76aT311FN66KGH1N/fr6VLl2rZsmXaZ599NGnSpLEWE3w7QjJ2DpKxAQAAAOSiMxgAAAAAAAAAMB6KCRWO/neg9pGMXTfIe0Rsuru7ddZZZ2ndunXDHl+xYoUWLVo00kuCb0eaqr0CAAAAxaAzC0Cc+IwCAAAAAAAAAMYTV19ySONk9L8DAFD7UqmU1qxZo9WrV2v16tVas2aN9t13X/X09Kizs3PweY2NjVVcy+oiGRsAAAAAxkFlDgAAAAAAAADAeEJKko4L/e8AANSedDqtf/3Xf1VHR4c6Ozu1du1abd++ffDvra2tWrBggV75yldq4cKFOvLII3XwwQcrkQi+APaoSMYGAAAAgHHQSVscBh6Kw/EGAAAAAAAAAAAAoJLS6bT6+vq0Y8eOwZ/e3l719fXphRde0Fe/+tURX7dgwQLdfvvtamtri3mNaxvJ2AAAAAAwDipzFCe07QEAAAAAAACAscTVJ0ohDAAAMJa1a9fqlltuUVdX17Ak6+zE6x07dhS17DVr1mj9+vXac889y7vSdY5k7BycsAIIEYlQAACUhu9SAAAAAAAAAMB4KOwBAABqQV9fn9avX6/Nmzers7NTPT09Bb1+2rRpmj17tmbPnq1Zs2Zpzpw5g7/vsssuampqUnd3t6ZOnVqhLag/JGPn4IQVAAAAAAAAAAAAAAAAhQqtMjY5NAAA1KdFixbplltuGfx9YGBA3d3d6uzsVHd3t7q6unb6eeSRR/T8888rlUoNPrZy5cpRYzQ2Nurmm2+Wcy6OTap5JGMDAAAAACqCmYeKwwAHAAAAAACYCEgmRYjoEwVtGwCgktLptFKplJLJpFKp1LD/Zz+W+X2kxxKJhKZOnaq2tjbNnj1byWRSzz///JiJ1yNJJpNauHBhhba0/pCMDQAAAADjoPO0OKFtDwAAAAAAAMqHviOEKLTK2HEIrS0IbXsAoFqyk47H+xkYGCj57+PFyl3GaMnP+T5eyGuzH0un09V+a4ZZs2aNpk2bVu3VqAkkYwMAAADAOOg8RZxCGkgBAAAAUF+4/gUAoDT07RUutGIooW0PAJTDhg0bdPLJJ1d7NaqqsbFRTU1NI/60tLQM/r25uVmNjY1qbm5WU1PTsNdlP579M9Jrc+M1NjaqoaFBDQ0Ng//Pfmy0x0d7TiKRUGNjo2bMmFHtXVszErWWKV9t7e3t7BAAAAAEi47g4tCpCQAAAABA+YSWpBTa9oSE9wZxCu14C60vObTPaWjvT0g41ooT2n4LTUdHR6La64C81Gze4+bNm3XiiSdWezUmvMbGRrW0tGjSpEnD/m1tbS3qsdbWVrW0tGjq1KnaY489lEiM2VQE346QjJ2DZGwAAAAAuehsBAAAAAAAAADUipD6rEPaFiBUJGPXDfIeC5BOp5VOp5VKpZRKpQb/P9Zj6XRayWRyxMdr4TVjbUsqlVIymVRfX5927Ngx7k9PT4+6u7vz3p+f//zn9YY3vGGspwTfjjRVewUAAACKEdod/3QAAbWNzygAAAAAAAAAoFbQZw0AQPFGSlTOTWbOToYe67FqLKOQ5fX19Y3409/fP+rf+vr6NDAwUNA+Hacq9oRAZewcVMYGAABAyEK7kQG1jQEBAAAAAMBIQquAGdr2hIT3BnEK7XgLbXtCQ19/7QrtmKYtgERl7DpSN3mPnZ2dete73lXt1ZgwWltbB38mTZo04v9bW1vV0tKS909zc/Pg/6dMmaIFCxaMtxrBtyMkY+cgGRsAAAAAUE0MpAAAAAAAAGA0oSVjAwDqQvBJlIGom7zHLVu26IQTTqj2aiBHIpFQIpFQQ0PDTv/P/rezs3PwNcuXL9fixYvzWnzFVrxGkIydg2RsAADqQ2idgNztDQAAAAAAAAAAUN8YvyoclZeB2kdl7LpB3mOe0um0UqmU0un04E/m99x/R3ssjtekUilJKttrSl1WMpnUqlWr9PDDDw/uy3vuuUczZszIZ7cH3440VXsFAAAAAAAAAAAAAAAAgHpH5XIAAGpfIpFQY2NjtVejpvT39+uXv/yl1q1bp87OTnV1dam7u1tdXV2DP9u2bVNu8efnn39eBx98cJXWuraQjA0AAABMIHTQIk5UGgEAAAAAAAAAAACA2rZx40Z94xvf0I4dO/J+zcKFC7XHHntUcK3qC8nYAAAAwARCciwAAAAAAAAAAAAAAMhobW3V7rvvrpUrVyqVSo37/EQioUQioW3btmmXXXaJYQ1rH8nYAACMIq7qsSRGFof9BkCirQYAAAAAAAAAAAAAoBQtLS3ae++9NW3aNHV2dqq7u1vr168f9fnpdFqrV69Wb29vjGtZ20jGBgBgFCTe1ba4EjDjwvEGFIfPTm0Lra2OC8c1AAAAAAAAUJ/oEwUAAPVo6tSpuuiiiwZ/X7dunU455ZQxX3PooYdq4cKFlV61ukEyNgAAqEskqgHFoSO4OLQ5xWG/AQAAAAAAAJhI4uoTpa8fAABU0ty5c3XBBRfoD3/4g/r6+tTT06PHHnts8O9XX321jjjiiCquYe0hGRsAANSl0DqZSFgEisNnBwAAAAAAAAAw0dA3DgAAKimRSOjYY49Ve3u7TjrpJPX29g77e2trq9LptBKJRJXWsPaQjA0AAABMIHTQAgAAAAAAAABQ3+IqWsSYAgAAE1s6nVZDQ8NOj19wwQWSpOXLl2vx4sVxr1ZNIhkbAAAAAAAAAAAAAADEimRSAABKE9ps0gAqL51O695779XTTz+tgYGBEX/6+/u1bdu2wZ/cqtgZu+22m3bdddeYt6B2JdLpdLXXoaa0t7ezQwAAqAOhXVjSGQzUNgaGAAAAAAAon9Cus0PbnpDw3iBOoR1voW1PaEIbJwtJaMc0bQEkqaOjI1HtdUBeyHvEuP7v//5PH/nIR0paxsKFC9XY2LhTErdzTldccYWmTJky0suCb0dIxs5BMjYAAAAAAAAAAAAAAABqVUgJsiFtCxAqkrHrBnmPyMvDDz+sdevWqampSc3NzUqlUtqxY4d27NihzZs36wc/+EHRy7755pt1wAEHjPSn4NuRpmqvAAAAQDFCu+OfDiCgttEZXJzQ2uq4hHYcAAAAAAAAABMFfaIAAKDWHXbYYaP+bcuWLXrkkUe0bt06dXV1aWBgIK9l3nDDDdp///01adKkcq1m3SEZGwAA1CUS1YDihNYRHFdbQJtTHPYbAAAAAAAAgIkkrj7R0Pr6AQBAbZg5c6ZuueUWSVI6nVZvb6+6urrU1dWl//mf/9EDDzyglStX7vS63XbbbUInYkskYwMAgDoVWicTCYuIC8caAAAAAAAAAABAZTDTJuIU2pg5gNqRTqfV39+vZDKphoYG9fb2avny5SM+9x3veIdmzpwZ8xrWnkQ6na72OtSU9vZ2dggAAACCFVqnDJ2NAAAAAAAAAADUL5KXgdrX0dGRqPY6IC/kPWJUW7du1dVXX61NmzZp0aJF6uvrU29vr3bs2DH4/9zHUqlU3su/6aabdNBBB431lODbESpjA8AEwAUsQkRCKQCJ7zgAAAAAAOpRaNfzoW1PSHhvEKfQjrfQtgfFieM44Jiubew3AAjDpk2b9Mc//lGS9Nxzz436vLa2Ns2ZM0e77LKLdt1112E/kydPVmtrq1pbWzVp0iS1tLQM/syfPz+uTalZVMbOQWVsAADqA8nYAAAAAAAAAADULxL8gOKF9PkJaVuk8LYHkKiMXUfIe8SYuru7df/99+vBBx9UV1eXtm3bNvgzMDAw7uunTJmiI488Uscff7wOOOCAQsMH346QjJ2DZGwAAACELLQbGeJCpyYAAAAAAAAAoFaElPAb0rYAoSIZu26Q94iipNNp9fX1DUvOHunnvvvu09q1ayVJN998c6EJ2cG3I03VXgEAAIBihJZQSgcQ4sKxBgAA/j979x4b2XnWD/yZGd/W69vekr1kd7Ob7CVLkoamUAFKf4bQVEBL24AqaAUVlUD0hrgjcREqoEJpS/8oESQtpU2rtDQIaEmalFvcFgGBoKRLQ9I0m4Rtsvf12mOvb+OZ+f1RbNbe9dqetWfmvP58pKM5njnnzHvOnHntec53XgMAAACrI7XrVyyfcDkAWZPL5aK9vT3a29tj48aNl1zm7Nmz8YlPfCIiInp6euLEiROxcePGuPrqqyOXSz5nvSTC2AAAAItQPAUAAAAAYDH1qvEKfTcvdX4AUrRp06a466674nOf+1w88sgj8bu/+7sR8a1g9g033BC/+Iu/GFdddVWDW9lYwtgAQCYpZAD1pM8BAAAAAGAxQtIAQLOpVqtzpkqlEhERlUolqtVqlMvlGB0djZGRkdlpdHQ0isXiRfePjIxEV1dXDA4ORkREsViMY8eOxcTERCN3sSnkqtVqo9vQVPr7+x0QAMiA1IpZgp7Ll9o5QG28dwAAAIBG8x+1AGqnD62N4wZE1PV6aa5eT8QVWTD3ODU1FV//+tdnw7eXCuQuFthdrXVmlmlkGxZrWzMeh+WscyUKhUL09PREV1dXdHd3R3d3d/T09MSePXti//79sX///uju7l7KppLvR4SxL+aAAMnxIZkUpRbE9T6lXlJ779SL9yj15H0KAAAAAAA0keRDlIlYMPf4sY99LD75yU/Wsy1k2Pr166OrqyvWr18fbW1tEfF/QfALw98HDhyIX/iFX5hdZhHJ9yPC2PMYGRsAsiG1oJqgJwAAAAAAAEuR0sjYKe0LpGpgYCD5EGUiFsw9TkxMxNe+9rWLRli+cH6p08w2LjVi82LbXs3nW8ntLeU5HnvssSt8udJw9913x/79+5eyaPL9iDD2PMLYAACkLLUvMtSLIi315H0KAAA0is+/AHBlUqvt+dsAiBDGzhC5xzr62Mc+Fg888ECUy+XZqVKpzM6norOzM7q7u2dHy+7u7p69vfrqq+Paa6+N9evXzz7e2dkZ7e3tkctd1G0k348IY88jjA0AAAAAAAAAQLMymjRQT8LYmSH32CRmRt2+MJy90Pz86XLLXfjz9PR0lEqlKJVKs/Pzbxe6r1QqxcTERIyNjcXY2FiMj4/H+Ph4lEqlFTsGd911Vxw6dOjCu5LvR1oa3QAAgFoYWQCIUHAGAACALErt83xq+5MSrw31lNr5ltr+UJvUrsfVQ2rntL4AaKRqtRpf/epX4+zZs7Ph5mq1GuVyeU7g+cLpwvuXs+zl1lloO8tZdiXbV6lU6vYatLa2Rltb2+zU2toa5XL5kqHvmXZde+21sWPHjrq1sVkYGftiDgiQHB9cSFFqxR/vU+oltfcOzU3fVhvvUwAAoFF8jgNofoKRzS212l49zgPnNDQ/I2NnRnK5x9HR0XjjG98Y09PTjW4KEfGyl70sfv/3fz/WrVtXy+rJ9yNGxp7HH18AAKTM37u1UQymnpwHAAAAAJBNqY1cDgCN1NXVFZ/5zGeiWCzOGRX6UrcXjjC90O1i27jUCNQX3i5lmYGBgXjxxRcbfehWxVe/+tUYHBxck6NeL4UwNgCQSYJqQD3pc6gnF1IAAIBG8fkXoPnpqwGAtWTTpk2xadOmRjdjybZu3Rqf+9znolwuR7lcjkqlMjt/ualSqTS66XPkcrloa2uL1tbWWLduXezduzf2798fR44ciUKhEFu3bm10E5uOMDYAkEmpBdUUTwGY4XcCAAAAAGRTatevAIDl+aEf+qH4oR/6oWWvNzPa9lKC2ysxTU9Px5NPPhmnTp2KYrEYw8PDcf78+dn2VKvVmJycjMnJyRgdHY3Tp0/Ho48+Ovv4Rz7ykbj++utX5JilQhgbAAAAAAAAqJt6BdXq9WXX1PYnJV4b6im18y21/amX1F6flMLlzunaOG4A9ZHP5yOfz0dLS30ivc8++2z8yZ/8Sc3r/9M//VM88cQTsXv37ti/f3/09vauYOuyKVetVhvdhqbS39/vgABABqRU/IlQYAAAAAAAAGBpUgrIpqWb8FMAACAASURBVLQvkKqBgYFco9vAksg9sixPP/10DA4OxtjYWIyNjcX4+PiC8/N/npiYmLOtbdu2xcGDB+Ptb397bNmy5VJPl3w/YmRsACCTFEwAAAAAAAAAAGD5Dh48WPO65XI5Tp48GXfffXd8+ctfjuPHj8fw8HC8+c1vXiiMnTxhbAAgk4yMDQAAAAAAAABA6qrVarzwwgsxNTUVpVIppqenY3p6es78Yj/PzJdKpSiXy5f9+cJ1Flq2VCpFtVqNffv2xete97q4/fbbo7Ozs9GHqmGEsedJLdgFECHkSZqc1wAAV0YNpDb+DqWeUnufev8A9aQPBSBV9fod53cPAEDzePjhh+MP//APG92MOVpaWuJ7vud74tu+7dtidHQ0PvGJT8Tw8HBs2rQp3vrWt0ZbW1ujm1hXuWq12ug2NJX+/n4HBAAAAAAAAAAAVpkvGEDzGxgYyDW6DSyJ3GPCJicn49FHH42pqamYnp6Ocrk8O3r1hfMX/rzQMgstf+HPF943NTUVxWJxWe19//vfH694xSsuvCv5fsTI2ABAJhndCKgnxWAAAAAAAJpFSjXr1OriKb02ADSP9vb2eNWrXlW35xsdHY0//MM/jCNHjsTg4OCcx1paWmLTpk3R29sbfX190dvbGxs2bJid37lzZ9x00011a2uzEMYGAIA1JLUvMtSLoiYAAAAAAItRg1++1MLLricAkHVnz56NF154Ib7yla9c8vHp6en4wAc+ENdcc02dW9bchLEBgExSyADqSQG9NvpqAAAAAAAAgGw4fvx4vPnNb77sMrt27Yqenp46tSg7hLEBgExKLRgpsEi9ONcAAAAAgGaQ2mi4EFG/8y2162RAbfQFwEqZmpqKT3ziE/HCCy9cdrl77rkn9u3bV59GZYwwNgAArCGKMtSTC10AAAAALETtCACujC+AACvl9OnTcd99913ysWuuuSa6u7tj3759MTY2Fs8++2x0dXVFZ2dnrF+/PgqFQp1b25yEsQEAgMxKrcjkAhQAAAAAa4WaGykSWAQAsmjHjh1x3333xUMPPRRf+tKXolgsxvnz56NUKsWLL74YERFPPfVUfP7zn7/sdj7+8Y/H7t2769HkpiOMDQAAa4gLD7Vx3AAAAAAAAABI1bZt2+Jtb3tbvO1tb5u9b2pqKkZHR+Ob3/xm/PzP//yi21i3bt1qNrGpCWMDAJkkGAm1MSpHbfQ5AAAAALCy1NxIUWr/zdE1BQBYuyqVSlSr1WhtbY1KpbLgcr29vdHT0xM333xzbNiwoY4tbC7C2AAAsIa4wAEAAAAAACxFPa4pCHwDwOoZHh6On/u5n4ujR49GRERLS0t0dnbGunXrorOzM9ra2qJUKkWpVIqpqak5U6lUWvJzDA8Pxze/+c34/u///rjllltWc5ealjA2AJBJqRVmBGSpF+8dAAAAoNHqVZ9IbXRSdZDl89pQT6mdb6ntT72kVoNPaX+c07Vx3ACy7cyZM7NB7IiI6enpKBaLUSwWl7R+e3t79PX1RW9v7+ztzNTX1zd7X2dnZ7S2tsauXbtWa1eaXq5arTa6DU2lv7/fAQEAAOZQbAQAAAAAgJWn/g7Nb2BgINfoNrAkco8saHJyMoaHh2NoaGjO7fz5sbGxGBsbi/Hx8RgbG4vJycllPc+f/umfxoEDBy71UPL9iJGxAQAAFqFICwAAAAArSwATauf9AwBcTrVajXK5HOVyOaanp6NcLkdLS0ts2LAhenp6Yvv27bP3z7+dmaampmJoaCiOHz8eJ06ciOPHj8fx48djaGjoks+Zy+Xi6quvrvOeNg9hbAAgk1L6t2gRilnUT2rvnXrxHgUAAAAAAABgOZ5//vn48pe/PCfkvFgI+krvn56ejkqlsqL70dbWFn19fbFly5a4/vrro6+vL3p7e6Ovry/6+vrila98ZWzZsmVFnzNrctWq0ekv1N/f74AAQAakFigV9AQAAACg0VKruQGkqF7XE/xOAOACuUY3gCWRe2xC9957b/z5n/95o5uxJC0tLdHe3h4dHR2xYcOG2Lx5c+zcuTN2794dW7dunQ1f9/b2Rmtr63I3n3w/Iow9jzA2AGRDakVAYWzqJbX3Ds1N3wYAAAAAwOXU67qFejXUbmBgIPkQZSLkHpvU1NTUnFGsZ6ZLjWw9//5LjYZ94TYqlcqSlltsVO4LlyuVSlEsFqNYLMZC+eL169fHxo0b47u+67vita99bezcuXOxw5B8PyKMPY8wNgAAZIciLQAAAAAAa01KtfGU9gVSJYydGXKPrKhyuRwjIyMxPDwcQ0NDMTQ0FMPDw/HYY4/FV77ylTnL3nXXXXHo0KHLbS75fqSl0Q0AAACoVWr/klMxGAAAAAAAVl5q/znU9QQAVluhUIi+vr7o6+uL3bt3R0TE8PBwfOhDH5pdZteuXXHo0KHZx9cyYWwAAIBFKGoCAAAAwMoyAAIpSi3wmxJ9AQAsrFqtxsTERIyPjy94OzO/a9euOHr0aERE/NRP/ZTfsf9LGBsAyKTUiln+OAUAAAAAYC1RFydFqf03RwAgLSdPnoz3ve99MTw8fFHIejlmRs3esWPHKrU0e4SxAQAAAAAAgLpJbTTc1PYnJV6b5pba62N/auP9U5vUzoN6cE7XxnEDSEs+n4/h4eF47rnnZu+7+eabY9euXbFhw4bYsGFDrFu3bnbq6Oi45G2hUGjgXjSnXLVabXQbmkp/f78DAgAZkFLxJ0KBgfpJ7b1Dc9O3AQAAAABrSWo1+HrUeIV9ofkNDAzkGt0GlkTukSWpVqvxta99Lf72b/82BgYGolQqzXm8o6NjNnR9uUD2/Nve3t74zu/8zoWC2sn3I0bGBgAyScEEauO9UxvFYAAAAAAAFqPGCwA0u1wuF9dff30Ui8WLgtgRERMTEzExMRFDQ0PL3vYHPvCBuPXWW1eimZkjjA0AAGuIUTma+3kAAABgLUjtS8+p7U9KvDbUU2rnW2r7k5rUav314JyujeMGkKYzZ87Eo48+uuz1du/eHa95zWuip6dndgTtjo6OaG9vj56enti1a9cqtDYbctWq0ekv1N/f74AAQAakVmRSYKBevHcAAAAAACDbUgrIprQvkKqBgYFco9vAksg9sizlcjnOnz8fIyMjMTIyEsePH48XX3xxzlQsFi+57qc+9anYsWPHcp4u+X7EyNgAAEBmpRYuT43iNgAAAAAAAEDzKRQK0dPTEz09PXHs2LF4+9vfvuR1H3/88RgaGoobbrgh8vn8KrYyO4SxAQBgDRGOBQAAAAAAAABmbNmyJV73utfFo48+Gvl8PgqFQhQKhcjn8zExMREnTpyYs/wHP/jBiIh473vfG9/1Xd/ViCY3HWFsAAAAAAAAAAAAAMi4arUapVIpJiYmYnx8PCYmJmbnZ6YLH5u5LZfLceDAgRgdHY1isRijo6MxMjISY2NjCz7XunXr6rhnzS1XrVYb3Yam0t/f74AAAAAAAADAKhkYGKjL89TrP4Sltj8p8dpQT6mdb6ntT2rq9fqwfKmd0/oCIiIGBgZyjW4DSyL3uAY9++yz8dM//dMrus3W1tbYuHFjbNq0KTZt2hQbN26c/Xnjxo3R09MT3d3d0dvbG729vUvdbPL9iDD2PMLYAACQHYqAAAAAAJBNanukKLWQdD3eP/oCaH7C2Jkh97gGHT16NN761rfW9TnXr18fH/7wh2PPnj3LWS35fqSl0Q0AAKiFYhYQYRQYAAAAAMgqtTBSlFrNGmhu+gJg165d8cgjjyxp2UqlEqVSKUqlUkxNTc1OF9534WMz81/4whfiySefjIiI9vb2eNWrXhVbt25dzd3KJGFsAABYQ1IrytSrsO3CEAAAAACsLAMgAMCV8QUQYDny+Xy0t7dHe3v7ktc5ffp0fPCDH5z9eceOHdHV1RUvvPBCHDx4MHK55Ae8XjJhbAAAWENceAAAAAAAmoFaJQBcGSFpSEu1Wo1KpRLlcvmy0/T0dM2PX/jY/OdaaL2bbropvvrVr0ZExHPPPRfPPfdc3H///RER8dnPfja2bNnSyMPWNISxAQAAAAAAAAAAIEOMjA3Z8/DDD8dHP/rRBcPPzaq1tTXWrVsXfX19MTk5GSdPnoyIiFKp1OCWNQ9hbAAgk4yYAbVRLKmNPgcAAAAAVla9apVqewAANIudO3fGd3zHd1xyROr54eyl3j9zW6lUVq3dpVIpSqVSFIvF6Orqim//9m+P2267LbZt27Zqz5k1wtgAQCalFihVDKZenGu1cWEIAAAAAFaWWhjUzvsHABrr2Wefjf/8z/+MSqUyG4SeuZ2Zv/Dn+fdVq9XZbeXz+ahWq9HS0hK5XC7y+XwUCoUoFApRLpejtbV10e3O3E5NTcXU1NSqjlg9Ojoajz/+eDz++ONx/fXXx0033bRqz5UlwtgAAACLUNimnlL7whEAAJAdPv8CkKrUBtxIbX8AIGv++q//Or7whS80uhkNt3PnzkY3oWkIYwMAAEATcYEDAAAAAFaWmhsAsJJ+6Zd+KX72Z3+25pGxF7pv/rYu99hSt7HYdi+1jaGhoXjhhRcWPQ6jo6PR19e3+gc8A4SxAYBMUjSD2hhxt7np2wAAAACAyzEiMgBA4+Xz+eju7m50M1bN+fPn40d+5EdicnJyzv2bN2+OAwcOxHXXXRebN2+Ob37zmzExMRF79uyJQqHQoNY2h1y1Wm10G5pKf3+/AwIAGZBaoFRRE5qbCxwAAAAAAACsRQMDA7lGt4ElkXtkxR09ejQGBgbixRdfjGPHjsWxY8fi3Llzl1z2tttui9/6rd+K1tbWSz2cfD9iZGwAIJMEFoF60ucAAAAAANAsUhpAJKV9AYArUa1Wo1wux/T09OxUKpVm75uZL5VKMT09PWd+KdOF609OTs5OU1NTMTExcdn7ljLo81e+8pU4fPhw3HrrrXU4Ws1HGBsAyCQjYwMRirQAAACQRal9nk9tf1LitaGeUjvfUtsfapPS9TjndG0cN4DaDAwMxHve855GN2NRra2tsW7duujs7IzOzs5Yt25dbNiwYXa+s7Mz1q9fH+3t7YtOnZ2dsW3btkbvUsMIYwMAAJmlOAcAAADZk9rn+dT2JyVeG+optfMttf2hNkbGxnEDqE2pVGp0E5akVCpFqVSKYrF42eVyuVwUCoXZKZ/PR1tbW7zyla+MH/7hH47rrruuTi1uXsLYAEAm+eAPAAAAAABAM0lpJGkAoHavfvWr49WvfvUVbaNSqUSlUolyuRzlcnnO/Pxp/mO1rHe5dS61jcHBwXjooYfioYceij/4gz+IV77ylSt09LJJGBsAAAAAAAAAAAAAmkQ+n498Ph8tLasf8y2XyzE+Ph5jY2Oz0/j4+Jz7RkdH48SJE3H8+PE4duxYnDp1anb9ycnJVW9jsxPGBgAyKbWRBYz0Tb2k9t6pF+9RAAAAAAAWo5YMADSjwcHB+LEf+7EolUpXtJ3e3t7Yvn17HDp0KF796lfHtm3b4pprrokbb7xxhVqaXcLY8winACnyoZ8UOa+hNt47AAAAAACQbfXKtrimAABpGBsbqymI3d3dHTt37oxrrrkmdu3aFdu3b4/NmzfHpk2bYtOmTdHe3r4Krc0mYex5/CEJAADZoeAMAAAAAKwlaqIAACzXNddcE4888khERFQqlRgbG4uRkZGLptHR0dn5YrEYZ8+ejbNnz8Y3vvGNS4a577nnnti3b1+9d6cpCWMDAJmU2n+zUNSE2tTrveMCBwAAAADQDNQQobm5ngBAs8vn89HV1RVdXV2xbdu2Ja1z7ty5uPPOOy+6/4EHHoj9+/fH7bffHh0dHSvd1EwRxgYAMkmBAagnfQ4AAAAAAItJbTAhls/1BABStGHDhvid3/mdOHz4cJTL5Th27Fj8+7//e3z+85+PiIiOjo64/fbbG9zKxhLGBgAyKbVilsIMAAAAAABAtrneAwCk6rbbbovv+I7viHe+853x3HPPzd6fz+eXPMJ2yoSxAQAAAAAAAAAgI+o1aJFwOQAw39mzZ2fnf/VXfzXuuOOOKBQKDWxRcxDGBgAySfEHAAAAAACAZpLaf3Zl+QTlAUhZR0dH/M3f/E384z/+Y/ze7/1etLW1CWL/L2FsACCTUitmKZgAAAAAAABkW72u96R2nSwlrvkBkKJyuRz3339//Nd//Vc888wzcebMmYiI6OzsbHDLmocwNgAAkFlGmAAAAAAAoFkISQMAWTU1NRXDw8Oz09DQUAwNDcXw8HA88cQT8V//9V8REfHqV7869u/fHzfccEMcOnSowa1uHsLYAABAZqU2yojQNwAAAABwOWqVzS21mjUAkLbTp0/Hm970piUv/+u//uuxb9++WL9+fXR3d0cul1vF1mWLMDYAAMAiXHgAAAAAAJqBWiUAACulo6MjNmzYEOfOnVvS8u9973vn/Lx58+Z405veFD/6oz+65oPZuWq12ug2NJX+/n4HBAAAmMNoMwAAAAAANAs16+bltSFFAwMDazthmR1yj9SsXC7HRz/60Xj88cejpaUlWltbo1AoxNTUVJw9ezZOnToV09PTC67/wQ9+MF7+8pdf7imS70eMjA0AALAIRU0AAABYOamFlFLbn5R4bain1M631PaH2tTrPEhJaue0vgBgbThx4kR85jOfWfLyP/7jPx5bt26Nzs7OaG9vj1tuuWUVW5cNRsaex8jYAJANqRV/FBiguSk2AgAAAADQLFKqWae0L5AqI2NnhtwjV+TUqVNx5syZGB8fj+Hh4dnp2LFjMTAwEKVSKSIiOjs740/+5E9i165dy9l88v2IkbEBAAAWoUgLAAAAACtLALM2jhsAM1IbwAxorKuuuiquuuqqOfedO3cu3vrWt84GsQ8dOhTvfOc7lxvEXhOEsQEAABbhAgcAAAAArCy1sNo4bgDMqNfvBKFvWLvWr18fr3/96+Pw4cNx+PDh+O///u945zvfGXfddVccOnSo0c1rKsLYAACwhqRWLKlXkckFDgAAAAAAAABSNjk5GSMjI3OmHTt2xLlz5+Lw4cMREXHnnXfGgQMHGtzS5iOMDQBkkmAk1MZ7pzZGxgYAAACAlaXmBqRI30Y9pTYIE1A/586dizvvvHPZ6334wx+Ob/u2b4tcLrcKrcq2XLVabXQbmkp/f78DAkBE+KAMkAX6agAAAMie1D7Pp7Y/KfHaUE+pnW+p7U9qBDCbV2rntL6AiIiBgQGpy2yQe2TJTp8+HW9605uueDv33ntv7Ny5cymLJt+PCGPPI4wNANmQWpFJgYF6Se29Uy/eowAAAAAANIuUArIp7QukShg7M+QeuSLT09MxPj4eY2NjMTY2FuPj4/HSSy/Fe9/73gXXee1rXxs333xzfP/3f/9io2Un34+0NLoBAABA/Sg2AgAAAABAtqn1A0BtqtXqglOlUomIiEqlctnlUlx25vEL58vlcpw7d+6yx/OBBx6IBx54ILZs2RK33HLLCr9a2SKMDQAAa0hqI2MrOAMAAAAA0CzU4DHSN9BMnnzyyXjwwQdrCu/WMxy82tu/8H6WJ5/PR19fX/T29kZvb2/09fXN/tzW1hblcjm2bdsWL3vZyxrd1IbLOcEu4oAAyfFBjIj0Pvintj8p8do0t9QKwfXifKOevE8BAAAAAIAmkmt0A1iSi3KPDz30UHzsYx9bNKh84fxioWmyLZfLRT6fv2gqFAoX/dzS0hJXXXVV9PT0RHd390VTV1fXnJ87Ozsjn88v+NT13M9GEMaep7+/3wEBAAAAAAAAAKAppTQwTkr7AqkaGBhIPkSZiFXPPc4fYXopAe7lLtvoUbpXetnp6ek4evRoTE9PR7lcjunp6Yvml/JYqVSavb+Zg/F/+qd/GgcOHLjUQ8n3Iy2NbgAAAFA/qY24q3gKAAAAKye1ugFAilL7D6U0t5TOg5T2BaBRcrlc5HL/l6ktFAoNbE023HXXXfHQQw81uhkr7oYbboiJiYkYGxubnfbt2xfbtm1rdNMaxsjY8xgZGwCyIbWCiUAp1MaIGQAAAAAArDUp1cZT2hdIlZGxM0PusQkNDQ3Ff/7nf0alUolyudy000z7luruu++O/fv3L+dQJN+PGBkbAADWEF9kAAAAAACA1ZFaDZ7lEy4H4EJ9fX1x++23N7oZS1KtVmdD2adPn463vvWtlwxor1+/Pvr6+hrQwuYmjA0AAGuI4hwAAAAA0AwEFklRvc43oe/mpc8BIKtyuVwUCoUoFAqxY8eO+Lu/+7s4e/ZsHDt2LI4dOxbHjx+PZ599Nv71X/81nnrqqbjqqqsa3eSmIowNAGSSQgZQTy4MAQAAAAAA0Ex8MQNYTU899VQcOXJkThj72LFjERFRKBQa3LrmI4wNAABriKJMc0vt9REuBwAAAGAhakcAcGWMxg+slhMnTsS73vWuSz62ffv2uOmmm+rcouYnjA0AZFJqH/gUnakX5xoAAAAAAKyO1K5fAQBr09atW+Puu++O5557bnZk7GPHjsVTTz0Vx44di1/5lV+JN7zhDbF9+/bYvn17bN68OfL5fKOb3VDC2AAAAAAAAABAXdUrtGqACurJKLUAQCr2798f+/fvn3Pf6OhovPvd745nn3023v/+91+0zsc//vHYvXt3vZrYVISxAYBMUjyF2qRWoE2tsK1vAwAAAGCtUAuD2nn/AAAr7amnnorjx49HoVCI0dHRGBkZiZGRkRgdHY1isTh739TUVKxbty7GxsYu2kZ7e3sDWt4chLEBgEwSKAUi0usLUtsffRsAAAAAwMozgAgAsJKOHj0a73jHOxZd7tZbb41rrrkmuru7o6enJ/bs2RMHDhyIrVu3Ri6Xq0NLm5cwNgCQSYo/QD3pcwAAAAAAgMUIygOQRTt37oyf+7mfiyeeeCImJydjamoqpqam4vz58zE4OBjFYjEiIvr6+uLNb35z7N69OwqFQoNb3Vxy1Wq10W1oKv39/Q4IAGSA0WOhNt47AAAAAADZJehJapzT0PwGBgbW9nC32SH3yKo5ceJE/NRP/VRMTExERER7e3scOHAgfu3Xfi22b9++lE0k348YGRsAANYQxUYAAAAAgOxS4yVCgBkAqK+tW7fGgw8+GC+++GL8wz/8Q3zyk5+Mw4cPx9NPP73UMHbyhLEBAAAWobANAAAAAAAAwFqVz+ejr68vPvnJT87e9+///u8xNTUVd9xxR+Tz+Qa2rvGEsQGATBJYBAAAAAAAAACA+sjlcvG6170u/vZv/zYiIr74xS/GF7/4xdiyZUvceuutDW5dYwljAwCZVK9RautFuByam/coAAAAAAAAAKmoVqsxPj4eIyMjMTIyEqOjo1EsFmfnZ+4fHh6OEydOxPHjx6NYLM7Zxs033xx33HFHvPzlL2/QXjQPYWwAAFhDfJGhNvU6bkLfAAAAAAAAAKyG48ePx5vf/OZlr9fS0hJ79+6N7/7u7449e/bEnj174vrrr48NGzasQiuzSRgbAADWEGHf2jhuAAAAAAAAQBZMTU3Fc889F5VKJSK+NQLyzHylUolqtbqk+dWaLtWuK1mvWfdzpY/PYsdqKesNDQ3VdE5NT0/HM888E88888yc+z/60Y/GddddV9M2UyOMPU9qIwUCRAiQAfB/Uvt7N7WRsVPjb5DaON8AAAAAgGaQUq0ypX0BWMxHP/rRuP/++xvdDJpQPp+fndrb22Pv3r2xd+/eaG1tjVwuFxER5XI5JiYmYmJiIiYnJxe8PXjwYGzfvr3Be9Q8cjMpf76lv7/fAQGADEitYCKwCAAAAMBaUa/aXmpf4lZDXD6vDfWU2vmW2v5Qm9Sux6VEX0A9DQwM5BrdBpZkNvc4Ojoahw8fvuwIyguNqrzQaNGLPX4l27nS576Stq3kc9e6neWus9JaW1vjuuuui+uvvz42b94cvb290dfXN+e2t7c3CoXClTxN8v2IMPY8wtgAkA2pFX8UGIAUpdZX14vfCQAAAACsFYKetUnpuKkj1ya1c5rmJoydGXKPa8RKhdXHxsbi2WefjWeeeSaeeeaZOHLkSBSLxQWft7u7O/r6+qKvry/27NkT+/fvjwMHDsS1114bLS0tizU7+X5EGHseYWwAAGC+lArbAAAAANAM1NyACH0BZIEwdmbIPXLFpqeno1gsxtDQUAwPD8fQ0FAMDQ3N3jc0NBSDg4Nx5MiROH/+fEREtLe3xx/90R/FoUOHLrfp5PuRRePoAAAAAAAAAAArSTASaifADADZcanRqhcatfrC+YWWXc5o2Fe6bHd3d3R1dV20Trlcjq9//evxqU99KiYnJ+PYsWOLhbGTJ4wNAAAAAAAAAABXqF4haQBYCSdOnIi/+7u/i3K5fNnA8FICvbUu26hQ8mrsy0LLpuzqq6+O1772tXHbbbc1uikNl0v9xa6BAwIkxzeWSVFqxSzvUwBmpPY7DgAAAAAAyLRcoxvAkiw79/jwww/H+973vtVoC4l73/veF5s3b47du3dHoVBYyirJ9yPC2PP09/c7IAAAJEvIsza+MAEAAAAAQLOoV62/HrXxlPYFUjUwMJB8iDIRNeUey+Xyt1a+glGmaxlReiVHp27Etup1LB577LE4efJkLS/tqvrwhz8c27dvj5aWlmhra4uOjo7FVkm+H2lpdAMAAGqRWqBUAYh6ca4BAAAAAADNwnULgMZa4qjGNMjzzz8fn/70p2Nqaiqmp6djeno6yuXy7PyF08z9pVLpksus5MDN7373u+f8fNddd8WhQ4dWbPtZJIwNAAAAAAAAAABXKLXBhOrByNgAsLA9e/bEr//6r6/Itsrl8kUh7XK5HKVSacGQ99TUVJw7dy7OnDkTZ8+ejSeffDK+8Y1vzNnut3/7t8fevXtXpI1ZJowNAACwCMVgAAAAAAAWU68ar9A3ALBchUIhCoVCtLW1XfTY2NhYvOtd74rnn39+Sdv67d/+bde25xHGBgCANUSBtrml+k6VPQAAIABJREFU9vr4AA4AAAAAAADQ3M6fP7/kIHZExHve8554z3veE/fdd19s27ZtFVuWHcLYAEAmCfgB9aTPAQAAAAAAACCLqtXq7BQRUalU5tzX1dUVDz74YFQqlRgfH4+RkZEoFosxPDw8O18sFuP48ePx5S9/eXa773rXu+LgwYOxcePG2LhxY2zatCl2794dL3vZyxq1qw0jjA0AAGuIUDEAAAAAAGSbWj8AV2JsbCz+4z/+I8rlckR8K6hbqVQi4v9CugvNr8Y089wLzderHYu1KSvH5lJtWi2Dg4PxL//yLxfd//73vz9e8YpXrNrzNqPcah7ojHJAgOT4MA7AjIGBgUY3IZP8LqWevE8BAAAAAIAmkmt0A1iSJeceP/3pT8c999yzmm0hw3K5XOTz+cjn81EoFCKfz8fY2FhERLz97W+PdevWRT6fn7Ps5ORkDA4OxuDgYPT19cVP/MRPRFtb25zN1n9P6ksYe57+/n4HBAAyILWgmqAn9eK9AwAAAAAA2VavWn89avAp7QukamBgIPkQZSKWnHusVCrxP//zPwuO6Dx/1OWljNxc67YuN9rz5ba1nOdcifYt91ikckympqbmnDsf+MAH4uUvf3nkcsvuFpLvR1oa3QAAAAAAAAAAYG0RwAQAaIx8Ph979uxpdDPIgNHR0XjLW94SxWIxIiJ++Zd/OTZt2hTvf//7nUPzCGMDAMAa4sJDbVwYAgAAAICVpRYGAADNraurKz73uc/F5ORkHDlyJB599NG499574xvf+IYw9jzC2AAAAAAAAAAAAADARdrb2+PQoUOxYcOGuPfee+P3f//342Mf+1js378/brjhhnjjG98YHR0djW5mQwljAwCZZMQMoJ70OQAAAAAALKZe/2URAGC1TU9Px7lz5+LMmTNx9uzZ2dtdu3bF0aNH4+TJk3Hy5Mn453/+57jpppvixhtvbHSTG0oYGwDIpNSKWYKe0Nzq1efoCwAAAAAAWIxaMgCwGoaHh+MNb3jDossdPHgwbr311jh48GAcOHAgtmzZUofWNTdhbAAAgEUobAMAAAAAsJh61ZINIAIArIZCoRDr16+P8+fPX3a5p59+Op5++um45557BLH/lzA2AAAAAAAAAABcodT+sysAsLZ0dXXFAw88MPtztVqNv/iLv4j7778/BgcH5yy7Y8eO2LFjR72b2LSEsQEAYA1RCK6N0T8AAAAAAFhMaiNjAwBr29mzZ+Puu+++6P6bb745brjhhpienm5Aq5qTMDYAAKwhQsUAAAAAAAAALEW1Wl3SVKlUZpdfbL5SqUS1Wl32/GpNy2l7rfsxMzVyP5e7zzPTrl274pvf/OZsOyMiDh8+HIcPH479+/fH933f99V8fqVEGHse3x4EUiR4B8CM1P7eNcpIc/M3SG2cbwAAAABAM0ipVpnSvgAs5vOf/3x8/OMfX5HQLmnL5/ORz+cjl8tFoVCY/Tmfz0dLS0v09PREa2trXHfddZHL5eZM7e3tsX///kbvQtMQxp5HWAAAALIjteKpzyNEOA8AAAAAgMurV228HrXKlPYFUpXa9bi1YO/evfHd3/3dEbH4SM7LGUV5KetfbgTpWkdsXsr6y91HvqVSqcweu1KpdNHjg4OD0dHREV1dXdHd3R3d3d2z84cOHYodO3bUu8lNSxgbAADWEMVGAAAAAAAAgHTdeOONceONNza6GU3tSsPcC63XyKB5pVKJ4eHheOmll+Kll16K06dPx/j4eExOTsbExMTsbblcXtaxmpiYiImJiThz5syc+7/4xS/Gnj174qabbqrxVUiLMDbAGuDbxADM8M312vgdBwAAACsntZp1avuTEq8N9ZTa+Zba/lCblK4pOKdr47gBqcrlcpHL5RrdjCt27NixeMtb3lLTujMjXM8f9bqtrS3a2tqivb092tvb5/zc1tYW+Xw+RkdHY8OGDUL/FxDGBlgDfHABUpRSAZDmp9gIAAAAACtLzQ1ql1ooHwCozdDQUM3rjo6Oxujo6JKW/cu//MvYtGlTzc+1FghjAwCZpHiKcwAAAAAAILvUeKF2QtIAQETEoUOH4pFHHplzX6VSiampqZicnIypqanZaXJycva+Cx+bnJyMo0ePxl/91V8t+Dx/8zd/Ezt37oy+vr7YuHFj7N27N/L5/GrvXqbkqtVqo9vQVPr7+x0QAMiA1IpMis4AAAAAAADZ5vrV8hklH5rfwMBArtFtYEnkHqnZ1NRUvO9974tHH300Ojs7o7OzM3K5XAwODkaxWLzkOt/7vd8bv/EbvxGFQmEpT5F8P2JkbAAAAAAAAAAAuEL1CvymFvoGAOrr/Pnz8ZnPfCbOnj0bY2NjMT4+HmNjY3H11VfH+Ph4DA0NxdjYWJRKpQW38cgjj8Sdd94ZN954Yx1b3ryEsQEAAAAAAIC6SW0EzNT2JyVeG+optfMttf2hNimFvp3TtXHcANI0NDQUX/jCF+LcuXNRrdY+qPq73/3uiIj49Kc/HVu3bl2p5mVS7koOZIr6+/sdEADIgJSKPxEKDNDsFBsBAAAAAGgWKdWsU9oXSNXAwECu0W1gSeQeWbZqtRqTk5MxMTER4+Pjs7cXzl94e/bs2fjc5z530Xbuu+++2LZt2+WeKvl+xMjYAEAmKZgAAAAAAAAAAEBtcrlcdHR0REdHR/T19S26/PT0dKxfvz6eeOKJ+O///u/Z+0+ePLlYGDt5wtgAQCYZGRuoJ+9RAAAAAAAAANaylpaW+Omf/un42te+Fu9+97sjIuL7vu/74tChQw1uWeMJYwMAmSQYCUT494UAAADA2lGPOogaCAAAAPONjo7GM888E88880x89atfjX/7t3+LiIgPfehDccsttzS4dc1BGBsAANaQ1EaVBwAAAFgrBKUBAACop5GRkfjhH/7hi+5/xSteET/zMz8T+/bta0CrmpMwNgCQSakFSl1IoV6cawAAAAAAAACw8iYmJuK5556Lcrk8Z6pUKnNu588v9Nil1lvKNpez7cstPzY2dsn9fOyxx+Kxxx6Lj3zkI3H99dfX+Sg3J2FsACCTBEoBSFVqXzgCAACyQ80NAAAAavfHf/zH8eCDDza6GSsun89HW1tbTE5ORrVajZ6enrj11ltjx44djW5a08hVq9VGt6Gp9Pf3OyAAkAGpBdVc6ILmVq8+R18AAAAAAJBdasnL55hB8xsYGMg1ug0sidxjEygWi/Hkk08uOir1Qo9NT09HqVSKUqkUU1NTs/Pzf15ofubnSqWy6vtaKBTir/7qr6Knp2cpiyffjxgZGwAAYBGKtAAAAAAALKZetWQBZgBoLg899FA8+OCDcwLWC90utkxWlMvlOHv27FLD2MkTxgYAgDXEqPIAAAAAAAAAsHIKhUK0trZGoVCIcrkc+Xw+yuVy5HK5ObczcrmLB4quVr81uHkzB7Lvvffe2LlzZ6Ob0ZSEsQEAgMwy+gcAAAAAAGRXavV31y0A1qY77rgj7rjjjhXZVqVSmZ1mRtKeP11qlO2Ffl7uOhfOnzx5Mh566KHZtt13331x4403xg/8wA9EPp9fkf1NhTA2AACsIYpzAAAAAABAsxBeBoC58vl80wSdK5VKHDp0KB577LH40pe+FA8//HA8/PDD0dXVFbfddlvTtLMZ5GaGNudb+vv7HRAAAJJVr6JmahRpAQAAAABoFikFmFPaF6i3Ol73y9Xribgico+smqGhoXjjG9+44OOf/exnY8uWLZfbRPL9iJGxAQBgDVFsBAAAAACA1WFAFKCe6nXdT98Ga1exWIzXv/71iy43MTFRh9Y0N2FsACCTUvvAJyALzc3IHAAAAACwstTciEjvPHC+AQApaW1tnfPzW97ylvjO7/zO2LRpU2zatCk6Ojoa1LLmI4wNAABrSGpfZKgXBXQAAAAAWFlqbkQ4D2qVWogdAGgu5XI57r///vj85z8fERF9fX3xgz/4g/GTP/mT0dbW1uDWNSdhbAAgkxR/gHoSYq+NvhoAAAAAAAAgW77+9a/H3XffHRERt9xyS7zhDW+IrVu3RrFYjA0bNkShUGhwC5uPMDYAAAAAAAAAAAAAEFu2bIlt27bF8ePH44knnognnnhi9rF8Ph8bNmyILVu2xPd8z/fED/7gD8bGjRsb2NrmkKtWq41uQ1Pp7+93QAAgA1IbpdbosQAAAAAAAKw19brm51oc1G5gYCDX6DawJHKPXLFKpRLlcjkqlUpUKpWYmpqKM2fOxKlTp+L06dNx6tSp2el//ud/YmhoKFpaWuLDH/5wHDx48HKbTr4fMTI2AADAIhSDAQAAAAAAALjQ6dOn4/Dhw7Mh5guDzPPnZ36+kvtr3dbl2nfh/cvV2toa/+///b/Ytm3bKhzdbDEy9jxGxgYAIGWpjSpPcxMuBwAAyBZ1A4DmV6+am98JAFwg+RFtEyH32ADvfe974+///u8b3Yy6aW1tjdbW1mhpaYmOjo649dZbY+vWrXHnnXdGV1fX5VZNvh8Rxp5HGBsAsiG1IqDAIgAAAAAAAEvhvzkC9TQwMJB8iDIRco8NMDU1FS+99NKCI05fbvTqhe6rdfmltmEp25i//ODgYJRKpUseg9bW1rjrrrti3759lztUyfcjLY1uAAAAUD++yAAAAAAAAKsjtRp8PQiWA5BlbW1tsWfPnkY344pVq9VLTsPDw/GOd7zjoiB2b29vvOY1r4lXvepVcd1110VHR0eDWt48hLEBgExSMIHaeO8AAAAAAGSX4CoAsJjx8fF46qmnLhmurVQqERFLmq9UKlGtVpc0v9i0nGVXYrqS/WzE8an3dOH+zLR1OYaHh+Ozn/1s3H777YLY/ytXy4FMnAMCJEexhBSlNrKA9yn14r1Tm9SOW73o22rjfAMAAAAAAJpIrtENYElmc4933XVX/OVf/mUj20IG5fP5S07T09MxMTExZ9mbb745rr322njHO94R7e3tS9l88v2IMPY8/f39DggAZEBqQTWBRQAAAAAAgGxz/Wr5jPYOzW9gYCD5EGUiZnOPExMT8fTTT6/YKNKNGOm5lpGoV3q06JUYHbtex+ZKX6/l+rM/+7PYu3fvclZJvh9paXQDAAAAmp1iMAAAALAWqIFQT843UuS/OS5fau/RlF6biPRen9Skdr6xcjo6OuKWW25pdDPIkJlQ9uDgYPzCL/xCvPjiiwsuu2HDhvjKV74S3d3dsWXLljq2srkZGXseI2MDQDak9sFSIQMAAAAAAIClSOnLDCntC6TKyNiZIffIssyMpl0uly85DQ4OxqlTp2anl156Kf7jP/4jpqamZrdxzz33xL59+5bydMn3I0bGBlgDfIAlRc43qE1qX2SoF30OAAAAAAAAAJdy6tSpePzxx+eEmxeanz9dbrkr3cZi26tFZ2dndHd3x8GDB2Pbtm0rfCSzSxgbYA0QIANght8J0Px8aQIAAGgUdQOA5mcQJgCA5vPxj388HnrooUY3Y8Xl8/loa2uLtra2aG9vj71798a1114b1157bRw4cCDWrVvX6CY2jVy1anT6C/X39zsgAJABqQXVFDUBAAAAAABYipRC+SntS0R6+wMREQMDA7lGt4ElkXtsoFKpFMePH58deXr+7aVGp17uiNi1bvPC+6ampmJ8fDzGx8djYmJidr5UKl3R/n/605+OrVu3Xm6R5PsRI2MDAJmkwAC1Se2LDDQ3fTU0N78TaqNvo55Se596/wD1pA8FAKAR/N0GsDa1trbGrl27Gt2Mizz//PPxtre9bUW2lc/no729PVpbW6NYLM55rFwur8hzZJkwNgCQSS6oQW2ca7UxkkVtUuur6yW184Dm5VyD5ud9ClA7fSgA0AhqyQBAM9mwYUP09fXF0NBQzdvI5/Nx1VVXxcaNG6Ovry/a29ujpaUl2traolAoxN69e2P79u0r2OpsylWrRqe/UH9/vwMCABmQWsBP0QwAAAAAAIClEPoG6mlgYCDX6DawJHKPLFu5XI7x8fEYHh6O+++/P55//vk4depUnDp1KiqVypK386EPfShuueWWyy2SfD9iZGwAAABWRWpfnKkXFzgAAACAtUCYlBSpiS6fvgBqp88BrlShUIiurq4YGRmJL37xizExMbGs9d/ylrfEwYMH42Uve9kqtTA7jIw9j5GxASAbUvtgqQAEzU0xGAAAAACAZqFmDdSTkbEzQ+6RKzI5ORnFYjGKxWKMjIzE6OhojIyMXDS99NJL8fWvfz0iIn7zN38zbr/99qVsPvl+xMjYAAAAi1BwBgAAAACAlSdYDrVLbQAzoLHa29tjy5YtsWXLlgWXKRaL8eM//uMREdHT0xM33nhjvZrX9ISxAQAAAAAAAAAAIEPq9SUDoW9gxvr162Pbtm1x5MiRKBaLcfz48bj66qsb3aymIIwNAGSSb69DbRRLaqPPAQAAAAAAAGAt+9KXvhRHjhyJrq6u+Jmf+Zm46aabGt2kpiGMDQBkUmqBUkFP6sW5Vhv/JhEAAAAAAACAFFQqlZiYmIjz58/H6OhonD9/fsFp5vGTJ0/GkSNHoq2tLf7oj/4o9u3b1+jdaCrC2AAAQGYJSQMAAED2pPZ5PrX9SYnXhnpK7XxLbX+oTUqDIzmna+O4AaTl6NGj8Yu/+IsxODgY1Wp1SesUCoXYsWNHbNy4Md71rnfFHXfcEd3d3avc0uzJLfWArhX9/f0OCABkQErFnwgFhlqkdg7Ui3MNAAAAAGgGAn5AhL4AsmBgYCDX6DawJHKPLGp0dDQ+9alPxZkzZ2JkZCRGRkZidHQ0RkZGolgsRqVSWXDdnp6e2Lx5c2zatCk2bdoUvb29MTU1FTt37ozXv/71kc/nL/fUyfcjwtjzCGMDAADzKQYDAAAAANAsUqpZp7QvkCph7MyQe+SKVKvVGB8fnw1pz0zFYjFOnz4d995774LrfuhDH4pbbrnlcptPvh9paXQDAACA+jGieG0UaQGA/8/evQdJdtZ1wP9198zsXHp2Zu+bXTbuJutubiQhQS4CYYSCUCiWWIpAKVAiiiAoGgrFC6J/WFqRYIU7ISAKXjFVIkIJmIkggigxiGbNhk12N8kmy05m5z7T1/eP9915d2bn2jvTl2c+n6pT3dN9+vTznD7n6Zlff/sZAABgbQlgAgBA88hkMtHd3R3d3d2xa9euOfeNjo7G3/3d38X4+PiCj927d289mtjUhLEBAGAD8cFDbXwwBAAAAABrSy0MAICNZHp6Osrl8rovlUplXba7a9euKJVKMT09fUHfJicnG7BHm4swNgAAAAAAAOA/agG0gHqF2L0nEJHWcZBSXwBoPX/+538eH/vYxxrdjFXJZrOxffv22LFjR3R2dkZPT0/s3Lkzcrlc5HK5aG9vj2c961nxvOc9Lzo6Ohrd3IYTxgYAWlJqBRMzgAApSm2srhfvCQAAQKP4ewSAc7wn1MZ/WVw9+wyan8974OLddNNNERGzs0yXSqUolUqz1xe6PH+9+betdL1qtVpzmyuVSpw+fTpOnz4dfX19sW3btti2bVv09fXNhrSvvfZaQez/T+ZidnaKBgYG7BAAaAGp/cGnAATNTTEYAAAAANaWmhsAtIbBwcFMo9vAisg9coFKpbJg2HuxcPf5t09PT8ejjz4ax48fjxMnTsSJEydidHT0gufIZrPxmc98Jvr7+5dqSvLjiJmxAYCWpHgKRPjABgAAAABalZob1C6l2nhKfQGAZpPNZlc0c/XZs2fj5S9/eU3PUalU4syZM8uFsZMnjA0AtCQzYwMR9Tt3FIMBAAAAAAAASFEms7qJq2+77ba44oorYtOmTat+bKqEsQGAliSwCLVJ7YsMqUnt9TFWAwAAALAYEyAAAEBz6Ovri7vvvjtOnToVr371q5dd/+677477778/Ojs7o6urK170ohdFLperQ0ubV6ZarTa6DU1lYGDADgEAAObwwRAAAAAAAMsx4QaQosHBQdPetga5Ry5apVKJv/7rv45vf/vb0dHRER0dHRERMTY2FmNjYzE+Ph6jo6MxMjISlUpl9nG33XZbXH/99UttOvlxRBh7HmFsAGgNilkAAAAAAABsRClNIJJSXyBVwtgtQ+6RunnkkUfiZ37mZ2LPnj3xMz/zM3HzzTdHJrPkUJH8ONLW6AYAAAAAAAAAAAAAAM3te9/7XvzDP/xDRET87M/+bLzwhS9scIuagzA2ANCSfHsdamNWeQAAAAAAWB+p1eABAM6pVqvx5JNPxite8YrZ2+66666Ynp6Ol770pcvNjJ08YWwAANhAhJcBAAAAAAAAYOMpFArxxS9+MUZGRmJ6ejqmp6djZmbmguszMzMxNTUVMzMzc65Xq9U52/uf//mf+J//+Z/Yu3dvXH/99Q3qVXPIzN85G93AwIAdAgAtILWZBQRkAQAAANgo6lXbq1fNLbX+pMRrUxv7rTap7bfU+pOa1D4nS0lqx7SxgIiIwcHBjT3dbeuQe2RZDz74YLzxjW+Mcrl80dvavHlz/PRP/3Ts2LEjnv/85y83M3by44gw9jzC2AAApCy1Aq3iHAAAAAAAG01KAdmU+gKpEsZuGXKPLOrUqVPx6le/ek22lcvlorOzM/r6+uIP/uAP4tJLL13Jw5IfR9oa3QAAgFoIlEJtHGsAAABAo6UWukqtPynx2lBPqR1vqfWH2tTjOHBMNzf7DSANbW2riwp3dXXF9u3bY+vWrbFt27bZy23btkVfX19ERPT19a00iL0hmBl7HjNjA0BrEMYGAAAAAABgI0opIJtSXyBVZsZuGXKPRKVSiVKpFOVyeXY59/O5y5mZmTh16lScPHkyTp48GY8++miMjIzE6OhojIyMxGoyxe9///vjqquuWsmqyY8jZsYGAFqSggnUJrUvMtSLMQcAAAAA1pYAJilSg8fYBsD5HnjggfiFX/iFi9pGJpOJTCYz5/r8n8+FsNdjcub29vbI5/PR2dkZmzZtiq6urujs7IxrrrkmDh8+vObP16rMjD2PmbEBoDWkVsxSMAEAAACg0VKruQGkqF6fJ3hPAOA8yc9omwi5xyb0F3/xF/GRj3yk0c1Y1O/93u9Fd3d35HK52aWtrS1yuVy0t7fH1q1bo6enZzb8fRGSH0eEsS9khwDJEfIkRakVAZ2n1Etq505qjAUAAAAAACwnpdmXU+oLpGpwcDD5EGUi5B6b2LmZq5daisVilMvlKBaLy6577733xj333HPR7Xr1q18d+Xw+2tvbo62tLdrb2+dcX+7y3NLX17fcUyU/jrQ1ugHNxi9fAACkzO+7AAAAAABAs/C5BQAbQTabjY6Ojujo6FiT7T3jGc9YURj7/MB0LpebE/wuFovx6U9/ek3a8/73vz+uuuqqNdlWqxLGBgAAWIaZOQAAAABgbam5ARHGAgCoxSWXXBJ33313zY8vFApx6623xte//vWYmpqKUqlU03ZyuVw85znPiYMHD9bcllQIYwMAACxDkRYAAADWTmqhq9T6kxKvTXNLbb+ldryl1h9qU6/joB4c07Wx3wDS9Nhjj8UXv/jFVT+ura0t9u3bF93d3dHV1RXf/e5349SpUzE2Nhbbtm1bh5a2jky1Wm10G5rKwMCAHQIAAMyh2AgAAAAAwHLUklfPPoPmNzg4mGl0G1gRuUdWZWxsLKanp2NqamrJy/Hx8Th+/HgcO3YsTp06teC27rzzzjhw4MBST5f8OGJmbACgJaX0TfwIBSAgTamN1fXiPQEAAAAA2CjUQwGgMXp7e6O3t3fJdYaHh+O1r31tjI2Nzbl9165dsX///rjpppvih37oh6Krq2s9m9oShLEBgJakMAPQ/IzVAAAAACzGbLhQu5TOn5T6AgCp6e3tjZ/6qZ+Kb3/72/F///d/MTIyEhERZ86cid7e3vjf//3fqFarcfPNN0db28aOI2eqVbPTn29gYMAOAYAWkNpsqwpAAAAAAAAAbDTC2ND8BgcHM41uAysi95ioarUalUolyuXykkupVFqT+xd7rpmZmfj2t78dR48evaCN733ve+O6665bqhvJjyMbO4oOAAAAAAAAANSdACYpMpkQAHC+r3zlK3HXXXdddJC6GbS1tcXu3bvjWc96VuzZs2d22bdvXzzlKU9pdPMaThgbAGhJij8AAAAAANC61PlJUb2O69RC3wCQqmKxGDMzMxfMNn3u5/Mvzy3VanXO0ixKpVI88sgj8cgjjyy6zkc/+tE4ePBgHVvVPISxAQAAlmGWHiBFPrSrjbGaekrtPHX+APVkDAUAaA1+zwEgZS94wQviBS94wUVto1qtLhjePv9yqaD3Qustts5jjz0Wn/jEJ2pqZ29vb2zbtu2i+trKhLEBAGADSe3D6HpRDAZSZGyD5uc8BaidMRQAAABIQSaTiVwuF7lcbs23PTMzE5/97GdjeHg4xsfHY2xsbFWPv/322+Oaa65Z83a1ImFsAKAlpRYo9QEhNLfUxpx6MbYBAAAAsBj/jQ6IMBYAQCPdd9998f73v3/B+7LZbOzYsSN27do1e7l9+/Zob2+PYrEYu3fvFsQ+jzA2AAAAAAAAAFBXgpGkyMQeAMByisVilMvlKJVKUS6XV70s97jVbPfkyZOLtrNSqcQTTzwRTzzxxKLr/Pmf/3ns3bt3PXZTy8lUq9VGt6GpDAwM2CEAAAAAAABsOAJkAM2vXiF27wkAnCfT6AawInKPLeCv//qv44Mf/GCjm7Fm3va2t0U+n49CoRBbt26NZzzjGYutmvw4Iow9jzA2AAAAAAAAAADNql5h+XqE/1PqC6RqcHAw+RBlIuQeW8DJkyfj7rvvnjM7daVSWXDW6tXevtL7z19vrd16661x4403LnRX8uNIW6MbAMD6S+0PWN/Er40CAxBhDKW+vPcAAAAAAKw9tVcAaE379u2L17zmNY1uRkREVKvVeOihh+L1r3/9itbv6uqKLVu2xObNm6Ojo2N2aW9vj46Ojjhw4EA87Wn6dULwAAAgAElEQVRPW+dWNy9hbIANILU/xlPrD7VJLVDquAYAAAAAAGAlUpuMCwCov0wmE5dddlm8973vjbvuuiu++c1vxtTUVFSrC0+yPjU1FVNTU/H4449HV1dX5PP56Onpid7e3njWs54VL3nJSyKbzda5F80js9iO26gGBgbsEAAAYA6FbQAAAAAAmoWaNVBPg4ODmUa3gRWRe+SiVSqVmJ6ejomJiRgfH4+JiYmYnJyM8fHxOH78eDz00ENx4sSJOHHixIKh7Q996ENx+PDhhTad/DhiZmwAAKBlpTZLPgAAAADAUoRwSU1qx3Rq/QFgY8lms9Hd3R3d3d2xY8eO2dvPnj0bv//7v3/B+tu3b4/t27fH+Ph47NixI3bu3FnP5jYVYWwAoCWlFsBUMIHapFY8BQAAAABYis8TSE1qx3Rq/QFgYyuVSvGZz3wmjh07tuD9v/M7vxNPfepT69yq5iSMDQAAG4hQcW0UTwEAAAAAYO2ZSRoAmtd3v/vd+NCHPjT78zOf+cy46qqrYufOnbFz505B7PMIYwMAwAai2Eg9Cf/XxnkKAAAAAAAANNru3bvj4MGD8eCDD0ZExDe+8Y347ne/G/v27Ys9e/bEkSNH4pJLLok9e/bE7t27o6+vr8EtbhxhbACgJQmqATQ/YzUAAAAAAABA6/mv//qveOihh+LHfuzHYnh4OO6999741re+FWfOnIkzZ87Evffee8Fj3ve+98XVV1/dgNY2njA2ANCSUpttVWARmpt/k1ib1MbqekntOAAAAAAAAABaxxNPPBFve9vbll3v2muvjUKhEGNjY3HZZZfF/v37179xTUoYGwAAYBnCsbWx3wAAAAAAAACWVq1Wo1wuR6VSiXK5PHv93M/1uv38ywMHDsRDDz20ZLt//Md/PJ7//OfXaS81N2FsAAAAAAAAAAC4SP5b4OqZ1AOAVvb3f//38fnPf/6CYPP80PNyt1er1UZ3ZVltbW3R1tYWuVwuqtVqbNq0Kfbu3dvoZjUNYWwAAAAAAAAAALhI9QoWpxT6rldfhL4BWA8dHR3R3d29ogD2SmerLpfLje7WgkqlUpRKpdmfJycnG9ia5iOMDQAAsAzFYAAAAAAAlqOWDAAby0te8pJ4yUtesubbPRfWXu0M2+ffXi6Xo1QqRbFYjGKxOOf6uZ/P3VYqlaJQKFyw/rnbzl1/8skn49ixY7PtfMMb3hCbN2+OXbt2xdOf/vR4/etfH7lcbs33RysQxgYAWpIiE1BPxhwAAAAAAJaT2szYauMAMNd9990X3/zmN+cEn6vV6gWB6IV+Xsk6Cz2m1sdXq9W67JPR0dEYHR2No0ePxo033hg33nhjXZ632QhjAwAtKaV/vxahmEX9OHdqo7BNPaV2ngIAAK3D36UA0Bq8ZwNAY/zzP/9z/P3f/32jm1F32Ww2urq64jnPeU688IUvjK6urshms7NLqVSKTCYTV111VaOb2jDC2AAAsIEo0ELzc54CAAAAAEsxgQgANMbb3va2+JVf+ZUFZ6Iul8uzy/z763H7xT5usf6cuz4yMhL/9E//FP/yL/8SH/jAB+LAgQONfjmaijA2AAAAAAAAAAAAACwjk8lELpeLXC4X7e3tjW7OqlSr1Thy5EgMDw/H5ORkTE5OxtTU1KLXZ2ZmZq9PTExERMT09HQ8+uijwtjzCGMDANCS6jXrA9RTase1WVMAAAAAAAAAmsORI0fiTW9600Vv54477oh/+7d/i7e+9a2xadOmNWhZ6xPGBgCgJQl5AgAAAAAAzaReE274jAQAqMUVV1wR73vf+2J4eDimp6djampqwcvh4eH4xje+seh2jh8/HsePH48f/dEfjcOHD9exB81LGBsAAGAZCugAAADAYtQNoDbOHaid8wcAqEUmk4mrr7562fVGRkbirW99a5w4cWLRdXbs2BGbN29ey+a1NGFsAFiEIgaQonqNbakxVgMAAACLUTeA2jh3SFG9jmu1fgBgMffdd18MDQ1FuVyes8zMzCw6E/bU1NQF16emphbc/ubNm2P79u2xe/fuaGsTQT4nU61WG92GpjIwMGCHAACQLAVa6skHagAAACwktYkwUutPSrw21FNqx1tqtWT7rXml9tqk9p5gvxERMTg4mGl0G1gRuUfi3//93+Md73jHmm0vk8nEJZdcEnv27IlLLrkkdu/eHT09PdHR0RE9PT3x7Gc/O9rb21e0qTVrVJMSxp5HGBsAWkNqxSwFBgAAAAAAAFYipYBsSn2BVAljtwy5R6JUKsXHP/7xePTRRyOXy80u2Wx29rJSqUShUJhdisXinJ8XWxby/Oc/P173utfFvn37IpfLLdW05McRc4QDAAAsQzEYAAAAAIBmoZYMACykra0t3vCGN6zpNmdmZmJ0dDSGh4djaGgohoaG4vjx4/G3f/u3cc8998Q999wzu+6nP/3puOSSS9b0+VuFMDYAAGwgqc0qXy8K2wAAAABAMzBxBBGOAwAgYmRkJKampqJQKMTMzMzs5bnr829f6LaZmZkoFosL3jY9PR3j4+OLzoq9kGKxuI49bm6ZatXs9OcbGBiwQwAAAGgYX5poXql9+ORYIyK94zo1zlOojbGNiPTGUMc1AJAqwXJofoODg5lGt4EVkXvcQP71X/81fuu3fmvdtp/JZCKfz0dbW1vs2bMnXvziF0dvb+8FS09PT2Sz2RVtct0a2ySEsecRxgaA1uADNahNaudOvThHAQAAAABoFikFmFPqC6RKGLtlyD1uIOPj4/HP//zPszNjX+xSqVSWfL4777wzDhw4cDFNTn4cEcaeRxgboPn5g5yI9AKljjfqJbVzh+ZmbAMAAAAAAGhtwtgtQ+6RmpXL5SgUCnHixIl44xvfeMH9V1xxRXzf931f/OIv/mL09fXV8hTJjyNtjW4AAKyWYBcA53hPAAAAAABgo0lp8qqU+gJA66pWq1GpVBZdyuXyiu8rl8uz21vovkqlEtVqddH71qINK23fQvdffvnl8eijj8b09PTs/jly5EgcOXIknvvc58Zzn/vcBr5SzcvM2POYGRsAgJSZGZt6UtyG5uY9oTbGNuoptfPU+QPUkzG0NqntN4AUeU8AoAGSn9E2EXKPF+H1r399HDt2rNHNWLVsNjtnyeVyF9y2kvtW8tjOzs5485vfHFu3bq2lqcmPI8LY8whjA0BrSK0IKJRAvaR27tDcjG0AAACtRd0AAABYQPIhykTIPV6EL3zhC/GHf/iHDW1DW1tbtLe3zy7n/9zW1hYdHR0X3HYuKH3+cn6w+vzLla7T1tYWvb290d/fH/39/dHX1xddXV2RyVzUUJD8OCKMPY8wNpCi1P61kw8EaiMQB0QYQ2tlDAUAAAAAoFmk9PlvSn2BVA0ODiYfokyE3OMaq1arMTo6GkNDQ3HmzJmYmpqKcrkclUplwcv511e7znLbXsk2l9p2uVxe0/2zf//+uP322yOfz69k9eTHkbZGNwCA9ZfaH5ap9YfapBYodVxTL441AAAAAAAAAFhaJpOJvr6+6Ovri8suu6zRzVkTlUolKpVKnDlzJv7oj/4oTp8+HePj4zE2NhaVSmVV23r44YfjzJkzKw1jJ08YGwAAAAAAAAAAAAASls1mI5vNRnt7e+Ryudi0aVOUy+WoVqsxNTUVxWJxxdvp7e2N2267LQ4fPhyXX355HDx4MC6//PJ17kHzylSrZqc/38DAgB0CAAAAAAAAAOuoXv8B038LhOZmLIDmNzg4mGl0G1gRuUcuWrFYjMnJyZiamorJycmYnJyMr371q3Hs2LEYGhqKxx57LKanpxd9/G233RbXX3/9QnclP46YGRsAaEn1KszUiwIQ9ZLauVMvzlEAAAAAWFtqblA7AWYAYD3kcrnIZrNRLpejWCzGI488En/1V381Z53t27dHX19f9PX1RX9/f+Tz+Th79mzs3Lkzrrzyyga1vPGEsQEAAAAAAAAAoEUISQMAF2NkZCTe/va3x9GjR+PgwYMxMTERY2NjMTExEdXq4pOs33nnnXHgwIE6trR1CGMDAMAGokALAAAANFpqs3mm1p+UeG2op9SOt9T6kxr/BXP1HNO1sd8A0jQ1NRVHjx6NiIgHH3zwgvv7+vpi9+7ds8uuXbvikksuiZmZmThx4kR0dXVFb29vdHZ21rvpTSuzVIp9IxoYGLBDAKAFpFZkUmCA5qbYCAAAAAAAa0/9HZrf4OBgptFtYEVWnXssl8vx4IMPRrlcjoiISqUS1Wp1yaVSqTR83WZqy/nrNrotq31MoVCI6enp1R42c9xxxx1x+eWXr2TV5McRM2PPk1qwCyDCH5YAcLG8l1JP/i4FAAAAAFhb6q4AF/rMZz4TH/zgBxvdDJpANpuNXC4X2Wx2don4f2fQPhfubmtri/b29mhvb49cLhdXXnll7Nmzp5HNbipmxp7HzNgA0BpSK5gIelIvqZ079eIcBQAAAACgWaQ0m3RKfYFUmRm7Zaw69zgzMxPf+ta3Fp1BeaEZlpebdXmlszKvx7aXur+W9lzsti9mX6zFtuttx44d8eEPfzi2bNmy0N3JjyNmxgYAWpKCCdTGuQMAAAAAAADApk2b4tnPfnajm8E6uZig9/j4eLz+9a+PUqm04uf73ve+F2fOnFksjJ08YWwAAFqSGZ6JEC4HAAAAAAAAgPkymUzkcrmIiNnLlero6FgwiH3NNdfEDTfcEFdccUVs2bIlent7I5/PRz6fX/VzpEYYGwBoSakFcQVKV88+q01q5w4AAAAAAGw0PiMBANZTPp+Pu+++O/7v//4vvvSlL8X9998fDz74YHznO9+J73znO5HNZqOvry96e3tnl6uvvjpe9apXbdhQtjA2ANCSFJmgNs4dAAAAAABobfWaeMVnCgCwMRWLxbjtttviq1/96mzY+rLLLov7778/IiIqlUoMDw/H8PDw7GO+/vWvx5VXXhk33nhjo5rdUMLYAACwgZgZm3pSqAcAAAAAAABoXtVqNWZmZmJiYmJ2OXnyZHz+85+PiIixsbELHvPiF784Lr300ujt7Y18Ph9tbW2Rz+fjhhtuqHfzm4YwNgDQklILlAosAgAAAACwkZjZlxSl9vkVAJCmxx9/PH7zN38zzpw5ExMTE1Eul1f1+Je97GVx+eWXR1dX1zq1sPUIYwMAwAbigwcAAAAAoBmoVZKieh3XQt8AwMXo7u6OK6+8MoaHh2NycjImJydjampqzvWlvOUtb4mIiA9/+MNx6NChejS56QljAwDABpJagTa1wrYPoAAAAAAAAABYT5s3b45bbrklSqVSfOADH4ivfe1rMT09HVNTU1EoFFa0jR/8wR+MSy+9dJ1b2joy1Wq10W1oKgMDA3YIAAAAAAAArJPUvvScWn9S4rWhnlI73lLrT72kNiEKq+eYrk1q+y01g4ODmUa3gRWRe2TVTpw4Ea997WtXtO6ePXuiv78/uru7o6enJ7Zs2RKvec1rYsuWLSt5ePLjiDD2PMLYANAaUitmKTAAAAAAAACwEikFZFPqC6RKGLtlyD1ygUqlEoVCIQqFQszMzFxwfWZmJk6dOhXDw8MxPDwcTz755JzrU1NTS27/t3/7t+MFL3jBSpqS/DjS1ugGAAAA1EqRtrml9sWZenG8AQAAqUvt7/nU+pMSrw31lNrxllp/qE1KNV7HdG3sN4DWdOTIkfjFX/zFi97Opk2boqOjY/by/Ov5fD6uuuqqNWhtGsyMPY+ZsYEU+QOJFKVU/Ilw/tQitWMAUmRsAwAAAABgKT7LhuZnZuyWIffIrJGRkXjTm94Ujz322IrW37ZtW+zYsSN27tw5u2zfvj22b98e27Zti23btsWmTZsupknJjyNmxgbYAPxhCaTI2AbNz5cmamN8AwAAADYCAUyonfMHAFhKX19ffOpTn5r9uVKpxJNPPhmPPfZYPP7443H27NkYGRmJkZGROdfvvffeGBsbW3Cbvb29sXXr1tmA9q5du+IVr3hF5PP5enWrqQljAwAALENhuzap9QcAAACAtaN2BLVz/gAAq5HNZmdnur722muXXLdcLs+GtIeGhuYsR48ejf/8z/+cXXf//v3xghe8YL2b3xKEsQEAYANJbabiehWcFbYBAAAAAGgWJhABANZLLpeLrVu3xtatW+Oyyy6LiIjx8fF485vfHCdOnJhdb9u2bXHw4MFGNbPpCGMDAC1J8Qdq49wBAAAAAJqBMCkpSm1CFACAiIiOjo644YYbIpfLxfHjx6NSqcTQ0FA89NBDcemllza6eU0hU61WG92GpjIwMGCHAEALSK2YpRgMAAAAAADASqT0ZYaU+gKpGhwczDS6DayI3CPrrlgsxtDQUHzpS1+Kj33sY3Pue+Yznxm/+7u/G52dnQs9NPlxxMzYAEBLUjABAAAAAAAAAKBVVavVqFQqUS6X5yylUmnB6wv9vJL1SqXSnOdZbvsTExMLLoVCYdG+fOMb34gHHnggrr322jruweYhjA0AABtIarPK09x8cQYAAACg9aRWQ1SjgubmHAUgJZ/73OfirrvuWlVYull0dHRER0dHbNq0KfL5fOTz+ejv74+9e/dGT09PdHd3Rz6fj56engV/zufzsXnz5kZ3o2GEsQGAlqQYDETU79zxbxIBAAAA2ChSq7kBzU39HYCU5PP52L59+4Jh7OWWhWa8rqdCoRCFQiHGx8djaGgostls/Mmf/ElcffXVkclk6tqWVpSpVquNbkNTGRgYsEMAAEiWDzioJ8VtAAAAAIC1l1KAOaW+QKoGBwelMFuD3GNiqtVqVCqVmoPcq73v/Oe6//7742tf+1pERLS3t8e2bdti8+bN0dbWNrtcffXV8drXvjZyudxKupP8OGJmbACgJaUWKFUAol4cawAAAAAAAADQ3DKZTORyuZWGndfEzMxM/N7v/d5sEDsiolgsxuOPPx6PP/74nHW/9a1vxbOe9ay46qqr6ta+ZiaMDQC0JIFSqE1qX2SguRmrAQAAAFiM2XABAKC5DA8Pzwliz/e6170u9u/fH11dXdHf3x+HDh2qY+uamzA2ANCSUguUKgavXmrHAM3NOQoAAAAAa0vNDQAAmsP3vve9eMUrXrHseldeeWUcPnw4+vr66tCq1iKMDQBAS1KoBwAAAAAAmomJZACAVtTT0xOXX355fPe7311yvXe84x0REXHLLbfEi170oujo6KhH81qCMDYAAAAAAAAAUFf1Cq2a2IMUOa4BgLXU3d0dd9xxxwW3l8vlGB0djbNnz8bIyEg88MAD8cEPfjBuvfXW+OM//uPYsWNH9Pf3x8TERBw6dChuueWW6O7ubkAPGk8YGwBoSYpMAAAAAADQutT5SVG9jmtfZgCAdFSr1ahUKlGpVKJcLke5XJ69fv5ti923knUWWm+p51tqm4cPH46jR49GpVKJ06dPx+nTpyMi4tFHH42Xv/zl8dSnPrXBe7QxhLEBgJaU2r95U8wCAAAAAAAAAGhdn/3sZ+Pv/u7vVh1ybgW5XC7a29ujo6MjtmzZEps2bYr9+/fHoUOH4vDhw3Ho0KHYunVro5vZMMLYAAAAAAAAAAAAAHARtmzZEnv37l00fF3rbNSVSiVKpVJD+3auTdPT07O3vetd74pDhw41sFXNQxgbAAAAAAAAAAAuUmr/2RUAWJ3nPve58dznPnfdtl+pVFYc3l7LdcrlckxMTMSxY8fm/L6zZ8+edetrqxHGBgAAWEa9CugDAwN1eR4AAAAAANZevWq8KYW+1cUBYOWy2Wxks9loa1uf6O/MzEy8853vjG9961srWv/hhx+Oa665Zl3a0mqEsQGAlqQwA7VJqUCbotReH2M1AAAAAIsxAQIQYSwAgItRqVSiVCpFoVCIUqkUxWLxgmWh+xd7zBNPPLGiIPa73/3uOHToUOzevbsOvWwNwtgAALCBKDZC80stlJ+S1MZQxxoR6R3XqXGeQm2MbUSkN4Y6roEUGdsAAGB1/vM//zNuueWWddt+JpOJjo6OKJVKUalUFl3vyiuvjB07dqxbO1qRMDYAAGwgqX0YTXPzgVpt7DfqxbEGzc95ClA7YyhA8zMbLilSgwcA1tPevXsjl8tFuVxel+3/5V/+ZezcuXNdtp06YWwAoCWlVsxSDAYAAAAAAAAAYDG7d++OL33pSytev1qtRqlUipmZmTnLf//3f8dtt912wfqvfe1ro7e3N3p7eyOfz89e7+3tjc2bN8fmzZujr68v+vv7o7+/P/r6+qK3tzdyudxadrMlCWMDAMAGIvhfG7P0AAAAAMDaUgsDAID1lclkor29Pdrb2yOfz8/efuDAgfi+7/u+GBsbi5mZmRgdHY3x8fEYGxubs5w6dSoeeOCBGBsbi+np6UWf4/yQ9vbt2+MNb3hD7N69u17dbArC2AAAAMvwwRAAAAAAAADNJLX/Jg3U15VXXhmjo6MXBLDHx8cXDGcPDw/H448/HtVqdc52qtVqjIyMxMjISAwNDcXIyEhMTEw0qFeNI4wNALQkwUiojaJMbYw5QIq8J9TGewL1lNp56vwB6skYCgA0Qr3es1P7XQeojTEHqNWJEyfiDW94QxQKhRU/JpfLxSWXXBL79u2La6+9Nnbv3j07G3Z/f39s3rw52tvb17HVzS0zP6W+0Q0MDNghANACUvuDzwdqAAAAAAAArES9Pierx+dXPvOD5jc4OJhpdBtYEblHVmxmZiY++9nPxtDQUExMTCy6TE5OXjATdkREJpOJffv2xeHDh+OKK66Il770pdHZ2bnUUyY/jpgZGwBoSQoZQD2lVNgGAAAAAICNRv0dAP5/mzZtip/4iZ9Ydr1KpRJTU1NzAtqnT5+Or371qzE4OBgnTpyIL37xi9HX1xcvfOEL69Dy5iWMDQAAAAAAAAAAAABroFqtRqVSiXK5HOVyec71+T/Pv28l663FYxbbxmLrFQqFOH36dAwNDc3pa3d3d+zZs6dBe7p5ZBaaQnwjGxgYsEMAoAX4l2UAzS+1sbpevCcAAACN4u84gOZXr9qR9wQAzpNpdANYEbnHBvrEJz4Rf/VXfzUnwJyabDYbu3fvjqc85Smzy759+6K/vz9yuVxERExNTUVnZ2dcdtll8x+e/DgijD2PMDYAAAAAAAAAAKy/egX/TYIBtRscHEw+RJkIuccGuu++++IrX/nK7CzSlUpldjl/dumFbl9unfm3rfSxjQyE33rrrXHjjTeef1Py40hboxsAAFCL1GZkUACiXlI7d1JjLAAAAAAAYDkCzADQXK677rq47rrrll3v+PHj8Uu/9EsxOTkZ2Wx2zpLJZOb8nMvl5tyWyWQil8tFe3t7ZDKZKJVKUSqVolwuR6lUimw2G6VSKeo5QXNbW1t0dXVFV1dXdHZ2RldXVxw6dCie+tSn1q0NzcLM2POYGRsAAAAAAICNyJe4AZpfvcKx3hMAOE/yM9omQu6xBfzN3/xNfOADH2jY83d2dkY+n4/u7u7I5/PR09MTPT09s9fPv8zn87F169bYunVrbNmyJdraLmru5+THEWHseYSxAaA1pFYENLMAAAAAAABAa/P51eqZ5Rua3+DgYPIhykTIPbaIcrkchUIhCoVCFIvF2ctz1+ffvtDl/Mcsdv+56zMzMzE9PT17WalULqoPn/rUp2LPnj2reUjy44gw9jzC2AAAAAAAALB+UgtdpdaflHhtmltqr4/+1Mb5U5vUQt8pSe2YNhYQIYzdQuQeWZFqtRrFYjFmZmbiwQcfjF/91V9d9TZ+7ud+Lnp7e6NQKMSOHTvipptuikxmyaEi+XFEGHseYWwAAGgdioAAAAAAAGw0KdXGU+oLpEoYu2XIPTZAtVqNSqWy5OW5Zbn1zl9/NetezLYLhUL88R//cVxsjvi2226L66+/fqlVkh9H2hrdAACAWqT2jX8FIKiNc6e5pTZW14vjGgAAANgIBDABADaG8fHx+LM/+7MYHx+PSqUSEbHi8HAt6y8WUF6PAPRGsHnz5ujr64u+vr7YvHlzdHR0zC7t7e1x2WWXxXXXXdfoZjacMDYAAADrwgddtRFiBwAAAFg7qdVa6lVzS22/UZuUjoOU+gLQasbGxuJrX/taTExMrCr8fLGzNbO4bDYbuVxu9jKXy82+PhERH//4x6O/vz96e3sjl8s1uLWtIeOAnWtgYMAOAQAAAAAAgHWS2my4qfUnJV4b6im14y21/qRGsLh5pXZMGwuIiBgcHMw0ug2sSHK5x/mzUNc6I/bFXEasflbutZ61ez37fO76qVOn4tixY7P7fs+ePbFr167I5/PR3d0dPT090dPTE/l8Pnp6emZvy+fz0d/fH3v27Fnu5Ux+HBHGnkcYGwBaQ2pFJgUGAAAAAAAANhphX2h+wtgtQ+6Rmk1PT8ftt98eDz/8cOzevTsmJiYuWCYnJxedrfy2226L66+/fqmnSH4caWt0AwAAAAAAAAAAgJURYAYA1lJnZ2e8/e1vX3KdSqUSExMTcfvtt8eXv/zlqFQqsXfv3viRH/mRuOaaa+rU0uYljA0AALAMhW0AAAAAAAAAUlGtVqNYLMbU1FRMT08veDn/ttOnT8cXv/jF2W285z3viZ07dzawF81DGBsAAAAAAACom9S+9Jxaf1LitaGeUjveUusPtanXcVAPjuna2G8AaXn00Ufj13/912N4eDimpqaiUqlc1PaKxeIataz1CWMDAAAAAAAAdZNa2Ca1/qTEa0M9pXa8pdaf1KT0+gj7Njf7DSAt+Xw+nv70p8fw8PCSs2GXy+UVbW9kZCT27t27zq1uDcLYAACwgaQ0i0VE/YqAio0AAAAAADSLlALM6u8AUD99fX3xy7/8y4veXyqV4gtf+EI89NBD8eijj8bJkyfjscceW3Ddpz3taXHw4MH1amrLEcYGAABgXaQW/q8XHz4AAAAAABtFSsFyAGh1Z86cidtvvz0KhcKi6+zcuTNe+MIXxlZ1gj4AACAASURBVKWXXhpHjhyJPXv2xNatWyObzdaxpc0nU61WG92GpjIwMGCHAEALSC3gpwAEzU0xGAAAAACA5fj8CkjR4OBgptFtYEXkHlkT4+PjceLEiThx4kQcP3589vojjzyy7GP/9E//NC699NKF7kp+HDEzNgDQkhR/oDapFYJTk9rrY6wGAAAAAGApJkMBgObxve99L17xilfU/PiOjo41bE1rEcYGAFqSwCIQ4dwBAAAAAAAAgIVUKpUol8sXXJ6/nH/f9PR0bNu2LYaGhpbd9tatW6O/vz9uuOGGeOMb3xi5XK4OPWpewtgAALCBCC8DAAAAAMD6UIMHACIi7r///hgcHLwg8LzQz6sNTC/2+IV+Xk9PPvlkPPnkk3Hs2LF43vOeF9dee+26Pl+zE8YGAABYhn+TCAAAwEaQ2n+jA0hRvWqI3hNIjWMagHq6995746677poNR7eytra22LZtW+zatSt27Ngx53Lz5s3R1dUVl112WaOb2XCZarXa6DY0lYGBATsEAACYQxgbAAAAANaWmhsQYSyAVjA4OJhpdBtYEbnHJlWtVi+YvbpUKl0w+/XF3rfcstx2F5qRu1wuR6FQiOHh4XjiiScW7eOdd94ZBw4cWGo3JD+OmBkbAGhJqX17XQEIaqNICwAAAADARqM2DgCtI5PJRC6Xi1wu1+im1Ozs2bPx8pe/fMH7tm/fHlu2bKlzi5qPMDYAANCyFIIBAAAAoDWp7ZGi1CYTqgdjAQA0p2q1GpOTkzEyMhJnz56NK664Io4cOTJnnfe+971x3XXXNaiFzUUYGwAAaFlm/wAAAAAAoFnUq5acUuhbnR8AGm98fDw+9KEPxeOPPx5nz56NkZGRGBkZiWKxuOD6T33qU+Pmm2+Oa6+9ts4tbV7C2AAAQMtSPAWoXUof2tWT9x7qKbXz1PkD1JMxFABImd8NAIC1NDMzE9/5znfi+PHjy667b9++eOc73xm7d++uQ8tahzA2AABsIKl9GE1z84EANDfnKDQ/5ylA7YyhAEDKzCYNAKylYrEYp0+fXtG6o6OjsWnTpnVuUesRxgYAWpLiD1BPxhwAAAAAAAAAmsHU1FTcc889MTU1FaVSKYrFYhSLxSgUCrPXz//53Drz7z932+TkZExNTa3ouUdGRuL06dOxZcuWde5laxHGBgBaUmqz+wp6QnNLbcypF2MbAAAAC0ltNs/U+pMSrw31pIZYm9TOn9SOg5T64z2hNvYbQHP65je/GX/4h3/YsOffu3dvw567WWWq1Wqj29BUBgYG7BAAaAEpFX8iFBgAAAAAAABYmZQCsin1Beqtjp+ZZ+r1RFwUuccN5vTp0zE9Pb3gTNiLzYx98uTJ+Id/+IeLfu5PfvKTsW/fvtU8JPlxxMzYAAAAy1AMBgAAgLWT2t/ZqfUnJV4b6im14y21/lCblCZHckzXxn5rbqm9JwCrs3PnzlU/5p577rkgjN3T0xMHDx6M7//+749LL700uru7o7u7O7q6umavn/u5s7MzMpnkc9U1MTP2PGbGBoDWkNoffAoM1Etq5w7NzdgGAAAAALD2UgrIptQXSNXg4KDkZWuQeySq1WqUy+VFl+Hh4bjzzjvj4YcfjtOnTy+4jUwmEwcPHoybb745fvzHf3ytwtfJjyNmxgbYAPwBCwAXx3scAAAAAAAAAAt54IEH4i1veUtUq9U4f4Lk5X5uRtVqNY4ePRpHjx6NH/iBH4hLL7200U1qCcLYABuAABkAAAAAAMvxH7UAml+9PvfznkBEWsdBSn0BoPl8+ctfjkKh0OhmrLnf//3fj2w2G7lcbs7luevT09Nx7NixmJiYiK6urvjEJz4RO3fubHSzGyLT7Cn7ehsYGLBDAKAFpFYw8aUJAAAAAABgOf4jLqlxTEPzGxwczDS6DayI3GMDVavVmJmZiYiISqUSlUolyuVylMvl2Z8Xuu3c9fmXS9223DbnP3Z6ejomJiZiamoqJicn51yef71SqVz0fvj4xz8e+/fvX+iu5McRM2MDANCSUgvkQ4oUtwEAAABYjABmbVLrD7Vx/gARPi+FZpLJZKKzs7PRzbjAkSNH4i1veUuUSqU133ZPT08cOnQorrvuuvjhH/7h2L59+5o/RysxM/Y8ZsYGgNaQ2h+WilkAAAAAAACshDA2UE9mxm4Zco9cYGpqKj73uc/F6OhoFAqFKBQKMTMzM+dyqdtmZmaiXC6v6LluuummeOc73xmbNm1a6O7kxxFh7HmEsQEAgPkUtgEAAAAAYO2pv0PzE8ZuGXKPrItyuRyFQiFGRkbi4Ycfnl2OHTsWR48enbPurbfeGjfeeONCm0l+HGlrdAMAAGphZmygnpyjAAAAAAA0CwFmAKAeJiYm4id+4idienr6gvvy+Xxcd911cfjw4dll7969DWhlcxDGBgAAAAAAAGhy9QjeCd0BAABsLA899FCcOnUqSqVSFIvFGB8fj7GxsRgbG4vTp08vGMR+3/veF1dffXUDWtu8hLEBgJbkQwGgnswyAqQotf80Ui/GauoptfPU+QPUkzGUFDkOSI2aGwAANNbDDz8cP/uzP7vqx/3jP/5jfOMb34iOjo6YmpqKycnJ2LVrV/zkT/5k5HK5dWhp88tUq9VGt6GpDAwM2CEAAAAAAAAAADQlX2YAIur6JdRMvZ6IiyL3yKqVy+X41Kc+Ff/7v/8b7e3t0dbWFu3t7ZHL5aJUKsVjjz0Wx44dW3B27IXceuutceONNy50V/LjiJmxAYCWZHYjAAAAAABoXcKkQER6Y0Fq/aG5pXZcA/WXy+XiNa95zezP4+Pj8cpXvjImJiYWfcxTnvKU2Lt3b2zfvj3y+Xx0d3dHT09P7Nu3b7Eg9oYgjA0AtCQFBqCeFE8BAAAAYG2phZEigUWMbQC0snK5vGQQOyLikUceiUceeSQiIj75yU/Gvn376tG0pieMDQC0pNSKWQoz0Nyco7VJbayuF8cbAAAAALQms9QCAM1ucHAwjh07FsVicXYpFApRKBRibGwsrrjiihgbG4uxsbEYHR1ddDvd3d2Rz+fr2PLmlqlWq41uQ1MZGBiwQ4DkmM0TgHMUaGvjPQ4AAADWTmo169T6kxKvDfWU2vGWWn9Sk1Kt3zHd3Ow3IiIGBwczjW4DKyL3yLLuv//+eNOb3lTTY/fs2RMHDhyIbdu2xaZNm6KzszOKxWK0t7fHq171qujq6lrq4cmPI8LY8whjAwAAAAAAAADQrFIKyKbUl4j0+gMRwtgtRO6RZVWr1fjSl74Ujz32WLS3t0dbW1tks9koFAoxPT0dMzMzMT09veD1qampmJmZiZmZmRgfH49isTi73fe9731x9dVXL/XUyY8jbY1uAABALVL6xn+EggkAAAAAAAC0Op/5AdDMMplMvOhFL1rwvmq1GtPT0zE2Nja7jI+Px+joaIyPj8+5/ejRo3Hy5MnYv39//Nqv/dpyQewNQRgbAAA2kNS+yEBzU3QGAAAAYDFmj4XaOa4BgLX0xBNPxCtf+coVrZvJZOLw4cPx7Gc/O9761rfG7t2717l1rUEYGwBoSYpMQISxAAAAAACAjceXGQCAtdTf3x9Pf/rT4z/+4z+WXbdarcbP//zPx9Oe9rQ6tKx1CGMDAC0ptdl9FbOoF8caAAAAAAAAAGw8hUIhhoaG4syZM7OXw8PDMTo6Gj09PXHDDTfE2NhYjI+Px+joaExOTka1Wr1gOwvdttEJYwMAwAaS2hcZ6kWIvTaOt9o43gAAAICNQA0ESJFZywE4X7lcjnK5HMViMUql0pJLsVhc8bqLPWahx8/MzMTQ0FAMDQ3F2NjYBW1sa2uL3t7e2WXr1q2xf//+yOfzs7fl8/nYvHnz7P179+5twN5sbhkJ9bkGBgbsEABoAakF/BRMqBfnTm0UTwEAANgIUqsbAKQotZooAC0h0+gGsCJyjw30F3/xF/GRj3yk0c1YUkdHR+zcuXN22bFjR+zcuTP6+/sjl8tFLpeLbDYb2Wx29vr8y6Vu6+joiHw+v9jTJz+OCGPPI4wNAAAAAAAAAECzSmkCkZT6AqkaHBxMPkSZCLnHBvr3f//3eMc73lGX58pms5HJZCKbzUalUolyuVyX511OJpOJ97znPXH99dcveHe921NvbY1uAAAAQLNTDAYAAAAAAABgIc94xjPi7rvvbtjzVyqV2aVcLke5XF7ytnPX518udNvU1FScPXs2RkZGZpezZ8/GqVOn4tSpUxER0dfXFy95yUviyiuvbNg+aDQzY89jZmwAaA2p/Xs8AUwAAAAAAAA2Gp/5QfMzM3bLkHukZhMTE3HHHXfEE088EaOjozE+Ph5jY2MxNjYWxWJx0cddd9118bKXvSye97znRUdHx1JPkfw4YmZsAADYQFIratLcFJ0BAAAAANae/+a4ein1BQDW2vT0dHz729+O06dPx+TkZFQqlRU97r777ov77rsv/uzP/iye8pSnrHMrm5swNgAAbCCKjQAAAABAMxAmBVJkbAOgFW3bti0+9rGPRUREtVqN6enpGB8fj5GRkRgeHo7jx4/H+9///kUfv2nTpno1tWkJYwMALUmBAWpjZuzaGHMAAAAAYG2puQEpMrYB0AiFQiG++tWvxsTERBQKhSWXYrG44vsWmyH73e9+dzznOc+JXC5X5542r0y1Wm10G5rKwMCAHQIALSC1QKnCDDQ3M1nUJrWxul5SOw4AAADmS+3v7NT6kxKvTXNL7fXRn9o4f2qj9oqxgHoaHBzMNLoNrIjc4wb29a9/PX7jN36jLs+1adOmOHz4cPT398ctt9wSvb29K3lY8uOIMPY8wtgA0BpSKzIpMAAAAAAAALASKQVkU+oLpEoYu2XIPW5wjz/+eExNTc2Z4Xr+5fzbVnv/+Ph4DA0NzT7nu971rrjpppsim80u17zkx5G2RjcAAKAWCiZAPSkGAwAAAAAAANCsdu/eve7PMT09HT//8z8fJ0+ejIiId7/73RER8dGPfjQOHjy47s/fzISxAYCWZGZsoJ6cowAAAAAAAABsZJ2dnfHJT34yRkZG4v9h786DIz3rO4H/+tCtkTSSZkb2MONj7BnbjG2OxA6GCqps2CWUCRuoQA7ihByuhJBKUSEklaSy2SVbIcHLaXMkMcYETOLKxrs5tjYXFiknhg2sMWDw+AJ7PPaMNfJoPNKodXT3/pGSdqSRRlKP1P32o8+n6i119/v228/z9vs+Gv3628/8x//4Hxce7+/vb2CrskEYGwAAAAAAAAAAqDuToQBA86hUKnHPPffE1772tUWPf/vb397ygWxhbAAAoGnVa5Z8xWAAAAAAANh46vwA0DjVajVKpVJMTU3F6dOnF5Yz7595+9ChQwtB7OHh4di/f3/s27cvXvaylzW4J42Xq1arjW5DpgwPDzsgAADAIorBAAAAsHFS+zs7tf6kxHuTbam9P/pTG9dPber1/rB+qZ3TxoJsq+NYkKvXC3Fe5B5Z1dGjR+O3f/u348SJEzE1NRVTU1NRqVTW/PxCoRAXXnhh/O7v/m7s3bt3PS+d/DgijL2EMDYANIfUikwKDJBtio0AAAAAAGRFSjXrlPoCqRoZGUk+RJkIuUdWdeLEifjYxz62EMZeOvv13NzcmvazZ8+e2L9/fxw4cCCuvPLKePGLXxy53DmHiuTHkWKjGwAAUAsFEwAAAAAAAAAA+P+q1WpUKpUol8vLLj/90z8d5XI55ubmzlpXKpXi1KlTZy0TExMxMTERp06diuPHj8fhw4fj8OHD8Y//+I8REfH+978/XvrSlza4540ljA0AAFtIarPK14svgAAAAAAAAABQi4cffjj+7u/+btkA9PxyrnXnWpZ73mbr6uqK/fv3x/79++PKK6+Ma6+9dtNfM+ty1arZ6c80PDzsgAAAAIv4bxIBAADYCnyJGyD76lVD9DsBgDPkGt0A1kTuMcPuueeeuP322xcFpiuVSqObVbO77747duzYsZ6nJD+OCGMvIYwNAM0htSKgACb1ktq1Q7YZ2wAAAAAAOBeToUD2jYyMJB+iTITcY5OpVCpRqVTWPDv2Rs6cvdL60dHRuP/++1dt+4/92I/FRRddFF1dXdHV1RXd3d3R09MTO3fuXOkpyY8jxUY3AACgFgomUBvXDgAAAABA8xJcBQBoPtVq9ZxLLpeLQqEQ+Xx+4bH5mbPreXtqaiq+/OUvx+zs7Dn7c9dddy37+H/9r/81brjhhtoOUpMTxgYAAAAAAAAAaAJC0kQI5QOwNk899VSMjIysGgQ+c9ns0G/WX38z2lKtbp1Jy1cLcacst5Xe6DVyQIDk+CMZgHn1KtBChH+D1Mp1CgAAAAAAZEiu0Q1gTc7KPd59993xsY99rBFtIVHvec97ore3N3K5XOTz+YiIhdstLS1xySWXRC637JCR/DhiZuwlhAUAoDmkFlTzbxAAAAAAGk2NCgCaQ0ozY6fUF0hVap/NbyVvfvOb441vfGPNs0BXKpWFWZ3nb9e6j/XORr2Rr72efdx22231eGua1vbt22Pnzp1RKBQin88vWorF4kpB7C1BGBsAaEoKJlAb1w5kn+sUAAAAAACAjVAsioiuR3t7e/zf//t/o1KpLCzVajXK5fJCYHu9t2tdsugd73jHOdd/5CMfiYMHD9apNdniSgMAmlJq374VvINsMzMHAAAAAAAAQNpuvPHGuPHGGxvdjIiIRUHwWm9PTU3Fhz/84Th06FDk8/nI5XILSz6fj2q1GjMzMxvS3muuuSb27du3IftqRsLYAAAAAAAAQN2k9qXn1PqTEu8N9ZTa+ZZaf+oltcmEUupPSn2JMBYAbAX5fD4iIgqFQs37eOihh+LQoUMRETXPtt3f3x87duyIHTt2xODgYOzYsSMuu+yyuPzyy6Ovry9yuVzN7UtJrlqtNroNmTI8POyAAACQrNSKjWSb4ikAAAAAwMZLKSCbUl8gVSMjI5KWzUHukWU9++yzcfLkyZidnY2pqak4ffp0TE5OxuTkZExMTMTk5OTCY/P355dTp05FuVxecd/5fD5aW1ujVCpFRMSdd94Ze/fuXW7T5McRM2MDAMAWklqxUZEWAAAAAAAAAJZ3wQUXxAUXXFDTc6vVanznO9+Jxx57LL7zne8sLM8880xE/Nts2/NB7Ijzm8W72QljAwDAFmJm7No4brURYgcAAAAA2HhqrwDAZqpWq/HZz342br/99rPWtba2xoUXXhiDg4PR398fg4OD8cpXvjKuvfbayOWSnwB7RcLYAEBTSi0YqWi2fqmdA/XiXAMAAAAAssD/ege1c/0AAJvp2LFjywax8/l87Nq1K3p7e6Onpye6urqiq6srLr300i0dxI4QxgYAoEkpAAIAAAAANC81XiDCWAAAWTQ0NBR33nlnjI6OxsmTJxeW8fHxGB8fj5MnT8bhw4fjvvvui4iI3bt3x2te85oGt7qxhLEBAAAAAAAAAIC6M8s3AGTT3r17Y+/evcuum5qaip/7uZ+LiIi2trbYt29fPZuWScLYAEBTUjABAAAAAIDmJYAJAAAbq1KpRLlcPuvnmcty6868PTc3FxMTE3Hq1KmYmJiIF154YeH2qVOn4tSpU3HixIk4duxYRERMT09HqVRqcM8bTxgbAAC2kHp9wAERPugCAAAAYGVqR0CKfNEEIE3f+MY34r3vfW/kcrnI5XIREee8feZja70fESsGplcKTi+9vxny+Xx0d3fHtm3bYtu2bdHd3R0XXnhhXH/99VGtVqOjoyMuueSSTXntZiKMDQA0pdQCpQomAAAAADRaajU3AOD8pPRvg5T6EpFefwCy7o477ogjR440uhk1KxaL0dnZGV1dXdHZ2bmwzN8/8/Hu7u4YGBiIHTt2xODgYHR2dkY+n290FzIvV61WG92GrHFAgOQIeQLA+TGTBQAAAADAxlN7xTkA2TcyMpJbfSsyQO5xE83NzcWzzz4b83nb+Z/zs1LPzc0t+3N+We/6cz2vUqmsa39zc3MxPT0dpVIp5ubm1t33tra2aGtri46Ojmhra4u+vr74zd/8zdi5c+d6dpP8OGJm7CX84wsAmkNq3/b2bxDqJbVrJzXeHyL8TgAAAAC2BgFMIrw/tXL9AEB9FYvF2LNnT6ObUbMnnngifumXfqmmMPb09HRMT09HpVKJXbt2xfbt26NYFD1eyhEBAIAtROEUAAAAAMgCtcraCOFmmwk3AIAs2rlzZ7z5zW+OEydOxNTUVExNTcXp06cXljPvVyqVZfcxMTER3/d93xc33nhjFAqFOvcg+4SxAQBgC0mtEOwDAQAAAABgK1ETzbZ6vT+p1foBgM3V3d0dP/mTP7nqdtVqNWZnZ88Kaj/++OPxoQ99KD74wQ/Gxz72sbjsssviqquuiptuuim6u7vr0IPsE8YGAIAtRKEeAAAAAAAAAFgql8tFa2trtLa2Rl9f38LjV199dbzsZS+LT3ziE/Ev//Iv8dBDD8WhQ4fi3//7fx+XXXZZA1ucHcLYAEBTEigF6sl//QkAAAAAG0vNjRSZsRpjGwCpGB0djUcffTQeeeSReOSRR+Khhx6KF154IYaGhuLGG2+MH/iBH4j+/v5GNzMzhLEBAGALUQjOttTeH8VgAAAAAFaidkSK6nVep1ZLTomxDYAUjI6Oxpvf/OazHr/++uvjxhtvjFe+8pWRy+Ua0LLsEsYGAJpSakUmhRnqxblWGzNZAAAAAAAAALAV9Pf3x0033RRf/OIXo6urK8bGxuKpp56KL33pS/GlL30pbrvttrjqqqsa3cxMEcYGAIAtxBcZsv06AAAAAAAAANBIhUIh3va2t8Xb3va2iIh4/PHH42d/9mcjIuKKK66ImZmZGB0djYGBgcjn841samYIYwMAwBYiVAwAAAAAAM1NrR8AqKfBwcG4+OKL48knn4yHH3443vnOdy5af+edd8bevXsb1LpsEMYGAAAAAAAAAIAmUa//BVPoG4CtYmJiIp555pmoVqtRLpejUqnUvJTL5ahWq2fdPte6+dc88/U3oi1rbeda+5DL5aJarZ51/Nrb2xvwrmVLbrkDs5UNDw87IAAAADRMvT5IAQAAWKpegavUAmSp9Scl3hvqKbXzLbX+pEYNEWMB9TQyMpJrdBtYE7nH8/D2t789vvWtbzW6GZlTLBYXlra2trjkkkti37590draGi0tLXH99dfH/v3717Kr5McRYewlhLEBoDmkVmRSYKBeXDsAAAAAANDcUgrIptQXSJUwdtOQezwPTz/9dDz++OPnnEV6tVmmzzWz9HLbrjTz9bnWr7cdq62rRUtLS+zbty/2798f+/fvjwMHDsTFF18cxWLxXE9Lfhw5Z+8BAIC0KDYCAAAAAAAAwP/3ohe9KF70ohc1uhl1t9Yg9+zsbIyOjsYDDzwQ/+f//J94+OGH4+GHH17YT2tra+zfvz9+/dd/PXbv3t3AHjWOMDYAAGwhqc2MXS9C7AAAAAAAAACkJJ/PRz6fj4iII0eOxLe//e04ceJEHDt2LJ599tl45pln4ujRo3Hy5MmoVpeffL2rqyt6e3sjn8+vuM1WIIwNAACwCiH22gixAwAAAAAAAGTbkSNH4q1vfeuatu3t7Y2hoaGFpbu7Ozo6OqK9vT0eeeSROHr0aLzsZS9bCHlvFcLYAEBTEvCD2rh2AAAAAACguan1AwAbaWBgYM3bnjx5Mk6ePBmHDh1acZv3vve9cf31129E05qGMDYAAGwhZnimnnwgAAAAAMBK6lWrTK1G5bhlm/cHAGhG4+PjNT3vLW95S1x44YXR0dGxsGzbti0uv/zyDW5h9uWq1Wqj25Apw8PDDggANIHUAqWKZgAAAAAAAKxFSqHvlPoSkV5/ICJiZGQk1+g2sCZyj5yXUqkUExMTcerUqYWfS5ejR4/G/fffv/CcT3/607Fnz5617D75ccTM2AAAAAAAAAAATUDQE7LNtQNAs2pvb4/29vYYHBxcdn25XI6vf/3rcf/998eP//iPx0033RStra11bmV2CWMDANCUFJwBAAAAANhq1KwBANgslUolPvWpT8U///M/x8zMTExPT8f09PTC7Wr13yZgP3jwoCD2EsLYAAA0JQVn6kn4vzb1Om6pSe08AAAAAAAANp7PYYCNduzYsfiTP/mTVbe7/fbb44Mf/GAcO3YsLrvssrjllluit7e3Di3MLmFsAKApCaoB9WTMqY3jBgAAAMBKTIAAAOenXr/jhL6hNpVKJSqVSpTL5YWfZy5L123GNku3X8s2V199dYyNjcXk5GScPHly2b499thji24fP35cGLvRDQAAAKiVD2xIkaImAADQKP7+BerJmAMAQCruvPPO+NSnPtXoZtQkn89Hf39/5PP5KBQKkc/no1gsRn9/fwwODi48VigUolAoRLFYjIsuuij2798fBw4ciL1790ahUGh0NxpOGBsAAGhaqX3j3wdQRDgPAACA9KX2d3Zq/UmJ94Z6Su18S60/1CaliSOc07Vx3ADW5tprr210E2pWqVTiF37hF+Lqq6+O7du3R7EoVlwLRw0AAGAVioAAAAAAsLEE/AAASMVLXvKSuPfeezf9dSqVSpTL5Zibm4tyubywzN9f+nO19Q8++GD85V/+ZbznPe+JiIhcLhd9fX0xODgYAwMDMTAwELt37443vvGN0dbWtun9a2a5arXa6DZkyvDwsAMCAE0gpW/iRygGA2lKbayuF78TAAAAgK1AGBuIMBZAMxgZGck1ug2sidxjRs0HqJcGo5cuZz6+0u21Pudcr7f0OY8++mg888wzK7a/vb09/viP/zh27959Poch+XFEGHsJYWwAAFImHEs9KW4DAAA0F3UDgOyrV83N7wQAzpB8iDIRco8N8JnPfCZuv/32RjfjvLW1tcXOnTtj586dsWPHjoXbO3fujMHBwWhtbY1CoRCFQiHy+fzCUigUoqWlZS2zZic/jghjr5DZDwAAIABJREFULyGMDQDNIbUioMAiAAAAAAAAW42ZsSH7zIzdNOQeG+ALX/hC/M7v/E6jm9FQxWIxbr311jhw4MC5Nkt+HCk2ugEAAED9+CIDAAAAsJLU6gYAKTIzNtTGOQ3AZnj1q18d995778L9W265Jf7mb/6mgS3afMViMYrFf4sel0qlyOVyMTQ01OBWNZ6ZsZcwMzYAAAAAAAAAbC6z4ULtUrp+UuoLpMrM2E1D7jEDJiYm4pvf/GaUy+WoVCrL/pxfKpVKTducuW492yxdv9K65bYpl8vn7Pdtt90WV1111bk2SX4cMTM2ANCUUvv2ugIQAAAAAABbibo4KUrt8ysAYH26u7vjuuuua3QzolKpxPT09FlLqVSKmZmZRbdXemx6enrR+tHR0Xj66acjn8/HgQMH4rLLLovLLrssrr766rjkkksa3eWGMzP2EmbGBlLk28QAzFMIro3fcbVxvtXG+QYAAKQutZp1av1Jifcm21J7f/SnNq6fbFPjXb/UzmljARFmxm4ico/EN7/5zXj3u98dk5OTG77vnp6eGB4ejje84Q1x6aWXrvfpyY8jwthLCGMDQHNIrfijwAAAAAAAANDcfH61fsK+kH3C2E1D7pEYHx+PP//zP4/JycmFma3nZ70+8+fSx6anp6NSqaz5dT760Y/GlVdeuZ6mJT+OFBvdAAAAAAAAAAAAgGYnXA5AI/X19cXP/uzP1vTccrl8VkB7Prj97LPPxu/+7u8ubLt79+6NanIyhLEBAABWoXgKAAAAAMBq6lXjTW0G7pSo8wNsjGq1ujBTc6VSWbhfrVbPe9387Y1et/R1a1239LXWuu1mH5OdO3fGc889FxERX/3qV+N7v/d763EqNA1hbAAAgFUontbGBwIAAAAAsLGEfamnlM6DlPoCkFXf+c534rd/+7djamoqItYfPD5zHY2Rz+cXlkKhEIVCYdHtHTt2xLZt22Lfvn2NbmrmCGMDAABNy4zV2ea4AQAAAEBzUtvLtpRq4yn1BVLlywysVU9PT7z0pS+NUql0zhmZz7y/WbM+r/U1BMUXq1Qqq/ZxbGwsxsfHY/fu3XVqVXMQxgYAAJpWarPAKAYDAAAAAAAAzai/vz/e+c53NroZm24jA98bHRTf7HXHjx+Pu+66K/7lX/4l2tvb44ILLojOzs46HflsE8YGAABYhZA0AAAAAACrMXssAKQvl8tFoVCIiFj42eyq1WrMzc3F9PT0WUupVIqZmZkolUoxOzsbERF33XVX3HXXXYv2kc/n4+67746BgYFGdKHhhLEBgKYkGAkAAAAAAECWpPa/OQIAaTl27Fj8yI/8yKbsu1KpxPj4uDA2AEAzSa3IJFwO2VavMcdYAAAAAADAVqIuDgD109LSsqH7++M//uPYt2/fhu6zWQljAwDQlFIL5FObehVpFYMBAAAAAMiKlGrWJkMBgPrp7++Pe++9NyIiqtVqTE9Px9TUVJRKpZiamoqJiYk4ceJEPPDAA/E//+f/POe+rrzyyhgaGqpHs5uCMDbAFuAP2No4btnmuOEcqE1qIXZjNQAAALBV1KMOogYC0BzUxgGA5YyPj8c73vGOOHLkyIbs7x3veEe84hWviIGBgWhra9uQfaYqV61WG92GTBkeHnZAAABIVmphbLJNoR4AAIDlpBYgS60/KfHeUE9qr7Vx/dTG+ZZdqZ3TfpcSETEyMpJrdBtYE7lH4pvf/Gb84i/+4obtb3BwMFpbW6O1tTXa2tqira0tOjo64oYbbojv//7vj87OzrXuKvlxRBh7CWFsAGgOqRWZFBgAAAAAAABYi5QCsin1BVIljN005B5ZUKlUYmZmJmZmZmJ6evqs29PT0ys+Pv/Yc889F08//XQ888wzMTk5uezr3HHHHXHxxRevpUnJjyPFRjcAAACon9S+yFAvirQAAAAAQBYIrgIAsJp8Ph/t7e3R3t5e0/Ofe+65eMtb3rLsum3btsXs7Gzs378/+vr6zqeZSRHGBgAAmpYPBAAAAACArURNFACAzTY4OBhvectb4q//+q/PmhX71KlTERHxyCOPxM///M9HX19ftLe3x+nTp+P06dNx6aWXxq/92q9FV1dXI5reMLlq1ez0ZxoeHnZAAAAAAAAAAABgk5ntHbJvZGQk1+g2sCZyj2yYmZmZOHXq1MIyOjoaX/va1+Kpp56Kp59+OkZHR8/5/A9+8INx7bXXnvlQ8uOImbEBAAAAAACAukktdJVaf1LivaGeUjvfUutPvaR23OrVn3pI7b2pF8cNoPnMzc3F5OTkomViYiImJyfj9OnTi+7PPzZ/f2JiIk6dOhXT09PnfI2urq7o6emJXbt2xQUXXBAXXnjhwjI0NBR9fX116m12CGMDAMAWklLhlOxTPAUAAABgJQJ+pEhIGgA40+zsbPzjP/5jzM7ORrVajXK5HJVKZdFy5mOzs7MLy8zMzFk/lz623PpKpbJqu1paWqK7uzs6Ozujq6srurq6or+/P7q7u2Pbtm2Llu7u7ujp6Vm43d3dHYVCoQ5Hr7nkqlWz059peHjYAQGAJpBakUkxGAAAAIBGS63mBpAiYV8AGiDX6AawJnKPGXTrrbfGf//v/71hr9/e3h69vb3R09Oz8LOnpyc6OjqiUChEsViMQqGwsMzfLxaLUSwWF57X29sbfX190dnZGblcTUNC8uOImbEBAGALUUCvjS9MAAAAsBX4+xeAeX4nZFtKM8un1JeI9PoDET5fhPNx0003xfT0dFSr1cjn85HL5aJQKEQ+n19Y5u/ncrmF2bFXmg37zGW57WZmZha9fqlUilKpFMeOHdu0Pu7atSv+8A//MHp6ejbtNZqBMDYA0JQUGKA2rp3aKJ4CAAAAAACrUecH2Br++q//Ov7hH/4hKpVKVCqVKJfLC7fPvL/c4yttW6lUolptvgnOjx07FqOjo8LYjW4AAEAtUvv2rcIMZJtrFAAAAACArFCzBoDGKpfLMTc3t2Koem5uLp577rmYm5trdFM3XLFYXDSrd2dnZ+Tz+UY3q+GEsQEAAFZhZmwAAAC2gtQmQABIUb1qiH4nkBrnNAAb6Q1veEO84Q1vWHH9bbfdFn/+539exxbVz9zcXPyH//AfFkLZnZ2d0d/f3+hmNZwwNgAAAAAAAOBLwgAs8Dsh21KaQCSlvkCqfJkB1u9Nb3pT7NmzZ2HG7Pll6f2VHj927Fh85StfaXQ3VvRDP/RDceDAgUY3I1OEsZfwywNIkT8sAZjn37vZltr7498gAAAAALCxBFcBmJfa50qQkqGhofjBH/zBmp//93//95kOY//SL/1SzM7ORkREW1tbfOYzn4nBwcEGt6qxhLGX8AcFAAAp8+/d2viAAwAAAAAAgCyp1+dKQt9Qf695zWvi1a9+dZTL5Zibm1tY1nJ/Pc9Z7vZy2584cSIeeuihhfbNB7EjIqanp+P06dONOEyZIowNAACwCiFpAAAAACAL1CqzTWAxu0y6AkCzaW1tbXQTFjz66KNx8803x6tf/ep42cteFrt3744LLrggdu7cGcWiGHKEMDYAAACbxAcPtVGsBwAAAIDmpLaXXd4bAKjdfDD8W9/6Vuzbty9e+9rXZiosngXC2AAAQNMyk0W2OW4AAAAAABtPbRwAqKe9e/fGe97znrjjjjvik5/8ZExOTsbNN98c+Xy+0U3LDGFsAACgadWrEKywDQAAAAAAAMBWlMvl4lWvelVcffXV8ba3vS3+7M/+LP75n/85fv/3fz8uvPDCRjcvE4SxAQAAViEkDQAAAAAArMbkLgAsp1KpxLPPPhvlcvmcy9zc3Hmt38h9VyqVZdeXSqWIiCgUCmbGPkOuWq02ug2ZMjw87IAAAACLKJ4CAACwFdTr718Aapfa/xYIQFPINboBrIncY4b90R/9Udx1112NbsZ5yeVy0draGh0dHfGqV70qXvKSl0ShUIj29vZ4+ctfHi0tLed8er3a2SjC2EsIYwMAAEsJYwMAAAAAkBUp1axT6gukamRkJPkQZSLkHjPs+eefjy996UtnzTa99P5qy0rbb+TjlUpl3f37T//pP632uzb5caTY6AYAAAD1k9psJvUqnirSAgAAAACQFWrWANBc+vv74wd+4Aca3YxzKpfLMTExES+88EKMj4/HyZMnY3x8/KzbY2Nj8e1vf3vRc7dv396gVmeHMDYA0JQESoGI9MaC1BjbAAAAAICtJLWatRovAKRtdHQ03vzmN695+8HBwejp6Ynv+77viwMHDsSBAwfi8ssvj87Ozk1sZXMQxgYAAJqWQjAAAAAAAFlRr5p1aqFvAKAxOjo61rxtS0tL3HLLLXHRRRdtYoualzA2AADQtBScs01YHgAAAACALKjX5wnq4gA0k9HR0TVvOzs7G//lv/yX6O7ujkqlEtVqNcrl8qLb1Wo1Lr300viVX/mVdQW9U5CrVquNbkOmDA8POyAAAAAAAAAAAGSSYDFQTyMjI7lGt4E1kXtk3arVatx7771x+PDhaGtri4iIT3ziE+e93w984APxkpe85MyHkh9HzIwNAAAAsAX53wVq40NI6im169T1A9STMRQAoDkIlgPA5iuXyzEzMxPT09NRKpViZmYmSqVSTE9PR29vb7S1tcX09HQcPXp0Xfu9+eab4+KLL47Ozs7o6OiIQqEQXV1dMTQ0tEk9yS4zYy9hZmwAaA4+UIPapHbt1ItrFAAAADZOaqGr1PqTEu8N9ZTa+ZZaf1Kj1p9dqZ3TxgIizIzdROQeOcujjz4aN99886bt/+67744dO3asZdPkxxEzYwMATckf5FAb1w4AAAAAAGwOIWkAIEuGhobi4osvju985ztrfk5fX1/s3Lkzdu3aFV1dXTE3Nxdzc3NxxRVXxA//8A9HPp/fvAY3MTNjL2FmbABoDqkVswRkqRfXDgAAAAAAbA6zCK+fYwbZZ2bspiH3yJpUq9U4ffp0jI2NxfHjx2NsbCxGR0fjj/7oj1Z97gc+8IG4+uqro1AorPdlkx9HzIwNAAA0rdTC5alR3AYAAAAAAADIjlwuF11dXdHV1RV79+6NiIijR4+uKYz9zne+c2Efy00E/bnPfS6GhoY2tsFNQhgbAAC2EOFYAAAAACALzIZLiup1vrl+AICNNDQ0FJ///OdjZmYmTp8+HadPn46pqamYmppauD8/m/Ydd9yxbBA7ImJmZqbOLc8OYWwAAIBVKGwDAAAAwMZSC4PauX4AgI2Wy+Wira0t2traYvv27ctuMzs7G5/5zGdidnY2IiJ+4Rd+Ib7/+78/tm/fHrlcrp7NzRxhbAAAoGkJSQMAAAAAsNWojQMAm6FarcbMzEyUSqWYnp6OUqm0cHtqaiqOHTu2EMSOiHjd614X3d3dDWxxdghjAwAATUshGAAAAAAAAABWNj4+HnfccUecPHnyrID19PT0otvVanXN+z18+HBceeWVm9jy5iGMDQAAsAqzjAAAAAAAAADQjE6dOhUPPPBAjI+PR6lUWjS7dS1uvfXWuOSSS6Kzs3ODWtj8hLEBgKYksAjUkzEHSFG9vmiSGr8TqKfUrlPXD1BPxlAAAACAf7Nnz5749Kc/vXB/bm4uSqVSTE1NLSylUikOHz4c/+2//bdV9/f0009HsViMAwcObGazm4owNgDQlHygBgBwfvz7A7LPdQpQO2MoAAAAwPKKxWJ0d3dHd3f3osevvPLK+PKXvxxf+MIXIp/PR7FYjGKxGLlcLiYnJxe2e+973xsRER/5yEfi4MGDdW17VgljAwDAFuKLDAAAAAAAAADAUq2trfE7v/M7Zz3+/PPPx5ve9KZFj33v935vXHHFFXVqWfYJYwMAwBYivFybeoXYvT8AAAAAAAAAZEl/f398/OMfj7/5m7+Jz3/+8zE5ORn/9E//FK9//evjwIED8eu//usxNDTU6GY2VK5arTa6DZkyPDzsgABAEzC7LwAAAAAAsNWYOAKAeXX8zDxXrxfivMg9UhdHjhyJj3/843HfffdFRMSuXbvilltuiRe96EXnelry44iZsQEAAFbhAw4AAAAAANh46u9Qu3qd16lNlAas3/j4eDz44IPxv/7X/4p//dd/jVwuFzfccEO8/vWvj+/+7u+OQqHQ6CY2nDA2AABsIakVS+pVZFKkBQAAAACyQK2SCAFmANjqqtVqlMvlmJubi7m5uSiXywv3V3r8zHVLH19uH1NTU/HYY4/FI488EseOHYuIiMHBwbjpppvida97XezcubPBRyFbhLEBgKak+AO1ce3URmEbAAAAWIm6AdQmtWtHf2qT2tiW2oQoAMDG+OpXvxp/9Vd/te5A9HI/5+bmolKp1KXdu3fvjquuuip+6Id+KA4cOBBXX321WbBXIIwNADSl1IpZqRUbyS7XDgAAAMDGUp8AItIbC1LrT72kFpYHss1YAM3j6NGj8a1vfeusGarrHa4+l0KhEO3t7dHR0RGXXXZZvPjFL45rrrkmLr/88ujo6Gh08zJPGBsAAGhaZmcBAAAAgOak5gYA58cXQKB5vPa1r43Xvva1K66vVquLAtrLzZi90gzaqz1nuZm1z7XPycnJeOyxx+KLX/xiRETk8/m44YYb4sYbb4xrr7022tvb63XYmoowNgAAAAAAAAAANAlfZgCAtORyuSgWi1EsZifS+/zzz8ehQ4fiwQcfjL/927+N++67L/L5fFx88cWxZ8+euPTSS+NHf/RHo6WlpdFNzYTsvHMAAMCmU6AFAAAAAIDm5n+NBAA2W39/f7ziFa+IV7ziFfHTP/3T8eUvfzm+8Y1vxOc+97l44okn4gtf+EK8/OUvjxe/+MWNbmomCGMDAACsQmEbAAAAAIDVqCUDACkolUoxNjYWY2Njcfz48YXbX/3qVyMiYt++ffGOd7xDEPsMwtgAALCF1KsQXC/1KjgrbNcmtfOtXpxvAAAAANCc6lXbE/oGADbD8ePH44d/+IdXXD84OBgvfelL493vfncMDQ3VsWXZJ4wNAADAplCoBwAAAGAlwqRQO+c1ALAZuru74+DBg/GNb3xj2fXHjx+PmZmZ+I3f+I0YGBiIwcHBGBgYiIGBgRgaGorrr78+8vl8nVudDblqtdroNmTK8PCwAwIAACzigyEAAAAAANh46u+QfSMjI7lGt4E1kXtkw5XL5XjsscdiZGQk7rvvvnj66afPuf0tt9wSL3/5y5dblfw4YmZsAKAp1aswUy8KQAAAAAAAG0vAD0iV8Q0A2AjVajUmJyfj+PHjMTY2trAcP348jh07Fo899lgcO3ZsYfuenp6FmbDnl/nZsXft2hX79+9vYG8aSxgbAABgFQrOAAAAsHFSC5Cl1h+gNqmNBan1h9qkNDmSc7o2jhtAmo4dOxY/8iM/sqZtBwcH45prromDBw9Gf39/tLe3L1ra2tqipaUlOjo6IpdLfgLsFeWqVbPTn2l4eNgBAQAAFlFsBAAAAACAjaf+Dtk3MjKyddOVzUXuMYNmZmbi0UcfjXK5HJVKJcrl8qJl/rEz1y3dbrl1yz1vLfuc/3nixIl4/PHHN7y/t912W1x11VXLrUp+HDEzNgDQlFL6Jn6EAhBknWsUAACArSC1mhtAilKbGRvqxTkNQCN84hOfiL/4i79odDPq5oILLmh0ExrGzNhLmBkbAAAAAAAAAICsSmk26ZT6AqkyM3bTkHvMoImJifj6178elUql7rNfn7mMj4/Ht7/97U3v74c+9KG45pprlluV/DgijL2EMDYANIfUvr2uAATZphgMAAAAGye1v7NT609KvDfUU2rnW2r9qZfUPr9i/ZzTtUntuKVGGLtpyD2yoieffDJ+6qd+asP3+6u/+quxe/fuKBaL0dvbGy960YtW2jT5cUQYewlhbABoDqkVsxQYoDaKgNmW2lhdL843AAAAYCtQ24PapXT9pNQXSJUwdtOQe2RNKpVKTE9Px/T0dJRKpSiVSjE9PR1TU1PxzDPPxPve97417+snfuIn4qKLLorOzs7o6OiIzs7O6OnpiaGhoaWbJj+OCGMvIYwNAAAAAAAAAEBWCTAD9SSM3TTkHjlv09PT8Vu/9Vvx5S9/+bz28773vS++67u+68yHkh9Hio1uAABALVKbbVUxi3px7QAAAAAAWSBMCkSkNxak1h8AtpaWlpb4z//5P8eTTz4Zb3/721fd/rrrrosdO3ZEV1dXdHV1RWdnZ/T19cU111xTh9ZmizA2AABsIYpzAAAAAEAWqFUCKTK2AZBVpVIp7r333rj//vtjYmIiSqVSTE1NLfo5PT29rn3efPPNsW/fvk1qcXMRxgYAAFiFmSwAAABg46T2d3Zq/UmJ94Z6Su18S60/1Cal/20zpb5EGAsAWJ+nnnoqfvInf3JN227fvj16e3tj+/bt0dfXF319fYtuz9/v6emJnp6eTW5588hVq9VGtyFThoeHHRAAaAIKJgAAAAAAAGxFKQVkU+oLpGpkZCTX6DawJnKPLKhWqzE3Nxflcjnm5ubi+PHj8e53vztGR0djz549MTExEadPn173TNhL/eEf/mFcfvnla9k0+XHEzNgAW0Bqf8CmFsKtFwUGIMIYWitjKAAAAAAAWaFmDQDZduTIkbj//vsXwtBn/py/vfTxjdhu/rFKpbJi2w4fPlxzv4rFYrS0tERLS0u89KUvjT179tS8r9SYGXsJM2MDQHNILVCqaAbZltoXmwAAAGA5qdXcAFJkciQAGiD5GW0TIfeYIR//+Mfjz/7szxrdjBUVCoXo7OyMHTt2xK5du2Lnzp0xNDQUF110Uezduzd6e3ujs7Mz8vn8Rr1k8uOIMPYSwtgA0BxSKwIKYAIpSm2srhe/EwAAAICtwAQIULuUrp+U+gKpGhkZST5EmQi5xwypVqtx4sSJZWetnpubi9nZ2bPWLbfdWh+fX7fcfucfn5ubi4mJiThx4kTMzs6uqR/33HNP9PX1bcQhSX4cKTa6AQAAAKRJcRsAAIDlpBa6Sq0/KfHeUE+pnW+p9adeUjtuKU24kVJfItI7B1IbCwByuVz09/c3uhkLnnjiifiZn/mZdT/vT//0T2NgYCBaWlqitbU1WltbY/fu3XHllVduQiubm5mxlzAzNgA0BwUTAAAAAABoXgJ+ULuUrp+U+gKpMjN205B7zJDnn38+HnjggSiXy2ctlUplXY+vd7vl1r/wwgsxMTGxYf37xCc+Efv371/PU5IfR4SxlxDGBoDmIIwN1JNiMAAAAFtBajU3gBSlNhsuAE0h+RBlIuQeM+TDH/5w3HPPPY1uxqY6ePBg/N7v/V50d3evZfPkxxFh7CWEsQGgOaRWBBTABAAAAAAAYC1SmkAkpb5AqsyM3TTkHjNkbm4uDh8+vDBL9dLZqtc6O/aZ91e6fa59nOs5Z94fHx+PI0eOrLufn/zkJ+OSSy5Zy6bJjyPFRjcAAAAg6xSDAQAAAAAAAFiLYrG41pByJpw4cSLe+MY3rnn7j3/847F///7I5ZLPWK+ZMDYAAGwhZpXP9usAAAAAAAAAwGrOnHV76QzY63ls/vYf/MEfxPPPPx9jY2Nx5MiReOKJJ+Lxxx+P2dnZRa/b0tISF1xwgSD2EsLYAABA00otXJ4aIXYAAAAAAAAg6x588MF4+OGH1x1gXvqzlhB0rfvYTF1dXTEwMBAHDx6MwcHBGBgYiB07dsQrX/nK2LVr16a+drPKVavVRrchaxwQIDmCUAAAAAAArMaXngEAgGWY/rY5yD2eh3e9613xla98pdHNaKh8Ph/9/f2xY8eO6Orqinw+H7lcLgqFQuTz+cjn8zE3NxdPPPFEHD16NC688MK49dZbY/v27WvZffLjiDD2EsPDww4IADSB1D4Y8qUJAAAAAABgNfX6fMTnFrXx+dX6Oach+0ZGRpIPUSZC7vE8lMvlOH369KJZqM+1lMvlqFari2a0rlary95ez3Lmfld7zXO9/kYt868zMTERR48ePeu4ffrTn449e/as5RAnP44UG90AAIBaKJhAbRSCAQAAAACal5pottXr/Umt1g8AjVYoFGLbtm2NbkZmlUqleOc73xkPP/zwwmMtLS0xPT3dwFZlizA2ANCUUisyKZ5CbcyYAQAAAADAVqNmDQDU09TUVDzyyCOLHuvt7Y2Ojo4GtSh7hLEBAGALUaAFAAAAAIDNYQIRAKCZlMvlmJmZWdPy7/7dv4t//dd/jfHx8YiIOH78eLz1rW+Nzs7O+NM//dMtP7O4MDYA0JQUmYB6UkAHAAAAAGA19arxqlkDAOfyzDPPxI//+I/X5bVOnz4dzzzzTBw4cKAur5dVwtgAQFOqV5GpXhSzAAAAAKA5CcQBAPP8u4B6Su0zc2DjVCqVDdtXPp+PgYGBGBgYiP7+/kW3t2/fHt3d3dHS0hKjo6OxY8eODXvdZpOrVquNbkOmDA8POyAAAAAAAAAAAGRSSoHflPoCqRoZGck1ug2sidwj51StVmN2djZOnz69sExNTZ11/8zHTp06FadOnYqJiYlFt1cKe3/gAx+Il7zkJcutSn4cMTM2AADAKhSDAQAAAGBjqbkBAED95HK5aG1tjdbW1ujr61vTc6rVakxOTi4KY7/wwgvx9a9/Pf7iL/5iYbuWlpZ41ateFVddddVmNT/zhLEBgKaU2n+5pBgM2eYaBQAAAICNpeYGAADZMDExEb/4i78YTz31VERE9PX1RaVSOecs2BERv/d7vxff8z3fU69mZpowNgAAbCGpfZGhXnwwBAAAAAAArMas/wA0o+np6YUgdkTE+Pj4ovW9vb1x8cUXL1ouvfTS6OnpqXdTM0sYGwAAthDFOQAAAAAAgM3hcxgAmtHAwEDce++9cfLkyXjkkUfi0KFD8fjjj8fo6GiMjY3F2NhYPPjgg/Hggw8uPCeXy8UHP/jBuOaaaxrY8uwQxgYAAAAAAAAAAACAjKtWq1GpVNa9lMvlheeWy+WoVCpRrVYoiFS6AAAgAElEQVTPul0oFOKKK66I/fv3L3r+yZMn47nnnovnnnsuHnrooTh8+HD88i//clx//fXxnve8J1paWhp9aBpKGBsAaEq+VQ7Uk/9WEAAAAAAAACBtIyMj8eCDD9YUdq4l/LxaMHq5/Var1UYfpkW+9KUvxTe/+c249tprG92UhhLGBgAAWIWQNPVUr/A/AADAUvX6+ze1Lz2n1p+UeG+op9TOt9T6Q23qcR6kdk7XS2rHzVgAZMUXv/jFuO+++5YNRfP/vf/974+dO3dGPp+Ptra26O/vb3STGi6XtZR8ow0PDzsgQHL8gUSKFEygNqldO6kxFgAAAAAANC+fy66fYwbZNzIykmt0G1gTucdNtnTW65VmsF5pRuv1rltuZu21vP75tO/YsWPxta99bdVjcffdd8eOHTvWc/iSH0eEsZcQxgYAIGXC2NST4jYAAAAAwMZLKcCcUl8gVcLYTUPukfM2PT0db3/72+OJJ55Y9HhnZ2fs3r07ent7o6+vL/r6+qK3tzd6e3tj+/btcckll8SFF14YudyKw0Xy40ix0Q0AAADqJ7VioyItAAAAAAAAAJy/tra2uP322+PUqVNx//33x9jYWJw8eTLGx8cXfh45ciTGx8djampq2X1cccUV8b73vS+6u7vr3PrGEsYGAACalpA0AAAAAAA0L3V+gLRUq9UVl0qlEhERlUrlnNuduW2tz5vf9lzPq8dr1Nr/LB6/lpaWaGtri9bW1mhra1sxjP3www/HE088Eddcc835n1BNJDd/wFjggADJ8QcsKarXbLj14joFUpTaWA0AAAAAALAF5RrdANZkxdzj5z//+fjkJz9ZlzAxzSmXy0U+n498Ph+FQiHy+XzkcrmF2/OP9/T0xPbt26Ovry8GBgZicHAw+vr6ore3N/r6+hZut7a2nvUSjehXPZkZewlBKAAAgI3h7ysAAAAAgI1Xr4kw6lHjTakvkCqT7zS/7du3R6VSiXK5vPBzPlw9/9jSRbB6a6lWq1Eul6NcLsfs7OyK242Oji7cbmlpiY9+9KNx2WWX1aOJmSeMvYRfHkCK/GEJwDz/3q2N36XUk+sUAAAAAMiClGqVKfUFYL0eeOCBePbZZxvdDDLmzNmwz1xaWlpi165dsXv37hgaGlqY5Xp+tuz52x0dHbF79+5GdiFThLGXELIAAIDm4d/v2aa4XRvnNQAAAABwLinNJp1SXyBVPu9pfj/6oz8aBw8eXJjxeulSqVQiIjZt/UbvJ0ttWs/6ehzj+WUtzpwNe6nx8fE4dOjQosf27NkTH/3oR6O7u3tN+99qhLEBgKakYAKQfcZqAAAAAGArEVgE6smYw1p1dHTEdddd1+hmUEfrCXifPHky/vf//t/xhS98IY4ePRqzs7PL7vPw4cPxwgsvCGOvILfWFPxWMTw87IAAAAAAAADAJkltBszU+pMS7w31JBBXG9dPbZxv2ZXaOe13KRERIyMjuUa3gTWRe2Tdjhw5Em9961uXXdfd3R0XXXRR7NmzJ/bu3Rt9fX3R1dW1sPT29sYFF1yw1pdKfhwRxl5CGBsAmkNqRSYFBgAAAAAAANYipYBsSn2BVAljNw25R9Ztamoq3v/+98fTTz8du3btisnJyTh9+nRMTk7G5ORkTExMRKlUWvH5H/nIR+LgwYNreankx5FioxsAAAAAAAAAAGwtApgAANBYuVwuJiYm4uGHH45Dhw5FPp+PfD4fhUIhCoVCzM7Orvjc17zmNXHllVfWsbXZJowNAABbSGqzypNtPugCAAAAAAAAyKaxsbH44he/GBER1Wo1yuVylMvlFUPYl1xySVxxxRVxww03xO7du2N2djYKhUI9m5xZuWrV7PRnGh4edkAAAAAAAAAAAFiX1CZEqceEG2bJh+wbGRnJNboNrInc4xY3Pj4ec3NzMTc3F7OzswvLzMzMovtL101PT8fzzz8fo6Ojcfz48YWf5XJ5za/9qU99Ki666KJzbZL8OGJmbACgKSlmQW1Su3bINmMbAAAAy0ktdJVaf1LivaGeUjvfUutPvaT2/qT0mYJzujaOG0Bz+MpXvhLvete7Nmx/LS0t0dfXFy0tLQtLa2trFIvFmJqaiuPHj8fJkycjImL79u2xbdu2DXvtZiWMDQAAAAAAANRNamGb1PqTEu8N9ZTa+ZZaf6iNmbFx3ACawxVXXBHXXXddPProozE7O7swO/Z6Zrc+0+zsbIyNjUWhUFhYisViFIvFKBQK0d7eHtddd128613vitbW1g3uTXMSxgYAgC1E0QwAAAAAAAAA0tHV1RW///u/v+btT548GT/2Yz8Wp0+fPud25XJ5xUD33//938eb3vSmOHDgwLramiphbACgKQmUAgAAAAAAAADA+kxNTa0axF6Ln//5n190/84774y9e/ee936bkTA2ANCU6vVfltWLcDn14toBAAAAAIDmpjYOAJyPoaGhuPfeexful8vlKJVKMT09HVNTUzE9PR2lUmnhsfnbY2Njcfvtt6+439bW1no0P5OEsQGApqTIBAAAAAAAAAAA61Mul+N//I//EaOjo9Hf378Qwi6VSjE1NbXi7cnJyWX396EPfSiuueaaOvciW4SxAQCAplWvmb59AQRIUWr/W0K9+J1APaV2nbp+gHoyhgIAKVMbBwDOx6FDh+LWW2896/H29vbo6emJjo6OaG9vj46OjhgYGFi4Pf9z/vbJkydj27Zt8eIXv7gBvcgWYWwAoCn5QA2op9TGnHoxtkG2uUYh+1ynALUzhgIAAABZVKlUYm5uLubm5mJ2dnbFn+daV8u2pVIpnn/++RgbG4tTp04t27bPfvaz0d/fX+cjkoZctVptdBsyZXh42AEBgCaQWjDSB4QAAAAANFpqNTeAFNXr8wS/EwA4Q67RDWBN5B4z6J577okPf/jDjW7Ggo6Ojti5c2fs2rVr4ef87e3bt0exWIxCoRCFQiFaW1ujp6dno146+XHEzNgAALCFpFZA90UGAAAA2Dj+zgbqqV61SmNbbRy32qjBr5+xALIvtbEN6unSSy9tdBMWmZqaiieffDKefPLJNW3/mc98Jnbv3r3JrUqDMDYA/4+9u4+O+67vRP+e0YMtS7ZsJ3YcJzhJ42SSQELSPJQAZUXanNIekrTAbqFwbtvs3u65pe3dsj3A7i2B0i1lA4cAJXBautBAaUuhLaVbuGVpo5JC2xAesqclncRpnpwH58GxZcmSLM3M/SOxrizLlixL8/DT63XO78zM72m+39/85jeez7z1NQB0LMWf9qa4DQAAAADA8agjA1BkL37xi3P77bevyL4bjUbq9XpqtVqmp6fnvT08zX48PT2dycnJvO1tbzvu/q+77rps27ZtRdpeRKVGw+j0sw0NDTkgANABihbAVGgCAAAAYLUo2giYRetPkXhtaKainW9F60/RFO13siIp2jntWkCSDA8Pl1rdBhZF7pFFu//++/Mf/sN/WNK2mzZtyic/+ckMDg6eyGaFv44IY88hjA0AnaFoRSYFBpqlaO8d2ptrGwAAAADA8hOQBZpJGLtjyD1yQsbHx3PgwIGMjY1ldHQ0Y2Njeeyxx/Jbv/VbC277mc98Jtu3bz+Rpyv8daS71Q0AAACaR+EUAAAAAGgHwqRAUrxrQdH6A0Bx9fX1pa+v74h5o6Ojue222zIyMjLvNgMDA9m0aVPe8573ZOPGjdm4cWMGBwczODiYjRs3Zu3atVm/fn0uu+yyZnShrRgZew4jYwMAAAAAAAAA0K4EfoFmMjJ2x5B7XKUajUbq9XpqtVrq9frMVKvV5p039/6xtqvVannmmWeye/fu7N69O48++mj27t2bZ599dsE2vfe9780P/MAPzJ5V+OuIkbEBAGAVaVaBtlkUggEAAAAAoHMJlgPQSb75zW/mH//xHxcdfl5MKPpktq3VamnlgMylUimnnnpqNmzYkP7+/qxbty6VSiVXXHFFy9rUKsLYAEBHEiiFpXGuQfsr2mccAADQOdQNANqf4Gp7U9sDgGK7884785d/+ZdHjCq9Gt1yyy3Ztm1bNm/enN7e3lY3py0IYwMAwCqiEEwz+cFmaRw3AAAAAI5F7ai9Nev1UesHgNZ485vfnDe/+c1HzFvMSNYLzZsd7p5v9OvF7vN4+zjefp988sl861vfWvRx+Od//uccOHAg69atS19fX9atW5e1a9dm27Zty33IO4YwNgDQkRQbYWm8dwAAAAAAYGUYuRwAVp9yuZxyudzqZpyU8fHx/PIv/3Kq1eqi1v/d3/3deeffcsstufTSS5ezaR1DGBsA6EhF+4t/RTNYGoVtAAAAAADaRdFGxlYbB4Di2rt3b6rVah544IHs378/3/d935etW7fmwIEDR0zj4+PH3U+5XM6mTZty+eWX56KLLmpS69uPMDbAKuDLOACHFe0PGZrFZykAAAAALC81N4pIDR4AaEf79u3Lvffem2q1mmq1mnvvvTdPPfXUzPLe3t5s2LAhAwMDWb9+fU477bTs3Lkz69evz8DAwBHLNmzYkNNOOy2bN29OqVRqYa/aS6nRaLS6DW1laGjIAQGADlC0YpZiMFBERbtWN4vPBAAAoOiKFsAsWn+KxGtDMxXtfCtaf4pG7bV9Fe2cdi0gSYaHh6UtO4PcI0d5+OGH81/+y3/JY489dtSybdu25fLLL89ll12WrVu3ZsOGDTPh697e3uVuSuGvI8LYcwhjA0BnKFqRSYGBZvHeoZmKdr41i/MaAAAAADieIgVki9QXKCph7I4h98hRnnrqqfz2b/929u7dm9HR0YyMjGR0dDRjY2PH3W7NmjVZv379zDR3dOzD09q1a7Nu3bpcdtllC42SXfjrSHerGwAAADSPYiPN5HwDAAAAAFh+aq8AwGJs2bIlv/qrv3rU/FqtltHR0Rw4cGBmmh3Wnj3/wIEDeeKJJ7Jr166MjIxkYmLiqP3dcsstufTSS5vRpbYljA0AAAAAAAAAACepaP9boNA3ABRTV1dXBgcHMzg4eELb7d+/Pz/+4z8+8/iss87Ktddem0suuWS5m9hxhLEBAAAW4L9JBAAAAABgIWq8AEBRjY+P5+tf/3pOO+207NmzJ2vWrMk73vGOnHvuua1uWlsQxgYAAAAAAAAAgA5hAJH25bUBoIhGRkby0z/909m3b1+S5IILLsgv/dIvCWLPIowNAACwAEVNAAAAAABgIX5PAKCZ6vX6vFOtVlvWZZOTk1m/fv1MGPtf/uVf8vM///P5yEc+khe+8IUtPgrtQRgbAABWkWaNyNAsipoAAAAAAAAAnIyvfvWrufnmm9Pd3Z2enp55p/mWdXV1HTPYfDKh6MVu22zlcjlnn312KpVKLrroolQqlaa3oV0JYwMAwCoivAztr2h/NAEAAHSOZtUNmvW9R3/w2tBMRTvfitYflqYZ54Fzur05bsBq8Xu/93uZmprK1NRUxsfHW92co5TL5ZlAeG9v7zHD4QuFx09kne7u7nR3d6dcLqerqyvd3d0588wzs2bNmlYfjrZUajQarW5DWxkaGnJAAAAAAAAAAAA4IUUbaKEZAVlhX2h/w8PDpVa3gUWRezwJjUYjhw4dyuTk5LJPhw4dOmI061qtNjPNftzKEa+PpVQqzYSxu7q6jrifPHfc1q1bl1/7tV/Lzp07j7urpjS4hYyMDQAAAAAAAAAAAMCqVCqVsmbNmmUb9XliYiL33XffEcHruYHr+QLZh6fDo3QfOnToiPtzH8+9f6zlS9VoNGbadCz79u3LAw88sFAYu/CMjD2HkbEBoDMYWQBoJiNzAAAAsBoUreYGUETNqiH6TABglsKPaFsQco9t5JZbbskXv/jFVjdjxXR1daWnpye9vb3p6+vLq1/96pxyyim55pprjhVoL/x1RBh7DmFsAAAAAAAAAADaVZEGEClSX6CohoeHCx+iLAi5xzYyOjqa733ve7n77rvz5S9/OYcOHcr09HSmpqZSr9db3bwVUS6X88EPfjAXX3zxfIsLfx3pbnUDAACWomgjMigAQXtTDAYAAAAAoF2oJQNAexsYGMhVV12VRx99NI1GI11dXUmSUqmUWq2WWq1WiFD2Bz7wgWzfvj3lcjlr1qzJhg0bWt2klhHGBgAAWIDCNgAAACyfov3Rc9H6UyReG5qpaOdb0fpTNEUbtKgZnNNL47gBnJyf+ImfyE/8xE/Mu6zRaKRer8+Es483HWu9E51/eNnDDz+cv/zLvzzp/p155pnZsmXLSe+nCEqNhtHpZxsaGnJAAAAorKIVaBXnAAAAAABYbYoUkC1SX6CohoeHS61uA4si98iiHTx4MH/8x3+cvXv35uDBgxkfH8/BgwePuD8+Pp7x8fEcL2O8Y8eOXHfddbn++uvT29t7vKcs/HXEyNgAQEcSKIWlca4BAAAAAEBnU+sHAE7GunXr8jM/8zMLrlev1zM5OTkT1J4d1n766afz5S9/Obfeems2bdqUH/qhH1r5hrcxYWwAoCMpMgGJETMAAAAAAFh91MYBgGYol8vp6+tLX19fTjnllKOWX3nllfmpn/qp/NM//VOuvvrqrFu3rgWtbA/C2AAAQMdSCAYAAAAAAACA5hgbG8vu3bvz+OOP54EHHkiSfOELX8gXvvCFfPzjH8/OnTtb3MLWEMYGADpSs/7iv1kESqG9GWUEAAAAAAAAgNVs7969+cmf/MlMT0/PzNu4cWP27duXc845Jxs3bmxh61pLGBsAAGABQtIAAAAAAJ3LgBsAQJE1Go3U6/XUarXUarUj7s+eTnT+3Gn37t0zQez+/v585jOfyeDgYIt73x6EsQEAAAAAAAAAKCwhaQCgFb773e/mr/7qr5Ycfl5ovdnLm21sbCyPPfaYMPbzhLEBAABYEc0abaZo/DAEAAAAAAAAne/hhx/OXXfdNW+Qenp6Oo1Go9VNXJQPfehD2bJlS7q6ulIul9PV1ZU1a9Zk3bp1rW5a2xDGBgAAYEUIFQMAADCfZv3xbrO+lxatP0XitaGZina+Fa0/LE2RBtxwTi+N4wZwcq6//vpcf/31x1w+e2Tr6enpY4a2j7XOUrap1Wp58MEHT+gaf//99+fgwYPp7+/Phg0b8oIXvCDlcnkZjlBxlDolWd8sQ0NDDggAdIAiFX8SBQZYKkVAAAAAAABWmyLVxovUFyiq4eHhUqvbwKLIPbJo4+Pjuemmm3LXXXelXC6nu7s7PT096e7uTnd3d6ampjI6Opp6vT7v9meeeWauu+66vOY1r0l396LGhC78dcTI2AAAQMdSPAUAAAAAAACgUzUajdTr9SOmWq121P3Z8441f751jrXdtddem2uuuWbe7Q7PO3jwYA4cOJADBw5kZGQkBw4cyOOPP57du3fnYx/7WC644IJccsklrT6EbUEYGwAAAAAAAAAAADpI0f43aWhnn//853PrrbfOu6xUKmX9+vUZGBhId3f3CYeljzX6dLspl8spl8vp6enJNddck+uvv14QexZhbACgIxkNF4CiUjwFAABaRc0NAAA6R7P+/e53C0hGRkaOuazRaGRkZOS465yMUqmUnp6e9PT0pLe394jbufOPd3/u9t3d3cdcf/a8tWvXZtOmTSmVSivSv6IQxgYAOlLRvvD5oYtm8d6B9ue8BgAAAIDOVLQaPADwnBtvvDE33nhjkqRer+fAgQPZv39/9u/fn3379mXfvn0zj8fHx1Or1Y6YDo+CfbLTwYMHU6vVMj093dT+b9q0Keeff34qlUrOP//8vOAFL8i2bdvS29vb1Ha0M2FsAABYRYQ8AQAAAABgZRillma9Nn7vAWidcrmcwcHBDA4OtrQdyxXwXmgaHx/Pv/7rv+bee+/NN7/5zdTr9aPa0tXVlSuvvDI33XRT+vr6WnA0Wk8YGwDoSAoMQDMpngIAAAAAwPIrWl28aP0BoH2Vy+WUy+X09PSc1H7q9XpGR0dnRveee3v4fnd3dwYGBjIyMnLUPmq1Wv7hH/4hu3btysUXX3xS7elUwtgAAAALUDwFAACA5VO0P3ouWn+KxGvT3or2+ujP0nj/tDcjcLcv1wIATsaTTz6Zd77zndmzZ0/2798/72jXs/X09GT79u150YtelO3bt2fz5s0ZHBzMxo0bs3HjxpmRwgcGBprUg/ZTajQarW5DWxkaGnJAAACgQygCAgAAAEBnUtujiIoWXm7G+8e1ANrf8PBwqdVtYFHkHlm0ffv25dZbb80zzzyT0dHRjI2NzUzT09MLbv+JT3wi55xzzok8ZeGvI8LYcwhjAwBQZEUrBNPeFLcBAAAAYHkJrpIU6zwoUl+gqISxO4bcIyft0UcfzZve9KYF17v22muzdevWrF+/Pps3b87Q0FB6enqOt0nhryPdrW4AAADQPIqNS6MYDAAAAAC0AzVEAABWyimnnJKtW7fmySefPO56/+t//a8jHm/bti0XX3zxSjat7QljAwAdqWij+yqe0ixFe+80i/coAAAAACwvAyBQRGrwAEAnGx0dzaFDh+Zddsopp+Tyyy/PhRdemA0bNmTDhg1Zv359Nm3alK1btza5pe1HGBsAAFaRov3woLANAAAAAJ2paLVKaCbvHwBgJZx66qn5/Oc/n927d6daraZarebee+/Nrl278swzz+QrX/lK7rjjjpx33nk5//zzU6lU0t/f3+pmt4VSo9FodRvaytDQkAMCAAAcwSg9AAAAAAC0iyLVrIvUFyiq4eHhUqvbwKLIPbJiarVaHn744ZlwdrVazfe+972Z5bfccksuvfTS4+2i8NcRI2MDAAAAAAAAtLlmhNUE1QBoNp89sHT+B1mgWbq6unLOOefknHPOyate9aocOHAg119//czys88+u3WNaxPC2ABARyraF0uFJmhv3qMAAABAq6lPAAAwW7P+fVi03+ZhNarX6zl06FCmpqZy6NChE5qOtc3pp5+exx9/PKVSKbt3787GjRtb3c2WEsYGAIBVRLGEZvIjMQAAAPNpVn2iaOEU37NPnNeGZira+Va0/rA0RfpfGZzTS+O4AXSWf/3Xf82///f/fkX23dvbe8S0du3avP71r8+rX/3qnHHGGSvynJ1EGBsAAOhYinMAAADQeYr2fb5o/SkSrw3NVLTzrWj9YWmacR4ULexbtP64FgB0lv7+/hXZ7+///u8LXC9AGBsAAOhYRvpub4q0AAAAwHyKFlRjaZwHQBG55gDQSqeddlpuv/32467TaDTyzW9+M29729sW3F+pVMorXvGKbNmyZbmaWFjC2AAAsIooAgIAAACtVrQAZtH60wxeG5LiHbeinW9F6w9LU6QBUZzTS+O4ARRPqVRacATtcrmcdevWpb+/P4888kh+5Vd+Jf39/env78+GDRvyspe9LJdddlnK5XKTWt3+So1Go9VtaCtDQ0MOCAAAhVWkwmmiOAcAAAAAwOpTpIBskfoCRTU8PFxqdRtYFLlHFtRoNHLo0KFMTEzkiSeeyJ49e/LMM8/MTHv37p25v2/fvgX394d/+IfZtm3bYp668NcRI2MDAB1JoBSWxrm2NIrBAAAAsHyK9j27aP0pEq8NzVS03y2axfunvTXjvC7a53WzFO24uRYArKwHHnggN95445K2LZfLWbt27cxULpeze/fu9PX1pVQqfMZ60YyMPYeRsQGgMyiYwNIU7b1De3NtAwAAAOBYBPwoIuf1iXPMoP0ZGbtjyD1yTAcOHMjP//zPZ/fu3Ytav6+vL6eeemo2b96cwcHB9Pf3p7+/PwMDA+nv709vb2/6+vpyzTXXpKurazG7LPx1xMjYAACwiig2AgAAAADtQK2SIjJaMQDQjtavX59Pf/rTM4/r9XqefvrpPPbYY3niiScyNjZ2xDQ6Ojpz+93vfjcjIyPz7nfbtm25+OKLm9WNtiaMDQAAdCwFZwAAAAAAAABYvHK5nK1bt2br1q1HzB8dHc0b3/jGY4avDzv33HPzute9ThB7FmFsAKAjCUYCiVFGAAAAAABoH82qJQMArIRarbZgEDtJ7r///vz3//7f88IXvjAveMELmtCy9ieMDQB0pKIVswQwob15jwIAAADA8jIAAgAAq12j0Zh3qtfrR9xPsuLzDt//wAc+kD179uTRRx/Nfffdl3vuuWfegHZPT08GBgaacZg6gjA2ANCRFE8BAE5O0f64rVn8O5RmKtr71PsHaCbXUID259pGERXtf3MEoHkqlcorkvxKksuTbE/ys9Vq9fdmLW8cY9OPVqvVNy9HG/bv35+//du/zfT09LIHfE9k3olst5Jta0YIutE41svaeuVyOVu3bs3OnTtz+umn54wzzsjOnTtz/vnnZ3BwsNXNazuldn4xW8QBAQpHMQsAoHP4IQUAAAAAAGgjpVY3YDWoVCo/luTlSb6d5FNJfn5OGHvbnE2uSPIXSYaq1erfZhlyj3/1V3+V9773vSe7G9pcqVRKuVyeCYUv5Kyzzsqtt96a/v7+k3rak9m4EwhjzzE0NOSAAEAHKFpQzR9NAAAAALBaNKu2V7TRSdUQT5zXpr0V7fUp2u8WzeL9szTOt/ZVtHO6aNdqlmZ4eLjwIcp2U6lURpP8wuww9jzrfDzJK6rVauX5WY0kqdVqufPOO3PfffflvPPOy1VXXZWurq5FP/f+/ftTq9WWZcTnY41A3Yx9L+b5WvW8C81bied97LHHMjY2tujzYK7Pfvaz2bp165K3zyoIY3e3ugEAAAAAAAAAwOoieLc0wuXtzXEDoBkqlcpAktcn+bXZ82u1Wt761rfmnnvuycTERNauXZsLL7wwN99886ID2YODgyvQYpptdiC70Whkz549edOb3rTgdt3d3dm8eXM2btyYTZs2Zd26denp6cmnP/3prFmzJr29vcectm7dmhe96EUr3bW2ZWTsOYyMDQAAAAAAAABAuyrSaMVF6gsUlZGxm2+hkbErlcrPJflIkjOq1epTz89u/P3f/zQZZNUAACAASURBVH1+/dd/PePj4zPr9vT05Md//Mezc+fOeUdVPpEp+f9HWl7K/bkB4ZW+3w7TyR6zpdxvpVtuuSWXXnrpfIsKfx0xMvYc/koRKCJfLCmion1me5/SLN47S1O049Ysrm1L43wDAAAAANpBkWqVReoLQJL/M8kXZgWxkyT33XdfJiYmjlhxamoqn/vc55rZNjpcqVRKqVRKuVyemaanpzM9PX3Uutdcc016enpy6NChbN++fVWPjC2MPYewAAAARebfu0vjuNFMzjcAAAAA4HiKNJp0kfoCReWPGdpLpVK5NMkVSf7r3GXnnXde1q5de8TI2GvWrMnP/dzP5ZJLLjnh0aVPZFTmdptWqp8n0udmH58TGRV8oWMyOjo6b/h6rle96lW55JJLsmbNmgXXLTphbACgIymYAAAAAAAAAACrzM8leTDJV+cuuOqqq3LhhRfme9/7XiYnJ7NmzZpcdNFFueGGG9LV1dX0htK5Dhw4kOuvv37B9d761rce8fjjH/94du7cuVLNamvC2AAAAAswMgcAAAAAALAQvycAS1WpVAaSHE6xlpPseH4U7L3VavXh59dZl+SNSW6uVquNufvo6urKzTffnDvvvDO7du3Kzp07c9VVVwlic8LWr1+f22+/feZxrVbLwYMHMzIyktHR0ezZsyfvfOc7j9pu48aNzWxmWxHGBgAAWICiJgAAAAAAC2lWELdIilZ/L1p/gKa6Isntsx7/2vPTbUl+5vl5P5mkP8knj7WTrq6uXH311bn66qtXqJmsRl1dXVm/fn36+/vzp3/6p7nrrrvmXe+BBx7Iqaee2uTWtYdSo3HUH0isakNDQw4IAACFpRC8NIqnAAAAAAC0iyKNvlykvkBRDQ8Pl1rdBhZF7pFFazQaOXToUCYnJxecJiYmcujQoUxMTGTv3r35sz/7s5n9XHLJJbnwwguzefPmnHrqqXnlK1+ZUmneS0bhryPC2HMIYwNAZyhaoFQBCCiiol2rm8VnAgAAUHRFC10VrT9F4rWhmYp2vhWtP82iJnrinNPtzXEjEcbuIHKPHGX37t35zd/8zYyMjBwVsl4Ov/d7v5ezzjprMasW/joijD2HMDYAdIaiFbMUGAAAAAAAAFiMIgVki9QXKCph7I4h98hRnnzyyXz0ox/NyMjIUSNhHx7xenJyMkvNEX/84x/Pzp07F7Nq4a8j3a1uAAAAQLtTDAYAAAAAYCFFG0wIAOhsW7duzbve9a7jrtNoNDI1NXVUQPvw/YmJiezZsycf/OAHj9r2ne98Z172spflP/7H/5iurq4V6kVnEMYGADqSwCLQTK45AAAAAAAAABRNqVRKvV7Pu971rnz7298+YllPT89xQ9aPPfZYPve5z+XlL395LrnkkpVualsTxgYAOlLRRhYQ9KRZivbeob25tgEAAAAAq0mzaqJq/QDAchoZGTkqiJ0kU1NTmZqaOmr+ZZddlhtuuCGnnHJK+vr6cu655zajmW1NGBsAAFYR4VgAAAAAAAAA4LCtW7fmb/7mbzIxMZH9+/dn37592bdvX/bv3z/z+PDto48+mu985zu55557cuGFF+b888/Pww8/nAsuuCCnn356q7vSMsLYAEBHEigFAAAAAAAAAICTVyqV0tfXl76+vmzbtu2Y6zUajVSr1XzlK1/JPffckz/90z+dGT37Pe95T66++upmNbmtCGMDAAAAAAAAAMBJGh4ebsrzGLQIAFavRqORWq2Wer1+1O3x5s1+PN+8hfY5d/vt27dn27ZtufTSS/NHf/RHSZLx8fEWH53WEcYGAAAAAAAAAOgAwr7trVnHzXkAAO3h7/7u73L77bfPG2pebAj6RIPQjUaj1d0+yqWXXprrrrtuVf/bQRgbAOhIzSoyNctq/gcpzVW0906zeI8CAAAAAO1ArZLEeQAA7eKRRx7JPffcc0Roenagevb9dgxRL1ZPT08GBgbyrne9K2eeeWbK5fLM1NPTkzVr1rS6iS0njA0AAHQsBWcAAAAAAFYbI2MDQHt4wxvekDe84Q2LWne+0bHnBrbn3p7sOsdb/0TW2b9/f+66666MjIxk8+bNK3xUO5MwNgAArCIKp0ujsA0AAAAAACzE7wkAHMvhkaQ7SaPRyG233Za//uu/TpL09va2uEXtSxgbAABWkWYVAYtGURMAAAAAAFiI3xMAKJKnn346t91228zjj3/84/mHf/iH3HjjjRkYGGhhy9qPMDYAAKwiioAAAAAAALAyDIgCABRJX19fzjrrrDz00ENJkl27duXxxx/PDTfcIIw9hzA2AByD/0IKoP25VgMAAAAAq4maaHtr1nET+gYAmuGRRx7JQw89lJe+9KX5wR/8wVQqlezYsSNdXV2tblrbEcYGWAUUZZamaP0pGq8PLI0C7dL4LAUAAAAA2oEaIgAAzdLT05Mk+cY3vpFvfetb2bhxYwYHBzM4ODhz//Dtli1bcuWVV6ZcLre41a0hjA2wCijKAHCYzwQAAAAAAAAAYCFnnXVWNm/enL1792ZycjJ79uzJnj17jrn++973vlxxxRVNbGH7EMYGADpS0Ub3FZClWbx3AAAAAACA1cb/gAkAJ250dDR79+49an5PT0+uu+66nHrqqdm4cWM2btyYU045Jeedd14LWtkeSo1Go9VtaCtDQ0MOCAAAhVW0MHazKJ4CAAAAAMDyE5KG9jc8PFxqdRtYFLlHkiSHDh3KxMREDh06tKhpamrquMtHRkZyzz33ZP/+/Uc916c+9am84AUvWEyzCn8dMTI2AACsIoqNABzmD3SWxmcpzVS096n3D9BMrqHtrWihq6L1p0i8NjRT0c63ovWnaIr2b51mcE4vjeMG0Fn+9//+33nLW96SWq3WlOf77ne/m8cffzyTk5Pp7e3NVVddlVKp8LnreRkZew4jYwMAAAAAAAAA0K6KFJAtUl+gqIyM3THkHsno6Gi+9KUv5eDBgzMjXk9NTR1zmm/5oUOHMj09PXO/Xq8v+vnf//735/LLL59vUeGvI0bGBgCAVaRoo2UongIAAAAA0C6KVoMHADrLwMBA/t2/+3fLsq9arZbx8fGMjIxk37592b9/fx555JF87GMfO2rdF77whXn5y1+eyy67bFmeuxMJYwMAHaloxSyBUliaol0Lisa1DQAAAABYTZpVE1UbBwCW0/79+/Mbv/EbefLJJ3Pw4MGMjY3l4MGDi97+LW95S77v+75vBVvY/oSxAYCOJOAHS+O9AwAAAAAAK0NIGgDoVGvXrk1vb28ee+yxTE1NLXq79evXp9ForGDLOoMwNgAArCIKwTST8D8AAAAAsJoYGZtmvTbq7wAsh0ajkT/6oz/K7bffnsceeyxjY2PHXHfNmjVZv359BgYGsn79+pnplFNOyZYtW5rY6vYkjA0AAAAAAAAA0AEEPWFpBNgB4GgPPvhgfud3fmdR605NTeXpp5/O2WefnXe/+93p6+tb4dZ1lpLhwY80NDTkgABAByhawURR88QpOAMAAABAZ1LbA+AwnwnQ/oaHh0utbgOLIvfIktx777159NFH8+53v3vR23zyk5/M2WeffSJPU/jriJGxAQDoSIpmAAAAANCZ1PYATo4AMwCwXM4///yceuqpJ7TNz/7szyZJbrvttuzYsWMlmtVxhLEBAAAWoLANAAAAAAAAQJKMjo5m165dqdVqqdfrM7eH75/o/LnLFzt/vtulbrNhw4aZx5OTk6nX6wseh/Xr1zfhaHcGYWwAoCMJLMLSNCtUXDSuOTST9ykAANAqvv8CAADAwt73vvfla1/7Wqub0TQ9PT3p6elJd3d3yuVyTjvttFx88cVZt25dq5vWNoSxAQBgFfGj6tIYGZtmch4AAAAAq4GaGwAAneotb3lLrrvuukWPTH28eSu9j7nzFho5e3p6OpOTk0f0d2pqKlNTUzOP9+3bl2q1mh/+4R9OpVJp9uFvS8LYAEBHKtqooYrBNEvR3jtFU7TXx7UNAAAAgGNROwIAoFMNDg7miiuuaHUzls2zzz6b17zmNQuu19/fn+///u/PpZdemiuuuCI7duxoQus6gzA2AACsIn7gAAAAAAAAAAAO6+rqSk9PzxGjX89nbGwsd9xxR+64444kyUc/+tFceOGFzWhi2xPGBgAAAAAAAACAk9Ss//3QwCsA0D5qtVr279+fZ555Jk8//XTGxsZSr9dTq9Vmbg9Psx/Pt86x1l9ou2MtO9F9n6inn356BY5oZxLGBgA6kiITAEXVrB9sAAAA5lJzA4CT06zPUqFvAGiNO++8M29729uWdZ/lcjldXV3p6uqa9/6xls9dZ82aNSe0/nzLF1pn9v21a9fmJS95ybIei04mjA0AdKSiBdUUs2iWor13aG+ubUvjuAEAAK2ibgDQ/ooW9qW9Fek8KFJfAGidO+64Y1n209vbm3Xr1mXt2rVZs2ZNent7Z257e3vT1dWV7u7umeBzd3f3zDR73uxlc9c9kfUW+1zlcnlZ+l9EpUaj0eo2tJWhoSEHBAA6QNEKJoJ3AAAAAAAArDZG+Yb2Nzw8XGp1G1gUuccmaTQamZqayqFDhzI5OTlze/j+4Wn2vNm3Tz31VA4ePJjx8fGZ29n3JycnW93FY5o9MvbhwHZ/f3/+23/7bzn77LOPt2nhryNGxgYAOpKCCQAAAAAsr6INgABQREbGhqVxTgOwXEql0swI1gMDAye07e///u/ny1/+8gq1bOXV6/XU6/VMTU3NzJuamsrg4GALW9UehLEBAAAWYGQOAAAAVgPfSwE4zGdCeytSzbpIfYGi8scMsHyuvfba9PX1pVarLXmq1+snvf34+PgRgeqTMTY2loceeiibNm1alv11KmFsAKAjFe0LnwIQzVK0907RFO31cW0DAAAA4FgEMCmiotV4AYDlddppp+W1r31tq5uRBx98MD/7sz+75O2vueaabNmyJT09PdmxY0de/OIXL2PrOpMwNgDQkRRPgcS1AAAAAGg9gVJYGuc0AAA0z+ERsQ8ePJhyuZybb745Tz31VPbu3ZunnnoqTz/99Mzts88+e9x93XjjjTnjjDOa1PLOIIwNAHSkoo0soOhMszjXlsaPqgAAALB8fM+mWZxrNFPRzrei9adZivb6FOn3uCL1JSneuVa0awFAu7n//vvzC7/wC5mYmFjyPvr6+vJDP/RDueGGGwSx51FqNBqtbkNbGRoackAAoAMomAAAAAAAANBO/H514oR9of0NDw+XWt0GFkXukWMaGxvLF77whezbty8TExMZHx8/7u1Coe2bbropr3zlK0+kCYW/jhgZGwAAAAAAAACgAwiutreijVYMABRDf39/3vjGNy56/Xq9nsnJyYyPj89MExMTeeihh/L+978/7373u/P1r389v/RLv5QNGzasYMs7hzA2AAAAAAAAAEAHEJIGAGA5TE1N5eDBgzNh64MHD85Msx/Pvb9ly5Y89dRT+drXvpbXv/71wtjPE8YGAAAAAAAAmqZoo7oWrT9F4rWhmYp2vhWtP81StBGri9Qf5/TSOG4AxXL//ffnP/2n/5TR0dFFb9Pd3Z1169alr68v69aty7Zt2/La1742r3rVqzI4OLiCre0spUaj0eo2tJWhoSEHBCgcX5AAOKxIhdNm8hkHFJHPhKXxmUAzFe196v0DNJNrKABQZEX6/bdIfYGiGh4eLrW6DSyK3CML+ru/+7u84x3vWHC9rq6ubNiwIRs2bEhfX1+6u7uPmHp6etLV1ZWenp6ZeTt27MhrXvOalMvl+XZZ+OuIMPYcwtgAAAAAAAAAsLIEMIHEtQA6gTB2x5B77ACPPvpohoeHU6vVZqZ6vX7E46XOX8w64+PjmZqaWrH+vf/978/ll18+36LCX0e6W90AAAAAAAAAoPWKNqI4QFK8a1uzAqVFO27gnAagHdxxxx353d/93VY3Y8Xs2LGj1U1oGSNjz2FkbAAAiqxoxUYjWQAAAAAAsNoUaTTpIvUFisrI2B1D7rFDTExMLNsI2CsxwvZi5h88eDC7du06qm+f+MQncs4558zX7cJfR4Sx5xDGBoDOIFAKAAAAAAAAACtLGLtjyD3SNFNTU/nQhz6U73znO3nsscdm5p922ml53etel9e+9rUplY64dBT+OtLd6gYAACyF8DIAAAAAAACrkdGkAYDlVKvV8hd/8RfZt29furu7Mz4+nomJiUXdzrZnz57ceuutOeOMM3L11Ve3qDetIYwNAHQkI2PD0hTtvUN7c20DAAAAAOB4BMsBoPUef/zxfOhDHzpq/qZNmzIwMJC1a9emr68vGzdunLk/3+2aNWtSKpVy5ZVXtqAXrSWMDQAAsABFWgAAAAAAAACK6Mwzz8yHP/zh/Nmf/Vm+8Y1vZHJyMkkyNjaWbdu25cwzz8wZZ5yR008/Pdu3b8/27duzadOmlEqlFre8fQhjAwDAKiJUDAAAAAAAAADMdvHFF+fiiy9OvV7Po48+mmq1mnvvvTf33Xdf7r777nz1q19No9GYWb9cLuejH/1oKpVKC1vdPoSxAQAAFuC/SQQAAAAAgOWnLg4ArdNoNPKd73wnTz31VMbGxuadpqamsm7dugwODmbfvn0z29br9TzxxBPC2M8rzU6qkwwNDTkgAAAAAAAAsEKK9kfPRetPkXhtaKZmnW9F4/2zNM639lW0c9pnKUkyPDxcanUbWBS5R07YAw88kBtvvPGEt7vxxhtz2mmnZWhoKL29vYvZpPDXEWHsOYSxAaAzFK3IpMAAAAAAAADQ2fx+deKEfaH9CWN3DLlHFvTss8/mYx/7WJ599tkcPHgwBw8ezIMPPnjC+/nEJz6Rc84550Q2Kfx1pLvVDQAAAFgqRVoAAAAAANqFWjIA0M4mJyfz8MMPZ9++fRkfH8/4+PiS9nN4NO3bbrstO3bsWM4mdixhbAAAAAAAAAAA6BAGKgFgOdVqtVSr1dRqtSRJvV5Po9E4aqrX6y1d3i7tmL28049HuVxOuVyeWedEDQwMLGm7Iio1Gkann8MBAQrHl2QAODkK2zRT0f4rUwAAAAAAoKOVWt0AFmXJucc/+ZM/yUc+8pHlbAsd6HAw+/DU1dU17+O+vr784i/+Yi6//PIT2X3hryPC2HMMDQ05IADQAYoWVBPAhKURkgYAAAAAYLUpUm28SH2BohoeHi58iLIglpx7PHToUO6+++7UarW2GuF5JZ+zHUfhbkZ/Dk8nq1wu5yUveUmuv/76XHHFFenq6lpok8JfR7pb3QAAAIClUjwFAAAAAKBdCBafuCL1BaBT9fb25sorr2x1M2iikwl4j4yM5Ctf+Uq+/OUv5xvf+EZOO+20vPrVr86P/uiP5pRTTmllt1rKyNhzGBkbAAAAAAAAAIB2VaTQd5H6AkVlZOyOIffISTkcwK7X66nVavPen/344MGD+fSnP52vfe1rSZKurq58+MMfzkUXXTTf7gt/HTEyNgDQkZpVmGkWBSAAAAAAAAAAgPbz+OOP58///M+zY8eO9PT0HDOgfLx5tVptwe0Wu5+F9rvY7eZusxQ9PT0599xzc8EFF2T79u3LfOQ7hzA2ANCRhJdhaYr2hwzN4ppDM3mfAgAAreL7L0D7M4owwNK5hgJL9YEPfCB33XVX05+3u7s73d3d6e3tTXd3d3p6eo6439PTk7Vr186s09XVlXK5fMQ0d96JPj48b+787u7unHXWWTn77LPT09PT9GPTboSxAQAAAAAAAAA6gIAfwNK5hgJL9Y53vCN/8Rd/kfvuuy+7du3Ko48+2pTnnZ6ezvT0dCYmJha1/uww9ezbufePtezw7b59+/LQQw8lSTZt2pRPfvKTGRwcXMmudjxhbACgIxVt1FBf/GFpvHfaW9Gu1c3ivAYAAAAAAID2sWHDhrzxjW88Yl6j0UitVsv+/fszNTWVQ4cOHTEdnnes2xOZd6x1arXaEW2q1+up1+vL2vdnn30209PTy7rPIhLGBgCAVUTIk2Zyvi2NEDsAANAqvscBAADA4pRKpfzWb/1WvvjFL7a6KcumXC6nr68vO3fuzIUXXphKpZL+/v48+OCDeeqpp3L++eenXC63upltSRgbAAAA2ojwAwAAALAaNOsP0tVa2pvzAADoZNdff33OOOOM1Gq11Gq11Ov1I27n3j/Wsvm2W8w+F7PvRqOx6P7U6/WMjY3l7rvvzt13333U8re//e35kR/5keU8hIUhjA0AdCRFMwAAAABgNWlGYFHdFWi2ol13/K93QDO55kDrnXvuuTn33HNb3YzjqtfrM9OJBL1nP3788cfznve8J+9973tz++235/LLL0+lUsl5552Xvr6+VnexLZROJPW+GgwNDTkgANABivbFsmjFRgAAAAAAAFiI0dGh/Q0PD5da3QYWRe6RFfXEE0/kS1/6Ur7yla9kz549SZJSqZSzzz47N910U84+++zjbV7464iRsQGAjqRgAgAAAAAAACyGgZ4A4ORMTk5m586d2bBhQ/75n/85w8PDaTQaeeCBB3LvvfcuFMYuPGFsAACABRiZAwAAAACWl5obRSTw276K1Bc4rGjXHKB9Pfvss/mZn/mZo+a/9KUvzVlnnZUf+IEfaH6j2owwNgDQkYr2xVIBCNqb9ygAAAAALC81N4qoWed10X4nA5bGNQdYaVNTU/nsZz+bXbt2zbv8DW94Q170ohc1uVXtSRgbAABgAUbpAQAAAABgIQKLQDO55gArbWxsLJ/73OcyMjJyxPzt27fnFa94RTZt2pRGo5FSqdSiFraPUqPRaHUb2srQ0JADAgAdoGhfLAUwAQAAAAAAWG0MhgLtb3h4WMqyM8g9siJqtVoefPDBVKvVVKvV3Hvvvbn//vszNTWVJFm7dm0++MEPplKpHG83hb+OGBkbAOhICiYAAAAAAACsRgLMQFK8AcygiBqNRur1ehqNxhFTvV5PkiOWzTdv9rK5805233Pn1Wq1jI+PZ3R0NGNjYzl48GDGxsaOejw2Npa+vr6ZMPbExEQeeeSRhcLYhSeMDQAAq4iiDM2kUA8AAADAsQiTUkRq8EAzNeszzrWteJ566qm87W1vy8jISEql5wYsLpVKM9PJPp49P0nK5fKy7Hc5w8nNCEU3Gp0/WPm6devS39+fdevWZWBgIBs2bMjpp58+87i/vz+Dg4N52cte1uqmtlypCC/4MnNAgMJRZKKIivaFz/sUlsYPNhRR0T7jAAAAAACAjlZaeBXawKJzj3/+53+eD37wgyvZllVhx44declLXjITFj8cOp89lcvlJDli2Xzzlrr+yT7v3Hn9/f0zU19fX7q6upbrcBX+OmJk7DmELAAAAAAAAFiN/E4GAJ2hSAOVFKkvUFQGkSmeG264IT/4gz+YWq02M2/2iNCzR3teaGo0GqnVajPrz76/mO3m28dKPueJrH+859y9e3cefvjhrFmzJl1dXSmXyzNTV1fXvPNm386dv1LbJpm5fzh8vdB2k5OTmZ6ezoEDBxZ8/sPzZo+EvloJYwMAAB1L8ZQicl4DAAAAAMejhgjAydq8eXOrm9DRvvSlL+XrX//6EYHtw+Hy6enpTE5OHjFv7npz5x9+PHv+4fud4Ld/+7dz/vnnt7oZLSWMDQAAq4i/XF8ahW0AAAAAWF5Gw6WIilaD9/4BgPn92I/9WH7sx37sqPl79uzJt7/97ZnA9fT09Mz92dPs+XPXOfz4cLB7amoqU1NTOXToUA4dOnTE49nzWxXcvuiii3LGGWe05LnbiTA2ANCRFH9gabx3oP0V7QcbAACgc6gbAMDJ8VkKAKvbH/zBH+SLX/xiq5uxaD09PVm7dm0GBwezcePGbNy4MZs2bcrpp5+e008/Pdu3b8/pp5+egYGBlEqlVje3rZUajUar29BWhoaGHBAA6ABFC6opzkF7M0oPAAAAAADtokg16yL1BYpqeHhYArMzyD22gVqtlieeeCLT09MzI1zPHQV79rLZy+eb34z1pqamMjExcUL9/OM//uNs2bLlRDYpJUmlUlmf5NeT/ESSrUm+k+T/rlar3zy8YqVSOT/Je5Nck6Q3yb8keWO1Wr3nhBrZZEbGBgAAWIAi7dIU7Q9nmsX5BgAAAAAALMTvMNB+urq6csYZZ7S6GSdsamoqBw4cyOjoaL71rW/ls5/9bPbs2bMST/W7SS5J8tNJdid5U5KvViqVi6rV6qOVSuWcJF9P8qk8F8bel+SCJKMr0ZjlJIwNAACwACNzAAAAAACwEMFIoJma9buSaxt0vkajkXq9PjMq9rGmJ554Ih/+8Ifn3cfOnTtzxhln5MUvfnFOPfXUE25DpVLpS/LaJK+tVqvDz89+V6VSuS7J/5XkV5P8RpKvVKvV/zxr03894SdrAWFsAACABQhJL43jBgAAAAAAAKw2DzzwQH75l385tVotpVIppVIpSVIul2ceL2V+kpn7xwpXzze/Xq+fdJ927dqVXbt25W//9m9z4YUX5oILLjhqnVqtljvvvDP33XdfzjvvvFx11VXp6uo6vLg7SVeSiTmbjSd5eaVSKSe5Lsl7K5XK/5vk8iQPJnl/tVr97El3YIUJYwMAACzAyNgAAACsBka8A2h/RkGlmYp0HhSpLwC0v7/5m7/J/v37W92MRenu7s66deuOmPr6+mbu9/f3p6+vL729vZmcnMyWLVty6qmn5sCBA1mzZk16enpSKpVSq9Xy1re+Nffcc08mJiaydu3aXHjhhbn55pvT1dWVarV6oFKp/H2SX61UKv+U5Ikkb0hydZJdSbYmGUjyX5O8I8nbk1yT5DOVSmWsWq3+z9YcocUpNRqNVrehrQwNDTkgAAAAAAAAAAC0JQOIAM00PDxcanUbWBS5xzbSaDQyOjqaRqORer2e6enpTE9Pp1arZXp6OlNTUzP3Zy+bmpo6Yr2507HmH2/fx3vOycnJI6bltnbt2tx00025+uqrS0lSqVTOTfKJRHxnEQAACI5JREFUJK9IUkvy7ST3Jvn+JD+c5NEkf1itVn/q8D4qlcofJNlUrVZ/dNkbuIyMjA0AdKSi/fW6YhbNUrT3TrN4jwIAAAAAwPITLAegiEqlUtavX9/05200Grn//vtz4MCBTExMZGJiIpOTk/PenztvfHw8Bw4cyMjISA4cOLAs7ZmcnMyuXbty9dVXJ0mq1er9Sf5NpVLpT7KhWq0+XqlUPpvkgSRPJ5lO8r05u7knyeuXpUErSBh7DuEUoIh8sQTgMJ8JS6MYDAAAAAAAAEA7u/POO/P2t799WfZ16qmn5tprr826desyMDCQ9evXHzUNDAykq6srSfL3f//3+fVf//WMj4/P7GPNmjXZuXPnUfuuVqtjScYqlcqmJD+S5K3VavVQpVL5ZpLKnNXPT/LQsnRqBQljzyH8AABAkfnjw6XxPQEAAAAAgIWowQMArfD000/nxhtvXLYRrQ/v89prr82OHTtmAtfHc9VVV+XCCy/M9773vUxOTmbNmjW56KKLctVVV82sU6lUfiRJOcm/JNmZ5H1Jqkk++fwqNyf540qlckeSv0nyyjw3KvaPL1vHVsiiwtiVSuV1Sf5NkkuTvDjJ+iSfqVarbzrONi9N8qtJXpJkbZJdST6R5Leq1WrtGNv8dJI3J7koSS3Jd5K8v1qt/s9jrN+X5O157mCflWQkyXCSd1ar1XsW0zcAoDMJRsLSeO8AAAAAAO3A/0ZHETnfAIBGo5F6vT4z1Wq1I26PN3+p6/zTP/3TsgaxD7vxxhtPaP1PfepT2b17d3bt2pWdO3fmqquumhvkHkzym0nOTLI3yZ8k+X+q1epUklSr1S9UKpWfS/Jfk3woyX1J/o9qtfqXJ9+blVVqNBoLrlSpVL6b50LYo0l2J7kgxwljVyqVG/LcQZpI8tk8d9Cuy3PDh3++Wq3+23m2eX+S//z8/j+fpDfPhaw3J/nFarX6kTnrr0ny10leluSuPJeCf0GSf5vkUJJrqtXqPy7YuTmGhoYWPiAAQMsVbWQBxTkADivaZxwAANA51KgAoDMU6Y8ZitQXKKrh4eFSq9vAosg9tsD/+B//I5///OePCEfX6/VWN6tlPvOZz2T79u3zLSr8dWRRI2Mn+eU8F5LeledGyL79WCtWKpUNST6e50a2HqpWq3c9P/8deS4w/bpKpfL6arX6R7O2eWmeC2Lfn+TKarX67PPz35fkW0neX6lU/me1Wn1w1lO9Jc8FsT+f5Cer1Wr9+W0+m+QLST5RqVQuPjwfAABgqRSDaSbnAQAAAAAAALS/yy67LAcPHjxqFOu5I1rPd3uy68xe3my/8zu/k/POO6/pz9vOFhXGrlarM+HrSqWy0OqvS7IlyacOB7Gf38dEpVL51f+vnbsHrbOK4wD8SxHrR5oqdjAIJY3YA7oFFxvq0EVdtIsauoibonYQsUIb6qCL4iKKLjVrhy5CQBcl2iII4hg5tbYqiksRlCS1aTUOfVNizMfNbW6Sps8D4XDfc/7ved9wvzj87smV3ayfT3J8Ts1zTfvmbBC7qfmxlPJ+kuEkzyY52lxD15yaV+cGrmutH5dSTibZm2WC4wuxAxmwGQn0AMC18VkKAAAAAKvLBgisJc83AKATBgYGMjAwsN6XkVOnTmV4eHjN5uvt7V2zua4Xre6MvRL7mvbTBfq+TDKVZE8pZWut9WILNZ/kShh7X5owdpJ7k+xMcrrWem6Rmr1NzYrC2L4YA8D1wWc2kGy+H1N6bwMAAADgRmEtjLW0Vs+3zbZmDQBcHwYHB3Ps2LFMTU1lenq6rb9Lly4te2xycjJJcujQoRw4cCCllOzYsWOd735j6EQYe3br7NPzO2qtl0sp55I8kKQ/yXellNuT3JNkotb62wLn+75pd7cyxxI1AMAmstkWsyw6Q3u8dgAAAAAA2CisWQMA66Grqyv9/f0dnePChQs5c+ZMDh48mPHx8Rw5cuRq38jISPr6+jo6/0bXiTD29qb9Y5H+2eN3tDm+3RoAALjh+SEDAAAAALARrNVapTVEAAC4NhMTExkaGrq6M/ZcPT092bZt2zpc1cbSiTD2crqadmaFdSsZ3+4cGRsb61p+FADA6tpsAVlYK147AAAAAMBSrCECifcC4IYg90jHdHd3Z3R0dL0vY0Pb0oFzzu5KvX2R/p5545Ybv9Au2CudAwAAAAAAAAAAAABgVXUijF2bdvf8jlLKTUl2Jbmc5GyS1Fonk/yapLuU0rvA+e5r2tOtzLFEDQAAAAAAAAAAAADAqulEGPvzpn10gb6Hk9yW5Kta68UWax6bNyZJfkjyc5LdpZRdLdYAAAAAAAAAAAAAAKyaToSxTyQ5n2SolPLg7MFSyi1J3mgefjCv5sOmPVxKuXNOTV+SF5JcTDIye7zWOjOn5q1SypY5NU8k2ZtkPMkXq3A/AAAAAAAAAAAAAAD/0zUzM7PsoFLK/iT7m4d3J3kkydkkJ5tj52utr8wbfyLJX0mOJ/k9yeNJSnP8qSZQPXeOd5K8nOSXZszNSZ5OcleSl2qt780bvzVXdr7ek+SbJJ8l2ZnkySTTSfbVWr9u5Z8AAAAAAAAAAAAAALBSrYaxX09ydIkhP9Va++bVDCY5nOShJLckOZPkoyTv1lr/XmSeZ5K8mOT+JP8k+TbJ27XW0UXG35rktSQHciWI/WeSsSRHa63jy94YAAAAAAAAAAAAAECbWgpjAwAAAAAAAAAAAADwX1vW+wIAAAAAAAAAAAAAAK5HwtgAAAAAAAAAAAAAAG0QxgYAAAAAAAAAAAAAaIMwNgAAAAAAAAAAAABAG4SxAQAAAAAAAAAAAADaIIwNAAAAAAAAAAAAANAGYWwAAAAAAAAAAAAAgDYIYwMAAAAAAAAAAAAAtEEYGwAAAAAAAAAAAACgDcLYAAAAAAAAAAAAAABt+Beqx7rCPPywagAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import missingno as msno\n", - "%matplotlib inline\n", - "fig = matrix(data[covariates].sample(1000), sparkline=True, figsize=(50, 15))\n", - "\n", - "missing = data.columns[data.isnull().any()]\n", - "fig = matrix(data[missing].sample(1000), sparkline=True, labels=True, figsize=(50, 15))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "cat_features = data.select_dtypes(['O', \"category\"]).columns.to_list()\n", - "cat_idx = data.columns.get_indexer(cat_features)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Female', 'Male']\n", - "Categories (2, object): ['Female', 'Male']\n", - "['White', 'Black', NaN, 'Asian', 'Mixed', 'Chinese']\n", - "Categories (5, object): ['White', 'Black', 'Asian', 'Mixed', 'Chinese']\n", - "[datetime.date(2009, 11, 12) datetime.date(2008, 2, 19)\n", - " datetime.date(2008, 11, 11) ... datetime.date(2006, 3, 13)\n", - " datetime.date(2010, 9, 3) datetime.date(2010, 8, 16)]\n", - "[datetime.date(1960, 11, 12) datetime.date(1949, 2, 19)\n", - " datetime.date(1949, 11, 11) ... datetime.date(1938, 3, 22)\n", - " datetime.date(1970, 8, 17) datetime.date(1936, 6, 12)]\n", - "['Fair', 'Good', 'Poor', 'Excellent', NaN]\n", - "Categories (4, object): ['Poor' < 'Fair' < 'Good' < 'Excellent']\n", - "['Current', 'Previous', 'Never', NaN]\n", - "Categories (3, object): ['Current' < 'Previous' < 'Never']\n", - "['Once or twice a week', 'Three or four times a week', 'One to three times a month', 'Daily or almost daily', 'Special occasions only', 'Never', NaN]\n", - "Categories (6, object): ['Daily or almost daily' < 'Three or four times a week' < 'Once or twice a week' < 'One to three times a month' < 'Special occasions only' < 'Never']\n" - ] - } - ], - "source": [ - "# Show Categories\n", - "df = data\n", - "for col in cat_features:\n", - " print(df[col].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Encode Categories\n", - "from category_encoders import *\n", - "enc = OrdinalEncoder(cols=cat_features, handle_missing=\"return_nan\", handle_unknown=\"return_nan\")\n", - "enc.fit(data)\n", - "data_tf = enc.transform(data)\n", - "\n", - "df = data_tf\n", - "for col in cat_features: print(df[col].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imputation with miceforest" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "df = data.sample(10000)\n", - "missing = df.columns[df.isnull().any()].to_list()\n", - "complete = df.columns[~df.isnull().any()].to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "variable_schema = {}\n", - "for m in missing: \n", - " variable_schema[m] = [x for x in missing if x != m]" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1 | PGS000011 | PGS000013 | PGS000016 | PGS000018 | PGS000039 | PGS000057 | PGS000058 | PGS000059 | PGS000116 | PGS000117 | PGS000192 | PGS000296 | ethnic_background | townsend_deprivation_index_at_recruitment | overall_health_rating | smoking_status | alcohol_intake_frequency | body_mass_index_bmi | weight | pulse_wave_arterial_stiffness_index | pulse_wave_reflection_index | waist_circumference | hip_circumference | standing_height | trunk_fat_percentage | body_fat_percentage | basal_metabolic_rate | forced_vital_capacity_fvc_best_measure | forced_expiratory_volume_in_1second_fev1_best_measure | fev1_fvc_ratio_zscore | peak_expiratory_flow_pef_f3064_0_2 | peak_expiratory_flow_pef_f3064_0_1 | peak_expiratory_flow_pef | systolic_blood_pressure | diastolic_blood_pressure | pulse_rate | basophill_count | basophill_percentage | eosinophill_count | eosinophill_percentage | haematocrit_percentage | haemoglobin_concentration | high_light_scatter_reticulocyte_count | high_light_scatter_reticulocyte_percentage | immature_reticulocyte_fraction | lymphocyte_count | lymphocyte_percentage | mean_corpuscular_haemoglobin | mean_corpuscular_haemoglobin_concentration | mean_corpuscular_volume | mean_platelet_thrombocyte_volume | mean_reticulocyte_volume | mean_sphered_cell_volume | monocyte_count | monocyte_percentage | neutrophill_count | neutrophill_percentage | nucleated_red_blood_cell_count | nucleated_red_blood_cell_percentage | platelet_count | platelet_crit | platelet_distribution_width | red_blood_cell_erythrocyte_count | red_blood_cell_erythrocyte_distribution_width | reticulocyte_count | reticulocyte_percentage | white_blood_cell_leukocyte_count | alanine_aminotransferase | albumin | alkaline_phosphatase | apolipoprotein_a | apolipoprotein_b | aspartate_aminotransferase | creactive_protein | calcium | cholesterol | creatinine | cystatin_c | direct_bilirubin | gamma_glutamyltransferase | glucose | glycated_haemoglobin_hba1c | hdl_cholesterol | igf1 | ldl_direct | lipoprotein_a | oestradiol | phosphate | rheumatoid_factor | shbg | testosterone | total_bilirubin | total_protein | triglycerides | urate | urea | vitamin_d\n", - "2 | PGS000011 | PGS000013 | PGS000016 | PGS000018 | PGS000039 | PGS000057 | PGS000058 | PGS000059 | PGS000116 | PGS000117 | PGS000192 | PGS000296 | ethnic_background | townsend_deprivation_index_at_recruitment | overall_health_rating | smoking_status | alcohol_intake_frequency | body_mass_index_bmi | weight | pulse_wave_arterial_stiffness_index | pulse_wave_reflection_index | waist_circumference | hip_circumference | standing_height | trunk_fat_percentage | body_fat_percentage | basal_metabolic_rate | forced_vital_capacity_fvc_best_measure | forced_expiratory_volume_in_1second_fev1_best_measure | fev1_fvc_ratio_zscore | peak_expiratory_flow_pef_f3064_0_2 | peak_expiratory_flow_pef_f3064_0_1 | peak_expiratory_flow_pef | systolic_blood_pressure | diastolic_blood_pressure | pulse_rate | basophill_count | basophill_percentage | eosinophill_count | eosinophill_percentage | haematocrit_percentage | haemoglobin_concentration | high_light_scatter_reticulocyte_count | high_light_scatter_reticulocyte_percentage | immature_reticulocyte_fraction | lymphocyte_count | lymphocyte_percentage | mean_corpuscular_haemoglobin | mean_corpuscular_haemoglobin_concentration | mean_corpuscular_volume | mean_platelet_thrombocyte_volume | mean_reticulocyte_volume | mean_sphered_cell_volume | monocyte_count | monocyte_percentage | neutrophill_count | neutrophill_percentage | nucleated_red_blood_cell_count | nucleated_red_blood_cell_percentage | platelet_count | platelet_crit | platelet_distribution_width | red_blood_cell_erythrocyte_count | red_blood_cell_erythrocyte_distribution_width | reticulocyte_count | reticulocyte_percentage | white_blood_cell_leukocyte_count | alanine_aminotransferase | albumin | alkaline_phosphatase | apolipoprotein_a | apolipoprotein_b | aspartate_aminotransferase | creactive_protein | calcium | cholesterol | creatinine | cystatin_c | direct_bilirubin | gamma_glutamyltransferase | glucose | glycated_haemoglobin_hba1c | hdl_cholesterol | igf1 | ldl_direct | lipoprotein_a | oestradiol | phosphate | rheumatoid_factor | shbg | testosterone | total_bilirubin | total_protein | triglycerides | urate | urea | vitamin_d\n", - "3 | PGS000011 | PGS000013 | PGS000016 | PGS000018 | PGS000039 | PGS000057 | PGS000058 | PGS000059 | PGS000116 | PGS000117 | PGS000192 | PGS000296 | ethnic_background | townsend_deprivation_index_at_recruitment | overall_health_rating | smoking_status | alcohol_intake_frequency | body_mass_index_bmi | weight | pulse_wave_arterial_stiffness_index | pulse_wave_reflection_index | waist_circumference | hip_circumference | standing_height | trunk_fat_percentage | body_fat_percentage | basal_metabolic_rate | forced_vital_capacity_fvc_best_measure | forced_expiratory_volume_in_1second_fev1_best_measure | fev1_fvc_ratio_zscore | peak_expiratory_flow_pef_f3064_0_2 | peak_expiratory_flow_pef_f3064_0_1 | peak_expiratory_flow_pef | systolic_blood_pressure | diastolic_blood_pressure | pulse_rate | basophill_count | basophill_percentage | eosinophill_count | eosinophill_percentage | haematocrit_percentage | haemoglobin_concentration | high_light_scatter_reticulocyte_count | high_light_scatter_reticulocyte_percentage | immature_reticulocyte_fraction | lymphocyte_count | lymphocyte_percentage | mean_corpuscular_haemoglobin | mean_corpuscular_haemoglobin_concentration | mean_corpuscular_volume | mean_platelet_thrombocyte_volume | mean_reticulocyte_volume | mean_sphered_cell_volume | monocyte_count | monocyte_percentage | neutrophill_count | neutrophill_percentage | nucleated_red_blood_cell_count | nucleated_red_blood_cell_percentage | platelet_count | platelet_crit | platelet_distribution_width | red_blood_cell_erythrocyte_count | red_blood_cell_erythrocyte_distribution_width | reticulocyte_count | reticulocyte_percentage | white_blood_cell_leukocyte_count | alanine_aminotransferase | albumin | alkaline_phosphatase | apolipoprotein_a | apolipoprotein_b | aspartate_aminotransferase | creactive_protein | calcium | cholesterol | creatinine | cystatin_c | direct_bilirubin | gamma_glutamyltransferase | glucose | glycated_haemoglobin_hba1c | hdl_cholesterol | igf1 | ldl_direct | lipoprotein_a | oestradiol | phosphate | rheumatoid_factor | shbg | testosterone | total_bilirubin | total_protein | triglycerides | urate | urea | vitamin_d\n" - ] - } - ], - "source": [ - "import miceforest as mf\n", - "kernel = mf.KernelDataSet(df, variable_schema=variable_schema, save_all_iterations=True, random_state=1991)\n", - "\n", - "# Run the MICE algorithm for 3 iterations\n", - "kernel.mice(3, n_jobs=20, n_estimators=20, max_features=\"sqrt\", bootstrap=True, max_depth=10, verbose=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABy8AAARyCAYAAAAeQ7kVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1gU1/7H8ffushQrikhQY6+xYEEUEEQQsfdCjElMMZqiKTc3yU1MbIn3mphqijFFYyyxgyiIgihKERt2DVasqFgpssvu/v4w+lMB2TK7C8x5PY/P47M7c8539cMwO2fmHIXBYDAgCIIgCIIgCIIgCIIgCIIgCIIgCIJgZ0p7FyAIgiAIgiAIgiAIgiAIgiAIgiAIggBi8FIQBEEQBEEQBEEQBEEQBEEQBEEQhDJCDF4KgiAIgiAIgiAIgiAIgiAIgiAIglAmiMFLQRAEQRAEQRAEQRAEQRAEQRAEQRDKBDF4KQiCIAiCIAiCIAiCIAiCIAiCIAhCmSAGLwVBEARBEARBEARBEARBEARBEARBKBPE4KUgCIIgCIIgCIJgc7NmzSI4OJgWLVrw999/27scQRAEQRAEQRAEoYxwsHcBZcX167no9QaT9nFzq0J2do6VKrI+W9SvVCqoUaOyVfsQzMuvpSTLj8GA8sJ59LU9QK22vD0JublVsXcJslBafsvlsdZgQJl1Cb17bVCp7r9s688ijsG2YY9jcHHK289KafWK/NqGKfm1SsYMBpTnz6F3qwUuLhY1VZZ+BkR+jRMSEsJzzz3HM888Y9b+FfIcwgjW/lwiv7ZRVs4f7ik1V/n5KG/eQP+Ep+2KMsKjdYv82o7dzyEeQ5FzGwo0GNzcjNq+LP2+EBm2jbKc30cpbt5AUVBw97qZlVn6WUV+beNefu2VTXv+TFizb5HfskcMXv5DrzeY9cXBGl82zp8/x9dfz6Z27dq89tpEqlSpKnkf95SlL0uC+czNrxT9WqSwkGovPINTbAy6ho24sSoK/ZP1pSlOKDeMyW+5OlZptVQfMxLHhHgKW7Xmxsq1GNzd779drj6LYBR7HYOL87g6tm9PZPXqFXz44RRq1aplw6pKVlb+3eTM1PxK+n+m11P1tXE4r16BvmZNbv26EG23QAubFJkqT7y9vS3avyyfQ+j1en747wwubIoluEFD/KfOoFKjJhK2L7Je3pWl84d7SqpHvTmOauNfRHnzBvkvvULOf2fbuLLHK2v/jnJh13OIx3CMiqTa6+O4U1CA7pMZ5L8+yaj9RI7kpazm90HKs5lUmTqZ8+vXckmvp1PLVuRPm4m2R4hV+xU/C2Xfg/m137mucf0eOXKYn3/+gTFjnsfb28emfQvln5g2tozJy8vj6fChVDt1gvNREfTt4c/ly5ftXZYgWIXznwu4FRvDK8Ds06eo8uZrYBC/gITyzXnpIhwT4gFwOHKI6mNHg15v56oEucvJyeGVV8Zy6dJFpk2bbO9yBAEAp1XLSV29gtnAxWvXqDb2GRRXrti7LEGQxNK53xP9w7e0PnyQhTHr6NC1I/HffmnvsgTBZMpTJ6n2XDgrbt7gaWDtb/NwXLvG3mUJQrGUZ05TbeIEvr1zhyoGAy9Nm4xi0R/2LksQTKa8eIFbId0YEhWBr17POIWCgUePUPW5cJRnTtu7PEEwSmFhIS+99CzOzs6MHfsM165l27skoZwRT16WMesW/Eb9ixf57thRFMB/gPEDerEyeTeqB6YeFIRyT6fD5ftvGQI06OLLsl1p1NyeyPC0HRR26Wrv6gTBbM5/LgBg08vjyVu5nEE7d+AYG4OmTz/7FibI2sqVy+jcuSvffz+Xzp3bce7cWerVe9LeZQlyVljIpZnTGQ708enKf/fs4uNbN3ll3o/kfjTF3tUJ5YQxU/y7u1tvFpuS6HU65n7xX34uLKR7hw68XaMGKZs3M/izaZwcMYTKXl4W92GPzyXIk+qTDwnXaDhSrRovh/Ti/TUrKXjzNfp28cPgYf0pDAXBFFWmfczevFxmOjqye+I7vPfl/5jzr0m8Xb8B2sAge5cnCEbL/nQqITduML7ek/y6Zj3K2h4M9mrJnzeuM2ru92XuCXhBKE5ExCrcXWvwTZ16qJ2d+XHcWCavXAsKhb1LE8oJMXhZhiiuXGH5Z1N5U6tF71kHrX8An65cRsCpk0R8/hnD/vOJvUsUBMk4boln89kznFerWbQqiqNvv8ELK/4ifNUyMXgplFuKrCzU+/YS5eTES5GrcdLrKQT6L/xdDF4KdmMwGPj9x+/4uvYTePzwHf37DmD16hVMmvSOvUsTZEydtI2fz5/jpWrVeTcimnfXR9Fv3PP4LlpA4w8mP7ResCCUJDs757HTRrm7V+XKlds2rOiuxMnv45KbS7eq1cievwS9xxN0GP8ivmvX8NvzY3l6U6JF7Vv7cymVCrH2uwCA6kQGr8RGo1Qq2bA5Cccn69PtbCZ9dqXRY9pknH/8xd4lCsJ9qqNH0K+LZIxCwYxpM6n70iv8eC2bLvN/Yey/36JKyh5QignohHIg8wwTVi5jAvDq0lXoGjQE4MMpn/L+26/z3JI/yf1gMobqrnYtUxBKs3LhfCb+fYyqu9J4H+iceYaP/jsDxYdijEMwjvitXYZc/PDfHNVqCevUmetbkrn94y/ceftdPgJ+/vF7DDqdvUsUBMk4RkXyNfBOaG9Ujo54jZtAHSAuYrWYYlMot9RpKZwGXtTpWbjwL/773y+YrVDguDkORbaYHkOwj/Tvv8Fw5jRhaSlU/upzns84xooVf2EQ03QLdqSOXM1yYPjgYeDgQJ2Bg3nVtQZ/ZGej3m7ZwI4g2JPi8mXm/jaPt4HcWV+ir1MXVCpyp89kvFLJX/vSUV44b+8yBcEoqdM+Zjfw06jRONZvAAoFjeb8xGDgt4hVkJNj7xIF4T6Xr7/gJcCrcROGvDgOgOqf/o+xlSvz1amTqLfE27dAQTDSyjcmkGsw8NaQ4ehatLz/etfRY9C5uLAjPx/n5UvtWKEglO5KVha703Yw6NZNtB064jHxbboBa76ZjWP0OnuXJ5QTYvCyjFBkZbF07RqeAQq++wlDjZoA5L3zPr3q1OVawR2O//yDfYsUBKkUFnI1OoodQJ+33r37klcHnq7uyuob13E4uN++9QmCmdSpybwHvOHnT6dOnQkZMpyzajVHDAbUSeJivGB7jlERLJ0xhZcNBrRd/dBXrUbQjlTyL1/m4MED9i5PkCutloORq6kCNHnplbuvKRT0GjCIaEC9Mcae1Qk29OmnnxIYGMilS5d44YUX6Nev/M9ScPbj9zmo0zE4uCcFw0bef11fpy5+fQdwGLj1/bf2K1AQjJWfz2+bYvkAMEx44/7LuibNGN+2Hb8UFqJav9Z+9QnCA1QnjzMrYhUngC/+XIbi3pSEajWvj3uVRUDut1/Zs0RBMEp+xjE+TU1ijkJBwb//89B7CoWCZ/oN5DfAef6vIG5GFcqwmE+n0E+vw8mzDjdXriX342m8+NwL/AhUefdNyMuzd4lCOSAGL8sI9eI/+MNgYEy3QHTNmv//G05O3Jn4FiOA9fN/tVt9giAlh/3prL5xg0GVq+Dk1f7uiwoF/YKCWQcYErfYszxBMNvtpO1sBF4c/xoADg4O9GnbjmjAcesWe5YmlGDWrFkEBwfTokUL/v77b3uXI63cXAz/fosIYNiE17kZGUPO51+hBMLz84hYttjeFQoypd62lbjbt+nlWgNdy1b3X28y4mkMwImY9fYrTrCpyZMnk5iYyOHDh0lKSmL9+nL+f5+Xx+KotYwFCqd+VmQ9H/2rb9ALiFuyUFywqQAq9DkEkLcxhjidjsFt2qJr9dRD7zV/5nnqAGkLxDUKoWxIeO8dFhgM/DV0BE5Nmz30XrVX32CQSsXilCRUJ4/bqUJBMM7v775FN6Dd4KHoHskywLCPprBKoeDO8QwxW4lQpq1av5bRQN67H2CoWg2ALv/7kjxHR3ZcvYLzmpX2LVAoF6w+eBkfH09hYaG1uynfdDoSf/2ZekDjN94q8nbBkOGMUKlYdeY0ZGXZvDy5ExmWnnr7NtYBvb07P3RRxy0klCbA3g3iiQtbEzmXQG4u644copdCgbNfwP2Xg/oPYiOIJy+tyJL8hoSEsHjxYurWrStxVfbnsvgPfrl2jZ6uNagybSYoFBQMHYGmqx9P37lD5NJFYupYKxLH1ZI5RUWwCege0vOh8wCdd2d6ODqSdO4syjOn7VafYBqR9f+n2BTLokItY1o99dDA/D2F3j70a9CQqLw8nFctt0OFwqPEOUTJ1i38nV5ApV69i7xXMGAwgxUK1u/ZjeL6NdsXV8GJ46ppdBcu8J/ELfysUFDtvQ+LvG+oUZMXg3syF3Bc/KftCxSKJXJeVM71a3yfmsxnQP4LrxS7jUfdevg3acpywGXBbzatTw4szeWpU6cYNWoUYWFhjBo1itOnTxfZZs6cOfj6+jJo0CAGDRrEtGnTLKi4bDqXkkRGTg6hLi7cGTL8/utKBwfG9hvIT/zz9LAglMLqg5fffvst3bp1Y/r06ezbt8/a3ZVLjglx/HH1Ci/UdEMbFFzkfUNNN7yCe3IHOPHrT7YvUOZEhqV3Z+tmUoGAB36BAWh9/ekJbN2/V6x7aWMi55ZTp+8h1WAgwLMuVK58/3Xfp8eQAmhOnoDr1+1XYAVmSX69vb3x9PS0UmV2ZDCQv+A3Pgf+/e///P8AkUJB7rTP8AIq5eayKzXZnlVWaOK4WgKDAU38JnYDnV8c//B7Dg74N2/BVkCdlmqP6gQziKz/v6T5v9AEaDA8vPgNFAoCJ7zBFoCVy2xXmFAicQ5RsqhduxgJaHqEFnnP4O5Of28fIg0GHNeJqWOlJo6rpkn836fUBILC+qBv3KTYbdq88TbOwP6/FompNssIkfOi1kz7mECDgYatWlPYpWuJ24VPfJtfAMfoKBRXr9quQBmwNJdTpkxh9OjRxMbGMnr0aD755JNitxs8eDCRkZFERkYyZcoUS8suc6K+/oJhgL5Pf6hS5aH3hk/9lHUKBdf2p6M6fMg+BQrlhoO1O1i7di1Hjx4lMjKSiRMn4uLiwqBBgxg4cCD16tWzdvflQs6vPxMHfPviOFAWP56sGT6KEZtiWbv8L97+aKpN65M7kWGJabVs2ZGKH+AUEsqDQ5T6+g3o4ebG9Oxs3jp6BN1Tre1VpeyInFvOYVcau4ExHTs99HrVmm54VanC9pwceu3aBe1L/hIimMfe+XVzq1L6Rjbi7l717l/27eOD4xkMdnLC599vgVr9/xv1CoI2bQg/eJDYX3+k78CiT1TYyv16KyB757KsUp08Ttqli7R3cMC5k3eR97t2D2bKwQM47EilYEQJA0BCmSKy/o+CAuJ27mAgUNB/YImbVR0+kqf+8y6pqcl0uJaNoaab7WoUirBnfsvS+cM9934v5x8+TFJ+Hn9Vq4Zr7x7gUPTSUa0Xx+KycwcZ6yPo9M5EW5f6kIp2PiGOq6ZZEr2Wl4E74WNK3EbXpSsDK1Um6soV3ju4n8K2XrYrUCiWyPnDDAYDv0as4kcgf+xLRaaef1DIiHAmv/8Ou+7coeWG9dwZ87ztCq3gLMlldnY2hw8fZv78+QD079+fGTNmcO3aNWrWrGmL8ssGg4EVydv5ASgYPrLI2zU96zC8WQt++PsoH6z4i9wpM2xfo1BuKAw2nC/MYDCQkpLC//73PzIyMujYsSOjRo2if//+KEsYtLOV7Owc9HrT/inc3aty5cpti/pVXMtmRavGJAJzDmRgqF27+A1zcznZshHPFdwhadcBDPUbWNQvSFN/aZRKRZn8Umauspphc/JrKXPz45C2g3/1D6WduzvPHDpR9P1XxlI/YjVHp8zA8fU3pSjVbBXtS7CxbJ3z0vJri2OVFJxGD+eJuI2c+vZHlE8//MV5dq8g1Ol7+PTTT7nyyiSb1VTRjsHGMDe/wcHBzJ07l+bNm5e4TUnscQwuzoM/K7lTPqLjT3NIGx5O9R/nFdm20jezOT9zOt2dndl76iIqlcrW5Zb6s12R8ltWzx/AtPxKcTx2XvAb3733NlebNuPD5N1F3lelJNNuUG/imjTFLWWPSW2Xpd8XFSm/ppDzOYTjxhg6jxnFkibNaJBSNNsPmtO5HXlnTvPJnLkUjBptcl/W/lwiv7Y5hygr5w/3PJirbe//i2/m/8LGgUO4/esfxW6vPHOaTzu3w83JmfGnLhQ7wGkLj/48VLT8inOIxys4e5anOrXmlLMz+oyz4ORU4raHnxvNqxvWsfPdD8h7ZHpZcQ5hX6bm/Pr167z33ntkZmbi6OhIgwYNmD59ukkDRGUhvw86um0rzw4bwElHR64dPoGhWvXHbj/vpec4EhXB78E9ufnXasnqsPSzVqT8mprLgwcP8v777z+0hnvfvn354osvaN36/x/OmDNnDitWrKB69eq4u7szceJEOnToYFJt9/Jrr2PX4/r9e10k4S8+y6maNbl+IOPhG6n/cWrNSvqPf5GTtT3I33cUTLgeYc3PXJHyW1HY7OwyMzOTtWvXsnbtWhQKBZMmTcLT05PFixezceNGvv/+e1uVUqY4bYhmicHA263bljxwCVC5Ml6hYRSsiyRj4e80nVzx5sMu60SGpeGwfSvRwLuBQcW/HxCET8Rq0jZE083Og5dyJHJuJoOBYzt30BRw8OvGo5Med+0WyNfpeyAtDYpfukKQgMjv/5u/dg3DAfdBQ9AU835B7340nzmdJ7Ra0lKT8fUPKGYrQQoilw9Tp6WSBgzzKf4pdF37DgQqFCSdOM6gmzcwVHe1bYGC2eSe9fNLF3EbaDliFPmlbBvcpx+vz/2BT7dsNmvwUpCe3PP7qM3xG+kNaIN7lriNvkFDej7hyaxLF3l9724KO3exXYEyIXJZurQFv9IOqNrVj5uPGbgEaPfsc1zfsI6zkWtwK2ZtTME+zMm5QqHg5ZdfpkuXu8edWbNmMXv2bGbOnGnr8iUT8+MchnL3uFvawCXAqI+m0jkqgitbE3C6cR2Daw3rFykj1jz+hoeHM2HCBNRqNUlJSbz22mtER0dTo4bx/4cPDrDZ68GLkvr9YeFvjAAchg3DvU7xNxS4jxtL17ffYPHlLMafOAT+/pL0LVQ8Vh+8XLx4MZGRkZw5c4Y+ffrw+eef0759+/vvh4WF4efnZ+0yyqyLq5ZzBOg+5vkiF7sfpQnrw8h1kayNWM07YvDSZkSGpXUkNprqQN2+A4q9oK719ac7kLw/nW4Gw2OnyhCkY2nOg4ODcXR0xOmfL4zvvvsuAQHyGQxRXjjP3ps36ejoiL6YJ+M7Dh7Knu+/4c6OHXfXWBG5lpQ4Tj8iJ4dl58+xUKlE61f8lwBdi5bo6jdgaOYZohf8JgYvrUDksniqPbtIA2b07V/8Bi4u+D9Zn22ZZxi2eyfa4KJrrQlli8g6oNGwOT6O3oBm4JBSN2/99LNcnvsDlzbHUVmvL3HpEMH6RH6LUVBA4tlMfgM0jxm8BOjaqzd7F87nTmwMDmLwUjIil8ZLjt9IKKAJCCp128LAHvRycCAh4xgjz2aif7K+1esTSmZJzl1dXe8PXAK0b9+epUuXWr1ma0rYmcpnQEG/kqeef1D1xo0J96zDTxcv8F5sjLgZSiKW5NLT05OsrCx0Oh0qlQqdTsfly5eLrI/t7u5+/+/+/v54enqSkZGBj4+P0XWW5ScvV6Sm8gtws3tPNI+p7ZWgEKZER/HsslXkNm8nSd+WEk9elj1WH7xMTEzkhRdeICQkBEdHxyLvu7i4MGfOHGuXUTZptaxOTWEYQEkXcB6g6RnGcIWCZzPP8K/btzBUrWb1EgWRYUnduUPc/n2EAVq/4i+U65o0JaC6Kx/cvMF/jmega2b6FI6C6aTI+XfffWfWlJsVgcORQ+wGvOo9WezAZKU27WilVLEzK4unLmeh93jC9kVWYJbk99NPP2Xjxo1cvXqVF154AVdX14emeSmPTq9aTg7Qvn0HbpZ0rqBQoAkNY9hv8wjbvInpBgMKMaguKXH+UJTixnWyTp5ABzwRFFLidr5+3ZideQZ12g4xeFkOiKyDOiWJDXfyebpOHXRNm5W+Q8tWhDq7EHv9GiMOH0LXpq31ixSKJc4hisrbHMcpg4E2rVqT84TnY7d16BmG78L5JEVH0X3yVNsUKAPiuGokg4GdJ47zEaAN7F769k5OBLf1ImLvbsZsjOHOS+OtXqJQMqlyrtfrWbp0KcHBwSb1b+oAhTWf9MrLzubArVt0BSqNHAJG9vX2K+PoNm0aH8Wuo9ob0uVZzk+1WZJLNzc3WrVqxbp16xg0aBDr1q2jVatWRaYzzsrKwsPDA4AjR45w/vx5GjVqJP2HsYMTydu5cecOXZyduVbKTSVdx75EZnQUF9ZHUv1j8ZCWUDyr3+Lp4+NDnz59ivzA31u8FqBbt27WLqNMctizm6VaDeF166H3rFPq9gY3N9p7+3ALOLf8L+sXKAAiw1JS70ojVqcjtH4DDG5uxW+kUNDRP4BDwJ3ELbYsT9ZEzi2jOnyIPYBXSRcflUr8PWqTCKgOHbRlabJgSX4nT55MYmIihw8fJikpqUJcdNwWufruVG+BPR67XUFoGK0A9Z0Cjh07apPa5EQcV4tySN9LGtC5enUUxVwMuKdxrz7kABe3bbVZbYL5RNahMG4jiUBQX+OelkChoGf7DmwAHLdstmJlQmnEOURR+1b8RSfA0LNXqdtq/bvRS6kk7sRxFLdvWb84mRDHVePoj2ewp6AA7+rVKWxj3FM7AUNHkAAoEsSx196kyvmMGTOoVKkSY8aMMan/7Owcrly5bdQfwOhtzfkT9+0PeAHqtl5cUbgYvZ/b4FF4A8s2buLK+WxJarH0s2Zn55j0/1DWWJrLqVOnsmjRIsLCwli0aBHTpt0dlBs3bhwHDhwA4KuvvqJ///4MHDiQyZMn8/nnnz/0NGZ5tm3+r/QBCoNCwMXlsdsa/AMYqFYTdfIkylMnbVOgUO5YffDyhx9+KPb1n376ydpdl3nno9ZwCfAJDTN6H02v3vQCtq5eYbW6hIeJDEvnTmwMe4CupXwRVvn50wnYvaFiXAAoD6TI+bvvvsuAAQOYOnUqt24Zf/HCza0K7u5VS/wDPPb9svDHMeMIh4GuYaElbtOjfXu2Aa6Zx21Wl1ymuxDH6YelHdiPP6ANePwd6Fq/AKhUiUCthh2xMbYpTkZELoty2J9OGtCxyeOfTCv06UogkLovHQoLbVKbYD6RdUjaEE1HoHJYH6P3CRo2ks0ACXHWKkswgshvUbtSkvCj9CljAQxVqxHSshWxBgOqtFTrFycTIpfGObFqOfWAygFBoFIZtU/1fgNoDOzdtlWcY9iZFDmfNWsWZ86c4ZtvvkFZjqdg3xG9jkBA26PkmUmKo69bj3DPOqzUFKAWx2BJWJrLJk2asGLFCmJjY1mxYgWNGzcG4JdffqFt27s3u8+aNYt169axdu1aVq1aRffuRjw5Xk7sTE0mAND07lv6xmo1Azp1Zg3gtFFcjxCKZ7VpY1NSUgDQ6XSkpqZiMBjuv3fu3DkqV65sra7LjdiNGxjA3Xn3jaUJDqXXZ9NYsX8fo8W6aVYlMiy9pKg1dAXUfQegfcx22i6+dAeS0vfS1Ua1yZVUOV+8eDGenp5oNBo+++wzpk+fzuzZs43a995c/SWx1xz+pjidtpNGQEGTVuSWUKuXbyApMTHkpO4k30afp6LP1y+O00UpsrNJvXmDqWo1Wu9S1sxwdkYTGETghmg2REfx/Jvv2KbICk7ksmTqfensBF73efxvd0Pt2nSrWZPEa9fod+gAhV4dbFOgYBKR9bsUV6+y4cwp+qpUaEvJ9oOq9RtI83+/RVpqMm3z80u9O12Qlshv8ZQXzpOafZXXnZzRGrmGZfOgELSHD3FmQzR1Q0p/WlMomRS5PHXqFB988AE3btzA1dWVWbNm0bBhw4e2mTNnDkuWLKF27doAdOzYkSlTpkj3QWxkT/xGugKaUm7Ye5C+3pP0rO5K3M0btEnfQ2Fp58uC5KQ6/n799dccPHiQefPmFTu9Z3mSfOQQ7wEaEwcvAXr1G8Abv/5MXvQ61N0CpS9OJsR5geUMt2+TnHWJmUBBT+Me1PINf4a9qcnkR6+H8a9bt0ChXLLa4OVHH30EgEaj4cMPP7z/ukKhwN3dncmTJ1ur6/IhL4/oM6eZxN2pVoyla9OWYHd3Xr9yBf3+fSi92pe+k2AWkWFpqU5kEHHhAgOcXdD6+j9228LWbQl0cmbKzRu8e/kyhn++VAnSkyrn9xYgd3R0ZPTo0bz66qvSF1tWaTSknzlNR6CwRasSN6ve2YcngUN7dtPYZsVVbOI4XdSV9ZHcBhp18eWWERfCNaG98dsQzadHj1i/OJkQuSyZct9edgFte/crdVu/Tj78vGkD6rRUMXhZRoms36XetoX1QFSHTiYNQBpq1aJXbQ82XM6iY2qyyU9bCJYR+S2ecnsiO4D5XX3ByMGAQj9/ev34HVu2bOYZ65ZX4UmRyylTpjB69GgGDRpEZGQkn3zyCQsXLiyy3eDBg3n//felK97W9Hp2Hz1CF4xc7/IBPbr6MT02mve2JojBSzuQIucZGRnMnTuXhg0bEh4eDkC9evVKfGquLCs8c4pdeXn4ulQy+qaRBzn37kePX38mdv1a+s/83AoVyoM4L7Bc1to1FAL1O3bippHXcVVhffEDtu1MJSA3F8QgsfAIqw1ebt58d/749957j88/FwfPR+VtjmOnwUBQWy80NWqWvsM9CgWuPcNouHQRBxcvpJ0YvLQakWFp6aMiWQfMCOkJavXjN3ZwwNvbh31JiWi3bcVh2Aib1ChHUuQ8Ly8PnU5H1apVMRgMREdH06pVyYN4FY3qeAZ79Xq8aro99kSrsEUrAoGkzNM01miMviAklEwcp4vaE7UWP6DQyDvQNT170Ry4lp/H1YsXqGXEGtzC44lcFk9x4zrHM89QS6HA1af0CzMtQ0K5vGkDV7Zvo8o4Gd0QU46IrN91LHINaqBxWF/umLhvz8Ag3ly5jKlbE8TgpY2J/BYvY0M0TwDVA3uQb+Q+Wp+uhAF/ZkwGkeQAACAASURBVJ7hmTt3wNnZihVWbJbmMjs7m8OHD99fm61///7MmDGDa9euUbOmCdedygHV0SPsKCjgDXd3dI2bmrRvp2EjORQbTc7mOJT/KscDuOWUFMffZs2acezYMSnLspuDixfSHHAJCERrxjUCbRdfhjs6seLiBQaeP4e+bj3pi5QBcV5guV0Rq+gGaINDjd7H4OZGz7p12Xj+PCEp29EY+cSmIB9WG7y8R/zAF2/rssUEAuruPdCYuK8mJJTgpYvYHr8R45YkFywhMiwBg4G1C36jC1Bj6AijMq/29cMrKZE96yLxEYOXVmdJzrOzs5k4cSI6nQ69Xk+TJk3K5bRD5nI4cog9wLDmLR6/YZUqBHh4sDwri7EZf6Nr3cYm9cmBOE7/v7S9u/HH+Omz9J510LdshffRIxxYtYIeb7xp3QJlROTyYQ4HD7AT8HatAQ6lfwXRd/ImAEjenYaYhLBsk3XWDQY2bk+kP1DYI9jk3duNCOf8ymVcjttI5amfSl+fUCpZ57cYO3ek4Atoff2M3sfgWoMeLVoy7thR9GkpKE1YFkconrm5vHjxIh4eHqj+Wf9RpVJRu3ZtLl68WGTwcv369Wzfvh13d3cmTpxIhw6mz3Jg6vIU7u5VTe6jJDeSE8gEvMLCcKhdzbSdhw8k8BVI2LOLcBcFVKkieX1C6cTx967UjRsIxLwpYwFwciI0IJDX4zehi41G8eIrktYnNyKX5kvdu5tugCbItCwHhYTxw8Lf+TJ+kxi8FIqwyuBlnz59iIm5u9Bq9+7dUZSwLuOWLVus0X25kLprJ8GAxoz5yLXdexCsVPLVubO8fvsWhqomnqgJpRIZlpYiNYVvLpxnVrVqaHr1MWqfe+teJu9OQ0zkYh1S5fzJJ58kIiJC6vLKj4MHOAA8ZcQUL107dODdDRtwOHxQDF5aSByni5GZSeqtm8xycaGwfUejd9P6B9Dl6BHS4zeKwUsLiVyWzGH/PtKAjk2NezqisFVruqtUbL98mbCbNzBUd7VugYJJRNbvUp06Qcytm3xctSqFbUy/rVTv60+oUknc30cZLJZKsBmR3xJcvkzalcv4qtUUtjNthqeq/gE8dewou1avxEcMXprFlrkMDw9nwoQJqNVqkpKSeO2114iOjqZGjRomtZOdnYNebyh9Q+4ODF65ctuccou1Y/UaOgF5Pv4UmNyuA/3q1ycyM5M+62LRhPSSvD5LKJUKkweGywtx/H2ETkfS38cYD2iDTL8J6p7KffrjFb+JHSuW0VUMXppM5NJyyrOZpNy6xYuVKlPYsZNJ+zYZEU7hwt85HRtD7f/OtlKFQnlllcHLGTNm3P/7F198YY0uyjXF9WukZl/lWZUKbRdfk/c3VHfFt0Mn0nbvpHDTRlRDh1uhSnmTIsPXr1/nvffeIzMzE0dHRxo0aMD06dOL3PE4Z84clixZQu1/LlZ07NixYj21VljIn2+MozoQ+PxL5Dk5GbdbJ28ClUr+e+kSb4l5z61CHKulcWL3TuoCldp3LPWp4oZdu5K3YQPXdqZReUS4LcqrsER+i8qPieEg4NUtkEIjnmy7R+MfiM9v8/jx0EHrFScTIpclc9ifThowsIuRT/M4OtKtWXN+O3oEh33paAODrFmeYCKR9btyN8SwH+jaPRitUml6A87OhDZvQfTRI4xMTKBg+CjJaxSKEvktwfbtpABvtm1n8vIG2i6+BP3+CykpSeLGUzNJkUtPT0+ysrLQ6XSoVCp0Oh2XL1/G09Pzoe3c3d3v/93f3x9PT08yMjLw8Skn/3uFhezav//uU8JmPBAA0CusLx/+MhdDfByEiDkebEUcfx+m35VGSmEhC+vWM3n64wdpevaiL7Bx3166ium7TSZyabm8Des5BbQO6E6+CdciAHSdvAlTOxJ/7izPnD6FvmEj6xQplEtWGbz09va+/3dLT35OnTrFBx98wI0bN3B1dWXWrFk0bNjwoW3K2+DPnbhN/A208fbhjpkDMs6hYbTbvZM9q1fQWQxeSk6KDCsUCl5++WW6dLn7NNasWbOYPXs2M2fOLLLt4MGDef/9CrDWQm4u6p07UN64Dno9+bm5rPhpDrPOniWhdm3y33zH6KYMVari07oNuw/sR78lHmW/gVYsXJ6kPFbL2YFjR+gI6Fq3LnVbhZcX7YGDe3ZS+nOawuOI/Ba1a9UqWgPqoGAKTdhP6+dPZ2DXjesY8vNRuLhYqcKKT+SyZLp9ezgEPBVm3AwMAK26+pF59Ag5qUk4icHLMkVk/a6UtWvwB1Q9QtCa2UaP/oP519EjKOI3gRi8tAmR3+JdjYkhC2jaoycFJu6r7eJLIDA78wxv6nTwz7SlgvGkyKWbmxutWrVi3bp1DBo0iHXr1tGqVasiN1BnZWXh4eEBwJEjRzh//jyNGpWfi8UOB/aRoilgfG0P9PWeNKsNt74DaP7LXNI2xtBhppgm0lbE8fdh6Uv+pBlQNaQXOSU87WcMfZ269GrSlJEnjjM9aRuFIcavOSiIXEphz9oIfACDOdMfOzgQ0s6Lxbt38kJCPHdeeFny+oTyy4zbQ00zf/58jhw5AkB6ejpBQUGEhISwd+9eo/afMmUKo0ePJjY2ltGjR/PJJ58Uu93gwYOJjIwkMjKyTA9cAuyPWkN7QNnd/OlUNN17EAIk7kiWrC6heOZm2NXV9f7AJUD79u25cOGCVWu1J9XRI9Ts2oG9Iwfz5isv4DfhJRr9axKrjmewqXp1nvhjKYZq1U1q06l3P9oAuxcvtE7Rwn2WHqvlSnHjOunXr9PewQFdAyO+8Ht50QHYf+KE1WuTE5FfwGAgOSUFP0Bj4nRthppu1G7dlsrA+SgZTwEtMUtyef36dcaNG0dYWBgDBgzgjTfe4Nq1a0W2mzNnDr6+vgwaNIhBgwYxbdo0yT+HFBQ5tzl04gRNAScTpjQ2dPTGG9i7davVahMsJ9tjsE7H5gP7CeXudzNzuQ4aQhNg98YY0OkkK08wjmzzW4zUTZvwAfRm3Cyir1OXLnXrsVOnQ7d/n+S1yY0luZw6dSqLFi0iLCyMRYsW3T83GDduHAcOHADgq6++on///gwcOJDJkyfz+eefP/Q0ZlmnStzCDqCTBVMUa719GKhWsy7zDIqsLOmKE4wmjr+QmBBPT0ATavk6fy36D+IOkLl6ucVtyZnIpRl0OhLT99Ad0Jg5/XG3oSPYBhjiYyUtTSj/rPLk5YMWLFjA8OF3nwz88ssvGTt2LJUrV2bmzJmsWLHisftmZ2dz+PBh5s+fD0D//v2ZMWMG165dK3LnWHmyM23H3YuLAUFmt1Ho1YGgSpX56OZN/n3mNPoGDaUqT3iEJRm+R6/Xs3TpUoKDiz+Ir1+/nu3bt+Pu7s7EiRPp0KGDSTXaaz2E+wvaa7UYJrzAB1mXWK5W826bNkxyd+cpV1ecmjSBSZPgiSdM72D0SIZ88V/Wbk+kbw0XMHHqAcF4UuRcjhyOHmEP8H6DBsbdYd6gAV5OzkTn5qC4cgVDObpIUJaJ/ILq2FGScnIYXb06uuYtTN5f070HPocOkB65hnojn7ZChfJjSS4r2uwNqoMH2Ql416wJRk4fD1DYoRO+QNrRQ3S1WnWCpeR6DHZI30OcVsP4OnXR129gdju65i3oV92VyJs38NqZRmFX05cVEcwn1/w+SpGdTcqZM3RVqdB2MG2tqnsq+/rTdOUyDq5ZiVcH429UEYqyJJdNmjQpdptffvnl/t9nzZolbcE2dnJjDLWAGr3CTH5K+D4nJ/p26MSQtFRmbNsCbcyfslMwj9yPv4rLl9l86SIz1Go0Zk5//CBtaG/6fvsl8XEbedZgAAue5JQzuefSHA7704kpKGC+xxPoGzU2q43K/QbQ+qP3SNu6FS+NxuTp64WKy+ojAbdv36Zq1ark5ORw7NgxFixYgEqlMupk6eLFi3h4eKD654KwSqWidu3aXLx4scjgpaWDP7aivHiB1GvZvOLkbPICtg9xcMA7oDuHYqPJ3xCN0/jXpCtSeIglGb5nxowZVKpUiTFjxhR5Lzw8nAkTJqBWq0lKSuK1114jOjqaGjVqGN1+dnYOer3B6O2l8OCC9s6//cySw4eJUauJ3bmfGnXqAnDrwR3+2dYkdRozrEFDfM+cZvrvi1AMGWZ54Sa4PzgrA1LkXI4UB/aTDrTxMvJ3jlJJu6bN+OzQARyOHELrHmTN8mRD5BfUWzeTDHzlH2jWF1VNjxB8fvyOvbt30l/68mTJklwWN3vD0qVLrVmuVakPpLMT6NzMtIF1XdNmdHVyZs7t27x5+TKGf5aIEMoWuR6DL0SuJgdo0TOMXEsaUigY2Ks3Q1b8xYzYaDF4aWNyze+j1ClJpABvtWhl9lpp2i6+BKxcxo5tW/CStjzZEbl8DI2GxPS9BAIavwCLmmrapz/6tFRORUXS/lUxTaGtyT3neVERHAQ6+wegMXNJsQcVdvImrEoVfr1+nbHHM9A1a255kTIk91ya40LkarKBNqG9yTNz0Fxfpy6htWqx8epVvNNSzV7PWKh4rD546enpyZ49ezh+/Dje3t6oVCpycnLuD0hKQYrBH3OfXDN1cEMfnUoq8Ec3f9zrWPj06KD+dImNZk/MWgZONu+OezkNzpjL0gzPmjWLM2fOMHfuXJTKojM1Pzg9i7+/P56enmRkZJSfeda1Wi598yWTgfVTP7s/cCkJhYInxk2g0+QPiJg5lSEDB4v1U6zEFsfqiujczlSqATU6dSbfyH2adPTm3KEDFOzZjVKs4SYJkV84ExtDZaB2775m3YGu7eJLZ0dHIq5lo8jKwvDPOkiC+aTKZVmbvcGsc8e/D5MGvBUcZPL+fp068mxyMjVOHELVuol16hMsItdj8NaNsfQEtBZMGXtP0/BnqL7iL/ZEraHVlBmWFycYTa75LWLr5rtPyIf2MrsJbRdfAoA/jmfwinjqxyIilyVT79nFJq2Wp+vWtfimJm33HoQBm5MSaW+w7c3ggsj5jlXL8QWUYX2laVClIiC4Jy+ujUAXvQ7efEeadmVG7rk0R3xMNH2AQnPWu3xAj4Ag3lqzkqkJ8WLwUrjP6oOX7733HpMmTcLR0ZHvvvsOgISEBNq2bVvqvp6enmRlZaHT6VCpVOh0Oi5fvoynp+dD20kx+GPOk2sPPnlmrMyly6kFVAoINnnfRyk7+hICxO/eje+lGyYP6phTv6mUSoXdpjSViiUZ/vrrrzl48CDz5s3DsYRH3rOysvD45yLxkSNHOH/+PI0aGbF2XhnhtHoFH2ddYlKtWjR66RXJ278T/gzvzZ7FS2fOMPjfb6L8zxQMtWqJL8MSsyTncnYgfS8dgcLWxv87Kbza0+pPOJq8nafe+pf1ipMR2edXqyVtZxp+gNbcAXFnZ7y6+rEvcQuKhE0YwovOFCCYRqpclqXZG8w9d1SmpJIJ1PELMnn/yu29eSI5mV2rI2ns+/hBIluc2xqrIpwDG0uWx+CcHBJOnaAfoA2QYKq3Lr4MV6tZnZnJxxfOo5fyZkDhsWSZ32Lsi99EM8ClZ28KzWxD17wF/tWr88rNm3DmNDQsP99pyxqRy5IZtmxmK/BDcE+L29I91ZrQqtWYf+sW7xw+DLXrW16gYDRZ51yjIWHf3rvrZvfqLVmzLn0H0GFtBKkRK+kqBi/NIutcmkGRc5uNp0/yrEJh8Tlx21GjObtmJVc3ROPy8TSJKhTKO4XBYPvbi7RaLQBqtbrUbZ999lmGDx/OoEGDiIyMZOXKlfz5558PbfPo4M/YsWNZt26dSQuO22Tw0mBgVfMGpNy8wdfx29G1bWdSf8W1d7xdC17JukTixi0UtjdtXQkxeGk+YzKckZFB//79adiwIc7/TL1Tr149fvjhB8aNG8ekSZNo27Yt77//PocOHUKpVKJWq5k0aRLdu3c3qR67TRt7+RZn/b3pezyDPV98jfr5l6zSl3pzHG8/PYwbBgNLAGe1Gn1NNwrbdyD34+lmre9mDLk/vWHKsdoSpeW3LF2MfkhhIV896Y6zTsfrGZkYqruWuou7e1Wub9rKv3oF4V3bgxEHM6xaYkU9BhvDVvkF+xyDH+SQtoP3+4fStnZtwg8eN7sdl7nf4/vJh/wcEkqzpaskrLB4pf1sV8T8mprLWbNmcezYMebOnVviTVAPGjp0KB988IHVbuAz63icl8f+Rp5MMRhYcyYLXFxM2t0pYhWTXnkB75atGJW4Q/r6rKQi5tcUFf0cQrUphmbPjGJ36zZUTkiWpM3zg/vSL3k7h775Ae3oZx+7rbWzLvJbNvJrK8oL55nXvhWX1Wo+PH0JLPjc1Z4dRdvYGBb852Oavf1vCass2aM/DxU1v7Y8tzWWLW6AetS+ID/+c/ggcX8sRdOnn8XtFY5/keZrVnLls8+4PW6ixe1JoaJm2Bhl9Tuc1L931dsT8RnanyUNG9EgbZ9k7SquX2Ney0ZkAR9nZGKoVt3kNiz9rBUxv2X5+Guv7z/3+tWtXknzCS9yvEMnFLEJljVaUMBrDZ+gn07HgH1H0XvWeWzf1lAR81veWf3JS7g7X/SpU6fIzX14NRBf39LX85g6dSoffPABP/74I9WqVbs/x/SDgz9fffXVQ4M/n3/+uUkDl7aiOnmc5Js38K1cGV3rNpY3qFDQJiSUs0v+5Pr6KKqaOHgpGM+cDDdr1oxjx44V+94vv/xy/+/led50h317+ep4Bu+4uKC24lM62uCe/HdVFO9OeIlGVy4TpNXSKesSg2NjaLIrjesbEtA3aGi1/uXCkmO1HKlOniBdp2N8rVpGDVzeU9jyKdopley/nMWI3FyQYH0LQd75ddy2hWRgfKBldzpqevTEhw/Zm5pMM70eipnqXDCNJbmsKLM3OBw6wC6DgU413UweuATQtu+IL5B86iSjxDSEZZbcjsGHVq7gCcA9tDd5ErXZtN8AaiZvZ/fqFbQrZfBSkJbc8vsodeIWEoFX2rWzaOASQOvjS0BsDKlxsTYbvKyo5J7LYuXlkXD08N0pu/38JWmyct/+tF2zkm1//UX7MjJ4KSdyzfml1Su4AbTsO8Do5WeMYahRk56t2/Lswf1M35qAZsBgCVuXD7nm0hw7/lpEe6Byn36WnxM7ORHc8iliDx1gWNxG7jw71vIChXLP6oOXq1evZvr06VSqVOn+02cACoWC+Pj4Uvdv0qQJK1asKPJ6eRz8cUiIZyvwbhc/yS4IGnqE0H3JnyRHRxH20RRJ2hQeZmmGK7Lbv/7MeuB/I0eDk5NV+1J1C+TrgxmcPHmCncnbSU/ejl/kaqZmZzNu0qvcjIgWFzQtIHJuOtWBfewG2rYx8Sl6Z2fa1W/A8tOncDh0kEKfLlapT07knt/czXGcAdqNHMkNC9rRNW+Bt2sN0m5cZ/S+vRR26CRVibJkSS4zMjKYO3cuDRs2JDw8HCh+9obycAOfw/500oCBLVqatb++QUO6VqvGl7duoTx3Fv2TYkq3skaOx+At2xMJxYKpuouhCQphJBCRlko7cQOJzcgxv49SbtlMMvDnkCFY+hyoNiCQQGD9oYOIIXjziVwWT52WSqxez/+aNDXp5tHH0QQF00uhIPbgQTrcumnWk2qCeeSc88RNGwgBCkPDJG+75aDB3Dy4nwtrVlJLDF6aTM65NJleT9yOFPoCBT2lyXLQkGF8fOgAqk2xIAYvBWwwePn111/z7bffmjwNZkV0IWY9GqDhgEEUSNSmJiiYnkolmzP+pvflyxYvWC4UJTJcgoIClkasZjBQ6eXx6GzUbePGTWjcuAmjxjzPq6++weDQ7jRNSaLrukhxV5kFRM5Nd2VHKgAenTqbfLdky07eHDh9CuW+PSAGLy0m6/zm5rJ7zy46A+qePTF7oSoAhYIOAd2ZExWBY/wmMXhpIUtyWZFmb1Dvuzt4+Yl/gHkNKBQ07+hN1pbN3EzcQtVnnpO0PsFycjsGK7KyiL9ymXcdHdF2lu53uK5pM4a61yb0ymWmHtiH3quDZG0LJZNbfoswGDiUEE99oNbgwVyxsLnCtl74V63Kf27fRnHqJIZGjaWoUnZkn8sS3IhZz3Ggc2hvNBK1aajuSkjrtrx2cD8fb9mMZuAQiVoWSiPXnCvPnGZzVhYhTs5ofbpK3n5haB96fzadTQmbeVrcDGUyuebSHKr96UTn57PSvbY0M0wCtYeN5IlPp3IgIZ7GBQVWf1BGKPusfgTT6XR069bN2t2UfRoNSTtSCQK0PUIka9ZQ3ZUeXf3YBDiuXytZu8L/Exkunn7DBuZpCni5SVN0Zj5NYan6bb34/oVxTADUs2eB7ZfwrTBEzk13YPdOOgA6U5+8BKp6++AGZKYkSV6XHMk5v+odySTrdHTxeAJq1LC4vaZDR5AJ5G+Mtrw4mZNzLh90ZddO8oAnLTj/1ft0pQuwJ2adZHUJ0pFb1jWbNrAL8OviK+0FFYWCxqFhuAO7Fv0hXbvCY8ktv49S/X2M7devEeDiAk89JUGDKuoF9kAJnFuz0vL2ZEruuSzJltj1BAMGiZ9WazdoKBeAq2sjJG1XeDy55lwZG8MmICSgu8VTdRdH1+opBtd0Y01uDg779krefkUn11yaI3P5UgqAFmF9JZsJT1+3HmFutYgpuIM6VZp15YXyzeqDl+PGjeOnn35Cr9dbu6syTb0rjURNAQEeHujr1JW07SdHjUYFnFq+RNJ2hbtEhouX9NNPVAK8Rj5t1zr8psygmaMjfxw5hHp7ol1rKc9Ezk23/8RxOgKFbdqavG9h2/Z4AYfT0yWvS47knF/HLQkkA527SHPXriEomPYKBfvS01FcvSpJm3Il51zel5/PnpPH6Yx5N3rco/Xrhi+wc89uyUoTpCO3rKetWYk34BjSS/K2td17MBKI3BgredtC8eSW30c5bt1MIuDXrr1kFx613XsQAKRtEDdCmUvuuSyO8sJ5Nl24QJijo+RPq+l69aYnsGVzHIh/c5uRa87TI1byJFBroJVmDlMo6N63P3uB6xGrrdNHBSbXXJojfsN6+gDaXr0lbTckMIgYwDFOnA8LNpg2dsGCBVy9epVff/0VV9eH56TfsmWLtbsvMxwS4tkCvB0ULHnb2r79CX3rdRL27GbM1asYatWSvA85ExkuRkEBfyUkEA5orHXCZSxnZyaPCOeZxQt5dsmfaAPE1A7mEDk3jfLCedLzcgl3qYS+fgOT9y9s3YZ2wIHzZwm+cwceWEtBMJ2c86vcvImdQIcREt1IUrkynerWI+3cWTonxFEwIlyadmVIzrm8x+HQAXbq9XjXqgUuLma3o+3QiW4ODky5eoV/37iOwdXyp4wF6cgq6wYDCbt3EQpoJFzv8h5NYA+GA0EXz/PJ7duoqlaVvA/hYbLKbzEc4jayDZgt4Xc6bWB3AoDkwwcZIqYsNIvcc1kcVdxGYoGpvv6STyOoa9mKsJo1ib12jaH70yls31HS9oXiyTLn+fnE7d1DH0DTo6fVulH26UefRX+wYc1KRkz7zGr9VESyzKU5Ll8m9tw5Jjg4oJH4OmynMWM5umYlN2NjcJjxP0nbFsofqw9efvHFF9buoly4sDHm7nqXg4ailbhtQ3VXerRpy6ID+3kpKoI7L7wscQ/yJjJclHJLPCs1GrY2bYauSTN7l0PrSe/QcPFCYqMi6P7F1xiqiAs9phI5N41qVxqpwP/aeZl3l3rlyrSvV49fz53DYf8+CsW6lxaRa36V586y/+9jNFQqqSLhlPQd/buxetlS3o7fKAYvLSDXXD5IvXsnycDE1qY/of4QFxe6dPTmQFoqeQmbcRkyTJL6BGnIKesOB/YRn5fLvJpukq3t8yCDmxuNvTrgsW8vu3+fh8+b/5K8D+FhcspvEbm5HEjahgdQY8gIyZrVNWqCv4cHX2Vl4XBwP4Xt2kvWtlzIOpclOLhmJR7AE/0GckfqxhUK+vXvzzsLF6KLWgNi8NIm5Jhzx+RtxOh0fNmkGQYPD6v1ownswdBKlZh36SLhx47abamn8kiOuTRHzurVpABL/LphqFxZ0raVvn4EOTgQf/oUfU6eQN+4iaTtC+WL1QcvfXx8rN1FmafIzmb7kcMEKZVo/QKs0kfACy/z6juTyFu6CKUYvJSUyHBRO36bx5PAk8NGkmfvYgB9o8aMb9qMH45nELpuLQXhz9i7pHJH5Nw0ZzfHoQLqdgsk38w2OnXtxssr/0KVliIGLy0k1/w6JsSzFej2ZH1wdJSsXd/nX+LNZUspjN8EOh2oVJK1LSdyzeVDkpPYCXiH9bW4KZV/N3zTUklZs4JgMXhZpsgp69dWreAC0K5Pf/IlmmLzUZrefRm5by9Ry5aIwUsbkFN+H+W4bSvRWi19PDyknb1JoaBpcCjXly7i6vooXMXgpcnknMtiabXE7Uy7+7RaSKhVuvB47jk6LVzI1r+WEjh5umTTKAslk2POr/y1hNNAx4GD0VizIycnggcM5uVlS8hZ8icu4ulLo8kxl+aInzcPH8Cp/yDpbyhxcKBX23bE7N3D4Jj15L8+SeoehHLE6vN3aDQavv76a0JCQujUqRMA27dvZ9GiRdbuusxwTEy4e3GxcVOoVMkqfTgPHUkvlQMR6XtQnTxulT7kSmT4EVotq5O3Ew4UDBxi72ru6/PyBA4B55f8ae9SyiWRc9PsSE4iACjsbP6Jbc3A7tQCjifES1aXXMk1v46b49gC+Eo8dWGNTp3p5OxM7M2bOOzeJWnbciLXXN5nMHAgeRuNgco9LF82QevbjVAgYVeaxW0J0pJT1retX0sPQNfH8gH5khQMGMwIIOLEcXT55t4iJRhLTvl9lOOmDawHQqwwdaGuew/8gbRYse6lOeScy+Kok7cTqykgtN6T6J+sb51OgoIYXrUqK69cxmHfXuv0ITxEdjnPzycyZj2DAZ0NZrdRDR9FKBC74i8wGKzeX0Uhu1yaQZGdTUR6OgOVq3VUOQAAIABJREFUSgoGWGcpseBnniMGMKxdY5X2hfLD6oOXM2fO5O+//2b27Nko/rlzqVmzZixdutTaXZcZ6riNdy8uhkq7gO1DKlXimW4BzAMcl8nn39YWRIYfZtiaQIRGw8imTdE1a27vcu4zDBrKSIWC5TtSUGRn27ucckfk3AQaDTGZp+kJFHb0NruZQp8u+AFp6XvElwkLyTK/Wi1sTSAJ6PzsWGnbVigY3KkzywDHuFhp25YRWebyAaqMv0m+eZNuzs7oGje1uD2ttw89lUrir15FkXNbggoFqcgl68rz59iSeYYQtRpNQJDV+tE1b0Gjlq2oYzCw69e5VutHuEsu+S3CYOB6bAx/A97Pvyh585qAIAKB5GNHITdX8vYrOtnmsgS3Vy3nENDZmjMvqFT0HTSUGEAnrqnZhNxy7hQbzVJNASObNEXX1PrLL2m7BTK0ajXWXL2Cw/50q/dXUcgtl+ZQRawiymCgr68fBjc3q/RRa9govJRKNu3djfLCeav0IZQPVh+8jIuL48svv6RDhw4o/1mo3cPDg6ysLGt3XTZoNJzfsB4N0GDMc1btKnDSO1wHDixeCHq9VfuSE9ln+BFJv8+jBVB/1Ch7l/IQg5sb4Z28WWQw4Lgu0t7llDsi58bLTUkiTq9nYOMmGFxrmN2OrlETfCtXJuX2bZSZZySsUH7kmF/HLfHE5dymtYsLblZYl2fAyxPYBNxctVwMrptJjrl8kGP8JrYAXdu1l2bqtSpVeKp9B3KA0xGrLW9PkIxcsu64chmbgMCAIHBxsWpfBQMGMxJYu2ihVfsR5JPfR6kOHmD15Sz6ODujtOBmvJIY3N3xbdmKbTodjpvjJG+/opNrLoul17N+fRS9AYWVZ36q9vQYOgObVy0X19RsQG45PzX/Vy4AXW211JdKRc/BQ9kO5C1dbJs+KwC55dIcOxctoCHgET7Gep1Ursyo1m1ZDDhFRVivH6HMs/rgpVqtRqfTPfTatWvXcHV1tXbXZYJ6eyKxt28TWq06eis/pabzD2B89erMvZyFOjXZqn3Jidwz/BC9njXbExkFMHSovaspos2zL6AE9v25wN6llDsi58bbMP8XgoEqlj51oVDg074TyYBj0jYJKpMvOebXacVfLAWGWenpn8q9+zLMxYX5ZzNxENN0mkWOuXyQbuMGtgIBI6WbFksXEMRwIEpMEV+myCLrBgOnFy/EAaj3f+zdd3xT1f/H8VeS7pZZyhIUkFUFGWXIngWUVUCGCDgYIkvBAaiIAvoFRVkiKiLKhsqmKKBslCmibCggq6VQukfaJOf3B9oflRbSNjuf5+PRh7T35p7Pje+cnHtPcu8LA63eXHqvZ+kNrL0YSUaMnCyzJrfIbw68f4pgAdCvcVOr3dvvsR69uQikrlttle27MnfNZU48fj/MD0mJ9CweiMHK90811GvAs8UDWRwfh+eB36zalnCvnGtu3GDB/l95QaPB0L2Xzdr17NWXVsC2NeEyIW8md8plfmijrrPpxHG66XRkPN3Jqm09NWQoPwNpi7+TD1S7MatPXnbo0IGxY8dy5coVAGJiYpg0aRIdO3a0dtMOwTtiAxFAqIXvR5UjrZZnn+3HBiBp0ULrt+cm3D3DdzP8to+N6el0L/sQ1Klj73LukdmxM8/pdKz48w+0N6LtXY5TkZybb/XePfQFMloW/B5ujz7diVjg1o+bCrwtd+Zu+dUkJmD4MYJNwNNvjbdOIzodAzt15UvAY5VcIic/3C2X2SQns2//PuoAAZ26Wmyz+tAO9AFWHzsqB7AOxB2y7vHXMXZeukhbb28y24RavT3TIxV4qGlzHgd2fvyR1dtzZ+6Q33soxcmli4gDGg0aarVmTJ270hjYs20LZGRYrR1X5Ja5zEVc+EoOA627drPaRHsWjYbOfZ5jH3Dr2/nWbUu4Vc4Ni79lqVK82LwVqkQJ27VbvwHdiweyNj4Oz53bbdauM3OnXOaHdnU44cAzrVujChW2alt+3XrSzsubVWfP4HHwgFXbEo7L6pOXo0ePply5cnTp0oXExETat29PUFAQw4cPt3bT9peWhnH9WvYCzYaOsEmTAQNeoiuwfNMGSE21SZuuzq0z/B+75n1OHaB4py7WP3DIB1W4CL2aNGcVwNof7F2OU5Gcmyfm3BkOJybQUasls1nzAm/P0CaUNsDOPbvgP5/uE+Zzt/x6r1vDJr2ehkWLEWjFT6BXe2UkFYAfV62Qewzmg7vl8m5eu3cSYTTS4aHyqOKWuw+KIaQeDYsXJzkzk2Nrwi22XVEw7pB17/AVbAZaNW4Knp42aTP92X48D6xYL5dJtiZ3yO9/eRw5xPfXr/G8fwBGC3wYLzemSo/SvexDrExPw+unCKu144rcMZc5MhpZ8sMKegG6MCve7/IuugEv0AtYEbEBTWKCTdp0V26Tc5OJtQu+pjlQ8uVXbNu2VkubFwexC0j+8nPbtu2k3CaX+bR90bc8ClQbMsT6jXl58WLHzswDfL5fYP32hEPysHYDly9fplKlSrz88ssYjUbatm1LtWrVrN2sQ/DevJFtiQnU9Q/Av0FDm7RprFyFwdWr8/zp07y8eSMZzzjWfQmdkTtnOBu9njU7f6EPoO/eEz9715OLsn37Ebx7B9sXLaSljT404Aok5+aJmDGdLoBHk2aowkUKvD1TpUcJLR7IttuxhP3xO4aQ+gUv0g25VX6Vwue7BSwDuncJs2pTxho1GVGlKjPOnaXD8iXoB9v4YNvJuVUu/8MzYgNrgU0dO1t2wzodmV268ep3C/jik//xVQ/bXXZL5M7ls56Whn7lMvYBX40aY7Nm9R270H3s64xOSOD2L1sp3qadzdp2Jy6f35ws+Z4VwN7uz4CHdU8JPT1oKGMnTSBp/pd4W/l+ha7ELXOZk+0/83VSEhvKlCWzYSObNGmsVJkXatelzx+/M2LlcjIHW+/bye7OXXKu3b6VmbGxzC1RgoxWbW3evs/Alwmb8QlLd25n0KWLmCpUtHkNzsRdcpkfHkeP8N2li7zo5wcdO0KyweptNhj3Loa1P3Bo/RoemzLVoh+MFc7Bat+8VEoxfvx4OnfuzFdffcWOHTsIDw+nW7dujB8/HuUGl3ryWbaY74FeT9n2q+U1XxiMF/D7Zx/LJbUKQDKcXcqyxWzNyKBL1eoY6oTYu5xc6ds9xfOeniw9fw7t1Sv2LsfhSc7zZvW2LfQF9E9b7oR8qzZt2Qro5BPpeeaO+fU4coik43+yS6MhdNwEq7cXOvZdbgJHZ8+QbwebyR1zmU1mJoc2byIIqGCFewOm9+3PYGDPxQucPXHc4tsX5nOXrHtvWMuP8fE0K1wY38ZNbdewnx+eLw6iK7Dhg/ds166bcJf8/pcmNpYfw1dQFyj5svW/ReI74AX6engw58Bv6M6fs3p7zs5dc5mbzTM+phJQ7fmXQGv1C8dlCR7xKg8BW2dOB4P1T867G3fL+Y/vT6AE0PDl4aDT2bx9VaIEA1u35UvAa8HXNm/fWbhbLvPj8vSpHAS6Pvc8+PrapE1VsRKDKlfhq8xMfJYtsUmbwrFY7d1/5cqVHDx4kJUrV7Jjxw5WrlzJzp07WbFiBYcPH2bFihXWatohaC9eIGbPLnYBT71t24NNfZ/neMHfnyXnz+G19Sebtu1K3D3D2RgMrJr2IV0A/2EjHfKSsVkCAugS2p6dQKK8sT2Q5Nx8544d5e+EeNoAGRb8NlFQn348BBxZvhRMJott1x24Y359v1vAaqDto5UpZIP7pRg7dua1YsX57EY0Xlt+tHp7rsAdc3k3z1/38kNKMs+UKIGxchWLb99Qqw4+wY8zTikmj5JvQ9iTW2RdKXwXzmcV0OnpzjYfA6e+PPzOh/JOn0R38oRN23Z1bpHfHPgunM/CzEwG1HwCY1Xrf5NEFS7C6M5hfAMkySULH8hdc5kTzZXLzDh8iLc0GtJ797Vp2xlPd+bVkqWYcTMG7x9W2rRtd+BOOdf+9itTz57hbV8/9C8NtlsdNd56m3LAmkULISXFbnU4MnfKZX7oTp1k1rYtDNNq0Qy17SV0e741ns1AytxZcos8N2S1ycv169fz7rvv8sQTT2T7+xNPPMHbb7/N+vXrrdW0Q/D9bgGzgOeqVCWgXHnbNu7nR4/hr7IGUFMmyifF8sndM3w3j/AVfHk7lmFlypLes4+9y3kgr2f60AX4Ydkie5fi8CTn5ls15QMGAKpeA0yly1hsu5lNmtG3cGGWxtzA8+B+i23XHbhbfrVXLuO9bjXfA2E2+LYEADodvUa+xm/AlelT5YoOZnC3XP6Xx5pwfgC6dOpqnQY0GtJeGswI4PzpU+z4ZZt12hEP5A5Z99q+jZu/H2GXRkOHd963efuqZEkaPP8S8UDk66OkD7Ygd8jvf2kSE7j05ef8BbS1YZ5LjHiV54BPli1BEx9ns3adkTvmMjf73nkLI9AmrDumh8rZtnEPD0LfmUgMcOzDD0Cvt237Ls6dcr7h7TcIAFoMHYYqVNhudRhq1+X9qtWYlJaKbrl8yD8n7pTL/Iib+A7rgIF9nsNU/mGbtu3XtQddiwfyXewtfL+Te1+6G6tNXkZGRlK/fs737qpfvz6RkZHWatruNIkJ6Bct5FtgyMTJdqmh8PBXaeXrx3dnTuO7cL5danB27pzhbPR6Vk+aQHngsbffA09Pe1f0QBltQhnq68e869fQHD1i73IcmuTcPBmpqazYs5OXgLQhFr7vn1bLMz37sBowLP7Ostt2ce6WX/9P/sefGRlc8vWl7XMDbNau9oWBvOLjw+zjf+L18xabteus3C2Xd9MkJbJnTTgPAeWHDLNaO+nP9sOjXHmmZ2by/piRGOSDenbh8lk3mfD7aDKzgWdC6hNQqpRdykh/fRz9vbz5/sghvH7ZapcaXJHL5zcHvp/PYlZiIkPKP4yuVRubtWuoWYtxjZqw0pDJ5enTbNauM3LHXOZEc/MmM7f+xFtA2qjX7VKDoWcfRgWV5H83ovGVS21alLvk3LD9Z94/cZxPvH1IH2Lbb6rlpN5bb/MoEP6/SWiSk+xdjsNxl1zmh+fO7Uza+QtDPDzxHW/9W9fcQ6PhxTFvMhfwmPMZJCTYvgZhN1abvDQajQQEBOS4LCAgAJMLXxrP5/uFzEtJpl1QEGXaPWWfInx9ef3d95kKpP1vMtob0fapw4m5c4bvljZzOhNjY/mw/MPoe/Sydznm8fWl9vMvUQrY/vZb9q7GoUnOzbNy3OvUMpmoXLES+s5hFt9+scFDaQksWhOONjrK4tt3Ve6UX4+jR/BetZzZGg39+7+Ih4eHzdpWAYV4YdQYwoHk99+FzEybte2M3CmX/+WzbDGf6/UMebSyVS4Zm8XLi9TXx9IVKB17i69nf2a9tkSuXD3rPt9/y5W/jjFfo2HE51/ZrQ4VGMjzo0azHLj99lvSB1uIq+f3v7QXLxD35eeEA/2mfWrzSyD7jXmLscDEhfPR3I61advOxN1ymZs9r4/kmslEt9D2GB+vYZ8iPDx49tNZnAd2TZuC9spl+9Thgtwi50YjC0ePIASoO/oNVGCgvSsio3MYE6sHMzkpCTXuDXuX43DcIpf5kZrKsdeGsw14dfSbmEqVtksZjw1+haqFC7MyNhbGjLFLDcI+rHbmy2AwsH///lxvaGs0Gq3VtF1pbtwg5bOP+QzY8vZEu9ZSdfBQen01l5GX/2bRC8+RsDYCfHzsWpMzcdcM301FnufVmdPpAdT4dDaZNjxZXlBpw0by+jdf8tGRQ7Q+eQL12OP2LskhSc4f7MbVK3wSvoKNQNrI0aDTWbwNY6XKTGjeig67d9Bn5qd4Tp1u8TZckdvkV6+n0KhXOGEyscHHl71j3rR5CQEjXqP3F7OZd+4s4z+dRuq4d21eg7Nwm1z+V0oKV2ZM5yCwwAZj4PQ+z+Gz5DsWHDlMw0+n0aRFK9p2aG31dsX/c+Wsa/++hOcHE+gNvNn7OcpWetSu9RR59XUGzZ/H+5cuMu/jj2CmjBMKypXzew+9nsIjXmZUejpDqlWnWNv2Ni8hs3lLXm7SjC/27eHQyFeot3SVzWtwBm6Vy1wYDu3nnZ82M12jIWOcHb7hcxdNh458FlKfl48cYueAPhT5aQd4e9u1JlfgDjm//cEEZkRdZ3dQSVKHjrB3OXdoNAR/tZCWrRozY9VyxoW2R9+1u72rchjukMv8MLw1muevX+PzsmXxeNWOk4YaDSMmT+WNV4fR+9tv8WrSiozOVrpNiXAoGpXbq7KAWrd+8MmD7du3W6PpfImNTcZkyttTERRUiJs37/qqfWYmRfp0Z9ieXXiXf5j3jxy3cJV5l/7333RsVJd+hkxea92WhG8WwT+fJLmnfivQajUEBub8yRVH50wZzk9+H8SUnMwH9Wpy6nYs6zp2IWNh9uvi2yI/BeX/1mhaf7eAIbXq0Hnbrjw/PiiokBWqciyOkPMH5deeWUuIj6N3k/p0uRnDO5UeJW7X/gIdsN5vXzyOHeWd0BYkaLXM2ncY9WjlfLfzL2fug83hCPkF6/TBWUwmCr0ykNS1q2nq6cnLH35M3xcG5riqtV8r19aE03boQI5oNBRdFk5Gm3YF2t6D6nXW/DpKLs2Vl/ze7/9ZwPg3eG7B19QpXYahx07b5Fs92guRFOvYltWxsbzp68evJ47jGVDC6u2aw1nzmxeOkHVrjCE08XEU7RjKm+fOcr5UaRb8eQaNjb+llpO0n7fSpu8zfAD0Xb6cm206Wq0tye8d9s6vRWRmUmj4YFasW8P/dDq2HDiG/8M536vK2uMI3dkz7G7ekDdNJnbN/w5PC500/2/dzpxfR8hlXlhqDPEvTVIiE2sHE5OUxHdDXiF1iu0uM5xbfZrbsSxpWIfPE+LZ0DqUoKWrrPJh1rs5c4bN4Sg5t3R+/+WxcT3PDexPI2DkqnVktnSsD9fFzfqUxh9+wC5fP8qui8BQJyTb8oK+Fzhrfh0ll+b6N7/WfO/2WLaYF14bzsM6HR/8vCfbN+HtdZ5uSKsmlD3xF3N8/Yj/8ReMFv6iirPm15VZbfLS2RR48jIzk8JDXmRzxAZe12rZvucg/lWqWqHSvLuxcwed+nTjHZOJF2rWIvG7pZjKPyyTly7E0ge+hrjbvNm0ARdvxrC+/MOwfS+qSNFs6zjD5KX2+jVON6xDT3062z+dQ2D/5/P0eHeYvHQEjjh5aTQa+ePXPYwZOID28fF8qtWSuGYTmY2bFmi7D9oXj5dfpMXa1bzy8MM8s/sg+PkVqD3pg23Daicfk5MpNGYEyevWEKrV0vSZXkyY81WuJ9Ft8VqZE/Y0B37dyyZvb9I+nY2+17P53parTl46G0ucuPFesZTwUa/wCbB988941mtg4Spz53H0CEWe6cq0pES+8/Hhw9fH8niffgSWLGnXCSfJr21YegyhuXWLIgP68N3hg0zz9OTH345Q9OEKFqjUMs69O46uX3/BCo2G+rPnoe/d1yrtSH5tw9qTl5qEeAq/NIAf9uzkdY2G1d8sosp9vqVgi3GE75yZDJv8HjoPDz5dE4HxyUYF3qYrTV46G0tO/mgSEwgPbcFnFy/wa/DjsGWHTa8cdr/6dMf/YsXTbZiSns6a0PY8+u0Sq34DUzJsG9aYvPRavoQprw3nN6XYNPpNMu1xf8AHUYrVT7dl5pFD/Fa0KCxaieGuvthdJy+djVUnL5VC881XvPHuWK4pxfKpn6JeGpxtFXudE06Ij+OZhrVpExfHR2XKkrpwCYa69Sy2fcmv47HaPS8t5eLFi/Tu3Zv27dvTu3dvLl26dM86RqORDz74gLZt2xIaGkp4eLhNa9QkxFP4hb4cjNjAEI2GLz+b4zATlwClWrYifMUaPvLw4OO/jlG0dRN8P58FiYn2Ls3lOUN+s1GKm6uW0+OJaiTfjOGnoJJol6++Z+LSWZjKPkStCe/zCvDSm6+S+mOEvUtyWeZk3dFFR0fxxRez6dmlA9UqlOa1Xt14Iz6ezzw8SPpmUYEnLs1h/Gg6K8qU5f3Llznc7Wk0SdJP24Ij5tfjwH6KtW/J3+vW0EijoW23Z+47cWkrQ1etw1T2IQbp9XiOeJlCg55HG3XdrjW5KqcYQyiF98pl7Bg9gvHAkjFjbTpxCWCoE0L8us28Wao0E9PTmfHhBzStWZUKpYvS/bFH+a7vMxz/dBppP0bg8dcxNAnxNq1P3J8j9b+ee3ejbduMDw4fZKJWy9Lw9Q41cQlQZfL/WNznOfooxaKRQ/EaORTdubP2LsutOVKGsyiF5697MbVpxmt7dvKOVssPX8y/78SlraSNeJVPO3XhL4OB18OeQs3+DAwGe5flUpxi/PAfHocP8kvjeky6eIFNJUuh/W6pQ93yyFijJn1XrWO2lxddtm3h91aN0Z08Ye+y3J4j9b/aqOskvNSfIa8OY5tSLB8yjExHvc2GRkOP9T/S/pFHaBsfT3r3jvhNnQypqfauzCU4Yx98N3XoAOuaNeTJd94iUSkWj3gV9eIge5eVpUjRYvx87BjHChfhqajrpHZoTaHhQ9Beu2rv0oSVOPw3LwcMGECPHj3o2rUr69evZ/Xq1SxatCjbOuvWrWPjxo3Mnz+f+Ph4wsLCWLZsGeXKlTO7nTx/6jEjg6BLp0ldHk7i0u/5Ij6eeRoNX334Mc0GvWz+dmzoxulTvNipHUUTE3gTCPH2xr95SzI7dCQzpD7GRytb/NNj7v6JBYfN7100yUnoTp8ic+8eln77Nf+LjmIMMKb6YyR9txRTLvf4cYZvXgKgFP7DhzD2h5X8AnzWqQv1JkxCVaz0wIfKNy/NZ07Wc2ORb02YTGji4tDejEEbcwPtjWi0MXf+rVJSiM/I4FZ6GgkZmfh7eODn4UFURjoXU1L4OzmZvdev88eNKLp5eBCWnk4joASQWTeE5GmfYahVx/wn4z7M2Rfd2TMc69CK3snJfFO4MK2HjiCjYxeMlauAp2ee2nP3PthcBckvWOabE5rEBHRnTuP52z68N63n2h9HWQDM0+l4783xPDvmrQduw1b9cnJSIm/26MKRY0d5VSm6e3hQsksYGaEdMNSpi/Gh8maNJ+Sbl/fniGOIf/+faRLi8Ty4n5hZM/ji4G+sBFb27kv1OV/mZRctSpOcRInvv8awaDEeFy+QBOwE1gFHgTNAMSAYqO7rS5XSZQmuUpXH6tUnoOYTGCpVRgUFofwDLHLJW3fPr7ms3f/et59JT0d38QKeB/eTtuQ75h37g8+B9sUDGbdqLaWeqJ3HvbGduNkfM+zDDzmhFL2BniH1qPHCIIz16mN8pCIU8D71kl/zWXMMbDaj8c7Y9/JlPA8d4MKyRSyPPM83QFjRYoxfF0Ghx2o8cDM2O74zGFBvvcaYJYvYDbwZUIgevZ7Fr2s3DI/XQBUukqfNyTcvs7PV+AEK8M01kwntpYt47d5J9PrVfLVvL8uBtRUq8ujqjZjK53xpY2syJ/8ef/zO0ed60vfmTToAo+rWo8ozvTCE1MdYuQqqUGGL1OLuGTaXLY/h7slHRgbaa1dRB37jtyXfs+rwQSJMJgZptbzx0Sdo/vMtNUekMjOZG/Y0Xx86wCdA78ASZHbrgV/XTsRWqIapZKl8jYndPb+2PoYr0Hu3yYQmIR7d2bMk7dnJqlXLmXvpIo8C7/j5EzJjDvpuz+T4UHueEw4KKkT0pWjm9u7GvIP76Q88p9PxeLMWGMJ6kFmvAcaKlfJ8/gwkv47IoScvY2Njad++PQcOHECn02E0GmnYsCFbt26lePHiWesNGTKE7t2706FDBwAmTZpE2bJlGTTI/E8GxMWlYDIpvDZvxOvnbaCMaAxGMBlRRhNnUpJIzzSiz9CTGHeb60lJXFGKo8BFoENgCQZO/ZSSdUMe1JRdGQ0G1n3yP378KYLI5GSMQCWgMvAYUNXLiwA/fzwCAtD6+9858NXowEOL0mhBpwX+++Z15/eS3t4U8/TEVLEiqcNfBY0GrVZDsWL+Nt1HR2GP/Hr8cRSf5YshMwOMJjINBs4nJ2M0mTCYTBiNRowmI0ajkYzkZGKTErmp13McOAA0AMYUKcrDLwwk/dl+9+3oAwMDiI1NzuezY2MmE37z5vDzt/OZzp2vnDf18aVS8WKU9Q/Az9MLXx9vPLQ6igWVotC4t1EBheQNy0zmZj03/+ZXG3Udv3lzIDkZlAlMCo3JRLoyciEpBaPJiMGk/smwCaPJhDEthdTkZG6npBCnFLHA7f/8xAF+QHGgEJD2z09JoBxQHqgBtAZ8AFOhwhger0H6s8+R2aS5Re/bZu7rRnv5MidfH8mEC5F4AI2AR4CihQrhX6QY3r6++Hh64O3hSdUiRfDQ/nPfFV8f0l4acufDKODWfbC5Cppf+CfDaen4z5yO5kb0/+fXaOTvtFSSMzIxqjuZNRmNd7JrMmHKyCQzNYXEtFQS9XriuJPZI0CMRkP74GD6TPyQcpWrmFWHrfvl4zt+5ofp09gXHYU/UIU7Y4qyQDF/fwL8/PDy88fb2xtvnY7K/gF463Sg1aJ0Ory9PdEbFGj/uRCIRoM+rNud1x3unV97jCF8vluAx59/3DmINRo5n5xMqiGTTKORTIORTJOR1NQUYuLjidTrOcCd/rWTlxdDhr+Gb78BFn4W8i4wMIDYW0lo4uLw+Psi2r8vobt0CW3UNYiPJ+pmDBejrnMhI4PzwGnuTGoGAo8DFYGiOh1Fff3w8/fHy8cHLw8dnh6eeHl44OnpiUaro6iXJ2W8fcgaE//zPpHZsCH6Xncu4+nO+TWXxfpfk8Lzl214b94EyggmhdFg4FxyMhqdhrSMDIxGEwajCZMykpqWzq34OGJSU7kBRAN/AO08PRnYsw+lRo4GLy9r7nqBBQYGEH/4T65/9QVbtm9jvdGIBxAKPKLR4O/nh5d/AB5eXnh4eqLzvPNfracHHhoo4ulFOV96N0QJAAAgAElEQVRf7mT4Tn5N5cqR+toboNVKfs1kqTGwx6kT+CxaCHr9nTGE0cT5lGQyjCZMpju5NRoVJpMJZTJhVCaUUhgNRgxJiSQlxJOgFJe4c0wXD3T19iYsrAelXnvD7DzbehzhuXsnZz/5iG+uX2cfd/rh6kB5Pz8K+fhS2M8Xbx8/PH188NRp8dJq0Wm0/8T2n+xqtXh26YSq24hSpUoB7t3/2nL8AHcyTEwMfp/PgsQEMgwGLiQnYzQa7px/MJkwGIyYlAlQ6DMyuZ0QT3RyMtEmE4eBWKCzTsfAHr0JeO11q16O9X7Mzb8mPh7jF7NYsn4tqwwGfIEngDJACV9fivv5U7xQAD7ePuj+yay/hwcV/HxBowWNBqXVglbzT4614O1F+vMvYaj+GODeGTaXxcYQmQb8Zk1He/UacKf/1ZhMYDKBUqAU+sxMLunTSNVnok9NJiY+nr/T0jjGneO2qkBXoEPT5ni/Pg5TLvcVdlR/ha/i81nTuZiWSgjwMBAEBHh64lekKD4+Pnh4e6Hz8Ean06DT6vDQadFpNXhodBT39qFY92fIbN0WcO/82uMYLnDjD+h37AbunIPA9E+GlYk4fQbX9elkmkxkGo0YTCb0RiOJaWkkJCURl5ZKvFKcA04CbYD+Xl481rc/aQNevO9V+Ox5TvjutqOPHGbT1MlsvRDJTSCEOx9WfVirxd/fH29fP7z8/fH28MTTU4dO44HGQ0ugtw8lff1Aq8XwRC3SB7wIuHd+HVXBPpJpZVFRUZQqVQrdPzfD1ul0lCxZkqioqGwv+qioKMqWLZv1e5kyZYiOjs5TW1nB7P/snZ//eCIf9TuqIdOnMWS6dW987mvVrTsHu+S3TbM7P//wBvL7mXFzumqnmtx77x06v/cOne1dhwsyN+u5ycpvYFWYO+ee5V7kP8f5of2nTWudtjTrdRP4GE22/0J+bgdvn8N951XQ/MI/GS7mDx//755l5k07Wo4t++UWz4TR4pmwAm3jv3mV/N5hlzHE669m+/tj+azd3gJLFIIShaDKw0CLbMsq/PPTykptewNONDKyO4v1vwC9ut35uUsti1breIrWe4Ki9b7kMWC0hbYpx3B5Y7ExcNOGd37u8rjFqzWPTY/vunWiXrdOWO5OVcKW4wf4dwxcEebMBO68Dzpz32vecVoAfPoJoz/9xGJ9L8gYOK8sOob4cPJ91/MCahakWAfXcuhLtBz6kr3LcAl2OYZ74QW8X3ghx3VK/fOTH+aMCe15TvjftgPbteTxdi0ZW4BteWPeOXBhHw5/z0shhBBCCCGEEEIIIYQQQgghhHtw6MnLMmXKcOPGDYxGI3DnhrYxMTGUKVPmnvWuX7+e9XtUVBSlS5e2aa1C/JfkV7gLc7MuhCOS/ApHJGMI4Q6k/xXOTjIsHI2MH4S7kP5XOCLpg4WwPIeevAwMDCQ4OJhNmzYBsGnTJoKDg++5BECHDh0IDw/HZDJx+/Ztfv75Z9q3b2+PkoXIIvkV7sLcrAvhiCS/whHJGEK4A+l/hbOTDAtHI+MH4S6k/xWOSPpgISxPo5RS9i7ifiIjIxk3bhyJiYkULlyYadOmUalSJQYPHsyoUaOoWbMmRqORSZMmsW/fPgAGDx5M79697Vy5EJJf4T5yy7oQzkDyKxyRjCGEO5D+Vzg7ybBwNDJ+EO5C+l/hiKQPFsKyHH7yUgghhBBCCCGEEEIIIYQQQgjhHhz6srFCCCGEEEIIIYQQQgghhBBCCPchk5dCCCGEEEIIIYQQQgghhBBCCIcgk5dCCCGEEEIIIYQQQgghhBBCCIcgk5dCCCGEEEIIIYQQQgghhBBCCIfgYe8CHFlcXBxvvfUWly9fxsvLi0ceeYRJkyZRvHjxbOvNmTOHZcuWUbJkSQDq1q3LxIkT7VHyPVq3bo2Xlxfe3t4AvPHGGzRr1izbOkajkSlTprBnzx40Gg1DhgyhZ8+e9ihX2Nm0adPYsmUL165dY+PGjVStWjXb8s8//5w5c+bkuAycI0sF3UdHfr07i/v1reb0WeA4WbPEvkimhCVdvHiR9957j8TERDIyMnj66acZOXKkvcu6r8WLF7N06VI8PT3R6XSsW7fO3iW5tYsXLzJu3Dji4+MpWrQo06ZNo0KFCtnWsWcfbE590q+6D1c4XsuNHMcJW9qxYwezZs1CKYXJZGLkyJG0a9fO3mVlk9txnDnvC8L6nKE/ln5V5IW5mXYlw4YN4+rVq2i1Wvz8/JgwYQLBwcH2Lsvt5PR+l5c85refze191hbn6XJq++rVqwwfPjxrnaSkJJKTkzl48KDF9lk4ASVyFRcXp/bv35/1+9SpU9X48ePvWW/27Nlq6tSptizNbK1atVJnzpy57zpr165VL730kjIajSo2NlY1a9ZMXblyxUYVCkdy6NAhdf369Rxzc/z4cTVw4EDVsmXLXDPlDFkq6D468uvdWdyvbzWnz1LKcbJmiX2RTAlLeuWVV9TixYuVUkolJyerli1bqmPHjtm5qtxt2bJF9e3bVyUlJSmllIqJibFzRaJ///5q3bp1Siml1q1bp/r373/POvbsg82pT/pV9+EKx2u5keM4YSsmk0nVq1cvK2+nTp1StWvXVkaj0c6VZZfbcZw57wvC+pyhP5Z+VeSFuZl2JYmJiVn/3rZtmwoLC7NjNe4rp/e7vOQxv/1sbu+ztjhPd79ztf+aMmWK+uCDD3Jc5oxjfWEeuWzsfRQtWpSGDRtm/V67dm2uX79ux4qsY/PmzfTs2ROtVkvx4sVp27YtP/30k73LEnZQr149ypQpc8/fMzIymDRpEhMnTkSj0eT6eGfIUkH3URScJfpWR8mau7xPCOeh0WhISkoCID09HY1G49CfDv72228ZMWIEAQEBAAQFBdm5IvcWGxvLyZMn6dSpEwCdOnXi5MmT3L59O9t69uqDza1PuA93fx92lPGQcH5arTZr/JCUlETJkiXRah3rdFFOx3HyvuA4XKU/ln5V/MtVMp0XhQoVyvp3cnKynBuzk5ze72yRx9zOl5qrIP3ng9rOyMhg48aN9OjRI9/1Ceckl401k8lkYvny5bRu3TrH5REREezdu5egoCBGjhxJnTp1bFxh7t544w2UUoSEhDBmzBgKFy6cbXlUVBRly5bN+r1MmTJER0fbukzhwGbNmkWXLl0oX778fddz5iyZu4/g2K93Z5NT3/qgPgscM2v53ReQTAnLefvttxk6dCjLli0jMTGRt956i3Llytm7rFxFRkZy7NgxZs2aRUZGBn369KFXr172LsttRUVFUapUKXQ6HQA6nY6SJUsSFRWVbRLcXn2wufWB9KvuyJmP13Ijx3HCFjQaDTNnzmTYsGH4+fmRkpLCV199Ze+yzJKX9wVhO47cH0u/KvLjQZl2Je+88w779u1DKcU333xj73JEDszJo6X7WXufp9u+fTulSpXi8ccfz3UdZxzriwdzrI/SObDJkyfj5+dHv3797lnWp08ffvnlFzZu3MjAgQMZNmwYcXFxdqjyXkuXLmXDhg2sXr0apRSTJk2yd0nCyRw9epS//vqLvn372rsUq8nLPjry690Z/bdvdeY+K7/7IpkSedGtWzcaNmyY44/RaGTlypV07dqVPXv2sG3bNhYtWsSxY8cctl6j0UhUVBTLli1j/vz5fPPNNxw6dMhu9QrXIP2qe3LW47XcOPOYSDgXg8HAV199xRdffMGOHTuYN28eo0ePJiUlxd6lCSflqP2x9Ksiv+6XaVfz4YcfsnPnTkaPHs3HH39s73JEDh6UR0v3s47Qd65evfq+37p0xrG+MI9MXpph2rRp/P3338ycOTPHS6cEBQXh6ekJQJMmTShTpgznzp2zdZk5+vcr115eXvTt25fff/89x3Xu/qp5VFQUpUuXtlmNwrEdOnSICxcu0KZNG1q3bk10dDQDBw5k796996zrrFnKyz468uvd2eTUt5rTZ/27niNlrSD7IpkSebF27VoOHDiQ449Op2Px4sV069YNgJIlS/Lkk0/adTLwQfWWLVuWTp06odVqCQwMpHHjxvz55592q9fdlSlThhs3bmA0GgEwGo3ExMTccwkfe/XB5tYn/ar7cebjtdzIcZywlVOnThETE0NISAgAISEh+Pr6EhkZaefKHszc9wVhO47cH0u/KvLjQZl2VWFhYRw4cEAmgByMOXm0dD9r7/N0N27c4NChQ3Tu3DnXdZxxrC/M4z69bj7NmDGD48ePM3fuXLy8vHJc58aNG1n/PnXqFNeuXaNixYq2KjFXqampWfetUEqxefNmgoOD71mvQ4cOhIeHYzKZuH37Nj///DPt27e3dbnCQQ0ZMoS9e/eyfft2tm/fTunSpVmwYAFNmza9Z11nzVJe9tFRX+/OJqe+1dw+CxwrawXdF8mUsKRy5cqxZ88e4M59So4cOUKVKlXsXFXuOnXqlFVvamoqR44coXr16nauyn0FBgYSHBzMpk2bANi0aRPBwcH3XHrPXn2wufVJv+penPl4LTdyHCdsqXTp0kRHR3PhwgXgziXdb926xcMPP2znyh7M3PcFYRuO3B9Lvyryw5xMu4qUlBSioqKyft++fTtFihShaNGidqxK3M3cPFqyn3WE83Rr166lRYsWFCtWLNd1nG2sL8ynUUopexfhqM6dO0enTp2oUKECPj4+wJ2TgnPnzmXw4MGMGjWKmjVrMnbsWE6cOIFWq8XT05NRo0bRokULO1cPV65cYeTIkRiNRkwmE48++ijvvvsuJUuWzFa/0Whk0qRJ7Nu3D4DBgwfTu3dvO1cv7GHKlCls3bqVW7duUaxYMYoWLUpERES2dVq3bs2XX35J1apVAZwuSwXdR0d9vTuT3PrWcePG5dpngWNmzRL7IpkSlnT8+HGmTJlCamoqBoOBp59+mhEjRti7rFylp6czYcIETp48CUDXrl0ZMmSInatyb5GRkYwbN47ExEQKFy7MtGnTqFSpksP0webUJ/2q+3D247XcyHGcsLUNGzYwf/58NBoNAKNGjaJt27Z2riq73I7jcntfELbl6P2x9Ksir+6XaVd069Ythg0bRlpaGlqtliJFijB27Nj73mNQWEdO73czZ868bx4t0c/m1O6XX35pk/N09ztX2759e9555x2aN2+e7TGO8N4irE8mL4UQQgghhBBCCCGEEEIIIYQQDkEuGyuEEEIIIYQQQgghhBBCCCGEcAgyeSmEEEIIIYQQQgghhBBCCCGEcAgyeSmEEEIIIYQQQgghhBBCCCGEcAgyeSmEEEIIIYQQQgghhBBCCCGEcAgyeSmEEEIIIYQQQgghhBBCCCGEcAgyeSmEEEIIIYQQQgghhBBCCCGEcAgyeZkHrVu35oknnqBOnTo0btyY8ePHk5KSAsC+ffvo378/derUoWHDhnTt2pWvv/4avV4PQGJiIuPHj6dJkybUqVOH9u3b8/XXX2dt++rVq/Tv359atWrRoUMHfv3112xtb9y4kVatWlG7dm2GDRtGfHx81rKMjAzGjx9P3bp1adKkCQsXLsz22FOnTtG9e3dq1apF9+7dOXXqVNays2fPMnDgQBo2bEi1atXu2eclS5bQvXt3atSowbhx4wr+JAq7cscMv/HGGzRt2pS6devSvn17wsPDC/5ECrtwx/wCRERE8NRTT1G7dm3atm3L4cOHC/ZECrtwx/xevXqVwYMHU79+fZo0acKkSZMwGAwFfzKFzblifiMiImjfvj0hISE0atSIsWPHkpycnLU8MjKSAQMGEBISQmhoKNu2bbPcEypsyhXzu2bNGoKDg6lTp07Wz4EDB7KW3/33OnXqEBwczOTJky33pAqbcscMyxjCdbhjfmUM4TqcNb8TJkygffv2VK9enTVr1mRbJucg3Ic75lfGwC5ICbO1atVK7du3TymlVHR0tOrYsaP65JNP1ObNm1XdunXVypUrVVxcnFJKqcjISDVp0iR18eJFpZRS48aNU6NGjVLx8fHKaDSq8+fPqx9//DFr27169VIfffSRSktLUz/99JMKCQlRsbGxSimlzp49q2rXrq0OHjyokpOT1ZgxY9Rrr72W9djp06erZ599VsXHx6vz58+rxo0bq127dimllNLr9aply5Zq4cKFSq/Xq++//161bNlS6fX6rDpXrVqltm3bpqpWrXrPPm/ZskVt27ZNvffee2rs2LGWf1KFTbljhs+ePZu17r/b/uuvvyz8zApbcMf87t27V7Vs2VIdPXpUGY1GFR0draKjoy3/5Aqrc8f8Dho0SI0dO1alp6ermJgY1alTJ/X9999b/skVVueK+b1+/XpWO/9ue/LkyUoppTIzM1W7du3Ut99+qwwGg/r1119VrVq11IULF6z4LAtrccX8rl69WvXp08es/U9JScmqQzgnd8ywjCFch7vlV8YQrsUZ86uUUkuWLFG//vqr6tatm1q9enW2fZJzEO7DHfN7NxkDuwaZvMyDu1/0Sik1depUNXjwYNW8eXO1YMGC+z62Y8eOatu2bTkuu3Dhgnr88cdVUlJS1t+effZZtWzZMqWUUp9++qkaM2ZM1rK///472/pNmzZVe/bsyVo+Y8aMrE5hz549qmnTpspkMmUtb9GiRbZOQSmlLl26dN8X/WeffSaTly7AnTOs1J03uSZNmqiIiIj7ricckzvmt3fv3mrVqlX33TfhHNwxvx06dFA7d+7Mts8TJky4774Kx+TK+VXqzuTlm2++qQYNGqSUUurMmTOqdu3a2R774osvqhkzZtx3X4VjcsX85mXycs2aNap169bZtiWciztmWMYQrsPd8itjCNfijPm9W58+fe6Z/PmXnINwfe6Y37vJGNg1yGVj8ykqKordu3fj4+NDdHQ07dq1u+/6tWrVYsaMGaxevZpLly5lW3b+/HnKly9PQEBA1t+qV6/O+fPnATh37ly2r0I//PDDeHp6cunSJRISEoiJiaF69eo5Pvb8+fNUq1YNjUaTtbxatWpZy4X7cqcMv//++9SqVYunnnqKoKAgWrRoYfZjhWNyh/wajUaOHz9OXFwcoaGhNG/enEmTJpGenv7AxwrH5g75BRgwYAARERGkpaVx48YN9uzZQ7Nmzcx6rHBcrpTfw4cPExISQt26ddm6dSvPP/88AEqpe/ZDKcW5c+ce9PQIB+dK+T116hQNGzakffv2zJ07N9dLaq5du5awsLBs2xLOy10yLGMI1+QO+ZUxhOtylvwWhJyDcF3ukN//kjGwa5DJyzwaPnw49erVo2/fvtSvX58BAwYAEBQUlLXO6NGjqVevHrVq1WLdunXAnes1d+7cmaVLl9KxY0dCQ0PZtWsXACkpKRQqVChbO4UKFcq6DnVqauo9ywMCAkhJSSE1NTVr/Zwem9O2/32scE/umOH333+f33//naVLlxIaGoqXl5fZjxWOxZ3ye+vWLTIzM/npp59YunQp69at4+TJk8ybN+/BT5RwSO6UX4AGDRpw/vx5QkJCaN68OTVq1KBt27ZmPVY4HlfMb7169Thy5Ai7d+9m4MCBPPTQQwBUqlSJ4sWL880335CZmcnevXs5dOiQnLhxYq6W3/r167Nx40Z+++03Zs+eTUREBAsWLLhnv69fv86hQ4cICwvL4zMmHI27ZVjGEK7FnfIrYwjX42z5LQg5B+F63Cm/d5MxsOuQycs8mjt3LocPH2bHjh28//77FCtWDICYmJisdWbMmMHhw4d57LHHMJlMAPj4+DB06FDWrFnDgQMHeOqpp3jttdeIj4/H39+f5OTkbO0kJyfj7+8PgJ+fX67L/fz8sn7P6bE5bTslJSVruXA/7pphnU5HvXr1iI6OZvny5Xl6rHAc7pRfHx8fAPr370/JkiUpXrw4L774YtaAUTgfd8qvyWRi4MCBhIaG8scff7B//34SEhL45JNPzHquhONx5fyWKlWKZs2aMWbMGAA8PT2ZO3cuu3btomnTpixcuJAOHTpQqlSpvD9xwiG4Wn7Lly9P+fLl0Wq1VKtWjeHDh7Nly5Z79nvdunWEhIRQvnz5vD9pwqG4U4ZlDOF63Cm/MoZwPc6W34KQcxCux53yezcZA7sOmbwsoEqVKlGqVCm2bdtm9mMCAgJ4+eWXSU1N5erVq1SuXJkrV65ke+GePn2aypUrA1ClShVOnz6dtezKlStkZmZSoUIFihQpQlBQULbldz+2cuXKnDlzJtulK86cOZO1XAh3y7DRaOTy5cv5eqxwPK6c3yJFilC6dGm5xIULc+X8xsfHExUVRb9+/fDy8qJYsWL06NGD3bt3m72vwrG5Wn4NBkO28UH16tVZsmQJBw4cYMGCBVy9epUnnnjC7H0Vjs3V8qvRaHK8VOH69evlE+cuypUzLGMI1+fK+QUZQ7g6R89vQcg5CNfnyvm9m4yBXYdMXhaQRqNh3LhxfP7556xatYqEhASUUly6dInY2Nis9ebOncuff/5JRkYGer2eRYsWUbhwYSpWrEjFihUJDg5m7ty56PV6tm3bxpkzZ2jfvj0AnTt3ZseOHRw+fJjU1FRmzZpFaGho1rWlw8LCmDdvHgkJCURGRhIeHk63bt2AO5db0el0LFq0iIyMDJYsWQLAk08+Cdy59r5eryczMxMAvV5PRkZGVt0GgwG9Xo/JZMJoNKLX63O9n4pwTq6c4djYWCIiIkhJScFoNLJnzx4iIiKyHiucnyvnF6B79+4sXryY2NhYEhIS+P7772nZsqXVn1dhG66c3+LFi1OuXDmWL1+OwWAgMTGRtWvXZrv3hXBuzp7fDRs2cP36dZRSXLt2jZkzZ9KoUaOsuk+fPo1eryctLY0FCxYQExND9+7dbfLcCutz9vzu2rWLW7duARAZGckXX3xBmzZtsu3j77//zo0bN+jQoYN1n0xhF66cYRlDuD5Xzi/IGMLVOXp+gaw2lVLZzuuCnINwd66eX5AxsMtRwmytWrVS+/bty3HZrl271HPPPadq166tGjRooLp27armz5+vUlJSlFJKzZ07V3Xs2FHVqVNH1a9fX/Xr108dOXIk6/FXrlxR/fr1UzVr1lTt2rW7p50NGzaoFi1aqFq1aqmhQ4equLi4rGV6vV6NGzdO1alTRzVq1Eh9++232R574sQJ1a1bN1WzZk0VFhamTpw4ka3dqlWrZvtp1apV1vLZs2ffs3z27Nn5fxKFXblbhmNjY9Vzzz2nQkJCVJ06dVSnTp3UypUrC/YkCrtxt/wqpVRGRoaaOHGiCgkJUY0bN1aTJ09W6enp+X8Shd24Y35Pnjyp+vXrp+rVq6caNGigRo4cqW7dupX/J1HYjSvm97PPPlPNmjVTtWrVUs2aNVPvvvuuun37dtbyqVOnqnr16qnatWurgQMHqkuXLuX/CRR25Yr5nTp1qmrUqJGqVauWat26tZo5c6bKyMjI9vgJEyaoN954I39PmnAo7phhGUO4DnfMr4whXIez5rdfv373HKft378/q105B+Ee3DG/SskY2NVolMrh+jJCCCGEEEIIIYQQQgghhBBCCGFjctlYIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRDkMlLIYQQQgghhBBCCCGEEEIIIYRD8LB3AY4iLi4Fk0nluCwwMIDY2GTrFpCWhv+cGWQ0b0nmk42t2xY22idAq9VQrJi/1dtxd/fL7/1YPQdK4bXlR7y2/wwa0Ic9Q2aj3PNtq1yaKzAwwN4luIX85tdsSuEdvhzPY3+QNuAljNWqm/UwR8vj3cytTfpg27B0hgMDA7h8OZrMTANFixa12HbNbdteuf9v25Jf27B2HxwXF4dGo8lTlh25/82N5Nc+7s5vQIAn167dpEgR2/abzup+rzPJr23ExaVQrJi/0/V31uDhYSQ5ORMfH58Cb0vyaztWP44zU0JCPOnpekqVKpX1N2cbS9xdr2TYNhwlv3fTaDJISTHg5+dn71Ly7N8MS35tw5L5deT+Mi0tjZSUFEqUKFHgbZmzn5JfxyOTl/8wmdR9X/TWfkMr9MZr+KxchvfsGdy6HGPVtv7laG/SIv8elN8HPdYqlCLgrTH4fr8g609eCxeQ8MMGMps2t309wmEVJL/3o70QifePEejOnsZ3+RIAPDZu4PZvv4Ovr9m1OSpHrs3dWDrDSimefrod165d4fjx83h5eVls2+awZ7Yk17ZnrT4YICkpkUaN6qLTebB//1H8/c0/EHTGLDhjzc7u7vwOGjSIJUuWEBOTaOeqnIdk1r7+ff7l/wMULVqUDh06smjRcnuXIvLAmmMIc924cYO2bZuRkpLC2rWbqFWrTtYye9eWV85Wr7NzhPz+V40awQQHP054+Hp7l5IvjvZ8WsvFixcZN24c8fHxFFwzz+gAACAASURBVC1alGnTplGhQoVs6xiNRqZMmcKePXvQaDQMGTKEnj17AjBnzhyWLVtGyZIlAahbty4TJ07MUw2Wzq+j/r/r27cX+/bt5vz5KwQEFCrw9hx1P0Xu5LKxDsJzzy4ANOnpdq5ECMvwDl+B7/cLUL6+JE/+H2kDXkJjMhHw5muQkWHv8oSL09y4QbGnWhPwwbtZE5cAuuvX8I7YYMfKhHiwyMhIYmNvUaVKNXbs+MXe5QiRb5s2baBBg0Y0aPAkS5d+b+9yhIu7evWqvUsQQhTAtWvyGhZ5N2/eHLp27ca7777PjBnT7V2OEPl28+ZNYmJiOHr0d5SSCRZHNnHiRPr27cuWLVvo27cv77333j3rbNy4kcuXL7N161ZWrlzJnDlzso1Vw8LCWL9+PevXr8/zxKW7OHz4IBcvRtK0aQs5L+LGZPLSDrTXr+G19Ue4+81Io7FfQUJYWmoq/pPuvHknf/QJaS8PJ/nDaRgerYxH5Hm8N6y1c4HC1fkuXog2Lg7Do5VJ7/UsCUtWkvTJTAB87prMFMIR7d69m8aNmxAW1p0ff9xk73KEyLeNG9cRFtadgQOHsGyZ9L3Cujw9Pe1dghCiALRaOT0l8m7jxnX07TuAZ57pxa5dO0hOdsxLHwrxIH/9dYxWrVrh5eVJdHSUvcsRuYiNjeXkyZN06tQJgE6dOnHy5Elu376dbb3NmzfTs2dPtFotxYsXp23btvz000/2KNlpffrpNEaOHE1oaDt27txu73KEnchlY+2geKO6aNLSSFi6iozQDnf+KJOXwoX4freA1JgbzC1dlscrPcqTgPLyImbgy5R9+018v/4CfY9eknthNV6/bAMg5YMPyWj3FACahHgCxr+B56970cTHoYoWs2eJwgbMuZzL3r17+eyzzzh79iz9+/dn7Nix9in2LgcPHqRevQY0adKc+fO/tHc5QuSLyWTi4MEDzJ79JcWLFyc+Po5Tp04SHPyYvUsTLkomL4VwbjqdTF6KvLl58yaJiYkEBz+GRqOhRo2aHD58kJYtW9u7NCHy7OTJEzzxxBMYDCZOnz5FmTJl7V2SyEFUVBSlSpVCp9MBoNPpKFmyJFFRURQvXjzbemXL/v//wzJlyhAdHZ31e0REBHv37iUoKIiRI0dSp87/X/LaHIGBAQXck+yCggp+SVZLOnjwIGfPniYiYiPHjh1jzZpVFqnR0fZTPJhMXtqBJi0NAM/9v/3/5KUQriIzE7+5s+gL3CoZxLyRrxAQEEBMzA2SkhLp6OnJ4j+O4nHwAIaGT9q7WuGCNMlJePzxO0qnI7Nx06y/qyJFyWzwJF6/7sVr1w70XbvbsUphC/9ezqVr166sX7+e9957j0WLFmVbp3z58kyZMoUtW7aQ4SCXtD59+jShoR2pVq06SUmJXLt2lYceKmfvsoTIkzNnTlOiRAlKlCgBQLduz7BmTTjvvCOXRRLWYev7AwshLEsjH2wVeXTixF88/niNrOw0btyEX3/dK5OXwin9/fcl6tevw82bt7l69Yq9yxFW1KdPH4YOHYqnpyf79u1j2LBhbN68mWLFzP+AfWxsssXu3xgUVIibN5Mssi1LmTTpQ4YNe5XExAxKlnyY06dPExUVh4dH/qeyzNlPrVZj8YlhUTDy0TZ7ytD//79loC5chNfWnzh9M4YdOh0L1v/Er78eZvr0mWzZsoPIyGsYH36ENwFfufeVsBKPgwfQGI0YatdBBRQiKuo6X301lxMnjpPROhQAz+0/27lKYW3mXs7lkUce4bHHHivQINjSTp06RZUKFdFqtTz5ZBMOHPjN3iUJkWeHDh2gXr0GWb93796TNWvC5R4+wmrkm5dCODeNRk5Pibw5ceI4NWrUzPq9Xr0GHD16xI4VCZF/f/99kYoVK/LQQ+W4dk0mLx1VmTJluHHjBkajEQCj0UhMTAxlypS5Z73r169n/R4VFUXp0qUBCAoKyhq3NmnShDJlynDu3Dkb7YHji4u7zZ49u+jVqw8A/v7+lClTlsjI83auTNiD45ypc0Mavf7BKwnhZHxWLWce8FKzFvj5+wNkO3k548sFPBnagmHrVlPqo49RAfKVfWFZHsf/AiCzTgiRkefo3Lk9rVuHMmvWp0wbOpyXAK99e+1bpLA6cy/nYgmW/GTe7W3bSIuJoWbXDmh27qRp00acPXuCoKCXLNbGg9jzUipyGRfXcejQAerXb5j1e40aNfHz8+PgwQM0lCsvCCuQyUshnJvc81Lk1fHjf9K8ecus34ODH+fUqZP2K0iIArh8+W8qVqzIuXOX+O23ffYuR+QiMDCQ4OBgNm3aRNeuXdm0aRPBwcH3nGPo0KED4eHhtGvXjvj4/2PvvMOjKtP/fZ8pCQlJCCWEkJ4QQugdUZqAFEWBn3VR7GUFZcWKrqti2a+gYFtxXVdhXbGxKL0jCKFKJ41Q0nshkDr998dMQgIJmWRmMu29r8vLyZn3vO9nwidnzjnPeZ6njB07drBy5UoACgoKCAwMBIwPLufk5BAZGdnmn8VROXz4EIMHD8HX169um/H4nkhsbC87KhPYA5sHL3fu3MnYsWMdKqPBYahfnk5kXjo9wuuARgN7dvMzsGH+S40O8RkwiGdCw/ggK5PP1vxCzQMPta1GN8MdfalITgRA26s3f/nLXF54YQGPPfYkCQmnufuuOxjl40vPzHRkWZnoQ8PsrFZwPZzFv1Yr2WIwkDz3GXoBUk4ONS+8TI/ZD7Nu3eI2K+Niz5IxV6/tDCVbnMWj9uDIkcP8+c/P1P0sSZIp+/JnEbx0ApzR2yJ46X44o08FTVP7wJm7IPxrOUlJCcyZ82zdz8HBIdTU1FBSUiIeiLMxwr/WRafTkZOTTUREBN27B5Obm2NvSS6Npf596623WLBgAcuWLcPPz49FixYB8MQTTzBv3jz69evH9OnTOXnyJJMmTQJg7ty5hIaGArB06VISExORyWQolUoWL15MQECAdT6cC3D06B8MGTKswbbIyCjS09PspEhgT2z+aNsnn3zCqFGjePvttzl58qStl3MqpJqa+j9dO0Cvx/fZP9PuvyvaSpLAAoTXQXH0CL9VVhDRrh0RI29qctwDT81hDaD+9X9tJ85NcUdfKkxP2+7RaSkuLuLhhx8DjFk/T8+ZxwveXgAo9+21m0aBeVjiX3PLuTgSyt93cfZsKnGmnz03rWdgYCCnTp2s+xwCx8Idj7HmUFFRQW5uzjVPxs6ceRfr169Br9fbSZnAXJzR2yJ46X44o08FjWAqJy7Tau0spG0R/rWMmpoa0tIu0LPnlXMNSZKIi+tNSorIvrQ1wr/WpbCwAD+/Dnh5eREcHCJ6XtoYS/0bHR3NqlWr2Lp1K6tWrSIqKgqAr776in79jKWs5XI5CxcuZMeOHezYsYN77723bv9FixaxYcMG1q1bx+rVqxk7dqx1PpiLkJBwiv79BzbYFhYWTmZmhp0UCeyJzYOX69atY8WKFXh6evLss88yefJkli1bRnZ2tq2Xdnik+pmXjaDct5d2P32P7wvz2kiRwBKE18Fj905WAvcMGnLdcb533ssYYMP+eKTLl9pCmtvidr7UaJCfSwVgefxennjizw2e4n7qqTkcra7hJOARv8dOIgXmYol/65dzAZos5+JIeK77lRSg14QJqKZNR9Jq6bZjOx07dhQn6g6K2x1jzSQlJYmYmNhrnmaOiIikU6fOnDp1wk7KBObijN72KCkBQLpUZmclgrbCGX0quBaP37YD4Hn0iJ2VtC3Cv5Zx5kwykZHReHp6NtgeHd2DCxfO20mV+yD8a12Ki4sICOgKQPfuweTl5Yo+8TZE+NexuXDhPFFR0Q22hYdHkJEh7om4I23SVKBXr1688sor/P7777z55pts2bKFW265hfvvv59169a579PXmiaCl7VfUE29L3BY3N3r+l072ADc8cCD1x1n6NyZmdE9+FWnw+O3HW0jzo1xJ1/KL5xHUqspDwllx++7uP32mQ3e9/T05Il7Z7EEUO6Pv3K8FTgslvj3rbfe4rvvvmPy5Ml89913LFy4EDCWczl92tgb9ciRI4wZM4bly5fz448/MmbMGPbutU9Wrsfe30kG4qZORXXb7cZte3YRE9OTc6agvMDxcKdjrLkkJSXSu3efRt8bP/4Wdu7c3saKBK3B2bytND2s4vvMU3ZWImhLnM2ngmtRHjwAgFzvflUmhH9bT2JiAn379qPd9//F+6MPUP62A/R6IiOjSEu7YG95boEl/k1LS+Pee+9l8uTJ3HvvvaSnp18zRqfTsXDhQiZOnMgtt9zCqlWr6t777LPPGDlyJNOnT2f69Ol113nOSnFxMQEyCebMwS8zg3bt2lFieihLYBvE8dcx0Wq15ORkEx4e0WB7eHg4GRnpdtEksC9tVpw8MzOTdevWsW7dOiRJYt68eQQFBbFy5Uq2bdvGP/7xj0b3S0tLY8GCBZSVleHv78+iRYuIiIhoMOazzz7j+++/p2tX41MqgwcP5s0337T1R7Kc+n0udfVKpKjV4OkJSo8r2wwG0RfTSWit18ePH4+Hh0fdk4Mvvvgio0ePbkvpFiGVXWTPieP0kyT8p97e7PiJd/+J595/B82GtTDjzjZQ6N601pfORm2/y20BAfSPiKz7XqjP7JcWMOzrLynOzkKRkY4+QjRGd3Ra69/aci5X89VXX9W9Hjp0KHv22D8LVyotQZ6RTrIkETdlCmqD8btAeegAMbNmk5qayi23TLGzSkFTuMsx1lySkhLo3bsPUtlFlEf/QO/fEa2pb8nNN09g6dLFvPDCK3ZWKTAHZ/K2UqMBwHPrZjsrEbQ1zuRTQdO0yZP1Dojwb+tISDjFAAz4Pje3blvlcy8S2bcfv/662o7K3IvW+vfNN99k1qxZTJ8+nbVr1/LGG2/w7bffNhizfv16MjMz2bZtG2VlZcyYMYORI0cSEhICwIwZM3jlFdc4nyzNySYoKRESTuO3bTvdu4eQm5tNly5d7C3NpRHHX8cjKyuTrl0DadeuXYPtISFh5OfnotVqRa9dN8Pm/9orV65k7dq1ZGRkMHXqVBYvXszAgVfqFk+ePJkbb7yxyf3N+UIDJ/rSqv/kRr2Mn/olZCWNGoOnZ8Ox1dXg7d0WCgWtxFKvA3z66af07NnT1lJtgnLvHtYaDNweHgE+Ps2Obz99BsPff4ddv+1grF4PMne9XLUt1vClMyE3PWW7U6tj3LjxjY7p0LETt3cP4bucLJ7ct5caEbx0WNzJv4oTx6kBcoConj0pK6tB2ysORUoysUoPjonMS4fEnTzaEpJOnuDuhNN0fut1JNP5bNUzz1H5t4UMGzac06dPoVar8fDwaGYmgb1wRm93UihAqyUNaP5MVOAKOKNPBU3jbleDwr+WkZiYwF3FxQAY5HIknQ7vzz6ixz++FJmXbYAl/i0pKSEpKYnly5cDMG3aNN555x1KS0sbtPjYtGkTd999NzKZjE6dOjFx4kS2bNnC448/btsPZwcuJpwiwHTOrDh/juBhw8nLy7um75/AOojjr+OSlnaeaP+OeGzZhHrKrXXbPTw86Ny5C/n5eYSEhNpRoaCtsXnwcs+ePTzyyCNMmDCh0RsUXl5efPbZZ43ua+4XmlOhUtW9bNDzsn6JWJUafEBS1dRtkpVfRi+Clw6NJV53BeS7drIW2DH1NrPG66J6MN3fn7VlZUxIOIVWnJTZBHfzpczU2H5PUSFLRo1pctysqbfy4r+/ZE78Hrj/+mWOBfbDnfyrPHGMTCDY1xelUgnUoLnhRhQpyfSuKOensyJ46Yi4k0fNxVBdTfLxowzR60GpRDNwEIpTJ/H+x8fGh/Ne+SsREZEkJJxi8OCh9pYraAJLvW1O9Zz4+HiWLl1Kamoqs2fPtvhBVMn0YGg60NeimQTOgiU+NcejOp2Od999l7179yJJEk8++SR33303AJ9//jmbNm1CLpejUCiYP3++U1XNcShMf7vyZoa5GuIcovUYDAYSTx5nSFUV+k6dKD1yGu9F7+H95TL6fLuc9PQ00S/Qxlji37y8PAIDA5HLjX/1crmcrl27kpeX1+Beb15eHt27d6/7OSgoiPz8/LqfN27cSHx8PAEBATz77LMMGjSoRZ+hc2fHedSpIu0cAfV+jqyuory8hIAAX7tpag3Oolccfx2XrJ9/JO70STo8eB+XP/8Xqrvvq3svODiE7OwsEbx0M2wevBw+fDhTp069Zvvy5ct55JFHABg1alSj+5r7hQa2/9Ky2gH44pXysB7or8xrKnME0MXPAwJ8weNKmdjOSr1xmxVxli8VZ8ESr9fy4osvYjAYGDJkCM8//zx+fn5mrW3JSZe1fLBv51YCgX6PPGi2V2dOmcIbP/7IN4f2opww2qp6BEas4UtnQp6ZQSGQdfnSdZ9SHHb/Q1T/+0tO7f6NKFGW22FxJ//KkxKNwcvAoLptmuE34LXia3pnZoielw6KO3nUXMr+tQwPvZ5O4RGU/roRfUgoHuvX4PfEw7Rfsgj1uAkMGzaCI0cOi+ClA2Opt82pnhMaGsq7777L1q1bUdd/qLOV6E03qjXNjBO4Dpb41NKShf379+fRRx/Fy8uLlJQUHnjgAeLj468pcyYwA9PfrrtlXopziNaTmZGOr0ZDF6Bi/ksYfHypeulVvJb/m84H99O+Yyfy8/NRKBwnOOVq2Nu/9913H3/+859RKpXs27ePOXPmsGnTJjp27Gj2HCUlFej1jhHkzj97jmEAjz0GX39Nt8IiUlMvUFRUbm9pZhMQ4EtRUTkymeRQgeHGsLd/BY0jlV0ka8Naok0/+/z1ZXQ9YtAOGgIYrx2yTQkLAvfB5ueHn3/+eaPbv/jiC6utcd9997Fz507Wr1/PY489xpw5c7h48WKL5igpqaCoqLzR/4Am32vpf8U5Vxouayqr67Yb6l2wl+SWUFRUzuXCK5/hYnqu1TRY+zNd77+SkgpL/mmdCku9vnLlStatW8fq1asxGAy8/fbbZq99Pf+2hQ9KDp9kTV4eMzw9KQrrafZ+vuMnEwNs/+GnNvVlS34/zk5bHIMdCVlWJruBGwcOuW4dfH1cbx7y8uLbkmLkaefbTJ+gZbiTfxVnU43By/Dwum2a4TcAEHziODqdjmJTaSyB4+BOHjULvZ6cr/5JDFDxxtvoTU/Fqm+fQdVzLwDgs/B1hgwZyrFjR+woVNAclni7tnrOtGnTAGP1nKSkJEpLSxuMCw8Pp3fv3lbrWyOCl+5Ha31qrkebKlkIMHr0aLy8vACIjY3FYDBQVlZm6Udya9wteCnOIVrPmdU/M0CjQd+lC9UPPgqAwa8D6psnIBkMRPn6cu7cOTurdG0s8W9QUBAFBQXodDrAmOVeWFhIUFDQNeNyc3Prfs7Ly6Nbt24ABAQEmKrVwE033URQUBBnz55t1WexO3o9pQX5xszL+fMxyGSEFRWSJ4I0NkMcfx0Tr2++4oJaTVhsHKpbJiMrK8Pv8YegqgqA4GARvHRHbJZ5eeDAAcD4JXTw4MEGJRuys7Np3759s3PU/0KTy+VNfqEFBFxJrq//pTV8+HArfRrrUb8UbF2pWIMBqV7mZe1rqX6JWdMfqsDxsIbXgTpfe3h4MGvWLJ5++mnri7URyl07+RVYOWIkyM0v+KMeNZaZwIakBIZVVwMi69JaWMuXToVejzwnm0PA0JuaeUpOJuOeG0cxeud23v59N0T1aAuFAjNxO//qdMgvnCML6B4bV7dZHxqGLqg78rxcevTuw/nz5+jSpYv9dArqcDuPmoni8CHSCwuI8vZGfdsdDd6remY+Xl9/hfLIYQY+/hSfJybYSaXgeljD2y2pnmNNarVqmxkncH4s9am1ShbWsmbNGsLCwupuqptLbWaK21ee8TaW7JPhHr8LcQ5hOcnr1zIQqH7oMTA9RACgmjYdz62biamq4ty5c/TqJVrTWBtr+Ldz587ExcWxYcMGpk+fzoYNG4iLi7vmHGHKlCmsWrWKSZMmUVZWxo4dO1i5ciUABQUFBAYGApCcnExOTg6RkZHW+phtivzcWYo1Gjp26gy9e6MPDSM0I5080bvV6ojjr2PjufZXzgPBjz7O5QcepuOkcSgST9N+ySIq/7aQkJBQkpIS7S1T0MbYLHj517/+FQC1Ws1rr71Wt12SJAICAnj99debncPcLzRn+tKq3+dSUplea6+6xDaNkWqq621TIXBMrOH1qqoqdDodvr6+GAwGNm3aRFxcXLP7OQrnNq5DC8TdMZOWONXQpQvTesYyOfUM7x7cD2EzbCXR7bCGL50NWVEhkkrFMYWCp4c2//BK8C1TiNu5nd9+/R/jHnm8DRQKzMXd/CvLykRSqcjw8qJPZNSVNyQJzfAbkK/9hRgvb86fP8uIETfYT6igDnfzqLm0W7uac0BEn34guyqHxseHmnv/hPe/vqD/nt1kZmZQXV1dl7kkcAyczdv1y5LpTf/X4B4BEGvgrL8nR/Lp4cOH+eSTT/jmm29avG9JSQWdO/u4TMWX1tK+0ngFKQOr/C4cvWShI/nXKampISE1hfsB1V33NHhLPeVWDDIZMcVFnEtOhmn2kejKWMu/b731FgsWLGDZsmX4+fmxaNEiAJ544gnmzZtHv379mD59OidPnmTSpEkAzJ07l9BQY1WPpUuXkpiYiEwmQ6lUsnjx4gaJLc6EIimBIqBT794gSeiiexCckU5ebo69pbkc4vjruMgvnEOWnEga0H3mXaBUUv7hx/jfOhHvzz5CPWYcISEhbNu22d5SBW2MzYKXv/32GwAvv/wyixcvbvU85nyhOdWXVr1syrrMy6t6vEi1gcqaepmXKsv7wAhsgzW8XlJSwrPPPotOp0Ov1xMdHc2bb75pTZm2Q6tl66GD3A5oxo1v8e5Rt0yhQ+oZTv/vJ8beI4KX1sJax2BnQpaViR44rjcwYEDzT9lqbhrNg8APx48yTvS9dCjczb8KUz/LTM92TA4JafCedvgIWPsLvVQqzp8X5a8cBWt5NC0tjQULFlBWVoa/vz+LFi0iIiKiwRidTse7777L3r17kSSJJ598krvvvhswljzatGkTcrkchULB/PnzGT16dKv1WIRej8fG9ZwHxo+f0OiQmgcfxftfX+C35heiI6NISUlikKmHicAxsIa3za2eYw3q96uqDV6qsU4AxNWp7U3VGI4e/LHUp+Z6tLZkYf/+/YFrMzGPHz/OSy+9xLJly4iKikJgGebX73Fu3O0819p4/L6Lk1ot78XEoouOafCeoYM/uh4xxKSe4dfjx+2k0LWxln+jo6NZtWrVNdu/+uqrutdyuZyFCxc2un/tvWFXQH42lSKgY6/eAGijexDy2w5yi4sxGAxI4j6F1RDHX8dFefAAuYC/pyft/Y29a7VDhlH1/Mu0X7IIv8ceJGLRElE21g2xWfCyFksPBuZ8oTnTl1b9srG1WZiS5qrApNpUNrZe5qUkMi8dHku8Hhoaypo1a6yopu1QHD/KZrWKV7oFoQ8Lb36Hq1CPGcfMzz9hw+7fGGsDfe6OO52QybMyOQ908PSgU6fOzY7X9Yzl/3XuwgslxVw+chi/YSNsL1LQItzFv3JTf5Ysg57u3RsGL2v7XvYqyOdbEbx0OCz16JtvvsmsWbOYPn06a9eu5Y033uDbb79tMGb9+vVkZmaybds2ysrKmDFjBiNHjiQkJIT+/fvz6KOP4uXlRUpKCg888ADx8fG0a9fOIl2tQXHyOPL8PM4plTw8tvHgpa5nLOobR+GxP57+Xt4kJJwWwUsHxRJvm1s9x9rUFv7SiJt8bkNrfWqNkoWnTp1i/vz5fPrpp/Tp08fiz+LWmMr2uVvPS3c5z7U21b/+j2Ig9M67G636pO3bj5jUM6SmpLS1NLdC+Nd6GM6e4RLg19f4oIwuqgd+gGTQU15+GT+/DnbV54oI/zoe8uQkzgPhAV0bbK+a/xKKlGQ8N66j12cfk52dLYL6boZNgpdTp05l82ZjGu/YsWObNNTu3bttsbxDU79sLLV9LjXaq8YYT8Hq97xskLEpcBiE16Fyy0ZOACMnTUHXiv01I0YyQ6HggaJCFhcXA55WVuh+WMuX5mQExcfHs3TpUlJTU5k9ezavvPKKNT5Cq5BlZXEMGNjNzMwOScJ74iSm/PQ9G5YsYtaPv9hUn8A83PG4Kj+XigHIrqoiODi4wXvaPv0weHnRq6iQ82fETRhHwFoeLSkpISkpieXLlwMwbdo03nnnHUpLSxvcQN+0aRN33303MpmMTp06MXHiRLZs2cLjjz/eIMsyNjYWg8FAWVlZi/uuWQOPLRsxAOckiYjIpjOQav70AB774xlUWkJCwqm2EyhoFmsef82pnnPkyBGef/55KioqMBgMbNy4kffee6/V2cN1ZWOvLlkscCms5VNLSxYuXLiQmpoa3njjjbo5Fy9eTGxsrKUf0W1xh8xLdzzPtSoqFSnbNtMX0N7eeNUmbe9+9Prlf6Tm59dlVwusg/CvbSi7cIGOgGQ6f9ZF90ACuiuU5ObmiuCllRD+dWwUKUlcACLCIxq+4eHB5c//RafjR+mclIDSy4uLF0vNSlgQuAY2CV6+8847da8/+OADWyzhNHj+7ycUSYlU/m2hsSRhvSBk05mXpp8bZF6KsrGOiPA67Nm0gTGAfMKkVgUv8fam/4iRVO/bS/J//0vAA6L3oKVYy5fmZASFhoby7rvvsnXrVtR2Pk7JszI5Cgy8qnzQ9aj50wPM/ul7/r73d2bpdCAubu2OOx5X5WdTKQUUSiW+vn4N31Qo0AwYRMzB/WRkpoubMA6AtTyal5dHYGBg3b+nXC6na9eu5OXlNQheXl2mMCgoiPz8/GvmW7NmDWFhYXYJXAJ4btlEKWBQKK6bYaeecisGDw8Gp13g5w7+bSdQ0CzWPP6aUz1n6NCh7Nmzx6J16iMyL90Da/nU0pKFq1evaOKkRgAAIABJREFUbvXagsZxh8cOrOVflyo73wLarfyWUxUV9O/UCV1Mz0bHaPv2wx/oIpeTnZ1F+NU3wgWtxh2v09qC0uwsAgCdqZKZLroHACE6HXl5ufTqFWdHda6D8K9jIz+Twhkgsm+/a9/09qZywev4zXuacI2GnLQLInjpRtgkeDl06NC618OHD7fFEk6BdPkSfnOeAKDm3lnoYns1KBtbF6S8uuelprZsrMi8dHTc3evS5Utsu3CeqZKEZlTrL3a0Y29mxr69/PrDDzwpgpcWYw1fmpsRFB5uPMHeuXOn3YOXsmxj8HLOwEFm76MZeRMTIiJ5LD2NnB+/I/j+h2wnUGAW7nhclV84TxYQ0j240fe1g4fifXA/Xdq1EzdhHABH9Ojhw4f55JNP+Oabb1q8r1X62pWWQnIS5z096REbS9eufk2PDfCFyZMZuH49KSlJdO7cHlkjmXIBAb6W62pjnFFzfRzR2y2hLvNSBC9dGmf3qaAR3KhsrLX860pl581Go8H7Hx9zEuh32x1NDtOaSm/20mo5eyZFnDdbEXH8tQHV1ZSWltAF0JsqSOmDQzB4ehKqUpGXdh5ubrwdg6BlCP86LtLFUuT5eZyWybjnhhsbHaO6+z60n39C2JkU8jZtoN+QYW2sUmAvbN7zcvny5dxwww3ExcVx4sQJnnvuOeRyOR9++CGDBpl/g9kZUSScrnstVVYYX6iu3NyvzbisDVbWUVs2VmReOhXu6HX5nt/ZbDDw2oCBGK7OFmoB6tFjmQG8fOoUT1pPnoDW+9LcjCBrYJUb54Ahx1g2dvStk1p2A/mpJ7nv1VdZ889/8NZzzzR4y5FvRDuyNmvhFsfVykrkhQVkKBR0b+LmisZ0Yh4jV3D+/FlxE8aBsMSjQUFBFBQU1GXT6nQ6CgsLCQoKumZcbm4u/fsbb8ZdnYl5/PhxXnrpJZYtW0ZUVNPlWpuipKQCvd7Q/MDroNy7H38gtXswwSHhFBWVX3e85+RpdFq/ng56PUePJhAREdng/YAA32bncDSu1iyTSVb7frMHznj8rQteIoKX7oIz+lTQNO4QvKxPa/3ramXnzcVj+1bk2Vkc9/Tkrvvub3KcoWtX9AFdiSsq5Ozhg0ycNKUNVboP4vhrHeTZWRQBXby9r1SBksnQRUUTnJxEQXKSXfW5KsK/joUiKRGA03I5b/VpJPMSQC6n5p5ZhL/zBvm//wZ/a7wyhsD1sHnwcsWKFdx1110ALFmyhIcffpj27dvz97//vdEyLa6EVFV55XWl8XWjmZdXBS/rApX1sy3VIvPS0XFHryf+uorOQPDkW6myYB7tgEGM8vUjvfwyuYcP0n34DdaS6PY4gy+tceMcg4HL6en4ALKwmBbd9Jam3cUDr7/OfWfOMPdYIoSGAY5989xcbc5+89wZ/Gsp8vQ0ADL8OxIcEtboGO0Q41OivaoqOX/uLOPH39Jm+gTXxxKPdu7cmbi4ODZs2MD06dPZsGEDcXFx1zwgMmXKFFatWsWkSZMoKytjx44drFy5EoBTp04xf/58Pv30U/r06WObD2kGitPG3pXn/TuaFVyvLR07QK0maX/8NcFLgf1xuuOvwXClbKxdhQjaEqfzqaBx3Cjzsj6t9a+rlZ03F4+tm9AAKTodcb37XnesZuAgem3fysGjf7SNODdEHH+tgywrgyKg81V9LXVRPQhJTuLwhfP2EebiCP86ForE01wELhoMhJnKJzeGavpMwt55g5ykRKTyyxYl0QicB5sHL8vLy/H19aWiooIzZ86wYsUK5HI5ixYtsvXS9qe6XuZklTG0Uz+DUtLpQKdrsudl/UCnJMrGOjzu6PWde/dwK6Aee7NlEykUGEaNYdrmDWz9+l88IoKXVqO1vjQ3I8hRkEpKOFZTwyCFAkMLG9obAgPpe/t0/Nf8wu9v/42xX/3HRioFLcUdjqu1wcvM9u0JDm68bKy+ezC6oO7E5uVy6tjRtpQnaAZLPfrWW2+xYMECli1bhp+fX91+TzzxBPPmzaNfv35Mnz6dkydPMmnSJADmzp1LaGgoAAsXLqSmpoY33nijbs7FixcTGxtr5U96fRSnTwKQ5uFBn+tccNZi8OuAevxEBmzZRMr6tdw6a7atJQpaiNMdf7Va9IAHoMXCB6IEToPT+VRwXdwteOkI/rWk7DxYr4JOs+j1sHMbCUBocDAREc0EWseOJm77VlZeOOdU1WqcSasj+NcVkGeYgpddujTYrovuQQiwNifbLrpcHeFfx0KemMAxIC4ouNF2IrXow8IJjunJ4bOpeK79lZoHRNsnd8DmwcugoCCOHTvGuXPnGDp0KHK5nIqKirqnxFwZqX7wsq5s7FVBSLUa1GoMwGLgWa4EOBvsL8rGOjzu5nVZRjpbyi7ytnd7tIOGWDyfesw4Zm7ewNK9u3nECvoERlrrS3MzghwFeXYmx4DBHVunT/Xok7yw5hf+sXEDY1Uq8PS0rkBBq3CH46o87QIAmQoF44JDmhynHTyU/hvX8cNxEbx0JCz1aHR0dKNP93711Vd1r+VyOQsXNl4WZ/Xq1a0TbmVqg5fpKhW3mlnWWDV1Gv23bOJ7074Cx8Lpjr9qNXrAE9DodPZWI2gjnM6nguvibv9qrfWvo5SdBytV0DEDeWICnQoLOdaxI3EDBjdbgUYZN4BeQEphocNW0rma+pV1nKF6jjj+Wgd5ViZFQHi37g22a6N7EAzklRTbRZerI/zrWCgSEzgNxMX1bnZst2nTyfjoAzxX/yyCl26CzYOXL7/8MvPmzcPDw4NPP/0UgF27dtGvXxM1jF2IhsHLRsrGYux7KWk0HAcWANHAZE0jZWPrvfZe9B7yC+eoWPwRhg7+NlIvaCnu5vXyTetJAkaMGYdKYfmhRDPuZiYBDxYXU1JQQOfAQIvnFFjmS3Mygo4cOcLzzz9PRUUFBoOBjRs38t577zXoo9IWyLIyOQrMCW287GZzaEaMZGav3ixISSLp80/o/fzL1hUoaBXucFytzbzM0moJCQltcpxmyDCGbFxHQlYmWq0WhRWOuwLLcQePNktVFfJzZzHI5aSVFBMe3nzmJYBm3HgGAK8WFRof5vPwsK1OQYtwNm9LGuPDoB6ARq9vbrjARXA2nwqawE3LxrbWv65Udt5clIcOAHC8SwB9+/Vvdrxm0BACJQmdTkdxViZdWnmNKGgacfy1DrLMDIqBwaENrwN1UcbMy5yKCrvocnWEfx0InQ5FagqngF43jGx2eNCdd5P20QcojxyGmhpo1872GgV2xeZ3vsaOHUt8fHyDbVOmTGHKFNdvmi1VX+kCWJd5qVZTAJwEJgGoNaDRcNo07igwRWXKvKypn3lpDF5Kl8pov8QYQFBPuQ3VzLts+hkE5uNuXt+15hcmANL4iVaZTxcdg1dMDBPPnmXnv//JPX990yrzujuW+NKcjKChQ4eyZ88ey4VaiCwjg6NAv7i41k0gSWgfe5LnX3qOxV98xor5L1lVn6B1uMNxtTZ4mV1ZQffujZeNBWPfS38gRC4nJSWZvn3FhZUj4A4ebQ5FUgKSXk9Nr97kXzhHSBO9W69GH9SdyJ6xFKSeoXrvbrwmTLKxUkFLcDpva3X1ysZiLDF4nbJTAtfA6XwquC7u9hdriX9dpey8uSgPHwSM99Ee721GsNXHB6l/f3qfPMn5zRvp8uTTthXohojjr3WQm3pedozq0WC7LroHXYBynY7qqiq8vL3tos9VEf51HGSZGUg1NSR6eDB5wKBmx3eJiUUlk1GmUqE8+geam9o2cULQ9rTJY/vl5eWkpaVRaco+rGXkyOYj6s6MVFOvZ2Vtz8uaGr4AFgIl1GZeqskFQoB00za4qs9lbSnZ8islL6TLl20pX9AK3MbrOh1bEk5xG6AeN956806bxsyPPuLHdb+K4KUVcQdf5qQk4QkExsZR3ezoxqm58x6eev8dPi0p4dD/vcO0jz6wpkRBK3F1/8rTL6ADCsrKCArq3uQ4Tf+BGORyRqjVHDu4XwQvHQhX92hzKE6fAiA9KpqA8st4tCCDUnfzBPqkniF1zWoGiOClw+FM3pZ02iuZlwA6nQheugnO5FNBE7hp5iW03r+uUnbeXJR/HAIg5eJFYmPNfFh15Ej6njxJavzvjBDBS5sgjr+WU1s2tmPPhg8OGDp3hg7+dL9URkFSIhFDh9lHoAsj/OsYKFLPAHDGYKBnz+YfoJEkiaiOHTlXUkLv/fEieOkG2Dx4+csvv/D222/j7e1Nu3qpvJIksXPnTlsvb1/qZ16aUv0ltZpjpm2JQG+VCtQa8oCRGIOXtSViG5Sdrd1W76AqifIBDoVbef3YEbZrNCwJDkEfEWm9eadN47aPPmJORjqVlZW0b9/eenO7Ke7iy5NnkhkC6ELNK1fYKD4+aF99g8Uv/oWXPlnChJtHw8ibraZR0HJc3r9qNbLsLLKBTp06Xz/o07492rg+jE44xfZtm3nw8afaTKagaVzeo2agSDAGL88HBhJuZr/LWjRjb2bAl8tI3h/PABtoE7Qep/O2Tnel5yWAVgtKpX01CWyO0/lUcF3crdOY8K95yHJzkGdlUubjy6Wqquu2WWjAjTfS95//5HRigm0FuinCv1agshJZcTFFQKergzaShK5HD0KOHqHwxFERvLQywr+Og/xMCsWAGomuXc1rHxYV1YNzJSUM2B/f/GCB02Pz4OVHH33EJ598wtixY229lMMhVdXL/6ktAatSkQEMBJKBPhpNXeblSGA/IGk0dWM/AOKAibWZl5VXApZShXM0HncX3Mnrx1Z+SyTQeeJkrBpCHzWKDr5+3FB+md0//8BtjzxuzdndEnfx5fHsbAYD+lAzL2aboGb2w9x64hj/++4/vDhjBv/3yTJU991vHZGCFuPq/pVnZiDp9aQHBpp1I0Y7ZBjjEk7x1rEjGAwGJElqA5WC6+HqHjUHxemTAJz39iYsrGUPkKhHjqK/TMbprCz+VFJifMpc4BA4nbe12gbBy9pMTIFr43Q+FVwXd8u8FP41j9qSsQk9Y+mh1SIzN6t+5Ej6Aj/n5Rqze8V5s1UR/rUceXYWBqAY6NQl4Jr3dVHG4GVeUmKba3N1hH8dB0VqCslAz6Ags+9vhA8awrk/Dhn7XqpU4OlpW5ECu2Lz80OdTseoUaNsvYxD0iBz0lRCVlLVkAOMwpRlqVaDxph5ORAoBPSmsZqaal4GPqRez8uqa7M5BY6BO3l9266dTAPUY62clebhgWbceG4Ddq360bpzuylu4UuDgSNlFxkG6ELN67XWJJJE5YefsOTJOewyGPhq3tO0+/pLq8gUtBxX96/8wjkAMjt1pnv3kGbHa4YMJRpApSbd1CtTYF9c3aPNotGgSE4CIE2vb3HmJe3b02fAQE4AnpvWW12eoPU4nbe1V5WN1Wrtq0fQJjidTwWNojfo7S3BLgj/mofCFLxM7BZETExP83eMjqZ3x44kaLVI4rzZ6gj/Wo48K4MywFsux7OR4IsuugfBQP6F822uzdUR/nUc5KkppECLju+Rvftwxq8DkkqF4uQJ24kTOAQ2D14+8cQTfPHFF+j17ndCKtXUC16aApk11dVcBgYB2Zj6W5qClxFAe6DMlFGZVF2NL3CGJsrGVorgpSPhLl6XKsrZkpfLrZKEZvQYq8+vumUytwC7T5/CYBDPzFuKW/iy7CJHdTqGeHtj8O9o+XwyGR7vvs/Wv/2NL4B3Xn0JxdLFdf14BG2Hq/tXbroQzWjvQ3CwGcHLm0YjAWP1Ovbv/d3G6gTm4OoebQ752VQklQpdeATpebktzrwE6D3rQRIB3epre3cJ7IezeVu6pmyszr6CBG2Cs/lU0Dha07+fu51pC/+ah/K4sfFSklJpVj+0OiQJ/+E34AEU79hqG3FujPCv5cgyMigAAptol6SL7kEIkJeT3aa63AHhXwdBr0eRmkoyEDNosNm7RUVFc87T2HJHeeiAjcQJHAWbl41dsWIFxcXF/Pvf/8bf37/Be7t377b18nalsczL/LKLBAFhGIOXqDWgUpEHBAHdgMLyckINBs6oVEwENgIq01yibKzj4i5ez/l1NcXAwEFDuNzBv9nxLUU9cTK9AK2qhrTTJ4nqP9Dqa7gT7uDLzEMH8AUCwiO4aMVyQKFvv80OhRdPv/ka499/l89OnST2qxWih1Yb4ur+rQ1eZsrlhAQHNzteHxqGNjKKcWkX2LFpPfc/+IitJQqawdU92hy1JWO1/QZw9uxZ5syZ1/I5ps+k38vzOXEgnr5FRRgCri2bJWh7nM7b9crGahFlY90Fp/OpoFF0pgcE3e1vVvjXDPT6ugoPZy5f4r6evVq0u2bocPpu3Uzq77sY+cTTtlDotgj/Wo48K5N8IKCJ+2raKGPw8veS4jbV5Q4I/zoGspxspKpKkpUezOo/yOz9IiOjOGeKkyj/OEh1M+MFzo3Ng5cffPCBrZdwXKqvlHhFZQxe5l4uJxgIwZR5qVZRVn4JT8DLuz2BVZUUXr5EqEZDtsFABMagZm5FOZ24KvOyXAQvHQl38frOH75jKqCdOMkm8xu6dEE3bAS3/HGIvcu/Juqjz2yyjrvgDr48sS/eWDLWjJ6BLaX908/wY1AQa+c+yV2b1jN9WH9e2LidjmZkyQksx9X9K79wAYAMjZobQswreawZezPj0i6w8I9Dou+lA+DqHm2O2uClqk9fLuzcRo8eLSjnZsLg35GRYeHsy0hnyIa11Ih+1w6B03lblI11S5zOp4JG0blp5qXwb/PIMtKRqirRBXbjTNqFlmVeAtqhw+kLpJw6yUjbSHRbhH8tpzZ42TWga6Pv6yKjCAZyKytBpwO5vE31uTLCv46BIsX4cEqyTEbPnuZfR3btGkiNTkcZ4Hf4IOj1YG4/ZIHTYfPg5fDhw229hMNSm21Z/3VuRcPgpUGloqC4hCBA7+tLYFUlBZWVSKoasoBIIBTIqqwyBS+vZF7KRM9Lh8ItvK7TsfXkcZ4AVFOn2WwZ1eRbueWPQ/y4eycP2WwV98AdfHn8xDGGYjy5twXqGXdye2gYt91/D2/m5jBmWH9ee+0N7p0zD5k4QbIpru5feZqpbGxZmdnlNtVjbqbHiq8x1KhIT08j0ka+F5iHq3u0ORSnTwGQ1i2ITp064+Pj06p5hk2ayndffcFL634VwUsHwdm8LemMmZcieOleOJtPBY3jrmVjhX+bR5GYAEBlrzjyDx0gIiKyRftrBg6mjyRxoCAfKiuhifKcgpYj/Gs5sixj2diuTT0Y7eNDUNdAsgsLkGVlom+h/wVNI/zrGMiTk6kCCrQawsIizN5PkiQionpwJj+XESUlyFPPoOsVZzOdAvti87uuarWajz76iAkTJjBkyBAA4uPj+e6772y9tN2R6mVe1paQza2sIBho7+GBJ1B28SIFF0voDhj8/IxlYysroNoYvAzFVGLWNFeDzEsRvHQo3MHr1Xv3cECjYWJIGLrefWy2jnryVCYBe3NzqBIZxhbhDr48fuG8MfMyMtpma2iHDEPatJ1PwsLZpNXyw3sLmT5mBBdMZT8FtsGl/atSIcvOQi+TkZGfT3i4ecFLzajRIJMxTqth/287bCxS0Bwu7dHm0OtRJJwGIMlDSUxMy7Muaxn8+FPsB9i3F1lBvnX0CSzC6bxdr2ysBpA0GjsLErQFTudTQaM0yLx0ox7zwr/No0gyBi+TuwURFhaOsqXtO9q3Jy6qBwkGA8oTx2yg0H0R/rWc2szLLtcJSnbpP4BCQLZrZ5vpcgeEfx0DRUoSZ4DIgK4oFC3Lr4uMjOJMlPEeoPLgfhuoEzgKNg9e/v3vfyc1NZUPP/ywrrRZTEwMP/zwg62XtjtSVTW/AN9zJfMyr7qKYMDg60sIkFOYT16psQ+mwc+PQKCwurou8zLU9F+WaX+pql5AVPS8dCjcwevx33zJjYDHbbeDDUsV6nrG0ikikuEGA799ucxm67gDru5LrVbLqZIShgC6KNsFLwF0UT24uP13+twymX06HX9KPcNtE0bx/ff/xeBGN1raElf2rzwjHclgoCA4BE9PD/z8Opi1n8G/I9qBgxhnMHBg/RobqxQ0hyt7tDlkGenIyi+jD+jKmcKiFpdyq0/nyCh6+HXgAOC59hfriRS0GqfztlbXsGysSmVfPYI2wel8KmgUvSlT2gDG0m9ugvBv89RmXia196FnC/td1hJz0yiSAHn8HisqEwj/WkhFBbKSEvJlMgIimw5eGm69nQCgdOvmttPmBgj/OgbylGQSgV6tuI6Mioom1b8TAMoD8VZWJnAkbB683LFjB0uWLGHQoEF15fUCAwMpKCiw9dJtilRYiP+tE/FYv7Zum766ijuB+02vAfJraoxZlu2Nwcu8wkLyL5UZg5c+vnQDCqqrkVQqY/DSw4MwIEttvACvXza2/muB/XF5rxsMbI7fwx2Aeupttl1LklBNncZ9wNqfVtp2LRfH1X156tQJImUSHbF98BLA0LETl//7E9Uvv8ZfgN8rK/nmzdd49E93UlpaYvP13Q1X9q/8TDIA54KCCA+PaNG+qqnTGAfsO35UBM7tjCt7tDkUCcaSsZr+A0hIOEXv3n0tmu+WceNZD7Rb8bVb3bx2VJzN27VlY+syL2uq7axI0BY4m08FjaPVuWfwUvi3eWqDl8k6XYv6odXHa+JkugA5IvhjVYR/LUOenQVArmc7ugZ2a3KcZsRIQoGckyJz2JoI/zoAOh2Ks2dIAGIHD23x7tHRPTgrMwaelQf2u1XlBnfD5sFLpVKJTqdrsK20tBR/f39bL92meH/2Ecojh+nw2Oy6becqKojAWPY13ZQxmadSGQOVtZmXJcUUlF82lY3tQCBQoKpBdekSZUBXXz9j5qWp9JFUWckK4BlE2VhHw+W9fuwPNldUcFvHjmiG32Dz5WruncVMYHdGOkWZGTZfz1VxdV8e2LWTsVotBqUSfVO9IqyNTEbViwso//hzent6cvjSJXru2c2Eof3Zt31L22hwE1zZv4pEY7nNc526tKi/A4Dq9hn0APQ1NWSknrG+OIHZuLJHm6O236W23wBOnjzOwIGDLZpvwpxn2aBQoDh3FrZts4ZEgQU4nbe12gaZl7VVbwSujdP5VNAoeq3x31APcNW/pysj/Ht9pPLLyDPTMXh4cKakmJiY1lV40IwaTV9JIiXxNFLZRSurdF+Efy1DnpkOQKYEwcGhTY7TRfegp1LJ2ZISZLk5baTO9RH+tT/y9AtIKhUJ7doRO2BQi/ePiurB+aIi9J07I8/PQ5Z2wQYqBY6AzYOXU6ZM4ZVXXiEry/hUSWFhIW+//Ta33WbjzK22RlbvV6lWA5BcVUlfoC+QZMqSzNNo6A7oTcHL3JJi8srLCQL0tWVjVWrycrPpDuDvTyiQbTqoSpWVvAV8jqmUrKnEise2zXQa3AfFqRO2/6yCRnF1r5/4/DPCgIC77oUW1iJvDbreffAZPIQ7gZ8W/s3m67kqru7L/du2MA7Q9u3XJr6sT82s2ZTG/wG3z2CpVsu/K8qZM/s+Fj3+EBrRa8squLJ/FUmJAKQqFES1MGtYHxWNtt8AxhkMHFr+b1vIE5iJK3u0ORSnTwJQ2iOG3Nxci8rGAvQbOJhyLy+SAZYutVygwCKcztsi89ItcTqfChql9gayu2VeCv9eH3mi8VxZGxvH2fNnW32eYfDxpXf3YE4aDCj3/m5NiW6N8K9lyDIzMACZKjWhoU0HL5HJiA0NIwVQ/nGoreS5PMK/9kduuh+SKEn06tXysuDR0T04d/4c6hE3AuBxYJ9V9QkcB5sHL+fPn09ISAh33HEHly9fZvLkyQQEBDB37lxbL92mSNVXelHKiosAOKNS0Qtj8DLR9PRvrlZrzLL08TEGL0tLya+qNG7z9TOWjdWoycnOJhRjH8xQIMt0En+x7CKlwD3ALq70vezwwL3Is7PwnTenLT6uoBFc2usaDVt3buN2QHX3fW22bM39DzEXWL5lI1oRDGoVruxLrVbL4YTTjAE0phOWtkYfHsHlr7/l4obtTBg6nON6PYnrfmX6DYNIT0+ziyZXwpX9Wxu8TKwoJy6ud4v3V828i3HAgU3rrStM0CJc2aPNUZt5eUwmo0+fvigsfIBEJpMx/a57WalUwvbtKI4ftYZMQStxNm9LOh166vW8rBE9L90BZ/OpoHF0btrzUvj3+tRWKanuFUda2oVWZ14CjBw1hl2A55ZNVlInEP61DEXqGYoBT6USX1+/646NHjyUZMBj+9Y20eYOCP/aH+WRPygFirU6IiKiWrx/586dAcgfaMzaVIrgpcti8zSVzMxMoqKieOqpp9DpdEycOJHYWMuezHZEZPXqYsuKi9AHdiNFp2McoAQ2azRUXL6EwWDAF1D5dzQGLy+Wkl1VRTDGUrJdgSKtlqy8HGPw0rcDnTBehJdfvsTZoiIGAiOAI8C0igoM/h3r1pYulrbRJxZcjSt7XbnuV1ZVV/NLeDjaVqTzt5aaO+9h4N8XElJSwm+fLmXSC6+02dqugiv78vR3KwjTqOkiSVy8d5ZdtWiHj6Bs43Z8lixi4+K/82lWJlNGj+DhOc8w95nnmr0gETSOq/pXunwJeWYGBk9PkjIzebFXy4OXNbMeYOz77/Bufh6ylGT0veJsoFTQHK7q0eaQ5eYgLyxA79eBw1mZDG5Fn5LGuPP+B3l89c+8o9Hg/fESLv/ne6vMK2g5Tudtra6ubKwWkXnpLjidTwWNoqvX81LSG/+W3QHh3+ujSDL2uzwT2I2QkFDatWvX6rmGPDWXIz99j3bDWqT3P8Qgrs0sRvjXMuQpyWQAId2a7ndZS9Sd95D8v5/w2LrZWOnPw8P2Al0c4V/7o/zjELuBwT1jkcvlLd5fkiSio6NJ6RZEBCJ46crYLPPSYDDw6quvcvvtt/Pll1+ya9cuVq1axcyZM3n11VcxuFgjVVlqd02cAAAgAElEQVRBXt1rqbgYqaqSFKCXZzt6t2tHAlCQdoHuMhkSoO/cmRDgQkkJBSoV4RizLD2AQLmc+NOniAAM3t6gUBgbNKenc7LsIoOAoRiDl1J5eV2ZWqMQmyfTCq7C5b1uMHD4g/fpBPR8Zj5IUtut7e1N9eN/5lngn//8vO3WdQFc3pfAtqUfMB2onvc8uj597S0HJImqFxdQ8ekX/EWh4LiqhuL/ruCGof358svPUalEFoi5uLp/5UlJAJTHxJKTm02PHjEtnsPQqTOhs2ajBQpeX2BlhYLmcHWPNofiyGEAtEOGsjd+D6NHj7HKvP36DcCjSwAHPDzw3LwBuSm7U9B2OK23tVeXjRU9L10Zp/WpoFHcrWys8K951GZenvbwoFcrHvSrj3fffgzy82NvdTWeq36yhjy3RfjXCuj1KBITSAdCIptvHxI29mZyJYmaS2Uo4/fYXJ4rI/zrIKhUKE6dIB4YNm58q6eJiYkloboafQd/5FmZyDIzrKdR4DDYLNL1008/cfjwYX766Sd27drFTz/9xO7du/nxxx85cuQIP/74o62WtgtXZ15y6RIpQM8OHejp68dZIOtsKt1NJ+P6wCBCgIzLlwj18EQBdU9/9VQo2Hj0D/piDF4afHwIBXIvnOd4eTmDgQH+/pwCtGUXkRXWW7uoEMTBtk1xda8r9+3l2wvneMjbm5p7/tTm61c/8jh3eXmRf6mMA9/9p83Xd1Zc3ZdSVibr8vOY3q4dlc+9aG85DVDddz+XfvyF4K6B/Ke4mB3ll9m34mtuunEIv/yySpwQm4Gr+1eRaAzInArqTmRkNEqlslXzVL/wCncoFPy8ZxeKQwetKVHQDK7u0eZQHvkDgPIBgzh27CgjR95klXklSeLOe2fxnanvie9LfwHTTW1B2+Cs3pbq9bxUA4jMS5fGWX0qaJwGwUud6wcvhX/NQKdDkWx82C+hqopeVqgwMmXKbfwP8P7nP8S5hQUI/1qOLCMdWfllktv7ENW7T7PjFQoFfQO78QfguWGt7QW6MMK/joHi1AkktZp9Xt4MHTW61fMMGTKMo8ePohk9FgCP7VusJVHgQNgseLl27Vpef/11+vfv32B7//79ee2111i71oUOuHo9soJ8ak9/ZMXF5Jw7iy/g36EDXr6+BAPbtm6iF2Dw8sLQoQMdTOOjTSn/elPwso9MxuWaGgZgzMY0+HUgDMhJO8+JmmoGAd4hYYQDZ1KSkeXXy/pUq0Xp2DbGpb1uMFD05l/ZDNz5xNPg5dX2Ejp1RjP7Yf4KLH1vYZuv76y4tC+BC7+sohroO/ZmaN/e3nKuQTNmHBfjD1P9wEP012rZfP4cyyWJzxa9x/33301ubo69JTo0ru7f2sBPvKcnw4aNaPU8+sBu/Hn2wywDtH9bIB5eakNc3aPNofzjEAB7vL3p1SvOqqWx77rrXn7OzuZiYDeUx47i9eUyq80taB6n9bZWiwHwBSoBSfS8dGmc1qeCRnG3npfCv80jTz2DVF2NLjiEhPNniYtrPsDTHLe9/BprZDJ06Wl4/vyDFVS6J8K/lqM4fRKARF9fYmN7mbXPyHHj+R3w3LwBRHWJViP86xgo/zhMOXBMo2bEiBtbPc/w4Tewf/8+aqbcCoDnpo1WUihwJGwWvDx//jzDhg1r9L1hw4Zx/vx5Wy3d5kglJZzValEArwOykmLOJCXQG1Pwsb0PI4D/bFhn3Obji8F0sz35lsl83z0YAENHY+/KpyWJ2f0HmPbvgMHHl97AkaN/kKnXEwfou3dnKHAiORFZQQE6INmkp34WqMD2uLLXPbZsYuHpk/zZy4t2f3nBbjqq58xjlqcnWSXFHP73l3bT4Uy4si8Bfl77K/cC2mE32FtKkxj8O1Kx9DPKftmALiKS8ZkZHE27wIiiIibcfBPfffcfkYXZBK7uX+UfxpKb+y9d4oYbRlo0V8jfFnJXu3bMP3EMzxVfW0OewAxc3aPXQ7pYiuL4UQxKJWvSznPrrbdbdf7Q0DCm3norb5sC++3/vhB5YoJV1xA0jdN621Q2thNQBlBdZV89ApvitD4VNIq+yvj36i7BS+Hf5lHu3wuAesRIjhw5zLBhwy2eMzgsnJ6RUWwD2v/fO1Alvidag/Cv5ShPGYOXSTqt2VnFN03/f2z08kZWUoLXt9/YUp5LI/zrGHjs2cV2YFiPGHx8fFo9T1xcbyQJjoaEYFAoUO7f2yDBS+Aa2Cx4qdPpmjSgj48Pehc6KZUV5PMx8ASwDKjMyyXlbCp9MAUqfXyYBmh0OqYAel9fDO2Nv5tIoIPppEkfFIRBJqN3VRX/HDnKuM3PD4OvL4OBH7Zt4UZA7uOLoYO/MXh5NhVZQT5vAb2Bb0x6BG2Hq3pdqijn4AvziAeefeWvYMEXiqXouwejmTuPd4DX3ngVbY7IWmsOV/UlgEql4ruUJJ4EtFa4kLU1mlFjKP39IJXPvYiHQsG7J4+zA/jvh+9z14xbSU9Ps7dEh8OV/SsVFiLPTEfn5c2B5ERGjLAseGnw8eVv7y/hJLDy1Rfx2LjeOkIF18WVPdocHrt2Iun1VI8YyabtW7njjhlWX+PDDz9k1fGjvNS3P9VqNX5PP4ZUftnq6wiuxVm9Lel06AEvQAJUlRV2ViSwJc7qU0Hj6KuvBC8lveuX8xT+bR6PffEAJMX0xNfXj27dgqwy7/RHn+QH/47I8/OM5WMFLUb413KUhw6gBc5dukRMTKxZ+4wZezMFPj5sB7w/XgIV4jynNQj/OgBVVSj3x7MBGD/9/1k0lSRJzJhxJ6u2bEY9+VYknY52P660jk6Bw6Cw1cRarZaDBw82mVWic/Ya81otKEy/vrxsfgHigULg58TTJHfwZzzGzElqqrkPiJr9MLH/XYGmXualVFGBVFoCgL5LAAZ/f6TSUuRZmYCxD6be15fRQICPD09VVGDo0AGDjw9DgRXpaVRlZ/IF8C3wDnBnXq5x7rKLeH25DM2No+rqPwusj6t6Xf/ay8wtLuKjiCjkT86xtxyqnn+Fu+L38p/DB/l82i385fBJaGWfOHfAVX0J8MOKrxms1RIjl1M8YJC95ZiHlxdVr72B6v/dje9LzzHw0AEOX4SPSkuYOmYEz/15Lo+/8jpyudzeSh0CV/avx85tAOyJjaVLTQ2hoWEWz6mYNZuVx44w8dvlDHhsNn3+tRz1HTMtnlfQNK7s0ebw3LAOgPUhYYRXVxEeHmH1NQIDA9my5TfeeO1l4lKS+CIlmVvuuoPL/1qB3gbrCa7gtN7WalEDHoA/cKmoCF87SxLYDqf1qaBRtG6WeSn82wxaLcp9ewDYplZz442jrDb1tDtm8v7fF1IDeH32Mao7ZqLrEWO1+d0B4V/LkEpLUBw5zBGZjPDwCNqb2QJHoVDwfx9/zlOP3M/p4iLaf/B/VC58z8ZqXQ/hX/vjsfd3ampqWCOXs3vWbIvne+CBh5g0aSx//egzQjauo91331I173mQ2SxfT9DG2Cx42blzZ1577bUm3+/UqZOtlrY53u+/S/uliylf8ik1sx/m0IEDdAMioqJ55sJ5/pJ2gYsenizEmGUpeXkhAQMqKwEw+F4JXsouliKrKMcgl2Pw64DevyOy0lJktcFLPz8Mfn4ogPSHHsP780/QdvDH4OPLQCClIJ8V+/cxFpjV3ocPKivY98chhv3pAbw//xTvT5bAkkUUZRZCu3Z2+G25Pq7odY+vvuCpH1cyTiZj7Df/Raew2aGiBaI8uPz1f/n65hsZlZNN9ynjuXvzTjD1jBU0xBV9CVBefpmPP/6QXwBt/wHg7W1vSS1C1yuOsrWb8dixFe9PP+KlwweZCTz+8RLWr/iGRf/4J30mTbW3TLvjqv4FaLdmNQA/tvdh+uRbrTZv0Acf88XFi9yzfg1HnniY9kWF1DzyhDhptxGu7NHrISvIx2PLRgxyOf/KTOfhhx+32VqBgd348utv2bf6Zx6f+xSvHT/GnPGjqFi8FNWd99hsXXfHab2t1VIG+HbsiP/Fi1zOzRbBSxfGaX0qaJT6mZfuELwU/r0+yv3xyC5eRNsjho2HDvLkU9Z7kDowMJCBQ4fzQ1kZj5w8jv/0qZStXo/OzNKdAuFfS2m3+mcknY5dPWK44abRLdp34i2TWTN6LH/duZ2Pv/gMg5cXVS+/Jq73WoDwr/1p95+vWQMMDAv//+zdd1xV9f/A8de9DAURwQGilnsvUMABiiAK7pUjE0vNWa7UQk1LK5Xqq+XIkWk/zcpNzlJzW+5ZairhZClDlsDl3s/vD+TEVS5cpoCf5+NxH3DHOedzznmfz+dzPp9zPgcHhyp5nl/16jVo08adDaGhTH3lVUzu3qbUts0kvzYw74mVioQC65E4ePBgvswnODgYf39/YmJisLGxISAggBo1auj9RqvV8umnn3Ls2DFUKhWjRo2if//++bL8Z6ni4yiz8HMALBd+TtKQN/n5yCHeAFIdnej4bxApGg2Vy9lQL/YxiZXs0KlVAJhe+xtI67zUVayU9tn1tCdVivIVQKVSnntpcud22ufW1oiy5dI+u3EdAF2FCuhsy2MF1LEuh//5s5wCtM0dGfXHcdb+cRwXwHz/b0q6zY8dJqWTb4Fsk5ddYcZ6gRMCs6+/xH/eJ9wFtv9vMdomTQs3DVkQ9vaU2bCJvX170O3KJe62bcmkXfsxqVz5RSetyMmPuCxq+a8Qgg8/9Me7SlVaRT4i0bXoPu8yS2o1KZ27kNK5C6ZnT1Pt/9bw+y/bWBMTzcAhA+nr6MTU73/CukreK3LFVUmtQ6hvB2N29DBRajWb/7rCvq+W5d/MVSrar/4/hvTqwqCTf/Db9GlYrPuexHcnktyl+wsd+rskKioxWpjxC2CxeCGq1FSOt3Xn6r9BfJ/HoX6M4dZvADvr1mNwr67cjIvlo7FvU3bfXhInTUPbsFGBL/9lU1RiO6dU2rTOS2uHqlSNjibk/gOq5n01pCKqKNRzCzv/LclSEp8ATzsvX4K7XmT8Zq3UjkAA/nZrz/VdgXTo4JWv83/77THM/2wOA93bY3n8KDa9uxD3+SJSevQGlSpfl1USFZV6QlGOYYN0Okqv/x6A3y0s6NfGLcezmLtsFR4uzegfH4/bws8x/ec6cQELEXZ2+ZzYkknG74tlevkiZgf2sVClYsykqfk231GjxjJlygRGTp5G+ffGYzV7BpqWLuhq1sq3ZUgvTpG/POOjjz5i8ODB/PbbbwwePJjZs2c/95udO3dy9+5d9u3bx8aNG1myZAn3798vkPSY/76fX4F3gD8f3Cfh8EF2XL/KEEDj1h4sLbmq1XKocRMAtDVroatSDQDTa1fTPqteA12VqogMd7PpKlRI+2uT1nmpjn2c9ttqr6J9tToApZ52Rmpr1UFbqzYA6+rWY1v5CrgCKZ4dGQLsv3OHiEsXWHr1L2yB7kD89rQ7PRACs8MH4fffwcBt8tKLYUysFxidDrMTx7jbuQM95n3CLWDLzI9QvzG08NJgpFSnllT+ZQ9/2Npy5u4dejo24K+J4zAJuiljOp8VpfxXp9MREPApFy9eYNHTu201rnl7VmBRkOrsStySFcScvoRf/0H8DWgvXqBdi0b8NG4kyeHyYeN5UZRiGCGwmjsblVbLp/Xq49OlW/4Pt6lSMWn7bso7u+Jqasqn1/7m/94Zxe4GNTjSozPJa1djcuvmS3FXQ3GR1xgtzDqw2bEjWKz5lmSViolRUUyfPovShTSqx6vNHNl57gqRLq2oDnTZvpVvPVpz07EhZh+8R6lftqG+HSxjuwgp9Pw3VZt252X16tQC7kSEyXqhlKXilP+WdMlJaZ2XyYAqNfXFJqaYKKnxq35wn9Jbfgbgs5AHDB06DAsLi3xdRufOvlS0s2d8rTrEeHZEHRVFubffpNyA3pjvDET1tC1OKlglNYazYvnVl5hev8Zt+8qcvHObTp18cjyP8uUr8OU3q+ljbc1RyzKU2r2DCk4NKTtmBKUCt6KKiCiAlEvPehnjN69UERGUfWcUm4E4G1u6DHg93+bdpo0bVapUY/atmyS174D60UNs+vdOOz+Uir0iMBakYZGRkVy9epW1a9cC0L17dz755BOioqL0buXes2cP/fv3R61WU758eby9vfn11195++3cD2WliovF7MRxzI4egtRkSrVsTUxZaz6e+QG7gFHAG8CTIQPxMzHBQaMh2tGJ1Dr1MLt8kXIHDwCgrVETkpL05q2tWx9MTNC+8iqmwf8+/V3a1QDaBo3g9/0ACFNTtLXroL17R3/62rWVcfkdT/2JIyAsy5DcbwAVPpvDuypw8fXCEThc7RW+v3+PTls3s7hpM+zPneX+ju0kAs169KaS31sAqKMiUT+MQFfZAV0lu6yvOMvmajTtK6+iq1otu00sZWBsrGdLo8H0wnlUKclpV61qtaiE7un/T/8KHaqEBNQREWhiI/n37Dn+uHCerU+ecBP4sEwZhixdRWq3HgWzsvkgtZkjZgeOsWfKBH44fJBhP/1AlZ9+oE9Za1o0aED9ho2xqV4TXcWKUKoUwrwUlH76N31IjfQ4zhjPKhW68hXQ1m9Q+CtVxLzI/Dej+Pg4jhw5zNKlX2EC7Hp9COVnT0dYWKDxzN+rcF8kXWUH4patwnTY2yz78APePn+OOVs2Mn/LRoZUqEgnxxY0adwYazt7dNblwM4W8ydaKGWOMDNPe/6rSoUoXZrU5k5y6BheTAyr/w3CJOQBaDSotKmgSYXUVNRRkZTa9QumRw6xzsyMHx894uCsufm2rhmZmJiwYvd+9u3eyaUN/0f45UvEP4wg/NRJRpw6SUugrFqNqaUlFcrZUL1iRarbVeaVypWxt6+MVd2amOtMUJmYINRqUJukxZNaDWoVqNUIvc/UhusFOa1LlLeC6vVfmmHu8yNG8zN+VRERmN78J62ukJqKSqeFVC2qmGjMzpym1E/r+VurZWr1mtjVqMnAgYPzbVsYw7Z8BRbt3s+8v//i7Kcf8fuxI4wNeUDQ2tW8unY1lQAbExOsrK2xsiyDVRlLqleoRMuatahWpRqmZSwxK10a09IWmJYunVYnMDVNi0W1Ku3v05dQqYCn79NjPLNXRjaWqOxfTRtN5SX3IvJfVWwMMUC56jVpYGHB5cREhqz/Hm3denlfoZJ6J46NJWYxicpbbZWq6J5eNFvSFbX8F60W0wvnUGk0hn+TXWd8Vt/nZdqC/l4IklJSsAYiAPM9u0ht6ax/rmbEMaizLpd2N35JPV4zKHLxKwQmV/9G/Tgm7SIiIdJeyv86VHrv+e//jL9JSMBy8ULiEhMJqFuPs7duELByTT5ttf+oVCpWr/6eiRPf4dWzZ6hiZ4/Fo0fUP3KILkcO4Q5Uf6U62iZN0VarhqhYCV2FimmPfjI1RZiYptUfTE3++9/QuZeRdWRhbg6dPPJ3RYuwohbD6ju3MXlwP5PYFfoxrHwvMv8tAtWz0+p0qFJSMD+wj1K7fuFf4HVra0YPHYaVVe4GuPfx6cLSVd/Td/QwhtnXwib4X3TbNtNi22ZqArF2dtSoVQebaq+gs7VF2Niis7UFC8u087v0+q3Jf+d0mZ33CRMTUGU45zMxMZgna5o2h0ovx4D9RS1+VZGRmN64/l9Zq8RjNv8rfwWUs8Q8JsHAb5/9fRbz5b//048ZVXQ0plcuYb4jkL2xjxlvYsIPazdgYmKS43U1uA1UKr75ZhXDh/vRLCqS8dVeYdjd25R3cybFtxuaFs7oKleGyhUwT9QgTM3S2tCexnRq7bqISpXyLT1S/irSnZehoaHY29srAW1iYoKdnR2hoaF6GUJoaChVMgyv5+DgQFhYWI6WpX46tOtff13hq6++IPn6NRKePCEGSARMDx1CBXS1KM3Fho0w+d/XTB37NjeBRjw92WvchBS/NzFbGg2AzsYG7dOKt65pU9SxsQiVCm279qjVKlL7vobplo0AaPr2S/usS1fYlTZMhsapJerSpdC6tkLUr48qKQmhUpHq0wVRsxZaNzdMnl6ZkeLTBV55BU2Xrnx69W/GAA5AwtJVfPHVF7S6dZP5a1aRAtSoXh1zYN7lC6inXcAWMCPtNtxnX4ayEtUz/38ANH/6XpiZEf3bIUQ5G2W7SlkzNtYNSd/OZb76gtKbfgLgNLAQSAE0GV5JpMV04tP3tQAXOzs+si2Pa5/X0L4xFJ2NzQu7LdvomKlenfgtv9D/wjkGbvqRkyeOcyghgaUR4dyICEcHVAAsScvo0l9mQFfgzSxmHbtyDRpn1zytR3H3IvJfgJkz3+fu3TskJSURFxdHfHwcTZo0Y8KESQzcEUip71ZA9eokDR+Jytqags5hCjsP07m2IvbXgzT8dTfbdwQSfO4Mu3U6lt36h5u3/sESsAbKABZAWWAFaXGdLmH8ZJLeGvFC0l+UFHYMmwT/i83A3nqf/wRsJS3fTQIiqlenSrVX2Pb5Quztsx7aJ2/7TkWXnr3o0rNX2rxCHmB+8HcSz57i78uXSHkcgwaIBO7FRHMsJpoHN67xCIgGUknLOy34L9YsgfeAtnlIlTGsvToR/8WitHSX8PjNjxjNtzxYq8X29T6oY2P1vtsGbCCtzhBatSqlLS3p7fcWbw0bialp/p1wGkxXJso0bYrHxm14aLWYXrlMyokjRFw4T3RQEAmxj4kHEoCE5GSCQ+6zK+Q+4aTFdSppdR8z0vLS9FcrwD8f0mxrX5mY3ftBpSrx8ZuVF1GHuHn5Em2qV8fUx4cusdEMOHGcEUsWGjyXyUxx3WOvAAG5nNYmw/9CrSZm9350dvYlPn6LVP4LWK1ahsWab3O9PsXFKCC9lBEZXverV6cncA4YsX4NqvVpHVbpUZhdNI4D3IHYhUvQeHjK+M3wu4KMX0iLYbNDh7GeOiG3qwPAcuA3IA4IrVGT1q1as3vGbKyt89YZYigWypcvz/r1PxETE0Nk5CM0jx4StH0Lf5w+xfLHMTwCLK9eodTVK5QirR5sBbQBpuUpRVl4913Uw8Zkme6SoqjEsFqtQh0ehk3/nmkdLQXkY+A8aeeCTywsGPzW2wwfPtLgfjZm/3fs6M3BI3+ydesmNPFxmAb/y4ZbtwiLi8VCCO6EPqBM6APKkRa7pqS18WqAJ6Sdm+oALf/lxWVIa1/4EHDK4TqmtG4DP/+Utk1l/Cq/K/A6hBDYDB2ISUR4XlYJgHJ5nkPmvgIOAhG2Nlg4VObHz77Ayd0935fj4ODAnj37OX/+HD+vX8vi40exEgLbyxcof/kCAaSd92W2nrpy5YjefxRMTEp8/BZHRbrzsjDZ2pYBwMOjDR4e24yb6PZtmmR4WwFg6qS0F2kFg3Lt9eXLQFrFWzlJ/DIg7UVaYWIF0K0zdLsNgHn69BWs4Pr156c/flxZdqmnL/bsBiD9vkdrgO6dGQQMMm6t8kwFyEccF670+OXz+WkvwBX4+cUlKdcqVMjhc9m8PcDbA2/AO5/SYJ1P85GMo8QvsGLFN4Z/OPS/u3wsnr4KWo7jMb/4vQ5+r1MfqE9ap5Gxyjx9SYXH1rYMODeD27f1Pn/96Ss38jX2KtSHpvUpwzg65N9cC4RSn5EKjZIHP62rZtT36etFMOoY6NgOOrajqFwna0KGur9UKNLjt8L+3zj09LNGvbvz14tLUrGlAmxfdCJeMunxazF7Jsye+YJTU/BWFfD85Tlc4bO1LQOv9Ux75cHYp6/8ll1dokIFK2rXTms9c+vaiRf90BxZhyhctrZlwLYOBBfs0JIf5/D3xp4HVqjQgGbNCvFxU1kwf/r3hbWfvISUc7jTp15sQrIx6emrsHTu3IHOnTvkaBq9/hupyCnS48o5ODgQHh6O9ulD27VaLRERETg4ODz3u5CQEOV9aGgolStXLtS0SlJeGBvrklRYZP4rFXcyhqWiLj9iVMavVBTJ/Fcq6mT+KxVnMn6l4k7GsFScyfiVpMJVpDsvK1SoQMOGDdm1axcAu3btomHDhs8No+nr68vmzZvR6XRERUVx4MABfHxy/uBjSXpRjI11SSosMv+VijsZw1JRlx8xKuNXKopk/isVdTL/lYozGb9ScSdjWCrOZPxKUuFSCVGAA3vng6CgIPz9/YmNjcXa2pqAgABq1arFyJEjmTBhAk2bNkWr1TJ37lxOnDgBwMiRIxk4cOALTrkk5YyhWJekF0Xmv1JxJ2NYKuryGqMyfqWiSua/UlEn81+pOJPxKxV3Moal4kzGryQVniLfeSlJkiRJkiRJkiRJkiRJkiRJkiRJ0suhSA8bK0mSJEmSJEmSJEmSJEmSJEmSJEnSy0N2XkqSJEmSJEmSJEmSJEmSJEmSJEmSVCTIzktJkiRJkiRJkiRJkiRJkiRJkiRJkooE2XkpSZIkSZIkSZIkSZIkSZIkSZIkSVKRIDsvJUmSJEmSJEmSJEmSJEmSJEmSJEkqEmTnZRaCg4MZOHAgPj4+DBw4kNu3b7/oJOVYQEAAXl5e1K9fnxs3biifl4R1k4zzyy+/0KNHDxo1asQPP/xg8Hfr1q2jV69eyqtFixbMnz8fgFOnTtG8eXPlu/79+xd4erJb5qZNm+jUqRPe3t7MnTsXnU5XoOk5cOAAffv2pXv37nTr1o01a9YYnVapeClK+aPMw0u26OhoRo4ciY+PDz169ODdd98lKioKAC8vL3x9fZV85dixY/m+fEPLKOj4un//vl554+Xlhaura5ZpkkqG3ORpRSG/y+pYLeppfxnI7fy83OTvcjvmL39/f9q3b6/sg+XLlyvfPXnyhEmTJtGpUyd8fX05dOhQnr8rrmTcSblRnOoTsg4hpStOcfssGcfFU3GOuZyQ8VnCCckgPz8/ERgYKIQQIjAwUPj5+b3gFOXcmTNnREhIiPD09BT//POP8nlJWDfJOP/884+4efOmmDZtmli/fr1R06SkpIjWrVuLy5cvCyGEOHnypOjTp0+hpgrcKWsAACAASURBVCerZd69e1e0a9dOREZGCq1WK4YPHy62b99eoOm5ePGiCAsLE0IIERsbK7y9vcWZM2eyTatU/BSl/FHm4SVbdHS0OHnypPJ+wYIFYvr06UII8dw+LwiGllHY8fXpp5+KOXPmZJkmqWTITZ5WFPK7rI7Vop72l4Hczs/LTf4ut2P++uCDDwyeWyxZskTMmDFDCCFEcHCwaNu2rYiPj8/Td8WVjDspN4pTfULWIaR0xSlunyXjuHgqzjGXEzI+SzZ556UBkZGRXL16le7duwPQvXt3rl69qvTcFxfOzs44ODjofVZS1k0yTr169ahTpw5qtfGH+6FDh6hYsSJNmzYtEul51m+//Ya3tzfly5dHrVbTv39/9uzZU6Dpad68Ofb29gCULVuW2rVr8+DBg1wtUyq6ilr+KPPwks3GxoZWrVop7x0dHQkJCXmBKSr8+EpJSWHnzp3069evQOYvFS05zdOKSn5n6FgtDmkv6eR2Np6M16Jj7969DBo0CIAaNWrQpEkTjh49mqfviiMZd1JuFaf6hKxDSOmKU9w+S8Zx8VScYy4nZHyWbLLz0oDQ0FDs7e0xMTEBwMTEBDs7O0JDQ19wyvKuJK+blD+2bt36XEPy7du36dOnD/3792f79u2Fkg5DywwNDaVKlSrK+ypVqhRq/AYFBXHx4kVat26dbVql4qU45I/FIY1Szul0On766Se8vLyUz6ZOnUqPHj34+OOPiY2NLZDlPruMwo6vgwcPYm9vT+PGjQ2mSSrZsoq5opjfZTxWi1vaSyK5nQ3LSf4ut2PBWLt2LT169GDcuHEEBQUpn4eEhFC1alXlvYODA2FhYXn6rjiScSflp+KQx8k6hPSs4hgHMo6Lt5K+z2R8ljymLzoBkiTlTZ8+fQzeqfPHH38oGbGxIiIiOHnypPK8S4DGjRtz5MgRypYty7179xg2bBj29va0bdu2wNKTk2VmpSC2z7hx45g9e7ZyJ2Z+pVWSpJfXJ598gqWlJUOGDAFgw4YNODg4kJKSwmeffcbcuXP58ssv83WZmS3jrbfeytdlZOfZi2UKY70lKS8yHqtXr1590cmRpEwVhfy9pMvuHGPy5MlUqlQJtVpNYGAgb7/9NgcOHMjxuYckSSWHrENIJYGMY6kok/FZ8sjOSwMcHBwIDw9Hq9ViYmKCVqslIiLiuduti6OSvG4vo/y+yy8wMBAPDw/Kly+vfGZlZaX8/8orr+Dt7c358+cz7ZzLr/RktUwHBwe9xoKQkBCD8Zuf2ycyMpJhw4bx9ttv07VrV6PSKhUvxSF/LA5plHImICCAO3fusGLFCmUI6/T9aW5uzuDBgxk7dmy+LzezZUyfPr3Q4is8PJwzZ87w+eefZ5kmqWTLKk8TQhSp/O7ZY7U4pb2kkmVi5nKav8t4zbnszjHSL3IE6N27N/PnzycsLIyqVatSpUoVHjx4oJxvhYaGKsOd5fa74kgev1J+KuplsqxDSJkpbnEg47j4K8n7TMZnySSHjTWgQoUKNGzYkF27dgGwa9cuGjZsqNehU1yV5HWT8m7btm3PDRkbERGBEAKAmJgYTpw4QYMGDQo0HVkt08fHhwMHDhAVFYVOp2Pz5s106dKlQNMTHR3NsGHDeOONN+jfv7/RaZWKl+KQPxaHNErGW7RoEX/99RfLli3D3NwcgMTEROLi4gAQQrBnzx4aNmyYr8s1tIzCjK/t27fj4eGBra1tlmmSSrasYq4o5XeZHavFJe0lmdzOz8tN/i63Y/4LDw9X/j927BhqtVrp0PT19WXjxo1A2qMnrly5Qrt27fL0XXEk407KT0U5j5N1CMmQ4hQHMo5LhpK6z2R8llwqkd7iLj0nKCgIf39/YmNjsba2JiAggFq1ar3oZOXIp59+yr59+3j06BG2trbY2Niwe/fuErFuknF27drF559/TmxsLGZmZlhYWLBmzRrq1KnD119/jZ2dHa+//joA586dY9KkSRw+fFhvSKMffviBn376CVNTU7RaLb169WLkyJEFmp7slvnzzz+zevVqANzc3Jg9e3auhmEyNj0BAQFs2LCBmjVrKtMOHTqUfv365ev2kV68opQ/yjy8ZLt58ybdu3enRo0alC5dGoBq1arh7+/P+PHj0Wq16HQ6ateuzYcffoidnV2+LfvevXsGl1FY8eXj48PMmTNp3759tmmSSobc5GlFIb8zdKwuW7asyKf9ZSC3s77c5u9yO+avt956i8jISFQqFVZWVrz//vs4OjoCaR3M/v7+XLt2DbVazbRp0/D29s7Td8WVjDspN4pTfULWIaR0xSlunyXjuHgqzjGXEzI+SzbZeSlJkiRJkiRJkiRJkiRJkiRJkiRJUpEgh42VJEmSJEmSJEmSJEmSJEmSJEmSJKlIkJ2XkiRJkiRJkiRJkiRJkiRJkiRJkiQVCbLzUpIkSZIkSZIkSZIkSZIkSZIkSZKkIkF2XkqSJEmSJEmSJEmSJEmSJEmSJEmSVCTIzktJkiRJkiRJkiRJkiRJkiRJkiRJkooE2XkpSZL0EvLz82Pz5s05mub+/fvUr1+f1NTUAknT22+/zfbt2wtk3k5OTty7d69A5g15S/uSJUuYOnVqPqeoZNmxYwfDhw/P9fReXl788ccfeU5Hbo6b4uDs2bP4+Pjkevr69etz586dfEzRf7Zt28brr7+eb/Mr6LxAyn+zZ89m2bJlRv3W39+fRYsWFXCKSga5rQqPsflOQdSznj1+fvzxR9q2bYuTkxPR0dGcO3eOzp074+TkxIEDB/JtuXmVl7w6r2W1PDayJ4Rg+vTpuLi48Nprr3Hq1Cnat2+f78vJa/3EGC8y1iRJyn+GzvsKOj8pyLaMnHj06BFvvPEGTk5OLFiw4EUnRyrmnj0XL+hz6byc++ekzSi/2xikgiU7L3PAy8uLZs2a4eTkRNu2bZk+fToJCQkAnDhxAj8/P5ycnGjVqhW9evVi1apVJCcnAxAbG8v06dNxc3PDyckJHx8fVq1apcz7/v37+Pn50bx5c3x9fZ8rbHfu3ImnpyeOjo6MGzeOmJgY5buUlBSmT59OixYtcHNzY+3atXrTzpo1Cx8fHxo0aMC2bdv0vktJSWHevHm4u7vj4uLCxx9/jEajUb6bMWMGnp6eODk50bt3b44cOZJ/G1QqdMUxhoODgxk7diytW7fG1dWVESNG8O+//+pNayiG0+3evZsuXbrg6OiIt7c3Z8+ezdE2y49ODyl7q1evpk+fPnmeT2YNCRcuXOCVV17J87wNya+0F7biUmnr2bMna9asUd4XZGdZdn7//fcS19ns7OzMb7/99qKTUSgKOi+Q8t/cuXN555138mVeLzLvkIqf/OpMLKx8J7MyPePxo9FoWLBgAWvWrOHChQvY2tqyePFi3njjDS5cuIC3t3eBp9FYMq8u2s6dO8eJEyc4cuQIW7Zsybf5PptHF0b9RMZa7qxYsYKZM2eWuGVl5dlOe6l4Kej8pKi0B2zcuBFbW1vOnz+Pv7//i06OVMAK+0L4olxmPttmlBfy4qSiRXZe5tCKFSu4cOEC27dv58qVKyxfvpy9e/cyYcIEevTowaFDhzh16hSLFi0iPDyc0NBQAObPn09iYiJ79uzh3LlzfPPNN7z66qvKfKdMmUKjRo04deoUkydPZsKECURFRQFw8+ZNZs+ezeeff86JEyewsLBgzpw5yrRLlizhzp07HDp0iHXr1rF69WqOHj2qfN+gQQM+/vhjGjVq9Nz6rFq1ir/++otdu3bx22+/cfXqVZYvXw5AamoqDg4OrF+/nnPnzjFx4kQmTZrE/fv3C2TbSoWjuMVwXFwcXl5e/Prrr5w4cYKmTZsybtw4ZdqsYhjSOmW//PJL5s+fz/nz59mwYUORLWxfVkIIdDrdi06GlENarTZf5lNQd/JKkiRJUm7lR9lU1Mq3yMhIkpOTqVOnjvJZSEgIdevWfYGpkoqi7Op4Dx48oGrVqlhaWhZSiqSiZsyYMXz22WfZ/i4/GoCNXVZBK6hOe6nkK8z6QEhICLVr10alUuV42qJWb5EkSQLZeZlr9vb2tGvXjhs3brBgwQLeeecdBgwYgI2NDQC1atVi1qxZ1KhRA4ArV67Qo0cPypUrh1qtpnbt2vj6+gJpd5b9/fffjB8/ntKlS+Pj40O9evWUq4J27tyJl5cXLi4ulClThokTJ7J//37i4+MBCAwMZNy4cZQrV47atWvTv39/veEK3njjDdq0aUOpUqWeW4+DBw/i5+eHjY0N5cuXx8/Pj61btwJgaWnJ+PHjqVatGmq1Gk9PT6pVq8bff/9dYNtVKjzFJYabNWtG//79sbGxwczMjLfeeovg4GCio6OBrGMY0jpGx40bh6OjI2q1Gnt7e+zt7Y3aRtOmTSMkJIQxY8bg5OTEt99+y++//063bt1wdnbGz8+PoKAgALZu3cqYMWOUaTt16sTEiROV9x4eHly7dg1Iu6r4p59+onPnzri4uDBnzhyEEADcuXOHIUOG0LJlS1q1asWkSZOUeQQFBTFs2DBcXV3x8fFhz549ynf+/v7MmTOHUaNG4eTkRP/+/bl7967y/YkTJ/D19aVly5bMnTtXWV5WtFotAQEBtGrVio4dOz5353VcXBwzZszA3d2ddu3asWjRIqWxY9u2bQwaNIhPPvmEli1b4uvry59//qlM6+fnx6JFixg0aBDNmzfn3r17ysltSkoKzs7O3LhxQ/l9VFQUzZo1IzIyksePHzN69Ghat26Ni4sLo0ePJiwsDIBFixZx9uxZ5s6di5OTE3PnzlW2efqV3HFxcbz//vu0bt0aT09PvvnmG6XzNP2uhYCAAFxcXPDy8jLqjvOMJ+bZzePevXsMGTIEJycnhg0bpsRyuosXLzJo0CCcnZ3p2bMnp06dAuD8+fO0atVKuaDg+vXrODs7KzFoyKpVq/D29sbJyYmuXbuyf/9+IC2ePvroIy5evIiTkxPOzs5Zzsff35+PPvqIkSNH4ujoyKlTpwgPD2f8+PG0bt0aLy8v1q1bp/xeq9WyYsUKZdl9+/ZV0l6/fn02bNhA586d6dy5c6Z3t2S2TSGtTAPo1asXTk5O7NmzRxmu7Ntvv6VNmza4u7tz4MABjhw5go+PDyEhIaxevZquXbvi4uKCv78/33zzDd7e3jg6OuLk5ISLiwtjxozh4sWL1K9fn+3bt9OmTRsaNmxI06ZNmTt3LjExMRw9epQ9e/ZQv359vaGHIiMjadasmXLRRmayS6erqysrVqxQfn/58mUGDhyIs7Mz7u7uzJ07l5SUFCCt03/evHm0adOGli1b0qNHD+WYOXLkCF27dsXJyYl27drx3XffZblvnx3uzcvLi++++44ePXrQsmVLJk2apNyFD2lXFru7u+Pu7v5c401KSgoBAQF06NCBtm3bMnv2bJKSkgAYOXKk3vBFkyZNYvr06VmmLX1djclLnJycGDNmDNHR0UyZMoUWLVrQr18/vYuu5J13hcvYsjG78i3jEI7ffvutEn+bN29+bp/GxsZmWhZmlneUBF5eXqxcuVLJ36ZPn05ycnKmd+EZiv+oqChGjx6Ns7Mzrq6uDB48WCkXs8rnM5OcnKyXF37zzTc0atRIqfMtWrRIaYQ+fPgwvXv3pkWLFnh4eLBkyRJlPiNGjOCHH37Qm3fPnj3Zt28fkHWdyJCslpdeDm3evJkOHTrw5ptvMmTIEABcXFxwcnLiwoULAGzZsoUuXbrg4uLCiBEjePDggd42zli+pX+Wvt2zSoOxtm3bRseOHXFycsLLy4sdO3YYLNPTj5/g4GCl3u7i4sLQoUPx9vbm3r17Sj03JSUFPz8/vvrqKyVPHT58uF65ZqiOYihdkHXd1pCM2yy3ddz0Y8Pd3Z2GDRvSpEkThg0bxnfffcfrr7/OqlWrGDBgAKmpqdSvX5+lS5fSrVs3vY67l+XYyEkdb/PmzXz44YdKrC1evPi5+eWmfphV/S5dUFAQfn5+ODs7061bN37//Xe9dcgqTgzJj1hLZyhvyBhrkDZ8c7du3fTqVlLuFGZnS1467WWnUOG6du3ac+cxmZ3vZFZ/ys6BAwfo1asXLVq0wNvbW7no/tlz10GDBjFv3jxcXV1ZsmQJSUlJLFiwAE9PT1q2bMnrr79OUlJSpsNuZxz9a8mSJUyYMIGpU6fi5OREjx49CA4OZuXKlbRp0wYPDw+OHz8OpOVhgYGBfPfddzg5OfHHH3+g0+mU9oBWrVoxceJEZRS0zOo+kH09x1BbFsCmTZvo0qWL0vaQ3n6c0zJTet6qVato166dMhLe4cOHWblyJXv37sXJyYmePXsCaedf6fugY8eO/Pzzz8o80uNtzZo1SntExvbT6OhoxowZQ4sWLXjttdeeK0dzUmYeP34cHx8fWrZsyccff8yQIUOMvpjFUFtadm2QGc99jFl+Zssx1KYovUBCMpqnp6c4ceKEEEKIkJAQ0bVrVzF+/HhRr149ce/evSynnTFjhujatavYsmWLCA4O1vtu3759wtfXV++zOXPmiLlz5wohhBgzZoxYuXKl3veOjo7iypUrIiYmRtSrV088fPhQ+W7v3r2ie/fuz6Vh0KBBYuvWrXqf9enTR+zevVt5/8svv4h69eqJ2NjY56Z/+PChaNKkibh161aW6yoVXcU9hoUQYv/+/cLNzU15n1UMp6amisaNG4uVK1cKb29v0a5dOzFnzhzx5MmTLNc1o4zb7N9//xXNmzcXx48fFykpKWLVqlXC29tbJCcni7t374qWLVsKrVYrwsPDRYcOHYS7u7sQQoi7d+8KZ2dnodVqhRBC1KtXT4waNUo8fvxYPHjwQLRq1UocOXJECCHE5MmTxTfffCO0Wq1ISkoSZ86cEUIIkZCQINq3by+2bNkiNBqN+Ouvv4Srq6u4ceOGEEKIDz74QLi4uIhLly4JjUYj3nvvPTFp0iQhhBCRkZHCyclJ7N27V6SkpIi1a9eKhg0bik2bNmW57j/++KPw8fERISEhIjo6WgwZMkTUq1dPaDQaIYQQY8eOFbNmzRIJCQni0aNHol+/fuKnn34SQgixdetW0bBhQ7F27VqRkpIidu/eLVq0aCGio6OFEEIMGTJEeHh4iBs3bgiNRiNSUlLEkCFDlDT5+/uLhQsXKmn54YcfxPDhw4UQQkRFRYlff/1VJCYmiri4ODF+/HgxduxY5bcZ55OuXr164vbt20IIIaZNmybGjBkj4uLixL1790Tnzp2V32/dulU0atRIbNy4UaSmpooNGzYINzc3odPpstxWGZeZ3TwGDBgg5s2bJ5KTk8Xp06eFo6OjmDJlihBCiLCwMOHq6ioOHz4stFqtOH78uHB1dRWRkZFCCCEWLlwo/Pz8xJMnT0T37t3F+vXrs0yXEELs2bNHhIWFCa1WK3bv3i2aN28uwsPDlbQOGjQo23kIkRZjLVq0EGfPnhVarVYkJiaKPn36iCVLlijHgJeXlzh69KgQQohvv/1WdO/eXQQFBQmdTieuXbsmoqKilP3x1ltviejoaPHkyRNx7949vdjKbJtmTGfG/SmEECdPnhQNGzYUS5YsESkpKWLjxo2iVatW4r333hNxcXHC3d1d1K9fX5w9e1ZER0cLT09P4e7uLnbv3i1cXV3FO++8IyZMmCDmzp0r+vXrJ+rVqyemTp0qnJycxOrVq0WjRo3EF198IRo2bChGjx4tpkyZIj766CPx+eefK2n4/vvvxejRo7Pchtml88aNG6JJkybi7t27Qgghrly5Ii5cuCA0Go24d++e8PX1FWvXrhVCCHH06FHRp08f8fjxY6HT6cStW7eU/erm5qbkHTExMeKvv/7KNl3t2rVT3nt6eop+/fqJsLAwER0dLXx9fcWPP/4ohBDiyJEjok2bNuKff/4RCQkJ4r333tPbH59++qkYPXq0iI6OFnFxcWL06NHiyy+/FEIIERERIVq3bi3++OMP8csvvwgvLy8RFxeXZdqMyUu8vb3FnTt3RGxsrOjSpYvo3LmzOHHihNBoNGLatGnC399fmd+zsSMVLGPKRmPKt/Ty4MiRI6Jt27bixo0bIjExUUydOlVvn2ZVFgpRMve/p6en6Natm1JWDxw4UCxcuDDT/P3ZbZW+Xb/88ksxa9YskZKSIlJSUsSZM2eETqcTWq02y3zekMGDB4tff/1VCCHEsGHDRMeOHcXhw4eV7/bt2yeESMt7rl+/LrRarbh27Zpo06aN2L9/vxBCiO3bt4uBAwcq87x586Zo2bKlSE5OzjZmDMlqeenl0LRp00RCQoLBsmn//v3C29tb3Lp1S2g0GrFs2TK9dD5bvj273Y1JQ8blPSshIUE4OTmJoKAgIYQQ4eHhynpnts8z7ufM5p+xnitEWp7asWNH8e+//4onT56IIUOGiC+++EIIkXUdJat0GarbZsXY4zqrOq6np6fw8PAQHTp0EBcuXBADBgwQb7zxhvD29haDBg0SWq1WDB48WCxevFjUq1dPtGjRQvz9998v5bGR0zres7GWsR6R3bbJrn74bP0ufb4pKSnC29tbLF++XCQnJ4s//vhDODo6KjGXXf5vSH7EmhBZ5w0ZYy04OFg4OzuLv//+O9u0FZQtW7bo1Vm9vb3FhAkTlPft27cXV69eFZ988olo3769cHJyEn369NE7dhcvXqycvyQlJYkpU6YIV1dX0bJlS9G3b1/x8OFDsXDhQtGgQQPRpEkT4ejoKObMmZNlum7cuCHeeust4eLiItq0aSOWL1/+3LLS87FNmzYJDw8PMXjwYCGEEBs3bhS+vr7C0dFRdOnSRan7PhtTGY/v9PhatWqVaN26tXBzcxP79+8Xhw8fFp07dxYuLi5KGjZt2iSaNGkiGjRoIBwdHcXXX38thBDi4MGDomfPnqJly5Zi4MCB4tq1a8qyPD09xcqVK0X37t1F48aNhUajERcuXBADBw4ULVu2FD169BAnT55Ufj9kyBCxaNEiMXDgQOHo6CiGDRumnAMKIcSZM2eUadu3b6+07SUnJ4sFCxYIDw8P0aZNGzFr1qwctXeUNIbOYzI738ms/pSVS5cuiRYtWojjx48LrVYrwsLClPbRZ89dGzZsKNatWyc0Go148uSJ+Pjjj8WQIUNEWFiYSE1NFefOnRPJycnPpSs9bell8+LFi0WTJk3E0aNHlXMbT09P8c033yjnk56ensq0GWNcCCHWrl0r+vfvL0JDQ0VycrKYNWuWmDx5shAi87qPMfUcQ21Ze/bsEe7u7uLSpUtCp9OJ27dvi/v37+e6zJT+ExQUJNq3by/CwsKEEGn77s6dO3r5Y7pDhw6JO3fuCJ1OJ06dOiWaNWum5Inp7RFfffWVSElJEYcPHxbNmjUTMTExQgghJk2aJCZMmCASEhLEP//8I9zd3Q22wxhTZv72229Co9GI77//XjRq1CjbNsjs2tKya4NMT2t2y89uOZm1KUovjrzzMofeeecdnJ2dGTx4sHLVKkClSpWU30yePBlnZ2eaN29OYGAgkPbcyR49erBhwwa6detGp06dlF79hIQEypYtq7ecsmXLKs8iTExMfO57KysrEhISSExMVH6f2bTZadeuHevWrSMqKoqHDx+yfv16AJ48eaL3O41Gw9SpU+nTpw+1a9c2at5S0VScYzgsLIw5c+bojd2fVQw/evQIjUbDr7/+yoYNGwgMDHxuWNmc2LNnDx4eHri5uWFmZsaIESNISkpSxn0vU6YM165d48yZM7i7u2Nvb09QUBCnT5+mZcuWqNX/ZbkjR47E2tqaKlWq0KpVK65fvw6AqakpISEhREREUKpUKeXK+cOHD1O1alX69euHqakpjRs3xsfHR++5DZ06daJZs2aYmprSs2dP5U7Po0ePUqdOHXx9fTEzM+PNN9+kYsWK2a7v3r17efPNN3FwcMDGxobRo0cr3z169IijR48yY8YMLC0tqVChAm+99Ra7d+9WflO+fHnefPNNzMzM6Nq1KzVr1uTw4cPK93369KFu3bqYmppiZmamt+wePXqwa9cu5f3OnTvp0aMHALa2tvj4+GBhYYGVlRVjx47lzJkz2a4PpF3tvWfPHqZMmYKVlRXVqlVj2LBhyt0BAFWqVGHAgAGYmJjQp08fHj58yKNHj4yaf3bzCAkJ4cqVK0ycOBFzc3PlKq90v/zyC+3bt8fDwwO1Wo2bmxtNmjRRjrV3332X+Ph4+vfvj52dnXKVela6dOmCvb09arWarl27Ur16dS5fvpyj9UnXsWNHJZZv3LhBVFQU7777Lubm5rzyyisMGDBAucJ/8+bNTJw4kVq1aqFSqWjQoAG2trbKvEaNGoWNjQ2lS5fOVVqeZWpqytixY5V4i46OZujQoVhZWWFmZkblypWJjo7GxsYGrVaLEILjx4/Tr18/Zs+ezYEDB5gwYQJXr14FoHHjxtSpU4cRI0bQsGFDGjRooHfc9OnTh127dil3YPzyyy/K1Y65TWfdunWpW7cu//zzDwBNmjTB0dERU1NTqlWrxsCBA5VYNzU1JSEhgX///RchBLVr18bOzk757tatW8THx1OuXDkaN26c4+3p5+eHvb09NjY2eHp6KvnJ3r176du3L/Xq1cPS0pJ3331XmUYIwebNm5kxYwY2NjZYWVkxevRoJV+oVKmSkod/9tlnBAQEYGVllW1asstL+vbty6uvvkrZsmVp3749r7zyCm3btsXU1BRfX19ln0qFz5iy0ZjyLV16/NWtWxcLCwu9+EtnqCwsyd544w2lrB47dqxeWWwMU1NTHj58SEhICGZmZjg7O6NSqbhy5UqW+bwhLi4unDlzhtTUVP755x/8/Pw4c+YMycnJXLlyhZYtWwLQqlUr6tevj1qtpkGDBnTr1o3Tp08D4O3tzfXr15Wr/Xfu3EmnTp0wNzfPUcxklNXy0o0fPx5LS0uDZdPPP//MqFGjqF27NqamFERawAAAIABJREFUpowZM4Zr167p3ZWQVflmTBqyo1aruXnzJklJSdjZ2eX7sK99+/alZs2alC5dGl9fX+UYyq6OYihdhuq2OZHbOm6ZMmWUEVjGjRtHWFgYISEhpKSkoFarCQgIUM4d+vfv/9xjVl6WYwNyVsfLSnbbJrv6oSGXLl0iMTGRUaNGYW5uTps2bfD09NTL7/Ij/89trGWVN2SMtbFjx/L2229n+kifwuLq6srZs2fR6XRERESQmprK+fPngbQRYhITE6lfvz5NmzYlMDCQ06dP0717dyZOnJjpnWnbt28nPj6ew4cPc+rUKebMmUPp0qWVNoXZs2dz4cIFZs+ebTBN8fHxDBs2jHbt2nHs2DH27dtHmzZtDP7+zJkz7Nmzh++++469e/eyZMkSAgICOH/+PMuXL1dGk8rOo0ePSE5O5ujRo0yYMIEPP/yQHTt2sHXrVjZs2MCyZcu4d+8e/fv3Z86cOTg6OnLhwgUmTJjA33//zYwZM5g7dy6nTp1i4MCBjBs3ThklBWD37t2sWrWKs2fPEhkZyejRoxk7diynT5/mgw8+0HvUDsCuXbuYP38+f/75JxqNRnl+W0hICCNHjmTIkCH8+eefBAYG0rBhQwC++OILgoODCQwMZN++fURERLBs2TKj1r+kMnQe86yc1p+2bNlCv379cHNzU0b1MtQ+amdnh5+fH6amppibm7N161ZmzpyJvb09JiYmtGjRAnNzc6PWx9nZmXbt2innNtHR0YwaNUo5N3rw4AGxsbGZTrtx40YmT55M5cqVMTc359133+W3337Tuxs4Y93HmHqOobasLVu28Pbbb9OsWTNUKhXVq1enatWquS4zpf+YmJiQkpJCUFAQGo2GatWq6T3GK6MOHTrw6quvolKpcHV1xc3NjbNnzyrfm5qa8s4772BmZoaHhweWlpYEBwej1WrZt28fEyZMwNLSknr16mX7HNesysy6devSuXNnTE1NGTp0qFFtkGC4Lc2YNsh0xiw/P9r9pMJh+qITUNwsW7aMtm3bKu/Th+uLiIhQnqOXPrTV66+/rjRqli5dmjFjxjBmzBji4+NZtWoVkyZN4tChQ5QpU0YZLiZdfHw8ZcqUAdKGbzX0ffqQFfHx8cqwsBmnzc7YsWOJi4ujV69emJubM2DAAK5du0aFChWU3+h0Ot5//33MzMyYNWuWcRtKKrKKawxHRUUxfPhwBg8eTPfu3ZXPs4rh9GX6+fkpjfrDhg1j+fLlTJ48OcfbLiIigipVqijv1Wo1Dg4OhIeHA2kNEqdPn+bOnTu4uLhQtmxZzpw5w8WLF3F1ddWbV8bOYgsLC6Wzdtq0aXz99de89tprlCtXjmHDhvHaa6/x4MEDLl++rNfgo9Vq9TpLMhbGpUuXVjqGIyIiqFy5svKdSqXCwcHBqPXN+LuM6x4SEkJqairu7u7KZzqdTu/39vb2es9aqFKlChEREcr7rNLQunVrkpOTuXTpEhUrVuT69et4e3sDaR3T8+fP59ixYzx+/BhI60DXarWYmJhkuU7R0dFoNBq9dalSpYqyD0F/O1pYWAAo29JYhuYRHR2NtbW13nBDVapUUYZTDQkJ4ddff+XQoUPK96mpqbRq1QoAMzMz+vTpw6effoq/v79Rz7IIDAxk7dq1yglHejpyI+M+e/DgAREREc/FZPr7sLAwgxXqZ+eVH2xsbJT9n95gnLEss7S0VI6zqKgoUlJSCAwMxNTUlE2bNqFWq0lKSsLa2pro6GiePHmiHDcWFhY8efJEL83NmzfHwsKC06dPU6lSJe7evUvHjh3znM5SpUop6QwODmbBggX89ddfPHnyBK1Wq3REtmnThjfeeIO5c+cSEhJCp06d+OCDD7CysmLx4sUsX76c//3vf9SvX58pU6bg5OSUo+35bB6VfuxGRETQpEkT5buqVasq/0dFRfHkyRP69u2rfCaeeaZthw4dmDt3LjVr1jS6ATu7vCTj8VaqVCmDeaH0YmRXNhpTvqV7Nv4yy0dexv3/bFmd8fgwxogRI1i6dCnDhw8HYODAgYwaNSrbfN4QV1dX5s+fz9WrV6lXrx5ubm7MnDmTixcvUr16dcqXLw+kdUZ8+eWX3Lx5E41GQ0pKijK0qZWVFR4eHuzevZtRo0axe/duPvnkE4AcxUxGWS0vXcb6UmZCQkKYN28eAQEBymdCCMLDw5X8MKvyzZg0ZMXS0pJFixaxZs0aZs6cSYsWLfjggw/y9eLSZ/P/9GMoqzpKVukyVLfNidzWcePj45X9pdVqSUxMxNTUFI1GA0C1atVo1aoV+/bto1evXs8t92U5NiBndbys5LV+aEj6vs54MWhWdfjc5v+5jbXs8ob0WDty5IhRFx8WpIwXFt2+fRt3d3dlCPeLFy8qndgZj4nhw4ezfPlygoODadCggd78TE1NiYmJ4c6dOzRo0ECvnDbW4cOHqVixonKslSpViubNmxv8fXpnC+h3mABUr17d6OWmX1RoYmJC165dmTVrVqYXFaa3k2S0adMmBg4cqKSzT58+rFixQu/c38/PT4mTdevWKReAAHoXgKR3EKRfPALg6+vLwYMHgbSLFNq2bau0g9ja2mJra6tcOLhjxw6lw3b06NFMmTKFKVOmGL0dShpD5zHPymn9KTQ0VNl/2cmYX0RHR5OcnJxpHBkj47li6dKlsbW1fe58MjExEWtr6+emDQkJ4Z133tHLO9VqNZGRkZmm1Zh6jqG2rNDQ0Ezz97yUKVKa6tWrM2PGDJYsWcKtW7dwd3fXu6kjoyNHjrBs2TJu376NTqcjKSmJevXqKd/b2Nhgavpfd1B6XS8qKorU1FSDbYCZyUmZmV0dO7N5ZmxLe/z4cbZtkOmMWX5+tPtJhUN2XuZRrVq1sLe3Z//+/UpFKzvpdyKsXLmS+/fvU6dOHe7du0d8fLxyB8L169eVikndunWVK1kg7Wo4jUZDjRo1sLKyolKlSly/fh03Nzdl2jp16hiVltKlSzN79mzlKriNGzfSuHFjpSAUQjBz5kwePXrEt99++9zdUVLxVxxi+PHjxwwfPhwvLy/Gjh2rl5asYrhcuXJUrlw5Vw8rz4ydnZ3ecxiFEISGhirP0HR1deXgwYM8ePCAMWPGYG1tzc6dO7lw4YLRJ6mVKlXi008/BeDs2bMMGzYMFxcXHBwccHFxYe3atTlOd6VKlZRnQmZMtzHTZfxdxv/Tr9w7efKkXsUno/DwcIQQyvYPDQ3Vu8swq/2iVqvx9fVl165dVKxYkQ4dOiixtWbNGoKDg9m0aROVKlXi2rVr9O7d26jneNra2mJmZkZISIgSYxn3YUGrVKkSsbGxJCYmKifcISEhyrZwcHCgV69eSgw8Kzw8nKVLl9K3b18WLFjA1q1bs7xi88GDB3z44Yd8//33ODk5YWJiotcQkZdjw8HBgWrVqinPWHpW5cqVuXv3rl5FOaOMy07fFklJScp+fvjwYa7TlpmMV0Gnn9y3a9cOGxsb3n//fSCtspp+1WqlSpX0GmjTj5v0hkVIa6TYsWMHlSpVwsfHJ9NnS+fFxx9/TKNGjfjf//6HlZUV33//vd7dE0OHDmXo0KFERkYyadIkVq9ezaRJk2jWrBnLly9Ho9GwYcMGJk2aZNSzW41hZ2enlxeEhIQo/9va2lK6dGl2795t8JhatGgRtWvX5v79++zatUvvYhRDsstLpKItu7IxvVPTmPLNzs5Or6HamLLsZfDsMWlnZ4eFhYXyvFnIOk+1srLC398ff39/bt68ydChQ2natGm2+bwhTk5OBAcHs3//flxcXKhTpw4hISEcPnwYFxcX5XdTpkxhyJAhrF69mlKlSvHZZ5/pXVzTvXt3li5diouLC0lJScqFPLmtE2W3PNAvmzIrIx0cHBgzZkyWnUFZla3GpCE77dq1o127diQlJfHVV18xa9Ysfvzxx3yr7xqSXR3FULoM1W1z0sFgSHZ13DJlyjBlyhR69uzJkSNH+OSTT5gyZQqrVq0C0hr4zp07B6Q9Syrj83Xh5Tk2npXb9TNm2uzqh4bY2dkRFhaGTqdTGuFDQ0OpUaNGjtOYG9nFWnZ5w5EjR7hw4QJt2rTh888/f+HP0DLmots1a9awefNmIiIiUKlUxMfHZ5pf9erVi7CwMN577z1iY2Pp2bMnkydPzlHbkaFOD0MyNkLndNqMcnJR4bNCQkIIDAzUewatRqMxeLFudhepguGLRwytozEXDkqGZVZ/yoqDg4NRz9IF/bqAra0tpUqV4t69e891/j9bX9NqtXp34+ZV5cqVmTdvnnJnf0b3799/Lq3G1HMMMbR98lKmSP/p0aMHPXr0ID4+ntmzZ/Pll18+V5dKSUlhwoQJBAQE0LFjR8zMzBg3bpxRbWXly5fH1NSU0NBQ5aK43J5rVapUSe+cTQihV4bmhjFtkAW5fOnFkcPG5pFKpcLf35+lS5eyadMmHj9+jBCC27dv613JsmzZMi5fvkxKSgrJycmsW7cOa2tratasSc2aNWnYsCHLli0jOTmZ/fv3888//+Dj4wOkZVCHDh3i7NmzJCYm8vXXX9OpUyelgbd3794sX76cx48fExQUxObNm/Vu7U5fphCC1NRUkpOTlcpMeHi40ih48eJFvvnmG8aPH69M+9FHHxEUFMSKFSvybWg/qWgp6jEcHx/PiBEjaNGiBVOnTn0u/dnFcN++fVm/fj2RkZE8fvyY//u//6NDhw5Gb5+KFSty7949IG34zSNHjugN42Jubq7c0eTi4sKpU6dISkqicuXKODs7c+zYMWJiYoweGmjv3r1KoVquXDlUKhVqtZoOHTpw+/ZtAgMD0Wg0aDQaLl++rNw5mxUPDw9u3rzJvn37SE1NZd26dUYNh9ClSxfWr19PWFgYjx8/Vhp6IK0Bwc3NjQULFhAfH49Op+Pu3bt6Q59FRUWxbt06NBoNe/fuJSgoyOgrFSEtbvbu3cvOnTv1OjgSEhIoVaoU1tbWxMTEsHTpUr3pMu6zZ5mYmODr68uiRYuIj4/nwYMHrF27NleV89yoWrUqTZo0YcmSJaSkpHD27Fm9E9iePXty6NAhjh07hlarJTk5mVOnThEWFoYQAn9/f1577TXmzZuHnZ0dX331VZbLe/LkCSqVSulw27p1Kzdv3lS+r1ChAuHh4Xode8Zq1qwZVlZWrFq1iqSkJLRaLTdu3FCGpO3fvz9ff/01t2/fRgjB9evXDTbQli9fHnt7e3755Re0Wi1btmwxuA8h631syMOHD4mJiSEmJgZzc3NMTExo06YN27Zt4+TJk+zdu5eFCxcqQzBlPG6EEPz55588evSIMmXK8ODBA3Q6Hb169eLAgQPs2LGD3r175yg9xkhISKBMmTKUKVOGoKAgfvrpJ+W7y5cvc+nSJTQaDRYWFso6paSksGPHDuLi4jAzM6NMmTLZ3pGcE76+vmzfvp1bt27x5MkTveNPrVbTv39/5s2bp5Qf4eHhHDt2DEgb4mvbtm18/vnnBAQE8Mknn+idVBiS17xEerGyKxtzUr75+vqybds2goKCePLkSY6HRctN3lEc/Pjjj4SFhRETE8PKlSvp2rUrDRo04ObNm1y7do3k5GSWLFlicPpDhw5x584dhBBYWVlhYmKCWq3ONp83xMLCgiZNmrBhwwalEdzJyYmNGzfqddAkJCRQrlw5SpUqxeXLl/WGi4e0fDgkJITFixfTtWtXpcMit3Wi7Jb3rPLly6NWq/ViZtCgQaxatUopS+Pi4ti7d2+W88lLGp716NEjfv/9dxITEzE3N8fS0lLJ4/NSphsjqzpKVukyVLfND9nVcRMTE1m2bBnnz59n5cqVeHt7ExERwc2bNzl58iQzZsxQRjQ4efLkcxf6vCzHxrNyu37GTJtV/TCrPLpZs2ZYWFiwevVqNBoNp06d4uDBg3Tt2jVH65Zb2cVaVnlDVFQUM2fO5LPPPmPBgv9n777DojqzB45/pyEoNhARBBXELqioSIyKYjcmmF010V+qia6JiYkpq5sYjemasjG2ZNOzMWVNNNZo1Nh7A1FBLAiK9KIiCkz5/YGghDYwDWbO53n2WTP3ztyDHt659577nvc9/vzzT7M9VFZTISEhHDhwgCNHjhASEkJISAiHDh3i4MGD9O7dm8OHD/P555/z8ccfc+jQIQ4fPkzDhg3LvQGu0Wh45pln2LBhAz/99BPbt28vWXrGWNUpCkHZYktF7y3unlLMnA9HFhd5Dh8+XPK/qKioUtetf40zIiKi1P6RkZFMmTLFqGOV9zPe+eBg8WceOXKEY8eOmeeHtHPlnT9VZuzYsaxcuZJ9+/ah1+tJTU01anxVKpX8/e9/59133yU1NRWdTsexY8coKCjAz8+P/Px8tm/fTmFhIcuWLTPr9/iECRP4+OOPS7owZWVlsWXLlgr3N+U8Z+zYsXz11VecOHECg8FAQkICSUlJJn2niCLnz59n3759FBQU4OTkRL169VCpVLi7u5fcm4Ci+/8FBQUlhcgdO3awZ88eo46hUqkYOnQoixcv5saNG5w9e5ZVq1bVKN6wsDBOnz7Nli1b0Gq1LF++3OSWrMbcgzTX8e31mrGukuKlGYwaNYqPP/6YNWvWMHDgQEJDQ3n++ecZP358SXsXhULBK6+8QmhoKP3792fv3r189tlnJa0xP/roI06cOEHv3r354IMP+OSTT0puNrdr14558+bx0ksv0bdvX65fv87cuXNLjj99+nR8fX0ZNGgQDz/8ME888QQDBgwo2f7EE08QFBTEsWPHeO211wgKCipZMysxMZEJEybQvXt3Zs6cyYsvvlgyBTspKYmff/6ZmJgY+vXrR48ePejRo0epteGEfajNObx582aio6NZuXJlSQ726NGjZLZPZTkM8PTTTxMYGMjw4cMZNWoUnTt3LjN7szJTpkxh2bJl9OrVi23btvH+++/z5ptvEhoayrZt2/j0009LZr75+fnRoEGDkvYXxWsqBgcHG108iI6OZty4cfTo0YOnnnqKV199FV9fX1xdXfnyyy/ZsGED/fv3p1+/fnzwwQdGndi6ubmxcOFCPvzwQ/r06UNCQgLBwcFVvm/8+PH069ePiIgI7r//foYNG1Zq+4IFCygsLGTUqFH07t2b6dOnl7ogDAoKIiEhgdDQUD7++GM++eQTo9a0KVbcljMtLa3UmPboo4+Sn59PaGgoDzzwAP379y/1vkceeYRNmzbRu3fvcmcHvPbaa7i4uDBkyJCSNsR///vfjY7LVB9++CFRUVH06dOHJUuWlCp6eXl5sXTpUj777DPuuusuwsLC+PLLL9Hr9SU3SZ577jkUCgXvvPMOK1euLLV+wV8FBAQwadIkHnzwQfr27UtcXFypf/vQ0FACAgLo169fqad+jaFSqVi2bBmxsbEMHjyY0NBQZs+eXdKu+fHHH2fkyJFMmjSJ4OBgXn311XLXySn25ptv8uWXX9KnTx/Onj1baZvTZ555hlmzZtGrVy+j18pwc3Pjiy++YMiQIfTs2ZOJEyeyePFicnNzmTRpEjNnzuTixYvMnj0bKLoZUPx7c/ToUTIzMwkODi5phdWnTx+eeuopOnfujEKhsEjbm5kzZ7Ju3TqCg4N57bXXSl1QX79+ndmzZxMSEsKgQYNo0qRJyez51atXEx4eTnBwMD/99BMLFiwwW0xhYWE8+uijPProowwdOpTQ0NBS219++WVat27N+PHjCQ4O5rHHHiM+Pp7c3FxmzpzJnDlz8PT0pFevXowdO5Z//etfVT4JaupYImyrqu/G6ny/hYWF8fDDD/PII48wdOhQunfvDmD0mkE1GTvqgtGjRzNp0iSGDBmCr68vTz31FH5+fkybNo3HHnuMYcOGlfvEfbGEhAQef/xxevTowQMPPMCECRPo06dPleN8ZXr37o1Wqy1p4xcSEsL169dLFWjmzp3LJ598Qo8ePViyZAkjR44s9RlOTk4MHTqUvXv3lroZXNNzoqqO91cuLi5MnTqVCRMm0KtXLyIjIxk6dChPPvkkL7zwAsHBwYwePZqdO3dW+fdR0xj+Sq/X8/XXX9O/f/+SYkPxObUp3+nGqOwcpbK4Kjq3NYeqznEnTJhAXl4e//d//0dUVBQbNmwgNjaWadOm8eSTT3L9+vWS3HrhhRfKnKs4yu/GX5ny85lyfljZGO3k5MSyZcvYuXMnoaGhzJs3jwULFpi1ZXJlqsq1ysaGOXPmEB4eTlhYGE2bNuXtt9/m1VdfrfEyDuZQ1YNF169fR6VS4ebmhlarLTlnLs/+/fs5ffo0Op0OV1dX1Gp1ybWvsTeABw4cSEZGBt988w0FBQXk5uYSFRVl1M9SUcEEoGPHjqxbtw6dTsfOnTtL7oOZw7hx4/jpp5+IiorCYDCQl5fH9u3bK/x7quwBkKrce++97N27lw0bNqDVasnOziYmJqbKBwdF5co7f6pMUFAQ7777bslMxoceeqhUF5rKzJw5k/bt2zN27FhCQkL44IMP0Ov1NGzYkLlz5zJ79mwGDBiAi4uL0e01jfHII48QHh7OpEmT6NGjB+PHj6+0aGjKec7IkSOZOnUqL774IsHBwUybNo0rV66Y9J0iihQUFJR8//Tr14+srCxmzJhRcr+2T58+3H///bi6ujJ79myef/55evfuzbp166rVsWjOnDnk5eVx9913M2vWrFKzuquj+Dvz/fffL7m/07VrV5O7OVZ1D9Jcx6/qnqKwLoXBmLnDQgghRDWsXLmSFStWlJopJoQ9+te//kXz5s1rtI6uEMI0586dY/To0URHR1fZPshehYeH89Zbb5Vaz1wIIb8bQlSlX79+9O/fn3fffRco6lhU/LCfTqfjtddeY+PGjdSvX59HH32UH3/8seR3atGiRSQkJPDBBx+wbt06Fi1aRGpqKvXr12fUqFHMmjULtVrNsWPHmDVrFllZWURERJQ8JFieuLg43n77bU6dOoWTkxOPPvooU6ZMKXWsS5cuMXjwYE6ePFnqe//HH3/km2++IS0tjZYtW7JgwQI6d+5MdHQ0s2bN4vLlywwZMgSdToevry8zZszgwIEDvPzyyyWFGa1WS5cuXdi6dSs+Pj5A0QMQDz74IBEREeVe3+7cuZOFCxeSkJCAs7MzwcHBvPPOO7i6upY7BkVFRfH+++8TFxdXMov79ddfx9vbm4cffpj77ruPcePGAWWvpw8fPsz8+fM5d+4cDRs25Pnnn+f+++8nPz+fJUuWsH79erKzs/H09GTChAk88sgjZsoU+yTfEUJYj16vZ8CAAXzwwQdlHn52hOML00jxUgghhNlJ8VI4gkuXLjFmzBhWrVpltlkkQojKbd68mbCwMG7cuMHMmTNRKpUsXbrU1mHZjNx8E6J88rshhBCiIvIdIYRl7dq1i27duuHs7MwXX3zBDz/8wJYtW6y2JJ2tjy/MxzEfURZCCAEUtYVYu3Ztmdfvvfde3njjDRtEVHtV1Mb0888/t0jLUGNdvnyZe+65p9xt69evx9vb2+jPuueee8ptfTNv3jyrrQtaV3z88cd8++23TJkypVTh8tNPP+Wzzz4rs3/Pnj354osvrBliKbU1LpBxSFTPTz/9xKxZs1CpVPTu3btUG3phPU8++SRHjhwp8/o//vEPpk6daoOIitjL91htPecwl8OHDzN58uRyt9X1tdrkd6N2sedcE0KYX22+ZhKiLomMjOSll16ioKCAgIAAlixZgrOzs9Wu/Ss6vqh7ZOalEEIIIYQQQgghhBDCIqSQLIQQQojqkuKlEEIIIYQQQgghhBBCCCGEEKJWUNo6ACGEEEIIIYQQQgghhBBCCCGEACleCiGEEEIIIYQQQgghhBBCCCFqCSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBSleCiGEEEIIIYQQQgghhBBCCCFqBbWtA6gtsrOvo9cbSv7b3d2VzMxcG0ZkHrb+OZRKBU2bNrDZ8R1Fcf7a6t9bmZKMKvkyWv+2GBo3seixrPkzSv5ax1/H3+pyd3cl81I66oR4tB06gUJhxuiMOLYNx9iqji85bB135nCNcsJgQB0Xi7a1Hzg7WyDCytk6jysi+Wsdpp4DK67koLhxA30LL0uEZxa2yHFHz9/4+HhmzZpFTk4OTZo0Yf78+bRp06bUPosWLeKHH36gefPmAAQHBzN37txqHcfUcwhLcW9anyu79qNv6oa+pY+twylDzh9qB3u9B2EuNf37kPy1HkfKYbkPYX8kfy1D8tc6zHUObHRu6PWoT0ajb9wUfatWJh/XbHGZmeRv7VMripfGXNzqdDreeustdu3ahUKhYMqUKYwbNw4wz4WvXm8o80tv7QvhFSt+4qeflhMU1J0XX5yJq6urWT63Nl7QC/O6M3+t/e/t8tkSGsx9FYVej0GtpiB8CDeenk5h334WO6bktH0pb/ytFp2ORiOHoDlxnOszXiLvX3PMF5wRbJ2Ptj6+KJvD1f03qf/GHOot/hjd0OFcXb7C3OEZRfLIcZl0DlxQQNPh4ajOn+Pq9z9TMGS4BSI0D8lx65oaoqfvAAAgAElEQVQ7dy4TJ04kIiKC1atXM2fOHL777rsy+40ZM4aZM2fW+Dgmn0NYgk4HY8bQeO1aDGo1V79eTsHwkbaOqoxa9/fmgGo6/n777Vekp6fx0kuzLBVarSF5WrtVN4eTky8ze/YsPv30SzQajaXDMzvJR/tS3fw1GAxMn/4UEyY8RF8L3u+yFMlf+2LOc+AqP8dgoOHUSTiv+hWAvGnPcf2lWdDAskU+yVkBtaRtbPHF7aZNm5g4cSJz5pS98bx27VoSExP5448/+Pnnn1m0aBGXLl0q2T5mzBhWr17N6tWrq124rA2OH49k3qszeaZhI9Kioxg79l5u3Lhh67CEqJTTpt+58dq/CNfr6edSn9N6PfX+2Ejjv9+LZt8eW4cnHMWWLWhOHAeg/qdLUFy9YuOAhDCe9to1Hl2yEE+gcPMmVGfP2DokIYzmvOInDp89w9/0evh0ia3DEbVEZmYmp06dYvTo0QCMHj2aU6dOkZWVZePIrKPemlWwdi0ACq0W11f/CQUFNo5K2AuDwcBbb73OggXvcO6cnDOIumXVql9Zu/Y39u/fa+tQhKi2mJhT/PzzDyxe/LGtQxHCqjQH9pUULg0KBfWXLKTJuIiiB/aEsDCbz7wsvrj9+uuvgaKL2zfffJOsrCzc3NxK9tuwYQPjxo1DqVTi5ubGkCFD2LhxI08++aStQjer7956nedzshm/YS3jgPG9Qpg3bzbvvfehrUMTonyFhbjOepFJQLtefWg7djwD3n+XlX1C6bdhHQ2fnkz2rgMYXBvaOlJh7/78s+SPihs30OzbWytnOAhRnt+XLOSiwUBv4GfggT83cyOgna3DErWAtdpumiJp+X+5H7gB/Lh7J2NzsjE0aWq144vaKTk5GU9PT1QqFQAqlYrmzZuTnJxc6voOYP369ezevRsPDw+effZZevToUa1jububp1ONWa38uej/Fy+GJUtQxcTg8fsqqGXXrR4eco5eF507d5aGDRsydux41q1bw3PPvWjrkIQw2pkzp6lXrx7Hj0fRv3+YrcMRolr2799LePgQoqIibR2KsDFTO0guWbKEDRs2oFKpUKvVzJgxg/79+9vgJzGO07rVHAciGjVicL8wlhw+SL3DB6m3ZhX594+1dXjCztm8eGnsxW1ycjLe3t4l/+3l5UVKSkrJf5t64WtL+Tk5rN2xnbeBwl4haA4f5NOTJ+h0/iyPPfYkHTt2snWIQpRRb80qLiVdYr1SxaGffsG1UWO8vLy5/4Vn+cLPn4j48zR4cy658z+ydajC3h0+DIC2U2fUMafQHNwvxUtRZ3y54if+CbjUb8CsvOtM2PIHTHna1mGJWsBabTdrzGDg46hjTAY6e7bg29QUJuzcTsF991s/FlEnPfjgg0ydOhWNRsOePXt4+umn2bBhA02bGl8Az8zMrV0tpW7epNmOHSiAjEEjuV5goNULz6J79z2y7xtv1XW5K+Ph0ZD09GsVblcqFbWzMCw4cGAfffrcRWhoX1au/MXW4QhRLWfPnmH06AhOn46xdShCVNvZs3EM6Nufffv2kJt7DVd5UN9hGXOddmcHyZycHMaMGcNdd92Fj48PQUFBTJo0CRcXF2JjY3nooYfYvXs3zs7ONvqJKmEwUG/j7zwPPDTm72w7d5ZXOnfhw7RUnJf/V4qXwuJsXrw0B3Nc+JZ3cWatp1F3zfsX/gY9Pt26wf69MHEi7v/7H8+1bsW33/6HL774wqTPl6dqhSU4f/8t3wNj+oTi2qgxACNH3kPjxo15YdpkPlMoeOPrL+gQ1J2b//eIbYMV9i02FoAbjz5Bw1kvojm438YBCWGczMxMopMvcy+QP+MlfN6ex3O7dvBOYSHUwXWAhPkY25nElvSJCfxaWMD+pk1RRtzP0/9ZhurEcZDipcPz8vIiNTUVnU6HSqVCp9ORlpaGl5dXqf08PDxK/nz33Xfj5eXFmTNnCAkJsXbIZqM5sA/FzZvQvTuLfv6Bd96ZxwCNhtXnz6E6HYtOHkoVJjp37iwdO3aia9dA3nyz7i2XIxzb2bNxTJ48lU+l1byogy5s3UJEQjx+Xt7Ex8cTGBhk65CEDZijg+Sdsyw7dOiAwWAgJyeHFi1aWP3nqYoq5hSXEy8QrVCw/O0FTLx2jSHhd3OfkxNhO7ehTExA36q1rcMUdszmxUtjL269vLy4fPkyQUFFXw53zsQ0x4XvX5/areppVLO5eZNt33xDGHDln69SkJWH8rW3aLrhd/4RG4t/QiKvvDKPhg0b1ejjrfZzVECe2rVPiowMNPv28Csw79nnS23r27cfOw9E8cOzU7l/1S90fuFZ/pGdRb9pz6GoJU+bCzty4wZcvoxBrSb/vvtpOOtF1JFHQYo/og7Yu3c3dzu74JR7jet9+/FDGz9aXYjn1YP7aHD3AFuHJ2zI1m03jXnw7fBv+2kBtO3QAQYPRP2fZVw9EYV3LX1oTh7msx53d3c6derEunXriIiIYN26dXTq1KlM7qampuLp6QlATEwMSUlJ+Pn52SJks3HavROAs716sXjxvzl8OJoFY0Yx7UI8S/74nRtSvBQmunAhnvvuuZc2vq3JyMjgypUcGjduYuuwhKjSzZs3uXbtGj169CQp6ZKtwxGiegoKOBd/jvaA/40bJCYmSPHSQZmrg2Sx3377jVatWlW7cGnOe+2VXift2sJKYJifH14+zfCiGR9/spDpU6ZwpKAA9/UrYc4cs8VidFzCYdi8eGnsxe2IESNYsWIFw4YNIycnhy1btrB8+XKgbl/4Ov/vR3Zfv87UVq0pGDIcAL1nC/Kee4Fmb8/j7vr12bx5E3/72zgbRyrEbU6bN5Ku13NeraZnWHjZ7U5OPPbZVzzp7s6qLz5j9ptz6bB6FYvXb8bJyckGEQt7pbqYCIDexxdDs2ZoW7VGnZiA6uwZdJ062zg6ISoXH3+eLvk3AdC1DcC1z130uhDPkd9WMkCKl8IIlmi7aeyDb3/8/gcDgJstvMnzaUsX4HhkFBobPjRXEVs8zOfoD/C9/vrrzJo1i6VLl9KoUSPmz58PwOTJk5k+fTqBgYF89NFHnDx5EqVSiUajYcGCBaUeSq2L1EeLWtm/d+ECTzzxD7y9W7Lg5X8RNG0Kr21cT+PpL9g4QlHXJZ6OIWj3TjzeeYMAPz/Onj1Dz569bR2WEFXKzMzArXETWioUZGSkU1BQIPcGRJ2hOnGci0BrwO/qFS4mXrBxRMIeHDx4kIULF/LVV19V+73mWjqhquukJitXsREYOnREyX5hYcNZ5N2Sz3JymLLqN3KemmFyHNWNy1Ic/RquNlKa40O2bt2KVqut8ftff/11vv/+e4YPH87333/PvHnzgKKL2+joaAAiIiLw8fFh2LBhjB8/nmnTpuHr6wvARx99xOjRo7nvvvuYPXt2nbrw1fz6Pw4C3Z96ttQaKDcfegyDkxPjMjNY978fbRegHTE1T8VtTvv2sAXo3649mkpmt2nffI8Jjz3BUYOBgqhjvHPvcDDUonWJahnJ0epTJcQDoGvdhmee+Qe+qSlkA+qT0bYNTBjNkfM+OfECvoWFGJydMTR1o7B3H+4GDu/fa+vQhBmYktt3diYBKm27Wfw9fGf3EWs4HHOSvoDepxU6P3/aqVScz0hHkZNtleMLyzJ1bG7bti0rVqxg06ZNrFixAn9/fwA+//xzAgMDAZg/fz7r1q1jzZo1/Prrr4SFhZkldpvR6VAfO0o+8OuhQzzyyOMA1Bs4mInAt5HHwEG/70zhyOcJf2UwGLgQf552OdmoLibSTqcnPv68rcNyeJKjxsk6GY1nRjrNQ7rh6eZOcvJlW4ckqiC5fVteVCTOQD3AT6vl0skTtg5JmMAa12nFHSSLJScnl5pdeezYMV5++WWWLFlScp5c2yhysjEcO8pWoN8TU2+/rlDw1r8XMw+4GnkMRVqazWIU9s8sxcuFCxfSr18/3njjDaKioqr9fmMublUqFfPmzWPLli1s2bKFBx54oOT9dfXCV5GRwYX9e2kKNBr3QKltBnd3CoaPYgywY88u8vLybBKjPTE1T8Vt6kMH2Af06T+w8h1VKnIX/JuChUv5r1LJymNHiJs2RQqYFZAcrT5lwgUAzri58+efW+jTqg1fAmq5mKgzHDnvky/E4wPovLxBoaAwJJTuwMlbeS3qNlNy+87OJEClbTeLWbv7yLn0NDoCek9PUKtp6+nJGWT8tReOPDbXlOrsGZS519jk7k7XwEA8PYtuUBk8PJjo7c2vWi3qU/L7UV2Si7dduZSIQquleG59+6xMzp8/Z9OYhOSosa6t/AUPgwGFVouvWi2tY+sAye3brsadpvgsvA1w8UycDaMRprLGdVpxB0m9Xk9WVhZbtmxh+PCijovHjx9nxowZfPLJJ3Tp0sU8P5QFaPbt5SDg16ABzdu0KbWtU4+e3Ofdkg8Bp21bbBGecBBmKV6uWbOGb775hnr16vHss88yfPhwli5dyqVLcjJSGadtWzhkMNDTozmGRo3LbM8fMQo3ILBePQ4c2Gf9AO2M5Kl5KDIzUZ87y1GlksBhI4x6T/6Eh1B98R3zVCpm/fIzLu+8YeEo6ybJ0epT3SrybMnPJzx8CE+Ne4BvkZmXdYkj531y0iV8AL1X0VoYuvYd6NrAlRM3b6K8nGTb4ITJTM1tYzqT2Kr7iMFg4HzOFdoCeo/mALRp17GoeHncsW9u2QtHHptrSh1dlPsbXRtx7733ltrW7e4B5AAXfl9ng8jqNsnF2y5u3IA/oOsSiEGtpn16GvFxsbYOy+FJjhon68xpmt/6c5vCQi7eWv5D1F6S27ddiT+PG6Bv4FpUvJRrtTrNGtdplXWQnDdvHjdv3mTOnDlEREQQERHB6dOnLfPDmkCzewe/A4O7lr++63MTH+YzgM0brRmWcDAKg8G8U6AMBgP79u3jvffe48yZMwQHB/PAAw8wevRolEqz1Eotoqbr/ZjC9cXpzPzvN3gOGc6UH1aU2a7IzsK9c1vmGQxkPD6Zue++X+1j2KpHdLHa2iu6ruZpRYrz1xr/3k6bfsf14QdorFQSFZdAo3IK7xVRbVzPkEcm8AJw7w8rStZ5rQ5r5rQt89fecrQypvTqbzTpYeqtW01EcE+GTZrCuJ696XRXMMfcm+ESY/k2WrYeY6s6fm0dgytSV/P+zhyuTk4EBvhw5OpV3P82jmuffgmA6/gxeGz/k5jFn+E8foLFYr6TrfO4InUtfytTm3O7JufAaWlphHXvSIZWS84vaygcMJD4997ikY8WEDn2Aa4t/dzSYVeLrHlpmrqUv7bU4O151F/4IYEeHnyxdi3+/rfX3nb+9iteevl5/AKDeGLrbhtGWaSunj/U5lysieqOvxueeJi1a1fz3T+moTm0n0NHjzA9oB2/7z1ijXCtrqZjt1zDWU91cvi79q25mJPNx8As14YonnmOF174p5UiNZ2j3IeoiD3mdnXy9/DAvnxw6gQbho0g74+NtNFoOHMpA8Udy3/VZo6ev5Wpq7ltjTUvm4wYROjRI7z55nv0/sfTZbarzp8lIjSYlxs25K4zF8GMf1+y5qUopjbnhyUmJrJmzRrWrFmDQqFg+vTpeHl5sXz5cv744w8WL15szsPVeZr9RdOvZw8dVu52Q1M3CkP7MmzPLqZu2gA1KF6KsiRPTaM5dIDTQIuGjapVuATQjbiHjyZN4cGv/sPQl19AufcwuLhYJtA6THLUeMq0opaJkZcu8Uqv3ija+DNYrWZrZgb3pqdjqCPrHwvHy/uCggKycnNpAeR7tyx5Xd8rhE7b/+Tslj/oaqXipbAse8zt+PjztFWrQastmXnpGzaICx8tgGiZeWlP7DF/LUV1OpZs4MLVawQHB5OTc7NkW2HvPtwHzI87zRM2i7Buk1yEpJMnaQMU9g4Bg552R49w/tJFW4clbpEcrYReT8aVHIqvzNrkXmOvLJNQZ0huQ05ONm6AtlcITf7YCHo9OTnZNG3qVuV7Re0luV2JwkIyT0RzDugxdny5u+j82vK3Ro1ZffUK/WJOoevS1boxCodgluLl8uXLWb16NQkJCYwcOZIFCxbQvXv3ku3Dhw+nb9++5jiU3VBkZKA/E0c00GXM3yvcr2D4SEL27CIxNYW0tDSaN29e4b6icpKn5qE+dICjQFDHTjV6f5e33uOB335lRtJFPv90MXkzXjZvgHWY5Gj1KVNTuAJkXrtK69Z+oFQy1MeXTRfiuf9kNIUDw20doqiCo+Z9amoKHs7OqPLy0Ht5lbxe2CuEzsC5yGPIqX/dZs+5HR9/jgC9HgB9s6JbkepuPfAEks7E0ejGDXk4qY6z5/y1FFVcLAeA7p06o9FogNvFS12HjvR3bcj43Gvkx5+nnp+/zeKsayQXbzEYuJx0kXaAtmdvFHo9zf6zDF2hluzsLLmBbkOSo1VTZGeTbjDQ2sUFbUsffM+eIfncWVuHJaoguX1b9pUruFF0raYA/JVKEhMTZOytoyS3q6aKjWFjQQHh9Rugdm9W/k4KBeF9+/HvjevR7NouxUthEWYpXu7cuZPHH3+cwYMH4+TkVGa7i4sLixYtMseh7IbmwD6iAb/69XGt5Msuf/goXOe8wkCDgV3btvD3ByZaL0g7I3lqBoWFaI4d4SjQ9e4BNfsMtZqZiz9l0MRxrFv0b8InPwWuMiUfJEerzWBAmZZKNNChfUdUKhUAYb1CeOVCPMoTx0GKl7Weo+Z9enoaLdRFp2G6Ft4lr2t79qIjEHcxAfLzoV49G0UoTGXPuX3h3FkCCgowKJUY3G6dx9avT0D9+pzNyyMk5iTa4F62DVKYxJ7z1yJu3kR1IZ4ohYLOPcvJfZUK51696br9T6J+/R8hL82yfox1lORiEUV2Fhfz8xno7IzeuyWF3XqgANop4Pz5c/TsKTfQbUVytGrKtFTSgWZNmqILaIfP2TNcTnK8dRPrGsntW/R6svOuFxUvuwdjUCrxKywk4dxZunXrYevoRA1IbldNE3WMjcCQDh0q3a/NyHswbFzPhT9+p8XUZ6wTnHAoZmlGHBISwsiRI8v8wn/99dclf+7Xr585DmU3NAf2cRAI9mtb6X56P3+0HTsxVKtlz6pfrBOcnZI8NZ36xHEUN29yxNmFoLtq/hSSZvAwvuzYmedzc9F/9R8zRli3SY5WjyL3GoobNzjl5ESHTl1KXvfqcxduwKk9tl9TSlTNUfM+IyOd4l4K+uaeJa8bGjehXcuWxOp0qKX9Zp1mz7l9Ie40AYDBzR1uPTgC0LaFF2cA9XHJ3brOnvPXElRnz6DQ6znu6kqnrkHl7lMY3IsBwIHtf1o3uDpOcrGI6vw5LgItfVqBQoG+jR/6Ro1pp9USf8w+17ysKyRHq6ZMTSEdcG/mga5tO3yAyxkZtg5LVEFyu4giJ5tsg4Gm9ZzB1RW9jy/+QOLxSFuHJmpIcrtqimNH+QMYFDa40v20AwYyFNh+6BBotVaJTTgWsxQvlyxZUu7ry5YtM8fH2yXNgb0cArrfdXeV+xYMH0U4sOvgAYvHZc8kT02nOXQAPRCp0xIYWP6NGaMoFAS+Mod+wH+XLIRbreccneRo9ShTi9a7PF+/Pn7+t9uvabt0ZSiwQwo/dYKj5n16ejqeuqKxz+BRug1L2+BexAKaQwdtEJkwF3vO7fjz5wiAkvUui/m360AcoI4+bpO4hPnYc/5agvp0DAAnFAo6depc7j7anr3oBxyIO23FyOo+ycUiqvjzXAS82gYUvaBQoA3qRgCQKOcLNiU5WrXimZfuLVqg8/PHDcjXFpKbm2vr0EQlJLeLKLOyyAKa3uoYpmvjX1S8jI2xaVyi5iS3qxZ9YA/NAa+BgyrdT9/Sh8HNmrEl/ybqE3INKMzPpLax+/btA0Cn07F//34MBkPJtkuXLtGgQQPTorNXubmoj0dxEJh475gqd88fMpyOCz8k/0YeCQkXaN26jcVDtCeSp+ajPnSQ80AT14a4ubmb9FkFQ4fzSnNPRqWl8vDWzSiHDjdPkHWQ5GjNKFNTADivVjPkjnFR27Ezg4FP09OYVFAA5bQBEbbn6Hmfnp6GZ0E+cHvNwGK+AweTuHY1+r274SlpvVLXOEJuJ15Owo+yuevXszc7Nm1AfUIeHqmrHCF/LUEVF0shEHc9jw4dyl8XvrB7T0KBx3Oy0RcWotRorBpjXSO5WFpB3GmuAu4dO5WspqoN6k7A7p38LjfQbcIcORofH8+sWbPIycmhSZMmzJ8/nzZt2pTaR6fT8dZbb7Fr1y4UCgVTpkxh3LhxVW5bsmQJGzZsQKVSoVarmTFjBv379wdg0aJF/PDDDzRvXvQQUnBwMHPnzjX576QiyrS0ouJlSx90/m1RAC3VGlJSkgkIaGex44qakfG3NEVGBllAk8ZNAND5+eO3cxu/JFywaVyi+iS3jaTTseP8eYYA2q6BVe7er/9Apq36BXbthO7Blo9POBSTipevvvoqAAUFBbzyyislrysUCjw8PJg9e7Zp0dkpzZFD5Op0xCuVdCpvTZS/0PbshaFxE8Kv5LDnt19p/dyLVojSfkiemo/m0AGOgmmzLoupVLR//EkC57/Nhg/eY7QDFy8lR2tGmXZr5qVOR6tWrW9vcHWlf6vWPJKYQOGJ42hk3bVaydHzPv3yZToVFmJwcsLQsFGpbYqwQbQGEnfvxFOrBbVZligXVmLvuZ2fn8/VvOs0Bwo8Shcv2wwKJ+6deahjThW1DZLcrXPsPX8tRR0byxnAy82twhtfBg8PmrVqTZPEBOK3/EHbkfdYN8g6RnKxtJSYU/gABv/by85ou3UnAIi/LGsH2oI5cnTu3LlMnDiRiIgIVq9ezZw5c/juu+9K7bN27VoSExP5448/yMnJYcyYMdx11134+PhUui0oKIhJkybh4uJCbGwsDz30ELt378bZ2RmAMWPGMHPmTDP+jVRMezmJPKCRb2sK/Io65vjqdSQlXZLiZS0k429pysxbxUv3orWFdX7+tAYuZaTbNC5RfZLbxlElxLNHq+VhNzcMjRpXuX/T8CG0WfULkZs20PXZ560QoXAkJt1R+PPPovU6/vnPf7JgwQKzBOQINPv3chjo0syj3IWBy1CrKRgYTvjqlWxat4aJUrysFslT81AmXUJ1OYkj9eoRaES7Y2PcnPgwT7//LvOPHeHetDQMzZtX/SY7JDlaMyUzL/PyaN3ar9S2hkHd6ZqYwP41q+gvxctaydHzPiM5ieaA3r0ZKBSltulbtaZDgwbEXc+l5ZHDaPuE2iZIUSP2ntupqSl4NnBFefUK+r8UL307dyUJKLh5E9WZOHQVtM8UtZe956+lqOJiiQY6dehY6X6FPXoSmphA5O/rpHhZBXPkoq1mtVnC5fhz+AL6NrfPeYvbxp67es1ixxUVMzVHMzMzOXXqVMkaa6NHj+bNN98kKysLNze3kv02bNjAuHHjUCqVuLm5MWTIEDZu3MiTTz5Z6bY787FDhw4YDAZycnJo0aKFiT959WUlXcQdMHh6ovfyxlCvHj75+SSfPwdhlbckFNYn5wKllRQvby2XoPPzxxe4dO0aBoMBxV+u5UTtJbltHMXJk+wBFnfuatT+hX37MRjYExVJV50OVCqLxicci1nWvJRf+OrRHNjHIaBHUDej31MQPqRo3cuYk6WmtQvjSZ6aRnOoaM3Vww0aENStu1k+U+/lzdAhw0gCYhf/2yyfWZdJjlaPMiODbKDQYMDdvXQbY22XrkwA/rd5k01iE8Zz1LzPSEnBk7JtN4sFBLQjFnDatsWqcQnzsdfcTklJwcvFBSi75qVGo8G3QQPOA+rjkTaITpiLveavReTno4o/TzTQsYquOtoeRa1jDx89YpXQ7IEpuVg8q23Tpk1MnDiROXPmlNnnzplrP//8M4sWLeLSpUtVbgsKCuKXX35hzZo1vPPOO8yYMYObN2+W+XxzSbqchC+gu2Pmpc6vLc0auFJg0HPlzBmLHVtUrqY5mpycjKenJ6pbN3lVKhXNmzcnOTm5zH7e3t4l/+3l5UVKSkqV2+7022+/0apVq1KFy/Xr13PvvfcyadIkjh07VqOfwViZycl4APrmnqBUomvjhy+QEnvKoscVppFzgSLKrMyiNS89vYCi4mVDwAnIzs6yZWiihiS3K3d2zy7cAY8g4+796n1b0b9ZM3bk30R96oRlgxMOp8YzL0eOHMnvv/8OQFhYWIVPmmzfvr2mh7BPBQVojhziIDBwiPFtMgvDh+AHOBcWcuZENO3N0bbTAZgrT019arc2rTdRU+pDBzAAkXk3CAw0T/ESQPvARKb+sZEvf/6RBW+8a7bPrStkLK05RXoa8YB/8+Zl/t60nYuKl3POn+fatas0/EtbTmFb5sx7Y8bn2jgGp2ek4wkYmjUrd3vbniEciIpEc3C/xWMR5uMIY3pKymW8b7WDNZRTfA9o4UXcubO0PnGc/AcmWjs8YQJHyF9LUJ09g0KvJ7p+A+4LrPzhVG1QN0KBLy4mWCe4OsocuWhPs9oUV3JIun4dH7W6qPhTTKlEF9SNgH17uLRtM43bSftNa6lL4+XBgwdZuHAhX331VclrDz74IFOnTkWj0bBnzx6efvppNmzYQNOmTav12e7urmVe8/BoWOa1yMx0PIAmndqCR0Po2AGf07FEXrxQ7v61VV2KtabqUm5bTUY6WUBj75YA6Fq3AcBXrycpMRE3N/eK3ytqDclt4x06coi+gLZj+eu4lye0/0AeXvULhp3boYrzYSGqo8bFyzfffLPkz++//75ZgnEE6uORKG7c4KBazYwBA41+n96zBYVdgwg/cZy9y7+l/XsfWi5IO2KuPDV1LYratN5ETWmOHOIC4OTigqenZ1W7G61g6Ageb+BKx+ws3og8hnP3Hmb77LpAxtKaU6ancR7wb9myzDZtl654AKPVKj5Z+BGvzn4dgLS0NFJTk8sskOsAACAASURBVOnYsTMajcaq8YrbzJn3xozPtXEMTs/JKWobW8HMS//wIXz71X/QHD0MhYUg+VonOMKYnpKSjPeta/2/to0F8GvfgTPnzjIy+riVIxOmcoT8tQR1XCwA0QYDMzt1qXRfbWAQ3YFzN26Qm52Fa1O3Svd3VObIxcpmtd1ZvLTUrDZjGFv4ITGOi0D35s3xaP6XB/JCQwjYt4fkqCMMtMPCSm0tFpkjR728vEhNTUWn06FSqdDpdKSlpeHl5VVmv8uXLxMUVPQA+515Wdk2gGPHjvHyyy+zdOlS/P39S173uOP7++6778bLy4szZ84QEhJSrZ8hMzMXvf52ZzAPj4akp5dtY5yakYkHkKF2xZB+jQberfABfotPKHf/2qiin80SlEpFueODNci5QFn5qakogHqenuQDuLig8/KmVfJlLh+PJNDB7mHVVZLbxjueEE9PqNYSIPUHDab9ql+I2riertOes1xwwuHUuHjZq9ftljjVPcFxZJr9+0gDchQK/O9o+WKMwsFDCT9xnP/9uZXHLBKd/TFHnprjqd3atN5Ejdy8iTr6OAeA4F69zfvZzs40ibif0B/+y9aFH3DP18vN+/m1nIylNafMSC8qXt5xIV5M79sKfaPGzL96hZCffyAlNYWLFxM5cSIaLy8vcnNzWbr0c+4y0/qtonrMlffGjs+1bQzWarVcuZFHMyDfvYKZl71DiFUoIC8P9akTaLvJRXFd4AhjekpKCl6FWqD84rtfz97E/b4e9YloMBjKrOkqai9HyF9LUJ2OIRdIKSzAz6/sOcmdDI2boGrdhu4JFzi+YR19/+8R6wRZx9SlXCxvVpuxjC381DsaTQIwytunzPZ67ToTAMRGRtWZIpCxalosskbhxxw56u7uTqdOnVi3bh0RERGsW7eOTp06lTqHBRgxYgQrVqxg2LBh5OTksGXLFpYvX17ltuPHjzNjxgw++eQTunQp/WBFampqyQPJMTExJCUl4efnh0XcvEnmjTyaKRQYbs3s1Pn54wMkZ6Zb5piixurS+GstOWmpuFG6Y47Ozx/f5Mskn5QWmXWF5LaRCgo4npPDBEDbroPRbyvsN4CBwJ5jx+iq1YK6xiUnIUoxSyZ9/fXXhIaG0qlTJyIjI3n++edRqVR88MEH9OghN9vupDmwl0NAd7+2KJXVW3K0IHwIgxZ+yLOJF0qezhPGq2memuOp3TtVtN7E7t278fDw4Nlnn632782dF2cWeTp13wkoLOSguzv9wwea/xgPTWDCD//lt107eMyIz66tT+CaypSx1NTWxjXdVlk7TktTphcVLwM7lHNCpVCgDepGy9072fr8i6wyGBg9OoKwsEE4Ozvz559bmDTpIdav34y/f4BV4hXlMyXvjR2f72TpMRiqHqOSk5Nxc3ZGlZdH/TY+1C9nfw+PhrjUq0fyzZt4n4qEIQOqFVN12eu4akv2en6clpZK9xs3gLJrXgL4dw9mvUaD8uoVlAkX0Lex0M1QYVH2mr+WoD59mkignZc3aiNu1GiDuhOacIGjWzdL8dIINc1FW85qMzdV/HkSAe+2ZdvCaoO6EwBsT7pkseOLypkyXr7++uvMmjWLpUuX0qhRI+bPnw/A5MmTmT59OoGBgURERBAVFcWwYcMAmDZtGr6+vgCVbps3bx43b94stdbrggUL6NChAx999BEnT55EqVSi0WhYsGBBqdmY5qRMSyUd8GjgCrfugen8/PEFLl3LtcgxhXmYei5gyXsU1rwPkZ2RgRugv+OhU12Hjvju3U3y6ViLHFNYlpznVkxxJo5ooKtvK/T16xv9Pr2PL/09PVmSmsq0qGNoe5p54otwWGYpXn7zzTeMHTsWgA8//JDHHnuMBg0a8M4777BixQpzHMI+6PVoDu7nENCjb/Vn+xT2CqFFw0a0uHaVU1v/IHDYSPPHaMdqQ55aar2J4qd2LdXKxGXrDlyBfQolL7fvav5jBPYmon4Dnr16lcRdB3DpWHFrAntu12JKjpra2rim26pqx2kxBgPKjHTigYig8tcAzh81GqfdO/HbuYMnv/3h9obcXEbkXuOlkFBemPwYq7bsqnC9A2F51hybLT0Gg3FjVEzMeZrfagN71aUR+RXs3867JbHnz+H25w6uTXjc6Hiqy5rjanXYsmWWOdSG8w5LSEtLxSu3KF/Km3nZtm0AcbfGVHV0FAVSvKyT7DV/LUEVF0s00KmS89c7FQZ14661v/H18UjLBmYnapqLtpzVZm6K+PMkAN5dA8ts07UNoG09Z77My0ORmYnBXdZeszZTxsu2bduWu8/nn39e8meVSsW8efPKfX9l23799dcKj1tcJLUGZWoK6UBQ0yYlr+n82+IO5Om0XL9+nQYNGlgtHmE8U88FLHmPwpr3IXKyM8sUL7WB3WgDHEuIN/vxhOXJeW7FLu7eQTPAtUtXrlbzvX3Ch/Lwj9/Dtq0gxUthJtWb+leBa9eu0bBhQ3Jzczl9+jQPP/ww48aNIz5eBvE7qeJOo8zO5kC9enQLG1T9D9BoKAwbRDiw70fHaq1pDjXN0zuf2gWqfGq3WHJycqmZPcVP5i5ZsqTMehPFa+/dud5EbaI+cohC4PjVK3S3RD//evVwGTqcnsDB/ywz/+fXETXN0eLWmaNHjwaKWmeeOnWKrKysUvtV1NrYlG39+/fHxcUFKN2O09IU166iyM/nvEKBf+fybxYWjI7AoFDg9OdmFKmpAGi2/4l7r640fvJRXv59Pdejj7N1/P2g11s8ZlE+U84hjB2foXaNwRkZ6Xgoi2aLVnaTMaBrELGA5uD+ovabok6x1/Pj9OTLeOv16Bs2gnJuEHl5eZOj15MLqGXdyzrLXvPX7PLzUZ0/x3GgY+8+Rr1FG9iNUODg5SQMMrZXyZRcfP311/n+++8ZPnw433//fUmRZ/LkyURHRwNFM9d8fHwYNmwY48ePLzOrraJtd85qi4iIICIigtOnT1vk7+DKmTicgAblrT2lUtG2SxdiAVXkUYscX1ROxsvKKVNSSAPc3W8/8KT3bglOTvgAqedq170PcZspuW3pexRWuw9hMJBz5UrZ4mVQN9oB5zKk9XFdJON2xU4c2Ec3QGvkQ3l3qj9kGO2BqI3rzR6XcFxmmXnp5eXF0aNHOXv2LL169UKlUpGbmyttTf9Cs3c3BuCwwcD84F5V7l+egsFDCV+3mv8c2McU84Zn92qap+Z4arfWrDdRQ5ojhzkKtGrpQ8OGjSxyjIKR9zB89Uq2b/2DMIscofaraY6ao7VxTbfdqbx2nJaiTE9DByQaDLRu3Zpr1wrL7KNv4UXB8FHU27ieRlMnoe0ejMuyRSj0egq790DXsTPzf/0fz+74kxHLFqGVRcVtwpRzCGPH59o2Bqenp+F564Z1eTPXirXt2YuYjetRJV9Geekiet9WFo1LmJe9nh+npaXRAtA3L9syFkCpVOLXwoszly7SOTrKusEJs7HX/DU31flzKHQ6op2dmRrUzaj3aIO64wM01OmIi42hQ3kFKVHClFy01aw2c0uKP08rQFfBTPamwb1QHj1Cxr49NBk81GpxiSIyXlZOmZpMKuBx58OFKhXajp3xPR5J6p7d+Ad1t1l8omKm5Lal71Hcqab3Icrr8FJmKY3cXLILC3FTqfBoc8fn9wuhnUrF2fx8mjmDomHtX4JDlgm5TcbtisXExBAI6Dp2qvZ7C+/uTxiw++QJuty4AbceMBDCFGYpXv7zn/9k+vTpODk58cknnwCwbds2AgPLtjVxZE67dxIPaJxd8PLyrnL/8hQMGkwY8FhGOoW5uWhc6247NWszJU9NXYuitqw3URPK1BRUFxPZ7ORE/3DLXQwXDBnGULWah5KTeT0rE4Ob47U8qstjaXntOI1Vo7aQp/NIAJo7OeHs7Fxxe5hFH0PIXpz27MJpz66i1157Dc3rr6NRKhm+ehytx4zhp3fe4KknHwMfn2qHYuuLAFsf31Sm5r0x43NtG4PT09PxLCwquFdWvGzXvgM7XBtCViaag/vJl+JlnVKXx/SKaLVasq9ewQPQlbPeZbG27ToQd+kiQTLzss6yx/y1BPXpGAzACZ2ezp2Nax1qaNYMXUsfBiVdYs/qlVK8rIKj56LiSg6XsjJppVSib1n+eaquWw8CgdP792Hc/F9hTo6eo1VRpaQUFS9btS71urZ3CD7HI0k5dACeesY2wYlK1YXcNuU+xJ1Lf0D5S2koL8STBTSpX7/MtqYdO+N8MprTq3/HfXjtXtbLnpdfqom6kNu2EpOcxARA26H6xUuDmzv9W7dhScIFnjm4n8KadJ0U4i/MUrwMCwtj9+7dpV4bMWIEI0aMMMfH2we9Hs2enRwAgoN71vxjvFvStFMXAmJOEv3j9wRPnmq+GO2cKXlq6lO7tWW9iZpQHzkMwGaX+jw5KNxixzE0akzXu/uTuWMbKT8tx/Pp6RY7Vm1V0xy9s3WmSqWqsrVx0K01Iu98krGm2+B2O86lS5eWasdprL9eNBjDKe4C54E2DYpOiis8EW/siXLbXup/8hGKnGxuPDYZbehdkHm9aHvfcN4MG8T9O7Yxdtp0+OLbasVh67UCqzp+XbhwMPUcwpjxubaNwRkZafjcvAFUXrwMCGjPaW1RkVNzcD/5fx9vlfiEedjj+XFmZgZuDRqgunqVwuaeFe7n1zWQ03t2oUpLRZmagt7T8jPyhXnZY/5agio2hhTAoFLiWY081wZ2IzzpEj9v28KkWbMtF6AdcPRcVJ0+TSLg29QNKpgRog3qTiBw6vQpKV7agKPnaFUUyZdJAZq1DSj1emHvPvh8+R+SY07aJjBRJVNy29L3KMD0+xDGUGZmkA64u5Z9YFgbGES7k9Ek7Npe64uXojQZtytw/Ton8/LoolKhC2hXo4/oM2Q4D3/5GYZtW0CKl8IMzFK8hKJ+0fHx8Vy/fr3U63fddZe5DlGnqU6eQJmdzX7XhgT3N60pZsHgoYTHnGTv6pVSvKwmydPq0xw5RB5wKO86X/XtZ9FjFY66l6E7trHzl58Z54DFS6hZjpqjtXFNt1XWjtOSlBnpRcXLv/yM5dF7tyT3vQ8r3N7ug4UM7tOdJWtW8dyRZ9DKwuJW52hjc3pSEj11uqI1A+vXr3A/Hx9fMm/mkwvUO3zIegEKs7G33E5LS8WzfgO4erXCtrEAbQPacbBxI0hPRx0dRYEUL+ske8tfS1CfOkkk0KW1HwqFwuj3abt1Z9DG9Uw/dRK9Xo9SqbRckHbAkXNRHXuKC4BPBbMuAXTtO9DFxYU9V66gTLiAvnUba4UnbnHkHK1KXlISAPVbteHOhT4Ke/fBB4i+mAh6Pcg4WCvVNLctfY/CWvchiouX7Zo0KbOtsFt32v20nAuRxwi2WATCUmTcLqswOoqLgH9AO3Lr1avRZ9QfOowOX35G5B8b6fr62+YNUDgksxQvV65cyRtvvEH9+vVLte5TKBRs3brVHIeo85x27wRgX716vGrijfGC8CEMWfwxb0RHIc01jCd5WjPqI4fYBgT5tcW1nKfNzKlgxChGzHyB1adOMi4vr9Kb+vbIlBw1tbVxTbdV1o7TkpTpaUXFS8+KZ/4YS9+6Da8+/Bj9vv2Kxz96n/rL/2d6gMJojjg2Z1xOwhPQV9GeVqVS4effltNxsQSfjIbcXJB28XWGPeZ2amoKnk5OABgqmXnp7x/A94qim5Dq6OMUDBlulfiE+dhj/lqC+tRJooCu3XtU632Ffe7CG/AAoqOj6Nateu93JI6ei6rYU5wG+lTWXlilonP3YD7dtwenPbu4KcVLq3L0HK1KenJS0VrZLUrPuNP7+NKySVN+z8lGde4sunbtbROgqJCpuW3JexTWug+hzMggDWhWTrccbfdg/ICL586Y9ZjC8mTcLt/5ndsJABRGLoVQnsI+fRmmVLLp7BkCc7IxNGlqvgCFQzJL8fLf//43CxcuJCzMtBmF9kyzewf5wMlrVwkycTHywpBQwuo3ICbvOmmRx2hezYtlRyV5WgNaLZrIY2wGBgy1fPsEvZc34YFBTI8+jmLrZgz3Rlj8mLWJKTlqamvjmm6rrB2nJSnTi2ZeDvYxzxqAzV/4JxO/+5pPt2ziJWlxaFWOODanp6fRHNBXUvwp1r5jR07mXadnYgKaY0coNLF7g7Aee8zttLQ0vG7NjKgsf9u2DSDu2jUMFBUvRd1jj/lrboprV1ElXiBKqeTuanYnKezZG4NGw4j8fLauXyvFy0o4ei6qT50kFmjbO6TS/QKGjyR23x4U27fCxIetE5wAJEerkpaWdqt4+ZfrK4WCFoHduLRrO5pDB6R4WQuZmtuWvEdhrfsQioxbbWPLOe/VdgmklVLJjsxMFLnXMFj4YX9hPjJuly/28EG6AtrOXWv+IQ0acF+XrjwafZxZu3dROPo+s8UnHJNZ+jLodDr69bNsO8k6rbAQzd49RAH+fv64mjprwskJZdggRgGbly0yR4QOQfK0+lSxMSjyrrNerWHQvdb5wmly3/20BSKXf2eV49UmkqPGK24b29rPPGtb6L28mdJ/IF8bDCi/+9osnymM44h5n5qZgTfGFS8DAtoT4+4OgObwQQtHJszJHnM7LS2VFno9QKVtY93d3TEolWQC6uNRVopOmJM95q+5qWJiAIjUaOgS2K16b3ZxQdujJ/cAf65fY/7g7IhD56JOhzbyGElAy/Bhle7qNGwk3kDC1s2g1VolPFHEoXO0Knl5pF3PxVOhwNC07HIfnnf15RKgPnTA+rGJKklu37HmpVfLshudnfFp408CoI6KtHZowgSS2+U7ffYMXQBdZd0ejBA44h7ygbNrVpolLuHYzFK8nDx5MsuWLUN/62aGKE0ddQzl9Vx2N2tGcJ++ZvnM/JH38Ddg3TbHnc5eXZKn1ac5sJc4IEetont363TxLxg5mhHA1r27HO7CW3LUeMr0NM4BrTp2Mttn+j7zHJ2BTV/+B3Q6s32uqJyj5b1WqyUrN/fWzMuKiz/F2rVrT2xx+82D+y0cnTAne8zttLRUWhQUAJUX3xUKBW3btSeuXj1UiRdQpKdbK0RhJvaYv+amPnWCG8AFrZb27avfpq6gbz8GALEJF8jKyjR7fPbCkXNRdSaOmLzrBKjVqH0qXvMSQBfQjh4NXDl67RoaKQRZlSPnaFWUqSmkAJ4NGkA56wI3ChvEDeDmgX1Wj01UTXK76KHpNMCtdfkdn1p261FUvDx21KpxCdNIbpfDYOBUakrRzMtOpq0jWzhgUFHNYud2c0QmHJxZ2sZ+8803ZGRk8MUXX9DkL4sYb9++3RyHqNOK17vc7OzC3/sPMMtnFowYxXCVisdzssk5d44mbdua5XPtmeRp9Tnt2slaYGSPniiVZnnWoUq6du0Z6u3NjMuX/5+9+w6Ponj8OP6+loTQCUUQFSmBUEJ66CX03sQAJkpRihUFpQiiCAqIovBFEAvKT6VXAUWkSZGa0KWHNJIAoaVekrv5/RE4CaRccne53N28nsdH4PZmZnc/uze7s4UJRw6R2bxlsdRbEsiMGu/e9XjSgcp1zfd4ocw27RhZpQrf3LhBt53bySiGRyVLjpf7mzdvUMnFBXVqKloj77w8f/cuAJpjR0Cvh2LaH0umscdsX79+naCUFKDgO4dr16nLvynJtLh4Ac3Rw2R061EcTZTMxB7za27qM6c5BdSrUhWn+++CLYzMZi0oDbQtVYo///yDQYNeMHsb7YEjZ1EdfoxDgH+NXO74yYW/lzcH9u9lwB9bHeoYytocOaMFUSXEkwBUKVc+18/1Tb1xVyi4fOkitW7fyvXuTMl6ZLYhNT4OANfqNcjM5fMnWrbi2vrVEHa0eBsmmURm+3HK6wmcycykYeky6Gs+ZVJZWT6+9HUpxVu3bvHGtVj0RvZjJCk3Zhm8/Oyzz8xRjN3S7NlFBnAg8SZfmuldVaJCRZzatKPDrh3snP85/b/62izl2jOZ00LS6dAc2MsmYPTzg4uvXoUCnz4DiFm0gLiVv1LZgQ68ZUaNF3H9BrUBYcSda0ZTKuk88lXGzvyIiIXzeVIOXhYLR8t9fHwcNZycITXVqMfG1qlTl4jYaDKqPYFTQjyqy5fkO4FshD1mOy4ulhrJSQiFAr1b5XynrV27DueiIwHQHD4oBy9tjD3m19zUp0+wH/Bv6lWk72cFBCJUKl5KSuLzn3+Sg5d5cKgsfvUVpW4nk/bam0D2vvMg4O9pXMZ8+g7g1/17cdq2lZSPZlqwodLDHCqjhaSMjSEeaFq5Su4TODlRr1IlziUmUu/YETI6dinW9kn5k9mG+OgongT0T+Y+mKPwD6QKcOPYEUx8QZhUjGS2H5f2zwFuAE819SI5lzvlC0Wjwb9te65v28rVn5by9KQpZmmj5JjMMngZEJD/y+MdmeLuHTQHD7BHqaR23XpUquRmtrK1PfvQf9cOVv+1jf5mK9V+yZwWjvrMKW7ducNxhYJWA54v1rp1PXrTf9ECNm7dzIh5/8v1ETP2SGbUSOnpRKSmUEehQJSvUPD0haB/4SVGz5rB/w7sY3Z0FPqncn88jGQ+jpb7hIQEnrh/56Qxj411dXWlatVqXKhdl8YJ8WiOHJKDlzbCHrMddfUqdYRAVK4MGk2+09apU5ff/94FZJ+Al2yLPebXrDIyUJ8+xT6gUxEvdhJlypLl2ZRe4WGMOf8vV65conbtuuZtpx1wmCxmZsLYsZQB0oaOAFdXnPbs4iAwqndfo4rwGDiIi++OJe3KZVSXLqKrW8+iTZayOUxGi0AVcYU4oFM+x1T16tTjXGIi/Q4fkoOXJYzDZ1sI4uPiqAHon8p98FLnXp9nlEpi4q7hcfNmdh9ZKvEcPtu5+HfHdhoCwtvXLOVl9erDi9u2snzVr0yQg5eSCczy3LGMjAzmzZtHhw4d8PXNDvm+ffv4+eefzVG8TXPatQOFTsdv1WvQvmNns5at7dKdHsDuGzdISYg3a9n2SOa0cDR7drMS6PL0M7i4uBRr3Vm+fgwsX4HVd26jOnumWOu2JplR4yivxXIZeLZMGbM/PlNUrszLXXuwFrjzzUKzli3lztFyn5AQT43779Yw5s5LgIYNGxNWJfuKdfXRwxZrm2Re9pbt1NRU7ty5k30Cp4pxdw1funsPyH7/O+npFm6hZE72ll9zU5//F7Ra9qtUBLTvUORyMpu3wgkYXKs2v/zyf+ZroB1xlCwqE2+yFthI9nsCVVcucScmmniFgjo9ehtVhpOrK55ulTkCOP2x1ZLNlR7iKBktClXEFaKAGg088pymjl8A50C+q7UEcvRsK27fIk6bTnW1GpHHo49RqXiqYiUiAc3xY8XaPqnoHD3buTkZdhQ/INPbxyzlZXTtzlCNhl9iY8iKjTVLmZJjMstZ308++YQLFy4wd+5cFPfvkKpXrx7Lly83R/E2zenPP9ADq5OT6d3bvPdHiqpVKRvQjObA3wvnm7VseyRzWjjOW3/jJ2BQ/+eKv3KVisCevYkBYn5dVvz1W4nMqHFU9wcva5vxTvaHlRn1Ki8A3/78U/ZV8JJFOVru4+PjqKHVAsYPXnp6NiX8/p/liR3bYW/Zjo6O4ukqlVEC+ioF3zVcu3YdIqKuklG/AYqMDNQnT1i+kZLZ2Ft+zU19PJzLgErjRE0T3guU0bU7AKOuX2f58p/JyMgwUwvth6NkUXnjOs8DfQHV9QQ0u3fyD+DrVhlVAXe6PyzAP4C9gPM2OXhZXBwlo0WhunKZSOBJr7xPhj/boXP24GX4MXnsVcI4erZVsTHEAjXKlct3uqeefoargDpMDl7aCkfP9mOE4HhkBH5AVj7760IVWa48z7bvQG1g77w5ZilTckxmGbz866+/+Pzzz/H29kZ5/y6YatWqkZCQYI7ibVd6Ok7bt/EPULpSJRo2bGT2KrTdetIf2LJ5o9nLtjcyp8ZTXovl/LEjxAItXhtrlTboe/RiILB243qr1G8NMqPGeXDnZa0na1qk/MzA5rz5bG2+S01Fu36tReqQ/uNouU+Ij6N6WqpR7wx8oEmTppy4noBwckJ9/hyKO7ct3ErJHOwt25GREdQqm33yRlez4P1v2bLlKF26DJGNPAH56FhbY2/5NTf18TD2A83q1jWc9CqKTP9A9FWq0jAuFo8na7J162/ma6SdcJQsKq8n8OC+HmVCPE57dvE7ENS8ZaHKafZcMLsVCtRHDqG4lWj2dkqPc5SMFkXylUvogbKeTfOcpravH5cVCvSpqajPni6+xkkFcvRsK6OjuQY8kdc7W++r1cSTi2T3DSTb4OjZfpQyOopjGRl4ly9v1lcnaQc8z3Dglw3rzFam5HjMMnip0WjQ6XQ5/u3WrVtUqGDed5HZGqc/f0d59w4/VqpE/8EhJh3Y5iWjW3f6AH/GRKNNSjJ7+fZE5tR4Tlt/43Pg5Xr1URVwlZmlZLRqy4supfi/6wkQedUqbShuMqPGeXDn5bOWei+UQkH1V0bTAVj+xWzL1CEZOFrur8dE8yQg3NwKfGfgA02aeHLqzCkyPb0AUIcdtWALJXOxt2xHRl6ltpMTAPqnnzHqO3Xq1OVcjRqAHLy0NfaWX3NTh4exDwhs0cq0glQq0vv0A2BkhQr89NMPpjfOzjhKFhU3bvw3eBkTg3rv32wGOrw0vFDlNAvqyFGlklS9Hs3+vWZvp/Q4R8loYSnu3iH69m2eVigQT1TPczpXV1eqlnLNvnNNPmGkRHH0bKtio4kFqlevke90z7Zuy3lAczwMhCiWtkmmcfRsPyr94AEiAXcfPzDj2IW2W0/6lyvPrnt3STn4j9nKlRyLWQYvu3btyoQJE4iOjgbg+vXrTJ8+nR49epijeJvlsuIX7gJrUtMYPDjEInXoatelskdDGgP/LFpgkTrshcyp8SJWr+Q3YPjI0dZrhIsLTbp0pSxweN5n1mtHMZIZNU5mVBTxwJPuKwjBvgAAIABJREFU7harQztwEO84u/D1lcsIeQWlRTla7uOjo6kO6GoYf+fwgwPmKI/sJzhoDssTO7bA3rIdGXmV2rrs97XqjBy8rFevPqfvD3hqjh6SJ3RsiL3l15wUd++gPnuaPYBfH9NfC5IeOgyA544e4cL5c1y8eMHkMu2Jo2RRkZxE6ft/Vv62gbMpyajUGuq2bluocsqUKYv/U0/zJ+D09x6zt1N6nKNktLBU585xAahdpmyBJ8PrPfWUfO9lCeTo2VZGXOEaULXWs/lOV7tlG84rFChu3kQZHVU8jZNM4ujZftSJ7dvwBBTevuYt2MUFl+eepx2wQ94YIBWRWQYv3377bWrWrEnv3r25d+8eXbp0oUqVKrz22mvmKN4mKRPicdr5Fz8qlbRr34Fq1Z6wWF3pA4LpD2xd5aDP5jaSzKlxREw0Y8OPMVmppHTfAVZti3ZwCMOBXzeuA73eqm0pDjKjxom4fJFnAMVTxp08LwpRvgJNho7gSeCvKRMsVo/keLmPjr9GLUBXu7bR31EoFDRu7MmxipUA0Bw9YpnGSWZlb9mOjLxK7dQUAHRP1zLqO4GBzThw4Rz6ylVQ3ryJ6solC7ZQMid7y685aQ7sJ1Kv545aTSNff5PL03k0JNM/EJeUZF708mbZMnn35cMcJYuK1FRS7v/5RthRNgNdPTyK9PSmbt17sgnQ/L3LnE2U8uAoGS0s9ekThAFNn6lV4LR1mzS9P3h52NLNkgrB0bOtPn+OKOCJAt4B6Fa5MkqVmuvIR8faCkfP9qMOhB2lHZBl7sFLIH1IKAOBdfv3glZr9vIl+6c2RyFRUVHUrl2bUaNGodPp6NixI/Xr1zdH0TbLecUvCL2er0uXZu6Y1y1al/a55+k7YxozoyKZFhNN6ZpPWbQ+WyVzapx5b4xGAKO69SS1vHUfmZDZNojBTzzBtPh4PvlrG66du1m1PZYmM2qcf6OiaALon3zSovWkjXmdsd8t5ovDh+h68QK6epa709OROVLuk5OTSdNqqQKkPmv84CVkv/cyPCuTYEB97AjodKBSWaSdknnYW7avXLlMvfvvT9M/Y9zFIy1btmbatMloA5pT6vfNqI8cRlenniWbKZmJveXXnDT79rAdaF/P3fCeJFOlvTgMzZFDjIyJoXnYUSZPnkapUqXMUratc5QsKlJTuAvUB6KB34Dx/Z4rUllthrzIV4v+hyriCsqYaPTy/IBFOUpGC0t96iRhwHDv/Ad+AOr4B/LvxnWoYqJRXotFX8Oyx3mScRw92xlnz3ATqN6ydYHTuletyvlrsfiFHSOjdz/LN04yiaNnOwe9nr2xsUwCMgsYqC+KrCZN6dWgIW+fO8u1H5ZQY8wbZq9Dsm8mHW0JIZg0aRK9evXim2++YdeuXaxevZp+/foxadIkhKM+Gio9Hdcli1gLlHmiOoGBzS1anb7GkzzZpj1dgO/Gv2XRumyRzKnxdm77nWX/7Gc5kPniMGs3B1QqSg95kW7A8pnTrd0ai5EZLQS9njMJcTQBdAU8vsXkqmo8SdfBocQDJ8a9adG6HJEj5j4mJpqnXEqhAHTP1inUd5s3b8Guo4fRPV0LZUoy6hPhlmmkZDJ7zHZmZiZRkZHUv3cP4eKCvmo1o7735JM1KVu2HMfv33Uh33tZ8tljfs3Nad/fbAfadu5qtjK1vfuhr1wF93NnaVa7Dt98s9BsZdsqh8ticgr3gEbAPuC8QkHA0JeLVNSz9dxROrtwDnDavs2MjZQe5nAZLSTVyew7LxsFdSpw2gYeDTnhkn3BhvqovPvS2mS2QXHzJhGJN6mtUKIw4u7hOvXqZb/3Uj76uEST2X5celgYx/Q6mlWvgahm3DFeoSgUqEaOYQTw3WezID3d/HVIds2kwcuVK1dy+PBhVq5cya5du1i5ciW7d+9mxYoVHD16lBUrVpirnTal1PdL4MZ1PnR2Zvz0T4v0qJfCShsxkunA4t07SYiNsXh9tkTm1DixsTG8+erLLNfrqdzAg8y27a3dJADSh47gXbWaBf+eIfPCeWs3xyJkRo2njInmdFYWDcuVQ1SoaPH6tBMmM8nJiY8PHkAlXzBuVo6Y+5iYKGrd7xPoahXuzsvWrdtx4cI5rrZsBYDz1s1mb59kHvaY7aioq1SvVAkX7g+8F6Jv27FjZ7akpgKg2b/XQi2UzMUe82tOyrhr6P89yw6gVYgZL/QrVYrU18cC8FVqKt98s5DTp0+Zr3wb5GhZTL13DyegDvAh0NvbF+cyZYpUlkKhoJ23D9sB503rzddIKQdHy2hhKJKTuP7vGRRA1TYFv7fV09OLs+lppCMHf0oCmW1QnztLGNCwQnmj+r21A5rzL6AOPwbJyRZvn1Q0MtuP2/vDDzQBXFq1sVgd6YNe4NU6dfklOYnbX3xmsXok+2TS4OXGjRuZMmUKnp6eOf7d09OTyZMns3HjRpMaZ4sUCQm4fj6bVYBLzafo0LFzsdSb0aUbz7jXZ6hez+wxRbtC017JnBYsKyuL0aOG86ZSRRsgdex4MNNjsEylf6I6DfsPxBNY8d7b1m6ORciMGk998TynAY9ieuygvtoTPP/qm8QCh956FTIzi6VeR+CIuY+KiuSZ+1ca6moX7s5LZ2dnOnXqyrr7JzKdNm8EB7wy1BbYY7YvXrxIvQrZj5LPatS4UN/t1q0nW06Eoy9XHnXEFZSRVy3QQslc7DG/5uS8aT3bgAYVK1HdyMcnGytt6Aj0VapS9+wZZvUdwMiRQ0lLSzNrHbbE0bJ4794dygN1u/ZAC7y2+HuTyms9aAjbFQo0B/ahTIg3SxulnBwto4WhObCPwzodPuXKQ9lyBU7v6upK3ZpPcRz5lIaSQGY7O4d7gebuDYyavol/IEfKlEGRlYXTwf2WbZxUZDLbj1v/++/0BTIsOHiJWk35mXN4BZiz8EsUN29ari7J7pg0OnH58mX8/f1z/czf35/Lly+bUrxNKjPzQ9KTk3jPxYUPPp9fLHddAqBUkvr6WKYCfx05RPixI8VTrw2QOS3Yl1/OpdTNG0y6e4esuvXQ9ulv7SblkDr6deYCnx7YR+zZs9ZujtnJjBov5eRJ4oFaTTwLnNZcMt98m+lulZkccRmnL+cWW732zhFzH3E8nLqZGeiqVkNUqVLo7/fq1ZeNZ06jr1QJ9ZXLqM79a4FWSqayx2wfP34ML0X2YUNWk6aF+m6zZi2IjLpKhG/2MnHas8vs7ZPMxx7za07O61bzMzCwZ2/zF+7qSsrEKQAM+20jjWrXYe7cWeavx0Y4WhaTk5IoDzz/XDAREXE8Y+LrEVp37s5elYpUIbIveJLMztEyWpBSX30O48eDEGj27OJvoLmnl9Hf923Zmr0qFerj4Shu3LBcQ6UCyWyDem/2+61b9uxj1PR+fgGEa7XZdw//vceibZOKTmY7J31aGhsiI+kHZBrxbldTZAZ15J3WbdmUmcnFCfZ5Y4pkGSYNXup0Osrk8SiTMmXKoNfrTSne5mj278VlxS/MVirxadmGFi1aFWv92v4DKfP0M3yi0zFl9AiHW/55kTnN38aN61j6/RL+7+YNlEDKhzNApbJ2s3LQNW5CvdbteBMI7trV7q5Clxk13tGD+/EHaOBRbHWKMmXp/M0PVAHmfz4btXyUkVk4Yu7PHDuKN5Dl7VOox24+0K5dEKdOnyLq/ruDSv1k2l0ZkmXYY7b3799HuxsJAGS2LFz/VqPR0KFDZzbev3PTWZ5EL9HsMb/moj4RTkp4GH8A3cdNsEgd6UNCyWjRCtX1BP4XH8+a1Sv46acfHPIdTI6WxXvJ2YOXlClD6dKlTS7Pzc2NgPoNWA+4rF9rcnnS4xwto/lKTUU98yOyPv8cZWwMzr9v4S8gsBAXRbfv3I0t5cqhEALnbVst11apQI6YbadN66FfP0hJgbQ0rhw+iABqP/e8Ud8vU6YMDWo9y2HkhXolmSNmOz/hSxZRSQiebeyJ/mnzPlEkN5qZc5irUDDit41k7Nlt8fok+6A25ctZWVkcPHgwz4MpnU5nSvE2RXXlEmVHDSccWOjszPbP5hV/I5ycSJn6ES+9MpRFsTGs/ekHXrXTx2wWhsxp7oQQfPbZp6xY/jNbnqlFzbCjZLQLIqNTV2s3LVep707k/b27OXftGqNDg/lu+Vo0Go21m2UWMqPGO3QinNZAlqd3sdab1aYd/xscQtDyn3n6+b702rYbnXv9Ym2DvXG03Ot0Ok5GRmQPXnr5FKkMFxcXevXqwwKlks8Bl+U/kzJ+EqJyZbO2VTKNvWX71q1Ezpw6QfvUVHRVq5HVuPB3vvfp05/PZn3MWI0Gzd+7s98bWL2GBVormcre8mtOpb6ez1dAt3ruVKzxpGUqUam49+1PVOzclponj7MtqCPPf7eYPXt2MWfOPCo70P7e0bJ4LyWF8oBwNX3g8oHnR7/Gt2+9Rsjhg6hOn0LXuInZypYcL6P5Uf97hueAq8ChNSs5FRNNkkqF1wuhRpfRunVbXk1N5R7gvGUT6SEvWai1UkEcLttC4PzyS8QC5Vq0RZQty7bMTDq7uYGb8b+7gUEd2RV5lTb/nkF1+SK6YnrVjWQ8h8t2AX5Z9gPDAG3fAcVSn66BBwPeeJsd87/grReeY/HO/Qh5Xk0qgEmDl25ubkyePDnPzytVqmRK8TZDdfEC5Qf04ub1BAa6uPDxZ19Ss+ZTVmmLtnc/XH74lvn/7Kf/tMm8MHIYULLuoituMqePS01N5a23XiUmOoo97TtQ++ef0FeuTNL8RUW6G6g4ZDZrQUb/51i6bg19w8MY+fKLfPPtTzg5OVm7aSaTGTWOMiGeP2/dYpazS/ada8Ws4tyv+O3yJQYcPsiuoJa8N38RVUYNL/Z22AtHy/2RI4eopVJRGbhjQn7Hj59IUFBLRrVqg/u+v3Fd+BUp0z42X0Mlk9lbtnfs2E676jUodfkSaV17FOmd2J06deGzzz5lpacXg48dwfWrz0me9bkFWiuZyt7yay7qY0dIW7+WL4GVH39q0bpElSrcXbaCCn2702TnXxxq2Zop5cvTrl1zZs36nB49ehXfq0msyNGyeO/evezBy/LlzVZm9/7PM33SuxxOTsZzwRckfbPUbGVLjpfR/KguXuAUEAWU/mQ6nwLDm7VAqTb+lGPp0qXx9wvgjwP7GPj3bhSJiQg3N0s1WcqHo2VbGRPNR8AsICk5GedN61kNvGnkI2Mf6NS1Bx+uXM60jAyc16widcL7lmiuZAJHy3Z+7p05xW/RUcxTKtEOGFhs9aa+O4n/HQ+j+9+7mdO1Pe/tOoB4plax1S/ZHoVwxGfQ5CIxMRm9/r9FUaVKWW7cSMr/S0LgvGEtZca9xcHkJAY7OTPk9bd45/67SqxFeTWCiu1b8nZKMmfd3flx5wGrDfAolQrc3HK/JV8ynwf5NSa3cXHXeOmlwdSpXZclFStS6fslCI2Gu8vXktmmXfE0uIgUd+9QuXNbtBERPPdkTbIaN+Hb75bh7OxskfpkfovHo/vfvMQvWUSHKRO42rY9Kav/e+ygUftrc0lJgVde5PO/tvMtMMrHhxE//Eq5Gta5g6igeZcZLh4PZzivdfLOqGE0WL+WyS4u3Dx3FVxdi1zfV199zp7fNrLr5HFUajW3t+1GZ8J7YIt1GyoEmd/iUVAfOGRQf4KPHmH4vbvcWbWBzHZBRapn7949vDF6BGGJN6kK3Nm2i6ymxXMXvTUyLvNbPIztQ5hCce8u5Tu346UrlynbpCkzduwt8DvmyJz68CHKhwxEeecOQqNhZ+9+vHnyOGicGDPmdfr2HVDkPrDsP5QMD+d3zTPVCEtL49N/I8w6YPPt7Jnsn/cZm/V67q7ZVOKP9x5W1O1I5rf4PMhwqfnzaDhjGtHAd8BHCgV7Dx7H9dnCvbt19eoVrJ46kV23bpH6xtukTP3IIu0uiuLsS8gMF48H+VUf/IdRvbuwGohv3ITLp08xSKHg8NnLqApx56VOp8O3UV3+uJVIo0qVuHUwHFGhouVmoBBkfu2PqX3geUGtuHb6JD+GhHDji6/N2DIjpKSQNaAXncKOElSmDJN/WY2qecsck1jrHIXMb8lj0jsvzSUiIoLg4GC6dOlCcHAwV69efWwanU7HRx99RMeOHenUqROrV6826jOL0OtRHz5EudBgNKOGMzU5iX5Ozsz43zdWH7gE0Nd6luTP5vEFUO7CBYYGepGckGDtZtk0S2a0OPN7/HgY3bp1oFe9+vx64Xz2wKVazb1F39nEgawoXwFWrcLJxYW1sTG4nDjO4Od6c/36dWs3zeqsldHizO/3S75mCKDv0MlidRSodGn4v1VMnfA+4SoV8WFhtPBpyA+hg8iMjrJeuxyYLfQhEhLi2bLlN0YC2m49TBq4BHj99bFkuboyy9cPRVYW5UODUZ06aZ7GSiWGqdk2h4P/7OfUgf0MvneXTE8vk/oKrVu3ZeCQUAZXfxKdXk+54aEooyLN11ipRCkJ+TUH9akTlOrZhVevXOaKSykmrVpfbHVnBQRy60AYaUNCUWRm0mHtKk5fvMBnSfdYP3smnh7PMvndt4mS21GebOYYTqvlZloa1RQKREXznuh+cex4rlSsxK9AudHDUV26aNbyJdPYyzFc6rUYbgLPAy8Dn/d7rtADlwB9+w7gvFJJGFBq8f/Q/LPfpHZJ1mUr+2Dl9XguA+WA7adPMRKY3qVboQYuAVQqFSNee5P3KlSEW7coM3E8yPuF7JItnIPIT+TPy1hy+iQfaDQwdWqx1g1A6dJoVq1np2dTopKTadenG4e6BaHZ8hukpxd/e6QSrUQMXk6bNo0hQ4awbds2hgwZwgcffPDYNL/99htRUVH8+eefrFy5kgULFhATE1PgZ6ZQXoul9PvvUfrjaWh27cDl+28oO+ZlNI3rsbtnJ4b9+QfVgbOeTdlx7BRd+xr/MnJL0z4XTOqceaxUq3k2NoZuXg3Y+cpQxK4dKCOuoLh7BxzsRcSmsGRGLZXfh4k7t/lpygSG9O7K/PR0pq9egdPpk+ieqM7dNZvI6N3PrPVZlJ8fd5evRV26DGvi42gXfoxOAZ6snfkRuusJDts5tFZGiyO/CMHpubP4JSqS8S4upA8INm/5haVSkTpuAmW2/80PXl7s0OvZt20rfr6NGfZMNWYGerF8yADOzJ2F+Hs3ysirkJwMWVnWbbedKql9CACE4E7YEd7o1JYxGRlUdnEhdfwkk4tVqVQsXLiEhTExvFS5CrHXYqnYvQNlJo5Ds3M7iuvXHXZfaE9Mzbap4g8e4PVB/fkmPQ0XV1eSFi4p0iNjHzZhwvuo69enZ7lyHI+OokJQK0r97ytUVy7JfqmdsXZ+jSYEaLUobt9CGRuD6uIFNDv/wvXLueh6d2N9h9Z4nTvLndKlWbFtF6ULeSLT5OZVrkzylwu5/cdOtN17gasr3aOj2BETzYnkZCr99D2dA5ryUqM6rA7ux7nZM8n8fTPq8GMor0agSEyEtDSH/U2wlWM45Y3rxAJPlC1r8n72Uc7Ozvzvl9W8rdHw482blOvYhtIfTEYddlSeICwB7OUY7sKVS7gDM5o25cdBL9Bu4ZIilaPRaBg/6QNequTGncxMygdnvxZJkZhY5LZJ1mMr+2ARG8N54D0gFOhQthw9viranWgjR77KrZpP8b5ag8u61ZR9ZSjq42HgYO9StHcl+hxEPhSJicTNmsGQcW8wE6g2bgK4u1u83tyIcuVRbPmLX8e8wadqNROPHaXNsBf4um5NLvfpipgyBaffNqA+EY4y7ppD92cdndUfG5uYmEiXLl04dOgQKpUKnU5HYGAgf/75Z45nTY8cOZL+/fvTtWtXAKZPn06NGjV4+eWX8/3MWLdvp6DXC1JSkgn76AMy/j1N3I0bxGRmEgPcATLv/3cD8HJypqOPL23GjqdiPets6MZwuxZBxoSJ7Dl7hsXAWeBZwB2oDlRycaGUWoNKqUSlVKJUqQx/VgBKhQKlApQoqKhS41OqlOGdiOLBu1YUCnjw2hWFAv0zz5I8/RNQKlEqFVSsWLq4Z9usLJ1Rc+a3fHkXfv/9L9Lu3EH56zK0N65zJTmZHenpuAFzgDqArtoTpIe+RHq/geDiYq5FVSzc3MqQmJiMMiqK0rM/xungPxwDZgNXAB+FgmecnCirUlNOo8FZcz/fCgVqhRKVAtQKJXWdnXnGyem/d3wqAIUCUb4CKdM+Rl+lqs3k15oZNWd+VZcv4TrnE+7eSuRwSgrpWVmk63ScTUtlq1bLZ0DzN98h/aWc75l8kAlrcKtQinubfsd53WpiDx/iojadCOAycBq4Svb+thpQASinUFBBraacWk05tQa1UvnfflahIMC5FGVVCkCRvY99+D+l8v6+9v7fUaDWqMjU899+2MWF1DfeIaupF4DNZLioSlQfIktH/NtvcDXiEknp6cRqtVxKTeUfvZ7+wCS1mvQPppPRo7fZ5j8lJZkflixi3arlPJWRgT/Zv+2lASeVCmeNBrVaA2oV3P+/AmXO3R6gVCkR9x85U9/JmSc1mv8qyeW9aiKvd63l+e95zMCj0ysUpD8/mIz775ex9/zmxxzZNtaDfXDSwvmc/mMLaRlajiclsVmr5XVghGtpkj+aSWZQR7PMW1ZWFj8t+Zrffvk/tOlptAUaAuVUKpRqNUqVCqVSBSoVSpUKhUqJQqlCqVKjVEKzUqVxKejk/iPZ0qgUZOpyOeQx9rWBRr5fMCuwOamvjwVkfos7v86rV+K8aR13tBmEp6Wi0+vR6fXohR6dXqB/6M86kf33zKxM0jMySBeCdCDt/n/XyP79vgO0USrp37Y9ftM/Qbgavz4t1jfJyEBz6gTqg/+gObgf9bl/SdHr2QHsAC4AEYAb8BRQFShPdh+kjMYJFycNzhonXF2c0ZB9zIcSUGt4cujLVO9lP/tfWzqG02zeyPPT3ufDunWpt3KDGZfCfy6cPMGnb43hzr17BAD1gYqAxtkFpWspUKtRoUChUNzveipQ3O9z1nH677jpsXMAFnz/qkalJFNn3IUtomw5UiZ/gL7mUzaTX1s/hoP/+sDft2vO3ZQUZq5YQWK9xiYtFyEE87/8nI2rfqV7RgaNyd6POTm7ZD8FR6NBoVAQ6OqKq1JlOFYSCgUoFRbLZGHyWPjCnUgb8zqZ/oGA3AcX9z44bFgIs08eZ3vnzpx5ujY1BocgKlQo8rzfvn2bUSEDqXb9OgF6PeUAF5UKl9KlcXFxoaGzCzWdNGQf1yuLJcMWzS+g7TMA7XPPA/aR3/yUqHMQeoHrgnmoD/2DQqcHvS77glCdDoVOx+WMDC5mZJCu15GclcWJ1FR2AOOB53v2JnnaDNyqlLPa+bQHFImJOG3ZxPF1a9gdHclOIAmoCVQiu79Siey7o51UKpzVapzu/6fSaFCq1IZ+i5LsPsyDPsp/5z4UKBUKmpcpg/Mj21hWUy/DReb2nl9bZPzbsy0kLi6OatWqoVKpgOy7CapWrUpcXFyOjT4uLo4aD71TrHr16sTHxxf4mbEeBNPNrQxPf1+0q8RKJLcmOG3dQiegOB+0aJk3EFqHpTNqzvwC9OqV/eNH6CDDvz36EAAV2Se3bXV37OZWBtwaworlAPgCq8xYvnXeEFt01syoWfPr5gVrVlEF6PHINDMf+nNuubXmM+nL9esJ/XpSG6hthfo1j/y9vBXaYC0lrg/x8080yme6R9eVqdzcyvDhjI/4cEbJeR+Qqcy9jGyVObJtLEN+P5hMrQ8mAzCQnPvdckWbjTy9N3Uy702dbOZS81cc2dIApYqhnpLOGvll9AgYPYIqQGeT58A8LNY3qd4eOrc3/LUM0Of+f9J/bOoY7qUX+OOlFwo3g4XUvH1LNp20vUfMF2bfLY/hije/8F+G3ztzxvBv5nhj6/QZHzJ9xodmKMm8LNmXsLc+sC3tgztt2mA4X2ra0Hs2N7cy7Dh40AwlmZel8+sobwksaecg+DDvx7663/8vLw/O3Vv9HY9uZcD9DVq9/QatgOJ+IZ88hivZSsRjYyVJkiRJkiRJkiRJkiRJkiRJkiRJkqw+eFm9enUSEhLQ3X/+t06n4/r161SvXv2x6a5du2b4e1xcHE888USBn0mSqSydUZlfyVTWzKjMr2RNsg8h2StzZFuSrEXmVyoJ5DGcVNLJYzjJnsl9sGSv5DkISSpeVh+8dHNzw8PDg82bNwOwefNmPDw8ctxqDdC1a1dWr16NXq/n1q1b/PXXX3Tp0qXAzyTJVJbOqMyvZCprZlTmV7Im2YeQ7JU5si1J1iLzK5UE8hhOKunkMZxkz+Q+WLJX8hyEJBUvhRBCWLsRly9fZuLEidy7d49y5coxe/ZsateuzSuvvMKbb75JkyZN0Ol0TJ8+nf379wPwyiuvEBwcDJDvZ5JkDpbMqMyvZA7WyqjMr2Rtsg8h2StTsy1J1iTzK5UE8hhOKunkMZxkz+Q+WLJX8hyEJBWfEjF4KUmSJEmSJEmSJEmSJEmSJEmSJEmSZPXHxkqSJEmSJEmSJEmSJEmSJEmSJEmSJIEcvJQkSZIkSZIkSZIkSZIkSZIkSZIkqYSQg5eSJEmSJEmSJEmSJEmSJEmSJEmSJJUIcvBSkiRJkiRJkiRJkiRJkiRJkiRJkqQSQQ5ePiIiIoLg4GC6dOlCcHAwV69etXaTjBYUFETXrl3p06cPffr0Ye/evYBtz5NkHHtdxzLTjqco67yonwHMnj2boKAg6tevz4ULF0wuszCfTZ48Ode681oGllwOkulsZRkXJfOSY7CHDMh8S9ZW0rOWXx9Dsq6Snh1T3L59m1deeYUuXbrQq1cvXn/9dW7dugXIvq29sLX1ITMpPcyW1p3MrlQY5j7fZQ6WyLBk54SUQ2hoqNiwYYMQQogNGzaI0NBQK7fIeO3btxfnz59/7N9teZ4k49jrOpaZdjxFWedF/UwIIY4cOSJ3betIAAAgAElEQVSuXbv2WL2WqO/Rz/r27Ztr3XktA0suB8l0trKMi5J5yTHYQwZkviVrK+lZy6+PIVlXSc+OKW7fvi0OHjxo+PusWbPEpEmThBCyb2svbG19yExKD7OldSezKxWGuc93mYMlMizZNzl4+ZCbN28KX19fkZWVJYQQIisrS/j6+orExEQrt8w4uR2M2vo8SQWz53UsM+14CrvOi/pZfvVaor78PjN28LI4loNUNLa4jI3NvOQY7C0DMt+SNdhC1uTgZclkC9kxpz/++EO89NJLsm9rJ+xhfchMOi5bX3cyu5IxzHG+y1JMzbBk/9TWvvOzJImLi6NatWqoVCoAVCoVVatWJS4ujkqVKlm5dcYZP348Qgh8fX1555137GKepPzZ+zqWmXY8hVnnQogifZZfVixRX36fGbMMypUrV+zLQTKere+XbL39kunsOQP2PG9SyWIrWcutjyFZl61kxxz0ej3Lly8nKChI9m3thK3nV2bSsdlyfmV2paIoalYskQdzZFjm1P7Jd17akV9++YVNmzaxdu1ahBBMnz7d2k2SJJPITDseuc7lMpAkSZIkyTJkH0Oyto8//hhXV1dCQkKs3RRJAmQmJdslsyvZOplhyRhy8PIh1atXJyEhAZ1OB4BOp+P69etUr17dyi0zzoN2Ojk5MWTIEMLCwmx+nqSC2fM6lpl2PIVd50X9rKA2mLu+wrQlt2VgqXZJ5mHry9jW2y+Zzp4zYM/zJpUstpC1vPoYknXZQnbMYfbs2URGRvLll1+iVCpl39ZO2PL6kJmUbHXdyexKRVVS8mCuDEv2Tw5ePsTNzQ0PDw82b94MwObNm/Hw8LCJW5BTU1NJSkoCQAjB1q1b8fDwsOl5koxjr+tYZtrxFGWdF/Wz/FiiPmPbktcysFS7JPOw9WVs6+2XTGfPGbDneZNKlpKetfz6GJJ1lfTsmMO8efM4ffo0CxcuxMnJCZB9W3thq+tDZlIC28yvzK5kipKQB3NmWLJ/CiGEsHYjSpLLly8zceJE7t27R7ly5Zg9eza1a9e2drMKFB0dzRtvvIFOp0Ov11OnTh2mTJlC1apVbXaeJOPZ4zqWmXY8RV3nRf0MYMaMGfz555/cvHmTihUrUqFCBbZs2WKR+h79rFatWhw6dChH3YsXL85zGZizbrnNmJ+tLOOiZF5yDPaQAZlvydpKctby62dJ1leSs2Oqixcv0rNnT2rVqoWLiwsANWvWZOHChbJvaydsbX3ITEoPs6V1J7MrFYa5z3eZgyUyLNk3OXgpSZIkSZIkSZIkSZIkSZIkSZIkSVKJIB8bK0mSJEmSJEmSJEmSJEmSJEmSJElSiSAHLyVJkiRJkiRJkiRJkiRJkiRJkiRJKhHk4KUkSZIkSZIkSZIkSZIkSZIkSZIkSSWCHLyUJEmSJEmSJEmSJEmSJEmSJEmSJKlEkIOXkiRJkiRJkiRJkiRJkiRJkiRJkiSVCHLwMg9BQUEcOHCgUN+5cuUKffv2xdvbm2XLllmoZZK9KErGchMaGsrq1atNKuPXX3+lRYsWeHt7c/v2bZPbJEmS7SoJv2ULFixg/PjxJpXh7e1NdHR0kb67bt06Bg8ebFL9xW3Tpk0MHz7cqGkLs463b99O27Zt8fb25uzZs+ZoKpC9jocNG0abNm3MVqaxjh49SpcuXYq9XmsyV5/DXF5++WXWr19v7WZYjbF9t3nz5hEYGEjLli2LoVWPq1+/PpGRkVapW5IKqyT9di9evJj333/f2s0oNCEEkyZNwt/fn+eee45Dhw5Z5Xe6sG7evMkLL7yAt7c3s2bNynO6R+evJJH5NZ3MryS3I9PZ+3Zkzx7ut3/wwQcsXLiwyGXld6wSExND/fr1ycrKKnL5eZHHHlJubHbwsqSdhAH47rvvCAgIIDw8nBdffDHfaS25sVuDvc2PI8nMzGTWrFn88MMPhIeHU7FixXynN8egQklib/NTHIp7/1sS9/cPM2X/9+jBQI8ePTh06JA5m1dohfktK8nCw8N56qmnAJg4cSLz5s2zcossq3fv3vzwww+Gv+fX8S/MOp49ezZTp04lPDychg0bmrXNllLQPsPPz49t27YVufySdGLEVn333Xf069fPpDK2bt3KoEGDaNq0KaGhoWZqWckRFxfH0qVL2bp1K/v37zeprIMHDxIaGoqvry9BQUFmamHRvPbaa4YL5or7AhlbOPFbmAtRpJJr9OjRzJw5s8jft1a/5dixY+zfv589e/awZs2aYq+/qFauXEnFihUJCwtj4sSJeU736PxdunSJ/v374+/vj7+/P0OHDuXSpUuG6YUQfPbZZwQGBhIYGMicOXMQQuQo86effiIoKAgvLy+6detGRETEY/VOmjTJ6BOyGRkZTJo0CR8fH1q2bMnSpUsL/E5ERARjxoyhWbNmBAQEMGLECK5cuVLg9/Ii81u8HD2/AFOnTqVLly40aNCAdevWGfWdkk5uR8XL2O3IlpgykDd9+nRee+01M7dIkqzDZgcv82OtAbRr165Rr149q9RtLDm4KD0qMTERrVZL3bp1rd2UPAkh0Ov11m6G5CCsOTCxZcsWAgMDi62+3Abvi/pbJn9fbEdh1vHD0zrCOi6OeTSlDkdYB8aqUKECL774Iq+88oq1m2IRsbGxVKhQATc3N5PLcnV1ZcCAAbz33ntmaJlpLl68SI0aNUy+QKYoJzotfUKusNtnbhc/PXohimR/imM/rtPpivS92NhYnnzySVxdXc3cIsu6du0aderUQaFQ5Dvdo/NXtWpV5s+fz+HDhzl48CBBQUG8/fbbhulXrlzJX3/9xcaNG9m0aRO7d+9mxYoVhs9Xr17NmjVrWLJkCeHh4XzzzTePXQh89OhRoqKijJ6XBQsWEBkZya5du1i2bBnfffcdf//9d77fSUpKIigoiD/++IP9+/fTpEkTXn31VaPrLAyZX/Nz9PwCNGjQgA8//NBmLpQ0ldyOzM/Y7UhyLCXh2LkktMHW2eTg5bvvvsu1a9cYPXo03t7efPvtt9SvX5/Vq1fTrl07XnrppVxvbX/4SvwFCxbw1ltv8d577+Ht7U2PHj04depUrvVdvnyZoKAgtmzZkmebXnzxRQ4dOsT06dPx9vYmIiKC3bt307dvX3x8fGjbti0LFiwwTB8SEgKAv78/3t7ehIeH51n2unXrGDRoEB9//DG+vr507dqVf/75x/B5UlISkydPplWrVrRu3Zp58+YZfqgefPeTTz4hICCABQsWkJ6ezqxZs2jfvj2+vr4MHjyY9PR0AI4fP86gQYPw8/Ojd+/eOe4ACg0N5csvv2TQoEF4e3szfPhwbt26lef8REVF8eKLLxqu9Bo3bhz37t0zlHfmzBnDY+vefPNNxo4dm+PKol27dtGnTx/8/PwYNGgQ586dy3MZ2apTp07RvXt3/P39mTRpElqtFoBVq1bRqVMnAgICGD16NAkJCYbv7N+/n65du+Lr68v06dMNV89lZGQQEBDA+fPnDdMmJibi6elpWE+PioiIoGvXrkD2untwEmnGjBm0bdsWHx8f+vfvz9GjRwH4+++/+eabb/j999/x9vamd+/e+c5faGgon3/+Oc899xy+vr6MGTOGO3fuGD4vKG/z5s0z3FURHR3NxYsXGTZsGAEBAbRo0YLFixcDoNfrWbJkCR07diQwMJC33nrLUM+DE0Pr16+nXbt2BAYGsmjRonznZ+3atXTr1g1vb286dOiQo5MP8O2339KqVStatWrF6tWrc1wRlZGRwezZs2nXrh0tWrTggw8+MGxfklScitJJevS37Ny5c7z33ns0a9aM9u3b8/XXXxsuJDDn70t0dDQhISF4e3szbNgwox5fPWLECH7++ecc/9a7d2/+/PNP4L8rFVeuXMlvv/3G999/j7e3N6NHjwYw7DO8vb3p3r0727dvL/TyymufdPLkSYKDg/Hz86NVq1ZMnz6djIwMw/fq16/PsmXL6NChA4GBgcyePduwXAv67YyLi+P111+nWbNmBAYGMn36dMP6eDDo/sILLwDQp08fvL292bp1Kz179mTnzp051nH9+vXZunVrrus4IyODJk2aoNPp6NatGx4eHgwfPpzXXnstxzpu1aoVH374IQB79+6lefPmNGjQAA8PjxwXAeS3jhcvXkxgYCBBQUFs2rTJ8O8ZGRmMGzeOxo0b06BBAwICAti7dy8Au3fvplGjRvj4+BAQEEDfvn3x8/Nj9OjRXLt2jWHDhtG4cWOaN2/+2G/sgz7ig9+HwMBAfH198fDwwNPTk/DwcFq2bEmDBg1o1KhRjnx8/fXXTJ48mbCwMDw8PPDx8QGy+2LdunWjQYMGNGjQgNatW3P48GHDuunduzfNmzenfv36+Pr60qRJE86fP29oy8O/14/2V998803Gjx9PgwYN+PTTTw39vgdtnDx5Mjqdjh07dtCjRw/8/PwIDQ3l8uXLueb20Su5H+0zBwUF8d1339GrVy+8vLyYPHkyN2/e5OWXX8bb25uhQ4dy9+5dw/T5bdt5efhRRA+yO3v2bPz9/QkKCmLPnj0FltGiRQu6d+9OtWrVHvtMq9Uyfvx4AgMD8fPzY8CAAdy8eRPIv98M2X2wB32A7t27c+bMGSD7eCA0NBQ/Pz969OjBjh07cizTjz76iJEjR+Lt7c3AgQNznOzLq++WlwMHDjB8+HCuX7+Ot7e34QryvJb1li1b6N+/f44yfvzxR8P+ztPTk759+xruRi+MPXv25LqvAlizZg3dunXD39+fESNGEBsbC2RfdPbJJ5/QvHlzfH196dWrFxcuXGDlypVERUVx9uzZHPvjvOSXxfXr1+Pq6kr9+vUN0+eXxbVr1zJ27Fhu3LhBr169cvTtbt26xahRo/Dz8yMgIIAhQ4YY5vPRq94f3n4ebDtLliyhZcuWTJo0KUefNCAgIEef1N4Vpt8RFBTEN998k+txUH7HgIX57Z49ezaDBw8mKSkp37bkleMlS5bw/PPPG+br119/pUePHmi1WsPvx8qVKw3HBA8POj98cdiDaR8+VwHw5ptv0rJlS3x9fXnhhRe4ePEiQJ79loL2QdOmTeOVV17By8uLpUuX0qJFixzrZNu2bfTp0yfP5bB69WqmTJnC8ePH8fb2Zv78+Y9Nk1cboqOj8fPzM2w377//Ps2bNzd8b/z48fz444/5roeiHjdOnDiRDRs2GJZXXk9eyG3+ypUrR82aNVEoFAghUKlUOfbdGzZsYPjw4TzxxBNUq1aNYcOGsX79eoKCgli8eDHTpk0jJiaG77//noyMDJ5++mnCw8MN+Q0ODmbKlClMnToVgBUrVhSY3w0bNvDqq6+yePFipkyZQu/evfN9zPqaNWuYMGECc+bMYdy4cVy/fp2hQ4cSERFB//79ZX4fIvM7zJAlvV7P//73PyZPnkzdunVRKBQ8/fTTVKhQwfD9rKwsZsyYYcivMR7kt3z58tSpU4eBAwfmmd+Hfwe+/PJLNm3ahEajAeTvgNyOLLMdFYclS5bQunVrvL296dKlC5s2baJp06Y5jn1Pnz5Ns2bNyMzMJDIykpCQEHx9fQkMDGTs2LFA7sfzkP+54oc9erz3119/0adPH3x8fOjYsaNRFxVERUXluS4elpCQwOjRowkICKBTp06sWrXK8FlGRgYzZ840bCMzZ87McV7ku+++M3xm7IWFEydO5IMPPmDYsGF4e3sTEhJi2GYhu+/+yy+/0LlzZzp37gwUvE95eJ09GG85efIk/fv3x8fHhxYtWvDpp58Cjx87w+PjTQ+O3318fFi/fn2Bx59SAYSNat++vdi/f78QQojo6Gjh7u4u3n33XZGSkiLS0tLEwYMHRevWrfP8zvz580Xjxo3F7t27RVZWlpg7d64YOHDgY9OePn1atG3bVuzcubPANoWEhIhVq1YZ/n7w4EFx7tw5odPpxL///iuaN28utm/fnqPNmZmZBZa7du1a4eHhIZYuXSoyMjLEli1bhI+Pj7h9+7YQQogxY8aIqVOnipSUFHHz5k0xYMAAsXz58hzfXbZsmcjMzBRpaWniww8/FCEhISI+Pl5kZWWJY8eOCa1WK+Lj40VAQIDYvXu30Ol0Yt++fSIgIEAkJiYa5q9Dhw7iypUrIi0tTYSEhIjPPvssz/m5evWq2Ldvn9BqtSIxMVEMGTJEzJgxQwghhFarFe3atRM//vijyMjIENu2bRONGjUSX3zxhRBCiNOnT4tmzZqJ48ePi6ysLLFu3TrRvn17odVqC1xetqJ9+/aiR48e4tq1a+L27dsiODhYfPHFF+LAgQMiICBAnD59Wmi1WjF9+nQxZMgQIYQQiYmJwtvbW/z+++8iIyNDLF26VHh4eBhyN23aNDFnzhxDHT/++KMYNWpUvu3Ibd1t2LBB3Lp1S2RmZorvv/9etGjRQqSnpwshsredcePGGTWPISEholWrVuL8+fMiJSVFvP7664bvGpO3tm3bigsXLojMzEyRlJQkWrZsKb7//nuRnp4ukpKSxPHjx4UQQixdulQMHDhQxMXFCa1WK6ZOnSrefvvtHPP3/vvvi7S0NPHvv/+KRo0aiUuXLuU5P7t27RKRkZFCr9eLQ4cOCU9PT3H69GkhhBB79uwRLVq0EBcuXBCpqali/Pjxwt3dXVy9elUIIcSMGTPEqFGjxO3bt0VSUpIYNWqUmDt3rlHLy1a0b99eLF68WHTr1k34+fmJiRMnivT0dHHnzh0xcuRIERgYKPz8/MTIkSNFXFyc4Xtr164VQUFBwsvLS7Rv315s3LhRCCFEZGSkCA0NFQEBASIgIEC888474u7duznqe7Dvzsv8+fPFG2+8IcaNGye8vLxEz549xZUrV8TixYtFs2bNRJs2bcTevXsN09+7d09MmjRJtGzZUrRq1Up88cUXIisrS1y6dEk0btxYNGjQQHh5eQlfX18hRHYm+vTpI7y9vUWbNm3E/PnzDWU9yNiKFStEy5YtDTl9QKvVihkzZhg+mzFjhmFf9uhv1cPzmpWVJRYtWiQ6dOggvLy8RL9+/cS1a9fyXQ7u7u7i559/Fp06dRLt27cXQgjx8ccfizZt2ghvb2/Rr18/ceTIESFEdpYbNWokGjZsKLy8vESvXr2EEEIMGjRIDBo0SLRs2VJ4enqKzp07i7t374ro6GjRuXNnw/7GnL8vzz//vPjkk0+EVqsVhw8fFl5eXgXuZ9avXy+Cg4MNf7948aLw9fU1LNuHt8sJEyYYfl8e2Lp1q4iPjxc6nU5s2bJFNG3aVCQkJBjmbdCgQfnWn98+6dSpUyI8PFxkZmaK6Oho0bVrV7F06dIc6ykkJETcvn1bxMbG5liu+f12ZmVliV69eomZM2eKlJQUkZ6eblifj7b54fkXQoglS5aIt956SwiRvX/98MMPRc+ePcW7774rRo8eLZKSknJdx+7u7uLLL78UmZmZ4vLly8LDw0MMHjxYxMfHC61WKwICAsThw4dFfHy8aNiwoRg8eLC4deuW2L17t/Dx8cl3HQ8dOlR4eHgY/v3QoUOiadOm4vLly0IIISZPniwaNmwoNm/eLO7evSsGDhwomjRpIhITE8XcuXNFnz59REhIiLh3757o0KGDWLZsmRAieztq3rx5rr+xQvy33T3Ydh/kf+PGjaJRo0ZizJgxYtWqVeL06dMiMDBQfPXVV6Jp06ZizZo1omPHjmLRokUiODhYLFy40JDBd999V/Tt21dER0eLq1evisDAQOHj4yPS09MNy3H8+PEiMzNT3Lx5U7z22mtizpw5hrY8/Hv9aH+1YcOGYvv27WL+/Pli7Nixhn7fH3/8ITp27CgGDBggFixYIJo2bSr27dsnMjIyxJIlS0THjh0N28PDZT66PeS2Hxo4cKC4ceOGiI+PF82aNRN9+/YVZ86cEVqtVoSGhooFCxYIIQr+Lc/Lw33mtWvXioYNG4qVK1eKrKws8csvv4iWLVsKvV6fbxkPrFq1SoSEhOT4t+XLl4tRo0aJ1NRUkZWVJU6dOiWSkpKEEPn3m7du3SpatWolTpw4IfR6vbh69aqIiYkRGRkZhnWv1WrFgQMHhJeXlyGrEyZMEP7+/uLEiRMiMzNTvPPOO2Ls2LFCiIL7bnl5dL3kt6xTU1OFl5eXiIiIMEzfv39/sXnz5hxl7t+/3/DbYIz89lXbt28XHTt2FJcuXRKZmZk5toe///5b9OvXT9y9e1fo9Xpx6dIlkZCQIEJDQ4W7u7vw8PAwLL9Zs2aJtm3biubNm4upU6eKtLQ0IYQQXbt2Fc2aNTNkMSYmRtSvX1906dIlRxbbtm0r1q5dW2AWP/74Y9GoUSPRoEED0aRJE+Hh4SHat28vdu7cKebOnSumTp0qUlNTRUBAgFi1apXQ6/XiyJEjwt3d3fDbv3bt2hzbz8GDB4WHh4eYM2eO0Gq1Yvz48SI4OFj4+voKT09PsXv3bjFixAjh5+eXa/+hbdu2hn2Ql5eXCAsLe2xffuzYMdG/f3/h4+Mj+vfvL44dO5bvOgsLCzOU5+XlJRo3bmxY5ydOnBD9+vUT3t7eonnz5uKTTz4xfO/IkSOGtj+YVyGy+0vvvvuuCAwMFO3atRMLFy4UOp1OCJG97QYHB4uZM2cKf39/8cUXXwitVpvnOn1YXsdBBR0DGvPbrdPpxPvvvy+GDx8uUlNT811e+eVYp9OJIUOGiPnz54uIiAjh5+cnzpw5I4T4r+/39ttvi5SUFHHu3DkRGBiYY9/9oB+T27kKIYRYvXq1SEpKMvQTe/fubWjXo/tpY/ZBPj4+4ujRo0Kn04n09HTRrVs3sXv3bkMZr776ao7+aW4ezd/D+6GC2tC2bVtx6tQpIYQQnTt3FkFBQYbjrbZt2xqWXV5MOW7MrZ9nzPw94OvrKzw8PET9+vXFwoULDf/u4+Nj6NsJIcTJkycNxzGdO3cW7u7uYtGiRaJRo0bC19dXTJkyJUd+33rrLeHt7S20Wq1wd3cXy5Ytyze/AwcOFO7u7mLcuHGG/P7++++iZ8+euc5PXvndvn27aNGihcyvzG+u+RVCiNjY2P9n787DoirfBo5/h1UQF0BAXEJzSU0JENxQcc0lFDVNK7Uytcyl0lJL09L0zTWtXH5WWrZomuVumnuZG4poqeWuCQIKqCwCM5z3D5ojIzAM68zg/bkuL2FmmHPPnPuc85xnVerXr6989dVXStu2bZX27dsrCxcuVM/viqIon3/+uTJ9+nRFUXLeV+QmMTFRqV+/vhIXF6c+Zix/c7sO6K+Tch2Q46ikjqOSdOHCBaVt27bKjRs3FEXJ2u9XrlxRhg4dqnz33Xfq62bMmKFMmzZNURRFefPNN5XFixer+0x/b68oOY87Y3XFD74++/cRGRmpBAQEKL///rui0+mUGzduqPslL8b2xYN1yM8//7wydepU5d69e8rp06eV5s2bK3/88YeiKIqyYMECpV+/fsrNmzeVW7duKf3791c+/vhjRVGy6qNatmypbmPs2LEmnWsmTJig+Pn5KUeOHFHS0tKU6dOn56gHefHFF5WEhAQlNTXVaNkyr32mKFn1Fz///LOiKIqSlJSkREREKIqS8x5NUfK+f9fpdEpqaqrR+0+RP6sceZmX0aNH4+zsTLly5Ux6fdOmTQkJCcHW1pawsLAcI/vCw8MZMWKEOsKgoJo3b85jjz2GjY0NDRo04KmnnlJ74ReUm5sbL7zwAvb29nTv3p3atWuzd+9ebt68yf79+3n33XdxdnbG3d2dF1980WCUqKenJ4MGDcLOzg4HBwfWrVvHpEmT8PLywtbWloCAABwcHNiwYQNt27YlJCQEGxsbgoODady4sUHv9z59+lC7dm3KlStH165dOXPmTJ4x+/j4EBwcjIODA25ubrz00kscPXoUgMjISLRaLYMHD8be3p4nn3ySJk2aqH+7Zs0a+vfvzxNPPIGtrS29e/fG3t6eEydOFOr7s1TPP/883t7eVK5cmREjRrBlyxY2bdrE008/zeOPP46DgwNjx47lxIkT/Pvvv+zfv5+6devStWtX7O3teeGFF6hSpYr6fr1792bz5s1qb6cNGzbkOzoyN2FhYbi6umJnZ8eQIUNIT0/Pdf0DU9+rfv36ODs78/rrr/PLL7+g0+lMyrfevXtTr1497Ozs2Lt3L1WqVGHIkCE4Ojri4uLCE088AWT1THvzzTepWrUqDg4OjBo1iu3btxv0Mhs1ahTlypVTR8UYG8nbrl07HnnkETQaDc2aNSM4OFgdfbpt2zb69OlDvXr1cHJyYtSoUerfKYrC2rVreffdd6lcuTIuLi688sorRkdtWyt9T8Bff/2VS5cuqaO1+vTpw549e9izZw+Ojo7qqLCUlBQ+/PBDPv/8cyIiIli9ejUNGzYEsr63V155hd9++41t27Zx48YNg5HqptL3pjp69CgNGzbk5ZdfJjMzk/379zNy5EimTJmivnbChAnY2dmxY8cO1q9fz4EDB1i7di116tThgw8+wM/Pj4iICHW/Ozk5MWvWLMLDw/nf//7HqlWr2Llzp8H2Dx8+zI4dO/jyyy9ZtmyZ2vNqyZIlREZGqlP2nDp1isWLF+f7eVasWMGWLVtYtmwZx48fZ+bMmSZd33bu3MmaNWvU3nlNmjRh/fr1HDlyhNDQUF5//XXS0tJo27Ytr7zyCt26dSMiIkId8Xbx4kVsbGzYtm0bOp0Oe3t7tm7dSo0aNXjppZcMRsYVx/UlKiqKU6dO8frrr+Pg4KCOvMpPp06dOHv2rNrLbtOmTXTu3BkHB4d8/xagW7dueHl5YWNjQ/fu3fHx8eHkyZMm/S1g9JzUuHFj/Pz8sLOzo0aNGvTv31+9/ukNGzaMypUrU61aNQYPHszmzZsB49fOkydPEhsby/jx43F2dsbR0ZHAwECT4u3Zsyf79u0jKSkJyLoOh4aGsnXrVsaNG4eLi0uu+xigV69e2NxYzXAAACAASURBVNnZUatWLTIzM2ndujVeXl4cPXqUChUqEBQUxPfff49Wq2XJkiW4uroSEhKCn5+fSftY/3izZs0ICQlh27ZtKIrC+vXrCQkJ4amnnqJixYq88847QNZIMDs7O7y8vIiPj+e5557Dx8dHnQVCL7drbG4qVqzI4MGD6dmzJ+XLlyc0NJR+/frx+OOPExQURMWKFfHx8eHbb79l+PDheHp6otFoePXVVzlz5gxXr15l69atzJkzhxo1auDj48Mbb7xBamqqeu10cHCgZs2a3LlzB3d3d4YNG2by9drPz49OnTrRs2dP9uzZw759+3j33XfZsWMHYWFhvPjii/z000+EhIQQHByMvb09L7/8Mvfu3TM6s4cxAwcOpEqVKnh5eREYGIivry+NGjXCwcGBzp07c/r0aTXu/K7lpqhWrRrPPPOMWuaLi4tTR0oWhp2dHYmJiVy5cgVbW1saN26Mi4tLvuXmH3/8kaFDh+Lr64tGo8HHx4fq1asTGRlJSkoKw4cPx8HBgZYtW9K+fXuDnOrcuTO+vr7Y2dnRs2dPtYycX9nNVMa+aycnJzp27KieRy5fvszFixeLZX3LvM5Vq1evZvjw4dSpUwc7Ozv1eLh+/Tp2dnYkJydz8eJFFEWhTp06eHp6snLlSqpUqULr1q2JiIhg1apVXLp0ifXr17Njxw5iY2NZtGgRkLUGdGpqqpqL586dw8nJiebNmxvkYkpKSr7fD8DkyZOZNm0afn5+nDx5knbt2vHoo4+yefNm7OzsiIuLY9OmTbi6utKvXz+io6PVKYnXrl3L+vXr1XJLdjY2NowZMwYHBwdsbW05ceIEY8aMISIighYtWtCvXz+Sk5M5dOhQjvKDfvaAo0ePEhERgb+/v8F7JyYm8sorrzBo0CAOHz7MSy+9xCuvvGJ0dgL9DDgREREcOXIEPz8/nnrqKQBmzJjB4MGDOX78OL/++ivdunUDsqZaGzZsGAMHDuTgwYMGn3X69OncvXuXnTt38s0337BhwwbWrVunbu/kyZPUrFmTP/74gxEjRjBnzpw89+mDcjtH53cPmN+1W6vVMnbsWG7fvs2SJUtwcnLK87sC43lsY2PDrFmz+OabbxgxYgRDhw7NMaXhyJEj1RHAffr0UY+P3DxYV9G3b19cXFxwcHBg9OjRnD17Ns/RQaacgzp27EjTpk2xsbHB0dGRXr16qdfzxMREfv/9d0JDQ41+H8bkF0NQUBBHjx4lLi4OgC5dunDkyBGuXbtGUlISDRo0yHcbRblvLIrw8HDCw8N57733DPZxSkoKLi4u6u8VKlQgJSUFRVHU8+vx48eZM2cOLi4ubNu2jSZNmvDEE08QGxvLX3/9hbu7u5q/bdu2NZq/+tEoKSkpav5WqFCB5OTkXOPOLX9Pnz7NlClTeOeddyR/CxDDw5a/N27cALJmhti0aRMrV65ky5Yt6sin6OhofvjhB15//XWT49BfjytUqGCwzbzyF3JeB+Lj4zl69KhcB3Ihx1HJHkfFwdbWlvT0dC5cuEBGRgY1atTgkUceoXfv3up+0Ol0bNmyRR0Ba2dnR1RUFLGxsfne2xurKzbmxx9/5OmnnyY4OBgbGxu8vLyoU6dOvp8nr32RXXR0NMeOHeOtt97C0dGRhg0b0q9fPzZs2KDGPHLkSNzd3XFzc2PkyJHqd6GvW9VvI3vdan7atWtHUFAQDg4OvPnmm5w4cYLo6Gj1+eHDh1O5cmXKlStntGyZ1z6DrH1z9epV4uPjKV++PH5+fibHp79/t7GxISkpKd92G2GcnbkDKE5Vq1Yt0OuzVxyUK1eOtLQ0tFotdnZZX8vq1asJCgqiRYsWhYonMjKSuXPncu7cOTIyMkhPT1en6CwoLy8vg7m7q1WrRmxsLFFRUWi1Wlq3bq0+l5mZibe3t/p79u8lISGBtLS0XKeNioqK4pdffmHPnj3qY1qt1mD9NQ8PD/VnJycntYCSm1u3bvHhhx8SHh5OcnIyiqJQsWJFAGJjY3N8puwxR0VFsX79eoMpATMyMoiNjc1ze9Yo+2fW79PY2Fgef/xx9fHy5ctTuXJlYmJiiI2NNdifGo3G4D2eeOIJnJycOHLkCB4eHly9epWOHTsWOK7ly5ezdu1aYmNj0Wg0JCUlmTSNoymfMSMjg4SEBJPyLfvfRkdHqxeRB0VFRTFy5EhsbO73x7CxseHWrVvq79mP9/xyd9++fSxatIjLly+TmZnJvXv3qF+/PpCVu40bN841xvj4eFJTUw2mblPK6Hqd+hsNgBEjRjB9+nTefPNNunTpor5mxIgRButZ2djYqGtdeXp64unpCWQ11vj4+ACojTWfffZZgWMKDAykTZs2AHTt2pVff/2V4cOHY2trS/fu3Xnvvfe4c+cO6enp7N+/n/DwcMqVK4ezszMvvvgiP/zwAwMGDMj1vbPnZfbOKJ06dVIfz+3GpVWrVmzatIn33ntPXbds5MiRTJ06VZ0SJC9r167l7bff5tFHH1W3awp9QU0v+9QwQ4YMYcmSJVy6dCnX97t58ya3b99Wp8PJyMjgpZdeYv369QwYMIBq1aoZTE1SHNeX2NhYKlasaLCuRrVq1QwKn7lxcXEhJCSELVu2MHz4cLZs2cL06dPz+XbuW79+PStWrFAbP1NSUgp0njN2Trp06RIfffQRf/75J6mpqeh0OoPzOhieO6pXr65e34xdO6Ojo6lWrZpaTikILy8vAgIC1I4d//zzDzNmzGD+/PlUq1ZNfd2D+zi7hIQEFEVRG1M3b96s3gBfvHgRwOCak98+jo+Pz/Xx2NhY4uPj0Wq17Nq1y2BaSIC4uDhefvllPvvsM06cOEFiYiJNmjTJscZJbtfY3NjY2KivdXR0xN3dXc2P8+fPs3fvXnQ6HW5ubsycOZPMzEwyMjJo1qwZiqJw/vx5MjIy2LlzJ6NHjyY2NhadTodOp1Nzqm7duly+fJlu3bpRo0YNRo0ahZOTE2fPnkWr1Rq9XuuPMx8fH6pVq8aFCxcIDg4mKSmJ8uXLA1k3y9n3o/4z5bUv85P9muno6JijzKy/hppyLS/o9vSVTMau0/kJCwvjxo0bjB07ljt37tCzZ0/efPPNfMvNeR3X+vJX9nLGg8dKXt9RfmU3U+X3Xffo0YOPPvqIUaNGsXnzZjp16pRvhZ0p8jpXRUVFMXPmTGbNmqU+rygKMTExtGzZkueff55p06YRFRVF586dmTBhgkElqr7D18aNG9Vr1iuvvMK4ceMYN24cPXr04LPPPlMrQTdt2kTNmjVzfM/6MlZ+38++fftYvHgxUVFRBAYGcu/ePfr166c2sn355ZfMnDkTe3t7li1bhqIotGrVip07d2JnZ4erq2uOtcAAXF1dcXR0VH/XaDQsWLDAYKo1W1tbEhIS8iw/5GXv3r34+PjQq1cvAEJDQ/nmm2/Ys2dPjmmCc/Phhx/i5OSkroGWvRLGzc1NrYTZtGkTrVq1Us/n+s+q0+nYunUr69evx8XFBRcXF7WDS79+/YD7nZj0n9PYPn1Qbufo/O4B87t2X716lbNnz7J27VqTOjMZy+Pq1atTo0YNmjdvzr59+9Qp3PL6DNWrV+eff/7Jc1vZzwM6nY6PP/6YX375hfj4ePXckpCQYFDxr2fKOejB80pYWBjdunUjOTmZbdu2ERgYqJa9CyO/GJo1a8auXbvw8vIiKCiI5s2bs2HDBrUyNvvf5aUo941F5ezszLPPPkvLli3ZunUr7u7uODs7GzS8JCUl4ezsbHAeHzp0KK6ursTHx1O9enV+++03AgMDSU1NVctr+vz99ddf2bRpU575q3/8hRdeUPM3+7X+QQ/mr6IopKen07FjR/V4lvw1LYaHLX/1jWdDhw6lYsWKVKxYkf79+7Nv3z6eeeYZZs6cyciRI3Pdn8Zi0G9Hf100lr+Q93e2YsUKuQ48QI6jkj+OisrHx4d3332XTz/9lPPnz9O6dWsmTpxIx44dmTp1KteuXePSpUu4uLjg6+sLZC2Lt3DhQvr27UulSpV46aWX6Nu3b67vb6yuuEaNGnnGFR0dTUhISIE/T1774sGYKlWqZFDGr1atGn/++af6/IN1Dfpj+cG61erVq5scW/ZjqXz58lSqVInY2Fg1ZlPbF5o1a5brPvPy8mLGjBl88sknBvfvpg5syx6fKe02wrgy1XiZvdLKycnJYJ05nU6X57p/efnggw/4/PPPmTlzJu+++26B4xk3bhwDBw7kiy++wNHRkRkzZqgHekEXEY6JiUFRFPXvoqOj6dChgzrS7NChQ3lWZmbflv4G+9q1azkqrr29vQkLC+PDDz8sUGwPbkNv3rx5aDQaNm7ciKurKzt37lRHYXl4eOT6mfSV3t7e3rz66quMGDGiwLFYk+yV81FRUWqDTvb5ulNSUkhMTMTLywsPDw+1lxxkFaoerODX9+rx8PCgS5cuBhUqpggPD+fzzz/nq6++ol69etjY2BAUFKSuz1TQ3M0eX3R0NPb29ri6upqUbw82bufVM6Vq1arMnDmTpk2b5nguv15ID36e9PR0xowZw6xZs+jYsSP29va89tpr6uf39PQ0KCBm/3yurq6UK1eOLVu25LoGV1mSW4VTamoq//d//8dvv/2mroeWnJyMTqfD2dmZjz/+mOXLlzNp0iQCAgKYMGECderUMdpYUxD6xkHIqtB0dXXF1tZW/R2yjqfY2NgCFx5M6YyS142LsQKbMTdu3MizccyYBz9HQTojREVFoSgKH330EfPmzQOyRl3oC5LR0dEGuV0c15fr169z584dUlJS1JveqKgok841oaGhfPbZZwQFBXHv3r08b14efK/r168zefJkvvrqK/z9/dUZGArC2Dnp/fffp1GjRsybNw8XFxe++uortm/fbvCa6Oho6tWrB9w//4Pxa6e3tzfR0dEGHa0Konfv3qxdu5b4+Hhq1qxJ/fr1sbe3Jyoqirp166px5XX+cnV1xcHBgaNHj3Ljxg1+/fVXfvjhBwBq1aoFwO7du3Mcv3ntYyDH4/rvRT/6v2vXrmouPki/dk+nTp1Yv349Xbt2NVh/IrdrbF6y58jNmzfV/Fi1ahV16tRRG33Hjx+PTqdjzZo1rFq1CsgqY9ra2rJ8+XK++eYb6tWrx9q1a/nggw/Ua0e5cuWYP38+mZmZ7NixgzFjxjB8+HAOHz5MUlISPXr0wNHRMdfyavbYunXrxuLFi5kyZQrffvutum7kokWLDCpL9OWD3Pblg2XkooxwLErZsSTZ29szatQoRo0axb///svw4cOpXbs2ISEhRsvN3t7eButF6Xl6enLjxg0yMzPVipfo6Gg1740xpexmivy+6+DgYBISEjhz5gybN29WRyoXVV7nKn1ZPa8Rw4MHD2bw4MHcunWLN954gy+++MKg005+Hb58fHyws7PjxIkTtGjRgt27dxvtUGrs+9GX7fr06cOZM2dYvXo1r732GhUrVqROnTocPXqU119/nR9++IG5c+cyceJE/Pz8qFWrFk5OTqSmpqrvFRcXl+d1ELJGmSxZskQtk+rLD2FhYQXuzPpg+QGMdzDJbvXq1Rw5coQ1a9aoOZtXJUxejfYJCQlkZGQY7eCSvXKmoJ34cjtHG7sHNOXa/eijj/L8888zbNgwvv76a7UDWF7yy+N9+/YRERFBy5YtmT17tno9zv4Z9KMXCnKd2bRpE7t27WLFihXUqFGDu3fvGr3fKsw5yMvLC39/f3799Vc2bNhgsA51YeQXQ1BQELNnz6Zq1aoEBQXRtGlTpk6diqOjI0FBQSZtoyj3jcUhMzOT1NRUYmJicHd3p169epw9e1atZD579iz16tVTr5v29vZoNBp131eoUIHatWuzdetWAgMDcXBwQKPRqOtkzZkzh5EjRzJy5Mhc87du3bqcO3eOMWPGsGrVKh599FHOnj2rltEelD1/b9++zQsvvEDr1q3VdfYkf02P4WHKX4DatWur+ZubgwcPcuzYMebMmaM+1r9/fyZNmkSPHj1y/ZtKlSrh4eHB2bNnCQ4OVreZV/5CzuuAvb09lStXpnv37nIdkOPILMdRUfXo0YMePXqQlJTElClTmDt3LnPmzKFbt25s3LiRixcvGuSsh4eH+pnCw8N56aWXCAoKUjv3Z2esrtiYvO5v8pPXvsj+uKenJ7dv3yYpKUltwMx+D+rp6UlUVJR67omOjlaPEU9PzxznAFNlv7dKTk7m9u3bBsfeg3XJxtoX8tpntWrVynH/fvjwYZPam7Jv35R2G2Gc1U4bW6VKFa5du5bn87Vr1yYtLY29e/eSkZHBkiVLDBaFNUX58uX54osvCA8PZ+7cuQWOMTk5mUqVKuHo6MjJkycNpg9wc3PDxsbG6GfILj4+npUrV5KRkcG2bdu4cOECISEheHp6EhwczEcffURSUhKZmZlcvXo1z+lpbWxsePrpp/m///s/YmJi0Ol0REREkJ6erk5H9ttvv6HT6UhLS+Pw4cMGJ4W85PZ5kpOTcXZ2pmLFisTExPDFF1+oz/n5+WFra8u3336LVqtl586dnDp1Sn2+X79+rF69msjISBRFISUlhb1796rT3ZUV33//PTdu3CAxMVFdrLxHjx789NNPnDlzhvT0dObPn4+vry81atQgJCSEc+fOsWPHDrRaLStXrsxR6RgWFsbOnTvZuHGj2lO7IJKTk7G1tcXNzQ2tVstnn31m8L27u7tz/fp1k0cTbty4kfPnz5OamsrChQvp0qULtra2Bc63du3acfPmTb766ivS09NJSkoiMjISgGeffZYFCxaoF/L4+PgcU3rm5cHPk56eTnp6Om5ubtjZ2bFv3z4OHDigvr5r16789NNPXLhwgdTUVIOpsGxsbOjXrx8zZ85UR33GxMTw22+/mRSLNcmtwmn58uVcunSJNWvWcPz4cb777jsAtQDepk0bVqxYwe+//86jjz7Ke++9Bxg21uinXtL/TUnIXnjQT7Nz/PhxtSEqt5u4cePG0bFjR/bt28exY8cYMGBAjhjzaijRF9iyv86UHo9Vq1YtVCEze/z6zggLFizg6NGjhIeHU6FChTxviqpWrYpGo+Hdd9/l2LFj9OjRg+DgYH744QeuX7/OihUr8ryxK+z1pXr16jRu3JhPP/2U9PR0wsPDDXpUGhMSEkJUVBSffPIJ3bt3z7M3p7u7u0FHhtTUVDQaDW5ubgCsW7eOc+fOmbRNPWPnpOTkZMqXL0/58uW5cOGC2siV3Zdffsnt27eJjo5m5cqVdO/eXf3bvK6dvr6+eHh4MG/ePFJSUkhLS+PYsWO5xpdbOalTp06cPn2amJgY9Ya/a9eufPzxxyQlJZm0j/v27YuzszPjxo2jevXq6mjm5557Dnt7e0aOHEl8fDxJSUl8/fXXJu3j7I/v3buXrl27YmNjQ8+ePdmxYwdbtmxBp9Nx9epVPv/8c27cuMHu3bt5/fXX6du3L5MmTcLGxoaff/5Z/ew6nS7Xa6wp0tLSDPLjr7/+4ty5czRr1oxly5aRlpZGTEwM8fHxbNu2DVtbW3WURbly5bh69ap6o6MXHx+v9qrWN+727NmTY8eOkZaWho+Pj0nl1f79+wMwd+5cOnfurJb7atSowb59+zh48CAZGRksX74cBweHHNNQAjRs2JB9+/aRmJhIXFwcX3/9tUnfS26KUnYsKv32tFotmZmZ6mhxgEOHDvH333+j0+lwcXHBzs4OW1vbfMvNffv2Zfny5fz5558oisKVK1e4fv06vr6+ODk58cUXX5CRkcHhw4fZvXu3STllStnNFPl913Z2dnTp0oXZs2dz+/ZtteIQMPh+FEUhLS3N5PuivM5VAwYMYNmyZeq58+7du2zbtg3Imko0MjKSjIwMnJyc1ClVIauyPyEhwaDDl/5afOzYMYOpjp2dnTl8+DC7du2ibt26RkdvGPt+9GW78uXLo9FoDMp2oaGhfPXVV/zwww/UrVuX+vXrY2tri7u7O1evXqVBgwZs3rwZnU7H/v37c0wB/qDHH3/coEz65ptvUrNmzVzLD/l10nmw/ADGO5johYeHs3DhQhYvXmwwekNfCXPw4EGGDRvGmDFjSElJybNSy9XVVe3gktf2H+zElN8+zS63c7Sxe0BTr92hoaGMHTuWl156Kd9ylLE8jo+PZ9KkScyYMYOPPvqI3bt355iebvHixaSmpnLu3Dl++uknk68zycnJODg44OrqSmpqKvPnzzd4/sFyS2HPQWFhYXz55Zf8888/dO7c2aTY8pJfDLVq1cLR0ZGNGzcSFBSEi4sL7u7ubN++3eRK6+K6bzTVgQMHOH36NDqdjqSkJD766CO1UwNkfX8rVqwgJiaGmJgYVqxYQe/evYGsGVLat2/PkiVLWLx4MW3btiUuLo64uDgiIyP55ZdfWL16NePHj+f7778HUJfLgbzzd8CAAbi6uvLCCy/w+++/s3btWnWbub122bJlREZG8vLLL9O4cWN1VI7kryHJX8P8dXJyonv37nzxxRckJSVx48YN1qxZQ7t27QDYvn07GzZsYP369axfvx6ApUuX5rsfevXqxZIlS7h9+zYXLlwwmr9w/zoQFxenLj0REBDAqlWriIiIkOuAHEclfhwVp4sXL3Lw4EHS09NxcHDA0dFRLf+GhYXx888/s3v3boN7bf2ySZDVAUCj0ah1Gg/ezxurKzamb9++/PTTTxw8eJDMzExiYmK4cOFCvp8nr32Rnbe3N/7+/syfP5+0tDTOnj3Ljz/+qHZyeOqpp1iyZIl6L7xo0SL1ua5du/Lzzz+r2yjI7Gv79u0jPDyc9PR0Fi5cyBNPPJHnYARjZUtj+2zDhg057t9tbW0L3N5U0HYbkZPVNl4OHz6cJUuWEBgYmGM0A2T1ep06dSqTJ0+mbdu2ODk5FXhaWchaB2n58uXs37+fBQsWFOhvp06dyieffIK/vz+LFi1S1xWBrMLCq6++yrPPPktgYGC+azn6+vpy5coVWrRooU5FpJ+6aPbs2WRkZNC9e3eCgoIYM2aMOsd4biZMmED9+vXp27cvzZo1Y+7cueqoo8WLF/O///2Pli1bEhISwpdffmlSI1Vun2fUqFGcPn2awMBAhg8frhbUIWvtp08//ZQff/yRoKAgNm7cSLt27dRpHZo0acL06dOZNm0aQUFBPPnkk/z000/5xmFtQkNDGTJkCJ06daJmzZqMGDGCli1b8vrrrzN69Ghat27NtWvX+Pjjj4GsRuKFCxcyb948mjdvzpUrVwgICDB4z6pVq9KoUSM0Go3Ja6Fl17p1a9q2bUuXLl3o0KEDjo6OBhcBfW/x5s2bGy2I6oWFhTFx4kSCg4NJT09n0qRJAAXONxcXF5YvX86ePXsIDg6mS5cuHD58GMjq3d+hQweGDBmCv78/zzzzjMlr1z34eVxcXJg8eTJvvPEGQUFBbN682WDNqJCQEAYNGsTgwYPp3LmzOuWWPnfffvttfHx8eOaZZwgICODFF18s9Hqhliy3Cqfk5GQcHR2pWLEiiYmJBoWPmzdvsmvXLlJSUnBwcMDZ2VktFBhrrCkJ+RUe3N3diYmJMSiAGOuMopfXjYuxApsx/fr1Y+HChVy+fBlFUTh79myBp28uaGcET09PKlWqxLZt20hKSmLSpEkoikK7du147rnnCA0N5emnn85ze4W9vsybN4/IyEiaN2/OokWLTO54oV/z7I8//jC6fkffvn05f/48gYGBvPbaa9StW5chQ4YwYMAAWrVqxT///JPjXJofY+ekCRMmsHnzZgICAnjvvfdyvans2LEjffr0oVevXrRr106dHsbYtdPW1palS5dy5coV2rdvT9u2bdWb6weNGjWKiRMnEhgYqK5/Wq5cOZ588knS0tLU9Vree+89nJyc6NSpk8n7uHHjxoSHh3Px4kWDfbx06VIuXLhAq1atCAwMZNmyZfnu4ypVqlCxYkXatGnDW2+9xfvvv69Wurz//vt0796diRMn0qhRI7p06cLPP/9MZmYm69at49SpU3z77bcMGDCAQYMGcfDgQcLDwxk+fDh3797l8uXL9OnTx+Aaa4rq1aur+bF9+3Zu3bpFQEAAjRo1YujQoXz77bfcuHGDVq1aMX78eAAWLFiAl5cXTz75JN26daNRo0YG1079dMz+/v7MmDGDjz/+GB8fHx5//HEqV67M119/bVJ51dPTk6ZNm6qNjvpyn52dHXPmzGH69Om0aNGCPXv2sHTp0lynywoLC6NBgwbqddPUSpbcFKXsWFQbNmzA19eX999/n/DwcHx9fdVOMTdv3mTMmDE0bdqU7t2706xZM7WiwFi5uVu3brz66quMGzeOgIAARo4cye3bt3FwcGDJkiXs37+fFi1a8MEHHzB79myT1osxpexmClO+6x49evDHH3/QtWtXg569R48exdfXl+HDhxMVFYWvry8vv/yySdvN61zVuXNnhg4dytixYwkICCA0NJT9+/cDWdeeyZMn06xZM9q3b0/lypUZMmQIkNXDXD9NU5UqVYx2+HJycuKvv/5i1apVOc7x6enpamO1VqvFzc2Nzz77LNfvR1+2+/7774mMjDQo23Xv3p2//vqLefPmcebMGfr378+zzz7La6+9xh9//EH79u3ZvXs3TZs25dtvv813utcmTZoYlEmjo6O5detWoTqzhoSEcPnyZTZt2oRWq2Xr1q2cP39erVzOTXR0NG+88QazZs2idu3aBs/lVQmjz5utW7ei1WrVEbyF6eBSkE58ud0HGbsHLMi1u3fv3owcOZIXXnjB6CwsxvJ4ypQpdOjQgZCQEFxdXZkxYwaTJk0yKIs1a9aMzp078+KLLzJkyBCDWT2M6dWrF9WqVaNNmzY89dRTOdZRerDcUthzUOfOnbl+/TqdO3c2mKK9MEyJoVmzZuoaufrfFUXJsUZcXorrvtFUd+7cYezYsQQGBtKpUyeuXLmiaukp1QAAIABJREFUzpoFWY0a7du3V0dlhISEqEtMhIaGcu7cOQ4fPsypU6fYuXMnTz/9NPPmzWPatGl07dqV5557jl27dqmzw/Tt25fBgwcbzd8xY8bg7+9PYmIiw4YN4+mnnzaYVSI7ff6OHj2aU6dO8eOPPzJu3Dj8/f1p3bo1LVq0kPz9j+SvYf5C1jnO2dmZNm3a0L9/f0JDQ9VrvLu7Ox4eHuo/uN9BxZgxY8ZQs2ZN2rdvz6BBg3j55ZfzzF+4fx0ICQkhIiKCmJgYli5dSkxMDO+8845cB+Q4KvHjqDilp6er5f3WrVsTHx+vTt2vX4v08ccfN2hsPHXqFP369cPf358RI0YwadIkdUbCB+/njdUVG+Pr68v//d//qbPVDRw40KRRjnntiwfNnz+f69ev06ZNG0aNGsXo0aPVTpSvvfYajRs3pmfPnvTs2ZPHH3+c1157Dcgq577wwgu88MILdO7cuUBL9oWGhrJo0SKaN2/OX3/9ZTBK/EHGypbG9tlvv/2W4/7d0dGxUO1NBW23EQ9QhMVbt26dMmDAAHOHUeL69u2r/Pjjj+YOo0yYOHGiMn/+fHOHoQwcOFBZs2aNucMoUefPn1caNGigZGRkmDuUUtO+fXtl6dKlSrdu3ZSmTZsq48ePV1JSUpQbN24oAwcOVPz8/JQnn3xSWbVqlVK/fn0lIyNDiYmJUZ5//nklICBAadq0qTJw4EDl3LlziqIoyj///KP07t1b8fPzU3r27Kl8+eWXSps2bQy2d+DAAaMxffLJJ8q4cePU3w8cOKC0b99e/T0jI0OpX7++Eh0drSiKoty5c0eZMmWK0qZNGyUgIEAJCwtTNm/erCiKoqSlpSnDhg1TgoKClGbNmimKoijbtm1T2rVrp/j5+SnDhw9XPvjgA3V7165dU+rXr6+sXr1aCQ4OVlq1aqUsW7ZM3fa9e/eU6dOnK8HBwUpwcLAyffp05d69e4qiKMqhQ4fy/KxarVZZtGiR0r59e8XPz0/p06ePGn9e6tevr1y+fFn9XavVKu+8847i7++vBAcHK8uWLTPYRnx8vDJgwAAlMDBQ6dWrV77fjSgeD+6n0vTpp58aHCtllSnnDUtgKddrIUpL9rLhvXv3lHnz5ikdOnRQ/P39la5duypff/21wesHDx6sNGzYUImNjc3xPvXr1zf4d+jQIaPbzuueKq9tHD16VOnbt6/i7++vtG3bVvnpp5+Mvv+ECRNyHM/Gyg+KoigLFixQmjdvrjRt2lSJiIjIEePRo0eV3r17KwEBAUrv3r2Vo0eP5vsZH3vsMcXPz0/91717d0VRFGXcuHFKixYt1Md+/fXXfD9rYmKiMm7cOKV58+ZK27ZtlU8//VTR6XR5fp+m7FNFsZ5zdF70ZT9rKP937NjRKr5ra7pvlPwtPZK/ZZccR6VHjiPLMGjQoDL9+UpLbuVtUbZpFKUE5+YTxeKnn35i7dq1uU47Z82OHDlC7dq1cXV1ZdOmTUydOpWdO3cWaQFpkbXGY69evfj555/VHjvmMmjQIHr27Em/fv3MGkdx+/XXXwkJCSE1NZUJEyZgY2PD4sWLzR2WEMJKPPbYY+zYsSPXtSxKUmJiIr1792b27NkmT91jrTp06MCHH35Iq1atzB1Knizpei2EEKXJGs7Rxvz777907NiRv/76y6LXL9q+fTtz585l+/bteU6tbyms6b5R8rd0SP6WbXIclQ45jizDyZMnGTJkCHv37lXXhhSFM3HiRLy8vNQRkqLss9wzrAWKioriqaeeyvW5LVu2qMPiC2PKlCls2rQpx+M9evTIMX1AWXHp0iXeeOMNUlJSqFmzJp988ok0XBbRggUL+Prrrxk+fLhBRejSpUv53//+l+P1TZs2LfIUnbmtpwXw+eefF+l9Ldnq1auZOHEitra2BAUFMXXqVHOHJESZtHHjxlyPr2rVqqlrlJak8PBwhg0blutzea3hZanWrFnDzJkz6dmzp0HDZUl/x/ldf0p6++bOobyY43pd2oyVD0yd1r443sOSGSv/T5s2rcS3b+5zXEneWwmhZ+7jzFwGDRrE+fPnmT17tkGF9dChQ3NdL/uVV17h1VdfLdGYSuO+0Zyfz1QFubbp81er1RosaWFnZ4eDg4PZyzMlRfLXkLXmr15u5fHU1FQmTZrEnj17ij3GB8l14OE6jizNhAkT2LlzJ5MmTbKohktLvs966qmncp3a9oMPPjBDNMLcZOSlEEIIq2ANN3MlzdwVzUIIIYQlK+mygrHKlLzWgiwJllzhJIQQQgghhBDFQRovhRBCCCGEEEIIIYQQQgghhBAWwbInvBZCCCGEEEIIIYQQQgghhBBCPDSk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRGk8VIIIYQQQgghhBBCCCGEEEIIYRHszB2AEEIIy5eQkMD48eO5evUqDg4O+Pj4MG3aNNzc3Lh06RITJ04kMTGRypUrM2vWLGrVqmXukIUQQgghhBBCCCGEEEJYIY2iKIq5gxBCCGHZEhMT+fvvv2nevDkAs2bN4vbt28ycOZPBgwfz9NNPExYWxoYNG1i3bh0rV640c8RCCCGEEEIIIYQQQgghrJFMGyuEECJflStXVhsuAfz8/IiKiuLWrVucPn2a0NBQAEJDQzl9+jTx8fHmClUIIYQQQgghhBBCCCGEFZNpY/+TkJBMZmbRBqG6u7tw61ZSMUVUNmKwsdHg6lrerPE8DIqav6WZN6W1reLYjuRv7jIzM1m1ahUdOnQgOjoaLy8vbG1tAbC1tcXT05Po6Gjc3NxMer8H89cSzmPFyZyfR3K4dGTPYWvOX0uLXfK3dJSV/LU07u4u5g7hoVDWyxClSe7hSt/Dkr+l/bkkf0uPlCFMU9DvRnK4dEj+5iT1aNajLOavJXwOyV/LI42X/8nMVIrceKl/nyLLyMBpyWc4bvgJrZ8/SR/OAien0o2hiCwhhodJceRvXn9vc/kSLu+8Bc7lSX7jLXRNfIu0HWPbKm6ShyVj+vTpODs7M3DgQE6fPl3k9zMoGMydCwcP4r56NdjbF/m9LYVUYpdtBufgBQtw2bGLO8u/gf8a9a2JnDetT4cOHXBwcMDR0RGAt956izZt2pj89wb5u3s3Faa8z90Fi8j0qVUC0QpRvHKUgceNw/nWbZLmfGy+oKyYXANKV273cNayD7RaLZGRETRtGmTS663lc4mCeTCHrXU/a7VaDhz4jTZtQrCxKZkJ6qz1uynLHszfuLibJCcn8cgjPmaMyvwkV62DPn8VReHEiRNUr17H3CEVC8k/8SBpvLQ0qalUGjQAh/17ALA/FYniUoHkD2aYOTDxUEpNpdILz2J35jTpgOuObSRs242ucRNzRybMZNasWVy5coWlS5diY2ODt7c3MTEx6HQ6bG1t0el0xMbG4u3tbfJ73rqVpBZQPN5+G4A7K74lrXffEvkMpc3DowJxcXfNsm0bG400nJa2N9/EEbDft5uMDp3NHY14SHzyySfUr1+/6G/UsSMOQIWxY7i9bmPR30+I0pSeDvPn4wQkTZ0OLnL9E6KkrFr1LePGjeGff65QubKrucMRoki+/vpL3nnnbVauXE3Xrt3NHY4wk8mTJ7Bu3RpiY++YOxQhTHb8eDjdunWUvBVllqx5aWGc/7cIh/17yKziQdLkDwBw+vJ/2Fz/18yRiYdRuR9/IPPMaUY4OeGMhtfS0nBe/Im5wxJm8vHHH/Pnn3+yaNEiHBwcAHB3d6dhw4Zs3rwZgM2bN9OwYUOTp4zNi92pk0WOVwhz0qRnmDsEIQpsA6ABNHdumzsUIQrM5mbc/Z/vSgWOECXlzp3bzJ8/G0dHR44fDzd3OEIU2datW2jdui27dv1q7lCEGTk7y1SRwvpkZEi9gyjbZOSlJVEUyn3zFQCRk9/HvmNn6p48QbmNP1Puh+9JGTvevPGJh47jpvXMBM7UfIQTcxbQLqwbE379hfKZmVBC06kIy3Tu3DmWLl1KrVq1GDBgAAA1atRg0aJFvP/++0ycOJHFixdTsWJFZs2aVeTt2Vy9UuT3EMKsbDTmjkA8RN566y0URaFp06aMHTuWihUrmvy32Udnn//vf3t7Wzw8KhRzlEKULJvYGPVnzd27YPokEEKIAti6dTO+vn54enpx6dIlc4cjRJFFRkbw8cefsXTpZ+YORZiRnZ31LfkhRFbXUyHKLmm8tCB2x45ie+0q6yq7MuyDyfDBZFaOfJ3QjT/juH6dNF6K0pWeju7wQRYAez9dipd/U0KdnNh4+zYDL11AV6eeuSMUpahevXr8/fffuT5Xp04d1q5dW6zb00jvMWHtNHITIUrHd999h7e3N+np6cyYMYNp06Yxd+5ck/8++9Td+m5JGbpMEs003XVZIY2/pc+g8VJGDwtRYiIijhEc3Jp799K4Kh0OhZW7c+c2Wq2W4ODWvPHGSBRFQSPl+IeSra00XgrrI+crUdbJ0CkL4rh1M3eAV+/dY9WqdSxb9hVDP1/CrcqVsTt7BtvTf5k7RPEQsYs4zs7UVHydnKju3xSAbo815BfA7vgx8wYnyj4l09wRCFE0chMhSol+jWEHBweee+45jh8/Xuj3UrNW8ldYIU18/P2f78i0sUKUlJiYGLy9q+Pj48O1a1fNHY4QRXL9+nVq1KiBm5s7Tk5OREVdN3dIwkyk8VIIISyPNF5aEPtDf7AIaB8YREBAICEh7enWLZS3PTwBcNz4k3kDFA8V+8MH2Q50a9REfSyobTsOATaytokoaZnSeCmsnDT+iFKQkpLC3btZIyQVRWHr1q00bNiw0O8njZfCmmnS0+//nCQjh4UoKTdvxuHh4UHNmo/IyEth9a5fv0b16jUAaNCgEX//fcbMEQlzyfyvDkKn05k5EiFMJyMvRVknjZeWIjUVmxPHWQq8+vY76sOTJ7/PLzdv8jvgsGun2cITDx/7yAgOAYFt2qqPubUJoRJw+dAfZotLPCTkhkFYqW3AfECRmwhRCm7dusWgQYPo0aMHoaGhXLp0ialTpxb6/TS5/CSE1dBq1R9tZOSlECXm5s04qlTxoGZNH65dk8ZLYd3+/fffbI2XDThzRhovH1Zpaen//Z9m5kiEMJ1UO4iyzuTGy127dqHNdkMoipd9xDH2abW4litHk5bB6uMVK1Zi0pRpTNZosI+MQBMXZ8YorZvkcMGkRxzjDNCoe6j6mNbPn5bA0b/PQrbe7cI6WNMxoJHGS1EAFpPbOh2TgHGARlHMHY2wIoXN4Zo1a7J+/Xo2bdrEli1b+OSTT/D09Cx0HDLyUuhZzHm1ADTaDBYDU5GRl8I6c9haxMVljbysUqUKaWlp3L0rnQUKQ3LUMty6dZMqVTyArJGXZ8+eNnNEZYs15Xl6eprB/0Lkx5ryWwhrZXLj5cKFC2ndujXTpk0jMjKyJGN6KNkfPsg6oF8T3xzP9X7mWS46OBABOOyR0ZeFJTlsOk38LU7/e43HNBocGt/PSaVSZZpV8eCQVovdGVmD1dpY1TGgk2ljheksJrfT07HT/5whNzHCdBaTw3o2MjnLw87ictIUWh3vAdMAzb175o5GmJlV5rAVuHfvHvfupVKxYiU0Gg3Vq9fg33//NXdYVkly1DIkJMTj6uoGQIMGDTl7VkZeFidryvP7jZcZZo5EWAtrym8hrJXJNRMbN27kq6++wtHRkdGjR9OlSxcWL14sBdViYnfoDzYBT4aG5XjO3t6eAS1asQpw2C2Nl4UlOWw6u9N/cQp43NUN7OwMngvy9eMgYHf8mFliE4VnVceAIo2XwnSWktuajHTs9b9ID0xRABaTw+oPMvLyYWcpOVkg2gzK6X9OTTFnJMICWGUOWwH9KDX9GlvVq9fg+vVrZo7KOkmOWob4+HhcXV0hNZXHfGpz7tzf6tqHouisKc/1jZYy8lKYyhLyW9a8FGVdgbpVN2jQgAkTJrBv3z6mTp3KL7/8QufOnXn++efZuHGjXOALS6fjzOFD2AO1e/bO9SXdB77IOsDu4IFSDa2skRw2je3FC1mNlzVr5niuQbv2nAe0Rw+Xelyi6Cz9GEgAToOseSkKzCJyOz1DHXmp0UqPXVEwlpDD+ltfWbNVgGXkZEFotFo1hzUpqWaNRVgGa8thaxAXF6tOsQlQo0ZNi2yEsBaSo+aXkBCPW4WKuHZtT63mfrg5OXP58iVzh1WmFCXPO3ToQNeuXQkLCyMsLIzffvsNgEuXLtG/f3+6dOlC//79uXz5cpHjlGljRWGY+zwujZeirLPL/yWGrl69ysaNG9m4cSMajYYxY8bg7e3Nd999x44dO/jss89KIs4yzfafv9mSksxTLi4o/y0U/qBGoT1J02i4GB2F+7/XyKyRs1FJmEZyOH/6xsuODRrleM4mqDmPAWeOHKJeqUcmioMlHwOvAmuAdLlRF4Vg7tzWaDPuj1yTkZeiEMydwyq5CRb/sZicNEXG/U4jmlRpvBRZrCqHrcDNm1nrXepljbyUxsuikBw1r4SEeKpt3YTdmay1Lp9ITeHsvt08+mgdM0dWthQlzz/55BPq169v8NjUqVN57rnnCAsLY8OGDUyZMoWVK1cWPsCUFHRHjwCQlpZe+PcRDyVznsel8VKUdSY3Xn733Xds2LCBK1eu0K1bN2bPno2fn5/6fJcuXWjVqlWJBFnW2UVGsBl4r3HO9S71NLa2tPWqyt4b0Qw4cog0abwsMMlh09lcOM9JoEFgsxzPaR9vgp9Gw8lrV6mXmgpOTqUfoCgUazgG7up/kMZLUQAWk9vp6aiZK42XogAsJYdl2lihZyk5WSA6HQ7//aiRaWMfelaZw1bg5s2saWOdln6G47q1PNLpSXb/K9PGFobkqGWIvxWP97ktAGS6VMAv6S7nFsyFF4dKeagYlESe37p1i9OnT7NixQoAQkNDmT59OvHx8bi5uRUu0G+/JSMhHoCMDGm8FKaR87gQJc/kxsv9+/fz0ksv0bFjRxwcHHI87+TkxKefflqswT0s4o8c4gzQol0HjE2U2CYgkD1bNzHoyCHS+vQrrfDKDMlh08Wd/weAKv4BOXOyXDmeqFKFE3Fx9D//D9omT5R6fKJwrOEYUPMtU6aNFaazlNzWZKTfn7JQGi9FAVhKDquksu6hZ3E5aQJNRoa67rCMvBTWmMPWIDY2Fq+EBFymvAtA/fhbfJPH7FHCOMlRy5BwMxaP5GS0DRuRuPEXmgQ0ZnV0NHbHjqLNpTO3KJjiyPO33noLRVFo2rQpY8eOJTo6Gi8vL2xtbQGwtbXF09OT6OjoAjVeuru73P8lKQl9k6Wzsx0eHhVMfp+y5mH+7AVlCedxm4sXAdDcTkSpVLlEtyWEOZi85mWzZs3o1q1bjoNR39MFoHXr1sUX2UNk/8EDtAds/JsafV3LHmHsBWwPHyqNsMocyWETZWZy+uoVmgCZeUyV0qR+AyIA29N/lWpoomis4RhQR63JyEtRABaT2+kZ2Op/zpA1L4XpLCaH/6OU2paEpbK0nDSJVqve3OpSks0aijC/ouSwKWup/f777/Tp04fGjRsza9asYo3dkt2MjaHGoQPq77WvXeX6hXNmjMh6WeV5tozRarUkpaRQGUgLDUOpVJnHuocSCZRbt8bc4ZUJRc3z7777jo0bN7Ju3ToURWHatGnFFtutW0nExd0lLu4uKAppgAsQE3VTffxh+wcU+T1u3Uoqtn1k6SzhPF75taEAlP/gvRLdjhDmYnLj5aJFi3J9fMmSJcUWzENJp+O3y5dpD/mOYKvW9SkcgIun/0STdNfoa0VOksOmsbn+L39mZNDYyQnFJfceV40Cm/EngDReWhVrOAbUJkudNF4K01lKbmsy0u83Xupk5KUwnaXksP7Mq5ORlw89S8nJgtBoM9B3G0lJengqzkTuipLD+rXUtm/fznPPPceUKVNyvKZmzZp8+OGHvPzyy0WO1ZrEnz1N1bt30datR/I771EDuHHzJjqdzJpSUNZ4ni1rEhMTqWxriy2g9Q8AoMZLQ4kF0n7+UTojFoOi5rm3tzcADg4OPPfccxw/fhxvb29iYmLU845OpyM2NlZ9baHEx5MGVAS0t24W/n3EQ8USzuP6uzbbC+dLbZtClKZ8p409ePAgkHUxOHToEIpyvy/2v//+S/ny5UsuuoeA7cUL7NNpGeHpiVKlitHXasqXp62bG3vj4xkQfpSMdh1KKUrrVhw5fOnSJSZOnJhVuK1cmVmzZlGrVi2D1+h0Oj788EN+++03NBoNw4cPp1+/rOl9Fy1axNatW7G1tcXOzo4333yTNm3aAPDpp5/y/fff4+npCUBAQABTp04tjo9eKLYXL3AKaO5dLc/XOD/hTzXgwvFwZJIgy2dN53F9xbkiFSDCBBaX2xn3R15qMqTxUuTP0nJYf+bVKjL28mFlaTlZIFrd/cbLlGRkVfaHU1Fz2NS11Hx8fADYtWsX6ekPz/poN69cxhNI79iZewOex+2jD3FXFGKvXsG79qPmDs8qlFb9hDXVQZhLQkI87v99/9rHGgKg+DelkaMjf8bH02T/HtI7PmnOEK1WceR5SkoKOp2OChUqoCgKW7dupWHDhri7u9OwYUM2b95MWFgYmzdvpmHDhoVf7xIgNpY0oAKQHhtb+PcRD4Wi5ndCQgLjx4/n6tWrODg44OPjw7Rp0wqVw2qXU7l/E2VUvo2XkyZNAiA9PZ13331XfVyj0eDh4cHkyZNN2tDD1PhTEHf++J0bQMOAIEzpHxzyhD/b9uxi0JFD0nhpouLIYX3v27CwMDZs2MCUKVNYuXKlwWs2bdrE1atX2bFjB4mJifTq1YuWLVtSo0YNfH19GTJkCE5OTpw9e5aBAwfy+++/U65cOQB69erFhAkTivFTF57thfOcBl6oVz/P1+gaNaIpcPLvs9J4aQWK6zxeGvSNl5EpydQyZyDCKlhabmuyNV4ia14KE1haDuvU/2Xk5cPK0nKyQLQZpAPOZFV4SuPlw6moOVxca6mZwmC9tf9Y+lpjtxIT8AKcQ1rj7PsY+PrySGQkyeEH8GiW90xSlv65SlNp1U9YUx2EuSRcuYy7TofiXJ5M/dqtGg1t/AJYcPggi9asxkYaLwulOPL81q1bjB49Gp1OR2ZmJnXq1FHret9//30mTpzI4sWLqVixYtGn705OJg1wAzJuJxbtvUSZV9T81mg0DB06lObNmwMwa9Ys5s6dy8yZMwsdkyKNl6KMyrfxcvfu3QCMHz+e2bNnF3pDD1PjT0Gc2b83a23BJ/xMen1Ij168vWcXHDpYsoGVIUXNYVN7327dupV+/fphY2ODm5sbnTp14pdffmHo0KFqQzvAY489hqIoJCYmUrVq1SJ+uuJnc+EcZ4E6RqYx1vnUxt/OjojEBJ6SRaEtXnGdx0uDvvEyOj1dGi9Fviwut7Xa+yMvtTLNlMifpeWwvvEy80aUWeMQ5mNpOVkQGq2WdMAVSElJxd3cAQmzsKYcvnUriczM+5WNHh4V1DXHLFVscjKeQIJHdbRxd3EJbM4jkZH8s2MndfsNyvVvSvtz2dhocm0YthSlVT9hTXUQ5nL79F+4A9r69cHm/qpar41/l7ee7sHrO7bxqfnCs2rFcS6uWbMm69evz/W5OnXqsHbt2kLHl0NaGulkTRubfvt28b2vKJOKmt+VK1dWGy4B/Pz8WLVqVaFiUZf9KNRfC2H58m281CtKwf9ha/wpiNN/nuQJQGti46Vb5y7UBo6FH6GhVgt2Ju/Ch15hc9jU3rfR0dFUq3Z/qlVvb29u3LiR4/3Wr1/PI488YpC7W7Zs4ffff8fDw4PRo0fj7+9foBiL4+ZM3xs26sI/OAGPBDcHIz1kA2vX5v1z56gSdQnqti3Utkqa9PA1ZOkVOCgK+rFq92S9QFEAFpPb2UZb6tLSzBiIsDaWksPqTe+F89hcvEDmo3XMGY4wo6LmZFGnNCyUjKw1L6sBKfdSixK+KAMKm8PZ11KztbUtnrXUyohMrZabWi0ewJ3/pojNaNGKR75cxvVTJ80bnBUq6fqJ7EqiDqIsSDz/D1UAXV3DWacqtmjFF46O1E5OZn7MDey9rLve0ZwspYybr7Q0ddpY7d075o5GWIniyO/MzExWrVpFhw4Fm11RXw986b/f7Ww1ZaIOtCx8BlG8jLZ8devWjW3btgEQEhKCRpP7FFJ79+41upGHpfEHCniQZWby17/XaA5Uat/aaEPR/Q1UoGulSmy/fZu2Ny5DLp/TEg50S4gBii+Hi8uRI0dYuHAhy5cvVx8bMGAAr776Kvb29hw4cIDXXnuNrVu34urqavL7Pthrt6Cy94b96/QZGgDxVaqjM9JDtqFfU06cO8ftfQdIb2j68VZaPW+LYzuW3mvXFJZ2DBilKOirGtO00m9MGGeRuZ2pUxvg0zOk8VIYZ4k5rD/z3gXc//ide9J4+VApzpwsjikNC0ynU0deJt27V7j3EFatOHK4RNZSKyPunPsbF8CuShWUipUAyAhqTl3g2LVrWett5fGdiyzmuPaXVB0E5KxHs5R6IFMl3bhOFaBck0aUezD2wEC8Dxwg4cBuHn/llSJvy9q+m6KwxDJuvrI1XqbftewianWzAAAgAElEQVQR8MK8iju/p0+fjrOzMwMHDixQHPp6YH1NcFqGjtsWPntDfixhBoqyUA9c1hhtvJw+fbr685w5c0o8GFNYauMPFPwgs7l4gZMZGQxxdSPOtjyY+Led/Jvyxt7dTNy+i3s16hYphpKQPQZzH/TFkcOm9r719vYmKioKX19fIGdjfEREBG+//TaLFy/m0UcfVR/38PBQfw4ODsbb25tz587RrFmzQsVbJBkZ/BNzg/qAzqeW0ZdWCAjEc+1qLhw8QM1XR5VKeKLgLPE8nqfMTHXKizSdNF4K44ort2fNmsX27du5fv06mzZton79vNf7zY9Gl63x8l4a9oV+J/EwsMTzs/7MWxu4LbN7PHSKKyfNNqVhRobaeJmcniYNKQ+h4srhvNZSGzZsGGPGjKFJkyaEh4czduxYkpKSUBSFLVu2MGPGjKKNHrZw8ZEn8AR0te7fy2Z6V6NRpUqsvH0bm2tXyXzEx3wBWoHSrJ+Akq+DyF6PZgl1UQUVc+1fPIE7ntVJeyD28o39aHDgABHbtuPZ57kibafAdYVWXnluiWXc/CjZGi/Tkqwrj0Xp+n/27js8inJ74Ph3d1MgBAiEFpoKUkJNIIQWCE2IUiIgggjXiujFhmK9NrBc8Sqo/FQuFrjXdhEBFUEFVERUEKR3CJ0UIAUSkmx9f39ssiSQbDbJZnd2cz7PkweSnZ05O3Nm9p05877jzvyePXs2x48fZ/78+eiLDF1dHoWVDJvN5nQ6IXyV06sSMTExjv9XppBSrYo/5aDbvpW9QGR0N8pziOmWMJy0dT9x8qe1NLyr8neA+TN35LCrd98mJCSwZMkShg4dSlZWFmvXruXTTz8FYOfOnUyfPp23336bjh07FntfWloajRs3BmDfvn2cPn2aa665pkKxVpbhxDEOKEW7sHpQxl3vls5d6QNs3rGdFp4JT1SAu47jHmGz0QvYhQwbK8rmrtwePHgwf/vb37j11lsrH5TV5ij+mIxSvBTOafH4XKw9GigZXN24KyfdNaShK4pe3LXobOiAusBFm42GYTUgKKiiH6Na8vWeQe7K4dKepfb+++8XW9b69esrvAxflLF/r714WbRXvk5Hu85d2bNhPYYd26V4WQZPXp/wlWsQ3pSenk4HwHpNqytes3SPIRI4tGsnwzwemW/TYhu3LFajET0QAlguXvR2OELD3JXfc+fOZffu3SxYsICgSrRXHcVLVbkOWUJolctl/YULF7Jv3z4Atm/fzoABAxg8eDDbtm0r871FG1dAmcUfm81GRkYGa9euZdgwezOhrIZXIV9qeB1b/wvNgBrR3cv1PluvPiQCKzdtrJK4/FVlcviFF17gk08+YdiwYXzyySfMnDkTsN99u2vXLgASExNp3rw5Q4cO5eabb2batGm0aGEv682cOZP8/Hyee+45EhMTSUxM5MCBAwDMmTOHESNGMGrUKJ555hlee+21YgV5TzIkHWY/0KZ52eVIS4eO9Nbp2JiSDDI0l0+ozD7gETYbCvsJg0l6XopyqExux8TEuO85VkV6XprluCjKQRPHZ9ul4juAkuJltebJnCwcWeeNN94o93vT03M4ezabs2ezybmYRxAQCuQA506kOV6Tn7J/AMf/09Nz3LqNvUETx1U/cy4picZcVrwE6nSLQQ9c2LLJK3H5qqq+PuEr1yC8RinSsy/Yn3lZQvHS3C2G1sDxUydBejRVmK8ci415eQQDwYApV4qXwjUVze9Dhw4xf/58zpw5w4QJE0hMTGTatGkVikGKl8LfuTwe1KJFi7jpppsAeOONN7j99tupVasWr7zySol3JV7OlaFXEhMT2bFjB0OHDgUotfhT6LXXXqNdu3bMmTOHPXv2oNfrCQwM9JmG196tW+gCWLpElet91vaRjKoZwuwL57nz9ClszZpXTYB+pjI57MrdtwaDwXHScLmlS5eWOu/CfUELDElJ9uJl+8iyJw4NpddVV/PWsaME7N6JJcY37qirzip7HK9yBcPGhgD5UrwU5aCZ3LZaivS8lOKlcJ0mcthiKVa8JECKl9VZZXLSHUMaVoTZZCYQqIW9eKnLy0PVDavUPIXv0sRx1c+knzxh73l5WaHH3KUrLYDUrVvQ/i3k2lHV1yd85RqEt+jOniXdaqV+aCiq3pWjAthatKR5w0acPHvGfr2jnNfthJ2vHIuNRqOjeJmbm+vtcISPqGh+t2nTxnEzSWUV3lohxUvhr1wuXmZnZ1O7dm1ycnI4cOAAixYtwmAwuNzoqS7FH5cpxe5jR+gKWLp0Ld979Xrie/Zi0rqfyFz7A3Vvu6tKQvQ3lc3h6iD/wH7OAs26RmFyYfq2PXuTeuwo5zesp5YULzVP8/tAQfGyJmC0yt2twnXezm3HsIW1ghw9L/XK6pPD7/lizP7A2zkMgNlcvHhZMOSnqJ4qk5PuGNKwIkwWU7Gel8jFx2pNE8dVP3PuTOqVw8YClk5daAEkH9gvxctykBz1LsPRI6QD9Vq0LHkCnY5m3bpz/IfvCNi+TYqXFeQreW7MzycICAKy8vK8HY7wEVrIb0fPS8oxvKYQPsTl4mVERARbt27l8OHDxMTEYDAYyMnJcTzLRJSP/tRJtuXnM61OHWxNm5X//b36MGzdT6z+ejnjpHjpEsnhsh3Zt5s2ANe2cWl61b0HPRd/xl/rfqL/wzOqNDZReVrfB3SqaM9LeealcJ23czs9PQebTRGcmeMo/ly4kOMYhs9XNGxYW1Mx6/W6Ys+z82fezmEAnfWynpfSA75aq2xOujLqjrORdSrCYjI7ipensfe8FNWXFo6rfsVm40xmJtFc2fPSdvU1tAgIJDkrC93ZsygfGAVLCyRHvctwNIlzQNhlxfiiIqJjOPXDd+j37vZcYH7GV/LcVKTnpTz+Q7hKC/l9adhYmxQvhV9yuXj5+OOP8+CDDxIUFMTbb78NwM8//0znzp2rLDh/Ztixna1Al46dQacr9/vNsb0YCqzdtZNxbo/OP0kOl+3Q0aO0ByytrnVpekt0N/oCf+7dTf8qjUy4g+b3gSI9L002m/3CucZOaoQ2aSa3C555GQCY842eXbbwaZrIYfPlxUu5iaQ6q2xOVnZIw4owWS4VLy8COnlmVbWmieOqH9GnpnDWaqVh7dqoOnUve1FPs0YNOZmcTMDB/ZileOkSyVHvMh8+SA5Qt207SitVBUZFURc4u3M7tTwYmz/xlTw3mkyXnnkpj/8QLtJCfl8qXnpskUJ4lMvFy/j4eDZs2FDsbwkJCSQkJLg9qOog7Y8NGICGMbFUZEAjc3R3+ur1vHg+C11ONipUhnkri+RwGXJzOZiVSTu9HltpQ6dcxhLZkd6BgbyUlYUuKxMVVq+KgxSVofl9oOgzLwHy8iC0evS6EpVTmdx+6aWXWL16NefOneOOO+4gLCyMlStXViwQmw0L9hw2meSkV7hOE8fny555qTObPbdsoTmayMlyMpntz7ysGRJCdm4uuuwL3g5JeJEv5rCWGY4e4QzQoFmLEl9v2vJq1iUnYziwH3Pffp4NzkdJjnpX2r69NAXUNaX3vLRGduQq7EMit1GqQh0PqjtfyfOixUujyQSyvYULtJDfl4aNleql8E8uFy/BPpbz0aNHuXix+F2svXv3dmtQ1cGuPzfRDbCW93mXhWrVolXnLlzcsZ201d/TaIz0v3SF5HDpDEePsB8Y3rAhBLh4aAgKonvHzmzdvhW1+U+4bliVxigqT9P7gFKXnnmJfbg3JcVL4aKK5vYzzzzDM88845YYdAXFH3vx0pUnBwtxibePzzrLpWde1gKwSM/L6s7bOVleFrOFIKBenbpk5OaiP3/e2yEJL/O1HNYyw5Ek0oDwVq1KfD2ibXtObfydgAP7PBuYj5Mc9Z6Uo0k0B6xOipe2JhG0DAzkZHY27dJSsTWJ8FyAfsQX8rxYz0ubzX4jdUiIt8MSPsDb+W0r/NdmczqdEL7K5eLlsmXLmDVrFiEhIdSoUcPxd51Ox48//lglwfmzHYcPEg2YO1eweAlYevam747tbFn5DTdI8bJMksPOGY4cZh8w3ckzH0pSs2cvWm3fyr7vVxIpxUtN0/w+YFPFel7q8vPk3jHhEs3kdsGwsSGAySjFS+E6TeSwxYINuB3YDfLMy2pOEzlZToXDxjYOb0Baagq6rCxvhyS8yBdzWMsMR5I4A4S3bV/i642jojn1XzAcPODZwHyY5KgXKUXy6WRaANarryl9Op2O5g0acjwlGcPePVK8rACfyHOlMJrtbYig2nXIz76A/nwWNileijJoIb8vDRsrV8+Ef3K5eDl37lzeeust4uPjqzKeakGXlsbmixe5p0YNbM4aSmUwx/ai74L32PTXFm5wY3z+SnLYOd3+fRwCWncqX0Hd0r0HfYAtm/4gskoiE+6i+X2gyDMvjYAuX4bdFK7RTG5brUV6XsozL4XrtJDDOqu957DjGCw9L6s1LeRkeZksFgKBho0ak7pnF7oL0vOyOvPFHNYy0+FDGIFakR0o6fasxj17cxow7N/r4ch8l+So9+gyMzidl0uzgEBUo0ZOp23R8iqOpCQTsG8v5kFDPBSh//CJPDebMQHBOh216tQhO/uC/QaoiKbejkxonBby+9KwsUL4J72rE1qtVuLi4qoylmpDv3MrG4HYTp1B7/ImuIIlthd9gY2pKXJ3vAskh507vX0rjYDgzl3K9T5z9x70BjYdPSJ5qHFa3wd0ynZFz0shXKGV3NbZLvW8NMvzAkU5aCKHzUWGPQaQHK7WNJGT5WS22IeNDW/alHOAysjwdkjCi3wxh7UsPekgjQBb62tLfL3GtW0IATLT09GdO+fR2HyV5Kj3GI4d5RTQNLxBmc81bNa+AyeAgL27PRKbv/GJPDeZMALBOj2hteuQDehk6HnhAi3kt/S8FP7O5crZlClTeO+992QMZTc49PNPNALqd4up1HxsTSKIatGSAzYbeX9tdk9wfkxy2LlD+/bSHrC2K3kooNLYWrSkZ9Nm/GE2E7Dtr6oJTriF5veBy3pekic9L4VrNJPblks9L43yzEtRDprIYculnpcm7D0xRfWliZwsJ7PVShBgaNiIpsCx5NPeDkl4kS/msGbZbKSfPEljwHpNyc+8RKejWc2anAICDu73ZHQ+S3LUexzFy2bNypy2afcYjgOGfdKruCJ8Ic91JiNGIMigp1ZYGNmA/rwMPS/KpoX8luKl8HcuDxu7aNEizp07xwcffEBYWFix19atW+fuuPza5t9+pS9g6Rpd6XnpY3sRffIEO5YvpVdsr8oH58ckh50wmzmYfJpIwNKmXbnf3vK6YVj+8xEnly0hIibW/fEJt9D8PmC71PPSPmys9LwUrtFMbhc887I2kG+RXmvCdVrIYZ3FXGzYWCwymkJ1poWcLC+zxUwgoMLD6Q5sP3mCBG8HJbzGF3NYq/SpKZw1GmkYGISqXafU6ZqF1eNUXh6tD+zH3EfjPa00QHLUexzFy1aty5w2om+cvefloQNgsUCAy5dRBb6R57rCnpd6A6Fh9ew9L7MyvR2W8AFayG8ZNlb4O5e/df/1r39VZRzVh83GxsOHiAfMvfpUenbm2F70WfoFm3//FSldOic57MThw+yx2YitVx9CQ8v9dvOg60j4z0esW/09t7wi61mrNL8PFOl5KcPGivLQTG4XDBtbH8g2SfFSuE4TOWyxYAZCgWTg54MHpG1ZjWkiJ8vJVNDz0hbegBhg25k0KV5WY76Yw1plOJJEGtCwTumFS4CIiKacSkkm4MA+zwTm4yRHvcdw7CgngSaRHcqctm7zllh1Oi4YjRiOJGFtW/6bvaszn8hzoxETBT0vw8PJQXpeCtdoIb8Li5bS81L4K5eLl7Gx0pvKHXT79rLGbOb5Ro2xNW9R6fmZY3sRB7x1JIkHKh+eX5McdmLvXv4CprRpW6G3m+P6MUyv55MTx5mYlYkKq+fe+IRbaH4fuHzY2HwZNla4Riu5rbPah42tD5y3yJCbwnWayGHzpeIlwKNffMZvc+d5MyLhRZrIyXIyW6wEYi9eRgNzsuTCY3XmizmsVYajRzgDNGzY0Ol0Ea1ac3LrFgwHD3gmMB8nOeo95iNJZAH1O3Yus7eSTqejRUgtTlzM4ap9e6R4WU6+kOeFPS+DDAZqNWgoz7wULtNCfjt6XtqkeCn8k8vPvDSZTMydO5fBgwfTvXt3ADZs2MAnn3xSZcH5o11Lv6AB0KJvXJkPBneFtX0k8aG1+dNoJFeeLeGU5HDpcrdt4zAQ2b1iz2FVtesQ3y2G9YDtpx/dGptwH83vA0WGjc0HdHnS81K4RjO5bb3U8/K8DBsrykELOayzWjBxqXgZZDaDVYaOra60kJPlZbZZCQZUgwa0AZJkBIdqzRdzWKsMR5I4AzRo6vz5gE06drI/8/KAXJdwheSo96QdSSICoPW1Lk3fomHDgude7qnKsPyST+S50f7My2BDAIHh4egAU0a6t6MSPkAL+V1YsrQixUvhn1wuXr7yyiscPHiQ119/HV1B0a1NmzZ8/vnnVRacP1qzdjUjAHPPyg8ZC4DBQI3+A4gFNi14zz3z9FOSw6XbvmEDHQBDpy4VnkftoQl0BDZ/+T+3xSXcS+v7gE4V73l52/vvkZKS7OWohC/QTG5bLI6elxdsNjAaPbt84bM0kcNmc7Gel0EgPeCrMU3kZDkVHTb2KiDZYsFkMnk7LOElvpjDWmU4eoQ0IPyqa5xO16RDJ07p9ejPnkEnF/7LJDnqJXl5pJw7S3PA1qy5S29pcdXVHAUC9krxsrx8Ic915oJnXgYGYKsbRm3g4rlz3g5L+AAt5Lej56UMGyv8lMvDxq5du5bVq1cTEhKCXm+veTZu3Ji0tLQqC87vKMX3hw/yFu553mUh4w0juH7VCtau/p6b3TZX/yM5XLotu3YRA1g6d63wPEwDBpHwyix+/ON3Ym020Lt8b4TwEM3vA0oV63n51c4d3LzlTyJG3ujlwITWaSa3bTYsQDhwHtBlZ6OCgz0bg/BJWsjhwp6XNQp+1wM6Yz6qVi2PxSC0Qws5WV7GwuJl/XACgWbAyePHaF3BxyII3+aLOaxVhqRDnAHC2zkfLrNps+acCAwEo5GAgwfces3DH0mOeofh2FFOAM1q1YIA1y6JXhvVjb2//EzA3r1VG5wf8ok8N9qLl4EBAaiC4mVORjpyFifKooX8vlS89NgihfAol6sLgYGBWC8bOiojI4OwsDC3B+Wv0n77leMWCz0bNMTqwoPBXWUamsBwg4FVqSlYtdQA0BjJ4ZLpMjPYmJFBj8BArNe2qfB8LF2iuK5hI1ZfzCHgz01ujFC4i+b3AZty9LzMLfhTzXfe9mJAwldoJbd1RYeNBXTZFzy6fOG7NJHDZnvxMrDgVwP2ZwCJ6kkTOVkeVitmCnoM16iBLbQ21wLH9uzyblzCa3wuh7XKZMKQdJgzQL3OUU4nbdnyKk6azVgAw/59HgnPl0mOekfAgX0cA1o2auzye9r2iWOPTofhxDF0OdlVFps/8oU815mM5AM1A4NQYWGEAhezMr0dlvABWsjvwuf2Ss9L4a9cLl4mJCTwxBNPcPLkSQDOnDnDrFmzGD58eJUF529++s+HJAC2+IFued5lIRVWj9b94mkIrH/jDbfN199IDpfMsHMH64G+7dq7fOdhifR6Ot98C2nAuf9+5K7whBtpfh8oeOZlHSCn8G9bt3gvHuEztJLbNosFBTQCzgF6ubghXKSJHLZYHMWfW4DWIMPGVmOayMnysNiL78EFd73bGjemNXBsz26vhiW8x+dyWKMMSYfRWSyk6g00atnS6bQ1atSgSZ06HAUMB+W5l2WRHPUOw/69HANaXNPa5fe069iZPXo9CinMl5cv5Hlh8bJGQCC2+uEFPS8zvB2W8AFayG/l+FeKl8I/uVy8nD59Os2bN2fUqFFcuHCBYcOG0bBhQ6ZNm1aV8fmV1b9tYARgih/o9nkbh49iMvDxZ5+5fd7+QnK4ZKfXfI8NaBnbq9LzMo29maHAT6tWgPTW0BzN7wMFxcuiw7OYvRWL8ClayW2z2Uwg0ARIBXQXpOelcI0WclhnMTt6Xo4DPgfSTp/22PKFtmghJ8vFbM/fIEfxsom95+Whg14NS3iPz+WwRgXs34sJyFQ2GjRoWOb017a8igNAwAEpXpZFctQ7AvbZe14279TZ5fc0bNgQncFAGhCwT4aOLQ+fyHOjiXwgOCgIW+PGhAEXpHgpXKCF/JZnXgp/53I3qxMnTtCqVSumTp2K1WplyJAhtCvjmQfikrzz51l/7iz/BcxVVLyc8PRjdDp9mmf37ia0Qye3L8PXSQ6XbONPa+kPmOPiKz0va8dOjGrajPeSTzNh3Y+Yhl5f+QCF22h+HygoXuqB2kA2ICVw4Qqt5LbJZCQIaABkAZZMGW5IuEYTOWyxYMR+A0lIwZ+WrFrB3/vGeTYOoQmayMlyKHxma1CRnpfXAqtPHPNmWMKLfC2Htcqwfy/JQOPQUAwGQ5nTt+7QiYM7d3DD7p1gs4He5fvlqx3JUe8w7N/LcaBZj54uv0en09E+oil7jh+jz5Y/YfLtVRafv/GFPNeZTeQBNYKDUGH1CNfpyMjLhbw8qFnT2+EJDdNCfjuKl/LQS+GnyixeKqV4+umn+eqrr2jSpAmNGjUiLS2Nd955h8TERF555RV0bhwC1V9t/O9HRAN12rYjM6Kp2+evGjSg/qjRJCz9gs+feZIpy751+zJ8leSwE7m5/HYkyV68dMfFSZ2OobfdySP/fJGdc/5FeyleaoLP7ANFipd1sBcvpeelcEZruW2xmAnC/qzAhsDZkydo4LGlC1+kqRy2WMgGal7TipCjRwAIkDt4qx1N5WR5WKyYgBoFxRVbRDNaA0eSk70alvA8n81hjQrYtZNTQFMXnw/YKiqa/V8vR5+ZieHwIaxttVWk0ALJUe/RZWagO3qEE0BErz7lem/brlHsOX6MAb/8DEq59VFQ/sin8txYMGxsUDDodNQPqUX6xRz0Z9KwXXW1t6MTGqSl/HYULz2yNCE8r8zi5eLFi/nzzz9ZvHgxXbp0cfx9586dPProo/zvf//jlltuqdIg/cGapUvsQ8YOHFxly8i7Ywozln5B4u8buC0riyANPQDbmySHSxe46Q9+tdl4NDISVa++W+Zpve1O5rzxGndt3cKaDesJievvlvmKivOVfUCnive8BOl5KZzTWm6bzBYCARUSQkRuLmePH5PipXBKSzmsKyheBneLwRJSC/bswnBAnutU3WgpJ8ujcNjjOgXFS2vbdrQCTmZlYrVaXeoxJvyDr+awJilF4PZtnAIirm7l0luuvbYtK0NCIC+XwE1/SPGyBJKj3hO48Q/SgLDAQGrWrVuu97bt1Zfdq7/HkHwaQ9JhrNe2qZog/YQv5bnOVDBsbLD9ATb1w8I4dzEHw/FjUrwUJdJSfsuwscLflTmGx9dff80zzzxTbGcE6NKlC08//TRff/11lQXnLywmE9/s38towDhydNUtp0cs3WJiaGuzseLpGVW2HF8jOVy6syu/IRPo4MaHSav64Yyc+ncGAI/fNRlltbpt3qJifGYfsNmwYv9iKjyVlJ6Xwhmt5ba5oOeltWkzmgBnTp3w6PKF79FSDqv8fHKA2iG16LZnFwC5v/7iseULbdBSTpZLwbDHQQVFSkvbdtQEGhgMJCfLs1urE5/NYQ3SJ59Gf+4se2vUoHWXri69p3XrazloMgIQ+PuGqgzPZ0mOek/g7xvYB7R2sSdxUZEdOrIjxD6wfuAvP7k5Mv/jU3luMhYrXoY3b8kZ7M/8FaIkWsrvwh6XCileCv9UZvEyKSmJHj16lPhajx49SEpKcntQ/ub3d+dxlc3GNU2bYYkpeV26hU4HTz7JLODlZV+SKyfqgORwqZTix5XfMAzQu7F4CZA7fQZzGzdhT2Ym38x4yK3zFuXnM/uAzeZ43lph/wgpXgpntJbbZrOFIMDWrDktgNMyXKEog5Zy2Hj+PAFAQJ061AXeAuSprdWPlnKyXMz2npdBRXpeArS2WDiadNiLgQlP89kc1qCAbVsB2B1am3btI116T9OmzTDr9SQDQet+BLmR9QqSo94T9Osv7AA6uliMLyoqqht7ci5yEQj65We3x+ZvfCnPdbl55AHBNe3F6QZt2pAGGPZJ8VKUTEv5XVi8tFnk6pnwT2UWL61WK6GhoSW+Fhoais0moyqX5aP33uYuIO+Ou6v+gfWjR9OjVx+G2Gz8Y8RQlGwfyeFSGPbsZkV6OsNr14Z+/dw6bxVaG+uL/+Rj4OnPPub0zz+6df6ifHxmHyhSvHwB0CHDxgrntJbbZrOJQMDaoiXtgAOpUrwUzmkph3Oy0qkNqIJ4woD/A3JycjwWg/A+LeVkeeis9p6XwQH2p6KoOnWxNongWqU4vnWLd4MTHuWrOaxFQWt/AGC3zUr79h1ceo9OpyO2V1/WN2yIPj2dgC2bqzJEnyQ56h36Y0cJ2LubrQEBRFbgcU4hISF07tiJX4HADb+CWQoFzvhSnuuyL9ifeVmnDgDhHTuThvS8FKXTUn4XLsmal++xZQrhSWU+89JisbBx40ZUKWMnW+VOOqf2fLyIrZmZfFGnLnl3Tqn6Ber15Mydx9tD4ulz6iQf3DqOKZ8vrfrlapjkcMkyP5jPH8CiETdCFTwHyJg4hsiVK3j+62WMnTiOL5d8TfM49xZJhWt8Zh+wKfuFx/btuW7/fp4Fcr0dk9A0reW2qaDnpaVDRyKBbzIy7D0O5FlrohRayuGL58/bi5e1agFQWLLcv2snMb37eCwO4V1ayslyMVu4CIQGBjr+ZO3QkQ6pKez57Vd45HHvxSY8ymdzWGtMJoJXruACcDo3l9atr3X5rbE9e/PjyeNMOHuW4G+WwYjrqi5OHyQ56h3Bq77FBqw1GHgwfmouEKkAACAASURBVFCF5jF8zE18fiSJhPNZBK9agTFxjHuD9CO+lOf67AvkAjUKnoPaPK4/hwD93r1yLidKpKX8LlySMU+ungn/VGbxMjw8nKeffrrU1+vXr+/WgPyJ8eJFHvnHE7wCMPXvqNp1PLJca+s2GN77gFV/m0C/H9dQ89EHmfTG2x5ZthZJDl9Jd+E8H365mPGA4e6pVbQQHdlvvcs9p06g/trCiLEj+GzO28Q/fH/VLE+Uymf2AWUvXtYIDcXaqDFhZ9I4Fhjk7aiEhmktt405FwgGbM1b0iOiKVtSkjHt3E5QdHePxiF8h5ZyOMdRvAwld8q99H1/PgCn33pDipfViJZysjx0xnyygdCgS+0GU/+B3PDTWv715yZeNJsJLFLYFP7LV3NYa4K/Xob+fBbrmreg29XXEBTkept81KgbuW7uv3gbqPHlYnh7btUF6oMkR70gJ4eaC95lM1AvvAHXXNOqQrNJTBxD/1dmkQvUnP9/GEeNtj++SVzBl/Jcl51NFlAnvCEADdq1p0FAAPvycmm2ZxeWLlHeDVBojpbyu7DnZV5+PiglxyThd8osXv70k3seRH306FGefPJJsrKyCAsLY/bs2Vx99dXFprFarbz00kv8+uuv6HQ67rnnHsaNG1ep17xFWSy8MDSeq/PzmNysOZnTPPvcP1PCDdR/8hnWvPoSIz5exPZtf/HEws9oeNVVHo1DC9yRw/6Wv+eenMG/TSY2du+BtXOXst9QUSEhZC35hnvu/htNf1rLuOkP8M3WP2n9yhwoeBi6qHruOo4748o+UhadspEPBBsMZK35hbCu7cnSS8NLlM6TbRRXZKenUxewNWhArfiBRP/vU/58fz5x777vljiF//FUG8UVF7OzCcU+bOzFF1+l6/vzGQtM+WkNI2029FX96AOhCVo59ysv/dkz5AC1w8MdfzMmjqbdi8/R3mRk5ceLuNETo+AIr9PCuZ/Py8sj5I3ZACxp1pzBg4eW6+0tW15FTK/efLh3D/efPgXz5sHt91ZFpD5JCznq1/l7OaUI/cfjGJJPszA8nJETJ1d4Vk2aRBAXP4jZv/zEzL+2ELT6e0zDrndjsP7DV65BQJHiZcNGjr/1atGS344eYfKKr6V4Ka6gmXM4pRw9L3OVgvx8qFmz0rEJoSUeuwrx/PPPM3HiRH744QcmTpzIc889d8U0K1as4MSJE6xevZrFixczb948Tp06VanXvEG/dw9zekXz56GDLAwKInvBQggJ8XgcudMfo+lTz7IFCNu9i36xXZg7ahgXd2yT8fnLyW/yNy+P7H88wS1fLuYJnY7w19+qmuUUFRrK+Y8Xk/DQoyzU6Rj+8cdMb92M3ybeBF8vR5eVWfUxiCrnyj5SpsJnXgYEoEJDaQAkm0zocrIxbPvL3SEL4eCW/AVysrLsxcvwBuTfOJaRwH+/+QqST7s1XiGKclv+5mRfGja2oFBZONDmiukyaoIon8q2nctLn5Zmv/AYEeH4m61Zc0w3jORupfjvP2dhOXe2oh9HVDOezl8t0Z8+RZ27JhNwJIljV1/NygP7uemm8eWez6OPPsE/83I5C/DccwT++ovbY63OqvL6hN+w2QjYvpU6k26m5uefkBIUxGKTicl/u6NSs33xn/9iYVAw7wO1p9+PYfcu98Qrys1dbWCyL3AeqNO4seNPMSMT2QDUWPQhuvNZbolXiKLckr9KOXpe5gK6CxfcGaIQmlBmz0t3SE9PZ+/evSxcuBCAESNG8OKLL5KRkVGsK/WqVasYN24cer2e+vXrM2TIEL7//nvuvvvuCr9WXvqTJwjc9Id9XHOl0NlscPmPsqGzWgt+V2CzYcm9yIFTx9j811b+e+gg6cCaevVQH32CpUdPd63K8tHpyJ3+GIE9e/P6i8/z8F+beX7jH/S8Lp4EnY4udcNo3CSCBk2b0rBRYxo2iaBe3TB0gQEoQwAE2H+UXn9lt/PC30v6t3sXuCbSc5+zivlS/oJ9SNigH9egy80FoxGdyQi5uaTt2sF3637mlYs5TAXufeNtjB07uWMVlS0wkIv/eJ4+Q4Zx6Mnp/GfPHl5bu5oDa1czGLi2dh1atWhBq0aNuaZBAxrVDUNXMwRVowaqRk2oEYyqURN1+XBfzoZDqBtC8IW80qct+nuR/9vqh2OOHyjPNSgHV/eRMun19uJlcDB5obWJu7YN9x8+RGKrZmwD0ocmYLkuwb69Cn+g2P9V0b8XvnbZNOUeRqOyw27UqVk8F6uQCq6BadAQr9ww46vclr9AZvYFwgDVsCHmq6/hnthefPPnRqbGduXFYTfQrFNnAoJrQGAAKiAQgoJQlTnWOMvNirxWpybB2fkVj6ey9HpMcfGoRo3KnlYA7s3f1AsXiMA+bCxA9r/eJPaxhxkDTPn8E0LWrmbIlHupWTfsytwt5Tu11P+Xl48Mf2TpEoW1TVtvh+F17mg7l5f+TBqngOZXX03Rpw/lPDuT0b+t57OMDMZ2bsus3n3p3vpagsLDUXXr2Yv1RdsVOl3JbYnLf/xRl0ho09nbUXidN/JXl5NN4E9rIUhHcNZF+99KuQ5R/BqFKn6NQqmSr13YlH0oucvnZbPZ56UUupwcDMePEbB5E+k2G2uDa/Co0nH/A9NpXOSCvqu6dYthwu13MWjhB3yamUmHsSNRsb0wd4vB1rARqnZt+40yJbTplbNrDaXsgyosDNOAwfZrGH6uqq9PlJvFQtDPa8FmJPh8rj3XCn50qkjuFfm742+UNB3Fp1Gq+HSlzctmQ5+RgT79HLr0cwQc3I8+I4M8YFXNEJ5q3Jg7x9xEkyYRzj9PGZo1a86Sb1czdnA/zp47y4PX9SeoTxyWzl2xNW5i/14pyENHLhdtY5dwXqqCgzEPGoIKrV2p2KoTd7aBzxw7Sj0goF49LAV/6zXxb7z87jz+Op9F5xuGYL1xLLbwBqiaNR03+TmU1C5wdv2ptPdoQQWvXZj79sNWyX2rOnFb/lqtjp6X54CQd9/G0qmzd/LLHcv04LWzoiwdOmGN7ODx5QrXeKRll5KSQuPGjTEUXOQwGAw0atSIlJSUYjtlSkoKTZs2dfweERFBampqpV5zlb5gaMK6Tz5KwMH9V7y+CPgI+1jSFuwPxC38sQFGoAnQDrijdWuG3zgW691TsTZs5LnurQX0lw2zaI3rx4Xvf6T+ju28v/hTTm37i01nz3IQOJp3kXNJhzibdIizwEXsSRFY8FP4/6KfQVfkhyL/UjD9p0DgjxtQYWFXxOKLfCl/MzIyuHfsCPIvXMAMmLHnqwmoDfRsEM6K7jG0+cfzmLvHFNuunthWtt69Cd+1izt/3cTUPzZw9tf1bN2/l+MWC3su5rDyaA7HjyaRC9TCft6iw55/BornXtH8K/ypB3xVZHkVfcrshf9bgLl3H7/IX09wdR8pTeF6tvaI5aWE6wl46kn0Bj2Gee/x25Mz+Cwrk1wg8sA+OLCPcKBw0GE9xY9BRenKeL2yAoH/Aa40LT3zxGO73DOp5BU8y1ZyuGyVzV8oWM9WK7uaNmVwYCC62rXR6XRYP/2C7x+exuzdO7ln5zZSdm4jGAjBnpt67N+bJW0l3WX/L+k7t7xmACPKmMaTuVoSY/wAcub8HyD56wq35S+Q36QJvawWaNYMvV6H6Y67yD95nKVfL2M+sASY+el/CAbHD9hzsvA7ulAN4AvsbY/qxBbegMwfftbuBSkPcUfb2VWF+bvrfCadr7qK8G7dyCh67GjVCtN3P7Lsny/yyba/eOvkcQ6cPE4w9rZm4TH48uPsU8Cwcn5ufxCwcg22JhHV+vjrjfwN+XABNT9ZBHj+e/ggcA+Qh/2c0diiBYaAAK5tF8mT4yYwcmRihef91FPP0qJFC6Z99D5pFy5QKy2FGt+tIIhL+1sL4OPKfogCF16bg3nwUL/P36q+PlEeer2OoF9+pPbTjwHeb0euBl7Efh3EXLs25jp1MOr1tGnTlkdumcTw4aPQueE7+trISL5d/wfvPvoAMadOEXriGIYTxzBgb98HA+8DRZ+sWda6yTt+jNyHHgGkDewKd7WB9cmn+cqg56arr0Zd08qx7q+99lpenPUyT330PskmI+FffMY8oDoMIFuR/djUvYd91EEkf13htnM4g57Aq68mQSk+AbJWfcMbq76pwsirnje+R2whtchc9zsYDJK/GuT/t6W5qF69Wvb/rP6+xNdvL/jxBeHhoSW/MLgfDO5Ha6C1RyMSVa0wf8PDQ/lx584KzaPUvKkCdfv3gv69uOqJGWjxKazePumqbhzHX+DJ71YBEA6QMJg6Cdt4nEtDF4qyhRT8CM8pzOH/O3q0+AvhofDtN8wCZnk+LJ9UtCgmPKMwfx/6bcOVL741B96aw72APK2sbHoKvr+ExzjawO/M45d35tn/f/lE4VGwfCl3AXd5NDrfU8/bAVQzjjbwSy/Yf7ygLbCuCuf/8MMP8PDDD1ThEi6RczjPq1evFky4yf6jAUMLfjwhPDyaBRtKaDtVUM2CH+E59erVgnrteODYsRJfn/rU40x9Sq5EuCIIaQN7WmEb4s6jR7nTy7H4OjmH0zaPdAqMiIggLS0Nq9XemdlqtXLmzBkiIiKumC45Odnxe0pKCk2aNKnUa0JUluSvEM65uo8IoUWSv8KXSf4KLXJH21kIb5H8FVpX1dcnhPAF0gYWvkzyVwjXeaR4GR4eTmRkJN9++y0A3377LZGRkVd0hU5ISGDJkiXYbDYyMjJYu3Ytw4YNq9RrQlSW5K8Qzrm6jwihRZK/wpdJ/gotckfbWQhvkfwVWlfV1yeE8AXSBha+TPJXCNfplFLKEwtKSkriySef5MKFC9SpU4fZs2fTqlUrpkyZwoMPPkjnzp2xWq3MmjWL3377DYApU6Ywfvx4gAq/JoQ7SP4K4Vxp+4gQvkDyV/gyyV+hRZVtOwvhTZK/Quuq8vqEEL5C2sDCl0n+CuEajxUvhRBCCCGEEEIIIYQQQgghhBDCGY8MGyuEEEIIIYQQQgghhBBCCCGEEGWR4qUQQgghhBBCCCGEEEIIIYQQQhOkeCmEEEIIIYQQQgghhBBCCCGE0AQpXgohhBBCCCGEEEIIIYQQQgghNEGKl0IIIYQQQgghhBBCCCGEEEIITZDiZQUMGjSIhIQEEhMTSUxM5NdffwXg6NGjjB8/nmHDhjF+/HiOHTvm1uXOnj2bQYMG0a5dOw4ePOj4u7Plujum0mIobZ1URQyicqoqfz2Zn5KH/snftlFmZiZTpkxh2LBhjBw5kvvvv5+MjAxvhyWqkK/ksLPc9JXPINxPtn3FVKT9I9xP1rdzWjiPFKXzp3XtrWslwntk29pJ+1r7XNkOVquVmTNnMmTIEK677jqWLFni+UCrmCvrYd68efTu3dtxLJ85c6bnAxVl8uVji7QXhMuUKLeBAweqAwcOXPH3yZMnq6+++koppdRXX32lJk+e7Nblbt68WSUnJ1+xfGfLdXdMpcVQ2jqpihhE5VRV/noyPyUP/ZO/baPMzEy1ceNGx++vvvqqeuqpp7wYkahqvpLDznLTVz6DcD/Z9hVTkfaPcD9Z385p4TxSlM6f1rW3rpUI75Ftayfta+1zZTssX75c3Xnnncpqtar09HTVr18/dfLkSU+HWqVcWQ9vv/22evXVVz0dmignXz62SHtBuEp6XrpJeno6e/fuZcSIEQCMGDGCvXv3urWXTUxMDBERES4vtypiKikGZzyxXkTluWM7eTI/JQ/9jz9uo7CwMHr27On4PSoqiuTkZC9GJKqSL+VwabnpS59BuJds+4orb/tHuJ+s77Jp4TxSlKw6rOvq8BmrK9m2l0j7Wttc3Q6rVq1i3Lhx6PV66tevz5AhQ/j++++9EXKVkHz0H/64Lf3xM4nKk+JlBc2YMYORI0fywgsvcOHCBVJSUmjcuDEGgwEAg8FAo0aNSElJqdI4nC3X0zFdvk7Kik94j6fy1xv5KXnom/x9G9lsNj7//HMGDRrk7VBEFfHVHC6am776GUTlybZ3L1mfniXru2K0dB5ZnfnjutbKtRJR9WTblkza19rj6nZISUmhadOmjt8jIiJITU31aKxVqTz5uHLlSkaOHMmdd97Jtm3bPB2qKIM/HFukvSBcIcXLCvj000/55ptvWLp0KUopZs2a5e2QvE7Wie/w523lz59N+LYXX3yRkJAQJk2a5O1QhChGclMIIYQQ7iLnY0JI+1r4vgkTJvDjjz+yYsUK7rrrLv7+97+TmZnp7bCEH5H2gnCVFC8roHDInaCgICZOnMjWrVuJiIggLS0Nq9UK2B/yfObMmXINbVnRWEpbridjKmmdlBWf8A5P5q+n81Py0Hf58zaaPXs2x48f580330Svl69df+WLOXx5bvriZxDuIdvevWR9epas74rRynlkdedv61pL10pE1ZNteyVpX2uTq9shIiKi2KNeUlJSaNKkiUdjrUquroeGDRsSGBgIQN++fYmIiODQoUMej1eUztePLdJeEK6Sq6jllJubS3Z2NgBKKVatWkVkZCTh4eFERkby7bffAvDtt98SGRlJ/fr1qzQeZ8v1VEylrZOy4hOe5+n89WR+Sh76Nn/dRnPnzmX37t288847BAUFeTscUYV8LYdLyk1f+wzCfWTbu5esT8+S9V0xWjiPFP6Vv1q7ViKqnmzb4qR9rV2uboeEhASWLFmCzWYjIyODtWvXMmzYMG+EXCVcXQ9paWmO/+/bt4/Tp09zzTXXeDRW4ZwvH1ukvSDKQ6eUUt4OwpecPHmSBx54AKvVis1mo3Xr1jzzzDM0atSIpKQknnzySS5cuECdOnWYPXs2rVq1ctuyX3rpJVavXs25c+eoV68eYWFhrFy50uly3R1TSTHMnz+/1HVSFTGIiqvK/PVkfkoe+id/20aHDh1ixIgRXH311dSoUQOA5s2b884773g5MlFVfCWHneWmr3wG4X6y7SumIu0f4X6yvp3TwnmkKJ2/rGtvXisR3iPb1k7a19pX2naYMmUKDz74IJ07d8ZqtTJr1ix+++03AKZMmcL48eO9HLl7ubIennjiCfbs2YNerycwMJAHH3yQ+Ph4b4cuLuOrxxZpL4jykOKlEEIIIYQQQgghhBBCCCGEEEITZNhYIYQQQgghhBBCCCGEEEIIIYQmSPFSCCGEEEIIIYQQQgghhBBCCKEJUrwUQgghhBBCCCGEEEIIIYQQQmiCFC+FEEIIIYQQQgghhBBCCCGEEJogxUshhBBCCCGEEEIIIYQQQgghhCb4RPHyySefZO7cuWzZsoVhw4Z5fPnt2rXj+PHjADz33HO88847FZ7X5MmTWbJkSYmvnTp1inbt2mGxWCo8/9IU/QxCVEbh/ihEZQ0aNIjff//d22EAMG/ePGbMmFHq68OHD2fTpk1XTFuVx21RdST3hKi4ojlZlZy1Xb/55hvuvPPOEqeVdor/ktwTVUlLbQNvqOx1DlE1fD0vnV3/Kqqsdu38+fP5xz/+4e7wqp3o6GieeOKJK/5enmutmzZton///uVedtHvSE8sT5Ts7rvvZvny5ZWaR0W2SWnHMsm96sNbuSd8n08ULwvFxMTwww8/VHo+lSnkzZo1i2nTplU6BiGEe0hhXnjCypUr6dmzp7fDKBdXLxYIbfPF3Cuvsgq4Qlu0kJOjRo3io48+8moM5SUn25Unuec50r7Wnqq+aanodQ5/O1752+epju69915efvllb4fhMe64GWbZsmXccsstxf5Wr149EhMTr5jWXddaXeXO5XnzxqGSzmG0dA5eUnwffPABo0eP9lJEVyotF6qqHeKJ3PPETSeSe1WnOrWBfeXGS58qXgrt0EJPDy3EIKqWbGMhhNAGpRQ2m83bYQghhCgg7WThLlar1dshAJLTQrhK9hX/VZ7jsVaO3cI/SO5pkxzvNVq83Lt3L6NHjyY6OpqHH34Yo9EIXHnH3IIFCxgyZAjR0dHccMMNrFmzxvHa8ePHmTRpEt27d6dnz548/PDDANx6660AJCYmEh0dzapVqwD44osvuO6664iNjeXee+8lLS2txNgur0qvXbuWxMREunXrxpAhQ1i/fn2Zn+/EiRPcdNNNdO/enfvuu4+srKwSp0tLS+Pee+8lNjaW6667ji+++MLxmslk4uWXXyYuLo64uDhefvllTCaT4/UPPvjA8dqXX35ZZkyFn+25557jjjvuIDo6mkmTJnH69GnH6+3atePTTz9l6NChDB06FICff/6ZxMREYmJimDBhAvv373dMv2DBAvr160d0dDTDhg3jjz/+AGDnzp2MGTOGbt260adPH/75z38CJd8RWfSOlXnz5vHggw8yY8YMunXrxvLly8nOzubpp58mLi6Ofv36MXfuXDmIumjQoEH8+9//5oYbbqBHjx489dRTGI3GEu/QK+3Ok4yMDKZOnUpMTAyxsbFMnDjRcXE7LS2NBx54gF69ejFo0CD++9//lhlTSdt4586djB8/npiYGOLi4pg1a5Yj10vbn53lpdCWXbt2XZGD58+fZ+rUqfTq1YsePXowdepUUlNTHe9ZtmwZgwcPJjo6mkGDBvHNN98AYLPZePfddxk4cCC9e/fm8ccfJzs7G7h0t/rixYsdx8bLe06YzWYef/xxoqOjGT58OLt27XK8Vtm757KysnjqqaeIi4ujR48e/P3vf3e8Vtr3T0l32Be9m65wX509ezY9evRg0KBB/PLLLwCOodZnzZpFdHQ0s2bNqnDs/qq65N7kyZN54403Sm13bN++nQkTJhATE8OoUaOKDck4efJk5s6dy4QJE+jatSsnT57k0KFD3HHHHcTGxtKnTx/mz5/vWAeF7bKePXvy0EMPOZZTuA6WL1/OgAED6NmzJ++99x4A69ev59///jffffcd0dHRjBo1CoClS5dy/fXXEx0dzeDBg/nf//5X7HO9//77jvW5ZMmSYt9TJpOJ2bNnM2DAAPr06cNzzz1Hfn5+hdehryvt+9hZW9LZ9/vlbbOHHnqo1PxNSkpi8uTJxMTEMHz4cH788UfHa2W1OwF+//13hg4dSo8ePZg5cyZKKaDk3gTlVVob3ln7+/LzgMvbroMGDeLDDz9k5MiRdO/e3XEek5uby5QpUzhz5gzR0dFER0eXeq7hTyT3rlSYM/Pnz6dnz57FvksK101px6/C9y5YsIC+ffvy1FNPYbVamT9/vuOceMyYMaSkpDjWQeHxetiwYY52cuE6mDlzJvfccw/R0dGMGzeOEydOACW3r8v6fjx58iS33nor0dHR3H777cycObPYHffOvmu0ZN++fVfsv2V9dmfno8uWLWPChAm88sorxMTEMHjwYLZu3cqyZcuIj4+nd+/exYZQW7duHTfeeCPdunUjPj6eefPmOV6bNGkSAD169CA6Oppt27Y5bX+AfXi8wvUeHx/PsmXLAPv2f/7555kyZQpRUVFs2rTJcXwr7/Gq8Pzt4YcfJjo6mtGjRxc793J2TljSuZ+zNrOzc7zyHn+dnWMCbNiwgWHDhtG9e3deeOEFJk2aVKxHy5dffsn1119Pjx49uOuuu644hriTt/MyOzubxx9/nF69ejFw4EDeffddx3HZarXy6quvOo5nn3zySak9hMvKV7C3/0pqL5f06ISS2pXOODtebt26lbFjx9K9e3fGjh3L1q1bHe+bPHkyb775JhMmTCA6Opo777yTjIwMx+ul7WeuHM8/+ugjevfuTVxcHEuXLgVg8eLFrFixgg8//JDo6GjuvfdewJ7jCxYsYOTIkURFRWGxWEq9JpqUlMTzzz/P9u3biY6OJiYmBoDMzEz+/e9/O/Jp7NixDBkyhG7dutGlSxfHvr5nzx7atWtH586diY6OpmPHjowZM8bxXQiUGLurLm8/7dmzhxtvvJHo6GjH8eTy3kDlWVelKe0apbPceOmll4iPj6dbt26MGTOGLVu2ACWfw5R2Dl7W9/Hlx+PSlDRtacfY0s6xLu+d98UXXzjOuW644Qb27NkDXHkN0FkPLWdtrvz8fF599VVSU1OZOnUqXbt2pXv37sTFxbFw4cJiuTBy5Eg++ugjoqKiAEhISKBDhw7cf//9AGzbto309HS6dOlCx44d6dWrV5m5l5KSwsaNG1m0aBE9e/Zk2rRp9O/f33E86tu3Lx06dKBDhw78/e9/5+GHH+axxx4rlp8fffQRkZGRxMbGsnTpUubNm8eYMWP46quvmD9/Pu3bt2fixIkAPPbYYyQnJ3PvvfcSHR3N+++/D0jugfdyb+DAgXTv3p1bbrmF/Px87rnnHj7++ONi8xk5ciRr16516zXm0q65FyqrTXP58d5T3zXOam1lfedXWY1GaYzRaFQDBgxQCxcuVCaTSX333XeqQ4cOas6cOWrjxo2qX79+jmlXrVqlUlNTldVqVStXrlRdu3ZVaWlpSimlpk+frt59911ltVpVfn6+2rx5s+N9bdu2VceOHXP8/vvvv6vY2Fi1e/duZTQa1axZs9TEiRNLnP6JJ55Qc+bMUUoptWPHDtWtWze1YcMGZbVaVWpqqjp8+LDTzzdp0iQVFxenDhw4oC5evKjuv/9+9eijjyqllDp58qRq27atMpvNSimlbr31VvX888+r/Px8tXfvXtWzZ0/1+++/K6WUevPNN9W4cePUuXPnVHp6uho/fryaO3euUkqpX375RfXu3duxjEceeeSKz1ySJ554QkVFRak///xTGY1G9eKLL6oJEyYUWw+33367yszMVHl5eWr37t2qV69eavv27cpisahly5apgQMHKqPRqJKSklT//v1Vamqq47MdP35cKaXUzTffrJYvX66UUionJ0dt27ZNKaWu2L5KKTVw4ED122+/KaWUevvtt1WHDh3UmjVrlNVqVXl5eeq+++5Tzz77rLp48aI6d+6cGjt2rPr888+dfk5hN3DgQDV8+HCVnJysMjMz1fjx49WcJz1VEAAAIABJREFUOXPU0qVLi213pUrfB15//XX17LPPKpPJpEwmk9q8ebOy2WzKarWq0aNHq3nz5imj0ahOnDihBg0apNavX+80ppK28a5du9S2bduU2WxWJ0+eVAkJCWrhwoUlxqaUcpqXQltKy8GMjAz1/fffq9zcXJWdna0eeOABdd999ymllLp48aKKjo5WSUlJSiml0tLS1MGDB5VSSi1ZskQNGTJEnThxQuXk5Khp06apGTNmKKUuHV+nT5+uLl68qPbv36969uxZ7PjSqVMntW7dOmWxWNTrr7+uxo0bVyzWotOWdtwuzZQpU9RDDz2ksrKylMlkUps2bVJKOf/+KWnekyZNUl988YVSSqmlS5eqDh06qMWLFyuLxaI+/fRT1bdvX2Wz2a6YVhRXnXLPWbsjNTVVxcbGqnXr1imr1ao2bNigYmNjVXp6uuO98fHx6uDBg8psNqvs7GzVt29f9eGHH6r8/HyVnZ2ttm/frpRSauHChWrcuHEqJSVFGY1G9eyzz6rp06cXi/Uf//iHysvLU/v27VMdO3Z0tJmKfq5CP//8szp+/Liy2Wxq06ZNqkuXLmr37t1KKXs7p0+fPurgwYMqNzdXzZgxo9h3wUsvvaSmTp2qMjMzVXZ2tpo6dap6/fXXy5Eh/sPZ97GztmRp3+9KXZmTpeWvyWRSQ4YMUe+9954yGo3q999/V1FRUY59yJV25z333KPOnz+vTp8+rXr27Kl++eUXpZS6oq1SWjulNM7a8M7a35fP+/K268CBA9XYsWNVamqqyszMVAkJCeqzzz4rcVp/J7lXso0bN6rIyEj1yiuvKKPRqDZt2qS6du3qiM3Z8avwva+99poyGo0qLy9Pvf/++2rEiBEqKSlJ2Ww2tW/fPpWRkaEuXryo+vfvr7788ktlNpvV7t27VWxsrON764knnlA9evRQO3bsUGazWT3yyCPq4YcfLvFzKaWcfj8qZT+/e/XVV5XRaFSbN29W0dHRLn/XaEVp+29Zn93Z+ejSpUtVZGSk+vLLL5XFYlFz5sxR8fHx6oUXXlBGo1H9+uuvKioqSuXk5Cil7Nt4//79ymq1qn379qnevXurNWvWKKVK/t531v44ffq0ioqKUitWrFAmk0llZGSovXv3KqXs279bt25qy5YtjuslRfO3PMerwvO37777TplMJvXBBx+ogQMHKpPJVOY5YUnnfqW1mcs6xyvv8dfZOWZ6erqKjo5WP/zwgzKbzWrRokWqQ4cOjnb1mjVr1JAhQ9Thw4eV2WxW77zzjho/frxL66u8tJCXjz32mLr33ntVdna2OnnypBo6dKhjXXz22Wfq+uuvVykpKSorK0vddtttxfK06PlIZdvLl7eBS2tXlqa042VmZqaKiYlRy5cvV2azWa1YsULFxMSojIwMx2cYPHiwOnLkiMrLy1OTJk1S//rXv5RSzvczV47nb775pjKZTGrdunWqS5cuKisrSylV8vfJwIED1ahRo1RycrLKy8tTSjm/JlrSdZ2oqCjVt29flZqaqlavXq3at2+v3njjDbVhwwYVFRWlJk6c6Lgm27ZtW3X33Xer5cuXqw4dOqguXbqoX375pczYS1PaMaZweYsWLVImk0n98MMPqmPHjsWmLe+6Komza5Sl5YZSSn311VcqIyNDmc1m9eGHH6o+ffqo/Px8pVTJ5zCXn4O78n18+fHY2TosOm1ubm6Zx1hn8a1atUrFxcWpHTt2KJvNpo4dO6ZOnTqllLqyHVDa9iurzfXCCy+oSZMmqf79+6uxY8eqNWvWqDNnzqi4uDg1cOBAx7z27dunevTooeLj49WiRYtU27Zt1SeffOLIhd27d6vu3bur9u3bq7lz56olS5ao3r17O809i8WiRo4cqa6//nr12muvqfz8fPWf//xH9evXTy1ZskQNHjxYxcXFqQULFqj77rtPTZw4UXXs2FHNmDFD9evXr1juDRgwQL377ruqS5cu6rXXXlOdOnVSt912m3rjjTecnr9L7nk/91JTU5XFYlF//fWXMhqNauXKleqmm25yzH/fvn0qNjbW0Z5w1zXm0q45uTLPy4/3nvyucfa9UtZ3flXVaDTX83LHjh2YzWZuu+02AgMDSUhIoHPnziVOe/3119O4cWP0ej033HADV111FTt37gQgICCA5ORkzpw5Q3BwsONOo5KsWLGCsWPH0rFjR4KCgnjkkUfYvn07p06dchrrl19+ydixY+nbty96vZ7GjRvTunXrMj9jYmIibdu2JSQkhIceeojvv//+ikp0SkoKf/31FzNmzCA4OJjIyEjGjRvH119/7Yh52rRphIeHU79+faZNm+a4a/e7775jzJgxjmUU3qXiigEDBtCjRw+CgoKYPn0627dvd9z1AXDPPfcQFhZGjRo1+OKLLxg/fjxdu3bFYDAwevRoAgMD2b59OwaDAZPJRFJSEmazmebNm9OyZUvAvm1OnDhBRkYGtWrVctxV44qoqCiGDBmCXq8nJyeH9evX8/TTTxMSEkJ4eDi33347K1eudHl+1d2tt95KREQEYWFh3HfffeVedwEBAZw9e5bk5GQCAwOJiYlBp9Oxa9cuMjIyuP/++wkKCqJFixbcfPPNxe7yKU3RbVyjRg06depEVFQUAQEBNG/enPHjx7N58+ZS3+8sL4X2lJSD9erVY9iwYdSsWZPQ0FDuu+++Yttcr9dz6NAh8vPzadSoEW3atAHsx8Xbb7+dFi1aUKtWLR555BFWrVpV7M7fadOmERISQrt27RgzZgzffvut47Xu3bsTHx+PwWAgMTHRbT12z5w5w/r165k5cyZ169YlMDCQ2NhYR8wV+f4p1LRpU26++WZHrp89e5Zz5865JW5/Vx1yr1Bp7Y6vv/6a/v37Ex8fj16vp2/fvnTq1MnRgxdg9OjRtGnThoCAANatW0eDBg248847CQ4OJjQ0lK5duwL2O/emT59OkyZNCAoK4v777+eHH34otg7uv/9+atSoQfv27Wnfvr3TzzlgwABatmyJTqcjNjaWvn37Ou42LWzntGnThpo1axZr5yilWLJkCU8//TRhYWGEhoYyderUats2cPZ97KwtWdr3e0lKy98dO3aQm5vLPffcQ1BQEL1792bgwIHFtkVZ7c4p/8/efcdHVaWPH//MTDqBkISUCSBdeiRAKAKCdCQQVkFYfsIKlmVBUHYtfFeliLqCCAKCrii4rm0XCyBGRem4io1eA4QAyaSQSupkyu+PkCGTzEwmyWRmkjzv12tfG6c+d3juuefe555zHnmEZs2aERERQf/+/R22b1jrw1fV/7bHjBkzCAsLo3nz5tx9992cOXPGITHXN5J7tj3++ON4eXnRr18/hg4dytdff21X+6VUKlmwYAFeXl74+PiwdetWHn/8cdq3b49CoaBLly4EBgayb98+WrZsyX333YeHhwfdu3dnzJgxZus8jRo1isjISDw8PJg4caLNXLV1fExOTubEiROmuPr27cvw4cNN77XnWOMuLO2/trb9+vXrVZ6PtmrVivvuuw+VSsU999yDRqNh3rx5eHl5MXjwYLy8vEyjXvv370/nzp1RKpV06dKF8ePH8/PPP1uN11b/48svv+TOO+8kJiYGT09PAgMD6dq1q+m9I0aMoE+fPiiVSry9vWv1u3Xv3p2xY8fi6enJrFmz0Gq1HDt2zK5zwvLnfrm5uVb7zPac41Wn/bV1jnngwAE6derE6NGj8fDwYObMmbRo0cL03k8++YRHH32UDh064OHhwZw5czhz5kydjb50ZV7q9Xri4uL429/+hr+/P61atWLWrFlm155mzpxJeHg4AQEBPProo1a3o7b95Yqq068EbLaXbdq0YdKkSXh4eBATE0P79u3Zu3ev6b333nsv7dq1w8fHh7Fjx5pyy9p+Zk977uHhwbx58/D09GTo0KH4+fmRkJBgcxtmzJiBWq3Gx8cHsH1N1JqePXsSFhbG3r176d69O9nZ2Xh4eODv78/Ro0f5/vvvTf8mf/7zn5k0aRKRkZFERESYfuOaxG7NsWPH0Ol0zJw5E09PT0aPHl3pGrAjvs/WNUpruQGl51GBgYF4eHgwe/ZstFpttb7bnuNxddrj8q89f/58ja+7QWl/+OGHHyYyMhKFQkGbNm1o2bKl3dsGtvtcBoOBzz77jGeffRaVSsWMGTMYOXIkISEhjB8/nvT0dNOI8e3bt9O3b1/0ej0zZ84EYPDgwaZc+O9//8vdd9+Np6cnjz32GJMnT6Zp06Z4enpa/fc4fvw4aWlp9OjRAw8PD7y9vencuTNQuu+W9VUefvhhnnzySY4ePUqPHj3MPqMs9xQKBXfccQd+fn5kZ2fTp08fwsPDUSgUVZ6/S+5V5szcCwsLQ6VS0bt3b7y8vBg5ciSJiYlcvnwZKM29cePG4eXlZfF7anON2do1d3v7NGXtvTOPNbaOK7aO+fb0PWrKo9af4GBpaWmEhYWZnaRGRERYfO22bdvYsmWLqZNYUFBAVlYWUDpUe+3atUyePJmAgABmzZrF5MmTrX5n9+7dTf/dpEkTmjdvTmpqKq1atbIaq0ajYejQodXeRrVabbZtJSUlprjLxxQQEIC/v7/Za0+ePGl6vvzvEhERQVpamum58g1udRqA8PBw099NmjQhICCAtLQ0U8zlY09OTmbbtm188MEHpsdKSkpIS0ujX79+/P3vf2f9+vVcuHCBwYMHs2jRIsLCwnjppZdYt24d48aNo1WrVjz22GPcfffd1Y4vOTkZnU7H4MGDTY8ZDAazGIVtFXOxLIfs9dBDD/HGG28we/ZsAKZOncqjjz5KUlISaWlpZjcN6PV6mzcRlCn/bwyQkJDAK6+8wsmTJyksLESv15vtrxXZykvhfizlYGFhIf/4xz84ePAgOTk5AOTn56PX6/Hz82PNmjVs3ryZZ599lt69e/PMM8/QoUMH0tLSzNq7li1botPpyMjIsPh9LVu25Pz586b/Ln9RwsfHh+LiYnQ6HR4etTtUpqSkEBAQQEBAQKXnbB1/wsLCqvzs8jH7+voCpcdCUbXGkHvWtrWs35GcnMw333xjdnFGp9PRv39/i+/VaDSmE62KkpOTmTdvHkrlrfvilEql2W9QMV9t5er+/fvZsGEDly9fxmAwUFRUxO233w5U7ueUjzEzM5PCwkLuvfde02PGRrxep63jsa2+pLXjuyXW8jctLY3w8HCznIiIiDCbfrCqfmdISIjpeV9fX/Lz82v0O1RkrQ9fVf/bHhVjbqz9D8k965o1a4afn59ZbGlpaXa1X4GBgWYXl1JSUiy2y0lJSRw/frzS7182dRdU/v1stcm2jo9l+01ZPwRK2+WyYrA9xxp3YWn/tbXt9pyPBgcHm/4uKziU/+29vb1N+XXs2DFWrVpFfHw8JSUlaLVaxo4dazVeW/0PW8dswKHnzOX3p7IbQspfm7B1Tlj+vbb6zPac41Wn/bV1jlnWhpRRKBSVrkO8/PLLrFixwvSY0WgkNTW12hdf7eHKvMzKyqKkpKRSm13WnpZvN6HyuXx5te0vV1SdfiVYby8rHpOg8jGj4r9B2XdZ28/sac+bN29u1te3Zxsq7re2rolaU3b8SUtLIzAw0PSdCoWC5s2bc/HiRdM+XLbdarWa/Px8U1tVk9itsXQNuOJ2OuL72rRpY/UapbXcgNIpQ7du3UpaWhoKhYK8vLwqf+Py7DkeV6c9Lv/a2lx3A9vndvay1efKysqiuLiY1q1bA+b7UZMmTVCr1ablAHbu3Mm0adNMv3OZsu1NTk7mxx9/RKfTMWDAAKD0GGArFzQaDREREWaxlY+7R48eptwra4+CgoLMXmcp90pKSqp1/i65V5mzc688Ly8vxo4dy44dO3jsscfYuXMn69ats/o9tbnGbO2auz2fac91mLo41tg6rtg65tdljcbtipchISGkpqZiNBpNDVZycnKlhEtKSuK5557jvffeIyoqynTHbfnPefHFF4HSOehnzZpFdHQ0bdq0qfSdoaGhZnfJFRQUkJ2dXeWFY7VabbpLsjrK39Wr0WhMVfPyj4eGhpKTk0NeXp7pAopGozHFFBoaSnJysmnUh0ajITQ01PRc+c9KTk62O7by6yTk5+eTk5Nj+lyg0kFkzpw5/OUvf7H4WRMmTGDChAnk5eWxePFiVq1axauvvkrbtm1ZvXo1BoOBXbt2sWDBAg4fPoyvr6/ZmlR6vd5sLYGK3182uuOnn35y2AXexqZinoSGhlb6d0hPT7f6fn9/fxYtWsSiRYuIj49n5syZ9OzZE7VaTatWrdi1a1e1Y6p4d/3SpUvp1q0br732Gv7+/rz33ntmdwpVVFVeCvdiKQc3b95MQkIC//3vfwkJCeHMmTNMmjTJtMbGkCFDGDJkCEVFRbz++us8//zzfPTRR5Xa8uTkZDw8PAgODja1bRqNxjRCvuz76lp4eDg5OTnk5ubSrFkzs+dsHX/KTiyLiopMxwFb+6OonsaQe5a2tXy/Q61WExsba+ovWVLxuG/tzrnw8HBefvll+vTpU+m5qkYSV2z3tVotCxYsYMWKFYwYMQJPT0/mzp1r+ncIDQ01u6BUfvsCAwPx8fHhq6++susGgIbO1vF45MiRVvuS1o7vAwcOtPu7Q0NDSUlJwWAwmE4qNRoNbdu2Nb2mqn5nXbHWh6+q/12xj1Sdke7WRg82VJJ71uXm5lJQUGA6zms0Gjp16mRX+1Uxj8LDw7ly5Yrp5o4yarWa6OhotmzZ4pCYbR0fQ0JCyMnJobCw0FTALN8u23OscWe2tt3R56N/+9vfeOCBB3jnnXfw9vbmpZdeMl0wstSG2Op/qNXqKkdgWVPd9qr8/mQwGEhNTSU0NBSVSlXlOWHF83trfebanONZ2h5b55hl16TKGI1Gs20si6X8BWBnc1ZeBgYG4unpSXJyMh07dgTMj4shISFmv035vytydX/ZWntZdm2tPI1Gw5AhQ6r8TGv7WW37o9b2wfKPV3VNtKr9ODQ0lEuXLpluFjAajWRnZ9O+fXuz9b7BvE13NEvXgDUajcWigyXVaa+sXaO0lhu//vormzZt4r333qNTp04olUqio6NN5yT2fLejj8cVP9tWG1tVfLauafv6+lJYWGj67/T0dIu5bKvPVXbD1dWrVy1+R+vWrfnf//5HSUkJzZo1Izo6mk8++cRsbdWyXFCr1UycOJFDhw6Z1qkHzGZ6sLR9Go3G1HZVjFur1Zpyr6w9yszMJCAgoMpr0yC5V19yr0uXLpXe+4c//IGnn36aPn364OvrS1RUlM1Ya9r/sHTNyd7PrHgdxhnHGntqbdaO+XVZo3G7aWPLpu54//330el07Nq1ixMnTlR6XWFhIQqFwnRXxGeffUZ8fLzp+a+//tr0IwYEBKBQKEzJ3KJFC7PGc8KECXz++eecOXMGrVbL6tWriYyMtDnqEmDy5Ml8/vnn/Pjjj6ZO+sWLF6vcxh07dnDhwgUKCwtZu3YtY8aMQaVSmb1GrVYTFRXF6tWrKS4u5uzZs3z66adMmDABgPHjx/Pmm2+SmZlJZmYmGzZsMD03duxYvvjiC9N3vPHGG1XGVGb//v38+uuvaLVa1q5dyx133GG1Sj5lyhQ++eQTjh07htFopKCggH379pGXl8elS5f48ccf0Wq1eHl54e3tbdrG7du3k5mZiVKpNJ2UqFQq2rVrR3FxMfv27aOkpIQ333wTrVZrNdbQ0FAGDRrEK6+8Ql5eHgaDgStXrticWkeY++ijj0hJSSE7O9u0kHCXLl2Ij4/nzJkzFBcXs379eqvv37t3L4mJiRiNRvz9/VGpVCiVSiIjI/H39+ftt9+mqKgIvV7P+fPna3QCnZ+fT5MmTWjSpAkXL17k448/Nnu+4v5sKy+F+7GUg/n5+Xh7e9OsWTOys7PN2rDr16+ze/duCgoK8PLyws/Pz9S2xMTE8K9//YurV6+Sn5/PmjVrGDdunNmBc+PGjRQWFhIfH8/nn3/OPffcU+fbGBoayl133cWyZcvIycmhpKTENK2TreNPUFAQYWFhbN++Hb1ez6effmq1429JxX1DmGsMuVfGWr9j4sSJ7N27l4MHD6LX6ykuLubw4cNWLzwNGzaM69ev895776HVasnLy+PYsWMA/PGPf+T11183XZTKzMzk+++/tyu+4OBgkpKSTHcIarVatFotQUFBeHh4sH//fn744QfT68eOHcvnn3/OxYsXKSwsZMOGDabnlEolU6ZM4eWXXzbdyZ+amsrBgwer/8M1ALaOx7b6ktaO79X9bl9fX9555x1KSko4fPgwe/bsMcv96vQ7HclaH76q/nfXrl3Zv38/2dnZpKen869//cvu7wwODiY7O5sbN27U1Wa5Fck929avX49Wq+XXX39l3759jB07tkbt15QpU1i7di2XL1/GaDRy9uxZsrKyGDZsGJcvX2bbtm2UlJRQUlLC8ePH7TpXhcp9CFvHx5YtW9KjRw/TNh05csRslGV1jzXuxta2O/p8ND8/n4CAALy9vTl+/LjZlJlBQUEolUqzfxdb/Y8JEybwv//9zzQtZ1ZWlt3TWFe3vTp16hS7du1Cp9Pxr3/9Cy8vL+64445qnxPa6jPX5hzP0vbYOsccOnQo586dM02f+eGHH5rdrDJt2jTefvtt0/WnGzdu8PXXX9v1WzmKs/JSpVIxduxY1qxZQ15eHklJSWzZssVUuB03bhzvv/8+qamp5ObmsmnTJquf5er+srX2cujQoVy+fJkvv/wSnU5HXFwcFy5cYNiwYVV+prX9rLb90eDg4Cpv/qvqmmhwcDCpqalWr6lNmDCBM2fOkJubi06nIy8vj8jISEaNGmU6x9Hr9Xz//fcWr8k6Sq9evVCpVHzwwQfodLpqf589vxVg8xqltdzIz89HpVIRFBSETqfjjTfeMGtzKp7DQOXjZ22Px7ZU1cZaiq+8yZMns3nzZk6ePInRaCQxMdF0LtelSxd27tyJXq/nwIEDVpdustXnUiqV3HffffzjH/9Ar9ej1+s5cuSIKScDAwNRKBTcuHGDiRMnmuVCcHAwO3bsMOXClClT2LNnDyUlJWbHAFuz60RGRhISEsKpU6fQ6XQUFxebRnPHxMSwb98+jEYjmzdv5rXXXiMqKoqTJ0/SvHlziouLTVN4Wrs2bS33KuaA5F5lzsy91NTUSrkXFRWFUqnklVdeqXQjkiOvMVu65lSTz3TWsaaq44qtY35d1mjcrnjp5eXF+vXr+eKLL4iOjiYuLo5Ro0ZVel3Hjh2ZPXs206ZN48477+T8+fP07t3b9PyJEyeYMmUKUVFR/OUvf+HZZ5813bnz2GOPsWjRIvr27UtcXBwDBw7k8ccfZ/78+QwePJirV6+yZs2aKmONjIzkH//4h2mkwQMPPGDXKMfY2FgWLVrEoEGD0Gq1PPvssxZft3r1apKSkhgyZAiPPfYY8+fPZ9CgQQDMnTuXHj16MHHiRCZOnEj37t2ZO3cuUNrZ/tOf/sSf/vQnRo0aZRpSb4+YmBg2bNhA//79OXXqFK+++qrV1/bs2ZPly5fzwgsvEB0dzejRo/n888+B0guPr732Gv3792fw4MFkZmaycOFCAA4ePMj48eOJioripZdeYs2aNXh7e9O0aVOWLFnCc889x1133YWvr6/NaUcAVq5cSUlJCffccw/R0dEsWLBARiZVQ0xMDLNnz2bkyJG0bt2av/zlL7Rr14558+bx4IMPMnr0aIujaMokJiYya9YsoqKimDp1Kn/84x/p378/KpWKN998k7NnzzJixAgGDBjAc889V6MC4jPPPMPOnTvp3bs3zz//fKUTmIr7s628FO7HUg7+6U9/ori4mAEDBjB16lSzu14NBgNbtmxhyJAh9OvXj19++YUlS5YAcN999zFx4kQeeOABRowYgZeXF88//7zZ9/Xr149Ro0bx4IMPMnv2bLMpDerSypUr8fDwYNy4cdx5552mC95VHX+WL1/Ou+++S//+/blw4YLNO8IqmjlzJt9++y3R0dH1drRDXWosuQfW+x1qtZqNGzfyz3/+k4EDBzJ06FDeffddqycZ/v7+bN68mb179zJo0CDGjBnD4cOHgdJ8Gz58OLNnzyYqKor777/f7htWyqbE69+/P3/4wx/w9/fnueee44knniA6OpqdO3ea3VU7dOhQZsyYwcyZMxk1apRp7eyydSqeeuop2rRpw/3330/v3r158MEHa7wOT31n63hsqy9p7fheHV5eXrz55pscOHCAAQMGsGzZMlauXGm2Pnx1+p2OZKsPb6v/HRsbS5cuXUy5Xp2Lqh06dGD8+PGMHDmSvn37mo3qaYgk96xr0aIFzZo1Y8iQITz55JMsXbrUFFt1269Zs2Yxbtw4Zs+eTe/evXn22WcpLi7G39+fd999l7i4OIYMGcLgwYNZtWqVzRtDy6vYv7Z1fARYtWoVR48epX///rz++uvcc889pja5uscad1PVtjvyfHTJkiWsW7eOqKgoNmzYwLhx40zP+fr6MmfOHP74xz/St29fjh49arP/ERERwaZNm9iyZQv9+vVj0qRJdq/dWt32asSIEcTFxREdHc327dtZv349np6eNTontNZnrs05nqXtsXWOGRQUxNq1a3n11VdNffAePXrg6ekJlK4X+/DDD/PXv/6V3r17ExMTYzYSyBmcmZfPP/88vr6+jBw5kunTpxMTE8N9990HwP3338+gQYOYOHEikyZNYujQoXh4eFS6OR9c31+21l4GBgby1ltvsWXLFvr3788777zDW2+9VWn6SEts7We16Y9OnjyZCxcu0LdvX9PxsaKqrokOGDCAjh07MnjwYIvH0YEDB9K/f39++eUX5s+fj06nY82aNaZrslA6OmnHjh0MGzas2jcS2avs+z799FOio6NN32dt/bmK7PmtwPY1Smu5MXjwYO666y7GjBnD8OHD8fY31zgkAAAgAElEQVT2NrvRqeI5DFQ+B6/t8diWqtpYS/GVN27cOObMmcPf/vY3evfuzbx580zTUD/77LPs3buXvn378uWXXzJy5EiLMVTV53rmmWe4/fbbSUtL47HHHmPVqlVmx//Bgwej0+mIjY01y4Xc3FzefvttU2GrZ8+ePPTQQ+Tm5tp9DFCpVLz11lvk5+fz73//m7vuust07nrfffcRGxuLwWDgtddeY8+ePTRt2pRhw4bh7+/PkiVLePfdd0lLS7N6bbos9yoWvx599FHefPNN+vbty7vvviu55+Lcmzx5Mv369auUe7GxsZw/f95sZCE49hqzpWtOUP0+jbOONVUdV6o65tdVjUZhLD8eWzRqZXNulzWiomEbPnw4L774InfeeaerQxGizl27do0RI0Zw6tQpmWZaOJWrc2/GjBlMnDiRKVOmOP27neXixYvExMRw4sQJ2b/rEel3CldxZe4dPnyYp556yumFDmd74oknaN++PQsWLHB1KKKOrV+/nsTERFatWuXqUOqMwWDgrrvuYtWqVdW6Mbwx2r9/P0uXLjUbfS3qvylTpjBt2jRT0bqhfZ9wnW3btvGf//yn0gxrZST3RF2pKvdqqzFcc3fWMd/tRl4KIYQQQghhy3fffYdWqyUnJ4dXX32Vu+++WwqXQgjhIsePH+fKlSsYDAYOHDjA7t27rd4pL0R9cPDgQXJzc9Fqtbz11lsAppkexC1FRUXs378fnU5HamoqGzZskH2/Afj5559JT09Hp9PxxRdfcO7cObvWAK0v3yfcQ2FhIR999BFTp041PSa5J5zBUu6JqrnqmC9XeeqAtWn9Nm3aRN++fZ0cjbnx48dbnNp22bJlLohGNEYPP/wwv/32W6XH//znPzNnzhwXRCSEY7hz2y8aNlu511B98sknLFq0CJVKRXR0tGkKXyHKvPXWW/zzn/+s9HifPn145513XBCRaCxs5d4jjzzigojq3vXr15k/fz7Z2dmEh4ezdOlSunXr5uqwhIPYOn9rqI4ePcqTTz6JVqulY8eObNiwAR8fH1eH5XaMRiPr1q3jiSeewMfHh2HDhvH444+7LB651uAYCQkJPPHEExQUFNC6dWvWrVtHaGhole+zdb2x4tSajvi+ipKTkxk/frzF57766isiIiKq/ZnOVtPfsL45ePAg8+fPZ+DAgcTExJger24ulP2bFxYWUnFiSR8fH5YvXy65Z6fGnnvVVdW/eUPkqmO+TBsrhBBCCCGEEEIIIYQQQgghhHALMm2sEEIIIYQQQgghhBBCCCGEEMItSPFSCCGEEEIIIYQQQgghhBBCCOEWpHgphBBCCCGEEEIIIYQQQgghhHALUrwUQgghhBBCCCGEEEIIIYQQQrgFKV4KIYQQQgghhBBCCCGEEEIIIdyCFC+FEEIIIYQQQgghhBBCCCGEEG5BipdCCCGEEEIIIYQQQgghhBBCCLcgxUshhBBCCCGEEEIIIYQQQgghhFuQ4qUQQgghhBBCCCGEEEIIIYQQwi1I8VIIIYQQQgghhBBCCCGEEEII4RakeCmEEEIIIYQQQgghhBBCCCGEcAtSvBRCCCGEEEIIIYQQQgghhBBCuAUpXgohhBBCCCGEEEIIIYQQQggh3IIUL4UQQgghhBBCCCGEEEIIIYQQbkGKl0IIIYQQQgghhBBCCCGEEEIItyDFSyGEEEIIIYQQQgghhBBCCCGEW5DipRBCCCGEEEIIIYQQQgghhBDCLUjxUgghhBBCCCGEEEIIIYQQQgjhFqR4KYQQQgghhBBCCCGEEEIIIYRwC1K8FEIIIYQQQgjhMAkJCUydOpUxY8YwdepULl++XOk1hw4d4t5776VHjx6sWLHC+UEKIYQQQgghhHBbCqPRaHR1EO4gKysfg+HWTxEc7E9GRp4LI6qfKv5uSqWCwMAmLoyocSifv8F5GeSev0xJ7z4ujqp+Cw72JysrX/LXCSq2vyBtcE1JG+waZm2wE3JXcSMXj19/pWTIXeDhUaff5UrBwf6uDqFRsNQGu1JDaP+lDwEzZ87kvvvuIzY2lu3bt/PZZ5/x/vvvm70mMTGR/Px8vv32W7RaLc8880y1v6csf12RN6oriSgvXaJk8BCLbbG75XJ14pH+g/O4S47U53ytSPLXeeq6D+FueVleXcYmOewcdZa/RiMoFDZf4s65bS9r2yD56xzOvgZRX1X3t5H8dT8N94pXNRkMxkoHLUcfxM6cOc3cuY+wbt2b9OwZ6dDPdifudAGssTDL37ZtaQZkHD6KoV17l8ZV30kuO4el9rfs8bqwZ893vPLKi2zf/g2+vr518h2uJHnrfBVzuK7/DQJmTsfr4H7ylv+Dwj/Pq9PvEg2ftTa4pl57bQUXL15g48ZNtYqpvmsI21BTGRkZnD59mi1btgAQExPD8uXLyczMJCgoyPS6Nm3aALB79260Wm2Nvqt8/jr1NzcaaT4pBtWVy+T/fTEFTzxpNT534m7xCOf8m1w+fpRHHphKzB8m8/iyl1waS3W4WzyiMkf3ISzZsuVd9uz5ns2b/41KparT76ouydH6rS7y95eFj7H8kw/ZsfnfMC6myu+v7xrCNtRXZfl74sQxJk4cS0KCxtUhuS3J0/pNipdO9OGH/yIrK5OlS5/js892uDoc0cCpLidI8VIICzZsWM/Ro0fYvfs7YmImujocIarN6+D+0v//Jk6Kl8LtvPvu21y/nl6r4qWo3zQaDWFhYaaLzCqVitDQUDQajVnx0hHKj9AOCWnq0M+2KT4erlwGoMmeXTR5aZnFlzk1Jju4WzzCOVbMnsGwFA3vvLme8b6+dFz0nKtDEsJu/1r1CidTUzi86xvuHDfe1eEIYV1xMV9/+D4/Abuf/zsjqiheCuEIx34+TH5+Puj14GY3eAjhCFK8dKLffvuV11/fwLx5j5KQcIl2UlgSdUlmhBaikszMDI4e/Z3nnlvGrl1fS/FS1D/l2nZDSIgLAxHCMm2+TFkknCcjIw+DwUhISFPS02847Xu99/3AVuAy8MLvv3M9JbvSBSNnx1SV6sSjVCpk6u4GIvViPHuuJHIZaAO8vnol/xxwJyXDhrs4MiGqVnzmDBdSU3gIOPfvLVK8FG7N4+RxfgUmAvuvJjKipAQ8PV0dlmjgfN79JwC+7/6TwkfnujgaIRxP6eoAGgudTseZM6fo2zeakSNHs2fPd64OSTR4UrwUoryioiI2bFjHqFGjmTAhln379rg6JCGqr7jY9KdCW+LCQISwwGiksLCw9O88KWI2Vmq1mtTUVPR6PQB6vZ60tDTUarWLI3McVcIlXgBeBBK1WpTXrro6JCEs2v3qK4wDfAbcybSH57ALKJo9A8+9u10dmhBViv/qK9oAkcClY0ddHY4QNqnOn+MicB9wzmhEdXOGBiHqkseFeAC8t3/h4kiEqBtSvHSSK1cSadEiBH//pgwZMpRDhw66OiTRwClk5KUQABiNRp56aiHdunXgl18O83//t5i2bduh1RaTmpri6vCEqBZFYQEAGYBS8le4m/x8061TyozrLg1FuE5wcDBdu3Zl586dAOzcuZOuXbs6fMpYV8o7e4YM4FHgY0B18YKLIxLCsu+++5bxQNGfZuOxZDmxIaG8n3eDpn+dDzqdq8MTwqaUI0eIADoBF6+nQ1GRq0MSwqrCC/HkAdHAVaRvIIQQjiDFSye5dOkC7dt3AKBXr96cOHHcxREJIUTjsHv3Ln7bt5v4Dh3Z06UrbcLCUSgUREb24tixI64OT4hqURQWshNoARTn5rg6HCHMKLOzKJscS3k93aWxCNdaunQpH3zwAWPGjOGDDz5g2bLSNSEfeeQRTpw4AcCvv/7KXXfdxZYtW/jkk0+46667OHiwftzgefbsGboBI8PCOQioLskFSuF+dL/8xIEbuYwOCKB4/ETw9mbaex/ytsoDRdI1PH7/zdUhCmFT2pUrhAG3AVeNRlRXr7g6JCGsunb+HG0ozddrgCJFbjQVQojakjUvneTChXg6duwEQLt27bl+PZ2cnGwCApq7ODLRYMnISyEA+HbrJzyYnER44mU4dgSKi8lbu5E77oji2LGjjB49ztUhCmE3RWEBZRMe/5SdzR0ujUYIc4qs0uJlITLysrHr0KEDW7durfT4pk2bTH/37duXAwcOODMshzlz9Qo9gB4jRnL8ow/wkNEVwg39/uYGegB+0/4f+T4+APTu2w+/Zs3Ym5XJgAN70fXr79oghbAhNSWFUKAVkAQok66h73S7i6MSwrLLV6/QHvDqeQfeJ46RcyURH1cHJRo8g6sDEKKOudXIy927d6NroFOXXLx4kQ4dOgKgUqno1q07p0+fcnFUwh71Ni+leNlo1NscdZLj33/HoJISdJ1ux+jri+/HH+C553tuv70zFy6cd3V4wgbJ7coUBQVcp7QDl1CQ7+pwGj3JUXPK7Cy8yv6+LsXL+kxy2zpF3g1O592gm0pF+KhxZAIF58+5OqxGSfLUtl9+OcxgQDtqrOkxhULBH8eO533Aa/9el8Umape/CQkJTJ06lTFjxjB16lQuX75c6TV6vZ5ly5YxcuRIRo0aZXZDyfr16xk4cCCxsbHExsaaRse7m7SMDMIA38heGIG8hIuuDkncJO1vZYmZGbQD9N26EwpkXk10dUiijrnDfvCDS79diLrnVsXLtWvXMnjwYF544QWOHTvm6nAc6uLFeDo1bYbnoQMobuTSrVsPTp8+6eqwhB3qbV5K8bLRqE2ONvQTX0PSNc7eyKWHpyfZ278h/69PA+D77/do374DCQmXXByhsKXetr91qaCQTKA9kFtc7OpoGj3JUXOK7GzTtLGK7GyXxiJqR3LbOqVGw2mga3ALuO02OgEXrl1zdViNkuSpdYqcbH5OTWGgSkVJ335mz8UueIIdQPEvh1FkZLgmQFGr/F2yZAnTp0/n22+/Zfr06SxevLjSa7788kuuXLnCrl27+M9//sP69eu5Vq6tmjRpEtu3b2f79u0sWbKk1tvjcEYjqbm5hAL66H60BFLPy42n7kLa38pS826gBnRduhEKXNdoXB2SqGPusB+UuORbhXAetype7tixg/feew9vb2/mz5/PmDFj2Lhxo1kHq766eCGevo/9meb3xtCiQys6tgjm0iW5a6w+aMh5KRqG2uRoQz/xTdv2OcGA57DhGFu0oHjqdIwKBV7ffUP74BZcunQJoxT63Za0v5UpCgvIpHQtlXydDgwyUYwrSY6aU+TduFW8LCp0aSyidiS3rVOmp3EVaB0ahiE0jM5AfHqaq8NqlCRPrVP9+AM/AtGRd4Cfn9lzIR06MSA4mO0GA95xX7omQFHj/M3IyOD06dPExMQAEBMTw+nTp8nMzDR7XVxcHFOmTEGpVBIUFMTIkSP55ptv6mx7HE2RnUWaXk+Iry+6Tp1pCaQkJrg6LHGTtL+VZRcWEgjou3QpLV6mpbo6JFHHZD8Qou653ZqXXbp0oUuXLjz99NP8+OOPvPLKK6xfv57evXszdepUYmJiUCrdquZapby8PLLT02hd7rHu+/awr3mgy2IS1VOf8jILSAA6SD2mUalJjpad+G7ZsgUoPfFdvnw5mZmZBAUFmV5n7cT34Ycfduo21sS13d/SAdDePQIAQ7iakjsH4/XDQcKO/o5CoSArK5OgoGDXBiqsqk/trzMoCgvJAjoDeQAFBeDv79qgGjnJ0VsUxcWmdVd0eXkujUXUnuS2Zcr0NDRAmDoCQ3CL0pGXeTcYo9OBh9udXjd4kqeWXfpqJ0FA4NDhFFh4/v7xE3n//S1MjvuSohkPOjk6UaYm+avRaAgLC0OlUgGlyxKFhoai0WjMzuE0Gg0RERGm/1ar1aSkpJj++6uvvuLQoUOEhIQwf/58oqKiqh1/cHAd9kE1CaQC4WFhNO3akZbA9VQNISFN6+47q8mdYnEFaX/LKSwkW6+nuUqFrl2H0uJlVparoxJOIPuBEHXLLc+urly5wo4dO9ixYwcKhYIFCxagVqv58MMP2bVrF2+88YarQ6yWhISLdFQqUer1pse6//4bl9q2c2FUorrqS17+H/BPIFtGkzU61c1RdznxtXbSW+uTQaORa0eP0B5oeu9EmpZ93j1j4YeDBBz5mU6dOpKdnUrnzm1r911upCGeRNe0/U1ISGDRokVkZ2fTvHlzVqxYQdu2bc1es2HDBuLi4lCpVHh4eLBw4UKGDBnihK2qmbKRl62BDErXwDRK8dLl6ksfoa4pSrSUTWZcmJ+HyqXRCEeQ3K6sIOkaJUBTdQT5Hh5ENPHnRH4eyozrGMLCXR1eoyR5WtnJHw/RFyi5c7DF50fNe5y/vr+FrJ9+RFXuOoVwPlfk77Rp05gzZw6enp788MMPzJ07l7i4OAIDq3eDfUZGHgZD3Vx38Dp1nutAs9BwsvyDaAlcTUkhPf1GnXxfdYWENK2zWJRKRd0Whh1I2t9SyqxMsoCAps0whIYRCqTn5pQu56RQuDo8UcdcuR/IlV/R0LlV8fLDDz9k+/btJCYmMm7cOFauXEmvXr1Mz48ZM4Y777zThRHWzMUTx+hcUjoLdfqVNIL696KdJhnNtatotVq8vLxcHKGwpb7lZdl0bbLmZePhyhx1xImvpZNeR5wMKpOucTEvj/a+vqQHquHm53nc0Y9AQLd7D6279+D330/Qvn23Wn2Xu6j4u9WnE19LapvbZdMix8bGsn37dhYvXsz7779v9prIyEhmz56Nr68vZ8+e5YEHHuDQoUP4+PjU2XbVSn6+qXiZCCgK8uWExYXqWx+hzhWXFi+9gMK8POpv6yMkt61LS0xADRhDQwEIDwzi2/w8lGmpUrx0MslTyxQ3cjl1JZEeSiUl0f0tvsa7XXtG+vkRl5/HH06fhHDLRU5Rd2qav2q1mtTUVPR6PSqVCr1eT1paGmq1utLrkpOTiYyMBMxvSA0JCTG9btCgQajVauLj4+nXz3x9VFdSZGSQAQSGq9GHR9ASOJOT4+qwxE3S/ppTZJYWL5s3DwB/f0K8vDir1aLIycYos+41WO6wH8i1ANHQuVXx8sCBA8yaNYsRI0ZYLOj5+vqyfv16F0RWO1d2bKMTUNIrCnx8KJz9CP4vLUPt48vVq4l06NDJ1SEKG+pbXpomI5DiZaNR0xxt6Ce+HqdOcAmYcFtbs7sddb2iMPr54XH+HO3uHklCwiWXxShsq037a++0yOVHWXbu3Bmj0Uh2djbh4e55ATo/JxtvIIjSaWMVBZYmgxPOUt/6CHVNoS1GCzQHivOleFmfSW5bl5aUjBowhJQWL8NCQ9Bcu4JS1rZyOslTy1SnTnESeKj1bdCkidXX3dMjkm0//8T9P/0Phkvx0tlqmr/BwcF07dqVnTt3Ehsby86dO+natatZ/xZg7NixbN26ldGjR5Odnc3333/Phx9+CEBqaiphYWEAnDlzhqSkJNq1c6+ZwXTX0ykEmoaGUhAcTIRSyW6tFoqKwF1vMmxEpP01p8zMKB15GVi6HE1IQAAH0tNRZlxHL8XLBkv2AyHqnlsVL/v168e4ceMqPb5lyxZmzZoFwODB9a9Tfe38OQYCRTNKt0HX8w4A2ioVXLt2TYqXbq42eWnPlIXr16/no48+IvTm3du9e/dmyZIlNY5XJqRofGqaow39xNfj9CkuAm26VRhV6eVFSXR/vPbvpVNxEbsTrrskPlG12rS/9k6LXN62bdu47bbbql24rDi6tS6n7r1SnE8g4E9p8TLIG2iAUwXXFw2171pTxuJiiiktXhZKYb1ek9y2LjU1xbx4GdGS5N9/Q5kqxUtnkzy1zOPcGU4A3br3tPm64fdO5vGff0K36xv4+9POCU6Y1CZ/ly5dyqJFi9i4cSPNmjVjxYoVADzyyCMsWLCAnj17Ehsby7Fjxxg9ejQA8+bNo3Xr1gCsXr2aU6dOoVQq8fT0ZOXKlWY3pbqD7BQNgQCBQaBUEhEYRFLG9dJR7re1cXV4jZ60v+aUWZlkA82DWwDQIjCQtPR0FBmZ0MG1sYm6I/uBEHXPrYqXGzZs4KGHHqr0+Jtvvmna6eujK5kZTKN0tA+A7o4ojEolbW7c4Fr8eRh6t2sDFDbVJi/tmbIQYNKkSTzzzDMOiVdGXjY+tcnRhnziqzp1kktA6+gBlZ4rGTiotHiZmcE7SUnOD07YxZn9gp9//pm1a9eyefPmar+3/NTHdbn+DUBaSjr+lBYvbwDZSemUuMnaP45WH9Zvbah915rSFxWhpDQ/CwvyXR2OqAXJbetSM66bFS9DWrchHTBqkl0aV2MkeWpZ7vGjZAMte/cxrUNsSZOJ99J30ZPsP3SA2Nxc5DZY56pN/nbo0IGtW7dWenzTpk2mv1UqFcuWLbP4/rJzPneWlZZKMGC4uRyJOiystHiZmiLFSzcg7W8FGRlkA83CwigGWrQIJe38eZQZcqN0Q1bT/SArK4unn36aK1eu4OXlRZs2bXjhhRes3mRti1z5FQ2dWxQvf/zxRwD0ej0//fQTxnJFl2vXrtHExlQnbi8/nysFBbQB9O3aA2AMDkYX3Z82h38k+Zef4OE/uzZGYVFt89LeKQsdzXTKKcXLBs8RbWdDPvHNPXEMAxAQ3Q99hedKevcFoPPlyyRcu+L02IRtjshte6dFBjhy5AhPPfUUGzdupH379o7bkDpQmJdHE6AJkI9MG+sqDbrvWgvFxUV4A35AYWGhq8MRNSC5XbWU3JybxcvSm7U81GoCgIxrV2WqZCeRPLXt3NEjdAeM3brbfJ2xRQvGt23HjssJxMbFwYjxzgmwkZP8tU9WxnWCwbReYEjLVlw/fQpDstwo4kqSv5blp6bgC3gEtygtXoaFkUbpdLKi4antfqBQKHj44Yfp3790XeoVK1awatUqXn755boLWoh6yi2Kl88++ywAWq2Wv//976bHFQoFISEhPPfcc64KrdY8dn/HVUAd1Rut/60RBCW9omhz+Ed2X4h3XXDCptrmZXWmLPzqq684dOgQISEhzJ8/n6ioqGrFWn7KwrLiZUAzH5lKsJYqTgXpbhpy21lrhYUkJlyiPaDv3LXS02Uj4SPOnqbY05Ps7Cyay1oUbsMRuW3vtMjHjx9n4cKFrFu3ju7dbV/kcweFeXn4Ub54KaPbXEHaX8u0BQV4A75AUWGRq8MRNSC5XQWjkZT8fLoCxptLPhhahKAGUpOTpHjpJJKntp25dJGegM5CH7iisX+YzMo1r6L/4gspXjqJ5K99sjIzS4uXN0deKsMjCASyEi4S4NLIGjfJX8tyUlMIBAxBpWteNle3JBfQyXrYDVJt94PmzZubCpcAvXr14uOPP65RLDJsRTR0blG83LNnDwBPP/00K1eurNFnDB8+HC8vL7y9vQF48sknGTJkiMNirKnMo7/RDPAcdBfaco/ruvWgDXBNphdyW47IS3tMmzaNOXPm4OnpyQ8//MDcuXOJi4sjMND+QoppykKj0VS8zMkpQNtApxJ0hpCQpmRk5Ll1AdNZOVofeZw7wyWjkfb+TcHHp9LzxuaB6Dp0xOPiBdq3vo3LlxPo1UuKl+7CUbltz7TIy5Yto6ioiMWLF5vet3LlSjp37ly7jagjBQX5NAH8lEryDQYZeeki0v5aVlxUbuRlkRQv6yPJbdsU+Xlo9HrUXl4Ym5T2EU3Fy7RUWdbKSRyRpwkJCSxatIjs7GyaN2/OihUraNu2rdlrNmzYQFxcHCqVCg8PDxYuXGi6xrB+/Xo++ugjQm8WsXv37s2SJUtqvlEOokhN5WR+Hj29fTC0al3l69WTpxKy5lV+372btkYjKGTq2Lom7ax9MnNySqeNvXmDqSEsjBAg42qiFC9dyFH5a08brNfrefHFFzl48CAKhYJHH32UKVOmAO7XBuekp90sXt68UTa4BcFAZlISzVwWlagrjmzHDQYDH3/8McOHD6/W+ypeq/T0VNWLZVdcQX6X+s0tipdlarvDr1u3jttvv91B0TjGtfjz3AboK8zJr+9eWry8mp3tkriE/Wqal/ZOWVh+fcBBgwahVquJj4+nX79+1f9Sg8FUvFToK06UKRoqOemtzOPmepdtLEwRWkbXqzceFy/QoUkTEhIu0atXb+cFKOxS29y2Z1rkzz77rFbf4WyFBQX4Ab5BweRfT5eRly4m7a+5kuIivCgdeVmoleJlfSa5bZkiLQ0NEBYUbCrylBUv0zJkajhnq02eLlmyhOnTpxMbG8v27dtZvHgx77//vtlrIiMjmT17Nr6+vpw9e5YHHniAQ4cO4XPzxrhJkybxzDPP1GobHM3j1HGOA/d26GhXIVLfsRPDfHzYm5HBQ5cTMLRz7+nzGxJpZ23LyrtBELdGXhrCwgkBsmTaWLdQ2/y1pw3+8ssvuXLlCrt27SI7O5tJkyYxcOBAWrVqBbhXG5ydkUEgYAwsLV4aWrQgFMhISZbiZQPmiHZ8+fLl+Pn58cADD1TrfWWDWMpuwS8p0ZMtA1gqCQlpSno1fhelUuHWg1gaI5cXL8eNG8fXX38NwNChQ1FY6WDv27fPiVE5zrXEy6XrXVYoXupu70JLpZIknQ79jRuomspdAO7EEXlp75SFqamphIWFAXDmzBmSkpJo165dzQIvV7xEipcNWkNvO2tLdfokF4HIjtZvaNFF9oLP/ktHvYGEhEvOC07YJLltW35hQenIyxYh5F9Ph3wpXjqb5Kh12uLiWyMvi7VVvVy4GcntqinT00uLlzdHegAYQkJLR17m5rgsrsbEEXmakZHB6dOn2bJlCwAxMTEsX76czMxMs3O18jM5de7cGaPRSHZ2NuHh4Q7YkrqhOnGck0CXPn3te4NCwZCu3XnvyG/MOfwjxVK8rFPSztovu6CgdCRb81vFyxZARmqKS+NqzByVv/a2wXFxcUyZMgWlUklQUBAjR47km2++4eGHH3bMBjlQTnZWab7eLF4ag4IJBdLT06nh1T3hphzZjuPFRRIAACAASURBVK9YsYLExETeeustlEpljeK5C9hU5auEqL9cXrxcvny56e9XX321Vp/15JNPYjQa6dOnD3/9619p1sz++1ssVdVrPazYYCD5ZvGyef+oCusPNoWuXQk6dQrd6d8Jj4mp3Xe5kYYwHNtReWnPlIWrV6/m1KlTKJVKPD09WblypdlozGqR4mWj4ci2syEqG3kZ08v6+rG6O3oBcHtODruleOk2JLdtKywqwg9QhoTgcRaKb8jdlc4mOWpdWfHSFyjSFrs6HFFNkttVK0lO4gYQqI4g7+ZjxuBg1MC5goLS/vfN9e5F3XBEnmo0GsLCwlDd/LdSqVSEhoai0Wgq3WhaZtu2bdx2221mhcuvvvqKQ4cOERISwvz584mKst7vdJbkXw/TBAjo2w97W+EBo8fxyJHfUBzYB9P+Xx1GJ6SdtZNeT1ZxMbcBxoDmQLlpY2WUu8s4Kn/tbYM1Gg0RERGm/1ar1aSk3Cpe17YNduToqht5NwgEAju2Lr322/E2QoHsnCyr10gbwrXThrAN1eWo/WDNmjWcPHmSt99+Gy8vrxp/jtzKLBo6lxcv+/a9dUdgjabJvOnDDz9ErVaj1Wp56aWXeOGFF1i1apXd7zetGXhTdYcVW6I6f47EwkI6NAsg3S8IKnxe085daXPqFGd37cG7/9BafZe7qPi71dfh1o7KS3umLCwraDqEwYCy3N+i4XJUjjZIRiMep0uLl62HWG9bdT0jAbg9JZl3Ll10UnCiKpLbthUUFdGE0qmImgAFuTlUXtVV1CXJUeu0xeXWvCwpcXU4opokt6uWnnCRMIDQsFsPengQ5u/P/rw8FJmZGGt6E6Kwiyvy9Oeff2bt2rVs3rzZ9Ni0adOYM2cOnp6e/PDDD8ydO5e4uDgCA6u3hrqjL/wePnWSnkCzwf0r3DxtwwNTabfiRU7t+Y4BLfzdZt3LhnhRXNpZ+yhyc8gBAv38TDeElE0bm5EjSy+5ijvlryPa4IrXgWsjMzeXQOC60Rtj+g2UCh9CgZTMLIvXlh1xzdnVrG1Dfb0ObC9H7Afx8fG89dZbtG3blmnTpgHQqlUrNmzYUO3PyqxRBELUHzUbk1xHtmzZwpkzZwA4evQow4YNY8SIERw5cqTK95atI+jl5cX06dP5/fff6zRWe6guxJMItGrbzuIJgK5bT9oASSeOOT02Yb/a5KXT6fW31ryU4mWjUa9y1AmUyUnosrPRAOrIXlZfZ2zaDF37DnTS6bh8Id55AQq7SW5XVqgtxg8wBJcWLwtv5Lo6pEattjmakJDA1KlTGTNmDFOnTuXy5cuVXrNhwwbGjx/PxIkTuffeezl48KDpufXr1zNw4EBiY2OJjY1l2bJlDtmumiou1ppGXhbqdGB0zAUh4XzS/lqWdiURNWCoUKAMax6IBlBeT3dJXI1VTfNUrVaTmpqK/uZMNXq9nrS0NNM1hfKOHDnCU089xYYNG2jf/taUqiEhIXh6egIwaNAg1Go18fHV70+mp99w3P+upHE8KYkeCgXpIa3tf1/obdzdpAl7MzPJ3Ps/x8ZUw//V5rfJyMir4ld3D9LOWqfIyiILaF5uNjVDSCjBwPWCAtDpXBabKFXb67f2tMFqtZrkcmucajQa0+h3R7XBDqHTkV1URHPA2Lx0pLDx5pqX6fn1oz0SNVPT/aBTp06cO3eOb7/9lu3bt7N9+/YaFS4B5GxLNHRuVbx87733TAsvv/baazz44IPMmTOHl19+2eb7CgoKuHFz2jSj0UhcXBxdu3at83irorqcQCLQ0sq6EboePWgDXLt4walxieqpaV66gsIo08Y2RvUpR53B4/TJ0rbXxwfPKqbf0N3RCzWQl59HXl79vvOxIZLcriy/WEsTStdRaQIUyLSxLlXbHF2yZAnTp0/n22+/Zfr06SxevLjSayIjI/n000/ZsWMHL7/8MgsXLqSoqMj0/KRJk0wnvUuWLHHMhtWQVqu9NfISoFycon6R9tey1OTkm8XLULPHQ0NCS4uX6WkuiauxqmmeBgcH07VrV3bu3AnAzp076dq1a6UpY48fP87ChQtZt24d3bt3N3suNTXV9PeZM2dISkqiXTvXrmzmcf4sJ41GuoeFg0815mVQKBgxYAC7Aa8fDtRZfMKctLPWKbNLi5eBNwtBAHh60qJpU64DyozrrgpN3FSb/LW3DR47dixbt27FYDCQmZnJ999/z5gxYwD3aoMV2dml+erraxopbGzajBCVivSSEukPN2Du0I6bipdy06hooNyqeHnjxg2aNm1KXl4e586dY8aMGUyZMoWEhASb78vIyGDGjBlMmDCBmJgYEhISXH7xBkB18ULpBfRu3Sw+r+/ek9uAqykp0si4sZrmpUvImpeNUr3KUSfwOHWSi0Db4BZVvlYXGYUCaN+kSaP9vdyZ5HZlhSUlZiMvC+RuXpeqTY5mZGRw+vRpYm6uex4TE8Pp06fJzDSf/GfIkCH4+voC0LlzZ4xGI9nZ7jllWnHJrTUvCwBFUaGLIxI1Je2vZWnpaRaLl2HqCDSAQoqXTlWbPF26dCkffPABY8aM4YMPPjCNXH/kkUc4ceIEAMuWLaOoqIjFixebRrifO3cOgNWrVxMTE8PEiRN57rnnWLlyJSEunjJYdfoUJ4BuXS1ff7Bl6L338hOg+98PDo9LWCbtrHWK7CyygcDgYLPHWwQGkw4oU1Msvk84T23z1542ODY2llatWjF69Gjuv/9+5s2bR+vWrQH3aoOVWZlkAs2blpvqWqEgxL8paYAyU9ZpbajcoR2XaoJo6Fy+5mV5arWa33//nQsXLtC3b19UKhV5eXmmRZytad26Ndu2bXNSlPYr+OkH9EDTAYOxVEYyhIbRumlTvr5xA+W1qxha3+bsEIUdapqXLlG+eCnTxjYa9SpHnUB1c73Ltm2rvvNSF3kHAB0MBhISLtLz5jqYwj1IbldWoLtZvGwRUlq8zCtwdUiNWm1yVKPREBYWZnqtSqUiNDQUjUZT6c7zMtu2beO2224zTZkF8NVXX3Ho0CFCQkKYP38+UVFR1doGR65JY9Dr8eLWyMsWfir711wrpyGsc1bf1/qR9teylMwM1ICxQvHST63GC7hx7SreLomscapNnnbo0IGtW7dWenzTpk2mvz/77DOr71+xYkXNgq5DhuNHuQB07Deg2hczm40aRSTwy/8O0ctodJt1LxsyaWetU5ZNG1uhGBUUFkr6lctSvHQDtc1fe9pglUpldUkEd2qDFZmlxcvAZs3NHm8RGEhaTjaKjAyIaOma4ESdcod2XIqXoqFzq+Ll008/zYIFC/Dy8mLdunUA7N27l549e7o4shrIzycp/jxtAH3vPpZfo1DQqlNnEn//FY9TJ9FK8dIt1au8NBhvDac2yMjLxqJe5agTlI28bNOte5WvLStedrpxg4T483Ucmaguye0KjEYKdLrSaWNb3Bx5WZjv6qgaNWfm6M8//8zatWvZvHmz6bFp06YxZ84cPD09+eGHH5g7dy5xcXEEBgba/bkZGXkYDI457S0oMh95mZmUjt47oFqfERLS1LTeWX0VEtKUjIy8el3AlPbXstQbufSn9AaS8gwtQlADqVevIGd0ziN5au7i77/SFvC8oxfa6r65Y0dG+PrxfW4OfeLPo7+9s+MDFGYkf23IyiwdeRkWRk65h4MiWpZOG1tuylDhGpK/t5hGXla4+bBFixDSLiegzLhucUCLqP9kPxCi7rlV8XLo0KEcOnTI7LGxY8cyduxYF0VUc6qrV0gEbvP1A2/r999G3BFF4u+/ojp5HMbe47wAhd3qVV4aDKa7bowlJS4NRThPvcrRulZYiOriBS4BE/pEV/lyY0BzdLd3ptP5cxw48lvdxyeqRXK7Aq2WAsDXwwODf9ObxUuZltOVapOjarWa1NRU9Ho9KpUKvV5PWloaarW60muPHDnCU089xcaNG2nf/tZa6uWnxxo0aBBqtZr4+Hj69etXi62qOW1JSWnx0subQm0xFMoaP/WVtL+WaQoLb04ba7l4mZZ0TYqXTiR5Wo7RyOnz5+gJ6Lr1qP77FQpG3zmYP+/exfPfxFEoxcs6J/lrXUFqCl6AVwvzZUCCWrfhOqBI0bgkLnGL5O8tipvFy8AK+doiLFymjW3g3GE/kDG9oqFzq+IllM4XnZCQQH6++UiCgQMHuiiimlElXiYRaFXFne9NevdBtWUTN44ddb9/DGFSb/LSYDDd0aUr0bk0FOFc9SZH65jHuTMoDAYueHnTttPtdr2npE80Hc+f4/3z5+o4OlETktu3KAoLyAf8vL2hiV9p8VLWFHS5muZocHAwXbt2ZefOncTGxrJz5066du1aacrY48ePs3DhQtatW0f37uYjylNTUwkLCwPgzJkzJCUl0a5d1VNm15VinQ5vwLtJEwq0xSgKZVrj+kza3woKCkjR6wn38MAYYD41nGnkZZqMBnI2ydNSyhQNp/Lz6eHjg0EdUaPP6DF9Btm7d5H4xaeELljo4AiFJZK/luWmptIcoEIxSBURgR+Qe/UKnq4ITJiR/C2lvDltbEBomNnjfqGhGIGC5CRkMuiGy9X7Qf1fbEMI29yqXvb555/zwgsv4Ofnh4+Pj+lxhULB7t27XRhZ9akuxHMFaG3h7vnydN170ga4dvI4bZ0RmKi2+pSXCqOBspUu9XqZmKKxqE85Wtc8Tp/CCCTodbRp09au9+j6RNPx4w+4JHfwuh3JbXOKgoLSkZfePhj9mpQWL4uLXR1Wo1bbHF26dCmLFi1i48aNNGvWzLR+zyOPPMKCBQvo2bMny5Yto6ioiMWLF5vet3LlSjp37szq1as5deoUSqUST09PVq5caTYa09m0utKRl35Nm1KYlYmiSEZe1lfS/lamTE9DA4QFt6i0HqAhLIxwIDXjuktia6wkT2/xOH2SE8CDbdvVeL1K3fCRTFCpiDt1gtmpKRjCwqt+k6gxyV/rctJTCYRKxUtDWDghQGbSNcIsvVE4jeTvLcbr6eQBzcLVlO/5GoNbEApkJF0j1Mp7Rf0m+4EQdc+tipdr1qxh7dq1DB061NWh1JrHiWMkAqM7d7X5Ov3tnWmjUHA16Rpt8/LAv/6ujdNQ1au8LD/yUlfiXju4qDP1KkfrmOrUCdIAby8vmjWzb521kj7RtAJyiovJy7uBv7/cu+YuJLfNmUZe+vpi9CsdeZlfXO1VrYQD1TZHO3TowNatWys9vmnTJtPfn332mdX3lxU73UWxTo834OPflAKQkZf1mLS/lRmTkrgOhLRsSV6F5wwRLVEDmqxsF0TWeEme3qI6VVq87HpHr5p/SJMmxPTqzYrffmHON3EU/Wm2w+ITlUn+WpeTkWG5eBl6s3iZmiLFSxeT/L0lJy2FAIDgCvl6s3h5XaOR4mUDJfuBEHVP6eoAytPr9QwePNjVYTiEx+mTJAIRfatYc83Li46BQZyndLpD4X7qVV4abo281Mmal41GvcrROuZx+hSXgHYR9s/8r+/SFYVfE7oZjZz98f+zd+dxUZb7/8dfs7AjoiAIbqXliiiLgGIi7mtallppaaXpad/NOpa2HFtO9c1f+3I6nTotZmlupzI1s8U0tzTTxF0QBEHZZ7t+f4yMIDMwKMwCn+fjwUNhZu77mut+39d93fd1Lz81XOFEnUm2z1NSSgkQ6B9gu/Ky2GgApWr7pGggktGqDGYTvoB/8+aUAsiVl15Lsl1d3v59tAS0ravfktMSEUlrjYbs0hIwyEklriI5Pado+1ZOAe2SLu42dSnXT2EXULDM8Ykzon5Ifh0ryM+3e9tYS0QErYDc3JPuKJaoRPJ7zumcHFoClvMe/aDCwqxXXp7McUu5RMPzhPVAjgSIxs6jBi9nzJjB66+/jsViqf3NnsxgQLf/L+vgZd/aG7HOl3ZkD6DfvavBiybqzqtyWenKS7NJBi+bCq/KaENSCv3u38kA2jv5vEsAdDqM8QnEAnvXfN1QpRMXQLJdlaa42HrlZXAw6PUE6nSUgAwQuZFktBKlMJjPXnkZEkIpoCmVZ7J6K8l2dScP7CcKsLS2cytNvZ7IFi05AWizT7i6aE2W5PScP3fuIAaw9Iy9qOloRo5lOPD1zz+hKTxTL2UT9kl+HTt15jStAMLCqvzdEtmaKOBEQYGcvOdmkt9z8nNzaQmoFlUHLy2tIqxXXspge6Ml64EQDc+j7ir5/vvvk5ubyzvvvENoaGiV19avX++eQl0A3cEDGEwm8oDISy6t9f2Xx/bmvd82o9/9e8MXTtSZV+Wy8pWXJpNbiyJcx6sy2oC0mcfRFhSQERDAJV271+mzpoQ+xG7cwB9bNjdQ6cSFkGxXpSkp4jQQ0rw5JiDI15fi0lI0JSWogAB3F69JkoxWYjRSDgRrtZVuGyuDl95Ksl1dzpEjZwcvo+y+Htm6NVmn8tBmZmJp1961hWuiJKdnlZWx++gRYgBT564XNSkVHs7oyzqzeP8+Jn73LeXjJ9RPGUU1kl/HcouKrIOX4eFUeYhgYCDRvn5kGsrR5J9CtQxzMAXR0CS/5xTkWQcvLRFVb2ZsiYoiAjh56pRbyiUaniesB3Iah2jsPGrw8vnnn3d3EeqFbu8ejgLR/gHodLpa33/ZFWn8+a+30e2SwUtP5FW5rPLMSxm8bCq8KqMNSP+H9er1/c1CSHTixJHKDH37Eft//2TxwYyGKJq4QJLtqkwFBRiAgGYhFAKBfn7WwcvSEhRy8MYdJKPnaAzllAHhej3+wUHWKy/LZPDSW0m2q8vKPE4bwOxo8LJte7L+2I0u8xjSC3cNyamV/q+97FKKHuGtIDDwoqc36NpJ3PmPJylZ9gU6GbxsMJJfB0pLyTMaidTpIDgYyqo+ZTgqtDk/5+Sgzc7GLIOXbiP5PSe/oMA6eNmqVZW/myNaEwEcKSq0Xims0bilfKLheMJ6UJGqYrO5xvcJ4a08avAyKSnJ3UWoF/o/93AYaB/mXEcqKKUfQUD27zvwN5lA71GLpcnzplxqVKXBS6McNmkqvCmjDUm/YzsAB7RaJnS4pE6fNSWlEKPV8ntRERSegWYhDVBCUVeS7aoK8/IIAWjWDIBAf3+KAU1JiTuL1aRJRisxGCgH/HU6AoOayS2NvZxku7rMkzm0w3rbQntCOnSgFCg/fNil5WrKJKdWut272AmM79ylXqYXcNU1DPvHkyxd8w0TysvBz69epiuqkvzap80/xUmgR1Cw3cGeqPBWHM/JQZt9AnO3ut1tR9Qfye9ZpaUUlJXSQqtFhbao+lpwMOH+/vxWVoamIL/abWWF9/OE9aCilZShS9FYedQzLw0GAy+99BKDBw8mISEBgI0bN/Lhhx+6uWR1o9/7J4eBtm3aOvV+FR5OV39//iwrQ79nd8MWTtSZV+XSoirdNlaeedlUeFVGG5B+6xYADpSWckkdr7xUwc0IjYunOXB0+dIGKJ24EJLtqgrzcmkOqKAgAAL9A88OXha7tVxNmWT0HI3BQBng5+ODPigIBZiKCt1dLHGBJNvVHSsooC2ObxurotvSGsg5sN+l5WrKJKdWmt93sAOISUqpl+lZLrmUqe068O/ycnx+/KFepimqk/zap8nL4yQQ3jzU7utRUdEcR54v7G6SXyvtyRxygLCgILuD7RFh4dbnYWdlubxsouF5wnpQMbBjVPLcTdE4edTg5TPPPMO+fft44YUX0Jxt9C+//HI+/vhjN5esbnR7rVdetqnDmY9d2rRlD6Df/GuDlUtcGK/KZaXbxhoNBrcWRbiOV2W0oSiFz9YtlAD5pSW0dnBgsSbGfleQBGxftaLeiycujGS7qsL8U9bBy+CzV14GBsiVl24mGa2k3HrbWH+9DyogkACgrEgG1r2VZPs8SpFZXGQdvIyy38ewREcTBeQckSsvXUVyanVg0y+0BoKT62fwEiDtmokcB37/4F/1Nk1RleTXPu2pPHKBli3tX6XWul0H6+BlTo5LyyWqkvxaaU/mkAW0djDYHt06iqOA9oQMXjZGnrQeGCzy9EvROHnU/UnXrFnDN998Q2BgIFqtdVw1MjKS7OxsN5esDsrK0B3I4DDQKybW6Y9d1qMnezL247PlV8puntFw5RN15lW5tFhsV16ay8vdWhThOl6V0QaiPXQQ7alTZIS2oF14uFPPGz6fIbU/KYteYuu2rYxtgDKKupNsV3WmoKDKlZdBgUFy5aWbSUbP0RiNlAG+Pj6oAH8CgbKiQoLcXTBxQSTbVWlOnuSoxUKbZs2q3xbuLHNUG6KA7BOZxLi2eE2W5BQwm9nx5x8kAMZe8fU32Suv4sGXnufFr1fxTvYJh7dLFhdO8muf9mQOJ4GwiAi7rzdv3wEDUHr8qEvLJaqS/Fppc6yDl5Hh4XZfb9PhEo7+thmyMl1bMOESnrAeVAxZGpQiwGVzFcJ1POrKSx8fH8znPWD21KlThIbaP4PFE+l37kBjMrEvIIBOdbj//mWp/a1XXu7Y1nCFExfEq3JpqfzMS7nysqnwqow2EJ+zt4z969JL6VDH511WMCWlkKTVsvlkDprCM/VYOnGhJNtVFZ45TXPAEhwMQGBwMMUAcuWl20hGKykrs1556eMLFVdeFsvAureSbFelPXiAY0BUB8e3pbdER9MGyDqZ67JyNXWSU9D9tY9tBgNxzUNRDg6eXwhzjximDB/Jz2YzB+c+XG/TFedIfu3TZmVZr7xsf4nd11Xr1kQDWYcPubBU4nySX6uKKy8jHNz5KaBtO4KBUxl/ubRcwjU8YT2oPHgpRGPkUYOXI0aM4OGHH+boUesZVDk5OSxYsIDRo0e7uWTO89m8CYC9ZgudOl3u9Oc6DRrGH4Bu/19ozpxuoNKJC+FVuaw8eClXXjYZXpXRBuKzxXrL7f0tw+v8vMsKKrgZsQl92AWo/62qx9KJCyXZrqrwzGlCOHfb2ICzg5dy21j3kYyeoykpsT7zMjAAFRhou/JSeCfJdlUFu3biAwR1uszheyxR0bTXajlSeEZOKnERySnot29lCxDbtVu9T1vNe5K7NRpeXrEUrVw1VO8kv/aVHz2MEQjs0MHu65boNlwKHDkst+h2J8mvlTYn23rlZdt2dl83t2tPe+DYvr0uLZdwDU9YDyqGLMvlmZeikfKowct7772Xtm3bcuWVV3LmzBmGDx9Oq1atuP32291dNKf5bN7EScCs09KqVSunPxfZvj1Kr+e4Uvhs/KHhCijqzJtyqVHnbhtrkmdeNhnelNGG4rNxAwB79Ho61XBgsTb6MePoDPzx2X/rqWTiYki2qzpz2nrlpTr7DKCg5qEUAVq5UthtJKPnaIqLKAf8AgJRzZoRAJSekWx6K8l2VQd2bqcLYKnpBCkfH9pHRHIE0GXsd1XRmjTJKZi2/Mo2ID4tvd6nbb68MzePGM3/lCLzpRfqffpNneTXvlOHD9EK6yClPeaOnbgcOJB5zKXlElVJfq3U8WPkAuGXdLT7uvnSjnQAMg8ecGm5hGt4wnpQMXhplGdeikbKo555eeTIETp27Mhtt92G2WxmyJAhdOnSxd3Fcp5S+GzexG9ATLcetof1OkOj0ZDa8TLW7/uTCeu+wzBqTMOVU9SJV+VSrrxskrwqow1Am5WJfu+fqMAgduflMq5bjwueVvnI0SQ/PpdtP/9M9/Jy8POrx5KKumrq2T7fmcJC621jQ62Dl80iW1MEmPPy3Fqupkwyeo6mpIRSwC8oCEuz5nLlpZeTbFeVsW8vXQBzLXd3aHtpRw6dyEK/fx8MSnVN4ZowySn89uMP9AT8k1IwNsD0ff92F7NXr+CVD//NPx6Yg3LwHEJRd5Jf+04eP0Yk1qvZ7bFEtqaTry8ZJSVoTuWhWoa5toACkPxWyNu/n5aAtqPjwcv2wDG5er1R8oT1QG4bKxo7jxi8VEoxd+5cli5dSuvWrYmIiCA7O5tXX32VcePG8cwzz9RpINBdtIcPoT2Zw08BAST2H1Dnz/cfOoy1+/7kuvXfNUDpRF15ZS4tla68NDbE7qvwJF6Z0Qbg8/06AMr7pfLnpl/oVofnDZ/PcsmlJEa3YW3mcaZvWIdh6Ij6KqaoA8m2fWeKi4ng3JWXmrAwWgAFWZkEurVkTY9ktDpNcRGFQHCzEFRIiDzz0ktJtu3bd/ggXQBTLY8FadujJ4d//hHdX/tcU7AmSnJqpSnI54eM/aRptRgT+jTIPEzJKcxKS6fn9+t4+O9zaP7mew0yn6ZE8luz49nZtMPxlZdoNHSMbsN3hw6iO5CBSQYvXUryW1X20cO0BswOntFqadOW9jodh4uKoKgIgoNdWj7RMDxpPTg3eCm3jRWNk0fcNvbTTz/l119/5dNPP2XdunV8+umnrF+/nk8++YQtW7bwySefuLuITql43uVPgUEk9kmu8+evuP5GvtZorIOgBzLqu3iijrwyl5WvvDTKbWMbO6/MaAPwO/t8ygMJfQgMDKTlRe7A9h59JZsAv88/rYfSiQsh2bbvTGmp9crLFtbBS0vLMMKBUznZbi1XUyQZrU5TXMwZIDjEOngZCJTK4KXXkWzbUVLCb7m5JGg0mHrG1vjWFrG9KAFK/tjtmrI1UZJTK5+ffmQ9kNq5CwQFNdh8Aha+wHSNhme+/Bz91i0NNp+mQvJbA6ORY6cLaAtYIiIdvu2yyy5nD6Db/5fLiiasJL+VmM3kZJ8gCjA7eOYlWi0dI1uzD9AdOujK0okG5InrQbncNlY0Uh4xeLls2TIee+wxYmOr7gzGxsYyd+5cli1b5qaS1Y3PLz9jAbYUFZFwAWc+dry8M8FBQWwFfNfJ1Zfu5pW5tCjb4KVZnnnZ6HllRutbaSm+Z69W3xjagri4+IueZIeZs8kDClatQJN/6qKnJ+pOsm2H0chpo4EQQIWGAtZBzHDg1MlctxatKZKMVlcxeNmseSiqWTOCgcISGbz0NpLt6jTbt/EbEN+5a60Dqc46lwAAIABJREFURJbuPegG7N32m0vK1lRJTq1Or1rODqDviNENOh9zp8t58NbbWANsmjpZ+scXSfLrmDYrk2NA2+Bg8PFx+L5LYnuTB5zesd1lZRNWkt9ztCeyyDSbifbzh0DH98Hpdtnl/A7WW8qLRsGT1gO5baxo7Dxi8DIjI4M+fewP9vXp04eMDC+4CtFsxvfrVWwHIiIiCA8Pv6DJjExK4SvAb+VX9Vo8UXdemcuzt43VA0a58rLR88qM1jPfDevRlJRg7B3H97/vIC0t/eIn2uEShraKYGV5OQHvvX3x0xN1JtmuTpt5nONAVFg46HQAqLCzV17myzMvXU0yWp2x8AxGwL95c1RQMK2AXIMBzObaPio8iGS7uoxvVhMNBPdJqvW9pu4x9NLp2ZWVCdlyVXxDkZwCRiP/W7GM4YD2yqsafHa6eU/yVqdOTD+ZQ/7M6SAHSS+Y5Ncx/e5d/AV0bNehxvdZ4hOIB37/8QeXlEucI/k9R3f0CAeAS8Ja1vi+Ngl9OAMU/rrJJeUSDc+T1gO5baxo7Dxi8NJsNhPs4L7fwcHBWCyevwL6rv8OXU42y0NDGTRq7AVPZ/Ctt/GVVovvxg1y61g388ZcapT1trH+gNlocndxRAPzxozWN78vPwegbPgo1q37jgED6mHwEhg5dRqfAwFvvw5y20OXk2xXV7Fz3KFde9vfzFFtCAfy8uTKS1eTjFZXmJ9PCEBQMGi1RAQEkANo8mRw3ZtItqvbtvZbkgFjUkrtb9br6dnhErYD/PhjA5es6ZKcgu/3a/mypITxUdGYe8Q0/Az9/Ojz6VLu8/fn2u/XUfLIAzKAeYEkv47pd2xjD3B577ga32fsk0wCsP2vvVBe7pKyCSvJ7zm6/X9Z98/atK3xfea4BHoA+2SwvdHwpPVArrwUjZ3e3QUAMJlM/PLLLygHK5rZC87Y9v/wAwCWBwQyZ8iwC55O4sDBHNXrOWQw0OqTjyiZO6++iijqyCtzefbKywCgzGh0d2lEA/PKjNYjbVYmfl99idJqWXtpJ1q0aMnll3eul2kPvvNeHnnlRfadOkX7FxZS/PiT9TJd4Zymnm17CnbvohSI6tiJorN/U61aEabTkVdSgqaoEBXczJ1FbFIko9UV5J4kDFAhIQCEhbZgX2kp2uwTmCMi3Fs44TTJ9nmKi9m4by/9AcOgoU59pGdyCh8e2A9r1sAVzn1G1I3kFLL+/R6bgfdvuBE0GpfM09K+AzPefp/8G69jyHtv805ONt3feA98fV0y/8ZC8uuYcd13HAfaDRlOTYfhVYuWxEVHszQzE59tv2FM6eeqIjZ5kt9z9Fu3cBBo16vmR9cY+6WSpNGw8c8/6HkqD9UyzDUFFA3Gk9aDihLIMy9FY+URg5dhYWHMnTvX4estW9Z8Cb67abNP4Pv1Kn7TajmhFKmpV1zwtPR6PdeNvpLnvvycV998lbJpt2CJblOPpRXO8spcWiyYgHDgtDzzstHzyozWo8AXFqIxmSgfO54PvlnNxInX1d+0g4KYOeUm5rz/Ll+8+n8Yk1IwjGzY5wmJc5p6tu3Zu3EDMYC5e6WrKzQa2rRoye+5J9EeOYK5ew+3la+pkYxWl595jHDA0ro1AOHh4WRnZaLLzsLcM7bmDwuPIdmuyrJqOSstFp7pGYtychA+5qZbyPj4Q3I+/hjN3AXg59fApWx6mnpOtVmZ/N+3XzMd0E++AVde52QcPoqH3/8vvW+ewuQVX3F9727ct3gpvj16urAU3q2p59cR/aZf2L7tN3ppNJA+qNb3xw4YyMOf/BefLz+XwUsXkvyeo9uymX1Ah/QhNb5PhTRnbM9e3L9zO3d9+zWGSde7poCiwXjSelAxZLm/vMxl8xTClTxi8HLt2rXuLsJFCVz4FJhMzIuI5JaZf0Ovv7hqvf2Z50lbuZyppaXEP/IgZ979AC5ymqLuvDKXFgvlQBRwSp552eh5ZUbric/aNQT8532Ujw+7pkxj/eybee65F+t1Hrc9uZChK77iP7knuXH2LZz+10cY0wfX6zyEfU05247s2vYbsYApIbHK3ztd2pEluSfR/75DBi9dSDJa3amcHFoBlqhoAKKi23L0951os7LcWzBRJ5LtSoqL+eCJRxkItLj+Rpw9JKSLT2BESHM+KijgllXLKb/qmgYsZNPU1HP656MPs8RiYduIUVja1/xswIZgGDmaoUtXs23Wzdxz/BiD0lN5edAQkuY9iUX6IrVq6vmtprycoOf/QcCbr/It0Ld3vFN3E2kz42+EffJffvn0Y2L/vgAc3MJR1C/Jr5WmqJB9e/fQCgjpX/sFLH0mXU/xzu1sf/t1usvgpdfzpPWgYvByfIsWbi2HEA3FI555WR8OHjzIpEmTGD58OJMmTeLQoUMuma/fZx8T8NEHvKfTcTgkhJkzZ1/0NMPCwnjhmeeYrNGQvXoFIbfdjObM6XoorXA1Z3JpNpuZP38+Q4YMYejQoSxevPiC56fNy8UAtAbyTfLMS1G7i81ofebXWT4//kDIjGkAlNz7IAsXf8y0abcQEtK8Xufj5+fH658t5WF/f54oKcF/8tUEPfm4tMdexNVtcEPRb97Expxs+gUFYeyTXOW1y1Ov4HdA+9NG9xROXBRvbIMdOZaXSzRgjowC4NLuPcgANHv3uK1Mwn28vf3VnC7AfP21vHDyJE+0a0/ZDTfW6fN/m3YLLwL6vz+C9vChBimjuDje2v4Wv/8uN65YxiKdjoA5f3fJPO0xJaeg3/AL/7puCs9oNNy7dg1XDOzLf7p1xDDnAXx+/AFN4Rm3la+x89b8nk978AChY4cR+MqL5JaX855/AOOef9mpz1p6xnJL+w68UlJM8ONzoQk9a7Ex8PYM+674ihVKMbhVBAQE1Pp+48TJ3OHrx+s7d+D3hef0d4T71Ms4RqXb1paYpQ0UjVOjuZzv8ccf5/rrr2fcuHEsW7aMefPm8cEHH1z4BE0mtAcy0BQXW58hUelHYzKiy9iP7+oVaL5cwn+Ah/38+fK9D/Gtp+c9jLhxOsf+2E36v95myfKl9Ny8ibLrp2Ds2x/zpR2xRLYGHx/QNprx50bJmVwuX76cI0eO8M0331BQUMD48ePp27cvbdvW/NBve3RHDlMORAOHysvRnDmNqucBHdG4XGxG6zO/dpnNaE/moD10CJ+d2/BdvRLfsw+6PzB8JK+ZTPz66yaee+6l+pnfeXrE9OSbn7fy6DVXEp+xn3mLXmLYW68R1H8App69MHe6DEtkayytIsDfD+Xnj/L1Az/fs//6STvtRq5ug+uFxWLNfOZxtMePozt2hMxFL7MB+L/rb6z2XKmwq66h/csvsGXpEnpPuh5jXII1dxX9FuHRPL4NdpJ+22/8WVpK54AAVHg4AP7JKYQCxzd8T9O5gZio4HHtr1LWA9tmM5ryMigtQ2Mot/6czLW2uznZ1n8PHmDnyuXcUV7GDf4BtPvsS8z+/nWaXbeHHyXp4/9wR042i0YORt11L8Y+yVjCW2EJC4egIGmj3cwr2l+lrH3hvFz0v+9g7+uvcusP67kWGD3vSUrdfJWjahZC0f+9xsC772frq6/w65eLeSsvlwXvvcWo996iPxDWKoJWl11ORNduRLZth1+rCFTzUFRoKJaz/6pmzaz9Zl9fWS+c5BX5Pd/ZPGvOnEabnY3PTxsJeno+RUWFfNgyjLlKcdPM2XSP7eX0JK998z1eHDmYd//zPrccPoThppsxd+2OCgnBEhQsba0H87oMV+S3tAT95l/RLnyKd4BXr5vi3Mebh3Lt3Hk8+8SjbJ19KwMP7EU/aATmdh1QYWFyzKAJqpdxDKVsdwYpNssFLKJx0ihHT5f1Inl5eQwfPpxNmzah0+kwm80kJyfzzTffOH2f6fz8YiwWReCLz+O37Au0xUWsUopswAyY7Px7HNgAXN62Lbc/9RwxDfA8n1X/eodX3vh/+JpMdAcuBQIAP0AHoNGg1WrRaHVotBo0Wi0ajQYN1stq0318aKPT1Xu5HNFqNBjaX0Lh6++Ajw9arYYWLYJcNn9P4mwuZ86cydVXX82IESMAWLBgAdHR0dx6661Oz6sivz7z/07/r77kNeC2sz++/v4EVOoI1aXrrgXG+PoSUueOlPfuIFhCQyn85yJaxHUnP7+4Uee3PjJan/nV79pJ+cMPsDo/D7PFgtlkwqwUFqxtbsW/RVotuyIi2VdSTHr6EKZPv5V27drXX8XYoZTixw/f5/N/vcPW06cJBCLBepsYrG2yH+Bf6f9+gC+c22HWaGy39Kj8t4p/z601Z/+vAc3Z10fp9LTU6aquWpWncfb/2sBAzjz8KMbUAdbfpQ12XRtsMvPHzVM5fGA/llp7VgqLUlgsCouyYLFYMFssKHX272D7KQdWADdEt2HSZ0vtntm7bOI4PsrIYCgQCDTnbFQ0GjRn+wljdDqa6fTWHWOt5uy/rt5JrmXboNFQOnUaZVOnARAW1rhv/+VRbbDZQvD9d+Gzc7v14IztB9ugj0YpwPp/s1IsMZvJV4oypShVik+BD4YNp80//gmApriI1wcPYLfRwGBA6+dna9M0nMuoTUU7BtWe3xas0TDe3gmCF3xAsmH6KcaUfhQ9+Q/CwoIbfR+iJu7oA4d98DaW//wHTCawKDRmM1jM5wYs7VyR8wewCTAChrP/FgI/AqXALR0uYcz/vQYX2MfwKTvNI6PH8GtBPiOBlljzrT/7r06jQafTodNoGKXTE1bRJlc+cRaqb/vtbP+dodVosNSw62+ObsOZ19+FwMBG33/wlPbXWpYifNZ8TdALz6IpL+OAwcgGkxGD2YxJKQxAHrAbOAbcr9cz9u77Kb9+av1UxllhYcHk5RVd3ETMZny2b+PM1yv5buMP/Hkyh3yLhRyw/fgD4UDY2f/rgWCs/ekQoJlOh16rRXe2b6xBg68GrvLxxV+jObc+nLcuWEKaU/TsS5gvv1zye5Yr8pufX4xm716CH7qX/+XlctJkxoK1j2tWFixKWffrlEJhPZZW0cctBrYBB3Q6YnvHM/uue4mJqXpMzZlcZn7xGU8sfJqTZjMxWPfRQgEfrMfM9Dodeo0GrcaaKKXRkKLTcZnP2Ws5zm9H7bWrdt5TvU298L6F8vGh+P6HMA4eBjT+fThPyXB+fjGqqIhms25hx+FD7DKasKAwWxSmSvmt2D+ryK8R+AXoHNqCR79ZD84ec1WK3x59iAe+Xk0nIAZruxeM9biBRqtFo9Wi1WppodEyxte3apun1Z7Nomccb9NqNVjO7viWXTOR0ttut/29Mee3PtTbOIbRxOKkXiwExgPx/v5c7etLYEVWPCgv7lI5p44YY3tT9MLLZ8dYJL+eplFceZmVlUVkZCS6sxsMnU5HREQEWVlZTq/0tmA+Pd/6A4xqkNLWzdQH7mHqA/e4uxh14ot1Z6SpczaXWVlZREdH236PiorixIkTdZqXLb+vvMTOV6xXoO2+yPI3VVqg4k7xjX2DVR8Zrdf8pvWDX37ipgv9Qg1s3D13Mu6eO91djFqFuLsAHsIdbfAVy5dR+xNP6u6RWl6/+bvvuLkB5usOQWd/mgKPa4P//S+nP6MHJp33t2o5DQvm0b/21aks3q7ixBVo/H2ImrilD3zvvWjvvbdOn+1+9qfhBPPq9m0NOoe6qumUFS1NZx/OU9pfOHuizqQJ1h/gsrM/tWmI03vq5aShYQMJGTbQ5f15LdYBq6bAk/LbokUQpMTDhu8Zc6FfqBa15TJsxs0smeGennB9ngbYlPbhPCXDLVoEQYsgWLmCRCDxIr6Ts4a9+To7XTAfV6lYBwLP/gjn1Oc4xqxDh5jVYCVtHGprqyvvwwnPI9elCyGEEEIIIYQQQgghhBBCCCE8QqMYvIyKiiI7Oxuz2QxYH9yck5NDVFSUm0smmjJncxkVFUVmZqbt96ysLFq3bu3SsoqmqT4yKvkVnkraYOHppA0WjZW0v8LTSfsrvJnkV3g7ybBo6mQcQwjnNYrBy7CwMLp168aKFSsAWLFiBd26dXP6UmshGoKzuRwxYgSLFy/GYrFw6tQp1qxZw/Dhw91RZNHE1EdGJb/CU0kbLDydtMGisZL2V3g6aX+FN5P8Cm8nGRZNnYxjCOE8jVKq5qeWeomMjAzmzJnDmTNnCAkJ4dlnn6Vjx47uLpZo4hzlcsaMGdx111307NkTs9nMggUL+PHHHwGYMWMGkyad/yQpIRrGxWZU8is8mbTBwtNJGywaK2l/haeT9ld4M8mv8HaSYdHUyTiGEM5pNIOXQgghhBBCCCGEEEIIIYQQQgjv1ihuGyuEEEIIIYQQQgghhBBCCCGE8H4yeCmEEEIIIYQQQgghhBBCCCGE8AgyeCmEEEIIIYQQQgghhBBCCCGE8AgyeCmEEEIIIYQQQgghhBBCCCGE8AgyeHmegwcPMmnSJIYPH86kSZM4dOiQu4vkFZ599lkGDRpEly5d2Ldvn7uL02RJfmuXn5/PjBkzGD58OGPHjuWOO+7g1KlTQM31J3XrGlLPjjlqZyW3nkPq23mSZwEwaNAgRowYwbhx4xg3bhw//PAD4NnLWrLrfu7OjSdmwFGZHNWVK8okHKtpubjChWTY1WVxdx2JhueJbSnI8QJx8Tw1286SdcB7NOU69/b1TNSBElVMnTpVLV26VCml1NKlS9XUqVPdXCLvsHnzZpWZmanS09PV3r173V2cJkvyW7v8/Hz1yy+/2H5fuHCheuSRR5RSNdef1K1rSD075qidldx6Dqlv50mehVLKYb/Rk5e1ZNf93J0bT8yAozLVtG8muXQfd+8zX0iGXV0Wd9eRaHie2JYqJccLxMXz1Gw7S9YB79GU69zb1zPhPBm8rCQ3N1clJCQok8mklFLKZDKphIQElZeX5+aSeQ/ZyXAfye+F+d///qduuummGutP6tY1pJ6dU7mdldx6DqnvCyN5btrs9Ru9ZVlLdt3HU3LjiRlwdgBIculenrLP7GyGXV0We7+LxssT29LK5HiBuFCenm1nyTrgmaTOrRrLeiYc07v7yk9PkpWVRWRkJDqdDgCdTkdERARZWVm0bNnSzaUTomaS37qzWCx8/PHHDBo0qMb6U0pJ3bqAZLjuJLeeQ/J78STPTdMDDzyAUoqEhATuu+8+r1yXJLuu52m58eQMnF9XISEhbq8vYX+5uJMnZsLT6kg0PE9rS+V4gagv3pofWQc8lydut91NMto4yTMvhRBN1pNPPklgYCBTpkxxd1GEEEKIJuejjz7iq6++YsmSJSilWLBggbuLJLyA5MZ5UleeSZZL7aSOhCeQ4wWiqZN1QAjhbjJ4WUlUVBTZ2dmYzWYAzGYzOTk5REVFublkQtRO8ls3zz77LIcPH+bll19Gq9XWWH9St64h9Vx3klvPIfV98STPTU/F8vP19eX6669n69atXrmsJbuu5Ym58dQM2Kur2sorGp6j5eJOnpYJT6wj0fA8qS2V4wWiPnljfmQd8GxS59VJRhsnGbysJCwsjG7durFixQoAVqxYQbdu3eTyYeEVJL/Oe+mll9i1axevvvoqvr6+QM31J3XrGlLPdSe59RxS3xdP8ty0lJSUUFhYCIBSilWrVtGtWzevXNaSXdfx1Nx4YgYc1VVt5RUNq6bl4k6elAlPrSPR8DylLZXjBaK+eVt+ZB3wfFLn1UlGGyeNUkq5uxCeJCMjgzlz5nDmzBlCQkJ49tln6dixo7uL5fGeeuopvvnmG3Jzc2nRogWhoaGsXLnS3cVqciS/tfvrr78YM2YMl1xyCf7+/gC0bduWV199tcb6k7p1Dalnxxy1s5JbzyH17TzJszh69Ch33nknZrMZi8VCp06deOyxx4iIiPDoZS3ZdS9PyI0nZsBemd544w2HdeWKMgn7asqwq1xIhl1ZltqyKxoHT2xLQY4XiIvnqdl2lqwD3qMp17m3r2fCeTJ4KYQQQgghhBBCCCGEEEIIIYTwCHLbWCGEEEIIIYQQQgghhBBCCCGER5DBSyGEEEIIIYQQQgghhBBCCCGER5DBSyGEEEIIIYQQQgghhBBCCCGER5DBSyGEEEIIIYQQQgghhBBCCCGER5DBSyGEEEIIIYQQQgghhBBCCCGER7jowcvRo0ezadOm+ihLk5SZmUlcXBxms/mipjNnzhxeeumleipVw/rvf/9Lv379iIuLIz8/v0HntWXLFoYPH96g82gogwYN4qeffnLpPLt06cLhw4ddOk/heSR7QjQex44do0uXLphMpnqd7qZNmxgwYEC9TtPV6lI3ixYt4oEHHnD4urf0hyUPjjXFPHi6uLg4jh496u5iuF1DrbcXwx19RU/SkP1WV/WJp06dyuLFixt8PvZ88cUXXHfddW6Zt7s0xe9cV7feeitffvnlRU2jMfRHalNbH0Q0PHcef23ojFfeBjX092zqfQkhhHMuevBy5cqVJCcn10dZLpg3bbzPb5yjo6PZtm0bOp3OjaWqXX11to1GIwsXLuS9995j27ZttGjRoh5Kd875O3uJiYl8/fXX9ToPUX+8ad09n+yAejdvzl5deeJBTyEaG0/oDwvP0dTyUB+DLfYGUrZt20a7du0uarpCuFND9sHqcgC7KfV7HZGD5J7FXibfeecdrrrqKjeVyHly0q0QQtTOm4+ZNoUTYbyJ3DYW6m1nQg4M1y4vL4/y8nIuu+wyu69LHQohmipp/7xfY1uGje37uFpjq7/G9n2E63hTdryprM5obN9HuIfkSNTVxd5ZTIimQtYVIYSo2UUPXlacwbZo0SLuuusuHnjgAeLi4hg7diwHDx7kzTffpG/fvqSlpbFx40bb56ZOncpLL73E5MmTiYuLY9asWeTn53P//fcTHx/PhAkTOHbsmO39Tz31FGlpacTHx3P11VezZcsWADZs2MCbb77J6tWriYuL48orr6xSrgqVz+yqOANy8eLFDBw4kJtuugmAzz//nJEjR9KnTx9uueUWjh8/Xuv379KlCx999BHDhg1j2LBhAKxbt45x48aRmJjI5MmT+fPPPwF48MEHyczMZNasWcTFxfH2229XOxuzoKCARx55hP79+9OnTx/+9re/AfbPWKjpjK/PPvuMoUOHkpSUxKxZs8jOzra99tdffzF9+nSSkpLo168fb7zxBidPnqRXr15VbuO6a9cuUlJS2Lt3L48//jjbt28nLi6OxMREAAwGA88++ywDBw6kX79+zJs3j7KyMod1dfDgQUaMGAFAnz59uPHGGx3WoaPlDdaN+xtvvMGQIUOIi4vj6quvJisrixtuuAGAcePGERcXx6pVq6qdLZGRkcHUqVNJTExk9OjRfPfdd7bX5syZw/z585k5cyZxcXFce+21HDlyxOH3cYWalovRaOSLL75g8uTJPPPMMyQmJjJ48GC2bt3KF198QVpaGn379q1y65U5c+Ywb948pk+fTlxcHFOmTKmW859++olhw4bRp08f5s+fj1IKAIvFwmuvvUZ6ejp9+/bloYceorCw0Pa5LVu2MHnyZBITE0lLS+OLL75g586d9OvXr8oO79dff824ceMcrruFhYXMnTuX/v37c8UVV/DSSy851aH77LPPGDlyJHFxcYwaNYrdu3cDNS/z88/yP38969KlCx9//HG1+sjIyLC7TjQmkj3nsldRD08++SQJCQmMGDGCn3/+2fZ6TdOsXIdJSUksWrSIsrIyFi5cSHp6OgkJCVx33XW2dnX79u2273nllVdWuSXh1KlTefnll23b1JtvvplTp04BMGXKFMDa7sbFxbFt2zaOHDnCjTfeSHJyMsnJydx///2cOXPGNr3du3czfvx44uLiuOuuu7jnnnuq3DLG0XauNoMGDeKdd95h7Nix9O7dm7lz55Kbm8utt95KXFwc06ZN4/Tp07V+3yVLltjW98GDB/PJJ5/YXqto99977z369u1L//79WbJkSa1lq6nuv/vuO0aPHk1iYiJTp04lIyOjynd66623bN/JZDIxaNAg3nzzTUaNGkWfPn145JFHKC8vty33mrbn33//PaNGjSIuLo4rrriCd9991/a+NWvWMG7cOOLj4xkyZAgbNmywlcFRn+d8ztTdW2+9RWpqKo888kit9eaontevX8/48eOJj48nLS2NRYsWVfnc9u3b6dmzJ7GxsfTs2ZOePXva8pCUlERMTAwJCQn07t2bWbNm8cMPP5CSkkKXLl3o1asXK1assE3rxRdfJDY2li5duhATE8Nzzz1ne2358uXExMQQExNDjx496NWrFxMnTrT7XbKzs5k1axZJSUkMHjyY6dOn2/KwZMkSSktLueeee2zljo+Pt+WhYhkMGjSIadOmkZCQQM+ePenduzc9evRg/vz5koda8lBT+1aXfYatW7cyYcIEEhISmDBhAlu3brW9dvToUW644QZbezN//nyHdVM5D0OHDuWzzz6r8rrBYOCee+4hLi6Oq666qko7WHkZLFq0iLvvvpuHHnqIuLg4Ro8eze+//15rXWZlZXHHHXeQkpJCcnIyCxYsAGreJlbsV3z55ZcMHDiQ5ORkXn/9dds0HfWhwdpfqtg/GD58OKtWrbJ9rnIfuWvXrqSlpTFixAh69+5NamoqACNGjKBLly6MGTOGtWvXMmDAAJ544gnbejd69GgmTpxISkoKffr04corr2To0KG2ftTmzZtZsGABcXFx3H777QwYMIAuXbqQlJRE//79+eijj3jooYdISUkhPT2d1157DYvFApxbj55++ml69uxJ9+7d6dWrl7Tjtay3I0eOZN26dbbfTSYTycnJtj50TXVW2fm3lTt//8vRtj82NpaYmBji4uLo1auX7e+TJk2iW7dudO/e3XYLZlf3CZzpt1aoqX2z1wcD5487ONrfLikpYcaMGeTk5BAXF0dcXFyV/f3KHPV7AY4fP26372jveIkzbc+SJUtIS0ujT58+fPzxx+zcuZOcj4i5AAAgAElEQVSxY8eSmJhoa8MqKKUc9p9ran8dtWPz589n4cKFVeYxa9Ys3n//fbvHYaDmbY89K1eu5Oqrr67yt/fff59Zs2YB1n6/o3aqMntX5FbeL3W0n5WcnExiYiLdu3cnJibGts7cfPPN9OjRg549e5KSksK8efP49ddfXb7OPP7448yYMYPevXuzadMmsrOzufPOO0lJSWHQoEF88MEHgONMnr9v7mj//vzjYDXd2rKmYwGO+v4zZ87kP//5T5XpjB07ljVr1tg95gR13zd66623uOuuu6r87amnnuKpp54Cau+DVLB3ddD5fZC6HKe90GMxNfHk/T9H2+uK6b3xxhskJyczaNAgvvrqqyqfPXPmjMNjh7X1qZxdV8Ca0zlz5tCnTx9GjRrlVB8SHPcj4cKOfTvi7r6EvRxB3dt3T1aX715bf/fdd99l7NixJCQkcM8999j6tuCZ4wgVHPWfa2orncmUvfqoSx9LuIi6SOnp6erHH39Ur7zyioqJiVEbNmxQRqNRPfjggyo9PV299tprymAwqE8//VSlp6fbPjdlyhQ1ZMgQdfjwYXXmzBk1cuRINWzYMPXjjz/aPj9nzhzb+5cuXapOnTqljEajevfdd1W/fv1UWVmZUkqpV155Rd1///12y1Wh8nuOHj2qOnfurB588EFVXFysSktL1bfffquGDBmi9u/fr4xGo3r11VfVpEmTav3+nTt3VtOmTVP5+fmqtLRU7dq1S6WkpKjt27crk8mkvvjiC5Wenq7Ky8vtlquiLEajUSml1IwZM9Tdd9+tCgoKlMFgUJs2bVJKKbVkyRI1efLkavM+dOiQUkqphx9+WL344otKKaV++uknlZSUpHbt2qXKy8vVggUL1PXXX6+UUqqwsFClpqaqd999V5WVlanCwkK1fft2pZRSt956q/roo49s03/66afVggULHM7/qaeeUrfddpvKz89XhYWF6rbbblMvvPBCjfV1/ve1V4dK1by83377bTVmzBiVkZGhLBaL2rNnjzp16lS1OlFKqV9++UVdccUVSimlDAaDGjJkiHr99ddVeXm5+umnn1Tv3r1VRkaGrQ779OmjduzYoYxGo7rvvvvUPffcU+P3aUgVWaltuXTr1k19/vnnymQyqRdffFGlpaWpJ554QpWXl6sffvhB9e7dWxUVFSmlrN+xd+/e6tdff1Xl5eXqySefrLJcO3furGbOnKlOnz6tjh8/rpKTk9X333+vlFJq8eLFasiQIerIkSOqqKhI3X777eqBBx5QSil1/Phx1bt3b7V8+XJlMBjUqVOn1B9//KGUUmrkyJFq/fr1tnn87W9/U++++65Syv66O3v2bPX3v/9dFRcXq9zcXDVhwgT18ccf11hXq1atUv3791c7duxQFotFHTp0SB07dqzWZT5lyhT12Wef2aZzfs5rqg9760RjIdlzPnsV9fCvf/1LGQwGtXLlShUfH6/y8/NrnWbFZz/44ANlNBpVaWmpeuKJJ9SUKVPUiRMnlMlkUr/99psqLy9XJ06cUElJSWr9+vXKbDarjRs3qqSkJJWXl6eUsmZ58ODB6sCBA6q0tFRNmTJFPf/880op++3uoUOH1MaNG1V5ebnKy8tT119/vXrqqaeUUkqVl5ergQMHqvfff18ZDAb19ddfqx49eti2MbVt52qSnp6urr32WnXy5El14sQJlZKSosaPH692796tysvL1dSpU9WiRYtq/b7r1q1Thw8fVhaLRW3atEnFxsaqXbt2KaWs7X63bt3Uyy+/rAwGg1q/fr2KjY1VBQUFNZbNUd0fOHBA9erVS23cuFEZDAb11ltvqSFDhlTZrl955ZUqMzPTtg1LT09Xo0ePVpmZmSo/P19NmjTJVn+1bc9TU1PV5s2blVJKFRQU2L7Xjh07VHx8vNq4caMym83qxIkTav/+/bb51dbnqVj+ztTdc889p8rLy23fx57a6vmXX35Rf/75pzKbzWrPnj2qb9++6ttvv1VKKdvy7du3r7rmmmvUypUrVWJiokpOTlbjx49XV111lRo8eLCaOHGieuGFF9TQoUNV165d1WuvvabKy8vVTTfdpGJiYlReXp7Kz89XvXr1Uu+8844yGAzq5ZdfVp07d1Y//fSTUsraDnTp0kX985//VD///LPq2bOn6tq1qyooKKhWNzfccIN6/PHHVVlZmbr77rtV9+7d1cqVK5XJZFKPPPKI6tatm/r3v/+tevXqpR577DE1cOBA9cYbb6ghQ4aogQMHqh9//FGlp6erfv36qR49eqhvvvlGmUwmFR8fr2JjYyUPteShpvbN2X2G/Px8lZiYqL788ktlNBrV8uXLVWJioq2fOHHiRLVw4UJVXl6uNm/erOLi4hzWTeU8/PHHHyo5OdmWq1deeUV1795drV69WhkMBvXOO++o9PR0ZTAYqi2Din2k9evXK5PJpF544QV17bXXOqxLpZQymUxq7Nix6umnn1bFxcWqrKzMloOatokV3+HRRx9VpaWlas+ePapHjx62bDjqQxcXF6sBAwaozz//XBmNRrVr1y6VlJSk9u3bp5Sq2kceOHCgSkpKUrNnz7a14507d1Zr1qyxteMPP/yw6tq1q+rZs6f69ttvVXFxsVq9erXq3bu3OnbsmCosLFSTJ09WN910ky17Xbt2VS+//HKVPHXu3Fnt379frV+/XnXr1k3dcsstqrCwUB09elQNGzbM1odbsmSJ6t69u5oyZYq64YYb1Ouvv6769euntmzZIu14DevtokWL1H333Wf7fd26dWr48OFKKeVUnVWUt/J+aEUZKva/Kt5rb9ufmpqqrrnmGjV58mT1j3/8Q6WkpKjRo0er+Ph49e2336qpU6eqBx98UCUmJqrExESX9gmc6bdWLO+a2jd7fbDajjtUnnZN+9vn13NN7PV7nek7Vj5e4kzb8/e//12VlZWpH374QcXExKjZs2er3Nxc23KvfGyjpv5zTe2vo3Zsx44dKjU1VZnNZqWUUnl5eSo2NladPHlSKVV9Hatt22NPSUmJ6t27tzp48KDtb1dffbVasWKFUkqpBx98UM2aNcthO1WRIXu5qLxf6mg/Ky4uTl1zzTVqxYoVKjY21tZvuvfee9WMGTPUddddp/75z3+qadOmqZ49e7p8nYmPj1dbtmxRZrNZlZSUqKuuukotWrRIlZeXqyNHjqhBgwapDRs21JjJijpwtH+vVPVjPpXboLoc/3HU91+5cqW65pprbNPfs2ePSkpKsrV/58//QvaNjh07pmJjY1VhYaFSyrrdT01NVdu2bVNK1d4Hqag7e+2AvT6Is8dpL2R/uDaevP/naHtdMb1nnnlGlZeXq02bNqlevXo5dezQmT5VXdaV559/Xl133XUqPz9fZWZmqtGjR9fa9tfUj6zLNuj87bs97u5LnJ8jpS6sffdkzn53Z+p7woQJ6sSJEyo/P1+NGDFC/fe//1VKefY4Qk3955raSmcy5ag+6tLHEg2vXm8bm5iYyBVXXIFer2fEiBHk5+czc+ZMfHx8GDVqFMePH69yZcfVV19N+/btadasGQMGDKBdu3b069fP9vk//vjD9t5x48bRokUL9Ho9N998MwaDgYMHD15Uee+8804CAwPx9/fnk08+YebMmXTq1Am9Xs+sWbPYs2ePU2egzJw5k9DQUPz9/fnss8+YNGkSvXr1QqfTcdVVV+Hj48P27dtrnU5OTg4bNmxg/vz5NG/eHB8fH5KSkur8vZYvX86ECRPo0aMHvr6+3HfffWzfvp1jx46xfv16wsPDufnmm/Hz8yM4OJhevXoBcNVVV9nOJjKbzaxcuZJx48bZnYdSisWLFzN37lxCQ0MJDg7mtttuY+XKlXUuL1StQ6h5eS9evJi7776bjh07otFo6Nq1q1PPztyxYwclJSXMnDkTX19f+vbtS3p6epUyDx06lNjYWPR6PVdeeSV79uy5oO9Tn2pbLm3btmXChAnodDpGjRpFVlYWt99+O76+vvTv3x9fX98qZ4ENHDiQPn364Ovry7333sv27dttZ90DzJgxg5CQEKKjo0lOTradNbh8+XKmTZtGu3btCAoK4r777mPVqlWYTCaWL19Ov379GDNmDD4+PrRo0YJu3boBMH78eFv5CwoK2LhxI2PGjLH7XXNzc9mwYQNz584lMDCQsLAwpk2bVmuuPv/8c2699VZiY2PRaDR06NCBNm3aOLXMa+OoPpoCyV7t2QNo2bIlN910k21bd+mll7J+/XqnphkREcHUqVPR6/X4+vqyZMkSHn30USIjI9HpdMTHx+Pr68uyZcsYMGAAaWlpaLVaUlNTiYmJ4fvvv7dN6+qrr+bSSy/F39+fESNG1Nh+dejQgdTUVHx9fWnZsiXTp09n8+bNgLWtNJlM3Hjjjfj4+DBs2DB69uxp++zFbOfAehVCeHg4kZGRJCYmEhsbS/fu3fH19WXo0KH88ccftX7fgQMH0r59ezQaDUlJSaSmpla5Ql+v13P77bfj4+NDWloagYGBNfYZLBaLw7pftWoVaWlppKam4uPjwy233EJZWZnt6gmwnikeFRVl24YB3HDDDURFRREaGsrs2bOdbnf0ej379++nqKiI5s2b06NHD8Dazk2YMIHU1FS0Wi2RkZF06tTJqWlWVlvdabVa7rrrLnx9fat8H0dldVTPycnJdOnSBa1WS9euXRk9ejS//vorgG35+vv7M3XqVEaNGkVsbCzR0dHExsYSFBTEhAkTGDNmDBkZGYSHhxMeHs7s2bPx9fW1ZfP7779n/fr1XHbZZdxyyy34+Phw9913ExISwueff05mZiYHDx7E19eXu+66i5SUFIYNG4Zer6+Wh6ysLH777TceeOABfHx8WLt2re1KbZ1OR1RUFDExMRQWFpKWlsb8+fMxGo3ExcVRVlaGwWCwTSs2NpbExESGDh2KTqcjMDAQk8kkeaglD7W1b87sM6xfv54OHTowfvx49Ho9Y8aMoWPHjqxbt47MzEx+//132/dJTExk0KBBdr9L5Tz4+fnRrVs3rr32WpYtW2Z7T48ePRgxYgQ+Pj5Mnz4dg8HAjh077E4vISGBtLQ0dDod48aNq7UvsXPnTnJycnjooYcIDAzEz8/PdsZyTdvECnfccQf+/v507dqVrl272ubnqA+9fv162rRpw4QJE9Dr9fTo0YPhw4dXeW58RR9Zo9EwYcIEDhw4YGvHAS677DJbO15xRczQoUMZMmQIgYGBjBgxgvj4eH799VeCg4OZN28eu3fvtmUvJCSEQ4cOVclTxb/9+/fHbDYzfvx4goODadu2LdOnT69yFURUVBQ7duzgscce46abbiI3N5f27dtLO17Dejt27FjWrl1LaWkpYM1WRT/JmTqrC3vbfl9fX9s24MiRIyQmJhIYGMigQYMYMmQIQ4cOpaioiJYtW9KpUyeX9Qkq13NN/dYKNbVv9jh73KG+97ftqa3vWPl4iTNtz+23346fnx/9+/cnMDCQMWPGEBYWZlvulY/vOOo/19b+OmrHYmNjadasme0KzlWrVpGUlER4eLjd7+7Mtud8AQEBDB482Hb3h0OHDnHgwAEGDRqE2Wxm1apV3H///Q7bqbqwt5/VrFkzpk6dyujRo/H396dLly7Exsaydu1aHnvsMUaOHMn+/fvp0KEDWq3W5evM4MGDSUhIQKvVsm/fPk6dOsUdd9yBr68v7dq1Y+LEiVWuQKuJo/37uqjpWEBNff8hQ4Zw+PBh2zZp2bJljBw5El9fX7vzuZB9ozZt2tC9e3fWrFkDwC+//IK/vz+9e/d2qg9SF84ep72Y/eHaeOL+X8Vn7G2vK9x99934+vqSlJREWloaq1evtr3m6NihM32quqwrq1evZtasWYSGhhIVFcXUqVNrre+a+pEXc+zbHnf3Jc7PEVxY++7pnPnuzvZ3IyMjCQ0NJT093ZZbTx5HcNR/ro+20lF9CM+ir8+JhYWF2f7v7+9PixYt0Ol0tt8BSkpKCAkJAajSkfTz86vyu7+/PyUlJbbf33vvPRYvXkxOTg4ajYaioqIqlyZfiNatW9v+n5mZyTPPPMOzzz5r+5tSiuzs7Fo7SVFRUVWms3TpUj788EPb34xGIzk5ObWW58SJEzRv3pzmzZvX5WtUk5OTU2WjGxQURGhoKNnZ2WRlZdG+fXu7nxs8eDCPP/44R48e5eDBgwQHBxMbG2v3vadOnaK0tLTKbVOUUnZvi+KMynUINS/vEydOOPwONcnJyaF169ZotefG7KOjo6tc/l1TBt2ltuVy/noH1det4uJi2++Vcx8UFETz5s3JycmxLYNWrVrZXg8ICLB9Nicnp8q60KZNG0wmE3l5eTXmaty4cYwcOZLi4mJWr15NYmIiERERdt+bmZmJyWSif//+tr9ZLJZq+Tifo/k7s8xr46g+mgLJXu3ZA4iMjESj0dh+j46OJicnx6lpVq6T/Px8ysvLadeund3y/e9//7N7S5YK59dfTe1XXl4eTz31FFu2bKG4uBillG3bnJOTU+071dd2Dpzb9tf2fb///nteffVVDh06hMVioaysjM6dO9veGxoaajvw7Ux91FT3OTk5REdH237XarVERUVVaUfs5aTy3yoy4YxXXnmF119/nX/+85906dKF+++/n7i4OLKyskhLS3NqGjWpre5atGiBn5+fU9OqqZ537NjBCy+8wF9//YXRaMRgMNhuHV+xfI1GI/PmzWPBggWYTCYuueQSwsPDOXDggC0XJSUllJaWkpuba9vpNplMlJWVcfLkSQB8fHyYOHGi7TsVFRWRk5NDTk4OQUFBBAYG2soZFRWFTqerloecnByaN29OcHCw7fncnTt3rrKT27p1a1seKnaccnNziYqKqnKiRnBwMEFBQbbfNRoNJpMJk8mEXq+XPDjIQ03tm7P7DOevr3Buu1+xjAMCAmyvRUVF2R2MqJyHytPZtWuX7ffK7XdFHhwt1/PLW15ebsuDPVlZWURHR9t9vaZtor35VV4OjvrQx48fZ+fOnVVug282m6vcXrLyNMPCwmzTPD8f/v7+lJWV4efnxzfffGObplKK0tJSduzYwZNPPonJZKK8vJw+ffqglKKoqKjKelmx7wLY9gECAwNtr5/fnwsNDeXo0aO0a9fOtowd5ULacasOHTrQqVMn1q1bR3p6OmvXrmXp0qWAc3VWF47W4fDwcNstusLDwzGbzbb2wGAw2AbGjh49WiWfDdknqFBbv7VCTe2bPc4ed6jv/W17aus7Vq4DZ9qeyvsGfn5+1X6vPH1H/efa2t+ajgVUHERNTU3lq6++sj2mxh5ntj32jB07loULF3LHHXewYsUKhgwZQkBAALm5uRiNxirrTV33Oyuzt5+l0+ls646fn5/tBKmKnFSsMxX9DlevM5XXjePHj5OTk1Ntu+Ls41Zq2sdzVk3HAmrq+/v6+jJixAi++uor23J+5ZVXHM7nQveNxowZw4oVKxg/fjwrVqywDfg40wepC2eP0+bk5Fzw/nBtPHH/DxxvrwFCQkKq9TsqL1NHfVFn+lR1WVfO3+6c38+1p6Z+5MUc+7bHE/oSUHUZXGj77smc+e7O1Pf52/2KTHvyOIKj/nN9tJWO6kN4lnodvGwoW7Zs4e233+b999/n8ssvR6vV2nZ0gSqd3goBAQG2Mz8A2wGuys4/MDtr1qwqGxRn2ZvO7Nmz6zyd1q1bc/r0ac6cOWM7iFwhICCgyn2g7X2fChEREVXOmikpKaGgoIDIyEiioqIcntXg5+fHyJEj+eqrrzhw4ECVsyXOr+MWLVrg7+/PypUriYyMrNP3tKfy9Gtb3q1bt+bIkSNVOirOiIj4/+zdeWBTdbbA8W+S7htdaEuhBcqOyF42AVFAFkXLjDL61DejPvE5OjDqjMI8HRFxdEAHRxnFHXVcxlEZ9lEGRTYVBIvstIVudN/XtE2TvD/Shha6pG2Sm5ucz19tbpaT5Nybe++5v/OLIi8vD5PJZN2Bzc3NpX///t2O35Ha+166Ii8vz/p3dXU15eXlbRZ0mrs0r3JycvDy8iIiIoKYmBiOHTvW6uOio6MZO3Ys//nPf9i8eXOLOYIuzatevXrh4+PD999/3+YJvdZceuK4ecztfeeXbieKiopsfs3WtjvuRnLPNvn5+ZjNZutz5ubmMnPmTJues3kcTScbs7KyGDZsWIv7xcTEkJiYaJ0HpTNay9W//OUvaDQatmzZQlhYGLt27bLOgxEZGdnqe2o6uO/O75yt2nu/9fX1LF26lNWrVzNr1iy8vb154IEHrL8RXdHeZx8VFUVycrL1f7PZTG5ubovfvtY+4+YFkZycHGuud/R7PmrUKNavX4/BYODDDz/koYceYs+ePW1u55qes6N9HrDts7PXtu13v/sdd955J2+99Ra+vr786U9/shYgmr7fb7/9lmeeeYarrroKoM353YKCgoiLi2Pnzp2AZX7cFStWcN999/HZZ5+RlJTEX//6V+t7mjhxIoGBgURGRlJdXd2iWNVaoQos33N5eTlVVVXWfEhJSWnxPefl5TF06FCSk5MxmUzk5+cTGRlJbm6u9SQQWD7D9vJR8qH1fOjK9u1SUVFR5OTktLgtNzeX6dOnExkZSXl5OXq93poTtuRD0wHxpet989+0pnyw5TfNFk1F1dYKnO39JjaPqTVt7UPHxMQwYcIENmzYYJf4wXKSfcGCBdbv9ZVXXuH7779n7dq19OjRg/HjxwOWuc/8/f2ZNGlSm+tNU4eV5kWSS78PLy8v2Y63817a0nTy3GQyMWjQIPr16wfY9pk1j73559GZ/elLBQUFWbcHn376Kdu3b2fKlClkZWU5bZ+gia37re1t31r7Lmw979DR8XZnvueubsubP647257WtLX/3NH2t71zATfddBMLFizgzJkznDt3jtmzZ7f5+l397Zk6dSqlpaWcPn2abdu2WeeVDQsLw9vbm5ycHAYNGnRZ3M01FURqa2ut77G98zvt8ff3t+bJ3r17FV1nmouJiSE2Nta673apjnKys9vL1j7n9s4FtLfvD5ZC+GOPPcb48ePx9/e3FrTairUrx0bz589n9erV5OXl8Z///IdPPvnEGndH+yDNP4vm21+j0Widu7azunM8bA/OPv6Dtn+vwTKnZU1NjXV9zc3NZfDgwTa9j87sU3W0rjQdazS9dlv7rpc+Z1v7kd05990WV9uXsOexhZp05vNu7bGuWkdo73xve9vK7uSUJ5zvVRO7to11lOrqanQ6HeHh4TQ0NPC3v/2Nqqoq6/KIiAiys7NbVOuHDRvGjh07MBgMHD9+vMUQ/dbcdtttvPHGG6SkpACWiaqbtwSw1aJFi/jHP/7BTz/9hNlspqamhm+++cYab8+ePcnKymr1sVFRUVx99dWsXLmS8vJyDAaDtY3fsGHDSElJ4fTp09TV1bFu3bo2Y7jxxhvZuHEjp0+fpr6+nrVr1zJq1ChiY2O55pprKCoq4t1336W+vp6qqqoWLa4SExP517/+xddff93ixywiIoL8/HxrWzStVsuiRYt49tlnrScS8vPz2bdvX6c/s0t19H0vWrSIl156ifT0dMxmM2fOnLEeILb3+Y4aNQp/f3/eeustDAYDBw8e5Ouvv+b666/vdsyO1tb30hV79uzh8OHD1NfX89JLLzF69GibrqZbsGAB7733HllZWVRXV/Piiy8yf/58vLy8uPHGG/n222+trYOaDuiax//222+TnJzMddddZ7390nU3KiqKqVOn8uc//5mqqipMJhOZmZnttl4CuOWWW3jnnXc4ceIEZrOZjIwMsrOzO/zOhw8fzn/+8x/0ej0ZGRl89tlnNn+Ol64T7kpyr/3cA8sVZO+//z4Gg4F///vfnDt3jhkzZnT6ObVaLTfffDPPPfcc+fn5GI1GkpKSqK+v56abbmL37t3s27cPo9FIXV0dBw8etOlkUXh4OFqttsW2sbq6moCAAEJCQsjPz+ett96yLhszZgw6nY4PPviAhoYGdu3axfHjx63LO/qds4f23m99fT319fWEh4fj5eXFnj17OHDgQLder73Pfv78+ezZs4fvvvsOg8HAO++8g4+PT7snMQA++ugj8vLyKCsr4/XXX7dud9r7Pa+vr2fLli1UVlbi7e1NYGCgtSh2yy23sHHjRr777jtroeTcuXPW57Rln8cRn11bqqur6dGjB76+vhw7dszaYg0ufr+1tbUtvt/mBxfNDRkyhLy8PGs+GAwGamtrycvLY/LkydZ9AbAU5svLy63txeLj46mqqqK+vp6kpKQWV+A2FxMTw9ixY1m7di0Gg4GZM2eyadMma7vK3NxcTpw4QUhICHv27GHlypV4e3uTlJSEj49Pm63EmpN8aD8furJ9u9SMGTNIT09n69atNDQ0sGPHDlJTU7nmmmvo06cPV155JevWretUPtTV1XHmzBk+++wzbrzxRut9Tp48yc6dO2loaOC9997Dx8fH2kKpu0aNGkVkZCR/+ctfqKmpoa6ujiNHjgDt/yZ2pK196GuuuYb09HQ2bdqEwWDAYDBw7Ngxa051xN/f/7L9bz8/vxbfa1PhuKamhsLCQuv+U1PuVVRUtJhepDmdToe/vz+ff/45VVVVZGdns2HDhhb7JU3tbJu24wCnTp2S7XgHrr/+eg4cOMDHH3/corV+Zz6z4cOHs2fPHsrKyigsLOS9997rcjxDhw615o3JZMJkMhEXF8dXX33ltH2CJrbut7a3fWttH8zW8w4dHW9HRERQVlZGZWVlh++ltfMlndWdbU9r2tp/7mj72965gF69ejFy5EgeffRR5syZ06Jt8qXnCbr62+Pl5cXcuXNZs2YN5eXlTJ06FbBsp+bNm8eLL77Y5naqSXh4ONHR0WzevBmj0chnn33W5jmMjmg0GmueNO2LT5kyhS+//NLp60xzo0aNIigoiDfeeMO6v5ecnFsYD8wAACAASURBVGy96LSjnGzr+B4s28tt27ZhNBrZu3ev9ZxZazG0dS6gvX1/gLFjx6LVavnzn/982Xd4aS519dgoPDyciRMn8oc//IHY2FhrG3Fb9kGaxMfHU1dXxzfffIPBYGD9+vVdPj/RneNhe3D28V97v9dNmvYZDx8+zDfffNPuqPomnd2n6mhdmT9/Pm+88Qbl5eXk5eXx97//vcMY2tuPtNe57+ZcbV/CnscWatLV/V1w7TpCW/vPHW0ru5NTndnHEo6niuLltGnTuPrqq5k7dy4zZ87E19e3xYFD0w/IpEmT+NnPfgbAQw89RGZmJhMnTmTdunWt/tA3d91113HvvffyyCOPMG7cOBYsWMDevXs7HevIkSNZtWoVTz/9NBMmTGDOnDls3LjRuvy+++5j/fr1JCQk8Pbbb1/2+DVr1uDl5cX8+fO56qqrrCtXfHw8Dz74IHfddRdz5syxXq3cmilTpvDb3/6WJUuWMG3aNLKysnjxxRcBy9Ws77zzDrt372bq1KnMnTuXgwcPWh/b1Hd9xIgRxMbGWm+fPHkygwYNYtq0adah9o8++ij9+vXjF7/4BePGjeOuu+7q9jyk0PH3fffddzN//nzuuecexo0bx+OPP05dXR1gmeNn+fLlJCQkXDafgo+PD+vXr2fv3r1MnjyZlStXsmbNmi7NNeNsbX0vXbFgwQJeeeUVJk2axMmTJ3n++edtetzNN9/MTTfdxJ133smsWbPw8fHhj3/8I2AZmv/mm2+yYcMGJk6cyMKFC1vM53TdddeRnZ3Ndddd16L1Rmvr7po1azAYDFx//fVMmDCBpUuXdngl6vz587n//vv53e9+x7hx43jwwQcpLy/v8DtvmmflqquuYtmyZR1uJ5prbZ1wR5J7HV8FPWrUKDIyMpg8eTJ//etfefnll62jRDr7nMuWLWPIkCHccsstTJw4kRdeeMHarufVV1/l9ddfZ8qUKcyYMYO3337bppNQ/v7+3H///fzXf/0XCQkJHD16lN/85jecOnWKhIQE7rvvPubMmWO9v4+PD+vWreOzzz5jwoQJbNmyhWuuucZanOnod84e2nu/QUFBPPHEEzz00ENMmDCBbdu2tTlvXWe09dkPGDCA559/nlWrVjF58mR2797Na6+91mGxasGCBdxzzz3Mnj2buLg469XYHf2eb968mZkzZzJu3Dj+8Y9/sGbNGsCSZ8899xzPPvss48eP584777SOMLN1n8dRn11rVqxYwcsvv8zYsWN55ZVXmD9/vnVZ0/dbWVnJb3/7W+v329bV00FBQUyePNmaD4888ggVFRWYTCZiY2P51a9+xRtvvMGVV17JJ598wuTJk60nLH/9619jMBiYNGkSf/3rX7n++uvbvJJy7dq1ZGdnM336dI4dO8b48eNZvXo1EydO5LvvvuPaa6/lyJEjGI1GNm7cSFlZGXv37uW1116z6erMxYsXSz60kw9d2b5dKiwsjNdee40NGzYwadIk3nrrLV577TXCw8MBeOGFFzh69GiLfGhrXW6eD7/5zW9YsmSJ9SQ1WNok7dixgwkTJrB582bWrVuHt7d3p2NujU6n47XXXiMjI4Nrr72Wq6++2npiqb3fxI60tQ8dFBTE22+/zY4dO5g+fTrTpk3jhRdesPkE6MSJE637300Xu+h0uhbf66ZNm8jMzOSmm27innvusRYCp0yZwrZt25g0aRLnz59nwoQJrZ6YCw0NxdfXl9mzZ3P77bezYMECbr755hb3ab4dB3jrrbdkO96BqKgoxowZQ1JSUosLOjvzmSUmJjJs2DBmzpzZ4rvtiuDgYGvePPfccxw5coRNmzaxatUqp+4TgO37re1t31rbB+vMeYf2jrcHDhzIDTfcwOzZs0lISGi3DV9r+72d1Z1tT2va239ub/vb3rkAsMx5n5ycfFnHmEvPw3Tnt6fp4sl58+a1KN7+8Y9/xN/fv93tVJNVq1bx9ttvM2nSJFJTU206udyWpjx5/fXXOXjwIMuWLePnP/+509eZ5nQ6HevXr+fMmTPMmjWLyZMn88QTT1gLeh3lZFvH9wCPP/44u3fvJiEhga1bt7Y5wrajcwFt7fs3SUxMbDWXLj3n1J1jowULFvDtt9+2KPhAx/sgTYKDg1mxYgVPPPEEV199Nf7+/i3aPXdWV4+H7UGJ47+2fq/BUqQOCQlh+vTp/P73v+epp56y6dxhZ/epOlpXfvOb39C7d29mzZrFPffcY1M3rPb2I+117rs5V9uXsOexhZp0dX8XXLuO0N7+c3vbyu7kVGf2sYTjacz27g8hVO+Xv/wlN954I4sWLVI6FNGMPb6X5cuXEx0dzcMPP2zHyGwze/Zsnn76aWt7QKEekntt27hxI59++ikff/yx3Z/blSxatIjbbrutzRMwoqWZM2e2aIcqXMdDDz3EgAEDWLp0qdNeU/LBdSmRD0IdZL31bErut4ru+eGHH3j00Uf5+uuvW8x1KERnbdq0iU8++cTtj/PE5Q4ePMijjz7a7aKeEJ5C6gjCkWRvTrRw7NgxTp061eKKUaE8tX8vX375JRqNhsmTJysdiugkyT3PdOjQIQoLC2loaOBf//oXZ8+eZfr06UqHJUSnHTt2jMzMTEwmE3v37uWrr75qdw4s4d4kH4QQwn0ZDAbef/99brnlFilcim7R6/V89NFH3HrrrUqHIoQQLk3t5wyF63P+LMwqc/jwYRYvXtzqsqSkJCdH41jLli1j165dPP7449bJbrvitdde4/XXX7/s9vHjx7eYV03Yxl7fi1L++7//m9TUVNasWdOtg8gnn3ySrVu3Xnb7jTfeyNNPP92dEEUbJPcs2su9MWPGdCdEl5WWlsZDDz1ETU0NcXFxvPzyy0RFRSkdVrfdcMMN1hYjza1cubLbc7q6I3f4PS8qKmLJkiWUlZXRq1cvnnrqKa644gpA8qGz3D0fnC0nJ4cbbrih1WXbt2+nd+/eTo5IHWS97Rx3WG8dpb1cUqN7773XOqdZc//7v//L/fffr0BEznXu3Dluvvlmhg0bxnPPPdet52qrheubb75JQkJCt55bzTxl+7tv3z6WLFnClClTLmvn2hnyO+8a3DVvnZlfsi8h2iJ1BOEM0jZWCCGEEEIIIYQQQgghhBBCCOESpJeGEEIIIYQQQgghhBBCCCGEEMIlSPFSCCGEEEIIIYQQQgghhBBCCOESpHgphBBCCCGEEEIIIYQQQgghhHAJUrwUQgghhBBCCCGEEEIIIYQQQrgEKV4KIYQQQgghhBBCCCGEEEIIIVyCFC+FEEIIIYQQQgghhBBCCCGEEC5BipdCCCGEEEIIIYQQQgghhBBCCJcgxUshhBBCCCGEEEIIIYQQQgghhEuQ4qUQQgghhBBCCCGEEEIIIYQQwiVI8VIIIYQQQgghhBBCCCGEEEII4RKkeCmEEEIIIYQQQgghhBBCCCGEcAlSvBRCCCGEEEIIIYQQQgghhBBCuAQpXgohhBBCCCGEEEIIIYQQQgghXIIUL4UQQgghhBBCCCGEEEIIIYQQLkGKl0IIIYQQQgghhBBCCCGEEEIIlyDFSyGEEEIIIYQQQgghhBBCCCGES5DipRBCCCGEEEIIIYQQQgghhBDCJUjxUgghhBBCCCGEEEIIIYQQQgjhEryUDkAIIYRy0tLSWL58OWVlZYSGhrJ69Wr69+/f4j5Go5FnnnmGffv2odFouO+++1i0aBEA69at46OPPiIqKgqAcePGsWLFCme/DSGEEEIIIYQQQgghhBBuQoqXQgjhwVasWMHtt99OYmIimzdv5sknn+T9999vcZ+tW7eSmZnJzp07KSsrY+HChUyZMoXY2FgAFi5cyLJly5QIXwghhBBCCCGEEEIIIYSbcfnipS2jgl555RV27NiBTqfDy8uLhx9+mOnTp3fqdUpLqzGZzNb/IyKCKC6ussdb8FgREUGUllYTFhaodChuz93zV6n3o9Vq3Dp/i4uLOXXqFBs2bABgwYIFrFq1ipKSEsLDw63327FjB4sWLUKr1RIeHs7s2bP54osvuPfee+0Sx6X5C+6Xw87U/LNz9xx2Fc1z2FNy1xnvU/LXOdwtf13lPUj+Ooea94FdOVbJX+dQc/52ljPfm+Sv87R2HGcv7rw+QPvvT3LYOdxxG+wK70Hy1zkcuf21J1fISVtJHcM1uXzx0pZRQaNGjeKee+7B39+fM2fOcOedd7J//378/Pxsfh2TyXzZSm/932ikx6JEdFmZlG3chimub7ffl6dQw4bUHbSVvz5b/kXQ0yuoenY19XPmKxSdfUgu2V9ubi7R0dHodDoAdDodUVFR5Obmtihe5ubm0rt3b+v/MTEx5OXlWf/fvn07+/fvJzIykiVLljB27NhOxdFa/jbdrhYHDuxj6NDh9AwPJ/CJZfh99gn1s+dS+eLfwNfX6fGo6bNzB005/MMPB5k8eRwmk7fSITmF5Jl7aMrfzMwMcnMhOrqf0iF1m+Sm52j3GK4NgY8/hvcPByn/x0bM4RGODK9DkquerSv5C6CpqqTHwhswBwVR8e6HmEPDHBWiXUm+u5+2juPs+fydotfj//47+P/tJWrv+h9qfufa3YFknVBWV7fBriAp6QglJcXMmjXnsmVqeQ+iexy9/W1y5l+fEVJTQ+87ftnl51BTTqopVk/h0sVLW0cFNR9lOXToUMxmM2VlZfTq1csucWgvZFG1fy9+gPf+vdT91512eV4hHM3/7++iy0ynx523UlhQoXQ4wg3ddttt3H///Xh7e3PgwAEeeOABduzYQViY7SdRIiKCWr09MjLYXmE61KFDh/jZz25g0qRJ7Js/H++3XgfA77NP8BsxDJ56yukxqeWzczc33HAd9957L88+u1bpUITotJ//fAGZmRkUyP6CcGOaoiIC3nwNAP/XXqHm/55UOCIhOs97zzd4HzsKgP+Gt6h5+FGFIxLCNfh9/k+C/vgHAAJX/wmztw/6pQ8rHJUQ9lVbW8vtt99Cfb2BLVu+YMSIK5UOSbgpbUY68/73HkKAE9fOwtS7j9IhCQ/k0sVLW0cFNbdp0yb69u3b6cJlayfPrSd/UyrRAP8DvFWSD3JS2GZtFSWEc2jKy5QOQbiwmJgY8vPzMRqN6HQ6jEYjBQUFxMTEXHa/nJwcRo0aBbQciRkZGWm939SpU4mJiSElJYWJEyfaHEdxcdVlVzdFRgZTWFjZ1bfmVO+++wGPPPIYPxzYy2vPPMMSoObXSwhYvw7Ti3+l5JeLMQeHOC2e5p+dVquR7bCTGY1GpUMQoksaGhqUDkEIh/M+8sPFv5OOKBiJEF3nffiQ9W8vyWMhrLyOHeUIkAXcCAQ9swL9g0uh8ZyicB+rV6/myy+/JDs7m61btzJkyBClQ3KaQ4e+Jz5+IOPHT2DXri+leCkcxuunJAKAPEB39owUL4UiXLp42VmHDh3ipZde4p133un0Yy89ed785K/XqVQALgD65HNUqeSEutIiI4MpLq6SE+cKMvv48gxwN+CjdDDC5URERDB8+HC2bdtGYmIi27ZtY/jw4ZddHDJv3jw+/fRT5syZQ1lZGbt27eLDDz8EID8/n+joaABOnz5NdnY28fHxTn8vStq589+88cYGbs3J4aaD33PnvOtpWPknvI7+iM93B/D95CNq771f6TCFEEIIj6fLSLP+7XXimIKRCNF12uws69+6rKx27imEZynLSGMu0AvYDGwANGVlmCOUbREu7G/WrFn88pe/5I477lA6FKc7evRHxo+fwMSJk/jkk4+UDke4MW1p6cXCUWoKXDtLyXCEh9IqHUB7mo8KAtocFQSQlJTEo48+yiuvvMKAAQPsGkdOylkAygBdTrZdn1sIRzppMPBHYCuAjAYSrXjqqaf44IMPmDt3Lh988AErV64EYPHixRw/fhyAxMREYmNjmTNnDr/4xS948MEHiYuLA2Dt2rUsWLCAm266iSeeeII1a9a0GI3p7kpLS8jLy+OK4SMY/+1+pgBv9u0PQO1d/wOA378+Vy5AD7J69WpmzpzJ0KFDSU5Ott6elpbGrbfeyty5c7n11ltJT0+3aVlXmc0yR4JQJ41Go3QIQjicNjPj4t/FxaDXKxiNEF2jLSq6+PcFKV4KAaBNT+Ofu79mHvADsAc4BGhLS5QNTDhEQkJCq+eGPUFS0o+MHTuOUaPGcPy4XIglHEdTUkwZEACUnUtVOhzhoVx65KWto4KOHTvGww8/zMsvv8yIESPsHkdlfh5+QCGgqSi3+/ML4SjJFZZ5q5py1xzWertl4bkGDhzIp59+etntb775pvVvnU5nLWpeavXq1Q6LTQ2OHk1i9Ogx+Jw5jS4zncdCw7h1x1buXLEKrpuH2d8f7x8Oor2QhSk2Tulw3VpbV9+uWLGC22+/ncTERDZv3syTTz7J+++/3+EyIYQQ7keXk9Pif21BPqZ+/ZUJRogu0hYVXvy7vAxNZYVTpygQwhX57PqSj4CnAb+AQO6oqWYjsKxEipfCvfz0UxJ//ONK+vSJpbi4iLq6Onx9fZUOS7ghQ1ERRmAAUFhUSKDSAQmP5NLFS7CMClq+fDmvvvoqISEh1hPlixcvZunSpYwcOZKVK1dSW1vLk08+aX3cmjVrGDp0qF1i0FdW0g/IBTSNxSAh1KBEXwNAAY3tUqR4KYRdHT36I2PGjMNn91cAjFlwE/3S0/jnPz/mjjt+Sf21s/HdsRWfb76m9s5fKRusm0tISLjstuLiYk6dOsWGDRsAWLBgAatWraKkpASz2dzmsrbm1baFjLwUQgjXdel88Nq8PCleCtXRFhYAYOoRira8DO2FCxiHX6FwVEIo6/zZs2QAs4DiY2eYtCiRF5J+lJGXok2tTXEVGRmsQCS20+v1FBbkM+HORWinTSM2NpaamhJiYy/O+enq78HdpaWlsXz5csrKyggNDWX16tX079+/xX3WrVvHRx99RFRUFADjxo1jxYoVCkTbvtrGgmUoUF5WqnQ4wkO5fPHSllFBn3/u2JZ8+qoqYoBzgKFcRl4K9aitrycCKAK0FeWYlA5ICDeTlPQjN9+8CO9NGwEwTJzMyrvv5dZbf0ZCwkRGX30Nvju24r3vGyleKiA3N5fo6Gh0Oh1gGUUcFRVFbm4uZrO5zWWdLV5eeuDrKQeMnvI+PYW0jRWeQFNmKV4a+8Siy76AtiBP4YiE6KSGBjQlJZg1GgwjR+O7fw+6C5lSvBQezeuHg2x+721+AdS8+ibmkB4k9IvnSNKPmPJylQ5PuKji4ipMposXnkZGBlNYWKlgRB1LTU0h1tsHbWoqpKYSN3I0SUknCQuztNB1hfeg1WpaLQx7Clu7Oy1cuJBly5YpEKHt9KWlBAIhQHWla68bwn05vHj51VdfMWPGDLy8XL5O2iZ9VSVBQE+guLICGYzvWdScw3WGemKxFC811dVKhyMcRM05qnYnThzjqaeewWvF4wA0jEtg5JChPPnkKu6663Z2rX+LYMBn3x4wmUDr0lNNK06tudz8wNdsNit+wOgMzjgw9qQDX7XmvnB9klstacvLSAX+6evHHwCdnNT2eGpbRzTFxWjMZtYFBrLqh4NkAtosmffS3agtL5UW9IdH+QR4GzAOsXRgCxpxJX02fU7q3m/o/6t7FI1PtE7yvPMunD1N/8YOawDxeblkZ19QMCL30528bK/zU3e6OymlprqKACzFy8rqKqXDER7K4b8QL730Eo8//jjXX389iYmJjB492tEvaXc11dUEAJFAcV0dvevqQPqJeww153CdwUAskANoqtz/ZLqnUnOOqllVVRXFxUXE+/qiy8nGFByCcdBgAG677Q4OH/6Bpz58n7djeqPLzUF3+hTGEVcqHLVrs3cux8TEkJ+fj9FoRKfTYTQaKSgoICYmBrPZ3OYyIZxNtuPCUSS3WtKUlfEM8N75VGYCo/LzlQ5JKExt60jTfJefmEwU1tWyFbi+QPLY3agtL5VW4OdLNjABKBkwCICGseMZDZzduon4ggLMje0ZhevoTp4/88wz7Ny5k6KiIu6++25CQ0PZvn27A6N1Dblf/pt+JhOG0WPRpaYQV1hA3qmTSoflVrqTl+11frq0eLl9+3b2799PZGQkS5YsYezYsZ2K0xkX+WbX1xIABAM1+poud15SU8cmT7l4Wk0cXrzcsmULZ86cYfPmzSxZsgR/f38SExO56aabiI2NdfTL24VerycAy8jLQqBPRQXmyEiFoxLOouYcrjUYiAOOISMv3Zmac1TNzp1LIT5+IL4/HQWgYcy4FiMr//CHP3LVVePInDaD+K2b8Pl2H3opXrbL3rkcERHB8OHD2bZtG4mJiWzbto3hw4dbDxzaW9ZVMuel6ApX2I5L21j35Aq55TKMRgwV5WwBFo4aw75jRxkjIy89ntrWEW1hAUbgSF0dK+ffwBf/3s6CwkKlwxJ2pra8VNp3BgOTAU1kFARZTjwbpl3NSF8/jtXVsuBcCgYpXrqc7uT5E088wRNPPOGkSF1HTtKP9APqfnEbXkcO02fjp3x/9Eelw3Irztj+3nbbbdx///14e3tz4MABHnjgAXbs2EFYWJjNz3Fp22NHqKisto68LK+q7lLnJVdoZWyryMhgiourpIDpYpzSv27YsGEsW7aMPXv2sGLFCr744guuu+467rjjDrZs2YLJ5Noz8en1NdaRl0WAtlLmvfQ0qsxhsxl948jLQgDpT+7WVJmjKpecfJYhQ4bg/eNhAAzjE1osj4iIYNasOWxsvOrO62iS02NUo67m8jPPPMPVV19NXl4ed999NzfccAMATz31FB988AFz587lgw8+YOXKldbHtLdMCGeT7bhwFMktC01lBfuBYTodMyZM5DSgzZc5L4W61hFtUSHpQKSvH9MTJnIE0BbKyEt3pKa8VNrh3BwmA+UbPrx4o1bLiCtG8BOgKSlRKjTRAcnzTjCZuJB+nn5A/YyZ1M+4lt5AXlam0pG5na7mZfPOT0Cb3Z0iIyPx9vYGYOrUqcTExJCSkuLYN9UF+jr9xbaxtXqlwxEeymmNxTMzM9myZQtbtmxBo9GwdOlSYmJi+PDDD9m5cyd/+9vfnBVKp9XU1hIIoNFQaDajqahQOiShANXlsMFAHRAO+AKlRYUEKByScCzV5ajKpaQkM3jwULy+/xawtCa61A033MS7L/2F3wFeP0nx0lZdyeW2rr4dOHAgn376aauv094yIZQg23HhKJJblpaxJ4Ax/v4MvuJKPgG0RUVKhyVchFrWEU1ZKWeBIWFhDBsznmSgXorwbksteam0U6Vl/AowRUe3uP3K2DiOJR1BWyrFS1cmeW4bXUoymXV19AmPwDh4CGg09AFyS4rBbAbpomJXXcnLjjo/NcnPzye6cXt1+vRpsrOziY+Pd8r76gx9bZ21bWxWfb3S4QgP5fDi5YcffsjmzZvJyMhg/vz5rFmzhjFjxliXz507l6uuusrRYXRLTZ1lZfULDqawokKKlx5GrTmsqdVTC/gB8UBmdjbDFI5JOIZac1TtUlKSSbwxEa/1lp3WhnGXFy9nzLiGBx9cTJVOR2BKMlRVWVsZictJLgtP5Qq5L21j3ZMr5Jar0JaXkQ70Cwpm0JhxnAYoknabnk5t64i2vJyzwKCoKHz69GEwcConhwFKBybsSm15qaj6ek7X1TJco8HUu0+LRb37xFILFGVlIkdgrkfyvHN0KclkAH2GDQeNBuPAQfQKCSGnogLthSxMcX2VDtEtdDcvn3rqKZYvX86rr75KSEgIq1evBmDx4sUsXbqUkSNHsnbtWk6ePIlWq8Xb25s1a9YQ6YLT01XXWQZzhQBVRiPU1YGvr9JhCQ/j8OLl3r17ufvuu5k1axY+Pj6XLff392fdunWODqNb9IZ6ogC/0DDOSPHS46g2h/W11uJlH6CgpEiKl25KtTmqcikpZxnm64e2qhJjn1hM0b0uu09QUDCjRo1hd24ON2ak43XiOA2TpygQrTq4Qy7LnJeiK9wh94Vrkty6SFNWRjEwIjiY8MFD8AYKiovwltEKHk1t64imvJzzQHx0DKaoaMYDSSXFDJA8ditqy0slGXd9wQVgQO8+VDa2YWxijohgNHAiNYXJikQn2iN53jnm1GRygZgrRmAA0GoJHz+Bst1fYTz8AxopXtpFd/Oyre5Ob775pvXvpoKmq9PX11tGXnp5UdHQgKaqCrMUL4WTOXzOy4kTJzJ//vzLVvgNGzZY/542bZqjw+iWmvp6AoHwnpEUAtoKmfPSk6g1h5tGXvoDYUBpueStu1JrjqpZQ0MDGRnpDCm2tJtrGJfQ5n1nzLiWXX7+AHidPO6U+NTKHXJZipeiK9wh94Vrkty6SFNuKV6G9wgFPz+Ga7WcbmhAI8d2Hk1t64imopwsIDYmBoKCGOXtzXGDAU1VpdKhCTtSW14qKfON1xgIeLXS3cYU15fRwJlD31vaagqXInneOfknjxMF6AYNsd5mGjGSXkDRkUOKxeVuJC8bmc3UNBYvA3uEUoll/nghnM3hxctXXnml1dvXr1/v6Je2D6ORGqMRfyC8Vy+KQA5wPYxac1ij16PHMvIyHCirlANad6XWHFWzzMwMoqKiCTl+DABDK/NdNpkx41q+KisFpHjZEcll4alcI/dlxI476m5upaWlceuttzJ37lxuvfVW0tPTL7uP0Whk5cqVzJ49m+uuu67F1ebtLVu3bh1TpkwhMTGRxMREVq5c2bk310nasjJKgLDGeYeGBQRwGtAWy7yXnsw1tr+205aXkwn0iYsDoH+PMNIBbWGBkmEJO1NbXirpTFERVwD6/33wsmV119/IlQEBHM/PQ5t23vnBiXZJnnfOhZRk+gHGgYOstzUMv4LeQMGJE4rF5W4kLxvV1aEH/LVagoODqQA0cl5ZKMBhbWO/++47wHLA+v3337cYiXDhwgUCAwMd9dJ2pamppgbw9/UlIsIyLX8dEAAAIABJREFU8lLaxnoGtedw8zkvw4HSqiqFIxL2pvYcVbNz51IYOHAQXklHAGgY3/bIyzFjxnGhqoo8IOLEMSdFqC7ulMsy8lJ0hjvlvnAt9sqtFStWcPvtt5OYmMjmzZt58sknef/991vcZ+vWrWRmZrJz507KyspYuHAhU6ZMITY2tt1lAAsXLmTZsmV2etft05SXUwyERvQEYFhoKKerqtAUFcOAQe0/WLgdtW5/NRWNxct+8QDERUWRUVSApqBQ8tgNqDUvlZRaUswQwDB67OUL/fy4ImEif9v7DT7fHaB2wECnxycuJ3neNdlZWa0UL0fQB8hLTWaEYpG5B8nLljS1eqqBAG8fa/FSW1WJUenAhMdxWPHy8ccfB6C+vp7/+7//s96u0WiIjIzkiSeecNRL25WmurF46edPRHS0pXgpw6Q9gtpzWFN7cc7LMOBMTY3CEQl7U3uOqllqaiqD+sfjtX8vZq0Ww8jRbd7Xy8uLaVdNY9d/vuCOM6ehoQG8HD7ltKpILgtPJbkvHMUeuVVcXMypU6esbbIWLFjAqlWrKCkpIbxx9CLAjh07WLRoEVqtlvDwcGbPns0XX3zBvffe2+4yZ9M2to0Ni4oCYEhUNNsuXJCRlx5KrdtffWkp1UBEXF+MQFzvPqSfOoGmIE/p0IQdqDUvlZReVck1WOa3bM3QseNJ3vsNDWnnnBqXaJvkeRdUVZFVWUFfrRZT7z7Wm42Dh9BboyG3IB9qaoBg5WJUOcnLljR6PTVApI83gSEh0jZWKMZhZ0+//vprAB577DHWrFnjqJdxOE11FdVAoL8/4b1iKAHMMnegR7BHDqelpbF8+XLKysoIDQ1l9erV9O/fv8V9XnnlFXbs2IFOp8PLy4uHH36Y6dOndzd80FtGXvr4+RNaq6eiTt/95xQuxV22s2qUmprCyMBANA0NNFxxJbQyx0pzM66by85v93FndTW6c6kYhw5zUqTq4E65LCMvRWfYI/dnzpyJj48Pvr6+APz+97/v0n6ERrrGuhV75FZubi7R0dHodDoAdDodUVFR5Obmtihe5ubm0rt3b+v/MTEx5OXldbgMYPv27ezfv5/IyEiWLFnC2LGtjJxpR0TE5b+/kZGtn7gz6ispB2IH9scrMpjRAwdw6scj9KivgjYe42htxSocT637HgUlxUQD5h6hAAT37oM3UJaejmeNCXFPas1LxZjNpNXVcQ9gCm+9eOnbP57+QNbLLxLz6P9B4/6SUI7keefpsjLJAEZHRIC22Qxwvr7EhEeQW1yE17kU6BetWIxqJ3nZkkZfQw0Q6O1DcI9QaRsrFOPwoR9qX+GtIy8DAtCFhREEVBQVOf6DEy6jOzlsS6utUaNGcc899+Dv78+ZM2e488472b9/P35+ft2KW1Nbix7wDQ8jJEdPZX19t55PuC61b2fV6Ny5FBYNHgKAYVzb8102mTHjWl5saMCMZd5LKV62TnJZeKru5v7LL7/MkCFD7BSNcCeuvF297bbbuP/++/H29ubAgQM88MAD7Nixg7CwMJufo7i4CpPp4kUjkZHBFBa2fmKl/kIOwUCNTyB1hZWER8ZQDWSdTsGvjcc4UnuxKk2r1bRaGHZHrryOtKa4qpJILhYvTVFR9AcupJ1jqJKBCbtSW14qRVNURJrZTL/AIGjj/ImpVy9GAz8BfQ/swzBztlNjFG2TPLedLiOdDGBBs1GXTXrFxnKyuAhd8lmYOc35wbkZyctG+lrrNHpBoeFUAEjxUijAITW4+fPn8+9//xuAGTNmoGnjUu5vvvnGES9vV9biZWAg5uAQegJFpSX0Ujow4VD2yGFbW201Hx0xdOhQzGYzZWVl9OrVvSzT6GuoBXzDexKck0OlwdCt5xOuxZ22s2qUmprCsGDLaImGcW3Pd9kkPn4APr5+nKmro9+J49T9fJGjQ1QNyWXhqVwt99t6faE+9sqtmJgY8vPzMRqN6HQ6jEYjBQUFxMTEXHa/nJwcRo0aBbQcbdnessjISOtzTJ06lZiYGFJSUpg4cWLn37QNSouKiABMoZaij7lnJMOB5HMpjHLIKwpX5WrbX5uZzRRXVdETMIeEAGCKtBQvs7IypXipcvbKS1u6P61bt46PPvqIqMY22uPGjWPFihXdfg/OZvzhewqBXiNHUdXGfQwTJjEaOAYszL6AnBVRlmq3vwrTZVqKl7GtzNsaNWgwOT8dRZdy1vmBuQnJy8s1jbz09/PDu0cPvIC60lKlwxIeyCHFy1WrVln/fv755x3xEk6jqa6iBggIDMQcEkIEUFZeLsVLN2ePHLa11VZzmzZtom/fvp0uXLZ2ZXSIN9QCwb17EXLiGJUNDapuTaXm2B3BnbazalNZWUFVVRX9T50CwDC245GXAJNGXMmB7w4w8MQxR4anOpLLwlPZM/d///vfYzabGT9+PI888gghjSe1bdG0D6HTWVpQucPvrTu8h+6wV25FREQwfPhwtm3bRmJiItu2bWP48OGX7cfOmzePTz/9lDlz5lBWVsauXbv48MMPO1yWn59PdLSlvdnp06fJzs4mPj6+y/F2pLS8lAiajVjr2ZPBQNqFC1K89DD23P7aq3W3TaqrKTaZ6KnTgbc3YCle9gMy82XOS7WzV17a0v0JYOHChSxbtqzLr+MKcnftJA4wj5/Q5n3MIT0YcssveP2zf6LLSHdabKJ1cuzXNZqMdDKBPsNGXLas14iRZH/+KV7Jyc4PzE1IXl5Oo9dTDfj7+2MODiYEqCwpkllVhdM5pHiZkHBxFIqjrpx1Fk11tWVlDQrB3KMHEUBJpcx56e6UyOFDhw7x0ksv8c4773T6sa21zKosKKUWMPcIJxioMBpdtjVVR5Rqq+XKLbPcaTurNqmpKQzo2w/vM6cwBwRiHDbcpsdNmHEt3353gHtOnnBwhOribrksc14KW9kr9z/88ENiYmKor6/nT3/6E08//TQvvPCCzY9v2ocwGk0Aqt1XaOIqrTiV3Iew53b1qaeeYvny5bz66quEhISwevVqABYvXszSpUsZOXIkiYmJ/PTTT8yZMweABx98kLi4OIB2l61du5aTJ0+i1Wrx9vZmzZo1LUZj2ltJebmleBl6sd3mACCjsMBhrylck733PZzVultbUU4xEO57sT2mKSqa/kBKSYnDX184lj3y0tbuT+4i68A+4oH6Gde2e78rxo7np8/+iSbtvHMCE21yt2M/ZylJSSYA8Bs8hEsnhIpKmEg2oD17WoHI3IPk5eWaj7xsKl5WlZVK8VI4ncOnbtywYQOTJ09m+PDhHD16lIceegidTscLL7zA2LFjHf3y3VfTuLIGBWEK7kE4UFLVVkMK4Y66msO2ttoCSEpK4tFHH+XVV19lwIABdolbU1traRsbGkawlxeVDQ1QVycT1Lsh1W9nVSY1NYUhjSc+DaPHQOPo6o4kzJnPm6ufRVtYgCY/H3PjaBNxkeSy8FTdyf2m/QofHx9uv/12fv3rX3cpBmkb6566u10dOHAgn3766WW3v/nmm9a/dTodK1eubPXx7S1rKoQ6S0lVlaVtbEhj29jIKOKB3eVlTo1DuBY17XtoysspAnoG+FtvM0VG0h/4SuahcitdzcvOdH/avn07+/fvJzIykiVLlnQp3x19kU5HnRSyCgsYAIROnwTt3LfntZbR0EXp54hzoe4Mnt4pQk3bX6VdSE+jH2Dq1++yZf6jxqAFqs+fI1Smi+o2yctGtbVUAwEBgZiDggkGqspkn1k4n8OLl++++y633HILAH/5y1+46667CAwM5Nlnn231QNjlNLaN9Q8Joa6xbWyJXg9mM8hJHo/Q1Ry2tdXWsWPHePjhh3n55ZcZMeLyFhBdZaqpxgB4BwYQHBhIRXk5muoqzFK8dDuq386qzLlzKTRdW2/LfJdNhg2/gnythiIjeJ08jkGKl5dxh1yWkZeiK7qa+zU1NRiNRoKDgzGbzezYsYPhw20bDS48gztsV+3CbKa0pqblyMvG4uW71dWKhiaUZY91pKutu1sr/LRbzDhroAgYGxJy8X7+A+kHZNTVEtkzyKXPUXh6oaYzHL3tvu2227j//vvx9vbmwIEDPPDAA+zYsYOwsLBOPc+lHaDsqcNOCmYz56qriQcKG7ygnftqekQzAfjh+HEC9/+Acegwu8fbWe29P1fuAGVPso9iI7OZCznZ9AOM/fpfvjwggL7e3mQYDISeOwcRfZwdoVuRvLTQNA7mCggIxNQ08rK8QumwhAdyePGysrKS4OBgqqqqOHv2LO+++y46nc7pV9p2laGiEi3gFRRMnZ8f4TodJUYj1NaCv3+Hjxfq150ctqXV1sqVK6mtreXJJ5+0Pm7NmjUMHTq0W3HXV1XhB2gCAgkICkZfXo6pvBxNeES3nle4HrVvZ9UmNTWVmyss7cMN42yb7xIsVz4n9Irh2+wLzDxxHMPM2Y4KUbUkl4Wn6mruFxcXs2TJEoxGIyaTiYEDB7JixQonRS3UQLarFpqqSkrMZsK9vS/OFRjRk3ggraEBjEabOykI99LddaQ7rbtbm/qjvWKNT0YORUCPwKAW9+vn70+GXk/h+WwI6WHTazubM1t6u0Php6t5aWv3p+YtuqdOnUpMTAwpKSnqapdYXU262cxEH58Ou0uZe/YkATgMzPliO3oXKF4K2UexlaaoiMz6euJ8fDC3sY0fEhrG6cICRp86BdOleNkdkpcWTXNeBgReHHlZWSnFS+F8Di9exsTE8OOPP5KamkpCQgI6nY6qqiprGwtXp68oJwAwBwYCEOHnx4nqajQVFZileOkRupPDtrTa+vzzz+0ab5Paakvx0uznB0FBBAE1RUUExtunLa1wHWrfzqpNamoKwzMzgM6NvASYNHI032ZfYM7JY44ITfXcIZdl5KXoiq7mflxcHJs2bbJLDNI21j25w3bVHjTllrkCRwQEXLzR25veoaEUlJVRn5uDT2ycYvEJ5XR3HbFX625bNLWNjQhtOTouJDIKMjOoPJdK8FjbL6wTrqureWlr96f8/HyiG7vAnD59muzsbOLj4x32fhxBW1ZKGtAv2IaRzhoNV/73Xbz+93fRZWY6PDZhG9lHsY0uM50MoG9EzzbvMySuL6cLC+D0aZh+nfOCc0OSlxaaxrax/kHBmIMaR15KtxKhAIcXLx977DGWLl2Kj48PL7/8MgC7d+9m5MiRjn5pu9BXVBAImAMsxcvQwECKq6vRVlZglJZ/HkGtOVxXXdNYvPTHHBRECFBZmE+g0oEJu1NrjqqRyWQi7Vwqw+pqMUZFY+rduasaE66dydovtuN18oSDIlQ3d8hlKV6KrnCH3BeuSXLLQlNWRgkQHtSybaU2Kpo+ZWXknjpJPyleeqTurCPObt2tqbAUL8Mu6aRjjoqmX2YGF06dZLgUL91Cd/LSlu5Pa9eu5eTJk2i1Wry9vVmzZk2L0ZhqoCkt5TwQb2NnqdFTruLw399Fm5nu0LiE7WQfxTa6rEwygKntnHsYfMUIdv542FK8FN0ieWmh0ddYRl6GBGNubBtbUSPFS+F8Di9ezpgxg/3797e4bd68ecybN8/RL20X+qpKy8jLxqt0w4ODKS4oQFMuk9R6CrXmcF3NxZGX5oAgy+TKxcVKhyUcQK05qkbZ2RcI9fMjuK6WunEJnZ5XaMyNPyNp2e8wpiSDXi/txy8huSw8leS+cBTJLQtteRnFQOglI3RMkVHEJZ8lN/ks/eZ41mciLLqzjji7dbe2aeRlVMuLqE2RUfQHslJTkFmP3UN38tKW7k/u0P6wIjMDExDasye2NDKMGDOeYCDtxHEizGaXnh/WU8g+im20mZbiZWw7XdQGT5jMSx+8J8VLO5C8tDDX1KAHAoJDqA8OpgdQodcrHZbwQA4vXoKlX3RaWhrVlwwvnjJlijNevltqKptGXjYWL0NCKQY0FdLn2ZOoMYfr9HpL8TIgwDrysrqkROmwhIOoMUfVKDU1hSGBgVBeRkMn5rtsEtSzJwN9fTlaV8eQM6dokKvjLyO5LDyV0rkvbWPdl9K55QqaRl6GhbVst2mKjCQWyE0/r0hcwjV0dR2xZ+tumzTmcWhUFMZmN5uioukHZKWnOS8W4XCy7W5f5pEfGACYbJwWxzhwEAk+PiQVFzF/9y4MM6W1piuQPO9Y08jLPsPavjwl/pprSQUaTp0Ckwm0WqfF544kLy2DufwATeM55VCgrK5O6bCEB3J48XLjxo08/fTTBAQE4OfnZ71do9Hw1VdfOfrlu62mqrpF29iw0DBL8VImqfUYas3h2poa/AH8/DAHBlraxpZK8dIdqTVH1ejcuRSGGeoBMHRyvssmE3r34VDaea44cVyKl5eQXBaeSnJfOIrkloW2vLF4eUl7QVNkFHFAdna2InEJ5alpHakoLiIA8A4Lb1m8jIykP3A+R/LYXagpL5Vy4dQJ4gHjoCG2PUCjIWHYFRw4dpSf/eNDKV66AMlz21SeS8EAhA4dhqGN+/jH9KaXVktabS3hF7Iw9e3nzBDdiuSlRU1FpaUe4h+AOcgy8jKjvg5k5LpwMocXL1988UVeeuklZsyY4eiXcgh9TbWlbWxg45yXERGUAFoZeekx1JrDdbX6i3NeBgdb2sZK8dItqTVH1ejMqZMklJRg1mhoGDO2S88x9spRfJ92nntPHLNzdOrnDrksc16KrnCH3BeuSXLLQlNebh2x1pw5MopY4Fh+niJxCeWpaR0pzc8nAjCFhbe4valt7J6iQiXCEg6gprxUSvr58wwAjENsLF4CU355F7/5/UPo5IIVlyB5bpu09DQGAaa+/du935AePThTWsrVKWepl+Jll0leWtRWV1nqIf7+4OVFiI8P5fX1UF0NQUFKhyc8iMPHkRuNRqZNm+bol3GYGn1Ni5GXgeERGIC64iJF4xLOo9YcrtPX4ouleGkKC7O0jS0rVTos4QBqzVE1Onn4EGOMRoyDh2AO6dGl5xgz4xoOAV4nT9g3ODcguSw8lSvkvrSNdU+ukFuuwFBShB4I6hnZ4nZTz0jLyMsSObbzVGpaR0pKiukJmC9tf9zYNjZTjvXchpryUimZBXnEAw2Dh9r8mBFXTScHKLyQ5bC4hO0kz21gNpOen8dAwBQX1+5dh/buwxlAd/asU0JzV5KXFjU1jZ0o/f0B6OHnTzmgrapUNC7heRxevFy8eDHr16/HZDI5+qUcQq/XEwgQaJnzkh49iABKC/IVjEo4k1pzuLau1tI21t8Pc6ileFkpB7RuSa05qjZGo5Ez588xCrrV7nXQnOvJBSpOHLfMRyGs3CGXZeSl6Ap3yH3hmiS3LMoL8gmjlaJP48jLbOmq47HUtI6Ulpe2O/Iyo6ZGibCEA6gpLxVRVUVaTQ39vbw61R5TE9eXq4E9eblQX++4+IRNJM87piko4LzBwAA/P8xBwe3ed9CQYZbiZYoUL7tD8tKiutpSvKSxeBkcHEw5lnnkhXAmh7eNfffddykqKuKtt94iNDS0xbJvvvnG0S/fbdW1tZZh0gGW4qU5JIQIoLioiNB2HynchVpzuLauztI21j8AU1i4pW1suZyYcUdqzVG1SUs7T4SXFz3q66ns4nyXANpevRjr7cORmmrGZ6Rjih9gxyjVTXJZeCrJfeEoklsWZYVFhMNlXRNMvXoRB2Tp9YrEJZSnpnWkuLyi9ZGXkZFEAAaTiYqKckK62B1EuA415aUSdPm5pAH9o6JAp7P9gb6+zIiMYndhAfMPH8JwlYyuUpLkecd0WRmcA8Zd0jmiNQPHjueTf32GV7IUL7tD8tLC2onS31IP6REWTln2BbQlxS3m3RbC0RxevHz++ecd/RIOVVNX26JtrCmkB1FAcXERAxWNTDiLWnO4rq4Of8Ds54e5sW1sfnWV0mEJB1BrjqrN4cOHmKyxNCxoGNf1kZcACb17czAjnclJR6iT4qWVO+SyjLwUXeEOuS9ck+SWRVlxY/EyvOWINWOfOCKBOqNRij4eSjXriNlMSXVVmyMvNUA/ICszkxFXjlQiQmFHqslLhZjy8sgE+sb0oa6Tj5127Sxe/efH+H7+TyleKkzyvGO6rEzOAT/vE9vhfQfNuJbTgDb5DJjNIFNCdInkpUVNraUTpdnPD4DgnpGWkZcyjZ5wMocXLydOnOjol3AofX29ZWUNtBQvzSE9iAYKpP2mx1BrDtfWN4689PPHFGoZeZlaXa10WMIB1JqjavPDnt1Mq67CFBhEw4junRQaN34CH2ek433oe+p+vshOEaqf5LLwVJL7wlEktyxKSxvbbUb0bHG7OSIC/P0ZpNeTfuI4o+REtsdRzTpSU0Ox0UiEl5e1hZtVUBDmgED611RzIfmMFC/dgGryUiEXTp8kGvDtFdPp4uWA+x6g8p8fc+E/X0o3NYVJnndMm5VJKhA/aEiH9w0bOgyNRkNReTm6ggLM0dGOD9ANSV5a1NTWthh5GRwdbZnzsrhY0biE53H4nJf19fW8+OKLzJo1i/HjLSNV9u/fzwcffODol+4+s5nq+vrGtrGNxcvQUHoBhdLj2WOoNYdrDYbG4uXFkZeVtdISyx2pNUfV5odv93MVYJg8Bby6d+3PmOtv5CCgO/i9XWJzF5LLwlNJ7gtHkdyyKK0oIxwwhUe0XKDRYOwTyyAgI+mIEqEJhallHdGWlVIMhDdOZ3MpU2Qk/YALyWecGpdwDLXkpVLOJ59lMGCKiur0Y83Dr+B6jYZ/5+VCba39gxM2kzzvmOH8OQqBmCuu6PC+Gq2WK4KCOAl4ybyXXSZ5aaG3Fi8tF0wFRveiFjAW5Csal/A8Di9ePvvssyQnJ/PCCy+gaRyyPnjwYD7++GNHv3T31dVRAwTodNYT1aao6MaRl1K89BSqzGGz2Vq8xN8fU2hj8bKus9clCjVQZY6qTFlZKRcKCxgNGK6a3u3ni5o9Bx8g69QJNJUyF20TyWXhqVwh9zXSWsotuUJuuYKSykpL29iIiMuWmWLjGAiknz7p9LiE8tSyjmhKSigCIoJDWl1uioqmP3AhNdWZYQkHUUteKiX9zGkGA8bYvp1/sLc38yMj2Q54nT1t79BEJ0iedywzJZm+gKZff5vuPyY2lp8Ancx72WWSlxY1dXUEAjRdNNWzJ1FAYfYFBaMSnsjhbWN37drFzp07CQgIQKu11Eqjo6PJz3f9Sr2mptpSvPTxsd5mirYUL09XV0kPcQ+hyhyuq6MO8NNqQafDHBpKMFBpMIDJBFqHX7cgnEiVOaoy3x3YzySNBi+g/pqZ3X/CgAAmhIZyqKyM+Yd/wHDtrO4/pxtwh1yWOS9FV7hD7gvXJLkF1NSQZzDQS6fDHBh02WJjXF8GAfvOn3d+bEJxallHtGWlFAFhoa03ujT27Uf/Hw5yID3NuYEJh1BLXiolNT2NIUDDiCu79PgZ18zif/75MYa3Xkez7jX7BidsJnnesbS08wwCjP3ibbr/6CuvZN/p03jJKPwuk7y0qG4sXpoa951N4RH0AgrycqTltnAqh1cwvL29MRqNLW4rKSkhtI2dbleiKS+nCghqbBkLYA4OIcrHh3yjEU1VpXLBCadRZQ7r9dQCft7elv+9vQkKCKQCZJSXG1JljqrM/s/+wRyDAWO//hjtNI/Q+GFXcAjw2bfHLs/nDiSXhadyhdyXkZfuyRVyS2na0hJygV5Bwa1eeGpqbBublpPt9NiE8tSyjmgai5cRl7Y+bmQcMJB+QFZerlPjEo6hlrxUhNnMucJCBgMNI7p2XOa99BEmA/u2bgKDwa7hCdtJnneguprkokKGarUYBwy06SGjp07lJ8Dr5AnHxubGJC8Bo5EagwF/gEBLTcTUs6eleFlQqGRkwgM5vHg5b948li1bRlZWFgAFBQU8/fTT3HDDDY5+6W7TVpRTCoQEB1+8UaMhMjyCPEArfZ49gipzWK9HD/g2FS+B4B49qAQ0paWKhSUcQ5U5qjJ7D+xjNlD3/+zdd1wT9/8H8FcSNoggMt1bRJEwVXCAWHDi1jqqts6fs45ara0VR+vXtra1tmodrZ3uVbF1r7qg7oqKOECmsmcgyef3B82ZQBICJpCE9/Px4AEkl7vP3b3v83nf53N3GRChtTvuhX0H4CoAs+PHtDI/Y2AMsUx3XpLqMIbYJ/qJYgvgZ2aUDV7a2St9X9KiJVoDeJyRUaPlIvrBUI4RfkZZHDs7uyh9X9KiJZoDSKBzPaNgKHFZG/hJz/FQIkZre3uwanznJQBI2rZDP4eGOFxYCIvf6tb32OkTinP1TOIeIBZAOycnQK5vT52OQ4fiIQDp7ZuAWKzT8hkrikuAl5+HXAD1zcy5/i/WwAGuANKyMmu1bKTu0fng5bvvvovGjRtj0KBByM3NRVhYGBwdHTFz5kxdL/q18bKzkQXArr7i1RVOLq5IA8CvY7eM11UGGcPcnZevHnlsbd8AuQD4GS9rrVhENwwyRg1IyvNEvMzJhRcA0YBBWpuvx5tjcQuA9OEDCB7T9xMBxhHLNHhJqsMYYp/oJ4otgPfyZdmgj0NDpe+LW7dFIwBZJSLk5+fXaNlI7TOUY0SUmIB8APZNmyl9X9KyFZwAFIpLKY6NgKHEZW3Ij76ClwCaeXi+1kWlQ3q/gcMAJP9bU/aVUKTGUZyrJ7gfi1gAbVq31fgzlk2aoLmpKe4XFUHwgB4dWx0UlwAvPx85AGwtLbnXpA5ld16m5dLT/EjN0vl3XiYkJKBly5aYNm0aJBIJQkND0a5dO10vVit4OdnIBlC/3K3hDd0a4eXN60BKcu0UjNQog4xh2eCluTn3kk2Tpsi7dxeC54kQ+/jVXtmI1hlkjBqQS1s3IYRJIW3REmJvX63N18bOHm3q2+GfnGx0+vMYiv5vttbmbagolkldpQ+xT4+NNU76EFu1jZ+ZgWQATq4q7lhr1Ro8Hg/ujOHBv3fgE9C1ZgtIapWhHCPpz57CFQBzdVP6vqTIrnMrAAAgAElEQVRlK/AANAWQmPAM7h08arJ4RMsMJS5rw7/nzqIzAPaaX+Vhs3wleuz+FfvS0zD07m2IO3XWTgGJxijO1eMGL4XeVfpcJ2cX3HqeiJbXYyCp5vfC1mUUl2WDl9kAbK3kBi8dneAC4N+C/LK7ek10PqRECAAdDl4yxrB06VIcPHgQLi4ucHJyQlpaGjZu3IiIiAisWbNG7ztJ+P/deWlb7ipdgasrbAFkPX0Mm1opGakJBh3DhYVlj401f3XnpWnzFhADED+Or7ViEe0y6Bg1IH8e2IcIAKLRY7X2yFiZ7v4BOHXiL/geOVCnBy+NKZbpzktSFcYU+0S/UGy9UpyaAhEAO2cXFCibwMoK0iZN4ZnwDPcvnqfByzrC0I6R1KRENAIgdXFV+j6zs4e0YUN4vXyJ26dP0uClgTK0uKwNt6OvQghA/JoxzhwdMTk0DItP/oWx82Yh7+R5rZ/rEeUozjWTcu0KrADU9w1ASRU+5+HRETefJ2Lk3+dRPH6ijkpnfCguX+Hl5yEHQH1ruVEPCws0trNHVHYW+EnPIW3WvLaKR+oYnQ1e7tq1C9euXcOuXbvg6enJvX779m0sWLAAv//+O958801dLV4rWFZm2Z2Xjo6Qf1K4xNUNzgBePqbBS2Nm0DGcm4siAJZWryJU2rwF6gEojH8Ec5UfJIbEoGPUQBQ8fYozKcnYBqB4pPa3Zbcx47H51Aks+ycGgvg4SFq10foyDAHFMqmrKPaJrlBsvZL+OB4uAJiK7woEAEnrNuiU8Ayx/0TXXMFIrTK0YyQtNQVuAKQuquO4tLMQPU6dwOVTxzFq1tyaKxzRGkOLy5rGy8zAlbiHGCUQoCSkz2vPL3DuAtid/At779xC/5vXIRb6aKGUpDIU5xqQSHDzzm34Aiit4pPTPPsPwtq/jsHs3BlAKgX4Ov/GOKNAcfkKLy+v7M5Lm3oKr7do2gyPs7MgePaUBi9JjdFZDXbo0CEsW7ZM4YAHAE9PTyxduhSHDh3S1aK1JjMxAbYATJ0Vr26UtG4LZwAZD+n54cbMoGM4Oxs5AGxsbbmXpM2bowGA7MePa61YRLsMOkYNxLmPl6IbAJvwfpA2aqz1+XfpGYIYPh8FAMz3/K71+RsKimVSV+lT7NeVK4nrCn2KrdqW9vQxXAFIGjdROY24U2d4Aoi992+NlYvULoM6RhhDQno6mgCQqOksFAt90BPA33du1VTJiJYZVFzWAkHMNZwH0K2zEMzJ6bXnJwnogjXh/bEIgGjmVPDy6LvcagLFeeUED+7juqgY3rb1qxzrfkOG4z6PhxcZGTC5fVNHJTQ+FJev8HPK+pRty32NXmP3DngKgH/vbm0Ui9RROhu8jI+Ph5+f8qtD/Pz8EB+v/4+uTHn6FI0BSF0VBy/F7h3QHMBTGgQyagYdw/8NXtazs+dekjRtjqYAnic+q7ViEe0y6Bg1BPn5+OGvP/EWgMJZ7+pkETY2Ngjw6IQ/AFj8/itQUpUHwhgPimVSV1HsE12h2HrlaUICWgGQNmmqcpqSrt3gDeBmagqKi4trrGyk9hjSMcJPT8PD0lK0sbICkzu/K08s9EYHAEVFRXj69EnNFZBojSHFZW14cPxPOAJw1OLjvTuu/wajrazx7qM4mO/bo7X5EtUozitnevUyYgB4uXeo8mfNzM0R2rQ5jgIwO3NK62UzVhSXr/Bevii7Iabc0x7MfP3RAED65Uu1Ui5SN+ls8FIikcDGRvlDVW1sbCCVSnW1aK1JSU76b/DSTeF1abPm8Dc1w7W8XPAyMmqncETnDDqGs7ORC8DWvgH3kqRJUzQDkPgiHaBOGaNg0DFqAB4uW4xHEjEifP0h9g/Q2XKGT52BH6ytIUhOgsVvP+tsOfrMmGKZvvOSVIUxxT7RLxRb/2EMcWmpaAdA0rSZysnE/l1gLxCgk1SKK2dO1lz5SK0xpGNEEP8I9wG0qeQpIKU+fgCfj3CxGCePHKyZwhGtMqS4rA3nL/+NXgDE3tp7vCtzcMDiyDX4B8BfkR+C/7juDFDUFopzDfx5FFcBCAdGVOvjYWF9sR+A2dEjWi2WMaO4fIWlpZX1KbsojoeIhd5oByDu5vVaKRepm3T2nZdisRhXrlxR2YknkUh0tWitSXqRhkYAJC6Kd16Cz0dAm9b4/N49mNy7i9LuPWulfES3DDqGc3LK7rxs2PDVaxYWaOLohIQX6TCNvkpxawQMOkb1nMmli1j528+YD0C0YrVOl9W330AsWTQPzwG4rVmBkvB+kKr5Xi5jRLFM6ip9in16bKxx0afYqk28Fy/woLgYoy0sK1yQKo/Z1IPYxw/9rl3B6e3fo1ffATVYSlIbDOoYuX0TtwB0rOT7+FgDB5R2C8KAi+exad9uTJ6tmyeHEN0xqLisafn5OBz/CB8AKPX21eqsBW+Ow+Zff8LY6zG4PnUiBAePASoGMcjrozhXj5efh38unENrADaDh6M6l8aGzl+E977/Dum3b8Lqzi2IO3XWdjGNDsXlKy+fP4c9AIGzC0rlXhe7e8BXIMA/Kcnwy85S+zQIQrRFZ4OXDg4OWLp0qcr3GzRooPI9vZCRgfs5OWhnaqr0S2jbdwlE3r17SIo6AicaBDJKhhzDksxM5ACwc3KCWO51t46dcOHMKZidP0uDl0bAkGNUn5ncuoHto4cijTG8PXkqSvx0d9clAFhbW2PsxHew+tABfJf0HPVmT0fOL3sAU1OdLlefGFMs052XpCqMKfaJfqHYKmNy9xZuAfi4dWugkgH6orFvYei1K+j990V8VFoKkzrUDtdFhnSM3D93Fs0AWAu9Udnzc0QDItDn4nm88+A+Ml6+hIP8xaxE7xlSXNa05O+/w32pFD18/VGo5jHg1WJqCs9tOzHS3wtjb9/Cb6HdYfrt9xBreZCUlKE4V89812/YLRYjoknTan+3q3UDBwxt544d9+9h4dfrkff9D9otpBGiuHwlLfk5GgFg5XMIU1N0adMOX9+/hzl/RkE0emytlI/ULTobvDx9+rRW5vPkyRO8//77yM7Ohp2dHdauXYvmzZsrTCORSLBq1SpcuHABPB4PU6dOxYgRI15vwZcv4zqAwS1aAQJBhbdL+4QhdPv3OH/4AIavWVfpyTAxPNqI4dqK3xdPnsAOZVfJyA9edhk8FMvPnAL/j0PA4g8AE51VAaQG6EOM6qT+rS2MwezIQRyZORXrRSKc6dUbJSvX1siiZ86ch6BfdmK+rS3anD0N27dGI2/jFrAGDjWy/NqmrZyhujQ5DgjRhZqqx0ndoy/nYrWdQyQd2o8iAK2DQ1FYybSiiKFot2IZWmRmYvfi+RjzxQatloXol5o8Rl5LSQkuXr6IIACl3XtVOrlo+Eg0WLsKEVlZ2LPiQ0zf8J32ykJ0Th/O7/QRLysT3375OaYBkEyarJNlSBs1xtLjZ7Gmfx/4PY7H2vAQDBo3AUWz5kHaspVOlllXGUz9WxuKi1H4zVfYBeD8nPmvNasJkWswYuRgTDu0H2ajx6Ck9xvaKaOR0pfcWR88fRKPZgAkLVpWeK/XO1Mxa9E8xK9ZicYDBwPW1jVfQFKn6Ow7L7Vl+fLlGDNmDP766y+MGTMGH330UYVpjhw5goSEBBw/fhy7du3Chg0b8Pz58+ovtKgIyatX4x4A70GDlU5S0jMEg+3s8c2LF8j7eBlQh559TTRXK/ELIOnff+EKQNymncLrjYaNQhMzM/wV/whWn6+luCWvHaO6iN8alZ8Pk5vXYfHV57jh5Y6RkyfgI5EIB3r3gd3Pu5RevKILjo6OmPvuexjXuAny7exgfuoE7IMDYbnxa/CfJ9ZIGeoyTY4DTbGSEi2WjJDKaSt+eSKKXVKRLvMEXecQ/KTnOLh/H8IBlPTtX/kHrKxQsHQ5tgJY9ctO3Pv2a8qVSaW0mUNUwBhMvvwM2wsLMbRpU0jatK38I7b1UThvEeYD2LD7V1xY/gFQWlrp54jxqK0+CJ0pLsb1t97E4aJCzPYSQjRkuM4WxfPoiGW3YrElvB8+B+D184/Y3EWIFyFBsPzqc5idOg5+0nNqG/SETuvfWsBPToLZpLGYlpSIsXZ2cBo34bXm175XCCYG9UB/AJg8Eea//wIUFWmlrEQ1g6+DRSLcTE1FZwDi1hXzDunYt7DU2QWTU5OB0O4wP7gP/LRUgJ5ARXSEx/T4+WYZGRkICwvD1atXIRAIIJFIEBAQgOPHjyvcrj116lQMHToU4eHhAIDIyEi4ublh8mTNr8jKyMiHVMrAT05C9vhRePPObYRaWGB+9B0wZ2elnzE9fBCfTn4LfwKYb28PoUdH1HdwhGX9+jA1NYWpqRl4JiaAQAAm4AN8AcDnK96lqervcv8zA7qzU9KqDUoGDIKjYz1kZOTDwaFufldAbcQv78ULCJYvxdd7d+E+j4evn6UBFhYK055dvQJzv/ocpwC0aNUa6ORZ9v165hZgpqaAmVmFWKwQfzUcjzbW5sgvENXIsph9AxSPfBMwNwefzzPq+NVGjGo1fvNyYb77N/Dz8mBtaYqC/OKyE0PG/jtBZABj4EnLfjOJBFKpFFKJBFLGIJW++p8xpvAeKyqEJDcPRXm5KMrLRV5eHjLzcvEiPx8PAJwAIAWwwLY+It5bCjZ5Wll9XYMkEgnmzZuJmCuXMKKkBL1SkuEFwBaAwLY+eC4uYA0dwWxswKytwaxlv60BcwuAxwOztITN9Ml4wcwBwOhjWBs0PQ7UzyMfvIcP4dDNB30B/Lb0IwhqOH5qmm7qZR5K+g2ApHUbABS/mtBW/EqlDL1d7XFHIkHKwMFA/fqo17iJ8g+oywFUvKc2j9VyTlGTOUN5Yl9/lHYLAmAc8avrPEGr53BJz2G253eYFeYi7dET3LtzCxcTE/C9VIrTAV3hdOQvzWYolaLe1EmIOnwAcwDMNTODi6sbnJo0gZODE5wcGsDO3AI82Tmd3A/j8QAe/otp3qvYLjed7MfaxgL5hSV68wQfaZOmEA0eBvB4RhG/NeF162AuflNTYL5nFyxKCvAiNR25qWlIffYUqclJ+CE3B9YAtu74BaX9B2pWMKkUtpMn4OIfhzAVQHtTU0xq0QqtnZxg5+gE6wYOMDE1AU9gAvD54AsE4Ml+1PRXMHV9F5XQdd3MbOuXncNZWdXp+K3JPoiy5eVDml8Ai92/gZ+dVXbeJutilP1d/geyv8sm4zEGJpVCIpVCIpVAIpFCyqQwNxMg48EjnIi+gmU5OfjVwgLeZy/X2F2QgpvXcXftavx67gyOiMUwAeAOoAUAN4EAzg4OcHFoCFcra9haWcLcygYm9WxgYmIGgYkAAoEAfIEAAoFJ2TFmUna8MT4f4PNhXc8SBUWlZf2F5hYQDRtR1i8D48ghdE1rObBECvMDeyFIeAZrKzMU5BVV7IOQMvBk/1f4Lf2vj0L+NQDSsjiW/tdnwaTSsv4JqQRSyX9/s7LfrFgE9uwJbjx9gkipFC1MTbHh8DGY+PhXebs4OtbDixd53P9MIsGHgb449TgefQH48Pno1LYtmrZsDX59e/AtLWAiMAHfxAQ8U9OyvmtBWT82BALN+qJ5PJSEhkHSwQNA3Y7f2ugHNv37AkyjryqJTVldWxaTPKXxyyrEsDjuIfwvnMN3zVvC49pNpcvmP7iPNQPDsCM7C30ADADQtF49NG3eEg52duDZ1APq1QOsrGBlY4niEklZziEoGxfhxkgEgle5sYyaXON18hB1xJ5eKO0VUufHMfSVXj8zMiUlBc7OzhD8d+eLQCCAk5MTUlJSFA76lJQUuLm5cf+7uroiNTW1Ssvi88uC/u5nn2BGbg5md+iA0dt+gtTVBaoOB8ngIVhqewDuKz/CpdxcbEtMQF5iAooBlAAQo+zW1v9OX8EH8BMA3X57mn7I7NETcKzHbde6qDbit+jHregXfQWtmjXD4j5vgG9lWWHakA8/xkoBH+P370GGuBSCG/9AAGAn9Ds2a7LpYG1ao7Rbd6OPX23EqDbj1/zUcdhs+oZ7Xf7hE2IAQQBeomyQUXatK1/uh1fJ/3wAlv/92JiZooGDA+wdHdG2vh1GdPCAx9CREHfvAQgEKut9XeLzTfDNN5tw48Z1XLl8EVvPn0Xcs6coKi1FKQCpqBj8pEQ0BHARgJmqGdlYgD9+8n/zNO4Y1gZNjwN1+HwepI0bY17r1jhQWorOv/wIU0BlHE0FsFArpa9duqiXRU8eIf+rbwFQ/GpCW/ELACt79sLc+EfocvsGgLKTBPk9oOrvegDOQbHOrm21dbopPXoIWcfPcYM/hk7XeYI2c4jHX32ON8+cBB+AFYD2ADo1aYIL3j5ouO4rME33B1+Agi3bEdanD37avhUXMjNwDQwvEhPKfgDko+Lji5TNvfxr1Y2IxgBOVfOzVZXVtRukbo2MIn5rwuvWwbLtbPX7zwj7ZSeeoyx+6wFwAeBsb4cBbq4YvfQjSPoN1PyxWXwB8rfvhH/UEdz5YRt+e/IYUaIiPEt8hpzEZ8jHq3z6v6EkyN9HJt+HYQXgNABtfHOmzuvmJo1R0ie8TsdvTfZBAGUxbPb3edTb+GWVP3sIwAIAEpTFIB+AQO63AIAFAE87Oxz36IiWn3wGcevWNfb4OObtA49d+7G6qAj/O3caSZcvIjH2PpJTkvCisBBxAP4uLEBaYQHyAYhQ1g8oRdm5q/S/dZM/d5WtXySAN6GYOwlKS1D4btkZQl2OYU1pKwfmP0+C7SeR3GvVzWevAHgLr/a3FJX3T/DK/d26SRMs7uiJPpGrIW3WopolKRc/fBOsvnId4zdtxJ0jB3E9PQ07i4qQ+u8dLj7FKDsGZeWxRlne4ViFZZbcvY28rT9WXH4dU+P9wIzB9uOl4Gdna6X8B1BWL/du1gzekatQqmpfurtj6Z0HmP3TdkRFHUV0agoOlJbieW42snOzubyCyf3I4gt4lRPL//4OQG+trEXVMUtLZJ67AqBux6++0uvBy5pkb1/WRPX86Ufcq8oHRwzGhBGD8Xo38xsfWZUs265Et7jtvHYNbq9dU+n073z+P7zz+f90XCrDZVvbBahjuPidMqnsRwkTlJ0Q1AV9+vREnz49AXxQ7XnUjW/K1B/29taAvTXWx8VhfW0XxsCZ//dDao6sDo44dRIRtVwWQ8cH1b81TRa/Dju24pE2ZzxrBoJnzUCwNudpAOxruwB1DJcDr47E+dWR6ieujgljgQlj8Q6Ad7Q/d71Tr7YLUAfZ21sDY0aU/VRRxH8/+s8GGDsKtmNHwV2HS5FdZEtqTtk5nDvw9Olrz6sLgIevPRftUHbXWNCHSxD04RKdLdMMlAPXNC6HuKn87sjqGPLfj2Zs4LBkMf5vyWKtLb+28PAqfmkcQ//o9TPNXF1dkZaWBolEAqDskXrp6elwdXWtMF1ycjL3f0pKClxcXGq0rISUR/FL9J02YpTilxg6TY8DQvQRxS/RJV3nCZRDEENHdTDRN9QHQeoKqn+JPqI6mBDt0+vBSwcHB7i7u+OPP/4AAPzxxx9wd3ev8AiA8PBw7NmzB1KpFJmZmTh58iTCwsJqo8iEcCh+ib7TRoxS/BJDp+lxQIg+ovgluqTrPIFyCGLoqA4m+ob6IEhdQfUv0UdUBxOifTzGZN+mrZ/i4+Px/vvvIzc3F7a2tli7di1atmyJKVOmYM6cOejUqRMkEgkiIyPx999/AwCmTJmCUaNG1XLJCaH4JfrvdWOU4pcYA1XHASGGgOKX6JIu8wTKIYgxoDqY6BvqgyB1BdW/RB9RHUyIdun94CUhhBBCCCGEEEIIIYQQQgghpG7Q68fGEkIIIYQQQgghhBBCCCGEEELqDhq8JIQQQgghhBBCCCGEEEIIIYToBRq8JIQQQgghhBBCCCGEEEIIIYToBRq8JIQQQgghhBBCCCGEEEIIIYToBRq8JIQQQgghhBBCCCGEEEIIIYToBRq8LOfJkycYNWoUwsLCMGrUKDx9+rS2i6SX1q5di5CQELRr1w4PHz7kXle3/Wjb6p6hb+OQkBCEh4cjIiICERERuHDhAgDDXy+iOdrX6lHdq7/qynZWVU8Tw2ao8Ut5A5Gp7X2u7fa5tteH1Cxj3d+qjgtC5KmKE2PJObOysjBlyhSEhYVh4MCBmDVrFjIzMwEY77FvaIxhPxjL8UIMk6HWc998841C26PPZa3TGFEwfvx4dvDgQcYYYwcPHmTjx4+v5RLpp+joaJacnMyCg4PZgwcPuNfVbT/atrpn6Nu4fDzJGPp6Ec3RvlaP6l79VVe2s6p6mhg2Q41fyhuITG3vc223z7W9PqRmGev+VnVcECJPVZwYS9xkZWWxK1eucP9/+umnbMmSJYwx4z32DY0x7AdjOV6IYTLEeu7u3bvsnXfeYb169eKOHX0ta11Hd17KycjIwL179zBgwAAAwIABA3Dv3j3uagHyiq+vL1xdXRVeU7f9aNvqnrFuY2NdL1IR7evKUd2rn2g7E0NmbPFrbOtDKqcP+1yb7bM+rA+pOca8v5UdF4SUZ+xxYmdnh4CAAO5/Ly8vJCcnG/Wxb0hoPxDy+gytnispKUFkZCSWL18OHo8HgOoCfWZS2wXQJykpKXB2doZAIAAACAQCODk5ISUlBQ0aNKjl0uk/dduPMUbbVseMJX4XLlwIxhh8fHwwf/58o1kvUjna19VDdW/tq2uxW76etrW1re0ikddg6PFLeQPR131e3faZ2u66RV/jlxB9YGw5p1QqxW+//YaQkBA69vWEMe0HYzteiGEyhHruq6++wqBBg9CkSRPuNX0tK6HvvCSE6JFffvkFhw8fxr59+8AYQ2RkZG0XiRBCiByqp4k+oXgkhBBCjJMxtvErV66ElZUVxo0bV9tFIUbGGI8XYpj0vZ67ceMG7ty5gzFjxtR2UYiGaPBSjqurK9LS0iCRSAAAEokE6enpRv0IC21St/1o2+qeMWxjWVnNzMwwZswYXL9+3SjWi2iG9nX1UN1b++rSdlZWTxPDZsjxS3kDAfQ3hqvbPuvr+hDdoP1NiHLGlnOuXbsWz549w5dffgk+n0/Hvp4wlv1gbMcLMUyGUM9FR0fj8ePH6N27N0JCQpCamop33nkHCQkJeldWUoYGL+U4ODjA3d0df/zxBwDgjz/+gLu7O90erCF124+2re4Z+jYuLCxEXl4eAIAxhqioKLi7uxv8ehHN0b6uHqp7a19d2c6q6mli2Aw1filvIDL6us+r2z7r6/oQ3aD9TUhFxpZzrl+/Hnfv3sXGjRthZmYGgI59fWEM+8HYjhdimAylnps6dSouXryI06dP4/Tp03BxccG2bdvQr18/vSsrKcNjjLHaLoQ+iY+Px/vvv4/c3FzY2tpi7dq1aNmyZW0XS++sWrUKx48fx8uXL2Fvbw87OzscPXpU7fajbat7hryNExMTMXv2bEgkEkilUrRq1QrLli2Dk5OTQa8XqRra1+pR3au/6sJ2VldPE8NmiPFLeQORV9v7XNvtc22vD6lZxrq/VR0XhMhTFiebNm0ympwzLi4OAwYMQPPmzWFhYQEAaNy4MTZu3Gi0x76hMfT9QOdopLYZcj0XEhKCTZs2oW3btnpf1rqKBi8JIYQQQgghhBBCCCGEEEIIIXqBHhtLCCGEEEIIIYQQQgghhBBCCNELNHhJCCGEEEIIIYQQQgghhBBCCNELNHhJCCGEEEIIIYQQQgghhBBCCNELNHhJCCGEEEIIIYQQQgghhBBCCNELNHhJCCGEEEIIIYQQQgghhBBCCNELNHhJCNGZkJAQXLp0Sel7MTExCAsLUzrthg0bsHDhwhopIzFOFHuEkJrw/PlztGvXDmKxuLaLUmP11/jx47Fnzx610+zfvx9vvvnma82jOt5//32sX79e6/MFKq5Tu3bt8OzZM50si2jH1atX0aNHD4ObNyGaMPb4Lp+vE/WMIR7k85jk5GQIhUJIJBKtzPujjz7Cxo0bAWh/ffQlVivbZpXliZXlblWhSU5aWQ6tq7xWm+tZXvl10lW++zpl0kcULxQvNYXamddTW+0MDV7WAF1WdvqIOnMMQ22flPr6+uKvv/6qteVXh7E35DWFYq9mqBvANTb6dGzSABINIFVXXTpmif6oa+cpquhyO+j7hVH60FlGdMsQ47t8vk5tpPYYQjy4ubnhxo0bEAgEaqfTdF0iIyMxc+bM1y4XUDH31JdzS023GaBf505Eu/S1rtTXcmni4cOHRpsn6et+qYlyUTtTdbXVztDgZR1FSQrRBMUJqS11JfbqynoaEn1N4Ilh0eUArjZRHWQ4tHVVMCGE6Dtqm4g2Ufv5+uiY1A81sR+0sQyKF/1gKPFiDKid0S2DGrwMCQnB1q1bMXDgQHh5eWHp0qV4+fIlJk+eDKFQiIkTJyInJwcAcOrUKfTv3x++vr4YP3484uPjFeazbds2DBw4ED4+Ppg3bx5EIhH3/u7du9GnTx/4+/tj+vTpSEtL496Li4vDpEmT4O/vj27dumHTpk148eIFOnfujKysLG66u3fvokuXLnjw4AGWL1+OmzdvQigUwtfXFwBQUlKCtWvXolevXujWrRs++ugjFBcXq11/2d1KmzZtQkBAAEJCQnD48GHufXXzlH12y5YtCAwMxJIlSyCRSLBp0yaEhoZCKBRi6NChSElJAQDEx8dz6xkWFoaoqChuOe+//z5WrFiBqVOnQigUYsSIEUhISAAAjB07FgAQEREBoVCIqKgo5OTkYNq0aejSpQv8/Pwwbdo0pKamcvNLTEzE2LFjuX24YsUKhav1bt68idGjR8PX1xeDBg3C1atX1W4nY6QuZs+cOYOIiAj4+vpi9OjRuH//Pve58ldryDpTCwsLMWXKFKSnp0MoFEIoFCItLQ0bNmzAnDlzsHDhQnh7e+PAgQNIS0vD9OnT4e/vjz59+mD37t3c/GTTz5s3D0KhEEOGDFFYPgDExsYqLX2/0dsAACAASURBVLc27r6LiYnhYqNnz57Yv38/ACAvLw/vvfceunTpguDgYHz77beQSqVcmeXjS9mjGr788kuMHj0aQqEQb7/9NjIzMwEA48aNAwD4+flBKBTixo0br1V+Q0CxV5EsZnbt2oWgoCAEBQVh+/bt3PtSqRRbtmxBaGgoAgICMHfuXGRnZyt8ds+ePejVqxcmTJgAoKzd6du3L4RCIfr164d///0XAJCWlobZs2ejS5cuCAkJwc6dOxW2wdy5c/Hee+9BKBSif//+uHPnDgBg0aJFSE5OxvTp0yEUCvH9998DAObMmYPAwED4+Phg7NixiIuL4+aXlZWF6dOnw9vbG8OGDcP69esVrjBT1y6Q10NJf81RVacpu6JSvh4rLi7Gp59+iuDgYPj4+ODNN99Umrfl5eVh6dKliIqKws6dO7F+/XruZCYhIQFvvfUWAgICEBAQgAULFiA3NxeA6mNWXQ6UmJiIcePGQSgUYtKkSQp5qCqq6qC9e/eib9++8PPzwzvvvIOkpCTuM3///TfCw8Ph4+ODyMhIMMY02taMMaxcuRI+Pj4IDw/H5cuXlU4nlUrx7bffIjg4GF27dsV7772HvLw87n11Of29e/cwZMgQCIXCCvm8OidPnkRERAS8vb0RGhqK8+fPA3i1/4KCgtC9e3eF/Vcd77//Pj766CNMmjQJQqEQ48aNU9i2leXby5cvx5QpU+Dl5YWrV68iJSUFs2bNQpcuXRAQEIDIyEhuenX7sF27dvjtt9/wxhtvwM/PDytWrABjDPHx8UrPU86ePYvBgwfD29sbPXv2xIYNGxTW6+DBgwgODkZAQAA2btyocNGHujZQV0JCQrB582b069cPfn5+WLJkidJYkJVL1taeOHECAFRuh6qcr6lqr8+fP4/Nmzfj2LFjEAqFGDRokNp1yc7OxpIlSxAUFAQ/Pz/83//9H/eeqnNUZVc2y99NKavf1q5dCz8/P4SEhODcuXMAgPXr1yMmJgaRkZEQCoUKMUX0Q12Ib2V9FfL5uqo2si4ypnhQl8eUr9f279+P3r17QygUcv1gqtZFWfup7KIyVf1q5e9Gl88RlfV3lT+3jI+Px/jx4+Hr64v+/fvj1KlT3Hvq+tJU+frrr7Fy5UoAQGlpKby8vPC///0PQFl+2qlTJ+Tk5FTYZuq2r7p+DVlb0aFDByxZsoTrf5Xve9FGTiqzb98+pefU5anLB9Vtc/lz3OHDh1e6vWWU9f0CuslzKsvhfvnlF7zxxht44403sGLFCnz66acKn58+fTp++OEHtXXlkSNH0KtXLwQEBOC7777jXq9qP4yqfmRvb2+MGTNGIV78/Pzg6ekJPz8/JCUlceVat24dxo0bh86dO8PX1xebN2/G2bNnNerr/emnn9C5c2e4u7vD09NTIU969uwZlycNHz4cYWFh8PX1xciRIxWOjfj4ePj6+qJz587o378/Vq1axeVJPj4+6Ny5Mzp37ozhw4djz549yM/PrzRPonipWrxUp1zVGRugdka/2xn5cxK1mAEJDg5mI0aMYC9evGCpqamsS5cubPDgwezff/9lIpGIjR8/nm3YsIE9fvyYde7cmV28eJGVlJSwLVu2sNDQUCYSibj5DBs2jKWmprKsrCwWHh7Ofv31V8YYY5cuXWL+/v7s7t27TCQSscjISDZmzBjGGGN5eXksMDCQbdu2jRUXF7O8vDx28+ZNxhhjkydPZr/88gtX1tWrV7PIyEjGGGP79u1jo0ePVliXVatWsWnTprGsrCyWl5fHpk2bxj777DO163/lyhXm7u7O1qxZw0QiEbt69Srr3Lkzi4+Pr3Sess/+73//YyKRiBUVFbHvv/+eDRgwgMXHxzOpVMpiY2NZZmYmKygoYD169GB79+5lpaWl7O7du8zf3589fPiQMcbY4sWLmZ+fH7t16xYrLS1l8+fPZ/PmzePK2bZtW/b06VPu/8zMTPbnn3+ywsJClpeXx2bPns1mzJjBvT9y5Ej26aefMpFIxKKjo5lQKGQLFixgjDGWmprK/P392dmzZ5lEImEXL15k/v7+LCMjQ6OYMRaqYvbu3busS5cu7ObNm0wsFrP9+/ez4OBgLtbL74vFixezL774gjFWFhPdu3dXWM7XX3/NOnTowE6cOMEkEgkrKipiY8eOZcuXL2fFxcXs3r17LCAggF26dElh+mPHjrGSkhK2detWFhwczEpKStSWW9nyg4OD2d9//83NVxYDqiQlJTEvLy925MgRVlJSwjIzM9m9e/cYY4wtWrSITZ8+neXl5bHExET2xhtvsN27dyudd2JiImvbti0rLS1ljDE2btw41rt3b/b48WNWVFTExo0bx9atW6d02rqAYq8iWRy8++67rKCggN2/f58FBARw89ixYwcbMWIES0lJYSKRiH344Yfs3XffVfjsokWLWEFBASsqKmJRUVEsKCiI3bp1i0mlUvb06VP2/PlzJpFI2JAhQ9iGDRuYSCRiCQkJLCQkhJ0/f54ra8eOHdnZs2eZWCxmn332GRsxYoTS9ZLZs2cPy8vLYyKRiK1atYoNGjSIe2/evHls3rx5rLCwkMXFxbEePXpwbVdl7UJVBQcHs61bt7IBAwYwb29vNnfuXFZcXKy0vZSPpaKiIvbJJ5+wXr16MW9vbzZ69GhWVFRU4djMzc1lS5YsYYGBgSwoKIh98cUXTCwWM8YYe/bsGRs/fjzz9/dn/v7+bP78+SwnJ4cxxtjChQtZu3btWKdOnZiXlxfbsmULY4yxGzdusFGjRjEfHx82cOBAduXKFa58CQkJbOzYsczLy4tNnDiRrVixQuMY2r17N+vZsyeXZ+zZs4eFh4czX19f9vbbb7Pnz59zn7l48SILCwtj3t7ebMWKFWzs2LFcvabKvn372KhRo1hkZCTz9vZmYWFh3DHEWFl9J5uHRCJhGzduZL169WJdunRhixYtYrm5udy0J0+eZP369WM+Pj5s3Lhx7NGjR9x7//77Lxs8eDDz8vJic+fOZfPmzeOOd3VOnDjBBg0axIRCIevduzc7d+4cY0z9/isfI+XrGmXk46Zdu3bMy8uLPXv2jGVlZbHu3buzwMBA5unpyby9vRXWq23bttwx9PHHH7Nu3bqxyMhIJhaL2U8//cSVrW3btqxbt25s7969bMaMGWzMmDHM3d2ddejQgbVv354NGDCAMcbY06dP2cWLF5lIJGIZGRlszJgxbNWqVdzyyh+zleVAI0eO5HLCa9euMS8vL41jT74OOnHiBAsNDWWPHj1ipaWlbOPGjWzUqFGMMcYyMjKYUCjk6todO3Ywd3d3jWLP3d2d7dixg5WUlLCjR48yb29vlpWVxRhTjL09e/aw0NBQlpCQwPLz89nMmTPZwoULGWNMbU4vEolYr169uGUcO3aMdejQodLYu3XrFvP29mYXL15kEomEpaamcvt9xowZ7MMPP2QFBQXs5cuXbNiwYey3337j1qmqsbd48WLm5eXFrl27xkQiEVu5cqXG9erixYuZt7c3i4mJYRKJhBUUFLCBAwey1atXs4KCAlZcXMyio6MZY0ztPpSVderUqSwnJ4clJSWxgIAA7nhTVu9euXKF3b9/n0kkEhYbG8u6du3KTpw4wRhjLC4ujnl5ebHo6GgmEonYp59+yjp06KBRG6grwcHBrH///iw5OZllZWWxUaNGsS+++KJCex8VFcVSU1OZRCJhR48eZZ07d2ZpaWkqt0Nl51ayeWvSXld2bMpMmTKFzZ07l2VnZ7OSkhJ29epVxpj6c1Rl+an8MbZv3z7WoUMHtmvXLiYWi9kvv/zCAgMDmVQqrTAt0T91Ib6V9VWoy9frMmOKB3V5jHy9VlBQwIRCIdfvlZaWxrWVytalfPtZXFxc4VxUXb9a+TqxsvZffvuUlJSw0NBQ9t133zGRSMQuXbrEvLy8uHlX1pemzKVLl7hc8p9//mG9e/dmw4cP594bOHBghW1Wle0rv57ybYWfnx9zd3dnSUlJOs1JVZ1Ty8eSunywsm0+b948NmfOHFZQUMAePHjAgoKCKsRMeer6fjU515fvW6qsfdUkh5s4cSLLyspiRUVF7NatWywwMJBJJBLGWFmu7unpyV68eMEYq1hXysr0wQcfsKKiIhYbG8s8PDy43Leq/TCq+pEDAwOZu7s7e/78OUtNTWW+vr7Mw8ODpaWlsYsXL7J27dqxY8eOcfGybNky5ufnx7Zs2cK8vLzYW2+9pbavV7YegYGBbObMmSwmJoYFBASwbdu2McbK+gA9PDzY3bt32YMHD5i7uzvr378/KykpYevWrWNt27ZlBQUFXLyEhISwX3/9lV26dIl17NiRubu7s127drG5c+eywYMHs27durH79++zoKAg5u3trXY/UrxUPV6qWq7qjg1QO6Pf7Uz5cxJVDOrOS6Bs5LZhw4ZwdnaGr68vPD090aFDB5iZmaFPnz64d+8eoqKi0LNnTwQGBsLU1BTvvPMOiouLFUZ5x48fD2dnZ9jZ2SE4OBixsbEAyq4uGDZsGDw8PGBmZob58+fj5s2beP78Oc6ePYuGDRvi7bffhrm5OWxsbNC5c2cAwJAhQ7hRdIlEgqNHjyIiIkLpOjDGsGfPHixduhR2dnawsbHBtGnTcPToUY22wdy5c2FmZgZ/f3/07NkTx44d02iefD4fc+bMgZmZGSwsLLBnzx7MnTsXLVu2BI/HQ/v27WFvb4+zZ8+iUaNGGDZsGExMTODh4YGwsDCF5yv36dMHnp6eMDExwaBBg7jtp4y9vT3CwsJgaWkJGxsbzJgxA9HR0QDKvuz1zp07XLl8fX0REhLCffbQoUPo0aMHevbsCT6fj8DAQHTs2FGzkXkjoyxmd+/ejVGjRqFz584QCAQYMmQITE1NcfPmzWovx8vLC6GhoeDz+cjKysI///yDhQsXwtzcHO7u7hgxYgQOHTrETe/h4YHw8HCYmppi0qRJKCkpwa1bt9SWWxuOHDmCbt26YcCAATA1NYW9vT3c3d0hkUgQFRWFBQsWwMbGBo0bN8akSZMUrnKpzNChQ9GiRQtYWFggPDxca2U2VBR7ys2cORNWVlZo164dhg4dij/++AMAsGvXLrz77rtwcXGBmZkZZs2ahb/++kvhjojZs2fDysoKFhYW2Lt3LyZPngxPT0/weDw0a9YMjRo1wp07d5CZmYlZs2bBzMwMTZo0wciRIxXuzPHx8UHPnj0hEAgQERFR4e7T8oYPHw4bGxuYmZlh9uzZuH//PvLy8iCRSHD8+HHMnj0blpaWaN26NQYPHsx9TpN2oaqOHTuGrVu34tSpU3jw4AF357Q6a9euxb///ovff/8d165dw6JFi8DnV0xlFi9eDBMTExw/fhwHDx7E33//zV3ZxhjDtGnTcOHCBRw7dgypqancXUXr1q2Dm5sbNm3ahBs3bmDKlClIS0vDtGnTMGPGDFy7dg2LFy/GnDlzuDuyFy5cCA8PD1y9ehX/93//hwMHDmi8DaKjoxEVFYVt27bh5MmT2Lx5M7755htcvnwZPj4+WLBgAQAgMzMTs2fPxrx583DlyhU0bdoU169f12gZt2/fRpMmTXDlyhXMmTMHs2bNUnq15/79+3HgwAHs3LkTJ0+eRGFhIXdl6ZMnT7BgwQIsXboUly9fRo8ePTB9+nSUlJSgpKQEM2fOREREBK5du4bw8HAcP35co3ItXrwY7733HmJiYvDLL7+gUaNGANTvv+qQjxtXV1dMnDgRLi4uyMrKQkZGBjw8PLBs2TLUr1+fWy95UqkU+/btg6enJ2xsbCAQCNCmTRtkZGQgPz8fALBy5UqsWLEC58+fx7Zt2zBo0CBMnjwZ69atg52dHQCgWbNmCAwMhJmZGRo0aIBJkyZx+ZAy6nIgWf4kywllVy5qSr4O+v333zF16lS0atUKJiYmmD59OmJjY5GUlITz58+jdevWXF07YcIENGzYUKNlNGjQABMmTICpqSn69euHFi1a4OzZsxWmO3LkCCZOnIgmTZrA2toa8+fPR1RUFMRisdqc/tatWygtLeWWER4ejk6dOlVarr1792LYsGEIDAwEn8+Hs7MzWrVqhZcvX+L8+fNYunQprKys4ODggIkTJ2qcn6vSq1cv+Pn5wczMDO+++y5u3ryJlJQUjerV3r17w8fHB3w+Hw8ePEB6ejree+89WFlZwdzcnLv6V90+lJkyZQpsbW3h5uaGgIAAte1FQEAA2rVrBz6fj/bt26N///64du0aAODPP/9EcHAwfH19YWZmhjlz5oDH43Gf1aQN1IWxY8fC1dUVdnZ2mDFjhtL91rdvXzg7O4PP56Nfv35o1qwZbt++rXR+VTlf06S91kR6ejrOnz+PFStWoH79+jA1NYW/vz8A9eeomnBzc8PIkSO5nO3Fixd4+fJllcpHao+xxzdQsa+CqGYM8VDVPIbP5yMuLg7FxcVwcnJCmzZt1M5fvv00NzdXOo2yfrXXdevWLRQWFmLq1KkwMzND165dERwcrLAtq9KXBgBCoRBPnz5FVlYWYmJiMHz4cKSlpaGgoADR0dEKx5FMdfNE+bbCysoKEokEpqamOs1JVZ1Ty6ssH1S1zWXnuHPmzIGVlRXatm2LIUOGVFomdX2/2s5zNMnhpk6dCjs7O1hYWMDT0xP16tXjnmgSFRUFf3//SvPzWbNmwcLCAu3bt0f79u0V8sCq9MOo6kc2MzODvb09nj59ikOHDqFZs2bo2rUrnJycuPOf27dvc/Hi4uKCnj17YsqUKQgJCYGjo6NGfb0vXrzA6tWr4ePjg6FDh+LRo0cAyr6XsmnTpvDw8MCJEycQEhKCJ0+eIC0tDSNHjgRQdueeLF5cXV1hYmKCrl27on379rC2tsawYcNw4sQJrF69Gi9fvkSDBg0oXnQUL1UtV3XGBqid0f92RtNzEpNK56pn5APZ3Nxc4X8LCwsUFhYiPT0dbm5u3Ot8Ph+urq4Kj391dHTk/ra0tER6ejqAsqTaw8ODe8/a2hp2dnZIS0tDSkoKmjZtqrRcvXv3xvLly5GYmIgnT57AxsYGnp6eSqfNzMxEUVERhg4dyr3GGOMea6mOra0trKysuP/d3NyQnp6u0Tzt7e0VDqjU1FSl65OUlITbt29zHSJA2YCs/GM/lG13VYqKivDJJ5/gwoUL3GN9CwoKIJFIkJ6ejvr168PS0pKb3tXVlXt8bXJyMv7880+cOXOGe18sFiMgIEDl8oyVspjNycnBwYMH8fPPP3PvlZaWcvFcHS4uLtzfsv1jY2PDvebm5oa7d+8qnV7WCSi/fFXH2utSdTxmZWWhtLRUoQ5wc3NTOP4rU77M6uK7LqDYU87V1ZX7u1GjRnj48CGAsnpr5syZCoNqfD4fGRkZSsuuKpaTkpKQnp5eoS6W/798XSwSiSAWi2FiUrF5l0gkWL9+Pf78809kZmZy5cvKykJxcTHEYrHCOsn/rUm7UFWywWUA3OCyl5eXyullA0i7d+/mPuft7V1hOtkARExMDCwsLGBlZYWJEydi165dGD16NJo1a4ZmzZoBADeA9M0336hcrnyiDEAhUQ4ICMCdO3ewY8eO1xpAAhRPRICyx6Zs3rwZSUlJiI6O5gaQAGDChAlqH6skTzaAxOPx0K9fP2zfvp17JKQ8+QEkAJg/fz4GDhyITz75RKHDAADeeecd7Ny5Ezdu3ACfz+cGkHg8HsLDw/HDDz9UWi75ASQAcHZ2hrOzc6X7r6rKxw2Px+MGkqKiotCsWTPUq1cPAoEAzs7OeP78OW7cuKGQZ2RlZUEkEsHa2lph3iYmJnjrrbfw888/o0ePHjA3N0deXh6CgoJQXFwMHo8HU1NT7ljKyMjAqlWrEBMTg4KCAjDGYGtrq7Ls6nKg9PR0pTmhLH+qjHwdlJycjDVr1mDt2rXca4wxpKWlIT09XWFaHo+nUDeoI9ve8uVTVg+np6dzA9dAWX0qFouRkZGhNqeX7bPyy6hMSkoKdzzLS05OhlgsRlBQEPeaVCrVeH1Vkd9+1tbWqF+/PtLT0zWqV+WXnZKSAjc3N6X1u7p9KNu25dvEgoIClWW+desWPvvsM8TFxaG0tBQlJSVc/VM+JiwtLbkBellZVLWBsrpbF+S3lapYO3jwIHbs2MF18BQWFqp8tF1Vztc0aa81kZqaivr166N+/foV3lN3jqrJdpXPF2TnXXU9vzUkxh7fQMW+CqKaMcRDVfIYKysrrF+/Htu3b8cHH3wAb29vLF68mMuZlams7VbVr/a6ZG2kfBtYvi+iKn1psmk6duyI6OhoREdHc4MV169fR3R0NPdovvLlqE6eKF822ToUFhbqNCdVdU5dfn1U5YMmJiYqt3lmZmaFc1xNc0VVfb+anOtXhSY5XPl4lt08ExgYiMOHD+Ott96qdDnl8wD5uKtKP4yqfmQA6NmzJw4fPgxLS0vcvXtX4UK7kpIS5OTkcPHy4sULLqZEIhGkUilMTU0r7euVb0fk46WgoIB7PT09HU2aNKmQJ6Wnp8PMzAwuLi4K5w/29vZISkri4qV58+YAymKf4kV38VKVclVnbIDamTL63M5oek5icIOXmnByclJo8BhjSElJ0ejEzsnJSeGKhcLCQmRnZ8PZ2Rmurq4qr742NzdH3759cfjwYTx+/Fjhrkv5ShEoqxgtLCxw9OjRKp/E5+bmorCwkAuOlJQUtGnTRqN5li+Hi4sLEhIS0LZtW4XXXV1d4efnhx07dlSpbKps374dT548we7du+Ho6IjY2FgMHjwYjDE4OjoiJycHRUVFXNDKB7qrqysiIiKwatUqrZTF2Li6umL69OmYMWOG0vctLS1RVFTE/f/ixQsuPsrHg4z8605OTsjJyUF+fj7XGJU/luS/v1QqlSItLQ1OTk7VXykNubq6Kr161N7eHqampkhOTkbr1q0rlNnS0lLh+zuqctW5qm1WF9Xl2JNJSUnhkpnk5GRu2S4uLlizZg18fHwqfEZ2h4T8urq6uip9Br2rqysaN26s0V1smjhy5AhOnTqFHTt2oHHjxsjLy4Ofnx8YY2jQoAFMTEyQmpqKFi1acOsnXxZttgtA1QeXZQNIssE1VSobgKABpLo1gKQubtLT01GvXj0Ar9oG2Xq9ePGCm07WoVp+sMfOzg4CgYD738rKCkVFRbhy5QqWLVsGZ2dnvPvuu9z7n3/+OXg8Hg4fPgx7e3ucPHlS7ffLqcuBkpKSKuSEycnJGrdT5eug6dOnK70Y4dmzZwp1rSyn1kRaWhoYY9yyUlJSlA7ul8+9k5OTYWJiAgcHB7U5PY/Hq7CM5OTkSusIVXWu7IroK1euKB0grC757VdQUICcnBw4OTlVuV6VXdyn7AIVdfuwMspiZsGCBRg3bhy2bt0Kc3NzrF69muv0dnJywpMnT7hpi4uLFe7mVtcG6pJ8XMq3yTJJSUlYtmwZfvjhBwiFQu6JBTKvc75WWXut6XHp4uKCnJwc5ObmVmiX1J2jyuqA4uJiLmeSr8OI4TP2+K7KfIhxxIOjo2OV8pju3buje/fuKC4uxpdffokPP/wQv/76a7XjRlW/GlDxPLYq/QVOTk5ITU2FVCrlOpZTUlK4wZDq8vf3x5UrVxAbG4tOnTrB398fFy9exO3bt+Hn51dh+sq2b1W3my5zUlXn1PLU5YMCgUDlNped48ovQ5M8Vl3frybn+lWhSQ5XflsOGjQIAwYMwP379xEfH4/Q0NAqL1fV/Cvrh1HVjwwA3bp1w8cff4zBgwdDIBDg6tWr3J30ISEh6N+/PxebDRs25GJqwYIF4PF4+Oyzzyotq3w7Ih8v1tbW3ACIk5MTYmNjuTxJ1tcsu7M8NTVVYbAtOzsbpqamCvEiQ/Gifv6vEy9VKVd1xgaonama2m5n1DG4x8Zqom/fvjh37hwuX76M0tJSbN++HWZmZhAKhZV+duDAgdi/fz9iY2NRUlKCL774Ap6enmjcuDF69eqFly9f4ocffkBJSQny8/MVHlEYERGBAwcO4PTp0woViYODA9LS0rjHkPH5fIwYMQJr1qzhrrZIS0vDhQsXNFq/DRs2oKSkBDExMTh79izCw8OrNc8RI0bgq6++wtOnT8EYw/3795GVlYVevXrh6dOnOHjwIEpLS1FaWorbt28rfCG2Og0bNkRiYiL3f0FBAczNzWFra4vs7GyFO1waNWqEjh07cut048YNhQ7iQYMG4cyZM7hw4QIkEglEIhGuXr2q0BFUl40YMQK///47bt26BcYYCgsLcfbsWe4xdu3bt8cff/wBiUSC8+fPKzyezsHBAdnZ2cjLy1M5f1dXVwiFQnzxxRcQiUS4f/8+9u7di4EDB3LT/Pvvvzh+/DjEYjF+/PFHmJmZcY9I0KWBAwfi0qVL3KPlsrKyEBsbC4FAgPDwcKxfvx75+flISkrCjh07uGPS3d0d0dHRSE5ORl5eHjZv3qzxMhs0aAA+n68Q33VVXY49mW+//RZFRUWIi4vD/v370a9fPwDAm2++iS+//JLrZMzMzMTJkydVzmf48OHYvn077t69C8YYnj17hqSkJO4RlVu2bEFxcTEkEgkePnyo8pFP5Smri2WPcykqKsIXX3zBvScQCNCnTx988803KCoqQnx8vMIjel+3XdBU+YsLlA0gVXb8yQ9AxMTEICYmBtevX+dOKOQHkK5fv45169aBMaZyfrJEWTavmJgY3Lx5E1OnTlVI2GSSk5M1Xt/yA0grVqxQWM7t27fh7e0NR0fH1x5AkklJSVHZKaBuAEl+veQ7DBwdHSssQ5NtoMkAkrL9V1Xq4sbJyYmrh9q3b4+4uDgkJCTA3t6ee5SwSCQCn8/HsGHD8M8//3BPjoiLi6sQNwKBAB4eHvj0008hFovBGENCQgL3uM2CggJYWVnB1tYWaWlp2Lp1q8Lnyx+z6nKg8vlTTEyMQv5UFaNHj8aWLVsQFxcHAMjLr7BtcQAAIABJREFUy+MeadOzZ0/ExcVxde3OnTs1PrnKzMzEzp07UVpaimPHjiE+Pl7pgPWAAQPw448/IjExEQUFBVi/fj369u0LExMTtTm9l5cXTExMsHPnTojFYhw/fhx37typtFzDhw/H/v37cfnyZe7Cl/j4eO6xVp9++iny8/MhlUoV9l91nTt3DjExMSgpKcFXX32Fzp07w9XVtcr1qqenJxwdHfH555+jsLAQIpEI//zzDwD1+7Ay5c9TgFdXr5ubm+P27dsKj3ALCwvD6dOncf36dZSUlODrr79WOBaq2gZqy6+//orU1FRkZ2dj8+bNXJssU1RUBB6PhwYNGgAA9u3bx20v4PXO1yprrx0cHJCUlFTpU3acnJzQo0cPrFixAjk5OSgtLeXyJ3XnqA0aNICzszMOHToEiUSCvXv3VilXLV/3EP1j7PGtCYrTV4whHqqSx7x8+RKnTp1CYWEhzMzMYGVlxV08pqwN05SyfjWgrL/gxIkTKCoqwrNnz7B3716Fz6mLRU9PT1haWmLr1q0oLS3F1atXcfr06Qr7qKr8/Pxw8OBBtGrVinsE4Z49e7g2oLzKtm9V+zV0mZOqOqeWpy4fVLfNy5/jPnr0SKOv+FDX96vtPKc6OZyLiws6deqERYsW4Y033lB41Pbr1pWV9cOo6kcGyuKqU6dOuHjxIgQCAaKjo7l4sbCwwN27d7l4SUtLw+nTp7F9+3acOXMGUqlUo75eJycnfPTRR7h+/Tr279/P3bDQtm1bJCYmIjY2FqGhoTh9+jSaN28OZ2dnHDx4EAKBAAkJCfDw8OByfIlEgqtXryI2NhYNGjRQiBeg7CLOAwcOwNTUVO02pXipXrxUpVzVGRugdqZqarudUccoBy9btmyJdevWYeXKlejSpQvOnDmDTZs2wczMrNLPdu3aFXPnzsXs2bMRFBSExMRErF+/HgBgY2PDVayBgYEICwvD1atXuc/KnnXs4eGBxo0bc6936dIFrVu3RlBQEHdL86JFi9CsWTOMHDkS3t7emDhxosJVzKo0bNgQtra26N69OxYuXIiPP/6Yu4KoqvOcNGkS+vbti7fffhve3t744IMPIBKJYGNjg23btiEqKgrdu3dHUFAQPvvsM40P1FmzZuH999+Hr68voqKiMGHCBIhEInTp0gWjRo1C9+7dFab/7LPPcPPmTQQEBODLL79Ev379uH3l6uqKb7/9Fps3b0bXrl3Rs2dPbNu2TaNH7NYFnTp1wsqVKxEZGQk/Pz+88cYbCt8b98EHH+DMmTPw9fXFkSNHFK5kadWqFfr374/Q0FD4+vqqfKzqF198gaSkJHTv3h2zZs3C7Nmzucf8AWWPTI6KioKfnx8OHTqEDRs2wNTUVHcr/R83Nzd8//332LFjB/z9/TF48GDuOewffvghLC0tERoaijFjxmDAgAEYNmwYgLJHPvbr1w+DBg3C0KFDERwcrPEyLS0tMX36dLz55pv4f/buOzyKcu3j+Hez2XRCSAgQpCtERJASuoAC0iWcoyhKOUrTI5aDBXiVQxEsoOIRDmDHoyAKIh0FaQIqIoL0EhBB6YSE9K3z/rHJkgBJNslmZ3b2/lyXlyHZnbkDv5ndnXue50lISCjT+o6+zp+zl6dVq1bcc889PPLIIwwdOtQ1UmzIkCF07tyZoUOH0qxZMx544IEiG449e/bk8ccf57nnnqN58+aMGjWKK1euYDQamTt3LocPH6ZLly60adOG8ePHuxrExRk5ciRz584lISGBjz76iH79+lG9enU6dOhA7969r5uidcKECaSnp9O+fXvGjBlD7969Xefisr4uuCuvgXTo0CHMZrOrgQS4GkivvfYa58+fx263s3v37utqKK4BIQ0k/2ogXZsbRVE4duwYFouFnj17cvLkSS5dukSNGjVo06YNV65c4aWXXnLdHbtx40bsdjvt27cnIyODJUuW0KpVKxYtWnTD/Y0YMQKr1crGjRv56KOPePrpp11N+CeffJKDBw+SkJDAyJEj6datW4HnXnvMFvce6K233mLPnj20bt2a2bNnXzcVsLvuuecehg8fzrPPPkvz5s3p06cPW7ZsAZwfOt555x3eeustWrduzcmTJ284XfONNGnShJMnT9KmTRv+85//MHPmTCpVqnTd4+677z769u3LoEGD6NKlC0FBQfz73/8Gin5PHxQUxKxZs1i6dCktW7ZkzZo13HPPPW7V9dprr7nugh40aJCr4T59+nSsViu9evWiZcuWBf79SqtPnz7Mnj2b1q1bc+DAAd544w2g5OdVo9HIu+++y8mTJ7n77rvp2LGj6xxR1L9hcW70OWXixInMnDmTZs2aMXv2bHr27Ol6fP369fn3v//Ns88+S4cOHQgPDyc6Otr1elHS10BP6dOnD0OHDqVr167UrFnzupkhbrnlFoYOHcqAAQNo164dR48eLZDlsnxeK+71Ou9CRevWrYtdO2n69Omu8267du343//+BxT9GRWc6+5+9NFHtG7dmmPHjrl1026eIUOGsHbtWlq2bCmz3WiU3vPtjmtfI/2ZXvLg7vsYh8PBvHnz6NChA61ateKXX35h4sSJhf4u7ijqulreWtrt2rVj7NixBW6eheuvd+UXFBTE3Llz2bJlC23atGHy5MlMnz69yKkH3dGsWTPMZrNr9Mstt9xSYErOGynq77ek1zXK8z1pYZ+p8yvu/WBRf+cTJkwgKyuL9u3bM27cuALTIxemqGu/nn6fU9r3cP369ePo0aMFRlWDZ86VRV2HKew6cv66Tpw4wdixYwvkJSQkhM8++4yEhARat27N8ePHycjIYO7cuVitVr777ju3rvUOHTqUTZs28fDDD5OZmcmuXbsAqFmzJvHx8Tz11FMMHjyYW2+9FavV6srLv//9bz755BM6dOhAx44dCQ8P59VXX2Xy5Mk88MADrsZZXl7Aea3673//O1WqVCnyfZLkpWx5caeu0vYG5HXGfWq/zhRJER41ePBgZdGiReWy7e3btysdOnQol21ryTPPPKO88847apch3DBz5kzlueeeU7sM4YfUzN6ff/6pNGjQQLFarars31umT5+ujBkzply2fffddys//PCD68/5/z3nzJmjtGrVSunYsaOybNkypUGDBsoff/yhKIqiZGdnK1OnTlXuvPNOpXnz5srDDz+sZGdnX/dvkpaWpkyYMEHp0KGD0rx5cyUxMVFZtWqVoiiKcvToUeVvf/ub0rRpU6Vv377KRx99VOC19bvvvlM6deqktGjRQvnwww8VRVGU3377TRk4cKDSsmVLpXXr1sqIESOU06dPK4qiKKdOnVIeeughpWnTpsojjzyiTJ48udhsFpahpUuXKn369FGaNWumdOzYURk3bpzrZ99//73SrVs3pXnz5srkyZOVgQMHFvt+Y8mSJcqDDz6oTJ48WWnevLnSrVs3ZevWra6fDxo0yLUNu92uzJo1S+nYsaPSunVr5bnnnlNSU1Ndj123bp3Ss2dPpXnz5srAgQOVo0ePun62d+9eJTExUWnatKnyzDPPKM8884wyY8aMImvL22afPn2Upk2bKl27dlW2bNmiKErR/35LlixRBgwY4NpG/nwUprDcuPN79erVS2natKny/PPPK6NHj3b9Xjd6T5Y/1ydOnFD69u2rtGjRQvnnP/9Z7N+F0KexY8e6dSz4soyMDKVhw4bKqVOnVKvh2tcUIfRE8i3ykzwIIRRFUXbs2KF06tRJsdvtapdSgFbr8nda/XfRal1CWwyKUsRcaaJE9u7dy9ChQ9m8eXOB+bM95eeff+aFF15w+05qX7F3716ioqKoUaMG27ZtY9SoUXz55ZfcdtttapcmijFr1ixOnjzp1tz0QniSmtn766+/6NKlCwcOHPDoumhqO378OFarlfj4ePbt28eIESN45ZVXyrwmghBC+Ktx48Zdt/apHmzcuJG2bduiKAqvv/46e/fuZenSpaqtWde5c2emTp1Ku3btVNm/EOVJ8i3ykzwIIaxWK88++yzx8fE8+eSTapfjotW6/J1W/120WpfQHv1cdVXZ2LFjWb9+PS+99FKZGpfvvvvuDdfga9GiBSNGjChLiZp16dIlnnrqKVJTU6lWrRqTJk2SxqUAYMWKFa6h+vlVr1691OufCeGOorJXknVSfUlmZibPPfccFy5cICYmhqFDh9KlSxe1yxJClJC3XjsnTJjAypUrr/v+vffey8svv+yx/ZRGUe+nr50quqx69+59w3VeJ0+e7NH9aMmGDRsYM2YMiqJw++23M2PGDNUal76osCldP/jggyKnZhLCF0i+RX6SB/fs3Lmz0Ot9u3fv9nI1nqPl6zne/Dv35Hvm48ePc99993Hrrbfy2muvearEMvNEXXl5yZu2NY/BYCA0NFTV84bkxbM8WZe8zrjHl19nZOSlEEIIIYSHSQNJOw2kvn37enRfQgghhBBCCCGEEKJ8SfNSCCGEEEIIIYQQQgghhBBCCKEJAWoXIIQQQgghhBBCCCGEEEIIIYQQIM1LIYQQQgghhBBCCCGEEEIIIYRGSPNSCCGEEEIIIYQQQgghhBBCCKEJ0rwUQgghhBBCCCGEEEIIIYQQQmiCNC+FEEIIIYQQQgghhBBCCCGEEJogzUshhBBCCCGEEEIIIYQQQgghhCZI81IIIYQQQgghhBBCCCGEEEIIoQnSvBRCCCGEEEIIIYQQQgghhBBCaII0L4UQQgghhBBCCCGEEEIIIYQQmiDNSyGEEEIIIYQQQgghhBBCCCGEJkjzUgghhBBCCCGEEEIIIYQQQgihCdK8FEIIIYQQQgghhBBCCCGEEEJogjQvhRBCCCGEEEIIIYQQQgghhBCaIM1LIYQQQgghhBBCCCGEEEIIIYQmSPNSCCGEEEIIIYQQQgghhBBCCKEJ0rwUQgghhBBCCCGEEEIIIYQQQmiCNC+FEEIIIYQQQgghhBBCCCGEEJoQqHYBQgghhBBCCCF8y4kTJxg3bhypqalERUUxbdo06tSpU+AxdrudqVOnsnXrVgwGAyNHjqR///4AzJ49mzVr1mA0GgkMDGT06NF06NBBhd9ECCH8T0pKCmPGjOHUqVMEBQVRu3ZtXn75ZaKjo9UuTQghhBACAIOiKIraRQghhBBCCCGE8B1DhgzhvvvuIzExkeXLl7NkyRI+/fTTAo9ZtmwZK1eu5IMPPiA1NZV+/frx+eefU6NGDbZu3UpCQgKhoaEcPnyYQYMGsW3bNkJCQlT6jYQQwn+kpqZy5MgRWrduDcC0adO4cuUKr776qsqVCSGEEEI4ycjLXCkpmTgczj5uTEwEyckZKlekPk/8PQQEGKhUKdxDFenXtGnTWLt2LadPn2blypU0aNCgRM/35fxquV7Jr3fkzy9oOxMlpfbvIhn2Dl8+B2tN/r8/ya93XHsOLi2tZV9RFBRFISCg6FUyyqtuvec3OTmZgwcPMm/ePAD69OnDlClTuHz5coFRO2vWrKF///4EBAQQHR1N165d+fbbbxk+fHiBUZbx8fEoikJqairVqlVzuw5/Ov968/fTe361wlPn3+KUOjtWK8ErlhKQchlHZEWs7TvguKmGevW4SfLrnqioKFfjEqBp06YsXLiwRNvwVoaLEh0dTnJyBgaDQdU6Sqqo40Ay7B3Xvoe4dCld8znyhfc6kl/vuPb8azx1kqiDv5Hc7V4o5vOPVmkh35Jf7ZHmZS6HQylw0C9Y8Bnjx4/j+PG/VKxKfWq/EfUXXbp0YciQIQwcOLBUz782v5UrV+Ds2RSMRqOnSixXkjP/dm1+u3bsyC0NGzNl6usqVuU5km/9uzbDytlzxDauz29PPUv1f09SrzAfJceMd12b37JuSwvMWVn0a9uc7MwMNmz+CWONmkU+Xit1+5KzZ89StWpV13tNo9FIlSpVOHv2bIHm5dmzZ6levbrrz3FxcZw7d+667S1btoxatWqVqHEJXHdxISYmAoCkpCQaNGiA3iYZyvv9hD548vzrzr5KqsJT/yTkqy9df1bCwkj9agW2hFaq1CPKj8PhYOHChXTu3LmEz/Nehq915UoqU6ZM4uuvF1GhQiTvvfcxbdq0U6WW0pLjQF3X5jc2NpJduw5Qo5j3jWqT3Ai4Pr8xzW8HIOjt/5IzcIhaZZWZ5FtcS5qXhfjxx22kp6epXYbwEwkJCR7blsPhAMBsNhMWFuax7Qr/485aVp5er8p4+BAbtm7l6C87ddO8FP4naMxoAA7NmiHNSyFUsHjYYKqePUM28O2gB+i9+Se1SxJF2LFjB++88w4ff/xxiZ+bnJzhusgRG1uBixfTAfju2ecBuHjiLEToo+GX//crbwEBBmmU+rnAnTsI+epLlNBQsh8ZTuCB/QRt2UTk0MGk/PALSoVItUsUHjRlyhTCwsIYNGhQiZ6n1nnCarXSt+8D3H777SQlJbF7926GDXuUffv2ERMTo0pNpREbW0HtEsQ1UlNTNd+8FKIoxgP71C5BCI+S5mUhfGXEmhBQ8EOD1WoFICIikJgY33gzLG/atWnixIk8/PDDrrWsJkyYcN1aVk2aNGHo0KEeW68q6Lu1AJhzsstcv/AP7jTZ7XY7U6dOZevWrRgMBkaOHEn//v0BmDVrFp9//jlVqlQBoHnz5kycOLFMNV088TsAl8q0FSFEqWRns27TRoYBOcDSgwe4989TOGrWUrsyXYmLi+P8+fPY7XaMRiN2u50LFy4QFxd33ePOnDlDkyZNgOtHYu7evZsXXniBOXPmUK9ePc8VuGoFAAEzpuOY8LLntiuEnwh7+w0Ash4bRdaLE8BqJapvd0y/7iTsrelkTpqqcoXCU6ZNm8bJkyd59913i51q/Vr5byDxpvfem01ISBhTp75J1aoVSUi4kz59EnnmmWd5++3/er2e0ijqhhS5gUQ9iuJQuwQhykb6GUJnpHlZiJK+aRNCTfk/NEREOA/r06cv4XAEqVmWW7x5F3lJ+fOHBnfXsvLEelX52evdDIACGC5dQqlcufS/hPAL7jTZV65cyalTp1i3bh2pqan069ePtm3bUqOGc92mfv36MXbsWI/VdCX3A4M0L4XwPsOm9Wx12Pn09sZkVY3jqQ3rMG74Dscjw9QuTVdiYmJo2LAhq1atIjExkVWrVtGwYcMC7xEAevToweLFi+nWrRupqamsX7+eBQsWALB3715Gjx7NzJkzadSokUfry3tnmfl7EqEe3bIQ+hdw5jRBG75DMZnIGvFPLl26RFRUFBmvv0VUt7sIfX8OOUMewV7vFrVLFWX09ttvs3//ft5//32CgrR/7QCcNyV+8MG7vPfexwWu240bN5527RLYvftXmjVroWKFwhflzWCWNxhACJ9lkH6G0BefaV6mpKQwZswYTp06RVBQELVr1+bll18mOjrarVEXJaW39VGE/7Db7QDk5OSoXInwZe6uZZVfaderKtAgrnj1EmPlsADQwahcGVlcftxtsq9Zs4b+/fsTEBBAdHQ0Xbt25dtvv2X48OHlUpfFZHLWB6AoYDCUy36EENc7+s1qagNhXbsTWrkylTas4+S2LVSX5qXHTZo0iXHjxjFnzhwiIyOZNm0aACNGjODpp5+mcePGJCYmsmfPHrp16wbAqFGjqFnTOR3b5MmTycnJYcKECa5tTp8+nfj4+LIVZrWSkftlmtUqzUshSihk0UIMDgdpPXoz4KnH2LHjZ0JDQ5k2bQYDBgwkdOF8wv7zFukz56pdqiiDpKQk3n33XerUqcOAAQMAqFGjBrNnz1a5sqJt2bKZ6OhoWrRoWeD7FSpE8tJLE3nxxRdYvXq9DEgQJZJ3Hc1ikeal8HEy8lLojM80Lw0GA8OHD6d169aAc2qLN998k1dffdWtURdC+AtpXgo1eGq9qqCUTMA58jL5whUcYdoclesutUcW6330sLtN9munKYyLi+PcuXOuP69evZpt27YRGxvLU089RbNmzUpUx7V/x4rR2axMB2IjAkHWHy4RafiLsvjt5+20AmwtW6GER9AEOLh3N9WLe6IosZtvvpnFixdf9/0PPvjA9bXRaGTy5Mk3fP6SJUvKpS7DlSuukZdpV9KoWi57EUKnFIXgL5yjo0dbLYSFhZOUdIo9e3bz6KODyHl8FI8bjQQv/oLM0S/gqOvB6Z6FV9WvX58jR46oXUaJrVq1gsTE+274swceeIj//e8jFi1ayIABA71cmfBl9rNnATB+/D60aatyNUKUgTQvhc74TPMyKirK1bgEaNq0KQsXLnR71IUQWjZ16lTWrVvHpUuXePTRR4mKimL16tWl2lZe89JslualKD1317ICD69XlbvGhAIYHPaybUsINwwYMIDHH38ck8nEDz/8wBNPPMGaNWuoVKmS29vI34CPja1AZmYW4GxeJh//C0e1648bcWP5G/56b76LcmCxsPPPk7QCrC1agtHIHcCBP/+kq80GgT7z0UeUQUBqimvkZXq6b98EJYS3Be7fS+Dvx9ldqRIrf9vNjz/uxGg00rx5AosWLeO+++6lctv29N+2hbA5s8h44221SxZ+xG638803K/nmm403/HlAQACvvfYmgwY9SI8evYiKcv/9vPBv9vffB8CwbAm8P0/laoQoIbtcOxP65fVP8Bs2bKBTp04EluHigcPhYOHChXTu3LlUUxveyLUXx4KDnfX5+93//v77l0RZsj1+/HjGjx/vkTpsNhtwtYkp/Ftpc+nuWlaeXq/KkJtbBcDuKPP2hPaV5dzpbpM9Li6OM2fO0KRJE6DgSMzY2FjX49q3b09cXBxJSUm0atWq1L+TxWIBnM1LQ2oqSPPSL3niPa8omcAD+9hptzOyRk2U6BgAbq8cy/xLFzEeS8J+a0OVK9QWvWbUkHKZrNyvpXkpiqPX46C0glYuB+DlyIo8M+JxKlaMcv0sPv5W5s//koce6EctoNUX88l84f9QqlRRqVrhb/ndvv1H4uJuonbtOoU+pmnT5vTs2Yc33niNV16Z7r3i/IzesmdPTgbAonIdwjv0ll9DVubVP8hAFqEzXp8E/p133uHOO+/k5ZdfZs+ePaXaxpQpUwgLC2PQoEEeqys5OYOLF9Ndd/tnZztfsvK+54//eeL3T07OKPTvXG88kW1PyGta5i04LvxbWXI5adIk5s+fT/fu3Zk/f75r2rcRI0awb98+oOB6VYmJiSQmJpZt+iHH1ZGXcveYfyhLRvM32YFCm+w9evRg8eLFOBwOLl++zPr16+nevTsA58+fdz3u0KFDnD59mrp165bpd7JaLFQC0gBDpv+8DoqCtPK+wJ9Yf9hKEtCw3Z2u793W6Hb24hxNJArSa0YNWVlkAxFAWpacg0XR9HoclIqiELxiKUeBbSkpDBz4j+se0rRpc97573v0Cw7md7OZ0I/f836dwsXf8rty5TLuvTcR7HaCl35F+MSXYN48yMws8Ljnnx/HokVfkJqaolKl+qe37OU1L80q1yG8Q2/5NeQ7BxqyslWsRAjP8/otBitWrODw4cMsX76cp556itDQUBITE+nbty81atQo9vnTpk3j5MmTvPvuuwQEBJRoakMhylNZs+0p9h9+AMCwby+0bF3Mo4XelSWX7qxl5fH1qvI33aUB7xfKeu6cNGkS48aNY86cOURGRjJt2jTA2WR/+umnady4MYmJiezZs4du3boBMGrUKGrWrAnAjBkzOHDgAAEBAZhMJqZPn15gNGZpWKwWKpM78jJDLpz7K628L/Anx3/6kVuAgISrI6drtmzNxe83kbnzFwLvf1C94jRIrxk15OSQA1QF0rPlAo4oml6Pg9IwHjxA4O/HeTMkhH8MG0l4ePgNH9etW0+eGzqSfnNnsfOj9+HJ0RAh07yrwZ/yqygKa9d+w5cffUrFh+4jaHPu1LFzISayIjmPDCNz9AsQHk7VqlXp0uUevvzycx57bJSqdeuV3rJnT3E2uq0q1yG8Q2/5xXo1uYbsrCIeKITvMSiKoqi1c0VR+Omnn3j99ddJSkqiefPmPPjgg/Tp04eAgOsHhb799tvs2rWL999/n9DQUNf3Bw8ezP33309iYiLLly/nq6++4rPPPitRLdeuVzWoaXMW7NnNhfNXwGAo2y/qo/KvO1Va/rpeVUmzXVb585tVozJ1LBY2BQXR6K9LHt+Xp3kiZ+VFb/n1di7dlT+/wV9+TsWnHicKOL5hG/bGTVSryxPUzrevZVirGS3Ote8hPo+O4b8pl/kL2DdvAZbe96pboA/R65qXWs52/vyWhdrnO4BVLZuw9uQfvLv8G6xt2wMQtPYbug1+kGlNmtFo/ffXPae86va1/Go5o0W59vx78WI6QSuW0m/4P7AA3Q0G/nkuVRef57x5jPlafj1Fzc9w5cnd7IS98RqWN16jrsnET3uOULly5UIfqygKQxrUouuVKzw2/W1yHhnm8XpKS/LrvfO4tzIMcOjQQQY/dB/HKkZhOnQAR+XK5Az8B2E//wDbtwNgr1WbK/9biL3R7WzatIHp018pdH1MtRV1HPhahvXwHsLeuwtxv/zCJ0CvC2mq1lUULbzfLo7k1zvy5zfgjxPEtLoDAHPvvqTNm69maaWmhXz7Wn79gWqTO586dYoVK1awYsUKDAYDTz/9NHFxcSxYsIB169bx3//+t8Djk5KSePfdd6lTpw4DBgwAoEaNGsyePbvQURdlYdiz2/nFsaNQP77M2xP+o6TZ9jRb7lprDovM1i+uUjuXbsu9n0YBDA6ZNtaf+ExG3WC2WokBDgKGDG1/uBTlT0/Z1jRF4dDZM9wO2G5p4Pq27fbGNAEOHDtCI0XRRRPL0/SWUUN2NjlAHJCuKGCxQHCw2mUJjdPbcVAaQd9v4lOgS/OEIhuXAAaDgdeefpauUyYy8OuvCCxB81J4nj/kd9P8/9ErJQXTmdPYbr6FKwuX4KhTl7DYCqR8s4GIMc9i2r+XqL/3JuXbTdx5Z0eeeGIzAiKgAAAgAElEQVQ4p06dpFat2mqXr1t6yZ499zqEjLz0L3rJr8FuwwosBu7LkVlHhL54vXm5YMECli9fzsmTJ+nZsyfTp0+nadOmrp93796ddu3aXfe8+vXrF7qOWmFTG5aa2ex6wbKaLZg8t2WhY6XNtqfZr/m/8G9ayaW7DLLmpd/xtYy6w2KzEQNkAKRL89Jf6THbWhZw4TwHLRYeDQ9HyXfR3VH9JhqHhrI/K4sBZ07juMkHp4IqJ3rNqMFsdk0bewXn2sOKNC9FIfR6HJSUIT2NwF+do46eHflPt55Tc9A/+PvUScz++Uf+dTkZJTqmPEsUN+Av+Q048Tvff/Q+ox12LG3bk/bJApRKV9e4tyW0InXNeiIfHUjwhu+I/OcwUlevp1eve1m5cjmjRj2tYvX6pLfs5V15sKlahfAWveUXu4MdwEDgflkyQeiM15uXW7Zs4dFHH6VLly4EBQVd9/PQ0FBmzZrl7bIKSk52LdJsTU+T5qVwi1ayLc1LkZ9Wcum2/OtcSvPSL/hcRt1gtVkJB0xAzpUUZJyXf9JjtrXMmHSUA8Ct9W4uOLrSYOC2Wxrw5b49BO7fh0Waly56zaghJ5tsoApwGDBkZUlTRRRKr8dBSZl++oFjdjunTCY69XJvunulUjTPtWzNnTu289jypYQ8OrycqxTX8pf8Gl/4Fzscdtp17c6VTxbADX5XQkJIf+9jAju0xrTrV0I++ZDevfvy5puvS/OyHOgte/bc944y8tI/6C2/2GyuPoYtK1PVUoTwNK9P3tyqVSt69ux53clh3rx5rq/vvPNOb5dV0MWL5E24aUvX7lznQlu0ku28N13S9hGgnVy6rcDIS0eRDxX64HMZLY6iYLXZCAIqABmXU9SuSKhEd9nWuOx9ezkP1G7U+LqfNUxoyT4gYP9er9elZbrNaE7ONSMv5SKOKJxuj4MSMm3ZzGqgR3xDjEaj28+76b4H6Ap8/clH5VabKJw/5Nd45DB7t2zm9oAAlJlzb9y4zKVEViTj1TcACJ/+Ku3vuIPDhw+Rmirvxz1Nb9mT5qV/0Vt+sdu5lPtlsixbI3TG683L2bNn3/D7c+fO9XIlRbh4Md/ISznohXu0km1b7oLS0rwUoJ1cui1f81LWvPQPPpfR4litWIBgIBLIkIslfkt32da4Y7t+oQFAg1uv+1lk4zuIAk7v/c3bZWmaXjNqyG1exuKcvtuQmaFyRULL9HoclFTQ1u9ZA3Tp07dEz7N068HjwIeHD6Lk5JRLbaJw/pDfkPn/40egVXzDAtPCF8bSqw/WVm0ISEkhasF82rRpy5Ytm8u9Tn+jt+zlNS9l2lj/oLf8Ghx2zud+fTEjS9VahPA0r00b+9NPPwFgt9vZvn07Su5iyAB//fUX4eHh3iqleGlprpGX1jQZeSmKprVsy8hLAdrLpdtyp4qVNS/1z2czWhyzGTO4Rl5mXrmickHC23SbbY07cvgQjQB7/QbX/cx+S32aAAcOH6Kj1yvTHr1n9PrmpYy8FNfT+3FQEoYLFzAfOshPwLv/GFai5zpuqkH7ho2wHjrArnkf0uKfT5ZPkaIAv8mvw0HwiqX8CPz9b/e59xyDgcznxhL14N8ImzuTzk+OZuPG9fTt+7dyLdVfeCp7J06cYNy4caSmphIVFcW0adOoU6dOgcfY7XamTp3K1q1bMRgMjBw5kv79+wMwa9YsPv/8c6pUqQJA8+bNmThxYql/r7wrDzLyUt90e+602biY++Wl7CxqqlqMEJ7lteblSy+9BIDFYuHFF190fd9gMBAbG8v48eO9VUrxLJZ808bKyEtRNK1lW9a8FKC9XLpNyT9trKRYz3w2o8XJHXkZgrN5mS43QfkdT2XbnYs627ZtY8aMGRw9epTBgwczduxYj/0evubQmTPO5uXNt1z3M9vN9bkdOHz6NB0VpeCamH5It+ffPGZn87Iyuc3LLLkDXVzPE8fBtGnTWLt2LadPn2blypU0aHD9zRO+wLRjOxuBhIpRVIgp+fqw1m49+MehA3z9xXxpXnqJ7s/juQJ37STg7Bl+DAjglQcfdvt51rs6Y23REtOvv9Az9TKzNm1AURQMfv767wmeyt7EiRN5+OGHSUxMZPny5UyYMIFPP/20wGNWrlzJqVOnWLduHampqfTr14+2bdtSo4Zz/fJ+/fp57L1v3ohLaV7qm27PnXYH2blfXjGbi3yoEL7Ga83LjRs3AjBmzBimT5/urd2WjsXiesGyyVzRohhay7aMvBSgvVy6y+DIt86lTBura76a0WLlNi8jc//LkPcRfsdT2Xbnok7NmjWZOnUqa9euxWKxFLIlP2C1ciw9jbaAvWat636sVK5M3dBQdmRnY7hwAaVqVe/XqCG6Pf/myc7GAkQDmci0seLGPHEcdOnShSFDhjBw4EBPluZ1ph3bWQPcc0fTUj3f3LU7A955i9ZHDjPJYsFUxJqEwjN0fx7PFbx6JUlAWFgY1eKqu/9Eg4Gsfz1PxcEPcvviLzEAJ078Tr16N5dXqX7DE9lLTk7m4MGDrvUF+/Tpw5QpU7h8+TLR0dGux61Zs4b+/fsTEBBAdHQ0Xbt25dtvv2X48OFl/0WukXflwQYgN7rpll7PnQa7jbyJ29Mt0rwU+uK15mUenzg55I68NABWmWZIuEkr2bZJ81Lko5Vcui3/mpcy8tIv+FxGi5PbvMybNjZDLpr7rbJk292LOrVr1wZgw4YNft28DPjzFH8AtWOrQHDw9Q8wGKhboxYLk44QeDwJq583L/Po7vyby5yVSRAQERhIhs0m08aKIpXlOEhISPBgJeox/eIceflh75Ktd5nHltCS2pUqUS8lhR8XLaTToH94tkBRKL2exwFQFIJXLWcH0OKOZiV+uuWe7tjqNyAw6SgdWrXhxx+3SfPSg8qSvbNnz1K1alWMRiMARqORKlWqcPbs2QLvc8+ePUv16leb1nFxcZw7d87159WrV7Nt2zZiY2N56qmnaNasZDmJiYlwfX0yd/pQKxAbHQaBXr9c7rbY2Apql+DzynrudGeGnNmzZ7NmzRqMRiOBgYGMHj2aDh06AJ6f9hi73bV0TbrDAVYrmEyl354QGuKVs3HPnj355ptvAOjUqVOhUzVs3rzZG+UUz2rFCoQDVrnoKIqgxWzLyEuhxVy6zXF1zQHsjsIfJ3yaT2e0OPmal5FAerZMV+hPPJVtdy/qCKeAP05wAqhVr16hj6kdH8/vSUcwJh3F2u5O7xWnMbo+/+bKycomBAipFE3WxQso6TJ9tyhIK8dB/gvn5a3Qi93Z2Zzf8xvngXYjHsFYqZQXxXv2pP/nn7N+8efcP7r4qWPl4nvpaSW/5c24fx/Gk3+wIySUJp27lnwDAQFkP/E0FUY/Sec/T7Huh60MksZ6mWgpewMGDODxxx/HZDLxww8/8MQTT7BmzRoqVark9jaSkzNw5F5/sNucE8fagItnUyAkpDzKLrPY2ApcvKjtmX0CAgxefX1zlyfz684MOU2aNGHo0KGEhoZy+PBhBg0axLZt2wjJzZYnpz3Oa17GAumAITsLxVTRM9sWQmVeaV5OmTLF9fUbb7zhjV2WTe60sWGALTu7uEcLP6bFbEvzUmgxl27LHXnpAFnzUsd8OqPFsVqddz0aDFRQFDKyc4p9itAPX8y2Jy8uqHUxOvnUMQKAqo1ug0JqiG7TigurVhB06jgVrnmMP11E98WMlpQ5J4tQIKByLCEXL5CTloZM/iby08pxkP/CeXkq6mK36acf2Gqz0T6iApdtgVDKi+LBHTrT8/PPmbVrFxcupBW5tmB5X3zX6oVzT9FKfstb8OoVAOyoUIFxzUs3yjnn/gcJe20Knc+eYbKse1lmnspeXFwc58+fx263YzQasdvtXLhwgbi4uOsed+bMGZo0aQIUHIkZGxvrelz79u2Ji4sjKSmJVq1alaome+61BytgsFlR0GbzUpSep/Lr7gw5eaMsAeLj41EUhdTUVKpVq1bqfRcqd9rYWCANMGRno0RK81Log1eal/mnUyntC4lX5TYvwwFrjjQvReG0mG1pXgot5tJt+aaNlTUv9cunM1qc3KnnTeHhVMjIIMMszUt/4qlsu3tRxxM8dfFczTvBj+74lTpAZrUaZBVSQ1D1OtQEjuzcRVy+x5RX3Vq9eK7r828uc+7IS0d0NOFA5pVUtPcvIdTkD8eBu0w//8RWoG38rWXajqVzV241GHCYzRzfs5tbmjb3TIHiOv6S3+DVK7AC+9Ku0KTJHaXcSDA5jw7n5mmvQFamrHtZRp7KXkxMDA0bNmTVqlUkJiayatUqGjZseN3sIj169GDx4sV069aN1NRU1q9fz4IFCwA4f/48VXOXATh06BCnT5+mbt26pa4pf/OS3FGYQl88ld/SzJCzbNkyatWqVaBx6clpj4kILjDyMiY0oNAbOrXOn24qFe4J8PYO582bx6FDhwD47bffuOuuu+jSpQu7d+/2dimFy73wGA5YZOSlcJNWsp33NkvaPgK0k0u3KVdHXsqal/7B5zJanNxpY03h4UQCaX68DqG/K0u281/UAQq9qCOcTh0/Rl3AXqfwi1b2W+pzM3Dy+DGv1aV1ujv/5sox5xACKNExRADZV66oXZLQML0eB+4K3LGdLUCbLqWYljMfpVI09pat6QFs/vgDj9QmiqfX/BqTjhJ45DD7K1Tgppq1qFAhstTbynloEAQEcLfZzI/rvvVglf6trNmbNGkS8+fPp3v37syfP5/JkycDMGLECPbt2wdAYmIiNWrUoFu3bjzwwAOMGjWKmjVrAjBjxgz69OlD3759GT9+PNOnTy8wGrOk8pqXNgCrNC/1zpvnzh07dvDOO+/w1ltvub43YMAANmzYwMqVKxk2bBhPPPEEKSkpJdpucnIGFy+mc/FiOleS0wuMvLz810XXz3zpP0D1GpKTZflArfF68/KTTz6hRo0aALz11ls88sgjPP7447z66qveLqVw+UdeSvNSuEkr2ZaRlyI/reTSXQaZNtbv+FpGi5XXvAwNI8JgIMPhAGlg+qWyZtudizo7d+6kY8eOzJs3jy+++IKOHTuydevW8vmFNOzU6b+czcvadQp9jL1uPeoBJy5eALPZW6Vpmu7Ov7nMOTm5Iy+dzctMWfNSFKEsx8HUqVPp2LEj586d49FHH6V3797lXa5nORxk7fiZJKDRfQ+UeXPme7rTHdi4eWOZtyXco9fzeN6UsdvjG9K0WYsybctR/SYsnbtyl6Lw81dfeqI8Qdmzd/PNN7N48WLWrl3L4sWLqZe7bvkHH3xA48aNAeeItsmTJ7N+/XrWr1/Pgw8+6Hr+tGnTWLVqFStWrGDJkiV06tSpTL+PPfc6hBUw2KV5qXdlyW/+GXKAImfI2b17Ny+88AKzZ892ZRyc0x6bTCag4LTHpXbtmpcyi6TQEa9MG5tfeno6FSpUICMjgyNHjvDJJ59gNBqZNm2at0spXL7mpU2mexNu0kq2pXkp8tNKLt2W+wZQmpf+w+cyWpzc5mVQoImIkFDSs7MwZKSjRMeoXZnwsrJmO++izrU++ODqiJaEhAS2bNnisZp9kqJw8nIyDSl65CXBwdStFM3vKZcxnvgd+60NvVaiVunu/JsrJ8fsbF7GRDublxlyB7UoXFmOg/HjxzN+/HgvVFk+jEePsD3tCglBQQTWLftUmpau3enyymQePX+OnKwsQsLCPFClKIpez+NBq66ud9msWdmnIM55eAh3rV/HpIP7URwODAFeH8ehO3rLni3/tLFWq6q1iPJXlvy6O+3x3r17GT16NDNnzqRRo0YFfubpaY9xXG1e/oZzzUsh9MLrzcu4uDh27drFsWPHSEhIwGg0kpGR4ZorWhOs1nwjL6V5KdyjlWxL81Lkp5Vcui33jsfrvha65XMZLY7VihkIMpkwhoWSlp2FISNDmpd+SHfZ1ijDpUucsNnoERqGElWpyMfWqV2bLSmXMSYdkeYl+s2o2ZJDKM5pLMOR5qUoml6PA3eYdmxnG9Cubr1iH+sO+22NqHhTDW4//Re/LlpI+0eGeWS7onB6zG/AqZOY9v6GIzyCnRfO0/+Okq0DdyOWbj2oG1MZki/x5+oV1Lq3nwcq9W96y17eyEsbyJqXfqCs+Z00aRLjxo1jzpw5REZGupqeI0aM4Omnn6Zx48ZMnjyZnJwcJkyY4Hre9OnTiY+PZ8aMGRw4cICAgABMJlOZpz022GwFpo01ZGeVeltCaI3Xm5djxozh6aefJigoiJkzZwKwadMm17QAmpB/zUuZVkq4SSvZljUvRX5ayaXbHA4MgIKseekvfC6jxckbeWkyYQwLJz05GYNcOPdLusu2Rhn/+J2jwM21akHuDVyFqXPrbST9tpvAo0eQyZz1m9Eci6XgtLFZmWqXJDRMr8eBO/Kal6Pb3emZDRoMWDrdzT2ff8b3y76W5qUX6DG/watXAnCu012c+H4zd3igeUlQEOYHH+auOTP5+f250rz0AL1lz55v5KVBmpe6V9b8ujNDzpIlSwp9vsdHKF8zbSwy8lLoiNebl506dWLbtm0FvtejRw969Ojh7VIK5TCbcQChgM0izUvhHq1kW0Zeivy0kku3KQ6M5DbhpXnpF3wuo8XJ17wMjYhwrjkhzUu/pLtsa5Qt6Singdq3NKC4j+l1E1ryxxcLcBw57I3SNE+vGTXnNS9jcpuXcgFHFEGvx4E7HD//xK9As373eWyb1js70u3zzxi19zde9NhWRWH0mN/gVcsB+L5uPRIyMwkKCvLIdnMGDqHTnJls3vkL/TMyICLCI9v1V3rLXl7z0gYybawf0Ft+sdsLjrzMkpGXQj+83rwE59zSJ06cIDOz4F2wbdu2VaOc61hzcjABwYBFmpeiBLSQbfs1/xdCC7l0l8GhuL52yIcGv+FLGS1WbvPSFGSiQkCk88NDRrraVQmV6CrbGnVq105qAYb4+GIfa2zYiJrAHwf2U63cK/MNesxotsVKCKDkjbzMkealKJoej4PiGM6fZ8/JP2hgCCCsZWuPbdd6Z0daAX9kpHPhzGmqVL/JY9sWN6an/AacP4fpl59RQkLYlJlJ+/YdPLZte/0GtG9yB5P37iFoxVIsDw/22Lb9lZ6yZ3c4CCFv5KVch/AHesqv4ZqRl7LmpdATrzcvv/76a15++WXCwsIICQlxfd9gMLBhwwZvl3ND1pwcggATYLXIpFLCPVrJtoy8FPlpJZduczhwAAbAJh8a/ILPZbQ4uVPPB5mCiAgPcn54yJSRl/5Id9nWqBP799EAsDe4tdjH2hvEcyuQdPIE1RwOCAgo9/q0TK8ZNduczUtH3pqXOXIzqiicXo+D4uRNGdumWhwEeu6ykKNaHIb6DeiRdJS1789l8KSpHtu2uJ7e8huUO2WsuVNn1m3awMcfz/fo9m8aOhL+NYo/P3yPqtK8LBO9Zc9ut7ual8jyYbqnt/zmjbysBJgBm1x/EDri9ebl22+/zTvvvEOnTp28vWu3WcxmTEAQYJORP8JNWsm2TXGOXLMDKEqx6z8JfdNKLt2W27wMAexWK5Je/fO5jBbHasUMmIKCiKgU7WxeXrmidlVCBbrLtkYd/+N34gFbfMNiH6tUjKJBWBhHsrLo9NefOGrVLv8CNUyXGbXbMedegFSiopwjL+UipCiCLo8DN+Q1L//eIsHj27Z2vIuBSUd5bdkSaV6WM73lN3j1CgB2N2+B4+B+br/ds+snWvr+jd7PP8M3+/cy7OgR7A2Kn7VB3Jjespc38tIGGGQQi+7pLb/YbJhxLn9XAchISSGkmKcI4Su8frux3W7nzjs9tCB8ObHma15apHkp3KSVbNsdDuf/QebqF5rJpbscuWtNmACr1aZuMcIrfC2jxcpb8zIoGFNsFQyA5cI5tasSKtBdtrUoJ4ejly9T32DAfkt9t54SX/0mDgHGY0fLtzYfoMuMms3kAMFGI0p4BBFAhtXivKFPiBvQ5XHghsBftvMDkNCrj8e3be7Zh+7AifPnOHTooMe3L67SU34NycmYftyGEhjIiuwsevTohcHTN2JHRNCz410sB0IWfOrZbfsZPWUPwJZv2lgZeal/essvDue0scE4R1+mXrygckFCeI7Xm5cjRoxg7ty5OHIbLFqU17w0AVabDTRcq9AOrWQ7b6FxO4DcMeb3tJJLdznsdow4z78y8t0/+FpGi5W35mVwEI6YylQAMs9K89If6S7bGmQ8lkQScEtcdQgOdus59RvEcxgIPHqkXGvzBXrMqMGcQxYQFhgIgYGEBwaSBZCTo3JlQqv0eBwUKzubY3v3EAFU7d7T45u3tm1PYFQUT9rtzJ46yePbF1fpKb/Ba9dgsNuxdujEN5s20rOn5xvrAG3+9Tz7gbSFn0mTqgz0lD1wDgIIJnfNS7mOpnt6y69isWADTOHhVAGSL11UuyQhPMbr08Z+8sknXLp0iQ8//JCoqKgCP9u8ebO3y7khq8VCEM6Rl5kA2dkQHq5uUULztJLt/M1Lg9WC3Gfu37SSS3fZHXYCcL442WzyocEf+FpGi5U38tIUjKOys3mZdeE8YWrXJbxOd9nWoMAjhzgK1Lu1+Clj89RrnsDhNasIkOalLjNqMJvJBsJMJgDCgoPJsNkwZGaihIaqW5zQJD0eB8UJ3PMb39tsdKwYhVIh0vM7MJkw/+1+Rs37kPit37Nnz27uuKOZ5/cjdJXfoNwpY4+378Cp2e/Qpk27ctmPsXVbukRWZE1qKvevWo75vgfKZT96p6fsQcFpY7FIU1vv9JZfs8VKMGCoUoUqJ05w6dIltUsSwmO83rx84403vL3LEsu/5mUqYMjORpHmpSiGVrJtyz9trEVGrvk7reTSXYrN5hp5aZdpY/2Cr2W0WHnNy+AglMqViQQyLl2kstp1Ca/TXbY1KGPvHjKAKnc0JdvN51S8oxmhwPmD+4kox9p8gS4zmuMceRkT6GxeRoSEkpGZiSEzA6WynInF9XR5HBTD9MvPbAS6N25SbvvIfnQE0fM+5HWHnWeffoJvvvueoKCgctufv9JLfg2pKQR9vwklIIAVCnTt2p3AwHK6XGkw0KPXvSz/Yj6DPp0nzctS0kv28uQ1LzNx3ggl9E1v+c0xmwkGiI11Ni+vpKpdkhAe4/XmZatWrby9yxKzWiyuaWMtgCE7S0aviWJpJdsy8lLkp5Vcustuvzry0irTxvoFX8tosSwWzIApOARHTGWigNTLyWpXJVSgu2xr0B97dlMfcNx6m9vPsddvwK1AUtJR/H0ckB4zajCbyQJCg5zNy/CwMDKSwZCerm5hQrP0eBwUx7hjO5uAyeUwZWwe+60NMXfrwSPrvmVRZgYzZkxn3Ljx5bY/f6WX/AavXonBYsHS4S5Wfb+RYcMeK9f93TVmHM99MR/bTz9gPLAfe6Pby3V/eqSX7OXJmzb2CjJtrD/QW36tFjMh4GxeApfS01SuSAjP8fqalxaLhbfffpsuXbrQokULALZt28b8+fO9XUqhrFara+Sls3np7r3cwp9pItt2O3ZyR605i/LevoUmaSKXJeCwO66ueWmT5qU/8LWMFkfJycGKc70JR0xl4oDzly+rXZZQgd6yrUVHko5yK2CLd3/aWEdcdRoGmjiUno7hon+vB6PHjBrMOWQDoSbnGqhhUVFkAAEpch4WN6bH46BIisLhn38kGqjarfyalwCZY8djAD46d5bP5n3Irl07y3V//kgv+Q1eugSAE527sn//Xrp0uadc9xdVoxbN4qqzHgh/8/Vy3Zde6SV7efJGXlpA1kL1A3rLr9licY68rFKFKsDFjAyVKxLCc7zevHz11Vc5evQob775JgaDAYD69euzcOFCb5dSKEvumpemgADnYs3ZWWqXJHyAJrJts2HH2Xh3jryU5o+/00QuS0BGXvofX8tocaxZWZgAQ3AwjpjKVAfOpaeBIuPg/Y3esq05mZnsu3iBOwwG7Dff4v7zDAYa16rFb4Bpz65yK88X6DKjOc6Rl2HBzukpw6NjnM3LZFn7R9yYLo+DIgSc+J3NqancHRKCo07dct2XvXETcu5/kOoWC/+pWpUnn3yMbLkx3KP0kF/D+fOYtn2PYjKxyJxDr173EhISUu777Tb4EZYZjQSvXkHgnt3lvj+90UP28rM7HFQAsnHOYCb0TW/5zTHnOEdeVq9OLHAxOxtyZ+UTwtd5fdrY9evXs27dOsLCwggIcPZOq1atyvnz571dSqFc08aGhmLOzJSRl8Itmsi21YoNZ/PSudC4vOnyd5rIZQk4FPvVkZc5OWqXI7zA1zJaHEtmJkGAEhwC4eFUCwzkrM0GmZkQ4e8r7PkXvWVbawL37eU34LladSA4uETPbdKsBR/8fpzA3bvgofvLpT5foMeMGszONS9Dgp0XviNjq3IZMCTL9N3ixvR4HBQlaMtmNgIDbrsdci/YlqeMl18jaNN6Hj58iGVNmvLKK5N477055b5ff6GH/Ias+BqDw0FO124sWrWCiROneGW/3fsPoOfMt7HYs4l4aSypK9d65ZjQCz1kLz+bw0EkzjUvMct1NL3TW34teWtehocTGxnJhbQ0Ai5dxFG1mtqlCVFmXh95aTKZXGvy5bl8+TJRUVHeLqVQedPGhoaFkw0gzUvhBi1k22CzYgciADNyx5jQRi5LIv/IS7tZmpf+wNcyWhxLdjZBACHBYDBQrUIkZ5FRP/5Ib9nWmsBdO/kNaNSy5GvWxHfpylHAtnOHx+vyJXrMaF7zMizE2dCOrl6dS4Dhkn9PESwKp8fjoCgB69exBWib+Hev7E+pXJn06f8BYO7B/az8ejFbtmzxyr79gc/nV1EI+ewTALY0TyAjI50OHTp5Zde1a9ch/o6mfF2hAqYd2wn+6kuv7FcvfD5717ArCpFAFmCwyLSxeqe3/Jpzsp0jL4ODqRwTy0Ug4Pw5lasSwjO83rzs0c3/0IkAACAASURBVKMHY8eO5c8//wTgwoULvPzyy/Tu3dvbpRQqr3kZHhlJGmCQhW6FGzSRbZvd1bzMBrDItJv+ThO5LIECa17KWhN+wdcyWhxzVtbVkZdAtdgqnAWMp/9StS7hfXrLttac/nErwUBM2/Ylfq6xVVvqA4d27gCHw+O1+QpdZjTH7FzzMiQUgOCqVQkGMuQCjiiELo+Dwlgs7NqymTpAxcS/eW+39yaSPWwkMTYb/8XAiGHDyJEZVjzC1/Mb+PN2Ag8fwhFbhXcPHWDYsJGuUVDe8Mjwx5hTNQ6A8Mn/lmt/JeDr2btW3pqX4LwZVeib3vJryclxjrwMDiY2Ls558/Tp0ypXJYRneL15OXr0aGrUqEHfvn1JS0uje/fuxMbGMmrUKG+XUiiL1UoQEFE5lnQgICVF7ZKED9BCtvOPvMxCRl4KbeSyJBx2mTbW3/haRotjyWteBjnXW6tSty5nAOPvx1WtS3if3rKtNT/+upOOgLVp8xI/11GzFu3DI9iWng779nm+OB+hx4y6po0NdTYvHTGViQWSz51VtS6hXXo8Dgpj+vknVudk0yumMo7qN3l13xmTXsF6RzP+fukiTbKyeP1170wNqne+nt/Qj98D4FCfvmz6fhMPPTTIq/vv2bMPR9PT2NHwNowXzhM+4UWv7t+X+Xr2rmVXFIxAOJCVmaF2OaKc6S2/ZrPZNfIypuFtZAJZBw+oXJUQnuH1NS9PnTpFvXr1eOyxx7Db7XTt2pX4+Hhvl1Ekq83mHHlZpWpu8/Ky2iUJH6CJbOeueekaeSnNS7+niVyWgN1xddpYGXnpH3wto8XJzs4mFCDEee9u1YaNOL32GwKkeel39JZtLTGkXOb75EvcZTJhv7VhKTZg4M6mzVjww1ae37gRBtXzfJE+QI8ZNZjNzmljQ8MAcETHOJuXFy9QRdXKhFbp8TgoTNDaNawE5tzVxfs7Dw4m7YNPqNSlA3POnKHVwgU0bNiIBx982Pu16Igv59d4LIng5UtRTCZevnCB4cMfJzKyoldrCAoK4l//ep6xSxaxMTiY0AWfYu3QCfPf+3u1Dl/ky9m7jqJgUxQCgTCczcsgtWsS5UpX+QXM+UZeOurHUw84uXc3N6tclxCe4LXmpaIovPjiiyxbtoxq1apRpUoVzp8/z+zZs0lMTOTVV1/FoJHFsfOalxHV4kgHDDLyUhRBU9m2OkdeVgAuA4ZsGbnmrzSVyxJQ8o+8lLUmdM1XM1qcrKwswrg6bWx4w9sIAy4eOki4qpUJb9FrtrUkcPtPbAJeaNgITKZSbaNNn0T++cNWrOvXw6Dhni1Q43Sd0ZzckZdhzjOuEhNDZZzrGAmRn66PgxtRFP5cvpRk4PZHh6HGhNmOOnVJ/89sYocNZlV6Gl0nvkRa2hVGjPinCtX4Nj3kN+w/b2JQFH7p3ouN23/k55lzVKljyJBH+eCDuSwZMJD7//cxFZ58DCUyEkvX7qrUo3V6yN51HA6sOBuX4UD2lTR8c+VDURxd5hfIyTfy0l6/AfHA0SOHpXkpdMFrzcsvv/ySHTt28OWXX9KkSRPX9/fu3ctzzz3HF198wUMPPeStcopkttkIBsJuusm55mWqNC9F4bSUbYPd7mpenkbWa/VnWsplSeSNvAwGzDnSvNQzX81ocfJGXirBzvt17XXr0QD4PekojVWtTHiLXrOtJadXLccG1LmnO6Vdlahiz97U/7/n+XHTJm6z2SDQ6xPSqEbPGTWYc9e8DL86bWwV4EJqqqp1Ce3R83FwI4G7f+Xr8+foGxaGI6GVanVY7k2Ep56i0axZbAsJoc8nH/Hnn38yefIrPnnBWC2+nt+AP04QvGQRjoAAxl26yDPPPEuFCpGq1GIymZg2bQb/+tco2g97jLiP3iNy6GCufP4V1js7qlKTlvl69m7IbscCRJHbvEyT9wx6pcv8Auk52USCs3l5czytgZ2n/6KnynUJ4QleW/Ny+fLljB8/vsDJAaBJkya8+OKLLF++3FulFM3hINvhIBQIv6mmc+Rl8iW1qxIapqlsW61YcTYvs4GAtCve27fQFE3lsgRsdodrupZss4wc1jNfzWhxss1m57SxuSMv7fVupgGQdOYvsMhU3v5Ar9nWkm2bN3A3YL27a6m34ah+E72io1mVnY3p5588V5wP0HNGDelpzpGXFSsBzmlj6wAnM9LBblezNKExej4ObiRoxTLmAQ91uQcCvHYZ6MbeeANr02bcfOY034eF8+vPPzF69JPY5Rh1m6/nN/ytaRjsdr5o254zqSkMHTpS1Xo6dbqbLl268cSli2QNGYohJ4eKgx4kcOcOVevSIl/P3g1ZrVhwzv4UDmSlynU0vdJlfoEMs5kK4Jw2tkpVWoWFs91sJuD0X2qXJkSZee1d6/Hjx2nZsuUNf9ayZUuOH9fIWlBWK9lASEAAxptuwgTknDmjdlVCw7SUbYPN6rpjLBswpMnIS3+lpVyWhM1mv/qhwSyNHj3z1YwWJysnJ3fa2GAAlMiK3FGlKr/abATu+lXd4oRX6DXbWmE8eIAtFy/SKTQUW/MWZdpWt67dWQUErV7hmeJ8hJ4zaklxTg8bGB3t/EZICHUqRPK7ohBwVj7Tiav0fBxcJyeHHz6bhwm4Y+Qotatxrn/50WfYa9aiyp7drLNaOJ10lJEjH8UiN3q5xZfzG7j3N4IXLeRsYCDPHT3M9OlvYyrlFPCeNGXKa/z51588AWT8vT+GrEwqPnS/NDCv4cvZK4whMxMrEITzOkSmzGCmW3rML0C62ewaeYnBwB3tO3AAsK/7VuXKhCg7rzUv7XY7ERERN/xZREQEDocaqy5cz2C1OKcaMhpxVL+JOOD8mdNqlyU0TFPZttkwAxXJbV5ekTvG/JWmclkCVruzeRkGZFll2lg989WMFic7Jyd35GWw63st2rbnRyBoyya1yhJepNdsa0XAFwv4Bri7d2KZp3pt+I+hpAB/Ll3iVyOj9ZzRKxcuEA0oUZVc36t7Uw2OA8aTf6hVltAgPR8H11I++4zX0tN5rkZN7K1aq10OAI6atUhdtgZ7rTpE7d/Ht/v3Yvj9OImJPfn992Nql6d5Pptfi4WIsc9iUxQeiK3CoH8Mo02bdmpXBUBoaCiLFi3l5Kk/uDf5Eqe7diPgSipR/XoRvHA+KIraJWqCz2avCIbMDCxAoMFAFeBSerraJYlyosf8AqRbLK6RlwDGe7rTCti8aKGaZQnhEV5b3MVms7F9+3aUQl7wNTNFSN7IS6MRR5Wq1AROX04m2mKBoCC1qxMapKlsW22ukZdZyJqX/kxTuSwBq93uuuMxy48uJPsjX81ocdLNZiIAJXfaWICG/e7j8vKvObZ8KdVf+D+QNZ10Ta/Z1gJDehprP5vH7UDlR4dhK+P2HC1a8rdKlViQfIkXvvqSnIcHe6JMzdNzRlNTkp3Ny8iKru/Vqd+ApMMHMRw6CO07qFec0BQ9Hwf5GTLSWTZ2LBeAxHEv4dDQexBHzVqkrNtExIsvEPL1Vyw9sI+ZN99Cr+6dGf7YEzzxxNOEhYWpXaYm+Wp+wye9hOnXnYwODye4QTzPPz9O7ZIKqFAhks8//4rXXptCm68X81nve7lr9Uoin3kC87dryJj2Fo5qcWqXqSpfzV5RDJmZzmljK1Wi6uXLXMjMULskUU70mF+AdKuVW8DVvLR0uYeHga92/0rn8+dRqlZVszwhysRrzcuYmBhefPHFQn8enTe1j9oszuZllDEQAgOpERLKnznZ3HH6Lxx166ldndAgLWXbYLNiBqJxNi9JlYXG/ZWWclkSVrs138hLq9rliHLkqxktzuUrV4gBHJUru77n6NyVQcHBfJZ0hJd27cTW4sZT1Qh90Gu2tSD4vTm8mpnJ5Aa3YktoVfYNBgTw/Isv0vqFFxg4ZSIxvfoUGLGnV3rOaGpKKpUAJSrK9b1Kne6m2v+zd+dxUZR/HMA/sBweKB6JgpqWpWml3KigCOIFiLeYoqUlonmfWB55VfZTUTtM80jL8sgjFVPL+8gzvFLTyJNT5RCRY1me3x/ExOLusgsLuwuf9+vFC9idnXlm5jvPfJ9nZp7dvRNX9+5G0/dGGK5wZFTK83EgEQK540djfHIy1rzaFLl9Bxi6RM8RtWoj7eu1yArogWpTx2N89N8IqlIVk3fvhNf36zFpynT06dMflSpVKnpmFYjJxa8QqBLxP1RZvRLrZDJst6mGX1etg7mhv39VBQsLC8ycOQdubh7oN3E0hnbphg9PnoDtL3tgdfQwno0Zj4x33oOoXdvQRTUIk4s9LZg9fQo5AAvbGqibloYEuRxmKckVIiesaMpj/AJ5Fy+lYWORd3NQd7/OCP/tABIWfAS75SsMWj6ikiizi5eHDh0qq0WViNmzdGQAsLfM2zQN6ryA+/fvwyL6FrJ58ZJUMKrYzsl78rKKTIYaCgUexzyAdZEfovLIqOJSB4rUVOk7L+MzM/OG5zGiO8RJf0w1RjXKzMTjzEzUNDdXbuxWroxhwYPguWEt3p85HTZ7DgBG2FlD+lEuY9sImN+5jRVLF8MWgPeni5Cjp3NDkwkTMPOLLzHw7h38OmksFKs3lPvzTnmO0UepqXgBQG6BJy+z23eAP4Dfzp9FU4UCkMkMVj4yHuX5OMhn9eP3GLFrB7pZWMB5/Y9QGHHukd29B5Jat0W1qRPwcuQubL9+DUctLfHJJ/PwyUcfIrB7T3TsFoB27TrwQiZMK37NHj2CzcxwVNq2BesATK9qg+3b96BmTeO+SNC1qz/efPMYFiyYg6bWVhha9xWMjP4bjRYuQJWli5DVvScy3nkPOW7u5T5vKMiUYk9bZs/yho21rFwFje0dcOLeXchu3USOm3EMs036Ux7jFwDScuR5w8YWGDHSOnwGxh/8FZM2bcSGoF4w8+tssPIRlYTxZq86un37NoKDg9GlSxcEBwfjzp07xZqPLC4WKQCq/5tIOTR4EfcAyG7c0FtZiVTRRwznP3lpWc8eDgDi7t/TdzGpAtEmJhUKBebMmQM/Pz906tQJW7duLdEy5clJsARQG8DDnByYPXxYovlR+VfSONVnDJs/TEQigBeqVXvu4uQL4TMwvkoVvHP+LGSjhgNPORwRaWaIOthYya5fw+7ATliUnYXVPn7I8Wqvx5nLEPLjT2gukyF098+oOnYkzBIS9Df/csyY6l8AQG4u7j1MQGMAuXXr/fdy45fQ2a4u9mVmwurwbyVbBlEh+uqH0Cu5HFarV2LhhNG4CSDiiy+geOVVQ5eqSKJOHTxZ+x1Stv6M7HbeaJ+Tg32JCTiamoqm36/H1+8OQcsm9RHx7mBkPGIbQR9KM35l1/5E1XmzYevWEhe2bUGQTIZP6tbDlt378eqrTfW2nNJUv34DfPXVN9i28xck+frByaYa2tWoiUVZWbj702bUDOyEWm82RbXQd1Bp3WrI/rrB78bUkjHlEGbp6Xn9aFWq4M3mLXARgMWlqGLPj8o/Y4pfAHiQkwN7QHryEgByWjpizMgxqASgz6B+iJkyHuaxMSVaDpEhlNmTl6Vt9uzZGDhwIHr06IGff/4Zs2bNwoYNG3Sej/m9u3gMoFa9vAZvS892+PL3k7DYuQ3mfftD2NhAmBe4Wzf/DquCd1qVl7uusqyArCzdP2dpySdKikEvMZyZhQwAlvXqoX5sDOKTHuPlmAcQtrYQMMuLzYI/xiDTEsjMNHQp/mORN2Q0aReTu3fvxr1793DgwAGkpKSgZ8+eaNOmDRo0aKD7AoVA5uPHqALglYYv4uv792B5+iTkvn4QZualE7ulfRwUtx4tLnPzvDq4AilpnOozhmUxD3ALwKDaLzz3nnjhBYxa+x1uDeoP7+1bsSxyF9xcPWDu0Ro5b7SEqFEDonp15FarntfoMDfPyzfMzQFzs7wnhdTFq6rX1UwroOW0eliWzseXsZyXjIQh6mBkZeX9LvBjBvHca9L0QgAi/+8MmD1MU/6M0nQafv6dzgwCyMqG+cNEmCcmQHb3DuJ+3Y/Zf5xHFIB9L7+CWqvWQt/dgrmvNMWS1evRZ9hgDN78A0Zv2wL33v2g6OALReOXIKrbQlSrBmFpBVhaQFgUynXzY9faukLFsTHVvwCAP/7AjawstKhWHcLOTukt12HDEf3pfOx5720EzZqHnNffRG69eoC1NYSVVV7uV6hdp1RfamrzqXqvNJR2TsE2XLHoqx8C2dlATg6QmwszkQvk5v8I6W/l1//7MUtPh/njRzB/mIjMc2dwfPtPWPokFXIAO94bgcqhoXj6yERumjIzg9zbB6nePjCPeQDrbVvR5Jc9mHrlEqZlZuIOgCm7f0anyN34sl8wnKbNyLtZoYLlv/qit/gFALkc5o8fwfLM73j61efYF3UBvwDYD6C+jQ36D30PX039ENbWpjc2VLNmr2HBgs8wY8YcnDhxFAe2bUXE/r2olJGJJokJqL1zO+ru3A4PAK0rVUbDl15G7ksvQ9GoMXJr187LI2xtkWtbI69vxrYGkFsfyERe7FbA+DWmHMI8JQUpAGyrV4d9956Q7f8FJyMWoU09ByiaNkOubY28PEFmDshk/7XRtKVtfqDNdGXdv6AtEzyuS8KY4leRkYGbcjmaA4CtLVDg25fks+biO7kc675ZgY7r18J9/Vp4Vq+OVo1eQsP69VG3fkPYONSHqFMn7/viLS3+be9Y/tfusbQCrKwgLCzynuz8N2dW2cdsBuW8uNCP0mdUeSYDnj0reqVLmnMXzucrWPyaGjOh7ltqTcjjx4/RpUsXnDlzBjKZDAqFAh4eHjhw4IDW41UnJ6cjN1cgo3sXBMXGYF1QLzSYPQ9ITcH7ft6wzlXgdQBvA+DX3GqmqN8AKZt3AJUrw9zcDDVrVjV0kYxeSWM4P34tP5mH1j9tRmTf/vj5yGEcevQQrQEYw+BY1gBG/vvbmOXaVMOTb76FommzCh2/2sZkaGgoevfuja5duwIA5s6dCwcHB7z33ntaL0uK38OHsH7yWMRYWGBSQBDa/7wdvQBUA1AZQBgADhKlmbCwwNOP5iO7WyAAlPsY1kec6jOGT/i0xYdPnuBwUG+Yz56rclrzv27g16njseFB3oVOO+TlFTWRF982yKsnzZGX++f/1paqabV9zRVARx2WVSqGD8fjsHEAyn/8alLmdXCOAtUHD4DljWt6XxcAUAD4CkDav3/n/vujKPBbgbzroArk9eUlAYgF8ATAAJkMI3v0ghg3CcKmml7LVru2DR4/zuvUz7h6GbvmzkJk9N+IBdAc/x2TVoV+ZMg7joIBNP53XtkubkhbuRYwMyv38Wts9S8+moHVu3diE4BN7b3xQsSXyhPK5bj/fijGXzgHawANAdRA3v61QF7s5de5uta7ZaEPgFdKeRmKOnZI3bwdwrZGuY9ffdFXG876py2ounA+zHJzsR9AFP6rJ3ORF5+a/s8FkAogBsA9AC0B9K1TB37jp0DRpRtqv1BNqueMQcF6V2tyOSz++RsW587B6rd9OHjlMmYh77h4xdISDQYPRZ/3xwKo2PmDLvTZj7b1i6WI/34DnsqzcR15cdjGwgJebzrCY9AQvODjW2rrUax40gMhBG7/E42Hly/i6eXLeHjjT1y+ewdRWVl4hrz2a74qAGwBVP/3p2A+YSmToVIXfwyZOQdW/w75WN5j2JhyCJGUjAsdvTARwM7AINT48COc6RuEsTEP0BJ5eUIV5H2tTZV/f7S5bPkigLe0Lonpy+zTH+kfzALA+M1XVjnw7z98h6WLF2Lfy01gceigyvrQ4tJFZK/7BufOnMaF7CzcBPAAQCKAHOT1uVUt8GOBvLZOfntHhv9yZF3/NkPRebWh3/f2745X530CoPzHrykqF48XxcXFoW7dupD9+/0lMpkMdnZ2iIuL0zrpkgLz1En8UfCN2jbY9E+0fgtczsmQN+Qjaa+kMSzF76KFuLZoIQBg/L8/pBtz5HVmVXTaxmRcXBwcHByk/+3t7REfH6/TsqT47RuEMX2DpNevL1tSgjWomMyQl3hWFPqIU33GcI/Ll9GjqInbuqL/iRPor9MSKhbmEAaqg/ftLXnB1ZABGFNqcy+52rVt8v7wbotRB3/DqGLOxwoVJ36Nrf7F50sx7fOlmKZh2trbtuKITnOvWGQAjPsb6IyP3tpwI4bl/QDo8u+Pvkn1nJEoVnnquQFt3YBxo9AVQFe9l6pi0Wc/WtjsGcDsGaVW1qIYKr5feMERcHc0yLJNmVHlEDWrotOdO7hS4HX/kyfgX4z1qsgqoeLcaG5U8QsgcMxIBI4ZKb2usj709QJ8veAPMLbJ5HBcGCIiIiIiIiIiIiIiIiIyCuXi4qW9vT0SEhKgUCgA5H3xbWJiIuzt7Q1cMiLtMIbJ2Ggbk/b29oiNjZX+j4uLQ71/vzOYqLTpI04Zw2SMWAeTsWP9S8Q2HJk2xi8ZCnMIMmWMX6KyVS4uXtauXRvNmzfHnj17AAB79uxB8+bNtR7qgsjQGMNkbLSNya5du2Lr1q3Izc1FUlISfvvtN3TpUhqDXRE9Tx9xyhgmY8Q6mIwd618ituHItDF+yVCYQ5ApY/wSlS0zIYQwdCH0ITo6GuHh4Xjy5AmqV6+OhQsX4uWXXzZ0sYi0xhgmY6MuJocPH46xY8fizTffhEKhwNy5c3Hy5EkAwPDhwxEcHGzgklNFUtI4ZQyTsWIdTMaO9S8R23Bk2hi/ZCjMIciUMX6Jyk65uXhJRERERERERERERERERKatXAwbS0RERERERERERERERESmjxcviYiIiIiIiIiIiIiIiMgo8OIlERERERERERERERERERkFXrwkIiIiIiIiIiIiIiIiIqNgYegCGJvbt28jPDwcKSkpqFGjBhYuXIjGjRsbulhlJjk5GVOnTsW9e/dgZWWFRo0aYe7cuahVq5ahi0ZaMPb49fX1hZWVFaytrQEAkydPRrt27Yy+3FQ2TCkONNWV6uIcMK11JN1w3xatOOcAblfjU9z6zxgwDymfTHX/LVy4EPv370dMTAx2796Npk2bAtC8PqwvSRfqYsxQ2NdA+mRs8a0NHgPGx5jOnWwrUXGZYhywXUZaE6Rk8ODBYufOnUIIIXbu3CkGDx5s4BKVreTkZHH69Gnp/08//VRMnz7dgCUiXRh7/Pr4+Ii//vrrudeNvdxUNkwpDjTVleriXAjTWkfSDfdt0YpzDuB2NT7Frf+MAfOQ8slU99+5c+dEbGzsc3FZ3DrRVLcDlR51MWYo7GsgfTK2+NYGjwHjY0znTraVqLhMMQ7YLiNtcdjYAh4/foxr164hMDAQABAYGIhr164hKSnJwCUrOzVq1ICHh4f0v6OjI2JjYw1YItKWqcavqZab9MvU4qA4daWprSNpj/u2+DRtO25X41TeckXGmWkz5f3n6uoKe3t7pdeKWyea8nag0qMqxgypvJ0/yLCMLb61wWPAuJjCuZPnfipKeYqD8rQupD8cNraAuLg41K1bFzKZDAAgk8lgZ2eHuLi4CjmMQ25uLn788Uf4+voauiikBVOJ38mTJ0MIARcXF0ycONFkyk2ly5TjQFVdWTjOq1evbtLrSJpx32pPl3OAEILb1chpW/8ZE+Yh5Ut523/FrRNZX5KpYV8DVXQ8BgzPGHMItpVIV8YYx9piu4y0wScvSa158+ahSpUqCAkJMXRRqJzYuHEjdu3ahW3btkEIgblz5xq6SEQlVriuZJwTqcZjo/wxtfrP2MtHRFRRsK+BKjoeA1QY81SqSBjvpC1evCzA3t4eCQkJUCgUAACFQoHExESTG4pCHxYuXIi7d+9i6dKlMDdnmJgCU4jf/LJYWVlh4MCB+OOPP0yi3FT6TDUOVNWVquI8/3VTXEcqGvetdnQ9B3C7Gjdd6j9jwTyk/Clv+6+4dWJ52w5UvrGvgSo6HgPGwdjOnWwrUXGYahywXUba4lmygNq1a6N58+bYs2cPAGDPnj1o3rx5hXs0OSIiAlevXsWXX34JKysrQxeHtGTs8fvs2TOkpaUBAIQQ2Lt3L5o3b2705aayYYpxoKquVBfngGmuI2mH+7ZoxTkHcLsaL13rP2PAPKR8Km/7r7h1YnnbDlR+sa+BKjoeA8bDmM6dbCtRcZliHLBdRrowE0IIQxfCmERHRyM8PBxPnjxB9erVsXDhQrz88suGLlaZuXXrFgIDA9G4cWNUqlQJANCgQQN8+eWXBi4ZacOY4/f+/fsYM2YMFAoFcnNz0aRJE8yYMQN2dnZGXW4qO6YUB+rqyvDwcLVxDpjWOpJuuG81K+45gNvV+BS3/jM05iHll6nuv/nz5+PAgQN49OgRatasiRo1aiAyMrLYdaKpbgcqPepizFDY10D6ZGzxrQ0eA8bHWM6dbCtRSZhaHLBdRrrgxUsiIiIiIiIiIiIiIiIiMgocNpaIiIiIiIiIiIiIiIiIjAIvXhIRERERERERERERERGRUeDFSyIiIiIiIiIiIiIiIiIyCrx4SURERERERERERERERERGgRcviYiIiIiIiIiIiIiIiMgo8OKlBk5OTrh//36J5vH5559j8uTJeioRVRSMPdJVs2bNcPfuXZXv7dq1C8OGDdP7Mn19fXHq1CmV7505cwbt27fX+zIfPHiAZs2aIScnR+/zBpTXSZtjSJ/lGTx4MLZu3Vri+RARGaPt27fjrbfekv7XdN7SN33kVVS69BUfBc+lpZX/aKvwOpUF5v8VS8H9HRsbCycnJygUCgOXqmTKy3pQ0Ri/qpV2e5dMy/nz59GlSxdDF6PEHj16hEGDBsHJyQmffvqpoYtDxfT111/jww8/NHQxSk1AQADOnDlj6GJQIbx4+S9VncZRUVFo2LChgUqkndK6QFAWmJTlYeyZBk0X6oxdUFAQ1q5dK/1flh3GZJxM+fjV5tyhzw5jU0pg2bglUs0U8irSv8L5D2lmiIutpD8O5R6YmwAAIABJREFUDg6IioqCTCYzdFGU6JpzGut6UOky1v3O+DVtuvbhhIeHIyIiohRLpDtXV1fs379fL/MyZD/Q5s2bUbNmTfzxxx8IDw83SBlIN6rqv7CwMCxYsMBAJdKdrjEfGRkJDw+PUiwRFYeFoQtQVnJycmBhUWFWl4wIY6/scFsTkb5FRkYaugha03fj9sCBA2jUqJFe5qeLgo1bMzOzMl8+ERERaYftLzJljN/yifu1eEpzu8XGxqJJkybFattxf2pWUbdPRV3viqhcP3np6+uLVatWoXv37nB0dMT58+cxYMAAuLq6IigoSHqSIiIiAufPn8fcuXPh5OSEuXPnAlC+Qp+ZmYlPP/0UPj4+cHFxwVtvvYXMzEyVdyJourvn4MGDCAgIgKurKwYPHozo6Gjpvbi4OIwePRqtW7eGh4cH5s6di+zsbLi7u+Ovv/6Spnv8+DFatmyJmJgYDB8+HImJiXBycoKTkxMSEhKQm5uLVatWwc/PDx4eHhg3bhxSUlKK3F4Ft4+3tze2b98OAEhLS8PUqVPRunVr+Pj44KuvvkJubi6A54cmKvxEzODBg7F06VIMGDAATk5OGDZsGJKSkgAAISEhAAA3Nzc4OTkhKiqqyDKaCsae9rGXHzObN2+Gl5cXvLy8lO6S1zTP/M9u3boVHTp0wNtvvw0A2LJlC7p16wYnJyf4+/vjzz//BAAkJCRgzJgxaN26NXx9fbFhwwZpOZ9//jnGjRuHqVOnwsnJCQEBAbhy5QoAYMqUKYiNjUVYWBicnJzwzTffAADGjh0LT09PuLi4YNCgQbh165Y0v+TkZISFhcHZ2Rl9+vRBRESE0t3s0dHRGDp0KNzd3dGlSxfs3btX5fbZtm0bwsLCpP87deqEcePGSf97e3vj+vXrAIBTp06hc+fOcHNzw5w5cyCEAKB8J/2gQYMAAD169ICTk5O03MOHD6NHjx5wdXXFgAEDcOPGDY37Ld+VK1fg7+8PNzc3TJ8+HVlZWSqni46OxuDBg+Hq6oqAgAAcPHhQek9THaNQKLBw4UJ4eHigY8eOOHr0qFblSklJwfTp0+Hl5QU3NzeMGjVKeq+466qNtLQ0fPDBB/Dy8kK7du0QEREhDRtUVH1ZUGJiIrp37441a9YAMN7jF+C5o6IqzVETStq4JcPKr0fyz8G//vqr2mmPHj2Kjh07wsPDAwsXLtSpjoiIiJDqiLCwMCQnJ2PSpEnSeffBgwfS5wvmVeHh4ZgzZw5CQ0Ph5OSEfv364d69e6WxKUgFXeIj3/nz5+Ht7Y3Tp08jNTUVI0aMQOvWreHm5oYRI0YgPj5e5edUDUX7448/qsyVAOCnn35Ct27d4ObmhnfffRcxMTFFlq1Zs2bYsGGDyjjOt3DhQri5ucHX11cpj0lISEBYWBjc3d3RqVMnbNmyRXrv8uXL6N27N5ydndG2bVt88sknAIrOmwFALperzGcB9ds/Ojoas2fPxsWLF+Hk5ARXV1cAwJEjR9CzZ084OzvD29sbn3/+uTSvrKwsTJ48GR4eHnB1dUWfPn3w6NEjAJrzoYpK3bbfvn07BgwYgHnz5sHFxQVdu3bF77//Ln1OU5wUpKqeXLx4Mfr27QsXFxeMHDlSKa/TlFv6+vpi5cqVKnP8/DboqlWr4OnpienTpyM7OxsLFiyQYnLBggXIzs7Gs2fPdM45dckJNdHUTiPdMX7LNn6BvH4AdfW8KVAXM3fv3kVISAhcXFzg4eGB8ePHS5/RdE69d+8ehgwZAg8PD3h4eGDSpEl48uSJ9NnCfXATJ07UqQ9n8+bN2L17N9asWSPlloDmPiR1Ll++jODgYLi6usLLy0tqnxdcz40bN6Jz585wcnLC0qVLce/ePQQHB8PZ2Rnjxo2Tpi/c7+fr64s1a9age/fucHFxwfjx45X6YLZs2YJOnTrB3d0dYWFhSEhIAKC6H0jV8VBUnqUpptXlBeHh4di5c6e0bU+dOlWsfj5N9frRo0fh7+8PJycntGvXTupHAUq3/6e0qerrya93P/74Y7i7u+Pzzz9HdnY2Fi5ciA4dOqBt27aYNWsWMjMzAaDIfaqq70xd/Vewjfbuu+/i+++/VypvUFAQDhw4AED7Ps+CwsPDMWvWLAwdOhROTk4ICQlRyscLHjudO3cGoFvMA5rjofDXSKnrI6YyJsoxHx8fERQUJGJjY0V8fLxwd3cXR44cEQqFQpw4cUK4u7uLx48fCyGECAkJEVu2bFH6fNOmTcWdO3eEEEJ89NFHIiQkRMTHx4ucnBxx4cIFkZWVJU6fPi3atWv33HJPnjwphBBi+fLlYtKkSUIIIf755x/RqlUrceLECZGdnS1WrVol/Pz8RFZWlsjJyRHdu3cXCxYsEOnp6SIzM1OcO3dOCCHE7NmzxWeffSbN/9tvvxUjRowQQgiVy1+3bp3o16+fiIuLE1lZWWLmzJliwoQJGrdVTEyMcHR0FLt37xbZ2dkiKSlJXLt2TQghxJQpU0RYWJhIS0sT9+/fF507d5a2VcH1E0KI+/fvi6ZNmwq5XC5t144dO4p//vlHZGRkiJCQEPG///1P5bTlCWNP+9jLj4MJEyaI9PR0cePGDeHh4SGth6Z55n92ypQpIj09XWRkZIi9e/cKLy8vcenSJZGbmyvu3LkjHjx4IBQKhejVq5f4/PPPRVZWlrh3757w9fUVx44dk7bXG2+8IY4cOSJycnLEokWLRL9+/VRu23xbt24VaWlpIisrS8yfP18EBQVJ740fP16MHz9ePHv2TNy6dUu0b99eDBgwQAghRHp6umjfvr346aefhFwuF1evXhXu7u7i5s2bz22fe/fuCRcXF6FQKERCQoLo0KGD8PLykt5zdXUVCoVCNG3aVISGhorU1FQRExMjPDw8xNGjR4UQQmzbtk1athDK8SWEEFevXhWtW7cWFy9eFDk5OWL79u3Cx8dHZGVladx3Pj4+IiAgQMTGxork5GQRHBwslixZIoRQjo/s7Gzh5+cnVqxYIbKyssSpU6eEo6OjiI6OFkJormN++OEH0aVLF2kZISEhWtUbw4cPF+PGjRMpKSkiOztbnDlzRqt1VXcMqVO4Hhs5cqSYOXOmSE9PF48ePRJ9+vQRP/74o8r5qaovt2zZIm2DTZs2CSGM+/g19Llj5cqVomPHjsLR0VF069ZNHDhwQAjxfMzPmzdPtG/fXjg5OYlevXpJ2yi/LGPHjhVTpkwRjo6Owt/fX1y+fFl6v3BMaJo2Pj5ejB49Wnh4eAgfHx+xfv16jdtPCCEuXbok+vfvL1xcXISnp6eYM2eO0rHXtGlT8f3334tOnToJR0dHERERIe7evSv69+8vnJycxNixY6XpC+9XHx8fsXr1ahEYGCicnZ3FuHHjRGZmpvT+5s2bhZ+fn3BzcxMjRowQ8fHxQgghBg4cKJo2bSpatWolHB0dRWRkpDTvlStXirZt24rJkyeLlJQUERoaKjw8PISrq6sIDQ0VcXFx0vxDQkJERESECA4OFo6OjmLo0KHSuS8zM1NMmjRJuLu7CxcXF9G7d2/x8OFDMW3aNNGiRQvx+uuvC0dHR3Hy5EmhUCikfe3u7i7Gjh0rkpOTleJhy5YtwtvbWwwcOFAIIcSYMWNE27ZthbOzsxg4cKBS/XrkyBHRrVs34ejoKLy8vMTq1aul9w4dOiSCgoKEi4uLCA4OFtevXy9yH5KyvXv3ivj4eKFQKERkZKRo1aqVSEhIUHkuCgkJEcnJySImJkbnOsLPz0/cvXtXPHnyRHTr1k107txZnDx5UsjlcjFlyhQRHh6utKz88960adOEm5ubuHTpkpDL5WLixIli/PjxZbFpSOgWH3fu3BHHjh0T7du3F5cuXRJCCJGUlCT27dsnnj17JtLS0sSYMWPEyJEjpc8VzKtVzVNdrvTrr78KPz8/8ffffwu5XC6+/PJLERwcXOT6aIrjbdu2iRYtWojNmzeLnJwcsXHjRuHp6Slyc3OFEEIMGjRIzJ49W2RmZopr164JDw8PcerUKSGEEP379xc7duwQQgjx9OlTERUVJYQoOm8uKp9Vt/1VbS8h8s4rN27cEAqFQly/fl20adNG/Prrr0IIIX788UcxYsQI8ezZM5GTkyOuXLki0tLShBCa86GKSlPsN2/eXKxbt05kZ2eLyMhI4ezsLJ3nNMVJwbpSVT3p5eUl/vrrL5Geni5Gjx6tVdtQiKJz/ObNm4vPPvtMZGVliYyMDLF06VLRr18/8ejRI/H48WMRHBwsIiIipOl1yTl1yQk10dROI90xfv9T2vFbVD1vKtTFzIQJE8RXX30lFAqFUttVCM3n1Dt37ogTJ06IrKws8fjxYzFw4EAxf/586bMF++AyMjKk13Tpw5k2bZoUK0KIIvuQ1Lly5YqIiooScrlc3L9/X3Tt2lWsW7dOaT1HjBgh0tLSxM2bN8Xrr78uhgwZIu7duyfltdu3bxdCqG7f9enTR8THx4vk5GTRtWtX8cMPPwghhDh16pRwd3cXV69eFVlZWWLu3LlS2yh/uQX7gVQdD9rkWepiWlNeUHjb6trPV9S+8/T0lGIpJSVFXL16VQhR/L4uY6Curye/3t2wYYOQy+UiIyNDzJ8/X4wYMUIkJyeLtLQ0MWLECLFo0SIhRNG5s7q+M1X1X8F6e8eOHUq58q1bt4SLi4vIysrSqc+zoGnTpglHR0dx9uxZkZWVJebNm/dcLv/OO++I5ORkkZGRoXPM69ofqCmnprJTrp+8BPLuCrG3t8fPP/+M9u3bw9vbG+bm5vD09MQbb7yh1VM8ubm52LZtGz788EPUrVsXMpkMzs7OsLKy0qkse/fuhbe3Nzw9PWFpaYl3330XmZmZiIqKwuXLl5GYmIipU6eiSpUqsLa2lu547dWrF/bs2SPdcfTzzz8jKChI7XI2b96MCRMmoF69erCyssLo0aOxf/9+jU8j7N69G23btkVgYCAsLS1Rs2ZNNG/eHAqFAnv37sWkSZNgY2ODBg0aYOjQodi1a5fW6927d2+89NJLqFSpErp27So9JVbeMfa0i71877//PqpUqYJmzZqhd+/e2LNnj9bzHDNmDKpUqYJKlSrhp59+wnvvvYeWLVvCzMwMjRo1Qv369XHlyhUkJSVh9OjRsLKyQsOGDdG/f3+lu39cXFzg7e0NmUyGHj16FHlHVt++fWFjYwMrKyuMGTMGN27cQFpaGhQKBQ4cOIAxY8agcuXKeOWVV9CzZ0/pc0eOHEH9+vXRp08fWFhY4PXXX0eXLl1UDvfYsGFDVK1aFdevX8e5c+fg5eWFunXrIjo6GmfPnoWLiwvMzfOq8uHDh6N69epwcHCAh4eH1neUbdmyBcHBwWjVqhVkMhl69eoFS0tLXLx4scjPDho0CPb29qhRowZGjhypcojNS5cu4dmzZwgNDYWVlRXatGkDHx8fREZGFlnH/PLLL3j77belZYwYMaLIMiUmJuLYsWOYM2cObG1tYWlpCXd39xKva1EePXqEY8eO4YMPPkCVKlVQu3ZtvPPOOzoNO/r3339jyJAhGDNmDIKDgwEY9/Fr6HNHw4YNsXHjRly4cAGjR4/GlClTkJiY+Nx0b775Jnbu3ImzZ88iMDAQ48aNU7pD9dChQwgICMD58+fh6+uLefPmqS2Xumlzc3MxcuRINGvWDMeOHcP69euxfv16HD9+XON6mpubY/r06Th9+jQ2bdqE33//HT/88IPSNMePH8f27duxZcsWrF69GjNnzsSiRYtw9OhR3Lp1S2OM/fLLL1i9ejUOHjyIv/76S3oy9vfff8fixYuxdOlSnDhxAvXr18fEiRMBABs3bgSQFzNRUVHw9/cHkBfjqampOHz4MObNm4fc3Fz07t0bhw8fxuHDh2FtbS2NIJBvz549+OSTT/D7779DLpdLd47v2LEDT58+xZEjR3DmzBnMmTMHlSpVwqefforu3bvj3XffRVRUFNq2bYsNGzbgt99+w/fff4/jx4/D1tb2ueWcO3cOe/fule6ybd++Pfbv34/ff/8dLVq0UHqK78MPP8TcuXMRFRWFPXv2oHXr1gCAP//8Ex988AHmzp2LM2fOIDg4GKNGjVK6U5qK1q1bN9StWxfm5ubw9/dHo0aNcPnyZZXTDh8+HDVq1ICDgwOGDBkinfu10bt3b7z44ouoVq0a2rdvj4YNG6Jt27awsLBA165dce3aNbWf7dSpE1q2bAkLCwsEBQVVmNzUGOgSH/v27cOsWbOwatUqtGzZEgBQs2ZNdOnSBZUrV4aNjQ1GjhyJc+fOab18dbnSpk2bEBoaiiZNmsDCwgJhYWG4fv26Vk9faopjBwcH9O/fX8o5Hj58iEePHiEuLg4XLlzA5MmTYW1tjebNm6Nfv374+eefAQAWFha4d+8ekpKSULVqVTg6OiotU13eDGjOZ3XZ/gDg4eGBZs2awdzcHK+99hoCAgJw9uxZqYwpKSm4e/cuZDIZ3njjDdjY2OglHyqPNG37WrVq4e2334alpSX8/f3x0ksv4ciRI0XGSVF69OiBpk2bokqVKhg3bhz27dsn5Wjqcst8mnJ8c3NzjB07FlZWVqhUqRJ2796N999/H7Vr10atWrXw/vvva8z5dM05i9OfoK6dRsXD+P1PWcQvoLmeNwXqYsbCwgKxsbFITExUarvmU3dObdSoETw9PWFlZYVatWph6NChz53/8/vgKlWqpLZcutQN2vQhqfLGG2/A0dERFhYWaNCgAYKDg58r6/Dhw2FjY4NXX30VTZs2haenJxo2bCjltZry2MGDB6Nu3bqoUaMGfHx8pJjavXs3+vTpg9dffx1WVlaYOHEiLl68qDQaSWGFjwdt8ix1Ma0uL1BF134+QPO+s7CwwN9//42nT5/C1tYWr7/+OoDS7f8pbZr6euzs7DB48GBYWFjA2toaW7duxQcffIAaNWrAxsYGI0aMkOo9TftUU99ZUfz8/HDjxg0pV969ezc6deoEKysrnfo8C+vQoQPc3NxgZWWFCRMm4OLFi4iLi5PeDw0NRY0aNaT6W5eY1zUedO0jptJR7gcHtre3B5A3BNm+fftw+PBh6b2cnBytvog1OTkZWVlZaNiwYYnKkpiYCAcHB+l/c3Nz2NvbIyEhARYWFnBwcFA5XnOrVq1QuXJlnD17FnXq1MG9e/fQsWNHtcuJjY3F+++/L13QyF/W48ePUbduXZWfiYuLw4svvvjc68nJyZDL5UrldnBwkB7D1kadOnWkvytXroxnz55p/VlTxtj7b1maYi9f/vYCgPr16+PmzZtFzjNfvXr1pL/VxXJMTAwSExOVkmOFQqH0/wsvvCD9XalSJWRlZakdR12hUCAiIgL79u1DUlKSVL7k5GRkZmYiJydHaZ0K/h0TE4PLly8/VxZ1F5bc3Nxw9uxZ3L17F25ubqhWrRrOnTuHixcvKiUWhY+19PR0lfMrLDY2Fjt37lQa8kEul6u8CFRYwfVycHBQ+ZnExETUq1dPaR/m1yNF1TGJiYnPLaMo8fHxsLW1ha2t7XPvlWRdixIbG4ucnBx4eXlJr+Xm5iqVvyi7d+/Giy++iC5dukivGfPxa+hzR7du3aS//f39sXLlSpWdsD169JD+HjZsGFasWIHbt2/jtddeA/BfUpo/7fr169WWS920BRu3AJQat+3atVM7vzfeeEP6u2Dj9p133pFeV9e4BSA1bnv16qVy/vmNWwBqG7cAMHHiRLi7u+PBgwdo0KCBynkVbNwCefVkwVgdOXIkhgwZovSZ/MYtAHTt2hWHDh0CoNy4fe2115S2Q2GbN2/GrFmzpLp+9OjR8PHxUdm4zde3b1+l99zc3JCWloZq1apJjdvXXntNqa4o2JgB8m4A+Prrr5+ra0mznTt3Yt26dVJD9tmzZ0hOToZMJntu2sLnfl3q4oLnbGtr6+fO4ZryTV2mJf3SJT7Wr1+PHj16oFmzZtJrGRkZ+OSTT3D8+HGkpqYCANLT06FQKFTOozB1uVJsbCw+/vhjLFy4UHpfCIGEhATUr19f4zw1xXHBWKtcubK0zikpKbC1tVXq1HNwcMDVq1cBAAsWLMDy5cvRrVs3NGjQQKr31C0zP28uvMzC+ay67a/OpUuXsGjRIty6dQtyuRzZ2dno2rUrgLxzYHx8PCZOnIgnT54gKCgIEyZM0Es+VB5piv26desqDZWen1MnJiZqjJOiFM6h5XI5kpOTNeaW6j5bMK5r1qwJa2tr6f/C81PXJsinTfuuIF37EzS106pVq6bxs6Qa4/c/pR2/qtahcD1vCtTFzJQpU7Bs2TL07dsXtra2GDp0qFLeru6c+vjxY8yfPx/nz59Heno6hBCoXr260jKLOs/oWjdo04ekyu3bt/Hpp5/i6tWryMjIgEKhkNpc+TTlsdbW1tIw7KoUjqn8bZSYmKi0nKpVq6JGjRpISEhQ274rfDxok2epi2l1eYGlpeVzy9W1n6+ofbd8+XKsWLECixcvRrNmzTBp0iQ4OTmVav9PaYuLi1Pb11Nw2yQlJSEjIwO9e/eWXhNCSDexa9qnmvrOimJjYwNvb29ERkYiNDQUkZGR0o3duvZ5qlu3qlWrwtbWVqlfsOBxrmvM6xoPuvQRU+kp91s7P4myt7dHjx49MH/+fJ3nkV+Z379/X+rozFe5cmVpHGkg72BUN4a9nZ2dUsIhhEBcXBzq1q0LKysrxMXFqT0IevXqhV27dqFOnTro0qWLdHJR9X1Q9erVw8cffwwXFxet19He3l5lh2/NmjVhaWmJ2NhYvPLKKwAglVnV+ms6wRZWnO+yMiWMPd3ExcWhSZMmAPJOKHZ2dkXOM/9umoJlsbe3V/ndVfb29mjQoIE0/npJ7d69GwcPHsS6devQoEEDpKWlwc3NDUII1KpVCxYWFoiPj5c67QveKWRvbw83NzesW7dOq2W5u7vj0KFDiImJQVhYGKpXr47du3cjKipKGse9JOzt7REWFoaRI0fq/NmC61VwvxVkZ2eH+Ph45ObmSklmXFwcGjduXGQdU6dOHaVlFPxbnXr16iE1NRVPnjxR2aAp7rpqs1wrKyucPn1a5bGkTX05evRoHD9+HJMmTUJERARkMplRH7+GPndo2wm+du1abN26FYmJiTAzM8PTp0+VOmt1SUrVTcvGLRu3lNdQnTFjBr799ls4OTlJd6mqExcXh1dffRWA8jmkJHUEGS9d42PZsmXS6CP5N3SsXbsWt2/fxpYtW1CnTh1cv34dPXv2VPruyuLIzw+06VQpTF0ca2JnZ4fU1FQ8ffpU6tgveJ5s3LgxlixZgtzcXBw4cABjx47FmTNnlJapKm/WpKjtryo3mDRpEkJCQrB69WpYW1tjwYIF0vnT0tISo0ePxujRo/HgwQOEhobipZdegre3t8Z8qCIqatsnJCRACCHtg7i4OPj6+hYZJ0UpnEPnj5KhKbdU9dnCMVY4Vuzs7BAbGysdB3FxcdL0uuacmp4Q0pamdhrpjvGrrLTjN19x6nljoSlm6tSpI/WNnT9/HkOHDoWbmxsaNWoEQP05dfHixTAzM8OuXbtQs2ZN/Pbbb8+NxFJUH2NRdUPhzxe3D+mjjz5CixYtsHjxYtjY2ODbb7/V6omzkrKzs1MaMSL/ZilNx1zhdS5JnqUuL+jXr99z0+raz1fUvmvZsiVWrFgBuVyOjRs3Yvz48Th69Gip9v+UNnt7e7V9PQW3Tc2aNVGpUiVERkaq3Nea9qmmvjNt+uwDAwPxxRdfwM3NDZmZmdJDOrr2eRZU8Ps409PTkZqaqrYO1zXmTTkeKrJyP2xsvqCgIBw+fBjHjx+HQqFAVlYWzpw5Ix0UL7zwAu7fv6/ys+bm5ujTpw8++eQTJCQkQKFQICoqCtnZ2XjppZeQlZWFI0eOQC6XY8WKFWqHF+vWrRuOHj2qNHSalZUVnJyc0LJlS9SpUweLFy/Gs2fPkJWVhQsXLkif7dGjB3777Tfs2rVLafjJ2rVrIyUlRWmYg7feegtLly6VDuCkpCT89ttvGrdP9+7dcerUKezduxc5OTlITk7G9evXIZPJ0LVrV0RERODp06eIiYnBunXrpIZ98+bNce7cOcTGxiItLQ0rV67UYm/kqVWrFszNzdVu9/KCsac59vJ99dVXyMjIwK1bt7B9+3ZpmEJd59m3b1+sXbsWV69ehRACd+/eRUxMDFq2bAkbGxusWrUKmZmZUCgUuHnzpsahsgoqvJ/S09NhZWWFmjVrIiMjA0uWLJHek8lk6NSpE7744gtkZGQgOjpaaXicDh064M6dO9i5cyfkcjnkcjkuX76M6Oholct2c3PDmTNnkJmZiXr16sHV1RXHjx9HSkoKWrRooVX5Na1Lv379sGnTJly6dAlCCDx79gxHjhzB06dPi5zXDz/8gPj4eKSkpGDlypXSfiuoZcuWqFy5MlavXg25XI4zZ87g0KFD8Pf3L7KO6datG7777jvEx8cjNTUVq1atKrJMdnZ2aN++PebMmYPU1FTI5XJpWIySrKs2y/X09MSnn36Kp0+fIjc3F/fu3ZOGV9OmvrS0tMSyZcuQkZGBqVOnIjc316iPX0OeO86fP48ZM2Zg5syZOHPmDM6fPy81dAs6f/48vvnmGyxduhTnzp3D+fPnUa1aNb13YOU3bs+fPy/9REVF4ZtvvtH4uY8++ggvv/wy9u/fjz/++AMTJkwok841fTdu//jjD2m4WV0at3v37sWmTZtw5MgR7Ny5U+W09erVwzfffKO0ba9cuaJUVnWN2wsXLkhPexZu3J46dQp+fn4YP348gP8aMwWXc+nSJQQGBha5PpQnIyMDZmZmqFWrFgBg27ZtuHXrltrp16xZg9TUVMTFxWHDhg3SOaQkdQQZL13jw87ODt9++y2+++47qX5JT0+HtbU1qlevjpSUFHzxxRd6KduAAQOwatUqqTxpaWn45ZdftPqsujiUKyTyAAAgAElEQVTWxN7eHk5OTliyZAmysrJw48YN/PTTT+jevTuAvGG782++yO9MKnhjjrq8WZOitn/t2rWRkJCg1J5IT0+Hra0trK2tcfnyZaVhC0+fPo2//voLCoUCNjY2sLCwkG660pQPVURFbfukpCRs2LABcrkcv/zyC6Kjo+Ht7V1knBRl165d+Pvvv5GRkYFly5ahS5cukMlkGnPLfNrk+PkCAgKwYsUKJCUlISkpCV9++aVURn23GbWhqZ1GumP8lm385itOPW8sNMXML7/8IvWF2drawszMTOkGRXXn1PT0dFSpUgXVq1dHQkICVq9eXWQ5dOnDAfL2d8EL0MXtQ0pPT0fVqlVRtWpVREdH48cffyyyrPrQvXt3bN++HdevX0d2djaWLFmCli1bSjemaup7zFeSPEtdXqCKrseRpn2XnZ2NXbt2IS0tDZaWlqhataq03NLs/yltRfX15DM3N0e/fv3w8ccfSzf3JiQkSF9fo2mfauo7U1X/Febt7Y3Y2FgsX74c/v7+0rGsa59nQUePHsX58+eRnZ2NZcuWoVWrVmqfqtY15k05HiqyCnPx0t7eHl999RVWrlyJNm3awNvbG2vWrJEeox4yZAj2798PNzc3lU/ITZs2DU2bNkXfvn3h7u6ORYsWITc3F9WqVcPs2bMxY8YMtG/fHpUrV1a6+7+gl19+Gf/73/8wb948tG7dGocPH8bXX38NKysryGQyfP3117h79y58fHzQvn17pQZzvXr10KJFC5iZmSk9xdGkSRMEBATAz88Prq6uSEhIwJAhQ+Dr64thw4bByckJ/fv3L/Lk6uDggG+++Qbr1q2Du7s7evbsKY3lPHPmTFSuXBl+fn4YOHAgAgMD0adPHwCAp6cn/P39ERQUhN69eysNZ1SUypUrIywsDG+99RZcXV1NYszx4mDsaXdx0N3dHZ06dcI777yDYcOGSUNN6TrPbt26ISwsDJMmTYKzszPef/99pKamQiaTYcWKFbhx4wY6duyI1q1bY8aMGVqfpEJDQ7FixQq4urpizZo16NmzJxwcHNCuXTsEBAQ8911Es2bNQlpaGjw9PTF16lQEBARIQy3a2NhgzZo10nCSXl5eWLRokdqLzy+99BKqVq0qbf/87xB0dnbWaoi0wkaPHo3w8HC4urpi7969ePPNNzFv3jzMnTsXbm5u6Ny5s/S9eEUJDAzEsGHD4Ofnh4YNG6q8g8nKygorVqzAsWPH0Lp1a8yZMwefffaZdCeppjqmf//+8PLyQo8ePdCrVy907txZq3J99tlnsLCwQLdu3dC2bVtpaM+SrKu2y5XL5fD394ebmxvGjh2Lhw8fAtC+vrSyssIXX3yBx48f44MPPkDjxo2N9vg15LljzJgxSk/FqesET09Ph0wmQ61atZCTk4MvvviiVJJTNm7ZuCXglVdewbBhwzBgwAC0bdsWN2/ehLOzs9rpO3bsiN69e6Nnz57o0KGDNGxYSeoIMl66xgeQd5759ttvsXr1amzduhVvv/02srKy0Lp1awQHB2scllsXnTp1wnvvvYeJEyfC2dkZgYGBOHbsmFafVRfHRVmyZAliYmLQrl07jB49GmPGjIGnpyeAvO86DggIgJOTExYsWICIiAilJ9/V5c2aFLX9W7dujVdeeQVeXl7SnfOzZ8/G8uXL4eTkhC+//FJpuPZHjx5h7NixcHFxgb+/P9zd3aWblDTlQxVRUdu+ZcuWuHv3Llq3bo2lS5di+fLlqFmzJgDNcVKUHj16IDw8HJ6ensjOzsaHH34IQHPbMJ82OX6+UaNG4Y033kBQUBCCgoLw+uuvY9SoUQD032bURlHtNNIN47ds4zdfcep5Y6EpZq5cuYJ+/frByckJI0eOxIcffqj0NUnqzqmjR4/GtWvX4OrqitDQUK36BXTtw+nbty/+/vtvuLq6YtSoUcXuQ5o2bRr27NkDZ2dnzJw5s8wuPLdp0wbjxo3DmDFj4OXlhfv37yMiIkJ6v3A/kColybM05QWF6XocFbXvfv75Z/j6+sLZ2RmbNm3CZ599BqD0+39KU1F9PQVNmTIFjRo1Qv/+/eHs7Ix33nkHt2/fBlD0PlXXd6aq/ivMysoKnTp1wqlTp5Ru+NW1z7OgwMBAfPnll/Dw8MCff/6J//3vf2qn1TXmTTkeKjRBJiM8PFwsWbLE0MWgCqg0Y+/+/fuiadOmQi6Xl8r8jcVnn30mpk6dauhiUAVUns8dS5YsEW5ubsLd3V18/PHHYtCgQWLLli1i27ZtYsCAAUIIIXJycsT06dOFk5OT8PT0FKtWrRI+Pj7i5MmTQgghli9fLiZNmiTNs3CdpMu08fHxYsKECaJt27bC1dVV9OvXT/qsOmfPnhVdunQRjo6O4q233hJLly6Vyi6EEE2bNhV37tyR/h8wYIDYtm2b0jb44IMPhBBCnD59WrRr1056r2DZVZX/hx9+EB07dhRubm4iNDRUxMXFKb3n6ekpXFxcRGRk5HPzzl/fkJAQ4ejoKDp37ix+/PFHpe0REhIitmzZIk1fcL/s3r1bdO7cWbRq1Uq0adNGzJs3T/rctGnTlGJWoVCItWvXis6dOwtHR0fRsWNHsXjxYpX7QAghnj59KsLCwoSjo6Po0KGD2LFjh7Qds7KyxLBhw4Srq6twcnISvXv3FufOnZM+e/ToUdG7d2/h4uIiPD09xZgxY0RaWpqGPUhEFVnhOrq0VZS8uSIpeG7Up8LnYF0Uzh+I1GH8kj6V9TmViIxL4X4AIiGEMBOCA/+bggcPHqBnz57YsWOH0l1JRKWttGPvwYMH6NixI/78889y9b040dHRkMvlaNasGa5cuYLhw4djwYIF8PPzM3TRqALhuYOIiKj0NGvWDAcOHJC+q6u0lde8uSLbvn07tm7dqveRFwYPHoygoCCV3zVWFF9fX8yfPx9t27bVa5mo/GH8kj6V9TmViIxLeHg46tatiwkTJhi6KGRE2OIxAUuXLsX69esRGhpaos7nXbt2Yfbs2c+97uDggMjIyJIUkcqpsoi98vo9Vunp6Zg0aRISExNRu3ZtDBs2DB07djR0sXQSGxuLgIAAle9FRkbCwcGhjEukrOD3mhT0zTffKA2RWlKmWnfy3EFERFQy58+fx/Dhw1W+FxUVVcalIaJ8zE/JlDF+Td97772n8vsHR4wYgbCwMAOUiMg0BAQEIDY29rnX58yZY4DSkCngk5dEREREpYiNWyIiIiIiIiIiIu3x4iURERERERERERERERERGQVzQxeAiIiIiIiIiIiIiIiIiAjgxUsiIiIiIiIiIiIiIiIiMhK8eElERERERERERERERERERoEXL4mIiIiIiIiIiIiIiIjIKPDiJREREREREREREREREREZBV68JCIiIiIiIiIiIiIiIiKjwIuXRERERERERERERERERGQUePGSiIiIiIiIiIiIiIiIiIwCL14SERERERERERERERERkVHgxUsiIiIiIiIiIiIiIiIiMgq8eElERERERERERERERERERoEXL4mIiIiIiIiIiIiIiIjIKPDiJREREREREREREREREREZBV68JCIiIiIiIiIiIiIiIiKjwIuXRERERERERERERERERGQUePGSiIiIiIiIiIiIiIiIiIwCL14SERERERERERERERERkVHgxUsiIiIiIiIiIiIiIiIiMgq8eElERERERERERERERERERsHC0AUwFsnJ6cjNFahd2waPHz81SBnK47LNzc1Qs2ZVvc+XlCUnp6NmzaoGi5/SYshjAmD8lpX8+hcw/D4vLYZaL8Zw2Sly/+bkABaml3YZ8phk/JYNY8iBy1JZrSfjt2wUzCEAoHatqnj88AkgkxmwVIZX0jhn/JYNnetfE8wlDHFuYfyWrYqQO5QWdccHY7hslHo/WmYmYGUFmOv/uSFjztsZv2WjxP1omZlApUqlULKype9jgfFrfEwr8y1FublCOugLNoANUY6ipKQkY9261Rg1aiysra3LdNlknAwVu3fv3sGmTRsxatQYVKtWvVSWwbgs/wrWv/n/A8CGDevQs2dvVK9ua6ii6RVjuXzTtH8rbVgHmxnTkLZ4ObL6DSjDUukHY7d8y6+DExMTsXHjFoSEvG3oIpU6xnT5UTiHgI8Paly/gaQ//szrMKzAGOfGT5c+CIvTv2Nr7wD0X/AZ5EPfK4vi6Q1jsWzdvn0b4eHhSElJQY0aNbBw4UI0btxYaZoTJ05gyZIluHnzJgYPHoxp06YVe3mF9++5c2eQnZ0NT892xZ5nRcLjw3BKqx/NLDERNnNmwHr7VuTWscOT1RuQ4+6h12UAjJ2KTl0/mjaqLpgD82WLoZg+E88mTCmN4pUpHgvlG4eNNUHb+/fCJ5/Mw7Fliw1dFKrAUlKS0b9/T+zY8ROWL48wdHGonDFPiMfkyeNw6oOphi4KUYlVmzwOZpmZqLRti6GLQqTWd999h4kTxxi6GEQlc/QoZIkJkP0TbeiSEOlV7rAQjMjJQeq0iYYuChm52bNnY+DAgdi/fz8GDhyIWbNmPTdNw4YNMX/+fLz77rt6X37fvkHo1StA7/MlMglCwDakHypt3QQzhQKy+DhUf28I8OyZoUtGlEcInFq2GJUBXFu8EBC88EfGjRcvTYxZchKiLv6BFwFc27TR0MWhCmzZsiVo29YLa9Z8hx07tkHwhEd6pFi+BABgt+VHA5eEqOQuAOgDwCw1xdBFIVKrSpUqhi4Ckf4wL6Vy5uajhwCAVAOXg4zb48ePce3aNQQGBgIAAgMDce3aNSQlJSlN16hRI7Ro0QIWpTAMsSInR+/zJDIVlsePwvJiFBR2dZH0+wXIWzlBFh+Hyqu/NnTRiAAA5nduYymAlwFszc6G+f17hi4SkUa8eGliLC+cQxSAAQCiYx7kfe8FURnLycnBpk3fY8KEKWjR4nWYmQHXr18zdLGoHHmakQEA4P2JZPJyc7EXwHYAsWnG+b0kRAAgq+DfEUjlQMELlgqF4cpBVArS//39yMbGoOUg4xYXF4e6detK53SZTAY7OzvExcWVyfLNHj6EQi7P+yczs0yWSRXTwoUL4evri2bNmuHmzZuGLo7Eal8kACBz0GAomryK9OkzAACV168FcnMNWTQiAMCzI4dwDMACABcBWFy5bOASEWnG77w0MTl/38IdAH4A5gkB2Z3bULzyqoFLRRXN6dOn0LDhi3jxxUYAAC+v9vj995No0eJ1A5eMyosckZfYpxm4HEQlZfYkFY///fvKwwTo/9tOiPSDFy/J5GVn4wiAKwBCsrMMXBgi/cr493dSDi/Mk3GpU6faf//cv4X820jqPPgbaNPGIGUyJUrbj7TWsWNHDBkyBIMGDTJ0UZRYnTwOASCrgx8AQN6hIxT1G0B2/x4sT52A3Ku9YQtIFd6hXTvQDoCbuTmm5ubC4q/ryA7obuhiEanFi5cm5uH1a7AD8BKABwBkt27y4iWVuZMnj6N9ex/pfw+PNjh48Fe8+26oAUtF5UnOvzcl8slLMnVmKSlI/vfvR0+eGLQsRJrw4iWZOrOsTIQDOANgMJ/4oXImPyd+ouDIS6Sevb09EhISoFAoIJPJoFAokJiYCHt7+1Jb5sOH/91uapGYAksAWQBSEpIhf8hbUTWpU6ea0vbLZ25uhtq1+ZS1Jq6uroYuwnPMUlPw7Po1dDAzw913BiJk8DuYOHEqqvYNRpVli2EduYsXL8ng9l25hJ4A6vTsjfjtP0Hcv2/oIhFpxIuXJibhn3/gAMC+Zk3EJCcDD1jJUNk7d+4sQkPDpP/btPHE/PkfQQgBMzMzg5WLyo+crLxOxwwAyMgAKlc2aHmIiss8NQVJAJoAeKRQ5A2hVamSoYtF9BxevCSTl5n133eiZGZompLI5ORH9DMOiUwa1K5dG82bN8eePXvQo0cP7NmzB82bN0etWrXKpgDyHEi9AdnZZbNMomLKv0Cst6dfL5zEQgCv1qqFrWfOYPLkyZgxYzK+GzUKWLYYlY8cRGU9PmnLp3ZJV2ZPUvHHkyf4wMICwr87am//CYl3/gEjiYxZqV+8PHjwILy9vUvli8ArovjEODgAsHB2RfWDvyLp9j/g/VglxzjVnhACUVEX4OLi/n/27jw8qvrs//j7nMlksi+EbBBC2EUEcWFxV0TBRyp2sVDEtrYu/bk9xacuVR4VVFrQPlYtaq1au1i01BYRUKkLClhEBVF2CIGQfSfbTGY7vz8mCQnZJpntzJn7dV1cV5jt3JN8zsnJuef7/bbflps7HJPJREHBEUaOHBXC6iKTEfPrqj8BeD5lrtbV4pbmpeiFnvcBpb6eJiAPqAKUhgY0aV6KU+ghw9K8jDx6yJ0/KfaW9ovmilVGXkY6o+W7rXlpkzXTIoIv+X3kkUe4//77ee6550hKSmL58uUA3Hzzzdx1111MnDiRL774grvvvpvGxkY0TWP9+vU8/vjjXHTRRT7VrTgd3X4tRHdCfZyurm4kLS2h29GvAxH3wcf8A1h6/kUkJWXw1FPPc+GFU3hn/g+ZlZqKmp9PzWc7cY0c7fO2ehq1qwfhMHI41NkLFff2bRwDRk2aRMuIkeQApcXHpXkpdE3t+yG+efrpp7nwwgtZunQpu3btCvTmDK+suoYhgPPMyWQDFYXHQl2SIUhOvVdcXERcXBxZu3YS+/uVRG3/DEVRmD79PLZv3xbq8iKSEfPrbPZMjmUFlOam0BYjdE/P+4BibaYZyKWteSlTx4qu9JBhaV5GHj3kzp+UlpMNS0VGXkY8Q+Vb006OvASQ0ZeG50t+R40axerVq3nvvfdYvXo1I0eOBOAPf/gDEydOBDxTbn7yySfs2LGDnTt38sknn/jcuATA4Tg58tIhUxyL3hnqOA1U79rJIWDqFVcCEB8fzx13/Dcrn/8d9ktnABD9wb9DWKFoY7Tseav8s8/IApQzz8aVPZQcoLiiItRlCdGrgDcv165dy6uvvorFYuHOO+9k1qxZPPfccxQVFQV608bjdlPaUO9pXk46iyygsrQ41FUZguTUe/v372VCfDwp879Dwv/+ktQ5V2B5/TXOPvtcduz4ItTlRSQj5tfp9Pyx2wzQLBcgRe/0vA8oVmun5qXaqM9PyIrQ0kOGpXkZefSQO7+ydRh5KWteRjxD5dtupxlQaB2BKfk2vHDNr+Ls0LyUkZeiD+Ga855s/uZrLgXU089ov23+/IVs27aV/RMnAxD9/sbQFCc6MVr2vFWydze5gHPMWLS0NHJMJkqam6GxMdSlCdGjgDcvAU477TTuu+8+Pv74Yx5++GHeffddrrjiCq6//nrWrl2LW6Y+8YpSXU2pppEdF4dreB6ZQEVVZajLMgzJqXf2f76dSa0jfu2XXQ5A4n13c072EHbu3BHK0iKa0fLrdHj+2LUioyeEd3S7D7Q2L7OBejzTyArRnVBnWJqXkSnUufOnjiMvZc1LAcbJt9Jiwwqk4flgnzTnI0NY5rfDaEtF1rwUXhhozh977DEuvvhiysrKuPHGG7n66quDXPkpHA6+LC9jKuAcPbb95vj4eG644UaePXQAAPOnW6B1likRWmF5jPVRcUE+uYBr9FhQFIYkJVMEmEpkYJTQr6BN7lxYWMjatWtZu3YtiqJw1113kZ2dzWuvvcbGjRv53e9+F6xSwpZaVkoJkJ02GHdWNplAZW1tqMsyFMlp3w5++G+udDppuWIW9a+tJvGWHxOz5p9M2/wxBw/ux2azESPruYWEkfLrbJ0OqxnPyDUhvKHHfUBp9kwbm0lr87JBRl6KnoUyw9K8jFx6PHYOhGK3y5qXogtD5NvqaV4OovXcuMWGFuKSRHCEXX47jbyUaWOFdwaS88WLF7N48eIQVNs9U8ERvtA0HszIhLi4Tvf99Ke3cOGFU3l8wkSy9nxD9Kebsc+cFaJKRUdhd4z1UUlJCcMA1+gxAGQPTufr2hrUkmJcY8eFtjghehDw5uVrr73GW2+9xbFjx7jqqqtYsWIFkydPbr9/1qxZnH/++YEuwxBMFWWUAhkZmWiDBpGpqpTabGC1QmxsqMsLa5JT7+3Lz+duoOWabwPQfOfdxKz5Jynr1zJ61Bj27PmGc86ZEtoiI4wR8+voOPJSmpeiD3reB9qmjc0CGpA1L0X39JDhtualpmkoitLHo4UR6CF3fmWzdZg2Vs4dIp2R8q3YrO0jL2VWksgQrvlVHI5uvxaiO+Ga8+4o+/ayEzjz9Ald7svMzOK//msOzx07ylI8615K8zK0jJQ9bykn6jje3MSZZjPuIUMByM7KpPjQAdTyshBXJ0TPAt68/OSTT7jxxhu5/PLLiY6O7nJ/bGwszz77bKDLMAS1rIwqYNDQHFAUMlJS+aqmGrWsFPeIkaEuL6xJTr3jbG7mYGMDpwO2iy8FwHXGRJwjRxF1JJ9zWte9lOZlcBkxv67WT+rKBRrhDT3vA4q1ub156Rl5Kc1L0ZWeMuxyuYiKCtrkLCKE9JQ7f1BaTq55iXzwKeIZKd+KrfO0scjIYsML2/w6Ooy8lOal6EPY5rwbZV9+ThKQNGEiTd3cf9ttd/Gdb13JfUDMB/8OcnXiVEbKnrdMhw9RAFw9ZCionlUEs4YOoxhQy8tDWpsQvQn4mpdTp07lqquu6nIw+OMf/9j+9YUXXhjoMoyhvIxqIDVnGAAZaWmUA2pFRUjLMgLJqXcKN7zNEMAydhzu7CGeGxUF+7euBWBiUxMHDhwIXYERypf8FhQUMG/ePGbNmsW8efM4evRol8e4XC6WLFnCzJkzueKKK1i9enX7fStXruTqq6/mmmuu4Tvf+Q6bN2/2y3tyuJyYabtAIxcgRe/0fAx3NjbixnPBsR5QZdpY0Q09ZFjTPJMQOmWat4ihh9z5ld1OS+uXLU2NIS1FhJ6R8q202Gim45qXcm5sdOGaX6VD81JxyJqXonfhmvPu5H/9FeMAZw9Tb44bdxrTLriIF2JiMB0tQD1aENwCRSdGyp63TIcOchgYOebkmqxZI0ZRAijlpSGrS4i+BLx5uXLlym5vf/755wO9acOpLy0hHojKzAIgPSOLMkCtkE9I+Epy6p1D76xnAuC46JJOt9svuQyA8ccLKSjID0Flkc2X/D788MMsWLCA9957jwULFvDQQw91eczbb79NYWEhGzdu5I033uDZZ5+lqKgIgEmTJvGPf/yDtWvXsmzZMhYtWoTN5vunwZ0uF0nItLHCO3o+hlubGokD4ganYwPcJ06EuiShQ3rIsDQvI48ecudPittF2zgfa2N34x5EJDFUvq22U6aNlZGXRhe2+e042tIh5xOid2Gb824cPlrAOMA1akyPj/nvn/+CpxUFJxC96cNglSa6YaTsect98AAlwNAzJrXfFjtsGDFAXfHxkNUlRF8CNifUf/7zH8AzYmfbtm3tF0QAioqKiI+PD9SmDau2tJTBgHvQIAAGD81pHXkpzcuBkpz2z7GdXzIWsF98WafbHedORYuJ4bTCYxyxyycsg8XX/FZXV7N37972T5fNmTOHRx99lJqaGga1HmcANmzYwHXXXYeqqgwaNIiZM2fy7rvvctNNN3HRRRe1P27cuHFomkZdXR1ZWVk+vTen00kSrZ8ul+al6EE4HMOtjZ7mpZaZRUJVJY011YGfs1+EDT1luG3bLpdcbDQ6PeXOr1wu2tJra2qg6yRgIhIYMd8d17yUkZfGFu75VZwdRl46ZdpY0b1wz3kXmsahykpP87KXJb3OPPMssjMyWXfsKFdt+hDbj38avBoF4L/sFRQUcP/991NXV0dKSgrLly8nLy+v02NcLhePPfYYmzdvRlEUbrnlFq677joAnn32Wf72t7+RkZEBwNlnn83DDz/sh3fYs6IDexkCmEaPaT9fdmdkMhQoKyomN6BbF2LgAnb97MEHHwTAbrfzwAMPtN+uKArp6eksXrw4UJs2rOqqCtIBLS0NgEG5udQBrtLikNYVziSn/WC1UlBcxDmA4/wLOt8XE4NjynRyN2+iuroKq9VKbGxsSMqMJL7mt7S0lMzMTEwmEwAmk4mMjAxKS0s7NS9LS0sZMmRI+/+zs7MpK+u6oPeaNWvIzc3td+MyLS2h0//T0xPRNHf7yMsE1UVCemK/XlOP0g3wHvTGH8fw2tpa7r33XgoLC4mOjmb48OEsXbq00z7gC1tjA3GAOyODpD3QUFtLql9eWRiBns5DTo68dAVtmyI09JQ7v+rQvGxpbg5pKSJ0/JFvby5KBvPCY9ual4OQNS+NLuyPzw6nrHkp+hT2OT+FUlPDQYed/4qJRRs8uNfH3njTz1j5v/dzzeaPPfuI2RykKgX4L3ttM5jNnTuXt956i4ceeog///nPnR7TcQazuro6rr32Ws477zxycnIAuPbaa7nvvvv89M76dvToUUYB7mEn25TuzCyGAqUVZdK8FLoVsOblhx96hsDfe++9rFixIlCbiSjVNbWekZdpnl+GSlY2aUD18eMkhbSy8CU59V7U7q85oml8b1guWnJKl/sd06YTvXkTw+MTOHq0gPHjTw9BlZFFT/ndvn07Tz/9NK+88kq/n1td3Yjb7blonp6eSGVlAzaHgySgGmiuPkFTZXivE9j2voJNVZUuzWEj8cc+oCgKN910E9OmTQNg+fLlPPnkkyxbtswvNVqbmjzNy8wskoDGE3XSvBTt9HQcl2ljI4eecudXrc1LM9AszcuI5Y98e3NREoJ44bHl1GljZeSlUYX98dnpoG0ckyZrXooehH3OT2E6eoQDwOjcXFCUXh8758c/ZekjD/JlQz2jd3yJc9r04BQpAP9kzx8zmIXC8fIy8gBXzrD229yZnpGXxbW1IalJCG8EfOYyI/wi0ovqE63Ny0GekZfujEyygKqSYmle+khy2jfzzi/JB3LPOrvb+x1TPBf+R2tujhzJl+ZlEA00v9nZ2ZSXl+NyuTCZTLhcLioqKtCe4D0AACAASURBVMjOzu7yuJKSEiZN8syNf+pIzJ07d3LPPffw3HPPMXJkz9Ok9IfLdXLkJVa5ACl658sxPCUlpb1xCTB58mRWrVrlj7IAsDY3t468zCQRaGyo99trC+PQw3mI2+0GZNrYSKKH3PmT0tq8TARs0tyJeIG+KBlMitVKMx2njZWRl0YXrsdnxeGgbf4Gl60lpLUI/QvXnJ/Ktn8flcCwsafR14rbFouFhy+4iDs+2cT7H70vzcsQ8SV7/prBbP369WzZsoX09HTuvPNOzjrrrH7V0d0MZj1qaaGovp5cRSFt4tiTI34HJzDUZKK0pYX0OBXCbcrmVjLLmbEFpHl51VVX8c477wBwySWXoPTwyZNNmzYFYvOGVd3Y2GnaWHdGBplARUU5/mkXRBZ/5dSbaYVWrlzJhg0bMJlMREVFsWjRova1AkMx1/lAuD7fThmQdf5FdDehnPOcc9EUhTENDRQcPABXfyvYJUYUf+Q3LS2N8ePHs27dOubOncu6desYP358lwszs2fPZvXq1Vx55ZXU1dXx/vvv89prrwHw9ddfs2jRIp555hkmTJjgnzcHOFyy5qXoXSDONdxuN6tWrWLGjBn9rqenE+Y9dhtxQNzIXE9Dvqkx7E6uw63ecOGvDC9fvpz33nuP4uJi3n77bcaOHTugetpGXjpkmjdD8+ex09f1fno7Px4QlwsHeI61cu4QkfyRb28vSoJ/Lzz2+rvWTKc1LxOjNBLD6HeznEd4xxDX0ZwOHIAC2O3SvBRdGSLnpzj61U5GAfSy3mVH37/pVl79ZBP/+Odq5twfXlPkhjM9ZW/+/Pn87Gc/w2w2s3XrVm677TY2bNhAaqr3czR1N4NZT9Qj+RwDZqakUFlnA05+CCo7KYmdtbVU7z6Ee+Sogb6lkPH3LGdGn70sHAWkefnoo4+2f/3EE08EYhORp7mZKoeDdJMJLd6zE7WNvKysqQltbWHKXzn1ZlqhSZMm8ZOf/ITY2Fj279/PwoUL2bJlCzExMUDw5zofiOIvt5MDKFOmdnu/lpSMa/wExuzdzfYdnwe3uAjkr/w+8sgj3H///Tz33HMkJSWxfPlyAG6++WbuuusuJk6cyNy5c9m1axdXXnklALfffjvDhnmmmliyZAk2m42HHnqo/TVXrFjBuHHjBlwTgNPl8oycAJCp30Q3AnGu8eijjxIXF8fChQv7/dyeTpjrGz0jL+vjU0gC6hoaQzKF8ECFaspjMP4fDv7K8OWXX84Pf/hDrr/+ep/qaWteyshLY/PnsdPX9X76Oj/ut9aRl6mATUamRaRgXofw54XHvn7XxlbWdpo2trGyDmuYnEuE4jwiXM8fjHAdTXE4cQDxgLOlJfBTvYmwY4Scn+rwgX2MA1xeNi+dF17CgyYTjx8t4Fu1NWipoRnVH2n8lT1/zGCWnp7e/rgLLriA7OxsDh06xNSp3V9v9ZWp6DiFQE5Wdpf7sgcNZl1tLaaK8rBsXgrjC8i5xLnnntv+daB2vEij1tZQBYxPSGyfQ92d7hl5Wd5QD243qGpIaww3/sipt9MKdfwU+bhx49A0jbq6OrKysgZYfXAptTUcKypilKriPK3n6WAdU6Yxeu9uVh84EMTqIpO/jrOjRo1i9erVXW7/wx/+0P61yWRiyZIl3T7/zTffHPC2e+N0u7EA0UBLU1+Tr4hI5O9zjeXLl3Ps2DFeeOEFVD/+PrXarJ5pY9MzSALqZRpk0cpfGe74Or44ueZld/MrCKPwV+78sd6P38+P3Z7mZRLQ3CIjfiKRP/Lt7UXJoF54bGnBiifbGuBsavT/NkTIGeE6mtvuWefSAjjsDmleii6MkPNTHS485mle5o3w7gkJCcyYdh43f7qFgtWvk3fLbQGtT3j4K3v+mMGsvLyczMxMAPbt20dxcTEjRniZnwFoa14Ozc3rcl92VhbF+YdQKsoDtn0hfBHwc4k//vGPTJ8+nfHjx/PVV1/x85//HJPJxJNPPtnntCq1tbXce++9FBYWEh0dzfDhw1m6dGmXA0K4TLvpC7W6iiogLTn55I0WC4NjY6mwWlFqatAGDw5ZfeFuoDntz7RCbdasWUNubm6nCzP+mnIoYFPy7PiUfGBUejrpQ3r5VNjMSxn9p5cpKC/1Wy0yzVDffDnO6pXT5SYKiAVsTY2YQl2Q0DVf94GnnnqK3bt38+KLLxIdHe3X2qz2ls5rXlqtoGntH0QSAkJ7HG87h2hrXiYlWQz/u9fo789bvuTOX+v9tOnu/Li/Oq15KdMVRryB5tvbi5JBvfDY3IwViDGbiXM4sDY1SVPI4ML17zuH3TPa0gw47TICXvQuXHN+qkPVVcyiH81LwD1jJjd8uoW/r3qNe6V5GXS+Zs/XGcz+7//+jz179qCqKmazmRUrVnT6UJS/uY8dpRTIGjuOU+fYyRo2jGLAVN71/FwIPQj4Oe+rr77K9773PQB+85vf8OMf/5j4+HiWLVvW7WifjhRF4aabbmLatGmAZ1TEk08+ybJly7o8Nhym3fSFUl1NJZB2ynQCg5KT2Wu1olaU45Lm5YD5ktP+2L59O08//TSvvPJK+23+mnIoLS0hYFPyxH20mXwgJ29k7/Ooj5tELlBqtVJ0vBLLQKf9ahXK6QohfKYcClZ+g8nhdmEG4oDm5mbkMrPojS/7wKFDh3jhhRfIy8tj/vz5AOTk5LBy5Uq/1Nbc0tq8TE4h0WSi3uUCmw1iY/3y+sIYQnkcb5u2sK15WVl5IqymNu6vYJ1bhMM5hF7OH7o7P/ZWp+9xrLl95KXNbo/4JnWkv39f8u3NRclgXnh0NjejAKbUQcRVlGNtapRzY4PTy/G5v5wtdsx4Zs9xtNhDXY7QuXDNeUdKYwOHWlq402zGPWSo189zXDqDBY89wrf37+UetxtFZtILKl+z5+sMZm3nFcFScfggg4Go4XldmpdpuXnUA/bi4qDWJIS3At68bGhoIDExkcbGRg4cOMCrr76KyWTyakdNSUlpb1wCTJ48mVWrVgWyXN1Sa6qpAgad8gdR2qDBVJaVeZqXp08ITXEGMNCcejutEMDOnTu55557eO655xg58uRc+MGe63wgor7aQT5wzuTeP4HkHp6Hmp5BbmUFxZ9uZuSMK4JTYITz5TirV053h5GXzU1ygUb0ypd9YMyYMRwI4FTXVruDOECLjSXFYqGkuRmloQFNmpeiAz0cx09OGytrXkYKX3Lnj/V+oOfzY2+1Nd8BYk80t4+8bLY7DN2E74uvTfpwaL73xZd8e3NRMpjHZ1tTI7GAlppKbEU5tkY5NzY6PZwXDITT4WlemgGHwxHqcoTOhWvOO1IKCjgIjBqW26+lvJxnTGJiWhox1dXsfOufnP3t7wWuSNGFEbLXH8VHC8gFXDnDut6ZlU02UF54FBkSJfQo4M3L7OxsduzYweHDhzn33HMxmUw0Nja2TzHkLbfbzapVq5gxY0a39/tr2k0I7adUe9y2vYlKIGfEcJI7PCY7ZwhVe3eTYqsHH+uO5E/nDjSn3k4r9PXXX7No0SKeeeYZJkzo3GQO9lzn/aZpmHd8yRFg2IWX9P5YRcExdTqj16+l8MP3pXkZJP46zuqJw3Vy5KXNag11OULndLsPaBrNDjtxALGxJMfGsbe5GbWxHlfrVPdCgD4yLM3LyONL7vyx3k9v58cD4nbhwDPy0up0yBTdEU4Px1V/sTY3e5qXKanEAdZmWfPS6MI1v84Wz7Sx0YDTLiMvRe/CNecd1X6ziyggefQY6vvzRFXFcckMfvDP1ax59SVpXgaZEbLXH0WlJQwH3MNyu9znzswkBygtLpLmpdClgDcv7733Xu666y6io6N55plnAPjoo4+YOHFiv17n0UcfJS4ujoULF3a5z1/TbrrdWkinqext26b8o9gAU3Jap8fED86kEmg8dBSrD3UH6n2Hy6d2fcmpN9MKLVmyBJvNxkMPPdT+vBUrVjBu3Ligz3XeX2pxEUplBUeA3PMv6PPxjinTGLV+Lcd2fBH44gTgv+OsbrjduIAYPCMvrTZpXore6XYfaGnBCsSbTGAykZSQQF11FUp9v/60FRHAlww/9thjbNy4kaqqKm688UZSUlJYv359v2vQjh0DwCUfGIkYvh47fV3vp7fz4wFxOttHXlo1DRwO8PM6xiJ86PbcYABaWkdeulNS5IN9ESJc8+tw2InG07y0O2TtYdG7cM15RwVf7WAM/Vvvso39Uk/z8qIvv+Ahp5OoKFnNOFiMkD2vud0cr6nxjLwcmtP17oxMhgKlFRUY8N0LAwj4kfGSSy5hy5YtnW6bPXs2s2fP9vo1li9fzrFjx3jhhRdQuxmGHw7TbvqqpqSUNEBL6/w5iEHDhlMFqBXlIanLKHzJqTfTCr355ps9Pl/v0xJE7fySEiDBbCYhManPxzumTGU0cOjwoYDXJjz8cZzVFacTB56Lj3GA1SZ/+Ire6XUfUKzNNAPpZjMASQkJnACUhsidylB0z5cML168mMWLF/tcg/arXwFgevVluPhSn19P6J+vx05f1/vp7fx4INwOByoQD5QDis2KJs3LiKXXc4OBsDVbPSMvk1OIxbMevDC2cM2vo+Oal3aZNlb0Llxz3tGRAwcYC7hG9H/qe8elMxgD5DidbN30IZfMvNLv9YnuGSF73lLLyzjudjM+Ph7i4rrc787M8jQva2uCX5wQXgjKxzoaGhooKCigqamp0+3nnXden8996qmn2L17Ny+++CLRPfzxqftpN/2gtqKcdEBLS+t0e8KwYdgBW6ksrOsrX3JqZOadO9gPjM3I9OrxzkmTGRUVxca6OpTaGrTUQX0/SfjMUPltbV62rXlpbZHmpeibHvcBxWqlGYiNtgCQnJREHdK8FN0LdYa11hHB6iebgrI9oQ+hzp0/OR0OovB88KkZwGqDpOTQFiVCyij5brY2eUZeprZOGyuzkkSEcMyvw9HSYeSlNC9F38Ix5x0dKTrGGMA9gJGX7qxsnOMn8IN9e3jr5d9L8zLIwj173lKLiygErkjv/pque3A6Q4Di5mbPrCWtH7wWQi8C3rz85z//ydKlS4mLiyMmJqb9dkVR+OCDD3p97qFDh3jhhRfIy8tj/vz5AOTk5LBy5cpO0xHpfdpNf6iuLGcwnoNKR1pmFjlASXER3rWWRHd8yanRRe36ir3A2LGnefcEi4UR4ydw4JtdmL/8HPvMWQGtTxgvv4rLM+1blMlErMuFzS7NS9E7ve4Diq21eWnxfPgqOTmltXkp08aKzvSQYc1kApcLd/2JoGxPhJ4ecudPTpfz5AefaB15GeKaROgYKd82WwtxnFzz0mazhbokEWDhml+H3dHevHRI81L0IVxz3tHhqiq+z8BGXoJn6th5+/awbOtmftXSgsVi8W+BoltGyJ631NISjgE5Q4Z2/4CoKIYkJvFFQz1qVSXu7CFBrU+IvgS8efnUU0/x9NNPc8kll/T7uWPGjOHAgQPd3tdxOiK9T7vpD9XV1aQD7vSMTre7MzIZBhSXlUrz0ge+5NTQNI2oXTvZB4ye4v00zLkXXULJN7uwf7oFpHkZcIbLr8PhGXlpjibGZaXF5QKnE2QNCNED3e4DzZ7mZZzF8wdRYuqg1mljpXkpOtNDhjWLBZqbcYasAhFsesidP7kczk4jLxVZFzCiGSnfNpu1fc3LWKBZZiUxvHDNr8Ph6DDy0h7qcoTOhWvO27W0cNhqZbSi4MrJHdBL2C+dQc7zzzLBZOLDD9/nqquu9nORojthn71+MJWWUAgMzcvr8TFD0gZT3FCPWl4mzUuhO10XkPQzl8vFhRdeGOjNGF51/QnPyMtTRpS6MzPJBYpqZG5qX0hOu6cWHEGtP8FeczRjzvW+ealNO4+xQP7mjwNXnGhnuPw6XZ6Rl1EmYqKi2kdPCNETve4DirWZJiA2JhaApLTBnpGX9dK8FJ3pIcNtawNK8zJy6CF3/uRonTa248hLEbmMlG+brcWz5mXaYM+0sdKYN7xwza/d4Whf89LulDMK0btwzXkb5dhRDgOjhubAANfYdkw/Hy0mhgVNTfzr9b/6t0DRo3DPXn80HD2KBiQNz+vxMZnZ2RQDamlpsMoSwmsBb17efPPNPP/887jd7kBvyrhsNsptNrJUFS0ltdNdWkoqw1SVIqsVZPqYAZOcds+8aycA+xUYO3ac189znDuVM4D9+/Z65kwXAWW0/CrO1pGXpihiW5uXNMtFGtEzve4DitVKIxAX52leRqWkYAGa5QNH4hR6yLDWOk2VXGqMHHrInT85nZ6L5u0jL+Vvo4hmpHxbW2yekZetzUubjLw0vHDNr7PDyEuHNC9FH8I1520qdn5JEhA3cvTAXyQ2Fsf08/ke8OFHH9DY2Oiv8kQvwj17/VFUkE8u9DqiMmvUaEoApfBosMoSwmsBn4Pv1VdfpaqqipdeeomUlJRO923atCnQmzcEtaqSMmBaQiKop/SbVZWcxCS+OFGHWlmBe9jApiqIdJLT7kV9tZMKoEVRye7H1AFaejqnpw5iT20Nc/fuxnnmWYErUhgvv3Y7TsAcZSLGbcZqs6FYm2XdKtEjve4DitVKExAfFw+AlphEClBfU01yyKoSeqSHDGtmMyDNy0iih9z5k8vZec1LZHRaRDNSvq0Ou6d5OTjdk+8WacwbXbjm1+7sMG2sUz7ELHoXrjlvc/SrHYxh4OtdtrFfMYvBmz7kvMQk3ntvA9/97vf9U6DoUbhnrz+Kiov7bF5GjxhFAlBz6CDxQatMCO8EvHn5xBNPBHoThqdWVlAKZKQO6vb+nLQ0/nmiDrWiXJqXAyQ57V7Urp18BZwxchSKovTrueMmnMErWz7BvH2bNC8DzGj5VVrXvDSZoogxt039JhdpRM/0ug+0TRsbF9/WvEwkGaivq5HmpehEDxnWWtcVdoKsMxwh9JA7f2prXsYBTYDS2BDiikQoGSnfVrudOMA9KM0zbazDAW531w82C8MI1/zaHU7MgBkZeSn6Fq45b3PkwH7GAq68ET69TsucuSQ8eB8L6mp5bfXr0rwMgnDPXn8UV5QzHHAPGdrjY9y5uQwFyg8fxrdWvBD+F/CrElOner9OnuieWllBGZB1ynqXbXKysik8ko9aXh7cwgxEctoNl4uor3d5mpf9WO+yzdiLL2X3lk+I+vwzuPn/+b8+0c5w+XU4PCMvzWZiVJVGPE0gIXqi232gddrY+IQE4OTIyxMnTjAspIUJvdFDhrXWaZMcgNLUiJac0vsTRNjTQ+78yel0EQWkAnWAWlcX4opEKBkp3w12B0kAcbHEmqOpc9hRmpvQEhJDXZoIkHDNr6PTyEtXqMsROheuOW+TX3jMLyMv3dlDcEydzre3b+POT7dSW1tDag+DV4R/hHv2vKZpFJ6oax15md3jw1y5wxkKlBYdl+al0J2Af1TPbrfz1FNPcfnll3POOecAsGXLFv76V1mI2FtqpWfa2PSs7g80Q3KHcxxQysuCWpeRSE67itq7G7WxgR1xcUyYOq3fzx9y5VXUAM2fbfN/caITo+VXcdg9Iy+jooiNtnhGXsrUb6IXet0H2qaNjYtvbV4mtU4bWy+jgURnesiw2+W5yOgElAbJaCTQQ+78yel0EAUkx8VTCyjSvIxoRsp3g9NBIqDFxJJisVAHKE1NoS5LBFC45tfhdJ5c89IlIy9F78I1523yq6v8MvISoGXut0kEZqaksG7dWp9fT/Qu3LPnLaWqiuMuFzlxcb1+4Mk1bDi5eEZpCqE3AW9eLlu2jIMHD/Lkk0+2Tzs5ZswYVq1aFehNG4ZWXkYlMDin+3Ea8UOGEg3UFR4Lal1GIjntyvyfrQB8ZYrijDMm9fv52mnjGW8ycaC0BPVogb/LEx0YLr/tIy+jiImxyLpVok+63QeamjzNy8QkANwJiZ7mpUxlKE6hhwy3jbx0AkpjY9C2K0JHD7nzJ0dr8zIxLY0mQKutCXVJIoQMk2+7nQZNI0FRwGwmJS7O05yXcwlDC9f8dm5eyshL0btwzTkALheHm5o8Iy+H5/n8ci1z5gKwoLqKf61+3efXE70L6+z1g+n4MQqBYT0MhmqjpaUx2hzNYZsVpa42OMUJ4aWATxv7/vvvs3HjRuLi4lBb12TIzMykXKY49VptwRFSAFNOTrf3u4cMJRcoOXSAUUGtzDgkp12Z//MpTUChzcrYseP6/wKqyvghQ9l9vJCJ723Aeuvtfq9ReBgtv21rXkaZzFiio2XkpeiTXveBlhN1mAFToudTjm1rXp5olmmQRWd6yHCn5mVDfdC2K0JHD7nzJ4fDc9GcwYNJOl7IiYoKLKEuSoSMUfKtNDbQACTGxACQGhdPDfIhE6ML1/zaXZ41L6MBuzQvRR/CNecA2vFCCoC8jEys8fE+v547ewj2iy/j6k8+4qavdlJaWkJ29hDfCxXdCufs9YfpeCGFwNC+GuyKwqihOWw6eoSo/ftwTD8/GOUJ4ZWAj7w0m824TjlpqampISVF1tHxVmXhMbIA19DuR166Ro9hGFCSfziodRmJ5PQUmoZ521a+AcaMHI3ZbB7Qy5w2dTq7gOh3N/i1PNGZ4fLrcGAHoqOjiYmNwQYoNmleip7pdR9oPnGCeGifoqVt2tg6WcNVnEIPGdY6ThsrF8Ujgh5y508tTgcWwD0ojVTgRFVlqEsSIWSUfCuNjZ7mZWwcACkpKTItcgQI1/w6nK6Ta15K81L0IVxzDlD6+WekA9Ej/TeExPqjG4kBvhVt5q01//Tb64quwjl7/eEqKKACyBw9ts/HjphwBgcB055vAl6XEP0R8Obl7Nmzue+++zh+/DgAFRUVLF26lKuvvjrQmzaMypJisgD30KHd3u8cNcYzN3VxMWhaUGszCslpZ6ZDB1Grq9mRmMQZZ58z4NeZ/P35fAqYt32KIlN3BYzR8qs47LQA0WYzMbFxMvJS9Emv+0BzfR0JgNb6aVwtKZkMoMJmA6esAyRO0kOG20ZetiDTEUYKPeTOn+xOBzGAOzOLNKCm0lifnhf9Y5R8Kw2tIy/jW5uXgwdTA6jyt5WhhWt+HS6nNC+F18I15wAHP93CBMA1ZgCzlPXAPvtqXBmZLKyvZ/WrL6HJ9d2ACefs9Uf5gX1kAmpeXp+PzZ0yleOA65uvA12WEP0S8OblokWLyMnJ4ZprrqG+vp5Zs2aRnp7O7bfLFJLeKq+s8Iy8HNL9tLFaRgbDLBaKbFaUqqrgFmcQktPO2ta73JmWxhkT+7/eZZtJ51/EQdVEg8uF5Z31/ipPnMJw+XU4PSMvLdHExsa2Ni9lpJromV73geb6+taRlwmeG6KiyEhKphxQy0pDWZrQGT1kuG3kpRUZeRkp9JA7f7I5nJ6Rl9lDyAbKKypCXZIIIaPkW2lspB5IiPfM4pCcnumZNra6OqR1icAK1/zaXa6T08YCtH4wSojuhGvOAfZ/vYszAKcP18u6MJux/finzATs5eVs3brZf68tOgnn7PXH0SP5jAJcw4b3+VjTmWcxDtj35ecBr0uI/gj4mpeFhYWMHDmSW2+9FZfLxcyZMxk3zn+fTDG8pibKmpvJUlW0wYO7f4yikDd0KH8/coSowwdxpKcHt0YDkJx2Zt78MQBfOp3MnTh5wK9jsViYPGIE/8k/zGWrX8e24AZ/lSg6MFx+HXZP89IcTXxCIo0AVluIixJ6ptd9oKmhwdO8jE9ovy0jM5Py+hOoxcW4c7qfDl5EHj1kuG3kZTOgysjLiKCH3PmT3dnavBwylKFAaW1tqEsSIWSUfCtNnpGXCYmec4nYjAycgL1SmvNGFq75tbs808bGAccB7HZoXa9ViFOFa84B9h47ymz83LwErDfeTNyzT/GL5iaeW/44F154sV9fX3iEc/b6o6CokNGAa1hun491nj6Bc4EdR/IZ7XKByRTw+oTwRsCal5qm8cADD7BmzRqysrLIyMigvLyclStXMnfuXJYtW4aiKIHavGGYSoopACampIDa80DZCeNOZ9eRI5gOHcRx3gXBKzDMSU67YbcT/eH72IADVVVMmnSmTy83bfbVfPTC75i1dTPq8ULcXvzSFN4xan6V1jUvzdHRxCcm0oCMvBTd0/s+0NzU6Jk2NqFD83JIDmWHDmIqKUImjhV6ynBb89KKZ5pCYVx6yp0/2ZxOz7Sxg9LINpkotbdAYyN0OAYL4zNavtXWaWMTklrX4Wpd07WuvJSkUBYmAiKs86tpOFqblwkxsdTbrChNTWjSvBSnCOucA9hs7K0/wS8UBef4CX59aS0tDduCG1j48os89NUO9u7dw+mn+3cbkSzss9cfTidHqqo8Iy9HjOzz4VrqIM5JTuHzE3X8oOAIrtFjAl+jEF4IWPPyjTfeYPv27bzxxhtMmnTykyhff/01//M//8Prr7/OD37wg0Bt3jDU4iKOAHMys3t93PDJZ1Hxzjqa9uxGPhvhPclpV+b/bEVtbODz4XmMTk4hNjbWp9e7dNZVPPTXP/HrE3XE/OMNmhfd46dKhWHza29d89JiwZyYTD2y5qXont73gabGpk5rXgKk5eVR/jGoxcUhq0voh54yrLndxOEZeamcOBGUbYrQ0FPu/KmldeQlJhPD0tJ4t6IC0/FCXONPD3VpIoiMlu+2aWPjUzzNS3d6OplAVVGRNC8NKKzz29Tk+QCq2UxSQoKneVl/Ai0tLdSVCZ0J65wD2u6vOQiMHTUaW1yc31+/6ef3kLbqNX7e3MSK++7m1bff8/s2IlW4Z68/1OOF5GsaU1IHgZc5Pev0CTz/n61EfbFdmpdCNwK25uVbb73F4sWLOx0MACZNmsQDDzzAW2+9FahNG0rUgX3kA3lj+xi+PvY0JgD7du0MRlmGITntyvLP1QD8J28EZ599js+vd845UzjisFMOWF5/Tda98COj5ldxeta8jIq2EJ+S7Bl5aZPmpehK7/tATXMTaXSeZYh2SwAAIABJREFUNjZ5xCiaAXvh0VCVJXRETxnWXC7i8Yy8VKsqg7ZdEXx6yp0/tbjampcq40eMYg9gyj8c4qpEsBkt31p1FU1AfJpnCRlXTi55QOHxY6EsSwRIOOdXaWryZDXaQmJ8AvXINPSie+Gcc4CjH33AMMA8aeBLLPVGy8yk+f/dwX8Dh7/ayYb1bwdkO5Eo3LPXH1FHDnMAGDk8z+vnjJv9XxwBHO9Lw1zoR8Cal/n5+UyZMqXb+6ZMmUJ+fn6gNm0ozm++pgTIPndq74+bdCZnAnv27AanTETnLcnpKZqasKxdA8Amt5tp087z+SXNZjMXX3Y5a1IHEVVwhOh1xjkZCDXD5tfuWfPSYrGQkJRMI6A1y7Sxoiu97wM1jQ2kAe6U1PbbtKFDGQnkHzoUsrqEfugpwx1HXqoV5UHbrgg+PeXOn1rsDmIALcrM6DMmcRhwH9gX6rJEkBkt37WFhaQAavYQANzDhjECKCyXNS+NKJzzqzY10ATEWSwkJHqalzINvehOOOccYMcnm5gCOCefFbBtWG+/C/PgdF5ssfHgojs4caIuYNuKJOGevf5wHNjPEWD0hIneP+nK2ZwBfP3RB+ByBao0IfolYM1Ll8tFQg/riyQkJOCW0Vde2bPjS04DTGf2/kvRPSyXM9IGs6vFRtTOL4NTnAFITjuzbHgbtamR2slns3nnDi6//Aq/vO78Hyzkpdbvc/zjS0AaUX5h1PwqztY1Ly0WTAkJxADN8qld0Q1d7wMuF9VWK4MBbdCgkzcPy2UqsOPwwZCVJvRDTxnW3G4SgEZArZCL4kamp9z5k73FigXPOsPmyWcxHCj4z9ZQlyWCzGj5riw+ThbgzsgAwJ2VTZ7JREFTI0pDfWiLE34XzvlVmppoBmJiY0lMbl36o14yKroK55wDfL7nG84HHOddELBtaAmJND60lEuAbzXU89DttwRsW5Ek3LPXHwe//ILRQNSYsV4/xzVyNJcnJfNOQwNRX3weuOKE6IeArXnpdDrZtm0bmqZ1e79LOvh9czr5oiCfaYDr9L7Xaply4UU8+9a/iP7g3zinTAt8fQYgOe1A04h9+fcAPJGeweXD80jpMFrIFzNmXMG9Tifb8kYwveAI8SuW0fTIY3557Uhm2PzaHZ41L2Ni0GLjSAIaGhvp/hRTRDI97wNKbS01wIjYWIg6ebrlPP0MzjWZ+KK8jO+eqENLTglZjSL09JRhze0mA6gE1LKSoG1XBJ+ecudPdltLa/MyEefZ5zIR2PPVDoZpGihKqMsTQWK0fJeXlbY2LzM9N5hMDB82nPeOHiHq6104LrgopPUJ/wrn/CqNjZ5pY2PjSEhKaR15Kc1L0VU451wtLmJrYyO3x8XjPGNS30/wQcu8BVg//4wn/vIqZ37wb95d9Rdm/+CGgG7T6MI5e/21d9dOJgHOif3IqaJw9RWz+NGbf+eR1/+Kc9r0gNUnhLcC1rxMS0vjgQce6PH+QR1GIYjuRe35hu0uF5elpaElJff5+NOu/xHNb/2Lo3/5Ixm/uL/TxVLRPcnpSeaPP8K840sOp6Tw+y+28/4Hm/322lFRUfx80T3c8cqLbFYUYl/4HS1zv43zLN/X1IxkRs2vZm/BCZgtMTjj4hgKlNTU4P3nxUSk0PM+oFZXUQmknfr7OyaG6aeN59k9u4n68nMcM/wzwl2EJ91k2O1GA7KA3SiotbUolZVo6enB2b4IKt3kzs9sLS3E4hl56c4ZxsXJyWw8cYI5O77AeU73U4QJ4zFavgtKShgJuFunjQU497zzuPHoEdwf/hukeWko4ZxfpamReiAhIZ6UtDTqAHddbajLEjoUzjkvev1v1AKnXXAhTSZTYDemKDQue4KUfXv5yxfb+faiOxkzaDCjZl0V2O0aWDhnrz+Uhnq2HS9kGv2f3vi0u+/F9ebf2f/G3xh+34O4s7IDU6QQXgpYd+vDDz8M1EtHjKj3N/IxcO8FF3v1eOfFl3J9SiovVVbyyDvrsH/r2sAWaACS01YtLSQ8cA8acMfgdG6bfz05OcP8uokf/vBGtmz5hIUOB3/PP0zSjxZwYvVbuMad5tftRBKj5repstIzyjIpGXdODiOBo0XHpXkputDzPqBWV3EMyE0b3OW+8RdfRu2e3VRsWE+qNC8jmm4y7HSiAYNVlVq3hhOI2rcHR/qlIS5MBIJucudndnsLKXialygKc679Hg//6WWWPPUEiX/9e6jLE0FipHwrJ+o4WFvDGJMJ18hR7bcnXfcDTl/1Glv/9lemP/gIqAFbDUgEWTjnV2lspBIYnJyCOW8E2cDxr3eRFerChO6Ec87fWfUX5gLOud8JzgYtFk785Q2m3DCPX3+xnet/+APWPLyU9Id6bsCJnoVz9voj+v2NfKxp3DbpTLTEpH491z1mLDeeNp6n9u/jxd8+SeOvfxOgKoXwju7PcgsKCpg3bx6zZs1i3rx5HD16tMtjXC4XS5YsYebMmVxxxRWsXr06+IX6m9PJ1396hUQgb/4C756jqvz41v/Hn4H6Fb+CpqZAViha+ZrRkOdX00hYfD9Rhw/xh/QMCqPM3Hrr7X7fjKqq/O53v6ciI5MfDU7HUVZKytzZWNa8CT1M2SACT4/5bSguIglwZ2biGjac0cDBmmpoafH5tYXojjf7QX+phw+RD+SOGt3lPsdVc/g28Orrr6HIJ9KFj/ySX6cTFxCtqgyOi6UIiN78sZ8rFUajq3MITcNqtxODZ9pYgKS77+HHqsrjG98l+r13Bv7aIuLo5RqE+YvtbAWmjBzVaVYlx/kXcvugNJZUV2F67hm/b1eEt1DlV6muohwYPHgwrvGnMx7Y/9UOn19XiJ4E4m+43mjffM1LhcdYGB2N/b/mBHRbnbablkbdm2+zYM5cfq65ufSRxSweNoy6l18Emy1odYiTdHUO3I2jq/5KAzD6u98f0PNvWPEUnwHLXvkD0X9f5dfahOgv3TcvH374YRYsWMB7773HggULeOihh7o85u2336awsJCNGzfyxhtv8Oyzz1JUVBSCav3E6SR66UMsLivl1tRB2C+93Ounpt96B7cmJnHjgX2Yr5qBedun4HAEsFjha0ZDmV9T/iESb7mRmD+9zB9MJhY7HLzw+1ewWCwB2V5MTAx/XfUm9VOnMykujg9raki85UZSZ1xI3JO/JuqrHdJ0DzI95rexrLS1eZkF0dFMy8pmK2Devs2n1xWiJ97sB/1VueNzzEDimV2naXFOP4/7pk7j9/YWyhbOw7R/n8/bE5HLH/lVXE4cQLSiMn3y2XwMxPz1VdSjBX6vVxiHrs4hrFaOAXlRUWA2A55pNn9x211sAxbdMA/nT39I9DvrUcvL5INzold6uQZx5MXnKQHOvObbne9QVa7+9ZMMBW5e+hDaHbcS/cFGlIoKsNv9WoMIP6HKb+3OHViBzEmTcZx5NteoKs8f2I99xa9QKivluCv8LhB/w/VEqajgzwuuYwgw5foftn9QKmhiY6l/+c/86Jnn2Z6cTHVxMVN/+QvuHjmEnVdfifLi85g/3YJaWgJud3Bri0C6Ogc+hXnThzy36UN+oig4Tj1/8FLC9PN5794HeBtYesetmG/+EVGfbZNmuQgJRetplVodqK6uZtasWXz22WeYTCZcLhfTpk1j48aNneahvuWWW/jOd77D7NmzAVi6dClDhgzhpptu8npbtbVNuN0aad98gW3dO60Hew00PCdZrf8UTQPNTaPdgdXlxO3WcLvduNHQNDe4wa250dwamqbhxvO1262h4fY8Xmv7GjRNQ3O7cWsaJpNCS1MzRUXHWdPSQhzwm9/+DvdFl/br++Y+fIgVP72B/zQ2MhsYbjKRnJZGSkwcKbGxxMbEoERHo1hiUKPNqJYY4mLMuB1ukqOju76gonS/oR5ud+XlYZu/EBQFVVVITY3vV/3hxB8Z9Vd+U1Pjqdu2g5h//QMcdnC5UdwucLnB7QK3mya7nRMtLbQ4ndhLS6gpOk4B8Kai4B6awyP/9yyjuhklFAibPvqA3z6+hIT6E5zvcjECyABSAZKSMKWkkpwQjzkqGlN0NFp0NLT+05TWz10oCigKStvXrWKjzMSbo3rObi/cKSnYfvQTtLh4yW+rYOTX7dZQqqsZ9I/X+PuLL7IB+O0b/8I1egzuZ59i1qsv8z8WC2ecPgElLgE1yoRiikKNMqGioiqgKgqqoqAoCioQ35aDYOklbzGWKGwtzoCXoFks2OYtwD00B8DwGfYHb/eDPl+nrJbYP72C9WgBhTVV/OPz7TS63Tz64h9xdLPWmulIPu8unMfyFhvXAFOjo0lPSiYmOYn45FRIjAdMnqngTCpK+/FOOZk1RQGUk//lZAbbvjp5n0eSOZpo0ymfXestuzFmbDYvPwQ1gGPuqc9vuWoOzjMnA5Jfb/gjv7W1TWi1tfxpxoVgsZD9yOM8/8iDLGppYYyqYhk9FsvgdJT4ODTVhGJqzWWHH3eaxdIpf3rWr0z3k+OcKdiv9Pw+NHp+dXcOceggV83/Dn9LSiLlo09PPsDtxv3cMzz56sus0zRGAKcBo8xmshISiYmPI84SQ4wlhpiYGFSTCUVVUBUV1NavVQVFUVFVk+dYbPL8X1FUFFXp9tgLbYfEXvaMvo6Zfd7f810Wi5mWFu9znhodDUOHYfvhjRHxN1xvQnINoq6cphdfpqq2FmeLDbvDQW1FBc8cPsh0k4kfvf2e50N9p1D/+ieWPfUE7wCTgBFADpBpNmOyWFBiYlFiLKgWiyfDioKqmjznzaqCioKimjy3m1RMioKC6rlPVU9mX1EwqSqK2vYaKibFc36iKp7XMKknz1U6Zre7Y66iQJolpj8/lj5pSUlYb/gxWlKy5DdI+W1Tc7wc5wvPsfEfb7C+xcbvn38Jx9TpRL30Avc+/zu2AHOBc2JjycoeQlJKKqbYWKKiTKiKCUVVaQ0lKCZQPX/PnXoI7Hhu23ZkPXlb3+cgSWYz0WqA1yjsp7b9Q4s203LdfFy5eYDxzyH8wV/nwKmp8ZTtz6fllZdw19fjcjpwORy4XE7cThdOp5PaE3V8cCSff7tcvJ49hOS/rUZLSg7wO+yZ0tzEoE/ep/LVP/PmoQNsAPLxnN/kAENMJrItFlKjLSRaokmMiSM2xoIS3fr7INqCalZRFBOYPOf2imoCxXNdRcFzbWWQxYLa6e/OngpSsF8xq/1vXqPnV2/nwNHvbsC+fSvlVTUUlZaw7kg+O4DXvzef2F8u9um9Nr/0PI/+/nn2ut1cDoxUVbIzMklOTiYqLg7VYvFcj1PBpKit5wegKp5zAs+5Qdv127Z/ClrrUVxpfRxq252t2s8n+q4x1mImHt+O7Y4zJmH/1lzA+PkNR0G8qtt/paWlZGZmYmpdBNlkMpGRkUFpaWmnA0JpaSlDhpxcwD47O5uysrJ+bas9mJdeSsyll/b5+MCMSztpvi9PTjuLJ3bv9lcpAxIpu7k/MurP/KZMPxumn93j4yzAqadxlwI39mtr/vHd783lu9+bG4It9y0u1AUEid7yS1oCPPAA33/gATpNbvHI/7Ljkf/t35vTIf9eoulZbJC2YxTe7gd9SctKhfv+hzggDeg63vLUJ5zJ/AP7fft9HyTBym6wt2UE/shvamo8pMazqMN0R/N/8L1AlKsbgcpZJOVXf+cQZ/NZT9PFPbyY5Q8vZnm/XjkyRcrfcL0JyTWItATily/r8v0/v68X+O/beeK/b+eJfm3VuOQcOLj5bTNoWCY8voSFjy9hYcc77vsFv7/vFwN6zUjSdu4g+e0fv50DA1mnjYIVv+r1sZcBj/lUsR+lJcD115N+/fX8DPhZqOtBzoFDeg58/ffh+u+TBpwOXDmwt9WttPvu4cX77vHjK+pTJOU3HOl+2lghhBBCCCGEEEIIIYQQQgghRGTQdfMyOzub8vJyXC4X4FnQtqKiguzs7C6PKykpaf9/aWkpWVldp1URwt/8kVHJrwgVya8Q3u8HQuiR5FeEipxDCKOSaxAinEl+RaSQc2ARKnIOLERw6bp5mZaWxvjx41m3bh0A69atY/z48V2mAJg9ezarV6/G7XZTU1PD+++/z6xZs0JRsogw/sio5FeEiuRXCO/3AyH0SPIrQkXOIYRRyTUIEc4kvyJSyDmwCBU5BxYiuBRN07RQF9Gb/Px87r//furr60lKSmL58uWMHDmSm2++mbvuuouJEyficrlYunQpW7duBeDmm29m3rx5Ia5cRApfMyr5FaEk+RWi5/1AiHAg+RWhIucQwqjkGoQIZ5JfESnkHFiEipwDCxE8um9eCiGEEEIIIYQQQgghhBBCCCEig66njRVCCCGEEEIIIYQQQgghhBBCRA5pXgohhBBCCCGEEEIIIYQQQgghdEGal0IIIYQQQgghhBBCCCGEEEIIXZDmpRBCCCGEEEIIIYQQQgghhBBCF6R5KYQQQgghhBBCCCGEEEIIIYTQBWletlq+fDkzZsxg3LhxHDx4MGjbra2t5eabb2bWrFl861vf4o477qCmpiZo27/tttu45ppruPbaa1mwYAH79u0L2raF/xQUFDBv3jxmzZrFvHnzOHr0aKhL6pee9r9wf1/Ce+H0sx5IXgd6n9A3I//sZsyYwezZs5k7dy5z585l8+bNoS5JBIhRc9xTho36fiOd0X+ucu5hTEb6OfR2XUPOKYzJSPkNhIGch8j3NDC8+b66XC6WLFnCzJkzueKKK1i9enXwC+3A22vFzz77LOedd157zpYsWRKCakWoGPmY4e9zXxHGNKFpmqZ9/vnnWklJiXbZZZdpBw4cCNp2a2trtW3btrX//9e//rX2y1/+Mmjbr6+vb//63//+t3bttdcGbdvCf2644QZtzZo1mqZp2po1a7QbbrghxBX1T0/7X7i/L+G9cPpZDySvA71P6JuRf3bBPh8SoWPUHPeUYaO+30hn9J+rnHsYk5F+Dr1d15BzCmMyUn4DYSDnIfI9DQxvvq//+te/tJ/85Ceay+XSqqurtYsuukg7fvx4sEtt5+214meeeUb79a9/HczShI4Y+Zjh73NfEb5k5GWrc889l+zs7KBvNyUlhWnTprX/f/LkyZSUlARt+4mJie1fNzY2oihK0LYt/KO6upq9e/cyZ84cAObMmcPevXuDOoLXV93tf0Z4X8I74faz7m9eB3qf0Df52QkjiLQcR9r7jRSR8HOVcw/jMdrPIdTXNURwGS2/wSLH5uDz9vu6YcMGrrvuOlRVZdCgQcycOZN33303FCUDckwVfTP6McOf574ivEWFugBxktvtZtWqVcyYMSOo233wwQfZunUrmqbx0ksvBXXbwnelpaVkZmZiMpkAMJlMZGRkUFpayqBBg0Jc3cAZ9X2Jrozws+7tPWiaNqD7wuW9Ryoj5LYvv/jFL9A0jXPOOYe7776bpKSkUJck/MzoOT41w0Z/v5EqUn+ucu4R3oyc2+6ua8g5hbEYOb/+1J/zEDk2B4a3WS0tLWXIkCHt/8/OzqasrCzo9Xanr2vF69evZ8uWLaSnp3PnnXdy1llnBblCEQqReByWY2hkkpGXOvLoo48SFxfHwoULg7rdxx9/nE2bNrFo0SJWrFgR1G0LIYQQQn9ee+011q5dy5tvvommaSxdujTUJQnRL5JhIYQIjVOva8jxWEQiyb3wl96uFc+fP58PPviAt99+m5/+9Kfcdttt1NbWhqBKIYQIDGle6sTy5cs5duwYv/3tb1HV0PxYrr32Wj777DP5RRdmsrOzKS8vx+VyAZ6FxisqKkIyDbI/GfV9ia6M8LPu7T0M9D6hb0b/2bW9j+joaBYsWMCOHTtCXJEIBCPnuLsMG/n9RrJI/bnKuUd4M+rPobvrGnJOYTxGza8/9fc8RL6ngeHt9zU7O7vTtKylpaVkZWUFtdbu9HWtOD09HbPZDMAFF1xAdnY2hw4dCnaZIgQi8Zghx9DIJM1LHXjqqafYvXs3K1euJDo6OmjbbWpqorS0tP3/H374IcnJyaSkpAStBuG7tLQ0xo8fz7p16wBYt24d48ePD/th8UZ9X6IrI/yse3sPA71P6JuRf3bNzc00NDQAoGkaGzZsYPz48SGuSgSCUXPcU4aN+n4jXaT+XOXcI7wZ8efQ3XUNOacwJiPm158Gch4i39PA8Pb7Onv2bFavXo3b7aampob333+fWbNmhaLkdt5cKy4vL2//et++fRQXFzNixIhglShCKBKPGXIMjUyKpmlaqIvQg8cee4yNGzdSVVVFamoqKSkprF+/PuDbPXToEHPmzCEvL4+YmBgAcnJyWLlyZcC3XVVVxW233YbVakVVVZKTk7nvvvuYMGFCwLct/Cs/P5/777+f+vr6/8/encdFVe4PHP/MDKAQqYCsuVcuqSgIuCCaK+6gZZqplTeX3NvUyjTK6tqvq165tllZXltNyzUzLffcitTcNQTZkVWRdeb5/WHMBYRhERgYvu/Xq1cyc+ac75n5nuc8yznPoUGDBixdupRWrVqZO6wyK+n4q+37JcquNv3WFcnXir4najZL/e2uXr3KrFmz0Ov1GAwG7r33XhYuXIiLi4u5QxNVwBLz2FQOW+L+CsvM44Kk7mGZLOl3KKlfY8GCBVKnsFCWlL+VraL1EPlOq0ZJ3+vkyZOZPXs2HTt2RK/X89prr3Hw4EEAJk+ezJgxY8wWs6m+4oJxz58/n9OnT6PVarG2tmb27Nn07t3bbHGL6mXJZUZl131F7SWDl0IIIYQQQgghhBBCCCGEEEKIGkGmjRVCCCGEEEIIIYQQQgghhBBC1AgyeCmEEEIIIYQQQgghhBBCCCGEqBFk8FIIIYQQQgghhBBCCCGEEEIIUSPI4KUQQgghhBBCCCGEEEIIIYQQokaQwUshhBBCCCGEEEIIIYQQQgghRI0gg5c1TN++fTl06FCpy3l5eXH16tVqiEjUFRs3buTRRx+t0GdDQ0N5/vnnKzmiynXkyBF69epl7jCEhShPGSzltagthg4dypEjR8wdhhBCVJuoqCjatGlDXl6euUMpVZs2bYiIiDB3GAAsX76crl274u/vb+5QRDlIe6h2qg2/W1n7EmpSOVZRZe2zK+13W7RoEatWrbqjWBYsWMDy5ctLfN8Svm8hRM1V1v6Dv/76i+DgYLy8vFi7dm01RCYsiQxe1lJhYWE0bdrU3GEIUWnuZPBUiKo0YcIE1q9fX+i18pTBUl6L6lDWjpR8xXV2bNu2ja5du1Z2aKKWyc+N48ePExgYaNZYSrs4qmCDueCyMTExeHl5odfrK7Td0ga03n//fV5++eUKrVvUXjVpoLO0DuuqFBsby5o1a9i+fTsHDx40SwxCiMpVXHtHVK3XXnuNGTNmmDuMEq1bt45Ro0bRoUMHFixYYO5wKl152k4FB4Hv9Px7J8daedt75mDO+omofmXtP/joo4/w8/MjLCyMiRMncvjwYSZMmECXLl3o27dvNUQqajMZvBRCWISa0JEkaibJDSGEKD8fHx9+/PHHSl9vZd5BUlKD2cPDg7CwMHQ6XaVsp6hp06bxxhtvVMm6hagMVVn3iY6OplGjRjg5OZX7s0opDAZDFUQlhBCiMrm4uDB9+nQeeughc4ciKpFcqCDMISYmhvvvv9/4t52dHQ899BDz5s0zY1SitpDByyoUGxvLzJkz6datG127duW1114jMjKSiRMn0rVrV7p27cpzzz1Henp6sZ/X6/W8//779O/fHy8vL0aNGkVsbCxQ+MqfoiefonewtWnThs8//5yBAwfi5eXFihUriIyMZMyYMXh7ezNnzhxycnKq8JsQNU1xuZlv6dKl+Pr60rdvX/bu3Wt8PT4+nmnTpuHn58eAAQP45ptvSlz/H3/8wdixY/Hx8WHEiBGFphHYuHEj/fr1w8vLi759+7J582YuX77M4sWL+eOPP/Dy8sLHxweAnJwcli5dyoMPPkiPHj1YtGgRWVlZwP86Pz/88EP8/f158cUXycnJ4Y033qBnz5707NmTN954Q3LbwhWXyxs3bmTs2LG8+eab+Pn5ERoaajKX0tLSmDp1Kt26dcPX15epU6cSFxcHYLz76LXXXsPLy8t4rBS9+jIkJIQpU6bg5eXF6NGjiYyMNMZYnmUvX77Mk08+iZ+fH4GBgWzfvr1avkdhHkXzd/Hixfj5+XH+/HnjMklJSXh6epKcnExycjJTp07Fx8cHPz8/xo0bh8Fg4IUXXiAmJoZp06bh5eXF6tWrAZg9ezb+/v506dKFxx57jIsXLwLw9ddfs2XLFj7++GO8vLyYNm0aUPhq3tDQUObMmcO8efPw8vJi6NChnDp1qtz7VPD8IixHbb4oRAZPyub06dPG6Z1mz57N3LlzWb58uclzJtxqlyxfvpyxY8cay5eUlBSee+45vL29eeihh4iKijIuX552SmnbLsnVq1d57LHH8PLy4oknniAkJKTEO3qL3tVQ8I7e8ePHA+Dr64uXlxdhYWGltu369u3LRx99xPDhw+ncuTMvvfQS165d46mnnjLGk5aWBsCUKVP473//Wyie4cOHs2vXrkKvmSrDP/zwQ+O28vLy+PDDD41tySFDhvDTTz8Z15PfZiyp7l9cnf3QoUNMmjSJhIQEvLy8jHfjmKr7F8yJTp06cfXqVTZs2MDgwYPx8vKiX79+fPXVV8blSzrXwa32yKxZs+jWrRt9+/aVqcdKUNLxW1TRKSWL3jGza9cugoKC8Pb2pn///uzbtw8w3S48efIko0aNwtvbmx49evDWW28Z3zOVJ6Jsv9tHH33ErFmzCr32+uuvGy+oSU1N5cUXX6Rnz574+voyffp0oGLtHVPtkpSUFKZNm4a3tzcPP/xwofZMaQ4dOsTAgQPx9fUlJCQEpRRAqeWpqeM/NDSU2bNn8/zzz+Pl5cXw4cMJDw/ngw8+oHv37vTu3ZsDBw4UWldJOZyVlcX8+fPx9fU5HLN0AAAgAElEQVRl8ODBrF69usSLrsrS//D+++/TtWtXYzmar+Dxlt+38cknn9C9e3d69uzJhg0byvR9pqenl9i2BNi7dy/9+vWja9euLF261FielvZ9Dxw4kP79+9OoUaNit1tS+SAsW0VnNRGWKb/ebKrcnDhxIkeOHDGeY8LDw/H09CQ4OFhmKBNlo0SVyMvLU8OHD1dvvPGGysjIUFlZWerYsWPqypUr6sCBAyo7O1slJSWpcePGqSVLlhg/16dPH3Xw4EGllFKrV69Ww4YNU5cvX1YGg0GdPXtWJScnK6WUat26tbpy5YpSSqnx48erb775xriODRs2qLFjxxr/bt26tZo6daq6fv26unDhgmrfvr2aOHGiioyMVOnp6Wrw4MFq48aN1fG1iBqgpNzcsGGDeuCBB9TXX3+t8vLy1Oeff678/f2VwWBQSin12GOPqcWLF6usrCx15swZ1bVrV3Xo0CGllFIrV65Uzz33nFJKqbi4OOXn56f27Nmj9Hq9OnDggPLz81NJSUkqIyNDeXl5qcuXLyullIqPj1cXLlxQSt2et0optWTJEjV16lSVkpKirl+/rqZOnareeecdpZRShw8fVu3atVNvv/22ys7OVpmZmWrFihVq9OjR6tq1ayopKUmNGTNGLV++3Lh8QEBA1X/BotqYyuV27dqptWvXqtzcXJWZmWkyl5KTk9WOHTvUzZs31fXr19WsWbPU008/bdxO0TJWqcJl8Pz585Wvr686ceKEys3NVc8++6yaO3duuZfNyMhQvXr1Ut9++63Kzc1Vf/75p/Lz8zMeI8KylJS/ixcvVm+//bZxuU8//VRNnTpVKaXUO++8o1555RWVk5OjcnJy1LFjx4xldMH6Q77169er69evq+zsbLVkyRI1YsQI43vz589Xy5YtK7R8wXWsXLlSdejQQe3Zs0fl5eWpd955R40ePbpC+yRqttOnT6vg4GDVuXNnNWfOHDV37ly1bNmy286bffr0UR988IEaNmyYat++vcrNzVVhYWFqzJgxqkuXLmr48OHq8OHDxuVTUlLUggULlL+/v/Lx8VFPP/20ysjIUB07dlRt2rRRnTt3Vp07d1ZxcXElxrZy5Uo1a9YsNWfOHNW5c2cVHByszp49WyimgjmbXxe5evWqat26tcrNzVVK3SrHly1bpsaMGaM6duyorly5ctsxU9znv/rqK+Xv76/8/f3Vxx9/bHLZjRs3qt69eys/Pz/17rvvVvj3qAmys7PVgw8+qD799FOVk5OjfvzxR9W+fXu1bNmyMp0z+/fvryIiIoztjIEDB6qDBw+q3Nxc9cILL6gFCxYYly9PO6W0bZfkkUceUf/85z9Vdna2OnbsmPLy8ioxV8qSF/nLKqXK1LYbPXq0SkxMVHFxcapbt24qODhYnT59WmVnZ6sJEyao0NBQpZRS27ZtUw8//LDxs2fPnlV+fn4qOzvb+F0VrE8UV4aPGDFCxcTEqMzMTKWUUtu3b1dxcXFKr9erbdu2qU6dOqn4+HillDJZ9zdVZy9aNpiq++fnRO/evdWFCxdUbm6uysnJUb/88ouKiIhQBoNBHTlyRHl6eqo///xTKVXyuU6v16uRI0eq0NBQlZ2drSIjI1Xfvn3Vvn37Ss2BusTU8Vv0tyuYU0oVzqsTJ04ob29vdeDAAaXX61VcXJy6dOmSUsp0u/CRRx5R3333nVJKqRs3bqiwsDClVOl5UteV9XeLj49XnTp1UmlpaUoppXJzc1W3bt3UqVOnlFJKTZ48Wc2ZM0elpqaqnJwcdeTIEaVU+ds7pbVL5s6dq2bPnq0yMjLU+fPnVc+ePW9ryxendevWasqUKSotLU1FR0errl27qr179yqlTJenpR3/+fXWffv2Gc81ffr0Ue+++67KyclRX3/9terTp48xDlM5/H//93/qscceU6mpqSo2NlYNGzbstvpQ/nmitP6Hdu3aqTfffFNlZ2erI0eOqE6dOhnL1YLHW/6yK1asUDk5OWrPnj3K09NTpaammvw+y9IOHT9+vEpJSVHR0dFq4MCBxt+5tPNXvmXLlqn58+cXes1U+VBb9OnTR3300Udq2LBhytvbW82ZM0dlZWUppW71xebX/9avX1/q+bc4P/30kxoxYoTy8vJS/fr1M+b5+PHj1fLly9WYMWNU586d1ZNPPlmoHNy1a5caMmSI6tKlixo/fnyh77Vg7un1evXBBx+ofv36KT8/PzV79myVkpKilFIqKytLPffcc8rPz0916dJFjRo1SiUmJqply5aptm3bqg4dOqjOnTurkJAQpZRSly5dUk888YTy9fVVAwcOVNu2bTNuc/78+WrRokXqqaeeUp06dVIHDx5Uly5dUuPHj1ddunRRQ4YMUbt27Sq0fFm+H2EZ8nOytHKzuD41pZQ6ePBgobJZiOLInZdV5OTJkyQkJDBv3jzs7OyoV68ePj4+NG/eHH9/f2xsbHB0dOTJJ5/k2LFjxa5j/fr1zJkzh1atWqHRaGjbti0ODg4Vimfy5MnY29tz//3307p1a/z9/WnatCl33303vXr14syZM3eyu6IWKSk34dY0a4888gg6nY6RI0eSmJjItWvXiI2N5bfffuP555+nXr16tGvXjtGjR7Np06bb1r9p0yZ69epF79690Wq1+Pv706FDB+OV3FqtlosXL5KVlYWLi0uhqQMKUkqxfv16XnrpJRo1aoS9vT1Tp05l27ZtxmW0Wi2zZ8/GxsaG+vXrs2XLFmbMmIGTkxOOjo7MmDGj0NWNwrKYymUXFxcmTJiAlZUV9erVM5lLDg4OBAYGYmtri729PU8//XSJ5XJJBgwYgKenJ1ZWVowYMYKzZ8+We9k9e/Zwzz338NBDD2FlZUX79u0JDAyskmkbhfmVlL8jR45k69atxquiN23axIgRIwCwsrIiMTGRmJgYrK2t8fHxQaPRlLiNhx9+GHt7e2xsbJg1axbnzp3j+vXrZY6xS5cu9O7dG51OR1BQEOfOnavQPomaKycnhxkzZhAUFMTRo0cZNGgQO3fuLHH5bdu28eGHH3L8+HGSkpKYOnUqTz/9NEePHmX+/PnMnj2b5ORkAObNm0dmZibbtm3j0KFDPPHEE9jZ2bF69WpcXFwICwsjLCwMV1dXkzHu3r2bQYMGcfToUYYNG8b06dPJzc0t975u2rSJ119/nd9//x0PD48yfebIkSPs3LmTjz/+mA8//NDkc4Z+++03duzYwWeffcaqVau4fPlyuWOsKU6cOEFeXh4TJ07E2tqagQMH0rFjR6Bs58xRo0bRrFkzYzujadOm9OjRAysrKwYNGnRbu6Os7ZSKnK9jYmI4deqUsb7o4+NTqc/WKUvbbvz48TRu3BhXV1d8fHzw9PTkgQcewMbGhgEDBhj3r3///kRERHDlyhXgVs4OHjwYGxubMsczYcIE3N3dqV+/PgCDBw/G1dUVrVbLkCFDaN68OSdPnjQuX1LdH8peZy+t7g8wcuRI7r//fqysrLC2tubBBx+kWbNmaDQa/Pz88Pf35/jx40DJ57pTp06RnJzMzJkzsbGxoWnTpjzyyCMyS0URpo7f8vj222956KGH8Pf3R6vV4urqyr333ltqu9DKyorIyEiSk5O566676Ny5M1C2PKnLyvq7ubi44OPjw44dOwDYv38/Dg4OdOjQgYSEBPbt20dISAgNGzbE2toaPz8/oPzlp6l2iV6vZ+fOncyePRs7Oztat27NyJEjy7yvkydPpkGDBnh4eNC1a1dj/dJUeVqW49/Hx4eAgADjuSYlJYUpU6ZgbW3NkCFDiI6OJj09vdQc/uGHH5g6dSoNGzbEzc2NiRMnlrgvZel/mDNnDjY2Nvj5+dG7d29++OGHYtdlZWXFjBkzsLa2pnfv3tjZ2REeHl7q91laO3Ty5Mk0atQIDw8PJk6cyNatW0v9vktTUvlQ2/zwww989NFH7N69m/Pnz7Nx40b27dvHJ598wieffMLOnTv59ddfy73ekydPMn/+fObNm8fx48f5/PPPueeee4zvb926lbfeeotff/2V3NxcPvnkEwDCw8N57rnneOmll/j111/p1asX06ZNK3Y2sbVr17Jr1y7WrVvH/v37adiwofGu6e+++44bN26wZ88ejhw5QkhICPXr1+eZZ57Bx8eHRYsWERYWxqJFi7h58yaTJk1i2LBhHDp0iGXLlhESEmKcsSc/3mnTpvH777/j6enJtGnT8Pf359ChQyxcuJDnn3+ev/76q9zfk7Ac5Sk3hSgvK3MHYKliY2Px8PDAyqrwV5yUlMSSJUs4fvw4GRkZKKVo0KBBseuIi4ujWbNmlRJP48aNjf+uV6/ebX/nN1KF5SspN6Fwntja2gJw8+ZNUlNTadiwIfb29sb3PTw8+PPPP29bR0xMDDt27OCXX34xvpaXl0fXrl2xs7Nj+fLlfPLJJ7z88st4e3szf/78Yiu6ycnJZGZmMmrUKONrqshUbw4ODtSrV8/4d0JCQqEOSQ8PDxISEkr9TkTtZCqX3dzcjP8uLZcyMzN566232L9/v3HqtoyMDPR6fZmfl1bw2Klfvz43b94s97LR0dGcPHmy0GCPXq83DlwJy1JS/nbq1AlbW1uOHj2Ks7MzkZGR9OvXD4B//OMf/Oc//2HSpEkAjBkzhilTphS7fr1ez/Lly9mxYwfJyclotbeuV0tJSeHuu+8uU4xFczU7O5u8vLxijzlT+yRqrhMnTpCbm8vjjz+ORqNh0KBBfPrppyUunz8wArc6TfI7ooFCHdH+/v7s27ePI0eO0LBhQwBjB2p5tW/fnkGDBgHw5JNPsmbNGk6cOFHugfH8wZPymDFjBnZ2drRp04ZRo0axdetWevToUeyyM2fOpH79+rRt25a2bdty7ty5WtmRB7fqU66uroUujsj/3ctyzjTV7ijuHFnWdkpFztcJCQk0bNjQWK/N35f8R3HcqbK07cr6fdjY2DBo0CA2b97MzJkz2bp1KytXrixXPPm/U77vv/+eNWvWEB0dDdyq16ekpBQbW8G6v7Ozc5nr7Kbq/iXFtXfvXlatWsWVK1cwGAxkZWXRunVroORzXXR0NAkJCbfVk+QimcJMHb/lERsbayzfi67fVLvwjTfeYOXKlQwePJgmTZowc+ZM+vTpU6Y8qcvK87uNHDmSL7/8kkceeYTNmzcTFBQE3Oo/atiwofG8W1B5y09T7ZLk5GTy8vIKxVfWi4IAnJ2djf+2tbUlIyMDMF2eluX4L/gc3vr16+Pg4GDct/wLOm7evFlqDickJBTat4LtyqJK639o0KABdnZ2Jb5fUKNGjQrVoW1tbU22KfOVdo4tuC/33HOPcfvl6ZssqqTyobaZMGGC8SK6Pn36cPbsWePU1/nnpPzzcXkUHNwFcHV1LXSx3qhRo2jZsiUAgwYN4ueffwZg+/bt9O7d2/i5f/zjH6xdu5awsLDbysqvv/6aRYsWGfMzv6zNb6ulpqYSERFB27Zt6dChQ4mxFrxQASh0oUJ+vblfv3506dIFgHPnznHz5k2mTJmCVqule/fu9OnTh23btt02pbWoO8pTbgpRXtK7VEXyG8VFO/n+9a9/odFo2Lx5Mw4ODuzatavE50G5ubkRGRlpPGmWxNbWlszMTOPfMhApTCkpN01xcXEhLS2NGzduGCv5sbGxxd4t4e7uTlBQEEuWLCl2XQEBAQQEBJCVlcWKFSt45ZVX+OKLL267e8jBwYH69euzbdu2Eu/KKPoZFxeXQg+Cjo2NxcXFpUz7KGofU7lcMDdKy6VPPvmE8PBwvvnmG5ydnTl79izBwcHG569UF3d3d3x9fVmzZk21bleYh6n8HTlyJJs3b8bZ2ZnAwEDjRRr29vYsWLCABQsWcPHiRSZOnEjHjh3p3r37bevfsmULu3fvZs2aNTRp0oTr16/j6+trzGtTd2xWxT6Jmqm4zlJTHZAFG6WmOqJNdaCWV8HGb/7V/RW5MKkinfdFO/wuXLhQ4rJFB4HK0uFYUzk7OxMfH49SypgbsbGxNG3a1KznzIps29nZmbS0NDIzM42Dc6YGLou2qxITE43/Lq7cLE/brixGjhzJvHnz6NKlC7a2tnh5eRW7XElleMHXo6OjWbhwIZ9++ileXl7Gu+jLqqQ6e1Gl1f2LxpWTk8Ps2bNZunQp/fr1w9ramunTpxt/x5LOde7u7jRp0sTk3eHC9PFbVHH5nl9Xdnd3L/Y5hqW1C1u0aMGyZcswGAzGu/OOHDlSpjypy8rzu/Xv359XX32VCxcusGfPHl544QXg1vkyLS2N9PT02wahylt+mmqX6PV6rKysiI2NNV7QUBkXhJgqTyvz+C8th52dnYmLi+O+++4DMPls5dL6H9LT07l586ZxADM2NrbcF1LdqYLbjImJMcZ3J+evksqH2qboQHpCQgIpKSmFBvsK3jFZVqUN7hbdbn6dsehguFarxd3dnfj4+NvWERMTw4wZM4wXqOYvn5SURFBQEHFxcTz77LOkp6czYsQInnnmGaytrW9bT1kuoC5YH05ISMDNza3Qdj08PIqNUdQd5Sk3hSgvmTa2inh6euLs7My//vUvbt68SXZ2Nr/99hsZGRnY2dnRoEED4uPj+eijj0pcx+jRo/n3v//NlStXUEpx7ty5QlfK5mvXrh0//fQTmZmZRERE8O2331blrolarqTcNMXd3R0vLy+WLVtGdnY2586d49tvv2X48OG3LTtixAh++eUX9u/fj16vJzs7myNHjhAXF8e1a9fYvXs3N2/exMbGBjs7O+PVkE5OTsTHxxunxNBqtYwePZo333yTpKQkAOLj49m/f3+JcQ4dOpT33nuP5ORkkpOTWbVqVbExCstQ1lwuLZcyMjKoV68eDRo0IDU1lf/85z+FPt+4cWOuXr1a5fvz4IMPcuXKFb7//ntyc3PJzc3l5MmTtXrqQVEyU/kbFBTErl272Lx5M8HBwcbP/PLLL0RERKCUwt7eHp1OZ2w4Fs3TjIwMbGxscHBwIDMzk2XLlhXavpOTE1FRUdW2T6JmKthZmi8mJqbE5YveERIUFMTx48eN//3xxx9MmTKlUAeqqXWURcHGr8FgID4+vkIXJhXdrqlBqnwFO2MLdvhZus6dO6PT6Vi3bh15eXns2rWLU6dOAaWfM6tSRbZ9zz330KFDB0JDQ8nJySEsLKzQgHtRbdu2Zfv27eTm5nLq1KlCU7c7Ojqi1WpvK2vL2rYrCy8vL7RaLf/85z9NzrxQljI8MzMTjUaDo6MjABs2bCg0DZwppursRZmq+xcnJyeHnJwcHB0dsbKyYu/evRw8eND4fknnOk9PT+zt7fnwww/JyspCr9dz4cKFQtPgCtPHb1Ft27Zl69at6PV69u3bV2jKyIcffpiNGzfy66+/Gsvey5cvl9ou3LRpk3HGh/wBNJ1OV+48qWvK87vVq1ePwMBAnnvuOTp27Ggc7HBxcaFXr16EhISQlpZGbm6u8Tctb3vHVLtEp9MxYMAA/vOf/5CZmcmlS5f47rvv7vg7MFWeVubxX1oODx48mA8++IC0tDTi4+NZt25diesqS/9D/vnn+PHj7NmzxzibRHX5+OOPSUtLIzY2lrVr1zJkyBCg9PNXXl4e2dnZGAwG4zGbl5cHlFw+WAIXF5fb6n/lVdHB3fzB8HxKqRJvGnBzc2P16tWF6uGnTp3C1dUVa2trZs6cyfbt2/nqq6/Ys2cP33//fYmx+vr6FlpPWFgYISEhJcYYFxdXaEa0kmIUdUd5yk241abLzs4mNzcXpRTZ2dnFTo8sBMjgZZXR6XS8//77RERE0KdPH3r16sUPP/zAzJkzOXPmDD4+PkyZMoWBAweWuI4nn3ySwYMHM2nSJLy9vXn55ZfJzs6+bbnHH38ca2trevTowfz582WwRphUUm6WZtmyZURHRxMQEMDMmTOZNWuWcTqLgtzd3Xn33Xf54IMP6N69O7179+bjjz/GYDBgMBhYs2YNAQEB+Pn5cezYMRYvXgxAt27duO++++jZs6dxSowXXniB5s2b88gjj+Dt7c0TTzxh8rkP06dPp0OHDowYMYIRI0bQvn17pk+fXsFvStR05cllU7n0+OOPk52dTbdu3RgzZgwBAQGFPjtx4kR+/PFHfH19q/RqcXt7ez7++GO2b99OQEAAPXv25J133pFKnIUylb9ubm488MADaDSaQlfBRkRE8OSTT+Ll5cWYMWN49NFHjeXllClTeO+99/Dx8eHjjz8mODgYDw8PAgICGDp0qPGZU/kefvhhLl26hI+PT6WVkxU9vwjz6dy5M1ZWVqxdu5a8vDx27txZYmdpUaY6ok11oDo5OZGamlrm56+ePn2anTt3kpeXx2effYaNjQ2dOnWq8D7nMzVIle/dd98lMzOTixcvsnHjRmOHn6WzsbEhNDSUb7/9Fl9fXzZv3syDDz6IjY1NqefMqlTRbb/zzjv88ccfdO3alRUrVjBkyJASnyM5d+5cIiMj8fPzIzQ0tFC7ytbWlmnTpvHoo4/i4+PDH3/8Ua62XVkFBQVx4cIFk3dJlqUMv++++5g0aRJjx46lR48eXLhwAW9v7zLFYKrOXpSpun9x7O3tWbhwIXPnzsXX15etW7cWeg5pSec6nU7He++9x7lz5+jXrx/dunVj4cKF3Lhxo0z7VFeYOn6Levnll/nll1/w8fFhy5Yt9O/f3/iep6cnb731Fm+++SZdunRh/Pjxxk51U+3C/fv3M3ToULy8vHjjjTdYvnw59erVK3ee1DXl+d0AgoODiy0n3n77baysrBg8eDA9evTgs88+A8rf3imtXZL/rDx/f38WLFhQ6PEcFWWqPK3s499UDs+YMQM3Nzf69evHE088QWBgYIm/Q2n9D40bN6ZBgwYEBATw/PPP8+qrr1b7lPL9+vVj1KhRBAcH8+CDD/Lwww8Dpr9vgPfeew9PT08+/PBDNm/ejKenJ++99x5gunyo7QYNGsR3333HpUuXyMzMrNBFWhUd3B08eDB79+4t9CxMGxubYmdhePTRR1mxYoVxWvjk5GR27doFwOHDhzl//jx6vR57e3usrKwKTe1f1gsViuPp6YmtrS0fffQRubm5HDlyhJ9//rnO1JFF8cpTbgIcO3YMT09PpkyZQkxMDJ6envzjH/+oxohFbaJR1T0vnhBCCCGEMOnFF1/ExcWFZ555xtyhCAt36tQpXnnlFSIiIoxTXDVv3pwePXrwwgsvsG/fPgD69u3LkiVLCj3z8cSJE/zf//0fFy5cMN4Z9eqrr+Lh4UFqaqrx+Vq5ubl07drV2AH04osv8vPPP6PX601ODx8aGsrFixfRarXs3buX5s2b88Ybb9C+ffvbYgoNDSUiIoJ33nmHqKgo+vXrx+nTp7GysmLChAmMGDGC0aNHG9d99epVnn32WS5duoSvry/NmjUjNTW10Odfe+01QkNDUUrxxBNPMHnyZGNcJW0LKHZ7td3o0aMZO3as8ZlItdncuXNp1aoVs2fPNncoxfr+++/5+uuv+fLLL80dirAQlnT81iWmfreYmBgGDx7MwYMHCz27UVS+L774gu3bt5d6J5GoXYrWawvW7T788EM+++wzNBoNc+fO5eWXX2bnzp00b96cBQsW4OrqWmob7aeffmLlypVERUXRuHFjFi1aREBAwG11xI0bN7J+/XrjOf+nn35i+fLlxMfH065dOxYvXmyc9rdgzAaDgc8++4yvvvqKhIQEnJycGDJkCM8++yxbt24lNDSU+Ph47OzsGDJkCAsWLMDKyoqwsDAWLFhAcnIyQUFBLFy4kL/++ot//vOfnDx5EqUUbdq04cUXX6Rdu3bF7u/FixcJCQnh7NmzxvcGDBgAUObvR1g2KTdFZZLBSyGEEEKIGiQqKorg4GC+++67Yp91JIQQVe3o0aO0bNkSBwcHtmzZwuLFi9m1a1etnDr35MmTNGrUiCZNmnDgwAFmzJjB119/zQMPPGDu0G6TmZnJ448/zrhx4wpNGy5EeVjS8VuXlPV3MxgMvPXWW9y4cYO33nrLTNFaroSEBK5evYqXlxdXrlxh6tSpPPbYYzzxxBPmDk0IIWokKTdFVbIydwBCCCGEEOKWFStW8NlnnzFlypQaOXAZExPD0KFDi31v27ZtxucuCSFqt/DwcObOncvNmzdp2rQpK1eurNEDH8VNqQawevVq0tPTmTVrFqmpqbi5ufHqq6/WyIHL/fv3M2vWLLp3786wYcPMHY6oxWrb8StuKcvvlj9Vq4eHxx0/Y7cqHD9+3DhLQVFhYWHVHE3F5ObmsnjxYqKiorj77rsZOnQo48aNM1s8Q4cOLXZK1pCQEJPPRhZCiOpS08pNYVnkzkshhBBCCCGEWTz11FP89ttvt70+depUpk2bZoaIhBBCCCGEKNn777/PBx98cNvrXbp0qZEXFgghRG0lg5dCCCGEEEIIIYQQQgghhBBCiBpBa+4AhBBCCCGEEEIIIYQQQgghhBACZPBSCCGEEEIIIYQQQgghhBBCCFFDyOClEEIIIYQQQgghhBBCCCGEEKJGkMFLIYQQQgghhBBCCCGEEEIIIUSNIIOXQgghhBBCCCGEEEIIIYQQQogaQQYvhRBCCCGEEEIIIYQQQgghhBA1ggxeCiGEEEIIIYQQQgghhBBCCCFqBBm8FEIIIYQQQgghhBBCCCGEEELUCDJ4KYQQQgghhBBCCCGEEEIIIYSoEWTwUgghhBBCCCGEEEIIIYQQQghRI8jgpRBCCCGEEEIIIYQQQgghhBCiRpDBSyGEEEIIIYQQQgghhBBCCCFEjSCDl0IIIYQQQgghhBBCCCGEEEKIGkEGL4UQQgghhBBCCCGEEEIIIYQQNYIMXgohhBBCCCGEEEIIIYQQQgghagQZvBRCCCGEEEIIIYQQQgghhBBC1AgyeCmEEEIIIYQQQgghhBBCCCGEqBFk8FIIIYQQQgghRPylm8gAACAASURBVLmEh4czZswYAgMDGTNmDFeuXLltGb1eT0hICP3792fAgAGsX7/e+N6qVasYOnQoI0aMYNSoUezfv78aoxdCCCGEEEIIUZNZmTsAIYQQQgghhBC1y+LFixk3bhxBQUFs2rSJRYsWsXbt2kLLbNmyhcjISHbu3ElqairBwcF0796dJk2a4OnpyaRJk7C1teXcuXOMHz+eAwcOUL9+fTPtkRBCCCGEEEKImqLGD16Gh4ezYMECUlNTadSoEUuXLqVFixaFlgkNDeWLL77AxcUFAG9vbxYvXlyu7aSkZGAwKJyc7ElKulFZ4ZuUlJSEg4MDWq1l3QBb8DvUajU4ONxl5ogsX37+Fif/99BFXqHedxvJGvUwhqbNqjnC2qHo8S/5Wz0K5q+Tkz1RUYnY2tqaOarKV53nl3ySw9XDVBlcVjm/HcVKZ4W2s3eFPm+O/DKlMuKR/K0eKSkZODjcVeLvdfPmTezs7Ko5qupX2ceQpedvUlISZ86cYc2aNQAMGzaM119/neTkZBwdHY3Lbd++ndGjR6PVanF0dKR///7s2LGDp556ioCAAONybdq0QSlFamoqbm5uZY6jpPK3LL+nJiUF2zUfkde2LTlDhpd5mzVZZeWxpedvTVFc/jZqZEtcXIoM4hdRntyW/K0+Rdtx+b9RdnY29erVM2dolaq669l1PYfL0g984MABli1bxoULF5gwYQLz588v93Yqow1X2bmRmZlJ/fr10Wg0lbZOU6oit+t6/laXovlb7G+Zl4ftpx+hd3UnZ3hQNUdoXhXNbcnfmqfGD16W5YpegODg4AqdrPIZDMp40N/pyasstm3bwuTJj9Opkxf//e/XNG7cuMq3WZ2q4zsU/1Mwf0t6337BC9TbuQOb/35K8tET1Rhd7SK5W/0K5m9UVBRNmzYlISHdzFFVDckvy1RaGVwaq0MH6BU8hGYaDd8cPYGheYsKx1GT1LR4RPFM1X+VUjRr5sqGDVsICOhd3aFVO8nZsouNjcXV1RWdTgeATqfDxcWF2NjYQoOXsbGxeHh4GP92d3cnLi7utvV9//33NGvWrFwDl2C6/DX5eypFw0kTsNm/F4C0T9aRM2xEubZdU0ke1x7F5e+yZcuYN2+exdaF74Tkds1TNIcNBsXBg/sZOXIo8fFp1TYAUx0k/6pPWfqBmzZtypIlS/jxxx/Jycmp0HbutA1XcD2VISMulpaebVjZtBmPbt+NcnWtlPWWRnK7diouf4v+bbv6feq/8iIaIO2rjeT27V+NEZqf5LZlqNGDl2W9ore2UUqxdOkSvvjiWw4c2Mfo0UFs2LAZR0cnc4cmLJVS2PyyGwDdlXA06WmoBg3NHJQQt7t+/bq5QxCi2sV8toZUIFkprn32MY6LXjd3SEIAcP78OQAuX75UJwYvhXkcPXqUf//733zyySfl/qyTk32J7zk7313yB8+ehb8HLgEa/ustePxRsIAZcUzut6jxDAYDALm5uVhbW5s5GiHK7/LlSwCkpqbg4FB7++2EeZS1H7h58+YA7N69u8KDlzVN2BuvArD6aiRPvf0GN/610rwBiVqv3qbvmALsAM59sbbODV4Ky1CjBy/LekUvwLZt2zhw4ADOzs7MmjULLy+vcm2rYMO3qht8Fy9e5Pr1dB5+eAQPPzyCV155hV69ujJv3jyeffZZi7g6TRrNNYsmMRFNbq7xb93Zs+R17WbGiIQoniWUf0KUV/jxI3gBjsD+3T8RJIOXooZITEwA4OLF82aORNQ07u7uxMfHo9fr0el06PV6EhIScHd3v225mJgYPD09gdvvxAwLC+OFF17g3XffpVWrVuWOIynpRrFXVTs7301iYskXRNl+8x32QFbwKKyPHkF3+jRp33xHTr+B5Y6hJiltv8tKq9WYHBgWVSd/wDIlJcX4WBwhapOMSxcBSEpMlMFLUW7l6Qe+U5V1nqus/s+TR35lPvAFcGnDN3T86AOwsamUdZsi/bcWKjubnN+P8xXQBNjzy266GgwWcaGeqFtq9OBlWY0dO5Zp06ZhbW3NwYMHmT59Otu3b8fBwaHM68hv+FZWg8+UTZu24+/fi2vXbs29PGfOfAYNCuKppybSuLEHQ4YMq9LtV7WC36E0fGsGXUxU4b+v/CWDl0IIURPo9UTExtAKaA6cuxpJ3XoahajJUlNTgFsdSUIU5OTkRLt27di6dStBQUFs3bqVdu3a3daxOGjQINavX8/AgQNJTU1l165dfP755wCcPHmSZ555hpUrV9K+fftqjd9m905+AwJ37WTcAx1YGRNNvW++rPWDl6L2u3HjVh9BZuZNM0ciRMWozd8BcCN0BYS+Z+ZohChZSRdAlUel9SErxemoaIKAsfXq8cXNm8zf9hO5PXvd+bpNqIo+cOkHrhl0ly9x1GCgY716DKlXj1/S0+lx+k/0HT3NHZoQ5VKjh9sLXtELlHhFr7Ozs/EKRX9/f9zd3bl48WK1x1tWBw7so2eRE1CbNm2ZM+c5vvji9ud5CnGntFFFBy/DzRSJEEKIgrRRVwnPy6OF3V201mq5cOMGZGWZOywhgFt3/tx7730kJMSbOxRRA7366qusW7eOwMBA1q1bR0hICACTJ0/m1KlTAAQFBdGkSRMGDhzII488wowZM2jatCkAISEhZGVlsWjRIoKCgggKCuL8+Wq4y9dgwPq3YywEZkydwdbYGL4H6v2wDf4eOBLCXPIHL2/elMFLUTvlxEQDkHr4oJkjEbVRWfuBLY02Ooozebm0a9SIIQMC2QFYhf1u7rBELaa7dIGTQGcXV7r7+LEfsDm4z9xhCVFuNfrOy7Je0RsfH4/r3w8yPnv2LNHR0bRs2dIcIZfJH3/8zrx5L0FODrqoSPTNW4JOR9++/Zk371mys7OpV6+eucMUFkQbf+uOCWVjgyYnB13EFfMGJIQQAgDd5YuEA12aNaNJaipRcbHoIiPQt25j7tCEIDU1hTZt2nHmzJ/mDkXUQPfeey/r16+/7fXVq1cb/63T6YyDmkVt2LChymIzRXslnIybN9mv0fD+rGfo2K0H8yeMYXhWFjYH95MTONgscQkBBQcvM8wciRAVk38JXlpenlnjELVTWfuBLY3hzJ9cAu5t+wB53Xtyaetmbpw+hc7cgYlaSxcTzWnggabN6BQ4hNM/7yLr6GGYNtPcoQlRLjX6zkso2xW9y5YtY9iwYYwYMYKFCxfy9ttv4+zsbM6wS3T9ejqJiYm0vp6Oo18nHLt549C3J7q/LuHo6ESbNm05evSwucMUFkablARAbhdfQO68FEKImsLq4gXCgaat7se1SVNiAe3fV6wLYW6pqam0bt2GhIQEc4ciRKWxOnOaQ0Dnhg2xs7OjV68HcXB0YhNg8/NP5g5P1HH/mzY208yRCFEBeXlkAhrgem6OuaMRtVRZ+oGPHz9Or169WLNmDV999RW9evVi//795gz7jkQdOYIHYNPuAXQPtMcPOHLyD3OHJWoxbUICl4FWzZqj69odT+DkERlvELVPld95uXv3bnr37o2VVcU2VZYrepcuXVrh+Krb6dOnaduyFY6PjESbnobSaLA6e5qGY0aRvP8ovr5dCQv7jYCA3uYOtU650zyt6bQpyQC8Z2NDV8BPBi9rHUvP0XwajcbcIYhaqDYfH7rLl/gLaOrpidM5K64dP4ohNsbcYYkyqs25VxY3blynbdsHAMWNGzewt5fn11gSS8/fklid+ZM9QMD9t+5w12g0jB87jv8u+z+Cdu8CpUDqI7WCJeaw3HkpoPbmtiYtjSzABci4ITlcV1VHP7CPjw/79lnOFJixZ07RHMhr3Za8+9vQBfjzaiQ9pE5S7e40f8PDw1mwYAGpqak0atSIpUuX0qJFi0LLhIaG8sUXX+Di4gKAt7c3ixcvvtPQC9EmJhANuLdoib5NW3ysrPk9MQHP+HjU37NXClEbVPmdl//+97/p2bMnr732GidOnKjqzdV4p0+fonNKMtr0NLIHBJJ0Lpy8dg+gi7iC7X/X4OnZiZMn5Xuqbpaep5rkJK4Ac/f+wlyNBu21RJCreWsVS89RIe5EbT4+MqKukgs0vL8NWld3GgNJ4X+ZOyxRRrU598oiMzMTOzs7nJ1d5LmXFsjS87ckVufOchjw9etmfG3w1Bn8rNFwPfIKur8umS84US6WmMO3LhS5W555WcfV1tzWpiSTCTgD129mgMFg7pCEGdTW/DWn2MuXaALo27RFOTvT2taW89nZaGT2k2p3p/m7ePFixo0bx48//si4ceNYtGhRscsFBwezadMmNm3aVOkDlwCa+DiiALd77wOdDu9W93IMsP79eKVvS4iqVOWDl5s3b+bTTz+lXr16zJo1i8DAQN59912ioqKqetM10tnDB+kSE43hLnuuL1+FcnAkY8ErANiGrsCzXXtOytQA1c7S81SblMwuYGS3HpwGUgBdjGXsW11h6TkqxJ24k+MjJSWFyZMnExgYyPDhw5k5cybJycnVEPUt8VFX8QCUmxsGVzfcgfjIiGrbvrgzll42Z2VlUb9+fVxcXGXw0gJZev6WRBf+F6eBtj38ja81cHAkwNWNHwDrvXvMFZooJ0vM4czMTJycnGTa2Dqutua25sZ1452XN/7+W9Q9tTV/zSkmMeHW4GXLVqDR0KZ5C84BVhfPmzu0OudO8jcpKYkzZ84wbNgwAIYNG8aZM2eqtX8h3424ODSAfYuWAHTq2u3W4OVvx6o9FiHuRLU887Jt27bMnz+fvXv3snjxYnbs2MGAAQN47LHH2Lx5M4Y6dDXWmaOH8QRyho1A/X17eM6gIeS1aYsuLpYHTp8iISGB69fTzRtoHWTJeapJTeFPoHMHT3zubsARQCsVx1rHknM0n1Kq0P+FKKuKHh8ajYannnqKH3/8kS1bttC0aVPeeeedaos7LiEBd8Dg5o7BxQUPIE4uLqlVLLlszsy8ia2tnQxeWjBLzt9iKUVy+F9kA87ePoXeCgzozWbAZt8ec0QmKsjScjg7OxsHBweZNlbUztzOyv7fnZeAJl36teqqWpm/5pKTQ3RGBvdoNBhc3QBo1b4j5wDt+XPmja2Oqmj+xsbG4urqik6nA0Cn0+Hi4kJsbOxty27bto3hw4czadIkwsLCKn0fohPiaQIYXG5NEduy30CSgLQjv1b6toSoStU2gX5kZCSbN29m8+bNaDQaZs+ejbu7O59//jk7d+7kP//5T3WFYjbKYOBCfDztgKxRo//3hkZD5pTp3P3cbO76fC2tW7fm/Plz+Pj4mS3WuspS81SbnsYZYFLbtsS7unI6PQ3/6ChyzR2YKDdLzdF8BQcv5fmXorwqcnw0atSIrl27Gv/u3LkzX375ZfUEbDAQn5J8a/DSxRWDqxseQHxiYvVsX1QaSy2bMzOzaPjzT9wTG0NCXJy5wxFVxFLztziaa9c4czODB3Q6cHQq9F7fSZNZvP4rOLAP9Hr4u+NJ1HyWlMO3Bi+dyMiQaWNF7cttTXaW8c7Lq9x6BiZNmpo5KmEutS1/zUUbG0M0ENjIAf5+zmLDDp7U3/ANiaf+oIF5w6uzqjJ/x44dy7Rp07C2tubgwYNMnz6d7du34+DgUOZ1ODnZ3/aas/Pdt/6h1/N7SjJNAKd2rcDaGgb1xRs4+cfvBDra1Yl6rvH7ELValQ9efv7552zatImIiAgGDx7M22+/TefOnY3vBwYG0qNHj6oOo0ZI3rMbG4MBh8bOJAX0LvRedtBI7F98HuvDh2g3YiRnz56RwctqZOl5qrlxnXCgRZsHSGjenD8uXkAbddXcYYlysPQczZc/eGkwGNBqq2VyAGEBKuv4MBgMfPnll/Tt27dc2y+u4VAm8fHEKYV7/fo4N2kMbVvhDiSkplSool3TKuc1LZ6qYOllc1ZKEk5r9tAUSHJygilPmzskUYksPX+Lo4sI5wzQrmFDKHKRlEsXX+61seFQehqdT/5BnlcX8wQpyswSczg7O5uGDRuRnZ1l7lCEGdXW3NZkZxnvvDzDrYuo9WaOSVS/2pq/5qKLiSYK8HBzN76mb9mKe4HIixfoYLbI6qY7yV93d3fi4+PR6/XodDr0ej0JCQm4u7sXWs7Z2dn4b39/f9zd3bl48SJ+fmUfB0hKuoHB8L8Zy5yd7yYx8dZU3ZrERKKVwsPGhsTULCALtHZ4392AY9fT8d1/FH17y86sgt9HeWi1mor374gqUeWDl/v27ePJJ5+kX79+2NjY3Pa+ra0toaGhVR1GjRDx+X9pA2SNfMh4NU0+1aAhOX37U2/Hdjrk5nLu3BnzBFlHWXyepqVxFXC//37atnmAz3f9hDZapiWsTSw+R/+WP/2GTCMjyqOyjo/XX38dOzs7xo8fX67tF204lJXu9CViALcGDUhMvI7G2h4P4Hh6erkr2hWtnFeVyoinNjQcLL1szr52DVvADbh09qy5wxGVzNLztzi6K+FcBO51cy/2/cHt2rP5RBi++/fK4GUtYIk5nJ2dTYMGDcjKksHLuqzW5nZ2tvHOy+v8feelqHNqbf6aiTY6iijAvXlz42v65i1oBURcjZTBy2p2J/nr5OREu3bt2Lp1K0FBQWzdupV27drh6OhYaLn4+HhcXW9N53r27Fmio6Np2bJlpe2DNjGBGMDdvnBb2qttW749dhTr349b/OClsBxVfluLn58fgwcPvu2AX7NmjfHfPXv2rOowzE8p/tr7M22B7IJTxhaQM2goAJ4JcZw7Jx1E1cmi8zQ7m2u5udgDdg6OtPbqwllAe1XuvKxNLDpHC5DBS1ERlXF8LF26lIiICFasWFFtd/3q4mOJBVz/nrpQOTjiptMRm5sLmZnVEoO4M5ZeNmfdzDAOXiZck+mMLY2l529xdFcjiQCaNm1e7PsDRwSzBbDeu6c6wxIVZIk5fGvwsqHceVnH1dbc1mRlFX7mZVqqmSMS5lBb89dcciKvcB1wbNHK+JqheXNaAhHXroEq/0WyouLuNH9fffVV1q1bR2BgIOvWrSMkJASAyZMnc+rUKQCWLVvGsGHDGDFiBAsXLuTtt98udDfmndKkp5MEONndVej1zj17cQywCvut0rYlRFWr8t65VatWFfv6e++9V9WbrlF0ly9xMT2d1nfdRZ63T7HL5PTuA0Dn06c5e1buvKxOFp2n6elEAffodKDR0KBtO+yAmMgrZg5MlIdF52gBMngpKuJOj4/ly5fz559/smrVqmKvrqwq2vj4W4OXrn/fAaTR4OboRAygTYivtjhExVl62ZyZlY0dtwYv47MyISPD3CGJSmTp+VscbUwMkYBHq1bFvt9m7HhygEtHDoHc+VbjWWIO5995mZkp+VeX1dbc1hS581KbLnde1kW1NX/NJf7iRTwAmjQxvqbs76bFXXcRnpcn7cJqdqf5e++997J+/Xp+/PFH1q9fT6u/65yrV6+mY8eOwK0Lp7du3crmzZvZsGEDvXv3NrXKctNeTyMFaGRf+DEuHn0GkA0kHj1SqdsToipV2bSxv/76KwB6vZ7Dhw8bn2MGEBUVxV133VXSRy2S9dHDnAP827W/7fkq+Qz3NCGvdRvuuXCePJ2WxMTESr3yQtyuTuRpWhqJgIu1NQB6j3toA1yOjaGTwQDyXMEarU7kaAEyeCnKozKOj4sXL/L+++/TokULxo4dC0CTJk1KbLRUJm3CrcFLlwINVVcXF2ITE9AmxGNo3qLKYxAVU1fK5sy83Ft3XlpbE5ubi9Xli+R5di71c6Jmqyv5WxxtbDQRQJM27YpfwNmZoQ6ObE1JZuqxI+QGVG5nkqgclpzDt5552ZC//rps7lCEGdT63M4ueuelDF7WJbU+f80kOvIKTQC9R5NCr7fwuIe1Fy+gvXIFg6ubeYKrQywpfzXp6SQDjRo2KPS63rMTPsDvly7gn5EBtWifRN1VZYOXL7/8MgA5OTm89NJLxtc1Gg3Ozs4sXLiwqjZdI1kdPcx5oFUP01Mj5PTug92F8zzQsBHnzp3B2VkazFWpMvI0PDycBQsWkJqaSqNGjVi6dCktWrQotIxer2fJkiXs378fjUbDlClTGD361vTBq1atYvv27eh0OqysrHjmmWcICAiovJ1MTycBaFyv/q2/7e1pbWPDxZwcOl+7hnJxqbxtiUpX18rS/AqiUjJ4KUpXGcfH/fffz/nz56ssRlO08XHEAK4Fnm/hdE8Tkk7/iSYuziwxibKpE2WzUtw0GLADbAN6k/jzLjh7BmTwstarE/lbguyoKNKBxm3bUVJNI7C7P+9s38LM/Xtl8LKGsuQczs7KwuWbr8hyk47quqi257Ym69adl87ADQAZvKxTanv+mktMbCxNAMM99xR6vVnLVvx18QK6iHDyunYzT3B1iCXlr+b69Vt3XjZ0KPyGnR3ezi78lphA71MnyevW3SzxCVEeVTZ4+fPPPwMwb9483n777araTK2hP3yIaOCegYNMLpfbuw+sfp+OOdmcO3eGAGkwV6nKyNPFixczbtw4goKC2LRpE4sWLWLt2rWFltmyZQuRkZHs3LmT1NRUgoOD6d69O02aNMHT05NJkyZha2vLuXPnGD9+PAcOHKB+/fp3vH+A8c7Lxra2xpfuc3TifFwsuuir5MngZY1WGTl6pwPspt4LDQ3liy++wOXvPPL29mbx4sUV3Fu581KUT22va2TFxpADNGjWgpy/X7NydacecCPyCvXMGJswrbbnXpkkJ5EJ1LO/m2yvLjT6eRdpJ09w15hx5o5M3KE6kb8liI6Jogmg7mla4jI9xjzKqe1bSNu9E+uXFlVfcKLMLDWHDQYDer0ep7DfyGtZ/NTGwrJVV9vvwIEDLFu2jAsXLjBhwgTmz59/p6EDoMnOIgu4q7Ez1tcSyUpJrpT1itrBUsvmqhabdK3YOy/d27Tj2s4d5Mqd+NXCkvLXeOelg+Nt73m178jHe3ZjHfabDF6KWqHK54us7Qd8ZdBcu8aVvy7TUqNB49XF5LK5PXqirKzoeO0a506eqKYIRUXzNCkpiTNnzjBs2DAAhg0bxpkzZ0hOLlxJ3759O6NHj0ar1eLo6Ej//v3ZsWMHAAEBAdj+PbDYpk0blFKkplbig+3T028NXtrbG1+638OD84A2KqrytiOq1J2UpfkD7D/++CPjxo1j0aLbO+IKDrB//fXXhIaGEvV3fph6DyA4OJhNmzaxadOmOxq4BBm8FBVTW+sa8dHRuAGqwDRABmdnGgOp0dFmi0uU3Z3mXnh4OGPGjCEwMJAxY8Zw5cqV25bR6/WEhITQv39/BgwYwPr1643vhYaG0r17d4KCgggKCiIkJOSO4iko9+pVbADc3NDfdz9uwLXzZytt/cL8amvZWWFZWUSlptJco0GZeDSHJuBB+ms07PzzFJq0SqyTi0pnaTmcnZ2NDWALZN28ae5whBlVdduvadOmLFmyhH/84x93EuZt8jJvYgC0Lq7cDWQkJ1Xq+kXtYGllc5W6eZPozEzu0Wpvr5u0aElTIPrsGbOEVldZQv5qr/89eNnY6bb3Oj/Yl2OA7vdj1R6XEBVRJXdeDh48mB9++AGA3r17oynhGY979uypis3XONbHjnAeuN/BAf5+7mBJlP3d5HXxxfPIr6z9TQqSqlQZeRobG4urqys6nQ4AnU6Hi4sLsbGxODo6FlrOw8PD+Le7uztxxUwJ+P3339OsWTPcKnOaoL8HL70b/G+u83tb3suF339DF3218rYjKl1l5Gj+APuaNWuAWwPsr7/+OsnJyYVytKQB9qeeesrke5Xtf4OXqpQlRV1nCXWN+Pg43ACDq6vxNYOzM05AcmwMriV+UphTZebenc7eALcuIKmsOyYKyomOwhYwuLiiv/c+3IDE8HCaV/qWRHWyhLKzorSxMUQATW3tTD/z3d6eIS1bseWvy4w8eICcIcOqLUZROkvO4ZzsLGyA+kCWXMhX5/w/e/cdHkW5PXD8uy29kgKB0EJXAQOhCQgEBRQBe8Euoliv+rOg3ouKomK5VhBB0evVq4ggKtgBlSJNQHqHJJCQ3studnd+f2wSQkjCbrJtNufzPPsQdqecnT0zOztn3vd152+/jh1t3+YrV67EZDLVu6ymMJaWEgAosbGE74HignwCzzqX8AW+fGx2JV3GCY4DI1tFnXFuYunYiQTg2JHDxHkkupbD5/K3sIB8IDz2zCsKUSOTCQMOb9oo1xuEKrikePn888/X/P3qq6+6YhWqYti0gX1A185d7JredOFIzt34J3tTjqEoSoMHTdE83panmzZt4q233mLhwoUOzxsVFdLwi4WFZAFtY2OIiQkFIGJAP04s+RJDVjohVc8Jmxgv2h7OyFFnFNjPVnxfsWIFa9euJSYmhgceeIDExESHYqydvwcO2C7UtGoV5FWfhbP44nvyFG87hjtMUcjKzyMOW3Go5unoqpaX2VkeC000zlm554ybS1zJmJ1JIKC0isKS0IU2QNbJdLBaGy/8CK+m+mNnM+gy0kkF2kdEnHXa0ePG88jct1F+WwlSvPQqvpzDpsxM/KlqeenEgpJQB3f+9nOWutchNIqZQMCvQzwRQFlxkc/8/vGV9+EqvnxsdiXtCVvxMq7NmeVJS4eOJAApJ9ORzj1dy9fyt6KqN7+AVlEY67xm6dGTYXo96zPSuSrzJNbWMsa28G4uKV4mJSXV/D1w4EBXrEJVDJs2sB8Y1H+AXdObLhxFq1dfItRq5fjxNNq37+DaAFsoZ+RpXFwcmZmZWCwWdDodFouFrKws4uLizpguPT2dPn36AGcWg7Zt28Zjjz3G3LlzSUhwfHyT3NySBluqxVS1vAwNCSc7uxgA/6g2dAD27thNu6rnhO0HSXat7aHVahovDLuYGo6l119/PdOmTcNgMLBu3Truvfdevv/+eyIjI88+c5Xa+asotn+zsorQaHzrPt26+eUOns5hV1LD/tEYTUkxmSYTbfR6lOBTn5E1CH92cQAAIABJREFUKtrW8jJXutnyVs7KPWf13uCsG0jqXpQrLC0kCPBv2xr/LvHEBQVxsqyMGFMRtG94vEA1awkXJtV+7GyO6paXF9RzF3pd4ePGc97ct1n/y0/Y9wtOuIuzctiecQHnzJnD999/j06nQ6/X8/DDDzN8+HDA+eO+A1QWFpwqXlZK8bKlUePxufbvuJiYUAryCgkAysJaEQHk5he4/fePK7j7d5waf8OpMX+9gTa9qnjZ4cy+Tazt4ums0XC0sBCMRvD3d3+ALYSv5W9Bfh6tACU07MwXdTouSOjCmgP7uX7DeoyTrnR7fEI4wuW3TX/00Ufs3WsbH2f79u2MHDmS0aNHs23bNlev2jtUVKD/exv7gM7Jo+2axdyvP9aQUM6zWNi/bo1r4xNA0/M0KiqKXr16sXz5cgCWL19Or169zrircdy4cSxevBir1UpeXh6//vorY8eOBWDHjh08/PDDvP3225x77rnOf3OFhWQDraJP9Z9vaRdPD+Bg6jHnr0+4RFNztHaBHThrgb1aRkZGTffFjb0WExODoao77KFDhxIXF8fBgweb/D6ru41VFOkqS9hPjeca2qxMTgKtQ0KgVg8L1qqWl7kyzpoqeDr3rr/+elauXMl3333HlClTuPfee8nPz3doGbm5JQBkZxef9shNSycQKAu0XbBrFxPLMaBg899nTOsLj/q2QXMe1dvVm3k6f91Nm25reRkff/biu7lffy4zGFhx4jjajPSzTi88ozk5bM+4gH369OGrr77i22+/5cUXX+Thhx+moqKi5nVnjvsOYCoqwp+qbmPN5mYvT6iXq3/7uUpFWZmty/mYWCKAwlLv/y4UztfSzi+aw5JyjDwgJqGenvoMBjq1iuIooDue6u7QWixfyN+C/HwiASWsnuIlMGhkMmsBw5/r3BqXEE3h8uLlxx9/XDMmz+uvv85tt93GtGnTePHFF129aq+g374NTCb2a7V0Ob+ffTMZDFQOHcZ5wIFffnJpfMKmOXn67LPP8umnnzJ27Fg+/fRTnnvuOQCmTp3Kzp07AZg0aRLx8fGMGTOGa6+9lvvuu4/2Va0WnnvuOSoqKpgxYwaTJk1i0qRJ7N+/33lvrqrlZXStrgCs7TvQHTiUeea4m8I7NTVHnVFgb+y1zMzMmmXs3buXEydO0Llz5ya/z1NjXkrxUthPjeca2qwsMoDWEae3UrZG28a8zC9R/13qLUFzcs8ZN5c4+waS2irycgkCrJG274vOnRM4BOgOH3LK8oXnqfHY2RzajBOkAO262DGUh58flyQN5DvAsOpXV4cmmqipOVzdbfdll9m6BL7sssvYs2cPeXl5p003fPhwAgNtPYH06NEDRVEoKHDdzUWVJcWnWl5WfTeIlsnVv/1cxVhRTgC2MdwjgMKyMlDq7yFK+K6Wdn7RHJmHD9nGs2zgxqqO8e05CmhTUtwZVovmC/lbUFxka3nZQPGy8/iJlAIZf/zmzrCEaBKXdBtbW3FxMaGhoZSUlLB//34+/vhjdDods2fPdvWqvYJh0wZOAn4GP1q1irJ7vsoLR9L7px/4+W/13NmhZs3J0y5durB48eIznl+wYEHN3zqdrqaoWdeSJUuaHrgdjPn5lANhMTFUdz5kjW1NNz9/NpWXo8nNRYmyPzeFZzQnR5999lmmT5/O3LlzCQsLq5ln6tSpPPjgg/Tu3ZtJkybx999/M2bMGIDTCuyNvfbvf/+b3bt3o9VqMRgMvPLKK8TExNQThX2keCmaQo3nGtrMk5wEYmNiT3teiYwkSqNhV0UFVFZCVWFKeKfm5F7tC4yTJk06680lY8aMoaCggF9//ZXPPvsMsN1A0rq1rQtMZ9xAUpsxL9/WeqIqnk7nnMuh31ahO3LYKcsXnqfGY2eznDjBCSCuZy+7Jk+YeAUhf65j65dfcO6Nt7g2NtEkTc3hpowLuGzZMjp06FBz8wg4d9x3gDSNuablZbnV2iK6snZES9oerv7tt2XLFh555BFKSkpQFIUVK1Ywa9asmm6Rm6q8vNw2XnZoGOF6PYVmM5SWQoi6ukAVzdPizi+aISPlGPHYuoitT4eu3Tjy9za0KcfcGldL5gv5W1BcTCRgDan/e9Oc2J+LtVp+OXSQq/LzUCLdc4OLEE3h8uJlXFwcW7du5dChQyQlJaHT6SgpKan5oeDrDJtt4112bdfOoflMF47iPOCt9BO2O9VqdSknnM+X8zQ7O5togPCIU09qNHTr0J7/HjqE7uABzFEy/Le3a06ONrfA3thrzj6Bk+KlaAo1HsOru42NqduNl05Hq5AQcouL0eblYq3Val54n+bmXnNvLnH2DSS1lRfmEwQ1P2bbnd+fDMB86IBTli88T43HzubISj1GJODXoRP2dMhZOWYck598lC+3bOQ5kwn8/FwdonCQu3J406ZNvPXWWyxcuLDmOWeP+w6Qm551quWlovjEWIHO4siYg2ocL7AuV//2S0pK4o8//nBqzADGigoCAMXfn3D/AArMJWiLCrFK8bJFaWnnF82RfjKDeMDStv5rxmHduqMHCg7sJ9CtkbVcvpC/+WWlVS0vw+ufICCAS7p0ZdHBA1y/cQOmcZe6NT4hHOHy4uXjjz/Ogw8+iJ+fH2+//TYAq1evpnfv3q5etecpCobNG9kHdO3d16FZLd170D02lv1ZWSi7dqLp3cc1MQrAt/M0Oz+fGEAJPf2Om4Qe53Dg0CH0hw5gHizFS2/nyzlam1LVrZAUL4Uj1Lh/aLOybC0v23c447VWEZHkFBejyc4GKV56tebmXnNvLnHlHcAVRUW2lpdVxUtNz160B9J27yK20TmFWqjx2Nkcx9PT6QhYG7hAWJe1fQeuSejC8COHeW7N7zD6YtcGKBzW1Byu3W23TqdrdFzAbdu28dhjjzF37lwSEhJqnq99o0jtbrsHDhzY5PdjLCk9NeYloFgsaFR0sVQ4j1qPzxXGCluBJSCA8OAgTpaWoCksBDuPu8I3qDV/PSE9N7eq5WX9+4ilQ0cSgJQD++jp1shaLtXnr6KQX1HR6JiXACMvHsu9Bw9Q+cdvIMVL4cVcXrwcMWIEa9euPe25cePGMW7cOFev2uN0hw6izctjb2AQXRPtHO+ymkaD34hk2i7+grRlX9FBipcu5ct5ml1QQAxgDT39Syumdx9MK74lf+cOuYNLBXw5R2uTlpeiKVS5f5zMsI1H3CmButneKiqa3LRUtDnZyIhX3k2VuWcnY3Gxreu3qi4ULV270UOr5UBGOq2Li1BCG/4xLNTBl/P3DJWVpOXn0QHb8An2aj/hcrq89Trr3p/LUCleep2m5rC93Xbv2LGDhx9+mLfffptzzz33tNdc0W23qbQEf0ALGABTQR7+Uc5pTS/URa3H5wqj8VTLy+AQCsiyFS9Fi6LW/HU3TVEhJ0xG2uv1DXbbaenQic5ASmqKFC/dRPX5W15OgdVKpF7faK8hISNH03/uO6xd9QtD3RieEI5yefESbP1FHz16lNLS0tOeHzLEt1t7GTZtAGBvSAi3devu8PymC0dy3uIvOPDbKjr8a6azwxN1+GqeZhcXE8uZLS8t3XpwPrBr2xYGeCQy4ShfzdHapHgpmkpt+0f+ieOEAfp27WrGI64WERtLDqDNzfFAZMJRass9e5WVlhDEqZaX6PX0iY5ha1YmI3fvll4bfISv5m9d2qxM0oD2QUEOjSVccc313PTW6/x3ze8MLS+HQLnlz9s0NYft6bb7ueeeo6KighkzZtTM98orr9CjRw+XdNtdWVaGf9XfAYApJ1eKly2YGo/PFSaT7cYn/wDCw8IoALRFBZ4OS3iAGvPX3bQnTpACDImKbnCoMGvHqpaXmSfdGltLp+b81RYXkQf08g9odLrKpIGM12j44egRhpUUozQwPqYQnuby4uXSpUuZOXMmQUFBBASc2nE0Gg0rV6509eo9yrDxTwD2V5ro2tXx4mXlCNu4l/v27uUiGWfFpXw5T7PKyqq6jT29hYS5T1/6ATsO7GeAjKvq9Xw5R2uT4qVoCjXuH5knM2hN/S2AItu2JRfQZGe5PS7hGDXmnl3MZozl5bbWExGnxszu26Mnn2Rlot+9U4qXPsBn87ce2nTbBcKuDbRsaIilew9u6Hs+z/y9nYz/fkTcXfe6JkDRJM3JYXu67V6yZEmD87ui225TWWlN8TIQqMjLQy4ltkxqPT5XmEwEAAT4ExYRQQGgKSrycFTC3dSav+6mSz9OCtA+rm2D01hjW9NZr+evigo00vOJW6g9fzVFReQDEcFBjU8YEsIlvc7hzT27eXnTRszJF7klPiEc5fLi5RtvvMFbb73FiBEjXL0qr6PftIEybMWjDh06Ojy/tU0c58S1ZWlGOoatW6gcfIHzgxSAD+epopBdXm4rXtbp69zaoSPnBwXxQ1kZ2vQTWNvFeyZGYRefzdE6qse8rKys9HAkQk3UuH+kZ2fZxjepp3gZ2KYtWqDipNxh6+3UmHv20BQUUAYE+ftDrfHW+gwewl9rfke/favnghNO46v5Wx/tyQxSgVFNGEfYMPkWpvy9nflz3uYZKV56FV/LYVN5nZaXBXmeDEd4kFpz21hZq+VlRCtb8VK6jW1x1Jq/7lbd8jK+UyNdjms0dIptzeL0E2hTUrCcp5JxF1VM7fmrqWp5GRESctZpO48cTfCe3ez+dik9pHgpvJTW1SuwWCwMGzbM1avxOprsbPRHDrM/IIDOCV3Q1brw44juFwxjJ2D4fbVzAxSn8dU81ZQUk60oRBv8zuwiS6Ohb6/z2Azot2/zSHzCfr6ao3VVt7g0m6V4Keynuv3DbCa1qMg29lr0md3BWaOiiQFyTqS5PTThGNXlnp20+XmUAwGBp9+x2/qisWiBlHVrPBKXcC5fzd/66KpaXsZ36ODwvMarruHBgED+l5FOzp/rnB+caDJfy2FjecXpLS/z8z0ZjvAgteZ2RWVl1ZiXAYRHRVV1GyvFy5ZGrfnrbmXHjlAOtOqc0Oh0HTp24gigS01xS1wtndrzt7rlZWRo+FmnrRwylCuAFau8v0WpaLlcXrycOnUq7733XovrAtCweSMAf7fvSPcevZq8nI6XTSIVsPy2ykmRifr4ap5qCgvJBmIauOOm69BhFADZq+WLytv5ao7WZbFYAGl5KRyjtv1Dm36CVKBDSAjoz+wEwxodQzsgIyPd7bEJx6gt9+ylybMVLwODg0973tK7Lxfp9aw+noZWxt5RPV/N3/poMzJIAdp26erwvEpYOK2uvYFbgLlPPeb02ETT+VoOmyrKT2t5aSyQsQJbKrXmdkWlmUCAAH9Co2Ol5WULpdb8dbcThw7SEVDi2zc6XXzPXqQD1oMH3BJXS6f2/K1peRkecdZpTUOHc7m/P9+czEB74rjrgxOiCVzebezHH39MTk4OH3zwARERp+84v/32m6tX7zGGTRsA2BQcTN++iU1ejubCEXQFDm77i45FhShhZ79zQjjOV/NUU1BAFhAVVn+/+ObhI7jw7X+zfvWvXOLe0ISDfDVH67Lu2weAuVAu1gj7qW3/0B1PIwUYGxNb7+s1xcvsbKRjIO+mttyzlzY/jzIgoO7NT3o9o7t15+u9e7hx/VqMV1ztkfiEc/hq/tanKOUoChDeuQumJsxffvudTP9kIefu3sXUQweJ69rN2SGKJvC1HDbVaXlplPPhFkutuV1uPtXyMjA6GhNQmZfr6bCEm6k1f90t7ehROgKWswwzpul1LnFAxva/OLPPHuFsas9fbVXLy/BWdozzHhJCnzGXUPTdMo5+OJ+OM2a6PD4hHOXy4uWrr77q6lV4JcPGPwHYUlrKk+c3vXiphIbRPyaWTdlZdP19NaYJlzsrRFGLr+aptrCATCAmIrLe1ysHDmaETseatFQuzc1FiYpyb4DCbr6ao3VZPvoIAL8XZ8LoMR6ORqiF2vYPbVqqrfvCBu6yVWKibcXLAukuztupLffspanuNjb0zJufRo6fxIN792D6cQVI8VLVfDV/65OWmkonQGnbrknzW849j6hBQ7hj45+8++g/mLXse6fGJ5rG13LYaLQVL5WgYALKSqkoKvJ0SMJDVJnbZjNGRSFMowG9HiUmlgigODOjpigvWgZV5q8HpGWcsBUvGxvzEjD3PIcuwJE9e6R46QZqz1+loIACIDwmBqMd01defiVXfLeMH5Z+yTQpXgov5PLi5cCBA129Cq+jKS5Cv30rRq2W3SfS6Nv3/GYtL2nQENYv/4bbf/5Ripcu4qt5qiksJBNoHR2NUt8EgYFclJjE7C0befXHFVTeeIubIxT28tUcrcty8KDtj507PBuIUBW17R/VLS/bN9Byp7rlZXpxiVvjEo5TW+7ZS5tX1fIy/MweP0KvvJqhr73Ezz//yMVmc71dHwt18NX8rU9aRjqdAGvbtk1eRvntd/L4xj/pufFP7klLJb694+NnCufytRw2VRUvrTExhKSUUibFyxZLlbltNNpufNLrQaPB2qYNEUBReoYUXFoYVeavu5WXk1ZURAetFmu7+EYntfTsSV9gd1oKg6xW0Lp8BLgWTe35W5ydRTCgi7Sj5SVgGj2GK/wDeDw9nXtTjmHt2Mml8QnhKJcf8UwmE2+88QajR4+mf//+AKxdu5ZPP/3U1av2GMOG9WgsFtZ17U63bj0IreeudUf0u/YG1gN+v/4EVePBCefy1TwtzTqJAgS3arhFZcfJNxEDbPv4Q7fFJRznqzlal8VgAEBGvBSOUNv+UZlyjBygdQNjYiuhYbTV6Ug3V0KJFDC9mdpyz17anGzKAf96fvRaunbj6phYviwtxfDHb26PTTiPr+bvGRSFlPw8OgGWNk0vXhrHTyQqOoa7LBbeelLGvvQGvpbDJqPRVryMbU0IUFosYwW2VKrM7YoKKgD/qt9z1ri2RAG5WTJGdkujyvx1M13KMdvNrFHRZ70RUImIpHd4BH+bzWhTjrklvpZM7flbkJ1FFKDUcxNqvYKCGHjJpRwDMj/52HWBCdFELi9evvjiixw4cIDXXnsNjUYDQLdu3fj8889dvWqPMfzxOwA/RUYwYsSoZi+vy8VjyddqycrNRb91S7OXJ87kq3mafeIEbQAlouGBmo2XTeQanY7P/96G7sgh9wUnHOKrOVqXVacDpHgpHKO2/eP4oUPEA5qODYxvotEQFxPLcUB34rg7QxMOUlvu2Uubk00pEBhTf1uJcTfewmrAJDc+qZqv5m9dmtxcUiwWOgYEQFBQ0xfk70/5bVN4FPhu1S+kHDvqtBhF0/haDhsrTVUtL2MJBUqLiz0dkvAQVeZ2RQXlQGB18TImljZAVn4+VMqvu5ZElfnrZrqjR2zFSzt7cejdvTvbAf2+vS6NS6g/f3NysokBrGF2Fi8By+VXMxH4/ov/glJvv31CeIzL+3n69ddf+fnnnwkKCkJb1bS9devWZGZmunrVHuO3xla8XJWXz5NOKF5qdToGtotnfVoq437+EfOAQc1epjidr+Zp1skMWgNKeMPFSyUikpsmXUm/pYt55tWX8XvvA/cFKOzmqzlal8VggIoKzJ4ORKiK2vaPtLQUOgOW+IZ/rLZp34ETJzPQpaVg6dHTfcEJh6gt9+ylzc6iBAhu3bre1/1vv5PkN19j2S8/cmV2NkoDRU7h3Xw1f+vSZqRzDBgaFd3sZZVPu49WH8zjvoIC3nj8Yd78clmzlymaztdyuNxUSRC2ok8IUCK9L7RYqsxto5EKIMDgZ/u/wUCbwEAyy8vRZmdhbeKYw0J9VJm/bqY7dpQUIL5bd7um75qYxNHNmzDt/BsuGe/a4Fo4tedvXkE+0TR+Hbgu00VjmBzZivuzs7lj1a9YRl/sugCFcJDLW14aDAYsdbo6zcvLI6KRlmBqpsnJQb9nFzn+/uzLOMHAgYOdstykocNZB/h/vQSsVqcsU5ziq3manZ111paXAOGPTedyjYZ3lnyJ/q/N7glOOMRXc7QuS1WXKXJvrnCEqvYPq5WUnGxb94Xx7RucrE2XrmQAmpQUd0UmmkBVuecATU4OJUBgA11sWuPaclf/AbxlsRDw0QL3Biecxlfzty5dWirHgPaNHHPtpYSFU3b/QzwCrF77B39t3tjsZYqm87UcLjWZCAassVUtL8vKPB2S8BBV5nZVy8sAf/+ap2LDwskAtCczPBaWcD9V5q+bVR46QC4Qe865dk2vPa83PYH9G/50aVxC/fmbV1hIDA50Gwvg58ege+4nBFj94kxXhSZEk7i8eDlu3DieeOIJ0tLSAMjKymLmzJmMH++bd4r4rfsDgCUdOjFq1EX41zpxa44hk2/mF4MBXeox/Fb/6pRlilN8NU8z8/Jow9m7C7B06cbTt9zBAiD1tslosrPdEp+wn6/maF2WqjvbKkG6qxB2U9P+oc3OIsVioVNgIAQHNzidf+cEgoH8QwfcF5xwmJpyzxHanGyKgeBGij2D//UcQcCyOW+hKch3W2zCeXw1f+vSpRzjGPa3bjib8il3E9omjlfNZp6481bMZukvwlN8LYfLzXVaXpZL8bKlUmVuV4956XfqGljrqChOAtoMKV62JKrMXzc7sm8PXQASuto1vfn8fpwP7N6905VhCdSfvzklxUTjWLexAMZb7+Axg4HXdv6NVronFl7E5cXLhx9+mPj4eCZOnEhRURFjx44lJiaG++67z9Wr9ojq8S4XW8xMmnSF05bbf8AgTuj1pAIBMr6Q0/lqnmYVFti6jY2IPOu04c+/xKudOnFtZiZcPRFNVpbrAxR289UcrctaVbAsB5C7zYWd1LR/aFNTOAq0j268m01L+w50Bo4dkOKlN1NT7tlNUdDmZNtaXjZSvDRfMIxX+5zP9PJyrK+/4r74hNP4ZP7Wo/jAPqxAuJOKlwQHUzL730wGojNPsvD12c5ZrnCYr+VwaWWlreVlmzhby8uKCk+HJDxElbldPealv1/NU7Gt42wtLzNOeCws4X6qzF83O3j0KL0AS6fOdk1v6dadvn5+7MjPk2t1Lqb2/M0pK3O85SWgRLZi/OSbKQZ+f/whl8QmRFO4fMzL1NRUEhISuPvuu7FYLFx00UX06NHD1av1DEXB7/fV5ACbTp7kg9FjnLZonU5H8ugxLP/+O+755Se0x9OwOqHrI2Hjq3maUVTIBYDVjuIlAQFM/O4Xdg5LYuze3Xx30XCC3l9I5ZChLo9TnJ2v5mhdlkpbh7HFgLa4CGsjLdOEqKam/UN36CDHgA4JCY1OZ2nfkZ7AoZSjnOOOwESTqCn37KUpKkRjMtlaXp5ljMC+L7/GqEsv4vUF7/HETbfK+Kwq44v5W58jB/bRBbB2avy46wjTJeMxTryCud9+zdC3XmfCTbcS1y7eacsX9vG1HC6zWGwtL9u0IRQoMRo9HZLwEFXmdlXx0j8goOap1l26cnz1r+iOHfVcXMLtVJm/bqQpLmJ/TjY9dDosCV3sm0mn49zuPVi8ayeGrVswjbvUtUG2YGrP35yKCnrgePESwPjwY7zw2SfM2PAnv/69DU3fROcHKISDXNbyUlEUnnzySSZMmMD777/P6tWrWbx4MVdccQVPPvkkig92B6jbvw9d6jGWhISQfNEYgp180X3MxMtZGh2Nxmol4L8fOXXZLZWv5+nRkhLbxZrYWLumV1q35ql1fzGhbTuSTmbw06RLCH70ITQ5Oa4NVDTI13O0ruqxBYoAbbrcoSsap8b9Q7d/H4eADuf1aXQ6S0IXegIHTmZIF8peSI25Zy9tdjamqr/PNvyBOWkgM6++jo+sVg7fdRuYTI1OL7yDL+dvfQ6kptpaN3Ts5NTllrz0Gt2iY7jXbGbGjdc4ddmicT6Zw0YjZYpCsE6HNbIVEUC+HFNbHFXndkUFpUBwYGDNUwn9B3AQ0Bw66LGwhPuoOn/dSLd7N/uA7u3iwWCwe75ew0awA9Cu+d1lsbVkPpG/ZjO5ZjPRGg1KcIjDs1vbtuPi2+8kGvjo1sny2054BZcVLxctWsSmTZtYtGgRq1evZtGiRfz222988cUXbNmyhS+++MJVq/YYv59/AODL4BAmTrrS6csfN248fxuNHAACF36AprDA6etoaXw6TxWFI0YjCYA1trX988XGct/mHfznuhuYDQz7ZCHr+p9HwNx35IvLA3w6R+thNZvRYCte6lKOeTga4e3UuH+kbNpAABCVNKjR6ZSYGLqHhrLfZEJ7PM09wQm7qTH37KXNzqIECNHp7Jo+9MVXeDkigrv37sH/6cel2K4Cvpy/Z7BY2J+TbStedujo1EUrMTEUv/kuTwIH9+zmoycfc+ryRcN8MYc1JSW2wk9ICEp4ODFATqX89mppVJ3bVcXLoMCgmqeC+vQlCji+S8bpawlUnb9upN+9g7+A83o3fjNrXSGXjKcjsPPH5S6Jq6XzhfzVFBWSDUQFB4O2aSWf8sefYl6bOF5NP0HmA/fIbzvhcS4rXn7zzTf885//pE+f0w/Gffr04amnnuKbb75x1ao9w2ol4PNPyQa2FBcxevTFTl9FQEAAN952J2+1bYe2sIDAuW87fR0tjS/nqTE3myygfWAghDh4x43BwPnvvM8vf2xk+nm9mVFexohnn+aPxF4Yli4Gq9UlMYsz+XKO1sdiNhMN5AC6I4c9HY7wcqrbPywWNu74m6HYWqydTfduPdgH6PftcXlowjGqyz0HaE8cpwAIO0ury2pKRCSX/+8rOmo0TPvPQgL+OR2qWtEL7+TL+VuXLuUo+ywWeka2cvx82A6mMZeg3H0fK4A3F85n6UsvOH0d4ky+mMOa4iLKgKCQEJTwCKL0enKsVigvt28BVqttvHi5yKhqqs7t6uJl0KnipaVLV3rp9ezPykSbluq52IRbqDp/3Sh/8yaygG4ODtFUmTSQMQY/fk1LQys3ejudL+SvprCQHCA6zPEuY6sp4RHEfPQpT+l03P/1Yvw+mOcMd+jBAAAgAElEQVS8AIVoApcVLw8fPsyAAQPqfW3AgAEcPuxbF6UNf/yG/vAhvgqPYPTF4047YXOmO+6YyufFRaQBQe+9i27/Ppesp6Xw5TxN27aNDoC+bdsmL8PasxejVq7lt08X8c+4tryUnc3IaVNYP6Qfeumqwi18OUfPoChYrFa6AkcA/dYtno5IeDm17R+6vXvYYDIyJLIVSuuzt4jvmNiPVMC4Y7vrgxMOUVvuOUKXlko2EB0Savc8lqSBvDf3A7I0Gq5Z8B4FlySjPXrEdUGKZvHl/K1Lt3s3e4BuLhyPtfS5WbS54ip+URReeOMV3pxyC2az2WXrE76ZwzUtL8PCQKMhKjqGbGyt4RujzUgn5B/3EtWtAzGd2hB1bleCn3kaTUG+W+IWzqXm3FbKy23Fy9pdFWq19I5vz1+AYcN6T4Um3ETN+etOW9f9wUDAasfNrKcxGLhowEBWAP7feX8hTW18IX812VlkADHR0c1ajrn/AG5/+z2MwLx/TseweqVT4hOiKVxWvLRYLIQ0cHdrSEgIVh9ruRVYdSfCwqAgrr72epetJy6uLbfccRdPdU5AU1FB2LQpUFHhsvX5Ol/O07TtW+kC0KlT8xak0WAecwnD/9rFqtfeYkZ4BE8dPcLEqyawY+woDOvWSEtMF/LlHD1DZSUWoDu24qVh00bJLdEote0fho1/sg4YeH4/u6bXn9eHc4Fda9a4NC7hOLXlniO0aankAK0iIx2aT3fVNXz+v6+4IDiYwdu38faQfmj/OV0uoHshX87fukq2biED6NwvyXUr0WopnrOAhNumsAHY+N0yLu/dncM7trlunS2cT+ZwcTHFQEhYGACBrVtjBcrTUhqcxbBhPZGjhxH4+adoi4tQDAa0OdkEvfcOkcMH4ffDCvfELpxGzbltys9HC+hDT7/5afDgC/gDMKxf65G4hPuoOX/dRXs8jdWZmVzo74+5z/kOzz/w9qkcATIW/c/5wbVwvpC/BYcOYQBC28Y3e1nma67n4yl3MVdR+PfN16FZ+UvzAxSiCfSuWrDZbGbDhg0NDmhr8aHupPQ7/8b/5x/Z7OfHSSA52fldxtb2wAMPMeSzT9jati39du8k5OnHKXldupBtCl/O04O7d9IdoHNn5yxQr8d4y+0Mv+pa/pz3Ll+/+Tp3bfuLkCvGc2NYOKPGjKXrZZdjuWAoSoRjFzxFw3w5R+vSmIxYgbYGAyVmM8WFBej27cVyzrmeDk14KbXtH6U/fU8q0OuyidjTJsc0dDhDgI1/baK32Qx6l522CQepLfccoT94wFa8bN3G8ZlHX8y9f+3i+v/7B0+v+JYh8+fy2McfMOnKazHcdgfmxP6g0Tg9ZuEYX87furZsWM8AQOPguFIO0+spmf1vwnr04qdnn+a93BwuGzOKx+66h9ufexGN5L1T+WIOF2dm4A8ERkZSAiit29AeSN+zh85DLzxjesO6NYTfcBWaigpMF46iZPZrWBK6ov97GyFPP4Fh80bCb72BiquupeTl11DCI9z9lkQTqDm3SzMzCQGUyFanPZ80+RY2ffEZlh9XwMuvg53d0gv1UXP+uovh99V8C3yVNKBJv+2UsZdwpcGP/+3fy4Mb/sQ8eIjzg2yhfCF/jx/aTyfA2qYJv+Pq0WrWK/yWfpy7fvieVTdcxYJ7HyD6yRlyHBdu5bKrYFFRUTz11FMNvt6qVasGX1OboNdmowCPx8Ty4D/+D51O59L1hYWF88j/Pc5Diz5nVU4Ogf/9GGv7DpQ99KhL1+uLfDlPt+3by0SAhATnLjg4GOP/PcH4W6dw5fw5bPrsvyzKzmLBV1+S89WX9AA6+/sTFx5BWGAQYUFBhAUGoNFoMCtgVhTMgAIoGg2KTgtoQafBqtGCVoui0YBWB1otAX5+BAYGEBgQiH9AIEHBwQQEBREQHExAVDTh7eIJ79ARoqJQgkN87qKoL+foGUwmLIBOp6NfRCR/Zmdx4dLFlErxUjRAVftHeTkb169lIGAZc4lds1g7deaytu14Mv0E92zZROXgC1wbo7CbqnLPEYqCbu8esoGIDp2atohWUUR+9Cnzt29l/SP/YMGuv3nsi0+5/ItPmRwVzZDLr8Q6ajSVAwadcYFTuIfP5m9disL6vXsYDpjPc3HxEkCjoWLKXVQOHc60e+5k7O6d3DRvDj9+9SUPPPIYw6bcLUVMJ/HFHM49fIjWAHFxAFg6d6E7cHT7VureiqrfuoWwm65DU1FB+Y23UPLqmzUXwc3n96Pg2x8JXDif4FnPEbDkSwwb1lP8zjwqh51ZBBXeRc25XXTyJKGAtU6MwYMGMyw4hKW5uVy5cAHl99zvmQCFy6k5f91l94J5aIFul1+NsSkLCAjgnptu5eKPFnD3jOnovl8pN7g6iS/k77HDh+gMWNvEOWeBWi0hH/2PpS89z7y3XmfE3HeY+eUXXPvvt7GMvdTnrr8K7+SyI9yqVatctWiv4vf9cvx/WM7bBgN5YeHceOMtblnvLbfcwfLl33J7/wHM/3MdwS/ORHv8OKVP/QulVZRbYvAFvpqniqKwPi2VlwESE12zjuhoKp56hj7T/0W/zZvwW/0r+b+v4tiOvzlmNJKelUkhtu4/i6rm0Vc9dJzqs1rTyL9WoAIoA8qrHrX/LgXyqp6LBSIAg1aLQaPBoNHYiqMaDUrVsvQaDecEBHDD4KGc/8LLWDt2csGWcS5fzdH6aMrKsABavZ6hY8bx02efMOa/H1F27wNyXBP1UtP+EfDVIj4ymZjQLt6u8S6rDZlwOSffn8OR9+fQXoqXXkNNuecI3ZFDaIsKORoQQHz3Hs1alvn8fgxctYYhB/ZT+P4clixbyvTcHFI/nM/gD+czGEhq247zep1LZM9eWBO6YOnUGUu7eKxt20FAgHPelDiDr+ZvXbp9e1lVVsqLYeFYmpnPjrD07EX+j6to99LzrJn3Lv/JyebZpx7H+Ny/uGPEKK6+/yHCkgbKxcZm8MUczkk5ZitetmsHgKVHT7oDh/buIbnWdLq9ewi/4Sq0pSWUX3kNP15xNWtefZETJ05gMBjo2LETiYn9GXTz7ZiSLyL03qkYtm0l/KoJVNwxldKHHnPoPES4l5pz++TJk7SGM3th0miYcu8DPP3qS1z0/AyCOydgGnepR2IUrqXm/HUH/V+bmb9nF1P9/DFedW2TlxP/1L+4bdFn3LR9G0tnPYfxmeedGGXL5Qv5u+vAAfoClg4dnbdQrZaKp59h6rALGf1/D/JAagqv3nID09rEMfn6Gwm88hosPXpKIVO4jEZpqD20lzh69CjTp0+noKCAiIgIZs+eTac6Y/hZLBZeeOEF1qxZg0aj4a677uKaa65xaD25uSVYrQoxMaFkZxfbNY/f8m8JumcKbxqN/Ds0lGW//EFCQheH1tscxcVFPPLIg2xd8xvPFRZyi8WCNiiY8ltup+KmW7F06+6Rg0ftbajVaoiKqr/PcF/R3Bx1Zv5W2/zHbzx8zST2KwpkZZGNGy8AWq1oM9LRpp9AU1qKpqQEjckIimJ7WK01f2usVrBYwGwGqwWN2QwWK5jNaCzmqtcq0ZgqwWREYzKByYTGaERTUYGmqBBtXh7G/Dxy8vIoqiinEmoeYCuCaqv+NQFbgHeBc7VaZj/2JDGPPF6zn9Td/30lf12Zo87MX/3GDbw2YQx+cW25dNn3XDI0iV1mM1EDB1M0dwFWZ56AeYAj3y/O4is57Gr27CONqXsMrkubeZINQ/rxj5IS1r0zD+11k+1etvbIYV4fnEi+VsusdZuxdOlW73SeyK/GOCOelpC/3nIOERUVQnZ2MYEL3iPk6SdIjonh7nfeJzn5Ime9VbBa0W/fSs5Xi9j2x29sOXyIDRYLuwAzkFD16AJ0AxIiIukSH0+bTgko7eJRwsNRgkNQgoNRQkJO/R0cjBISeurv4JAmFYWcvQ9J/tq4+xy4WkxMKH/ddBvjP/sPB6+/kYq332vy+2wO7YnjBH44H///LGRdcRHvA98CvbVakqJj6NuzF4nDR9BpZDLWtvEoUVGg1Z5tsQ1yVh5L/tq4M39/vvIylqz9g6XvvUf2VTei37GdlRddyAI/fz5NzQStFr8fvyf0/ruxFBWyuM/5vIJCeUUFl102iY4dO2EymTh27CgbN/7Jvn17GTbsQsZdPJaL9u6m18IFaK1WlIAAKq6djHHCJCovGAYGg1O2p6s5ktstIX8b465raHB6Dq+9eDgf//03//liCZV1h1JSFN68dDQf/bWFdUCb26ZQPvUeLF27qeKCt7vPsyWH3XsduDnszo2KCk5cfCEX79/H1qn3EDBrdrPWq13zOzddNYFOwCtXXI1pxkys7Rwf59AVuS3565n8jYkJJTkwkEcqKrhg9Xos557njLdzuspKAj58nx2vvsSc4mJ+AK4DRka2olPSADoMH0FQ9x5YW8dhjYuz9bLjoWN8U3O7peevN/L62z2feeYZJk+ezKRJk/jmm2+YMWMGn3zyyWnTfPfdd6SmpvLzzz9TUFDA5ZdfzpAhQ4iPb8IAtWYzusMHwWw5VUAx24ooGosFKirQH9yPduUvrF/1K08AYW3i+GbZ93R2Y+ESIDQ0jAULPmbjxg3MeupRnjt4gAllpVw0713Onfcu7WNioU9fLJ0TsLZrjxIaarvYExKCEhqG4udnO4jUfQBoNCic+Vx90516VP0/oKtbt4OnNTdHnZq/gLmykn//34PcoyhUJg3EEBMD7rygrdVibRffpBOn5ggCgoxGNBXltv3XYjm1/1YXTa1WehcWcOd77/D2sqWMmD2Lp5Yu5qZ/PYuuUxcI6OXWmN3FlTnqzPzVHU/FCmgjIujUOYE7ptzFxA/nM3/TBnon9cYy+ALM/ZKwxMdjbdMWAgNQ9AYwGFB0ejDobX/rDaDTNe8kqbknWPXNnh+CLq/EpetXAgJtLZaEQ+zZR+yhyc9Dm5Vlu8mi0najhXbvHra8Mou7S0qY37sv2mtvcGiZ1oQuTBs/kSErvsUwahiPPvgwYUkDUSIjUQy1vsezgtHll9X7vazUm5AuVhiCNtfOfK+m0dhaxDfjwr3aeNM5hPbIYQLnzcEIbC8r4xxnd9mt1WLul0REvyRGAaNMJvR7d6M7cpiivbtJ272LY8eOciQrkz+LivhvQT4HC/Ip2LWTVth6V4is+jcUCKv1CAVCqh7BgMFgQBcQgM4/AJ1eX/PQ6w1oDXp0egN6gwE/gwGDnx9B/v5YIsIItWqqvkf0tjzUaFE0gE6HotWi0elszwUFokREYo2IRIlshTWyFUpEhO0u5xbUYtSb8heAykp0R4+gKS/DlHWcpz7/lIcB8823Nfu9NpW1XTylM2ZS+sjj9F39Kx/++D2V69ey+cRxtmRl8nNWJs/98RvGWc/RG4jRaIj296eVfwCRQUFEhIQSGRZGcFgYfqFh+IeE4h8QQEBgIP7Vj4BADIGB4OcH0eH4lZlt50F6HYpOBzp91f/1KFod6LSn/tbbXlMCArC276CKIoKzeFX+Kgrbdu+iL9QM+WHu3ZfR8e2593ga60ddwAUaLTv37OJr4DN/fzr5+/PI/Q8xduwlaOv53szLy2Xlyl/46acfeGnjn5hDw+hvMDAwJ5sBnyxkwCcLaRMQgPmcc7F074mlbVusce1QIiJQAgNRgoJRAgJsuaOtHtpDe+r/ta8JNOSsr59lu9Sev6Dx82hrVLSM61nF7dfQAE12NmmHDtEW6u8xR6Phoe9XEjn5avqv/IUJH39I4scf0jM6hr69+xDWrTtK+w5YW7dBCQxC8feHgAAUf3/bb7va159qLbNJfzf4OvU+r6Bp2nmtI/z8sMa3d93yVcbdOawpKkSbnWUb26j6Zvs6/2oU62nXlWx/KxARiCGvpN55sFptN/Pv38tP/1nI45kneSE8nMAn/0lzWxFZh49g/ouvcufTjzPo66944LtljBgylA6DhmDtnIC1TRyKnz/4GU7tQ7WP3dWPvFB0+aXN+82o0dhuNHfxEGpq4ZFjcE4Ox39cxl8VFYwKDKKsa/03PDebwUDFtPvpfusU3vvjN3KXLOJ/P/3Al/l5HPrlJw7/8hMh2G5G7Qx00OloFxZOdFQ0rePiiImNJSg0jLDQMALCwiAwECUgsOa3Vk2e1nooVb/JTn9ec+q8RHvmQ9FoISoEfWH5mc/XnVanw9qpc4s6B1Ybr255mZuby9ixY9m4cSM6nQ6LxcKgQYP4+eefT+tr+q677uLKK69k3LhxAMycOZO2bdty55132r2u/PxSrFaFqPunwp9/1jxvBP4FFGNrtVWJravK/UC8RsMdYy8l+fmX0Hj4QpuiKBw8eIANy5awddUvHM3NJdNqJQKIAsI51V2nrupvba1/q1umOaIbcF99L4SGkrf8Z5SQULRaDZGRwU18V97PGTnqzPwtKCjg1msvp1tuDvOB8n+/Q9iVE8h15Ym2ShlW/kzmzBk8V1LCDqAnEGkw0OW2O5kyzZbZvpC/rs5RZ+ZvwH8/Zu6brxHcfwDXzf8Iq9XKp/PmsPTz/5JTVkZnbBep/aoeBmzHs2oNHcM0dvztDHcCLri3zWElTzyF8Vpbyz5fyGFXs3cfaUx+fikcS+G7qyewwWLBhO38wQikYiuo3NuxEyMX/MfWqsZRZWVU3n837/69jW+BdoA/p7riNtT5NwJ4ntP3D7UwXjaRkudeBHw/f73pHCIyIghrn75oi4t4PyaWtd178ubbc537hh1htaLNzkKbkYEpLYXi1DSKC/MoKS6iqKiY0rJSysrKKK0op8RopMRopNxkotxspsxsxgw1D0sDDzO283oTti7qS7B9Lyi1HnVVn0MHAK2wFVOjgJuBCwFz5wQKF38DGo3kbxV3nUOkpqbw4R03Y8rPwwjsA/oBr44Zh/Gl15z4zp1DU1CAft8edPv2oN+3l5MH9nMsJ5uC0lJygUKgoNajnFPfK/U9zNi+F6oftc+Tqr8b9Gd5bvCo0Yx97S1Ajr/V3JW/lSu+ZcKMp1gQGMT527eRW2LrQ8bwx29s+78HmWW1kg4k6HQMThrAJY8/TYdOdUfCbFx2dha7d+9m37rf2btpA7szMlAsFkKAwFqPAGw5Ud+QHg09qPO3J3TQ6bhj2fdY27bz+fxtjDuvoYEth3VbtvDe1Fv5GpgeFMTw1esb7QEhb/NG1sx5i6MH9rPPaGQvtiFe4rHdgBRQ9ageakZDw8POaIBrgaEORe2dSh94iIrbbNtfcth914HJyiJi0iVoKioanK4ceBbbcEXWszwsVf8qVX8bgRRsvYvcH9uapLfnYenmvMKS5ngaW559mh+2bWUjkINtSKUYbDf41/6NqMf+47Q911YA2gOPAsZRF1Hy2puA5K+76xjbv1nKV88/w05F4QZgyqQrKZ0x09lvrWFWK7qDBzBs24Ju7x5yTpzg+MkMjuflccJYQRaQXfXIwbY/FWM7rvtVLcIP282oBk4d96t70TNw6hqgP6e+C6DhYcgaeq6h1yZeMIzz35kHtOz89VZe3fIyIyOD1q1bo6u6e0On0xEbG0tGRsZpO31GRgZt27at+X9cXBwnT550aF01ifn556c97w+80rTw3S46uj9DhvQHXvR0KHj/MMbO4YwcdWb+RkWFsPavLTXPV3cCJE3e63HtlYRdeyWfejoOF3N1jjr1+PvQ/Tz20P2nvfbwv57k4X896dDyWrrq1kfCPvbuI42JjAyGyHO45fBhXDLydVQIfPM1LwAvuGL5XqT6wntL4G3nENqdOwC4u+rhcTFhcE5XYDgxno7FTnpsxcyWwNvyNyrqXN7dtrXeabzyOzEqBLrEw/gxAHSsegj38Lb85ZbJbL7lVJfyUf5V34RXXMaIKy5jhENLrV9UVAg9eybAVROcsDThrdx5DQ2qcvjiETxx7BhP2DlP1LjRdBs32uF1+brgqkdL5/brwJGdYd++RqcLBJrXyasLRfVizNdLGePhMFrSb7jGeKKOMfqOWxh9x+lXIdzeD0xMElyQBNhuRHFvP3zC17WcfrmEEEIIIYQQQgghhBBCCCGEEF7Nq4uXcXFxZGZmYrFYANuAtllZWcTFxZ0xXXp6es3/MzIyaNOmjVtjFS2TM3JU8le4kqtzVPJXqJ29+4gQzibnEELNJH+Fmkn+Cl8l19CE2kkOCzWT/BXC+by6eBkVFUWvXr1Yvnw5AMuXL6dXr15ndOM2btw4Fi9ejNVqJS8vj19//ZWxY8d6ImTRwjgjRyV/hSu5Okclf4Xa2buPCOFscg4h1EzyV6iZ5K/wVXINTaid5LBQM8lfIZxPoyiK4ukgGnP48GGmT59OUVERYWFhzJ49m4SEBKZOncqDDz5I7969sVgszJw5k3Xr1gEwdepUrrvuOg9HLlqK5uao5K9wNVfmqOSv8AUN7SNCuJqcQwg1k/wVaib5K3yVXEMTaic5LNRM8lcI5/L64qUQQgghhBBCCCGEEEIIIYQQomXw6m5jhRBCCCGEEEIIIYQQQgghhBAthxQvhRBCCCGEEEIIIYQQQgghhBBeQYqXQgghhBBCCCGEEEIIIYQQQgivIMVLIYQQQgghhBBCCCGEEEIIIYRXkOJlLUePHuW6665j7NixXHfddRw7dszTIXm12bNnk5ycTI8ePThw4EDN87IdvYd8Fjb5+flMnTqVsWPHMmHCBO6//37y8vKAxreRbD/38vbt3ZRjniteE6JaY8c2T3v33XfP2FeE92kJxxpnH7uFd/PVz07OZX2ffFanJCcnM27cOCZNmsSkSZNYs2YNINvIW6n5c5FzBOEItR2bJL9bBvnMpD7h8xRR4+abb1aWLVumKIqiLFu2TLn55ps9HJF327x5s5Kenq6MGjVK2b9/f83zsh29h3wWNvn5+cqGDRtq/v/yyy8rTz75pKIojW8j2X7u5e3buynHPFe8JkS1xo5tnrRr1y5lypQpysiRI0/bV4T3aQnHGmcfu4V389XPTs5lfZ98VqfUPV5Xk23kndT8ucg5gnCE2o5Nkt8tg3xmUp/wdVK8rJKTk6P0799fMZvNiqIoitlsVvr376/k5uZ6ODLvV/vgINvRe8hn0bAff/xRufXWWxvdRrL93EtN29veY54rXhOiMdXHNk8yGo3Ktddeq6Smpjb4A194h5Z2rHHGsVt4t5b02cm5rG+Rz+p09Z0/yDbyTr7yucg5grCHWo9Nkt++Sz6z00l9wjdJt7FVMjIyaN26NTqdDgCdTkdsbCwZGRkejkxdZDt6D/ks6me1Wvn8889JTk5udBvJ9nMvtW7vpuaQ5J5wttrHNk966623mDhxIu3bt/doHOLsWvKxRo7BvqmlfHZyLut75LM606OPPsqECRN49tlnKSoqkm3kpXzxc5HjqmiM2o9Nkt++RT6zhsm28R1SvBRCtCjPP/88QUFB3HTTTZ4ORQghnMYbjm3btm1j586dTJ482WMxCCGEr/OG470QrvTZZ5/x7bffsmTJEhRFYebMmZ4OSQgh5NgkhBAeIMXLKnFxcWRmZmKxWACwWCxkZWURFxfn4cjURbaj95DP4kyzZ88mJSWFN998E61W2+g2ku3nXmrd3k3NIck94Ux1j22esnnzZo4cOcLo0aNJTk7m5MmTTJkyhbVr13osJtGwlnyskWOwb2oJn52cy/om+axOV/2+/fz8mDx5Mlu3bpVt5KV88XOR46poiC8cmyS/fYt8Zg2TbeM7pHhZJSoqil69erF8+XIAli9fTq9evWjVqpWHI1MX2Y7eQz6L073xxhvs2rWLOXPm4OfnBzS+jWT7uZdat3dTc0hyTzhLfcc2T7nrrrtYu3Ytq1atYtWqVbRp04YPP/yQYcOGeTQuUb+WfKyRY7Bv8vXPTs5lfZd8VqeUlZVRXFwMgKIofP/99/Tq1Uu2kZfyxc9FjquiPr5ybJL89i3ymTVMto3v0CiKong6CG9x+PBhpk+fTlFREWFhYcyePZuEhARPh+W1XnjhBX7++WdycnKIjIwkIiKCFStWyHb0IvJZ2Bw8eJDLLruMTp06ERAQAEB8fDxz5sxpdBvJ9nMvb9/eTTnmueI1Iao1dmzzBsnJycybN4/u3bt7OhTRgJZwrHH2sVt4N1/97ORc1vfJZ2WTlpbGAw88gMViwWq10qVLF/75z38SGxsr28hLqflzkXMEYS81Hpskv1sG+cykPuHrpHgphBBCCCGEEEIIIYQQQgghhPAK0m2sEEIIIYQQQgghhBBCCCGEEMIrSPFSCCGEEEIIIYQQQgghhBBCCOEVpHgphBBCCCGEEEIIIYQQQgghhPAKUrwUQgghhBBCCCGEEEIIIYQQQngFKV4KIYQQQgghhBBCCCGEEEIIIbyCFC+F8GHJycmsX7+eefPm8fTTT3s6nGbzlfchWpalS5dyww031Pw/MTGRtLQ0h+cTvm/jxo1ceOGFbl2n5JkQQjjHO++8w6OPPtrg69Xn5UIIIYRomaZPn84bb7zh6TAaJdfdfF96ejqJiYlYLJazTnv8+HF69OiB2Wx2Q2Sn3HnnnXz99ddeFZPwDCleOlFDP0jrXoxsyg/XussYP348GzdubHqwokWZNm0as2bN8nQYZ3D0xM1b34fwHe64sLht2zbat2/v0nUI4Q6eKLYKx/nqj7stW7YwduzYBl+39xzjf//7HxdccAGJiYnk5+c7M0QhhGgyZ5yTOvMGpR49epCSkuKUZQnhKHu+0892XjpjxgzmzJlT77TNvb7W2P56tvMV4X0cOf6q4cYkue7W8pwtL9u2bcu2bdvQ6XRujMoxH3zwAVdccYWnwxBeQIqXKrVixQoGDRrk9OWq4YtXqIc9d/EIoSa+dvFfCCG8haPF8KSkJH766admrbOyspKXX36ZhQsXsm3bNiIjI5u8LLmwL4QQ9ZPz55bB2ws+M2fO5L777qv3NVddXwPnnK8I0Ri57iYc4e3fyQv6gFYAACAASURBVIqiYLVaPR2G8CJSvPRB3n4gEu5Xuxur6hYYixYtYtiwYQwbNoyFCxfWTGsymZg1a1bNa7NmzcJkMgGnLizOmzePQYMGkZyczLffflsz7/Tp03nmmWeYOnUq559/Phs3buTw4cPcfPPNJCUlMX78eFauXAnAokWL+O677/jwww9JTExk2rRpAGRmZvLAAw8wePBgkpOT+eSTTxp9H19//TUjR45k0KBBvPfee2fdFjt27OC6664jKSmJYcOGMXPmzJr3J9SnofwymUzMnj2bkSNHcsEFFzBjxgwqKioAyMvL4+677yYpKYmBAwcyefJkrFYrjz32GOnp6UybNo3ExEQWLFhQk2eLFy9m5MiR3HrrrQA8+OCDDB06lP79+3PjjTdy8ODBmpjy8/OZNm0a/fr14+qrryY1NfW0mGtf4C4uLubxxx9n8ODBjBo1irlz58qJWguQnJzM+++/z6WXXsqAAQN48sknMRqNNa8vXLiQIUOGMGzYMJYsWVLzfGP5kpKSwk033UT//v0ZNGgQDz30UM18PXr04JNPPmH06NEMGjSI2bNnn5Fns2fPZsCAASQnJ/P777/XPL9kyRIuueQSEhMTGT16NF988QUAZWVlTJ06laysLBITE0lMTCQzMxOr1cr8+fO56KKLGDRoEP/4xz8oKChwyXYU9pELGg3Lzc3FaDTStWtXj8Yh5+7qM3/+fIYPH05iYiJjx47lzz//BGwF8ccff5zExETGjx/Pzp07T5tv586dDR77FyxYUHP+vXjxYimIt2D1nZNu376d66+/nqSkJCZOnHhaK7GlS5cyevRoEhMTa36fHT58mGeeeYbt27fz/+zdeVhUdf8+8HtmABFREWRT1HLBHdkkFZQQVFAUNbdMe8oyTXPLTB8r959luaW5pBbVY6ZZlrmb5p6puO8ogqLsu6zDzHx+fxjzZWeAmWEG79d1dQVztveM95z5cN5zznFzc4OnpyeAqo0lXnvtNQBASEgI3NzcsH//fgDAsWPHEBISAk9PT4waNQp37txR19S7d29s2rQJAwcOhKurKxQKBY4ePYoBAwbA09MTY8eORURERJH5v/nmGwwcOBAeHh6YPn16kfdHedsi0iV+Rj9fStv/lrXvKm1eoPxjBZqoDcfdqOaUlsvix7SKX5knOjoar732Gtzc3PDGG29g4cKFpd4K4cCBAxg6dGiRx7799ltMmjQJAJCbm4vPPvsMfn5+8PDwwKuvvqo+DlfeOGbs2LFYtWoVRo0ahS5duiA6Ohpjx47Fzp07ATz7e3bZsmV46aWX4O/vX+R4BfBsbDN37lz4+PigZ8+eWLVqlfpv4PKOk5CREKQ1fn5+4syZMyInJ0fMnj1beHp6iqCgILF582bRs2fPEvOVpzLrWLNmjZgyZYqYOXOmcHNzEz///LPIyMgQ//3vf4W3t7fw8fERK1euFAqFQr38jh07RGBgoHB1dRVBQUHixo0b4oMPPhBt27YVnTt3Fq6urmLTpk1afoVI3wpysmbNGjFz5kwhhBDR0dHC2dlZzJgxQ2RlZYk7d+6Il156SZ2n1atXi+HDh4ukpCSRnJwsRo4cKVatWiWEEOKff/4R7du3F0uXLhV5eXni3LlzokuXLiIiIkIIIcTs2bOFu7u7CAsLE0qlUjx9+lQEBASIDRs2iLy8PPH3338LV1fXIvOvXLlSXa9SqRRDhgwRa9euFXl5eeLRo0eid+/e4uTJk0IIUerz+Oijj0ROTo64ffu26Nixo7h//365r8n169fF5cuXRX5+voiOjhaBgYEiNDRUey866Y1cLi8zX0uWLBETJkwQqamp4unTp2LChAli+fLlQgghli9fLj755BMhl8uFXC4XFy5cECqVSghRcv9ckLNZs2aJrKwskZOTI4QQYufOneLp06ciLy9PLFmyRAwaNEi9zPTp08XUqVNFVlaWuHv3rvDx8RGjRo1ST3d2dhZRUVFCCCFmzZolJk6cKJ4+fSqio6NF3759xc8//yyEEOLXX38tshzVHn5+fmLAgAEiJiZGpKamipEjR4qVK1eq97GrV68WcrlcHD9+XLi4uIi0tDQhRPl5mTFjhli/fr1QKpUiNzdXXLhwQb09Z2dnMWbMGJGamiqePHlSImcdOnQQO3bsEAqFQvz444/C29tb/Z44duyYePjwoVCpVOLcuXPCxcVF3LhxQwjx7DOh8NhECCFCQ0PF8OHDRWxsrMjLyxOffPKJmDFjhs5fUyrKz89PfP311yI4OFh07NhRODs7i127dglfX1/h5eUl1q9fr55XqVSKr7/+Wvj7+wsvLy8xdepUkZqaKoQo/d+4rDGoq6urCA4OFg8ePBAbN24U3bp1E7169RKnTp1SL/vLL7+ox5+9e/cWP/30kxBCiKysLNG5c2fRtm1b4erqKlxdXUVcXJx6H+vt7S28vb3FkiVLRF5eXqm13bx5UwwePFi4urqKadOmienTpxcZYxT34MED0aVLF+Hs7CxcXV3F2LFjhRBCLF68WPTq1Uu4ubmJIUOGFHkvKRQKsWHDBuHv7y9cXV3FkCFDRExMjBg9erRwdnYWXbp0Ea6urmLfvn1CiGfj7YCAANG1a1cxYcIEERcXp16Xs7Oz2Lp1q+jTp4/w8/OrxL8u1bSIiAjRq1cv9b9ndHS0ePjwoVizZo3o1KmTOH78uFAoFGL58uVi+PDh6uXK2vcLIcSJEydEjx49RHh4uMjOzhYffPBBkfECPX8K72vj4uKEl5eXOH78uFAqleL06dPCy8tLJCcni6ysLOHm5qb++yo+Pl6Eh4cLIUofS1ZnLFE4jzdu3BDdunUTV65cEQqFQuzatUv4+fmp99F+fn5i0KBBIiYmRuTk5Kj3uadPnxZyuVxs2rRJBAQEFJn/lVdeEXFxcSI1NVUEBgaKbdu2abQtqnmlHUs6cuSI6N+/v/Dw8BBjxoxR/51e1nGnKVOmiB49egh3d3cxevRodY6FKHncoDQF44INGzYILy8v4efnJ3bv3l3qOoqPISo6vlZ8+6Utv3HjRhEUFCQ8PT3FnDlzRG5ubpnzbtmyRQQHBwt3d3cxbdo09bxkGArnQZN9V/Hju+UdK9A0y8Z+3I1qVuFclnZMq+Cx/Px8IYQQI0aMEJ999pnIy8sTFy5cEG5ubiUykJ+fL/Ly8kTXrl2L/PuHhISIgwcPCiGEWLBggRgzZoyIi4sTCoVCXLx4UeTl5ZU7jhFCiDFjxghfX18RHh4u8vPzhVwuF2PGjFGPT7Zt2yb69eunHkOPGTOmSP3vvvuu+OSTT0RWVpZISkoSr7zyivrvzPLGNmQceOalDnz11Vd49OgR/vzzT3zzzTf4/fffdb6Oo0ePIjAwEGFhYRg4cCBmz54NExMTHD58GL///jvOnDmj/sbCgQMHsHbtWixbtgyXLl3Chg0bYGVlhS+++AJNmjTBxo0bcfnyZYwfP75Kz5+Mw+TJk2FhYYG2bdti6NCh2Lt3LwBgz549mDx5MmxsbGBtbY3JkycX+ZYXAEybNg1mZmbw8vKCr68vDhw4oJ7m7+8PDw8PSKVS3LlzB9nZ2XjnnXdgZmaG7t27w8/PD/v27Su1puvXryMlJQXvvfcezMzM0KxZM4wYMUL97d7SvPfeezA3N0e7du3Qrl27Cr+F26lTJ7i6usLExAROTk4YOXIkLly4oOnLRgbk6tWrpeZr79692LlzJ+bOnQsrKytYWlpiwoQJ6tyZmJggMTERMTExMDU1haenJyQSSbnbmjJlCiwsLGBubg4AGDZsGCwtLWFmZoYpU6bgzp07ePr0KZRKJQ4fPoypU6fCwsICzs7OZV6nX6lUYv/+/Zg5cyYsLS3h5OSEN998s8T7jWqn1157DY6OjrCyssK7775bJJ+TJ0+GqakpfH19YWFhgcjIyArzYmJigpiYGCQkJKBOnTrqMywKjB8/HlZWVmjSpAlef/119T4feHbPixEjRkAmk2HIkCFITExEUlISAODll19G8+bNIZFI4OXlBW9vb4SFhZX5vHbs2IEZM2bAwcEBZmZmeO+993Do0CF+a70G7Nu3D5s2bcLu3bsBABcvXsTBgwfx/fffY926depvjf/www84cuQItm7dilOnTqFhw4ZYtGiRxtspOBvmwoULaN++Pd566y2oVCqcPHkSkydPxrx589Tz2tjY4Ouvv8alS5fw6aef4tNPP8XNmzdhYWGBzZs3w87ODpcvX8bly5dhb2+PDRs24OrVq9i9ezf++OMPXL9+HevXry9Rg1wux+TJkxESEoLz588jMDAQhw8fLrfuF198Uf0+uHDhgvob5507d8bvv/+O8+fPIzg4GNOmTVOf/RMaGqp+XS9duoSlS5fC3NwcP/74IwBg9+7duHz5Mvr374+zZ89ixYoVWL16NU6fPo2mTZvi/fffL1LDkSNH8PPPP5c7ziHDI5PJIJfLERERgfz8fDg5OaF58+YAAA8PD/j6+kImkyEkJKTEuLSsfX/BN9nbtGmDunXr4r333tP78yLDtXv3bvTq1Qu+vr6QSqXw9vZGp06d1GceSKVS3Lt3D7m5ubCzs0ObNm1KXU91xxKF/fzzzxg5ciS6dOmiHj+YmpriypUr6nnGjh0LR0dHmJubY//+/fD19YW3tzdMTU3x1ltvITc3F5cvXy4yv729PaysrODn54fbt29rvC2qWcWPJQUEBGDmzJmYO3cuzp49i169emHixImQy+VlHnfq1asXDh06hLNnz6JDhw6lnvVTkaSkJKSmpuLUqVP47LPPMG/ePDx48KDS6yl+fE0TBWe3/fnnn4iMjCx1vFLgwIED2LJlC44ePYq7d+9i165dla6R9EOTfVdxZR0rqCxjPu5Ghqf4Ma0CMTExuH79OqZOnQozMzN4enqid+/epa7DzMwMQUFB6nHDvXv38OTJE/j5+UGlUuHXX3/FRx99BHt7e8hkMri7u8PMzKzCcQwADBkyBG3atIGJiQlMTU2LbPfAgQP4z3/+ox5DT5gwQT0tKSkJJ0+exNy5c2FhYQEbGxu88cYbRY6vaDq2IcPE5qUOHDhwABMnToSVlRUcHR0xduxYna/D1dUVAQEBkEqlyMzMLPeN+8svv+Dtt9+Gi4sLJBIJWrRogaZNm1bpuZLxcnR0VP/ctGlTJCQkAAASEhLQpEkT9bQmTZqopwFAgwYNYGFhUeb0wutNSEiAg4MDpFJpkfnj4+NLrenJkydISEiAp6en+r+NGzeqD6KXpnHjxuqf69ati+zs7HKfd2RkJCZMmABvb2+4u7tj1apVSE1NLXcZMkxl5Ss2NhY5OTkYOnSoOkdvv/22+t/5rbfeQosWLTBu3Dj4+/tj06ZNFW7LwcFB/bNSqcTy5csREBAAd3d39cAuNTUVKSkpUCgURd4Hhd9PhaWmpiI/P7/E+62s9wfVLsUzUrAftbKygomJiXpawX6torzMmjULQggMGzYMAwYMwC+//FLm9grv84GS+1EA6n3piRMnMGLECHh5ecHT0xMnT54sd58ZExODyZMnq997/fv3h1QqRXJysuYvDmlFwUHjOnXqACj7oEN1G86enp7o2bMnTExMEBgYiNTUVLzzzjswNTVF//798eTJE2RkZACofDNcky9UAc++zJKfn4///Oc/MDU1RWBgIDp37lzZlwzAs8siNmrUCCYmJhg3bhzkcjkiIyMBADt37sS0adPQsmVLSCQStGvXrsz7ZO7ZswevvPIKOnbsCDMzM7z//vu4cuUKHj9+rJ7nnXfegZWVVYmDCGTYWrRogblz52Lt2rXo0aMHZsyYod4XF96fmpubIy8vr8h7qax9f8GYprT5iGJiYnDw4MEifyNdvHgRiYmJsLCwwKpVq7B9+3b4+PjgnXfeKXI51sKqO5YoXlNoaGiRmuLi4sr9u7DwdqVSKRwdHYuMe21tbdU/F/67TpNtkWEx1IaPpgofX9P0M7qsL6eUpqxGPRkeTfZdhZV3rKAyjP24GxmewuPMwhISEtCwYUP1cQCg/HHokCFDsGfPHgghsHv3bgQFBcHMzAypqanIy8tDs2bNSixT3jhGk20mJCSUeYwtJiYGCoUCPj4+6nXPmzcPKSkpACo3tiHDZFLxLFRZ5b2pdLWOwjuhwm/cAiqVSr2+2NhY9beD6fkVGxuLVq1aAXiWGTs7OwCAnZ0dYmJi1N/YjY2NVU8DgIyMDGRnZ6sHUrGxsWV+u9fOzg5xcXFQqVTqgVRsbCxeeOEFAChxtpujoyOcnJwqPFuiOhYsWIAOHTpgxYoVsLS0xHfffYdDhw7pbHukO2Xlq3nz5jA3N8e+fftgb29fYjlLS0vMmTMHc+bMwb179/D666+jc+fO6N69e5nbKpzVPXv24OjRowgNDYWTkxOePn2Krl27QggBa2trmJiYFHl/xcbGlrrORo0awdTUFDExMer7rcXGxpZaM9U+hXNReB9cloryYmtriyVLlgAAwsLC8Oabb6Jr165o0aKFet6CfbUm2wOenc02depULFu2DP7+/jA1NcWkSZMghABQch8OPBuPLF26FB4eHhWun3Sr+B+AZR10KGg4Fz7gUZmGs42Njfpnc3NzNGrUCDKZTP078KwZ3qBBA5w4cQLr1q1DVFQUVCoVcnNz4ezsXOa6K/pCVeH57O3ti2SyKuNv4Nl9W3bu3ImEhARIJBJkZmaqDzjFxcVpPIZOSEhAx44d1b/Xq1cPVlZWiI+Ph5OTEwA2qIzZwIEDMXDgQGRmZmLevHlYvny5Rtkoa99vZ2dX5CBjWWMHej45OjoiJCRE/TlfXM+ePdGzZ0/k5uZi9erV+OSTT7Bt27YSn9PVHUsUr2nixIl49913y6y78Pbt7OwQHh6u/l0IofG4V5NtkWGpSsNn1apVOHjwIFJSUtRjktTUVNSvX1/j7VbU8NFUWQf5y1PWl1NKU7xRz0a84arsvqu8YwWVYezH3cjwlHW1MVtbW6SnpyMnJ0fdwCxvHOrq6gpTU1OEhYVh7969WL58OYBnY4w6deogOjoa7dq1K7JMReOY8uorqLFwTYV/LvgC7j///FPkS+CFl9V0bEOGiWde6kB5bypdraPwm7zwGzcsLAxhYWG4dOmS+ptfjo6OePToUaVrotpl/fr1yMnJwb1797Br1y70798fADBgwABs2LABKSkpSElJwbp160pcKmXt2rWQy+UICwvD8ePHERgYWOo2XFxcULduXWzZsgX5+fk4d+4c/vrrL/W2bGxsipyB4OLiAktLS2zatAm5ublQKpUIDw/HtWvXtPa8s7KyUK9ePdSrVw8RERH46aeftLZu0q+y8hUcHIzhw4dj6dKl6oPv8fHxOHXqFIBnlzh8+PAhhBCwtLSETCZTD/IbN26M6OjocreblZUFMzMzNGrUCDk5OVi5cqV6mkwmQ58+ffDVV18hJycH9+/fx2+//VbqemQyGQIDA7Fq1SpkZmbiyZMnCA0NxaBBg7Tx8pCB27ZtG+Li4pCWloavv/5avV8sS0V5OXDgAOLi4gAADRs2hEQiKdKM+uabb5Ceno7Y2Fj88MMPFW4PeNa8lMvl6qb8iRMncObMGfV0GxsbpKWlFflW/KuvvorVq1fjyZMnAICUlBQcOXJE8xeGtKaiy2EXcHBwwObNm9VjxrCwMFy/fh329vaoW7cucnNz1fMqlUr1t1grq6AZPm7cOJw5cwZhYWHo1atXuc3wgi9UFSj+haoCtra2iI+PL3JgqPBymgoLC8PmzZuxevVqXLhwAWFhYahfv756vQ4ODhqPoe3s7NTvA+BZAzctLa3IwS5N/43IsDx48ABnz56FXC6HmZkZ6tSpo27YV6SsfX9gYCB27dqFiIgI5OTkYN26dbp8CmQECo9JBw0ahGPHjuHUqVNQKpXIy8vDuXPnEBcXh6SkJBw9ehTZ2dkwMzODhYWFOo82NjaIj4+HXC4HUL2xRPEx8vDhw7F9+3ZcvXoVQghkZ2fj+PHjyMzMLPX5BAUF4cSJEzh79izy8/Px7bffwszMDG5ubhW+FpXdFtW84p/flWn4XLx4EX/99Zd6ucooaPgUKGvcUJHin8/Fx0OlnaFW2S8mkuEqvL+raN9VfN9Y3rGCyjLm425UszQ5rlWgadOm6NSpkzpvly9fxrFjx8pdZvDgwVi0aBFkMpn6MqxSqRSvvPIKPv30U8THx0OpVOLy5cuQy+XljmM0ERQUhP/973+Ii4tDenp6kaun2dnZwdvbG5999hkyMzOhUqnw6NEjnD9/HkDFx0nI8PFfSweCgoKwadMmpKenIy4uDv/73//0uo6K3rjDhg3Dt99+ixs3bkAIgYcPH6oPrlRmB0fGzcvLC3369MEbb7yBcePGqc/UnTRpEjp16oRBgwZh0KBB6NixIyZNmqRernHjxmjQoAF69uyJDz74AAsWLFCfYVacmZkZNmzYgJMnT6Jbt25YuHAhPv/8c/X8w4YNw/379+Hp6YlJkyZBJpNhw4YNuHPnDvz9/dGtWzd8/PHHWv3DdPbs2di7dy/c3d3xySefaHQAnwxTefmaNWsWWrRogREjRsDd3R1vvPGG+rJ/Dx8+xJtvvgk3NzeMHDkSr776Kl566SUAzy7ht2HDBnh6euKbb74pdbuDBw9GkyZN0LNnTwwYMACurq5Fps+bNw/Z2dnw9vbGnDlzMHTo0DKfwyeffIK6desiICAAo0ePRnBwMF555RUtvUJkyIKDgzFu3DgEBASgWbNmGp1NUF5erl+/juHDh8PNzQ3vvvsuPvrooyKXbPH398fQoUMxePBgvPzyyxg2bFiF27O0tMTHH3+M6dOno2vXrti7d2+R+1+0atUKAwYMQEBAADw9PREfH4/XX38dvXv3xrhx4+Dm5oYRI0bwD2EDV17D+cUXX0ReXh6OHz+O/Px8bNiwQX0QvLKq0gzX5AtVANT3sv7hhx+gUChw+PBhXL9+vdI1ZmVlQSaTwdraGgqFAl999VWRMcjw4cPx5ZdfIioqCkII3LlzR31WZvEx9MCBA7Fr1y7cvn0bcrkcK1euhIuLi/qsSzJecrkcK1aswEsvvQQfHx+kpKRgxowZGi1b1r7f19cXY8eOxeuvv44+ffqoxxZmZmY6ex5k2AqPSffv34/169fj66+/Rvfu3eHr64tvvvkGKpUKKpUKoaGh6NmzJ7y8vHDhwgXMnz8fANCtWze0bt0aPj4+6rFuVccS7733HubMmaOup3Pnzli8eDEWLVqErl27om/fvuXet69ly5b44osvsHjxYnTr1g3Hjh3Dxo0bNcp4ZbdFNcPYGj6V0b59e5w4cQJpaWlITEzE999/X2Keyn4xkQxX4f3vsWPHyt13FT9+UNGxAk0Z+3E3qlmFc6nJleaWL1+OK1eu4KWXXsLq1avRv3//cj+fQ0JCcO/ePYSEhBR5fPbs2XB2dsawYcPg5eWF5cuXq68EWdY4RhMjRoyAj48PQkJCMGTIEPTt27fI9M8//xz5+fno378/unbtiqlTp6ovSVvRcRIyAoK0xs/PT5w5c0ZkZ2eLWbNmCQ8PDxEUFCQ2b94sevbsWWK+8lRmHWvWrBEzZ84ssnxGRoaYN2+e6Nmzp3B3dxchISFi79696unbtm0Tffv2Fa6urmLAgAHi5s2bQggh/vzzT+Hr6ys8PDzEli1bqv2akOGJjo4Wzs7OIj8/v9LL/vPPP0VySERElafJOECbnJ2dRVRUlN62RzWvcMZK+9wfM2aM+Pnnn4UQQiiVSvHtt9+qx4X+/v5ixYoV6nl//fVX4e3tLbp16ya2bNlS7hj0zJkzws/PT/17fn6+cHZ2FrGxsUIIIbZu3Sq6d+8uPDw8xAcffCCmT58uVq5cqZ5/zpw5wsvLS3h4eIi4uDiRm5srFi9eLLy9vYW3t7dYvHixyM3NFUKUHJNcu3ZNhISECFdXVzFt2jQxbdq0IusuTfHXRqFQiP/+97/Czc1NeHt7i02bNhV5vgqFQqxbt074+fkJV1dXMXToUPVz27Ztm/D29hYeHh5i37596sf8/f1F165dxTvvvKOeVwi+L6l89+/fF+3atavSeJ2IqCYUP5Z0+PBhERQUJNzd3cVrr70mwsPDy5w3MzNTTJw4Ubi6uoqXX35Z/Pbbb0U+J2fPnl3hZ3rBuGD9+vXCy8tL+Pr6it9++009vfA6io8hKjq+lpubK6ZNmybc3NxEcHCwCA0NLbH8xo0bRVBQkPDw8BAffvihyM7OrnBbZW2Pnm887kY1bdq0aeLLL78sc3pOTo5wdXUVkZGR+iuKnlsSISp5HQYiMmqPHz+Gv78/bt68Wer1wMtz7tw5zJo1CydPntRRdUREtV/v3r2xZMkS9OjRQy/ba9u2LQ4fPsz7OhARGbA///wTvr6+yMnJwezZsyGVSrF+/fqaLouIiIj0iMfdSN+uXbsGKysrODk54fTp05g8eTJ27NiBDh06lDp/aGgojh07hh9++EHPldLzqHKdCyIiI/D222/j4sWLJR6fMGECJk6cWAMVERERERGVbfv27ZgzZw5kMhm6du2qvvQnERER1S4bN27E119/XeJxDw8PjB8/vgYqoudZUlISpkyZgrS0NDg4OGDBggVlNi579+4NIQTvz056wzMvaxAbLEREREREulPewaEtW7bUQEVERERUFfxMJyIier6weUlEREREREREREREREREBkFa0wUQEREREREREREREREREQFsXhIRERERERERERERERGRgWDzkoiIiIiIiIiIiIiIiIgMApuXRERERERERERERERERGQQ2LwkIiIiIiIiIiIiIiIiIoPA5iURERERERERERERERERGQQ2L4mIiIiIiIiIiIiIiIjIILB5SUREREREREREREREREQGgc1LIiIiIiIiIiIiIiIiIjIIbF4SERERERERERERERERkUFg85KIiIiIiIiIPmdCOAAAIABJREFUiIiIiIiIDAKbl0RERERERERERERERERkENi8JCIiIiIiIiIiIiIiIiKDwOYlERERERERERERERERERkENi+JiIiIiIiIiIiIiIiIyCCweUlERES1zrJly9C7d2+0bdsW4eHhpc6jVCqxcOFCBAQEoE+fPti5c6eeqyQqHfNLxoz5JWPHDJMxY37JmDG/ZMyYXyLt01vzMjIyEiNHjkS/fv0wcuRIREVFlZinvDdwedPWrl2L7t27IyQkBCEhIVi4cKE+nhIREREZKH9/f/z4449o2rRpmfPs2bMHjx49wuHDh7Fjxw6sXbsWjx8/1mOVRKVjfsmYMb9k7JhhMmbMLxkz5peMGfNLpH16a17Onz8fo0ePxqFDhzB69GjMmzevxDzlvYErenMPHjwYu3fvxu7duzF//nx9PS0iIiIyQJ6ennB0dCx3nv3792P48OGQSqWwtrZGQEAADh48qKcKicrG/JIxY37J2DHDZMyYXzJmzC8ZM+aXSPv00rxMTk7GrVu3EBwcDAAIDg7GrVu3kJKSUmS+8t7AfHMTERGRNsXGxqJJkybq3x0dHREXF1eDFRFpjvklY8b8krFjhsmYMb9kzJhfMmbML1HlmOhjI7GxsbC3t4dMJgMAyGQy2NnZITY2FtbW1kXmK+sNXNGbe9++fTh9+jRsbW0xZcoUuLm56fpplU0IIDoasLMDzM1rrg56bqSmZkGlErCxsURycmZNl1Nlhla/VCpBo0b1arqMWq8gv4DhZaAyDLF2Zlg/CmfY0BliTsvC/OoH86sbzK9+ML+6wfzqB/OrG8yv/jDDusEM6wfzqxvMr34wv7rB/BoevTQvdW3UqFGYOHEiTE1NcebMGUyaNAn79+9Ho0aNNF5HcnKmdt70CgUavPU66hzYC5W1NbLmLUbuq2MAiaTSq7K1rY/ExKfVr0lHNKlPKpXAxsZSTxU9v1Qqoc5vRTm+uOz/4eqFcxi34zfg3y8UGBJj+fAl7Smc34Lfy7JjxzZcuXIJCxcuhZmZmT7KqxTm17g4OjoiJiYGLi4uAEp+UUpTxTNs6IypViob80vGjPklY6eNDDO/VFO4DyZjxvySMWN+iSpHL5eNdXR0RHx8PJRKJQBAqVQiISGhxHWgC97ABWJjY+Hg4FDhNFtbW5iamgIAvL294ejoiHv37un0OZXFfO0qnDywF78BUKSkoP70yTD/IbRGaiEqTpKehsUrlmHOyeMwO8zLLpNx+fXXn/HFF5/iypXLWLfuy5ouh2qBwMBA7Ny5EyqVCikpKThy5Aj69etX02URaYT5JWPG/JKxY4bJmDG/ZMyYXzJmzC9R5eileWljY4P27dtj7969AIC9e/eiffv2RS4ZC5T/Bi5vWnx8vHodt2/fxpMnT/Diiy/q46kVIUlPw4dffIr3AXzapi0GtW0HBQCLlZ8D+fl6r4eoONPTp1DwFYD8wwdqtBaiysjNzcX8jz7ET/b22BkXi03LP0PEn4dquiwyYEuWLEGvXr0QFxeHN998EwMGDAAAjB8/HtevXwcAhISEwMnJCX379sWIESMwefJkNGvWrCbLJgLA/JJxY37J2DHDZMyYXzJmzC8ZM+aXSPskQgi9nLcbERGBOXPmICMjAw0aNMCyZcvQsmVLjB8/HlOnTkXnzp2hVCqxaNEinDlzBsCzN/fIkSMBoNxps2fPxs2bNyGVSmFqaoqpU6fC19e3UvVp47KxcWtXwW/xfNzu1gOKXXsxZswItLsYhnXpaUjf8j3kg4ZUan28bCxpqiC/Ff2byBfPR9u1q+AI4BdPLzTZf0R/RWrA0DLP/OpH4f1vWRnYs/1HbJ05DX/lywEAXwC4CmBdFfatumJo+QWYYX3R2qXn9cAQc1oW5lc/mF/dYH71g/nVDeZXP5hf3WB+9YcZ1g1mWD+YX91gfvWD+dUN5tfw6O2el61atcLOnTtLPL5582b1zzKZDAsXLix1+fKmLVu2TDtFVtMfO7ZhBADzocORa2KCTZtC0dvTBaMAvLTla4M5wE7Pr+hrV9ESgAOA6IdRqPxV1Ylqxo51X+KNfDny3dyRteD/YcTa1Vh65BA2LZwH+cDBVbqvMBEREREREREREREZHr1cNva5kJ2N/ffvYTAAeWB/AECDBg3xwdxPsFgqhdk/f0MaH1ezNdJzLyEhDo4AnADEJCUCKlVNl0RUoSdPHiMs4j6GAcgZ/y7yu3vD4n/b0cnUDH9FP4TJ5Ys1XSIRERERERERERERaQmbl1qiOHQAV1QqvOTqBpWDo/rxIa+OxXUTU9wEYHaI9xikmhWfmgJHAM0APBECktTUmi6JqELbt36PkULAAoDct/ezB2UyDPT0xO8A6vz2a02WR0RERERERERERERapHHz8ujRo1AoFLqsxahd2/MbOgMw6RtU5PE6dergrd4BWA3A7ND+GqmNqqc2ZT8hIwMOAJrUrYvHAM8GriVqU0ZLs/vnn/C6UglFx84Qtrbqx/u8PRF7AJju3sWziImIiIiIiIiIiIhqCY2bl19++SV8fHywaNEiXL16VZc1GaVzFy/AB0C+V7cS01777zz8AiD9xDEgK0vvtVH11JrsK5WIzc6GI4AmLV5ANABpQnxNV0VaUGsyWoonTx4jISkRXQHIvX2KTHMKDkF9ExOEx8XC5Py5mimQiIiIiIiIiIiIiLRK4+blH3/8ge+++w516tTBlClT0K9fP6xfvx6PHz/WZX3GIScHF+Pi4AVA4e5RYnLj9u0x2Noa38rlML14Qf/1UbXUluxLUlMRD8CuXj00c2qGh2DzsraoLRktTVjYefS0rA8ZAIVH16ITJRJ4tWyFvwHUOXq4JsojIiIiIiIiIiIiIi2r1D0v27Vrh9mzZ+PEiROYP38+Dh48iD59+uC1117DH3/8AdVzetk+kxvXcEMIdGzZCsKyfqnzDOvug98BmP7zt36LI62oDdmXJichDoCDVSM4NX8BjwBI4tm8rC1qQ0ZL8zAqEm2eZgAA8os3LwF49eiJMwBMLvDMSyIiIiIiIiIiIqLaoFLNSwB49OgR1q1bhwULFiAvLw9Tp07F8OHD8eOPP2Lq1Km6qNHg5d24jlgALVzdy5zHK2QobgNIP31Sb3WRdhl79qXJSUgCYG3TGOZNndAAQOLDyJoui7TI2DNamke3buDF3FyoGttC1ax5ienuQ17B3wBML18E8vP1XyARERERERERERERaZWJpjP++OOP2L17Nx4+fIigoCB8/vnncHV1VU/v168fevTooZMiDV142AW0AyBp3abMeSTePfESgLBLYegulwNmZnqrj6qntmRfkpSINAANbO2gsrdHCwDRjx6iQ00XRtVWWzJamui7dzEKQL6rGyCRlJju7NUNCVIpEnNyYHrjGhRuJS/dTURERERERERERETGQ+Pm5cmTJ/Hmm2/C398fZqU03urWrYu1a9dqtThjcfvOLXQCoGzVusx5hK0tullb42xKCnpeuwKFp5f+CqRqqS3ZlyYlIR1AfTt7qOzs4QAgiZeNrRVqS0ZLEx3zBC8AUHR2KXW6TCaDp60tzsXH4+WrV9i8JCIiIiIiIiIiIjJyGl821svLC0FBQSUOjIeGhqp/9vHx0V5lRuT24+gKm5cA4OXmiTMATP85q5e6SDtqS/YVSYnIB2BuZwdVY1s0BpCSmlLTZZEW1JaMlib+aQaaAFB06lLmPB7tOuAcAJPr1/RWFxERERERERERERHphsbNy3Xr1pX6+IYNG7RWjFFSKnErLfVZ87Jlq3JndQ3sj0sAcPa0PiojLakt2c9ITERDALBqBJWtHWwApGSk13BVpA21JaPF5eXlIVepRAOUfeYlALj59Pq3eXlFb7URERERERERERERkW5UeNnYs2efnSWoVCrxzz//QAihnvb48WPUq1dPd9UZAemTx7ghBNo3toWwrF/uvHX9/NECQPjZM2imUgFSjXvHVANqW/afpiajIQDRsCGEjQ0aA0jOzgaUSkAmq+nyqApqW0aLS4mLQ2MAkEqhat6izPna9QvCrf+3ECa3bgL5+YCpqd5qJCIiIiIiIiIiIiLtqrB5+dFHHwEA5HI55s6dq35cIpHA1tYWH3/8se6qMwJPr11FJoAmbZyRUcG8qmbN0bWuBcIyM/FC+F0o27XXR4lURbUt+xkpKbACoGrQADAxQSMLC4RnZ0OSkgJha1vT5VEV1LaMFpca9QCNAQibxuV+2cPRuR1SJRJkyuWQRUVC2cZZf0USERERERERERERkVZV2Lz866+/AAAffvghPv/8c50XZGwiw86jDQBVBfe7BABIJHBv44zz167g1bDzbF4auNqW/Yy09GdnXjZoCACwsbJCUnY2pEmJULJ5aZRqW0aLS4mKRGMAqsbl51MqlaJ1vXq4l5mJVndus3lJREREREREREREZMQ0vm5pbTwwrg2Rt2+gNQBlSw2alwDcevjgPACTsPM6rYu0pzrZj4yMxMiRI9GvXz+MHDkSUVFRJeZZt24dBgwYgEGDBmHo0KE4depUNaotW8bTDFjh2WVjAcDa2gbJAKSJCTrZHulPbd0/pz6O1qh5CQCt7R1wF4BJ+B2d10VEREREREREREREulPumZdBQUE4cOAAAMDX1xcSiaTU+Y4fP671woxFVFQU2gBQanLmJQDn/sGI2PgV8s6d1W1hVC3ayv78+fMxevRohISEYPfu3Zg3bx5++OGHIvO4uLhg3LhxqFu3Lu7cuYMxY8bg9OnTMDc318pzKZCe9VR9z0sAaGRnjyRchzQpUavbIf14HvbPqbExz5qXto0rnLdVq9YIj7gP2d3bui+MiIiIiIiIiIiIiHSm3Obl4sWL1T9/8cUXOi/GGEUkxKMvNG9eSt094SKR4FrEfXRITYFoZK3bAqlKtJH95ORk3Lp1C6GhoQCA4OBgLF68GCkpKbC2/r9/9549e6p/btu2LYQQSEtLg4ODQxWrL93T7Gw0BKCq/++Zlw6OSALYvDRSz8P+OSUhQeMzL1u6uOLU4YMwuXtX94URERERERERERERkc6U27z09PRU/+zl5aXzYoyOXI77WVl4VyKBssULmi1jZgZPO3ucj49Dl0thkPv31WmJVDXayH5sbCzs7e0hk8kAADKZDHZ2doiNjS3SvCzs999/R/PmzbXeuIQQSM/JeXbZ2AYNAAANmzohDYAqgZeNNUba2j9HRkZizpw5SEtLg5WVFZYtW4YXXnihyDxKpRJLlizBqVOnIJFI8M4772D48OEAgNOnT2PlypUIDw/H2LFjMXv27CrXUlxKSjI6ABAaNC9beffCpuWfQRZxD1AoAJMKb+lMRERERERERERERAZI46O7oaGh6NatG9q3b48rV65g+vTpkMlkWL58Odzc3HRZo8GSPYzCfQCtmjoBdepovJxbZxccjI/DuxfOsXlpBPSV/fPnz+PLL7/Et99+W+llbWws1T/b2tYvOUNWFtKFQAtTU9g6/XsJzlYt0ABAfkpC6cvUEEOqxVhUJ6OaXNp4z549ePToEQ4fPoy0tDQMHjwY3bt3h5OTE5o1a4YlS5bg0KFDkMvlWn1eyWmpGp952aZLF4RLJBByOWSRD6Bs46zVWsg4adKcX7t2LbZt2wY7OzsAgLu7O+bPn18D1RIVxfySMWN+yZgxv2TMmF8ydswwGTPml0i7NG5efvfddxg2bBgAYMWKFXjjjTdQr149LF26FDt37tRZgYYs4+oVKABYt26DjEos5+rfD4uOHIbphQu6Ko20qKrZd3R0RHx8PJRKJWQyGZRKJRISEuDo6Fhi3suXL2PWrFlYv349WrZsWekak5MzoVIJ2NrWR2Li0xLTpXGxSAdQ37yuerpZnfpoDCAm6hFUpSxTE8qqv6ZIpZIijWFDVdWManpp4/3792P48OGQSqWwtrZGQEAADh48iLfffhstWrQAABw9elTrzcukzKcaNy8tLevD2qwOHublwvruHTYvCYBmzXkAGDx4sFbPGibSBuaXjBnzS8aM+SVjxvySsWOGyZgxv0TapXHz8unTp6hfvz4yMzNx9+5dfPfdd5DJZFi2bJku6zNokRcvoDUAZes2lVqu2YCByPjvTCRfPA8TpRL497KiZJiqmn0bGxu0b98ee/fuRUhICPbu3Yv27duXuGTstWvXMGPGDKxZswYdO3bUyXOQpKcjHUCDevXUj6ls7WADIDUxAVq+SC3pWVUzqumljWNjY9GkSRP1746OjoiLi9Na/cUbxAVn36bm5sIaQMM2LQANzsjt4OiAW1FRGPD4gUbz6wLPHDYcmjbniQwR80vGjPklY8b8kjFjfsnYMcNkzJhfIu3TuHnp6OiIS5cu4f79+/D09IRMJkNmZqb6oPfzKOrOLbQBoGzVunILOjjA09wcF7Oz0eP2LSg7ddZJfaQd1cn+ggULMGfOHKxfvx4NGjRQN5PGjx+PqVOnonPnzli4cCFyc3Mxb9489XKff/452rZtq7XnIElPRxoAq/oN1I+pGjeGLYCk5GStbYdqhrHvnwvOHAaKnn2bkpcHGwDJMguNzg5u1eJF3I6Kgv/lq3haA2fwGtqZw4DxnD2sC5W57/C+fftw+vRp2NraYsqUKc/t5fDJcDC/ZMyYXzJmzC8ZM+aXjB0zTMaM+SXSPo2blx9++CGmTp0KMzMzrFmzBgBw7NgxdO78/DbeHjyMeta8bFnJ5iUArxda4tSdW/C9cI7NSwNXney3atWq1Mt2bt68Wf3zr7/+qr1iyyDNSEMqgIZWDdWPCVvbZ83LjHSdb590q6oZ1fTSxo6OjoiJiYGLiwuAkmdi6kqKUgkbALkaXDYWANp0ccONE8dgcueObgujWmXUqFGYOHEiTE1NcebMGUyaNAn79+9Ho0aNNF6HsTWIeYZw7cH8kjFjfsmYMb9kzLSRX4AZpprDfTAZM+aXSHMaNy99fX1x+vTpIo8FBgYiMDBQ60UZi4ikRASiCmdeAnjZrzc+uHMLC8+dRe6bb2u/ONKa2pB9SUYG0gA0tPq/D0JhWR+2MhmS5HIgKwsodElZMi5VzaimlzYODAzEzp070bdvX6SlpeHIkSP48ccftf48CpOnpiIXQL06dZCrYTZb9/DBz2tWQhZxD1AoABONP+KoFtK0OW9r+3/NcW9vbzg6OuLevXvw8vLSeFuFzx42dIZ4hnBZnuczh5nf0jG/xoH5LR3zaxyY39Ixv8ZBn/kFmGFdYYa5Dy6O+TUOzG/pmF+qDmllZn769CmuXbuGs2fP4uzZswgLC0NYWJiuajNsmZmIyM1FKxMTqJo6VXpxl+Gv4hGApNMnAWEcO5vnmbFnv+CysQ2sGxd6UAJbS0skAJAmJ9VUaaQlVc3oggULsHXrVvTr1w9bt27FwoULATy7tPH169cBACEhIXByckLfvn0xYsQITJ48Gc2aNQMAhIWFoVevXggNDcX27dvRq1cvnDp1qtrPJyPyAawBCFs7QCLRaJm2bu64JZEAcjlkUZHVroGMW+HmPIAym/Px8fHqn2/fvo0nT57gxRdf1GutRMUxv2TMmF8yZswvGTPml4wdM0zGjPkl0j6NT0vZtWsXFi1aBAsLC5ibm6sfl0gkOHr0qE6KM2QmkRG4B6BlixeAKtxXTtKhI3qbmuJoQjyCH0ZB9QJ3UoaqNmRfpKfhKYD6jRsjt9DjjRta4WJ6OqRJiVA1b1FT5VE1VSejmlzaWCaTqZuaxXl6euLkyZNVrLxsaVHPmpeqxo0rnLdAo0bWqGdqimi5HA3v3oGydRut10XGRZP7Dq9cuRI3b96EVCqFqakpPv/88yLfhCSqKcwvGTPml4wZ80vGjPklY8cMkzFjfom0SyKEZqf99ezZE0uWLIGvr6+ua6oRlT3dOmvr93B9fwriAgfg6Q8/VWmbv/b2wYkb1/D1mg3IG/VaiemGflq1JvXVhtOtjSH7Bfkt699E8dFstNu8AU8+mo+caTPVj5/v54dVly/i1//tgLxfkD5LLpWhZd5Y8msMGS1P4f1vQQYurlmFxUvm46+AvsjY9ovG63rVoxNmRD/Cy3M+Rvb7H+qq5FIZWn4B48mwseMlW3SD+dUP5lc3mF/9YH51g/nVD+ZXN5hf/WGGdYMZ1g/mVzeYX/1gfnWD+TU8Gl82VqlUwsfHR5e1GJWoyxfRGoCqGmf2vNwvEEcAmJyp/iUWSXdqQ/YzkpNhBUA0aFjk8cZ2ds8uG5uUWCN1kXbUhowWlx775NllYxtX7ttn7Vu1wQ0AsvA7OqmLiIiIiIiIiIiIiHRL4+bl+PHjsWHDBqhUKl3WYzQe3LmNNgCUrVpXeR32QcFoAODeyePaKot0oDZkPy0l6d/mZYMijzd2bIpEABI2L41abchocanx8bABoKpk87KtmztuADC5w+YlERERERERERERkTHS+J6X3333HZKSkrBlyxZYWVkVmXb8+HFt12Xwwh89RHtUr3mp6NgZviamOBUbg1djnkDVpKn2CiStqQ3Zz0hJgRUAVaNGRR63btYcyQBUCfGlLkfGoTZktLi05MR/73lZueZlO18/bFn1BWQR9wCFAjDR+GOOiIiIiIiIiIiIiAyAxkd1v/jiC13WYVyEQHhyMkYBULzYqurrkcng4+yMA7du4vWzZ5D3ygitlUjaUxuyn56WhkYARCPrIo/L7O1hByAuOhqNSl2SjEFtyGhxqSkp/zYvG1dquTau7giXSKDIy4PsYSSUrap+aW8iIiIiIiIiIiIi0j+Nm5deXl66rMOoSFJScFeRD+e6FhB2dtVaV3f/Pphz6yZM/mbz0lDVhuxnPM14dualtU2Rx1W2dmgO4EnMEzYvjVhtyGhxqRkZaIHKn3lpYWGBlvXq4WpmJpwvXWTzkoiIiIiIiIiIiMjIaHzPS7lcjlWrVsHf3x8eHh4AgNOnT2Pr1q06K85Qibt38ABAy1atAYmkWutyCByA+gDCTx7TSm2kfbUh++mZmc/ueWld9MxLlWMTNAPwOC6mRuoi7agNGS0uLSsL1gCEbeWalwDQtU1bnAVg+s9ZrddFRERERERERERERLqlcfNy6dKlCA8Px/LlyyH5t2HXpk0b/PTTTzorzlBFnz0NRwBm7dpXe12KLm7oL5Nh98MoSBITq18caZ3RZz83F2n5cjSQSCAs6xeZpGzW/NmZl8nJgEpVM/VRtRl9RkuRkpsDG1T+zEsA8PD1+7d5eUbrdRERERERERERERGRbmncvDxy5AhWrFgBNzc3SKXPFrO3t0d8fLzOijNUN8LOwxWAQgvNS5iZYVRnV2wFYHrkUPXXR1pn7NmXpqYgCYBtvXolzxSuVw/N6lkiWqmENC62Ruqj6jP2jJagUiFVLn92z0ubyt3zEgDcB7+CMxIJZPfC+aUQIiIiIiIiIiIiIiOjcfPS1NQUSqWyyGMpKSmwsrLSelGG7trdu3AHoNRG8xJA59FjIANw+btvtLI+0i5jz74kJQUJABrXb1Dq9CYO9ogGIHv0UK91kfYYe0aLk6SnIQWAVf36gJlZpZdv3b4DlKamuAfA9BwvHUtERERERERERERkTDRuXgYGBmL27NmIjo4GACQkJGDRokUYMGCAzoozVFfj4+AGQNFWO81L+cDBGCeV4vsrlyBJStLKOkl7jD370tRnzUsbq0alTm/a/AVEAZBGReqzLNIiY89ocdKkJCQDsKrCWZcAIJFI0KdtexwAYHrub63WRkRERERERERERES6pXHzcsaMGXBycsKgQYOQkZGBfv36wdbWFpMnT9ZlfYYnKQlX8uVwNa8LVbPmWlmlsLHBqB4++E0I5P2yQyvrJO0x9uxLUlOQCMC2jHsHvtCuAx4AkD6M0mdZpEXGntHilHGxyAZQ39auyuvw6xeEgwBMz7J5SURERERERERERGRMTDSd8dGjR2jZsiUmTJgApVKJgIAAtG3bVpe1GaT4v45ABsC2swvSpRr3fitkNeo1+J0+if2hWzB4onE2HGorY8++9N/LxtrY25c6vV77DqgHIOH6NdTXa2WkLcae0eLSHz1EIwCiGs1L79fH4b3lnyH/+lVInmZAlHHZZCIiIiIiIiIiIiIyLBU2L4UQmDt3Ln7//Xc4ODjAzs4O8fHxWLduHUJCQrB06VJIJBJ91GoQrh87AncAClc3ra5X3j8Yo+uYY2NkBF65fQvK9h20un6qvNqSfVVSItIANLJ3QG4p05UdO6ENgKib19BZz7VR9dSWjBaXHv0INgBUZZwtrIkGDg7oYmmJk5mZ6P73Gcj7BWmvQCIiIiIiIiIiIiLSmQpPHdyxYwfOnz+PHTt24NixY9ixYweOHz+O7du3IywsDNu3b9dHnQbjn0th8AGgcHHV6nqFZX0EDB+JywBSvlqt1XVT1dSW7MdH3IcDAEmTJqVOVzi3Q2uJBA+ePAGysvRbHFVLbclocamxMWgEQNW4ave8LBDg5oGDAMyOHtZKXURERERERERERESkexU2L3fv3o2PP/4YLi4uRR53cXHB3LlzsXv3bp0VZ3CEwN/Rj9ATgMLVXfurf2cSRgLY8tuvkKQka339VDm1JfvRjx6iOQClY9PSZ6hTB+1s7XADgMmdW/osjaqptmS0uOS4WNgBUNlW/cxLAHj51THYD8D0z0OAEFqpjYiIiIiIiIiIiIh0q8LmZUREBLp27VrqtK5duyIiIkLrRRmqnCuXcVuhgEdjWyidtX8/OWW79pjVwwebFflI+XSJ1tdPlVNbsv84NgbNAagcHcucx6NDR5wDYHL5ot7qouqrLRktLjk5GXYARDUuGwsA7YcMQ75MhutPHsP0+F/aKY6IiIiIiIiIiIiIdKrC5qVSqYSlpWWp0ywtLaFSqbRelKE6+8O3eAmA1NcP0NF95BrNX4ypAD74XyjEo0c62QZpprZk/0lS4rPmZVOnMufpHDgANwDk/nVUb3VR9dWWjBYOblS6AAAWAElEQVSXlJoCW1TvnpcAIJHJMKqHDzYAsPjqS63URkRERERERERERES6ZVLRDAqFAv/88w9EGZfcUyqVWi/KUP159E8MACD39dPZNhRuHni//0B0378HPwcFoffRM4BMprPtUdlqQ/YlqSkIz8lBdzMzqOwdypzPNKAvAgDsOn0SQxUKwKTCXQMZgNqQ0dIkPs1AK1S/eQkAb36xGj26u2PmqeOwP/4X8l/uXf0CiYiIiIiIiIiIiEhnKuxQ2NjYYO7cuWVOt7a21mpBBivmCQ7GxeIDU1PIA/vrdFN5X6zGpjOnMOTWLeydPRMvLF+t0+1R6WpD9mUPInAFwIRmLco9W1jVvAXG2ztgdnwcRh4/ivyAfvorkqqsNmS0NIlZWegO7TQvG7Vshff9++DdI4dxeNJ4pJ0+D2FtU/0iiYiIiIiIiIiIiEgnKmxe/vUX7xMGAOc+XQxbAC8G9EOGVSOdbkvY2qLDplCsGjUUg3/4Fj81bIj2Hy/Q2aVqqXS1IfvKsAu4C6CdiwsUFczbc/y7wJL5OLNwHrz8+zJvRqA2ZLSE/Hwk5ufDViKBaKSdfe24b/6H3R1bYXNSIt5Y+Akyv1yvlfUSERERERERERERkfZVeM9LbYmMjMTIkSPRr18/jBw5ElFRUSXmUSqVWLhwIQICAtCnTx/s3Lmz2tO0QZKUhHW//ox3AOSMn6jVdZcl388fo1eswFoAr6xdhWPBfSGNjdHLtkl7qpv76rpycB86ATDp7lPhvHlvvoX3LSzw5d3bMP9pq9ZqIMOmy31zlSQlIRaAnVUjQKqdjyhZ3bpYvfk7zANw+qetsPhsMZCVpZV1k2Gr6X0wUXUwv2TMmF8yZswvGTPml4wdM0zGjPkl0i69NS/nz5+P0aNH49ChQxg9ejTmzZtXYp49e/bg0aNHOHz4MHbs2IG1a9fi8ePH1ZpWXbJ74dgV6IcIhQJjvHsh36eXVtarkRkzELBuE/aZ18UHF87hrS7tcCKgFyTfbIJJ2HlInmYAZdzrjgxDdXNfHdLYGBz752/4AZD3DqhwflG/AQYuWYYoAMunT4bZ/I9gcvkikJtb7VrIcOly31wV8lu3EAngRadmVV5HaVr798XWSVMxFsC8lV8g1b0D6s2ZCbNDByBJT9Pqtshw1OQ+mKi6mF8yZswvGTPml4wZ80vGjhkmY8b8EmlXhZeN1Ybk5GTcunULoaGhAIDg4GAsXrwYKSkpRe7Jtn//fgwfPhxSqRTW1tYICAjAwYMH8fbbb1d5mqak0meXyMzPz0fE2pWQX7yIyLgYHEhLQ7wE+MPNHYotoer59CV/5Kto4+2Da6tXYO+Jv7AzPRWLNq6FG4BOAOykUjQ0N4d53bqQ1rWATCaDiUQCqVQCKSSQApBIJJBK/v1dIkGrunVhIZNCQPJ/lwaVFPu58P/V09W/PPvdzAQN85UQxdahavEisqfPBP6t43mljdxrSv06nzuHvFWrEJmYjMdPonHAyQlbu74EvPCCZt9UGPsfHEyMw8JtWzFs/x/ovv8PNAPQ1LI+6llYQGZmColEBplMColMCplUBolMBqlUCkhkhTIC1JXJ0LKueaGVl5OFggyZmaChXFH6tFKIii5tW970sqZZWSFr+iwIK6tan19d75s1Vfh1PrRpEwJatIBZ337I1/Lr77no/+Hsyy/jm8+WYExyMnD0MDyPHkYXANYSCSxkMpjJZDCVyiA1kUEqlUFmYgKJTAaYyJ6dCSozAUxkkEhNIExk+P/t3X1QVHXfx/EPoCBqKCLCon+Udt+IjTOaPNj4VESBIyhXD6KVOmKMd6k0Tjbq1Gggt8mMI03mVE5ld9ZwJamkoGI4qIzlU5lMqcUw6pgsmIIPoZO67P2HuVeIi6ic3XPg/fprzzm7h+/5nc/+Zsev+1sfXz/J98bc97ufr646GuXzd9ZvVt88aj7y9ZEGdu0mv9Z8u/RulnAOCNCVl/9Hjv/6b0lq9xluiVfmYIuwSr1WqdMI5Nc9q9RrlTqNQH7ds0q9VqnTCOTXPavUa5U6jeDJ/ErWG2ur1GuVOo3AHOyeVeq1Sp1GIL/uWaVeq9TZkXikeWm32xUWFiY/Pz9Jkp+fn/r06SO73d7kzWu32xUREeHattlsqqmpua9jrRUc3M31OPx/l0iSnpCUfldnaXshId2lkChpzcd6SdJLXq7nVv5u9gd6tApzaovct5YrvyFx6vfvf6vf3/sn30PdIUtz9H9Lc+7hlW3DXaY8KcDbBXiI0XNza/1z/k356iul/P24y+2ffl9Cnv+Xcp7/l7yXcON1lPzeiVfmYIsICenu7RJwB+TXPfJrfuTXPfJrfuTXPfJrfp7Mr0SG0faYg90jv+ZHft0jv7hXHls2FgAAAAAAAAAAAABa4pHmpc1mU21trRwOh6QbP0x75swZ2Wy2Zs+rrq52bdvtdoWHh9/XMcBb2iL3gJGMnpsBb2IOhpWRX1gZ+YWVkV9YGfmF1ZFhWBn5BdqeR5qXISEhioqKUlFRkSSpqKhIUVFRTb4yLUlJSUkqKChQY2Oj6urqVFpaqsTExPs6BnhLW+QeMJLRczPgTczBsDLyCysjv7Ay8gsrI7+wOjIMKyO/QNvzcTqdTk/8oaqqKi1YsEAXL15UUFCQcnNz1b9/f2VkZCgzM1ODBw+Ww+FQdna29uzZI0nKyMhQWlqaJN3zMcCb7jf3gNGMnJsBb2MOhpWRX1gZ+YWVkV9YGfmF1ZFhWBn5BdqWx5qXAAAAAAAAAAAAANASjywbCwAAAAAAAAAAAAB3QvMSAAAAAAAAAAAAgCnQvAQAAAAAAAAAAABgCjQvAQAAAAAAAAAAAJgCzUsvio+PV1JSkiZMmKAJEyaovLxcknT8+HGlpaUpMTFRaWlpOnHihOs1LR27H7m5uYqPj1dkZKR+++23Vv09b9QJ96w05vX19crIyFBiYqJSUlI0e/Zs1dXVSXL/vkD7Zub8tpRX5sGOoTX30uFwKCsrSwkJCXrqqadUUFDg+UL/1pp6V65cqccee8w112ZlZXm+ULn//PFPZhpbKyK/xiLDxiK/xiK/xiK/xiK/xiPDxiG/xiO/xiG/xiO/xiLDFuKE1zzxxBPOX3/9tdn+KVOmOAsLC51Op9NZWFjonDJlSquO3Y8DBw44q6urm9V0r7UYVSfcs9KY19fXO/fu3evaXrZsmXPhwoVOp9P9+wLtm5nz21JemQc7htbcy40bNzrT09OdDofDee7cOeeoUaOcp06d8nSpTqezdfW+9957zmXLlnm6tGbcff74JzONrRWRX2ORYWORX2ORX2ORX2ORX+ORYeOQX+ORX+OQX+ORX2ORYevgm5cmc+7cOR05ckTJycmSpOTkZB05ckR1dXUtHrtf0dHRstlsbVKLkXXi9qw25j179lRcXJxre8iQIaqurvZiRfAms+fXXV6ZBzuG1t7LLVu26Pnnn5evr6969eqlhIQEbdu2zbT1msXtPn/cyixja0Xk13hk2Djk13jk1zjk13jk11hk2Fjk11jk11jk11jk13hk2DpoXnrZvHnzlJKSorffflsXL16U3W5XWFiY/Pz8JEl+fn7q06eP7HZ7i8eMcK+1eLpOtHyvzK6xsVH5+fmKj4937bv1fYH2zUr5/WdemQc7htbeS7vdroiICNe2zWZTTU2NR2u9WUdrs1dcXKyUlBSlp6fr0KFDni611cwytlZEfs3BLONrNeTXHMwyvlZDfs3BLONrRWTY+8wytlZEfr3PLGNrReTXHMwyvh0dzUsv+vLLL7Vp0yatX79eTqdT2dnZ3i4J8LglS5aoa9eueumllyTxvoC53ZpXwKomTZqkHTt2aPPmzZoxY4ZeffVV1dfXe7ssoFXIL6yM/MLKyC+sjgzDysgvrIz84l7QvPSim19P9vf31wsvvKAff/xRNptNtbW1cjgckm78OOyZM2dks9laPGZUffdSi6frRMv3ysxyc3N18uRJvfvuu/L1vTEd3e59gfbNKvm9Na/Mgx1Da++lzWZrsvy13W5XeHi4R2u9WUdr6g0NDVXnzp0lSSNGjJDNZlNlZaXH620Ns4ytFZFfczDL+FoN+TUHs4yv1ZBfczDL+FoRGfY+s4ytFZFf7zPL2FoR+TUHs4xvR0fz0ksuX76sS5cuSZKcTqe2bNmiqKgohYSEKCoqSkVFRZKkoqIiRUVFqVevXi0eM8K91uLpOtHyvTKrvLw8/fzzz1q1apX8/f0luX9foH2zQn5vl1fmwY6htfcyKSlJBQUFamxsVF1dnUpLS5WYmGjaemtra12Pjx49qtOnT+uhhx7yaK2tZZaxtSLyaw5mGV+rIb/mYJbxtRryaw5mGV8rIsPeZ5axtSLy631mGVsrIr/mYJbx7eh8nE6n09tFdESnTp3SnDlz5HA41NjYqAEDBuitt95Snz59VFVVpQULFujixYsKCgpSbm6u+vfvL0ktHrsfOTk52r59u86ePavg4GD17NlTxcXF91yLUXXCPSuNeWVlpZKTk/Xggw+qS5cukqR+/fppwYIFbt8XaN/MnF93eV21ahXzYAfh7l5mZGQoMzNTgwcPlsPhUHZ2tvbs2SNJysjIUFpammnrnT9/vn755Rf5+vqqc+fOyszM1JgxYzxeq7vPH2YdWysiv8Yiw8Yiv8Yiv8Yiv8Yiv8Yjw8Yhv8Yjv8Yhv8Yjv8Yiw9ZB8xIAAAAAAAAAAACAKbBsLAAAAAAAAAAAAABToHkJAAAAAAAAAAAAwBRoXgIAAAAAAAAAAAAwBZqXAAAAAAAAAAAAAEyB5iUAAAAAAAAAAAAAU6B5CQAAAAAAAAAAAMAUaF62E1OmTFFBQYG3ywAAU3j55Ze1ceNGj/ytTZs2KT09vU3P+fvvvysyMlLXr19v0/MCAAAAAAAAgNl18nYBuLPr16+rUyduFayPLMNTPv74Y9fjDRs2qKCgQPn5+Yb8rfHjx2v8+PGGnBsAAAAAAAAAOhq+eeklkZGROnnypGt7wYIFysvLkyTt27dPo0eP1urVqzVixAgtXLhQFy5c0MyZMzV8+HDFxMRo5syZqqmpkSTl5eXp4MGDys7O1tChQ5WdnS1Jqqqq0vTp0xUbG6vExERt2bLF8xeKdu9us9zY2KjVq1crISFBcXFxeu2113T+/HnX6zMzMzVixAgNGzZML774oiorKz1+TQAAAAAAAAAAwDtoXprU2bNndeHCBZWVlWnJkiVqbGzUM888o7KyMpWVlSkgIMDVpJw7d66io6O1aNEiHTp0SIsWLdLly5eVnp6u5ORkfffdd1qxYoWysrJoBMHjbs3y559/rtLSUn3xxRcqLy9Xjx49XFmWpNGjR6ukpETff/+9Bg0apHnz5nmxepjZ6tWrlZmZ2WRfTk6OcnJyXEtpV1VVafHixfrpp580dOhQRUdHS5J27typ1NRUPfrooxozZoxWrlzpOsfNJVvXr1+vMWPGKCYmRvn5+aqoqFBKSoqio6ObZHbDhg2aPHmyazsyMlL5+fl6+umnFRMTo6ysLDmdzhavxeFwKDc3V3FxcXryySe1a9euthgiAAAAAAAAALAcmpcm5evrq8zMTPn7+6tLly4KDg5WYmKiAgMD1b17d73yyis6cOCA29fv3LlTffv21bPPPqtOnTrpkUceUWJiokpKSjx4FUDzLH/11VeaO3euwsPD5e/vr9mzZ6ukpMT1237PPfecunfvLn9/f82ZM0fHjh3TpUuXvHwVMKNx48Zp165d+vPPPyXdaABu27ZNycnJrucMGDBAWVlZGjJkiA4dOqSDBw9KkgIDA5Wbm6uDBw/qo48+Un5+vkpLS5uc//Dhw9q+fbvy8vK0dOlSffjhh/rss89UXFysrVu3av/+/W5r27lzp77++mt988032rp1q8rLy1u8lnXr1qmsrEyFhYVav369tm3bdq/DAgAAAAAAAACWxo/PmVRwcLACAgJc21euXNE777yj8vJyXbhwQZLU0NAgh8MhPz+/Zq8/ffq0KioqXN8ykm78wz6/ywZPuzXL1dXVmjVrlnx9//N/J3x9fXXu3Dn17t1beXl52rZtm+rq6lzPqa+v1wMPPODx2mFuffv21aBBg1RaWqrU1FTt3btXXbp00ZAhQ+742ri4ONfjgQMHaty4cdq/f78SEhJc+2fNmqWAgACNHDlSXbt2VXJyskJCQiRJ0dHROnLkiGJjY297/oyMDAUFBSkoKEhxcXE6duyYRo8e7baerVu3atq0abLZbJKkmTNnttgcBQAAAAAAAID2iuallwQGBurKlSuu7T/++ENhYWGubR8fnybP//TTT3X8+HGtW7dOoaGhOnr0qFJTU90uRWiz2RQTE6M1a9YYcwHA3+42y+Hh4Vq6dKmGDRvW7FyFhYXasWOH1qxZo379+unSpUuKiYm545Kb6LiSk5NVVFSk1NRUFRUVNfnWZUsOHz6s5cuXq7KyUteuXdPVq1eVlJTU5Dk3G5WSFBAQ0Gz78uXLbs8fGhrqehwYGKiGhoYW6zlz5oyrcSlJERERrboOAAAAAAAAAGhvWDbWSwYOHKiioiI5HA7t3r27xSVgpRvfsgwICFBQUJDOnz+v999/v8nx3r1769SpU67txx9/XCdOnFBhYaGuXbuma9euqaKiQlVVVYZcDzquu83y5MmT9e677+r06dOSpLq6OtdynQ0NDfL391dwcLCuXLmiFStWGF4/rG3s2LHav3+/ampq9O233yolJaXZc25toEvS66+/7vptyR9++EGTJk3yapM8NDRUdrvdtf3PxwAAAAAAAADQkdC89JI333xTZWVlio6O1ubNm5ssVXg706ZN019//aXhw4crLS1No0aNanJ86tSpKikpUUxMjHJyctS9e3d98skn2rJli0aNGqWRI0dq+fLlunr1qpGXhQ7obrM8depUxcfHKz09XUOHDtXEiRNVUVEhSUpNTVVERIRGjRqlcePGtWr5T3RsvXr1UmxsrBYuXKh+/fppwIABzZ4TEhKi2traJvNfQ0ODevTooYCAAFVUVKioqMiTZTczduxYrV27VjU1Nbpw4YJWr17t1XoAAAAAAAAAwFtYNtZLBg8erOLi4tsei4uL0+7du5vsCwsL09q1a5vsmzRpkuvx0KFDVVJS0uR4//79+QdwGO5us+zr66vp06dr+vTpzZ7frVs3ffDBB032paamtl2xaJeSk5M1f/58vfHGG7c9Pnz4cD388MMaOXKkfHx8tG/fPi1evFi5ubnKzs5WbGysxo4dq4sXL3q48v+YOHGiTpw4oQkTJqhbt26aMWOG9u7d67V6AAAAAAAAAMBbfJz8mBwAAAAAAAAAAAAAE2DZWAAAAAAAAAAAAACmwLKxAAB4wKJFi7R58+Zm+1NSUpSdne2FigAAAAAAAADAfFg2FgAAAAAAAAAAAIApsGwsAAAAAAAAAAAAAFOgeQkAAAAAAAAAAADAFGheAgAAAAAAAAAAADAFmpcAAAAAAAAAAAAATIHmJQAAAAAAAAAAAABT+H8nV4bgONdzFAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn as sns\n", - "\n", - "sns.set(rc={'figure.figsize':(30,20)})\n", - "kernel.plot_imputed_distributions(wspace=1, hspace=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "import miceforest as mf\n", - "kds = mf.KernelDataSet(df, mean_match_candidates = 10, save_all_iterations=True, random_state=1991)\n", - "\n", - "Run the MICE algorithm for 3 iterations\n", - "kds.mice(3, n_jobs=10, n_estimators=10, max_features=\"sqrt\", bootstrap=True, max_depth=10, verbose=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "import seaborn as sns\n", - "\n", - "sns.set(rc={'figure.figsize':(30,20)})\n", - "kds.plot_imputed_distributions(wspace=1,hspace=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "#kernel_all = kernel.impute_new_data(data, verbose=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "# get back imputed data\n", - "#data_imp = kernel_all.complete_data()\n", - "data_imp = kernel.complete_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "# for validation set\n", - "# data_imp_pre = kds.impute_new_data(data, verbose=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidPGS000011PGS000013PGS000016PGS000018PGS000039PGS000057PGS000058PGS000059PGS000116...death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
010000183.17077014.18216125.478597-7.9100040.1960993.6902758.5132304.0602352.543097...010.625599010.625599010.335387010.335387010.335387
110000203.93556514.20360925.508855-7.3382070.3820544.1700008.6655293.6400002.575014...012.355921012.355921012.065708012.065708012.065708
210000374.22365414.24817625.549722-7.5330610.1899884.2886278.5409085.5414512.441255...011.627652011.62765217.96988417.969884011.337440
310000433.52957514.17650225.394145-7.7686480.2893884.1300008.5154474.2610982.740589...011.069131011.06913115.12251915.12251915.122519
410000513.89256814.19486625.445731-7.8513200.2919733.9600007.8342083.9209802.634049...014.050650014.050650013.760438013.760438013.760438
..................................................................
50249960251504.18180014.05358925.402026-7.4991640.2729564.4700008.4254114.6602352.419166...012.996578012.996578012.706366012.706366012.706366
50250060251654.31574314.13147725.417482-7.7364210.2751033.9009418.0469614.0001962.721753...011.819302011.819302011.529090011.529090011.529090
50250160251733.09667114.18622525.488755-8.0798150.3529183.5078047.9946973.6907062.687853...011.778234011.778234011.488022011.488022011.488022
50250260251823.69964614.13469325.439013-7.9629280.3438604.0200008.1512773.9600002.692526...09.99315509.99315509.70294309.70294309.702943
50250360251983.66378914.32534025.449361-7.4299060.2083673.7400008.7433724.1100002.428418...010.420260010.420260010.130048010.130048010.130048
\n", - "

502504 rows × 3758 columns

\n", - "
" - ], - "text/plain": [ - " eid PGS000011 PGS000013 PGS000016 PGS000018 PGS000039 \\\n", - "0 1000018 3.170770 14.182161 25.478597 -7.910004 0.196099 \n", - "1 1000020 3.935565 14.203609 25.508855 -7.338207 0.382054 \n", - "2 1000037 4.223654 14.248176 25.549722 -7.533061 0.189988 \n", - "3 1000043 3.529575 14.176502 25.394145 -7.768648 0.289388 \n", - "4 1000051 3.892568 14.194866 25.445731 -7.851320 0.291973 \n", - "... ... ... ... ... ... ... \n", - "502499 6025150 4.181800 14.053589 25.402026 -7.499164 0.272956 \n", - "502500 6025165 4.315743 14.131477 25.417482 -7.736421 0.275103 \n", - "502501 6025173 3.096671 14.186225 25.488755 -8.079815 0.352918 \n", - "502502 6025182 3.699646 14.134693 25.439013 -7.962928 0.343860 \n", - "502503 6025198 3.663789 14.325340 25.449361 -7.429906 0.208367 \n", - "\n", - " PGS000057 PGS000058 PGS000059 PGS000116 ... death_cvd_event \\\n", - "0 3.690275 8.513230 4.060235 2.543097 ... 0 \n", - "1 4.170000 8.665529 3.640000 2.575014 ... 0 \n", - "2 4.288627 8.540908 5.541451 2.441255 ... 0 \n", - "3 4.130000 8.515447 4.261098 2.740589 ... 0 \n", - "4 3.960000 7.834208 3.920980 2.634049 ... 0 \n", - "... ... ... ... ... ... ... \n", - "502499 4.470000 8.425411 4.660235 2.419166 ... 0 \n", - "502500 3.900941 8.046961 4.000196 2.721753 ... 0 \n", - "502501 3.507804 7.994697 3.690706 2.687853 ... 0 \n", - "502502 4.020000 8.151277 3.960000 2.692526 ... 0 \n", - "502503 3.740000 8.743372 4.110000 2.428418 ... 0 \n", - "\n", - " death_cvd_event_time SCORE_event SCORE_event_time ASCVD_event \\\n", - "0 10.625599 0 10.625599 0 \n", - "1 12.355921 0 12.355921 0 \n", - "2 11.627652 0 11.627652 1 \n", - "3 11.069131 0 11.069131 1 \n", - "4 14.050650 0 14.050650 0 \n", - "... ... ... ... ... \n", - "502499 12.996578 0 12.996578 0 \n", - "502500 11.819302 0 11.819302 0 \n", - "502501 11.778234 0 11.778234 0 \n", - "502502 9.993155 0 9.993155 0 \n", - "502503 10.420260 0 10.420260 0 \n", - "\n", - " ASCVD_event_time QRISK3_event QRISK3_event_time MACE_event \\\n", - "0 10.335387 0 10.335387 0 \n", - "1 12.065708 0 12.065708 0 \n", - "2 7.969884 1 7.969884 0 \n", - "3 5.122519 1 5.122519 1 \n", - "4 13.760438 0 13.760438 0 \n", - "... ... ... ... ... \n", - "502499 12.706366 0 12.706366 0 \n", - "502500 11.529090 0 11.529090 0 \n", - "502501 11.488022 0 11.488022 0 \n", - "502502 9.702943 0 9.702943 0 \n", - "502503 10.130048 0 10.130048 0 \n", - "\n", - " MACE_event_time \n", - "0 10.335387 \n", - "1 12.065708 \n", - "2 11.337440 \n", - "3 5.122519 \n", - "4 13.760438 \n", - "... ... \n", - "502499 12.706366 \n", - "502500 11.529090 \n", - "502501 11.488022 \n", - "502502 9.702943 \n", - "502503 10.130048 \n", - "\n", - "[502504 rows x 3758 columns]" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_imp" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['Female', 'Male']\n", - "Categories (2, object): ['Female', 'Male']\n", - "['White', 'Black', 'Asian', 'Mixed', 'Chinese']\n", - "Categories (5, object): ['White', 'Black', 'Asian', 'Mixed', 'Chinese']\n", - "[datetime.date(2009, 11, 12) datetime.date(2008, 2, 19)\n", - " datetime.date(2008, 11, 11) ... datetime.date(2006, 3, 13)\n", - " datetime.date(2010, 9, 3) datetime.date(2010, 8, 16)]\n", - "[datetime.date(1960, 11, 12) datetime.date(1949, 2, 19)\n", - " datetime.date(1949, 11, 11) ... datetime.date(1938, 3, 22)\n", - " datetime.date(1970, 8, 17) datetime.date(1936, 6, 12)]\n", - "['Fair', 'Good', 'Poor', 'Excellent']\n", - "Categories (4, object): ['Poor' < 'Fair' < 'Good' < 'Excellent']\n", - "['Current', 'Previous', 'Never']\n", - "Categories (3, object): ['Current' < 'Previous' < 'Never']\n", - "['Once or twice a week', 'Three or four times a week', 'One to three times a month', 'Daily or almost daily', 'Special occasions only', 'Never']\n", - "Categories (6, object): ['Daily or almost daily' < 'Three or four times a week' < 'Once or twice a week' < 'One to three times a month' < 'Special occasions only' < 'Never']\n" - ] - } - ], - "source": [ - "df = data_imp\n", - "for col in cat_features:\n", - " print(df[col].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize Post Imputation" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2+2" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACSYAAAJACAYAAACaQipFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdIW4UcRyG4V+bWtBoBIOjFkWPUIEkQeNKgkT0CD0ChnPQa4wkQSLxi2BJCLZvOt3t8ySTnVn1mXFv/nOy2+0GAAAAAAAAAACgdLr1AAAAAAAAAAAA4PgIkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMidbT3grpZleTszb2bmfGZezcyTmfm6ruu7TYcBAAAAAAAAAMAjdvBh0sx8nj9B0q+Z+TEzL7edAwAAAAAAAAAAHMOn3D7OzIuZeTozHzbeAgAAAAAAAAAAzBGcmLSu67e/98uybDkFAAAAAAAAAADYO4YTkwAAAAAAAAAAgAdGmAQAAAAAAAAAAOQO/lNutYuLi93WGwAAAAAAAADgEN3e3p5sveEI6Rhm5urqamZmbm5uNl7yYBzEu+bEJAAAAAAAAAAAICdMAgAAAAAAAAAAcsIkAAAAAAAAAAAgJ0wCAAAAAAAAAABywiQAAAAAAAAAACB3tvWAu1qW5XJmLvePz/a/r5dl+bK//7mu66d7HwYAAAAAAAAAAI/YwYdJM3M+M+//++/5/pqZ+T4zwiQAAAAAAAAAALhHBx8mret6PTPXG88AAAAAAAAAAAD+cbr1AAAAAAAAAAAA4PgIkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAAAAgJwwCQAAAAAAAAAAyAmTAAAAAAAAAACAnDAJAAAAAAAAAADICZMAAAAAAAAAAICcMAkAAAAAAAAAAMgJkwAAAAAAAH63d/ehu54FAce/U3E655ReYCLZprhLxNdypTNrzEaJTA2O+ZIhQ/Il84/Zi5bGRliELXozCwKHhw5YTFBSjFK3MhVhKRUp19pymdEk0/Ks0oPb+uN5Vr9+/s45vzOv086Onw8cnvPc93Xd9/38uP/8cl0AAMBywiQAAAAAAAAAAGA5YRIAAAAAAAAAALCcMAkAAAAAAAAAAFhOmAQAAAAAAAAAACwnTAIAAAAAAAAAAJYTJgEAAAAAAAAAAMsJkwAAAAAAAAAAgOWESQAAAAAAAAAAwHLCJAAAAAAAAAAAYDlhEgAAAAAAAAAAsJwwCQAAAAAAAAAAWE6YBAAAAAAAAAAALCdMAgAAAAAAAAAAlhMmAQAAAAAAAAAAywmTAAAAAAAAAACA5YRJAAAAAAAAAADAcsIkAAAAAAAAAABgOWESAAAAAAAAAACwnDAJAAAAAAAAAABYTpgEAAAAAAAAAAAsJ0wCAAAAAAAAAACWEyYBAAAAAAAAAADLCZMAAAAAAAAAAIDlhEkAAAAAAAAAAMBywiQAAAAAAAAAAGA5YRIAAAAAAAAAALCcMAkAAAAAAAAAAFhOmAQAAAAAAAAAACwnTAIAAAAAAAAAAJYTJgEAAAAAAAAAAMsJkwAAAAAAAAAAgOWESQAAAAAAAAAAwHLCJAAAAAAAAAAAYDlhEgAAAAAAAAAAsJwwCQAAAAAAAAAAWE6YBAAAAAAAAAAALCdMAgAAAAAAAAAAlhMmAQAAAAAAAAAAywmTAAAAAAAAAACA5YRJAAAAAAAAAADAcsIkAAAAAAAAAABgOWESAAAAAAAAAACwnDAJAAAAAAAAAABYTpgEAAAAAAAAAAAsJ0wCAAAAAAAAAACWEyYBAAAAAAAAAADLCZMAAAAAAAAAAIDlhEkAAAAAAAAAAMBywiQAAAAAAAAAAGA5YRIAAAAAAAAAALCcMAkAAAAAAAAAAFhOmAQAAAAAAAAAACwnTAIAAAAAAAAAAJYTJgEAAAAAAAAAAMsJkwAAAAAAAAAAgOWESQAAAAAAAAAAwHLCJAAAAAAAAAAAYDlhEgAAAAAAAAAAsJwwCQAAAAAAAAAAWE6YBAAAAAAAAAAALCdMAgAAAAAAAAAAlhMmAQAAAAAAAAAAywmTAAAAAAAAAACA5YRJAAAAAAAAAADAcsIkAAAAAAAAAABgOWESAAAAAAAAAACwnDAJAAAAAAAAAABYTpgEAAAAAAAAAAAsJ0wCAAAAAAAAAACWEyYBAAAAAAAAAADLCZMAAAAAAAAAAIDlhEkAAAAAAAAAAMBywiQAAAAAAAAAAGA5YRIAAAAAAAAAALCcMAkAAAAAAAAAAFhOmAQAAAAAAAAAACwnTAIAAAAAAAAAAJYTJgEAAAAAAAAAAMsJkwAAAAAAAAAAgOWESQAAAAAAAAAAwHLCJAAAAAAAAAAAYDlhEgAAAAAAAAAAsJwwCQAAAAAAAAAAWE6YBAAAAAAAAAAALCdMAgAAAAAAAAAAlhMmAQAAAAAAAAAAywmTAAAAAAAAAACA5YRJAAAAAAAAAADAcsIkAAAAAAAAAABgOWESAAAAAAAAAACwnDAJAAAAAAAAAABYTpgEAAAAAAAAAAAsJ0wCAAAAAAAAAACWEyYBAAAAAAAAAADLCZMAAAAAAAAAAIDlhEkAAAAAAAAAAMBywiQAAAAAAAAAAGA5YRIAAAAAAAAAALCcMAkAAAAAAAAAAFhOmAQAAAAAAAAAACwnTAIAAAAAAAAAAJYTJgEAAAAAAAAAAMsJkwAAAAAAAAAAgOWESQAAAAAAAAAAwHLCJAAAAAAAAAAAYDlhEgAAAAAAAAAAsJwwCQAAAAAAAAAAWE6YBAAAAAAAAAAALCdMAgAAAAAAAAAAlhMmAQAAAAAAAAAAywmTAAAAAAAAAACA5YRJAAAAAAAAAADAcvfbz6AxxoHq+6onVU+sHlwdmnO+5BhzLqreWD21ekB1U/W26rfmnLcfZc5Lq1dXj61urz5RXT3nfM9Rxj+wen31wurbqy9V11dXzjk/tZ/fBgAAAAAAAAAArLevMKlNYPTE6rbqs9VjjjV4jPHc6p3Vl6s/qL5QXVb9WvX06vl7zLm6+snt9X+vun+b4OiPxhivmXO+Zdf4M6s/3V7vhuo3qm/bXvvZY4xL5pwf2+fvAwAAAAAAAACoaozx6uoV1XnbQ39bvWnO+d7t+TuPMvWtc85Xb8e8vHpR9eTqIdX5c85bdt3ngurN1fdUZ27vc9Wc849X/h5OT/eG93S/W7ldUV1QnVO96lgDxxjntAmLbq8unnO+bM75021WW/podWCM8cJdcy5qEyXdXD1hznnF9g/wnW2ipqvHGOftutVr20RJ11bfPed83ZzzxdWB6qzqbWMMW9UBAAAAAAAAACfqs9Xrqu+onlJ9sHrXGOMJ2/MP2/Xvsu3xP9xxjbOqP6muOsZ93tNmF6pntglD/qJ69xjjUUt+Bae7U/493deKSXPO6+76/xjjeMMPVN9aHZxz3rDjGl8eY7yx+kCbuOkdO+a8cvv5i3POL+6Yc8sY47ern68ur67cPsMZO+b8zJzzjh1z3j3G+FD1jDbbz/3PswMAAAAAAAAAHM+c8927Dr1hjPGq6mnVX885b915cruz1I1zzj/bcY1f3557yl73GGN8S/Xo6hVzzr/aHnt9m8VjntxmcRc4qnvDe3oyVhS6ZPu513JNf179Z3XRdiu2/cx5364xVY+qHtHmj/Xpfc4BAAAAAAAAADghY4z7bneGOrv6yB7nz65e2GZ3qRPxr9Wnqh8dY5w9xrhv9fLqcPXhr++pTy9Hjhzp1ltv7eabb+6aa67pyJEj9/QjnXJO1ff0ZIRJdy2pdOPuE3POr1afbrNS0yOrxhgPqh5e3Tbn/Oc9rvd3288L9nOPY8wBAAAAAAAAANiXMcbjxxi3VV+pfrf6oTnn3+wx9MXVmdXbT+T6c847q0urx1Vf2t7nqupZR+knviEdOXKkAwcO9LnPfa7bbrutgwcPduDAAXHS1qn+np6MMOkh289/P8r5u44/9G6Ov7tzAAAAAAAAAAD2a1ZPqp5a/U719jHG4/YY92PVu+ac/3IiFx9jnFG9tc2KNM+ovqu6tnrnGOPhX8+Dn04OHTrU4cOH/8+xw4cPd+jQoXvoiU45p/R7er8TudkiZ2w/7zzBeScy/u7eo+uvv/6M448CAAAAAAAAAE5nc84j1U3brzeMMS6srqhedteYMcaTqqdUP3c3bnFJdVn1TXPOf9se+/ExxqXV5dWbtse+oTuGgwcPvr965l7HL7/88kvvgUc6pZxC7+meTkaYdNdqRQ85yvlzdo073vi9Vkc60XsAAAAAAAAAAHw97tNmK6ydXl7dUr3/blzvrO3nHbuO39HJ2QHrXum66677/nv6Ge5lTqn39GSESbNNZXVB9Zc7T4wx7ledX321+vuqOed/jDH+qXr4GONhe+w/9+jt54277tH2HnvZaw4AAAAAAAAAwHGNMX65em/1j9WDqxdXF1fP3jHmrOpHqjfPOb9mR6cxxrnVuf1v2/DYMcZDq8/MOb9QfbT6QnXNGOMXqv9qs93WI6v3nJxfxunk3vCenozC7oPbzx/c49z3timpPjLn/Mo+5zxr15iqm6vPVBeMMc7f5xwAAAAAAAAAgP04t/r9NgunfKC6sHrWnPN9O8a8oHpQdc1RrvHK6hPVoe33926/P6dqzvn5Np3E2W36hhvadBXPm3N+fOWP4bR1yr+nZ9x559fEUMc0xri4uq46NOd8yR7nz2kTDp1TPX3OecP2+AO2D/i06kVzznfsmHNR9eHtvAvnnF/cHj+vzapLD6oeM+e8Zcecn61+qbq2esGc847t8edW76o+WT3+ruMAAAAAAK+0hsUAAAFSSURBVAAAAMD/n32FSWOM51XP2349t/qBNluxfWh77PNzzp/aNf7a6svVO9os6fScamyP//Du5aHGGL9avbb67HbM/dtUW99cvWbO+ZZd489sEzpd1KbG+kD1iOr51ZHqkjnnx/bzRwAAAAAAAAAAANbab5h0VXXlMYb8w5zzvF1znl69oc0KSQ+obqreVv3mnPP2o9znpdVPVI+t7qg+Xv3KnHPPPenGGA+sXt9mj7xHVF+qrq+unHN+8rg/DAAAAAAAAAAAOClOeCs3AAAAAAAAAACA47nPPf0AAAAAAAAAAADA6UeYBAAAAAAAAAAALCdMAgAAAAAAAAAAlhMmAQAAAAAAAAAAywmTAAAAAAAAAACA5YRJAAAAAAAAAADAcsIkAAAAAAAAAABgOWESAAAAAAAAAACwnDAJAAAAAAAAAABYTpgEAAAAAAAAAAAs99/b8q4/8A8TtgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACUYAAAObCAYAAACVK8ltAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd7QlZZm28et0oCWDYEDAAOojSNBBHNMIwwgqOYoSRDEgA2YZJQ2SQTI4MiAogoAoQ1SQUT7BAA4OCMyA3ipjwAwoOUh3n++PejezZ9uEhu6zzzl9/dbq1XtXvVX9nnXWqqquuut5RkZHR5EkSZIkSZIkSZIkSZKkyWTKsCcgSZIkSZIkSZIkSZIkSfOawShJkiRJkiRJkiRJkiRJk47BKEmSJEmSJEmSJEmSJEmTjsEoSZIkSZIkSZIkSZIkSZOOwShJkiRJkiRJkiRJkiRJk47BKEmSJEmSJEmSJEmSJEmTjsEoSZIkSZIkSZIkSZIkSZOOwShJkiRJkiRJkiRJkiRJk47BKEmSJEmSJEmSJEmSJEmTjsEoSZIkSZIkSZIkSZIkSZOOwShJkiRJkuaTqhoZ9hwkSZIkSZIkaUE1bdgTkCRJkiRpMqqqkSSj7fOrgJWBlYBLgF8mub1/jCRJkiRJkiRp3hoZHfX+qyRJkiRJ80tVvRM4ArgHeDowG/gqcFiSm4Y5N0mSJEmSJEmazGylJ0mSJEnSfFJVbwSOBw4C3pxkSeBoYHvgH6tqoWHOT5IkSZIkSZImM1vpSZIkSZI0j1XVSPv4BuA7wNlJ/tCWrQX8FDgpyV+qakaSh4YxT0mSJEmSJEmazKwYJUmSJEnSPNAXhiLJaJJR4BXA9F4oqqoupQtGvSXJjVX1OmCLqpo+lElLkiRJkiRJ0iRmxShJkiRJkuaBFoSiqnYHlgUOBP4IPKeqngacB6wGbJLkhqpaGngncDtwEfDwUCYuSZIkSZIkSZOUFaMkSZIkSXoK+itFVdVrgUOBpyWZBXwBeC0Q4CXARkmur6qFgE3pWu39IMn9Yz9zSZIkSZIkSZrcDEZJkiRJkvQU9FWKWo4uBPUV4LC2+lvAIcCzgG8D91TVmsAHgc8AJyY5d8wnLUmSJEmSJEkLgJHR0dFhz0GSJEmSpAmtqtYBLgV+BlyUZJ++dc8FdgAOAH4HLALcCnwhyTFtzJQks8d84pIkSZIkSZI0iRmMkiRJkiRpLlXVSJLRvr+XAM4G3kxXJWrbJLcPbPNiYGXgfuA3SX7WlhuKkiRJkiRJkqT5wGCUJEmSJElPUlUtmeSu3mfgs8CWwG7AmUnubevmGH7qBavGcs6SJEmSJEmStKAwGCVJkiRJ0pNQVW8ETgK2THJdW9arHPU64CPAOb1wlCRJkiRJkiRpbE0Z9gQkSZIkSZqglgNmA1+oqjUBktwNvBX4HnA0sE1VLT68KUqSJEmSJEnSgstglCRJkiRJc6GqRgCSnAbsC4wA5/SFo+4BtgWuBE4EdqyqacOZrSRJkiRJkiQtuAxGSZIkSZI0F5KMVtWM9vlM4HDgYbpw1Bpt+T3ADsAPgNlJZg5rvpIkSZIkSZK0oBoZHR0d9hwkSZIkSRr3qmobYLskW7TvM5I81D6/HTgEuAvYJsnNbfn0JA8Pa86SJEmSJEmStCCzYpQkSZIkSY+hqkaqaiHgpcBmVXUmQJKH+ipHnQ6cDawCXFxVr2jLH+7tYyiTlyRJkiRJkqQFmMEoSZIkSZIGDASZpiT5C3AisBewbVV9CR4JRy3Uxt0IhO7/2qv07y+J5ZolSZIkSZIkaYzZSk+SJEmSpD5VNdILMlXVBsC6wNFJbq+qZYD3AfsD/5Zk2942wD8DDwLnJ/nJUCYvSZIkSZIkSXqEwShJkiRJkuagqnYCDge+A5yS5LK2fFngvcB+wDeBc4HnAB8H3p3ky23ciJWiJEmSJEmSJGl4DEZJkiRJkjSgqrYCTgM+CZyV5HcD65cCtgT2Bp4L/BE4NskRYztTSZIkSZIkSdKjMRglSZIkSVKfqloUOA/4JbBbkofb8rcBywM3AZcn+UtVLQS8BLgvyS1t3JQks4cze0mSJEmSJElSz7RhT0CSJEmSpHFmBvBi4N+B2VW1BnAc8DJgNrA0sDNwWpK/ADf2Nmzt8wxFSZIkSZIkSdI4YMUoSZIkSZJ4JNQ02j5/EdiULvS0Al2rvN2BnwNnAwsD6/aqSUmSJEmSJEmSxh8rRkmSJEmSFkj9QSiA/s/A+4Hf01WPOifJCW2bRYG7gJ8aipIkSZIkSZKk8c1glCRJkiRpgTNQHWpdYB269nnfAL6S5M/AxwbGLQFsDLwO+PBQJi5JkiRJkiRJesJspSdJkiRJWmBV1TuAQ4FbgN8BWwGfBk5KclPfuPWB19O10zsiySFjP1tJkiRJkiRJ0tyYMuwJSJIkSZI0DFW1KXA0cFSS1wGfbKt2B/apqpe0ccsCWwBvAj7RC0VVlf+nliRJkiRJkqRxzIpRkiRJkqQFTgs7fQa4NclHq2pV4D+AM4Ab6apGfRE4LMmPq+rZwBJJftK2n5Jk9pCmL0mSJEmSJEl6AgxGSZIkSZIWOFW1CPA2uhDUr4DvA1cAHwRmA2cBG7a/D03yo75tR5L4n2lJkiRJkiRJGucs+y9JkiRJWuAkuR+4MMkPgM2Bu4BDktyd5F7gJ8DvgB2AFwxsayhKkiRJkiRJkiaAacOegCRJkiRJ80t/daeqWpju/8EzkzyQ5PY2bAVgOeCBNm4xYClgL+DyJL8d+5lLkiRJkiRJkp4qK0ZJkiRJkialgVDUNsCX6FrnnV9Vn+gb+nNgYWCXqtoA2BbYBLi3F4qqKv//LEmSJEmSJEkTzMjoqB0AJEmSJEmTV1XtCJwCnAXcCSxP1z7vAuCtSWZX1SnA2+heILofODLJoUOasiRJkiRJkiRpHjAYJUmSJEmatKrqRcBXgS8An0lyZ1UtAtwEzATWT/KLNnbTttldSa5sy6YkmT32M5ckSZIkSZIkPVXThj0BSZIkSZLmo6cDywDfTXJnW3YOMApsneQXVbVqkpuTXNS/oaEoSZIkSZIkSZrYpgx7ApIkSZIkzUfL0YWjfgRQVZcAawJbJLmhql4KHFJVaw1uaChKkiRJkiRJkiY2g1GSJEmSpEmnqkbax58AvwP2qKrLgNWAzVooagawIbAU8MBwZipJkiRJkiRJml8MRkmSJEmSJrS+EBRVtWxVLQZMBUhyM/Bt4GPAy4HtkvywqpYAtgX2BL7UxkmSJEmSJEmSJpGR0dHRYc9BkiRJkqSnrKreCuwOLAP8O3BekivbukuB1wCXA9cBqwBvAo5OcnAbM5LE/yRLkiRJkiRJ0iRhMEqSJEmSNOFV1cbAWcBFwELA+sAtwMFJzm9jDgZWp2un9y3g8iRntXVTkswextwlSZIkSZIkSfOHwShJkiRJ0oTTq+7UCzRV1ceBJYBDktxXVVsD+wEjwL69cFTbdpEk9/d9NxQlSZIkSZIkSZPQlGFPQJIkSZKkuTHQ8m7ZqloEWBP4ZZL7AJKcC+zbxhxYVZv07eKBqhrpfTEUJUmSJEmSJEmTk8EoSZIkSdKE0gtFVdV2wBXAlcA6wNJt+bQ27gJgH2AmcFRVbdnbvi9YJUmSJEmSJEmapAxGSZIkSZImhP4qT1X1BuAU4HvALcB9wEeqau0kM6tqCjwSjjoAWLj9kSRJkiRJkiQtIEZGR31JVpIkSZI0cVTVcsA76CpE7ZlkVgtKHQYsB2ya5NqqmtJrk1dVKyX5n6FNWpIkSZIkSZI05qwYJUmSJEmaMKpqU7oqUZsBtySZ1VZ9C/gw8Hvgoqr6mySz+ypH/U/bfmQOu5UkSZIkSZIkTUIGoyRJkiRJE8kNwJLAK4FVegtbQOq7wIeAXwOXVdXf9ipG9Y2zbLIkSZIkSZIkLSAMRkmSJEmSJoSqmpbkl8BqwC+BHatqm976Fnr6LvBPwF1tnCRJkiRJkiRpATUyOurLspIkSZKkiaGqpiaZVVUrANcADwAfT3Ju35gpwLOT/HZY85QkSZIkSZIkDZ/BKEmSJEnShNIqR82sqhWB/6ALR+2R5Lw5jB2xfZ4kSZIkSZIkLZgMRkmSJEmSJpyBcNT3gBG6ylFnDXlqkiRJkiRJkqRxYsqwJyBJkiRJEnTVnXp/9z4/mhaKmpbkVuB1wDLA9DGYpiRJkiRJkiRpgjAYJUmSJEkaL6a2v0eSjM5FOOpXwDOTfGH+T1GSJEmSJEmSNFEYjJIkSZIkDU1V/W1V7Q6PBJ0+DFxdVVOSPG7v97bNCHB/25//z5UkSZIkSZIkATBt2BOQJEmSJC2YqmoqsAJwdFWtBVwOHA7sP7f7SjK7/29JkiRJkiRJknyTVpIkSZI0FElmAd8B9gTeDnwe2C3JwcDjVosCqKqRXmWpqtqmqraYX/OVJEmSJEmSJE0sBqMkSZIkSUOT5I/A/wAjwFRgvbZ8tKoes8rxQCjqg8DZwMz5O2NJkiRJkiRJ0kRhMEqSJEmSNKaqamTg8y+AHYADgLdU1ZkASWa2dnv9207rbdcXino/cCSwa5KLx+SHkCRJkiRJkiSNeyOjo0+oO4EkSZIkSU/ZQKBpA+DVwDFJ7q6qZYDdgP2Ac5Js17fdPwDfS/LgwP7eDxwL7JLklLH6OSRJkiRJkiRJ458VoyRJkiRJY6YvFLUTcDqwBvCqtu4O4F+B/YG3VtUZVbViVW0HfAPYsX9fLRR1DIaiJEmSJEmSJElzYMUoSZIkSdKYqqqtgc8DnwTOSvK7gfXLArsA+wJ3AosAhyc5uG/MbsAJwHuSnDpGU5ckSZIkSZIkTSAGoyRJkiRJY6aqFgPOB24Bdk8ysy3fFlge+C/gcrow1CvpqkndnOSCNm5aW3c2cG6Sz4/5DyFJkiRJkiRJmhAMRkmSJEmSxkxVLQNcR9cC7wRgVeA44OVtyJLATknOmMO2U5LMbp8XT3LP2MxakiRJkiRJkjQRGYySJEmSJI2pqvoysAFwA/A84DZgd+DnwDnANGC9JA8PbZKSpAmrqkaSeNNTkiRJkiQxbdgTkCRJkiRNPv0PpatqOjADuK8t2xk4FJgC/FuS49u4RYE7gd8aipIkPRkD55/nA9OBe5P8bnC9JEmSJEma/KwYJUmSJEmapwYeSm8FbAesCdwIfC/JUW3d1CSz2uclgI3pWux9KMnZQ5m8JGlSqKrtgb2A5YEA5yY5oq0zHCVJkiRJ0gLCYJQkSZIkab6oqh2BzwLn0bXLWxVYG/hWki36xr0B+DvgA8ARSQ4ZwnQlSRPYQCj3zXStWU8Ffg1sCqwCnJHko4PjJUmSJEnS5GUwSpIkSZI0z1XVi4FLgVOAE5PcWVWLAzcBo8DrktxaVc8ADgLWAj6b5KS2/ZQks4c0fUnSBNXONa8H1gH2T3JfVT0P2BvYGvhCkg+3sYajJEmSJEma5KYMewKSJEmSpEnpmcBiwP9LcmdbdiYwE9i0haJWTnIb8ElgO0NRkqSnoqrWA+4CjgJua6GokSS/pAvh/huwU1UdCWAoSpIkSZKkyc9glCRJkiRpfngm8Azg5wBVdQnwMmCLJDdU1erAflW1epLfJflJGzdiKEqS9CTNBq4AXgAs2pZNbYHbXwEHAl8Gdq2qk4YzRUmSJEmSNJYMRkmSJEmS5offAHcCO1fVZcDqdJWibqiqGcDGwArAX/o3snqHJOnJSnIFXWWo7wB7V9X6SWYCI33hqEOBC4HrhjdTSZIkSZI0VkZGR73nLEmSJEmaO1U1Av8bZKqqRYER4P5exaeqOg/YHLgd2DLJd6tq8bbsOGDPXvs8SZKeqFZdsHf+WQiYBsxO8mBbti5wAPBq4E1JLq+qqcBoktlVtViSe4c0fUl6TAPHuBFfHJAkSZKeGitGSZIkSZLmSnugPApMbd+3Ac4FrgXOrqrd29C3ABcBS9NVjtoHOIEuFHVULxTVC1lJkvR4BgIDmwGnAT8AvlJVH4FHKkftA1wNfL2q1ksyiy7ASy8U5flH0nhRVf3PahbqfUgyOrBOkiRJ0lyyYpQkSZIk6Qlr4aa/B7ZP8vuq2gH4HHAZ8CfgZXRt8z6bZJe2zbHAS4CXAt8A/l+SL7Z1U3oVpiRJeqKqaifgJOCbdK1b1wBWA05P8o42Zl3gn4F1gQ2TfH0Yc5WkR1NVM5I81Pd9M+A9dC+135jkE0ObnCRJkjRJ+KaBJEmSJGluLE8XcDqhqlYEXgF8ki4otROwGd1D6HdX1REAST4EvBlYNcnOhqIkSXOrv7pTVa0KHAjsT3f+2QHYGNgL2L6qToBHKkftD9wIvHCs5yxJj6WqDgcOr6ql2vdtgC/RVbdbBvhoVX2zqpYe4jQlSZKkCc+KUZIkSZKkxzXQuuhQYEfgerpKUJ9Icm7f2GcBewM7AW9OctUQpixJmgSq6qVJbhpYti7wVboqUN/uW/4MuvPPrsAGSa5sy5+T5LdjN2tJemxVNQM4HPgAcCjwaeAY4AbgaGA6sBXwKeDHwBZJ/jSc2UqSJEkTmxWjJEmSJEmPK8loVU1tn/cEzgZWBZ4F/BGgqqa39X8APg8sDjx3KBOWJE14VXUgcFJVPb2/YhTwdGARuhZ6VNU0gCS30Z1/ptN3/umFogb2IUlD09rn7UtX/e4TwO50185XJnkoyb3AV+iCU6sA51fV04c1X0mSJGkiMxglSZI0D/UeyvR993pL0qSRZFZfOGoPulYfiwLHVtWzkzzcdxy8g+6B9eLDma0kaRK4DvhYq5LyjL7l/wX8BjioqpZJMrN3fgLuBv4EPDy4s17lQ0kapr6XCe4BDgaOBPYE1gN6xzKS3A9cCLwfeBHw1apaZswnLEmSJE1wPqiTJEmaB6rqBQBJZrbvG1bV0klmD3dmkjRvDYSj9qJr/bEi8LmqWqE9nF4UeBOwMHDL8GYrSZqIepWdkpyf5PtV9UbgiqrasC3/KXAe8Bpg/6p6Zjs/LQxsAIwCvxzS9CVpjvruGzzcvr+Z7np5P2AfYAawXVUt3dsmyYN04aiPAmsD647trCVJkqSJb2R01BelJEmSnoqqeh5dCfzZSd5bVTsApwNbJrlguLOTpPmjqqYmmdU+H0b3JvudwJXACPAPwLFJDhneLCVJE9XAeWZL4Gi61q37Jbm0LT8TeCNwG/ANuvauGwEHJzl0KBOXpDl4jPsGWyS5sKqWpAs/7UOrIpXkrr7tFwZWaMFQSZIkSXPBilGSJElP3d3A/cD2VXUF3c3NXYBLhzkpSZqfBipHfYLugfXCwN8DVwMb9UJRthWVJD0RVbVaVa1SVVPaeWbrqtoqyXl0gYFFgYOraiOAJNsDB9JVJ9wSWAT4YC8U5flH0jhyH/AAf33f4DKAFoI6AjgE2BvYo4WlaOsf6IWiPLZJkiRJc8eKUZIkSfNAVU0HLqGrkHJ1kte25Y+86S5Jk9FARY+jgZ2BbZNc1pZNsa2oJOnxtDasRwIvB3YCXg+cBLwjyeltzDbAJ4GHgH2SXNK3/RLA/X2trT3/SBq6qno1cFOSu6tqBvBV/vq+wbS+Y9fiwMeBPehePDg8yZ3Dmb0kSZI0OfhmgSRJ0lPUKqYsCUwHvg28tKpOgUcqqkwb5vwkaW7M7Rvo7Tg3pX3+CF2lqMv61vtQWpL0uJLcB3wOWJkuOHAi8KEkp/edZ74C7AcsBBxUVW/s28U9fcGCEc8/koatqt4HfA94e6v+NAWYwV/fN5jZXrYiyT3A4cAxdAGpVYYxd0mSJGkyMRglSZL0JFTVSO9zkllJbgfeCuwAnAFsXVWntvUze+2mejc7+7eXpPGgql4DXZDpSYSjZve11fte25/HOUnSXEnyA+BUunDUrcCNbfns3ssGSc6lqxo1FTiqqjZuy0f79mOJfElDl+Rf6YJRBwLbJ3kA2BDYkb++b/Bw30tV97dW1a9LcvUQpi5JkiRNKgajJEmS5lJ7A320fV6hqlZvJfFvT/Jr4FC6m5xb9t3knFVVWwFfraqnDW3ykjQHVXUEcHFVfRCedDhq1kBodLQXlpIkaS78GTgeWBg4oqr+rrXFm9kXwj2XLmiwNLD48KYqSXPW7hGQ5O+Aa4HDq2p3YGqSW5nzfYOZrWXo16pqRpKr2r58jiNJkiQ9BSOjo75AJUmS9GRU1Q7A/sBywK/p2n2cnuSOqloe+ASwE3ANcCWwF3Bkkn2HNGVJ+iutxcfRwP10D6OPS/Lptm7KE21FNBAafUOSb86vOUuSJr+qWgv4Gt119keA7/SFbp+Z5HdV9fwkvxjmPCVp0MB18fOAZwBXAb+kC35+IcndVfUcYE/++r7BUUn2GcrkJUmSpEnINw0kSZKeoP5KKFW1HvCvwIXA+4FfAfsAn6iqZyT5Dd0boMcCKwLvBPbphaJsMSVpPKiqFwPbAd8CtqQLRn2svc3+hCtHDTz8eT/w71X1+vk3c0nSRDdwbf3sqnpxVVVvWZJrgU2A5YGjgNe0yqubA5dW1aq9UJTX1pLGk77r4p2A/wQ+BFwNzKB7uertVbVEkt8Ch/DX9w32adt7bJMkSZLmAStGSZIkzaX2xufawCuBfZM81JZ/EXgjcDpwWJLbqmoxYCqwbJJb2rgnXIFFkuanqloJ+DxweJJLqmpF4AJgGboKd73KUVOTzHqUfQyGoo4F3pvk1DH5ISRJE87AueNtwAeBoqsO9SNg2771rwAuorumvhZYl6664Z5DmLokPSFV9WrgMroXpj5L9wLCisAXgTXoKkOd3ipHLQpMw/sGkiRJ0nxhMEqSJGkutEpRpwMPA6ckObiqFkryl7b+DOBNdEGDI5LcNrD9Iw+BJGk8qKqnJ/lTVU1P8nBVrUBXDW8Z4EjgX/oeTv+fY9jAg+0PAMdgKErSkM3hWDUtycxHW6/hqartgZPpQrUX0FUx/CDwPeD1feeYlYF/AR4ELk1yUlvu71LS0FXVMknuGFj2PuAA4O+SpG/5dLrqUSsABwJfTHLXwLYe2yRJkqR5yFZ6kiRJc+d+4PfAs9sfkvylqma0zzsCXwPeB+zfW97jzU1J40FVjfRac7RQ1NQWipqa5NfAZsAdwMeA3do2CwFbV9WavX0MVIo6BtjFUJSkYRo4Nm1cVZ8Brqyqw6pqU+iux2xPNHxVtTawN3Bgkr2B24F3Ad8GXg58t+9cdQuwMbB9XyhqitfWkoatqk4ATh78vz8wi6513sJ9Y6cneRg4GHg68HHg3VU1rX9Dj22SJEnSvGUwSpIkaS4k+T5d6Ok6YKeq2q0tf6gvHPUO4HLg+l6bPUkaT5KMtmDA66tq0V6bvCSz+sJRm9OFoz5aVR8F3g+cA7y0tw+AqvoIcBxdpahThvHzSFJP37HpHcBXgJXpAjdvAY6rqgP7x2nszCGMtgJwJXB8Vb2Irk3e2XS/q+OBVwOX9YWjZia5r7cvW0xJGrZ2fLoMOL7dE1i4b/VNwOLAFr0FLRQF8BDw33RV8B7sr2ooSZIkad6zlZ4kSdIcDFQbmAEslOSe9mb67Kp6FV2LqefQtcw7sTfWMJSkiaCqXgpcBeyb5PiB4960JDOr6ll0VfAKWLSNPbhvH6sAXwRO7lXwkKRhq6qX0x27jgE+l+SOFry5DvgRsHGSPw5zjguyqnoTXfA2wJrAd4GL6AICuya5vaqWpAsVPAf4aZIa1nwl6Ymoqs2ADwDvSfI/bdmh/G8F1rOS3NuqsO4OrJxkt6FNWJIkSVqAWDFKkiRpwEA4YBvgAuC/q+oKYK+qWrxVjtoD+C3wT1W1CzxSOWpK/77G/AeQpCfm58AvgTfD/20t1XtrPckfgEvoQlEf7oWi+o5ztwBvNRQlaZxZma798cVJ7mjLPgXcRvfA+o9V9ZyhzW4BVlXbA+fSVR+8J8l36CqqFHBDktvb0JWA+4CDgMOGMVdJeiz9/+9vpgOvB46tqhe0ZZ8GzgBOBE6vqk/RvWB1EPCzvn1530CSJEmaj6wYJUmS9CiqagfgVLqWHj8H1gbWAG4FNkhyX1WtDRwBvIiuctSxw5qvJD1RrV3erKrahK7V1LuSnDkwZgbwbuAEYO8kh7blvcp5j4RIJWk8ae0/90+yWPt+CbAasEmSG6rqlXTt2o5trUM1BqpqKl1A7R7g8CQPtOXPAn4MfDHJ+6tqUWBL4G10bVp/3cZ53pE07rQKqr+hO7ZtCpwGfB/YJcmv2jFtJ+B9wLLAH4AveO9AkiRJGjtWjJIkSZqDqloJ2JfuDfUPJNk/ycbACN1b7c8GSPIDYE+6diB3Dmm6kjRXksxqH/+b1laqqhYaePN9OrAc8NHBUFTbhw+nJY0brTVRz2+BKVW1UQtFrQ5s2kJRTwM2pgu1a4xU1ebAFcAbgOv7QlFTWnXCA4Fdq+rbwJeBfwW+1R9c87wjaTypqpHWuvUm4JXtGHUZ8E7gVcDJVfW8JPcl+QzwD3TV8jbshaLmUHVKkiRJ0nzghbckSdKcPQtYGrgsyd0AVXUhMArskOSWqlq1qmYkuRpYP8lpw5uuJD22qtq8qrapquf3liX5OV1lvG2BNXqVoNq6e+kqehzTtn8kFCVJ40lVbQvsV1XLAyQ5my70eTGwJrB5kuurahFgG7qqHRdaLWr+aYGBkd5nusqrLwSeT1cthapaqO+8cjqwK7BE+/7RJEf0bS9J40qS0SQ/BK4GDmvXyg/StaF+J/C3wIm9tnpJbkvyZ+D38EgVPK+tJUmSpDFgKz1JkqQ5qKr1ga8Dqye5uaq+RldtoNeCZU1gN+CkJNf2WnvY4kPSeFRVy9C1BX0DcANwFnAG8Ee6ylDXAD8Bdk5yz7DmKUlPRP/1VqsUdTzwXroqnmcm+XW7VjsZeB5dBdC76K7l3k0X+jx4cF966lr49sEkvQf/69MFoW4B9gA+DvwX8KoWxp2WZGbf9gsDoy1cYChX0rgxcO5ZOMkDLbi5EfAvwOeAA9p9gWl01Qk/C1xP11bvf4Y1d0mSJGlBZ8UoSZKkObsN+AuwdVV9HVgD2LiFoqYDGwCrAA/A/7b28MGapPEoyR1JNgC2oAtG7U8X/vwUsBDwTbqqKsuD1TkkjW99D6bfCpxLF36aBewHvKuqnpHkBuAtwA+B9wDHAivRVSLqhaKmeH22M1UAACAASURBVO0277SKXYfTVe9auKreQXeueV6S+4Aj2/oCLuiFolqAAIAkD/SFoqymImnc6Dv3bA2cVlVrtmX/D7gK2Ap4cRs7k65q4S50LfRWG8qkJUmSJAFWjJIkSQuwgTc+lwCmJ7mjb/3RwIeAu+kqRX2njduMrjLBXklOHMLUJelRDRzblgYWBR7oHd+qajG6Vkb/DLwOeAi4lK611KlJ3jOMeUvS3KiqrYAvAQcCV9Id67YD3taWnZik17JtWbrqeH+2EtH8VVX7A/vS/U5eB3yArnLXaKsQtRhd1aj3Ad8HtuiFo/orR0nSeFRVSwJX0L1QcD9dIPf0tvom4Pwku/SNn0oXDrValCRJkjREBqMkSdICr6reBnyQrlLKxcAZSa6uqsXpWq/sStdy6nbgGXQl8Y+yBYuk8WYgFPU2upafLwF+C9wIvCvJQ23904Dl6FobrUf3hvvHkhw9jLlL0hPRKtotDJxP91B6+yT3t3ULAUcA/wgcAJyW5NY57cNrt3lr4PzzTeDvgB/QtWj9SVveqxDVC0e9m66K4SZJHh7S1CXpUQ2eL1r16F2BLYEA6wM/pjsn3UfXUu/dSf5tDvsykCtJkiQNicEoSZK0QKuqjYCzgYvoWudtBdwC7J3k0jamFxpYCbgc+G6Ss9o6b25KGneqajvg83RVOn4KrAjsCPwJWC/J7wfGv4Kuat7VYz1XSXoyquo/gV8k2Xpg+bOBC+haHh8KnJTkz0OY4gKnBQZmAtcC99JVjDoZ+FSvWkpVTU0yq4Wj9mx/Nkty8ZCmLUmPq6qeCdyT5IHWNvQSujDUqXQV8LYDRoCHgZuB3ecUzJUkSZI0HFOGPQFJkqSx1KoMPPI3UMDRwDuT7AysA7wAOKqqNgZIcgSwBfCyJP9oKErSeFJVb6mqlfq+L09XBeoIupDn8Un2AH4PLAIs1jd2OkCS/+yFoqrK/ydKmgj+ALywqhaBR9oV0YKfNwHTgP2BDdp6j23zQd81NUkebpVV1k7yerqWhu8FPl5VK7cxs9rv4i90Vb1eZShK0nhWVW+gqwq1d1W9MMlvgN2BvYCXJ9mb7lzzY2BlYBNgmWHNV5IkSdJf86aQJElaYAyUwX9WVS0KrAXcm+Th1t7jeuA1dO2lDq+qTQCSPJjkgf79GYqSNGxVdSpwPP/3/3aLAM8Hrklydxt3MbAUsGmSn1XVWtA9xB7cp8c2SeNFf+hmDg6nawF6FHSBm7bNIsAsulZH5wKHVtXSHtvmvYH2eS+uqlWqatXe7yLJfsDBwHuAParq+W3TLYAzgaWTXNO29x6lpPHqKuDrwObAN6pqS7oW1YcD72nHvZ8meRNdYGqHdl9BkiRJ0jjhTQdJkrTA6Htwsz3w73RtPtaie3gGMFpV05P8iC4c9Qzg6KraYhjzlTQ59T/8fZyH/o+3n22BjYDtW9hpubZqUWBJ4M9t3CXAmnStim6sqhcB+1bVG5/svy1J89tA6GblqvrbqlqvV+kOuIHuofQuVXVWVf1NVa0B7EAXvLkVuJquasfSQ/gRJr2+38+OdO2m/wO4pqr2qKrF25h96cJR7wVOraoTgHOA/+5v62pwTdJ41M5F9yfZjq4i6/fpQrdH0lVhfRrwN73xST7TX2F6CFOWJEmSNAdenEuSpEmvP3jQggAnAdfQ3dRcFjiiqjZsb7fP7AtHrUtXCn/RsZ+1pMlkIAC1UFs2o6+K3ZMxA1gYuLUFPv+rqp5L1zLvZmD3qrocWI2uUtQNLVCwMV1VvNufwr8tSfPNQChqB+A84KvAqcB/VNXzktwFnAzsRtfC6Erge3RtRI9J8i26QNSv6dq2aR4ZuLZ+LXAc8Fngn4DT6QJrB1TVM+CRcNSedOeedYGPJdl/cF+SNN4kGe0FnJJcmuRtwDuAtYH1gH8ADqyqZeewrYFPSZIkaZwYGR19KvfhJUmSJo6qWoKurcoywCeT3F9VGwL70rWdeneSr7UHNNNae72lk/x5eLOWNNENPODfHNiO7phzJ90D/KuS3Pck9vsm4ATgQaCADwEnJZlVVXsBBwH3ADsmuaiqlqGrMHUCsHeSTz/lH06S5qOqeitdGOpw4It0x7DjgABbJbm5jVse2BB4CPhJku9X1drARcC/Jdl9GPOf7Krq2cA2dAHcjyS5r11v7wIcCnwaODjJbX3jZyf5Y/s+xeCApImoqtYE3kxXDe/5wBZJLhzqpCRJkiQ9KoNRkiRpgdAqRZ0B/Ar4fJJ/6Vv3ZuCfgZWAdyS5tP/t9d5boj64kfRUVNXb6SpqfAmYRhfSXA84Cjg2yR+exD7PpwsD/ArYNsl1fesOpgtL/Xf7sxxd+9DjkxzcxjwS2pKk8aSqVge+QBdsOri1Ab0WuIIuDDoV2DjJjwe2WxrYHvgocEOSzdtyj3fzUFW9HrgM+BFwQZID+tYtAvwjcBhdkO3QJLcPbO/vQ9KEM/DCw3S66+tXJfnycGcmSZIk6bHYSk+SJE1KVTWlV/K++QXwM+BvgOdX1YzeiiSXAgcAPwHOqqrNk4z2/rQxhqIkPWlVtRpdAPOfgfcn2Z7uLfP7gFc9if1NbS07Xgt8k64931Ht7XUAkuxN92D6P4DVgRuB9/WFoqb4UFrSeDGHlmpLAN8BTq6qlYCrgHOAt9MFblYCvlhVq7bte9d9L2p/LuwLRXm8m/d+CFwOvAxYqwXSAEhyP/AZutZ6HwYO6b/2bmP8fUiacAaOXbOS/KoXihq4/yBJkiRpHLFilCRJmlSq6m/o2uBd076/G1gqyZFV9VK6FlKr07Wyurw/8NTa6n0KOC7JZ8d+9pImq6raiK4d1BZJrm7LLgFWbct+WFVLJblzbqpoVNUzk/yxqj5AVx3l58CHklw/MG5akpl9362CJ2lcaO3V7ktyT/v+t8DvgNuAVZNcW1Vn0AWl3tPXhu0mYBXgbmClJH9qy0eAZXoVijzezTu981Pf34sDnwM2A3YDvtT7PbbxiwAfAe5KcsJwZi1JkiRJkhZ0vsUgSZImjapaEtgEuKiq1qmqrYGTgb8AJLkJ2J2uctTngfWqampv+ySXABsZipL0VPRXPamql7WPKwKL9IWiLgVWAzZroajXAGdX1bPmsorG7QBJjgeOAV4AHNv7d6tqpD3Antm/kSEBSeNBqwT1KeA97fu76KpEPS/JAy0UNRV4KfCHvlDUSsADdGGcnXuhKOiqefSFokY83j01A5W8lqqqRYGnA7QQ1E50lQuPArZtYSna+vvp2uidMId9SdLQDFyvP6lnJB7TJEmSpInDilGSJGlSqar1gX2ANYHFgJ2Bs+jK3I+2MavSVW5Zke5hzhVJZg3s5wlXbJGkOamqtwOfBN4KPAhcDRwEvAJYG9g8yXVVtTDwPmALumoomct/55FqKFX1QbrqHD8F9kjyw3n040jSPFdV04DP0l2PfRnYiu4Y9pnetVmrOnQN8Gu6NnozgTcBHwB26h0zrQw17/VfD1fVtsCudAHcWcCJwAVJftrOY18BXg98CPhKf+UoSRqvWtXoN9AFPs8Erktyx+PdDxg4Pj4P+G2Sh8dk0pIkSZLmmhWjJEnShFdVH6+q1wIk+QZwJV27lQeA+5PMbO0+prYxNwPvAn4BfAnYYHCfhqIkza2BN8+XAfaie3Ac4FbgQrrg5nrAOi0UtQjwFmBv4MzBUFQLDTymJLN7b7onOQ44kq66yilVtey8+NkkaX5o12jvBK4DtgQupmvH1gtFTW1Vhz5GF7q5CriULkx1Qf8x01DUvNf30H974HTgeuA0uhDU4cDxVbVGkgeAbYFv0Z333l5V04cyaUl6gtpLDOcBfw9sDFwA7F1Vy/fahj7Kdv2hqD2AbwDPGqNpS5IkSXoSDEZJkqQJq7WIKuATdNVYeu6nCwbcAJxYVVsAJJnVFx64ma5ty5+B54zpxCVNSn0PSDYH1qF7gHxukruS/JmuzdA1wMPAR6tq17bsOOCYJCe17UeqascWCJjZ3/LzMf7t/nDUCcCxwKd77aQkabyqqqWAJYEfAxsBO1bV0tBdu7W/vw5sCPyojds9yWFte1sZzUdV9QJgD+AwYN8k+yX5OF1r6qWAuwCS3AdsB3wfmG3lFEnjWat0tzXwT8AGSZalqzS9E7DPo4WjBkJR7wcOBo5L8uux/QkkSZIkzQ1b6UmSpAmrd1OyqpZKcmdV/T1wT5L/bOs3APYFXgLskuS8vm1fmORnVbVkkruG8xNImmyq6tnA5cAqdJWiXpPkz70WT1W1Gt1DmG2BGcC1wMVJTm/bTwHWp6uIciGwdQt1Th1s+fko//5ftZKyNaik8WROx6RW3e4+umpDb6OruHdakjseZ1+2z5vPqurldOe1dya5sC27BFgd2CTJ9VX1fOA3SR6uqmlJZg5vxpL02KpqI7rr7bWB3YAb+sJOn6YLeZ4DHJTkN333HQZDUccC701y6lB+EEmSJElPmMEoSZI04bW3OJcB/gj8EPhwkm+3dW+ia1H1EmDnJBdX1dbAGcA/JLmqtw+DA5Lm1qM84N8c2BVYly7YdHFriTer72HKFOBpwMO9qhp94aml6N5efydd5Y25Ckc93vwkaVgGHio/F/gLMDXJb9qyacDn6MKjewKnJrmrqrYCXgkcnuRPw5n9gqmqNqFrPf2yJD+tqkvp2rVukuSGqlqDrq3enkmu79vO84+kcaXdN1gM+BqwKnBHkmrrnpbkwfb508A2wEXAAUlufZRQ1C5JThnCjyJJkiRpLtlKT5IkTUj9Je2TjLZ2UevTBaAOqqp12rqvAwcBNwMXVtU3gS/QPVi7qn8fYzl/SZND3wOStatq1bbsArr2eP8FnFlVL2vVM6a2sVOSzE5yPzCrLRtpoahpSe4E9gdOBtYCzmnbzHoibfUGWn487nhJGit9x8ztgH+na3t8RQs+0Y6VO9MFcQ4Bjqqq/YGvAPcaipp/+s8dVbVCVS3Xvn6XrvX0gVV1Pl2YYPMWiloIeB3dCwr/5x6j19aSxpt23+AeuhcYrgFeVFWHtnUPVtWM9nl34HzgXcALe9sCVNWHgCMxFCVJkiRNKFaMkiRJE1pVvaLXOq99Xwf4JnA1sG+SK9vy1wKb0gWnLuqVu7cFi6Snoj1IfjHwI+BsurfK09a9me7B/krAOq3d0KNWfRp4E3014O+Bd9O1KzoL2OnxKkcN7OOdwAvanGxrJGloBo5NGwDnAv9KVzHqlcAbgA8k+XQbMwU4AdgBuAP4TJIjhzH3BcHA72dbutDAt+l+R7cBH6OrZPg0YPXWjnpxuooqRwP79H53kjRePFbluqpahe5FhtWAY5N8qi2fkeSh9nmd3v2E9v3VwPeA9yU5eb7/AJIkSZLmGYNRkiRpwmrBgRuBM5Ps2Ld8HeAbdC2o9h24mTl9sG3VGE9b0iRUVXvRVac7DfhUkh+35b1w1HOB9ZNc9wT2tRNwPHAJcB/wKrpQ5wXAto8Wjhp4sP0BuhYf2yX50rz5KSXpqamqxYB/BJ5FF6Z5oKpeRBe8eQ/wwSQn9I1/CfBQkp+37167zUdVtSNdGOoE4Lwk17Tly9O1NtwJuBb4T2BFukDbUUkOaeNsnydpXBi4Ll4LeD7dcetqIMn/Z+8so+yosij8dYzgBAs+MMiB4Dq4BIfgrsEGd3cnQRKCEyS4u7vN4MwgwTc+uLuGQObHORUqRSdE3mtJn28tFumS21X9qm7dV2ffvfW1mc2NiztnB86QdEJsP1QcFT8XcdftgAXKE7OSJEmSJEmSJGkdpDAqSZIkSZJWi5lNBewF7A1cJOmfpXWFOOpR4ChJD1X2zcJNkiSjTLXvMLNOkgbFv/cFTuTP4qiV8aLLHMCUwBcjmL3eDXgYF0b1lfS9mXUBDsML0vcDG0dxZqg4qlL82Q3oh89mz4iPJElaBNEXDgDeBy6VdGZp3Yy48OafwG7ldaVtcuxWR2LCwe34M+yEiHuleNaY2RTAEvhn1AV4BnhI0nWxXYrWkjbDXzgRZV/VgggH1ePxeOlJ8UkH9wO7SPogxFF9gVmB8wqhZ5IkSZIkSZIkYxcpjEqSJEmSpFUwvBfMZtYV2BU4BBhQEUctDTyEu0qtJunDJjrcJEnGciJ+421JP1ec6Apx1IVAH0mvxPI1gfElXfkX7S6HF6ZXlPRoqSA9Ce7gsRlwGbB1LG8AqIiiTgF2SFFUkiQjS7hgUE9hi5nNB5wLLIT3k4cXwtJYPyMe17YjsH9G5zUtZrY27ha1qqRnS8v/NAaviqBSFJW0JSpi9NmACYCJgGclfRPL855oAYRz6/XAobgY6m3gGGA94H/AepI+jokJZwELAstKerqZDjlJkiRJkiRJkjrRrrkPIEmSJEmSZGQovXyeNv5fiAE+Ac4AjgO2NbNzSvv8G1gJOD9FUUmS1IoQXT4KHGxmnSX9amYdAaKQfwywNbBrzEJH0i2FKKoQIAyHH4DO+Ix2QvzUQdLXwAHA58CGwN3FDpX4vH6kKCpJkpHEzBY1syUk/R5OdLub2dE1bL+h9OMLuNvQ47gD3uLl/lDSO8BJwBXAIJKmZlpc3PFVeWHpGbNAiNuIa6WhtE0KQJI2Q+me6ImPx+4FHgDuibFY3hMtgOijVsPd7S4Bnpf0Le44fTruELVPTHB4GZ9stUWKopIkSZIkSZJk7CSFUUmSJEmStBrMbHHgPTPbQNKQijjqLOAc4J9m1rfYR9J9ks6I/RsaazdJkmQUeQZ4ES/s71sSR3WK9WcA7+CuJ4dEFN5Q/qJY9jHwMrCzmc0e2w+OdVMB3wNX465R5eLcP3GnqBYdn5f9cJK0HMxsPGAp4GEzW8XM1sX7kR/H5F6t7DuumTWY2fgR/fk8sBPwCe6st2RFHPU2sJOk00b39yejzQe4MLd7dYWZTQZsjovZCiFwWtAnbZboL/vHf+sDcwE/An3MbIfmPLa2iJkdb2ZrVRa3wz8XJH0e7w86xjj8ROBpYBVgcGzzoqSbor2smSRJkiRJkiTJWEYO8pMkSZIkabGUC2tmNiXwHT4r9wIzW6cQR0WcwUdAX+ALYC8zu6raXhZwkiQZVSr90NRmNqWk74FVgVfwAv++ZjZeKRJqUrz4fxbwlKSvRtDmVGY2vZl1BpD0Lh41tTywn5ktENtNAMwd7R4s6aJYXnynmxbYslaiKDObxcwWDnesmhH9dvtatpkkyegh6Uc8WuhGPMLzGmBLPAZ0tMZMlYipdXER57PAnfHzeJKeB7bAnYkuBpaoiKO+K9oa3XNLGqfy/GlXiJwAQhBwJ9DbzJY1s3FiuwnxZ97mwCdFdGyStFVCVLoZcCVwrqQHw3GoAXgVeKQ5j68tEe8CJgbWBj6rrC4+j1nMbCGAwuU1nlP3AzMAU1TbTcevJEmSJEmSJBn7SGFUkiRJkiQtllJhbWfgPtwpZX/8JeaVhTiqVLwbB3gDn7n772Y45CRJxiIqBf4NgAuATc1sMkk/AOvh0VA7AgfGdh2AJYAJgD0knVy0VbRbanNTXIzwDHC9mW0T608DegFrATeZ2dXAVXjf9rikD0pt/R7/P1LSZTU67154se9h4AEzu8TMphrDNvub2eUwNB4wxVFJ0gKQ9Ax+rzfg74iGFC51o+OYUerftsT7ka/wPu5zXHjV28ymkvQCsBVeyL4KWG54bSW1o/T5rI1/Pvea2U5mNnlschjwJnALcLaZHQuciQt2+0m6vhkOO0laGp2AfwAfF+J3M7sTmAWPYnvJzBYxs38050G2ERokfQPMI+kxM1vVzDaMMfxg4A5gSmB7M5sFhoqjxgFmxsfxPzbb0SdJkiRJkiRJ0mSkMCpJkiRJkhZHZTb7zMA/gRvwl88vAIcAdwFXmNlGpRnvi+DxVb0knVVtK0mSZFQoFZC3As4HBDwp6Qsza18SRz0D7Ghmwp1XzgTuKc82L8d/RptrAufFvv2BWfHYvUNi+yOBXYDbgHljt70knRD716VvM7N+wDbAANwN4QA8IuawMWhzf2B7YBMzuwBSHJUkLQEz6xB9yQ/AQXgB+VIz2yQ2GVLta0am7zGzbsChwJF4v7WNpHWBL4EFiHdR4Ry1PfAzMH1NTir5S+LzvQKPZx0Pj3/tZ2Yzh1BuM9zpaxn885kcF/r2jv3r+i6xcINtit+VJH/FcPq8TsC3QDFOvAOYE1hd0kAzmw7YG5grr+G6UzynBof76mXAacA6ZtZO0q34WHY7POZwLTObB3d83RK4IpxgkyRJkiRJkiQZy2kYMiQn4CVJkiRJ0jIxs0VxsdP6eOTKuyWhQjfgCGBd3EHqJ2BF4PDCoSVJkmRMMbNlcLHTscCAmJWOmXUCJgyR1PjADsBSeJHsVkkXxnYNVdcTM5sIWAMwoLekn8xsNuBUoBtwnqRjS9uPB/wm6Zf4uV09Ij7Cweow3P3qVkm/m9m4uLhhO2BxSRrFNpfBRWXPA+8DuwGXSuoZ69tL+q12Z5EkyYhorE8qrVsIOBzoAWwu6YrSujklvTSSv6M77gK1nqSHY9kdeP+2jqRnzWxySZ+HaKCLpC/G7MySkSGcoU4CXgTOxp9ZG+GOULcAB0l6PbadFhgE/FyKN6zX86fs0NgAwzqGjei6TZKmwMzmwr+Lfhs/XwisjrsVTwOsIemFcA7tCewH7C7pnuY65rEZM5tA0vdF32Bms0p6Pfqth/G+7UDg+hjP7ggcA0yGvzf4Cji9POEg+5gkSZIkSZIkGbtJYVSSJEmSJC2OKJJ1BT7Are2fktQ91nUoRbxMib943hz4GLhRUv9Yly83kyQZY8zsYFwksESpaNsXmBvvp46VdG1RLDaz8ST9GNv9qYBsZisBl+MFmVMknVWIg8xsVnyW+xxAf0nHN3I8denbQtx1DjAxsLWkz0vreuAF8wUlPTsKbbbDHbVOAjbE40oOAQ4mxVFJ0uRUxCdL4uLzb4CnJT0XyxfB3Z56AJvgjp1rA1cD3YF//VUfZGY7ACcDE0saHBFTc+LCgYERL3UcsI2kdxs7vqT2mNm6wOLAosD+kh4rrdsYuAS4GThC0suN7F+v50/5ulwTv+5mBt7GI2wfLQsgav37k6QxKtflTHjE5FHAGSGKnxl311wadze+AHdhWxvog99HfZrl4MdyYoLUHvhY8hEz2xl3vptH0otmNjXwFPArsD9wQ4zR58BFbB2AD8OJum6CzyRJkiRJkiRJWhZp55skSZIkSYugHFMg6XdJH+GOKh2BZc1s7Vg3uIhfkvSppJOAxYAeJVFUuyycJElSQ/4OLGNm65vZ88DGwGd4/NRZZjZ7qaDyEwwtqDVWZJkUd06aBhgcyxpCHPQ6sDvu5LGHmR1V3blefVvEAj6JF48+L84hVr8E/I4LwUalzd+BJ/Bomack/YQXro4DtjCzi2O7P8XqZQxqktSeUpG/J3A3sBce6XlJuGkg6SncIe8W4ErgEbzgf7Skh6ouPqV/T25mE8aP/wJ+A440sxtwUdTaIYoaFx+3dQbGb+z4krqxCR7vNSvwKfwRVSfpKjxWanXgODObs7pzHZ8/xXW5JXANPvZ/BXdVvAzoZWYT5vWRNBUVUdRiuJjwUzxydIcQk7+Fuxc/gkcoP4P3qwfg/WWfoq2mP4OxnsH4c+U2M+sN9MMdul6OSVQf4cLfjsAJwHrxfuAVSfdLurskihreeD1JkiRJkiRJkrGMdIxKkiRJkqTZqbx8ng93LPmvpB8ijuU+4FHgQEmPxnbtgCGNRFTlbPJWhpl1lvRzcx9HkpQpRXN0x91TlsULta/hjkpfm9lWuBvSopLeHIW218ddB2YEVpL0aPRpDSESmg0XIgwoIvnqyV/1m2Y2AfA5ft5XlpZPNirxVyVXra7Arrh7VNk5ahLcJeS5dJBKktpRGWdNiRfyzwGuBabGYzwnx2OFTo3tugGrAvMDd0u6NJYX93G5zSLy+E48Qq8Bd4zaEHfsWFDSmyEm2ADoCxxSCNqT+lJ25TOzM4GdcEHcEZI+rmy7KS5GWl3SnU14jHMDt+GRfqeX4soGAfcC24XYIUmaDDPbGugF/BuPlZwfd/U8Dugl6ecYv22L96XvASrc2NKJqD6E2GwWvG+YFnfx2qu0vkNMpiqco37Ex/LX5XuCJEmSJEmSJGm7pDAqSZIkSZIWg5ltDhyDz7Y9D3gmhAmrAHfgDgSHlsRRKYJq5cRnPqOkY5v7WJK2S6XAPzEesdFB0iexbD5gCuCHUrGrAy7u2QJYX9Lbw2szfu4kaVDp5w3wIs3EwGaNiKMmlvRNHU97pIhj6oK7XG0h6bpYvhkek7eHpPdGo92uwG54rN7FkrY2sz2Iv6mkJ2p1DkmSODGemhBYB9inEJqY2fy4kOlvwKmFOCrWlUU1jcWD9sSd4C4ErpH0SCyfM9qcH7gdeBaPIF0f6CPpuNgux3I1ZiTErpfgMdTHAGdK+rSyftZwMGwyIuavHx63+HwsuwF3fekh6bkQ9X2RwtmkKTCzBYF7cAH8uZK+DOH6dsA++P1ziqSvh7N/iqJqTOG+Fe8HuuGfD8A4wFqVeNCyOGogPrZfeFQmMiRJkiRJkiRJMnaRwqgkSZIkSVoEZrYhcDFwNHCjpFdjeeFMUIijHgCOkvRw8x1tUgvMrCNwKzBYUo9y8TVJmoqKKGoDYGu8kP8acG9joj0zmx5YATgddz05tbK+3GYPYM1o8zngscIFysw2xiNXJgM2lvRY9T5obtFARNxNCLwL7CDpSjPbCLgC6C3p0DFoe0pgF1wc9SIwL96//ylCMEmSMcPM/gbcj7tr/EfS0hUx5rzAKbH+bEn9RqLNhfHn+BlAv4jkLI/dZsUFlBvjsXn/BW6XdFl5u5qfbBum8vxZHFgQd1a5H3ihEPGa2RX453Is7tD0WSOC3ib7fMxsF9xJ8e+SvjWz24G5CKGUmS2Bi+pOqLpcJUk9MLPVgauB1ST9u7R8cjyebSs8Wu+cliBkb0uYgbmK/wAAIABJREFU2aQhVJsHn2BwAh4Ruk4hzo3tCnHUdLhD6wXNdMhJkiRJkiRJkrQA2jX3ASRJkiRJkkRxfC9cGHV6SRTVUPxf0l3AakB34JSY/Zm0QkqzfX/FIyemj59TFJU0OaUC8hbARYCAfYFPgaPN7KTy9iHSPKb4rxQ71dBIm1vhUVWzAZ/gfVh/Mzs1trsKOD5+1w1mtmz1PmhuJ5U4nm+B34CuIYq6FDiyEEWVz30U2/402noYF0XtW4iiQrCRJMloUr0vJf0POBF4GVjEzBYuRC8hgBkI7IH3R4eFUGp4bbePfy4EfA9cXYiiKr/zdUnHS5oPmAd3x0tRVB0pPX+2xkVrewMbATcBZ4fYA0mbAlcCBwJ7mlnX6vOmiT+f14BJgRXM7Eb8mbBmiKLGAZbGr6HxmvCYkrbNxLgTURHr2AlA0uf8ERnaG9g+1o/WWCgZNcxsVeABM1sq3OUewcftrwM3hoiyYC0z6ynp/UIUlePLJEmSJEmSJGm75JeBJEmSJElaAl2AbsCjkr4vFkoaIun3sMvvFOKodfHYpY+a62CTMaNSeHsWmNzMJs4X1UlzYWZL4k4VR0raCxfqrAS8AOxjZn1Lm0+LF8n2lHRC7N+uWlAOUcEJwBHAupJ6ACsC5wK7mdmxAJKuxsUKPwJ/r99ZjhEdga/w478Y6CXpGGj83EcWM5sIWBtYCthf0smlNlMwkSRjQEkgM3e43CHpXDyu7APgWjObL8SPDXHfPY+Lo7YLodRQKkX/CeL/swLj4sLP8u8uBFdzmNmMseynxrZJao+ZLY87Gp4ALI+Lc3sCiwKHmNnSAJI2A27AXW9maoLjaij9u1M4hxbcD9yIi4mXApaWNNDMxsOdrfYBrpL0Vr2PM2mblCfkxKK78BjhEwAkDSpds5/iY8XzgRPMbInmFrK3IaYBJgd6m9nS8Xd/gj/EUdeb2Q5mtjven8xY3jmfPUmSJEmSJEnSdsniU5IkSZIkLYHxgfYMZxa4mc0PbGpm40i6SdJpsTxn5rYyzGxjM7vCzHaNGb8/AFMDs+WL6qQ5iCLX3MDtwMlmNjsuiLoSd9m4AdirJGQaABwu6brYf3ginhlwQdE9kr6MfV8G+gLXAdtEBAiSrgFWrHfEx+j0mSFYHBd3TlgVOFTSkaV1Y1IInAiPEjxRUp+izewLkqQ2mNmcwEDcEWhagHBsOhJ//l5rZvOGOKpd3H9PS7oh9h/6zqgktNoReMbMxgfexJ/hc8W6DqXfPQ2wIzB/ySky7+06UurjV8KdwS6U9JakbyVdCmyOi6M2LD5bSRsDq0h6ot7HV4mtvQ2438wOj8kPv+NRjnfiz5v1zGwv4Dhc5HWypPMq55kkY0TlWir+XfR7P+JjtsXN7HJwt9vo55YEBuPCqA9wkXdem3Wk9BwZgIs5pwBODHHU78DjuEPeQOBM4BDgoIxnTpIkSZIkSZKkoGHIkJzQkiRJkiRJ0xCReH8afJjZhMCL+CzP9SR9U1o3Lv7yczpgP0lfNNXxJrXFzDoD1wCT4c4EUwLf4QWwp4FngM/xF9tfAF8VsYpJUk/C3WlS/NorHAJ2k/SVmS0G/AvoAFwqqedItrkVcAHwd0nvRCHtt3DAWwJ3GlhD0u2V/RrtJ2vJ6IiPzOwgAEm9G2tjdAVNZva3iPhKUVSS1AEz64277ZwMnCHp/Vi+JR6j1g7YRNKzjfU/5WVmNh8eIXU17jzVHngA6AwsJ+nD2G48YH0iZqrazyX1JUQcCwJzSvotog+HSPrdzHoBO+Fito9q0Y+P4rGtDVyOXzcTAkvgwuRdJb1vZnPh7lZr4zFmTwB3SrqwqY4xaRtU+rbVgJVxB+OX8L7yDTObCnfR2xV4B3gMn8izEbC7pP5m9hYeJ3pQM5xGmyImSf0S/94SOBj4Bo9ifjiWj4/HvP4k6alYlv1GkiRJkiRJkiTpGJUkSZIkSdNQefk8uZlNF/Fp40v6DncNWRI4w8xmje0mw1887wY8kaKo1o2kn4F1JC0BLIDHhu0DvIY768wLbIMXXR/FixNJUjOGN5Nf0kBJD+JivZmAByV9Fas7464o5wH/GVGbZjZVyTHlJVz4t7+ZTSJpMH98//oGdyL4U5GmHqIoM1vVzLYzs+3NbMZRKQ6VXEV6l0VRwMqj22aZFEUlSW2o9m+le/cgXKC0P7CrmU0Xyy8BeuGiz3vMbPLG2i2N3eYFZgZeBc6U9DXwJe7oMw7wpJntb2a7RrvnAKelKKp+VJ4/ZdfVD3HXwoUAwhGs4BN8zNVQ7XPr2QeXjnVJ/PpYC1gT2ApYFjjPzGaQ9KKk/fA4vbmAnimKSupBqW/riX/3mBIXxq8CPGhm3SR9DJyExzm+C6wAzIIL+fqb2Sq4q6aa4RTaBGa2ppndEvf/L2bWCYY+w47Hv0+ebGaLx/IfJP0rRVFJkiRJkiRJklRJx6gkSZIkSZoUM9sM2A+YHo9guhM4RdLTZrYHcAwuGPgfLhqYEzheUq/Yv+5uKsmYUxHCTYh/1p2KSLHSduMDz+NOPEfGshmBiSUNbNKDTsZqKtfkHHiM26TAU4Xo0swWxd0AtpN0QYic/gksjjvWfVxuq9LmBsDuuJPKORG3cgVe/D0GOE/SF+GCtxVwBLCqpGfrfN5nAz1wZ5f2cd4nAVcUjmwj06+Wzrk9cEaN28x+PUlqhJnNhDsB/VwuCJvZUcBhwAnAWZLei+XbAT9HxN7w2pwReAuPjnpA0iqldR1wYcseuJilPf5cv0LSmbFNFqZrzHDcbu6QdLeZdcWdlt4FNpX0QWzXETgUFyStjl8ndet7K8c4PvArcCrwsKQrSse0Fh5J9hguOHmr2kY+J5J6YB7rfSHQR1IfMzNcBN8J+BlYQtJLpe3Hl/RD/HtF/Lr9r6T1mv7ox37i+dIbd7m7DXc3HGIevzkotjkad5d+Hthf0v3NdsBJkiRJkiRJkrRoUhiVJEmSJEmTYWYbAxcDp+GxaTMBm+IiqcVwF4K5gD2ByePnxyXdGPtnYa0V0IhYZCtgDuBT4HrgVEmDSsWuu4DvJG3QSFv5mSc1JZwBjsGjUCYlCvjASXE9XgKsA1yJOzxtDBwk6fQRtLklcHb8d5+ku0rr7sGFVQOB+4C/ARsAx0g6vvZnOMxx7YSf62Z4XOl4wA7A3sDNuOj0yZFop3xP74c7/NWyzSklfTrqZ5gkSZko1N8M7AVcFO4aZXHUKcAuwLHAxZLeqezf6DM3HDo2xZ1+wGPO/tNI7N5cuFPeLyUhaT7H64h5bOup+DPrDkm3hFvYeriI9UPgLOBjfLLBEcCBkk5twmPcCNgOd+TpDBwp6crS+g74NdUf/36ws6Q3mur4krZDZewxEXA0MEjS/mY2Ny7Ouwq4F79/wMVRr8d9NQQXg2+Jj31ekLRJtJd9XR0ws0mAffGJCg8DG8pjQceJZ9w2wFH4mH0vSdc04+EmSZIkSZIkSdKCSWFUkiRJkiRNgplNAdyCz2A/POLzMLMXgAb8JefLsax9JfYjXza3Qsxsc2AAPhP7B2BiYAtcHLV3qWjaF3efWaCYhZ0k9cDM1saLx0cAj+NuGv2BFYF9JJ1qZrPh4sz1gfeAS4oCcmOOFWa2IHAjcC7QV9JPsbyjpF/j38fhjiqzA88C10o6J9bVrW8zs7OAqYD1yscdgqnj4m9w6IhcqypFxP1jv7uBNWrY5uHAjJI+H+2TTZKkcN95HugCHAJcFoXj9pJ+C+HSA8BkeNH/4Opzd3jOPGY2AX+IV+7EC9Dvx7rhCarS5aeOmNkKwLW4APYCebxhsa4zHlt3Iv7saQe8A5wvqU9sU5fPp9LHrwdcCjyEi0pWxUW1O0l6tLRPB2BdXJSytqRban1cSduleq1XRDWv4LHeDwJP49fmz2Z2Oi4k/RFYXNLzpf0XBabOyTu1wSJqs9RvFM+sYhJNFzwOdhtcHLVBycX0QOBz3M3w9WY6hdEi+r3f8jmZJEmSJEmSJE1Du+Y+gCRJkiRJxk6KF5wlJsILM4+VRFG3ApPgMR8vm9kCZjZDIYoqt5Evm1sXZjYLcDA+g/cASfvgM6vfB+YF2sfLbIDPcBeBcZvjWJO2QRSJNwauwQvDD0v6Hx6X8gouFkDSa5J2BuYBViiJotoNp3AxFx4ddUshigoGF9e4pEPwAvXswJpNIYoKJgVmKBWaOsTxnI0XkpYHdg3h6p+oFLd3x50VBgJT1bjNA1IUlSSjRzFWikLyr8DcuEvQCcDmZjZuRWz+X1y0/NaIRFFm9nczm8fMFgeQ9D3urrcbLmbuY2bTxbpG+7Es9tadFYHXgasLUZSZNcSz5WdJ9wEL4rF5S+OCo0IUNbxn2hhTuoYagBnwKKwNJa2Ou75MCxxRXFuxz2DgBmC2FEUltcTMFgFWC3EnZrYD4X4n6QJJjwML499VB0j6OXZ9CR/zfIQ7f5YFPE+kKKp2RJ/RHsDMegCnm9kNwEFmNp+kr3CR5/l4ZOuD4UR9MO5i+m0himrkHUSLw8wWNrOZJQ0OgddOZrZZcx9XkiRJkiRJkoztpDAqSZIkSZK6UCqKLGNmk+OuUA1Ah1h+Oy6Q6SHpeTMzYA+gW7WNpGVjZtM3snhioCsetfNNLLsFH39uJukDPEoR4D/AISmMSOpMR2BR4AtJXwKY2Z3AbMDmkl4ws0XNbGkASR9HIaYQCwxT9CoVXubBr2vF8nax/5CY7d7NzCaJnz+T9OPw2qwDLwIzmNlScUyDS8d3Lu7UtBWwQOWcqgKJ3YB+wK7ATbVuU9KZdTr/JBkrqRR+Jwo3jc5m1ikEJv/AHe+OB7Yys/axz+K4a88eaiRKrXR/bgHcBvwbuN3MnjGz5YBxJF0I7AisCZwwnDFAUmdClLok8HWMqYb2sfojOvFv8fODkp6S9Gppu7o+f8xsTVygtz7wRgjrkDQAd35ZADjKzBYr9gmRwBuxf76vTMaYEKjPjbvVbhzulmcD75UmaAAYMDU+gaO4v2YB7gK6S+oPjX83bUuiqFrfl2Z2cLiqFuPJbXCB5ML4+Hwf4N9mtm6MyU/C3Um7ApfhQstjVIrmbOnvD8wjHNcBnjaz6cNV70z8nJIkSZIkSZIkqSP5oiFJkiRJkroRMzkfxAs33wJfApua2X24mGA1SQPjxfTysezr4bWXtDwiBuseM/tH/FwUa6fHo3yeieV34oWJtSU9Zx7nM8DM5pF0v6SzYrscnyb1oiNQiPQwszuAOXFx5kAzm5YQZ1aKZcMUWcrCp1j0GF7MWDd+HlJycJkSOBJ3VxmGJirc9Ad+BQ4O4QSSfi85WZ2ICx/2C0HFUJePioDpFGAHSefXqc0kSUaSyr20IXA77hr0Oi5UWiycoxYB3gSOBR4BLsfvu/sq7nbV9tcHzsPd9bbCnfZ+Bq4DlonNrsDFURsD/c1s/BqfZvIXhADudWCWcOmsPqv+DhxnZvM3sm9dnz/xDJwE+A4XOBRCrc7x+wfgLi9zA73NbJlqG21JbJLUj3DLuxmPDj0TOB3YV9IpFSe9m/HvoCeb2aZ4pPJ2wLOS3oPW4URUL8xsPjObviS67Glmq45hm1Pg8axbmdmBZjYOsCHuPrqKpLmAjfAYzqvNbLlwxjsLmB9YCFhO0knRXqv4DinpW/z9yBu4Y+01wJb49ZkkSZIkSZIkSR1pFV8akiRJkiRpfZhZV2Bl3D3kQUmf4qKDZYHuwM6SXjSzSYEtcFeDCyU90UyHnIwev+BRZCea2T9KxbbncLeK3iGK6oaLogbGi+8ViMiEMlkIS8aU4RWuwiXqYWAbM3sSmANYPa7JDnh/tSDwTqVY9lexngOBJ4GjzWzlcOcYEgXgFXGHlh9oYsxjtT4HdsZjR84ws3HBC4WlcxIwBVG4jvWF6GJvoC8hYKpHm/U5+yQZeyndS5sBl+LOcKfiDk/bAf3MbIUQRy2JRw/9iN+Te0jqF/sP01eaWTszmxiPvT0HOFnSTZLujv2/Bt6JY/gVL+buBNyuSiRf0mQ8CswIbGZmUxULzawjPuFgXlwU3GSYWee4Rq/E45T/h48Ru0r62cw6wVBx1GH4s6RLUx5j0raIccuz/HEvNBRjFxgqqHkf2At3Fr0UF+71lnRNqZ0W7URUL8LhaDPgfjOb1My2BC7EYzJHG0mf4e8ABuLPkpNw165HJH0R29yHv0t4Eh9zThXOcj9Lek7Sm3GMTeHCWjMk3QvcAYwHDAJek/RLaxF3JUmSJEmSJElrpWHIkDb5vS5JkiRJkjoSbgPLAEvgs3IfiOWdgE3wCINXgE/weL0FgFMl9YrtGtrqy+fWiJlti8eifAbsI+nJED+dgc+A/QFYNZZPhDvrnIzH553dXMedjH1UnFTmw4utP0h6KpZNBwzABUu7AecCU+Iz1k8EjpDUZwRtro5fv9MD7wL9JL0Us+b7AtMApwFfAX8DtscjPnrX9cRHQDi5bAX0AW7FZ+K/HeKtBvy4DZ+l/2PpXJcCHsCj7s6pd5tJkow8EV93F3A3/iz9KZZvDRyBixN3k/RaLG8Axi/izMysXWNF5HhGvwb0KfrCcNebiz+ij5cGHpf0a7mdHLs1D2Z2Nv6sOR+4CHf0646LCY4q3FSa6Fg2xJ3KTpX0Xgi0NsAnPwwCFpP0WbgJDop9ukl6uamOMWlbhNBkCC546oY7mBXfW86tijpjws6swPeSXiraaE2im1oTjqDL4uPbLsBUuJBpQDjXjWp7B+Nxea+F46hF24aL1+aS9FWln9gZH3MuIunFGpxWsxGTMRqAfXFnvRXxa25ZSU/HJITfRtRGkiRJkiRJkiSjR85ESJIkSZKkHqwG7ALMjkfoFQWzQZIuxmeHPwYMxuNdtiuJotplYa3lY2YNpbixy/CInWnwCIqFJf0C7I0Xbn/B3XQOxYUofYG+hSiqLUdTJLWlJMDpice53QI8YWanm9lMkt7Hi8X34g4rz8S/98ULyIUQoGE4bV6Hu64MwsWf/zKz/STdCeyOR7HshrtkLIQLBXvH/s3y3SuKfpcBu+LFlxuBA8xsJdzFbwfgVkk/VPrej4ElGxMw1aPNJElGiUlxt47HJP0UhVYkXYjH5S2Pu+IRy4cQznV/4awxHtC5tG0hilojRFHTAMfgwshhHPRy7Na02B+xrjvh46pNcQeph3HRwhGliKmmGmethI/9djCz6UrOYgcC4wCPm9nkkgaFgB58okSricFKWj5Vl89w8ny85FJ2Hi6G38HMxivtNz/QIOnJFEX9gaTfJN2Pj3GnAj7Hnz2jI4oyoCcwQYii2kkSPnZ8FXeMOjp+76AQV4KP1zvF7291VK7JwdE3niTpALx/fA14yMwWKjuwmtkYuXIlSZIkSZIkSTIs6RiVJEmSJEldMLPeeAzB9bg44N1YPtxZkPnyufURblHb4IXULniky+PAfpIeM7MJ8NitpYFZcCHcfZKuiv3zM09qipnNhsdTnIm7pswJ9MILOgeXHFS2wAssHwGvS3oylv/pmjSzBYGbos2zJX0Ty3+PdreV9GUUdqeM3X4tokBawnUex9YNP4e/A5MDbwEXSzoxthklx5d6tJkkybA0dg+Z2QK4AGaoy52ZdSgK1Wb2HnC3pO1Gts1iOXAJsBwehzsVsI6k56JAvQ0uiNyjcANNWgbhktgVF6N/Immo4Kjez5+Ks+Lp+OSIE4AzJb0fwr0NgePwGOWF5BHbSVJTKtfi8rhY7wfgKUl3xfKuuLPeP3Fh/B3APMC1wMoRc5YEMdbriE8AmApYFRc6rjGqbm/xjJlY0tdm1h34FHg5RFKz4G7DCwFnSDoy9ukE7IkLiJaTNLA2Z9Y0VK7JhfHvJR8DkvR2LF8F7x9nA5aW9KyZbQBcjUeivphj6SRJkiRJkiQZc1IYlSRJkiRJTSkLn8zsNLyA1gc4RdKHsTwL5WMBER92My6Auw8XoRyAOxW8jQvinig+bzMbJ5ykiv2bXSyStH6q/YmZzY1HNW4k6ctYthkeMXQLcHjhBPBXbZWWb4k7Ta1ZFIHM7CY8BnStKGBMgMf2DSm3Va/+bnTbDae3afD4jm9KotV2wJBat5n3eJKMPpWC6px4NOXbZjYh8F/gG2ALPJKo2G564CGgvxqJUau0abiwuXNJHLoyXpyeFhdAnWceQ7oK7kZ1mKR+9TzvZOQZUT/blM+f8hjPPN5vB/4sjtoYj9PeNRxkk6QuhPj9bP4QeLYDji25qHXF3aN2Bt7A+7u+kg5vniNuWQznHi8EUkvhrqud8XHxS6Vtukr6ZDhtlqNXp8Dd4j7A+wXpj1i9U4EV8DH7y/F7dgCOk3R8bc+06Qjn2dNwx+wuwL+AkyXdGutXwd2yFsIdl5fCY0kPbZ4jTpIkSZIkSZKxjxRGJUmSJElScyriqLOAHfGYj36FOCpp3cTL8ZPwF9crSPqstG7XWPcssLuk/5b2GS3hRZI0RqXAvxAeLdUFWEbSlrG8XRRbNgUuxl3sjpP0wsi2b2ZHA1tJmiGWF/FSPSJeajlgDVx09X0dTrV6XFNI+mxUhUfD2z5m8E9e6zbzXk+S0afSv22Gu2X8D9he0odmtixeOP4X0EvS4yHQXAcXMG0p6fYRtN8Tj8WbHPgNF1odKulRM9sI2B+PRH40tpkMF1sV8aB5j7dxQiD/d0lnxs+dJA2KfxfiqONxp8X3wnVspsK5MUlqRaW/7ArcDlwFXIi72e4BbI4LO4+L7TriEZRzAv+RdG0sb9Oi7kbG1rPzh8PRe+HgtAz+nOkMrI4/m3rgYrRFJb0xgvYXwsVoC+Gxhh8D2wKvxnh9NlwctTzwNXAk8KGkm2L/VvH5VP6Of8ddHk/Dn9vz4xMufgGOlnR9bLcYsBHuHHWDpPNjeas45yRJkiRJkiRp6aQwKkmSJEmSutCIOGoH/CXnyZLeb9aDS2qCmV0ELCtpxvi5XBDrj7/kfgZ3jnqkuY4zGfsxs61wh5PfgAmBX4HFJD0Toh9C4LQxcAVwD7CJpK8q7ZSLGOVYqnVwQdWKuNBzUTxC5DkzGxfYC1gW2K5wS6rjufYH1sPvvZdqUSypR5tJktSGEHVeiBdRH5D0n1jeAKwPnAP8jsdYfgf8A+hdFP9L7ZT7t5Xw2KgzgJeAcXHHx4mB3SRdY2bz4n3d4viz/AVFfF5b7yMacSocY5FYLdqsp1jNzPYBHpP0ePw8PvAf/Jo5UtJ5sbw8FrwbFwBcCJwl6X+l9tr0NZTUBzNbHXc12giPTy6iymbFxZ7bUhJHxbryeC+vyyDEs33x+Mtx8Pt9f0lPlsRRJ+PCsweB7ngE3oEjaHNL3MF1JVwotDhwKe7sVRZHzYo/2+bDJ+A8E/u3us/HzJYGOuEivH1LbrY9gGPxv++RhTgq1o0n6cf4d6s75yRJkiRJkiRpqaQwKkmSJEmSulERR50LbAcsJenR5j2yZEwoOfDsgbtNbAncHMKTjpJ+NbMDcbHIb7hr1HXNeczJ2EUjUVC344XXu4DVgL2BF/C4nucr4qitgAkknTGCNlfFi7k3Aq8CUwBX4rEWXwPzSPrYzDrjESAn4AW4AXU+72mAgcD4+Oz8jeL8RtXlqXyuNW8zfs5CTpKMIWY2I96/3YTHQP0Uy8v38CzAfsD0wDvAvyVdFev+dB+a2WS4s8dSwF6SvovlkwD3AxMByw1PxJ739h9EYXsVYGrc+eTpsoNmU7ZZuSZmqKVI1zxK8VngC2Az4Jl4ns6Ci427AH0knRPbd5A02Mz6ArvgooAlJT1Wq2NKWh/l74Xxc037EjObFO/D5sUFn8sUIpRYPwsuAN0WOELSMbX63WMDlT6kG/63PB24FXdv2g4XSPWU9FiIo+YE9gSmBG6UdG7s39izZyp8ktTzwGmSvovx+bI0Lo6aC5ilcIpqjcR3lEfwMfZ9ktYsvivH+tWAXsAQ3M32usr+6cyYJEmSJEmSJDWkXXMfQJIkSZIkrQcz61AIDEYGSb+ZWfv49/bA8imKal2UP2/zKDxKL7pvAn7ERSiLxbpfI5piAjw+ZYUURSW1plS4WRIvHj8CnCPp6Sh0HYXH6p1uZnOXtm+QdFEhiipf36VteuKz2ecDJpI0RNKnwJl41NT4wGohsDoSd1w5tRBFjUofORp8D3wFPB7/vy7O7/eir/0rKoWvBerUJtWCWJIko0UX3I3j4UIUVSUii3aVtFr8f0SiqCWAz/A+8puSKKqjpK9xoeeUuLC52GeYPi3vbSecT67BHU8WwuORDggxW5O2WemD9wOeN7NpR/c4qoRIbjXcjfFSYMEQP72BXzPfAfua2Y6x/eBwUwRYDlg8RVFtF/NoO0qTZYrvDLXuS77CRTq3AbPg4s+hfVhcr8fjscpHmdlCdR6ztSpKfcg/8HrBzXgM5guSTgGOxseMl5rZ4pIGSXpWUk9g478QRa0N7A7Mijsfflf6nQ8BW+Di3nOAOaKNF1WKz6v3+deCRq6nt3Bx2fvAAuZR2MV3ZSTdARyEC85ONo/cG0qKopIkSZIkSZKktrSKLxZJkiRJkjQvZrZgzD4fHDPEdzCzdUdm37I4Cn/x2WpebibDvCRfFTjBzM4zs+7xYvd/eIzPfEB/MzvYzLrjs7H3BD6S9HLsn4WHpKaEg8VtwAPANMBQV4Ao4JwC/A04xczmDYHTMAWG6s/Rr50N9Ab2lvRkadsbcBHgNbG+NzAX7rjSK/ZvV68iRhS+v8Uj/Z4A+gENwPVmNk+p4DhcMVOleL477gLwt1q3aWZzj/EJJ0kC0BWPufsEhhEoF/fc8tG//RrbD+1/hiM6+AaP0JsemNHMJox7uNj/DdwZqFupnSzM8ieh+CTA6vh4Z0VcvNYHf0bsb2YzNVWblT54N9zJ82BJH4zaGY4YeYTj1vgz4hJgvhBHvYWPBb/FxVFHm9k8wFZAT9yh8Yk4vhz/tzHMbDbgODPbNX7eBnjUPF5sTNr90/eKuA8eBk7E+7HvK4rQAAAgAElEQVTzzGyx+O5aiKPexMdvK0j6b/ZvwxKf1+O4q9Okkr4qPXeuwd2NvgUuDKEtse6b2L8hhPXVz2d34ED82fN+bFt+nj0EbA4YPs6epLxzaxHklvrimc1ssni29sYFX+PjY+TJQhzVKfa5EzgYODD60yRJkiRJkiRJ6kRG6SVJkiRJMkLMbGL8Zd02wOy43f21wD6S+o1BuxnF0koIB51zAOEuPB2A/sApkj6IqIMBwGzAhMDnQD9JJzTTISdtAPMYu3WA/YHJgdUkvWDDRngWhZhP8CLYF8NpqwF3ObsGeEvSLqV12+LihM+AyyT9ZGbTAz8Ag0Os1GR9mpkdhM/Mn9fMtsD75/ZAd/wenAc4Q9Lg6jlWiuenAttLOr8ebdbr/JOkLWFmBvwbuBsXa35e3HfhyHMiXmzdVdKPI9nm3Hi/uCGwnaSLS+s644LTr4ENIIVRVUIovgKwNLCjpKdL644CDsMFtidJeqeebTbSB58C7FDPPtjMFsaFUUPwKOXnwiFqRtwZZUmgI/ATcLKk3vU6lqTlEw44/XCx3w3ApsBuwHmSBo1mm+Xrfl5gZvy7yVuS/hvLF8XHJDMC68ij3/4US9bWv49W/ybmUas74LF53+MRmN+aWafi8zKz9XHXwanwKL1PSp/HlOGyWrS3aEkYeTmwCf6d8lBJX1Q+ywa8H5xe0gV1P/k6EdfeY7io9RJJX4ZD1J7AHsDbwFqxvFP1PmjsOk2SJEmSJEmSpDakMCpJkiRJkr/EzFbDowf+hosHtgKukfTLSO5ffum5OPByRLYkLRwzGw8Xwt0FXCXpMzO7CFgDuBI4QdJ7ZtYFF6d0Bb4sOUW16YJDUl9CGLA6Xgx+Dy9+fVwRRx2IF20u/Iu2OuJOA0/hsRYW7c4em7THY/OOKQRCJYFC3YsYpd9l+D25TMzk3xrYB5gMv/+2Ba4o98/DKZ5vD1xQ6zYVkYJJktQGMzsXd97pDZwr6cN45q6JOwrtI+mSkWinfM/OiRe218T7u9uAQcDyeGzojn/VZ7YFzOwYXMDxbvzcEY9unQd/5swZzh/jFP1jSch0Pj5GerMebdZbFDW855q5g+ACeKTe7wwrjpoUmBuPuP1A0sOxT44F2zDhdnYjfo1fJ2nDWD5G14V5pPHxeMTjREBnvJ/sJ+kb88i+frhL0YbKOPfhYmYzA59K+i7EUVvjz4h/yWNaqYijNgd+k3RlqY2ZgGOBRyWdZWbb4xNplpf0YGxzEz5uPwR/nn09gr6mVQqEwgnqKvx5ehD+/bkQR+2Fi6NeB9aN5dk/JkmSJEmSJEkTkcKoJEmSJElGCjPrhTsM/AgsLun5kXmRVync7Ansi4sX/lP3g07GiBDELQ8sAuwCvFD6LM/Bo1OuBHqrkciW1vpCO2ldhMNJD9yp4m280DCMOKq0bQMef/e6pJ8r6zoBF+NF3SFAJzyeb3vgXTx27ldJy9f5lIrj6Y4Lul6qLB8XeBOPSroolp2HF7G+AVaV9FTRP1f64NPwe3mY4vkYttkkLiVJ0tYoj7HM7AZgZbyPewIv9C8KnCjpuNFsvxtwJP4s/xx4BpgSL+KeGNu02ee4uRvm5Xjf9kRp+WTAZfjncTLebw6qiAaOxZ33ukt6qM5t7o2LQXaphyjKzOYApsUnRjwrj1HGzBaKYy7EUc9Wn7mxXRb92zjhJnZ7/DgdcIikM2Ldn8ZqI9nm6rj4pBdwMy6O2gw4HHfQOyu2WwwXtc8NzCDp4zE7m7EPM1sOuAf/jj5A0vchctwGFzrdL2n12LYxh6NibNgVOC72uxzYCNgP//s3lCYV3AashIs9zxmROKql04jjVvG36Ig7662NTzQoi6P2wCNTPwQWGdmJZkmSJEmSJEmSjDkpjEqSJEmSZITEzPB2+IzHiYBVgGmApSS9NDzxQdVFpVQ830nSuU17FslfYWb7A9cXLgT4Z30H7przmaQ5YrvOhaAkxFFr47PAj5b0YfMcfdLWqYij3sCdAT5qZLvTcWHQpvj1/mssLwoZXfC+bgjwv6KwFttcgEe1bIcLpOr2RcrMTsFjS68DTtMfcX3tJf1mZtfhDh3HmtmWwEXALcCseKzWWpIGVtr8Fx7TdBPQs0Zt7gn0JZ2ikqQumFmHUjF5P2AJvMD/GHCXpMtj3WiJT0Kosw/uSLUfcKkiBqnUN5THcqMlYmiNmFkHYKIoZq+EC2rfjnVdgOtxR8HTgD7hmFQWMv1D0pP1bDPESU8BO0vqX4e/wZa4a0wXYFzcVewQ3EHw8/j9l+KilG1z0kMyPMxsVmBS/PpZBo9SOz3WVcUlwxXJlL5jXoTHd2+viEk2szvx+2cdSc/FsnbAUkBXSdfU7QRbOWb2X2AmXKx0aThHlcVR90haM7Yd7vPGzCbGXYb/AVwraaPSuo6lcfdtwHK4kOpsSV/V7+zqj5lNXXzvKH2n6ISPpdfGRWdXy+MDO+LfNT7IsXOSJEmSJEmSNC0pjEqSJEmS5E809kK6EMTEDN3j8dnjS0t6sfSSetrCOahSSNsdjzLI4nkLxDxS51ZgfUnPlJbPj3/WKwLHSjo8lpfjXQbgrjLLSfpXkx98kgQhjloNjxr6CFhY0o+l9f8ETsJd78bFBVLXloo0HaIIXS3QdYl2Twf2kHRpnc/jZNz1YA/g34XgsOIecxgucroBj706AjgBF3z1Ag5UKVrLzK4CNgAGAEfWqM0lgWuivRS7JkmdqIqRzGy8St82pnFUc+P3ew9ga0lXNtammfUAVsVdpS4FnmoL7ivhgvIMLgpatuSYNCneX86KPx+GETKVxsaN/S1r0mZsP31VtFqj816biEwG7sdFKJvEf8fjz4WfgAWBq/EYs/kLYV3SNql8/5sUGF/Se6X1i+Dim6VwcVThHLUusKSkvUfid3QABgIPSNotlt2Oi0Z7yF2N1wC+U8ldLbZr0w5mjYxxy9/pHgbmxR2iy+KorfDY1kckLd1YmwDRN02NT5jpCMxPyb0rti2Lfe8BVsDH60/X5YSbADNbC3/Psbekm2JZ0UePg0dVL4X/XW+Qx9KX75NW6ZaVJEmSJEmSJK2RFEYlSZIkSTIMlRd10+ACgl+BT0tOQT3w2I5pgSUkvWJmG+CFkW7AG6WXnhmz1MKJ2dSThIPBMsAnwGvxQrcbXpybHegr6eTYp/wivbukB5rr+JOxj0aEACNVNAhx1LrAeBo2Km5W3H3pC9z9Yhdc7LQ9w4qjqgWjVYGFgT3xAnWvWpzfCI5/QTya6AjgZkm/mLv2DSHu0dJxXY/H/R2L35vfxbo5JL1SafNK4ELg5Fq0GcsmA2aW9FSd/hxJkgT1LpzGs/4oYA3c2fPCyvotgXOAF4GpcHHUBcBJkt6q13G1BMLdY2VcWPs7sLqkd2JdIWSaETgPOKEY/zZ1m7UiRA6d8GL+T8A2kn4oHXcvXLi7lqQ7Ywy5CDBrvYXDSevBzDYB9sZdiB7BhTbXx7p/4M5R3fF+5W3cffJ4SUdU2mm07zOzh4CfJK1qZrfgIpwekgaa2eT4vfU5cLikn+p0mq2WisPRyIijdga+knRmpZ1h3htI+jDEURPicXFbA7uV96uIo9aUdEvdT7iOxHeMgbhj7cGSbovlhevisniU5M+4Q9aZyvi8JEmSJEmSJGkW2jX3ASRJkiRJ0nKovNzcCLgTeBx4DehrZgsDxAu/g4B3gefN7Ga8QHa8pFdLLzt3B07FnaJSFNVCkfR7iKK64s5RFwMzx/XwMrAX8Cqwp5ntE/v8ErNgKURRURxLktHGzKYJZ4zf4uclzGy6kRUEhHjz6qK/KWaxAx8AbwGnhLPZfsC9wLnABlHspTx7O67v3YHVcbekXrGuntf5tMB4+Kz8X8xsIvx+fBJ40sx6RzHrTlxAdSgudvquNGP/lcq5TwuMA1xcqzajb/giRVFJMmqU7suRWl4woj5wdNustP8yLsh8Ane2KLfTGe8HDwBWljQ9cAawEXC4mc08sr+npdPY3yyEs/fiIo9xgNvNbMZY9yUuxv0QOBgXFNS9zVpT6duLa20O4BdJPxTPvTjuPsBLwP7m7mW/S3qiEEWNynWXjD2UP/dw0BmACynPx13FjjezXQDkcZDH4NG+2+IiqcMLUVRj16OZLWlmPcxs2vg1dwHzmtmruCiqe4iiOuDRZUsCD6co6s/EBKc74nOqfqdbCngFOBLYwswmij7ppELcNJzPZ33gNjPbTdJHkl7DRUAXAqeb2c6lQ1jPzPrG77sl9m9V3yFLf4P2kl7H3cqmBk6M67ShNMFjEB55+iwexZ2iqCRJkiRJkiRpJtIxKkmSJEmSP2Fmm+EzeE/FX2jvhDus3Af0lvREbLckHvk0M+66cl4sb4+/pL4VOCxFUa2DeCm9Kv7Zv4G76bwe0Qjz4DEBMwH9JZ3YfEeajI2Y2ey4EOkDSceZWU/cQWADSQ+OQjvDcxcYp1yMMLMZcDe7lfBr/TpJg2JdEas3ETC1JMXyukawRGGpH96ndgSeA74CnsdjijbCnRd6SnrXKpFaTdVmkiSjTqWIPCMwOfAL8LEq0Toj2cbQ+KIxbHOoQ5+ZTa9hY6964C5S8+KuH/8presF7AjcAhzd2p2jQpRbPAPmAqYDvgPelfSemXXCHW7OxJ0/yi5PkwPLFI449WyznhSOL/HvJ3Bh1DLxc0f94a54NS6cWrBYliQw1E1yPVwkcnyIbqbHXdAmxQXqp8e2U+Ni8IkkPRvLGoue3BJ3Kn4Y/x460MymxJ2KlwIGSNohxpHL4WPHwyX1aYJTbnWYO4Rejgscj5d0eyzvLOlnM1sCuBv4Eh8nnz6i+9zMtsLdhc8EHpd0c2ndzLjgfnOgP+7idRjuwnpgHU6vblSev+MA7ST9ZH84Q80GPIY7Lx8m6YZ4Tu+Mu+ptqyZ0/0uSJEmSJEmS5M+kMCpJkiRJkmEIV6gLcHeRPmY2J140fxWYD/g3/rL5ydI+E0j6Pv5dfmk4r6SBTX4SyWgT4qgVgEsA8Yc46vco6p2FXwfLFEWMJKkFZjY+XjhbAC9+rQXsihe8Bo1kG+X+Z0JFFNwItpkBFw2tjMd9Xm5mEwAbA5L0cGP71QszWwG4DVgTmB74J7CxpHeiuLIqcA3uirVtc7WZJMnoE0X+I4AuQHvgI2B3Sff8xX7lvqsn8ClwV4iXa9HmFsDn8ni0BjxK+Ubc7eUboFuIHDrrj2jl4/A+5V7gqHAJaVWY2VqVQn5P3BVpXNxl/VtcFHZtCP9XxEUAPwFrVwVhMY5ao9Zt1lOUG79jeTy6b01JL5rZ1rjrz4llAYO5g9j5wPjApsDP9X42Jq0DM1sFFyV1wiMgzy8EdWY2HT7GmwzoJ+mMRvZvTBS1LnAF7p52a7jzFOumBs7GRScd8fvnR3zceFJsU/exW2vEzFbEv+9/AByriH+Ldd2Bo4EpgNNUic+rtLMccBUesTmg9D6gC/BNfH+cGtgH/075OR4l1ze2axWfT+VZuS7+3JsT+AwfQ18n6U3zWL0H8IjUZ/G/79bAASVBYKs45yRJkiRJkiQZG2lVVrVJkiRJkjQJU+AReefEy72H8Jd9iwFH4cWbg8ItCoCqKMr+iNxIUVQrIwoS9wFbAoZHjc0an+2LuKNPzxRFJbUkrq8fJK2MF/vXxKM8L5Y0aGQiNipFi32B00LkNAzlYoSkd/Eoo7vxPm9b3CHvXFwA2Oh+tabk/HIf8Cg+q7478HzhHoLPTL8DOB5Y38y6NXWbSZKMGWa2Hu7KeDkel7Y18CZwVxSjh7dfuX/bFY8nmjDGXLVq82JgQvD+LpzjdsTHgTPhggfCUaSIXTokjmUT4G+j8zdpTqLAfaOZFRFR8+MxgWfjgtlt8NjRK81s93DWehAX7U4MPGxmE1aaXbvWbdZbFBV0BWbEP2vw4v4lwF5m1t/Mpg2B/Gb4dXarpJ+ywJ+UKBygpgGK62JwiKPex6+bT4ADY5w2DOXr3DzSuAsuQLkCOL8QRcW6DpI+AnriY8ZjcOHNpiVRVLu2fH0W48D4d8eYgFD8Xe7F/17TAoeY2TrFdkA33PnJyqIoM1vHPHa9zAL4e4PLJH1vZh3M7CTgWuB+s/+zd9bhdlTXG36jWPDg3gILp7h7cQkUCJpAigRIgwZLoGgIJEhwCO4OhWJFihRtC8Xho/SHuzsEQn5/fHtyJ5N7Y9xzc0/ufp8nT84dWWfmnDl79uz17W/FNnJpvX7YTXrTkiiqbr6fioD4auy8egt21ToSP3Mslq7R1fFEst/gz6dfFkVlMpnWSOU+kfPEmUwmk2kTZMeoTCaTyWQyYxARv5P0TET8BQup95T0QUTMAjyFZ4m/AHSX9OGkPNZMbag4R72ISym+Wkla1NzBINN2SMmYLriM42fp9dnYrWJ4lMo9NbJvNcF/BtBH0rnj+d5zpvfqlhYdKWngrzqhcb/nIjgJ/g7wraQv0uDklliAMD92V+ipUmm7iNg9rf+dpNdrHTOTyTQPETE1/v29BRws6cu0/CFgXqCbpOfSstFK5pVe98Uud3tKurgWMRs57vlwm7oScIGkI9PyUeVJI2IVSY8380dWc8LlB/sD22Bh2J24vOj+JdH/XLgU1O7AepIeTverjYCZJF1W65gtRUTchcv9rSzp23BpqH2wOOUXXO7vZ1xa64S0T070t3Fi9DKL22F3tHa4r/H38jbhsnr34hJul1bijHYthcvyvQKcI+moJt57lIPd2GK1NSpt/JZYQLY08DqeAHNmEjJtjNv3jrgM3OdYXNtf0ulFLKAHdg1equxoFxFnAJthp9UFgYOxQO4OYC0skFtZ0qdNHV+9EBELAvcA1wADi350RByFRcT3YRHUh0k83A7oIumTtF1+bs5kMq2Gyn1iVeC32In240l7ZJlMJpPJ1JasBM5kMplMJjMGSRTVFVgCzxj9IK2aFSfcLwGuyqKoyZeSc1QPPNv1GmC6RrbJZCaa8ixFoKukz3Eyf0UsvtwHODQlvkYU20fEVOUYlQT/6cDu4yuKSnyT3g+cvB6Y4tXkeSkihgJ3YycWAddHxIbpPO7E7k7vAOsAGxXnGxGdga7A/+EkdU1jZjKZiafUXhXt3NTYie7FkoDpduwq0U3ScxGxXkT8diwCpqE4AXtJc8dMQqsVI2LHiDgiItaKiNkkvQkcAPwT+GNEHAcgl9UrnKMeT/HqZowpfQ5v4JJRN2CnzGuA6ZJgoAOApHdxmbv/A/ZO96OfgNsLAVP5u27umLU470aWdUwvr8HOsVul43wVu6GsiJ0FD8SlWAtRVN04vmRqQ0RsCwxOIiYkXQccCnwLDAmXWiOJojpJehtYriqKStsU7VL3lKRtn/4VoqtOlfdeDtiucEJqLFZbpfRZ9sSl7sBOrDMC/YAbImI6SXdhIdSDWPy6PC77dno5lqTLgeUl/V9ELJ4mFAAMAabEJbCPBd4EFpVLM++BRVJzNHV8dcacuL98n6TvinZT0jG4vd8KT0AAGJ4Ee5/CqHtD7mNnMplWQ+k+sQtwI3aWzu7RmUwmk5nsqZtBq0wmk8lkMi3OCCwWWBVGJc9XwjPFj5Q0LC2vSeImM+lJA7j3AzsDZ0v6YhIfUmYyopKc3xa4JCL2BaZIAqk/YLeyvYF+yTFqZERsAZwcEdMVy1KMIsHfuzHXk7Ecx5TAbsAA4AhJZ6TlNZnZHRF/xmWnjgBWTv9PC9wZEb2TA8vpwGCcULkQODIieuNk41HA5UmsULOYmUxm4khtCjSMt8yd/v8G96FmTdvdDiwFbJYETHPjMmsblAQ0Rfu2Pw0CpgubKeafaGgzL4yIXtjl4zTcJtwNXBERkRxC9seuoT0jYlCK9WP53Osp8ZvuJ+3kEl/HAzdhh4850/oRqe+LpJew4HRB/HlXy7KOrFXMWpw3QEQsne6j7ST9nFbfCHyC7ycF30h6UdJASVdIeijtn91P2jipTVkM2A/302YCkHQ1Lm3XBTglItZOy39Kz42F005jIr0/AFfgvsyn2KHnsIhYJO3fPm3XGTsV9cBOmZkKYce347GocWdJfYDVcFnPZYBzkyjzEVzKcxlgS0lnpf3bR8RvSyFfjYhlgedxic25ktBtCeyQt72kLSV9nu6DK+M2ru6eH5sY3+iIxcizAUj6uSTWOzz9v0laN7Kx/zOZTKY1ES6jei7u+/+56ONlMplMJjM5k0vpZTKZTCaTaZQ08FxYw3+Cy1ttABwlafCkPLbMhBGNlCuY2IRWY7EymV9DROyKRTuXANdJejwJnkZExHTALcAi2MHsWVyi5bByO1RK8BeigQk9hpOBLyUdl/5u9oRvSrJMgZN8j0jqX1q3HBYd7AQcIOn0lPRbAegNrI+TMa8BV0o6rZYx8288k5k4IuJ3wObALZJeiIg9sGhgC+Bd4Ercnn0LzAVsKOmlJDDYEyen95V0fynmqfi3fJSk45opZj8slNw9OUVtiNvaAbg9eRU4GtgRl1baVtL/wmX1zsUlktaT9ETzfoKTjnRu/bHLyUWS9iitmwp/zlPjMtJfT6qYzUFELAE8h50S7wQGAt+nRP+2wFVYSHF9Sx1Tpj5Jbk198TV0Ci6R91latzMWjIwEDpR0zzhidQTOws+dJ0n6OiI2wu5qHXFJyqewA9FmWPDTX9I5tTi3eie5dd2K7wmPR0TH9BufCpfP2xrYWNKT1b5f6l/2xuXzfq9UEjGtuxT3LQcD5yVxVPl9ZwM2BU7FifYzanqizUxl4saCwMeSvgyXSX0GeACX636vtE8ADwOHT8jkjEwmk5lUhMtxX4+fH3oXkyDzWEAmk8lkJneyY1Qmk8lkMpkxKNm9n4gHPd8EOgF9CzFCdoqqDyqDu6tFxNYw8a4OeZAk05wkF4HTcAL+KKVyTED7iJhJ0lc4cfMELgF3MGOKonbACZ49J1QUVbRjkvrVUhRVYkpcZuOb9F5FGaqnsBD1YuC0iNhe0nBJj0rqCayBXWC6lQRM7WsRM//GM5lfxVy4LNEZycntfGAY8FZyVzqRhnKhpyYB01zALlj0eWFZwFSK+RmwTnPETG3HjMCfSgnc9bELyJXAy5J+kjQACx3mBA5MziJvAn2A7epRFFXuuya3pNkjokvp3AYBF2BXrGsj4rcRsSIWAWwK3FoVMNUiZgvwNnaOeRW7gr4CHJGEffdgwey6EdEp6qg8YqZlKF8Tkr7FwqUjgYOwu1NRVu9K/BzZFZh5HDG3xtfeYsDTxW9C0t24RNvXuC/4PBbKHwcMLkRRbf25tInz74Bdu2aABocjSd8Dh6XlK6V1o/X90t+vAo9g99H1Sut2xX3Lw4G9ImL20nFsClyK+/UnqsGFtS6+n8pz8w7AdcA5ETGtXCb1ACx+7h8Ri6btpsbuWO2ANybFcWcymcxE0AVPmHpOJWf4ikh2ysZ2zGQymUymnsmOUZlMJpPJtBEmdOZPIQ4o9ouILpK+Ka+r3dFmmoPK4G4PnFh4Bc9mfWYiYnSV9EnNDjjT5oiII4CNgDVK19nJuCzHbMCxkm5Js9vnADpJUtquaKMWApaQdMtEHkP5Gq/5DMmIuBeYVtLK6e+OSmWMImIRYAiwNLCppOfHdcy1ipnJZCaO5Oh0AjATdj3pn5LC7ZMT3sp4hjZY8DQybXuupBNTjOpvvFliYqHUPyVdV4rdDpfQm13SsmlZJ0k/pdfXA8sDUSwr7Vs3/cFKW98d2BeLML4EHsei27ciYgEsGtgDO9e8D7wOPC7ppHKsWsRsic+iICX0f5uOeyMsXjkSWBP4PbByU/eMTNskIrYEpgNulPRdafk02NnuONxWnS7p47Quir5bEzE74JLGRRu3q6TLK32ZhbFz8Yr4WeYpSX9L6+qmHaoFlXZoAeDtJIJaHAub/gYcIumtYntgYeAxPOnp6rHEXgWL7H+PXQIfKq07H7dpg4AzJX0QEWvg8ob3KTnO1eP3E3Y7uwg/Oz+ihhKiU2CHtBOB/+FSgSPwtXmCpIGT5ogzmUymaSK5cVeWzQL8C5fO7pOeJ8r3k6WBbsBpk0DAn8lkMplMzcgzvzKZTCaTaSOUHnBnGs/tfynvhy2Wy25SmVZOZcbrebgcQt+JFEXtD5wyvtdPJjOetMNJ2dUiYuuIeI6G0k3DgfMiYhFJ30v6v5Ioql1JuPnfJJ6aMVy+YxQT6nRRy6R0uEQMwGXAQhFxfHrPn4t1kl7BziLTYCHCWI+zFjEzmcyEExHtUnIfnLSfBotjVouIxcu/2eS0tD5wBHZAORsLAQoBU/tCdNOcMYHOwNrAe8Uxp9jtgZeA+SNidQBJP0VEp7T+IWBWYJbqeddTf7D0ee2EnbFexSKOx4F1gccj4jeSXscCjfOxwOwd7JBVCJhGOevVImZLke6f30l6Xi7xtw1wPHAosCowFRZ5ZTLAqD7HgdixrlsS1gGjnKMuwiKcw4D9IqJrWjdK0F6JV7h2jgBuAPoBHwF7RMTMqS/TPm3zqqSzJPWUdEIWRZnKs9p2wM34ea2jpBexgKc78KcklAffS1YBfsFt0RgxS9/VB8BfseD23ohYrdhOUm/cvzwc6BMRs0n6B7BfnYuiFsFisIHYhbEQRbWT9KOkk7GQ9BXsqPgdFhUMTNvlXEsm0wYo9aOJiPZpIld5/SRvCyLigPTMMKJ6PEm8/AqwCbBcEk8V95PO+LliZewym8lkMpnMZEN2jMpkMplMpg2RZvkeA6ym5P6UmbyJiLmBu4C/YPedwgFidTzj+2ngo+qgdWWg/U+4VNlekoZFxPxyOYFMZrxoygkjItbF5TZWB14G/gv0kvR5ROyGZ6GvlJLKY4u/PXYqWAAn8a+Q9Ne0rsmkTOU63wB4TdL/TeRpNhZ/diwmeBv4TtLwNDtzGHZwOlXSWWnbzpKGp9f/SceybUvEzGQyzUPYuekznCxdCdgbOwPtK+n5UpK/qTZpjPaqOWIW66PBaW8z7A50dVJ/lCEAACAASURBVBJBrQX8HZcNOl7SS2nfzrgU1qrABiqV2qgXyp9pRMyJy3Ddgcu3fpeWb4+T4N9jV5QPI2J+LBR6RNJ5abvCKarZY7bEZ9EY1Wsu7MK4JfDu2JxkMm2L0rU/A3AtLr+zL3CLRneOGoRdhGYC1kpCmTHiVGIW7dKMwFbAUNyX20kuqdzoby/TQNgZeBjuNz9ZCMfSukFY8Cj83DclFvYMlHTCWGLujoVwX2IR1SokdyRJD5S2OwfYCzgdGFC+HuqRcJnv27DL6j9Ky6tOjl2AH4F2pb52vj4zmTZA5V62FbADsCTwLPCApPOr202CYzwe6I/HWLaR9HLpflv8vzBwL/AxHiu8LVyOe2NcTvsISWdOiuPPZDKZTKZWTHLlciaTyWQymRZlBVxuabxFUZWZUL+JXGe+3uiCRRQPAD9HxDwRcRtwI3A7HghZtLxDZaCnLx7o3j2JorYE/hIRnVrDLLhM66dyPUVELBcRG4dLNf0d+COwGbCnpC2TKKojFu69hd01xohZer0lcDF26rgKlwAanBI6o8QA4ziu/bCN/LzNeN5HAnfiAdLn8Gz9Lml25gG4nNIBEdEvHWeRVOkCfIFFYjWPmclkmoeImAeXJtpc0oPJDegM4DfAmWnG9i+pTVo/iZNGoxFRVHPFHJnazZFhF6qzgDOB7hExRXLE2BvYHjg9InaOiEL4sAdweb2JoiJizbBrSvkeMD0wH/CEpO+iwXXveizGWBDPkCcJwPcqC5iANZo75qQURaVjKoui2kn6Ly6bcnValvt6bZByPwsa3NFSO7At8Axui7YKl9ErSjN2AQ4BFh2HKGpj7Gx0Q/p/HkmfY9HVAcBawFURMW3l/bPopEJELIEnGQwChpTdtAAkHQ70wsnx5bC4qW8himqij7w2vkcMA7aXtBq+PzwF3JPEtKT4+wBXA2/UuygqsQC+jl+BUaUeyw6Ba0XErJK+SROORpWYzddnJtM2KLUHPfF9qx2eYLAAcEREXFverqUJl3fuhUXGnYAbImKxsigqHd+r2K27C3BLRHwE/AM4CTixEEVV+wSZTCaTydQzeYAjk8lkMpnJlCYeXh8HukbEeJXGqAxg98NOArONfa/MpKIiFumcXr6PB2oOxeKRB3BCdR+cdJgX2KUcoyKKGgr0lnRx2mQ+XPqsUx78zYwPpetpFyw+uheL8v4dEX/ErhR3Sno0bTc30AOXI7pcFXeyyjU6I3ZRORHYQ9KB2H3qR+CQiNgzHcNo4qhGrvMh+Dp/sDnOOc2e3xu4BdgZeB6XGpkhHc8bOMH0LnBgRFwTEXNExKIkO3ssfKppzEwm06x8i++xa0XE9ACSTsXi4vmBcyJig5SsuI3xE2L+qpjFPmm/kcBictmqJYE3cNvXPewuNwwnRxbF5TkfBvoCR6vBha4uEiMRsRcu6bV/uDRI0V8ZjkvEzQejyo52SuKyM3FJpBWLOMVEgnTevZs75qQWRVUpiU9+Li3Lfb02RqWPtGpE7BMRp0XEZhExt6SvgW5YHHUOFmmvh9uPrYEPpDHL55Vi7grcBCwCzIPF8U9FRPckrLkOu4CuipO5o9qxTKPMgx267pf0fWl5IYhF0mX4+1kO2Ll4roumHY6WxmWt/4odSpHL4w3A9457I2KVYmNJO0s6vblPbBLxEm63+0XElCqVoEoTDXqldUXJ6lbVjmeaZmx9mCwCzkwo4bKbxwDH4kmEfXAZ5SmARdLkhmLbFus/p3vmOtixtG86xs7A9SVxVFGqmzQGsxxwEHAFHv/bTtKgFK/Fyz1nMplMJlNLcqcvk8lkMpnJlNLgc5fSQM8beDbQDGld+/L/ZRoRDpwIXCzpzdoffWZCqXxf6+EkxWKSvgS6A7Pjsjk3SlpC0s144FfAB0WcUow+JFEUcFFp8KTYdoYWOK3MZEJE/AE4P/3bHifDvsWuJT1K222EBVHHA8dJOiMtbxcRU8Bo1+jGwIM4efaWpB+Tk8drODH3LU5cjHKOKmI1Iv7bR9IFzXSuA4DNsRPWoOS60QM7YEWxnVyyb2fgSizm+h8WQJwODJZ0bS1jZjKZ5kXSZ1hQtBmwWGn5qcBpwNxYvHQB/h2fU8uYKWFzWkRsJJeg2ht4PiKWTcKG1XCJpMHAdmHnqGuBNdK/jYGNJA1J8eopMXIzdjbZhyRkSsu/Af4F7Fwk9eVSgh3CZUo/wU6Fo5HOuxYxW4R6EbRlWgelPlIv3L4cCuyUXp8fEb9PAr8NcRnJY9K6E4AzJd1ZilV1wVsRl5g8Agt0Vsbi7a5Aj4iYPsW+ETgM2AA7gWaaZlFgGuwmSlmwk9r+lSJiakk/SPpWDW6i7cYifJwdmF7S/1ISvXOKeT9wEdAReDQiNizvNJm0Nf8BHsV97l4RMVX6DKbFzxcbAU+XBaSZ1k/l+W+ViNgtIg6KiG6QRcCZiWJuLDi6M425gd2rvwN2kfR2RPwGWlxA+S0um7qXpBckXYX7+p1oEEeNKO4VqX//raShkg6SdIak+0rr8m8jk8lkMpMVWRiVyWQymcxkTETsADyJLe+HAOvhJNjqETFzyUK5OmhdHjjalwbXoHNb9AQy441Gt/O+BosluqZ1DwHLA9tIOixtNw1OaMxFKhVQkGZyn4kdeC4EpkgOE+DB4m9xQrXYPvcpM42SBE3TYLHOFcD5ku6RS/V8CbyO7doLZsXX1/5yyaji+roAOLhyrc2PBXpzYscOgF+SOOp/wDbAV9jOvm9xPI2Ionqn67w5zncBYBngEuChUtJkGixEXCIihobLVM0r6S1c/mQF4E/AnsC2ko4vzr0WMZvjXDOZeqJWydpCHBMRndKi27F4Zt+ImCoaSvCcjpOsPfEs7GPTfo0J05sr5o+4fbw1Ik7DAsl+wLOpnfwaOxl9gRMmhXPU65Iek0v3vZxiji2B3qoIuzl9hB1t3sHlAPdP5/whLg+yNPDnJMYFi0zXw66oL7dEzOYmRncN7RIRs4TLHrdL4ogOY9u/GiPTtomI3+NngcH4Ol4Y2A2LJo+OiFUk/Sxpa2BLXF5vm7LDRBOhF8dJ47uS8BPcNv0fcJSkL1M79BVwA7CEpL/W5iwnGx7H5fEOhVGudcXkp+lwacMDqzuNI1F/Z9r/qLTt8NI96RXgBXxfWngCYrZ6kghgOBZAvYtFfLdFxLFYEHYWcEaeaFB/VASfd+PfxFHApRFxZ9iFOJOZELriPt67ABFxB7As0E3SsxGxLHBQRMRYYjQ7aazgIkn3lZ4ZLsT388I5avHSmELnpq7/eun7ZzKZTCYzIbQbObKun1kymUwmk8k0QZoBtB2eZTsnFhHMgxM1r+Ok+svAa3gw+lk8SFR2VtkXOxI0m3AgUzvCpXQuAY7EzlBjOBSk7VYGVsKuPAMlnVhZPyewpqRrI2Jb4Gw8AF6IWfoAB2MHsR9qdT6ZyYNw2YkXgOskHZqW3QUsAWyWBg5XBj6T9GpETJcSYkVirRO+3h6XdH9KRP+c1vfEg3w/ADtJejQldjukxNCCwD24FNTlpWM6FDtT7S3pomY6z55YqLQw8G9Jr5bWnY5dRl7Grn2z4pKCfSW900S89lhQ1qwx8wBnpq1QEUJOI+nb4jfQHL+F5DKwLBU3zYgYCuyAE/ofh8uq/dTI/mMcQ3PHjIh5cbvwW2CYpH1K6zolZ6NpgX/ifuGRwNWNxa4HSiKgjuke0BU7Pc2HE9qnpeU9sOijHW5Di/KCgwsRaS1j1uq80+vtgL2wi8zbwBNAP9lVsUNJ6D62GBsAjymV/cu0HUrX+xAsgtpM0iel9VvhMnhnYhH7GIPKY2tfI+IMYAtJ86e/78T9wc1Tf3AdLPbcu/yMkfsvTRMRs2Kn0AVxe3NeWj41FvicBBwg6boJiDkbMAw7vJ5WitkJC63mA45v6lmznim19VNjF7RVgQVwW3qzpEvSdvmarDMiYn0suDwu/f8hfta6AE+WObipe2Sm7VLpH02bJhaQ7ld/wxORtmL0sY3OeDLCuti56bVJc/Sjt1URsRsW0Q4H/pDGXvoCvwGOlfT5pDrOTCaTyWRaijxbOJPJZDKZyYTqLO80i/cqSb0lbY4dR5YAHsHJmsHA+1ggsz+wkKRfSg/NfYGTyaKouiAiZgB2By4GzikGqiOie0TsExGbpL8XBv4M7A0MKERRpZnFHSW9V5oJ2xW4FCfXVsezxqfCycCnIuKpiLgkIvaPiD1a6HQzdUJql7oAP2OHgEIUtTgNA4dzAYcD6wAUoqj0+hdJPwInJFHUNsBxxazGJHY6PMU/NSJWTQOXI1LS/zXgdxVR1HTAH4CDmlEUdT6eSf4pTpq8Gg2uLwOwy8IOwHqSfoMTihvgpGNTnNvcMXMCJ9OWKCUxugGXpQT84RExeyGOmpB4MbojTztcanYv4OWIODNcMhTsMPE90D8dR6Mio3QMNYlZijtF+v9tXKZqw9K2P0WDc9QKwE/AeTg5UpeURBqd0t+f4Pb+TZy4OjDdG67ALjdD8b3pKWBPNeKsV4uYtTrviNgRuBx4Fffzn0/H+ny4VOL4iKL2xRMllmvOY6w+p4xreWbSULrei8k0n4Jd09J1cgtwCi6tN1sTMcrizOr3+w9glojYPCJuweLBwl2jC3aknZnkettYzEwD6Tv5CLvffAUcExE3pH7iuenfWRMoimonO+EdnmL2j4jLImIXGsogPll61pysfsNJFNVB0ndYULYisBCwVRZF1T2/x5MBr5H0VnrG3BZP/rqqfI+c3K7rzMRR6R9tBhyf/kfSA8AtuO+8HHZofjZNONgOOAi4viVFUY08VxTPBu3T64uwWLYTcFNEDMauje9mUVQmk8lk2gpZGJXJZDKZzGRA5YF9zohYNCLmjYiZivVA++Qi8jTwqaRT8aD28sBSckmWovTV7/ED8t5ZFFU3dAQWA16X9ENE/C4i7scD4scDt0fEzrLjzLHALpLOgIbB3XQd/VwOKulcSYdI2gVfK2vjUn1vYNHGa3iG8jHAtC1xopnWSWMDyJJGSvoAz6bsFxGPY/ejLdLAYSdgI1z68fWmYqfrswMedDwUl5SaIa27BBgEzAQMDZd3GQn8nI6pmNVZDA5+hcVEZzbTeW+CE8+bSnodzyqnNLj+dFp3I/BJWnc4Tpw3KmKqRcxMpi2ShCLXAVPj0rH74xIS806IOKrSz1oImFHSJvi+eCxO5l+exFe7Ype8SK4bLR4zOb7MjcVO3bBryOPAjRGxcbF9SgB3lJ2BlsFCHo3PZ9JaSX3YFyJifhhDyNSHhhJ4D0o6Clhf0r6FILyxhHctYtbgvOfBwrmTsOvFqZL+iJ0+pwLmLW07WuJMo5eYPRlfBw8147GV32P5cOnXvSJiJdV56a16p3ItTFVa9T4WRy0Ho/of7UrrpgAaLc9Y6Q9W+4avkkQIwCrYofY/ETEFbqf6YDF4o86XmdFJbX17SS8A3YFrgaWwUGoOYD9JJ8D4izNLMV/CAvxbsOvJhbhM9RHliQWT429Y0ohyuyXpCzW41dZNadmMSeNbHbD719eS3kvL78STdbaV9FRErJ/ug5PldZ2ZcEp9l12w8Lw9UHbTPBi7iE4HbB0R/XE/6kzgVEnD0v41E9pVYo+6L6e2vCyOKsrqXQScge/x/YD+kk6u1fFlMplMJtPayKX0MplMJpOZjIiInYEBeAZvB5w8P1rSQ8XgXkQcjh+AZ6uKYCqJizUlPdzCp5CZACrfV2dc8mAr4Bk80PE5dp8Yjgc/RmLHp5Gl/YrrohxrAaAzMD3wdGkguEMaKL4KmFXS+qVjmVnSpy1y4plWR0q2FMn4xbBIrjO+fr6NiMBlClYHdpN0Sdgpqht2tThK0inj8T7TAQdg17OBeMDxi7RuN9y2/YDLuzRbUnccx7Q5dlXbEZezuwyLTV8Yyz4LYUeOgZIubomYmUxbJCKuAF4EzpD0XUQciB0TvwS2lvTmuEQrlfvjDsBhwF3A2ZLeTsvnxSWHjsQueUun3bsnAWNLx9wOt4fXAxdK+jwilsGimVVwEvDutO22wOxlsWg9uWFUznt+7AgxDHgY6KkGV5NyCbzTgdM1fg5KzRKzVpT6cUsBD+Lr47607jZ83Wwu6bmIWBp4oTjGRkRRQ6mhU2xE7Iqvwe+xWLErTiBeLOmVWrxnpmkq3//G2HXydtmhc07gSUBAD0nvp+064T7YpsAmwIdlAUEl5qZYQDg1dq0bIpcC3RyLbD7FJdvfx4KFvsCgkpCnnbI4YbwoTXLpiJ2hpwd+UCpHODFteqlt6YifIRcAviuJSuriPtHUdVQvx5+ZcMbynZ+FRX7r4OfS3+HJOs+EJxQOwM+vA1RyMM60bcLOs1dit7xrZUe98vrO2ElxOWB+4D7gfkmXpfU1a2sauY93x231x8C+xb27ss+U2J32VOBASUNrfZyZTCaTybQmsmNUJpPJZDKTCSmxdSGe1bkTtm7uCDwQEcuXBof+g2f5zl6NkQY/i5lEWRTVCqnOCEszrJE0HLvmnItdnIZKWk7Sv4FXsGvOS3JpslEDhaWZsMWASg8srng8/bsjXL6s7FbzD2CxiJgnGkr2fJ72z/3LNkRErB4RXYvrKiJ64cTsQ+nffRHRU5JwIu1h4KKIeAK7SB0MHFeIosY1mzINUp+KRVEDcAmjwjnqIpxgm5tG2rca8i4WWQzFLmp9Jb1QdeQove6Endd+xAnHloqZybQZImL7JIqaFnhELokDbiNOA2bAJSTG6RxVuj/ujMvV3grcVAiY0jZvSboHWB/oiZ0a3wH2KtqoFozZI8W8H5c7+jyt/w923HscuDYi+kXEQdhRa5ZKrLpJjFRm818D9AD+B6wJ3JoEZmWXp/8DDgEOa+qeU4uYzU3RX8duUMX/M9DgkngHDUnf5yJiUSyWWy2tb2lR1EYkBwVgQ1ze+6B0TJsW/dlMy1H6/nfF1/nUwDRp9Yf4mv4dcFtE/DHsZnkg/t4ulfRBVXxQitkTP5Muih1t9wD+HRFbSfor0Av3V04ELsGl3fuVRFHtsyhq/Cm12b/IroFf4D7hRDsclT7/XySNkPRaSRRVF65JlXZu9jDzRMSU47r3l2PU/kgzzUXlO181IrYorf43MCfuBy0DrJNEUR3xZJ1tgH9kUVSmIPVNtgRuA84pRFERcUBEnBoRQyQNl9QX920WBXZtCVEUNHofnwJ4FFgZj+Ot2cj4wYa4L3ZUFkVlMplMpi2SHaMymUwmk6lTKoM+0+GH9ReBw4vBnCQ+mBXYStKzadmSwLPASpL+NUkOPjNRVL7zrXCiblFcguwanFT9LiI6SfopbTcdsDke/NhX0nVjib8tng13HPAynml2MbYG/5Ok69N2mwB/BRZLgpdMGyTsSHINTmqeh5Ocd2PRwX+wU9kpOFF7pqTBaXBxe+C3wFtYrPdYijfeA3IRMS0WVQ1gTOeoxeTyHy1GRJwH7I7PaV9Jt6flo51TRMyBB96H4MHIU1syZibTFkgzoU/A7iNf41JNL0TEFJKKRPE+wL64neoml6wcW8yFcD/rVuDYktCqvE31t/kn/LtcQtL/WijmkineFcBJRcxynIj4HZ71vgUuxTlU0uCxnX9rJ4lubsXOW3dgd5rd8f3pS2AzNbg8zQLci92dLmmpmE05WEzgeS6D3anukvRjEp+sgu+Hs2Hx8W24xPEi6RiLsrX74qTv3pKeKcU8BP9eeqtUHqsZj7lwshmGn0l2U3IYjYhbsaNVt+I5JdOyRMT6wA24fOfFRV8qrZsKWAs7ey6Ey+K9CVygVHansWsktcEPY2HUufj3sixuu5bCYr3H0jPKFHgiz/elflybTtA29bv7NZ9LLWLWE0mEfAguKfoNFrruJum1cexXfvbeGngzTTrKtEIq31cP4BgswDysNBZ2DnbLuQGXn50au0IOBI6RdNKkOPZM6ySJ0B8AvpC0RUSsjScjLgS8h8c/rpW04yQ8xg2x0/Qpkk5OzwKP4Xv2J3hyxSOl54DAzxE3pb/bxH0gk8lkMpmCPKM/k8lkMpk6I818m1almvF4du+SwFMlUdTtwFzAlikpslpELIgHp7fJoqj6ozLQdw2eCXw3LpcwCLg0IrqURFGrYXeIs3AZobGJomYAdsO28mdJukl2DXsHl7h4rrT5f/FAyxzNe4aZOuNm4GrsYtITl8m7D19rtyenkw2Bl4DeEbG+pB8lXSbpz5IuLImiJmjmuaSvcYJtIL7GD4mIGdO6l1LMFnnWSQnxxbAQYWpgQNjKnpQMbpe22xSXtByAXbJOTcvHmIlei5iZTFtBLh10Oi7ZNQ0WjZCEJJ3T63OAs7FzwErjEXYeLDy5uzEBU4pZJBw6pkXXY+HVOi0YcyF8zneUY5bb1ySK6Y7djzYrRFEt1WbWiHWxa9O1kl6V9D12Ud0ff8fXR8R8AJI+BlYemyiqOWJW2+FGxCMT1E6n72dT7LrUOyJ640TYM5K+SUK583EJ5ZWA3VP/f0ZgB1yS8cqKKGo2LKzdT9JFETF9RMwWEdMXx/xr7yela28Z4KuSKOqOtGyLdJzdImLNX/NemYliQ+wse21JmNQuJUq/l0tuLoMnWayDnysLUdQYrk4RsT3+jbyH26EvZAejp7Cj8RvAORHRUdJXkj6WS/18Wbx3W07QxpgORwuES5yPt5Nf9Tdbi5j1RER0x+6rd2Nx62D87Px8RCwxlv2qrno30LKOtJkJpPR97YAn7ZyL72/PFtewpH3wJJ4VgOexu+auQP9CFFXn/aHMr6T0nN1edky/Flg7Ij7A/cCfgOVxP/EsYIUk9J0UxzoNdo2+JYmilsCOUdfg8rjD8e9gtWioDKAsispkMplMWyZ39DKZTCaTqSNSEuQRYNeImKY0GP0T8DN2ZilEUUvhhNdzafBzT2BFuTTLzWm73BeoMyJiETz7sZjdf4Ck1XAidHZgxrTdvDg5tg52ERuYlrePiFUaCd0Rl8t4p5QYuQu7DvSU9EpELJuupfeA7pIerOGpZlo5SYC3K3YEOAWLoz6UVCS3OsklN3pj17Fuxb7jShiP5/sX4qhTsKNHVNa31CDfp8C2knrh0jALAH8OO6uVz+1d7O7WtyxEaOLcaxEzk5nsaCpZK+lNnLwYCvSIiLPT8uElcdSZuIzKtePxVnPgUmXfpvcdrf8UEUslMTKSfk6LFwGmJJWarWXM0uewMHZgeTct71DZbomIWFguf/qEpKeL967zxMj8wMgksCCJLr7HJVtvB1YErouGEoQj0nZjS/ZPdMxKQn39iDgxIm6MiAPDJe0mWHSUvp+zsYjlz+n1gZLOL4Rzko7FQvkuuNTsMCwIOAUYIunsynl/jIUuZydBy604Ufz3iBjWzPeTT7DbVeEUtRSweXpOmQHYGtgu7FKUaQHCTmKrA59p9BJpI0uizHnlMmr3SXpc0sul7X6pxJsei59OSHGLiRrtAdJv6Rzcp1m5vG9xndVL/6VWQqFSu7ETdud9GngoIm6PiPnG9b6VtmeziFitFjF/7Xm2FBExE3bLOxs4XtKNks4AfsDlIkeUtm1fel0VRZ0K7KHk3pppvaQxkCOAk7Ej5qtp1UoRsUl4EtlBwEb42XRTYGvlkmJtmko7WG0T/4Kd2s/CAro1Jb0hl1Nuj53Wh7fMkY7Bj8ATwMXpHnx1Ot4DgX/hft2iuC+4dnXnfK1nMplMpi2Sk6GZTCaTydQRks7HwqhjgV4R0SWtGg68hhMKD2OBy8ZpdlwHYGNcwuDdSrz8IFx/zIuToneowR3sFlwWoK+ktyNiHrm8ywlAL0nnpe3aA1sBj0ZEn0rc6YFfSMnWJIpaHNg0XUfzY0HWypK+lXRjKWamjZKS9bsCV+Ek59ppQBpJP6VE8hvA34F1ImKKcrKhGd7/a+BEYFVJTzRHzIk4hl+Aj9Lru4A/4qTfkYWQKa17BjhS0l9g7APvtYiZyUxuVBKXq0VEnyRA2S0lvt7A7jpDgL2bEEc9n/avipKqSZEXsOCoW2V5IQbYjdTGpWXTANsCD5ZmZTd7zIJSm/oEFqJunv4e1dZGxMzAAcDvq4Kpems3Gvksb/fi2DL9PSIiOsiuWQ8Bz2CXp1tglLB3NBFGc8YsXZe7pvVrYvH6ccAV4YkO4y0CSWKrDpI+B24CZsL9vi7pPvtzErkgaQAuE/QeFm/9H7BPWSBfEqH8IunjiNgRuAyX5B6CnzW2Bv4VEV3H5xiL4xzL6uuBJSPiDexAtG7qX3bEJf5WA+5P4rNMC5Cu2deAhaLBQaj8m/gtMDAilmpk3zGu3SSMPxa4HF+jf0irytu+i50wO1LfFI4iK0TEFqV24leTRIoX4b5zPyzwWAS7so6vw9F+uKzm1LWK2RqJBqeXoi2aCosC/qPRXbXnxG51L0fE6hExXUkMWBVFDcUlSC8iUw90AWbGTlA/R8RcSYx7C76vPxIRC8pOkPdK+pdSScXGBJ+ZyZ/Kb34j4Mw0FnZhRMwk6T1Jt0o6XtL1abuZwi7uOwJ/kd1qa36c1WVpLOYeucTnivgZ4DzZSfQn/KzxT3wfXqDWx5jJZDKZTD2QE1mZTCaTydQJRWJM0prAv3EJqT9GxPRpoO8QPLC5OnCEpBcjYlbs4jIYuEjSQ5Pm6DPNyIxYxPQhjCpFshx2B3s2IlYADouI30h6RZLSdsVA33PAxcDQsjhKLsHyJC7Z9Xc8WN4txewErA/8BvigfDB58DCTBt364hI+iwM7pbaHlKydCpgWl0/5qalE8MTOvpdLsTyRYtTk+aYQUYzlGEY5f0i6kwYhU/+I2Ky03Y+l3caaFKxFzExmcqKUxOgF3IlFP31wW/TviFhU0jvYKWIILj92ftp3eCXWL5U2qENJkNRO0rPY6aR/RPQuJVCnxSKkHYA3it+jpG9xmcuN0nbtaxSzyis4cX1KRGxdijk1FslvCnwilwapK8rfTyP3kX9iMc8JEbFeEieNFiP3+QAAIABJREFUSG33YsBj2DVp6YhYo5YxS7FXwdfdMdiVaXUsCFoWWDPsZDJelN57TvwdH4SFWXvjUrKdkxi5EEcNkx0HV5HUT9IN6ZjGEM9GxDy4JO2J2AlhiKT9sLBqJpxkG+PzauR8y4nFNSNin4jYMR0zwL04UT0j8Kik/0bE0ukczsCJvJvH9zPJNBuPAb8Fdiz6bjDKTWpdYGks4Bwrpf7Kv3Ap05uB41LbVlwXU+Bn1c+Ar5v5PGpORHSPiMVh1D2jF76urwRuDjswLTux/dkkgJwV2A+X+hoo6SLZ4egToAPwfWn7sTkcDcGOrfc1d0xJ907M+dWSaBD7Fv/PmP4fSUmIl56by2518+PSj5um9eVz/hMWRfWWdGFLnEemWfgQ6Izvk8OAB7ED9n64tNjCwC6N7Ti+YuXM5EXpN78LcB0W1r0B/B54OCIWK28fEetgEfCpwCmSLk7La1ZyNIngi+OcNSLmj4ipImKKkqB8LmAWGtq7Tnhs5nFg+dyOZTKZTCZj2o0cmft8mUwmk8m0diqDdPPhB97HgDdxMuFySV+mGU43AO/jUky/4FIgZ0kaVI2VqT8iYnXgYewGsAVOWBSiqM7YNnsjYE81WMdXY8yDZwv3TdtdmJaviZMZS+NZtLenwfSt8MzioySdWtMTzNQtafDtImB7nOy/AJeoWB0LE/pKGlbZp9y2TYnLrnSeEMeIWrdpETEICwLPHJcQsJEZp9fg9nhjubRXq4iZydQr1d97RKyLXQCOAW6QXRP/iO9x02BhyHvpvrc/Fk+tq0op2MrvbEvshLcE8A7uV12Z4p2OnXTuwcKRLjihOlDSCWn/9oXQqiRw7FaDmKtikc2swCuSrkrbro/LyKyBywl+BnTFs9qPL2LWE5XvZ31gMywUfQM4W5LCbnon4T7yQPw5LwwciZ1rPsBiok0l3VWLmOVjjYh98Xe+VdFWR8R1wCo4Kf9s2KXkq/H8DFbBQq1lUkJ/enztL4LvsYOTOKo9Tvx/LOndpiOOirso8CiwcxLhEhF/BZbEfcHnIuJ3skPh+BxnT+zU9hMNZR23kfRC2IHoUGCUCxcWZ1wq6ZS0f3Y+bAEq1/9FWChwPnAp/l7WBY4GjpE0ZCJiLo1LPm4FXAG8jcUKewGDiufSeiC1t2sCD+BzORY/Y9+Pn8P/g9vhs7FD24HA4xPSNy21G3Phcpb7Sroyrbsd/x4LMc9Kkp6s7pteFw5HvfGkqGaN2RoT6xGxDL7fXS3pk4jYHU8M2xaLvm5Lm7bHbfwmkp4Pu9Xtjd0Z+0h6tBTzUOy8vKcacYrK4ymTnrF9BxGxIf5tvga8KOmQtLwr7mtdmsSBmQwAEbExcAlwsqSTI2JJ3DeaAj93b5b6MTMBh+O+4F8kXZL2r0nfJSIWl/Ri6e+dcB90bjze+yBwtKTXk4Drn8A/cNnnTsAA4E+ltj+3XZlMJpNp82THqEwmk8lk6oDKLKan8Iy3x/GD+rFAj4iYVtLdOOFyAR4IuhaXUitEUe3zg3DrpzzbLCI6J8EIAJIewUmL83BSdIuUXOuCBSmHANdURVFpFnLR95sJD5C/CwyLiN3S8sexAOoF4LqIuA/4K06wDixEUbWcDZepX2TnqN1wWb19sQPZpdj1ZEAhiiqun0rSZSs8GPkv4MaI+MMYb9AIlRjLRMRszXlOETEEiymeHJ/BzpJggdQe7wqcWhEwTfKYmUy90kgfZnV8L7sei1bAiesD8IzpS9Ms67exW8YaVVFUOW4SdVyDhQEP4DI8J2HBwA/AHtiVahZ8DwaXKRtNwFQ51h41iNkT+AtuXzfCLpDD0jb30uAAtAHQC5gH2K8cs4mPuFVS+n52xWKgZXEppB7AgxGxZxL17IOTREOx+OxALOy4B1gBeAsnkmoSsxwXu2x2KYmi7sB99ELMvg6we7hE4vjQEfiKdI3IZcu2xg5S+wAHp6TvlsBduKz2+DAtMAOpfGtE3IkF8t2SYGJh4JgkQhwrafLGvsBRwMr4vvQzLl20jOxOeigWMQwAdgJ2zKKolif1Ldqn17sBZ+H+xZM4GfwnnGwdAuPX96/0V57FpSNvwO3U3riPt3f5ubSZT6smyI5tDwH9cftwMLAeFkVeJekh2ZVtU2A+3FasMj6fWZpUAA2uXNPh3+Nnaf2dWOhYiBTnBwZFxNZpfWMCpn2SgKk5Y7ZKUVRiCfydnBYu9zcMX3cfJ+HpOVjYtjJ21X4+PS/shMVPF1dEUZ1w+7mfpIsiYsOIOC4iboqIAyJi2fK1nml5KtfoshGxZUTsFw2OxX/D3+EfSqKoqXGfaDZAk+jQM62Q1A/bELg2iaKWwPfB63Gp347A9RGxmKTPsBv/3i0giuoP3JHGSQrB38W4T3oAFueuATyUBFQv4X7hssDx2DVtYCGKguyKlslkMpkMZMeoTCaTyWTqhjRT/G840XU+8AWeKXQFLs3RH7hC0hdN7J+TDXVGGqDeHQ/g3QEMk90wAouVdsAW3t+lbXYAhkgamPYfY0ZYEkEdDbyEE7LrYseK/SSdGS5F0BXPHJ8H+B/wrKQH0v75OsqMlbBz2WCcHB2Cy+O8ntY1VsanJ05iXI8nbsyAE/0nAyeOpU0rD4ofBBwGrCPphWY6j0Vwea4TJF2YBiPfToOO49q3sd9eOyBaU8xMpl5I4r8vJR2f/i4SktcDS0taOC3vKJfw7IiFUNsAKyZhVDneaA5MadkiJCcB4CS5dB0RcQoWIt0IHCzpmyRG/gkaylnWMmbl2LfCiZFBkgZHxFq4f9gZuEnStqVtZ8SCrJGSvm4qZj0QEStjsfapWBz+Fe6nXIZLCveSdEO4XNccWAT+ceo3rQTcBPxdUs9axizFPhj3txbBopPlsLPUsylBezQWT+0j6aPx/AxuwC4vS0j6OS2bHv8OVsEOVnMAp0n6c2XfRl0Cwm5q9+Ay3XNgF4QtJD2T7ud9gO1wEvA/Y4uZhFnnAIcnEVThdHgidmpZuxpjXMeXmXAiYipNgPNmab9lgdnx88EHRT8iCZimGN+YVdECTuAWIrhr0/KOxTXc2omITrL4v3ASGgT8F4vRe6blHeRyl8sBt2PnuYNx2chq3205YGVJZ6e/98aOfhulTe7AJeEK5+du6ffYCTtB9cIurI+VYp6J3bj2SmKe5oh5OG6n9lEjrkmthfTseiwW302HxU8nFt9J2mZn7GT3Ef5upsFt0tklwXD5ui36Er2wE9i/sIh0xrTvnpL+0oKnmWmEiOiBnek64GfITlgMcnf5+THdr1fCQrjjJZ04CQ4300qo/NYXlPRa2InpVTz29SB2AtwbGI77cHviCRhbSnq6sVg1OM6NsPPrB/jaXRiX+TtS0g9pm22xGP2HdGzvhF0Cp8d9/5fTdnXZ989kMplMphbUxeycTCaTyWQygGd2/gjcLOlTSSPkWejrAi9joUyPlCAZg3p8EI6I7SNiz/R6sp6VGXZ0KjtFdcdldkYAH+NBvosiYmlJSn8fD6yDRUxT4RIJhShqDHewNCh4Gi7b00NSNzxz8krg9Ijok66rDyUNltRX0tAsispMCJKGY+eyvwCvl0RR7RpJ8C+OB7T/jBMyO2OB3+fA73GifwxizNnsg4A/N5coKvEZ0A74fRosvQtYaHx2bEzAlJa1qpiZTD2QxD1zY7clYJSDx0icvPhNuPwdhSgqJdwfx0nMqRsJO19xnyzde+fBSdW7JH2bxFVIOgiLD7fHQhYkfZPES8NrGbORNnMOYGeczB0cEUvhJPx12IVq64i4pLTLV7JjRiHIGqMdriOWwWWRbpD0eeqvvIGdWwQcGRGdJf0o6Y2UuPopIg4ArmZ0EUO7GsYsuBSXRnw1vc86SRQ1JdAdO8/cVhVFNdbfTcIscLnamXC/rxBsfIkFgCfhklF7F6KoJGip3jPniog5ImIqAFk0eAsWriyHhRXPhMvFbI8Tblc0JmgqxVwnCTFOwM4Kr5e2uRu7RL0O3BcuezWGW1AWRTUPEXEC0C+1m+O7T+Ec9bSkOyX9vSSKaoefN8Y7ZrkNTL+ZU3Cf8OokNKFeRFGJQoQ4paST8DPYQsCGxfWcRFHtJT2FnaMWxr/X2cuBkohnMezCdnH6PM7Cv8HvZPHsddi1bRksnH0m7ISzM/6NXVYImNLzY0csgPoRWK2ZYrbHJdsPbq2iqHSchfjpSVyG9jtguYiYKX0nnQFkx5Q/4O/kR+BWYHeN7sw4qg1KfYmVsajzcGBbScvidrsrvjd0abGTzYxBEoSch53Sl8X3xTlwe7N1REybtgss8OuDHYxPTMtzTqyNUuq79ARuDTtEXSfpX9hZblo8seu7dK96Cosjf8TX2hixmpvUb7sbtzmz4hLhPYAPJf2QRK3IboVnYxH+mmnZu5JeKomi6rnvn8lkMplMs5M7gZlMJpPJ1A8jsEhgqmJBSoj8jAc0Z8RihD2LxFs9k5JA3fFA/MyTc8IkIrpq9Bn3M+OBjWPwIO4mwFa4ZMuZYQv/jyQdjYVNSwK7Sbo87d+UgGl+YCTwYJGIk/Q4MBC4O8XepXQcoyXn8oBK2+LXiBGTOGprSeeVljX2G54NDz4+kpK74BKgXwN7SPooKuXxGhFFFWVDzp3Y422C77CT1UY4wb2vpFvHdyC98vkVyZNWFzOTac2k3/vnwC6SHo2ITSOiPNP/GTy7u1+4NFmR0OyMBeWvAF9WYvYHHgJWr8z07oTbo5lLcYoyRwdhl4gNyrFKbVGzxyzOv/S6KIX0ChYYzInFBjdgt4+zsQhnl4i4LsUakf6vluKrG0qfwZy43StECu1KIriBwKJYUFvmJyzUGSapKBNVbhubK+YWwLkRcWlEFNt/igUlr+E+/FxhJ9DDsGjhjFK/bdT3XLqmVo+ItdOyH9PqJ4EPgc3S8p/S8X4taaCkfkkAMFpfsBRzJyzI+w9wRURsl9b3T8fUGRgQEedi16yTsRNp4WzTmGhrV9yHPAaLq7bEEzVGCZvlskaHpGN/KuwsVXfXYmsnXdsLYzHbLhMgZBpb/77dRMYsi6OewcKEm/EkjzXHJ8akJCJWjIg+Yfetkam/eW/6+zRc1n4W4IAkvEB2DGyfxGAb49/O++W4qU2+G7s/b4f7b33lcuUd0jbn4mf7z4GTIuIa7Ao3EDupnpGOsfh8fwZWwxNfmivmL8BqxfLWiCyQHpFEDe9hkdcl+LM4Nz1fDy8JCB6QNBi7qgyRdBeM9bl5MXzPvbMkYD0M32f3kJ0eZ6jtWWYaIyIWxL/BE9N3Ohd2f7wUeA7fu7on8drb+DrfVdLpaf882asNUulTz4P7aBcD75bEugvi8YliQkEn3BY8AqyuFiopWtxD5QmKvfAEkUXTsRX9v0L4eS7wDbB2U7Fa4pgzmUwmk6kX8mB5JpPJZDL1wws4ufaHYoGSrT+evfQ8foD/TvU1C7dRUhLoLpxMXAxGzbKdrIiIC3Byaso0ANIdz/pfBviXpOGyg8HfcLJpSeDUiFgBQHY4+KZIfqZlTQ30zYSvoffSexeDKQIuT9tcEhH90vI8iNJGqYiPlk8JoukmJEZp/7E9cywMzFiapX4Xvsa3kvSfiFge/z4WaOS4ClFU71oMUkr6BicEp8P29MVv7pdxiU8rx7knaWZ5a4uZydQB7dK1Pzzds/bBAvBjACQ9ih0dFgTOTonsTYADcTnPSyV9UIn5N5wsPoUkZErL38BuTd0jYpYUv+hnzYEFm+82cZy1iFluR3vg9q4zcIrs5rJd2n+QpF8kvZOO43lg24jYtKm49USpL/IkLrVaCMnal/q7P2Bx0+eVfT/FAqSToCEZ2swxdwSuwWV61gHuCZfb6oCFvocD76fXFwGrA4dIGlQ6pqoj4Bz4u7wxIv4eERtHxHxJJDgQO9Vsko6n0T5/tS8YERvgUlKP4T7fSsBxEbFv2n5f7EjwfFon7D41mhNpJbE4PbAHFvmtj51yXgUGAOuV70GS7sHOUTtL+iT3MZuf9J1vjxO9g4Fe4ytkKqiK335NzIo46jncVu8v6eEJOaaWJiXCZ8bne3ZE7IUdd2/HIkcknUm6noH+jYij/ln0TYvPIAkv20v6GIt6O6V4q6V9fw47yiG72vTBv9Wu2DFxTzXicJRef9RcMUsJ+VYvHAmXq30OmFfS9cD+uK1dA393MycBQbuIWCs8uWi08xrLeS6Jn1H+m97rTiy43k7S02En5j+HJzRlakgjotxvsVDlhoiYD7gPi8T74PvRt1jEtiO+rz8iTwbL7jltmFKbuSHwW+Bh4JrUtyq4E/fbj4yIP+JniV7APyV9mPZvKSf74hnofiw8fw/fg7dP5zM8ItonsflnVPqrmUwmk8lkGicLozKZTCaTaUVUkg1TRcQ0xd+SnsDlog6LiL2iwR68M7ZO/qekRZRmddcT1cGFaCg1cwGe5Xdo+nvEmHvXLxFxJE5sDpL0Q1q8BPBHXO7g+9K27SQ9hMVRiwNDwxb/Y4vfrvw/Fpp9hGdRFoMphXPFW8C/8aDicDJtmtLA4c7ATcDeVMqBjI3Kb7pDdXlp/WPA1xFxdET8FV/bW8rlhqbCMx87kkrqlY7rQGAINRJFVY59IHbO2CwiLk3H8XNTQs1GxFvnAc8nAVOriZnJtGYiYtYk/PslJWlXwO1Ab+DvODEwEEDSJThx8T4WftwK7AYcKWloild25HkKu3nMjh021giX43kJlyXeCbuA/DbtOzUuMfYzTYiYmjtmpT+4PHYAeQboIOmztGpJnAR/M203LS7ddxWwtKQ7xvlBtzIq5z1llFyH8Pd+E3a33KToE6ZtAn+OXzcSttyn6dwcMSX9mBLtUwKbY/HTmlgYdTpuj49I294uaVXs6rcssIOkc9L7tE9CivJ5zyy7zCwOHICv+0uxW01v3N6/RhLBRhPi40but3NjcUs/SYfgiRYfAAdGxH7pWM+VtBewkuw+dVP5ONM2xb1oIyxA/B6XinxW0oPp8xiZPof1K+Kov0q6emzHnZlwIqJ/2LWsEMrtA1yBhUjjLWSq9DVOao6YRdz08m01OBO1yu8/Xes/4WeiPlj4dCYuKXdSkYgGkDQEP6P2AA5NIp0xhDbFZ5pER79ExKK47d8D9+c2iYgr0zY/RCqdmdqOo4BNJB0j6fbSMf5Sq5jlY64DvsVizo0iuXthgWchjjo3IhYDtsaCh6WrASrtb3lCwfNAh4hYN4milgS6pWeULkA3fM/vRKamlNqlfSLi0HSPPEfSK8CfgBdxSfXvU79LWPhyHjBvY7EybZOwU9RluP8XWFBUrGsv6TU8FrcOcC7u3w2SdF2xXa2uofIzexqja1e6f/wD34++A44IT5ICO59ugK/3MUoeZzKZTCaTGZN2I0fm/mAmk8lkMq2NiNgWD/LMCjyI3QFeC5eUOgHYFduF/xeYEicAB8jW/qMNbNcTKRn0aXrdHidWDsWfxRZpdmZdnluVlFC4CXhV0l7hciazSTojIg7D3/Mt2FXgf2mfdilBvA5wP7BtkbQqxS0nNWbCttodJH0fdvwZAPQErpV0QNquE054rA30kfRezT+ATKsn7F52OXAkcLek58dzv/I12BOX+TwnzdieEfgC6Jj+7gpciBPG3wBrS3ohiUK3we4r/SUNS/GKMjEv4fJ551Xf/1ecb5NtS0TMij+HnYDbJO2alncoCzYbETANxbPxL2pNMTOZ1ky4RMoR2DXx7IjYHSem15f0SEpqnIGFRVdIGpD2mwW3N1MBX0l6PS0fJT5J99Di76WAO4CPsQDlH1h0cjROhDyLy9a1A7YAjldy1igda7PGDM8Cv0uptGiKNwsWUR8k6evStn8ELsAz2V/C7ponAtsrObJUk931QuoH7437uA8Ax6Xk/or4HNfECav3sVvefsBRckmdmsWstMft8WTDvwCnyTP6CZdWOhwn548Dhkr6opHjKa6dcsyt8fd5I762C6HWH3CSbhfsILsyFrSvokqprkaOc16cSDsFeFl2jSm2Wx474cyNy36NJthq4nNsh91m7sMJubckLZfWdZQFuQvi38EI4GDgb5oM3GxbI0mMcxsuCbmr7MxVCDzOx6Kdw4BLNLorRjVO+ZoZjF1XPgZ6NlPMQ/Ez3RKt9TkjIgYACwG7p+t4cyy0HYmFNr3kUtGj9asi4iAs1r8FlzYf4/deeo+lsMh1Dbk87Cy4vegF3CFp57RdO2At/Jv9cBzH3ewx64mwg+SBwCKS3k3L2uN2fVcsLm2Px1OOqexbvkbXA1YELpf0bkTMjwVy02ER6aaSng8LYrtjR7FDJV1W+7Nsm1S+n3Xx/fZs4BilSWURcTswraS10t9dsZj8PGBEcW/OZGCU+KgHsBcWRq0v6d+NPH/PhicbfC/pxbSsJn3qiJi20r/fCrffXbCr1Qmle8+6WNg1F/AEbt86AjdKOr65jy2TyWQymcmRLIzKZDKZTKaVkZIfV+GEAsC6WAB1gKTH0ozPXji50xX4ELhM0umT4nibi5QMOgbP3joJ+ELSt2F3heeAk9MM17onImaQ9EVE3Aysih2cBgN7FGKHiDgWJ4bPw8mqIsFbJNLmKgZ/m3iPbYC+wPQ4YTpQ0ospoTwIC1FexsnBOfAAUT9JZ5Xfpxbnn2n9RMTsWLj3NHC4kjPRuK6LRkQ8p+OSEzekpHQfPID3KHB+EnwuBFyJB/juAf6JBQ/b4mt/YCOxF0wzOpvrfMuxV8Czi+fHLmvvS/o8IubEiaZGRUdNCJh6S7qwNcVsrs/s/9k76zC9qquL/2IQJLi7Nbu4OxT3QCAECASX4l7cNYJbgGDF3a0UKE7aQtFAWVCCFD4cWmhw+f5Y52buXN6RhHcmM+Ss5+Ehc2W/5957ZJ+z11m7KeS+Y8JFlTQyrsGDsFrPlZgceS0mBR2ASSs/JgLSbJgs1Ygc1VyZmihnQWT6GNhH3pFdEEN3wcSPf2KyUjE+/+zZ6mEzPd8uOLj7akQsAYzAikd3StoqXVekOpoW+0s7YmJpd2qQtzobIqIvcA1wPw4KrYzJ4LtLeius/rEtfu4e2Ee+Uk5t1dQ3r6vNZG8jTMSbFhMmRpV8tCmBw3FapyE4IP/fFp57O1ynrwJulPRQta6lOrEsVg1YPv3GEKwq8LP2Fk7BeCKuQ72AGzBhD9yWfkrkqFNwgPBUSafXsFPrna6RbC8L7K2kWFsav+bF5KnJgKUlvdXc82eMOyKiDyYqzYlJPfel460iMtXwNU4BLsMKOfW0eaA6qLJxIrvcACyF1XMPxM++aPr/oHR8lxIhY0z7jIhjMCH3jBZ+Z0bc9zwF7JXmuo2ITHi8Ww2PfzvJqojtarOjoYk+aCJZwWsOvJHsdkxIpfChgU3w/OIdSbem+2qN4dviOvonTIwqiK6rJLvvAqen/6+CN20NUkMawuz7tiHChONdgHkwGe3zdHwiTIJaDo+3L+K1s+Px/PPv6bpOSRLP+GVoql2GNwVujn2Yn4DlJH0YDeTuWn1EW5GihuANHYMkvZfmCpcDj2B/dVmsdrc/8Eby21bGm9cmw2P1hZJGtWU5MzIyMjIyfk3IxKiMjIyMjIwOhLTD7VCcH35ImpgvgwkKn2CiyxMpKDg98B3QU9L76f5OMxGuEWRaDu/OXwmrK4wAhuGFzuMwSWITWR690yIirsVKEdvhHfpP4KDaEElHRuMdyCfhRe0LgKGS3qxhr9bCzaaYXHc9MBUObPQC1ks74mbCC8Xb4DSMb+HARpHeIi/uTuCIiLnx7vND1IQqUxGQKP1dDYKdgUk8l4TTsVyLVQ1mwQHY/wO2k3dfz4N3bq6OlfL+Ctwl6Ypkr5HiSxs9NhGxAw4yf4OJp1/ggMhgSa+HFZmOxESN+5V24VdsFM++WyIwdUibbYFKHZgdEzO/xkTXj9ujDBnti8o3nxTvzv+mTrafx2PU7ZjAUihKFsSLghy1KFZBPLwVNjfCCokbqWH3dUFk+gSn5Hsi2e+FUxMh6at0ba0x9xfbxOnHLsWBvAdSH/we9oPWB16TtHL5+dO/J8HB7ulw4PcvTZWzo6NEKhqCiV4nAZPiFIUX4DFpZzUQxefE/UuXpvzgNrK5FQ5aPY/f+xzALZgc9F7puimBo3Ewa7kiQNvEsy+L6/k5WGFqdAvvqgdWjp1a0rLV503/XhGTZodj0tySOMC2laSbEmkANaSqvBgrX/2xmd9dHnhX0tul3zgT+7HHKSmnlNpo7/TsVzT3PBnjhgoxZwM87s/GWBCZavhuZQJ23W223dsYd5T6ialxWVfHc+8DUz2eFpPNh2I1t52KcS4RBF8q+ouyvWZ+71ycynIBJXWptAZwCN749D/cT50i6YRWPkPdbXZEhFN4zg1cUhpvJ8LE1wCWkBVpe8gpEav31xrDN8PkgmOA6yW9Uzm/HHAuVm+cGhPQbizmR51xvO1MCCvk3IpVEq9Tw4aZYm7YG68XTQJ8jr/RIEmDxlORMzoAKuNQb2BGrGL5QZor98AbMIZi8vjyiRzVrirLETEMr4EMxvOAo/GmxjPwZrL18VzgKTzXKMhRa2Lfc3tJt1SfOSMjIyMjI6NpdMic7hkZGRkZGRMi0u6gc/EO8GeVUk6kQEofHHQ4G1gpTdg/SgufH6T7a+4W74ioLFSsnJ5dkrYE5sdBnKmweswtOOjXHQdICUtgdzpExJHAmsBFaUF9IUxY+g8wICJ6pwX4HgCyAsYgvFhyeHj3fRXV3bNdMblsME631RcHZd8CHo6IpdLi/XBJK+CUEauWSFFd84JKBiYvTYzrZhF0GIOIWBJYOwXHmgqC7Qb8Md2yPFaP2l5OdXAsDtDcGBELp12OR0paCqeDGlAlRYEDuG31wBGxHg5KD8Ikwklw8HsnYM+ImFjShzg10i3AVhGxVsXGbuk5i6Bih7TZVijVgW2w+t+jWPHvjohYvz3KkNF+qLT7/jjFyUsR8WxE7BJWcRh+Yv0tAAAgAElEQVRX29Pi4NYo7ANtkYgmAD8mP+gdTBh/GdgnBS+bs9kNqwqsCFxXGmtfADbAftZZwIqp3/lC0lclAtPP/Kw62pwCE6Y+CytXvJzuPQq34xUj4uJku+wnfCXpHklXdEZSVEHOSZg8rIo6GQ78/CirFd6KlZwWA4ZHxG/Se3tLTgfVyA9uC5uVYq+JlZrWljQXHudWB44IK7cAICtEnYDTW9UkRZXKugwO6F7fClJU9xTwHwYsFlaRKn6znD5vaawocISk/bAveA9wVURsWrq2i6SncDqZPzbzu3NgMv+wMCkRSU9ghZaPgaPCqldFHe0m6dXyWN7cc2WMPVJ975r+fTcm/r0DXBwR66Tj3wO7YhW+E4Cdw6m2myQw4eBsXW12VFJUgdSuPsNEr78BfYFT0/FPMLn/YBxIHx4Ri0bEQKxCt17ZVgpad6GCwmfG73RinGayuOfjdHwb7OPtUBCYim/cFjbbCuWy1ir3ONqcFKssDwH+FRGHRsSyiSB1LFb22hOgFikqHa+O4VPi+coVwLkFKSoi+kfEnhGxuqS/4j5+GWARvFErk6LaD+9iNeEFgd+GCeZF/9dN0qt47eNs/B13LEhRedyZcFEah7bD6pW3pP8/HBE7pD7iBtxn9gAei4gZ1KA2117l3AOv2x2CFf5mBh6T9I2cXu9m7K8ug/2+udM4+wCwYEGKSrbyGl5GRkZGRkYrkBWjMjIyMjIyxgMi4o9YPeCi0rGD8ELfj0DftBhd3g23CN5NPhqnZvlL+5e8vkjBv6HAfXgx8qnSuR5YQaEvJkbNBjwNrKSSSk1nQThFw43AaEkDImIAVhE4Dau9nI4XZfpIeiUtxH+f7h2CF21Wl/RwyWaj3bBhpag98W64cyTdUTq3Jl50+S0O0j0bpZQ86Zq8y2wCRkRsgnean5QCLSMweWlRlWTlU10+AbfJPdRYJaCqbDQFVjU6FXhU0o2la3fAAaifgH6SXi7qJDQEltq6TpYWP8/Eael2ScQiIuIOoDewmaxsNbGkb8KqayHpkYqtrfHmkys7ss22RCLIXIm/+cN4h+6OOKi0qqRH26ssGe2DVEcvwQS9T3BwchNMbt5PSY2nlbbKQfUZgC9xkL4PDkpfpQY1jKJPmhmrRNzdkt2ImBynSNodB7/7F+Po2PpZ9bQZVgd9AhiJA6/7Aucl+7NggtQArJawe7qn3Xa1N9cX16OfjogtMNFiRhzcP7FM0kkEtD6YOP8yHmPUnjaTvS1xf3xquS9LpLV+mDxxfCJXVe9vMgVjRFwIrIXH4K9r3Dsv8EXR56djW+NA8GqSni8dXxOTFF8BblZJNSMiFsJEiXWwctQt1e/X1PdMfvmWmOj3AHCApH+nc6tif34KrHB6ac2XmFEXtNAe+2LfqpbK0yWYJLOkpGdL9xyAydZ71iIwtYXNjog0L10Bt8XpcRqjM4GDkx88He6HT8F9+sRY8ffEZmyuBcwl6aJSe58KKxTNiNVA/gt0rdWfN9Fv1N1mPVBvn73iD8yOlWYnBubDRM+VMYngKkzC74uf+/fA/1rzjGEy6zPACZIuiIiF8TxmSdzX9wK2lHR9c+XLqC8q374LEHjNZGWc9vZONShn1vSFMmltwkP1m0fExlhNbjBOkzkZnpMOxAqtNyZfsD/2bXrgce7r9m7bETEUE82/AdaQ9GTpXNlfHYn91ddK/X+u6xkZGRkZGWOBTIzKyMjIyMhoZ6QA3ok4uHV/5dxOwEVYaWM/SSPT8SL4txjwGFYCuradi15XJBLGtcARwK2yYkytBY1JsHrUITggs4WkhzvTYmRa0OuJ04jNg3esHYiJDZckMsiaOMDVHdhAkirkqOUljSjZPB34CC/0gNMPbo+DENMAm0u6ORqn3FkTB8QWB1aQ9HQbP3pGJ0Cqn5NiJYmemMDyNd61OBSnGuon6T9hFZeN0/HDJA0v2dkHBxN+n+r1AFzPf8DKZCdjAmB5F+cOeBGwJyaEjmz7J/45Uht8AvhI0kbp2L1Y1a2PpOfDKYNmwovx5RSCNRcjO4vNeiK8i/tW4HUcSPxvOv4kDtZtKum5tixDRvsiETbuwqlbT5XVeIiIDzDZZHtJb7VgoxwA64H7jIkKgkjyAy7HQYGDgCskfRER/XDw8ng1pDVqsp5HIhMnItPBwC5YhaBMZBorP6seNkuBjQvS/a9i8sETpWtmxSmttgKulLRXS2WrFyrfZ2lMwpwcGFX1Y8fRZj9MpvwL/vYbYVLPHmpMBu+Wzt2Mx6Tb2tpmYRenMzkaOAAHrVaV9FxETKIG9a+Lk61bgWNVSqvXhM3yWFiMn0vJxPUepfozG07xdKuke9KxGYDrgK9w319VD30Kt407MAHqy9K5hYDj8Vg+sLk6WeN4d2BzHJz7E7B/iRz1OxxYnA0T8F9p6vkzxh2Ver4wVvicBHizGF9TMPgQfk5k6gH8TtKDJXvL4PTFe5SIIXW12XZvo34Ik7qvxu38FUzCOQMTMq7BafW+j4jJsLrxqsA/VdnIVLE5LfA4MC/wIp7/XS7pnXBaysdw+7xhLMpZd5v1QKVerof7wtmwPzgMK/bVVHFqhb0tMBHqXuBCSR+l4wtjItt+eFPFbzGZetWW5rgV+9dj/+Kv+L1+DOwFfIb7ui54c9L3rS1/xtij8k164bF2MqUNOBExHyZizo/nqPflb5JRICIOw2lN70g+Vg+sCPU53phQbKr4C97AsWlpfOuB/etuGo/E7og4CjgObwg5RtK7pXNlf3UTSbePn1JmZGRkZGR0fmRJ0YyMjIyMjHZGCpTsLen+iNg8IvYtnbsEL/ytDhwWEQuk4z+mBdfn8A7RTkuKioguYRWZHYCbgEtKpKgxKUuKoBHwbXpnB+GFyU2hc0lFS/opBc42wYSFfTEB7rJ0/kccvNsH+A64O5xW7/toSJHwV/DCezo2B/B4eg9d08JgQbj6EKcVmlqWAy/SbDyAVSfewilWMjKK+jkak5aWxul0fsBB19OwesnrEfEIJkCcBpxekKKiIU3BrDhdyiURsQEmMrwBvIeDtzsAi5TbrqTLcOBpckzYa3eUFk8/BiaKiG4RcQ8mG22YyEbTYsLColTmUE0QmDqcTSppN+uBUj9doAdOTfVciRR1FzA7XsR9LiJWioj5612WjPGGmYHpgIdLpKg78Fi2v6S3ImKOcAqcn6ESCNsIOB+Pd+enIC9p/NwO9z9DgcEpeHAT8GVBikrXVgPTAwo/KxGYeqRyDgUuxv7W1dGQmq5FP6veNhMpak7cdq7AgfhjImLZ0jXvYlL9lTht1RVNla/eUGMi658xSecM4IaIuDoR18bVZldMwhiCVTk2xmoQ0+PUbL8r3fMDJvrMW4vAVE+b1b4t1bHzMcF3IkxSQ9JX4VR9SNoZE4x3wd+wEco207hb7pPvwgSC6yNijhIpahKsmtooVRceU8+StEGqP12LciT7SwMPYeXVHcvtTyYgH4MV/aaplq/SJiONK8W932P1012AdXGqsTnSuUexr75XJkW1HUrfZnus3HUJ9v9vi4iz0jW30ZAC74JEVEHSdwWBqeS7vY7Vni5oC5tt9R7qidQ+tgMeBC6QdLusYrwh8AiwMx53uksaLelpSadWSVHlNh4Rs8op+FbAKZDewRtYXglvbpkHE322i4ipa/hThZ2622wLVOrlzcDcWN2pP65Te47NWFGytw2eLz8OPCjpo2gglr4o6UI85u6GiW0/AgeG1W3HoEafXu5/jwIuwKl7z5S0lJw+7x2s6vx8JuC0LSrjTn88B30BuD8ido6IqST9C6v9vIzrxJiU7hkTNiLiTEwo+j8Y0757AksBr5ZIUXfhzVrFnHStiFg6+VxXFKSo0ljWrpBTnQ7G9XyP8Iba4lzZX82kqIyMjIyMjF+ArBiVkZGRkZExnpB2wl2KiT6NdtSmgNsZWFHpREn/rHF/p5VMjoip8aLWpZKOaOKaKUuB9WLB+XYcDNquHAjtqAhLYn8saWj6ezngSazGUyiq3Fu6vhuwBiaoTAGsK+nlis1CWaL4fx9gOWCQpNHhVAob49QPT+Kg4H/L9SUiZlfa4Z8xYSFSirXKsSJYMAlecOuKd5u/nwILS+DUIfMDLwGPSLo13Vtrh/ws6fop8CJlT+B3mAz4PlYaeKFyz/y1+rl6I5pQwUjntgX+iNtmN2BjSS8kcsNAHEg+oHj2zmSzEnBYAO/iB3in2seMCyJiXZxC7XWsMHaRpBPSAvQiNBC35sR14iGsetMpx7AJFZV6VIxBm2AS5OKSXq9B1lsKk35PkppNU7YtcB4mO32K1TgC2Egp/VxETARciAOtn+IUvKc0Y3MKHOBv5GdFg8rTFFjdZzVMaOmnFlTW2sJmOj4xMKukUWlcvwMH6Y9KAdriutkwOefJ9iQdRMQ6mBBzAv5G/8Hps87EhK1jx7Y9p+f8I/AvnDbwytK5rbEf/CLeNf9YjftrfZ+62gyT9aYDrpbTk86M0/MdjdM6bpuuGzO2RsQaKqnnpGPltrM6VgkNrC52l6SXImIgDoj1xIH6LphcsDdwnKTBVVtFmTFx6lKc+vb90rkRwALA4cBlaqwcNY2kT0t/L6YG9YQueOx/Kj3rsMq1E6X3cBYmA54s6c3m3mVG/ZDq+XV4PL0H+B9WzdkXOEIpfWKYpH48rmsLAP9uxreou82OiIg4EnhMpRTDiRj1FPCCpC3TsaJPnw6302kx8WafWiSZShsv0ng+hsepQuHoN8AWeKPMbJis+S5WOHq9Rtuuu822RFhR8DasgDxc0meJDDUaq0rulYhdrbW3EHAnJgQPLvdfpWuq7+wU7Av/VtLn1WsiYmVgJbyZ4ylJl5fuLass98LEuNOBfVUjlV5GfVBZo9gG+1iXAt/iVIbb4jpwlKR/pzp/Pia97ADc1pn6oIz6IvU7t+N2emNq409J+joiXsIbCXeNiDvxxqFifjIzVlp/ETin7KuPb0TEEEw0HwycXfbrStdkHysjIyMjI2MckRWjMjIyMjIyxhMkfQEcixd6hkXEnqVzZwH749Rxx4Wl4qv3d+aJ8JRYvaQHQHW3X3regYlAVShmzQ2sj9M6dAZS1PR45+4TpcPfAWthItOswNCIWL84mRZjH8SpxXpQQ9WpWPhLAemuOGixD3BAREyWdsTdmo6vAFybSGY/RoNyVJH2pN12EmeMf6RFto0SAY9oUDMp6tSXeKf5krjuIulrSU9K2kfSWpL2a4EUtSFenNwet9VCLe0BvLA9E3BxtU8rSFHRhjs0K4GR5SJiq4jYNSLmD6dDugKn+5gHuBv4OKxstDcmbFzQHIGpI9ss2SsUES7HxIuHIuLAX/he++Mgam8cyH8N6B8Rj2EFnHXTAnQ3HLxfGnirk49hHR5t0b+X6tFEpSDUi5hUuV1E3AosjMlMzyfyxEp4d3aPZsq6Nl78P07SDrgez4eDYvdHxBrp979N55fDaW1OSfd3rT5z6p8+x0TBqyj5WWpQefocuB+nrlsFK+CUn7eqAFIXm028228SKaqLpLswwXkN4IQwqbq47h1g9xIhq73G8fWBv+Ed9W/IqW02wO399nFsz71wSuAlSIp2kVQ+JF2F/eD5gZOLOlBGE79ZF5thddOuOCh+FrB5Ij+9h5VFjge2jqTclUhTxe9U1XOqqlu34XrRO9m5NSIGSroaq548jZUZT8V16KASKaprNQCcytwL97+Ph9PsFeeWxxsRBuE2WlaO+rT0rNsCz4TJY0V5n8Mks8OxSllZOerb9ByjsJrO+eF0kj97lxn1RWrzm+J+5jJJL8npShfBKeDGpLeUFY1OBnaU9HYzpKi62+xoSPV8LjxnqhJsvsX1fZFwuq6iT+8u6WPgUUzuGQCsWMt+qY1vg0kdTwP3qrHC0WuSTgQ2w3P8P2PC1TG1CExtYbONsRhWWLotjRFgMtk7wFBJn0QT6pFNoDf2L26rRYqCRu+oWEu4BJPDVqtxzfY4tVZfTDq9LCKGJoJEMQ8nIlbBpITzMGEik6LaABGxSfKbinG3N3AYJmcenOaeO2Ci3/ykMV3Sa8CeeDPGdJ2lD8poM4zGc4wFkw/zCPC71CeMANaMiKexMvXapTnpRng+MbIjkaIAJB0CnILXBPcPp9OuXpN9rIyMjIyMjHFEJkZlZGRkZGSMR0h6CQcDrwXOqUGO+gNWRphl/JTwl6GpgJ28q/xBYKeI+I1KO29TILUv3vk6WTrWFQdbL5F0aHO2OwLSQvRHwNaSnoiIPhFxpKR/SHpQVstZGZOjhtQgRz0ALKvSLtZaSAsifbD6yh7AHxI56r80kKOWAW4KS9D/WLk/LyROIAjvoD4QeE9Or7gO8M9EuJmjRI46DXgbkzaLewsiVZdyu2tiQa4rJkEshAMzxbU/4IXKbbH6xpUR8bPUeW25yFcKjOyI29gwvOP4EeC08O7wo7CiyJ5Yce1hLGd/lKQh6f5awe4ObTP9vVGydS4Oyq+AFWBOScGisUaYALoEDmLcJisB7IdVC1bERJeXI2JG/O1PBS6W9PC4/F5G86i0z5+aOvcLf2Nd4G/pmyKnNhmKg4hrY8LSc4kksRUmEV0pp++qZW9inAbnGkmnhhUinsfqElth4sV94R3gxbO9JOn14rkKAlOp7ayDU6bNJSuiDQauoeRnpaD3RLiuXojVNe6olK3uNluCGhQh78C+0Bo4wL186ZrR1fK1FVK/3x33F59K+iAdvxurxWwm6R8RsXYi/YwNbsBjzevYF5pN3uE/EYwhMh0KLI8J9e1qM41HiyZbpwADEjnqfRrIUQMi4tp0/dc17h+DiFgRE61Oxn3wopgo+hMwKCI2lHS3pPVS+RbC6V7OTfc3pw5wA7A7VhF8qgY56nk8ZuxWjOml8z8B/8TKLFeElauKcXsXTKQ9CZOjpivd2hWTrg4BblVKpTmhox3mJ5Pg9vheIu0QVurrDQyQ9HRErBIRRerxmyXdkK5rag24LWx2OKT557ySnoqI1SNirXT8e5zSfH5MIJylOJ6IPN1wn7+ZSkpTVUTEIrh9D8Uqen9NdsYoLaa/R8lKiJtiwtNSwFTtZbPeKNWB3wATSVaHTOPEUkAfSc+GyahHRetT6s2B62aRBqtR24qIhdL7Kb4hmPD0DSZLlK/ti/vAMyQth/tv8FrLSUWfGRGzA1vjPvowSSdVnjGjDoiIi3Gbmr10eHpgRuBvalD7ugenR9xV0jtF28Tk8zUkXdSOxc7omPgYk3d3wykW95b059QnnAh0x3PVCyW9Ek7/uwP2x4ZLum88lbtZJHLUOXh+Ncd4Lk5GRkZGRsavCtmxz8jIyMjIGM+QlVJOpDY56nScnqZDTtibQyWgGBGxQFjVpMD5OPXSgxHxu4joFU4RsxNepLxdVkYogkv3Sdot2fvZjvkOhi7p+b8OKwjsixWdDisuSKS4Mjlq3dK57yW9Dc0HWMKS/1/jFArP4AWhMjnqFhywWgOnMsuYABHegbs5Xih8PKzw0wt4C5MW/hoR+0bEEumWi4AFwiou4AVpZPWnZtudpNsxmfMjYI+wglRx7idM7tkZmBcH3Noc0VjxZQGcFuho3CZmwMHgvlgB5ltJf8DB6gNwcKR/6ovHBKY7i83i+VMgfCvgLuB8Sc9Legb4LSaePD8O77UvXoDeFHhFTuXZXdKLqZyfAodHxDNYneoEnBr2jOp3yfjlqIy5q0bEYRFxWkTsA+NOhK3UyzmAuTCh46JEjAMrQvwRBzCPDqeRPRsHIU+RNKywVbG3IFbqGAHcHk4FewVwM7C/pD/hOtYVeCScwqkRSqTOsiLEVTgIMnc69zIOLF+N/ayjI2JNTCYcgNMn/SPdX4ukWDebrUGJHHUn3tG+DnBGJDJatXz1RLVdpn7/e0yAmS8ipoiIOzBZvY+cxnM6rCi1UFRUg6o2I6JbRHQPq0T8gNPyHYvrwRMRMYukb0tEpsuBBSXd0pY2az13IkGNxoSRj4Eh/JwcNRTYojReNvdOl8dj49WSPky/8wIOwPcE9okGJccXJL0BvFey0ZTaT9Hf3wocjMfsv1fIUStjgteX6R01gqQiZd7tmLhcJkfthdPlnQjsHhGzpHKujlPmXidpeK33OKGh0g/PHhFzpX6u0TVjY6/G4a+AN4DZUt2/C5PoivY4E+6DokpAqfoa9bLZ2ufpIPgyIqbBxPPTo0GR8BKsDncEJqMuG1aY2harXT6tGmpwFQQmUd2qGgpH5T47zeFG4zHvt5hA1F4264pSHXgemCsilomIG7Hi2EapDhXku8UobZwoo0bdFJ6vrJr+7lq6djqcWnDFSGpR4VS22wIjJD1QunYm7CdfLGloapMPYALZQcB22HeZQVZVHgpsqwZlxpyyqo4Ik6j74bSUo9L3AZOkJsepK4mIe3E/1Fcm3C8JXBcRkXyTmoS5jAkHacz9EKdPngH4HJimOJ/IsKtjH3a3iHgd+BPu548vzZs7ZB2SdCCwsqQR47ssGRkZGRkZvyZ0+emnjhxTzMjIyMjImHAQJg0diWXw95N0djreJQVoOuWiXFj+fxAOnnTDwfHTgO+BDXEgZgngTeAHvLv1dEmD0v3F80+ntIu5oyIFiUcXC9dpAe8lYGbgTLwYfJGc8qC4Z0Gs+PQZlo2/fSx/s5usANQTB5OXwMG6UxNRYSpg5kTAy5gAEU4L8iAm1ryMFYP6S7olrFa2IQ4K/B9WabkXB0cvlXRQK+z3x0HxXdSQhmJdnM7i38AJcuqV4vouwCyS3q3fU7aMiFgMk4z6AgOBD1LfMhHue3fCOzOH1uprywHPjm4TGpE6euD+dhRwvRpU9+7GQasNUtBqbUy4eriFV1n8zjFYuep7YHNJd6TfLhR85sKkjoUwcfO1clCxM45nnQGJxHMOMBIHCabF6c72Ap4a1/ceTrW1MyZnzI1VkR4H+kn6OJGmVsWBykmBp4CHJF2b7m/0zVNg7EDcb4xIx1bCKkw7Sbo/HdsaBy6/woSSc5op43o0KAZdXvUZIuI3qXz743r7FTBYKU1Ze9lsLUr+z6bArIVf2B6IiFWBbqU2uy9+Bx9hAtyqkl4Pky63w33BHyTdXOsZ0r/7YpXLhXAKxrtSv9ENB0mH4sD38pL+LxGQvqn6wW1hs1TeVdJz/yX9PVEiVU2Kg7XT4NRy18nk91mA2SX9rRXvdDDuvxeS9EHqL7vLSmNbY3Lhis3ZKvl8xbi7U+XddMXk5GGYnLpCS75z5X0uhgnTfYFt5PR+BRHkDJyy9WXgA2BZrGBzakvPPqEhfc/DcPrgXpgcfKmke8bCRvm7rARMW8wRUl3aCweDpwHWkqRU77fHdXQ/mVzZpjY7G8Ipib+KiBWwv/sKcGRpzDkWK19OAfwXmBiTuk9uhe398Ty3t6T/q3F+ceArSa+Ujm2E/eUBRX/b1jbrhYjYDFiy5FfOAVyHCVmfAotJej/NUQdghaDDJF1WstHIDy76uNLft+M09H1K/fJkWFn6VLzp48biXuzXPlf0i0BPSV+mMewh4EPgr+nfe2LlwJtxSq2LgSNk1eea5cv45YiI47Gq9jzhFN+bA9tgUtTTmNw8C059tomkZ1Id+j1eJ/u9vAkjYwJFZSzrjjdjjMYbN+bHaeVPKl0/E27jy2Bf8W1JT6RzbT4nrUc/kufOGRkZGRkZ9UMmRmVkZGRkZHQgJHLUscBmmETzYmdbjKssVKyIyRhnAu/jxcrdccDmkLRQOQ1WMumNU3g9p7TLsxToGYQXRVdSJVVJR0FYledQ4ElJF0fEzvi515I0IiLmwcHqhfg5OWoh4AVKQaix/O0qOWphnPpkiEqpTfKCyoSLiDgbLzpPiYMSQyrnV8BBhl2xqsSi6dTcwL+bqjeJdHMQVpI4H+/+LchR62P1qXdwSrWfBQTbaTGyKzAPTrvwHvAPSRulc0XQeyJMHusupx36tdjsh4OyV2O1rnclbR4Rd+JvvKGk59OC8QmYoHqqpG9asp3s74P7uWdxgP65dLy7SilSq8+Z+6G2QUT8Do8Bg4GrEvliFRwAvBjYV9JX42B3feA2PMb9CZMidsFqZa/jelSkX+qJSc4/qEG1rCswRnEujftPYrWGC9SQMmVbTA5ZTCbrdcPk6V64XjYKCpfGvq6YsHUZTsWyjaRP0zVjyHqlvwMrE3yqkqpT8jfqbnNs33flGatB4zYJ0lZ8t5kwWeA53Hc/lI5fhwOYV2A1ymmwbzYYE2SGNmN/O2A4cDfQA6dUXRY4XNLg9L77YSJ9L2ApJdXQtrIZEQOAR4t6lYL6I9N/h0p6NB0v+t/ZsbrZJ5hgfGXZJ23pe0fE7zFxfYsikF86twX225aRVaTK547A5KtCNXUSTMQrxt29apCjTgf2wePvMrLCVWGv2ToUJvUfSYUclc7tAqwJdAHuVkr5nMkDDYiIzYErcb17FfgCp9b8HthzbIlFqV88Eat87iurPRJOMbUubn8nYiLs+jjt47GSTmlPm50BYaJrP+AgSf+JiGVwKuKRuN8o5p/L4P58SmCUEmG8FW18S+xvbS3pmsq56TC57BVMkvs+EXxuwuSd1drL5riiMk7MgOvIzvh9npaOb42Vkn+D/YSJMFFhP+DkgmAWPyfxb4BJnYvg73EXDXPa8zHZ6nLc/86AiVYnqGEjVZXk2gUrOG6JSfqTyiTuvdLxzdSQkvdMvElkbmA9dUKl7s6AaCAk98Xf9klgJTxWDcfj+BBMtv4JWFbSP8NKlP3xuHaEpPPHywNkdAhU+qEFsErUJzLhdR7cXyxAhRzVkq02Ludk8obFMX5aa+YH2bfKyMjIyMhoG2RiVEZGRkZGRgdDIsnM2tkX5VJgrVjgPEDS/yKiF97tNwQHh45UkkGvcX85wLM6Tv/xZERMqhqpBMY3UqDqOhxQuBYrvRyISWA/pmdpjhw1TRF0HcffL5Oj7sBp+lZVK6p5MSUAACAASURBVFQMMn69KLWjHTExYjRefD5R0mdVAks4VdNhwIpYXahFJYiImBarCQzGO9T3rJCjirSZJ0i6ta4POBaIiD1wMBtgNUmPpOM9ZMWOw/Cz/0bSB53RZmURdgNMTN0dK4EdjUkNH2ECwRqSXk3kkx0xwW1/ldS9apRtM2BGSeeWjv0Bq8U8gAOnL1bLktE+iIhDMbG6n6S30rG7MWln8yL4nY63+vtExLl4TFlTSUkhBar64oD/CGCgpA+jhqpPxVYfrDa1PiZSvlk6NzVWcvgEEwumx6l195R0ZVFuTNC6WBVVBxxMfVbS1rV+P5xmZ7QqqcSSn3FIvW228B46TPuo9BvrA5Ph3feTYnLUsSVy1GXAavjbfI6/1aWqkcazZH9R3BedBVwm6dNEQnoJq9OsU9QdnBp4GPYbL6MJ/FKbEbEUVoC6Nh3/IB0vVE6Fx6yH0/HuiXRwMyYRf4WVUsaotFSfP0qKUKXzj2ACbH9Mfv0+IibGSj2/xyTDV0vXT4YDyItgItYh6fiMODXUYEww3K1CjtoK+6CzY5LXpZVylr/5JFgV53slMn16P0diQsHPSPuV+zPZNSH5QzdgRYpj5LTWRMSTOF3igPL3bYW9fpgUczhOMT6qRC6YAtff5TAZ9X/p/xcWvlsT7bHuNjsLIuI8TJRZQ9Kz6djSmDj+IiXlqBr31uzTa/jRD+N00ZvhNv5dmv9ujBWOdit84eR/LQCMrLTfX2yz5IvV/XuFyX/rYtLSEpgoeZyk49L5DfGmp7Vw/XkWpwK8sFaZwiTXYdiXGJ1sToKJ0ocAc2JfdjNMtHou2buobK/SLy2H04uejVNIF2nXTsPkuOVlNasp8JrE45js+VY931VGbYSVwDbA/tXSpeNzYnXCFbE/+CSwIFaGPK0gunQkHyqj/VBp4wOA44Fb8CadQmF5PuA8KuSoar/ajmXui8l+kwJPAJfICqaN1PFq3Fd+1mWAt1q7lpCRkZGRkZHRPJrKi56RkZGRkZExniBpZEGKSgGdToewasWbOGXIu0WgRdIXeOHzYGA34NjwbtefoVgwlfSjpAdkUtS6wEuJYNShIOkrSX2xesaWeLfulZK+V4MKxSichmQksEM4FVVxf6FEMU7fXCZFdZPVC/piRYJMiprAkepeT5xOa2/gHmAH4PCImDYFZbvBmMDCB1iJok85CFa1mwK+xW98glVVjsBt/rzCpqwStRfwWxzMaHcU5Zc0DD87wAERsUQ6/l1YiWlu4A2gRbWkjmpTjRVfZsVppK5MAaETcGqTRbGa0KvhdHc7YXLBcDVPipoUB8nPDiufFL95KiYSrA4cFyb3jilLRtuj1EaXwekQC1LUPThw2U9ORbJuOE1Qq75PRHRJbX0u4Ds1kKK6pXH9LqwgtQZwVThNWbETegxpomRvRkyMPhOTQ96pXPMfrDQxOQ5m7orJKVeWirUmVr+bo2S3W/q9z3C9JwVHupeuWRwTCqeu8ahr1NtmjSDtQhGxQURsFBHzt7Z9lPvaRGCpO0pl3IaGlEKXpv9WBo6JiDXStTtgYtBATO7ZrDlSVMLsOHD+FzUQwIdh5bEdE4FplnTvDcDSzZGi6mTzBax00hc4LZwSj1TXDsIE9qMjYrV0/PuImBL4GNfBHdU4dVWjbxMRG2PyyRMRMSRMCASrrH2KVa5OCBNhj8LKKxdVSTOSRgPbYlWbgRFxajr+ASYPHo6JrReEla2KDQULpN9YtgVSVD9M6n8O+FNEDEn2n8YBxzuAK8OqNbXu79LEN/9FKNf7ToaJMYltVIkUdS/uW3ZI4+6iYRJfk0h975Q41ddVuG6MSqe7pLb2uaQNMAHlCOzjbd4UgaktbHZkNFGH9sIKxoOKA5KeAlbBY+VxEbFWLXs1+vT1EtHq0Yg4K0wcB/vQn+D2d3ZEHIV9rAuBM1XaIJCC4mNIUcA69bDZxqSozXDf9jruu9bHxPhjIuKEVIY7JW2JfZKFgS2bIUUtin3VQdhX6YtVs/+CyQSHAW/Kqb2Xx33bgCopKv1u8W16Y7WvBymRohJGYaLVgNS/98NpgN8s+U6dcv2lMyD1Q/Njha4/A0tGxBjibfoGe+M5yzR4/PsRE+QLgssYHzNjwkKpjW+HfdSrgDslvV+ck/QvGtL+7lyst40nUtSWeHPSxMCMWB3thoiYu1i7a+K+8lhzAPbNZ2mnYmdkZGRkZPzqkRWjMjIyMjIy6oj4+S7SsV6QrNrojAjvcL8W7+67C9i+FLgqAki7Ykn0y4A91IrUTWElg4txYKqvpDfaoPjjjIiYHu84/h9e/Ngfq+58EaXUO4nYdQFe4F09LcrXslcNPrUmkF3dZdzp61PGL0dETKKUQisirgXWwepOg2SljaZ2wv+sDqZA6uTAtWqshDENDjQPxqSGg4rzETGXSsow7Y3Kc+yGA+h/xYGlD3EgcwhO8XlWZ7YZEevg9z8ZDpidGg1qU9NilZU5MalgdPr/cKU0WM31GRExLya27oL77QtK5w7FCiUjgKOV0upl1B9NfaOwmtiBODXJIJx6ZkNJz4VVEQ7BhKS9lVLftfL39sLj9TqSHooGEt+PEbEnrg+zAk9I2jjdM2VBDEh/906kgE3x2LgCsJGku4oAdqnu98Cpd0arIdVNWUVyVkn/TkHNl+WUgV0wqWowVsQrKzL2wATAfXFA9fnK89XdZsX+dsDJeGPaZEB3TDq4TE2oZqb7yv3BLrjfPV9tkFI4IuYG7sdEmCOVlDnDaZHOx4ofxygpRzVX1hrnDsQplCZOf9+DiUdFKs+lsDLYYWW/rjkfuh42w0TTgbifvRk4WA1p9bbEqhWv4jRiI3Ag9zjcDv5Z2MPf9iec7vGTMMHsEuApnEZtWRqUtU4OqxmcAKyNg2UCrij69Mp3L+r9DLhfXwm4TtIf0vkZManvJNy3PwBMgevXzkop+2p9n1TOi9N972KVluWTjY0lfZ3e46GYPLCTWias/WJUnn8eTKqeEniq9O3Gu2/bxDudH3gUp6e7JkyKWpCGejkvJoZeJOmOFuxPi9XPTlRKU/ZLytZWNjs6wpt1XpH0Yfp7ExxQP0GJ1JmOLwX8DXgNqyM2mcozIrbHiiTPYT9qKZwq8UJJR4VJ58dhws3kwNPALU2Rg9rKZr0R3mhxVyrfVjJxsyAiHULaeCFpcLlMpflDrTnF5lgldXVJI6NBAXkK4HZMKlxN0tulcvzMXuncgngu/hUmTAyovp+IuBQr3Y7GpJshSin+MuqPynefQtLnERFYdXJXrGh7naStatzbozLX7DTkzIy2QXhTwi24vzyvtL7xG+Bb4HNZFbs3Xm9bmmbW29q4rH/EqU7PlvRlROyLycn/AzaV9EZUlKMq7WVv7IvuVZ5zZ2RkZGRkTEgIK2xvBHwl6a562My7IDIyMjIyMuqI0iR2w4g4H7gt/XuG1txfmQjP3YZFrTuKwGZ6htE42HQjltrvH5b8B6yuhHe5HgU8p1aQohLux4uukwB3j+93VDxz+veMmLC1EA4uPYQDyVumRcCf1KCkMQoHkreqLtKUbVLy1dICcM1dZWWoshtODbuQMyZgSPoqGlSctsS7dHcCDguncWyk8lLCEWGp+qIuTYp3cP8Rt+sepd/4FO8ifxDviDw9GtRVxusu7HI7SAuLu2FVlGtxkHIJnE5pTGC6E9ucEvcd0wE9kq3vwmoin2BS3A7J3kG4HypIUV2LYFMT5XsdE7MuA4aFyVvFucHJZh+Swk5G26DkJ6yXiEkFnsVEjEcwGWMlmRTVAxMbtgXuUg1SVAv186/AM7hNLyMrOf6YFih64/HuNGDFiFgmBZgPC6s8EhE7A7eEyVE3Y3WIl4HLI2LVcqA0+RDfSXpBDaSoglTcI/32vxNh4kbg3oiYIdm4G/c/e4fVNqYPp5/YA6cbGl4lMLWFzYr9PqTgDfaHVsREnNOAjZvqEyv+4F7YZ/pIbUCKSugFzAw8nYI3XVMZrsIEo5XwN12t1s0tECb+AYyOiN2igcDUNxFFJsV9Uq/qTS0EP3+xTUnf4jFrD2BTYGg0KEddi9VlpsEKoM9ggur5BSmqZG8ZTArYLQXm+mElpw0krYvVaJ4F9ouI3SX9K43DK2Oy68alPr3ROKwGxdEP8bj6BFY6KStHXYZVo5bHfud+mPhyY8lOlTwwHyZZnISVjPbFabn2wKTFq9N9T2Pi11/w2NLmKNX7bYF7cSqlJ4H7EomiQygSlso5Z+nYP0kp2SLiz1gts6iXPbA63VxYHa8ldMeksJ7FgXJ/ERGrRsROzZWtnWx2WKT+6mHg2YjYMpGL7sFjVr9Ezig2lTyN+7mzWyBFLYH7/uMw4W1t4Hck3zciDpb0pqTtcH+/IFbdao4UVXebbYQewHzAO5JGFz6+rHR3NlbDOzlM0i6rP/9U/n/CVOn/k2FV28Jf/SGNy59j4vHcuG8bgybsFfgEE0+/AuaJiFlKPkQxD9oRp+XbAatUnQzjb47ya0bFl9kEODcitsCqeu9h3+gEPK5dXbpv4vTP78vfJZOiMrByUg9MfPwqIqZOBKS78Xzl7OTDv4rn0du0NSmqOoeKiAERcQ1WlH1SabNB8vVOx/7pzeGNY2OUo+LnpKgzgV0zKSojIyMjY0JFREyO02MfjudvE7dwS6uQnf6MjIyMjIw6I7wD+3q8O2lBvKPpiPAu4ebuK0+EDwJejBZSLYxvVBYBpgorRU0DY9LmbY/JTKfiBa8qOWqwpHOqtir/njz9v6u8Y/BhHBzqwXgkR1W+V3/gGpx64uu0mLslDk6fCmyR3g1A37Ck9/9JujPd34gAlY5tCFwTEdeHlRGKlAstlqv076XSfXkRMYPywpu8g/rPmOR0VDitXjVQMx8wADgrIvqm+77E8vTXAxcBm0djctS7wGOYCLUn3tleDmKMt7qoBrUZJA2nIV2dcLB7GIwJkLUqANiRbIbVT5B0A1bk+TdwaOnbfZuCTV9I+rOkoZJuk/T3dP+YlEgV4s0KlfKNwmmfCnLUjqVzJ+GUVU2m5MsYd1T692lxMOngsNIEkv6ElTAmx+kWZ42IlTCxpdhZfXUNW+XxbPGI6BcR20fEssnu01hZpidwU0RsE1Zw3APXz9uxSsq0wKQ4MLkbMCQizgCGp//eSvbuwIo2b+AUfKuq+UBnz3SuUKCbOdXDwVgd59aImEnSa1jdpiB+vpH+vT9wvKQziueNlPqsnjar3yq1462wwsb5kp6XUxwtlN7Fsyop4DTxPfbGhJydE0mprfAlVm/oXeoLCjL2Zbj/WQyTe35bvbn6/BWMxGmXhiUbG0p6NhGY+mMiz62qqIDW22Yte4kcdR0er/rTmBx1E7A1rucX4nRQg5KtroU9Satj8tRRmHw4FzBC0n/Su3wB1/d/ArtERJGa8WVJoyT9uyhf6v8blbPw/WRy1L6YJFQmR32S2vX8eO6xiqRTinI28f6mBmYC/q6kaioTZ6/HCll9I2KjZP8ZrIp2ZpNfo85IfvVwnC5wJ0wSmQOn6h3QXuVoomzltroo8EZElJVOhmAlxjWxytazqb/eARMiL5X0aCt+47+YGLNTRKwKDT5U8rtWAHaMiNnGotx1tdkJ8DJWgJoG9wmnA6th5ctlMBkQ4MfkU40o+Vhdyv8voTfwA3CHrLjaRdJI3P7/gd/fPACS3pFTPBVpFWu28XrYrMvbagFpbv8csFpETC2nGC0ITc/jfvANnFZv96bshJUIz0l/vo3by5hNVGpQCJocE5w+a8JOrT79feyvnAUsjpUAC//ih5J/fbOkmyQ9mGxlJaI2QMmX2R77p6Mxse67dP4jPI4fjzeTXZGOf1Pcn79LBjRq7z1xf7lZWK34cewjnI3JUevj/h1Jr0q6Ld3fJjHQ5IttWvq7J1b865/K9Z90fOJUpguwLzAJcFdEzJf6pqZIUZe0RbkzMjIyMjI6OlI88Ck89p+MFRS/qceYnlPpZWRkZGRk1BERMSVOOTICuDotbh4DHIPTagyR895X7ytPhPfBagoHFIuzHRGVMm+BA0dz4YWKC7G8/2sp+HgDJkjsB9yQFlZb8xv9MHFjErzQcbukN9PCwup4AeQ7YH2NpzRdEVEor1wJ3KxSmplEhroBqwJcAnyECQVHqhnJ/hT0uRT4OzA9DnZdh3f1N6muVaMeHQasq2bULH6tqLyLvNhdQpQk2yPiJqxu8TtJj9e4di28M+O3wJ6SbknHZ8eLehsAvwduShOUSdPx17Ayzavt8UyVMjeb7iUap9PYA6fwuBGnVRnZGW2mIPJ6OIXJB+nYRjid2o84ndRdVbvNISKmwn3QZMAmSgSq0vlFU3nmwmn1Lm6q/Bn1RRob58Pj7nSY1HJ48Q0i4g94kX4JrCD1L+yTFETkmt8mTOwenO6ZEi/mXyLp1HR+Uzwm98Fj/X+BUyQNCauHHQT0T0SA6TH5pztwsaQ9ko0x6V7D6gFHYkLVDqqRpi0ilsNqEX+RVVd2wYTNLbA6xb7pv//DaSneCys4zozVWUYB76qBANgVB0zqalMNqnvltEGTAM/jYHeR+uxuYGGgj6QXwopS78vks1rj+Bk4MNKoff1SVPufFHB6CKu9bYHVPIv+Z3bgctwf/AHYT9K5tWyFiXjzp/9uBP4l6aMwif0hTLa6BqvqLIfTwA2VSZWU3l1dbUKjAO3suF+bvPTeu2Liynk4uD8mrV6Nd1fum8v1+TYs8f4/YCk5dWRBRv4hIlbHaepWk/RIS98lIpZPzzwfJtq/IumtiJgZB/1XoJRWrylbFZvFsaIsa0t6IJWzUDadDXgTOFCVlK0tjVv1QJpLXYfb2RFK6SYj4iFMcNlC0ittWYZmylZ+lwsDS+I5QFdMgrox+UFbYULllLjd9MLf8Rw1kOtafJepjxyGfapTJd0RVqhaE/tah4/tXLEtbHY0lOp5TzxOLoH7h2kxuf8sYAHcn6+qVqiJRERgEs9ATNqbU1YaLKeWXRWrq60t6YHxYbMeqFU3S+Pb7pjoeRNOr1oQtKbA48TzeIydFBPPvlVDatbiu9yHU9bun46fh/vf/YDbJH2Yxs9tcJq1jYu+ulYZI2Km9Htdi3WWNGbvgcllZwB/aOu+qxaq/S8wsdpO+bFDIiLWw+shR2Jf9OPSuSLV9yw4HfuxWAmo73gpbEaHQVNjZFip7mrs732G04rumdYh5sBk0p0l3d7W5cNrlCPS7z9e6uPmwkqeB+P1wYHpnolkQn4xtz8O2EdWKS3s7oNJvJkUlZGRkZExwSK88fcWLIqwa71jfpkYlZGRkZGRUSeE1RPWxjL8u5cXWcOS8ifhHYxDlNLDpHPtEgRrK0TEQEziOR8HSSfGiwB/Bg5JQcfJ8ALGesCBwIVq2A3alN1+wFU0BOrmwYGhgyX9MxrIUadjR2md8nttD6TA0g2YuX6xrBRV7BTroob0Zdfh3Wuf4hQNpzRjc2qcpuxJTPyaHAdYTgL+BGxda0G1Uo+KRf/fd5Z6VA9U3sHkmBDyjVqhtNWZUSvA3YpgW5kcta6sNFPTZkSsiQMTv6E2OaoPXsgeiYkDJwLbS7ovXdcVB1xrlqleBJqImE41UoS19JsRsSvuvx7E5Ix3Std1eJvp/e6H1emGYRWbD9O5TbCqELg/blLJqQmixBJYGWxyYFtJf63cMxyTKHoBi8nKKBltiIjYEo8Rg4H3gG9xm/sak0EuSNfNhNvjaGC0rObWHClqM+yjDJI0ONWdG4BvcPD82HTd5JgM1wv4UNLr4dRytwD3S9ohLWLMihV9vgNewWN30Sf0UINSU188vs0FBFZTLNfDgsBxI1b/OAbX9wvVsFusTGTqJytG1Hp3VVJIXWwCvSR9Xgocz6+Ubi0i/g68Lal/RNyBFSz6JN9oeuzDvA0cVwRL0n17Yh+gbv5gjTHyBxy0LsaCubHy17vAUZLuT/7bZth3WxrLmM+IUzV+X/lW2+J6+QEOFk2HSeNnS3ojkS9OxopZs+C0cHdIujTdXyvFVF1thpV9DgLmxSolIzGBZYSsqrcjJkfdABwqp/pp6b2W6/PlOJh/Be5zPyjVi6WxssHGku5tweYOuE//Gqec6oFTxOwv6R9hctSZmIBwW0EwaMFmX9wuz0//vx8T9rdL77Io56yYzHP0+AjKhdWVRmISUZHi6l5MKNwgtZ0lgM9VY7NJO5VxR0wa/xfwE1Yh6grsKOmq1AfOjInjMwOvAs9I+nO6v1m/p9JWt0+/NWey0xPXiTNK76c1fl/dbXZEJBLG0njc+jIiFsGqdzemse13uI13x2PO3TilcJObdsLk2aNwXzgdVkk8Of1Gue9fFisbryfp4RbKWXeb9UClnsyBFRS/x+P9p4mU8Ec8B38Iz/knxSn+TsbrIJvigP8FmHC3euH3pnnxU5j8ckw6Nj3uz7bA/dJLmFQ4EPu0g5sp70Cs4DgvJqW+hNdh3oiI6TAR7kg8XzmkPet05V1uAmyO06c+Czz0ayc9JP+oK16TmEVSv9K5o7DfNxUmhrybxrX9saLU2eOhyBkdBJW2sxz2nT/CBPGRqR+ZF/iyNB8uk5K3VNunzyv66G4y+X0DTN6+Tib7zQ7snspzkaRd031lctRCSpudUntZFPgbXm+ZYNbwMjIyMjIyqgirlN+M5xQ307CJqwve4BI4/nhXc/O4ppCJURkZGRkZGb8QaVDuhhctlwLeARZOpJiJlRR+ooEcdTkOPL4azZCiwjvnPlEzCkHjGymIdgtwB17I/SIdfxWn0hkg6a10bDK8+Hy9pPObsVksLpwNfAicnha2j8Q7CV8H9pb0cpgctSZeoN1fbZtmplZZjwXWwWo7RVBsMCYT/ABcK+mKdHxR4CslBZ0mAoCbYvLJingX7jPp+JRYzeI0TI4aWK4XTdSj3//aF1zLqLyDzfBC1Nw4qHg+cLfamThXC00FmupBDkrBnzeVCHqtuH6M0kWtMlRIOWvhAE6VHDUDJkXthtNdfI37gkElO+VvsyKewMyKd3Q+lPrKMUStcXz2DYFdgN3UhMpHjXvGELYi4mBM7NmqdL5T2EzXTIJ3pp6JyS3HqDE56hgcuDq0+HaV+8vfqCA8/CP9vTget3riNFF/TxPSKXDbegL4h6S/teZ5OhIqz90FmKipvrUjIAX5/oQDf3tIGp2Or4DT0syICS2XVe77mXJM5fy8WK3iYUknpL7kceA+vNiwNq5TQyr3zYQDffvhtHCbVn5vAUxmeRiP3YcVhJBorLSzEVbvuaaJ594Y+xo/YoWqw8o2ojGR6S1g8zIhpS1tRsSCOA3brTKR6PeY0LScpOeSn7AzTlPXC1hTklJweQdM0jlASdEt2fwDVg7dWYng80tRqesbY8LGfJhYdzAmBn2W6tIVwAzpuf+DSVBHShoaEfcDn0raomJ/E+yLHS/ptBRQfxP4GL/nQbLaUU8cZJ8SE1sK36mWT1RXmxGxOSZVnYPVY6bD/WahInMTMBFOhXwp9m23lFM/13yXTbzr6zHZ4SScQvH/Uh+9PU6ztlZz/WUab2/Dwfx7Un05LN3/A1ZMejGsiDIM+6HrqobqY1FeGkhgn0laMR0/Egeh78VKhAoT5jbHpKx+amMiRq13GU4Z9hhwkqRhYVLUgjhd4vNhMty5WHnkurYsXxNlXhH3jUcD10h6PyJWw2m++2CiWc2+LN3fSFmupevSv5fFc8xVcCqzZ0t9afm6utvsLCjNx2+nIYi+h6QnwqTAW7Ba26PJd90ap2k8XyUFvMJWqb+cAaeYfACPFd9GxC1YbeoA3Pd/mvqhgjC3vipE8bawWW9Uyrgl9vunw8TM+zFZ8bFw+rxTcKqoWfDGqJ7AiZJOioihmDh1BfY/n8P9VkGO+htuO2eV/IWe6dk3x+PPS1h9+vx0T60xYgvsn56FCdiT4jG7OyagvpDe9W54rnKhpCZT/LUVwgTf4Xgd5GPc7mbAPtc27V2e9kZEXIX78HVw6tuTgdmxat18mBy+hpzWtafSBrCO5oNntD8iYjvcvr/BpKORwLFKalCl/mMevAFzEO6HhrZjGbvgPucN3AftgZW0vw8rcO5BM+So8nOkf48hS2VkZGRkZEyoCBOO7wQWV8qCktbQzgQ2xL4keD36UElPjI39TIzKyMjIyMj4hShNyHthhaMN8YL9ISngX94VdARW71hL0oMlGwfiRaI9ZVLUKjhAsztmP3dIyfWIWAzL++8o6bZ07B68q3vDFBScG+/8+y4qRIySnfJiwGSYXHEtDnrcXrruIGAvvEO7TI6aUdLbbfu0P0dEDALWxYHNyfHi70x4B+2SOBC6laTXKvfVCgT1wCkIt8fKUmtKeq50vhcO1g3Fig5bpPpVVYo6k06kOFZvRMTWOG3hxTgoMgsmczwM7CtJ42CzLguzlW/VG6sIAEhNqJGMhe3lcFtcLgUCximo1dyzRsS6OD1jb5zb++bSuVVxQOorSU+mY9WgdJF28t9YpWA0bssbSvpsbMtaKdtWuP/tL+mW1jx/ESyuEWgp+vSObrNKbOuJSVen4zZwtBrIUZtiwuThqhBIK/VyazwW/R2TNd5OxxfHBIUpsHLMm3iXznE4CPx4uq7TBFMrz90X6IsDNn8DHpd0dfW68Y2wksvzmDB8cjROt7MaVhN7FxNJLmrGTrVtzotT45yICSZPAH+WtFNELInHnImAk5UUHtJ9s+DA8k+STkzHJk9/jy5dtygmOryBFy2K4Pt6wAySLq9VtlK7WQrXSXDQ+5giQByNiUx74T7qY6yk83WNsbauNtP7ORcH967AJLEDgGHJ75kDB8CXwgH4fVL/XyheHq2UqrBkcztgUjVDIh9XpADteamsj+M+IzBh5wpJ/0nf8GAaiFP3SLohEUJuAM5VY/LrbLjPeVLScel7P46VQifCfs1wXH/eLt3XJGGvnjZTHzoNXlh7BquXFamdZsX+5hzAZeIprQAAIABJREFUCjKJqSdOGdld0nnNvMu1cCqX73AQ7F+lc0Wa2pGYYDU7Tj17uppJpZzuPRGrjK4HfFRqDzviOcR92AceHSZHLa6K6mMTdvum97eXpD+mY6dihasfsQ8xFfA7YLBSKsL2QET0Vin1bkTciFMFvoa/zaZyis4e+Nvsj9/BX9qrjKWybY83Kqwq6cXS8YVxX7Ac9v1vTnUPcCrHiNgZeF0pbWhL40srznfFxJm62uws43gtpPa7Ou6HV8H9yGW4TS2HN468lRbWp1IDWadWP7RGsrEBbieSN+9MiseNVTC56QlcT7fB6n+NSMRtbbPeSL7qhdhnPw+vRxyC/Y8j5PSbXbEfuCxWTXtVTiW1dHqOGzEZYCPcLl7GhNFP8MaIU6v+aPrt6ZK979WQpq8rJhg/lfqBLjSobD2Kx4FCtXkEJomvq4bNSLNi4uI7SimF2wsRMT8mnw7HfsF/whsLXseb6TZUSVW2M6Pahkr933Y4De+8eP7wDq7XH+F5xEBgSUmftmuBMzocKr7b3Hj9ZhjuT5bBPvbs2I+5NV23Lp6/TIHJj6dVbbVxmQuy89S4354C+9A3pnnArHgDxcHYz96xOTttXd6MjIyMjIzOgLAq/W3APXjT2kw45rYwXlscjuMKewEjJa09NvYzMSojIyMjI2Ms0QJxoBcmNC2KFxKHymlZymk2llRS4kh/L46Dc3tLuiAFzGbFAc6n8M6nezWelaPKwSYYs8C/Pn7exWQFrOqu7kUwkecwSc9WbdX4jc3xrv3PcVqUQyRdF42VJQ7COz//DxPJXijd364LCuEUY8Pw4uwneNF3Z0kfpcDJWThgNaqV9mbGO10Pxt99sEqSoKl+DUy/2UfSPaVz++FAzQSlFFVGWkC7E+8KHyrpf+n4O8AonArszVbaKi/MTY/JApOpcUq0cVpwS0HvY7F6SA+8C3JvnFbiy7G1l2xOgnfc3iBpz1beU37GeYFRpb8XxMStKdPxZ9Px9XCgozcl5agatqvEizXxouaxeCf822FllQtwqsmBrX2XzfQfReBr+ZbaXOXZd8fBsn2w2kh5Ub+j2lwDTwyvUkkhLAUEf48JF+fhPuS9dG6e5n4vGtKiHoGVvP5ROR/p/PJYRaYLVjpoNsjf0ZHa44VYiekbHLgJ4AJJB43PslURJg4/hMe/rSX9L5xO4sc0Jt+Hy/4ZDl7eU7k/cGCwUJraBC8ivBYRs0v6d1j1cFVMvi0UH2/FAdB5gZVUSqkYEZOWSCab4YWJXjiAeiDwnxQwWAwHMF/H9eiL9P+9JA1rxbOvDMyP+4zbMPnruXSuUJrsgoPhn6kVSkv1spnsXIEXZoZJ2isdLwhW8+L2uDgeS77FZJqLlFLrtkcAJ0xgvQwTm05L/fyTuD3PiPv2a5QIlaX7psDqnKcBz0vauFzmRDA4Bgd/38IEpr9gf+iniHgCk6zuwu/4rVaUta42I2IaTLI5R9Kxlb51cVw3L5O0T/nZqv8u2dsa15tPgalxf9hfJYJSRFyBVWlexePck6qkUmvC9k3AQpJ+m/4uzyEuxoSK+VQiH9ayWSNIPRf22UdhQutX6fhAPKasgFM8/UmJrNhWfnXl/c6P1WH2U0qfFBErYVLGEsAmkm4Pk8A2wWpWR0s6vd7lamXZD8YEtRkk/Tcab4DZCaef/Q6rzN1e+h5L4nndg5iIWZDIW932a3zTutvszKjhex6GFXdnxO2/G+4Drq3cV4vQMRXwAh7P3pa0SDpXbo9nYiLTnHjMu7EYz9rDZlsg9YeXYtXjoal9jsCqT/NgMsv+kh6t3DcTJnMeTeNxYlJMjjobK/Xtgf2ta7CC34/AZHg+9C0wrRpvHuuCfbSNMRnx5XR8Zhr6jUKd+S4aNme9EBHLSxpRlGNc51i/BBGxNn6ffUr+xW2YiN83rZfMLemN9i5bPVHp0+fE37J78it74jo9B/C+pDtL9x0PrIzVxz79tfRFGb8M4c0e/8WkzMMlfZSOr4XVNHtjRcBbw4TpP2DVwz+l69psTbC5fjhMjvo7VsutkqP2wZsp19R4IHVnZGRkZGR0ZIRT0S+H191eTMeG4blcMVcYiTfBXymrnXehIX62vMYii0HXOpc/IyMjIyPjV43Kos+yEbFNRBwfEStFxBwyiWVzPFjvARwcTqf3XRrkwbvVi92PYAWFJWRS1HZ4sXB3vJuyN1b5WLd0/3hBaQFgktK/R2BC0ImlwOnGaZFvImAlnKKkSxO2xiCcSucqHGTqhQkZB0TEjCmw2C3dewoOOiyKg2Jlu+26y0rSA5ioNBAH6/rKpKiJgemBf+IgaCNEaQd5xd57mNBwIXbudkoLysX5L/BC8sJqTIpaAS8I7a4JlBSVMAMm8zymBlJUsfi6j6Q3I2KusBpGsyi18y2x2sNLwFMRMSQiFipfMzYIpzA6Hy+Sb4TTrvwZK1as3VTdaMFmVxyEuwFYNQXhW7qn3Jfth3fUz5n+3g7vVr8Jk5nuj4jhALLSyyAc6D0rIvrXsl+jLa6C3+FNalD36IdTX5yegoatmpuUyr1Oep8FLsKqLnuX200Lz743Jiw8KO9MX7uj28SEkh3xDvzNwoTJ4t18jfuI2zDZ7tAUrEKJFFWrjoUJuUdi4trZakijt0JELJWCNpJTMO2C1Tq2VCJFtfbbdTSEFT5OwM++o5webBMc0OmXAvHjs3xdSv/umogQf8ckho0jYjJJP6T2Mw1WWbgEjz99K7amw+PKtenv7YGbgaUBUvCqCw7Wfa4GUtR0ePfzcGBtlUhR6b6CFNUPBzn/n72zDruqWv74BwRUDOzG1lERO1BMvDahItiBXYiFGNgKqCAKimKLjQ3K1WsXdnD1qmP97O64GCC/P76zOevdnPNS56Dvdc/z8PCeHWuvvfaKWTPf+c5niBWuE5rbVjEBhF5Gzq/5gdMR6KG350BR+f5pAn3i7o+7+6XAgchBerKJRQgXgGlTYEN3H+ABYMrKqlWZSb//Aek5HwOdw3ED8Ec4vN9BAJkdUBq3HggMmoGiGtfCGZiOy/h7NbQ+Dghn95OU2KzuR0CkLqbUQ9l9TVD6mzNR2p/M2d04m7ddwPUzA5TRBelx/RCzE4ghYlbEEFFxfUratpplzhJ/zorGx5zxu7GVGNdeApxYA+PYhHJ/x3efD6VBPB4Z7zqhtrw9xkF2354IqL08SglVBxSVlm1mrcxszqjTa8CiWT+KPUTTKHY0AlfMm3/XfJnIeJiefw+tPzsCqyTHr3cxGKzu7rv4jAVFrY4AWZ8DA83swLjsaQKIB9xkZg8h4PuJqF+cl5VV7frVV+/4cyRKHdwXwJUGLWvrt9Ac/S9gmJlZ9q6xru6DgBunmMBfWaDJFL1Hfp6oRZkNWfL91cVsdxAyoK+Gxuvx2RqQXJdv1wkuJtPtEbvNyiZ25zrj0d2PQEDiVgjkkgGYJpnTa1FmNSTbXyf9ZSG0lg2N/cRjyLm/CRqTqwPnmJivUlkagf7vStaJZqEj3I1AAasCd6AUvd2QveQ1NN6fQDaSFXPldkB7pT1dTNHLxPdrjubC7+JZo9C81tEFiloS2Sd2gpKu8ifI/AiY92HU8x4E+MxAUWsCR4ce3mAlmdN3RayGY4CHzWxnd//F3e9z98s8QFFmtqCJwfII4GZ3//p/aS4qZNolxu4I4HmgZdjWMn3tfrRvexMYFP3rd3fv6yVQ1CQsyzWq57pmtrOZHWyyL80Rc/w6iP3+HKRTN3X3j9G+va0XoKhCCimkkEIKqSMmH82NyB+2c2bDcfdDkO35ZEpswBd5gKJCd2wGfIqC6aZYGqQBu5BCCimkkEL+LEmMPnsjw3h/tDg/CJxvZm3CEZ6lzzgAOMHMZvGIJk4M5JkD4zt3f8WUPm8IAk30QKksOiCD32BgaxPg5k8TE1X1Z1YCXoxFzvp/oCjRf7j7iyZ2gSwl0zXu/uJkyl0AGavPQm23LWqDJYDhZjZ/OCkzcFQ/FDValq1mRkhmQHb359z9n+7+aBxfCL37SYh54YP8fUk/WjeMKb1NbFm4mBqOQ6wO5wIHWF1w1A/u/p+4v3HU4z8IkHZp7ln/s7peBYfPfEgp/iiuGYWM8Nu60jqugfrkklP4jF1Q+rDHEUBxADLgDjXRuk5VfWP8dkPMEYPdfbS7P44M5h+gVChZ35iib5cZ/8KJfA2wHAJNTO6e7DmHoc3HDS7gWEfEgjEIjetV0VzXzcRiQRgez0RG/uvCSZECONK/MxDaOsD4MAxm36YVAtc8b2JcOSIb41Pw3q0Qk8jtZnauma0UDvQRCKi4Ylw3U+6+PNhoILC/uw9rKGXG2tEZAdcuAHaxuuCorxAjwWcIHNUqLbuC42EWlA70+XDyLhbf+2bksLosxg/ufoW7X+MzICp3BshiCNByv5dSeFyEGJc6u/vnZtay4t01kNzcNn84j+ZLdIbDEOvCALQ+zGECRXUAVkD6wnAE0Jk7Ketn5Hj8h5m9iABUh8a1RNkTUN9pa2armCKctwCWQiwyD0Ud68xP8ZzN0Rq+GwJe7IAAztcArU3gqDEIBLEjSnNTB1iX6/cdzexa4Akzu9rMuphYnC6jLpCpQ6yfD5Cb2zNwQLXLzP53sfNsjsDc7dH68AECRGwR32xcjJGv3P1Jd+/n7iPc/bnknas6fjKdwUsp2JaMvx8CLgyn8hWIlvw4VyT+jeh79QH2sQDjx9oyAoEv9onyGqM5I5Xf4/9WwHzu/paLMXU21Pd2ATZKHUKxLqb9vQ5YYVrKzLVDB2CkmbWIted6tM5s7QIUZu0zGwKcZutTHkhXJx0a0n1/Bh5z90/i+T3RXuB6ExNbdv2OhKM+OZZPi7oaGtOt4tydQBMEnl0t7skCLFZAgOI6bFEV3v11M9vJ6oKlb0Vj/FjLgcQ9GKQq1bNakozHfVAqrO3R3PQ9cLGZHRH97mYEyuuN2ud6BI7oF/fXBCgSZU+iYybP+gKBQLc3s9Pi3O8mEOE6SAcdioB4G0V5TeK6qxGT3qoIuNw2K7uCXlu2TmbWohZl1ndtQxMrOdKfcvfeCJj7HNqXjs1dWylg5XlgVwR4O9DEFJcHMn3v7p96KZVbo1gbql7mdDVITiwAsO4+Pg6tF7//CZwU9ow+CJxwclwzCAX9LAZcFLpith8ejdibjojyOwF9zGxuV7DK3UgnbYT0zc4ooGotNMcvj8CZF+aq2ggBQb+IdfkZpJN8htJs9TKzx6KMji6wUVNkS5iL2BPWWnJjaY7k1OdoLtjOxKy9CiVm7WbAVoAB42mAknvvLdAeckT8/w5wg5kdnrtnCwTEPgfo6+6X5Msq5G8tn6FAjleBVma2RMypmV76AAqw+BC42syWTfcltdALzKxr7ImytXUfBIAeivZjLyL9cnkXOGptpCv2QQ7epu7+oZcY7P5nbXSFFFJIIYUUMjUSevOzSN+/AumGvyT7omvc/Wx3Pz/W2InBYCb/25qI9XqqgiCKVHqFFFJIIYUUMpViZluiaMeTUETc/6HN+37A20CPAGHMgQAF6wIbu/uzkym3F3JSbuhJShBTerBRyDB4HH9iWr1w9lyAUhFs6O7vmujSjwH2QjT7zwEtEThjQOL4rC993kEoenSAB9gpHFUdKBlhO7v7V+HEHJ/c/6dQZVe4fifEHLARAr6cXakcE7iuP3LGzYUckiNQSpgXw9HcF7Vrb5TWKZ82pRGQGeC3ANoiY/GrCOgyQ4zBf6aYQIe/xN+LIdaHS1E7rImMzy+HMe0g5LTfP3VSVii3JWJTuR84O3FOjEHO2i4+mbQHWd/Mvn84IV8DLnf30+Oae1Ckf3tXhPPWwOs+mZR/pjSW44AnPImCNrMbkeN0W3f/pMx9ecDN+UT6xTDSDUPMW13CKZI5Tw5F89wZyZjeGmju7rdVqGM3xOQxALE8bB3/hlCK6n45+vrJaI472ZPUcPW8fwvEumVo/PwHRbWfh5zTP7j7Vuk7V3j3A9398oZQJnKizQM86e5fmKJorkeO46NQxPX3JlDEWch5/q98P60wH62H1rPr4tCm8f+pyIF1GXCQ58CXDV1M6QkvdPeMMWEUSuOaOa1WR+yP/VysP7WuT/rtu6C1dXEEvOmH0lD+J9bHO5Cjdxxy1LdEqZT6mtk1cd/mATBIn3EVWldeRQDjb9JnxztfiJykH6P54HR3P6tCnbsgUNBiaK6cyIqDQALXIiPFXsAr6fqdXVcGKLIncjb8CzEFtUE6wgOIGXF8rKGXIbamZkB/dz+tnratRZktEBDqFnffL451QPrhYihd2f1xfDtgEZ+CtIHTIyb2ic1QOsznzGw/YF9gJ+DD+MatETvpoe5+Z9y3BZqnf0TzxqAyZTdBztsOiKlpFsSUdIUron8mBJ7qg+b92xHzSR+0pjwc5Uz85lZKN9ixWmUm9T0HzZ1rudJFtkV614oocOF2BKjeCgEK93X34VSQ0P/XQ6D9BVHqvHT9bR312hgx0N2au7+svmpioHoE6br7uPuPJjbGG5FOfS0CBm2A+tbx5b5Prsx9EYPtBkgvuhG40t2/NrMT0JqxvisN9gwHt5rZuki/Oh0BVb40Ac4PAvYmSatX4f4Zovub0gCvg/rME8CdLsCsoW+9KWLxegzNwQeg/eDNCBBxGnBBUt5WiLXsfKT3P4WY857OP7ueOh2G+uDp0VeqXuZ0NeBfUBJ9fDYvpZJN3z87vxZi+Gnq7iOS+9dEY+h3pA9cm943mWdWrcxqiQks2Qd41N2HxDpxKUmKJ1OQ09PAbe5+Uhwz1LfvA/7t7tdXKL8RAnhuhvplf3f/LsrcFs23L6OUvV+n93mJiTADl62JAOstUTseiuaycaaU3P3R/mF/d7/JxPS5DbJX9J7cXFkNyfWl9vHe93uwO5vZbQgA+iXa+zwTe8Lto32Ob+j6dbzPwYi5+UR3H2tmyyLQ5oEo/eIFsaafivaHo9z9uri/IQdZFDKdkl+nTAD+XdE89SlKjzPW6qaurdcOUcW6rYvW1Wsp7cvuQHulhxCo+/io7zXIVvKRmc2FmNPmRdkB3qxlPQsppJBCCimkoYkpePxexNh/CPBu3iaeXNsY+b/Gx+/Fka9sR2ADj3TbUyoFQrmQQgoppJBC6pFwAmV/Z2lTtkTGvGvc/VV3/9ndT0FOy9WBXU3p835EqbJ28XpAUVaKjmuO0l6MS57XKJzaQ1Ak5cnIEfqnRNW5+x1IWfkReNrMlnGBuPogh9Z3yNn4BQIHTGSDKGeUD/kNObnWQw6q7Fk/o0jywxELzggzWyDvVK22Ec3E4NQxyp7iVBQhYxFo7GgvgaImeXcTw8RgZMxth9I77Ie+7XlmtrQLCX8yAj6ci9qgjniJsaIbMkBvhCLUDgFeMLONpqLuDU6iHcdYMLq4gGB9UKqvLZGB/+Uw1u6GHHDDfDKgqJDZUKrGV70EivonAqbs5+7/Z2bLWZkUl1ZK3ZPp2ovH/2ORA2S+uO5uBIrq4AJFLYgc2LtYwiCU9cHk/xXQBuBe4A4zOy555nAE7Fg8rk1TKVUC8WTpF5ujOexrF8CmkQmI+AUCCziwkZWY2/6ZGSOtxF6WPWstBEL4HoEMnkKOxSfjnTePb9MUgQk7A0/5ZEBRVqLU/R45VR2xtDwYZbyAHMgbmdmhce2E9H9T5PLAePfLG0KZwK/IgbYTcgxlafN2Rw6qC1AqjgywsAvwSawfE/tBrg9sYmaHRFlPIVDElghYd5+7r+juNyOw3Bv8j+wdrW76wneAn8xs3xjfrSmlN5kFAUAWJaKSai3Jt9kDsdU9jJyI1wG9gB4m1rGf3X0LBDbqj9aJji5Q1LqI7e0pnxQUNTsCKd2EmJCGhaMyrcNLUW4PFPHfxQMUZeUjnBdGfW5TBKLLyvkjHPN7IJDRjWh+yb9zHszSGgH7zkDAom4o7cyCaE5eOO67GrFUdUfA6dMq1bEWZYb8hL5TG4s0OK40MacjlorrzewAE0jlFrR+1FrmQ+xFvc3sDOTsvgHNB5ku0gJ9q0UAYk5fAwHhtksdySamuyvj3cahOWc4AusthZxEw81s0dDPHkIAkhNQ5F9/BHp/OKnj2WmZ0d+nq8wKuuAZqL+fENc8ib7N82gMvB5ln4eACfWBovZCjCd7Ija0rcixLrn7K8g5NjrqXyfFXyV91cXydx8CMWX6zK1o7C+A5vcHEejmlOz71Kefupj9tkS6zyuo/z9mZmei/vAr6ic1Y4aajCyOWFQecTGWEXulvsA9iIV3v+zi/BisZZ2TeXhPBALZOOrbC7GfLObujhz+Z6G5tDcCQxwTAJdtUCqdd3Pz+h0oiOFGNK+3A84wpcQuu++wSQFMgxCA/sdalFmFJvzLSdZfPAFFAR3NbOnsfOyl7kVz0Z1mNtKUHqmxK2XhLmiffkzMB+XWr07VLrNG8hvaj1xoYlHM2KqfSK75Fe33N4t3mxXtMX9G8+X1cbxS39oOBYgdgFid5godfyRwGGKLGmlJyuJED54YCe5i2HK0fn6H9mXj4vylaJ7/GuhnZsNRW58VdZzsXFkNScbSXkhnbkrdqPWjUfDTnIhprhdaxwajdOKXzoh61kpMoOE3kWPqXQ9GNnd/G9nHhqJUqYfHmn46Ar8WoKi/seT6e/OcPjUW6SonoH3YaDOb1cVqnDFH1bFD1LCqYxAgc0cEdl4mjl3t7s+72Ez3QevofkhnwN2/Qza+Q7wARRVSSCGFFFJIOWmL7FdnA+9lB2P/uqApy8pacewPVzDjXKZAr4uRTaadTyUoCgrGqEIKKaSQQgqpKGY2AEUAj/C6EUwjUL771eN3U3f/Pf4ehkA+ywO/pUaeyRl9TBG/oxBzwVBLmJHMbAcUJT4zMmSulT2z1mK56M041hEpLvMCbdz93XruLxfFXyctiSki+18ovceh4bzKrp0VOaGuBnb2GkaFmdmKUYfngFO9xHwxxcxRZjZH5ljI35e05QUoAr29142U3Rw5OK5y9+5xbH5g5ZxTMX3e+nFPX+B6V9R9W5T+7V7k1K435UpDkZwjZ0nkwB6KHJt7u6LzlkPGq8OQEfoD1E+3RRHLkzCYpX0cmBB/b4xSoG3o7i8EaKIVJSaZFZEB7NRcf10FgQqudqXIPBB9mzaI8ecCBLb4Hhn5t3L310wgzH2RY+JId78vylsDjfsx7v5fM9sVObUzUNV+CJDwBfreFyCnogPbl+u3NilT1JLAR+Ggvhk5Ptq5UutlqUj+MLOBCJizUhj7Kn2nFZBjbu14l+/ieG9kDL8t2mQc2sicgqIr+1UqM+7vEuXe5KXUlQ8DP7t7+xgr56JvPS+i093W3T9LytgTMTgd5AIw/eXLpAS+OAFFV79Rpm2uQt8G5MgaWF97Rvl9EMj3HHd/LI4viFisxsbvLN1JH2D3SvNQQxFTesxN0VzwZqxFT6H5+DMEinrOxMjUGQEmjnelWptRdVwPpVK9zN0HmNIxPolAXKujvjAwQBjpfQui8XQyYmbaLltrc+tQczSnbIfmgceB3TwY4uKaiawaybFUB6hTbvSnq5EOc1TeARDr1F2IUfOG3Lk8Q8T2CBDY3t1fjWtuQ/NJNv8uTrAflatjLcqkgpjZBkhX3NvdhyXHt0HAk/XRmBzg7n0rlVNNMYElLkTgpwHufmzufAvElDUXWj+/Q4DqXh6MVvGN50DO2/2AQe5+hJndgBxCg2NN6onAm98gBqUPoi3XABZCKWIz1qzGUadqlzmhzHfLmKjOQlH8u2drtYnpdH00B78FvOgCtFXSWZsifeLe+H8ccr6viIBQV3uSmsuU/q5lVmZyvFzkY1bPFgiodY+775+cXxAB2GYFvnT3tyrVs5JE/ZdD4NeNEfB7FtQv1/MZwIZXpk4HImPmYu7+idVlgeiMgIQgFpgrKpVTw/p1RPNwn5iHV0Br9XjE/Ng5dM6ZwkC7MPCNK9XjRohZ4ml33ynKWxqNuTsRi81/4/h+SJd8CrGs1GF5yumqGVh6f3e/shZl1rBJp0sq7cOmZhzk7tsEzX0XI/1mLqQ7D0Zz0ZIoZfQ7KNjijVhL1kBMc02BzVJ9rBZl1lKiz96FUtndkvTVif0E6aBnocAOR/Pmqal+WWFemznGQiM0V26IxtPZLuao2VFQxNXUs7c3gXZnRuzcjyHg/qxIZ3kmuW6beI+2SF96wd3viXMzBHRjSh14HQJJ3pzq9HF+FjTWVkd94QHgARcgu0GDg8xsVQTCXhut772z+TzOL4H0oUPQnNQ3OTdV7NyF/G9Ibh3aHrGNGQJeng485GJHzpij+gHvI7vM2Bk9XkyMFt3Q2voj8Ky7bx3nUv3lQWB2d1/XZiDLfSGFFFJIIYU0RDEFCfcHlnT3z+NYI7SX2hYFfYP2Vye5+zcmUNR+yI55ZmYfmVr5n4j6LaSQQgoppJBqiykN3mrIyD0x0jacC58ALc1sndjU/24lZqmXgbmBFvmNb+asS57R1BJWGBQNfjWK3uzoJVBUM2QoeBY5ilZAEes1l3BODDeBv/6wEkhiBErr9zuKQG8Z1zeJ/1PgU+ZIbZwcm5D9i98PIAPpKsBp4RjOrh2LgD+tKhlOqyXu/joCYS0GnGyKgJxa5qifYGIbXGFKh5JJVsYKQBPgG6sb4fYIijTd0YJpwN2/9CRVTJnnrQJ8hZxpX8axE5Gzr7e7/xzG2AYbiZpJYkDbC0UR7o6M5e1QJPZioRSfg0AiLRAT2Q8IcFiWwSz5e67k72dRxMI5JjDkighoNCbG5MYI2JQHKM6NwAm3m9nJiO3tDEqsAVehKOyVEADuNVO6zG4IhHG5l0BRTRB44VagrZkdhIzuvyH2j1FoLlgVOWM2Rt99QZR6YrXsfbPKhbPvAkqgqC0QK03GGjMasaccbGYLu6Iy/jCBKRYCXqSe3N3hEHwMAbx+DAdIk2jnM5ETeUM03z2MouVPyJwsFfp4JiteWAuUAAAgAElEQVRF215vZsfFsT2AFc3slBgreyPj6oho389yZfyGWPwubwhlInDe0QiIekHmMDOz9ma2nZltBuBiwNk2/m1fX3uaUn4OQaCYQzxAUVHO514CRa2KQH4XIgBDgwNFlZnz2qJN9IFmtryXWA2eR4xpO4bD/lxk/B7oAYqq1fyZ0wNA6YxeBYaYmaHxdIu7rxn12guNz5Vz962Axt2DXgJFZQ7OVma2Wdzzh4uR8A7gSDQerzez2c1spugfj5hZnt2ozpyZm0OHIUDqNsDxpvQpJOdHA629Aigqfi4U/y+I5taP4pp7qAtgaoMYnVrm29ITUFQ1y8zVuVn8n+lDT6A5+nCry3wxihJwdbvMETiZOW66JCn7bQRqGgusbErZlF3TxAWC64TaY9v4+yRPQFHxjX9ADqr+8X5D0ThJU7gOQGvKfMCtZtbS3T9w9zvd/RJPAEyxntSizEw3WCR7Ty+xpd2OAKibJufed/cb3X13dz/N6wdF7RB1BTnq/s/dP6SUoq4fsHc477LyX07LTI5n9dzUlEY6recvaA+wpZmtndTnc3d/yd1HewkU1WgqnWvjXFGU+yBm0cuBbxEgeYaCopJ59F6Uau48ABcLRNM49yHwDGL1ujBrjxlYx/mRDnmxCxS1KgqYuAEZaVcGbgwdaXx8j0+B2U1MMEOBZ7wENGmM9NGF4vh/rcS8eTkCPW+KWN4ypolKAKYDvQRgqkWZfznJ1blVjJ/WJvDNH2XW0LJlJH83c/dHUBsdiJiJ10Rp466JPelVyBm/BBovK8R4fBH1jeM9B2CqRZk1lqaIDfPfQBcrMYhOiHViAtqTHor2Bp+jAIBMv8wDpLc2sSPiAkU1i3M7xf09gJ4m5qifkP47yd4+p2stEutCS3fvQgmkdYOJHZN43ih3P93dt4z/ZzQoamZkP7gLGJLp9GbWw8S62Nfdf3H3g4EtCFuO/w+AokL+jcB+T6J9advc2vc+WkevQ8AXknMFKOpvKMm8sSdKP/c22hd/hfSq/U1M8Rlz1LEo8PQ/JsDRDB0v7v4r0tEORuzwq5vZ2rE+/WZ1bcEtY56rKct9IYUUUkghhTREydnDfkL+kQ5mtnTsW59FTM3jUBD1bShYI2MB74OCzQ/zaQRFQcEYVUghhRRSyP+A1MqYZMEEZWbtkdNmpCtCaVVk4LsLOfTfy65HG/kNUTqi7yoZe0yRUfuiyPkngNPiWasho/uWyHH9ATJ8H4UMTqMpsSoNK1d2NSSMkk1RZN95KPJ5v6hjyhpxFgI6fIOYo94uU1aTxPGTATN2Ro7KMSgF0KthRO2EnLUPk0Q558qr1fdODe/tUeTju8hxdF/+mikoozWKGr0sDOLpdf1Q27Z29/etLuvYcQh0tpK7fzIF9b4c2NTdl4nfoxCTUPtw+G4IdEVMEBUBLQ1FzGxrFB1/HGIn+QiNjWOQMa29K6VeNib/8ArRernvlbF+rOPuz4fz+wDE1DY3sKaLAWouSkwyvd19cJk6bo/G7wIoOvoEq8tGtR5yRi0DfImCFZoCl3opBWMGaFgQOd1XRI79o919YPKs9B3mQDTvOyA2rfPc/YRc3WYH1vcSG9qKiP3g+OTZw1D6nWsREGMcAl0NRKkPKrLnmABUI5FD7hkU/f5fq8uAt0K06e+IAeP9+r5Nrvz1ov0PR3PnjVHWWgjE8lRc18KDASdpywZRZq6chZBjrY+7X2pK13UBYk6ZG0XP9nalvMvXoZyTfz7EYPAEmhOy1K1bIRDCC2jeWxp9x3HAJe5+fqUyG4KY2e7IITkOsTrOSqT2cPd3YlxcjtJ4LYPWoFHuflXcX/X3NrN53P2b5PeqMWe3QO0/Bs1xPyNg5xehIzyM9IJbEcDxu6SM5TzHKBNOhzMROOR7xFLQw92/NbO5ge0REOUjNGZ3QY69nkm56TyzBbA1Sm3xRrTbxy6AwKGIHeMaFL01CeiiQr88CDnNVo5/I9D42RcBP7P1bGbkHNkQOfP/r572rUWZ2yNA7vmIZShLy3QQmiu3dvcn0jV9cu9eCzGBdNog4PQpiDnmVHd/Ls5n+u0siDloDhfYp9L3WQylAs1Sm63vAvXOHM4iTEyE3VF/7ZiVV08dq1pmsoZfj4DiNyXz9AAEClrP6zK8TI4NbE60DrZDa/XKsZ7NGvuBRmh+XgY4FbiyPj0rrl8YfY9FEVPqMOBud//JxBwzGu0J+k5O55wayZdlZkska29NGDvqKzf0lROAvYHh7t4jjmd7j3ZoLrkJOMvdB9awnnX6gQlocxwCcGdMNU8iVqXxpjTI2yAGqe3d/YPk3u2AeTyARsk8nIFcL3T3M+JcxhY2G3Kmzge8hljSPk3KPBQBdQ/0EgCbWpT5V5Yya9n9aC37znLMHLn70vVrT6RLXxRz4IkoeOF9lNaxW3of0mWHoX5wEGJ5Gp8vO/eMqpQ5XY01mXaI301QIFALtAbuAhzu7hfG+TzbyUQmyTJjZl40XuZFtpFr43gzF2igEdIvFyIAhjn9pw7bYxzrgub/W4AbXSlHMTHnHk/CHJXtseDPAdpEWz4KfO7uO5icOn0RkOMzFDBxnbvPkMC2Wslk5vSZELPylWje2Rt4LNdPJrJqF1KIiWXvSrTn6G9i/X4eze8Lo7R1l7n756HXdkNA70tnQN0q7e/nBLqgoKE7kP0k06WaxPF1kQ5T0RZcSCGFFFJIIX9HiXX0DsQyPybW9ydQ0MAPaJ/2IdIPLnExRM0HXIIC09b3ejLWTI0UjFGFFFJIIYU0WDGzw81saU+YjKpUbhZ5Oj4M9H2Q42+rMAqOQc7uHYChZraHKU1MDxRFNMzdv63HcNQVGQUbx79jgbvMbHF3fxk5BE5HDrwTEYjoRHe/HjnDvwe+Lld2NcVFCX0dSknWFbjKcsxRyOieMci0y5dhZn2AHqHsZMbM25AhtjFivrgdOMTMmrv7XYi9Y0PE1LNhmXrVxKmYfi93vxuBYpYGTrIpYI7KGXN7oAjbo9z9ATPrEo75TO5E3/F2M5vbS6ComRHY4XUUxVun/OTvZsmpp4AWZraJmY1EDuCOoWTOiSJT50XsEf8L8g+UhuIGl/yMAA5HAIsDN4fDFWB8OLHKMZil32tplNrgN+BeM1st+v9wFOH9PWIHuBg5M/oiwNPgrKz4PxsXnxKMYIiBplU8t0kY/59CII1uiBHoTGAvLwGTBgHLRn0/R06BeaIen0U/qeOQiWt/dAE5ugEXoQjwpbJ3DyfHTx6gqJCP0MZku2gHwnA/BGgPvILAEmcgoMMk7DnJ+88UTuH2lNJz9I6xnc2nuPsb7v6Uuz+fc8yW+zaLmtlyFowncd8xiPViTjQXd4/v1zb5zhUBTH/VMpNvkv6eFfWjHUzMZSNQWqWuCEA7GwJATCIV5spZ0Th5Gq1xy5rZvQhMcA1ysq7rYs87ArEDNHRQ1HZoY/0EGrvtgCvQWnuUCUz0k7vvjACAhlK71BIUtTJwYugDmFgW7jOzNdz9e3d/CTkQVyLSScStjVEE1SCUpqlOSkt3f8vMGmXjyZRW9XwU5bwjJdDibSZg1rdoDd4DgU9aI8Bcz6hXnhFi77h+NeS0OAyBO/YN/eAitPbthtgfLf/umfMzaYvlkAPtXODbWH/vRrpClnJ2jMnRvxPStYZ7DsBU6zJD1keOzkfR+n1M6IxDkS50fLxj2VTHtRg/ufduHPPtWHd/2N0vQICd9YBTzWytrH4mtrmtog9lYOKyTEQusPFgBBhvjljsJrKCxN+D0bqRpamrV2pQ5sdIn26N2Dr/CexiAuteh/TUbeI9M2ader+Hi93qFDRulkQ6OS5Q1CwxLtqgIIZBCCBVX3kTXID3LSmxk54HjI556p143hFmZhWccmeYwPtTJckYzpjOZhgoysy2jHrfZWZHmdmy4Ry/EIFbdjWzJ83sdESTfy5KY/4AArPOmr5DFeu4tpmtnugeB5jZYS4wSD9XcMbmiO11ECXW1zGInXNRNLbScXiX50BRcfxdBITZxcxWiXNZ0MgCCDxxFUrLmAcwDUbBKXkAUy3K/MtIbm4rt5a1Q2vZ3KFjTsIcleuH3eP+z2MOnMndz0IpvpYANjClrgUm9reHERh2BeBmSuyq6TUgnZ8ql1k1ybXDwqYU2o3d/T2XXeNsBEIcFP2DaNPdYk8CCVtsfu50pYU/ggDrm5h9Mya4mePZo1FA2CHo3cmXl9M1rkAgiRfd/atk7roh6jsWGGZm63kwB9ai7SpJuveLcXcTsLmZfRx1H4+YKTdF81obEyC0QUquD21qZkea2RVmtoMFex4KtNkHBSpdDWxoVoc56sesrBn/BoX82ZLXV9Ge+FkXKGoFSsyMS6Igjp5of7GwizlqqAcoqpZ9qML+fnWYqBdeg4JWOwMXm2zBG6K9fjfEBF3RFlxIIYUUUkghf0cx+afGxM+PY980Fvn/hiK74gDk8+nvEUThCo74EdnFP65WfQrGqEIKKaSQQhqkmNKe3IuMwtu7WHemy3lpojyeGHVqZqu4+79NKRVuRw6P7og56jdTmrmLEJBlPKKYv9jdz4nyyrF/zIucIG+gBb8ZSrl0MWKC2tdLDFQtUfTjL2EQbIsMqI+7+y7T+p5T0A7bIgaJQ+I950VRpOcip+IBroj5RsiBkzHdvJ8rZzbkjGqPnI4jEajkXyi6+cdo2ztR2x6FHJPjTKxSdwKd3f2OWr1rObG6rDVTxByVM6AcRikK+7Jwyt0FbIbSbd1siijrjpx4Y+PvxgiI1Q85pgdVKH9b5Ki5Khy7ayGwxOwIONMunOPN0HfrCxznNWQYm5FiZrcBy7t76/idRsdfghzyo4Ft3P2Hyc0LZtYNtf8vyOm1LjL+b+aKQp4bARL3RkCAl1HKnzvj/nLsGouib7kcMuo1RtH6r1iOQa1MfVojg3pPd380ju2Ixsh2iNHmcILBrp5yuqLxtr67v1imz6YMTh0ROGond781uWZNBAL4FTHCPJO9M8F+Fb/niLb7FYHRxkW/vw0ZPYciJ+PYqZmnTUDKo6MdJ6C2PwF4KeaghZCDrCuKHgE5Kj+rZIz8q5aZG+NbI0fKGTFPboUAKGMRu95pybMfBka7+4lT6uA2s5eAmdE6tBqKzOmJInPuBp53gYTSe2riPK+lxBo1MwJ9zQp0daVvyc73RRTNF6I16c1yZdTISbkqGudzIpaFLPXOUC8BZZdEKTL/5e4HhdP3IJSWbfPJ1dEEdGyBnFQnRF+aCfXV7giEsUNmcIh1af7MgZ4fq6F33YmY4y53969jDf8crfVHJGV1R8xmW3iOMTFXx7bIQbo7mmM/dAGn1kGMi+1QxPg45GTuBpwTjudKelZVysyNyVUQ++Cr8bszAq1vicbNowh8vCqwj4t1cIaOGROwZlfExjkcpV/8Is4djgBSTyGdphliQjrU3a+Yime0RPrcUSi95hFxvJkLTEymO/9ZZZrAwGsgtsdFEDjkGKRb/YHYTSdZg+v7XvH9T0JpB8/wUlrEWdz9l1gTu3gZ5r76nmFi7OqK+tJmCBT/EXKmnx3tkTKuLorG4EpoHrh/CprkTxUTQ8/5CJjaGI3Nb9A4edXMFkAgsd0RM+YHiCFiSOjglwPd3f2WKtdrVgTk6EUptdXVlPphtg/oh/Y988TvmdHc9iZwn7v/JykznTMWQXPC78DPLsaLFdBc8SZwirs/FLprFzQG2rnAquk81AZY0d2vqkWZ1WzTWskUrGVvo7Xs25xum36P/ih1bJZG+kg0X7aJPf8RaH8+BDg33dOGLrE5Sud2RXJ8XWBtLzEsTXeZtZbQV49BAPnn0DqRAflWQUxpO6N97GdorRzsAvpPrHs9c+UmaK6dG+jrpVRxs6I05/cDY+ubu0wAg9ujnEu9BKaZHZjZBcLCzHYDTkbBP62AL2q95ub6VB2WK1NQzjooQMnT9cDMhiC9v6sHI2JDlZjT+6M9xKxobzwa2RretRJz1GUoPfGe9emBhfz9xMzWdPcXYp+zMAoseBit/93d/cuwd92OgjYuRsFZFe0eNapnpf39M8j2ewAaC7PFsc+B+11BIg1y71xIIYUUUkghtRATKOpl5FvbI7E51puJIa5ZHAX7fIgCd3+pRp0KYFQhhRRSSCENVszsEGTU/hEBaN6bGqd7rqwVkNPjRne/25QWZQgyeL4Qzr8RKILpUJSm41dTmqssEvTzzEBeASyxI4osXhWlNHkijjdB4KirkaJwAPB/ieFtHsSs1ANFVXWt9IxpkZyRbw7k4GyDnMm9XFG18yJD6TmIUeReBMTphYzMN+XLit8LIGDOrijSfhtkOHveSgC05igi9CdgE480JGa2pAdIrFaSe/f5ELhjtvS5ZtYBATvKgqNyZZyAmHX2d/crzWxt4FVkUDkVAVv2cPfrTcCl3ZBDfB0EKvkE0YWem69f/N4bGdkfRMbi++N4Z8Qq9EKc/xylizoKpSvoU668hihmtg9y7G4XY7Ux0Cj60n5ofC4AvJaCByqUtRlKK9YLAY3eDYPvUeibbeKReqjC/XUAQnGs3Dc7DvWtzoljvQPQxMsA/8xs3gAddATecrH3EPPQXQh01QMxE/wS55YFvnf3L+P3FsjxvWfWZ+P4egjklKZ+aYyAUUsBm7tYqqbonU2pLg5Fjtr/oojp4S4w1mwIHLUawQLhU5jO0cx2QsCui1AamPmQU2xWBCC5xwXcbILAJacD72djp6GWGf2lHzISD3L3e+P47F4X1DMn0BGN9/3cfUSunHw/TNN1LoecXt8Ar7v7mUmZdwJPuvtJld65oYkJPDYumw+sBKZshFLVbYDmlIEeaThnUL3WRvP24gjoum8cz9aWJgjsuQ1yer+PnN0nufuAyZS9JnJ6fofStxyerLlNkYO4O+DIUfdN7v5ygKPuSD/p5EFfbQKqrh3HXrIAisS51u7+Sj11nAc5QZoDL7j72unzERj0GPR95gceQUCEcmwsVS0zt67vjkDgDyEA3StxvDli9eqF5r+MCa53tubOKDGzXRDQ7lk096yJ5uK+iV56GNLDZovbBngCspyKZ2Up8I5CDvMsBdpEIFP8nhoQ7HSXWWbOa4IAqXsgwHNTBCpp5+6PVLrXBDZfGoGqXkHBCL+Z0liegPT1foleNbHPT81726RpqnZC0ZG7oP67h4spNn/fmohlcgOkU/wrf81knjtZ42O1xARsugq11wATwOU/iJ3zIwTGfjUZd/MB38TfmyBWhmfdvUuN6rc6asuN0bg5BIE+0++yEQJzXIjSl2b37Obu/4xr8n1vNzTWFkepKl9A6QBHmNmm8V5zAu8hYPK6KH1inXnD6gZqVL3MhiBTsZa9gdayb21SpsPDEaB3AtrjPoBYJE9Dc2TWxr3QnnUSIFOuTo0QyG87lCb5hmqUWYvxmJvbOkZ9r0fMtjsjpqsrkvmsNdqX7or25YPcvX/y3mm7rof2Sguj6O+HYq5sB5yF9mKD0D6rHRo3nbyUSrpsXzSznvH8daO8mVAw2VponF7v7ufFtXsDv5ebK6stubbcEgV+LYXa8hgPBtjcPfMgHW4QSoXeIMCIlcTMOqE5/ayY05dAIPvvEBNtd3f/v/hmK6M5s09Df+9CqidmtgdarzYHHo71fmVkWzzMS4FnW6JghvHAHS4G1BlZz0r7++ZZPWMf0AXtIe8D9vZSgEiDWmsLKaSQQgoppFZiJVDUe2gP/Wmy/58JWNwT5nZLgslNQcanE5ll3N2rVa8CGFVIIYUUUkiDk5yD90BkEB2LmKM+mpaNqJktj9IKbB7/H0wwSSTPSsFRhwH3utJ45ctqhAywT3ndaMH+yOkzFtjSAxgV52YCtkaR0W8gYM1bcW4uZLRfzEsRSLVI7bMbSvv0DxTpORdqi55hmJwLsZici4yg3wAXZAbTespdAAGq9kTOkI29xDzTLMreDBkUOrn7PXEuc97UxLCQM3B2BfZHILfvUZq2M5JrM3DUmyiF2iTOEFPawOOAm9x9VxMTUT8E4HkqHDCnAh0QWOU6E8ikOUoR8z3wk1cA15nZP5CB8SwUTf9drp06IdaXFYCZkEPvRne/uFx5f2Wpz0FgYloZjFLLHZY5OE1As76ICeP/kDGtg7s/Wc9zeiFH2EbAR16KMt8afe8WwEYuZq4sFUAKCkq//ybIEbUKYnZ73pUyh+gLvZADogeKbr4KRb6fndQndYItBDyJUu209mCzMYEx70CO2+4IqNg22qSzuz9tAiS9gUAvW+Ta7v5oo37AY+4+Os7tg1gddnH3e2wyzFZxz+7IGT8MRZYvhTYsLwHHu/sTYTS8GTlxL4vj48uUlTm6GiHj40jk5D/OE7AkYkKZC9jA3b8o16/TTVZDKDP5vUO05cnI8VMWoBbOqLYIzNvPg70kOZ93hG2LwGlPo29+W5xLN5yzo7npPMQWOEOZ+molsbYOQ+DTLbINdzJvDkKG7lmAI919cK3nyuTZKyAWlV9QRHRvD1aUTM8xsSz0QWvEOOQYvjgtp8IzlkWMhF2Q42GHXLlN0VzUEwEU1vMEgFKhzMHAP9x9xfh9D0pb1t7Frrk5AlWf7VMOZmmDHCTLIUfoLfn5IXSv8Ygh5dcZWaaZ7Yzm6jOBO70MO0zMBXOglBp7IuDCFu7+TtmGrLKYwCTnIMfNEMSK1BXNtyMRED8D5LZDa+ePXgJ5T4vOnAGZjkRMqYdV4T2qVqZNCjrqjABNL7j7JfXc1w3puOMRcO4XxLLVwcX+tzpKl7gZcH6qJ05HXdP5emaURnfl3P6hG/C2uz8ev9dAa/h6TAU4Kves+T2A1LUQU0BFf+BTdz/BxEbzJALs/RsFEXyAmLY8xlEjpHcdiABtr7r7TlFerfYCR6Nv/mvU5e7c+XkoMUs1Qn2ib37dTa7vikDpg1HfWRIFQayGgGC3RNscg4CaY4EHPVhdy83rtSizoci0rGUICJ3p0t3RnvwYBGbqj8b3IS5W37welgGZBiOw9Hv11G1+1E+rVmatxOSQ2BaBePu4GFyXQ+xnrdC+MgPJz4XsAHN4MPWVeaduqF0/RcyL36N9Rwd3/yn01OMQeOgnBEo7u9K4iTKzNfVIZGc5Dn2z3mjdugcwtMZ2cffnc/fPkH2uKU3gIGS3+Ba169cImOfJdZsgvWBntF5UZLpsCBL7z8sQG+4pJrDw42hO/wbZuP4JHO4KVpwJmMuD4auQQkysh5ciXeASL7EZromCD85wpdVrgtbdFdx9vxlUt6nZ38+NGLm/jP3zvohVdnBc1yDHeCGFFFJIIYVUW8KeOQbt09qjPfeEsK3PjJiP70IM7qn9ZnakQ2+FfAlbufvL1axbAYwqpJBCCimkQUnOqL8+csLtjaLSnkEG4g+m0dFjaEFeHrHxHFTmmgwctSiiVh7pORrHMDQOQDlxH0vrjoy7fRE71MmesFOYgBftEeihs0fEVJxLUwPUAhS1I4ogPRml8vgYOchXQqCGo7yU0mQWZAT93UusEZNLV7YwciocjtrmTE8iK8OhOhIZVGdoapAAd1yKDNZPIwPnPsjge2zS7tsiZ+snyBGcMu4cioyk7yNWgsdQ1P9hwJVeYtBIwVG7u/sNFeqU9vPMUDwYgW66eCk9TiOgcVLHeVA0bTPEHtTgotZy774WcvLMgxxkmVNwN9Sf5kPOtU/QuD0ZpYH8GkXTb1Wfw9DMLkDfYd74nabuOR0Z439EzFEvVTJ0hZG8D6J2/R45TYegKOwxcc2eaM5YETkJBmRG8vx7J8c6oejzlsgA53F8AUQvvz5iW2uFQIonJPeu7u4vxd8p4GpzlDZmXwS0uBUY4mJt+BdisWpXqc2S8pdA0Z13o7lsbBw/GLFqvAz0cLFwNUcOhGvc/fJcOdt7gHCsBD6aH4EQ+6dtFNesg1heLnT3YyvUrUGUmbs+Sz34EUrDmX2vvRBzyZvIkAxijBuHHFlZCpdyoI69EOPQA3H9Umg8ne8JI5SJEaMN6u8TmVAaktRnhDYBAh9H7dvdg3kr1rJ+aDO+FZr7W3mZqP9aSTiWFkHAm+YoFdLNcW4iCDx+zzM1c3roNIcjoPeZ7n5yWm44lI9HoNArk/vSObh54hA4BIEnWyE9pg2wrQs42hw5MVdD/ffTqWiDtZFe9RFKx/dkHK8DbilXv1qWGXrLSKQX9PIAwufaJ+8s3grpkR3qW3uqJSbAz/oIlNvLEyBwgCmuQ+1wiiegruSaadYNTGndeqI+tkmq706rVLvMevpyuflyKzRHnIyY5D5GOvtB8XebABO0RlGLnYB18s756axvvj81RoxsT6H19jQvBRZMFTgq1xZHIKbHNtVyWldo0yOQLuZoPXwazQ+/m9kwlD7vHZRqeExy3+bAAh4sMDXa98wUf+6GAOibojmtq0fwQ3LtbAiMtCxKgTsxrXDue7VAfecNtNZk/W09pPuvC3R098cS3T4FKJdrw6qX2dBkOtayjCkqS5/XAc3PADd7pKUvs9b2RKksr0Z67I+5+kxkTq1WmbUUE4PsDQjEc767X2QlEMCyaP/aCgEVJgEu5dfHGJ+3oP53pwsEk6WRvw7YK9pmETRmlkJM2I/F/ZMwM+aetyHa262J9lWvoYCxb032isvRnui1KjXRFIuZbYOYwfq7AByrIID7LFHX9u7+ugmoeALam97h9TBd/lUlt2bM5e7fmdnJaC5/C+nVj6Jv84eZ3YsC+R5HgUtvliurkL+nxFy5PLLTHJpb8+dHbHaLI33nS6R7neDug+KaWrHqbecllqqp2d9f5O490/tqWc9C/tpSfPdCCimkkPJiYmC8AvkZ23jJd9UM2Ql+Q7azT3L3XYV0hodRcPUb1a5b48lfUkghhRRSSCF/HUkMNHsgZ6+hCMKRKEXd7Wa2RGxqp2ids6CGR9GMfyC2mQNMQBjMrHF2jSu6uiPasA9DAKl8Hd9CKTAeM7MOJpr3rCRa5hgAACAASURBVO7nIMafvYHDwmiY3fdHvMsynoCi4tz43HVVk3Bo7okitS5x9xHu/kK858MIJNQvDM+4+y8uyUBRjSZXp3CS9kPGxB5At+zd4/nLoTRcM8xQHM9uiwy7p7h7LxTFviNivDkCGGiKWsPFZHUAAqCkoKj9Eahqf2Tw+R3YCTnYhrr7L0kZL8XzRgLXmgA+k0iFjfVaiOXhi6Q/TkgUy/mAH9z9YxcrShaFN9nv81eS3BgfiVhxegNXmNkpcc31yOD8BKI4vw05U0939weQMf19og3ykoz5e4DZTIwBuNjLmsa5MQjc8zpwtZktVMGA3wmBBc5z9zbAfkjHPgg4JpyouCL39wJ2QI63LHK4cc74vJ6JPh53vyve81NgdDiHcAHjNkWpXV5GUeonxP0zxTV1QFHZfOju94chb5uod2fgPjO7A/X/dcOhPjmZDzkTHw9ncdbHL0agsK3QeCAceZv4pKCorYDbzGxIXJdR6c5CpLWM65ok8/kLyFi5VLlKNZQyy0gTBDj9CPXJ1czsEfSNjkBOqM7u/hliKNjP6wdFrYbANr0Rtf/2qO/9AewcRl9M+doPizKP91I6lQazT8yNnxXNbGMz65ysWWOQ03QX4Doz29oUnbwf0A2xNT2M0r4sUas6Jn/PFk4z3P1ldx+FUiSNBU7Lxl84fDuaWQasS1kC/yhT7jxmtlisBbi7IzaIoUBvMzstKTdz2p6ROOwa5dqyPXCqCXwDcs6/jtgI10egkDGmSK+MdfE2nwpQVNTnOcQ0twRwnpltEMfHp++XXD9Zw3OVypwP6SaPeMIOml6bfIcMZHEfAtFsGMcneVaVpStiWFoO6aUTx667D0fAk62BPtlalErmnM5+h4Fqiurt7hmAfiPPAZiqXeZ0lJd+q/8mf5fTibZBfXuYLvEfkL6epS8bGHPtK0iP29arCIoqVy93/8MFwjkE6TUnmRjRcPcXERjxKbQ+bZEvL5PcuO6OGG7O9SqAosyspZltmIyFgxNd7XwXoH0DYGaUUjf7Jo5AUU0R89zEbxp6StVBUWmfcffx8W9YrHu9gNHAcBP4IZWF3P0/7n6XVwBFhTRHASWvuhjGMr3oKQTQaYR0t1Qmt7+rRZl/OcmN8TnNbCFTsMe0rGWZ/rIQJVDUqkhn2wUBG7ua2fVJOU2y57tSHfcFXvYyAKYYlxOqWWa2hqT3VFHmQuxsC1PqG41M4Ki3Eejs38DhZjYJC56XmBEz2RTtkYZ7if2qPdIPBnmJ7fkTd3/M3a/xekBRZtbazDY1gf2IOaMH2kfs7e47ukBRM8c7vIvA/jWXXL+cA9gSMUP3N6X/egIxyHRFgUnDzcxibj0HOMgbICgK6uzH9wcGmcD5p8e33AZF/A9EczgILPUtsAZir56krEL+PpLMadkYOgaxMy5Psp+JueBLNA+9BmyCxv6JHqAoqE0fMjGE3z6N+/slk7r9kfxd9PW/meTWs5Z/dn0KKaSQQv5iMgqxii5LKdAX5HP7EWWN+aTMfYci+/U+XgNQFBSMUYUUUkghhTRAMdEYP4GiH0/xElPJUciB/Bmwg09lWj0TVePiiJ3mFMT60sndR6Ybnrh2fmAzd78pV0aa5q8FAl6sgZzYNyTXnYUctecgoM0kjsQZZUAzAZOeQWm3usaxLMXdPHFuEZRO5qg4Pk11MzHdnI2AWI9G2fMihWeg56KyqikmENIoL9F2N0FpdtZBxpolkYNpeNSxF3L09kWpaH7PlZdFZi+HIrZvQn3nPcRYNB6xAmW02mnfWC3K3RIZD9+anCHFzG5BzGgrxXPT8lohx9m5/iekaKi2mCKCr0DpHs4OJ9WdyBCeRug1R31zLuBLd3/fzNZFQKkH3X2v/NjNPWdJxKizGGq7a+J4Fn2+CAIenYuiGB7J3b8gYht73d2PCyP503HsC8QidQ2K0B5DTvLjyMQqdTpyYBwaDtgsQvkc5BCYyBwV51KWqylhkcnPZfMiB8TmqB+DIp5HVbonjq2DxnBPLwF00j75GQJJHGplIinjG3+BWHqOIZc6ycwuQUDEdu7+SHLf7ChVw0vufnjOGNUgyqzn29yEQAxvIJDOZyhd4gsoBeJsKBVpmqasUsR9JwTY3DbpRyMQY1kXd3/ZBPb7zJTSbWYvsZs1GOdN7lvtjoAC8yIA2HeIueB5E+PHNqhNZkPpRn9FlM19TeCj/VAKtPdqWN+uaJO/OOof1ySO9q3RnNEcMSJ8Hv+f4GVS1ubefVcEcDPUb15FRoSfzWwZ1HcPRGvZ6fn7y5S9NwLl3YxSsj4Sx/dF88WCCHTTAq1LPRGTR9/JlV1P26yLwLBvodQVj0/N/dUu08RK+iCwr5dhdzQxQC6PnMPZd1gHsSUc5+4D49jmwAfpvD29YnVZRAejPnUFYu/7NHftzkhfrjOvlylzXwSI3znTq6eyTuUAmlUtc3rLS8pJx8687v61mT0MNHP3tnG8ibuPCz1jONIR184/t5yjv9KzpqGe6dp5IAJqPY3G2tNxvF7mKJsUFHU+ARaZljrlym6C+l4/FFQwL2LE6Yn0nqyPnohAui1iD9EM6TQfASM8YRapleTaoS1i4voKeCVZ+9ZCbbx+vM8zKL34cGBdF+CyvmfMDvwHeMLdd4tjqV70HFqXtpzKvWlVy/yrSe7bdEXMUK3QXupF1F9/NrEbHc1UrGVxvjUC8mzkSvG8AApeOAWxPO2aXPsP1Na/JMfK6cDTXSZiAZ7X3R+KY7uhNfx0n0wq66kVE8D5NJSGe0t3f9zk6G/kAgwvh4KXrnT3q+Kew1EKz1FJnRujdfF3d988jo9C4MZtXWl1N0LskYOnQO/dC7FDzYecI0+4e+cy1y2GwBID0To3cDqbpF6xSdOxzu5KEbgXGo/voj3Qi+i7j0P7yW7IDtAp073j/gbDJpIbjyshnaY/YsD9MY4PQPr1fPF7FvRtngHGeATnFPL3EzObz92/SvbD67j7s7EPuxjtHfogNqbvsnkl5qE50Rwzuwerfi33pDGvdEc6y5Ba7e8L+XuImR2EdN0tgDcaqk5WSCGFFDK9Ykqftwzyk4wPHWAPtP9/HZgd7fP2zNte41pzBYHVVBpMJHAhhRRSSCGFJDIXMqA95mIqyVghzkOR3msBN1kwR5UrwHKR5mFk/sndX3P3J1A0+EPAXWbWPjEQ7WJmx7j7lx6gKBPjy7zhRMkM1asgBqReyHB2fjhtibqeiIAxRwFHx8a8jsyIzVS0wy8I/LFyGEYz5pwmrrQ9TyClZRsUMd/USxFVUyUuppvjUNTvJggg9SaiYZ/IoDP9b1ZXwih9EQIbZHUZh977BuREH4wMHSe42LCuQuCm45HDMf8uE8Jw+pa7X4fANV8C8yMq+S+Ao8KwXCd62JUb+UhgO3d/M+lf9TEgjIhnXJyVF/c0Q+k/tkTR0fl3T6Ndm5sisWcpd/6vIGa2FDJE9XeBolZBoLM7ENCwh5Wixf/r7m+7WBt+NaVtuRF4xgMUlZS7gZnta2Z9zaydmc0RSvip6PufamYXhlPmFPTd70Op5mYDFs6VN5O7fx7XjLBS2qVbkNG+X/zujPrBKvl3zTl8d0SAqgsQkPKV5LpRKKXPp8BjZmKOinO/lSuvknhdUNRMrqjm09B4PCqeXRYUZWLjyeaqtxFwYyczWyauy/rkkgh08la+XjFuLkPpNt5FrFf9gUPM7MKkqjcjh8OtJvr9RiZA6o7I4fJY+j4NqMxy43H2uGZn5Jh6AvX/9aJvN0Nzy6uor04Uz0Xym9kSMc8shlguMlDUqKjPji5Q1JrAGWa2uLu/kTiGGyrD3E5o/NyAwK49EQjsWjPb2N1/dvdbkCNyL8Ta2M4FilobgaofzG/MqynhmLwGrQ2jETD3YhMzE670TcfF+VORk+k0LwOKiusn6iVovXoeMeyNQAwtY8xsUXd/BxkhhqB57pz0/jL13AzNQ2cgFrFHkmdeEXV7DoEFLolnHeMlUFTjaXESuABi7ZFD/NKYU6dLprPMdxCbWOcYq3XGLhrjGwFzxrGmSE/6mmDLM7P90Bqx7PS8R36d9rosot2R7rsvmp8WzF17EzIu1QFF5ddH5Kh6GkXKT3W9fFL2qekukxK7ULXKy+qajZ29gb4mBtPngJWsxMg0LvTg/yKG2iWAucuUlWc/WTrWyvVzz6pX16pQz4lt6u5DEXtVG8SaU4456iYTw+HEMn1SUNSBXgVQVDx7HCU96Xa0fh1MAooKGYXYVC+P+eUQNAe/7QGKqrUumrTDnlGfngjEdb0JPEistxkb6T9RquCrEUh/IiiqnrqOR3P7Zma2c6YXmdlMZjY3aoNXy62xtSizoUjybXYDrkXBAecjAEp74BkzW8zFbjSQKVzLEnkd6U9HmNmssRe9GOm+O5nZtSbms12BfyHD/ST1q2aZiEFtN+AiM+tiZvvEu7/n0wiKyu9R0r2eu9+G1u43EXNmxvI2cS+LwLNXmVhcFkHf4MwYsylL8SvAAma2iJndjcDRHVygqHnQvmcJ5PSor47rI93kMsS4dC3QzsyezN3TCQUsnYyYwQbmy6qmmADOW1kwe8a3OSV065tinmiL3m+Iu4+N/c+zSA9rhICXE6UhASeS8bgqYgd7BLjU6zKdPYTYbc+N/W039A0/8YSxeIZWvJA/XUx2xAvNrFvsT/cHnjazDVzMq4eiPUoPpFvPEf0t06N+cPfvvASKqumeNJ5zPpqHpmt/X8jfT3Lr2ZLIrj0U+LAh62SFFFJIIdMjMTdeh9bJNWOf8TOyVx2L7CnLEaAoS/yKYRe/EHg07OQ1tQ8UimohhRRSSCENUb5CRqcVoUSlH3/3Rg77VYAHzWyO/GKacxRsbWbnAw+b2XFhDMPdn0TgiAeBO82sp5n1AK4nAdeErIIMoRnb0r7ImL5ylNMHRZWeZ5OCowYiMMLi1WmaylLJORQbt4cRc9HeZrZonMsi5WdCBoOHgQ7xHs1yTo8plgCTnIGc2AsjVpk7oo61igp7Amjt7m5mq1sp1dC/3X00inJfHhjtpdQiE9B3Oxc54upI9KMsGn4XBN65DGjuAlZ1Rn31SCuBo8aZUiP1Ad5x9xHZe+f65fpmdpCZ7WoCCoGcNHciQ9LtJtkUUY8PRkw2deqZK7NL1PHfCMjTO+r0pxp0yhhOx6M0eDeZ6KjvBm5x953QOPsZpZM5N3ffH8hZepmXoo2z6L49kOPuIDROrwTONaUFeBoZMu4HdkbAqr0RQO4OFKH8GTJyZG15ODDSlNZhWPSh7VAKgb4IFAliQxiHHCJlHfLhgJgHfccrkfH5zeRclhYpc+R9D7xuZnNN70Yh67+udDK/utLeTEz5kOs/uyIj4UVmtoALNHkwYsTriwCpWYTHhghMNgnlbTg4tkNOlI+A31xpLM9FRsmMzv5hNHe+BtyFHFAPoTRL/dz91gZYZqXxeLuZnRzlHenuR7v7RXHdnGgu+QfwaDmHWVLmgcg5vSIaQ2PNbE8z+yeK5u/kSn02K3I2LozW0knKakhiimg/BjjLlRJpNgTYuRUBf682pdeb2d2/cPfbXWnG3jMxRd2EwJQHR3lV34CHg60VWvt2dTF/bIDW/nPMrCOAu9+HmKs2QU7KegHDJqBPTwTa6+3uQ9z9eASuahJtgSu96iBkpChHVZ2+92aoP98Y4zw7n6XpvN3d2yNQ0GqIvefirJ6eA8hMjbj7s4id7TyflPmopmWGvjifmTUzs1lCV+kNdEJzXMu4bh7kGDkYRYx/H8/5HQGwzwYONLOHkKO8BwJiTJPk5o1NzOxYMxtqcqYvHc/eG+mnJwLdTewlaRu8Ffc3To5lZS6JAg7uRU7esiloJ1OvLGVsVcusdnm5770K+l5vIDDbYyglUPeYUzKdbWakH44Bfir3nOQZeyAA92jgfjN72My2if5UH6NNWs9dTKwkdcqOv4cicEA5cFSvqOOo0J3Seh0JDECgqDopbadXXNT2o1HbTQDGltkfvI3YMDsgINXJaH28MymnJmtP7pu3ROCQsxDD1g7ANyh4Zc+oxwsIuHUaJfbO3nF/Xi9a1gS639gEMh6LvsM4lMo2Y5+YH4EmWyNGlUnqWO0yG4Kk81F8m96onx4ca/nuCHAxB9KTGoV+fD71rGVlZDzS8dch9vCu1E0Xo764IwJGXgKc5O6X1bpMF3vU1Wjvcj7aE3d39yunZa3L9aHto+znzOwqMzsgnnkr0le/Bm4wgRUycFSjbC2Laz9Bev0ywNmmAKNMnkP9bnT8v7kLcN8EMfpth3SqcmkIszougfSTO1D6vbuj3Y4HWpnZ6Nyt3wJHuPs5cf80AbCnUNZCQS7bx37vcsQCNcHdf41rlkVj8OeoT1OU8vJRoE22l2pIkpsr10DpTo5Ac/rXuWueR0FjhyIbST8U0DGRsbBG9pxC/tryB7IbXmFmVyId6wgEGiTmhN2RvjUQgUhnd9kjJxnPM0IviH3BRZTAUVO9vy/k7ynJerYRsD2yqdxYbu0rpJBCCvm7SMyN5yFfyDBgLRM46r9o/3Y+Yom9MY6PNwV0zI72gZ2BTVxg6ZrapotUeoUUUkghhfxlJTXy5Y7PgwxWcyEj2eNxvDEyVI1AxsrR7n5jPeXvhZyJzwP/h8ARoxH1+8i4Zj0EXNoWARLOc/dzc+XMGWW0QBvnfZER4NLMgGZmGyKD36ooHd11yf3ruftTU9c6Uyc5g+n6KLpzHhStfWscPxelKLgCATQ+Q6CQMxAlsCPDwe4oRc+wSt9oCuu0MLBKOIJniJjSMLyJ2DWOTQx9qyPHwvHuPiCMu/sjFqaDM2dqufcNR9ilyCj4L3d/KnEOt0RAhXkRwOd11IbHegUWkOiX5yHj0qzoO+zp7qOjzY4FdkKG+F+RY2BoVl49dbwcOU6/BRZFG/gRUfY0p6SZVjGzFYGP3f2H+N0F0U6/YmYLu/unZnY66oNdgfddIKfhyBC/LLCpi+EtK3OWcDakDvodUH8+0937h8PzFeQM+yfQw92/NYEAJ6B0OZ/FsfURaOJxL6UwWQN90xuAvl5KK9APARqWcvcfTQCh/miu+sAV6V6pLRZE7ErHewBi6rl2ewS+uz53vNx3rwq9uymK/0oEFn3ESyl8ZkKsN0OQc+AtBArbADEsTJIa08SMdQnqf0sh501L1N97oP491EsgFUNpbbaK8p9z97viXPaNG0SZSRtUGo93A3vEphFTCsV1EGiufzgK07ZM5/XF4v7hCLw1ARmiV0NMY51cKeUyppsBqL9V1Uk+I6RMe66K1u+BiF3rGQQiPQqBd+5C7IA9EbgsS021PFqvm7j70eXKrlJ9O6HUP4siBqjbrZSma1nkVPoc6BXOwXrfN3duGaR/dMtABmY2Es2RHV0MDuu4wEGYWYvU+VmhzHuBOTxSipV7pouFKvudAVDLzUFdUf97clratZZl5sZPF5ROYyUEfhmF0vu+ZWanIBaZjxBQohGwJnKMTASu5frkbWhMPwl0rU+HmIp6d0N9/AMEelse6bpXutjQMLNr0JzcH6Vp/mwyZa6GIuK/B+50925TWJe07Y6K57Vy99erXSZiVql2HVdHwQBbIR3gu7iuFwLB3Y/WtY8Q0PcspLdVXJ9jzbgOOdJeRyx/Q5CufZAnIKB66tkDfeMd3P3OmB9mQ8wkr3kpFfShCLiTT6u3DrBI+iwz2xLpeoe7gFVVk9ABJqC+vjhaAzuh+Sivo8yMWE0NpT6eyCpS7Tm3Ql03B35Auv2JLuBj5tA6Ce3PjnH3Yck9k+iUybk90DeYF6U//QmlFr7cFNAwEumpP6MgiQXROn5mPXWsepl/RTGzLXzSlI8ronG+l7sPTwzlsyBw1GDELpyleZsz2z9M5lnZfD8/2sde6u7HJedboPm8DRpj2Tpa37o73WUmuuaJaJ/9JQJQXRrn66Rym1IxAfwuRfrgT2i8tUJMRwfENTsglrklgF08Uvnlysnafw0EYngD6Yz3x/m+CLB3I5ozQfPpaSgV4Nn11DFbI75GqWgPTc41R8EkZ6M0lxvG8TmS/VZN5wwTyOnCqMfM6L3PyV2zItKxRyKw5zzIznOgC3hftT1YrSXf10wMaGOtlErsU2BDd3/XSgyGE0z2uOXRHunDbD8+o+b0Qv46Ymareol5eElkJ1kNuMHdd4/jqa4zO7KvrIfAkDdNyXxeg3ovjljOxsU++jCmY39fyN9LTL6HFmgt+wN43t3bxLlpWsMLKaSQQhqypHY2xJ56FQJM74XmyDStXj9kM9kgjl+G2HTb+gxKyVwAowoppJBCCvlLSm7zvCRKVfIR8H0smlsBtyGn02B3HxmGyPbIiLOHu3+QLyspfxu0SJ/jAsLMgwAo/0XAmVM90o6E4XNRoKlHKoXEoJkaOb+Met4EHODuv6abIiuBo1ohI9s1uTrVfHMdjrULEJtI5uQfg9IrfW1mJyDncQvkQGiGaOuzFDlzA10yw21S7iKu6NJprdeMePelkeH5QBS5fhVKeZaBoy5FoK87UWR2Z/SdBtVT5oqIHeAq5JwYG8cbAY2jr7ZEoJLWSCkc4EqzlpWR9vUVkDH70qhHBopoDWzh7o+b2RwolWRbBIr6yt3/HfdP0o7hWLsHpXAa4u7fmRhj/oO+/6bu/uFUN+h0iIk9pS+wtLv/w5TO5krkELk2uW4kMKe7bxy/50FG+PuAF9z90ck8Z3FEaT3a3c8IY/xjyGA3ASne1yGw4nfJfQsgNpBdkWF+xzi+PNAOAeb2d/evknv2Qc6Na5ETslW8476TM6DFHPc2AnpemBqe4/ymKC3ajbn7yn3vTtFm11IFMQEv7kbsO33SPp7Ub2XE2LMYSjv3iLvfUK6OZtYWMU99gxw2R6N++Ycpdcfh5IyS/8/eeYdZUSVt/AdKElHMAQPGMkfMCRUzGFfMiBEMC+aAAVEMKBIUc1oVc1p1zWvWzxzXVOq65pxzQPn+eKvnnunpe2fAGQTteh4fmb59654+fUKdqrfeqtKudO2dInTG302aj3FgHImCa+ckwbKid746Wg96okPm29HOeahfgvMNxPC1E3CKV0AdU0rwZm7gOw8WIzNbC72fV4EF3P2lWMfnRPMuC3w/i5gdvwUWdff3Ep2dXEDGlEmnuYFRRyCWkp/Q/nlbzPGpXYyXCwIPRvsOdffrq+gpsmWWRHt4D3e/x1QyMStr81zoHo6Y9G5pRFcrBLgZi8bJOsC76X2m4PzeKJj5BDXEzDZCY30AcL4HwGBCJbfWtITODPg5FgU9lkbP/gl6Xy+bWXfEjDATyhp/0CtgpPwc74TYI6dFe8X5yNb4ZGLaGjrXQjbBUNT374QdfGvoPyyZF5cj9sNVPcciWaB3bgTk3wN4CoGQP621HuT67u8IiLmfu5/dEjpbQN8KaAz9Ctzj7juYSkRnpWD3jd+bH/gZjYPTvcJU0io3J1qhRI2rkHPvaA/woZndiWztzTyYIBtp5whgb3c/zwRwOAbZ4zMQpfLc/fS4vz8aDw8jkN4jOd3ZOWVFBKa+r1p/TYjU2i9MwPNjEFBqF6+fBLKYu79UpY35wHyz7kmxFz6D+vFexMCY2lg1z2cF+rZEtuhwVGZxdjQueyHmvpNMiQw9EDjmbVTu7pb0uVta5+QoZnYgsCuwkcc5Pa4vjpIWdvcKa1J2jmqH5uEZLkbEVF/RXrYBApCdB4yLMTYNAld1Q336DhQzklR5P82uM67vh0A1WyHWtZM9AOsFe0vNdxx9eAsCZJ7nSvCYDTGTfo/ALVmJqm0QiPN4r8JuZMXgqCM8EprM7Dh0pm6LSjq+D1zk7qMaeeZ0TX8Q2A5ljmeAm2nQ+ew04H/uvtiktlNNTNCXoec6AtkbGYA265fe6Iw5TbT/FK8BCJscxcxWQuP6dpcfaC+UULBjPOMp6F1dhtahd8NeLmT4mVLWoVKaT0zMuwMQePzyOCPfis4Ti6Hz2EWxpteVxjOBo25ALLVL5O2DFmpranNtgM7ihwFjvQY4qoqucqz/xcUqAIDlEKPtzMj2vTj9/A9tZCmllFLKJJTcPjsh4KgXUOxldZ9EoCgogVGllFJKKaVM5mIqPXc0CnT+D7FhDHdlsmWsF9OhYNYvKIh8rOeYNXI6p0fOtq/cfUA4Eh9FG/a9CHD1NAJHNcreEA7b6RGw6ivkfDwYuCo2/ak9yh9FAPt4FMReHHh1Uh2YTDT41yJQ0NUoA3AHxIRyJsom/83MlkeZ352BNzzAJ6byeT8n+rKAxiYo6L6sV8rQNaU9k+ywaCojMAxYC4EDdkfBh3PQe/7ExPx1LCqt8QFykmQBqGrsZT0QI9CG7l61lIUJCDQbMJW7/yeu5cfRysiJtAfKEP84rq+NxsxyKPj9UF5/I21cATEjbZW8y5vR+Nsigufm7l6t/c0tMWe2osLIsChyRJ3nSakwMzsGMXWsBbyHmBtOQEwoWWZiCmaZOvf9adB7vxQ57B9EgdDdzCxjllkQAX/29qQ8TziH27v7yPg7AyB8ANzt7n3ieuYgb4OoYtdDDA/fo7Uqy6Su1hetUAD9BgTA3Mndn0w+b4Oc8muhElwf1NDTGbHe/cfdezfVaVcU6E0ONCugdXELj0zxKt9ph4LIrb0CBq0WFPkHWnv+h/r938lnKehojLsPiOv13u2UorOgn1ZEDuNa83Fhd381nMZzeFIGK7dmtEJj5gXgB8QAmGXXt3GBbmZEwImu8d99wL88KZk4JTh2TYCcE1CQbJAJTHk2AgCl4/JhlLm+bfzdBc3/c4HvPcqXxmeLIbshY3PbHAEmb2qOPsmtTfsiu+MxNJYytpTsPS2EnAJ9PQETJLrSOTk/yk79GpVyuQvZQDOi9SwDRbVBYJ7t4zefLNJX8FsboODqSYjhKgOMtEPMHfuhdaoqMCqCsfshdqWh7l5YgqyR56wHuG4uncAHyd9zof67BbF1VQML4wAAIABJREFUZMDPPdDc/gDYwQVEaoMC4ul8LgwQhrNnauQAOhUBr47K9vW4Z9rGniFxuh+JmDu3zfrEzK5EAImsRGYdG5iZrZfOi0Z+oysCAh+EgPDHNNae+PcABN5sUJ6tuXU2p75YV89GQIa3gZXc/fvUxo05NicCKnzs7i/G9bpSkblxMCMCt472AL6bSpgugUpiPmdm3YA3PQDVtdppAslchmzSJxA70OnIuTjAK0DZPdH4ehoxk31UrV+aQ3JtXhPZZF8Az7pKCmMCSh+N1tOdEcinOwKOdXf3BxJ9nb0+KH0Jd3+hBdrdBrEK7oWAamu6u+fe+eoIaLYaem+vJs+a2XmtEIPMPxEod3evMDzOgUrB7QlsXG3+WQ4M1pw6f28/TQoxJYB0cPdnzGyhxL6ZBdnB06PA4pNxvRUKNj4MnO3uIwp0puNyFXRmWgOB4e5FbM8fmUAgj6BkoOvz83hS6iz4bFF0nmyLADbnJZ8thlhzv6vSrdl966FAf09XeU3M7CYETtgq1qE6xkfLsT9W0dkYc9RSCHD4I2KCeyOuNwbi6opA1gehc/ixaR+Zzm97AD95gG4npZgSaZYD1kYAxcOBf3hSXjjumwMlH/zkNZKUJkeJubUFSug7Ce0zo5APa4xXWM9PR4lj1yAf27u1xnIpfy0xJRJdimyBk9z9GhP4cTYEOtqSALwWfLcdAskWMmo2czvTNX0exJh3P2J+Ow0lHeTBUU32GZTy55dG9vClgYeQz+hgrwCIy7WylFJK+VNL+L1GAHciptyXk8+mRvb0JciH14f64KgdkC+jLSpFPclAUVACo0oppZRSSpnMJHdoXQ85Sc9Fgd8dEWX3vxDDy/cmMMlaCIzwLmIq+Ueqq+hAYmabIyfeE+gQ8yjKJv/KzIai4NuzyPFZyN5Q0N65ESPEI8jJfSgCR42z+sxRKwFdaultCTHR3q+OAmvvxbXbEQX69u7+VI3v1iopcCB61nm8iewNuX5bBNFYNxuFdoHz42LgHlQa51tTaYZ+BJMGyoLM2BZmAn72JlD2m1iCzkfghY/y90ag5UPPlVEruG8eFBTvANzh7hvl7u+OQAFLARu4+8NNPWib2aYo4DKnu39oDRlFFkcO/+NqjYGWEDM7Bzm+XwXW8grDSzZ3l0AMZ2ujUlMzRDuPz+lZDo2hD+PvPeLvW7LAl5ntj4J02yBwxc+mskM9ULbvNu5+Z5X1IgtkHY3YEN5BgYcM5JaVxZoaUa13RMHUe7PvkwTPTeVn2qdBDhOb28kowHmiu98Xzrn1qZQ9azQ4YGYHo+Dekl7AUFFwfzpXtgRey54rrm2G1uGsBFGe2WGd6OtX8vqKfguVgPwXAqOsh9b2IVlfxX1zIqfkYcDFXqN00hSkcxm0Ry2PgIq15uMJaJw3FcjSGwXNZ0HjOGOyyUA3WeC1E/ClV4AuU0TwJhMTG9TuqP/WRyUNz/UK8HhalLHZKu77GNgIObe39wi4x3zMDvALIbDPusjW2N7dr5zI9lUFGMbfByOg530oEJiBO7P3VFjmLjdHt0UButvQOvFV6B2GGKf6uEpwzQxsjMbFEe4+poq+NRCYahq0T36PMrqGooDlhQhQ/W300SHR9sJSsKFza2RDtUdBhYuasl/l2jUA2Xb7xDxpDp3DgQUQOOKj2GOWRgH37d39JqsPZD8UlQXaxt1vLLIpC2yZjsCPXgHSdELlGk9BZYqPdPdP43m2RqV6GwWUm9lYYBF37xZ/Z+tGT1e5xHUQ8PGq3L5SDchTx5AUf8+L5tN+wGB3P66Rvvw7CqCmgKNm1dlCbczeYVbqdlcE2OnnSrio95t53QTbQaInY5ybHwXXDnX3C0ygqMWprOtzo+SLi7xhibkBaC3qH8/dEYGiPkOl3bLyeQ8g0Mj22fiK6/sh0Gc9JteWFBOb1RkokD4XYqEd4e5nxueLI0DPNugstXB8fnSiY0nkHH0o5tduCAi2ibs/+zvaVi1JoC1iUjserXMruxh1UnDU2kBnd78h/t4HlW98zyoAkWmQzXq9K7kmXTMWRSyNLyAWnJ8K7Mlm1zmliDVkUb4OncsyVuLdEdPqk2h/e8DMOgObor1sG3e/vYb+vog58wI0Jo9BzvjZ0Dy/Dq0hnVCCRVPW3mbRWWXf7YiSk36MM8TiobMtlaSOnmj/2D21P6v8xi7Rzmnc/ccC+3IZVDL2VE/YWRrbS60R5qhqzzqx+07y/XS8tFhwuRH7ug3q022Q7XVRsiYvA3zu9ZnPpjS7elq0D54al45AwLzxuXVoDApeXYVYxgqZplvyPZUy+UliY3ZDALsfEHguO4cui2yBLQjmqLi+PbCU1y9BOqnK6u6M7IB7UWLeggiUPAi41ivgqL1pwvm+lL+GFJz3ZkQJFPcCP7jiEt3QGf81xORbgqNKKaWUP7WEnXwr8hOC1r+3UfzgTpQUNi7WxwvR2Wd7VP1jXPjKtkHJ629M6va3bvyWUkoppZRSSpl0khw45kTBzTOR8+1C5By8I/4/ysymcfdHXbTl6wO7egUU1TrTlejsFQ5O3P2f4VxdFQUBxwBZMOlH5DRfBmX815MIjhS1/R0XG8CKCCA1DG3yhEOxpwlE9KQHKMqS8j3NKWkbw6kMYhb43iugqFtR4GZrd3/KzHqY2QFVni1jvSh69kdRUHXpprYteScHIYf/rE16sCZKon9dlOnZEWU6fhef/4jYog5CwJwhpvJpuPtnXgFFtSpy0iT98A4qx7K7mXXMAmZxz3QoCLNDBGTS9uV1foocMC8Bi0QgpG58uEqgHIac0Q+a2ew12oSZzWEC6QA4Yls6yMzuQE7yjGGiHQqeZ9m+k0TMrFUE/75D2QOzAFeYQGl14gIy7Iay5UegjOys/Ffr+H9nBJp8yszam5jkzgEWiPeXsZwtBXR0yc/x+yAncE93vzN+s4HjIntfrozmwxHjwG7hOCOM+qndfZy7/8vdr/LqoKjNUcmm583sonAOEs7CkwADbjWzxxDI42TkpM7KFBWuP8lacgMC4OxuZlNVuz/TlbRrICrjMk+yZgD8FzkMDzSzGbzCcEAE87YG9jOBDQv7L+nH8Wisb+ru2yGAwhLA4AhIZve9j4KuY1BQtapMCToj4Hsj2lPeQ+xlteZjZ+RcrtemGnvP1WiOZO8pKxP0S4zL8e7+o7t/4hVQVOHaNjlK9tzuvicKmK6LHJE3JUGb1i72nYPRHnwXcDdihrncExYSd/8t1vixCKh2S9w30JsBFGVmG5nZKOBOMzvaBFrB3U9Bc7w72nOWiusZeO3r7FlS3YneHRG44noEoP0q0TsE2TJHmgCfY9HacbIHKCrpx0xf33j2k1HQ+SEEQh2H7JfDEcX1jdGfO6Hg5fBUX4F8AawCLIucxjXHb0H/7YsALbd5gF2bQec1qBzmVwgcmK1T4xAr0AKhc1w4eAjb8ltyZbfSNS7RvxPqyweAW8zstPj8G+QEOggB8K4xszPR+3nDc0H03D7eLvnoM2DW2ONuRuV1e7lAUdOijPw14lnqxHOgKDPbxAQwfMzMTjax/uDubyEQ8ig0Ngfl+zNntw2nAmBqVp3ABy3QxtnMbI7kHX6H1opL0fs9zczax1ycKq83ZHngADObLsbe34F74u83kPNvmJndj4BAm3uFuW1DVBqtXslpM9s7nqe/Vxiy2qE17D2vBOBvQ6X9+rj7i2a2gikxBHcf5RUGqarz4fdIblzOigKIx6Iz1LoIQDzEBEDHBdw6CAEenkHv4ej4fra+tUWg4xNjvpyHQDF1oK+JaWcyBhY0s9XMbCUz6xq24JVoXesEPGpmM4Y92Dbafa9XQFGro3XwejObPWyf1i42p0+AReI76ZrxMrK5u5BjlwudqzW3zilBkvGTvZvWiGX5VWBXUykmYg6chM6mt5jZv4GbkY11iudAUblx2RUBiB4BHnEBf7ZHZ99hKPh9A5rvXVF/NthvW0JnPFvRvnsase+aWYeYN9sgH8Qp8dmlwGVeH5SftjE9N72B7IjdTIlPSxIMu2Gj9yTYjYraVk1inE7lYqFaE43TIWa2fpX78wDiCdojknX611RnrTZOrOTauVjYb5uaAt+EzbwHAgSdCOxsZgubEkkeRmt9+uxThF2dSdjN/0P241QI8Dd9fJauQ/ui83oftM91zOvK9eWSJr/b0iZGxVL+ZBLrUDZXn0RjowM6h2S+jWcQCOkG4AIzO8mUzHExOR/rpJg7prLUZ6Ezz8FoPVsP+ZyHAVubzs3vxn2N+gxK+WtIsrb1QSCAO1AFhseBfc1stpgH3VHS1VBT+fcW279KKaWUUiYDaY9iVK+hs91VyDYYjpJ6bjezw+Jaf+BLFKtZzpQw8Q1wgf8BoCgoGaNKKaWUUkqZDCUcZnegQNC57n6sVRgVpkUOtA0RoOZAj9InNfS1QsGi14EXPWHjMZWhOBuY393fDMfhkXHvbZ4rS5Fz+qyP2Ci6IiDCwR6MSeGofDx+9yJkJJwR7R058b0zYRLBuiUQ+8MxqHTI2uiwvwxymD4bTqtByKExyAtYK3J6O6MM1x9N4JD/IdBKyqpQj1kmvpfP5h+BgtFnNuNjZ++8A+r3aYEX3H2p+CzNgGyPHJ6jkcOvnwd1fJU2t0XA8l8TgMG9yIm/H3Cziz2gE8qOOwXY1yNzLq8v9zvTI6f1SBQY+pu7f2b1yzH1AGZI9RW0cWtU4usqNH9+NrNLEHjo09D7gAm4tTmaT0e4+1kT2s8TIkXPHf2fgUFOB55H5WA+Te7pFAZz+r20T1qhbPJTgJkQqKQvokT/KfnOzijrdyBiW1kHOeu2dPeH83obeZbBwGD0rkaGA63RjLBwpoxGTERPIzBLW+CsBGywHgrArgE8BTzh7jdXa1+Vfr0Kze8l4/0X3ZOfiyMRAOhjxKx1oUcpUTO7FAXej0flDj+JNWAz1O8HeEH5rxr9kP72NmhtLGJkmsYrJWUa69vJRifUc6BNh4AsdyPGjJ9MwJWdmID5mGvLEihw0Q6NjwzIuQ0KtL0abfx3U55zSpBYe8cjoN5nCIg7DJWu+jD6vXUE8FZErAjfIzaSS0NH0TwYhdbL11EZu/+rdm8T29kXjZPHUfBxecJJ4O5D456DEMviY8DREWxsTO9iiPnvClSqIiv5VsfAYGY7xO+tghgSn/AoT2ENAZrzh77zEJhnWmQXTI/K790WfTk/yqj+HpWgy5jhiso6QoVRZxWUNfs+Yrq4O7uvCWvRKLQ2XtjMOt9FzptBKND8owlkfB8CTPXzYKqJ/uoSfXNa3m7L6V8bsYacgcZndwSKvtHdt4l7OqF96gQ07y9x99GprpzO9RA45j4XQ6Sh4Hwr5FDayN1fMYGntkM23iHufjlVJPbAEaik7AvoPb8AnOnuV8Q98yIWvAPROBuU07EICtYf7e5nNrdOBJb+vfo2RMCzrI3bh+6Z0Bg4FIEcMlttFLJBbkLMsQ3OFDEeulNZy+9Fe+aRqGTur6YSlKegslW9XWW1Zkfv/dRoT1aatxUaixcBt3skdcRnc6AxeYW7H2MNWV/mQaCK24FL83Z2S4qpdPYPyJ48yiuJFssDRyG75Th3H5V8J12jilhVL0dgjfPcvV9c/117VozLY1FSRAc05wa5+2WmQH9v1IdfAmu4++dV1rSBaKx9gmzFD0zAuYOQDTjM3Yck35kGsX19h1hYfkmfoyV0Tu4SY6Mj8LSLsXdnxJp8gikJ5DQEMDrbBUbFzDZGJQ3XRUHp+5P5X2QHr4PAbtuiM+XH+TFkAvQtjvb7dYBb3H37Gu1uFp25db3avjtd6LjLxVy3MFr7Osez15U+pv4+viWy2y9190vi2t1UWHY3d/fHTL6TLdCaNchz7HJNnW9WYY5aFtk4/wPW9SrsQfGd371HTAox+UuOQX6bnxFIqJ9H0kzYoOeg89FraM0a6e5HTuq2NpfEuvMb2rMWR4C3weh9negVJu3Ub3IBsi2rMhjHOz8Frb1tECjmJA+W1FL+XGJmPYH/uPtbJlb8sejMMCyzSU3savugvfcbYJTXYJ5tgTZmdvbh6HyxhofvJj7vghI9vwOOo8L4X1fy+s9wli7l94mZZaVHh6JEra+Qb6wbiiec5PLdLofO+O+gEtJvV1FZSimllDJFSvigZoxz7HQo8Whb4Bl33zLOPFsCGyDf5I/Ih/s6iqG+gIgtniz8gUkkJTCqlFJKKaWUyU5M2TxHASshYMeBcT0FR41ATr7bUTCz0cBAOL3OIkqmxLVVUDbm/1BJtHlQoGPfJJha5ITdGQEc7kaHoo2BN4Ht3P1/cc9MiGVhXgI17e4nTWy/NEWsYcm+h5Gj8TwUdD8TBQKmQge1/5qYhTKH4CHuflUjv/E39OwfAs8hqsx94zfOqnb4qxb8dPcLftdD1/itcLb+G7FBDATOiABrCqzpEJ995+6n12jzlsDfUAbuS8C/3f08M5sBMQUshoJZT6BA8sbIsXhCFX0LADOjQOcr7v5lBEA2RyCh5xCb12dVxmDRtT5ojJ8V7bs9+exG5Cy/B4FyFkVMayO8wsLUIk6f3HMviQLOH6Gybd+GMd0Ljavnga2Q42wrNB/XdbGx1fqNU9BY/xpYwd1fy82HBZDzojeas21QOYATJ/KZjkHB1uHA6bUCA3F/DxQEHe3uw02lrt5CB4RWyME+osb3G5REMrNeKMh/LmLP+SyuL4UCzUPc/dQCXdWACL/Gv8eiAM2NyXfuQKU4HQXou6Ig6DDPlTZsiuTa0ButTc8BJ3gAHqZ0naZMwXVRRuoeaVBgYuejVUouTouAUU+icXVOjI8MHPUSWn/unJjnnhykyvN3iMDheYhN7mQEXHk/Pi8EN1ZZL1uh4PksiKXhPwjg/Fi132+kvSsg0ONw4B8uAOHC6F3cBezilXKfh6P1aFMPAGIjujdCoKjNXQyCVZ8tDWJV+XwlBJzcDI3LDNwwFwKHzIz29Lu8GCRStUxx7r610d74GAL73Z9+v+DfDUqfNadOVLLoUVQ++BAEPPk++vbm+G+Uu9+f7EmnAzu6+61V2jMLlQD+IBfYZma0nh6LSmP1Tu6fEZVRrTpeTeC6EYjl8jpXidcOiFVyAAKG7Yr20RUR6+FxefsyZ+dsEM8/3N1PDfv0PQRyeQ+VPrk67u2KGCpfcvfTcjo7otLBrzeHzgj0t0csYAs0g75jEdj9KBdT1DrovV6AbIruyFY7MN7Nl8mZYis0tnYsOlOYQFQboP2xNXrfw3P37IrmzuJobZ8ZMUWd6ZVyYXXzB2jnAugtA0yfjOexCGjxBgrA93L3/4S9vjNiOvi7u9+V/Ha+zG2z2nMmJt//Q+ekR1Ff1oF0TGCJwcj5OawReyYtl/wAcpZ+iUqPZOeziSqrE4GryxHz0B0I3LIbsv22cvcboh97o71yHDCv1wfS19lbaM7th848GZBpQbSuZOWDBiEm0ZWR/b2Xu1+ca1ez65zcJeb34ehZd0XPMwatZee5QDaLIdt/QXSGPDn5fr70WtF6uRBwPypr87i7r1m0HyT/nw6tHVsD63uc2SeBzsb23ZkQoDsDR02NknDqWLZy+/jO0ZcXIvBUxkQ9AwJwroDWvf8iYOXWaG3N7MujEGvhZekzFbzG/HNk4KgVgeW9RlKNCaR6Eb9z32lpCdv+AgS2H4HAxufFx5tna1LcOwCt6c95+Esmdq1qQrtqgr6bS2fyWQe0t2SJP8d7hbVwNeBVd/8krys3N5ZGvrHRyP+yAZr7b6DkwKcmtu2lTH5iAmo/iWy3w2KPWwHtwXlw1AzIJuroSRJCS8ydGu0dhHx+K7oY61L/8u7In/IUAkfd3Jw2VClTroTd1hHZ/z+h5Jxvks+vRsmt23slIWkFoFutPbKUUkopZUqUOPfcjWzlC11A4umRf20f5PfcLq53RNVJeqHYwarIlwAwX7YX/1FSAqNKKaWUUkqZbMTMpvdgKjKzVRFQpwcKkp0X19t6pQzW+Qj8cUFOT2HQzswMuBYBV/bwCmDiMBRoWABlFY/2yFqt0s6NkaPvFBfAYWkEQpgGZRH2dPfX496OKEDyk0dQvCWcAGa2tddnJVoMlQ5bGzjIK4wipwL7o+y9oxA4pAdyAAyp9dxZ2xHldHcUTF4EGTZzUWFn+h8CfLyCAsJjgd+SAN0A5HCrGvycUGnE0TcXCqL+jPriuuxZkjalAJoiR2QfZPhdB/yCnKLrIUDMwHBgj0GO6CxodIMnWb45h3Yf1P8zx6WvUdDjVhP6fksUkH0GGZV1DEo1+mA5lIl8LnCqFzOKDEaliJZEQbt7vEYWdnNLPPeJiJXkB8S6MNArmQYZY9Y3CNT3NwRmO6SGzqmJElIo63rD0L+aC/iXPn8XxDTTFXCvMI5MbADuSBT8Phc5fL+rcl97NMemd/c9TVnyjyOWsgsRu9esKJibsYg0YFzL6dwYZeMegoLKbZFD/yEXw8h9qPxUb6qUX7H6oIH30VwdgthMMmd4h2QsHQ6shUA8/wfc6jUApI1Jzpn+N7SuvobAIu/W/PJkrDMcaJ0RcHcB9B4sHMZpfw5GgbKlqDIfc7+9Cgryj0SO2x/RO58FlSU4Kva+rdD++A6wiTcC2pscJffc88XlXz0B3lp9cNRId//IBGDdGPXFB9V0FvzeGqhk3Eton3g0+WwO4HPPsQkW6OiLgkqbJTbAtSjQnZVLnCNrl5kt5wVsUblnX9bdnzGzfijQNL+7v28NwU/LAZ+6+9vVnjP27znQuPgKeNDdN43PsmDnnGiMzQAcgJijGjx3ro2bonVmQZQFdgkVRp510Dx4EgVNHqjSd/XA0s2tEzFq/GxiSHgUlSU7DJVZ/M7MtkOBnW/i935A+/mJXgX4aSpl9n8IHH65JywXJgBUP7TuX+vu29bqw+TaRqg0w+BocxqEnAk5lQajtX8aBOa7KgskxzteJhtX8XcHtE6Md/f+YR8+htaxaxF45C1kA2brT12WfPy9XHPqbG59STuXQUCbNxEz1NII3DAonHOdQ2cPZAtf5+5fmMBR5wF35+3SnK24JgLA/4rG4HYucHdqQy6E1qAlEfvnc+5+T15Xon8nZA++iABuT8d55XwEutvV3f9hYp/aAgEvj/YAPZvKOH+X6CtcV5pDTMDbfdC+tZ6LjSa1sZZBmfQbA8t6IwwhsVcui+zmYwlbzivl7JoMAghdbdH8+QKxf30Zn92LklS29EpAti1ivmqVP0fG5ymQ6e9ovHyEWB7fNbPF0RqyJWJd+R6B3Ed5khDR0jond4k5dwUCzE2H9tcR8VnWH4ui/W1hdK7Kxnaj7z/68mB0jp8DJUb8t8iGtop/YFV0bt/I3e9oSZ2ha06avu8eiGzrqvZG7D03RJ+d5hXG0qw/2yAwnUWf3o3K714c9y2E1tU50NkzOxdPEDiqoA9S0GcHZKv+rjW9pcUEXr8AAdKOjbH4GArqzIQSGzZx99uS76TrfQNbvZnale47c6L1AK+UF54Ynandti7K2J8XgefORe8DBMo8BjEdXoHKQl2JkrWqjpWwQzugdfUQr/ie9kLj+gNgf/+D2QFKaT6JuX4bMJO7r5Bc74bGzvfIjm5Qpry550xTJM6I15L4lpPPtkEJb53Rer2e5xjLS/nrSN5eN/lnn0Ng6T5xra2rTDNm9jICj25WbY+cxI9QSimllNLsYorZPIsSHLZyMepmtvB0yP/SD/nINi/weyyEkvvec/fXJnHzG0gJjCqllFJKKWWykDio7oPYGrJgycooSL8CcrCcH9czcFRK7V3koCkKQByKnPZLufvLyfXF0EH4xzRYU/D9TigL+Wd339+U7fx/yBF/O2ITeQc5jxrUyS3S+XvFzM4FdkeB99esEjz/BZVy6Z87uJ2AACdzIcro9xC7xah8G5volO6Iyjwsh5gLVkRgsLlRaYRTk3sHoiD2Pvng0+94/npBZGRodUGOmi/d/WtTJuoj8byHJo69muCTuGcxxAJyNspw/sLECPEiYvtZ3yul1LJg5TdJf+cP1lui/joJlRZoi7KnexLO19CzGXJUvoZAPj820s6dQufGXp+Zpq7EVHKtrvRX1kYUHPo17+Cu9ZuNSe7drATcggBk96PyMlsgQM7W7v5ezK+V0Dhqi4LNZxToKprvbVHm/6bRD52B1V3MFlnwYVbPMU/93jlpZicB73sjGc7hMO6CwGD3o/EzMMbT1ihY8CnKuji2EV3bIIdjxn6wOmK72AIFni5E829rYC13f7BAx76ILWEPFxDhdAQW6J0FWU2g0YURSGCYByilIBBbtQ8bG0e597oDyiQ9t9r9U5jOFdFY7I4y44+J6+28PjtFHVgq/i7ae+ZBwdLVUaZiFvCdBY2dxYABXil/uF20sVnW2T9KzGxHAlSI5vfBqExmBi7LwFH/RCUED0GggaE5Pen764bArePd/ZbknrVQsPFFFMR5FgFRDkJsT6800tbBwN7uPlv8nZXA6unuz5sy7tdF+8gHyfeqsVz1QWCB7dHe9QgCih6cfi+cEGciMPIJja1nZrYZAvm2QkHcrFRMpm8OxJwzL7C0F7BfJLp2Rnvj7dHGZVEw8QrgGHf/Kvr1NtSvh3uUeEx0bI9Amdla1BI6U/BGBo5aAI2Xy13MUSsh5rCloi8f9trlmxZDzp/tom17IrtrfOyhMyL2ohNRUHojakjs1WehNXc7j1LOcb1VYpe1R/vkFwiwl9kfrZEtMQQFHy9JdHdHActHUPD+ybjnCzM7AI2zlxFjS1bCMPvuvs2ps7n1Jd+f2gV+Wix0vIb2rotd7FGZbdMBsRn0QMwBN8RvNHamWAUBmH9A4OrhCCS1Y9iZNW2JKmNoGwTIOwYxWL0W16ci9g00/l9GLFUzIvaprOTYbAhI86y7X2xirBqG1pzHqrWlMam1H5qAt8ehObmqNwSgdwNmS9fWvM54Bx08SjXFtc3Pg9ACAAAgAElEQVRC71SIDS7Lut8EWNADNN5Iu6dD4NYzPYBEZvYvBJDbJNbh9YDPXAC0tE31ypTl247GykBUbngrF5BpdrRO9kRgvDc9B7iv1pe/R2dj/TC5iZn1R3vUd4gt60oXK1JrAK+Ao0agd3Vmfg8PPbX6cl80j94HNowzReEZz8RkdDE6O/+rpXTmxldz7rsZ49hG7u65Nqd7RRuUsPRlOs7j93qgtWMJxJJ9ba0+rtGWItagLtFXa6Ez8USt6ZNCTGDO3RGDZ7to6y1Af5RocxNi/d7SExbdnI702degUpruauBlDzbfJrZnLnSmzN7hjijxZzZkX1yMSgE/O+FPW/cbfVHy1Ytoz10QATSPQ/6J35BtNBQlvU2HkgHTEp/LAi96xdexNPKHjUN7al+r73vqj2zpd5BP74mJbX8pk4ckNtcqiB1sYNha2RrTDbHyg0qMTRLGw/waVnDmvhzYBJ2t7nL5lNuhNbUzOgc+gs59l1DKX0ri7PZdNmZMgPVPEcjvXpRAsyWxrybzYCyKWSzJFFbyuJRSSimlKWIVUNQbwE6u5PbsHJD6JQ+hAo7a0hWHqbMJJydp/Uc3oJRSSimllFJCxiF2o2PCSYWLseFYxKwyPBz+xAG2dRrAAHqb6BuJa5sBz5jZRmY2d/I7l6CN/HAzaxffxd1fcvf/8wooqlXm0E50dnVlDj0JXGbK3r8SUdb/HYFn7kBBjH+ZshDrSXM7tE3sJX8DNnCBouZGjq7HUSB5wfjd7NCPi9VgE5QpuAEyVmqCosxsPjNbzsyWNLHuZL/f3gWQeBr42sUeM8Dd10E01VnWb2tT0HEkcsA2W7A+aWNf4FaUZT8CvaeDzWwhd38TBRI7AsebgCjkndsmkEFeZkOO3fs9WHRQIOtbRJn8rgWjibv/4O6fJY7A1EHd2sRKsDtybI5y93tc5e46ItaJdzI9yDE7AJXIqgqKSsbo0iig9Er2e1n/hDG6WBz2QYG97PszRRuzA/xyab/+HknejcVvXolKhd3r7vuj8TAHcF040r9xBbjXAbbwCiiqdaKrHhDOzLY1AYNmcfffIph2OCrL8pCZzRfP3xv4wMwWMgUdM/ldz+nuh3n9Uj6tqtz3tLvfDBhiChuLssdBjulvkeOlsBRlon8moA8Cjz0cuh+K/uyFGAg2RsF9gN3MrG1uLZsHgah29wANIBaoqYC2Zra+mT2GQCgLoTE7MnmWesxYRetaNpcaG0dZQCX+fZkH2KioHydXnTXe+eMoEPAwsKeZ7RPXfzIxnWX3/ZD7Xj54viIKkPYHPvEKKKqNi1FmDzSGNkt0XOEVMHFh+yZHyY3T7sAZKFBzImLVugg4wMRCgbvvgViBlkHgwIM8AqqprmTN2Bnt1VcB15vZvYmu+1Ep08VQAPMa5NS/zxNQVK6NnZLmfwhMb2YrmoLxS6ISWM+bgACbIPugnqR7bqJ3BhS0PAPt6W8j8FcfMzsw+56p/OpmCHD1htcH4VYblzciAGkr4BATCD3T19oF2toIsTfVCs4uhQJpx6GSxju6++JofVsI6Bj67kdB/uURI0ZenkCggAtaSGdP4C0ToDnb91dGLAknAzuYwJ6PIUfO+u6+r1cBRZnAKLj7S/H9sYghYcfYg7Ig8efIHhmKbJN8/+XfT9to1yceoKj4nfHJGOni7j+6+/3u/rxXQFGZrfEKsnEPNYGlMx33uRgvuqG14hwq+8945OifH5WIyEtz62z2Noa982voeQkBSOdHjEtds36Md/kDCojdgQB425uA1YWsobHGG1rHW7sADVehvbY7MNbMOiXvaH0zmz/fxoJ1fVYqpa5P9wQU5e6/usAw3eOefyFQ+Q5eAUVlQKmVgcFmdj4ab8cgm3yiJGdjLWpmPcxsXVNwCFdiwSBkYz1sZgu4ytC0ic+f9ABFZXZoXM909o7nedzMRpqCp9m6dBR6Dyea2YAYH9cDdftl2s6C5n8b/80V99yMbKEMnDonmqtrxf6Z7vtTJW1cwMy6xf9njeujEZh8VuDamIsfuvtj7n6Uu1/gDUFRbZpbZ9Pe4h8rBe/mbTSOH0csNFub2IF+A7L18mU0p95CCTsNdHrxmXSuuD4G+Qw6Af80sznD9p8qp6cd2ltfIQFFNZdOd0/LL2V2eDa+ezKB+27OLpgr/rksYmL2uJ6e936z8D+4+y/u/kXyjDsgIBSus9ZJCJg0xuRPqGfrVpPc512y78Vn/dG6sEjsUxO777SoJPb8swiY9QHa/19CjKPjXIkGd6MkqBti7jbom+TZ+6C9oR+yyW4EjjaduZrSpoMQG2y3+HsjtD/cjgCvF6F5dLoJ4Dkxz70qmoPHI5t0BWRHfYHsmY3j2U9A5b3HIKD2kPh+azM7Ip5z+kT1h8i38R06T+Z9T2eH/gWA82P/K2UKlGTujIt/vwk4GvMArcKOeRKx7s2MQH2TpG3JfOxpZhcDT5jZZWa2R9x2CNqLrgVGxrwbjNiiXkW+mEIG8FL+3BJ27lB0RibGzN2ohPg3aA9bC62J46FuHrRDVRheIc4SpZRSSil/Jgmf53Mo8ayvCxTVOs4NbYDupuT7r5HNeg4qm3d92AQZc/tkJSVjVCmllFJKKX+4ZIfYcABdi9hUBnml3MGqyAm/DmKUOiP3/Q2Rg6abCxyUZXlmDsDnkTPpKldW98nx2SqusjONOptNwdT9UWmXt1yB7aykxTZx+McU+N4ZOQqPcPd//O4Oqt2uAahvVkYBlGOQk2tq5GzfAgFwDor7qyK188Gg5HoflN0/Xfz3PCrVdnlyz66I6WAOTzLA83qthUp8mAKfVyGnxv3RxtMRYOBoBMb5PpyTz6JsyJXc/b+JjuOQM/IAr88mtgui2W8bh9+MBaSXqzTS0vEbR3iOUaQgwNYOOZBGuPspce0WFEDPAjfro9IrH1kNBoOCv7dAwfyd3P2yxHE1PhyQY4CbPUqfxXcWRu/2Jne/wsz2RIHCVfx3sA3k+mAZFKT7FjFz9LcKg1NaTuQ9NJfey32/2rjcGYF1WqNxeSsw3N3vS/rjeGC++Gx9FHxMyx2lY3NVFPx4xnOsUk18zrr+jr8XQPOwvddn8NoAMZ2s4+73mQKy+yIH8+j8/Mn9xt9QFvIaaI18PK7nA/fTorIlfVGgZVFP2EdiTHRB7G6/uvtN0V/XoGDntwg0sDN6LwfHf0t6E8o4mFjRdkFAlXETGswreueTq06o985XQkH4TogN7i13/zGun4LKBQ139zFxf5MCnRH0OhsB1F5FgYs34rN8puIyqHTrFBFArSYmwNrOqD8PdrFLzIyAZgcjJ/YYr4DE5kVjuY49xxuWIlweBdnPQMDZJVEw831UFvG9uG9JtH98j9bMs+J6/n33Qs7TO939mnAKPIH2hw/Re3reBF76GxoDhzZmF8RcbIPG5eHJu14G2RyrIVDHa4j5agvEFHVCoiN97gUQuHcWxJT0c4yZrKTE3SgQ+Gjad4muaoxWW8cz9XL3/8S16xAIuae7P2sCEX0RzpAuBet7/rdaQuf2yB76DDHcfBbX07J6GXNUPZBiwTP3QuCNIV4BfyyCGB22RUHtrIRuttbWZatXWYf6ouSAm9H76ITGY57dcCG0V5zh7q/WaOMaaJxMj8ZFysq0LWJLWt5VorEdYr36DLFQfDkpdDaXvpgTn3uFzbAvGhs3mpkhlpKfUdmUjE0vWxs6IDaQ67M5XkvM7CH0njaMdb0TOhOMRHPoJMAQcL5BmZYCfQsie3RXd7+6sd/PfTdNYlgsnmN+1D87xfXfxfoZNtaJyMbqjGyDYe4+Mj7fDDk+pwW6u9g5G2Ne/BsCm96G+nIjBPw8xpUkkM2xQWgv+wGdN47P6UnXtxUQyOI/ofN8BIz7EgHve7j7KzHfd0esEAO9wtizFmKHy2ztPiiA3xmBFR9G56jrrD7L03uIYfP9gjWn2XVOiRJ7zDse7DCmBKZrERBjf1RmNGMoXRTtaZlTvZrOojPpKHe/NDlTZGW7tsrvD6FjPg/wUdhXO7aAziVROfQx7j4guW9TBHKeoH035uNWCHSzKTrT9UrmTbbfzInOrGe6kjGy7y8d7bkesWq+FNd7oESLRWkCc1Ru7u2LgNk7x5idDyXA/Cv6LyulNlH7TnNKE9amVsh/8IG7bxPX5kLsMVcAL2RrRpXvb4HW/mPd/VRTotpbBKgqrtcs521K8rkQ7Vk7IZuiI2JYysolboD6+CFkb3xQRV2139gPJV2t40oay653QmCRLxDbclGSXLZ3zgJ0dfcnYrx96fKxzILe634kJYRzNtDAuH+SsAeV0rxiYrlcGpV+/3dyfS9kZ6/m7o9bwl5nBWzdk6CdGfPsQ2hMr4zm0nXuvqeJ7X4IOpvNiM5sZ7n7yJjLY1Dy2G2FP1DKn1JMiVK3okSca5HNeBDaT38xJZgOR+vzUOR3/Q75GE8F/u7uF/0RbS+llFJKaSkxsZU/hFhtzd0/t0oVn7bA68ADaM38Ofb+Tsgm3A2BRnt4I5Va/ggpGaNKKaWUUkr5wyQ22LrsxDh89kaZGMdbhTnq/1DA4Rnk9M7L/ag03mvxnbbufrq7r4zK832AEMt3m9nBiM6/A3J0VmM7STM05wNOQM78T71Cx7wQCjR+G/e1RY7Fe5Hz7x8T2zcTII+iTOOxyJk2HJWI+AA52W8CtjOzE6Eue68QqV3FAbol6rt/ICaNLZDjfqyZbZzc+hICG81WpDf7TW9mUJQpk79NtO1mVBLwSRf4ayZkpP0zHHbtI3i2PHCY1wdFtUdBlNWAI8JBn8kLKHvsYDO7DQW9N3OBotqjwM50FGQIJc7ETaMvx8d/neJ6nlVkDjRmt7eEFS3TlY5LxO5T7+cQXekQM9vIlTk8Ptq4Xjzbt7nvjEMB88vM7BzkCNqf38E2UCBfhN6fkDGNV+hUxyMAwqkIwHSXCURQeaiEKSq7FoHok1EAfS3k5F0UONkELMPdb0B9eTkKRh3oAYqyJLs6/u6DQEF9KRjD1ST3PqbJ6bsLZf7eb2bXmVhkpkaO50eAq0xZt8ch59wHHqConN7st9oghrfB6F2mjEP5YMq37n4XcABysO9VoHdt5NC51szmiP5aE4Er93H3dcOJ3yb65BmankE5G8pEXqSpgb18X04pOpN3visqJXBu/HcfMMLMOrtAhgcj1oT9TIDWJjMIxn17I3aJhYGdTOV2skzF9mgNepM4jDZF7+Qqpkz4F1EpyDc8wCru/ikK1J+C5szeEWjF3d/yhuw56RxfCAHT7gcucPd7EJi3H8pmvjkCPLgAORsgoGYGimqdranxd1/EZPVj/IerlNShaN4DLG4qg3IUAmONzuyCojke12dFc/BKxArxVfL7z6I17QQEgtgBsSX93Stlo/Jr206IffARND7vB3YxZXRdjwKt6yK2zlXju/XGTxogi/9ne8+cKNCQAbduQeDijV0AptUR4ChjKnw/bWPI+ObWWTD+r0JrYAfEUjNT3JcxR72G5tau1eyjRKZG4JeDTKB8XIDooeidnRtjo+4dJDZjg33cxIp2ITCnu3+FguUrAJtE4Ca7rw1yvK+KgBUNJNPrKp16CBo7gyxhZULAypeAs8ysH3L4H4TKSGcgw9YtpbM59YXDbXvgHjObOfbdC4E5TUw9juyDjoiBaJP47Yyh5QcEcqoJikre1w1o/V0+9HyDxtZAlJhwJ7J1jvJGQFEhbdC+lL7ndGysnuuXOsmN8Z+RTfk2sGoEBOsYsprQjgZiAm+chc5LGyIw9g3Aqcn4vhG9w1+AF03U+bV0zogYdIYA27p7b9RviwAnZWcKF5hjN5QM08sDFJWb4+n6dg0CUs0dc/p41K/Lo2DWKyaQQl/EJnueV0BRe6H3dmD83S2e+UJ0rtgH2dpjzWxXr7A8jUA267/DZk2TFJpd55QosZcdCzxmKiVNrHG90R45EtjSzLqYAtEPoKSMr+P7RXZwtTPpxWa2aezRpyEbYV7gXjObJq/L6wOYNm9unTE/v0BzaF8zG57cd1P8Ts19l/pjalE0Ru5F57jn0HxPmafGmwBH6yDWy3pnUleCxg7I5j3GBKjMmKOOpwnMUVYfJPN3BIS4wgWKWh2BpMYhsNM3yVdfZgL2neaURG9mv6xvZsdbwlaXPS/wObCsmc1pSh5ZFZXXuy1ZMxq0M+7th5KeTjWB0F5CZ4F/okBRo8xR7v4QekdtEcP5GoiF7HuTv2Mqd78DJX1tgva3pvZD9i67IDDrz8lnU8f7Gorsre65fsn+ndnVn7hAUesgH0lPU0nwT5C/bjSwnpldFvf/ZBXmqNEeoKhqdnApk6eEHboCGutXmtn1ZrZN7FfXoLHQx+QPbZWsaZ/E9ydJ/NGU3DIM+Ve2CltjlWjj1mZ2irt/50oa7Y78equ5QFErIzsuY7sr5S8k7v6lu6+KQPm7It//+XG+J/x0Q9EYGYxA7v+HbJ3jPUBR5dpWSiml/Fkk1rMOyL7/AVUwyOKK06Az3TsoafvHxM/yDdqLrwTmRj6+yU5KxqhSSimllFL+EDFlHK2InEgZS0OW7dgTHV5vB47zSnm7ObxGZpyJ/eYV5OA8IgEZdEDZTYchQMEvKJj4KToIVy1dZWbroqBnf1Si56Pks6UJgAMKOM6EApp7epJxCc1TlqygbVnm3kWIWeMZoI+7v5jcMxdyXK4MXOjuR06A/g4IOPEhsH84tDGzBxFLRW93fyaudUEG0brufm+zPGD1djVgTkIG2cvuvkNcywBMm7gAR2sgQPgjnjBmhZNmLDCvu69mZkciZ+1tKLvzZRPo4CagB/ARYnJ4wsTKsyUKZgzyKK2Vb6OJAWMsAu9cGfeviQKCs0QbXzCBZnZHjBD7eZKJV9AHG6NM0l+Bp9399Li+DWKumBsd2j9Hjvw90Fw6sUDXfIjufwngYnffpVb/T4yYysrsg0BXo11l37BKpkErBBz52BtnU1kFBRR3QkwymVN9OwRA+B6xrNyVfGe6JNiSz8LeCgEcjkBlNbyJz5S+491RP5+IHNVXo0DY60S2b7TrQBeTxaZoTVkDBfbP9Sg72chvzo7GxyA0rwdn87LK/dMj5qJ/x29n7d0DZVLeipzgS7pAJ/nvz4Sc76MQmPDc/D1VfncutH4/iILGv9RaA6v1pUeG9OSukwor2WgEbPgQHQR7IJDhDu7+jYmx6AwUCF7T3Z+v9ltVfn8qFGjbFe1z5yPA4Wpovg9w93MmROfESH4NbgH9s6Ng0orIKblX7r1NjwBIh6H+H+wJiLRA3yIoSPUlYsfrm3zWFoGgxqD1fQtvhLXOBGa5HjlHz/eE3SL0LY3ASwsg0NWDiHnq7LinJhNI2EB7o/GzrbtfH/vDr7l2TIvGbJaJn1/b/oaAoSfG8/+AxuXMKCg9wsV8kzFYPIFAvx8mOpZAgdi3wj7rDXzl7neYWD5vQewVuxGAHhdouB0CBqwD7OH1SwM1u84afZnZSVOhzPCTkWNnhcRGnAoFbk+tNn9yc78XCni+jhzhGWPHIqiM604IXNoY4GZOtOfPChzp7l9G4OlKBII6CdlgrRAAewga6yNq6JzGK8wSa8Xz1mNlioB2X8Q++DFiNDl5UulsLn1hv3VHe+FMCOi6FwI+jrMKM+XiKHjxDmLeaBDsasqaFuvOS8hO6Jdcb4MSJdYGXo/AdVPm+ZwooPIqGi+vJZ+1RzbRomhdb7A/53QtgezJk6IvhnoCwszbzNWeNWyx1mjdGA/sncyTu9Get3Vm+8f13kA7T9hIC/RuhubzvIit5sbk/SyBslDfRHbG7QXfb9CX8buXInvorrD1s3OkoTWtE1r3fkZgqbO9UoqwFZp71yHQ7Glx39IIbJqN0RWRfbg8YmS9t5bNamK0a1adU6qY2G2GoPPFWu7+VFzvjM7O6yGQz8KIYeiIGrom5Eya9eUnXoO9obl0VptTYWMegBh0RniwN8dnvdDZq8G+m9OxKgKy7BBtzObjXqhvP0Z25Zco0WY/dH49qYq+bRHo5p+Iqa1JzFHWEBQ1CtgTMXLPGO34BXjS3VeL+6byyA43s73RGtCkfac5xMwOQ/v0TXHW7IuScT5AfqDp0ZnqMnf/zgSUugKV4nwLrVdDPcdYV/A7U6Pz551oHXsIlX7eI+yPBwBD54RjG7NdYn04A60PZ6H3niW2/YaAlf8BnnL3HSfEJg8/wRWo9O/luXe0JVr7V8vmaiO6Zo9nng6N89u9whx1OGLkvdnd+8T9UzwL3l9JaqxrGUD8MGRv/IjOQwOQf2blmE8telasJrG2XgysHWeH7BwwG/J9dEOg+NRfOj06d/UHHnOBqcox+xeR3P42J2JN/wrZwX9H69hPue+sgc6o3yEf9ANxvRwzpZRSyp9CTEloZ6JYxjTIhl4KnWlGmNnzaA3c2nOsqMk5f3pEXPHJJG5+k6RkjCqllFJKKeWPknURSGJvq7A0ZNnNt6AA82Yok7xbfP4BVMBGqZhZV+ToOgoFU440ZSfj7j+4qOp3RKCFWxBI4WSvDYrqihymDyJ2hs+Tz1q7si/7oWDbhQgUNSxzJmaSHLTWjABks0gc8g2xSlyJjJSjIziX3fMuclQ8DPQ3s1FFusxs3XAYpDINsByij8+cxbeg0kZbuejw1zAF+39AZW5aDBRlZp3CwMr6c0ETo0L7+P2p4npW6i4rTTczcnyuScMM7ENRNvxgAHcfGv/eCPXlku7+I2LVeBqxRfQzlUwcHf+N9ACMWA4IF8GtrojJ6+Lox38gx9ESKJv9BVMWaV/EnHSB1wZF7YDGZVcUFDzBzK6J370KGa43IAfPMch5daAHKMpyzA0o6PobYpzaOZzmmLJTm5zxlN5rYm/oamazx1x5AwEPRgEDzWxEtPdnC+Yodz/ZG2dTWRyB1m4Fpk8Cybj7FShjaxrgOAvmqPjs6+R56hioYo3oh4Jr57kLFNXYcxcECM5FoMw2yJF+GXKmn+fuoxDAYzzK0p7BlTG+A5q7G3mAogreTT2JwMlo5DDfF9jdElaRApkdlZL5xusDes5GAeShKODSpeAZN0Tj8WRU/q3eGE//nfw/Y4Z7FwV8N0IB0waZ503oyx+mEJ0Lof3sNfTen3cBaPsjx+xywF4xD55CAKzdfQJBUdHeX0Pv+ej9PYb2nt4InHlO1tYJ1d0UMbOVzKxH0g97W7ARNoPuurEf43wzxG60OcpGb5/dG+voMLSmfOg5UFTB83+A1vo2wFKm0nKZrp9RWbp9UCD7gfycKnDsd0cgi2s9YbeId/yzuz/h7uuhoO/iwHZeAIqqMc//hRwPzwCXmtkK8YxZH2WsUN+iQGTWb3V6TYHnPVEAbLi7XxXrzvIIBDQQsSFkDBa9USm5FBTVicgMB2Yxs93i37NH2+9ETI03otJVa0YQYhoE3N0flTD+X0vqzIuZbW1m58azZVlrv6KyCIeigOhD0Ue4+6/uvrBXB0Vla0O219wczzA/sjXXi+uvIGDKTSSMflV09kLA+s2BN2Mva+3KSt4n2nocYk57FAHCjvMARVWxg7dETIQZM+P91Gdl2iWunw5shwDzPbPgtBUzYTSrzubU5+6/uZjfbkSgqE+BR7P1IJxxU0fwazW0F44ys83zz5mf42a2hZkdZmLxzO75Cq37PS0YbeP6L+7+kruf4U0ERcX33kfAhh6IkbRbfHc2NB8PROVq6kBRuf23k4mVB3d/IezvrDzVkZYwl5lZTzM7uuhZC/qhPbJZ/usVEMYtCLyyZdj+65sAorj71R6gqKIxFNIN2BiBiDMmmfEmZq8X0FyfC7Es9ipoVx4UNQcCgJyFwE7Zftoq3rlHvw5E9vAJCICUgaJaA61jr94cgSD6I6Di167gfjbfH0frcQd0jqCazWo6ozSrzilB8m1N9qg7ULLGK4g9NWNb+9LdN0D7+MNAfw9QVI0x1JQz6ZqxX2Z92Rh7Q7PoTGyiWdPPwsYcGf8dYGbDku/cTMG+m+vHxZHP4kZgFlfpimwMnYX2w4+RLfQPZMse6gGKKupLd78S6IPG6DFWzBw1ygSgSVm9s2fcD53l+rn7BcDssUatjmzsVUzla+vW4Pj3mfG8je47zSGxv++Hzt8bmJKA+iI/0ZrIjrsU9d0e0a9PoWSQcxBwbBevMNbVOhuMQyDph5FP6AtkC7SJ295Gc31HtAY2Jk+iM97T6D2tHOtaBo7vjM6Un0Dh/pXuE61zfXxb/Heuma3pFVBUW2TTvIV8ZIVSYKtnSWOnAxuagM+fIED++cBWZnZjtLMEC0whkpvzC5nZ8lbx6bzq8rl0Q2vJQwgkNTM682SM/H8UC8M0aI5k82B8zJ+PEPizC2pnKuMRSHeEl6Cov5TkxvrcCMw+N7IN3kJr22YmIHWduPuD7j7C3c/xEhRVSiml/MnExAT9EvKxjHNVWxmIgPkHmNkn6EzfCzHtpt/tCOxpZubuX/lkCoqCkjGqlFJKKaWUSSy5oOBpyPFzMnBaBAmy+/ZFQYF5kSP+nzV09kMB/rXRAWYv5JAZjTLzviz4zgKxudfKiGqHnGj9EfXj2u7+UhyuxyX3zYsO2d+5wFKZ4ygtu7MTcji+iRzALzWhuxoVU7B4AXd/0QSYuQg5846OIF1231zx2ZXhyEx1bIsyBIcAZ2RBmDBonkGl6A4xlX1bCpW2eC4Oj0NQICplS2r2Q2E4h/sDN7j7PWbWHwU6VnOxOu2BHJmvIAr6raKNGbPQESjj8qZE57SIyekHd98u+m9Rdz/SxBx1AAqYn+gCWHVCjs6lEBPI/YheP2M4yLN1ZEw74xFg7oLksywg0AWN2XYIoHJO4tBuMC7jnVyPWGnGIOfPPigz8y537xX3ZaW1WiFGkSy4VZR13wEFpGaMfupJZJI27e3Ul+jHgQgw8il6J7u4+6cmANh+8d+p7n5wtXZV0T0tcmpvgzIUl3ExnrT1YGS5FtYAACAASURBVAIzsQicgPp9ba+U11rHFURN9c0c7RvpVTKCLWG3iL/zAJmRKEj+X8TM9F/ganc/Ku6Z2sVesRwKhJ/g7kMKfqcoK3tlBGSYCXgtHJHZQWUYYgI7FAUGG5S5M5XqWzpx8u2EwDoD3f10E4jyBQTOShm2OiJn5/pozhWO8eT+JV3lx9JrC6BM+NPc/ZgqfVvYl+5+wZSgE4FmX0GsX0+6++ZxT8aE1h5ljf/m7qsX6K1js/EJqLkegaZhKCh2AlrXX4jPJkjXBPxmO8RUNRqNjXZoTzkEzeUJPlTm+nVaxH7VxiusGrMC/0IOygEoY/PH5PttPOjtq+hf0N1fj393Rtnrp6DMpyHu/llyb1t0sJ/OEzaIfBvd/VsTI+GM7r5S/p74eyFP2F+q6Er/vRQCZU0NvOfuT8T19ZAtswiwjrs/3tT3G2vEiwi8lWfomxGN2xvcvV9B++vWIgQmvxStt/OjtWNMcu86yFbrgdai8chu2x04ySsl/lpMZ+6526IAzTHA6e4+MK5nc21qtC/vjeyxFT0HPMn1Rc/43f7u/mFq/5mA7tcgO+lor5TamcHdv2jk/XRBQc9ZgEs8YTHL9UMXKuxaGXtq0T7eCoFtL4k2HeTu78RnKSvTiR5lbPLfL+jLZtXZAvpaI0D8QOS02xgFn3t5fSaALGNxSRT42sndL6umO9aKC1BJrZdRsHwoGi/zoT2zn7tfOLH2bu73DkTr0scIYNse2U8nVxvrJtDCQLRu3I0C0A/HGO9OhRnuUmRjnoNYyfKsW9XOP48jYNR2ZnYzYjzKbP/Zoz/+i4KIP+W/X+WZs+d8CDFRvRBjYmp3/yV5Pw3sz4Ln74rew4E+gSyJub7PxsYsCIy4BiqDu15cr9tjTKwvUyHmo1oMhc2uc0oRE4PCM7FPpuf9ddGYNHRuez75TtofVeeTCRz7LI2fSR9BZdWr2gYtoTPWsH8j0M8duXE2LwK67ohYmo4t+H7RGpydeXqjBJZlXOyj7bzCFDk9OiO0Ar73ShJZPT9Ewe9th9biG6jPHLVOtLUbAg/8N3mOkxGr8iB3P8nkqxkMdHP3t0zgzgdRIOVgjzOX5fwmtZ65OSXWiX+iNXUY6scBmX1mOgMOQfb8wShZqcF6NiHrvKks/cbuPnf83RGdGW4EPnWV1m6KnlaIjeRi9G6PQqDr6REA7hxgZ1dCVDUdmyEfSEfgbncfHtfXRPvtMsge+hj5AA5CpWBPybelibZ6FwSKyZijsnKaz0zoOl3K5CEmv8FxyFZ9AyUyDMvPZxObtyHb4HW03zW6BreEmNlqyC46D/mBP0k+WxrZINu6+y257y3s7q/Gv0uAy19Acmvbtuhs+ADaC96PNewmdAYdgGyFX+L8Ny9wkStJqZRSSinlTyOmuNfzyC+xiyds+ma2EGJEXh04y90PievZ+XdaZFtugRja35jkDzABUgKjSimllFJKaVFpzOllZmchh9TJCJTzjikAewRiZLjBcyUkCpyNlwJ3IXDDt+Ho3JcCcFTeOVcjKJAF8doB2yNQ02dU6KEzsENRgCoPkNkOsXocAdzi3rRSXY1JFSfqjihYfQMNwVEdvQA8EZ9dBmyNHBpnufsnEWC8DgVlP0HB6fVdQKSpULBwP1QeoirDUXOICVBzNQoCXY4Op4chMMO4cF4fjxglTkVB0a6IDeoEFARvQNlvZlfEPaejrOZ+7n5efFYEjsoMvrrSbHFv0TgYiMbhHMigvCbnzF4csUatjbJDX3f3+2ro2zqeaWU0pjMQ3ozoXQxFzshNUx1WPyCdsorMigLxH3klY3QF4GiUMbuDV4A42wELewGgJ9fGbZET90xkTM+NwIUdgFXd/X/xrgagwPe57t6/iq5qc3Na5Lw9BDngN3X3n6w+OKoPAqOMjb93R0CyBYH3o19ax9+PI3an4ZYDWpiy2w2tQz/k1p6slEQ/dz8/AgLHovE0Fq1rPyb3t0HOuHfdfasmrI190Vj+CmU+dkaZ40Pc/UlT8PZ4BFYZjJw4VZ0z8bzHI8fmhTGOu6Cg/p6egE8jWPAl0NkrQMl6TDfJc62MytG9SQS8Yx1vj4LfMwA9PAG0FOjI9+UUoTOuDURBDxC7zUNxvU04z45EAZeFUAmWNLjbG7jTK2wxTXbCmgAeZyOgwRDEePZZ7W/9PjGzBdHc2w0FavaN351gIFauX/+GQH5dEVhmFAJ6vptzSv4dlbH6sVhrPf3d0V5xqlcY2aZDANsT0XpwrNcHRxWO8fh7V7RenIr2iu2ADbJ1OLlvntB/VjYWGmlnX2T//IwCD98igOyg+LxH6Fsofq9BUK2KLTAXcC+a332TAFZmu9yCwCQroeBpVTsmCYa+RTDG5O5dFpXz7YUCkI8g0PAFqa4W0pmOow6xTndG6+/xCDS6b+47O6K9fV4EzrmIKmJmI6MdtyNw9UeWlDU0swPQ3vsEGmsp+Loa4Cx7B7MitpQ5EbvX5ennVdpTqwxaG1Te94KkvSnw6IT4reOz9asxaW6dLdTGtgg0sAay5aZBpan+k9wzV6wnM+XXydwYWgCVMvsmzhcDEfNbV2RvjEJjZx4EvP6IZhBTCckNUSmsp1DCwXXxWf5MsQVa225AzB690PnkKGSr/GYKfB+N5vdPCMB0Qo3nXhmBXZ9ArC+jkUPzE1Rubl1397D9d0Nzdz93v7XGM20NzOTBlhfXDkdgxzupD8bI9ssZPYD8VXRuiPbw1ihjdRt3v7bAdlsVmNYDrFhLErt+JhT07Y4CwSfEPG2FSvLdjDJid2xsr24JnZO7xHx5Ddm5vVxn5XTN3wrZWp+hs+Qz1bUV6m+DzqSLUvtMuq+73z2pdcZ5YXTo2sbd/52bY0ujNSRLgtkr9/3GzjyHo77dOD3z5H4jPe+lTFYLonVxJuC+5PoOiGkqD47aCOjg7tcn7chK836Bkl7GItvzCGQD/xZrzyrI9ngOAajuju//IUCDGJe3ovfyArB8bq2YEc3NXZFtV5hoMgG/tysCYY1CY2tNtK/19gpQbEKAVisiH9KiCOz+Ptp/xubX9Nz3tkX+oEfQWrM8Kl850N0/NrEe7o7OEFOhuXuJu4+O7xcl6zRmq9+MEq32QWeb782sfWaz17JfSpn8JPbR69Aa8RIaLwui9WL/2LPrfC/xnbXQ/O9Zyz5ohral43JGxACZJjmcg5JhBgFXuPt7Jv/w9mi+b+qRhBL3ZyVP9/SCcr6l/LnFBAA8G50hrnexemafzYaArfPEPV8DI1Bp7uF/QHNLKaWUUlpMTID+R4Bf0ZmjXtWesA0XROvlksjnmbGrdkY28I7AGh5JfZOzlKX0SimllFJKaTHJHVrXNbOhZnajmR1oyiolHIPnoMDxsHAo7YMCrt95EpTP9CY610aU5e2Qs+e7+Px7FPQ8HAU1jjCzGeKzesGmag6axBn0EyqPNAgFBx4xsUaMi+BVA8dWLoAxFwLwnAKMdq8r1bWOmW1sZgtnRsaESlHbXUCQXVBAY7CZLZp89l38dkqx3jY+2wE5OY9CZZ/mCEfHABSUXBlliL1syhbviw6F53kLg6KifW8DmyIDbQAaM2O8UjLlHeSQvggFXZ5H2WL9gMGeo+xP+qAvOuAeTqUUQfabQ9EzbgAcbmaLeQUA8E3aj1XGwWjkLP4GOM3M5g5ndlYG4UVXeaP+7n6+V0BRrfL6wkDdAhmaqyKHZOZc/RyVdzkSWNcU8K5rU4zlOWK8ZOU+tkVgg6eAK+Nvwkl0HMr8vMzMhpiy/C9FzvyqEk7RA+KZB7v7Ra6s6M9RYK5d/MY7CDiVlSIr0pWuHXOa2SJmNncENb9F4IThKNv1hiRAkP3GJV4BRbVC5dKWd7FHzZf1jysz8F5UwmfecPJlY6QtKufVB2XopmtPykR0fnz2JAIo3YxAhhvk5mhbYBw1ShQkz78eOmycAqwTz7kLsAow0sSE8yUCAF6CmMwWyvdhrj9/c/fDgfOTcZxR4M4T901lApW9CsyXrL/1xmTOSd4XARLfRmv3c2Z2LHLiD0HjtUf+Gav15RSkMysVMxqBGkC0wkvH9V9iDHVFYLSfvD5IYjO05p5mAlpmYL0mSax9e6L3fyywXwTQWkxc7EtPoiBKBrScKHaqpF93RHvsGwj49zQCTZxiYl76GM3DN9C6v1UELBuTr9C73tPMBsRvfo2cmocjG+NIEwgwa1M1porlUcmmL1FQ8AFkD+wSQbfsvrYIRLEcDcu2FuntifadkYidbSm0Lh4W4y0rb3M4AhA9YmazFcztrC9XirGelfC5HJVhScuKjovgQCvglXh/6bjMxlC2Di6Bgolj0Hs/x8yWyu1/z7j7fmgOLQH08QTAhAKyzarTG4KiegGnmpgBv0Rj6ChUQniMCTiRzbFF0TrdzWuAoqId+8c7WQM43cxmi7mXlcr7Kv5bAa3x6XfzpTnbRjsyu+VjxJ71OQJXbR3PNK7aWpC3+zJ7Ij77BQWx9kAgm5EmoF5Wsu5IZDvUZPhpbp0t0cZUXOUrx6F5ORDtsTea2aJm1iHmxH/MzND8rWcLJmNoe1R6coyZze7ubyFAwrJoDv6EShCtjgAUK8T36tYjM9vMxFLSJLGKk/E2F7vZeu5+sFcHRc2MkhWOR2whuyP7vBMCWG4V33kA7Q+rI6dmxjxVdJbqgxIPDgLmjevHIdtgGVQG2uO5dkPB8HO8Nigqs1nPNJ3rst88Edlu6wNDLMp4ARlYqN77yencHp31VkHggMeBY+Nd/ZK9h7ADt0RnmRmqtTFp068mINNnyEZ4BNkIp4auxdD5YyXEutIooKEldE4B8hliW1gSuNp0Vv7NKqWLr0OJJjMAT5nZrNbE82/M01/Q+a/d/7N33uFSFUkb/5HNYlhzXEOZI6bVNUdQRBSziFlRzIgBM6goiGDOEXPOmN01YAbj1uqa17SKoq6ugPr98Vbf6Tl3ZrjAvazuN/U8Pl7OnNOnT4fq6qq336L2nrSpoKipLrOwZr0UZb0C3G5Z2uFM3kSHR8pYo5u45zkDrYX5nqdt/o70tyvtXz6/70Msx/cBz5lShc7kYs7bDdkJx8fanPTR7fF8mov/QHubrRGo+mR0aOgsd5+Y+trdn0X7lhVRWvONo8z/Biiqdejxzigl7XJATytPzTwW2QrXoD3XEpXKmgx5GK1F/eKdgxFouoGxeDLb4gWkd5+O+t8C7FxJpyeJdWJrtCftjPTtXogR+uKwY0a7QONrEPrIS6Co1vlYimtNsdW7IuDqpUDXmPsNa3mF+VCX35BU0MczEKloXelyuyLf2rbAsLBnx1ukywz5CIF9F2nJumbjcifks3rZzC7I9M1+iGH9TLQeDUH7v2HoUOULhSK/QAdTTjWxutfl/4mEHXoqWmdP8QBFZfb550h3/h3tBY4BjvE6KKoudanL/5iYDpG+guzNceiwWoN4KUb6DtrzvIb228eFLTAQ7SvW8d8BKArqjFF1qUtd6lKXaSAmRoRhyFkCCkq9g9DF58Y9pyIGhvmBzxH7SSOGn7i3FQJpfIGcmaPdfZX4LU9zMgNy0p6JAlsHe3aqqYl1Tyfm2qNTRoPQhn9dFzvVpFhfFkMpFA5CG/cFUDBwNRRYfQvY05tIrT4Z9d4ZBd0fRMw/jdK6FByxy6Og3pMoGHIhcgZ/amJuuBsFUr9FQas5UR9VTfvWTN+RI9OXQACX8YgdoCfwZCFo1BpYHQWYvwDe8yy9YdEZaToVeycCiPyM0O1PpXfGPf2R4fckYut5vVhHLwc8lKU6MrPeaBP9L6Cbu39YGKdNarvYuO+HWFP6e+MURR1RGsmByMF5b/x+BHL6rudKDbEtAjrdhAL93VGfnu/uw+OZTvGe7qjPz/ECtX6F+i1CiX3olrh2LwqSbOVi3FoLpRybEE75mvTT4Yg9DjnhW0f5p7j74yaK1yPjm0cB24WDLj+h3pBKK/69etx7hLsPjWvbIGDCTwho+TowD3IADkInni/IyuiN5vA+XkhLmbXdaSh4lxjHfkEAuwuAvcPBWOl7U18ORYCAzl7OaLMhOrV2rbv3jmtzAst5AOuaKjG32sf3XufuJ5vS81yBnIbHVKtf/L0lctAfhUCKv5rSBXZH6SrmRwDFZaIN9kRg13yulLXl76XM7Ho+1vqgde5pFDj+CumhM4F+KeCQPdsBBd22QuC8g919XCU9VUtC590CfOcV0nE1l0SA4xfkHFwIBVN2QSmRpihFRuj0O5EuGuru38X1j1EQbhcvpcKcG62lQ7zAJJPNm/T/BJxZAfXJwkiHJf02CwINnInG+0FehYXKlG5yQ7SuHOol9smTkV69BenTrxH739FIR1W0Xwr1vRqlPN07zXMzexgFFHbIHQpm1hml+buxSpk9EbjmxWjLv5oY4S5F4Ii+iDVhAhpzQ1DfXZeVsSyaJ5e4+9NmdgBwPmIaeBVYG9kVn0ed09raCtkzY0O356wVyzR3mcX1MmzMs1Gw7nIvgYznRCfcT0EBkscQyLU/srsawCcUUg4V56GZDUYAh2fQXP3MBPg5HPgMeMQzmvH0DZm+3BbplsWQbrgQ2S8fRT+NQjZIX5T+sCk2QQ/AEMNFflK+LdJtl8d3HxvBYcxs/mI9W7LMlqhjLQk9tR5a0xdDunUDpPuPrvHcrmiunA6MrGSTxzhZBQEmugKvu3vn7Pd1kY66AAEsPpqSb6hRx62RXTYXYtS6yUrsY/MioNB4NN/uqGDvVrKBt0Pz71jEyPZWNtdyBhDQ4ZPWaC6nwwa1GMyWQPqwFxmIPH7rj0BsTyN221crlVEo70a0ZxrsYiM6CNmHryK78wNT+rquSLcf7cEA2xSxEsvTnCgF3roIkDoBeA8x7Zze1PJaqszfglTr91hbt0EpFp5C69j38dvcaK18BIFy7y4+P4l3prZcEY3L1kzlnnRKyizo9Y7ILprJ3T+Jaysi/bMqsJO73x96aQ/U/8fU0JdTsuepNQe3RWCWASh48Rkl9tz90FrzS9j+NyCfwa5em7WtE5EiGvgY7e/eS22EmFt+jv3e0yiYvHGy5VpSJtEWC6M+nhnp0ZFezhw1RXupSu83AetWR4zR73qkKp9c+z4rtzWyuW9HLN235u8r3NsdAVrXQr6C5+J6ewRouRQx9h2c98kkbKwpsdUHV9oj12XqpdhHUzquqpUZewGQ73Kiu/fJ7uuI9lWbojXt8MI8Wg6B5g5y90umpk5NqHMXpLfuQj6cnRDo9Cx3vznuOQHYCAEeRwN3pT1rBTt/WwT4HI/09MiWrH9dfhtiSot3KbCFTyKQb2JR+9bDF9wcc68udalLXX4LYiVQ1DvIP3oJAucf7ToAXsnnmtLqLY0Opi2CUqZPFivwf1PqwKi61KUudalLi0psIO5HYI1rXGlI1kVBuTkRdfvVce+yKFD/i9cGs6SFeEl0Mm9BBIC6OA+Kxr0zoEDTWA8Q1hR8Qw6O2hEt/uOAxbx6upM8VcpbKGAxFgGifkKBuU+Q43iwux83JXWbRL33BGZw9/Mmcd/uKJB/F6LZXxgFsgaiNv08HF1dkdHzGnL0PRnPt/im0ARMWBWd6ByHDLV5kKP5CS+lgquZGrHC9Q1QoPQjxEYyJwJc/bXgdDoJpSXp7BnFtjUGimyCwBBPA894nKiPAM4RCIi0tQscVQagmlRd47el0CnUnmSAhGyMzg4s4uUB9X1R8BYEBvkTCnSd6aK5XxkFlRdGrGbpxOgcKAA3fSrPKjB1ZO9ZEjFAbe3u95iYqxIoaoyZ/RGdnL3Gs7Rt1SQCqtdG3f4add496r+Wuz9nYiU4Iv57FYG/0twfgJxk+3mwmpkAgCdGOxziJWBmaqMlUKqCNigw0ZB+xkonKfdDQZOP0QnzVRA44kV3fzvuXRXNn03QPH+VUuqDQYXvrKTjHkBptVajPP1hu2iPHugkxjuTKqtG+6a+fBpteh5Gju8BHikTq5VnYpXpjEANxwA/FubLEtGWx6AATAfE2PVeYc7sj9INXvV7KbNaO8bfByKmLxDgbDTwnLufH7+neZrSBrVCuncrNMb7uPu3TenHwntbJFXFJHTRkiiYvhtwoJenS1oeeKMJ37AOGnM7ZnP0fkp6Y7QJNPJpjNXp3f3HGuXN6gKXtaWU1iUFKRdB8/m8uHcW4DBq2AYmZsvb0dr9kLv3sXJQ6xFo7MyO2OA+QIDvs5vQftOhVDMj3f3guHYfWj+6uICkmwHt3f2ewrOVnPnXIt12k4thMf22PAq0bo/Aud+jtJxDvHFqrWXR2roWAoUeiYANw7yU/mk9tA5/jtbfd4EtEPioq7v/o6XLLJS/Aeqj0xCY+5vC7x0pASVmQfbD2Z4BfQtzfTNKbBfPAc+mNd/Mzop2/DS+aSG0bhycdEMVfb4bcBmlNERLxDvuQc6m903AlmeQDjrKM8BajW+/AoFO+qH0qDmIdha0VuwZ7+0f76ka/GyJMluijk1ol9bopONhaB2/w0spkiv1z5Jon3IdAjT9GNerAS6nR7bIyWh8PpeV1ReNxYuRjfUhzSSmtK1nEgcDvARAT+wxaQy1RWPohhpltUL27q1orernJQBLK6BtrFGzorm7CrLv/umlQHtVezB7z2IIQLobjcFRJxGpm939gRp13RGtkXOg/nk8++0UxIQyA2JAnQntXwZ7ida/AaxR7R1ZeQkoMzsKuK6NxubJHmCW7Lsr2vBTU+akyvotiGVpC2N9mQeNydHu/pVp3709Cp6PQvvzn9B39wV2c/e34vmq6WurvDvNxT8gRpxlqLEnbe4yC2tFSiu2DEo/eRMCUn0a7XImSqH4YHz/VsBx7n5OlXpM1Z6n+E1ovbsBraf9vQTqfgAx53Zz979lz+wOzOxVfAZZGywUdZsD9fEPaN/3jwr3rofARudXbv3mk0LfrIa+sQPwFy+BblNavekRMPNBz0AdxfpPbT2aq8xULjCXZ+lbTSw4j+T608wuR3bUOJTudXT2W1u0f7wAsVr1acoa1dy2el2aR0xMqZsjRodLkB/iX1NZZi/kq2mNwPovAzug8ZRAjx3RvqorOvTZK3To9Mi/O7e7bzs19ahSt6JNdhhiIDzdlUZ7XcTI9y1wRrKBTKDSdmgfn9KKV1wnQq+fRB0c9f9GTD6eoWitarTfNB2ma+0BDMiu/27strrUpS51qSWxd/sMxSx7uvsnJgbGO+JaP68Ojloc+fH+iNKRT/Kw029J6sCoutSlLnWpS7NKhQDCwcj5tEEhWLcKCma9DfQoBrMKZdVyui+OUhR8jVhg7onr+Ya3Sc7rJn5XBxTk+cWrnESOTfUSKEj3ZTiULkLo67c8mFhMgdEngNt8Emw8Uys1HHWd0MnBs9GJ+m9MqScuRM6zk1HqrU+qlNsim8KCk2IxdDr1EsRk850p2Holcsj38qCoN52onxm42QvsYIUyG522QwHpy5GztxI4ajXPqLcL5fUiGCBQUGp+dFL0ZC8xE/VGgbrxwJYeJ2xr1PFP6NTnTMAH7n5TXF8UOW12pQI4Kv+mbA7sgsB47ZCD/mwXm04a1ysigMbC6DRoI6BApfloApZ8hQBfHRHjzufAjAhosqULFNUOBUcSiKImQ1oE4+5CIKVjXCmwMLNRCKy1jZfAkzOjwNvb+Zw0nVZ+HJ186O+RCiPGzjGIAe4wLwHBlkesTquiAODzydlcHOcRQDgTcMSwtj5iVTsnCxquhoJA28W335MFwdqgoPrHWYBpc+Bld//CzAYivbmCu79bCET1jb5cxqeQVaPQ1teik58dkSPxxErfnN2/MdIZ76JA92nZb8UxOCMCd12C+mL/KnroN1lmU9eOwlzbC508TCerEyV7Asvm82cZFHA+BemyEWgdqwmOKpSxO9JZ56KTvc0OijKz9RHryjjgFY/AtAmoeTSa1/sjoMef49s38UmktDExG14MLOFi4HkAWJYSmLITGut9PUCHxbpl1zZD6+w2EaRpg1iAfjGzlVDAcT4UmLwonsnnVaUyp0PzemPExLShiymyYVyEDpwTpaP7V3KqNmVtNLFDTXT3LczsbqTv07fPhcbF52heVgwymcAldyJQVh8vgRuKzIU9ENjnG2CMV2EwiLa6A+mn4e5+WHHtRKwXVyEwwrMIAHqeu/erUsdmK9NKIINkYw5CY667u3+WlVeWtiXsmgWA8e4NKY2L374HYtN4Ky4tiYJDx3gJRHsEChKtSACqa9lvJtDNvQh0kzMtjEVrUy/gk/im+dHac7AXUvwV2qsh6Ghm5yGwbn9kq+XAo8MQM8YiBGC5JctsoTpOlf1uAZaMv6utaeuheb6Fuz9To6yUPvQX0x7mWZTS6LbCGpAAsoMRULKRrVet/Enp7xijFyEw04HuPiquJ3DUfMguOcjj0Em18k2sJn9HjE0VwRqTU9ewYb4u2ndhw5+AbNY93P2a7Lcyu7rCe6ZDLF4HIdt1E3d/1sw6uFKdJ92/KbLdXkFAiDvSbx6Bzabo5Lgv6Zg/oLRBZ3mwfMYY2MTdH2rOMr1wqOe3KHlbxr+THTwzCqB/g+ZySrG4DdpbzoKc7fOiAPbArIyDEAjpL8X9RY16VNUJpr1c7+Yus9gvJmanyxHA7Zv4tu5or3qEu79hZgsgvdcjvv9mD/bZCnNxqvc8Feo9C2JPucSV1pywsZajtDdbE3g/rZ3Zs5X2e9OhOTidC4TQDtlGFyA2ua7u/m7cuzViMX2sWGa1+jaXhI4cgvbirRFo/UTgdhdD48KIXbI92qM94BXYxKvVd0q/oznLs1JK4HOQn+Gp7Ld2yHdzNLJnBno5mKotOuR3DRoH9xfLrjDed0L7o6m21evSPGIC3F+MbMbZkN/pPODcptocUU4+x1dE6YIvRAdCOiFw5lnJFs/Wso5IBz7g5YDnRdz9/fi72da0Qj3nReCnq9HhhSGZzloH7ffGoRSAN9cqK7uW23A9ufqVzAAAIABJREFUkM6og6P+H4jpYOvdyPdzSeG32dHhovfRfm+yMk/UpS51qctvXcJuXAH5t4Z7OZvoJsBt6BB1LXDUosin2axs2dNCGuWjrktd6lKXutRlSqWw0Zw7/j8HCho2BCZiU/0ycuxthE71NZIKTrlVzKyzme1kZrNH4OUdFBSbAzjTRIdLBC7axN9TBYoq1OUnBHhKp89bVbh9X8QW09PMZg+H1eoocJdAUTMhJ+rCyBFaJlXKneRvtepf5afFETvO/R7gNHf/2t13RM7tvsCeEUCpVG6LOPGzPl8NpW56E6XI+S5+fwOdiPwMuMLM+phAeHcA8xc3roVx1Bk4y8zuMbOBZrZSfMeriLngS+QwXCdv6xS8MUmbrLzEDnQsSkGwMXKEdwD2iUAI4RA/DwXn15zEd/dC7X8AYqS4xszuNKWGew8FzK8FhpsAV436OOZA6/h7BGLr+Br1eQqytw1n0BjgUAQi6WcC3zSqW6Edd4r27g/M6kq9cAVi6Fkd0auPie/fGTgVuLoYNKsiM6KTqC9lAYJ7keOvW5S7tpktEWPi2HxORv88i06orwCcbgLKpLFzBgpoDDWxMODur7n7YHffyd1P9uqgqK1QsGeQu6+LnIbTI4aT48NBnMbLEMTEdEZ8T3Jo/wH1YQqS7In6e514zR0IcHabmc3pJfBGB6Tr3kIn9KdYsrH9VdSnn08CFJXJU0h3zRT3t41vLgLz/u1KS/EyAhK0/Z2UeWiMrZ/TOlJLCnPtcgSA3CHKWSauT8zfbQoqjkJgvOcRSLgXMMzMZsnLzKUwB/sggOjH7j6hOQMQ2Tt6ImDHzmgcX5n0g4tt4HQEaLkYjfUrgVM9A0XletTM5glHI6h/fkE651YUaEnzuwNiKpkbmK5S3QoyHwInXWtmK8S6n3TBaMSw0AE42syOjnImFMtMdY1x8R/E8nA7sDLQ38xmjHHRLp57292fdfdRXgJF5SxvFdfruP4CsIqZvRrlbxTf3gadxN4YnQCvdfJ+JgSue94jvW/Uq8zucfdb3L1/6LhGoKisnhNQn3wK7G9mfwrd3yYbe39Bev5lFFw8IguaNIzZ5izTzM41M0vflemnlRFQvSGw6+6/Zv05v5nNHHbNa+4NoKhWXq7XV0dAluMRM2Qn1PcPojm5V5Q9BJ3Q74SANGcVv7sgCyBWyke9BIq6C7FsHBEOpHmjjv9EJ+1rgaI6A8fG/0FAhEtRqqS9TYC6FMSeBzGczu+1QVFTXWYLlLekmc3hJQDi1iaweJMkmwfj0rUaa9p8CNyRUmGV9aWZ/dnMlo5xlcqYEdlT08W7chDpP5FteghwkIlhZZL1zdrvUNMJdsxse1PaufQNV6LUzosCJ8S4xQWKau86xDC3F0BRcU8qf0uTbd0e6cR/x/WytdTM/mRKNdxIijrYFCQ9H7g52UDZvf9AAfz3gUvCvk2/Jbu64vwJHTwMAXDaIoAU7v6TicUXdx/p7ke4+/rufpiXQFHbAA+YUrWXrdO1JK37LuaN1b089fHWwIPNXOas0XdJFy9tYmz9zYiZdUNtmRhU10bgv4vQHm0vBEa6AaU1HI/WzT8hQMUIBIprYPEyAYeGI727pmVO9lp1Ka5tBZmvucss6g0T0K8/2lP1cffDkO3WA+05ToznPnb349FasbmXQFGtK9gwMzB1e55K39cRzZnkf0lglgSKmh/tQzoXH/TG+72uyLZ7CY2D7YA2rn1Sb6QP7zCzriYG3jsQULGszGptPDVSsC9XR3bqYORf2hgFdIYCB5t8Mh8AXeKRK1EbNyoz+/Z5zWxhExtOaptJzvlCvZq1PHf/xbWX3cHdnwqd3i1+m4CAqOejvtnbwg8Rv09EhxeW8gwUZWarmdmqmR7az7THALFgN5etXpcpkMJ46ojGcD8E1F0UrZGHAkeZGLqbJNm4XArp68dQYPR8pOdOA/qaDiHka9k3KFXoZfF82gO/n+pbw+aabMnquUvUcRTar6e5k/xZT6HDOjMCJ5lArI3KqqAz22a/34Ls1fbIf7RZc31HXf47UssGcPd7ETDqNDPbOPYmmMDFndF4+tTroKi61KUu/2MSeu4ulIHnOC+kvQ6f4bboAPEgK8U5clBUK3d/z3+HoCioA6PqUpe61KUuzSjZpvUA4MlwHn6KAg7dMsdvcpR8SylgNqky90BB11sQaOVlYC8zm88VnF0bnaocmDmHKqYpq/auJjhOU71/rXAtD8RsigyM06OOs7v7D5mzaS0EwLkYpZMpntbLHWhmZuub2bomdqwmOZoKDpRagf2fkT0wS3Z/cg4MQaCpw4FD0kZxWkg4epdCjFqHIQR6YoNIgLc3kDP6AxR06Y9Odg0qlpe1Zy/kJF0OjZfuwNNm1iMcjWOQg/9z4GbEkpLXawQK0syUXf4jSq020t2/jGunIzaJXdz9X6ZT/LjYidbz2ilONkJO3IEIbLMY2pR3RUCrthFoGoDmw3lmtlylsiJoM2P8fRUCZn0czywfDtRWVgJH9Y1vr0jFnrXjrsihfBNwl7t/Hb9fGGX8ikAEN6NAyRmI9SSxbpQ5jCu8ajwam7PGPfcigNOWrhRTiyIAYqdw0DWktIzgZWIUeQmlaVqWcHjEPa9TDo7qndWnTdEBnf02JwLkXeruZ5vZCsB7COA0ADlQTrZSsPI5xE71HHCTmW0d5f0bpdHay8yeQIGjPsgxA9JvZyFH84sRbOiKgHKHANe7+6eV+mhSeixvp/j/oShoc048XxMU5UqjMAA5yo8ws/VdTEitC/flZbyEwFdz/Q7KXAAFtm41s0V9ysBRw1DwekdgSJr/SWK+DkUAuwNcQNTVEdhxSzQmZ/YM4BvPFUFRQ4F9vMKJ2CmVwtycHTgKMdStjZzmY1BwpH98q6PTlPui9C97ewawK9R5e6Q3Doi59AUKrO6DdN067v6yCTi8Mzr1fq27vzapersAAycBrdBcawBHxS2t433fILuk4jcDHU1B6Q4mRqmfENPJQ2juH20CR02oFszKvrcI7N4hAlgrxPVTECBuOZTS6p2wm/ZBwd2LvQBoqSA/Ixtq/vRuKwcnrWlmR1Wp5y/Z38mu+BSti71QKshHzWydaMs0vn9197fcfQu0xiUGrtYtUSZKVbQaAtGk70p2yifAAunfFoC1+HtJBIhbpMK3F+0oQ+vOfQgcjSuN0qmICfJIM1skro91gaxS6tRaAaC5ULDww7j3fsQM1sXFbLY6GudJjyWWpYY+LNgvI9C68EPWbr3RGnIaAsvsAuyN7MyP0lrRkmU2Z3kmwMQhwGVhC+6E5scCVdq4kTTFTs7kE7QX2dsClJp+MLGzbAfsagoAJxt0IPCOu4+I7/s1vv0ONNZHonX/MDR2Fqz28oKeOBCtCyll3/rAKZaB1V0sof2BNZC9sVpcHx/90WgMZe/aCdk9qyBg15MI0L1kvj6aQEddEJDxD8VyiuIRJEX69dpUp+z3V5A9Px4dZliu8Psv1WwXV6D1MmR772RiIEvf22CvpfUme/Q1tL4cZ1MGZGoV9c3b8vXmLNPEVHoqAU4xs33QXne+qgX9d+RN9N1Hm9nxce0WlJL1sbBBdgRuRLb2Ki6w9gcu0NpJXkr92DrmzMdoDM+H9nBrmTUNyFRNWqLMCjIjCiC86cHQCPzk7neh9WY7E3Ao1el7L091XGmtmICYjSZ7zxPvSPpj+Vjz27lYuu8BTjWlzF6SEpilHbK55kd76EaSlbk72g93QODGGePfg0wg15Fob9IG6ekzUHClRZmwK9RzOdR+TyDb6QUXYH0vSqCRteOZDxDAuY9XYNfJytwZHVp5GbjTSgDpmnO+oNO3RLZzs5VnAibi7mPNbG5k+15tZl3i+sT43kuQfbFv2Nzp+ya4+9+jvNax1mwEPG5ma5kORFwItIn17nOayVavy5RJ1v+dEfBtMcSW9FX83h+Ng/0QkKniodOihI21MtLxhwHfeADKXWD98yiBo06L6+mAQlrLGum1ybTBatYv+3sjNKafQOyQbYABZvZnlz+rtZXAUXshJr+KqUaz9uxiSj85ysyuCDsOd7+RcnDUps3xPXWZ9lLo77XN7HAzG2xm3bPbTkZz4E4E4D8dgUsvQWy/t07zitelLnWpSwuKCRT1KorVPuUVUktDbXBU/v/fq9SBUXWpS13qUpeplsKm9Y9oMzoC+DCCW8+iTfzaJpanX8LpvjgCj/x7EmWuiTblg5HzeE1EHX0GAuzM4QJHrYUCYBfUcAgkB/raZtbLzPY0s9ma6jgtbK7a5b/F8x3i721QIHUAYlzqGM+kU129kePwjLheKWC1O0q5cDNyPD4ZTvOaUqjjvsDOVj2wPwbZAztbiQEjOVx/RkHMV4HPkmN3Wkg4zf+Ggk9zA5uYAGV5cAF3f9Pd10Npdzb3AEVVCQitjsZRYnZaA7G6TA/0MaUyAH3v/sD3iG0mPX9kvOdMz1gIgKXQCf0347770Sm2Hu7+ShiP/S1YAzzyLhfrmI29zVC/XOc6cfxvFFB+D7jJS8wz76DxtZkL6NNIzGwHFDhbJJ65GoE+vkDAjxW9xKzSOoJXm7lAVBXFzAwF5c4CBruCxw2Bahejxm6IZWYuxAqzn0cqsxQUSd9ccOgnZoWfEGBgBzP7Cwokb+ElNpUtUGDvn14DABkBhBdRcLEaOOpaBBQ7Mq7/XM3AdwHfHgYeDmf0bWh+HuXug1G6pLVR4Dc5rl9GKQ3eJU4pu058D0FB1HVRAPWKFJgMB+OFCJTyCXLU3IzYEk5w9+HpO4s6K2/bSt9QaKfUZyktTFv3xkw3ZtbOzKbP9FvSba+g0+NrV3Psx5pwGnJkfvI7KHMk6q/pgNvNbDGfMnDUeYh95htvnIp0IeRsvd/F8tPWBcDZHwG59kCAqlm9xJhSBEWdg2jfL59UvSZHsndsjdbaF1EKmC9iLh0HPAIcbiVw1GeuU8MHhzO5ASSTldcTMcq9ATzm7l/GmnIFYpZoAww2s5ORI/5sFHRtSD2T/z/+Tv09XdTjGmQn/ILAUSvFnGqLAKxXodPVV2dl5O26I0oj8Saar6eZUj39BzkEXkDByaNM4Kiap6ELa/ljCAx9G/CsmfWNcjdG6/z2CJD6CAIjn+iTZiMCgU/eRuDzBMhMc7g9YtRc18QOUSZFHRHjcKy7j3EBC/ujtejhmDtpLO5oZnvHu77O2rERuKE5ygxd3dndnzQxBy2b2SkjEGDqmng2Z9f7M9CNDPhdQxZCtsb78R3JHhqDQBmG2E8bSb5eVNC7byCH045mdgdiBdk61rL2iCXQkD7InUxFlpJNEFjuVMQW8kT+Pnc/kGAqRY78Y9H6fFtWzxYts7nKc4EbxiKb/kW0ru6P1sEmSUFPLBJtnf6d9Ebq4yfRun4QsK0Fo13YhN0Q4OfV0NEpKNjV3deJ+1qbQNKDkF7u4+57IIDUCVHukaYUTo3qWdDrwxG49BIXU9wZCAA7yMwa0kqGXuyP7KDTLdi0cp1bRT9tEOVdF3bIdXH9ytCXv5jS1PREYIc7XCxHFdu2IC8ioBuI5XS1TG/PimztfsCfijZroR02MLO+ZjbUxFoyowu8cB7S772tBI7KwZX5etMqbOSBaC05zgLQU80GqCSpDZNua+4yEWj0T2jfeh4C2Z9FKZ3nf1VMaVBxgSjORHbpyQjE396D3Sju+RYF5j8DjjGztlXGys6ZTngBzbGF0bhsMpCpMMd3b4Ey21W5f240lhPYqX22BjyIgLUrFsubhIwH/sEU7HmyMb8r2lP0RGBiEAjy7wh4f6ILzDI/mqfnICbmqimPTcC9U+K/3d29e9TlBHSYo3eM40eADZGu7Obup8fz0yTeYGaG9u73AjN6gEUyu70/YpjpZyWmuXddbMoN9Sz0/1aI6fB5BMpcCM354+L5prC6HoLmygzNXV763ZUm70S0z7k03pN0Yx+01h4PHGjB1phL6M0fke37BOrLK5H+P8+1J/6JybTV6zL1YmYDLPw38e92aO71RoxwyZ+U9rynUAJHHWtxoLKWuPxtr6AxuTiwaf6c61DieWgvfbSZDa9UxhR+4iQlG/tzoj3pRcCh7t4T2YUvAw/FfmIiJXDUX4Bl3P36GmX2QgDfRdHhhS0Qo/xFcd+NyJ5tA5xtAjnW5Xcmhb34zQjMuRLyg55oZh1jDvRE+721kB9mNuCQab2e1aUudalLS4sJFDUa+RC3d/cva9lvXg6OGmiKz/5PSF2x16UudalLXaZasg3HWij1yI8o73tyyieQyY3AGSawzqnx30XhaK5W5uJoo/4scIm7P+nuL7n75sgBeBCRliwct6sDJ3l2AtDM9jalt0iOpz1R8Hsw2gCNBLaKjXRVx2nBOdUPnc5ra2abmk5h40rvkBwUWyFw1CmI6adj1OtQoJeXwA2NGFpMQekLUSB1CwTIGQlcbAK7VJRCHQ9CDoSG011mNqsFSCtrs6MRmO34cDykgOqK6CT/+i4GlBaXLIiSABunoUDKr8iBuEJc/9UyUIjrxPLL8Ww1xpulURD5QS9ndnoHOVnGmYAIv6LA7VpentJmOXRC+DEz29fMrojrbwATzGxbU6qCPPA5A2J6anRqzRsHkVPwdnXgOy8xKNwX794mnNpbWqRZcfe/eZYWqeDUnQ5t7g8HdrMSMOs6BAD5GTkFErNKCi59WeiL4nxYAJ3GftKzFE+esQ24+x3ufhxKDXWSu9+d6uiloH0+VndBJ43PM7O5ImB3ZLTlOghE+EY4dXdDAZrLw/GVvjdnefo1nL3pVOMLyGm/HI3BUYMRw1vZCexCW85tYo7A3S+MQMKmCMA1NHv2KzRWNwNSujDC4dLN3ffNXjFrPH8f2mScawFMMgG6fo6+2jDetS4aV2VgiawNVzazHqa0kishR15NiT7L+3eG9O1eDpC5AgUVbjAxWuACORyL5sojpvRYjRz77v4uCvTtnc3b32qZQ9x9LxegdzCi1r/FzBb2JoKjgF+zvhno7julNs3u+Tbaet6sH9q7Tt8ejAAyWyFmjfaF/khMUft5pDBobjGlTh2EgkzLIiBlGhevozXtIZSa5IT0nJczt+WAiZWQrh2EgH3PxvXW7u4oaLM/Yi/YGumm3l5Ku9OwNlcZl9dn/X1VvGc86u9BlFIxfeUR5M/WjpwZ4GrgGRRYuBIxYFxtSi+SwFGjEJvNKVZIPZV9b647Voj3D0HsdZ0RGOEMMxsS5XYBdqEU8Ngxn+dV1rPUH9+hU96LI2aILeK3+ZHz93gEwPtnhWfTt29qOh37gJn1ztbZRxEQbjQKPOwb7Xw9Oq3eIBX6p7nKTOCVsWGfDAVGm9nScdsrKGiztZmNNLEddEbrx7nABe7+dJW+adDRiC1uAgqctnMxgqX+/Uf81qFaP2T/nM4iRU7U+zV06nggYmTYwMUUNSPqn/7ACHevCITI7JzNo81uyOyXMnH3ExDQbn1gK68CFG/uMpuzvGxeHo8AwysjG+sRLzEi1ZTCODySEoNVUW/cZLKTQWmwxiCb+ZbQG1cioMo57n5TVn5rj9TT2fycE9lwo7wEnP8K9ftQ4EBgP8tS3FTQ6+cgvZ5sS1ysL0MRYOp0KwdHXYj2URsi9sRabbK9mY1Ec2yUC3CfwKTDon2eNbNnUYB8EAKtJea2Bnuwis2xMvCri6VzF2QHXQ90NbMVERPi6ghgNiq1XfYtOTvwvUjX9kAgnJfMbBkXRf8wtDYfYKXgZRlQpDAfZ0GMOG+hQwL94pnJYWjZ0zJW0eYsM+ZJp2ivfRB491IvMAL9N8TMhgKXWykd+PuUxmJbxNSXUs4kJt8P0MGlBdx9ohcC5ma2OQKx3prN9ReQvdMAZIrrTd2PX47a7bZmLLMfsgfaxL8XNzOLW59A68UZpsNe47O1YjzwHWJOawSazcpf2MxWNKV6ncUFKjuaydjzFOq+IwLdXInALGPi/Y8j4MqLyJZ5FM2vY4EB7n52qlulcpGN2hF4JmwNKOm14chvsGL09RfufluqYy3bpQXkG8TO+yWwuJUYttMecCICvM9Nhb2Rl4CPqX9mRcxYZyP/wCnITnsT6fH+2XO1WF3PQiCV55uzPI99f1b/+5DOfhf5iXJw1EFozp1IdtirQhuMAR5HoL8J6EDcxKweTbbVq72jLk0XM1sWrZsNTKku4P8W6DDFYkgHdfDy1LKnIBDTXojZrlr5aU1PNvZhyDe0ODos2JAC2AWOugDZKI18ti0tplR2Y5A/7V0vgdQfQrpsNKX9/URKcc7ENF8JcLgimjOnAt3dvRsCKd8DbG9mZ8Q7bkL6riM65FCX34FYgZXUlE1iGMrU0AnpMpBeHGDy0b/vYlFfF/k+dvRSytppuZ5NsdRYy+tSl7rUBQBTTGMMshl7ufunVvK1tjWzZSo9F7ZndxSXPNoi5vl7l1a//lq3W+tSl7rUpS5TJ2GEz4VOvv4HeN7d10+/xSK7INqQrIWcym8h2u1h+X2FcpdFqRC+Ah51pRvCSgFkzOxV4GN372wBJijUqxMKrjyKAlBvI0aOC4C/oFP6tyLQSj/g1qKDrFi/LIBxCGKbeROxXh3rQbWbOSo6oEDrnCjgcrG7j61UblbntghE9iM6eZ7YEx5DTq1t3X10pX7I6ngwpTRLV8S1HVCasz+gYOJJ6LTZTMghexQCoP09itwF6O9iwqnYR80hhXrPhEAm06fvjutHIafn4wj49upklLmQu38YTo493X2uuH4/Asps5QIxrYVSuxzlcdo0lYX6ZDhyBI4Edo/7BocD9UXkpPokynvFFBztgYI4R+fBrgr13QXNjcOQ43QLNHavAlZF6RTGmEBtJyBQzREpOFehvJ2QMx0UjCXqcaFH7mgTg8uRUdY2HsCyGu3Yyd1fNJ24ugxY3N0/sAgiZ890Asa6+7tNGTMmQMKVaH7+1d1HZXpjMzQ/P0UO71/Qyb7zvHSCqwhw6ILYV5ZCAe0RyKn/tZmtgcbQ6yjt4qPxzOzV5qWZ9UBghZuBG7P5eCLSGbPFXJ8OORWfAl73UpqCWrpkdjS2esaz1yAn8/js/rbFIFmFMneP59sh53t7BAq41KsE3CvUZT+UguRgj/QgUe7F0WbfoaCNIZDq/nHPxkiX/AkF/Z/Myi/q5NZoXP7mygRytol1UBC3F9IRLwA7uPv7xffXaM8DEODtUAR0zPvL0Jr0HHCklwN510LpJ18DbvOMvS1be/b1ZmSKqrL+dkfj/k8o7dfj+Vg0AVMGANsAq7vYpMrKS47EmOODEKvfG9l9lUDBZeO9yj3VxuWl7r5f3NMFsRdsifTAtR7pIit8/3zIGf4IChZ+F9ffRummdkFps36NeT4SMa5cOol2XQPZO7uieTUurs8RbXsy0NMFgKz0fFP0Z2rjLshuaI2CAROR3THES2x9lfp5dxRsezWe647Yc4Zn+nEDpOvWB8ZFmWfWqNNUlxlO6m+yfy/t7m+ZAusDEQPYn9399ei/3RHDwdxonXgfuMzFYFhpneiOAkfXuPtNYXs8iNaX/mi8TAwb7iBk723i7l7ju3sgAMxCKHh0HWJYmB3NlV2RHfhV1HN7xEBZtX/iems01se7+yZV3r2YK8Vu8fo0KbM5yzMF+NqgOTkBpZR6Ea2N/5wMHZz05UHufmET17PhyPZaFNnD93gA5Cvpouy9XZCtsq2731/QlWui8T8jAmUd6qUUXJjAWcNQAP1zZPs/WmiTBZD93gfZfkOz35b3GimMoj2PRWm+2iF78hEzm85LKb7+jICba6Eg4yiPNJ41dHBuc3RANsdF7u4mp+qV0ZbfoP5sGOtV6rkeYtQbiMB1n5lAjvci+6uXu/8n2uJwtLZu6MFMVqG8PaOsMVGHLlHXUz1L91rh2yrtpXZ19xtaqMyFkHP6KwSW7wM84ALctMi+qyliYjhbyN3/akpb/0lcXxLpxIMQeO6o7Jn2yOaeFdkGPxTGcUe03+yJ9uLbZ+2yGprzHwCHufszVepVPAA0DNlTyzVzmYe4+3lhv/RFrI8XEoEEBFZ6Cx1YGGs6CJNsnR29AF7J3rUbWg/mQofG3kIpld8wAZtvQXvJqnueQpvOi1iEngf6ZfZ7roP+iACpKyGfxeteYvSrpdf2QoxDnVz72tz/kvZTh7j7pbXKaU4p9NUiLsAeJhDZrmh+3oz0frLl2qG+Wx4BeL/JypjDy/f8myBb6msURD83rTnRjsOjnItzfZbZvXMgm3Eo0ukfTE158XfSGfu5+2UxrhdCzIrPufsPcV9npOv/GPcmHd4G2UtPVGnTNohRfUcEplkPMW7u4O73Vlnz2wI/Z3X8XQAHfi8S7TtL6JbN0B7kH/HbrGitXAatu4NdYP58fq7u7s8XyszHVHsEbGvnGSO8mZ2N1tbhwNkucHb6bXrPDsRNKzH5kO9BtuDFyIb6Kft9AwRwarS/z+4p6s1uwOXA+u7+WraXmh/pvGXQntXj/sW9wkHeuvz2xMxGIB/OGjF/5kMHVP7u7v1M8YVRwE2IKewk5CM92wUCLJb3X7PDJkcK83tBBNRu7QI9/C6+oS51qUvLiik+9Qzau64Q++p0ILADOtxyI3C8VzmkE2vup67sLr97qTNG1aUudalLXaZIUpAJGthZPkfoYVDalu3Sb2GMf+SiYF8HMRF19RIoqtoJsw8RCGQmYNVwtBPO4pTG7jlgyXBINspv7zo1uh/aTJ+AUqe9hwLOY+L31eKRs4DtzMqZo3Jnl5kdRgSmEYhjHAr6/YIYjbaPd/9kpfRILyNH00CU6q+sjsW2RAGG1ZATJIEw7gOWQACW0SY2hjXy/igEg5IDLYGitkIgm9cR08eKyPm6OQoQHYdOaBN9tDQK2E9LUNQ26ITuaOA+M+uatcuZKKXIBsQJ1VrlZmXuhXLFL4nADe3MbBszuxc50ROz00yIlacjSqFVVpa7T3D3A1CQLrEbnRO/j0NVErFqAAAgAElEQVSn2BK4YVMTCG0gclgNy/qhUjqodVAA6W3EIvMUOrH5GhoHf446tkVjrTsw0quDorojgM0zKHDVBQVoj0FU+gtGva9B46QtcsrWaseewB0RuHoeBe6OinsmhFMV0wmEg4E9YvxPKqi/CAqSDAHO92ASQKn9Wrn7SMQIdxkKRtwM7JEFCFpH/6R67o7G9dwoyLQmcnwcbWKieg4F4g2lKtsivmFsPF8MnvdEfTMaeMszsB4K1H4DXGRm66LT/nvE8wkUVYmFrkM4znGlmPoC9ddxKFh0gZm1MbFw7ADcZWIXadQv8Y4uKNh+PhrDayFddiii0q94QriCzrgQeDwLqiyLxvCJwE7uvj0aSychBryzoi6PxD1/Q3Mqr2cxeL30b7XMrC12QzpySRSQvRPNj9vN7I9ehTmqQnueH+35LTCLmc1rwVATjtaBKHB4uCldCdHPS6M51tMDFGWl065z0cygqKhPA/jRzJaKa7cjHedo7i/vpbR0uAB3J6EUZ41AUfHPlJ50UQQQKnM4eok9bqXQ0WXMc/k9Wfm1xuXeZjY4nrvP3XdF7bm5ByjKKjN6zIGArQ2sCGZ2D9LD+7j728DSZrZABBA28EmDopZH4+gulGp1nJVYNb5Ca93ziM1vxoKOSN8+yTU3tY+LMWB1xOb1DNJbu3mFFKZZHbsgZ/Agd98Y6e72SEcebyWmzceRbtsQMd+dmcqs8N1TXaaJfaavid0nreN3mdlS7v4gAi59BDxlZsu5AvbDEIh4ZxQA7u4lUFSldeJqFLD8LurzPUq/9D0KeF9vAoueFW16bgqQVJKweW9A685IBIY6J/4bh4AcB0cfdUfr7kHF/qk0DpBN8i0wl4m9sJiucDFg30p2UUuUWUWarY7uPt4VfNva3bdAfdUJuDDmYEM65bSWxt+VQFH7ukBRk1rPhsS7D0ZB4aURwKIMFFWlLUEAgY8QgKKMPQ+NseeRPfial4Oi9kMByH2QrXIysmHWK7TJx2iNfg3ZLkdk5b+e6lipYq5A6UXIHhyPAFK4nKGJZeKv7j7A3bu4+3FeGxRVyeY4E4EHjzezBV2ppddE7CJ9UZs3jPUqbbg62vfd4aXgVB9kG58V9W0TbTGM2oH+Tqj/z0YApB1RoP+qqOMJ8d1lLE8VxtDZaC91Q3OXiRzPiRVsqfj+r9A46WI6YJPbemXp21tSwn7/wAWK2hIYZWbbRn3/jsbsBShF5EUm9rAVUYq2rmiP/e9C/RPT2umozdYFbs7s7jKWJ4v0kPFsJcayPmgc7IsOoTRrmS5Q1C5o/3E3AkO/E/PherQ2GPC3sBduRXuqIZ6Boqx8v7cxYna6nRJQdg7E1rauuz+A0nHX3PMUumsOZK8+kesWL2eEfc+VnrO3u5/nVUBRFfTbSATQOjbKzNmxxqG9YGKfm9agqB6IHfa0eP8XaK04HoHirzGl3l0bAdF3RYDnr7MyLkdzNz/1PhsCVs9Dya/UKnTPu2gdH40YU8tAzVFeGgeJ1XWKy4u/y1hiTfvSJxGo41HgKiulUr0f6fl3gfOTDRV7nCeivEZpA+P3ie5+XYy1fsBfEaviVoV5bPHMRASmSmXUQVHNKNEfY81sbqQPHjOzReO3cUjnOQKo9jUFNsdbKW3wC1De39mY6op0zwvIR7Ze9t7D0Tp3MHColTNHTTNQVKHeHyF77Tn03Z2z70z7iYr7++ye9O3Lmnx+M6C5mR/EaeNi1z0erRlLZc+/k+rTjJ9Zl2YWE7B5U8QoPjZ0+6fIt3qtCUj8ANLTByO7YQw6KNrXInNCLk3Zi/8WJBvjOyP/wxjgCTPb+vfyDXWpS11aXFZDmT8mIH9ZiuVMj2yCLxDbelXmYnd/3P9HQFFQZ4yqS13qUpe6TKVYsMhk/14HBQheRCcXE6V6GatMdn9yJlU71T47ChichpzFp7tAWMlJfCUKum5K45OpDe80BdbOQKfr3nb3LeN6Ynb6Awpc/IyCbrek4EvUb2lKecf3Rc6gM4FN3f0FE0hpBAqqne6RdsMU6D4dBcxmdtE+V2vLNdApzn+b2WjgFXffIxyuK1JiNpoXBXj+Bgz1craeA5HDuiHNUmzyDkEOuVPiuxZHm8LZkMPwkWiHmSkxNiWwSIufAgxH34XoNP3biOVjY7SxvSK7ry8KHD2NTuR+VSinLFVB3DcMtckCaKO4AEpVtbG7/y02zTug/jzGy9Pn5WWviJi2PkFtdJa7n5/9vhAaI/PHf08Bd3kNGuZwMC6EABJHeQmUciFis3gYBZbmQsG6AcDJHulnit+OQHW3oXG8o5dOkbaNZ/uiuXSZK+UFpmBzVePWlIP6KQSuugil/BiOnFTD3X1A3DcjCviehRgNRlSqY2GOroSC+Du7+53V7qtSr6JDfyXk7DgfgdG+MwERbkagzYEouP2Dma2OTovt5FmKnEL5qyBQwyUo0JHaMumEGdDJ8O3QPPo+7ju92jdHYGlPlB5oDGIFSCk150LAqAGIqeI1xGB2vrv3rfT9SA9diZhhdnSBcNLvhyBnem93v6hQj2pO98uz5zdCoKAt3P2p7Po8yGm4J5pDT8f1+b2QrqtCnX/TZWY64waU8u3HrC0PRwGibVwMdA2sJbXa0wSW7Y1o2cciHbKvu39rZsei/n4bBUbaoVRrJ3gJKNLip/xCdxhiEhiB2C8SuK8zWsMWAtZ1naytxGJWnI8HouDKqkifX47YVO4oPPcHSqkOr/UqTDDZ/U3p7428AjNEDTujE2KD2NbdHzYBkZentOYuG99yMQJPNZpHFcpM7H7dEQvISu7+o5Wf6L4cBXJX8khtNaVSa52usvbMhgLbn7j7Eaa0A6OQPnkZ9ddf0Xrz2LQs0wQquwfNt2cRC9PBiBHsp7h3c7RmLwSs7RkTWaHM4pqzFkrDnFIqJL2eTsvNjoAL6yDH0WtoXJ5Xqby4NielFCODMr1xLrItLkNz6scIyExATAuJzaMBdJONrVURsPDZeK4HAs70Q+tMAhW2R+tEbwSEe6Xa9zdHmdOgjouh9ewX4F9eYgM5AzEDvojAil+YQOBHIJaLTzJ9fBLSBfuh9FO/Tu46Ual+hXr+AbEgTQC+jbGzHbKT7gf2crFUto+yd0XMe4k1rlU8vzM0ANUJXXMhYvzoicC1+fgdFs/MgU7Dv1CtLSvUf15kV56EgCs7xO9ti2Ox2AbpNybD5qhWRo3ybwMWdfdV4t/3Iz2cGFM3QLbcCT5pVsGtUV9s4OV71CXR/O4M9PUATxbbzspTG17WEmWaQH0/QCngbGLDuhcBKw8G7nUBXLZE+4prvIWD04U6z4js27cQuKO/u98Vvy2GWG73Q/bvK2jePlTNfsl03azoUMSeiL25EsvTP9ABjGcqzL+GtgSuaO4yo3/+iOby3YipuGE/FX3SHjGU7AKsEm30oAcDZAWbaFG0j1sZsQinPl8b2ViGUri/W6VfKs4dEyPd48iuvLbC76ugAP8N0DjIW2iDOSgBnf5j8gkcGe16ubv3jvvaI11yAgIhP1upzi0lJnDz+WjePeWZbyXW416UDtY9i2zvR70EkE868QDEIvKomc2Q9fE2yNewBFoznkj6z0tMT1cCV3nmMzCzO5EeOACx3k1teccgfd079hOLoPTrlyLbanEU2H8ajdHH47nN433Lo73H+4V5mPf56mhMzh5tcVtcX5aSLdQj2nEjtKde0wtsRHVpGTH5bzZDvpVW6DDKe/HbbAhk+UdkZ57hFXythfJ6orlzM7KxN0DjZBvXwYN031nIvrocse19X6G4ZpXCuJwB7Z3SIdO0Pt6H1qSDUZrwnGG7ps/AzPZGPrBt0MGX+5E/6zQXiCbphVXQXqW764BeXX4nYjoctb67d4qxvifyJ//BxZx0OALO9sj2Fxcivb0g8h88/t+p/ZRJYd5shg5XXIz2J2ugOV7VLq9LXery/0tM4OgByA9xkCsrwOvoINd21dZRq8HY/XuWOmNUXepSl7rUZbLEyk8+LgE8b2aXpGsRcNgMoZEHmphUEhK5IiNCwaCf38wWDodMYnIZjk7s9wEGm1mX2LTuh5w1Izw7mWpmHaLMBIqa0xXwPwo5ljc1ndpMzE7t3f1fUefp0Wbij6l+UdUuCBT1E9pkXIBOJ42Odz2HnKMzIuaoA8MJujMKjJEcd1aZZWEjBOqYJX4fBWxgZi8hh9UmERhog06/rg286uWgqEMReGyfzJG/PTrZuiE6qZ7AXu+gYPXXyEGysQkk9l04axNTVatqQYzmEitRYJ/o7n2iHVZHbA6Xmdm+6V53PwsFQ2/1Aigqfk9j4M8ILPcSCmr+5KIg3x2BmsYBm5hOvp+C2mC4l9gB8nGe/v4GjYG10anuvuFIT+/+EI2TNRHbwHZeGxS1BgID3IKozL+3OBHuYqcahkB/b0eb7IbSNQ6K5web2Qr5t7vYTGYHfk0O2fhtImJlehoFMnqagDh4gKIqzU9ToG8bBMK7w92/dTGqnIlOFRxnZg+ZgnWXo4DecK8Aiir0z1qmgORsiGniw7jetnDf+lY9z3VxXC6NbNu7PEBRrlOw26Jg6gGItYZw6M7jVUBRISsgENgdhbZMKcJ+QAGDbVBgdmvPTnVX+ObdEPDvn4jNaTbgGDM7M+5Lp533R3pqPQTU6xvPF/v7l9icLI7Gz7fp3TFvh6EA2yFmNnNWj2J6hnPinVcXvn9upM++jHvT2PwMOeI7IJBhqs8/U/npmpVOlv+my8ykIwr4/tUV6E9lDYuyVgZutGCOSuVUas8IYuyC0q2+j1h0xqD1cZQpxedpaOw8hxzTMyAH9DQDRcX3/Rp64CS0jvU1azgVfj9im/sQnVhewcuZCJLkQZelEaD5KhT4vRqtaWea2YqpD00gkc2Rk3JsEzfbczHp/l5wMpvgPbS2725mD6C5n4LxbZFTcVngp7w/qvWNlZgxTkZAs8VR8CKxt2BKydcOsWh1qFTO5EitdbrSby72u3uBkSaQx20oUHJsrIPnofF+XDhap1mZrrRgW6MT270RkPe8sNfSGvEgsuk+RCdil4XG9lWFPloDMRvdkut1YGKsGWNRwHcFSmxjCRRViXWrB1oPF0VppHO90QcxOuxF6CB3/z6CPA1j3RuDonaJttsGjR0Qc8eFCOB/lpmtYwL0HRnvv9JrA46musyWqGN8fyqzJwIo3ot04t2mwDXufjSa36sAj5oYnm5A7JkfZfr4DmSbn+3ul2X99QcmY52oVL+snjvHt76GdMf5ZramK5X20WjtftHMbkX29zBkR4wrlDsR7V+uyS6/iQ5ffIyYJDewckbOWZFeWdVrgKLMbBMzO8HMrkCshPO5+6dof3MSsK2Z3ZTqYSU2u5p6ZHJsjmpl5PUt/DwKmCfWiLspB6fOimz6edE6XbHMTKZH/Z32Mqm//46C/aAx2gBiytqujKGlJcqMvdkDaI9ylwnwkJjBtkRAjmGU9hl3AzP6NGDsyOrcC+2NPkcsHHMBg6zEQvOPqOO5yHb5BNgss18aseBlOn4cOlhwBZVZnrZEqYwuQzZesS0Tk9dlLVFmVHeBuO/+wh5gYoz38e7+hLvvg4Aiu3p1UNSGCKw1EKUbzdeJpxHooQNKr1rRPq0xN99BwYxtrcA+aQIXJLbuWSvZLFkb5GPybjNb1LXfuzz+29/MnjWzi9CBkcFovzetQVHrovY6FqXnTL6V2Uypvr5EwKET0Tz6GB2+SaCoNplOv9AFitoOONd0aAwXgP94BHa71szWj/b/1QSMexfppuQzaB06dF603o1rpvK6IbBlzhL7MXC9u4+K8bY58kucYiVGzgcRAKSnu79X7PfCHL8P2fj9gFvM7FYTQ+wbCBjzBNLr96G18jSvg6JaRKrM+4nokNzhiGn0fisxR32N5vdHqA9rMnya0kSejg4n7IUOuxkCtt5vOgiT3tsXzfM3fNqDorZFhzdfQ8ywO4UN8zHysyXf8OZWzhxVtr8v6MI/oINs5wAvulikR6CDF7uY2TyxXk2PGErHEfZiXX5X8gOwipldj8CmtwK/hP0L8u/PisY8YVvOgUACS/rvCBSV2Tdp3syE0uVegg4QHIt8n1cgNvoD/lt1rUtd6vLfl0xn3I1s0l+A88zsIxTbagSKin1Fd1O89H8OFAV1YFRd6lKXutRlMqSwaV0Vna54kyx9DYCLCWAzBCLJHTUVg4iFQMvd6NTpY2Z2u4k54CcUaDkRBVDvQc7YrZDD6IJUv6jXYSgtDmbWG3jQlEbrSgQA+AHoZ2IOSNTw7cOZtjJwiCt1Tvru7VBQZx8EauiJAjJXeQl81doFjtoJbabPRM7FQcA5Bcdhl+QEz2Q2BLz5VzjLTkWBs5VRUNBNbCZ7ok39JZ6d7ArZATlwryhc3xj1RQKFJGBHcsAnJ2KX4iarWp81l5jYmlZC/T7EBIJ5EQVTt0HOoItMoBKiTie5+8XxfCUwjyHWglOBGdz9s3AytnUB9zamlPLkOhRoO8Krp/mYLt77gbs/52Ja6ooMyCNMtM1JfnaByz51gZRqgcu+Rc7Gn1HAIQEIO8TffYEtkGN0C3S6KTl2l0QB3lmy705t8RlKLzlzXE+B5H+h+forMoa3yL+32NemU7d9kWOhU9Q3OZXfQvTtJ6Cxu02004E12jGV2ws5KhL47WPgRDOb1bM0WibgwM5ork5fqayCzBL/pfb7OXOYHYGCHJtkbfWvSvXM2nFplALq48L1FMheBpgtnNN3eomRqBIIbn0EwBvg7vuiAMlyyDGzu5kNinL/5Uqftipykqd0o7X6+wtgEdPJUdAJ5NSX7wIzk4FWMn17MAoEnR/BpYlmtp+ZXRy3vogCYgOibyZYCZQ0FumrSuN6VRO7Ab/lMqvoti+jrVLa1glWSjV0IvB3BJB5xMxmsQwokbVnCnwugNIjno1O6g1C4MY9UBDxzphLN8e1TmhDemGUVy3F7FRLUW9m33gKCjbthVLk5OCoo6N9RluWvipJ1g6d0HrzJQrC/xjz4TiUxukBFFw9ErXNxYi55+5qdTQBplNavheRjpus/i7YL3OY2FMwMQV9Fd/XFemIndz91XjnbijAdJVnLCG1JPRDay8Fas8A1jGzp81sNRMQuhcCdt/kwc5Y/O5K39CU99d6LtqyY9RzRAQV16PEBPifuPU7dNp0bQQGaPEys/JaI7tvDmRPrWqlYPxEKwWUH0Rr1FjgtdCB1cBqqb6rICd5WVoMFzjwZxMLSgd3/yHW/EmBxBdGfbkWAiWX6Q1KINgu+UM1ApW7InvsUuBiF0gMFwhlALItDwMeQQHLfRBTREobWEzN3GxltkQdk5gYNS5CoIWuyE5zBDraMco/Do2nb5H9clTorBRI3hwB6j5H82397BWjmbK1p1jPHZFN9BAKgJ+EADs3m1JAXoB0yMsodfZswMH5t+e6CAVwepnZMVHfti6Qak9ke4wAdor9SjeUkvI1D4CZVQZh74HYLjdCgIhDEFBr7bADL0L7qa3NLAE2Gzk7C3M8T+M2WTZHtTIrrG+vI/vtYbT3Wd+VOrxdfPtuiN22UbDSGgdCn0d2/hlm1rHQ3z8CbyDQ2geFcvZB+8v9EBikWcsM26ArAhi8isblYkT/RLt8jMb3p6ifTkDg0rNpQSn09/IIyPoqYjv+AB36mI1ycNTbKAg3AnjZywHjRcDnPGa2hCmtcEcXePgsNJ+KQKYXow2GeCmtYtqPD0Pg88taosysSeZA61SjdBKxj17VBDQAAWtrpRX7Aemf2RH4vmhf3oOAZZ1S+Y06qIKEnfElsl86I3tjofhtdmRj9EZ9UzH9etybj8kxaEy+YGZ/dh36OQXppAmoDedBvpJGh0GmgSyHANHXexwoMh3OuR0d1usRttf1yPbaFqVRTHZDpcDOwsgOP9TE3oSLGW0A6rcRZrZe9Gsa12lP3AodRvoZMX4Nb47y0Hq0lrsPN7O1zWxP5LOZ4GJMTH6NRyj53E4ygfBw97tcYN2K/WNmmyJQ4xB0eG4V5CPbGDjHdHjjdTR+TkAg4N7u3r9amXWZcjH5IZOuXM7MtjCByxdyHah4DPldKoGjuqL0ri8WyiyCJNcDbnT3wSZG1zEopetOyN66N/YnRNn7e8ay1mIfT6NDZNcj++dRBPwcAZxuOpSUfJdfoLWnW3EsesGHGXr6MKS37kV6DMRkej/S/zeY2ekIDDwUgT5farEPrkuzSrbOn4Bsye0QmPOmZIvErR+igyzdTSlIt0bMjx9m+8LfvG4zs9lzOyH2P28if+w/PED0LuD+QASOOt+UvrsudanL/0Px7LBK2KT9kb05G3C1NwYXz4TijkOJvcv/otRT6dWlLnWpS10mW8LpPgil1/oSOcnmRwGSA7L7NkCb2tcQdfgnNcrcAZ2OHoKcLxNQwOFHYE93f9aU0mtf5Oi6CBjsJRrcNmhh74Q2Qi8gGuRTkcNwuJeYGvaK+r+MgjXPxPWGFDfx70T53wltpl9EjoNvED37wQSbjJXAJb+Y2YII7DM/Stv3aCoPMU88jII7g2ODjykFxT7uvpwF002Ucw866T4BBRfbRzsn1qBE+zx7fOdD4STL23aLaJPRyKk1qvB9CyKgxileJY1cS0qMk5+Qg+YhFFg5yN3HmejyU52OcPehTSyzP3LwzQas4+6vWOlE/M8m0FBr5PT+znUqthGoxRSs2xsF9F9094HZbwug4NMc6NTqBVPw7Usjo3QnRIF+bFwvG4uFZ9LmfpZooy7Ap+7+cvy+BgpI3ubuvbLnZkBAhFFAYtRaJQJl1eq3KXKKbgn0cvfr0lwrtNMM6BR0zXQsEQS4D6V9GOo6NT0MsdSMQGPwK1OQvRsKsB7lAgvVlAgq/RWBj04o/LYO8CACnhQBhdXK2wEBILd09/utPN3MPMjR8AjhdCk8mweDWiOwyVLuvquZGQqwjUB66CYEEmvo/2JZ8We1/l43vu0md98je6496u9lkKPk26xOu6Og361oHByD9Nr1wJHuPjTem1JBXYdSQY01gdR2R4GSLT07ORy/7Y+Ad7/lMmulbr0Jbf4Odfcnsz5cDAE4H0ZpWG7Mnkvt2RBYM7Ol0Bqzh7vflOn1DghIcT6ldHvFdDPThCkq6viei4knTz17NAIDXY6CiIlVrhsCm15fpbz5kDN7AvC0u2+Y/dYGgcqOR8CYGVD73OLlYLBiMHV7BC65FTn2vkXrZ5P7u1DHndF8XAiBW28DLnD3d82sH7I7nkcg6A4ouDrUS4DPJvdN9j2zIHajvmgt+QSlEP1bvpZDmSN/NQTmHA885qW0OzXfX2i7Ypl5W17twbpoZoch9oe53f1LEyj1ZGQzPO0KjFZ7R7OUWeVbVkQMDJcSoBaPlKsFfbxJvOe6JpR5SNRrHXd/zspTYi6IgupXeI20xxXK3BMBeh5FIJi3st+WQUyNR3o560OlchZHOuZGZFMkcPXqiO78LXf/xpQ2djGU8uhjV/Cy4rrb3GW2UB07IDD8NyjY/k1c/wuyvXdM611cnxGYyUtptfPxuCFieTkBAfGO8lLaovMQUGCy9UaUPRey+Z5Be4dkN76B9iq7epaW2ASaaZfN3WJb9kL7mZ/RnmJmxK43zAUIWggBRzeLb/kFpXA+rUYd10apIk9DwIEvwkZ4AgUAd3SBCeZETAknohR/DxTKydt0IwRUetzdX4ryHgBubqrNUaXM9VGQ930vHXY4COn3J5CN9W8E8DoWzf/Tq5Q3O1p3ZnQdhmiFmDF6obF6SvR3B3TAZAM0JxNbaWsE7h8EPBe2bkuUOX30zfdoDI4P+/Q0tD5u7eWpHv8MjHP3V1OZlWzr5hQTI7OhvX2fsDuT/bIo2kN8jebW3fHMLJ6lVaxQ5q5ojzofGscvI5bgZ6Od+6I2fBwBk4sHNcr24+5+b0uUWfh9ZUoHnI6FsrV0FrR3+4EsfWoT2vVcBDA7wgNwEL/NjPa/ryM7crJOZZvA6vsivfcZAue1QmCXM7x871q0N2uNyeWAbu7+l+z+GdAhoJTeqsXHZC5mdgryv2yEmB0PRTb7vYhlbjFgOXf/V4yDPeJb7kHpFVOK16J91AcBJC5GevbduN4dsSn9ETFPPVylXs1ensu/szvyef0HMZ2A0gc/a+V+jdzn1tknkQrFzBKD51ZeDs7fAtnFF7n74dn16bL1fpr2+f+ymFm3ZNfGv3dHNur0yE/1HdLDN0d/b4z0yE9ovXi3UF5Disbs2kyx7ndD+55XEdDqNeRv+950WOXMeKSHR0rFaSlmZijl8fXoUGmysT5DbGu7eilwuyDwJNJZFX2XMSdnRAdu50G26NLxW77nPRXpk8XRHuV2j7Rjv6exXkG3/27q3lxiAvw9j2IJSyCfwyUeh1zinlsR09p3aJ08o5Zd/VsTU5rLBdHeZXysE6sioODKxGFyL88qsSiyl/ahij+9OH7qUpe6/G+IFVLgFfbPXdF+uxXKVHFPXJ8F2QQ9kc/s5cYl/29IHRhVl7rUpS51mSyJQNWTyOi+2N2/jkBJb+ScusDdD8ru3wxR055bKKchAIrYcm5HoIbTvHRq7mnk7NrSg8HJdEK5DwpeDgZOjzqk8qZHbCsjUZqa05Hz+mcrD4DtTTirgYEebC9Vvjk3HhZAzoibkEPuMLSB/nfx2yp9b/x9AnJenosCrh+aArK7uPsK4fho5WJGmAsxxXRCJ0E+9GCfqhBk6eAKcPdApwxzh1a3aOOHEL3u84V+mDH/hv+GmFLhjESppG6Ja5shcNt7KJg6fBJl5O18CNoQO7C3u78VbZvSLjQEj72Q0jGud0cBtMfQ6c9FgKfcfYvsngWQA3FBlLqlgTktuycfP7MgZ9e36NTnRFPg9DgEPhrmAeopGrFVvncOBGqbH1jPlXJkJjRHTkGO4EEouLMaOq26I3IcD0HAqLdrbYYjgHUCOo26qSvImByreXtXbJf134kAACAASURBVMesnG0QyGAlFDx6Ka63Q+nGNkYOu2fie9ZAgdeBqXygdTaHpyfSuWTvHo5ANAcBN7hS6k2HAlnHAtt6If1MjbZdAM3zxZHjOM2Z6dEJ5DMR0PDOGmWsjMZfx/jux1CQ5l0UQP/KFMi8Dzlo7vUMXJraJ3PedUQ6a25K/d0R6d7jUdB2CAq0rop05GHJwZeVuSsCXHi0y5YIdLmvu19pATowBXZHIIfhJ0h/zIdOpw70LEiZlb3ib7nMwnycHwUaWiEQ63hTYP3uaOfh7n5XtHFnNLZ29SzwGfpzV+Scujl7z9KIQWI/d780H78x5r9EgYd+xe+dFmJm66E1YThyChbBUQNQm58f9Xyj8Hw18ONWCMDUEc2bRkBEE2PiRODfXmLkqbRu9kSpuc4H7vMSUG2yx1A8t2V889XIyd4JnaD+BNjN3f8W7XIAsj2eB15wpUGZIiezlYOjjkHAjA8RWPwny0DV2TO9UL/8isASD6Dg61/i92o6Nh/bfRFY6MhabRm/bYDYIl5GAJ8lEWDiAHe/odq3N1eZhXp3QECEsdnvm1MCR53qOuWWAngLeKSsrVbPQp1XR+vNOARafCN7bw9kM+7rBaDIpMTMDkQ23bWIhe95E+NYt2ifbd195CTKWA3ZQJu6+4uhn4ahtXcOBNb7s1c4ZFBjTDRrmVNbHgL5vOZZ0Dbs+jeAc73EQHIfsrG7uNjb1gUmehxkKNYxdMIvmT2yK7KrvkNsO4/EPTcgAMsk9UYFm3Bp4Fm07l+f1XPFqOcYE9POd146tFHNvtwc2Y4DUCBwAjq5fhayBw730r5nB6QLxnocfKihfw9E+qubl06/P0ApCP+SRYDbzOYGFqplE4UuGozAVje7+8Mxrg9jMmyOCmVejOz62dFaMRqlffqbiel3X2SnTkDppK/1LKUlAucnnbEDYnhaHAHUbog6/RutRcm2vB+BTXsA/TwYObN6tQKmcwH2m6XMKHf6KLM7AqOBdMTt2XtXi7ZbFujqFfakU7L+NEUK+jftnycgINzOmR7OwVFPob3w/7F33uFSFUkb/xFFgjnnVdcy5xxZIwoGzGlFTJjFiAoqKqJiAkRRFHNYs64Bc3ZVzLqrW+oaPtOac1b4/nirmZ7DzNx7YS4revt5fOSeOadOd5/u6gpvVfXz0NeKtLJr26LAp6FIvp8f2DnGvLwLBDg9AjLtDzzh7t0a6HPdaVZ5z+kIhLM/Wv9fBN1N4919vRGA3Ize8uhsXwjZS0402VBWQ0D0Pby8tGZT+jotcooeiOSXf6Gy0HnWoPE+sZ7b0JpcEslyj2XP1dT36tFqnGkzI11qKZTF9WWgV+h76yJe9RcvBY/MhLLmzYcC7WoByw9G+7wIZtoayQaneAZwbmj8TaVXpBlr41qki96M+M4RcetWcQbn4KhqNrec5vQusON9SNZa1cp1+fYIRNwdBTG83Vzf+I/eYv9dj3SsfU02g4dRdoY7kW1pB6T7Huruw0JW7YrWVHsUdPVVRnMVJG/f4bIx7INsL7t5CaS9GlpTeyUdzcx2QMCJVGq6pr2tOZopa+a1CMD4YFxLsuCmwdfnAD7yRtguMz5lSDZfEZURPD5+z3XezgjI/INH6cDmOnOboxX2eDek266I7IAPufsL/8v+Talmqq4wkysg9ka0d45F4KgcALozkqs/9lI51qnie5tZf+BBd38sky/bojPxXHTW7YDO//y8XxABIB4v7u/C+pkdBcG9Wen3Jva1BWzV0lra/6CZgsgOcPdT4u9a4KjNkT1iAjjKVJnhrwiI/9yUH8GUay3AqJbW0lpaS2tpTWphdLkRWM8j81BcnxeBpXZAGSYOr/BsK2DFZITPFNY5UZRkPy9l27iDkoH4BTNbwUtAis4ICDAQOdw+Qkr/+i4n+VoIvPVT/H+fzBiVZxnYDTl0/gn09PLU+rmwkIzBuQI9Y8zDUtGX68PRsDmKUDnfI9Kpyjweg7InDI//74wiv9Zv8CNQXdEIw+gZyIF/sqv0SPotGWDuAQZUcob8LxUYK2W22trdbwwj7mHIKHuYu3/USDq5ge8wBBJ6HUXFvdKQ4hvvbYWUyw+QoNgRzemxKPJ7vez+eRHY5SQvRK0V1tH2yABtQfcpZOj60gQKOxoZ289094GNHGsrZPw4FTlneoQxYLagNQiVXxuPgAhD3H2wmR2FIgC6IbBd6uOyKMV0exRZl8rDdQ1aKwMbufsDTTEghCPhSmTM+wJYzhXNmxT6NsgJtR7a92OBO73kfJwt//7hFNkPOfteRutmFAKdnYOyydwG/AcZunZFAMlTGtPf7D1bIWe+oYjjHxBoa8+gVxGAEc+mspdbesmZuShyxh7kJbBFcpw7cv5dHNdn9PIItyXc/V+mSO4zKP/ec8SYj0ZOxp9QRP+5mUJUjWcchIywPyHQ5JC4npynbZBToRvid8+hTHkXxH2VABO/eZqm0q1HoPU+HkXY7xOGpu7xTWZAa+hH5PQ9wbPI+wbmdRbkoJkRGaQTsK4VAhA8BlzgFcCUU6KZgDrJqTsKnds/WmSrC8PYE8gwfy0CA3yRPV8LTLkJcB1ynh6RDLL5+Vu4v5IzdWkEULsYOZS+i+vtXCVo0vfeGJ0RDX3vOVBJTdD5l7Id9AEOQc73vd393aA9rmBQzM+VJhlPreRYngFlCtgLZUTZ2kulbRPthVDU/1DEB2dBvNMRwCMZcKtmGbNS1pUD3P2cGnOZZLDWCIC8I+JvnyPQdlV+WS+ahX5vgzJ8LI5AE/cisPDXIXteiLJhXImAhZcix3SZE7ChZip7eQg65wei/f/nuDbQI4tXU1vQHRpjvQtFqqdyyCc04vnFkIz2JvBvBNgZh+SOmdAZPMzlTG/UGqw3zcmhZwJH34DklWFJ5jaBl59Chv4DzOw2So6wF0wg5eNR1tYLKvGQ7B3TZHs7B0f1d4F62iKZfUMaf/ZsgBzxiyC+vUfIqLcHjdTPRRFY6CKPTLEV+pd4wSgEutmywFd3RID8AV4lgr3WdzKzS4DV3X2R+PuO6GOP6OPaCNh9VNqzNcbdHTlPjwWu9MjQFb/NjkD2R6EzrqrMUdjjMyEgy2jkqPwayarHo324ugsUOR/KojUOZUz6oFI/4xy/GMnrXyHZtS+SyXdDYMp9kHNsZcTnr/ASyKrS2dMcNFuhDAUXIjB2H88AnXHPSghwv1J8rwdpxlY8j01G9F+Qw70nyv64iiubSBEctSDa/7u7++U13jEDcsw+h9Z0Cnwai7Ihb+6lbFgzIn78z+LcNDfNGu9aEOkAOyPAwjvo+62PdL4mZ5kwZahKYNJXkV7xHQIyDIp7NvNCeeEm0G+LMjqVyS9obf3qAcb/La7J7L05z1gIycztULbcN6Lv3YB3vJSNsB0Che2C1sBbGb1OwHeJH6Fypxsi2eRltN/fjzVeDcy0kLv/p0ofN5xcehXmoGuMezsENk2ZcnZAul4nBCB5Or55Kuc3Uf+ya7vH/KyLbHZ7Aku4+3uWZao2Od4PBRb3zDbW0urbTCCO/qjs12XIlrEdkmsTOGfuuGdPZOd8KNb6RggAcllGrxUCWF+LQNYfIpn0cCRzJftnkjNWdPdnQ+fpj2S4IV4jw39zNlOwxQhgQVem2THIJpRkrJUQeOtwzzJlVZI1KtD+M5Jdp0P20VFxfYJtt3D/VAnoiDk8E+mPX6MM8a8Dx3gWvPJ7blYeCH0TAnlOBI4qPNNsoCirEejalHVWQe/fBJ15+7j7m1YCR12M5OddUYbzXGZuKLvnTmiPzYcyy12Aym/+1NQ9kcmLbVHQwTeNfbaltbSWNnkt5LgTgRHufmBcaww4ajzwGZL71/TfOSgKWoBRLa2ltbSW1tJqtCpGlQReScr0BAOcKavHWGS8Gu7ufQvPpnIjE4xvYaxbDEUL93D3uyoown9C0bqneglM0BkZK+dADrKdkBN2W1TOYw1krL8g+rS/Z7XDveSE3BsZk86vNO5QOjaO/vwTRVR6/DYTUrKXRo7lz5AB8ajGONZM5d5OQA7M+VAU+0nIsNsJOePHx2/7e+OBQQsgMNDByMBxZPbblshg8jAyKP+jIpH/UTOVTpkXOWPaIbDMIZkBo1FKWeEbp4hhR8amlyvcn3/z9sgZcxKKmE7RdNMjJXMwij7OwVENRa3tiBTV0SiKdwmkqLdBhsevzGwRVJphO7R/Di/QqAbASOt9KNoP3ZMQa2azxnt+RDXnx4Zh6e8o09l+GZ1dkSHtu6DzLQLqHBS/rx1zsjwCLFZ0/NWYgxWRcW4bapQNtMyxGX+fgRySR7iAbVsjfnAryryydvT3EfR9xqEMdnshA9grCLiY0qI3uIYK62E95BTZDH2vF1E2qlrlv2ZGvOdplA4+gQaWj2u93f1SU+TnHkS6by+ljV8KGa8fdzlgd0dzvx4yuq+BHCtzEt87eOmsKLPRJ8CHXsgMV2mMZrYnAgCtjozlJ3qAdSp8m1mQk/LnSnSnIprbEZld0PmwIFqXKaL8ZlNmmbWRs+Nd4GGPko6VjLCmMnLToii7l+Lajoi/P4PW/AMmR10PZPzd3puYmaYeLVuzXRB4a1HkBD7TS6UyFkUAhvdRNq0zs+fzcRvKajQzKvmW5nwLtE8fQICe54vPNtDHbdEa7+6F9M0VvucMKPtUte+9NXLytEOg5QusHOh8FOK9W7n7nTV47fTIuZaeM7TPvijeW+HZNOcpi0Uf4GV3Xye7Z0UEpOmGIrlTWbpl0Zn9OgKQ3xPXK63DAxGAcE93v6ixc2lyqCyFstF95e5PVprL7Lm60jSBWEajNfMmMsgsjRzRG7r7t6ZsECOQ83E8Kkc8qKG5L/Yr/v1XFAnXFWW7eRm4xANkNalGcjPbC5W9+QTJCs+4+yM1xr0tgKtMyjTo7NoOndlPoXNvnAmI8ggCMJ5PjVZvmvWkZ4pATBlbz3b3D6yUyWllBBqfG9jAlT2oDbA7Aq0d6DVKHJqAdWugsyHtnYkyR2X3F/dzte/zNxT0cTsq+exIFlgM6S0vxhj2RPt6b88CR6r09V5gWndfI7075nicmV2K9IEVG5L7izwg1t9JCNhyBMpUuXnICKmk55+QXP1hDbptkL42F8qS+HHWz/FeAj8mGfNjGpY5NkWZfTYB9vOIRjc5eVdFcv8z7r5prTFm1/+Ezq8bkZyVADKvoLW5pZc7T2dG2SC+rdHHutPM7u2IZJdRwFsoy81rhXtWQQCKcz30nuZo8Z75UUaBD0K+WhWt4WmQLrAnAjj3Cf47wcnlCkKq6WCL98yDZOaDPABUJuBjyrL2opmtjkAkb1k5OKPaOVx3mg2MYRYEJtwVAYieA+7yACRMyllhygxzNpI5b6Rc/l8PBTBNcGZMSivIBR2RLHqJl5dq/M2syUrN5OQ/AQHEOyKd73wvZRZMssbcSFYfhmwbFbPdhEzSC8kRz6BSnksgGf8sVA74F1MgxmkIfD0kn5MKfGjXetKLazOhNT4Xyl67tpeXRdoBnWvtUbbxp6rQydfAKoi3jUDyvsXf7yDATVp/0yDn2BooaLDqOdHSJr1l59o8SP/YBsm197v7tlYO7lgMZQx7DtjVFQxUVjY7+3dnZD9I2QsHoDWXr9npEED5ewTImgXZDA9w90uLNJt7DrK/F0Lrfhiy+6yMsl8+G+uyDwJk7+kTZzHO52AlZEucDwWj/dcFuF4MyRnTIpBisi1OFZmCGmomMPvFyF5+hskG+B4KSHwbyX2P/C/7OKWaVQZHDUCBKhXBUVOgHzsje9/3SP+fJPBzRnsw2hMPom/7dsjuS6OMzYkXPF5B1q1kP9gE+TUuRfLAX5HdbQQKbPqxsXwhkxM7o/38NSqH/cnkjLmltbSW1rgW+uzhKEDxSg+fj00Mjsp5VHfkv+iAMq/+ITINtv5fd6CltbSW1tJa2m+3ZYJyT1MJGpDC6sBgM5vbFX2UzpNWCIQwCtjZVLM2b6+hKPpBYbxP5WNeR0L96WZ2P3I2bOECRbVHTsJpkOE99e0bZPz6K4rQPhc5zK9DmR7uRxljeiPF+hxTSvLkeNjIzFZx9/OSAycMZvm4eyGHyEyo9NX6wAMm0AKhWG2Bsmr0RY7XI70BUFT2nkEoguVAZID6HEVvrosiSddAhupnGnKO5M0VJTkMGUGPMLNTs99uRA6trqiE4W+iJacQMjw7ys60GcoMM8EQ21gjTXzj5Gg6Dc3H0sClJmBC8f48Y8UtyGC0EwLcpHu+RCU0jgJWMLNHst+SU6SVmW1hyoKWxjYXyhJyOlof57j7vkhJHIcMn7j7qyiCcwxab/n85Irr0ma2uZltaWbLhjD7CALDfQDcbgLg4O4fu/slrtJFr5vZAQgY90QmILcKZfjs6OMGyCA1FDjAzI4IWg+jKNWXgHvMbJ60lot9rfJNnkalA24BDjMB1nBFIbXNnvupQOMzZNDobyrzsSGKgNjJBb5cAxn21or+4+5nIVDL4sA2XgJFzZ8MAZX6mPV1fLZ+7nP33ggQZsgxVgaKSs/EtW7IYL0IcI9nWRlQ9qGbgHPN7FwU1XcK8EZmlG6FjOvrIT47Aikpg4DX4z2PoWw57xPf293HufuH7n6xu9/qWYYiL4EBJow79dfdL4g9MhBlaDk2++Y/xfpYMf7+xEtO5FZeAj/85mmmf8f+7xtzerS7X+3KArUDAq2NMrN53X2sC3i1EcqKcEn2zcfnfTMBoP6OyoY9Ymb3m9lKroxnR6Mz7VYzewCdS+cgo2yzg6LyuTSzmYI3TWdmnWPNbYkyP+yDeBsmJ//qyBG1rwcoqsIZuQsCC9yN1vWzZra9KdvZzQio3BWd+cvnzzaiv4bO/ffj+gS9NdbIEtmZ/kWl7521j1FpzuWRMxhX1qn28e+TERB0s2p9NGVIOh7xnwSAuQuBOBps6UyKc2QIAjq9ktFfIq4dgcoyJmBHexeobE2UYWZw8JjEpyqBovq4+0VNmMulUEmtF939Hq8NYGoOmgsiOe4UBH453t2TzNkFAUAJuW4rdB5s4qXsGo2yaRTkgstRZP1yKOPYZj6ZoKigOwrJL7Og8rtv5+/P7zUB+vYE/mZmW7sAwWejNbaFux8Wfe4U16ZBZ0jVVm+a9aJnpXI/fZCOcCRwYKZH7I+AJysjgOa/Q3bqjdb0BV4bFNUGATwPRHLvzPG+K9DZ2QU42QSuS+2rWnzD5FTqiZwp97r0jkMQH9kAOShfjDnaBe3ri708m27Of6fJyL8HLBhjBJVZTe9/BznuJspiUKSZWsazXkZAv9vQ2l7PBYpqH2PZDWXjbMjZ3QHpIe96gKLiPXkmvVlD5riomsyR9XlOBHA4DTmGEtCqTXyDJ1EmuOWCH1QaW7FNh/j5C14CMN2B5m5XV2aZhTM6n3omqxdljXrRLIx7UzMbaXISfYdkl33QWh2R0wp6TyIg6KiMRqvC/ztWmY+mtIXRfPc2s0MQ8OUFoK2r3NLhyMG6bvSzk5dK0v8SfUkya+u8f4X2M3L2Txf3pLJICVC4IHLsrRy0JwDcvbqsPlk0mzpRIU+ej/jbCiiwYZJBUUHzOQREeBtlTNsp+/mfyDbQJ+T/SWqZXNAq1l4fd3/UzLpP7pqcEs0UyDUKOXh7xH//BE4ys5Ojb+NMQLLRSD4b7AGKqrJ2VkVyxglIl1sDyeeLIx2yS9AdhvT23VFW1QnNy4Ecq9WTXtY+R7aaxxG4fIN0hsYzVyM9eDxwlylL9EQtWwOLIVDfA8BIF5j/aaQzLwA8Y7KLdUd7J5WjbwFFNUPL5XZ3fxeB6K+Pn+eJ679mOsorSF9YGGX1K1s3Oa8MOeUdBN5ug2xMM2Tvbo14d19ktz0DyQUneoCiivTr2Srp91n7CO35vsj2u7oLFNUJ6egDUcDevwrP5Wu9N9JLh6G9+SBwipktHPO4NQoAPMRUtnci2XxqbGHb2B7JoGeEzvomArgPQIDN4aaqClN1a4zOl+SV+HdPBCw8BTioIIs3W4t9ngAH1yP5dytkr70qzuF2k0IXwBVgOgwFEp1tZgvE+15EAODPERBwnSKNCvaDOVCA25kIdH4qOi9fif4eagpcbdCGGnLRL6bguydQ6eB/ITtLS2tpLa2Zmyn4800UhPY34K9mdg6U88b0dzwzo7vfjkDaK/kfBBQFLcColtbSWlpLa2lVWmaAnQcZT38CcKXyvgJFZp5gAhr8airhtiKK5huNzpjlcpquKJVjkKFnkCkLCuFouRZleFoFOcaeDUPPzuhQnxDlmCkEP4Zy9C0y7oxChvzrQyD4ETkue1NSGrqbnLljYgx5/3Jj18bx3uPdfSfk8JgHGRceM2XHwt2/cjnw1gbW9VJ5p4kMxSbwRwdkqEjvHIQcobOiiPlt3X0ld1/B3VcF1grlpCrgpFJz9/9Dys1w4HArB0fdACzsclz/JpqXwCVvuHsqhbWWlxzyTZZZvNwJeiYCI5zrWXmyvJmyilyOsop8ib7JLiaHdaL5NQJHHQ+sEYbbvI1GRtxpsz7PiCLXHskcLbcig2mPcACuYCor9zJyvowsjCUprruiNX0uclo8YWZHA51dZe8SWOYmCyBCtm7+hBw+N4WRIAd59ETGo4vc/VV3fxs54l9HRvPUj0eQgWVbd3+3aNQqKNmrmtnOZnaYmW0QRvjnkZPyVuAYK4GjfkEGOtx9fMHgdxIyku2InJ7LAy+6SvAlJ85AtKe3QkZpgE9cIIQvoj8HAS+Z2WqNUeyLhjJ3fzuMxAmw0AqBc+ZOf4ex5STkZOiEQGQJaJLAdWciQ8WWCHxyjGfRzTH+51BWjmnj/6PdfUTwvDZeAkf1pfr3nkCvwrdZzMxWMbPNkoEoFKBBRKlNMzs0aG0NPGklcOwEulMLzcK/kwP9PS+VcQQBMk9Ejv3DzKx16kuBRtHxuT3ai48gXn4asc/MbJNwJu2OjM/tkfNxL28iqGNSWmEutwfuRCCoNxEAbO3gSVuirI37mNm/UQaDcxCwrzh/ifaWyJl6EXLqrYpAjKOBTWKd3ooU7I2RQXaWhvqcvWMsOm83ir/zs3RWBFD4S3H+KvCk1q7yASujkjW7xfmeAHWtTU77r8nA1/kcxj8/RGDFc8xsGOLBZ6F109g2PtbbNghofXx6Rxj6z0ARzhuYskQB/Bx87kUEAl0KASvny8drKp93JnJ+XmgCVDV2LvsCG+aGkqBdBhxoDprRZkMA9LuzM/KW+G1nd3/dzBYPo+wr7v6oR7ZLa6JjOn+/u3/v7v9ylbNJAK9KwLomtdjzByPn4jFmZlXu+wKBaG8FrjWzbd39l5iDdG4thYBW5wLneZbxaErQrBe90BOSPLYPyqrVD9jfBET9EAETX0fAptcRvxqASpieEe+qBrz+Fa3/I1EJ5qOsBI66Ep0ZHYCzTGWPKp0NE1rIg/2Q7PaoB1ARgRePi7GfFev0SgT6HuxygCd5oFhq6QgzSw6Ks5CsOSren0rctEfn/qtAm+J4CzQ3QgEl55rZ4WbW0aUnHYhAI+8Dy5pKMvVHPP1sL2XZqSUDjUeyzgJWIZgg1nQ/U4baslacy7j2ATpfk5Oke3pP7OGf0Nk4K4pyn6hl417HlFFlhhhnKtU6BoEcN3f3581sSeAKU/aIirSag2Y2R+1QxP32wJDg4z+gdZ300nNMWTJyOh/F8wnsvY6ZdQn5qBfQ1+QonuQWe+IEJDsPIbLsxJmY5OqD0b7vBgyzAEelsWZzWMyYuqSVAH8/IKDk9mb2ENK7N3YFPrVBssFyKLtTWamZ5qA5mXP2dczLz9m1ST4rXOXsD0HZhY6IPdwqeOFwxMv2MrMhTZETi/s6+06/xprsxWSsyUkcbpNayPsJ4HC6uz/o7ncguWIUcLAp6yMowOh5VG4ulfFs7eXyaur3ykiWuz7j6SPQNxjq7p+b7DS4AmyWc/cHKvSvrvSKLfr+JAq4ewft0eXy+Xf3axCg5gB3/6gS342+Loac0n8HpvGwgcTeGIHW2ZdIh74e2RGO8xJQfIp88z9Sy/jaHCHX/h+yHVwHrGpmo+O+lOluWgR4/gTJB1VpRnsJ7fEBSA49NulfHuDmkNNWQfxzbVfg0ZTUSdczs2PN7OLgfe1cNrbLEIilHQKzH4P44VCUjTQFplUKzNsYAfdPRmdCh6C3B7CvmXVwBSFujWSc4+NMn+pb7OsHgPvjW1+DbOuHhU4yCgE2h4fsONU1U9a7Mvturebl4KhtkT3zY8+y0jdny9b6KQhUvUP8/0/IbtQHBejUbLV4sKtM+6UoO+xwK4GjXkKZ838mAsIyegmwm+snjyJ58KOQA9u7QJZbovNjP3TuTlPtrMn6NC7O8DFID9kdAfa+N7N2NglgsJbW0lpa7WZmHeMsHQ1cbAqefxvpelehpBXnQpk+kJ5dGOl5J6PymzWD8H5vrQUY1dJ+M63eSpcVDPH1bvXqb72VDzPrkBldm6XVY+zNMO66f+/mmst6rvV6j9vMBprK3eUKdlskVOcRw0l5TxmUzqFUluj+MPZ9TijvYdxN3/xd4CHkQB1uAinhKq13HjIAXWBmV8Y7TkQliCY4GwrOjHEo0vobZDgahRT9BI76AQFJeiED1rVIaT7GK0Tkxr+7oGjwy11RN0uhFOnXICP3tzHuxbN+PO2KRJrgWCsYALZADuPnkVOzZ/bs6UgZOQoZRxeKZ1oTzsbiuBvTfGJw1BnZz29m7/jNNCs5zt5x9//GtUl2VHo5OOpEd7840Sy8dwZUTus4VOZjc5QlYS1gYOFbf4O+5XKuDFyJxnYo8renq9RGiuBsj5wtP8Z9tyND1Gau6GZDxt41gn5yNhb72B0ZMYcjZ/QqyJE+CIGGoJRJ6EvgUTObNTOKPwOc7O6HBL1UgqA9AhR+4KVyKbcjgNHWLpDiRqZsWrj7ve5+faJRmO88Yi85NQchw9SYMEo9g4T0e4AjzezI9K0oaS4c6QAAIABJREFUtOzbDUfOzr8iYFSKovwl2+dHxJyvlfcl2zefo3V/qZmt6o0AR1VqGb2lEMAhRXeOD2PLJsjAMD8y6qUI+wSOegyBnZZBwLih+VizPn2FHIQfAGtagPC8VMokzxz1FYXvXZjHnBfthLL73ICMj3eaMpC1dgGyBqFvdxriVxcjgOhtUyPNCu0XZGCeozCf41zAvzeBeb08M0bexzaprybw7sHASKC/u58f5+MGyFky1BSBc4+7Hwes4+77uvvfgkazpu/P5nJHtAfHogxWl6J9cpmZdXOBHLZH0ZT/jvnZ10tA3/x8bBVn5K5B51x3H+MC7nyNMqE86yUHaoo+usqblkL9OfR9zzYBzFJEU0fE/zYBPm9o/tIZ4MpYtx6KiDzJVIoExDP+gjI/vVSBROeg8yECf3dAIJALgVEegIaGWlrbMY5FgZtdJYwWyHjVMQg83hFlyFssfktr9CXEq4fE+Z5o74zOhQSK6o5Ag0sFX2nsXNZyTNeFZowz0VwiaHVCAOJ09t2OHNubxhm5DDojl6hAa6JseA21Svu6wnkxWfJ6yKwHI4PwmhXO83S2jUXn4RiUlWmr1A9TOaiTUTT/AM/KB1Xq3+TSbM4+ZnJxclLsi+T1fshhNbe7/xvtsX5I3h6CgHEpOKB18dvlMogrc885CAR0MBODo06jBMJrqK2JQAurktnMXM6nixH/fALxyieBPby8vNP4bJ3viiI250HAWxDw6SRgXTN7yMy6mbJZ7Y3kg6tcmWrKxlugeSvSw7ojkOULJuD3tSjbyDikV92EMv8cUexjtcG7Msk8GvOwnoVzP55th7LnrEYVJ23e0hoIeXkIAh1dYGYbxzmb5FBD8s4PNWj9FTnv/4KyY72JAGq3IadfyjY8DYqSbx3zUKt/zUGzlSsT1t4oS+q2wBnBx3+kBERZLuZikQpkWiFZ4gb0DfZFa+8zlPFictsLSMdvBXQ2lcJMcnUCR/VF62dLZGhvW2WsuaxxPco8NIsrGKAf0r/XQllz/2UCz/4VyRyjPSvv1pw0K/W92m/VWtavyabnspccioLP5sp+MiSrvoZ0n0aVjC3M2/6mMsH5+yZrTdbiGXVuHZCj9//c/RszaxNjex0BcD9C8hzIpjTQFfSV67Y53079NqCdRznMkDVWQrrY82a2Acok0y6eSwDJ1vWmF//PZesZzGwuM+ts0mt/IUqvI533EmDF/Bl3vzTOtlr2nE9RBrIvUJbCebN5+inodkXnyLqI3w3J7plS3/wP1UyZX59GgRDtvQSOSln3rzWzhU1l3XdC3+dmj+zSVWj2NLNT3P2tkANGIHnoQCS/z5TduzrSdV/xUlnbyQ4MqNUy3tQL8fRVEd/rizKRtw/9/gSUpcYQn2qDdNKT4vmJgI+x/jcG7kNlg/4ZPy+C5K2LXSUIO7hKWW6JMuOk+6balslYF7n7XSjori2yTSQd9TNkB5uFLIPY1NJMwY13mdneMMngqA3dfZKzME5KC9l2dbTen4qzdg5kt70CuKPGs2l86bzYxMzOQoF3e1kJKHYM5eCo+UP3fgFlfrkko3k+cKqVg5OmRetkLmR/SIFj7b2UWfxFJKsMaMy8IxvnbIinvRFyZTfEk8ZYlGifHD27pbW0lqZmssv+A+lAa6EMq4+Z2Y7u/j6y01wN7GQlcNTPIdsuiJJBpJJ7fziZr9X48X+4Mbe0OjQr1KWcTFqtkbA7mysTTT1odkaGwAfR5v5+Mum1R6lrZwP+7eXO+knaRJnS3ikMuen65NDsjBjie+6+8aTQqECzrmNvxnHX7XtnNOs6lxntaevYx3qu8wVRloj5gX285LhdAjlDVnP398KAliKbd0GRpOugKO8r3X1UGIKuRvWuL8vesTtyyr6HjMprA98gY30qdbU+MtAsCzyFlIg74re0fqqulxAMjkCglicRsCOVypgbORHedvcHc5rZ8x1Cce6FDJL/RhE4zyKl/HszOxMp8T+irEZPNzC3uyAw1k0oo9YmKCtEPw+gTtx3FFIgLkSRj3VJORtGsH7I2bIWQoI3mwAwOfu5Eq3078mlmfoV507utOqOAFHTIcDcddkzOyJl85b47ZUKdNO67I0M8uuiiKCL0X5qjbLJPIAcYwZ0dzl826Fovu3Rvnu2xhxchozFfVxlHDGzO4NeT1c2pgTcWBuYPe3janOR/f13lMFqfbROl0VO6RfC2TAQGVUHN7QuTZFH18YzN7v7W2HQOAtlftst7lsGAR97IGfoc5W+sZXXvt4L8b0ngb0zI3MrlIXgSeAor1LywZQFoj/61ju5+xONXa8V5qwdMJ27fxo8z8OwiSla7wZUMuZMVBpoXM4/a9HOri+H1kzKZDQgM/7n87IqsKCrdFutMWyPMvyciPjMGojvP4uUphtjjyyKwA1LAg97KcNEpTJYv0maZHu8QLsN4se9UIm8v2W/dUEliJ5394Os3Mm0qSsDUr7nZ0MZg4Z4OJwzWquhPX+Wu5c5p6ZkMzk77yIyWiVZIdsLALu4+0sZj+zoUQKyyvfphBzIV7h7/7g2BgFXEt9YHTm13i082+jzIXjJQGQ8H4EAn7Mhxf/E4pw3QCt9szWQ4bw9yv7SDpUYudYVeZk/cyriT8simWV+JOt8Fn05AGU5+qUBuaTMWYlATAchYEXiZTlQ+1gE7LgbOfxeCR7XNskzaUwo6nk9YAZ3v94EmBiC1t5Qd3887u2GzrlVmjqXzURzd5RxbC0kSz2Gzs/V0DrKz8iDUNnivVxZFSvNaxcEqOjocpw3qlXg63WlaWZdk7wZf2+I9Kn/y/eWqUzsCcixs7m732oCmW0KvOM1MmTVm2a96BXmIZUlTg7A9K5RKJr/VASyfKehOc2ubYEcPNcVdMqOaM2chNbUWV4CfZu7V83ylvHAVihYYRCKtDwq9a2WLlJhLrsheeg4xC8/zn6bAa3ro1EE+c8IUHueZ5liK7yjC+LnVyI581OkVxyHAJ5ruUq+zYH4WztUNvCTSn2sMAdpfJ2RPLgcOotvRDLoxjEvx7myoDTYCmthE7SOlkdA0G8QAPUoBG4+rQqNtghQfw86w79F58MByAnY1d2fMbPpkSPnLCQzVXWENQfNjHY7l+F5xqC9DprDQ1zOummQs/t6VIZroiy+8d4rkEzfBTjcI3taU1sFXrcA0lVWR+fNYOAcV3avCTKmKVvJeShz2gU16O+I1uMxwGPu/li2nzZF++AtSoFWC6MMZgmsV2mt14VmYf3Nj+TpdsB/XIEVjdkXOY160GsDjIv+ze5RtswUoHYqAiZ+igB7f4pxHdTI/h2ASuzs4e4XVbh3JiSHdEW6yqEhxzS4JqdEC/77MJLTNnD3r6zc/nQNCk5Z0cvLlWOKfH83+w49UGnMd0L+OgOB009DsmX3kFk7Il68FNKz/9sc9PIxZt9rWwReWZQokY6y43wSPGpFZAP4DmUBeaqKflNNl5wbyWXHo/20b7UzrCFaLa0+zWR3vR9I2fnud4ER5kXrpg/KEPVflCHviQbkgk5IX94K6aQD4vr0KIv1SSjr0lXIXvI3YBsPm8KUasG3L0ZBr6ebsl0/jAAZLwIreylTVvIT/ZrJoROAjwVZqw3SIz50983jWsr42CP25BrA7MDtnmUNaohXT23NzPoi21NHl027Pdr7b6NM0FNdNhAz+zMKmO6A9NDkN2jUtyvw2yn2vYP3/gdVwxhlslv9A8mcu7n7t2bWD3jZw8YUzx2L9v+FwRd6I6Db63HLn1Fp2bM9gE9mdgKqtOHAfh6A3fitFdpLuwBvufv9puxPKWh3I8QfZkU2iRQA2z7e3wXZJC5099GNGPf6cf9KSMfvhYBV/0BArKVQsODjTZnPltbSWlp5i735AuINh6H9vxrSZZdBZ+prpipAA1DmusvdfX9TJt5zkR1xLQ9f0h+ttQCjWlqjWwjbW3gWlTK5AkUY3E5HhjEDLkCG9EYbnyvQ7IKcDJ8jY8m5njkRJpHe9Uj4WAAxnbM8A3tMAs3OyMGwGBLu7kIpmP8ZvzdZETWz6VDUybzIMNMzF64msZ91HXszjbuu3ztoNsdcdkJG+uWQYfN6d79wMujVfdxBtytylC6PUnNfZapFnrLHfBDKaDsvd87N6EoX3goZ2S5BRputs3vWRAJyf+Aad38/HAb90KHdrwGDayVHy7LICTAfUvC/jHuqgqMKNFdFTrwH3P1rM+uDooMPzhTwDVH01i7u/nBc2wsZGTogheTcGv3eIObjTFf2qTkR4Ooz5Ag4LDdamtkglMZ2eCV6k9rCAD5fGkNztcL3WQ0ZqRdEETFvufvHDe31Ao12wC/1pllYv/2QQbILMhLdVTBY74iMTXcjcFSlrCKYAFaXoGjzZZACeG6syUOR0fR7VIbu9jBM90AOk/7esPPmJeAud+8b125HimUPlwN5U5Shoxgl3RhA4bExBx8i0NBfXOWL2qDMMEcjw3mDRnJTyuhVEPAolSe6CwF8ern705mzYgVgDldWmfR8Q98yAQtuQGfSP0wOxs2Qo72nu99ZaQ7i39vEeBoNjrKJnXofuKIak8P3eZQt5y8eQBATaCaBTYcjI/dExrxKY65g8OuOnFbt0Vq5Ma5vCsyfr51q8pkpXfyliP8OMbOlkTFyDOLbXyLn0w1Vnq/U798kTcqBj4ugDCGzAg8Gr18O7emZEdhvVBiv1kWGp91c0baJZneUnWOCYyr2xjzIkDvc3Y+JfZoyYLRDmQZfcfftiv2cUs3MDMk0e7v7lVbuXNoDZVjZy90vtYITsdq+iLX9DDDS3QdXMD7PiQzfNyfjZeH5puy3VVDE8HbI+fgCAjGNit+rguAq0E28cGUEKv8VOfhvc5WyK+OXCLTwkcsZO42rlOViCMBwC5IBDkLgqJ+y9+RzXHRWDgX2dPeLYm0OQrxr34IscCzKWHMHMMgzQFC1+TIBRa6kJGd9ULhvKQRC2ZpSWceyuaywH+tCszAPcyO56h/AMFdGiNPQmfk1WkePmBw6myMH79GelZgt0NsaZVVYCIEszgFu8QAQNzRv8e81EV//Tx1proXKOf0n1unsKNPWV6j08ruFs6krAmZ2BLZz9+sK9Co5w+asJ81604trOyFj3TzIIH418Dd3vy9+H4mcgIORzPR+rTmOZ9ogoN4q6Dvd7JmD3AQIvQgFb5xKBo7K+9kIXnQK0ieKoJEG7SDBQ85B+tP2XgI+tAImZJZFc9kdOUE+8xLIvdJ+3Bzx2q5IT/t3Nh/LoLn9BFiz8F0bNd4KY5gfgYG2QPzyK5TdZqjXcNJWm49snSRw1ZLoTD8B+NFDD6ywLrdHgMmlEXjq2bg+A7IlbYwyEt+HwAVrRR9PqkSvGWluBnTxkr0sgaNmQuDRjVHG2X4u0FEHYC4vd2CNRM6nZ+LvFBDwHTpvrnb375ryLQtzvwHSoW7P5NUhaI+ejOScBApZGQUzfZDxgErjXhCV6roFOMkzYDVxPofctTECGj+OZKM7030V1npz0PwrcgzMikCVYxBg8eomzN+ewH9dwNB60Nsr6P3dFDByPwLbjHTZVv6MnJn9kfxwaIX5L8oZZyEwzmiTHWMFZHMYSZQSsurgqInWZHO1Wms4eO/+CPA5KmT3VjGOqxHf2LnAJ2ZDtsb27r6jyZk8GvHfa7M1tRCyw6zkskdNg5xFgxEI9tLmoFdlnDsjx9RFMa4jERhuDMpo85FJt1gBZVJsA6zgUd6w0lyawDXTAj94KWBndiSrHY905QO9jqUmW1rjWyYXL4Bk/HYIjJvAUfMgoPBWSB7b3DOwUDXZI3jFkQjEe55HUE7I0n0QUPxDZO86zd2Pb8ZhVurfLMgW9l93P8qk3z+GAC8vIL71OAIkpzLivxRk0JmAb70E6FgSyTyfoOzSbZBt7VZkI9vUlb1tZgQWegtlT6+amXJqbyaw2R3INjUUyVkD0JlwTdwz1QAfMzlqAeSb6kRmf2+sPP6/GG+cWWOBV9C3uAfJlLvHmbYUkoVvR3Jfsh+9i9byYSgr4mh01lzt7h+GrHkoAk0f5O43xfsGIXvuTl7Bf5XpAlsiPnF4ptdsjHhEOxQAkGyNCRxVLbizkqw1LdqPGyC7eGvg8Lg2P/LPnOB19ne0tJb2R2qxzxxlW+6Z209MmfGvRLLeiLiWg6NuQXbV7shm8IcERUELMKqlNbKZIl7+gQxHR7jKPjVKCKlBswsSEj5Bzt7WKAJmoBcitptAsx3a4O1R6YL3qhzejTXgdULC+XuIqbyPDPkfIIG9ycqkCRz0NAK0vI7GvV38+2x3P6cpfYx7p6OEEj0LOebvR2UNvp8UIbDeY2+mcdf1e8e9zTGXXZDS9yMyKHdBkV/HunujUqMX6DXHuItOj2ORgb0Xypj0OIqCezO7rzUSnFu5olE6IZDT5ijqYYecdhj+TkCZP97IjDdrIoPvwiiy8Yq4XjMzXRgjj4l5aIfm9zDgPnf/0krgqN7om27h5WCYNih67nyU/akVMlofipzcKRPLfkiRWdTl3GqLoq4ARnghur1gmOoUfZzG3Q82Zd96AkX/3oAMkgsh5eiKCmOsFp1alnGtqW1yeHcT3tEbGT++QiVyWiGl71RXyaVqz+Xj7IvKdWwWhpG60kSG9fw7n4R43fYuoFFKTT0+DJeXIYdtrbTHN6DsCY6+69jst/4o6v4hlDlsRrSvhnkNR0v2/KPIabaZKcPTcpSACLMgR86HKIr/h8Kz+RysiACA36HsaU/F9buQAjsS7YN54+/Tg2bFKP7Ce9oinvmtR7Y9M7sDGadSBpC1EX8ZUTBoFwEtyyC+0BFlY8rnMmWg+hHtpZmQg+uCanzVysEK2yKjY4PgqArrZxAyUianbjuUreH0mNMeXsoskcBRcyNeM6SC8SCnvx5an4YyQlzqpSwPPeLdHYLWpwhQ3j/JZdXoxt9LIh55HMqE8BhyjO0efPhOZIA9FzmtG4xG/q3SzGilc2LOmLd30T4fjc6iQSgTw5vI6TszArGeVKAzH3JIHoz268HZbxci8GBXd380Mzp1ib4+5e59p4RRrtI7zOxPxHy5+9FxbQI41MzeAB53950aQy/7bTgCH7+IUvNv7e7PxX7ohUA9fd397uyZCdlaGpqPCutiNgRIGucRQGFmi3oJGNBY2T7JJKshcNRjyCn+UI1neqA1s7SXwA0LoPOnAzJCjgm6m6D1diXwUyYzHUjJWXlhRnsRZKTYiQBMZb8NQCDOBxGf+rzaXCE+eTVyOOyV/bY34j+folISX5rAnD8W5rIIxqw7zbi2MTq7tkLy2T9j3mZGsucBSEb6BK2rHghUWvGMjD0+GjkVf0Yy9l8RuPJ4d3+72pxlfPcQ5HTexN2fbA6aca09cuKns6K7C3iUZ/+7EhmppkNgjNdryWv1ptkM9LaPeTsd8dlxyOn/ITLm3xX3jUBZTYcjEFwxC0g+t8lI3xkFh6yK9uCNXg6OGox41MyIPz9cg+ZfUNm4uRHo80Z3/zR+Ox3xszLQSEPN5Bx/IuZnmyr3zO0VMmZX4eWzogxOy6MMOcu5+2dWch62QXLNQcDaXjnD6SSdQyYQ9twoc+gbSR4rym2NoJPPeQ901hsCOCSZqsz5EmfpRYhnfIoMuG7lkeybISfPfMi+9IBnJZ8r8KHmoDkrcvosQwautpJTb2YE8p6HkrE6H2drVPbnPMRnHojrG6F91h2Vj+uLAqy+acycF/q4CwJ6PIKcw89mvyVw6klonf0JATG2dPe/xz3V5OTlUIaj7b0860GD663SXDYHTVNQxOUxvucRbz8lxrl7+rYVaFXKxLQLOu/qRs/drzCV07wd6RH3Zc/MhaK/90B65MCMRk6vTM6Is2wUyjozF+K7hwN3xrmdwFFrxnsPKq7JWufP5LS01+LfKUj2PcRf3g0Z5BGkP56P+O90CDQ0AtjfsxJBQacTkseHoazjK6GzYULZYxOw7SB0LuyIdPGlkM1okGfZxpAMVDd6FXj66iiIYLQrEGQ+lAXkLfS97kZ8ImWOStmBqwapmuwVAyjJaC+i9fhx8KC9ETjqXBQI2OzgKJMv4UCUpaAuFSKmxmZm0xfl49DRbke2zAMROOrH0DFORJnyUnacigDnWBu/xm8LIVl6UwSOOjq77y9oDf3TCxmQp8DwMTlxDwDuRXv9IWRj3hM5aG9EdqcXgVU8y+oUzy8ezz/o7tfE3jsJ2Cj0z2Sr+w8ClWzhpcyzOyG7wiEeIJLfazOBW/uiIN65EGjzTA8w+9TUCufbDGh9nIfOtKFeAtPXAgzmNDZHGVQfqHM/q/otzGwY0ndBGbu2ivNlBqQPLY9s3f+X7fFOyP86Mzqjd0Bn0YvZWLqi4Nr/A/7qpWoCqyS9s0p/WiF962yk6x7jJTB8d7SnpkG6WAJc5b6ifD6T/tEOBZvPimy23wff3x7JHa+6SlhiAtxfjvzKtzR2jltaS2tp5c2UBfFe5GffzZUZKskWiyMb5z7u/reMtyTg9T4oK/rq/gcGRUELMKqlNaLFITcSGYfeRNmDhrj7KfF7k4XpEIrvRhuxj5fqsl+MwAerTWJfF0IGqQHA32PjL42ABzMCL3nJAdxgumzkMOuGADxvxaHfExl4F/Asargx8xA0z0IRh9u5++txvRtyPLRFc3tiur8Rhp/pkAH3/5DT5L9h2NoPWCaYY1OjQ+s69uYYd9xXt+8d9zTHXHZAkdW/osjeV8O4NQAJyGt4hdJZU3jclQw16wX9pRHIYRMELpoVgdrGI+fGTMhgeW88tyywSGYMzoXog5Hw38WVNjZ3zO6KDNTfISG8ZvSACdRwMTLsXIicbPegb5fm5aswbB+FDL1bufttBTozIaP8YTGufl4oURDCw1i0Nq5FDs/+iHelcoMTAZislF2iW8zVEyi6/SVk5PoqFPrzUemGAe4+rMp4i9lq1kGZg+6vNU/VaDR3M0WnXo8MM2Pc3c3saMRXzkfO8h8rPFcp4nVfVzaXutJEIM0FEVjg6/j9QLRW3kT79SUrB0ct4u6vVhlzK7Q2HkZgwrWQM3tCFHrctzMyQC+PIoae9lJptFrlv1ojB/k+CBjWGVgveEpbxE8ORxG/VTPcmUpEno0M+J3RXh7i7sfG77dQiiz+Cu3JC70JgGhT7erVkHP1QsRHNvNSxN6xKOPACWnuK9DYBX3bH6OPXZACfXl2Tx8kn3yIjOT3ufsTDc1l9vx2KLKyKjiqwvo5E6WnHlWg1QGVIUzlpIrgqNtQ1oh1qvH84IOnUjKK90KGg3M8ynXG/u+PeN4PZICBGuPsjc7xB8xsAVdpwwsQ8G03BHjujBxQSwEfISWparT41EDTFA13NXJUjUU8/iAUHX+sK9PRQgiovCnaty94FWOxKctNX8QjJoCj4rw8HTkheiEw1MwI0DEc6O1ToFRBYa0uC3zjyvrWBSnN0yPnyGNpfMiIdT8CmBXLyOX0Fkdz3wl4JGTCFZBjZXliT5ii1LtTAlOekdHbFzmXtvDIENcEea/SGTs59JLRYC2UvfQFxI/GJDpQKt9qAgVcipxMa3hE6pscGrchA2LK6DECGd6HZrQS79gbyW8gAFEyYi6CAHw7MjE46mQEYJ0o81ZxTOjMcXQW/Bmdd4sgftsRGUAHeCnSumY2wXrSjHlojTJmLgC8ASzuAiGkZ9rGXG2Izuf7UPmmq3LaGc1FYj6vRICVr+L6OwjkXBY9l/elAl8/wN3Paw6ahftqnRUzIdn2YVTO877Cs9W+0yTRrDe9CnRmR8DlJ9D+SnP5LNKLdvQwlMf1y4BnirJwYW43QNHvT7j746G7XUfJYX2zKwNZR8T7X0A8q6LsFjR3RbzkNRRssRgyJg73UsT0EMT/z4zrjclqNQ3KWjADylrwYeH3haPP53oAPBtBcwME0O2G1lcKLEplzzZDc76mFxwjZnYccjje0pAclz1Ty9nUGvGtptLMv+emSG+bB52Vd1d5Zlkku++BwAZJZi1mgC3yiFr9bw6a6yNAxDIIZJL0xASOOhNlQOyMAPYTAXLNbAZ3/8Jkd/mvl0qXTkcJCHgwysz3bfxmwNdeHi1c5MHbIKfxUUhPnkh2shI46l0kx5yR5qVWi3V3MwIP/9MmBretg7LnvVaVSDPSzPjEf1AGnwROeBLt+R29ASChZZmYglbd6HmUpjGBBf+OQAFPWTl4aFUk/7ZGgOTdC7QTvb3RudwZ6c03o+whHRFPXx4BPW/0EjhqJJLdNvHmzyy9O5H1LP7uFf1ujfSxO1GGv3tCbrgVye0dkdzfDq3LwTXecRVyyD6DMh9+beU2qW1QcOEq6Cx6AWWhrZiBpN70Mrp9kLyzDQoEehKBEQ9G5+y2SBY53GWXrCQLF/npdUj3fgkBKrdFdqZtXXr4nEhXGYyCb3rTzM0E8j8B2R9O9kaCi39PzWRz6I3snCk7YZJ9F0S+ke/R+fGAK+i0swcAtsq33wqVeXzSJgZHHYeAv6fm+l2BzpQIlCyeQx1dGQ9TFrxtPIIbzewYoCdat3t6ZF7Mnp0e6VyLo3W+O7LhnhvnaxdkO9ofZes8GclfGyOQ2Qk+FYKDmtKytdEe2U/mR9nkU5bzqbJsYMjpg5E+MT9gKJvvsV4763ERODwUnXNlmeUns2954MiuCBz9L2RT8jjH7kWg3uHovEsBQpuiElYvZfQS2KgTAuQuCrwDWPCF3IeyD1rrC7n7m4V+TRTwlM3FtKjs3gh0xhzt5eCoE9De6Z/k2Grjjn13C/ouf0Ln3y3uPjDvR+iWCyN7yc/A+t6StbCltbRJbrGn1kXJPF5CdoGX47ehKKhviWxvp/NhfmQTP6+WfeSP0lr/rzvQ0qaKtgLabNcjgMh9QD9T6SHikGv0WgrBYA/k6DweOaBT+y/whpltYWbbxYZtSpsHOaafjg2/LYpEOA8piHeY2ais362qEQqhYWlkkHoS49eNAAAgAElEQVQdARtAyu6/gf3NbKgJ2NCoeQiaSwCveQkc1CYEs8NQyuM9TGWCJjhkqrUwuL6HjFc7I+cwqKTYd8CxYVBpEhii3mOv97izVrfv3VxziZxc0yNB/vXoy/soIqY1ikJtaqvnuHMBeU2TYxqXo2MgYQBC8zISAVAuR9GHw5Dz795Ez92f9wqgqGhPIaDF0WY2bSiwbeO3LxCo6VlkFKjaTGmi+yLDypCYi5uQsfct5LTYzBSV9TVyjKzjBVBU9PczZNBP/Whncqakd7VGzvi+yMh9MVqzJxWUhJXMbM9QVMaHcfIWEzjqTpeh3xCw7G9IkQOBPt5B2TzKouML/UzfqBfKpJAALY1qhe+8RGOfa2rL1tp6yKl0tbuyg6Ao59dQaYAfY89V62Nu3L2gGWheHPROBnYPhQ4XIG8octqOMLMl4/nkJH81aLUujDd9o0+RwbQHcvR0BQaaAATpvivcfW/kXD/Ky0FRbbP+LmdmW5nZWmY2W+ylSykBlG91gaIMRdoNQxGsZaCovI8mcMNZKFp8LaSgjwSOMrPzo3+bI0DswQiMsq1XAEXV4itoHy+DIp2WAjYIY2xbZADYAhjr1UFR2yBF/Ty0b45FJYguNWUqSXOZsr3NDjzsVUBRwdv6mtk5ZrZBGANwpRM/BfGlK00RVuPz71tYP0NRObJRZraEmW1oZquZ2VyuDF33IDlpeuA2E0gEF4hiMxTJUQ0U1QOBSU539wS0ARmvTzRFU+PKVrY74ss9vJRFpeIZbAIUjgbWDP70Vty7HPCJu78fY+yC9tKmwJFeG8D0m6ZpZq1jT++JHAynufvt7n6ru6+Pzt+jzWxNd/+Pu1/j7ju7+yCvEUHrinIehgC+B5kiANN5eRI6429Hiul9aK+d6lMeFLUzMhifbcpG8jVy5M0NDDY5TkAOqPXQGfpCkWZGb1cEnnoIrfFHzaynq8zPcSja9zwzewSV/uiHnMxnpL4Fyf+iiKaRJoBfApzW4iVlfSn8e3LopZKWj6Do01XivwnvCFr7m9nIWBd7IIfcWBPYEZcRcmNU/m0QMiT29xIoakYkBw5F3+Bb5OR7EbjTlPI+nS0DgauAC2LOU1+O8ixavIGhvYYyoD2BDJ2gc2ghBA5cHQGaJsxDGm9z04w5/RWdCU8g4NORZtYhyaru/ou7n4X45bLuvq9XAUVFmxmB+570EujmDqSv9HGVtJkzf6AGXz+vOWia2QomnXYrM7M4K+5EgIzpgTFmtnKc5Rsi0Nm9XsqeU+k8mmya9aaX+lj4Pp2RA+vlbC7HxPzu4Qo4WSI7K3fxCgECBRn4b0inbB+/fYWcymORc+AAE3hoJ1Te8YOi7Fb4dmuj83YQOlOXRrxgbWA9E6ACdz8CySVHION/g80FFrwHgW97mJwc6b3tYi5XR3ylZktz6+73INn1UeAMU0YYXM6J9kj2+oiSnpGenxll9L0Q2KiazFBhDLUcaDNOIs3x2XhuRfagdxBPXLLQ73Tf88ihdBUwwEo2g59jPad3l50BlfpfD5rVeLFLJx6CAO7DTBnTEs1pkQxzHArWKQNFmTJ+4QJFTYdsB4+Z2Upx/Ssknz+B5IutzWweE4DqUcSTE63ps33TypRVdn8ETBjmpaDE7c1sD5MtAXc/HNlBRqIsXgks1tC3fQnpy8eZshr/kvGFaVGGpX4mI35j2yTTrNDfLsim+bqXQEx3ILloV3d/xcyWz9dfgUcmh+reLhDT5NI7oEAvtceAl9Hamd4FHE784RtklxkW/8/H2zuu93H3C+M9KQvqWHd/2wXU2hLxyrOAnvGOz5DuspU3PyhqfaTX32xm05gCDk5F2aDXRmfOIkhW7R5yQ4/o92FEeTEPUFQVnj49Chy5CYFoR5nsTuOyPXadu3eLdy4P7ODVQVF1pVdoF6MAA9Ceuxc5+r9HsvSHSN+7KNb8hJbWUramZkXn9QgUSHQ+ArRvg+xNl0RfPkDBiCchfb3ZmyuT83noXB5QlKF+j83K7S/tkJy8IdI/l4UJZ0mb4MeDkWwzGNgw1va3Ga09Q7ZJZ+gcyD7yuJmt6AKNtgk+8x9k3/gE8c+TU18K+lRzZYNrk/3ZqcCjk513CQS8SKUeOyBQxU0IDFsGior+funuayGdqzeyiY72AImEvns2kun2R/rpA8iedYyXyv/+bv2gSb5y959cNo77feoHRa2J+ORwFCC6EgrATH6FPWBin1SFM/d0YC+vIygq3ptAUddQsjX/DdknNoo+rI+A7d2RLfc0BFybAIrKZNNf4v/fIv3h6bi3v03sQ3kN+QRmq9CvMlm1sPe/Rz6dg5DMNzh4Cq5gs4HIV1VVPwm9I1UWAtlA1kfy7wAzuyjrx/RI1r8oaG4Yz7epQLqltbSWVqWZWQcz6x6yQ/I/9Eb++7PNbAYzOxbxoR1coPokq6bz4W0kJ/7hQVHQkjGqpTWimere7gIMdtW5XxZFB64LnJIJmBVrzlahuRHauMO8FAXVBSn5XVDq0xlQWur+YQRsDN0lg0YP4FXk6DkTCdhfoUiB7sixvn8DtNohoMXSyFD6pil956MoS86/kYAyM4q42qMBeq1QuY3bkHK6jWelsExOnatRZO7HKIrw3UaMeQ+UPeW97FpbBGRbCQFCXm+sIBz9bFuvsYdwOk29xx3P1u17B726zmU8fyhypq3gio7JEfOvARe5+3HWQNm45hx30OwVz70KnJiMtaaU7v2QkaePR+R0hecbk0WmPVIIVkYOiItdaVbbI0PYgigCsGKJkozOAkgpGo2MDE8gZ/T+yJh2NzIEDEGR41/m/aSQRSYMzotFv/ZGWXlGegG0EQL9IigLxysZvVZovq9Fxr6XkHHraARySMpSTxTFvZyr9FlbZOTrgjLC1Iw+j+cvR9FV14Zhq3hPpexfuVJ4KFLEFnOfAC6arFblnfeiEovrxd9jkDExlVJbE4ECrwvlrpKxuFhuqK40TRGyx6DsFEegEmwpc9TByEj8EcqE8lytcZtAvN+jtfVxds+BlErnHe8CElQyuu7o4fyNv3uh9dsBKaX/AA5zZbBaEBl9lkdr7wfEWy/0KHVX5Zusgdbazqj8wBdxfQYEtDktxjqyONYK483/vQZydLdG4Nd74noqPXMFcuK1QgCCE6gRsWeKchyFMjwMNAH5HkeAi2koAYwuyZ5Z3qsDjnohfvMxAmCugxTzK7zkGNoO7cU5kALxaIFG2foJmqeh7DkE3X3c/e+xr7uhb/QZymZTLLdZ/P4zBf3P3f0gE4DtSbTfH0SAuDFIDnu6whirZWiZGTkRxiO+nhzTndB3mQudT/9Bzrajgb+kM7gKv/wt0twD7fuc17dHssq9HiXArBSBNz06Q19y957F+cxoVMumMh/iG4eicpAHxvVFEeBwI3SWjnX3m/NvVO1d9WqmevKXoHPiIVfGgRQd9Bd0BrVDQPAvkGH6VM/KTxb29zoISDYMnW0/IWDYzIinjQhD2vrISfgK8IoLcJS+90xeKge5MQKNLoCige8ovrPG2NI4ZqkTvdboTPnVShnKysDiSP67BDmyf0bRnamk6MoemaPi/q7Al14yQB+J1smpMd/tkRPsOpR5aFHEE+9CPO3jWEP9ECCyKj+uMTcdUBa8VqjM8qjsnvOQ06w38GMT5rueNNMe7Ij4+tyI917lcgBX1SVNRp3xBd65M5IFZ3FlcBiD1vSmIWetgIzUu3sh66uVO6YvqDPN/KwYivTaZKw/EulYXyNd+gwiGAWd0ad4jSyA9aZZD3oVzrQuMXfLIVDlzu5+uwk4sGQ2l4ZknbM9C7KoIsNsguTsY5B+U4x+bI/OzM0RIOBblHXkZCq07LljUFbcbbIz5ToEjkqZLvPo7DU8su7Vahn9dghQuAniBTeis64bkkUGeiFTbUM0499rI3lqbbQeP0Uy0qHoHD21+CyK1D4HAY57oXJajT6XsjHloKBJplkYz7bAkt5AdqKQj/qjsiIHuvuIIq2mtqbSLPR7RaQbzowy+6WSc+tSyu55OJLj10BghE09K0VYnC9TtP7dSC89DVgWlYJMz0yPbCfdEMj2z6ikTP/4/TQEeN7Ny+1sT8ZzgxBPG4r2dUdkPxhcaeyNkV+CP49AYMRLCFku+toT7fPD3f3SWnQml6ZFtubs7zkQuGQudOac7u7DK/CiBREg4QZUpjCNfRpKwSd9kD1rkukFzf0zejchftXZS+Xj9kNr5zHkxP0s+tEr5mJPD1tJyDHtUZDIW65yGRshwPePyP7ULe5NWctS9qzlEa+/0bMyvc0pr4Zcf1iM/TnEE3dBOm7SS7dDgI8fUDbKMVVoVc14GTJGJ5Qt6XSUzWI3Ly+12sGj7HyRt9WTXjW+lM+zKTv5o0g/viiurY3O4bHIPnlxjXldD50t3yJ7wLHZ/LRFdqprEDgk2Qom6m81+pPTrLyM/floDV+NggwnsmX93poJvLyOu+8Ra/tqtH6O96x8jSnLcX8UAHtk/r3NbBm0Xx5C2Xgfjusbob2yXLzjqZA5fon1dzbSMxaI3xuUXSZzrBP0s/h7GwS86Iwy6PT1sJOZdNK7EB9/EAF7T0JlRZMuV+l8nAvZ0L9APosDUAbEHwr3LY+AVt8A/+eZ7ba5+Fu9Ww0ZZKoZQ1Obmc3qmS01rh2MZNs1Q1fPM609DvyC9lOunzZoW65DX/NMURsjXWl/5JvYGtmrvkVg15TZej7k83gN+DadewW6GyE7aMqqOG2Mc76geYkrc1R7tL/6of39rwKdfA42RDLjbMgmMcRL5cL3RjLJlSgD5odxfQF3f6uBOdgf+WV2QPafn4PeCFTFYFjctxrKXvMjktt+sSb4j1taS2tpE2ToZ5FN7niU8f9XKwVbXYb22IxAL3e/tjnlu99LawFGtbRGtUyRTgbtpRCKuAiOag10yJXEGjQTrVbIGPseyvZyGCqvMC+KVn3IlcGiIXqtEAO4GRlun0WH/9bAp16KrBiKDFPreI3sBUGzFxJwvkBI7bWQM2MnV6aO6REgZStUWuGBan3LhJITkECzExLiv4/rGyEn8pAY98HJONWUlgmKSyMj3Dnu3m8S6NRl7Bm9uo67nt+7mnIxOXNZEJTncCF1cwNIW+S0vd7dj2wEvdSX1gg0WM913hMJwsegw/W9wu9dkVNwCWS4uqwxc1Cl/x1R5M68yDE9BoGS9kDZp0bG/bUMSdMAc4ZidFb0a1cPYJGZPYxKlUEBAFTYi+sjp9wNrrIbMyK+th9aq+d4qUTBCkipzkEv+fecGUXknR0/H4ZKbeSG0JmQoXtG9H3mRMp8Xy+l0K+mAE9LCQi2l5cM3fsi4+x3nkVPZv0qKoWnxftqluSZlJYUWZMT9RL0jddHRuGlkLH4eRMQ5wzkxBlYMCoehAyO+7icinWliaLKit9kIALmFcFRhyGH++5eI+OLyYl6LHIWvoHOxFuz3xM46n5kBHy68Px6COl/rbtvb2aLIQPR2YgndkOK5M/Iufi8KSp0YRQt5Si7X0XQVVxbHBlcpwUed/d1CzxqLhQxD8rE801jBGhThPK56JyYHYHD7kYOxl9MpWd2RUb7nxDPushL2VQmMmqbMsKltdoKGQLuRI6JNZBREFRicUIWleB9RefsFmjdDKLk2H0OGVDORY6kt+LeHZBB7ngvd7IcgIwFe7r7aDNbPcY4NP4/PzIGbECpFNO0SD4aFd9tSY9U+Hl/49/JgbwzAtO8GWN+FJXY+Qnt/R2QIXWiNVTl22yB1u8vaF2PLrx3x2yO30NZPWqmmP8t0gzD59MoynqrmMtWCKzxOIrm39QmziJ2CzI+r1iF5+aG/NmRQ+QzVKrmV1MJtf2Q/DIBHFVljFMKFDUvKsFyN1rHyaCWlwP9E3JCLYX41Vh3v75SP00R3Zsj+W8/LzmtUjnshRBwoOJ6jDkfjABA/dJZbKVykAvQSDBTtsdPQdmKhnspk9Ak04t/90Ty08MZT5oTgc/XROWQ0thbUw6OWskLBtzsvr6Il32BnLg7IB48JGSOVN5hJHCbu+8czy6CIr0fcPezi7SrNasCsI9zbhN0pvT1Jjqmm4FmXiJgLMqk2Q+BVX8ufjczWwWVB0nlRA8AOrr7qSYD89PIyTs3cg71dPdnQ27YC5W/6ePlZQrORPy1T/CcetA8CJ0zieYKiC+dgcoYzRDP7Y50nqMRX+uCZOCfkWM7ASsqlcmZbJpQlmGiHvRWRkb+O10BVPvEtX2RY/s55Jj6CvHvnu7+nMmIt1vct4+7p4jjsmalgJ2RiGfv4qVSlhM5sU3OCZAcMwGgWUEuSvN7FSpBsUpcvx3xxx4u0H03xFvOL7ynKUEysyM5JJW++jr+G+7KfFuTX1Xqd/x7raC7CnK+9AN+Tvsx5mcv4Dl3Hxt/L4QydyxDE4BMhfceiEoZTjZNBE4dZ+Ulw2rOrZUDmQ72KmXIm9ImhaYps98ZyAg9BwK83YMyrX5lAjYcgM6MFBQ22KuA9YLm1ggAuLu7X2wCWJ2M1uQEcFTcOwhlfhzr7lfEtdZIZ7/H3R+1Uln3WRAwohOSt2ZB+3IfdEb9HZXG3KHh2Zqoz3nQ11UoAOEDZDuZB52jp3oDZZ8nl2acFSvF2N1UpqwHyk73oSnAZi4EbFoQ7fGXTACs3dCZvZ+7P5jROxiBYfZEfGiS6QXNvZH+sSfiAfshGWkcAkyMREEAJyD96Re0pmaKdx/l7mdWmK/0nXdCjpFXEWCuNdJ1Don70vmbSt90RWU2Jir7V++WfdNpEVhwb6QfPuDu21g5AHVbtI6TU7liho8CX1oQresOqCTrtyFn9EYy2y2IP/2MbDZ7o4DMr5qLXhPmZl6UKWykux8R634npEvumcvzVXSWHoh/LYl0kqOsHPzfFq2Ju11Zq6dos3Kbw+8aHFVYQ6siu8WRCMzweezRy9H6GewCM7VF+mRnlHH3pwp0d0DnzSto3u6P6+sj+0XZGWFmnVHA5tOoysBEZVvrPO5T0Po7NPjv5ujMuQmBtpMvYTckF7ZDfOB4xOd+RNUATi7QzedzZnf/1GS3GofsgQsjcMgtHv6F4nO1rv1WW2Hci6Iz4FNk1/i1mn5Wg8ZvHoRiZhcgOepAz4BuoaMNRpnE3kx6QeiM26EsRG8iO+9ZhXE3Cyiq0O8D0Vk7Nzqjk/0onWNlIN8G7BPzI8D7p8h+mHh/JwRuXxQBtO9Da7834ge1bG27ogCGxxGPmR+drcegADDQvjwT7akjXdmRc8Dw/EBrL/iVzOxCYBl3Xyn+TvztaHc/xQTEXsHdHzCzGT1A2I1Zvy2tpbW08mYKnEl+ppeQrSYHR22A/BbjkU7SkhGqEe13m0KypU1+S8ZGUPrv+H9K6/gScibfj8ogHBG3zotK8nRvBM1EazyKlLoE2M7dH3H391wlcQYAm5haxZTluVHUlQr6NuSA2A1FL38SB3p7V3TpiUhoWbQavYzmpchgcTMSRL5GDrlX4zD/Eiki0yGDSLXxdsoun4IcSqOAQ8ysWyiz1wBvusoSXIPAIpX618XMjrUo41FsmSHxXfR9tgtjX9VWiebkjL1KH0+enHFntOv6vaNVFEwnZS4r0fSJQVGt4/efiFIQcb2zmW1rNdJLu/u4GPcdTOa4Y613Qoac61EZrvey31rHOx9E+91RGu5Fivux2v7M+x0K2XfIuHkNino4E5Xy6e9ZZoRMCJ+oz+7+o5eiF5ZARp8EipoVKRIbAxu7l2dFypSkXkho3x5F+hKC+onIYDkY2Cd4z9aoDODyxTFl//4UOe3bxH9LMvEZ+zlS/t9DQJ0dkPN6dEanmrI+Hn3L1q6sCmua2aPR322BQWY2PO9XFaVwf28eUFRXVAZ1wVBkLwNWRWtmUZTV6XlTZMvmCNw01ssBTFuhqPd9XaCoutJEBvVNrVSSIJVSPA4Zok8FeptAn7jKx3X12qCorkj4vBmBC9ug8gA7Z+8YjoyVGwOnxRrNWzpPe5rZJUHjRmTYfNqVyeVktJ6uMrNl3P1jd3/c3c90lQhLoKhWXtmZ9BYqg/k+sJCZzeSlsiupvOc/UWRd6xrKep4Wfj60no9FpWDmRudbV2TET6VnNkIlEDZDDtEEiloYgQTTft/EzJZy99eQs/Ad5Lh+A0VHjnM5OW9BJVfONbOl83Xu5aCOlGVoZHzLxRDY6Pzo54HAfqYMVbj71cBGnjkUwzixByVQ1BLoPL8KGe8edvfLUeTzZaj0xSphmLsXRY0N9AwUlcYb79gHeDaMBre4jJkbIwPKqe7+Vaz912MeNkdyVvG7DDWzIjDhQ/Q9V6bE48ZbKZXuVeiMvxF9+728BDZqNbXQRIb+XRF44ToT0Gy8C8hyDtDdzPaI9ZPmvQMywr4B5OVykvFxgowaBp77UQbTJ4ArTCVd3kQp3c9A5YXPyGiUpQX3hkva1ksf6wwYMoCXBShke+RNlHVha3c/wquDolZGZ9XhKJNZAga1j/W9GXIS7p49UzbGoPdu3HukCfCTykGehPjSBdZAGTwrNyAujEAAvepBz8z6ov2cymuOMzlD30N8+4ts7G1jTDfEvPwCvGACPZS1WG9nIt49Pcpq2RtlXPom7vkCnR3HATuaosVTWb3e3gRQVDxXCcDUAzkMhqGSko0GMDUjzRQl+i3a9x+h79fLCiWrQ0ZdD5UKWT3mKBl8QGDFaxHYb13Ew581OYS2R2fr5Z6VKTAFO+wTz79SJ5p/RufhPnFWpIyOf0cg+2ddTqz9EJDlcATsHucqDXKG/z975x1uRXW18R8gIIhiizX2suyisYtRo6hRsWA3IGIXEMGuiKKIotgLNuy9IfaSaIy9GzWWZRJLNPbeK35/vGvu7DN3zrntXEs+9vP4yJ0zZ509e3ZZ5V3vcj/Vc8BRwzmczNW6yKynvPj+PIjVcGjommcgveb7+K0xCMiwAbCtCxQ1Ewooj0dg6QZQlKmsV2qP/oj0opURgPHd9LPkeX4b126L/6qCotJxRcGUBc2sm5lNQuCevi5Q1HTIybgWCkql32822NXd33H3XdF8GoDmVl/PQVFV9a6yfltuC9+H9o+/oiDhJ4kO0xnpZuOR7rlc/Ma/kd33NHpvGzR1BhX2zAnInjihTjKnNbODgX/HGmtybN39eTRHrwVOynTBRHb3ql9upcyS/m+AMuLHIbt2LhRkWgEl/eBi9RiMAsK7Ibv0mPh+tRJg24WcG0PG3YhR81ngnjibsz4fioLQGSiqc6zXw12gqI2Aa83sty4WjxEoKet5FEBcwd0fc+ndLyD7udFZ3tS79Lwc1NfR/yPRebw2OaNqRdnn9pCJmK9ORPrGIci2uyvuB4ETvkfva4QLxDQr0mNOijG5JxmD2RDg5X6U/NEmebHvLYl0ga8RI+pzCLxwHbIZLkX67Kj4+0G0B82MQMgnJv1Lx+ubWD+DUKJPbwSMyvxXo+K+7Pz9DPmR+vlPAIqK385KGH+F/CDnonHoFXr1d5bbpVejvW0mVNq+ke0T92X7Un+kZ92FWGieNfkAvkelPvdHwLJ70bq9AOnKn7anvBa091Bwf7iZ3Y4SYk5FoNaaoKjo981IB3kelZfcNPaCTIfrhvxQU5pae/Vq6e+kuqS7745suu1Qaaj/mbJ6hbMy8xlcgBJ/PgJwlYjrj+bPySZA0aj473XPAcId0v+7/BT7Ih/jSBNoFhfb5kgEprjHzDY2VfjYHO0D93heCaA93/0bKGHisHj2PsgGGoD20c0RGOoSxJ7/jcvHtRzyE/Upno+F8eyH/NCbI7v0bWAz5CM5Gdgk2z/MbBNgWKZTZK25etYvoSXPPQDpFH9Ge9HpJiBszTJkhbHrj0ox1r1sWVN9aKG4+4CrXGxIafzsNbSW+plKyf3oEZ9E9sEnyNb+ECrG7mDkp9nN2w8UtQk6z8YiHfx7i9KRcY4dgcC1o0Mna2oevoV0tc7Ao5k+m9jMTyG/ym4oIXVHr1Ei0gTOPAbZrlu7+yrIn74g2oO6x1hehM61/iiJJe3nzMgHN97Cb5q0r+L5MIHUUlDUNNHPTU1lezNQVAf/FYCiWmNLTG1TWzu3u5DfcjKyS44Btg7d+juk8++NdOczLXylU1vtNpUxamqraKYMnl7u/lD8XRNVH87lw5Gj7yx0wG6OWFr+3RyZ1RyW8dkYlFGyvFdmADSSCRVK0BnI6f0DCmw/kP0WcqhchLLcn6whryLAHErA86gebmZcdELOrksRVd1dyf3TIUdWL+RYOcHdr4rPZkMKVD8UWPoRBVWHhDJ1F3L+bl0YjxmQQ+vh+L2KUl8l47cJ2jR3cwENyjJmG8ks3teSZ6/VRxMg4IRWPHdd33c1mU3M9eaM5XRIkV0EOXpuBu72nHWoOK6PI4fHrpYzcA0C5nH3/1aR9zfPywydhZTNZj93yXPNggLLx7j78bXGwcTuNZ0n5fRMJQSeDYdcc0rXdApDrgMCesyD2I6y7O8yBpn10VxbECnlV7iyRboj59TSSAF4DlFIjkaKf7WyZVvH2ByCwAjFzIceCBg1FAXO50Trt7S8Q/JMKyGw18IoEHQBmtvFsm6dEQDgS1eQuqKPhXtnAr52lRw8EIFQ3kFr520ECPiCPGN8JVdG40+dKfNHBAw6HAXFuiPH7P6IdWE0AlH2iX+Pcfdx6fOGw+Mbz6mG6yYTKYnPxP07ovJamUGNiUXlCmQIjkJlHtMM0mqlygaiMiZ7uUplroicU5ug/e+S5N4DgE+9BJhmcqTvid7vV2heDrDKDMuB8fw/IOa+Z5u55lK2tn0Q4PhRtJ9nFPrTxhgvgfaMRgwoBZlrIuf+Jsggz0raTI/O7NNRsHOvKt+fFZ0Fndy9v6kU2jnAloX95Q7EFLJh/D07Ch5MQg7oewty0/HKSnTei9bKwwistDfKXLwBBUDPBiZkOkt8N10/v3WVt1gxZH0H3OLu2xV+b2l0RjyIsnSXLoQAACAASURBVMm/Kcgpnlu9EED0CgQE+zCuH4B0h1Xc3eMcGI8Cjtd60F4nfe2GgjN/8QgEJ58tT162ZycPZkerXa4qK3/7i5eZ7JndESPDqQjInbE1LIAyabZA+/0V6NxZF+2Je3rCgGhm+6D9ZVd3v9nM+qIg6UVo/FdCwf1PgXXc/T+Wl3bdH5Wv2K2kr02eZ2XP2NJmKktwF/B7V1C0Yvzi809q6QTJvSnDycOIBS4DTmeMA5MR4GFVchBEmaxB6Ky+FGU1vhTXm2R6KjnLTkTnwoA6yhvilfT7syEdYCcEOOjvkdGe7KcdESj5LBQQvaDwzOn83BPpakugc/hCq2RHmRfNr6M9SpwkcipYg4r/r/oCadDTr0Kg1fM8LyNbcZ7VU2at75bISpmjnkIAyWW8EKQ1OXUPR+u2AzrDryIvFTI/CkKvhrJhH0Ln08ZId8uC58UAy671khn7+wLu/rKJ9fE5tJ/d5u4bF55nVnT+fIfK23xZNu6F/rZZZr3lJfdOH2OZZStnZaSz35oxxvdA4EvEdDsDOn9P8TwQ1gGxQk6mUBIiZNyOgh9bUmC1NDNDzvwLijp98dlLPuuFAuDTI8BD79jbu6LA7VGI8e6ysu83pzXx+61iMCi8z7WR7ro0yrS/IrlvL8Ra9Cbaq56yFrA8leyZ41G26rJtlWkKCC+HgCX7eQuZskPvmsvd70iujUN68kmelPRpi8wq952KdIKNPS/t2gP5wc5GDHiN9IG4r8yHsBWa/0ujRLS/Fc6RjDlqMaS/P1L4/hgE8rs0OVtOQH6FPyMA1RuWlM+Ke3qife0UlJhydfJZH8QM1sg3VOW5KhgASn6rIwK61lWmV9r4m5IzIBzjie1usnU2QOM4C0q06Yh0htO8YEPGv7dDvqp6yeuJAhY3oSS3Iz33E60V1+5DiSQpU8R3XoNRLebPQogx63B3/0dcXxi922VRAtyRcb2oH7Zn+bxqLEfTIaDHgeiM7evyd6T6UX8AD/BfFflbIr3wBGQDzITOnBVQyZ4z4wxZD9nA3wEXuRKXGvWv3vJaME6LIpaoLRBI8Wp3P6MpmYX51QedWUugpJ1rEStnH2RnD0zPh/Zq1tg+ngX5r973vJTaucgn/LMwRxXG7TfIB9UqYFvoVC8lz5z6DK5394FWiC+YfMsHAIaAcee6+0llfSzZk05GNmTKHPV7ZItuhOzUaZBdcXRrnqk1LbH3LkH24fEebG+x//+OfD/tj/zgxb2sbH8bhOy1qxE7xl+Tz36DgMQLIP3jE7R2DyzaVL+GVnjXayKdeAKqtLA5OkOfQHb518UzMpURe+wktP638hrJnq3sa2rHDUP6ydvAkx5xr1bK3QKB6Q53b2CbvhTN7d0R893HoafvifaX8Z7HSDI7925gcrY3t0eLZ98/+vEeYkf6pnCObYkYlh3Y0KuAXZN+d0b2x3HA+8i/n5bVexzpGct57gOpVgFlMIppbOLu/4prNyGAZT93fyq5tzuwYKY/lMg5EdnKYxJZQwggOEomHZXoPkugc+d+b0aFlF9Sa6stMbVNbe3VTGzBqyHb/lrkU9kPgUqz/WM9RDzzFGK+/0kSIH6tbSpj1NTW0OJQfxC4zpQFVzXbOu7v4O7PIGf1g8io7QOs7DkoqkmZBWdGmu03FzLqHiVh36kmMz7L5vRwpHx0Ak4NpRIEwtgOUYf/twl5RePzR8SatI4JrACiV94OZeA8n/RxehRI6oOMkinAFaYsa9z9XXffASm2fYAN3H33UCwXQSxC9xfGewbEWPA8CsJ/Vu3dJO1m5Aw70MzmLDEySmV6HvRJ30mTz95UH10sJzugQERzn7uu77uWzCbGs6mxnB4pqVsiA3cVFFQ43+SwLmON+AHoEofX8cgAWNEFiqom71wTZTIuKuwJzX3uKu07ND/nTsYhZc9Yw/Iswzs8QAtm1tHEtPAoYjro0owxxAMU5cr0+MHdX/WkJEY2rsk7HoQMwlWRs3gX4HEzWy8MhGNR+YKr0TudgILTTyS/me4xs6H5ciqiln85rvczsx1MZc2+dJVF2gEBcAZmjtCSdQFxlrp7VpLofBScHQScEUZj9jxrAD3d/TnPQVGpk6RY3idjPOmA0OG7IwfS4e6+uivL9614h88jEFA6fvuhudVuoKj4vduQkb6TK0Px8xiHI9Bc/BsK2P8JUQlnBlPKijDJAxTVVpmJjEnAHS5g7TpoPUwA1rNK5qhXULCuEzLuFi48XxGsN48pe3UuBAz8Mu57LPp3I3CRiW0mk3GcJ6XfCvLfR86cI1HgcFHLs8Gy7NmLUGZ6N+B2UymjJlu2n0cfTyCnW38o1vcGCACwHQJpNAWKWhg5jA8FpvccFNXJBYS9Hr2XVa2QqZe0T9D7287MHohn3zu+m7ZXgd+Z2RImkMtayMF7lwcoysyWMgE0s/1lazMbGs6Iy10gkO3QOhnj7p/FeL+IAKcjkPMuHbOUkeGNpM+TEHBtjuT3svfzLHJ4LIz21YqMMK9ktlgm7nsBgbI+TH7+ZTQPB5uC9/3R2fCRByiqMMe/QoGV+8ysrwmskn32ZHy3O3CsmfWO69+nMgrPPuXXIjP595fo3QxDANFrzKxHrOujkJP2aLSf3I/WwFgPUFSyHt9EOs1YU1bffGg/2NsVnNgZnUEAN8QafRUBAc8i0QMLfW3qPFu37HutaC8i5o5RpjKkDeNnch5uCRxQY12mfX4HATUnoDHdOnS87L10RdmM76Dzp6GZ2WlmdlAi6wIEDOqPspyrMT39Ma5XgJhC3g3kYLYd2yIv/r1XIu+cuDavmc0YOslIxA6xFrCVyRGZ7qdTkN6xghdAUel98e8zETPCeyjbcgEX82OWZfsV2l+6lbyKjFU0Wwdzpc9Uq7kc5dshYFcDgAm9t7rKLOrEzWleyRy1PGLJanDcJOOXgVo7RZ8/dwGbO8T3X0VO36OQc3wHNCeHeMIokuq3oRvUS2am075sZgvFM4xF2fPzmUBGmDJns/P+JQS6LwUUFuZqm2XWW17hPX6G9p2MMXVW5KTLPv8YOcbXQeAmUBB8Z0/YAeI3HgGWdvfnzGxFU2nwTMaNIWP9tD9xBv8RsVN2rdbPuHcdMzvSzA63nHnnBWRDfoDspu6Wl3mfgNg7L8vGsZb8GmNUa/xalaVY0FP+ihIEngEuM7MRyX59Gnq+eRATUrNZngrzJmOKGuruW9VDJkriWQ8B065sxRg86wFgSn5nTgQu3yWb13WQWdFinSxHMDbHtU4uOyUrZ7uqCTxR9hvFM7NTyBuGxmS67L5kz7obgctfRvr7bNn7j3e9KtJF+iV66b7oHFsNMZrO5QqkZnrB2iiYdwZwoleCogYidooDTGw+TTLNeA4KyNbJN4U1M6DeMr2xb+VN8n19YZN/Kbv3a/R+VkN+gKdRkG8HL7Eho/2rrfIKtsAniF1hAeAFz0FR07jYpQYiH1m/pA9fesIiUzJ/uqNElaOjL1k5uk6u4OWw6NtOZnZE9KMi6aA1Z3hzmjW2nZc0s9+Y2CO+QIHW41CQ9noT8O3bZA5f6jkjWiMmMxPQbDACyh/l7je4+4WISeY24GgTG/HHMb9XRuXuMhBTx6R/dZXX0uYKcB+JwG39PAdF1ZRZOAv+jHR3j2d4EgXHDkQs5T8FKKpjsm7PR/v73Yj1bqIJEISLRTFjjjrIzOauJbPkWqvO4+y7yXvfCunou2fnZgtlHYPAPul3P0LP9jWVOnZameJGBIJbFgFsTwp5qY2fvfdlkmtXIF9mkTnqXuQT2wwFTDfxAEU1tc/Wq3lu7w1AifM9k8+muPxkAxDz2lUIXFyUUdzf+iD/1RgEdsqSpzqZ7PD3kA74AprnB6JyZr92UNQ8yD68GIFyJ6GxPRuBNK+L/bKCOaqgY52EdKyHKMRY6tDXjp6XZX0C2eSLAn0Rs9fplvhaW9hmRclHB5qZxbXh6DkuRv71g1AcYCzwnuegqA5EHM/d/+B1BEWVraM4x8YjPWpe4EYTq1V6jl2LdK2dPWH0Tt71MvF35mP4Dvn794+xeNhyP8RX6NzZw5MyWfHdaQr97UDsHZ4DmW5Fe86mrqSGDSxYz939S89B1Wk8qJO7T4hn6I/eS8YqdQYCeu+O4ianxXdWRGCpTshn3KY9+2dobbIlpraprd4tWd9jyPfaFVD871jEDpvtH3cie2JdYFwb9uL/F20qY9TUBjQ4FS9EZVreRRmTh3jz6uDOjgL2ywOru6jIWyyzRBEcjZTcP7j7i62UeQQ6wGdEjqQfkYN7Pc9LMLVE3rkogDwp7l8AbUbreF5SoTtwDwpyDHV3N9H7T0JZEbvXeA8LogN4I2ANzwFmPZCz8x/IUf+651kA36Dg9EdVZA5GjrIBnmS7tlSmmZ2HsqVKn70Z8mbwyuBvc567ru+7NTKbOZadkPNhHqTwZu98JwQcfBwY5+7Xx/2dXSxCjyCH2zvIkbx6KKjNkXes5yClI+P7VZ876Wu6zjoh59yVqMzUYHe/M7m3M3qX/ZCT75WCrGkRMOo38f6u8GYyRzWnmdmqCChxLMqAfc9U4uYhFNDayt0/MdE190dOyyfCUVX6Lk0MWQ8ipf1slF15KmJ264kCI8MTGWnGW1kG0wYoe2cKyoDNSljMgQJpY1FQ/nRkhFxKYf5UefYdkTF7NSrZUmrMmoCKG6Fs0H08KWljyl57EJUpnFDr95rbqoxplzD+eqOg16Ee5dLi80XQOH+Jyghl67uUhamtMoEUgLIWAqA87O7/iLPlZuS8Ggr8OX6nB3K63Ac850n2TMkYDEDZwZ0QhenNiDXpw+Se5ZARuDlRhq0Zw4sJuLc7yvyf5O7bpuMR/94NOcmrZs9WkZ2NdzeUoXtwfPQWWk//zpxITa1hE7POXmiPWtsFdumExn6KCZA3GljC3f9TQ86lwPYECDS713IWtsWQA2QFVD5vNuSozgLTPdEaWxEFMRdC+/ugwlo4DWXE94o9YwbkwJgEPO9eWXKz0Md1gWfc/V0Ti8goBHo8092HJPd1Q06Mzqgs8OdV5C2AgoffIYBXxoaV7jXHIsd8ZxSoPcEjgFyjn9OgvXIPxDi2ffLZSshp8RoCgj3YnD36lyqz2vyM97op2tMfQxn3X8S7WREFm94GXvSc5bKMbWAsAi73BM5y0YFnc7ILOm9ORzre+fG96cI5Vu25mzrP+lWbMy1ppgy3XVEG0RHu/qYJRLkJctwd4CVAnhryMprm/miPvAbNybXQGAxx93OT++dAwbmLPBhGk892RgCJMqang5Aesqu7Ty7Iux45zysAvq2RF583YlE00b/vG791jrt/kDz7n9B8vMCDvbZk3lScPXGtyHSxBwJcfQ1s5gJ/9ESAtTOQTnNTcn8vVJZikru/aGa7onOrb619Ne1TSR+XqbfMwt8NzHjN1QWtMXNFUbdfAM3fGRCzzB+QQ/cmy0tupuPczStZhst0t/aQOQg5gZdEILg9kR5wowtIkt3XBQEpF0Pn0kc17I66ymwHeRl4cWm03pZCc/w44DivYpsWZJQxxWbn5HWIAemtWI8TEXDkYASw6Ijm8xHAYZ6wLZjYFx9DTLtTzGwHpPu/j8pCzIDYHS8w2e79YzwWIE82uMqjpGWVNV7Vl1HjeWsytbVUZmHc/ohsjw3RWv9P8tleKLD0OuUsT0uis+M2T5JY4rvnI73nQJSVXw+Z2T58D3qnhyIWundqjV+1Zy9cPw2VhGyzzEKfG/YqMxuP9PW1XKU2MwDTlJh7hyAd+M1av2E540KPkHccSj7Y13NmlZQ5an1gRi+wMZhABSejd78r0q8y0E12hj+CEtfeMrFs3IJsmYke5eyT9dgV6RHLoaSU49z987K9rwVjW3eZBfm/B/6DAlpLI1DYFSgpImOdqMVUXzzP6iovub46AooMc/ezC/NqZgRmuc3d92zBOWpIrx6GkqeOSvtg8rWdhVjJ1naV7v7Jmsl2Hot8Rt+j5JhjXfZjD5TtvieyB7fwAPCVnLPF9dkFvaMr3H1EYW0tHL9zL7I1i9UAKph86yGvpedByTi1Wkahrxmb1ZJIdz/Rc5bodmMHK/TnImQrjEJjuiw6Qz5CczQr5T0Bzd3jEaClyH6T2sezo7Lhrxbva2Ufd0AA6HMQK/ODTXylTMYiwG/c/UGTH+cjl593QfJEydNdSZeNbIOCrDKGqEwfOg75rLOzIGWOOsoTFqWCzJ/kfRd+c3vEGvVn5Fd9sfD5SihR6ACv4s9KxmI8YppaN3n2I5GO8y2yqbMSzyujRIfn4u+f/Nlb08xsCY8YWvy9Ekqyfw+42N33T/by7ggwswfyw28T+2WRmTzTsS5C4MNrETNns/WhZvR7GqSnT4/8AS+EDTUZ+ad7N3dNlfQ/Yx+7DPkz/h33jEcxwrlRcsf5HiVmi/Jauv820b90H1oO6QVvoWon/0nOsSw5YNN4L13d/ZtqfTPFMZ5F7PHD41r2rqcNeSei+bCuJ8Cq7F5g0XSNmapj3Ovub5vZTujs740Y6lZGNv/fLWdtXBn5S8r01UxH7Q4Ysrc2RnGUk93dzWy+6GNf5EvvjgD+nyMG4O9q7Xu/1NYWW2Jqm9ra2mJ9DkJJFGllqg5oLW+JqhD0RP4OkI6VMUd1QTrYq56AKKe2xm0qMGpqA8DEZDQBBRRfQAbMt8g4qQoYMTn0z0GZ/r1cDFJtlXksMuJ6ARu5+9MtlUklTe3qyFHbC2XP3OR5EL018k4gaPwRNd1YjwznUEyORll7IxAQKlN6JiGlJwvQPOOVTvc/IIfYmohJKQPydEKB4e0Q9WZGR7suyhpYMkRMRJTLGRNWSqF6MwoAvdQKmZPc/bX4/ESU2VLx7K3tY63nbo/33RKZZU6JsrGMz3sAD6DAwqikXzOioNpuyJFyhCsbMPvezciB+SkCAD7ZAnn3IsdcFtytNc9T5XtaoItXlgnrjVDFTyPq98vDCP8DAucc7JG1lnynqwdNLArszo2M/8sy46wpY6Spe0wBu32QYZHN3VsR0GVblyN6es+ZztJ3Vs0Z2RNlzHyNHDPzIza0ESgY/zByRu5Uq+8hqz/KMHsaBQEAbnX3gfH57Cgr6hhU87w7cgIe1YTc9REg6nBkDKeAmwbjypTpuylydp/kjUu7dAfmdrFK1bWFQfitV5Y6mRMZ3Z+iM+ELoCFrsPD9sr2/rjJN2c7Ho2zeCz3Kd1kOjpoZZWY+hRzeoxE7VQVgorB+VkNArXOjT6ugdTIEKaFp6dDlkfF+o7ufUntEK54jK6s3Gu2X28X1BnBUrXFsQnYKjjoAOXbfR3vvZ5YEdmp9P/69K2LTeBMZ04/H9a7ICbsm0MeDUapE1nQI0NcTGdLXoRIFbyb3dEB7yw4oePOc54DQbJ6vh5w+XyKGnyHufnbhtw5ETqQxCCy4BFqXOyf7fpkDfjnkpF8x2Z/nRWtzAMHehoCovRC4YZgnZblKnrsrAlqMRcHXzVBZwB+tMjiyVjzzV5lTqSkHnwkouT9iIvqru2+TfLYSAn28iwKY91ST80uWaQEsjn8vgsb+c2T0fW7KXNyMHBy1hVcpO1yYz8UyW4ejeTLGS0qPmNl76Lwb3sxnbs551s1VRqQ1wZT0Wc5Ha+oLNN/nRIHI8cVzopmyZ0PzdWeUvfoYYkO93t1PKMozs+6u0qKbIkalUYmsamCmvkh/PtkTIKmZDUXvcle0V9VNXnbdFLA7C4EmbvWkRGc8+zi0ZvdGgK8GgExyX/r866MMrWWR0/pBz8v6DUbZ/NOhveV9xPBwhhfKXZiy6k8B/ol0yDEIhHBG2RlY1gr96kQOpK6nzClN6HKtns8m8PkJwKqu8pironN7HQQuuzH5zpKeB0NqJTnURWZhHBZA58ENCGTwngl4sAfaS+6I3/wOzYvjKSkdVm+Z7d3HkrHtifTpUUj/Gedie8IUsHrH3V8t9Cs7y7OkkRldJTL2CBmTEUjkXRPgfyTSXb5Euvy3qCTfsZk8tOc9jvargSh4ciXSrS9HusLewDYIKDLBcja1lVAw6nMPxkhrDLpfHwUZlkLA1sc9Sps1MT7pc8+KAiptlknYwSb7sRMCkf8blWJ/y/NM+lpApvPRXrSQh90f3xmOArKj3f1oM7M6yByBQMKDUfD0NKTjH4309ZrMpSVjOT8KvP8Yc6lrnWS+lvy9AQrO3hbn9aYIKPMwClZnSXxdUYBoacTY8XGN39gAAf9vdgWpeiJgy+gY82OT9VNWLqcjevdZsG5ecv17CCr7nJVfScFRw1yg6flR4tozmbyYR1lySicEhl4R+U2O9WYCmUrOiU71lumVfrQlkT9iH88Bzzshe+1K5IPJ9IM10Fy5v9raqoe8JtbtA0h/XckrfTKzIR/PZe4+ptYYlHy2KLLtdkLA/QlxPXuviwCLp2dce7XCOPwBgfDORDrpMkhPnw8F9W+PvWsECtI+jxIlq+okJhu/J7K7XkIJUH+Kz9IA9t3Ib7BWE/2ti7zW6DtNtRbq6+m4b4SSBBZB9u4tZftIezQTk/O1KIh+UWKfbIj25v9Q6Zs+CSWieEFOOvZnAr9H8+ZNlJwx2ZsB6q/Sx9+heXkashWqJrdU+X62T2Y6zAbIx7wncHfoM/MjfWgLFFjft/hcJXLTd7gSOnf2Q6DtI9z9iOTeDBz1d6RvlYKjfo5mObDlCsQY/VLh89k8qgZU+X42rqejMRiBfHdHIRaux9Fe8jJi93+t8P1fCyhqArm+8FFcWxr5STZDfsT+cT3Tk7sjn8IIVBZ7bSI5Me7bC/nw90Axmv5obl5DHcFRYUPcj+zKibEetkJgppHuPt5KgEHJ95sTCzgr5I3x8Gmb/MOdkP7zelxrz3KwqY/lYmQvzhkfP4fG9A6rBPk+hhKeGvkMErmLIDtmMHqfJ7v7gfFZuvc9RV6+en6vTCaaHenTc7r7+iZQ4qXIp31hzKULEcPMl8DyruokXZAtdQyK9VxY7blNiYd/Q8QPXyKm/SXjd47wvALHXmh/7oLW52WupIiKBKhfckvtvdbaElPb1NbWFnPvNWTPv4WqcZwFPO1K+l0agRAPc/dTTYmkjwAd0Nlx7U+h6/2vtKnAqKkNgHDu/AkZTZ+FQnMkYvo52KsEDkMpGwA85Akoqo0yR6ODe3SJAt1smdA0LXQb+jgfCmb84JF9k3w2BFFejvU8gDYjCr53jM+mQc7CcZ6DjpZBxt7tHlSXicxdkYOrB0KFLoI2x3uiHzOiEgIXo8yLtDTZj2UKaQtkXoJoa7NySfMgkEfFs7ehj7Weu67vu6UyC++8IYOyZCznQgfRJe5+SEF5Ho6CCx2QUj8w+vqj5Sj0pbwyS6Ql8naqpWgWjOvNEahqKVRq5nx0aH5mAhecj5x076GA/XQIcHN0Kqsgc3ZgQWQUPY+MsMu8CeaogowtkfP5scI9ZyKg3Xzx963IcNzY3Z82Abr+hMAUTTJtJP1fEAVG3wP+5REoTn7j2cwoqSFrGpQFdQvKmAAZ6tugDI2t477pkdG+Zsi9Ka6XZkHGP09F9b03Sj47HDAUtDnJlZV2GgqqX+t5gLfdnQAmx2tWsulGFAD4wAWI2xJRY/dz9xt+LpmmgPIVyBl1tefl0LLPf4OCbSsgg/Q7lE15dFFW8p3FkBHYGxnAP5gyey9Ge9g+NAZHzeqtqEtuleCoKxKHSNm8adE7T/ayLONsMMpO3tyrZOhW+z1TkD8rmXUAYqubAxnZh3qSwVW2H8Q66orWzQTE4LS/V4JnGzHxmNneCJSRMUydhIJJb6DMxIydLwWy3IHe0/fx3/ha7zu+M1vI3N7dr032kPkQuGEQYpn7b/z3QHG/rCK3GzKyz0QgvX08BzWXOg+sCoin5L6ZUbbIIBqDjlZBAZcB3pht4Bct08zW8AA3xt8ZI98saA2/gc7Dx2N8t0R76YPAdi4ARFNzOz2XNkH70ByobFjKYjQTOvNucfcDSuSUBTDPAv7YxHm2PdKPGp1nzVnnVulE2wk5SpdFzrk/u/uVmSxoWemUMLgPQuvsMLQvZeDrsuftgQCLfZHTLD1nq4GZ5neVMMv6OBvap89BgIa6yfOc6WspBBS5FAVosyByut5mQw6xnVDQ7tTi8yZ9GYSCNc+j/dAIGnkP1kMT4GMIOr/3Au73PKhe1D2HoHNgZuBoT0BhTbXCfN4enXOTkKO8rjLjPFwfAa9+iwD65yD22O9boA8u5pVZr8uggM9enpeVWQUButZB8+F2xGx6FTqfH6r2W+0h05QEMivS7wd7wq6anOX7o7PuSeToetLdjys+f3vJrJe8wrtaDiUX9ETZjBmIZyYEOhqFQIVXI7v+KqRn3JD89vIo8/vUsEX2jO+ugoCdA5BucB0qaZqVLVsf2R4fIbbLx+J6um6XR0G5rijbtz/S3V6JzxdCIKsdEaD6TEpayVhma/xppJPPi/SAYz1hqqwlx8QodCgKcHxYJ5kHxvMs4GK8y+b54Qg41hSQaVHEcHR9In8dZOvs4e7n1FsmSkzZFiWOrIPe+dHAubV058Jz7x/9WdzdXzcFiustc0cE0vsrmqv3x32j0R7+AvIlfI4Y1I9DZ/npxd9Jfi+VeYq7PxDXs8BaI3BhrWay8fuh/XdNNH+GIeBAxnQ4Dunbz6I5/3rx+QvjsABijbsUBcMmAse7nPK1mJJqnRN1lxnXOiNf2yvu3jf5XgZmuhz5tGZC9uGfvEZZsbbKK/R3TuT764JYjr82sbtdioL627n7v0wJI9ui9z7Ak/LyJTIXRH6aroB72J6mQOtBSLduBI5KZP1UrEELoOD+Qmj/zViL1kW65JyIMfhpk106CnjZEybSuD999g0ROG08OmMOROtvN69kFe2Gzp8Pkf42JZFRV3klMtdG63AW5NuY4IXkpirjlcqY11sB+inI2ACdNQuj+XBtS+U18zeLzJ/ro9KDq7j7tn688wAAIABJREFUo1Zpj++IfI4NybTNkH85Yjs7Cfnv1kRzfBJ6rhYHq+PcHYVss6rM0VW+OxLN67Uzm80E3L4bJfbsi9gqU+aorYCz3X3/FvTvGJQs+zFKxJsPMe0dlNy3LQqYvoR0rP+WiPtZmlUBkxbuaXT2FD7fHtn7M6C19xJi+3zLxGA+EpVgbsR2U++W9hVaXwq5IHNZYCZ3v8cSsJgp8D0C6agHuPvxcT0FRx2GfNnpPrU38l/s5rl/OEvKaxM4ygpJmpYzW/3eBQz+EzoXR7r7MdHH45Av9t6CrHSfWgeV/JsPvd8LgDfiOTNwVIWNX01WezZT4tk6aE99FDGRD0R6X193vzV0uOHIzp7s7ltWkbULAt2sivaMPULueE/iECaf4yVob/m3u19SkNMdJY8dj3TRpeLvy5LzdhekF3RAc+pHcsDlWM/LmpfZo52Rb34mFD97zhSr2hoB8S9FvoTSPdR+hUxRAK21Jaa2qa0ezZQocyOKq1+FYlafIp/3oQiouDdKMu7n7m6Ky96P9OqB7n7dz9H3X2ObCoz6f94KDsRpPWF6MbMtUKC/AjAS96bGTVVDu4UyUxaA7p7QRNZDZlufOxTgLl4d8Z4GpNKyR52BV1D5lqNQ2bTVkPF9uCfZYEXFoSBze0TLPicCWB2PgjvvhaG+I8pyGuzuZ5X1sT1k1kNeLYWpHu+7jTKbhXA3s5sQAKaPV7JJDUQH2mPIGFk7MwxM7E0zuftb9ZDXRP+yEhJXo0D84SiYcTlSwD8NA2xlpKD/A7Gz3BnfLwNkDEQZCnchh8sCCHAwErjcq4CjCobQXijLZBN3vzn9PPp8ElJKh1FZD3t6FMRZFAEhSllpSsYhK4dUMVdMmRB9UdbVHrUUiXBAzIOMoLGe1+KemTxT8x4PcFTJ95sKzp+FjJVBKCNqXPz/BRQseRsZYjOiDNx2z5Qp6eN6wAbRx08QYv0o5Lg5F+iGnMRVM8HaS2asqwuRs3gXd/8grpc5/bdDRuK77v6XuFY213ujwNw3iLK7AbBocmRfiZx0w4FrvMBQ0xqD3RSs3B0Fa2/xxDEfn88EfJGcNUvEczRprFklOGpfFKR/AzFoNGcPTc/QPZCh2AMFYi5AbAJZ+ZkiNfbiKCA/MyollwERdkV71HXIUH8HZVjuhJT7zFG0PCq3tqEHo6SJZr0HWsNvoayyjFY9PY+3R/PoDXe/ozAWZXvVHCgwcoK7H58+i+XgqPWA+zxKwlmBxbDGGGZOqjMQQ1IDIKy58yXWzOoIvHMP8JgruDIL2ovKQEezew1n2C9RZpwFF8YYnWAKONyCAsn3ISD2dug8GODuN4ZBuTECZ/wdlbtpztxO94e+6IzrijJyLjMFuNZF5aj6e5RdjfsXRSUUsvI3mwEfuvu9rT3PTCyXj7rYUprDxFjUI4tnXV/gkebKK8ieEzmnt0Nr9DwvJAcU7l+CvEzyyR7MW/HZzuSAhzEezKvxWfoOUidxXeXF35uhOdLXA9hR5VlmQY7Zv3mVYLfJQXxbjNGlMcZroMD5lgS4IO4dhnSlvT0BrCX7arYvrQ3cihwhTwJ7uvtLzdAjyvSsLd19Up1lbuHu15sCXWcgho1OCET8KXLOT/QqAcGCzGHITtjG86zgWVDg6xNga8+dvKsgp/N6KGjUC4HGD6vW/+Q36ybTlPjyGAr6/hOxC35aeJcZK9NgxCSclU8tPSvqLbOd+jgA6aafIVviY+QsPjH5zb0QW8SbSF893t1HF+RsTg4knIzArAfEuGc08Fmme1YGpBoLZTXWx4vRfHwalfX4Ivl8QeRg/BMC9NQsO21iF7sBBSuvcJWpWAvZQfehPf2Tku8V5/lxiAXrjPaQGddmQvrjLsjmO9MbA5leQclPT5SNpQkI1dNzxtW6yUSlqK9A+uN9KOi5HQo2H0aV4EOV597Hxfq1ZTvI3AAFEg8n9vXCd/dBOsySiL3sPcS+XAv42JTMDBx1MFoTR3uNspSmUrCXIr/LY8hW3BLpGbujRIIMHDUerfVtPJgMq8gciGziW9G7WhCBro5GfoNSIFMT50TdZca1rNRLFvjd1it9OQORbfIR0ufGe8K6UvLsdZMXdseBaP+dFvlgznEFUAfEs08PPIPmz8oIDDe2IKdoux6O9tXZ0Hk20XPG9gwclYFBT6v2rO3ZTOCY01Fp6mvcfZRV+nu3Qrr0IZleZZV+xbK10w2dU/MgwPnnoRuegEqGjEQ63azx9xmImahaua66yguZg9C6/Qd6twug82cMcKc3jylob6SL7OaVyULNtQ+L4KhT47eHNvXdlrbCb41D9trcSB/eD4HCvk/W1QzI5zDeS1jRSuRvGP3fC/iLCywxKwITHA+M8ir++SbkHoX2wvm8hC0qzqoPvAA0MiV1jUH66lNIj8zAUYui/e0bFLRMwVEHIQbsC919jyb6thwCQoxD+8VHJv/JjsheHIfAJ9m4D0RxinOriPzZmgkcdSbS8Uan9llyTxGQ2wPo4e4PxbW1UBnOTz3333RBY7E+Os8a+dPb4VkyUFI2l9sEyCnsd5sh+3F/z1mGl0Q68QC0l2c6dtaP9PuZjnUqqkwysfBb3VAC1hm0ABwV+vxcHkncJv/KDu5+Wvz7SXQGPYcAj4d6niTYB837kzz8/CXyd0Tr+0UEQlkIgezHAle64gm7RL+vo4Q84adosf5uR2f2eZ7HQn8f1+ZFIMvnTL7hIQgYlSVrpXP8t+jsux+NzeemJKyh6Mw5BYFzQdVFdkJM168UZSX9uwzpuy+6+xJxLfWBbhufr4tA6c8iwNpZ8XlHpO9/VJA7O9Irz89suOz3Q/89nmDdLlvbv8bWWltiapva6tlM/qqrkK10GPKv/QHNw3uQD2YxVEp3cnxnDsQAvqW3Q9WY/9XW8efuwNT28zavdMB/HQdi9tl1yFnYFTgmjNvMiTjIxJ7RKOO8jTIXj/u+rJPMHc3M6vHcyKjdoUxefC9VSr9NZGb16Ld098nu/pCr9Mgl0b+ZsnuLhnL6t7tfjgJ0r6AN8hzPs2O+D3kPAAPMbDrL2WdK+1kvmW2U16nsuWMcswB0RdCtNe+7jTIHNSEze8+jkePnWjPrY2qrIofQBygj8u+oNE/2u1/XMOJaLK9GH9dCwYmj3H1XRG26CMpcHArsaypJ96y7T3T3nd39JK8NiuqNDJSTUebBmoid4gNkrG9vYtdqyKqJ7xWdmyciRf/mZD5kiv5zqAzG9ShAta4riNwF2BxlQ9zmzQRFhewf4v9poPgPiElrAmINui757EBT+bTs757IqDwWAcgy0E1nV8m7ccgo7G0qn1nWh6rZsPHPx9BcfAgZiu8Cy7n72mgNzQ90c/c3PQdFNQnEaE2rsY/ciUCQhhxAWcmxg1AG6yLI2d3uMkvkdUOO5dc9QFEh/8fs/2Hk4e5XuPvlXgBFlch8EzmtZwWyc2pKOEa+QGCHu5HjZwcTIDZ9thY7TcLgOgfNqTsLz7wUcsptHH/vikqvzNVM2VPiWb8kz/Z51JsBHEm/H/8+C723VxAT3fWeg6Kmcfe0/MxABGi5CYHJnjGzHcxspnDmDUbK/g3x7Bcj504aNHoale592szWMAEd9nf3PZHjYE5glIkdkDiPpzGzueNdn+cFUFTcl/VxGTOb1wRceh9l86+Y3JOdI68hg/lOYGNTmd3snibft8uJeylynGwOjDOzudO+1Gomx/tNaD/aFJ0J15nZqjHvj0OBmzXSvchzsFEjG+AXLPOFkDEyzo3p0D472t1vcjkK+yMH03lmNp8rkHwDckxf3IK5nWaC3oTm9vfAJWb2EAIXH4wyX1NQ1NwI8DTRzDqZAlfXkFOtP00LzzMz2xplCx1sYp+rOE+r9L+oT6UZ3FvHmDRbXkH2W2g/vgztG3uZWecae/rzKNh/OzDczA5LPjsP6R/bUuWsiPveTf7dKnnpevKEUTUuGTpvM1Bip/S7ZraUmS0cc3UHz4N3syb3ZLIWRSwWt6K9Axeg4Ci0j+wbeiXufiqaA1cmfZtS8u9X0J44Hp2BE0ysSmXnVEN/quhZk9pB5vWmEmnHICfu1qGrLIocOauhAEdzZJ6MAmj/TPTBD9BZsDGxD8f1hxGo9zAEhh3qAWDK9qHis9RDZrG5mFy2R+f/Iugs6Fx4l+/F700ANjAxH1Q9K+ots97yTMHs04HT3X0xcvazI81sVPKbRyGH/tkI1D66ZCxvQ2fAiigQcKDLRs724G/ROTkYAT3GmQCajVqZDuzuT6FA4n3IXlrfFNTMPn8Z6VJXAaeHblWrLYnmxg3JXj0csb4Md/dPTEkS6XgV5/lJaG6d0Y4ycQU3DkO22tHAnqaANKGjnYgcqueY2W/S9ZLoRc94wtRYD5koGPMkAuzciFix/hL70w7E2Q7sbAoUNfncwJmmQFQ9ZZ4Vc3ULNH8uSs+PbB6F/rE+yihfDwXGMlBUx/T8MbOOTcjM5v3naF0cj/akxSlp8Z0ZEWPt5UgvmeRiJ9yR3C7ZJMYHF1vJ+l4bFLUCsj9PQMxSWWnYe5FOtZ+JzbXBFqgyluk5UXeZ2T2eJ7A9iQC/vbPxjs8vQix0B6HM6iPSz4utXvJMgcgLkM6yDwKJrAKcZmbbupgfMtv+W8TUt6vnJY9T/2QKipqI3vfSSO/cDDjEBKTHFQw5Bu1rp5gS336O9gbayxdFZwSuYH6X+Pc1qKTaetkXvNKvWDx71ke62kDgP7FOMt3wCLT2j0cA4HuQjnO0VwdF1VVeyFwDrd0jEah1KZTQuApK3ule5XvpPB+K9qHJrpJHc5jZ/KaAV7f0O9X6Efp9tkfdjval9gBFdUz6fTKaj93R/vYCKsG9lCVAEqQbfoqYYZrTFkbP/UzMn8URiOI6lGT8jZn1MtntLWnvoCSt1Uuea3YEeF2jsB91i/3hCLSfLYts2h4ALhDERsiuOAVYM/Stl5HvcDLy3zbVZkN+2ofi3MUFOjgNsecehAAUxGcXeYCiWmLXtaSFndvi5mLoHYoYs+atck82hwYg8Oh9wK1m9oQJePKQu1/juf9mNgRoPwCBO9oNFGVmK5nK/2b713Dg8XivbWKZ8Eqb/XV01h9mSijDVcr7WHRGHB+/nfWjQ2G/nGICSg1z94lmtrqZ9TWzTWOdfoV0oexdHB/zvNazT4N8NxNMiQyg+bt26BSfodjOXsiGOMJVcrmTCaA7GjFpluobZrY60gmORvbCCsge+Dqee/14tonkNv58tfpcr5baCtFmRADaJ2Mvy86xe5HtNCcRl3H3L9z9OM9BUZ2SOb4e8lnNgnxCX8R33kW21ShkVz2OAA5nI0DoK1lHCnplp9DDv0d74vxmdmfc9222L7r8DVshH1QvZK+noKjFgddK7KBuaC/K4qfTeO4/uhrt87sCY1q7R/xSWujUrbIlpraprR7Nch9WR5e/ahvkIxgHfO/uA9E++ArSNZZHFTGyeOTbqFzmVFBUC9pUxqj/h83EELEjUkzfA252b1TPOzXO0lJjp6AF+EdgUc/ZDX7xMn+uPsZ9ZWVGLkPlslYtXK8pM/r1rrv/Lf5OM37vQpm9f2hPme3Ux67AHF6oD164p6Xv5yeTGcpxRvG8OELi90CZoIPinn+ijLlDku9NiwJHi6ND72F3f9OU1bEqcgA2W17J83VCmYrLuvs2ZmaoTN9lKLh7N1Lij0OsKJ+lY1JD7giUpdM7jP3s+owhvytyGlzheTZ+WRBsD3c/N4yE9ZED7S/A3S7Q4mYoC+Xv8U7+izL29gaO8WaUrWriOWZGQI3pUUCugXIeBZAeRsHLJ5LvrIwyzAYSDCZxPXP69ERGzd6ICes2Cq0wFp2RwfG9R8abidVjBuBjDyr9eJcHI7aordEaa7dDvNDHVVEGzwLIOfho0teOCJCzM7AJcnj1JNgp2ltmInsgcl4+j0BlT8T3vy0YkEugchPnNeVIiXf5uYtlbF7kBOuD2EpGxj3Ze++BnDlXeVKSpbVzM/n+tMU1ZMoguA3twdchYN9+wBnezBruYdB29Ep2mRZRgxf29r0QSPINxILyVOHezVD2zZEI/Pc62i/XRRmxF8Za2AA5nz9GNNANzFOF9zg3AmLdj5yXr8XYbIAYxt5GDpqbTayAoxGDWC1WmN4oSPMVOgeeR/vwkwgg8x5ad29alFU1ZTYegtbkNe6+S3PGLvnNLihofT4BIPLyzNV07cyBnClXxm++acrI3BOtlT7u/qSJ3WEkVfaiX4vMkLUseodrogDS9e6+p+UsgB3Qu7oBnW/7xvWU4bTZa7HwHBshB90sKMh1ppcw9ZnZEciZ8hYKWO2OzuxsX9sYOVqafZ6Z2cUoaHQ5Csi835Y9pR7ywhl0DmLHGpSNQayfRVHizeT4/AdTxutItLaLTE9LeFJKOK7VVV5BdnEfWROBlvZysbek73MWpBs9hfSD7PpoxOq4r1cyeh6IgpHTuftXVsmMsG2M+Sru/miV503fe0eU/Z2WrD4YrZ2XUGDZ4/q6aC+/s4qetbvLSV5XmSh7dIqp3N9gFAT8V9w3CTm4M1a0bh6MJcX3kMjcDQW73vYo0xifz4X2xufjnm+9Cita+v6Sz1evh8xq68TkPF8GZf/OgJynDxbvNYHpsjKGf3H3DeotEwU/69rHwhgshNb+Pe4+xsSocD9y3ndFe8uhHiU/0u9W+7eppNS1CID1KGJv+6LwDtJzcjICWjXMp7inqbE8H9lRA4vPbgrgzOcBks/kQaMAxImIPWau+PtWVLairwusvSral051lbOruh7bQ2bM6x+A71zJGtk+dggCWx1CJcvT/sB77n5hteeuh8ySd9IR6ej/9AK7buh2NyMb4GSkq7/b1Fi2h8y4/hQq7bVFlWeZBfjEC7p3rXO1GTJnRYk30wFLNqG39kCBqUnuvndBJ1oJ7XNfI1/ADV6Fkb0gcwDSUdZwsR9kMqdB5YmXRk76Ez0v4dbU+6mrTJNePwOyHZ9L+n4MOp9W8RKmhmrP3g7yfoP00X8ggGPGjrs6Cn5Og8o/P1Yc/2rvxsx6IR30cncfH/vvvWjfXBHZRCM9ZxtZDPhtuq/9VC3Z3xdGSQKGgK+ZTdcRjfefUaB592bIXBsF0FdGOvmhUJGcOjuaR5siYOnzXpII017y4vrBCPjYz/Ny7zeGnH6e2MbZPKqmD7n7eWbWH/l+5kS+ojuQPnpXE2OVytwJuNfF1NsuJadiLo5CYLybXT68ldB5/Tqy629DyX0jkK7Q22uUCkzG51A0HvOaGJkeRklJu7iYVgYiFoUDvAXlwUz+7EdQQsPWaE/OmMC3QPvRLsl6OgOttStcgINpke9lT7TOt/CcOcqQf/EbBBq5zwVmmSE7K5vo2xZo3Szj7v+wSuaXNVDSNcjPUZX9rl7NVP53IGLwfryVMpqyz7ZEQPhxKBnxK6SLLoiAJHfGfNiGACEjvWhcfL/uc9vke+2L/BiTEcBnYvRrXNke0EL5GYitY5yHyyFQ2IuISS9LUl4CzbUdSRiZCrJS/fpiBMicFwFaXkA6wF0xd3dGAPcr4neq+kNjvp2G9Ofp0LvZAbGpZQChu9A+egZ6h6si4Fo3YIW4L+1ftrb3RetnHU9iKya/0GOo9OyayfWac6herbB/ZqxB/0JJbie6+6HxWWqnfIbm48hEzijka0lL/r6GGNRfQuWaf7RKX1U3BKQdhvyO97v7xWm/quggPZAdljFRPuDufeKzzFfdYIsXZZkA1L3d/cwSfeYO5K9fPvbcTF5HtM9NQef5mm1dEz93a40t8dP3cmr7X2sx7zqgPfstdCZkdsPMyJ5YEvnqrojrCyD99C8eFWzi+k9SWvR/qU0FRv0/a6ZyHY8iJX0GZJTPhrI6L3X3V5N7U4VgC0RnuSgqPbCOuz/5a5H5c/axiuIyP6KcfAYZu1NCIakl80qPgEMiJ3V+LYiCLveiLJJ2kYmU4nr3sQcy9D+kEGgqtha8n59MZuH70yLjujMK4k2K670QtfTh7n5DXJseGVhzIkfBdyhIs43nwaVmy6vxfHMh8NN9yJB+GQEX3gun0A2I3WAScJA3r3TgcJQ1vKp7QyAto/XtH317GQG7zgFS1phbkZN/N5dzc0e0Hl5EYKTPkQF6iCs40hcZg4shp9DTaK6lWQ4N8uNaSwLg8wCzZs6qVJ6ZzejuH5tYtzq4+1/jnuXR2t0COU3Oj+uZoTATMnYeLPm9dL5sjrLgV0Hv5y9ekokYzrkNkGF6kDdR7qOezeTMPg4BTWZDjoob0fv5uvA8iyOlradHXfufQqYJDHMreU37M5BhuJEn2e5hvA9DTBE7eQLqK5G5IZq/2wNPxz42H3oHy6OgcMYmkb33qqU3TcGtj9z9xWq/WeV7tYIrbyBq8UuAYV5gW2yOTDMbifa7LDj8Yzhm/uMJ41YNWamjYzBaq9+ijPTXYj11iz5+gMCEH8f9N6C9adPU0RF7Y3dPWIMKBvp0sTdsgwIMjyDH46vR//VRhlVn5Kz8PXCcux/exLNkALw5UBboLIg6eS7kyJgPGStvozNwM1dwbX40V97zZjj3S363CwLxdfSE8aHKvesgcFBf5HR6MRn/jdC6+jcqKfdJrb3oVyhzOQSIWR+Vl9w2rqeOqUfQe9i4+ig2rxXWyZYoq/FAz0uflQU1JiMw53MI5PWKKfA3xXMQwEHUPs/m8yQz0MwuQkDti2kBmCnp3wKofOR3bZSXUvaPQPvi3aHfZaVDvkLr5imkF94Ue2MGZloXBdEPL8jeDfiXu98df+/URnmNHLDFf8ff0yMnbh/k8L8mrndHANrj0d6asoOdiNbrZFRON9MFN4hr42Jcv03OhpWR/rWuu99f6GsGssz05c3it+dBYI77EpsiAzL9M8Zj1niP+3glIHc4mq8Z+LweMoeiwHYWmJ7T3d8ysQRs6O6Lxn23oCDgxu7+jAlk1RuB/74pvI8UaPUwcq7PgLJv70305TEIfLWIu39YPBPK3m1cW6oeMgt9XiLGsQcqO/dyXO+F5lJXFLyoBjw6AJWR2rHeMl2ZhPWStyFwXbq2LC89NwaBZR5AwaqdzWxFNMenQeuiWcE6M/sdYnlbFs3D59HZ+llRp4r58qMXylkW3s9y5KW9n/W89MRySA+p+uzJ83f1PCFmPeAHd7/LVN7oMBSQO4IcwPR3UzD1cFRCaIRXluwcGZ8NjrVTT5lD3f0cE5PMvkhfeQoFby+Ne1Mg00HA2V4IzsY+PlOshWzfarPMKmPcEbHozIwCMV8XzpfLkO3bCVjZE/CIqXTHMcg5PLGdZXZAc3qKu68V19IA1lLIDjzfAyzdVGumzC1RabQ30ucr7k/Jcz+JdPZN4lqqE91GsC4gHatRAl+JzC0QwHwdd38grnWJM21VNM4fosSMg9BcztZfxTnRHjLj3L4E6VqvIPvvUhTMWhIF6sa7+ylWkpyYvYdEfpvkxRn3D69k/JwPrZkj3f1ky9mmpsT6vwXZ81lyVZOJKaZyryNRKcseCFB2k7vvYkruuwr52E71xolJNUvltkezHBy1KHqvM6B5PcYEsl0ZAb129Qj8NiGvE7LnxgCGdIxHmtJfa6ydNskrOZ86IKDBfB6JryX6UF+0DhuV2rTG4L+t0bw8AYEE5iQYmIA/ZOuopH+pzCHIbzHA3S+r9kxtaWZ2IbLleyBd8NVsPiNwxkR0Jn+NWJq6If/M3wtyqr2n1RAA+3h0dt8DDHL5AWZHoKvuwM5eUna2Sp8z3W5DBOb4Ae1P76A1Pwit3Qx00xnpxWe7+z2J3t4NnZHVwFE3oDNnGNrjGpiJm5hjs6D1/d8Yq4ZkCxOA4WyUZLMrVRKK6tnijByKGN7281aCo0JWtn7SGEFPBJD/BypdnwGt70I+8g2zs8vEkr4xSkS8PJXZ+ies2d9ZkC/wJATgH+ruZ7f2NwvrsxPSaVMf1++QjlAERy2Jkgvvc7FCVpM/EQHHDkBg2QURY+E8yCa83hRf2BbZg+cg3ae0xGfI3Ajt4T8gP0jGnjxt6FpdUOLFcmgveBLp8jt5ZRnNbN1l7z7zs/bKzs/k3oEo0bGPR7J90p/2fN+p/+A0pDf2RWOZMYHv5+43Zv1FPp1bEGjtkri+BtpTtvQkIcoEcvgLYm06BAGtvi3qFsVnTNZNsezkHGhevuLu75jYo3aiMThqWwTo+x3wZbX9x0QCcA9KmL82rq2G/BvPIZ9ttj6XRX7Ywe7+bFm/f20tdLXbkO+pRbbE1Da1taaFrT8WAUoXR2W6X0K66cOxP8xEDo4aBtzo8pOU2jhTW8vaVGDU/6MWm/wlCIU4CBn+iyADa190cI/zJEsq+e6sCBCyAJHp9WuR+UvoY+EwnQNtcn2QovfPFsg81gMNWnCizR0yNwJW9xxUU1eZ7dTHrkjJ3BgFzW9HhmiT9H813s9PLrOWQ8sETDoS0aWv5e6vm4Ju9yEDfBw5u83+KIizG2IQKnMQNJKX9aEJI3tppLQPcZUIwhQsG48O4HO9mbXpw6l3O0m98+SzjJ1lVlTq6Ozks2OQw/NrxNAw0czuRawiFyM62fOQo+p2lGX5hSnzsiMKaHzmQStdYjTM5e5vNmc8yu4p+bsjcrK/i4y8ER5AG8uD9P2QU++8uF50lNXKyD0dOQL+hRDfiyKHwOnJfX2RU3sL4BRvx8yokj5ugYzmMe5+fDzz4+RAuhGZQeyRyVb4fpkDua4yw8AchcA449z9I5PD9TK0V41AjCDd0fo9Ghjl7qc08ey90Zp/Azmh/xFG/PwoYP87tGZGx/0VwXeoyLj/DVrrl6LgcLNqsNd6xyZA379RIOF7BAy6JZTnWt8r0vWfgsb/bHc/3wRQOIsSZpMa/UydCAcDs7n7iOTzaZGD5DpXGY8sWLMkubN4DVT+8NVaY2ACqPwBGQWd0JlyPnKapuCoNZHDcEYUODg7ldfc9RN75Lm/QL0JAAAgAElEQVQIaPcjmlO9UVb5Gcl9s3rUm2/N2iyMYVmAvxNyHD6DnMpvuUo0YJWZpOMQ48dCXgC2leyXvwqZhc+WQ8HgTYCD3f3Y5LPuCGD5PspsLbLFtea9pOtlIU9YZwr3dUbz8UYEcu6FzozBceZ3Rmf6j2HcdgWmRUwTDecZmrNnAmt74gi0FoKZknm+e8g7Fp0trQJHFcbhMHTG34POQEf6zJnImdsZnWud0Hl/jcvJuQQK/G9Bsr+YSuw8ivbpQ9sqr0a/N0KU1Isj/fUilHW+FNoHe6O95APkENselSAuY/I6HAECbkZn2Usm8PxtqOzHocAlntPYD4n71/MEHBtyZkdz+ZPQC85GAdXpENPNxcBJ7v50fOcABOiZHZ17J3gla9afUVmnjAWrHjIPRqCpXeOcGIRAsL1RGZ9z0ZwfjYKdG7vYbrqhLOUVEBj+zUTm3ghQuhsqhfGZiXVgQ7R+50Hsj5fE/+9BLIIHFN9zIrMi2F0PmQX5OyD9uyfSKX5A+sclLpDscjG208RzPVDcy8ysh+eBsw7obKmnzHr0cV70bvohFoaUAWqe2NOORbr6Np4zY0xG62shZOs9UpBbDAil7BxZgHEoufM9e6b1ELjz+TJZybWB0e8uKPPy+5B5bayvms9uAkich1h690ZlTs+PvtxkshGfIbcLNnEBmLIklmNR0OjiROb6aF94GIGf6iFzAgrEHuruY82sXzzXpciOWg/ZYMd6BNBMwb0D0bo9EoHX0rLi+8dvLeLu/66TzFpnSh9kk55R0BenQ4H8m5FOmAKYlkdnxVAPMHF7ybQ8CLUz2t8O8bC/4vMu6LweAmyX7aW1Wr1lJvJ2QcHNke5+TPJ5T5SoNBnpxn8rl9RI7oroDD4H6Q0fJ5+th87mj4CzvBL8VHFOtIdMk333X5eduAo664aic+ufSD88F7FZrFHl+Sr0urbIs5wJ9AjE5PNeXF8AAUcno2S076zSH/gISsDLSgU1N5lr0dA3LkXrcZALoNwNnfFzIIaeTTwB2P9cLZmji6GyO0uhgP+P6H3f4e5jCt9J3890yGfUOd7RNOQM7bOh53yy2vfbSd6CXsmWvjEqhf2DCbC6P7leuRK5PtQD6cyG9KH3ExlFpqgsCPY0WtdZIPopdH5t6+W+6zKgVaP1WM9mZsPidyDOtcLn3ZCeMxvyqfzVGzPvp2tjTmAaz/2bXZDfZUfEfLNSrKcFkG7zR2QztSjxLGR3RsluRyFQx7RoHV3pYeNbAZBg8gvMgYA5H1lt5qjFkH9iuNcowVjSr04IzDIc2UG7uZhauiDQw+bozL0GgQ0Pa+mzt7SZ/EP7oeSwfb0FgIDCvFzPc7BPNrY9ke13nIdf2XL2zNRP9EDcP7PnDJbtDsQws02Qj7IjKnHZL65XTYisIicdh81Q4thCaM+eiAD7H1glOOpgd/9zfKfhuROZqf9oKXQejUWA7ey35kJ29KzA78I2mhaBsB+vtnaSOT8MzbmZkW9ntOegtAwc1RHZmAujs/OL+O4yiAX+9fh7S5QoepeZ/QnZY9u4+zWFfWCr+GwVL4Ao26sV3s/iyC6+F/kvp8T43ocAi+eS+4N3Qz7m1TxPOuqGkg3eNCUL/s3zuNiMyCboidbUlXF+NHsum2z7w5Dd3hWdp8Pc/eo4a3ZBsbfXkH9lEEok279EVga67ICAX5MR2Gt7F/N+d3Jb9VN0loP8SF+imNkPtXT+X0NL5vs6yJY4s7m2xNQ2tbWmhd/hEbR+H0MxmbWRLTIHWnPnu/vbppjX9Qh8OhxVT2hWUvzUVrt1bPqWqe1/qE2Hgu5/dvd/hdLhcTgORYrZwaZs0IZmKpkxEWVyrlkwwn4NMn/2PiYK3n5IgdoUGY7/bKHMgxKZmWI1EoErNkIMHf9qR5nt0cftUDDlwBjvTVFt7UWo0Zp4Pz+5THevYCxKZG6EMr02QxTar4fhcAhiRtoPUaR+4e6nIiNoDeSwKQPTVMhDDobMMMsU+cXMbBUzWzkM6Kx1RcruPHFfV5SFcwsyOipAUZZne2FmXcKAIp73TgSeOMrMtgnlP5O5IHCru8/plaCozghUcAIq4TfezA5BCvbt7v6Bq8TLHgic9kfgJBPta1bC6j/IuMr6lzqqNgIeNLHINGRkFccwbcV7iu/Q3ae4HFd9ULBnrAlwgYthaiwylM81ZTA1zPtURvF3Q+E+BoHrdkaO66WQk/QoE2Ala72QM2k/z0FRHdvb8DBlu+6OsmQzANPfEODoHmRgjQ+D+FtrXIu9Ye9rL5kmxq2bEePW8x4AAxT0Ho4cVFcgR9r9yIA82gMU1cT8eIDcCXAhsFQY7K8iUM6jwBAzOz76VZw72XpcFwF5XkfZWfubsmdrtoJxvq+Jjrmhzy6H4WKofMLbyFDrG2OXrovOVWTuhZy2wxEw71wzOx/t1SOQYt7c9qPlQc5jMiMyGd/u8f+spNht5KwIz5gyPg8CNim+k5J53gdReM/gKlF2M3IS9o4xmD+e828IbNrPc1BUx2zNJ+OwupntbGbHmFlvk0M27fv36Ox7093vcPdz3X2gJw7TkJeBotYEtg2nR7Nbuk8kfUvHoqPLGdYPve8lTIFMYq1k7/lelJU9b9lv/FpkNhqg/LOn0Dq+ERhjZkeZ2Swm5/M26Py8w92/8eqBkYVMwbAmW+GMyFhXKuZoyP4uzq8t3X0j8szJM81sXlewOLO7Orv727GXfJzImIL2rPuBa7OzJvoxEJ3VOwCHmIB4pWdcwTFlCCAwBJXtbZO82DdGo/N/SfQutkVZxJPc/VlXUGlFBBA7FtgqdJTnkZPuj56AmFyZx1kWfJvlpS3p90DkFM5Aqsuh7Ncx6HzYBYHU1yEH0AzzHBSV7R3ZPncE2m82BkaZ6P0/R7rZJ9HPK8xsT5TlPgY43Rs7n3+P5u3BJsf1WoiN8o/u3guBPbN31Ct++7jo784oeH5k9LFTyFwMMW3NU0eZv0Wg5fNNTu7DEWiiIyqF8zQC+K+OglZPhz64DTrzr/VKUNQGSH/aAwHRJpjZLu7+TOg5G6Lzd1o03x5DYJffmZxIjZo1Dji0WWZB/qYIYHYBsmc2QeymxwH7mBymf4+x7YB0w9mLcrwSFLVJnWXWq4//QXPmPOA4E3Aua29G33shYGcGipoV7ennIgBgLVBUX6Rr3G1mp5kCZV8h++A0tLfcaGaLm1iLbkd6VNrHiv3KVLbnlPhvHQSYvDHGY7jJ9nq61rO7Sng9EvfcEs8yBLgl9pz3kZ76DlrnZgqKj0KsE6d5UvIixL4az7RKHWU6sv+GmBKPZkSB6X3dfd+Q9xCyU0fEs32A5sHZCOTRAGCK9hoC299XD5lN6FlzuAJ9JwB7m9kFZtbLFHTaHs3drzyCDvHuQGfw8u5+VnvILMyFTA+5CwWfjzCz8WY2f8y1vdA+f643AxTVHjITebcjO+owMxtnZjOHjrMZOusaQFHZcxfWzrRmNmNyvj2GbNTBwG4xHzD5ARZCNvzqnpfJy2Sl50R7yNwWgUVOM9k6D7v7WMI+J1/XMwCrm4KuFa0wL9ssz91vRnvOSGBPUyIMLlDSU/EOVo61nvkDZ0Fn57NexX9UrXkOwu4FvOB5CaTZUbB2LGKg+NlBUdBgI3QM3acfAoHOivbCbTxAUcl6TPW2LRDT/EPAhWa2scvHci8Crr6LzonlCr9ZzR5vszwz+y3y02TzdAd0zvSLW/4acp5F2f+rhT7UGdgKBZcneSUoais0h3bznBm7J9KJH/McFHVzjN2fXMm/K1hiy5To6hn7VN1AUYV9YxoAl/+yf1wenumVcU9nd//K3c9x96Pc/UJvDIrqkKyNs5D/5Ukzuzb29W/RWXgZ8tFebfIjTETAwg1KdOtmtbDdHnGxqqyG2L029wIoKu79MebpboiBdHMTs/zXSM8/E72z62KNEv1a2FsGisrG43QEQPg98ISJveZiFEu40cUY9hXSY9ulmVkHy+2Ai5Dd9FvgRBNbTLNkJPNyNHC7mR0FDftDJ+Rn6Y584ykoKvMTzY32tp3jex8msusOiiqej2hNb430sr5mdm304/tkfLL7K/5OWzIOOyDdfApKopoDje/RZvYbd38C+TMWAk4w+bjT557BlGBW9JnMgHz7HyfzlbC/RsZnu8e1r9390rK1kz1/1l93P9Xd10b+wU+Q7vKnTE48c3d3/8zdn3L3z+P3Z4jfuxyY2QQKvxqxkIJK/d4JTDSzVZJ9oEv09VUEZP1JWvJ+xqFYxPZIf5oSe9k/EBv6FJRY/gPSIdYnZ8tb28xmj33vTROA82bgmWTP/BjtN18gHXo7k4+56FMrbXGWTUTrcSukVz0NXGJmg8MmvBDZGp+guXSw58mpHRNZHV2gqJkR6+RXyK96L9pr+7rAF5eg+Nc/EUh1O/R+1nSBojq1RJf5Jbak/4/RcltiapvaWtRMfrKbgDcRq+fw2JN3RqDVqxAwaldTPDTzrz+H9p9tLWKwU1vb2tRF/P+rTSEve1ahpLrKMg1Bm/3A+DybH9Mi59uKHhSJvzKZv4g+hkK/JFL81yxxeLVGZk8EVOqJmIOKaPp6y2yPPs6BHLGnuPvByHncHCBTrffzs8ksUWY7IEdV7+Sd90AZ+/8FXsqU7fjseuT0qBa0LcpbGSpAaAMRPetfkUL/qMl53BU5f+9EAbhzUBDwKOBlzzNNGoGEQvm+EYGOxpqYakDO29tQNvHZJuaDsSjg9N+SMfkelarZL373YQTKWBQp2ZioqT9DDqrbUYby6aEMZHOtQelO+jgnAl3MCww2AWaaBEcVjPWNTMH14j0d3f0uFFRbFQXjU3DUUUipOdvMlmjKoAkFZi2UfXKCifXCkbNjB2RknGpi+iCchkM9KNCtnTKjSvr9UfTl1njn1yOmjh1QRvNryME3wcy6e0nGVD1lmtkpMW/T9jFyYq1MsmZcgLaH3X09NKYnomzefl4DXGbKiMlk/IgCZAOA6ZGBubTl4Kh9EIihEftTMqcGouDHush4vQXtj4dbDXBUYV4ORcrv+4V7Orn7yy6A1CYoqHYKsGFmeJuCa7uYWbf0ea3SYXpajNHT8axZ9mFzM5Y6uBz7P5gAXH81s66F8+FDpNwfaGaPI6bBvp47i/siQOVLzTCqx6NA+pEh+1u0P2XgqJORMwUXOCZjKGpwniXjMCi+exBytt2KAiQrJf14HIE3l43vVID1Yq6l7/uKGM8KsHVTY5j8e4ZEdiY3c3rgAoBsj8Bsu5tKjhFOjc4oO/md6HOj9muRWau5+zMImHEbAhk/gYAAu6AsxgvS+wvraXvkoNvPxIrSnN/7sTCfG5yN0XqanJQ9PAIYruzdC1Hw6gxT2bEfTCwck81s3lQmARBzObpHIKN3srUQHJXJNLP5Yp0PQ6CcJ9siL/69F8qq39XdB6N18zt0Xv/oOVtjV1fAfCXEujAWGe+dXSCVO+K+jpY7bS+oh7yy92cK0oxDbIFbu8osGlr72Rj9y90PQZnjiyKAWxb4SgMjDcDceMcZOOpgM1sy+rlqyF4aBUtWRIwvDaVTkjHug3S2HREQpRfK3s3m0RnIqbxV/Maycf0v7n65u9+aPHu2Z8+HnLB1k+nuQ9z9VBO716xIfzvfBWh/AwVqnkfsXsubAOojUTDrVHe/sPBankD7/nfI2fo+AjRnY/uKC+TQJ/p5DvAZyqLbhJKWzNMd6yUz5HUwOekHxbge7+4PxrzbDenC+6ESUT+Sn6XDPQ9aN5IZY1UXme3RR1fyznFobx1nAY5y96zE1bNAbzNbymTjrofO3ts8L4lZFuzeEekZcyG9fVWkEw7zHBx1EsqIfASBMCuYVEtkLoMSJSaj+fZoPPuuSP8bicpYTqn27MledAI6W1ZC++a9cc5n+uhdCLxJjOtVCPR0oDcGUnb0/2PvvKOtqJK3/XBRdATMOYzZMqCOESPmMQvmhDmhohhREVQwYsLAKAYUxTzmrGPOcYzjWDqmMY05Z9Dvj7c2Z5++fc69wLn+wI+9lktun+7q3d07VL31VpVan0bJjD6eiWzubxH5Yi/kvPkufn8G6UgPIuJmnzj+KSKZnF3yLq9B2bUaIrOOnnUHsusWR/bTgYg88hByiJ8a3/COTFZah750OUkbLrP4PrLz3kZ76MVor3gR2dK9UXDLkHjOFp1ZbSUz1uAT0Vw5EJVgeAQ57y/0LFOUNy/FsjmyT14GHjGz08K+GIgIbycBl5tKlJ+D5qe7AhPG9DFkpn2iITKjv0lmT6RTXYkytfwY5zbFNzzf3ddC692FKItBKiGYv6v03A2RFzIPRCSGoxE5arb4aV+0x5yHAj8mNwVNbIjsoMfL5LWijUaOlJXNrLPJcb862puHhz41VmOyLZtXyFH/QWTpj9E7WC87rWiP90TfZjIUZNEFkZZSZpykK38A3GUiFtZsDZT3LbJrdjWzB9Ec3hvhQLjKgV+MHN6fAjObguEOQWNkqDcnyTyGAmaHZ3vmr+g7Txn9vw1hhyl7zgJIf+2SvrNX4wZjSvLVey9j06y54zvHTK5Ae8YaQP9Mr/zFqp3wZYElqd9D0Zi4BJGguiHdYHEXLtsXjZ+f0Xe4A+jmrSSm1nmutPe/Fnpinv05zyiZ/t4CESbPBLaw5uSohYFbLAj3HtnxatkoxZbpDj+gPe5gZBNuikhJvV3ZYNdF+NQrtaWNX/MKvrMb0lPWRVj0ymjPXabe9YXve1A8y90IF0g4zmiEB9yCdIvHEDl1E6/GiaZDWHxV/xr3tKV97o7mbZOrPOm5KICnu5ldl/UfM1vHlKm2blkjU0m8gUgH2MPdd3f3rigT05+BDvH9n0P2Shf0nfO2B1r/i07xr5BenRMmE1HreYS5TNdC/9rHGGxvIjjPnX4L3f6IuM/RJnIxyDd0lSkYKG/formyAFrnzkdBRyND3tfIznAUKHGcKTtVKtl9oY8j6XE826eIkDUN8gEBjDYRnF9E82BDFDDfG/llnjeRxe5F2Ov0cd1HCDOeHnjCKuSoz5FN8APCNba3LNC9rAVu0gntOVcCA11Bm8MRBnYlItJ1jXUnraMbJh09xzTSv2OOXYFwixlcBLAjkD/pagtylAtb3yD6vTwikf5iGfH7j9BiXP6NsbAlJrVJbRzaaihD/UkeWUhjLiab+3DkZz0S+Thw4YybIT26H8KSJrXxbJNK6f1/1kzs9iURQeX9UNDHRCqZ2fEo/e9yuZFhUUd7YpU5ofQxFJn2XqP++TjKnBKY0rOU5G0ps1HyrOK8awd09Ih2jt+OQ0DhTRRK4BWMlSkTkDUBysyVzqLMyRFR4p+uWtD5/VdDCvVKXiMDglVS1m6HNsve7n6OqYTA9chR9xQyUnZHxtG+7n6VmXVDjutVUQmu4V6/TvmWiLBzLwKTuiGwtW8YAJ3jHeyEFP7/IWfZ6TXkVUUQow19fQSqpyw+HVyZRToipXRLRKK4r4bMnZCB+QgCjeZD2Sb6ufuNxfvW6EtKA/5Xd7+n5B7JcFgNZUd4ApVjSxG4y6LyYbfXepcFeaujDF6PoSjZV5Ch+FUYVZcig+xEdz+urM9t1UxO5I9dUS5Tufv3ZnYYAqO2Bt6J73MlGkcdUdrw0u/TCJlWST9/h7s/VJC9Ahr336Ja9o/E8XrluJr9ZmZbIfLbIM9S5MdvKyNH1btEqnRXlFhnF5Gv7B6LIvBnOHJSfhPzZRsErFyJyjR54bqaafBNWTbWRqDby8g4S+SB2RGoNDNyjnwT1x7qcvSRyTwd2Nsrjv/Z0LgGrRf7AFfU2v/q9HVIXPssAnF+y+ZIVwR+rBh9OtNUlnB9ZGgeVehnWnuLKeynRGVolkCp81PZivYIOLsSrX8b1fo2cf7aaNwcBdzqKhd7QLybi9C6msosvIvWyv515PWIe/dD0cDv1Dq3zjvsjUCxY1Pf47leRY7U3SzSjJvAyKuQQXUFGg9zIPBloAcJo8Y9JwqZLTWTM7w/Ag6vRftIijYtm+PbIwfXYOAmF+jYmvvk36gn8IIHedpEdNoH7TtNBJDk7v+L349FBJWv0XqwDyo3lJcpOwtlMtrLK5Hhy6P5siTQw8vL6o1AZY3SHEhz5CwUibhUyLxwfOTFv8eQKdFcyMmAQxGgu4FXyiOkfXw6RESYDqXvf62F9zve8opyTcDtWYgY8aJVp+r/B5F5L32zOF617mTHt0TZ6oZnxwYhB9WtRBnt0PM6IL3oG88cI5lumOZIExq/ayJn2lKukmd56clUKukGtD6UlhVoC5mZ7HmRw709cJ+7r134fRNEzFkNOfSeQ2vhsMI7Tf9fBRFZTgLOz8Z+1dqfyV8cOdB/Qvvo9yV6XcNlxnmTo7XrGXffvvAdZ0Kk2h9R5oLvCtfWKqfcUJmNlFe4diEE/u8CHO4Vgt/yaE1YAQWVzIL0p+OLz5rJXQoRWoYAI9z9c1PGi5eR4299d//ERPJaBZEHPvBK+e+y5+6CiCWjUDnhTQu/z4Lm5pfI+fx94fcymbehNWh1RLI7Ielq2ViaPJ55KqTfNpvjbSGzsF72QN+mK9DL3c8vzPG/oD1yPbTvnEhJawuZcW5LetaesRbMg3TBH1F5invqfJuGy2xNM+nv86BsZO+EzGcmJJkmYv0CyHH/GQo2qDd3dkA60U2IRLoSItK+jBx9o03lk7aLfn4AXOklxLo2lrkIWjcuQ6WWfojjVSXMC3v1zsjWWt2bZ69rqLzsnNNQwNdAVBLwYxM+MBw5t99H32V+pGvVXCtbama2D9I326Pgsq4oMOCkknPbvNRUa1q29y+C7II/ofKDZxTOa4/G0OuISPS1KQhxN4Qx7ufCvdojzGA4WotKMyO1gbwOiPi3IfCEu6+UjmfrZG+kUyyL8AlH43xo4V3k+ujWwCwuImBHhDV9hkhSC6L98eXo5x7IntjbFVCR+tYH7a+71+r/uLRCP09ATvGU6e1K4N7Yw/ZEGMT1yMYrBpomeUX8eEEUvDDS3W+OY93Qmv4dyqbwYhyvW76sMI/HeewX14DCb3+K514LOc+vdfcvTRjFYYjEtb0HDjmO9y/qZVNnOu1aaJw+4+5bjOs9WtmP9dF6fhjCg19DDts9EVFpfy+xp625DXk6IpHch/bvjVBGzKPinM2Q7j5HyBxuIt2vj3TNAR6k4d+jxZp/BgogGunud8bxGdCzD0L2U1+0z10G7OMlZX4LcjdB+PYm6b2Z2fVUym4+b8LlvnT3H0wZpD4pyJgR2ZY/mdnOHsEnpgDP8xG2uqGHDR2/LURkSIz1rgwbTzZkJyoZ0OZC8/l0D5KSVSofzImwjUVQtqrFy+Zm7I0HoiDtzb1AZjSV2t0NZSFqj8bYJZ5l+K81F8e31VovTGTAk5DtsL27P2XyBzV584oIuYy/IzxyEMr++UmsF9sj/OktVKkjBbUnXGMGlL20Ji4cf7cHPkTv59B8PTThYrcin8jOwKjCGtJMxwm7YwWUDW0A8k/9EucsHu9gDRRYdmu9d/ZHbCZi4PoIJxhvW2JSm9RSM1XO6QMs6iI8lZ2zJPJBfY1wzKQDTIfwyFb5Gya1+m1Sxqj//9qRVFKjJ4ZrO6tEL1+AsnlsZ1nqVK/vHJ0YZP5f9zGV2vnWa5CixlFmkysNaikpqo1kNkRepuC1c9VMb8ree38qJQePtkgTbSrRt5ZVInB+nIBlrllH5i/AAy5SVDFrzVdkEWIhr6OZzZpdn+S9gqKuh5qiZ0GO5xPd/UZ3Px8p5k+hlMd/dpFK9kHO0Q0TGGUlUUxh+HUjMu0gAKgHAnnONrNlXClzj0fOt8UQaHN6LZmeZaMIIGcgypZwgslJh0e5JZfjpjcyHGuRotZAAMw5yGBfBRna0wODTQB/s8xRJcb6qQhMb0aKiuuTM+9B5IRfATgm7o+7P+PVWRbG3KeGvAdc0ezzo0iUvyMiCwgAew8BYh8V31+ZvEa1MKgeRgYQKCoPBGpP5u6vx/fpFMcHICd7PVLUeMt0kR0GuPtDZraJmV2V/fYEAgBmBE40EaXGfLOyPtUwZOZAmVMONTlU8vY0ivjtisZaSh+el8Qptk7IyH3BKwSdb10lK/sjA/lAy7KU5euBFdLgmwgDV6NsIN8gx8f9FllvXASpDRApcEDco59Xk422QRGOvbw6ivQz5ORaH4E85wA9LSufGdfXK8t3BiqL9BMiWd2Gom4vif49ibI93Y9KZD6JssIdgpypp+XvMhvrs+Z/x/p3LAJh0rqXIvZuiWNXem3CWvpWq6M5dpVXyrt2Q5HAZ7lIUZ0CbPgk3muZvBS9tQdKD35hMlJqzf8a77A32k9e9YwUFc/1Gtp3QWULm1xp1reOvu2DojB/BXbxLDNNyT0nCpmtaS6Q/GSU1etZz0pUFee4Kbr6GATMDvYKGDk232g/RFq1+HvH+PslRPR6HoGdu5qIirj7ADQ3PkcZVfp6pUxZuve/gXNdzprp4rqnENj6AuWZnm5GwOyxpojOHDibmSBFIefNeMmzQvR5vg+5+yWILPoNygiXIpp+NjmJvoi+9PaMxJS/90bIy2VmstP61RkBtlOGrNFWKTN8CCoxnGcuKN0jTNGfm6Gyo1tk5+aZow43M3OV5/jO3d/1CrmhalzGnEn32gIRV2ZDusu0npWejPV6bxQxnrJRNGuNlFkyN75EOtl/gPlNUc9jdB53v9lFSlkREVe39QIpqvBul0PrwnUeQE/8/lt+Xtbfl1DE5spA5xr60HjLLOiKSd//BUXnzZvkZDI+QQ7X6VEGrKrmhdIIjZBJdRnphvexME5fQ+SxlDnqsDj+FMrUeAByxGzl4eivpXshnfdX5ET9PI6dhXTePVwOhFnc/Wd3v8/dz/M6xI5oXyLd4mNgbosytlaJyv4IOaVnq/Xs2bvcwszOdfcN3X1N5DTfATgy6WoxRtoD07j7e64sE6VzvC1kFtbLG+ERCAwAACAASURBVOPbvIRKfS9YmOPPI2fz42gPKm2NltlKPevsGHcd3f1tdz/X3S/2Gk6HRsq0QubP4t813tE3rtKuZ7j7DV4hMLVrC5kUcNpWyvva3f/p7v3c/bR6c8eEVQxCjrpd3P0wtA/2Q/r1bXHd+Sij3hLIHh+TdaB4/7aQGW02pNc84EFiiufNx20xk+driBQ3c6Pl1dIbXSUnz6KSOWqG+KbLIvzsdmSn9GzFWlnaMhvpnJB5F3KS7umVjMhV+022761iZita/ezprbr/uDSvYCn/RnbBtMixnsvfFDl2lwSe90qmy9fRujQCOMXMuoS+8xCwqtcmMTVaXjukU/6KbN0VzGx4yPzZlKEdFwFqPUQUXwHtj1WkqDgvkY0mR3OivwmvSxjYYmjNO8BFipoBYRWnoEDEnBQ1Pcq02NDyeYV+/h3hF/9B5PtE0Dk81sLzkS2xGcpcslguJ+neXp1t+SKEH8+JMMvUHo5n7QRcamZLxD0SCaAK18uu62yRAbyGzlDaCvKaiDXYzFY1sz5m1tfMulklm9NWiOQzhOrMUScjAuU4k6LyvmdrxLem7MSHIVv2cQ9S1NiuI61tIXcdhDlf5srS+6O7H4PW+eUQJvyXOD/PIFjEiPYOne51tE/cCuxnlbJ61yM89t/AmWZ2J7JNByCi4lhnZxyP514dveMTEWaWSFHtXA7s8xDOtiHCCM9FOGUzUlT2TtIePisKAH07jt+GsiVv4CJFrYT2zBni/JTBrKOpukEHd//URYraFLjIzC4AcBH/L0GZSa83s51MGaSXRmS2adE+1AxTjnGdSFFPo/l4IXLc7470wVSp4l5kPz8Wff8QWMLLSwtOjioGnItI/+ea2WIFm+Npd++FxtOiKIghkaKaZfhvVLMsC158n4Rh4QqAOgoRtYZYJZt8Wbm7ubLrtiSC5lEJrJlivbgC+SrmpTpzVMI19nGvJkXF76l/25rZoWjv+ZzIChbvPOnnLyJbb04KpKhcVvp39OFJ9G2mcZUV/SXr20to3NwHXGGBfRTk/GHJQTHf33H3YfXsk0ltUhvH1gnhEt9B+d7mIpHegeb7FNnxL3wSKaphbVLGqD9oM7GS10CG/1vAk+7+XRgjeyLH6KXuvkucnyuvzwL/cpU2mqhkTgx9nFhk/p59LJyTRyQdj6Lwb0LARR9ETFjEKzW2J3iZBXlvo+iyKnmZ3HkRGL25u99liv4choCV+YCfc2U0AIcByDj/ELjR3fctyFwMRfjc7O575t8qfi+LGNkSpYldBGVyuTf7rRuKyH8JOMSjxnLh+rqRHYXxsgICEVdAmWRSFpsxkXfxd7OIaTMbiKJOu3l1SYyFkLH2HsqEcF2Ne+fkkxbTjVsFVO8GPICi1DfwyNpT5xkXplKSJncOb4hA0pXc/YkwbPqg7CFDPMtg8Xs1M7sXAcZLZP3fB4G9u6AyGmujtL/dPTKb1TMSGiEzlMXJEVCxG3KK7JLdI43LV4CDvUZEb5KV9WNq4LsAA/ZB2UouRATDt7JrtkPEgrmAPt48FX7xHqshRXYXd7/aRPZLETiLxjPPgMDA/QiHXYzrS9G47uXK9rIBWltOdvdT4/onUbTtJ0BXd/9vdu+VUSRZiq5MIEV34FevZFJrQpngfsnexxwIcN0UlYEYGUbyFoDF+/+xbA6hOXcjWrNeRwDHIWj92dqVKWx2NNeXR85Kd5UeKHOErRXv8AIUjXl/HJ8MAT+LoZJX/8muqRnxXfg+tyEQYJX4+46Ql8oUrALM5+6XmtkC+T1KZHVCIPFFrnJcZeeUZiMsvMM9vATMNrPBiOSwLCLP/kZErJkiSa5FRJLT07hM463WO5iQZCLwpmZGv5aaqQTcp9nfsxbXzpiPN6Lv+2hRRg25Zd9oT1cUazdEFDjHVRK1C4rQ+xjt1QPReHg/ru+Isk5+HH9XRUvHsU0QUeXobA2sl+npWuBulyMirZF9EZC7OwJTx1leHDssyXMRNBdGhvxkwIse2VdMxOaTEDnsGK9k7qvKvFp87kbIiz15aQQYPO+KsO2J0sGfaQJyH4/n6F945ysjgubWXifjoymSeSOUjWMVlJ1m13wfMGWO6oUAxIEu51/NZirR8EHSoeLdXIWI5heijDJfW3U06GLu/q/fWeYiqKTWDybH26Zoj3gMkZ++qaFHjsm4WmO9GIEckPPn52e/Lwa84tWZA3dEYHN3LymfMr4y0RhMY3M1lNHkaXd/Jc4bgdavQzKZU6A9amq0b/9QS8duhMxGyyuRuSoC6SdD+/NtcXxhROrZBZGum2UmifOaZVszBY68jYixR7t7xzh+O4pIT6V1l0NR5Yd4y3r1XMAnLhLzHGjuHY6I0bk92yGefT4ULPJVjfE4GSI4boIyyKVsnIegNXMkyvL5uqlU2PZI13yrKKvRMgvPPQWyJ0ZlxzZD69s0wMru/kZB56zaI9tCZlF/i2O3o4jWunoWKmVWlvG7oTLNbCGvtsG2QCS9L4r3rtVK1pSGymyLPtY4Zzlkx3Z393uskimiI8pEdCDSr+8oeeZaa3rDZcZvvVDAxkzu/pkVMsaYcIR/exZ8aMrU9DCywa5qC3lmNifSBaZ0lUdM556BsmkPRJkLa5VUHddMY0VbKZ+XtTLWjURY1OwIv7nEa2T3rnPffJzOjWzyzp5li2npmUInaRfjYnqvYG/Jxj8NkaamQFm8n8z1PpNdeAvSPW6q1b/4u0Mj5RV+mwXtkb0QQW2Eu+8av03mclaXZeeoJ3NL5KA+wN0vi3V5I7R/fYSysv+K1rszPbL1ZbKb0NpYL2B2nJtJL++PMpE87iJmrIzmxdHAKV4pSbkfItAu4ir1iQkPfQJlVr0yk3soItmMAtb1sPXTsyGy/UUouGEjV5mnWn3cCgWqdEZkxt4edlgLz5be4d7ISXmdC/feGeFC36LvPT0KgLkg9pspUNDaakj/uCZfq8d1jrfQ1xWBOdz92ng/Y8jTrVn7x+F+I5EOMF/8nWdGuwCNh2dR1ubHC+O+Js5qZobG00YoOKhfHF8ekW1WCrkveeDQbfE+C31K4+BEhEt2z/S2qsA9E/azNMK0PK0fMQ+7oPKrb4Y+vC3Su2+0Coa8AxXMZKPQgadAwQbrIUwox7duQLrkDmicjQo9eE9EpBrh7rvFuRsi+3+D6McXKPC6h9fJDhxr5lXILt/O3T81BaOug9bQp4EjXEGpmNk0COv5Jt5baTa30IWbkP08EgUb7pHmcrzbmYDP87WzLcZz1qfcl3MqGnNLILLx3V7JwpWC+j5G2QWfKcgZgEis8yM/TZobVwObI3JVyhw1FbLBBiOcdJXi+7JyG2pj9F2ORoEoByGSVX+vDoDtiII0P0LjYnRL78/MDo7+tEMZaRLWmmPwi6N96DtXieGJspXtyWN73aQ2qTWqmYLehwM7usoRF39PuPtaiNC6MgoEnjQWG9wmEaP+gM2UpeYR5DCdBzmhPkPK0X3IUDgIbdLXoA0+lc2YMY49Gr8nJ+0ELxMpcBN0HycWmb/zu+yFjOsxEXsFRfU45Jz/jYrC9mz8NsHLHBt5IWd+FCmzKXLWnYNSca/tJQSkuKYLUti3RZvm5vFTU9a/B4Cf3H3dMhklMk9GhIYfEEiRnJLJUFkVObnfBA5y98dbI7dwjzJy1LLUiLipIWMQcgAvk4DHTInYDxH4HkPkqLsK196CDMZUaqhVSm9msKyFAJ+hLZy/IzI4pkLZkgZ6JWpwavTN5o2+zoTm2UGeObvbWgGyjLRhcjDfBvzd3fePY4sigGsTFKXyJ+TMqVdCY7xlFsZIKqU0CxrvuwB3uvsO2flpXL6D3uEjJf0qlgxZD42RK8IYT+So4YiI9HoY9Eeg0kinejVYXstB0C7kdgKWdzmV0/yZDwFrTyFi4/YJJDSz+xB43d/dj481ZDDKNtXXlIHrUQTEPRB9/QqBVu+V9KNZLfn49yYo0m35kHO7u/8jfpsDOe16oKi4LxDAf6y7H53J7oMc5PvEHFoirtvJlRGvMyJtDkHA6daelSOt9V2yYyshMGZPBAa/hNaJF6Pf9yHg5u/5etxSs0pZhSURmHk1sDhyzj4fQM8paP070qszEeWgeyoLOQMqA3S5ux9cAlSugBzNF3qBWFQGGpocpMsg4thzCATrgcphNeuLifhxGcrWdZKXkPYmVJmF35dA5KGx2k9yAA2N1z/F+/w+O2dTlD1pGS9P+b8C2jMfy2XGv8u+0d4ItN0Zlbh4HK09h6C5vSkiW1xenJd11oyDkCP6lng/KXvEcmheLYVA2gdLrk3v4GjgM3cf2gbydkZr0TRoLXwEuNjdL45rdovfn0XRvQ8V5Rbu0RB5sT4fhbLX7IzIS+dQKfv3q5mdgsDmPijq+WtTRrydEDC/udcuX7w1cDnar55GJPee6Pvv5spylc49jigRXKJz5GNqelR+YG5gHQ+g2gSoX4PWpYvjub+yAinRyoHThsgs9HlVFLE9FJGqfjBl5NkMzYkH0f71Na1sVomIS0EF6yJ9+LesL7NRKZWViDnTI0fXo+7evS1lmsCqU9DcGeHuD8f1x6J17nKUgW5aImIe2UJjSiyWPHdDZbZRH3dBjtlPUUm3X9C83MyVNXdRZP/tinT1FktBmZypu6CMgbOg/fZgZKssjtag50wOg4NQYElvL0RCFsb6lmh+P4rGc9IN90Xz+UY0Pkehde40RDj6Wwt97YKy6vXJdXurEJkeQ3v9rnHfY1rx/A2TaSIrbYXm+DPAPV5xxvVAZNLpULBFFZEpzinTs8ZX5izIWZL2/GWRTv8Wcma3pGd9h8bSt20sc9Z439O4e3dTad2RCJCuG+hQeF/5OGyozLboY/xdtravgMbeFq5MHViF0NEZ2RVHuPvgsbhvQ2TmOl38f2m011zo7gfmz2RyTg9HJZ36Z8euQk7B7g2Sdz2yCXqEjJ5or58VZZK6GjjPK6WGTkc6x9HIKVo30KmWXtiaVmNe5xhVCloYSJC6kQN4mEcZq7G83w7o2WdBZNs7ka51Q2v7Gfrfj+5+lVXbpjMjAu4BwMOuLHs5trMgWqf6eDiuW7jneMkr9LkD8CevxgBmR7hNkRy1Ldqj1ij5NsX5mX+re4EZ3X3J7PcFUEDYn5Gt9S93vyN+KyvJtzyaa197DVLeuDQzG4rGzfou0tAiCD94ANg59MO5vZI1eVrPSFomcvX2iED1dUH2LmjeXY3W7v8Ufu+G9vQt3P3NGv3rjub9NcimWBWRQnYm9MEa16V1YXG0V7dDZLrnUVawc5D9+Bsi0J+CgmEPdPd3TISvaxCmsrgXAg0KY6gzslG/QkFpv1oryD5Jxy2sY+2jT7+lv72VOEhrWja2DkS65I6ZbpDmzxFobo1G5e+uza7vg3SvvVwBRR0RFvoNImGPijF0BCKtjyFH1etPo56vxj3Su70bEV671VhfZ/dy8n4T+r6DUJbojRHB6nyEV4+Id3oZwve/BpZ19zdDB94KZc3q51mQUsieFunj0yFSzDWh+9Zag2ZDBK2lkO70hLu/28LzL4JsiPPd/W4TuWeleJYFEM5xB8q8/Xjh2mLg00xof/ge4Qg/xxq6KgpufBeta2+huXMUsgdqBhu0RTOzaxC57VpEgFwHWAi9gyPinL2QffIrsnn/mV2/OtJXny5Z865Ce2/SAz6O9WIbFBz8EbBgvb0/5s0myDY6MtbeBdG61AXpxEcjHX5lZMP1cveRJbLytSjfd3dFuGjV+ls4Z37grbaeg41utZ657O/WyBib6ya1SS01E+a4HtoPhrkygM6FfBpPoDlbmgHKzFLp2qW9jYjv/7+3ScSoP1gzRd7fgiIaDkFs7DWRsrQCMmKHoYiLXZAC8gFSBD5Cm+kGwIruSuU4McicGPo4scj8P+hj15A50qsjbJJhMhNyRHUGVvNKZMEEL3Mc5c2HnMw7IYfz3ojw0MyRmzdTNo6DkbPuYM9qsMdGfD0i5WxFlh2mRE6uAPdFgPhNKJNTUpLTM6+GymJt6dUZmcaGoFB0mqeyfIsTUf0tXJ9A455eYFqbCElHohJrL6DSgT/Eb6ei9/UVImvcVexPC/dtVuKh7DoTmH8TMlK+RMblNsj5MSDOWRcZW91QhqthnkV/tHUL8G4PBPC8EEbrYKS87eXhjDaVl1saZUz6t0fd+jLjoBEyqTau10WOzmHu/pqJiNIPpVgvkqPSuNza3f9e57l3Qkbp5SiyPM+csjciN9yJ0uqDgJt9vZLpphg59mdkMP/slawwf0Wpkx3Yxt3fNUWD7YjIkdvE7x8gR/NmyHF9trsfYWbzuxxReyDF+Q0EQD6NFOifTCn8d0FOo67u/kaN580zhOwYz34byji1BoqCPCDN5QBaBiAA/UNgqLufmsnrgdaVvRBxYVaU/npud98vO68TWnfOQESmnVxO+VYblSai1nbx3v6MsmUdj8bAnCjiqtXR9CFz1ejPJ4io090V/dkBkUyPRVkrrqlxffd4rn3iec6LPlZlnol94CD0bbf26qjyfdF3yAk3syIiwtwouq4DcsbMjPaTNxBY+zbKUvWzK6JvaQQITxfP8lh2nwleplUcLf9GzqhXyt57yXcoghWbA1+4+32mUojJsboKmsvHI0Avd5hOjfaKnxCRKM+I1huRVhOBdjV3fzAAounQvLwHzeF9XFkiN0ElKUchUuAxXiipW+sZYkwMQkTC47yazHQi2kM28azsa8k7aIi8gpxV0Hcdgr7raOQcmAqBfakszE6IgPEq+r4fFuU2Sl7hHc6CHBcLo7WsqAfNi9aznRCo+wYaszuhUp7Nst/EGt8JOUbeRBmiEtm3C9J/NwN28Oro965eyFhYePYNUPmRrvH+30JlVhJBPxGZVkb7w7FlQEhbyCy5R0e0T8yLQNNTXc6vaRCxJa3rO3oJOaqeTmUiQj6OdKR+aW0MnXU7RHDZ1d0fyK7ZDLihOD7HV6ZXnPjtEAB9ZZz7d88cCTGO9kUAVXvkEP8ZlV+tyt5Q6Ff3RspslLzCGJoDrRPnoPLOXyNHzsHAf919+TjP0Fq9AyJc/bPO+jMbQUBA6+jUaD4tgfSK9dz9JZOjYEvkEDrCWyaYDUXrwt2FbzkbspsOQc7Nf6IsG096oXRryTeaDOlwl6OMQ5sC/8tsol5IbxuNsq2cVetdNkpmQdYOyHH8CNpbDOk/R3qlhNamSHeZE+mDzcpyNFKmyWHfH3jGRZ7dHX2Xtdz9sXHRs9pCZsjtiMbGyWjPWRLpryO9JFtVjfdVldkJeL/BMpdETrmG9dELJWez8+ZDmRHeRoTJROhph771EyhjdM252EiZhX5PgdasKb2SqfAiFDx1ukemo/immyP78qDCPtzFK/jOlGisjJM8E8n8ODT+Xwr75wq0rn2IdI7eiLRyhIc9aZUgs5Mp0QMLz5yIBun/4+SwK5E7KyKjfIJI4b+aCCr9kNN+qAce0ZpmIqVehnTpfyPb80KEC/b2DA+q06f9Ufbhbb3ETjdhaoehfex2RIb5Lb7jruj7bOTVdns9XWOs5ZX0eVPkxF8cZfq4BGUy/sFkL6fMUfcjotV+CLM4uCAzJzCNybpnFQJhD5SZ40h3P9/qYGplY8SUcXotRIh+AmUfv7Xs+nrNqvHAlPnt74i0tUboAY8jMv5uLmf9/miPP90VNFRzbJrZ2cCX+dizCvYyAhHxi+SoPOCuqBNNi8g7X6E9YDSa38OQrbYD8FgLc+UgpIN8idbf49GY2bdgy2yL9vS+HrhI6DBrepDua8jfAhHEF0c2yK3o+3xXb74XZOwUzzPMlS2zE7Kj5kf29+Uo0K1ZRtV6rYVvNR/61q8Ch3sQYkz4xjFobfmHByEs7I25UfBfP3e/INaNvRGR45OQ19dlMy+Ksm1tjPCvo0JOafahtmqF9zwU6aSLurIK5ln5FkKY4OmuUmPN5CDd+FJk086B8LWzs3NWQrp1D2Sj/xjn7YQwihPyPpnZn2Kt6YzIxx3juitdWGBOjrrEs4z6Y/kOpom+349siL7Ixn3EhJX8I35/HgUmvlrj/W2DCHMLo2DVZ9Ce+lXoaqugeT4ZWqfWRXvRYePS73FtoQOfgPwnT8U73gjhW+cgXTKtOQehdWRTz7C8TNZaRHlVzwKtrJwcNRUibI7yAgGuIHMdpFOlrPQnZb8tiXTlTRCh60eEa5zhJUEr2R7Tnsh+V1jXeiNMcgTZ+lvcg1qrm0xoLb7rNohM+oS3ECiTXZeP66W8BZ/cpDapFVus2zcj/agD2rMvc5FFd0V6yqUoecK7hWtnQMTaUShj7fdMag1vk4hRf7Bmcsz+AwHeyXnbHhnsJ6NNvy8CJydHZbJORmBdewRk9PEovzOxyJwY+jixyPw/6uP2KJrrQs9KzJlYtGcjMsWynqVOnhhkjou8AOteQUrb1KgkyJiohHrN5Kjrh5S+QQi0A0XVDkW13S8qXFOXCGRmxyIj6zwU4fVmfp0VImbM7ATkhBjmWRm8FvpddJbO4Fk688LvTUB7r45WvgE5+7YCHgmlfwpkcE6GnOH3EQSuMEZuQcDWYsjht7tX149v9eaYvYtmzhYToWcvFEn3tSntfm80h07yStroydAc+tGjJNrvYXjEe3oIGbnfIcf0dYig9TJwvxdKYhauLwPlGirTFFV6KiIfXO0RkWr1yVGlkVzZ791QRoETkJH6Vck5myPgNkU5D/UahDUTQW8gAiJ/QISwa+NdbIuAo44IGPgNRQsc6irz9BRKE76bmR0Qz7QYAoj2R9GJ77rA7E2QI3o7r6Sx3g8Ro2ZExIdihNmBCDj5X/y9LjJ6T3WVAJsdzYWv0HzZ26uJjl0QmTIRXRNAuiFy+M2MiH8/ozXrZ5RlLgesOyGAaRgCw9bJ53C9VmKQH4zIt2tkp3X1Ghn1ashshwyTgxG4dSciTXRCgPJRaN0uLRUUMs5Da85CrvTY66DxMgUqFXSlycG3Flrvj/TqbBH7on1jN3e/2KpB6JSJalZEkJ2dSpmBt9H4mBI5fjfP5sSKKLPHofH3xCJzG0QIHIjKwY4B2uq1wt5wAPCaBynNRKDYGTmpElg7HEUB9wZui+82LUrjPwTpLldk8lPWwT1c0a6JyJhnQ1gIAYiHpmtjfRmI1rxn3P3MQr9bKjXSB43BIpmpKwLqznf389pKXsn1cyK9YllUSvDrOP5n9N3mQJHCidi6J0AtsK/R8grPOQStZXsjAk1edm8mBE72RmvVq6hcxrD4vcwxkM67zJWxLwfHV0akoakQcHx1LqfG/rg9csieg/bDLohc1QE55nIi0/VobK7mdco/Nkpm8fmtkqVxKrSHL4nW+kSOmhYRPUrX9cL87Ab8BWVXewo5qBLpdygamynb4+rIGTXIg8xSlBnPskojZGaym9D6fSkie+7hlTI/TQCxD3dGY7QHCnh4190fTueVfPM/NVJmo+XFsTUQWWkjpK/mJUA3Qd/9WnffPY4bMKdnZbZL3ucayAG4QfTz3Ti+ECJ4/xzP8QoqlbMzytKZSJFl83E1NIYHosj4tHZ0RGT6762SOaoXGhM9kjyyTI5xbGaUjTPPLrhzPO96LhJsVfm4uM9ndd5lW8jsGNe/jNbrL01OkT3RWrd3WsNNDvxzEAHlgjrfZ7xlmhxcI9B6fiXSiQ4KuaMZBz2rLWQW5F+N9NGX3X2JONZiQI81J3bsgAIe3mi0TGSbNLqPMxD6mFdKWx2A9NZLkEP6n7HnbYr20i3c/b4692gLmZsgPc2o2F43hN5wTRx/CtlTCyBb6cRs3SgG1qQghvGR91eU+WRKtJ5tiTI89/MKfrMCcmA+hAg/iZR/Lgr8OauFZ+6OyA3vA3/zLBChVivI+AuAZ2WSzOwYNCc+RkEpd6X1xZRxYkA871meZQOuc7/pUEYJRwEMX8Xxh5BOtbV7czJmybg8nUqp+KJu8Kgre8osCCs5EAUgvIwwhS0RHlUru/R4yyvpfwomuh4Rq45GY+FSKvrQbGjc7oVsnmHufkbqH3Jgj8j2wc3RPnYXIvJ875XMh3cD77n7hsXnq9dMGV57ovVjjni2mREp4+pWXN8e6VVvZv08EWEIL5pZf4QJbol09QeQo+5bE5ZwNgqSPdgLGfEL95kj3t1SaK6dkv2WsnaPQEGEpcFeBXlbIkx1GkRWuSWOt0M6yAiEz/QkyxxVMi6HIOLS5/EsMyKy48rxbXId62KEr67o7h8V+lO2h+8QzzUSBc4chgIDb0CY0bc1ritmLz6TCPwzYSvPoqze/0L665povh/oWUnCFt5ffo/1Eb6yIMrSfZ0rwHFVNPbfRPvyEwh7PQJhqFeVyJrLFRDYExGwr0H2VNe49nOUifITU6aivmitbkYobItWb16ZMK5L0RjfKVvPEwH7GKQrN8u4nMkYhOb9h2jfK2ZYWgw971ZoPXkCuMsrJdzKssGtgPCWs9E3PwW4yiuZo3rFPS909z3rPWfZeIvjiUBzBVrXN86+6Q3xPH9GpPRmOonJJh2GdLZrkD65C8JxtwpdswPKynQ6whJv9Dq2eFs1MzsekbJWjXV8IUQ8uwvZLd+b2V+8koG5KiNUQdZf0RoyByLyP5v9lshRA1B2xY8L37XWN1o3rumK/AYDTITEUV7JMmrITnsTeN1LApetgt12RsTbRZA/6mGEKz/nImQnbPJiRI5qcf2dGJqJzDocBcvMhNa3ixEGVVOvLtkjDkMYd81yrpPapJa32KefQbr9ccV92eT7PQDtpXegcXkz8hctiXSSzVEQeKuChie1sW+TiFF/sGaKEn0SOeAusOoMEZOhjXBrpJzlGQ1mRkbcmLTlE5PMiaGPE4vM/8M+bhUy78iUtxURaHCYF9jZE4PMcZDXBMyAIvA6o5I/Y6V4hZHVDxltH6OIjumA6z1S11tG5MmUvbWRIbwAihy+zyvO5OPRZn0+imJ5q+S+d8PUWAAAIABJREFUTYj4MRKlw+2FIlzHmhyVy/RqB0aPeK5ZkKF1jSsDSRcE2P8FGWLvxDkHI2XiSaSQ7O6Rsh2YIgygDZAB+WfGghxVeHezufuHhWOGgPquwKyepao3gWd9EABwgrv3ryXfCiUrxrfVeM9bIXLRt8iYa4e+4/8QYNNS5qWGy8zkrIu+9bHIyP8yjiewIJGjtgMecPdtC9eXZvYys34I2OvuQUQrexZTRqt2QAf3McSgIui+JspO8TcEsi6PSJJ93X2ICWicF0UNLxzv5Gp3H2lyHF6BjN0zTU6pxxEQtyJSlM+GMenT+yIwZkF3fz+M41Q25HxvXnrmXLRer+kqMzIlygI3yt0PibnzOIr+vQMZx9Oj7B83l3yPYpasuVApm6HR5wXj37eg6Oh8PeyMnDS/eitLZRbvnd23EwIkD0OA0DljKy/kzI6AipMQQNcJRXGO9AqgXQs4mg0Bkre4+15xbDP0nVdAxKD2CKg805tn6lgRWNgrZcM6UCObXwAfz6LItSvNbG6Uqv3PRQAkk9+EiG4TnEyq589siFzyINorv8/fU8lno/i7md2GnFV7ejhtrZJN8GpkiP7L5IA+HzmCHkEA7ezIoXqCZxGaaA85A0XBDjeRakYiEtQFXiEjLIsAtMHufnI834EoVfxW+R5oFaJJep8bIjCrEyLxFEsQJDLTsV4ht8zslYx0DZVX4z2vFNe8gkospbIzKavBAsj5dEn6rdZ3agt5hd96IIBwUxSt3AfNz2LJ4ukRea+puKfUkPsU8I27rxV/d0jf1RRBvzYCj9f1LPNW/J4Dn7Mgp+k/qI5CXRORf2dGAPRzqU+ISHF7W8ssyJ/DK8SYnBx1LXLknI2cT4kctR111nVTiZQzUHm26dD4fA+RI583OQjPQGBlE3K6XuhBKCz7Nm0hM45Pi5ymf/cajhkzm85LMhT+XjLbQN68yPnTAWWG6hrHk3MklZZaFDkPvhwLmVMC/3H3leN4Gk8LIOdtFzRGH0eOkeG1ZMbxA5FOs5ZHlgVEWFgM6ZoHu/udoZvsQcUZnUqL5PvGmkjvuR5lMbzdK2Slx1H5j/XzNbbQl7JjbSFzI5RFYAmUhefuwnsejPabtTxAUzOb1+uUI2m0TDN7HjlabkaEh8+y38ZJz2q0zBgrUyNdfSqkM9zt7hvH7zWzUxTGTXJO74kIqY2UuRfK1tawPrrIJ4kQvjAag8+g7D4fmtkAZEd9gRyzUyGn9UleyDpQuEdDZBbk74Ts+DvRuj0Xsu3PQoFkM6KAkfWQ7vYMImwmPbr4zRsiz2THdUP2TUe071yWjbW0Vm6Cgm52SzJaatHH89A4nwrZYEsTuItngXiF6/Jv0Retp2ejrBw54WofRJbo5e4XmfCn0aEzLoi+0060ojSqCet7CRGJUqacOxD5ZEMXgWIplAnorZJ+VpWlrrOPb+0qSzQzwkp2RHvJrogwlAKDit+7ofLi2BrIUfU3dz8l1h5HGRWnRI79pA9NiWykmb0SSNiE7NUz0bh4Oo6vhgify6NMH9ejUtIvhy5/U/S7NANXyCgGDh2HnG/D4vuujYhMS6CMtnXJUSab7ZJ4tp3judcClnf3V0yEplvQHLrV3TeJ6+ZAAZlrA2u7++v17hPXLI7253XQunBy9ts+iGBwM8JS3sp+OwuNrxxXS/YelMw9UybRC9Ec395FTs7HZTEz8JTIlhoQ12zsBaKiiYTWG2UU+qSFZ10FvcsLXHbiHAjrfQ/pqIkc9Z3VIEvE3BlCpSxdE8KRuyAy7X9dmPQFaHzv2NL3LunnzojM8hDCozvH8+/k7tebMKOLEKGlE/AZGvuDC3KqyFHAvSi44lgX0aQ9woOOR+N1bVfw6EJoT7/L6wTrNKIV+tgN4bWzIcw4ZXw+CRF6XkPrxvRoreuPAuBOKRGdMITJEBY+FyK9jkZz6pmSNWZ6FCgwyis2XFm59GsQmfABRPRbFZW77odwxUSO2hPZ+0Pdff9a/XPZ3FOg9aEJeCG7/5SIADcbyir9ccyjYWiPSWtmcQ1aHq0hI9x9cKwpLyGbfz5UwWELr5Bq26HSwS3a4uPbCu8y4SZ/Q3ruwqH7PouIqbu7yIo7om8+2CO7Xwv3WBtl414U6ObV5KjLkR/jBET6rEkeLchcD63jy6IApEfyfbzGNTkpKj1rCtD9FM3x71BW4A5orbskxtzeSEe6Fel077emnxNqM/kKLkHPPBQRaHdAvrtrEbm3mV5dT6f+vfo+qU3czeSnuQxhyjt7JYt5cd2cEfmlBiO98k20Z4yKv7fyscwCOamNXZtEjPqDNaswEt3du8exXMGeHjlhFwaW9JIsGROjzImhjxOLzAmtj2Y2Tdk9JgaZ4yIvNtBtUERTVQrp1rYAG/ogwOcM5GxOJeTKQJ+dqUSe/IYAjxcQQJOihVPUy0UIwCjtm8nJfTxylPUGLvVWkqPi+tJMC1Zh+j+FgMNlkMF2jLv/x+SQPxoBGdMiAs7f3P10UyTZEKSQ3FN8DwFAHUkryVEFRXlfBFzv4hVn9U5xv/YIVHgDOSLfyGTMFu/nCJTy9qDst2mBjl5xTE6DHK6lJb3GpQVQ8UUYfXMjUPZF9H3XRwbSBwhYfA8BLC2V5GiYzGwcDEPzY6vs/bZL58U5M4bsfYENPHPw5LIKx64GFnP3LmXnmCLX3vI6ZQ/i7xmQ821WRIz8KcZifwSI9EXj8Kc4PwEdHRAQfxaK0tk0e+aLEHjyAtDDM7KTmRlyMtyGwPe5EPixu1dK4OUkiREo4ulGU+mE/6DxmpwYDyBC037x3Q5FSvlXKGNLs/r0WV/WRnNxMwTofRHHd4z73oJSwv4zuyYnh451RFjJ+5/aKxkjxhlMibG7IMr29aFXl1/6yZsTSdsRhCcETG3hFefhwmgNXROtqS97ZNXIvn+RHNQDRbLOg5x8pyDwLC+z+iIi8/QuWcPLALQJUeaSRcMu3tczqBzqjc2/TtW5ZaTewxB4+QNaS/tl52+JygrcjPZBDzCpH5p/s6E95Q4vRGjGv2d2gYGboUj+v6J5no/pDsgRvjCaT5+ichuHe3WGsEGIrHyJu39jih4ehsDxaRFgeBJwmlcyh/SJvj6DMt082Ybyau13U6D5vDVazzdy9/diDrR3OQOvQ/NnOQTs1ou+a4i8euuHicR2MyKk7g/c7Co50Q6Rv7+K71oz22NB3r5IrzmnML6mRc6Yh9Ae14TItl+Z2Z7ePHvf7IiMd5S7n2FWldZ+c0Sk+A9aT14sXNuE1vmGyiyZo39FjpF+XsmAlcgsU6IxvjgCdoe4nBw5Uay4Rq+BHHxHIbLeO2a2W3yXeVAE3Euxl84R7/BTr2QfqeWobKjMTPas6Hs+ipwLowrPsxhycgz3QpaAWq3RMtuoj71QMMH8SI+6M8ZcO5ezbR9EQOrirYwgDpmHoLVoPXe/uzDPp0A2xzTA10U9qYbMQYh4uhQiIB+KHIv/ACzutYir9MksiBQwAI2XzQp7+IyIfL4CCgy5F5E2T0Hr5OZI93y5Vp9K9ILxllmQPxkCVdeKd7WKq5x0Puc2QA6Mtb15Jp6y+dNQmSZb9p9Ir5wXfZOR3twmngutvz8D72d6VlkfGyKzhv7fGRG2d0Ll0XLiUbouEXWLwQCJ2LGnZ+XgGi2zkfJMpIGLkWPodbS39kD6w9YxFrdDWfVWRDbBPe5+aZ3vM94yyXTgOLYEGnPDkEP3axORZR+01h/j7oOy554a+MErxMPiuGy0vKZ4nmNQVp3TUEbSUdk50yDH+oPuvldLc9yU5elG5Ky70JVJY2YUWPEMKtnzWcl1RYfd6cjW7hv6x5isyaYAo6ORXbKGuz9p1eSohRFmdIZ7i3Z+Cp7r5yJZ3UFkOHaRouZFdu0lnhHzs34OoZIpqt4+Pi9yKj8f+twRKCPQne6+U8ibwqszgjZEXqYXNiEc50jA3H1bM0vZxS6L+9wfsk8i9KE632kOV0DTWsDbrixundH+NQCNqbnRWHgV2dYfI1uqrExxjicuh2zSvkhPvbPwXo5CetveXj/QrQMKHLkE2XjtESkizzq6BdrXF0Br05xo/q+A9ouijVevFGAqBbUWzclRB6N3v5hHuScT3nMsCogqlj3cBAXCPBXv7KXC70si8tmxHvZeHE8Z7vYorOlToQyap1Mh170Tv02ObIKNEbHr/eI+k8lph+bXiu6+tYn88xTCMPuhsbQ+wsz6uvs36bqSNX0vD6e8ieRwHwpkPSKObY1w5SNcBKypgKk9MobXa6YMwjeiDNcjXYGnSyGiyENIf/rcZPfMjBy9n3kF+6ilIy2BcKut3P1Wq9gokyNdbhCy/6+N80sx+rZqJjLlEJRZdQo0lu9EY/spopQc0i9/RmXKL/BK+dVmuERB/mRo7b0cObp3QSXbxqwLyD75qZaMOO9gNF62AB6Od7gAwgM7oVKEiRw1JyLH3ehZhpFYv6bwSpWQqVEWp7nROnQPWj9ujN97If/AXQjLXhmVpO1WNqdjrG+PCJJ7htwnUYDr4WjO7I0yj/X05kEWbZIpKsb2Lx7YjZmdgipM3GRmh6D18RBEaLoHrQVfm7D6sxEB8ECP8qBQpW/9KW7zc7Yer4vGTxk56lZE/BtTVrH47HVkHov22zVjH28xi2guH9khKyN/SAr2TeVLt/HqktZ9kU+lWz0dZkJvJvxuHqS7HeWVzF/TITzzFBSMUEWOqrH+Vun9k9qk1lKL/f56pB+2OHZCh94c7Te/IvzgAQ/8alJru9b0f92BSa2xzZWpZyCwkZkdHsdGmwByUM3ss5Czfr0/isyJoY8Ti8wJpY/pt1rG0cQgc1zkuQC5y30cSVEh4yUqWVve9QopqqqERBxbCWUVGIQceisiZ+TywCoBIOGKzDoZka3mKsjoY3KYE+DFkQicGArsGEBLi61gEM2SHZ8ROaQHIFJHt+jHVsBgMzN3/5+7740cEUuitNenhzF0BspGMqbkR/4e3P02BGr9F7jQFJmRSDdjSDjFPoaifDaKLk2knSUQiDIUEXXOQ46mvcNQTff8EBkiZyMANMmfHIHL14YskPN458xQGq9mimh/DjjTzOYJoOco5BRb0t2HoAi01xBIsByKHPvdZMa774AMuPc8nNjpt/SfKaXxp8hJu4YXSFHp/Ojj/mY2Mt7xZ8DMZrZw0RA3lXPaA4F8+TN2Kpy3fjxzd5QR4ae43//i2YehOdPLRJJM6dc7ooihgQjc2DREtjMB1CsgAGVB4PQATVJ7K97p+sjhPQCBiWMiSrM+To/AkmdNZL2bUNm3m10EwS6IpHYZIpWA1qR3kKNjiuZfZsyzz4/IDVcDs7j7F2Y2WQBjlyJnzsZAfzNbJutbIkUNJjJhjU0rAiZeIUW1A040s6GlF9Zp0ed33f0+d3/cK461kQjISbrymDUpxt+PiEAwP/oe6bdX3f0qd9/T3c/0Aikqzvk1G5c7om/5Ayrt0B45c44xOcBTeweYrwygyOROsDLN7Ey0vhbn/ZSIYDd5dm677N+rmrK/jFmTC2vwCcjJcQWaa2MiV10OgB0QuHO8mS3i7qPcfRBKnb4kAudGhLwxztS4/mOT8z5F8XRFjuTUt/YuR3J35MRaHhHi+nmQosysXaxl6yDQbaswfLdC83dNBNgcjQDY/rHn4cpuMxiNr5my+zZUXnq3xfcf7/ontN9ejKJKtzWzGWMOjDIB7x3RPjYGxMtbW8jLxsC8ZtbVzFY0OdNxRW/3QOvlmUgHmxllkkqOrKpnzuT9xcw2N7N9TCRz0Ni6A9jVzM41s6lMgPTGyNl0K3IeLAhMbmZbAEeYoqtTn5sQ4fQnBNIRzzu5u48OQPIp5Gy6I82pbC5s1miZXiEANmX//xlFqB2RzbufzWzKWPN2QdkNdgMGZHOg6j1mrSsiRF+LnEu4wKF+iER4qskR8pm7v+juz3uFwNRMZ21Dman//0NOoB7A0oV50QFlRF0LkRZa1Rots5Hy0rd3ZfsaiN7raWbWLfap0VYpefEO+vZjI/MYlBHgFDNbOZvnTe7+k7v/HPM1J9bVA+EvRUS/15BD9S3ktN4J6VsdEFEdFynsHGRnfZPN8XUQeanJ3Y9EIOTaKJtnb+BpBEoujNZ+yvpUWIcaIrNE/ihEsr8Jka6GxPz+OXRZUGTpj/F7VSvZhxsmM1tHPkc6/XLIsXoKsJPJ8ZDu2wT8z93vd/dHMz2rWNqwYTIL32eB0CVWQo7Bj1G2jf7AX83slvRsppK5z5qIoE0FfSM5p4c3WibwYBv0cQ6kx56OSgWfjMbjlmiuXBwyr3CV3VkeZQepIkVZBbegETKBqUKfmywbWrMjkuQjXiGCfILwiXOAo8xsMQ/iUpyTbIpO0c9GyWu2DsXfD8b1TyLdcimqW1PI+DG7pl6bG2UWuc8rTuIRqFRRHxfBc+rUp6xvxe/dy933cpGiRgAXmAiyuPtdSB98GbjPzLrGGtAUsl5FgTBjSFFWwD6yd/AfpOv2N7N70XrW3UWKmhytefOifXhMM7O9yDLyxOF6+/jHCN+ZJvaHE5CtuqEp6waekaIaIY/49vE9AGaMsTECuCjm2kjC7nER1g6Nc3ch9KHC+/otrakuUtQ8yL6/1czmdvdv3P1Nd98F2RHHIF3vEIR7dUdjuFnzisP8coRv3YB0+5Utw4tcZVsGIbzialNZ1NIW+/F1aF+dE+2zn2S//4oy/+yN1uUdECb3NsomWZMUZcJgTjWzfmY2f4y9FxCB4F7gcJMzPt3rNGB+D1JUHPsUERQeNLPuZjYk++1mRAZZERiYxn/2+wso89WIrH/zI7uglxecli6S282IvDM3cIuZ9TbhnQejNe8Cd3/Pm+u9uZzf0Jo43CrVAu5CTvov0Lf+DNmpw81s8pI5njJF5ZlKpkIEpbRmpdKzR7pIUX9CtvFqSSdroaWM5nd6JTPO8UjfOshFiprG3b9099fc/WFvgRQVbTSy85NeNspEjvol9o5fUbBrel95JqE2bSbS4GnoOTdwd0O29XqIKJKyRnVDJLlVUcBiIkU1eXNc4i9mtoVVbMjRrvL1PRFucjGwjJl1DhvrYUps0pK2ONLBH4l32D7W4zXQOz4S2MZE8HwPZTjKSVEzozk70ir48vVEICQKaF4MGGTCDJMO358Iboj7r+bVvowxLfp/E1ozf0G6932o7OqXIeuDeI/3WsE/0MLzj1Mz4R9nAmfFt7kJYZTJz3IGIqIOQ3Z8IkXNiYhIXVGA2fcmO/g39B0x2fqJjHmRKdA87bn9UJash8xs6ewZN/ICKSp/9hZkHhky7zOz5Wt9h7IW8pdCZVITKaonwmKPdPdrzKxT0rFjbq7qlWDOCb6Z2dGmoN30d8LvTkXfMccqvkD25KHIlr4s7dU1dKy9invEpDaptaItjTC4u6D+vmayw99y91PdfY/Q6S/zSaSo36VNFIvcpFbezGwKM+tiZqtb5nBHEaQjgaNNqWETGWOyUFrvRqWBFpwYZU4MfZxYZE7IfXSvSi84wcts5Lv0AuhceL+tMhRdjPhdXISUdKyZ4xMBlm+jKJMUWd4feBc41VX3PSnJh6Na8Pdncrogw3ugVQhFHxKRK7SSHFVQQvsC75jZLGE0Ho7ez+Pu/r27/+julyBAZmPk8F407v1aGIo/msqlXY1qhfcM47XJzBaJ77SRheMzAJXB1CFHFfq4P1KU9/BKyv3lUKaOq4ATQ5lJkRgHAQdaNTnqAxTVdVZ27BcEKHYCbjOz9xCYuae3MuVuK9r9KHrnL8A/TRGVjoCevma2bPRtWxRZu5UXUoj/HjJdzta3gSVMZWFSBCcA8e3OM7O53P0jd384jicnb06uWA6N0/fjHQ9DTsO+yAmfzpsSgZE9qICkmNnJwHUm8k+S+2+Ubr4rsFg+xl1OnaPQtx8C7GcVEuV3CAg50N13SH12OSFfRQSHPZGjZF1kzM+ZvZOLEXixBgIoUonMok73MAI3H4xr/oZAztTmQSTHt9KahDLoXAJs7nVSBbsyRpyGIsi6mtn8ASClZxyJ5mcP5BDNSR2dEOlqH1Pa/0a0juMqswzMM7NjEUj5SLybFYAPzOw8U1RquvZ5ZFjvb4oKyWVUrdU17tMFjZNBqMzBzq5yXT8jJ2r+XZ/UnzZDvX1gApZ5Fipz9JlVE6m+Rhn+epoIPjlA9Cfk4N/EzKYrrMG9qYAVJyFHx43AHlZNjrqaCjlqULZXfOPuX3tWqjR9o3yvdDlfDol7dQK2NEV5p718chcJenOU5nzttKbHvP4t5u06aJ0cjIgLHVCZvq/D6D0drVH7A0dahcx0OrCUu9+a9amh8qKv+beaxkTgTMToH6iU+DkOOTAsxvy2aC26pYaO0RB5udxsDPREBPBb0Ty8MxtDH6H15020N92CdLFLPcuUFecmeTtRyTBxKnI8n4ZIeweEnO2Qk+1RVJZxuLv/GznT/ouIc/ehdPcvm8jZaWz9gNbXnaPvac8n1sjvEUj3PXCSCfhO76ChMs1sGTNbwwT0/hrXDnD3B4D94jkGWoUclQgxMyOn7VfAG15CXCu0RYBOLufRaKs4CW9DjrzlqUHgKfv+bSgzX8NOIcaNmW1qZtObsmCm0mw3eZAwWmqNltloeZ6B3u5+GSJX/ink7mbKRNcb6SQXeCtKKpTIPAo58YaYSB/N9sP0Xep9n2hvIPLnBsC27t7DlTGvPXLevA18YxWCzUfIAbkjgMnJkLIlLRwyv3JlReqJyJoPRH9BZJyqvb3Y50bJLNEZ0jv5Eu1BlyCn7/mm7E6/hM66DnIuvtvWMgvyJjPZVFO6+yeh2+6CHGOD0Z7eOc7tgYgo0+XychurkTLz/5tI3XeFjNuBF8ysR7yD84iMJWb2rJmdgUou3e2yNZON34dKxPiFjZaJdKnxlTc0k3dRvI4p0Lx43SPbQeg0jyAn2zKmjCnp3f1QmIOrx/HR2dozvjIPBT41laFPmUNAWZs7ogANYjz+FmvFFfGOqgJWYvwc1kh5+f+LLd71/fGcH6Mgpg3NbJrYb3sgJ0hLNnNqiwGdvZLJ4g4UtLKZuz8X6+WlZjZTmiveHIcoOuwcEWT6WoUc9Y/o87/InKqELyDXgwv3mM9EYpknk38qIlCsgeyB5+LZd0V65/DQIzAFBkwDrISyVOT9rLeP30i2j3slAGoEItPvXfIux0fe8WgtmSnWwL2BJ2NMvR3vzxC543KvlE7rDHwEfENBHzKR/HN9bM7Yk49DuN91sWcT573iKue9CSL5voEc8sU1OCcpHogwiP3jeR5DGMvalpEEXbjdKSi7zCsUWkHmNPG+jkY2zZn593eR7p91laddM+5/oAu/qGrZ2vR3RPrqgcgG1wLdTTZSTo462MyOya7PsxEnfOFHE96yFdDbzE7Izk/BMBsBx1pzclTKnpv0gzcQabMqE2t2/o/IdtgfrSVnxXuZD5WuPj2XV9xvMzlfuQL35kLYy83ZGJoT6fHPouzFY0rVZ3M8ZVlriv0ZNOY+AZYzs93RmnYk2idBRJq10fpSJEi3L+nrUnHuv+Oc29FatKW7/zPWotNMGaOKz/drrWdH5VRfAnazIIjEOt1kynj7ESLLFGU2nCSTWjbe14q+5c7nvZDeM2atCl3kdnd/2n0MqWQMedab25DnEjYkwsAWdJXQ7Bki70P25KXANWVzJ+treq8/o713mrhnwh8+QPrAQmjdSIHKVbaZi2h9MdJDh5rKB76Psltf7e5XoXnTATjUKoScwWgcrYAyD4+KtaWUCOfCVh5AwZkLAY96hWi3ECJxXQ6c6WNRUWJcW9z7cLQH3YHWq7Xd/V8me3gU+uZPIgz72NClLkJr8caujKr90X4/bbyDHeM5JkfEquURkem0uG/ac18EnrKw21Mrmy+mTJytlfmYKdikVja+YmD3tESWt/i7Jxp//d39xFhTT0aksfTufsvH+YTcTEG4GyJMERiD3/VFxLiZgM1NWFT6/Sv0Dgag/WSNOJ7m8wFkev/v8yST2h+s/YR8Iwn/LMM10360dlFnqbOvTmoNbpOIURNpC1DoQQSg3Ac8YmbXm5j8/0UOy7sRCN4XpITG5bMh8P79iU3mxNDHiUXmxNDHiUVmG/UxB6aWNtXsbpWhmBn8n+d/5y2TswAq2/bfOPc2ZDyktOhrIBB/6jj/yTgvgWkvI6cJKGPL+nG81eSo9KxmNszMUvaqA1wOja0RqWhBImotu3dyeG8AnGBZJgUEOv0bpc/f0iukmh1Qmtyb4797TJlMcPebqGSOGmYqJZEbBmXRW6nswRLo298W7/OH9Lzuvl+8gwMRgWJMxi0vpF2PY7dGP2ZDWZUu8CzbQdk7bG0LI/A3d98HGYLXIQN+BCo58xqwuskp8ZO7X+OV9NalOkNbyMzaEwiA2tNUNi2RBidHBuNiyFGb+lIWKT4PMoQfQkYfaGwchZzcV5jZtjF2ByADapi7P5L18X1UemoUkdnGBXBugDIBbAGsbxVAPs2/Qcjx9G1uvLoiRB8o9HnMnHIRB/6OojLXRcDkXPH7b64MaQ97pIq3kmi96N+9CIT7ALg1W3dA8+A1BM7ujBwvhyKi1Lupb8UPkvVzCIo0+gm4yZQp7BergNGXIydtDgDiIpEkIssRZnZS8R4tNWsOQn7fQJnTIafgxe5+jykKc1NE8lsHRWLfbGZrmog7F6PMW8vH9Qm8bQ2oNw8Cqe71Svr8W5Aj5whXZpDk9PsEpTj/rAXZE6RMd3/D3R8yEcseNbPucfxNBCBuDPSxIKuaohu3QCUIHnT3L7I5vTcCqPdIYEXIOY765KgN0V5RZXi21FxkgJPRtz4Y2N4CnI4x396Vieqr2LeqQNM471u03jwdfV+UAKji9+8QefFwNO+PtgqhMKW9b2oLeYX1cgvktHDkGBpgkWkr7ncd2pOfRWtbTwSsXZBkNVpe4VskudtbwSE2AAAgAElEQVQgAtO1CNAfjpw4j5tZIq5/hBy7f4tn3tejFF5x7zGVHh2GMkmsi/SgM9G+fRrKAHEkihw+FWXr2tjdjzURb7eNZ/zJ3T93lfhdHEXF3hD9+RWB4S8hkt4+ce9Z456zIB3ipfiek5vZEqZsGI2U2Q6BgFehjAm9EDj4Yci8G5HqfkEZ4bYOmVMgYPsuYDmvAxRm7/dxlJ1x25A9Zo9A5LKOiFDeYmsLmXnL5uvraN15G41PR0TjYxDpPREfW9THGi2zrfqY7esXhwwQIeMU5Ig52JXBYVxlnoj2iFPNbJWWrq8j97fYC+509+eiP3OgdeMo5JT/b2HvSZklN0S6+GBgN49SPF4hQ3wXulVvRMbZHjktl6vVn0bJLKyZK5tZLzMbYmabmNkCLoLMQchJ2xN4wszORWv/IOB4d3+8LWUW5G2C9PynkL20cjzvj6gUdCIyDTazo9A6/ZNnju62klmQvyla1y9FetwWaP243sw2jrFxPiKDjkaO0n7ufkgmYwOkW/ZyZWFqqExUsmp85Q1GWYpvcffhXnFUT4HIIGl9bAp7YRTaF/5HZBsseXfbIRu5f3yH8ZYZ7b045zEzm9UrpJy7CJ0y7vezVcgdX6I9+LvfQV7d5rLlHkRk6c+RrfYI+kb9UAnxq8uuLbFdHkbZgvcxZbJYDGUkecFErFkVvetExs8ddqdQXVor2R4nIiLHDoh0XiRHvYDm+jJe4lTN7tETkcCeQSTxveKUR+Per6IMRHejuTkArRlD0jPGev0VGrsj4/hY7+Mh6zM0/7d393Ozdzne8hChaGfgxni3Q5F9m5einRJhGrOFjCkQ0eUGYNlcHzIF0/QO3RAz2wO4MsbnULTGTktGjrKK7fxiyFrUld22qPsnstFaiPx3hruPiPe+F/q+FyFMIidH3Y3KwVWVS7TqrE490Fg7Gq1PuyNSxBmWkaNMWVP/jDIxjvZqbKFItFoJZcRZF5FwF0eZCE9DjupEjjoWeB7hhTNk189mZp2zPq6EdIl+CGcqZgpO9t66CHddkkJzryqh/Xbx98K5PyKyy+GIjD4VyrB2TvSnLGvQsma2nol8kp6jHQqgmB19N0x25LyoFPA2Xgm0TN97NiqkqI7I9tjVVOb9RzTnVkRrz9HufmL0ZRHk0P+OyOAXchc2ldlMZTQ3M5XoAs2RDma2scm+70IlG1wnFDQ4LRWCd76eTZY9+5xmtqBVAog+QJhpVxSks1pcPjUi1k1HddBem7SC3prWhcVRuehUqvE2RABKGPh6aH1o1ryAmVhtG/IglGFvDhc5agNE0PkRYd2Hx/VlQZ15RvtHEPlzw+y3tNeNQuvQ2ygzXPHZky5+Mlp75kTr28rIdsBEsnoO4e6TIZLijnHdB6F3Jyx9dEG33MbMtircdnI0z9P6NhVgyNY/yisZJNvM8W/CI5pceOvrCC9+j8p+Ojr+/xwihd2C7ORl0Dq6iqv8ahPylywHnG0q070iWie3cfctEYnqRBQEPSDk3h3nvEGWFS1+K46fTuh7jI3MZmtbyJosvtXkaX8Jff9+FFzQB62dR7kCC4nn7oKIcTX7OaE2V7nCDd39KTNb28w2iuPvonVzBMK5e1qFXJrIUZeggMExVSdMduphqPzspExRk9q4tkTUW9NqZHfL9PA+KHth/ttEMf/+CK3db79NetcTWwtD7AEUKXAKMtq2Q+ljv0WRD4+HIXBo/HY1lRIoW6LUvF3d/a2JRebE0MeJRebE0MeJRWZb9DFvpmjt/kiR38tbWWKvYEwVweccBDkSKX4LISfIMkixTKDcIGTA7+sZuSGuHUPGMGUVGIgcaf3c/Y44PhsiLGyNCFSXehYhkvplZoYMkvkppIs2RW7sgyJijvYsrXb8vi2KsNjI3W+v0b8m5Hi/GoEv96BolwOQQ/Myr0SUbxjPsggyFN7N5PRBYE6vQh+nR4bKFqi0wzJxfAqPdO+mKN/94z0f4nJcF7/bZK5IlMNR2uIZEXiwrbs/mgE547x5W4FEE+9vZxTVPgvKMtTNW5EZoC1lZrLuJaJm0BybGVgFGYtHeTjr4twlPUvlboogeTruf7crg1f6bTo0Jk5Gjr92KLXycK8Aux3z72RyZhyD5kgi6s2NQLNO6Pve6dXRt2PGwDg8e4qKHIaiyA/2QvRojeuaEKB2DyKErYvWqA29QoKcDGW5ORwZw/8Dzg7gpEX52Zzohda2bxCI9k70+xcvrEGo5EdaexZCkUlHICLECcX71Lh3Vcpy4KUGy1wdAVsfIOfHQLQmXWAiXKyBgK6ZEKB0EAKaJgdWaM23zta93iF/TheZMkVoJlBuJURqOdRFPmrW3wlc5vHAWu6+QnbMEOD0Kpq/N8fxY5HT5j1EXOyM1t9T3P341B/k3DgYeMezkgiZ/IXQ9++OSKWHZb+V7hWtbQGGDUZ7Rh9ghFcy6bR0bSpJMzXaA7ZGe/vfPCvFG/tuMo5X88iE19by4tyeiGB0KZrPMyKH+T1o7308dJ6zEOnxaOAGF0G6SrdoC3mZ3MURyHW9ux8f8/KfaK0ztGeu4CLLpWs6JN2jRDdoCnnTob326+y6g9G+08sLUeUm5816iJD3FdrvtkFk0B/j9xSJ+LC7J4LROkgf2gAB2aORI/nYeJ4roi93IOdGI2VuFnN4KuRInAvtf4e4+5DCu1kX7XcLIZLtt8Q4y/bIKp0k6TDZO1oS7V1vo/meSot2QESWTVH0blGva9domWPbYmzsjHTg/wGvuPtD6TcfhyjaRsv8f+ydd5gVVfL+P+QgmFHM2TLnLOYcUEQRV8WcEVExgBFFxYCAomIO6ypmMaFrDqtrwuy6ZdhVd9ew5pxAf3+81dNnevrODMydlfn+5jwPD3Bv3+rTp0+oeuutqmrKK7z7PdA++i0qo5Jl5Kz1LqZR5l7IpvgenaMfNUWXDZkbIb1rdRQIcWZ8ns6fbI1fi5zbe3uUrapkKyV/TyJ34P3SnDLj2r2RjfFtXDMTciQd7e5PhN46Cu2jn6C952UPAlPZO6+2zJgbFyJCyOeIfLo00v8ejGs6IJJTf0TYvdDdz6nnPVZFZnZmxL7UOeR9EM+aleh5EDm5tk3Omo4oS15PzwMDsjN2fnSuPFwNmcjWmDue76kq9XFjdC4sh4gSmc40U8hfCelrk5N5ODvScW9y9xEl72R5pFNsXC2Z8fs2aI8ehRywa7j7R6ZMNUfHn0vc/bDkufeLvvR196ebU15jm8nJsSHaJzdGuM8LXigvVdiLOsc5no3Xwoi4sCZan71c2Sm6oDP+HISpZOSnNgineRY57C6JzzsA7T3JLG15tpnrUMn11+PzbZDdMtCTTCWFfq6PMJnzUMaXVRBB4HS0h09Fc3hfRBZ6G3jJC6XDy87x5NlXQkS691C2ynrP8Vg7vyXyOrjIT9MtLzmb2iMddCSy5U90ZdFIr5k33tVSKLDuZ0REGuZRGinpyzqIyHA3sneOR3jTJZ5jQofEe/gSZWl+rzhGxfeSvKuT0bz+GBFyH03uvTgiyiyPdIM/VzqzrTYeeBWax1egMlw/xbzaEZV/ux/hBZ+i82QBYDuvJ5u5mQ2M8eqBzsgf4vN5UKDlFIRB3hrzZTngCw+syGTPnQi87u5nxll2HjoXHjGzRdE67kNle6+3K2tYnWeuNL4VnqUrKnM4U7buKly3Z4xPV6TrPO7ufeO7WVBWtd0RmfBbtM5P8iT7VPLus/OsOyJR/oDexZ9cRM9ZEOZxKsK67kEY2RbonFkz1ki7+Pw4pM/vhIgg1wJ7uPv1ZrYUsjl6ovN1U3f/u8lG64+wsqFeuxThMu7+t2Tu7Yb2wwVQtvubXCXcMQWVnoHWzctIf1oV7U21nMHN2UwZ7Xu7ex9TYGwfd1/IzCZGf7b1nAw2EtlHgzyxqwvy2qGMIFdSvw15oEfAT3ze3fNAs5qStYW5WWO3xv+vQ9jGXii72HcmXGIcKsd6cT3Pne5lg9F+NB/CBf6a6SYx31ZAZRl7AANcZdzKZO6J7HfQfJ8c4/lRfH8ysusfR/vc5sj2r6gLVquVjOUpCIc4C62lEzwJgC3ouDUYZjK3O6D32A+dv8shu/mO5HfzIZt5R2BzVwlFTNkCK5bDMpF4DkZ65pCmyEzOkG5o//sEVQV5wBRscHnc52x3Hxo6xXLozPgJYXYNZYKeoVphz5wPzbcpqBzxffH5PGg914vfJWtxTlTK9ZniNa2ttU1LM/mxFkPlWtPypum8XR7ZwNd4KxHvd2mtxKgW2EzRJzeilMQZ+NkVgYKjkeLb392fMpWU2BgdqN1Q5MBniKzxUkuS2RL62FJktoQ+thSZzdHHpK/9iTSnwCQPUKuhVjhoDwbez0ABE3i6IPCUC3zriYDZnkh53tTd3zKx6XdBRuyxrtJYDd2rIXLUjsihfXUALsWU8Fm02+fAx+7+ZHKfq5Dxfxpyfvy30I8l3P2tesakPSp1MTOKxMgiyOdFkYxHRJ8zYGJ7oKMrLXcmoz8CEQYWjNtMiZ4VATxDUHaeDAjpnCnfZnYFInKMLfSvaJR1R9FE2yMgowcytv+SGGldvSTjVGNbYfyXRGSjk9D86Ofut/6eMq02YHczytYzMwKaPkfz4Ozsvmjs90VRPJ/FGLVDwPBARLbo7YmzPH47GzIKfwI+8ZxEeTpi+l/q7l/EPYai9/sKKgf4aVybkqMGIRLWz4X7NAp8KxmHjgjEugY5Zvp6Camuwm8XROUeNkXAybfUJke1RWDGEijy8+3sc2/AoVoAWQ5GIO3nKNX2u/XJMGV72QURJdaJj0939xMbuGdxzzgbWNWVEruaMg9EAPivwBh3P7rkdwMRGLs+chJ0Rk6NxpbQwETcexY5djdEkYrbuUpTdEaE0D7Afu7eqIjKGUWmCUw9GoHaD7j7tom8xVE2uI/R+XJ3fL4LOiOXj/v9JduDk322DdDFVcJlLQS6L4iiJJ9w9y/NzNBaLSNH1XtWNGIsMnLUTmjPudJLHAP1rffY3yegbABHIPD42+T7mQDzKK/SHPJKZCyG9rDbgDOyPcYUQX4Lykqzv7t/bXLaXY3KtZyADPmvmlNeQfZGyJlwHAKin0GZwg5HkeIXoVIIm3jjyeRPA1+6+5bx//T8mYTm2FqFcd0GOUM/RXrdRERGOhzpbN+ZHMVDEZD9iOdEpiUR8W9nlJHwSXefGHP6zniGC6st092HWw6cHopA7W9QWa2rXU6UGvKLma2NgODeyHl/k7tfWBi7zHmzJSJmdUBOtAddZc62jOd4G83TyYjsPBQ43pOSz80ps1qtMefj7y1zeuUVzvX90B73GSJHNfpsq0fmwcD3rnLYTWqhv/RF7/254llRuLYdIjI/4u77l+2npsxs3xY+uwplLd3UE8J7c8g0ZQC5A+2Bd7syxB2OHPYdUaaUZ03O0POBDdAeOyj03VpOtOaQaWabo716tLuPMjmmX0ROiFmBrbx21PUyKKvTO/W8mybLRGf9vS7SSaYrzBTv50JXFh1MGSGWR87PV0zkz9e8ELQRekYfFOjwQ5Vk7oAczz9DTQamJvUx3lHWt6WRvbUFKsGVEZl2RQFBX6AMFX8Ju2c7ZBfs6oXSusk9qioz7TPCBM5CZKY13f3D0A2PRvPzKeRA74Ic86dlY9Rc8qa1xR6wCXIqHu/KlFuqr5lZbxQc1wGRkq902ZbrIKd6J1QO63VElNoLOS/rkAbMbCXPcagxaA/8GQWfpRliUnLUSM9JW11Dh64TbGXK1robIuYdFfN/dqSDHI+ci2cW97Xk92VrfBukQ8yMsu6Md/f/mNmmiMzxFtNwjldLniUBO6FXXhcyX0Xr7zMLAlZcvxEioPdCet/l9fRxY5QJKLMjj4nPU/0qI0d9irDC9xozpqFfX4+wxotcGQnT6xdHOuSmyBl3X5nc5Pob0Jw7BO01/0q+a4ts64sRJvIBYOj8ei6umRnY3SOLUvL8D6JMpDe4+5D4vKOL1NMT2Xk/oL3k+jKdxZQddXtkS/RBTu1Lk3dSHzmqxt4z4X2fJL9bF3i3uK82ME6pXVC2xpdFmXsuRWfYZojw8DqwXsyzVdE+0AfhM9d7EOsq3LMzItl9iebeOyW6yNYIf+2OdP+XgWNCz0/n21CEUX2OiLkHECSr+H5D4D60fi5CwQcbIAxtpEewWaybg1Fmtb5hZ2yDstdehdbkbgiPuTGZ+9sgDKEXwtEec/fr47uq69VZXz3HeHoh23McItgtjc7ktii4ZSNX0HPH6P8pCKOYUElm8tmzwOfegA0JfFfYb7MzLL3+SJQBeS6kj53neRDxSDR3JqHzd16UNbmXJ073RH6qf6f3OCSe711ki2eZkTJy1Gpobxrg5QFKi6A1eRU6z1ZG6/ArRI56x4SNbo/KrH6ESnyPrzSG1WqF59wZ6VivxXNtjt75E4gAmwV9zITmwwtl9oPn5VnHoKxdsyOM4XmrHXiVkWJ38ITgVOmZYy1dgt5pe4L8ND0yk7nUDe2t/0U4wt2ek1IPRHvAfPEsSyAcrS3COH6xCkFpLaWZ/DXDUCBB0R81kibgd62ttTW2JbbZZmif/AzZHm8W9LnZEOlyHWBLDx9Na/vftlZiVAtsYZTdBWzhyiBSE12CnLtXI6Nubc+dtrOgg+9n4APPa/22GJktoY8tRWZL6GNLkVlNeQXlticyhh5HUQ3fF68pawUZA5Hxt7e7X2OKyD0HGQTnuZza7RH4diQC6/ZCJJwsw9XpnoO1pfcuGF2VyFE9UQTVH4DlPSF5maJpRiJA5naUmWCFGLNnkuv+iKKsTkeZbf5b7FMlwzoMnhcRIWwvy9MK/xrGXQak9SkxWjLFZl1gzqJRko6NiRw1DBF0Hnb3neP7GnJUUTYC5aaEIb4EAtHeLBh1w1BZvX7u/owJ4PkjAgOnmcBU7Hfy/7mBddz99hlBptUGdNZExtsnKNPAC/F59n42QY7tyWY2j+dRoR3QnDkKRdVd6Hm2p0oZSdoiZ9IWiGhwvQvAbo/IIYNRVGpfr02OmoiAjMNQNpOqKFkxNwYgst74RlxffAcdEOngPArkqIZ+28B90rV/ICLB/ILW77cV9osdEZl0ODL0O6ESMzsjsP24hvpleTnLLMV8VWUiZ/vDcdk9KJozK9tTA5Inz7MnIi1UjNarcP9uCLTYBYHDS7ucOV2j76MQmF8xOnVGlmkCy/dB+/uj7r5V8t0SCEz7GEWh3hWft0GR7+kYV8qCMRoRjHsictorKJL4A8szR20DXOsBytcncxrGYy40V/4ArOCR0SH5vlYJI3SedkaOuWfirOiKQMW10fl7o5c4mqxulHyT5VU4I1dCa2cfd78pPsvAwP0RcLd98p46Iv2mD9pXz/Pa2QqqKq/Q13bAKu7+nCmCdmYUNf/f+P4lRBBqj8DLrxra00ylI5ZADtWvrDawOi76tZQXSKlmtpjnDvo5kQ6zJAIe7/F6iEwFOTMjJ8oolK2lT3w+BzpXqikz01f6hNzdUYbBochJ8lPxbAy9tUNy3p2KyAmZo3wv5Dh7DUXGTUUOiGHu/rnJSXYKcuS1Q46TSzyJko/vqyqzWmfw/0+tcK7vjQiIGWA/XaTSCnt4k99P7I9dPCdeVtrf2qAyPf9M1kGqX66KzoqxngdOLIwyAj/k7vs2t0xTRHsfpHf+N3kHu6Ez9HGUJeabsDXOQ47vO4AjvCRbZTVlhh01LMZ7iCm7x1OIgHAbIlYtDmzsUVKwOF4l9lWTZSJCzPWIXDI49q+2yKZ9G7jOFRl/N9JNs0yXPVEGqicRKSsFqneqpsxqy6vUrDaRaYxH1iYTCfYQRMh7Nu67NElGzv+VTItMvJYTG8+O364ZutsCiCB/AHImvwHc7Hl53SJJpKryprWFPjKP158RYjeUiecJVFpodpTlcncXlrE6ymK1Ccro9jzKnnll2seSZ78MvZenEIF6DfJsypn+kpGj7kS6dpolqocn2cBNdvTNqEzPzZ5kEDYR8I9G5KgRaC5UJLAnv9sTZbl5ARE35kGkx33c/W4TGWMEjTzHqy0vPjsQ2X7HovU3GJHrt3f3T6w2OaoryiLT2fNAqvTMbIOy9SyHzgdQWccTXOV+KMg7KMb0R0Qu+K7Yv/QdeJ5lZn4UZLAQCj4YV7jW0Fo42usJgonxPJkop+p5oN+KKBDtHy6C2NrAMYhUM8rd30hknIR0zU28NpF2f3SmfIeyYmUBpCk56h1USm397NlKxvR1pAPej3T9T7Jxjv5m5KhtKbf3lkakon+7MoFlWZ12cpXZalQrmYvF/y+D5t6hntvIe6Dg0L8jLOzX+LwD0CmxWyrpLjsgDKsfygj6W8zxzRFee62rTH0XZBd+k+ggNRkUPbchbwxZjjCsNywvwznVzNZD+/3SaC96AQVEZNnpsr2oNzq7F0F2fme05ka4yJRzI+LUWogYVxNgZnVxlOYiRaVzaGG0JndCZ/BXMWbDov8foPNjiXiO4cCpnpcaK5M/EJFJBpjZnciemiYbsqSfN6F94DlEbDkMraEzYt53QUS17dE+9B6yiV4rkZv5JNqjvbJ9Yb8/nHyvO8xzclRWGje7rh3wa2GuL4D0mf1dwZAd0B4wDgWabusRiBp9bueBSTTX+876moz71YhscAk6f7+K9bMlwvYeQ+v1eWQnG/IDfFlJruWZow5DGNY2roC8LIPhImjfP8wbGQASMs9EeHOTZMa7ugphIP09xydS26QXwvPWQlnaJyPiYy0i5Yzeys7y5Lud0BouC9YfRQX8rrW1tmo3E7l5N7TXfI/2j8eQbroFIkv1RjrQy5XktLbmba3EqBbYTFEgLyEFKWPupwpVLyLiyBMnVEuX2RL62FJktoQ+thSZ1ZBnZqt7RF0V5L6MSE03NdCHWmUa4rNBCAjb392vNLHnr0EG4F2eZFGIA3sz5GCaF0VTTkaprS9Mn6lwj7kQG7+bJ2UA61FG5wOWcfcHkmvXQQSEw5FD7lsTMDccRcts7FHOIa7/I1JmzwHO96RsU0PNzO5ARs/GLrC0xtAzs/HIgbGcJymQp6UlYzQbcjDuhzIH/SG+T421xYEfPE8X3h1FaS2CnPwTUCRDlgq+H3JOLYIchRshg3h5L0SOTW+zuo7QJhuuZTLjnzWO/kbIqC/zUBnAuSFyTu/r7rdl/UDAwkFobl3ihdKQJbI7IKN/Z0SqutEFYLdH83UQ5eSoJxAofXU9sqe5vF5hX5lmh2I8z5bI0fQlMv7fK1wzGGXdqZhZpoF+HYHS4F9dTx/uQKDxTp47MxdE4zkEpdkeUfhd2d52gLtfUW2ZaJ/sg4DcOeP/dwPDPSfj1SENeF4CZVrLF62D9uUtEdHnIwQAD0DlDGoiNKdhzfzuMpO/Z0ZE0TOonxx1jCflDhroy2ZojZ+I3s07yGEzEBFL13T3j01R1cORQbqeJ1kIm9pMgP7y6XlWcs1eCCT8ARELZkVjd5Ury1lWkmZNdGbc4IljoLnlFWRvikjTe7n7dbHPTY132BOB4xNczuvsrOuIxv9fXtfJ32R5Dc3PuP5ZtGcNis+WQESiP6LI6luS6+sD0TZCEbjXuvsBhXuMRbrDDojw+WtRVjLfG0NkesDdd4vftUeEnz2QbvOfbCyTcWmyTJTNrSa7SOHZOyEQfl7kGLzW5bRqG8/9lbt/kFw/L9JRVkHOvvPM7H70vq92kYgvR4DPo8gJ8bmZ9UCOllnQOZFmLuxZbZll7yl5hukpW1dH166GTCgvj/x79rFwrg9GhIKjmtrPpH/N8X5qkUhLvj8BOfyGeOJEDh3iwPizi+clpzZB8+3YSmNaDZnAHO7+adg367n7IpkMz53n56NzbNFE15gF6bV7ICL4HxOdZs5qyPSCE8Zk332MMqo8FH8PjP1oKDrnQfrlneVvqs57aZLMsJ/OR+SXSYjQ9WPs3ecj+/YrpM9tFWdle2SjDUIZjx5oTpnN0cd6xnM5RLTYAhGMT4nPN0CZOjaPMX7cc9JyveutWjJNWEQvlH3qXatAZkqunwnpDT+WyayGPCrsGY3Zg0r0gErkhlvQGXtBzOsT0Lv9N7Ih/2siS/yCMg//UPbMBbtlbqTnnOXuD5uIMgPRGT4KOcszzOFYRByxbDzM7AyUvWVjREj+Lc7TW2NMb0B2VpolszuyqU5CxJLjvB4MwoQvPYACCC+PM3sDZEusDWzmylhX7zlebXmFceyFCEaXoKzkU5GNfyTwPsqO+2ns1VugAKynkz6VYXCzuMgRyyGC0bVIlxnueZal1FE9EBGirq5nLMcg59k6npNpFkQE0jkQcbJIjupQ3/uJa4ag4J4NUQaajRGhZVaUkfVylFnlC4uyYV43M2EPRMj50cy29qRUuZntg+bKM8gWfyY+z8hRcwMzewnpOnTTdijr1H8R+e9EhOF8ka5fE3ngVErsPVNwz0REensC2fiHAlcUn6WecUrfb3eS4C8TsbEHyq40i7sflPwuJUe9hkqXTa0ku+S+f0BEh1VRxq6DEEHtDUSw7B4yXyr8rixArg1a31MQxvoGOmvfivPmV89LtLcL2V96TuwursfNkI29OMo8e7Er62NGyOmJbNa1EMY7rMGBrkKzAq5uCtR5AZ2xt7v7Psl3syIbaiBaRyCi3gTPywBW2jduRnvw8Shjc6NtyAr9ztb4AFd5u2GIFAfaQ45x94/j2lmQk72Dl1QPSPrcPfppiEQ6EQVuZuf0EYjk8z4i3rxcMneKwV5LIPxnQXffM7muAyLWX4AwtL5eyNpc31yvZjNlwVsD6U+TveAvMGUvuxXhodnespEHebWCzIwc1R75IfZABIf9XeTRrmgvPRfpcXXI/M0t0+SDeBhlUD2u8F2xLH0N0TbtS0N9nhFaYU6ugtbuDx7lEePzfoj026A/qrW1tuZoiX7YGQU+DAXWRUT4b9G5+W90DreS9H7H1kqMavrzSFEAACAASURBVGEtWVxjkUHdL9nkMwWoMzJaB6LoznoXWUuQ2RL62FJktoQ+thSZ1ZBnZiORId3Hk/JwZrYiynC0k7vfZgXniQlc75SBDwUFMXPyH+jKpjI3An2eRA6nDIjph8pofZLIWRUZjl97IYqpcI9+KFJ0cWQ8j0EprL+M7zNy1A8ICKrl8M7ADET0mQNFJm2Gat1n0VAjUdTMRl6bHDUBsavX8QScKo5Dyfs6BpG/zkEZp7KsQTOhTBUdYrynO1IiGavZkKP+MOS0TckA8yJg5n1UxuIDM3sKKUnXIzDqRJT95GzPM2r0RsSN5RC40tcLZW8aGoMmPFc1IvsXQ0ZLBspujcDYh6rRx+Q+26L3PCcqB3JnfN4WATQHIlD3ci+UZEyuy4C2rMTTBghwu8kFkNZHjqpTOqUgfw9UJmNYU+ba9LQALbZAAPBUZBhmEVwLoXn1DgJlXp0GuY3KBmECOV9CIMXuVhsYXhqRIhZBJS5OKsop7m3NKDMFCHdFZTiL5KiyEhTTWy5xBQSG7YH20+cRqHFNpfFtSTJNAN6+COArI0c9gYzDo919YiP6cQbKgLYVkQUj3tkuyCH0MHLq/mQioS7s7g9WkFWVrCUlZ+RyyBFyAQIif0NRuiNQdrOj3f3fJtDyNmQwL+eV6883WV59z2s5yWgKytaYRvPOh97RRe4+qvC7dL2l/a2aPBP4vjLKBHep58BwB0Ti/ggRm7sjB+0gtIdl0aplYH4teSZHQJYN4Rak00xFzoNzkWO6UVnWrH4i09FId3rc3Xsnv+mMMrFlmemKfZ5umcBLMY5tUXaPHsj5+rgHQTfOumcQcH4syi6xPiLe7ekFMNYERJ6A5tn5yGlzbHZuxL48CjkCHkaAe1kUbhHcrJrMguwNkO7UFREJPy3+rqwVZMyEysBVVabnZN4Zqo/kJYZSnagNmhczTD8rjOWyaC7Phc6cD0xZJa4EDOlA5yLnTi9kb5zg4Qgryo8xWLoaMhPZbZHtuAVaw7uiAIh+npc/zyLGB6AsKUu7Sr2ktkY/d780kXtAtWWW9H1dRGTcz6PMnSkrzjHIIXaDu59f6V1VUWbmVOqGCF1bINJERjxaD+nw86PsD6eHrrtZXH+C1y2vVVWZzdnH+HeWvebj5B2ugMgiW6CMZacmvy2eLdlvqi6z5B2fjwgJo1D23vesLplpdXf/yArZTsrmT1PlQS1cpQfSIb5HuMjUxujJ9c1rE6mhFyL+nu05KaQDwgcyh/QOLtuyli5Z2N/S99M5ZI5E2Wk+i897IrzpeOqSo2Zz9y+Svu0DvOFywKd755zI5umFMIfbvXY20O7Ihv5XcT0Wnn0H5ABaDelPWem/tkiPuSbGew0vz25adM5XVV58Ni8q1bt+vIsso0h7lEnlcEQsPwRlrP4TKis7tpJsM+uLMKonEFFkiinz9w0oAO4kd38+rt0EnbMPlMlKPmuPgrTOQaWvdvAco1sIOfjnQJmcapU6rtSSOTYUnRXXIN1wBxRsdEncc29gNU8yRKUyoNYayuzl4zzJtGPKinU6Igem5KiKxK3CmM7sKrt9B3pfJ6Ox/bxw3bwI13iwgpw3EKljEsqmUlMmtTFjFf8egnSBwS4dfC9Udu5nlL32C4QJPZb8vivKyHUeysC1bCPuk+1XayB7ZBmU2WcO5Fy9CZHYbkKlS+9qZP+zDHvDUDk8R07ZN5P9Zx7Ps66X7UUpWXNrhHP3QhjJSKudDb9n9H8TdIYfVt9YN7VZCa5uIs0NQvrW82hef0aecawdCgpeB5G0v3L3d4vPmtwj2zfWQ/Pgyzgzj2IabMjCmC6PSOA3uIKJjkFrZi/0zseieXam15OdMJVredDLd4h0/hNaz23Q+jkrrh8c4/MLylZZWoI+5vqlyE+Qkch2dfcbkms6oHd9WdxnGZ/OgOPpbSbC9OnoWZ+KdTQHsBJ6z0/F3rEhwo1+RcHWf68kM5GdZo4ahc7ID9B+3xbNi3N9Gsr01iPzL2gMK8q0uoGaCyMS4CiPgMXC9d2Bdd39voZ08pbQTNn/Loj/zoSIvGOy88pyclRFf1RD+39ra22V2vTYCKEjzon0hb8Ab2U6fGv7/VorMWoGb3FAzhJ/3k2M2w2QcdQZAcOPxucZQ39+ZGjv7Em0dEuR2RL62FJktoQ+thSZzdTH1VB5rKfMbP7M2DGlqH0QkS4O8doZnjqRpzneF0XzZIbVocjwTp38syEl+WJ3P8vkYB2DDITOyJg/3kvKQFUAaAYgw2gsIlv1BvZHht/ZnhOOdkSgXTtkvL8fhtpCHplqYkynoJS2L7j7Ccl9Nozfr0TdzFGbewDnyWdpPe41Efnkvyj19Nvx+W0o1fbVwFnI4NgwxmxwNmYNjUF9zWo7F04FXvWCg8HMzkXlH15GJJ4jURrbLKp8azTG78fnGTlqZqT4fxRjWVO6MZkDNamT4+/GZgioL0KoSTJjDQxH8+1glAL6SrQmGiRCNLKPPT0igsxsC+RgXQyVW0vJUWMRkD4SpfyuU+Iwru2PogrnJo+kPBlFkX1mOTnqYFTebzuvTW6syQQQ/2+P1sKTqDTf6Ol97kqfNVJWR7Rmu3sSnRr9XRdFJn6DMr28Mo2yUydiWv4rfU83IKBoRRc4l67bi9DcmAellE0jf45Ea/YgV6aoqssse5b4d0qOOtmDvNDUVjKfZ0IAzdSk/9Oagep3k0lJ5H0yJ2ZHAN8ZqPRXSo5aEkWu7unufyr8vkj8bI9A+wXcfYX4LHP0tkPRm+ugufB1QVYZgakq+2Xhu7WRg/8QdH5/nHy3DwJuDnP3C+Kz7ogAXJpho1ryCs89PwJtf/RwlsWedzkiyOzhcvx3Qc71sxCR98/NJa+sr6FvXIz23zlQGY99EDHhJzPbHr3zLxBBagW0r5eCkhXk7esCCXugDGjHIeLQzwgAvtDDydPYfdcqE5nmQGf+y56X8ql4rjVVZvo3iqQ/Bu2F38SfPp6Xg+mCSvIsjdbjEsgBfgIlzcxWRmfi2gh4X8bl6O8cf3dAxKreIfcQLyEy/Q9k7oXO/R9RBoRPUATuI/Wt9cL8PhwB6Bu7+/fVlokcNTNiH4+Mvm3iuRNwRuxnOpY7ofUwO3KCfIP2m3EESRrZAd+ic+wHlMnlrKLc5F57VENmoc9LouxnF7j7GfH/54GnkU2WZRbpiPTnbYFNPXf2FYkebVGwSpNkkpRMMTkA28Uz/dfzbFN7IR1+ZVeGgXYooGNm5JCpydJT8q7mQRkPmyQzkZ2d6ynx6G5EPPrBzDZH+v6CiOTQAZ2nl1Ta16sts1ryUIaGmkyvJuLNkWgOvoMyDZwSa3VF5EDfgsRJZnUdaQtVW2bJO0rH4mzkQB6DnJEpmekMhLGsXOl9N5O83eKZF0W6gSNyfb1ZqQv9uAntWePj/zOhs2p/4FOgl4t80Cl0l3bIhjwE7Xm9vUIm48J9xiFi9yLI0d3bAzuI7+dGNu4x5Lphuk8Us0Rsifbf3h5Ze0zkqNsQGWgwMNFrk6OKpbCOBh509xdjns6KAr16oT1xNXf/j9XOWDcQOa839kKW4mrLqzCmqyPd9F/AnZ5nHc1sgXYxjkOQrvgLmvOn1SNzT1R2/BLgbnd/JPmuPyJ+TkIYVLv4/77uflVBTqXAoq1DfpbJKiVH3YDIM0d7Cam1vjVqKkm9IlrvE7P+mDKpXkHdOVbWv1nin8ORfnpiqodbTo56CpE76mTwLczzTmjMa0rlxud3oqCYk5Bu/rWJNLchOuNqynWRE7rbI53+H0jn74qc6ed42I71jE3ap0MRaX+gu483BXk8ht7JG6is4ViU1ewETzAUEznqAGQjleGt6bzrCPTwPNNZL0T2+QwFNPwt+fwKlNmtGLyQ9nt2FEzTxt0/T645DmWg8pDxT5PT9jiEz/2jHpnzeh7ouCV676sjUtgdhWfqibClmz3KgzZXs9q4+gLu/q/4fNF41qPQeXZKI2SVzfPSfSO+mwdl6R2GSJoVbUirTXSdA+1ru6PsTusjouKR7n6NySfwMMI0b0B4daWzItML26EM3xlO+U7cd3W0dpZFgSc3x++GoWCU/km/0vc9G3LiX45IQHMgAtibiIB7f9KHDmivmtUbWU6umi3W6bHoGb9BWazGo3fSDT1HfxehraaM5DTIT7M8nYUIdz+gQLUX3f2puG5asukWZR6E9qqRiMhVQwQuygxdYwlXKcQ5UVDamyjAIT3r2yB7bmOEk5QS7Mrm/YzYTIGP9yDC4BuAIWLZfYgElQWalfqjfpdOt7b/E80UnNCOCPBqzJppKevq/9fWtuFLWtvv1UyOjUlI+XgLeCgUWEL5HYOAk7GhkOK582gO4J/IEG9RMltCH1uKzJbQx5Yis5n62Mbdnw/jbUvgQRM4Rxhy1yBl/hgTGImpfN0uyMi5x92/SIyWQchg3x8ZypkS3JHIMGRmjyBDZg6UYWEzlMJx3eT6mlZiEK6DDKoTXSmR30ZK9guoNvYJJlAOd78VGconu/t7oTicDNxqigzG3X+Je8yOCFIZmIGLYDYMZYO5P+6d9SuLJm5rZoPMbD7PHfR7IlBiJHIiXm2KGMDd+wLXoUwbbyHj4QyUTSYjkpWOQYA0Nf2r1Fzgd1uXc3hIBlCZWZvk2YYgosXKiAC1CgKkMqNnEjK0FgSGmlL+4u5fu/uHMZZZNFZquPYGLjSzB4DLzWyVxhhlBRlLmaLzqiYTGaKfokjE+xEoeChyDDSqFQGZMCKz/+8IXGuKfMTlbB+BxvRiM9suPv8VgQTXIHJZJVJUP5S2+m0EbO+BnEvnALua2Ryxvsei97c0AjLSNgq4zMws7j3FlZ2jGwKzp+e5B5nZ7iFvmuZl1mKd3OZBisrme8h7EpFXZkXrZoXp6Se1s0sU95EbEbnvMpOzO1u33dC+NA6RWlIC0xrIaTHIg8DUHDIL45T2/3oEWG0DnBHAUsVxaGis0nskv2vr7t+5nA9pxpxfW4JMahPhNjazE8zsauBYM1vcBcZeifb0Dc3s3kT+m8DsnpCizGzx2Ieye2wbe88U5ORdzJT5B88z501F4OHcyMFefI4iKapq+2Xy3YKI1PwAIqBkxMi2MXZXovl6mAkMxd2/8drkTZpDXtLnXWOcXgImZ+cL2o+HIXLRZDP7M9IXzkMReLVITNWWV5RtOZnuKOQQ2xSBfdcBW8e8uw8RWF8B/oaIMiOz91QYy0ryrjezvu7+iYuwugI6nwagLJIZoN22saCGK/qrT8gfB2xlitT+DOkFpaSodFyrITOR1R85625GzotzEXn8PlOkMrGm10YA8l+R8+eE7NmTccz2xRcRIeQpVIbgqPj8RxM59Re0x96LyKkN7pvVkJm+dxNwehgiW22AHPpvI+fCNhageJmMgm49CpU3/r7aMlEJwxm1j2eHzO9ayFhuhnSyK4Ht4v9/RmVsRqC1cxAqR31e3Lu/5wSmOmvcRL6sisykz6vGs05GZ0+bOAd3QbrkxWZ2pMkxfTQiJ1zhCfk+zrt0ja9cDZlJH3eL53wJOZSvsrBvEWniTeASMzsEBSIcibLTZc7SNoncVOb9TZVZkJ2d698i/f5+RPgaa2ZdXPbinvGOnkBzZc/ivl5tmSStSvJOIrGfTWSAa5BTeywqs7Q78IiJ/PIysm8nAceb2WnZO876ZQWbvBoyi+8nvv/NRMbD3Y9BmMkRSG9ZKPSu2xARLiv73WzyCrJ3QWv7UbR2L0MO6Fdjf6r0uxqyo6lUXT+UhTLr43fIfhyDMI5B8flPJkLPVDTGlyAbcoMK92mbrJ8/oqCq95DOszAw2ESMye77MSJ9XIjWfqYX/mZmZ6L3Nldyi8WQw/h6U2ZnXAE9fYG/oz1texNxOrtHSooytJfU2Hsu/OMUpJ/NjTCrGl09fvo6IqjU0tWrLa+e9h7a1xcAljeRQPEgp8T7GYeIDoegzCinRR/r2NsmjGpU9HO4BynKzNrFXLkR6WGbxH0vj+uuSmS0LZxtnbPvXPjBJKSbLgjcYTne9h4KOJiMdPFi31ISxkFmdn78OSB+vxsqwT3Ac1LUXEhf/hiVsqvpI7CDmR2VfHYbCoz8CumW44DTTWSLrP8XI3tgG+Dw9NlCRtE2uwzpoTdagkW4+3YxDicD55vZiShj1kdeO1NYGqizMCIuzI3Kur2BMqsdE3rl1ORsqelXiZ5xHspoON4UvLkNOsuudff7XBmBdkOZa08v9Pt7lK3+4kx24f1MMWHN16H3+JqZ3WXKgv5Xdz8dZTr/m5l1MmXFPAuR5J6oZyx3jPF5CXjdzPYzEbpwEVsvRkEQ95sCySYgwk99pKgdgWssx9zuQ+f1M+j83j4+nxJ73UeIMNVspCgTGQevjas/YAqGIZ7nIvQOTzaVM623VbDFSveNuP5DtN+vgOZXRRsyWY+3Icx+Kgq8/BrpBs+g95b5BF5DJLwNEK5fqc9TLS85ejDK3JUFB7d1keNPRX7gPsnvRiIiTUaqSvW2bVHAwWvAjTHGf0Y671LAmSZydybrFzSHsmzijcabmtKSs+ArRDS7CmG5t6M1siPCcVdH7yjTeacmv22wZWPkwqOORaTdLvoqJ0UxDb72EplXojmxFrKJiL2qTnZ+NK9vNWFmnyIbelPg6NhTsrYEOltnRQT8Os1qY+sdzKxjNh/Kzr3/ZSuZRx2QD+s6d7/fVUr2D8gOOsVUQjPzR51C4o/6X/a7tf3faiaS8weofPgpJuw4xclLcYvWeTdjt9aMUTNoC+PzaZTtZAKKmt0XRcE/DOwYxmAW4bQY2vDvQcrSoYipvba7/6elyGwJfWwpMltCH1uKzOboY7GZMkLchhTV0S5HPGZ2DjKuvkJG7WwgRnwYyZmi2BGBrZ+5yud19oT0YWabIgJTF5TB6Ozku0nA2+5+WGr4ZrIL/98dpQ4+AgEzT6M0zichRX4wigi70OvW824TzzICGXynJgbEyyiLzlmheLdJjMaNENi0MnIgfZwo7esip/HryJD8EYGFWbmh5eJ+v6EItT8lv1sCASXve2Sjssrp/3sTWQy8QtrvsmYJcJr0OU1BfQYCw7sAq7j7u2GcTY3fbYlA059Rxo2/VrgVJkLYxQgw6o6A2KWRA+QqT6I9y/oY/z4KEeu2cfe3qy2TPFL6JQTA1UnN3gh5xyDDZytXeYQ9kVF4PvC0R6RaXJtmjjrA3eslYsUc7Y7KXHyAIjm/j+9mRmDItihi+kZ3/yTe1wpeN+L11Lj31WjuvRmfv42IeFcX11cDzz0QgY0HeE7ia9K8rGcM1kFgwpc0InNUoZ/DULaazU3RjKshQsdf0bi2QaTFAWitDkRjvhKRNjwAl5q1Yoo2nMcVPVx1mdPwbAOQ02i7RsylnYGZvBAJ3JTWEmSa2d5onr6DzqseaF/exd3/bIo63Budkc+4+6bxuzTrxfzoPJnd3f9gIt5cDfzB3W81AdITgcdR5OfkkNEJOat7AVt4Ehlb0s+q75fx2UzIQTYElVza1iNLRyLjNER8Xaa+PlZLXqHPm6KxG4/ey5oIaD3C3S+KMVwK6TKLI1L3ve5+Xfy+mA2uyfKS87Cob3RHjrCBnkdLLob2+9WRHnan5+W+SGTVyWDWgLw1UCaqSR7l5QpjOF3p1k1ktVvQXjQIlUloUgnVaZVpyhJ6DSLEnm4qXzkZeATpQZ2pmxEgdaSVZoNLrl0VnUObohIqY+Pzju7+s8lhsY7XE9FeLZkFGWvF8/UHDvY8cnwxNF9XRY6/SV6bLFB0hqWlqasqEzkaZug+thCZB6Fgg+tRlol9PHGSmkpuHYKcc5Uy89UpB4aIDk2WWejzcigo40NE+tkxPs8ixnshXXMR5Fh5H2X8PTd9/uaQmfS7P8rEdw6ao12RU7sbskUeCP36bJSl5L8ou9w5ZeNQTZmF554T7V/fILvp29DVz0MEtntQCZtK53nZ+2myTGqfkdXq46HIofkcIidthrJujXRlneqEzsQTULDSTi5C6bJIL7rb65byqbrMgvxtAPPIkGu1s7mORrjFaIQZ/DPGblGvXMqn2vJ6IAL3Y8gu+zo+fxbpW1u4u6fvIf6dzpfDEBlkkLtfHHO4m8sZh4lcNRjZJSPd/fj4PM10ukKZLVK4z0xIt74aESV+SZ55HCq1837y27nQPPwk+ewKpH+fCFzmecah/ZHu+x16x1mg1pyITL1KPMO1XpJZw8xmdWXf2ABlxMlKpa2CdP2tUFaRc7L3Fv0+Ctg808eaS16lZsrwMgy9m6PQnvhDfFeaRaiSLhhr6TCETbxTzz3XRjbO5+7+UHzWqah3xrv6MZ7z6+TzTogUfhWygXfzvLx0rQy78Vk6h25B5Pd30b67FJr/R3tChInzYn+Ed2zoUc44vuuIdLODyMvIroLOwWfjmvmRzTIYZXFKM0dl5a28wvjsgUh9N6LzbFuEN+7itUsOXouIGVkZrFHZ80KdwI0hKHBiqAvXnRVhrhb3Ghlnam9EajoOZYLIdOCi7rIYIlK2Rxlito7rsr26L9Ib7kXkt5fLnrXw3DMhvfwzFBjwLcowlZXXGu0iGs2BcMP+6CxfJ/aCskwyWYbc8Qiv3h1lWx2D1n+mcw1EgYs9EPlqXDaWXtDRrX7MbXOEBy+J8LO7inLKZDa1mdkIFOC7TbJ+U1x9lEe5NxOJ9HBK5uY03G9etG8cQt19o9L+UFay9sDoy0DgieQ8uBsF+20R5/AiiCg4CmUM+74RfXwFYeD/QBkTvwnZv0U/RiC7fEHgi7KzLf4/H5rHSwCvuPua8Xlmi62Kzs+/oTKh99XTp0wfrUr5suIenejG3ZDOsh7K7HWPu18b12yI7OEdPHDbsvnTyPtn77QDKk/3aPLd9MpMy+qNRuvyUZT5sRQvMhEUjwA2c/dX4lw7Ar3fR1DQ60zIF/UzKi88peRdp3PzNBQ8NS/CVc/1yFT3e7TCHrIGsmW6Ibx59/i8bP8d4XXx+dbMPa1tupspE3NWdvMTZN9dCvzZK5TxbW0zfmslRs2gzcz6ICO7t+fpUudFxIZTUOaKrV1RR5sg5XhvpER/FWL6pIZhS5DZEvrYUmS2hD62FJnN0ce0JYr86oh49S1K75w5DndDEQNrICLSEx4l+aw2UJcZKdshZ0JbpMwOD0Wxa2pMmdJe90aK9yFeKPNX6ONWiMzUHRnOLyPD7Yv47edmth6qYd4eGR0He0lGngBFzkEg6xnu/qiZvRbPfE2F+6+PSAw3FscOGbeHoai2k1G01hDPS5hthkgTXYHTs3EtuUdFYxaR204FtnT3pxuj7JQYHDVGMdAhGxtTxO4xyHDZx93/bbXJUX3Q+9zRS0C6kLEKck6fhyLAv4w5+s+Qu6NHeaNKfQzgZzRK0XxRlWUejsCZR5FRtipyBpziKi1QBr6UOX9q5Ln7hWEcZX0c5zmJKTXuMpBreQRq3VK8R+G+HdC6ecbd9yp8tygiUnRBe8IErw06Fx1rR6OIvswZ5AiQPMgbQdLyus6//T0i7qo1Lytc0xaBpw2So0r6eS4Cir6Jf3+IjIZFUAm0M9D+MQQ5XBYFvkfkxbO8/jIFe1dbZmNa4RmX9CC5lV0X/5wNZaQ7yCNN+bTep6XJjM97AXciMuoEF3GxNwJo1kTlmJ42kaP2Q2tjB0+A1ZDTDjlHByBQb3VEIrjWw3lgZvsioPApFHn9FiL0nYLSw4+rp/9V3y8L182CwPzRyHje1XPidgfkUNwCAfAfegOAcbXkmTImHYwyCAwNfWG+GLM90D59meelSUrPsOaSl3y+GQIUuwOLuXuf9PexD49HZOmDkXO2Yha+6ZB3p08D0bShZnIuPoTOqDrleptbpokI3g/tk92QLjcR7dPbI0frK4is/GrJ79N5vzY5mepl4NkYwzXQObsRisrMiEy1HH5WTkSoisxCn3sgh0g7VHZxk8L3iyKdZAW0t9ztSbmhuKboDKuqTHR2zdB9bGEy2yDCzavuvktckzoZ/ooc/xuV7TtlrakyU10+/t/d5aA6g5yIsIGrdFwbFN0/1eT8nAfZLZ96OK0tj0KvqszCvj4HirB/ATm6MrLISyiCfXePoIY4q5cFvq0krxll7hbPuwDS9e4FxruyRcyM5sbmaJ0NcRF66nXIVVtmM8jbG+lGzyP9d1TM/axkUWfksB2MspZlAQGzlek0zSizLQrYegboiQKhLozvUjLTnehsvgaVf0zJGSm+UW152dm/EPAiwitujO/uRvZib5eTcW3ghUT3rLSfX4Fsw48Q9jPQ88ydiyE9+BAUKHNcse/FPhbGcxzS8aYgcnz6XOeG7HHx7v5V9k6S60ejd3kyIkFkJegPRDZUGTnqQUQ2uyyRs7O73xT/bk+eheJF4FB3fz6+WyXu1RvZlP9BwSyHIkzmzOaQl/SzqHcWy3P3RDbLnsiRfKU3gnhQMq4XIyf4AhXuuxLwRlFXtTz48jzP7fsuSI8egvT7s7wuOepPKAPKq6gc6ifFexbuMxzp5XshQsvPpsz3p8Xn14duNgjtWR8jTKpMJ+yGdOYdEaazmbs/Z7Wxl5QcNdSTgMx6xnAzRPga4+7nmtnS6IydikjKO3lCvDCR/KfWc5btjuzEM4D7oo+ZDpqRo5ZE2XVeQfhCrb6aCG9jkZ18efL5YGTjzIPKNz5lCSnLhN3dhkgjO7kyu1Z67jZoD94SZe35e3w+K8KcFkVBcXeayE47IRzkUE9KwRdk9kK6/fgYy+VQCbF/I+LxmahU63txfRega9bPCmduYzG341Hgxn4+DdjC9DQTUe+geJ57EMk6IymtgQgS36J9NyVHDULrvYasWpCb7vNzI3J8J1dWqGxfPAvhFNO8b5iwkcWBud19aOG7bF2OQLjE+ijgaAMvKX+W6KRtgPae29x3IuxgOCKZZ3pX2+j7dogkk+4tZZjRLmh/XQftcfdmumjMv1XQ2fw+Ua98KQAAIABJREFU0oXfp9CSM7cr8nXc4O4TGjtelZ45/n0wOrN7IB3res8x9llcmeyy9zgSEca2iT2zOH8GeIVqAg31I3tORGZsskyTjXEuGvtDvFCCM9nLOiF8+VEP3Drm59aIIDYrynT2KtpHSveMRO4t6F3fAcyJgouXQb6sisS3/0UzETPHo3Mny9beq4H9t5+HT6i1tbamNlOQ5Xjkm70T2dT7Iv38LkQcfjm1j+rTzVrbjNFaS+nNuK0H2uy/gJoD8gPk/BmEnMpZes2HkKG9CmKcH4xYy0USRkuQ2RL62FJktoQ+thSZVZOXKW3x706hmP4Wv30OkXq6ofSnWVm961w1zHu5+2AvIUXFdT+H8XITcjAtFv17LK79PsAmTJHagxCQNtbrJ0X1Rwf/dq4UpM8jRXkp4EnPIxi+R+DOSGBy0QiwPKPDVSgbyCoopfumCPRYyszWMrPVzWw1M1vHzDY1s83c/XHPQcu2yfP/hgz08xBYOgHo4e6fZs/qijAbGv071hQ9VqcVAYDC5xOQEr5LfNZo8omZDTWzMz2PKnkK2D2AJVx17kcjo+NCM5s/jJUs/fpEd+/jSXrjkrZo/P2Qu38Z/74cASBHufsX2f2yOWjl4O5Bnjv5qyYTgU7d3H09lwPsfJRBariZmdcGD3tkY1xPHy+My5dHc+euAiBRUyrMVaJiVPR7lnTQKrzHtqiu+0LZeGd/u8C3N5CTYyyKpEnlpSA+rmjWoQh0PAoRPH4G5jG1Rcxsofj3iqbIq3Ru1wLePUlDXq15Gf+exczmMbOZYk/6FYEcA6inrF6F93MwciSORnvBVu6+GAJgtkdZf35GRLENUJaWfdH+Ul+Zgo2bKHOe+samvpbNxfjvW2kfzWyUmR2eXRfj0Q4B9aVOo7JWGMs7zOzSFiBzR8vLpoGA0G/QefHfuNddaA28BVxqZrOHsXgpypJXJEW1caU2H4KcqGugDHN3eZQgCblXoPNyFhS1/Ag6c0/yJNq1wmNUdb80swXNbCUzW8WUyvwrBB4fiQC4iWZ2gCkd/RFojVzh7h8kMlP51ZDXubCvboMyimwNvBnrBRfBahgib44F9jEBl7Xmfcj7tVry4v9lDsABCNgcEM+2nZmNSPfE2IcPQvvMzcB8Fd7z9MpboJK86WkuQG4NrxIpajpkvgj80ZUdYjhyNJ3g7l+5+x9RpO8KwFMW5RgL98rm1N6IjDUakVbuAa6LsczKEj8CnGhmQ+K3PxVk/dpcMguffYIIB/8G1jWzrdNzJd75geg8vx1FTaf9OhwB0gdmY1xtmS2hjy1JJiJOfAPMn50TiIySlfb4O8oCU0mPLmvTLdPklNsHle/BVB7uBlOQynHIud8Fze0l49myUtyfuftr7v6s507fNihbZjVlLktdPHBmpFu/4rkj7R5k9+3j7m/E+bREnNWvFPq4tNUtS9IkmcU1bnn5sweQ02g00j/uNbNV4x6Hob1/Z6R7NESKqqrMasqz2vbzMGRLLIkccGnJoh/RntkV6U7E9xl+0aa5ZBb0rfbxu96oDMyQ0JsyrCKbH2+g+Xo4dc/x1J5pkrxsDiXXZeVl2iEdMnOw3oPOwu1cpKhFEElkm0ROKTEz+vI9esdtgLNNzjlcJKMxyGEy1MzOyvqePnCFd98FrdG2aB1lTt7O8ZshaG4NQjb1/EUZhXscibCfU4D9TMQgXJm/zkWZJW6x2mX11vLapKjeaN+5Jq6ZEtdtjbCncyxKjruyNQxHwXT9kL76Olr3mQ26XZXlZfZZ+r62NrMxCBMbZip9h4sYdgIi040G9s501mlsHwBzmtmGmX6ZrI2eKPvP1iW/mwdlAK3B4VzEjjPQfj4UGGZJye7Qgd5HpU6nItww07Er+XfWiesnx5pZFNkU1wO3JnPvAhSs18fLSVHtXJkTf4h7T0G2WFYOKts//o3m02hUauuIElnpftQZZfu9zXMiz9NIJ++D1v31JiwgG4e3Kp0TJtLUyYhwNMrzTLu/mXCOL1E2lmdRZtJjqUuK2hXhVTWZupN7n4cyUn8KjDaz1by2PTcRZTe/xeshRYWs35Bt96HnpKhO0cetUVasPeLaa9H+drDnZR+LpKi2yM79KzDOzJZCpcRuRkFvl6N3v4eZLRxyf/CcFFXnzI3WWMztbETEmLW+565Giz30akTA2wzNkZniu2fJcfWhcSbjIoNdgEhzH1eQm73LXRE57W/AQ2Z2qimj3afobLiWRuwb6bo0lay9A62PqcVrXCUOL0EEs7Eo81FfLydFtY91NxPCxzY3BZ/hKjv5CAowOdLysmpLojn/d6Tflj33qhalZF2EsrMRseYaM9s45sevcf8X0NqtlbWw0Mdsb5oDneMHZOfjtLaYn9mZfUs839rIL3E5cJuJGIjnpKhN0Hhvjwh7n8T3PyMy5iCUifB6K5T5rK95UoYz/v8beqdNldkhbIyjUJnUS4t6deg0HdEefAPQK/ZN3P1Tl32/Bgr62szd9/GGSVGHIDtjJ0S87IcIXh2BjSzHxSvha1VthTNiCbQmTkNY77EIrz+3gf23lRTV2prUzKyb5Vj/N0j/XAB4x90PQvNxAiJLTQLuNLONLS/R3EqKmsFbKzFqxm3vo7Iey8b/Mwfxt4j9eiI6nEZAjQH5qrtf7+73enm5rpYgsyX0saXIbAl9bCkyqyYvUdr6IufxY2Z2rpl1DZnPoFTHGTmqf9KPWkps0Wg1RQzsjACjvkixPQkRbp4OoGZKgF1noiiS48IAq0RG6IIcisORcyJrcyEwcRYzax+K8tqIfDTG3S+I39dyglpOVroCgT0rRx+XR8bKkyir0H3x9/0IFKvz3CEvc26ej4C+L4DVLMhFCUDzIAJ6QADbEiXP2qZM0Q/j5BMEaO5sUbO6UisAcYcicOs/YbwsiUCwU4BtLXcYn4hAudUQOWq+MFpqvRMvZIxK+rs8KoeVEfDuRSBLX3d/IQzEq00RvpUIRwe6+xXVlomiTyeg+bxQPMdJ6H1tDZwcczJbF380EYbaVepjMgSroOxbWSa3DFT4Lfq0Uvz/bgR01/y2klHnAhxHoQit49JxN5ElvkZg2gZeIT16Ya6fjZwOe4a8hVEU5WsoQnFy/P0iWqspwSqLVEydf1n/qzUv+6EIh1dRNOHJ8U6nUJscdbmZrVhBXvH9bB7Pc63nIMkeKKV1lhVuqrv/x92vdvcb3f2RkFWM+MzeU1NkXgT8raExqq8V53i847nROhltKkWRtQ4IbCoF3IqtMJYnINBovxlc5pEIiEnbMogA+Y7nRNAMnLwBAbVzx2dfJXtL6hD/zczaxdnTDZ0D8wLnmdkcrlTzHePaCSjCdlWUVWZzz8sp1BBf0v7HP6u5X+6OzqvHEfD8oplt7u7fIcL0YfHMF6NzdGlUtmJM2qdEfpPlmdko4GarTaR9Czka10Yk5BqALfaRYQjIG48Ay5q9tNryqNBivuyHwOb1gSybwx7x3DXN3f+JHE19Pcme0BzyKp0VZTpTpeZ5tokah93/Sqa7fx/zOsvE8rHnpVcWQeVaBqJI6xoHTirPBJCfjPTddRER/VrkiHjYciLTCOTMOsdEdKjVp+aQWc/4PIr06e+Qvrla4ft/onIxfePfWb+2Q46OQ4vnbrVltoQ+thSZsR7GIgfwsfFZTUZd5Fx8G2hbXGcN6IPTLDPkzYaCNk40OYUvQOVspoacM1DU/iaI0LBk6K71ZbOqmkwTKfFVRBZN9/aOKDtCloVnEjozt3FloVoyxqKOHYWykVRVZsk5Pidygl6EMgdNiOcG2es/xO++Rbr2w8Bj9Y1rtWVWW17oU9kZejlyjP8MHGUqDUPoRm0QXvExUCeLYjqW1ZRZ0JE2Qfbe0qGr90NE+SMtJzNlmajaov1+dXd/Ihm/qskzZbM40My6xXX7IeLP7Cgj7nNIN34UkaK2jTnZHunNCyHSS6qnHYuITjWEicQ2+AdyEs+GCCEpOWo0Cgo42szWLtt3CvtIJxdJ5nikQ88NTIjx+dFyctRRIbcfWmf1Nnc/nPrJUZ2QY2fJ+DzLvpH191mEu2xhZlcnch+KPqyEiGEZmelFlN34XrRnzuKRSSb20WeqKc/rErD3QLrFoog8NxAYYwouIPShE5DOOg44xEoC0RrQPa5DutThcZ9sbXRGzvGtybPI17SYL6e5+9dmNs7MxsbnX0ZfhiP86jgL4nr8PR8qN7dOdj6G3XStmW2Z9Ll9XL8q8K67f2fKxPQ8IqUf6CrXdaqZ7RrnxQ1ejq+mONRNyP56AGEQY2Ne/mI5/vFvhDeeg0hZWZ8y2zB7P7PHHJuMSAQzI7LLRFSW+wlEHJsVuMfMti/pV9G26Imwygc8KWUVzzcl/v0V0kE2QiUDz47+ZGtwMsr2dKWZLWsK3lwqkXU5wlJ6IBu16Jy/0fPMdnVIqcn/u6Fs+zNZkFdcgUAZOeoqYGMzWyC++2ey79YiZsT3WXDbWGSnjY/xH+py6t6K9srhwBFWIPSUjGXWGou53YMy7l1WQU5Vmpm1jTH4GhGAhiMseZzl5KhnqE2O6h+fv4sCoc4vyEzf004oE+AL6B08j/SU68xsKVdgcGbr1tk3TPZ4FliZ6Y1zIxv/eLQfrBlnUfFMPhjZRRsA63kJ3mhBios58wQiOy0CfJOswU0QQe4k4GUzexzpJb+guV2HTGmyzZ5DwcvZXnYnstfeQ3tMSo7q4O7PeATWFsYw7eP9MX6fIJ36VJM+P00tWWOnIAxijxirtRAZZjPgpHgOTNndRqIMXRt4IQN+rImbUPDU5kwDkamgq2wQ8qZWQWZ2jm+JslhnY93NzE7Oxs3df449+Xakq2yQyQg5X7pw0S8T2aWkqGjLokztr8fesgjCm/6EqjxMjf36f0L0KIzt/GguX+buL7uCj09CelGj99/W1tqmpYU+8hqwfvwbF1n0EaSXzePuTyEMcQVk362L9vkJZnai1Q0Wam0zWGslRs0gLRS7lFU/GSk4o0ygVpr6+VvE+P8zsKUlESQtTWZL6GNLkdkS+thSZDZHHwvy+6EIrZ/Q4XkIIiYsaXIEPY0M9c6IpDAAGnQo9keRS1lZih9dgH5GQFqcnBz1DooU2t/dx2fP7F6HaNUfGfwdEGBbA+iEgTYRKaQ3oqjYs4BJXj8zv4bYE4DC8UgJfx8B/Eui6Ib1EWlqaa+bOrZOxokYm7HIMG2DAL15AqDJAJiHEbg0xN3fKnYsZGQOxsVNJYFIjJO/oEjK1bIxK8ooGEiHIQfGfgjgmYRA0U8RiHIx0NcEZOFK5XwVAgBvMrMeXpkIlRmb2Zx4HOhkZvuY2cQY0+1d4O5MCKTtRkRvJX0cjEhAWSmSqspEhvflyBie6O7vWQ4SnIjAmi2QwTgOzaWnAvSZmsgrZgbI2nPA7Ga2c8isiVozZZ4aYUq7i+fpwtsU3tM6ZrZrPGemuD4KXAicYmZjzGwpE5muf/T3W89B91KndGp4uvtZCDzZBhmc49Ac741S0W8CrO2KBMze7yEIKN4fzYvmmJdfoD3iRQQm/QtFtp9vIqFk5KjdETnlNgtgtiBvdOH9LBvXZCUa7kGARe+YP1siEmedVtyHkvk4XTLNbCAqbdoRZdpZuey+DbXCGC4f4/Mxiua6EbjEVIoCtL5no+CgSA2jZJ4W383JCPCfIWWa2QpmdiLa7w9B6y8DqR9EZNlDocaplmXZmIzOkjoRlem6jbYwStHeC623CWi9XGRmc3rtDAHfufuL7v6kR4lDy7MDNPd+2Q+tn0kImDsOOQ9vM7PdXED/XWjtv43O/KMSoCbtE9WQh86wD1HpjamWg6NvIoDtFbRONre6ZKYT0ByZkug57aopr1IzRfIejRyQ9wWQ9y+UFe5DBN7Xijh397ddUYFljoaqyLPaBN3FYu1n2Wuy0rj1tnQNIWJ91WRGyxyymczNzOwYMzvFlAkwG5vOaB9cyMzmNoHxayO97BF3vz199kTemjFu7yDn35uu7FMnIbB5KRTBibtPRs6J7dz9paLeWm2ZhTXePZ6rJjNknNM7IhLGqLhv2p+yOfQDykp4aTVkRh9/QM7RCTNiH1uKzMJYvmZ1dbdHUBaAU81stJktY3IC740ioCe6+0/pfmQN64PTLDPkPY70rP1RtP3xKHDkp2QfPQnZPlsjspNRoTWDzMeQ7XoptYlMb6NyYAea2QPkZUdejms2QmdmHSd/c8gs7HUgks5SyFb4Jq65C53Xu7n730zZFhd2OUx39wiKKOzFVZPZHH0sNq/tNP0TsrFmQ/Myy0QzB7In5gK8TE5zyEzWz17ozDdycsgHKFjrI3TunmXKjrtP/Okee3zZ2VMNeasiXWSUyR64FOlRX7gc25chx+WaiGT+ipnNhZzppwFXu3AZQmZnlMHjCBc5flVTNqKtkvF4F9knRXLUP5A9u5G7/7V4PmbvJO5zPrCbidD1JSKXnB3Pc6sJt/nRFBSHK2p98bBLsr7W5wzMyu+VkaMuQPZBkaz6W9z3Y4Q5TUBBXlcn1zyKgodWpjaZ6XlEkvkLss0Hx0+mVFOeF7JwxXs5BzjD3bdHmFgPZGeckc3z6MPJaL796CX4SzIvVzSzLc1sfzOb2aTTvYNsos1QYMURJtvotBjn8S4cKpWZBiDMgwIB9zCVvcuIO+OQXnQMcKWZnYPwiY0IvC8RuSHSy4eb2UYhY4qL8D4Z6emrIUzzQZQ55bs4I1YEFrASB56V6KTu/qC7P0lkpkf4yJjsnqYM1PvH/4/1nEyzJvAHC53XzA5AmEN3d78z1tpyyNl9nQtnBe09z8WferOiReuJMsNlQQBFkv56ZraSK3Dgbc8zNdVkS3K120zEuidjzF436dYLxzUXIQxkHhQktbrnWZnT8crmTvvYdztl+k4845+RPr5p8puMiNoV4TMfF2UW5uWalpMzPPbB+RHh+D7PAx++RuvmcuAf3vgScNOFuTVS9jQ3d/81xmAAyrDUDxHt90JrJQs+zchRGa6e9fGbEpnZWLZF2Pk4tNcPQ47vfggjOD6uz+yWWvtGPPcO6OwhPpuI1siPCNc7F63Zk7Jx8sQGdJGNXvbAvUr6OtWEIT+G8LzdEWlkitfGIDdCJNKFEd5+truv4UFi9Lq429vIft4NOMby7IETkV/gQ+AqM9sk3sEvhd+nBOypcWY+gfCJW9AeuStaM2fbdJCjYp9aF3jY3R+JOfyDq7rEjmgd9Y3Lr0Tnyw7u/lqZvJgLNzANRKbC2hsEPGIqvVstmSehzGITTVlhf0W48TA0/g+Y2Z5mNlfM8asQOW+hsj0o+pTazx2L90YBjm3c/SsTKW4yIr8e7Ko8ciBaQw09RwdT0H9WqWS69wFT1p2bEZF3AZIs97H/nkMj99/W1tqmpZn8ui8h382hnpQdRWTEeVDge+b3uSC+2xmRQOdFwS9z/a/63Nqmr7USo2aAFkrbqcDppvJWuIgF16EU4ydlBxzQJoyvj5BRtCqFbCotRWZL6GNLkdkS+thSZDZHHwvyZ0egxalIce+NDs+lkYGakqP2Rgfp1BI5qTOoI4q8OBJFCkyJz9uFoXAtOpwXBl6Kz1/wSJGdggCJzM4I1BscMtMImMxg2wsBistG/4/1iLyxuuSTLUwg3yNmdrblQNQl0beuMRazuPvr7v63+Nvj92Vp0ec3RXCZiQT1KzJgz0BA7h1m1tNrk6Pu87zGfGbMDzOzU+P7qab06m8Cd5vZYFO0BK6sU/cgdvhsJWOWvpNByPg9EM2dB2MMT4nx3B4ZiZcAOybG+wnICPoE+KwoP3n2rZEBMHt8/TZS3MYhYGVjd38x3uNOyCi72fOowjYxv8cQUfdVkrluJjN+O5JYTy4QE2AOyyOQhiGiwW8I5DvK3Uckz7xhyBvo5SWDXohxGmg5GPSbCSjeCjnbPkl/kBpMJtD9brR+LweeM7MVXSUiRiGQ9GBU/vBpgnznimLN5BUjU7cwRU6ea7ljISNHHYXA/RWB99z9UXd/zN3/EkZt5vzrgICDu9z9yqbOy4Lhns1LR2DOae4+GIElG6LSNluhaNosc1RW5nOE184o0oe8fN415O0johyVCQhaARGYXjFFjW1HZWJquo46JF9Ns0wzWx4B1Y8iZ+KnMX7TRI4qjOFRCGCaCyD20TOQ0T7elPHnIzSnu8Z6yfbN9iaweGYvz0Q0BoEPw2dEmaYsCGPQmj4SRdtfQ27wvYLW5IGWR2VmGZ7WQpGGdUoKFPq8C9ozh5vZvJ6nEr8ROaMuiH5NMWWYu83MeqbzpmQcqrpfAlfEPBsUz3+iq+TpeSjD2v0o899SYUTfifb+ZYAbLScXTk3kN1ke8GvIHO3ufzGVu3vEgojgctzshLKEjQE2tbpkpr09yfhYTXmVWjx7f+RAWpu8bHEnV9R6XwTEHhrrr07z2kSHJstDjhkI0lGsl3vRWTDJzDLSTn0lbmvNbQSO7FpNmSYHxa7JdwPQ/BiIiHVPATuYnE7fobW0Loq6vA/pcLd7OIXi/jXkf1PGiIfR3Jzq7h/F+mrvAn2vQCUmNkp+/5wrS2NKkKHaMkvG4bb43UQLnS5++yhyUCwPjIy1XKd5OHnc/QF3/3M1ZAK/hc7xAMqyOsP1sSXJTMZyHurqbiu4nNtnIgLBoUhvewIR607zEvJJA/rgNMvM/nZlqfgUZYLInGxzxndTLCcynYj0qJ1QVrQ65WeaQ6bnJUSfQY6j7WKPnIr2qgURIeYAd3/VVJ5lL+TMu9LlFG82mQX9j9A/QDZxmxgDTCT5FVGmn1fMzJDtupTJnv4lGcP2VZbZIdnfq9LHVF7J+KZEpmvQfr4i0mvvQU7H4UhXv6OSnOaQGfrBOGT3HenKGpJhERmZ6UWkiz+B7KtR7n5f2pdqyTOzLiHvOpQhZWcUFHK0q9xyhmVcgTJITgFOMLPbkL45EjjTC6WZXUSUHd19nMnBfg/Sq283s4cS/eif5OSo00JfxVX+67GQWYrFmzCBDVEAwrYmctRXaA+6BAUK3Brz5ScLchSJvVs4H5c0sw1MZd5qshlRmRx1EdKLry/2LdnbP0E2xbWUk5n6IDLTSMsJIM/Fe3oc2ZhbVFteYRxnQe/9Wld5tuWBd5GOcQTCxUZbkNpceN4+ZTprMpYDUCaQS5At9Hz0t4sri21fROo5Dc2LTVB29rPi9ynpPtO12rv7h2jt3Q0MNmVDwXNS3G7I7t0RZYXZ1EXAS/t4L9L9ZkaEg42Srx+M3z8BPO7uO7v7Nyb74ViEX97odcuytfPcVtnNzI41kRHni739U7SXPYoyR403EYdHRb+7U7vNh86Gg83saBQk+ByRRS/aIuiMzzKVtUP6wUto7V1YfD8l7UOUAW9fM5ulsE93Q+9pFys4+Iv7r6nc7Ag0N/dGa/BEhLlkGdUujGddFBEWSp2gVjt7ziREzNsjvr4ckaOuMrO+cQ2m0ljrob2uTja4wry8AZFal0oumQUFRGT4SVtEAv0BGOyyMxvbpgtzmwb509xMpJor0dgdhsic5yJM+VqrTY7aC+EV9WbVC5kfIP3pHQ9ynivo+E6Ef+xmCmbKSJVFW7cNwsYPM7NLzezu6NvY0GM/QiTdEcgWGp2cMXVw/3raLojwdaC7/z3Og7XN7Pj4s2nI3AYRqLbUI9acGaUBuO5+LtqPDkAZDjNy1O3R569QEPL8qT5doW2NiIojXLjnK+5+KyKYzYHOxx3qE2CFTFxoTi9IHtDcNs6SdvGOJgIDTNmNvnH3O2KPrUjScdmfN1ObyNSlQn/KsLb93f2vVZR5EtKll0QZkWaKM2ZZtBd1Re/iJVNAYluU7XHR4pgV7rO6mS3gQSI2BQCvE/d+BFjYzPZF+/L9SF//zoQ7b0KJX6og/3Rk772A5vWyXpKZbBraZwjLfR7hXiukz+cK8j+LBvbf1tbapqWZAmWfQX6RvmF3pPvHZaiM81bx+fVof+2PyhOPQQTNJbLftrYZt7X57bdW8uTv2ULpfQgBJ08iw+mb5PszUVTg3Qh8eyv5bitklG3kck60GJktoY8tRWZL6GNLkdkcfUxbGFAboCjSEQkw1g7YGPgjctjuB7wVCv7cnkT/lcic290/NkUu7YUiWMa7+2HxfebQ7owYzeOBXT3IQfW1kLlnyLwSkVMycKQmw5TlaZ+/KX4X/98LMahfRSDFSsihfpXLWY8pYmwEcpqcEiBYfX3bHQET8wNdEFhyjrtPCMX78PjzbwSifGglgLMJxJ6EDLbzPS/DdFD0c09UMuhlBAxvhgzv49399uKzxm8zA+kgF+FoTeT8PNDzVO9tkUE3DgEeByESzHfxffbeyuTvhQyAZ4GLAgjDzNZH0SJt4m9HoOx+CNw9g0Izs1XdfXJTZZrZycBIVyaXTOYABFiuHOBbF5QBac0Y75vdfWD8fjagvUfN98TA7QSs6kpRWtrMrDcCvf+OwMp3EPhwEFqnI5NrU6NzacT2vxhFzs2PgK+OwIDMuDWBYlsigO4dz0H3snezO1pj7yFn1VwodfnZyTVD4z7Xx5i9XvJM/4t5eQhyPO+MogmfQc6AIYic0Tf+PtrdPy2MXVtyMlsnBDItAzzr7k+bCHKT4vNvgE3c/R8mgsxuCIQ/2hXZlfYxvcemTZUZQM6ViJh3v+VEu7mQg+rF4tiXvIsiUHEuAhPHF65bHu1JO8U4bomAtR6o1ENmSM0M9A/gpvTdzOAyx/4/9s47XIvyaOM/ehNU7IoNlTGKDcWC2Ct2VCzYUDQWFCvYsICKAqJgjRV779h7bERjNHYnEjWWWKLRKKISy/fHPcs+7559z8HwnsTzXWevy0vOvruzzz77lJl77plBjtkZKBJmH+AGz8t6rYf6vA2aj39CIM4RiPAzvp6+3gvtFecgssbzyVrQCkXl7gh8iED+o9Beeko9MgdR4/Uy/j0X2q8vcPcTLZwHYTD3Rs6yOxCLwznsAAAgAElEQVQp7QcTOLtdvNuHqPzFN4nsmslLjPYT0T74LLCTR6STKb38PfHuhwCPeF1nSDruayqv7DBlfBiC9JiZa6bJ8fxvU8Tg3ch5s55HGcTGkGcqMXUZsKu732hmmyJg82I0TvqjPeYed98n7pnpPKrSh9ciAtOZ7j6sRjKHovnYH5GhOqO98DZEeuqESiYsh0DZ21zg5rpo7vwDeNLdryjKLjzzKLS+dkDO0sfjfOsYi8PR2DCvUn6lMWXGvnsBmsePAoPRunalu++XXLdu9MtfgM0a0K1rKrMptPHXLPOX6m6xZvWM53yCSgg9Efdne0rNZZa8+4JoX1kMOYqvAkZ4nvkydTqPRdkbfleU05gyTSWuL0Qk0n3QPtMB7bVjgGlIr86c0xMzvbqeNWO2ZCI7YSmUEeVDM9sHkUGOQjrgiwiQ7gAYykr2augJ+yNb/UCvzPSzZi1lNoK8zCHZIDhrlTb4wOjrr5DudaNXljoqzRwwOzJL7IuWcd1CKCPWZ+k7oQygP5pIyysg2+ZjDyJcUWYN5F2AnGjXuOzSnZDNNR3tjwe6yoe1S3TXrdAe3Bc5kF/0hIxbsmasGrKyZ62ICCbvowykmRNlCTQWvkd62tsNfIfM/p8LkdJWQvbdZHefFueHI8fo64ggU59utRsi8LRH8+1dVN7x3qRPz0Y28xnAxZ44caqtbcnvC6AMFrsDd7uC5rLf1kP4xxvAFp6X8F0DZUme8F+QtzOyGZ9FBKrngEOiL09BmVGmAie7+y3JfWWY0U5oHxuFdMRVECHjXYSV3enKqtEZ7SGtgM89d8inzvtsjT4O2aQjok09kO6zJbL/T0qePy8i8P3sSRb3VHb8eyCy86Yh/feRWHeuRkFE9yN8phd5mb91vVBiqiDzWmSLfI0y6oKy4TzgKgM4HyIH7YDWv+9RVsAXSr7JwWjMtUCY3ymF37sgp/qnaF/uiLCJQ1zkzTrrpQnnbA38O5nTtyIywhHIpvzMRJbLyvEe4gU8tPjdzWz1+B67eo5zZrr35Sj7Tpat+Ej0va8ovnMirxMiHHyMyHNTPEr9mcp+nop0jCkId1o4/t87dOOycTkAfdvjgPvc/Y3kt5bIPlgdrWufoYCbYz1In7/ksF+AuSX31Gv/zc5hZlchDKuf5+XCuiJcaAIixh7kQW6yBnD1uGYPNH+WRqTcCRa2Y/zeDa0nl6bzM34r2s7nIh3oB7RmPVWYV/Oj4MIT0ZwY9kv6yoQLHovGzL+QXnEswiEXRgFr+3tkSjKzx9C8PwOtLxlusAwqs/6V1cW9JiIfx3hXNqlsXW1RnD9V2rgj2n/7usqjz9RTQ841KIhnrAcBOrl3uWjX5/H3kQg/fs/MbkKBPqu4+6cW9mNcdy2qOtGrIK+4hy+MSIP3A++78IG5UGawsxExaKAnmflK+mcCIg9dVmuZ0W8TgK3Q3neY51n0MrtpAPr+IJ10sis7Ytm3WCba0BphEpeg+bu5u78Re+m9iND9kLtvFvfNj8ji6yP7bGoV+Tcgvf+qeMYgtObs5e4vNKRPVDtifd882v4F0rHeL+ylh6NMoFf8UvnNR/ORHqGDPIVs/pEoQPTrog4X6+8FKKNUV0SKeuQ/GePNx//2aCZG/Q+PUIyfAv6JDNxXwnhvhQyeTGEaj+rlvo/AlucQu/pkovZwAhj86mU2hTY2FZlNoY1NRWZjtLF4mCKkRyDAYEtXppfst5aIhX85cnIOdvfXzOolyGyEAJrlY7NeHDHqhyFn8UlxXSajA9DdC0SM+gxWE6B3YFFm/Fav0y7+7o0Mg3EIbPunmRmKyP4NIjNNiGv3Q06JHTxKZ1Rp0wBkRE1ABLZuiCjSGxkml0Z/HoxAgi+REfht2XtGeyYgwtolnpN9WqIojUGIJNIBAQDrIlLX4IKctZABvgSKGsmiyDeJPtjM3R82s7YxtloiMCrLEHWwu99iBQC2YCz1R8bGSQjw/bTQhtWQM3gjRFj5E2KtZ20pA+VmV2bf+B67eKUTYjsEHI5G4NxhCNy6EkUM7gYMcPfJhefNMoCS9NEmaG6thggZL6NvlJWYKoLuKyEQuz8CTDKH0sqo7GFnBMo+VxzjZfLi3MKoDMBdaB4vjICiIQhwHZVcexwCvzZzZT8oe7eajMu4Zw/U7+m47IgyzT2G0iR/Hn3xD1NE8RQE5PwJkSC+K8oNOXshgPF2FJX7exMofByal29HOw0580YiIHRMmbxayoz1u6vnhLtWyOlxNororSBHFedcYe4Njft+m/VhSbtXQvvHDsA7CIxdCI3779A8+NGDIBn3DEHA2X5lcn+NMom1FjmHN469qjXKWPSTyWF4GFrf2iPix6Uekallc9wEPk9Ge8XvPAcx50KlUd6P73cCAoi6IBLw2anMxl4vk3s7IHLiQ+6+d5xLQbk/IICmX3JPRwRE9XL3g2opDxGXs/fO9pj2KJL7EARib+85mWkZtPd0JHe6pXt3i1rKK5Nb8lsvNC53QoS+i+N8RmbqhhyLNzWWvPh9TQRSb4bIZ98gJ9WJLmLRfGgt2iPeM/te6b5aXDvOQk7M5Wsoczxy8F4a5zohx8e+HkQvk4PgFkSoPZScHDVzbMV1dRzohecdEO/wNCLgZuB2W/LMa+u7ShNRJqNWMgvy+6K97SJ3H2sqNfsm2iOWQAD6vsn1GwNLubKV/ldkNoU2NhWZjaS7NYbM7YBNs3U+5uYgpENchcZ75tRfD3jPI0NhnCvbI2dbJlQ4khcGvnQ58hdDRJi1UcaU22JNWByt5/MBrwIveU4uLiOL1ErmYOSwOQWRc8ahfefiWLu3Rg6jTshBMjnWum0QWXiERwbj5P1rKrMR5HV12ch19I2ywyqdq4OR/byt54SXlsBcjSBzECLUpsFhnVCA0iOukm5lsud2ZeMtnh+MMtjUSl4bhI1c6jnhdg1kL6xD7mAc6iKitPWk/FrZ3lgyv5dBhKztUJmlz2Pf6of2rk9RRtuMELMUIgBfUtLeMv0ymwdzIxLCimhs3e3Ce+ZE5Jwt0R75QZU+2gWRr89Ee+3eyMn9KVrrbovrMgf+QcAarkxMqZx0js+NxvQ3iIQyzVQG7mjKyUx11vSCvK5Ib/yP5aUyk74r2v2bI+xpN+CF0GmPRvbPdLR+1smQldzfA+1ld7v7aaagqSnITl0aOaQPB+71AmmprH1x7mY0jh5A5NC3k2ediGyocz3H8+qdxwXZKTnqOHd/yGSnnYGyGCyPCF1TERmjtMRUyLoYEYx2dxE7RobsD5GOnY3LudB6Pz8ijL5TRd5maA6CgmHGZmPYcnL8GghL6Y7wiQkeQWJpf8a/d0S20IpIv3jS3cfEWnAPCuKaggiM3ZHNd7oXAmAKMldGOMGiiHQ3ON1DLSeMXIKcpl5NVnoOzcMNgB09J5mken4XFKCzMQpAegXhGz+UrE0tiAz5iEh2jFcGyGQE0tYIp1sJ2fiXeWVm4J/L2ls87Bdgbois1BPZHLMk/5cc2fshm+d7d9/IEjvGRCC/GY3HmxCu/k3ZPCyR3QbZjScgEmAfd38v+X1elDn0Rnc/vlrbou8nonV3BpHN10XKTe37+RGmMgoFZh1X7Z1LxtT2yBb8CgUsLoxImlchwswk5Jt4JrnnRTRHe7r7FyZyzeNoLl8Uc7lY0u0kpGteUjLWGyLPboTINkd4IdubiUh0H9pTsoxwmQ7eHelQU6JttyGsczV3f8tkq9+J5vwWydhfAK3VnyNS2oySftsDldf7HuFfH6C5fL6rRG1GZBqL/EM7xXcrIzDt7/I91FQmyqL6kwnrmYD2g/tRcObMwLq4rxfag4Yh22pbj4COknc/EY23LMh1PRRAke0d/dC+9gbSP0DBCn2QHvMSJYcpgUB/YE93f9ZEgD0L6RvT433/XG28FPqhM1pbvoSZmSo7oH3oXES2qkOOKpPVfDQfv+SIsfcKCtJqjfwMI9C++a/CODXkR+mM9owHZ8XWaj5+fUczMep/dITCdCYCfQd5RBoUrunseWTCEASW90YM8G8RoLSp5+D3r15mU2hjU5HZFNrYVGQ2RhurHZZHGd2AonX+lvzWEmV+uQNFKN9SLmXm9UuijDHXu/v+ca4bApyzTBoZmFInGtPrAtrrIcW3KwLUL4jzC6JIrSMpkKMaOkwRtKMQcDc1ee7iyEDMImgyMH85j6jUKvI6oywP7xL1ruP8asiA3RA5ax+K7zoc+NTdJ5XIaomiXX40AVwTEWB/sbuPK+mrwxGw+ltk9GzlUVItnrU3Mgiu9Mqow3lR1PBdHtHxljuau6II+p8RsLay5xnMFnX395O2tkPG/WfIwM8MmH1Q5PhUBEBMD+OhIyKDTU9kLNIIMlsD87iycm2MAO4ZoSweg8gXb5NHLX1rZusgo6u/uz9Z7Xs3dFglSDVXvE8n4CvPSZTFsb84IoNMAx529+0LMldCBnV7lNngmYaMK1Oprq7xrkd7Hj24CCKIHEldctTM7DMFWTUbl3FdaxTB8D0iqPwT+Cj51osSZWE8zxyyAXII/hFlMKkzf+K6LVHWoRNQ1qCPkt/mRXNiCAKWWqLxdJ3nZMgyh8Nsy6QkQt6sIgPPuhTIUSZHw8bAq+7u9YEfca47yiYxh+dlIrO1aCgC9Ae5+1VV+q41MqRuQmv45U1BJpob56P50Qet4du7+5smMPGHmI8dEWlvHjQfM6CrGiCyF1qvV3UBSO2Q83BVNL5Pc/cz4vt1jvfJIvIbZW0r2SNXIJk/ZjYOjcVDPXF4mZx6d8QzhpCMR0uccLWSh5xJP0ffbIDA7/vim7RF688Q6pKZeqC5Pyz9/oV33nB25VWRuyYiR88JvONRoifW3+NRZpGUzFR0XlbM81rIK+wTvZDDux8inl7t7qOScZESme70IKSme1L8nYKcL9RapguM3QzpPt+jqPIsrXdGAJsLAcrLI2fjrZ5kQy35NsshQHKGV0aeH4aCAP6GiL3fIifTGKTPTmhsmQX5rRFxf0W0//VAUdzXI+D5bERCuMDdDy65vwwwrqnMptDGpiKzkXS3xpDZHkWQ7oZIvofG+c7AnvHeVyCH1eLI8bO71++Un22Zhfk4ABEtbgaucoG9i8cz1kbOpMkeGRJK2lO2P9ZEZvL3OEQ0aIEIpKdl70Ee7X4hct58Etf1QgSDLJCgOIZqKrNW8tCeOhZY2pUJ9T8hMi3vSeCTKStfzWRGOzdGBPZentjqofs9gmzZrb1u1onlkb55sleWs6mZvMI7ZM7v/shRfFnolR2QTbU1cjAe7OEsR0ETn7pXOn1LZP8G2fRfILt+7+S3jBx1HiKNzCy/Uda/hfPHAX/0CJZJ5thcSP9bFo21e6I/ugDtPAI/SuQth4gld7n76Ph7CnLIzo/Wib09L1HYAljHIwtesS/j37sgIpEhgsUfEKHoVaskM83UX4qyoEKXmW15me6byFwQkRDaetgdcf5AZLvM6yILtkXOrk+jj94ryi88qzvazy5Gds8URLoZgrJyPoDKt40lbIsG5I1DjrTd0Hf/vjD3MnLUpghXGlZFTtV5bXLUH4f2t+NdmZNboMCSpdHe90Omw1eRsRnSzTJy1fD4+yAUqNQdYY73VJNT+D4tUIa3Xsi+OxnZemcVv0GsA0ugQJ2MNFbcJ/ZAZehuQNmsFkZ6xfXuvkdcMwY5N5civpvneEe1zOwTUcavjmiur+7ufy18oyxg6EaESX5ZrR+Td38U2XwDC79VfEcz65iOoWrf2URGduAor5+kntnObT3Bx6i0nRvK7DtLmBvKpDYFja9jgDuK87RWh6kE+VBgTXd/3SoJRyei+bUMQU4uvk9BP2iJCE0/xPowAGXJ+SH+/SoaD9ujtWRXV2m5VGbxOy5HlLojz9aW7TtpWzujgN47vQQHt5ww2BJhOp08z6K0GyKpfYyIma/E+Y3Q3NrLlYE7zXq1uFf6IJ5EuvqJiJCTZkdZCjn/uyGC3cFlc72BtehmRMDZHng6WQ82RdjpVWhuHOk5aa8TWmfGIPyjPbCdRxY6E840CK1HH6OsVi2RP2czRGgs68uMMDYS2dIrI9vkXbSWjI/1eC5UqvACpIfck8g4ApHhs0xRtZSZ2fYtgVYuOz4lR92HcKLp6TcNGQugIKyL3f3Ywnun6/AraN+agrJy/i3W2x/jm2+A7LbVETkpq8zxZrE/Q153tPfd6qreMRyRxHYB5kJ68DuIHPVSydxL27YDsiUMYWQXITz4U6skR32MCKb17t3NR/Mxq0fo1W+gOdTfRdR/APkNRiBi6FdWScI9FBEAt3T3+xtjn2s+Gv9oJkb9jw4TWPgg4O5+YEHJ3h6lKVwSRa+fFhviYkipXwExkB/0ykjAX73MptDGpiKzKbSxqchsBHkNGZbHImXxHKQov5/8VmGkJucrylh5zpwfjoDXozKDL4zkrJTcOC+JZilp06Boz5sIMJsHGYBDXKlPf7HMkHs4MiotlO4WSMn/wUSieRDYxBOCkdcTyZMo/GNd0WCpUbkhimy40Euibap9FzPbFUU1DURgzY8I4D4rfi86UNeN55zvUQowzrdCoHdblClpUBhB7RHoPTLkjk7uWQ8ZoachAPN+BLKNRhFtB3teZqELyqxwFzI+lkLOkBVRJMZCyCE9PpE/EzREUYK1lpkCnIvHt/kQRSHNMBGD5ojrPK5rj4DOIxGoUC+ZcHaOBr75xQiI3dYLpfpMzrDrySOqPi7KSK6dAwH4vVHGl3U8yUwTc+dwlK3jDHc/MW1bPWN9tsdl8ozWCIA9BWWHOs4jC0d8tzcQKDki+T7rIeN8eioreV5bZKwugECXLCtTGinXBoFI66Jx8aVXATcbQ6bJefIeMM29MhNUvN9Z6BvvgkDasSizQepMzNawgz0nRe2CyBbzxf3XIRAiK6uzMgKjd4z7Lih+3+S9urgciL9KmUmfzYkA6mmekzf3RqDnT8gB9IblBLRuXohir29vjLZeh0DMOdCc6YTITQuhebC+lzhtaIS1zes6WwZSmD/Rf+chB9NEdz8zdIP1UKaFfd39+rL3r4W8kj7cE5G8bweuTb5zW+S4OIi6ZKY5vSS6vTHkJXL3jm/xdxSN/QNKo7+LC4xdAQEQA5AOcmFVYTWWV/hGa6B9ansUtX947PPEGJ8POe72B+539wEF/bFOOctayzQB4lkZ5mXiNca5+9FxfQamz4Uc0GsDy3l1cHNPtC62Q06hk9Ca8a/4PSP3g8hM9wBveiH6vLFlJrKXjPd+HM2lD9E68M/47k8inew+d9+hTEZjy2wKbWwqMmupuzWyzEXR3rgrIm4fHOfnQMTH8xHg3w7N11HVZNVaZszHC+Kd7/KkdLlVEpkGIQdyKZGpsWQmOsSWaM0CrR/jvUCCMWUbGIR0kz8AL3tuC6frZk1lNoK8HZEd2BnZEH+1X0hkKtFfai4zflvUFaXfG+mDb8T5iShL7n7IOZZlb2iDMqDsRWTDLjyrpvLSd0DZJLZEDr7bYt3phPbQjBw1EhE0rkBZlK5uoG86IQf2CUj/2TnTieP3tsgpeynK4rGSN0ySWQaRG55B+mCx7OeK0dbPou03e1JOJ64t2mhrIOfi4UinnoIy++xrKl90PSIFHeyFQLyiLRXndkUk0ctRacCVkZO2C8oi8aKJlDQM9ff97j6gnneuqbyQORDpTwsiPX8SIqC/Y2aGSnC/hzKs9EAlpw5y92vL+rAguz2wUMiaiIhqe3seoPE0csj/iDK5/6VwfzqH5kREgweRXZ/a8mn2oGURKWBFRHr/rCAzvbYfIi58h/SnP8b5PeM9pyGy+cPFexvo0xUR2W8CCrI6H+mf15qIF5NRZoWJyHn9bT3vvVn0253u/m6cOx7ZQhWYqJn1Ab72IHkUZcXfFs+fhLC/L00Ek9eiHzbxIH/EvOyA1pisz6oFwGQyH0WkjX2RrnKgu79b2FuGoYxFFRkKq7S3Axrrz7v77iX90wVlzJlUn5w4l+n2hjCcfV3BUMWgkQ1R5sDbijIpt53/Y6duyFwEkWcWIAKj0ByuKTkq2ZvWQbjRP9B8zPCgDmhMfYyyWb1ddn/8ux8iWyyP1vTJnmdYG4Aw2TlRP7+LbPLzvVA2sDAfj0e62BUuYnJ7NEcyctSBLrJuJ3LS+LtV3jXTN+YIGSsifORVRHh8q3BdG7S+XYz6f8uiLlSlzQ+jgLdjo92ZjbYMWjPfAD70ykyXM5/p8o9kZKZF0brwZ1eWuSUQnrMkmu9/QvvSKGQX7I2Ch+539yHpd4o+XxTtWYd4kkU4nrc+Wvd7xfu+hcb0zLUjuX4ZtOfc6+6nm3CX3yOsaCkUCHYqcHZ8n65o3U9J5z2jLee7++8aSWY7NE7OQpnEv7Pq5KjsG2Tr2c0oWHdLL2T7jzE9T3zPaSiD5ksIG3nXKgMcWyH77HuCMFjsz4LsfVBmsOVRBY1jPCeg3oJ0rq/RuvxiFRmZLXMVCrI4Ee0ZN6Msf5/E3N4Eje9pKKh8Wpm85qP5+CWHCY/aFe37nyRr44Mo42wFOSrm26rI1ngdEf/qJUg3H7/Oo5kY9T86YkN8DKUP3zPOLYzSLW6MgOOvEMP2TuR0aChC8Vcvsym0sanIbAptbCoyaymvYGhthAytb1AJhvuT60qBgIKsMmBqC6QgXuUqAdgDKaHPo+jgjCS0MHJcHoYiJp6t5/3XQ4SK05Hz8+No+0NI6TzURfBZBDn0GpSZyN4RGUJHoijnb5PfNkbZnzb0giMifi8DAtqj9JaveER2WyU56inkpN+wIQU+rt8FKd+noPKIXyEnegeUtntc+ozEED8P2BZYoagAmdk2KLrzBZR+eYYpwnQEApWuRNkb5kRkmb8jJ+kLwBvuPtBEyLsFRSCenPW1mV0eMhzV//4IGTMvmtlkBAb2dffvS9615jIL8tshoPpkBFD09gTsi2uWQnPqLOAkT9KiNyC7MaLMBiDD7S4ETL5e+H1VwLwQxV8CdLVEmUpGou84GM2jFOhM5+OaHiWD6mlbTcelCRi9ONr4lCdZusLAHI+cD/ejyKDto0/GZ+8MOQkuznVCGaX+6O57VXmPBb3EiWglzpZayUz+XgkBkH3d/ZniM+Od1kZr8LIoEu0kdz8l7m+JiK8vUplpZiByeJyB5vLWIeMhRHx7LK5bEc2F7RCI9Vo9+8avUmZhP9sNkahejH7KyFGDEUH3JwTCvG2K9joPgYdvzcrcjbVhJCJAvYwMzMGuDHMbIcBoW3efUnJvY69t9c2fvoh8tikCYGcgR+TZHtkjGlte3LcTAvJPQE7EvxV+b48i83+LyCfbeEJgKuobtZaXnN8EAVynxP//gYiYFyHA78iYnytE/9Q71mstL2TO63n081oIcN0GGOjuN1glUXM+BHj+KVsj4r7DEKlsf1c0aWPI7Ix00nvQHJ8b6a1Lk4D2yT7RFZELKxwkifyVkEPofOQwXQ1lSJiA1oxP47oDkb74JAIqn0mf0xgyG9IBTATCLPPhpDi3CQKrnwAe9UJZ0VrLbAptbCoy65MXa9M1zKbuVguZJXJSkmM3ckLm9Z5kxTKRQPoiB3ZFGbnGlGlmq6A141LgTC8hvpuITOciXX1vd7+xgXeuucy4ZyGko22M9pkzEWH4w/r6q77fai2zlvJMJKtTEbmht8tJNavkhdLo+xrLTDNWLIX0qptQmaeMzPQHlEFmPBoP80bfjCEJ7GgMeVXeoQPSY7ZC+srNrtJBHdG32gURWdohLGZkQ/0ScudEZIkxSNcd5ZXO2rZof+/i7pc3ICtzrvRFRJkXEYHlieSajuQBOO8hR2C17Dx9EJ71jZn1dGVfuhQ5pPfwSiJPN0T4XAH4az3r4wLRtseibd/G+W3Q+JoD2MhFGpqfcHyn+ktjyCusMduhrEGTUAml+dA3egjp1C8gothBaLz9A83VYgn2WSkp9gjK1Lp5/D0/0ukvRMF/WenJjogUco2LmJjNy4zMspO731I2J82sQ9g/hghCVTOPmdkNiBwwBwoc+gCRZ4+J3zNy1JfIfnuwynuV4W4d0PyYhvDGVxAZ4ztTWcVn0Bz9kPrH5V4Ix3gS6X5pBuMRiCAxEa0Bi8T/d/AkI0/JmrQ2wtv6u/tTce5ulAmlvyszSQ8vrwRQ9q69Ec6yFwo4/SLOn4ywnZfJCQT1lm+ynKzQGo2J70042XVID97FC/asCRcdjggFL5T1Y1zXHxFFzkXY9F0IU9zd3V9OrmuDAhHWQLbGPwpyqtnOs0OOOggRiQ5C5JDnEElxOI2UOcrMjkRk1emICDoDjYFTEI5wR1xXLTvYBWjdbYXG8rzAYe5+TvThzmj/WBlhbH/2JEO1F0p3mtn1KNPORWgeZmUiM2LLVihYYAIiBO2GsiZOLXm3bM2YA2H90xCpqAMiLE5D2OK9LmLS/Eg/3A2RWtaK80XC3ALxvj+gjF/fxflHUOD3yOiX6dHGgWhOZUFQLRCheHNUtvZjE7HvOTQmZ6Dsbe8gktVpoQeOjT5sjTKxTUWEg/mRLXABWpczQsLCaE+YgXDKiShI/fOSvuqJggO+8ZzUVSw/uSAan2cjbPUpFNw+2JSV/iWUufhatE6lfovsW3dGQexv1lBmR2BJd38txtzS0ZfvorH3RKwhKTnqXjROpydy2qI19lO0fs6oMu6z609G+2S2tr0TNkfraE/2jrM8Z2M9749woUwXvgWNh28RhlE21tdB+/fvXIGBS0Tf/QMFM16M8IEsc9RWQOeGdKzmo/mY1SPWyY4eRDurzLJXhxyV3HcL2md7egPBoc3Hr/NoJkb9Dw8zuxopBtcjpWYAArVvQo6IdnHuDBTN8rv/DzKbQhubisym0MamInN25ZnS9T7hESVrYrxfiACshVBq19PcfWxyz3HI8LgYRfe+20Abl0CARFaHe6grCmNTRGioKIdkAtAXd/enG5B7PHIW7uCRjqlN/oUAACAASURBVNTM7gEMgTYvJNcuBiyayiwAAR2Qc++b5PfbkSKxPypV8a8AB/ZDgNGW7v5qoU3FkjvtUErafyPH39aIaHJNAA+tkPP4LkSaGkIDhwnYnIycz/skStCy6JssB5zqeYmuNKrmVDRe1i8aZyaH8S7I+Ps7sEYYM8siQ2EoMgC/Qt9xc/RNH0VGzghUPmBz5PB8BAEWT4f8U1BJmnc80mbHMy9BBu5vvRCNnRhA/WolM64pglTtkPE8FoFka3iQDmKc7ocAofM9SFGJ0V+MmmuFwMCM9NYgmF+QURyX7VBUX2qQ7ooISHcisLBq5HGJUbke8C+PeukoK8IFCGDeG0U9pVFZszofazouTZFLt0XbzkvAj+UQafNjFD00BBGi/gHc6O7nF/sx/t4vrnkQgV7/QNmovilcZwiYmeRJxr8q79wYMudFoLuj7FPflFwzFwIzDgAOd/eJcT4FuGaW9zQ5AK9A6844E6noCZSZaGO0Ro30PANeL2ABDydllXb+6mWaWUY0OR1lg3i5ML8GI6LH/Gjs7oAcpCcW5KT3LEyk4c/WfxNxoxuap1mGubYo28JhaD8q7hWNsrYl8qvNn54o8u0DFOG+NnKE/QV43XPHSNH5WVN5cS7TVd5AWbCyNXcAAnjfc/d7Yn0eHt9qDy+UAGgseQXZYxFgvKvnJXXuR067gZ6UF41xvGADY3225RXG5U5oLTzZc/Lg6kgP3JJKIlOW/bJ98h2z8Xg9Intc0kgyB6AMJGuQEDlijZyIsg1e6HlppyI4XKfkqCnr4NHkmba6IBLTaOSAGe05kekI5Gx8Ot4rK21Q3C9qKtOUBXBuFI3+CIr+/8FEfHsJRROfbzlRe000hj9PZdVaJlRkz/xVtrGpyCz05RKItDyPV9oduyMA/U5KiEzJdWUZIWois3BuANJX77fKcsiLoIjn3dF8POp/LHN3ZMdu4YkDteTeRZET5zpv2H6ebZnFdaPk3vPRunEWIglnzpbVUemPsrLUNZXZWG0kJ8QuiWzbMxCxo68r03K9tk9hbG+H9u2pjSDzLzHfO7lIN8MQMehqhGG8arJfbkUkjZbAv5AjbCYBpbhu1EIeVAZuFN6lA7LztiAnR/0z9MAdkM75V4+sSVXWjJaobF1qPxb3slM8wQOs0o6oQ5io0tZ1EZHneUQ+eTzOZ2XVTkYlnz+scv8GKMPn8sn4a4P21Jfdfd84t3hcdxsiUU0uk5fIXQqt3we4+zVW6SzaG+mzh3miYyf6SxkBpdby2kbftAdO8Dy72OaIOHOHu+9iIqksjEglX3lecqrsm2+KiKZLogxE17n7eybH9CQUUDMUBXFsjggoAzwyYcSYOZSc1Dfa8yxJc4bMh1Cmnx+t0pbfAwWWDPGGAzfOR7bCviFzXoQtrods5cPjul2RQ/01VEJ+ekFO+vzWcfrn5Nyc8c3u9jxb4WpoXB4OfFfPuNwRzetjgdu9EGgR12QBo58gG+hMdz+pirwVUdBYX7Rfz+MiPN6LdN+tXaSonohUcbI3kJ089AJH9uJkd9+28PtJCMN6EeGv9WIQcU8HRDq6DWVJnW4iQD6GMr6c7kGOMgVQXorIItsU9+6C3OeA1u7eK/7eH2UH/AMaZ8+YbOzN0fg7xquU2bNK2/kE/wWZowrzZUWE2/2E5vWBcb47ImoUyVFVScOzehTW2L3QHFgb2fbfoH1kdD33r4Zw1zNQucrPY78+AOEOg919kuXkqFEhu6+LnNGuOD/N7BKUhWtPtLZ+XdjnO8XzBqKx9jUar/UR4VqiNXFVZOtOjfO/QYT+OYF+7v6Wieg1DAUZ7hv6d9H+yzLrLYKIlDcAN3kEcJsCx9ZFQU/voOw8J3iSYTuuuyLecyTKan0Qypp3GMq8tVz02XqIeJyVD14/2vwtWgOJ91gPWM/zwLsNEKF1evTVIWi/PQf5VLJgo44IT/oyGY/LAR94TuTaGXjX3Z81s7ljvTgN6Ra7AX93kYgeIs/8t7FH5r3Gkhly0vHROb7HTwhX7oHWuv2Ax0NeR0TC2hyRp/ZwEVVboL3gHLSGvFRY15dBa+uHXllmdiTKWvZS9PF7CEfoFd9+etlaEHpJZxR0mGbXmYTG44Lx99wIv74KeMxzXHsmqRD5PYYi/Lq/mRlaz25A4+puRASciOb13wvv1ly+rPn4jw4THrG0V2ZwS/eWNAFDKTkq9jm8kJmw+Wg6RzMx6r90hIGxDHI+vuXun8T5yWhydUGK2e/QppdtGEsjx/kEdx/R1GQ2hTY2FZlNoY1NRWYjyFsMpefuighGryMH/40oGnoJpOztgQyL05J7M6CrTomg4mFy9J+FjP63EVP+QmTMboAU5IHu/lLJvXVAn+w8Ase6uvs6cS4DFrZyOcD7Aat5ZFIpykz+3glFVGVplO92AZvdkDK8BgKoXkVksX0RWDGWKocpyu1U1O9Hu0o1zY9SwrdGpWjONEXtbhT9sb83ENUdsudBRsCN7n6kVTolV0IRH9OQ8zr9Zgsj8sYLqL/rAJwBhuyKQN6PUKRuFi3WEWWs+BwBVO0Q6aAfyjA1NfleWyBj4BFE3CnLrDUnGgtZdoyritfEdTWRWQBCOiFj7uvk9/bx7hXkKFNk37oIKKjPyb8zApu7R/884Xnmi/oi/tN29UWOgY9N2Wv2QM7zZ4FHPEr0xLUZOeo2BGy/Wld6nWctg4gm76Dx9krMpaXJyUt1yFHJ/fVFkc/2uHT3nZPzG6PSjpmRnK0ja6KI2tuIyMj4nh0SsKEYYZaVvxzl7ieb2QkIFB3gEZEX17VFhuyuiJRUUbap8K1qIrNKX45D335Dd3+9YER3QuDNSOSAyJwsdaL/Enl9EGhwKAJ1nkYA6uAYR1ejveN8d3+gcG+1DAa/apkmIOg+tB+e7blzYilgjmy/MUWe7owcDld7lCsr23tMGdEORo6FfyHQdHBxrsQzNkBAyAleJTtAY6yXyfX1zZ/5kdPueC/PYlY2hmoqL87Ph8D6M919QqwT44FVUHnXuVCWjitjD+rpJU7axpKXyG2F1qh/uvs2ce5eRCbdMvSNTYBl3f3cht69FvJK9rOBaD++BTjH8yj03mhd2hKRfG6y8kx6RWJHTWQW/u6EHCg7I/1ifRcgnkWo90DAqCHHWJ2SWoX37on016VQtsEjkus6koPRE4Exic58CFo/34h3fK/WMj1xoJkA/1FIh5oT7b8XoPXmc1NWjL2R/vkzCmYY4e5nl/VjY8hsCm1sKjJNWQqPQTZUW0QWGIcisafH71fwy3S3xpA5DyIErwls6u4PW2WWpyXQHmqIyDQrgRs1lZmsDachB8tv4psU9/vfIDLb+2bWOdXtG0tmYS1aGTmCOqNyQy8l12XEo/EoiGkJpLvvnuqKjSGzMdpYaO9g5IxtiWzC5VDE/9peTwm8QrsORTZnf3e/r0YyxyP8YoC73xHr80Dk3Psmnnk2mtNneE7Q3RJYDAU5vOeRJdfkdF4TuCzun115LaPZP7uc7Wsj5/FXwB88z3ZQJEfd5JENpvDuZXrBtqjc9OqI0PCQu98av6XkqImIlPBZUW6Vvt0PkXRaoLn+lqs8x7oo2O01tM+/gvCS3lQGvWyHAsHSMn7bRjuWBvDcmXM3GrM9UVahTdE6uK3npcbqs0sXQeWJxrv7CXEuJTN9gALfBlV798aSZ2aZPv85cLnnZKpsfdoDZdTc2d1vLrm/bC/bG2W5fBaRfDugALZd3P1RUwbBh5Cj+0uUfXa0F0prhawz0Pp4B9pT3k3GY19EFrk++VbzIvxkAaQDVc0+YMpU8gDC8U5NZCyGAlk2RCW7sow5O6BsN38tyElt41FonCyIsoiMi/WiK9oXO6Dx/g7S43qh0kj/pHCEPjs3yub6UkEP3APZEl+hLNs/xLfsgeZCnZKo8fdglL14X0Qiuhft2b3QGretKytwO2QD90MBrW9U68eQOwcKahwWp7YorpOmTChDEYFqi/r2x0TuW9EHxyNy3dcmvPRaRAKbgtaA5RFRZA2PDD/1zMdtyEt/3hDnjkYBGF2R/dYFkT7P8jxAogUaW/O4+z6JvNR2niVyVGEty/a8Yz0CzOJ8exdhYzGUWew7NN7v9DyoleI+ZGZdXeTVBslTVunA7ozGQRZY+cfiNYV7d0YZ/zZGxNHsfZZB+1BvRIJ6K9o6AM2rH1F52mLZ3B5orI9z92vi3KKIdNINkUKuM+GkfdC3+qOXEAVL2voU8JEXyomaMJonEN6YlWc0ciJzsXTeLmg9HI/8FV1QVYd2KMA6K7V5LMLtW6EytJPifFFPvwKRo0bE9U+hdT37Jouj9bknsKfXzZLWD+FBvYHNPQ+IuRThPxOACzwnlR2CSIATkO7+FSImt0KBbjNiXRwBrOju61peOnZvd78yefa9KONQ5v+YC2FdN6KMgHcn19ZcZvGIcfEM2lNORXbwBmjNWQIFkzzuwtQ7oDWgHapkkvX3wkgf+qiwdp0XshZC681wVMI8y2Z2MhqnrdD6tgYa+9VK3l2OiGwLo6D1S1Ep1edMmZ/uiXd5GJHC1gNWdRHzs2yIWdbQJV2ZquZEWdmeRsHiH6Fgmk9NAZyPIMLj/dEn31Zbn5qP5mNWjmTO9UBz7mFPslkm16XkqAfQeD4WYWzNpfP+HxwtG76k+ZjdIzbxS5BBdCWwYijfuPvWSBFY2d23cve73X1aKK4go+QTxLqeCbg3BZlNoY1NRWZTaGNTkdkYbXRlWdoLKbA3I6DjLeAWd//c5TA8FSmNp5iiooh7RwGrez2kKBMhABfYdgECwi9Dxn535IjYECmm22bXp0emMCdG3/JhsP6EUvL2MLOlTdmdVkBO25dDSV0H+I0JrKkjM+Rth0hg36HIhlOBcWa2Zijd20R/r4GU8VWA4R6kqKSP0/cegEgmE8hJUS1d2QX6IoD0VDPL0taei4DUBklRcUxD33I1M5sv+uanMCReQkr5T8Dhpqii7JgbfYfdwlDraGaDzOxUM9vXzFZ2RZVeF++6EPCcRWSRu3/h7r93OVw2RZk5NkPOj6mF73UvcuJvBIw0ER7SPtoKgTjnINJCVSd/LWRaJRDSnyC6mdkbZjbQzBZwESeuj3dfBHgmxtrTiFTYECnqauCzkD0nMMpUL53MyC++W6FdhyOQYDET8DYJZUU6KeSdYQL+sn65HkXeDwDGm8C/eg93fwuRGeYFJpjZivEub6FyGq+hsbuF5ZGX6f31AT2zNS49SFHJnOocv21qinj8PYqom4CA2UEI8Mfdv/GcFNXC3X9K+nUetM6cE/eC1rSHgKvM7CAzW8oEDA1BkZ83eAmBqZYyq6wdWZ+PQgDWkfHcmeCQK6J4NQTgVJCi4veyb/RnROb8NGQ/h8BOUFr099HcGmsC/tN3rvbNf1UykcM67deFEVBytQvgnMvMrkNg/Ivxb9z9thh7/bxAiorfM7m7ob3icRStfzMC1a7P9uK4bgOiXEq8y1mFdtXph1qul8lR3/y5Es2flbL3LWtXY8gLfSbri6/QujDSzB5HTpK5EVl6A0Q82yvW4e9DJ6mQX2t5ZUfMv5eApcxsfjO7izy6++VYezcHlgndo96+rIW8ZFzuicCRTRChd0dgRDaGXAD7KJSV8gYz29PdKzIuZfIaQ2bh72/QWnge0i92yPoj5txfEHj8NjC8sE9UyDRFWT+FnEuXAQNjvc2um450q2MQkfTU0KNxkc3GI4fC3xpDZnZP6JgXxjvvgAiYUxEwvltcNhHNo42QnnysB+mmrB9rLbMptLGpyLS8lOdkRIg+EDmRLgN2C336WkR8niXdrTFkRrs/R2P5YeABM9sk1qYWobe9i5yOU4H9Ym/7r8pMdJ/nkd66bvw9cz81lVY5Cq3xeDh9y/bcWsosrJe3I8fj4cAUE+E6u24IIiscibKEXIWcvnUIR7WW2RhtTPpo07jnGpQNoidy+kwL+d09cSIn96V2zyFo3TzERYqqhcyhaH3+EdjRVCLpbGSbzYj3nRj9sDtwtIkQi7vf4+4XuvstnpOYWiEixGnARTWQdzCwcGanmIiZk5Gz4jw0bzaK+79Feua9SK/c1eSwrDiq6AVXIB14ErJXTjezIXHdV2jdy/ay002EjLRPO5nZsWa2dCL3drQ2/hYRte4BTjCVCn8COerbR//ciebP7p6TotYjglpMjufsWAQ5C3/wyrK254W8LxG560qUOWvmHutBCCv2SRzfouwNA5I+/beZtTIR6b8E/lq8qdbyirJDfiuEf/UGFkqememM96HMJ33ivqJeXdzL+qCMLsehLLXLoT1sXqRPdQmddwPyDIODPQngiv9npI9jkM3TH33jpWI8DgW+RySjU8xsYROucnZcO9wbLsnSBWF2H3qUpQwd8D2kW86B7NzsXW/1AikqzmfO81sQ4ehzhLH1AV4ys41cxKfhyEF/A3JSb4kyW6dlJItr+7Tou+/NrI2ZrWRmj6H16hRE1Dki1p67kW02kxRF2KTx95xoHl8CPOPKAvUkmn+roLXuRRNBZuc4f6M3QIqKtk5D9ujpKGjsPDOb0ysJPKeibznJGyBFmbIM4e7LoMy/Y5Au3Mndb0L75RMoQGgOtHatHvOgdTofi2MW2T3/RJlpsvaPQQS8cWh+3Yu+zWmJjM7x3yAzOyu5N7WdTzFl6s8wtzKMJd0nTkSY6GPuPtHM2lrgxS7MoFWMxz5oDRoLbGXCaXoD56ZrsYmQc0/Mk59K3r3iSPvJ3b924auPegOkqDgWR0HSU+Nds2/2Ftq750PYfzZHbkZjajECVyocbdF8/NrMOpgIlq+g9WND4Boz29Hdv4s23uINkKJiTs+BiJIzM7ol75wFY6+U6auuI8vKlZKi5kUkpAsQXn6Nu2fl8j5G2FDWr6e7+3aIFJ2Rolom3711XDcIkX5ORdi8xzdpFdf/DWVHXorANpL2dEFj/2tE+s1IUTdFfx2Fgvp+jGd9g2yIEYj0eDca57uiQL8ZIfozRNxcxszeRHj8YLRupccLcc1Wse/0Rz6PqbEWpXOvMWQW53ZftL6Oi/HxEfIR7Iv2sIuB9UzYS6bTbJ/OE3f/e9yXruvXo/k9GhEHp6J5ONgCA3T3k5Fu9igKWOzt1UlRVyEd5WRUpeBY9D3GmYI2XkRYWw/0DZdCAap/M2WWO82Em/9gynb3gpkt4+7/cvffoyyNS6Dsgp/GY7uiKhyvITJhaRar5qP5+IVHb7QHt0PzY7KZXWVmy4a+ke13P1juj90M6T/jgd3r0XObjyZ0NBOjGvkIxfx5tCFcgAD6R1xki2wDewtlUEmV6J9NaQd/i4gGjyXnf/UykZLzq25jU5HZ3Je/+r5sE7L/gMCtDxDItwJSLEnkjiEnR52U/PZ8PK/OmmxyNjxqZtuaIm3/gACbS5CC/lsEonRFWYgOQ0Ze1cMEqD2BIqtASvy3yJGVRQj8Od5te+QkuNtLoiCTNvdCCvXO7t4POQA3QySUtd19mrsfhICk5VFE63mZjMyAi79bhPF2CHJYXJyAGj+bogo/Qkr5HtEX56HIutMK7aoP1P8eOS37IHBuLhfA+qPlTtQJKILm+eS+11Aa/x/CqPsjMgr2RkDU4yYH53fIcBqGDOtnTMz0tO86IcBkfY8032a2s5ldkDyv6OxfM65rH328KUqTPTqRW/xONZHplWDxlYgIdAAiDJ6OHDQpOWoYilx9M2R8l7ShAoSNPl8RAWWD3H0oMiiPBLY0RQ+lzpjsvqJz4Azk8OqIDPVR7n4AMqB7ozl6mKnEVtaWG+P7TfZC1GNx/FiA3u4+Dq0j3YGzw8j7Ofpkf1QX/lYUJVbnqPW4ROW2sswLM8ELV3mr29C32AZFJy4bYMjJKIJ8DgpHanCa2dZofdgIRaF9Gdd8hNJx343m4J9RpM8wFL06MxNEyfvXRGby7TcwRcLhuUPge+TU2NQUqU7h3v7ufnTSZz+lv5f0yXR3d5MTfxWdmpnZpwOKrt0XrVkVJQWaiszkuy8Y//8KkaMOMAGgzyIi3XlEiaxYD7L7/5W1zesSH1dHgNZIV9bFD9D68SSK5L8m9n1QRsDnUSmJcXF/S/c6ToyarG319OUszx8vEJdqKa+KzAys/x6tvxchMsxEd1/VBQy/gUDH12NdTo8iqDRb8uqbP8m5F5HzbgoamxuEvtEKAWw7Ak964hCqtbwSWf2QHnEtGp9roz1kU+BkUxYK4v1PR/rT3NXk1VJmPePodbT/XIlAxt/G+Szb3VuITLpbuk8U9tyeSC+dEP10HspadrxFWvCQOT2eNQoRlr5JdILTEMkk091qItPzMhwtTJGxOyPw/VKX4+NjVNJiKgJycfdX3P1IFHG6lbufEzIqdKJay2wKbWwqMkNeVtr3clQu42p3vxw5eKeSO1lwZUso1d0aQ2Y98/EJpLs+AdxvZpu6yAk/mjKkzY+ixjfwKKfZmDIT2RX7IwqEeQK41MzW8dxx0gEROPshR3bajnr33BrJzNaKLOPqCciJepOZ7ZPcdwhyRk1E2QdOjPvL7J6aymyMNsbRBxFnb0VjEURqOgbtyU+Y2WLx3VuHrKLdMwFlr72khjLPRs6uwYgoOAGRNcZ4ZDSJ983ITHsggsNvyl4yxsWzSOebLXmxz0wAbjWzhUwlA49Fe+naiGD+HjFvQm7mSHwMfcc6tllhLdoEOUpOc/eBCL/phnTo4aYsKbjIUReR72XF0mc7InzkMDNb1FR6sgcqcbgaIpE+ishgJ5lK8jyDdOJtEdmhryeZyVzOw2Pit+EmZyRoPGbfsGWytjyGypNfjubq3l6ZRab4/Zc2s9XNbDkz6xjr4CnIWTnSlHkIRHTbFBEFKspo1lpe2tY42ob8B5E+/SoKUvxN9FG2xrRAe9H3cb6h8l0rIWLQPe7+jzg3Atn2x7myenWK73G0ux/lIroUbe8fkzE9DOFZ/YHjTE7gj9A8fQuRFT5Aa8sKqJzUzLIu9RxfIR19C1Mg1cx3c3dHc3+ZWZCTzfnVELH5AFcpuTMQlrKxmbV1kRI3iPYeh7KcV2SpT775hma2BrLl3kf21zPI0d8x/l4erVNrJ/32cyIrDc7aHI35dgiTzObZLohA3A441MyOQbrl2Sjw6Xdxf4v0//HvdpbbnJn9ejvCc9dCATtFctQxoTsUZbWK/2ff/N+WO1L7INtpDLCHCc+dgtap1dx9c3cf7sIVW3klqZHor7SP/xbvuJeJaJCdf8DdRwKbufux7n5n1qboy68QLjYerUfnJvfOEjmqZJ84Ho3D6+OSKcAG2T1Z37nIUX3RGnUmwvYuQ5UWUpLZnGidnWCzTo6qSpDwErs8eZ+nEC45Kq79t+W4/lvxW9ukD39Ee+o6iCRIQd4HaPzcirD1zI7ujdbzv6L9qepRfNf4btMQAWcnM1s/xkdKav4WfYOinlVc6+ZEwUMvel4C6h5kew52dzezFS2x1Yh10wqYTozVjBy1K9of50ZzsFv0VdYvf0HZf1K52d55B9qPsuyQQ1DWx4HAXa4Me13MbGVTJi9cJNS9om2fIxJPRoRrEXryeLSv9kD+kntcmZbSfrsXYbU3Iyz/fJSN/5W0D2stE+hjCuQqfqM5Edn1i3iXNvGt3ww5iyK9cs24/t/u5Rnus8MULNwTZTu8FukBKyC/1YnAvqasZrj7Re6+B/LlvF5F3toIAzwUBao+iHCIFgiv/dTl87kI7aV9kY8j28+7oj3+dpMvLMMB3k4e0zL6Ytl4ZlvAoj839zwrZDMhpfmY3eMpFKj7BVpz/oD2pOcRJr0B0i1wZaPL/r0lWusfrm//aT6aztFcSq8RjwCtnkDkiP1R/fqfrTIV2wKelw9IFc01EOFhB2DdbDNpCjKbQhubisym0MamIrMR5HX1ygip5VylmtZEYOlGSAm9oyCrOwJYBiES0vP1baimlOqTUOTbqwjYb4EM/neQg3m6iUh0JvCcy8Fa9TA5CN5BKccPi3MnIyPveWSstkHRTCciYskZWb9ABfAxNzJob0cGzCXZ+1qemvn3wInu/mRJW1oAa3qk1k3uXRBwVA5pQvG+Bt6vguCQtLUnig7qhKLrno7zdyKS1ThkpM9AUXCnoOwnLxflxt9tUSTiz6gU2Z/j+05GQNRKrixX7VA0y+XAVe4+KHnPFgjcywzP9giIGoqyK6Vpx9NU18e70tW2BxbxvB57WRammso01Ya/HEXnjA9D9Xk0txZCBs4lrjJ27dFY/9FzwJ503sXfWyJQuxsaK2mWqrnRmDwcZQJ5NPmt1DmAsk4dASzq7geZgPVnUfT0RShbRd941qkUjlRucm5VzzOjtEu+2aHRtr+iaO3XTcCGAct5lFyoJr8W45LKcndLhqw2aJ3LwA8DvvCIvrG8xFMWFVtR877Q3p4oonlR5Ig7xOsS1LIMdl+gyKiZpS6KY7KWMmMOLYjAuG4IIL0SAadfm8qeTEGkqtPSuZf0WbV/r4WcuHMA73qUYTBFN96NQKg9UXTzHmiOreuV5KDis361MpN+XxeBO6u5+5umCM7jkaPiFVSa4aeYV/cBR7j7bYVvdzBwh+dpulsiJ89GaK4vhAzQWxAh6AC0N14d8qdbpOEvfvPkGTVZ2wp9Odvzp9bySmRujfaUFZDj42YUWfetyXkxI67rgpxvZ6H5dVNjyZuFd3/L87LEFyNi3k3xvp3QWnca0mnGNKK8VOfL5tKFCIjdzJPyOqbo/VvRGD8j02FSXbGxZJa8+3rkzu4/J+u/xTvvjubNxXG+uG8X/14Dgf6/RUTBLJPLuOjLu6Lv3k7uqXhPqNAFWyCwtKYyoy/boXXnARfpADO7j7zk80umLA/fo1Ky6VpWWgqk1jKbQhubiszYtxyV2zouzrVxOa2WRGTIq7NnFe6t1sbZllnPnvuei1yPyQYcjdLs74mca8vFuf7u/mxcV7b31ERm0u7ScqJ/oQAAIABJREFU/dGU4WgECkQYi0pTLIQIMKO8pBxULWVa3dIuSxKEDXc/KfSK55AtlQXo7Oly6pS1qSXQosYyizbKbLexqL8kv12OMgZ3i7/TPTcrzfcFsJYrG2B6b0qKurQxZJrZZmi/+gmRurPAn4pvGfdNRHjAYK9SXqIW8kykuy0RFvI2Gnv7IaLVx3HN2sheWg/ZTA/G+Y6IeHJfIm8tz3GIVsgZPhqVFj/AVK7oWZRF5Lr4rzPKepc56dJScEWd+khky41BTr95Efnk38k1lyKy/H4ehIaSvuvjSYloMxsWMi9C2NOOCHtav+TesnWsTK/eE5En5kUO9/eR4/pFE8nsasLWiN97AGO9xJaupbxCu/uh7z/RVeaqDXK2noN0kCHoe3VAdscFKOPWrfXIXNjd/25mv0N625JxPivPnO1l6yAyznBXBpPi+1bVvUIXGozG9BnR9i6ICLYs0r8/9JyQlckoLXsZv52Pxv5QVCLyn6FLdUPz7CZvoJxy/H0JIqrt6O7/MpHtXkB21AEum6wC+6zSnpYou82HSA8cG+vnMJTx5q+e4HqmbCbTkA2YZX+baT/Gu8yDCHCLAZ+5e+Yw7+AiPGJmo9H+uRwiAj6crcdV9tv+SC9dAeE3k1Cm/+mmILT+aB18EtjD3b8s6bOZcz7+7ojG2h2ely9M8aLnUDaUE4BrPGyYQv/tBfzelRUSU6bjSWieP+V5mbueKHPz79z9lKIuXaJXzcSKYj3bB+Fko12BStl1qe08ItMvinKTfeJIZNdvhIIk30OBqsVArkzfWgJhMgsgUnWfOJ/uUcchLO9VYKirpGGDZfXK3r3Q5s5orLV32bddo297IX1mfFzXFq0hRyAixmuprGw+Rp/OAczlIn5hyuC3PdrfXvHALE2Zee5C2cbOq9L2rI/aIJJoa4/sP6bAsgsQZraLuz8Wc8OQzf6kKwC5vr75DRrPQ9z9RhMpagWErb5kZoay61+R7ZclMupbiy5DQQVjEUb8fvTRCmg8neJJqcUqMk5H/oeNXBnH+qJ1fQFEsjwXODN+64TWjG+L/Yj28MsQgawP8ntsE+tjulf3QnjwAigTUTZvi+t4TWQiH85QYHEPH0zyjGUQuWhMtmYnY2IxlE2/Tfy3vAeeVJBR1K+HAx3d/WQTXn1GfKM7kB6zKdqfr3X394vySuTvjrJkruHCu5dFhNdHgL1i/VwXlU5NA9wWdve/x7+3DRkLoL3+2MI8nQuN9Q0RceUzhF2e4En2+OIa13w0H7/kSNbxtdG6eKi7nxvr4DAU1DM/slMe8yBZNx//P49mYlQjHqZaz/0RUP1inEuV1oMQa/eYRMmdD21SXdDmu6cnDOOmILMptLGpyGwKbWwqMmspL4zRvZGye4Op3v3pKDL2ZRRlNBaBO9u5+zMFha8H0M0Tgkecrwbot0KOr50R0HwsyoywKsoak0VZpEp5NTJCK2SsjQl5O3kOqg9DUZwrIbLT28hRcG6ZTFN2lkNDXmcEft8SBuUPLhBiC6R8P4ec078vtGcvZJQO9SSDFDL0/gwc7CJbFUHqPsACruwbDR7xnDHIqOqKSCZXuvv+8fu1aHy0RunD5433Oa0emcsjUPxoRAr73lQK7ipEuBmTGfomEHcD5DgqNSgTud1QNN5w4JzUcEr6cwrqz6eS36oaCbMjEyocla0QeLWuu+8cBtEUFMl0EAJT+qLxP8kFMqZAdwtEgnk2fs/kjkLAXicEXt5likT6KcbRkggwPMiTSBH3maX1DiInRd3iArB6oTTYTyKDbSoaZ1+YIoHvite8xJWdqthn6ZxdGY3h61xpo4tg14mI3PEwAkv/XJBVbT7O9rgstHNXRGacGynzN0c/31/os6URcWAsAirGlbStAkiMb31rtHMf4EHPSzdVc/iUAsS1kll49+UR4Hga+u7/jL54FI2to1DUUoMp9UPeIOR0+TDkZSSjY1xg9lFoPn2JUlyvjUq+jf1/ILMfyv6xv6vUJCay6o8egL3JQbozGve7eaWzpjdaGzf1PEqMmMcLorl0B0rfPsTdP7MchJ8LZQjbIF3z62nrbK2XtZ4/jTUfE/l7IUDpcRQhmq1ztwBHek686oMiVIcgELF0L6ulvF/47ucgx9ZCSN/4JH6fmfWOSsJnLeRdSGHvid8mIVJPr9jHZzrazWwCyl55G3Jk/Sl9X0r2s9mVWdzHTUDkxWgPWBTpRhM8CMRmM8lRuwCHeZSyrHaEDpqVI73J3Xcp6MNjEbnpNpQto96SNrWUWeX9F0Dr+IPufriJdLM8OZi/IPq2jyEwvmpWyVrIbAptbCoyq8hbAq3Zd7n7/lYX6H8CmOHuG1e5v+YyC7IGUXfPvRetl2+bSlceifbHzHF+ukeWwv+WzJCb7o/ne05c2wjZvJl++TKK/s6ya9Sng/3HMpED5h+o7HOmPxsKoLgI2ZN/QA79ISiDyUPImXSAu19R0p7RtZRZa3kl7S3qwdujbBsHewSQWO4M2xPprl3Q974okZMRh/ZD+0+tZV4R+9VKKHhjcWSvTEbElunp+8S/jwW+86REZiK7VS3kWaVTentk+y2IgrA2KdgcfdCY64PwmPuL3wI53CpwiPhtLWRzPY4C615G++sX0YcXIj3jIk/I13FvR7T+3ZicOxphRd+hsXVU4bu0Qnvoc+6+G4XDcrzkUA9cJs5n5KjfobWjX7zzAijTTJZZZzGk09dHwN44vsd5SA/vgfSK7ogcMjnWovVR1pQ3ERZ2S9KfP9dSXnEdin44E5FCbvC8PFFbhMNNQDriX5DNsyqy8+tbf/dB+u0RyBl7JlrLDkeY2LYuIlcXNHeWAQ73PBNvJifFOxZEDvTvPcm4bpXkqNPdfSr1HFaJNeyF5s0biGScBXnchwiAl6IsyV0RWX5LRH6cWpCZtnN5d38t9sBv3X0zU5Df82hd28eV0fNAlAH8WM9LVtXX7itRAOgmLoJEcc+dK9p3DlqnMluzmv24HrLv+xCEq2L/xN+dPCGsVRlDe8Zzb0UBWich/OlqZN98YyJHbYvW/OcRUWNGImMVhMcO8yiHZiLNPYaIAqM9t0/aueyAHsjR/ymay+cV2r4i0u/vRrbx+yYC11YoKOU7tM5d5O5Pmdl5ROatWfkm8YyBIcvQ2G6Byr0elVyT2c7PIHLUU4V1okie3RphBm3QOntPFT2sLcrMORmVblvflXno9OiTi7NvZ2YZ2XWWyVGFNq4FfOBB9jBlfNwPrQ2fIN1lsomwdDOa01OQLrs0wqQqAmtCTjp3siDLZVFwwFVo35xW2Me6Ift1E1RS7J1E3nzANM8Jfl3Q3r0cIhLe7O7Hxm/9UZBaL2SjtybPwrRa9GUFblvS/y+jzFY/Rbu3cgV8t0ZEwQORr+SZkvuzvao9IsLNQBnf/5Zccw0K8noCrfvLIvJNl6yNRblxX6YXnYvW4stQNuhBSNe6LtrXE61pdTKol4y3Tihb4FDkr/gbWss/S95lDi8QFIs6Wi1lxr/be07sOt0DgzaVTMyyMO/r7lcm92+GqoKcjcbHhZ4QGkuecairtOXSCNvpEv14LiJTzjCVscvwghEIj6iaecrdz07WzsWQfvQ8Iq3uG+N+e/TNjnRlrsbMrkDj7VBXwOoaaN39CQVVb+/yr7UiJ8cuH328QbT/Ss/9Uc2kqOajZocJw7gZkcm3cPc34/yKSM/shAiwT6D991wvqaLTfDTto960lM3HbB8bo6iYjJjRwnOAeCRSFtZEKXV7A7gcTp8ih+02Xpl2sanIbAptbCoym0Ibm4rMWspriaIZTjFFll2CsuS86e4/hzExDEUg3WGK8JuZitjd/+J5BEnLpD2ZMdfdzNaM/5YJA2w0MtBvQoDX4giMnelA9cpIxYoyZdmz3P3HeM4dyDhcK7l/HDK++8Z/OyRKaEuSsjumCKYrULTE18iAu8jMeoZx3jKedy8CLvtQXuLPkXJ8oil9bpZW9l2kfIwwsx5h7GV91TbauX8YlPUe0dYLkSK/IQLJLgL2NrPr4pm7oYxgR6BsGP29UJbP8jTZWb92R9F1zwTgsTsyVk52kaLmAEab2dLu/q273+tJ2YKSdmbj4wNkuIwHhpqcqMRvWX+ugwBQkt/KjODZlpmMyw3jfScD55qyBFyGlMYT47rzUZrso4CDTdF8qWNtDmTov+s5qQlXqYmzEKgyPvvm5GmYv0OOipmlCOP+VRGAdCZyunYAnjZFNb7g7g8gR3I3NI+ziOOOKALlQWJNKPZb8t4Z4DEJ2NzMLornfx/gAK7InpdQtPwlZjZvOv/KDM1ajcuknVmphxuiHUeg73pMGNRZn60X3/AIBPpkZcpaFNaMCvlhKAxAIPs4lCq9ldeT5rxkHZptmVSW/+poZp1irXnNBZCvgdLtvxt98TgC3Vugkoyl8y89TGD+2Wjd7YeAvD2Rw2/faPuZwEiUaeIbBGJmQG1Z6a8mITPuuQ+RlA5Nzn3sOSmqJ0pjfgECZ1JS1IKubEcru8C2PqYIStz9HVdU/hyo3MUriXHZBe0nxyFgsV5SVK3Wy1rOn8aQV3jnnsixdgZKdb4LArbvQJkGjjeVhlgckUQ3RE6MOiVmG0PeLL77VnHtUKTTbIdA+h28shToT7WUh4CNdO9J+/ddpFOtGrJ+SvatvyM9cHtiTiX3Fvez2ZaZ7uOmUjgLIhLCCUhH3RStZSeY2X5xjyMw9Rbg/PiupUf0xUcIBH0HWM5U1uMHy1OED0dO1l2AsSagvupRK5mFfXeB2EdbuRy5tyKd4k/IubqNi3TTBjnXlkdZxOortTvbMptCG5uKzHrkvYsclPuY2UaFezohZ8xMR8wstvE/llmQX23P3RbZJK1cpSv3QY6jfRDQOjruLyv51hgyy/bHIRalc9z9ERcBvxdykG7vDZCiZlcm0s8N6Xp7JmuDoz3/XUQY/QuyKb5zkZkfRnbm5SZnSdqmTrWUWWt5xb6Lo7jWv4bItQdZlBTzPGvEskiH3cArCUxLIN15P3e/rJFlvuTudyGnb1YCeJIp4CfT8zc2lc85Pdl3izbFbMuL37O5u1Z8h6Eoi9qyKDNFah89gxzJzwP3mtliVtc2q4NDxG9T3H0ywjfmjvZmGRraoO/9FXLwzzxC/mhUhuugRN6YaGt7YDuLEljxXTJn+9uodHXZkbXzBFNGnUzuOGTzHIDIMZ+gNXdNlEGnF9KbnvECKSruz9bLJdAcvRRl677DZSvshsbSZfFNnnfZFdu5+9FeIDHVWl6hb/sjm3k0ylR7d/IeM5BNfxgaF6siTGab4lqZjgFTlo6xiOz4KSKmzEB68MrAxi5SVFty2+o+r58UdRYiPv0ReMyUQSNrZ1pWb7iZLVX8JmbW0czONpW7zEhRN8W7H4xIKBdabkv0Q3vwXmisX4Xmx8ZeQrxK2nk7MMzM5keY29Im8tUfESnqty6SUHfkoP6JWfcfPYAc56vG32mZyo0RqfQ8VO5uZgCO17Ufl4g2/x6Rg/+IbL3Bcf57S+z6aG9V/MVUGmckIugPRt+9O5qXh6LynR1d2U7uROPpWq9LPFoSZWgbb3kpqifRetYdzdN+WRvjnm/QerE0sDkaZ+nxOtKR+wLnmTLJ3h7t3AwRINcEbjZln2qJCAr71un9kiP2gisROeZotF7cFe9cZjuvS9jOybweTo65XR63HIzWrtejbb09wfiSY9F4/o9E8JPJFuiB9tyBsQfjyhh3CSLCnGMNlNUr6H5HoPm3QPw9EJU1/wZh810RPn+Gi2CzA9IPDWUZ7IUqAYzJZCd9k82d65GteSuyjz9GgWKXmIgvGUFlX4SNboMwvJQUtQQK2jzQzNrE/vwQwkNuQHP5aMsxwduj30ehvW5OtJdnpKjWQKukHxYys24hN1sjj0T4y8YoE+PLpsz8e8U3mOSVmM5yZrZSrG//ju/1RHzHu4E/moJNs/7ZHeGl68Z7r4LWgqyNGZZeMTaSeXpM9OV+0c4j3H1HV1bySWjOVOB4hW/f3czWMmVaXTDm3gRE+F48vvsc8S47An+KPprZHq+bXa4mMkNWa48MmUjHP9jysnrT0Dh9CO2PI81sXTPbBq1ZX6Jg3y/RGC72QfaMy4AzzGwVd5/qykzeA/l9nk/Wsp/jOx6PstxVI0VdhvwZPZGu2wrtMc+hPXewixQ1H5oTrVGJw+x4CrjeRYrqgHSZbeNb/xuVRF4p5lbLeJfXEEFsFbSHp0H6zaSo5uM/OtL9I7EpPkG6yBJo782O45HOMwTZffPFvytK2zYf/z+O5oxRjXCEUjI3Ug5Huvt5Vhk1uxMy1LZCSvVIpOSf5nkJnWJ2lF+9zKbQxqYisym0sanIbIw2xrlVkRNqcQSW7hPnU2BkLURmWBxlZnqKBg4z2yPaMC9yun2CwNe0DNmuCDzfGYFza3qUmKoicxPkiHvdK51uFyJgZq3UUEt+r5NRI853QsrCj9FP35minY9BwOcAz6NPfnaRgRb3JKKk8JxeKFqrb7zr+XF+cJx/Dznzs8jzrRCIdawnoG4V2S2Q0r8QkR48zs9LbgSe5O6nVLm/mPGmIzKGjkAG90tISfoWGbEjPAfgtkaK1MhsLFV5xvYoIvbegiG2CAJkjkSpZo9J7qnan40h0xQ59xEybAbHuRVQ9MkhYaxjSos/AkXT3OUlZRAtj6jZHn2XKzyPEDs62jcVRSy9Gkb4AETC2NaTbCvIALsdGVkXIbBmBIr4y+ZhliK1v7vfGQDBASg67BQvpKwvtDWL0F2JmIuo5NQtnmd1aoFAsGsR+WSKJ6UAq8it9bhcBQFU17n7OBPg/gQCVXojp8FxnpeSOAQ5KbO+LEb5bhXvuTQybieg6NTPTE6fexDANBR43AsO1OQdqZXMEnkDEBjVPe67EGWsmJrcMwCBPwMRMWIPr1LqJHtGrHljEMFqV8/TmN+LQLMB7v5C4b6q2fp+zTJJvnlyTRbZOiD69AAPR0X8vjpal5dFUe9Z6vkWCGjdDWVXfNGU+vsdBKTs63nkZnc0Vy5BEbct476dC9eVRes1xno52/On1vPRyx3T2yKHyibRv61dQGNblIlnJZTN7x0TgPWD55FPZU6mmsr7Be9+gidlbAr3F/WNmskr2Xsud5VT6Iwihb9D8+aduL4dIiT9DY3Rc4HVPckIWGuZJe/fBWWLOs6jBJ2ptMA4BHKe4XlGkOVQqciHqvTFTsDC7j4h2WtGofJQ/bL2ee6IOw941etJH95IMndDDoYOSHfdH5FnT0d7/uGuSNjF4+8xaL88878lsym0sanILJH3WwTYT0BOwH2QY6UN0v8nIPLGDb+gjbMl8z/dcwsyarKPNyBzVvbHce5+dHq/VbH3ai3T5IAfTV7S9ypPyqDEe7dBxK9/myJ5b0T21ctensWgpjIbQV76/lshu7sbCvY43ZWtpS/a51oiTOJ5tP8ejcgJ16ayQt/q5soo0pgyF0VkkUxme5TtZhwijpyJiENXkROq6nvv/1heoU/nRDbZFa5Sd9sjx8Z7iGDzcTo3TMSUeb1Q8jmRV4pDxG9bIvL6mq6SzG0RgaIdyrxQJ3Lc5EAdjpzDJ3tlJqqhaL25DJFCMp1qXmRTv4lK0pTpV2k7TyrIzbJ9nYky0bxX5V3L5nhf5IydjrIwDbE8M1cLlGn2DmS3DoPygJ/Gkhcy26FxPA3ZCVnZrcEIZ5tKnom2HyKb/gvZ2O9U0YHXROvsVghz+CzO/x979x0uSVWtcfhjiJJBGQbEQNwEyTlJlAFEJEmGQXLOSM45pysiGQRBEAEBUVBBDBcRvCIILkQUBUFERVEUJdw/vl3TdWq6T6xmTjW/93l8ZM7pXmd3daW9a+21iyWPf5rjvCgnBh0kVwIqxnnaneNukpOSTpf30fPkB2o7lve/lNIZylX35GtmeSx0X3kf+bo8xrRgft2+8rjTmvKYxzO5PXfn9y0nV0/7i7xkXbU6WHmMcrx8zOwUET9Mrq72DTkp496IWD+/bg558sSa8hKD/Va4qvy9hyW9FhHrFNtLHtu8S364eGW0kmePlPvq7fqPu0VrqbJV5X18bP7sV+afD1hNSH6gf5SkRcNVTZOcpHeDPK55f97WZ0o6P/ywv7zEW/l7nkp+uH+1XGXogGhVjvqkfN/+W/X9flaSVxzYX9J/210n8/llE/n8cL88xlauyDOVnMizUX7dDJLuiIhNB/guppaPjynlY6JYinxeeUxzH/m8fHTpPR+p/O055WSIc8JLDhV9xrnlcdDl5GvnYnI1qIcr+9yH5XuxE/L7ivePlfex7eVx0y9HaynudpWj+lsubz+1lnsv9q1r5X3pnPydziknXRwjV/w6L2/3t+T96p/Rqpbcqe98oTyW+EB4HHwxeRLlBXJFs//k8/VB8n3oMcW5vhRnDvkY3EieUPpzeUzkc+FlymaRk+TPks8F25SuadXKaEtE3wpr28nPE2aXz0OHy+fkt/N2PjP//DdyIsvSciXi04ttKh+jj8irZmwuJ1zfID9XOVPu806Qr0c7RMQtpb//xfy9TRx3K33f5X1iO3lc8L+SHo2Ib+V9fFZJY8JJPcW2ulAee9802i8j1+4ZyvERcVmOebB87f6vfE3fVb53Pa4aqxsxS9fAD8hJqzellA6UrxX3R8SG+XXLy+fC3eR95zV5/18nb5f75aU4T8vfUzkpajH5WnGqvCRnce7aRL4fPFy+7s4ojz/8PSL26ufzl+P9IDy+8Tl5f31d0tLhKppJ3nc3lI/9YjWT8rG5lTwOfETpvmeC/PyoOC/9PP98Y0lTR2n523b3LsBQJFdQ+6M8/j2xsl9ycujdchGHVeVzzfryOffe0vvnitxPR2+hYlQXRMSb4Qetr0paI3lAuJxU8bJ8wbgnIi6RB8jXl7PTJ8ZoWswmtLEpMZvQxqbErDteas0a+Yc8ePCCpNXyzZ6iVBEoXBnjIHnmw/0ppbnUjzywd7lcLnZj+UHxT+VKTIeU2nOjfPO5g1zGuL+kqAXlzvnjOc4mpV/fIl8HNs6vrc7e6FNRI79mY3l21cflCln/zq+5Ru4Mvy1n/i8efSv+FAMak1x3woP+J8kzCk7Kg4YKD3Z8Xu54PZRS+pGkb8qdsXOitKRah88+hdyZW1rSXyPib8kVGKYID37dlD/LOskJT5Oodobl5Lld5UGsX8sDVGfJM42Oyp2UMXm7Hy7pr/LD0baSS4nvJ+mulNJ60bey2AtyhYXH5VmF55Xe2nF71hGzuk3DiTtHSto4OWFCckd6JnkQqRisWULSMxGxdrRJisqx/ps8wLmZ3CkrzxA7M//sY3Llp2Lg9CR5CblvluK8Iy+Rt4Oc5X+2PPBwZvRNqnlUHoS7PvkB1PlyJzSiVQGnXXWWYgDnKEl/DHfOT5UHZjdPKRUz5WaUl0x6TU7Wu65TzNLP694v3yefi67NN/33yclb68plsZeRq6tskt9/cbSSMGaKvg/WJsjnhhnVWrrpTnlW6TzhWTyfzJ/hC3IFk+pnnKly3hhRzDbxtpd0vTwo/GX5PHmupAvysVdsp1vkAcgVJG0d/SRFZcV3tqI8WFA8pLxb3ic3jYifppQ2SintWXpfkWg7RZvvZtTGjNZgxQqpVSmxmNn6Y3mfrn6/f5e3+e7RSooqZnC9LX/H56SUlgoPZE+QE1guTq1Ztc/Kx+vB8kD8zfJxf2/kpKj8uurDm9rPl9lIjp9230/d8cpxZ1eerRQeYJw6PPB1gFx2ft38uyeiNfDUKWbd8Qb72Q/L9xKTqH7ndcZrc+3ZPrmq4WvyvjiHpHtSSnsnD3wfkP/3qpxcL1VmadYds3RMrpf8QOAE+b6jWGZhinCS/SHy/euhxTEeEU9GToqq7uv5ONlE3u9mzdeaK+Vk3zWTH/YXs++LSoj7RuvBQrtrZDdiriU/KLhbvmZMJ58j5pWvDbdJOj+l9DP5gdmBcvL5Oe9WzCa0sSkx+4k3j3y/9S21ks6/J183zoj+k6Jqj6mhXXN3bxdghNfxAWMO4fp4WHF9LN7frr/XjZj5PvooeftfpFJVpuwVOTFm6Xy+X0vuAz4aOeGoem6rO2YX4hXn9AnyhKpZ5Qewi0v6UUrp4HxO31G+7yqqXewpP0C+oRwrXwPeCScwdTvmmznmD1NKB+W3XJfjbSwf45fIycl9kpg6fO5hxaueN3Kf9HBJW6SUNg4nnOwnJ8jclvzwYmJ1kYh4ML9msOMQ+5R+/bg8Ye7W5EokJ8hjRS9HK5Gm2r6H5HPNDyWdmPpWeLpITojZRa4usnvykjbnyhMOTut0f1VpZzXuxXI//VC5+nnRNx9TfObie24T+j/yw9Yx8vdUjGdNnfeLH8gP0BfIfYd+k5i6EE9y/3AROdH1nZTS8snLv50jL91zjaS9w2NP98r3WTNLuiO5+no1uWExeWzgTEnThifpTJn7M7fJSS//khMdbpWr6xwWpepT1XNcvmdbQq7Aeqk8cWdOua96Y3LClfJ7jpArwP9PTDoW+j/yOMUK8rXsE/K16kcR8WpE3C4n2HxU/q4/ld/3SETcFRGdqoMVyQh7y2OdD8j7tvK5ayf5PPL+lNJhyclKV8j3eZtFh6SolNImKaXrUkqLJVdLL1wmaankZVYlP8B/TU6ymBB9Kwq+pc79x4tSq/LwD+V9/GW5r7d7/vlA+9CseTtfK1f2m04+93xDPie+KifpvZ23w3HJiRwTqzqVvucpc6zb5eSFdSRdWGrj3fL40Qflyi3HJFctukCuCPmffH6aWN2nZNqIuDnHXSvH/XD+u1OEx7W/EhE7yEkIJ0naIOXqYf2YWh6v+2P4gfCUOd5v5LHWP0g6MvXTd8771HLhpKipJf04n8dfjYi/5v7H0XLf5oGU0gr5uC/+1u8i4phoVTcqjp+X5X7DDfL92ObJk0sUk1aOmi9fs9qtuHBA3sZ7RsSlKaUtk5cHN+dnAAAgAElEQVSZ/KC8RGmxvNnLcmWoS+VKOItFxH/Cqyq8GK2kqE593UWUl9QNJ0UtIh9Lt8jjkP/J+/BP5XPyzlFJisqf7U9qVYA7T35m8EbkpJJ8nbtO3t83lnRD6V6kqDqklNJxeXtvmv+9hpw4+XX5Af8L8rjNZ+Vkoyvlh/8PyMkt389tLJKiinPb63IC2Vty325x+Rp+ZkR8OyK+JN/j3y2PsRbjwwpPHj0lf7aJ+27+/+I8dIt8/t1G3t/vTl5qdLaIeCVaSVHFChnj5QTEdklRnZ6hXJpS+lw+Xs+Xr9/PyM8xPhc5gandfUHdMfOxMF3e7kcmT3y6Wk7QWzvvqwpXzTtavpZsIif6rp6/h7PlMYOb8mvfiVZS1BflfeUdST/O+2Fxb/INeQnWU/Pf/1qOO3FZ3jafvxqvmCBwo3yfNk7e734iJ12tKU+0e7JNrGI8e2P5mrV4bv+1clLkW/K926eSl+u7TU6YK28/kqIwZCml96WUDk0pfUdOPv2VpPuSJ0wU1fT+Kt8PLign/64jH+/fzjGKZ7skRfUoEqNqklKaLt98HZxaD6G+LR9Ui5ZfGxEPhEutFp6SOyWPNC1mE9rYlJhNaGNTYnapjX2qlUREyDMktpc7DqckV3IqHi4WS4Q9JHeOd+h0Mc0dxunz626XZ+w8EE6AOkC+KT875SVjctwXIuLmaFUKmKQ8eH7dr+TBnP3lG9avpJTuSCltEl7O79tqLbnUsepLyd/k2UmrSJo79R38vU4eyPm3pDuTS7i+WdlufWZLl7bTo2oN9h2fO7dFosyuctLVq/KN/U7RZmCqzWd/J/yQ/ylJK6WUPpj/fvE3X5AHjBeUZ35OIk1aBvpXciLUzsmDajvLN1V/k/Rq8oyWreSO7AyStovS4GybNr4qfzf3SvpaSmn9coc/nHx1t1yi+sCU0prlQYBos2RiHTFL23RcKfR35JmsW+XP+Tv55nHXlNJ1cuf2BLkMfbH9pujwud+QO9PXyIN+26dWctRp8vf9Xzl56Hty1ZKJyzflfWeK8Gyp5+TvbwpJn0h+kFP+W/+WO113yJUN1pAH3T9fek31YdCG+XWvSbo1Il7Of+9FuaN/taTPpJRelJP1rpJn+7xajVn3ftnmmCwGNA/PgwgnyR33Y/Ov75D322XkgfSPlmLdID+0nzrvI0vLneZTJW0fERvJD+2ukAcMt0seKPyF3FmfQ5UlMuuO2SbeAvJA0xlyqfNjImKCfH6YUZOWpn8zIp4KDzT2Gaho890U56en5eWgZklOzltC0qfClfBmlZcUWz55Nl+fB4BNiFmWUppHTsS7M6V0c0pp1ZTSB8KD0ufl76e85Oov5cpx3ym2YbQehJ4lD9p8WE5SWzIirpcH1taRk6M+kkOdKQ+4zCUn5hwafatPvSvny/zzYR0/nYwkXrvvu6QYbNqqOM9FrgAmz+D8hyrLugxgWPE6ndvy734kDwy+LM+y7PTZTy7tC+pGvHYx21x7JuT959vy+eeP8vXnq/Ig9cnhBMsF5aoBf+tGzEqbd8yfbR95wHhZVRIU83Y5WP6OTk2V5ZuiMpifv7M71FoKujierpAHZddKKd2Zf/7vNOmA7iTnjjpitvnOF5AHfA+OiIPk+6kn5UH5qeWB/U/n15wkadtoLQ06phsxq597NLaxKTEHuS2fyvGmk+//t5Yrqdwg96X6LOU5yDaOKGbpeApJiwxwzV2xuOaW1R2zw/XxQA3x+jgZYr4sJ3beJCce7ZRaD02OkBOPfiD3Oa6SKzb9pLzd6o6pvks019LGyjZYVn4Qe6z8AHJDeQxhBnkSxBzh8YLd5IkDS0laPVpL67ZLtHo3Y84o38PNGE5suDr//GQ5CeTUasw640XnPulT+buZXX6oUSRH3ZJSmrv6PVS/m9R5HOKklJOO8r3w+fL99imStpQn6lxW3X6Vv1OOV01iOke+fq8qP5z/tHwfsGJEPFWN1U87q3GL++rd5aWQZ4xS4lG5nTlmsX0flr+jH0jaJuXJeNGqMDu93B9+PaU0Tbt7tbrjlWIW42+vyRNqDpXH6G6RJ2h9XB7bu0nSDvkzv6FWctT88hL1U5Tizp77nJfkGCumlD4afZfyuTN/L0vKYxGbRMQX8vuLKgPl/uQs8n3z5yPioeQkutPlJJtd5OpB16e+Y3nHRURUPvM0+XfHysfF8vI16/lwIv40uX3fkI/tj8oJ8p9utw2L9pb+exM5eWR7SS+FH54XMW+Xqzw+JydsbClP8Fs1Ih4rfy+l/55PvkZ9XJ64cHtKqRiLuVlOIFknf6a387Z7JfpWFHl7EP3HcuLRD+Xz8z8knZ5cLbWjlNL68jjC8hHxXLgCxMJy//PL0aocPrOcNPOqpKejzZLuub1FgsP8EfEVdU6O2kVOSjlSHjv8p6QNinurKI275p9tID+wXTqcqF3EvSil9KHSebA4F3xf3kd+J49Z9TlmyiLidfm4+Xg+N76l1rjTL+VEhN+oQ985x54qIv6U99EkT448Su5DFmN49+bP+6Q8KXj54riqtOfNaCXIbK7WCgszytfcrdOky+otLCelLFTcB5S2yf3yeXoPOfFtWrly1eryvlnc200VHod7U55g94Zc6arteF31u8//OY28ZN2ryWNSP5SvR7tExOvJfbjdk8dSno/2iTzFee1PeXtdJ0+w+XAqTaQOJ0ddL+/vG8mJnlNF3zH7m+Tj7Mx8fK8oJ0YdHhEnyv3Qr+dtvEtKabZ83tk3IraMiFOjVdVsYoWs/Pm/J491zynf6y0j37MW7XtC7u/dJelLyUvJFb87LlqVwapJpGfIfdsd5HPcIrnNh8jn42Ic6Nj8+ZaWl198orIdB/MM5YyU0qfz9ecKuT/9iei7PNvb3YqZ+vYrNpSTELeS9Hr+fq+QE6HWSq0JRa9HxLMRcWd4ov06cjLTeEnrR8SzqfSMIjlRcaycTLpg/r6K80qR4Llu3g/+Lt/DrhZtkpj6i5dj/l4+V68on/P/V+5frVG+TpT+/vqSfpLPlXvI154jUt/kqFOVx9zl69Nx+X4GGLbkBNt75XPrK/IY8p1yUt83JR1U6lecLU+mn1vuh3yzdC6c5F4AvYWl9GpQOuDGyrMRp5ZLqh4qZ9T+UZ5l8Zf8+vIyXh+QZ7qMkx+g/7kpMZvQxqbEbEIbmxKzS20sd7zGy53P+eSHyV+VO9I3ypUNjsudWSVXMFggIibOvqncKBdLsEwXfmj0kjy4+rlKu5aWO6xF52Ri4kpZpZ2ryp2XeeVlZ+6VkyzWl8uwzyo/UHxQ7pAdEhHn9xNvdUnTRcR9Ofblcidz25h0uaad5IeAR0RlSbFyzHaSq5YcIw+QnhQRF/bz2jHKS0FVtleS112X/BB1S/km+w5JR0drBsr75E7Y++XlKl5v19Y8+LFiRHwv/3wVuULUdyJi9+RSyZfIA89j5Q7j0/LyiRNLBle2Z5IH0N6Qs9fnk2f1rCGXkr0nv24GeSbXE5K+22Zb1x6zFHsz+Xu8WZ5N93ZyZbQb5OS065OXVzpZ7rC+JumK4jsrbb/yd7NQ/m5eCZe2L76DreSb1eujtazeMfL+/ku58/5s7qi9WfrMq8kd6+/LM5nOy9/51vl8UC23/WF5pt5L+d/tjsex8uygteXBwRUjJ0YplytOLrm6ojzg+Xe5vHCfSlF17pcdtmWfeHlfm0FO7LwnIg7Jr5tX7rDeK89wvir//Gh5YH7ziHgg/2xdebB5vej70EjJCUobSFoyWkudzRaeZaFuxOwQbwl5JvJnwsmdSn74vrSkjSLiZ8kDk69Eqcx4VZtjZxY5ue5RuXpVsUTFGHlQ+LfJM0Z2lGc2fi5yslWTYrY5r78ldxbXkwegiyVKTpYHKA+Xlwc7r7z/Vdsoz0J8K3kw8iR5/35OnsH9ZEppa/m68V15adTn83tnlJcUKJba6rMMT+lzD/vcVvfx043jscP3M15+cLaYfI67VX5Qc2H+Xm6MiBfyOWO7vN03jYgfdztem/P6TPKs4V/nn80mDxZ/IyIOHeK2HHa8AdrY7tqztXztuTJaD+1Wlo+xlyPimXxfcodcaWa3LsTcNVoPCOaSB0nvk+8vPyYPFK8kX9furnynH5c0LiJubve582vKyxb8XH7AtmHp97PI19pz5YoEq/X3fY80ZjV2/u8P5u3zGUnTRGlANKU0v1x5YEn5wcMdnWLVHVPqM5A/KtvYlJjD2JZLyMdGu3jtrhPdiFmci/6Wj9uN5HPOG/JDxeFcx0ccs028WeRzy3Olz7qifH0sqhEOpT/RjZhJrapBj8l90gvzZ9xf0tXh6nLvl5Ox/i1XJr61HKvumFKf/bL2NuafbyBfGzaK1lIhd8nX4s3CS0dNXHK03TZsQMyJffK64sWky0R26pNOiIgb8v44Xr7XLKqbtO3bV/9e6fflcYgTwxWelDxG9AG5D/pMtY2V/bJ877GcnCS0miZd/m5PefzgZLlqXXnJxqG0sxr3WPn8ctEQP/sycgL6ePlB5UXyZJUigWuPcIXwrsQbKGbyeMze8ljL06V7vvfJ56d35OTct/P+XVSZ+nnpu9kiv+be8JKvJ8j3WD+Ur18vFN9f5TutLnlWvgdaNNzPWV0eW/ugfH99mqTL8+uLpfMk7/u3t/l85ZgfzdeBo+Xv+feS1glXdZtK0lvRSqa5Ta4CsnlU+r2VmAvka87R8tjfK3Ky5O8r++zUcvLH65KmitaEiep+voXch/iVPFnpAHnsZF15ktw18r3reElrRyWpoYinwfcfv6O+S9atKWnsANfbmeXjb0f5OnVgRDyeUlpRfqC/Z3hZrGnlKrQfkiuDTZJUWbpHmFL+fheQ78uf6KeN4+QKLzPLVYve7rB/Vdu5X5vPvl+0xkrK55575H70xql9X6q419hErux5p1zZqBh3mklOsHpM0t3V63jls88kJ1f8V75HWFw+7g6Sx/Bez6//hJxIurykxSLiqdKxU277lvI5/Mz8fcwl38OtKSe63hCtccHj5TGhHSLi6/lnU+bXnS/prIg4vNTWueVxusPl6k7jy/tH3j4P5+/78jafeeKxU/n5BnKS0DH5c98v6bMR8c/kMcQL8zbZI/KSgAPFTU4kPE2u6niIvExr+Xowc/7d+vIybMX2myac3DiHXLXocfk++EvhqlnFZ51aPh43y9vwpiiN37VpY7XPt5pcXWhJecLOrZXfLyKf67eQz1P3V+JNvL+WJ8PdJ5+zTg4vzzaf/F0UfeKiSvKcOeadUVoeNg3vGcquKo0h59+Xj8FaY1bObdPJiU1/ka9PO+bXFs8IZsmxTpF0X0RsXIr3PvmcuIq83GGf5OmU0mci4pbk8bTT5KTW4+TlQItjp/hsE5fsjFI1vKHGG4rkCoX/I6/Q8mBqLft7o3zf83h+3ZLytfONaE2+7HeJVKCTfM58VE5KP1auelaeBFJMnDpOPre9IT8jLZYbv3oyNBuTCYlRI5QPuJ/JNyKnygfetnLW71Pyw9UT5QSKg+ROXDFIPq+cZb+53Cn5RVNiNqGNTYnZhDY2JWY32liWUvqsfGP3qNwZnF0eONhULrd9pfwg+Uq5ysLlcsLD2aUYy0paIVqzzvaSb3bXl/QjeTmFtfLvpi617245W3+VTjeylXaeKyeqzCQP8j4iDwb8KHe+NpVvBooqBNtGaRmJSkdhh9L23FmeUbSyPIPlL/Is0IlVgvJ7Fo5J11Ivx1w3f+Ykd4Qvj9ayZuXBvmPDSxx26kguHxE/Kd3o7yh3KuaQK8c8LncwD5BLUj8sz/adVp4hdJG8LN4XO2zLqeUHyB+T958DcgduN3mwd72I+HYe+JhBnpkYkn4XbR4m5pjVNj4lD7BL3gfXlStF/FpObDtNHnj5fn5/u/Xua42ZO3BnyoMNr0j6s9wx+pG8L0yQE4aeyfvTO/LM3xeKeJKWrXw3O8g3nOPkKhl3RMShyQOXV8rHQTU56mh5xs4v8+f5ZWW/PEkePJuQ27iJfHP7qJw4UyTYjM/fycTOZO6wLqO+x+Oecof/sLzdNpZnt1wbrXXaqw8Syp3louNf6345QLw35HPevvLg5PVyEsla+XvZuvg7kSta5YGtGyX9JSJ2TB54W0Q+ns+Uz4E/yd9jMTtyBTmRcr+IuLxyPI+R9/86Y84sH3NFvK3kWcFPyDP0l42Ip5NnV31MrrDwWKmzc1p0mAlV1ua7eUIeNNpbHox5IO8Dc8qzDk+VH5Z0nMk0WmN2OK//Tj4XFIlKO8uD2BvKg6Sr5P9fbaABkZTSLvKg7szy9fFD8vlz3/BAdDHAe59czeO3lfdP8kCkjnObJj0XjfT4qft4bPe5y/cbM8uJklPLHfYF82d/UJ6VO718/jw5cin8Nt9NLfHafPbyef0Pku6KiIPza78n3yOtPYRtOdJ4U8gPQ4dz7flSlB6iJidj7S0PVv4mItZOrRnD29cQ87mIWLPU7g3kqh7jJe0VrRn1S8uVB1aTZ7Hd3WGfqW7LcdFKAi5+trv8EHabiPhu6Zo1i7zPvhqlaooppeUi4pE6Y1bl7+c4eZ+cQdJtEbF15TXzywkYq8kPNb9WvR/sZswmtLEpMYcYb3X5wdZt1Xvpdylm+Ri/JSKOSl6S+TC54tRQr+O1xqzEe0ne7p9LrkR4hdxX21dD6090I2b1Ov603L/4g9xH/6x8vrwm8hLtlfd3PWaX2jhBvqd/I2+jefLPq/eta8vVRXaLSiJPm78z6mN2Id5g+qTLhyfQTC8na0wfleX90vDGIfokHXWI1Wd8Inn579dK/+4viekAOUnnqQ6xhzxe0q6dQ4i5nFz9eUM5GecF+UH7XZEreQ2xjYOKN4iYX4w8YbHynlnkSioXyJP8rqvGyv8eI1cnuUQeJ3gwXHVJKaVT5GvCo/K91x/aHc+lWOVko0vkvuktxX1O8gTBkyVtGK2HvqfICYEvSro4Jn24XY25uHz/eFlK6UT5vvFHcrLQxOSt/PpPSPptuEr8UGLuL1f12jMGSAhrsw0myEk2F0v6XrEt8+8+Kd/Pbiv3J6bK2/Xy6rFSes9g+4/3yt/zbyvvb3f+3Uk+N8wo98PmyzH3l/s6d8nf3Z1ykuvuko6KVjLkJMmO+Vy0WP7cC+Q4+4THoctJTPtHKZFjmO1s99kPir4JIsvI/f+vRsTO/fR7inuNM+RKVN+X+39Tytf0U+V7+Pv7aee0+W+9kd/7WH7vnvL4WzWRaSN5vHmPvO2Wi4hHiu0pV/C8R9LzcmLRv/PvPizfV2wun+dvLs6nRT+n+H7ksewr8na5PHlZybnk/fxfyYk1u+VtcYd8rflrvk7sIE+I3iRyIkbps5aPnQPzd/4ROSHqWznmQXKF9w3C1aPmlc/HG8pJIH2qwRWfO2+L6eV7ipnl69mNcp/8dHms/UB5Ulo5OWoGucrQO9XvJ3m5ys/Jyeszy0ksxYSsok82tdw/3V6+37woSkmPbdo4g1xF5TsRcWty4ucV8rEyISYd+18ifx/Hd7q3Th4zflO+ju8eEdclJ1X9UB4b2jmcYHZi/rsPlt5b+zOULsWcIUrjZfm7Xky+Rq2sXE06WkmExTFbnlB0bkQcVvpdUaXsX5W/tZc8tnNOOClwevkat628D10drSSzAZOMhhhvwOtEKe5DclWzVfPnKZKlbpQrcrVLmiUpCsOS/Jzj/+RqxjtHa4y7fAzPLfcrtpD06Yi4N6WU5LHQByJiq8nTekwOJEaNQL5ZeEJ+8DFBXrP57eSs3rPkm+tt5BK3R8o3kd+Qb2pXlcuBLq5c4aApMZvQxqbEbEIbmxKzG20sS57tf7vcUbspIv6YPFP/Abk6xHJ5EOc4eTDwX/JN7WmlGFPJN5bnyTMNfih3UI5Qa43qveRO2hnRmm0wg7xG95/k2Wz9PcBYW57Jc4w8u+LXyZn5e8gVrbYLl9YvXr+tpH9HxNc6xNtGTkI4WtI3o5RokDx75Bq5NPQkHaT8mnYP73aSv5OfyUlWn5VngF4ULr9eDPYdKSduHR95iaVKnO3l0sN75M7wevJsjIvlRLCxcmd9RrmzuKrcYZsrt/kf+W8Wa6q3a+uc8qzG5eSB8vfldv1v/v+V5Zk7z7dpX7vZ5+3auLvcuSoGao6S95N/KpdGLu9H1bbWEbPDZ/+43AG+Wi5tvo68z4akT8jJSkdEZTZU3me3q3w368iz6y6Vk4I2kwdyvxsR26TWw+TN5M76taWBlaPkY+OYaC3JUuyXx8j7ZZFsOSZ/zvPl/etEOVntanmAaeKgcYfj8So52eRieTD2Unnga0Jua8djrxS37v1yMPF2lQcR95ZLwB4hf8+/kvfREyLijEo7b8u/+4I8YFQsN/OIPAB9QOX1y8nVfiZExG0dPnutMdvE21auwPMLeYBhYbli2KfydWAa+Ry6jTz49XibmAMdO3vKCaWHyUlBG8mDYX+XB/SvjYgL8vsHe4yPipilbVA+r38rPKBbfYiwnpyk8Vn5WNgnIr7QafAjefnJ2+XB0vvl88TR8r5ZVH17Inl26PXyoOynI+IfQ/x+hnpuq/X46dbxWNkG7e431sjb9VH5urh9/t84+d7njshLu7T5vmuJ1+aztzuvryoPKGyd/KD5bHlm8WC25YjiDSFmf9eeq6I1OD+3PKi/jjzov0d+7Vo1xNxQTvCaTx4gfks+ZuaXj5clo+8s/SXlAZyV5NnSd1b2meJz7xquxLWJfG27R943nws/JFhIHuy9PCKOTH0rHE6cQVq5jtcWM9o/oL1VHhz9rXy+mUeeVHBB5TMuIJ87rorSMkbl2HXFbEIbmxKzCW1sE3Nt+bxePsbXkHR7ROyaXJFlR/k8P9jr+IhjqlSRp0O81eUki+2Tq8+dJ9+HDbY/0Y2Yna7jc8sPPR+Uz22fkc+XEx+8dDPmu9DGdeT++P7yff318oPYLeSHlxuHKyZNn//GePlc+5umxexmvNLPBuqTPiX3Sf+R+j7U7to4RH5d+W8dK1+jF5Qfwn8+cgJHGkQSU5vYQ23nCeFl+kYac1l5hv3KciXRA0vvr95f1hpvsDHz68bLkyN2lnReVBKtKjFXkPfLcyVdEpNWVjpVTo56SE5qeaFTrNJ7bpYr4hwl6X9L3/WR+fOuIle5nUmeTPeYPDbYcYJjJebD0aqaWiQAlpO3Jj7kG0I7B4o5mIfnbbdlm31jnJz4uLE8lrlktE+KGk7/cZNoU42nEvM2uf/1Xbm/eFyOGWolYZ0o9zNekau8nt8mVnHvOpOcCPNs/jxvyMfd9+UJXj9PTmK6TE5+mGQC0DDa2W/fOXmZqrPlxIs95HPk2pq0j7KGnAy+W0rpUPn8PI9cFWwKOTnhlFK7Pi5p3vAyV8XPls6fa/+IuKHYNvJ18jx5HGJfOQmr2rffUR4z3jVald5mkI+PogJ/+Vy6lLyPFeOuN5VjVvoox0TEafke6ZfyPdRekr6S+yjF9fxY+ToR8nKJW6gyVl/ELl3PbpXP6b+XJy8uLPc/r5DHXA7K38uM8v60qJwQOcmYeCl+sR/NLJ8bppLv9w5Ua1xjJ1USUSqfvVzpcl05YWun/PnuzG3dM/L4fuqbHPVV+Z5ukgkrqVXBaCZ5X3s9//+RcmXylfLn/auccPB/HT7jVHJfebWIOD7/7B550va28rn9YTkR7CG1liJ8LXlp+HPla+gXc7trf4bSpZjTKy9xGhEH5X3yOfl4vFK+rq2R/+6d1fuU5MlT4+VEx44TN0p/b5w8HrqKfG09PPWtXn2QKgl23YrX4V6rSLLbWz7+9intk3vJk1W+Kk/Em2TMFhiq5CqC18nPApYPLz/d6bVLyPeW/5EnWf45pXSpvK9/JLzUJd4DSIwagdLJ/NyIOCz/rChnuaV8w7SS3KFbVK5ssZQ8C+JZOSv681Ga3dGEmE1oY1NiNqGNTYnZjTaWJc9kOkQe0CtKqN8lJ01sH60ZMHPIyVdThdeE7jNQkDtnB8mzaqaVKxBdUvrdV+UZuDfLN+Yflm9OL5VniU3soHZo53FyR2+8cnJY/vk28qDuD+TO9n+qN9xtBjSKmTG3SDo1WjPT1pQ70c/LD1EvkwfHJxTboZ/2bSQPap4VEWcnzxL5udzZul/SkdGaCbSi3GG6KSoPMPLv55JnG2wqD3D8Kf/3YdGaWTSXXHVmTnnwbEp5Fvbf8/YpBu2KDmO7Ck+b5M+4vaQVJH1K7lC/KGkh5cGhgQanclsWlwcoDi0NaswlL803n1xV54XkMs3TytVyHiy3sZsx8w3iHyLilfzvU+T9ZX65rPUW8gyuMfL3PyFKyyx1+G62l6vSbC4PBv8jeVbMETn2d8IPvaeRdK38wGUJSU+W9t9PRX4QPMB++Zakv+VtcpZaS2JM8uAmv6fj8Zh/v4jckf2IPOAwYHJU3ftlfs1g4l0vlyBeWx7k20SefXZ3cd5IfR9YzyQPIM2R4x8ZXiLktPzdHB2t5Kxp5MHNo+RKXBOTK4u4dcYcRLwT5YdTkrRUuHLUjPJDq/Py3+n3ocMAx075u/mP/DDnJXnmWHHNGerxOCpi9nP8rCEfA88W17j889nlddhfidJSWZU2jpG3+xqSPlGcP/LvDlZr4GvvcBLWjpJmiDxDr0PMWs5tQzgeB3v8jKszXnUQKf+80/3GgvKM3olLBMoDq2+X/na7faiWeEM4r++WP+eElNKm8uzLKQfYliOOl88ZI772RGnmYvIg8ge6EHM2+dj9hTz48pvk2djfzvvLMXLJ/HK1qSXkwdq1JM0XpQculc+9rfLyEPnfb8rVT06XB7j3ye1dPSqVPcu6EbMSf5ykJD9MOS78AOOD8gD1WHnG84WV98wcEX9/t2I2oY1NidmENpZizi/f71aP8T3kRKadkx9grC4/0BroOl5rzAHi7SYvxbFNfu1G8oO3gfoT3Yg50HV8Afl891e5IsY2qpwv23w/tYr697wAACAASURBVMbsYhsXydvyMLmS2eVyUsy/5PvW55Orj2wt91eOiogrmhyzC/Fq6ZNWYtY5DlF+gH6LPK70Tblq6PmSbpKv49Ukpk2Uk7ffjXaOIOZR8nY+JiIubvOZa403yJiHR8Sj+dx0lHxsXlPsQ+3OQ/nnO8sTbMaX71FS38pLx8ljAj+V75c7VslNKe0hP+jdTtL3c3+j6HfMJic+vCVP5hkr989WiA7jjP3ELFc4OE1OZHpIrgL/+06xuhyz7bbs8Nop5cSoy+Xj8+7K77vRfxwjH3+rypVf/lzaZ8sxJ4SXK5xTrjD3m+L9ba5lU8r3FfPI55znw0tTHS6PIT2j1tJ/W8rH/lkRccQI2nmavB+VP/uMURnfGEK/Zw950stnk5cGXV/eR1+MiAdKbZpSeVWAiNir9HfWlsfLNw5Xri3G2aeQE1XvlhNpDghXAurUf9w58hKayZVk/hXtq/J8Tb63m0pOquuTOJE80eTiHHO3iLgy96P+V06OKpaIL1eO2kfu060vL9n1g+Jzt/nOj87f7aaSHs/bcnc5WWZ6eYLavHJ1tBnlvtDNURpDKcUqn2e+JO9Hh8r3eovJyXCLyknED8nJKVvKyTkXRpvlZkvbdRF5/OvIcOWqj8r9tb/K58vby5+xes5tE/N98jJxf8+f9bkoJXMmT4y+Sk6O/2y0nxg9jZx8d5I8aeH9kpaW759+LC+9uWPebndHxJb5fe+XE/2Wlvez35di1v4Mpe6Yedsdnl97q5wM/Ixy1ZqU0qLyufCj8nn3/uiQxJ36WcI+/7tYHq8YI11NXnWhqPT0Bfk8cLz8jGuSSqeVttcSL6W0sFzB8N+ln42V98nvR8QOpZ/vK6+SsEFEfKu/9gGDka8Bm8kVgP8iJ1F3THRPKZ0rP49YLDymvIqklyLi2XelwRgVSIwagdzpOULu+J8g6ZTSzd/V8sOQZaJU9je/Z1Z5RmOfNbubErMJbWxKzCa0sSkxu9HGSnsvlB/ez53/XS0Hv4p8s3hKlNbs7tDR2loebH1L7kDtWPrdB+WSpevID1H/kv///OhnJlzp/V+SH0x9NP+73ME8X07umDfysjMDxFpInr20u1wh4ENyB3RFeZDnUbkixvvk5KC9IuLGfuLNKg8AvBYR++fOwUNy5/u+/P/fkR/W/zi/Z2xEvNxPzDnlhLjN5OUOvhYR+1des7jcwbu++rv8++oDhxny57qzGPBJKV0hP6xYKv9vc3kmzxg52W6taFMyuxRzFTkp7U/yd75fmzben3+390Bt7EbM5Jn0T8sd++sjD9imlL4lb9vd5e96fbkTM1bSphFxR4fPXP5unpPLax9T6piXHybfGxHb5ZvZNSLi3hyj2gkcIz+k6G+//LH83fxZPu5/ExH39bMd2x6PpXYuIg8AzJ3/5rdj4OSoWvfLIca7Olrls8vVOqrf90byIN+f5Rlc20XEwyml+eTB5p3l4/IZeZBsR/WzVFc3YraJt31E/DiltKD8He8pJ/i8IA+6bCyXfz4tv79T4slgjp3vyfvsfm3e325WVFNidjqvryAnavxMHmB8tDRIspM8ILJ0dBgETyl9WZ6Zs2D+d3nfu0YerH1YnlX7aOl9w/3cQzm31Xr8dON4rLx3sPcbp1XuaTrt77XFG8J5fXdJX4+Iz+b3TRetqkmdtuWI4w0xZsdrT5ttWHvMHHcludrSfhHx+eTB5B/Lg69HSLouSgPiyZUX5ml33a20ccuI+Gq+n9lHvhZ+XL5v+6+c7HtquBJU26VNuhUzxy2O8RclXRERx6fWTOV55AHlOeWk84vbvL+/80YtMZvQxqbEbEIbKzH/ID9s73Quukeu3FZ9f9djDjLernJ/aps28frrT3Qj5kDX8RsjYr/kxKyPRcS31UHdMd+FNn45Ig7KP/+kPFA/Tn7w95L88G8PuRpBx/vWJsTsQrxa+6T5vbWPQ+TXnCknO02IiIdSSgfJFS/+k7fJkdFKEFpZfgh7YsSkSy11q53DjLmcnKS9pjzB6PRuxRtizBPDfZRZJc0arUpNA91XbxsRc7R7bUppwYj4VUrpdEm/jn4SCvPrPy9XE18r+iawFxUyPibv7/PK16j9op9kygFilvsOR8vjnDdL2rG/+6wuxhxoWy4VpWSJ5LHNx+Xv7cI28WrrP5Z+d6M87pvaxLxKHg+9X16C7eepNbmiUz9qrLxKwO3hJenK/Zgj5CSm8vJ368jLNQ40aXKw7dwv+lbtr54vh9KX6nSvUf5MM4Wr98wgaZ2I+HpKaWa5ItGD0UqSLpKjZsrtfEvSkvL3WU1kKib6ba5WVd9t5eO6TxJZ/ltXyqs7PBWVCXkdYu4ZXiZyWjkhcS71TY4aJydHHS1Xk5qQY0wblcSj5ES4r8hj8JvJ1TqLbVNUL74pIg5Ipf5of5In8K0ljyf/X5TGzPP+dYt8nVxWnoB8nTyJZq0O++Qk19zSPfB88rnzVXniVrs+Y6d9fSv5mr15RPw8/2xVtZaxv18e/75SThBbK9okfOZ97hh5vO5fcvWoIt44OXlwWbmS2PFyf3JzeQLy6tX9J7+v9mcodcdMTvw+Tx6j/IOcEF5O+CxPuu2THDUYKaVlojWhrRinGyvfB60pV3Q6KjlJ68tyItfCUXo+1a14yVXlHpWrb31DnpQ/Rd4n98gxN45SElRKafF23zUwXPkasIE8vv1HOTnq+cprin19A/k55irFfTree8ZM7gY0Wb4YnCpf+E6QL/xKnm2ytfxA8M8ppTHJD3OL9/w234RMUh6xCTGb0MamxGxCG5sSsxttrHhc0tQppTWTHyouLpcyfix3dDaSO2DTVNrVboDmJ3Jm8mWSPpVSurb0+hfkZIGN8uc4SdJWxc130fZ+PClpzuQ11pUv+FPn3z0id2BmHyBG4R9y9Yhd5dl735Znae4j3ygvK8/uelDSItFPUlQp3jcl3ZA8U+kOeemCI+Sb51vkz31M8sChIg/ypVzppioi/iiXbb5eriozrnh96Xt+XK7KsECHGNXvaAP5Rv7avP9ITup4Tt6vfhIRh8pVWp6W9LI8U7U/z8qzTmaQH9S0a+NT8gySwbSx9pjhGU5ryp3xo1JKdyfPOvqavG+vERF/j4ib8+vGt+tol+L9Ud5XbpArp8xR/C554PBv8oyh4ji4OyLeiFZS1JhqRzG3eaD9ckVJ60XEMxFxWfSTFJW1PR6jNavqKbmM/wtyeeq5O33mymevbb8cYrxFS+8rL2FU/exPydVMPi3p3/JxuVJ4hsSx+TPPJQ9QLCAPHhbVnjqdh+qOWY13fY73K0knyzPr5pZnmv5bnr1VPGQZ027AJxvMsfMLeb+aRIe4TYnZ6fjZV96OS8rLfClaA7rTypXY2j5wyH4qaY7kh2AKD5QW155n5OS2+VQ5H43gcw/l3Fbr8dOl47FssPcbU1U+Z6f9vbZ4QzivXypp8+TS+ZIfEHbalrXFG2LMjteeEXzuQcfMfivf/1ycUto97yMryfcUZ0jaMQ/wFO14tLjuVmOW2nibpJtTSruFKx6cHRHry+fLR+SKjPNK2qfddbbbMbNn5cSVWeUH2pL0Th6oel4eHP+DfC9yeJt2dTpv1BmzCW1sSswmtLEcczb1fy7aSD5uJ0fMwcS7TE4YaRevU3+iGzEHcx1fIP/7pcgJR/2cL+uO2e02fqC0je6Wl+oulow6R74/OGgQ961NiFlrvLr7pFnt4xDJVVgXkCdlPJRSOkQeQ9hcruKxmqSjkysmKVxNfOeI9klR3WrnMGM+Io9DPaFJ77frjjeUmCellFaIiFejlRQ10H31LyXNnFx1dGIfP793DkknppQ2iYgjo1V9qtN3PoVa54TXy6+NVoWPD0bEBvK90Sdj4KSo/mIW97vrhccDj5GTjAZKYKo9ZjbQtjw4eXnn4u99WL5nb1v1RvX2H8sxxyYvVVeN+bScoPkRSfunlGYsYvUT83U5IWLO0meeKv/3GXKyyGKSzklOsvtOeAx2qg7xhtLOj8rbdKZOn32IfalO9xrlvtlr+bs7XtLtKaVdwpU2z5O0ZXIC4cT9SB47eE2uiPc7SYeklKYqH0PR6jvfKumLKaXtI+LL8qoOB6eULk0pzZVccWYzuS/0u8hJUf30zYqYl+Z+1Bvy0pEvyufibZKTl16S72NOkbR1clKaon01pinliWMzRcRble/7OjlBc+N8vzmYpKhiW94hVyj6V/75lDnmy/JzjA9J2iJctXkXSWtHawm3qnbX3GIJ82fz9ptR0oXJVcyq267Tvj5OTjp+NaU0f0rpeHlC3bby+fs8Sb+Wq0k9lNsxiWgtQ/UP+Tp+cOl3L+V4t8uTGl+Uk4k/rA5JUVk3nqHUGjPvD++XnxvMlD+X8uuLceVd8u+vkrRBP23rIzkJ85Hk1SwmPufJ+88B8vdyRErplPByd9vIkxo7JUXVGk9SyGO8r8uVyp+UdGBKaX553/+9pE+klKZMnggm+X5gMM+4gEHJ5/RvyJMQ5pSvYfNUXlOMca8nL4/62LvaSIwqVIyqQXJG+3Hyxf5HkpaRtFNE3JwGKFXZ5JhNaGNTYjahjU2J2Y025rjzyzfO08uJMJ8MzwiaVn5wf6akI2KApe4qMeeQZ61MkCshTCj9blV5hsxfSj/rOBOu9JoFczsflWcoFuXbp5E7ZBtLWjd3JAfTxnXkSiFPy0ubfS7/fDp5lsqXI+K8wbYx5Vk5KaXt8mffIvIMqJTSsfJDtgWUKxMMpo35vXPJHY+tlSsvlH43nXwz/k/5u3pzoP0guarKyfLslWflQblPyQ+UD86dGiWXcX4pd5gHqpAwTu5M1tLGLsf8tFzieQp5dsgEufzt9m1eP9B3Pldu41YqLR2QWrMqZ5V0oqRfRD9LAFRiDrRf3hAR5w8mVilmf8fjmnIy+fQRcdcQYta9X9Yar/Te5eQZW9PJSaTF7N4Z5WSYKaOfpbrejZj9xJtWnuX1VvF5BxmvScdj3TEHffwkz8a8XV5K71P9xJxfrnTzmPpee6aWB5JekpeiHNSssC597qYcj7Xeb3Tp/mWw5/Unop/lYroVb4gxh3Lt6UbMsfJM7+qM54flAerj5SouAw6+53jlGdS7RsRVbT7DXvJs1j0i4rbJFHOcXB2iui2LWXwfkqtEnBkRVw8Urxsxm9DGpsRsQhsHiDmSc1GtMZvQxlLMwVzHt5b035rviQYVs4ttLLbl3hFxael3U8jJfMrxiqX7BupLjfqYXWxjnX3SWschksdXNpTvnZeUq2AcLi+lO52cVLxu/v0BEfF/A8XsRjtHEjOl9NHom4D0Tjfidetz5/fOLydx/5/cRyn6kMWyjifK91/3dI7SJ16x/MpnIk/AKv3uY3Lf4Nzop2LoMGKeJ+mkyMt/TcaYg9mWu0euCpKcaLBQRKzcT7za+o+VmD+Tl+ssxzxB7guNk5OJFo1KNYk28aaRk46Wlatq/SD/fIw8KfY+eYLWYpIui4gTqvv2u9TObvTNzpeXddsuIm5MrUpWt8jnu1nkSvsvRcTGKaUfy0sNbt4hZrm61Wfkah0nyJWF3pQr0E4nVxQ8ZaA2lmJ2qhw1h/xs4Ppw5aj3y/2Vk+QKX5e0iTelnES2mXzsfDf/vNiO58uJ4ktFh2Xu2sT8oFqT+i6KVjXpoqrXPHLS4fERUU6mGfI1N7Uqec2fY+4STugaTDuXkPfJ38vfxVhJn5Mryn1MXqpwnYi4v7y9os0YeHLi8FzyeaHd+Or08n3BfPJx/ufonHRTjtuNZyi1xczfyyzyfjZJvPyaxeT7hJciYqOBPnN+z0LyUnzzy/tusUxicd1cTU4mnlZegvG4ztHqj1eKO5ukheR7oZXz+w+V94OlJC0X/ay0AdShdH/etnJUSilJulBervloDWGsFr2FxKiaJGfwHy2vpXtPpxvBXovZhDY2JWYT2tiUmN1oY467tvyA+Dl5wONFucLGfpJOjwGWb+oQc6xcjWiC3DE8RC7XeqNKa7APsZ3j5YG4kAcQfyrflB4lDzhMUsZ6gHgzSPp3tNbAnkEuGX+OvLb4N4fRxoPlTuoqEfFkjnmWXGHjyzGIpf7axCx3io+VO+tj5O/o83JHeVAPRnK82eRysSfIneoH5Fkjl0TEvpXXDjZZpNY2djHmFPIso89LWlju1H5QnuE7pP2nTRt3j9ZszGKAoVw6fFDHzwD75U4xjLXKOxyP68qDYbsUx+Ngv+/82rr3y25938vJFYSmlcvWP1LatsWgzVDObbXGHES84STSNuV47EbMQZ3Xk2dtfyJyRcD+tnNKaS1Jd8mDcDfKA2urKy+jGJ7Z31Pny260Mcet9X6jS/cvtZ7Xu3SdaGLM8qD+zyQlSYtHxC8GitMh3i7FPlgaLJ9eniH3tWizDOdkilnelkViywzhClWDVnfMJrSxKTGb0MYBYo6a80YT2tgm5nvmOj7Qtsz/PdT74FEfs0ttrLVPmmPWNg5ROj7OlLSqnHz+t/y7q+XEhoUlrRkRz02udg41ZvX76fR91R2vi597Pfk++Bm5wsxT8jjPrpJOCVf+GWysReXk9YckHRcRP8o/n1Ou/LKyXL36hV6Lmd8/rG3Zqf9Xd/+xEvMpeTz04RzzGDkh5/dyMta6kRNfBoi3aG7XQ3Iy2ffzzxeUl9vaT75+rCRX0v9Pp1hdbmc37jUmJjJFxK3Jy4UeLFft/pucJLehPAHnO/l/h8tL0LU7Z8wpb7NNJW0dnsC8SP68r0j6TeQkxcF+5/30ox6TkymXiFaS5VhJK0f/S69+TP6+fyQfO/+bfz67XDH6jdz2QSVG5feOk3SBnGi2T0R8ofS7leTx++PCywyO9Bpe9M1mDlf7GrTkCoc7ydV8HgxPpppSrq5ynryU5qCSfHO8tklHycmUu8nLEv5piG3sxjOUWmP287nnlK9vV0r62WDPafm988ljoQtJ2ityMlP+3a5yVafn5LGdSZY47Ha8NvHXkitufVZeinE2SZuV/w7QLWnSZfU+HREvJBfTOFetirNtK9/hvYHEqBolZ+AfKekwSSdExEnvhZhNaGNTYjahjU2J2Y025rgryR2598s3do9IuqXo2Aylw16KOVbuPO4p6e9ySdyzI+LkEbRzZXkGwHxyOeDnJH0x8gyUwXa22sRdUdIKkk6TdOpQBpEqcRaWO/7XywlHs8uljfeJiK/k1wxnW84pr1/9GXnmyWNyUtMtEXFmfs1wEijOkWeCflwupf3JGOSswgHa+LI8mPAB+WFisazYkNrYjZil2JtLGi8Pdk3scA8jTtuKE8NtVyV2LftljtXueDxnJOeQuvfLbuznqZV4dLk8e2v7GMIM0ncjZpfa2IjjscvHeNvjp81DjMHMuFtaHuhZQB4g/Ys8a/rMobYrx+v2thyVx2N+T633G126f6n1vN6N60RDY+4eEVfkQePNwstNjCTeZyNXBEt5Zm9K6Sb5+rZV5GVWRkHMPttS8nIPwzzGa4vZhDY2JWYT2jhQzNFy3mhCG0sxR/U9URfb2LHS3nA0IWY32liKXVeftPZxiJTSZXIy3RoR8VJyhZDL5G1xX7SWWZvc7aw1ZhPaWIq7kpzksYBclebnkq6NiP8ZasyU0gZyUtAf5WXJX5OrYSwlaa2IGPLSLE2JmeMOuC2l1hJtA50/6+4/lmJeJVdEmSHHPCsizk4p7SknLYyPnDAziHjrydvyz5K+L+lP8kPXf0XEMslLzG0maZkYWtJ43e3sxr1GkchUVI6aUdLS8n71K3kf+IKkT8oJjf0mUaS+CVdtk06Gcd7o1I/aPCJu6PCe/ir/bCgvV/eCnLz2gjwWvIb8GQc9YaVDGy+SE6+mk6sLTStp+RjckpadYpa/7zHKyWnDOV+W4k8tJ85cIi+T9slhnHuLpKOd5CVTT5crje0qaeGB9pd+Ytb9DKXWmJXPfb+kL8qVoD8gf+63hrGfzydX0V9IvibemveBk+Xl784Zyj5Ud7wcs89nSiktK69c8mwMoUI5MFJp0uSo7eSlIneQtNpw74HQO0iMqlnqu4zX8SO5KDcpZhPa2JSYTWhjU2J2o42luNPL62//JVqzAkfS4ZhN0tpyCeYnI5cHH2HM2eVZldPLpWmfHUnMfNN8vTw4dUlEXDTCeGvJs82mlQdpzo0RJLSU4o6TO1sTJJ0tz+r653DaWh5ASC4nu4k8I271oXYQ2rTxLOVljKJUmnYE27PWmJXPPo2kBYczAFCJOadcsnRLVZasGEHMWvfL/N5uHI+17ZfdiJffN4Wk5eVBv6NjkGW3382YXWrjqD8euxizW8fPWHmW/J8j4okRtrFb23JUH4/5vbXeb3Tp/qXW83qXrhNNjHlgcTzm3w03ca2IV15mYQG5qui5kZfSHEUxR+X304Q2NiVmE9rYlJhNaGOOOervibrUxqZ8P6N6v+xSn7TWcYiU0lJyNZlbJD0uaQl5NvrqEfGb0dLObsRsQhtLcWeWNJN8H/xqRLySfz6cc8Yy8pJci8pLqT0m3/8/NYL2NSJmjlvbtszvq7X/mN87e445t6RnIuJ3KaXl5SWi7ouInYcYb1G5mtMy8tJvj8sV5d+SKyX9Ta4kNKjlr7vYzm6c04tEpt0i4srS78bLy/0tL2mDiPjZMNrYp4LSCNtZZz9qWblfv6ikf8lV0g4q9s0RtnELeYnYM+Xvfp/wEmZtl6YbZMza7gty3GLpwfHy+MGK4cpjw50MfkiO96a8PTeKIVSfahOzG2O2tcZMrhx1kFwda0pJT8pJqf8dznedY84nJyJ+Qk7kHyPpI5I+Ppx9s+54Hf5GuVrdsL8fYKhSa1m9cyXNKyd4rj6Scw96B4lRXZA7CEfLlWqOiIiz3gsxm9DGpsRsQhubErMbbezwd0Zc9aZNzNpvGEfSzuQSustKmipapbhH1MaU0oflqlZvRKtE8Yg/d0ppbklXyAMJ5+efDXeWVNvS76m0LMAw2ziXXE75M2rNahrp9qw9Zpu/MdI2jpNL9n4rIi6ooT2175cd/s6o2i+7Ea94v6Q5IuLl4cbodswutbERx2PdMZty/HRpW47647HD36k1Zh3xunBerzVeA2NeI+mbNW7LifHy+XM1STtExO75NUOthNKtmKP6+2lCG5sSswltbErMJrQxx2zCPVE32tiU72fU75dt/saoGodIKa0hL7szjVxdZMeoYTZ6N8ZLuvDZR30b+/k7I7n3n0auJv62pDcj4r81tKcRMTv8nbr7KLV93zlB4XC5cskTEbFZ/vlQ71enlrfllBHxWnJS07nyBMpVY5CVnd6FdtZ9Ti9XVtwoIr6Rf/4peeLoNRERQ4xZa5+nGzGTlwqfKf/zHzHE5Zk7xBwn6Qw5qW6nyBP9yskjw4xZ933BepJOkPS0XI3qzZGMgaeUZpETjuaV9IMY4vKyg/wbo3EcayZ5CeB5JN0frhQ10mcJY+VE/vXl1UEujpEl0NYaDxhN8j3QZpL2kHRARPx8MjcJowSJUV2SL/iHSrpxpDfGTYrZhDY2JWYT2tiUmN1oI0Z/MlhKafoY5FIuw4hdy2evDDD0mdU0mmLWrQnfTbfU/dmbti1HY1JHKVYjjsduHuOj+fjp0rZszPE42jVhW75XY1bjle+1hnvf9W7ErAP75eiN2YQ2NiVmE9qYY476e6Im3Gs0JWbT7onqGIdIrrAxs6TXIlfQqdtofPDb7Xjdion3lpTSCZKmjYgj879HmvAwXl7m8f2SNq0jEbLOdnbhnD6XXB3qhHJSxwgTekb9tawbciLT/6hNFa4RxKz7+55CTuZ5PjwxeFgVjtBXndsxpTSVvGTiqIwHjBbJS6tOHRGvTe62YPQgMaqLmtIZfK92gpsQswltbEpMBlLeu0bzg35p4gD8lyW9FBHbjdaY3TDav5tuGs0JQu9lTTkem3KM161bn5vjsT5N2Jbv1ZhNaGNTYjahjU2J2YQ2NiVmQ9o46u+JmnKv0ZSY7+V7IgCjU13jwyml3SR9NyJ+XUOz2sWvI2GzG9eJEVW8aRNv1F/L6pbvNS6QK/VMiIgv1RR3VE9gBgBgNCAxCgCAySylNHNE/H20xwTeC5pyPL5Xj/H36ucGAKAXNOGeiHsNAOhNdSSOvBtJN6M9sQcjl6twnS7prGB1CwAA3jUkRgEAMEq8F2dKAaNVU47H9+ox/l793AAA9IIm3BNxrwEAALqFJeoAAHj3kRgFAAAAAAAAAAAAAAAAoOeMmdwNAAAAAAAAAAAAAAAAAIC6TTW5GzBSKaUtJK0haSlJS0qaSdINEbH9ZG0YAAAAAAAAAAAAAAAAgMmm8YlRko6RE6L+Iel5SQtP3uYAAAAAAAAAAAAAAAAAmNx6YSm9gyQtJGlmSXtN5rYAAAAAAAAAAAAAAAAAGAUaXzEqIu4v/julNDmbAgAAAAAAAAAAAAAAAGCU6IWKUQAAAAAAAAAAAAAAAADQB4lRAAAAAAAAAAAAAAAAAHpO45fSq9uaa675zuRuAwAAAAAAAAAAAAAATfTAAw9MMbnb0IPIY5B04IEHSpIuuOCCydySUYNjbRCoGAUAAAAAAAAAAAAAAACg55AYBQAAAAAAAAAAAAAAAKDnkBgFAAAAAAAAAAAAAAAAoOeQGAUAAAAAAAAAAAAAAACg55AYBQAAAAAAAAAAAAAAAKDnTDW5GzBSKaVNJG2S/zku///KKaVr8n+/EhGHvusNAwAAAAAAAAAAAAAAADDZND4xStJSkiZUfjZf/p8kPSeJxCgAAAAAAAAAAAAAAADgPaTxiVERcYKkEyZzMwAAAAAAAAAAAAAAAACMImMmdwMAAAAAAAAAAAAAAAAAoG4kRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBlxR1MAAAIABJREFUAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRGAQAAAAAAAAAAAAAAAOg5JEYBAAAAAAAAAAAAAAAA6DkkRgEAAAAAAAAAAAAAAADoOSRG4f/ZtUPbLMAwjKKPQIBghso/wYAkGJZAIJowAAsgmnQBHB7HBgzABpXNlzAFvgkTtKm+OUc/r3j9BQAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIEcYBQAAAAAAAAAA5AijAAAAAAAAAACAHGEUAAAAAAAAAACQI4wCAAAAAAAAAAByhFEAAAAAAAAAAECOMAoAAAAAAAAAAMgRRgEAAAAAAAAAADnCKAAAAAAAAAAAIOfFc0aXy+XTto/b3m17u+31tl/nnOsnbj5su9n2ftvLbX+3/dz245zz8MjNl21ft73Z9rDtbtv3c87vR/avtn3b9nnb1bZ/2/5suz3n3D/nNwAAAAAAAP63d/ehepZ1HMC/m+LLrK2IIhmJ9rJLAiuoCGek2ItF2IyOaWbIiKIoC63MXkAh6o80olj9Uzg6cGiGgVFQlLWVlUirP6Xf9KjFYhuFUmfWPOnWH/e9eHo65+w5Y+dlj58PPNyc6/797vt6znP9+eW6AABg/IwUjEoXcHplkoNJ9iY5f6Hi1tqWJN9PcijJnUkeS3J5kq8muSjJlXP03J7kE/3zv5XktHSBpx+21q6vqm1D9acn+Vn/vN1JvpbkRf2z395au7Sq7h/x+wEAAAAAAAAAnHCttWcn+UKSdyZ5QbpNYj5eVb/r7x+Zp/WbVfWR5ZklJyvra2GjHqV3Q5JNSdYn+fBCha219emCTU8nuaSq3l9Vn0q329R9SSZaa1cP9WxOF4qaTvKKqrqh/+e/Ol2o6vbW2rlDr7oxXSjqriSvq6pPV9U1SSaSrEtyR2vNUYEAAAAAAAAAwEr6dpLLklyX5IIkP01yT2ttY3//7KHP5f3495Z5npycrK8FjBQcqqqdVfVgVc2XIhs0keT5SXZU1e6BZxxKt/NU8v/hqg/11y9W1eMDPY8m+UaS05NsPTreWlsz0HNTVR0e6PlBknvTHcd38QjzBQAAAAAAAAA44VprZyZ5V5Kbq2pXVT1UVbcmeSh9dqKq9g9+kmxJsqeqfrliE+ekYH0d21LsqHRpf/3JHPd+leSfSTb3R+GN0vPjoZokeUmSc9L9UI+M2AMAAAAAAAAAsJxOTXJKkkND4/9K8vrh4tbas5Jcne6kLnqzs7PZv39/pqens3379szOzq70lFYL6+sYliIY1frrnuEbVfVUkkfS/TAvTpLW2llJNiY5WFX75njeg/110yjvWKAHAAAAAAAAAGDZVNVMkvuSfL61trG1dkpr7dokF6Y71mzYNelO1frOMk5zVZudnc3ExEQOHDiQgwcPZnJyMhMTE8JRsb5GsRTBqA399e/z3D86/pzjrD/eHgAAAAAAAACA5fa+JIeT7E3yZJKPJflukqfnqP1Akrur6q/LN73VbWpqKjMzM/8zNjMzk6mpqRWa0apjfS3g1BV455r+emSRfYupP953ZNeuXWuOXQUAAAAAAAAAcGxVNZ3k4v5ErfVVta+1dme6E7f+q7X2qiSvSfLZoUc8o3MMk5OT9yR541zjW7duffMKTGlVOQHra6wtRTDq6G5NG+a5v36o7lj1c+0Otdh3AAAAAAAAAACsmKp6IskTrbXnJrksyU1DJR9M8miSe5Z5aqvazp0737TSczgZWF9zW4pgVKVLmG1K8vvBG621U5Ocl+SpJA8n3Q/TWvtLko2ttbOrat/Q817WX/cMvSP9O+YyVw8AAAAAAAAAwLJqrV2WZG2SPyZ5aZLb0uUetg/UrEvy3iRfrqpFn47FM5f1tbC1S/DMX/TXt85x7w1J1iX5bVU9OWLP24ZqkmQ6yZ+TbGqtnTdiDwAAAAAAAADActuQZFu64Mpkkl8neUtV/Xug5qokZ2UgzAIjsr4WsObIkcUFwVprlyTZmWSqqq6d4/76dMGl9Ukuqqrd/fgZ6YJKFyZ5T1XtGOjZnOQ3fd9rq+rxfvzcdLtOnZXk/Kp6dKDnM0m+lOSuJFdV1eF+fEuSu5M8kOSCo+MAAAAAAAAAAMAzx0jBqNbaFUmu6P98YbqzCB9Ocm8/9req+uRQ/V1JDiXZkeSxJO9I0vrxdw9vzdVa+0qSG5Ps7WtOS5dYe16S66tq21D96emCVpuT7E7y8yTnJLkyyWySS6vq/lH+CQAAAAAAAAAAwHgZNRh1a5JbFij5U1WdO9RzUZLPpdsh6owkDyW5I8nXq+rped5zXZKPJnl5ksNJ/pDktqr60Tz1Zya5Ock16UJR/0iyK8ktVfXAMb8YAAAAAAAAAAAwlhZ9lB4AAAAAAAAAAMBqt3alJwAAAAAAAAAAAHCiCUYBAAAAAAAAAABjRzAKAAAAAAAAAAAYO4JRAAAAAAAAAADA2BGMAgAAAAAAAAAAxo5gFAAAAAAAAAAAMHYEowAAAAAAAAAAgLEjGAUAAAAAAAAAAIxKuOY6AAAAH0lEQVQdwSgAAAAAAAAAAGDsCEYBAAAAAAAAAABj5z8r5yV1L7CPBgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import missingno as msno\n", - "%matplotlib inline\n", - "fig = matrix(data_imp[covariates].sample(1000), sparkline=True, figsize=(40, 10))\n", - "\n", - "missing = data.columns[data.isnull().any()]\n", - "fig = matrix(data_imp[missing].sample(1000), sparkline=True, labels=True, figsize=(40, 10))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Write to disk" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "data_imp.to_feather(f\"{dataset_path}/baseline_complete_imputed.feather\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plus 1 year " - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
myocardial_infarction_event_timestroke_event_timecancer_breast_event_timediabetes_event_timeatrial_fibrillation_event_timecopd_event_timedementia_event_timedeath_allcause_event_timedeath_cvd_event_timeSCORE_event_timeASCVD_event_timeQRISK3_event_timeMACE_event_time
010.33538710.33538710.33538710.33538710.33538710.33538710.33538710.62559910.62559910.62559910.33538710.33538710.335387
112.06570812.06570812.06570812.06570812.06570812.06570812.06570812.35592112.35592112.35592112.06570812.06570812.065708
211.33744011.33744011.33744011.33744011.33744011.33744011.33744011.62765211.62765211.6276527.9698847.96988411.337440
35.12251910.77891910.77891910.77891910.7789190.29295010.77891911.06913111.06913111.0691315.1225195.1225195.122519
413.76043813.76043813.7604384.72279313.7604384.84052013.76043814.05065014.05065014.05065013.76043813.76043813.760438
\n", - "
" - ], - "text/plain": [ - " myocardial_infarction_event_time stroke_event_time \\\n", - "0 10.335387 10.335387 \n", - "1 12.065708 12.065708 \n", - "2 11.337440 11.337440 \n", - "3 5.122519 10.778919 \n", - "4 13.760438 13.760438 \n", - "\n", - " cancer_breast_event_time diabetes_event_time \\\n", - "0 10.335387 10.335387 \n", - "1 12.065708 12.065708 \n", - "2 11.337440 11.337440 \n", - "3 10.778919 10.778919 \n", - "4 13.760438 4.722793 \n", - "\n", - " atrial_fibrillation_event_time copd_event_time dementia_event_time \\\n", - "0 10.335387 10.335387 10.335387 \n", - "1 12.065708 12.065708 12.065708 \n", - "2 11.337440 11.337440 11.337440 \n", - "3 10.778919 0.292950 10.778919 \n", - "4 13.760438 4.840520 13.760438 \n", - "\n", - " death_allcause_event_time death_cvd_event_time SCORE_event_time \\\n", - "0 10.625599 10.625599 10.625599 \n", - "1 12.355921 12.355921 12.355921 \n", - "2 11.627652 11.627652 11.627652 \n", - "3 11.069131 11.069131 11.069131 \n", - "4 14.050650 14.050650 14.050650 \n", - "\n", - " ASCVD_event_time QRISK3_event_time MACE_event_time \n", - "0 10.335387 10.335387 10.335387 \n", - "1 12.065708 12.065708 12.065708 \n", - "2 7.969884 7.969884 11.337440 \n", - "3 5.122519 5.122519 5.122519 \n", - "4 13.760438 13.760438 13.760438 " - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_imp_yearplus1 = data_imp.copy()\n", - "event_time_cols = [s for s in data.columns.to_list() if \"_event_time\" in s] \n", - "data_imp[event_time_cols].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
myocardial_infarction_event_timestroke_event_timecancer_breast_event_timediabetes_event_timeatrial_fibrillation_event_timecopd_event_timedementia_event_timedeath_allcause_event_timedeath_cvd_event_timeSCORE_event_timeASCVD_event_timeQRISK3_event_timeMACE_event_time
011.33538711.33538711.33538711.33538711.33538711.33538711.33538711.62559911.62559911.62559911.33538711.33538711.335387
113.06570813.06570813.06570813.06570813.06570813.06570813.06570813.35592113.35592113.35592113.06570813.06570813.065708
212.33744012.33744012.33744012.33744012.33744012.33744012.33744012.62765212.62765212.6276528.9698848.96988412.337440
36.12251911.77891911.77891911.77891911.7789191.29295011.77891912.06913112.06913112.0691316.1225196.1225196.122519
414.76043814.76043814.7604385.72279314.7604385.84052014.76043815.05065015.05065015.05065014.76043814.76043814.760438
\n", - "
" - ], - "text/plain": [ - " myocardial_infarction_event_time stroke_event_time \\\n", - "0 11.335387 11.335387 \n", - "1 13.065708 13.065708 \n", - "2 12.337440 12.337440 \n", - "3 6.122519 11.778919 \n", - "4 14.760438 14.760438 \n", - "\n", - " cancer_breast_event_time diabetes_event_time \\\n", - "0 11.335387 11.335387 \n", - "1 13.065708 13.065708 \n", - "2 12.337440 12.337440 \n", - "3 11.778919 11.778919 \n", - "4 14.760438 5.722793 \n", - "\n", - " atrial_fibrillation_event_time copd_event_time dementia_event_time \\\n", - "0 11.335387 11.335387 11.335387 \n", - "1 13.065708 13.065708 13.065708 \n", - "2 12.337440 12.337440 12.337440 \n", - "3 11.778919 1.292950 11.778919 \n", - "4 14.760438 5.840520 14.760438 \n", - "\n", - " death_allcause_event_time death_cvd_event_time SCORE_event_time \\\n", - "0 11.625599 11.625599 11.625599 \n", - "1 13.355921 13.355921 13.355921 \n", - "2 12.627652 12.627652 12.627652 \n", - "3 12.069131 12.069131 12.069131 \n", - "4 15.050650 15.050650 15.050650 \n", - "\n", - " ASCVD_event_time QRISK3_event_time MACE_event_time \n", - "0 11.335387 11.335387 11.335387 \n", - "1 13.065708 13.065708 13.065708 \n", - "2 8.969884 8.969884 12.337440 \n", - "3 6.122519 6.122519 6.122519 \n", - "4 14.760438 14.760438 14.760438 " - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for col in event_time_cols: data_imp_yearplus1[col] = data_imp_yearplus1[col]+1\n", - "data_imp_yearplus1[event_time_cols].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "data_imp.to_feather(f\"{dataset_path}/baseline_complete_imputed_years+1.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:python]", - "language": "python", - "name": "conda-env-python-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/7_calculate_scores.ipynb b/neuralcvd/preprocessing/ukbb_tabular/7_calculate_scores.ipynb deleted file mode 100644 index 3bff70a..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/7_calculate_scores.ipynb +++ /dev/null @@ -1,1719 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. Scores" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:37:16.635459Z", - "start_time": "2020-11-04T09:37:08.687Z" - } - }, - "outputs": [], - "source": [ - "try(library(tidyverse), silent=TRUE)\n", - "library(lubridate)\n", - "library(data.table)\n", - "library(glue)\n", - "library(jsonlite)\n", - "dataset_name = \"210223_cvd_gp\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = glue(\"{data_path}/3_datasets_post/{dataset_name}\")\n", - "dataset_path_pre = glue(\"{data_path}/2_datasets_pre/{dataset_name}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:37:19.066784Z", - "start_time": "2020-11-04T09:37:16.560Z" - } - }, - "outputs": [], - "source": [ - "#data = arrow::read_feather(glue(\"{dataset_path}/data_merged.feather\"))\n", - "description = arrow::read_feather(glue(\"{dataset_path}/description.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "files = c()\n", - "for (i in 0:9){\n", - " files = c(files, glue(\"{dataset_path}/partition_{i}/test/data_imputed.feather\"))\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "data = map(files, arrow::read_feather) %>% bind_rows()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "data = data %>% mutate_at(c(\"sex\", \"overall_health_rating\", \"smoking_status\", \"ethnic_background\"), as.factor)\n", - "data = data %>% mutate(sex=fct_relevel(sex, c(\"Male\", \"Female\")),\n", - " overall_health_rating=fct_relevel(overall_health_rating, c(\"Excellent\", \"Good\", \"Fair\", \"Poor\")),\n", - " smoking_status=fct_relevel(smoking_status, c(\"Current\", \"Previous\", \"Never\")))\n", - "\n", - "covariates = (data_description %>% filter(isTarget==FALSE) %>% filter(!dtype==\"Date\"))$covariate[-1]\n", - "targets = (data_description %>% filter(isTarget==TRUE))$covariate\n", - "\n", - "load(file = glue(\"{path}data/phenotypes.rda\"))\n", - "load(file = glue(\"{path}data/medications_list.rda\"))\n", - "load(file = glue(\"{path}data/endpoints.rda\"))\n", - "load(file = glue(\"{path}data/scores.rda\"))\n", - "death_endpoints = c(death = c(\"death\"), death_cvd = c(\"death_cvd\"))\n", - "competing_endpoints = c(CE_QRISK3death=c(\"CE_QRISK3death\"))\n", - "endpoints = append(endpoints, death_endpoints)\n", - "endpoints = append(endpoints, scores)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Missing values" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "start_time": "2020-11-04T09:36:46.941Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\n", - "
A data.frame: 0 × 1
sapply.data..function.y..sum.length.which.is.na.y.....
<int>
\n" - ], - "text/latex": [ - "A data.frame: 0 × 1\n", - "\\begin{tabular}{l}\n", - " sapply.data..function.y..sum.length.which.is.na.y.....\\\\\n", - " \\\\\n", - "\\hline\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.frame: 0 × 1\n", - "\n", - "| sapply.data..function.y..sum.length.which.is.na.y..... <int> |\n", - "|---|\n", - "\n" - ], - "text/plain": [ - " sapply.data..function.y..sum.length.which.is.na.y....." - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "na_count <-data.frame(sapply(data, function(y) sum(length(which(is.na(y))))))\n", - "na_count %>% filter(sapply(data, function(y) sum(length(which(is.na(y)))))>0)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "map_smoking = jsonlite::fromJSON(str_replace_all(str_replace_all((description %>% filter(covariate == \"smoking_status\"))$mapping, \"'\", '\"'), \", nan: -2\", \"\"))\n", - "map_smoking = setNames(names(map_smoking), map_smoking)\n", - "map_gender = jsonlite::fromJSON(str_replace_all(str_replace_all((description %>% filter(covariate == \"sex\"))$mapping, \"'\", '\"'), \", nan: -2\", \"\"))\n", - "map_gender = setNames(names(map_gender), map_gender)\n", - "map_ethnicity = jsonlite::fromJSON(str_replace_all(str_replace_all((description %>% filter(covariate == \"ethnic_background\"))$mapping, \"'\", '\"'), \", nan: -2\", \"\"))\n", - "map_ethnicity = setNames(names(map_ethnicity), map_ethnicity)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "data$smoking_status = recode(data$smoking_status, !!!map_smoking)\n", - "data$sex = recode(data$sex, !!!map_gender)\n", - "data$ethnic_background = recode(data$ethnic_background, !!!map_ethnicity)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Scores" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## FRAMINGHAM RISK SCORE (Anderson 1991, Wilson 1998)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "women_bmi <- function(age, bmi, sbp, smoking, diabetes, treated_bp){\n", - " b_age=2.72107\n", - " b_bmi=0.51125\n", - " b_smoking=0.61868\n", - " b_diabetes=0.77763\n", - " if (treated_bp==FALSE){b_sbp=2.81291}\n", - " if (treated_bp==TRUE){b_sbp=2.88267}\n", - " E = b_age*age + b_bmi*bmi + b_smoking*smoking + b_diabetes*diabetes + b_sbp*sbp\n", - " return (1-0.94833^(E-26.0145))\n", - "}\n", - "\n", - "women_chol <- function(age, chol, hdl_chol, sbp, smoking, diabetes, bp_treated){\n", - " b_age=2.32888\n", - " b_chol = 1.20904\n", - " b_hdl_chol = -0.70833\n", - " b_smoking=0.52873\n", - " b_diabetes=0.69154\n", - " if (bp_treated==FALSE){b_sbp=2.76157}\n", - " if (bp_treated==TRUE){b_sbp=2.82263}\n", - " E = b_age*age + b_chol*chol + b_hdl_chol*hdl_chol + b_smoking*smoking + b_diabetes*diabetes + b_sbp*sbp\n", - " return (1-0.95012^(E-26.1931))\n", - "}\n", - "\n", - "men_bmi <- function(age, bmi, sbp, smoking, diabetes, treated_bp){\n", - " b_age=3.11296\n", - " b_bmi=0.79277\n", - " b_smoking=0.70953\n", - " b_diabetes=0.53160\n", - " if (treated_bp==FALSE){b_sbp=1.85508}\n", - " if (treated_bp==TRUE){b_sbp=1.92672}\n", - " E = b_age*age + b_bmi*bmi + b_smoking*smoking + b_diabetes*diabetes + b_sbp*sbp\n", - " return (1-0.88431^(E-23.9388))\n", - "}\n", - "\n", - "men_chol <- function(age, chol, hdl_chol, sbp, smoking, diabetes, bp_treated){\n", - " b_age=3.06117\n", - " b_chol = 1.12370\n", - " b_hdl_chol = -0.93263\n", - " b_smoking=0.65451\n", - " b_diabetes=0.57367\n", - " if (bp_treated==FALSE){b_sbp=1.93303}\n", - " if (bp_treated==TRUE){b_sbp=1.99881}\n", - " E = b_age*age + b_chol*chol + b_hdl_chol*hdl_chol + b_smoking*smoking + b_diabetes*diabetes + b_sbp*sbp\n", - " return (1-0.88936^(E-23.9802))\n", - "}\n", - "\n", - "calculateFRS <- function(sex, age, bmi, chol, hdl_chol, sbp, smoking, diabetes, bp_treated){\n", - " print(bp_treated)\n", - " if (sex==\"M\"){\n", - " frs_bmi = men_bmi(age, bmi, sbp, smoking, diabetes, bp_treated)\n", - " frs_chol = men_chol(age, chol, hdl_chol, smoking, diabetes, bp_treated)\n", - " }\n", - " if (sex==\"F\"){\n", - " frs_bmi = women_bmi(age, bmi, sbp, smoking, diabetes, bp_treated)\n", - " frs_chol = women_chol(age, chol, hdl_chol, smoking, diabetes, bp_treated)\n", - " } \n", - " return (list(frs_bmi, frs_chol))\n", - "}\n" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1] FALSE\n" - ] - }, - { - "ename": "ERROR", - "evalue": "Error in men_chol(age, chol, hdl_chol, smoking, diabetes, bp_treated): argument \"bp_treated\" is missing, with no default\n", - "output_type": "error", - "traceback": [ - "Error in men_chol(age, chol, hdl_chol, smoking, diabetes, bp_treated): argument \"bp_treated\" is missing, with no default\nTraceback:\n", - "1. calculateFRS(sex = \"M\", age = 30, bmi = 22.5, chol = 180, hdl_chol = 45, \n . sbp = 125, smoking = 0, diabetes = 0, bp_treated = FALSE)", - "2. men_chol(age, chol, hdl_chol, smoking, diabetes, bp_treated) # at line 51 of file " - ] - } - ], - "source": [ - "frs = calculateFRS(sex=\"M\", age=30, bmi=22.5, chol=180, hdl_chol=45, sbp=125, smoking=0, diabetes=0, bp_treated=FALSE)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "ename": "ERROR", - "evalue": "Error in eval(expr, envir, enclos): object 'frs' not found\n", - "output_type": "error", - "traceback": [ - "Error in eval(expr, envir, enclos): object 'frs' not found\nTraceback:\n" - ] - } - ], - "source": [ - "frs" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A tibble: 6 × 330
eidPGS000011PGS000013PGS000016PGS000018PGS000039PGS000057PGS000058PGS000059PGS000116death_cvd_eventdeath_cvd_event_timeSCORE_eventSCORE_event_timeASCVD_eventASCVD_event_timeQRISK3_eventQRISK3_event_timeMACE_eventMACE_event_time
<int><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><int><dbl><int><dbl><int><dbl><int><dbl><int><dbl>
10000183.17077014.1821625.47860-7.9100040.19609933.6902758.5132304.0602352.543097010.62560010.62560010.335387010.335387010.335387
10000203.93556514.2036125.50886-7.3382070.38205384.1700008.6655293.6400002.575014012.35592012.35592012.065708012.065708012.065708
10000374.22365414.2481825.54972-7.5330610.18998844.2886278.5409085.5414512.441255011.62765011.627651 7.9698841 7.969884011.337440
10000433.52957514.1765025.39414-7.7686480.28938834.1300008.5154474.2610982.740589011.06913011.069131 5.1225191 5.1225191 5.122519
10000513.61819914.2169125.39648-7.4862260.17769323.8700008.0439324.2072552.460508014.05065014.05065013.760438013.760438013.760438
10000663.55504014.1913325.47087-7.5015050.45342604.1000008.3454223.5215692.746012010.53525010.53525010.245038010.245038010.245038
\n" - ], - "text/latex": [ - "A tibble: 6 × 330\n", - "\\begin{tabular}{lllllllllllllllllllll}\n", - " eid & PGS000011 & PGS000013 & PGS000016 & PGS000018 & PGS000039 & PGS000057 & PGS000058 & PGS000059 & PGS000116 & ⋯ & death\\_cvd\\_event & death\\_cvd\\_event\\_time & SCORE\\_event & SCORE\\_event\\_time & ASCVD\\_event & ASCVD\\_event\\_time & QRISK3\\_event & QRISK3\\_event\\_time & MACE\\_event & MACE\\_event\\_time\\\\\n", - " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1000018 & 3.170770 & 14.18216 & 25.47860 & -7.910004 & 0.1960993 & 3.690275 & 8.513230 & 4.060235 & 2.543097 & ⋯ & 0 & 10.62560 & 0 & 10.62560 & 0 & 10.335387 & 0 & 10.335387 & 0 & 10.335387\\\\\n", - "\t 1000020 & 3.935565 & 14.20361 & 25.50886 & -7.338207 & 0.3820538 & 4.170000 & 8.665529 & 3.640000 & 2.575014 & ⋯ & 0 & 12.35592 & 0 & 12.35592 & 0 & 12.065708 & 0 & 12.065708 & 0 & 12.065708\\\\\n", - "\t 1000037 & 4.223654 & 14.24818 & 25.54972 & -7.533061 & 0.1899884 & 4.288627 & 8.540908 & 5.541451 & 2.441255 & ⋯ & 0 & 11.62765 & 0 & 11.62765 & 1 & 7.969884 & 1 & 7.969884 & 0 & 11.337440\\\\\n", - "\t 1000043 & 3.529575 & 14.17650 & 25.39414 & -7.768648 & 0.2893883 & 4.130000 & 8.515447 & 4.261098 & 2.740589 & ⋯ & 0 & 11.06913 & 0 & 11.06913 & 1 & 5.122519 & 1 & 5.122519 & 1 & 5.122519\\\\\n", - "\t 1000051 & 3.618199 & 14.21691 & 25.39648 & -7.486226 & 0.1776932 & 3.870000 & 8.043932 & 4.207255 & 2.460508 & ⋯ & 0 & 14.05065 & 0 & 14.05065 & 0 & 13.760438 & 0 & 13.760438 & 0 & 13.760438\\\\\n", - "\t 1000066 & 3.555040 & 14.19133 & 25.47087 & -7.501505 & 0.4534260 & 4.100000 & 8.345422 & 3.521569 & 2.746012 & ⋯ & 0 & 10.53525 & 0 & 10.53525 & 0 & 10.245038 & 0 & 10.245038 & 0 & 10.245038\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A tibble: 6 × 330\n", - "\n", - "| eid <int> | PGS000011 <dbl> | PGS000013 <dbl> | PGS000016 <dbl> | PGS000018 <dbl> | PGS000039 <dbl> | PGS000057 <dbl> | PGS000058 <dbl> | PGS000059 <dbl> | PGS000116 <dbl> | ⋯ ⋯ | death_cvd_event <int> | death_cvd_event_time <dbl> | SCORE_event <int> | SCORE_event_time <dbl> | ASCVD_event <int> | ASCVD_event_time <dbl> | QRISK3_event <int> | QRISK3_event_time <dbl> | MACE_event <int> | MACE_event_time <dbl> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 1000018 | 3.170770 | 14.18216 | 25.47860 | -7.910004 | 0.1960993 | 3.690275 | 8.513230 | 4.060235 | 2.543097 | ⋯ | 0 | 10.62560 | 0 | 10.62560 | 0 | 10.335387 | 0 | 10.335387 | 0 | 10.335387 |\n", - "| 1000020 | 3.935565 | 14.20361 | 25.50886 | -7.338207 | 0.3820538 | 4.170000 | 8.665529 | 3.640000 | 2.575014 | ⋯ | 0 | 12.35592 | 0 | 12.35592 | 0 | 12.065708 | 0 | 12.065708 | 0 | 12.065708 |\n", - "| 1000037 | 4.223654 | 14.24818 | 25.54972 | -7.533061 | 0.1899884 | 4.288627 | 8.540908 | 5.541451 | 2.441255 | ⋯ | 0 | 11.62765 | 0 | 11.62765 | 1 | 7.969884 | 1 | 7.969884 | 0 | 11.337440 |\n", - "| 1000043 | 3.529575 | 14.17650 | 25.39414 | -7.768648 | 0.2893883 | 4.130000 | 8.515447 | 4.261098 | 2.740589 | ⋯ | 0 | 11.06913 | 0 | 11.06913 | 1 | 5.122519 | 1 | 5.122519 | 1 | 5.122519 |\n", - "| 1000051 | 3.618199 | 14.21691 | 25.39648 | -7.486226 | 0.1776932 | 3.870000 | 8.043932 | 4.207255 | 2.460508 | ⋯ | 0 | 14.05065 | 0 | 14.05065 | 0 | 13.760438 | 0 | 13.760438 | 0 | 13.760438 |\n", - "| 1000066 | 3.555040 | 14.19133 | 25.47087 | -7.501505 | 0.4534260 | 4.100000 | 8.345422 | 3.521569 | 2.746012 | ⋯ | 0 | 10.53525 | 0 | 10.53525 | 0 | 10.245038 | 0 | 10.245038 | 0 | 10.245038 |\n", - "\n" - ], - "text/plain": [ - " eid PGS000011 PGS000013 PGS000016 PGS000018 PGS000039 PGS000057 PGS000058\n", - "1 1000018 3.170770 14.18216 25.47860 -7.910004 0.1960993 3.690275 8.513230 \n", - "2 1000020 3.935565 14.20361 25.50886 -7.338207 0.3820538 4.170000 8.665529 \n", - "3 1000037 4.223654 14.24818 25.54972 -7.533061 0.1899884 4.288627 8.540908 \n", - "4 1000043 3.529575 14.17650 25.39414 -7.768648 0.2893883 4.130000 8.515447 \n", - "5 1000051 3.618199 14.21691 25.39648 -7.486226 0.1776932 3.870000 8.043932 \n", - "6 1000066 3.555040 14.19133 25.47087 -7.501505 0.4534260 4.100000 8.345422 \n", - " PGS000059 PGS000116 death_cvd_event death_cvd_event_time SCORE_event\n", - "1 4.060235 2.543097 0 10.62560 0 \n", - "2 3.640000 2.575014 0 12.35592 0 \n", - "3 5.541451 2.441255 0 11.62765 0 \n", - "4 4.261098 2.740589 0 11.06913 0 \n", - "5 4.207255 2.460508 0 14.05065 0 \n", - "6 3.521569 2.746012 0 10.53525 0 \n", - " SCORE_event_time ASCVD_event ASCVD_event_time QRISK3_event QRISK3_event_time\n", - "1 10.62560 0 10.335387 0 10.335387 \n", - "2 12.35592 0 12.065708 0 12.065708 \n", - "3 11.62765 1 7.969884 1 7.969884 \n", - "4 11.06913 1 5.122519 1 5.122519 \n", - "5 14.05065 0 13.760438 0 13.760438 \n", - "6 10.53525 0 10.245038 0 10.245038 \n", - " MACE_event MACE_event_time\n", - "1 0 10.335387 \n", - "2 0 12.065708 \n", - "3 0 11.337440 \n", - "4 1 5.122519 \n", - "5 0 13.760438 \n", - "6 0 10.245038 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "head(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ESC SCORE (Conroy 2003)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Conroy 2003](http://eurheartj.oxfordjournals.org/content/24/11/987.full.pdf)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "Endpoints: Composite for fatal cardiovascular disease\n", - "defined in ICD9: 401 - 414 + 426 - 443 + 798.1 + 798.2, except: 426.7, 429.0, 430.0, 432.1, 437.3, 437.4, 437.5 + death\n", - "ICD10 (Keil, 2005): I10-15, I20-25, I44-51, I61-69, I70-73 + death" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:37:25.761469Z", - "start_time": "2020-11-04T09:37:25.008Z" - } - }, - "outputs": [], - "source": [ - "calculateRisk <- function(age, cholesterol, SBP, currentSmoker, betaSmoker, betaSBP, betaChol, coefs) {\n", - " # step 1 risks\n", - " Sage0 = exp(-exp(coefs[\"alpha\"])*(age - 20)^coefs[\"p\"])\n", - " Sage10 = exp(-exp(coefs[\"alpha\"])*(age - 10)^coefs[\"p\"])\n", - " # step 2 weights\n", - " w = betaChol*(cholesterol - 6) + betaSBP*(SBP - 120) + betaSmoker*currentSmoker\n", - " # step 3 weighted risks\n", - " Sage = (Sage0)^exp(w) \n", - " Sage1 = (Sage10)^exp(w) \n", - " # step 4 - 10 years survival\n", - " S10 = Sage1/Sage\n", - " # step 5 - endpoint\n", - " Risk10 = 1 - S10\n", - " Risk10\n", - "}\n", - "\n", - "calculateScoreEur <- function(age, cholesterol, SBP, currentSmoker, gender = \"Men\", risk = \"Low risk\") {\n", - " betaSmoker = c(0.71, 0.63)\n", - " betaSBP = c(0.018, 0.022)\n", - " betaChol = c(0.24, 0.02)\n", - " \n", - " coeffs <- array(c(-22.1, 4.71, -26.7, 5.64, -29.8, 6.36, -31.0, 6.62, -21.0, 4.62, -25.7, 5.47, -28.7, 6.23, -30.0, 6.42), \n", - " c(2,2,2,2),\n", - " dimnames = list(c(\"alpha\", \"p\"), c(\"CHD\", \"non CHD\"), c(\"Male\", \"Female\"), c(\"Low risk\", \"High risk\")))\n", - " \n", - " # step 6 - score\n", - " CVDrisk = calculateRisk(age, cholesterol, SBP, currentSmoker,\n", - " betaSmoker[1], betaSBP[1], betaChol[1], coeffs[,\"CHD\",gender,risk])\n", - " NonCVDrisk = calculateRisk(age, cholesterol, SBP, currentSmoker,\n", - " betaSmoker[2], betaSBP[2], betaChol[2], coeffs[,\"non CHD\",gender,risk])\n", - " \n", - " CVDrisk + NonCVDrisk\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:37:27.777535Z", - "start_time": "2020-11-04T09:37:27.089Z" - } - }, - "outputs": [], - "source": [ - "sex=\"Male\"\n", - "age_at_recruitment = 64\n", - "cholesterol = 6.8\n", - "systolic_blood_pressure = 140\n", - "current_smoker = 0" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:37:35.468832Z", - "start_time": "2020-11-04T09:37:34.753Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "alpha: 0.0544567488850661" - ], - "text/latex": [ - "\\textbf{alpha:} 0.0544567488850661" - ], - "text/markdown": [ - "**alpha:** 0.0544567488850661" - ], - "text/plain": [ - " alpha \n", - "0.05445675 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "calculateScoreEur(age_at_recruitment, cholesterol, systolic_blood_pressure, current_smoker, sex,risk=\"Low risk\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:37:47.821364Z", - "start_time": "2020-11-04T09:37:35.426Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 395738 × 2
eidscore_SCORE
<int><dbl>
10002850.0343943723
10006860.0401695746
10009740.0709517856
10010730.0319272214
10010980.0022416772
10011190.0157146322
10014580.0653505615
10015170.0630663630
10015910.0071638047
10017410.0025406444
10017590.0008309934
10020010.0205967683
10021820.0030319019
10022130.0206450410
10027100.0003370405
10028110.0158786970
10029770.0104503691
10032880.0773918236
10035350.0179705427
10036310.0179181051
10036500.0559637654
10038840.0031048374
10040070.0175649353
10040830.0314311047
10041050.0124366189
10043330.0041574702
10047670.0115299993
10048460.0129171473
10050110.0495698810
10050890.0179615686
60225980.045923338
60226350.031011270
60227000.105076824
60228190.026161350
60228260.012035669
60229060.015613808
60229850.021142888
60230180.055558255
60230510.001246383
60230920.016823842
60232060.026466977
60232850.035044543
60233340.031188639
60238150.040879787
60238590.006178257
60238880.025984983
60239740.042899815
60242460.022738162
60244700.008010350
60245050.032987159
60245180.016344226
60245430.031282738
60245840.004796794
60248100.047738609
60248350.001795017
60248610.001027473
60248830.009021477
60250600.005033320
60251160.011599217
60251470.002766033
\n" - ], - "text/latex": [ - "A data.table: 395738 × 2\n", - "\\begin{tabular}{ll}\n", - " eid & score\\_SCORE\\\\\n", - " & \\\\\n", - "\\hline\n", - "\t 1000285 & 0.0343943723\\\\\n", - "\t 1000686 & 0.0401695746\\\\\n", - "\t 1000974 & 0.0709517856\\\\\n", - "\t 1001073 & 0.0319272214\\\\\n", - "\t 1001098 & 0.0022416772\\\\\n", - "\t 1001119 & 0.0157146322\\\\\n", - "\t 1001458 & 0.0653505615\\\\\n", - "\t 1001517 & 0.0630663630\\\\\n", - "\t 1001591 & 0.0071638047\\\\\n", - "\t 1001741 & 0.0025406444\\\\\n", - "\t 1001759 & 0.0008309934\\\\\n", - "\t 1002001 & 0.0205967683\\\\\n", - "\t 1002182 & 0.0030319019\\\\\n", - "\t 1002213 & 0.0206450410\\\\\n", - "\t 1002710 & 0.0003370405\\\\\n", - "\t 1002811 & 0.0158786970\\\\\n", - "\t 1002977 & 0.0104503691\\\\\n", - "\t 1003288 & 0.0773918236\\\\\n", - "\t 1003535 & 0.0179705427\\\\\n", - "\t 1003631 & 0.0179181051\\\\\n", - "\t 1003650 & 0.0559637654\\\\\n", - "\t 1003884 & 0.0031048374\\\\\n", - "\t 1004007 & 0.0175649353\\\\\n", - "\t 1004083 & 0.0314311047\\\\\n", - "\t 1004105 & 0.0124366189\\\\\n", - "\t 1004333 & 0.0041574702\\\\\n", - "\t 1004767 & 0.0115299993\\\\\n", - "\t 1004846 & 0.0129171473\\\\\n", - "\t 1005011 & 0.0495698810\\\\\n", - "\t 1005089 & 0.0179615686\\\\\n", - "\t ⋮ & ⋮\\\\\n", - "\t 6022598 & 0.045923338\\\\\n", - "\t 6022635 & 0.031011270\\\\\n", - "\t 6022700 & 0.105076824\\\\\n", - "\t 6022819 & 0.026161350\\\\\n", - "\t 6022826 & 0.012035669\\\\\n", - "\t 6022906 & 0.015613808\\\\\n", - "\t 6022985 & 0.021142888\\\\\n", - "\t 6023018 & 0.055558255\\\\\n", - "\t 6023051 & 0.001246383\\\\\n", - "\t 6023092 & 0.016823842\\\\\n", - "\t 6023206 & 0.026466977\\\\\n", - "\t 6023285 & 0.035044543\\\\\n", - "\t 6023334 & 0.031188639\\\\\n", - "\t 6023815 & 0.040879787\\\\\n", - "\t 6023859 & 0.006178257\\\\\n", - "\t 6023888 & 0.025984983\\\\\n", - "\t 6023974 & 0.042899815\\\\\n", - "\t 6024246 & 0.022738162\\\\\n", - "\t 6024470 & 0.008010350\\\\\n", - "\t 6024505 & 0.032987159\\\\\n", - "\t 6024518 & 0.016344226\\\\\n", - "\t 6024543 & 0.031282738\\\\\n", - "\t 6024584 & 0.004796794\\\\\n", - "\t 6024810 & 0.047738609\\\\\n", - "\t 6024835 & 0.001795017\\\\\n", - "\t 6024861 & 0.001027473\\\\\n", - "\t 6024883 & 0.009021477\\\\\n", - "\t 6025060 & 0.005033320\\\\\n", - "\t 6025116 & 0.011599217\\\\\n", - "\t 6025147 & 0.002766033\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 395738 × 2\n", - "\n", - "| eid <int> | score_SCORE <dbl> |\n", - "|---|---|\n", - "| 1000285 | 0.0343943723 |\n", - "| 1000686 | 0.0401695746 |\n", - "| 1000974 | 0.0709517856 |\n", - "| 1001073 | 0.0319272214 |\n", - "| 1001098 | 0.0022416772 |\n", - "| 1001119 | 0.0157146322 |\n", - "| 1001458 | 0.0653505615 |\n", - "| 1001517 | 0.0630663630 |\n", - "| 1001591 | 0.0071638047 |\n", - "| 1001741 | 0.0025406444 |\n", - "| 1001759 | 0.0008309934 |\n", - "| 1002001 | 0.0205967683 |\n", - "| 1002182 | 0.0030319019 |\n", - "| 1002213 | 0.0206450410 |\n", - "| 1002710 | 0.0003370405 |\n", - "| 1002811 | 0.0158786970 |\n", - "| 1002977 | 0.0104503691 |\n", - "| 1003288 | 0.0773918236 |\n", - "| 1003535 | 0.0179705427 |\n", - "| 1003631 | 0.0179181051 |\n", - "| 1003650 | 0.0559637654 |\n", - "| 1003884 | 0.0031048374 |\n", - "| 1004007 | 0.0175649353 |\n", - "| 1004083 | 0.0314311047 |\n", - "| 1004105 | 0.0124366189 |\n", - "| 1004333 | 0.0041574702 |\n", - "| 1004767 | 0.0115299993 |\n", - "| 1004846 | 0.0129171473 |\n", - "| 1005011 | 0.0495698810 |\n", - "| 1005089 | 0.0179615686 |\n", - "| ⋮ | ⋮ |\n", - "| 6022598 | 0.045923338 |\n", - "| 6022635 | 0.031011270 |\n", - "| 6022700 | 0.105076824 |\n", - "| 6022819 | 0.026161350 |\n", - "| 6022826 | 0.012035669 |\n", - "| 6022906 | 0.015613808 |\n", - "| 6022985 | 0.021142888 |\n", - "| 6023018 | 0.055558255 |\n", - "| 6023051 | 0.001246383 |\n", - "| 6023092 | 0.016823842 |\n", - "| 6023206 | 0.026466977 |\n", - "| 6023285 | 0.035044543 |\n", - "| 6023334 | 0.031188639 |\n", - "| 6023815 | 0.040879787 |\n", - "| 6023859 | 0.006178257 |\n", - "| 6023888 | 0.025984983 |\n", - "| 6023974 | 0.042899815 |\n", - "| 6024246 | 0.022738162 |\n", - "| 6024470 | 0.008010350 |\n", - "| 6024505 | 0.032987159 |\n", - "| 6024518 | 0.016344226 |\n", - "| 6024543 | 0.031282738 |\n", - "| 6024584 | 0.004796794 |\n", - "| 6024810 | 0.047738609 |\n", - "| 6024835 | 0.001795017 |\n", - "| 6024861 | 0.001027473 |\n", - "| 6024883 | 0.009021477 |\n", - "| 6025060 | 0.005033320 |\n", - "| 6025116 | 0.011599217 |\n", - "| 6025147 | 0.002766033 |\n", - "\n" - ], - "text/plain": [ - " eid score_SCORE \n", - "1 1000285 0.0343943723\n", - "2 1000686 0.0401695746\n", - "3 1000974 0.0709517856\n", - "4 1001073 0.0319272214\n", - "5 1001098 0.0022416772\n", - "6 1001119 0.0157146322\n", - "7 1001458 0.0653505615\n", - "8 1001517 0.0630663630\n", - "9 1001591 0.0071638047\n", - "10 1001741 0.0025406444\n", - "11 1001759 0.0008309934\n", - "12 1002001 0.0205967683\n", - "13 1002182 0.0030319019\n", - "14 1002213 0.0206450410\n", - "15 1002710 0.0003370405\n", - "16 1002811 0.0158786970\n", - "17 1002977 0.0104503691\n", - "18 1003288 0.0773918236\n", - "19 1003535 0.0179705427\n", - "20 1003631 0.0179181051\n", - "21 1003650 0.0559637654\n", - "22 1003884 0.0031048374\n", - "23 1004007 0.0175649353\n", - "24 1004083 0.0314311047\n", - "25 1004105 0.0124366189\n", - "26 1004333 0.0041574702\n", - "27 1004767 0.0115299993\n", - "28 1004846 0.0129171473\n", - "29 1005011 0.0495698810\n", - "30 1005089 0.0179615686\n", - " \n", - "395709 6022598 0.045923338 \n", - "395710 6022635 0.031011270 \n", - "395711 6022700 0.105076824 \n", - "395712 6022819 0.026161350 \n", - "395713 6022826 0.012035669 \n", - "395714 6022906 0.015613808 \n", - "395715 6022985 0.021142888 \n", - "395716 6023018 0.055558255 \n", - "395717 6023051 0.001246383 \n", - "395718 6023092 0.016823842 \n", - "395719 6023206 0.026466977 \n", - "395720 6023285 0.035044543 \n", - "395721 6023334 0.031188639 \n", - "395722 6023815 0.040879787 \n", - "395723 6023859 0.006178257 \n", - "395724 6023888 0.025984983 \n", - "395725 6023974 0.042899815 \n", - "395726 6024246 0.022738162 \n", - "395727 6024470 0.008010350 \n", - "395728 6024505 0.032987159 \n", - "395729 6024518 0.016344226 \n", - "395730 6024543 0.031282738 \n", - "395731 6024584 0.004796794 \n", - "395732 6024810 0.047738609 \n", - "395733 6024835 0.001795017 \n", - "395734 6024861 0.001027473 \n", - "395735 6024883 0.009021477 \n", - "395736 6025060 0.005033320 \n", - "395737 6025116 0.011599217 \n", - "395738 6025147 0.002766033 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "temp = data.table(data %>% select(eid, age_at_recruitment, cholesterol, systolic_blood_pressure, smoking_status, sex) %>% mutate(current_smoker = case_when(smoking_status==\"Current\" ~ 1, TRUE ~ 0)))\n", - "SCORE_df = temp[, score_SCORE:=calculateScoreEur(age_at_recruitment, cholesterol, systolic_blood_pressure, current_smoker, sex,risk=\"Low risk\"), by=\"eid\"] %>% select(c(eid, score_SCORE))\n", - "SCORE_df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ACC/AHA ASCVD (Goff 2014)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Goof 2014](https://www.ahajournals.org/doi/pdf/10.1161/01.cir.0000437741.48606.98)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "endpoints: composite of first occurrence of\n", - "- nonfatal myocardial infarction I20-25 - hospital admission record\n", - "- coronary heart disease death I20-I25 - mortality record\n", - "- nonfatal or fatal stroke I63 hospital admission + mortality record\n", - "exclusion: free from ASCVD event" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:38:02.240851Z", - "start_time": "2020-11-04T09:38:01.564Z" - } - }, - "outputs": [], - "source": [ - "coefs_string = '\"ln_age\" \"ln_age_squared\" \"ln_total_cholest\" \"ln_age_totcholest\" \"ln_hdlC\" \"ln_age_hdlC\" \"ln_treated_BP\" \"ln_age_BP\" \"ln_untreated_BP\" \"ln_age_ln_untreated_BP\" \"smoker\" \"nonsmoker\" \"ln_age_smoker\" \"diabetes\" \"nondiabetes\" \"meancoef\" \"baseline\"\n", - " \"white_female\" -29.799 4.884 13.54 -3.114 -13.578 3.149 2.019 0 1.957 0 7.574 0 -1.665 0.661 0 -29.18 0.9665\n", - " \"afroamer_female\" 17.114 0 0.94 0 -18.92 4.475 29.291 -6.432 27.82 -6.087 0.691 0 0 0.874 0 86.61 0.9533\n", - " \"white_male\" 12.344 0 11.853 -2.664 -7.99 1.769 1.797 0 1.764 0 7.837 0 -1.795 0.658 0 61.18 0.9144\n", - " \"afroamer_male\" 2.469 0 0.302 0 -0.307 0 1.916 0 1.809 0 0.549 0 0 0.645 0 19.54 0.8954'" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:38:03.013264Z", - "start_time": "2020-11-04T09:38:02.333Z" - } - }, - "outputs": [], - "source": [ - "# from Appendix 7\n", - "coefs <- read.table(text=coefs_string, row.names=1)\n", - "#coefs\n", - "\n", - "calculateASCVD <- function(coefs=coefs, sex=\"Male\", ethnicity=\"White\", age=53, cholesterol=2, hdl_cholesterol=1.1, systolic_blood_pressure=120, antihypertensives=1, diabetes=0, smoking=1) {\n", - " \n", - " if (!is.na(ethnicity)) {\n", - " \n", - " if ((sex==\"Female\")&(ethnicity != \"Black\")){const=coefs[1,]} \n", - " if ((sex==\"Female\")&(ethnicity==\"Black\")){const=coefs[2,]} \n", - " if ((sex==\"Male\")&(ethnicity != \"Black\")){const=coefs[3,]} \n", - " if ((sex==\"Male\")&(ethnicity==\"Black\")){const=coefs[4,]} \n", - "\n", - " if (smoking==TRUE){smokc=const$smoker} else {smokc=const$nonsmoker}\n", - " if (smoking==TRUE){smokcov=1} else {smokcov=0}\n", - "\n", - " if (antihypertensives==TRUE){BPc=const$ln_treated_BP} else {BPc=const$ln_untreated_BP}\n", - " if (antihypertensives==TRUE){BPcov=const$ln_age_BP} else {BPcov=const$ln_age_ln_untreated_BP}\n", - "\n", - " if (diabetes==TRUE){diab=const$diabetes} else {diab=const$nondiabetes}\n", - "\n", - " # meancoef = const$meancoef\n", - "\n", - " calc = log(age)*const$ln_age+log(age)*log(age)*const$ln_age_squared+\n", - " log(cholesterol*38.67)*const$ln_total_cholest+\n", - " log(age)*log(cholesterol*38.67)*const$ln_age_totcholest+\n", - " log(hdl_cholesterol*38.67)*const$ln_hdlC+\n", - " log(age)*log(hdl_cholesterol*38.67)*const$ln_age_hdlC+\n", - " smokc+smokcov*log(age)*const$ln_age_smoker+\n", - " log(systolic_blood_pressure)*BPc+\n", - " log(age)*log(systolic_blood_pressure)*BPcov+diab\n", - " \n", - " ASCVD<-(1-(const$baseline^exp(calc-const$meancoef)))\n", - " } else {ASCVD=NA}\n", - " return (ASCVD)\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:39:29.590535Z", - "start_time": "2020-11-04T09:38:03.549Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 6 × 2
eidscore_ASCVD
<int><dbl>
10002850.14320501
10006860.13781988
10009740.38666508
10010730.07376216
10010980.01139464
10011190.04382689
\n" - ], - "text/latex": [ - "A data.table: 6 × 2\n", - "\\begin{tabular}{ll}\n", - " eid & score\\_ASCVD\\\\\n", - " & \\\\\n", - "\\hline\n", - "\t 1000285 & 0.14320501\\\\\n", - "\t 1000686 & 0.13781988\\\\\n", - "\t 1000974 & 0.38666508\\\\\n", - "\t 1001073 & 0.07376216\\\\\n", - "\t 1001098 & 0.01139464\\\\\n", - "\t 1001119 & 0.04382689\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 6 × 2\n", - "\n", - "| eid <int> | score_ASCVD <dbl> |\n", - "|---|---|\n", - "| 1000285 | 0.14320501 |\n", - "| 1000686 | 0.13781988 |\n", - "| 1000974 | 0.38666508 |\n", - "| 1001073 | 0.07376216 |\n", - "| 1001098 | 0.01139464 |\n", - "| 1001119 | 0.04382689 |\n", - "\n" - ], - "text/plain": [ - " eid score_ASCVD\n", - "1 1000285 0.14320501 \n", - "2 1000686 0.13781988 \n", - "3 1000974 0.38666508 \n", - "4 1001073 0.07376216 \n", - "5 1001098 0.01139464 \n", - "6 1001119 0.04382689 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "temp = data.table(data %>% select(eid, age_at_recruitment, ethnic_background, sex, cholesterol, hdl_cholesterol, systolic_blood_pressure, antihypertensives, diabetes2, smoking_status) %>%\n", - " mutate(current_smoker = case_when(smoking_status==\"Current\" ~ TRUE, TRUE ~ FALSE)))\n", - "ASCVD_df = temp[, score_ASCVD:=calculateASCVD(coefs, sex, ethnic_background, age_at_recruitment, cholesterol, hdl_cholesterol, systolic_blood_pressure, antihypertensives, diabetes2, current_smoker), by=eid] %>% select(c(eid, score_ASCVD))\n", - "head(ASCVD_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A data.table: 395738 × 12
eidage_at_recruitmentethnic_backgroundsexcholesterolhdl_cholesterolsystolic_blood_pressureantihypertensivesdiabetes2smoking_statuscurrent_smokerscore_ASCVD
<int><dbl><chr><chr><dbl><dbl><dbl><lgl><lgl><chr><lgl><dbl>
100028564WhiteMale 4.4840.918135.5FALSEFALSENever FALSE0.143205008
100068658WhiteMale 7.1391.159147.5FALSEFALSENever FALSE0.137819883
100097469WhiteMale 4.3021.075154.0FALSE TRUEPreviousFALSE0.386665084
100107364WhiteFemale6.9441.608148.0FALSEFALSENever FALSE0.073762156
100109847WhiteFemale5.3891.477139.5FALSEFALSENever FALSE0.011394640
100111962WhiteFemale4.8331.461137.5FALSEFALSEPreviousFALSE0.043826887
100145859WhiteMale 4.8791.097153.0FALSEFALSECurrent TRUE0.184407293
100151766WhiteMale 6.3531.879143.5FALSEFALSEPreviousFALSE0.154071008
100159150WhiteMale 5.6751.418112.5FALSEFALSENever FALSE0.028630793
100174147WhiteFemale4.8801.157149.0FALSEFALSEPreviousFALSE0.015815727
100175944WhiteFemale6.1771.560110.0FALSEFALSENever FALSE0.006567331
100200159WhiteMale 6.4491.884114.0FALSEFALSEPreviousFALSE0.060675171
100218248WhiteFemale5.3811.642146.5FALSEFALSENever FALSE0.011755503
100221359WhiteFemale7.8811.497148.0FALSEFALSEPreviousFALSE0.053596257
100271040WhiteFemale4.4821.512115.5FALSEFALSENever FALSE0.003121729
100281159WhiteFemale6.8422.215142.5FALSEFALSENever FALSE0.033436135
100297757WhiteFemale7.0242.850132.5FALSEFALSEPreviousFALSE0.019330514
100328870WhiteFemale7.5401.470157.5FALSEFALSENever FALSE0.153816413
100353551WhiteMale 6.6880.876145.5FALSEFALSENever FALSE0.099090730
100363166WhiteFemale6.1361.159113.5FALSEFALSEPreviousFALSE0.057791311
100365065WhiteMale 5.6211.536147.5FALSEFALSENever FALSE0.154145834
100388440WhiteMale 6.4721.076128.0FALSEFALSEPreviousFALSE0.022764260
100400764WhiteFemale4.1130.705136.0FALSEFALSEPreviousFALSE0.068493283
100408360WhiteFemale8.2571.266160.5FALSEFALSENever FALSE0.078568847
100410545BlackMale 4.3591.375149.0FALSEFALSECurrent TRUE0.085530257
100433350WhiteFemale5.1671.327148.0FALSEFALSEPreviousFALSE0.017895970
100476747WhiteMale 6.1711.050151.0FALSEFALSENever FALSE0.056475791
100484647WhiteMale 6.3211.487119.0FALSEFALSECurrent TRUE0.064303517
100501156WhiteMale 6.4241.648175.0FALSEFALSENever FALSE0.107297652
100508966WhiteFemale5.1081.447120.5FALSEFALSENever FALSE0.054585602
602259866WhiteFemale6.3091.759160.0FALSEFALSEPreviousFALSE0.09574848
602263563WhiteFemale5.8591.699159.5FALSEFALSEPreviousFALSE0.06756539
602270070WhiteMale 5.3351.198163.0FALSEFALSENever FALSE0.27527480
602281962WhiteFemale6.5931.560117.5FALSEFALSECurrent TRUE0.07620732
602282660WhiteFemale5.1401.425134.0FALSEFALSENever FALSE0.03579095
602290660WhiteFemale7.4361.952131.0FALSEFALSENever FALSE0.03693190
602298562WhiteFemale7.0592.340137.5FALSEFALSEPreviousFALSE0.04326065
602301864WhiteMale 6.3020.916145.5FALSEFALSEPreviousFALSE0.20415579
602305145WhiteFemale6.5801.404118.5FALSEFALSENever FALSE0.01070025
602309261WhiteFemale6.4741.504136.0FALSEFALSENever FALSE0.04668794
602320661WhiteFemale7.1722.400154.0FALSEFALSEPreviousFALSE0.04775392
602328563WhiteMale 4.3150.588142.0FALSEFALSEPreviousFALSE0.18297574
602333460WhiteMale 6.0381.060135.0FALSEFALSENever FALSE0.12451617
602381564WhiteMale 6.5631.398127.0FALSEFALSENever FALSE0.13225327
602385946BlackMale 4.3601.082141.5FALSEFALSENever FALSE0.05204528
602388861WhiteFemale5.4722.153164.5FALSEFALSEPreviousFALSE0.04765866
602397462WhiteMale 6.5200.942138.5FALSEFALSEPreviousFALSE0.16982618
602424664WhiteFemale6.8331.472131.5FALSEFALSEPreviousFALSE0.06091005
602447049WhiteFemale6.2002.116148.0FALSEFALSECurrent TRUE0.03402195
602450558WhiteMale 6.0681.048147.0FALSEFALSENever FALSE0.12637519
602451849WhiteMale 6.3381.301155.5FALSEFALSENever FALSE0.05838098
602454364WhiteFemale7.9861.502139.0FALSEFALSENever FALSE0.07322825
602458447WhiteFemale7.4931.945128.0FALSEFALSECurrent TRUE0.03404419
602481061WhiteFemale7.7921.694145.0FALSEFALSECurrent TRUE0.11267643
602483545WhiteFemale6.8531.539135.0FALSEFALSENever FALSE0.01276662
602486144WhiteFemale5.1560.977128.0FALSEFALSENever FALSE0.01394681
602488349WhiteMale 6.0421.241127.0FALSEFALSENever FALSE0.04046171
602506045WhiteMale 4.9071.137132.5FALSEFALSENever FALSE0.02311942
602511652WhiteFemale7.6531.604167.5FALSEFALSENever FALSE0.03533682
602514743AsianMale 4.9071.411115.0FALSEFALSENever FALSE0.01078727
\n" - ], - "text/latex": [ - "A data.table: 395738 × 12\n", - "\\begin{tabular}{llllllllllll}\n", - " eid & age\\_at\\_recruitment & ethnic\\_background & sex & cholesterol & hdl\\_cholesterol & systolic\\_blood\\_pressure & antihypertensives & diabetes2 & smoking\\_status & current\\_smoker & score\\_ASCVD\\\\\n", - " & & & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1000285 & 64 & White & Male & 4.484 & 0.918 & 135.5 & FALSE & FALSE & Never & FALSE & 0.143205008\\\\\n", - "\t 1000686 & 58 & White & Male & 7.139 & 1.159 & 147.5 & FALSE & FALSE & Never & FALSE & 0.137819883\\\\\n", - "\t 1000974 & 69 & White & Male & 4.302 & 1.075 & 154.0 & FALSE & TRUE & Previous & FALSE & 0.386665084\\\\\n", - "\t 1001073 & 64 & White & Female & 6.944 & 1.608 & 148.0 & FALSE & FALSE & Never & FALSE & 0.073762156\\\\\n", - "\t 1001098 & 47 & White & Female & 5.389 & 1.477 & 139.5 & FALSE & FALSE & Never & FALSE & 0.011394640\\\\\n", - "\t 1001119 & 62 & White & Female & 4.833 & 1.461 & 137.5 & FALSE & FALSE & Previous & FALSE & 0.043826887\\\\\n", - "\t 1001458 & 59 & White & Male & 4.879 & 1.097 & 153.0 & FALSE & FALSE & Current & TRUE & 0.184407293\\\\\n", - "\t 1001517 & 66 & White & Male & 6.353 & 1.879 & 143.5 & FALSE & FALSE & Previous & FALSE & 0.154071008\\\\\n", - "\t 1001591 & 50 & White & Male & 5.675 & 1.418 & 112.5 & FALSE & FALSE & Never & FALSE & 0.028630793\\\\\n", - "\t 1001741 & 47 & White & Female & 4.880 & 1.157 & 149.0 & FALSE & FALSE & Previous & FALSE & 0.015815727\\\\\n", - "\t 1001759 & 44 & White & Female & 6.177 & 1.560 & 110.0 & FALSE & FALSE & Never & FALSE & 0.006567331\\\\\n", - "\t 1002001 & 59 & White & Male & 6.449 & 1.884 & 114.0 & FALSE & FALSE & Previous & FALSE & 0.060675171\\\\\n", - "\t 1002182 & 48 & White & Female & 5.381 & 1.642 & 146.5 & FALSE & FALSE & Never & FALSE & 0.011755503\\\\\n", - "\t 1002213 & 59 & White & Female & 7.881 & 1.497 & 148.0 & FALSE & FALSE & Previous & FALSE & 0.053596257\\\\\n", - "\t 1002710 & 40 & White & Female & 4.482 & 1.512 & 115.5 & FALSE & FALSE & Never & FALSE & 0.003121729\\\\\n", - "\t 1002811 & 59 & White & Female & 6.842 & 2.215 & 142.5 & FALSE & FALSE & Never & FALSE & 0.033436135\\\\\n", - "\t 1002977 & 57 & White & Female & 7.024 & 2.850 & 132.5 & FALSE & FALSE & Previous & FALSE & 0.019330514\\\\\n", - "\t 1003288 & 70 & White & Female & 7.540 & 1.470 & 157.5 & FALSE & FALSE & Never & FALSE & 0.153816413\\\\\n", - "\t 1003535 & 51 & White & Male & 6.688 & 0.876 & 145.5 & FALSE & FALSE & Never & FALSE & 0.099090730\\\\\n", - "\t 1003631 & 66 & White & Female & 6.136 & 1.159 & 113.5 & FALSE & FALSE & Previous & FALSE & 0.057791311\\\\\n", - "\t 1003650 & 65 & White & Male & 5.621 & 1.536 & 147.5 & FALSE & FALSE & Never & FALSE & 0.154145834\\\\\n", - "\t 1003884 & 40 & White & Male & 6.472 & 1.076 & 128.0 & FALSE & FALSE & Previous & FALSE & 0.022764260\\\\\n", - "\t 1004007 & 64 & White & Female & 4.113 & 0.705 & 136.0 & FALSE & FALSE & Previous & FALSE & 0.068493283\\\\\n", - "\t 1004083 & 60 & White & Female & 8.257 & 1.266 & 160.5 & FALSE & FALSE & Never & FALSE & 0.078568847\\\\\n", - "\t 1004105 & 45 & Black & Male & 4.359 & 1.375 & 149.0 & FALSE & FALSE & Current & TRUE & 0.085530257\\\\\n", - "\t 1004333 & 50 & White & Female & 5.167 & 1.327 & 148.0 & FALSE & FALSE & Previous & FALSE & 0.017895970\\\\\n", - "\t 1004767 & 47 & White & Male & 6.171 & 1.050 & 151.0 & FALSE & FALSE & Never & FALSE & 0.056475791\\\\\n", - "\t 1004846 & 47 & White & Male & 6.321 & 1.487 & 119.0 & FALSE & FALSE & Current & TRUE & 0.064303517\\\\\n", - "\t 1005011 & 56 & White & Male & 6.424 & 1.648 & 175.0 & FALSE & FALSE & Never & FALSE & 0.107297652\\\\\n", - "\t 1005089 & 66 & White & Female & 5.108 & 1.447 & 120.5 & FALSE & FALSE & Never & FALSE & 0.054585602\\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 6022598 & 66 & White & Female & 6.309 & 1.759 & 160.0 & FALSE & FALSE & Previous & FALSE & 0.09574848\\\\\n", - "\t 6022635 & 63 & White & Female & 5.859 & 1.699 & 159.5 & FALSE & FALSE & Previous & FALSE & 0.06756539\\\\\n", - "\t 6022700 & 70 & White & Male & 5.335 & 1.198 & 163.0 & FALSE & FALSE & Never & FALSE & 0.27527480\\\\\n", - "\t 6022819 & 62 & White & Female & 6.593 & 1.560 & 117.5 & FALSE & FALSE & Current & TRUE & 0.07620732\\\\\n", - "\t 6022826 & 60 & White & Female & 5.140 & 1.425 & 134.0 & FALSE & FALSE & Never & FALSE & 0.03579095\\\\\n", - "\t 6022906 & 60 & White & Female & 7.436 & 1.952 & 131.0 & FALSE & FALSE & Never & FALSE & 0.03693190\\\\\n", - "\t 6022985 & 62 & White & Female & 7.059 & 2.340 & 137.5 & FALSE & FALSE & Previous & FALSE & 0.04326065\\\\\n", - "\t 6023018 & 64 & White & Male & 6.302 & 0.916 & 145.5 & FALSE & FALSE & Previous & FALSE & 0.20415579\\\\\n", - "\t 6023051 & 45 & White & Female & 6.580 & 1.404 & 118.5 & FALSE & FALSE & Never & FALSE & 0.01070025\\\\\n", - "\t 6023092 & 61 & White & Female & 6.474 & 1.504 & 136.0 & FALSE & FALSE & Never & FALSE & 0.04668794\\\\\n", - "\t 6023206 & 61 & White & Female & 7.172 & 2.400 & 154.0 & FALSE & FALSE & Previous & FALSE & 0.04775392\\\\\n", - "\t 6023285 & 63 & White & Male & 4.315 & 0.588 & 142.0 & FALSE & FALSE & Previous & FALSE & 0.18297574\\\\\n", - "\t 6023334 & 60 & White & Male & 6.038 & 1.060 & 135.0 & FALSE & FALSE & Never & FALSE & 0.12451617\\\\\n", - "\t 6023815 & 64 & White & Male & 6.563 & 1.398 & 127.0 & FALSE & FALSE & Never & FALSE & 0.13225327\\\\\n", - "\t 6023859 & 46 & Black & Male & 4.360 & 1.082 & 141.5 & FALSE & FALSE & Never & FALSE & 0.05204528\\\\\n", - "\t 6023888 & 61 & White & Female & 5.472 & 2.153 & 164.5 & FALSE & FALSE & Previous & FALSE & 0.04765866\\\\\n", - "\t 6023974 & 62 & White & Male & 6.520 & 0.942 & 138.5 & FALSE & FALSE & Previous & FALSE & 0.16982618\\\\\n", - "\t 6024246 & 64 & White & Female & 6.833 & 1.472 & 131.5 & FALSE & FALSE & Previous & FALSE & 0.06091005\\\\\n", - "\t 6024470 & 49 & White & Female & 6.200 & 2.116 & 148.0 & FALSE & FALSE & Current & TRUE & 0.03402195\\\\\n", - "\t 6024505 & 58 & White & Male & 6.068 & 1.048 & 147.0 & FALSE & FALSE & Never & FALSE & 0.12637519\\\\\n", - "\t 6024518 & 49 & White & Male & 6.338 & 1.301 & 155.5 & FALSE & FALSE & Never & FALSE & 0.05838098\\\\\n", - "\t 6024543 & 64 & White & Female & 7.986 & 1.502 & 139.0 & FALSE & FALSE & Never & FALSE & 0.07322825\\\\\n", - "\t 6024584 & 47 & White & Female & 7.493 & 1.945 & 128.0 & FALSE & FALSE & Current & TRUE & 0.03404419\\\\\n", - "\t 6024810 & 61 & White & Female & 7.792 & 1.694 & 145.0 & FALSE & FALSE & Current & TRUE & 0.11267643\\\\\n", - "\t 6024835 & 45 & White & Female & 6.853 & 1.539 & 135.0 & FALSE & FALSE & Never & FALSE & 0.01276662\\\\\n", - "\t 6024861 & 44 & White & Female & 5.156 & 0.977 & 128.0 & FALSE & FALSE & Never & FALSE & 0.01394681\\\\\n", - "\t 6024883 & 49 & White & Male & 6.042 & 1.241 & 127.0 & FALSE & FALSE & Never & FALSE & 0.04046171\\\\\n", - "\t 6025060 & 45 & White & Male & 4.907 & 1.137 & 132.5 & FALSE & FALSE & Never & FALSE & 0.02311942\\\\\n", - "\t 6025116 & 52 & White & Female & 7.653 & 1.604 & 167.5 & FALSE & FALSE & Never & FALSE & 0.03533682\\\\\n", - "\t 6025147 & 43 & Asian & Male & 4.907 & 1.411 & 115.0 & FALSE & FALSE & Never & FALSE & 0.01078727\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A data.table: 395738 × 12\n", - "\n", - "| eid <int> | age_at_recruitment <dbl> | ethnic_background <chr> | sex <chr> | cholesterol <dbl> | hdl_cholesterol <dbl> | systolic_blood_pressure <dbl> | antihypertensives <lgl> | diabetes2 <lgl> | smoking_status <chr> | current_smoker <lgl> | score_ASCVD <dbl> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 1000285 | 64 | White | Male | 4.484 | 0.918 | 135.5 | FALSE | FALSE | Never | FALSE | 0.143205008 |\n", - "| 1000686 | 58 | White | Male | 7.139 | 1.159 | 147.5 | FALSE | FALSE | Never | FALSE | 0.137819883 |\n", - "| 1000974 | 69 | White | Male | 4.302 | 1.075 | 154.0 | FALSE | TRUE | Previous | FALSE | 0.386665084 |\n", - "| 1001073 | 64 | White | Female | 6.944 | 1.608 | 148.0 | FALSE | FALSE | Never | FALSE | 0.073762156 |\n", - "| 1001098 | 47 | White | Female | 5.389 | 1.477 | 139.5 | FALSE | FALSE | Never | FALSE | 0.011394640 |\n", - "| 1001119 | 62 | White | Female | 4.833 | 1.461 | 137.5 | FALSE | FALSE | Previous | FALSE | 0.043826887 |\n", - "| 1001458 | 59 | White | Male | 4.879 | 1.097 | 153.0 | FALSE | FALSE | Current | TRUE | 0.184407293 |\n", - "| 1001517 | 66 | White | Male | 6.353 | 1.879 | 143.5 | FALSE | FALSE | Previous | FALSE | 0.154071008 |\n", - "| 1001591 | 50 | White | Male | 5.675 | 1.418 | 112.5 | FALSE | FALSE | Never | FALSE | 0.028630793 |\n", - "| 1001741 | 47 | White | Female | 4.880 | 1.157 | 149.0 | FALSE | FALSE | Previous | FALSE | 0.015815727 |\n", - "| 1001759 | 44 | White | Female | 6.177 | 1.560 | 110.0 | FALSE | FALSE | Never | FALSE | 0.006567331 |\n", - "| 1002001 | 59 | White | Male | 6.449 | 1.884 | 114.0 | FALSE | FALSE | Previous | FALSE | 0.060675171 |\n", - "| 1002182 | 48 | White | Female | 5.381 | 1.642 | 146.5 | FALSE | FALSE | Never | FALSE | 0.011755503 |\n", - "| 1002213 | 59 | White | Female | 7.881 | 1.497 | 148.0 | FALSE | FALSE | Previous | FALSE | 0.053596257 |\n", - "| 1002710 | 40 | White | Female | 4.482 | 1.512 | 115.5 | FALSE | FALSE | Never | FALSE | 0.003121729 |\n", - "| 1002811 | 59 | White | Female | 6.842 | 2.215 | 142.5 | FALSE | FALSE | Never | FALSE | 0.033436135 |\n", - "| 1002977 | 57 | White | Female | 7.024 | 2.850 | 132.5 | FALSE | FALSE | Previous | FALSE | 0.019330514 |\n", - "| 1003288 | 70 | White | Female | 7.540 | 1.470 | 157.5 | FALSE | FALSE | Never | FALSE | 0.153816413 |\n", - "| 1003535 | 51 | White | Male | 6.688 | 0.876 | 145.5 | FALSE | FALSE | Never | FALSE | 0.099090730 |\n", - "| 1003631 | 66 | White | Female | 6.136 | 1.159 | 113.5 | FALSE | FALSE | Previous | FALSE | 0.057791311 |\n", - "| 1003650 | 65 | White | Male | 5.621 | 1.536 | 147.5 | FALSE | FALSE | Never | FALSE | 0.154145834 |\n", - "| 1003884 | 40 | White | Male | 6.472 | 1.076 | 128.0 | FALSE | FALSE | Previous | FALSE | 0.022764260 |\n", - "| 1004007 | 64 | White | Female | 4.113 | 0.705 | 136.0 | FALSE | FALSE | Previous | FALSE | 0.068493283 |\n", - "| 1004083 | 60 | White | Female | 8.257 | 1.266 | 160.5 | FALSE | FALSE | Never | FALSE | 0.078568847 |\n", - "| 1004105 | 45 | Black | Male | 4.359 | 1.375 | 149.0 | FALSE | FALSE | Current | TRUE | 0.085530257 |\n", - "| 1004333 | 50 | White | Female | 5.167 | 1.327 | 148.0 | FALSE | FALSE | Previous | FALSE | 0.017895970 |\n", - "| 1004767 | 47 | White | Male | 6.171 | 1.050 | 151.0 | FALSE | FALSE | Never | FALSE | 0.056475791 |\n", - "| 1004846 | 47 | White | Male | 6.321 | 1.487 | 119.0 | FALSE | FALSE | Current | TRUE | 0.064303517 |\n", - "| 1005011 | 56 | White | Male | 6.424 | 1.648 | 175.0 | FALSE | FALSE | Never | FALSE | 0.107297652 |\n", - "| 1005089 | 66 | White | Female | 5.108 | 1.447 | 120.5 | FALSE | FALSE | Never | FALSE | 0.054585602 |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 6022598 | 66 | White | Female | 6.309 | 1.759 | 160.0 | FALSE | FALSE | Previous | FALSE | 0.09574848 |\n", - "| 6022635 | 63 | White | Female | 5.859 | 1.699 | 159.5 | FALSE | FALSE | Previous | FALSE | 0.06756539 |\n", - "| 6022700 | 70 | White | Male | 5.335 | 1.198 | 163.0 | FALSE | FALSE | Never | FALSE | 0.27527480 |\n", - "| 6022819 | 62 | White | Female | 6.593 | 1.560 | 117.5 | FALSE | FALSE | Current | TRUE | 0.07620732 |\n", - "| 6022826 | 60 | White | Female | 5.140 | 1.425 | 134.0 | FALSE | FALSE | Never | FALSE | 0.03579095 |\n", - "| 6022906 | 60 | White | Female | 7.436 | 1.952 | 131.0 | FALSE | FALSE | Never | FALSE | 0.03693190 |\n", - "| 6022985 | 62 | White | Female | 7.059 | 2.340 | 137.5 | FALSE | FALSE | Previous | FALSE | 0.04326065 |\n", - "| 6023018 | 64 | White | Male | 6.302 | 0.916 | 145.5 | FALSE | FALSE | Previous | FALSE | 0.20415579 |\n", - "| 6023051 | 45 | White | Female | 6.580 | 1.404 | 118.5 | FALSE | FALSE | Never | FALSE | 0.01070025 |\n", - "| 6023092 | 61 | White | Female | 6.474 | 1.504 | 136.0 | FALSE | FALSE | Never | FALSE | 0.04668794 |\n", - "| 6023206 | 61 | White | Female | 7.172 | 2.400 | 154.0 | FALSE | FALSE | Previous | FALSE | 0.04775392 |\n", - "| 6023285 | 63 | White | Male | 4.315 | 0.588 | 142.0 | FALSE | FALSE | Previous | FALSE | 0.18297574 |\n", - "| 6023334 | 60 | White | Male | 6.038 | 1.060 | 135.0 | FALSE | FALSE | Never | FALSE | 0.12451617 |\n", - "| 6023815 | 64 | White | Male | 6.563 | 1.398 | 127.0 | FALSE | FALSE | Never | FALSE | 0.13225327 |\n", - "| 6023859 | 46 | Black | Male | 4.360 | 1.082 | 141.5 | FALSE | FALSE | Never | FALSE | 0.05204528 |\n", - "| 6023888 | 61 | White | Female | 5.472 | 2.153 | 164.5 | FALSE | FALSE | Previous | FALSE | 0.04765866 |\n", - "| 6023974 | 62 | White | Male | 6.520 | 0.942 | 138.5 | FALSE | FALSE | Previous | FALSE | 0.16982618 |\n", - "| 6024246 | 64 | White | Female | 6.833 | 1.472 | 131.5 | FALSE | FALSE | Previous | FALSE | 0.06091005 |\n", - "| 6024470 | 49 | White | Female | 6.200 | 2.116 | 148.0 | FALSE | FALSE | Current | TRUE | 0.03402195 |\n", - "| 6024505 | 58 | White | Male | 6.068 | 1.048 | 147.0 | FALSE | FALSE | Never | FALSE | 0.12637519 |\n", - "| 6024518 | 49 | White | Male | 6.338 | 1.301 | 155.5 | FALSE | FALSE | Never | FALSE | 0.05838098 |\n", - "| 6024543 | 64 | White | Female | 7.986 | 1.502 | 139.0 | FALSE | FALSE | Never | FALSE | 0.07322825 |\n", - "| 6024584 | 47 | White | Female | 7.493 | 1.945 | 128.0 | FALSE | FALSE | Current | TRUE | 0.03404419 |\n", - "| 6024810 | 61 | White | Female | 7.792 | 1.694 | 145.0 | FALSE | FALSE | Current | TRUE | 0.11267643 |\n", - "| 6024835 | 45 | White | Female | 6.853 | 1.539 | 135.0 | FALSE | FALSE | Never | FALSE | 0.01276662 |\n", - "| 6024861 | 44 | White | Female | 5.156 | 0.977 | 128.0 | FALSE | FALSE | Never | FALSE | 0.01394681 |\n", - "| 6024883 | 49 | White | Male | 6.042 | 1.241 | 127.0 | FALSE | FALSE | Never | FALSE | 0.04046171 |\n", - "| 6025060 | 45 | White | Male | 4.907 | 1.137 | 132.5 | FALSE | FALSE | Never | FALSE | 0.02311942 |\n", - "| 6025116 | 52 | White | Female | 7.653 | 1.604 | 167.5 | FALSE | FALSE | Never | FALSE | 0.03533682 |\n", - "| 6025147 | 43 | Asian | Male | 4.907 | 1.411 | 115.0 | FALSE | FALSE | Never | FALSE | 0.01078727 |\n", - "\n" - ], - "text/plain": [ - " eid age_at_recruitment ethnic_background sex cholesterol\n", - "1 1000285 64 White Male 4.484 \n", - "2 1000686 58 White Male 7.139 \n", - "3 1000974 69 White Male 4.302 \n", - "4 1001073 64 White Female 6.944 \n", - "5 1001098 47 White Female 5.389 \n", - "6 1001119 62 White Female 4.833 \n", - "7 1001458 59 White Male 4.879 \n", - "8 1001517 66 White Male 6.353 \n", - "9 1001591 50 White Male 5.675 \n", - "10 1001741 47 White Female 4.880 \n", - "11 1001759 44 White Female 6.177 \n", - "12 1002001 59 White Male 6.449 \n", - "13 1002182 48 White Female 5.381 \n", - "14 1002213 59 White Female 7.881 \n", - "15 1002710 40 White Female 4.482 \n", - "16 1002811 59 White Female 6.842 \n", - "17 1002977 57 White Female 7.024 \n", - "18 1003288 70 White Female 7.540 \n", - "19 1003535 51 White Male 6.688 \n", - "20 1003631 66 White Female 6.136 \n", - "21 1003650 65 White Male 5.621 \n", - "22 1003884 40 White Male 6.472 \n", - "23 1004007 64 White Female 4.113 \n", - "24 1004083 60 White Female 8.257 \n", - "25 1004105 45 Black Male 4.359 \n", - "26 1004333 50 White Female 5.167 \n", - "27 1004767 47 White Male 6.171 \n", - "28 1004846 47 White Male 6.321 \n", - "29 1005011 56 White Male 6.424 \n", - "30 1005089 66 White Female 5.108 \n", - " \n", - "395709 6022598 66 White Female 6.309 \n", - "395710 6022635 63 White Female 5.859 \n", - "395711 6022700 70 White Male 5.335 \n", - "395712 6022819 62 White Female 6.593 \n", - "395713 6022826 60 White Female 5.140 \n", - "395714 6022906 60 White Female 7.436 \n", - "395715 6022985 62 White Female 7.059 \n", - "395716 6023018 64 White Male 6.302 \n", - "395717 6023051 45 White Female 6.580 \n", - "395718 6023092 61 White Female 6.474 \n", - "395719 6023206 61 White Female 7.172 \n", - "395720 6023285 63 White Male 4.315 \n", - "395721 6023334 60 White Male 6.038 \n", - "395722 6023815 64 White Male 6.563 \n", - "395723 6023859 46 Black Male 4.360 \n", - "395724 6023888 61 White Female 5.472 \n", - "395725 6023974 62 White Male 6.520 \n", - "395726 6024246 64 White Female 6.833 \n", - "395727 6024470 49 White Female 6.200 \n", - "395728 6024505 58 White Male 6.068 \n", - "395729 6024518 49 White Male 6.338 \n", - "395730 6024543 64 White Female 7.986 \n", - "395731 6024584 47 White Female 7.493 \n", - "395732 6024810 61 White Female 7.792 \n", - "395733 6024835 45 White Female 6.853 \n", - "395734 6024861 44 White Female 5.156 \n", - "395735 6024883 49 White Male 6.042 \n", - "395736 6025060 45 White Male 4.907 \n", - "395737 6025116 52 White Female 7.653 \n", - "395738 6025147 43 Asian Male 4.907 \n", - " hdl_cholesterol systolic_blood_pressure antihypertensives diabetes2\n", - "1 0.918 135.5 FALSE FALSE \n", - "2 1.159 147.5 FALSE FALSE \n", - "3 1.075 154.0 FALSE TRUE \n", - "4 1.608 148.0 FALSE FALSE \n", - "5 1.477 139.5 FALSE FALSE \n", - "6 1.461 137.5 FALSE FALSE \n", - "7 1.097 153.0 FALSE FALSE \n", - "8 1.879 143.5 FALSE FALSE \n", - "9 1.418 112.5 FALSE FALSE \n", - "10 1.157 149.0 FALSE FALSE \n", - "11 1.560 110.0 FALSE FALSE \n", - "12 1.884 114.0 FALSE FALSE \n", - "13 1.642 146.5 FALSE FALSE \n", - "14 1.497 148.0 FALSE FALSE \n", - "15 1.512 115.5 FALSE FALSE \n", - "16 2.215 142.5 FALSE FALSE \n", - "17 2.850 132.5 FALSE FALSE \n", - "18 1.470 157.5 FALSE FALSE \n", - "19 0.876 145.5 FALSE FALSE \n", - "20 1.159 113.5 FALSE FALSE \n", - "21 1.536 147.5 FALSE FALSE \n", - "22 1.076 128.0 FALSE FALSE \n", - "23 0.705 136.0 FALSE FALSE \n", - "24 1.266 160.5 FALSE FALSE \n", - "25 1.375 149.0 FALSE FALSE \n", - "26 1.327 148.0 FALSE FALSE \n", - "27 1.050 151.0 FALSE FALSE \n", - "28 1.487 119.0 FALSE FALSE \n", - "29 1.648 175.0 FALSE FALSE \n", - "30 1.447 120.5 FALSE FALSE \n", - " \n", - "395709 1.759 160.0 FALSE FALSE \n", - "395710 1.699 159.5 FALSE FALSE \n", - "395711 1.198 163.0 FALSE FALSE \n", - "395712 1.560 117.5 FALSE FALSE \n", - "395713 1.425 134.0 FALSE FALSE \n", - "395714 1.952 131.0 FALSE FALSE \n", - "395715 2.340 137.5 FALSE FALSE \n", - "395716 0.916 145.5 FALSE FALSE \n", - "395717 1.404 118.5 FALSE FALSE \n", - "395718 1.504 136.0 FALSE FALSE \n", - "395719 2.400 154.0 FALSE FALSE \n", - "395720 0.588 142.0 FALSE FALSE \n", - "395721 1.060 135.0 FALSE FALSE \n", - "395722 1.398 127.0 FALSE FALSE \n", - "395723 1.082 141.5 FALSE FALSE \n", - "395724 2.153 164.5 FALSE FALSE \n", - "395725 0.942 138.5 FALSE FALSE \n", - "395726 1.472 131.5 FALSE FALSE \n", - "395727 2.116 148.0 FALSE FALSE \n", - "395728 1.048 147.0 FALSE FALSE \n", - "395729 1.301 155.5 FALSE FALSE \n", - "395730 1.502 139.0 FALSE FALSE \n", - "395731 1.945 128.0 FALSE FALSE \n", - "395732 1.694 145.0 FALSE FALSE \n", - "395733 1.539 135.0 FALSE FALSE \n", - "395734 0.977 128.0 FALSE FALSE \n", - "395735 1.241 127.0 FALSE FALSE \n", - "395736 1.137 132.5 FALSE FALSE \n", - "395737 1.604 167.5 FALSE FALSE \n", - "395738 1.411 115.0 FALSE FALSE \n", - " smoking_status current_smoker score_ASCVD\n", - "1 Never FALSE 0.143205008\n", - "2 Never FALSE 0.137819883\n", - "3 Previous FALSE 0.386665084\n", - "4 Never FALSE 0.073762156\n", - "5 Never FALSE 0.011394640\n", - "6 Previous FALSE 0.043826887\n", - "7 Current TRUE 0.184407293\n", - "8 Previous FALSE 0.154071008\n", - "9 Never FALSE 0.028630793\n", - "10 Previous FALSE 0.015815727\n", - "11 Never FALSE 0.006567331\n", - "12 Previous FALSE 0.060675171\n", - "13 Never FALSE 0.011755503\n", - "14 Previous FALSE 0.053596257\n", - "15 Never FALSE 0.003121729\n", - "16 Never FALSE 0.033436135\n", - "17 Previous FALSE 0.019330514\n", - "18 Never FALSE 0.153816413\n", - "19 Never FALSE 0.099090730\n", - "20 Previous FALSE 0.057791311\n", - "21 Never FALSE 0.154145834\n", - "22 Previous FALSE 0.022764260\n", - "23 Previous FALSE 0.068493283\n", - "24 Never FALSE 0.078568847\n", - "25 Current TRUE 0.085530257\n", - "26 Previous FALSE 0.017895970\n", - "27 Never FALSE 0.056475791\n", - "28 Current TRUE 0.064303517\n", - "29 Never FALSE 0.107297652\n", - "30 Never FALSE 0.054585602\n", - " \n", - "395709 Previous FALSE 0.09574848 \n", - "395710 Previous FALSE 0.06756539 \n", - "395711 Never FALSE 0.27527480 \n", - "395712 Current TRUE 0.07620732 \n", - "395713 Never FALSE 0.03579095 \n", - "395714 Never FALSE 0.03693190 \n", - "395715 Previous FALSE 0.04326065 \n", - "395716 Previous FALSE 0.20415579 \n", - "395717 Never FALSE 0.01070025 \n", - "395718 Never FALSE 0.04668794 \n", - "395719 Previous FALSE 0.04775392 \n", - "395720 Previous FALSE 0.18297574 \n", - "395721 Never FALSE 0.12451617 \n", - "395722 Never FALSE 0.13225327 \n", - "395723 Never FALSE 0.05204528 \n", - "395724 Previous FALSE 0.04765866 \n", - "395725 Previous FALSE 0.16982618 \n", - "395726 Previous FALSE 0.06091005 \n", - "395727 Current TRUE 0.03402195 \n", - "395728 Never FALSE 0.12637519 \n", - "395729 Never FALSE 0.05838098 \n", - "395730 Never FALSE 0.07322825 \n", - "395731 Current TRUE 0.03404419 \n", - "395732 Current TRUE 0.11267643 \n", - "395733 Never FALSE 0.01276662 \n", - "395734 Never FALSE 0.01394681 \n", - "395735 Never FALSE 0.04046171 \n", - "395736 Never FALSE 0.02311942 \n", - "395737 Never FALSE 0.03533682 \n", - "395738 Never FALSE 0.01078727 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "temp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## UK QRISK3 (Hippisley-Cox 2017)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Hippisley-Cox 2017](https://www.bmj.com/content/357/bmj.j2099)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "Population: 25-84J\n", - "Exclusion: Diagnosis of coronary heart disease (Angina/Heart attack) or Stroke/TIA\n", - "Endpoints: Composite outcome of CHD, ischemic Stroke or TIA record in GP, Hospital or Mortality records\n", - "ICD10: G45, I20, I21, I22, I23, I24, I25, I63, I64" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:40:22.037710Z", - "start_time": "2020-11-04T09:40:15.383Z" - } - }, - "outputs": [], - "source": [ - "options(warn=-1)\n", - "library(QRISK3)\n", - "temp = head(data)\n", - "temp = as.data.frame(data %>% \n", - " mutate_if(is.logical, as.integer) %>%\n", - " mutate(cholesterol_HDL_ratio=cholesterol/hdl_cholesterol, \n", - " gender=case_when(sex==\"Female\"~1, sex==\"Male\"~0),\n", - " ethnicity=case_when(ethnic_background == \"White\" ~ 1,\n", - " ethnic_background == \"Asian\" ~ 5,\n", - " ethnic_background == \"Black\" ~ 1,\n", - " ethnic_background == \"Chinese\" ~ 5,\n", - " ethnic_background == \"Mixed\" ~ 1,\n", - " TRUE ~ 1\n", - " ),\n", - " smoke=case_when(smoking_status == \"Never\" ~ 1,\n", - " smoking_status == \"Previous\" ~ 2,\n", - " smoking_status == \"Current\" ~ 4,\n", - " ),\n", - " age = as.numeric(age_at_recruitment),\n", - " std_systolic_blood_pressure = 9.002537727355957,\n", - " ) #%>% drop_na()\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:40:42.773146Z", - "start_time": "2020-11-04T09:40:41.164Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "This R package was based on open-sourced original QRISK3-2017 algorithm.\n", - "\n", - " Copyright 2017 ClinRisk Ltd.\n", - "\n", - "\n", - "The risk score calculated from this R package can only be used for research purpose.\n", - "\n", - "\n", - "Please refer to QRISK3 website for more information\n", - "\n", - "\n", - "\n", - "\n", - "Important: Please double check whether your variables are coded the same as the QRISK3 calculator\n", - "\n", - "\n", - "Height should have unit as (cm)\n", - "\n", - "Weight should have unit as (kg)\n", - "\n", - "\n", - "Ethiniciy should be coded as: \n", - "\n", - " Ethiniciy_category Ethinicity\n", - "1 White or not stated 1\n", - "2 Indian 2\n", - "3 Pakistani 3\n", - "4 Bangladeshi 4\n", - "5 Other Asian 5\n", - "6 Black Caribbean 6\n", - "\n", - "\n", - "Smoke should be coded as: \n", - "\n", - " Smoke_category Smoke\n", - "1 non-smoker 1\n", - "2 ex-smoker 2\n", - "3 light smoker (less than 10) 3\n", - "4 moderate smoker (10 to 19) 4\n", - "5 heavy smoker (20 or over) 5\n", - "\n", - "\n", - "The head of result in all patients is:\n", - "\n", - "\n", - " eid QRISK3_2017 QRISK3_2017_1digit\n", - "1 1000285 20.871601 20.9\n", - "2 1000686 19.559240 19.6\n", - "3 1000974 32.595680 32.6\n", - "4 1001073 8.159153 8.2\n", - "5 1001098 2.239020 2.2\n", - "6 1001119 8.931211 8.9\n", - "\n" - ] - } - ], - "source": [ - "options(warn=0)\n", - "QRISK3_df = QRISK3_2017(data = temp, \n", - " patid=\"eid\", \n", - " gender=\"gender\", \n", - " age=\"age\", \n", - " atrial_fibrillation=\"atrial_fibrillation\", \n", - " atypical_antipsy=\"atypical_antipsychotics\", \n", - " regular_steroid_tablets=\"glucocorticoids\",\n", - " erectile_disfunction=\"erectile_dysfunction\",\n", - " migraine=\"migraine\",\n", - " rheumatoid_arthritis=\"rheumatoid_arthritis\",\n", - " chronic_kidney_disease=\"chronic_kidney_disease\",\n", - " severe_mental_illness=\"severe_mental_illness\",\n", - " systemic_lupus_erythematosis=\"systemic_lupus_erythematosus\",\n", - " blood_pressure_treatment=\"antihypertensives\",\n", - " diabetes1=\"diabetes1\",\n", - " diabetes2=\"diabetes2\",\n", - " weight=\"weight\",\n", - " height=\"standing_height\",\n", - " ethiniciy=\"ethnicity\",\n", - " heart_attack_relative=\"fh_heart_disease\",\n", - " cholesterol_HDL_ratio = \"cholesterol_HDL_ratio\",\n", - " systolic_blood_pressure = \"systolic_blood_pressure\",\n", - " std_systolic_blood_pressure = \"std_systolic_blood_pressure\", ### MISSING!\n", - " smoke = \"smoke\",\n", - " townsend = \"townsend_deprivation_index_at_recruitment\")\n", - "QRISK3_df = QRISK3_df %>% mutate(score_QRISK3=QRISK3_2017/100) %>% select(c(eid, score_QRISK3)) " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:40:44.271222Z", - "start_time": "2020-11-04T09:40:43.588Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "395738" - ], - "text/latex": [ - "395738" - ], - "text/markdown": [ - "395738" - ], - "text/plain": [ - "[1] 395738" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "nrow(QRISK3_df)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# JOIN SCORE OUTPUTS" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "ExecuteTime": { - "end_time": "2020-11-04T09:41:08.487583Z", - "start_time": "2020-11-04T09:41:07.046Z" - } - }, - "outputs": [], - "source": [ - "score_df = SCORE_df %>% left_join(ASCVD_df, by=\"eid\") %>% left_join(QRISK3_df, by=\"eid\") %>% arrange(eid)\n", - "score_df %>% write_csv(glue(\"{dataset_path}/predictions_scores.csv\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "'/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/3_datasets_post/210223_cvd_gp/predictions_scores.csv'" - ], - "text/latex": [ - "'/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/3\\_datasets\\_post/210223\\_cvd\\_gp/predictions\\_scores.csv'" - ], - "text/markdown": [ - "'/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/3_datasets_post/210223_cvd_gp/predictions_scores.csv'" - ], - "text/plain": [ - "/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/3_datasets_post/210223_cvd_gp/predictions_scores.csv" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "glue(\"{dataset_path}/predictions_scores.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "'/data/analysis/ag-reils/steinfej/data/2_datasets_pre/210223_cvd_gp/predictions_coxph.csv'" - ], - "text/latex": [ - "'/data/analysis/ag-reils/steinfej/data/2\\_datasets\\_pre/210223\\_cvd\\_gp/predictions\\_coxph.csv'" - ], - "text/markdown": [ - "'/data/analysis/ag-reils/steinfej/data/2_datasets_pre/210223_cvd_gp/predictions_coxph.csv'" - ], - "text/plain": [ - "[1] \"/data/analysis/ag-reils/steinfej/data/2_datasets_pre/210223_cvd_gp/predictions_coxph.csv\"" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\"/data/analysis/ag-reils/steinfej/data/2_datasets_pre/210223_cvd_gp/predictions_coxph.csv\"" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "'/data/analysis/ag-reils/steinfej/data/3_datasets_post/210223_cvd_gp/predictions_scores.csv'" - ], - "text/latex": [ - "'/data/analysis/ag-reils/steinfej/data/3\\_datasets\\_post/210223\\_cvd\\_gp/predictions\\_scores.csv'" - ], - "text/markdown": [ - "'/data/analysis/ag-reils/steinfej/data/3_datasets_post/210223_cvd_gp/predictions_scores.csv'" - ], - "text/plain": [ - "[1] \"/data/analysis/ag-reils/steinfej/data/3_datasets_post/210223_cvd_gp/predictions_scores.csv\"" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "'/data/analysis/ag-reils/steinfej/data/3_datasets_post/210223_cvd_gp/predictions_scores.csv'" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/8_train_coxph_models_comp.ipynb b/neuralcvd/preprocessing/ukbb_tabular/8_train_coxph_models_comp.ipynb deleted file mode 100644 index 32ec881..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/8_train_coxph_models_comp.ipynb +++ /dev/null @@ -1,14389 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Cox model" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "-- \u001b[1mAttaching packages\u001b[22m --------------------------------------- tidyverse 1.3.0 --\n", - "\n", - "\u001b[32mv\u001b[39m \u001b[34mggplot2\u001b[39m 3.3.2 \u001b[32mv\u001b[39m \u001b[34mpurrr \u001b[39m 0.3.4\n", - "\u001b[32mv\u001b[39m \u001b[34mtibble \u001b[39m 3.0.3 \u001b[32mv\u001b[39m \u001b[34mdplyr \u001b[39m 1.0.2\n", - "\u001b[32mv\u001b[39m \u001b[34mtidyr \u001b[39m 1.1.2 \u001b[32mv\u001b[39m \u001b[34mstringr\u001b[39m 1.4.0\n", - "\u001b[32mv\u001b[39m \u001b[34mreadr \u001b[39m 1.3.1 \u001b[32mv\u001b[39m \u001b[34mforcats\u001b[39m 0.5.0\n", - "\n", - "-- \u001b[1mConflicts\u001b[22m ------------------------------------------ tidyverse_conflicts() --\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31mx\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\n", - "riskRegression version 2020.12.08\n", - "\n", - "\n", - "Attaching package: 'glue'\n", - "\n", - "\n", - "The following object is masked from 'package:dplyr':\n", - "\n", - " collapse\n", - "\n", - "\n" - ] - } - ], - "source": [ - "library(tidyverse)\n", - "library(riskRegression)\n", - "library(glue)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "dataset_name = \"210226_cvd_gp_full_cluster\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = glue(\"{data_path}/3_datasets_post/{dataset_name}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "partitions = 0:4\n", - "splits = c(\"train\", \"valid\", \"test\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "partition=0; split=\"train\"\n", - "data = arrow::read_feather(glue(\"{dataset_path}/partition_{partition}/{split}/data_imputed_normalized.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A tibble: 6 × 2996
eidage_at_recruitmentsexethnic_backgroundtownsend_deprivation_index_at_recruitmentdate_of_attending_assessment_centreuk_biobank_assessment_centrebirth_dateoverall_health_ratingsmoking_statusoverall_health_rating_3.0smoking_status_0.0smoking_status_1.0smoking_status_2.0alcohol_intake_frequency_0.0alcohol_intake_frequency_1.0alcohol_intake_frequency_2.0alcohol_intake_frequency_3.0alcohol_intake_frequency_4.0alcohol_intake_frequency_5.0
<int><dbl><dbl><dbl><dbl><date><dbl><date><dbl><dbl><int><int><int><int><int><int><int><int><int><int>
1000018-0.786545100-0.16306982009-11-1201960-11-12000100100000
1000020 0.448044410 0.50950382008-02-1901949-02-19100100100000
1000043 0.941880210-1.30677742009-06-0301946-06-03010010010000
1000079 0.571503300-0.44263932008-03-1801948-03-18020001100000
1000084-1.527298710 2.91638682007-10-1801964-10-18020001100000
1000092-0.663086101 2.94845312009-06-1601959-06-16200100000100
\n" - ], - "text/latex": [ - "A tibble: 6 × 2996\n", - "\\begin{tabular}{lllllllllllllllllllll}\n", - " eid & age\\_at\\_recruitment & sex & ethnic\\_background & townsend\\_deprivation\\_index\\_at\\_recruitment & date\\_of\\_attending\\_assessment\\_centre & uk\\_biobank\\_assessment\\_centre & birth\\_date & overall\\_health\\_rating & smoking\\_status & ⋯ & overall\\_health\\_rating\\_3.0 & smoking\\_status\\_0.0 & smoking\\_status\\_1.0 & smoking\\_status\\_2.0 & alcohol\\_intake\\_frequency\\_0.0 & alcohol\\_intake\\_frequency\\_1.0 & alcohol\\_intake\\_frequency\\_2.0 & alcohol\\_intake\\_frequency\\_3.0 & alcohol\\_intake\\_frequency\\_4.0 & alcohol\\_intake\\_frequency\\_5.0\\\\\n", - " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", - "\\hline\n", - "\t 1000018 & -0.7865451 & 0 & 0 & -0.1630698 & 2009-11-12 & 0 & 1960-11-12 & 0 & 0 & ⋯ & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", - "\t 1000020 & 0.4480444 & 1 & 0 & 0.5095038 & 2008-02-19 & 0 & 1949-02-19 & 1 & 0 & ⋯ & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", - "\t 1000043 & 0.9418802 & 1 & 0 & -1.3067774 & 2009-06-03 & 0 & 1946-06-03 & 0 & 1 & ⋯ & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\\\\n", - "\t 1000079 & 0.5715033 & 0 & 0 & -0.4426393 & 2008-03-18 & 0 & 1948-03-18 & 0 & 2 & ⋯ & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", - "\t 1000084 & -1.5272987 & 1 & 0 & 2.9163868 & 2007-10-18 & 0 & 1964-10-18 & 0 & 2 & ⋯ & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", - "\t 1000092 & -0.6630861 & 0 & 1 & 2.9484531 & 2009-06-16 & 0 & 1959-06-16 & 2 & 0 & ⋯ & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A tibble: 6 × 2996\n", - "\n", - "| eid <int> | age_at_recruitment <dbl> | sex <dbl> | ethnic_background <dbl> | townsend_deprivation_index_at_recruitment <dbl> | date_of_attending_assessment_centre <date> | uk_biobank_assessment_centre <dbl> | birth_date <date> | overall_health_rating <dbl> | smoking_status <dbl> | ⋯ ⋯ | overall_health_rating_3.0 <int> | smoking_status_0.0 <int> | smoking_status_1.0 <int> | smoking_status_2.0 <int> | alcohol_intake_frequency_0.0 <int> | alcohol_intake_frequency_1.0 <int> | alcohol_intake_frequency_2.0 <int> | alcohol_intake_frequency_3.0 <int> | alcohol_intake_frequency_4.0 <int> | alcohol_intake_frequency_5.0 <int> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 1000018 | -0.7865451 | 0 | 0 | -0.1630698 | 2009-11-12 | 0 | 1960-11-12 | 0 | 0 | ⋯ | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", - "| 1000020 | 0.4480444 | 1 | 0 | 0.5095038 | 2008-02-19 | 0 | 1949-02-19 | 1 | 0 | ⋯ | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", - "| 1000043 | 0.9418802 | 1 | 0 | -1.3067774 | 2009-06-03 | 0 | 1946-06-03 | 0 | 1 | ⋯ | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |\n", - "| 1000079 | 0.5715033 | 0 | 0 | -0.4426393 | 2008-03-18 | 0 | 1948-03-18 | 0 | 2 | ⋯ | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |\n", - "| 1000084 | -1.5272987 | 1 | 0 | 2.9163868 | 2007-10-18 | 0 | 1964-10-18 | 0 | 2 | ⋯ | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |\n", - "| 1000092 | -0.6630861 | 0 | 1 | 2.9484531 | 2009-06-16 | 0 | 1959-06-16 | 2 | 0 | ⋯ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |\n", - "\n" - ], - "text/plain": [ - " eid age_at_recruitment sex ethnic_background\n", - "1 1000018 -0.7865451 0 0 \n", - "2 1000020 0.4480444 1 0 \n", - "3 1000043 0.9418802 1 0 \n", - "4 1000079 0.5715033 0 0 \n", - "5 1000084 -1.5272987 1 0 \n", - "6 1000092 -0.6630861 0 1 \n", - " townsend_deprivation_index_at_recruitment date_of_attending_assessment_centre\n", - "1 -0.1630698 2009-11-12 \n", - "2 0.5095038 2008-02-19 \n", - "3 -1.3067774 2009-06-03 \n", - "4 -0.4426393 2008-03-18 \n", - "5 2.9163868 2007-10-18 \n", - "6 2.9484531 2009-06-16 \n", - " uk_biobank_assessment_centre birth_date overall_health_rating smoking_status\n", - "1 0 1960-11-12 0 0 \n", - "2 0 1949-02-19 1 0 \n", - "3 0 1946-06-03 0 1 \n", - "4 0 1948-03-18 0 2 \n", - "5 0 1964-10-18 0 2 \n", - "6 0 1959-06-16 2 0 \n", - " overall_health_rating_3.0 smoking_status_0.0 smoking_status_1.0\n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 0 1 \n", - "4 0 0 0 \n", - "5 0 0 0 \n", - "6 0 1 0 \n", - " smoking_status_2.0 alcohol_intake_frequency_0.0 alcohol_intake_frequency_1.0\n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 0 1 \n", - "4 1 1 0 \n", - "5 1 1 0 \n", - "6 0 0 0 \n", - " alcohol_intake_frequency_2.0 alcohol_intake_frequency_3.0\n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "5 0 0 \n", - "6 0 1 \n", - " alcohol_intake_frequency_4.0 alcohol_intake_frequency_5.0\n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "5 0 0 \n", - "6 0 0 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "head(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "ename": "ERROR", - "evalue": "Error in parse(text = x, srcfile = src): :1:49: unexpected string constant\n1: data_all = {partition: {split: pd.read_feather(f\"{dataset_path}/partition_{partition}/{split}/data_imputed_normalized.feather\"\n ^\n", - "output_type": "error", - "traceback": [ - "Error in parse(text = x, srcfile = src): :1:49: unexpected string constant\n1: data_all = {partition: {split: pd.read_feather(f\"{dataset_path}/partition_{partition}/{split}/data_imputed_normalized.feather\"\n ^\nTraceback:\n" - ] - } - ], - "source": [ - "#data_all = {partition: {split: pd.read_feather(f\"{dataset_path}/partition_{partition}/{split}/data_imputed_normalized.feather\").set_index(\"eid\") for split in splits} for partition in tqdm(partitions)}" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "basics = c(\n", - "'age_at_recruitment',\n", - "'ethnic_background_0.0',\n", - "'ethnic_background_1.0',\n", - "'ethnic_background_2.0',#na 2 -> 5\n", - "'ethnic_background_3.0',\n", - "'ethnic_background_4.0',\n", - "'townsend_deprivation_index_at_recruitment',\n", - "'sex'\n", - ")\n", - "questionnaire = c(\n", - "'overall_health_rating_0.0',\n", - "'overall_health_rating_1.0',\n", - "'overall_health_rating_2.0',\n", - "'overall_health_rating_3.0',\n", - "'smoking_status_0.0',\n", - "'smoking_status_1.0',\n", - "'smoking_status_2.0'\n", - ")\n", - "measurements = c(\n", - "'body_mass_index_bmi',\n", - "'weight',\n", - "\"standing_height\",\n", - "'systolic_blood_pressure',\n", - "'diastolic_blood_pressure'\n", - ")\n", - "\n", - "labs = c(\n", - "\"cholesterol\",\n", - "\"hdl_cholesterol\",\n", - "\"ldl_direct\",\n", - "\"triglycerides\"\n", - ")\n", - "\n", - "family_history = c(\n", - "'fh_heart_disease'\n", - ")\n", - "\n", - "diagnoses = c(\n", - "'diabetes1',\n", - "'diabetes2',\n", - "'chronic_kidney_disease',\n", - "'atrial_fibrillation',\n", - "'migraine',\n", - "'rheumatoid_arthritis',\n", - "'systemic_lupus_erythematosus',\n", - "'severe_mental_illness',\n", - "'erectile_dysfunction'\n", - ")\n", - "\n", - "medications = c(\n", - "\"antihypertensives\",\n", - "\"ass\",\n", - "\"atypical_antipsychotics\",\n", - "\"glucocorticoids\"\n", - ")\n", - "\n", - "pgs = c('PGS000011', 'PGS000057', 'PGS000058', 'PGS000059')" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "features = c()\n", - "features[[\"clinical\"]] = c(basics, questionnaire, measurements, labs, family_history, diagnoses, medications)\n", - "features[[\"clinical_pgs\"]] = c(features[[\"clinical\"]], pgs)" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "basics = [\n", - " 'age_at_recruitment',\n", - " 'ethnic_background',\n", - " 'townsend_deprivation_index_at_recruitment',\n", - " 'sex'\n", - "]\n", - "questionnaire = [\n", - " 'overall_health_rating',\n", - " 'smoking_status',\n", - "\n", - " 'alcohol_intake_frequency'\n", - "]\n", - "measurements = [\n", - " 'body_mass_index_bmi',\n", - " 'weight',\n", - " \"standing_height\",\n", - " 'systolic_blood_pressure',\n", - " 'diastolic_blood_pressure',\n", - "\n", - " 'pulse_wave_arterial_stiffness_index',\n", - " 'pulse_wave_reflection_index',\n", - " 'waist_circumference',\n", - " 'hip_circumference',\n", - " 'trunk_fat_percentage',\n", - " 'body_fat_percentage',\n", - " 'basal_metabolic_rate',\n", - " 'forced_vital_capacity_fvc_best_measure',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure',\n", - " 'fev1_fvc_ratio_zscore',\n", - " 'peak_expiratory_flow_pef_f3064_0_2',\n", - " 'peak_expiratory_flow_pef_f3064_0_1',\n", - " 'peak_expiratory_flow_pef',\n", - " 'pulse_rate'\n", - "]\n", - "labs = [\n", - " 'cholesterol',\n", - " 'hdl_cholesterol',\n", - " 'ldl_direct',\n", - " 'triglycerides',\n", - "\n", - " 'basophill_count',\n", - " 'basophill_percentage',\n", - " 'eosinophill_count',\n", - " 'eosinophill_percentage',\n", - " 'haematocrit_percentage',\n", - " 'haemoglobin_concentration',\n", - " 'high_light_scatter_reticulocyte_count',\n", - " 'high_light_scatter_reticulocyte_percentage',\n", - " 'immature_reticulocyte_fraction',\n", - " 'lymphocyte_count',\n", - " 'lymphocyte_percentage',\n", - " 'mean_corpuscular_haemoglobin',\n", - " 'mean_corpuscular_haemoglobin_concentration',\n", - " 'mean_corpuscular_volume',\n", - " 'mean_platelet_thrombocyte_volume',\n", - " 'mean_reticulocyte_volume',\n", - " 'mean_sphered_cell_volume',\n", - " 'monocyte_count',\n", - " 'monocyte_percentage',\n", - " 'neutrophill_count',\n", - " 'neutrophill_percentage',\n", - " 'nucleated_red_blood_cell_count',\n", - " 'nucleated_red_blood_cell_percentage',\n", - " 'platelet_count',\n", - " 'platelet_crit',\n", - " 'platelet_distribution_width',\n", - " 'red_blood_cell_erythrocyte_count',\n", - " 'red_blood_cell_erythrocyte_distribution_width',\n", - " 'reticulocyte_count',\n", - " 'reticulocyte_percentage',\n", - " 'white_blood_cell_leukocyte_count',\n", - " 'alanine_aminotransferase',\n", - " 'albumin',\n", - " 'alkaline_phosphatase',\n", - " 'apolipoprotein_a',\n", - " 'apolipoprotein_b',\n", - " 'aspartate_aminotransferase',\n", - " 'creactive_protein',\n", - " 'calcium',\n", - " 'creatinine',\n", - " 'cystatin_c',\n", - " 'direct_bilirubin',\n", - " 'gamma_glutamyltransferase',\n", - " 'glucose',\n", - " 'glycated_haemoglobin_hba1c',\n", - " 'igf1',\n", - " 'lipoprotein_a',\n", - " 'oestradiol',\n", - " 'phosphate',\n", - " 'rheumatoid_factor',\n", - " 'shbg',\n", - " 'testosterone',\n", - " 'total_bilirubin',\n", - " 'total_protein',\n", - " 'urate',\n", - " 'urea',\n", - " 'vitamin_d'\n", - "]\n", - "family_history = [\n", - " 'fh_heart_disease',\n", - "\n", - " \"fh_alzheimer's_disease/dementia\",\n", - " 'fh_bowel_cancer',\n", - " 'fh_breast_cancer',\n", - " 'fh_chronic_bronchitis/emphysema',\n", - " 'fh_diabetes',\n", - " 'fh_high_blood_pressure',\n", - " 'fh_lung_cancer',\n", - " \"fh_parkinson's_disease\",\n", - " 'fh_severe_depression',\n", - " 'fh_stroke'\n", - "]\n", - "diagnoses = [\n", - " 'stroke',\n", - " 'diabetes1',\n", - " 'diabetes2',\n", - " 'chronic_kidney_disease',\n", - " 'atrial_fibrillation',\n", - " 'migraine',\n", - " 'rheumatoid_arthritis',\n", - " 'systemic_lupus_erythematosus',\n", - " 'severe_mental_illness',\n", - " 'erectile_dysfunction',\n", - "\n", - " 'intestinal_infection',\n", - " 'bacterial_infection',\n", - " 'arthropathies',\n", - " 'viral_infection',\n", - " 'infections_specific_to_the_perinatal_period',\n", - " 'acute_upper_respiratory_infections',\n", - " 'mycoses',\n", - " \"kaposi's_sarcoma\",\n", - " 'malaise_and_fatigue',\n", - " 'malignant_neoplasm_of_skin',\n", - " 'benign_neoplasm_of_respiratory_and_intrathoracic_organs',\n", - " 'benign_neoplasm_of_skin',\n", - " 'nonmalignant_breast_conditions',\n", - " 'anemias',\n", - " 'other_endocrine_disorders',\n", - " 'diabetes',\n", - " 'disorders_of_mineral_metabolism',\n", - " 'obesity',\n", - " 'respiratory_abnormalities',\n", - " 'disorders_of_lipoid_metabolism',\n", - " 'nonspecific_findings_on_examination_of_blood',\n", - " 'sleep_disorders',\n", - " 'male_genital_disorders',\n", - " 'cerebrovascular_disease',\n", - " 'cataract',\n", - " 'blindness_and_low_vision',\n", - " 'disorders_of_external_ear',\n", - " 'heart_valve_disorders',\n", - " 'ischemic_heart_disease',\n", - " 'cardiac_conduction_disorders',\n", - " 'heart_failure',\n", - " 'noninfectious_disorders_of_lymphatic_channels',\n", - " 'other_symptoms_of_respiratory_system',\n", - " 'disorders_of_stomach',\n", - " 'abdominal_pain',\n", - " 'abdominal_hernia',\n", - " 'liver_disease',\n", - " 'biliary_tract_disease',\n", - " 'bariatric_surgery',\n", - " 'complications',\n", - " 'other_hypertrophic_and_atrophic_conditions_of_skin',\n", - " 'symptoms_affecting_skin',\n", - " 'chronic_ulcer_of_skin',\n", - " 'gout',\n", - " 'osteoarthritis',\n", - " 'acquired_deformities',\n", - " 'pain_in_joint',\n", - " 'back_pain',\n", - " 'myalgia_and_myositis_unspecified',\n", - " 'symptoms_involving_nervous_and_musculoskeletal_systems',\n", - " 'pain_in_limb',\n", - " 'musculoskeletal_symptoms_referable_to_limbs',\n", - " 'congenital_musculoskeletal_anomalies',\n", - " 'other_symptoms/disorders_or_the_urinary_system',\n", - " 'urinary_calculus',\n", - " 'symptoms_involving_female_genital_tract',\n", - " 'other_nonmalignant_breast_conditions',\n", - " 'complications_of_the_puerperium',\n", - " 'complications_of_pregnancy',\n", - " 'postoperative_infection',\n", - " 'other_complications_of_pregnancy_nec',\n", - " 'excessive_vomiting_in_pregnancy',\n", - " 'infectious_and_parasitic_complications_affecting_pregnancy',\n", - " 'multiple_gestation',\n", - " 'late_pregnancy_and_failed_induction',\n", - " 'normal_delivery',\n", - " 'anemia_during_pregnancy',\n", - " 'maternal_complication_of_pregnancy_affecting_fetus_or_newborn',\n", - " 'gangrene',\n", - " 'abnormal_sputum',\n", - " 'symptoms_involving_head_and_neck',\n", - " 'nonspecific_chest_pain',\n", - " 'nausea_and_vomiting',\n", - " 'nonspecific_findings_on_examination_of_urine',\n", - " 'fever',\n", - " 'pain',\n", - " 'syncope_and_collapse',\n", - " 'shock',\n", - " 'hypothermia/chills',\n", - " 'abnormal_findings_examination_of_lungs',\n", - " 'contusion',\n", - " 'open_wound',\n", - " 'bone_marrow_or_stem_cell_transplant']\n", - "\n", - "medications= [\n", - " 'ass',\n", - " 'atypical_antipsychotics',\n", - " 'glucocorticoids',\n", - "\n", - " 'stomatological_preparations',\n", - " 'drugs_for_acid_related_disorders',\n", - " 'drugs_for_functional_gastrointestinal_disorders',\n", - " 'antiemetics_and_antinauseants',\n", - " 'bile_and_liver_therapy',\n", - " 'drugs_for_constipation',\n", - " 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents',\n", - " 'antiobesity_preparations,_excl._diet_products',\n", - " 'digestives,_incl._enzymes',\n", - " 'drugs_used_in_diabetes',\n", - " 'vitamins',\n", - " 'mineral_supplements',\n", - " 'tonics',\n", - " 'anabolic_agents_for_systemic_use',\n", - " 'appetite_stimulants',\n", - " 'other_alimentary_tract_and_metabolism_products',\n", - " 'antithrombotic_agents',\n", - " 'antihemorrhagics',\n", - " 'antianemic_preparations',\n", - " 'blood_substitutes_and_perfusion_solutions',\n", - " 'other_hematological_agents',\n", - " 'cardiac_therapy',\n", - " 'antihypertensives',\n", - " 'diuretics',\n", - " 'peripheral_vasodilators',\n", - " 'vasoprotectives',\n", - " 'beta_blocking_agents',\n", - " 'calcium_channel_blockers',\n", - " 'agents_acting_on_the_renin-angiotensin_system',\n", - " 'lipid_modifying_agents',\n", - " 'antifungals_for_dermatological_use',\n", - " 'emollients_and_protectives',\n", - " 'preparations_for_treatment_of_wounds_and_ulcers',\n", - " 'antipruritics,_incl._antihistamines,_anesthetics,_etc.',\n", - " 'antipsoriatics',\n", - " 'antibiotics_and_chemotherapeutics_for_dermatological_use',\n", - " 'corticosteroids,_dermatological_preparations',\n", - " 'antiseptics_and_disinfectants',\n", - " 'medicated_dressings',\n", - " 'anti-acne_preparations',\n", - " 'other_dermatological_preparations',\n", - " 'gynecological_antiinfectives_and_antiseptics',\n", - " 'other_gynecologicals',\n", - " 'sex_hormones_and_modulators_of_the_genital_system',\n", - " 'urologicals',\n", - " 'pituitary_and_hypothalamic_hormones_and_analogues',\n", - " 'corticosteroids_for_systemic_use',\n", - " 'thyroid_therapy',\n", - " 'pancreatic_hormones',\n", - " 'calcium_homeostasis',\n", - " 'antibacterials_for_systemic_use',\n", - " 'antimycotics_for_systemic_use',\n", - " 'antimycobacterials',\n", - " 'antivirals_for_systemic_use',\n", - " 'immune_sera_and_immunoglobulins',\n", - " 'vaccines',\n", - " 'antineoplastic_agents',\n", - " 'endocrine_therapy',\n", - " 'immunostimulants',\n", - " 'immunosuppressants',\n", - " 'antiinflammatory_and_antirheumatic_products',\n", - " 'topical_products_for_joint_and_muscular_pain',\n", - " 'muscle_relaxants',\n", - " 'antigout_preparations',\n", - " 'drugs_for_treatment_of_bone_diseases',\n", - " 'other_drugs_for_disorders_of_the_musculo-skeletal_system',\n", - " 'anesthetics',\n", - " 'analgesics',\n", - " 'antiepileptics',\n", - " 'anti-parkinson_drugs',\n", - " 'psycholeptics',\n", - " 'psychoanaleptics',\n", - " 'other_nervous_system_drugs',\n", - " 'antiprotozoals',\n", - " 'anthelmintics',\n", - " 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents',\n", - " 'nasal_preparations',\n", - " 'throat_preparations',\n", - " 'drugs_for_obstructive_airway_diseases',\n", - " 'cough_and_cold_preparations',\n", - " 'antihistamines_for_systemic_use',\n", - " 'other_respiratory_system_products',\n", - " 'ophthalmologicals',\n", - " 'otologicals',\n", - " 'ophthalmological_and_otological_preparations',\n", - " 'allergens',\n", - " 'all_other_therapeutic_products',\n", - " 'diagnostic_agents',\n", - " 'general_nutrients',\n", - " 'all_other_non-therapeutic_products',\n", - " 'contrast_media',\n", - " 'diagnostic_radiopharmaceuticals',\n", - " 'therapeutic_radiopharmaceuticals',\n", - " 'surgical_dressings'\n", - "]\n", - "\n", - "feature_dict = {\n", - " \"pgs\": [],\n", - " \"basics\": basics,\n", - " \"questionnaire\": questionnaire,\n", - " \"measurements\": measurements,\n", - " \"labs\": labs,\n", - " \"family_history\": family_history,\n", - " \"medications\": medications,\n", - " \"diagnoses\": diagnoses\n", - "}" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "features[\"clinical_big\"] = [f for group_list in feature_dict.values() for f in group_list]\n", - "features[\"clinical_big_with_pgs\"] = features[\"pgs\"]+[f for group_list in feature_dict.values() for f in group_list]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "endpoint = \"MACE\"; event=glue(\"{endpoint}_event\"); time=glue(\"{endpoint}_event_time\")\n", - "groups = c(\"clinical\", \"clinical_pgs\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data_cox = data %>% select(all_of(c(features[[\"clinical\"]], event, time))) %>% sample_n(10000)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "library(prodlim)\n", - "library(survival)\n", - "library(cmprsk)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "library(tictoc)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tic(\"starting to fit\")\n", - "fg_fit = FGR(reformulate(termlabels = features[[\"clinical\"]], response = glue('Hist({time}, {event})')), \n", - " data=data_cox, cause=1, variance=FALSE)\n", - "toc()" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "times = 1:27" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "preds = predictRisk(fg_fit, data_cox, times)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\t\n", - "\n", - "
A matrix: 10000 × 27 of type dbl
0.00233606080.0053312570.0079183200.0119406200.0146874710.0182341570.0221430710.0259146140.0297207890.0334455910.0398897630.0398897630.0398897630.0398897630.0398897630.0398897630.0398897630.0398897630.0398897630.039889763
0.00844082660.0191876630.0284020020.0426035150.0522150230.0645216440.0779506660.0907749020.1035854530.1159950930.1371701990.1371701990.1371701990.1371701990.1371701990.1371701990.1371701990.1371701990.1371701990.137170199
0.00212138100.0048419930.0071924930.0108481140.0133453430.0165706700.0201266460.0235588940.0270238980.0304160340.0362875140.0362875140.0362875140.0362875140.0362875140.0362875140.0362875140.0362875140.0362875140.036287514
0.01297514150.0294087950.0434217340.0648785670.0793032480.0976574670.1175371820.1363760470.1550519080.1730062290.2033284960.2033284960.2033284960.2033284960.2033284960.2033284960.2033284960.2033284960.2033284960.203328496
0.01025572550.0232859890.0344336080.0515700070.0631367470.0779098560.0939824460.1092840480.1245228230.1392398860.1642490350.1642490350.1642490350.1642490350.1642490350.1642490350.1642490350.1642490350.1642490350.164249035
0.02835594660.0636319240.0931499410.1373500050.1663876050.2025522300.2407368720.2759803350.3100181150.3418990240.3938776930.3938776930.3938776930.3938776930.3938776930.3938776930.3938776930.3938776930.3938776930.393877693
0.00334155460.0076210180.0113128820.0170446580.0209531440.0259927680.0315380090.0368793240.0422606520.0475181270.0565933100.0565933100.0565933100.0565933100.0565933100.0565933100.0565933100.0565933100.0565933100.056593310
0.00344574220.0078581090.0116641510.0175723130.0216004600.0267936330.0325068590.0380090150.0435514260.0489653370.0583083530.0583083530.0583083530.0583083530.0583083530.0583083530.0583083530.0583083530.0583083530.058308353
0.00237944010.0054301040.0080649380.0121612600.0149584820.0185699910.0225500680.0263899940.0302648980.0340566870.0406161090.0406161090.0406161090.0406161090.0406161090.0406161090.0406161090.0406161090.0406161090.040616109
0.00221511960.0050556440.0075094670.0113252700.0139315650.0172973240.0210075630.0245881430.0282023290.0317399580.0378619780.0378619780.0378619780.0378619780.0378619780.0378619780.0378619780.0378619780.0378619780.037861978
0.00438732510.0099993510.0148347120.0223305980.0274341770.0340053290.0412234420.0481638630.0551440780.0619517730.0736751320.0736751320.0736751320.0736751320.0736751320.0736751320.0736751320.0736751320.0736751320.073675132
0.00226499440.0051693090.0076780880.0115790710.0142433510.0176837580.0214759770.0251353640.0288287900.0324436810.0386987020.0386987020.0386987020.0386987020.0386987020.0386987020.0386987020.0386987020.0386987020.038698702
0.00761464940.0173188280.0256475110.0384992480.0472078530.0583710800.0705689100.0822337020.0939021980.1052211560.1245713920.1245713920.1245713920.1245713920.1245713920.1245713920.1245713920.1245713920.1245713920.124571392
0.00739170720.0168141830.0249032730.0373892950.0458528690.0567053270.0685679110.0799163870.0912727090.1022929510.1211420370.1211420370.1211420370.1211420370.1211420370.1211420370.1211420370.1211420370.1211420370.121142037
0.00059195570.0013524520.0020106990.0030366760.0037391150.0046482580.0056530990.0066254740.0076096330.0085755470.0102532320.0102532320.0102532320.0102532320.0102532320.0102532320.0102532320.0102532320.0102532320.010253232
0.00123203050.0028136840.0041816320.0063118370.0077689230.0096531310.0117335090.0137445070.0157777070.0177710950.0212283950.0212283950.0212283950.0212283950.0212283950.0212283950.0212283950.0212283950.0212283950.021228395
0.00750159630.0170629430.0252701610.0379365240.0465209490.0575267050.0695546930.0810592660.0925696730.1037373880.1228339590.1228339590.1228339590.1228339590.1228339590.1228339590.1228339590.1228339590.1228339590.122833959
0.00913412220.0207543720.0307092190.0460367570.0563997310.0696558660.0841045850.0978863980.1116375000.1249428050.1476105470.1476105470.1476105470.1476105470.1476105470.1476105470.1476105470.1476105470.1476105470.147610547
0.00391249590.0089198730.0132367340.0199333760.0244959730.0303744080.0368366020.0430551620.0493143390.0554236490.0659556310.0659556310.0659556310.0659556310.0659556310.0659556310.0659556310.0659556310.0659556310.065955631
0.00745119390.0169488500.0251018940.0376855600.0462145730.0571500450.0691022060.0805352280.0919750130.1030751440.1220583150.1220583150.1220583150.1220583150.1220583150.1220583150.1220583150.1220583150.1220583150.122058315
0.01576021790.0356569980.0525655030.0783521670.0956159960.1174982400.1410907540.1633421880.1852976750.2063061740.2415620710.2415620710.2415620710.2415620710.2415620710.2415620710.2415620710.2415620710.2415620710.241562071
0.00045492380.0010394640.0015454960.0023343760.0028745950.0035739120.0043470130.0050953090.0058528440.0065965060.0078885610.0078885610.0078885610.0078885610.0078885610.0078885610.0078885610.0078885610.0078885610.007888561
0.00260591170.0059460660.0088301470.0133125140.0163723360.0203216630.0246724300.0288683930.0331009790.0372412170.0443997620.0443997620.0443997620.0443997620.0443997620.0443997620.0443997620.0443997620.0443997620.044399762
0.00163475150.0037324430.0055458250.0083680520.0102973490.0127908160.0155420820.0181997940.0208850470.0235159570.0280748250.0280748250.0280748250.0280748250.0280748250.0280748250.0280748250.0280748250.0280748250.028074825
0.00284109440.0064817160.0096243470.0145069080.0178387640.0221378240.0268720590.0314360380.0360380480.0405378880.0483140620.0483140620.0483140620.0483140620.0483140620.0483140620.0483140620.0483140620.0483140620.048314062
0.00192975880.0044051640.0065443080.0098721260.0121460660.0150837710.0183236500.0214518080.0246108270.0277043990.0330614070.0330614070.0330614070.0330614070.0330614070.0330614070.0330614070.0330614070.0330614070.033061407
0.00272636610.0062204320.0092369710.0139243970.0171236320.0212522200.0257995780.0301842470.0346062980.0389310010.0464064550.0464064550.0464064550.0464064550.0464064550.0464064550.0464064550.0464064550.0464064550.046406455
0.00136520650.0031175620.0046329040.0069921870.0086056500.0106916950.0129944250.0152198620.0174693700.0196743400.0234974590.0234974590.0234974590.0234974590.0234974590.0234974590.0234974590.0234974590.0234974590.023497459
0.00137681640.0031440500.0046722370.0070514800.0086785660.0107821890.0131042800.0153483840.0176167160.0198400960.0236950340.0236950340.0236950340.0236950340.0236950340.0236950340.0236950340.0236950340.0236950340.023695034
0.00745387690.0169549230.0251108520.0376989210.0462308830.0571700980.0691262980.0805631300.0920066760.1031104070.1220996190.1220996190.1220996190.1220996190.1220996190.1220996190.1220996190.1220996190.1220996190.122099619
8.902584e-032.023130e-022.993912e-024.489127e-025.500391e-026.794395e-028.205348e-029.551705e-021.089558e-011.219640e-011.441371e-011.441371e-011.441371e-011.441371e-011.441371e-011.441371e-011.441371e-011.441371e-011.441371e-011.441371e-01
3.183496e-037.261275e-031.077982e-021.624374e-021.997044e-022.477671e-023.006655e-023.516321e-024.029940e-024.531871e-025.398586e-025.398586e-025.398586e-025.398586e-025.398586e-025.398586e-025.398586e-025.398586e-025.398586e-025.398586e-02
1.356859e-033.098516e-034.604622e-036.949553e-038.553221e-031.062662e-021.291543e-021.512744e-021.736341e-021.955514e-022.335538e-022.335538e-022.335538e-022.335538e-022.335538e-022.335538e-022.335538e-022.335538e-022.335538e-022.335538e-02
2.551993e-035.823239e-038.648003e-031.303852e-021.603588e-021.990487e-022.416751e-022.827886e-023.242646e-023.648393e-024.350022e-024.350022e-024.350022e-024.350022e-024.350022e-024.350022e-024.350022e-024.350022e-024.350022e-024.350022e-02
2.181691e-034.979455e-037.396437e-031.115513e-021.372254e-021.703824e-022.069350e-022.422121e-022.778223e-023.126802e-023.730078e-023.730078e-023.730078e-023.730078e-023.730078e-023.730078e-023.730078e-023.730078e-023.730078e-023.730078e-02
3.988582e-039.092892e-031.349292e-022.031782e-022.496729e-023.095702e-023.754075e-024.387545e-025.025072e-025.647255e-026.719666e-026.719666e-026.719666e-026.719666e-026.719666e-026.719666e-026.719666e-026.719666e-026.719666e-026.719666e-02
7.047696e-031.603520e-022.375409e-023.567456e-024.375887e-025.412994e-026.547269e-027.633019e-028.720146e-029.775706e-021.158255e-011.158255e-011.158255e-011.158255e-011.158255e-011.158255e-011.158255e-011.158255e-011.158255e-011.158255e-01
2.108022e-034.811543e-037.147316e-031.078010e-021.326178e-021.646708e-022.000105e-022.341214e-022.685585e-023.022723e-023.606294e-023.606294e-023.606294e-023.606294e-023.606294e-023.606294e-023.606294e-023.606294e-023.606294e-023.606294e-02
2.086971e-034.763558e-037.076119e-031.067291e-021.313008e-021.630381e-021.980310e-022.318082e-022.659098e-022.992962e-023.570894e-023.570894e-023.570894e-023.570894e-023.570894e-023.570894e-023.570894e-023.570894e-023.570894e-023.570894e-02
2.316063e-035.285688e-037.850725e-031.183889e-021.456252e-021.807931e-022.195540e-022.569540e-022.946986e-023.316376e-023.955475e-023.955475e-023.955475e-023.955475e-023.955475e-023.955475e-023.955475e-023.955475e-023.955475e-023.955475e-02
8.696201e-031.976492e-022.925231e-024.386930e-025.375827e-026.641570e-028.022175e-029.340033e-021.065592e-011.193008e-011.410298e-011.410298e-011.410298e-011.410298e-011.410298e-011.410298e-011.410298e-011.410298e-011.410298e-011.410298e-01
9.594427e-072.192890e-063.261256e-064.927868e-066.069908e-067.549207e-069.185790e-061.077107e-051.237714e-051.395498e-051.669916e-051.669916e-051.669916e-051.669916e-051.669916e-051.669916e-051.669916e-051.669916e-051.669916e-051.669916e-05
7.805825e-041.783195e-032.650809e-034.002751e-034.928108e-036.125457e-037.448436e-038.728266e-031.002320e-021.129372e-021.349955e-021.349955e-021.349955e-021.349955e-021.349955e-021.349955e-021.349955e-021.349955e-021.349955e-021.349955e-02
2.613744e-035.963907e-038.856602e-031.335231e-021.642120e-022.038219e-022.474575e-022.895400e-023.319892e-023.735117e-024.453036e-024.453036e-024.453036e-024.453036e-024.453036e-024.453036e-024.453036e-024.453036e-024.453036e-024.453036e-02
3.947062e-049.019070e-041.341018e-032.025631e-032.494489e-033.101481e-033.772580e-034.422212e-035.079932e-035.725670e-036.847744e-036.847744e-036.847744e-036.847744e-036.847744e-036.847744e-036.847744e-036.847744e-036.847744e-036.847744e-03
3.335508e-037.607256e-031.129249e-021.701403e-022.091556e-022.594627e-023.148175e-023.681372e-024.218569e-024.743407e-025.649368e-025.649368e-025.649368e-025.649368e-025.649368e-025.649368e-025.649368e-025.649368e-025.649368e-025.649368e-02
8.407480e-031.911227e-022.829093e-024.243813e-025.201335e-026.427407e-027.765374e-029.043157e-021.031965e-011.155626e-011.366650e-011.366650e-011.366650e-011.366650e-011.366650e-011.366650e-011.366650e-011.366650e-011.366650e-011.366650e-01
3.266753e-037.450779e-031.106063e-021.666569e-022.048818e-022.541743e-023.084189e-023.606752e-024.133295e-024.647784e-025.536018e-025.536018e-025.536018e-025.536018e-025.536018e-025.536018e-025.536018e-025.536018e-025.536018e-025.536018e-02
3.492571e-037.964663e-031.182200e-021.780940e-022.189129e-022.715340e-023.294204e-023.851638e-024.413106e-024.961514e-025.907824e-025.907824e-025.907824e-025.907824e-025.907824e-025.907824e-025.907824e-025.907824e-025.907824e-025.907824e-02
2.916911e-036.654359e-039.880279e-031.489170e-021.831111e-022.272267e-022.758021e-023.226245e-023.698312e-024.159840e-024.957269e-024.957269e-024.957269e-024.957269e-024.957269e-024.957269e-024.957269e-024.957269e-024.957269e-024.957269e-02
6.090936e-031.386690e-022.055297e-023.089262e-023.791474e-024.693500e-025.681584e-026.628927e-027.578991e-028.502945e-021.008794e-011.008794e-011.008794e-011.008794e-011.008794e-011.008794e-011.008794e-011.008794e-011.008794e-011.008794e-01
2.142094e-034.889204e-037.262539e-031.095356e-021.347490e-021.673127e-022.032136e-022.378641e-022.728440e-023.070872e-023.663562e-023.663562e-023.663562e-023.663562e-023.663562e-023.663562e-023.663562e-023.663562e-023.663562e-023.663562e-02
4.550822e-041.039826e-031.546034e-032.335188e-032.875594e-033.575155e-034.348524e-035.097079e-035.854877e-036.598795e-037.891298e-037.891298e-037.891298e-037.891298e-037.891298e-037.891298e-037.891298e-037.891298e-037.891298e-037.891298e-03
1.614296e-033.685788e-035.476566e-038.263693e-031.016905e-021.263165e-021.534895e-021.797394e-022.062622e-022.322491e-022.772817e-022.772817e-022.772817e-022.772817e-022.772817e-022.772817e-022.772817e-022.772817e-022.772817e-022.772817e-02
3.181868e-037.257569e-031.077432e-021.623548e-021.996031e-022.476417e-023.005138e-023.514551e-024.027918e-024.529602e-025.395897e-025.395897e-025.395897e-025.395897e-025.395897e-025.395897e-025.395897e-025.395897e-025.395897e-025.395897e-02
1.457518e-033.328166e-034.945621e-037.463556e-039.185285e-031.141103e-021.386759e-021.624133e-021.864038e-022.099157e-022.506737e-022.506737e-022.506737e-022.506737e-022.506737e-022.506737e-022.506737e-022.506737e-022.506737e-022.506737e-02
3.704694e-038.447247e-031.253683e-021.888278e-022.320776e-022.878164e-023.491112e-024.081157e-024.675262e-025.255342e-026.255827e-026.255827e-026.255827e-026.255827e-026.255827e-026.255827e-026.255827e-026.255827e-026.255827e-026.255827e-02
6.887545e-041.573512e-032.339224e-033.532537e-034.349427e-035.406561e-036.574787e-037.705085e-038.848895e-039.971320e-031.192042e-021.192042e-021.192042e-021.192042e-021.192042e-021.192042e-021.192042e-021.192042e-021.192042e-021.192042e-02
7.715644e-041.762604e-032.620212e-033.956581e-034.871290e-036.054877e-037.362669e-038.627826e-039.907931e-031.116393e-021.334458e-021.334458e-021.334458e-021.334458e-021.334458e-021.334458e-021.334458e-021.334458e-021.334458e-021.334458e-02
1.443946e-033.297203e-034.899647e-037.394263e-039.100080e-031.130529e-021.373925e-021.609121e-021.846829e-022.079800e-022.483669e-022.483669e-022.483669e-022.483669e-022.483669e-022.483669e-022.483669e-022.483669e-022.483669e-022.483669e-02
\n" - ], - "text/latex": [ - "A matrix: 10000 × 27 of type dbl\n", - "\\begin{tabular}{lllllllllllllllllllll}\n", - "\t 0.0023360608 & 0.005331257 & 0.007918320 & 0.011940620 & 0.014687471 & 0.018234157 & 0.022143071 & 0.025914614 & 0.029720789 & 0.033445591 & ⋯ & 0.039889763 & 0.039889763 & 0.039889763 & 0.039889763 & 0.039889763 & 0.039889763 & 0.039889763 & 0.039889763 & 0.039889763 & 0.039889763\\\\\n", - "\t 0.0084408266 & 0.019187663 & 0.028402002 & 0.042603515 & 0.052215023 & 0.064521644 & 0.077950666 & 0.090774902 & 0.103585453 & 0.115995093 & ⋯ & 0.137170199 & 0.137170199 & 0.137170199 & 0.137170199 & 0.137170199 & 0.137170199 & 0.137170199 & 0.137170199 & 0.137170199 & 0.137170199\\\\\n", - "\t 0.0021213810 & 0.004841993 & 0.007192493 & 0.010848114 & 0.013345343 & 0.016570670 & 0.020126646 & 0.023558894 & 0.027023898 & 0.030416034 & ⋯ & 0.036287514 & 0.036287514 & 0.036287514 & 0.036287514 & 0.036287514 & 0.036287514 & 0.036287514 & 0.036287514 & 0.036287514 & 0.036287514\\\\\n", - "\t 0.0129751415 & 0.029408795 & 0.043421734 & 0.064878567 & 0.079303248 & 0.097657467 & 0.117537182 & 0.136376047 & 0.155051908 & 0.173006229 & ⋯ & 0.203328496 & 0.203328496 & 0.203328496 & 0.203328496 & 0.203328496 & 0.203328496 & 0.203328496 & 0.203328496 & 0.203328496 & 0.203328496\\\\\n", - "\t 0.0102557255 & 0.023285989 & 0.034433608 & 0.051570007 & 0.063136747 & 0.077909856 & 0.093982446 & 0.109284048 & 0.124522823 & 0.139239886 & ⋯ & 0.164249035 & 0.164249035 & 0.164249035 & 0.164249035 & 0.164249035 & 0.164249035 & 0.164249035 & 0.164249035 & 0.164249035 & 0.164249035\\\\\n", - "\t 0.0283559466 & 0.063631924 & 0.093149941 & 0.137350005 & 0.166387605 & 0.202552230 & 0.240736872 & 0.275980335 & 0.310018115 & 0.341899024 & ⋯ & 0.393877693 & 0.393877693 & 0.393877693 & 0.393877693 & 0.393877693 & 0.393877693 & 0.393877693 & 0.393877693 & 0.393877693 & 0.393877693\\\\\n", - "\t 0.0033415546 & 0.007621018 & 0.011312882 & 0.017044658 & 0.020953144 & 0.025992768 & 0.031538009 & 0.036879324 & 0.042260652 & 0.047518127 & ⋯ & 0.056593310 & 0.056593310 & 0.056593310 & 0.056593310 & 0.056593310 & 0.056593310 & 0.056593310 & 0.056593310 & 0.056593310 & 0.056593310\\\\\n", - "\t 0.0034457422 & 0.007858109 & 0.011664151 & 0.017572313 & 0.021600460 & 0.026793633 & 0.032506859 & 0.038009015 & 0.043551426 & 0.048965337 & ⋯ & 0.058308353 & 0.058308353 & 0.058308353 & 0.058308353 & 0.058308353 & 0.058308353 & 0.058308353 & 0.058308353 & 0.058308353 & 0.058308353\\\\\n", - "\t 0.0023794401 & 0.005430104 & 0.008064938 & 0.012161260 & 0.014958482 & 0.018569991 & 0.022550068 & 0.026389994 & 0.030264898 & 0.034056687 & ⋯ & 0.040616109 & 0.040616109 & 0.040616109 & 0.040616109 & 0.040616109 & 0.040616109 & 0.040616109 & 0.040616109 & 0.040616109 & 0.040616109\\\\\n", - "\t 0.0022151196 & 0.005055644 & 0.007509467 & 0.011325270 & 0.013931565 & 0.017297324 & 0.021007563 & 0.024588143 & 0.028202329 & 0.031739958 & ⋯ & 0.037861978 & 0.037861978 & 0.037861978 & 0.037861978 & 0.037861978 & 0.037861978 & 0.037861978 & 0.037861978 & 0.037861978 & 0.037861978\\\\\n", - "\t 0.0043873251 & 0.009999351 & 0.014834712 & 0.022330598 & 0.027434177 & 0.034005329 & 0.041223442 & 0.048163863 & 0.055144078 & 0.061951773 & ⋯ & 0.073675132 & 0.073675132 & 0.073675132 & 0.073675132 & 0.073675132 & 0.073675132 & 0.073675132 & 0.073675132 & 0.073675132 & 0.073675132\\\\\n", - "\t 0.0022649944 & 0.005169309 & 0.007678088 & 0.011579071 & 0.014243351 & 0.017683758 & 0.021475977 & 0.025135364 & 0.028828790 & 0.032443681 & ⋯ & 0.038698702 & 0.038698702 & 0.038698702 & 0.038698702 & 0.038698702 & 0.038698702 & 0.038698702 & 0.038698702 & 0.038698702 & 0.038698702\\\\\n", - "\t 0.0076146494 & 0.017318828 & 0.025647511 & 0.038499248 & 0.047207853 & 0.058371080 & 0.070568910 & 0.082233702 & 0.093902198 & 0.105221156 & ⋯ & 0.124571392 & 0.124571392 & 0.124571392 & 0.124571392 & 0.124571392 & 0.124571392 & 0.124571392 & 0.124571392 & 0.124571392 & 0.124571392\\\\\n", - "\t 0.0073917072 & 0.016814183 & 0.024903273 & 0.037389295 & 0.045852869 & 0.056705327 & 0.068567911 & 0.079916387 & 0.091272709 & 0.102292951 & ⋯ & 0.121142037 & 0.121142037 & 0.121142037 & 0.121142037 & 0.121142037 & 0.121142037 & 0.121142037 & 0.121142037 & 0.121142037 & 0.121142037\\\\\n", - "\t 0.0005919557 & 0.001352452 & 0.002010699 & 0.003036676 & 0.003739115 & 0.004648258 & 0.005653099 & 0.006625474 & 0.007609633 & 0.008575547 & ⋯ & 0.010253232 & 0.010253232 & 0.010253232 & 0.010253232 & 0.010253232 & 0.010253232 & 0.010253232 & 0.010253232 & 0.010253232 & 0.010253232\\\\\n", - "\t 0.0012320305 & 0.002813684 & 0.004181632 & 0.006311837 & 0.007768923 & 0.009653131 & 0.011733509 & 0.013744507 & 0.015777707 & 0.017771095 & ⋯ & 0.021228395 & 0.021228395 & 0.021228395 & 0.021228395 & 0.021228395 & 0.021228395 & 0.021228395 & 0.021228395 & 0.021228395 & 0.021228395\\\\\n", - "\t 0.0075015963 & 0.017062943 & 0.025270161 & 0.037936524 & 0.046520949 & 0.057526705 & 0.069554693 & 0.081059266 & 0.092569673 & 0.103737388 & ⋯ & 0.122833959 & 0.122833959 & 0.122833959 & 0.122833959 & 0.122833959 & 0.122833959 & 0.122833959 & 0.122833959 & 0.122833959 & 0.122833959\\\\\n", - "\t 0.0091341222 & 0.020754372 & 0.030709219 & 0.046036757 & 0.056399731 & 0.069655866 & 0.084104585 & 0.097886398 & 0.111637500 & 0.124942805 & ⋯ & 0.147610547 & 0.147610547 & 0.147610547 & 0.147610547 & 0.147610547 & 0.147610547 & 0.147610547 & 0.147610547 & 0.147610547 & 0.147610547\\\\\n", - "\t 0.0039124959 & 0.008919873 & 0.013236734 & 0.019933376 & 0.024495973 & 0.030374408 & 0.036836602 & 0.043055162 & 0.049314339 & 0.055423649 & ⋯ & 0.065955631 & 0.065955631 & 0.065955631 & 0.065955631 & 0.065955631 & 0.065955631 & 0.065955631 & 0.065955631 & 0.065955631 & 0.065955631\\\\\n", - "\t 0.0074511939 & 0.016948850 & 0.025101894 & 0.037685560 & 0.046214573 & 0.057150045 & 0.069102206 & 0.080535228 & 0.091975013 & 0.103075144 & ⋯ & 0.122058315 & 0.122058315 & 0.122058315 & 0.122058315 & 0.122058315 & 0.122058315 & 0.122058315 & 0.122058315 & 0.122058315 & 0.122058315\\\\\n", - "\t 0.0157602179 & 0.035656998 & 0.052565503 & 0.078352167 & 0.095615996 & 0.117498240 & 0.141090754 & 0.163342188 & 0.185297675 & 0.206306174 & ⋯ & 0.241562071 & 0.241562071 & 0.241562071 & 0.241562071 & 0.241562071 & 0.241562071 & 0.241562071 & 0.241562071 & 0.241562071 & 0.241562071\\\\\n", - "\t 0.0004549238 & 0.001039464 & 0.001545496 & 0.002334376 & 0.002874595 & 0.003573912 & 0.004347013 & 0.005095309 & 0.005852844 & 0.006596506 & ⋯ & 0.007888561 & 0.007888561 & 0.007888561 & 0.007888561 & 0.007888561 & 0.007888561 & 0.007888561 & 0.007888561 & 0.007888561 & 0.007888561\\\\\n", - "\t 0.0026059117 & 0.005946066 & 0.008830147 & 0.013312514 & 0.016372336 & 0.020321663 & 0.024672430 & 0.028868393 & 0.033100979 & 0.037241217 & ⋯ & 0.044399762 & 0.044399762 & 0.044399762 & 0.044399762 & 0.044399762 & 0.044399762 & 0.044399762 & 0.044399762 & 0.044399762 & 0.044399762\\\\\n", - "\t 0.0016347515 & 0.003732443 & 0.005545825 & 0.008368052 & 0.010297349 & 0.012790816 & 0.015542082 & 0.018199794 & 0.020885047 & 0.023515957 & ⋯ & 0.028074825 & 0.028074825 & 0.028074825 & 0.028074825 & 0.028074825 & 0.028074825 & 0.028074825 & 0.028074825 & 0.028074825 & 0.028074825\\\\\n", - "\t 0.0028410944 & 0.006481716 & 0.009624347 & 0.014506908 & 0.017838764 & 0.022137824 & 0.026872059 & 0.031436038 & 0.036038048 & 0.040537888 & ⋯ & 0.048314062 & 0.048314062 & 0.048314062 & 0.048314062 & 0.048314062 & 0.048314062 & 0.048314062 & 0.048314062 & 0.048314062 & 0.048314062\\\\\n", - "\t 0.0019297588 & 0.004405164 & 0.006544308 & 0.009872126 & 0.012146066 & 0.015083771 & 0.018323650 & 0.021451808 & 0.024610827 & 0.027704399 & ⋯ & 0.033061407 & 0.033061407 & 0.033061407 & 0.033061407 & 0.033061407 & 0.033061407 & 0.033061407 & 0.033061407 & 0.033061407 & 0.033061407\\\\\n", - "\t 0.0027263661 & 0.006220432 & 0.009236971 & 0.013924397 & 0.017123632 & 0.021252220 & 0.025799578 & 0.030184247 & 0.034606298 & 0.038931001 & ⋯ & 0.046406455 & 0.046406455 & 0.046406455 & 0.046406455 & 0.046406455 & 0.046406455 & 0.046406455 & 0.046406455 & 0.046406455 & 0.046406455\\\\\n", - "\t 0.0013652065 & 0.003117562 & 0.004632904 & 0.006992187 & 0.008605650 & 0.010691695 & 0.012994425 & 0.015219862 & 0.017469370 & 0.019674340 & ⋯ & 0.023497459 & 0.023497459 & 0.023497459 & 0.023497459 & 0.023497459 & 0.023497459 & 0.023497459 & 0.023497459 & 0.023497459 & 0.023497459\\\\\n", - "\t 0.0013768164 & 0.003144050 & 0.004672237 & 0.007051480 & 0.008678566 & 0.010782189 & 0.013104280 & 0.015348384 & 0.017616716 & 0.019840096 & ⋯ & 0.023695034 & 0.023695034 & 0.023695034 & 0.023695034 & 0.023695034 & 0.023695034 & 0.023695034 & 0.023695034 & 0.023695034 & 0.023695034\\\\\n", - "\t 0.0074538769 & 0.016954923 & 0.025110852 & 0.037698921 & 0.046230883 & 0.057170098 & 0.069126298 & 0.080563130 & 0.092006676 & 0.103110407 & ⋯ & 0.122099619 & 0.122099619 & 0.122099619 & 0.122099619 & 0.122099619 & 0.122099619 & 0.122099619 & 0.122099619 & 0.122099619 & 0.122099619\\\\\n", - "\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋱ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", - "\t 8.902584e-03 & 2.023130e-02 & 2.993912e-02 & 4.489127e-02 & 5.500391e-02 & 6.794395e-02 & 8.205348e-02 & 9.551705e-02 & 1.089558e-01 & 1.219640e-01 & ⋯ & 1.441371e-01 & 1.441371e-01 & 1.441371e-01 & 1.441371e-01 & 1.441371e-01 & 1.441371e-01 & 1.441371e-01 & 1.441371e-01 & 1.441371e-01 & 1.441371e-01\\\\\n", - "\t 3.183496e-03 & 7.261275e-03 & 1.077982e-02 & 1.624374e-02 & 1.997044e-02 & 2.477671e-02 & 3.006655e-02 & 3.516321e-02 & 4.029940e-02 & 4.531871e-02 & ⋯ & 5.398586e-02 & 5.398586e-02 & 5.398586e-02 & 5.398586e-02 & 5.398586e-02 & 5.398586e-02 & 5.398586e-02 & 5.398586e-02 & 5.398586e-02 & 5.398586e-02\\\\\n", - "\t 1.356859e-03 & 3.098516e-03 & 4.604622e-03 & 6.949553e-03 & 8.553221e-03 & 1.062662e-02 & 1.291543e-02 & 1.512744e-02 & 1.736341e-02 & 1.955514e-02 & ⋯ & 2.335538e-02 & 2.335538e-02 & 2.335538e-02 & 2.335538e-02 & 2.335538e-02 & 2.335538e-02 & 2.335538e-02 & 2.335538e-02 & 2.335538e-02 & 2.335538e-02\\\\\n", - "\t 2.551993e-03 & 5.823239e-03 & 8.648003e-03 & 1.303852e-02 & 1.603588e-02 & 1.990487e-02 & 2.416751e-02 & 2.827886e-02 & 3.242646e-02 & 3.648393e-02 & ⋯ & 4.350022e-02 & 4.350022e-02 & 4.350022e-02 & 4.350022e-02 & 4.350022e-02 & 4.350022e-02 & 4.350022e-02 & 4.350022e-02 & 4.350022e-02 & 4.350022e-02\\\\\n", - "\t 2.181691e-03 & 4.979455e-03 & 7.396437e-03 & 1.115513e-02 & 1.372254e-02 & 1.703824e-02 & 2.069350e-02 & 2.422121e-02 & 2.778223e-02 & 3.126802e-02 & ⋯ & 3.730078e-02 & 3.730078e-02 & 3.730078e-02 & 3.730078e-02 & 3.730078e-02 & 3.730078e-02 & 3.730078e-02 & 3.730078e-02 & 3.730078e-02 & 3.730078e-02\\\\\n", - "\t 3.988582e-03 & 9.092892e-03 & 1.349292e-02 & 2.031782e-02 & 2.496729e-02 & 3.095702e-02 & 3.754075e-02 & 4.387545e-02 & 5.025072e-02 & 5.647255e-02 & ⋯ & 6.719666e-02 & 6.719666e-02 & 6.719666e-02 & 6.719666e-02 & 6.719666e-02 & 6.719666e-02 & 6.719666e-02 & 6.719666e-02 & 6.719666e-02 & 6.719666e-02\\\\\n", - "\t 7.047696e-03 & 1.603520e-02 & 2.375409e-02 & 3.567456e-02 & 4.375887e-02 & 5.412994e-02 & 6.547269e-02 & 7.633019e-02 & 8.720146e-02 & 9.775706e-02 & ⋯ & 1.158255e-01 & 1.158255e-01 & 1.158255e-01 & 1.158255e-01 & 1.158255e-01 & 1.158255e-01 & 1.158255e-01 & 1.158255e-01 & 1.158255e-01 & 1.158255e-01\\\\\n", - "\t 2.108022e-03 & 4.811543e-03 & 7.147316e-03 & 1.078010e-02 & 1.326178e-02 & 1.646708e-02 & 2.000105e-02 & 2.341214e-02 & 2.685585e-02 & 3.022723e-02 & ⋯ & 3.606294e-02 & 3.606294e-02 & 3.606294e-02 & 3.606294e-02 & 3.606294e-02 & 3.606294e-02 & 3.606294e-02 & 3.606294e-02 & 3.606294e-02 & 3.606294e-02\\\\\n", - "\t 2.086971e-03 & 4.763558e-03 & 7.076119e-03 & 1.067291e-02 & 1.313008e-02 & 1.630381e-02 & 1.980310e-02 & 2.318082e-02 & 2.659098e-02 & 2.992962e-02 & ⋯ & 3.570894e-02 & 3.570894e-02 & 3.570894e-02 & 3.570894e-02 & 3.570894e-02 & 3.570894e-02 & 3.570894e-02 & 3.570894e-02 & 3.570894e-02 & 3.570894e-02\\\\\n", - "\t 2.316063e-03 & 5.285688e-03 & 7.850725e-03 & 1.183889e-02 & 1.456252e-02 & 1.807931e-02 & 2.195540e-02 & 2.569540e-02 & 2.946986e-02 & 3.316376e-02 & ⋯ & 3.955475e-02 & 3.955475e-02 & 3.955475e-02 & 3.955475e-02 & 3.955475e-02 & 3.955475e-02 & 3.955475e-02 & 3.955475e-02 & 3.955475e-02 & 3.955475e-02\\\\\n", - "\t 8.696201e-03 & 1.976492e-02 & 2.925231e-02 & 4.386930e-02 & 5.375827e-02 & 6.641570e-02 & 8.022175e-02 & 9.340033e-02 & 1.065592e-01 & 1.193008e-01 & ⋯ & 1.410298e-01 & 1.410298e-01 & 1.410298e-01 & 1.410298e-01 & 1.410298e-01 & 1.410298e-01 & 1.410298e-01 & 1.410298e-01 & 1.410298e-01 & 1.410298e-01\\\\\n", - "\t 9.594427e-07 & 2.192890e-06 & 3.261256e-06 & 4.927868e-06 & 6.069908e-06 & 7.549207e-06 & 9.185790e-06 & 1.077107e-05 & 1.237714e-05 & 1.395498e-05 & ⋯ & 1.669916e-05 & 1.669916e-05 & 1.669916e-05 & 1.669916e-05 & 1.669916e-05 & 1.669916e-05 & 1.669916e-05 & 1.669916e-05 & 1.669916e-05 & 1.669916e-05\\\\\n", - "\t 7.805825e-04 & 1.783195e-03 & 2.650809e-03 & 4.002751e-03 & 4.928108e-03 & 6.125457e-03 & 7.448436e-03 & 8.728266e-03 & 1.002320e-02 & 1.129372e-02 & ⋯ & 1.349955e-02 & 1.349955e-02 & 1.349955e-02 & 1.349955e-02 & 1.349955e-02 & 1.349955e-02 & 1.349955e-02 & 1.349955e-02 & 1.349955e-02 & 1.349955e-02\\\\\n", - "\t 2.613744e-03 & 5.963907e-03 & 8.856602e-03 & 1.335231e-02 & 1.642120e-02 & 2.038219e-02 & 2.474575e-02 & 2.895400e-02 & 3.319892e-02 & 3.735117e-02 & ⋯ & 4.453036e-02 & 4.453036e-02 & 4.453036e-02 & 4.453036e-02 & 4.453036e-02 & 4.453036e-02 & 4.453036e-02 & 4.453036e-02 & 4.453036e-02 & 4.453036e-02\\\\\n", - "\t 3.947062e-04 & 9.019070e-04 & 1.341018e-03 & 2.025631e-03 & 2.494489e-03 & 3.101481e-03 & 3.772580e-03 & 4.422212e-03 & 5.079932e-03 & 5.725670e-03 & ⋯ & 6.847744e-03 & 6.847744e-03 & 6.847744e-03 & 6.847744e-03 & 6.847744e-03 & 6.847744e-03 & 6.847744e-03 & 6.847744e-03 & 6.847744e-03 & 6.847744e-03\\\\\n", - "\t 3.335508e-03 & 7.607256e-03 & 1.129249e-02 & 1.701403e-02 & 2.091556e-02 & 2.594627e-02 & 3.148175e-02 & 3.681372e-02 & 4.218569e-02 & 4.743407e-02 & ⋯ & 5.649368e-02 & 5.649368e-02 & 5.649368e-02 & 5.649368e-02 & 5.649368e-02 & 5.649368e-02 & 5.649368e-02 & 5.649368e-02 & 5.649368e-02 & 5.649368e-02\\\\\n", - "\t 8.407480e-03 & 1.911227e-02 & 2.829093e-02 & 4.243813e-02 & 5.201335e-02 & 6.427407e-02 & 7.765374e-02 & 9.043157e-02 & 1.031965e-01 & 1.155626e-01 & ⋯ & 1.366650e-01 & 1.366650e-01 & 1.366650e-01 & 1.366650e-01 & 1.366650e-01 & 1.366650e-01 & 1.366650e-01 & 1.366650e-01 & 1.366650e-01 & 1.366650e-01\\\\\n", - "\t 3.266753e-03 & 7.450779e-03 & 1.106063e-02 & 1.666569e-02 & 2.048818e-02 & 2.541743e-02 & 3.084189e-02 & 3.606752e-02 & 4.133295e-02 & 4.647784e-02 & ⋯ & 5.536018e-02 & 5.536018e-02 & 5.536018e-02 & 5.536018e-02 & 5.536018e-02 & 5.536018e-02 & 5.536018e-02 & 5.536018e-02 & 5.536018e-02 & 5.536018e-02\\\\\n", - "\t 3.492571e-03 & 7.964663e-03 & 1.182200e-02 & 1.780940e-02 & 2.189129e-02 & 2.715340e-02 & 3.294204e-02 & 3.851638e-02 & 4.413106e-02 & 4.961514e-02 & ⋯ & 5.907824e-02 & 5.907824e-02 & 5.907824e-02 & 5.907824e-02 & 5.907824e-02 & 5.907824e-02 & 5.907824e-02 & 5.907824e-02 & 5.907824e-02 & 5.907824e-02\\\\\n", - "\t 2.916911e-03 & 6.654359e-03 & 9.880279e-03 & 1.489170e-02 & 1.831111e-02 & 2.272267e-02 & 2.758021e-02 & 3.226245e-02 & 3.698312e-02 & 4.159840e-02 & ⋯ & 4.957269e-02 & 4.957269e-02 & 4.957269e-02 & 4.957269e-02 & 4.957269e-02 & 4.957269e-02 & 4.957269e-02 & 4.957269e-02 & 4.957269e-02 & 4.957269e-02\\\\\n", - "\t 6.090936e-03 & 1.386690e-02 & 2.055297e-02 & 3.089262e-02 & 3.791474e-02 & 4.693500e-02 & 5.681584e-02 & 6.628927e-02 & 7.578991e-02 & 8.502945e-02 & ⋯ & 1.008794e-01 & 1.008794e-01 & 1.008794e-01 & 1.008794e-01 & 1.008794e-01 & 1.008794e-01 & 1.008794e-01 & 1.008794e-01 & 1.008794e-01 & 1.008794e-01\\\\\n", - "\t 2.142094e-03 & 4.889204e-03 & 7.262539e-03 & 1.095356e-02 & 1.347490e-02 & 1.673127e-02 & 2.032136e-02 & 2.378641e-02 & 2.728440e-02 & 3.070872e-02 & ⋯ & 3.663562e-02 & 3.663562e-02 & 3.663562e-02 & 3.663562e-02 & 3.663562e-02 & 3.663562e-02 & 3.663562e-02 & 3.663562e-02 & 3.663562e-02 & 3.663562e-02\\\\\n", - "\t 4.550822e-04 & 1.039826e-03 & 1.546034e-03 & 2.335188e-03 & 2.875594e-03 & 3.575155e-03 & 4.348524e-03 & 5.097079e-03 & 5.854877e-03 & 6.598795e-03 & ⋯ & 7.891298e-03 & 7.891298e-03 & 7.891298e-03 & 7.891298e-03 & 7.891298e-03 & 7.891298e-03 & 7.891298e-03 & 7.891298e-03 & 7.891298e-03 & 7.891298e-03\\\\\n", - "\t 1.614296e-03 & 3.685788e-03 & 5.476566e-03 & 8.263693e-03 & 1.016905e-02 & 1.263165e-02 & 1.534895e-02 & 1.797394e-02 & 2.062622e-02 & 2.322491e-02 & ⋯ & 2.772817e-02 & 2.772817e-02 & 2.772817e-02 & 2.772817e-02 & 2.772817e-02 & 2.772817e-02 & 2.772817e-02 & 2.772817e-02 & 2.772817e-02 & 2.772817e-02\\\\\n", - "\t 3.181868e-03 & 7.257569e-03 & 1.077432e-02 & 1.623548e-02 & 1.996031e-02 & 2.476417e-02 & 3.005138e-02 & 3.514551e-02 & 4.027918e-02 & 4.529602e-02 & ⋯ & 5.395897e-02 & 5.395897e-02 & 5.395897e-02 & 5.395897e-02 & 5.395897e-02 & 5.395897e-02 & 5.395897e-02 & 5.395897e-02 & 5.395897e-02 & 5.395897e-02\\\\\n", - "\t 1.457518e-03 & 3.328166e-03 & 4.945621e-03 & 7.463556e-03 & 9.185285e-03 & 1.141103e-02 & 1.386759e-02 & 1.624133e-02 & 1.864038e-02 & 2.099157e-02 & ⋯ & 2.506737e-02 & 2.506737e-02 & 2.506737e-02 & 2.506737e-02 & 2.506737e-02 & 2.506737e-02 & 2.506737e-02 & 2.506737e-02 & 2.506737e-02 & 2.506737e-02\\\\\n", - "\t 3.704694e-03 & 8.447247e-03 & 1.253683e-02 & 1.888278e-02 & 2.320776e-02 & 2.878164e-02 & 3.491112e-02 & 4.081157e-02 & 4.675262e-02 & 5.255342e-02 & ⋯ & 6.255827e-02 & 6.255827e-02 & 6.255827e-02 & 6.255827e-02 & 6.255827e-02 & 6.255827e-02 & 6.255827e-02 & 6.255827e-02 & 6.255827e-02 & 6.255827e-02\\\\\n", - "\t 6.887545e-04 & 1.573512e-03 & 2.339224e-03 & 3.532537e-03 & 4.349427e-03 & 5.406561e-03 & 6.574787e-03 & 7.705085e-03 & 8.848895e-03 & 9.971320e-03 & ⋯ & 1.192042e-02 & 1.192042e-02 & 1.192042e-02 & 1.192042e-02 & 1.192042e-02 & 1.192042e-02 & 1.192042e-02 & 1.192042e-02 & 1.192042e-02 & 1.192042e-02\\\\\n", - "\t 7.715644e-04 & 1.762604e-03 & 2.620212e-03 & 3.956581e-03 & 4.871290e-03 & 6.054877e-03 & 7.362669e-03 & 8.627826e-03 & 9.907931e-03 & 1.116393e-02 & ⋯ & 1.334458e-02 & 1.334458e-02 & 1.334458e-02 & 1.334458e-02 & 1.334458e-02 & 1.334458e-02 & 1.334458e-02 & 1.334458e-02 & 1.334458e-02 & 1.334458e-02\\\\\n", - "\t 1.443946e-03 & 3.297203e-03 & 4.899647e-03 & 7.394263e-03 & 9.100080e-03 & 1.130529e-02 & 1.373925e-02 & 1.609121e-02 & 1.846829e-02 & 2.079800e-02 & ⋯ & 2.483669e-02 & 2.483669e-02 & 2.483669e-02 & 2.483669e-02 & 2.483669e-02 & 2.483669e-02 & 2.483669e-02 & 2.483669e-02 & 2.483669e-02 & 2.483669e-02\\\\\n", - "\\end{tabular}\n" - ], - "text/markdown": [ - "\n", - "A matrix: 10000 × 27 of type dbl\n", - "\n", - "| 0.0023360608 | 0.005331257 | 0.007918320 | 0.011940620 | 0.014687471 | 0.018234157 | 0.022143071 | 0.025914614 | 0.029720789 | 0.033445591 | ⋯ | 0.039889763 | 0.039889763 | 0.039889763 | 0.039889763 | 0.039889763 | 0.039889763 | 0.039889763 | 0.039889763 | 0.039889763 | 0.039889763 |\n", - "| 0.0084408266 | 0.019187663 | 0.028402002 | 0.042603515 | 0.052215023 | 0.064521644 | 0.077950666 | 0.090774902 | 0.103585453 | 0.115995093 | ⋯ | 0.137170199 | 0.137170199 | 0.137170199 | 0.137170199 | 0.137170199 | 0.137170199 | 0.137170199 | 0.137170199 | 0.137170199 | 0.137170199 |\n", - "| 0.0021213810 | 0.004841993 | 0.007192493 | 0.010848114 | 0.013345343 | 0.016570670 | 0.020126646 | 0.023558894 | 0.027023898 | 0.030416034 | ⋯ | 0.036287514 | 0.036287514 | 0.036287514 | 0.036287514 | 0.036287514 | 0.036287514 | 0.036287514 | 0.036287514 | 0.036287514 | 0.036287514 |\n", - "| 0.0129751415 | 0.029408795 | 0.043421734 | 0.064878567 | 0.079303248 | 0.097657467 | 0.117537182 | 0.136376047 | 0.155051908 | 0.173006229 | ⋯ | 0.203328496 | 0.203328496 | 0.203328496 | 0.203328496 | 0.203328496 | 0.203328496 | 0.203328496 | 0.203328496 | 0.203328496 | 0.203328496 |\n", - "| 0.0102557255 | 0.023285989 | 0.034433608 | 0.051570007 | 0.063136747 | 0.077909856 | 0.093982446 | 0.109284048 | 0.124522823 | 0.139239886 | ⋯ | 0.164249035 | 0.164249035 | 0.164249035 | 0.164249035 | 0.164249035 | 0.164249035 | 0.164249035 | 0.164249035 | 0.164249035 | 0.164249035 |\n", - "| 0.0283559466 | 0.063631924 | 0.093149941 | 0.137350005 | 0.166387605 | 0.202552230 | 0.240736872 | 0.275980335 | 0.310018115 | 0.341899024 | ⋯ | 0.393877693 | 0.393877693 | 0.393877693 | 0.393877693 | 0.393877693 | 0.393877693 | 0.393877693 | 0.393877693 | 0.393877693 | 0.393877693 |\n", - "| 0.0033415546 | 0.007621018 | 0.011312882 | 0.017044658 | 0.020953144 | 0.025992768 | 0.031538009 | 0.036879324 | 0.042260652 | 0.047518127 | ⋯ | 0.056593310 | 0.056593310 | 0.056593310 | 0.056593310 | 0.056593310 | 0.056593310 | 0.056593310 | 0.056593310 | 0.056593310 | 0.056593310 |\n", - "| 0.0034457422 | 0.007858109 | 0.011664151 | 0.017572313 | 0.021600460 | 0.026793633 | 0.032506859 | 0.038009015 | 0.043551426 | 0.048965337 | ⋯ | 0.058308353 | 0.058308353 | 0.058308353 | 0.058308353 | 0.058308353 | 0.058308353 | 0.058308353 | 0.058308353 | 0.058308353 | 0.058308353 |\n", - "| 0.0023794401 | 0.005430104 | 0.008064938 | 0.012161260 | 0.014958482 | 0.018569991 | 0.022550068 | 0.026389994 | 0.030264898 | 0.034056687 | ⋯ | 0.040616109 | 0.040616109 | 0.040616109 | 0.040616109 | 0.040616109 | 0.040616109 | 0.040616109 | 0.040616109 | 0.040616109 | 0.040616109 |\n", - "| 0.0022151196 | 0.005055644 | 0.007509467 | 0.011325270 | 0.013931565 | 0.017297324 | 0.021007563 | 0.024588143 | 0.028202329 | 0.031739958 | ⋯ | 0.037861978 | 0.037861978 | 0.037861978 | 0.037861978 | 0.037861978 | 0.037861978 | 0.037861978 | 0.037861978 | 0.037861978 | 0.037861978 |\n", - "| 0.0043873251 | 0.009999351 | 0.014834712 | 0.022330598 | 0.027434177 | 0.034005329 | 0.041223442 | 0.048163863 | 0.055144078 | 0.061951773 | ⋯ | 0.073675132 | 0.073675132 | 0.073675132 | 0.073675132 | 0.073675132 | 0.073675132 | 0.073675132 | 0.073675132 | 0.073675132 | 0.073675132 |\n", - "| 0.0022649944 | 0.005169309 | 0.007678088 | 0.011579071 | 0.014243351 | 0.017683758 | 0.021475977 | 0.025135364 | 0.028828790 | 0.032443681 | ⋯ | 0.038698702 | 0.038698702 | 0.038698702 | 0.038698702 | 0.038698702 | 0.038698702 | 0.038698702 | 0.038698702 | 0.038698702 | 0.038698702 |\n", - "| 0.0076146494 | 0.017318828 | 0.025647511 | 0.038499248 | 0.047207853 | 0.058371080 | 0.070568910 | 0.082233702 | 0.093902198 | 0.105221156 | ⋯ | 0.124571392 | 0.124571392 | 0.124571392 | 0.124571392 | 0.124571392 | 0.124571392 | 0.124571392 | 0.124571392 | 0.124571392 | 0.124571392 |\n", - "| 0.0073917072 | 0.016814183 | 0.024903273 | 0.037389295 | 0.045852869 | 0.056705327 | 0.068567911 | 0.079916387 | 0.091272709 | 0.102292951 | ⋯ | 0.121142037 | 0.121142037 | 0.121142037 | 0.121142037 | 0.121142037 | 0.121142037 | 0.121142037 | 0.121142037 | 0.121142037 | 0.121142037 |\n", - "| 0.0005919557 | 0.001352452 | 0.002010699 | 0.003036676 | 0.003739115 | 0.004648258 | 0.005653099 | 0.006625474 | 0.007609633 | 0.008575547 | ⋯ | 0.010253232 | 0.010253232 | 0.010253232 | 0.010253232 | 0.010253232 | 0.010253232 | 0.010253232 | 0.010253232 | 0.010253232 | 0.010253232 |\n", - "| 0.0012320305 | 0.002813684 | 0.004181632 | 0.006311837 | 0.007768923 | 0.009653131 | 0.011733509 | 0.013744507 | 0.015777707 | 0.017771095 | ⋯ | 0.021228395 | 0.021228395 | 0.021228395 | 0.021228395 | 0.021228395 | 0.021228395 | 0.021228395 | 0.021228395 | 0.021228395 | 0.021228395 |\n", - "| 0.0075015963 | 0.017062943 | 0.025270161 | 0.037936524 | 0.046520949 | 0.057526705 | 0.069554693 | 0.081059266 | 0.092569673 | 0.103737388 | ⋯ | 0.122833959 | 0.122833959 | 0.122833959 | 0.122833959 | 0.122833959 | 0.122833959 | 0.122833959 | 0.122833959 | 0.122833959 | 0.122833959 |\n", - "| 0.0091341222 | 0.020754372 | 0.030709219 | 0.046036757 | 0.056399731 | 0.069655866 | 0.084104585 | 0.097886398 | 0.111637500 | 0.124942805 | ⋯ | 0.147610547 | 0.147610547 | 0.147610547 | 0.147610547 | 0.147610547 | 0.147610547 | 0.147610547 | 0.147610547 | 0.147610547 | 0.147610547 |\n", - "| 0.0039124959 | 0.008919873 | 0.013236734 | 0.019933376 | 0.024495973 | 0.030374408 | 0.036836602 | 0.043055162 | 0.049314339 | 0.055423649 | ⋯ | 0.065955631 | 0.065955631 | 0.065955631 | 0.065955631 | 0.065955631 | 0.065955631 | 0.065955631 | 0.065955631 | 0.065955631 | 0.065955631 |\n", - "| 0.0074511939 | 0.016948850 | 0.025101894 | 0.037685560 | 0.046214573 | 0.057150045 | 0.069102206 | 0.080535228 | 0.091975013 | 0.103075144 | ⋯ | 0.122058315 | 0.122058315 | 0.122058315 | 0.122058315 | 0.122058315 | 0.122058315 | 0.122058315 | 0.122058315 | 0.122058315 | 0.122058315 |\n", - "| 0.0157602179 | 0.035656998 | 0.052565503 | 0.078352167 | 0.095615996 | 0.117498240 | 0.141090754 | 0.163342188 | 0.185297675 | 0.206306174 | ⋯ | 0.241562071 | 0.241562071 | 0.241562071 | 0.241562071 | 0.241562071 | 0.241562071 | 0.241562071 | 0.241562071 | 0.241562071 | 0.241562071 |\n", - "| 0.0004549238 | 0.001039464 | 0.001545496 | 0.002334376 | 0.002874595 | 0.003573912 | 0.004347013 | 0.005095309 | 0.005852844 | 0.006596506 | ⋯ | 0.007888561 | 0.007888561 | 0.007888561 | 0.007888561 | 0.007888561 | 0.007888561 | 0.007888561 | 0.007888561 | 0.007888561 | 0.007888561 |\n", - "| 0.0026059117 | 0.005946066 | 0.008830147 | 0.013312514 | 0.016372336 | 0.020321663 | 0.024672430 | 0.028868393 | 0.033100979 | 0.037241217 | ⋯ | 0.044399762 | 0.044399762 | 0.044399762 | 0.044399762 | 0.044399762 | 0.044399762 | 0.044399762 | 0.044399762 | 0.044399762 | 0.044399762 |\n", - "| 0.0016347515 | 0.003732443 | 0.005545825 | 0.008368052 | 0.010297349 | 0.012790816 | 0.015542082 | 0.018199794 | 0.020885047 | 0.023515957 | ⋯ | 0.028074825 | 0.028074825 | 0.028074825 | 0.028074825 | 0.028074825 | 0.028074825 | 0.028074825 | 0.028074825 | 0.028074825 | 0.028074825 |\n", - "| 0.0028410944 | 0.006481716 | 0.009624347 | 0.014506908 | 0.017838764 | 0.022137824 | 0.026872059 | 0.031436038 | 0.036038048 | 0.040537888 | ⋯ | 0.048314062 | 0.048314062 | 0.048314062 | 0.048314062 | 0.048314062 | 0.048314062 | 0.048314062 | 0.048314062 | 0.048314062 | 0.048314062 |\n", - "| 0.0019297588 | 0.004405164 | 0.006544308 | 0.009872126 | 0.012146066 | 0.015083771 | 0.018323650 | 0.021451808 | 0.024610827 | 0.027704399 | ⋯ | 0.033061407 | 0.033061407 | 0.033061407 | 0.033061407 | 0.033061407 | 0.033061407 | 0.033061407 | 0.033061407 | 0.033061407 | 0.033061407 |\n", - "| 0.0027263661 | 0.006220432 | 0.009236971 | 0.013924397 | 0.017123632 | 0.021252220 | 0.025799578 | 0.030184247 | 0.034606298 | 0.038931001 | ⋯ | 0.046406455 | 0.046406455 | 0.046406455 | 0.046406455 | 0.046406455 | 0.046406455 | 0.046406455 | 0.046406455 | 0.046406455 | 0.046406455 |\n", - "| 0.0013652065 | 0.003117562 | 0.004632904 | 0.006992187 | 0.008605650 | 0.010691695 | 0.012994425 | 0.015219862 | 0.017469370 | 0.019674340 | ⋯ | 0.023497459 | 0.023497459 | 0.023497459 | 0.023497459 | 0.023497459 | 0.023497459 | 0.023497459 | 0.023497459 | 0.023497459 | 0.023497459 |\n", - "| 0.0013768164 | 0.003144050 | 0.004672237 | 0.007051480 | 0.008678566 | 0.010782189 | 0.013104280 | 0.015348384 | 0.017616716 | 0.019840096 | ⋯ | 0.023695034 | 0.023695034 | 0.023695034 | 0.023695034 | 0.023695034 | 0.023695034 | 0.023695034 | 0.023695034 | 0.023695034 | 0.023695034 |\n", - "| 0.0074538769 | 0.016954923 | 0.025110852 | 0.037698921 | 0.046230883 | 0.057170098 | 0.069126298 | 0.080563130 | 0.092006676 | 0.103110407 | ⋯ | 0.122099619 | 0.122099619 | 0.122099619 | 0.122099619 | 0.122099619 | 0.122099619 | 0.122099619 | 0.122099619 | 0.122099619 | 0.122099619 |\n", - "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋱ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", - "| 8.902584e-03 | 2.023130e-02 | 2.993912e-02 | 4.489127e-02 | 5.500391e-02 | 6.794395e-02 | 8.205348e-02 | 9.551705e-02 | 1.089558e-01 | 1.219640e-01 | ⋯ | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 | 1.441371e-01 |\n", - "| 3.183496e-03 | 7.261275e-03 | 1.077982e-02 | 1.624374e-02 | 1.997044e-02 | 2.477671e-02 | 3.006655e-02 | 3.516321e-02 | 4.029940e-02 | 4.531871e-02 | ⋯ | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 | 5.398586e-02 |\n", - "| 1.356859e-03 | 3.098516e-03 | 4.604622e-03 | 6.949553e-03 | 8.553221e-03 | 1.062662e-02 | 1.291543e-02 | 1.512744e-02 | 1.736341e-02 | 1.955514e-02 | ⋯ | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 | 2.335538e-02 |\n", - "| 2.551993e-03 | 5.823239e-03 | 8.648003e-03 | 1.303852e-02 | 1.603588e-02 | 1.990487e-02 | 2.416751e-02 | 2.827886e-02 | 3.242646e-02 | 3.648393e-02 | ⋯ | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 | 4.350022e-02 |\n", - "| 2.181691e-03 | 4.979455e-03 | 7.396437e-03 | 1.115513e-02 | 1.372254e-02 | 1.703824e-02 | 2.069350e-02 | 2.422121e-02 | 2.778223e-02 | 3.126802e-02 | ⋯ | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 | 3.730078e-02 |\n", - "| 3.988582e-03 | 9.092892e-03 | 1.349292e-02 | 2.031782e-02 | 2.496729e-02 | 3.095702e-02 | 3.754075e-02 | 4.387545e-02 | 5.025072e-02 | 5.647255e-02 | ⋯ | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 | 6.719666e-02 |\n", - "| 7.047696e-03 | 1.603520e-02 | 2.375409e-02 | 3.567456e-02 | 4.375887e-02 | 5.412994e-02 | 6.547269e-02 | 7.633019e-02 | 8.720146e-02 | 9.775706e-02 | ⋯ | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 | 1.158255e-01 |\n", - "| 2.108022e-03 | 4.811543e-03 | 7.147316e-03 | 1.078010e-02 | 1.326178e-02 | 1.646708e-02 | 2.000105e-02 | 2.341214e-02 | 2.685585e-02 | 3.022723e-02 | ⋯ | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 | 3.606294e-02 |\n", - "| 2.086971e-03 | 4.763558e-03 | 7.076119e-03 | 1.067291e-02 | 1.313008e-02 | 1.630381e-02 | 1.980310e-02 | 2.318082e-02 | 2.659098e-02 | 2.992962e-02 | ⋯ | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 | 3.570894e-02 |\n", - "| 2.316063e-03 | 5.285688e-03 | 7.850725e-03 | 1.183889e-02 | 1.456252e-02 | 1.807931e-02 | 2.195540e-02 | 2.569540e-02 | 2.946986e-02 | 3.316376e-02 | ⋯ | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 | 3.955475e-02 |\n", - "| 8.696201e-03 | 1.976492e-02 | 2.925231e-02 | 4.386930e-02 | 5.375827e-02 | 6.641570e-02 | 8.022175e-02 | 9.340033e-02 | 1.065592e-01 | 1.193008e-01 | ⋯ | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 | 1.410298e-01 |\n", - "| 9.594427e-07 | 2.192890e-06 | 3.261256e-06 | 4.927868e-06 | 6.069908e-06 | 7.549207e-06 | 9.185790e-06 | 1.077107e-05 | 1.237714e-05 | 1.395498e-05 | ⋯ | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 | 1.669916e-05 |\n", - "| 7.805825e-04 | 1.783195e-03 | 2.650809e-03 | 4.002751e-03 | 4.928108e-03 | 6.125457e-03 | 7.448436e-03 | 8.728266e-03 | 1.002320e-02 | 1.129372e-02 | ⋯ | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 | 1.349955e-02 |\n", - "| 2.613744e-03 | 5.963907e-03 | 8.856602e-03 | 1.335231e-02 | 1.642120e-02 | 2.038219e-02 | 2.474575e-02 | 2.895400e-02 | 3.319892e-02 | 3.735117e-02 | ⋯ | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 | 4.453036e-02 |\n", - "| 3.947062e-04 | 9.019070e-04 | 1.341018e-03 | 2.025631e-03 | 2.494489e-03 | 3.101481e-03 | 3.772580e-03 | 4.422212e-03 | 5.079932e-03 | 5.725670e-03 | ⋯ | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 | 6.847744e-03 |\n", - "| 3.335508e-03 | 7.607256e-03 | 1.129249e-02 | 1.701403e-02 | 2.091556e-02 | 2.594627e-02 | 3.148175e-02 | 3.681372e-02 | 4.218569e-02 | 4.743407e-02 | ⋯ | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 | 5.649368e-02 |\n", - "| 8.407480e-03 | 1.911227e-02 | 2.829093e-02 | 4.243813e-02 | 5.201335e-02 | 6.427407e-02 | 7.765374e-02 | 9.043157e-02 | 1.031965e-01 | 1.155626e-01 | ⋯ | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 | 1.366650e-01 |\n", - "| 3.266753e-03 | 7.450779e-03 | 1.106063e-02 | 1.666569e-02 | 2.048818e-02 | 2.541743e-02 | 3.084189e-02 | 3.606752e-02 | 4.133295e-02 | 4.647784e-02 | ⋯ | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 | 5.536018e-02 |\n", - "| 3.492571e-03 | 7.964663e-03 | 1.182200e-02 | 1.780940e-02 | 2.189129e-02 | 2.715340e-02 | 3.294204e-02 | 3.851638e-02 | 4.413106e-02 | 4.961514e-02 | ⋯ | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 | 5.907824e-02 |\n", - "| 2.916911e-03 | 6.654359e-03 | 9.880279e-03 | 1.489170e-02 | 1.831111e-02 | 2.272267e-02 | 2.758021e-02 | 3.226245e-02 | 3.698312e-02 | 4.159840e-02 | ⋯ | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 | 4.957269e-02 |\n", - "| 6.090936e-03 | 1.386690e-02 | 2.055297e-02 | 3.089262e-02 | 3.791474e-02 | 4.693500e-02 | 5.681584e-02 | 6.628927e-02 | 7.578991e-02 | 8.502945e-02 | ⋯ | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 | 1.008794e-01 |\n", - "| 2.142094e-03 | 4.889204e-03 | 7.262539e-03 | 1.095356e-02 | 1.347490e-02 | 1.673127e-02 | 2.032136e-02 | 2.378641e-02 | 2.728440e-02 | 3.070872e-02 | ⋯ | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 | 3.663562e-02 |\n", - "| 4.550822e-04 | 1.039826e-03 | 1.546034e-03 | 2.335188e-03 | 2.875594e-03 | 3.575155e-03 | 4.348524e-03 | 5.097079e-03 | 5.854877e-03 | 6.598795e-03 | ⋯ | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 | 7.891298e-03 |\n", - "| 1.614296e-03 | 3.685788e-03 | 5.476566e-03 | 8.263693e-03 | 1.016905e-02 | 1.263165e-02 | 1.534895e-02 | 1.797394e-02 | 2.062622e-02 | 2.322491e-02 | ⋯ | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 | 2.772817e-02 |\n", - "| 3.181868e-03 | 7.257569e-03 | 1.077432e-02 | 1.623548e-02 | 1.996031e-02 | 2.476417e-02 | 3.005138e-02 | 3.514551e-02 | 4.027918e-02 | 4.529602e-02 | ⋯ | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 | 5.395897e-02 |\n", - "| 1.457518e-03 | 3.328166e-03 | 4.945621e-03 | 7.463556e-03 | 9.185285e-03 | 1.141103e-02 | 1.386759e-02 | 1.624133e-02 | 1.864038e-02 | 2.099157e-02 | ⋯ | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 | 2.506737e-02 |\n", - "| 3.704694e-03 | 8.447247e-03 | 1.253683e-02 | 1.888278e-02 | 2.320776e-02 | 2.878164e-02 | 3.491112e-02 | 4.081157e-02 | 4.675262e-02 | 5.255342e-02 | ⋯ | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 | 6.255827e-02 |\n", - "| 6.887545e-04 | 1.573512e-03 | 2.339224e-03 | 3.532537e-03 | 4.349427e-03 | 5.406561e-03 | 6.574787e-03 | 7.705085e-03 | 8.848895e-03 | 9.971320e-03 | ⋯ | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 | 1.192042e-02 |\n", - "| 7.715644e-04 | 1.762604e-03 | 2.620212e-03 | 3.956581e-03 | 4.871290e-03 | 6.054877e-03 | 7.362669e-03 | 8.627826e-03 | 9.907931e-03 | 1.116393e-02 | ⋯ | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 | 1.334458e-02 |\n", - "| 1.443946e-03 | 3.297203e-03 | 4.899647e-03 | 7.394263e-03 | 9.100080e-03 | 1.130529e-02 | 1.373925e-02 | 1.609121e-02 | 1.846829e-02 | 2.079800e-02 | ⋯ | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 | 2.483669e-02 |\n", - "\n" - ], - "text/plain": [ - " [,1] [,2] [,3] [,4] [,5] \n", - " [1,] 0.0023360608 0.005331257 0.007918320 0.011940620 0.014687471 \n", - " [2,] 0.0084408266 0.019187663 0.028402002 0.042603515 0.052215023 \n", - " [3,] 0.0021213810 0.004841993 0.007192493 0.010848114 0.013345343 \n", - " [4,] 0.0129751415 0.029408795 0.043421734 0.064878567 0.079303248 \n", - " [5,] 0.0102557255 0.023285989 0.034433608 0.051570007 0.063136747 \n", - " [6,] 0.0283559466 0.063631924 0.093149941 0.137350005 0.166387605 \n", - " [7,] 0.0033415546 0.007621018 0.011312882 0.017044658 0.020953144 \n", - " [8,] 0.0034457422 0.007858109 0.011664151 0.017572313 0.021600460 \n", - " [9,] 0.0023794401 0.005430104 0.008064938 0.012161260 0.014958482 \n", - "[10,] 0.0022151196 0.005055644 0.007509467 0.011325270 0.013931565 \n", - "[11,] 0.0043873251 0.009999351 0.014834712 0.022330598 0.027434177 \n", - "[12,] 0.0022649944 0.005169309 0.007678088 0.011579071 0.014243351 \n", - "[13,] 0.0076146494 0.017318828 0.025647511 0.038499248 0.047207853 \n", - "[14,] 0.0073917072 0.016814183 0.024903273 0.037389295 0.045852869 \n", - "[15,] 0.0005919557 0.001352452 0.002010699 0.003036676 0.003739115 \n", - "[16,] 0.0012320305 0.002813684 0.004181632 0.006311837 0.007768923 \n", - "[17,] 0.0075015963 0.017062943 0.025270161 0.037936524 0.046520949 \n", - "[18,] 0.0091341222 0.020754372 0.030709219 0.046036757 0.056399731 \n", - "[19,] 0.0039124959 0.008919873 0.013236734 0.019933376 0.024495973 \n", - "[20,] 0.0074511939 0.016948850 0.025101894 0.037685560 0.046214573 \n", - "[21,] 0.0157602179 0.035656998 0.052565503 0.078352167 0.095615996 \n", - "[22,] 0.0004549238 0.001039464 0.001545496 0.002334376 0.002874595 \n", - "[23,] 0.0026059117 0.005946066 0.008830147 0.013312514 0.016372336 \n", - "[24,] 0.0016347515 0.003732443 0.005545825 0.008368052 0.010297349 \n", - "[25,] 0.0028410944 0.006481716 0.009624347 0.014506908 0.017838764 \n", - "[26,] 0.0019297588 0.004405164 0.006544308 0.009872126 0.012146066 \n", - "[27,] 0.0027263661 0.006220432 0.009236971 0.013924397 0.017123632 \n", - "[28,] 0.0013652065 0.003117562 0.004632904 0.006992187 0.008605650 \n", - "[29,] 0.0013768164 0.003144050 0.004672237 0.007051480 0.008678566 \n", - "[30,] 0.0074538769 0.016954923 0.025110852 0.037698921 0.046230883 \n", - "[31,] \n", - "[32,] 8.902584e-03 2.023130e-02 2.993912e-02 4.489127e-02 5.500391e-02\n", - "[33,] 3.183496e-03 7.261275e-03 1.077982e-02 1.624374e-02 1.997044e-02\n", - "[34,] 1.356859e-03 3.098516e-03 4.604622e-03 6.949553e-03 8.553221e-03\n", - "[35,] 2.551993e-03 5.823239e-03 8.648003e-03 1.303852e-02 1.603588e-02\n", - "[36,] 2.181691e-03 4.979455e-03 7.396437e-03 1.115513e-02 1.372254e-02\n", - "[37,] 3.988582e-03 9.092892e-03 1.349292e-02 2.031782e-02 2.496729e-02\n", - "[38,] 7.047696e-03 1.603520e-02 2.375409e-02 3.567456e-02 4.375887e-02\n", - "[39,] 2.108022e-03 4.811543e-03 7.147316e-03 1.078010e-02 1.326178e-02\n", - "[40,] 2.086971e-03 4.763558e-03 7.076119e-03 1.067291e-02 1.313008e-02\n", - "[41,] 2.316063e-03 5.285688e-03 7.850725e-03 1.183889e-02 1.456252e-02\n", - "[42,] 8.696201e-03 1.976492e-02 2.925231e-02 4.386930e-02 5.375827e-02\n", - "[43,] 9.594427e-07 2.192890e-06 3.261256e-06 4.927868e-06 6.069908e-06\n", - "[44,] 7.805825e-04 1.783195e-03 2.650809e-03 4.002751e-03 4.928108e-03\n", - "[45,] 2.613744e-03 5.963907e-03 8.856602e-03 1.335231e-02 1.642120e-02\n", - "[46,] 3.947062e-04 9.019070e-04 1.341018e-03 2.025631e-03 2.494489e-03\n", - "[47,] 3.335508e-03 7.607256e-03 1.129249e-02 1.701403e-02 2.091556e-02\n", - "[48,] 8.407480e-03 1.911227e-02 2.829093e-02 4.243813e-02 5.201335e-02\n", - "[49,] 3.266753e-03 7.450779e-03 1.106063e-02 1.666569e-02 2.048818e-02\n", - "[50,] 3.492571e-03 7.964663e-03 1.182200e-02 1.780940e-02 2.189129e-02\n", - "[51,] 2.916911e-03 6.654359e-03 9.880279e-03 1.489170e-02 1.831111e-02\n", - "[52,] 6.090936e-03 1.386690e-02 2.055297e-02 3.089262e-02 3.791474e-02\n", - "[53,] 2.142094e-03 4.889204e-03 7.262539e-03 1.095356e-02 1.347490e-02\n", - "[54,] 4.550822e-04 1.039826e-03 1.546034e-03 2.335188e-03 2.875594e-03\n", - "[55,] 1.614296e-03 3.685788e-03 5.476566e-03 8.263693e-03 1.016905e-02\n", - "[56,] 3.181868e-03 7.257569e-03 1.077432e-02 1.623548e-02 1.996031e-02\n", - "[57,] 1.457518e-03 3.328166e-03 4.945621e-03 7.463556e-03 9.185285e-03\n", - "[58,] 3.704694e-03 8.447247e-03 1.253683e-02 1.888278e-02 2.320776e-02\n", - "[59,] 6.887545e-04 1.573512e-03 2.339224e-03 3.532537e-03 4.349427e-03\n", - "[60,] 7.715644e-04 1.762604e-03 2.620212e-03 3.956581e-03 4.871290e-03\n", - "[61,] 1.443946e-03 3.297203e-03 4.899647e-03 7.394263e-03 9.100080e-03\n", - " [,6] [,7] [,8] [,9] [,10] [,11] \n", - " [1,] 0.018234157 0.022143071 0.025914614 0.029720789 0.033445591 \n", - " [2,] 0.064521644 0.077950666 0.090774902 0.103585453 0.115995093 \n", - " [3,] 0.016570670 0.020126646 0.023558894 0.027023898 0.030416034 \n", - " [4,] 0.097657467 0.117537182 0.136376047 0.155051908 0.173006229 \n", - " [5,] 0.077909856 0.093982446 0.109284048 0.124522823 0.139239886 \n", - " [6,] 0.202552230 0.240736872 0.275980335 0.310018115 0.341899024 \n", - " [7,] 0.025992768 0.031538009 0.036879324 0.042260652 0.047518127 \n", - " [8,] 0.026793633 0.032506859 0.038009015 0.043551426 0.048965337 \n", - " [9,] 0.018569991 0.022550068 0.026389994 0.030264898 0.034056687 \n", - "[10,] 0.017297324 0.021007563 0.024588143 0.028202329 0.031739958 \n", - "[11,] 0.034005329 0.041223442 0.048163863 0.055144078 0.061951773 \n", - "[12,] 0.017683758 0.021475977 0.025135364 0.028828790 0.032443681 \n", - "[13,] 0.058371080 0.070568910 0.082233702 0.093902198 0.105221156 \n", - "[14,] 0.056705327 0.068567911 0.079916387 0.091272709 0.102292951 \n", - "[15,] 0.004648258 0.005653099 0.006625474 0.007609633 0.008575547 \n", - "[16,] 0.009653131 0.011733509 0.013744507 0.015777707 0.017771095 \n", - "[17,] 0.057526705 0.069554693 0.081059266 0.092569673 0.103737388 \n", - "[18,] 0.069655866 0.084104585 0.097886398 0.111637500 0.124942805 \n", - "[19,] 0.030374408 0.036836602 0.043055162 0.049314339 0.055423649 \n", - "[20,] 0.057150045 0.069102206 0.080535228 0.091975013 0.103075144 \n", - "[21,] 0.117498240 0.141090754 0.163342188 0.185297675 0.206306174 \n", - "[22,] 0.003573912 0.004347013 0.005095309 0.005852844 0.006596506 \n", - "[23,] 0.020321663 0.024672430 0.028868393 0.033100979 0.037241217 \n", - "[24,] 0.012790816 0.015542082 0.018199794 0.020885047 0.023515957 \n", - "[25,] 0.022137824 0.026872059 0.031436038 0.036038048 0.040537888 \n", - "[26,] 0.015083771 0.018323650 0.021451808 0.024610827 0.027704399 \n", - "[27,] 0.021252220 0.025799578 0.030184247 0.034606298 0.038931001 \n", - "[28,] 0.010691695 0.012994425 0.015219862 0.017469370 0.019674340 \n", - "[29,] 0.010782189 0.013104280 0.015348384 0.017616716 0.019840096 \n", - "[30,] 0.057170098 0.069126298 0.080563130 0.092006676 0.103110407 \n", - "[31,] \n", - "[32,] 6.794395e-02 8.205348e-02 9.551705e-02 1.089558e-01 1.219640e-01 \n", - "[33,] 2.477671e-02 3.006655e-02 3.516321e-02 4.029940e-02 4.531871e-02 \n", - "[34,] 1.062662e-02 1.291543e-02 1.512744e-02 1.736341e-02 1.955514e-02 \n", - "[35,] 1.990487e-02 2.416751e-02 2.827886e-02 3.242646e-02 3.648393e-02 \n", - "[36,] 1.703824e-02 2.069350e-02 2.422121e-02 2.778223e-02 3.126802e-02 \n", - "[37,] 3.095702e-02 3.754075e-02 4.387545e-02 5.025072e-02 5.647255e-02 \n", - "[38,] 5.412994e-02 6.547269e-02 7.633019e-02 8.720146e-02 9.775706e-02 \n", - "[39,] 1.646708e-02 2.000105e-02 2.341214e-02 2.685585e-02 3.022723e-02 \n", - "[40,] 1.630381e-02 1.980310e-02 2.318082e-02 2.659098e-02 2.992962e-02 \n", - "[41,] 1.807931e-02 2.195540e-02 2.569540e-02 2.946986e-02 3.316376e-02 \n", - "[42,] 6.641570e-02 8.022175e-02 9.340033e-02 1.065592e-01 1.193008e-01 \n", - "[43,] 7.549207e-06 9.185790e-06 1.077107e-05 1.237714e-05 1.395498e-05 \n", - "[44,] 6.125457e-03 7.448436e-03 8.728266e-03 1.002320e-02 1.129372e-02 \n", - "[45,] 2.038219e-02 2.474575e-02 2.895400e-02 3.319892e-02 3.735117e-02 \n", - "[46,] 3.101481e-03 3.772580e-03 4.422212e-03 5.079932e-03 5.725670e-03 \n", - "[47,] 2.594627e-02 3.148175e-02 3.681372e-02 4.218569e-02 4.743407e-02 \n", - "[48,] 6.427407e-02 7.765374e-02 9.043157e-02 1.031965e-01 1.155626e-01 \n", - "[49,] 2.541743e-02 3.084189e-02 3.606752e-02 4.133295e-02 4.647784e-02 \n", - "[50,] 2.715340e-02 3.294204e-02 3.851638e-02 4.413106e-02 4.961514e-02 \n", - "[51,] 2.272267e-02 2.758021e-02 3.226245e-02 3.698312e-02 4.159840e-02 \n", - "[52,] 4.693500e-02 5.681584e-02 6.628927e-02 7.578991e-02 8.502945e-02 \n", - "[53,] 1.673127e-02 2.032136e-02 2.378641e-02 2.728440e-02 3.070872e-02 \n", - "[54,] 3.575155e-03 4.348524e-03 5.097079e-03 5.854877e-03 6.598795e-03 \n", - "[55,] 1.263165e-02 1.534895e-02 1.797394e-02 2.062622e-02 2.322491e-02 \n", - "[56,] 2.476417e-02 3.005138e-02 3.514551e-02 4.027918e-02 4.529602e-02 \n", - "[57,] 1.141103e-02 1.386759e-02 1.624133e-02 1.864038e-02 2.099157e-02 \n", - "[58,] 2.878164e-02 3.491112e-02 4.081157e-02 4.675262e-02 5.255342e-02 \n", - "[59,] 5.406561e-03 6.574787e-03 7.705085e-03 8.848895e-03 9.971320e-03 \n", - "[60,] 6.054877e-03 7.362669e-03 8.627826e-03 9.907931e-03 1.116393e-02 \n", - "[61,] 1.130529e-02 1.373925e-02 1.609121e-02 1.846829e-02 2.079800e-02 \n", - " [,12] [,13] [,14] [,15] [,16] \n", - " [1,] 0.039889763 0.039889763 0.039889763 0.039889763 0.039889763 \n", - " [2,] 0.137170199 0.137170199 0.137170199 0.137170199 0.137170199 \n", - " [3,] 0.036287514 0.036287514 0.036287514 0.036287514 0.036287514 \n", - " [4,] 0.203328496 0.203328496 0.203328496 0.203328496 0.203328496 \n", - " [5,] 0.164249035 0.164249035 0.164249035 0.164249035 0.164249035 \n", - " [6,] 0.393877693 0.393877693 0.393877693 0.393877693 0.393877693 \n", - " [7,] 0.056593310 0.056593310 0.056593310 0.056593310 0.056593310 \n", - " [8,] 0.058308353 0.058308353 0.058308353 0.058308353 0.058308353 \n", - " [9,] 0.040616109 0.040616109 0.040616109 0.040616109 0.040616109 \n", - "[10,] 0.037861978 0.037861978 0.037861978 0.037861978 0.037861978 \n", - "[11,] 0.073675132 0.073675132 0.073675132 0.073675132 0.073675132 \n", - "[12,] 0.038698702 0.038698702 0.038698702 0.038698702 0.038698702 \n", - "[13,] 0.124571392 0.124571392 0.124571392 0.124571392 0.124571392 \n", - "[14,] 0.121142037 0.121142037 0.121142037 0.121142037 0.121142037 \n", - "[15,] 0.010253232 0.010253232 0.010253232 0.010253232 0.010253232 \n", - "[16,] 0.021228395 0.021228395 0.021228395 0.021228395 0.021228395 \n", - "[17,] 0.122833959 0.122833959 0.122833959 0.122833959 0.122833959 \n", - "[18,] 0.147610547 0.147610547 0.147610547 0.147610547 0.147610547 \n", - "[19,] 0.065955631 0.065955631 0.065955631 0.065955631 0.065955631 \n", - "[20,] 0.122058315 0.122058315 0.122058315 0.122058315 0.122058315 \n", - "[21,] 0.241562071 0.241562071 0.241562071 0.241562071 0.241562071 \n", - "[22,] 0.007888561 0.007888561 0.007888561 0.007888561 0.007888561 \n", - "[23,] 0.044399762 0.044399762 0.044399762 0.044399762 0.044399762 \n", - "[24,] 0.028074825 0.028074825 0.028074825 0.028074825 0.028074825 \n", - "[25,] 0.048314062 0.048314062 0.048314062 0.048314062 0.048314062 \n", - "[26,] 0.033061407 0.033061407 0.033061407 0.033061407 0.033061407 \n", - "[27,] 0.046406455 0.046406455 0.046406455 0.046406455 0.046406455 \n", - "[28,] 0.023497459 0.023497459 0.023497459 0.023497459 0.023497459 \n", - "[29,] 0.023695034 0.023695034 0.023695034 0.023695034 0.023695034 \n", - "[30,] 0.122099619 0.122099619 0.122099619 0.122099619 0.122099619 \n", - "[31,] \n", - "[32,] 1.441371e-01 1.441371e-01 1.441371e-01 1.441371e-01 1.441371e-01\n", - "[33,] 5.398586e-02 5.398586e-02 5.398586e-02 5.398586e-02 5.398586e-02\n", - "[34,] 2.335538e-02 2.335538e-02 2.335538e-02 2.335538e-02 2.335538e-02\n", - "[35,] 4.350022e-02 4.350022e-02 4.350022e-02 4.350022e-02 4.350022e-02\n", - "[36,] 3.730078e-02 3.730078e-02 3.730078e-02 3.730078e-02 3.730078e-02\n", - "[37,] 6.719666e-02 6.719666e-02 6.719666e-02 6.719666e-02 6.719666e-02\n", - "[38,] 1.158255e-01 1.158255e-01 1.158255e-01 1.158255e-01 1.158255e-01\n", - "[39,] 3.606294e-02 3.606294e-02 3.606294e-02 3.606294e-02 3.606294e-02\n", - "[40,] 3.570894e-02 3.570894e-02 3.570894e-02 3.570894e-02 3.570894e-02\n", - "[41,] 3.955475e-02 3.955475e-02 3.955475e-02 3.955475e-02 3.955475e-02\n", - "[42,] 1.410298e-01 1.410298e-01 1.410298e-01 1.410298e-01 1.410298e-01\n", - "[43,] 1.669916e-05 1.669916e-05 1.669916e-05 1.669916e-05 1.669916e-05\n", - "[44,] 1.349955e-02 1.349955e-02 1.349955e-02 1.349955e-02 1.349955e-02\n", - "[45,] 4.453036e-02 4.453036e-02 4.453036e-02 4.453036e-02 4.453036e-02\n", - "[46,] 6.847744e-03 6.847744e-03 6.847744e-03 6.847744e-03 6.847744e-03\n", - "[47,] 5.649368e-02 5.649368e-02 5.649368e-02 5.649368e-02 5.649368e-02\n", - "[48,] 1.366650e-01 1.366650e-01 1.366650e-01 1.366650e-01 1.366650e-01\n", - "[49,] 5.536018e-02 5.536018e-02 5.536018e-02 5.536018e-02 5.536018e-02\n", - "[50,] 5.907824e-02 5.907824e-02 5.907824e-02 5.907824e-02 5.907824e-02\n", - "[51,] 4.957269e-02 4.957269e-02 4.957269e-02 4.957269e-02 4.957269e-02\n", - "[52,] 1.008794e-01 1.008794e-01 1.008794e-01 1.008794e-01 1.008794e-01\n", - "[53,] 3.663562e-02 3.663562e-02 3.663562e-02 3.663562e-02 3.663562e-02\n", - "[54,] 7.891298e-03 7.891298e-03 7.891298e-03 7.891298e-03 7.891298e-03\n", - "[55,] 2.772817e-02 2.772817e-02 2.772817e-02 2.772817e-02 2.772817e-02\n", - "[56,] 5.395897e-02 5.395897e-02 5.395897e-02 5.395897e-02 5.395897e-02\n", - "[57,] 2.506737e-02 2.506737e-02 2.506737e-02 2.506737e-02 2.506737e-02\n", - "[58,] 6.255827e-02 6.255827e-02 6.255827e-02 6.255827e-02 6.255827e-02\n", - "[59,] 1.192042e-02 1.192042e-02 1.192042e-02 1.192042e-02 1.192042e-02\n", - "[60,] 1.334458e-02 1.334458e-02 1.334458e-02 1.334458e-02 1.334458e-02\n", - "[61,] 2.483669e-02 2.483669e-02 2.483669e-02 2.483669e-02 2.483669e-02\n", - " [,17] [,18] [,19] [,20] [,21] \n", - " [1,] 0.039889763 0.039889763 0.039889763 0.039889763 0.039889763 \n", - " [2,] 0.137170199 0.137170199 0.137170199 0.137170199 0.137170199 \n", - " [3,] 0.036287514 0.036287514 0.036287514 0.036287514 0.036287514 \n", - " [4,] 0.203328496 0.203328496 0.203328496 0.203328496 0.203328496 \n", - " [5,] 0.164249035 0.164249035 0.164249035 0.164249035 0.164249035 \n", - " [6,] 0.393877693 0.393877693 0.393877693 0.393877693 0.393877693 \n", - " [7,] 0.056593310 0.056593310 0.056593310 0.056593310 0.056593310 \n", - " [8,] 0.058308353 0.058308353 0.058308353 0.058308353 0.058308353 \n", - " [9,] 0.040616109 0.040616109 0.040616109 0.040616109 0.040616109 \n", - "[10,] 0.037861978 0.037861978 0.037861978 0.037861978 0.037861978 \n", - "[11,] 0.073675132 0.073675132 0.073675132 0.073675132 0.073675132 \n", - "[12,] 0.038698702 0.038698702 0.038698702 0.038698702 0.038698702 \n", - "[13,] 0.124571392 0.124571392 0.124571392 0.124571392 0.124571392 \n", - "[14,] 0.121142037 0.121142037 0.121142037 0.121142037 0.121142037 \n", - "[15,] 0.010253232 0.010253232 0.010253232 0.010253232 0.010253232 \n", - "[16,] 0.021228395 0.021228395 0.021228395 0.021228395 0.021228395 \n", - "[17,] 0.122833959 0.122833959 0.122833959 0.122833959 0.122833959 \n", - "[18,] 0.147610547 0.147610547 0.147610547 0.147610547 0.147610547 \n", - "[19,] 0.065955631 0.065955631 0.065955631 0.065955631 0.065955631 \n", - "[20,] 0.122058315 0.122058315 0.122058315 0.122058315 0.122058315 \n", - "[21,] 0.241562071 0.241562071 0.241562071 0.241562071 0.241562071 \n", - "[22,] 0.007888561 0.007888561 0.007888561 0.007888561 0.007888561 \n", - "[23,] 0.044399762 0.044399762 0.044399762 0.044399762 0.044399762 \n", - "[24,] 0.028074825 0.028074825 0.028074825 0.028074825 0.028074825 \n", - "[25,] 0.048314062 0.048314062 0.048314062 0.048314062 0.048314062 \n", - "[26,] 0.033061407 0.033061407 0.033061407 0.033061407 0.033061407 \n", - "[27,] 0.046406455 0.046406455 0.046406455 0.046406455 0.046406455 \n", - "[28,] 0.023497459 0.023497459 0.023497459 0.023497459 0.023497459 \n", - "[29,] 0.023695034 0.023695034 0.023695034 0.023695034 0.023695034 \n", - "[30,] 0.122099619 0.122099619 0.122099619 0.122099619 0.122099619 \n", - "[31,] \n", - "[32,] 1.441371e-01 1.441371e-01 1.441371e-01 1.441371e-01 1.441371e-01\n", - "[33,] 5.398586e-02 5.398586e-02 5.398586e-02 5.398586e-02 5.398586e-02\n", - "[34,] 2.335538e-02 2.335538e-02 2.335538e-02 2.335538e-02 2.335538e-02\n", - "[35,] 4.350022e-02 4.350022e-02 4.350022e-02 4.350022e-02 4.350022e-02\n", - "[36,] 3.730078e-02 3.730078e-02 3.730078e-02 3.730078e-02 3.730078e-02\n", - "[37,] 6.719666e-02 6.719666e-02 6.719666e-02 6.719666e-02 6.719666e-02\n", - "[38,] 1.158255e-01 1.158255e-01 1.158255e-01 1.158255e-01 1.158255e-01\n", - "[39,] 3.606294e-02 3.606294e-02 3.606294e-02 3.606294e-02 3.606294e-02\n", - "[40,] 3.570894e-02 3.570894e-02 3.570894e-02 3.570894e-02 3.570894e-02\n", - "[41,] 3.955475e-02 3.955475e-02 3.955475e-02 3.955475e-02 3.955475e-02\n", - "[42,] 1.410298e-01 1.410298e-01 1.410298e-01 1.410298e-01 1.410298e-01\n", - "[43,] 1.669916e-05 1.669916e-05 1.669916e-05 1.669916e-05 1.669916e-05\n", - "[44,] 1.349955e-02 1.349955e-02 1.349955e-02 1.349955e-02 1.349955e-02\n", - "[45,] 4.453036e-02 4.453036e-02 4.453036e-02 4.453036e-02 4.453036e-02\n", - "[46,] 6.847744e-03 6.847744e-03 6.847744e-03 6.847744e-03 6.847744e-03\n", - "[47,] 5.649368e-02 5.649368e-02 5.649368e-02 5.649368e-02 5.649368e-02\n", - "[48,] 1.366650e-01 1.366650e-01 1.366650e-01 1.366650e-01 1.366650e-01\n", - "[49,] 5.536018e-02 5.536018e-02 5.536018e-02 5.536018e-02 5.536018e-02\n", - "[50,] 5.907824e-02 5.907824e-02 5.907824e-02 5.907824e-02 5.907824e-02\n", - "[51,] 4.957269e-02 4.957269e-02 4.957269e-02 4.957269e-02 4.957269e-02\n", - "[52,] 1.008794e-01 1.008794e-01 1.008794e-01 1.008794e-01 1.008794e-01\n", - "[53,] 3.663562e-02 3.663562e-02 3.663562e-02 3.663562e-02 3.663562e-02\n", - "[54,] 7.891298e-03 7.891298e-03 7.891298e-03 7.891298e-03 7.891298e-03\n", - "[55,] 2.772817e-02 2.772817e-02 2.772817e-02 2.772817e-02 2.772817e-02\n", - "[56,] 5.395897e-02 5.395897e-02 5.395897e-02 5.395897e-02 5.395897e-02\n", - "[57,] 2.506737e-02 2.506737e-02 2.506737e-02 2.506737e-02 2.506737e-02\n", - "[58,] 6.255827e-02 6.255827e-02 6.255827e-02 6.255827e-02 6.255827e-02\n", - "[59,] 1.192042e-02 1.192042e-02 1.192042e-02 1.192042e-02 1.192042e-02\n", - "[60,] 1.334458e-02 1.334458e-02 1.334458e-02 1.334458e-02 1.334458e-02\n", - "[61,] 2.483669e-02 2.483669e-02 2.483669e-02 2.483669e-02 2.483669e-02" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "preds" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "fit = crr(ftime=data_cox[[time]], fstatus=data_cox[[event]], cov1=data_cox %>% select(all_of(features[[\"clinical\"]])), failcode=1, cencode=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Competing Risks Regression\n", - "\n", - "Call:\n", - "crr(ftime = data_cox[[time]], fstatus = data_cox[[event]], cov1 = data_cox %>% \n", - " select(all_of(features[[\"clinical\"]])), failcode = 1, cencode = 0)\n", - "\n", - " coef exp(coef) se(coef)\n", - "age_at_recruitment 5.70e-01 1.767910 0.0503\n", - "ethnic_background_0.0 -8.37e-02 0.919684 0.3635\n", - "ethnic_background_1.0 -2.35e-01 0.790231 0.4872\n", - "ethnic_background_2.0 1.64e-01 1.178012 0.4728\n", - "ethnic_background_3.0 -1.19e+00 0.305197 1.0801\n", - "ethnic_background_4.0 -7.68e+00 0.000460 0.4391\n", - "townsend_deprivation_index_at_recruitment 3.16e-02 1.032069 0.0373\n", - "sex 6.76e-01 1.966116 0.1237\n", - "overall_health_rating_0.0 3.41e-01 1.406432 0.5363\n", - "overall_health_rating_1.0 1.22e-01 1.130077 0.5341\n", - "overall_health_rating_2.0 7.19e-01 2.051881 0.5618\n", - "overall_health_rating_3.0 -2.08e-01 0.812016 0.5431\n", - "smoking_status_0.0 -7.98e-02 0.923340 0.4801\n", - "smoking_status_1.0 -4.23e-01 0.655178 0.4769\n", - "smoking_status_2.0 -5.87e-01 0.555778 0.4756\n", - "body_mass_index_bmi 2.64e-01 1.301603 0.3479\n", - "weight -2.82e-01 0.754031 0.4085\n", - "standing_height 5.23e-02 1.053702 0.2321\n", - "systolic_blood_pressure 2.14e-01 1.238483 0.0573\n", - "diastolic_blood_pressure 3.42e-02 1.034798 0.0548\n", - "cholesterol 1.52e-01 1.164306 0.1985\n", - "hdl_cholesterol -1.78e-01 0.837290 0.0833\n", - "ldl_direct -5.76e-02 0.944052 0.1792\n", - "triglycerides -7.99e-02 0.923178 0.0550\n", - "fh_heart_disease 1.57e-01 1.169898 0.0790\n", - "diabetes1 -1.05e+00 0.349879 0.6536\n", - "diabetes2 6.24e-01 1.866990 0.2369\n", - "chronic_kidney_disease 3.50e-01 1.418361 0.1552\n", - "atrial_fibrillation 6.25e-01 1.867433 0.2363\n", - "migraine 2.52e-01 1.287100 0.1461\n", - "rheumatoid_arthritis 1.08e-01 1.114040 0.1507\n", - "systemic_lupus_erythematosus 5.57e-01 1.744744 0.6532\n", - "severe_mental_illness -7.11e-05 0.999929 0.1252\n", - "erectile_dysfunction -3.77e-02 0.962997 0.1991\n", - "antihypertensives -5.42e-01 0.581436 0.4148\n", - "ass 4.13e-01 1.511168 0.2779\n", - "atypical_antipsychotics 9.92e-03 1.009965 0.2734\n", - "glucocorticoids -8.23e+00 0.000266 0.4911\n", - " z p-value\n", - "age_at_recruitment 1.13e+01 0.0e+00\n", - "ethnic_background_0.0 -2.30e-01 8.2e-01\n", - "ethnic_background_1.0 -4.83e-01 6.3e-01\n", - "ethnic_background_2.0 3.47e-01 7.3e-01\n", - "ethnic_background_3.0 -1.10e+00 2.7e-01\n", - "ethnic_background_4.0 -1.75e+01 0.0e+00\n", - "townsend_deprivation_index_at_recruitment 8.45e-01 4.0e-01\n", - "sex 5.47e+00 4.6e-08\n", - "overall_health_rating_0.0 6.36e-01 5.2e-01\n", - "overall_health_rating_1.0 2.29e-01 8.2e-01\n", - "overall_health_rating_2.0 1.28e+00 2.0e-01\n", - "overall_health_rating_3.0 -3.83e-01 7.0e-01\n", - "smoking_status_0.0 -1.66e-01 8.7e-01\n", - "smoking_status_1.0 -8.87e-01 3.8e-01\n", - "smoking_status_2.0 -1.24e+00 2.2e-01\n", - "body_mass_index_bmi 7.58e-01 4.5e-01\n", - "weight -6.91e-01 4.9e-01\n", - "standing_height 2.25e-01 8.2e-01\n", - "systolic_blood_pressure 3.73e+00 1.9e-04\n", - "diastolic_blood_pressure 6.24e-01 5.3e-01\n", - "cholesterol 7.66e-01 4.4e-01\n", - "hdl_cholesterol -2.13e+00 3.3e-02\n", - "ldl_direct -3.21e-01 7.5e-01\n", - "triglycerides -1.45e+00 1.5e-01\n", - "fh_heart_disease 1.99e+00 4.7e-02\n", - "diabetes1 -1.61e+00 1.1e-01\n", - "diabetes2 2.64e+00 8.4e-03\n", - "chronic_kidney_disease 2.25e+00 2.4e-02\n", - "atrial_fibrillation 2.64e+00 8.2e-03\n", - "migraine 1.73e+00 8.4e-02\n", - "rheumatoid_arthritis 7.17e-01 4.7e-01\n", - "systemic_lupus_erythematosus 8.52e-01 3.9e-01\n", - "severe_mental_illness -5.68e-04 1.0e+00\n", - "erectile_dysfunction -1.89e-01 8.5e-01\n", - "antihypertensives -1.31e+00 1.9e-01\n", - "ass 1.49e+00 1.4e-01\n", - "atypical_antipsychotics 3.63e-02 9.7e-01\n", - "glucocorticoids -1.68e+01 0.0e+00\n", - "\n", - " exp(coef) exp(-coef) 2.5%\n", - "age_at_recruitment 1.767910 0.566 1.602010\n", - "ethnic_background_0.0 0.919684 1.087 0.451094\n", - "ethnic_background_1.0 0.790231 1.265 0.304122\n", - "ethnic_background_2.0 1.178012 0.849 0.466371\n", - "ethnic_background_3.0 0.305197 3.277 0.036744\n", - "ethnic_background_4.0 0.000460 2172.523 0.000195\n", - "townsend_deprivation_index_at_recruitment 1.032069 0.969 0.959233\n", - "sex 1.966116 0.509 1.542827\n", - "overall_health_rating_0.0 1.406432 0.711 0.491624\n", - "overall_health_rating_1.0 1.130077 0.885 0.396680\n", - "overall_health_rating_2.0 2.051881 0.487 0.682204\n", - "overall_health_rating_3.0 0.812016 1.232 0.280091\n", - "smoking_status_0.0 0.923340 1.083 0.360337\n", - "smoking_status_1.0 0.655178 1.526 0.257309\n", - "smoking_status_2.0 0.555778 1.799 0.218831\n", - "body_mass_index_bmi 1.301603 0.768 0.658122\n", - "weight 0.754031 1.326 0.338560\n", - "standing_height 1.053702 0.949 0.668565\n", - "systolic_blood_pressure 1.238483 0.807 1.106913\n", - "diastolic_blood_pressure 1.034798 0.966 0.929367\n", - "cholesterol 1.164306 0.859 0.789038\n", - "hdl_cholesterol 0.837290 1.194 0.711107\n", - "ldl_direct 0.944052 1.059 0.664422\n", - "triglycerides 0.923178 1.083 0.828836\n", - "fh_heart_disease 1.169898 0.855 1.002095\n", - "diabetes1 0.349879 2.858 0.097186\n", - "diabetes2 1.866990 0.536 1.173606\n", - "chronic_kidney_disease 1.418361 0.705 1.046436\n", - "atrial_fibrillation 1.867433 0.535 1.175137\n", - "migraine 1.287100 0.777 0.966517\n", - "rheumatoid_arthritis 1.114040 0.898 0.829209\n", - "systemic_lupus_erythematosus 1.744744 0.573 0.484975\n", - "severe_mental_illness 0.999929 1.000 0.782381\n", - "erectile_dysfunction 0.962997 1.038 0.651853\n", - "antihypertensives 0.581436 1.720 0.257861\n", - "ass 1.511168 0.662 0.876445\n", - "atypical_antipsychotics 1.009965 0.990 0.591033\n", - "glucocorticoids 0.000266 3756.604 0.000102\n", - " 97.5%\n", - "age_at_recruitment 1.950991\n", - "ethnic_background_0.0 1.875039\n", - "ethnic_background_1.0 2.053341\n", - "ethnic_background_2.0 2.975555\n", - "ethnic_background_3.0 2.535013\n", - "ethnic_background_4.0 0.001088\n", - "townsend_deprivation_index_at_recruitment 1.110436\n", - "sex 2.505539\n", - "overall_health_rating_0.0 4.023506\n", - "overall_health_rating_1.0 3.219411\n", - "overall_health_rating_2.0 6.171491\n", - "overall_health_rating_3.0 2.354124\n", - "smoking_status_0.0 2.365996\n", - "smoking_status_1.0 1.668259\n", - "smoking_status_2.0 1.411541\n", - "body_mass_index_bmi 2.574250\n", - "weight 1.679354\n", - "standing_height 1.660702\n", - "systolic_blood_pressure 1.385692\n", - "diastolic_blood_pressure 1.152190\n", - "cholesterol 1.718051\n", - "hdl_cholesterol 0.985864\n", - "ldl_direct 1.341368\n", - "triglycerides 1.028258\n", - "fh_heart_disease 1.365801\n", - "diabetes1 1.259600\n", - "diabetes2 2.970035\n", - "chronic_kidney_disease 1.922476\n", - "atrial_fibrillation 2.967575\n", - "migraine 1.714016\n", - "rheumatoid_arthritis 1.496710\n", - "systemic_lupus_erythematosus 6.276880\n", - "severe_mental_illness 1.277968\n", - "erectile_dysfunction 1.422657\n", - "antihypertensives 1.311043\n", - "ass 2.605559\n", - "atypical_antipsychotics 1.725842\n", - "glucocorticoids 0.000697\n", - "\n", - "Num. cases = 10000\n", - "Pseudo Log-likelihood = -6190 \n", - "Pseudo likelihood ratio test = 524 on 38 df," - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "summary(fit)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "10000" - ], - "text/latex": [ - "10000" - ], - "text/markdown": [ - "10000" - ], - "text/plain": [ - "[1] 10000" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fit$n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "library(cmprsk)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "ename": "ERROR", - "evalue": "Error in predict.ccr(fit, data_cox %>% select(all_of(features[[\"clinical\"]]))): could not find function \"predict.ccr\"\n", - "output_type": "error", - "traceback": [ - "Error in predict.ccr(fit, data_cox %>% select(all_of(features[[\"clinical\"]]))): could not find function \"predict.ccr\"\nTraceback:\n" - ] - } - ], - "source": [ - "predict.ccr(fit, data_cox %>% select(all_of(features[[\"clinical\"]])))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e8c593612a5c472690bd06b5ea2d4eb7", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/2 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57737591.683621100000.3016571.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0109510
57737640.942714100000.1498311.010...FalseTrueFalseFalseTrueFalseFalseTrue2.9897331
57737770.32529110000-0.7842370.001...FalseFalseFalseTrueFalseFalseFalseFalse2.1984941
5773788-1.773947100000.6955820.001...FalseFalseFalseFalseFalseFalseFalseFalse12.3422310
5773796-0.786070100000.6673750.001...FalseFalseFalseFalseFalseFalseFalseFalse12.3586580
..................................................................
6025147-1.526978001000.0555521.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025150-1.526978100000.4579830.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28000910000-0.2460100.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251820.078322100000.4391741.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43665210000-0.1883561.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773759 1.683621 1 0 \n", - "5773764 0.942714 1 0 \n", - "5773777 0.325291 1 0 \n", - "5773788 -1.773947 1 0 \n", - "5773796 -0.786070 1 0 \n", - "... ... ... ... \n", - "6025147 -1.526978 0 0 \n", - "6025150 -1.526978 1 0 \n", - "6025165 -1.280009 1 0 \n", - "6025182 0.078322 1 0 \n", - "6025198 1.436652 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773759 0 0 0 \n", - "5773764 0 0 0 \n", - "5773777 0 0 0 \n", - "5773788 0 0 0 \n", - "5773796 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773759 0.301657 1.0 \n", - "5773764 0.149831 1.0 \n", - "5773777 -0.784237 0.0 \n", - "5773788 0.695582 0.0 \n", - "5773796 0.667375 0.0 \n", - "... ... ... \n", - "6025147 0.055552 1.0 \n", - "6025150 0.457983 0.0 \n", - "6025165 -0.246010 0.0 \n", - "6025182 0.439174 1.0 \n", - "6025198 -0.188356 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773759 0 1 ... False \n", - "5773764 1 0 ... False \n", - "5773777 0 1 ... False \n", - "5773788 0 1 ... False \n", - "5773796 0 1 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773759 False False False \n", - "5773764 True False False \n", - "5773777 False False True \n", - "5773788 False False False \n", - "5773796 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773759 False False \n", - "5773764 True False \n", - "5773777 False False \n", - "5773788 False False \n", - "5773796 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773759 False False 12.010951 \n", - "5773764 False True 2.989733 \n", - "5773777 False False 2.198494 \n", - "5773788 False False 12.342231 \n", - "5773796 False False 12.358658 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773759 0 \n", - "5773764 1 \n", - "5773777 1 \n", - "5773788 0 \n", - "5773796 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5773580577359157736065773621577365757736705773694577370257737235773741
11.00.0568480.1426450.0513570.136920.0777040.0567330.0948350.0185520.0144980.013819...0.0076940.1311480.1270420.0397270.0253260.0192390.0475260.1091580.0235550.06691
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.056848 0.142645 0.051357 0.13692 0.077704 0.056733 0.094835 \n", - "\n", - " 1000107 1000110 1000128 ... 5773580 5773591 5773606 \\\n", - "11.0 0.018552 0.014498 0.013819 ... 0.007694 0.131148 0.127042 \n", - "\n", - " 5773621 5773657 5773670 5773694 5773702 5773723 5773741 \n", - "11.0 0.039727 0.025326 0.019239 0.047526 0.109158 0.023555 0.06691 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "1\n", - "Iteration 1: norm_delta = 0.88708, step_size = 0.5000, log_lik = -301749.28339, newton_decrement = 8771.80829, seconds_since_start = 5.2\n", - "Iteration 2: norm_delta = 0.40479, step_size = 0.5000, log_lik = -295306.15540, newton_decrement = 2094.66191, seconds_since_start = 9.8\n", - "Iteration 3: norm_delta = 0.22763, step_size = 0.5000, log_lik = -293722.43856, newton_decrement = 610.64566, seconds_since_start = 14.8\n", - "Iteration 4: norm_delta = 0.10283, step_size = 0.6000, log_lik = -293205.03206, newton_decrement = 114.01681, seconds_since_start = 19.9\n", - "Iteration 5: norm_delta = 0.03170, step_size = 0.7200, log_lik = -293099.23778, newton_decrement = 10.17535, seconds_since_start = 25.0\n", - "Iteration 6: norm_delta = 0.00462, step_size = 0.8640, log_lik = -293089.21444, newton_decrement = 0.20888, seconds_since_start = 30.2\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293089.00538, newton_decrement = 0.00000, seconds_since_start = 35.6\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293089.00538, newton_decrement = 0.00000, seconds_since_start = 40.4\n", - "Convergence success after 8 iterations.\n", - "0.7369282503558089\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57738861.18874810000-0.9124501.010...TrueFalseTrueFalseTrueFalseTrueTrue11.3319640
5773895-1.40432910000-0.8132900.001...FalseFalseFalseFalseFalseFalseFalseFalse10.4832310
5773928-1.033889100000.7165800.001...FalseFalseFalseFalseFalseFalseFalseFalse13.3223820
5773935-0.04605110000-0.8743580.001...FalseFalseFalseFalseFalseFalseFalseFalse12.8213550
5773944-0.91041010000-0.4634790.000...FalseFalseFalseFalseFalseFalseTrueFalse12.3668720
..................................................................
6025150-1.527809100000.4587050.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28084910000-0.2455280.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20090910000-0.1540351.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.077429100000.4398901.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43570810000-0.1878541.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773886 1.188748 1 0 \n", - "5773895 -1.404329 1 0 \n", - "5773928 -1.033889 1 0 \n", - "5773935 -0.046051 1 0 \n", - "5773944 -0.910410 1 0 \n", - "... ... ... ... \n", - "6025150 -1.527809 1 0 \n", - "6025165 -1.280849 1 0 \n", - "6025173 0.200909 1 0 \n", - "6025182 0.077429 1 0 \n", - "6025198 1.435708 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773886 0 0 0 \n", - "5773895 0 0 0 \n", - "5773928 0 0 0 \n", - "5773935 0 0 0 \n", - "5773944 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773886 -0.912450 1.0 \n", - "5773895 -0.813290 0.0 \n", - "5773928 0.716580 0.0 \n", - "5773935 -0.874358 0.0 \n", - "5773944 -0.463479 0.0 \n", - "... ... ... \n", - "6025150 0.458705 0.0 \n", - "6025165 -0.245528 0.0 \n", - "6025173 -0.154035 1.0 \n", - "6025182 0.439890 1.0 \n", - "6025198 -0.187854 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773886 1 0 ... True \n", - "5773895 0 1 ... False \n", - "5773928 0 1 ... False \n", - "5773935 0 1 ... False \n", - "5773944 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773886 False True False \n", - "5773895 False False False \n", - "5773928 False False False \n", - "5773935 False False False \n", - "5773944 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773886 True False \n", - "5773895 False False \n", - "5773928 False False \n", - "5773935 False False \n", - "5773944 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773886 True True 11.331964 \n", - "5773895 False False 10.483231 \n", - "5773928 False False 13.322382 \n", - "5773935 False False 12.821355 \n", - "5773944 True False 12.366872 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773886 0 \n", - "5773895 0 \n", - "5773928 0 \n", - "5773935 0 \n", - "5773944 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000431000079100008410000921000110100012810001351000156...5773730577374157737595773764577378857738085773814577382757738405773871
11.00.058350.139090.1359720.0780520.0575250.0955570.0145540.0135320.0182110.019225...0.0529920.0545440.2710370.2526850.0095770.0287880.1112710.1089550.0339480.064399
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000043 1000079 1000084 1000092 1000110 \\\n", - "11.0 0.05835 0.13909 0.135972 0.078052 0.057525 0.095557 0.014554 \n", - "\n", - " 1000128 1000135 1000156 ... 5773730 5773741 5773759 \\\n", - "11.0 0.013532 0.018211 0.019225 ... 0.052992 0.054544 0.271037 \n", - "\n", - " 5773764 5773788 5773808 5773814 5773827 5773840 5773871 \n", - "11.0 0.252685 0.009577 0.028788 0.111271 0.108955 0.033948 0.064399 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "2\n", - "Iteration 1: norm_delta = 0.85475, step_size = 0.5000, log_lik = -302233.28004, newton_decrement = 8897.11939, seconds_since_start = 4.7\n", - "Iteration 2: norm_delta = 0.41055, step_size = 0.5000, log_lik = -295700.37866, newton_decrement = 2125.67835, seconds_since_start = 9.5\n", - "Iteration 3: norm_delta = 0.23200, step_size = 0.5000, log_lik = -294093.12182, newton_decrement = 620.37684, seconds_since_start = 14.8\n", - "Iteration 4: norm_delta = 0.10492, step_size = 0.6000, log_lik = -293567.42865, newton_decrement = 115.99847, seconds_since_start = 20.0\n", - "Iteration 5: norm_delta = 0.03235, step_size = 0.7200, log_lik = -293459.78771, newton_decrement = 10.36657, seconds_since_start = 25.1\n", - "Iteration 6: norm_delta = 0.00472, step_size = 0.8640, log_lik = -293449.57558, newton_decrement = 0.21305, seconds_since_start = 31.3\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293449.36234, newton_decrement = 0.00000, seconds_since_start = 36.6\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293449.36234, newton_decrement = 0.00000, seconds_since_start = 41.4\n", - "Convergence success after 8 iterations.\n", - "0.7312492235208388\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5772660-0.04622510000-0.4193611.001...FalseFalseFalseFalseFalseFalseFalseFalse11.9561940
5772678-1.52785710000-0.9761290.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0574950
57726930.818060100000.0849911.000...FalseFalseFalseFalseFalseFalseFalseFalse11.2881590
57727091.06499910000-0.4385171.000...FalseFalseFalseFalseFalseFalseFalseFalse11.6084870
57727170.941529100001.2305961.000...FalseFalseFalseFalseFalseFalseFalseFalse10.4312110
..................................................................
6025131-0.78704110000-0.5050831.010...FalseFalseFalseFalseFalseFalseFalseFalse10.2943190
6025147-1.527857001000.0555981.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025165-1.28091910000-0.2459550.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20071310000-0.1544971.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.077244100000.4392081.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5772660 -0.046225 1 0 \n", - "5772678 -1.527857 1 0 \n", - "5772693 0.818060 1 0 \n", - "5772709 1.064999 1 0 \n", - "5772717 0.941529 1 0 \n", - "... ... ... ... \n", - "6025131 -0.787041 1 0 \n", - "6025147 -1.527857 0 0 \n", - "6025165 -1.280919 1 0 \n", - "6025173 0.200713 1 0 \n", - "6025182 0.077244 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5772660 0 0 0 \n", - "5772678 0 0 0 \n", - "5772693 0 0 0 \n", - "5772709 0 0 0 \n", - "5772717 0 0 0 \n", - "... ... ... ... \n", - "6025131 0 0 0 \n", - "6025147 1 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5772660 -0.419361 1.0 \n", - "5772678 -0.976129 0.0 \n", - "5772693 0.084991 1.0 \n", - "5772709 -0.438517 1.0 \n", - "5772717 1.230596 1.0 \n", - "... ... ... \n", - "6025131 -0.505083 1.0 \n", - "6025147 0.055598 1.0 \n", - "6025165 -0.245955 0.0 \n", - "6025173 -0.154497 1.0 \n", - "6025182 0.439208 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5772660 0 1 ... False \n", - "5772678 0 1 ... False \n", - "5772693 0 0 ... False \n", - "5772709 0 0 ... False \n", - "5772717 0 0 ... False \n", - "... ... ... ... ... \n", - "6025131 1 0 ... False \n", - "6025147 0 1 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772660 False False False \n", - "5772678 False False False \n", - "5772693 False False False \n", - "5772709 False False False \n", - "5772717 False False False \n", - "... ... ... ... \n", - "6025131 False False False \n", - "6025147 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772660 False False \n", - "5772678 False False \n", - "5772693 False False \n", - "5772709 False False \n", - "5772717 False False \n", - "... ... ... \n", - "6025131 False False \n", - "6025147 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772660 False False 11.956194 \n", - "5772678 False False 12.057495 \n", - "5772693 False False 11.288159 \n", - "5772709 False False 11.608487 \n", - "5772717 False False 10.431211 \n", - "... ... ... ... \n", - "6025131 False False 10.294319 \n", - "6025147 False False 11.879535 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772660 0 \n", - "5772678 0 \n", - "5772693 0 \n", - "5772709 0 \n", - "5772717 0 \n", - "... ... \n", - "6025131 0 \n", - "6025147 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000020100003710000431000079100008410001071000110100012810001351000144...5772530577254157725645772577577258857725965772601577262657726425772655
11.00.1419770.0556920.134880.0785940.0571220.0182520.0144050.0136940.0180410.084751...0.0935010.0472050.1384450.0147550.0512820.0366860.0831010.016050.1022220.151704
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000020 1000037 1000043 1000079 1000084 1000107 1000110 \\\n", - "11.0 0.141977 0.055692 0.13488 0.078594 0.057122 0.018252 0.014405 \n", - "\n", - " 1000128 1000135 1000144 ... 5772530 5772541 5772564 \\\n", - "11.0 0.013694 0.018041 0.084751 ... 0.093501 0.047205 0.138445 \n", - "\n", - " 5772577 5772588 5772596 5772601 5772626 5772642 5772655 \n", - "11.0 0.014755 0.051282 0.036686 0.083101 0.01605 0.102222 0.151704 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "3\n", - "Iteration 1: norm_delta = 0.82225, step_size = 0.5000, log_lik = -303597.59644, newton_decrement = 8833.91307, seconds_since_start = 4.6\n", - "Iteration 2: norm_delta = 0.40702, step_size = 0.5000, log_lik = -297107.37481, newton_decrement = 2112.81535, seconds_since_start = 9.2\n", - "Iteration 3: norm_delta = 0.23149, step_size = 0.5000, log_lik = -295509.90103, newton_decrement = 616.22740, seconds_since_start = 14.3\n", - "Iteration 4: norm_delta = 0.10508, step_size = 0.6000, log_lik = -294987.73984, newton_decrement = 115.15510, seconds_since_start = 19.5\n", - "Iteration 5: norm_delta = 0.03244, step_size = 0.7200, log_lik = -294880.88533, newton_decrement = 10.28292, seconds_since_start = 24.1\n", - "Iteration 6: norm_delta = 0.00473, step_size = 0.8640, log_lik = -294870.75601, newton_decrement = 0.21104, seconds_since_start = 28.7\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294870.54479, newton_decrement = 0.00000, seconds_since_start = 33.3\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294870.54479, newton_decrement = 0.00000, seconds_since_start = 39.4\n", - "Convergence success after 8 iterations.\n", - "0.7299441336455134\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773031-0.29324810000-0.1400060.001...FalseFalseFalseFalseFalseFalseTrueFalse12.8952770
5773047-0.54025410000-1.3167921.000...FalseFalseFalseFalseFalseFalseFalseFalse12.4791240
5773050-1.03426710000-1.4999791.001...FalseFalseFalseFalseFalseFalseFalseFalse11.0116360
57730650.57127510000-0.6922530.001...FalseFalseFalseFalseFalseFalseFalseFalse12.1368930
57730821.065288100001.0678541.001...FalseFalseFalseFalseFalseFalseFalseTrue10.5434630
..................................................................
6025150-1.528280100000.4586670.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28127410000-0.2451110.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20076510000-0.1536781.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.077262100000.4398641.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43579810000-0.1874741.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773031 -0.293248 1 0 \n", - "5773047 -0.540254 1 0 \n", - "5773050 -1.034267 1 0 \n", - "5773065 0.571275 1 0 \n", - "5773082 1.065288 1 0 \n", - "... ... ... ... \n", - "6025150 -1.528280 1 0 \n", - "6025165 -1.281274 1 0 \n", - "6025173 0.200765 1 0 \n", - "6025182 0.077262 1 0 \n", - "6025198 1.435798 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773031 0 0 0 \n", - "5773047 0 0 0 \n", - "5773050 0 0 0 \n", - "5773065 0 0 0 \n", - "5773082 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773031 -0.140006 0.0 \n", - "5773047 -1.316792 1.0 \n", - "5773050 -1.499979 1.0 \n", - "5773065 -0.692253 0.0 \n", - "5773082 1.067854 1.0 \n", - "... ... ... \n", - "6025150 0.458667 0.0 \n", - "6025165 -0.245111 0.0 \n", - "6025173 -0.153678 1.0 \n", - "6025182 0.439864 1.0 \n", - "6025198 -0.187474 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773031 0 1 ... False \n", - "5773047 0 0 ... False \n", - "5773050 0 1 ... False \n", - "5773065 0 1 ... False \n", - "5773082 0 1 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773031 False False False \n", - "5773047 False False False \n", - "5773050 False False False \n", - "5773065 False False False \n", - "5773082 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773031 False False \n", - "5773047 False False \n", - "5773050 False False \n", - "5773065 False False \n", - "5773082 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773031 True False 12.895277 \n", - "5773047 False False 12.479124 \n", - "5773050 False False 11.011636 \n", - "5773065 False False 12.136893 \n", - "5773082 False True 10.543463 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773031 0 \n", - "5773047 0 \n", - "5773050 0 \n", - "5773065 0 \n", - "5773082 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5772937577294357729515772966577297957729845772992577300457730165773029
11.00.0567830.1405730.0595690.136750.0774630.0561920.094760.0188830.0144450.013785...0.0486960.0464520.0457330.0288570.0792640.1369770.0193860.0356150.0933540.056304
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.056783 0.140573 0.059569 0.13675 0.077463 0.056192 0.09476 \n", - "\n", - " 1000107 1000110 1000128 ... 5772937 5772943 5772951 \\\n", - "11.0 0.018883 0.014445 0.013785 ... 0.048696 0.046452 0.045733 \n", - "\n", - " 5772966 5772979 5772984 5772992 5773004 5773016 5773029 \n", - "11.0 0.028857 0.079264 0.136977 0.019386 0.035615 0.093354 0.056304 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "4\n", - "Iteration 1: norm_delta = 0.86783, step_size = 0.5000, log_lik = -302316.54463, newton_decrement = 8830.58356, seconds_since_start = 5.7\n", - "Iteration 2: norm_delta = 0.40842, step_size = 0.5000, log_lik = -295830.19130, newton_decrement = 2107.72553, seconds_since_start = 11.1\n", - "Iteration 3: norm_delta = 0.23159, step_size = 0.5000, log_lik = -294236.60001, newton_decrement = 614.52354, seconds_since_start = 16.3\n", - "Iteration 4: norm_delta = 0.10517, step_size = 0.6000, log_lik = -293715.89345, newton_decrement = 114.79972, seconds_since_start = 21.3\n", - "Iteration 5: norm_delta = 0.03251, step_size = 0.7200, log_lik = -293609.36992, newton_decrement = 10.24957, seconds_since_start = 26.6\n", - "Iteration 6: norm_delta = 0.00475, step_size = 0.8640, log_lik = -293599.27345, newton_decrement = 0.21038, seconds_since_start = 31.4\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293599.06290, newton_decrement = 0.00000, seconds_since_start = 36.0\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293599.06290, newton_decrement = 0.00000, seconds_since_start = 40.8\n", - "Convergence success after 8 iterations.\n", - "0.7305989964767126\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773047-0.54018810000-1.3188311.000...FalseFalseFalseFalseFalseFalseFalseFalse12.4791240
5773050-1.03434410000-1.5021401.001...FalseFalseFalseFalseFalseFalseFalseFalse11.0116360
57730650.57166210000-0.6938790.001...FalseFalseFalseFalseFalseFalseFalseFalse12.1368930
57730730.94227910000-0.5269580.010...FalseFalseFalseFalseFalseFalseTrueFalse12.5585220
57730821.065818100001.0673941.001...FalseFalseFalseFalseFalseFalseFalseTrue10.5434630
..................................................................
6025150-1.528500100000.4578030.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28142210000-0.2464410.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20104610000-0.1549471.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.077507100000.4389881.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43643510000-0.1887661.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773047 -0.540188 1 0 \n", - "5773050 -1.034344 1 0 \n", - "5773065 0.571662 1 0 \n", - "5773073 0.942279 1 0 \n", - "5773082 1.065818 1 0 \n", - "... ... ... ... \n", - "6025150 -1.528500 1 0 \n", - "6025165 -1.281422 1 0 \n", - "6025173 0.201046 1 0 \n", - "6025182 0.077507 1 0 \n", - "6025198 1.436435 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773047 0 0 0 \n", - "5773050 0 0 0 \n", - "5773065 0 0 0 \n", - "5773073 0 0 0 \n", - "5773082 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773047 -1.318831 1.0 \n", - "5773050 -1.502140 1.0 \n", - "5773065 -0.693879 0.0 \n", - "5773073 -0.526958 0.0 \n", - "5773082 1.067394 1.0 \n", - "... ... ... \n", - "6025150 0.457803 0.0 \n", - "6025165 -0.246441 0.0 \n", - "6025173 -0.154947 1.0 \n", - "6025182 0.438988 1.0 \n", - "6025198 -0.188766 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773047 0 0 ... False \n", - "5773050 0 1 ... False \n", - "5773065 0 1 ... False \n", - "5773073 1 0 ... False \n", - "5773082 0 1 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773047 False False False \n", - "5773050 False False False \n", - "5773065 False False False \n", - "5773073 False False False \n", - "5773082 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773047 False False \n", - "5773050 False False \n", - "5773065 False False \n", - "5773073 False False \n", - "5773082 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773047 False False 12.479124 \n", - "5773050 False False 11.011636 \n", - "5773065 False False 12.136893 \n", - "5773073 True False 12.558522 \n", - "5773082 False True 10.543463 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773047 0 \n", - "5773050 0 \n", - "5773065 0 \n", - "5773073 0 \n", - "5773082 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100008410000921000107100011010001281000144...5772943577295157729665772979577298457729925773004577301657730295773031
11.00.0580330.1399880.0448440.1374860.0577040.0914780.0185060.0145010.013720.045344...0.038140.0456290.0277990.0784340.1341730.0194550.0351830.0845890.0579570.024862
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000084 1000092 1000107 \\\n", - "11.0 0.058033 0.139988 0.044844 0.137486 0.057704 0.091478 0.018506 \n", - "\n", - " 1000110 1000128 1000144 ... 5772943 5772951 5772966 5772979 \\\n", - "11.0 0.014501 0.01372 0.045344 ... 0.03814 0.045629 0.027799 0.078434 \n", - "\n", - " 5772984 5772992 5773004 5773016 5773029 5773031 \n", - "11.0 0.134173 0.019455 0.035183 0.084589 0.057957 0.024862 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "5\n", - "Iteration 1: norm_delta = 0.86084, step_size = 0.5000, log_lik = -304721.60878, newton_decrement = 8805.61526, seconds_since_start = 4.6\n", - "Iteration 2: norm_delta = 0.40803, step_size = 0.5000, log_lik = -298240.06389, newton_decrement = 2125.29212, seconds_since_start = 9.7\n", - "Iteration 3: norm_delta = 0.23051, step_size = 0.5000, log_lik = -296633.01666, newton_decrement = 620.81947, seconds_since_start = 14.5\n", - "Iteration 4: norm_delta = 0.10443, step_size = 0.6000, log_lik = -296106.92724, newton_decrement = 116.17579, seconds_since_start = 19.1\n", - "Iteration 5: norm_delta = 0.03230, step_size = 0.7200, log_lik = -295999.11525, newton_decrement = 10.39756, seconds_since_start = 23.8\n", - "Iteration 6: norm_delta = 0.00474, step_size = 0.8640, log_lik = -295988.87165, newton_decrement = 0.21437, seconds_since_start = 28.3\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -295988.65708, newton_decrement = 0.00000, seconds_since_start = 33.0\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -295988.65708, newton_decrement = 0.00000, seconds_since_start = 37.8\n", - "Convergence success after 8 iterations.\n", - "0.7348317370771167\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5772905-1.281261100001.3900550.010...FalseFalseFalseFalseFalseFalseTrueFalse11.6659820
57729200.32428910000-0.1823281.001...FalseFalseFalseFalseFalseFalseTrueFalse12.6680361
57729510.694801100000.7029230.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0657080
5772966-0.91074910000-0.3698470.010...FalseFalseFalseFalseFalseFalseTrueFalse3.5811091
57729790.818305100000.2410041.000...FalseFalseFalseFalseFalseFalseFalseFalse10.5078710
..................................................................
6025147-1.528269001000.0566361.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025150-1.528269100000.4593410.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251730.20078510000-0.1536071.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.077282100000.4405201.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43582410000-0.1874371.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5772905 -1.281261 1 0 \n", - "5772920 0.324289 1 0 \n", - "5772951 0.694801 1 0 \n", - "5772966 -0.910749 1 0 \n", - "5772979 0.818305 1 0 \n", - "... ... ... ... \n", - "6025147 -1.528269 0 0 \n", - "6025150 -1.528269 1 0 \n", - "6025173 0.200785 1 0 \n", - "6025182 0.077282 1 0 \n", - "6025198 1.435824 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5772905 0 0 0 \n", - "5772920 0 0 0 \n", - "5772951 0 0 0 \n", - "5772966 0 0 0 \n", - "5772979 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025150 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5772905 1.390055 0.0 \n", - "5772920 -0.182328 1.0 \n", - "5772951 0.702923 0.0 \n", - "5772966 -0.369847 0.0 \n", - "5772979 0.241004 1.0 \n", - "... ... ... \n", - "6025147 0.056636 1.0 \n", - "6025150 0.459341 0.0 \n", - "6025173 -0.153607 1.0 \n", - "6025182 0.440520 1.0 \n", - "6025198 -0.187437 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5772905 1 0 ... False \n", - "5772920 0 1 ... False \n", - "5772951 0 1 ... False \n", - "5772966 1 0 ... False \n", - "5772979 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025150 0 0 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772905 False False False \n", - "5772920 False False False \n", - "5772951 False False False \n", - "5772966 False False False \n", - "5772979 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772905 False False \n", - "5772920 False False \n", - "5772951 False False \n", - "5772966 False False \n", - "5772979 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772905 True False 11.665982 \n", - "5772920 True False 12.668036 \n", - "5772951 False False 12.065708 \n", - "5772966 True False 3.581109 \n", - "5772979 False False 10.507871 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772905 0 \n", - "5772920 1 \n", - "5772951 0 \n", - "5772966 1 \n", - "5772979 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100003710000431000079100008410000921000107100011010001281000135...5772752577276357727755772780577279157728005772848577285457728695772881
11.00.0580060.0533810.1403620.079140.0583040.0943070.0186250.0148290.0140010.017909...0.0871910.1558510.0165730.0517420.1412040.04090.1241920.0483780.1096850.042542
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000037 1000043 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.058006 0.053381 0.140362 0.07914 0.058304 0.094307 0.018625 \n", - "\n", - " 1000110 1000128 1000135 ... 5772752 5772763 5772775 \\\n", - "11.0 0.014829 0.014001 0.017909 ... 0.087191 0.155851 0.016573 \n", - "\n", - " 5772780 5772791 5772800 5772848 5772854 5772869 5772881 \n", - "11.0 0.051742 0.141204 0.0409 0.124192 0.048378 0.109685 0.042542 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "6\n", - "Iteration 1: norm_delta = 0.85322, step_size = 0.5000, log_lik = -302327.27794, newton_decrement = 8775.73930, seconds_since_start = 4.8\n", - "Iteration 2: norm_delta = 0.40298, step_size = 0.5000, log_lik = -295872.36077, newton_decrement = 2104.01885, seconds_since_start = 9.7\n", - "Iteration 3: norm_delta = 0.22878, step_size = 0.5000, log_lik = -294281.53451, newton_decrement = 613.69144, seconds_since_start = 14.3\n", - "Iteration 4: norm_delta = 0.10398, step_size = 0.6000, log_lik = -293761.52022, newton_decrement = 114.71321, seconds_since_start = 18.9\n", - "Iteration 5: norm_delta = 0.03221, step_size = 0.7200, log_lik = -293655.07013, newton_decrement = 10.25860, seconds_since_start = 23.4\n", - "Iteration 6: norm_delta = 0.00473, step_size = 0.8640, log_lik = -293644.96364, newton_decrement = 0.21139, seconds_since_start = 28.0\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293644.75205, newton_decrement = 0.00000, seconds_since_start = 32.5\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293644.75205, newton_decrement = 0.00000, seconds_since_start = 37.4\n", - "Convergence success after 8 iterations.\n", - "0.735391035035003\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57723710.81909210000-0.1190800.001...FalseTrueFalseFalseFalseFalseTrueFalse11.9780970
57723860.94262810000-0.7584320.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0301160
57724040.077877100000.1306661.001...FalseFalseFalseFalseFalseFalseFalseFalse11.5345650
5772416-0.29273110000-0.7600140.001...FalseFalseFalseFalseTrueFalseTrueFalse10.5817930
57724500.695556100000.9423230.001...FalseFalseFalseFalseFalseFalseFalseFalse12.1560570
..................................................................
6025147-1.528091001000.0556231.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025150-1.528091100000.4582380.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28101910000-0.2460770.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20141310000-0.1545741.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251981.43677210000-0.1883961.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5772371 0.819092 1 0 \n", - "5772386 0.942628 1 0 \n", - "5772404 0.077877 1 0 \n", - "5772416 -0.292731 1 0 \n", - "5772450 0.695556 1 0 \n", - "... ... ... ... \n", - "6025147 -1.528091 0 0 \n", - "6025150 -1.528091 1 0 \n", - "6025165 -1.281019 1 0 \n", - "6025173 0.201413 1 0 \n", - "6025198 1.436772 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5772371 0 0 0 \n", - "5772386 0 0 0 \n", - "5772404 0 0 0 \n", - "5772416 0 0 0 \n", - "5772450 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5772371 -0.119080 0.0 \n", - "5772386 -0.758432 0.0 \n", - "5772404 0.130666 1.0 \n", - "5772416 -0.760014 0.0 \n", - "5772450 0.942323 0.0 \n", - "... ... ... \n", - "6025147 0.055623 1.0 \n", - "6025150 0.458238 0.0 \n", - "6025165 -0.246077 0.0 \n", - "6025173 -0.154574 1.0 \n", - "6025198 -0.188396 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5772371 0 1 ... False \n", - "5772386 0 1 ... False \n", - "5772404 0 1 ... False \n", - "5772416 0 1 ... False \n", - "5772450 0 1 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772371 True False False \n", - "5772386 False False False \n", - "5772404 False False False \n", - "5772416 False False False \n", - "5772450 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772371 False False \n", - "5772386 False False \n", - "5772404 False False \n", - "5772416 True False \n", - "5772450 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772371 True False 11.978097 \n", - "5772386 False False 12.030116 \n", - "5772404 False False 11.534565 \n", - "5772416 True False 10.581793 \n", - "5772450 False False 12.156057 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772371 0 \n", - "5772386 0 \n", - "5772404 0 \n", - "5772416 0 \n", - "5772450 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001351000144...5772235577224457722565772261577228357722995772327577233957723535772362
11.00.0572370.1413670.0639740.1351730.0801370.057210.0947090.0187080.0182520.095704...0.1613990.0118150.1137570.0823910.0322180.0233220.0980780.0080960.0422220.017683
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.057237 0.141367 0.063974 0.135173 0.080137 0.05721 0.094709 \n", - "\n", - " 1000107 1000135 1000144 ... 5772235 5772244 5772256 \\\n", - "11.0 0.018708 0.018252 0.095704 ... 0.161399 0.011815 0.113757 \n", - "\n", - " 5772261 5772283 5772299 5772327 5772339 5772353 5772362 \n", - "11.0 0.082391 0.032218 0.023322 0.098078 0.008096 0.042222 0.017683 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "7\n", - "Iteration 1: norm_delta = 0.88759, step_size = 0.5000, log_lik = -302733.12849, newton_decrement = 8860.69273, seconds_since_start = 5.5\n", - "Iteration 2: norm_delta = 0.41170, step_size = 0.5000, log_lik = -296210.88497, newton_decrement = 2142.45257, seconds_since_start = 10.7\n", - "Iteration 3: norm_delta = 0.23022, step_size = 0.5000, log_lik = -294590.81994, newton_decrement = 626.11995, seconds_since_start = 16.1\n", - "Iteration 4: norm_delta = 0.10371, step_size = 0.6000, log_lik = -294060.22491, newton_decrement = 117.20414, seconds_since_start = 21.2\n", - "Iteration 5: norm_delta = 0.03196, step_size = 0.7200, log_lik = -293951.45990, newton_decrement = 10.48383, seconds_since_start = 26.9\n", - "Iteration 6: norm_delta = 0.00467, step_size = 0.8640, log_lik = -293941.13196, newton_decrement = 0.21564, seconds_since_start = 31.7\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293940.91613, newton_decrement = 0.00000, seconds_since_start = 36.4\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293940.91613, newton_decrement = 0.00000, seconds_since_start = 41.1\n", - "Convergence success after 8 iterations.\n", - "0.7349299168760053\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57731190.94296110000-0.7348180.001...FalseTrueFalseFalseFalseFalseFalseFalse10.8610540
5773126-0.662678100001.2311160.000...FalseFalseFalseTrueFalseFalseFalseFalse11.3210130
5773142-1.89778410000-0.1739531.001...FalseFalseFalseFalseFalseFalseFalseFalse11.0554410
57731551.56051410000-0.5936681.000...FalseFalseFalseFalseFalseFalseFalseFalse12.7939770
5773160-1.03321010000-0.5514560.000...FalseFalseFalseFalseFalseFalseFalseFalse12.0465430
..................................................................
6025150-1.527252100000.4589550.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28023110000-0.2453950.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20189710000-0.1538871.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.078386100000.4401371.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43700410000-0.1877111.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773119 0.942961 1 0 \n", - "5773126 -0.662678 1 0 \n", - "5773142 -1.897784 1 0 \n", - "5773155 1.560514 1 0 \n", - "5773160 -1.033210 1 0 \n", - "... ... ... ... \n", - "6025150 -1.527252 1 0 \n", - "6025165 -1.280231 1 0 \n", - "6025173 0.201897 1 0 \n", - "6025182 0.078386 1 0 \n", - "6025198 1.437004 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773119 0 0 0 \n", - "5773126 0 0 0 \n", - "5773142 0 0 0 \n", - "5773155 0 0 0 \n", - "5773160 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773119 -0.734818 0.0 \n", - "5773126 1.231116 0.0 \n", - "5773142 -0.173953 1.0 \n", - "5773155 -0.593668 1.0 \n", - "5773160 -0.551456 0.0 \n", - "... ... ... \n", - "6025150 0.458955 0.0 \n", - "6025165 -0.245395 0.0 \n", - "6025173 -0.153887 1.0 \n", - "6025182 0.440137 1.0 \n", - "6025198 -0.187711 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773119 0 1 ... False \n", - "5773126 0 0 ... False \n", - "5773142 0 1 ... False \n", - "5773155 0 0 ... False \n", - "5773160 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773119 True False False \n", - "5773126 False False True \n", - "5773142 False False False \n", - "5773155 False False False \n", - "5773160 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773119 False False \n", - "5773126 False False \n", - "5773142 False False \n", - "5773155 False False \n", - "5773160 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773119 False False 10.861054 \n", - "5773126 False False 11.321013 \n", - "5773142 False False 11.055441 \n", - "5773155 False False 12.793977 \n", - "5773160 False False 12.046543 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773119 0 \n", - "5773126 0 \n", - "5773142 0 \n", - "5773155 0 \n", - "5773160 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000079100008410000921000107100011010001281000135...5772992577300457730295773031577304757730505773065577307357730825773098
11.00.0571760.1440280.0469090.0794510.0575340.0910880.0186960.0141230.0134360.018211...0.0192530.0346650.057530.0248430.037970.0555210.0284010.1009060.1320070.115734
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.057176 0.144028 0.046909 0.079451 0.057534 0.091088 0.018696 \n", - "\n", - " 1000110 1000128 1000135 ... 5772992 5773004 5773029 \\\n", - "11.0 0.014123 0.013436 0.018211 ... 0.019253 0.034665 0.05753 \n", - "\n", - " 5773031 5773047 5773050 5773065 5773073 5773082 5773098 \n", - "11.0 0.024843 0.03797 0.055521 0.028401 0.100906 0.132007 0.115734 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "8\n", - "Iteration 1: norm_delta = 0.86797, step_size = 0.5000, log_lik = -303030.33010, newton_decrement = 8870.74428, seconds_since_start = 5.1\n", - "Iteration 2: norm_delta = 0.40860, step_size = 0.5000, log_lik = -296511.80267, newton_decrement = 2127.11690, seconds_since_start = 10.1\n", - "Iteration 3: norm_delta = 0.23080, step_size = 0.5000, log_lik = -294903.35742, newton_decrement = 621.40334, seconds_since_start = 15.0\n", - "Iteration 4: norm_delta = 0.10437, step_size = 0.6000, log_lik = -294376.77863, newton_decrement = 116.23146, seconds_since_start = 20.2\n", - "Iteration 5: norm_delta = 0.03215, step_size = 0.7200, log_lik = -294268.92252, newton_decrement = 10.38349, seconds_since_start = 25.3\n", - "Iteration 6: norm_delta = 0.00468, step_size = 0.8640, log_lik = -294258.69409, newton_decrement = 0.21313, seconds_since_start = 30.4\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294258.48078, newton_decrement = 0.00000, seconds_since_start = 35.3\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294258.48078, newton_decrement = 0.00000, seconds_since_start = 39.9\n", - "Convergence success after 8 iterations.\n", - "0.7314659792776314\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774550-0.540283100001.1941030.010...FalseFalseFalseFalseFalseFalseFalseFalse10.5242980
57745650.200683100001.2155201.001...FalseFalseFalseFalseFalseFalseFalseFalse11.5345650
5774573-1.28124810000-1.1866340.001...FalseFalseFalseFalseFalseFalseFalseFalse11.6331280
5774582-0.29329400001-0.3128640.001...FalseFalseFalseFalseFalseFalseFalseFalse11.6659820
57745981.065143100001.2774870.010...FalseFalseFalseFalseFalseFalseFalseFalse11.9698840
..................................................................
6025150-1.528237100000.4588970.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28124810000-0.2449260.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20068310000-0.1534871.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.077189100000.4400921.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43562610000-0.1872861.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5774550 -0.540283 1 0 \n", - "5774565 0.200683 1 0 \n", - "5774573 -1.281248 1 0 \n", - "5774582 -0.293294 0 0 \n", - "5774598 1.065143 1 0 \n", - "... ... ... ... \n", - "6025150 -1.528237 1 0 \n", - "6025165 -1.281248 1 0 \n", - "6025173 0.200683 1 0 \n", - "6025182 0.077189 1 0 \n", - "6025198 1.435626 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5774550 0 0 0 \n", - "5774565 0 0 0 \n", - "5774573 0 0 0 \n", - "5774582 0 0 1 \n", - "5774598 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5774550 1.194103 0.0 \n", - "5774565 1.215520 1.0 \n", - "5774573 -1.186634 0.0 \n", - "5774582 -0.312864 0.0 \n", - "5774598 1.277487 0.0 \n", - "... ... ... \n", - "6025150 0.458897 0.0 \n", - "6025165 -0.244926 0.0 \n", - "6025173 -0.153487 1.0 \n", - "6025182 0.440092 1.0 \n", - "6025198 -0.187286 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5774550 1 0 ... False \n", - "5774565 0 1 ... False \n", - "5774573 0 1 ... False \n", - "5774582 0 1 ... False \n", - "5774598 1 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774550 False False False \n", - "5774565 False False False \n", - "5774573 False False False \n", - "5774582 False False False \n", - "5774598 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774550 False False \n", - "5774565 False False \n", - "5774573 False False \n", - "5774582 False False \n", - "5774598 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774550 False False 10.524298 \n", - "5774565 False False 11.534565 \n", - "5774573 False False 11.633128 \n", - "5774582 False False 11.665982 \n", - "5774598 False False 11.969884 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774550 0 \n", - "5774565 0 \n", - "5774573 0 \n", - "5774582 0 \n", - "5774598 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5774420577443757744435774451577446657744795774484577450457745165774531
11.00.057410.1415170.0532110.1367650.0787320.0575890.0915280.0185190.0145450.01371...0.1315420.0421380.0105640.0871180.0245660.0475250.0427950.1826930.0665860.16644
\n", - "

1 rows × 338356 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.05741 0.141517 0.053211 0.136765 0.078732 0.057589 0.091528 \n", - "\n", - " 1000107 1000110 1000128 ... 5774420 5774437 5774443 \\\n", - "11.0 0.018519 0.014545 0.01371 ... 0.131542 0.042138 0.010564 \n", - "\n", - " 5774451 5774466 5774479 5774484 5774504 5774516 5774531 \n", - "11.0 0.087118 0.024566 0.047525 0.042795 0.182693 0.066586 0.16644 \n", - "\n", - "[1 rows x 338356 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "9\n", - "Iteration 1: norm_delta = 0.82958, step_size = 0.5000, log_lik = -303247.13371, newton_decrement = 8850.62404, seconds_since_start = 4.6\n", - "Iteration 2: norm_delta = 0.40662, step_size = 0.5000, log_lik = -296741.73646, newton_decrement = 2122.14004, seconds_since_start = 9.2\n", - "Iteration 3: norm_delta = 0.23229, step_size = 0.5000, log_lik = -295137.12084, newton_decrement = 619.56414, seconds_since_start = 13.9\n", - "Iteration 4: norm_delta = 0.10585, step_size = 0.6000, log_lik = -294612.10980, newton_decrement = 115.86974, seconds_since_start = 18.7\n", - "Iteration 5: norm_delta = 0.03277, step_size = 0.7200, log_lik = -294504.58754, newton_decrement = 10.35656, seconds_since_start = 23.5\n", - "Iteration 6: norm_delta = 0.00479, step_size = 0.8640, log_lik = -294494.38520, newton_decrement = 0.21289, seconds_since_start = 28.2\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294494.17213, newton_decrement = 0.00000, seconds_since_start = 33.4\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294494.17213, newton_decrement = 0.00000, seconds_since_start = 38.1\n", - "Convergence success after 8 iterations.\n", - "0.7334943567030547\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57735630.077623100000.1199550.001...FalseFalseFalseFalseFalseFalseFalseFalse10.6584530
57735751.065735100000.8060471.001...FalseFalseFalseFalseFalseFalseFalseFalse9.4428471
5773580-1.15751610000-1.6030780.000...FalseFalseFalseFalseFalseFalseFalseFalse12.9555100
57735910.94222110000-0.5039441.010...FalseFalseFalseFalseFalseFalseFalseFalse10.9240250
57736061.18924910000-0.7672001.001...FalseFalseFalseFalseFalseFalseTrueFalse10.8802190
..................................................................
6025150-1.528058100000.4586080.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.28103010000-0.2456700.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.20113710000-0.1541721.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251820.077623100000.4397911.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.43627710000-0.1879931.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773563 0.077623 1 0 \n", - "5773575 1.065735 1 0 \n", - "5773580 -1.157516 1 0 \n", - "5773591 0.942221 1 0 \n", - "5773606 1.189249 1 0 \n", - "... ... ... ... \n", - "6025150 -1.528058 1 0 \n", - "6025165 -1.281030 1 0 \n", - "6025173 0.201137 1 0 \n", - "6025182 0.077623 1 0 \n", - "6025198 1.436277 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773563 0 0 0 \n", - "5773575 0 0 0 \n", - "5773580 0 0 0 \n", - "5773591 0 0 0 \n", - "5773606 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773563 0.119955 0.0 \n", - "5773575 0.806047 1.0 \n", - "5773580 -1.603078 0.0 \n", - "5773591 -0.503944 1.0 \n", - "5773606 -0.767200 1.0 \n", - "... ... ... \n", - "6025150 0.458608 0.0 \n", - "6025165 -0.245670 0.0 \n", - "6025173 -0.154172 1.0 \n", - "6025182 0.439791 1.0 \n", - "6025198 -0.187993 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773563 0 1 ... False \n", - "5773575 0 1 ... False \n", - "5773580 0 0 ... False \n", - "5773591 1 0 ... False \n", - "5773606 0 1 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773563 False False False \n", - "5773575 False False False \n", - "5773580 False False False \n", - "5773591 False False False \n", - "5773606 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773563 False False \n", - "5773575 False False \n", - "5773580 False False \n", - "5773591 False False \n", - "5773606 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773563 False False 10.658453 \n", - "5773575 False False 9.442847 \n", - "5773580 False False 12.955510 \n", - "5773591 False False 10.924025 \n", - "5773606 True False 10.880219 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773563 0 \n", - "5773575 1 \n", - "5773580 0 \n", - "5773591 0 \n", - "5773606 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000921000107100011010001281000135...5773445577346757734745773489577349057735095773517577353857735465773552
11.00.0578940.1419190.0458610.1343260.0771820.0980270.018710.0146160.0138580.017721...0.0191760.1438310.0391090.0133690.0100010.1323910.0201330.0467090.041190.025499
\n", - "

1 rows × 338356 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000092 1000107 \\\n", - "11.0 0.057894 0.141919 0.045861 0.134326 0.077182 0.098027 0.01871 \n", - "\n", - " 1000110 1000128 1000135 ... 5773445 5773467 5773474 \\\n", - "11.0 0.014616 0.013858 0.017721 ... 0.019176 0.143831 0.039109 \n", - "\n", - " 5773489 5773490 5773509 5773517 5773538 5773546 5773552 \n", - "11.0 0.013369 0.010001 0.132391 0.020133 0.046709 0.04119 0.025499 \n", - "\n", - "[1 rows x 338356 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "0\n", - "Iteration 1: norm_delta = 0.81393, step_size = 0.5000, log_lik = -303524.54541, newton_decrement = 9056.05660, seconds_since_start = 4.8\n", - "Iteration 2: norm_delta = 0.40994, step_size = 0.5000, log_lik = -296858.91749, newton_decrement = 2188.34610, seconds_since_start = 10.1\n", - "Iteration 3: norm_delta = 0.23405, step_size = 0.5000, log_lik = -295204.38867, newton_decrement = 638.07352, seconds_since_start = 15.2\n", - "Iteration 4: norm_delta = 0.10660, step_size = 0.6000, log_lik = -294663.69952, newton_decrement = 119.34498, seconds_since_start = 20.1\n", - "Iteration 5: norm_delta = 0.03305, step_size = 0.7200, log_lik = -294552.94598, newton_decrement = 10.68236, seconds_since_start = 25.7\n", - "Iteration 6: norm_delta = 0.00485, step_size = 0.8640, log_lik = -294542.42177, newton_decrement = 0.22024, seconds_since_start = 30.9\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294542.20133, newton_decrement = 0.00000, seconds_since_start = 35.9\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294542.20132, newton_decrement = 0.00000, seconds_since_start = 41.4\n", - "Convergence success after 8 iterations.\n", - "0.7406283373443374\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57737592.0070310.5218750.883755-0.1455251.68362110000...FalseFalseFalseFalseFalseFalseFalseFalse12.0109510
5773764-1.077634-0.9594050.772914-0.5490350.94271410000...FalseTrueFalseFalseTrueFalseFalseTrue2.9897331
5773777-1.1038800.262475-0.804646-1.0617220.32529110000...FalseFalseFalseTrueFalseFalseFalseFalse2.1984941
57737880.4279731.1348180.2832981.355846-1.77394710000...FalseFalseFalseFalseFalseFalseFalseFalse12.3422310
57737960.565868-0.270545-0.9492211.988331-0.78607010000...FalseFalseFalseFalseFalseFalseFalseFalse12.3586580
..................................................................
60251470.5465850.2682841.378534-1.684997-1.52697800100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251500.9408510.9815820.1516010.568805-1.52697810000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.245484-0.471755-0.947980-0.681236-1.28000910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025182-0.155731-0.167687-0.644893-0.7573630.07832210000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.237283-0.8827871.075431-0.4732791.43665210000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773759 2.007031 0.521875 0.883755 -0.145525 1.683621 \n", - "5773764 -1.077634 -0.959405 0.772914 -0.549035 0.942714 \n", - "5773777 -1.103880 0.262475 -0.804646 -1.061722 0.325291 \n", - "5773788 0.427973 1.134818 0.283298 1.355846 -1.773947 \n", - "5773796 0.565868 -0.270545 -0.949221 1.988331 -0.786070 \n", - "... ... ... ... ... ... \n", - "6025147 0.546585 0.268284 1.378534 -1.684997 -1.526978 \n", - "6025150 0.940851 0.981582 0.151601 0.568805 -1.526978 \n", - "6025165 1.245484 -0.471755 -0.947980 -0.681236 -1.280009 \n", - "6025182 -0.155731 -0.167687 -0.644893 -0.757363 0.078322 \n", - "6025198 -0.237283 -0.882787 1.075431 -0.473279 1.436652 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773759 1 0 0 \n", - "5773764 1 0 0 \n", - "5773777 1 0 0 \n", - "5773788 1 0 0 \n", - "5773796 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773759 0 0 ... False \n", - "5773764 0 0 ... False \n", - "5773777 0 0 ... False \n", - "5773788 0 0 ... False \n", - "5773796 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773759 False False False \n", - "5773764 True False False \n", - "5773777 False False True \n", - "5773788 False False False \n", - "5773796 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773759 False False \n", - "5773764 True False \n", - "5773777 False False \n", - "5773788 False False \n", - "5773796 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773759 False False 12.010951 \n", - "5773764 False True 2.989733 \n", - "5773777 False False 2.198494 \n", - "5773788 False False 12.342231 \n", - "5773796 False False 12.358658 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773759 0 \n", - "5773764 1 \n", - "5773777 1 \n", - "5773788 0 \n", - "5773796 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5773580577359157736065773621577365757736705773694577370257737235773741
11.00.0503460.1452340.0604910.1396430.0799250.0570780.0822220.0151490.01520.012905...0.0083210.1192280.1196160.0403520.0220370.0149150.0506330.1154540.0239840.069589
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.050346 0.145234 0.060491 0.139643 0.079925 0.057078 0.082222 \n", - "\n", - " 1000107 1000110 1000128 ... 5773580 5773591 5773606 \\\n", - "11.0 0.015149 0.0152 0.012905 ... 0.008321 0.119228 0.119616 \n", - "\n", - " 5773621 5773657 5773670 5773694 5773702 5773723 5773741 \n", - "11.0 0.040352 0.022037 0.014915 0.050633 0.115454 0.023984 0.069589 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "1\n", - "Iteration 1: norm_delta = 0.89055, step_size = 0.5000, log_lik = -301749.28339, newton_decrement = 9040.11665, seconds_since_start = 4.9\n", - "Iteration 2: norm_delta = 0.40804, step_size = 0.5000, log_lik = -295105.03702, newton_decrement = 2162.19112, seconds_since_start = 10.3\n", - "Iteration 3: norm_delta = 0.22967, step_size = 0.5000, log_lik = -293470.52354, newton_decrement = 628.62077, seconds_since_start = 15.3\n", - "Iteration 4: norm_delta = 0.10382, step_size = 0.6000, log_lik = -292937.95135, newton_decrement = 117.14400, seconds_since_start = 20.5\n", - "Iteration 5: norm_delta = 0.03202, step_size = 0.7200, log_lik = -292829.26291, newton_decrement = 10.44181, seconds_since_start = 25.5\n", - "Iteration 6: norm_delta = 0.00467, step_size = 0.8640, log_lik = -292818.97739, newton_decrement = 0.21418, seconds_since_start = 31.5\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -292818.76302, newton_decrement = 0.00000, seconds_since_start = 37.7\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -292818.76302, newton_decrement = 0.00000, seconds_since_start = 43.7\n", - "Convergence success after 8 iterations.\n", - "0.742948754209381\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773886-0.201274-0.3225020.253023-0.1897271.18874810000...TrueFalseTrueFalseTrueFalseTrueTrue11.3319640
5773895-0.363702-0.118134-0.340790-1.293252-1.40432910000...FalseFalseFalseFalseFalseFalseFalseFalse10.4832310
57739280.6675960.8270690.9264600.303638-1.03388910000...FalseFalseFalseFalseFalseFalseFalseFalse13.3223820
5773935-0.467794-0.654600-1.081712-0.758674-0.04605110000...FalseFalseFalseFalseFalseFalseFalseFalse12.8213550
5773944-0.563947-1.293251-1.406646-0.151638-0.91041010000...FalseFalseFalseFalseFalseFalseTrueFalse12.3668720
..................................................................
60251500.9410760.9803460.1509380.569663-1.52780910000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.246171-0.473374-0.947561-0.682422-1.28084910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.530617-1.477683-1.099265-1.2695210.20090910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.157168-0.169226-0.644772-0.7586740.07742910000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.238843-0.8845151.073859-0.4741261.43570810000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773886 -0.201274 -0.322502 0.253023 -0.189727 1.188748 \n", - "5773895 -0.363702 -0.118134 -0.340790 -1.293252 -1.404329 \n", - "5773928 0.667596 0.827069 0.926460 0.303638 -1.033889 \n", - "5773935 -0.467794 -0.654600 -1.081712 -0.758674 -0.046051 \n", - "5773944 -0.563947 -1.293251 -1.406646 -0.151638 -0.910410 \n", - "... ... ... ... ... ... \n", - "6025150 0.941076 0.980346 0.150938 0.569663 -1.527809 \n", - "6025165 1.246171 -0.473374 -0.947561 -0.682422 -1.280849 \n", - "6025173 -1.530617 -1.477683 -1.099265 -1.269521 0.200909 \n", - "6025182 -0.157168 -0.169226 -0.644772 -0.758674 0.077429 \n", - "6025198 -0.238843 -0.884515 1.073859 -0.474126 1.435708 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773886 1 0 0 \n", - "5773895 1 0 0 \n", - "5773928 1 0 0 \n", - "5773935 1 0 0 \n", - "5773944 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773886 0 0 ... True \n", - "5773895 0 0 ... False \n", - "5773928 0 0 ... False \n", - "5773935 0 0 ... False \n", - "5773944 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773886 False True False \n", - "5773895 False False False \n", - "5773928 False False False \n", - "5773935 False False False \n", - "5773944 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773886 True False \n", - "5773895 False False \n", - "5773928 False False \n", - "5773935 False False \n", - "5773944 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773886 True True 11.331964 \n", - "5773895 False False 10.483231 \n", - "5773928 False False 13.322382 \n", - "5773935 False False 12.821355 \n", - "5773944 True False 12.366872 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773886 0 \n", - "5773895 0 \n", - "5773928 0 \n", - "5773935 0 \n", - "5773944 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000431000079100008410000921000110100012810001351000156...5773730577374157737595773764577378857738085773814577382757738405773871
11.00.0517080.1403010.1381540.0799530.0575510.0829130.0152290.0135640.0147810.019213...0.0533170.0434520.3188660.2385270.0107760.024150.1255210.1072890.038440.083407
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000043 1000079 1000084 1000092 1000110 \\\n", - "11.0 0.051708 0.140301 0.138154 0.079953 0.057551 0.082913 0.015229 \n", - "\n", - " 1000128 1000135 1000156 ... 5773730 5773741 5773759 \\\n", - "11.0 0.013564 0.014781 0.019213 ... 0.053317 0.043452 0.318866 \n", - "\n", - " 5773764 5773788 5773808 5773814 5773827 5773840 5773871 \n", - "11.0 0.238527 0.010776 0.02415 0.125521 0.107289 0.03844 0.083407 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "2\n", - "Iteration 1: norm_delta = 0.85663, step_size = 0.5000, log_lik = -302233.28004, newton_decrement = 9156.75424, seconds_since_start = 5.3\n", - "Iteration 2: norm_delta = 0.41373, step_size = 0.5000, log_lik = -295505.97523, newton_decrement = 2190.40235, seconds_since_start = 11.1\n", - "Iteration 3: norm_delta = 0.23410, step_size = 0.5000, log_lik = -293850.05090, newton_decrement = 637.46461, seconds_since_start = 17.3\n", - "Iteration 4: norm_delta = 0.10598, step_size = 0.6000, log_lik = -293309.94934, newton_decrement = 118.93813, seconds_since_start = 22.8\n", - "Iteration 5: norm_delta = 0.03270, step_size = 0.7200, log_lik = -293199.58935, newton_decrement = 10.61430, seconds_since_start = 28.2\n", - "Iteration 6: norm_delta = 0.00477, step_size = 0.8640, log_lik = -293189.13353, newton_decrement = 0.21794, seconds_since_start = 33.4\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293188.91540, newton_decrement = 0.00000, seconds_since_start = 39.2\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293188.91540, newton_decrement = 0.00000, seconds_since_start = 44.5\n", - "Convergence success after 8 iterations.\n", - "0.7361979604315427\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57726600.0932151.159010-0.3510060.065219-0.04622510000...FalseFalseFalseFalseFalseFalseFalseFalse11.9561940
5772678-0.277338-0.0155640.606919-0.189011-1.52785710000...FalseFalseFalseFalseFalseFalseFalseFalse12.0574950
5772693-0.458261-0.5761151.0284000.6088380.81806010000...FalseFalseFalseFalseFalseFalseFalseFalse11.2881590
5772709-1.428803-1.2312920.482911-0.4907411.06499910000...FalseFalseFalseFalseFalseFalseFalseFalse11.6084870
5772717-0.3876070.904268-1.3871891.0094350.94152910000...FalseFalseFalseFalseFalseFalseFalseFalse10.4312110
..................................................................
60251310.0767330.265313-0.477689-1.173071-0.78704110000...FalseFalseFalseFalseFalseFalseFalseFalse10.2943190
60251470.5457830.2671151.377875-1.686139-1.52785700100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251651.244816-0.472776-0.947602-0.681487-1.28091910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.528300-1.476621-1.099388-1.2681470.20071310000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.156667-0.168769-0.644650-0.7576820.07724410000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5772660 0.093215 1.159010 -0.351006 0.065219 -0.046225 \n", - "5772678 -0.277338 -0.015564 0.606919 -0.189011 -1.527857 \n", - "5772693 -0.458261 -0.576115 1.028400 0.608838 0.818060 \n", - "5772709 -1.428803 -1.231292 0.482911 -0.490741 1.064999 \n", - "5772717 -0.387607 0.904268 -1.387189 1.009435 0.941529 \n", - "... ... ... ... ... ... \n", - "6025131 0.076733 0.265313 -0.477689 -1.173071 -0.787041 \n", - "6025147 0.545783 0.267115 1.377875 -1.686139 -1.527857 \n", - "6025165 1.244816 -0.472776 -0.947602 -0.681487 -1.280919 \n", - "6025173 -1.528300 -1.476621 -1.099388 -1.268147 0.200713 \n", - "6025182 -0.156667 -0.168769 -0.644650 -0.757682 0.077244 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5772660 1 0 0 \n", - "5772678 1 0 0 \n", - "5772693 1 0 0 \n", - "5772709 1 0 0 \n", - "5772717 1 0 0 \n", - "... ... ... ... \n", - "6025131 1 0 0 \n", - "6025147 0 0 1 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5772660 0 0 ... False \n", - "5772678 0 0 ... False \n", - "5772693 0 0 ... False \n", - "5772709 0 0 ... False \n", - "5772717 0 0 ... False \n", - "... ... ... ... ... \n", - "6025131 0 0 ... False \n", - "6025147 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772660 False False False \n", - "5772678 False False False \n", - "5772693 False False False \n", - "5772709 False False False \n", - "5772717 False False False \n", - "... ... ... ... \n", - "6025131 False False False \n", - "6025147 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772660 False False \n", - "5772678 False False \n", - "5772693 False False \n", - "5772709 False False \n", - "5772717 False False \n", - "... ... ... \n", - "6025131 False False \n", - "6025147 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772660 False False 11.956194 \n", - "5772678 False False 12.057495 \n", - "5772693 False False 11.288159 \n", - "5772709 False False 11.608487 \n", - "5772717 False False 10.431211 \n", - "... ... ... ... \n", - "6025131 False False 10.294319 \n", - "6025147 False False 11.879535 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772660 0 \n", - "5772678 0 \n", - "5772693 0 \n", - "5772709 0 \n", - "5772717 0 \n", - "... ... \n", - "6025131 0 \n", - "6025147 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000020100003710000431000079100008410001071000110100012810001351000144...5772530577254157725645772577577258857725965772601577262657726425772655
11.00.1436450.0661140.1371680.0805710.0573270.0150050.0150940.0152830.0147620.094281...0.1137790.0475150.1146310.0167810.0528120.040080.0845080.015280.1043050.157584
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000020 1000037 1000043 1000079 1000084 1000107 1000110 \\\n", - "11.0 0.143645 0.066114 0.137168 0.080571 0.057327 0.015005 0.015094 \n", - "\n", - " 1000128 1000135 1000144 ... 5772530 5772541 5772564 \\\n", - "11.0 0.015283 0.014762 0.094281 ... 0.113779 0.047515 0.114631 \n", - "\n", - " 5772577 5772588 5772596 5772601 5772626 5772642 5772655 \n", - "11.0 0.016781 0.052812 0.04008 0.084508 0.01528 0.104305 0.157584 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "3\n", - "Iteration 1: norm_delta = 0.82516, step_size = 0.5000, log_lik = -303597.59644, newton_decrement = 9094.45912, seconds_since_start = 5.8\n", - "Iteration 2: norm_delta = 0.41015, step_size = 0.5000, log_lik = -296912.39725, newton_decrement = 2176.98780, seconds_since_start = 11.4\n", - "Iteration 3: norm_delta = 0.23326, step_size = 0.5000, log_lik = -295266.68726, newton_decrement = 633.07846, seconds_since_start = 16.7\n", - "Iteration 4: norm_delta = 0.10585, step_size = 0.6000, log_lik = -294730.31874, newton_decrement = 118.05161, seconds_since_start = 22.5\n", - "Iteration 5: norm_delta = 0.03267, step_size = 0.7200, log_lik = -294620.78480, newton_decrement = 10.52766, seconds_since_start = 28.1\n", - "Iteration 6: norm_delta = 0.00476, step_size = 0.8640, log_lik = -294610.41472, newton_decrement = 0.21589, seconds_since_start = 34.2\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294610.19865, newton_decrement = 0.00000, seconds_since_start = 39.9\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294610.19865, newton_decrement = 0.00000, seconds_since_start = 45.3\n", - "Convergence success after 8 iterations.\n", - "0.7351190869752977\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773031-0.569953-0.391518-1.3716930.049101-0.29324810000...FalseFalseFalseFalseFalseFalseTrueFalse12.8952770
5773047-0.388844-0.5758630.298231-1.155743-0.54025410000...FalseFalseFalseFalseFalseFalseFalseFalse12.4791240
5773050-0.816170-1.904423-1.227561-1.098879-1.03426710000...FalseFalseFalseFalseFalseFalseFalseFalse11.0116360
57730651.4960540.5468250.2236440.0573520.57127510000...FalseFalseFalseFalseFalseFalseFalseFalse12.1368930
5773082-0.574196-1.623551-1.5064960.1900351.06528810000...FalseFalseFalseFalseFalseFalseFalseTrue10.5434630
..................................................................
60251500.9411650.9809010.1511830.569573-1.52828010000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.245957-0.472125-0.947452-0.681506-1.28127410000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.528069-1.475955-1.099175-1.2681330.20076510000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.155986-0.168122-0.644626-0.7576960.07726210000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.237579-0.8830701.074218-0.4733771.43579810000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773031 -0.569953 -0.391518 -1.371693 0.049101 -0.293248 \n", - "5773047 -0.388844 -0.575863 0.298231 -1.155743 -0.540254 \n", - "5773050 -0.816170 -1.904423 -1.227561 -1.098879 -1.034267 \n", - "5773065 1.496054 0.546825 0.223644 0.057352 0.571275 \n", - "5773082 -0.574196 -1.623551 -1.506496 0.190035 1.065288 \n", - "... ... ... ... ... ... \n", - "6025150 0.941165 0.980901 0.151183 0.569573 -1.528280 \n", - "6025165 1.245957 -0.472125 -0.947452 -0.681506 -1.281274 \n", - "6025173 -1.528069 -1.475955 -1.099175 -1.268133 0.200765 \n", - "6025182 -0.155986 -0.168122 -0.644626 -0.757696 0.077262 \n", - "6025198 -0.237579 -0.883070 1.074218 -0.473377 1.435798 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773031 1 0 0 \n", - "5773047 1 0 0 \n", - "5773050 1 0 0 \n", - "5773065 1 0 0 \n", - "5773082 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773031 0 0 ... False \n", - "5773047 0 0 ... False \n", - "5773050 0 0 ... False \n", - "5773065 0 0 ... False \n", - "5773082 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773031 False False False \n", - "5773047 False False False \n", - "5773050 False False False \n", - "5773065 False False False \n", - "5773082 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773031 False False \n", - "5773047 False False \n", - "5773050 False False \n", - "5773065 False False \n", - "5773082 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773031 True False 12.895277 \n", - "5773047 False False 12.479124 \n", - "5773050 False False 11.011636 \n", - "5773065 False False 12.136893 \n", - "5773082 False True 10.543463 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773031 0 \n", - "5773047 0 \n", - "5773050 0 \n", - "5773065 0 \n", - "5773082 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5772937577294357729515772966577297957729845772992577300457730165773029
11.00.0505620.1423040.0699650.1388030.0794230.0563750.0825140.0155240.015130.009993...0.0664140.0462240.0465470.0268890.0756750.1384250.0214960.0379280.1004470.061939
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.050562 0.142304 0.069965 0.138803 0.079423 0.056375 0.082514 \n", - "\n", - " 1000107 1000110 1000128 ... 5772937 5772943 5772951 \\\n", - "11.0 0.015524 0.01513 0.009993 ... 0.066414 0.046224 0.046547 \n", - "\n", - " 5772966 5772979 5772984 5772992 5773004 5773016 5773029 \n", - "11.0 0.026889 0.075675 0.138425 0.021496 0.037928 0.100447 0.061939 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "4\n", - "Iteration 1: norm_delta = 0.87106, step_size = 0.5000, log_lik = -302316.54463, newton_decrement = 9092.53551, seconds_since_start = 6.3\n", - "Iteration 2: norm_delta = 0.41156, step_size = 0.5000, log_lik = -295633.80085, newton_decrement = 2174.42596, seconds_since_start = 11.6\n", - "Iteration 3: norm_delta = 0.23359, step_size = 0.5000, log_lik = -293990.03191, newton_decrement = 632.30218, seconds_since_start = 17.0\n", - "Iteration 4: norm_delta = 0.10614, step_size = 0.6000, log_lik = -293454.32530, newton_decrement = 117.89333, seconds_since_start = 22.6\n", - "Iteration 5: norm_delta = 0.03282, step_size = 0.7200, log_lik = -293344.93866, newton_decrement = 10.51323, seconds_since_start = 28.3\n", - "Iteration 6: norm_delta = 0.00479, step_size = 0.8640, log_lik = -293334.58275, newton_decrement = 0.21563, seconds_since_start = 34.5\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293334.36694, newton_decrement = 0.00000, seconds_since_start = 39.7\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293334.36694, newton_decrement = 0.00000, seconds_since_start = 45.6\n", - "Convergence success after 8 iterations.\n", - "0.735015495787619\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773047-0.388727-0.5757490.298344-1.156563-0.54018810000...FalseFalseFalseFalseFalseFalseFalseFalse12.4791240
5773050-0.815984-1.903787-1.227988-1.099685-1.03434410000...FalseFalseFalseFalseFalseFalseFalseFalse11.0116360
57730651.4958690.5464980.2237310.0568290.57166210000...FalseFalseFalseFalseFalseFalseFalseFalse12.1368930
57730730.1155640.7762120.373265-0.0000480.94227910000...FalseFalseFalseFalseFalseFalseTrueFalse12.5585220
5773082-0.574049-1.623025-1.5070210.1895441.06581810000...FalseFalseFalseFalseFalseFalseFalseTrue10.5434630
..................................................................
60251500.9410690.9804030.1512440.569175-1.52850010000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.245812-0.472052-0.947779-0.682210-1.28142210000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.527768-1.475488-1.099556-1.2689800.20104610000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.155905-0.168168-0.644846-0.7584190.07750710000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.237486-0.8828351.074606-0.4740301.43643510000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773047 -0.388727 -0.575749 0.298344 -1.156563 -0.540188 \n", - "5773050 -0.815984 -1.903787 -1.227988 -1.099685 -1.034344 \n", - "5773065 1.495869 0.546498 0.223731 0.056829 0.571662 \n", - "5773073 0.115564 0.776212 0.373265 -0.000048 0.942279 \n", - "5773082 -0.574049 -1.623025 -1.507021 0.189544 1.065818 \n", - "... ... ... ... ... ... \n", - "6025150 0.941069 0.980403 0.151244 0.569175 -1.528500 \n", - "6025165 1.245812 -0.472052 -0.947779 -0.682210 -1.281422 \n", - "6025173 -1.527768 -1.475488 -1.099556 -1.268980 0.201046 \n", - "6025182 -0.155905 -0.168168 -0.644846 -0.758419 0.077507 \n", - "6025198 -0.237486 -0.882835 1.074606 -0.474030 1.436435 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773047 1 0 0 \n", - "5773050 1 0 0 \n", - "5773065 1 0 0 \n", - "5773073 1 0 0 \n", - "5773082 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773047 0 0 ... False \n", - "5773050 0 0 ... False \n", - "5773065 0 0 ... False \n", - "5773073 0 0 ... False \n", - "5773082 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773047 False False False \n", - "5773050 False False False \n", - "5773065 False False False \n", - "5773073 False False False \n", - "5773082 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773047 False False \n", - "5773050 False False \n", - "5773065 False False \n", - "5773073 False False \n", - "5773082 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773047 False False 12.479124 \n", - "5773050 False False 11.011636 \n", - "5773065 False False 12.136893 \n", - "5773073 True False 12.558522 \n", - "5773082 False True 10.543463 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773047 0 \n", - "5773050 0 \n", - "5773065 0 \n", - "5773073 0 \n", - "5773082 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100008410000921000107100011010001281000144...5772943577295157729665772979577298457729925773004577301657730295773031
11.00.051160.1408740.0543220.1389890.0578860.0797730.0151620.0151630.0115210.043113...0.0384310.0465330.0259080.0744740.1362020.021510.037550.090510.0640720.021636
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000084 1000092 1000107 \\\n", - "11.0 0.05116 0.140874 0.054322 0.138989 0.057886 0.079773 0.015162 \n", - "\n", - " 1000110 1000128 1000144 ... 5772943 5772951 5772966 \\\n", - "11.0 0.015163 0.011521 0.043113 ... 0.038431 0.046533 0.025908 \n", - "\n", - " 5772979 5772984 5772992 5773004 5773016 5773029 5773031 \n", - "11.0 0.074474 0.136202 0.02151 0.03755 0.09051 0.064072 0.021636 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "5\n", - "Iteration 1: norm_delta = 0.86450, step_size = 0.5000, log_lik = -304721.60878, newton_decrement = 9083.97648, seconds_since_start = 6.1\n", - "Iteration 2: norm_delta = 0.41176, step_size = 0.5000, log_lik = -298031.49196, newton_decrement = 2195.33102, seconds_since_start = 12.0\n", - "Iteration 3: norm_delta = 0.23280, step_size = 0.5000, log_lik = -296371.77806, newton_decrement = 639.33537, seconds_since_start = 17.1\n", - "Iteration 4: norm_delta = 0.10552, step_size = 0.6000, log_lik = -295830.07342, newton_decrement = 119.37258, seconds_since_start = 22.2\n", - "Iteration 5: norm_delta = 0.03264, step_size = 0.7200, log_lik = -295719.30378, newton_decrement = 10.66846, seconds_since_start = 27.6\n", - "Iteration 6: norm_delta = 0.00479, step_size = 0.8640, log_lik = -295708.79365, newton_decrement = 0.21975, seconds_since_start = 33.1\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -295708.57369, newton_decrement = 0.00000, seconds_since_start = 38.6\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -295708.57369, newton_decrement = 0.00000, seconds_since_start = 43.9\n", - "Convergence success after 8 iterations.\n", - "0.7384889453055903\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5772905-0.411116-0.501189-0.6266521.177541-1.28126110000...FalseFalseFalseFalseFalseFalseTrueFalse11.6659820
5772920-0.186573-0.118220-0.947081-0.0937370.32428910000...FalseFalseFalseFalseFalseFalseTrueFalse12.6680361
57729510.3537320.494530-0.2183860.3047230.69480110000...FalseFalseFalseFalseFalseFalseFalseFalse12.0657080
57729660.061837-0.655078-0.761244-0.930913-0.91074910000...FalseFalseFalseFalseFalseFalseTrueFalse3.5811091
5772979-0.576725-1.0884080.6913700.2667750.81830510000...FalseFalseFalseFalseFalseFalseFalseFalse10.5078710
..................................................................
60251470.5460910.2665501.376660-1.687206-1.52826900100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251500.9403990.9796230.1508040.570810-1.52826910000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025173-1.527818-1.476983-1.099533-1.2688040.20078510000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.156300-0.169283-0.644992-0.7578370.07728210000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.237860-0.8841581.073823-0.4732231.43582410000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5772905 -0.411116 -0.501189 -0.626652 1.177541 -1.281261 \n", - "5772920 -0.186573 -0.118220 -0.947081 -0.093737 0.324289 \n", - "5772951 0.353732 0.494530 -0.218386 0.304723 0.694801 \n", - "5772966 0.061837 -0.655078 -0.761244 -0.930913 -0.910749 \n", - "5772979 -0.576725 -1.088408 0.691370 0.266775 0.818305 \n", - "... ... ... ... ... ... \n", - "6025147 0.546091 0.266550 1.376660 -1.687206 -1.528269 \n", - "6025150 0.940399 0.979623 0.150804 0.570810 -1.528269 \n", - "6025173 -1.527818 -1.476983 -1.099533 -1.268804 0.200785 \n", - "6025182 -0.156300 -0.169283 -0.644992 -0.757837 0.077282 \n", - "6025198 -0.237860 -0.884158 1.073823 -0.473223 1.435824 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5772905 1 0 0 \n", - "5772920 1 0 0 \n", - "5772951 1 0 0 \n", - "5772966 1 0 0 \n", - "5772979 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025150 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5772905 0 0 ... False \n", - "5772920 0 0 ... False \n", - "5772951 0 0 ... False \n", - "5772966 0 0 ... False \n", - "5772979 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025150 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772905 False False False \n", - "5772920 False False False \n", - "5772951 False False False \n", - "5772966 False False False \n", - "5772979 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772905 False False \n", - "5772920 False False \n", - "5772951 False False \n", - "5772966 False False \n", - "5772979 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772905 True False 11.665982 \n", - "5772920 True False 12.668036 \n", - "5772951 False False 12.065708 \n", - "5772966 True False 3.581109 \n", - "5772979 False False 10.507871 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772905 0 \n", - "5772920 1 \n", - "5772951 0 \n", - "5772966 1 \n", - "5772979 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100003710000431000079100008410000921000107100011010001281000135...5772752577276357727755772780577279157728005772848577285457728695772881
11.00.0512380.0641210.1423560.0812370.0584370.0817150.0151950.0155230.0129720.01449...0.1139450.1608520.0155440.045060.1298740.0388350.1267980.0436920.1012830.061939
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000037 1000043 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.051238 0.064121 0.142356 0.081237 0.058437 0.081715 0.015195 \n", - "\n", - " 1000110 1000128 1000135 ... 5772752 5772763 5772775 5772780 \\\n", - "11.0 0.015523 0.012972 0.01449 ... 0.113945 0.160852 0.015544 0.04506 \n", - "\n", - " 5772791 5772800 5772848 5772854 5772869 5772881 \n", - "11.0 0.129874 0.038835 0.126798 0.043692 0.101283 0.061939 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "6\n", - "Iteration 1: norm_delta = 0.85849, step_size = 0.5000, log_lik = -302327.27794, newton_decrement = 9052.24281, seconds_since_start = 5.2\n", - "Iteration 2: norm_delta = 0.40660, step_size = 0.5000, log_lik = -295665.38141, newton_decrement = 2172.15635, seconds_since_start = 10.6\n", - "Iteration 3: norm_delta = 0.23061, step_size = 0.5000, log_lik = -294023.33616, newton_decrement = 631.60217, seconds_since_start = 16.1\n", - "Iteration 4: norm_delta = 0.10476, step_size = 0.6000, log_lik = -293488.22013, newton_decrement = 117.79442, seconds_since_start = 22.1\n", - "Iteration 5: norm_delta = 0.03245, step_size = 0.7200, log_lik = -293378.91982, newton_decrement = 10.51880, seconds_since_start = 27.8\n", - "Iteration 6: norm_delta = 0.00476, step_size = 0.8640, log_lik = -293368.55735, newton_decrement = 0.21654, seconds_since_start = 32.8\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293368.34061, newton_decrement = 0.00000, seconds_since_start = 38.6\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293368.34061, newton_decrement = 0.00000, seconds_since_start = 44.9\n", - "Convergence success after 8 iterations.\n", - "0.7403159331283038\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57723711.1480611.7200161.2247711.0802660.81909210000...FalseTrueFalseFalseFalseFalseTrueFalse11.9780970
57723860.1067300.474097-0.287736-0.1707170.94262810000...FalseFalseFalseFalseFalseFalseFalseFalse12.0301160
57724041.4545901.9233011.3969911.5912140.07787710000...FalseFalseFalseFalseFalseFalseFalseFalse11.5345650
5772416-0.443108-0.193280-0.629360-0.701437-0.29273110000...FalseFalseFalseFalseTrueFalseTrueFalse10.5817930
5772450-1.785462-1.111663-3.521582-0.6635280.69555610000...FalseFalseFalseFalseFalseFalseFalseFalse12.1560570
..................................................................
60251470.5466080.2677111.377986-1.686688-1.52809100100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251500.9407940.9802080.1512150.568946-1.52809110000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.245365-0.471496-0.948221-0.682111-1.28101910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.526658-1.474414-1.100055-1.2687280.20141310000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025198-0.237100-0.8820671.074923-0.4739861.43677210000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5772371 1.148061 1.720016 1.224771 1.080266 0.819092 \n", - "5772386 0.106730 0.474097 -0.287736 -0.170717 0.942628 \n", - "5772404 1.454590 1.923301 1.396991 1.591214 0.077877 \n", - "5772416 -0.443108 -0.193280 -0.629360 -0.701437 -0.292731 \n", - "5772450 -1.785462 -1.111663 -3.521582 -0.663528 0.695556 \n", - "... ... ... ... ... ... \n", - "6025147 0.546608 0.267711 1.377986 -1.686688 -1.528091 \n", - "6025150 0.940794 0.980208 0.151215 0.568946 -1.528091 \n", - "6025165 1.245365 -0.471496 -0.948221 -0.682111 -1.281019 \n", - "6025173 -1.526658 -1.474414 -1.100055 -1.268728 0.201413 \n", - "6025198 -0.237100 -0.882067 1.074923 -0.473986 1.436772 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5772371 1 0 0 \n", - "5772386 1 0 0 \n", - "5772404 1 0 0 \n", - "5772416 1 0 0 \n", - "5772450 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5772371 0 0 ... False \n", - "5772386 0 0 ... False \n", - "5772404 0 0 ... False \n", - "5772416 0 0 ... False \n", - "5772450 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772371 True False False \n", - "5772386 False False False \n", - "5772404 False False False \n", - "5772416 False False False \n", - "5772450 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772371 False False \n", - "5772386 False False \n", - "5772404 False False \n", - "5772416 True False \n", - "5772450 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772371 True False 11.978097 \n", - "5772386 False False 12.030116 \n", - "5772404 False False 11.534565 \n", - "5772416 True False 10.581793 \n", - "5772450 False False 12.156057 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772371 0 \n", - "5772386 0 \n", - "5772404 0 \n", - "5772416 0 \n", - "5772450 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001351000144...5772235577224457722565772261577228357722995772327577233957723535772362
11.00.0510540.1435680.0750440.1380950.0820290.0572820.0818350.0153320.0146050.116552...0.1771630.0092180.0927930.0967880.0328210.0244460.0804890.0064030.0446150.017793
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.051054 0.143568 0.075044 0.138095 0.082029 0.057282 0.081835 \n", - "\n", - " 1000107 1000135 1000144 ... 5772235 5772244 5772256 \\\n", - "11.0 0.015332 0.014605 0.116552 ... 0.177163 0.009218 0.092793 \n", - "\n", - " 5772261 5772283 5772299 5772327 5772339 5772353 5772362 \n", - "11.0 0.096788 0.032821 0.024446 0.080489 0.006403 0.044615 0.017793 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "7\n", - "Iteration 1: norm_delta = 0.88805, step_size = 0.5000, log_lik = -302733.12849, newton_decrement = 9117.16126, seconds_since_start = 6.9\n", - "Iteration 2: norm_delta = 0.41410, step_size = 0.5000, log_lik = -296018.77875, newton_decrement = 2207.01978, seconds_since_start = 13.3\n", - "Iteration 3: norm_delta = 0.23187, step_size = 0.5000, log_lik = -294350.16892, newton_decrement = 643.12910, seconds_since_start = 18.6\n", - "Iteration 4: norm_delta = 0.10455, step_size = 0.6000, log_lik = -293805.23430, newton_decrement = 120.12183, seconds_since_start = 24.3\n", - "Iteration 5: norm_delta = 0.03224, step_size = 0.7200, log_lik = -293693.77083, newton_decrement = 10.72935, seconds_since_start = 30.3\n", - "Iteration 6: norm_delta = 0.00471, step_size = 0.8640, log_lik = -293683.20139, newton_decrement = 0.22049, seconds_since_start = 35.8\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293682.98071, newton_decrement = 0.00000, seconds_since_start = 41.8\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293682.98071, newton_decrement = 0.00000, seconds_since_start = 47.0\n", - "Convergence success after 8 iterations.\n", - "0.739308784177118\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57731190.8081381.515087-0.5628250.2167840.94296110000...FalseTrueFalseFalseFalseFalseFalseFalse10.8610540
5773126-0.489326-1.6487110.5638780.654460-0.66267810000...FalseFalseFalseTrueFalseFalseFalseFalse11.3210130
5773142-0.521987-0.270928-0.7826300.983739-1.89778410000...FalseFalseFalseFalseFalseFalseFalseFalse11.0554410
57731550.5576771.540601-0.9689240.4543821.56051410000...FalseFalseFalseFalseFalseFalseFalseFalse12.7939770
5773160-0.980970-0.5998150.3398660.511664-1.03321010000...FalseFalseFalseFalseFalseFalseFalseFalse12.0465430
..................................................................
60251500.9395230.9792820.1513030.568500-1.52725210000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.244074-0.472643-0.947026-0.681972-1.28023110000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.527763-1.475712-1.098708-1.2683150.20189710000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.156762-0.168870-0.644285-0.7581250.07838610000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.238292-0.8832761.074081-0.4739441.43700410000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773119 0.808138 1.515087 -0.562825 0.216784 0.942961 \n", - "5773126 -0.489326 -1.648711 0.563878 0.654460 -0.662678 \n", - "5773142 -0.521987 -0.270928 -0.782630 0.983739 -1.897784 \n", - "5773155 0.557677 1.540601 -0.968924 0.454382 1.560514 \n", - "5773160 -0.980970 -0.599815 0.339866 0.511664 -1.033210 \n", - "... ... ... ... ... ... \n", - "6025150 0.939523 0.979282 0.151303 0.568500 -1.527252 \n", - "6025165 1.244074 -0.472643 -0.947026 -0.681972 -1.280231 \n", - "6025173 -1.527763 -1.475712 -1.098708 -1.268315 0.201897 \n", - "6025182 -0.156762 -0.168870 -0.644285 -0.758125 0.078386 \n", - "6025198 -0.238292 -0.883276 1.074081 -0.473944 1.437004 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773119 1 0 0 \n", - "5773126 1 0 0 \n", - "5773142 1 0 0 \n", - "5773155 1 0 0 \n", - "5773160 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773119 0 0 ... False \n", - "5773126 0 0 ... False \n", - "5773142 0 0 ... False \n", - "5773155 0 0 ... False \n", - "5773160 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773119 True False False \n", - "5773126 False False True \n", - "5773142 False False False \n", - "5773155 False False False \n", - "5773160 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773119 False False \n", - "5773126 False False \n", - "5773142 False False \n", - "5773155 False False \n", - "5773160 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773119 False False 10.861054 \n", - "5773126 False False 11.321013 \n", - "5773142 False False 11.055441 \n", - "5773155 False False 12.793977 \n", - "5773160 False False 12.046543 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773119 0 \n", - "5773126 0 \n", - "5773142 0 \n", - "5773155 0 \n", - "5773160 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000079100008410000921000107100011010001281000135...5772992577300457730295773031577304757730505773065577307357730825773098
11.00.0507130.1467150.0554080.0818580.0580260.0789620.015210.0147890.0167050.01478...0.0215590.0367720.0627090.0214960.0352420.0428670.0322570.1062350.1087590.132702
\n", - "

1 rows × 338355 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.050713 0.146715 0.055408 0.081858 0.058026 0.078962 0.01521 \n", - "\n", - " 1000110 1000128 1000135 ... 5772992 5773004 5773029 \\\n", - "11.0 0.014789 0.016705 0.01478 ... 0.021559 0.036772 0.062709 \n", - "\n", - " 5773031 5773047 5773050 5773065 5773073 5773082 5773098 \n", - "11.0 0.021496 0.035242 0.042867 0.032257 0.106235 0.108759 0.132702 \n", - "\n", - "[1 rows x 338355 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "8\n", - "Iteration 1: norm_delta = 0.87008, step_size = 0.5000, log_lik = -303030.33010, newton_decrement = 9127.48939, seconds_since_start = 5.3\n", - "Iteration 2: norm_delta = 0.41079, step_size = 0.5000, log_lik = -296319.38491, newton_decrement = 2192.09836, seconds_since_start = 10.6\n", - "Iteration 3: norm_delta = 0.23208, step_size = 0.5000, log_lik = -294662.06304, newton_decrement = 638.65956, seconds_since_start = 15.4\n", - "Iteration 4: norm_delta = 0.10495, step_size = 0.6000, log_lik = -294120.92953, newton_decrement = 119.21479, seconds_since_start = 20.6\n", - "Iteration 5: norm_delta = 0.03233, step_size = 0.7200, log_lik = -294010.31352, newton_decrement = 10.63562, seconds_since_start = 25.9\n", - "Iteration 6: norm_delta = 0.00471, step_size = 0.8640, log_lik = -293999.83707, newton_decrement = 0.21811, seconds_since_start = 31.0\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293999.61878, newton_decrement = 0.00000, seconds_since_start = 36.0\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293999.61878, newton_decrement = 0.00000, seconds_since_start = 41.2\n", - "Convergence success after 8 iterations.\n", - "0.7364618343921243\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774550-0.204321-0.4490140.043888-0.113098-0.54028310000...FalseFalseFalseFalseFalseFalseFalseFalse10.5242980
57745650.195130-0.3979750.020903-0.5493030.20068310000...FalseFalseFalseFalseFalseFalseFalseFalse11.5345650
57745731.1651250.7070830.9481090.387442-1.28124810000...FalseFalseFalseFalseFalseFalseFalseFalse11.6331280
5774582-0.966883-1.4386820.338244-1.402303-0.29329400001...FalseFalseFalseFalseFalseFalseFalseFalse11.6659820
57745980.1276070.2655400.7526170.9634721.06514310000...FalseFalseFalseFalseFalseFalseFalseFalse11.9698840
..................................................................
60251500.9409810.9800950.1518150.570106-1.52823710000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.245677-0.472132-0.947966-0.681690-1.28124810000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.527474-1.475411-1.099847-1.2686530.20068310000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.155824-0.168296-0.644824-0.7579240.07718910000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.237392-0.8828511.075813-0.4734411.43562610000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5774550 -0.204321 -0.449014 0.043888 -0.113098 -0.540283 \n", - "5774565 0.195130 -0.397975 0.020903 -0.549303 0.200683 \n", - "5774573 1.165125 0.707083 0.948109 0.387442 -1.281248 \n", - "5774582 -0.966883 -1.438682 0.338244 -1.402303 -0.293294 \n", - "5774598 0.127607 0.265540 0.752617 0.963472 1.065143 \n", - "... ... ... ... ... ... \n", - "6025150 0.940981 0.980095 0.151815 0.570106 -1.528237 \n", - "6025165 1.245677 -0.472132 -0.947966 -0.681690 -1.281248 \n", - "6025173 -1.527474 -1.475411 -1.099847 -1.268653 0.200683 \n", - "6025182 -0.155824 -0.168296 -0.644824 -0.757924 0.077189 \n", - "6025198 -0.237392 -0.882851 1.075813 -0.473441 1.435626 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5774550 1 0 0 \n", - "5774565 1 0 0 \n", - "5774573 1 0 0 \n", - "5774582 0 0 0 \n", - "5774598 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5774550 0 0 ... False \n", - "5774565 0 0 ... False \n", - "5774573 0 0 ... False \n", - "5774582 0 1 ... False \n", - "5774598 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774550 False False False \n", - "5774565 False False False \n", - "5774573 False False False \n", - "5774582 False False False \n", - "5774598 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774550 False False \n", - "5774565 False False \n", - "5774573 False False \n", - "5774582 False False \n", - "5774598 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774550 False False 10.524298 \n", - "5774565 False False 11.534565 \n", - "5774573 False False 11.633128 \n", - "5774582 False False 11.665982 \n", - "5774598 False False 11.969884 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774550 0 \n", - "5774565 0 \n", - "5774573 0 \n", - "5774582 0 \n", - "5774598 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5774420577443757744435774451577446657744795774484577450457745165774531
11.00.0509060.1431790.0629840.1390050.0808690.0577640.0795680.0152150.0152170.011591...0.1114080.0410720.0135160.0670920.0266780.0393870.0357330.1545120.0721240.142216
\n", - "

1 rows × 338356 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.050906 0.143179 0.062984 0.139005 0.080869 0.057764 0.079568 \n", - "\n", - " 1000107 1000110 1000128 ... 5774420 5774437 5774443 \\\n", - "11.0 0.015215 0.015217 0.011591 ... 0.111408 0.041072 0.013516 \n", - "\n", - " 5774451 5774466 5774479 5774484 5774504 5774516 5774531 \n", - "11.0 0.067092 0.026678 0.039387 0.035733 0.154512 0.072124 0.142216 \n", - "\n", - "[1 rows x 338356 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "9\n", - "Iteration 1: norm_delta = 0.83365, step_size = 0.5000, log_lik = -303247.13371, newton_decrement = 9099.09566, seconds_since_start = 5.1\n", - "Iteration 2: norm_delta = 0.40970, step_size = 0.5000, log_lik = -296555.48940, newton_decrement = 2184.87160, seconds_since_start = 10.0\n", - "Iteration 3: norm_delta = 0.23397, step_size = 0.5000, log_lik = -294903.70587, newton_decrement = 636.11402, seconds_since_start = 15.0\n", - "Iteration 4: norm_delta = 0.10659, step_size = 0.6000, log_lik = -294364.74142, newton_decrement = 118.71162, seconds_since_start = 20.0\n", - "Iteration 5: norm_delta = 0.03300, step_size = 0.7200, log_lik = -294254.59084, newton_decrement = 10.59557, seconds_since_start = 25.2\n", - "Iteration 6: norm_delta = 0.00483, step_size = 0.8640, log_lik = -294244.15341, newton_decrement = 0.21760, seconds_since_start = 30.1\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294243.93562, newton_decrement = 0.00000, seconds_since_start = 35.0\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294243.93562, newton_decrement = 0.00000, seconds_since_start = 40.0\n", - "Convergence success after 8 iterations.\n", - "0.7387615340941369\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773563-0.594864-1.0876961.329238-0.5305790.07762310000...FalseFalseFalseFalseFalseFalseFalseFalse10.6584530
57735750.3050540.0424991.440277-0.1149781.06573510000...FalseFalseFalseFalseFalseFalseFalseFalse9.4428471
5773580-0.0943710.3915601.0256900.414624-1.15751610000...FalseFalseFalseFalseFalseFalseFalseFalse12.9555100
5773591-0.529758-0.781643-0.9214640.8897880.94222110000...FalseFalseFalseFalseFalseFalseFalseFalse10.9240250
5773606-0.3589350.289542-0.940255-0.3601351.18924910000...FalseFalseFalseFalseFalseFalseTrueFalse10.8802190
..................................................................
60251500.9384640.9781610.1510470.568284-1.52805810000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.242864-0.473190-0.948694-0.681713-1.28103010000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.527596-1.475863-1.100570-1.2678330.20113710000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.157276-0.169537-0.645563-0.7578370.07762310000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.238765-0.8836611.075012-0.4737641.43627710000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17809 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773563 -0.594864 -1.087696 1.329238 -0.530579 0.077623 \n", - "5773575 0.305054 0.042499 1.440277 -0.114978 1.065735 \n", - "5773580 -0.094371 0.391560 1.025690 0.414624 -1.157516 \n", - "5773591 -0.529758 -0.781643 -0.921464 0.889788 0.942221 \n", - "5773606 -0.358935 0.289542 -0.940255 -0.360135 1.189249 \n", - "... ... ... ... ... ... \n", - "6025150 0.938464 0.978161 0.151047 0.568284 -1.528058 \n", - "6025165 1.242864 -0.473190 -0.948694 -0.681713 -1.281030 \n", - "6025173 -1.527596 -1.475863 -1.100570 -1.267833 0.201137 \n", - "6025182 -0.157276 -0.169537 -0.645563 -0.757837 0.077623 \n", - "6025198 -0.238765 -0.883661 1.075012 -0.473764 1.436277 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773563 1 0 0 \n", - "5773575 1 0 0 \n", - "5773580 1 0 0 \n", - "5773591 1 0 0 \n", - "5773606 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773563 0 0 ... False \n", - "5773575 0 0 ... False \n", - "5773580 0 0 ... False \n", - "5773591 0 0 ... False \n", - "5773606 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773563 False False False \n", - "5773575 False False False \n", - "5773580 False False False \n", - "5773591 False False False \n", - "5773606 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773563 False False \n", - "5773575 False False \n", - "5773580 False False \n", - "5773591 False False \n", - "5773606 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773563 False False 10.658453 \n", - "5773575 False False 9.442847 \n", - "5773580 False False 12.955510 \n", - "5773591 False False 10.924025 \n", - "5773606 True False 10.880219 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773563 0 \n", - "5773575 1 \n", - "5773580 0 \n", - "5773591 0 \n", - "5773606 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17809 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000921000107100011010001281000135...5773445577346757734745773489577349057735095773517577353857735465773552
11.00.0517560.1433660.0551640.1364150.0791030.0857040.0154560.015310.0125020.014412...0.0187370.1725270.0551270.0131030.0101850.1296030.0184640.0395190.048680.037171
\n", - "

1 rows × 338356 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000092 1000107 \\\n", - "11.0 0.051756 0.143366 0.055164 0.136415 0.079103 0.085704 0.015456 \n", - "\n", - " 1000110 1000128 1000135 ... 5773445 5773467 5773474 \\\n", - "11.0 0.01531 0.012502 0.014412 ... 0.018737 0.172527 0.055127 \n", - "\n", - " 5773489 5773490 5773509 5773517 5773538 5773546 5773552 \n", - "11.0 0.013103 0.010185 0.129603 0.018464 0.039519 0.04868 0.037171 \n", - "\n", - "[1 rows x 338356 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "predictions_dict = {}\n", - "for group in tqdm(groups):\n", - " predictions_dict[group] = {}\n", - " for partition in partitions:\n", - " tqdm.write(group)\n", - " tqdm.write(partition)\n", - " predictions_dict[group][partition] = fit_predict_coxph(data.copy(), group, partition, time, event, f\"{dataset_path}/partition_{partition}/cox_{group}.p\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "for group in groups:\n", - " pred_dfs = [predictions_dict[group][partition] for partition in partitions]\n", - " predictions_dict[group][\"complete\"] = pd.concat(pred_dfs).sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "from functools import reduce\n", - "prediction_dfs = [predictions_dict[group][\"complete\"] for group in groups]\n", - "predictions = reduce(lambda left,right: pd.merge(left,right,on=['eid', \"partition\", \"split\"], how='left'), prediction_dfs).sort_values([\"eid\", \"partition\", \"split\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidscore_COX_clinical0_1_Ft_COX_clinical0_2_Ft_COX_clinical0_3_Ft_COX_clinical0_4_Ft_COX_clinical0_5_Ft_COX_clinical0_6_Ft_COX_clinical0_7_Ft_COX_clinical0_8_Ft_COX_clinical...0_17_Ft_COX_clinical_pgs0_18_Ft_COX_clinical_pgs0_19_Ft_COX_clinical_pgs0_20_Ft_COX_clinical_pgs0_21_Ft_COX_clinical_pgs0_22_Ft_COX_clinical_pgs0_23_Ft_COX_clinical_pgs0_24_Ft_COX_clinical_pgs0_25_Ft_COX_clinical_pgs0_26_Ft_COX_clinical_pgs
010000180.0568480.0036200.0078450.0125730.0173120.0225100.0279650.0335600.039235...0.0694120.0694120.0694120.0694120.0694120.0694120.0694120.0694120.0694120.069412
410000180.0583500.0036830.0079900.0129130.0178590.0231540.0287840.0346150.040404...0.0723070.0723070.0723070.0723070.0723070.0723070.0723070.0723070.0723070.072307
510000180.0587920.0037010.0080700.0129820.0179680.0232800.0289350.0347680.040614...0.0721750.0721750.0721750.0721750.0721750.0721750.0721750.0721750.0721750.072175
610000180.0567830.0036140.0078900.0125240.0172540.0223990.0279370.0335840.039314...0.0707110.0707110.0707110.0707110.0707110.0707110.0707110.0707110.0707110.070711
810000180.0580330.0037220.0079330.0126890.0175980.0228750.0285210.0342970.040176...0.0704990.0704990.0704990.0704990.0704990.0704990.0704990.0704990.0704990.070499
..................................................................
395737360251980.3046920.0219520.0475830.0751560.1027430.1316280.1614320.1911870.220504...0.4014330.4014330.4014330.4014330.4014330.4014330.4014330.4014330.4014330.401433
395737460251980.3004610.0223390.0470340.0744910.1019260.1300970.1595910.1886900.217495...0.4002160.4002160.4002160.4002160.4002160.4002160.4002160.4002160.4002160.400216
395737660251980.3105220.0227360.0488820.0765390.1047530.1342930.1645340.1948720.224480...0.4117010.4117010.4117010.4117010.4117010.4117010.4117010.4117010.4117010.411701
395737760251980.3040240.0223130.0477340.0753920.1029530.1317790.1619640.1917020.220167...0.4009540.4009540.4009540.4009540.4009540.4009540.4009540.4009540.4009540.400954
395737860251980.3107850.0231070.0496010.0776790.1061720.1353550.1655820.1957840.225160...0.4087870.4087870.4087870.4087870.4087870.4087870.4087870.4087870.4087870.408787
\n", - "

3957380 rows × 57 columns

\n", - "
" - ], - "text/plain": [ - " eid score_COX_clinical 0_1_Ft_COX_clinical \\\n", - "0 1000018 0.056848 0.003620 \n", - "4 1000018 0.058350 0.003683 \n", - "5 1000018 0.058792 0.003701 \n", - "6 1000018 0.056783 0.003614 \n", - "8 1000018 0.058033 0.003722 \n", - "... ... ... ... \n", - "3957373 6025198 0.304692 0.021952 \n", - "3957374 6025198 0.300461 0.022339 \n", - "3957376 6025198 0.310522 0.022736 \n", - "3957377 6025198 0.304024 0.022313 \n", - "3957378 6025198 0.310785 0.023107 \n", - "\n", - " 0_2_Ft_COX_clinical 0_3_Ft_COX_clinical 0_4_Ft_COX_clinical \\\n", - "0 0.007845 0.012573 0.017312 \n", - "4 0.007990 0.012913 0.017859 \n", - "5 0.008070 0.012982 0.017968 \n", - "6 0.007890 0.012524 0.017254 \n", - "8 0.007933 0.012689 0.017598 \n", - "... ... ... ... \n", - "3957373 0.047583 0.075156 0.102743 \n", - "3957374 0.047034 0.074491 0.101926 \n", - "3957376 0.048882 0.076539 0.104753 \n", - "3957377 0.047734 0.075392 0.102953 \n", - "3957378 0.049601 0.077679 0.106172 \n", - "\n", - " 0_5_Ft_COX_clinical 0_6_Ft_COX_clinical 0_7_Ft_COX_clinical \\\n", - "0 0.022510 0.027965 0.033560 \n", - "4 0.023154 0.028784 0.034615 \n", - "5 0.023280 0.028935 0.034768 \n", - "6 0.022399 0.027937 0.033584 \n", - "8 0.022875 0.028521 0.034297 \n", - "... ... ... ... \n", - "3957373 0.131628 0.161432 0.191187 \n", - "3957374 0.130097 0.159591 0.188690 \n", - "3957376 0.134293 0.164534 0.194872 \n", - "3957377 0.131779 0.161964 0.191702 \n", - "3957378 0.135355 0.165582 0.195784 \n", - "\n", - " 0_8_Ft_COX_clinical ... 0_17_Ft_COX_clinical_pgs \\\n", - "0 0.039235 ... 0.069412 \n", - "4 0.040404 ... 0.072307 \n", - "5 0.040614 ... 0.072175 \n", - "6 0.039314 ... 0.070711 \n", - "8 0.040176 ... 0.070499 \n", - "... ... ... ... \n", - "3957373 0.220504 ... 0.401433 \n", - "3957374 0.217495 ... 0.400216 \n", - "3957376 0.224480 ... 0.411701 \n", - "3957377 0.220167 ... 0.400954 \n", - "3957378 0.225160 ... 0.408787 \n", - "\n", - " 0_18_Ft_COX_clinical_pgs 0_19_Ft_COX_clinical_pgs \\\n", - "0 0.069412 0.069412 \n", - "4 0.072307 0.072307 \n", - "5 0.072175 0.072175 \n", - "6 0.070711 0.070711 \n", - "8 0.070499 0.070499 \n", - "... ... ... \n", - "3957373 0.401433 0.401433 \n", - "3957374 0.400216 0.400216 \n", - "3957376 0.411701 0.411701 \n", - "3957377 0.400954 0.400954 \n", - "3957378 0.408787 0.408787 \n", - "\n", - " 0_20_Ft_COX_clinical_pgs 0_21_Ft_COX_clinical_pgs \\\n", - "0 0.069412 0.069412 \n", - "4 0.072307 0.072307 \n", - "5 0.072175 0.072175 \n", - "6 0.070711 0.070711 \n", - "8 0.070499 0.070499 \n", - "... ... ... \n", - "3957373 0.401433 0.401433 \n", - "3957374 0.400216 0.400216 \n", - "3957376 0.411701 0.411701 \n", - "3957377 0.400954 0.400954 \n", - "3957378 0.408787 0.408787 \n", - "\n", - " 0_22_Ft_COX_clinical_pgs 0_23_Ft_COX_clinical_pgs \\\n", - "0 0.069412 0.069412 \n", - "4 0.072307 0.072307 \n", - "5 0.072175 0.072175 \n", - "6 0.070711 0.070711 \n", - "8 0.070499 0.070499 \n", - "... ... ... \n", - "3957373 0.401433 0.401433 \n", - "3957374 0.400216 0.400216 \n", - "3957376 0.411701 0.411701 \n", - "3957377 0.400954 0.400954 \n", - "3957378 0.408787 0.408787 \n", - "\n", - " 0_24_Ft_COX_clinical_pgs 0_25_Ft_COX_clinical_pgs \\\n", - "0 0.069412 0.069412 \n", - "4 0.072307 0.072307 \n", - "5 0.072175 0.072175 \n", - "6 0.070711 0.070711 \n", - "8 0.070499 0.070499 \n", - "... ... ... \n", - "3957373 0.401433 0.401433 \n", - "3957374 0.400216 0.400216 \n", - "3957376 0.411701 0.411701 \n", - "3957377 0.400954 0.400954 \n", - "3957378 0.408787 0.408787 \n", - "\n", - " 0_26_Ft_COX_clinical_pgs \n", - "0 0.069412 \n", - "4 0.072307 \n", - "5 0.072175 \n", - "6 0.070711 \n", - "8 0.070499 \n", - "... ... \n", - "3957373 0.401433 \n", - "3957374 0.400216 \n", - "3957376 0.411701 \n", - "3957377 0.400954 \n", - "3957378 0.408787 \n", - "\n", - "[3957380 rows x 57 columns]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW8ElEQVR4nO3df5BdZX3H8fenQRnNSkSDa0ywiTZgSVDGXSnV4uwWLBHEgNUayggBOxEGOzrFSrAzypTJlLamtg41dhUmMrRsGRGhQKyIXimVFBKMJoDRhWztJgwZBQM3OtHAt3/cs+G43s2e+/skz+c1c2fPec6vz72B733uc849VxGBmZml4bd6HcDMzLrHRd/MLCEu+mZmCXHRNzNLiIu+mVlCjuh1gJnMnTs3Fi5c2PB2e/fuZfbs2e0P1AJnKq6MucqYCcqZy5mK61SuzZs3/yQijvmNBRFR6sfAwEA041vf+lZT23WSMxVXxlxlzBRRzlzOVFyncgGbok5N9fCOmVlCXPTNzBLiom9mlhAXfTOzhLjom5klxEXfzCwhLvpmZglx0TczS4iLvplZQkp/G4Z2Wbj6zgPT49ec1cMkZma9456+mVlCXPTNzBLiom9mlhAXfTOzhLjom5klxEXfzCwhyVyymefLN80sVe7pm5klxEXfzCwhLvpmZgmZsehLul7Sbknbcm3/LmlL9hiXtCVrXyjpF7lln89tMyBpq6QxSZ+VpI48IzMzm1aRE7nrgWuBGyYbIuL9k9OS1gJ7cus/FhEn1dnPOmAVsBG4C1gGbGg4sZmZNW3Gnn5E3As8VW9Z1lv/E+Cmg+1D0jzgqIi4PyKC2hvIOQ2nNTOzlrQ6pn8q8GRE/CjXtkjSdyV9W9KpWdt8YCK3zkTWZmZmXaRax3uGlaSFwB0RsXRK+zpgLCLWZvNHAn0R8VNJA8BXgSXA8cDfRMTp2XqnAh+PiLOnOd4qakNB9Pf3D4yOjjb8xKrVKn19fQfmt+7cU3e9E+fPaXjfzZqaqQzKmAnKmauMmaCcuZypuE7lGh4e3hwRg1Pbm/5ylqQjgPcAA5NtEbEP2JdNb5b0GHActZ79gtzmC4Bd0+07IkaAEYDBwcEYGhpqOF+lUiG/3crcF7Lyxs9vfN/NmpqpDMqYCcqZq4yZoJy5nKm4budqZXjndOAHEXFg2EbSMZJmZdOvAxYDj0fEE8Czkk7JzgNcANzWwrHNzKwJRS7ZvAm4Hzhe0oSkD2aLVvCbJ3DfDnxf0veALwOXRMTkSeBLgS8CY8Bj+ModM7Oum3F4JyLOm6Z9ZZ22W4Bbpll/E7C03jIzM+sOfyPXzCwhLvpmZglx0TczS4iLvplZQpL8EZU8/6CKmaXEPX0zs4Qk39PPc6/fzA537umbmSXERd/MLCEu+mZmCXHRNzNLiIu+mVlCXPTNzBLiom9mlhAXfTOzhLjom5klxEXfzCwhLvpmZglx0TczS0iRH0a/XtJuSdtybVdJ2ilpS/Y4M7fsSkljkrZLOiPXPiBpa7bss5LU/qdjZmYHU6Snvx5YVqf9MxFxUva4C0DSCcAKYEm2zeckzcrWXwesAhZnj3r7NDOzDpqx6EfEvcBTBfe3HBiNiH0RsQMYA06WNA84KiLuj4gAbgDOaTKzmZk1SbUaPMNK0kLgjohYms1fBawEngE2AZdHxNOSrgU2RsSN2XrXARuAceCaiDg9az8VuCIi3jXN8VZR+1RAf3//wOjoaMNPrFqt0tfXd2B+6849DW1/4vw5DR9zJlMzlUEZM0E5c5UxE5QzlzMV16lcw8PDmyNicGp7sz+isg64Gojs71rgYqDeOH0cpL2uiBgBRgAGBwdjaGio4YCVSoX8ditzP5BSxPj5jR9zJlMzlUEZM0E5c5UxE5QzlzMV1+1cTV29ExFPRsRzEfE88AXg5GzRBHBsbtUFwK6sfUGddjMz66Kmin42Rj/pXGDyyp7bgRWSjpS0iNoJ2wci4gngWUmnZFftXADc1kJuMzNrwozDO5JuAoaAuZImgE8BQ5JOojZEMw58CCAiHpZ0M/AIsB+4LCKey3Z1KbUrgV5CbZx/Qxufh5mZFTBj0Y+I8+o0X3eQ9dcAa+q0bwKWNpTOzMzayt/INTNLiIu+mVlCXPTNzBLiom9mlhAXfTOzhLjom5klxEXfzCwhLvpmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQF30zs4S46JuZJcRF38wsIS76ZmYJcdE3M0uIi76ZWUKK/Ebu9cC7gN0RsTRr+3vgbOCXwGPARRHxM0kLgUeB7dnmGyPikmybAV74jdy7gI9ERLT12bTRwtV3Hpgev+asHiYxM2ufIj399cCyKW13A0sj4o3AD4Erc8sei4iTssclufZ1wCpgcfaYuk8zM+uwGYt+RNwLPDWl7esRsT+b3QgsONg+JM0DjoqI+7Pe/Q3AOU0lNjOzprVjTP9iYENufpGk70r6tqRTs7b5wERunYmszczMukhFhtWzsfo7Jsf0c+1/BQwC74mIkHQk0BcRP83G8L8KLAGOB/4mIk7PtjsV+HhEnD3N8VZRGwqiv79/YHR0tOEnVq1W6evrOzC/deeehvcx6cT5c5reNm9qpjIoYyYoZ64yZoJy5nKm4jqVa3h4eHNEDE5tn/FE7nQkXUjtBO9pkydkI2IfsC+b3izpMeA4aj37/BDQAmDXdPuOiBFgBGBwcDCGhoYazlepVMhvtzJ3YrZR4+c3fvx6pmYqgzJmgnLmKmMmKGcuZyqu27maGt6RtAy4Anh3RPw8136MpFnZ9OuonbB9PCKeAJ6VdIokARcAt7Wc3szMGlLkks2bgCFgrqQJ4FPUrtY5Eri7VsMPXJr5duCvJe0HngMuiYjJk8CX8sIlmxv49fMAZmbWBTMW/Yg4r07zddOsewtwyzTLNgFL6y0zM7Pu8DdyzcwS4qJvZpYQF30zs4S46JuZJcRF38wsIS76ZmYJcdE3M0tI07dhOBQsbOHWC2ZmhyP39M3MEuKib2aWEBd9M7OEHNZj+u3i38s1s8OFe/pmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQF30zs4S46JuZJWTGoi/pekm7JW3Ltb1C0t2SfpT9PTq37EpJY5K2Szoj1z4gaWu27LPKflHdzMy6p0hPfz2wbErbauCeiFgM3JPNI+kEYAWwJNvmc5JmZdusA1YBi7PH1H2amVmHzVj0I+Je4KkpzcuBL2XTXwLOybWPRsS+iNgBjAEnS5oHHBUR90dEADfktjEzsy5RrQbPsJK0ELgjIpZm8z+LiJfnlj8dEUdLuhbYGBE3Zu3XARuAceCaiDg9az8VuCIi3jXN8VZR+1RAf3//wOjoaMNPrFqtsmPPcw1vN5MT589pettqtUpfX18b07SujJmgnLnKmAnKmcuZiutUruHh4c0RMTi1vd333qk3Th8Haa8rIkaAEYDBwcEYGhpqOEilUmHtfXsb3m4m4+c3nmVSpVKhmefSSWXMBOXMVcZMUM5czlRct3M1W/SflDQvIp7Ihm52Z+0TwLG59RYAu7L2BXXaDzm++ZqZHcqavWTzduDCbPpC4LZc+wpJR0paRO2E7QMR8QTwrKRTsqt2LshtY2ZmXTJjT1/STcAQMFfSBPAp4BrgZkkfBH4MvA8gIh6WdDPwCLAfuCwiJgfWL6V2JdBLqI3zb2jrMzEzsxnNWPQj4rxpFp02zfprgDV12jcBSxtKZ2ZmbeVv5JqZJcRF38wsIS76ZmYJcdE3M0uIi76ZWULa/Y3cpPiLWmZ2qHFP38wsIS76ZmYJcdE3M0uIi76ZWUJc9M3MEuKib2aWEBd9M7OEuOibmSXERd/MLCEu+mZmCXHRNzNLiIu+mVlCmi76ko6XtCX3eEbSRyVdJWlnrv3M3DZXShqTtF3SGe15CmZmVlTTd9mMiO3ASQCSZgE7gVuBi4DPRMSn8+tLOgFYASwBXgN8Q9JxuR9ONzOzDmvX8M5pwGMR8b8HWWc5MBoR+yJiBzAGnNym45uZWQGKiNZ3Il0PPBQR10q6ClgJPANsAi6PiKclXQtsjIgbs22uAzZExJfr7G8VsAqgv79/YHR0tOFM1WqVHXu69yHixPlzZlynWq3S19fXhTTFlTETlDNXGTNBOXM5U3GdyjU8PLw5Igantrf8IyqSXgy8G7gya1oHXA1E9nctcDGgOpvXfceJiBFgBGBwcDCGhoYazlWpVFh7396Gt2vW+PlDM65TqVRo5rl0UhkzQTlzlTETlDOXMxXX7VztGN55J7Ve/pMAEfFkRDwXEc8DX+CFIZwJ4NjcdguAXW04vpmZFdSOon8ecNPkjKR5uWXnAtuy6duBFZKOlLQIWAw80Ibjm5lZQS0N70h6KfAO4EO55r+TdBK1oZvxyWUR8bCkm4FHgP3AZb5yx8ysu1oq+hHxc+CVU9o+cJD11wBrWjmmmZk1z9/INTNLSMtX71jNwtV3Hpgev+asHiYxM5uee/pmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQX73TAb6Sx8zKyj19M7OEuOibmSXERd/MLCEu+mZmCXHRNzNLiIu+mVlCXPTNzBLiom9mlhAXfTOzhLjom5klxLdh6LD8LRnWL5vdwyRmZi329CWNS9oqaYukTVnbKyTdLelH2d+jc+tfKWlM0nZJZ7Qa3szMGtOO4Z3hiDgpIgaz+dXAPRGxGLgnm0fSCcAKYAmwDPicpFltOL6ZmRXUiTH95cCXsukvAefk2kcjYl9E7ADGgJM7cHwzM5uGIqL5jaUdwNNAAP8SESOSfhYRL8+t83REHC3pWmBjRNyYtV8HbIiIL9fZ7ypgFUB/f//A6Ohow9mq1So79jzXzNPqmEVzZtHX19frGL+mWq2WLhOUM1cZM0E5czlTcZ3KNTw8vDk3AnNAqydy3xYRuyS9Crhb0g8Osq7qtNV9x4mIEWAEYHBwMIaGhhoOVqlUWHvf3oa366T1y2bTzHPppEqlUrpMUM5cZcwE5czlTMV1O1dLwzsRsSv7uxu4ldpwzZOS5gFkf3dnq08Ax+Y2XwDsauX4h5qtO/ewcPWdv3ZFj5lZNzVd9CXNlvSyyWngj4BtwO3AhdlqFwK3ZdO3AyskHSlpEbAYeKDZ45uZWeNaGd7pB26VNLmff4uIr0l6ELhZ0geBHwPvA4iIhyXdDDwC7Acui4hyDbqbmR3mmi76EfE48KY67T8FTptmmzXAmmaPaWZmrfFtGMzMEuKib2aWEBd9M7OEuOibmSXERd/MLCEu+mZmCfH99Htk6rdyx685q0dJzCwl7umbmSXERd/MLCEu+mZmCXHRNzNLiE/klkT+xK5P6ppZp7inb2aWEBd9M7OEuOibmSXEY/ol5PF9M+sU9/TNzBLiom9mlpBWfhj9WEnfkvSopIclfSRrv0rSTklbsseZuW2ulDQmabukM9rxBMzMrLhWxvT3A5dHxEOSXgZslnR3tuwzEfHp/MqSTgBWAEuA1wDfkHScfxzdzKx7mu7pR8QTEfFQNv0s8Cgw/yCbLAdGI2JfROwAxoCTmz2+mZk1ThHR+k6khcC9wFLgL4CVwDPAJmqfBp6WdC2wMSJuzLa5DtgQEV+us79VwCqA/v7+gdHR0YYzVatVduwp14eI/pfAk79obJsT58/pTJhMtVqlr6+vo8doRhlzlTETlDOXMxXXqVzDw8ObI2JwanvLl2xK6gNuAT4aEc9IWgdcDUT2dy1wMaA6m9d9x4mIEWAEYHBwMIaGhhrOValUWHvf3oa366TLT9zP2q2NveTj5w91JkymUqnQzOvbaWXMVcZMUM5czlRct3O1VPQlvYhawf/XiPgKQEQ8mVv+BeCObHYCODa3+QJgVyvHT4Gv2Tezdmrl6h0B1wGPRsQ/5Nrn5VY7F9iWTd8OrJB0pKRFwGLggWaPb2ZmjWulp/824APAVklbsrZPAOdJOona0M048CGAiHhY0s3AI9Su/LnMV+40ZupPLE7yJwAzK6rpoh8R91F/nP6ug2yzBljT7DHNzKw1/kaumVlCXPTNzBLiom9mlhAXfTOzhLjom5klxD+ichjwF7jMrCj39M3MEuKe/mHMnwDMbCoX/cPMdN/a9RuAmYGHd8zMkuKib2aWEA/vJCg/1LN+2eweJjGzbnNP38wsIS76ZmYJ8fBO4rbu3MPKbLgnf1WPr/YxOzy56NsB013uaWaHDw/vmJklxD19m1GRTwAeAjI7NLjoW1sU+f1enycw672uF31Jy4B/AmYBX4yIa7qdwbqnyG0h6rn8xP2sXH2n3xzM2qyrRV/SLOCfgXcAE8CDkm6PiEe6mcMOHY0OLfnThNnBdbunfzIwFhGPA0gaBZYDLvrWtGY/TUw13ZvHpMlPH81s20yGvIPtc7pvVffqDXDh6jv9Sa3EFBHdO5j0XmBZRPxZNv8B4Pci4sNT1lsFrMpmjwe2N3G4ucBPWojbCc5UXBlzlTETlDOXMxXXqVy/HRHHTG3sdk9fddp+410nIkaAkZYOJG2KiMFW9tFuzlRcGXOVMROUM5czFdftXN2+Tn8CODY3vwDY1eUMZmbJ6nbRfxBYLGmRpBcDK4Dbu5zBzCxZXR3eiYj9kj4M/Ce1Szavj4iHO3S4loaHOsSZiitjrjJmgnLmcqbiupqrqydyzcyst3zvHTOzhLjom5kl5JAu+pKWSdouaUzS6jrLJemz2fLvS3pzSXK9QdL9kvZJ+lhJMp2fvUbfl/QdSW8qQablWZ4tkjZJ+oNOZyqSK7feWyQ9l33/pKeZJA1J2pO9VlskfbLTmYrkymXbIulhSd/udSZJf5l7nbZl/4av6HGmOZL+Q9L3stfpoo6FiYhD8kHtRPBjwOuAFwPfA06Yss6ZwAZq3w84BfifkuR6FfAWYA3wsZJkeitwdDb9zk6/VgUz9fHCeac3Aj8ow2uVW++bwF3Ae3udCRgC7uj069NErpdT+8b9a7P5V/U605T1zwa+2etMwCeAv82mjwGeAl7ciTyHck//wC0dIuKXwOQtHfKWAzdEzUbg5ZLm9TpXROyOiAeBX3U4SyOZvhMRT2ezG6l9h6LXmaqR/V8AzKbOF/l6kSvz58AtwO4SZeq2Irn+FPhKRPwYav/tlyBT3nnATSXIFMDLJIlaZ+cpYH8nwhzKRX8+8H+5+YmsrdF1epGr2xrN9EFqn5A6qVAmSedK+gFwJ3BxhzMVyiVpPnAu8Pku5CmUKfP72fDABklLSpLrOOBoSRVJmyVdUIJMAEh6KbCM2pt3rzNdC/wutS+rbgU+EhHPdyLMoXw//SK3dCh024c268UxZ1I4k6RhakW/0+PnRW/JcStwq6S3A1cDp5cg1z8CV0TEc7WOWccVyfQQtXutVCWdCXwVWFyCXEcAA8BpwEuA+yVtjIgf9jDTpLOB/46IpzqUZVKRTGcAW4A/BF4P3C3pvyLimXaHOZR7+kVu6dCL2z6U8VYThTJJeiPwRWB5RPy0DJkmRcS9wOslzS1BrkFgVNI48F7gc5LO6WWmiHgmIqrZ9F3Ai0ryWk0AX4uIvRHxE+BeoJMXCTTy39UKOj+0A8UyXURtGCwiYgzYAbyhI2k6eQKjwydHjgAeBxbxwsmRJVPWOYtfP5H7QBly5da9iu6cyC3yWr0WGAPeWqJ/v9/hhRO5bwZ2Ts6X4d8vW389nT+RW+S1enXutToZ+HEZXitqQxb3ZOu+FNgGLO31vx8wh9q4+exOvkYNvE7rgKuy6f7sv/W5nchzyA7vxDS3dJB0Sbb889SurDiTWjH7ObV3057nkvRqYBNwFPC8pI9SO5vf9o9yRTMBnwReSa3XCrA/Onjnv4KZ/hi4QNKvgF8A74/s/4oe5+qqgpneC1wqaT+112pFGV6riHhU0teA7wPPU/u1vG29zJStei7w9YjY26ksDWa6GlgvaSu1TuoVUftk1Ha+DYOZWUIO5TF9MzNrkIu+mVlCXPTNzBLiom9mlhAXfTOzhLjom5klxEXfzCwh/w++22ULTlre6QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "predictions.query(\"partition=='4'\").query(\"split=='valid'\").score_COX_clinical.hist(bins=100)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD4CAYAAAAKA1qZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASg0lEQVR4nO3df6zd9V3H8edL9kOkAkVmJRQtatUB81eviD9mbgVDHWhZ3GLnFKaYRoJmJs4A/uGPmMb6h0YJwtIMAwTjTaPO4bZOSbfrnAMZVbYOGK5Kgwwyso0xLhq07O0f51t21t72nnN/nPttP89HcnPP+Zzv95zXOe29r/v5fr/ne1JVSJLa9DWrHUCStHosAUlqmCUgSQ2zBCSpYZaAJDXsFasdYCFnn312bdiwYez1XnjhBU477bTlD7RM+pyvz9mg3/n6nA3MtxR9zgZH59u3b9/nquo1C65YVb3+2rRpUy3Ghz70oUWtNyl9ztfnbFX9ztfnbFXmW4o+Z6s6Oh/wYI3wO9bNQZLUMEtAkhpmCUhSwywBSWqYJSBJDbMEJKlhloAkNcwSkKSGWQKS1LDenzZiuWy48X0vXz6484pVTCJJ/dFMCQyzECRpwM1BktQwS0CSGmYJSFLDLAFJapglIEkNswQkqWGWgCQ1zBKQpIZZApLUMEtAkhpmCUhSwywBSWqYJSBJDbMEJKlhI5dAklOS/FuS93bXz0pyb5JPd9/XDi17U5IDSR5LcvnQ+KYk+7vbbk6S5X06kqRxjDMTeDvw6ND1G4G9VbUR2NtdJ8kFwDbgQmALcGuSU7p1bgO2Axu7ry1LSi9JWpKRSiDJeuAK4F1Dw1uBO7vLdwJXDY3PVNWLVfU4cAC4OMk5wOlVdV9VFXDX0DqrZsON73v5S5Jak8Hv4wUWSv4K+APg64F3VNWVSb5YVWcOLfNsVa1Ncgtwf1Xd3Y3fDuwBDgI7q+qybvz1wA1VdeU8j7edwYyBdevWbZqZmRn7ic3NzbFmzZqXr+//zHMLrvO6c88Y+3EW68h8fdLnbNDvfH3OBuZbij5ng6Pzbd68eV9VTS203oIfL5nkSuCZqtqXZHqELPNt56/jjB89WLUL2AUwNTVV09OjPOxXm52dZXi9t43wl/7Bt47/OIt1ZL4+6XM26He+PmcD8y1Fn7PB4vON8hnDPwL8dJI3AF8LnJ7kbuCzSc6pqqe7TT3PdMs/CZw3tP564KlufP0845KkVbLgPoGquqmq1lfVBgY7fD9YVT8P3ANc0y12DfCe7vI9wLYkr05yPoMdwA9U1dPA80ku6Y4KunpoHUnSKhhlJnAsO4HdSa4FngDeDFBVDyfZDTwCHAKur6qXunWuA+4ATmWwn2DPEh5fkrREY5VAVc0Cs93lzwOXHmO5HcCOecYfBC4aN6QkaWX4jmFJapglIEkNswQkqWGWgCQ1zBKQpIZZApLUMEtAkhpmCUhSwywBSWqYJSBJDbMEJKlhloAkNcwSkKSGWQKS1DBLQJIaZglIUsMsAUlqmCUgSQ2zBCSpYUv5oPmTzoYb3/fy5YM7r1jFJJI0Gc4EJKlhloAkNcwSkKSGWQKS1DBLQJIaZglIUsMsAUlqmCUgSQ2zBCSpYZaAJDXMEpCkhlkCktQwS0CSGmYJSFLDLAFJapglIEkNswQkqWGWgCQ1bMESSPK1SR5I8vEkDyf5vW78rCT3Jvl0933t0Do3JTmQ5LEklw+Nb0qyv7vt5iRZmaclSRrFKDOBF4Efr6rvAb4X2JLkEuBGYG9VbQT2dtdJcgGwDbgQ2ALcmuSU7r5uA7YDG7uvLcv4XCRJY1rwg+arqoC57uoru68CtgLT3fidwCxwQzc+U1UvAo8nOQBcnOQgcHpV3QeQ5C7gKmDPMj2XZeWHzktqQQa/4xdYaPCX/D7g24E/q6obknyxqs4cWubZqlqb5Bbg/qq6uxu/ncEv+oPAzqq6rBt/PXBDVV05z+NtZzBjYN26dZtmZmbGfmJzc3OsWbPm5ev7P/Pc2Pdx2OvOPWPR6x7Lkfn6pM/ZoN/5+pwNzLcUfc4GR+fbvHnzvqqaWmi9BWcCAFX1EvC9Sc4E3p3kouMsPt92/jrO+HyPtwvYBTA1NVXT09OjxPwqs7OzDK/3tqG/7Md18K3jP/5CjszXJ33OBv3O1+dsYL6l6HM2WHy+sY4OqqovMtjsswX4bJJzALrvz3SLPQmcN7TaeuCpbnz9POOSpFUyytFBr+lmACQ5FbgM+BRwD3BNt9g1wHu6y/cA25K8Osn5DHYAP1BVTwPPJ7mkOyro6qF1JEmrYJTNQecAd3b7Bb4G2F1V701yH7A7ybXAE8CbAarq4SS7gUeAQ8D13eYkgOuAO4BTGewn6OVOYUlqxShHB30C+L55xj8PXHqMdXYAO+YZfxA43v4ESdIE+Y5hSWqYJSBJDbMEJKlhloAkNcwSkKSGWQKS1DBLQJIaZglIUsMsAUlqmCUgSQ2zBCSpYZaAJDXMEpCkhlkCktQwS0CSGjbSZwy3bsPQ5xMf3HnFKiaRpOXlTECSGmYJSFLDLAFJapglIEkNswQkqWGWgCQ17KQ+RHT40E5J0tGcCUhSwywBSWqYJSBJDbMEJKlhloAkNcwSkKSGWQKS1DBLQJIaZglIUsMsAUlqmCUgSQ07qc8dtBL8qElJJxNnApLUMEtAkhpmCUhSwxYsgSTnJflQkkeTPJzk7d34WUnuTfLp7vvaoXVuSnIgyWNJLh8a35Rkf3fbzUmyMk9LkjSKUWYCh4DfqKrXApcA1ye5ALgR2FtVG4G93XW627YBFwJbgFuTnNLd123AdmBj97VlGZ+LJGlMC5ZAVT1dVf/aXX4eeBQ4F9gK3NktdidwVXd5KzBTVS9W1ePAAeDiJOcAp1fVfVVVwF1D60iSVkEGv49HXDjZAHwYuAh4oqrOHLrt2apam+QW4P6qursbvx3YAxwEdlbVZd3464EbqurKeR5nO4MZA+vWrds0MzMz9hObm5vj8edeGnu9cbzu3DMWve7c3Bxr1qxZxjTLp8/ZoN/5+pwNzLcUfc4GR+fbvHnzvqqaWmi9kd8nkGQN8NfAr1fVl46zOX++G+o440cPVu0CdgFMTU3V9PT0qDFfNjs7yx995IWx1xvHwbdOL3rd2dlZFvO8JqHP2aDf+fqcDcy3FH3OBovPN9LRQUleyaAA/qKq/qYb/my3iYfu+zPd+JPAeUOrrwee6sbXzzMuSVoloxwdFOB24NGq+uOhm+4BrukuXwO8Z2h8W5JXJzmfwQ7gB6rqaeD5JJd093n10DqSpFUwyuagHwF+Adif5KFu7LeAncDuJNcCTwBvBqiqh5PsBh5hcGTR9VV1eOP8dcAdwKkM9hPsWabnIUlahAVLoKo+wvzb8wEuPcY6O4Ad84w/yGCnsiSpB3zHsCQ1zLOILoFnFJV0onMmIEkNswQkqWGWgCQ1zBKQpIZZApLUMEtAkhpmCUhSwywBSWqYJSBJDbMEJKlhloAkNcwSkKSGWQKS1DDPIrpMPKOopBORMwFJapglIEkNswQkqWGWgCQ1zB3DK8CdxJJOFM4EJKlhloAkNcwSkKSGWQKS1DBLQJIaZglIUsMsAUlqmCUgSQ2zBCSpYZaAJDXMEpCkhlkCktQwTyC3wjyZnKQ+cyYgSQ2zBCSpYZaAJDXMEpCkhi1YAkn+PMkzST45NHZWknuTfLr7vnbotpuSHEjyWJLLh8Y3Jdnf3XZzkiz/05EkjWOUmcAdwJYjxm4E9lbVRmBvd50kFwDbgAu7dW5Nckq3zm3AdmBj93XkfUqSJmzBEqiqDwNfOGJ4K3Bnd/lO4Kqh8ZmqerGqHgcOABcnOQc4varuq6oC7hpaR5K0SjL4nbzAQskG4L1VdVF3/YtVdebQ7c9W1doktwD3V9Xd3fjtwB7gILCzqi7rxl8P3FBVVx7j8bYzmDWwbt26TTMzM2M/sbm5OR5/7qWx15uU8884hTVr1qx2jHnNzc31Nhv0O1+fs4H5lqLP2eDofJs3b95XVVMLrbfcbxabbzt/HWd8XlW1C9gFMDU1VdPT02MHmZ2d5Y8+8sLY603KHVtOYzHPaxJmZ2d7mw36na/P2cB8S9HnbLD4fIs9Ouiz3SYeuu/PdONPAucNLbceeKobXz/PuCRpFS22BO4BrukuXwO8Z2h8W5JXJzmfwQ7gB6rqaeD5JJd0RwVdPbSOJGmVLLg5KMlfAtPA2UmeBH4H2AnsTnIt8ATwZoCqejjJbuAR4BBwfVUd3jB/HYMjjU5lsJ9gz7I+E0nS2BYsgap6yzFuuvQYy+8Adswz/iBw0VjpJEkryrOIrpL9n3mOt3mGUUmrzNNGSFLDLAFJapglIEkNswQkqWHuGO4JP4ZS0mpwJiBJDbMEJKlhloAkNcwSkKSGWQKS1DCPDuohjxSSNCnOBCSpYZaAJDXMzUE956YhSSvJmYAkNcwSkKSGWQKS1DBLQJIa5o7hE4g7iSUtN2cCktQwS0CSGubmoBOUm4YkLQdnApLUMGcCJwFnBZIWy5mAJDXMmcBJxlmBpHE4E5CkhjkTOIk5K5C0EEugERaCpPm4OUiSGmYJSFLD3BzUIDcNSTrMEtDLDpfDb7zuENOrG0XShFgCjRueFRxr3NmCdPKyBLQgC0E6eVkCGsuxZg6Wg3RisgS0LJwtSCemiZdAki3AnwKnAO+qqp2TzqCV5WxBOnFMtASSnAL8GfATwJPAx5LcU1WPTDKHVsexymFcHr0kLZ9JzwQuBg5U1X8CJJkBtgKWgMayXIUybHimMsr9T3Jmc2QeZ1VaLqmqyT1Y8iZgS1X9cnf9F4AfrKpfPWK57cD27up3Ao8t4uHOBj63hLgrrc/5+pwN+p2vz9nAfEvR52xwdL5vqarXLLTSpGcCmWfsqBaqql3AriU9UPJgVU0t5T5WUp/z9Tkb9Dtfn7OB+Zaiz9lg8fkmfe6gJ4Hzhq6vB56acAZJUmfSJfAxYGOS85O8CtgG3DPhDJKkzkQ3B1XVoSS/Cvw9g0NE/7yqHl6hh1vS5qQJ6HO+PmeDfufrczYw31L0ORssMt9EdwxLkvrFzxOQpIZZApLUsBO+BJJsSfJYkgNJbpzn9iS5ubv9E0m+v0fZvivJfUleTPKOSeUaI99bu9fsE0k+muR7epRta5froSQPJvnRSWUbJd/Qcj+Q5KXuPTK9yZdkOslz3ev3UJLf7ku2oXwPJXk4yT9OKtso+ZL85tDr9snu3/esnmQ7I8nfJfl499r94oJ3WlUn7BeDncv/AXwr8Crg48AFRyzzBmAPg/coXAL8S4+yfSPwA8AO4B09fO1+GFjbXf7Jnr12a/jKPq3vBj7Vp9duaLkPAu8H3tSnfMA08N5J/p8bI9uZDM4i8M3d9W/sU74jlv8p4IN9yQb8FvCH3eXXAF8AXnW8+z3RZwIvn4aiqv4XOHwaimFbgbtq4H7gzCTn9CFbVT1TVR8D/m8CeRaT76NV9Wx39X4G7+voS7a56v6nA6cxz5sOVzNf59eAvwaemWA2GD3fahgl288Bf1NVT8Dg56Rn+Ya9BfjLiSQbLVsBX58kDP5Q+gJw6Hh3eqKXwLnAfw1df7IbG3eZlbBajzuqcfNdy2BGNQkjZUvyxiSfAt4H/NKEssEI+ZKcC7wReOcEcx026r/tD3WbDfYkuXAy0UbK9h3A2iSzSfYluXpC2WCMn4skXwdsYVD0kzBKtluA1zJ4E+5+4O1V9eXj3emJ/nkCo5yGYqRTVayA1XrcUY2cL8lmBiUwqe3uo55e5N3Au5P8GPD7wGUrHawzSr4/AW6oqpcGf5RN1Cj5/pXBuWXmkrwB+Ftg44onGy3bK4BNwKXAqcB9Se6vqn9f6XCM93P7U8A/V9UXVjDPsFGyXQ48BPw48G3AvUn+qaq+dKw7PdFnAqOchmK1TlXR91NkjJQvyXcD7wK2VtXn+5TtsKr6MPBtSc5e6WCdUfJNATNJDgJvAm5NctVk4i2cr6q+VFVz3eX3A6+c0Os36s/sB6rqhar6HPBhYFIHJYzzf28bk9sUBKNl+0UGm9Kqqg4AjwPfddx7ndQOlxXaUfIK4D+B8/nKjpILj1jmCr56x/ADfck2tOzvMvkdw6O8dt8MHAB+uIfZvp2v7Bj+fuAzh6/3Id8Ry9/BZHcMj/L6fdPQ63cx8MQkXr8Rs70W2Nst+3XAJ4GL+vLadcudwWB7+2k9+3e9Dfjd7vK67ufi7OPd7wm9OaiOcRqKJL/S3f5OBkdmvIHBL7P/ZtCUvciW5JuAB4HTgS8n+XUGe/uPOXWbZD7gt4FvYPBXLMChmsBZFEfM9jPA1Un+D/gf4Ger+5/fk3yrZsR8bwKuS3KIweu3bRKv3yjZqurRJB8APgF8mcEnEH5ypbONmq9b9I3AP1TVC5PINUa23wfuSLKfwR++N9RgNnVMnjZCkhp2ou8TkCQtgSUgSQ2zBCSpYZaAJDXMEpCkhlkCktQwS0CSGvb/X5A5OEPmWyEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "predictions.query(\"partition=='0'\").query(\"split=='valid'\").score_COX_MACE_clinical.hist(bins=100)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "predictions.to_csv(f\"{data_path}/3_datasets_post/{dataset_name}/predictions_coxph.csv\", index=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidscore_COX_clinical0_1_Ft_COX_clinical0_2_Ft_COX_clinical0_3_Ft_COX_clinical0_4_Ft_COX_clinical0_5_Ft_COX_clinical0_6_Ft_COX_clinical0_7_Ft_COX_clinical0_8_Ft_COX_clinical...0_17_Ft_COX_clinical_pgs0_18_Ft_COX_clinical_pgs0_19_Ft_COX_clinical_pgs0_20_Ft_COX_clinical_pgs0_21_Ft_COX_clinical_pgs0_22_Ft_COX_clinical_pgs0_23_Ft_COX_clinical_pgs0_24_Ft_COX_clinical_pgs0_25_Ft_COX_clinical_pgs0_26_Ft_COX_clinical_pgs
197868960251980.3025640.0216150.0467860.0751470.1020250.1308410.1602600.1897260.218453...0.3968570.3968570.3968570.3968570.3968570.3968570.3968570.3968570.3968570.396857
197868560251980.3006810.0213270.0469410.0742940.1009060.1291060.1587810.1882040.217251...0.3971300.3971300.3971300.3971300.3971300.3971300.3971300.3971300.3971300.397130
197868860251980.3076580.0222000.0476570.0753600.1030450.1323200.1625740.1926770.222838...0.4003580.4003580.4003580.4003580.4003580.4003580.4003580.4003580.4003580.400358
197868760251980.3086010.0229870.0488600.0765840.1046980.1338830.1639550.1938310.223485...0.4129810.4129810.4129810.4129810.4129810.4129810.4129810.4129810.4129810.412981
197868660251980.3142980.0232600.0504510.0792130.1078720.1373820.1684530.1990370.228170...0.4129850.4129850.4129850.4129850.4129850.4129850.4129850.4129850.4129850.412985
\n", - "

5 rows × 57 columns

\n", - "
" - ], - "text/plain": [ - " eid score_COX_clinical 0_1_Ft_COX_clinical \\\n", - "1978689 6025198 0.302564 0.021615 \n", - "1978685 6025198 0.300681 0.021327 \n", - "1978688 6025198 0.307658 0.022200 \n", - "1978687 6025198 0.308601 0.022987 \n", - "1978686 6025198 0.314298 0.023260 \n", - "\n", - " 0_2_Ft_COX_clinical 0_3_Ft_COX_clinical 0_4_Ft_COX_clinical \\\n", - "1978689 0.046786 0.075147 0.102025 \n", - "1978685 0.046941 0.074294 0.100906 \n", - "1978688 0.047657 0.075360 0.103045 \n", - "1978687 0.048860 0.076584 0.104698 \n", - "1978686 0.050451 0.079213 0.107872 \n", - "\n", - " 0_5_Ft_COX_clinical 0_6_Ft_COX_clinical 0_7_Ft_COX_clinical \\\n", - "1978689 0.130841 0.160260 0.189726 \n", - "1978685 0.129106 0.158781 0.188204 \n", - "1978688 0.132320 0.162574 0.192677 \n", - "1978687 0.133883 0.163955 0.193831 \n", - "1978686 0.137382 0.168453 0.199037 \n", - "\n", - " 0_8_Ft_COX_clinical ... 0_17_Ft_COX_clinical_pgs \\\n", - "1978689 0.218453 ... 0.396857 \n", - "1978685 0.217251 ... 0.397130 \n", - "1978688 0.222838 ... 0.400358 \n", - "1978687 0.223485 ... 0.412981 \n", - "1978686 0.228170 ... 0.412985 \n", - "\n", - " 0_18_Ft_COX_clinical_pgs 0_19_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_20_Ft_COX_clinical_pgs 0_21_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_22_Ft_COX_clinical_pgs 0_23_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_24_Ft_COX_clinical_pgs 0_25_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_26_Ft_COX_clinical_pgs \n", - "1978689 0.396857 \n", - "1978685 0.397130 \n", - "1978688 0.400358 \n", - "1978687 0.412981 \n", - "1978686 0.412985 \n", - "\n", - "[5 rows x 57 columns]" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions.tail()" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidscore_COX_clinicalpartitionsplit
010000180.0589070train
210000180.0584061test
310000180.0589472train
410000180.0572333train
110000180.0585834train
...............
197868960251980.3025640valid
197868560251980.3006811test
197868860251980.3076582valid
197868760251980.3086013valid
197868660251980.3142984valid
\n", - "

1978690 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " eid score_COX_clinical partition split\n", - "0 1000018 0.058907 0 train\n", - "2 1000018 0.058406 1 test\n", - "3 1000018 0.058947 2 train\n", - "4 1000018 0.057233 3 train\n", - "1 1000018 0.058583 4 train\n", - "... ... ... ... ...\n", - "1978689 6025198 0.302564 0 valid\n", - "1978685 6025198 0.300681 1 test\n", - "1978688 6025198 0.307658 2 valid\n", - "1978687 6025198 0.308601 3 valid\n", - "1978686 6025198 0.314298 4 valid\n", - "\n", - "[1978690 rows x 4 columns]" - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions[[\"eid\", \"score_COX_clinical\", 'partition', 'split']]" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "predictions_df = pd.read_feather(\"/data/analysis/ag-reils/ag-reils-shared/cardioRS/results/models/benchmarks/BEN-1285/predictions/predictions.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0_1_ft0_1_Ft0_1_St0_2_ft0_2_Ft0_2_St0_3_ft0_3_Ft0_3_St0_4_ft...0_23_Ft_calibrated0_24_Ft_calibrated0_25_Ft_calibrated0_26_Ft_calibratedeidsplitpartitionmodulenetdatamodule
00.0308030.0222900.9777100.0392990.0577510.9422490.0443190.0997650.9002350.047347...0.1398020.1467830.1539300.1610871000018train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
10.0481850.0363450.9636550.0582200.0901920.9098080.0628420.1510370.8489630.064484...0.2494140.2609410.2728340.2836361000020train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
20.0534680.0400840.9599160.0646560.0998970.9001030.0694940.1673420.8326580.070809...0.3082610.3224400.3370830.3499191000043train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
30.0398070.0296430.9703570.0490270.0745850.9254150.0538330.1262720.8737280.056177...0.1891160.1980880.2073130.2161001000079train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
40.0288050.0212580.9787420.0362510.0541440.9458560.0406890.0927890.9072110.043434...0.1140730.1195440.1251080.1308461000084train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
..................................................................
3957330.0180390.0134170.9865830.0228970.0340850.9659150.0261060.0586810.9413190.028405...0.0489100.0511330.0533380.0559366024701test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957340.0415830.0307030.9692970.0515090.0778170.9221830.0566350.1321700.8678300.059054...0.2132970.2235810.2341800.2440976024778test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957350.0276710.0198400.9801600.0357890.0519360.9480640.0408010.0904150.9095850.044011...0.1243490.1307000.1371880.1437976024787test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957360.0235250.0172250.9827750.0299630.0442560.9557440.0340020.0763780.9236220.036696...0.0816440.0855170.0894240.0936686024807test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957370.0317000.0233510.9766490.0397790.0594970.9405030.0444410.1018060.8981940.047178...0.1343280.1407900.1473900.1540296025173test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
\n", - "

395738 rows × 194 columns

\n", - "
" - ], - "text/plain": [ - " 0_1_ft 0_1_Ft 0_1_St 0_2_ft 0_2_Ft 0_2_St 0_3_ft \\\n", - "0 0.030803 0.022290 0.977710 0.039299 0.057751 0.942249 0.044319 \n", - "1 0.048185 0.036345 0.963655 0.058220 0.090192 0.909808 0.062842 \n", - "2 0.053468 0.040084 0.959916 0.064656 0.099897 0.900103 0.069494 \n", - "3 0.039807 0.029643 0.970357 0.049027 0.074585 0.925415 0.053833 \n", - "4 0.028805 0.021258 0.978742 0.036251 0.054144 0.945856 0.040689 \n", - "... ... ... ... ... ... ... ... \n", - "395733 0.018039 0.013417 0.986583 0.022897 0.034085 0.965915 0.026106 \n", - "395734 0.041583 0.030703 0.969297 0.051509 0.077817 0.922183 0.056635 \n", - "395735 0.027671 0.019840 0.980160 0.035789 0.051936 0.948064 0.040801 \n", - "395736 0.023525 0.017225 0.982775 0.029963 0.044256 0.955744 0.034002 \n", - "395737 0.031700 0.023351 0.976649 0.039779 0.059497 0.940503 0.044441 \n", - "\n", - " 0_3_Ft 0_3_St 0_4_ft ... 0_23_Ft_calibrated \\\n", - "0 0.099765 0.900235 0.047347 ... 0.139802 \n", - "1 0.151037 0.848963 0.064484 ... 0.249414 \n", - "2 0.167342 0.832658 0.070809 ... 0.308261 \n", - "3 0.126272 0.873728 0.056177 ... 0.189116 \n", - "4 0.092789 0.907211 0.043434 ... 0.114073 \n", - "... ... ... ... ... ... \n", - "395733 0.058681 0.941319 0.028405 ... 0.048910 \n", - "395734 0.132170 0.867830 0.059054 ... 0.213297 \n", - "395735 0.090415 0.909585 0.044011 ... 0.124349 \n", - "395736 0.076378 0.923622 0.036696 ... 0.081644 \n", - "395737 0.101806 0.898194 0.047178 ... 0.134328 \n", - "\n", - " 0_24_Ft_calibrated 0_25_Ft_calibrated 0_26_Ft_calibrated eid \\\n", - "0 0.146783 0.153930 0.161087 1000018 \n", - "1 0.260941 0.272834 0.283636 1000020 \n", - "2 0.322440 0.337083 0.349919 1000043 \n", - "3 0.198088 0.207313 0.216100 1000079 \n", - "4 0.119544 0.125108 0.130846 1000084 \n", - "... ... ... ... ... \n", - "395733 0.051133 0.053338 0.055936 6024701 \n", - "395734 0.223581 0.234180 0.244097 6024778 \n", - "395735 0.130700 0.137188 0.143797 6024787 \n", - "395736 0.085517 0.089424 0.093668 6024807 \n", - "395737 0.140790 0.147390 0.154029 6025173 \n", - "\n", - " split partition module net \\\n", - "0 train 0 DeepSurvivalMachine StandardMLP \n", - "1 train 0 DeepSurvivalMachine StandardMLP \n", - "2 train 0 DeepSurvivalMachine StandardMLP \n", - "3 train 0 DeepSurvivalMachine StandardMLP \n", - "4 train 0 DeepSurvivalMachine StandardMLP \n", - "... ... ... ... ... \n", - "395733 test 0 DeepSurvivalMachine StandardMLP \n", - "395734 test 0 DeepSurvivalMachine StandardMLP \n", - "395735 test 0 DeepSurvivalMachine StandardMLP \n", - "395736 test 0 DeepSurvivalMachine StandardMLP \n", - "395737 test 0 DeepSurvivalMachine StandardMLP \n", - "\n", - " datamodule \n", - "0 CVDCoreVariablesWithPGSDataModule_210212 \n", - "1 CVDCoreVariablesWithPGSDataModule_210212 \n", - "2 CVDCoreVariablesWithPGSDataModule_210212 \n", - "3 CVDCoreVariablesWithPGSDataModule_210212 \n", - "4 CVDCoreVariablesWithPGSDataModule_210212 \n", - "... ... \n", - "395733 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395734 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395735 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395736 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395737 CVDCoreVariablesWithPGSDataModule_210212 \n", - "\n", - "[395738 rows x 194 columns]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions_df" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAarElEQVR4nO3df4xV533n8fen4G1QEjuA41nCsDtIplIxbuz1LEbySjsNKRC3Ko5kqxO5ZqwgTeqSlSMhdaErLakRUpCaOLJUsyIFGbtpMXKSNfKP9U5wrqqoBoxT1xgTllHM2hOQUTPUYSKZ9ZDv/nGewWemd557mblzh5n7eUlH99zvOc8zzzNX5uPzY+5RRGBmZjae35juAZiZ2bXNQWFmZlkOCjMzy3JQmJlZloPCzMyy5k73ABrtxhtvjI6OjukeRk2/+tWv+PjHPz7dw2iqVptzq80XPOeZ7LXXXvvniPh0tW2zLig6Ojo4duzYdA+jpkqlQldX13QPo6labc6tNl/wnGcySf93vG0+9WRmZlkOCjMzy3JQmJlZVt1BIWmOpH+U9Fx6v0BSn6TT6XV+ad+tkvolnZK0tlS/Q9LxtO0xSUr135T0dKofkdRRatOTfsZpST0NmbWZmdXtao4oHgZOlt5vAQ5FxDLgUHqPpOVAN3ALsA54XNKc1GYX0AssS8u6VN8IXIiIm4FHgZ2prwXANuBOYCWwrRxIZmY29eoKCkntwO8Df10qrwf2pfV9wD2l+v6IuBQRbwP9wEpJi4DrI+KVKL6J8MkxbUb6egZYnY421gJ9ETEYEReAPj4KFzMza4J6b4/9NvBnwCdLtbaIOAcQEeck3ZTqi4HDpf0GUu3DtD62PtLm3dTXsKT3gYXlepU2V0jqpThSoa2tjUqlUue0ps/Q0NCMGGcjtdqcW22+4DnPVjWDQtIfAOcj4jVJXXX0qSq1yNQn2uajQsRuYDdAZ2dnzIR7mmfLvddXo9Xm3GrzBc95tqrn1NNdwB9KOgPsBz4n6W+A99LpJNLr+bT/ALCk1L4dOJvq7VXqo9pImgvcAAxm+jIzsyapGRQRsTUi2iOig+Ii9csR8cfAQWDkLqQe4Nm0fhDoTncyLaW4aH00naa6KGlVuv6wYUybkb7uTT8jgJeANZLmp4vYa1LNbEbq2PL8lcVsppjMV3h8AzggaSPwDnAfQESckHQAeAsYBjZFxOXU5iHgCWAe8GJaAPYAT0nqpziS6E59DUraDrya9nskIgYnMWYzM7tKVxUUEVEBKmn9F8DqcfbbAeyoUj8GrKhS/4AUNFW27QX2Xs04zcyscfyX2WZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaWVTMoJH1M0lFJ/yTphKS/SPWvS/q5pNfTcnepzVZJ/ZJOSVpbqt8h6Xja9lh6djbp+dpPp/oRSR2lNj2STqelBzMza6p6HoV6CfhcRAxJug74saSRZ10/GhF/Wd5Z0nKKZ17fAnwG+KGk30rPzd4F9AKHgReAdRTPzd4IXIiImyV1AzuBP5K0ANgGdAIBvCbpYERcmNy0zcysXjWPKKIwlN5el5bINFkP7I+ISxHxNtAPrJS0CLg+Il6JiACeBO4ptdmX1p8BVqejjbVAX0QMpnDoowgXMzNrkrquUUiaI+l14DzFP9xH0qavSnpD0l5J81NtMfBuqflAqi1O62Pro9pExDDwPrAw05eZmTVJPaeeSKeNbpP0KeAHklZQnEbaTnF0sR34JvBlQNW6yNSZYJsrJPVSnNKira2NSqWSmc21YWhoaEaMs5Fabc7V5rv51uEr67Pxd9FqnzG0xpzrCooREfEvkirAuvK1CUnfAZ5LbweAJaVm7cDZVG+vUi+3GZA0F7gBGEz1rjFtKlXGtRvYDdDZ2RldXV1jd7nmVCoVZsI4G6nV5lxtvg9uef7K+pn7R2+bDVrtM4bWmHM9dz19Oh1JIGke8Hngp+maw4gvAm+m9YNAd7qTaSmwDDgaEeeAi5JWpesPG4BnS21G7mi6F3g5Xcd4CVgjaX46tbUm1czMrEnqOaJYBOyTNIciWA5ExHOSnpJ0G8WpoDPAVwAi4oSkA8BbwDCwKZ26AngIeAKYR3G308jdU3uApyT1UxxJdKe+BiVtB15N+z0SEYMTn66ZmV2tmkEREW8At1epP5BpswPYUaV+DFhRpf4BcN84fe0F9tYap5mZTQ3/ZbaZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsq2ZQSPqYpKOS/knSCUl/keoLJPVJOp1e55fabJXUL+mUpLWl+h2Sjqdtj0lSqv+mpKdT/YikjlKbnvQzTkvqaejszcyspnqOKC4Bn4uIzwK3AeskrQK2AIciYhlwKL1H0nKgG7gFWAc8LmlO6msX0AssS8u6VN8IXIiIm4FHgZ2prwXANuBOYCWwrRxIZmY29WoGRRSG0tvr0hLAemBfqu8D7knr64H9EXEpIt4G+oGVkhYB10fEKxERwJNj2oz09QywOh1trAX6ImIwIi4AfXwULmZm1gRz69kpHRG8BtwM/FVEHJHUFhHnACLinKSb0u6LgcOl5gOp9mFaH1sfafNu6mtY0vvAwnK9Spvy+HopjlRoa2ujUqnUM61pNTQ0NCPG2UitNudq89186/CV9dn4u2i1zxhaY851BUVEXAZuk/Qp4AeSVmR2V7UuMvWJtimPbzewG6CzszO6uroyw7s2VCoVZsI4G6nV5lxtvg9uef7K+pn7R2+bDVrtM4bWmPNV3fUUEf8CVChO/7yXTieRXs+n3QaAJaVm7cDZVG+vUh/VRtJc4AZgMNOXmZk1ST13PX06HUkgaR7weeCnwEFg5C6kHuDZtH4Q6E53Mi2luGh9NJ2muihpVbr+sGFMm5G+7gVeTtcxXgLWSJqfLmKvSTUzM2uSek49LQL2pesUvwEciIjnJL0CHJC0EXgHuA8gIk5IOgC8BQwDm9KpK4CHgCeAecCLaQHYAzwlqZ/iSKI79TUoaTvwatrvkYgYnMyEzczs6tQMioh4A7i9Sv0XwOpx2uwAdlSpHwP+1fWNiPiAFDRVtu0F9tYap5mZTQ3/ZbaZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZdXzzOwlkn4k6aSkE5IeTvWvS/q5pNfTcnepzVZJ/ZJOSVpbqt8h6Xja9lh6djbp+dpPp/oRSR2lNj2STqelBzMza6p6npk9DGyOiJ9I+iTwmqS+tO3RiPjL8s6SllM88/oW4DPADyX9Vnpu9i6gFzgMvACso3hu9kbgQkTcLKkb2An8kaQFwDagE4j0sw9GxIXJTdvMzOpV84giIs5FxE/S+kXgJLA402Q9sD8iLkXE20A/sFLSIuD6iHglIgJ4Erin1GZfWn8GWJ2ONtYCfRExmMKhjyJczMysSeo5orginRK6HTgC3AV8VdIG4BjFUccFihA5XGo2kGofpvWxddLruwARMSzpfWBhuV6lTXlcvRRHKrS1tVGpVK5mWtNiaGhoRoyzkVptztXmu/nW4Svrs/F30WqfMbTGnOsOCkmfAL4HfC0ifilpF7Cd4pTQduCbwJcBVWkemToTbPNRIWI3sBugs7Mzurq6snO5FlQqFWbCOBup1eZcbb4Pbnn+yvqZ+0dvmw1a7TOG1phzXXc9SbqOIiS+GxHfB4iI9yLickT8GvgOsDLtPgAsKTVvB86menuV+qg2kuYCNwCDmb7MzKxJ6rnrScAe4GREfKtUX1Ta7YvAm2n9INCd7mRaCiwDjkbEOeCipFWpzw3As6U2I3c03Qu8nK5jvASskTRf0nxgTaqZmVmT1HPq6S7gAeC4pNdT7c+BL0m6jeJU0BngKwARcULSAeAtijumNqU7ngAeAp4A5lHc7fRiqu8BnpLUT3Ek0Z36GpS0HXg17fdIRAxOZKJmZjYxNYMiIn5M9WsFL2Ta7AB2VKkfA1ZUqX8A3DdOX3uBvbXGaWZmU8N/mW1mZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7MsB4WZmWU5KMzMLMtBYWZmWfU8M3uJpB9JOinphKSHU32BpD5Jp9Pr/FKbrZL6JZ2StLZUv0PS8bTtsfTsbNLztZ9O9SOSOkptetLPOC2pBzMza6p6jiiGgc0R8dvAKmCTpOXAFuBQRCwDDqX3pG3dwC3AOuBxSXNSX7uAXmBZWtal+kbgQkTcDDwK7Ex9LQC2AXcCK4Ft5UAyM7OpVzMoIuJcRPwkrV8ETgKLgfXAvrTbPuCetL4e2B8RlyLibaAfWClpEXB9RLwSEQE8OabNSF/PAKvT0cZaoC8iBiPiAtDHR+FiZmZNMPdqdk6nhG4HjgBtEXEOijCRdFPabTFwuNRsINU+TOtj6yNt3k19DUt6H1hYrldpUx5XL8WRCm1tbVQqlauZ1rQYGhqaEeNspFabc7X5br51+Mr6bPxdtNpnDK0x57qDQtIngO8BX4uIX6bLC1V3rVKLTH2ibT4qROwGdgN0dnZGV1fXeGO7ZlQqFWbCOBup1eZcbb4Pbnn+yvqZ+0dvmw1a7TOG1phzXXc9SbqOIiS+GxHfT+X30ukk0uv5VB8AlpSatwNnU729Sn1UG0lzgRuAwUxfZmbWJPXc9SRgD3AyIr5V2nQQGLkLqQd4tlTvTncyLaW4aH00naa6KGlV6nPDmDYjfd0LvJyuY7wErJE0P13EXpNqZmbWJPWceroLeAA4Lun1VPtz4BvAAUkbgXeA+wAi4oSkA8BbFHdMbYqIy6ndQ8ATwDzgxbRAEURPSeqnOJLoTn0NStoOvJr2eyQiBic2VTMzm4iaQRERP6b6tQKA1eO02QHsqFI/BqyoUv+AFDRVtu0F9tYap5mZTQ3/ZbaZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZdXzzOy9ks5LerNU+7qkn0t6PS13l7ZtldQv6ZSktaX6HZKOp22Ppedmk56t/XSqH5HUUWrTI+l0WkaeqW1mZk1UzxHFE8C6KvVHI+K2tLwAIGk5xfOub0ltHpc0J+2/C+gFlqVlpM+NwIWIuBl4FNiZ+loAbAPuBFYC2yTNv+oZmpnZpNQMioj4e2Cwzv7WA/sj4lJEvA30AyslLQKuj4hXIiKAJ4F7Sm32pfVngNXpaGMt0BcRgxFxAeijemCZmdkUmjuJtl+VtAE4BmxO/5gvBg6X9hlItQ/T+tg66fVdgIgYlvQ+sLBcr9JmFEm9FEcrtLW1UalUJjGt5hgaGpoR42ykVptztfluvnX4yvps/F202mcMrTHniQbFLmA7EOn1m8CXAVXZNzJ1JthmdDFiN7AboLOzM7q6ujJDvzZUKhVmwjgbqdXmXG2+D255/sr6mftHb5sNWu0zhtaY84TueoqI9yLickT8GvgOxTUEKP6vf0lp13bgbKq3V6mPaiNpLnADxamu8foyM7MmmlBQpGsOI74IjNwRdRDoTncyLaW4aH00Is4BFyWtStcfNgDPltqM3NF0L/Byuo7xErBG0vx0EXtNqpmZWRPVPPUk6e+ALuBGSQMUdyJ1SbqN4lTQGeArABFxQtIB4C1gGNgUEZdTVw9R3EE1D3gxLQB7gKck9VMcSXSnvgYlbQdeTfs9EhH1XlQ3M7MGqRkUEfGlKuU9mf13ADuq1I8BK6rUPwDuG6evvcDeWmM0M7Op47/MNjOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7OsmkEhaa+k85LeLNUWSOqTdDq9zi9t2yqpX9IpSWtL9TskHU/bHkvPziY9X/vpVD8iqaPUpif9jNOSRp6rbWZmTVTPEcUTwLoxtS3AoYhYBhxK75G0nOKZ17ekNo9LmpPa7AJ6gWVpGelzI3AhIm4GHgV2pr4WUDyf+05gJbCtHEhmZtYcNYMiIv4eGBxTXg/sS+v7gHtK9f0RcSki3gb6gZWSFgHXR8QrERHAk2PajPT1DLA6HW2sBfoiYjAiLgB9/OvAMjOzKTZ3gu3aIuIcQESck3RTqi8GDpf2G0i1D9P62PpIm3dTX8OS3gcWlutV2owiqZfiaIW2tjYqlcoEp9U8Q0NDM2KcjdRqc6423823Dl9Zn42/i1b7jKE15jzRoBiPqtQiU59om9HFiN3AboDOzs7o6uqqOdDpVqlUmAnjbKRWm3O1+T645fkr62fuH71tNmi1zxhaY84TvevpvXQ6ifR6PtUHgCWl/dqBs6neXqU+qo2kucANFKe6xuvLzMyaaKJBcRAYuQupB3i2VO9OdzItpbhofTSdprooaVW6/rBhTJuRvu4FXk7XMV4C1kiany5ir0k1MzNropqnniT9HdAF3ChpgOJOpG8AByRtBN4B7gOIiBOSDgBvAcPApoi4nLp6iOIOqnnAi2kB2AM8Jamf4kiiO/U1KGk78Gra75GIGHtR3czMpljNoIiIL42zafU4++8AdlSpHwNWVKl/QAqaKtv2AntrjdHMzKaO/zLbzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7MsB4WZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLImFRSSzkg6Lul1ScdSbYGkPkmn0+v80v5bJfVLOiVpbal+R+qnX9Jj6bnapGdvP53qRyR1TGa8ZmZ29RpxRPG7EXFbRHSm91uAQxGxDDiU3iNpOcXzsG8B1gGPS5qT2uwCeoFlaVmX6huBCxFxM/AosLMB4zUzs6swFaee1gP70vo+4J5SfX9EXIqIt4F+YKWkRcD1EfFKRATw5Jg2I309A6weOdowM7PmmGxQBPC/Jb0mqTfV2iLiHEB6vSnVFwPvltoOpNritD62PqpNRAwD7wMLJzlmMzO7CnMn2f6uiDgr6SagT9JPM/tWOxKITD3XZnTHRUj1ArS1tVGpVLKDvhYMDQ3NiHE2UqvNudp8N986fGV9Nv4uWu0zhtaY86SCIiLOptfzkn4ArATek7QoIs6l00rn0+4DwJJS83bgbKq3V6mX2wxImgvcAAxWGcduYDdAZ2dndHV1TWZaTVGpVJgJ42ykVptztfk+uOX5K+tn7h+9bTZotc8YWmPOEz71JOnjkj45sg6sAd4EDgI9abce4Nm0fhDoTncyLaW4aH00nZ66KGlVuv6wYUybkb7uBV5O1zHMzKxJJnNE0Qb8IF1bngv8bUT8L0mvAgckbQTeAe4DiIgTkg4AbwHDwKaIuJz6egh4ApgHvJgWgD3AU5L6KY4kuicxXjMzm4AJB0VE/Az4bJX6L4DV47TZAeyoUj8GrKhS/4AUNGZmNj38l9lmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7MsB4WZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzrBkRFJLWSTolqV/Slukej5lZK7nmg0LSHOCvgC8Ay4EvSVo+vaMyM2sd13xQACuB/oj4WUT8P2A/sH6ax2Rm1jLmTvcA6rAYeLf0fgC4s7yDpF6gN70dknSqSWObjBuBf57uQTRZq805O1/tbOJImqfVPmOYPXP+9+NtmAlBoSq1GPUmYjewuznDaQxJxyKic7rH0UytNudWmy94zrPVTDj1NAAsKb1vB85O01jMzFrOTAiKV4FlkpZK+jdAN3BwmsdkZtYyrvlTTxExLOmrwEvAHGBvRJyY5mE1wow6VdYgrTbnVpsveM6zkiKi9l5mZtayZsKpJzMzm0YOCjMzy3JQNImkBZL6JJ1Or/Mz+86R9I+SnmvmGBupnvlKWiLpR5JOSjoh6eHpGOtk1fqKGRUeS9vfkPQfpmOcjVTHnO9Pc31D0j9I+ux0jLOR6v0qIUn/UdJlSfc2c3xTyUHRPFuAQxGxDDiU3o/nYeBkU0Y1deqZ7zCwOSJ+G1gFbJppX89S51fMfAFYlpZeYFdTB9lgdc75beA/R8TvANuZ4Rd86/0qobTfToqbb2YNB0XzrAf2pfV9wD3VdpLUDvw+8NfNGdaUqTnfiDgXET9J6xcpwnFxswbYIPV8xcx64MkoHAY+JWlRswfaQDXnHBH/EBEX0tvDFH//NJPV+1VC/wX4HnC+mYObag6K5mmLiHNQ/AMJ3DTOft8G/gz4dZPGNVXqnS8AkjqA24EjUz+0hqr2FTNjw66efWaSq53PRuDFKR3R1Ks5Z0mLgS8C/6OJ42qKa/7vKGYSST8E/m2VTf+tzvZ/AJyPiNckdTVwaFNisvMt9fMJiv8L+1pE/LIRY2uiml8xU+c+M0nd85H0uxRB8Z+mdERTr545fxv4rxFxWaq2+8zloGigiPj8eNskvSdpUUScS6cdqh2a3gX8oaS7gY8B10v6m4j44yka8qQ0YL5Iuo4iJL4bEd+foqFOpXq+Yma2fQ1NXfOR9DsUp1C/EBG/aNLYpko9c+4E9qeQuBG4W9JwRPzPpoxwCvnUU/McBHrSeg/w7NgdImJrRLRHRAfFV5W8fK2GRB1qzlfFf1F7gJMR8a0mjq2R6vmKmYPAhnT30yrg/ZHTcjNUzTlL+nfA94EHIuL/TMMYG63mnCNiaUR0pP9+nwH+dDaEBDgomukbwO9JOg38XnqPpM9IemFaRzY16pnvXcADwOckvZ6Wu6dnuBMTEcPAyFfMnAQORMQJSX8i6U/Sbi8APwP6ge8Afzotg22QOuf834GFwOPpcz02TcNtiDrnPGv5KzzMzCzLRxRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWdb/B7FktUWIDAIkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAS4ElEQVR4nO3db4xc1XnH8e9TOxCCY2NCs7VsK0uKlZQ/aoK34DZNZMu0OIBiKoHkihRTWbKCSEKqRMrSvkjeWDWVGhSaguTGFeaPsjhOKqxaboMM+6ISmGBCYoxLWIJLFhy7BPPHUSExffpizrrjzezs7O7Mztzw/UijuXPuOXefuTre3957Z64jM5Ek6be6XYAkqTcYCJIkwECQJBUGgiQJMBAkScXcbhcwXeecc0729/e33P8Xv/gFZ555ZucKarMq1VulWsF6O61K9VapVmhPvfv27Xs5M3+74crMrORj+fLlORUPP/zwlPp3W5XqrVKtmdbbaVWqt0q1ZranXuDxnOD3qqeMJEmA1xAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAmo8K0rZqJ/cNfJ5UObr+xiJZLUOzxCkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpaCkQIuKvIuJARDwVEd+KiHdHxNkR8WBEPFueF9b1vyUiRiLimYi4vK59eUTsL+tuj4go7adHxP2lfW9E9Lf9nUqSmpo0ECJiMfB5YCAzLwTmAOuAQWBPZi4D9pTXRMT5Zf0FwBrgjoiYUzZ3J7ARWFYea0r7BuBYZp4H3Abc2pZ3J0lqWaunjOYCZ0TEXOA9wEvAWmBbWb8NuLosrwWGMvOtzHweGAEuiYhFwPzMfCQzE7h73Jixbe0AVo8dPUiSZkfUfjdP0iniZmAT8D/A9zLzuoh4NTPPqutzLDMXRsQ3gEcz897SvhXYDRwCNmfmZaX948CXM/OqiHgKWJOZo2Xdc8ClmfnyuDo2UjvCoK+vb/nQ0FDLb/T48ePMmzcPgP0vvnay/aLFC1rexmyqr7fXValWsN5Oq1K9VaoV2lPvqlWr9mXmQKN1k97+ulwbWAucC7wKfDsiPt1sSIO2bNLebMypDZlbgC0AAwMDuXLlyiZlnGp4eJix/jfU3/76uta3MZvq6+11VaoVrLfTqlRvlWqFztfbyimjy4DnM/O/M/NXwHeBPwKOlNNAlOejpf8osLRu/BJqp5hGy/L49lPGlNNSC4BXpvOGJEnT00ogvACsiIj3lPP6q4GDwE5gfemzHnigLO8E1pVPDp1L7eLxY5l5GHgjIlaU7Vw/bszYtq4BHspWzmVJktpm0lNGmbk3InYATwAngB9QO20zD9geERuohca1pf+BiNgOPF3635SZb5fN3QjcBZxB7brC7tK+FbgnIkaoHRmsa8u7kyS1rKX/QjMzvwJ8ZVzzW9SOFhr130TtIvT49seBCxu0v0kJFElSd/hNZUkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkATC32wV0W//grpPLhzZf2cVKJKm7PEKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBLQZCRJwVETsi4j8j4mBE/GFEnB0RD0bEs+V5YV3/WyJiJCKeiYjL69qXR8T+su72iIjSfnpE3F/a90ZEf9vfqSSpqVaPEL4O/Ftmfhj4feAgMAjsycxlwJ7ymog4H1gHXACsAe6IiDllO3cCG4Fl5bGmtG8AjmXmecBtwK0zfF+SpCmaNBAiYj7wCWArQGb+MjNfBdYC20q3bcDVZXktMJSZb2Xm88AIcElELALmZ+YjmZnA3ePGjG1rB7B67OhBkjQ7ova7uUmHiI8AW4CnqR0d7ANuBl7MzLPq+h3LzIUR8Q3g0cy8t7RvBXYDh4DNmXlZaf848OXMvCoingLWZOZoWfcccGlmvjyulo3UjjDo6+tbPjQ01PIbPX78OPPmzQNg/4uvNexz0eIFLW+v0+rr7XVVqhWst9OqVG+VaoX21Ltq1ap9mTnQaN3cFsbPBS4GPpeZeyPi65TTQxNo9Jd9NmlvNubUhswt1MKJgYGBXLlyZZMyTjU8PMxY/xsGdzXsc+i61rfXafX19roq1QrW22lVqrdKtULn623lGsIoMJqZe8vrHdQC4kg5DUR5PlrXf2nd+CXAS6V9SYP2U8ZExFxgAfDKVN+MJGn6Jg2EzPwZ8NOI+FBpWk3t9NFOYH1pWw88UJZ3AuvKJ4fOpXbx+LHMPAy8EREryvWB68eNGdvWNcBDOdm5LElSW7Vyygjgc8B9EXEa8BPgL6mFyfaI2AC8AFwLkJkHImI7tdA4AdyUmW+X7dwI3AWcQe26wu7SvhW4JyJGqB0ZrJvh+5IkTVFLgZCZTwKNLkKsnqD/JmBTg/bHgQsbtL9JCRRJUnf4TWVJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkYm63C+gl/YO7Ti4f2nxlFyuRpNnnEYIkCTAQJEmFgSBJAgwESVJhIEiSAANBklQYCJIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJRcuBEBFzIuIHEfGv5fXZEfFgRDxbnhfW9b0lIkYi4pmIuLyufXlE7C/rbo+IKO2nR8T9pX1vRPS38T1KklowlSOEm4GDda8HgT2ZuQzYU14TEecD64ALgDXAHRExp4y5E9gILCuPNaV9A3AsM88DbgNunda7kSRNW0uBEBFLgCuBb9Y1rwW2leVtwNV17UOZ+VZmPg+MAJdExCJgfmY+kpkJ3D1uzNi2dgCrx44eJEmzI2q/myfpFLED+FvgvcCXMvOqiHg1M8+q63MsMxdGxDeARzPz3tK+FdgNHAI2Z+Zlpf3jwJfLtp4C1mTmaFn3HHBpZr48ro6N1I4w6OvrWz40NNTyGz1+/Djz5s0DYP+Lr03a/6LFC1redifU19vrqlQrWG+nVaneKtUK7al31apV+zJzoNG6uZMNjoirgKOZuS8iVrbw8xr9ZZ9N2puNObUhcwuwBWBgYCBXrmylnJrh4WHG+t8wuGvS/oeua33bnVBfb6+rUq1gvZ1WpXqrVCt0vt5JAwH4GPCpiLgCeDcwPyLuBY5ExKLMPFxOBx0t/UeBpXXjlwAvlfYlDdrrx4xGxFxgAfDKNN+TJGkaJr2GkJm3ZOaSzOyndrH4ocz8NLATWF+6rQceKMs7gXXlk0PnUrt4/FhmHgbeiIgV5frA9ePGjG3rmvIzJj+X1UH9g7tOPiTpnaCVI4SJbAa2R8QG4AXgWoDMPBAR24GngRPATZn5dhlzI3AXcAa16wq7S/tW4J6IGKF2ZLBuBnVJkqZhSoGQmcPAcFn+ObB6gn6bgE0N2h8HLmzQ/iYlUCRJ3eE3lSVJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEz+w9y3jHG/69phzZf2aVKJKlzPEKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgpvfz0N9bfD9lbYkn5TeIQgSQIMBElSYSBIkgADQZJUGAiSJMBAkCQVBoIkCTAQJEnFpIEQEUsj4uGIOBgRByLi5tJ+dkQ8GBHPlueFdWNuiYiRiHgmIi6va18eEfvLutsjIkr76RFxf2nfGxH9HXivkqQmWjlCOAF8MTN/D1gB3BQR5wODwJ7MXAbsKa8p69YBFwBrgDsiYk7Z1p3ARmBZeawp7RuAY5l5HnAbcGsb3pskaQomDYTMPJyZT5TlN4CDwGJgLbCtdNsGXF2W1wJDmflWZj4PjACXRMQiYH5mPpKZCdw9bszYtnYAq8eOHiRJs2NK1xDKqZyPAnuBvsw8DLXQAN5fui0Gflo3bLS0LS7L49tPGZOZJ4DXgPdNpTZJ0sy0fHO7iJgHfAf4Qma+3uQP+EYrskl7szHja9hI7ZQTfX19DA8PT1L1/zt+/PjJ/l+86ETL4ybzD/c9cHL5osUL2rbd+np7XZVqBevttCrVW6VaofP1thQIEfEuamFwX2Z+tzQfiYhFmXm4nA46WtpHgaV1w5cAL5X2JQ3a68eMRsRcYAHwyvg6MnMLsAVgYGAgV65c2Ur5AAwPDzPW/4a6u5W206HrWq9nMvX19roq1QrW22lVqrdKtULn623lU0YBbAUOZubX6lbtBNaX5fXAA3Xt68onh86ldvH4sXJa6Y2IWFG2ef24MWPbugZ4qFxnkCTNklaOED4G/AWwPyKeLG1/DWwGtkfEBuAF4FqAzDwQEduBp6l9QummzHy7jLsRuAs4A9hdHlALnHsiYoTakcG6mb0tSdJUTRoImfkfND7HD7B6gjGbgE0N2h8HLmzQ/iYlUCRJ3eE3lSVJgIEgSSoMBEkSYCBIkgoDQZIETOGbyppcf90X3g5tvrKLlUjS1HmEIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAnwewgd43cSJFWNRwiSJMBAkCQVBoIkCTAQJEmFgSBJAgwESVLhx05ngR9BlVQFHiFIkgADQZJUGAiSJMBrCLPO6wmSepVHCJIkwECQJBUGgiQJ8BpCV3k9QVIv8QhBkgQYCJKkwkCQJAFeQ+gZXk+Q1G0eIUiSAAOhJ/UP7mL/i6+dctQgSZ1mIEiSAK8h9DyvLUiaLQZChRgOkjrJQKgow0FSuxkIvwEMB0nt0DOBEBFrgK8Dc4BvZubmLpdUSRN9MsmgkDSZngiEiJgD/CPwJ8Ao8P2I2JmZT3e3st8crXyE1dCQ3tl6IhCAS4CRzPwJQEQMAWsBA2EWTfd7D1+86AQ3TGOsAST1ll4JhMXAT+tejwKXju8UERuBjeXl8Yh4Zgo/4xzg5WlXOMs+X6F6p1tr3NqBYlpTmX1bWG/nVKlWaE+9H5hoRa8EQjRoy19ryNwCbJnWD4h4PDMHpjO2G6pUb5VqBevttCrVW6VaofP19so3lUeBpXWvlwAvdakWSXpH6pVA+D6wLCLOjYjTgHXAzi7XJEnvKD1xyigzT0TEZ4F/p/ax03/OzANt/jHTOtXURVWqt0q1gvV2WpXqrVKt0OF6I/PXTtVLkt6BeuWUkSSpywwESRJQ0UCIiDUR8UxEjETEYIP1ERG3l/U/ioiLJxsbEWdHxIMR8Wx5XtjteiNiaUQ8HBEHI+JARNxcN+arEfFiRDxZHld0u96y7lBE7C81PV7X3pH9O4N9+6G6ffdkRLweEV8o67q5bz8cEY9ExFsR8aVWxnZ57jast4fnbrP922tzd6J927m5m5mVelC76Pwc8EHgNOCHwPnj+lwB7Kb2/YYVwN7JxgJ/BwyW5UHg1h6odxFwcVl+L/Djunq/Cnypl/ZvWXcIOKfBdtu+f2da67jt/Az4QA/s2/cDfwBsqq+hh+fuRPX26txtWG+Pzt0Ja+3U3K3iEcLJ21xk5i+Bsdtc1FsL3J01jwJnRcSiScauBbaV5W3A1d2uNzMPZ+YTAJn5BnCQ2re6O2km+7eZTuzfdtW6GnguM/+rDTXNqN7MPJqZ3wd+NYWxXZu7E9Xbq3O3yf5tpitzt8Va2zp3qxgIjW5zMX6iTdSn2di+zDwMtclMLZ27Xe9JEdEPfBTYW9f82XIa5J/beJpgpvUm8L2I2Be1W42M6cT+bcu+pfa9l2+Na+vWvp3O2G7O3Un12NxtptfmbivaOnerGAit3OZioj4t3SKjzWZSb21lxDzgO8AXMvP10nwn8LvAR4DDwN/PuNIWammhz8cy82Lgk8BNEfGJNtXVSDv27WnAp4Bv163v5r7txNjpmvHP7MG520yvzd3mG+jA3K1iILRym4uJ+jQbe2TsVEJ5PtoD9RIR76L2D+q+zPzuWIfMPJKZb2fm/wL/RO0QtOv1ZubY81HgX+rq6sT+nVGtxSeBJzLzyFhDl/ftdMZ2c+5OqEfn7oR6cO5Opu1zt4qB0MptLnYC10fNCuC1cqjXbOxOYH1ZXg880O16IyKArcDBzPxa/YBx58H/DHiqB+o9MyLeW+o7E/jTuro6sX9nMhfG/DnjDrm7vG+nM7abc7ehHp67E9Xbi3N3Mu2fu9O9Gt3NB7VPjvyY2lX6vyltnwE+U5aD2n+48xywHxhoNra0vw/YAzxbns/udr3AH1M7jPwR8GR5XFHW3VP6/ojaRFrUA/V+kNqnJX4IHJiN/TvDufAe4OfAgnHb7Oa+/R1qfz2+Drxaluf38NxtWG8Pz92J6u3FudtsLnRk7nrrCkkSUM1TRpKkDjAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKk4v8ACUL+yBgZk5MAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW4UlEQVR4nO3db4ydZXrf8e8vdpbQ7cLyJ0wtTGsirKT86W7ClNJsVU3qpjhLFfMCpIloMZUlN4imG4moMu2Lti8swZvSRQqo1pJiSBqwaBFWViRBJkdRtWDWpOw6hqXMLg5M7eKysCyzEYRBV1+ce9jjYTxz5v+Mz/cjHZ3nXOe+n3kun11+cz/POWdSVUiS9BOrfQCSpLXBQJAkAQaCJKkxECRJgIEgSWo2rvYBLNTFF19cW7Zs6Xv8j370Iz772c8u3wGtUYPY9yD2DIPZ9yD2DIvr+8UXX3y7qn56pufWbSBs2bKFI0eO9D2+0+kwMjKyfAe0Rg1i34PYMwxm34PYMyyu7yR/cabnPGUkSQIMBElSYyBIkgADQZLUzBkISX42yUs9tx8m+c0kFyZ5Jslr7f6Cnjl3JxlL8mqSG3rq1yY52p67P0la/Zwkj7f64SRblqVbSdIZzRkIVfVqVX2xqr4IXAv8JfAksAc4VFVbgUPtMUmuBEaBq4DtwANJNrTdPQjsBra22/ZW3wW8W1VXAPcB9y5Jd5Kkvs33lNE24LtV9RfADmB/q+8HbmrbO4DHqurDqnodGAOuS7IJOK+qnqvuV6w+Mm3O1L6eALZNrR4kSStjvp9DGAV+v20PVdVJgKo6meSSVr8UeL5nznirfdS2p9en5rzZ9jWZ5D3gIuDt3h+eZDfdFQZDQ0N0Op2+D3xiYmJe488Wg9j3IPYMg9n3IPYMy9d334GQ5DPArwJ3zzV0hlrNUp9tzumFqn3APoDh4eGazwcz/ADL4BjEnmEw+x7EnmH5+p7PCuFXgD+rqrfa47eSbGqrg03AqVYfBy7rmbcZONHqm2eo984ZT7IROB94Z16dzMOWPV//ZPv4PTcu14+RpHVlPtcQfo0fny4COAjsbNs7gad66qPtnUOX0714/EI7vfR+kuvb9YHbps2Z2tfNwLPln3KTpBXV1wohyV8Dfhn4lz3le4ADSXYBbwC3AFTVsSQHgJeBSeDOqvq4zbkDeBg4F3i63QAeAh5NMkZ3ZTC6iJ4kSQvQVyBU1V/SvcjbW/s+3XcdzTR+L7B3hvoR4OoZ6h/QAkWStDr8pLIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDXz/bbTs47fayRJXa4QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJKavgIhyeeTPJHkO0leSfL3k1yY5Jkkr7X7C3rG351kLMmrSW7oqV+b5Gh77v4kafVzkjze6oeTbFnyTiVJs+p3hfBV4A+r6ueALwCvAHuAQ1W1FTjUHpPkSmAUuArYDjyQZEPbz4PAbmBru21v9V3Au1V1BXAfcO8i+5IkzdOcgZDkPOAfAg8BVNVfVdUPgB3A/jZsP3BT294BPFZVH1bV68AYcF2STcB5VfVcVRXwyLQ5U/t6Atg2tXqQJK2Mfv4ews8A/w/4r0m+ALwIfAUYqqqTAFV1MsklbfylwPM988db7aO2Pb0+NefNtq/JJO8BFwFv9x5Ikt10VxgMDQ3R6XT66xKYmJj4ZPxd10zOOGY++1svevseFIPYMwxm34PYMyxf3/0EwkbgF4DfqKrDSb5KOz10BjP9Zl+z1Gebc3qhah+wD2B4eLhGRkZmOYzTdTodpsbf3vNHcXodv7X//a0XvX0PikHsGQaz70HsGZav736uIYwD41V1uD1+gm5AvNVOA9HuT/WMv6xn/mbgRKtvnqF+2pwkG4HzgXfm24wkaeHmDISq+r/Am0l+tpW2AS8DB4GdrbYTeKptHwRG2zuHLqd78fiFdnrp/STXt+sDt02bM7Wvm4Fn23UGSdIK6fdvKv8G8HtJPgN8D/gXdMPkQJJdwBvALQBVdSzJAbqhMQncWVUft/3cATwMnAs83W7QvWD9aJIxuiuD0UX2JUmap74CoapeAoZneGrbGcbvBfbOUD8CXD1D/QNaoEiSVoefVJYkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEtBnICQ5nuRokpeSHGm1C5M8k+S1dn9Bz/i7k4wleTXJDT31a9t+xpLcnyStfk6Sx1v9cJItS9ynJGkO81kh/FJVfbGqhtvjPcChqtoKHGqPSXIlMApcBWwHHkiyoc15ENgNbG237a2+C3i3qq4A7gPuXXhLkqSFWMwpox3A/ra9H7ipp/5YVX1YVa8DY8B1STYB51XVc1VVwCPT5kzt6wlg29TqQZK0Mjb2Oa6AP05SwH+pqn3AUFWdBKiqk0kuaWMvBZ7vmTveah+17en1qTlvtn1NJnkPuAh4u/cgkuymu8JgaGiITqfT5+HDxMTEJ+PvumZyxjHz2d960dv3oBjEnmEw+x7EnmH5+u43EL5UVSfaf/SfSfKdWcbO9Jt9zVKfbc7phW4Q7QMYHh6ukZGRWQ+6V6fTYWr87Xu+PuOY47f2v7/1orfvQTGIPcNg9j2IPcPy9d3XKaOqOtHuTwFPAtcBb7XTQLT7U234OHBZz/TNwIlW3zxD/bQ5STYC5wPvzL8dSdJCzRkIST6b5HNT28A/Af4cOAjsbMN2Ak+17YPAaHvn0OV0Lx6/0E4vvZ/k+nZ94LZpc6b2dTPwbLvOIElaIf2cMhoCnmzXeDcC/62q/jDJN4EDSXYBbwC3AFTVsSQHgJeBSeDOqvq47esO4GHgXODpdgN4CHg0yRjdlcHoEvQmSZqHOQOhqr4HfGGG+veBbWeYsxfYO0P9CHD1DPUPaIEiSVodflJZkgQYCJKkpt+3nQ6ELT1vRz1+z42reCSStPJcIUiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkoB5BEKSDUn+V5I/aI8vTPJMktfa/QU9Y+9OMpbk1SQ39NSvTXK0PXd/krT6OUkeb/XDSbYsYY+SpD7MZ4XwFeCVnsd7gENVtRU41B6T5EpgFLgK2A48kGRDm/MgsBvY2m7bW30X8G5VXQHcB9y7oG4kSQvWVyAk2QzcCHytp7wD2N+29wM39dQfq6oPq+p1YAy4Lskm4Lyqeq6qCnhk2pypfT0BbJtaPUiSVsbGPsf9Z+DfAJ/rqQ1V1UmAqjqZ5JJWvxR4vmfceKt91Lan16fmvNn2NZnkPeAi4O3eg0iym+4Kg6GhITqdTp+HDxMTE5+Mv+uayTnHz2ffa1lv34NiEHuGwex7EHuG5et7zkBI8k+BU1X1YpKRPvY502/2NUt9tjmnF6r2AfsAhoeHa2Skn8Pp6nQ6TI2/fc/X5xx//Nb+972W9fY9KAaxZxjMvgexZ1i+vvtZIXwJ+NUkXwZ+Cjgvye8CbyXZ1FYHm4BTbfw4cFnP/M3AiVbfPEO9d854ko3A+cA7C+xJkrQAc15DqKq7q2pzVW2he7H42ar6Z8BBYGcbthN4qm0fBEbbO4cup3vx+IV2eun9JNe36wO3TZszta+b28/41ApBkrR8+r2GMJN7gANJdgFvALcAVNWxJAeAl4FJ4M6q+rjNuQN4GDgXeLrdAB4CHk0yRndlMLqI45IkLcC8AqGqOkCnbX8f2HaGcXuBvTPUjwBXz1D/gBYokqTV4SeVJUnA4k4ZndW29LwT6fg9N67ikUjSynCFIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLjn9DsQ++f0wT/pKaks9OcK4QkP5XkhSTfSnIsyX9s9QuTPJPktXZ/Qc+cu5OMJXk1yQ099WuTHG3P3Z8krX5Oksdb/XCSLcvQqyRpFv2cMvoQ+EdV9QXgi8D2JNcDe4BDVbUVONQek+RKYBS4CtgOPJBkQ9vXg8BuYGu7bW/1XcC7VXUFcB9w7+JbkyTNx5yBUF0T7eFPtlsBO4D9rb4fuKlt7wAeq6oPq+p1YAy4Lskm4Lyqeq6qCnhk2pypfT0BbJtaPUiSVkZf1xDab/gvAlcAv11Vh5MMVdVJgKo6meSSNvxS4Pme6eOt9lHbnl6fmvNm29dkkveAi4C3px3HbrorDIaGhuh0On22CRMTE5+Mv+uayb7nzWQ+P3e19fY9KAaxZxjMvgexZ1i+vvsKhKr6GPhiks8DTya5epbhM/1mX7PUZ5sz/Tj2AfsAhoeHa2RkZJbDOF2n02Fq/O3TLhLP1/Fb+/+5q62370ExiD3DYPY9iD3D8vU9r7edVtUPgA7dc/9vtdNAtPtTbdg4cFnPtM3AiVbfPEP9tDlJNgLnA+/M59gkSYvTz7uMfrqtDEhyLvCPge8AB4GdbdhO4Km2fRAYbe8cupzuxeMX2uml95Nc364P3DZtztS+bgaebdcZJEkrpJ9TRpuA/e06wk8AB6rqD5I8BxxIsgt4A7gFoKqOJTkAvAxMAne2U04AdwAPA+cCT7cbwEPAo0nG6K4MRpeiOUlS/+YMhKr6NvDzM9S/D2w7w5y9wN4Z6keAT11/qKoPaIEiSVodfnWFJAkwECRJjYEgSQIMBElSYyBIkgADQZLU+PcQFqD37yP4txEknS1cIUiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNX653SL5RXeSzhauECRJQB+BkOSyJH+S5JUkx5J8pdUvTPJMktfa/QU9c+5OMpbk1SQ39NSvTXK0PXd/krT6OUkeb/XDSbYsQ6+SpFn0s0KYBO6qqr8NXA/cmeRKYA9wqKq2AofaY9pzo8BVwHbggSQb2r4eBHYDW9tte6vvAt6tqiuA+4B7l6A3SdI8zBkIVXWyqv6sbb8PvAJcCuwA9rdh+4Gb2vYO4LGq+rCqXgfGgOuSbALOq6rnqqqAR6bNmdrXE8C2qdWDJGllzOuicjuV8/PAYWCoqk5CNzSSXNKGXQo83zNtvNU+atvT61Nz3mz7mkzyHnAR8Pa0n7+b7gqDoaEhOp1O38c+MTHxyfi7rpnse958zOd4Vkpv34NiEHuGwex7EHuG5eu770BI8teB/w78ZlX9cJZf4Gd6omapzzbn9ELVPmAfwPDwcI2MjMxx1D/W6XSYGn97zzuDltLxW/s/npXS2/egGMSeYTD7HsSeYfn67utdRkl+km4Y/F5V/Y9WfqudBqLdn2r1ceCynumbgROtvnmG+mlzkmwEzgfemW8zkqSF6+ddRgEeAl6pqv/U89RBYGfb3gk81VMfbe8cupzuxeMX2uml95Nc3/Z527Q5U/u6GXi2XWeQJK2Qfk4ZfQn458DRJC+12r8F7gEOJNkFvAHcAlBVx5IcAF6m+w6lO6vq4zbvDuBh4Fzg6XaDbuA8mmSM7spgdHFtSZLma85AqKr/yczn+AG2nWHOXmDvDPUjwNUz1D+gBYokaXX4SWVJEuB3GS0pv9dI0nrmCkGSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIE+EnlZeOnliWtN64QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAF+DmFF+JkESeuBKwRJEtBHICT5nSSnkvx5T+3CJM8kea3dX9Dz3N1JxpK8muSGnvq1SY625+5PklY/J8njrX44yZYl7lGS1Id+VggPA9un1fYAh6pqK3CoPSbJlcAocFWb80CSDW3Og8BuYGu7Te1zF/BuVV0B3Afcu9BmJEkLN2cgVNWfAu9MK+8A9rft/cBNPfXHqurDqnodGAOuS7IJOK+qnquqAh6ZNmdqX08A26ZWD5KklbPQi8pDVXUSoKpOJrmk1S8Fnu8ZN95qH7Xt6fWpOW+2fU0meQ+4CHh7+g9NspvuKoOhoSE6nU7fBzwxMfHJ+Luumex73lKbzzEvhd6+B8Ug9gyD2fcg9gzL1/dSv8topt/sa5b6bHM+XazaB+wDGB4erpGRkb4PrNPpMDX+9p53/ay4oz/6ZHMl3nHU2/egGMSeYTD7HsSeYfn6Xui7jN5qp4Fo96dafRy4rGfcZuBEq2+eoX7anCQbgfP59CkqSdIyW2ggHAR2tu2dwFM99dH2zqHL6V48fqGdXno/yfXt+sBt0+ZM7etm4Nl2nUGStILmPGWU5PeBEeDiJOPAvwfuAQ4k2QW8AdwCUFXHkhwAXgYmgTur6uO2qzvovmPpXODpdgN4CHg0yRjdlcHoknQmSZqXOQOhqn7tDE9tO8P4vcDeGepHgKtnqH9ACxRJ0urxk8qSJMDvMlpVfseRpLXEFYIkCTAQJEmNgSBJAryGsGZ4PUHSanOFIEkCDARJUmMgSJIAryGsSV5PkLQaXCFIkgADQZLUeMpojfP0kaSV4gpBkgS4QlhXXC1IWk6uECRJgCuEdcvVgqSlZiCcBQwHSUvBQDjLGA6SFsprCGexLXu+ztH/895pISFJZ+IKYUC4cpA0lzUTCEm2A18FNgBfq6p7VvmQzlpnWjEYFNJgWxOBkGQD8NvALwPjwDeTHKyql1f3yAZLP6eWDA3p7LUmAgG4Dhirqu8BJHkM2AEYCGvMal6PMIyk5bVWAuFS4M2ex+PA35s+KMluYHd7OJHk1Xn8jIuBtxd8hOvUvz6L+s69fQ89a3qep0HsexB7hsX1/bfO9MRaCYTMUKtPFar2AfsW9AOSI1U1vJC569kg9j2IPcNg9j2IPcPy9b1W3nY6DlzW83gzcGKVjkWSBtJaCYRvAluTXJ7kM8AocHCVj0mSBsqaOGVUVZNJ/hXwR3Tfdvo7VXVsiX/Mgk41nQUGse9B7BkGs+9B7BmWqe9UfepUvSRpAK2VU0aSpFVmIEiSgLMgEJJsT/JqkrEke2Z4Pknub89/O8kv9Dt3LVtk38eTHE3yUpIjK3vki9NH3z+X5LkkHyb5rfnMXasW2fPZ/Frf2v63/e0k30jyhX7nrlWL7Hnxr3VVrdsb3QvQ3wV+BvgM8C3gymljvgw8TfezDtcDh/udu1Zvi+m7PXccuHi1+1imvi8B/i6wF/it+cxdi7fF9DwAr/UvAhe07V9Z7//fXkzPS/Var/cVwidfeVFVfwVMfeVFrx3AI9X1PPD5JJv6nLtWLabv9WzOvqvqVFV9E/hovnPXqMX0vJ710/c3qurd9vB5up9f6mvuGrWYnpfEeg+Emb7y4tI+x/Qzd61aTN/Q/RT4Hyd5sX0dyHqxmNdsvb7eiz3uQXmtd9FdES9k7lqxmJ5hCV7rNfE5hEXo5ysvzjSmr6/LWKMW0zfAl6rqRJJLgGeSfKeq/nRJj3B5LOY1W6+v92KP+6x/rZP8Et3/OP6D+c5dYxbTMyzBa73eVwj9fOXFmcas56/LWEzfVNXU/SngSbpL1fVgMa/Zen29F3XcZ/trneTvAF8DdlTV9+czdw1aTM9L81qv9oWURV6E2Qh8D7icH1+EuWramBs5/eLqC/3OXau3Rfb9WeBzPdvfALavdk9L1XfP2P/A6ReV1+Xrvciez+rXGvibwBjwiwv9N1tLt0X2vCSv9ar/IyzBP+KXgf9N9+r8v2u1Xwd+vW2H7h/f+S5wFBiebe56uS20b7rvYPhWux07C/v+G3R/0/oh8IO2fd56fr0X2vMAvNZfA94FXmq3I7PNXQ+3hfa8VK+1X10hSQLW/zUESdISMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTm/wMbGkHb8XvN5QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVqElEQVR4nO3dfYxddX7f8fcnkCUIFpaHZWphWpNiJeUhbJYpodk08tbb4i5RTSWQXNFgWldWEIm2ElED7R9tVVmCf0oXNaBaS4IhacGiRViJSItMR1G1YNa07Hp5KrOLCw4uLgtL8EoQjL794/4GrofxzLnzeOfyfklXc+73nt/x+foYPvM7595zU1VIkvRTK70DkqThYCBIkgADQZLUGAiSJMBAkCQ1J6/0DszXueeeW+vWreu8/k9+8hNOO+20pduhZTRKvcBo9WMvw2mUeoGF9fPss8++VVVfnOm1VRsI69atY//+/Z3Xn5iYYMOGDUu3Q8tolHqB0erHXobTKPUCC+snyf850WueMpIkAQaCJKkxECRJgIEgSWoMBEkS0DEQknwhySNJXkryYpK/keTsJE8keaX9PKtv/duTTCZ5OcnVffUrkhxor92dJK1+SpKHW31fknWL3qkkaVZdZwjfBP6kqn4euBx4EbgN2FtV64G97TlJLga2AJcAm4B7kpzUtnMvsB1Y3x6bWn0b8E5VXQTcBdy5wL4kSQOaMxCSnAH8KnAfQFX9RVX9GNgM7Gqr7QKubcubgYeq6oOqehWYBK5MsgY4o6qeqt49tx+YNmZqW48AG6dmD5Kk5dHlg2k/C/w/4PeTXA48C3wDGKuqwwBVdTjJeW3984Gn+8YfarUP2/L0+tSY19u2jiV5FzgHeKt/R5JspzfDYGxsjImJiW5dAkePHh1o/WE2Sr3AaPVjL8NplHqBpeunSyCcDHwZ+K2q2pfkm7TTQycw02/2NUt9tjHHF6p2AjsBxsfHa5BP6p3ok33rbvvjj5cP3nFN5+2tJD91ObzsZTiNUi+wdP10uYZwCDhUVfva80foBcSb7TQQ7eeRvvUv6Bu/Fnij1dfOUD9uTJKTgTOBtwdtRpI0f3MGQlX9X+D1JD/XShuBF4A9wNZW2wo81pb3AFvaO4cupHfx+Jl2eum9JFe16wM3Thszta3rgCfL7/aUpGXV9eZ2vwX8YZLPAT8E/hG9MNmdZBvwGnA9QFU9n2Q3vdA4BtxSVR+17dwM3A+cCjzeHtC7YP1gkkl6M4MtC+xLkjSgToFQVc8B4zO8tPEE6+8AdsxQ3w9cOkP9fVqgSJJWhp9UliQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp6Xovo5HSf8trSVKPMwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJElAx0BIcjDJgSTPJdnfamcneSLJK+3nWX3r355kMsnLSa7uq1/RtjOZ5O4kafVTkjzc6vuSrFvkPiVJcxhkhvDVqvpSVY2357cBe6tqPbC3PSfJxcAW4BJgE3BPkpPamHuB7cD69tjU6tuAd6rqIuAu4M75tyRJmo+FnDLaDOxqy7uAa/vqD1XVB1X1KjAJXJlkDXBGVT1VVQU8MG3M1LYeATZOzR4kScsjvf83z7FS8irwDlDAf6iqnUl+XFVf6Fvnnao6K8m/B56uqj9o9fuAx4GDwB1V9bVW/5vA71TVryX5PrCpqg61134A/FJVvTVtP7bTm2EwNjZ2xUMPPdS50aNHj3L66acDcODP3p1xncvOP7Pz9lZSfy+jYJT6sZfhNEq9wML6+epXv/ps35me43T9TuWvVNUbSc4Dnkjy0izrzvSbfc1Sn23M8YWqncBOgPHx8dqwYcOsO91vYmKCqfVvOsF3Kh+8ofv2VlJ/L6NglPqxl+E0Sr3A0vXT6ZRRVb3Rfh4BHgWuBN5sp4FoP4+01Q8BF/QNXwu80eprZ6gfNybJycCZwNuDtyNJmq85AyHJaUk+P7UM/B3g+8AeYGtbbSvwWFveA2xp7xy6kN7F42eq6jDwXpKr2vWBG6eNmdrWdcCT1eVcliRp0XQ5ZTQGPNqu8Z4M/Meq+pMk3wF2J9kGvAZcD1BVzyfZDbwAHANuqaqP2rZuBu4HTqV3XeHxVr8PeDDJJL2ZwZZF6E2SNIA5A6GqfghcPkP9R8DGE4zZAeyYob4fuHSG+vu0QJEkrQw/qSxJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAno/p3Knwnr+r5r+eAd16zgnkjS8nOGIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIGCIQkJyX5X0n+qD0/O8kTSV5pP8/qW/f2JJNJXk5ydV/9iiQH2mt3J0mrn5Lk4Vbfl2TdIvYoSepgkBnCN4AX+57fBuytqvXA3vacJBcDW4BLgE3APUlOamPuBbYD69tjU6tvA96pqouAu4A759WNJGneOgVCkrXANcC3+sqbgV1teRdwbV/9oar6oKpeBSaBK5OsAc6oqqeqqoAHpo2Z2tYjwMap2YMkaXl0vbndvwP+GfD5vtpYVR0GqKrDSc5r9fOBp/vWO9RqH7bl6fWpMa+3bR1L8i5wDvBW/04k2U5vhsHY2BgTExMddx+OHj368fq3XnZszvUH2fZy6+9lFIxSP/YynEapF1i6fuYMhCS/BhypqmeTbOiwzZl+s69Z6rONOb5QtRPYCTA+Pl4bNnTZnZ6JiQmm1r+p766mJ3Lwhu7bXm79vYyCUerHXobTKPUCS9dPlxnCV4C/l+TrwM8AZyT5A+DNJGva7GANcKStfwi4oG/8WuCNVl87Q71/zKEkJwNnAm/PsydJ0jzMeQ2hqm6vqrVVtY7exeInq+ofAnuArW21rcBjbXkPsKW9c+hCehePn2mnl95LclW7PnDjtDFT27qu/RmfmiFIkpbOQr4g5w5gd5JtwGvA9QBV9XyS3cALwDHglqr6qI25GbgfOBV4vD0A7gMeTDJJb2awZQH7JUmah4ECoaomgIm2/CNg4wnW2wHsmKG+H7h0hvr7tECRJK0MP6ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQs5G6nI21d35foHLzjmhXcE0laHs4QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBHQIhCQ/k+SZJN9N8nySf93qZyd5Iskr7edZfWNuTzKZ5OUkV/fVr0hyoL12d5K0+ilJHm71fUnWLUGvkqRZdJkhfAD8raq6HPgSsCnJVcBtwN6qWg/sbc9JcjGwBbgE2ATck+Sktq17ge3A+vbY1OrbgHeq6iLgLuDOhbcmSRrEnIFQPUfb059ujwI2A7tafRdwbVveDDxUVR9U1avAJHBlkjXAGVX1VFUV8MC0MVPbegTYODV7kCQtj05fkNN+w38WuAj43aral2Ssqg4DVNXhJOe11c8Hnu4bfqjVPmzL0+tTY15v2zqW5F3gHOCtafuxnd4Mg7GxMSYmJjq2CUePHv14/VsvO9Z5HDDQn7Mc+nsZBaPUj70Mp1HqBZaun06BUFUfAV9K8gXg0SSXzrL6TL/Z1yz12cZM34+dwE6A8fHx2rBhwyy7cbyJiQmm1r+p79vQujh4Q/c/Zzn09zIKRqkfexlOo9QLLF0/A32FZlX9OMkEvXP/byZZ02YHa4AjbbVDwAV9w9YCb7T62hnq/WMOJTkZOBN4e8Belsy6aQHiV2pKGkVd3mX0xTYzIMmpwNeAl4A9wNa22lbgsba8B9jS3jl0Ib2Lx8+000vvJbmqXR+4cdqYqW1dBzzZrjNIkpZJlxnCGmBXu47wU8DuqvqjJE8Bu5NsA14DrgeoqueT7AZeAI4Bt7RTTgA3A/cDpwKPtwfAfcCDSSbpzQy2LEZzkqTu5gyEqvoe8Isz1H8EbDzBmB3Ajhnq+4FPXX+oqvdpgSJJWhl+UlmSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpGagu52qp//up975VNKocIYgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktR4c7sF8kZ3kkaFMwRJEtAhEJJckOS/J3kxyfNJvtHqZyd5Iskr7edZfWNuTzKZ5OUkV/fVr0hyoL12d5K0+ilJHm71fUnWLUGvkqRZdJkhHANuraq/BlwF3JLkYuA2YG9VrQf2tue017YAlwCbgHuSnNS2dS+wHVjfHptafRvwTlVdBNwF3LkIvUmSBjBnIFTV4ar6n235PeBF4HxgM7CrrbYLuLYtbwYeqqoPqupVYBK4Mska4IyqeqqqCnhg2pipbT0CbJyaPUiSlsdA1xDaqZxfBPYBY1V1GHqhAZzXVjsfeL1v2KFWO78tT68fN6aqjgHvAucMsm+SpIXp/C6jJKcD/xn4p1X157P8Aj/TCzVLfbYx0/dhO71TToyNjTExMTHHXn/i6NGjH69/62XHOo8bxCD7sxD9vYyCUerHXobTKPUCS9dPp0BI8tP0wuAPq+q/tPKbSdZU1eF2OuhIqx8CLugbvhZ4o9XXzlDvH3MoycnAmcDb0/ejqnYCOwHGx8drw4YNXXYf6P3Pemr9m/reKrqYDt7QfX8Wor+XUTBK/djLcBqlXmDp+unyLqMA9wEvVtW/7XtpD7C1LW8FHuurb2nvHLqQ3sXjZ9pppfeSXNW2eeO0MVPbug54sl1nkCQtky4zhK8Avw4cSPJcq/1z4A5gd5JtwGvA9QBV9XyS3cAL9N6hdEtVfdTG3QzcD5wKPN4e0AucB5NM0psZbFlYW5KkQc0ZCFX1P5j5HD/AxhOM2QHsmKG+H7h0hvr7tEBZzfzUsqTVzE8qS5IAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElS41doLhE/pCZptXGGIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjR9MWwZ+SE3SauAMQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJanzb6TLzLaiShpUzBEkS0CEQkvxekiNJvt9XOzvJE0leaT/P6nvt9iSTSV5OcnVf/YokB9prdydJq5+S5OFW35dk3SL3KEnqoMsM4X5g07TabcDeqloP7G3PSXIxsAW4pI25J8lJbcy9wHZgfXtMbXMb8E5VXQTcBdw532YkSfM3ZyBU1Z8Cb08rbwZ2teVdwLV99Yeq6oOqehWYBK5MsgY4o6qeqqoCHpg2ZmpbjwAbp2YPkqTlM9+LymNVdRigqg4nOa/Vzwee7lvvUKt92Jan16fGvN62dSzJu8A5wFvT/9Ak2+nNMhgbG2NiYqLzDh89evTj9W+97FjncUtpkP3v19/LKBilfuxlOI1SL7B0/Sz2u4xm+s2+ZqnPNubTxaqdwE6A8fHx2rBhQ+cdm5iYYGr9m/re6bOiDvzk48VB3nHU38soGKV+7GU4jVIvsHT9zPddRm+200C0n0da/RBwQd96a4E3Wn3tDPXjxiQ5GTiTT5+ikiQtsfkGwh5ga1veCjzWV9/S3jl0Ib2Lx8+000vvJbmqXR+4cdqYqW1dBzzZrjNIkpbRnKeMkvwnYANwbpJDwL8E7gB2J9kGvAZcD1BVzyfZDbwAHANuqaqP2qZupveOpVOBx9sD4D7gwSST9GYGWxalM0nSQOYMhKr6Byd4aeMJ1t8B7Jihvh+4dIb6+7RAkSStHG9dMSS8pYWkleatKyRJgIEgSWoMBEkSYCBIkhovKg8hLzBLWgnOECRJgIEgSWoMBEkS4DWEoef1BEnLxRmCJAlwhrCqTM0Wbr3sGBtWdlckjSBnCJIkwECQJDWeMlqlvNgsabE5Q5AkAQaCJKnxlNEI8PSRpMVgIIwYw0HSfHnKSJIEOEMYac4WJA3CQPiMMBwkzcVA+AwyHCTNxED4jDMcJE0xEPQxw0H6bDMQNKP+cOhnUEija2gCIckm4JvAScC3quqOFd4lzeBEQQGGhbTaDUUgJDkJ+F3gbwOHgO8k2VNVL6zsnmkQs4XFTAwQabgMRSAAVwKTVfVDgCQPAZsBA2GE9X/hz00Dhsli6Q8lr6Hosy5VtdL7QJLrgE1V9U/a818HfqmqfnPaetuB7e3pzwEvD/DHnAu8tQi7OwxGqRcYrX7sZTiNUi+wsH7+SlV9caYXhmWGkBlqn0qqqtoJ7JzXH5Dsr6rx+YwdNqPUC4xWP/YynEapF1i6foblXkaHgAv6nq8F3lihfZGkz6RhCYTvAOuTXJjkc8AWYM8K75MkfaYMxSmjqjqW5DeB/0rvbae/V1XPL/IfM69TTUNqlHqB0erHXobTKPUCS9TPUFxUliStvGE5ZSRJWmEGgiQJGJFASLIpyctJJpPcNsPrSXJ3e/17Sb7cdexyW2AvB5McSPJckv3Lu+ef1qGXn0/yVJIPkvz2IGOX2wJ7GarjAp36uaH9+/pekm8nubzr2OW2wF6G6th06GVz6+O5JPuT/ErXsZ1U1ap+0LsI/QPgZ4HPAd8FLp62zteBx+l93uEqYF/Xsaull/baQeDclT4mA/RyHvDXgR3Abw8ydrX0MmzHZYB+fhk4qy3/3VX+38yMvQzbsenYy+l8cu33F4CXFvO4jMIM4ePbXlTVXwBTt73otxl4oHqeBr6QZE3HsctpIb0Mmzl7qaojVfUd4MNBxy6zhfQyjLr08+2qeqc9fZreZ4M6jV1mC+ll2HTp5Wi1BABO45MP8C7KcRmFQDgfeL3v+aFW67JOl7HLaSG9QO8fx39L8my7zcdKWsjf7Wo8LrMZpuMCg/ezjd6sdD5jl9pCeoHhOjadekny95O8BPwx8I8HGTuXofgcwgJ1ue3FidbpdMuMZbSQXgC+UlVvJDkPeCLJS1X1p4u6h90t5O92NR6X2QzTcYEB+knyVXr/E506V71qj80MvcBwHZuut/B5FHg0ya8C/wb4WtexcxmFGUKX216caJ1hu2XGQnqhqqZ+HgEepTeNXCkL+btdjcflhIbsuEDHfpL8AvAtYHNV/WiQsctoIb0M27EZ6O+2BddfTXLuoGNPaKUvpCzChZiTgR8CF/LJxZRLpq1zDcdfiH2m69hV1MtpwOf7lr9N7w6yQ9tL37r/iuMvKq+64zJLL0N1XAb4d/aXgUngl+f7d7EKehmqY9Oxl4v45KLyl4E/a/8vWJTjsmL/KBf5L/LrwP+md5X9X7TabwC/0ZZD7wt4fgAcAMZnG7sae6H37oLvtsfzq6SXv0TvN5s/B37cls9Ypcdlxl6G8bh07OdbwDvAc+2xf7axq7GXYTw2HXr5nbavzwFPAb+ymMfFW1dIkoDRuIYgSVoEBoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktT8f813eGe3U5+XAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATnUlEQVR4nO3db4xd9Z3f8fdn8S6LIBAIYWphWtNidcufTbpMCdrsVkOdLm6IaiqB5IouRnVlLWKlrcSqMe2DtqosmSelRbugWmGFIds1Fi3CWkRbZDqKVuFPTEvimECZBJc4trAIDosjQWP07YP7G7gexjN37ozn3ju8X9LVnPu953fmfOeAP/M759w7qSokSfqlQe+AJGk4GAiSJMBAkCQ1BoIkCTAQJEnNqkHvQL8uvvjiWrt2bc/r//znP+fcc889czu0TOxjuKyUPmDl9GIfc3vppZferqrPz/bayAbC2rVr2b9/f8/rT05OMjExceZ2aJnYx3BZKX3AyunFPuaW5P+e7jVPGUmSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKAEX6n8lJZu+2pj5YP7bhpgHsiSYPlDEGSBPQYCEkOJTmQ5OUk+1vtoiTPJHm9fb2wa/17kkwleS3JjV31a9t2ppLcnyStfnaSx1r9hSRrl7hPSdI8FjJDuKGqvlhV4+35NmBfVa0D9rXnJLkS2ARcBWwAHkhyVhvzILAVWNceG1p9C3C8qq4A7gPu7b8lSVI/FnPKaCOwqy3vAm7uqu+uqg+q6g1gCrguyWrg/Kp6rqoKeGTGmOltPQ6sn549SJKWRzr/Ns+zUvIGcBwo4D9V1c4kP6uqz3atc7yqLkzyR8DzVfXNVn8IeBo4BOyoqq+0+m8DX6+qryX5PrChqg63134IfKmq3p6xH1vpzDAYGxu7dvfu3T03euLECc4777xP1A/85N2Plq+59IKetzcop+tj1NjH8FkpvdjH3G644YaXus70nKLXu4y+XFVHklwCPJPk1TnWne03+5qjPteYUwtVO4GdAOPj47WQzwo/3WeL39F9l9FtvW9vUPys9+GyUvqAldOLffSvp1NGVXWkfT0GPAFcB7zVTgPRvh5rqx8GLusavgY40uprZqmfMibJKuAC4J2FtyNJ6te8gZDk3CSfmV4Gfgf4PrAX2NxW2ww82Zb3ApvanUOX07l4/GJVHQXeS3J9uz5w+4wx09u6BXi2ejmXJUlaMr2cMhoDnmjXeFcB/7mq/luS7wB7kmwB3gRuBaiqg0n2AK8AJ4G7qurDtq07gYeBc+hcV3i61R8CHk0yRWdmsGkJepMkLcC8gVBVPwK+MEv9p8D604zZDmyfpb4fuHqW+vu0QJEkDYbvVJYkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpKbnQEhyVpL/neTP2/OLkjyT5PX29cKude9JMpXktSQ3dtWvTXKgvXZ/krT62Ukea/UXkqxdwh4lST1YyAzhD4AfdD3fBuyrqnXAvvacJFcCm4CrgA3AA0nOamMeBLYC69pjQ6tvAY5X1RXAfcC9fXUjSepbT4GQZA1wE/CNrvJGYFdb3gXc3FXfXVUfVNUbwBRwXZLVwPlV9VxVFfDIjDHT23ocWD89e5AkLY9VPa73H4B/AXymqzZWVUcBqupokkta/VLg+a71DrfaL9ryzPr0mB+3bZ1M8i7wOeDt7p1IspXODIOxsTEmJyd73H04ceLErOvffc3Jj5YXsr1BOV0fo8Y+hs9K6cU++jdvICT5GnCsql5KMtHDNmf7zb7mqM815tRC1U5gJ8D4+HhNTPSyOx2Tk5NMr79221Ndr3z8Izh0W+/bG5TuPkaZfQyfldKLffSvlxnCl4F/mOSrwK8C5yf5JvBWktVtdrAaONbWPwxc1jV+DXCk1dfMUu8eczjJKuAC4J0+e5Ik9WHeawhVdU9VramqtXQuFj9bVf8E2AtsbqttBp5sy3uBTe3OocvpXDx+sZ1eei/J9e36wO0zxkxv65b2PT4xQ5AknTm9XkOYzQ5gT5ItwJvArQBVdTDJHuAV4CRwV1V92MbcCTwMnAM83R4ADwGPJpmiMzPYtIj96lv3qaRDO24axC5I0sAsKBCqahKYbMs/BdafZr3twPZZ6vuBq2epv08LFEnSYPhOZUkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqVk16B0YVmu3PfXR8qEdNw1wTyRpecw7Q0jyq0leTPLdJAeT/NtWvyjJM0leb18v7BpzT5KpJK8lubGrfm2SA+21+5Ok1c9O8lirv5Bk7RnoVZI0h15OGX0A/L2q+gLwRWBDkuuBbcC+qloH7GvPSXIlsAm4CtgAPJDkrLatB4GtwLr22NDqW4DjVXUFcB9w7+JbkyQtxLyBUB0n2tNfbo8CNgK7Wn0XcHNb3gjsrqoPquoNYAq4Lslq4Pyqeq6qCnhkxpjpbT0OrJ+ePUiSlkdP1xDab/gvAVcAf1xVLyQZq6qjAFV1NMklbfVLgee7hh9utV+05Zn16TE/bts6meRd4HPA2zP2YyudGQZjY2NMTk722CacOHHio/XvvuZkz+OABX2fM627j1FmH8NnpfRiH/3rKRCq6kPgi0k+CzyR5Oo5Vp/tN/uaoz7XmJn7sRPYCTA+Pl4TExNz7MapJicnmV7/jq4Lxr04dFvv3+dM6+5jlNnH8FkpvdhH/xZ022lV/QyYpHPu/612Goj29Vhb7TBwWdewNcCRVl8zS/2UMUlWARcA7yxk3yRJi9PLXUafbzMDkpwDfAV4FdgLbG6rbQaebMt7gU3tzqHL6Vw8frGdXnovyfXt+sDtM8ZMb+sW4Nl2nUGStEx6OWW0GtjVriP8ErCnqv48yXPAniRbgDeBWwGq6mCSPcArwEngrnbKCeBO4GHgHODp9gB4CHg0yRSdmcGmpWhOktS7eQOhqr4H/O1Z6j8F1p9mzHZg+yz1/cAnrj9U1fu0QJEkDYYfXSFJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUuPfVO7B2hkfl+3fWJa0EjlDkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEuCnnfal+9NP/eRTSSuFMwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKmZNxCSXJbkfyb5QZKDSf6g1S9K8kyS19vXC7vG3JNkKslrSW7sql+b5EB77f4kafWzkzzW6i8kWXsGepUkzaGXGcJJ4O6q+lvA9cBdSa4EtgH7qmodsK89p722CbgK2AA8kOSstq0Hga3AuvbY0OpbgONVdQVwH3DvEvQmSVqAeQOhqo5W1f9qy+8BPwAuBTYCu9pqu4Cb2/JGYHdVfVBVbwBTwHVJVgPnV9VzVVXAIzPGTG/rcWD99OxBkrQ80vm3uceVO6dyvgVcDbxZVZ/teu14VV2Y5I+A56vqm63+EPA0cAjYUVVfafXfBr5eVV9L8n1gQ1Udbq/9EPhSVb094/tvpTPDYGxs7Nrdu3f3vO8nTpzgvPPOA+DAT97tedxCXHPpBWdku926+xhl9jF8Vkov9jG3G2644aWqGp/ttZ4/uiLJecB/Af55Vf3lHL/Az/ZCzVGfa8yphaqdwE6A8fHxmpiYmGevPzY5Ocn0+nd0ffTEUjp0W+/706/uPkaZfQyfldKLffSvp7uMkvwynTD406r6r638VjsNRPt6rNUPA5d1DV8DHGn1NbPUTxmTZBVwAfDOQpuRJPWvl7uMAjwE/KCq/n3XS3uBzW15M/BkV31Tu3PocjoXj1+sqqPAe0mub9u8fcaY6W3dAjxbCzmXJUlatF5OGX0Z+F3gQJKXW+1fAjuAPUm2AG8CtwJU1cEke4BX6NyhdFdVfdjG3Qk8DJxD57rC063+EPBokik6M4NNi2tLkrRQ8wZCVf0Fs5/jB1h/mjHbge2z1PfTuSA9s/4+LVAkSYPhO5UlSYCBIElq/ItpS8i/pCZplDlDkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxjemnSG+SU3SqHGGIEkCDARJUmMgSJIAA0GS1BgIkiTAu4yWhXccSRoFzhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTG206XmbegShpWzhAkSYCBIElqDARJEuA1hIHyeoKkYeIMQZIEGAiSpGbeQEjyJ0mOJfl+V+2iJM8keb19vbDrtXuSTCV5LcmNXfVrkxxor92fJK1+dpLHWv2FJGuXuEdJUg96mSE8DGyYUdsG7KuqdcC+9pwkVwKbgKvamAeSnNXGPAhsBda1x/Q2twDHq+oK4D7g3n6bkST1b95AqKpvAe/MKG8EdrXlXcDNXfXdVfVBVb0BTAHXJVkNnF9Vz1VVAY/MGDO9rceB9dOzB0nS8un3LqOxqjoKUFVHk1zS6pcCz3etd7jVftGWZ9anx/y4betkkneBzwFv97lvI8k7jiQN2lLfdjrbb/Y1R32uMZ/ceLKVzmknxsbGmJyc7HnHTpw48dH6d19zsudxgzBXX919jDL7GD4rpRf76F+/gfBWktVtdrAaONbqh4HLutZbAxxp9TWz1LvHHE6yCriAT56iAqCqdgI7AcbHx2tiYqLnHZ6cnGR6/Tu6fhsfRodumzjta919jDL7GD4rpRf76F+/t53uBTa35c3Ak131Te3OocvpXDx+sZ1eei/J9e36wO0zxkxv6xbg2XadQZK0jOadIST5M2ACuDjJYeBfAzuAPUm2AG8CtwJU1cEke4BXgJPAXVX1YdvUnXTuWDoHeLo9AB4CHk0yRWdmsGlJOhthXk+QNAjzBkJV/ePTvLT+NOtvB7bPUt8PXD1L/X1aoEiSBsd3KkuSAANBktT4aadDzusJkpaLMwRJEmAgSJIaA0GSBBgII2Xttqc48JN3T7muIElLxUCQJAEGgiSp8bbTEeXtqJKWmjMESRJgIEiSGk8ZrQCePpK0FJwhSJIAA0GS1HjKaIXx9JGkfjlDkCQBzhBWNGcLkhbCGYIkCXCG8KnhbEHSfAyETyHDQdJsPGUkSQKcIXzqOVuQNM1A0EcMB+nTzVNGkiTAGYJOw9mC9OljIGhep/sbzgaFtLIYCOrbzKAwIKTR5jUESRLgDEFLyFNL0mgzEHTGzRYUd19zkonl3xVJczAQNDDOKKThMjSBkGQD8B+Bs4BvVNWOAe+SBuR0QXE6Boi0NIYiEJKcBfwx8PeBw8B3kuytqlcGu2caBQaItDSGIhCA64CpqvoRQJLdwEbAQNCSW2iAzOXua05yxxJuby4Gmc60VNWg94EktwAbquqftee/C3ypqn5/xnpbga3t6d8EXlvAt7kYeHsJdnfQ7GO4rJQ+YOX0Yh9z+2tV9fnZXhiWGUJmqX0iqapqJ7Czr2+Q7K+q8X7GDhP7GC4rpQ9YOb3YR/+G5Y1ph4HLup6vAY4MaF8k6VNpWALhO8C6JJcn+RVgE7B3wPskSZ8qQ3HKqKpOJvl94L/Tue30T6rq4BJ/m75ONQ0h+xguK6UPWDm92EefhuKisiRp8IbllJEkacAMBEkSsAICIcmGJK8lmUqybZbXk+T+9vr3kvxGr2OX2yJ7OZTkQJKXk+xf3j3/xH7O18evJXkuyQdJ/nAhY5fTIvsYpeNxW/vv6XtJvp3kC72OXU6L7GOUjsfG1sPLSfYn+a1exy5aVY3sg84F6B8Cfx34FeC7wJUz1vkq8DSd9zpcD7zQ69hR6aW9dgi4eESOySXA3wG2A3+4kLGj0McIHo/fBC5sy/9gGP8fWUwfI3g8zuPj67u/Dry6XMdj1GcIH33kRVX9P2D6Iy+6bQQeqY7ngc8mWd3j2OW0mF6Gybx9VNWxqvoO8IuFjl1Gi+ljmPTSx7er6nh7+jyd9wH1NHYZLaaPYdJLHyeqJQBwLh+/SfeMH49RD4RLgR93PT/car2s08vY5bSYXqDzH83/SPJS+4iPQVnMz3WYjsli92VUj8cWOrPQfsaeSYvpA0bseCT5R0leBZ4C/ulCxi7GULwPYRF6+ciL063T08dlLKPF9ALw5ao6kuQS4Jkkr1bVt5Z0D3uzmJ/rMB2Txe7LyB2PJDfQ+Yd0+pz1SB6PWfqAETseVfUE8ESSvwv8O+ArvY5djFGfIfTykRenW2fYPi5jMb1QVdNfjwFP0JleDsJifq7DdEwWtS+jdjyS/DrwDWBjVf10IWOXyWL6GLnjMa2F1t9IcvFCx/Zl0BdZFvOgM8P5EXA5H19kuWrGOjdx6oXYF3sdO0K9nAt8pmv523Q+PXYo++ha999w6kXloTkmi+xjpI4H8FeBKeA3+/0ZDHkfo3Y8ruDji8q/Afyk/T9/xo/Hsv9AzsAP+KvA/6Fz9f1ftdrvAb/XlkPnj+/8EDgAjM81dhR7oXPXwXfb4+Cge+mhj79C57edvwR+1pbPH7Zj0m8fI3g8vgEcB15uj/1zjR21PkbweHy97efLwHPAby3X8fCjKyRJwOhfQ5AkLREDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJav4/C8CY1oZTVrEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASJUlEQVR4nO3df2xd5X3H8fe3oaWIlBAW8KKELWxE2/jRX/Eg6o/JWZjwClqYBJInVoKWKSqiUydRibD9sU1TtPDP0FALUkQqAkwzERsiKoo2FLCqqQGabLRp+DFMiaghIqIEipFgC/ruj/s43DjX9rn2vb73Ou+XdOVzn3Oe4+85hPvxc57j48hMJEn6RKcLkCR1BwNBkgQYCJKkwkCQJAEGgiSpOKPTBczWsmXLctWqVZW3f//99zn77LPbV1Ab9FrN1tt+vVaz9bZfszUfOHDgrcw8v+HKzOzJ15o1a7IZTz31VFPbd4Neq9l626/Xarbe9mu2ZmB/TvG56iUjSRLgHIIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAE9/OiKVlm15fETy4e3XdPBSiSpsxwhSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJhYEgSQIMBElSYSBIkgADQZJUGAiSJMBAkCQVBoIkCTAQJEmFgSBJAgwESVJhIEiSAANBklQYCJIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFZUDISIWRcR/R8T3y/vzIuKJiHi5fF1at+0dETEaES9FxNV17Wsi4mBZd3dERGk/MyIeLu3PRMSqFh6jJKmCZkYI3wJeqHu/BdibmauBveU9EXEJMARcCgwC90TEotLnXmAzsLq8Bkv7JuBYZl4M3AXcOaujkSTNWqVAiIiVwDXAfXXNG4CdZXkncF1d+3BmfpiZrwKjwBURsRw4JzP3ZWYCD0zqM7GvR4D1E6MHSdL8iNpn8wwbRTwC/APwGeDbmXltRLyTmefWbXMsM5dGxHeApzPzodK+A9gDHAa2ZeZVpf2rwO1lXz8FBjNzrKx7BbgyM9+aVMdmaiMM+vr61gwPD1c+0PHxcRYvXnxK+8HX3z2xfPmKJZX3Nx+mqrlbWW/79VrN1tt+zda8bt26A5nZ32jdGTN1johrgaOZeSAiBip8v0Y/2ec07dP1ObkhczuwHaC/vz8HBqqUUzMyMkKj7W/e8viJ5cM3Vt/ffJiq5m5lve3XazVbb/u1suYZAwH4MvBHEfE14NPAORHxEPBmRCzPzCPlctDRsv0YcGFd/5XAG6V9ZYP2+j5jEXEGsAR4e5bHJEmahRnnEDLzjsxcmZmrqE0WP5mZfwrsBjaWzTYCj5Xl3cBQuXPoImqTx89m5hHgvYhYW+YHbprUZ2Jf15fvMfO1LElSy1QZIUxlG7ArIjYBrwE3AGTmoYjYBTwPHAduzcyPSp9bgPuBs6jNK+wp7TuAByNilNrIYGgOdUmSZqGpQMjMEWCkLP8CWD/FdluBrQ3a9wOXNWj/gBIokqTO8DeVJUmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkq5vIsowVnVf2jsLdd08FKJGn+OUKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKk4LR9dUf+ICklSjSMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkARUCISI+HRHPRsSPI+JQRPxdaT8vIp6IiJfL16V1fe6IiNGIeCkirq5rXxMRB8u6uyMiSvuZEfFwaX8mIla14VglSdOoMkL4EPj9zPwc8HlgMCLWAluAvZm5Gthb3hMRlwBDwKXAIHBPRCwq+7oX2AysLq/B0r4JOJaZFwN3AXfO/dAkSc2YMRCyZry8/WR5JbAB2FnadwLXleUNwHBmfpiZrwKjwBURsRw4JzP3ZWYCD0zqM7GvR4D1E6MHSdL8iNpn8wwb1X7CPwBcDHw3M2+PiHcy89y6bY5l5tKI+A7wdGY+VNp3AHuAw8C2zLyqtH8VuD0zr42InwKDmTlW1r0CXJmZb02qYzO1EQZ9fX1rhoeHKx/o+Pg4ixcvBuDg6+/OuP3lK5ZU3ne71NfcC6y3/XqtZuttv2ZrXrdu3YHM7G+0rtJfTMvMj4DPR8S5wKMRcdk0mzf6yT6naZ+uz+Q6tgPbAfr7+3NgYGCaMk42MjLCxPY3V/iLaYdvrL7vdqmvuRdYb/v1Ws3W236trLmpu4wy8x1ghNq1/zfLZSDK16NlszHgwrpuK4E3SvvKBu0n9YmIM4AlwNvN1CZJmpsqdxmdX0YGRMRZwFXAi8BuYGPZbCPwWFneDQyVO4cuojZ5/GxmHgHei4i1ZX7gpkl9JvZ1PfBkVrmW1Uartjx+4iVJp4Mql4yWAzvLPMIngF2Z+f2I2AfsiohNwGvADQCZeSgidgHPA8eBW8slJ4BbgPuBs6jNK+wp7TuAByNilNrIYKgVBydJqm7GQMjMnwBfaND+C2D9FH22AlsbtO8HTpl/yMwPKIEiSeoMf1NZkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEVPsTmqe9yX9X+fC2azpUiSS1jyMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKnw8dezUP84bB+FLWmhcIQgSQIqBEJEXBgRT0XECxFxKCK+VdrPi4gnIuLl8nVpXZ87ImI0Il6KiKvr2tdExMGy7u6IiNJ+ZkQ8XNqfiYhVbThWSdI0qowQjgO3ZebvAGuBWyPiEmALsDczVwN7y3vKuiHgUmAQuCciFpV93QtsBlaX12Bp3wQcy8yLgbuAO1twbJKkJswYCJl5JDP/qyy/B7wArAA2ADvLZjuB68ryBmA4Mz/MzFeBUeCKiFgOnJOZ+zIzgQcm9ZnY1yPA+onRgyRpfjQ1h1Au5XwBeAboy8wjUAsN4IKy2Qrg53XdxkrbirI8uf2kPpl5HHgX+JVmapMkzU3lu4wiYjHwr8BfZuYvp/kBvtGKnKZ9uj6Ta9hM7ZITfX19jIyMzFD1x8bHx09sf9vlxyv3m0kzNTSrvuZeYL3t12s1W2/7tbLmSoEQEZ+kFgb/nJn/VprfjIjlmXmkXA46WtrHgAvruq8E3ijtKxu01/cZi4gzgCXA25PryMztwHaA/v7+HBgYqFI+UPvgntj+5rrbRufq8I3Va2hWfc29wHrbr9dqtt72a2XNVe4yCmAH8EJm/mPdqt3AxrK8EXisrn2o3Dl0EbXJ42fLZaX3ImJt2edNk/pM7Ot64MkyzyBJmidVRghfBr4OHIyI50rbXwHbgF0RsQl4DbgBIDMPRcQu4HlqdyjdmpkflX63APcDZwF7ygtqgfNgRIxSGxkMze2wJEnNmjEQMvM/aXyNH2D9FH22AlsbtO8HLmvQ/gElUCRJneGjK+bIx1hIWih8dIUkCTAQJEmFgSBJAgwESVJhIEiSAANBklR422kLeQuqpF7mCEGSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSq87bRNvAVVUq9xhCBJAgwESVJhIEiSAANBklQYCJIkwLuM5oV3HEnqBY4QJEmAgSBJKgwESRJgIEiSCieV55kTzJK6lSMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSp8LbTDvIWVEndxBGCJAkwECRJxYyBEBHfi4ijEfHTurbzIuKJiHi5fF1at+6OiBiNiJci4uq69jURcbCsuzsiorSfGREPl/ZnImJVi4+xJ6za8viJlyR1QpURwv3A4KS2LcDezFwN7C3viYhLgCHg0tLnnohYVPrcC2wGVpfXxD43Accy82LgLuDO2R6MJGn2ZgyEzPwB8Pak5g3AzrK8E7iurn04Mz/MzFeBUeCKiFgOnJOZ+zIzgQcm9ZnY1yPA+onRgyRp/kTt83mGjWqXcb6fmZeV9+9k5rl1649l5tKI+A7wdGY+VNp3AHuAw8C2zLyqtH8VuD0zry2XogYzc6ysewW4MjPfalDHZmqjDPr6+tYMDw9XPtDx8XEWL14MwMHX363crxMuX7EEOLnmXmC97ddrNVtv+zVb87p16w5kZn+jda2+7bTRT/Y5Tft0fU5tzNwObAfo7+/PgYGByoWNjIwwsf3N3X6d/uD7ANx2+Uf8xbUDna2lCfXnuBf0Wr3QezVbb/u1subZ3mX0ZrkMRPl6tLSPARfWbbcSeKO0r2zQflKfiDgDWMKpl6gkSW0220DYDWwsyxuBx+rah8qdQxdRmzx+NjOPAO9FxNoyP3DTpD4T+7oeeDKrXMeSJLXUjJeMIuJfgAFgWUSMAX8DbAN2RcQm4DXgBoDMPBQRu4DngePArZn5UdnVLdTuWDqL2rzCntK+A3gwIkapjQyGWnJkkqSmzBgImfknU6xaP8X2W4GtDdr3A5c1aP+AEig6lY+3kDRf/E1lSRJgIEiSCgNBkgT4+Oue4nyCpHZyhCBJAgwESVLhJaMe5eUjSa3mCEGSBBgIkqTCS0YLgJePJLWCIwRJEmAgSJIKLxktMF4+kjRbjhAkSYAjhAXN0YKkZjhCkCQBjhBOG44WJM3EEYIkCXCEcFpytCCpEUcIkiTAEcJpz9GCpAmOECRJgCME1XG0IJ3eDAQ1ZDhIpx8vGUmSAEcIqsDRgnR6MBDUFMNBWrgMBM1afTgA3D94docqkdQKziFIkgBHCGqhg6+/y82TRg3gpSWpVxgIajvnHaTeYCBoXk2ed5hgUEidZyCoKziKkDrPQFDXcRQhdYaBoJ4xVVDUMzSk2euaQIiIQeCfgEXAfZm5rcMlqQcZGtLsdUUgRMQi4LvAHwBjwI8iYndmPt/ZyrQQTYTGbZcfb3ib7HQMEy1kXREIwBXAaGb+DCAihoENgIGgrlJlBNJOM4WYgaW5iMzsdA1ExPXAYGb+eXn/deDKzPzmpO02A5vL298CXmri2ywD3mpBufOp12q23vbrtZqtt/2arfnXM/P8Riu6ZYQQDdpOSarM3A5sn9U3iNifmf2z6dspvVaz9bZfr9Vsve3Xypq75VlGY8CFde9XAm90qBZJOi11SyD8CFgdERdFxKeAIWB3h2uSpNNKV1wyyszjEfFN4N+p3Xb6vcw81OJvM6tLTR3WazVbb/v1Ws3W234tq7krJpUlSZ3XLZeMJEkdZiBIkoAFEggRMRgRL0XEaERsabA+IuLusv4nEfHFqn27sN7DEXEwIp6LiP1dUu9vR8S+iPgwIr7dTN8urbkbz/GN5d/CTyLihxHxuap9u7DeeT+/FWveUOp9LiL2R8RXqvbtwnpnd44zs6df1CahXwF+A/gU8GPgkknbfA3YQ+33HdYCz1Tt2031lnWHgWVddn4vAH4X2Ap8u5m+3VZzF5/jLwFLy/If9sC/4Yb1duL8NlHzYj6eV/0s8GKXn+OG9c7lHC+EEcKJx15k5v8CE4+9qLcBeCBrngbOjYjlFft2U72dMGO9mXk0M38E/F+zfbuw5k6oUu8PM/NYefs0td/VqdS3y+rtlCo1j2f5NAXO5uNfju3WczxVvbO2EAJhBfDzuvdjpa3KNlX6ttpc6oXaf/T/iIgD5VEe7TaXc9SJ89uK79vt53gTtRHkbPq2wlzqhfk/v1Cx5oj444h4EXgc+LNm+rbYXOqFWZ7jrvg9hDmq8tiLqbap9MiMFptLvQBfzsw3IuIC4ImIeDEzf9DSCqvX0s6+czHX79u15zgi1lH7gJ24Xtyt/4ZrG55aL8z/+YXqj8d5FHg0In4P+Hvgqqp9W2wu9cIsz/FCGCFUeezFVNt04pEZc6mXzJz4ehR4lNrQsp3mco469UiSOX3fbj3HEfFZ4D5gQ2b+opm+LTaXejtxfqHJ81Q+PH8zIpY127dF5lLv7M9xOydG5uNFbZTzM+AiPp58uXTSNtdw8iTts1X7dlm9ZwOfqVv+IbWnxHa03rpt/5aTJ5Xn/fy2oOauPMfArwGjwJdme6xdUu+8n98mar6Yjydpvwi8Xv4f7NZzPFW9sz7Hbf2PMF8vanfl/A+1Wfm/Lm3fAL5RloPaH+B5BTgI9E/Xt1vrpXbHwY/L61AX1fur1H6i+SXwTlk+p1Pndy41d/E5vg84BjxXXvu7/N9ww3o7dX4r1nx7qek5YB/wlS4/xw3rncs59tEVkiRgYcwhSJJawECQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJKK/wfzV2WnfBtICgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATDUlEQVR4nO3df4xdZX7f8fcndpYgEgg/lqll0w4tVlN+ZDdlQq1u/5jUbXF2o5iooLraLKZ1ZIWQKJGIGtM/WlWVJfinpESF1FoiDN0WLJItVra0RaZXURV+rDfdLIFdyiQQsLCwWChhtoUy9Ns/7jPO9dyx584wM3fmzvslXd1zn3uec5/z1Wg+85xz7plUFZIkfd+wByBJWhsMBEkSYCBIkhoDQZIEGAiSpGbzsAewVJdddlmNj48PvP73vvc9LrjggpUb0DpkTfpZk37WpN96rsk3vvGNt6vq0/O9t24DYXx8nOPHjw+8fqfTYXJycuUGtA5Zk37WpJ816beea5LkT8/2noeMJEnAgIGQ5LUkLyT5ZpLjre2SJE8leaU9X9yz/l1JppK8nOTGnvbr23amktyXJK39vCSPtfbnkowv835KkhawmBnCT1TVZ6tqor0+AByrqu3AsfaaJFcDe4BrgF3A/Uk2tT4PAPuB7e2xq7XvA96tqquAe4F7lr5LkqSl+CSHjHYDh9vyYeCmnvZHq+rDqnoVmAJuSLIFuLCqnqnu/TIentNndluPAztnZw+SpNUx6EnlAv5rkgL+bVUdAsaq6iRAVZ1McnlbdyvwbE/fE63to7Y8t322zxttWzNJ3gMuBd7uHUSS/XRnGIyNjdHpdAYcPkxPTy9q/Y3AmvSzJv2sSb9RrcmggfC5qnqz/dJ/Ksl3zrHufH/Z1znaz9XnzIZuEB0CmJiYqMWc5V/PVwWsFGvSz5r0syb9RrUmAx0yqqo32/Mp4KvADcBb7TAQ7flUW/0EcEVP923Am6192zztZ/RJshm4CHhn8bsjSVqqBQMhyQVJfmh2Gfh7wB8BR4G9bbW9wBNt+Siwp105dCXdk8fPt8NL7yfZ0c4P3Dqnz+y2bgaeLu/LLUmrapBDRmPAV9s53s3Av6+q/5zk68CRJPuA14FbAKrqxSRHgJeAGeCOqvq4bet24CHgfODJ9gB4EHgkyRTdmcGeZdg3SdIiLBgIVfUnwGfmaf8usPMsfQ4CB+dpPw5cO0/7B7RAWW3jB752evm1u78wjCFI0prgN5UlSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJwCICIcmmJP8jye+215ckeSrJK+354p5170oyleTlJDf2tF+f5IX23n1J0trPS/JYa38uyfgy7qMkaQCLmSH8MvDtntcHgGNVtR041l6T5GpgD3ANsAu4P8mm1ucBYD+wvT12tfZ9wLtVdRVwL3DPkvZGkrRkAwVCkm3AF4Av9zTvBg635cPATT3tj1bVh1X1KjAF3JBkC3BhVT1TVQU8PKfP7LYeB3bOzh4kSatj84Dr/TrwT4Af6mkbq6qTAFV1MsnlrX0r8GzPeida20dteW77bJ832rZmkrwHXAq83TuIJPvpzjAYGxuj0+kMOHyYnp6ed/07r5s5vbyY7Y2Cs9VkI7Mm/axJv1GtyYKBkOSngFNV9Y0kkwNsc76/7Osc7efqc2ZD1SHgEMDExERNTg4ynK5Op8N869924Gunl1/74uDbGwVnq8lGZk36WZN+o1qTQWYInwN+OsnngR8ALkzy74C3kmxps4MtwKm2/gngip7+24A3W/u2edp7+5xIshm4CHhnifskSVqCBc8hVNVdVbWtqsbpnix+uqp+FjgK7G2r7QWeaMtHgT3tyqEr6Z48fr4dXno/yY52fuDWOX1mt3Vz+4y+GYIkaeUMeg5hPncDR5LsA14HbgGoqheTHAFeAmaAO6rq49bnduAh4HzgyfYAeBB4JMkU3ZnBnk8wLknSEiwqEKqqA3Ta8neBnWdZ7yBwcJ7248C187R/QAsUSdJw+E1lSRJgIEiSGgNBkgQYCJKkxkCQJAGf7LLTkTPe+63lu78wxJFI0upzhiBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSc2G/GJa7xfQJEldzhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJahYMhCQ/kOT5JH+Y5MUk/6K1X5LkqSSvtOeLe/rclWQqyctJbuxpvz7JC+29+5KktZ+X5LHW/lyS8RXYV0nSOQwyQ/gQ+NtV9Rngs8CuJDuAA8CxqtoOHGuvSXI1sAe4BtgF3J9kU9vWA8B+YHt77Grt+4B3q+oq4F7gnk++a5KkxVgwEKprur38/vYoYDdwuLUfBm5qy7uBR6vqw6p6FZgCbkiyBbiwqp6pqgIentNndluPAztnZw+SpNUx0DmEJJuSfBM4BTxVVc8BY1V1EqA9X95W3wq80dP9RGvb2pbntp/Rp6pmgPeAS5ewP5KkJdo8yEpV9THw2SQ/DHw1ybXnWH2+v+zrHO3n6nPmhpP9dA85MTY2RqfTOccwzjQ9PX16/Tuvm1lw/d/4yhOnl6/betHAn7Oe9NZEXdaknzXpN6o1GSgQZlXV/0rSoXvs/60kW6rqZDscdKqtdgK4oqfbNuDN1r5tnvbePieSbAYuAt6Z5/MPAYcAJiYmanJycuCxdzodZte/7cDXBu4H8NoXB/+c9aS3JuqyJv2sSb9RrckgVxl9us0MSHI+8HeA7wBHgb1ttb3A7J/UR4E97cqhK+mePH6+HVZ6P8mOdn7g1jl9Zrd1M/B0O88gSVolg8wQtgCH25VC3wccqarfTfIMcCTJPuB14BaAqnoxyRHgJWAGuKMdcgK4HXgIOB94sj0AHgQeSTJFd2awZzl2TpI0uAUDoaq+BfzYPO3fBXaepc9B4OA87ceBvvMPVfUBLVAkScPhN5UlSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBi/wXmhvV+Jx/ufna3V8Y0kgkaeU4Q5AkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRLg3U6XpPfup975VNKocIYgSQIMBElSYyBIkgADQZLULBgISa5I8t+SfDvJi0l+ubVfkuSpJK+054t7+tyVZCrJy0lu7Gm/PskL7b37kqS1n5fksdb+XJLxFdhXSdI5DDJDmAHurKq/BuwA7khyNXAAOFZV24Fj7TXtvT3ANcAu4P4km9q2HgD2A9vbY1dr3we8W1VXAfcC9yzDvkmSFmHBQKiqk1X1B235feDbwFZgN3C4rXYYuKkt7wYeraoPq+pVYAq4IckW4MKqeqaqCnh4Tp/ZbT0O7JydPUiSVseivofQDuX8GPAcMFZVJ6EbGkkub6ttBZ7t6XaitX3Ulue2z/Z5o21rJsl7wKXA23M+fz/dGQZjY2N0Op2Bxz49PX16/Tuvmxm430IWM4a1prcm6rIm/axJv1GtycCBkOQHgd8GfqWq/uwcf8DP90ado/1cfc5sqDoEHAKYmJioycnJBUb95zqdDrPr39bzxbJP7IXvnV5cb19S662JuqxJP2vSb1RrMtBVRkm+n24YfKWqfqc1v9UOA9GeT7X2E8AVPd23AW+29m3ztJ/RJ8lm4CLgncXujCRp6Qa5yijAg8C3q+pf9bx1FNjblvcCT/S072lXDl1J9+Tx8+3w0vtJdrRt3jqnz+y2bgaebucZJEmrZJBDRp8DvgS8kOSbre2fAncDR5LsA14HbgGoqheTHAFeonuF0h1V9XHrdzvwEHA+8GR7QDdwHkkyRXdmsOeT7ZYkabEWDISq+u/Mf4wfYOdZ+hwEDs7Tfhy4dp72D2iBIkkaDr+pLEkCDARJUmMgSJIA/0HOsvIf50haz5whSJIAA0GS1BgIkiTAQJAkNQaCJAnwKqMV4xVHktYbZwiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLjZaerwEtQJa0HzhAkSYCBIElqDARJEmAgSJIaA0GSBHiV0arziiNJa5UzBEkSYCBIkhoDQZIEeA5hqDyfIGktcYYgSQIMBElSYyBIkgADQZLUGAiSJMCrjNYMrziSNGwLzhCS/FaSU0n+qKftkiRPJXmlPV/c895dSaaSvJzkxp7265O80N67L0la+3lJHmvtzyUZX+Z9lCQNYJBDRg8Bu+a0HQCOVdV24Fh7TZKrgT3ANa3P/Uk2tT4PAPuB7e0xu819wLtVdRVwL3DPUndGkrR0CwZCVf0e8M6c5t3A4bZ8GLipp/3Rqvqwql4FpoAbkmwBLqyqZ6qqgIfn9Jnd1uPAztnZgyRp9Sz1HMJYVZ0EqKqTSS5v7VuBZ3vWO9HaPmrLc9tn+7zRtjWT5D3gUuDtuR+aZD/dWQZjY2N0Op2BBzw9PX16/Tuvmxm43zD8xleeOL183daLVuxzemuiLmvSz5r0G9WaLPdJ5fn+sq9ztJ+rT39j1SHgEMDExERNTk4OPLBOp8Ps+rf1nMBd61774uSKbbu3JuqyJv2sSb9RrclSLzt9qx0Goj2fau0ngCt61tsGvNnat83TfkafJJuBi+g/RCVJWmFLDYSjwN62vBd4oqd9T7ty6Eq6J4+fb4eX3k+yo50fuHVOn9lt3Qw83c4zSJJW0YKHjJL8B2ASuCzJCeCfA3cDR5LsA14HbgGoqheTHAFeAmaAO6rq47ap2+lesXQ+8GR7ADwIPJJkiu7MYM+y7NmI8PsJklbLgoFQVf/wLG/tPMv6B4GD87QfB66dp/0DWqBIkobHW1dIkgADQZLUeC+jdcTzCZJWkjMESRJgIEiSGgNBkgR4DmHd8nyCpOXmDEGSBBgIkqTGQ0YjwMNHkpaDMwRJEmAgSJIaDxmNGA8fSVoqZwiSJMBAkCQ1HjIaYR4+krQYzhAkSYAzhA3D2YKkhThDkCQBzhA2pNnZwp3XzTA53KFIWkOcIUiSAGcIG57nFiTNcoYgSQKcIaiHswVpY3OGIEkCnCHoLJwtSBuPgaAFGQ7SxmAgaFEMB2l0GQhast5wAANCWu8MBC0bZw/S+uZVRpIkwBmCVsjcw0mznDlIa5eBoFXlYSVp7TIQNDRnm0X0MjSk1bNmAiHJLuBfA5uAL1fV3UMektYADz1Jq2dNBEKSTcC/Af4ucAL4epKjVfXScEemtWqQ2UUvA0Ra2JoIBOAGYKqq/gQgyaPAbsBA0LIYNEDuvG6G2xYZNnPNDR/Pm2i9SFUNewwkuRnYVVU/115/CfgbVfWLc9bbD+xvL/8q8PIiPuYy4O1lGO4osSb9rEk/a9JvPdfkL1XVp+d7Y63MEDJPW19SVdUh4NCSPiA5XlUTS+k7qqxJP2vSz5r0G9WarJUvpp0Aruh5vQ14c0hjkaQNaa0EwteB7UmuTPIpYA9wdMhjkqQNZU0cMqqqmSS/CPwXuped/lZVvbjMH7OkQ00jzpr0syb9rEm/kazJmjipLEkavrVyyEiSNGQGgiQJGMFASLIryctJppIcmOf9JLmvvf+tJH99GONcTQPU5EeSPJPkwyS/OowxrrYBavLF9vPxrSS/n+QzwxjnahqgJrtbPb6Z5HiSvzWMca6mhWrSs96PJ/m4fadq/aqqkXnQPSH9x8BfBj4F/CFw9Zx1Pg88Sfe7DzuA54Y97jVQk8uBHwcOAr867DGvkZr8TeDitvyT/pwUwA/y5+cdfxT4zrDHPeya9Kz3NPCfgJuHPe5P8hi1GcLpW2BU1f8FZm+B0Ws38HB1PQv8cJItqz3QVbRgTarqVFV9HfhoGAMcgkFq8vtV9W57+Szd78aMskFqMl3tNyBwAfN8eXTEDPL7BOCXgN8GTq3m4FbCqAXCVuCNntcnWtti1xklG21/B7HYmuyjO6scZQPVJMnPJPkO8DXgH6/S2IZlwZok2Qr8DPCbqziuFTNqgTDILTAGuk3GCNlo+zuIgWuS5CfoBsKvreiIhm/Q28d8tap+BLgJ+JcrPaghG6Qmvw78WlV9vPLDWXlr4otpy2iQW2BstNtkbLT9HcRANUnyo8CXgZ+squ+u0tiGZVE/J1X1e0n+SpLLqmq93uRtIYPUZAJ4NAl0b3j3+SQzVfUfV2WEy2zUZgiD3ALjKHBru9poB/BeVZ1c7YGuIm8L0m/BmiT5i8DvAF+qqv85hDGutkFqclXab752dd6ngFEOygVrUlVXVtV4VY0DjwO/sF7DAEZshlBnuQVGkp9v7/8m3SsBPg9MAf8b+EfDGu9qGKQmSf4CcBy4EPh/SX6F7tUUfzasca+kAX9O/hlwKXB/+x04UyN4d8tZA9bk79P9Y+oj4P8A/6DnJPPIGbAmI8VbV0iSgNE7ZCRJWiIDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJav4/ddxvTzMjGHcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARkUlEQVR4nO3dbYyl5V3H8e+v0FICQnko2w2LHZRNKg9tLVuKVpNBalhL49IIcQ0W0E02Imqb0FjwRY0xm8AbqWih2ZSGhRqXDX1gU0oMASeNKQ9dalsKFNkKwsoGQkHKoiCLf1+ca+hhmN25Z5g5Z2bO95OczH2u+77uc/1zYH9z3U+TqkKSpLcMewCSpMXBQJAkAQaCJKkxECRJgIEgSWoOHPYA5uroo4+usbGxztu/+OKLHHLIIQs3oEVmlOodpVphtOq11vl33333PVNV75xu3ZINhLGxMXbs2NF5+4mJCcbHxxduQIvMKNU7SrXCaNVrrfMvyX/sa52HjCRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEnAEr5Teb6MXXbra8uPXXH2EEciScPlDEGSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJwCwCIckBSf41yTfa+yOT3J7kkfbziL5tL0+yM8nDSc7qaz81yf1t3dVJ0toPSnJTa78nydg81ihJ6mA2M4RPAg/1vb8MuKOqVgN3tPckORFYD5wErAWuSXJA63MtsBFY3V5rW/sG4LmqOgG4CrhyTtVIkuasUyAkWQWcDXyxr3kdsKUtbwHO6WvfWlUvV9WjwE7gtCQrgcOq6q6qKuCGKX0m93UzcObk7EGSNBgHdtzuc8CfAz/X17aiqnYDVNXuJMe09mOBu/u229XaXmnLU9sn+zzR9rU3yfPAUcAz/YNIspHeDIMVK1YwMTHRcfiwZ8+eabe/9JS9ry3PZn+L3b7qXY5GqVYYrXqtdbBmDIQkHwOerqr7kox32Od0v9nXftr31+f1DVWbgc0Aa9asqfHxLsPpmZiYYLrtL7rs1teWHzu/+/4Wu33VuxyNUq0wWvVa62B1mSF8GPjtJB8F3g4cluTLwFNJVrbZwUrg6bb9LuC4vv6rgCdb+6pp2vv77EpyIHA48Owca5IkzcGM5xCq6vKqWlVVY/ROFt9ZVb8PbAcubJtdCNzSlrcD69uVQ8fTO3l8bzu89EKS09v5gQum9Jnc17ntM94wQ5AkLZyu5xCmcwWwLckG4HHgPICqeiDJNuBBYC9wSVW92vpcDFwPHAzc1l4A1wE3JtlJb2aw/k2MS5I0B7MKhKqaACba8k+AM/ex3SZg0zTtO4CTp2l/iRYokqTh8E5lSRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElq3sydysvOWP+D7q44e4gjkaTBc4YgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkYESfdtr/VFNJUo8zBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgR0CIQkb09yb5LvJ3kgyV+19iOT3J7kkfbziL4+lyfZmeThJGf1tZ+a5P627uokae0HJbmptd+TZGwBapUk7UeXGcLLwG9U1fuA9wNrk5wOXAbcUVWrgTvae5KcCKwHTgLWAtckOaDt61pgI7C6vda29g3Ac1V1AnAVcOWbL02SNBszBkL17Glv39peBawDtrT2LcA5bXkdsLWqXq6qR4GdwGlJVgKHVdVdVVXADVP6TO7rZuDMydmDJGkwOj3+uv2Gfx9wAvD5qronyYqq2g1QVbuTHNM2Pxa4u6/7rtb2Slue2j7Z54m2r71JngeOAp6ZMo6N9GYYrFixgomJiY5lwp49e17b/tJT9s64/Wz2vRj117vcjVKtMFr1WutgdQqEqnoVeH+SdwBfS3Lyfjaf7jf72k/7/vpMHcdmYDPAmjVranx8fD/DeL2JiQkmt7+oy99DuP/F1xYfu+Lszp+zWPTXu9yNUq0wWvVa62DN6iqjqvovYILesf+n2mEg2s+n22a7gOP6uq0Cnmztq6Zpf12fJAcChwPPzmZskqQ3p8tVRu9sMwOSHAx8BPgRsB24sG12IXBLW94OrG9XDh1P7+Txve3w0gtJTm/nBy6Y0mdyX+cCd7bzDJKkAelyyGglsKWdR3gLsK2qvpHkLmBbkg3A48B5AFX1QJJtwIPAXuCSdsgJ4GLgeuBg4Lb2ArgOuDHJTnozg/XzUZwkqbsZA6GqfgD88jTtPwHO3EefTcCmadp3AG84/1BVL9ECRZI0HN6pLEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCej4N5VH3diUv8G8FP/GsiTNxBmCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAJ92Oif9Tz/1yaeSlgtnCJIkwECQJDUGgiQJMBAkSY2BIEkCOgRCkuOS/HOSh5I8kOSTrf3IJLcneaT9PKKvz+VJdiZ5OMlZfe2nJrm/rbs6SVr7QUluau33JBlbgFolSfvRZYawF7i0qn4JOB24JMmJwGXAHVW1GrijvaetWw+cBKwFrklyQNvXtcBGYHV7rW3tG4DnquoE4CrgynmoTZI0CzMGQlXtrqrvtuUXgIeAY4F1wJa22RbgnLa8DthaVS9X1aPATuC0JCuBw6rqrqoq4IYpfSb3dTNw5uTsQZI0GOn929xx496hnG8BJwOPV9U7+tY9V1VHJPl74O6q+nJrvw64DXgMuKKqPtLafx34TFV9LMkPgbVVtaut+zHwoap6Zsrnb6Q3w2DFihWnbt26tfPY9+zZw6GHHgrA/f/5fOd+s3HKsYcvyH7nor/e5W6UaoXRqtda598ZZ5xxX1WtmW5d5zuVkxwKfAX4VFX9dD+/wE+3ovbTvr8+r2+o2gxsBlizZk2Nj4/PMOqfmZiYYHL7i/ruNJ5Pj53ffTwLrb/e5W6UaoXRqtdaB6vTVUZJ3kovDP6hqr7amp9qh4FoP59u7buA4/q6rwKebO2rpml/XZ8kBwKHA8/OthhJ0tx1ucoowHXAQ1X1N32rtgMXtuULgVv62te3K4eOp3fy+N6q2g28kOT0ts8LpvSZ3Ne5wJ01m2NZkqQ3rcshow8DnwDuT/K91vYXwBXAtiQbgMeB8wCq6oEk24AH6V2hdElVvdr6XQxcDxxM77zCba39OuDGJDvpzQzWv7myJEmzNWMgVNW/MP0xfoAz99FnE7BpmvYd9E5IT21/iRYokqTh8E5lSRJgIEiSGv9AzjzyD+dIWsqcIUiSAANBktQYCJIkwECQJDWeVF4gnmCWtNQ4Q5AkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEeB/CQHhPgqSlwBmCJAkwECRJjYEgSQIMBElS40nlAfMEs6TFyhmCJAkwECRJjYEgSQIMBElS40nlIfIEs6TFxBmCJAkwECRJjYEgSQIMBElS40nlRcITzJKGzRmCJAkwECRJjYEgSQI6BEKSLyV5OskP+9qOTHJ7kkfazyP61l2eZGeSh5Oc1dd+apL727qrk6S1H5TkptZ+T5Kxea5RktRBlxnC9cDaKW2XAXdU1WrgjvaeJCcC64GTWp9rkhzQ+lwLbARWt9fkPjcAz1XVCcBVwJVzLWa5GLvs1tdekjQoMwZCVX0LeHZK8zpgS1veApzT1761ql6uqkeBncBpSVYCh1XVXVVVwA1T+kzu62bgzMnZgyRpcOZ62emKqtoNUFW7kxzT2o8F7u7bbldre6UtT22f7PNE29feJM8DRwHPTP3QJBvpzTJYsWIFExMTnQe8Z8+e17a/9JS9nfsN22xq7Ndf73I3SrXCaNVrrYM13/chTPebfe2nfX993thYtRnYDLBmzZoaHx/vPLCJiQkmt79oCR2Keez88Tn16693uRulWmG06rXWwZprIDyVZGWbHawEnm7tu4Dj+rZbBTzZ2ldN097fZ1eSA4HDeeMhqpHlDWuSBmWul51uBy5syxcCt/S1r29XDh1P7+Txve3w0gtJTm/nBy6Y0mdyX+cCd7bzDJKkAZpxhpDkH4Fx4Ogku4C/BK4AtiXZADwOnAdQVQ8k2QY8COwFLqmqV9uuLqZ3xdLBwG3tBXAdcGOSnfRmBuvnpTJJ0qzMGAhV9Xv7WHXmPrbfBGyapn0HcPI07S/RAkWSNDzeqSxJAnza6ZLiCWZJC8kZgiQJMBAkSY2BIEkCPIewZHk+QdJ8c4YgSQIMBElS4yGjZcDDR5LmgzMESRJgIEiSGg8ZLTOTh48uPWUv48MdiqQlxhmCJAkwECRJjYeMljGvPpI0G84QJEmAgSBJajxkNCI8fCRpJs4QJEmAM4SR5GxB0nScIUiSAGcII8/ZgqRJzhAkSYAzBPVxtiCNNmcIkiTAQJAkNR4y0rQ8fCSNHgNBMzIcpNFgIGhWDAdp+TIQNGf94QAGhLTUeVJZkgQ4Q9A88nCStLQZCFoQUw8nTTIopMXLQNBAGRTS4mUgaFHwcJM0fIsmEJKsBf4WOAD4YlVdMeQhaUicRUjDsSgCIckBwOeB3wR2Ad9Jsr2qHhzuyLSY7CsoLj1lLxdNs84AkWZnUQQCcBqws6r+HSDJVmAdYCBozvYVIAvNINJStVgC4Vjgib73u4APTd0oyUZgY3u7J8nDs/iMo4Fn5jzCJebPRqjexVZrrlzwj1hU9S4wa51/797XisUSCJmmrd7QULUZ2DynD0h2VNWaufRdikap3lGqFUarXmsdrMVyp/Iu4Li+96uAJ4c0FkkaSYslEL4DrE5yfJK3AeuB7UMekySNlEVxyKiq9ib5E+Cf6F12+qWqemCeP2ZOh5qWsFGqd5RqhdGq11oHKFVvOFQvSRpBi+WQkSRpyAwESRKwDAMhydokDyfZmeSyadYnydVt/Q+SfGAY45wPHWp9T5K7kryc5NPDGON86lDv+e07/UGSbyd53zDGOR861Lqu1fm9JDuS/NowxjlfZqq3b7sPJnk1ybmDHN986vDdjid5vn2330vy2YENrqqWzYveCekfA78AvA34PnDilG0+CtxG796H04F7hj3uBaz1GOCDwCbg08Me8wDq/VXgiLb8W8v8uz2Un50DfC/wo2GPeyHr7dvuTuCbwLnDHvcCfrfjwDeGMb7lNkN47REYVfW/wOQjMPqtA26onruBdyRZOeiBzoMZa62qp6vqO8ArwxjgPOtS77er6rn29m5697MsRV1q3VPtXw/gEKa5kXMJ6fL/LcCfAl8Bnh7k4OZZ11qHYrkFwnSPwDh2DtssBculjq5mW+8GejPBpahTrUk+nuRHwK3AHw5obAthxnqTHAt8HPjCAMe1ELr+d/wrSb6f5LYkJw1maMsvELo8AqPTYzKWgOVSR1ed601yBr1A+MyCjmjhdH2Uy9eq6j3AOcBfL/SgFlCXej8HfKaqXl344SyoLrV+F3h3Vb0P+Dvg6ws9qEnLLRC6PAJjuTwmY7nU0VWnepO8F/gisK6qfjKgsc23WX23VfUt4BeTHL3QA1sgXepdA2xN8hhwLnBNknMGMrr5NWOtVfXTqtrTlr8JvHVQ3+1yC4Quj8DYDlzQrjY6HXi+qnYPeqDzYNQe9zFjvUl+Hvgq8Imq+rchjHG+dKn1hCRpyx+gd4JyqQbgjPVW1fFVNVZVY8DNwB9X1dcHPtI3r8t3+66+7/Y0ev9OD+S7XRSPrpgvtY9HYCT5o7b+C/SuUPgosBP4b+APhjXeN6NLrUneBewADgP+L8mn6F3R8NNhjXuuOn63nwWOovfbI8DeWoJPyuxY6+/Q+8XmFeB/gN/tO8m8pHSsd1noWOu5wMVJ9tL7btcP6rv10RWSJGD5HTKSJM2RgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDX/DxFl4Cn1mRA3AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASe0lEQVR4nO3df4xl5X3f8fcnbOJQUzA2YbNiSZaGrRp+xGnYEJq01Ti48gai4KhY3dYtuF1pVUTbRCKql/6RpqpWgn/qFCU4WpkIcKquV04cIxNaWUunVhV+eGltrwFTb2KK1yAjDMUsrSlLvv3jnnl8d5idOfNj5945+35JV3Puc89z5vnq7s5nnvOceyZVhSRJAD8w6QFIkqaHoSBJagwFSVJjKEiSGkNBktRsmvQAVuqCCy6obdu29d7/9ddf553vfOfpG9AEWNP0G1o9MLyahlYPLF7TE0888VJV/cip+m7YUNi2bRuHDx/uvf/s7CwzMzOnb0ATYE3Tb2j1wPBqGlo9sHhNSf7XYn09fSRJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqNuwnmtfKtr0Ptu1n77h+giORpMlzpiBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqekdCknOSvI/knyue/7uJJ9P8vXu6/lj+96e5GiSZ5J8YKz9qiRHutfuSpKu/R1JPtW1P5Zk2xrWKEnqaTkzhV8Dnh57vhc4VFXbgUPdc5JcBuwCLgd2AncnOavr83FgD7C9e+zs2ncDr1TVpcDHgDtXVI0kaVV6hUKSrcD1wCfGmm8A7uu27wM+ONZ+oKreqKpvAEeBq5NsAc6tqkeqqoD75/WZO9angWvnZhGSpPWzqed+vw38S+Avj7VtrqoXAKrqhSQXdu0XAY+O7Xesa3uz257fPtfnm92xTiR5FXgP8NL4IJLsYTTTYPPmzczOzvYcPhw/fnzB/W+78kTbXs7xpsGpatrIhlbT0OqB4dU0tHpgdTUtGQpJfhl4saqeSDLT45gL/YZfi7Qv1ufkhqr9wH6AHTt21MxMn+GMzM7OstD+H9n7YNt+9sP9jzcNTlXTRja0moZWDwyvpqHVA6urqc9M4ReAX0lyHfDDwLlJ/gD4dpIt3SxhC/Bit/8x4OKx/luB57v2rQu0j/c5lmQTcB7w8ooqkiSt2JJrClV1e1VtraptjBaQH66qfwg8ANzc7XYz8Nlu+wFgV3dF0SWMFpQf7041vZbkmm694KZ5feaOdWP3Pd42U5AknV591xQWcgdwMMlu4DngQwBV9WSSg8BTwAng1qp6q+tzC3AvcDbwUPcAuAf4ZJKjjGYIu1YxLknSCi0rFKpqFpjttr8DXHuK/fYB+xZoPwxcsUD79+hCRZI0OX6iWZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktSs5jYXg7Nt/I6pd1w/wZFI0mQ4U5AkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqRm06QHMAnb9j446SFI0lRypiBJapYMhSQ/nOTxJF9O8mSSf9O1vzvJ55N8vft6/lif25McTfJMkg+MtV+V5Ej32l1J0rW/I8mnuvbHkmw7DbVKkpbQZ6bwBvCLVfVe4KeBnUmuAfYCh6pqO3Coe06Sy4BdwOXATuDuJGd1x/o4sAfY3j12du27gVeq6lLgY8Cdqy9NkrRcS4ZCjRzvnv5g9yjgBuC+rv0+4IPd9g3Agap6o6q+ARwFrk6yBTi3qh6pqgLun9dn7lifBq6dm0VIktZPr4Xm7jf9J4BLgd+tqseSbK6qFwCq6oUkF3a7XwQ8Otb9WNf2Zrc9v32uzze7Y51I8irwHuCleePYw2imwebNm5mdne1ZJhw/frztf9uVJ5bcfznHnpTxmoZiaDUNrR4YXk1DqwdWV1OvUKiqt4CfTvIu4DNJrlhk94V+w69F2hfrM38c+4H9ADt27KiZmZlFhnGy2dlZ5vb/SJ+rj4683jafveP63t9nPY3XNBRDq2lo9cDwahpaPbC6mpZ19VFV/W9gltFawLe7U0J0X1/sdjsGXDzWbSvwfNe+dYH2k/ok2QScB7y8nLFJklavz9VHP9LNEEhyNvB+4GvAA8DN3W43A5/tth8AdnVXFF3CaEH58e5U02tJrunWC26a12fuWDcCD3frDpKkddTn9NEW4L5uXeEHgINV9bkkjwAHk+wGngM+BFBVTyY5CDwFnABu7U4/AdwC3AucDTzUPQDuAT6Z5CijGcKutShOkrQ8S4ZCVX0F+OsLtH8HuPYUffYB+xZoPwy8bT2iqr5HFyqSpMnxE82SpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUtPrz3Ge6bbN+/Od0/rnOSVptZwpSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNt85egfFbaXsbbUlD4kxBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqlgyFJBcn+S9Jnk7yZJJf69rfneTzSb7efT1/rM/tSY4meSbJB8bar0pypHvtriTp2t+R5FNd+2NJtp2GWiVJS+gzUzgB3FZVPwlcA9ya5DJgL3CoqrYDh7rndK/tAi4HdgJ3JzmrO9bHgT3A9u6xs2vfDbxSVZcCHwPuXIPaJEnLtOSH16rqBeCFbvu1JE8DFwE3ADPdbvcBs8BHu/YDVfUG8I0kR4GrkzwLnFtVjwAkuR/4IPBQ1+e3umN9GvidJKmqWnWFp5kfZJM0JFnOz93utM4XgCuA56rqXWOvvVJV5yf5HeDRqvqDrv0eRj/4nwXuqKr3d+1/C/hoVf1ykq8CO6vqWPfanwE/V1Uvzfv+exjNNNi8efNVBw4c6D3248ePc8455wBw5Fuv9u63HFdedN5pOe6pjNc0FEOraWj1wPBqGlo9sHhN73vf+56oqh2n6tv7NhdJzgH+EPj1qvputxyw4K4LtNUi7Yv1Obmhaj+wH2DHjh01MzOzxKi/b3Z2lrn9PzL22/1aevbD/cezFsZrGoqh1TS0emB4NQ2tHlhdTb2uPkryg4wC4T9U1R91zd9OsqV7fQvwYtd+DLh4rPtW4PmufesC7Sf1SbIJOA94ebnFSJJWp8/VRwHuAZ6uqn839tIDwM3d9s3AZ8fad3VXFF3CaEH58W5t4rUk13THvGlen7lj3Qg8vBHWEyRpaPqcPvoF4B8BR5J8qWv7V8AdwMEku4HngA8BVNWTSQ4CTzG6cunWqnqr63cLcC9wNqN1hoe69nuAT3aL0i8zunpJkrTO+lx99N9Y+Jw/wLWn6LMP2LdA+2FGi9Tz279HFyqSpMnx7ymsIS9PlbTReZsLSVJjKEiSGkNBktQYCpKkxlCQJDVefXSaeCWSpI3ImYIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktR4Seo68PJUSRuFMwVJUmMoSJIaQ0GS1BgKkqTGUJAkNV59tM68EknSNHOmIElqDAVJUmMoSJIaQ0GS1LjQPEEuOkuaNs4UJEmNoSBJagwFSVJjKEiSGkNBktR49dGU8EokSdPAmYIkqTEUJEmNoSBJalxTmEKuL0iaFGcKkqRmyVBI8vtJXkzy1bG2dyf5fJKvd1/PH3vt9iRHkzyT5ANj7VclOdK9dleSdO3vSPKprv2xJNvWuEZJUk99Zgr3Ajvnte0FDlXVduBQ95wklwG7gMu7PncnOavr83FgD7C9e8wdczfwSlVdCnwMuHOlxUiSVmfJUKiqLwAvz2u+Abiv274P+OBY+4GqeqOqvgEcBa5OsgU4t6oeqaoC7p/XZ+5YnwaunZtFSJLW10oXmjdX1QsAVfVCkgu79ouAR8f2O9a1vdltz2+f6/PN7lgnkrwKvAd4af43TbKH0WyDzZs3Mzs723vAx48fb/vfduWJ3v0mbbEax2saiqHVNLR6YHg1Da0eWF1Na3310UK/4dci7Yv1eXtj1X5gP8COHTtqZmam98BmZ2eZ2/8jY1f3TL0jr7fN+Vcijdc0FEOraWj1wPBqGlo9sLqaVnr10be7U0J0X1/s2o8BF4/ttxV4vmvfukD7SX2SbALO4+2nqyRJ62ClofAAcHO3fTPw2bH2Xd0VRZcwWlB+vDvV9FqSa7r1gpvm9Zk71o3Aw926gyRpnS15+ijJfwRmgAuSHAP+NXAHcDDJbuA54EMAVfVkkoPAU8AJ4Naqeqs71C2MrmQ6G3ioewDcA3wyyVFGM4Rda1KZJGnZlgyFqvr7p3jp2lPsvw/Yt0D7YeCKBdq/RxcqWpyfdJZ0uvmJZklSYyhIkhpDQZLUGAob1La9D3LkW6+etM4gSatlKEiSGkNBktQYCpKkxr+8NgB+fkHSWnGmIElqDAVJUuPpo4HxVJKk1XCmIElqDAVJUmMoSJIa1xQGzPUFScvlTEGS1BgKkqTG00dnCE8lSerDmYIkqTEUJEmNp4/OQJ5KknQqzhQkSY0zhTOcswZJ45wpSJIaZwpqnDVIcqYgSWqcKWhBzhqkM5MzBUlS40xBS3LWIJ05DAUtiwEhDZunjyRJjTMFrdj4rAGcOUhDYChozcwPiTmGhbRxePpIktQ4U9Bp5wxC2jgMBU3MQmFx25UnmFn/oUjqTE0oJNkJ/HvgLOATVXXHhIekCfGyV2lypiIUkpwF/C7wd4BjwBeTPFBVT012ZJq0U5166sNAkZZvKkIBuBo4WlV/DpDkAHADYChoxVYTKKthGGkjm5ZQuAj45tjzY8DPzd8pyR5gT/f0eJJnlvE9LgBeWvEIp9C/sKaplDtPerrh61nA0GoaWj2weE0/vljHaQmFLNBWb2uo2g/sX9E3SA5X1Y6V9J1W1jT9hlYPDK+modUDq6tpWj6ncAy4eOz5VuD5CY1Fks5Y0xIKXwS2J7kkyQ8Bu4AHJjwmSTrjTMXpo6o6keSfAf+Z0SWpv19VT67xt1nRaacpZ03Tb2j1wPBqGlo9sIqaUvW2U/eSpDPUtJw+kiRNAUNBktQMLhSS7EzyTJKjSfYu8HqS3NW9/pUkPzOJcS5Hj5r+WpJHkryR5DcmMcbl6FHPh7v35itJ/jTJeycxzuXoUdMNXT1fSnI4yd+cxDj7Wqqesf1+NslbSW5cz/GtRI/3aCbJq9179KUkvzmJcS5Hn/epq+tLSZ5M8l+XPGhVDebBaJH6z4C/AvwQ8GXgsnn7XAc8xOizEdcAj0163GtQ04XAzwL7gN+Y9JjXoJ6fB87vtn9pIO/ROXx/De+ngK9NetyrqWdsv4eBPwFunPS41+A9mgE+N+mxrnFN72J0Z4gf655fuNRxhzZTaLfLqKr/B8zdLmPcDcD9NfIo8K4kW9Z7oMuwZE1V9WJVfRF4cxIDXKY+9fxpVb3SPX2U0edWplmfmo5X978SeCcLfDhzivT5fwTwz4E/BF5cz8GtUN+aNpI+Nf0D4I+q6jkY/axY6qBDC4WFbpdx0Qr2mSYbbbxLWW49uxnN7KZZr5qS/GqSrwEPAv9knca2EkvWk+Qi4FeB31vHca1G3393fyPJl5M8lOTy9RnaivWp6a8C5yeZTfJEkpuWOuhUfE5hDfW5XUavW2pMkY023qX0rifJ+xiFwlSff6f/bVo+A3wmyd8G/i3w/tM9sBXqU89vAx+tqreShXafOn1q+u/Aj1fV8STXAX8MbD/dA1uFPjVtAq4CrgXOBh5J8mhV/c9THXRoodDndhkb7ZYaG228S+lVT5KfAj4B/FJVfWedxrZSy3qPquoLSX4iyQVVNY03YutTzw7gQBcIFwDXJTlRVX+8LiNcviVrqqrvjm3/SZK7p/g9gv4/716qqteB15N8AXgvcMpQmPhiyRovvGwC/hy4hO8vvFw+b5/rOXmh+fFJj3u1NY3t+1tM/0Jzn/fox4CjwM9PerxrWNOlfH+h+WeAb809n7bHcv7Ndfvfy/QvNPd5j3507D26GnhuWt+jZdT0k8Chbt+/BHwVuGKx4w5qplCnuF1Gkn/avf57jK6UuI7RD53/A/zjSY23jz41JflR4DBwLvAXSX6d0VUI3z3VcSel53v0m8B7gLu730RP1BTfxbJnTX8XuCnJm8D/Bf5edf9rp03PejaUnjXdCNyS5ASj92jXtL5H0K+mqno6yX8CvgL8BaO/avnVxY7rbS4kSc3Qrj6SJK2CoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDX/H0o92tZeOdnbAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASTUlEQVR4nO3df6zddX3H8edLUGQyfihaG4orG90mP9RJRaZzuawuVjCrZrh1cwJbl2YEF00ws+wPt2VpUv+ZjiiYRgxFl9UGfxGRLabszizyw+JUfsmsyrBCJCgiZZNZfO+P87l4uNzb+723vfd7Tvt8JCc95/P9cV/npO2rn+/3e75NVSFJ0rP6DiBJGg0WgiQJsBAkSY2FIEkCLARJUnNk3wEW6sQTT6yVK1d2Xv/xxx/nec973uIFWmTm75f5+zXO+Uct++233/5wVb1wpmVjWwgrV65k165dndefnJxkYmJi8QItMvP3y/z9Guf8o5Y9yX/PtsxDRpIkwEKQJDUWgiQJsBAkSY2FIEkCLARJUmMhSJIAC0GS1FgIkiRgjL+pfLCs3HTDU8/v23J+j0kkqV/OECRJgIUgSWosBEkSYCFIkhoLQZIEWAiSpMZCkCQBFoIkqbEQJEmAhSBJaiwESRJgIUiSGgtBkgRYCJKkxkKQJAEWgiSpsRAkSYCFIElqOhdCkiOS/GeSz7XXz0/yhSTfbL+eMLTu5Ul2J7k3yRuGxs9KckdbdkWStPGjknyijd+aZOVBfI+SpA7mM0N4J3DP0OtNwM6qWgXsbK9JchqwHjgdWAtcmeSIts1VwEZgVXusbeMbgEeq6lTg/cD7FvRuJEkL1qkQkqwAzgc+MjS8DtjWnm8D3jw0vr2qnqiq7wC7gbOTLAeOraqbq6qAa6dtM7Wv64A1U7MHSdLSOLLjeh8A/gr4xaGxZVX1IEBVPZjkRW38JOCWofX2tLGftufTx6e2+W7b174kjwIvAB4eDpFkI4MZBsuWLWNycrJjfNi7d++M61925r6nns9nf0tttvzjwvz9Mn9/xin7nIWQ5E3AQ1V1e5KJDvuc6V/2tZ/x/W3z9IGqrcBWgNWrV9fERJc4A5OTk8y0/sWbbnjq+X1v676/pTZb/nFh/n6Zvz/jlL3LDOG1wO8lOQ94LnBsko8D30+yvM0OlgMPtfX3ACcPbb8CeKCNr5hhfHibPUmOBI4DfrjA9yRJWoA5zyFU1eVVtaKqVjI4WXxTVf0JcD1wUVvtIuCz7fn1wPp25dApDE4e39YOLz2W5Jx2fuDCadtM7euC9jOeMUOQJC2erucQZrIF2JFkA3A/8FaAqroryQ7gbmAfcGlVPdm2uQS4BjgauLE9AK4GPpZkN4OZwfoDyCVJWoB5FUJVTQKT7fkPgDWzrLcZ2DzD+C7gjBnGf0IrFElSP/ymsiQJsBAkSY2FIEkCLARJUmMhSJIAC0GS1FgIkiTAQpAkNRaCJAmwECRJjYUgSQIO7OZ2h5yVw/83wpbze0wiSUvPGYIkCbAQJEmNhSBJAiwESVJjIUiSAAtBktRYCJIkwEKQJDUWgiQJsBAkSY2FIEkCLARJUmMhSJIAC0GS1FgIkiTAQpAkNRaCJAmwECRJjYUgSQIsBElSYyFIkgALQZLUWAiSJMBCkCQ1FoIkCehQCEmem+S2JF9LcleSv2vjz0/yhSTfbL+eMLTN5Ul2J7k3yRuGxs9KckdbdkWStPGjknyijd+aZOUivFdJ0n50mSE8AfxOVb0ceAWwNsk5wCZgZ1WtAna21yQ5DVgPnA6sBa5MckTb11XARmBVe6xt4xuAR6rqVOD9wPsO/K1JkuZjzkKogb3t5bPbo4B1wLY2vg14c3u+DtheVU9U1XeA3cDZSZYDx1bVzVVVwLXTtpna13XAmqnZgyRpaWTwd/McKw3+hX87cCrwoap6T5IfVdXxQ+s8UlUnJPkgcEtVfbyNXw3cCNwHbKmq17fx1wHvqao3JbkTWFtVe9qybwGvrqqHp+XYyGCGwbJly87avn175ze6d+9ejjnmmGeM3/G9R+fc9syTjuv8cxbLbPnHhfn7Zf7+jFr2c8899/aqWj3TsiO77KCqngRekeR44NNJztjP6jP9y772M76/babn2ApsBVi9enVNTEzsJ8bTTU5OMtP6F2+6Yc5t73tb95+zWGbLPy7M3y/z92ecss/rKqOq+hEwyeDY//fbYSDarw+11fYAJw9ttgJ4oI2vmGH8adskORI4DvjhfLJJkg5Ml6uMXthmBiQ5Gng98A3geuCittpFwGfb8+uB9e3KoVMYnDy+raoeBB5Lck47P3DhtG2m9nUBcFN1OZYlSTpouhwyWg5sa+cRngXsqKrPJbkZ2JFkA3A/8FaAqroryQ7gbmAfcGk75ARwCXANcDSD8wo3tvGrgY8l2c1gZrD+YLw5SVJ3cxZCVX0d+I0Zxn8ArJllm83A5hnGdwHPOP9QVT+hFYokqR9+U1mSBFgIkqTGQpAkAR2/h3CoWdnhuweSdLhxhiBJAiwESVJjIUiSAAtBktRYCJIkwEKQJDUWgiQJsBAkSY2FIEkCLARJUnNY3rpivqbf6uK+Lef3lESSFo8zBEkSYCFIkhoLQZIEWAiSpMZCkCQBFoIkqbEQJEmAhSBJaiwESRJgIUiSGgtBkgRYCJKkxkKQJAHe7XRBhu9+6p1PJR0qnCFIkgALQZLUWAiSJMBCkCQ1FoIkCbAQJEmNhSBJAiwESVIzZyEkOTnJvyW5J8ldSd7Zxp+f5AtJvtl+PWFom8uT7E5yb5I3DI2fleSOtuyKJGnjRyX5RBu/NcnKRXivi2LlphueekjSOOsyQ9gHXFZVLwXOAS5NchqwCdhZVauAne01bdl64HRgLXBlkiPavq4CNgKr2mNtG98APFJVpwLvB953EN6bJGke5iyEqnqwqr7Snj8G3AOcBKwDtrXVtgFvbs/XAdur6omq+g6wGzg7yXLg2Kq6uaoKuHbaNlP7ug5YMzV7kCQtjQz+bu648uBQzheBM4D7q+r4oWWPVNUJST4I3FJVH2/jVwM3AvcBW6rq9W38dcB7qupNSe4E1lbVnrbsW8Crq+rhaT9/I4MZBsuWLTtr+/btnbPv3buXY445BoA7vvdo5+3m48yTjluU/cLT848j8/fL/P0Zteznnnvu7VW1eqZlnW9ul+QY4JPAu6rqx/v5B/xMC2o/4/vb5ukDVVuBrQCrV6+uiYmJOVL/3OTkJFPrX7xIx/vve1v3PPM1nH8cmb9f5u/POGXvdJVRkmczKIN/qqpPteHvt8NAtF8fauN7gJOHNl8BPNDGV8ww/rRtkhwJHAf8cL5vRpK0cF2uMgpwNXBPVf3D0KLrgYva84uAzw6Nr29XDp3C4OTxbVX1IPBYknPaPi+cts3Uvi4Abqr5HMuSJB2wLoeMXgu8HbgjyVfb2F8DW4AdSTYA9wNvBaiqu5LsAO5mcIXSpVX1ZNvuEuAa4GgG5xVubONXAx9LspvBzGD9gb0tSdJ8zVkIVfUfzHyMH2DNLNtsBjbPML6LwQnp6eM/oRXKOPM/zpE0zvymsiQJsBAkSY2FIEkCLARJUmMhSJKAeXxTWfPjFUeSxo0zBEkSYCFIkhoLQZIEWAiSpMZCkCQBFoIkqfGy0yXgJaiSxoEzBEkSYCFIkhoLQZIEWAiSpMZCkCQBXmW05LziSNKocoYgSQIsBElSYyFIkgALQZLUWAiSJMCrjHrlFUeSRokzBEkSYCFIkhoLQZIEWAiSpMaTyiPCE8yS+uYMQZIEWAiSpMZCkCQBFoIkqfGk8gjyBLOkPjhDkCQBFoIkqZmzEJJ8NMlDSe4cGnt+ki8k+Wb79YShZZcn2Z3k3iRvGBo/K8kdbdkVSdLGj0ryiTZ+a5KVB/k9SpI66DJDuAZYO21sE7CzqlYBO9trkpwGrAdOb9tcmeSIts1VwEZgVXtM7XMD8EhVnQq8H3jfQt+MJGnh5iyEqvoi8MNpw+uAbe35NuDNQ+Pbq+qJqvoOsBs4O8ly4NiqurmqCrh22jZT+7oOWDM1e5AkLZ2FXmW0rKoeBKiqB5O8qI2fBNwytN6eNvbT9nz6+NQ232372pfkUeAFwMMLzHZImbri6LIz9zHRbxRJh7iDfdnpTP+yr/2M72+bZ+482cjgsBPLli1jcnKyc7C9e/c+tf5lZ+7rvN2oWHY083q/o2b48x9H5u/XOOcfp+wLLYTvJ1neZgfLgYfa+B7g5KH1VgAPtPEVM4wPb7MnyZHAcTzzEBUAVbUV2AqwevXqmpiY6Bx4cnKSqfUvHrrOf1xcduY+/mAe73fUDH/+48j8/Rrn/OOUfaGXnV4PXNSeXwR8dmh8fbty6BQGJ49va4eXHktyTjs/cOG0bab2dQFwUzvPIElaQnPOEJL8MzABnJhkD/A3wBZgR5INwP3AWwGq6q4kO4C7gX3ApVX1ZNvVJQyuWDoauLE9AK4GPpZkN4OZwfqD8s4kSfMyZyFU1R/NsmjNLOtvBjbPML4LOGOG8Z/QCkX75y0tJC0mv6ksSQIsBElSYyFIkgBvfz22PJ8g6WBzhiBJAiwESVJjIUiSAAtBktR4UvkQ4AlmSQeDMwRJEmAhSJIaDxkdYjx8JGmhnCFIkgALQZLUWAiSJMBCkCQ1nlQ+hHmCWdJ8OEOQJAHOEA4bzhYkzcUZgiQJsBAkSY2HjA5DHj6SNBNnCJIkwBnCYc/ZgqQpzhAkSYCFIElqPGSkp3j4SDq8OUOQJAHOEDQLZwvS4ccZgiQJcIagDpwtSIcHC0HzYjlIhy4PGUmSAGcIOgDDswVwxiCNOwtBB42Hk6TxZiFoUVgO0vixELToVm66gcvO3MfFHmKSRpqFoN5MPwcxxaKQ+jEyhZBkLfCPwBHAR6pqS8+R1BMPN0n9GIlCSHIE8CHgd4E9wJeTXF9Vd/ebTH2bbRYxXxaLNLeRKATgbGB3VX0bIMl2YB1gIeigONBimekcyGwsH42rVFXfGUhyAbC2qv68vX478Oqqese09TYCG9vLXwPuncePORF4+CDE7Yv5+2X+fo1z/lHL/ktV9cKZFozKDCEzjD2jqapqK7B1QT8g2VVVqxey7Sgwf7/M369xzj9O2Ufl1hV7gJOHXq8AHugpiyQdlkalEL4MrEpySpLnAOuB63vOJEmHlZE4ZFRV+5K8A/hXBpedfrSq7jrIP2ZBh5pGiPn7Zf5+jXP+sck+EieVJUn9G5VDRpKknlkIkiTgECyEJGuT3Jtkd5JNMyxPkiva8q8neWUfOWfTIf+vJ7k5yRNJ3t1Hxv3pkP9t7XP/epIvJXl5Hzln0iH7upb7q0l2JfmtPnLOZq78Q+u9KsmT7fs/I6PD5z+R5NH2+X81yXv7yDmbLp9/ew9fTXJXkn9f6oxzqqpD5sHghPS3gF8GngN8DTht2jrnATcy+O7DOcCtfeeeZ/4XAa8CNgPv7jvzAvK/BjihPX/jqHz+HbMfw8/Pu70M+EbfueeTf2i9m4DPAxf0nXuen/8E8Lm+sx5A/uMZ3H3hJe31i/rOPf1xqM0QnroFRlX9HzB1C4xh64Bra+AW4Pgky5c66CzmzF9VD1XVl4Gf9hFwDl3yf6mqHmkvb2HwnZNR0CX73mp/koHnMcOXJ3vU5fc+wF8CnwQeWspwHXTNP6q65P9j4FNVdT8M/iwvccY5HWqFcBLw3aHXe9rYfNfpyyhn62K++TcwmK2Ngk7Zk7wlyTeAG4A/W6JsXcyZP8lJwFuADy9hrq66/t75zSRfS3JjktOXJlonXfL/KnBCkskktye5cMnSdTQS30M4iLrcAqPTbTJ6MsrZuuicP8m5DAphVI7Dd719yqeBTyf5beDvgdcvdrCOuuT/APCeqnoymWn1XnXJ/xUG9+HZm+Q84DPAqsUO1lGX/EcCZwFrgKOBm5PcUlX/tdjhujrUCqHLLTBG+TYZo5yti075k7wM+Ajwxqr6wRJlm8u8Pvuq+mKSX0lyYlWNwo3LuuRfDWxvZXAicF6SfVX1mSVJuH9z5q+qHw89/3ySK8fs898DPFxVjwOPJ/ki8HJgZAqh95MYB/PBoOC+DZzCz0/snD5tnfN5+knl2/rOPZ/8Q+v+LaN3UrnL5/8SYDfwmr7zLiD7qfz8pPIrge9Nve77MZ/fO239axitk8pdPv8XD33+ZwP3j9PnD7wU2NnW/QXgTuCMvrMPPw6pGULNcguMJH/Rln+YwdUV5zH4S+l/gD/tK+90XfIneTGwCzgW+FmSdzG4muHHs+13qXT8/N8LvAC4sv1LdV+NwJ0gO2b/feDCJD8F/hf4w2p/0vvWMf/I6pj/AuCSJPsYfP7rx+nzr6p7kvwL8HXgZwz+Z8g7+0v9TN66QpIEHHpXGUmSFshCkCQBFoIkqbEQJEmAhSBJaiwESRJgIUiSmv8HO77sB/WWht8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATOElEQVR4nO3dbYxc5XnG8f8dnBCCizElcRAmNS1uG16SNN4ATUq1rqnYAKmJCuqmNJjWlVVEqkRKKkw/pK0qq+ZDS4sSiKw4wkCVxSIvWBC3RYYtasNL7JRgDKEswaIGhEUwhKWBxuTuh3kWxuvZ3TPr2Z056/9PWu3Mc86ZuWYwe+1zzpmzkZlIkvS2bgeQJPUGC0GSBFgIkqTCQpAkARaCJKmY1+0A03X88cfnkiVLKq//6quvcvTRR89coA6rW16oX+a65YX6ZTbvzGs3844dO17IzHe3XJiZtfxatmxZtuOee+5pa/1uq1vezPplrlvezPplNu/MazczsD0n+LnqLiNJEuAxBElSYSFIkgALQZJUWAiSJMBCkCQVFoIkCbAQJEmFhSBJAmp86YpOWbL2zjdv715/QReTSFJ3OUOQJAEWgiSpsBAkSYCFIEkqLARJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKmwECRJgIUgSSosBEkS0EYhRMQREfFfEXFHuX9cRNwVEU+U7wub1r06IkYi4vGIOK9pfFlE7CzLrouIKONHRsStZfyBiFjSwdcoSaqgnRnCZ4HHmu6vBbZl5lJgW7lPRJwKDAKnAQPA9RFxRNnmBmANsLR8DZTx1cC+zDwFuBa4ZlqvRpI0bZUKISIWAxcAX20aXglsKrc3ARc1jQ9l5uuZ+RQwApwZEScAx2TmfZmZwE3jthl7rNuAFWOzB0nS7IjGz+YpVoq4Dfg74BeAL2TmhRHxUmYe27TOvsxcGBFfAu7PzFvK+EZgK7AbWJ+Z55bxc4CrymM9Agxk5p6y7EngrMx8YVyONTRmGCxatGjZ0NBQ5Rc6OjrK/PnzDxrf+czLb94+48QFlR9vpk2Ut5fVLXPd8kL9Mpt35rWbefny5Tsys6/Vsin/YlpEXAjszcwdEdFf4fla/Wafk4xPts2BA5kbgA0AfX192d9fJU7D8PAwrda/vPkvpl1a/fFm2kR5e1ndMtctL9Qvs3lnXiczV/kTmh8Dfi8izgfeCRwTEbcAz0fECZn5XNkdtLesvwc4qWn7xcCzZXxxi/HmbfZExDxgAfDiNF+TJGkapjyGkJlXZ+bizFxC42Dx3Zn5R8AWYFVZbRVwe7m9BRgsZw6dTOPg8YOZ+RzwSkScXY4PXDZum7HHurg8x9T7siRJHVNlhjCR9cDmiFgNPA1cApCZuyJiM/AosB+4MjPfKNtcAdwIHEXjuMLWMr4RuDkiRmjMDAYPIZckaRraKoTMHAaGy+0fAysmWG8dsK7F+Hbg9Bbjr1EKRZLUHX5SWZIEWAiSpMJCkCQBFoIkqbAQJEmAhSBJKiwESRJgIUiSCgtBkgRYCJKkwkKQJAEWgiSpsBAkScChXf56zlnS/NfT1l/QxSSSNPucIUiSAAtBklRYCJIkwEKQJBUWgiQJsBAkSYWFIEkCLARJUmEhSJIAC0GSVFgIkiTAQpAkFRaCJAmwECRJhYUgSQIsBElSYSFIkgALQZJUWAiSJMBCkCQVFoIkCbAQJEmFhSBJAiwESVIxZSFExDsj4sGI+EFE7IqIvynjx0XEXRHxRPm+sGmbqyNiJCIej4jzmsaXRcTOsuy6iIgyfmRE3FrGH4iIJTPwWiVJk6gyQ3gd+J3M/CDwIWAgIs4G1gLbMnMpsK3cJyJOBQaB04AB4PqIOKI81g3AGmBp+Roo46uBfZl5CnAtcM2hvzRJUjumLIRsGC13316+ElgJbCrjm4CLyu2VwFBmvp6ZTwEjwJkRcQJwTGbel5kJ3DRum7HHug1YMTZ7kCTNjmj8bJ5ipcZv+DuAU4AvZ+ZVEfFSZh7btM6+zFwYEV8C7s/MW8r4RmArsBtYn5nnlvFzgKsy88KIeAQYyMw9ZdmTwFmZ+cK4HGtozDBYtGjRsqGhocovdHR0lPnz5x80vvOZl6fc9owTF1R+nk6ZKG8vq1vmuuWF+mU278xrN/Py5ct3ZGZfq2XzqjxAZr4BfCgijgW+FRGnT7J6q9/sc5LxybYZn2MDsAGgr68v+/v7J4lxoOHhYVqtf/naO6fcdvel1Z+nUybK28vqlrlueaF+mc078zqZua2zjDLzJWCYxr7/58tuIMr3vWW1PcBJTZstBp4t44tbjB+wTUTMAxYAL7aTTZJ0aKqcZfTuMjMgIo4CzgV+CGwBVpXVVgG3l9tbgMFy5tDJNA4eP5iZzwGvRMTZ5fjAZeO2GXusi4G7s8q+LElSx1TZZXQCsKkcR3gbsDkz74iI+4DNEbEaeBq4BCAzd0XEZuBRYD9wZdnlBHAFcCNwFI3jClvL+Ebg5ogYoTEzGOzEi5MkVTdlIWTmw8BvtBj/MbBigm3WAetajG8HDjr+kJmvUQpFktQdflJZkgRYCJKkwkKQJAEWgiSpsBAkSYCFIEkqLARJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKmwECRJgIUgSSosBEkSUPFvKh/uloz7u8u711/QpSSSNHMOy0IY/wNekuQuI0lSYSFIkgALQZJUWAiSJMBCkCQVFoIkCbAQJEmFhSBJAiwESVJhIUiSAAtBklRYCJIk4DC9uN2har44nlc+lTRXOEOQJAEWgiSpsBAkSYCFIEkqLARJEmAhSJIKC0GSBFgIkqTCD6YdIj+kJmmumHKGEBEnRcQ9EfFYROyKiM+W8eMi4q6IeKJ8X9i0zdURMRIRj0fEeU3jyyJiZ1l2XUREGT8yIm4t4w9ExJIZeK2SpElU2WW0H/h8Zr4fOBu4MiJOBdYC2zJzKbCt3KcsGwROAwaA6yPiiPJYNwBrgKXla6CMrwb2ZeYpwLXANR14bZKkNkxZCJn5XGZ+v9x+BXgMOBFYCWwqq20CLiq3VwJDmfl6Zj4FjABnRsQJwDGZeV9mJnDTuG3GHus2YMXY7EGSNDui8bO54sqNXTn3AqcDT2fmsU3L9mXmwoj4EnB/Zt5SxjcCW4HdwPrMPLeMnwNclZkXRsQjwEBm7inLngTOyswXxj3/GhozDBYtWrRsaGiocvbR0VHmz58PwM5nXq68XTvOOHFBxx6rOW9d1C1z3fJC/TKbd+a1m3n58uU7MrOv1bLKB5UjYj7wDeBzmfmTSX6Bb7UgJxmfbJsDBzI3ABsA+vr6sr+/f4rUbxkeHmZs/cubDgR30u5Lq+eZSnPeuqhb5rrlhfplNu/M62TmSqedRsTbaZTBP2fmN8vw82U3EOX73jK+BzipafPFwLNlfHGL8QO2iYh5wALgxXZfjCRp+qqcZRTARuCxzPyHpkVbgFXl9irg9qbxwXLm0Mk0Dh4/mJnPAa9ExNnlMS8bt83YY10M3J3t7MuSJB2yKruMPgZ8GtgZEQ+Vsb8E1gObI2I18DRwCUBm7oqIzcCjNM5QujIz3yjbXQHcCBxF47jC1jK+Ebg5IkZozAwGD+1ldYefSZBUZ1MWQmb+B6338QOsmGCbdcC6FuPbaRyQHj/+GqVQJEnd4aUrJEmAhSBJKiwESRJgIUiSCq92OkM840hS3ThDkCQBFoIkqbAQJEmAhSBJKiwESRLgWUazwjOOJNWBMwRJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKnwtNNZ5imoknqVMwRJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKnwtNMu8hRUSb3EGYIkCbAQJEmFhSBJAjyG0DM8niCp25whSJIAC0GSVFgIkiTAQpAkFRaCJAmwEHrSkrV3svOZlw8480iSZpqFIEkCLARJUmEhSJKACoUQEV+LiL0R8UjT2HERcVdEPFG+L2xadnVEjETE4xFxXtP4sojYWZZdFxFRxo+MiFvL+AMRsaTDr1GSVEGVGcKNwMC4sbXAtsxcCmwr94mIU4FB4LSyzfURcUTZ5gZgDbC0fI095mpgX2aeAlwLXDPdFyNJmr4pCyEz7wVeHDe8EthUbm8CLmoaH8rM1zPzKWAEODMiTgCOycz7MjOBm8ZtM/ZYtwErxmYPapxxNPYlSTMpGj+fp1ipsRvnjsw8vdx/KTOPbVq+LzMXRsSXgPsz85YyvhHYCuwG1mfmuWX8HOCqzLyw7IoayMw9ZdmTwFmZ+UKLHGtozDJYtGjRsqGhocovdHR0lPnz5wOw85mXK2/XLYuOgud/euDYGScu6E6Yiprf4zqoW16oX2bzzrx2My9fvnxHZva1Wtbpq522+s0+JxmfbJuDBzM3ABsA+vr6sr+/v3Kw4eFhxta/vAa/bX/+jP38/c4D//PsvrS/O2Eqan6P66BueaF+mc078zqZebpnGT1fdgNRvu8t43uAk5rWWww8W8YXtxg/YJuImAcs4OBdVJKkGTbdQtgCrCq3VwG3N40PljOHTqZx8PjBzHwOeCUizi7HBy4bt83YY10M3J1V9mNJkjpqyl1GEfF1oB84PiL2AH8FrAc2R8Rq4GngEoDM3BURm4FHgf3AlZn5RnmoK2icsXQUjeMKW8v4RuDmiBihMTMY7Mgrm4P8IzqSZtKUhZCZn5pg0YoJ1l8HrGsxvh04vcX4a5RCkSR1j59UliQBFoIkqbAQJElA5z+HoFniAWZJneYMQZIEWAiSpMJCkCQBHkOYEzyeIKkTnCFIkgALQZJUWAiSJMBjCHOOxxMkTZczBEkSYCFIkgoLQZIEeAxhTvN4gqR2OEOQJAEWgiSpcJfRYcLdR5Km4gxBkgRYCJKkwl1GhyF3H0lqxRmCJAlwhnDYc7YgaYwzBEkSYCFIkgp3GelN7j6SDm/OECRJgDMETcDZgnT4cYYgSQKcIagCZwvS4cFCUFssB2nucpeRJAlwhqBD0DxbALhx4OguJZHUCc4Q1DE7n3mZJWvvPKgoJNWDMwTNCI81SPVjIWjGWQ5SPVgImlUT7U6yKKTusxDUE5xFSN3XM4UQEQPAPwFHAF/NzPVdjqQucRYhdUdPFEJEHAF8GfhdYA/wvYjYkpmPdjeZekmnzl6yWKTWeqIQgDOBkcz8EUBEDAErAQtBHTdWLJ8/Yz+Xz8IpshaQ6iIys9sZiIiLgYHM/NNy/9PAWZn5mXHrrQHWlLu/BjzextMcD7zQgbizpW55oX6Z65YX6pfZvDOv3cy/lJnvbrWgV2YI0WLsoKbKzA3Ahmk9QcT2zOybzrbdULe8UL/MdcsL9cts3pnXycy98knlPcBJTfcXA892KYskHZZ6pRC+ByyNiJMj4h3AILCly5kk6bDSE7uMMnN/RHwG+Fcap51+LTN3dfhpprWrqYvqlhfql7lueaF+mc078zqWuScOKkuSuq9XdhlJkrrMQpAkAXOwECJiICIej4iRiFjbYnlExHVl+cMR8eFu5GzKM1XeX4+I+yLi9Yj4QjcyjsszVd5Ly/v6cER8NyI+2I2c4zJNlXllyftQRGyPiN/qRs6mPJPmbVrvIxHxRvkcT1dVeI/7I+Ll8h4/FBFf7EbOpjxTvscl80MRsSsi/n22M47LMtX7+xdN7+0j5d/FcW0/UWbOmS8aB6SfBH4ZeAfwA+DUceucD2yl8dmHs4EHejzve4CPAOuAL9Tg/f0osLDc/ng33982Ms/nreNpHwB+2Mt5m9a7G/gOcHEN3uN+4I5u5mwz77E0rpTwvnL/Pb2cd9z6nwDuns5zzbUZwpuXwMjM/wPGLoHRbCVwUzbcDxwbESfMdtBiyryZuTczvwf8rBsBx6mS97uZua/cvZ/GZ0q6qUrm0Sz/JwFH0+JDkbOoyr9hgD8HvgHsnc1wE6iauVdUyfuHwDcz82lo/H84yxmbtfv+fgr4+nSeaK4VwonA/zTd31PG2l1ntvRSlirazbuaxmysmypljohPRsQPgTuBP5mlbK1MmTciTgQ+CXxlFnNNpuq/i9+MiB9ExNaIOG12orVUJe+vAgsjYjgidkTEZbOW7mCV/7+LiHcBAzR+WWhbT3wOoYOqXAKj0mUyZkkvZamict6IWE6jELq6P57ql0X5FvCtiPht4G+Bc2c62ASq5P1H4KrMfCOi1eqzrkrm79O4hs5oRJwPfBtYOtPBJlAl7zxgGbACOAq4LyLuz8z/nulwLbTzc+ITwH9m5ovTeaK5VghVLoHRS5fJ6KUsVVTKGxEfAL4KfDwzfzxL2SbS1nucmfdGxK9ExPGZ2Y2LnFXJ2wcMlTI4Hjg/IvZn5rdnJeHBpsycmT9puv2diLi+x9/jPcALmfkq8GpE3At8EOhGIbTzb3iQae4uAubcQeV5wI+Ak3nr4Mtp49a5gAMPKj/Yy3mb1v1run9Qucr7+z5gBPhot/89tJH5FN46qPxh4Jmx+72Yd9z6N9L9g8pV3uP3Nr3HZwJP9/J7DLwf2FbWfRfwCHB6r+Yt6y0AXgSOnu5zzakZQk5wCYyI+LOy/Cs0zso4n8YPrf8F/riX80bEe4HtwDHAzyPiczTOMPjJRI/bzbzAF4FfBK4vv8Huzy5ePbJi5t8HLouInwE/Bf4gy/9hPZq3p1TMfDFwRUTsp/EeD/bye5yZj0XEvwAPAz+n8VccH+nVvGXVTwL/lo1ZzbR46QpJEjD3zjKSJE2ThSBJAiwESVJhIUiSAAtBklRYCJIkwEKQJBX/D/8h2YbfTS1iAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbiUlEQVR4nO3df3BV533n8fcnxm2oFX44TlSK6EIL2a2BxqlUzDbrHamwa2o7iz2LJ8p6A2zYIetxdtIZZxfcP1p3PEzxTFPvehzTVULG2O5GZpy4ZmzTXRdb9WQLJpB1LLDNWq41joCBIcYEeWM2It/94zyyD+JK90i6uj/w5zWj0bnf8zxH33MF+t7nPOfeRxGBmZnZR2qdgJmZ1QcXBDMzA1wQzMwscUEwMzPABcHMzJJptU5goq666qqYP39+4fbvvvsuV1xxxdQlVCHOs7IaJU9onFydZ2VVO8+DBw+eiohPlNwZEQ351draGuPx/PPPj6t9rTjPymqUPCMaJ1fnWVnVzhM4EKP8XfUlIzMzAzyHYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGdDAH11RKfM3P/3+dv/WG2uYiZlZbXmEYGZmgAuCmZklLghmZga4IJiZWVK4IEi6TNL/lvRUenylpGclvZ6+z861vUtSn6Qjkq7PxVsl9aZ990tSiv+ypMdS/EVJ8yt4jmZmVsB4RghfBV7NPd4M7ImIRcCe9BhJVwOdwGJgFfCgpMtSn23ARmBR+lqV4huA0xGxELgPuHdCZ2NmZhNWqCBIagFuBL6VC68GdqTtHcDNuXh3RJyLiDeBPmCZpDnAjIjYmxZpeHhEn+FjPQ6sGB49mJlZdSj721ymkfQ48GfAx4CvRcRNkt6JiFm5NqcjYrakB4B9EfFoim8HdgP9wNaIWJni1wGb0rEOAasiYiDtewO4NiJOjchjI9kIg+bm5tbu7u7CJzo4OEhTU9NF8d6jZ97fXjp3ZuHjTZXR8qw3zrPyGiVX51lZ1c6zo6PjYES0ldpX9o1pkm4CTkbEQUntBX5eqVf2MUZ8rD4XBiK6gC6Atra2aG8vkk6mp6eHUu3X59+Ydlvx402V0fKsN86z8holV+dZWfWUZ5F3Kn8W+FeSbgA+CsyQ9ChwQtKciDieLgedTO0HgHm5/i3AsRRvKRHP9xmQNA2YCbw9wXMyM7MJKDuHEBF3RURLRMwnmyx+LiL+LbALWJearQOeTNu7gM5059ACssnj/RFxHDgraXmaH1g7os/wsdakn1H+WpaZmVXMZD7LaCuwU9IG4C3gVoCIOCxpJ/AKMATcERHnU5/bgYeA6WTzCrtTfDvwiKQ+spFB5yTyMjOzCRhXQYiIHqAnbf8EWDFKuy3AlhLxA8CSEvH3SAXFzMxqw+9UNjMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLClbECR9VNJ+ST+SdFjSn6b43ZKOSnopfd2Q63OXpD5JRyRdn4u3SupN++5PS2mSltt8LMVflDR/Cs7VzMzGUGTFtHPA70fEoKTLge9LGl768r6I+PN8Y0lXky2BuRj4NeBvJX0qLaO5DdgI7AOeAVaRLaO5ATgdEQsldQL3Ap+f/OmNz/zNT7+/3b/1xmr/eDOzmio7QojMYHp4efqKMbqsBroj4lxEvAn0AcskzQFmRMTeiAjgYeDmXJ8daftxYMXw6MHMzKpD2d/mMo2ky4CDwELgGxGxSdLdwHrgp8AB4M6IOC3pAWBfRDya+m4nGwX0A1sjYmWKXwdsioibJB0CVkXEQNr3BnBtRJwakcdGshEGzc3Nrd3d3YVPdHBwkKampovivUfPlGy/dO7MwseupNHyrDfOs/IaJVfnWVnVzrOjo+NgRLSV2lfkkhHpcs81kmYBT0haQnb55x6y0cI9wNeBLwGlXtnHGHHK7Mvn0QV0AbS1tUV7e3uR9AHo6emhVPv1uctEef23FT92JY2WZ71xnpXXKLk6z8qqpzzHdZdRRLwD9JC9mj8REecj4hfAN4FlqdkAMC/XrQU4luItJeIX9JE0DZgJvD2e3MzMbHKK3GX0iTQyQNJ0YCXwWpoTGHYLcCht7wI6051DC4BFwP6IOA6clbQ8zQ+sBZ7M9VmXttcAz0WRa1lmZlYxRS4ZzQF2pHmEjwA7I+IpSY9Iuobs0k4/8GWAiDgsaSfwCjAE3JEuOQHcDjwETCebVxi+W2k78IikPrKRQefkT83MzMajbEGIiJeBz5SIf3GMPluALSXiB4AlJeLvAbeWy8XMzKaO36lsZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZUmQJzY9K2i/pR5IOS/rTFL9S0rOSXk/fZ+f63CWpT9IRSdfn4q2SetO++9NSmqTlNh9L8RclzZ+CczUzszEUGSGcA34/Ij4NXAOskrQc2AzsiYhFwJ70GElXky2BuRhYBTyYlt8E2AZsJFtneVHaD7ABOB0RC4H7gHsnf2pmZjYeZQtCZAbTw8vTVwCrgR0pvgO4OW2vBroj4lxEvAn0AcskzQFmRMTeiAjg4RF9ho/1OLBiePRgZmbVoexvc5lG2Sv8g8BC4BsRsUnSOxExK9fmdETMlvQAsC8iHk3x7cBuoB/YGhErU/w6YFNE3CTpELAqIgbSvjeAayPi1Ig8NpKNMGhubm7t7u4ufKKDg4M0NTVdFO89eqZs36VzZxb+OZM1Wp71xnlWXqPk6jwrq9p5dnR0HIyItlL7phU5QEScB66RNAt4QtKSMZqXemUfY8TH6jMyjy6gC6CtrS3a29vHSONCPT09lGq/fvPTZfv231b850zWaHnWG+dZeY2Sq/OsrHrKc1x3GUXEO0AP2bX/E+kyEOn7ydRsAJiX69YCHEvxlhLxC/pImgbMBN4eT25mZjY5Re4y+kQaGSBpOrASeA3YBaxLzdYBT6btXUBnunNoAdnk8f6IOA6clbQ8zQ+sHdFn+FhrgOeiyLUsMzOrmCKXjOYAO9I8wkeAnRHxlKS9wE5JG4C3gFsBIuKwpJ3AK8AQcEe65ARwO/AQMJ1sXmF3im8HHpHURzYy6KzEyZmZWXFlC0JEvAx8pkT8J8CKUfpsAbaUiB8ALpp/iIj3SAXFzMxqw+9UNjMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwOKrZg2T9Lzkl6VdFjSV1P8bklHJb2Uvm7I9blLUp+kI5Kuz8VbJfWmffenldNIq6s9luIvSpo/BedqZmZjKLJi2hBwZ0T8UNLHgIOSnk377ouIP883lnQ12Ypni4FfA/5W0qfSqmnbgI3APuAZsrWZdwMbgNMRsVBSJ3Av8PnJn15lzN/89AWP+7feWKNMzMymTtkRQkQcj4gfpu2zwKvA3DG6rAa6I+JcRLwJ9AHLJM0BZkTE3rRe8sPAzbk+O9L248CK4dGDmZlVx7jmENKlnM8AL6bQVyS9LOnbkman2Fzgx7luAyk2N22PjF/QJyKGgDPAx8eTm5mZTY6yF+sFGkpNwN8BWyLie5KagVNAAPcAcyLiS5K+AeyNiEdTv+1kl4feAv4sIlam+HXAf46Iz0k6DFwfEQNp3xvAsrRucz6HjWSXnGhubm7t7u4ufKKDg4M0NTVdFO89eqbwMYYtnTtz3H2KGi3PeuM8K69RcnWelVXtPDs6Og5GRFupfUXmEJB0OfBd4K8i4nsAEXEit/+bwFPp4QAwL9e9BTiW4i0l4vk+A5KmATOBt0fmERFdQBdAW1tbtLe3F0kfgJ6eHkq1Xz9ifqCI/tuK/9zxGi3PeuM8K69RcnWelVVPeRa5y0jAduDViPiLXHxOrtktwKG0vQvoTHcOLQAWAfsj4jhwVtLydMy1wJO5PuvS9hrguSg6dDEzs4ooMkL4LPBFoFfSSyn2R8AXJF1DdsmoH/gyQEQclrQTeIXsDqU70h1GALcDDwHTye4u2p3i24FHJPWRjQw6J3NSZmY2fmULQkR8Hyh1x88zY/TZAmwpET8ALCkRfw+4tVwuZmY2dfxOZTMzA1wQzMwscUEwMzPABcHMzBIXBDMzA1wQzMwsKfROZbtQ/tNP/cmnZnap+FAWhJEfZ21mZr5kZGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGVBsCc15kp6X9Kqkw5K+muJXSnpW0uvp++xcn7sk9Uk6Iun6XLxVUm/ad39aSpO03OZjKf6ipPlTcK5TYv7mp9//MjNrZEVGCEPAnRHxW8By4A5JVwObgT0RsQjYkx6T9nUCi4FVwIOSLkvH2gZsJFtneVHaD7ABOB0RC4H7gHsrcG5mZjYOZQtCRByPiB+m7bPAq8BcYDWwIzXbAdyctlcD3RFxLiLeBPqAZZLmADMiYm9EBPDwiD7Dx3ocWDE8ejAzs+pQ9re5YOPsUs4LZOsivxURs3L7TkfEbEkPAPsi4tEU3w7sBvqBrRGxMsWvAzZFxE2SDgGrImIg7XsDuDYiTo34+RvJRhg0Nze3dnd3F859cHCQpqYmAHqPnincbzyWzp056WPk86xnzrPyGiVX51lZ1c6zo6PjYES0ldpX+MPtJDUB3wX+MCJ+OsYL+FI7Yoz4WH0uDER0AV0AbW1t0d7eXibrD/T09DDcfv0UXe/vv614PqPJ51nPnGflNUquzrOy6inPQncZSbqcrBj8VUR8L4VPpMtApO8nU3wAmJfr3gIcS/GWEvEL+kiaBswE3h7vyZiZ2cQVuctIwHbg1Yj4i9yuXcC6tL0OeDIX70x3Di0gmzzeHxHHgbOSlqdjrh3RZ/hYa4DnYjzXsszMbNKKXDL6LPBFoFfSSyn2R8BWYKekDcBbwK0AEXFY0k7gFbI7lO6IiPOp3+3AQ8B0snmF3Sm+HXhEUh/ZyKBzcqdlZmbjVbYgRMT3KX2NH2DFKH22AFtKxA+QTUiPjL9HKihmZlYbH8oV06aKl9Y0s0bmj64wMzPABcHMzBIXBDMzA1wQzMwscUEwMzPAdxlNGd9xZGaNxiMEMzMDXBDMzCxxQTAzM8AFwczMEk8qV4EnmM2sEXiEYGZmgAuCmZklLghmZga4IJiZWVJkCc1vSzop6VAudreko5JeSl835PbdJalP0hFJ1+firZJ607770zKapKU2H0vxFyXNr/A5mplZAUVGCA8Bq0rE74uIa9LXMwCSriZb/nJx6vOgpMtS+23ARrI1lhfljrkBOB0RC4H7gHsneC5mZjYJRZbQfGEcr9pXA90RcQ54M62RvExSPzAjIvYCSHoYuJlsTeXVwN2p/+PAA5IUETGO82gYvgXVzOrVZN6H8BVJa4EDwJ0RcRqYC+zLtRlIsZ+n7ZFx0vcfA0TEkKQzwMeBUyN/oKSNZKMMmpub6enpKZzs4ODg++3vXDpUuN9UKpV/Ps965jwrr1FydZ6VVU95TrQgbAPuASJ9/zrwJUAl2sYYccrsuzAY0QV0AbS1tUV7e3vhhHt6ehhuvz73Kr2W+m9rvyiWz7OeOc/Ka5RcnWdl1VOeE7rLKCJORMT5iPgF8E1gWdo1AMzLNW0BjqV4S4n4BX0kTQNmAm9PJC8zM5u4CRUESXNyD28Bhu9A2gV0pjuHFpBNHu+PiOPAWUnL091Fa4Enc33Wpe01wHOX6vyBmVk9K3vJSNJ3gHbgKkkDwJ8A7ZKuIbu00w98GSAiDkvaCbwCDAF3RMT5dKjbye5Ymk42mbw7xbcDj6QJ6LfJ7lIyM7MqK3KX0RdKhLeP0X4LsKVE/ACwpET8PeDWcnmYmdnU8juVzcwM8Mdf15Tfk2Bm9cQjBDMzA1wQzMwscUEwMzPAcwh1Y3g+4c6lQ7TXNhUz+5DyCMHMzAAXBDMzS1wQzMwMcEEwM7PEBcHMzADfZVSX/A5mM6sFjxDMzAxwQTAzs8QFwczMABcEMzNLyhYESd+WdFLSoVzsSknPSno9fZ+d23eXpD5JRyRdn4u3SupN++5PS2mSltt8LMVflDS/wudoZmYFFBkhPASsGhHbDOyJiEXAnvQYSVeTLYG5OPV5UNJlqc82YCPZOsuLcsfcAJyOiIXAfcC9Ez2ZS9H8zU+//2VmNpXKFoSIeIFsreO81cCOtL0DuDkX746IcxHxJtAHLJM0B5gREXsjIoCHR/QZPtbjwIrh0YOZmVWPsr/PZRpll3Geiogl6fE7ETErt/90RMyW9ACwLyIeTfHtwG6gH9gaEStT/DpgU0TclC5FrYqIgbTvDeDaiDhVIo+NZKMMmpubW7u7uwuf6ODgIE1NTQD0Hj1TuF+1NU+HEz8rvW/p3JnVTWYM+eeznjVKntA4uTrPyqp2nh0dHQcjoq3Uvkq/Ma3UK/sYIz5Wn4uDEV1AF0BbW1u0t7cXTqynp4fh9uvr+PLLnUuH+Hpv6V9L/23t1U1mDPnns541Sp7QOLk6z8qqpzwnepfRiXQZiPT9ZIoPAPNy7VqAYyneUiJ+QR9J04CZXHyJyszMpthEC8IuYF3aXgc8mYt3pjuHFpBNHu+PiOPAWUnL0/zA2hF9ho+1BnguilzH+hDyBLOZTaWyl4wkfQdoB66SNAD8CbAV2ClpA/AWcCtARByWtBN4BRgC7oiI8+lQt5PdsTSdbF5hd4pvBx6R1Ec2MuisyJmZmdm4lC0IEfGFUXatGKX9FmBLifgBYEmJ+HukgmJmZrXjdyqbmRnggmBmZonXQ2hQXjPBzCrNIwQzMwNcEMzMLHFBMDMzwHMIlwTPJ5hZJXiEYGZmgAuCmZklLghmZga4IJiZWeJJ5UuMJ5jNbKI8QjAzM8AFwczMEl8yuoT58pGZjYdHCGZmBkyyIEjql9Qr6SVJB1LsSknPSno9fZ+da3+XpD5JRyRdn4u3puP0Sbo/LbNpZmZVVIkRQkdEXBMRbenxZmBPRCwC9qTHSLqabHnMxcAq4EFJl6U+24CNZGswL0r7zcysiqZiDmE12RrMADuAHmBTindHxDngzbSG8jJJ/cCMiNgLIOlh4GY+WHPZKsDzCWZWjiJi4p2lN4HTQAD/LSK6JL0TEbNybU5HxGxJDwD7IuLRFN9O9ke/H9gaEStT/DpgU0TcVOLnbSQbSdDc3Nza3d1dONfBwUGampoA6D16ZgJnWx3N0+HEz6b2ZyydO3PSx8g/n/WsUfKExsnVeVZWtfPs6Og4mLuic4HJjhA+GxHHJH0SeFbSa2O0LTUvEGPELw5GdAFdAG1tbdHe3l440Z6eHobbr8+9Wq43dy4d4uu9U3vzV/9t7ZM+Rv75rGeNkic0Tq7Os7LqKc9J/eWJiGPp+0lJTwDLgBOS5kTEcUlzgJOp+QAwL9e9BTiW4i0l4jZFfPnIzEqZ8KSypCskfWx4G/iXwCFgF7AuNVsHPJm2dwGdkn5Z0gKyyeP9EXEcOCtpebq7aG2uj5mZVclkRgjNwBPpDtFpwH+PiL+R9ANgp6QNwFvArQARcVjSTuAVYAi4IyLOp2PdDjwETCebV/CEcpV4tGBmwyZcECLiH4BPl4j/BFgxSp8twJYS8QPAkonmYmZmk+d3KpuZGeDPMrIcXz4y+3DzCMHMzACPEGwUHi2Yffh4hGBmZoBHCFaARwtmHw4eIZiZGeARgo3T8GjhzqVD73+krZldGlwQbMLmj/iQQF9OMmtsvmRkZmaARwhWQZ58NmtsLgg2JVwczBqPC4JNORcHs8bggmBV5eJgVr9cEKxmRt6lNMyFwqw2XBCs7rhQmNVG3RQESauA/wpcBnwrIrbWOCWrMy4UZlOrLgqCpMuAbwD/AhgAfiBpV0S8UtvMrBGMVigge0f1+jH2u5iYfaAuCgKwDOhLy3IiqRtYTbb+stmUGauYTDUXI6s3ioha54CkNcCqiPj36fEXgWsj4isj2m0ENqaH/xg4Mo4fcxVwqgLpTjXnWVmNkic0Tq7Os7Kqnec/iohPlNpRLyMElYhdVKkiogvomtAPkA5ERNtE+laT86ysRskTGidX51lZ9ZRnvXyW0QAwL/e4BThWo1zMzD6U6qUg/ABYJGmBpF8COoFdNc7JzOxDpS4uGUXEkKSvAP+D7LbTb0fE4Qr/mAldaqoB51lZjZInNE6uzrOy6ibPuphUNjOz2quXS0ZmZlZjLghmZgZcYgVB0ipJRyT1SdpcYr8k3Z/2vyzpd2qRZ8qlXK7/RNJeSeckfa0WOaY8yuV5W3ouX5b095I+Xad5rk45viTpgKR/Vo955tr9rqTz6T06NVHgOW2XdCY9py9J+uN6zDO1aU85Hpb0d9XOMeVQ7vn8T7nn8lD6/V9Z1SQj4pL4IpuMfgP4DeCXgB8BV49ocwOwm+x9D8uBF+s4108CvwtsAb5Wx3n+HjA7bf9BLZ7Tgnk28cGc2W8Dr9Vjnrl2zwHPAGvq+HffDjxVi/zGmecssk89+PX0+JP1mOeI9p8Dnqt2npfSCOH9j7+IiP8HDH/8Rd5q4OHI7ANmSZpT7UQpkGtEnIyIHwA/r0F+w4rk+fcRcTo93Ef2HpJqK5LnYKT/acAVlHjjYxUU+TcK8B+B7wInq5ncCEVzrbUief4b4HsR8RZk/7eqnCOM//n8AvCdqmSWcykVhLnAj3OPB1JsvG2qoV7yKGe8eW4gG4FVW6E8Jd0i6TXgaeBLVcotr2yekuYCtwB/WcW8Sin6u/+nkn4kabekxdVJ7QJF8vwUMFtSj6SDktZWLbsPFP6/JOlXgFVkLwqqqi7eh1AhRT7+otBHZFRBveRRTuE8JXWQFYRaXJsv+tEnTwBPSPrnwD3AyqlObIQief4XYFNEnJdKNa+aIrn+kOxzcQYl3QD8NbBoqhMboUie04BWYAUwHdgraV9E/J+pTi5nPP/nPwf8r4h4ewrzKelSKghFPv6iXj4io17yKKdQnpJ+G/gW8AcR8ZMq5ZY3ruczIl6Q9JuSroqIan6oWJE824DuVAyuAm6QNBQRf12VDD9QNteI+Glu+xlJD9bpczoAnIqId4F3Jb0AfBqoZkEYz7/RTmpwuQi4pCaVpwH/ACzgg0mbxSPa3MiFk8r76zXXXNu7qd2kcpHn9NeBPuD36vx3v5APJpV/Bzg6/Lie8hzR/iFqN6lc5Dn91dxzugx4qx6fU+C3gD2p7a8Ah4Al9ZZnajcTeBu4oha/90tmhBCjfPyFpP+Q9v8l2V0bN5D9Afu/wL+r11wl/SpwAJgB/ELSH5LdlfDT0Y5bizyBPwY+DjyYXtUORZU/ubFgnv8aWCvp58DPgM9H+h9YZ3nWhYK5rgFulzRE9px21uNzGhGvSvob4GXgF2QrMh6qtzxT01uA/xnZaKbq/NEVZmYGXFp3GZmZ2SS4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmyf8HgNvA4hA6yAEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAD4CAYAAAAdIcpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcMUlEQVR4nO3df5Bd5X3f8ffHCMcKCwKM2aiSUpGgJAYplqONUEPprCxaNhhXMBWTdaklxerIZXDHmSENwn8kZBhNxR8OCYMhlS2PBKReNNgUFZBbCmxoGglZcmUW8aMsQYNX0qABZMFSo1ri2z/Os/houbvP2b27dw/i85q5s+c+53nOfs4F6avnnHPPUURgZmY2mo9NdQAzM6s/FwszM8tysTAzsywXCzMzy3KxMDOzrGlTHWC8zjvvvJg7d27l/u+88w5nnHHG5AVqkvM1r+4Zna95dc9Y93wAe/bseT0iPjXmgRHxoXwtWrQoxuLJJ58cU/9Wc77m1T2j8zWv7hnrni8iAtgd4/g714ehzMwsy8XCzMyyXCzMzCzLxcLMzLJcLMzMLMvFwszMsioXC0mnSfrfkh5O78+V9Jikl9LPc0p9b5bUL+lFSVeU2hdJ6kvr7pCk1P5Lku5P7U9LmjuB+2hmZk0ay8zia8DzpffrgMcjYh7weHqPpIuAbuBioAu4S9JpaczdwFpgXnp1pfY1wJGIuBC4HbhtXHtjZmaTolKxkDQb+Dzw7VLzcmBLWt4CXF1q74mIYxHxCtAPLJY0EzgrInakL4bcM2zM0LYeAJYNzTrMzGzqVb3dx18CfwKcWWprj4hDABFxSNL5qX0WsLPUbyC1/TwtD28fGvOTtK3jko4CnwReL4eQtJZiZkJ7ezu9vb0V48Pg4GDD/n0Hjr6/vGDWjMrbm2gj5auLuueD+md0vubVPWPd8zUjWywkXQUcjog9kjorbLPRjCBGaR9tzMkNERuBjQAdHR3R2VklTqG3t5dG/Veve+T95f3XVd/eRBspX13UPR/UP6PzNa/uGeuerxlVZhaXAv9S0pXAJ4CzJN0HvCZpZppVzAQOp/4DwJzS+NnAwdQ+u0F7ecyApGnADODNce6TmZlNsOw5i4i4OSJmR8RcihPXT0TEvwG2AatSt1XAQ2l5G9CdrnC6gOJE9q50yOptSUvS+YiVw8YMbWtF+h1+OLiZWU00c4vyDcBWSWuAV4FrASJin6StwHPAceCGiDiRxlwPbAamA9vTC2ATcK+kfooZRXcTuczMbIKNqVhERC/Qm5bfAJaN0G89sL5B+25gfoP2d0nFxszM6sff4DYzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7OsbLGQ9AlJuyT9WNI+SX+e2m+RdEDS3vS6sjTmZkn9kl6UdEWpfZGkvrTujvQsbtLzuu9P7U9LmjsJ+2pmZuNUZWZxDPhcRHwGWAh0SVqS1t0eEQvT61EASRdRPEP7YqALuEvSaan/3cBaYF56daX2NcCRiLgQuB24rek9MzOzCZMtFlEYTG9PT68YZchyoCcijkXEK0A/sFjSTOCsiNgREQHcA1xdGrMlLT8ALBuadZiZ2dRT8fd2plMxM9gDXAh8MyJuknQLsBp4C9gN3BgRRyTdCeyMiPvS2E3AdmA/sCEiLk/tlwE3RcRVkp4FuiJiIK17GbgkIl4flmMtxcyE9vb2RT09PZV3dHBwkLa2tg+09x042rD/glkzKm97IoyUry7qng/qn9H5mlf3jHXPB7B06dI9EdEx1nHTqnSKiBPAQklnAw9Kmk9xSOlWilnGrcA3gC8DjWYEMUo7mXXlHBuBjQAdHR3R2dlZJT4Avb29NOq/et0jDfvvv676tifCSPnqou75oP4Zna95dc9Y93zNGNPVUBHxU6CXYhbwWkSciIj3gG8Bi1O3AWBOadhs4GBqn92g/aQxkqYBM4A3x5LNzMwmT5WroT6VZhRImg5cDryQzkEMuQZ4Ni1vA7rTFU4XUJzI3hURh4C3JS1J5yNWAg+VxqxKyyuAJ6LK8TEzM2uJKoehZgJb0nmLjwFbI+JhSfdKWkhxuGg/8BWAiNgnaSvwHHAcuCEdxgK4HtgMTKc4j7E9tW8C7pXUTzGj6G5+18zMbKJki0VEPAN8tkH7l0YZsx5Y36B9NzC/Qfu7wLW5LGZmNjX8DW4zM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzrCqPVf2EpF2Sfixpn6Q/T+3nSnpM0kvp5zmlMTdL6pf0oqQrSu2LJPWldXekx6uSHsF6f2p/WtLcSdhXMzMbpyozi2PA5yLiM8BCoEvSEmAd8HhEzAMeT++RdBHFY1EvBrqAu9IjWQHuBtZSPJd7XloPsAY4EhEXArcDtzW/a2ZmNlGyxSIKg+nt6ekVwHJgS2rfAlydlpcDPRFxLCJeAfqBxZJmAmdFxI6ICOCeYWOGtvUAsGxo1mFmZlOv0jkLSadJ2gscBh6LiKeB9og4BJB+np+6zwJ+Uho+kNpmpeXh7SeNiYjjwFHgk+PYHzMzmwTTqnSKiBPAQklnAw9Kmj9K90YzghilfbQxJ29YWktxGIv29nZ6e3tHiXGywcHBhv1vXHC8Yf+xbHsijJSvLuqeD+qf0fmaV/eMdc/XjErFYkhE/FRSL8W5htckzYyIQ+kQ0+HUbQCYUxo2GziY2mc3aC+PGZA0DZgBvNng928ENgJ0dHREZ2dn5ey9vb006r963SMN+++/rvq2J8JI+eqi7vmg/hmdr3l1z1j3fM2ocjXUp9KMAknTgcuBF4BtwKrUbRXwUFreBnSnK5wuoDiRvSsdqnpb0pJ0PmLlsDFD21oBPJHOa0yZueseef9lZvZRV2VmMRPYkq5o+hiwNSIelrQD2CppDfAqcC1AROyTtBV4DjgO3JAOYwFcD2wGpgPb0wtgE3CvpH6KGUX3ROycmZlNjGyxiIhngM82aH8DWDbCmPXA+gbtu4EPnO+IiHdJxcbMzOrH3+A2M7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzrCrP4J4j6UlJz0vaJ+lrqf0WSQck7U2vK0tjbpbUL+lFSVeU2hdJ6kvr7kjP4iY9r/v+1P60pLmTsK9mZjZOVWYWx4EbI+LTwBLgBkkXpXW3R8TC9HoUIK3rBi4GuoC70vO7Ae4G1gLz0qsrta8BjkTEhcDtwG3N75qZmU2UbLGIiEMR8aO0/DbwPDBrlCHLgZ6IOBYRrwD9wGJJM4GzImJHRARwD3B1acyWtPwAsGxo1mFmZlNv2lg6p8NDnwWeBi4FvippJbCbYvZxhKKQ7CwNG0htP0/Lw9tJP38CEBHHJR0FPgm8Psb9mRRz1z1y0vv9Gz4/RUnMzKaGin/kV+gotQF/C6yPiO9Laqf4yzyAW4GZEfFlSd8EdkTEfWncJuBR4FXgP0bE5an9MuBPIuILkvYBV0TEQFr3MrA4It4YlmEtxWEs2tvbF/X09FTe0cHBQdra2j7Q3nfgaOVtDFkwa8aYx+SMlK8u6p4P6p/R+ZpX94x1zwewdOnSPRHRMdZxlWYWkk4Hvgf8TUR8HyAiXiut/xbwcHo7AMwpDZ8NHEztsxu0l8cMSJoGzADeHJ4jIjYCGwE6Ojqis7OzSnwAent7adR/9bBZQxX7r6v+e6saKV9d1D0f1D+j8zWv7hnrnq8ZVa6GErAJeD4i/qLUPrPU7Rrg2bS8DehOVzhdQHEie1dEHALelrQkbXMl8FBpzKq0vAJ4IqpOeczMbNJVmVlcCnwJ6JO0N7V9HfiipIUUh6H2A18BiIh9krYCz1FcSXVDRJxI464HNgPTge3pBUUxuldSP8WMoruZnTIzs4mVLRYR8XdAoyuTHh1lzHpgfYP23cD8Bu3vAtfmspiZ2dTwN7jNzCzLxcLMzLJcLMzMLMvFwszMslwszMwsy8XCzMyyXCzMzCxrTDcStEL5xoK+qaCZfRR4ZmFmZlkuFmZmluViYWZmWS4WZmaW5WJhZmZZLhZmZpblYmFmZlkuFmZmluViYWZmWVWewT1H0pOSnpe0T9LXUvu5kh6T9FL6eU5pzM2S+iW9KOmKUvsiSX1p3R3pWdyk53Xfn9qfljR3EvbVzMzGqcrtPo4DN0bEjySdCeyR9BiwGng8IjZIWgesA26SdBHFM7QvBv4R8D8k/UZ6DvfdwFpgJ8VjWbsonsO9BjgSERdK6gZuA/5gIne0rHy7jonclm/9YWanquzMIiIORcSP0vLbwPPALGA5sCV12wJcnZaXAz0RcSwiXgH6gcWSZgJnRcSOiAjgnmFjhrb1ALBsaNZhZmZTT8Xf2xU7F4eHngLmA69GxNmldUci4hxJdwI7I+K+1L6JYvawH9gQEZen9suAmyLiKknPAl0RMZDWvQxcEhGvD/v9aylmJrS3ty/q6empnH1wcJC2tjYA+g4crTxuLBbMmjHuseV8dVT3fFD/jM7XvLpnrHs+gKVLl+6JiI6xjqt811lJbcD3gD+KiLdG+Yd/oxUxSvtoY05uiNgIbATo6OiIzs7OTOpf6O3tZaj/6gk8DFW2/7rqeYYr56ujuueD+md0vubVPWPd8zWj0tVQkk6nKBR/ExHfT82vpUNLpJ+HU/sAMKc0fDZwMLXPbtB+0hhJ04AZwJtj3RkzM5scVa6GErAJeD4i/qK0ahuwKi2vAh4qtXenK5wuAOYBuyLiEPC2pCVpmyuHjRna1grgiRjL8TEzM5tUVQ5DXQp8CeiTtDe1fR3YAGyVtAZ4FbgWICL2SdoKPEdxJdUN6UoogOuBzcB0ivMY21P7JuBeSf0UM4ru5nbLzMwmUrZYRMTf0ficAsCyEcasB9Y3aN9NcXJ8ePu7pGJjZmb1429wm5lZlouFmZllVb501vL8bW4zO1V5ZmFmZlkuFmZmluViYWZmWS4WZmaW5WJhZmZZvhpqkvjKKDM7lXhmYWZmWS4WZmaW5WJhZmZZLhZmZpblYmFmZlm+GqoFfGWUmX3YeWZhZmZZLhZmZpZV5Rnc35F0WNKzpbZbJB2QtDe9riytu1lSv6QXJV1Ral8kqS+tuyM9h5v0rO77U/vTkuZO8D6amVmTqswsNgNdDdpvj4iF6fUogKSLKJ6ffXEac5ek01L/u4G1wLz0GtrmGuBIRFwI3A7cNs59MTOzSZItFhHxFPBmxe0tB3oi4lhEvAL0A4slzQTOiogdERHAPcDVpTFb0vIDwLKhWYeZmdWDir+7M52KQ0MPR8T89P4WYDXwFrAbuDEijki6E9gZEfelfpuA7cB+YENEXJ7aLwNuioir0uGtrogYSOteBi6JiNcb5FhLMTuhvb19UU9PT+UdHRwcpK2tDYC+A0crj5tMC2bNeH+5nK+O6p4P6p/R+ZpX94x1zwewdOnSPRHRMdZx47109m7gViDSz28AXwYazQhilHYy605ujNgIbATo6OiIzs7OyoF7e3sZ6r+6dCnrVNp/Xef7y+V8dVT3fFD/jM7XvLpnrHu+ZozraqiIeC0iTkTEe8C3gMVp1QAwp9R1NnAwtc9u0H7SGEnTgBlUP+xlZmYtMK5ikc5BDLkGGLpSahvQna5wuoDiRPauiDgEvC1pSTofsRJ4qDRmVVpeATwRVY6NmZlZy2QPQ0n6LtAJnCdpAPgzoFPSQorDRfuBrwBExD5JW4HngOPADRFxIm3qeoorq6ZTnMfYnto3AfdK6qeYUXRPwH6ZmdkEyhaLiPhig+ZNo/RfD6xv0L4bmN+g/V3g2lwOMzObOv4Gt5mZZflGglOofIPBzV1nTGESM7PReWZhZmZZLhZmZpblYmFmZlkuFmZmluViURN9B44yd90jJ530NjOrCxcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy/LtPmqofEXU/g2fn8IkZmYFzyzMzCzLxcLMzLJcLMzMLMvnLGrO5y/MrA6yMwtJ35F0WNKzpbZzJT0m6aX085zSupsl9Ut6UdIVpfZFkvrSujvSs7hJz+u+P7U/LWnuBO+jmZk1qcphqM1A17C2dcDjETEPeDy9R9JFFM/QvjiNuUvSaWnM3cBaYF56DW1zDXAkIi4EbgduG+/OmJnZ5MgWi4h4CnhzWPNyYEta3gJcXWrviYhjEfEK0A8sljQTOCsidkREAPcMGzO0rQeAZUOzDjMzqwcVf3dnOhWHhh6OiPnp/U8j4uzS+iMRcY6kO4GdEXFfat8EbAf2Axsi4vLUfhlwU0RclQ5vdUXEQFr3MnBJRLzeIMdaitkJ7e3ti3p6eirv6ODgIG1tbUBxh9e6aZ8Or/1s9D4LZs1oTZgGyp9fXdU9o/M1r+4Z654PYOnSpXsiomOs4yb6BHejGUGM0j7amA82RmwENgJ0dHREZ2dn5WC9vb0M9V9dw9uA37jgON/oG/0/x/7rOlsTpoHy51dXdc/ofM2re8a652vGeC+dfS0dWiL9PJzaB4A5pX6zgYOpfXaD9pPGSJoGzOCDh73MzGwKjbdYbANWpeVVwEOl9u50hdMFFCeyd0XEIeBtSUvS+YiVw8YMbWsF8ERUOTb2ETT0cCQ/IMnMWi17GErSd4FO4DxJA8CfARuArZLWAK8C1wJExD5JW4HngOPADRFxIm3qeoorq6ZTnMfYnto3AfdK6qeYUXRPyJ6ZmdmEyRaLiPjiCKuWjdB/PbC+QftuYH6D9ndJxcbMzOrJt/swM7Ms3+7jQ8q3ATGzVvLMwszMslwszMwsy8XCzMyyfM7iFODzF2Y22TyzMDOzLBcLMzPLcrEwM7MsFwszM8vyCe5TjE92m9lk8MzCzMyyXCzMzCzLh6FOYT4kZWYTxTMLMzPLcrEwM7MsH4b6iPAhKTNrRlMzC0n7JfVJ2itpd2o7V9Jjkl5KP88p9b9ZUr+kFyVdUWpflLbTL+mO9JxuMzOriYk4DLU0IhZGREd6vw54PCLmAY+n90i6iOL52hcDXcBdkk5LY+4G1gLz0qtrAnKZmdkEmYxzFsuBLWl5C3B1qb0nIo5FxCtAP7BY0kzgrIjYEREB3FMaY2ZmNaDi7+dxDpZeAY4AAfyniNgo6acRcXapz5GIOEfSncDOiLgvtW8CtgP7gQ0RcXlqvwy4KSKuavD71lLMQGhvb1/U09NTOevg4CBtbW0A9B04Oo69nVzt0+G1n7X+9y6YNaNSv/LnV1d1z+h8zat7xrrnA1i6dOme0pGgypo9wX1pRByUdD7wmKQXRunb6DxEjNL+wcaIjcBGgI6Ojujs7KwctLe3l6H+q0sne+vixgXH+UZf66832H9dZ6V+5c+vruqe0fmaV/eMdc/XjKYOQ0XEwfTzMPAgsBh4LR1aIv08nLoPAHNKw2cDB1P77AbtZmZWE+MuFpLOkHTm0DLwL4BngW3AqtRtFfBQWt4GdEv6JUkXUJzI3hURh4C3JS1JV0GtLI2xSTZ33SPvv8zMRtLMcY924MF0les04D9HxA8k/RDYKmkN8CpwLUBE7JO0FXgOOA7cEBEn0rauBzYD0ynOY2xvIpeZmU2wcReLiPgH4DMN2t8Alo0wZj2wvkH7bmD+eLPYxPAX98xsJL7dh5mZZblYmJlZlu8NZQ35kJSZlXlmYWZmWS4WljV33SP0HTjqy2vNPsJcLMzMLMvnLGxMfC7D7KPJMwszM8vyzMLGbfg5DM80zE5dLhY2YXyIyuzU5WJhk8KFw+zU4mJhk86Fw+zDzye4zcwsyzMLa6mRvtjnGYdZvblYWC34UJVZvblYWO24cJjVj4uF1ZoPW5nVQ22KhaQu4K+A04BvR8SGKY5kNdaoiNy44DidrY9i9pFQi2Ih6TTgm8A/BwaAH0raFhHPTW0y+7CZqDvjeuZidrJaFAtgMdCfnuuNpB5gOeBiYVNiMm7HfuOC46z2YTX7kFJETHUGJK0AuiLi36b3XwIuiYivDuu3Flib3v4m8OIYfs15wOsTEHeyOF/z6p7R+ZpX94x1zwfwmxFx5lgH1WVmoQZtH6hiEbER2DiuXyDtjoiO8YxtBedrXt0zOl/z6p6x7vmgyDiecXX5BvcAMKf0fjZwcIqymJnZMHUpFj8E5km6QNLHgW5g2xRnMjOzpBaHoSLiuKSvAv+N4tLZ70TEvgn+NeM6fNVCzte8umd0vubVPWPd88F4D+XX4QS3mZnVW10OQ5mZWY25WJiZWdYpVSwkdUl6UVK/pHUN1kvSHWn9M5J+p4YZf0vSDknHJP1xDfNdlz67ZyT9vaTP1Czf8pRtr6Tdkv5pK/NVyVjq97uSTqTvGdUmn6ROSUfTZ7hX0p/WKV8p415J+yT9bSvzVcko6T+UPr9n03/nc2uUb4ak/yrpx+kz/MPsRiPilHhRnBh/Gfg14OPAj4GLhvW5EthO8b2OJcDTNcx4PvC7wHrgj2uY7/eAc9Ly77fyM6yYr41fnIv7beCFun2GpX5PAI8CK+qUD+gEHm7l5zbGfGdT3N3hV9P78+uWcVj/LwBP1Ckf8HXgtrT8KeBN4OOjbfdUmlm8f8uQiPh/wNAtQ8qWA/dEYSdwtqSZdcoYEYcj4ofAz1uYayz5/j4ijqS3Oym+E1OnfIOR/gQAZ9Dgy51TnTH598D3gMOtDEf1fFOlSr5/DXw/Il6F4s9MDTOWfRH4bkuSFarkC+BMSaL4B9abwPHRNnoqFYtZwE9K7wdS21j7TKap/v05Y823hmKm1iqV8km6RtILwCPAl1uUbUg2o6RZwDXAX7cw15Cq/43/STpEsV3Sxa2JBlTL9xvAOZJ6Je2RtLJl6QqV/5xI+mWgi+IfBq1SJd+dwKcpvvzcB3wtIt4bbaO1+J7FBKlyy5BKtxWZRFP9+3Mq55O0lKJYtPKcQNXbwjwIPCjpnwG3ApdPdrCSKhn/ErgpIk4U/7BrqSr5fgT844gYlHQl8F+AeZMdLKmSbxqwCFgGTAd2SNoZEf9nssMlY/lz/AXgf0XEm5OYZ7gq+a4A9gKfA34deEzS/4yIt0ba6Kk0s6hyy5Cpvq3IVP/+nEr5JP028G1geUS80aJsMMbPLyKeAn5d0nmTHaykSsYOoEfSfmAFcJekq1uSrkK+iHgrIgbT8qPA6S38DKv+Of5BRLwTEa8DTwGtvNBiLP8fdtPaQ1BQLd8fUhzKi4joB14BfmvUrbbyxNAkn9SZBvwDcAG/OKlz8bA+n+fkE9y76pax1PcWWn+Cu8pn+KtAP/B7Nf1vfCG/OMH9O8CBofd1yTis/2Zae4K7ymf4K6XPcDHwaqs+w4r5Pg08nvr+MvAsML9On2HqN4PiXMAZrco2hs/wbuCWtNye/pycN9p2T5nDUDHCLUMk/bu0/q8prjy5kuIvu/9LUV1rlVHSrwC7gbOA9yT9EcWVDCNOD1uZD/hT4JMU/xoGOB4tustmxXz/Clgp6efAz4A/iPQnokYZp0zFfCuA6yUdp/gMu1v1GVbJFxHPS/oB8AzwHsWTNZ9tRb6qGVPXa4D/HhHvtCrbGPLdCmyW1Efxj+ebopiljci3+zAzs6xT6ZyFmZlNEhcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzrP8P/BcSrUrDMSYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZqklEQVR4nO3df5Bd5X3f8ffHCBOFDQIHe6ORSESC2hhQTLJrocals2vRsgEyggm061IjYnXkMqS1p6Qj8B8JGY9mxB8OLYMhlSMPAlIvGmwXBSOnLrClafhhyYMtiR/1YnaoBAODET+WGhqJT/84z5qr5Wr33Lu/LtLnNXNnz/2e5zn3e66k/d7nec49km0iIiI+NN8JREREZ0hBiIgIIAUhIiKKFISIiABSECIiolgw3wm069RTT/WyZctqt3/rrbc48cQTZy+haUhu7Ulu7Ulu7Tlactu1a9crtj/adKftD+Sjp6fHrXjooYdaaj+Xklt7klt7klt7jpbcgJ0+wu/VTBlFRASQNYSIiChSECIiAkhBiIiIIgUhIiKAFISIiChSECIiAkhBiIiIIgUhIiKAD/CtK2bKsuu+8/Pt0U0XzWMmERHzKyOEiIgAUhAiIqJIQYiICCAFISIiihSEiIgAUhAiIqJIQYiICCAFISIiihSEiIgAahQESb8g6XFJP5S0V9KflfgNkvZLeqI8Lmzoc72kEUnPSLqgId4jaXfZd7MklfgJku4u8cckLZuFc42IiEnUGSG8A3za9ieAc4ABSavKvptsn1Me9wNIOhMYBM4CBoBbJR1X2t8GrAeWl8dAia8DDtg+A7gJuHHaZxYRES2ZsiC4MlaeHl8enqTLGmDI9ju2nwNGgJWSFgMn2X7EtoE7gEsa+mwt2/cAq8dHDxERMTdU/W6eolH1CX8XcAbwVdsbJN0AXAW8AewErrV9QNItwKO27yp9twA7gFFgk+3zS/w8YIPtiyXtAQZs7yv7ngXOtf3KhDzWU40w6O7u7hkaGqp9omNjY3R1db0vvnv/6z/fXrFkUe3jzaQj5dYJklt7klt7klt7Wsmtv79/l+3epjtt134AJwMPAWcD3cBxVKOMjcDXS5uvAv+qoc8W4A+ATwL/vSF+HvDXZXsvsLRh37PAL0+WS09Pj1vx0EMPNY3/2ob7fv6YL0fKrRMkt/Ykt/Ykt/a0khuw00f4vdrSVUa2XwOGqT7Nv2T7kO13ga8BK0uzfcBpDd2WAi+U+NIm8cP6SFoALAJebSW3iIiYnjpXGX1U0slleyFwPvB0WRMYdymwp2xvBwbLlUOnUy0eP277ReBNSavK+sCVwL0NfdaW7cuAB0sli4iIOVLnP8hZDGwt6wgfArbZvk/SnZLOoVpgHgU+D2B7r6RtwJPAQeAa24fKsa4GbgcWUq0r7CjxLcCdkkaoRgaD0z+1iIhoxZQFwfaPgN9uEv/sJH02Uq0rTIzvpFp/mBh/G7h8qlwiImL25JvKEREB5P9UPkz+f+WIOJZlhBAREUAKQkREFCkIEREBpCBERESRghAREUAKQkREFCkIEREBpCBERESRghAREUAKQkREFCkIEREBpCBERESRghAREUAKQkREFCkIEREBpCBERESRghAREUCNgiDpFyQ9LumHkvZK+rMS/4ik70n6cfl5SkOf6yWNSHpG0gUN8R5Ju8u+myWpxE+QdHeJPyZp2Syca0RETKLOCOEd4NO2PwGcAwxIWgVcBzxgeznwQHmOpDOBQeAsYAC4VdJx5Vi3AeuB5eUxUOLrgAO2zwBuAm6c/qlFREQrpiwIroyVp8eXh4E1wNYS3wpcUrbXAEO237H9HDACrJS0GDjJ9iO2Ddwxoc/4se4BVo+PHiIiYm6o+t08RaPqE/4u4Azgq7Y3SHrN9skNbQ7YPkXSLcCjtu8q8S3ADmAU2GT7/BI/D9hg+2JJe4AB2/vKvmeBc22/MiGP9VQjDLq7u3uGhoZqn+jY2BhdXV3vi+/e/3rT9iuWLKp97Ok6Um6dILm1J7m1J7m1p5Xc+vv7d9nubbZvQZ0D2D4EnCPpZODbks6epHmzT/aeJD5Zn4l5bAY2A/T29rqvr2+SNA43PDxMs/ZXXfedpu1Hr6h/7Ok6Um6dILm1J7m1J7m1Z6Zya+kqI9uvAcNUc/8vlWkgys+XS7N9wGkN3ZYCL5T40ibxw/pIWgAsAl5tJbeIiJieOlcZfbSMDJC0EDgfeBrYDqwtzdYC95bt7cBguXLodKrF48dtvwi8KWlVWR+4ckKf8WNdBjzoOnNZERExY+pMGS0GtpZ1hA8B22zfJ+kRYJukdcDzwOUAtvdK2gY8CRwErilTTgBXA7cDC6nWFXaU+BbgTkkjVCODwZk4uYiIqG/KgmD7R8BvN4n/FFh9hD4bgY1N4juB960/2H6bUlAiImJ+5JvKEREB1LzK6Fi0rOHqo9FNF81jJhERcyMjhIiIAFIQIiKiSEGIiAggBSEiIooUhIiIAFIQIiKiSEGIiAggBSEiIooUhIiIAFIQIiKiSEGIiAggBSEiIooUhIiIAFIQIiKiSEGIiAggBSEiIoopC4Kk0yQ9JOkpSXslfaHEb5C0X9IT5XFhQ5/rJY1IekbSBQ3xHkm7y76bJanET5B0d4k/JmnZLJxrRERMos4I4SBwre2PA6uAaySdWfbdZPuc8rgfoOwbBM4CBoBbJR1X2t8GrAeWl8dAia8DDtg+A7gJuHH6pxYREa2YsiDYftH2D8r2m8BTwJJJuqwBhmy/Y/s5YARYKWkxcJLtR2wbuAO4pKHP1rJ9D7B6fPQQERFzQ9Xv5pqNq6mch4GzgX8PXAW8AeykGkUckHQL8Kjtu0qfLcAOYBTYZPv8Ej8P2GD7Ykl7gAHb+8q+Z4Fzbb8y4fXXU40w6O7u7hkaGqqd+9jYGF1dXe+L797/eu1jjFuxZFHLfSZzpNw6QXJrT3JrT3JrTyu59ff377Ld22zfgrovKKkL+CbwRdtvSLoN+DLg8vMrwOeAZp/sPUmcKfa9F7A3A5sBent73dfXVzd9hoeHadb+quu+U/sY40avqP+6dRwpt06Q3NqT3NqT3NozU7nVuspI0vFUxeCvbH8LwPZLtg/Zfhf4GrCyNN8HnNbQfSnwQokvbRI/rI+kBcAi4NV2TigiItpT5yojAVuAp2z/eUN8cUOzS4E9ZXs7MFiuHDqdavH4cdsvAm9KWlWOeSVwb0OftWX7MuBBtzKXFRER01ZnyuhTwGeB3ZKeKLEvAZ+RdA7V1M4o8HkA23slbQOepLpC6Rrbh0q/q4HbgYVU6wo7SnwLcKekEaqRweB0TioiIlo3ZUGw/bc0n+O/f5I+G4GNTeI7qRakJ8bfBi6fKpeIiJg9+aZyREQAKQgREVGkIEREBJCCEBERRQpCREQAKQgREVGkIEREBJCCEBERRQpCREQAKQgREVHUvv11vGdZwy2zRzddNI+ZRETMnIwQIiICSEGIiIgiBSEiIoAUhIiIKFIQIiICSEGIiIgiBSEiIoAUhIiIKKYsCJJOk/SQpKck7ZX0hRL/iKTvSfpx+XlKQ5/rJY1IekbSBQ3xHkm7y76bJanET5B0d4k/JmnZLJxrRERMos4I4SBwre2PA6uAaySdCVwHPGB7OfBAeU7ZNwicBQwAt0o6rhzrNmA9sLw8Bkp8HXDA9hnATcCNM3BuERHRgikLgu0Xbf+gbL8JPAUsAdYAW0uzrcAlZXsNMGT7HdvPASPASkmLgZNsP2LbwB0T+owf6x5g9fjoISIi5oaq3801G1dTOQ8DZwPP2z65Yd8B26dIugV41PZdJb4F2AGMAptsn1/i5wEbbF8saQ8wYHtf2fcscK7tVya8/nqqEQbd3d09Q0NDtXMfGxujq6vrffHd+1+vfYyprFiyqK1+R8qtEyS39iS39iS39rSSW39//y7bvc321b65naQu4JvAF22/MckH+GY7PEl8sj6HB+zNwGaA3t5e9/X1TZH1e4aHh2nW/qqGG9VN1+gV9fNpdKTcOkFya09ya09ya89M5VbrKiNJx1MVg7+y/a0SfqlMA1F+vlzi+4DTGrovBV4o8aVN4of1kbQAWAS82urJRERE++pcZSRgC/CU7T9v2LUdWFu21wL3NsQHy5VDp1MtHj9u+0XgTUmryjGvnNBn/FiXAQ+6lbmsiIiYtjpTRp8CPgvslvREiX0J2ARsk7QOeB64HMD2XknbgCeprlC6xvah0u9q4HZgIdW6wo4S3wLcKWmEamQwOL3TioiIVk1ZEGz/Lc3n+AFWH6HPRmBjk/hOqgXpifG3KQUlIiLmR76pHBERQApCREQUKQgREQG08D2EmNqyhu80jG66aB4ziYho3TFZEJbN4JfRIiKOFpkyiogIIAUhIiKKFISIiABSECIiokhBiIgIIAUhIiKKY/Ky07mQ7yRExAdNRggREQGkIERERJGCEBERQApCREQUWVSeA1lgjogPgowQIiICSEGIiIhiyoIg6euSXpa0pyF2g6T9kp4ojwsb9l0vaUTSM5IuaIj3SNpd9t0sSSV+gqS7S/wxSctm+BwjIqKGOiOE24GBJvGbbJ9THvcDSDoTGATOKn1ulXRcaX8bsB5YXh7jx1wHHLB9BnATcGOb5xIREdMwZUGw/TDwas3jrQGGbL9j+zlgBFgpaTFwku1HbBu4A7ikoc/Wsn0PsHp89BAREXNH1e/nKRpV0zj32T67PL8BuAp4A9gJXGv7gKRbgEdt31XabQF2AKPAJtvnl/h5wAbbF5epqAHb+8q+Z4Fzbb/SJI/1VKMMuru7e4aGhmqf6NjYGF1dXQDs3v967X6zacWSRcDhuXWa5Nae5Nae5NaeVnLr7+/fZbu32b52Lzu9Dfgy4PLzK8DngGaf7D1JnCn2HR60NwObAXp7e93X11c74eHhYcbbX9Uh/4Xm6BV9wOG5dZrk1p7k1p7k1p6Zyq2tq4xsv2T7kO13ga8BK8uufcBpDU2XAi+U+NIm8cP6SFoALKL+FFVERMyQtgpCWRMYdykwfgXSdmCwXDl0OtXi8eO2XwTelLSqrA9cCdzb0Gdt2b4MeNB15rEiImJGTTllJOkbQB9wqqR9wJ8CfZLOoZraGQU+D2B7r6RtwJPAQeAa24fKoa6mumJpIdW6wo4S3wLcKWmEamQwOAPnFRERLZqyINj+TJPwlknabwQ2NonvBM5uEn8buHyqPCIiYnblXkbzaPweR9euOEjf/KYSEZFbV0RERCUFISIigBSEiIgoUhAiIgJIQYiIiCJXGXWI/K9qETHfMkKIiAggBSEiIooUhIiIAFIQIiKiyKJyB8oCc0TMh4wQIiICSEGIiIgiBSEiIoAUhIiIKFIQIiICyFVGHS9XHEXEXJlyhCDp65JelrSnIfYRSd+T9OPy85SGfddLGpH0jKQLGuI9knaXfTdLUomfIOnuEn9M0rIZPseIiKihzpTR7cDAhNh1wAO2lwMPlOdIOhMYBM4qfW6VdFzpcxuwHlheHuPHXAccsH0GcBNwY7snExER7ZuyINh+GHh1QngNsLVsbwUuaYgP2X7H9nPACLBS0mLgJNuP2DZwx4Q+48e6B1g9PnqIiIi5o+r38xSNqmmc+2yfXZ6/Zvvkhv0HbJ8i6RbgUdt3lfgWYAcwCmyyfX6JnwdssH1xmYoasL2v7HsWONf2K03yWE81yqC7u7tnaGio9omOjY3R1dUFwO79r9fuNxe6F8JLP2utz4oli2YnmQka37dOk9zak9zac7Tk1t/fv8t2b7N9M72o3OyTvSeJT9bn/UF7M7AZoLe31319fbUTGx4eZrz9VQ0LtZ3g2hUH+cru1v4oRq/om51kJmh83zpNcmtPcmvPsZBbu5edvlSmgSg/Xy7xfcBpDe2WAi+U+NIm8cP6SFoALOL9U1QRETHL2i0I24G1ZXstcG9DfLBcOXQ61eLx47ZfBN6UtKqsD1w5oc/4sS4DHnSdeayIiJhRU85TSPoG0AecKmkf8KfAJmCbpHXA88DlALb3StoGPAkcBK6xfagc6mqqK5YWUq0r7CjxLcCdkkaoRgaDM3JmERHRkikLgu3PHGHX6iO03whsbBLfCZzdJP42paBERMT8yTeVP6DyDeaImGm5l1FERAApCBERUaQgREQEkDWEo0LWEyJiJmSEEBERQApCREQUKQgREQFkDeGok/WEiGhXRggREQGkIERERJGCEBERQApCREQUWVQ+imWBOSJakRFCREQAKQgREVFkyugYkemjiJhKRggREQGkIERERDGtKSNJo8CbwCHgoO1eSR8B7gaWAaPAP7d9oLS/HlhX2v87239T4j3A7cBC4H7gC7Y9ndziyDJ9FBHNzMQIod/2ObZ7y/PrgAdsLwceKM+RdCYwCJwFDAC3Sjqu9LkNWA8sL4+BGcgrIiJaMBtTRmuArWV7K3BJQ3zI9ju2nwNGgJWSFgMn2X6kjAruaOgTERFzRNOZmZH0HHAAMPCfbW+W9JrtkxvaHLB9iqRbgEdt31XiW4AdVNNKm2yfX+LnARtsX9zk9dZTjSTo7u7uGRoaqp3r2NgYXV1dAOze/3obZzt7uhfCSz+bn9desWTRpPsb37dOk9zak9zac7Tk1t/fv6thRucw073s9FO2X5D0MeB7kp6epK2axDxJ/P1BezOwGaC3t9d9fX21Ex0eHma8/VUNc+id4NoVB/nK7vm5Anj0ir5J9ze+b50mubUnubXnWMhtWr+FbL9Qfr4s6dvASuAlSYttv1img14uzfcBpzV0Xwq8UOJLm8RjDmSBOSLGtb2GIOlESb80vg38M2APsB1YW5qtBe4t29uBQUknSDqdavH4cdsvAm9KWiVJwJUNfSIiYo5MZ4TQDXy7+h3OAuC/2P6upO8D2yStA54HLgewvVfSNuBJ4CBwje1D5VhX895lpzvKI+ZYRgsRx7a2C4LtnwCfaBL/KbD6CH02AhubxHcCZ7ebS0RETF++qRwREUBubhdHMD59dO2Kg/TNbyoRMUcyQoiICCAjhKghi80Rx4aMECIiAsgIIVqU0ULE0SsjhIiIADJCiGlYNuGeUBkxRHywZYQQERFARggxg7K+EPHBlhFCREQAGSHELJm4vjAuI4eIzpURQkREABkhxBzLOkNE50pBiHmT4hDRWVIQoiOkOETMvxSE6DhZkI6YHykI8YGRUUTE7EpBiA+kZdd9h2tXHOSq3D4jYsZ0TEGQNAD8J+A44C9tb5rnlOIDKNNNEe3riIIg6Tjgq8A/BfYB35e03faT85tZHC2OVChalcISR7OOKAjASmDE9k8AJA0Ba4AUhOgodQtLs+msdqQAxVyS7fnOAUmXAQO2/3V5/lngXNt/NKHdemB9efoPgWdaeJlTgVdmIN3ZkNzak9zak9zac7Tk9mu2P9psR6eMENQk9r5KZXszsLmtF5B22u5tp+9sS27tSW7tSW7tORZy65R7Ge0DTmt4vhR4YZ5yiYg4JnVKQfg+sFzS6ZI+DAwC2+c5p4iIY0pHTBnZPijpj4C/obrs9Ou2987wy7Q11TRHklt7klt7klt7jvrcOmJROSIi5l+nTBlFRMQ8S0GIiAjgKCsIkgYkPSNpRNJ1TfZL0s1l/48k/U4H5fabkh6R9I6kP56rvGrmdkV5v34k6e8kfaKDcltT8npC0k5J/7hTcmto90lJh8r3bToiN0l9kl4v79sTkv6kU3JryO8JSXsl/Y9OyU3Sf2h4z/aUP9ePdFB+iyT9taQflvfuD1t6AdtHxYNqMfpZ4NeBDwM/BM6c0OZCYAfV9x5WAY91UG4fAz4JbAT+uMPet98FTinbv9dh71sX762F/RbwdKfk1tDuQeB+4LJOyQ3oA+6bq79nLeZ2MtVdCn61PP9Yp+Q2of3vAw922Hv3JeDGsv1R4FXgw3Vf42gaIfz89he2/x8wfvuLRmuAO1x5FDhZ0uJOyM32y7a/D/z9HOTTam5/Z/tAefoo1fdEOiW3MZe//cCJNPlC43zlVvxb4JvAy3OUVyu5zYc6uf1L4Fu2n4fq30YH5dboM8A35iSzSp38DPySJFF9WHoVOFj3BY6mgrAE+D8Nz/eVWKttZsN8vW4drea2jmqUNRdq5SbpUklPA98BPtcpuUlaAlwK/MUc5TSu7p/pPypTCzsknTU3qdXK7R8Ap0galrRL0pUdlBsAkn4RGKAq9nOlTn63AB+n+mLvbuALtt+t+wId8T2EGVLn9he1bpExC+brdeuonZukfqqCMFfz9HVvafJt4NuS/gnwZeD82U6Mern9R2CD7UPVB7Y5Uye3H1Dd02ZM0oXAfwWWz3Zi1MttAdADrAYWAo9IetT2/+6A3Mb9PvC/bL86i/lMVCe/C4AngE8DvwF8T9L/tP1GnRc4mkYIdW5/MV+3yOjkW3PUyk3SbwF/Cayx/dNOym2c7YeB35B06mwnRr3ceoEhSaPAZcCtki7phNxsv2F7rGzfDxzfQe/bPuC7tt+y/QrwMDAXFzK08vdtkLmdLoJ6+f0h1XSbbY8AzwG/WfsV5mpBZA4WXBYAPwFO570Fl7MmtLmIwxeVH++U3Bra3sDcLirXed9+FRgBfrcD/0zP4L1F5d8B9o8/n+/cJrS/nblbVK7zvv1Kw/u2Eni+U943qimPB0rbXwT2AGd3Qm6l3SKqufkT5+LPs8X37jbghrLdXf49nFr3NY6aKSMf4fYXkv5N2f8XVFd6XEj1y+3/UlXTjshN0q8AO4GTgHclfZHqCoJaQ73ZzA34E+CXqT7hAhz0HNz1sWZufwBcKenvgZ8B/8LlX0MH5DYvauZ2GXC1pINU79tgp7xvtp+S9F3gR8C7VP+D4p5OyK00vRT4b7bfmu2c2sjvy8DtknZTffDd4GqUVUtuXREREcDRtYYQERHTkIIQERFACkJERBQpCBERAaQgREREkYIQERFACkJERBT/H712dFYLLWRxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZoUlEQVR4nO3db5BV933f8ffHICtEGyHJkjcUSFADbSwgJmGNaFx1do1abWVlkCZosq5qIKaDqyEde6p0kPwgUcbDDHpgq1VkkeLgAUmJV4xsVUQWbhWkjZIGhMGDtSCJemV2lAVGDAYjVo2oQd8+OL9Fh9Vl95zd+4/l85q5s+d+zzl3P+ci7ff+zu/cexURmJmZfaTRAczMrDm4IZiZGeCGYGZmiRuCmZkBbghmZpZMbnSAsbr++utj1qxZhbZ99913ueqqq2obaAycqxznKse5ymnGXLXItHfv3uMRcUPFlRFxSd4WLlwYRb300kuFt60n5yrHucpxrnKaMVctMgF74iJ/V33KyMzMAM8hmJlZ4oZgZmaAG4KZmSVuCGZmBrghmJlZ4oZgZmaAG4KZmSVuCGZmBlzCH11RLbPu/9755f71n21gEjOzxvIIwczMADcEMzNL3BDMzAwo0BAk/YKk3ZJ+JOmApD9J9QclHZa0L91uz+3zgKQ+SQcl3ZarL5TUm9Y9IkmpfqWkp1L9FUmzanCsZmY2giIjhDPAZyLik8ACoFPS4rTu4YhYkG7PA0i6CegC5gKdwGOSJqXtNwCrgTnp1pnqq4CTETEbeBh4aNxHZmZmpYzaENJHaA+mu1ekW4ywy1KgOyLORMQhoA9YJGkacHVE7Eyfyf04cGduny1p+WlgydDowczM6kPZ3+ZRNspe4e8FZgPfiIi1kh4EVgLvAHuA+yLipKRHgV0R8WTadxOwHegH1kfEral+C7A2Iu6QtB/ojIiBtO5N4OaIOD4sx2qyEQatra0Lu7u7Cx3k4OAgLS0tFdf1Hj51fnn+9KmFHq9aRsrVSM5VjnOV41zF1SJTR0fH3ohoq7jyYt+cU+kGXAO8BMwDWoFJZKOMdcC30jbfAP59bp9NwO8CnwL+Ole/BfirtHwAmJFb9ybwsZGyVOsb03517XPnb/XWjN/QFOFcZTlXOc5VXFN/Y1pE/AzoIXs1/3ZEnIuI94FvAovSZgPAzNxuM4AjqT6jQv2CfSRNBqYCJ8pkMzOz8SlyldENkq5Jy1OAW4E30pzAkLuA/Wl5G9CVrhy6kWzyeHdEHAVOS1qc5geWA8/m9lmRlpcBL6ZOZmZmdVLkoyumAVvSPMJHgK0R8ZykJyQtIJtg7ge+CBARByRtBV4DzgJrIuJceqx7gc3AFLJ5he2pvgl4QlIf2ciga/yHZmZmZYzaECLiVeA3K9Q/P8I+68jmFYbX95DNPwyvvwfcPVoWMzOrHb9T2czMADcEMzNL3BDMzAxwQzAzs+Sy/4KcPH9ZjpldzjxCMDMzwA3BzMwSNwQzMwPcEMzMLHFDMDMzwA3BzMwSNwQzMwPcEMzMLHFDMDMzwA3BzMwSNwQzMwPcEMzMLHFDMDMzwA3BzMySURuCpF+QtFvSjyQdkPQnqX6dpBck/Tj9vDa3zwOS+iQdlHRbrr5QUm9a94gkpfqVkp5K9VckzarBsZqZ2QiKjBDOAJ+JiE8CC4BOSYuB+4EdETEH2JHuI+kmoAuYC3QCj0malB5rA7AamJNunam+CjgZEbOBh4GHxn9oZmZWxqgNITKD6e4V6RbAUmBLqm8B7kzLS4HuiDgTEYeAPmCRpGnA1RGxMyICeHzYPkOP9TSwZGj0YGZm9aHsb/MoG2Wv8PcCs4FvRMRaST+LiGty25yMiGslPQrsiognU30TsB3oB9ZHxK2pfguwNiLukLQf6IyIgbTuTeDmiDg+LMdqshEGra2tC7u7uwsd5ODgIC0tLRXX9R4+VbE+f/rUQo89HiPlaiTnKse5ynGu4mqRqaOjY29EtFVaV+grNCPiHLBA0jXAM5LmjbB5pVf2MUJ9pH2G59gIbARoa2uL9vb2EWJ8oKenh4ttuzL3tZl5/fcUe+zxGClXIzlXOc5VjnMVV+9Mpa4yioifAT1k5/7fTqeBSD+Ppc0GgJm53WYAR1J9RoX6BftImgxMBU6UyWZmZuNT5CqjG9LIAElTgFuBN4BtwIq02Qrg2bS8DehKVw7dSDZ5vDsijgKnJS1O8wPLh+0z9FjLgBejyLksMzOrmiKnjKYBW9I8wkeArRHxnKSdwFZJq4C3gLsBIuKApK3Aa8BZYE065QRwL7AZmEI2r7A91TcBT0jqIxsZdFXj4MzMrLhRG0JEvAr8ZoX6T4ElF9lnHbCuQn0P8KH5h4h4j9RQzMysMfxOZTMzA9wQzMwscUMwMzPADcHMzBI3BDMzA9wQzMwsKfTRFZejWbmPtOhf/9kGJjEzqw+PEMzMDHBDMDOzxA3BzMwANwQzM0vcEMzMDHBDMDOzxA3BzMwANwQzM0vcEMzMDHBDMDOzxA3BzMwANwQzM0vcEMzMDCjQECTNlPSSpNclHZD0pVR/UNJhSfvS7fbcPg9I6pN0UNJtufpCSb1p3SOSlOpXSnoq1V+RNKsGx2pmZiMoMkI4C9wXEZ8AFgNrJN2U1j0cEQvS7XmAtK4LmAt0Ao9JmpS23wCsBuakW2eqrwJORsRs4GHgofEfmpmZlTFqQ4iIoxHxw7R8GngdmD7CLkuB7og4ExGHgD5gkaRpwNURsTMiAngcuDO3z5a0/DSwZGj0YGZm9aHsb3PBjbNTOS8D84D/DKwE3gH2kI0iTkp6FNgVEU+mfTYB24F+YH1E3JrqtwBrI+IOSfuBzogYSOveBG6OiOPDfv9qshEGra2tC7u7uwvlHhwcpKWlpeK63sOnRt1//vSphX5PWSPlaiTnKse5ynGu4mqRqaOjY29EtFVaV/gb0yS1AN8BvhwR70jaAHwViPTza8AXgEqv7GOEOqOs+6AQsRHYCNDW1hbt7e2Fsvf09HCxbVfmvhntYvrvKfZ7yhopVyM5VznOVY5zFVfvTIWuMpJ0BVkz+IuI+C5ARLwdEeci4n3gm8CitPkAMDO3+wzgSKrPqFC/YB9Jk4GpwImxHJCZmY3NqCOEdC5/E/B6RHw9V58WEUfT3buA/Wl5G/CXkr4O/BOyyePdEXFO0mlJi4FXgOXAn+b2WQHsBJYBL0aZc1k1NmvYKMLfsWxmE1GRU0afBj4P9Eral2pfAT4naQHZqZ1+4IsAEXFA0lbgNbIrlNZExLm0373AZmAK2bzC9lTfBDwhqY9sZNA1noMyM7PyRm0IEfF3VD7H//wI+6wD1lWo7yGbkB5efw+4e7QsZmZWO36nspmZAW4IZmaWuCGYmRnghmBmZokbgpmZAW4IZmaWuCGYmRnghmBmZokbgpmZAW4IZmaWuCGYmRnghmBmZokbgpmZAW4IZmaWFP4KTftA/gtz/GU5ZjZReIRgZmaAG4KZmSVuCGZmBrghmJlZMmpDkDRT0kuSXpd0QNKXUv06SS9I+nH6eW1unwck9Uk6KOm2XH2hpN607hFJSvUrJT2V6q9ImlWDYzUzsxEUGSGcBe6LiE8Ai4E1km4C7gd2RMQcYEe6T1rXBcwFOoHHJE1Kj7UBWA3MSbfOVF8FnIyI2cDDwENVODYzMyth1IYQEUcj4odp+TTwOjAdWApsSZttAe5My0uB7og4ExGHgD5gkaRpwNURsTMiAnh82D5Dj/U0sGRo9GBmZvWh7G9zwY2zUzkvA/OAtyLimty6kxFxraRHgV0R8WSqbwK2A/3A+oi4NdVvAdZGxB2S9gOdETGQ1r0J3BwRx4f9/tVkIwxaW1sXdnd3F8o9ODhIS0tLxXW9h08VO/iLmD996pj3HSlXIzlXOc5VjnMVV4tMHR0deyOirdK6wm9Mk9QCfAf4ckS8M8IL+EorYoT6SPtcWIjYCGwEaGtri/b29lFSZ3p6erjYtitzbzIbi/57imWoZKRcjeRc5ThXOc5VXL0zFbrKSNIVZM3gLyLiu6n8djoNRPp5LNUHgJm53WcAR1J9RoX6BftImgxMBU6UPRgzMxu7IlcZCdgEvB4RX8+t2gasSMsrgGdz9a505dCNZJPHuyPiKHBa0uL0mMuH7TP0WMuAF6PMuSwzMxu3IqeMPg18HuiVtC/VvgKsB7ZKWgW8BdwNEBEHJG0FXiO7QmlNRJxL+90LbAamkM0rbE/1TcATkvrIRgZd4zus+vHnGpnZRDFqQ4iIv6PyOX6AJRfZZx2wrkJ9D9mE9PD6e6SGYmZmjeF3KpuZGeCGYGZmiRuCmZkBbghmZpa4IZiZGeCGYGZmib9TuYr8ngQzu5R5hGBmZoAbgpmZJW4IZmYGuCGYmVnihmBmZoAbgpmZJZflZaezxvktaWZmE5FHCGZmBlymI4R68JvUzOxS4xGCmZkBbghmZpa4IZiZGeA5hLrwfIKZXQpGHSFI+pakY5L252oPSjosaV+63Z5b94CkPkkHJd2Wqy+U1JvWPSJJqX6lpKdS/RVJs6p8jGZmVkCRU0abgc4K9YcjYkG6PQ8g6SagC5ib9nlM0qS0/QZgNTAn3YYecxVwMiJmAw8DD43xWMzMbBxGbQgR8TJwouDjLQW6I+JMRBwC+oBFkqYBV0fEzogI4HHgztw+W9Ly08CSodGDmZnVj7K/z6NslJ3GeS4i5qX7DwIrgXeAPcB9EXFS0qPAroh4Mm23CdgO9APrI+LWVL8FWBsRd6RTUZ0RMZDWvQncHBHHK+RYTTbKoLW1dWF3d3ehgxwcHKSlpeX8/d7DpwrtVwvzp089vzw8V7NwrnKcqxznKq4WmTo6OvZGRFuldWOdVN4AfBWI9PNrwBeASq/sY4Q6o6y7sBixEdgI0NbWFu3t7YXC9vT0kN92ZQM/uqL/ng9yDM/VLJyrHOcqx7mKq3emMTWEiHh7aFnSN4Hn0t0BYGZu0xnAkVSfUaGe32dA0mRgKsVPUV1y8lccbe68qoFJzMwuNKb3IaQ5gSF3AUNXIG0DutKVQzeSTR7vjoijwGlJi9P8wHLg2dw+K9LyMuDFKHIey8zMqmrUEYKkbwPtwPWSBoA/BtolLSA7tdMPfBEgIg5I2gq8BpwF1kTEufRQ95JdsTSFbF5he6pvAp6Q1Ec2MuiqwnGZmVlJozaEiPhchfKmEbZfB6yrUN8DzKtQfw+4e7QcZmZWW/7oCjMzA9wQGqr38Clm3f89f2GPmTUFNwQzMwPcEMzMLHFDMDMzwA3BzMwSNwQzMwP8BTlNw1+iY2aN5hGCmZkBbghmZpa4IZiZGeCGYGZmiRuCmZkBvsqoKfmKIzNrBI8QzMwMcEMwM7PEp4yanE8fmVm9eIRgZmaAG4KZmSWjNgRJ35J0TNL+XO06SS9I+nH6eW1u3QOS+iQdlHRbrr5QUm9a94gkpfqVkp5K9VckzaryMZqZWQFFRgibgc5htfuBHRExB9iR7iPpJqALmJv2eUzSpLTPBmA1MCfdhh5zFXAyImYDDwMPjfVgzMxs7EZtCBHxMnBiWHkpsCUtbwHuzNW7I+JMRBwC+oBFkqYBV0fEzogI4PFh+ww91tPAkqHRg5mZ1c9YrzJqjYijABFxVNLHU306sCu33UCq/TwtD68P7fMP6bHOSjoFfAw4PsZsE5avODKzWqr2ZaeVXtnHCPWR9vnwg0uryU470draSk9PT6FQg4ODF2x73/yzhfartdYpY89S9NjHYvjz1SycqxznKqcZc9U701gbwtuSpqXRwTTgWKoPADNz280AjqT6jAr1/D4DkiYDU/nwKSoAImIjsBGgra0t2tvbC4Xt6ekhv+3K3CvtRrpv/lm+1ju2f4L+e9qrGyZn+PPVLJyrHOcqpxlz1TvTWC873QasSMsrgGdz9a505dCNZJPHu9PppdOSFqf5geXD9hl6rGXAi2mewczM6mjUl6eSvg20A9dLGgD+GFgPbJW0CngLuBsgIg5I2gq8BpwF1kTEufRQ95JdsTQF2J5uAJuAJyT1kY0MuqpyZBOc5xPMrNpGbQgR8bmLrFpyke3XAesq1PcA8yrU3yM1FDMzaxy/U9nMzAA3BDMzS9wQzMwM8MdfTwieYDazavAIwczMADcEMzNL3BDMzAxwQzAzs8STyhOMJ5jNbKw8QjAzM8ANwczMEp8ymsB8+sjMyvAIwczMADcEMzNL3BDMzAzwHMJlw/MJZjYajxDMzAxwQzAzs8QNwczMAM8hXJY8n2BmlYxrhCCpX1KvpH2S9qTadZJekPTj9PPa3PYPSOqTdFDSbbn6wvQ4fZIekaTx5DIzs/KqccqoIyIWRERbun8/sCMi5gA70n0k3QR0AXOBTuAxSZPSPhuA1cCcdOusQi4rYNb93zt/M7PLWy3mEJYCW9LyFuDOXL07Is5ExCGgD1gkaRpwdUTsjIgAHs/tY2ZmdaLsb/AYd5YOASeBAP57RGyU9LOIuCa3zcmIuFbSo8CuiHgy1TcB24F+YH1E3JrqtwBrI+KOCr9vNdlIgtbW1oXd3d2Fcg4ODtLS0nL+fu/hU2M42uprnQJv/2OjU3xg/vSpwIefr2bhXOU4VznNmKsWmTo6OvbmzuhcYLyTyp+OiCOSPg68IOmNEbatNC8QI9Q/XIzYCGwEaGtri/b29kIhe3p6yG+7sklOj9w3/yxf622eef3+e9qBDz9fzcK5ynGucpoxV70zjeuUUUQcST+PAc8Ai4C302kg0s9jafMBYGZu9xnAkVSfUaFuZmZ1NOaGIOkqSb80tAz8G2A/sA1YkTZbATyblrcBXZKulHQj2eTx7og4CpyWtDhdXbQ8t4/V0dDkcrOcUjOz+hrP+YpW4Jl0hehk4C8j4vuSfgBslbQKeAu4GyAiDkjaCrwGnAXWRMS59Fj3ApuBKWTzCtvHkcvMzMZgzA0hIn4CfLJC/afAkovssw5YV6G+B5g31ixWfX7zmtnlxx9dYWZmgD+6wgrwaMHs8uARgpmZAR4hWEkeLZhNXB4hmJkZ4BGCjcPwD8TziMHs0uYRgpmZAR4hWBV5fsHs0uYRgpmZAR4hWI14tGB26fEIwczMAI8QrA48WjC7NLghWF25OZg1L58yMjMzwCMEa6Dhb2wb4pGDWWN4hGBmZoBHCNaELjZy2Nx5VZ2TmF1ePEKwS0bv4VPnv/fZzKrPIwS7JHn+waz63BBsQnGjMBu7pmkIkjqB/wZMAv48ItY3OJJNIG4UZqNrioYgaRLwDeBfAwPADyRti4jXGpvMJrrxzEe4mdhE0xQNAVgE9EXETwAkdQNLATcEa1pDzeS++WdZWYeJbjcgqzVFRKMzIGkZ0BkR/yHd/zxwc0T8wbDtVgOr091/Dhws+CuuB45XKW41OVc5zlWOc5XTjLlqkelXI+KGSiuaZYSgCrUPdaqI2AhsLP3g0p6IaBtLsFpyrnKcqxznKqcZc9U7U7O8D2EAmJm7PwM40qAsZmaXpWZpCD8A5ki6UdJHgS5gW4MzmZldVprilFFEnJX0B8D/JLvs9FsRcaCKv6L0aaY6ca5ynKsc5yqnGXPVNVNTTCqbmVnjNcspIzMzazA3BDMzAyZYQ5DUKemgpD5J91dYL0mPpPWvSvqtJsn165J2Sjoj6Q/rkalgrnvS8/SqpL+X9MkmyLQ05dknaY+kf1nrTEVy5bb7lKRz6b01Dc8lqV3SqfR87ZP0R82QK5dtn6QDkv6mGXJJ+i+552p/+re8rglyTZX0V5J+lJ6v369JkIiYEDeyyeg3gX8KfBT4EXDTsG1uB7aTve9hMfBKk+T6OPApYB3wh030fP02cG1a/re1fr4KZmrhg7mv3wDeaIbnKrfdi8DzwLJmyAW0A8/V47+pkrmuIfskgl9J9z/eDLmGbf87wIvNkAv4CvBQWr4BOAF8tNpZJtII4fzHX0TE/wOGPv4ibynweGR2AddImtboXBFxLCJ+APy8xlnK5vr7iDiZ7u4ie39IozMNRvq/AriKCm9gbESu5D8B3wGO1SFTmVz1ViTXvwO+GxFvQfb/QJPkyvsc8O0myRXAL0kS2YuiE8DZageZSA1hOvAPufsDqVZ2m0bkaoSyuVaRja5qqVAmSXdJegP4HvCFGmcqlEvSdOAu4M/qkKdwruRfpFMN2yXNbZJc/wy4VlKPpL2SljdJLgAk/SLQSdbgmyHXo8AnyN6w2wt8KSLer3aQpngfQpUU+fiLQh+RUWWN+J1FFM4lqYOsIdT6fH3RjzB5BnhG0r8Cvgrc2gS5/iuwNiLOZS/i6qJIrh+SfXbNoKTbgf8BzGmCXJOBhcASYAqwU9KuiPg/Dc415HeA/x0RJ2qYZ0iRXLcB+4DPAL8GvCDpbyPinWoGmUgjhCIff9GIj8ho1o/lKJRL0m8Afw4sjYifNkOmIRHxMvBrkq5vglxtQLekfmAZ8JikOxudKyLeiYjBtPw8cEWTPF8DwPcj4t2IOA68DNT6ooUy/311UZ/TRVAs1++TnWKLiOgDDgG/XvUktZ4wqdeN7BXHT4Ab+WBiZu6wbT7LhZPKu5shV27bB6nfpHKR5+tXgD7gt5so02w+mFT+LeDw0P1m+DdM22+mPpPKRZ6vX849X4uAt5rh+SI7/bEjbfuLwH5gXqNzpe2mkp2jv6rW/4Ylnq8NwINpuTX9d399tbNMmFNGcZGPv5D0H9P6PyO7+uN2sj9y/5es6zY8l6RfBvYAVwPvS/oy2VUGVR0Ols0F/BHwMbJXuwBno4afvFgw0+8CyyX9HPhH4Pci/V/S4Fx1VzDXMuBeSWfJnq+uZni+IuJ1Sd8HXgXeJ/uWxP2NzpU2vQv4XxHxbi3zlMz1VWCzpF6yF7RrIxtZVZU/usLMzICJNYdgZmbj4IZgZmaAG4KZmSVuCGZmBrghmJlZ4oZgZmaAG4KZmSX/H119cOdad94+AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXUElEQVR4nO3df4xd5Z3f8fdnIWFpshACyciy2ZoWtw0/GlKmrtW00mzYFof8AZFAcopi2CA5paTNSv4jkD+6WUWW4I8sLdrA1lkifmi7YJGkuJuwLYK9TVfLj5gViTGEZhpccLBABJYwqaAZ59s/7uNwPYznnhnbM9cz75d0dc/9nuc585yvDN95znPumVQVkiT92lIPQJI0GiwIkiTAgiBJaiwIkiTAgiBJak5c6gEs1BlnnFFr167t1PbnP/8573nPe47tgI5z5qgb8zScOepmqfL0xBNPvFJVH5ht33FbENauXcuuXbs6te31ekxMTBzbAR3nzFE35mk4c9TNUuUpyf853D4vGUmSAAuCJKmxIEiSAAuCJKmxIEiSgA4FIcmvJ3k8yfeT7Eny+y3+pSQ/SfJke10y0OeGJJNJnk1y8UD8wiS7275bkqTFT0pyb4s/lmTtMThXSdIcuswQ3gI+VlUfBi4ANibZ0PbdXFUXtNd3AJKcA2wCzgU2ArcmOaG1vw3YAqxrr40tfg3wWlWdDdwM3HTEZyZJmpehBaH6ptrHd7XXXM/MvhS4p6reqqrngElgfZJVwClV9Uj1n7l9F3DZQJ872/Z9wEUHZw+SpMXR6Ytp7Tf8J4Czga9W1WNJPg58LslmYBewtapeA1YDjw5039div2jbM+O09xcAqmo6yevA6cArM8axhf4Mg7GxMXq9XqeTnJqa6tx2pTJH3Zin4cxRN6OYp04FoaoOABckeR/wrSTn0b/882X6s4UvA18BPgPM9pt9zRFnyL7BcWwHtgOMj49X12/5zfWNwLXXf/tX23tv/ESn4y1Hfru0G/M0nDnqZhTzNK+7jKrqb4AesLGqXqqqA1X1S+BrwPrWbB9w5kC3NcCLLb5mlvghfZKcCJwKvDqfsUmSjkyXu4w+0GYGJDkZ+G3gh21N4KBPAk+17Z3Apnbn0Fn0F48fr6r9wBtJNrT1gc3A/QN9rmrblwMPl3/bU5IWVZdLRquAO9s6wq8BO6rqz5LcneQC+pd29gKfBaiqPUl2AE8D08B17ZITwLXAHcDJwAPtBXA7cHeSSfozg01HfmqSpPkYWhCq6gfAR2aJf3qOPtuAbbPEdwHnzRJ/E7hi2FgkSceO31SWJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElS0+kP5KwU/rEcSSuZMwRJEmBBkCQ1FgRJEmBBkCQ1FgRJEmBBkCQ1FgRJEmBBkCQ1QwtCkl9P8niS7yfZk+T3W/z9SR5M8qP2ftpAnxuSTCZ5NsnFA/ELk+xu+25JkhY/Kcm9Lf5YkrXH4FwlSXPoMkN4C/hYVX0YuADYmGQDcD3wUFWtAx5qn0lyDrAJOBfYCNya5IR2rNuALcC69trY4tcAr1XV2cDNwE1HfmqSpPkYWhCqb6p9fFd7FXApcGeL3wlc1rYvBe6pqreq6jlgElifZBVwSlU9UlUF3DWjz8Fj3QdcdHD2IElaHJ2eZdR+w38COBv4alU9lmSsqvYDVNX+JB9szVcDjw5039div2jbM+MH+7zQjjWd5HXgdOCVGePYQn+GwdjYGL1er9NJTk1NHbbt1vOnZ413PfZyMVeO9DbzNJw56mYU89SpIFTVAeCCJO8DvpXkvDmaz/abfc0Rn6vPzHFsB7YDjI+P18TExBzDeFuv1+Nwba8eeKDdoL1Xdjv2cjFXjvQ28zScOepmFPM0r7uMqupvgB79a/8vtctAtPeXW7N9wJkD3dYAL7b4mlnih/RJciJwKvDqfMYmSToyXe4y+kCbGZDkZOC3gR8CO4GrWrOrgPvb9k5gU7tz6Cz6i8ePt8tLbyTZ0NYHNs/oc/BYlwMPt3UGSdIi6XLJaBVwZ1tH+DVgR1X9WZJHgB1JrgGeB64AqKo9SXYATwPTwHXtkhPAtcAdwMnAA+0FcDtwd5JJ+jODTUfj5CRJ3Q0tCFX1A+Ajs8R/Clx0mD7bgG2zxHcB71h/qKo3aQVFkrQ0/KayJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSmk5/IGclWjvwh3P23viJJRyJJC0OZwiSJMCCIElqLAiSJMCCIElqLAiSJMCCIElqLAiSJMCCIElqhhaEJGcm+YskzyTZk+TzLf6lJD9J8mR7XTLQ54Ykk0meTXLxQPzCJLvbvluSpMVPSnJviz+WZO0xOFdJ0hy6zBCmga1V9SFgA3BdknPavpur6oL2+g5A27cJOBfYCNya5ITW/jZgC7CuvTa2+DXAa1V1NnAzcNORn5okaT6GFoSq2l9Vf9223wCeAVbP0eVS4J6qequqngMmgfVJVgGnVNUjVVXAXcBlA33ubNv3ARcdnD1IkhbHvJ5l1C7lfAR4DPgo8Lkkm4Fd9GcRr9EvFo8OdNvXYr9o2zPjtPcXAKpqOsnrwOnAKzN+/hb6MwzGxsbo9Xqdxj01NXXYtlvPnx7av+vPOZ7NlSO9zTwNZ466GcU8dS4ISd4LfAP43ar6WZLbgC8D1d6/AnwGmO03+5ojzpB9bweqtgPbAcbHx2tiYqLT2Hu9Hodre/XAQ+wOZ++V3X7O8WyuHOlt5mk4c9TNKOap011GSd5Fvxj8SVV9E6CqXqqqA1X1S+BrwPrWfB9w5kD3NcCLLb5mlvghfZKcCJwKvLqQE5IkLUyXu4wC3A48U1V/MBBfNdDsk8BTbXsnsKndOXQW/cXjx6tqP/BGkg3tmJuB+wf6XNW2LwcebusMkqRF0uWS0UeBTwO7kzzZYl8EPpXkAvqXdvYCnwWoqj1JdgBP079D6bqqOtD6XQvcAZwMPNBe0C84dyeZpD8z2HQkJyVJmr+hBaGq/pLZr/F/Z44+24Bts8R3AefNEn8TuGLYWCRJx47fVJYkARYESVJjQZAkAfP8YtpKtXbGdxX23viJJRqJJB07zhAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLU+PjrBRh8HLaPwpa0XDhDkCQBHQpCkjOT/EWSZ5LsSfL5Fn9/kgeT/Ki9nzbQ54Ykk0meTXLxQPzCJLvbvluSpMVPSnJviz+WZO0xOFdJ0hy6zBCmga1V9SFgA3BdknOA64GHqmod8FD7TNu3CTgX2AjcmuSEdqzbgC3Auvba2OLXAK9V1dnAzcBNR+HcJEnzMLQgVNX+qvrrtv0G8AywGrgUuLM1uxO4rG1fCtxTVW9V1XPAJLA+ySrglKp6pKoKuGtGn4PHug+46ODsQZK0OOa1qNwu5XwEeAwYq6r90C8aST7Ymq0GHh3otq/FftG2Z8YP9nmhHWs6yevA6cArM37+FvozDMbGxuj1ep3GPTU1ddi2W8+f7nSMw+k6hlE3V470NvM0nDnqZhTz1LkgJHkv8A3gd6vqZ3P8Aj/bjpojPlefQwNV24HtAOPj4zUxMTFk1H29Xo/Dtb164I6hhdh7ZbcxjLq5cqS3mafhzFE3o5inTncZJXkX/WLwJ1X1zRZ+qV0Gor2/3OL7gDMHuq8BXmzxNbPED+mT5ETgVODV+Z6MJGnhutxlFOB24Jmq+oOBXTuBq9r2VcD9A/FN7c6hs+gvHj/eLi+9kWRDO+bmGX0OHuty4OG2ziBJWiRdLhl9FPg0sDvJky32ReBGYEeSa4DngSsAqmpPkh3A0/TvULquqg60ftcCdwAnAw+0F/QLzt1JJunPDDYd2WlJkuZraEGoqr9k9mv8ABcdps82YNss8V3AebPE36QVFEnS0vCbypIkwGcZHTGfayRpuXCGIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMYvph1FfklN0vHMGYIkCbAgSJIaC4IkCbAgSJIaC4IkCbAgSJKaFXnb6eDtoZKkvhVZEBaD30mQdLzxkpEkCbAgSJKaoQUhydeTvJzkqYHYl5L8JMmT7XXJwL4bkkwmeTbJxQPxC5PsbvtuSZIWPynJvS3+WJK1R/kcJUkddJkh3AFsnCV+c1Vd0F7fAUhyDrAJOLf1uTXJCa39bcAWYF17HTzmNcBrVXU2cDNw0wLPRZJ0BIYuKlfVd+fxW/ulwD1V9RbwXJJJYH2SvcApVfUIQJK7gMuAB1qfL7X+9wF/mCRVVfM4j5HmArOk48GR3GX0uSSbgV3A1qp6DVgNPDrQZl+L/aJtz4zT3l8AqKrpJK8DpwOvzPyBSbbQn2UwNjZGr9frNNCpqalD2m49f7pTv2Oh65gX28wcaXbmaThz1M0o5mmhBeE24MtAtfevAJ8BMkvbmiPOkH2HBqu2A9sBxsfHa2JiotNge70eg22vXsLvIey9cmJom6UwM0eanXkazhx1M4p5WtBdRlX1UlUdqKpfAl8D1rdd+4AzB5quAV5s8TWzxA/pk+RE4FTg1YWMS5K0cAsqCElWDXz8JHDwDqSdwKZ259BZ9BePH6+q/cAbSTa0u4s2A/cP9LmqbV8OPLyc1g8k6Xgx9JJRkj8FJoAzkuwDfg+YSHIB/Us7e4HPAlTVniQ7gKeBaeC6qjrQDnUt/TuWTqa/mPxAi98O3N0WoF+lf5fSsuUCs6RR1eUuo0/NEr59jvbbgG2zxHcB580SfxO4Ytg4JEnHlt9UliQBFgRJUuPTTpeQ6wmSRokzBEkSYEGQJDUWBEkSYEGQJDUWBEkS4F1GI8M7jiQtNWcIkiTAgiBJaiwIkiTAgiBJalxUHkEuMEtaCs4QJEmABUGS1FgQJEmABUGS1LioPOJcYJa0WJwhSJKADgUhydeTvJzkqYHY+5M8mORH7f20gX03JJlM8mySiwfiFybZ3fbdkiQtflKSe1v8sSRrj/I5SpI66DJDuAPYOCN2PfBQVa0DHmqfSXIOsAk4t/W5NckJrc9twBZgXXsdPOY1wGtVdTZwM3DTQk9muVt7/bd/9ZKko21oQaiq7wKvzghfCtzZtu8ELhuI31NVb1XVc8AksD7JKuCUqnqkqgq4a0afg8e6D7jo4OxBkrR4FrqGMFZV+wHa+wdbfDXwwkC7fS22um3PjB/Sp6qmgdeB0xc4LknSAh3tu4xm+82+5ojP1eedB0+20L/sxNjYGL1er9OgpqamDmm79fzpTv1GWddz72pmjjQ78zScOepmFPO00ILwUpJVVbW/XQ56ucX3AWcOtFsDvNjia2aJD/bZl+RE4FTeeYkKgKraDmwHGB8fr4mJiU6D7fV6DLa9ehlcg9975cRRPd7MHGl25mk4c9TNKOZpoZeMdgJXte2rgPsH4pvanUNn0V88frxdVnojyYa2PrB5Rp+Dx7oceLitM2gOLjBLOtqGzhCS/CkwAZyRZB/we8CNwI4k1wDPA1cAVNWeJDuAp4Fp4LqqOtAOdS39O5ZOBh5oL4DbgbuTTNKfGWw6KmcmSZqXoQWhqj51mF0XHab9NmDbLPFdwHmzxN+kFRRJ0tLxm8qSJMCCIElqfLjdMuAD8CQdDc4QJEmABUGS1FgQJEmAawjLjusJkhbKGYIkCbAgSJIaC4IkCXANYVlzPUHSfDhDkCQBFgRJUuMloxXCy0eShnGGIEkCLAiSpMaCIEkCXENYkVxPkDQbZwiSJMCCIElqLAiSJOAIC0KSvUl2J3kyya4We3+SB5P8qL2fNtD+hiSTSZ5NcvFA/MJ2nMkktyTJkYxL3a29/tusvf7b7P7J60s9FElL7GjMEH6rqi6oqvH2+XrgoapaBzzUPpPkHGATcC6wEbg1yQmtz23AFmBde208CuOSJM3DsbjL6FJgom3fCfSAL7T4PVX1FvBckklgfZK9wClV9QhAkruAy4AHjsHYNAfvPpJWtiMtCAX89yQF/Keq2g6MVdV+gKran+SDre1q4NGBvvta7Bdte2b8HZJsoT+TYGxsjF6v12mQU1NTh7Tdev50p34rydjJh+ala25Xmpn/lvRO5qibUczTkRaEj1bVi+1/+g8m+eEcbWdbF6g54u8M9gvOdoDx8fGamJjoNMher8dg26sHfhNW39bzp/nK7rf/Oey9cmLpBjPCZv5b0juZo25GMU9HtIZQVS+295eBbwHrgZeSrAJo7y+35vuAMwe6rwFebPE1s8QlSYtowQUhyXuS/MbBbeBfAk8BO4GrWrOrgPvb9k5gU5KTkpxFf/H48XZ56Y0kG9rdRZsH+miJHLz7aK2zKWnFOJJLRmPAt9odoicC/7mq/jzJ94AdSa4BngeuAKiqPUl2AE8D08B1VXWgHeta4A7gZPqLyS4oS9IiW3BBqKofAx+eJf5T4KLD9NkGbJslvgs4b6Fj0bHl3UfSyuA3lSVJgAVBktT4+GvNi5ePpOXLgqAFm3kHkgVCOr55yUiSBFgQJEmNl4x01Li+IB3fLAg6JiwO0vHHS0aSJMAZghaBswXp+OAMQZIEOEPQInO2II0uC4KWjMVBGi1eMpIkAc4QNCKcLUhLz4KgkWNxkJaGBUEjzeIgLR4Lgo4bh/v7zhYK6eiwIOi45yxCOjosCFpWnEVIC2dB0IpgoZCGG5mCkGQj8B+BE4A/rqobl3hIWgEsFNLbRqIgJDkB+CrwL4B9wPeS7Kyqp5d2ZFqpDlcotp4/zdWH2XeQxUTHq5EoCMB6YLKqfgyQ5B7gUsCCoOPO4YrJsWIB0tEyKgVhNfDCwOd9wD+Z2SjJFmBL+ziV5NmOxz8DeOWIRrjM/Ttz1Mko5ik3LfUI3mHkcjSilipPf/twO0alIGSWWL0jULUd2D7vgye7qmp8IQNbKcxRN+ZpOHPUzSjmaVQebrcPOHPg8xrgxSUaiyStSKNSEL4HrEtyVpJ3A5uAnUs8JklaUUbiklFVTSf5HPDf6N92+vWq2nMUf8S8LzOtQOaoG/M0nDnqZuTylKp3XKqXJK1Ao3LJSJK0xCwIkiRgGRWEJBuTPJtkMsn1s+xPklva/h8k+UdLMc6l1iFPV7b8/CDJXyX58FKMcykNy9FAu3+c5ECSyxdzfKOiS56STCR5MsmeJP9jscc4Cjr8N3dqkv+a5PstT7+zFOMEoKqO+xf9hej/Dfwd4N3A94FzZrS5BHiA/nceNgCPLfW4RzRP/xQ4rW1/fKXlqUuOBto9DHwHuHypxz2KeQLeR/9pA7/ZPn9wqcc9onn6InBT2/4A8Crw7qUY73KZIfzq0RdV9f+Ag4++GHQpcFf1PQq8L8mqxR7oEhuap6r6q6p6rX18lP53QlaSLv+WAP4t8A3g5cUc3Ajpkqd/BXyzqp4HqKqVmKsueSrgN5IEeC/9gjC9uMPsWy4FYbZHX6xeQJvlbr45uIb+rGolGZqjJKuBTwJ/tIjjGjVd/i39PeC0JL0kTyTZvGijGx1d8vSHwIfofxl3N/D5qvrl4gzvUCPxPYSjoMujLzo9HmOZ65yDJL9FvyD8s2M6otHTJUf/AfhCVR3o/1K3InXJ04nAhcBFwMnAI0kerar/dawHN0K65Oli4EngY8DfBR5M8j+r6mfHeGzvsFwKQpdHX/h4jI45SPIPgT8GPl5VP12ksY2KLjkaB+5pxeAM4JIk01X1XxZlhKOh639zr1TVz4GfJ/ku8GFgJRWELnn6HeDG6i8iTCZ5DvgHwOOLM8S3LZdLRl0efbET2NzuNtoAvF5V+xd7oEtsaJ6S/CbwTeDTK+w3uYOG5qiqzqqqtVW1FrgP+DcrrBhAt//m7gf+eZITk/wt+k8wfmaRx7nUuuTpefqzKJKMAX8f+PGijrJZFjOEOsyjL5L867b/j+jfDXIJMAn8X/pVeUXpmKd/D5wO3Np+A56uEXsi47HUMUcrXpc8VdUzSf4c+AHwS/p/CfGppRv14uv47+nLwB1JdtO/xPSFqlqSx4f76ApJErB8LhlJko6QBUGSBFgQJEmNBUGSBFgQJEmNBUGSBFgQJEnN/wfHP0rZz5ES9AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVgElEQVR4nO3df4xl5X3f8fcnYFNqAsZgRiuWdGjZtuZHjcuUrOpGGkJSNrgSWIJqXWQg2WpTiltH4g+D/2hSWSvBHw4tSiDdBIuFpllW2C7bGBIhyNSNwg8vEWZZCPXWbGHNCoQhmKWFevC3f9xn8N1hZu6Z3dmZOzPvl3R1z33Oec4856uBzzznnHs2VYUkST+z1AOQJA0HA0GSBBgIkqTGQJAkAQaCJKk5dqkHcLhOPfXUGh0d7bTt22+/zUc+8pGjO6BlzPrMzfrMzfoMNkw1evLJJ1+rqo/PtG7ZBsLo6Ci7du3qtO3ExATj4+NHd0DLmPWZm/WZm/UZbJhqlOR/z7bOU0aSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkYBl/U3mhjN74rfeX9938mSUciSQtLWcIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1q/7RFf18jIWk1cwZgiQJ6BAISf5GkieSfDfJniT/vrV/LMlDSb7X3k/u63NTkr1Jnk9ySV/7BUl2t3W3JUlrPy7Jva398SSjR+FYJUlz6DJDeBf4xar6JHA+sCHJeuBG4OGqWgc83D6T5GxgI3AOsAG4PckxbV93AJuBde21obVvAt6oqrOAW4FbjvzQJEnzMTAQqudg+/ih9irgMmBba98GXN6WLwO2V9W7VfUCsBe4MMka4MSqerSqCrh7Wp+pfd0HXDw1e5AkLY5OF5XbX/hPAmcBv1tVjycZqaoDAFV1IMlpbfPTgcf6uu9vbT9uy9Pbp/q81PY1meRN4BTgtWnj2ExvhsHIyAgTExOdDvLgwYOzbnvDeZMztnfd90owV31kfQaxPoMtlxp1CoSqeg84P8lHgW8mOXeOzWf6y77maJ+rz/RxbAW2AoyNjdX4+Pgcw/ipiYkJZtv22r47i/rtu6rbvleCueoj6zOI9RlsudRoXncZVdVfAxP0zv2/0k4D0d5fbZvtB87o67YWeLm1r52h/ZA+SY4FTgJen8/YJElHpstdRh9vMwOSHA/8EvBXwE7gmrbZNcD9bXknsLHdOXQmvYvHT7TTS28lWd+uD1w9rc/Uvq4AHmnXGSRJi6TLKaM1wLZ2HeFngB1V9cdJHgV2JNkEvAhcCVBVe5LsAJ4FJoHr2ykngOuAu4DjgQfbC+BO4J4ke+nNDDYuxMFJkrobGAhV9TTwqRnafwhcPEufLcCWGdp3AR+4/lBV79ACRZK0NPymsiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJKDjv6m8Go32/VvL+27+zBKORJIWhzMESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSUCHQEhyRpI/S/Jckj1JvtjafyvJD5I81V6X9vW5KcneJM8nuaSv/YIku9u625KktR+X5N7W/niS0aNwrJKkOXSZIUwCN1TVJ4D1wPVJzm7rbq2q89vrAYC2biNwDrABuD3JMW37O4DNwLr22tDaNwFvVNVZwK3ALUd+aJKk+RgYCFV1oKr+si2/BTwHnD5Hl8uA7VX1blW9AOwFLkyyBjixqh6tqgLuBi7v67OtLd8HXDw1e5AkLY55Pbqincr5FPA48GngC0muBnbRm0W8QS8sHuvrtr+1/bgtT2+nvb8EUFWTSd4ETgFem/bzN9ObYTAyMsLExESncR88eHDWbW84b3Jg/64/Z7maqz6yPoNYn8GWS406B0KSE4CvA79RVT9KcgfwFaDa+1eBXwNm+su+5mhnwLqfNlRtBbYCjI2N1fj4eKexT0xMMNu21/Y9s2g2+67q9nOWq7nqI+sziPUZbLnUqNNdRkk+RC8M/rCqvgFQVa9U1XtV9RPg94EL2+b7gTP6uq8FXm7ta2doP6RPkmOBk4DXD+eAJEmHp8tdRgHuBJ6rqt/ua1/Tt9lngWfa8k5gY7tz6Ex6F4+fqKoDwFtJ1rd9Xg3c39fnmrZ8BfBIu84gSVokXU4ZfRr4PLA7yVOt7cvA55KcT+/Uzj7g1wGqak+SHcCz9O5Qur6q3mv9rgPuAo4HHmwv6AXOPUn20psZbDySg5Ikzd/AQKiqP2fmc/wPzNFnC7BlhvZdwLkztL8DXDloLJKko8dvKkuSAANBktQYCJIkwECQJDXz+qbyajU67ctr+27+zBKNRJKOHmcIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUDAyHJGUn+LMlzSfYk+WJr/1iSh5J8r72f3NfnpiR7kzyf5JK+9guS7G7rbkuS1n5ckntb++NJRo/CsS6Y0Ru/9f5LklaKLjOESeCGqvoEsB64PsnZwI3Aw1W1Dni4faat2wicA2wAbk9yTNvXHcBmYF17bWjtm4A3quos4FbglgU4NknSPAwMhKo6UFV/2ZbfAp4DTgcuA7a1zbYBl7fly4DtVfVuVb0A7AUuTLIGOLGqHq2qAu6e1mdqX/cBF0/NHiRJi+PY+WzcTuV8CngcGKmqA9ALjSSntc1OBx7r67a/tf24LU9vn+rzUtvXZJI3gVOA16b9/M30ZhiMjIwwMTHRadwHDx6cddsbzpvstI/ZdB3DMJurPrI+g1ifwZZLjToHQpITgK8Dv1FVP5rjD/iZVtQc7XP1ObShaiuwFWBsbKzGx8cHjLpnYmKC2ba99givA+y7qtsYhtlc9ZH1GcT6DLZcatTpLqMkH6IXBn9YVd9oza+000C091db+37gjL7ua4GXW/vaGdoP6ZPkWOAk4PX5Howk6fB1ucsowJ3Ac1X1232rdgLXtOVrgPv72je2O4fOpHfx+Il2eumtJOvbPq+e1mdqX1cAj7TrDJKkRdLllNGngc8Du5M81dq+DNwM7EiyCXgRuBKgqvYk2QE8S+8Opeur6r3W7zrgLuB44MH2gl7g3JNkL72ZwcYjOyxJ0nwNDISq+nNmPscPcPEsfbYAW2Zo3wWcO0P7O7RAkSQtDb+pLEkC5nnbqT6o/9vK+27+zBKORJKOjDMESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBPgsowXlc40kLWfOECRJgIEgSWoMBEkSYCBIkhoDQZIEeJfRUeMdR5KWG2cIkiTAQJAkNQMDIcnXkrya5Jm+tt9K8oMkT7XXpX3rbkqyN8nzSS7pa78gye627rYkae3HJbm3tT+eZHSBj1GS1EGXGcJdwIYZ2m+tqvPb6wGAJGcDG4FzWp/bkxzTtr8D2Aysa6+pfW4C3qiqs4BbgVsO81gkSUdgYCBU1beB1zvu7zJge1W9W1UvAHuBC5OsAU6sqkerqoC7gcv7+mxry/cBF0/NHiRJi+dIriF8IcnT7ZTSya3tdOClvm32t7bT2/L09kP6VNUk8CZwyhGMS5J0GA73ttM7gK8A1d6/CvwaMNNf9jVHOwPWHSLJZnqnnRgZGWFiYqLTYA8ePDjrtjecN9lpH0ei6ziXylz1kfUZxPoMtlxqdFiBUFWvTC0n+X3gj9vH/cAZfZuuBV5u7WtnaO/vsz/JscBJzHKKqqq2AlsBxsbGanx8vNN4JyYmmG3ba/u+L3DU7H77/cVh/E7CXPWR9RnE+gy2XGp0WKeM2jWBKZ8Fpu5A2glsbHcOnUnv4vETVXUAeCvJ+nZ94Grg/r4+17TlK4BH2nUGSdIiGjhDSPJHwDhwapL9wG8C40nOp3dqZx/w6wBVtSfJDuBZYBK4vqrea7u6jt4dS8cDD7YXwJ3APUn20psZbFyA45IkzdPAQKiqz83QfOcc228BtszQvgs4d4b2d4ArB41DknR0rcpnGY0uxnWDDj97GK8nSFq9fHSFJAkwECRJjYEgSQIMBElSsyovKg8LLzBLGibOECRJgIEgSWoMBEkS4DWEoeH1BElLzRmCJAkwECRJjYEgSQIMBElSYyBIkgDvMhpK3nEkaSk4Q5AkAQaCJKkxECRJgIEgSWq8qDzkvMAsabE4Q5AkAQaCJKkZGAhJvpbk1STP9LV9LMlDSb7X3k/uW3dTkr1Jnk9ySV/7BUl2t3W3JUlrPy7Jva398SSjC3yMkqQOuswQ7gI2TGu7EXi4qtYBD7fPJDkb2Aic0/rcnuSY1ucOYDOwrr2m9rkJeKOqzgJuBW453INZ6UZv/Nb7L0laaAMDoaq+Dbw+rfkyYFtb3gZc3te+vareraoXgL3AhUnWACdW1aNVVcDd0/pM7es+4OKp2YMkafEc7l1GI1V1AKCqDiQ5rbWfDjzWt93+1vbjtjy9farPS21fk0neBE4BXpv+Q5NspjfLYGRkhImJiU6DPXjw4CHb3nDeZKd+w6zrsXcxvT46lPWZm/UZbLnUaKFvO53pL/uao32uPh9srNoKbAUYGxur8fHxToOamJigf9trV8Apl31XjS/YvqbXR4eyPnOzPoMtlxodbiC8kmRNmx2sAV5t7fuBM/q2Wwu83NrXztDe32d/kmOBk/jgKSpN4/cTJC20w73tdCdwTVu+Bri/r31ju3PoTHoXj59op5feSrK+XR+4elqfqX1dATzSrjNIkhbRwBlCkj8CxoFTk+wHfhO4GdiRZBPwInAlQFXtSbIDeBaYBK6vqvfarq6jd8fS8cCD7QVwJ3BPkr30ZgYbF+TIJEnzMjAQqupzs6y6eJbttwBbZmjfBZw7Q/s7tECRJC0dn2W0Ang9QdJC8NEVkiTAQJAkNQaCJAkwECRJjReVVxgvMEs6XM4QJEmAgSBJagwESRLgNYQVzesJkubDGYIkCTAQJEmNgSBJAryGsGp4PUHSIM4QJEmAgSBJajxltAp5+kjSTJwhSJIAA0GS1BgIkiTAQJAkNQbCKjd647fY/YM3D7nQLGl1MhAkScAR3naaZB/wFvAeMFlVY0k+BtwLjAL7gH9eVW+07W8CNrXt/21V/WlrvwC4CzgeeAD4YlXVkYxN8+ftqNLqthAzhIuq6vyqGmufbwQerqp1wMPtM0nOBjYC5wAbgNuTHNP63AFsBta114YFGJckaR6Oximjy4BtbXkbcHlf+/aqereqXgD2AhcmWQOcWFWPtlnB3X19JEmLJEdyZibJC8AbQAH/qaq2Jvnrqvpo3zZvVNXJSX4HeKyq/nNrvxN4kN5ppZur6pda+y8AX6qqfzbDz9tMbybByMjIBdu3b+80zoMHD3LCCSe8/3n3D948jKNduUaOh1f+7+zrzzv9pMUbzBCa/vujQ1mfwYapRhdddNGTfWd0DnGkj674dFW9nOQ04KEkfzXHtpmhreZo/2Bj1VZgK8DY2FiNj493GuTExAT9217rHTWHuOG8Sb66e/ZfhX1XjS/eYIbQ9N8fHcr6DLZcanREp4yq6uX2/irwTeBC4JV2Goj2/mrbfD9wRl/3tcDLrX3tDO2SpEV02IGQ5CNJfnZqGfinwDPATuCattk1wP1teSewMclxSc6kd/H4iao6ALyVZH2SAFf39ZEkLZIjOWU0Anyz9/9wjgX+S1X9SZLvADuSbAJeBK4EqKo9SXYAzwKTwPVV9V7b13X89LbTB9tLQ8LbUaXV4bADoaq+D3xyhvYfAhfP0mcLsGWG9l3AuYc7FknSkfPfQ9C8OFuQVi4fXSFJAgwESVLjKSMdtulPSPUUkrS8GQhaMF5fkJY3TxlJkgBnCDpKnC1Iy48zBEkS4AxBi8DZgrQ8OEOQJAHOELTInC1Iw8sZgiQJcIagJeRsQRouzhAkSYAzBA0JZwvS0jMQNHQMB2lpGAgaaoaDtHgMBC0bhoN0dBkIWpYMB2nhGQha9qb/uwxTDAppfgwErVjOIqT5MRC0KjiLkAYzELSqOYuQfmpoAiHJBuA/AscAf1BVNy/xkLTKzDaLuOG8Sa5t6wwNrWRDEQhJjgF+F/hlYD/wnSQ7q+rZpR2ZdKjZQqMrA0XDbCgCAbgQ2FtV3wdIsh24DDAQtKIcaaDMR3/4eGpMXaSqlnoMJLkC2FBV/7J9/jzw81X1hWnbbQY2t49/D3i+4484FXhtgYa7ElmfuVmfuVmfwYapRn+rqj4+04phmSFkhrYPJFVVbQW2znvnya6qGjucga0G1mdu1mdu1mew5VKjYXn89X7gjL7Pa4GXl2gskrQqDUsgfAdYl+TMJB8GNgI7l3hMkrSqDMUpo6qaTPIF4E/p3Xb6taras4A/Yt6nmVYZ6zM36zM36zPYsqjRUFxUliQtvWE5ZSRJWmIGgiQJWEGBkGRDkueT7E1y4wzrk+S2tv7pJP9wKca5lDrU6KpWm6eT/EWSTy7FOJfKoPr0bfePkrzXvj+zanSpT5LxJE8l2ZPkvy/2GJdSh/++Tkry35J8t9XnV5dinHOqqmX/onch+n8Bfxv4MPBd4Oxp21wKPEjvOw/rgceXetxDWKN/DJzcln9lNdWoS336tnsEeAC4YqnHPUz1AT5K7+kCP9c+n7bU4x6y+nwZuKUtfxx4HfjwUo+9/7VSZgjvP/qiqv4fMPXoi36XAXdXz2PAR5OsWeyBLqGBNaqqv6iqN9rHx+h9H2S16PI7BPBvgK8Dry7m4IZAl/r8C+AbVfUiQFWtphp1qU8BP5skwAn0AmFycYc5t5USCKcDL/V93t/a5rvNSjbf499Eb0a1WgysT5LTgc8Cv7eI4xoWXX5//i5wcpKJJE8muXrRRrf0utTnd4BP0PvS7W7gi1X1k8UZXjdD8T2EBdDl0RedHo+xgnU+/iQX0QuEf3JURzRcutTnPwBfqqr3en/krSpd6nMscAFwMXA88GiSx6rqfx7twQ2BLvW5BHgK+EXg7wAPJfkfVfWjozy2zlZKIHR59MVqfzxGp+NP8g+APwB+pap+uEhjGwZd6jMGbG9hcCpwaZLJqvqvizLCpdX1v7HXqupt4O0k3wY+CayGQOhSn18Fbq7eRYS9SV4A/j7wxOIMcbCVcsqoy6MvdgJXt7uN1gNvVtWBxR7oEhpYoyQ/B3wD+Pwq+auu38D6VNWZVTVaVaPAfcC/XiVhAN3+G7sf+IUkxyb5m8DPA88t8jiXSpf6vEhv9kSSEXpPbP7+oo5ygBUxQ6hZHn2R5F+19b9H766QS4G9wP+hl9arRsca/TvgFOD29lfwZC2DJzQuhI71WbW61KeqnkvyJ8DTwE/o/cuHzyzdqBdPx9+frwB3JdlN7xTTl6pqWB6JDfjoCklSs1JOGUmSjpCBIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNf8fmq990j9gAncAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVb0lEQVR4nO3db4yd5Znf8e9vIaGULIRAGFmY7dDFbcOfhpSp12paaXbZFi95AZFAchrFZteVt5RUWckvYvKimyqyBC+ytGgXtt4lwqDtgkWSxS1hWwQ7TVfLn5iKxBiWZhpccLBABEowFZRxrr44t53j4ZyZM2N7zvz5fqSj85zree5n7ueS4Zr7vp/zTKoKSZJ+YdgdkCQtDhYESRJgQZAkNRYESRJgQZAkNacOuwPzde6559bo6OhAx77zzjucccYZJ7dDS5S56c289Gdu+lsKuXn66adfr6qP99q3ZAvC6Ogoe/bsGejYiYkJxsfHT26Hlihz05t56c/c9LcUcpPkf/fb55SRJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAlYwt9UPlFGtz10dHv/LZ8ZYk8kabhmHSEk+RtJnkry/ST7kvzbFv9YkkeS/LC9n93V5uYkk0leSHJVV/yKJHvbvtuTpMVPS3J/iz+ZZPQkXKskaQaDTBm9B/xaVX0SuBxYn2QdsA14tKrWAI+2zyS5GNgAXAKsB+5Icko7153AFmBNe61v8c3Am1V1EXAbcOvxX5okaS5mLQjVcah9/FB7FXANsLPFdwLXtu1rgPuq6r2qehGYBNYmWQWcWVWPV+cPOd8zrc2Rcz0AXHlk9CBJWhgDrSG03/CfBi4C/qCqnkwyUlUHAarqYJLz2uHnA090NT/QYu+37enxI21ebueaSvIWcA7w+rR+bKEzwmBkZISJiYmBLvLQoUN9j9162dTR7UHPt5zMlJuVzLz0Z276W+q5GaggVNVh4PIkHwW+neTSGQ7v9Zt9zRCfqc30fuwAdgCMjY3VoI+ZnemRtDd0LSqz952jmytlgXkpPK53GMxLf+amv6WemznddlpV/weYoDP3/2qbBqK9v9YOOwBc0NVsNfBKi6/uET+mTZJTgbOAN+bSN0nS8RnkLqOPt5EBSU4Hfh34a2A3sKkdtgl4sG3vBja0O4cupLN4/FSbXno7ybq2PrBxWpsj57oOeKytM0iSFsggU0argJ1tHeEXgF1V9Z+TPA7sSrIZeAm4HqCq9iXZBTwHTAE3tSkngBuBu4HTgYfbC+Au4N4kk3RGBhtOxMVJkgY3a0Goqh8An+oR/wlwZZ8224HtPeJ7gA+sP1TVu7SCIkkaDh9dIUkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkC4NRhd2CxGt320NHt/bd8Zog9kaSF4QhBkgRYECRJjQVBkgQMUBCSXJDkL5I8n2Rfki+1+FeT/DjJM+11dVebm5NMJnkhyVVd8SuS7G37bk+SFj8tyf0t/mSS0ZNwrZKkGQwyQpgCtlbVJ4B1wE1JLm77bquqy9vrOwBt3wbgEmA9cEeSU9rxdwJbgDXttb7FNwNvVtVFwG3Arcd/aZKkuZi1IFTVwar6H237beB54PwZmlwD3FdV71XVi8AksDbJKuDMqnq8qgq4B7i2q83Otv0AcOWR0YMkaWHM6bbTNpXzKeBJ4NPAF5NsBPbQGUW8SadYPNHV7ECLvd+2p8dp7y8DVNVUkreAc4DXp/38LXRGGIyMjDAxMTFQvw8dOtT32K2XTc3aftCfsxTNlJuVzLz0Z276W+q5GbggJPkI8E3gd6rqp0nuBL4GVHv/OvBbQK/f7GuGOLPs+3mgagewA2BsbKzGx8cH6vvExAT9jr2h6/sG/ez//GA/ZymaKTcrmXnpz9z0t9RzM9BdRkk+RKcY/ElVfQugql6tqsNV9TPgj4C17fADwAVdzVcDr7T46h7xY9okORU4C3hjPhckSZqfQe4yCnAX8HxV/V5XfFXXYZ8Fnm3bu4EN7c6hC+ksHj9VVQeBt5Osa+fcCDzY1WZT274OeKytM0iSFsggU0afBr4A7E3yTIt9BfhcksvpTO3sB34boKr2JdkFPEfnDqWbqupwa3cjcDdwOvBwe0Gn4NybZJLOyGDD8VyUJGnuZi0IVfWX9J7j/84MbbYD23vE9wCX9oi/C1w/W18kSSeP31SWJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElSM6enna5Uo9MegLf/ls8MqSeSdPI4QpAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVIza0FIckGSv0jyfJJ9Sb7U4h9L8kiSH7b3s7va3JxkMskLSa7qil+RZG/bd3uStPhpSe5v8SeTjJ6Ea5UkzWCQEcIUsLWqPgGsA25KcjGwDXi0qtYAj7bPtH0bgEuA9cAdSU5p57oT2AKsaa/1Lb4ZeLOqLgJuA249AdcmSZqDWf+EZlUdBA627beTPA+cD1wDjLfDdgITwJdb/L6qeg94MckksDbJfuDMqnocIMk9wLXAw63NV9u5HgB+P0mqqo77Ck+C7j+p6Z/TlLRczOlvKrepnE8BTwIjrVhQVQeTnNcOOx94oqvZgRZ7v21Pjx9p83I711SSt4BzgNen/fwtdEYYjIyMMDExMVC/Dx061PfYrZdNDXSOfgbtw2I1U25WMvPSn7npb6nnZuCCkOQjwDeB36mqn7bp/56H9ojVDPGZ2hwbqNoB7AAYGxur8fHxWXrdMTExQb9jb+j6bX8+9n9+sD4sVjPlZiUzL/2Zm/6Wem4GussoyYfoFIM/qapvtfCrSVa1/auA11r8AHBBV/PVwCstvrpH/Jg2SU4FzgLemOvFSJLmb5C7jALcBTxfVb/XtWs3sKltbwIe7IpvaHcOXUhn8fipNr30dpJ17Zwbp7U5cq7rgMcW6/qBJC1Xg0wZfRr4ArA3yTMt9hXgFmBXks3AS8D1AFW1L8ku4Dk6dyjdVFWHW7sbgbuB0+ksJj/c4ncB97YF6Dfo3KUkSVpAg9xl9Jf0nuMHuLJPm+3A9h7xPcClPeLv0gqKJGk4/KayJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSmjk9y0gf5IPuJC0XjhAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLU+MW0E8gvqUlayhwhSJIAC4IkqbEgSJIAC4IkqbEgSJIAC4IkqbEgSJIAv4dw0vidBElLzawjhCTfSPJakme7Yl9N8uMkz7TX1V37bk4ymeSFJFd1xa9Isrftuz1JWvy0JPe3+JNJRk/wNUqSBjDIlNHdwPoe8duq6vL2+g5AkouBDcAlrc0dSU5px98JbAHWtNeRc24G3qyqi4DbgFvneS2SpOMwa0Goqu8Cbwx4vmuA+6rqvap6EZgE1iZZBZxZVY9XVQH3ANd2tdnZth8ArjwyepAkLZzjWUP4YpKNwB5ga1W9CZwPPNF1zIEWe79tT4/T3l8GqKqpJG8B5wCvT/+BSbbQGWUwMjLCxMTEQB09dOhQ32O3XjY10DmOx6D9HIaZcrOSmZf+zE1/Sz038y0IdwJfA6q9fx34LaDXb/Y1Q5xZ9h0brNoB7AAYGxur8fHxgTo7MTFBv2Nv6Fr8PVn2f773z14MZsrNSmZe+jM3/S313MzrttOqerWqDlfVz4A/Ata2XQeAC7oOXQ280uKre8SPaZPkVOAsBp+ikiSdIPMqCG1N4IjPAkfuQNoNbGh3Dl1IZ/H4qao6CLydZF1bH9gIPNjVZlPbvg54rK0zLBuj2x46+pKkxWrWKaMkfwqMA+cmOQD8LjCe5HI6Uzv7gd8GqKp9SXYBzwFTwE1Vdbid6kY6dyydDjzcXgB3AfcmmaQzMthwAq5LkjRHsxaEqvpcj/BdMxy/HdjeI74HuLRH/F3g+tn6IUk6uXx0hSQJsCBIkhoLgiQJ8OF2C86H3klarBwhSJIAC4IkqXHKaIicPpK0mDhCkCQBFgRJUmNBkCQBK3QNwYfMSdIHrciCsBi5wCxp2JwykiQBFgRJUmNBkCQBFgRJUuOi8iLkArOkYXCEIEkCLAiSpMaCIEkCLAiSpMZF5UXOBWZJC8URgiQJsCBIkhoLgiQJGKAgJPlGkteSPNsV+1iSR5L8sL2f3bXv5iSTSV5IclVX/Ioke9u+25OkxU9Lcn+LP5lk9ARfoyRpAIOMEO4G1k+LbQMerao1wKPtM0kuBjYAl7Q2dyQ5pbW5E9gCrGmvI+fcDLxZVRcBtwG3zvdilrvRbQ8dfUnSiTZrQaiq7wJvTAtfA+xs2zuBa7vi91XVe1X1IjAJrE2yCjizqh6vqgLumdbmyLkeAK48MnqQJC2c+d52OlJVBwGq6mCS81r8fOCJruMOtNj7bXt6/Eibl9u5ppK8BZwDvD79hybZQmeUwcjICBMTEwN19tChQ8ccu/WyqYHaLWaDXvtspudGHealP3PT31LPzYn+HkKv3+xrhvhMbT4YrNoB7AAYGxur8fHxgTo1MTFB97E3LIcpl73vHN08nu8nTM+NOsxLf+amv6Wem/neZfRqmwaivb/W4geAC7qOWw280uKre8SPaZPkVOAsPjhFJUk6yeZbEHYDm9r2JuDBrviGdufQhXQWj59q00tvJ1nX1gc2Tmtz5FzXAY+1dQZJ0gKadcooyZ8C48C5SQ4AvwvcAuxKshl4CbgeoKr2JdkFPAdMATdV1eF2qhvp3LF0OvBwewHcBdybZJLOyGDDCbkySdKczFoQqupzfXZd2ef47cD2HvE9wKU94u/SCookaXh8uN0y4APwJJ0IPrpCkgRYECRJjVNGy4zTR5LmyxGCJAmwIEiSGguCJAmwIEiSGheVlzEXmCXNhSMESRJgQZAkNRYESRLgGsKK4XqCpNk4QpAkARYESVJjQZAkAa4hrEjd6wl3rz9jiD2RtJg4QpAkARYESVJjQVjh9v74LUa3PXTMNJKklcmCIEkCLAiSpMaCIEkCvO1UXXy8hbSyOUKQJAHHWRCS7E+yN8kzSfa02MeSPJLkh+397K7jb04ymeSFJFd1xa9o55lMcnuSHE+/JElzdyJGCL9aVZdX1Vj7vA14tKrWAI+2zyS5GNgAXAKsB+5IckprcyewBVjTXutPQL90HI7ciurtqNLKcTKmjK4BdrbtncC1XfH7quq9qnoRmATWJlkFnFlVj1dVAfd0tZEkLZDjXVQu4L8mKeA/VNUOYKSqDgJU1cEk57Vjzwee6Gp7oMXeb9vT4x+QZAudkQQjIyNMTEwM1MlDhw4dc+zWy6YGarcSjJw+ez4GzfNyMv3fjH7O3PS31HNzvAXh01X1Svuf/iNJ/nqGY3utC9QM8Q8GOwVnB8DY2FiNj48P1MmJiQm6j73BaZCjtl42xdf3zvLPYO87RzdXyt1H0//N6OfMTX9LPTfHNWVUVa+099eAbwNrgVfbNBDt/bV2+AHggq7mq4FXWnx1j7gkaQHNuyAkOSPJLx7ZBv4Z8CywG9jUDtsEPNi2dwMbkpyW5EI6i8dPtemlt5Osa3cXbexqI0laIMczZTQCfLvdIXoq8B+r6s+TfA/YlWQz8BJwPUBV7UuyC3gOmAJuqqrD7Vw3AncDpwMPt5ckaQHNuyBU1Y+AT/aI/wS4sk+b7cD2HvE9wKXz7YsWjt9mlpYvv6ksSQJ8lpGOw/QvrTlikJY2RwiSJMARgk4g1xekpc0RgiQJcISgk8TRgrT0OEKQJAGOELQAHC1IS4MjBEkS4AhBC8zRgrR4OUKQJAGOEDREjhakxcURgiQJcISgRcLRgjR8jhAkSYAjBC1Cjhak4bAgaFGzOEgLxykjSRLgCEFLyPQ/yHOEIwfpxHCEIEkCHCFoGXDkIJ0YFgQtWy5IS3NjQdCK4ChCmp0FQStav0Jx9/ozFrgn0vC5qCz1sPfHbzG67aG+BUNajhbNCCHJeuDfA6cAf1xVtwy5SxLQfxTRzaknLQeLoiAkOQX4A+CfAgeA7yXZXVXPDbdn0mCOdyRhQdFisCgKArAWmKyqHwEkuQ+4BrAgaEUY1tRUdyHyriylqobdB5JcB6yvqn/RPn8B+JWq+uK047YAW9rHvwu8MOCPOBd4/QR1d7kxN72Zl/7MTX9LITd/q6o+3mvHYhkhpEfsA5WqqnYAO+Z88mRPVY3Np2PLnbnpzbz0Z276W+q5WSx3GR0ALuj6vBp4ZUh9kaQVabEUhO8Ba5JcmOTDwAZg95D7JEkryqKYMqqqqSRfBP4LndtOv1FV+07gj5jzNNMKYm56My/9mZv+lnRuFsWisiRp+BbLlJEkacgsCJIkYBkVhCTrk7yQZDLJth77k+T2tv8HSf7BMPo5DAPk5vMtJz9I8ldJPjmMfg7DbLnpOu4fJjncvjOzIgySmyTjSZ5Jsi/Jf1voPg7LAP9NnZXkPyX5fsvNbw6jn3NWVUv+RWch+n8Bfxv4MPB94OJpx1wNPEznOw/rgCeH3e9FlJt/BJzdtn/D3PQ87jHgO8B1w+73YskN8FE6TxP4pfb5vGH3exHl5ivArW3748AbwIeH3ffZXstlhHD00RdV9f+AI4++6HYNcE91PAF8NMmqhe7oEMyam6r6q6p6s318gs73QFaCQf7dAPxr4JvAawvZuSEbJDf/HPhWVb0EUFUrJT+D5KaAX0wS4CN0CsLUwnZz7pZLQTgfeLnr84EWm+sxy9Fcr3sznZHUSjBrbpKcD3wW+MMF7NdiMMi/m78DnJ1kIsnTSTYuWO+Ga5Dc/D7wCTpfsN0LfKmqfrYw3Zu/RfE9hBNgkEdfDPR4jGVo4OtO8qt0CsI/Pqk9WjwGyc2/A75cVYc7v+ytGIPk5lTgCuBK4HTg8SRPVNX/PNmdG7JBcnMV8Azwa8AvA48k+e9V9dOT3LfjslwKwiCPvlipj8cY6LqT/H3gj4HfqKqfLFDfhm2Q3IwB97VicC5wdZKpqvqzBenh8Az639TrVfUO8E6S7wKfBJZ7QRgkN78J3FKdRYTJJC8Cfw94amG6OD/LZcpokEdf7AY2truN1gFvVdXBhe7oEMyamyS/BHwL+MIK+O2u26y5qaoLq2q0qkaBB4B/tQKKAQz239SDwD9JcmqSvwn8CvD8AvdzGAbJzUt0Rk4kGaHzdOYfLWgv52FZjBCqz6MvkvzLtv8P6dwhcjUwCfxfOhV82RswN/8GOAe4o/0mPFVL+ImNgxowNyvSILmpqueT/DnwA+BndP7S4bPD6/XCGPDfzdeAu5PspTPF9OWqWuyPxfbRFZKkjuUyZSRJOk4WBEkSYEGQJDUWBEkSYEGQJDUWBEkSYEGQJDX/HxBIahH6UL9yAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVaklEQVR4nO3db5Cd5Xnf8e8vyKbUNhiD2VEkUtEit+FPjautoqnbmU3UFgW/EJ6BRi5jiUQdpRS3zoxeWPhFk45HMzATh5ZJIVWCB8GkAQ22i1pQUgJs3Uz4Y+HBFoJQq0YDMhoYDMWIDtQrX31xbuGj3aPdo9Vq/5z9fmbO7HOu89xn73Ox4rf38zznbKoKSZJ+bq4nIEmaHwwESRJgIEiSGgNBkgQYCJKkZslcT2C6zj///FqxYkVf+77zzjt86EMfOr0TWmDsSW/2pTf7MtFC7cnTTz/9elV9vOeDVTXpDfhrwFPAd4H9wL9r9Y8BDwPfb1/P7RpzE3AAeAG4squ+CtjXHrsNSKufCdzX6k8CK6aa16pVq6pfjz32WN/7Lhb2pDf70pt9mWih9gTYWyf4/2o/h4zeA36lqj4JXAGsS7IG2AY8UlUrgUfafZJcAmwALgXWAbcnOaM91x3AFmBlu61r9c3Am1V1MXArcEsf85IkzaApA6GFypF29wPtVsB6YGer7wSubtvrgXur6r2qepHOb/2rkywFzq6qx1tK3T1uzLHnuh9YmySn8sIkSSenr5PKSc5I8gzwGvBwVT0JDFXVYYD29YK2+zLg5a7hh1ptWdseXz9uTFWNAW8B503j9UiSpqmvk8pVdRS4IslHgW8muWyS3Xv9Zl+T1Ccbc/wTJ1voHHJiaGiI0dHRSabxM0eOHOl738XCnvRmX3qzLxMNYk9O6iqjqvo/SUbpHPt/NcnSqjrcDge91nY7BFzYNWw58EqrL+9R7x5zKMkS4BzgjR7ffwewA2B4eLhGRkb6mvfo6Cj97rtY2JPe7Etv9mWiQezJlIeMkny8rQxIchbwj4G/AnYDm9pum4AH2vZuYEOSM5NcROfk8VPtsNLbSda08wMbx4059lzXAI+28wySpFnSzwphKbCzXSn0c8CuqvpvSR4HdiXZDLwEXAtQVfuT7AKeA8aAG9shJ4AbgLuAs4A97QZwJ3BPkgN0VgYbZuLFSZL6N2UgVNX3gE/1qP8IWHuCMduB7T3qe4EJ5x+q6l1aoEiS5oYfXSFJAhbwR1ecDiu2Pfj+9sGbPzOHM5Gk2ecKQZIEuEI4blUgSYuZKwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSUAfgZDkwiSPJXk+yf4kX2z130nywyTPtNtVXWNuSnIgyQtJruyqr0qyrz12W5K0+plJ7mv1J5OsOA2vVZI0iSV97DMGbK2q7yT5CPB0kofbY7dW1e9275zkEmADcCnw88CfJ/lEVR0F7gC2AE8ADwHrgD3AZuDNqro4yQbgFuDXTv3lTd+KbQ++v33w5s/M4UwkaXZMuUKoqsNV9Z22/TbwPLBskiHrgXur6r2qehE4AKxOshQ4u6oer6oC7gau7hqzs23fD6w9tnqQJM2OflYI72uHcj4FPAl8GvhCko3AXjqriDfphMUTXcMOtdpP2vb4Ou3rywBVNZbkLeA84PVx338LnRUGQ0NDjI6O9jXvI0eOnHDfrZePTTm+3++zkEzWk8XMvvRmXyYaxJ70HQhJPgx8HfitqvpxkjuArwDVvn4V+A2g12/2NUmdKR77WaFqB7ADYHh4uEZGRvqa++joKCfa9/quQ0MncvC6/r7PQjJZTxYz+9KbfZloEHvS11VGST5AJwz+uKq+AVBVr1bV0ar6KfCHwOq2+yHgwq7hy4FXWn15j/pxY5IsAc4B3pjOC5IkTU8/VxkFuBN4vqp+r6u+tGu3zwLPtu3dwIZ25dBFwErgqao6DLydZE17zo3AA11jNrXta4BH23kGSdIs6eeQ0aeBzwP7kjzTal8GPpfkCjqHdg4CvwlQVfuT7AKeo3OF0o3tCiOAG4C7gLPoXF20p9XvBO5JcoDOymDDqbwoSdLJmzIQquov6H2M/6FJxmwHtveo7wUu61F/F7h2qrlIkk4f36ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUn9TeVF6sV4/7M5sGbPzNHM5Gk08cVgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQL6CIQkFyZ5LMnzSfYn+WKrfyzJw0m+376e2zXmpiQHkryQ5Mqu+qok+9pjtyVJq5+Z5L5WfzLJitPwWiVJk+hnhTAGbK2qXwTWADcmuQTYBjxSVSuBR9p92mMbgEuBdcDtSc5oz3UHsAVY2W7rWn0z8GZVXQzcCtwyA69NknQSpgyEqjpcVd9p228DzwPLgPXAzrbbTuDqtr0euLeq3quqF4EDwOokS4Gzq+rxqirg7nFjjj3X/cDaY6sHSdLsOKlzCO1QzqeAJ4GhqjoMndAALmi7LQNe7hp2qNWWte3x9ePGVNUY8BZw3snMTZJ0avr+ewhJPgx8HfitqvrxJL/A93qgJqlPNmb8HLbQOeTE0NAQo6OjU8y648iRIyfcd+vlY309R7d+v+98NllPFjP70pt9mWgQe9JXICT5AJ0w+OOq+kYrv5pkaVUdboeDXmv1Q8CFXcOXA6+0+vIe9e4xh5IsAc4B3hg/j6raAewAGB4erpGRkX6mz+joKCfa9/pxf/ymL/veeX9zof6xnMl6spjZl97sy0SD2JN+rjIKcCfwfFX9XtdDu4FNbXsT8EBXfUO7cugiOiePn2qHld5OsqY958ZxY4491zXAo+08gyRplvSzQvg08HlgX5JnWu3LwM3AriSbgZeAawGqan+SXcBzdK5QurGqjrZxNwB3AWcBe9oNOoFzT5IDdFYGG07tZUmSTtaUgVBVf0HvY/wAa08wZjuwvUd9L3BZj/q7tECRJM0N36ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLT98dfq7cVXZ+WulA/+VSSwBWCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBvjFtRvkmNUkLmSsESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSUAfgZDka0leS/JsV+13kvwwyTPtdlXXYzclOZDkhSRXdtVXJdnXHrstSVr9zCT3tfqTSVbM8GuUJPWhnzem3QX8PnD3uPqtVfW73YUklwAbgEuBnwf+PMknquoocAewBXgCeAhYB+wBNgNvVtXFSTYAtwC/Nu1XNE/4JjVJC82UK4Sq+hbwRp/Ptx64t6req6oXgQPA6iRLgbOr6vGqKjrhcnXXmJ1t+35g7bHVgyRp9pzKR1d8IclGYC+wtareBJbRWQEcc6jVftK2x9dpX18GqKqxJG8B5wGvj/+GSbbQWWUwNDTE6OhoXxM9cuTICffdevlYX89xKvqd52yarCeLmX3pzb5MNIg9mW4g3AF8Baj29avAbwC9frOvSepM8djxxaodwA6A4eHhGhkZ6Wuyo6OjnGjf67sO7ZwuB6/r/b3n0mQ9WczsS2/2ZaJB7Mm0rjKqqler6mhV/RT4Q2B1e+gQcGHXrsuBV1p9eY/6cWOSLAHOof9DVJKkGTKtQGjnBI75LHDsCqTdwIZ25dBFwErgqao6DLydZE07P7AReKBrzKa2fQ3waDvPIEmaRVMeMkryJ8AIcH6SQ8BvAyNJrqBzaOcg8JsAVbU/yS7gOWAMuLFdYQRwA50rls6ic3XRnla/E7gnyQE6K4MNM/C65hWvOJK0EEwZCFX1uR7lOyfZfzuwvUd9L3BZj/q7wLVTzUOSdHr5TmVJEmAgSJIaA0GSBBgIkqTGQJAkAaf20RWaBi9BlTRfuUKQJAEGgiSpMRAkSYDnEOaU5xMkzSeuECRJgIEgSWoMBEkS4DmEecPzCZLmmisESRJgIEiSGgNBkgR4DmFe8nyCpLngCkGSBBgIkqRmUR4y6j4kI0nqcIUgSQIW6QphIfEEs6TZ4gpBkgQYCJKkxkCQJAEGgiSpmTIQknwtyWtJnu2qfSzJw0m+376e2/XYTUkOJHkhyZVd9VVJ9rXHbkuSVj8zyX2t/mSSFTP8GgfGim0Pvn+TpJnWzwrhLmDduNo24JGqWgk80u6T5BJgA3BpG3N7kjPamDuALcDKdjv2nJuBN6vqYuBW4JbpvhhJ0vRNGQhV9S3gjXHl9cDOtr0TuLqrfm9VvVdVLwIHgNVJlgJnV9XjVVXA3ePGHHuu+4G1x1YPkqTZM933IQxV1WGAqjqc5IJWXwY80bXfoVb7SdseXz825uX2XGNJ3gLOA14f/02TbKGzymBoaIjR0dG+JnvkyJHj9t16+Vhf4+azfl/7iYzviTrsS2/2ZaJB7MlMvzGt12/2NUl9sjETi1U7gB0Aw8PDNTIy0tekRkdH6d73+gE4Bn/wupFTGj++J+qwL73Zl4kGsSfTDYRXkyxtq4OlwGutfgi4sGu/5cArrb68R717zKEkS4BzmHiISuP4DmZJM226l53uBja17U3AA131De3KoYvonDx+qh1eejvJmnZ+YOO4Mcee6xrg0XaeQZI0i6ZcIST5E2AEOD/JIeC3gZuBXUk2Ay8B1wJU1f4ku4DngDHgxqo62p7qBjpXLJ0F7Gk3gDuBe5IcoLMy2DAjr2wRcbUgaSZMGQhV9bkTPLT2BPtvB7b3qO8FLutRf5cWKJKkueM7lSVJgIEgSWoMBEkS4B/IGTieYJY0Xa4QJEmAgSBJajxkNMA8fCTpZLhCkCQBBoIkqTEQJEmAgSBJajypvEh4glnSVFwhSJIAA0GS1BgIi9CKbQ+y74dvHXcYSZIMBEkSYCBIkhoDQZIEGAiSpMb3ISxyvj9B0jGuECRJgCsEdXG1IC1urhAkSYCBIElqDARJEmAgSJKaUzqpnOQg8DZwFBirquEkHwPuA1YAB4F/VlVvtv1vAja3/f9NVf1Zq68C7gLOAh4CvlhVdSpz06nxBLO0+MzECuGXq+qKqhpu97cBj1TVSuCRdp8klwAbgEuBdcDtSc5oY+4AtgAr223dDMxLknQSTsdlp+uBkba9ExgFvtTq91bVe8CLSQ4Aq9sq4+yqehwgyd3A1cCe0zA3TYOrBWlxONVAKOC/JyngP1XVDmCoqg4DVNXhJBe0fZcBT3SNPdRqP2nb4+sTJNlCZyXB0NAQo6OjfU3yyJEjx+279fKxvsYNsqGzpteHfnu+UI3/WVGHfZloEHtyqoHw6ap6pf1P/+EkfzXJvulRq0nqE4udwNkBMDw8XCMjI31NcnR0lO59r/fvALD18jG+uu/k//MfvG5k5iczj4z/WVGHfZloEHtySoFQVa+0r68l+SawGng1ydK2OlgKvNZ2PwRc2DV8OfBKqy/vUdc85OEjaXBN+6Rykg8l+cixbeCfAs8Cu4FNbbdNwANtezewIcmZSS6ic/L4qXZ46e0ka5IE2Ng1RpI0S05lhTAEfLPz/3CWAP+5qv40ybeBXUk2Ay8B1wJU1f4ku4DngDHgxqo62p7rBn522ekePKEsSbNu2oFQVT8APtmj/iNg7QnGbAe296jvBS6b7lw0N8b/TWYPIUkLm+9UliQBBoIkqfHvIWjGeAWStLC5QpAkAa4QdJq4WpAWHlcIkiTAQJAkNR4y0mnn4SNpYTAQNKsMB2n+8pCRJAlwhaA55GpBml9cIUiSAFcImidcLUhzzxWCJAlwhaB5yNWCNDdcIUiSAFcImudcLUizx0DQgmE4SKeXgaAFyXCQZp6BoAXPcJBmhieVJUmAKwQNGFcL0vQZCBpY3eHQzaCQejMQtOi4ipB6MxC0qBkO0s8YCFKzYtuDbL18jOvHHWoyKLRYGAjSFDwXocVi3gRCknXAfwDOAP6oqm6e4ylJk+o3KDwspYViXgRCkjOA/wj8E+AQ8O0ku6vqubmdmXTyThQUUz12THdoGCaaTfMiEIDVwIGq+gFAknuB9YCBoEXnRKHRT5icLsfOrRhKgy1VNddzIMk1wLqq+hft/ueBX6qqL4zbbwuwpd3928ALfX6L84HXZ2i6g8Ke9GZferMvEy3UnvyNqvp4rwfmywohPWoTkqqqdgA7TvrJk71VNTydiQ0qe9KbfenNvkw0iD2ZL59ldAi4sOv+cuCVOZqLJC1K8yUQvg2sTHJRkg8CG4DdczwnSVpU5sUho6oaS/IF4M/oXHb6taraP4Pf4qQPMy0C9qQ3+9KbfZlo4HoyL04qS5Lm3nw5ZCRJmmMGgiQJGKBASLIuyQtJDiTZ1uPxJLmtPf69JH9vLuY52/roy3WtH99L8pdJPjkX85xtU/Wla7+/n+Roe6/MQOunJ0lGkjyTZH+S/zHbc5wLffwbOifJf03y3daXX5+Lec6IqlrwNzonov838DeBDwLfBS4Zt89VwB4673lYAzw51/OeJ335B8C5bftX7cuE/R4FHgKumet5z3VPgI/S+fSAX2j3L5jrec+TvnwZuKVtfxx4A/jgXM99OrdBWSG8/9EXVfX/gGMffdFtPXB3dTwBfDTJ0tme6Cybsi9V9ZdV9Wa7+wSd94AMun5+XgD+NfB14LXZnNwc6acn/xz4RlW9BFBV9qWjgI8kCfBhOoEwNrvTnBmDEgjLgJe77h9qtZPdZ9Cc7GveTGcVNeim7EuSZcBngT+YxXnNpX5+Vj4BnJtkNMnTSTbO2uzmTj99+X3gF+m8mXYf8MWq+unsTG9mzYv3IcyAfj76oq+Pxxgwfb/mJL9MJxD+4Wmd0fzQT1/+PfClqjra+cVv4PXTkyXAKmAtcBbweJInqup/ne7JzaF++nIl8AzwK8DfAh5O8j+r6seneW4zblACoZ+PvliMH4/R12tO8neBPwJ+tap+NEtzm0v99GUYuLeFwfnAVUnGquq/zMoMZ1+//4Zer6p3gHeSfAv4JDDIgdBPX34duLk6JxEOJHkR+DvAU7MzxZkzKIeM+vnoi93Axna10Rrgrao6PNsTnWVT9iXJLwDfAD4/4L/pdZuyL1V1UVWtqKoVwP3AvxrgMID+/g09APyjJEuS/HXgl4DnZ3mes62fvrxEZ9VEkiE6n8T8g1md5QwZiBVCneCjL5L8y/b4H9C5UuQq4ADwf+mk+kDrsy//FjgPuL39NjxWA/YJjuP12ZdFpZ+eVNXzSf4U+B7wUzp/2fDZuZv16dfnz8pXgLuS7KNziOlLVbUQPxbbj66QJHUMyiEjSdIpMhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTm/wPgEQaQCrDSVQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATeklEQVR4nO3dbZCd5X3f8e8vEHsoFIzB3qGIdGmttuahJmWraOpmZilpUUhnwDPQkeuxIFFHKcWtM6MXFn7RZOrRDLywaWkKqRI8gJtEMNgp6gDJeCBbNxMeLDLEsqA0qlFBhoEhqFiiNfXK/74415KjPUd7jlbas6uz38/MmXOf69z3vdf5z0q/va774aSqkCTpJ5a7A5KklcFAkCQBBoIkqTEQJEmAgSBJak5f7g4s1vnnn1+Tk5MD13v33Xc588wzl75DpxBr0sua9LImvcahJs8999xbVfWRfu+dsoEwOTnJ7t27B643MzPD9PT00nfoFGJNelmTXtak1zjUJMn/OtZ7ThlJkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSgFP4SuWlMLnt0feX99/+C8vYE0kaPUcIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSs+pPO+0+1VSSVjNHCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkYIhCSXJTkD5O8mGRvks+39l9L8v0kz7fHtV3b3JZkX5KXklzT1X5lkj3tvbuSpLV/MMmDrf2ZJJNL8FklSQsYZoQwC2ytqo8D64Fbk1zS3ruzqq5oj8cA2nsbgUuBDcDdSU5r698DbAHWtseG1r4ZOFhVHwPuBO448Y8mSToeAwOhql6vqj9py4eAF4ELF9jkOmBnVb1XVS8D+4B1SS4Azq6qp6qqgAeA67u2ub8tPwxcPTd6kCSNxnHd/rpN5fw08AzwSeBzSTYBu+mMIg7SCYunuzY70Np+1Jbnt9OeXwWoqtkk7wDnAW/N+/lb6IwwmJiYYGZmZmCfDx8+vOB6Wy+f7ds+zL5PVYNqshpZk17WpNe412ToQEhyFvB14Feq6gdJ7gG+BFR7/jLwS0C/v+xrgXYGvPcXDVU7gB0AU1NTNT09PbDfMzMzLLTezcf4PoT9nxm871PVoJqsRtaklzXpNe41GeosoyQ/SScMfruqvgFQVW9U1ZGq+jHwm8C6tvoB4KKuzdcAr7X2NX3aj9omyenAOcDbi/lAkqTFGeYsowD3Ai9W1Ve62i/oWu1TwHfb8i5gYztz6GI6B4+frarXgUNJ1rd9bgIe6drmprZ8A/BkO86wbCa3Pfr+Q5JWg2GmjD4JfBbYk+T51vZF4NNJrqAztbMf+GWAqtqb5CHgBTpnKN1aVUfadrcA9wFnAI+3B3QC52tJ9tEZGWw8kQ8lSTp+AwOhqv6I/nP8jy2wzXZge5/23cBlfdp/CNw4qC+SpKXjlcqSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNcN8p/KqN7nt0aNe77/9F5apJ5K0dBwhSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkoAhAiHJRUn+MMmLSfYm+Xxr/3CSbyb5s/Z8btc2tyXZl+SlJNd0tV+ZZE97764kae0fTPJga38myeQSfFZJ0gKGGSHMAlur6uPAeuDWJJcA24Anqmot8ER7TXtvI3ApsAG4O8lpbV/3AFuAte2xobVvBg5W1ceAO4E7TsJnkyQdh4GBUFWvV9WftOVDwIvAhcB1wP1ttfuB69vydcDOqnqvql4G9gHrklwAnF1VT1VVAQ/M22ZuXw8DV8+NHiRJo3FcN7drUzk/DTwDTFTV69AJjSQfbatdCDzdtdmB1vajtjy/fW6bV9u+ZpO8A5wHvDXv52+hM8JgYmKCmZmZgX0+fPjwguttvXx24D7mG+bnrmSDarIaWZNe1qTXuNdk6EBIchbwdeBXquoHC/wB3++NWqB9oW2ObqjaAewAmJqaqunp6QG97vznvdB6N8+7k+kw9n9m8M9dyQbVZDWyJr2sSa9xr8lQZxkl+Uk6YfDbVfWN1vxGmwaiPb/Z2g8AF3VtvgZ4rbWv6dN+1DZJTgfOAd4+3g8jSVq8Yc4yCnAv8GJVfaXrrV3ATW35JuCRrvaN7cyhi+kcPH62TS8dSrK+7XPTvG3m9nUD8GQ7ziBJGpFhpow+CXwW2JPk+db2ReB24KEkm4FXgBsBqmpvkoeAF+icoXRrVR1p290C3AecATzeHtAJnK8l2UdnZLDxxD7W0ur+why/LEfSuBgYCFX1R/Sf4we4+hjbbAe292nfDVzWp/2HtECRJC0Pr1SWJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWqO6xvT1Ms7n0oaF44QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp8cK0k8iL1CSdyhwhSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJzcBASPLVJG8m+W5X268l+X6S59vj2q73bkuyL8lLSa7par8yyZ723l1J0to/mOTB1v5MksmT/BklSUMYZoRwH7ChT/udVXVFezwGkOQSYCNwadvm7iSntfXvAbYAa9tjbp+bgYNV9THgTuCORX4WSdIJGBgIVfUt4O0h93cdsLOq3quql4F9wLokFwBnV9VTVVXAA8D1Xdvc35YfBq6eGz1IkkbnRK5U/lySTcBuYGtVHQQuBJ7uWudAa/tRW57fTnt+FaCqZpO8A5wHvDX/BybZQmeUwcTEBDMzMwM7efjw4QXX23r57MB9LMYwfVsug2qyGlmTXtak17jXZLGBcA/wJaDa85eBXwL6/WVfC7Qz4L2jG6t2ADsApqamanp6emBHZ2ZmWGi9m7tuN3FS7Xn3/cWVdhuLQTVZjaxJL2vSa9xrsqizjKrqjao6UlU/Bn4TWNfeOgBc1LXqGuC11r6mT/tR2yQ5HTiH4aeoJEknyaICoR0TmPMpYO4MpF3Axnbm0MV0Dh4/W1WvA4eSrG/HBzYBj3Rtc1NbvgF4sh1nkCSN0MApoyS/C0wD5yc5APwqMJ3kCjpTO/uBXwaoqr1JHgJeAGaBW6vqSNvVLXTOWDoDeLw9AO4FvpZkH52RwcaT8LkkScdpYCBU1af7NN+7wPrbge192ncDl/Vp/yFw46B+SJKWlt+HMAJ+T4KkU4G3rpAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhpPOx0xT0GVtFI5QpAkAQaCJKkxECRJgIEgSWo8qLyMPMAsaSVxhCBJAgwESVLjlNEK4fSRpOXmCEGSBBgIkqTGKaMVyOkjScvBEYIkCTAQJEmNgSBJAgwESVLjQeUVzgPMkkbFEYIkCTAQJEmNgSBJAgwESVIzMBCSfDXJm0m+29X24STfTPJn7fncrvduS7IvyUtJrulqvzLJnvbeXUnS2j+Y5MHW/kySyZP8GcfG5LZH339I0sk2zAjhPmDDvLZtwBNVtRZ4or0mySXARuDSts3dSU5r29wDbAHWtsfcPjcDB6vqY8CdwB2L/TDD8j9WSeo1MBCq6lvA2/OarwPub8v3A9d3te+sqveq6mVgH7AuyQXA2VX1VFUV8MC8beb29TBw9dzoQZI0Oou9DmGiql4HqKrXk3y0tV8IPN213oHW9qO2PL99bptX275mk7wDnAe8Nf+HJtlCZ5TBxMQEMzMzAzt6+PDhnvW2Xj47cLuVbpjPfiz9arLaWZNe1qTXuNfkZF+Y1u8v+1qgfaFtehurdgA7AKampmp6enpgh2ZmZpi/3s3jMFW05933F4/3grV+NVntrEkva9Jr3Guy2LOM3mjTQLTnN1v7AeCirvXWAK+19jV92o/aJsnpwDn0TlFJkpbYYgNhF3BTW74JeKSrfWM7c+hiOgePn23TS4eSrG/HBzbN22ZuXzcAT7bjDJKkERo4ZZTkd4Fp4PwkB4BfBW4HHkqyGXgFuBGgqvYmeQh4AZgFbq2qI21Xt9A5Y+kM4PH2ALgX+FqSfXRGBhtPyieTJB2XgYFQVZ8+xltXH2P97cD2Pu27gcv6tP+QFihaHG+AJ+lk8EplSRJgIEiSGr8PYcw4fSRpsRwhSJIAA0GS1BgIkiTAYwhjzeMJko6HIwRJEmAgSJIap4xWie7po/s2nLmMPZG0UjlCkCQBBoIkqTEQJEmAgSBJagyEVWjP999hctujRx1oliQDQZIEGAiSpMbrEFY5b28haY4jBEkSYCBIkhoDQZIEeAxBXTyeIK1ujhAkSYCBIElqnDJSX04fSauPIwRJEmAgSJIaA0GSBJzgMYQk+4FDwBFgtqqmknwYeBCYBPYD/6SqDrb1bwM2t/X/VVX9QWu/ErgPOAN4DPh8VdWJ9E0nj8cTpNXhZIwQrqqqK6pqqr3eBjxRVWuBJ9prklwCbAQuBTYAdyc5rW1zD7AFWNseG05CvyRJx2EppoyuA+5vy/cD13e176yq96rqZWAfsC7JBcDZVfVUGxU80LWNJGlEciIzM0leBg4CBfzHqtqR5H9X1Ye61jlYVecm+XXg6ar6T639XuBxOtNKt1fVz7X2nwW+UFX/uM/P20JnJMHExMSVO3fuHNjHw4cPc9ZZZx3Vtuf77yzi046PiTPgjf974vu5/MJzTnwnK0S/35PVzpr0GoeaXHXVVc91zegc5USvQ/hkVb2W5KPAN5P89wXWTZ+2WqC9t7FqB7ADYGpqqqanpwd2cGZmhvnr3bzKvyls6+WzfHnPiV+Csv8z0yfemRWi3+/JamdNeo17TU5oyqiqXmvPbwK/B6wD3mjTQLTnN9vqB4CLujZfA7zW2tf0aZckjdCi/0xMcibwE1V1qC3/I+DfALuAm4Db2/MjbZNdwO8k+QrwV+gcPH62qo4kOZRkPfAMsAn494vtl0Zn/ncyewaSdGo7kXmDCeD3kszt53eq6veTfBt4KMlm4BXgRoCq2pvkIeAFYBa4taqOtH3dwl+cdvp4e0iSRmjRgVBV3wM+0af9z4Grj7HNdmB7n/bdwGWL7YtWBq9XkE5tXqksSQIMBElS4+2vtSScPpJOPY4QJEmAIwSNgKMF6dTgCEGSBBgIkqTGKSONlNNH0splIGjZGA7SyuKUkSQJcISgFcLRgrT8HCFIkgBHCFqBHC1Iy8MRgiQJcISgFc7RgjQ6jhAkSYAjBJ1CHC1IS8sRgiQJcISgU1T3aKGbIwdp8RwhSJIARwgaMx5nkBbPQNDYMhyk42MgaFUwHKTBDAStOoaD1J+BoFVtLhy2Xj7LzQaFVjkDQerDUYRWIwNBGsBrHrRaGAjSIhkUGjcrJhCSbAD+HXAa8FtVdfsyd0lalGMFxXwGh1aaFREISU4D/gPwD4EDwLeT7KqqF5a3Z9LSGTY4+jFMtBRWRCAA64B9VfU9gCQ7gesAA0Hq40TCZFjzz7yaz1AaP6mq5e4DSW4ANlTVP2uvPwv8TFV9bt56W4At7eXfBF4aYvfnA2+dxO6OA2vSy5r0sia9xqEmf7WqPtLvjZUyQkiftp6kqqodwI7j2nGyu6qmFtuxcWRNelmTXtak17jXZKXc7fQAcFHX6zXAa8vUF0lalVZKIHwbWJvk4iQfADYCu5a5T5K0qqyIKaOqmk3yOeAP6Jx2+tWq2nuSdn9cU0yrhDXpZU16WZNeY12TFXFQWZK0/FbKlJEkaZkZCJIkYIwCIcmGJC8l2ZdkW5/3k+Su9v53kvyd5ejnKA1Rk8+0WnwnyR8n+cRy9HOUBtWka72/m+RIu0ZmbA1TjyTTSZ5PsjfJfx11H0dtiH835yT5L0n+tNXkF5ejn0uiqk75B50D0f8T+GvAB4A/BS6Zt861wON0rnlYDzyz3P1eATX5e8C5bfnnrclR6z0JPAbcsNz9XubfkQ/RuWPAT7XXH13ufq+AmnwRuKMtfwR4G/jAcvf9ZDzGZYTw/q0vqur/AXO3vuh2HfBAdTwNfCjJBaPu6AgNrElV/XFVHWwvn6Zz/cc4G+b3BOBfAl8H3hxl55bBMPX4p8A3quoVgKqyJp2LZv9ykgBn0QmE2dF2c2mMSyBcCLza9fpAazvedcbJ8X7ezXRGUONsYE2SXAh8CviNEfZruQzzO/I3gHOTzCR5LsmmkfVueQxTk18HPk7n4tk9wOer6sej6d7SWhHXIZwEw9z6YqjbY4yRoT9vkqvoBMLfX9IeLb9havJvgS9U1ZHOH4BjbZh6nA5cCVwNnAE8leTpqvofS925ZTJMTa4Bngf+AfDXgW8m+W9V9YMl7tuSG5dAGObWF6vt9hhDfd4kfxv4LeDnq+rPR9S35TJMTaaAnS0MzgeuTTJbVf95JD0crWH/3bxVVe8C7yb5FvAJYFwDYZia/CJwe3UOIuxL8jLwt4BnR9PFpTMuU0bD3PpiF7CpnW20Hninql4fdUdHaGBNkvwU8A3gs2P8F1+3gTWpqourarKqJoGHgX8xpmEAw/27eQT42SSnJ/lLwM8AL464n6M0TE1eoTNiIskEnTsvf2+kvVwiYzFCqGPc+iLJP2/v/wadM0auBfYB/4dOyo+tIWvyr4HzgLvbX8SzNcZ3chyyJqvGMPWoqheT/D7wHeDHdL7N8LvL1+ulNeTvyJeA+5LsoTPF9IWqOtVviQ146wpJUjMuU0aSpBNkIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSc3/Bxv/r87sxWCkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATa0lEQVR4nO3db4yl5X3e8e9VNkYEB4LBjFa7pEvrbWNga1K2ZFW30qSoZYNfgCWQ1kEGEqJNKa4caV8Y/KKJZK0ELxxa2kK0CRZgucEIO2Ubm7QIMnWj8MdLRLwslHpqtjBmBSIgzFKZesivL8491jnD7JwzszPnzMz5fqSj85z7+TP3+Wl2r3M/93OeSVUhSdLfGnUHJElrg4EgSQIMBElSYyBIkgADQZLUbBp1B5brnHPOqW3btvXd7t133+X0009f/Q6tE9ajl/XoZT16bcR6PPPMM29U1UcXWrduA2Hbtm0cOnSo73ZTU1NMTk6ufofWCevRy3r0sh69NmI9kvyfE63zlJEkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJWMffVF4N22751k+Xj972qRH2RJKGzxGCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgYIhCTnJfmzJC8kOZLk8639d5P8MMmz7XFF1z63JplO8mKSy7vaL0lyuK27M0la+6lJvt7an0qybRXe64K23fKtnz4kaZwNMkKYBfZV1ceBXcDNSS5o6+6oqovb49sAbd0e4EJgN3BXklPa9ncDe4Ht7bG7td8IvFVVHwPuAG4/+bcmSVqKvoFQVceq6i/b8jvAC8CWRXa5Enigqt6rqpeAaeDSJJuBM6rqiaoq4H7gqq597mvLDwGXzY0eJEnDsaQ5hHYq55eAp1rT55J8L8lXkpzV2rYAr3TtNtPatrTl+e09+1TVLPA2cPZS+iZJOjkD/z2EJB8GvgH8dlX9KMndwJeAas9fBn4DWOiTfS3STp913X3YS+eUExMTE0xNTfXt9/Hjxxfdbt+O2QXbBzn2etSvHuPGevSyHr3GrR4DBUKSn6ETBl+rqm8CVNVrXev/APiT9nIGOK9r963Aq6196wLt3fvMJNkEnAm8Ob8fVXUAOACwc+fOmpyc7Nv3qakpFtvuhhNMJh+9tv+x16N+9Rg31qOX9eg1bvUY5CqjAPcAL1TV73W1b+7a7NPAc235ILCnXTl0Pp3J46er6hjwTpJd7ZjXAQ937XN9W74aeLzNM0iShmSQEcIngc8Ch5M829q+CHwmycV0Tu0cBX4LoKqOJHkQeJ7OFUo3V9X7bb+bgHuB04BH2gM6gfPVJNN0RgZ7TuZNSZKWrm8gVNWfs/A5/m8vss9+YP8C7YeAixZo/zFwTb++SJJWj99UliQBBoIkqRn4stNx030ri6O3fWqEPZGk4XCEIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktRsGnUH1oNtt3yr5/XR2z41op5I0upxhCBJAgwESVJjIEiSAANBktQYCJIkwECQJDV9AyHJeUn+LMkLSY4k+Xxr/0iSR5N8vz2f1bXPrUmmk7yY5PKu9kuSHG7r7kyS1n5qkq+39qeSbFuF9ypJWsQgI4RZYF9VfRzYBdyc5ALgFuCxqtoOPNZe09btAS4EdgN3JTmlHetuYC+wvT12t/Ybgbeq6mPAHcDtK/DeJElL0DcQqupYVf1lW34HeAHYAlwJ3Nc2uw+4qi1fCTxQVe9V1UvANHBpks3AGVX1RFUVcP+8feaO9RBw2dzoQZI0HEv6pnI7lfNLwFPARFUdg05oJDm3bbYFeLJrt5nW9pO2PL99bp9X2rFmk7wNnA28Me/n76UzwmBiYoKpqam+fT5+/Pii2+3bMdv3GPMN8nPXqn71GDfWo5f16DVu9Rg4EJJ8GPgG8NtV9aNFPsAvtKIWaV9sn96GqgPAAYCdO3fW5ORkn153/vNebLsb5t2WYhBHr+3/c9eqfvUYN9ajl/XoNW71GOgqoyQ/QycMvlZV32zNr7XTQLTn11v7DHBe1+5bgVdb+9YF2nv2SbIJOBN4c6lvRpK0fINcZRTgHuCFqvq9rlUHgevb8vXAw13te9qVQ+fTmTx+up1eeifJrnbM6+btM3esq4HH2zyDJGlIBjll9Engs8DhJM+2ti8CtwEPJrkReBm4BqCqjiR5EHiezhVKN1fV+22/m4B7gdOAR9oDOoHz1STTdEYGe07ubUmSlqpvIFTVn7PwOX6Ay06wz35g/wLth4CLFmj/MS1Q1oPu22F7K2xJG4XfVJYkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkZpC/mKZF+MdyJG0UjhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgN9UXlF+a1nSeuYIQZIEGAiSpKZvICT5SpLXkzzX1fa7SX6Y5Nn2uKJr3a1JppO8mOTyrvZLkhxu6+5MktZ+apKvt/ankmxb4fcoSRrAICOEe4HdC7TfUVUXt8e3AZJcAOwBLmz73JXklLb93cBeYHt7zB3zRuCtqvoYcAdw+zLfiyTpJPQNhKr6DvDmgMe7Enigqt6rqpeAaeDSJJuBM6rqiaoq4H7gqq597mvLDwGXzY0eJEnDczJXGX0uyXXAIWBfVb0FbAGe7NpmprX9pC3Pb6c9vwJQVbNJ3gbOBt6Y/wOT7KUzymBiYoKpqam+nTx+/Pii2+3bMdv3GMsxSN9GoV89xo316GU9eo1bPZYbCHcDXwKqPX8Z+A1goU/2tUg7fdb1NlYdAA4A7Ny5syYnJ/t2dGpqisW2u6HrUtGVdPTaE//MUepXj3FjPXpZj17jVo9lBUJVvTa3nOQPgD9pL2eA87o23Qq82tq3LtDevc9Mkk3AmQx+imrN8jsJktabZV122uYE5nwamLsC6SCwp105dD6dyeOnq+oY8E6SXW1+4Drg4a59rm/LVwOPt3kGSdIQ9R0hJPkjYBI4J8kM8DvAZJKL6ZzaOQr8FkBVHUnyIPA8MAvcXFXvt0PdROeKpdOAR9oD4B7gq0mm6YwM9qzA+5IkLVHfQKiqzyzQfM8i2+8H9i/Qfgi4aIH2HwPX9OuHJGl1+U1lSRJgIEiSGgNBkgR4++uh8BJUSeuBIwRJEmAgSJIaA0GSBBgIkqTGSeUhc4JZ0lrlCEGSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWq87HSEvARV0lriCEGSBBgIkqTGU0ZrhKePJI2aIwRJEmAgSJIaTxmtQZ4+kjQKjhAkSYCBIElqDARJEuAcwprnfIKkYXGEIEkCDARJUuMpo3XE00eSVlPfEUKSryR5PclzXW0fSfJoku+357O61t2aZDrJi0ku72q/JMnhtu7OJGntpyb5emt/Ksm2FX6PkqQBDHLK6F5g97y2W4DHqmo78Fh7TZILgD3AhW2fu5Kc0va5G9gLbG+PuWPeCLxVVR8D7gBuX+6bkSQtX99AqKrvAG/Oa74SuK8t3wdc1dX+QFW9V1UvAdPApUk2A2dU1RNVVcD98/aZO9ZDwGVzowdJ0vAsdw5hoqqOAVTVsSTntvYtwJNd2820tp+05fntc/u80o41m+Rt4Gzgjfk/NMleOqMMJiYmmJqa6tvR48ePL7rdvh2zfY+xFg3y3hfSrx7jxnr0sh69xq0eKz2pvNAn+1qkfbF9PthYdQA4ALBz586anJzs26GpqSkW2+6Grona9eTotZPL2q9fPcaN9ehlPXqNWz2WGwivJdncRgebgddb+wxwXtd2W4FXW/vWBdq795lJsgk4kw+eotI8XnEkaaUt93sIB4Hr2/L1wMNd7XvalUPn05k8frqdXnonya42P3DdvH3mjnU18HibZ5AkDVHfEUKSPwImgXOSzAC/A9wGPJjkRuBl4BqAqjqS5EHgeWAWuLmq3m+HuonOFUunAY+0B8A9wFeTTNMZGexZkXcmSVqSvoFQVZ85warLTrD9fmD/Au2HgIsWaP8xLVC0PJ4+krQSxvKbytvW6USyJK0m72UkSQIMBElSM5anjDYy5xMkLZcjBEkSYCBIkhpPGW1gnj6StBSOECRJgIEgSWo8ZTQm5k4f7dsxy+RouyJpjXKEIEkCDARJUmMgSJIA5xDGkpejSlqIIwRJEmAgSJIaA0GSBBgIkqTGSeUx5wSzpDmOECRJgCMEdXG0II03RwiSJMBAkCQ1BoIkCXAOQSfgfII0fhwhSJIARwgagKMFaTw4QpAkAQaCJKk5qUBIcjTJ4STPJjnU2j6S5NEk32/PZ3Vtf2uS6SQvJrm8q/2SdpzpJHcmycn0S5K0dCsxQviVqrq4qna217cAj1XVduCx9pokFwB7gAuB3cBdSU5p+9wN7AW2t8fuFeiXJGkJVmNS+Upgsi3fB0wBX2jtD1TVe8BLSaaBS5McBc6oqicAktwPXAU8sgp900lyglnauE52hFDAf0vyTJK9rW2iqo4BtOdzW/sW4JWufWda25a2PL9dkjREJztC+GRVvZrkXODRJP9zkW0XmheoRdo/eIBO6OwFmJiYYGpqqm8Hjx8//oHt9u2Y7bvfRjVx2sq9/3//tYd7Xu/YcuaKHHeYFvr9GGfWo9e41eOkAqGqXm3Pryf5Y+BS4LUkm6vqWJLNwOtt8xngvK7dtwKvtvatC7Qv9PMOAAcAdu7cWZOTk337ODU1xfztbug67TFu9u2Y5cuHV+frJ0evnVyV466mhX4/xpn16DVu9Vj2KaMkpyf5ubll4F8AzwEHgevbZtcDcx8jDwJ7kpya5Hw6k8dPt9NK7yTZ1a4uuq5rH0nSkJzMR8UJ4I/bFaKbgP9UVX+a5LvAg0luBF4GrgGoqiNJHgSeB2aBm6vq/Xasm4B7gdPoTCY7obwOOeEsrW/LDoSq+gHwiQXa/xq47AT77Af2L9B+CLhouX2RJJ0872WkVeFoQVp/vHWFJAkwECRJjYEgSQKcQ9AQOJ8grQ+OECRJgCMEDZmjBWntcoQgSQIMBElS4ykjjcy2E9xk0FNJ0mg4QpAkAY4QtAY58SyNhiMESRLgCEFrnKMFaXgcIUiSAEcIWkccLUiryxGCJAlwhKB1ytGCtPIcIUiSAEcI2gAcLUgrw0DQhmI4SMtnIGjDMhykpTEQNBYMB6k/A0Fjpzsc7t19+gh7Iq0tXmWksXb4h2+z7ZZvnfBW3NI4cYQgNZ5W0rgzEKQFGA4aRwaC1IfhoHFhIEhL4J/91EZmIEgrYLFJacNC68WaCYQku4F/B5wC/GFV3TbiLkkrYqlXMBkgGpU1EQhJTgH+I/DPgRngu0kOVtXzo+2ZNHwncwmsYaKTsSYCAbgUmK6qHwAkeQC4EjAQpCU42e9T7Nsxyw3LOIZBtDGkqkbdB5JcDeyuqt9srz8L/HJVfW7ednuBve3l3wdeHODw5wBvrGB31zvr0ct69LIevTZiPf52VX10oRVrZYSQBdo+kFRVdQA4sKQDJ4eqaudyO7bRWI9e1qOX9eg1bvVYK7eumAHO63q9FXh1RH2RpLG0VgLhu8D2JOcn+RCwBzg44j5J0lhZE6eMqmo2yeeA/0rnstOvVNWRFTr8kk4xjQHr0ct69LIevcaqHmtiUlmSNHpr5ZSRJGnEDARJErCBAiHJ7iQvJplOcssC65Pkzrb+e0n+4Sj6OSwD1OPaVofvJfmLJJ8YRT+HpV89urb7R0neb9+N2bAGqUeSySTPJjmS5L8Pu4/DMsC/lTOT/Jckf9Vq8euj6OdQVNW6f9CZiP7fwN8BPgT8FXDBvG2uAB6h852HXcBTo+73iOvxj4Gz2vKvjns9urZ7HPg2cPWo+z3i34+fp3OngF9or88ddb9HWIsvAre35Y8CbwIfGnXfV+OxUUYIP731RVX9P2Du1hfdrgTur44ngZ9PsnnYHR2SvvWoqr+oqrfayyfpfPdjoxrk9wPgXwPfAF4fZudGYJB6/Brwzap6GaCqNmpNBqlFAT+XJMCH6QTC7HC7ORwbJRC2AK90vZ5pbUvdZqNY6nu9kc7oaaPqW48kW4BPA78/xH6NyiC/H38POCvJVJJnklw3tN4N1yC1+A/Ax+l8WfYw8Pmq+pvhdG+41sT3EFbAILe+GOj2GBvEwO81ya/QCYR/sqo9Gq1B6vFvgS9U1fudD4Ib2iD12ARcAlwGnAY8keTJqvpfq925IRukFpcDzwL/DPi7wKNJ/kdV/WiV+zZ0GyUQBrn1xTjdHmOg95rkHwB/CPxqVf31kPo2CoPUYyfwQAuDc4ArksxW1X8eSg+Ha9B/L29U1bvAu0m+A3wC2GiBMEgtfh24rTqTCNNJXgJ+EXh6OF0cno1yymiQW18cBK5rVxvtAt6uqmPD7uiQ9K1Hkl8Avgl8dgN+6puvbz2q6vyq2lZV24CHgH+1QcMABvv38jDwT5NsSvKzwC8DLwy5n8MwSC1epjNSIskEnTst/2CovRySDTFCqBPc+iLJv2zrf5/OlSNXANPA/6WT+hvSgPX4N8DZwF3tU/FsbdC7Og5Yj7ExSD2q6oUkfwp8D/gbOn/F8LnR9Xp1DPi78SXg3iSH6Zxi+kJVbbRbYgPeukKS1GyUU0aSpJNkIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSc3/B/8Tgj8jlcVDAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATWUlEQVR4nO3df4yl1X3f8fenbIyoHQgGe4R2SZfW29bA1qRMyapupUlRy4b8AZZAWtcykFBtSnHlSPuHwX80kayV4A+HlraQboIFWG4wwk7Z1iYtgkzdKPzwOiJeFko9NRTWrEAEhFkqUw/+9o97hr0zzM698+vemXvfL+lqnnvu8zx77pddPnPOee5zU1VIkvRXht0BSdLGYCBIkgADQZLUGAiSJMBAkCQ1W4bdgZU6++yza/v27T33e/vtt/ngBz+4/h3aBKzFfNbjBGsx3yjX43vf+95rVfWRxV7btIGwfft2Dh061HO/6elppqam1r9Dm4C1mM96nGAt5hvleiT5Pyd7zSkjSRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJErCJP6m8Hrbf9K33tl+45deG2BNJGjxHCJIkwECQJDU9AyHJuUn+JMmzSY4k+Xxr/50kP0ryVHtc3nXMzUlmkjyX5LKu9ouTHG6v3Z4krf3UJF9v7U8k2b4O71WStIR+RgizwL6q+jiwC7gxyfnttduq6qL2+DZAe20PcAGwG7gjySlt/zuBvcCO9tjd2q8H3qiqjwG3Abeu/q1JkpajZyBU1bGq+vO2/RbwLLB1iUOuAO6rqneq6nlgBrgkyTnA6VX1WFUVcC9wZdcx97TtB4BL50YPkqTBWNZVRm0q55eAJ4BPAp9Lcg1wiM4o4g06YfF412FHW9tP2/bCdtrPlwCqajbJm8BZwGsL/vy9dEYYTExMMD093bPPx48f72s/gH07Z9/b7veYzWQ5tRgH1uMEazHfuNaj70BI8iHgG8BvVdWPk9wJfAmo9vPLwG8Ai/1mX0u00+O1Ew1VB4ADAJOTk9XPF1gs54suruu+7PQz/R2zmYzyl36shPU4wVrMN6716OsqoyQ/RycMvlZV3wSoqleq6t2q+hnw+8AlbfejwLldh28DXm7t2xZpn3dMki3AGcDrK3lDkqSV6ecqowB3Ac9W1e92tZ/TtdungKfb9kFgT7ty6Dw6i8dPVtUx4K0ku9o5rwEe7Drm2rZ9FfBoW2eQJA1IP1NGnwQ+CxxO8lRr+yLw6SQX0ZnaeQH4TYCqOpLkfuAZOlco3VhV77bjbgDuBk4DHmoP6ATOV5PM0BkZ7FnNm5IkLV/PQKiqP2XxOf5vL3HMfmD/Iu2HgAsXaf8JcHWvvkiS1o+fVJYkAQaCJKkxECRJgIEgSWoMBEkS4BfkzPtSHEkaZ44QJEmAI4ST8us0JY0bRwiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJzZZhd2Az2H7Tt+Y9f+GWXxtSTyRp/ThCkCQBBoIkqekZCEnOTfInSZ5NciTJ51v7h5M8nOQH7eeZXcfcnGQmyXNJLutqvzjJ4fba7UnS2k9N8vXW/kSS7evwXiVJS+hnhDAL7KuqjwO7gBuTnA/cBDxSVTuAR9pz2mt7gAuA3cAdSU5p57oT2AvsaI/drf164I2q+hhwG3DrGrw3SdIy9AyEqjpWVX/ett8CngW2AlcA97Td7gGubNtXAPdV1TtV9TwwA1yS5Bzg9Kp6rKoKuHfBMXPnegC4dG70IEkajGWtIbSpnF8CngAmquoYdEID+GjbbSvwUtdhR1vb1ra9sH3eMVU1C7wJnLWcvkmSVqfvy06TfAj4BvBbVfXjJX6BX+yFWqJ9qWMW9mEvnSknJiYmmJ6e7tFrOH78+JL77ds52/McC/Xz525EvWoxbqzHCdZivnGtR1+BkOTn6ITB16rqm635lSTnVNWxNh30ams/Cpzbdfg24OXWvm2R9u5jjibZApwBvL6wH1V1ADgAMDk5WVNTUz37Pj09zVL7XbfgMwb9eOEzvf/cjahXLcaN9TjBWsw3rvXo5yqjAHcBz1bV73a9dBC4tm1fCzzY1b6nXTl0Hp3F4yfbtNJbSXa1c16z4Ji5c10FPNrWGSRJA9LPCOGTwGeBw0meam1fBG4B7k9yPfAicDVAVR1Jcj/wDJ0rlG6sqnfbcTcAdwOnAQ+1B3QC56tJZuiMDPas7m1JkparZyBU1Z+y+Bw/wKUnOWY/sH+R9kPAhYu0/4QWKJKk4fCTypIkwECQJDUGgiQJMBAkSY3fh7AC3d+P4HcjSBoVjhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMbbX6+St8KWNCocIUiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1HjrijXkbSwkbWY9RwhJvpLk1SRPd7X9TpIfJXmqPS7veu3mJDNJnktyWVf7xUkOt9duT5LWfmqSr7f2J5JsX+P3KEnqQz9TRncDuxdpv62qLmqPbwMkOR/YA1zQjrkjySlt/zuBvcCO9pg75/XAG1X1MeA24NYVvhdJ0ir0DISq+g7wep/nuwK4r6reqarngRngkiTnAKdX1WNVVcC9wJVdx9zTth8ALp0bPUiSBmc1i8qfS/L9NqV0ZmvbCrzUtc/R1ra1bS9sn3dMVc0CbwJnraJfkqQVWOmi8p3Al4BqP78M/Aaw2G/2tUQ7PV6bJ8leOtNOTExMMD093bOjx48fX3K/fTtne55jJfrp26D1qsW4sR4nWIv5xrUeKwqEqnplbjvJ7wP/pT09Cpzbtes24OXWvm2R9u5jjibZApzBSaaoquoAcABgcnKypqamevZ1enqapfa7ruvKoDV1+O33NjfKFUe9ajFurMcJ1mK+ca3HiqaM2prAnE8Bc1cgHQT2tCuHzqOzePxkVR0D3kqyq60PXAM82HXMtW37KuDRts4gSRqgniOEJH8ITAFnJzkK/DYwleQiOlM7LwC/CVBVR5LcDzwDzAI3VtW77VQ30Lli6TTgofYAuAv4apIZOiODPWvwviRJy9QzEKrq04s037XE/vuB/Yu0HwIuXKT9J8DVvfohSVpf3rpCkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIavzFtAPwmNUmbgSMESRJgIEiSGqeMBszpI0kblSMESRJgIEiSGgNBkgQYCJKkxkCQJAFeZTRUXnEkaSNxhCBJAgwESVJjIEiSANcQNgzXEyQNmyMESRJgIEiSGqeMNiCnjyQNgyMESRJgIEiSGgNBkgS4hrDhuZ4gaVAcIUiSAANBktQ4ZbSJOH0kaT31HCEk+UqSV5M83dX24SQPJ/lB+3lm12s3J5lJ8lySy7raL05yuL12e5K09lOTfL21P5Fk+xq/R0lSH/qZMrob2L2g7SbgkaraATzSnpPkfGAPcEE75o4kp7Rj7gT2AjvaY+6c1wNvVNXHgNuAW1f6ZiRJK9czEKrqO8DrC5qvAO5p2/cAV3a131dV71TV88AMcEmSc4DTq+qxqirg3gXHzJ3rAeDSudGDJGlwVrqGMFFVxwCq6liSj7b2rcDjXfsdbW0/bdsL2+eOeamdazbJm8BZwGsL/9Ake+mMMpiYmGB6erpnR48fP77kfvt2zvY8x0b0b7/24HvbO7ee0dcxvWoxbqzHCdZivnGtx1ovKi/2m30t0b7UMe9vrDoAHACYnJysqampnh2anp5mqf2u61qo3axe+MxUX/v1qsW4sR4nWIv5xrUeK73s9JU2DUT7+WprPwqc27XfNuDl1r5tkfZ5xyTZApzB+6eoJEnrbKWBcBC4tm1fCzzY1b6nXTl0Hp3F4yfb9NJbSXa19YFrFhwzd66rgEfbOoMkaYB6Thkl+UNgCjg7yVHgt4FbgPuTXA+8CFwNUFVHktwPPAPMAjdW1bvtVDfQuWLpNOCh9gC4C/hqkhk6I4M9a/LOJEnL0jMQqurTJ3np0pPsvx/Yv0j7IeDCRdp/QgsUrYwfWJO0Frx1hSQJMBAkSY2BIEkCvLndyHE9QdJKOUKQJAGOEEaaowVJy+EIQZIEGAiSpMZAGBPbb/oWh3/05rxpJEnqNpZrCP5PUZLezxGCJAkwECRJzVhOGY07L0eVtBhHCJIkwECQJDUGgiQJcA1h7LmeIGmOIwRJEmAgSJIaA0GSBLiGoC6uJ0jjzRGCJAlwhKCTcLQgjR9HCJIkwECQJDUGgiQJMBAkSY2LyurJBWZpPBgIWhbDQRpdThlJkgADQZLUrCoQkryQ5HCSp5Icam0fTvJwkh+0n2d27X9zkpkkzyW5rKv94naemSS3J8lq+iVJWr61GCH8SlVdVFWT7flNwCNVtQN4pD0nyfnAHuACYDdwR5JT2jF3AnuBHe2xew36JUlahvVYVL4CmGrb9wDTwBda+31V9Q7wfJIZ4JIkLwCnV9VjAEnuBa4EHlqHvmkNdS8wg4vM0ma32kAo4L8lKeA/VNUBYKKqjgFU1bEkH237bgUe7zr2aGv7adte2P4+SfbSGUkwMTHB9PR0zw4eP378ffvt2znb87hRNHHa+r73fv57bCSL/d0YV9ZivnGtx2oD4ZNV9XL7n/7DSf7nEvsuti5QS7S/v7ETOAcAJicna2pqqmcHp6enWbjfdQt+sx0X+3bO8uXD63il8eG339vcDKOFxf5ujCtrMd+41mNVawhV9XL7+SrwR8AlwCtJzgFoP19tux8Fzu06fBvwcmvftki7JGmAVhwIST6Y5OfntoF/AjwNHASubbtdCzzYtg8Ce5KcmuQ8OovHT7bppbeS7GpXF13TdYwkaUBWM38wAfxRu0J0C/Afq+qPk3wXuD/J9cCLwNUAVXUkyf3AM8AscGNVvdvOdQNwN3AancVkF5Q3OT/RLG0+Kw6Eqvoh8IlF2v8SuPQkx+wH9i/Sfgi4cKV9kSStnvcy0rpztCBtDt66QpIEGAiSpMYpIw2U00fSxuUIQZIEGAiSpMYpIw2N00fSxuIIQZIEOELQBuFoQRo+RwiSJMARgjYgRwvScBgI2tAMB2lwnDKSJAGOELSJOFqQ1pcjBEkS4AhBm5SjBWntOUKQJAEGgiSpccpIm57TR9LaMBA0UgwHaeUMBI0sw0FaHgNBY8FwkHpzUVmSBDhC0BiaGy3s2znL1HC7Im0oBoLGmlNJ0gkGgtQYDhp3BoK0iO5w6GZQaJQZCNIyOIrQKDMQpBVyFKFRYyBIa2xhUBgQ2iwMBGmdOZLQZrFhAiHJbuDfAKcAf1BVtwy5S9K6OllQnIwBovW2IQIhySnAvwf+MXAU+G6Sg1X1zHB7Jm0cyw2QboaJ+rEhAgG4BJipqh8CJLkPuAIwEKQ10CtM9u2c5bpVBE43w2fzSlUNuw8kuQrYXVX/rD3/LPDLVfW5BfvtBfa2p38LeK6P058NvLaG3d3MrMV81uMEazHfKNfjr1XVRxZ7YaOMELJI2/uSqqoOAAeWdeLkUFVNrrRjo8RazGc9TrAW841rPTbK3U6PAud2Pd8GvDykvkjSWNoogfBdYEeS85J8ANgDHBxynyRprGyIKaOqmk3yOeC/0rns9CtVdWSNTr+sKaYRZy3msx4nWIv5xrIeG2JRWZI0fBtlykiSNGQGgiQJGKFASLI7yXNJZpLctMjrSXJ7e/37Sf7uMPo5CH3U4jOtBt9P8mdJPjGMfg5Kr3p07ff3krzbPhczkvqpRZKpJE8lOZLkvw+6j4PUx7+VM5L85yR/0erx68Po58BU1aZ/0FmI/t/AXwc+APwFcP6CfS4HHqLzmYddwBPD7vcQa/H3gTPb9q+Oai36rUfXfo8C3wauGna/h/h34xfo3CHgF9vzjw6730OuxxeBW9v2R4DXgQ8Mu+/r9RiVEcJ7t76oqv8HzN36otsVwL3V8TjwC0nOGXRHB6BnLarqz6rqjfb0cTqf+xhV/fzdAPiXwDeAVwfZuQHrpxb/FPhmVb0IUFXjXo8Cfj5JgA/RCYTZwXZzcEYlELYCL3U9P9ralrvPKFju+7yezshpVPWsR5KtwKeA3xtgv4ahn78bfxM4M8l0ku8luWZgvRu8furx74CP0/mg7GHg81X1s8F0b/A2xOcQ1kA/t77o6/YYI6Dv95nkV+gEwj9Y1x4NVz/1+NfAF6rq3c4vgiOrn1psAS4GLgVOAx5L8nhV/a/17twQ9FOPy4CngH8E/A3g4ST/o6p+vM59G4pRCYR+bn0xLrfH6Ot9Jvk7wB8Av1pVfzmgvg1DP/WYBO5rYXA2cHmS2ar6TwPp4eD0++/ktap6G3g7yXeATwCjGAj91OPXgVuqs4gwk+R54G8DTw6mi4M1KlNG/dz64iBwTbvaaBfwZlUdG3RHB6BnLZL8IvBN4LMj+ptft571qKrzqmp7VW0HHgD+xQiGAfT37+RB4B8m2ZLkrwK/DDw74H4OSj/1eJHOaIkkE3TusvzDgfZygEZihFAnufVFkn/eXv89OlePXA7MAP+XTvKPnD5r8a+As4A72m/FszWid3bssx5joZ9aVNWzSf4Y+D7wMzrfXvj08Hq9fvr8u/El4O4kh+lMMX2hqkb1ttjeukKS1DEqU0aSpFUyECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpOb/A3LqilfAkpYcAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATY0lEQVR4nO3df4zk9X3f8eerECNiAsZgr053pEfqa2t+1KRsyalupKW05UIrgSWQzrUMJESXUlw5En8Y/EcTyToJ/nBoUQrpJViAk+aMsFOutUmFIFs3Cj98RMTHQam3hsKZE4hAMUdrmsXv/jGf9cwtw87s3t7M7s7zIY32O5/vj/nMW3v32s/n+53vpKqQJOmvjbsDkqS1wUCQJAEGgiSpMRAkSYCBIElqThx3B1bqzDPPrK1btw7c7u233+aDH/zg8e/QOmAtuqxFl7XomoRaPPnkk69V1Uf6rVu3gbB161b2798/cLvZ2VlmZmaOf4fWAWvRZS26rEXXJNQiyf96v3VOGUmSAANBktQYCJIkwECQJDUDAyHJWUn+JMmzSQ4m+Xxr/80kP0jyVHtc1rPPzUnmkjyX5NKe9guTHGjrbk+S1n5Skq+19seTbD0O71WStIRhRgjzwI1V9XFgO3BDknPautuq6oL2+BZAW7cTOBfYAdyR5IS2/Z3ALmBbe+xo7dcBb1TVx4DbgFuP/a1JkpZjYCBU1eGq+vO2/BbwLLB5iV0uB/ZW1TtV9TwwB1yUZBNwalU9Wp1brN4LXNGzzz1t+X7gkoXRgyRpNJZ1DqFN5fw88Hhr+lyS7yb5SpLTW9tm4KWe3Q61ts1teXH7UftU1TzwJnDGcvomSTo2Q38wLckpwNeBX6+qHya5E/gSUO3nl4FfAfr9ZV9LtDNgXW8fdtGZcmJqaorZ2dmB/T5y5MhQ200Ca9FlLbqsRdek12KoQEjyU3TC4A+q6hsAVfVKz/rfBf5ze3oIOKtn9y3Ay619S5/23n0OJTkROA14fXE/qmoPsAdgenq6hvlE4XI+ebj1pm/+ZPmFW/7pUPusJ5PwKcxhWYsua9E16bUY5iqjAHcBz1bVb/W0b+rZ7FPA0215H7CzXTl0Np2Tx09U1WHgrSTb2zGvBh7o2eeatnwl8Ej5VW6SNFLDjBA+CXwWOJDkqdb2ReDTSS6gM7XzAvBrAFV1MMl9wDN0rlC6oarebftdD9wNnAw82B7QCZyvJpmjMzLYeSxvSpK0fAMDoar+lP5z/N9aYp/dwO4+7fuB8/q0/wi4alBfJEnHj59UliQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJErCMb0ybNBv9y3IkaTFHCJIkwECQJDUGgiQJ8BzCUecKJGmSOUKQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkpqJv/31MBbfItuv1JS0EQ0cISQ5K8mfJHk2ycEkn2/tH07yUJLvtZ+n9+xzc5K5JM8lubSn/cIkB9q625OktZ+U5Gut/fEkW4/De5UkLWGYKaN54Maq+jiwHbghyTnATcDDVbUNeLg9p63bCZwL7ADuSHJCO9adwC5gW3vsaO3XAW9U1ceA24BbV+G9SZKWYWAgVNXhqvrztvwW8CywGbgcuKdtdg9wRVu+HNhbVe9U1fPAHHBRkk3AqVX1aFUVcO+ifRaOdT9wycLoQZI0Gss6h9Cmcn4eeByYqqrD0AmNJB9tm20GHuvZ7VBr+6u2vLh9YZ+X2rHmk7wJnAG8tuj1d9EZYTA1NcXs7OzAPh85cmTJ7W48f37gMRYb5nXXokG1mCTWostadE16LYYOhCSnAF8Hfr2qfrjEH/D9VtQS7Uvtc3RD1R5gD8D09HTNzMwM6HXnP++ltrt2Bd+p/MJnBr/uWjSoFpPEWnRZi65Jr8VQl50m+Sk6YfAHVfWN1vxKmwai/Xy1tR8CzurZfQvwcmvf0qf9qH2SnAicBry+3DcjSVq5Ya4yCnAX8GxV/VbPqn3ANW35GuCBnvad7cqhs+mcPH6iTS+9lWR7O+bVi/ZZONaVwCPtPIMkaUSGmTL6JPBZ4ECSp1rbF4FbgPuSXAe8CFwFUFUHk9wHPEPnCqUbqurdtt/1wN3AycCD7QGdwPlqkjk6I4Odx/a2JEnLNTAQqupP6T/HD3DJ++yzG9jdp30/cF6f9h/RAkWSNB7eukKSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkS4BfkrEjvF+b4ZTmSNgpHCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElS4+2vj5G3wpa0UThCkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpGRgISb6S5NUkT/e0/WaSHyR5qj0u61l3c5K5JM8lubSn/cIkB9q625OktZ+U5Gut/fEkW1f5PY7M1pu++ZOHJK03w4wQ7gZ29Gm/raouaI9vASQ5B9gJnNv2uSPJCW37O4FdwLb2WDjmdcAbVfUx4Dbg1hW+F0nSMRgYCFX1beD1IY93ObC3qt6pqueBOeCiJJuAU6vq0aoq4F7gip597mnL9wOXLIweJEmjcyx3O/1ckquB/cCNVfUGsBl4rGebQ63tr9ry4nbaz5cAqmo+yZvAGcBri18wyS46owympqaYnZ0d2MkjR44sud2N588PPMZKDNO3URtUi0liLbqsRdek12KlgXAn8CWg2s8vA78C9PvLvpZoZ8C6oxur9gB7AKanp2tmZmZgR2dnZ1lqu2uP03z/C595/9ccl0G1mCTWostadE16LVZ0lVFVvVJV71bVj4HfBS5qqw4BZ/VsugV4ubVv6dN+1D5JTgROY/gpKknSKllRILRzAgs+BSxcgbQP2NmuHDqbzsnjJ6rqMPBWku3t/MDVwAM9+1zTlq8EHmnnGSRJIzRwyijJHwIzwJlJDgG/AcwkuYDO1M4LwK8BVNXBJPcBzwDzwA1V9W471PV0rlg6GXiwPQDuAr6aZI7OyGDnKrwvSdIyDQyEqvp0n+a7lth+N7C7T/t+4Lw+7T8CrhrUj/XGr9aUtN74SWVJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWqO5W6nGpIfUpO0HjhCkCQBBoIkqTEQJEmAgSBJajypPGKeYJa0VjlCkCQBBoIkqTEQJEmAgSBJajypPEaeYJa0ljhCkCQBBoIkqTEQJEmAgSBJagwESRLgVUZrhlccSRo3RwiSJMBAkCQ1ThmtQU4fSRoHRwiSJMBAkCQ1ThmtcU4fSRoVA2EdMRwkHU8Dp4ySfCXJq0me7mn7cJKHknyv/Ty9Z93NSeaSPJfk0p72C5McaOtuT5LWflKSr7X2x5NsXeX3KEkawjDnEO4Gdixquwl4uKq2AQ+35yQ5B9gJnNv2uSPJCW2fO4FdwLb2WDjmdcAbVfUx4Dbg1pW+GUnSyg0MhKr6NvD6oubLgXva8j3AFT3te6vqnap6HpgDLkqyCTi1qh6tqgLuXbTPwrHuBy5ZGD1IkkZnpVcZTVXVYYD286OtfTPwUs92h1rb5ra8uP2ofapqHngTOGOF/ZIkrdBqn1Tu95d9LdG+1D7vPXiyi860E1NTU8zOzg7s0JEjR5bc7sbz5wceYy0a5r0vNqgWk8RadFmLrkmvxUoD4ZUkm6rqcJsOerW1HwLO6tluC/Bya9/Sp713n0NJTgRO471TVABU1R5gD8D09HTNzMwM7Ojs7CxLbXdtz5U768qBt3+yOOwVR4NqMUmsRZe16Jr0Wqx0ymgfcE1bvgZ4oKd9Z7ty6Gw6J4+faNNKbyXZ3s4PXL1on4VjXQk80s4zSJJGaOAIIckfAjPAmUkOAb8B3ALcl+Q64EXgKoCqOpjkPuAZYB64oarebYe6ns4VSycDD7YHwF3AV5PM0RkZ7FyVdyZJWpaBgVBVn36fVZe8z/a7gd192vcD5/Vp/xEtULQyfmBN0mrwXkaSJMBAkCQ1BoIkCTAQJEmNdzvdYDzBLGmlHCFIkgADQZLUOGW0gTl9JGk5HCFIkgADYWJsvembHPjBm0eNGiSpl4EgSQIMBElS40nlCeTJZkn9OEKQJAEGgiSpMRAkSYDnECae5xMkLZjIQPBafEl6L6eMJEmAgSBJaiZyykj9eT5BmmyOECRJgIEgSWqcMlJfTh9Jk8cRgiQJMBAkSY1TRhrI6SNpMjhCkCQBBoIkqTEQJEmA5xC0TJ5PkDYuRwiSJMARgo7B4tuIO2KQ1rdjGiEkeSHJgSRPJdnf2j6c5KEk32s/T+/Z/uYkc0meS3JpT/uF7ThzSW5PkmPplyRp+VZjyujiqrqgqqbb85uAh6tqG/Bwe06Sc4CdwLnADuCOJCe0fe4EdgHb2mPHKvRLkrQMx+McwuXAPW35HuCKnva9VfVOVT0PzAEXJdkEnFpVj1ZVAff27CNJGpF0/g9e4c7J88AbQAH/vqr2JPnfVfWhnm3eqKrTk/w28FhV/X5rvwt4EHgBuKWq/lFr/0XgC1X1z/q83i46IwmmpqYu3Lt378A+HjlyhFNOOeWotgM/eHMF73b9mzoZXvm/o3mt8zefNpoXWqF+vxeTylp0TUItLr744id7ZnSOcqwnlT9ZVS8n+SjwUJL/vsS2/c4L1BLt722s2gPsAZienq6ZmZmBHZydnWXxdtdO6Hcq33j+PF8+MJrrCF74zMxIXmel+v1eTCpr0TXptTim/x2q6uX289UkfwRcBLySZFNVHW7TQa+2zQ8BZ/XsvgV4ubVv6dOudczPK0jrz4rPIST5YJKfWVgG/gnwNLAPuKZtdg3wQFveB+xMclKSs+mcPH6iqg4DbyXZ3q4uurpnH0nSiBzLCGEK+KN2heiJwH+oqj9O8h3gviTXAS8CVwFU1cEk9wHPAPPADVX1bjvW9cDdwMl0zis8eAz9kiStwIoDoaq+D3yiT/tfApe8zz67gd192vcD5620L1rbnD6S1gdvXSFJAgwESVLjvYw0Uk4fSWuXIwRJEuAIQWPkaEFaWxwhSJIARwhaIxwtSOPnCEGSBBgIkqTGQJAkAZ5D0Brk+QRpPAwErWmGgzQ6BoLWDcNBOr48hyBJAhwhaJ1ytCCtPkcIkiTAEYI2AEcL0upwhCBJAgwESVLjlJE2FKePpJUzELRhGQ7S8jhlJEkCHCFoQvSOFgBuPH+ea2/6piMHqYcjBEkS4AhBE87zDFKXgSA1hoMmnYEg9WE4aBIZCNIAhoMmhYEgLYPhoI3MQJBWaPGlrAsMCq1XBoK0yt4vKMCw0Nrm5xAkSYAjBGmklho9LHAUoXFZM4GQZAfwb4ETgN+rqlvG3CVpLIYJjV4GiFbLmgiEJCcA/w74x8Ah4DtJ9lXVM+PtmbT2GSBaLWsiEICLgLmq+j5Akr3A5YCBIK2y97vR3/HQGz6LX9dgWntSVePuA0muBHZU1a+2558FfqGqPrdou13Arvb0bwHPDXH4M4HXVrG765m16LIWXdaiaxJq8der6iP9VqyVEUL6tL0nqapqD7BnWQdO9lfV9Eo7tpFYiy5r0WUtuia9FmvlstNDwFk9z7cAL4+pL5I0kdZKIHwH2Jbk7CQfAHYC+8bcJ0maKGtiyqiq5pN8DvgvdC47/UpVHVylwy9rimmDsxZd1qLLWnRNdC3WxEllSdL4rZUpI0nSmBkIkiRggwRCkh1Jnksyl+SmPuuT5Pa2/rtJ/u44+jkKQ9TiM60G303yZ0k+MY5+jsKgWvRs9/eSvNs+D7MhDVOLJDNJnkpyMMl/HXUfR2WIfyOnJflPSf6i1eKXx9HPsaiqdf2gcxL6fwI/B3wA+AvgnEXbXAY8SOfzDtuBx8fd7zHW4u8Dp7flX5rkWvRs9wjwLeDKcfd7jL8XH6JzZ4Cfbc8/Ou5+j7EWXwRubcsfAV4HPjDuvo/isRFGCD+57UVV/T9g4bYXvS4H7q2Ox4APJdk06o6OwMBaVNWfVdUb7eljdD7zsREN83sB8K+ArwOvjrJzIzZMLf458I2qehGgqjZqPYapRQE/kyTAKXQCYX603RyPjRAIm4GXep4fam3L3WYjWO77vI7OyGkjGliLJJuBTwG/M8J+jcMwvxd/Ezg9yWySJ5NcPbLejdYwtfht4ON0Phx7APh8Vf14NN0brzXxOYRjNMxtL4a6NcYGMPT7THIxnUD4B8e1R+MzTC3+DfCFqnq388fghjVMLU4ELgQuAU4GHk3yWFX9j+PduREbphaXAk8B/xD4G8BDSf5bVf3wOPdt7DZCIAxz24tJuTXGUO8zyd8Bfg/4par6yxH1bdSGqcU0sLeFwZnAZUnmq+o/jqSHozPsv5HXqupt4O0k3wY+AWy0QBimFr8M3FKdkwhzSZ4H/jbwxGi6OD4bYcpomNte7AOublcbbQferKrDo+7oCAysRZKfBb4BfHYD/vXXa2AtqursqtpaVVuB+4F/uQHDAIb7N/IA8ItJTkzy08AvAM+OuJ+jMEwtXqQzUiLJFJ07K39/pL0ck3U/Qqj3ue1Fkn/R1v8OnStILgPmgP9D5y+ADWfIWvxr4AzgjvaX8XxtwLs7DlmLiTBMLarq2SR/DHwX+DGdby18eny9Pj6G/L34EnB3kgN0ppi+UFUb/ZbYgLeukCQ1G2HKSJK0CgwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp+f+htpzszYxtCQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD7CAYAAABqvuNzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATXElEQVR4nO3df4xl5X3f8fenECMKgdhgj1a7pEvrbWp+1KRMN6u6lYaihg35AyxBtC7yQrLRphS3jrR/GPxHY8laCSQ7tNSFdBMswHIDCDtlq0BSCzJ1ovDDWCJeFkqzNVtYswIREGapTJn1t3+cZ5nLMDv3zuzsvbN33i/pas79nh/z3IdhP/Oc55wzqSokSfpbo26AJGllMBAkSYCBIElqDARJEmAgSJIaA0GSBAwQCEnOSfJnSZ5LsjfJ51v9S0l+lOTp9rq8Z5+bkuxL8nySy3rqFyfZ09bdliStfkqS+1r9iSTrj8NnlSQtYJARwgywo6o+AWwCbkhyXlt3a1Vd1F4PAbR1W4Dzgc3A7UlOatvfAWwHNrTX5lbfBrxRVR8HbgVuOfaPJklajJP7bVBVB4GDbfmtJM8BaxfY5Qrg3qp6B3ghyT5gY5L9wBlV9RhAknuAK4GH2z5favs/AHwtSWqBu+bOPvvsWr9+fb/m8/bbb3Paaaf13W7c2Q8d+2GWfdFZbf3w/e9//7Wq+uh86/oGQq92KucXgSeATwGfS7IVeIpuFPEGXVg83rPbgVZ7ty3PrdO+vgRQVTNJ3gTOAl6b8/23040wmJiY4Ctf+UrfNh86dIjTTz99MR9zLNkPHfthln3RWW39cMkll/yfo60bOBCSnA58C/jtqvpxkjuALwPVvn4V+A0g8+xeC9Tps262ULUL2AUwOTlZU1NTfds9PT3NINuNO/uhYz/Msi869sOsga4ySvIzdGHwzar6NkBVvVJVh6vqp8DvAxvb5geAc3p2Xwe83Orr5qm/b58kJwNnAq8v5QNJkpZmkKuMAtwJPFdVv9tTX9Oz2aeBZ9rybmBLu3LoXLrJ4yfbXMRbSTa1Y24FHuzZ59q2fBXw6ELzB5Kk5TfIKaNPAZ8F9iR5utW+CHwmyUV0p3b2A78FUFV7k9wPPEt3hdINVXW47Xc9cBdwKt1k8sOtfifwjTYB/TrdVUqSpCEa5Cqjv2D+c/wPLbDPTmDnPPWngAvmqf8EuLpfWyRJx493KkuSAANBktQYCJIkwECQJDWLulN53K2/8Y/fW95/86+OsCWSNHyOECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGh9udxQ+6E7SauMIQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkZtU/uqL3ERWStJo5QpAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkpq+gZDknCR/luS5JHuTfL7VP5LkO0n+un39cM8+NyXZl+T5JJf11C9Osqetuy1JWv2UJPe1+hNJ1h+HzypJWsAgI4QZYEdVfQLYBNyQ5DzgRuCRqtoAPNLe09ZtAc4HNgO3JzmpHesOYDuwob02t/o24I2q+jhwK3DLMnw2SdIi9L0xraoOAgfb8ltJngPWAlcAU22zu4Fp4Autfm9VvQO8kGQfsDHJfuCMqnoMIMk9wJXAw22fL7VjPQB8LUmqqo75Ey6DuTev+TeWJY2jRd2p3E7l/CLwBDDRwoKqOpjkY22ztcDjPbsdaLV32/Lc+pF9XmrHmknyJnAW8Nqc77+dboTBxMQE09PTfdt86NChBbfbceFM32PMNcj3XWn69cNqYT/Msi869sOsgQMhyenAt4Dfrqoft9P/8246T60WqC+0z/sLVbuAXQCTk5M1NTXVp9XdP94LbXfdEh5dsf+a/t93penXD6uF/TDLvujYD7MGusooyc/QhcE3q+rbrfxKkjVt/Rrg1VY/AJzTs/s64OVWXzdP/X37JDkZOBN4fbEfRpK0dINcZRTgTuC5qvrdnlW7gWvb8rXAgz31Le3KoXPpJo+fbKeX3kqyqR1z65x9jhzrKuDRlTJ/IEmrxSCnjD4FfBbYk+TpVvsicDNwf5JtwIvA1QBVtTfJ/cCzdFco3VBVh9t+1wN3AafSTSY/3Op3At9oE9Cv012lJEkaokGuMvoL5j/HD3DpUfbZCeycp/4UcME89Z/QAkWSNBreqSxJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKARf6BHHV6/4Kafz1N0rhwhCBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAn2V0zHyukaRx4QhBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqSmbyAk+XqSV5M801P7UpIfJXm6vS7vWXdTkn1Jnk9yWU/94iR72rrbkqTVT0lyX6s/kWT9Mn9GSdIABhkh3AVsnqd+a1Vd1F4PASQ5D9gCnN/2uT3JSW37O4DtwIb2OnLMbcAbVfVx4FbgliV+FknSMegbCFX1XeD1AY93BXBvVb1TVS8A+4CNSdYAZ1TVY1VVwD3AlT373N2WHwAuPTJ6kCQNz7E87fRzSbYCTwE7quoNYC3weM82B1rt3bY8t077+hJAVc0keRM4C3ht7jdMsp1ulMHExATT09N9G3no0KEFt9tx4UzfYwzqP37zwfeWL1x75rIddzn064fVwn6YZV907IdZSw2EO4AvA9W+fhX4DWC+3+xrgTp91r2/WLUL2AUwOTlZU1NTfRs6PT3NQttd1/P46uW0/5qjf89R6NcPq4X9MMu+6NgPs5Z0lVFVvVJVh6vqp8DvAxvbqgPAOT2brgNebvV189Tft0+Sk4EzGfwUlSRpmSwpENqcwBGfBo5cgbQb2NKuHDqXbvL4yao6CLyVZFObH9gKPNizz7Vt+Srg0TbPIEkaor6njJL8ITAFnJ3kAPA7wFSSi+hO7ewHfgugqvYmuR94FpgBbqiqw+1Q19NdsXQq8HB7AdwJfCPJPrqRwZZl+FySpEXqGwhV9Zl5yncusP1OYOc89aeAC+ap/wS4ul87JEnHl3cqS5IAA0GS1BgIkiTg2G5M0wLW99zfsP/mXx1hSyRpMI4QJEmAgSBJagwESRJgIEiSGgNBkgR4ldFQeMWRpBOBIwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgPchDJ33JEhaqRwhSJIAA0GS1BgIkiTAOYSRcj5B0kriCEGSBBgIkqTGQJAkAQaCJKkxECRJgFcZrRhecSRp1BwhSJIAA0GS1HjKaAXy9JGkUXCEIEkCHCGseI4WJA2LIwRJEjBAICT5epJXkzzTU/tIku8k+ev29cM9625Ksi/J80ku66lfnGRPW3dbkrT6KUnua/Unkqxf5s8oSRrAICOEu4DNc2o3Ao9U1QbgkfaeJOcBW4Dz2z63Jzmp7XMHsB3Y0F5HjrkNeKOqPg7cCtyy1A8z7tbf+MfvvSRpufUNhKr6LvD6nPIVwN1t+W7gyp76vVX1TlW9AOwDNiZZA5xRVY9VVQH3zNnnyLEeAC49MnqQJA3PUieVJ6rqIEBVHUzysVZfCzzes92BVnu3Lc+tH9nnpXasmSRvAmcBr839pkm2040ymJiYYHp6um9DDx06tOB2Oy6c6XuMlWiQz96rXz+sFvbDLPuiYz/MWu6rjOb7zb4WqC+0zweLVbuAXQCTk5M1NTXVt0HT09MstN11J+jpl/3XTC1q+379sFrYD7Psi479MGupgfBKkjVtdLAGeLXVDwDn9Gy3Dni51dfNU+/d50CSk4Ez+eApKs3h5aiSlttSLzvdDVzblq8FHuypb2lXDp1LN3n8ZDu99FaSTW1+YOucfY4c6yrg0TbPIEkaor4jhCR/CEwBZyc5APwOcDNwf5JtwIvA1QBVtTfJ/cCzwAxwQ1Udboe6nu6KpVOBh9sL4E7gG0n20Y0MtizLJ5MkLUrfQKiqzxxl1aVH2X4nsHOe+lPABfPUf0ILFC2Np48kLQfvVJYkAQaCJKkxECRJgIEgSWp8/PWYcYJZ0lI5QpAkAY4QxlrvaOGuzaeNsCWSTgSOECRJgIEgSWoMBEkSYCBIkhonlVeJPT96c96//eClqZKOcIQgSQIMBElSYyBIkgADQZLUOKm8yvnsI0lHOEKQJAGOENTD0YK0ujlCkCQBBoIkqTEQJEmAgSBJalblpPL6eZ7po/dzgllafRwhSJIAA0GS1KzKU0ZaHE8fSauDIwRJEuAIQYvkaEEaX44QJEmAgSBJagwESRLgHIKOwdwb/JxTkE5sjhAkScAxjhCS7AfeAg4DM1U1meQjwH3AemA/8GtV9Ubb/iZgW9v+31bVn7b6xcBdwKnAQ8Dnq6qOpW0aPq9Akk5syzFCuKSqLqqqyfb+RuCRqtoAPNLek+Q8YAtwPrAZuD3JSW2fO4DtwIb22rwM7ZIkLcLxOGV0BXB3W74buLKnfm9VvVNVLwD7gI1J1gBnVNVjbVRwT88+kqQhOdZJ5QL+e5IC/nNV7QImquogQFUdTPKxtu1a4PGefQ+02rtteW79A5JspxtJMDExwfT0dN8GHjp06APb7bhwpu9+42bi1OF+7kH+24zCfD8Pq5V90bEfZh1rIHyqql5u/+h/J8n/XGDbzFOrBeofLHaBswtgcnKypqam+jZwenqaudtdtwoff73jwhm+umd4F5Xtv2ZqaN9rMeb7eVit7IuO/TDrmP6FqKqX29dXk/wRsBF4JcmaNjpYA7zaNj8AnNOz+zrg5VZfN09dJzAnmKUTz5LnEJKcluRnjywDvww8A+wGrm2bXQs82JZ3A1uSnJLkXLrJ4yfb6aW3kmxKEmBrzz6SpCE5lhHCBPBH3b/hnAz8l6r6kyTfA+5Psg14EbgaoKr2JrkfeBaYAW6oqsPtWNcze9npw+2lMeFoQToxLDkQquqHwCfnqf8NcOlR9tkJ7Jyn/hRwwVLbIkk6dj66QkPlaEFauXx0hSQJcISgEXK0IK0sjhAkSYCBIElqDARJEuAcglYI5xOk0TMQtOIYDtJoeMpIkgQYCJKkxkCQJAHOIWiFcz5BGh4DQScMw0E6vgwEnZAMB2n5OYcgSQIMBElS4ykjnfA8fSQtDwNBY8VwkJbOU0aSJMARgsaYowVpcRwhSJIARwhaJY6MFnZcOMPUaJsirViOECRJgCMErULOLUjzMxC0qhkO0ixPGUmSAEcI0nt6Rwu9HDlotXCEIEkCHCFIfTly0GphIEhL5IS0xo2BIC0Dw0HjwECQltncU0wGhE4UBoJ0nDkHoROFgSCNiEGhlcZAkFYY5yM0KismEJJsBv4DcBLwB1V184ibJI3c0UYRi2WwaBArIhCSnAT8J+BfAAeA7yXZXVXPjrZl0niYL1h2XDjDdY5G1GNFBAKwEdhXVT8ESHIvcAVgIEhDslyjkaUwjFaGVNWo20CSq4DNVfWb7f1ngV+qqs/N2W47sL29/QXg+QEOfzbw2jI290RlP3Tsh1n2RWe19cPfqaqPzrdipYwQMk/tA0lVVbuAXYs6cPJUVU0utWHjwn7o2A+z7IuO/TBrpTzc7gBwTs/7dcDLI2qLJK1KKyUQvgdsSHJukg8BW4DdI26TJK0qK+KUUVXNJPkc8Kd0l51+var2LtPhF3WKaYzZDx37YZZ90bEfmhUxqSxJGr2VcspIkjRiBoIkCRiTQEiyOcnzSfYluXGe9UlyW1v/gyT/aBTtHIYB+uKa1gc/SPKXST45inYeb/36oWe7f5zkcLsXZuwM0g9JppI8nWRvkv8x7DYOywD/b5yZ5L8l+avWF78+inaOVFWd0C+6Sej/Dfxd4EPAXwHnzdnmcuBhuvsdNgFPjLrdI+yLfwJ8uC3/yjj2xSD90LPdo8BDwFWjbveIfh5+ju6JAD/f3n9s1O0eYV98EbilLX8UeB340KjbPszXOIwQ3nvsRVX9P+DIYy96XQHcU53HgZ9LsmbYDR2Cvn1RVX9ZVW+0t4/T3fMxbgb5mQD4N8C3gFeH2bghGqQf/iXw7ap6EaCqVnNfFPCzSQKcThcIM8Nt5miNQyCsBV7qeX+g1Ra7zThY7OfcRjdyGjd9+yHJWuDTwO8NsV3DNsjPw98HPpxkOsn3k2wdWuuGa5C++BrwCbqbYvcAn6+qnw6neSvDirgP4RgN8tiLgR6NMQYG/pxJLqELhH96XFs0GoP0w78HvlBVh7tfCMfSIP1wMnAxcClwKvBYkser6n8d78YN2SB9cRnwNPDPgb8HfCfJn1fVj49z21aMcQiEQR57sVoejTHQ50zyD4E/AH6lqv5mSG0bpkH6YRK4t4XB2cDlSWaq6r8OpYXDMej/G69V1dvA20m+C3wSGLdAGKQvfh24ubpJhH1JXgD+AfDkcJo4euNwymiQx17sBra2q402AW9W1cFhN3QI+vZFkp8Hvg18dgx/Czyibz9U1blVtb6q1gMPAP96zMIABvt/40HgnyU5OcnfBn4JeG7I7RyGQfriRbqREkkm6J6o/MOhtnLETvgRQh3lsRdJ/lVb/3t0V5FcDuwD/i/dbwJjZ8C++HfAWcDt7bfjmRqzJz0O2A9jb5B+qKrnkvwJ8APgp3R/rfCZ0bX6+BjwZ+LLwF1J9tCdYvpCVa2mx2L76ApJUmccThlJkpaBgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDX/H8tpij6s6SY/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARUElEQVR4nO3db4xc1XnH8e9TXBAlgQCGFbJJlxa3DeBCy9axmlbaFLU45IWJBJVThE3qyi2Flkp+gcmLJlJkCV6ktCiF1A2RDWoDFiHFLZAUQae0CgZMRTCG0mzBhcUWFsEimArKOk9f3LMw7M7uzP6bmZ35fqTRzpy59+6ZhzW/OefcuROZiSRJP9XpDkiSuoOBIEkCDARJUmEgSJIAA0GSVCzpdAdma+nSpTk4ONh0u7fffpsTTjhh4TvUxaxBxTpUrEOlX+vw1FNPvZ6ZpzV6btEGwuDgIHv27Gm6Xa1WY3h4eOE71MWsQcU6VKxDpV/rEBH/M9VzThlJkgADQZJUGAiSJMBAkCQVBoIkCTAQJEmFgSBJAgwESVJhIEiSgEX8SeWFMLjl/vfv77/xsx3siSS1nyMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKL10xBS9jIanfOEKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSqaBkJEnBkR/xIRz0fEvoi4rrSfEhEPRcQPy8+T6/a5ISJGIuKFiLi4rv3CiNhbnrslIqK0HxcRd5f2xyNicAFeqyRpGq2MEMaAzZn5CWA1cE1EnANsAR7OzBXAw+Ux5bl1wLnAGuDWiDimHOs2YBOwotzWlPaNwOHMPBu4GbhpHl6bJGkGmgZCZh7MzP8o998CngeWAWuBHWWzHcCl5f5a4K7MfDczXwJGgFURcQZwYmY+lpkJ3DFhn/Fj3QNcND56kCS1x4y+D6FM5fwK8DgwkJkHoQqNiDi9bLYM2F2322hpe6/cn9g+vs8r5VhjEfEmcCrw+oTfv4lqhMHAwAC1Wq1pn48cOdLSdgCbV441bG91/241kxr0MutQsQ4V6zBZy4EQER8Bvg38WWb+eJo38I2eyGnap9vnww2Z24BtAENDQzk8PNyk19X/zKfbrv6LcKYqx/4rmv+ebtasBv3COlSsQ8U6TNbSWUYR8dNUYfB3mXlvaX6tTANRfh4q7aPAmXW7LwcOlPblDdo/tE9ELAFOAt6Y6YuRJM1eK2cZBXA78Hxm/kXdU7uADeX+BuC+uvZ15cyhs6gWj58o00tvRcTqcsz1E/YZP9ZlwCNlnUGS1CatTBl9CrgS2BsRT5e2LwI3AjsjYiPwMnA5QGbui4idwHNUZyhdk5lHy35XA9uB44EHyw2qwLkzIkaoRgbr5vayJEkz1TQQMvPfaTzHD3DRFPtsBbY2aN8DnNeg/R1KoHSjD68zwP4bP9uhnkjSwvGTypIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJhYEgSQIMBElSYSBIkoAZfKeyPlD//Qh+N4KkXuEIQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSp8OJ2c+SF7iT1CkcIkiTAQJAkFQaCJAkwECRJhYEgSQIMBElSYSBIkoAWAiEivhkRhyLi2bq2L0fEqxHxdLldUvfcDRExEhEvRMTFde0XRsTe8twtERGl/biIuLu0Px4Rg/P8GiVJLWhlhLAdWNOg/ebMvKDcHgCIiHOAdcC5ZZ9bI+KYsv1twCZgRbmNH3MjcDgzzwZuBm6a5WuRJM1B00DIzEeBN1o83lrgrsx8NzNfAkaAVRFxBnBiZj6WmQncAVxat8+Ocv8e4KLx0YMkqX3mcumKayNiPbAH2JyZh4FlwO66bUZL23vl/sR2ys9XADJzLCLeBE4FXp/4CyNiE9Uog4GBAWq1WtNOHjlyZNrtNq8ca3qMVrXSn05oVoN+YR0q1qFiHSabbSDcBnwFyPLzq8DvA43e2ec07TR57sONmduAbQBDQ0M5PDzctKO1Wo3ptruq7lpEc7X/iub96YRmNegX1qFiHSrWYbJZBUJmvjZ+PyL+Fvin8nAUOLNu0+XAgdK+vEF7/T6jEbEEOInWp6i6ihe6k7SYzeq007ImMO5zwPgZSLuAdeXMobOoFo+fyMyDwFsRsbqsD6wH7qvbZ0O5fxnwSFlnkCS1UdMRQkR8CxgGlkbEKPAlYDgiLqCa2tkP/CFAZu6LiJ3Ac8AYcE1mHi2HuprqjKXjgQfLDeB24M6IGKEaGaybh9clSZqhpoGQmZ9v0Hz7NNtvBbY2aN8DnNeg/R3g8mb9kCQtLD+pLEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFXO5lpGm4aeWJS02jhAkSYCBIEkqDARJEmAgSJIKF5XbwAVmSYuBIwRJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkS4CeV285PLUvqVo4QJEmAI4SOcrQgqZs4QpAkAQaCJKkwECRJgIEgSSoMBEkS4FlGXcMzjiR1miMESRJgIEiSCgNBkgQYCJKkwkXlLuQCs6ROcIQgSQJaCISI+GZEHIqIZ+vaTomIhyLih+XnyXXP3RARIxHxQkRcXNd+YUTsLc/dEhFR2o+LiLtL++MRMTjPr1GS1IJWRgjbgTUT2rYAD2fmCuDh8piIOAdYB5xb9rk1Io4p+9wGbAJWlNv4MTcChzPzbOBm4KbZvhhJ0uw1XUPIzEcbvGtfCwyX+zuAGnB9ab8rM98FXoqIEWBVROwHTszMxwAi4g7gUuDBss+Xy7HuAb4WEZGZOdsX1Uvq1xPqubYgab7NdlF5IDMPAmTmwYg4vbQvA3bXbTda2t4r9ye2j+/zSjnWWES8CZwKvD7xl0bEJqpRBgMDA9RqtaYdPXLkyLTbbV451vQY3aiV1z6uWQ36hXWoWIeKdZhsvs8yigZtOU37dPtMbszcBmwDGBoayuHh4aYdqtVqTLfdVVO8A+92+68YbnnbZjXoF9ahYh0q1mGy2Z5l9FpEnAFQfh4q7aPAmXXbLQcOlPblDdo/tE9ELAFOAt6YZb8kSbM020DYBWwo9zcA99W1rytnDp1FtXj8RJleeisiVpezi9ZP2Gf8WJcBj7h+0Nzglvvfv0nSfGg6ZRQR36JaQF4aEaPAl4AbgZ0RsRF4GbgcIDP3RcRO4DlgDLgmM4+WQ11NdcbS8VSLyQ+W9tuBO8sC9BtUZylJktqslbOMPj/FUxdNsf1WYGuD9j3AeQ3a36EEiiSpc7x0RQ/wUheS5oOXrpAkAQaCJKlwyqjHOH0kabYcIUiSAANBklQYCJIkwECQJBUuKvew8QXmzSvH3r9WuSRNxRGCJAlwhNA3PB1VUjOOECRJgIEgSSqcMupDTh9JasQRgiQJcITQ9xwtSBrnCEGSBBgIkqTCQJAkAa4hqI7rCVJ/c4QgSQIcIWgKjhak/uMIQZIEGAiSpMJAkCQBBoIkqXBRWU25wCz1B0cIkiTAQJAkFX05ZVQ/BaKZcfpI6l2OECRJQJ+OEDQ/Jo60HDFIi5sjBEkSYCBIkgoDQZIEuIageeQZSNLiNqdAiIj9wFvAUWAsM4ci4hTgbmAQ2A/8bmYeLtvfAGws2/9pZn6vtF8IbAeOBx4ArsvMnEvf1FmGg7T4zMeU0acz84LMHCqPtwAPZ+YK4OHymIg4B1gHnAusAW6NiGPKPrcBm4AV5bZmHvolSZqBhVhDWAvsKPd3AJfWtd+Vme9m5kvACLAqIs4ATszMx8qo4I66fSRJbTLXNYQE/jkiEvibzNwGDGTmQYDMPBgRp5dtlwG76/YdLW3vlfsT2yeJiE1UIwkGBgao1WpNO3jkyJFJ221eOdZ0v14ycHxnX3Mr/53aodHfQj+yDhXrMNlcA+FTmXmg/E//oYj4z2m2jQZtOU375MYqcLYBDA0N5fDwcNMO1mo1Jm53VZ9dumLzyjG+urdz5w/sv2K4Y7+7XqO/hX5kHSrWYbI5TRll5oHy8xDwHWAV8FqZBqL8PFQ2HwXOrNt9OXCgtC9v0C5JaqNZB0JEnBARHx2/D/wO8CywC9hQNtsA3Ffu7wLWRcRxEXEW1eLxE2V66a2IWB0RAayv20c9YHDL/e/fJHWvucwjDADfqf4fzhLg7zPzuxHxJLAzIjYCLwOXA2TmvojYCTwHjAHXZObRcqyr+eC00wfLTT3I01Gl7jXrQMjMF4HzG7T/CLhoin22AlsbtO8BzpttXyRJc+elKyRJgJeuUAc5fSR1F0cIkiTAEYK6hKMFqfMcIUiSAANBklQ4ZaSu4/SR1BmOECRJgCMEdTlHC1L7OEKQJAGOELSIOFqQFpYjBEkSYCBIkgqnjLQoTfXdCk4lSbPnCEGSBBgIkqTCKSP1FM9EkmbPQFDPMhykmXHKSJIEGAjqE4Nb7mfvq29OeXaSJANBklQYCJIkwEVl9SEXm6XGDAT1NcNB+oCBIBWGg/qdgSA1YDioH7moLEkCHCFITTlaUL8wEKQZMBzUywwEaZYMB/UaA0GaB9NdEsOw0GJhIEgLzJGEFgsDQWojw0HdzECQOsTvhVa3MRCkLuMoQp1iIEhdzFGE2qlrAiEi1gB/BRwDfCMzb+xwl6SuNZcv+tm+5oR57Il6SVcEQkQcA/w18NvAKPBkROzKzOc62zOp9+x99U2uahIojkD6U1cEArAKGMnMFwEi4i5gLWAgSB3QLV81ajC1V2Rmp/tARFwGrMnMPyiPrwQ+mZnXTthuE7CpPPxF4IUWDr8UeH0eu7sYWYOKdahYh0q/1uFnM/O0Rk90ywghGrRNSqrM3AZsm9GBI/Zk5tBsO9YLrEHFOlSsQ8U6TNYtl78eBc6se7wcONChvkhSX+qWQHgSWBERZ0XEscA6YFeH+yRJfaUrpowycywirgW+R3Xa6Tczc988HX5GU0w9yhpUrEPFOlSswwRdsagsSeq8bpkykiR1mIEgSQJ6JBAiYk1EvBARIxGxpcHzERG3lOefiYhf7UQ/F1oLdbiivP5nIuL7EXF+J/q50JrVoW67X4uIo+VzMD2nlTpExHBEPB0R+yLiX9vdx4XWwr+JkyLiHyPiB6UGX+hEP7tGZi7qG9Ui9H8DPwccC/wAOGfCNpcAD1J93mE18Hin+92hOvw6cHK5/5l+rUPddo8ADwCXdbrfHfp7+BjV1QA+Xh6f3ul+d6AGXwRuKvdPA94Aju103zt164URwvuXvcjM/wPGL3tRby1wR1Z2Ax+LiDPa3dEF1rQOmfn9zDxcHu6m+rxHr2nl7wHgT4BvA4fa2bk2aqUOvwfcm5kvA2Rmr9WilRok8NGICOAjVIEw1t5udo9eCIRlwCt1j0dL20y3Wexm+ho3Uo2aek3TOkTEMuBzwNfb2K92a+Xv4ReAkyOiFhFPRcT6tvWuPVqpwdeAT1B9EHYvcF1m/qQ93es+XfE5hDlq5bIXLV0aY5Fr+TVGxKepAuE3FrRHndFKHf4SuD4zj1ZvDHtSK3VYAlwIXAQcDzwWEbsz878WunNt0koNLgaeBn4L+HngoYj4t8z88QL3rSv1QiC0ctmLfrg0RkuvMSJ+GfgG8JnM/FGb+tZOrdRhCLirhMFS4JKIGMvMf2hLD9uj1X8Xr2fm28DbEfEocD7QK4HQSg2+ANyY1SLCSES8BPwS8ER7uthdemHKqJXLXuwC1pezjVYDb2bmwXZ3dIE1rUNEfBy4F7iyh94FTtS0Dpl5VmYOZuYgcA/wxz0WBtDav4v7gN+MiCUR8TPAJ4Hn29zPhdRKDV6mGiEREQNUV1F+sa297CKLfoSQU1z2IiL+qDz/daozSS4BRoD/pXpX0FNarMOfA6cCt5Z3x2PZY1d7bLEOPa+VOmTm8xHxXeAZ4CdU31T4bOd6Pb9a/Fv4CrA9IvZSTTFdn5n9eElswEtXSJKKXpgykiTNAwNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkq/h/4+Lil9hAhGQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARSklEQVR4nO3dX4xc5XnH8e9Tu0EuCQQwrCzb6brFbQO40LJ1rKaVNrUaHHJhIkHlFGGTunJLoaWSL2Jy0VSKLJmLlJa2kLoB2aA0xiKkdgUkRaZTWgUDpiIYQ2m24MLGFpaDRWwqKGueXsy7ZFhmZ2b/zczOfj/SaM+858++87Lmt895zzkbmYkkST/V6Q5IkrqDgSBJAgwESVJhIEiSAANBklTM73QHJmvhwoXZ39/fcJs333yTM888sz0d6mKOg2MwynFwDJ5++unjmXl+vXWzNhD6+/s5cOBAw20qlQqDg4Pt6VAXcxwcg1GOg2MQEf8z3jpPGUmSAANBklQYCJIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJKAWXyn8kzo3/Lge8uHt322gz2RpPazQpAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEeB/CuLwnQdJcY4UgSQIMBElSYSBIkgADQZJUGAiSJMBAkCQVBoIkCWghECJiaUT8S0S8EBGHIuLm0n5uRDwSET8oX8+p2eeWiBiKiBcj4oqa9ssj4mBZd3tERGk/IyLuK+1PRET/DHxWSVIDrVQII8DmzPw4sAq4MSIuArYA+zJzObCvvKesWwdcDKwB7oiIeeVYdwKbgOXltaa0bwROZOaFwG3ArdPw2SRJE9A0EDLzaGb+R1k+CbwALAbWAjvLZjuBq8ryWmBXZr6dmS8DQ8DKiFgEnJWZj2dmAveM2Wf0WPcDq0erB0lSe0zo0RXlVM6vAE8AfZl5FKqhEREXlM0WA/trdhsube+U5bHto/u8Wo41EhFvAOcBx8d8/01UKwz6+vqoVCoN+3vq1Kmm29TavGKkbvtEjtGNJjoOvcgxqHIcHINGWg6EiPgw8C3gTzPzxw1+ga+3Ihu0N9rn/Q2Z24HtAAMDAzk4ONiwz5VKhWbb1Lq+5vlFtQ5f2/oxutFEx6EXOQZVjoNj0EhLVxlFxE9TDYNvZOYDpfm1chqI8vVYaR8GltbsvgQ4UtqX1Gl/3z4RMR84G3h9oh9GkjR5rVxlFMBdwAuZ+Rc1q/YCG8ryBmBPTfu6cuXQMqqTx0+W00snI2JVOeb6MfuMHutq4NEyzyBJapNWThl9ErgOOBgRz5S2LwHbgN0RsRF4BbgGIDMPRcRu4HmqVyjdmJmny343ADuABcDD5QXVwLk3IoaoVgbrpvaxJEkT1TQQMvPfqX+OH2D1OPtsBbbWaT8AXFKn/S1KoEiSOsM7lSVJgIEgSSoMBEkSYCBIkooJ3ak8V/WPuWHt8LbPdqgnkjRzrBAkSYCBIEkqDARJEmAgSJKKOT+pPHbCWJLmKisESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJKKOf/oismofdyFfxtBUq+wQpAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKny43RT5oDtJvcIKQZIEGAiSpMJAkCQBBoIkqWgaCBFxd0Qci4jnatr+PCJ+GBHPlNeVNetuiYihiHgxIq6oab88Ig6WdbdHRJT2MyLivtL+RET0T/NnlCS1oJUKYQewpk77bZl5WXk9BBARFwHrgIvLPndExLyy/Z3AJmB5eY0ecyNwIjMvBG4Dbp3kZ5EkTUHTQMjMx4DXWzzeWmBXZr6dmS8DQ8DKiFgEnJWZj2dmAvcAV9Xss7Ms3w+sHq0eJEntM5X7EG6KiPXAAWBzZp4AFgP7a7YZLm3vlOWx7ZSvrwJk5khEvAGcBxwf+w0jYhPVKoO+vj4qlUrDDp46darpNptXjDRcPxHNvlentDIOvc4xqHIcHINGJhsIdwJfAbJ8/Srwe0C93+yzQTtN1r2/MXM7sB1gYGAgBwcHG3ayUqnQbJvra24sm6rD1zb+Xp3Syjj0OsegynFwDBqZ1FVGmflaZp7OzHeBvwdWllXDwNKaTZcAR0r7kjrt79snIuYDZ9P6KSpJ0jSZVCCUOYFRnwNGr0DaC6wrVw4tozp5/GRmHgVORsSqMj+wHthTs8+Gsnw18GiZZ5AktVHTU0YR8U1gEFgYEcPAl4HBiLiM6qmdw8AfAGTmoYjYDTwPjAA3ZubpcqgbqF6xtAB4uLwA7gLujYghqpXBumn4XB3hc40kzWZNAyEzP1+n+a4G228FttZpPwBcUqf9LeCaZv2QJM0s71SWJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqRiKk87VQPetSxptrFCkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCi87bQMvQZU0G1ghSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJhZedtpmXoErqVlYIkiTAQJAkFQaCJAkwECRJhZPKHeQEs6RuYoUgSQIMBElSYSBIkgADQZJUOKncJZxgltRpVgiSJMBAkCQVBoIkCTAQJEmFk8pdyAlmSZ3QtEKIiLsj4lhEPFfTdm5EPBIRPyhfz6lZd0tEDEXEixFxRU375RFxsKy7PSKitJ8REfeV9icion+aP6MkqQWtnDLaAawZ07YF2JeZy4F95T0RcRGwDri47HNHRMwr+9wJbAKWl9foMTcCJzLzQuA24NbJfhhJ0uQ1DYTMfAx4fUzzWmBnWd4JXFXTvisz387Ml4EhYGVELALOyszHMzOBe8bsM3qs+4HVo9WDJKl9JjuH0JeZRwEy82hEXFDaFwP7a7YbLm3vlOWx7aP7vFqONRIRbwDnAcfHftOI2ES1yqCvr49KpdKwk6dOnWq6zeYVIw3Xd9pff2PPe8srFp89qWO0Mg69zjGochwcg0ame1K53m/22aC90T4fbMzcDmwHGBgYyMHBwYadqVQqNNvm+poJ3G53+NrBSe3Xyjj0OsegynFwDBqZbCC8FhGLSnWwCDhW2oeBpTXbLQGOlPYlddpr9xmOiPnA2XzwFJXw6iNJM2uy9yHsBTaU5Q3Anpr2deXKoWVUJ4+fLKeXTkbEqjI/sH7MPqPHuhp4tMwzSJLaqGmFEBHfBAaBhRExDHwZ2AbsjoiNwCvANQCZeSgidgPPAyPAjZl5uhzqBqpXLC0AHi4vgLuAeyNiiGplsG5aPlmPs1qQNN2aBkJmfn6cVavH2X4rsLVO+wHgkjrtb1ECRZLUOd6p3AOsFiRNB59lJEkCDARJUmEgSJIA5xB6jvMJkibLCkGSBBgIkqTCU0Y9bPT00eYVIwx2tiuSZgErBEkSYCBIkgoDQZIEGAiSpMJJ5TnC+xMkNWOFIEkCDARJUuEpoznI00eS6rFCkCQBVghzntWCpFFWCJIkwApBNawWpLnNCkGSBBgIkqTCU0aqy9NH0txjhSBJAqwQ1AKrBWlusEKQJAEGgiSpMBAkSYCBIEkqnFTWhDjBLPUuKwRJEmAgSJIKTxlp0mpPH4GnkKTZzgpBkgRYIWgaOeEszW5WCJIkwECQJBVz8pTR2MlQSdIUAyEiDgMngdPASGYORMS5wH1AP3AY+J3MPFG2vwXYWLb/k8z8bmm/HNgBLAAeAm7OzJxK39RZzidIs890nDL6VGZelpkD5f0WYF9mLgf2lfdExEXAOuBiYA1wR0TMK/vcCWwClpfXmmnol7pE/5YH33tJ6l4zMYewFthZlncCV9W078rMtzPzZWAIWBkRi4CzMvPxUhXcU7OPJKlNpjqHkMA/R0QCf5eZ24G+zDwKkJlHI+KCsu1iYH/NvsOl7Z2yPLb9AyJiE9VKgr6+PiqVSsPOnTp1qu42m1eMNPtcPaVvQfd85mb/zWbKeD8Lc43j4Bg0MtVA+GRmHin/038kIv6zwbZRpy0btH+wsRo42wEGBgZycHCwYecqlQr1trl+jp262LxihK8e7I7rBw5fO9iR7zvez8Jc4zg4Bo1M6ZRRZh4pX48B3wZWAq+V00CUr8fK5sPA0prdlwBHSvuSOu2SpDaadCBExJkR8ZHRZeDTwHPAXmBD2WwDsKcs7wXWRcQZEbGM6uTxk+X00smIWBURAayv2UeS1CZTOY/QB3y7+v9w5gP/kJnfiYingN0RsRF4BbgGIDMPRcRu4HlgBLgxM0+XY93ATy47fbi81IPGu9LIS1Olzpt0IGTmS8Clddp/BKweZ5+twNY67QeASybbF0nS1PnoCkkSYCBIkoruuBZRc56PupA6zwpBkgRYIagLWS1InWGFIEkCrBDU5awWpPaxQpAkAQaCJKnwlJFmDU8fSTPLCkGSBFghaJayWpCmnxWCJAkwECRJhaeMNOv5Nxak6WGFIEkCrBDUw2orhx1rzuxgT6TZwQpBkgQYCJojDv7wDfq3PDjufIMkA0GSVDiHoDnHm9qk+qwQJEmAFYLmOKsF6SesECRJgBWC9B6rBc11VgiSJMAKQarL5yNpLrJCkCQBVgjShDjPoF5mIEiTZDio1xgI0jQwHNQLDARpmo2dkDYgNFsYCNIMs3rQbGEgSG3k5azqZl52KkkCrBCkrmDloG5gIEhdzKBQOxkI0ixkUGgmdE0gRMQa4K+AecDXM3Nbh7skzTrN/mb05hUjXO9VTxpHVwRCRMwD/hb4bWAYeCoi9mbm853tmdTbmgXIWAZIb+uKQABWAkOZ+RJAROwC1gIGgtRFJhog08kwmnmRmZ3uAxFxNbAmM3+/vL8O+ERm3jRmu03ApvL2F4EXmxx6IXB8mrs7GzkOjsEox8Ex+NnMPL/eim6pEKJO2weSKjO3A9tbPmjEgcwcmErHeoHj4BiMchwcg0a65ca0YWBpzfslwJEO9UWS5qRuCYSngOURsSwiPgSsA/Z2uE+SNKd0xSmjzByJiJuA71K97PTuzDw0DYdu+fRSj3McHINRjoNjMK6umFSWJHVet5wykiR1mIEgSQJ6JBAiYk1EvBgRQxGxpc76iIjby/pnI+JXO9HPmdTCGFxbPvuzEfG9iLi0E/2cac3GoWa7X4uI0+UemJ7TyjhExGBEPBMRhyLiX9vdx5nWwr+JsyPinyLi+2UMvtCJfnaVzJzVL6qT0P8N/BzwIeD7wEVjtrkSeJjq/Q6rgCc63e8OjMGvA+eU5c/02hi0Og412z0KPARc3el+d+jn4aNUnwTwsfL+gk73uwNj8CXg1rJ8PvA68KFO972Tr16oEN577EVm/h8w+tiLWmuBe7JqP/DRiFjU7o7OoKZjkJnfy8wT5e1+qvd69JpWfhYA/hj4FnCsnZ1ro1bG4XeBBzLzFYDM7LWxaGUMEvhIRATwYaqBMNLebnaXXgiExcCrNe+HS9tEt5nNJvr5NlKtmHpN03GIiMXA54CvtbFf7dbKz8MvAOdERCUino6I9W3rXXu0MgZ/A3yc6k2wB4GbM/Pd9nSvO3XFfQhT1MpjL1p6NMYs1vLni4hPUQ2E35jRHnVGK+Pwl8AXM/N09RfDntTKOMwHLgdWAwuAxyNif2b+10x3rk1aGYMrgGeA3wJ+HngkIv4tM388w33rWr0QCK089qLXH43R0ueLiF8Gvg58JjN/1Ka+tVMr4zAA7CphsBC4MiJGMvMf29LD9mj138TxzHwTeDMiHgMuBXolEFoZgy8A27I6iTAUES8DvwQ82Z4udp9eOGXUymMv9gLry9VGq4A3MvNouzs6g5qOQUR8DHgAuK6Hfgscq+k4ZOayzOzPzH7gfuCPeiwMoLV/E3uA34yI+RHxM8AngBfa3M+Z1MoYvEK1QiIi+qg+Qfmltvayy8z6CiHHeexFRPxhWf81qleTXAkMAf9L9TeDntHiGPwZcB5wR/nteCR77ImPLY5Dz2tlHDLzhYj4DvAs8C7Vv1L4XOd6Pb1a/Fn4CrAjIg5SPcX0xcycy4/F9tEVkqSqXjhlJEmaBgaCJAkwECRJhYEgSQIMBElSYSBIkgADQZJU/D8b1sNvVbQ9CwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "pd.set_option('display.max_rows', 100)\n", - "for t in range(1, 27, 1):\n", - " predictions_df[[col for col in predictions_df.columns.to_list() if f\"_{t}_Ft\" in col]+[\"partition\", \"split\"]][f\"0_{t}_Ft_calibrated\"].hist(bins=100)\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R [conda env:python]", - "language": "R", - "name": "conda-env-python-r" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.0.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/8_train_coxph_models_on_h5ad.ipynb b/neuralcvd/preprocessing/ukbb_tabular/8_train_coxph_models_on_h5ad.ipynb deleted file mode 100644 index f84330b..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/8_train_coxph_models_on_h5ad.ipynb +++ /dev/null @@ -1,13519 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Cox model" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "from tqdm.auto import tqdm\n", - "\n", - "import numpy as np\n", - "import pandas as pd\n", - "import lifelines\n", - "from lifelines import CoxPHFitter\n", - "from sklearn.model_selection import StratifiedKFold\n", - "\n", - "from joblib import Parallel, delayed\n", - "from tqdm.notebook import tqdm\n", - "import neptune\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "import shutil\n", - "import anndata as ad\n", - "import pickle" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "dataset_name = \"210226_cvd_gp_full_cluster\"\n", - "path = \"/data/analysis/ag-reils/steinfej/code/umbrella/pre/ukbb\"\n", - "data_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data\"\n", - "dataset_path = f\"{data_path}/3_datasets_post/{dataset_name}\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load data" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "def get_eid_map(h5ad):\n", - " eids = np.expand_dims(h5ad.obs['eid'].values.astype(int), axis=-1)\n", - " eid_map = pd.DataFrame(np.concatenate([eids, h5ad.X], axis=1),\n", - " columns=['eid'] + h5ad.var.index.values.tolist())\n", - " eid_map = eid_map.astype({'eid': 'int32'})#.set_index('eid')\n", - " return eid_map" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "partitions = [str(p) for p in range(10)]\n", - "splits = [\"train\", \"valid\", \"test\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a077368aa5bf4cd6834e08f11e2de6b8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/10 [00:00 5\n", - "'ethnic_background_3.0',\n", - "'ethnic_background_4.0',\n", - "'townsend_deprivation_index_at_recruitment',\n", - "'sex'\n", - "]\n", - "questionnaire = [\n", - "'overall_health_rating_0.0',\n", - "'overall_health_rating_1.0',\n", - "'overall_health_rating_2.0',\n", - "'overall_health_rating_3.0',\n", - "'smoking_status_0.0',\n", - "'smoking_status_1.0',\n", - "'smoking_status_2.0',\n", - "]\n", - "measurements = [\n", - "'body_mass_index_bmi',\n", - "'weight',\n", - "\"standing_height\",\n", - "'systolic_blood_pressure',\n", - "'diastolic_blood_pressure',\n", - "]\n", - "\n", - "labs = [\n", - "\"cholesterol\",\n", - "\"hdl_cholesterol\",\n", - "\"ldl_direct\",\n", - "\"triglycerides\"\n", - "]\n", - "\n", - "family_history = [\n", - "'fh_heart_disease',\n", - "]\n", - "\n", - "diagnoses = [\n", - "'diabetes1',\n", - "'diabetes2',\n", - "'chronic_kidney_disease',\n", - "'atrial_fibrillation',\n", - "'migraine',\n", - "'rheumatoid_arthritis',\n", - "'systemic_lupus_erythematosus',\n", - "'severe_mental_illness',\n", - "'erectile_dysfunction',\n", - "]\n", - "\n", - "medications = [\n", - "\"antihypertensives\",\n", - "\"ass\",\n", - "\"atypical_antipsychotics\",\n", - "\"glucocorticoids\"\n", - "]\n", - "\n", - "feature_dict = {\n", - "\"pgs\": [],\n", - "\"basics\": basics,\n", - "\"questionnaire\": questionnaire,\n", - "\"measurements\": measurements,\n", - "\"labs\": labs,\n", - "\"family_history\": family_history,\n", - "\"medications\": medications,\n", - "\"diagnoses\": diagnoses\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "features[\"clinical\"] = [f for group_list in feature_dict.values() for f in group_list]\n", - "features[\"clinical_pgs\"] = features[\"pgs\"]+[f for group_list in feature_dict.values() for f in group_list]" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "basics = [\n", - " 'age_at_recruitment',\n", - " 'ethnic_background',\n", - " 'townsend_deprivation_index_at_recruitment',\n", - " 'sex'\n", - "]\n", - "questionnaire = [\n", - " 'overall_health_rating',\n", - " 'smoking_status',\n", - "\n", - " 'alcohol_intake_frequency'\n", - "]\n", - "measurements = [\n", - " 'body_mass_index_bmi',\n", - " 'weight',\n", - " \"standing_height\",\n", - " 'systolic_blood_pressure',\n", - " 'diastolic_blood_pressure',\n", - "\n", - " 'pulse_wave_arterial_stiffness_index',\n", - " 'pulse_wave_reflection_index',\n", - " 'waist_circumference',\n", - " 'hip_circumference',\n", - " 'trunk_fat_percentage',\n", - " 'body_fat_percentage',\n", - " 'basal_metabolic_rate',\n", - " 'forced_vital_capacity_fvc_best_measure',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure',\n", - " 'fev1_fvc_ratio_zscore',\n", - " 'peak_expiratory_flow_pef_f3064_0_2',\n", - " 'peak_expiratory_flow_pef_f3064_0_1',\n", - " 'peak_expiratory_flow_pef',\n", - " 'pulse_rate'\n", - "]\n", - "labs = [\n", - " 'cholesterol',\n", - " 'hdl_cholesterol',\n", - " 'ldl_direct',\n", - " 'triglycerides',\n", - "\n", - " 'basophill_count',\n", - " 'basophill_percentage',\n", - " 'eosinophill_count',\n", - " 'eosinophill_percentage',\n", - " 'haematocrit_percentage',\n", - " 'haemoglobin_concentration',\n", - " 'high_light_scatter_reticulocyte_count',\n", - " 'high_light_scatter_reticulocyte_percentage',\n", - " 'immature_reticulocyte_fraction',\n", - " 'lymphocyte_count',\n", - " 'lymphocyte_percentage',\n", - " 'mean_corpuscular_haemoglobin',\n", - " 'mean_corpuscular_haemoglobin_concentration',\n", - " 'mean_corpuscular_volume',\n", - " 'mean_platelet_thrombocyte_volume',\n", - " 'mean_reticulocyte_volume',\n", - " 'mean_sphered_cell_volume',\n", - " 'monocyte_count',\n", - " 'monocyte_percentage',\n", - " 'neutrophill_count',\n", - " 'neutrophill_percentage',\n", - " 'nucleated_red_blood_cell_count',\n", - " 'nucleated_red_blood_cell_percentage',\n", - " 'platelet_count',\n", - " 'platelet_crit',\n", - " 'platelet_distribution_width',\n", - " 'red_blood_cell_erythrocyte_count',\n", - " 'red_blood_cell_erythrocyte_distribution_width',\n", - " 'reticulocyte_count',\n", - " 'reticulocyte_percentage',\n", - " 'white_blood_cell_leukocyte_count',\n", - " 'alanine_aminotransferase',\n", - " 'albumin',\n", - " 'alkaline_phosphatase',\n", - " 'apolipoprotein_a',\n", - " 'apolipoprotein_b',\n", - " 'aspartate_aminotransferase',\n", - " 'creactive_protein',\n", - " 'calcium',\n", - " 'creatinine',\n", - " 'cystatin_c',\n", - " 'direct_bilirubin',\n", - " 'gamma_glutamyltransferase',\n", - " 'glucose',\n", - " 'glycated_haemoglobin_hba1c',\n", - " 'igf1',\n", - " 'lipoprotein_a',\n", - " 'oestradiol',\n", - " 'phosphate',\n", - " 'rheumatoid_factor',\n", - " 'shbg',\n", - " 'testosterone',\n", - " 'total_bilirubin',\n", - " 'total_protein',\n", - " 'urate',\n", - " 'urea',\n", - " 'vitamin_d'\n", - "]\n", - "family_history = [\n", - " 'fh_heart_disease',\n", - "\n", - " \"fh_alzheimer's_disease/dementia\",\n", - " 'fh_bowel_cancer',\n", - " 'fh_breast_cancer',\n", - " 'fh_chronic_bronchitis/emphysema',\n", - " 'fh_diabetes',\n", - " 'fh_high_blood_pressure',\n", - " 'fh_lung_cancer',\n", - " \"fh_parkinson's_disease\",\n", - " 'fh_severe_depression',\n", - " 'fh_stroke'\n", - "]\n", - "diagnoses = [\n", - " 'stroke',\n", - " 'diabetes1',\n", - " 'diabetes2',\n", - " 'chronic_kidney_disease',\n", - " 'atrial_fibrillation',\n", - " 'migraine',\n", - " 'rheumatoid_arthritis',\n", - " 'systemic_lupus_erythematosus',\n", - " 'severe_mental_illness',\n", - " 'erectile_dysfunction',\n", - "\n", - " 'intestinal_infection',\n", - " 'bacterial_infection',\n", - " 'arthropathies',\n", - " 'viral_infection',\n", - " 'infections_specific_to_the_perinatal_period',\n", - " 'acute_upper_respiratory_infections',\n", - " 'mycoses',\n", - " \"kaposi's_sarcoma\",\n", - " 'malaise_and_fatigue',\n", - " 'malignant_neoplasm_of_skin',\n", - " 'benign_neoplasm_of_respiratory_and_intrathoracic_organs',\n", - " 'benign_neoplasm_of_skin',\n", - " 'nonmalignant_breast_conditions',\n", - " 'anemias',\n", - " 'other_endocrine_disorders',\n", - " 'diabetes',\n", - " 'disorders_of_mineral_metabolism',\n", - " 'obesity',\n", - " 'respiratory_abnormalities',\n", - " 'disorders_of_lipoid_metabolism',\n", - " 'nonspecific_findings_on_examination_of_blood',\n", - " 'sleep_disorders',\n", - " 'male_genital_disorders',\n", - " 'cerebrovascular_disease',\n", - " 'cataract',\n", - " 'blindness_and_low_vision',\n", - " 'disorders_of_external_ear',\n", - " 'heart_valve_disorders',\n", - " 'ischemic_heart_disease',\n", - " 'cardiac_conduction_disorders',\n", - " 'heart_failure',\n", - " 'noninfectious_disorders_of_lymphatic_channels',\n", - " 'other_symptoms_of_respiratory_system',\n", - " 'disorders_of_stomach',\n", - " 'abdominal_pain',\n", - " 'abdominal_hernia',\n", - " 'liver_disease',\n", - " 'biliary_tract_disease',\n", - " 'bariatric_surgery',\n", - " 'complications',\n", - " 'other_hypertrophic_and_atrophic_conditions_of_skin',\n", - " 'symptoms_affecting_skin',\n", - " 'chronic_ulcer_of_skin',\n", - " 'gout',\n", - " 'osteoarthritis',\n", - " 'acquired_deformities',\n", - " 'pain_in_joint',\n", - " 'back_pain',\n", - " 'myalgia_and_myositis_unspecified',\n", - " 'symptoms_involving_nervous_and_musculoskeletal_systems',\n", - " 'pain_in_limb',\n", - " 'musculoskeletal_symptoms_referable_to_limbs',\n", - " 'congenital_musculoskeletal_anomalies',\n", - " 'other_symptoms/disorders_or_the_urinary_system',\n", - " 'urinary_calculus',\n", - " 'symptoms_involving_female_genital_tract',\n", - " 'other_nonmalignant_breast_conditions',\n", - " 'complications_of_the_puerperium',\n", - " 'complications_of_pregnancy',\n", - " 'postoperative_infection',\n", - " 'other_complications_of_pregnancy_nec',\n", - " 'excessive_vomiting_in_pregnancy',\n", - " 'infectious_and_parasitic_complications_affecting_pregnancy',\n", - " 'multiple_gestation',\n", - " 'late_pregnancy_and_failed_induction',\n", - " 'normal_delivery',\n", - " 'anemia_during_pregnancy',\n", - " 'maternal_complication_of_pregnancy_affecting_fetus_or_newborn',\n", - " 'gangrene',\n", - " 'abnormal_sputum',\n", - " 'symptoms_involving_head_and_neck',\n", - " 'nonspecific_chest_pain',\n", - " 'nausea_and_vomiting',\n", - " 'nonspecific_findings_on_examination_of_urine',\n", - " 'fever',\n", - " 'pain',\n", - " 'syncope_and_collapse',\n", - " 'shock',\n", - " 'hypothermia/chills',\n", - " 'abnormal_findings_examination_of_lungs',\n", - " 'contusion',\n", - " 'open_wound',\n", - " 'bone_marrow_or_stem_cell_transplant']\n", - "\n", - "medications= [\n", - " 'ass',\n", - " 'atypical_antipsychotics',\n", - " 'glucocorticoids',\n", - "\n", - " 'stomatological_preparations',\n", - " 'drugs_for_acid_related_disorders',\n", - " 'drugs_for_functional_gastrointestinal_disorders',\n", - " 'antiemetics_and_antinauseants',\n", - " 'bile_and_liver_therapy',\n", - " 'drugs_for_constipation',\n", - " 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents',\n", - " 'antiobesity_preparations,_excl._diet_products',\n", - " 'digestives,_incl._enzymes',\n", - " 'drugs_used_in_diabetes',\n", - " 'vitamins',\n", - " 'mineral_supplements',\n", - " 'tonics',\n", - " 'anabolic_agents_for_systemic_use',\n", - " 'appetite_stimulants',\n", - " 'other_alimentary_tract_and_metabolism_products',\n", - " 'antithrombotic_agents',\n", - " 'antihemorrhagics',\n", - " 'antianemic_preparations',\n", - " 'blood_substitutes_and_perfusion_solutions',\n", - " 'other_hematological_agents',\n", - " 'cardiac_therapy',\n", - " 'antihypertensives',\n", - " 'diuretics',\n", - " 'peripheral_vasodilators',\n", - " 'vasoprotectives',\n", - " 'beta_blocking_agents',\n", - " 'calcium_channel_blockers',\n", - " 'agents_acting_on_the_renin-angiotensin_system',\n", - " 'lipid_modifying_agents',\n", - " 'antifungals_for_dermatological_use',\n", - " 'emollients_and_protectives',\n", - " 'preparations_for_treatment_of_wounds_and_ulcers',\n", - " 'antipruritics,_incl._antihistamines,_anesthetics,_etc.',\n", - " 'antipsoriatics',\n", - " 'antibiotics_and_chemotherapeutics_for_dermatological_use',\n", - " 'corticosteroids,_dermatological_preparations',\n", - " 'antiseptics_and_disinfectants',\n", - " 'medicated_dressings',\n", - " 'anti-acne_preparations',\n", - " 'other_dermatological_preparations',\n", - " 'gynecological_antiinfectives_and_antiseptics',\n", - " 'other_gynecologicals',\n", - " 'sex_hormones_and_modulators_of_the_genital_system',\n", - " 'urologicals',\n", - " 'pituitary_and_hypothalamic_hormones_and_analogues',\n", - " 'corticosteroids_for_systemic_use',\n", - " 'thyroid_therapy',\n", - " 'pancreatic_hormones',\n", - " 'calcium_homeostasis',\n", - " 'antibacterials_for_systemic_use',\n", - " 'antimycotics_for_systemic_use',\n", - " 'antimycobacterials',\n", - " 'antivirals_for_systemic_use',\n", - " 'immune_sera_and_immunoglobulins',\n", - " 'vaccines',\n", - " 'antineoplastic_agents',\n", - " 'endocrine_therapy',\n", - " 'immunostimulants',\n", - " 'immunosuppressants',\n", - " 'antiinflammatory_and_antirheumatic_products',\n", - " 'topical_products_for_joint_and_muscular_pain',\n", - " 'muscle_relaxants',\n", - " 'antigout_preparations',\n", - " 'drugs_for_treatment_of_bone_diseases',\n", - " 'other_drugs_for_disorders_of_the_musculo-skeletal_system',\n", - " 'anesthetics',\n", - " 'analgesics',\n", - " 'antiepileptics',\n", - " 'anti-parkinson_drugs',\n", - " 'psycholeptics',\n", - " 'psychoanaleptics',\n", - " 'other_nervous_system_drugs',\n", - " 'antiprotozoals',\n", - " 'anthelmintics',\n", - " 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents',\n", - " 'nasal_preparations',\n", - " 'throat_preparations',\n", - " 'drugs_for_obstructive_airway_diseases',\n", - " 'cough_and_cold_preparations',\n", - " 'antihistamines_for_systemic_use',\n", - " 'other_respiratory_system_products',\n", - " 'ophthalmologicals',\n", - " 'otologicals',\n", - " 'ophthalmological_and_otological_preparations',\n", - " 'allergens',\n", - " 'all_other_therapeutic_products',\n", - " 'diagnostic_agents',\n", - " 'general_nutrients',\n", - " 'all_other_non-therapeutic_products',\n", - " 'contrast_media',\n", - " 'diagnostic_radiopharmaceuticals',\n", - " 'therapeutic_radiopharmaceuticals',\n", - " 'surgical_dressings'\n", - "]\n", - "\n", - "feature_dict = {\n", - " \"pgs\": [],\n", - " \"basics\": basics,\n", - " \"questionnaire\": questionnaire,\n", - " \"measurements\": measurements,\n", - " \"labs\": labs,\n", - " \"family_history\": family_history,\n", - " \"medications\": medications,\n", - " \"diagnoses\": diagnoses\n", - "}" - ] - }, - { - "cell_type": "raw", - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "source": [ - "features[\"clinical_big\"] = [f for group_list in feature_dict.values() for f in group_list]\n", - "features[\"clinical_big_with_pgs\"] = features[\"pgs\"]+[f for group_list in feature_dict.values() for f in group_list]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "endpoint = \"MACE\"; event=endpoint+'_event'; time=endpoint+'_event_time'\n", - "groups = [\"clinical\", \"clinical_pgs\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d78503d7377446f68abd00a1ed2bbc87", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/2 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57740800.80091210000-0.8075651.001...FalseFalseFalseFalseFalseFalseFalseFalse10.8665300
57740910.92449410000-0.9603841.000...FalseFalseFalseFalseFalseFalseFalseFalse11.8357290
57741080.553747100000.4616050.001...TrueFalseFalseFalseFalseFalseFalseFalse10.5462010
5774114-0.187746100000.4332390.010...FalseTrueFalseFalseTrueFalseTrueFalse10.9158110
57741270.553747100002.5637821.010...FalseFalseFalseFalseFalseFalseFalseTrue11.3675560
..................................................................
6025147-1.670733001000.0343171.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025150-1.670733100000.4317400.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42356910000-0.2634930.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05941810000-0.1731691.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.064164100000.4131651.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
\n", - "

17756 rows × 40 columns

\n", - "" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5774080 0.800912 1 0 \n", - "5774091 0.924494 1 0 \n", - "5774108 0.553747 1 0 \n", - "5774114 -0.187746 1 0 \n", - "5774127 0.553747 1 0 \n", - "... ... ... ... \n", - "6025147 -1.670733 0 0 \n", - "6025150 -1.670733 1 0 \n", - "6025165 -1.423569 1 0 \n", - "6025173 0.059418 1 0 \n", - "6025182 -0.064164 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5774080 0 0 0 \n", - "5774091 0 0 0 \n", - "5774108 0 0 0 \n", - "5774114 0 0 0 \n", - "5774127 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5774080 -0.807565 1.0 \n", - "5774091 -0.960384 1.0 \n", - "5774108 0.461605 0.0 \n", - "5774114 0.433239 0.0 \n", - "5774127 2.563782 1.0 \n", - "... ... ... \n", - "6025147 0.034317 1.0 \n", - "6025150 0.431740 0.0 \n", - "6025165 -0.263493 0.0 \n", - "6025173 -0.173169 1.0 \n", - "6025182 0.413165 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5774080 0 1 ... False \n", - "5774091 0 0 ... False \n", - "5774108 0 1 ... True \n", - "5774114 1 0 ... False \n", - "5774127 1 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774080 False False False \n", - "5774091 False False False \n", - "5774108 False False False \n", - "5774114 True False False \n", - "5774127 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774080 False False \n", - "5774091 False False \n", - "5774108 False False \n", - "5774114 True False \n", - "5774127 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774080 False False 10.866530 \n", - "5774091 False False 11.835729 \n", - "5774108 False False 10.546201 \n", - "5774114 True False 10.915811 \n", - "5774127 False True 11.367556 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774080 0 \n", - "5774091 0 \n", - "5774108 0 \n", - "5774114 0 \n", - "5774127 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "\n", - "[17756 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100009210001071000110100012810001351000144...5773972577398357739995774009577401757740245774038577405257740635774075
11.00.0583970.1384650.0414850.1366470.0923530.0187870.0146950.013850.0179880.061392...0.1483280.2613950.0684670.1274510.0296120.0523060.0475760.0106420.0143880.095631
\n", - "

1 rows × 338496 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000092 1000107 1000110 \\\n", - "11.0 0.058397 0.138465 0.041485 0.136647 0.092353 0.018787 0.014695 \n", - "\n", - " 1000128 1000135 1000144 ... 5773972 5773983 5773999 \\\n", - "11.0 0.01385 0.017988 0.061392 ... 0.148328 0.261395 0.068467 \n", - "\n", - " 5774009 5774017 5774024 5774038 5774052 5774063 5774075 \n", - "11.0 0.127451 0.029612 0.052306 0.047576 0.010642 0.014388 0.095631 \n", - "\n", - "[1 rows x 338496 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "1\n", - "Iteration 1: norm_delta = 0.84042, step_size = 0.5000, log_lik = -301918.37352, newton_decrement = 8782.58025, seconds_since_start = 3.8\n", - "Iteration 2: norm_delta = 0.40627, step_size = 0.5000, log_lik = -295456.62162, newton_decrement = 2114.35338, seconds_since_start = 7.7\n", - "Iteration 3: norm_delta = 0.23122, step_size = 0.5000, log_lik = -293857.97662, newton_decrement = 616.65662, seconds_since_start = 11.5\n", - "Iteration 4: norm_delta = 0.10500, step_size = 0.6000, log_lik = -293335.46432, newton_decrement = 115.17985, seconds_since_start = 15.3\n", - "Iteration 5: norm_delta = 0.03241, step_size = 0.7200, log_lik = -293228.59034, newton_decrement = 10.27859, seconds_since_start = 19.0\n", - "Iteration 6: norm_delta = 0.00472, step_size = 0.8640, log_lik = -293218.46552, newton_decrement = 0.21082, seconds_since_start = 22.8\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293218.25453, newton_decrement = 0.00000, seconds_since_start = 26.6\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293218.25453, newton_decrement = 0.00000, seconds_since_start = 30.3\n", - "Convergence success after 8 iterations.\n", - "0.7320170036068242\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57739721.17006210000-0.3476821.001...FalseFalseFalseFalseFalseFalseFalseFalse10.4202600
57739831.54068510000-0.6302780.010...FalseFalseTrueFalseFalseFalseFalseFalse12.3641340
5773999-0.31243010000-0.4152731.001...FalseFalseFalseTrueFalseFalseFalseFalse11.3429160
57740090.92298010000-1.2647101.001...FalseFalseFalseFalseFalseFalseFalseFalse11.4633810
5774017-1.177217100001.4300130.001...FalseFalseFalseFalseFalseFalseFalseFalse10.5954830
..................................................................
6025147-1.671381001000.0356511.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025150-1.671381100000.4336370.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42429910000-0.2625810.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025182-0.065348100000.4150361.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29360310000-0.2055631.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17724 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773972 1.170062 1 0 \n", - "5773983 1.540685 1 0 \n", - "5773999 -0.312430 1 0 \n", - "5774009 0.922980 1 0 \n", - "5774017 -1.177217 1 0 \n", - "... ... ... ... \n", - "6025147 -1.671381 0 0 \n", - "6025150 -1.671381 1 0 \n", - "6025165 -1.424299 1 0 \n", - "6025182 -0.065348 1 0 \n", - "6025198 1.293603 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773972 0 0 0 \n", - "5773983 0 0 0 \n", - "5773999 0 0 0 \n", - "5774009 0 0 0 \n", - "5774017 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773972 -0.347682 1.0 \n", - "5773983 -0.630278 0.0 \n", - "5773999 -0.415273 1.0 \n", - "5774009 -1.264710 1.0 \n", - "5774017 1.430013 0.0 \n", - "... ... ... \n", - "6025147 0.035651 1.0 \n", - "6025150 0.433637 0.0 \n", - "6025165 -0.262581 0.0 \n", - "6025182 0.415036 1.0 \n", - "6025198 -0.205563 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773972 0 1 ... False \n", - "5773983 1 0 ... False \n", - "5773999 0 1 ... False \n", - "5774009 0 1 ... False \n", - "5774017 0 1 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773972 False False False \n", - "5773983 False True False \n", - "5773999 False False True \n", - "5774009 False False False \n", - "5774017 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773972 False False \n", - "5773983 False False \n", - "5773999 False False \n", - "5774009 False False \n", - "5774017 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773972 False False 10.420260 \n", - "5773983 False False 12.364134 \n", - "5773999 False False 11.342916 \n", - "5774009 False False 11.463381 \n", - "5774017 False False 10.595483 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773972 0 \n", - "5773983 0 \n", - "5773999 0 \n", - "5774009 0 \n", - "5774017 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17724 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000431000079100008410000921000107100011010001281000135...5773814577382757738405773871577388657738955773928577393557739445773961
11.00.0566740.1394450.136210.0801780.0579330.091660.0183930.0142550.0137920.01802...0.1139220.1085430.0341030.066170.8048450.0132910.0245770.0256250.0364940.033593
\n", - "

1 rows × 338347 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000043 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.056674 0.139445 0.13621 0.080178 0.057933 0.09166 0.018393 \n", - "\n", - " 1000110 1000128 1000135 ... 5773814 5773827 5773840 5773871 \\\n", - "11.0 0.014255 0.013792 0.01802 ... 0.113922 0.108543 0.034103 0.06617 \n", - "\n", - " 5773886 5773895 5773928 5773935 5773944 5773961 \n", - "11.0 0.804845 0.013291 0.024577 0.025625 0.036494 0.033593 \n", - "\n", - "[1 rows x 338347 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "2\n", - "Iteration 1: norm_delta = 0.83461, step_size = 0.5000, log_lik = -303934.60837, newton_decrement = 8899.23295, seconds_since_start = 3.8\n", - "Iteration 2: norm_delta = 0.40527, step_size = 0.5000, log_lik = -297388.53639, newton_decrement = 2144.25117, seconds_since_start = 7.9\n", - "Iteration 3: norm_delta = 0.23083, step_size = 0.5000, log_lik = -295767.17692, newton_decrement = 626.21041, seconds_since_start = 11.8\n", - "Iteration 4: norm_delta = 0.10507, step_size = 0.6000, log_lik = -295236.52115, newton_decrement = 117.15378, seconds_since_start = 15.7\n", - "Iteration 5: norm_delta = 0.03251, step_size = 0.7200, log_lik = -295127.80684, newton_decrement = 10.47061, seconds_since_start = 19.5\n", - "Iteration 6: norm_delta = 0.00475, step_size = 0.8640, log_lik = -295117.49239, newton_decrement = 0.21504, seconds_since_start = 23.2\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -295117.27717, newton_decrement = 0.00000, seconds_since_start = 27.2\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -295117.27717, newton_decrement = 0.00000, seconds_since_start = 31.1\n", - "Convergence success after 8 iterations.\n", - "0.7307608305062687\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773808-1.67082410000-0.8442511.001...FalseFalseFalseFalseFalseFalseFalseFalse10.6858320
57738140.429000100000.1874281.001...FalseFalseFalseTrueFalseFalseFalseFalse13.1006160
57738270.67603910000-0.6936721.001...FalseFalseFalseFalseFalseFalseFalseFalse10.8610540
5773840-1.053228100002.2621391.000...FalseFalseFalseFalseFalseFalseFalseFalse11.7891850
57738710.42900010000-0.3688671.001...FalseFalseFalseFalseFalseFalseFalseFalse11.2224500
..................................................................
6025147-1.670824001000.0357761.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025150-1.670824100000.4338240.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251730.05844310000-0.1720371.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.065076100000.4152201.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29363410000-0.2054761.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17750 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773808 -1.670824 1 0 \n", - "5773814 0.429000 1 0 \n", - "5773827 0.676039 1 0 \n", - "5773840 -1.053228 1 0 \n", - "5773871 0.429000 1 0 \n", - "... ... ... ... \n", - "6025147 -1.670824 0 0 \n", - "6025150 -1.670824 1 0 \n", - "6025173 0.058443 1 0 \n", - "6025182 -0.065076 1 0 \n", - "6025198 1.293634 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773808 0 0 0 \n", - "5773814 0 0 0 \n", - "5773827 0 0 0 \n", - "5773840 0 0 0 \n", - "5773871 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025150 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773808 -0.844251 1.0 \n", - "5773814 0.187428 1.0 \n", - "5773827 -0.693672 1.0 \n", - "5773840 2.262139 1.0 \n", - "5773871 -0.368867 1.0 \n", - "... ... ... \n", - "6025147 0.035776 1.0 \n", - "6025150 0.433824 0.0 \n", - "6025173 -0.172037 1.0 \n", - "6025182 0.415220 1.0 \n", - "6025198 -0.205476 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773808 0 1 ... False \n", - "5773814 0 1 ... False \n", - "5773827 0 1 ... False \n", - "5773840 0 0 ... False \n", - "5773871 0 1 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025150 0 0 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773808 False False False \n", - "5773814 False False True \n", - "5773827 False False False \n", - "5773840 False False False \n", - "5773871 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773808 False False \n", - "5773814 False False \n", - "5773827 False False \n", - "5773840 False False \n", - "5773871 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773808 False False 10.685832 \n", - "5773814 False False 13.100616 \n", - "5773827 False False 10.861054 \n", - "5773840 False False 11.789185 \n", - "5773871 False False 11.222450 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773808 0 \n", - "5773814 0 \n", - "5773827 0 \n", - "5773840 0 \n", - "5773871 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17750 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000135...5773685577369457737025773723577373057737415773759577376457737775773796
11.00.0585330.1407170.0537710.1408150.0795690.0586870.0929920.018160.0144880.017761...0.0570120.0486670.1075310.0244250.0543550.0571540.2776230.2378080.037890.011284
\n", - "

1 rows × 338279 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.058533 0.140717 0.053771 0.140815 0.079569 0.058687 0.092992 \n", - "\n", - " 1000107 1000110 1000135 ... 5773685 5773694 5773702 \\\n", - "11.0 0.01816 0.014488 0.017761 ... 0.057012 0.048667 0.107531 \n", - "\n", - " 5773723 5773730 5773741 5773759 5773764 5773777 5773796 \n", - "11.0 0.024425 0.054355 0.057154 0.277623 0.237808 0.03789 0.011284 \n", - "\n", - "[1 rows x 338279 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "3\n", - "Iteration 1: norm_delta = 0.83041, step_size = 0.5000, log_lik = -304005.99770, newton_decrement = 8799.39988, seconds_since_start = 3.8\n", - "Iteration 2: norm_delta = 0.41042, step_size = 0.5000, log_lik = -297537.13319, newton_decrement = 2107.94080, seconds_since_start = 7.8\n", - "Iteration 3: norm_delta = 0.23359, step_size = 0.5000, log_lik = -295943.30814, newton_decrement = 614.95995, seconds_since_start = 11.6\n", - "Iteration 4: norm_delta = 0.10610, step_size = 0.6000, log_lik = -295422.22582, newton_decrement = 114.89211, seconds_since_start = 15.5\n", - "Iteration 5: norm_delta = 0.03277, step_size = 0.7200, log_lik = -295315.61723, newton_decrement = 10.25611, seconds_since_start = 19.3\n", - "Iteration 6: norm_delta = 0.00478, step_size = 0.8640, log_lik = -295305.51441, newton_decrement = 0.21046, seconds_since_start = 23.3\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -295305.30377, newton_decrement = 0.00000, seconds_since_start = 27.1\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -295305.30377, newton_decrement = 0.00000, seconds_since_start = 31.1\n", - "Convergence success after 8 iterations.\n", - "0.7326336213224398\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773935-0.18893310000-0.8842200.001...FalseFalseFalseFalseFalseFalseFalseFalse12.8213550
5773944-1.05365610000-0.4778370.000...FalseFalseFalseFalseFalseFalseTrueFalse12.3668720
57739561.04638610000-1.0427890.000...FalseFalseFalseFalseFalseFalseFalseFalse12.0191650
57739610.67579010000-1.3155730.000...FalseFalseFalseFalseFalseFalseFalseFalse12.7091030
57739721.16991810000-0.3474101.001...FalseFalseFalseFalseFalseFalseFalseFalse10.4202600
..................................................................
6025147-1.671315001000.0360941.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025150-1.671315100000.4342580.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42425110000-0.2622700.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05813110000-0.1717791.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
60251981.29345010000-0.2052271.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17778 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773935 -0.188933 1 0 \n", - "5773944 -1.053656 1 0 \n", - "5773956 1.046386 1 0 \n", - "5773961 0.675790 1 0 \n", - "5773972 1.169918 1 0 \n", - "... ... ... ... \n", - "6025147 -1.671315 0 0 \n", - "6025150 -1.671315 1 0 \n", - "6025165 -1.424251 1 0 \n", - "6025173 0.058131 1 0 \n", - "6025198 1.293450 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773935 0 0 0 \n", - "5773944 0 0 0 \n", - "5773956 0 0 0 \n", - "5773961 0 0 0 \n", - "5773972 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773935 -0.884220 0.0 \n", - "5773944 -0.477837 0.0 \n", - "5773956 -1.042789 0.0 \n", - "5773961 -1.315573 0.0 \n", - "5773972 -0.347410 1.0 \n", - "... ... ... \n", - "6025147 0.036094 1.0 \n", - "6025150 0.434258 0.0 \n", - "6025165 -0.262270 0.0 \n", - "6025173 -0.171779 1.0 \n", - "6025198 -0.205227 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773935 0 1 ... False \n", - "5773944 0 0 ... False \n", - "5773956 0 0 ... False \n", - "5773961 0 0 ... False \n", - "5773972 0 1 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773935 False False False \n", - "5773944 False False False \n", - "5773956 False False False \n", - "5773961 False False False \n", - "5773972 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773935 False False \n", - "5773944 False False \n", - "5773956 False False \n", - "5773961 False False \n", - "5773972 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773935 False False 12.821355 \n", - "5773944 True False 12.366872 \n", - "5773956 False False 12.019165 \n", - "5773961 False False 12.709103 \n", - "5773972 False False 10.420260 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773935 0 \n", - "5773944 0 \n", - "5773956 0 \n", - "5773961 0 \n", - "5773972 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025198 0 \n", - "\n", - "[17778 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000020100003710000431000079100008410000921000107100011010001281000135...5773759577378857738085773814577382757738715773886577389557739075773928
11.00.1421070.0556490.1394890.0776570.0573680.0966560.0188110.0146620.0138920.018299...0.2731730.0115380.028910.1146760.1098350.0717280.8275290.0135380.0683940.02442
\n", - "

1 rows × 338322 columns

\n", - "
" - ], - "text/plain": [ - " 1000020 1000037 1000043 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.142107 0.055649 0.139489 0.077657 0.057368 0.096656 0.018811 \n", - "\n", - " 1000110 1000128 1000135 ... 5773759 5773788 5773808 \\\n", - "11.0 0.014662 0.013892 0.018299 ... 0.273173 0.011538 0.02891 \n", - "\n", - " 5773814 5773827 5773871 5773886 5773895 5773907 5773928 \n", - "11.0 0.114676 0.109835 0.071728 0.827529 0.013538 0.068394 0.02442 \n", - "\n", - "[1 rows x 338322 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "4\n", - "Iteration 1: norm_delta = 0.86923, step_size = 0.5000, log_lik = -302864.07070, newton_decrement = 8837.27278, seconds_since_start = 3.8\n", - "Iteration 2: norm_delta = 0.40674, step_size = 0.5000, log_lik = -296366.86382, newton_decrement = 2122.31770, seconds_since_start = 7.8\n", - "Iteration 3: norm_delta = 0.22958, step_size = 0.5000, log_lik = -294762.08582, newton_decrement = 619.79745, seconds_since_start = 11.8\n", - "Iteration 4: norm_delta = 0.10393, step_size = 0.6000, log_lik = -294236.86718, newton_decrement = 115.96211, seconds_since_start = 15.9\n", - "Iteration 5: norm_delta = 0.03211, step_size = 0.7200, log_lik = -294129.25507, newton_decrement = 10.37426, seconds_since_start = 19.7\n", - "Iteration 6: norm_delta = 0.00470, step_size = 0.8640, log_lik = -294119.03473, newton_decrement = 0.21365, seconds_since_start = 23.5\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294118.82089, newton_decrement = 0.00000, seconds_since_start = 27.3\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294118.82089, newton_decrement = 0.00000, seconds_since_start = 31.2\n", - "Convergence success after 8 iterations.\n", - "0.7329179574481282\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5772854-0.188141100000.4713871.001...FalseFalseFalseFalseFalseFalseFalseFalse12.5667351
57728690.058844100000.1162791.001...FalseFalseFalseFalseFalseFalseFalseFalse12.3531830
5772881-1.29957410000-0.7329011.001...FalseFalseFalseFalseFalseFalseFalseFalse10.7104720
57728970.42932210000-0.3901271.001...FalseFalseFalseFalseFalseFalseFalseFalse12.4298430
5772905-1.423067100001.3550800.010...FalseFalseFalseFalseFalseFalseTrueFalse11.6659820
..................................................................
6025147-1.670052001000.0362701.001...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
6025165-1.42306710000-0.2621910.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05884410000-0.1716701.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.064648100000.4159481.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29377010000-0.2051291.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17721 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5772854 -0.188141 1 0 \n", - "5772869 0.058844 1 0 \n", - "5772881 -1.299574 1 0 \n", - "5772897 0.429322 1 0 \n", - "5772905 -1.423067 1 0 \n", - "... ... ... ... \n", - "6025147 -1.670052 0 0 \n", - "6025165 -1.423067 1 0 \n", - "6025173 0.058844 1 0 \n", - "6025182 -0.064648 1 0 \n", - "6025198 1.293770 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5772854 0 0 0 \n", - "5772869 0 0 0 \n", - "5772881 0 0 0 \n", - "5772897 0 0 0 \n", - "5772905 0 0 0 \n", - "... ... ... ... \n", - "6025147 1 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5772854 0.471387 1.0 \n", - "5772869 0.116279 1.0 \n", - "5772881 -0.732901 1.0 \n", - "5772897 -0.390127 1.0 \n", - "5772905 1.355080 0.0 \n", - "... ... ... \n", - "6025147 0.036270 1.0 \n", - "6025165 -0.262191 0.0 \n", - "6025173 -0.171670 1.0 \n", - "6025182 0.415948 1.0 \n", - "6025198 -0.205129 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5772854 0 1 ... False \n", - "5772869 0 1 ... False \n", - "5772881 0 1 ... False \n", - "5772897 0 1 ... False \n", - "5772905 1 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 1 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772854 False False False \n", - "5772869 False False False \n", - "5772881 False False False \n", - "5772897 False False False \n", - "5772905 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772854 False False \n", - "5772869 False False \n", - "5772881 False False \n", - "5772897 False False \n", - "5772905 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772854 False False 12.566735 \n", - "5772869 False False 12.353183 \n", - "5772881 False False 10.710472 \n", - "5772897 False False 12.429843 \n", - "5772905 True False 11.665982 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772854 1 \n", - "5772869 0 \n", - "5772881 0 \n", - "5772897 0 \n", - "5772905 0 \n", - "... ... \n", - "6025147 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17721 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001281000144...5772709577271757727245772738577275257727635772775577278057727915772848
11.00.0576090.1405810.0590150.1367270.078110.0576880.0960690.0186570.0137030.059786...0.0762250.0512190.1567170.0325940.0864050.1580960.0180650.0509840.1165840.126888
\n", - "

1 rows × 338386 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.057609 0.140581 0.059015 0.136727 0.07811 0.057688 0.096069 \n", - "\n", - " 1000107 1000128 1000144 ... 5772709 5772717 5772724 \\\n", - "11.0 0.018657 0.013703 0.059786 ... 0.076225 0.051219 0.156717 \n", - "\n", - " 5772738 5772752 5772763 5772775 5772780 5772791 5772848 \n", - "11.0 0.032594 0.086405 0.158096 0.018065 0.050984 0.116584 0.126888 \n", - "\n", - "[1 rows x 338386 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "5\n", - "Iteration 1: norm_delta = 0.83871, step_size = 0.5000, log_lik = -303530.87696, newton_decrement = 8798.90133, seconds_since_start = 4.2\n", - "Iteration 2: norm_delta = 0.40518, step_size = 0.5000, log_lik = -297055.30290, newton_decrement = 2115.55485, seconds_since_start = 7.9\n", - "Iteration 3: norm_delta = 0.23031, step_size = 0.5000, log_lik = -295455.77368, newton_decrement = 616.93414, seconds_since_start = 11.9\n", - "Iteration 4: norm_delta = 0.10463, step_size = 0.6000, log_lik = -294933.01653, newton_decrement = 115.29343, seconds_since_start = 15.9\n", - "Iteration 5: norm_delta = 0.03236, step_size = 0.7200, log_lik = -294826.03053, newton_decrement = 10.30417, seconds_since_start = 20.0\n", - "Iteration 6: norm_delta = 0.00474, step_size = 0.8640, log_lik = -294815.87959, newton_decrement = 0.21200, seconds_since_start = 23.8\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294815.66740, newton_decrement = 0.00000, seconds_since_start = 27.6\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294815.66740, newton_decrement = 0.00000, seconds_since_start = 31.3\n", - "Convergence success after 8 iterations.\n", - "0.7335853485634957\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773935-0.18818310000-0.8847060.001...FalseFalseFalseFalseFalseFalseFalseFalse12.8213550
5773944-1.05283110000-0.4788050.000...FalseFalseFalseFalseFalseFalseTrueFalse12.3668720
57739561.04703010000-1.0430860.000...FalseFalseFalseFalseFalseFalseFalseFalse12.0191650
57739610.67646610000-1.3155460.000...FalseFalseFalseFalseFalseFalseFalseFalse12.7091030
57739721.17055110000-0.3485331.001...FalseFalseFalseFalseFalseFalseFalseFalse10.4202600
..................................................................
6025150-1.670438100000.4322050.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42339510000-0.2634950.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05886010000-0.1731111.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.064661100000.4136181.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29407210000-0.2065201.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17786 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5773935 -0.188183 1 0 \n", - "5773944 -1.052831 1 0 \n", - "5773956 1.047030 1 0 \n", - "5773961 0.676466 1 0 \n", - "5773972 1.170551 1 0 \n", - "... ... ... ... \n", - "6025150 -1.670438 1 0 \n", - "6025165 -1.423395 1 0 \n", - "6025173 0.058860 1 0 \n", - "6025182 -0.064661 1 0 \n", - "6025198 1.294072 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5773935 0 0 0 \n", - "5773944 0 0 0 \n", - "5773956 0 0 0 \n", - "5773961 0 0 0 \n", - "5773972 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5773935 -0.884706 0.0 \n", - "5773944 -0.478805 0.0 \n", - "5773956 -1.043086 0.0 \n", - "5773961 -1.315546 0.0 \n", - "5773972 -0.348533 1.0 \n", - "... ... ... \n", - "6025150 0.432205 0.0 \n", - "6025165 -0.263495 0.0 \n", - "6025173 -0.173111 1.0 \n", - "6025182 0.413618 1.0 \n", - "6025198 -0.206520 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5773935 0 1 ... False \n", - "5773944 0 0 ... False \n", - "5773956 0 0 ... False \n", - "5773961 0 0 ... False \n", - "5773972 0 1 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773935 False False False \n", - "5773944 False False False \n", - "5773956 False False False \n", - "5773961 False False False \n", - "5773972 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773935 False False \n", - "5773944 False False \n", - "5773956 False False \n", - "5773961 False False \n", - "5773972 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773935 False False 12.821355 \n", - "5773944 True False 12.366872 \n", - "5773956 False False 12.019165 \n", - "5773961 False False 12.709103 \n", - "5773972 False False 10.420260 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773935 0 \n", - "5773944 0 \n", - "5773956 0 \n", - "5773961 0 \n", - "5773972 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17786 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5773788577379657738145773827577384057738715773886577389557739075773928
11.00.0586580.1415350.0758510.1358950.0775560.0569960.0935730.0186810.0148010.013719...0.0101420.0115650.1154780.110290.0341970.085070.8075320.0133360.06760.023896
\n", - "

1 rows × 338474 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.058658 0.141535 0.075851 0.135895 0.077556 0.056996 0.093573 \n", - "\n", - " 1000107 1000110 1000128 ... 5773788 5773796 5773814 \\\n", - "11.0 0.018681 0.014801 0.013719 ... 0.010142 0.011565 0.115478 \n", - "\n", - " 5773827 5773840 5773871 5773886 5773895 5773907 5773928 \n", - "11.0 0.11029 0.034197 0.08507 0.807532 0.013336 0.0676 0.023896 \n", - "\n", - "[1 rows x 338474 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "6\n", - "Iteration 1: norm_delta = 0.85460, step_size = 0.5000, log_lik = -302584.48904, newton_decrement = 8891.78043, seconds_since_start = 3.8\n", - "Iteration 2: norm_delta = 0.41090, step_size = 0.5000, log_lik = -296057.11273, newton_decrement = 2124.11951, seconds_since_start = 7.8\n", - "Iteration 3: norm_delta = 0.23321, step_size = 0.5000, log_lik = -294451.10345, newton_decrement = 619.48442, seconds_since_start = 12.0\n", - "Iteration 4: norm_delta = 0.10594, step_size = 0.6000, log_lik = -293926.18102, newton_decrement = 115.78936, seconds_since_start = 16.2\n", - "Iteration 5: norm_delta = 0.03278, step_size = 0.7200, log_lik = -293818.73382, newton_decrement = 10.35032, seconds_since_start = 20.4\n", - "Iteration 6: norm_delta = 0.00480, step_size = 0.8640, log_lik = -293808.53737, newton_decrement = 0.21297, seconds_since_start = 24.5\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293808.32421, newton_decrement = 0.00000, seconds_since_start = 28.4\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293808.32420, newton_decrement = 0.00000, seconds_since_start = 32.2\n", - "Convergence success after 8 iterations.\n", - "0.7351054072686027\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57740241.29398110000-0.0800380.001...FalseFalseFalseFalseFalseFalseFalseFalse10.9212870
5774038-1.917651000002.7414561.000...FalseFalseFalseFalseFalseFalseFalseFalse11.1485280
5774052-2.04117510000-1.1599371.001...FalseFalseFalseFalseFalseFalseFalseFalse11.5619440
5774063-0.92945710000-0.3351100.001...FalseFalseFalseFalseFalseFalseFalseFalse11.1266260
57740800.79988310000-0.8071841.001...FalseFalseFalseFalseFalseFalseFalseFalse10.8665300
..................................................................
6025150-1.670602100000.4333420.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42355410000-0.2625750.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05873810000-0.1721631.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.064787100000.4147491.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29398110000-0.2055821.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17779 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5774024 1.293981 1 0 \n", - "5774038 -1.917651 0 0 \n", - "5774052 -2.041175 1 0 \n", - "5774063 -0.929457 1 0 \n", - "5774080 0.799883 1 0 \n", - "... ... ... ... \n", - "6025150 -1.670602 1 0 \n", - "6025165 -1.423554 1 0 \n", - "6025173 0.058738 1 0 \n", - "6025182 -0.064787 1 0 \n", - "6025198 1.293981 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5774024 0 0 0 \n", - "5774038 0 0 0 \n", - "5774052 0 0 0 \n", - "5774063 0 0 0 \n", - "5774080 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5774024 -0.080038 0.0 \n", - "5774038 2.741456 1.0 \n", - "5774052 -1.159937 1.0 \n", - "5774063 -0.335110 0.0 \n", - "5774080 -0.807184 1.0 \n", - "... ... ... \n", - "6025150 0.433342 0.0 \n", - "6025165 -0.262575 0.0 \n", - "6025173 -0.172163 1.0 \n", - "6025182 0.414749 1.0 \n", - "6025198 -0.205582 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5774024 0 1 ... False \n", - "5774038 0 0 ... False \n", - "5774052 0 1 ... False \n", - "5774063 0 1 ... False \n", - "5774080 0 1 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774024 False False False \n", - "5774038 False False False \n", - "5774052 False False False \n", - "5774063 False False False \n", - "5774080 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774024 False False \n", - "5774038 False False \n", - "5774052 False False \n", - "5774063 False False \n", - "5774080 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774024 False False 10.921287 \n", - "5774038 False False 11.148528 \n", - "5774052 False False 11.561944 \n", - "5774063 False False 11.126626 \n", - "5774080 False False 10.866530 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774024 0 \n", - "5774038 0 \n", - "5774052 0 \n", - "5774063 0 \n", - "5774080 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17779 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100003710000431000079100008410001101000128100013510001441000156...5773928577393557739445773956577396157739725773983577399957740095774017
11.00.0587090.056420.1398150.077890.0567020.0144410.0136390.0178350.0571460.018596...0.0238410.0253560.0374750.0442380.0419930.1498440.2654110.0674050.1292260.029213
\n", - "

1 rows × 338397 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000037 1000043 1000079 1000084 1000110 1000128 \\\n", - "11.0 0.058709 0.05642 0.139815 0.07789 0.056702 0.014441 0.013639 \n", - "\n", - " 1000135 1000144 1000156 ... 5773928 5773935 5773944 \\\n", - "11.0 0.017835 0.057146 0.018596 ... 0.023841 0.025356 0.037475 \n", - "\n", - " 5773956 5773961 5773972 5773983 5773999 5774009 5774017 \n", - "11.0 0.044238 0.041993 0.149844 0.265411 0.067405 0.129226 0.029213 \n", - "\n", - "[1 rows x 338397 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "7\n", - "Iteration 1: norm_delta = 0.87240, step_size = 0.5000, log_lik = -302470.77013, newton_decrement = 8822.16059, seconds_since_start = 3.8\n", - "Iteration 2: norm_delta = 0.40721, step_size = 0.5000, log_lik = -295988.64579, newton_decrement = 2114.44720, seconds_since_start = 7.8\n", - "Iteration 3: norm_delta = 0.23081, step_size = 0.5000, log_lik = -294389.78193, newton_decrement = 617.82255, seconds_since_start = 11.6\n", - "Iteration 4: norm_delta = 0.10486, step_size = 0.6000, log_lik = -293866.21506, newton_decrement = 115.66778, seconds_since_start = 15.5\n", - "Iteration 5: norm_delta = 0.03244, step_size = 0.7200, log_lik = -293758.87451, newton_decrement = 10.34847, seconds_since_start = 19.3\n", - "Iteration 6: norm_delta = 0.00474, step_size = 0.8640, log_lik = -293748.67989, newton_decrement = 0.21286, seconds_since_start = 23.2\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293748.46684, newton_decrement = 0.00000, seconds_since_start = 27.1\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293748.46684, newton_decrement = 0.00000, seconds_since_start = 30.9\n", - "Convergence success after 8 iterations.\n", - "0.7335116712923672\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774203-0.189260100000.7495761.001...FalseFalseFalseFalseFalseFalseFalseFalse6.7433261
5774211-0.31281710000-1.2991850.001...FalseFalseTrueFalseFalseFalseFalseFalse12.6598220
5774245-0.930601100002.0446941.001...FalseFalseFalseFalseFalseFalseFalseFalse12.6406570
5774267-1.17771410000-0.7234401.001...FalseFalseFalseFalseFalseFalseFalseFalse12.8596850
5774274-1.177714010000.4941990.000...FalseFalseFalseFalseTrueFalseFalseFalse10.8309380
..................................................................
6025150-1.671941100000.4334810.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42482810000-0.2627660.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05785310000-0.1723111.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.065703100000.4148791.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29342110000-0.2057461.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17782 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5774203 -0.189260 1 0 \n", - "5774211 -0.312817 1 0 \n", - "5774245 -0.930601 1 0 \n", - "5774267 -1.177714 1 0 \n", - "5774274 -1.177714 0 1 \n", - "... ... ... ... \n", - "6025150 -1.671941 1 0 \n", - "6025165 -1.424828 1 0 \n", - "6025173 0.057853 1 0 \n", - "6025182 -0.065703 1 0 \n", - "6025198 1.293421 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5774203 0 0 0 \n", - "5774211 0 0 0 \n", - "5774245 0 0 0 \n", - "5774267 0 0 0 \n", - "5774274 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5774203 0.749576 1.0 \n", - "5774211 -1.299185 0.0 \n", - "5774245 2.044694 1.0 \n", - "5774267 -0.723440 1.0 \n", - "5774274 0.494199 0.0 \n", - "... ... ... \n", - "6025150 0.433481 0.0 \n", - "6025165 -0.262766 0.0 \n", - "6025173 -0.172311 1.0 \n", - "6025182 0.414879 1.0 \n", - "6025198 -0.205746 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5774203 0 1 ... False \n", - "5774211 0 1 ... False \n", - "5774245 0 1 ... False \n", - "5774267 0 1 ... False \n", - "5774274 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774203 False False False \n", - "5774211 False True False \n", - "5774245 False False False \n", - "5774267 False False False \n", - "5774274 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774203 False False \n", - "5774211 False False \n", - "5774245 False False \n", - "5774267 False False \n", - "5774274 True False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774203 False False 6.743326 \n", - "5774211 False False 12.659822 \n", - "5774245 False False 12.640657 \n", - "5774267 False False 12.859685 \n", - "5774274 False False 10.830938 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774203 1 \n", - "5774211 0 \n", - "5774245 0 \n", - "5774267 0 \n", - "5774274 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17782 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000079100008410000921000107100011010001281000135...5774091577410857741145774127577413957741405774153577416257741715774186
11.00.0561080.1397790.0540760.0776550.0555570.0945080.018670.0145530.013750.017445...0.1197210.080670.0898720.2757720.0182710.0236720.0283150.0397540.0684920.039113
\n", - "

1 rows × 338417 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.056108 0.139779 0.054076 0.077655 0.055557 0.094508 0.01867 \n", - "\n", - " 1000110 1000128 1000135 ... 5774091 5774108 5774114 5774127 \\\n", - "11.0 0.014553 0.01375 0.017445 ... 0.119721 0.08067 0.089872 0.275772 \n", - "\n", - " 5774139 5774140 5774153 5774162 5774171 5774186 \n", - "11.0 0.018271 0.023672 0.028315 0.039754 0.068492 0.039113 \n", - "\n", - "[1 rows x 338417 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "8\n", - "Iteration 1: norm_delta = 0.88350, step_size = 0.5000, log_lik = -303600.50186, newton_decrement = 8863.09158, seconds_since_start = 3.9\n", - "Iteration 2: norm_delta = 0.40709, step_size = 0.5000, log_lik = -297083.72871, newton_decrement = 2125.68633, seconds_since_start = 7.7\n", - "Iteration 3: norm_delta = 0.23170, step_size = 0.5000, log_lik = -295476.42684, newton_decrement = 620.60038, seconds_since_start = 11.5\n", - "Iteration 4: norm_delta = 0.10545, step_size = 0.6000, log_lik = -294950.53981, newton_decrement = 116.04341, seconds_since_start = 15.3\n", - "Iteration 5: norm_delta = 0.03261, step_size = 0.7200, log_lik = -294842.85895, newton_decrement = 10.36572, seconds_since_start = 19.1\n", - "Iteration 6: norm_delta = 0.00476, step_size = 0.8640, log_lik = -294832.64800, newton_decrement = 0.21279, seconds_since_start = 23.1\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294832.43504, newton_decrement = 0.00000, seconds_since_start = 27.1\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294832.43503, newton_decrement = 0.00000, seconds_since_start = 30.8\n", - "Convergence success after 8 iterations.\n", - "0.7337164482287201\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57745040.676477100000.7078340.010...FalseTrueFalseTrueTrueFalseFalseFalse11.5345650
5774516-1.177732100000.2711631.001...FalseFalseFalseFalseFalseFalseFalseFalse12.7255300
57745310.92370410000-0.0800661.001...FalseTrueFalseFalseFalseFalseFalseFalse10.3052700
5774550-0.683276100001.1594830.010...FalseFalseFalseFalseFalseFalseFalseFalse10.5242980
57745650.058407100001.1806511.001...FalseFalseFalseFalseFalseFalseFalseFalse11.5345650
..................................................................
6025150-1.672187100000.4328350.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42495910000-0.2627960.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05840710000-0.1724211.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.065207100000.4142491.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29454610000-0.2058261.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17763 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5774504 0.676477 1 0 \n", - "5774516 -1.177732 1 0 \n", - "5774531 0.923704 1 0 \n", - "5774550 -0.683276 1 0 \n", - "5774565 0.058407 1 0 \n", - "... ... ... ... \n", - "6025150 -1.672187 1 0 \n", - "6025165 -1.424959 1 0 \n", - "6025173 0.058407 1 0 \n", - "6025182 -0.065207 1 0 \n", - "6025198 1.294546 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5774504 0 0 0 \n", - "5774516 0 0 0 \n", - "5774531 0 0 0 \n", - "5774550 0 0 0 \n", - "5774565 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5774504 0.707834 0.0 \n", - "5774516 0.271163 1.0 \n", - "5774531 -0.080066 1.0 \n", - "5774550 1.159483 0.0 \n", - "5774565 1.180651 1.0 \n", - "... ... ... \n", - "6025150 0.432835 0.0 \n", - "6025165 -0.262796 0.0 \n", - "6025173 -0.172421 1.0 \n", - "6025182 0.414249 1.0 \n", - "6025198 -0.205826 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5774504 1 0 ... False \n", - "5774516 0 1 ... False \n", - "5774531 0 1 ... False \n", - "5774550 1 0 ... False \n", - "5774565 0 1 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774504 True False True \n", - "5774516 False False False \n", - "5774531 True False False \n", - "5774550 False False False \n", - "5774565 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774504 True False \n", - "5774516 False False \n", - "5774531 False False \n", - "5774550 False False \n", - "5774565 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774504 False False 11.534565 \n", - "5774516 False False 12.725530 \n", - "5774531 False False 10.305270 \n", - "5774550 False False 10.524298 \n", - "5774565 False False 11.534565 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774504 0 \n", - "5774516 0 \n", - "5774531 0 \n", - "5774550 0 \n", - "5774565 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17763 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5774359577436457743965774405577442057744435774451577446657744795774484
11.00.0567570.1410780.050260.1392460.0787420.0580.094650.0184370.0143670.013738...0.0424050.0390050.0462370.0115470.1323030.010770.0698810.0214880.0472450.043107
\n", - "

1 rows × 338456 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.056757 0.141078 0.05026 0.139246 0.078742 0.058 0.09465 \n", - "\n", - " 1000107 1000110 1000128 ... 5774359 5774364 5774396 \\\n", - "11.0 0.018437 0.014367 0.013738 ... 0.042405 0.039005 0.046237 \n", - "\n", - " 5774405 5774420 5774443 5774451 5774466 5774479 5774484 \n", - "11.0 0.011547 0.132303 0.01077 0.069881 0.021488 0.047245 0.043107 \n", - "\n", - "[1 rows x 338456 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical\n", - "9\n", - "Iteration 1: norm_delta = 0.84487, step_size = 0.5000, log_lik = -302369.03502, newton_decrement = 8802.10427, seconds_since_start = 3.8\n", - "Iteration 2: norm_delta = 0.40507, step_size = 0.5000, log_lik = -295905.60665, newton_decrement = 2101.24037, seconds_since_start = 7.9\n", - "Iteration 3: norm_delta = 0.22850, step_size = 0.5000, log_lik = -294316.81957, newton_decrement = 613.29160, seconds_since_start = 11.6\n", - "Iteration 4: norm_delta = 0.10333, step_size = 0.6000, log_lik = -293797.12542, newton_decrement = 114.70320, seconds_since_start = 15.4\n", - "Iteration 5: norm_delta = 0.03191, step_size = 0.7200, log_lik = -293690.68288, newton_decrement = 10.25953, seconds_since_start = 19.2\n", - "Iteration 6: norm_delta = 0.00467, step_size = 0.8640, log_lik = -293680.57560, newton_decrement = 0.21129, seconds_since_start = 23.0\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293680.36412, newton_decrement = 0.00000, seconds_since_start = 26.8\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293680.36412, newton_decrement = 0.00000, seconds_since_start = 30.6\n", - "Convergence success after 8 iterations.\n", - "0.7341210145016998\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0townsend_deprivation_index_at_recruitmentsexoverall_health_rating_0.0overall_health_rating_1.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774222-0.68434410000-1.0758550.000...FalseFalseFalseFalseFalseFalseFalseFalse12.8514720
57742361.04571510000-0.9015000.000...FalseFalseFalseFalseFalseFalseFalseFalse11.5181380
5774245-0.931495100002.0445901.001...FalseFalseFalseFalseFalseFalseFalseFalse12.6406570
5774267-1.17864710000-0.7240101.001...FalseFalseFalseFalseFalseFalseFalseFalse12.8596850
5774274-1.178647010000.4938340.000...FalseFalseFalseFalseTrueFalseFalseFalse10.8309380
..................................................................
6025150-1.672949100000.4331060.000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025165-1.42579810000-0.2632590.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
60251730.05711010000-0.1727881.001...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.066466100000.4145011.000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
60251981.29286710000-0.2062291.001...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17778 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " age_at_recruitment ethnic_background_0.0 ethnic_background_1.0 \\\n", - "eid \n", - "5774222 -0.684344 1 0 \n", - "5774236 1.045715 1 0 \n", - "5774245 -0.931495 1 0 \n", - "5774267 -1.178647 1 0 \n", - "5774274 -1.178647 0 1 \n", - "... ... ... ... \n", - "6025150 -1.672949 1 0 \n", - "6025165 -1.425798 1 0 \n", - "6025173 0.057110 1 0 \n", - "6025182 -0.066466 1 0 \n", - "6025198 1.292867 1 0 \n", - "\n", - " ethnic_background_2.0 ethnic_background_3.0 ethnic_background_4.0 \\\n", - "eid \n", - "5774222 0 0 0 \n", - "5774236 0 0 0 \n", - "5774245 0 0 0 \n", - "5774267 0 0 0 \n", - "5774274 0 0 0 \n", - "... ... ... ... \n", - "6025150 0 0 0 \n", - "6025165 0 0 0 \n", - "6025173 0 0 0 \n", - "6025182 0 0 0 \n", - "6025198 0 0 0 \n", - "\n", - " townsend_deprivation_index_at_recruitment sex \\\n", - "eid \n", - "5774222 -1.075855 0.0 \n", - "5774236 -0.901500 0.0 \n", - "5774245 2.044590 1.0 \n", - "5774267 -0.724010 1.0 \n", - "5774274 0.493834 0.0 \n", - "... ... ... \n", - "6025150 0.433106 0.0 \n", - "6025165 -0.263259 0.0 \n", - "6025173 -0.172788 1.0 \n", - "6025182 0.414501 1.0 \n", - "6025198 -0.206229 1.0 \n", - "\n", - " overall_health_rating_0.0 overall_health_rating_1.0 ... diabetes2 \\\n", - "eid ... \n", - "5774222 0 0 ... False \n", - "5774236 0 0 ... False \n", - "5774245 0 1 ... False \n", - "5774267 0 1 ... False \n", - "5774274 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 1 ... False \n", - "6025173 0 1 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 1 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774222 False False False \n", - "5774236 False False False \n", - "5774245 False False False \n", - "5774267 False False False \n", - "5774274 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774222 False False \n", - "5774236 False False \n", - "5774245 False False \n", - "5774267 False False \n", - "5774274 True False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774222 False False 12.851472 \n", - "5774236 False False 11.518138 \n", - "5774245 False False 12.640657 \n", - "5774267 False False 12.859685 \n", - "5774274 False False 10.830938 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774222 0 \n", - "5774236 0 \n", - "5774245 0 \n", - "5774267 0 \n", - "5774274 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17778 rows x 40 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5774108577411457741275774140577415357741625774171577418657742035774211
11.00.0574590.1390220.0417630.1350560.0779090.0564450.0929040.0184590.014460.013692...0.0806120.0921050.2705250.0298690.0292750.0395210.0685040.0429020.0971030.04952
\n", - "

1 rows × 338451 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.057459 0.139022 0.041763 0.135056 0.077909 0.056445 0.092904 \n", - "\n", - " 1000107 1000110 1000128 ... 5774108 5774114 5774127 \\\n", - "11.0 0.018459 0.01446 0.013692 ... 0.080612 0.092105 0.270525 \n", - "\n", - " 5774140 5774153 5774162 5774171 5774186 5774203 5774211 \n", - "11.0 0.029869 0.029275 0.039521 0.068504 0.042902 0.097103 0.04952 \n", - "\n", - "[1 rows x 338451 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "0\n", - "Iteration 1: norm_delta = 0.85142, step_size = 0.5000, log_lik = -302789.67372, newton_decrement = 9031.28749, seconds_since_start = 4.1\n", - "Iteration 2: norm_delta = 0.40595, step_size = 0.5000, log_lik = -296151.00190, newton_decrement = 2159.31329, seconds_since_start = 8.2\n", - "Iteration 3: norm_delta = 0.23022, step_size = 0.5000, log_lik = -294518.76240, newton_decrement = 627.15448, seconds_since_start = 12.3\n", - "Iteration 4: norm_delta = 0.10441, step_size = 0.6000, log_lik = -293987.45099, newton_decrement = 116.82710, seconds_since_start = 16.5\n", - "Iteration 5: norm_delta = 0.03230, step_size = 0.7200, log_lik = -293879.05374, newton_decrement = 10.42320, seconds_since_start = 20.6\n", - "Iteration 6: norm_delta = 0.00474, step_size = 0.8640, log_lik = -293868.78563, newton_decrement = 0.21450, seconds_since_start = 24.7\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293868.57093, newton_decrement = 0.00000, seconds_since_start = 28.9\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293868.57093, newton_decrement = 0.00000, seconds_since_start = 33.1\n", - "Convergence success after 8 iterations.\n", - "0.7385962740563872\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57740800.5041300.2316450.9995510.3559050.80091210000...FalseFalseFalseFalseFalseFalseFalseFalse10.8665300
5774091-0.547183-0.1940420.555937-0.6051160.92449410000...FalseFalseFalseFalseFalseFalseFalseFalse11.8357290
57741080.6712611.8734360.9487090.4185920.55374710000...TrueFalseFalseFalseFalseFalseFalseFalse10.5462010
57741141.5301580.9279321.0556980.588455-0.18774610000...FalseTrueFalseFalseTrueFalseTrueFalse10.9158110
5774127-0.3299921.2838700.3162420.7405660.55374710000...FalseFalseFalseFalseFalseFalseFalseTrue11.3675560
..................................................................
60251470.5195270.2409381.351894-1.702280-1.67073300100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251500.9125280.9526140.1231780.551615-1.67073310000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.216185-0.497419-0.978002-0.698478-1.42356910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.547509-1.499181-1.130077-1.2846420.05941810000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.180536-0.194042-0.674475-0.774608-0.06416410000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
\n", - "

17756 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5774080 0.504130 0.231645 0.999551 0.355905 0.800912 \n", - "5774091 -0.547183 -0.194042 0.555937 -0.605116 0.924494 \n", - "5774108 0.671261 1.873436 0.948709 0.418592 0.553747 \n", - "5774114 1.530158 0.927932 1.055698 0.588455 -0.187746 \n", - "5774127 -0.329992 1.283870 0.316242 0.740566 0.553747 \n", - "... ... ... ... ... ... \n", - "6025147 0.519527 0.240938 1.351894 -1.702280 -1.670733 \n", - "6025150 0.912528 0.952614 0.123178 0.551615 -1.670733 \n", - "6025165 1.216185 -0.497419 -0.978002 -0.698478 -1.423569 \n", - "6025173 -1.547509 -1.499181 -1.130077 -1.284642 0.059418 \n", - "6025182 -0.180536 -0.194042 -0.674475 -0.774608 -0.064164 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5774080 1 0 0 \n", - "5774091 1 0 0 \n", - "5774108 1 0 0 \n", - "5774114 1 0 0 \n", - "5774127 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5774080 0 0 ... False \n", - "5774091 0 0 ... False \n", - "5774108 0 0 ... True \n", - "5774114 0 0 ... False \n", - "5774127 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774080 False False False \n", - "5774091 False False False \n", - "5774108 False False False \n", - "5774114 True False False \n", - "5774127 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774080 False False \n", - "5774091 False False \n", - "5774108 False False \n", - "5774114 True False \n", - "5774127 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774080 False False 10.866530 \n", - "5774091 False False 11.835729 \n", - "5774108 False False 10.546201 \n", - "5774114 True False 10.915811 \n", - "5774127 False True 11.367556 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774080 0 \n", - "5774091 0 \n", - "5774108 0 \n", - "5774114 0 \n", - "5774127 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "\n", - "[17756 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100009210001071000110100012810001351000144...5773972577398357739995774009577401757740245774038577405257740635774075
11.00.0517620.1395020.0506480.1386410.0803540.0154640.015390.0105180.0146470.053411...0.1826420.2842850.0688590.1756770.0261070.0498460.0417490.0120060.0158320.088104
\n", - "

1 rows × 338496 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000092 1000107 1000110 \\\n", - "11.0 0.051762 0.139502 0.050648 0.138641 0.080354 0.015464 0.01539 \n", - "\n", - " 1000128 1000135 1000144 ... 5773972 5773983 5773999 \\\n", - "11.0 0.010518 0.014647 0.053411 ... 0.182642 0.284285 0.068859 \n", - "\n", - " 5774009 5774017 5774024 5774038 5774052 5774063 5774075 \n", - "11.0 0.175677 0.026107 0.049846 0.041749 0.012006 0.015832 0.088104 \n", - "\n", - "[1 rows x 338496 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "1\n", - "Iteration 1: norm_delta = 0.84363, step_size = 0.5000, log_lik = -301918.37352, newton_decrement = 9029.07588, seconds_since_start = 4.2\n", - "Iteration 2: norm_delta = 0.40934, step_size = 0.5000, log_lik = -295271.53723, newton_decrement = 2178.42860, seconds_since_start = 8.4\n", - "Iteration 3: norm_delta = 0.23296, step_size = 0.5000, log_lik = -293624.65731, newton_decrement = 633.93448, seconds_since_start = 12.5\n", - "Iteration 4: norm_delta = 0.10578, step_size = 0.6000, log_lik = -293087.56072, newton_decrement = 118.20847, seconds_since_start = 16.7\n", - "Iteration 5: norm_delta = 0.03265, step_size = 0.7200, log_lik = -292977.88323, newton_decrement = 10.53748, seconds_since_start = 21.2\n", - "Iteration 6: norm_delta = 0.00476, step_size = 0.8640, log_lik = -292967.50367, newton_decrement = 0.21597, seconds_since_start = 25.4\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -292967.28752, newton_decrement = 0.00000, seconds_since_start = 29.6\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -292967.28752, newton_decrement = 0.00000, seconds_since_start = 34.1\n", - "Convergence success after 8 iterations.\n", - "0.7371736332303399\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
57739720.1550232.0212871.1196481.3068341.17006210000...FalseFalseFalseFalseFalseFalseFalseFalse10.4202600
57739830.0455911.0021890.6695870.3609031.54068510000...FalseFalseTrueFalseFalseFalseFalseFalse12.3641340
5773999-0.2882400.721837-0.3525910.533248-0.31243010000...FalseFalseFalseTrueFalseFalseFalseFalse11.3429160
57740092.8533411.9193771.0448421.7797990.92298010000...FalseFalseFalseFalseFalseFalseFalseFalse11.4633810
5774017-0.806272-0.806710-0.227310-0.698540-1.17721710000...FalseFalseFalseFalseFalseFalseFalseFalse10.5954830
..................................................................
60251470.5183340.2396641.351434-1.700856-1.67138100100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251500.9110890.9512340.1231850.550534-1.67138110000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.214556-0.498583-0.977576-0.698169-1.42429910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025182-0.181291-0.195251-0.674165-0.774214-0.06534810000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.262530-0.9086201.048006-0.4904351.29360310000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17724 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773972 0.155023 2.021287 1.119648 1.306834 1.170062 \n", - "5773983 0.045591 1.002189 0.669587 0.360903 1.540685 \n", - "5773999 -0.288240 0.721837 -0.352591 0.533248 -0.312430 \n", - "5774009 2.853341 1.919377 1.044842 1.779799 0.922980 \n", - "5774017 -0.806272 -0.806710 -0.227310 -0.698540 -1.177217 \n", - "... ... ... ... ... ... \n", - "6025147 0.518334 0.239664 1.351434 -1.700856 -1.671381 \n", - "6025150 0.911089 0.951234 0.123185 0.550534 -1.671381 \n", - "6025165 1.214556 -0.498583 -0.977576 -0.698169 -1.424299 \n", - "6025182 -0.181291 -0.195251 -0.674165 -0.774214 -0.065348 \n", - "6025198 -0.262530 -0.908620 1.048006 -0.490435 1.293603 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773972 1 0 0 \n", - "5773983 1 0 0 \n", - "5773999 1 0 0 \n", - "5774009 1 0 0 \n", - "5774017 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773972 0 0 ... False \n", - "5773983 0 0 ... False \n", - "5773999 0 0 ... False \n", - "5774009 0 0 ... False \n", - "5774017 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773972 False False False \n", - "5773983 False True False \n", - "5773999 False False True \n", - "5774009 False False False \n", - "5774017 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773972 False False \n", - "5773983 False False \n", - "5773999 False False \n", - "5774009 False False \n", - "5774017 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773972 False False 10.420260 \n", - "5773983 False False 12.364134 \n", - "5773999 False False 11.342916 \n", - "5774009 False False 11.463381 \n", - "5774017 False False 10.595483 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773972 0 \n", - "5773983 0 \n", - "5773999 0 \n", - "5774009 0 \n", - "5774017 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17724 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000431000079100008410000921000107100011010001281000135...5773814577382757738405773871577388657738955773928577393557739445773961
11.00.0506760.1418860.1385370.0822220.0581410.0799010.0151380.0149210.0119790.014592...0.1283380.1071880.0384270.0847160.7897870.0119450.0279640.0218820.0305060.035277
\n", - "

1 rows × 338347 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000043 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.050676 0.141886 0.138537 0.082222 0.058141 0.079901 0.015138 \n", - "\n", - " 1000110 1000128 1000135 ... 5773814 5773827 5773840 \\\n", - "11.0 0.014921 0.011979 0.014592 ... 0.128338 0.107188 0.038427 \n", - "\n", - " 5773871 5773886 5773895 5773928 5773935 5773944 5773961 \n", - "11.0 0.084716 0.789787 0.011945 0.027964 0.021882 0.030506 0.035277 \n", - "\n", - "[1 rows x 338347 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "2\n", - "Iteration 1: norm_delta = 0.83836, step_size = 0.5000, log_lik = -303934.60837, newton_decrement = 9164.67613, seconds_since_start = 4.0\n", - "Iteration 2: norm_delta = 0.40845, step_size = 0.5000, log_lik = -297189.61863, newton_decrement = 2211.37629, seconds_since_start = 8.2\n", - "Iteration 3: norm_delta = 0.23265, step_size = 0.5000, log_lik = -295517.75359, newton_decrement = 644.14683, seconds_since_start = 12.4\n", - "Iteration 4: norm_delta = 0.10586, step_size = 0.6000, log_lik = -294971.96435, newton_decrement = 120.27386, seconds_since_start = 16.5\n", - "Iteration 5: norm_delta = 0.03275, step_size = 0.7200, log_lik = -294860.36274, newton_decrement = 10.73591, seconds_since_start = 20.7\n", - "Iteration 6: norm_delta = 0.00478, step_size = 0.8640, log_lik = -294849.78726, newton_decrement = 0.22031, seconds_since_start = 24.9\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294849.56676, newton_decrement = 0.00000, seconds_since_start = 29.3\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294849.56676, newton_decrement = 0.00000, seconds_since_start = 33.8\n", - "Convergence success after 8 iterations.\n", - "0.7351214359762639\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773808-1.812692-1.087006-0.549280-0.058962-1.67082410000...FalseFalseFalseFalseFalseFalseFalseFalse10.6858320
57738140.0888570.0721091.2262570.4175020.42900010000...FalseFalseFalseTrueFalseFalseFalseFalse13.1006160
57738270.585491-0.270818-0.078308-0.3579680.67603910000...FalseFalseFalseFalseFalseFalseFalseFalse10.8610540
57738400.4190200.7962430.8164191.008088-1.05322810000...FalseFalseFalseFalseFalseFalseFalseFalse11.7891850
57738712.4904071.869502-0.0318070.9287140.42900010000...FalseFalseFalseFalseFalseFalseFalseFalse11.2224500
..................................................................
60251470.5179280.2401241.351553-1.702714-1.67082400100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251500.9107540.9519650.1231460.550484-1.67082410000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
6025173-1.548184-1.500397-1.129791-1.2852050.05844310000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.181822-0.194956-0.674304-0.775329-0.06507610000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.263076-0.9085961.048086-0.4913211.29363410000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17750 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773808 -1.812692 -1.087006 -0.549280 -0.058962 -1.670824 \n", - "5773814 0.088857 0.072109 1.226257 0.417502 0.429000 \n", - "5773827 0.585491 -0.270818 -0.078308 -0.357968 0.676039 \n", - "5773840 0.419020 0.796243 0.816419 1.008088 -1.053228 \n", - "5773871 2.490407 1.869502 -0.031807 0.928714 0.429000 \n", - "... ... ... ... ... ... \n", - "6025147 0.517928 0.240124 1.351553 -1.702714 -1.670824 \n", - "6025150 0.910754 0.951965 0.123146 0.550484 -1.670824 \n", - "6025173 -1.548184 -1.500397 -1.129791 -1.285205 0.058443 \n", - "6025182 -0.181822 -0.194956 -0.674304 -0.775329 -0.065076 \n", - "6025198 -0.263076 -0.908596 1.048086 -0.491321 1.293634 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773808 1 0 0 \n", - "5773814 1 0 0 \n", - "5773827 1 0 0 \n", - "5773840 1 0 0 \n", - "5773871 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025150 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773808 0 0 ... False \n", - "5773814 0 0 ... False \n", - "5773827 0 0 ... False \n", - "5773840 0 0 ... False \n", - "5773871 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025150 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773808 False False False \n", - "5773814 False False True \n", - "5773827 False False False \n", - "5773840 False False False \n", - "5773871 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773808 False False \n", - "5773814 False False \n", - "5773827 False False \n", - "5773840 False False \n", - "5773871 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773808 False False 10.685832 \n", - "5773814 False False 13.100616 \n", - "5773827 False False 10.861054 \n", - "5773840 False False 11.789185 \n", - "5773871 False False 11.222450 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773808 0 \n", - "5773814 0 \n", - "5773827 0 \n", - "5773840 0 \n", - "5773871 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17750 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000135...5773685577369457737025773723577373057737415773759577376457737775773796
11.00.0517390.1433240.0633170.1429690.0820170.0590620.0805130.0147640.0151680.014462...0.065090.0520950.1143010.0247140.0547340.0636950.3271690.2247530.0337610.011513
\n", - "

1 rows × 338279 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.051739 0.143324 0.063317 0.142969 0.082017 0.059062 0.080513 \n", - "\n", - " 1000107 1000110 1000135 ... 5773685 5773694 5773702 \\\n", - "11.0 0.014764 0.015168 0.014462 ... 0.06509 0.052095 0.114301 \n", - "\n", - " 5773723 5773730 5773741 5773759 5773764 5773777 5773796 \n", - "11.0 0.024714 0.054734 0.063695 0.327169 0.224753 0.033761 0.011513 \n", - "\n", - "[1 rows x 338279 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "3\n", - "Iteration 1: norm_delta = 0.83402, step_size = 0.5000, log_lik = -304005.99770, newton_decrement = 9072.55473, seconds_since_start = 4.0\n", - "Iteration 2: norm_delta = 0.41374, step_size = 0.5000, log_lik = -297332.54431, newton_decrement = 2176.30449, seconds_since_start = 8.3\n", - "Iteration 3: norm_delta = 0.23546, step_size = 0.5000, log_lik = -295687.34149, newton_decrement = 632.79383, seconds_since_start = 12.3\n", - "Iteration 4: norm_delta = 0.10692, step_size = 0.6000, log_lik = -295151.23722, newton_decrement = 117.89940, seconds_since_start = 16.5\n", - "Iteration 5: norm_delta = 0.03301, step_size = 0.7200, log_lik = -295041.85007, newton_decrement = 10.50411, seconds_since_start = 21.0\n", - "Iteration 6: norm_delta = 0.00481, step_size = 0.8640, log_lik = -295031.50347, newton_decrement = 0.21525, seconds_since_start = 25.1\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -295031.28803, newton_decrement = 0.00000, seconds_since_start = 29.2\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -295031.28803, newton_decrement = 0.00000, seconds_since_start = 33.4\n", - "Convergence success after 8 iterations.\n", - "0.7377430041881108\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773935-0.490263-0.678900-1.113311-0.774262-0.18893310000...FalseFalseFalseFalseFalseFalseFalseFalse12.8213550
5773944-0.585952-1.316175-1.439081-0.168532-1.05365610000...FalseFalseFalseFalseFalseFalseTrueFalse12.3668720
57739560.831714-0.3730081.337478-0.0360291.04638610000...FalseFalseFalseFalseFalseFalseFalseFalse12.0191650
57739610.1891280.7301020.475269-0.5851940.67579010000...FalseFalseFalseFalseFalseFalseFalseFalse12.7091030
57739720.1553542.0231451.1194821.3079351.16991810000...FalseFalseFalseFalseFalseFalseFalseFalse10.4202600
..................................................................
60251470.5188520.2405751.351386-1.701416-1.67131500100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251500.9118110.9525230.1225090.551218-1.67131510000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.215434-0.498064-0.978815-0.698175-1.42425110000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.547960-1.500210-1.130909-1.2840110.05813110000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025198-0.262416-0.9083191.047803-0.4903261.29345010000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17778 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773935 -0.490263 -0.678900 -1.113311 -0.774262 -0.188933 \n", - "5773944 -0.585952 -1.316175 -1.439081 -0.168532 -1.053656 \n", - "5773956 0.831714 -0.373008 1.337478 -0.036029 1.046386 \n", - "5773961 0.189128 0.730102 0.475269 -0.585194 0.675790 \n", - "5773972 0.155354 2.023145 1.119482 1.307935 1.169918 \n", - "... ... ... ... ... ... \n", - "6025147 0.518852 0.240575 1.351386 -1.701416 -1.671315 \n", - "6025150 0.911811 0.952523 0.122509 0.551218 -1.671315 \n", - "6025165 1.215434 -0.498064 -0.978815 -0.698175 -1.424251 \n", - "6025173 -1.547960 -1.500210 -1.130909 -1.284011 0.058131 \n", - "6025198 -0.262416 -0.908319 1.047803 -0.490326 1.293450 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773935 1 0 0 \n", - "5773944 1 0 0 \n", - "5773956 1 0 0 \n", - "5773961 1 0 0 \n", - "5773972 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773935 0 0 ... False \n", - "5773944 0 0 ... False \n", - "5773956 0 0 ... False \n", - "5773961 0 0 ... False \n", - "5773972 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773935 False False False \n", - "5773944 False False False \n", - "5773956 False False False \n", - "5773961 False False False \n", - "5773972 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773935 False False \n", - "5773944 False False \n", - "5773956 False False \n", - "5773961 False False \n", - "5773972 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773935 False False 12.821355 \n", - "5773944 True False 12.366872 \n", - "5773956 False False 12.019165 \n", - "5773961 False False 12.709103 \n", - "5773972 False False 10.420260 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773935 0 \n", - "5773944 0 \n", - "5773956 0 \n", - "5773961 0 \n", - "5773972 0 \n", - "... ... \n", - "6025147 0 \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025198 0 \n", - "\n", - "[17778 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000020100003710000431000079100008410000921000107100011010001281000135...5773759577378857738085773814577382757738715773886577389557739075773928
11.00.1438860.0658850.1417650.079610.0574750.0833250.0153890.0153730.015820.014933...0.3204820.0127620.0242380.1288390.1077940.0928780.8109780.0121410.0943870.027914
\n", - "

1 rows × 338322 columns

\n", - "
" - ], - "text/plain": [ - " 1000020 1000037 1000043 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.143886 0.065885 0.141765 0.07961 0.057475 0.083325 0.015389 \n", - "\n", - " 1000110 1000128 1000135 ... 5773759 5773788 5773808 \\\n", - "11.0 0.015373 0.01582 0.014933 ... 0.320482 0.012762 0.024238 \n", - "\n", - " 5773814 5773827 5773871 5773886 5773895 5773907 5773928 \n", - "11.0 0.128839 0.107794 0.092878 0.810978 0.012141 0.094387 0.027914 \n", - "\n", - "[1 rows x 338322 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "4\n", - "Iteration 1: norm_delta = 0.87203, step_size = 0.5000, log_lik = -302864.07070, newton_decrement = 9093.83811, seconds_since_start = 4.2\n", - "Iteration 2: norm_delta = 0.40954, step_size = 0.5000, log_lik = -296174.71296, newton_decrement = 2186.56763, seconds_since_start = 8.4\n", - "Iteration 3: norm_delta = 0.23141, step_size = 0.5000, log_lik = -294521.63404, newton_decrement = 636.68630, seconds_since_start = 12.6\n", - "Iteration 4: norm_delta = 0.10486, step_size = 0.6000, log_lik = -293982.17890, newton_decrement = 118.85252, seconds_since_start = 16.7\n", - "Iteration 5: norm_delta = 0.03242, step_size = 0.7200, log_lik = -293871.89388, newton_decrement = 10.61692, seconds_since_start = 20.8\n", - "Iteration 6: norm_delta = 0.00475, step_size = 0.8640, log_lik = -293861.43487, newton_decrement = 0.21844, seconds_since_start = 24.9\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293861.21624, newton_decrement = 0.00000, seconds_since_start = 29.1\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293861.21624, newton_decrement = 0.00000, seconds_since_start = 33.6\n", - "Convergence success after 8 iterations.\n", - "0.7377586361103405\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5772854-0.831473-0.475716-1.808277-0.846440-0.18814110000...FalseFalseFalseFalseFalseFalseFalseFalse12.5667351
5772869-0.3554220.365418-0.441591-0.6670180.05884410000...FalseFalseFalseFalseFalseFalseFalseFalse12.3531830
57728812.0015962.2749872.7290800.639929-1.29957410000...FalseFalseFalseFalseFalseFalseFalseFalse10.7104720
57728970.0251540.671285-2.087384-0.2070700.42932210000...FalseFalseFalseFalseFalseFalseFalseFalse12.4298430
5772905-0.434826-0.526694-0.6559501.155849-1.42306710000...FalseFalseFalseFalseFalseFalseTrueFalse11.6659820
..................................................................
60251470.5191680.2397721.351487-1.702124-1.67005200100...FalseFalseFalseFalseFalseFalseFalseFalse11.8795350
60251651.215796-0.498806-0.977772-0.698864-1.42306710000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.547780-1.500870-1.129805-1.2847120.05884410000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.180865-0.195338-0.674328-0.774953-0.06464810000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.262152-0.9090281.048027-0.4910121.29377010000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17721 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5772854 -0.831473 -0.475716 -1.808277 -0.846440 -0.188141 \n", - "5772869 -0.355422 0.365418 -0.441591 -0.667018 0.058844 \n", - "5772881 2.001596 2.274987 2.729080 0.639929 -1.299574 \n", - "5772897 0.025154 0.671285 -2.087384 -0.207070 0.429322 \n", - "5772905 -0.434826 -0.526694 -0.655950 1.155849 -1.423067 \n", - "... ... ... ... ... ... \n", - "6025147 0.519168 0.239772 1.351487 -1.702124 -1.670052 \n", - "6025165 1.215796 -0.498806 -0.977772 -0.698864 -1.423067 \n", - "6025173 -1.547780 -1.500870 -1.129805 -1.284712 0.058844 \n", - "6025182 -0.180865 -0.195338 -0.674328 -0.774953 -0.064648 \n", - "6025198 -0.262152 -0.909028 1.048027 -0.491012 1.293770 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5772854 1 0 0 \n", - "5772869 1 0 0 \n", - "5772881 1 0 0 \n", - "5772897 1 0 0 \n", - "5772905 1 0 0 \n", - "... ... ... ... \n", - "6025147 0 0 1 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5772854 0 0 ... False \n", - "5772869 0 0 ... False \n", - "5772881 0 0 ... False \n", - "5772897 0 0 ... False \n", - "5772905 0 0 ... False \n", - "... ... ... ... ... \n", - "6025147 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5772854 False False False \n", - "5772869 False False False \n", - "5772881 False False False \n", - "5772897 False False False \n", - "5772905 False False False \n", - "... ... ... ... \n", - "6025147 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5772854 False False \n", - "5772869 False False \n", - "5772881 False False \n", - "5772897 False False \n", - "5772905 False False \n", - "... ... ... \n", - "6025147 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5772854 False False 12.566735 \n", - "5772869 False False 12.353183 \n", - "5772881 False False 10.710472 \n", - "5772897 False False 12.429843 \n", - "5772905 True False 11.665982 \n", - "... ... ... ... \n", - "6025147 False False 11.879535 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5772854 1 \n", - "5772869 0 \n", - "5772881 0 \n", - "5772897 0 \n", - "5772905 0 \n", - "... ... \n", - "6025147 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17721 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001281000144...5772709577271757727245772738577275257727635772775577278057727915772848
11.00.0510650.141080.0693130.1384250.0798970.05770.0838810.0154210.0098710.062679...0.0693550.0506180.1438260.0259640.1117140.1631840.0168320.0448670.1083010.129851
\n", - "

1 rows × 338386 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.051065 0.14108 0.069313 0.138425 0.079897 0.0577 0.083881 \n", - "\n", - " 1000107 1000128 1000144 ... 5772709 5772717 5772724 \\\n", - "11.0 0.015421 0.009871 0.062679 ... 0.069355 0.050618 0.143826 \n", - "\n", - " 5772738 5772752 5772763 5772775 5772780 5772791 5772848 \n", - "11.0 0.025964 0.111714 0.163184 0.016832 0.044867 0.108301 0.129851 \n", - "\n", - "[1 rows x 338386 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "5\n", - "Iteration 1: norm_delta = 0.84122, step_size = 0.5000, log_lik = -303530.87696, newton_decrement = 9072.72533, seconds_since_start = 4.2\n", - "Iteration 2: norm_delta = 0.40846, step_size = 0.5000, log_lik = -296850.41665, newton_decrement = 2183.21770, seconds_since_start = 8.4\n", - "Iteration 3: norm_delta = 0.23223, step_size = 0.5000, log_lik = -295200.02498, newton_decrement = 634.71457, seconds_since_start = 12.7\n", - "Iteration 4: norm_delta = 0.10546, step_size = 0.6000, log_lik = -294662.27731, newton_decrement = 118.34724, seconds_since_start = 16.9\n", - "Iteration 5: norm_delta = 0.03261, step_size = 0.7200, log_lik = -294552.46665, newton_decrement = 10.56167, seconds_since_start = 21.1\n", - "Iteration 6: norm_delta = 0.00477, step_size = 0.8640, log_lik = -294542.06240, newton_decrement = 0.21709, seconds_since_start = 25.3\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294541.84512, newton_decrement = 0.00000, seconds_since_start = 29.5\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294541.84512, newton_decrement = 0.00000, seconds_since_start = 33.8\n", - "Convergence success after 8 iterations.\n", - "0.7392211080216978\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5773935-0.489797-0.678411-1.111549-0.775433-0.18818310000...FalseFalseFalseFalseFalseFalseFalseFalse12.8213550
5773944-0.585514-1.315263-1.437158-0.169347-1.05283110000...FalseFalseFalseFalseFalseFalseTrueFalse12.3668720
57739560.832557-0.3727221.338028-0.0367661.04703010000...FalseFalseFalseFalseFalseFalseFalseFalse12.0191650
57739610.1897870.7296560.476245-0.5862540.67646610000...FalseFalseFalseFalseFalseFalseFalseFalse12.7091030
57739720.1560042.0218401.1201401.3079871.17055110000...FalseFalseFalseFalseFalseFalseFalseFalse10.4202600
..................................................................
60251500.9126770.9519290.1236600.550825-1.67043810000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.216387-0.497695-0.977119-0.699301-1.42339510000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.547796-1.499176-1.129139-1.2854810.05886010000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.180581-0.194404-0.673702-0.775433-0.06466110000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.261885-0.9076781.048496-0.4913311.29407210000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17786 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5773935 -0.489797 -0.678411 -1.111549 -0.775433 -0.188183 \n", - "5773944 -0.585514 -1.315263 -1.437158 -0.169347 -1.052831 \n", - "5773956 0.832557 -0.372722 1.338028 -0.036766 1.047030 \n", - "5773961 0.189787 0.729656 0.476245 -0.586254 0.676466 \n", - "5773972 0.156004 2.021840 1.120140 1.307987 1.170551 \n", - "... ... ... ... ... ... \n", - "6025150 0.912677 0.951929 0.123660 0.550825 -1.670438 \n", - "6025165 1.216387 -0.497695 -0.977119 -0.699301 -1.423395 \n", - "6025173 -1.547796 -1.499176 -1.129139 -1.285481 0.058860 \n", - "6025182 -0.180581 -0.194404 -0.673702 -0.775433 -0.064661 \n", - "6025198 -0.261885 -0.907678 1.048496 -0.491331 1.294072 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5773935 1 0 0 \n", - "5773944 1 0 0 \n", - "5773956 1 0 0 \n", - "5773961 1 0 0 \n", - "5773972 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5773935 0 0 ... False \n", - "5773944 0 0 ... False \n", - "5773956 0 0 ... False \n", - "5773961 0 0 ... False \n", - "5773972 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5773935 False False False \n", - "5773944 False False False \n", - "5773956 False False False \n", - "5773961 False False False \n", - "5773972 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5773935 False False \n", - "5773944 False False \n", - "5773956 False False \n", - "5773961 False False \n", - "5773972 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5773935 False False 12.821355 \n", - "5773944 True False 12.366872 \n", - "5773956 False False 12.019165 \n", - "5773961 False False 12.709103 \n", - "5773972 False False 10.420260 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5773935 0 \n", - "5773944 0 \n", - "5773956 0 \n", - "5773961 0 \n", - "5773972 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17786 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5773788577379657738145773827577384057738715773886577389557739075773928
11.00.0518690.1434120.0868450.1377610.0798090.0572520.0811410.0152350.0154850.015103...0.0113220.0119080.1298160.108730.0386820.1086420.7914780.0119280.0928710.027278
\n", - "

1 rows × 338474 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.051869 0.143412 0.086845 0.137761 0.079809 0.057252 0.081141 \n", - "\n", - " 1000107 1000110 1000128 ... 5773788 5773796 5773814 \\\n", - "11.0 0.015235 0.015485 0.015103 ... 0.011322 0.011908 0.129816 \n", - "\n", - " 5773827 5773840 5773871 5773886 5773895 5773907 5773928 \n", - "11.0 0.10873 0.038682 0.108642 0.791478 0.011928 0.092871 0.027278 \n", - "\n", - "[1 rows x 338474 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "6\n", - "Iteration 1: norm_delta = 0.85899, step_size = 0.5000, log_lik = -302584.48904, newton_decrement = 9175.49386, seconds_since_start = 4.5\n", - "Iteration 2: norm_delta = 0.41476, step_size = 0.5000, log_lik = -295844.59451, newton_decrement = 2195.75284, seconds_since_start = 8.8\n", - "Iteration 3: norm_delta = 0.23540, step_size = 0.5000, log_lik = -294184.68819, newton_decrement = 638.65516, seconds_since_start = 13.4\n", - "Iteration 4: norm_delta = 0.10687, step_size = 0.6000, log_lik = -293643.58442, newton_decrement = 119.15072, seconds_since_start = 17.6\n", - "Iteration 5: norm_delta = 0.03305, step_size = 0.7200, log_lik = -293533.02514, newton_decrement = 10.63882, seconds_since_start = 21.8\n", - "Iteration 6: norm_delta = 0.00484, step_size = 0.8640, log_lik = -293522.54476, newton_decrement = 0.21875, seconds_since_start = 26.0\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293522.32582, newton_decrement = 0.00000, seconds_since_start = 30.1\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293522.32581, newton_decrement = 0.00000, seconds_since_start = 34.3\n", - "Convergence success after 8 iterations.\n", - "0.7402728130703884\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774024-0.0758280.366532-1.3068850.6857231.29398110000...FalseFalseFalseFalseFalseFalseFalseFalse10.9212870
57740380.5353110.280271-1.783581-0.005484-1.91765100000...FalseFalseFalseFalseFalseFalseFalseFalse11.1485280
57740520.2038380.5959290.6397361.206243-2.04117510000...FalseFalseFalseFalseFalseFalseFalseFalse11.5619440
57740630.1869250.7749481.092687-0.206300-0.92945710000...FalseFalseFalseFalseFalseFalseFalseFalse11.1266260
57740800.5040050.2315930.9994930.3551840.79988310000...FalseFalseFalseFalseFalseFalseFalseFalse10.8665300
..................................................................
60251500.9122480.9527680.1231210.550732-1.67060210000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.215789-0.497678-0.978057-0.698323-1.42355410000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.546857-1.499726-1.130131-1.2840010.05873810000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.180402-0.194215-0.674530-0.774390-0.06478710000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.261661-0.9078931.048292-0.4905311.29398110000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17779 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5774024 -0.075828 0.366532 -1.306885 0.685723 1.293981 \n", - "5774038 0.535311 0.280271 -1.783581 -0.005484 -1.917651 \n", - "5774052 0.203838 0.595929 0.639736 1.206243 -2.041175 \n", - "5774063 0.186925 0.774948 1.092687 -0.206300 -0.929457 \n", - "5774080 0.504005 0.231593 0.999493 0.355184 0.799883 \n", - "... ... ... ... ... ... \n", - "6025150 0.912248 0.952768 0.123121 0.550732 -1.670602 \n", - "6025165 1.215789 -0.497678 -0.978057 -0.698323 -1.423554 \n", - "6025173 -1.546857 -1.499726 -1.130131 -1.284001 0.058738 \n", - "6025182 -0.180402 -0.194215 -0.674530 -0.774390 -0.064787 \n", - "6025198 -0.261661 -0.907893 1.048292 -0.490531 1.293981 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5774024 1 0 0 \n", - "5774038 0 0 0 \n", - "5774052 1 0 0 \n", - "5774063 1 0 0 \n", - "5774080 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5774024 0 0 ... False \n", - "5774038 0 0 ... False \n", - "5774052 0 0 ... False \n", - "5774063 0 0 ... False \n", - "5774080 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774024 False False False \n", - "5774038 False False False \n", - "5774052 False False False \n", - "5774063 False False False \n", - "5774080 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774024 False False \n", - "5774038 False False \n", - "5774052 False False \n", - "5774063 False False \n", - "5774080 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774024 False False 10.921287 \n", - "5774038 False False 11.148528 \n", - "5774052 False False 11.561944 \n", - "5774063 False False 11.126626 \n", - "5774080 False False 10.866530 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774024 0 \n", - "5774038 0 \n", - "5774052 0 \n", - "5774063 0 \n", - "5774080 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17779 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100003710000431000079100008410001101000128100013510001441000156...5773928577393557739445773956577396157739725773983577399957740095774017
11.00.0517520.0664230.1418570.0802010.0570290.0151150.0161370.0143870.0476920.018374...0.0273210.0214590.0309260.049140.0438730.1845510.2899720.0674810.1797180.025644
\n", - "

1 rows × 338397 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000037 1000043 1000079 1000084 1000110 1000128 \\\n", - "11.0 0.051752 0.066423 0.141857 0.080201 0.057029 0.015115 0.016137 \n", - "\n", - " 1000135 1000144 1000156 ... 5773928 5773935 5773944 \\\n", - "11.0 0.014387 0.047692 0.018374 ... 0.027321 0.021459 0.030926 \n", - "\n", - " 5773956 5773961 5773972 5773983 5773999 5774009 5774017 \n", - "11.0 0.04914 0.043873 0.184551 0.289972 0.067481 0.179718 0.025644 \n", - "\n", - "[1 rows x 338397 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "7\n", - "Iteration 1: norm_delta = 0.87694, step_size = 0.5000, log_lik = -302470.77013, newton_decrement = 9088.93091, seconds_since_start = 4.2\n", - "Iteration 2: norm_delta = 0.41027, step_size = 0.5000, log_lik = -295788.78995, newton_decrement = 2181.67103, seconds_since_start = 8.6\n", - "Iteration 3: norm_delta = 0.23285, step_size = 0.5000, log_lik = -294139.35384, newton_decrement = 635.75866, seconds_since_start = 12.9\n", - "Iteration 4: norm_delta = 0.10593, step_size = 0.6000, log_lik = -293600.65171, newton_decrement = 118.79866, seconds_since_start = 17.1\n", - "Iteration 5: norm_delta = 0.03281, step_size = 0.7200, log_lik = -293490.41299, newton_decrement = 10.61637, seconds_since_start = 21.3\n", - "Iteration 6: norm_delta = 0.00480, step_size = 0.8640, log_lik = -293479.95472, newton_decrement = 0.21822, seconds_since_start = 25.5\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293479.73630, newton_decrement = 0.00000, seconds_since_start = 29.9\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293479.73630, newton_decrement = 0.00000, seconds_since_start = 34.5\n", - "Convergence success after 8 iterations.\n", - "0.739204341277305\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774203-1.189497-0.845222-0.388699-1.854974-0.18926010000...FalseFalseFalseFalseFalseFalseFalseFalse6.7433261
5774211-0.580437-1.314318-1.0850431.120747-0.31281710000...FalseFalseTrueFalseFalseFalseFalseFalse12.6598220
5774245-1.665432-0.016235-1.094184-0.067937-0.93060110000...FalseFalseFalseFalseFalseFalseFalseFalse12.6406570
5774267-0.866702-0.5016170.3762500.227971-1.17771410000...FalseFalseFalseFalseFalseFalseFalseFalse12.8596850
5774274-1.924670-1.1273791.2092250.151375-1.17771401000...FalseFalseFalseFalseTrueFalseFalseFalse10.8309380
..................................................................
60251500.9122960.9519320.1218560.551442-1.67194110000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.215934-0.497920-0.979015-0.698979-1.42482810000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.547596-1.499559-1.131047-1.2852970.05785310000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.180704-0.194581-0.675573-0.775129-0.06570310000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.261989-0.9079681.046769-0.4909591.29342110000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17782 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5774203 -1.189497 -0.845222 -0.388699 -1.854974 -0.189260 \n", - "5774211 -0.580437 -1.314318 -1.085043 1.120747 -0.312817 \n", - "5774245 -1.665432 -0.016235 -1.094184 -0.067937 -0.930601 \n", - "5774267 -0.866702 -0.501617 0.376250 0.227971 -1.177714 \n", - "5774274 -1.924670 -1.127379 1.209225 0.151375 -1.177714 \n", - "... ... ... ... ... ... \n", - "6025150 0.912296 0.951932 0.121856 0.551442 -1.671941 \n", - "6025165 1.215934 -0.497920 -0.979015 -0.698979 -1.424828 \n", - "6025173 -1.547596 -1.499559 -1.131047 -1.285297 0.057853 \n", - "6025182 -0.180704 -0.194581 -0.675573 -0.775129 -0.065703 \n", - "6025198 -0.261989 -0.907968 1.046769 -0.490959 1.293421 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5774203 1 0 0 \n", - "5774211 1 0 0 \n", - "5774245 1 0 0 \n", - "5774267 1 0 0 \n", - "5774274 0 1 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5774203 0 0 ... False \n", - "5774211 0 0 ... False \n", - "5774245 0 0 ... False \n", - "5774267 0 0 ... False \n", - "5774274 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774203 False False False \n", - "5774211 False True False \n", - "5774245 False False False \n", - "5774267 False False False \n", - "5774274 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774203 False False \n", - "5774211 False False \n", - "5774245 False False \n", - "5774267 False False \n", - "5774274 True False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774203 False False 6.743326 \n", - "5774211 False False 12.659822 \n", - "5774245 False False 12.640657 \n", - "5774267 False False 12.859685 \n", - "5774274 False False 10.830938 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774203 1 \n", - "5774211 0 \n", - "5774245 0 \n", - "5774267 0 \n", - "5774274 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17782 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000079100008410000921000107100011010001281000135...5774091577410857741145774127577413957741405774153577416257741715774186
11.00.0498250.1408420.0648290.0793440.0554820.0823660.0154180.0152570.0099060.014197...0.1151890.0947970.1097770.2440090.0170080.0267620.0297370.0381870.0684250.044605
\n", - "

1 rows × 338417 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000079 1000084 1000092 1000107 \\\n", - "11.0 0.049825 0.140842 0.064829 0.079344 0.055482 0.082366 0.015418 \n", - "\n", - " 1000110 1000128 1000135 ... 5774091 5774108 5774114 \\\n", - "11.0 0.015257 0.009906 0.014197 ... 0.115189 0.094797 0.109777 \n", - "\n", - " 5774127 5774139 5774140 5774153 5774162 5774171 5774186 \n", - "11.0 0.244009 0.017008 0.026762 0.029737 0.038187 0.068425 0.044605 \n", - "\n", - "[1 rows x 338417 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "8\n", - "Iteration 1: norm_delta = 0.88714, step_size = 0.5000, log_lik = -303600.50186, newton_decrement = 9129.51890, seconds_since_start = 4.5\n", - "Iteration 2: norm_delta = 0.41037, step_size = 0.5000, log_lik = -296884.25230, newton_decrement = 2191.76682, seconds_since_start = 9.1\n", - "Iteration 3: norm_delta = 0.23379, step_size = 0.5000, log_lik = -295227.28380, newton_decrement = 637.90573, seconds_since_start = 13.6\n", - "Iteration 4: norm_delta = 0.10647, step_size = 0.6000, log_lik = -294686.81198, newton_decrement = 118.99481, seconds_since_start = 18.1\n", - "Iteration 5: norm_delta = 0.03294, step_size = 0.7200, log_lik = -294576.40232, newton_decrement = 10.61255, seconds_since_start = 22.3\n", - "Iteration 6: norm_delta = 0.00481, step_size = 0.8640, log_lik = -294565.94862, newton_decrement = 0.21763, seconds_since_start = 26.5\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -294565.73082, newton_decrement = 0.00000, seconds_since_start = 30.7\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -294565.73082, newton_decrement = 0.00000, seconds_since_start = 35.1\n", - "Convergence success after 8 iterations.\n", - "0.7389123318005372\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774504-1.195535-0.270892-0.728970-1.0401750.67647710000...FalseTrueFalseTrueTrueFalseFalseFalse11.5345650
57745160.3756750.0857360.8010150.973959-1.17773210000...FalseFalseFalseFalseFalseFalseFalseFalse12.7255300
5774531-0.629394-1.136989-0.745352-1.0537700.92370410000...FalseTrueFalseFalseFalseFalseFalseFalse10.3052700
5774550-0.228892-0.4746800.014961-0.130907-0.68327610000...FalseFalseFalseFalseFalseFalseFalseFalse10.5242980
57745650.169057-0.423733-0.008039-0.5665980.05840710000...FalseFalseFalseFalseFalseFalseFalseFalse11.5345650
..................................................................
60251500.9121060.9518320.1229570.551491-1.67218710000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.215656-0.497755-0.977525-0.698828-1.42495910000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.547073-1.499211-1.129503-1.2850990.05840710000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.180577-0.194472-0.674190-0.774972-0.06520710000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.261839-0.9077281.047544-0.4908251.29454610000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17763 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5774504 -1.195535 -0.270892 -0.728970 -1.040175 0.676477 \n", - "5774516 0.375675 0.085736 0.801015 0.973959 -1.177732 \n", - "5774531 -0.629394 -1.136989 -0.745352 -1.053770 0.923704 \n", - "5774550 -0.228892 -0.474680 0.014961 -0.130907 -0.683276 \n", - "5774565 0.169057 -0.423733 -0.008039 -0.566598 0.058407 \n", - "... ... ... ... ... ... \n", - "6025150 0.912106 0.951832 0.122957 0.551491 -1.672187 \n", - "6025165 1.215656 -0.497755 -0.977525 -0.698828 -1.424959 \n", - "6025173 -1.547073 -1.499211 -1.129503 -1.285099 0.058407 \n", - "6025182 -0.180577 -0.194472 -0.674190 -0.774972 -0.065207 \n", - "6025198 -0.261839 -0.907728 1.047544 -0.490825 1.294546 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5774504 1 0 0 \n", - "5774516 1 0 0 \n", - "5774531 1 0 0 \n", - "5774550 1 0 0 \n", - "5774565 1 0 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5774504 0 0 ... False \n", - "5774516 0 0 ... False \n", - "5774531 0 0 ... False \n", - "5774550 0 0 ... False \n", - "5774565 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774504 True False True \n", - "5774516 False False False \n", - "5774531 True False False \n", - "5774550 False False False \n", - "5774565 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774504 True False \n", - "5774516 False False \n", - "5774531 False False \n", - "5774550 False False \n", - "5774565 False False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774504 False False 11.534565 \n", - "5774516 False False 12.725530 \n", - "5774531 False False 10.305270 \n", - "5774550 False False 10.524298 \n", - "5774565 False False 11.534565 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774504 0 \n", - "5774516 0 \n", - "5774531 0 \n", - "5774550 0 \n", - "5774565 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17763 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5774359577436457743965774405577442057744435774451577446657744795774484
11.00.050610.1430790.0603550.1414120.0806940.0581330.0820660.0151510.0150630.010609...0.0529290.0269780.0418740.0096310.1111240.0138990.0539390.0239260.0393160.036067
\n", - "

1 rows × 338456 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.05061 0.143079 0.060355 0.141412 0.080694 0.058133 0.082066 \n", - "\n", - " 1000107 1000110 1000128 ... 5774359 5774364 5774396 \\\n", - "11.0 0.015151 0.015063 0.010609 ... 0.052929 0.026978 0.041874 \n", - "\n", - " 5774405 5774420 5774443 5774451 5774466 5774479 5774484 \n", - "11.0 0.009631 0.111124 0.013899 0.053939 0.023926 0.039316 0.036067 \n", - "\n", - "[1 rows x 338456 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "clinical_pgs\n", - "9\n", - "Iteration 1: norm_delta = 0.84912, step_size = 0.5000, log_lik = -302369.03502, newton_decrement = 9055.19678, seconds_since_start = 4.5\n", - "Iteration 2: norm_delta = 0.40874, step_size = 0.5000, log_lik = -295716.00432, newton_decrement = 2165.35354, seconds_since_start = 9.1\n", - "Iteration 3: norm_delta = 0.23041, step_size = 0.5000, log_lik = -294079.00524, newton_decrement = 630.23031, seconds_since_start = 13.8\n", - "Iteration 4: norm_delta = 0.10411, step_size = 0.6000, log_lik = -293545.03016, newton_decrement = 117.61004, seconds_since_start = 18.3\n", - "Iteration 5: norm_delta = 0.03214, step_size = 0.7200, log_lik = -293435.89933, newton_decrement = 10.50382, seconds_since_start = 22.7\n", - "Iteration 6: norm_delta = 0.00471, step_size = 0.8640, log_lik = -293425.55177, newton_decrement = 0.21610, seconds_since_start = 27.1\n", - "Iteration 7: norm_delta = 0.00001, step_size = 1.0000, log_lik = -293425.33547, newton_decrement = 0.00000, seconds_since_start = 31.8\n", - "Iteration 8: norm_delta = 0.00000, step_size = 1.0000, log_lik = -293425.33547, newton_decrement = 0.00000, seconds_since_start = 36.4\n", - "Convergence success after 8 iterations.\n", - "0.7386060269302596\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
PGS000011PGS000057PGS000058PGS000059age_at_recruitmentethnic_background_0.0ethnic_background_1.0ethnic_background_2.0ethnic_background_3.0ethnic_background_4.0...diabetes2chronic_kidney_diseaseatrial_fibrillationmigrainerheumatoid_arthritissystemic_lupus_erythematosussevere_mental_illnesserectile_dysfunctionMACE_event_timeMACE_event
eid
5774222-0.643001-1.418119-0.1976780.479207-0.68434410000...FalseFalseFalseFalseFalseFalseFalseFalse12.8514720
57742360.7954821.4366401.805986-0.2826051.04571510000...FalseFalseFalseFalseFalseFalseFalseFalse11.5181380
5774245-1.664676-0.016178-1.093623-0.067969-0.93149510000...FalseFalseFalseFalseFalseFalseFalseFalse12.6406570
5774267-0.866094-0.5017500.3772350.227945-1.17864710000...FalseFalseFalseFalseFalseFalseFalseFalse12.8596850
5774274-1.923866-1.1277561.2104510.151347-1.17864701000...FalseFalseFalseFalseTrueFalseFalseFalse10.8309380
..................................................................
60251500.9125740.9523670.1227670.551421-1.67294910000...FalseFalseFalseFalseFalseFalseFalseFalse13.2539360
60251651.216156-0.498052-0.978422-0.699024-1.42579810000...FalseFalseFalseFalseFalseFalseFalseFalse12.0766600
6025173-1.546862-1.500081-1.130497-1.2853530.05711010000...FalseFalseFalseFalseFalseFalseFalseFalse12.0355920
6025182-0.180224-0.194594-0.674892-0.775175-0.06646610000...FalseFalseFalseFalseFalseFalseFalseFalse10.2505130
6025198-0.261494-0.9082591.047948-0.4910001.29286710000...FalseTrueFalseFalseFalseFalseFalseFalse10.6776180
\n", - "

17778 rows × 44 columns

\n", - "
" - ], - "text/plain": [ - " PGS000011 PGS000057 PGS000058 PGS000059 age_at_recruitment \\\n", - "eid \n", - "5774222 -0.643001 -1.418119 -0.197678 0.479207 -0.684344 \n", - "5774236 0.795482 1.436640 1.805986 -0.282605 1.045715 \n", - "5774245 -1.664676 -0.016178 -1.093623 -0.067969 -0.931495 \n", - "5774267 -0.866094 -0.501750 0.377235 0.227945 -1.178647 \n", - "5774274 -1.923866 -1.127756 1.210451 0.151347 -1.178647 \n", - "... ... ... ... ... ... \n", - "6025150 0.912574 0.952367 0.122767 0.551421 -1.672949 \n", - "6025165 1.216156 -0.498052 -0.978422 -0.699024 -1.425798 \n", - "6025173 -1.546862 -1.500081 -1.130497 -1.285353 0.057110 \n", - "6025182 -0.180224 -0.194594 -0.674892 -0.775175 -0.066466 \n", - "6025198 -0.261494 -0.908259 1.047948 -0.491000 1.292867 \n", - "\n", - " ethnic_background_0.0 ethnic_background_1.0 ethnic_background_2.0 \\\n", - "eid \n", - "5774222 1 0 0 \n", - "5774236 1 0 0 \n", - "5774245 1 0 0 \n", - "5774267 1 0 0 \n", - "5774274 0 1 0 \n", - "... ... ... ... \n", - "6025150 1 0 0 \n", - "6025165 1 0 0 \n", - "6025173 1 0 0 \n", - "6025182 1 0 0 \n", - "6025198 1 0 0 \n", - "\n", - " ethnic_background_3.0 ethnic_background_4.0 ... diabetes2 \\\n", - "eid ... \n", - "5774222 0 0 ... False \n", - "5774236 0 0 ... False \n", - "5774245 0 0 ... False \n", - "5774267 0 0 ... False \n", - "5774274 0 0 ... False \n", - "... ... ... ... ... \n", - "6025150 0 0 ... False \n", - "6025165 0 0 ... False \n", - "6025173 0 0 ... False \n", - "6025182 0 0 ... False \n", - "6025198 0 0 ... False \n", - "\n", - " chronic_kidney_disease atrial_fibrillation migraine \\\n", - "eid \n", - "5774222 False False False \n", - "5774236 False False False \n", - "5774245 False False False \n", - "5774267 False False False \n", - "5774274 False False False \n", - "... ... ... ... \n", - "6025150 False False False \n", - "6025165 False False False \n", - "6025173 False False False \n", - "6025182 False False False \n", - "6025198 True False False \n", - "\n", - " rheumatoid_arthritis systemic_lupus_erythematosus \\\n", - "eid \n", - "5774222 False False \n", - "5774236 False False \n", - "5774245 False False \n", - "5774267 False False \n", - "5774274 True False \n", - "... ... ... \n", - "6025150 False False \n", - "6025165 False False \n", - "6025173 False False \n", - "6025182 False False \n", - "6025198 False False \n", - "\n", - " severe_mental_illness erectile_dysfunction MACE_event_time \\\n", - "eid \n", - "5774222 False False 12.851472 \n", - "5774236 False False 11.518138 \n", - "5774245 False False 12.640657 \n", - "5774267 False False 12.859685 \n", - "5774274 False False 10.830938 \n", - "... ... ... ... \n", - "6025150 False False 13.253936 \n", - "6025165 False False 12.076660 \n", - "6025173 False False 12.035592 \n", - "6025182 False False 10.250513 \n", - "6025198 False False 10.677618 \n", - "\n", - " MACE_event \n", - "eid \n", - "5774222 0 \n", - "5774236 0 \n", - "5774245 0 \n", - "5774267 0 \n", - "5774274 0 \n", - "... ... \n", - "6025150 0 \n", - "6025165 0 \n", - "6025173 0 \n", - "6025182 0 \n", - "6025198 0 \n", - "\n", - "[17778 rows x 44 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1000018100002010000371000043100007910000841000092100010710001101000128...5774108577411457741275774140577415357741625774171577418657742035774211
11.00.0512450.140680.050240.1371690.0797980.0566450.0807970.0152290.0151660.012089...0.0938260.112410.29790.0333150.0306490.0381460.0681910.0483190.079660.042945
\n", - "

1 rows × 338451 columns

\n", - "
" - ], - "text/plain": [ - " 1000018 1000020 1000037 1000043 1000079 1000084 1000092 \\\n", - "11.0 0.051245 0.14068 0.05024 0.137169 0.079798 0.056645 0.080797 \n", - "\n", - " 1000107 1000110 1000128 ... 5774108 5774114 5774127 5774140 \\\n", - "11.0 0.015229 0.015166 0.012089 ... 0.093826 0.11241 0.2979 0.033315 \n", - "\n", - " 5774153 5774162 5774171 5774186 5774203 5774211 \n", - "11.0 0.030649 0.038146 0.068191 0.048319 0.07966 0.042945 \n", - "\n", - "[1 rows x 338451 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "predictions_dict = {}\n", - "for group in tqdm(groups):\n", - " predictions_dict[group] = {}\n", - " for partition in partitions:\n", - " tqdm.write(group)\n", - " tqdm.write(partition)\n", - " predictions_dict[group][partition] = fit_predict_coxph(data.copy(), group, partition, time, event, f\"{dataset_path}/partition_{partition}/cox_{group}.p\")" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "for group in groups:\n", - " pred_dfs = [predictions_dict[group][partition] for partition in partitions]\n", - " predictions_dict[group][\"complete\"] = pd.concat(pred_dfs).sort_values(\"eid\")" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "from functools import reduce\n", - "prediction_dfs = [predictions_dict[group][\"complete\"] for group in groups]\n", - "predictions = reduce(lambda left,right: pd.merge(left,right,on=['eid', \"partition\", \"split\"], how='left'), prediction_dfs).sort_values([\"eid\", \"partition\", \"split\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidscore_COX_clinical0_1_Ft_COX_clinical0_2_Ft_COX_clinical0_3_Ft_COX_clinical0_4_Ft_COX_clinical0_5_Ft_COX_clinical0_6_Ft_COX_clinical0_7_Ft_COX_clinical0_8_Ft_COX_clinical...0_17_Ft_COX_clinical_pgs0_18_Ft_COX_clinical_pgs0_19_Ft_COX_clinical_pgs0_20_Ft_COX_clinical_pgs0_21_Ft_COX_clinical_pgs0_22_Ft_COX_clinical_pgs0_23_Ft_COX_clinical_pgs0_24_Ft_COX_clinical_pgs0_25_Ft_COX_clinical_pgs0_26_Ft_COX_clinical_pgs
010000180.0583970.0037330.0081500.0130010.0178850.0231660.0287810.0345460.040420...0.0721350.0721350.0721350.0721350.0721350.0721350.0721350.0721350.0721350.072135
810000180.0566740.0036200.0077810.0125030.0172710.0223740.0279220.0335590.039247...0.0705670.0705670.0705670.0705670.0705670.0705670.0705670.0705670.0705670.070567
110000180.0585330.0037460.0080570.0128580.0178040.0231220.0287740.0345910.040414...0.0726340.0726340.0726340.0726340.0726340.0726340.0726340.0726340.0726340.072634
410000180.0578800.0036720.0079440.0127350.0176210.0228660.0284580.0341550.039957...0.0710700.0710700.0710700.0710700.0710700.0710700.0710700.0710700.0710700.071070
310000180.0576090.0036620.0079430.0126910.0175560.0226990.0282800.0340410.039812...0.0702980.0702980.0702980.0702980.0702980.0702980.0702980.0702980.0702980.070298
..................................................................
395737160251980.3013660.0219680.0471530.0745260.1017690.1304680.1602080.1892070.217862...0.4028980.4028980.4028980.4028980.4028980.4028980.4028980.4028980.4028980.402898
395737460251980.3070270.0223630.0479950.0759230.1035330.1328640.1630870.1928820.222204...0.4007090.4007090.4007090.4007090.4007090.4007090.4007090.4007090.4007090.400709
395737560251980.3015560.0220880.0471780.0746040.1019690.1306060.1602120.1898180.218427...0.4019170.4019170.4019170.4019170.4019170.4019170.4019170.4019170.4019170.401917
395737760251980.3045230.0221630.0477920.0754700.1033780.1323940.1619970.1918780.220810...0.4057160.4057160.4057160.4057160.4057160.4057160.4057160.4057160.4057160.405716
395737260251980.3006580.0221150.0472900.0742740.1018940.1301430.1591390.1886760.217285...0.3964300.3964300.3964300.3964300.3964300.3964300.3964300.3964300.3964300.396430
\n", - "

3957380 rows × 57 columns

\n", - "
" - ], - "text/plain": [ - " eid score_COX_clinical 0_1_Ft_COX_clinical \\\n", - "0 1000018 0.058397 0.003733 \n", - "8 1000018 0.056674 0.003620 \n", - "1 1000018 0.058533 0.003746 \n", - "4 1000018 0.057880 0.003672 \n", - "3 1000018 0.057609 0.003662 \n", - "... ... ... ... \n", - "3957371 6025198 0.301366 0.021968 \n", - "3957374 6025198 0.307027 0.022363 \n", - "3957375 6025198 0.301556 0.022088 \n", - "3957377 6025198 0.304523 0.022163 \n", - "3957372 6025198 0.300658 0.022115 \n", - "\n", - " 0_2_Ft_COX_clinical 0_3_Ft_COX_clinical 0_4_Ft_COX_clinical \\\n", - "0 0.008150 0.013001 0.017885 \n", - "8 0.007781 0.012503 0.017271 \n", - "1 0.008057 0.012858 0.017804 \n", - "4 0.007944 0.012735 0.017621 \n", - "3 0.007943 0.012691 0.017556 \n", - "... ... ... ... \n", - "3957371 0.047153 0.074526 0.101769 \n", - "3957374 0.047995 0.075923 0.103533 \n", - "3957375 0.047178 0.074604 0.101969 \n", - "3957377 0.047792 0.075470 0.103378 \n", - "3957372 0.047290 0.074274 0.101894 \n", - "\n", - " 0_5_Ft_COX_clinical 0_6_Ft_COX_clinical 0_7_Ft_COX_clinical \\\n", - "0 0.023166 0.028781 0.034546 \n", - "8 0.022374 0.027922 0.033559 \n", - "1 0.023122 0.028774 0.034591 \n", - "4 0.022866 0.028458 0.034155 \n", - "3 0.022699 0.028280 0.034041 \n", - "... ... ... ... \n", - "3957371 0.130468 0.160208 0.189207 \n", - "3957374 0.132864 0.163087 0.192882 \n", - "3957375 0.130606 0.160212 0.189818 \n", - "3957377 0.132394 0.161997 0.191878 \n", - "3957372 0.130143 0.159139 0.188676 \n", - "\n", - " 0_8_Ft_COX_clinical ... 0_17_Ft_COX_clinical_pgs \\\n", - "0 0.040420 ... 0.072135 \n", - "8 0.039247 ... 0.070567 \n", - "1 0.040414 ... 0.072634 \n", - "4 0.039957 ... 0.071070 \n", - "3 0.039812 ... 0.070298 \n", - "... ... ... ... \n", - "3957371 0.217862 ... 0.402898 \n", - "3957374 0.222204 ... 0.400709 \n", - "3957375 0.218427 ... 0.401917 \n", - "3957377 0.220810 ... 0.405716 \n", - "3957372 0.217285 ... 0.396430 \n", - "\n", - " 0_18_Ft_COX_clinical_pgs 0_19_Ft_COX_clinical_pgs \\\n", - "0 0.072135 0.072135 \n", - "8 0.070567 0.070567 \n", - "1 0.072634 0.072634 \n", - "4 0.071070 0.071070 \n", - "3 0.070298 0.070298 \n", - "... ... ... \n", - "3957371 0.402898 0.402898 \n", - "3957374 0.400709 0.400709 \n", - "3957375 0.401917 0.401917 \n", - "3957377 0.405716 0.405716 \n", - "3957372 0.396430 0.396430 \n", - "\n", - " 0_20_Ft_COX_clinical_pgs 0_21_Ft_COX_clinical_pgs \\\n", - "0 0.072135 0.072135 \n", - "8 0.070567 0.070567 \n", - "1 0.072634 0.072634 \n", - "4 0.071070 0.071070 \n", - "3 0.070298 0.070298 \n", - "... ... ... \n", - "3957371 0.402898 0.402898 \n", - "3957374 0.400709 0.400709 \n", - "3957375 0.401917 0.401917 \n", - "3957377 0.405716 0.405716 \n", - "3957372 0.396430 0.396430 \n", - "\n", - " 0_22_Ft_COX_clinical_pgs 0_23_Ft_COX_clinical_pgs \\\n", - "0 0.072135 0.072135 \n", - "8 0.070567 0.070567 \n", - "1 0.072634 0.072634 \n", - "4 0.071070 0.071070 \n", - "3 0.070298 0.070298 \n", - "... ... ... \n", - "3957371 0.402898 0.402898 \n", - "3957374 0.400709 0.400709 \n", - "3957375 0.401917 0.401917 \n", - "3957377 0.405716 0.405716 \n", - "3957372 0.396430 0.396430 \n", - "\n", - " 0_24_Ft_COX_clinical_pgs 0_25_Ft_COX_clinical_pgs \\\n", - "0 0.072135 0.072135 \n", - "8 0.070567 0.070567 \n", - "1 0.072634 0.072634 \n", - "4 0.071070 0.071070 \n", - "3 0.070298 0.070298 \n", - "... ... ... \n", - "3957371 0.402898 0.402898 \n", - "3957374 0.400709 0.400709 \n", - "3957375 0.401917 0.401917 \n", - "3957377 0.405716 0.405716 \n", - "3957372 0.396430 0.396430 \n", - "\n", - " 0_26_Ft_COX_clinical_pgs \n", - "0 0.072135 \n", - "8 0.070567 \n", - "1 0.072634 \n", - "4 0.071070 \n", - "3 0.070298 \n", - "... ... \n", - "3957371 0.402898 \n", - "3957374 0.400709 \n", - "3957375 0.401917 \n", - "3957377 0.405716 \n", - "3957372 0.396430 \n", - "\n", - "[3957380 rows x 57 columns]" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW20lEQVR4nO3df5BdZX3H8fenQRhkJaDBFRNs0AaUJMq4K6VamN2CJQIasFhDGQGhE2Gwo1NsAdtRpkymtDXaMhToKkxgqGwZEEmBWBG5IpUUEhpJwg9dyJYmYcgIGLiRSU349o97NhyXu9l77q89yfN5zdzZe57znHM+9xK+99zn/LiKCMzMLA2/NdUBzMyse1z0zcwS4qJvZpYQF30zs4S46JuZJWSfqQ4wmRkzZsTs2bMLL7dt2zYOOOCA9gdqQRkzgXMVUcZM4FxFlDETtD/X6tWrfxERh7xhRkSU+tHX1xfNuP/++5tarpPKmCnCuYooY6YI5yqijJki2p8LWBV1aqqHd8zMEuKib2aWEBd9M7OEuOibmSXERd/MLCEu+mZmCXHRNzNLiIu+mVlCXPTNzBJS+tswtMvsS+/e9Xz0ylOmMImZ2dTxnr6ZWUJc9M3MEpLM8E6eh3rMLFXe0zczS4iLvplZQlz0zcwS4qJvZpYQF30zs4RMWvQl3SBpi6R1ubZ/k7Qme4xKWpO1z5b0am7edbll+iStlTQi6SpJ6sgrMjOzCTVyyuYy4GrgprGGiPj02HNJS4Gtuf5PR8TRddZzLbAYWAncAywAVhRObGZmTZt0Tz8iHgBerDcv21v/Y+CW3a1D0qHAgRHxUPaDvTcBpxVOa2ZmLVGtBk/SSZoN3BUR88a1Hw98PSL6c/3WAz8DXgb+OiJ+LKkfuDIiTsz6HQdcEhGnTrC9xdS+FdDb29s3PDxc+IVVq1V6enp2Ta/dtLVuv/kzpxded7PGZyoL52pcGTOBcxVRxkzQ/lyDg4Orx2pzXqtX5J7Jb+7lPwe8KyJekNQHfFfSXKDe+P2EnzYRMQQMAfT398fAwEDhYJVKhfxy5+auws0bPav4ups1PlNZOFfjypgJnKuIMmaC7uVquuhL2gf4JNA31hYR24Ht2fPVkp4GjgA2ArNyi88CNje7bTMza04rp2yeCDwZERvHGiQdImla9vzdwBzgmYh4DnhF0rHZcYCzgTtb2LaZmTWhkVM2bwEeAo6UtFHS+dmsRbzxAO7xwGOSfgrcBlwQEWMHgS8EvgWMAE/jM3fMzLpu0uGdiDhzgvZz67TdDtw+Qf9VwLx688zMrDt8Ra6ZWUJc9M3MEuKib2aWEBd9M7OEuOibmSUkyd/IzfPv5ZpZSrynb2aWEBd9M7OEuOibmSXERd/MLCEu+mZmCXHRNzNLiIu+mVlCXPTNzBKS/MVZeb5Qy8z2dt7TNzNLiIu+mVlCXPTNzBLiom9mlpBGfhj9BklbJK3LtV0uaZOkNdnj5Ny8yySNSHpK0km59j5Ja7N5V0lS+1+OmZntTiN7+suABXXavxERR2ePewAkHQUsAuZmy1wjaVrW/1pgMTAne9Rbp5mZddCkRT8iHgBebHB9C4HhiNgeERuAEeAYSYcCB0bEQxERwE3AaU1mNjOzJqlWgyfpJM0G7oqIedn05cC5wMvAKuDiiHhJ0tXAyoi4Oet3PbACGAWujIgTs/bjgEsi4tQJtreY2rcCent7+4aHhwu/sGq1Sk9Pz67ptZu2Flp+/szphbc5mfGZysK5GlfGTOBcRZQxE7Q/1+Dg4OqI6B/f3uzFWdcCVwCR/V0KnAfUG6eP3bTXFRFDwBBAf39/DAwMFA5YqVTIL3du7sKrRoyeVXybkxmfqSycq3FlzATOVUQZM0H3cjV19k5EPB8ROyPiNeCbwDHZrI3AYbmus4DNWfusOu1mZtZFTRX9bIx+zOnA2Jk9y4FFkvaTdDi1A7YPR8RzwCuSjs3O2jkbuLOF3GZm1oRJh3ck3QIMADMkbQS+CgxIOpraEM0o8DmAiFgv6VbgcWAHcFFE7MxWdSG1M4H2pzbOv6KNr8PMzBowadGPiDPrNF+/m/5LgCV12lcB8wqlMzOztvIVuWZmCXHRNzNLiIu+mVlCXPTNzBLiom9mlhAXfTOzhLjom5klxEXfzCwhLvpmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQF30zs4S46JuZJcRF38wsIc3+MPpeb3buh9RHrzxlCpOYmbWP9/TNzBIyadGXdIOkLZLW5dr+QdKTkh6TdIekg7L22ZJelbQme1yXW6ZP0lpJI5Kuyn4g3czMuqiRPf1lwIJxbfcC8yLi/cDPgMty856OiKOzxwW59muBxcCc7DF+nWZm1mGTFv2IeAB4cVzb9yNiRza5Epi1u3VIOhQ4MCIeiogAbgJOayqxmZk1rR1j+ucBK3LTh0v6b0k/knRc1jYT2JjrszFrMzOzLlJtx3uSTtJs4K6ImDeu/a+AfuCTERGS9gN6IuIFSX3Ad4G5wJHA30bEidlyxwF/GREfn2B7i6kNBdHb29s3PDxc+IVVq1V6enp2Ta/dtLXwOsbMnzm96WXzxmcqC+dqXBkzgXMVUcZM0P5cg4ODqyOif3x706dsSjoHOBU4IRuyISK2A9uz56slPQ0cQW3PPj8ENAvYPNG6I2IIGALo7++PgYGBwvkqlQr55c7NnYJZ1OhZxbdfz/hMZeFcjStjJnCuIsqYCbqXq6nhHUkLgEuAT0TEr3Lth0ialj1/N7UDts9ExHPAK5KOzc7aORu4s+X0ZmZWyKR7+pJuAQaAGZI2Al+ldrbOfsC92ZmXK7MzdY4H/kbSDmAncEFEjB0EvpDamUD7UzsGkD8OYGZmXTBp0Y+IM+s0Xz9B39uB2yeYtwqYV2+emZl1h6/INTNLiIu+mVlCXPTNzBLiom9mlhAXfTOzhLjom5klxEXfzCwh/uWsBvhXtMxsb+E9fTOzhLjom5klxEXfzCwhLvpmZglx0TczS4iLvplZQvbqUzZnt/BrWWZmeyPv6ZuZJcRF38wsIS76ZmYJcdE3M0vIpEVf0g2Stkhal2t7q6R7Jf08+3twbt5lkkYkPSXppFx7n6S12byrlP2iupmZdU8je/rLgAXj2i4F7ouIOcB92TSSjgIWAXOzZa6RNC1b5lpgMTAne4xfp5mZddikRT8iHgBeHNe8ELgxe34jcFqufTgitkfEBmAEOEbSocCBEfFQRARwU24ZMzPrEtVq8CSdpNnAXRExL5v+ZUQclJv/UkQcLOlqYGVE3Jy1Xw+sAEaBKyPixKz9OOCSiDh1gu0tpvatgN7e3r7h4eHCL6xarbJh687Cy01m/szpTS9brVbp6elpY5r2cK7GlTETOFcRZcwE7c81ODi4OiL6x7e3++KseuP0sZv2uiJiCBgC6O/vj4GBgcJBKpUKSx/cVni5yYyeVTzLmEqlQjOvpdOcq3FlzATOVUQZM0H3cjV79s7z2ZAN2d8tWftG4LBcv1nA5qx9Vp12MzPromaL/nLgnOz5OcCdufZFkvaTdDi1A7YPR8RzwCuSjs3O2jk7t8weZfald+96mJntaSYd3pF0CzAAzJC0EfgqcCVwq6TzgWeBTwFExHpJtwKPAzuAiyJibGD9QmpnAu1PbZx/RVtfiZmZTWrSoh8RZ04w64QJ+i8BltRpXwXMK5TOzMzaylfkmpklxEXfzCwhLvpmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQF30zs4S46JuZJcRF38wsIS76ZmYJaff99JOSv9Pm6JWnTGESM7PGeE/fzCwhLvpmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQF30zs4Q0XfQlHSlpTe7xsqQvSrpc0qZc+8m5ZS6TNCLpKUknteclmJlZo5q+OCsingKOBpA0DdgE3AF8FvhGRHwt31/SUcAiYC7wTuAHko6IiJ3NZjAzs2LaNbxzAvB0RPzPbvosBIYjYntEbABGgGPatH0zM2uAIqL1lUg3AI9GxNWSLgfOBV4GVgEXR8RLkq4GVkbEzdky1wMrIuK2OutbDCwG6O3t7RseHi6cqVqtsmFr975EzJ85fdI+1WqVnp6eLqQpxrkaV8ZM4FxFlDETtD/X4ODg6ojoH9/e8r13JO0LfAK4LGu6FrgCiOzvUuA8QHUWr/uJExFDwBBAf39/DAwMFM5VqVRY+uC2wss1a/SsgUn7VCoVmnktneZcjStjJnCuIsqYCbqXqx3DOx+jtpf/PEBEPB8ROyPiNeCbvD6EsxE4LLfcLGBzG7ZvZmYNakfRPxO4ZWxC0qG5eacD67Lny4FFkvaTdDgwB3i4Dds3M7MGtTS8I+nNwEeBz+Wa/17S0dSGbkbH5kXEekm3Ao8DO4CL9qYzd3ybZTPbE7RU9CPiV8DbxrV9Zjf9lwBLWtmmmZk1z1fkmpklxEXfzCwhLvpmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQF30zs4S46JuZJcRF38wsIS76ZmYJafl++vZGvvmamZWV9/TNzBLiom9mlhAP73RYfqhn2YIDpjCJmZn39M3MkuKib2aWEBd9M7OEuOibmSWkpaIvaVTSWklrJK3K2t4q6V5JP8/+Hpzrf5mkEUlPSTqp1fBmZlZMO/b0ByPi6Ijoz6YvBe6LiDnAfdk0ko4CFgFzgQXANZKmtWH7ZmbWoE4M7ywEbsye3wiclmsfjojtEbEBGAGO6cD2zcxsAoqI5heWNgAvAQH8S0QMSfplRByU6/NSRBws6WpgZUTcnLVfD6yIiNvqrHcxsBigt7e3b3h4uHC2arXKhq07m3lZHXP49Gn09PRMdYw3qFarztWgMmYC5yqijJmg/bkGBwdX50Zgdmn14qyPRMRmSW8H7pX05G76qk5b3U+ciBgChgD6+/tjYGCgcLBKpcLSB7cVXq6TLp6/Y1emMt2Tp1Kp0Mx73GllzFXGTOBcRZQxE3QvV0vDOxGxOfu7BbiD2nDN85IOBcj+bsm6bwQOyy0+C9jcyvbNzKyYpou+pAMkvWXsOfCHwDpgOXBO1u0c4M7s+XJgkaT9JB0OzAEebnb7ZmZWXCvDO73AHZLG1vPtiPiepEeAWyWdDzwLfAogItZLuhV4HNgBXBQR5Rp0NzPbyzVd9CPiGeADddpfAE6YYJklwJJmt2lmZq3xFblmZglx0TczS4iLvplZQlz0zcwS4qJvZpYQF30zs4T4N3KnSP63c6Fct2Uws72X9/TNzBLiom9mlhAXfTOzhLjom5klxEXfzCwhPnunJPJn8/hMHjPrFO/pm5klxEXfzCwhHt4pIQ/1mFmneE/fzCwhLvpmZglx0TczS0jTRV/SYZLul/SEpPWSvpC1Xy5pk6Q12ePk3DKXSRqR9JSkk9rxAszMrHGtHMjdAVwcEY9KeguwWtK92bxvRMTX8p0lHQUsAuYC7wR+IOmIiNjZQgYzMyug6T39iHguIh7Nnr8CPAHM3M0iC4HhiNgeERuAEeCYZrdvZmbFKSJaX4k0G3gAmAf8OXAu8DKwitq3gZckXQ2sjIibs2WuB1ZExG111rcYWAzQ29vbNzw8XDhTtVplw9ZyfYno3R+ef7XYMvNnTu9MmJxqtUpPT0/Ht1NUGXOVMRM4VxFlzATtzzU4OLg6IvrHt7d8nr6kHuB24IsR8bKka4ErgMj+LgXOA1Rn8bqfOBExBAwB9Pf3x8DAQOFclUqFpQ9uK7xcJ108fwdL1xZ7y0fPGuhMmJxKpUIz73GnlTFXGTOBcxVRxkzQvVwtFX1Jb6JW8P81Ir4DEBHP5+Z/E7grm9wIHJZbfBawuZXtp8AXaplZOzVd9CUJuB54IiK+nms/NCKeyyZPB9Zlz5cD35b0dWoHcucADze7/RT5A8DMWtXKnv5HgM8AayWtydq+DJwp6WhqQzejwOcAImK9pFuBx6md+XORz9xpnj8AzKwZTRf9iHiQ+uP09+xmmSXAkma3aWZmrfEVuWZmCXHRNzNLiG+tvBfw+L6ZNcp7+mZmCXHRNzNLiIu+mVlCPKa/l/H4vpntjov+XswfAGY2nod3zMwS4qJvZpYQF30zs4R4TD8R+fH9PI/1m6XFe/qJm33p3azdtHXCDwUz27u46JuZJcTDOzYpn/pptvdw0be6PNxjtndy0bddXOjN9n4u+laIzwIy27O56FtbFP2W4A8Js6nR9aIvaQHwT8A04FsRcWW3M9jUm+jgcL794vk7GOhmKLMEdLXoS5oG/DPwUWAj8Iik5RHxeDdzWLns7ltCI98g/K3BrHHd3tM/BhiJiGcAJA0DCwEXfWtaJw5A7+7bx7kFtjfRehrpvzutnEbb6VNw8+tftuCAtq/fWqOI6N7GpDOABRHxp9n0Z4DfjYjPj+u3GFicTR4JPNXE5mYAv2ghbieUMRM4VxFlzATOVUQZM0H7c/12RBwyvrHbe/qq0/aGT52IGAKGWtqQtCoi+ltZR7uVMRM4VxFlzATOVUQZM0H3cnX7NgwbgcNy07OAzV3OYGaWrG4X/UeAOZIOl7QvsAhY3uUMZmbJ6urwTkTskPR54D+onbJ5Q0Ss79DmWhoe6pAyZgLnKqKMmcC5iihjJuhSrq4eyDUzs6nlWyubmSXERd/MLCF7dNGXtEDSU5JGJF1aZ74kXZXNf0zSB0uS672SHpK0XdKXupGpwVxnZe/TY5J+IukDJci0MMuzRtIqSb/f6UyN5Mr1+5Ckndk1KFOeS9KApK3Z+7VG0lemOlMu1xpJ6yX9qNOZGskl6S9y79O67L/jW0uQa7qkf5f00+z9+mxbA0TEHvmgdiD4aeDdwL7AT4GjxvU5GVhB7fqAY4H/KkmutwMfApYAXyrR+/Vh4ODs+cc6/X41mKmH1489vR94sgzvVa7fD4F7gDPKkAsYAO7qxr+pApkOonbV/buy6beXIde4/h8HfliGXMCXgb/Lnh8CvAjs264Me/Ke/q5bOkTE/wFjt3TIWwjcFDUrgYMkHTrVuSJiS0Q8Avy6w1mK5vpJRLyUTa6kdh3FVGeqRvavHziAOhfzTUWuzJ8BtwNbupCpSK5uaiTTnwDfiYhnofbvvyS58s4EbilJrgDeIknUdnpeBHa0K8CeXPRnAv+bm96YtRXtMxW5pkLRXOdT+5bUSQ1lknS6pCeBu4HzOpypoVySZgKnA9d1IU/DuTK/lw0NrJA0twSZjgAOllSRtFrS2R3O1GguACS9GVhA7QO8DLmuBt5H7cLVtcAXIuK1dgXYk++n38gtHRq67UObTcU2G9FwLkmD1Ip+p8fPG70txx3AHZKOB64ATixBrn8ELomInbUdsq5oJNej1O65UpV0MvBdYM4UZ9oH6ANOAPYHHpK0MiJ+NsW5xnwc+M+IeLGDecY0kuskYA3wB8B7gHsl/TgiXm5HgD15T7+RWzpMxW0fynqriYZySXo/8C1gYUS8UIZMYyLiAeA9kmaUIFc/MCxpFDgDuEbSaVOdKyJejohq9vwe4E0dfr8a/f/wexGxLSJ+ATwAdPokgSL/thbRnaEdaCzXZ6kNh0VEjAAbgPe2LUGnD1x08IDIPsAzwOG8fkBk7rg+p/CbB3IfLkOuXN/L6d6B3Eber3cBI8CHS5Tpd3j9QO4HgU1j02X4b5j1X0Z3DuQ28n69I/d+HQM828n3q8FM7wPuy/q+GVgHzJvq9yrrN53amPkBnf7vV+D9uha4PHvem/2bn9GuDHvs8E5McEsHSRdk86+jdlbFydQK2a+ofYJOeS5J7wBWAQcCr0n6IrUj+G35+tZsLuArwNuo7bUC7IgO3vWvwUx/BJwt6dfAq8CnI/u/YYpzdV2Duc4ALpS0g9r7taiT71cjmSLiCUnfAx4DXqP2i3nrOpWp0VxZ19OB70fEtk7mKZjrCmCZpLXUdlgvido3pLbwbRjMzBKyJ4/pm5lZQS76ZmYJcdE3M0uIi76ZWUJc9M3MEuKib2aWEBd9M7OE/D+KilFczR4nvgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "predictions.query(\"partition=='4'\").query(\"split=='valid'\").score_COX_clinical.hist(bins=100)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "'DataFrame' object has no attribute 'score_COX_MACE_clinical'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpredictions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquery\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"partition=='0'\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquery\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"split=='valid'\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscore_COX_MACE_clinical\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/data/analysis/ag-reils/ag-reils-shared/deps/miniconda3/envs/pl1.x/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 5137\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5138\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5139\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5140\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5141\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'score_COX_MACE_clinical'" - ] - } - ], - "source": [ - "predictions.query(\"partition=='0'\").query(\"split=='valid'\").score_COX_MACE_clinical.hist(bins=100)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "predictions.to_csv(f\"{data_path}/3_datasets_post/{dataset_name}/predictions_coxph.csv\", index=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidscore_COX_clinical0_1_Ft_COX_clinical0_2_Ft_COX_clinical0_3_Ft_COX_clinical0_4_Ft_COX_clinical0_5_Ft_COX_clinical0_6_Ft_COX_clinical0_7_Ft_COX_clinical0_8_Ft_COX_clinical...0_17_Ft_COX_clinical_pgs0_18_Ft_COX_clinical_pgs0_19_Ft_COX_clinical_pgs0_20_Ft_COX_clinical_pgs0_21_Ft_COX_clinical_pgs0_22_Ft_COX_clinical_pgs0_23_Ft_COX_clinical_pgs0_24_Ft_COX_clinical_pgs0_25_Ft_COX_clinical_pgs0_26_Ft_COX_clinical_pgs
197868960251980.3025640.0216150.0467860.0751470.1020250.1308410.1602600.1897260.218453...0.3968570.3968570.3968570.3968570.3968570.3968570.3968570.3968570.3968570.396857
197868560251980.3006810.0213270.0469410.0742940.1009060.1291060.1587810.1882040.217251...0.3971300.3971300.3971300.3971300.3971300.3971300.3971300.3971300.3971300.397130
197868860251980.3076580.0222000.0476570.0753600.1030450.1323200.1625740.1926770.222838...0.4003580.4003580.4003580.4003580.4003580.4003580.4003580.4003580.4003580.400358
197868760251980.3086010.0229870.0488600.0765840.1046980.1338830.1639550.1938310.223485...0.4129810.4129810.4129810.4129810.4129810.4129810.4129810.4129810.4129810.412981
197868660251980.3142980.0232600.0504510.0792130.1078720.1373820.1684530.1990370.228170...0.4129850.4129850.4129850.4129850.4129850.4129850.4129850.4129850.4129850.412985
\n", - "

5 rows × 57 columns

\n", - "
" - ], - "text/plain": [ - " eid score_COX_clinical 0_1_Ft_COX_clinical \\\n", - "1978689 6025198 0.302564 0.021615 \n", - "1978685 6025198 0.300681 0.021327 \n", - "1978688 6025198 0.307658 0.022200 \n", - "1978687 6025198 0.308601 0.022987 \n", - "1978686 6025198 0.314298 0.023260 \n", - "\n", - " 0_2_Ft_COX_clinical 0_3_Ft_COX_clinical 0_4_Ft_COX_clinical \\\n", - "1978689 0.046786 0.075147 0.102025 \n", - "1978685 0.046941 0.074294 0.100906 \n", - "1978688 0.047657 0.075360 0.103045 \n", - "1978687 0.048860 0.076584 0.104698 \n", - "1978686 0.050451 0.079213 0.107872 \n", - "\n", - " 0_5_Ft_COX_clinical 0_6_Ft_COX_clinical 0_7_Ft_COX_clinical \\\n", - "1978689 0.130841 0.160260 0.189726 \n", - "1978685 0.129106 0.158781 0.188204 \n", - "1978688 0.132320 0.162574 0.192677 \n", - "1978687 0.133883 0.163955 0.193831 \n", - "1978686 0.137382 0.168453 0.199037 \n", - "\n", - " 0_8_Ft_COX_clinical ... 0_17_Ft_COX_clinical_pgs \\\n", - "1978689 0.218453 ... 0.396857 \n", - "1978685 0.217251 ... 0.397130 \n", - "1978688 0.222838 ... 0.400358 \n", - "1978687 0.223485 ... 0.412981 \n", - "1978686 0.228170 ... 0.412985 \n", - "\n", - " 0_18_Ft_COX_clinical_pgs 0_19_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_20_Ft_COX_clinical_pgs 0_21_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_22_Ft_COX_clinical_pgs 0_23_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_24_Ft_COX_clinical_pgs 0_25_Ft_COX_clinical_pgs \\\n", - "1978689 0.396857 0.396857 \n", - "1978685 0.397130 0.397130 \n", - "1978688 0.400358 0.400358 \n", - "1978687 0.412981 0.412981 \n", - "1978686 0.412985 0.412985 \n", - "\n", - " 0_26_Ft_COX_clinical_pgs \n", - "1978689 0.396857 \n", - "1978685 0.397130 \n", - "1978688 0.400358 \n", - "1978687 0.412981 \n", - "1978686 0.412985 \n", - "\n", - "[5 rows x 57 columns]" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions.tail()" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
eidscore_COX_clinicalpartitionsplit
010000180.0589070train
210000180.0584061test
310000180.0589472train
410000180.0572333train
110000180.0585834train
...............
197868960251980.3025640valid
197868560251980.3006811test
197868860251980.3076582valid
197868760251980.3086013valid
197868660251980.3142984valid
\n", - "

1978690 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " eid score_COX_clinical partition split\n", - "0 1000018 0.058907 0 train\n", - "2 1000018 0.058406 1 test\n", - "3 1000018 0.058947 2 train\n", - "4 1000018 0.057233 3 train\n", - "1 1000018 0.058583 4 train\n", - "... ... ... ... ...\n", - "1978689 6025198 0.302564 0 valid\n", - "1978685 6025198 0.300681 1 test\n", - "1978688 6025198 0.307658 2 valid\n", - "1978687 6025198 0.308601 3 valid\n", - "1978686 6025198 0.314298 4 valid\n", - "\n", - "[1978690 rows x 4 columns]" - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions[[\"eid\", \"score_COX_clinical\", 'partition', 'split']]" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "predictions_df = pd.read_feather(\"/data/analysis/ag-reils/ag-reils-shared/cardioRS/results/models/benchmarks/BEN-1285/predictions/predictions.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
0_1_ft0_1_Ft0_1_St0_2_ft0_2_Ft0_2_St0_3_ft0_3_Ft0_3_St0_4_ft...0_23_Ft_calibrated0_24_Ft_calibrated0_25_Ft_calibrated0_26_Ft_calibratedeidsplitpartitionmodulenetdatamodule
00.0308030.0222900.9777100.0392990.0577510.9422490.0443190.0997650.9002350.047347...0.1398020.1467830.1539300.1610871000018train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
10.0481850.0363450.9636550.0582200.0901920.9098080.0628420.1510370.8489630.064484...0.2494140.2609410.2728340.2836361000020train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
20.0534680.0400840.9599160.0646560.0998970.9001030.0694940.1673420.8326580.070809...0.3082610.3224400.3370830.3499191000043train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
30.0398070.0296430.9703570.0490270.0745850.9254150.0538330.1262720.8737280.056177...0.1891160.1980880.2073130.2161001000079train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
40.0288050.0212580.9787420.0362510.0541440.9458560.0406890.0927890.9072110.043434...0.1140730.1195440.1251080.1308461000084train0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
..................................................................
3957330.0180390.0134170.9865830.0228970.0340850.9659150.0261060.0586810.9413190.028405...0.0489100.0511330.0533380.0559366024701test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957340.0415830.0307030.9692970.0515090.0778170.9221830.0566350.1321700.8678300.059054...0.2132970.2235810.2341800.2440976024778test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957350.0276710.0198400.9801600.0357890.0519360.9480640.0408010.0904150.9095850.044011...0.1243490.1307000.1371880.1437976024787test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957360.0235250.0172250.9827750.0299630.0442560.9557440.0340020.0763780.9236220.036696...0.0816440.0855170.0894240.0936686024807test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
3957370.0317000.0233510.9766490.0397790.0594970.9405030.0444410.1018060.8981940.047178...0.1343280.1407900.1473900.1540296025173test0DeepSurvivalMachineStandardMLPCVDCoreVariablesWithPGSDataModule_210212
\n", - "

395738 rows × 194 columns

\n", - "
" - ], - "text/plain": [ - " 0_1_ft 0_1_Ft 0_1_St 0_2_ft 0_2_Ft 0_2_St 0_3_ft \\\n", - "0 0.030803 0.022290 0.977710 0.039299 0.057751 0.942249 0.044319 \n", - "1 0.048185 0.036345 0.963655 0.058220 0.090192 0.909808 0.062842 \n", - "2 0.053468 0.040084 0.959916 0.064656 0.099897 0.900103 0.069494 \n", - "3 0.039807 0.029643 0.970357 0.049027 0.074585 0.925415 0.053833 \n", - "4 0.028805 0.021258 0.978742 0.036251 0.054144 0.945856 0.040689 \n", - "... ... ... ... ... ... ... ... \n", - "395733 0.018039 0.013417 0.986583 0.022897 0.034085 0.965915 0.026106 \n", - "395734 0.041583 0.030703 0.969297 0.051509 0.077817 0.922183 0.056635 \n", - "395735 0.027671 0.019840 0.980160 0.035789 0.051936 0.948064 0.040801 \n", - "395736 0.023525 0.017225 0.982775 0.029963 0.044256 0.955744 0.034002 \n", - "395737 0.031700 0.023351 0.976649 0.039779 0.059497 0.940503 0.044441 \n", - "\n", - " 0_3_Ft 0_3_St 0_4_ft ... 0_23_Ft_calibrated \\\n", - "0 0.099765 0.900235 0.047347 ... 0.139802 \n", - "1 0.151037 0.848963 0.064484 ... 0.249414 \n", - "2 0.167342 0.832658 0.070809 ... 0.308261 \n", - "3 0.126272 0.873728 0.056177 ... 0.189116 \n", - "4 0.092789 0.907211 0.043434 ... 0.114073 \n", - "... ... ... ... ... ... \n", - "395733 0.058681 0.941319 0.028405 ... 0.048910 \n", - "395734 0.132170 0.867830 0.059054 ... 0.213297 \n", - "395735 0.090415 0.909585 0.044011 ... 0.124349 \n", - "395736 0.076378 0.923622 0.036696 ... 0.081644 \n", - "395737 0.101806 0.898194 0.047178 ... 0.134328 \n", - "\n", - " 0_24_Ft_calibrated 0_25_Ft_calibrated 0_26_Ft_calibrated eid \\\n", - "0 0.146783 0.153930 0.161087 1000018 \n", - "1 0.260941 0.272834 0.283636 1000020 \n", - "2 0.322440 0.337083 0.349919 1000043 \n", - "3 0.198088 0.207313 0.216100 1000079 \n", - "4 0.119544 0.125108 0.130846 1000084 \n", - "... ... ... ... ... \n", - "395733 0.051133 0.053338 0.055936 6024701 \n", - "395734 0.223581 0.234180 0.244097 6024778 \n", - "395735 0.130700 0.137188 0.143797 6024787 \n", - "395736 0.085517 0.089424 0.093668 6024807 \n", - "395737 0.140790 0.147390 0.154029 6025173 \n", - "\n", - " split partition module net \\\n", - "0 train 0 DeepSurvivalMachine StandardMLP \n", - "1 train 0 DeepSurvivalMachine StandardMLP \n", - "2 train 0 DeepSurvivalMachine StandardMLP \n", - "3 train 0 DeepSurvivalMachine StandardMLP \n", - "4 train 0 DeepSurvivalMachine StandardMLP \n", - "... ... ... ... ... \n", - "395733 test 0 DeepSurvivalMachine StandardMLP \n", - "395734 test 0 DeepSurvivalMachine StandardMLP \n", - "395735 test 0 DeepSurvivalMachine StandardMLP \n", - "395736 test 0 DeepSurvivalMachine StandardMLP \n", - "395737 test 0 DeepSurvivalMachine StandardMLP \n", - "\n", - " datamodule \n", - "0 CVDCoreVariablesWithPGSDataModule_210212 \n", - "1 CVDCoreVariablesWithPGSDataModule_210212 \n", - "2 CVDCoreVariablesWithPGSDataModule_210212 \n", - "3 CVDCoreVariablesWithPGSDataModule_210212 \n", - "4 CVDCoreVariablesWithPGSDataModule_210212 \n", - "... ... \n", - "395733 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395734 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395735 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395736 CVDCoreVariablesWithPGSDataModule_210212 \n", - "395737 CVDCoreVariablesWithPGSDataModule_210212 \n", - "\n", - "[395738 rows x 194 columns]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "predictions_df" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAarElEQVR4nO3df4xV533n8fen4G1QEjuA41nCsDtIplIxbuz1LEbySjsNKRC3Ko5kqxO5ZqwgTeqSlSMhdaErLakRUpCaOLJUsyIFGbtpMXKSNfKP9U5wrqqoBoxT1xgTllHM2hOQUTPUYSKZ9ZDv/nGewWemd557mblzh5n7eUlH99zvOc8zzzNX5uPzY+5RRGBmZjae35juAZiZ2bXNQWFmZlkOCjMzy3JQmJlZloPCzMyy5k73ABrtxhtvjI6OjukeRk2/+tWv+PjHPz7dw2iqVptzq80XPOeZ7LXXXvvniPh0tW2zLig6Ojo4duzYdA+jpkqlQldX13QPo6labc6tNl/wnGcySf93vG0+9WRmZlkOCjMzy3JQmJlZVt1BIWmOpH+U9Fx6v0BSn6TT6XV+ad+tkvolnZK0tlS/Q9LxtO0xSUr135T0dKofkdRRatOTfsZpST0NmbWZmdXtao4oHgZOlt5vAQ5FxDLgUHqPpOVAN3ALsA54XNKc1GYX0AssS8u6VN8IXIiIm4FHgZ2prwXANuBOYCWwrRxIZmY29eoKCkntwO8Df10qrwf2pfV9wD2l+v6IuBQRbwP9wEpJi4DrI+KVKL6J8MkxbUb6egZYnY421gJ9ETEYEReAPj4KFzMza4J6b4/9NvBnwCdLtbaIOAcQEeck3ZTqi4HDpf0GUu3DtD62PtLm3dTXsKT3gYXlepU2V0jqpThSoa2tjUqlUue0ps/Q0NCMGGcjtdqcW22+4DnPVjWDQtIfAOcj4jVJXXX0qSq1yNQn2uajQsRuYDdAZ2dnzIR7mmfLvddXo9Xm3GrzBc95tqrn1NNdwB9KOgPsBz4n6W+A99LpJNLr+bT/ALCk1L4dOJvq7VXqo9pImgvcAAxm+jIzsyapGRQRsTUi2iOig+Ii9csR8cfAQWDkLqQe4Nm0fhDoTncyLaW4aH00naa6KGlVuv6wYUybkb7uTT8jgJeANZLmp4vYa1LNbEbq2PL8lcVsppjMV3h8AzggaSPwDnAfQESckHQAeAsYBjZFxOXU5iHgCWAe8GJaAPYAT0nqpziS6E59DUraDrya9nskIgYnMWYzM7tKVxUUEVEBKmn9F8DqcfbbAeyoUj8GrKhS/4AUNFW27QX2Xs04zcyscfyX2WZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaWVTMoJH1M0lFJ/yTphKS/SPWvS/q5pNfTcnepzVZJ/ZJOSVpbqt8h6Xja9lh6djbp+dpPp/oRSR2lNj2STqelBzMza6p6HoV6CfhcRAxJug74saSRZ10/GhF/Wd5Z0nKKZ17fAnwG+KGk30rPzd4F9AKHgReAdRTPzd4IXIiImyV1AzuBP5K0ANgGdAIBvCbpYERcmNy0zcysXjWPKKIwlN5el5bINFkP7I+ISxHxNtAPrJS0CLg+Il6JiACeBO4ptdmX1p8BVqejjbVAX0QMpnDoowgXMzNrkrquUUiaI+l14DzFP9xH0qavSnpD0l5J81NtMfBuqflAqi1O62Pro9pExDDwPrAw05eZmTVJPaeeSKeNbpP0KeAHklZQnEbaTnF0sR34JvBlQNW6yNSZYJsrJPVSnNKira2NSqWSmc21YWhoaEaMs5Fabc7V5rv51uEr67Pxd9FqnzG0xpzrCooREfEvkirAuvK1CUnfAZ5LbweAJaVm7cDZVG+vUi+3GZA0F7gBGEz1rjFtKlXGtRvYDdDZ2RldXV1jd7nmVCoVZsI4G6nV5lxtvg9uef7K+pn7R2+bDVrtM4bWmHM9dz19Oh1JIGke8Hngp+maw4gvAm+m9YNAd7qTaSmwDDgaEeeAi5JWpesPG4BnS21G7mi6F3g5Xcd4CVgjaX46tbUm1czMrEnqOaJYBOyTNIciWA5ExHOSnpJ0G8WpoDPAVwAi4oSkA8BbwDCwKZ26AngIeAKYR3G308jdU3uApyT1UxxJdKe+BiVtB15N+z0SEYMTn66ZmV2tmkEREW8At1epP5BpswPYUaV+DFhRpf4BcN84fe0F9tYap5mZTQ3/ZbaZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsq2ZQSPqYpKOS/knSCUl/keoLJPVJOp1e55fabJXUL+mUpLWl+h2Sjqdtj0lSqv+mpKdT/YikjlKbnvQzTkvqaejszcyspnqOKC4Bn4uIzwK3AeskrQK2AIciYhlwKL1H0nKgG7gFWAc8LmlO6msX0AssS8u6VN8IXIiIm4FHgZ2prwXANuBOYCWwrRxIZmY29WoGRRSG0tvr0hLAemBfqu8D7knr64H9EXEpIt4G+oGVkhYB10fEKxERwJNj2oz09QywOh1trAX6ImIwIi4AfXwULmZm1gRz69kpHRG8BtwM/FVEHJHUFhHnACLinKSb0u6LgcOl5gOp9mFaH1sfafNu6mtY0vvAwnK9Spvy+HopjlRoa2ujUqnUM61pNTQ0NCPG2UitNudq89186/CV9dn4u2i1zxhaY851BUVEXAZuk/Qp4AeSVmR2V7UuMvWJtimPbzewG6CzszO6uroyw7s2VCoVZsI4G6nV5lxtvg9uef7K+pn7R2+bDVrtM4bWmPNV3fUUEf8CVChO/7yXTieRXs+n3QaAJaVm7cDZVG+vUh/VRtJc4AZgMNOXmZk1ST13PX06HUkgaR7weeCnwEFg5C6kHuDZtH4Q6E53Mi2luGh9NJ2muihpVbr+sGFMm5G+7gVeTtcxXgLWSJqfLmKvSTUzM2uSek49LQL2pesUvwEciIjnJL0CHJC0EXgHuA8gIk5IOgC8BQwDm9KpK4CHgCeAecCLaQHYAzwlqZ/iSKI79TUoaTvwatrvkYgYnMyEzczs6tQMioh4A7i9Sv0XwOpx2uwAdlSpHwP+1fWNiPiAFDRVtu0F9tYap5mZTQ3/ZbaZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZdXzzOwlkn4k6aSkE5IeTvWvS/q5pNfTcnepzVZJ/ZJOSVpbqt8h6Xja9lh6djbp+dpPp/oRSR2lNj2STqelBzMza6p6npk9DGyOiJ9I+iTwmqS+tO3RiPjL8s6SllM88/oW4DPADyX9Vnpu9i6gFzgMvACso3hu9kbgQkTcLKkb2An8kaQFwDagE4j0sw9GxIXJTdvMzOpV84giIs5FxE/S+kXgJLA402Q9sD8iLkXE20A/sFLSIuD6iHglIgJ4Erin1GZfWn8GWJ2ONtYCfRExmMKhjyJczMysSeo5orginRK6HTgC3AV8VdIG4BjFUccFihA5XGo2kGofpvWxddLruwARMSzpfWBhuV6lTXlcvRRHKrS1tVGpVK5mWtNiaGhoRoyzkVptztXmu/nW4Svrs/F30WqfMbTGnOsOCkmfAL4HfC0ifilpF7Cd4pTQduCbwJcBVWkemToTbPNRIWI3sBugs7Mzurq6snO5FlQqFWbCOBup1eZcbb4Pbnn+yvqZ+0dvmw1a7TOG1phzXXc9SbqOIiS+GxHfB4iI9yLickT8GvgOsDLtPgAsKTVvB86menuV+qg2kuYCNwCDmb7MzKxJ6rnrScAe4GREfKtUX1Ta7YvAm2n9INCd7mRaCiwDjkbEOeCipFWpzw3As6U2I3c03Qu8nK5jvASskTRf0nxgTaqZmVmT1HPq6S7gAeC4pNdT7c+BL0m6jeJU0BngKwARcULSAeAtijumNqU7ngAeAp4A5lHc7fRiqu8BnpLUT3Ek0Z36GpS0HXg17fdIRAxOZKJmZjYxNYMiIn5M9WsFL2Ta7AB2VKkfA1ZUqX8A3DdOX3uBvbXGaWZmU8N/mW1mZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7MsB4WZmWU5KMzMLMtBYWZmWfU8M3uJpB9JOinphKSHU32BpD5Jp9Pr/FKbrZL6JZ2StLZUv0PS8bTtsfTsbNLztZ9O9SOSOkptetLPOC2pBzMza6p6jiiGgc0R8dvAKmCTpOXAFuBQRCwDDqX3pG3dwC3AOuBxSXNSX7uAXmBZWtal+kbgQkTcDDwK7Ex9LQC2AXcCK4Ft5UAyM7OpVzMoIuJcRPwkrV8ETgKLgfXAvrTbPuCetL4e2B8RlyLibaAfWClpEXB9RLwSEQE8OabNSF/PAKvT0cZaoC8iBiPiAtDHR+FiZmZNMPdqdk6nhG4HjgBtEXEOijCRdFPabTFwuNRsINU+TOtj6yNt3k19DUt6H1hYrldpUx5XL8WRCm1tbVQqlauZ1rQYGhqaEeNspFabc7X5br51+Mr6bPxdtNpnDK0x57qDQtIngO8BX4uIX6bLC1V3rVKLTH2ibT4qROwGdgN0dnZGV1fXeGO7ZlQqFWbCOBup1eZcbb4Pbnn+yvqZ+0dvmw1a7TOG1phzXXc9SbqOIiS+GxHfT+X30ukk0uv5VB8AlpSatwNnU729Sn1UG0lzgRuAwUxfZmbWJPXc9SRgD3AyIr5V2nQQGLkLqQd4tlTvTncyLaW4aH00naa6KGlV6nPDmDYjfd0LvJyuY7wErJE0P13EXpNqZmbWJPWceroLeAA4Lun1VPtz4BvAAUkbgXeA+wAi4oSkA8BbFHdMbYqIy6ndQ8ATwDzgxbRAEURPSeqnOJLoTn0NStoOvJr2eyQiBic2VTMzm4iaQRERP6b6tQKA1eO02QHsqFI/BqyoUv+AFDRVtu0F9tYap5mZTQ3/ZbaZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZdXzzOy9ks5LerNU+7qkn0t6PS13l7ZtldQv6ZSktaX6HZKOp22Ppedmk56t/XSqH5HUUWrTI+l0WkaeqW1mZk1UzxHFE8C6KvVHI+K2tLwAIGk5xfOub0ltHpc0J+2/C+gFlqVlpM+NwIWIuBl4FNiZ+loAbAPuBFYC2yTNv+oZmpnZpNQMioj4e2Cwzv7WA/sj4lJEvA30AyslLQKuj4hXIiKAJ4F7Sm32pfVngNXpaGMt0BcRgxFxAeijemCZmdkUmjuJtl+VtAE4BmxO/5gvBg6X9hlItQ/T+tg66fVdgIgYlvQ+sLBcr9JmFEm9FEcrtLW1UalUJjGt5hgaGpoR42ykVptztfluvnX4yvps/F202mcMrTHniQbFLmA7EOn1m8CXAVXZNzJ1JthmdDFiN7AboLOzM7q6ujJDvzZUKhVmwjgbqdXmXG2+D255/sr6mftHb5sNWu0zhtaY84TueoqI9yLickT8GvgOxTUEKP6vf0lp13bgbKq3V6mPaiNpLnADxamu8foyM7MmmlBQpGsOI74IjNwRdRDoTncyLaW4aH00Is4BFyWtStcfNgDPltqM3NF0L/Byuo7xErBG0vx0EXtNqpmZWRPVPPUk6e+ALuBGSQMUdyJ1SbqN4lTQGeArABFxQtIB4C1gGNgUEZdTVw9R3EE1D3gxLQB7gKck9VMcSXSnvgYlbQdeTfs9EhH1XlQ3M7MGqRkUEfGlKuU9mf13ADuq1I8BK6rUPwDuG6evvcDeWmM0M7Op47/MNjOzLAeFmZllOSjMzCzLQWFmZlkOCjMzy3JQmJlZloPCzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7OsmkEhaa+k85LeLNUWSOqTdDq9zi9t2yqpX9IpSWtL9TskHU/bHkvPziY9X/vpVD8iqaPUpif9jNOSRp6rbWZmTVTPEcUTwLoxtS3AoYhYBhxK75G0nOKZ17ekNo9LmpPa7AJ6gWVpGelzI3AhIm4GHgV2pr4WUDyf+05gJbCtHEhmZtYcNYMiIv4eGBxTXg/sS+v7gHtK9f0RcSki3gb6gZWSFgHXR8QrERHAk2PajPT1DLA6HW2sBfoiYjAiLgB9/OvAMjOzKTZ3gu3aIuIcQESck3RTqi8GDpf2G0i1D9P62PpIm3dTX8OS3gcWlutV2owiqZfiaIW2tjYqlcoEp9U8Q0NDM2KcjdRqc6423823Dl9Zn42/i1b7jKE15jzRoBiPqtQiU59om9HFiN3AboDOzs7o6uqqOdDpVqlUmAnjbKRWm3O1+T645fkr62fuH71tNmi1zxhaY84TvevpvXQ6ifR6PtUHgCWl/dqBs6neXqU+qo2kucANFKe6xuvLzMyaaKJBcRAYuQupB3i2VO9OdzItpbhofTSdprooaVW6/rBhTJuRvu4FXk7XMV4C1kiany5ir0k1MzNropqnniT9HdAF3ChpgOJOpG8AByRtBN4B7gOIiBOSDgBvAcPApoi4nLp6iOIOqnnAi2kB2AM8Jamf4kiiO/U1KGk78Gra75GIGHtR3czMpljNoIiIL42zafU4++8AdlSpHwNWVKl/QAqaKtv2AntrjdHMzKaO/zLbzMyyHBRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7MsB4WZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLImFRSSzkg6Lul1ScdSbYGkPkmn0+v80v5bJfVLOiVpbal+R+qnX9Jj6bnapGdvP53qRyR1TGa8ZmZ29RpxRPG7EXFbRHSm91uAQxGxDDiU3iNpOcXzsG8B1gGPS5qT2uwCeoFlaVmX6huBCxFxM/AosLMB4zUzs6swFaee1gP70vo+4J5SfX9EXIqIt4F+YKWkRcD1EfFKRATw5Jg2I309A6weOdowM7PmmGxQBPC/Jb0mqTfV2iLiHEB6vSnVFwPvltoOpNritD62PqpNRAwD7wMLJzlmMzO7CnMn2f6uiDgr6SagT9JPM/tWOxKITD3XZnTHRUj1ArS1tVGpVLKDvhYMDQ3NiHE2UqvNudp8N986fGV9Nv4uWu0zhtaY86SCIiLOptfzkn4ArATek7QoIs6l00rn0+4DwJJS83bgbKq3V6mX2wxImgvcAAxWGcduYDdAZ2dndHV1TWZaTVGpVJgJ42ykVptztfk+uOX5K+tn7h+9bTZotc8YWmPOEz71JOnjkj45sg6sAd4EDgI9abce4Nm0fhDoTncyLaW4aH00nZ66KGlVuv6wYUybkb7uBV5O1zHMzKxJJnNE0Qb8IF1bngv8bUT8L0mvAgckbQTeAe4DiIgTkg4AbwHDwKaIuJz6egh4ApgHvJgWgD3AU5L6KY4kuicxXjMzm4AJB0VE/Az4bJX6L4DV47TZAeyoUj8GrKhS/4AUNGZmNj38l9lmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWZaDwszMshwUZmaW5aAwM7MsB4WZmWU5KMzMLMtBYWZmWQ4KMzPLclCYmVmWg8LMzLIcFGZmluWgMDOzrBkRFJLWSTolqV/Slukej5lZK7nmg0LSHOCvgC8Ay4EvSVo+vaMyM2sd13xQACuB/oj4WUT8P2A/sH6ax2Rm1jLmTvcA6rAYeLf0fgC4s7yDpF6gN70dknSqSWObjBuBf57uQTRZq805O1/tbOJImqfVPmOYPXP+9+NtmAlBoSq1GPUmYjewuznDaQxJxyKic7rH0UytNudWmy94zrPVTDj1NAAsKb1vB85O01jMzFrOTAiKV4FlkpZK+jdAN3BwmsdkZtYyrvlTTxExLOmrwEvAHGBvRJyY5mE1wow6VdYgrTbnVpsveM6zkiKi9l5mZtayZsKpJzMzm0YOCjMzy3JQNImkBZL6JJ1Or/Mz+86R9I+SnmvmGBupnvlKWiLpR5JOSjoh6eHpGOtk1fqKGRUeS9vfkPQfpmOcjVTHnO9Pc31D0j9I+ux0jLOR6v0qIUn/UdJlSfc2c3xTyUHRPFuAQxGxDDiU3o/nYeBkU0Y1deqZ7zCwOSJ+G1gFbJppX89S51fMfAFYlpZeYFdTB9lgdc75beA/R8TvANuZ4Rd86/0qobTfToqbb2YNB0XzrAf2pfV9wD3VdpLUDvw+8NfNGdaUqTnfiDgXET9J6xcpwnFxswbYIPV8xcx64MkoHAY+JWlRswfaQDXnHBH/EBEX0tvDFH//NJPV+1VC/wX4HnC+mYObag6K5mmLiHNQ/AMJ3DTOft8G/gz4dZPGNVXqnS8AkjqA24EjUz+0hqr2FTNjw66efWaSq53PRuDFKR3R1Ks5Z0mLgS8C/6OJ42qKa/7vKGYSST8E/m2VTf+tzvZ/AJyPiNckdTVwaFNisvMt9fMJiv8L+1pE/LIRY2uiml8xU+c+M0nd85H0uxRB8Z+mdERTr545fxv4rxFxWaq2+8zloGigiPj8eNskvSdpUUScS6cdqh2a3gX8oaS7gY8B10v6m4j44yka8qQ0YL5Iuo4iJL4bEd+foqFOpXq+Yma2fQ1NXfOR9DsUp1C/EBG/aNLYpko9c+4E9qeQuBG4W9JwRPzPpoxwCvnUU/McBHrSeg/w7NgdImJrRLRHRAfFV5W8fK2GRB1qzlfFf1F7gJMR8a0mjq2R6vmKmYPAhnT30yrg/ZHTcjNUzTlL+nfA94EHIuL/TMMYG63mnCNiaUR0pP9+nwH+dDaEBDgomukbwO9JOg38XnqPpM9IemFaRzY16pnvXcADwOckvZ6Wu6dnuBMTEcPAyFfMnAQORMQJSX8i6U/Sbi8APwP6ge8Afzotg22QOuf834GFwOPpcz02TcNtiDrnPGv5KzzMzCzLRxRmZpbloDAzsywHhZmZZTkozMwsy0FhZmZZDgozM8tyUJiZWdb/B7FktUWIDAIkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAS4ElEQVR4nO3db4xc1XnH8e9TOxCCY2NCs7VsK0uKlZQ/aoK34DZNZMu0OIBiKoHkihRTWbKCSEKqRMrSvkjeWDWVGhSaguTGFeaPsjhOKqxaboMM+6ISmGBCYoxLWIJLFhy7BPPHUSExffpizrrjzezs7O7Mztzw/UijuXPuOXefuTre3957Z64jM5Ek6be6XYAkqTcYCJIkwECQJBUGgiQJMBAkScXcbhcwXeecc0729/e33P8Xv/gFZ555ZucKarMq1VulWsF6O61K9VapVmhPvfv27Xs5M3+74crMrORj+fLlORUPP/zwlPp3W5XqrVKtmdbbaVWqt0q1ZranXuDxnOD3qqeMJEmA1xAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAmo8K0rZqJ/cNfJ5UObr+xiJZLUOzxCkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpaCkQIuKvIuJARDwVEd+KiHdHxNkR8WBEPFueF9b1vyUiRiLimYi4vK59eUTsL+tuj4go7adHxP2lfW9E9Lf9nUqSmpo0ECJiMfB5YCAzLwTmAOuAQWBPZi4D9pTXRMT5Zf0FwBrgjoiYUzZ3J7ARWFYea0r7BuBYZp4H3Abc2pZ3J0lqWaunjOYCZ0TEXOA9wEvAWmBbWb8NuLosrwWGMvOtzHweGAEuiYhFwPzMfCQzE7h73Jixbe0AVo8dPUiSZkfUfjdP0iniZmAT8D/A9zLzuoh4NTPPqutzLDMXRsQ3gEcz897SvhXYDRwCNmfmZaX948CXM/OqiHgKWJOZo2Xdc8ClmfnyuDo2UjvCoK+vb/nQ0FDLb/T48ePMmzcPgP0vvnay/aLFC1rexmyqr7fXValWsN5Oq1K9VaoV2lPvqlWr9mXmQKN1k97+ulwbWAucC7wKfDsiPt1sSIO2bNLebMypDZlbgC0AAwMDuXLlyiZlnGp4eJix/jfU3/76uta3MZvq6+11VaoVrLfTqlRvlWqFztfbyimjy4DnM/O/M/NXwHeBPwKOlNNAlOejpf8osLRu/BJqp5hGy/L49lPGlNNSC4BXpvOGJEnT00ogvACsiIj3lPP6q4GDwE5gfemzHnigLO8E1pVPDp1L7eLxY5l5GHgjIlaU7Vw/bszYtq4BHspWzmVJktpm0lNGmbk3InYATwAngB9QO20zD9geERuohca1pf+BiNgOPF3635SZb5fN3QjcBZxB7brC7tK+FbgnIkaoHRmsa8u7kyS1rKX/QjMzvwJ8ZVzzW9SOFhr130TtIvT49seBCxu0v0kJFElSd/hNZUkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkATC32wV0W//grpPLhzZf2cVKJKm7PEKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBLQZCRJwVETsi4j8j4mBE/GFEnB0RD0bEs+V5YV3/WyJiJCKeiYjL69qXR8T+su72iIjSfnpE3F/a90ZEf9vfqSSpqVaPEL4O/Ftmfhj4feAgMAjsycxlwJ7ymog4H1gHXACsAe6IiDllO3cCG4Fl5bGmtG8AjmXmecBtwK0zfF+SpCmaNBAiYj7wCWArQGb+MjNfBdYC20q3bcDVZXktMJSZb2Xm88AIcElELALmZ+YjmZnA3ePGjG1rB7B67OhBkjQ7ova7uUmHiI8AW4CnqR0d7ANuBl7MzLPq+h3LzIUR8Q3g0cy8t7RvBXYDh4DNmXlZaf848OXMvCoingLWZOZoWfcccGlmvjyulo3UjjDo6+tbPjQ01PIbPX78OPPmzQNg/4uvNexz0eIFLW+v0+rr7XVVqhWst9OqVG+VaoX21Ltq1ap9mTnQaN3cFsbPBS4GPpeZeyPi65TTQxNo9Jd9NmlvNubUhswt1MKJgYGBXLlyZZMyTjU8PMxY/xsGdzXsc+i61rfXafX19roq1QrW22lVqrdKtULn623lGsIoMJqZe8vrHdQC4kg5DUR5PlrXf2nd+CXAS6V9SYP2U8ZExFxgAfDKVN+MJGn6Jg2EzPwZ8NOI+FBpWk3t9NFOYH1pWw88UJZ3AuvKJ4fOpXbx+LHMPAy8EREryvWB68eNGdvWNcBDOdm5LElSW7Vyygjgc8B9EXEa8BPgL6mFyfaI2AC8AFwLkJkHImI7tdA4AdyUmW+X7dwI3AWcQe26wu7SvhW4JyJGqB0ZrJvh+5IkTVFLgZCZTwKNLkKsnqD/JmBTg/bHgQsbtL9JCRRJUnf4TWVJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkYm63C+gl/YO7Ti4f2nxlFyuRpNnnEYIkCTAQJEmFgSBJAgwESVJhIEiSAANBklQYCJIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJRcuBEBFzIuIHEfGv5fXZEfFgRDxbnhfW9b0lIkYi4pmIuLyufXlE7C/rbo+IKO2nR8T9pX1vRPS38T1KklowlSOEm4GDda8HgT2ZuQzYU14TEecD64ALgDXAHRExp4y5E9gILCuPNaV9A3AsM88DbgNunda7kSRNW0uBEBFLgCuBb9Y1rwW2leVtwNV17UOZ+VZmPg+MAJdExCJgfmY+kpkJ3D1uzNi2dgCrx44eJEmzI2q/myfpFLED+FvgvcCXMvOqiHg1M8+q63MsMxdGxDeARzPz3tK+FdgNHAI2Z+Zlpf3jwJfLtp4C1mTmaFn3HHBpZr48ro6N1I4w6OvrWz40NNTyGz1+/Djz5s0DYP+Lr03a/6LFC1redifU19vrqlQrWG+nVaneKtUK7al31apV+zJzoNG6uZMNjoirgKOZuS8iVrbw8xr9ZZ9N2puNObUhcwuwBWBgYCBXrmylnJrh4WHG+t8wuGvS/oeua33bnVBfb6+rUq1gvZ1WpXqrVCt0vt5JAwH4GPCpiLgCeDcwPyLuBY5ExKLMPFxOBx0t/UeBpXXjlwAvlfYlDdrrx4xGxFxgAfDKNN+TJGkaJr2GkJm3ZOaSzOyndrH4ocz8NLATWF+6rQceKMs7gXXlk0PnUrt4/FhmHgbeiIgV5frA9ePGjG3rmvIzJj+X1UH9g7tOPiTpnaCVI4SJbAa2R8QG4AXgWoDMPBAR24GngRPATZn5dhlzI3AXcAa16wq7S/tW4J6IGKF2ZLBuBnVJkqZhSoGQmcPAcFn+ObB6gn6bgE0N2h8HLmzQ/iYlUCRJ3eE3lSVJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEz+w9y3jHG/69phzZf2aVKJKlzPEKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgpvfz0N9bfD9lbYkn5TeIQgSQIMBElSYSBIkgADQZJUGAiSJMBAkCQVBoIkCTAQJEnFpIEQEUsj4uGIOBgRByLi5tJ+dkQ8GBHPlueFdWNuiYiRiHgmIi6va18eEfvLutsjIkr76RFxf2nfGxH9HXivkqQmWjlCOAF8MTN/D1gB3BQR5wODwJ7MXAbsKa8p69YBFwBrgDsiYk7Z1p3ARmBZeawp7RuAY5l5HnAbcGsb3pskaQomDYTMPJyZT5TlN4CDwGJgLbCtdNsGXF2W1wJDmflWZj4PjACXRMQiYH5mPpKZCdw9bszYtnYAq8eOHiRJs2NK1xDKqZyPAnuBvsw8DLXQAN5fui0Gflo3bLS0LS7L49tPGZOZJ4DXgPdNpTZJ0sy0fHO7iJgHfAf4Qma+3uQP+EYrskl7szHja9hI7ZQTfX19DA8PT1L1/zt+/PjJ/l+86ETL4ybzD/c9cHL5osUL2rbd+np7XZVqBevttCrVW6VaofP1thQIEfEuamFwX2Z+tzQfiYhFmXm4nA46WtpHgaV1w5cAL5X2JQ3a68eMRsRcYAHwyvg6MnMLsAVgYGAgV65c2Ur5AAwPDzPW/4a6u5W206HrWq9nMvX19roq1QrW22lVqrdKtULn623lU0YBbAUOZubX6lbtBNaX5fXAA3Xt68onh86ldvH4sXJa6Y2IWFG2ef24MWPbugZ4qFxnkCTNklaOED4G/AWwPyKeLG1/DWwGtkfEBuAF4FqAzDwQEduBp6l9QummzHy7jLsRuAs4A9hdHlALnHsiYoTakcG6mb0tSdJUTRoImfkfND7HD7B6gjGbgE0N2h8HLmzQ/iYlUCRJ3eE3lSVJgIEgSSoMBEkSYCBIkgoDQZIETOGbyppcf90X3g5tvrKLlUjS1HmEIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAnwewgd43cSJFWNRwiSJMBAkCQVBoIkCTAQJEmFgSBJAgwESVLhx05ngR9BlVQFHiFIkgADQZJUGAiSJMBrCLPO6wmSepVHCJIkwECQJBUGgiQJ8BpCV3k9QVIv8QhBkgQYCJKkwkCQJAFeQ+gZXk+Q1G0eIUiSAAOhJ/UP7mL/i6+dctQgSZ1mIEiSAK8h9DyvLUiaLQZChRgOkjrJQKgow0FSuxkIvwEMB0nt0DOBEBFrgK8Dc4BvZubmLpdUSRN9MsmgkDSZngiEiJgD/CPwJ8Ao8P2I2JmZT3e3st8crXyE1dCQ3tl6IhCAS4CRzPwJQEQMAWsBA2EWTfd7D1+86AQ3TGOsAST1ll4JhMXAT+tejwKXju8UERuBjeXl8Yh4Zgo/4xzg5WlXOMs+X6F6p1tr3NqBYlpTmX1bWG/nVKlWaE+9H5hoRa8EQjRoy19ryNwCbJnWD4h4PDMHpjO2G6pUb5VqBevttCrVW6VaofP19so3lUeBpXWvlwAvdakWSXpH6pVA+D6wLCLOjYjTgHXAzi7XJEnvKD1xyigzT0TEZ4F/p/ax03/OzANt/jHTOtXURVWqt0q1gvV2WpXqrVKt0OF6I/PXTtVLkt6BeuWUkSSpywwESRJQ0UCIiDUR8UxEjETEYIP1ERG3l/U/ioiLJxsbEWdHxIMR8Wx5XtjteiNiaUQ8HBEHI+JARNxcN+arEfFiRDxZHld0u96y7lBE7C81PV7X3pH9O4N9+6G6ffdkRLweEV8o67q5bz8cEY9ExFsR8aVWxnZ57jast4fnbrP922tzd6J927m5m5mVelC76Pwc8EHgNOCHwPnj+lwB7Kb2/YYVwN7JxgJ/BwyW5UHg1h6odxFwcVl+L/Djunq/Cnypl/ZvWXcIOKfBdtu+f2da67jt/Az4QA/s2/cDfwBsqq+hh+fuRPX26txtWG+Pzt0Ja+3U3K3iEcLJ21xk5i+Bsdtc1FsL3J01jwJnRcSiScauBbaV5W3A1d2uNzMPZ+YTAJn5BnCQ2re6O2km+7eZTuzfdtW6GnguM/+rDTXNqN7MPJqZ3wd+NYWxXZu7E9Xbq3O3yf5tpitzt8Va2zp3qxgIjW5zMX6iTdSn2di+zDwMtclMLZ27Xe9JEdEPfBTYW9f82XIa5J/beJpgpvUm8L2I2Be1W42M6cT+bcu+pfa9l2+Na+vWvp3O2G7O3Un12NxtptfmbivaOnerGAit3OZioj4t3SKjzWZSb21lxDzgO8AXMvP10nwn8LvAR4DDwN/PuNIWammhz8cy82Lgk8BNEfGJNtXVSDv27WnAp4Bv163v5r7txNjpmvHP7MG520yvzd3mG+jA3K1iILRym4uJ+jQbe2TsVEJ5PtoD9RIR76L2D+q+zPzuWIfMPJKZb2fm/wL/RO0QtOv1ZubY81HgX+rq6sT+nVGtxSeBJzLzyFhDl/ftdMZ2c+5OqEfn7oR6cO5Opu1zt4qB0MptLnYC10fNCuC1cqjXbOxOYH1ZXg880O16IyKArcDBzPxa/YBx58H/DHiqB+o9MyLeW+o7E/jTuro6sX9nMhfG/DnjDrm7vG+nM7abc7ehHp67E9Xbi3N3Mu2fu9O9Gt3NB7VPjvyY2lX6vyltnwE+U5aD2n+48xywHxhoNra0vw/YAzxbns/udr3AH1M7jPwR8GR5XFHW3VP6/ojaRFrUA/V+kNqnJX4IHJiN/TvDufAe4OfAgnHb7Oa+/R1qfz2+Drxaluf38NxtWG8Pz92J6u3FudtsLnRk7nrrCkkSUM1TRpKkDjAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKk4v8ACUL+yBgZk5MAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW4UlEQVR4nO3db4ydZXrf8e8vdpbQ7cLyJ0wtTGsirKT86W7ClNJsVU3qpjhLFfMCpIloMZUlN4imG4moMu2Lti8swZvSRQqo1pJiSBqwaBFWViRBJkdRtWDWpOw6hqXMLg5M7eKysCyzEYRBV1+ce9jjYTxz5v+Mz/cjHZ3nXOe+n3kun11+cz/POWdSVUiS9BOrfQCSpLXBQJAkAQaCJKkxECRJgIEgSWo2rvYBLNTFF19cW7Zs6Xv8j370Iz772c8u3wGtUYPY9yD2DIPZ9yD2DIvr+8UXX3y7qn56pufWbSBs2bKFI0eO9D2+0+kwMjKyfAe0Rg1i34PYMwxm34PYMyyu7yR/cabnPGUkSQIMBElSYyBIkgADQZLUzBkISX42yUs9tx8m+c0kFyZ5Jslr7f6Cnjl3JxlL8mqSG3rq1yY52p67P0la/Zwkj7f64SRblqVbSdIZzRkIVfVqVX2xqr4IXAv8JfAksAc4VFVbgUPtMUmuBEaBq4DtwANJNrTdPQjsBra22/ZW3wW8W1VXAPcB9y5Jd5Kkvs33lNE24LtV9RfADmB/q+8HbmrbO4DHqurDqnodGAOuS7IJOK+qnqvuV6w+Mm3O1L6eALZNrR4kSStjvp9DGAV+v20PVdVJgKo6meSSVr8UeL5nznirfdS2p9en5rzZ9jWZ5D3gIuDt3h+eZDfdFQZDQ0N0Op2+D3xiYmJe488Wg9j3IPYMg9n3IPYMy9d334GQ5DPArwJ3zzV0hlrNUp9tzumFqn3APoDh4eGazwcz/ADL4BjEnmEw+x7EnmH5+p7PCuFXgD+rqrfa47eSbGqrg03AqVYfBy7rmbcZONHqm2eo984ZT7IROB94Z16dzMOWPV//ZPv4PTcu14+RpHVlPtcQfo0fny4COAjsbNs7gad66qPtnUOX0714/EI7vfR+kuvb9YHbps2Z2tfNwLPln3KTpBXV1wohyV8Dfhn4lz3le4ADSXYBbwC3AFTVsSQHgJeBSeDOqvq4zbkDeBg4F3i63QAeAh5NMkZ3ZTC6iJ4kSQvQVyBU1V/SvcjbW/s+3XcdzTR+L7B3hvoR4OoZ6h/QAkWStDr8pLIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDXz/bbTs47fayRJXa4QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJKavgIhyeeTPJHkO0leSfL3k1yY5Jkkr7X7C3rG351kLMmrSW7oqV+b5Gh77v4kafVzkjze6oeTbFnyTiVJs+p3hfBV4A+r6ueALwCvAHuAQ1W1FTjUHpPkSmAUuArYDjyQZEPbz4PAbmBru21v9V3Au1V1BXAfcO8i+5IkzdOcgZDkPOAfAg8BVNVfVdUPgB3A/jZsP3BT294BPFZVH1bV68AYcF2STcB5VfVcVRXwyLQ5U/t6Atg2tXqQJK2Mfv4ews8A/w/4r0m+ALwIfAUYqqqTAFV1MsklbfylwPM988db7aO2Pb0+NefNtq/JJO8BFwFv9x5Ikt10VxgMDQ3R6XT66xKYmJj4ZPxd10zOOGY++1svevseFIPYMwxm34PYMyxf3/0EwkbgF4DfqKrDSb5KOz10BjP9Zl+z1Gebc3qhah+wD2B4eLhGRkZmOYzTdTodpsbf3vNHcXodv7X//a0XvX0PikHsGQaz70HsGZav736uIYwD41V1uD1+gm5AvNVOA9HuT/WMv6xn/mbgRKtvnqF+2pwkG4HzgXfm24wkaeHmDISq+r/Am0l+tpW2AS8DB4GdrbYTeKptHwRG2zuHLqd78fiFdnrp/STXt+sDt02bM7Wvm4Fn23UGSdIK6fdvKv8G8HtJPgN8D/gXdMPkQJJdwBvALQBVdSzJAbqhMQncWVUft/3cATwMnAs83W7QvWD9aJIxuiuD0UX2JUmap74CoapeAoZneGrbGcbvBfbOUD8CXD1D/QNaoEiSVoefVJYkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEtBnICQ5nuRokpeSHGm1C5M8k+S1dn9Bz/i7k4wleTXJDT31a9t+xpLcnyStfk6Sx1v9cJItS9ynJGkO81kh/FJVfbGqhtvjPcChqtoKHGqPSXIlMApcBWwHHkiyoc15ENgNbG237a2+C3i3qq4A7gPuXXhLkqSFWMwpox3A/ra9H7ipp/5YVX1YVa8DY8B1STYB51XVc1VVwCPT5kzt6wlg29TqQZK0Mjb2Oa6AP05SwH+pqn3AUFWdBKiqk0kuaWMvBZ7vmTveah+17en1qTlvtn1NJnkPuAh4u/cgkuymu8JgaGiITqfT5+HDxMTEJ+PvumZyxjHz2d960dv3oBjEnmEw+x7EnmH5+u43EL5UVSfaf/SfSfKdWcbO9Jt9zVKfbc7phW4Q7QMYHh6ukZGRWQ+6V6fTYWr87Xu+PuOY47f2v7/1orfvQTGIPcNg9j2IPcPy9d3XKaOqOtHuTwFPAtcBb7XTQLT7U234OHBZz/TNwIlW3zxD/bQ5STYC5wPvzL8dSdJCzRkIST6b5HNT28A/Af4cOAjsbMN2Ak+17YPAaHvn0OV0Lx6/0E4vvZ/k+nZ94LZpc6b2dTPwbLvOIElaIf2cMhoCnmzXeDcC/62q/jDJN4EDSXYBbwC3AFTVsSQHgJeBSeDOqvq47esO4GHgXODpdgN4CHg0yRjdlcHoEvQmSZqHOQOhqr4HfGGG+veBbWeYsxfYO0P9CHD1DPUPaIEiSVodflJZkgQYCJKkpt+3nQ6ELT1vRz1+z42reCSStPJcIUiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkoB5BEKSDUn+V5I/aI8vTPJMktfa/QU9Y+9OMpbk1SQ39NSvTXK0PXd/krT6OUkeb/XDSbYsYY+SpD7MZ4XwFeCVnsd7gENVtRU41B6T5EpgFLgK2A48kGRDm/MgsBvY2m7bW30X8G5VXQHcB9y7oG4kSQvWVyAk2QzcCHytp7wD2N+29wM39dQfq6oPq+p1YAy4Lskm4Lyqeq6qCnhk2pypfT0BbJtaPUiSVsbGPsf9Z+DfAJ/rqQ1V1UmAqjqZ5JJWvxR4vmfceKt91Lan16fmvNn2NZnkPeAi4O3eg0iym+4Kg6GhITqdTp+HDxMTE5+Mv+uayTnHz2ffa1lv34NiEHuGwex7EHuG5et7zkBI8k+BU1X1YpKRPvY502/2NUt9tjmnF6r2AfsAhoeHa2Skn8Pp6nQ6TI2/fc/X5xx//Nb+972W9fY9KAaxZxjMvgexZ1i+vvtZIXwJ+NUkXwZ+Cjgvye8CbyXZ1FYHm4BTbfw4cFnP/M3AiVbfPEO9d854ko3A+cA7C+xJkrQAc15DqKq7q2pzVW2he7H42ar6Z8BBYGcbthN4qm0fBEbbO4cup3vx+IV2eun9JNe36wO3TZszta+b28/41ApBkrR8+r2GMJN7gANJdgFvALcAVNWxJAeAl4FJ4M6q+rjNuQN4GDgXeLrdAB4CHk0yRndlMLqI45IkLcC8AqGqOkCnbX8f2HaGcXuBvTPUjwBXz1D/gBYokqTV4SeVJUnA4k4ZndW29LwT6fg9N67ikUjSynCFIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLjn9DsQ++f0wT/pKaks9OcK4QkP5XkhSTfSnIsyX9s9QuTPJPktXZ/Qc+cu5OMJXk1yQ099WuTHG3P3Z8krX5Oksdb/XCSLcvQqyRpFv2cMvoQ+EdV9QXgi8D2JNcDe4BDVbUVONQek+RKYBS4CtgOPJBkQ9vXg8BuYGu7bW/1XcC7VXUFcB9w7+JbkyTNx5yBUF0T7eFPtlsBO4D9rb4fuKlt7wAeq6oPq+p1YAy4Lskm4Lyqeq6qCnhk2pypfT0BbJtaPUiSVkZf1xDab/gvAlcAv11Vh5MMVdVJgKo6meSSNvxS4Pme6eOt9lHbnl6fmvNm29dkkveAi4C3px3HbrorDIaGhuh0On22CRMTE5+Mv+uayb7nzWQ+P3e19fY9KAaxZxjMvgexZ1i+vvsKhKr6GPhiks8DTya5epbhM/1mX7PUZ5sz/Tj2AfsAhoeHa2RkZJbDOF2n02Fq/O3TLhLP1/Fb+/+5q62370ExiD3DYPY9iD3D8vU9r7edVtUPgA7dc/9vtdNAtPtTbdg4cFnPtM3AiVbfPEP9tDlJNgLnA+/M59gkSYvTz7uMfrqtDEhyLvCPge8AB4GdbdhO4Km2fRAYbe8cupzuxeMX2uml95Nc364P3DZtztS+bgaebdcZJEkrpJ9TRpuA/e06wk8AB6rqD5I8BxxIsgt4A7gFoKqOJTkAvAxMAne2U04AdwAPA+cCT7cbwEPAo0nG6K4MRpeiOUlS/+YMhKr6NvDzM9S/D2w7w5y9wN4Z6keAT11/qKoPaIEiSVodfnWFJAkwECRJjYEgSQIMBElSYyBIkgADQZLU+PcQFqD37yP4txEknS1cIUiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNX653SL5RXeSzhauECRJQB+BkOSyJH+S5JUkx5J8pdUvTPJMktfa/QU9c+5OMpbk1SQ39NSvTXK0PXd/krT6OUkeb/XDSbYsQ6+SpFn0s0KYBO6qqr8NXA/cmeRKYA9wqKq2AofaY9pzo8BVwHbggSQb2r4eBHYDW9tte6vvAt6tqiuA+4B7l6A3SdI8zBkIVXWyqv6sbb8PvAJcCuwA9rdh+4Gb2vYO4LGq+rCqXgfGgOuSbALOq6rnqqqAR6bNmdrXE8C2qdWDJGllzOuicjuV8/PAYWCoqk5CNzSSXNKGXQo83zNtvNU+atvT61Nz3mz7mkzyHnAR8Pa0n7+b7gqDoaEhOp1O38c+MTHxyfi7rpnse958zOd4Vkpv34NiEHuGwex7EHuG5eu770BI8teB/w78ZlX9cJZf4Gd6omapzzbn9ELVPmAfwPDwcI2MjMxx1D/W6XSYGn97zzuDltLxW/s/npXS2/egGMSeYTD7HsSeYfn67utdRkl+km4Y/F5V/Y9WfqudBqLdn2r1ceCynumbgROtvnmG+mlzkmwEzgfemW8zkqSF6+ddRgEeAl6pqv/U89RBYGfb3gk81VMfbe8cupzuxeMX2uml95Nc3/Z527Q5U/u6GXi2XWeQJK2Qfk4ZfQn458DRJC+12r8F7gEOJNkFvAHcAlBVx5IcAF6m+w6lO6vq4zbvDuBh4Fzg6XaDbuA8mmSM7spgdHFtSZLma85AqKr/yczn+AG2nWHOXmDvDPUjwNUz1D+gBYokaXX4SWVJEuB3GS0pv9dI0nrmCkGSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIE+EnlZeOnliWtN64QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAF+DmFF+JkESeuBKwRJEtBHICT5nSSnkvx5T+3CJM8kea3dX9Dz3N1JxpK8muSGnvq1SY625+5PklY/J8njrX44yZYl7lGS1Id+VggPA9un1fYAh6pqK3CoPSbJlcAocFWb80CSDW3Og8BuYGu7Te1zF/BuVV0B3Afcu9BmJEkLN2cgVNWfAu9MK+8A9rft/cBNPfXHqurDqnodGAOuS7IJOK+qnquqAh6ZNmdqX08A26ZWD5KklbPQi8pDVXUSoKpOJrmk1S8Fnu8ZN95qH7Xt6fWpOW+2fU0meQ+4CHh7+g9NspvuKoOhoSE6nU7fBzwxMfHJ+Luumex73lKbzzEvhd6+B8Ug9gyD2fcg9gzL1/dSv8topt/sa5b6bHM+XazaB+wDGB4erpGRkb4PrNPpMDX+9p53/ay4oz/6ZHMl3nHU2/egGMSeYTD7HsSeYfn6Xui7jN5qp4Fo96dafRy4rGfcZuBEq2+eoX7anCQbgfP59CkqSdIyW2ggHAR2tu2dwFM99dH2zqHL6V48fqGdXno/yfXt+sBt0+ZM7etm4Nl2nUGStILmPGWU5PeBEeDiJOPAvwfuAQ4k2QW8AdwCUFXHkhwAXgYmgTur6uO2qzvovmPpXODpdgN4CHg0yRjdlcHoknQmSZqXOQOhqn7tDE9tO8P4vcDeGepHgKtnqH9ACxRJ0urxk8qSJMDvMlpVfseRpLXEFYIkCTAQJEmNgSBJAryGsGZ4PUHSanOFIEkCDARJUmMgSJIAryGsSV5PkLQaXCFIkgADQZLUeMpojfP0kaSV4gpBkgS4QlhXXC1IWk6uECRJgCuEdcvVgqSlZiCcBQwHSUvBQDjLGA6SFsprCGexLXu+ztH/895pISFJZ+IKYUC4cpA0lzUTCEm2A18FNgBfq6p7VvmQzlpnWjEYFNJgWxOBkGQD8NvALwPjwDeTHKyql1f3yAZLP6eWDA3p7LUmAgG4Dhirqu8BJHkM2AEYCGvMal6PMIyk5bVWAuFS4M2ex+PA35s+KMluYHd7OJHk1Xn8jIuBtxd8hOvUvz6L+s69fQ89a3qep0HsexB7hsX1/bfO9MRaCYTMUKtPFar2AfsW9AOSI1U1vJC569kg9j2IPcNg9j2IPcPy9b1W3nY6DlzW83gzcGKVjkWSBtJaCYRvAluTXJ7kM8AocHCVj0mSBsqaOGVUVZNJ/hXwR3Tfdvo7VXVsiX/Mgk41nQUGse9B7BkGs+9B7BmWqe9UfepUvSRpAK2VU0aSpFVmIEiSgLMgEJJsT/JqkrEke2Z4Pknub89/O8kv9Dt3LVtk38eTHE3yUpIjK3vki9NH3z+X5LkkHyb5rfnMXasW2fPZ/Frf2v63/e0k30jyhX7nrlWL7Hnxr3VVrdsb3QvQ3wV+BvgM8C3gymljvgw8TfezDtcDh/udu1Zvi+m7PXccuHi1+1imvi8B/i6wF/it+cxdi7fF9DwAr/UvAhe07V9Z7//fXkzPS/Var/cVwidfeVFVfwVMfeVFrx3AI9X1PPD5JJv6nLtWLabv9WzOvqvqVFV9E/hovnPXqMX0vJ710/c3qurd9vB5up9f6mvuGrWYnpfEeg+Emb7y4tI+x/Qzd61aTN/Q/RT4Hyd5sX0dyHqxmNdsvb7eiz3uQXmtd9FdES9k7lqxmJ5hCV7rNfE5hEXo5ysvzjSmr6/LWKMW0zfAl6rqRJJLgGeSfKeq/nRJj3B5LOY1W6+v92KP+6x/rZP8Et3/OP6D+c5dYxbTMyzBa73eVwj9fOXFmcas56/LWEzfVNXU/SngSbpL1fVgMa/Zen29F3XcZ/trneTvAF8DdlTV9+czdw1aTM9L81qv9oWURV6E2Qh8D7icH1+EuWramBs5/eLqC/3OXau3Rfb9WeBzPdvfALavdk9L1XfP2P/A6ReV1+Xrvciez+rXGvibwBjwiwv9N1tLt0X2vCSv9ar/IyzBP+KXgf9N9+r8v2u1Xwd+vW2H7h/f+S5wFBiebe56uS20b7rvYPhWux07C/v+G3R/0/oh8IO2fd56fr0X2vMAvNZfA94FXmq3I7PNXQ+3hfa8VK+1X10hSQLW/zUESdISMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTm/wMbGkHb8XvN5QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVqElEQVR4nO3dfYxddX7f8fcnkCUIFpaHZWphWpNiJeUhbJYpodk08tbb4i5RTSWQXNFgWldWEIm2ElED7R9tVVmCf0oXNaBaS4IhacGiRViJSItMR1G1YNa07Hp5KrOLCw4uLgtL8EoQjL794/4GrofxzLnzeOfyfklXc+73nt/x+foYPvM7595zU1VIkvRTK70DkqThYCBIkgADQZLUGAiSJMBAkCQ1J6/0DszXueeeW+vWreu8/k9+8hNOO+20pduhZTRKvcBo9WMvw2mUeoGF9fPss8++VVVfnOm1VRsI69atY//+/Z3Xn5iYYMOGDUu3Q8tolHqB0erHXobTKPUCC+snyf850WueMpIkAQaCJKkxECRJgIEgSWoMBEkS0DEQknwhySNJXkryYpK/keTsJE8keaX9PKtv/duTTCZ5OcnVffUrkhxor92dJK1+SpKHW31fknWL3qkkaVZdZwjfBP6kqn4euBx4EbgN2FtV64G97TlJLga2AJcAm4B7kpzUtnMvsB1Y3x6bWn0b8E5VXQTcBdy5wL4kSQOaMxCSnAH8KnAfQFX9RVX9GNgM7Gqr7QKubcubgYeq6oOqehWYBK5MsgY4o6qeqt49tx+YNmZqW48AG6dmD5Kk5dHlg2k/C/w/4PeTXA48C3wDGKuqwwBVdTjJeW3984Gn+8YfarUP2/L0+tSY19u2jiV5FzgHeKt/R5JspzfDYGxsjImJiW5dAkePHh1o/WE2Sr3AaPVjL8NplHqBpeunSyCcDHwZ+K2q2pfkm7TTQycw02/2NUt9tjHHF6p2AjsBxsfHa5BP6p3ok33rbvvjj5cP3nFN5+2tJD91ObzsZTiNUi+wdP10uYZwCDhUVfva80foBcSb7TQQ7eeRvvUv6Bu/Fnij1dfOUD9uTJKTgTOBtwdtRpI0f3MGQlX9X+D1JD/XShuBF4A9wNZW2wo81pb3AFvaO4cupHfx+Jl2eum9JFe16wM3Thszta3rgCfL7/aUpGXV9eZ2vwX8YZLPAT8E/hG9MNmdZBvwGnA9QFU9n2Q3vdA4BtxSVR+17dwM3A+cCjzeHtC7YP1gkkl6M4MtC+xLkjSgToFQVc8B4zO8tPEE6+8AdsxQ3w9cOkP9fVqgSJJWhp9UliQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp6Xovo5HSf8trSVKPMwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJElAx0BIcjDJgSTPJdnfamcneSLJK+3nWX3r355kMsnLSa7uq1/RtjOZ5O4kafVTkjzc6vuSrFvkPiVJcxhkhvDVqvpSVY2357cBe6tqPbC3PSfJxcAW4BJgE3BPkpPamHuB7cD69tjU6tuAd6rqIuAu4M75tyRJmo+FnDLaDOxqy7uAa/vqD1XVB1X1KjAJXJlkDXBGVT1VVQU8MG3M1LYeATZOzR4kScsjvf83z7FS8irwDlDAf6iqnUl+XFVf6Fvnnao6K8m/B56uqj9o9fuAx4GDwB1V9bVW/5vA71TVryX5PrCpqg61134A/FJVvTVtP7bTm2EwNjZ2xUMPPdS50aNHj3L66acDcODP3p1xncvOP7Pz9lZSfy+jYJT6sZfhNEq9wML6+epXv/ps35me43T9TuWvVNUbSc4Dnkjy0izrzvSbfc1Sn23M8YWqncBOgPHx8dqwYcOsO91vYmKCqfVvOsF3Kh+8ofv2VlJ/L6NglPqxl+E0Sr3A0vXT6ZRRVb3Rfh4BHgWuBN5sp4FoP4+01Q8BF/QNXwu80eprZ6gfNybJycCZwNuDtyNJmq85AyHJaUk+P7UM/B3g+8AeYGtbbSvwWFveA2xp7xy6kN7F42eq6jDwXpKr2vWBG6eNmdrWdcCT1eVcliRp0XQ5ZTQGPNqu8Z4M/Meq+pMk3wF2J9kGvAZcD1BVzyfZDbwAHANuqaqP2rZuBu4HTqV3XeHxVr8PeDDJJL2ZwZZF6E2SNIA5A6GqfghcPkP9R8DGE4zZAeyYob4fuHSG+vu0QJEkrQw/qSxJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAno/p3Knwnr+r5r+eAd16zgnkjS8nOGIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIGCIQkJyX5X0n+qD0/O8kTSV5pP8/qW/f2JJNJXk5ydV/9iiQH2mt3J0mrn5Lk4Vbfl2TdIvYoSepgkBnCN4AX+57fBuytqvXA3vacJBcDW4BLgE3APUlOamPuBbYD69tjU6tvA96pqouAu4A759WNJGneOgVCkrXANcC3+sqbgV1teRdwbV/9oar6oKpeBSaBK5OsAc6oqqeqqoAHpo2Z2tYjwMap2YMkaXl0vbndvwP+GfD5vtpYVR0GqKrDSc5r9fOBp/vWO9RqH7bl6fWpMa+3bR1L8i5wDvBW/04k2U5vhsHY2BgTExMddx+OHj368fq3XnZszvUH2fZy6+9lFIxSP/YynEapF1i6fuYMhCS/BhypqmeTbOiwzZl+s69Z6rONOb5QtRPYCTA+Pl4bNnTZnZ6JiQmm1r+p766mJ3Lwhu7bXm79vYyCUerHXobTKPUCS9dPlxnCV4C/l+TrwM8AZyT5A+DNJGva7GANcKStfwi4oG/8WuCNVl87Q71/zKEkJwNnAm/PsydJ0jzMeQ2hqm6vqrVVtY7exeInq+ofAnuArW21rcBjbXkPsKW9c+hCehePn2mnl95LclW7PnDjtDFT27qu/RmfmiFIkpbOQr4g5w5gd5JtwGvA9QBV9XyS3cALwDHglqr6qI25GbgfOBV4vD0A7gMeTDJJb2awZQH7JUmah4ECoaomgIm2/CNg4wnW2wHsmKG+H7h0hvr7tECRJK0MP6ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQs5G6nI21d35foHLzjmhXcE0laHs4QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBHQIhCQ/k+SZJN9N8nySf93qZyd5Iskr7edZfWNuTzKZ5OUkV/fVr0hyoL12d5K0+ilJHm71fUnWLUGvkqRZdJkhfAD8raq6HPgSsCnJVcBtwN6qWg/sbc9JcjGwBbgE2ATck+Sktq17ge3A+vbY1OrbgHeq6iLgLuDOhbcmSRrEnIFQPUfb059ujwI2A7tafRdwbVveDDxUVR9U1avAJHBlkjXAGVX1VFUV8MC0MVPbegTYODV7kCQtj05fkNN+w38WuAj43aral2Ssqg4DVNXhJOe11c8Hnu4bfqjVPmzL0+tTY15v2zqW5F3gHOCtafuxnd4Mg7GxMSYmJjq2CUePHv14/VsvO9Z5HDDQn7Mc+nsZBaPUj70Mp1HqBZaun06BUFUfAV9K8gXg0SSXzrL6TL/Z1yz12cZM34+dwE6A8fHx2rBhwyy7cbyJiQmm1r+p79vQujh4Q/c/Zzn09zIKRqkfexlOo9QLLF0/A32FZlX9OMkEvXP/byZZ02YHa4AjbbVDwAV9w9YCb7T62hnq/WMOJTkZOBN4e8Belsy6aQHiV2pKGkVd3mX0xTYzIMmpwNeAl4A9wNa22lbgsba8B9jS3jl0Ib2Lx8+000vvJbmqXR+4cdqYqW1dBzzZrjNIkpZJlxnCGmBXu47wU8DuqvqjJE8Bu5NsA14DrgeoqueT7AZeAI4Bt7RTTgA3A/cDpwKPtwfAfcCDSSbpzQy2LEZzkqTu5gyEqvoe8Isz1H8EbDzBmB3Ajhnq+4FPXX+oqvdpgSJJWhl+UlmSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpGagu52qp//up975VNKocIYgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktR4c7sF8kZ3kkaFMwRJEtAhEJJckOS/J3kxyfNJvtHqZyd5Iskr7edZfWNuTzKZ5OUkV/fVr0hyoL12d5K0+ilJHm71fUnWLUGvkqRZdJkhHANuraq/BlwF3JLkYuA2YG9VrQf2tue017YAlwCbgHuSnNS2dS+wHVjfHptafRvwTlVdBNwF3LkIvUmSBjBnIFTV4ar6n235PeBF4HxgM7CrrbYLuLYtbwYeqqoPqupVYBK4Mska4IyqeqqqCnhg2pipbT0CbJyaPUiSlsdA1xDaqZxfBPYBY1V1GHqhAZzXVjsfeL1v2KFWO78tT68fN6aqjgHvAucMsm+SpIXp/C6jJKcD/xn4p1X157P8Aj/TCzVLfbYx0/dhO71TToyNjTExMTHHXn/i6NGjH69/62XHOo8bxCD7sxD9vYyCUerHXobTKPUCS9dPp0BI8tP0wuAPq+q/tPKbSdZU1eF2OuhIqx8CLugbvhZ4o9XXzlDvH3MoycnAmcDb0/ejqnYCOwHGx8drw4YNXXYf6P3Pemr9m/reKrqYDt7QfX8Wor+XUTBK/djLcBqlXmDp+unyLqMA9wEvVtW/7XtpD7C1LW8FHuurb2nvHLqQ3sXjZ9pppfeSXNW2eeO0MVPbug54sl1nkCQtky4zhK8Avw4cSPJcq/1z4A5gd5JtwGvA9QBV9XyS3cAL9N6hdEtVfdTG3QzcD5wKPN4e0AucB5NM0psZbFlYW5KkQc0ZCFX1P5j5HD/AxhOM2QHsmKG+H7h0hvr7tEBZzfzUsqTVzE8qS5IAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElS41doLhE/pCZptXGGIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjR9MWwZ+SE3SauAMQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJanzb6TLzLaiShpUzBEkS0CEQkvxekiNJvt9XOzvJE0leaT/P6nvt9iSTSV5OcnVf/YokB9prdydJq5+S5OFW35dk3SL3KEnqoMsM4X5g07TabcDeqloP7G3PSXIxsAW4pI25J8lJbcy9wHZgfXtMbXMb8E5VXQTcBdw532YkSfM3ZyBU1Z8Cb08rbwZ2teVdwLV99Yeq6oOqehWYBK5MsgY4o6qeqqoCHpg2ZmpbjwAbp2YPkqTlM9+LymNVdRigqg4nOa/Vzwee7lvvUKt92Jan16fGvN62dSzJu8A5wFvT/9Ak2+nNMhgbG2NiYqLzDh89evTj9W+97FjncUtpkP3v19/LKBilfuxlOI1SL7B0/Sz2u4xm+s2+ZqnPNubTxaqdwE6A8fHx2rBhQ+cdm5iYYGr9m/re6bOiDvzk48VB3nHU38soGKV+7GU4jVIvsHT9zPddRm+200C0n0da/RBwQd96a4E3Wn3tDPXjxiQ5GTiTT5+ikiQtsfkGwh5ga1veCjzWV9/S3jl0Ib2Lx8+000vvJbmqXR+4cdqYqW1dBzzZrjNIkpbRnKeMkvwnYANwbpJDwL8E7gB2J9kGvAZcD1BVzyfZDbwAHANuqaqP2qZupveOpVOBx9sD4D7gwSST9GYGWxalM0nSQOYMhKr6Byd4aeMJ1t8B7Jihvh+4dIb6+7RAkSStHG9dMSS8pYWkleatKyRJgIEgSWoMBEkSYCBIkhovKg8hLzBLWgnOECRJgIEgSWoMBEkS4DWEoef1BEnLxRmCJAlwhrCqTM0Wbr3sGBtWdlckjSBnCJIkwECQJDWeMlqlvNgsabE5Q5AkAQaCJKnxlNEI8PSRpMVgIIwYw0HSfHnKSJIEOEMYac4WJA3CQPiMMBwkzcVA+AwyHCTNxED4jDMcJE0xEPQxw0H6bDMQNKP+cOhnUEija2gCIckm4JvAScC3quqOFd4lzeBEQQGGhbTaDUUgJDkJ+F3gbwOHgO8k2VNVL6zsnmkQs4XFTAwQabgMRSAAVwKTVfVDgCQPAZsBA2GE9X/hz00Dhsli6Q8lr6Hosy5VtdL7QJLrgE1V9U/a818HfqmqfnPaetuB7e3pzwEvD/DHnAu8tQi7OwxGqRcYrX7sZTiNUi+wsH7+SlV9caYXhmWGkBlqn0qqqtoJ7JzXH5Dsr6rx+YwdNqPUC4xWP/YynEapF1i6foblXkaHgAv6nq8F3lihfZGkz6RhCYTvAOuTXJjkc8AWYM8K75MkfaYMxSmjqjqW5DeB/0rvbae/V1XPL/IfM69TTUNqlHqB0erHXobTKPUCS9TPUFxUliStvGE5ZSRJWmEGgiQJGJFASLIpyctJJpPcNsPrSXJ3e/17Sb7cdexyW2AvB5McSPJckv3Lu+ef1qGXn0/yVJIPkvz2IGOX2wJ7GarjAp36uaH9+/pekm8nubzr2OW2wF6G6th06GVz6+O5JPuT/ErXsZ1U1ap+0LsI/QPgZ4HPAd8FLp62zteBx+l93uEqYF/Xsaull/baQeDclT4mA/RyHvDXgR3Abw8ydrX0MmzHZYB+fhk4qy3/3VX+38yMvQzbsenYy+l8cu33F4CXFvO4jMIM4ePbXlTVXwBTt73otxl4oHqeBr6QZE3HsctpIb0Mmzl7qaojVfUd4MNBxy6zhfQyjLr08+2qeqc9fZreZ4M6jV1mC+ll2HTp5Wi1BABO45MP8C7KcRmFQDgfeL3v+aFW67JOl7HLaSG9QO8fx39L8my7zcdKWsjf7Wo8LrMZpuMCg/ezjd6sdD5jl9pCeoHhOjadekny95O8BPwx8I8HGTuXofgcwgJ1ue3FidbpdMuMZbSQXgC+UlVvJDkPeCLJS1X1p4u6h90t5O92NR6X2QzTcYEB+knyVXr/E506V71qj80MvcBwHZuut/B5FHg0ya8C/wb4WtexcxmFGUKX216caJ1hu2XGQnqhqqZ+HgEepTeNXCkL+btdjcflhIbsuEDHfpL8AvAtYHNV/WiQsctoIb0M27EZ6O+2BddfTXLuoGNPaKUvpCzChZiTgR8CF/LJxZRLpq1zDcdfiH2m69hV1MtpwOf7lr9N7w6yQ9tL37r/iuMvKq+64zJLL0N1XAb4d/aXgUngl+f7d7EKehmqY9Oxl4v45KLyl4E/a/8vWJTjsmL/KBf5L/LrwP+md5X9X7TabwC/0ZZD7wt4fgAcAMZnG7sae6H37oLvtsfzq6SXv0TvN5s/B37cls9Ypcdlxl6G8bh07OdbwDvAc+2xf7axq7GXYTw2HXr5nbavzwFPAb+ymMfFW1dIkoDRuIYgSVoEBoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktT8f813eGe3U5+XAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATnUlEQVR4nO3db4xd9Z3f8fdn8S6LIBAIYWphWtNidcufTbpMCdrsVkOdLm6IaiqB5IouRnVlLWKlrcSqMe2DtqosmSelRbugWmGFIds1Fi3CWkRbZDqKVuFPTEvimECZBJc4trAIDosjQWP07YP7G7gexjN37ozn3ju8X9LVnPu953fmfOeAP/M759w7qSokSfqlQe+AJGk4GAiSJMBAkCQ1BoIkCTAQJEnNqkHvQL8uvvjiWrt2bc/r//znP+fcc889czu0TOxjuKyUPmDl9GIfc3vppZferqrPz/bayAbC2rVr2b9/f8/rT05OMjExceZ2aJnYx3BZKX3AyunFPuaW5P+e7jVPGUmSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKAEX6n8lJZu+2pj5YP7bhpgHsiSYPlDEGSBPQYCEkOJTmQ5OUk+1vtoiTPJHm9fb2wa/17kkwleS3JjV31a9t2ppLcnyStfnaSx1r9hSRrl7hPSdI8FjJDuKGqvlhV4+35NmBfVa0D9rXnJLkS2ARcBWwAHkhyVhvzILAVWNceG1p9C3C8qq4A7gPu7b8lSVI/FnPKaCOwqy3vAm7uqu+uqg+q6g1gCrguyWrg/Kp6rqoKeGTGmOltPQ6sn549SJKWRzr/Ns+zUvIGcBwo4D9V1c4kP6uqz3atc7yqLkzyR8DzVfXNVn8IeBo4BOyoqq+0+m8DX6+qryX5PrChqg63134IfKmq3p6xH1vpzDAYGxu7dvfu3T03euLECc4777xP1A/85N2Plq+59IKetzcop+tj1NjH8FkpvdjH3G644YaXus70nKLXu4y+XFVHklwCPJPk1TnWne03+5qjPteYUwtVO4GdAOPj47WQzwo/3WeL39F9l9FtvW9vUPys9+GyUvqAldOLffSvp1NGVXWkfT0GPAFcB7zVTgPRvh5rqx8GLusavgY40uprZqmfMibJKuAC4J2FtyNJ6te8gZDk3CSfmV4Gfgf4PrAX2NxW2ww82Zb3ApvanUOX07l4/GJVHQXeS3J9uz5w+4wx09u6BXi2ejmXJUlaMr2cMhoDnmjXeFcB/7mq/luS7wB7kmwB3gRuBaiqg0n2AK8AJ4G7qurDtq07gYeBc+hcV3i61R8CHk0yRWdmsGkJepMkLcC8gVBVPwK+MEv9p8D604zZDmyfpb4fuHqW+vu0QJEkDYbvVJYkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpKbnQEhyVpL/neTP2/OLkjyT5PX29cKude9JMpXktSQ3dtWvTXKgvXZ/krT62Ukea/UXkqxdwh4lST1YyAzhD4AfdD3fBuyrqnXAvvacJFcCm4CrgA3AA0nOamMeBLYC69pjQ6tvAY5X1RXAfcC9fXUjSepbT4GQZA1wE/CNrvJGYFdb3gXc3FXfXVUfVNUbwBRwXZLVwPlV9VxVFfDIjDHT23ocWD89e5AkLY9VPa73H4B/AXymqzZWVUcBqupokkta/VLg+a71DrfaL9ryzPr0mB+3bZ1M8i7wOeDt7p1IspXODIOxsTEmJyd73H04ceLErOvffc3Jj5YXsr1BOV0fo8Y+hs9K6cU++jdvICT5GnCsql5KMtHDNmf7zb7mqM815tRC1U5gJ8D4+HhNTPSyOx2Tk5NMr79221Ndr3z8Izh0W+/bG5TuPkaZfQyfldKLffSvlxnCl4F/mOSrwK8C5yf5JvBWktVtdrAaONbWPwxc1jV+DXCk1dfMUu8eczjJKuAC4J0+e5Ik9WHeawhVdU9VramqtXQuFj9bVf8E2AtsbqttBp5sy3uBTe3OocvpXDx+sZ1eei/J9e36wO0zxkxv65b2PT4xQ5AknTm9XkOYzQ5gT5ItwJvArQBVdTDJHuAV4CRwV1V92MbcCTwMnAM83R4ADwGPJpmiMzPYtIj96lv3qaRDO24axC5I0sAsKBCqahKYbMs/BdafZr3twPZZ6vuBq2epv08LFEnSYPhOZUkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqVk16B0YVmu3PfXR8qEdNw1wTyRpecw7Q0jyq0leTPLdJAeT/NtWvyjJM0leb18v7BpzT5KpJK8lubGrfm2SA+21+5Ok1c9O8lirv5Bk7RnoVZI0h15OGX0A/L2q+gLwRWBDkuuBbcC+qloH7GvPSXIlsAm4CtgAPJDkrLatB4GtwLr22NDqW4DjVXUFcB9w7+JbkyQtxLyBUB0n2tNfbo8CNgK7Wn0XcHNb3gjsrqoPquoNYAq4Lslq4Pyqeq6qCnhkxpjpbT0OrJ+ePUiSlkdP1xDab/gvAVcAf1xVLyQZq6qjAFV1NMklbfVLgee7hh9utV+05Zn16TE/bts6meRd4HPA2zP2YyudGQZjY2NMTk722CacOHHio/XvvuZkz+OABX2fM627j1FmH8NnpfRiH/3rKRCq6kPgi0k+CzyR5Oo5Vp/tN/uaoz7XmJn7sRPYCTA+Pl4TExNz7MapJicnmV7/jq4Lxr04dFvv3+dM6+5jlNnH8FkpvdhH/xZ022lV/QyYpHPu/612Goj29Vhb7TBwWdewNcCRVl8zS/2UMUlWARcA7yxk3yRJi9PLXUafbzMDkpwDfAV4FdgLbG6rbQaebMt7gU3tzqHL6Vw8frGdXnovyfXt+sDtM8ZMb+sW4Nl2nUGStEx6OWW0GtjVriP8ErCnqv48yXPAniRbgDeBWwGq6mCSPcArwEngrnbKCeBO4GHgHODp9gB4CHg0yRSdmcGmpWhOktS7eQOhqr4H/O1Z6j8F1p9mzHZg+yz1/cAnrj9U1fu0QJEkDYYfXSFJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUuPfVO7B2hkfl+3fWJa0EjlDkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEuCnnfal+9NP/eRTSSuFMwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKmZNxCSXJbkfyb5QZKDSf6g1S9K8kyS19vXC7vG3JNkKslrSW7sql+b5EB77f4kafWzkzzW6i8kWXsGepUkzaGXGcJJ4O6q+lvA9cBdSa4EtgH7qmodsK89p722CbgK2AA8kOSstq0Hga3AuvbY0OpbgONVdQVwH3DvEvQmSVqAeQOhqo5W1f9qy+8BPwAuBTYCu9pqu4Cb2/JGYHdVfVBVbwBTwHVJVgPnV9VzVVXAIzPGTG/rcWD99OxBkrQ80vm3uceVO6dyvgVcDbxZVZ/teu14VV2Y5I+A56vqm63+EPA0cAjYUVVfafXfBr5eVV9L8n1gQ1Udbq/9EPhSVb094/tvpTPDYGxs7Nrdu3f3vO8nTpzgvPPOA+DAT97tedxCXHPpBWdku926+xhl9jF8Vkov9jG3G2644aWqGp/ttZ4/uiLJecB/Af55Vf3lHL/Az/ZCzVGfa8yphaqdwE6A8fHxmpiYmGevPzY5Ocn0+nd0ffTEUjp0W+/706/uPkaZfQyfldKLffSvp7uMkvwynTD406r6r638VjsNRPt6rNUPA5d1DV8DHGn1NbPUTxmTZBVwAfDOQpuRJPWvl7uMAjwE/KCq/n3XS3uBzW15M/BkV31Tu3PocjoXj1+sqqPAe0mub9u8fcaY6W3dAjxbCzmXJUlatF5OGX0Z+F3gQJKXW+1fAjuAPUm2AG8CtwJU1cEke4BX6NyhdFdVfdjG3Qk8DJxD57rC063+EPBokik6M4NNi2tLkrRQ8wZCVf0Fs5/jB1h/mjHbge2z1PfTuSA9s/4+LVAkSYPhO5UlSYCBIElq/ItpS8i/pCZplDlDkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxjemnSG+SU3SqHGGIEkCDARJUmMgSJIAA0GS1BgIkiTAu4yWhXccSRoFzhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTG206XmbegShpWzhAkSYCBIElqDARJEuA1hIHyeoKkYeIMQZIEGAiSpGbeQEjyJ0mOJfl+V+2iJM8keb19vbDrtXuSTCV5LcmNXfVrkxxor92fJK1+dpLHWv2FJGuXuEdJUg96mSE8DGyYUdsG7KuqdcC+9pwkVwKbgKvamAeSnNXGPAhsBda1x/Q2twDHq+oK4D7g3n6bkST1b95AqKpvAe/MKG8EdrXlXcDNXfXdVfVBVb0BTAHXJVkNnF9Vz1VVAY/MGDO9rceB9dOzB0nS8un3LqOxqjoKUFVHk1zS6pcCz3etd7jVftGWZ9anx/y4betkkneBzwFv97lvI8k7jiQN2lLfdjrbb/Y1R32uMZ/ceLKVzmknxsbGmJyc7HnHTpw48dH6d19zsudxgzBXX919jDL7GD4rpRf76F+/gfBWktVtdrAaONbqh4HLutZbAxxp9TWz1LvHHE6yCriAT56iAqCqdgI7AcbHx2tiYqLnHZ6cnGR6/Tu6fhsfRodumzjta919jDL7GD4rpRf76F+/t53uBTa35c3Ak131Te3OocvpXDx+sZ1eei/J9e36wO0zxkxv6xbg2XadQZK0jOadIST5M2ACuDjJYeBfAzuAPUm2AG8CtwJU1cEke4BXgJPAXVX1YdvUnXTuWDoHeLo9AB4CHk0yRWdmsGlJOhthXk+QNAjzBkJV/ePTvLT+NOtvB7bPUt8PXD1L/X1aoEiSBsd3KkuSAANBktT4aadDzusJkpaLMwRJEmAgSJIaA0GSBBgII2Xttqc48JN3T7muIElLxUCQJAEGgiSp8bbTEeXtqJKWmjMESRJgIEiSGk8ZrQCePpK0FJwhSJIAA0GS1HjKaIXx9JGkfjlDkCQBzhBWNGcLkhbCGYIkCXCG8KnhbEHSfAyETyHDQdJsPGUkSQKcIXzqOVuQNM1A0EcMB+nTzVNGkiTAGYJOw9mC9OljIGhep/sbzgaFtLIYCOrbzKAwIKTR5jUESRLgDEFLyFNL0mgzEHTGzRYUd19zkonl3xVJczAQNDDOKKThMjSBkGQD8B+Bs4BvVNWOAe+SBuR0QXE6Boi0NIYiEJKcBfwx8PeBw8B3kuytqlcGu2caBQaItDSGIhCA64CpqvoRQJLdwEbAQNCSW2iAzOXua05yxxJuby4Gmc60VNWg94EktwAbquqftee/C3ypqn5/xnpbga3t6d8EXlvAt7kYeHsJdnfQ7GO4rJQ+YOX0Yh9z+2tV9fnZXhiWGUJmqX0iqapqJ7Czr2+Q7K+q8X7GDhP7GC4rpQ9YOb3YR/+G5Y1ph4HLup6vAY4MaF8k6VNpWALhO8C6JJcn+RVgE7B3wPskSZ8qQ3HKqKpOJvl94L/Tue30T6rq4BJ/m75ONQ0h+xguK6UPWDm92EefhuKisiRp8IbllJEkacAMBEkSsAICIcmGJK8lmUqybZbXk+T+9vr3kvxGr2OX2yJ7OZTkQJKXk+xf3j3/xH7O18evJXkuyQdJ/nAhY5fTIvsYpeNxW/vv6XtJvp3kC72OXU6L7GOUjsfG1sPLSfYn+a1exy5aVY3sg84F6B8Cfx34FeC7wJUz1vkq8DSd9zpcD7zQ69hR6aW9dgi4eESOySXA3wG2A3+4kLGj0McIHo/fBC5sy/9gGP8fWUwfI3g8zuPj67u/Dry6XMdj1GcIH33kRVX9P2D6Iy+6bQQeqY7ngc8mWd3j2OW0mF6Gybx9VNWxqvoO8IuFjl1Gi+ljmPTSx7er6nh7+jyd9wH1NHYZLaaPYdJLHyeqJQBwLh+/SfeMH49RD4RLgR93PT/car2s08vY5bSYXqDzH83/SPJS+4iPQVnMz3WYjsli92VUj8cWOrPQfsaeSYvpA0bseCT5R0leBZ4C/ulCxi7GULwPYRF6+ciL063T08dlLKPF9ALw5ao6kuQS4Jkkr1bVt5Z0D3uzmJ/rMB2Txe7LyB2PJDfQ+Yd0+pz1SB6PWfqAETseVfUE8ESSvwv8O+ArvY5djFGfIfTykRenW2fYPi5jMb1QVdNfjwFP0JleDsJifq7DdEwWtS+jdjyS/DrwDWBjVf10IWOXyWL6GLnjMa2F1t9IcvFCx/Zl0BdZFvOgM8P5EXA5H19kuWrGOjdx6oXYF3sdO0K9nAt8pmv523Q+PXYo++ha999w6kXloTkmi+xjpI4H8FeBKeA3+/0ZDHkfo3Y8ruDji8q/Afyk/T9/xo/Hsv9AzsAP+KvA/6Fz9f1ftdrvAb/XlkPnj+/8EDgAjM81dhR7oXPXwXfb4+Cge+mhj79C57edvwR+1pbPH7Zj0m8fI3g8vgEcB15uj/1zjR21PkbweHy97efLwHPAby3X8fCjKyRJwOhfQ5AkLREDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJav4/C8CY1oZTVrEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASJUlEQVR4nO3df2xd5X3H8fe3oaWIlBAW8KKELWxE2/jRX/Eg6o/JWZjwClqYBJInVoKWKSqiUydRibD9sU1TtPDP0FALUkQqAkwzERsiKoo2FLCqqQGabLRp+DFMiaghIqIEipFgC/ruj/s43DjX9rn2vb73Ou+XdOVzn3Oe4+85hPvxc57j48hMJEn6RKcLkCR1BwNBkgQYCJKkwkCQJAEGgiSpOKPTBczWsmXLctWqVZW3f//99zn77LPbV1Ab9FrN1tt+vVaz9bZfszUfOHDgrcw8v+HKzOzJ15o1a7IZTz31VFPbd4Neq9l626/Xarbe9mu2ZmB/TvG56iUjSRLgHIIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAE9/OiKVlm15fETy4e3XdPBSiSpsxwhSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJhYEgSQIMBElSYSBIkgADQZJUGAiSJMBAkCQVBoIkCTAQJEmFgSBJAgwESVJhIEiSAANBklQYCJIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFZUDISIWRcR/R8T3y/vzIuKJiHi5fF1at+0dETEaES9FxNV17Wsi4mBZd3dERGk/MyIeLu3PRMSqFh6jJKmCZkYI3wJeqHu/BdibmauBveU9EXEJMARcCgwC90TEotLnXmAzsLq8Bkv7JuBYZl4M3AXcOaujkSTNWqVAiIiVwDXAfXXNG4CdZXkncF1d+3BmfpiZrwKjwBURsRw4JzP3ZWYCD0zqM7GvR4D1E6MHSdL8iNpn8wwbRTwC/APwGeDbmXltRLyTmefWbXMsM5dGxHeApzPzodK+A9gDHAa2ZeZVpf2rwO1lXz8FBjNzrKx7BbgyM9+aVMdmaiMM+vr61gwPD1c+0PHxcRYvXnxK+8HX3z2xfPmKJZX3Nx+mqrlbWW/79VrN1tt+zda8bt26A5nZ32jdGTN1johrgaOZeSAiBip8v0Y/2ec07dP1ObkhczuwHaC/vz8HBqqUUzMyMkKj7W/e8viJ5cM3Vt/ffJiq5m5lve3XazVbb/u1suYZAwH4MvBHEfE14NPAORHxEPBmRCzPzCPlctDRsv0YcGFd/5XAG6V9ZYP2+j5jEXEGsAR4e5bHJEmahRnnEDLzjsxcmZmrqE0WP5mZfwrsBjaWzTYCj5Xl3cBQuXPoImqTx89m5hHgvYhYW+YHbprUZ2Jf15fvMfO1LElSy1QZIUxlG7ArIjYBrwE3AGTmoYjYBTwPHAduzcyPSp9bgPuBs6jNK+wp7TuAByNilNrIYGgOdUmSZqGpQMjMEWCkLP8CWD/FdluBrQ3a9wOXNWj/gBIokqTO8DeVJUmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkq5vIsowVnVf2jsLdd08FKJGn+OUKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKk4LR9dUf+ICklSjSMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkARUCISI+HRHPRsSPI+JQRPxdaT8vIp6IiJfL16V1fe6IiNGIeCkirq5rXxMRB8u6uyMiSvuZEfFwaX8mIla14VglSdOoMkL4EPj9zPwc8HlgMCLWAluAvZm5Gthb3hMRlwBDwKXAIHBPRCwq+7oX2AysLq/B0r4JOJaZFwN3AXfO/dAkSc2YMRCyZry8/WR5JbAB2FnadwLXleUNwHBmfpiZrwKjwBURsRw4JzP3ZWYCD0zqM7GvR4D1E6MHSdL8iNpn8wwb1X7CPwBcDHw3M2+PiHcy89y6bY5l5tKI+A7wdGY+VNp3AHuAw8C2zLyqtH8VuD0zr42InwKDmTlW1r0CXJmZb02qYzO1EQZ9fX1rhoeHKx/o+Pg4ixcvBuDg6+/OuP3lK5ZU3ne71NfcC6y3/XqtZuttv2ZrXrdu3YHM7G+0rtJfTMvMj4DPR8S5wKMRcdk0mzf6yT6naZ+uz+Q6tgPbAfr7+3NgYGCaMk42MjLCxPY3V/iLaYdvrL7vdqmvuRdYb/v1Ws3W236trLmpu4wy8x1ghNq1/zfLZSDK16NlszHgwrpuK4E3SvvKBu0n9YmIM4AlwNvN1CZJmpsqdxmdX0YGRMRZwFXAi8BuYGPZbCPwWFneDQyVO4cuojZ5/GxmHgHei4i1ZX7gpkl9JvZ1PfBkVrmW1Uartjx+4iVJp4Mql4yWAzvLPMIngF2Z+f2I2AfsiohNwGvADQCZeSgidgHPA8eBW8slJ4BbgPuBs6jNK+wp7TuAByNilNrIYKgVBydJqm7GQMjMnwBfaND+C2D9FH22AlsbtO8HTpl/yMwPKIEiSeoMf1NZkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEVPsTmqe9yX9X+fC2azpUiSS1jyMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKnw8dezUP84bB+FLWmhcIQgSQIqBEJEXBgRT0XECxFxKCK+VdrPi4gnIuLl8nVpXZ87ImI0Il6KiKvr2tdExMGy7u6IiNJ+ZkQ8XNqfiYhVbThWSdI0qowQjgO3ZebvAGuBWyPiEmALsDczVwN7y3vKuiHgUmAQuCciFpV93QtsBlaX12Bp3wQcy8yLgbuAO1twbJKkJswYCJl5JDP/qyy/B7wArAA2ADvLZjuB68ryBmA4Mz/MzFeBUeCKiFgOnJOZ+zIzgQcm9ZnY1yPA+onRgyRpfjQ1h1Au5XwBeAboy8wjUAsN4IKy2Qrg53XdxkrbirI8uf2kPpl5HHgX+JVmapMkzU3lu4wiYjHwr8BfZuYvp/kBvtGKnKZ9uj6Ta9hM7ZITfX19jIyMzFD1x8bHx09sf9vlxyv3m0kzNTSrvuZeYL3t12s1W2/7tbLmSoEQEZ+kFgb/nJn/VprfjIjlmXmkXA46WtrHgAvruq8E3ijtKxu01/cZi4gzgCXA25PryMztwHaA/v7+HBgYqFI+UPvgntj+5rrbRufq8I3Va2hWfc29wHrbr9dqtt72a2XNVe4yCmAH8EJm/mPdqt3AxrK8EXisrn2o3Dl0EbXJ42fLZaX3ImJt2edNk/pM7Ot64MkyzyBJmidVRghfBr4OHIyI50rbXwHbgF0RsQl4DbgBIDMPRcQu4HlqdyjdmpkflX63APcDZwF7ygtqgfNgRIxSGxkMze2wJEnNmjEQMvM/aXyNH2D9FH22AlsbtO8HLmvQ/gElUCRJneGjK+bIx1hIWih8dIUkCTAQJEmFgSBJAgwESVJhIEiSAANBklR422kLeQuqpF7mCEGSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSq87bRNvAVVUq9xhCBJAgwESVJhIEiSAANBklQYCJIkwLuM5oV3HEnqBY4QJEmAgSBJKgwESRJgIEiSCieV55kTzJK6lSMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSp8LbTDvIWVEndxBGCJAkwECRJxYyBEBHfi4ijEfHTurbzIuKJiHi5fF1at+6OiBiNiJci4uq69jURcbCsuzsiorSfGREPl/ZnImJVi4+xJ6za8viJlyR1QpURwv3A4KS2LcDezFwN7C3viYhLgCHg0tLnnohYVPrcC2wGVpfXxD43Accy82LgLuDO2R6MJGn2ZgyEzPwB8Pak5g3AzrK8E7iurn04Mz/MzFeBUeCKiFgOnJOZ+zIzgQcm9ZnY1yPA+onRgyRp/kTt83mGjWqXcb6fmZeV9+9k5rl1649l5tKI+A7wdGY+VNp3AHuAw8C2zLyqtH8VuD0zry2XogYzc6ysewW4MjPfalDHZmqjDPr6+tYMDw9XPtDx8XEWL14MwMHX363crxMuX7EEOLnmXmC97ddrNVtv+zVb87p16w5kZn+jda2+7bTRT/Y5Tft0fU5tzNwObAfo7+/PgYGByoWNjIwwsf3N3X6d/uD7ANx2+Uf8xbUDna2lCfXnuBf0Wr3QezVbb/u1subZ3mX0ZrkMRPl6tLSPARfWbbcSeKO0r2zQflKfiDgDWMKpl6gkSW0220DYDWwsyxuBx+rah8qdQxdRmzx+NjOPAO9FxNoyP3DTpD4T+7oeeDKrXMeSJLXUjJeMIuJfgAFgWUSMAX8DbAN2RcQm4DXgBoDMPBQRu4DngePArZn5UdnVLdTuWDqL2rzCntK+A3gwIkapjQyGWnJkkqSmzBgImfknU6xaP8X2W4GtDdr3A5c1aP+AEig6lY+3kDRf/E1lSRJgIEiSCgNBkgT4+Oue4nyCpHZyhCBJAgwESVLhJaMe5eUjSa3mCEGSBBgIkqTCS0YLgJePJLWCIwRJEmAgSJIKLxktMF4+kjRbjhAkSYAjhAXN0YKkZjhCkCQBjhBOG44WJM3EEYIkCXCEcFpytCCpEUcIkiTAEcJpz9GCpAmOECRJgCME1XG0IJ3eDAQ1ZDhIpx8vGUmSAEcIqsDRgnR6MBDUFMNBWrgMBM1afTgA3D94docqkdQKziFIkgBHCGqhg6+/y82TRg3gpSWpVxgIajvnHaTeYCBoXk2ed5hgUEidZyCoKziKkDrPQFDXcRQhdYaBoJ4xVVDUMzSk2euaQIiIQeCfgEXAfZm5rcMlqQcZGtLsdUUgRMQi4LvAHwBjwI8iYndmPt/ZyrQQTYTGbZcfb3ib7HQMEy1kXREIwBXAaGb+DCAihoENgIGgrlJlBNJOM4WYgaW5iMzsdA1ExPXAYGb+eXn/deDKzPzmpO02A5vL298CXmri2ywD3mpBufOp12q23vbrtZqtt/2arfnXM/P8Riu6ZYQQDdpOSarM3A5sn9U3iNifmf2z6dspvVaz9bZfr9Vsve3Xypq75VlGY8CFde9XAm90qBZJOi11SyD8CFgdERdFxKeAIWB3h2uSpNNKV1wyyszjEfFN4N+p3Xb6vcw81OJvM6tLTR3WazVbb/v1Ws3W234tq7krJpUlSZ3XLZeMJEkdZiBIkoAFEggRMRgRL0XEaERsabA+IuLusv4nEfHFqn27sN7DEXEwIp6LiP1dUu9vR8S+iPgwIr7dTN8urbkbz/GN5d/CTyLihxHxuap9u7DeeT+/FWveUOp9LiL2R8RXqvbtwnpnd44zs6df1CahXwF+A/gU8GPgkknbfA3YQ+33HdYCz1Tt2031lnWHgWVddn4vAH4X2Ap8u5m+3VZzF5/jLwFLy/If9sC/4Yb1duL8NlHzYj6eV/0s8GKXn+OG9c7lHC+EEcKJx15k5v8CE4+9qLcBeCBrngbOjYjlFft2U72dMGO9mXk0M38E/F+zfbuw5k6oUu8PM/NYefs0td/VqdS3y+rtlCo1j2f5NAXO5uNfju3WczxVvbO2EAJhBfDzuvdjpa3KNlX6ttpc6oXaf/T/iIgD5VEe7TaXc9SJ89uK79vt53gTtRHkbPq2wlzqhfk/v1Cx5oj444h4EXgc+LNm+rbYXOqFWZ7jrvg9hDmq8tiLqbap9MiMFptLvQBfzsw3IuIC4ImIeDEzf9DSCqvX0s6+czHX79u15zgi1lH7gJ24Xtyt/4ZrG55aL8z/+YXqj8d5FHg0In4P+Hvgqqp9W2wu9cIsz/FCGCFUeezFVNt04pEZc6mXzJz4ehR4lNrQsp3mco469UiSOX3fbj3HEfFZ4D5gQ2b+opm+LTaXejtxfqHJ81Q+PH8zIpY127dF5lLv7M9xOydG5uNFbZTzM+AiPp58uXTSNtdw8iTts1X7dlm9ZwOfqVv+IbWnxHa03rpt/5aTJ5Xn/fy2oOauPMfArwGjwJdme6xdUu+8n98mar6Yjydpvwi8Xv4f7NZzPFW9sz7Hbf2PMF8vanfl/A+1Wfm/Lm3fAL5RloPaH+B5BTgI9E/Xt1vrpXbHwY/L61AX1fur1H6i+SXwTlk+p1Pndy41d/E5vg84BjxXXvu7/N9ww3o7dX4r1nx7qek5YB/wlS4/xw3rncs59tEVkiRgYcwhSJJawECQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJKK/wfzV2WnfBtICgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATDUlEQVR4nO3df4xdZX7f8fcndpYgEgg/lqll0w4tVlN+ZDdlQq1u/5jUbXF2o5iooLraLKZ1ZIWQKJGIGtM/WlWVJfinpESF1FoiDN0WLJItVra0RaZXURV+rDfdLIFdyiQQsLCwWChhtoUy9Ns/7jPO9dyx584wM3fmzvslXd1zn3uec5/z1Wg+85xz7plUFZIkfd+wByBJWhsMBEkSYCBIkhoDQZIEGAiSpGbzsAewVJdddlmNj48PvP73vvc9LrjggpUb0DpkTfpZk37WpN96rsk3vvGNt6vq0/O9t24DYXx8nOPHjw+8fqfTYXJycuUGtA5Zk37WpJ816beea5LkT8/2noeMJEnAgIGQ5LUkLyT5ZpLjre2SJE8leaU9X9yz/l1JppK8nOTGnvbr23amktyXJK39vCSPtfbnkowv835KkhawmBnCT1TVZ6tqor0+AByrqu3AsfaaJFcDe4BrgF3A/Uk2tT4PAPuB7e2xq7XvA96tqquAe4F7lr5LkqSl+CSHjHYDh9vyYeCmnvZHq+rDqnoVmAJuSLIFuLCqnqnu/TIentNndluPAztnZw+SpNUx6EnlAv5rkgL+bVUdAsaq6iRAVZ1McnlbdyvwbE/fE63to7Y8t322zxttWzNJ3gMuBd7uHUSS/XRnGIyNjdHpdAYcPkxPTy9q/Y3AmvSzJv2sSb9RrcmggfC5qnqz/dJ/Ksl3zrHufH/Z1znaz9XnzIZuEB0CmJiYqMWc5V/PVwWsFGvSz5r0syb9RrUmAx0yqqo32/Mp4KvADcBb7TAQ7flUW/0EcEVP923Am6192zztZ/RJshm4CHhn8bsjSVqqBQMhyQVJfmh2Gfh7wB8BR4G9bbW9wBNt+Siwp105dCXdk8fPt8NL7yfZ0c4P3Dqnz+y2bgaeLu/LLUmrapBDRmPAV9s53s3Av6+q/5zk68CRJPuA14FbAKrqxSRHgJeAGeCOqvq4bet24CHgfODJ9gB4EHgkyRTdmcGeZdg3SdIiLBgIVfUnwGfmaf8usPMsfQ4CB+dpPw5cO0/7B7RAWW3jB752evm1u78wjCFI0prgN5UlSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJwCICIcmmJP8jye+215ckeSrJK+354p5170oyleTlJDf2tF+f5IX23n1J0trPS/JYa38uyfgy7qMkaQCLmSH8MvDtntcHgGNVtR041l6T5GpgD3ANsAu4P8mm1ucBYD+wvT12tfZ9wLtVdRVwL3DPkvZGkrRkAwVCkm3AF4Av9zTvBg635cPATT3tj1bVh1X1KjAF3JBkC3BhVT1TVQU8PKfP7LYeB3bOzh4kSatj84Dr/TrwT4Af6mkbq6qTAFV1MsnlrX0r8GzPeida20dteW77bJ832rZmkrwHXAq83TuIJPvpzjAYGxuj0+kMOHyYnp6ed/07r5s5vbyY7Y2Cs9VkI7Mm/axJv1GtyYKBkOSngFNV9Y0kkwNsc76/7Osc7efqc2ZD1SHgEMDExERNTg4ynK5Op8N869924Gunl1/74uDbGwVnq8lGZk36WZN+o1qTQWYInwN+OsnngR8ALkzy74C3kmxps4MtwKm2/gngip7+24A3W/u2edp7+5xIshm4CHhnifskSVqCBc8hVNVdVbWtqsbpnix+uqp+FjgK7G2r7QWeaMtHgT3tyqEr6Z48fr4dXno/yY52fuDWOX1mt3Vz+4y+GYIkaeUMeg5hPncDR5LsA14HbgGoqheTHAFeAmaAO6rq49bnduAh4HzgyfYAeBB4JMkU3ZnBnk8wLknSEiwqEKqqA3Ta8neBnWdZ7yBwcJ7248C187R/QAsUSdJw+E1lSRJgIEiSGgNBkgQYCJKkxkCQJAGf7LLTkTPe+63lu78wxJFI0upzhiBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSc2G/GJa7xfQJEldzhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJahYMhCQ/kOT5JH+Y5MUk/6K1X5LkqSSvtOeLe/rclWQqyctJbuxpvz7JC+29+5KktZ+X5LHW/lyS8RXYV0nSOQwyQ/gQ+NtV9Rngs8CuJDuAA8CxqtoOHGuvSXI1sAe4BtgF3J9kU9vWA8B+YHt77Grt+4B3q+oq4F7gnk++a5KkxVgwEKprur38/vYoYDdwuLUfBm5qy7uBR6vqw6p6FZgCbkiyBbiwqp6pqgIentNndluPAztnZw+SpNUx0DmEJJuSfBM4BTxVVc8BY1V1EqA9X95W3wq80dP9RGvb2pbntp/Rp6pmgPeAS5ewP5KkJdo8yEpV9THw2SQ/DHw1ybXnWH2+v+zrHO3n6nPmhpP9dA85MTY2RqfTOccwzjQ9PX16/Tuvm1lw/d/4yhOnl6/betHAn7Oe9NZEXdaknzXpN6o1GSgQZlXV/0rSoXvs/60kW6rqZDscdKqtdgK4oqfbNuDN1r5tnvbePieSbAYuAt6Z5/MPAYcAJiYmanJycuCxdzodZte/7cDXBu4H8NoXB/+c9aS3JuqyJv2sSb9RrckgVxl9us0MSHI+8HeA7wBHgb1ttb3A7J/UR4E97cqhK+mePH6+HVZ6P8mOdn7g1jl9Zrd1M/B0O88gSVolg8wQtgCH25VC3wccqarfTfIMcCTJPuB14BaAqnoxyRHgJWAGuKMdcgK4HXgIOB94sj0AHgQeSTJFd2awZzl2TpI0uAUDoaq+BfzYPO3fBXaepc9B4OA87ceBvvMPVfUBLVAkScPhN5UlSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBi/wXmhvV+Jx/ufna3V8Y0kgkaeU4Q5AkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRLg3U6XpPfup975VNKocIYgSQIMBElSYyBIkgADQZLULBgISa5I8t+SfDvJi0l+ubVfkuSpJK+054t7+tyVZCrJy0lu7Gm/PskL7b37kqS1n5fksdb+XJLxFdhXSdI5DDJDmAHurKq/BuwA7khyNXAAOFZV24Fj7TXtvT3ANcAu4P4km9q2HgD2A9vbY1dr3we8W1VXAfcC9yzDvkmSFmHBQKiqk1X1B235feDbwFZgN3C4rXYYuKkt7wYeraoPq+pVYAq4IckW4MKqeqaqCnh4Tp/ZbT0O7JydPUiSVseivofQDuX8GPAcMFZVJ6EbGkkub6ttBZ7t6XaitX3Ulue2z/Z5o21rJsl7wKXA23M+fz/dGQZjY2N0Op2Bxz49PX16/Tuvmxm430IWM4a1prcm6rIm/axJv1GtycCBkOQHgd8GfqWq/uwcf8DP90ado/1cfc5sqDoEHAKYmJioycnJBUb95zqdDrPr39bzxbJP7IXvnV5cb19S662JuqxJP2vSb1RrMtBVRkm+n24YfKWqfqc1v9UOA9GeT7X2E8AVPd23AW+29m3ztJ/RJ8lm4CLgncXujCRp6Qa5yijAg8C3q+pf9bx1FNjblvcCT/S072lXDl1J9+Tx8+3w0vtJdrRt3jqnz+y2bgaebucZJEmrZJBDRp8DvgS8kOSbre2fAncDR5LsA14HbgGoqheTHAFeonuF0h1V9XHrdzvwEHA+8GR7QDdwHkkyRXdmsOeT7ZYkabEWDISq+u/Mf4wfYOdZ+hwEDs7Tfhy4dp72D2iBIkkaDr+pLEkCDARJUmMgSJIA/0HOsvIf50haz5whSJIAA0GS1BgIkiTAQJAkNQaCJAnwKqMV4xVHktYbZwiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLjZaerwEtQJa0HzhAkSYCBIElqDARJEmAgSJIaA0GSBHiV0arziiNJa5UzBEkSYCBIkhoDQZIEeA5hqDyfIGktcYYgSQIMBElSYyBIkgADQZLUGAiSJMCrjNYMrziSNGwLzhCS/FaSU0n+qKftkiRPJXmlPV/c895dSaaSvJzkxp7265O80N67L0la+3lJHmvtzyUZX+Z9lCQNYJBDRg8Bu+a0HQCOVdV24Fh7TZKrgT3ANa3P/Uk2tT4PAPuB7e0xu819wLtVdRVwL3DPUndGkrR0CwZCVf0e8M6c5t3A4bZ8GLipp/3Rqvqwql4FpoAbkmwBLqyqZ6qqgIfn9Jnd1uPAztnZgyRp9Sz1HMJYVZ0EqKqTSS5v7VuBZ3vWO9HaPmrLc9tn+7zRtjWT5D3gUuDtuR+aZD/dWQZjY2N0Op2BBzw9PX16/Tuvmxm43zD8xleeOL183daLVuxzemuiLmvSz5r0G9WaLPdJ5fn+sq9ztJ+rT39j1SHgEMDExERNTk4OPLBOp8Ps+rf1nMBd61774uSKbbu3JuqyJv2sSb9RrclSLzt9qx0Goj2fau0ngCt61tsGvNnat83TfkafJJuBi+g/RCVJWmFLDYSjwN62vBd4oqd9T7ty6Eq6J4+fb4eX3k+yo50fuHVOn9lt3Qw83c4zSJJW0YKHjJL8B2ASuCzJCeCfA3cDR5LsA14HbgGoqheTHAFeAmaAO6rq47ap2+lesXQ+8GR7ADwIPJJkiu7MYM+y7NmI8PsJklbLgoFQVf/wLG/tPMv6B4GD87QfB66dp/0DWqBIkobHW1dIkgADQZLUeC+jdcTzCZJWkjMESRJgIEiSGgNBkgR4DmHd8nyCpOXmDEGSBBgIkqTGQ0YjwMNHkpaDMwRJEmAgSJIaDxmNGA8fSVoqZwiSJMBAkCQ1HjIaYR4+krQYzhAkSYAzhA3D2YKkhThDkCQBzhA2pNnZwp3XzTA53KFIWkOcIUiSAGcIG57nFiTNcoYgSQKcIaiHswVpY3OGIEkCnCHoLJwtSBuPgaAFGQ7SxmAgaFEMB2l0GQhast5wAANCWu8MBC0bZw/S+uZVRpIkwBmCVsjcw0mznDlIa5eBoFXlYSVp7TIQNDRnm0X0MjSk1bNmAiHJLuBfA5uAL1fV3UMektYADz1Jq2dNBEKSTcC/Af4ucAL4epKjVfXScEemtWqQ2UUvA0Ra2JoIBOAGYKqq/gQgyaPAbsBA0LIYNEDuvG6G2xYZNnPNDR/Pm2i9SFUNewwkuRnYVVU/115/CfgbVfWLc9bbD+xvL/8q8PIiPuYy4O1lGO4osSb9rEk/a9JvPdfkL1XVp+d7Y63MEDJPW19SVdUh4NCSPiA5XlUTS+k7qqxJP2vSz5r0G9WarJUvpp0Aruh5vQ14c0hjkaQNaa0EwteB7UmuTPIpYA9wdMhjkqQNZU0cMqqqmSS/CPwXuped/lZVvbjMH7OkQ00jzpr0syb9rEm/kazJmjipLEkavrVyyEiSNGQGgiQJGMFASLIryctJppIcmOf9JLmvvf+tJH99GONcTQPU5EeSPJPkwyS/OowxrrYBavLF9vPxrSS/n+QzwxjnahqgJrtbPb6Z5HiSvzWMca6mhWrSs96PJ/m4fadq/aqqkXnQPSH9x8BfBj4F/CFw9Zx1Pg88Sfe7DzuA54Y97jVQk8uBHwcOAr867DGvkZr8TeDitvyT/pwUwA/y5+cdfxT4zrDHPeya9Kz3NPCfgJuHPe5P8hi1GcLpW2BU1f8FZm+B0Ws38HB1PQv8cJItqz3QVbRgTarqVFV9HfhoGAMcgkFq8vtV9W57+Szd78aMskFqMl3tNyBwAfN8eXTEDPL7BOCXgN8GTq3m4FbCqAXCVuCNntcnWtti1xklG21/B7HYmuyjO6scZQPVJMnPJPkO8DXgH6/S2IZlwZok2Qr8DPCbqziuFTNqgTDILTAGuk3GCNlo+zuIgWuS5CfoBsKvreiIhm/Q28d8tap+BLgJ+JcrPaghG6Qmvw78WlV9vPLDWXlr4otpy2iQW2BstNtkbLT9HcRANUnyo8CXgZ+squ+u0tiGZVE/J1X1e0n+SpLLqmq93uRtIYPUZAJ4NAl0b3j3+SQzVfUfV2WEy2zUZgiD3ALjKHBru9poB/BeVZ1c7YGuIm8L0m/BmiT5i8DvAF+qqv85hDGutkFqclXab752dd6ngFEOygVrUlVXVtV4VY0DjwO/sF7DAEZshlBnuQVGkp9v7/8m3SsBPg9MAf8b+EfDGu9qGKQmSf4CcBy4EPh/SX6F7tUUfzasca+kAX9O/hlwKXB/+x04UyN4d8tZA9bk79P9Y+oj4P8A/6DnJPPIGbAmI8VbV0iSgNE7ZCRJWiIDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJav4/ddxvTzMjGHcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARkUlEQVR4nO3dbYyl5V3H8e+v0FICQnko2w2LHZRNKg9tLVuKVpNBalhL49IIcQ0W0E02Imqb0FjwRY0xm8AbqWih2ZSGhRqXDX1gU0oMASeNKQ9dalsKFNkKwsoGQkHKoiCLf1+ca+hhmN25Z5g5Z2bO95OczH2u+77uc/1zYH9z3U+TqkKSpLcMewCSpMXBQJAkAQaCJKkxECRJgIEgSWoOHPYA5uroo4+usbGxztu/+OKLHHLIIQs3oEVmlOodpVphtOq11vl33333PVNV75xu3ZINhLGxMXbs2NF5+4mJCcbHxxduQIvMKNU7SrXCaNVrrfMvyX/sa52HjCRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEnAEr5Teb6MXXbra8uPXXH2EEciScPlDEGSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJwCwCIckBSf41yTfa+yOT3J7kkfbziL5tL0+yM8nDSc7qaz81yf1t3dVJ0toPSnJTa78nydg81ihJ6mA2M4RPAg/1vb8MuKOqVgN3tPckORFYD5wErAWuSXJA63MtsBFY3V5rW/sG4LmqOgG4CrhyTtVIkuasUyAkWQWcDXyxr3kdsKUtbwHO6WvfWlUvV9WjwE7gtCQrgcOq6q6qKuCGKX0m93UzcObk7EGSNBgHdtzuc8CfAz/X17aiqnYDVNXuJMe09mOBu/u229XaXmnLU9sn+zzR9rU3yfPAUcAz/YNIspHeDIMVK1YwMTHRcfiwZ8+eabe/9JS9ry3PZn+L3b7qXY5GqVYYrXqtdbBmDIQkHwOerqr7kox32Od0v9nXftr31+f1DVWbgc0Aa9asqfHxLsPpmZiYYLrtL7rs1teWHzu/+/4Wu33VuxyNUq0wWvVa62B1mSF8GPjtJB8F3g4cluTLwFNJVrbZwUrg6bb9LuC4vv6rgCdb+6pp2vv77EpyIHA48Owca5IkzcGM5xCq6vKqWlVVY/ROFt9ZVb8PbAcubJtdCNzSlrcD69uVQ8fTO3l8bzu89EKS09v5gQum9Jnc17ntM94wQ5AkLZyu5xCmcwWwLckG4HHgPICqeiDJNuBBYC9wSVW92vpcDFwPHAzc1l4A1wE3JtlJb2aw/k2MS5I0B7MKhKqaACba8k+AM/ex3SZg0zTtO4CTp2l/iRYokqTh8E5lSRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElq3sydysvOWP+D7q44e4gjkaTBc4YgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkYESfdtr/VFNJUo8zBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgR0CIQkb09yb5LvJ3kgyV+19iOT3J7kkfbziL4+lyfZmeThJGf1tZ+a5P627uokae0HJbmptd+TZGwBapUk7UeXGcLLwG9U1fuA9wNrk5wOXAbcUVWrgTvae5KcCKwHTgLWAtckOaDt61pgI7C6vda29g3Ac1V1AnAVcOWbL02SNBszBkL17Glv39peBawDtrT2LcA5bXkdsLWqXq6qR4GdwGlJVgKHVdVdVVXADVP6TO7rZuDMydmDJGkwOj3+uv2Gfx9wAvD5qronyYqq2g1QVbuTHNM2Pxa4u6/7rtb2Slue2j7Z54m2r71JngeOAp6ZMo6N9GYYrFixgomJiY5lwp49e17b/tJT9s64/Wz2vRj117vcjVKtMFr1WutgdQqEqnoVeH+SdwBfS3Lyfjaf7jf72k/7/vpMHcdmYDPAmjVranx8fD/DeL2JiQkmt7+oy99DuP/F1xYfu+Lszp+zWPTXu9yNUq0wWvVa62DN6iqjqvovYILesf+n2mEg2s+n22a7gOP6uq0Cnmztq6Zpf12fJAcChwPPzmZskqQ3p8tVRu9sMwOSHAx8BPgRsB24sG12IXBLW94OrG9XDh1P7+Txve3w0gtJTm/nBy6Y0mdyX+cCd7bzDJKkAelyyGglsKWdR3gLsK2qvpHkLmBbkg3A48B5AFX1QJJtwIPAXuCSdsgJ4GLgeuBg4Lb2ArgOuDHJTnozg/XzUZwkqbsZA6GqfgD88jTtPwHO3EefTcCmadp3AG84/1BVL9ECRZI0HN6pLEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCej4N5VH3diUv8G8FP/GsiTNxBmCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAJ92Oif9Tz/1yaeSlgtnCJIkwECQJDUGgiQJMBAkSY2BIEkCOgRCkuOS/HOSh5I8kOSTrf3IJLcneaT9PKKvz+VJdiZ5OMlZfe2nJrm/rbs6SVr7QUluau33JBlbgFolSfvRZYawF7i0qn4JOB24JMmJwGXAHVW1GrijvaetWw+cBKwFrklyQNvXtcBGYHV7rW3tG4DnquoE4CrgynmoTZI0CzMGQlXtrqrvtuUXgIeAY4F1wJa22RbgnLa8DthaVS9X1aPATuC0JCuBw6rqrqoq4IYpfSb3dTNw5uTsQZI0GOn929xx496hnG8BJwOPV9U7+tY9V1VHJPl74O6q+nJrvw64DXgMuKKqPtLafx34TFV9LMkPgbVVtaut+zHwoap6Zsrnb6Q3w2DFihWnbt26tfPY9+zZw6GHHgrA/f/5fOd+s3HKsYcvyH7nor/e5W6UaoXRqtda598ZZ5xxX1WtmW5d5zuVkxwKfAX4VFX9dD+/wE+3ovbTvr8+r2+o2gxsBlizZk2Nj4/PMOqfmZiYYHL7i/ruNJ5Pj53ffTwLrb/e5W6UaoXRqtdaB6vTVUZJ3kovDP6hqr7amp9qh4FoP59u7buA4/q6rwKebO2rpml/XZ8kBwKHA8/OthhJ0tx1ucoowHXAQ1X1N32rtgMXtuULgVv62te3K4eOp3fy+N6q2g28kOT0ts8LpvSZ3Ne5wJ01m2NZkqQ3rcshow8DnwDuT/K91vYXwBXAtiQbgMeB8wCq6oEk24AH6V2hdElVvdr6XQxcDxxM77zCba39OuDGJDvpzQzWv7myJEmzNWMgVNW/MP0xfoAz99FnE7BpmvYd9E5IT21/iRYokqTh8E5lSRJgIEiSGv9AzjzyD+dIWsqcIUiSAANBktQYCJIkwECQJDWeVF4gnmCWtNQ4Q5AkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEeB/CQHhPgqSlwBmCJAkwECRJjYEgSQIMBElS40nlAfMEs6TFyhmCJAkwECRJjYEgSQIMBElS40nlIfIEs6TFxBmCJAkwECRJjYEgSQIMBElS40nlRcITzJKGzRmCJAkwECRJjYEgSQI6BEKSLyV5OskP+9qOTHJ7kkfazyP61l2eZGeSh5Oc1dd+apL727qrk6S1H5TkptZ+T5Kxea5RktRBlxnC9cDaKW2XAXdU1WrgjvaeJCcC64GTWp9rkhzQ+lwLbARWt9fkPjcAz1XVCcBVwJVzLWa5GLvs1tdekjQoMwZCVX0LeHZK8zpgS1veApzT1761ql6uqkeBncBpSVYCh1XVXVVVwA1T+kzu62bgzMnZgyRpcOZ62emKqtoNUFW7kxzT2o8F7u7bbldre6UtT22f7PNE29feJM8DRwHPTP3QJBvpzTJYsWIFExMTnQe8Z8+e17a/9JS9nfsN22xq7Ndf73I3SrXCaNVrrYM13/chTPebfe2nfX993thYtRnYDLBmzZoaHx/vPLCJiQkmt79oCR2Keez88Tn16693uRulWmG06rXWwZprIDyVZGWbHawEnm7tu4Dj+rZbBTzZ2ldN097fZ1eSA4HDeeMhqpHlDWuSBmWul51uBy5syxcCt/S1r29XDh1P7+Txve3w0gtJTm/nBy6Y0mdyX+cCd7bzDJKkAZpxhpDkH4Fx4Ogku4C/BK4AtiXZADwOnAdQVQ8k2QY8COwFLqmqV9uuLqZ3xdLBwG3tBXAdcGOSnfRmBuvnpTJJ0qzMGAhV9Xv7WHXmPrbfBGyapn0HcPI07S/RAkWSNDzeqSxJAnza6ZLiCWZJC8kZgiQJMBAkSY2BIEkCPIewZHk+QdJ8c4YgSQIMBElS4yGjZcDDR5LmgzMESRJgIEiSGg8ZLTOTh48uPWUv48MdiqQlxhmCJAkwECRJjYeMljGvPpI0G84QJEmAgSBJajxkNCI8fCRpJs4QJEmAM4SR5GxB0nScIUiSAGcII8/ZgqRJzhAkSYAzBPVxtiCNNmcIkiTAQJAkNR4y0rQ8fCSNHgNBMzIcpNFgIGhWDAdp+TIQNGf94QAGhLTUeVJZkgQ4Q9A88nCStLQZCFoQUw8nTTIopMXLQNBAGRTS4mUgaFHwcJM0fIsmEJKsBf4WOAD4YlVdMeQhaUicRUjDsSgCIckBwOeB3wR2Ad9Jsr2qHhzuyLSY7CsoLj1lLxdNs84AkWZnUQQCcBqws6r+HSDJVmAdYCBozvYVIAvNINJStVgC4Vjgib73u4APTd0oyUZgY3u7J8nDs/iMo4Fn5jzCJebPRqjexVZrrlzwj1hU9S4wa51/797XisUSCJmmrd7QULUZ2DynD0h2VNWaufRdikap3lGqFUarXmsdrMVyp/Iu4Li+96uAJ4c0FkkaSYslEL4DrE5yfJK3AeuB7UMekySNlEVxyKiq9ib5E+Cf6F12+qWqemCeP2ZOh5qWsFGqd5RqhdGq11oHKFVvOFQvSRpBi+WQkSRpyAwESRKwDAMhydokDyfZmeSyadYnydVt/Q+SfGAY45wPHWp9T5K7kryc5NPDGON86lDv+e07/UGSbyd53zDGOR861Lqu1fm9JDuS/NowxjlfZqq3b7sPJnk1ybmDHN986vDdjid5vn2330vy2YENrqqWzYveCekfA78AvA34PnDilG0+CtxG796H04F7hj3uBaz1GOCDwCbg08Me8wDq/VXgiLb8W8v8uz2Un50DfC/wo2GPeyHr7dvuTuCbwLnDHvcCfrfjwDeGMb7lNkN47REYVfW/wOQjMPqtA26onruBdyRZOeiBzoMZa62qp6vqO8ArwxjgPOtS77er6rn29m5697MsRV1q3VPtXw/gEKa5kXMJ6fL/LcCfAl8Bnh7k4OZZ11qHYrkFwnSPwDh2DtssBculjq5mW+8GejPBpahTrUk+nuRHwK3AHw5obAthxnqTHAt8HPjCAMe1ELr+d/wrSb6f5LYkJw1maMsvELo8AqPTYzKWgOVSR1ed601yBr1A+MyCjmjhdH2Uy9eq6j3AOcBfL/SgFlCXej8HfKaqXl344SyoLrV+F3h3Vb0P+Dvg6ws9qEnLLRC6PAJjuTwmY7nU0VWnepO8F/gisK6qfjKgsc23WX23VfUt4BeTHL3QA1sgXepdA2xN8hhwLnBNknMGMrr5NWOtVfXTqtrTlr8JvHVQ3+1yC4Quj8DYDlzQrjY6HXi+qnYPeqDzYNQe9zFjvUl+Hvgq8Imq+rchjHG+dKn1hCRpyx+gd4JyqQbgjPVW1fFVNVZVY8DNwB9X1dcHPtI3r8t3+66+7/Y0ev9OD+S7XRSPrpgvtY9HYCT5o7b+C/SuUPgosBP4b+APhjXeN6NLrUneBewADgP+L8mn6F3R8NNhjXuuOn63nwWOovfbI8DeWoJPyuxY6+/Q+8XmFeB/gN/tO8m8pHSsd1noWOu5wMVJ9tL7btcP6rv10RWSJGD5HTKSJM2RgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDX/DxFl4Cn1mRA3AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASe0lEQVR4nO3df4xl5X3f8fcnbOJQUzA2YbNiSZaGrRp+xGnYEJq01Ti48gai4KhY3dYtuF1pVUTbRCKql/6RpqpWgn/qFCU4WpkIcKquV04cIxNaWUunVhV+eGltrwFTb2KK1yAjDMUsrSlLvv3jnnl8d5idOfNj5945+35JV3Puc89z5vnq7s5nnvOceyZVhSRJAD8w6QFIkqaHoSBJagwFSVJjKEiSGkNBktRsmvQAVuqCCy6obdu29d7/9ddf553vfOfpG9AEWNP0G1o9MLyahlYPLF7TE0888VJV/cip+m7YUNi2bRuHDx/uvf/s7CwzMzOnb0ATYE3Tb2j1wPBqGlo9sHhNSf7XYn09fSRJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqNuwnmtfKtr0Ptu1n77h+giORpMlzpiBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqekdCknOSvI/knyue/7uJJ9P8vXu6/lj+96e5GiSZ5J8YKz9qiRHutfuSpKu/R1JPtW1P5Zk2xrWKEnqaTkzhV8Dnh57vhc4VFXbgUPdc5JcBuwCLgd2AncnOavr83FgD7C9e+zs2ncDr1TVpcDHgDtXVI0kaVV6hUKSrcD1wCfGmm8A7uu27wM+ONZ+oKreqKpvAEeBq5NsAc6tqkeqqoD75/WZO9angWvnZhGSpPWzqed+vw38S+Avj7VtrqoXAKrqhSQXdu0XAY+O7Xesa3uz257fPtfnm92xTiR5FXgP8NL4IJLsYTTTYPPmzczOzvYcPhw/fnzB/W+78kTbXs7xpsGpatrIhlbT0OqB4dU0tHpgdTUtGQpJfhl4saqeSDLT45gL/YZfi7Qv1ufkhqr9wH6AHTt21MxMn+GMzM7OstD+H9n7YNt+9sP9jzcNTlXTRja0moZWDwyvpqHVA6urqc9M4ReAX0lyHfDDwLlJ/gD4dpIt3SxhC/Bit/8x4OKx/luB57v2rQu0j/c5lmQTcB7w8ooqkiSt2JJrClV1e1VtraptjBaQH66qfwg8ANzc7XYz8Nlu+wFgV3dF0SWMFpQf7041vZbkmm694KZ5feaOdWP3Pd42U5AknV591xQWcgdwMMlu4DngQwBV9WSSg8BTwAng1qp6q+tzC3AvcDbwUPcAuAf4ZJKjjGYIu1YxLknSCi0rFKpqFpjttr8DXHuK/fYB+xZoPwxcsUD79+hCRZI0OX6iWZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktSs5jYXg7Nt/I6pd1w/wZFI0mQ4U5AkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqRm06QHMAnb9j446SFI0lRypiBJapYMhSQ/nOTxJF9O8mSSf9O1vzvJ55N8vft6/lif25McTfJMkg+MtV+V5Ej32l1J0rW/I8mnuvbHkmw7DbVKkpbQZ6bwBvCLVfVe4KeBnUmuAfYCh6pqO3Coe06Sy4BdwOXATuDuJGd1x/o4sAfY3j12du27gVeq6lLgY8Cdqy9NkrRcS4ZCjRzvnv5g9yjgBuC+rv0+4IPd9g3Agap6o6q+ARwFrk6yBTi3qh6pqgLun9dn7lifBq6dm0VIktZPr4Xm7jf9J4BLgd+tqseSbK6qFwCq6oUkF3a7XwQ8Otb9WNf2Zrc9v32uzze7Y51I8irwHuCleePYw2imwebNm5mdne1ZJhw/frztf9uVJ5bcfznHnpTxmoZiaDUNrR4YXk1DqwdWV1OvUKiqt4CfTvIu4DNJrlhk94V+w69F2hfrM38c+4H9ADt27KiZmZlFhnGy2dlZ5vb/SJ+rj4683jafveP63t9nPY3XNBRDq2lo9cDwahpaPbC6mpZ19VFV/W9gltFawLe7U0J0X1/sdjsGXDzWbSvwfNe+dYH2k/ok2QScB7y8nLFJklavz9VHP9LNEEhyNvB+4GvAA8DN3W43A5/tth8AdnVXFF3CaEH58e5U02tJrunWC26a12fuWDcCD3frDpKkddTn9NEW4L5uXeEHgINV9bkkjwAHk+wGngM+BFBVTyY5CDwFnABu7U4/AdwC3AucDTzUPQDuAT6Z5CijGcKutShOkrQ8S4ZCVX0F+OsLtH8HuPYUffYB+xZoPwy8bT2iqr5HFyqSpMnxE82SpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUtPrz3Ge6bbN+/Od0/rnOSVptZwpSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNt85egfFbaXsbbUlD4kxBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqlgyFJBcn+S9Jnk7yZJJf69rfneTzSb7efT1/rM/tSY4meSbJB8bar0pypHvtriTp2t+R5FNd+2NJtp2GWiVJS+gzUzgB3FZVPwlcA9ya5DJgL3CoqrYDh7rndK/tAi4HdgJ3JzmrO9bHgT3A9u6xs2vfDbxSVZcCHwPuXIPaJEnLtOSH16rqBeCFbvu1JE8DFwE3ADPdbvcBs8BHu/YDVfUG8I0kR4GrkzwLnFtVjwAkuR/4IPBQ1+e3umN9GvidJKmqWnWFp5kfZJM0JFnOz93utM4XgCuA56rqXWOvvVJV5yf5HeDRqvqDrv0eRj/4nwXuqKr3d+1/C/hoVf1ykq8CO6vqWPfanwE/V1Uvzfv+exjNNNi8efNVBw4c6D3248ePc8455wBw5Fuv9u63HFdedN5pOe6pjNc0FEOraWj1wPBqGlo9sHhN73vf+56oqh2n6tv7NhdJzgH+EPj1qvputxyw4K4LtNUi7Yv1Obmhaj+wH2DHjh01MzOzxKi/b3Z2lrn9PzL22/1aevbD/cezFsZrGoqh1TS0emB4NQ2tHlhdTb2uPkryg4wC4T9U1R91zd9OsqV7fQvwYtd+DLh4rPtW4PmufesC7Sf1SbIJOA94ebnFSJJWp8/VRwHuAZ6uqn839tIDwM3d9s3AZ8fad3VXFF3CaEH58W5t4rUk13THvGlen7lj3Qg8vBHWEyRpaPqcPvoF4B8BR5J8qWv7V8AdwMEku4HngA8BVNWTSQ4CTzG6cunWqnqr63cLcC9wNqN1hoe69nuAT3aL0i8zunpJkrTO+lx99N9Y+Jw/wLWn6LMP2LdA+2FGi9Tz279HFyqSpMnx7ymsIS9PlbTReZsLSVJjKEiSGkNBktQYCpKkxlCQJDVefXSaeCWSpI3ImYIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktR4Seo68PJUSRuFMwVJUmMoSJIaQ0GS1BgKkqTGUJAkNV59tM68EknSNHOmIElqDAVJUmMoSJIaQ0GS1LjQPEEuOkuaNs4UJEmNoSBJagwFSVJjKEiSGkNBktR49dGU8EokSdPAmYIkqTEUJEmNoSBJalxTmEKuL0iaFGcKkqRmyVBI8vtJXkzy1bG2dyf5fJKvd1/PH3vt9iRHkzyT5ANj7VclOdK9dleSdO3vSPKprv2xJNvWuEZJUk99Zgr3Ajvnte0FDlXVduBQ95wklwG7gMu7PncnOavr83FgD7C9e8wdczfwSlVdCnwMuHOlxUiSVmfJUKiqLwAvz2u+Abiv274P+OBY+4GqeqOqvgEcBa5OsgU4t6oeqaoC7p/XZ+5YnwaunZtFSJLW10oXmjdX1QsAVfVCkgu79ouAR8f2O9a1vdltz2+f6/PN7lgnkrwKvAd4af43TbKH0WyDzZs3Mzs723vAx48fb/vfduWJ3v0mbbEax2saiqHVNLR6YHg1Da0eWF1Na3310UK/4dci7Yv1eXtj1X5gP8COHTtqZmam98BmZ2eZ2/8jY1f3TL0jr7fN+Vcijdc0FEOraWj1wPBqGlo9sLqaVnr10be7U0J0X1/s2o8BF4/ttxV4vmvfukD7SX2SbALO4+2nqyRJ62ClofAAcHO3fTPw2bH2Xd0VRZcwWlB+vDvV9FqSa7r1gpvm9Zk71o3Aw926gyRpnS15+ijJfwRmgAuSHAP+NXAHcDDJbuA54EMAVfVkkoPAU8AJ4Naqeqs71C2MrmQ6G3ioewDcA3wyyVFGM4Rda1KZJGnZlgyFqvr7p3jp2lPsvw/Yt0D7YeCKBdq/RxcqWpyfdJZ0uvmJZklSYyhIkhpDQZLUGAob1La9D3LkW6+etM4gSatlKEiSGkNBktQYCpKkxr+8NgB+fkHSWnGmIElqDAVJUuPpo4HxVJKk1XCmIElqDAVJUmMoSJIa1xQGzPUFScvlTEGS1BgKkqTG00dnCE8lSerDmYIkqTEUJEmNp4/OQJ5KknQqzhQkSY0zhTOcswZJ45wpSJIaZwpqnDVIcqYgSWqcKWhBzhqkM5MzBUlS40xBS3LWIJ05DAUtiwEhDZunjyRJjTMFrdj4rAGcOUhDYChozcwPiTmGhbRxePpIktQ4U9Bp5wxC2jgMBU3MQmFx25UnmFn/oUjqTE0oJNkJ/HvgLOATVXXHhIekCfGyV2lypiIUkpwF/C7wd4BjwBeTPFBVT012ZJq0U5166sNAkZZvKkIBuBo4WlV/DpDkAHADYChoxVYTKKthGGkjm5ZQuAj45tjzY8DPzd8pyR5gT/f0eJJnlvE9LgBeWvEIp9C/sKaplDtPerrh61nA0GoaWj2weE0/vljHaQmFLNBWb2uo2g/sX9E3SA5X1Y6V9J1W1jT9hlYPDK+modUDq6tpWj6ncAy4eOz5VuD5CY1Fks5Y0xIKXwS2J7kkyQ8Bu4AHJjwmSTrjTMXpo6o6keSfAf+Z0SWpv19VT67xt1nRaacpZ03Tb2j1wPBqGlo9sIqaUvW2U/eSpDPUtJw+kiRNAUNBktQMLhSS7EzyTJKjSfYu8HqS3NW9/pUkPzOJcS5Hj5r+WpJHkryR5DcmMcbl6FHPh7v35itJ/jTJeycxzuXoUdMNXT1fSnI4yd+cxDj7Wqqesf1+NslbSW5cz/GtRI/3aCbJq9179KUkvzmJcS5Hn/epq+tLSZ5M8l+XPGhVDebBaJH6z4C/AvwQ8GXgsnn7XAc8xOizEdcAj0163GtQ04XAzwL7gN+Y9JjXoJ6fB87vtn9pIO/ROXx/De+ngK9NetyrqWdsv4eBPwFunPS41+A9mgE+N+mxrnFN72J0Z4gf655fuNRxhzZTaLfLqKr/B8zdLmPcDcD9NfIo8K4kW9Z7oMuwZE1V9WJVfRF4cxIDXKY+9fxpVb3SPX2U0edWplmfmo5X978SeCcLfDhzivT5fwTwz4E/BF5cz8GtUN+aNpI+Nf0D4I+q6jkY/axY6qBDC4WFbpdx0Qr2mSYbbbxLWW49uxnN7KZZr5qS/GqSrwEPAv9knca2EkvWk+Qi4FeB31vHca1G3393fyPJl5M8lOTy9RnaivWp6a8C5yeZTfJEkpuWOuhUfE5hDfW5XUavW2pMkY023qX0rifJ+xiFwlSff6f/bVo+A3wmyd8G/i3w/tM9sBXqU89vAx+tqreShXafOn1q+u/Aj1fV8STXAX8MbD/dA1uFPjVtAq4CrgXOBh5J8mhV/c9THXRoodDndhkb7ZYaG228S+lVT5KfAj4B/FJVfWedxrZSy3qPquoLSX4iyQVVNY03YutTzw7gQBcIFwDXJTlRVX+8LiNcviVrqqrvjm3/SZK7p/g9gv4/716qqteB15N8AXgvcMpQmPhiyRovvGwC/hy4hO8vvFw+b5/rOXmh+fFJj3u1NY3t+1tM/0Jzn/fox4CjwM9PerxrWNOlfH+h+WeAb809n7bHcv7Ndfvfy/QvNPd5j3507D26GnhuWt+jZdT0k8Chbt+/BHwVuGKx4w5qplCnuF1Gkn/avf57jK6UuI7RD53/A/zjSY23jz41JflR4DBwLvAXSX6d0VUI3z3VcSel53v0m8B7gLu730RP1BTfxbJnTX8XuCnJm8D/Bf5edf9rp03PejaUnjXdCNyS5ASj92jXtL5H0K+mqno6yX8CvgL8BaO/avnVxY7rbS4kSc3Qrj6SJK2CoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDX/H0o92tZeOdnbAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASTUlEQVR4nO3df6zddX3H8edLUGQyfihaG4orG90mP9RJRaZzuawuVjCrZrh1cwJbl2YEF00ws+wPt2VpUv+ZjiiYRgxFl9UGfxGRLabszizyw+JUfsmsyrBCJCgiZZNZfO+P87l4uNzb+723vfd7Tvt8JCc95/P9cV/npO2rn+/3e75NVSFJ0rP6DiBJGg0WgiQJsBAkSY2FIEkCLARJUnNk3wEW6sQTT6yVK1d2Xv/xxx/nec973uIFWmTm75f5+zXO+Uct++233/5wVb1wpmVjWwgrV65k165dndefnJxkYmJi8QItMvP3y/z9Guf8o5Y9yX/PtsxDRpIkwEKQJDUWgiQJsBAkSY2FIEkCLARJUmMhSJIAC0GS1FgIkiRgjL+pfLCs3HTDU8/v23J+j0kkqV/OECRJgIUgSWosBEkSYCFIkhoLQZIEWAiSpMZCkCQBFoIkqbEQJEmAhSBJaiwESRJgIUiSGgtBkgRYCJKkxkKQJAEWgiSpsRAkSYCFIElqOhdCkiOS/GeSz7XXz0/yhSTfbL+eMLTu5Ul2J7k3yRuGxs9KckdbdkWStPGjknyijd+aZOVBfI+SpA7mM0N4J3DP0OtNwM6qWgXsbK9JchqwHjgdWAtcmeSIts1VwEZgVXusbeMbgEeq6lTg/cD7FvRuJEkL1qkQkqwAzgc+MjS8DtjWnm8D3jw0vr2qnqiq7wC7gbOTLAeOraqbq6qAa6dtM7Wv64A1U7MHSdLSOLLjeh8A/gr4xaGxZVX1IEBVPZjkRW38JOCWofX2tLGftufTx6e2+W7b174kjwIvAB4eDpFkI4MZBsuWLWNycrJjfNi7d++M61925r6nns9nf0tttvzjwvz9Mn9/xin7nIWQ5E3AQ1V1e5KJDvuc6V/2tZ/x/W3z9IGqrcBWgNWrV9fERJc4A5OTk8y0/sWbbnjq+X1v676/pTZb/nFh/n6Zvz/jlL3LDOG1wO8lOQ94LnBsko8D30+yvM0OlgMPtfX3ACcPbb8CeKCNr5hhfHibPUmOBI4DfrjA9yRJWoA5zyFU1eVVtaKqVjI4WXxTVf0JcD1wUVvtIuCz7fn1wPp25dApDE4e39YOLz2W5Jx2fuDCadtM7euC9jOeMUOQJC2erucQZrIF2JFkA3A/8FaAqroryQ7gbmAfcGlVPdm2uQS4BjgauLE9AK4GPpZkN4OZwfoDyCVJWoB5FUJVTQKT7fkPgDWzrLcZ2DzD+C7gjBnGf0IrFElSP/ymsiQJsBAkSY2FIEkCLARJUmMhSJIAC0GS1FgIkiTAQpAkNRaCJAmwECRJjYUgSQIO7OZ2h5yVw/83wpbze0wiSUvPGYIkCbAQJEmNhSBJAiwESVJjIUiSAAtBktRYCJIkwEKQJDUWgiQJsBAkSY2FIEkCLARJUmMhSJIAC0GS1FgIkiTAQpAkNRaCJAmwECRJjYUgSQIsBElSYyFIkgALQZLUWAiSJMBCkCQ1FoIkCehQCEmem+S2JF9LcleSv2vjz0/yhSTfbL+eMLTN5Ul2J7k3yRuGxs9KckdbdkWStPGjknyijd+aZOUivFdJ0n50mSE8AfxOVb0ceAWwNsk5wCZgZ1WtAna21yQ5DVgPnA6sBa5MckTb11XARmBVe6xt4xuAR6rqVOD9wPsO/K1JkuZjzkKogb3t5bPbo4B1wLY2vg14c3u+DtheVU9U1XeA3cDZSZYDx1bVzVVVwLXTtpna13XAmqnZgyRpaWTwd/McKw3+hX87cCrwoap6T5IfVdXxQ+s8UlUnJPkgcEtVfbyNXw3cCNwHbKmq17fx1wHvqao3JbkTWFtVe9qybwGvrqqHp+XYyGCGwbJly87avn175ze6d+9ejjnmmGeM3/G9R+fc9syTjuv8cxbLbPnHhfn7Zf7+jFr2c8899/aqWj3TsiO77KCqngRekeR44NNJztjP6jP9y772M76/babn2ApsBVi9enVNTEzsJ8bTTU5OMtP6F2+6Yc5t73tb95+zWGbLPy7M3y/z92ecss/rKqOq+hEwyeDY//fbYSDarw+11fYAJw9ttgJ4oI2vmGH8adskORI4DvjhfLJJkg5Ml6uMXthmBiQ5Gng98A3geuCittpFwGfb8+uB9e3KoVMYnDy+raoeBB5Lck47P3DhtG2m9nUBcFN1OZYlSTpouhwyWg5sa+cRngXsqKrPJbkZ2JFkA3A/8FaAqroryQ7gbmAfcGk75ARwCXANcDSD8wo3tvGrgY8l2c1gZrD+YLw5SVJ3cxZCVX0d+I0Zxn8ArJllm83A5hnGdwHPOP9QVT+hFYokqR9+U1mSBFgIkqTGQpAkAR2/h3CoWdnhuweSdLhxhiBJAiwESVJjIUiSAAtBktRYCJIkwEKQJDUWgiQJsBAkSY2FIEkCLARJUnNY3rpivqbf6uK+Lef3lESSFo8zBEkSYCFIkhoLQZIEWAiSpMZCkCQBFoIkqbEQJEmAhSBJaiwESRJgIUiSGgtBkgRYCJKkxkKQJAHe7XRBhu9+6p1PJR0qnCFIkgALQZLUWAiSJMBCkCQ1FoIkCbAQJEmNhSBJAiwESVIzZyEkOTnJvyW5J8ldSd7Zxp+f5AtJvtl+PWFom8uT7E5yb5I3DI2fleSOtuyKJGnjRyX5RBu/NcnKRXivi2LlphueekjSOOsyQ9gHXFZVLwXOAS5NchqwCdhZVauAne01bdl64HRgLXBlkiPavq4CNgKr2mNtG98APFJVpwLvB953EN6bJGke5iyEqnqwqr7Snj8G3AOcBKwDtrXVtgFvbs/XAdur6omq+g6wGzg7yXLg2Kq6uaoKuHbaNlP7ug5YMzV7kCQtjQz+bu648uBQzheBM4D7q+r4oWWPVNUJST4I3FJVH2/jVwM3AvcBW6rq9W38dcB7qupNSe4E1lbVnrbsW8Crq+rhaT9/I4MZBsuWLTtr+/btnbPv3buXY445BoA7vvdo5+3m48yTjluU/cLT848j8/fL/P0Zteznnnvu7VW1eqZlnW9ul+QY4JPAu6rqx/v5B/xMC2o/4/vb5ukDVVuBrQCrV6+uiYmJOVL/3OTkJFPrX7xIx/vve1v3PPM1nH8cmb9f5u/POGXvdJVRkmczKIN/qqpPteHvt8NAtF8fauN7gJOHNl8BPNDGV8ww/rRtkhwJHAf8cL5vRpK0cF2uMgpwNXBPVf3D0KLrgYva84uAzw6Nr29XDp3C4OTxbVX1IPBYknPaPi+cts3Uvi4Abqr5HMuSJB2wLoeMXgu8HbgjyVfb2F8DW4AdSTYA9wNvBaiqu5LsAO5mcIXSpVX1ZNvuEuAa4GgG5xVubONXAx9LspvBzGD9gb0tSdJ8zVkIVfUfzHyMH2DNLNtsBjbPML6LwQnp6eM/oRXKOPM/zpE0zvymsiQJsBAkSY2FIEkCLARJUmMhSJKAeXxTWfPjFUeSxo0zBEkSYCFIkhoLQZIEWAiSpMZCkCQBFoIkqfGy0yXgJaiSxoEzBEkSYCFIkhoLQZIEWAiSpMZCkCQBXmW05LziSNKocoYgSQIsBElSYyFIkgALQZLUWAiSJMCrjHrlFUeSRokzBEkSYCFIkhoLQZIEWAiSpMaTyiPCE8yS+uYMQZIEWAiSpMZCkCQBFoIkqfGk8gjyBLOkPjhDkCQBFoIkqZmzEJJ8NMlDSe4cGnt+ki8k+Wb79YShZZcn2Z3k3iRvGBo/K8kdbdkVSdLGj0ryiTZ+a5KVB/k9SpI66DJDuAZYO21sE7CzqlYBO9trkpwGrAdOb9tcmeSIts1VwEZgVXtM7XMD8EhVnQq8H3jfQt+MJGnh5iyEqvoi8MNpw+uAbe35NuDNQ+Pbq+qJqvoOsBs4O8ly4NiqurmqCrh22jZT+7oOWDM1e5AkLZ2FXmW0rKoeBKiqB5O8qI2fBNwytN6eNvbT9nz6+NQ232372pfkUeAFwMMLzHZImbri6LIz9zHRbxRJh7iDfdnpTP+yr/2M72+bZ+482cjgsBPLli1jcnKyc7C9e/c+tf5lZ+7rvN2oWHY083q/o2b48x9H5u/XOOcfp+wLLYTvJ1neZgfLgYfa+B7g5KH1VgAPtPEVM4wPb7MnyZHAcTzzEBUAVbUV2AqwevXqmpiY6Bx4cnKSqfUvHrrOf1xcduY+/mAe73fUDH/+48j8/Rrn/OOUfaGXnV4PXNSeXwR8dmh8fbty6BQGJ49va4eXHktyTjs/cOG0bab2dQFwUzvPIElaQnPOEJL8MzABnJhkD/A3wBZgR5INwP3AWwGq6q4kO4C7gX3ApVX1ZNvVJQyuWDoauLE9AK4GPpZkN4OZwfqD8s4kSfMyZyFU1R/NsmjNLOtvBjbPML4LOGOG8Z/QCkX75y0tJC0mv6ksSQIsBElSYyFIkgBvfz22PJ8g6WBzhiBJAiwESVJjIUiSAAtBktR4UvkQ4AlmSQeDMwRJEmAhSJIaDxkdYjx8JGmhnCFIkgALQZLUWAiSJMBCkCQ1nlQ+hHmCWdJ8OEOQJAHOEA4bzhYkzcUZgiQJsBAkSY2HjA5DHj6SNBNnCJIkwBnCYc/ZgqQpzhAkSYCFIElqPGSkp3j4SDq8OUOQJAHOEDQLZwvS4ccZgiQJcIagDpwtSIcHC0HzYjlIhy4PGUmSAGcIOgDDswVwxiCNOwtBB42Hk6TxZiFoUVgO0vixELToVm66gcvO3MfFHmKSRpqFoN5MPwcxxaKQ+jEyhZBkLfCPwBHAR6pqS8+R1BMPN0n9GIlCSHIE8CHgd4E9wJeTXF9Vd/ebTH2bbRYxXxaLNLeRKATgbGB3VX0bIMl2YB1gIeigONBimekcyGwsH42rVFXfGUhyAbC2qv68vX478Oqqese09TYCG9vLXwPuncePORF4+CDE7Yv5+2X+fo1z/lHL/ktV9cKZFozKDCEzjD2jqapqK7B1QT8g2VVVqxey7Sgwf7/M369xzj9O2Ufl1hV7gJOHXq8AHugpiyQdlkalEL4MrEpySpLnAOuB63vOJEmHlZE4ZFRV+5K8A/hXBpedfrSq7jrIP2ZBh5pGiPn7Zf5+jXP+sck+EieVJUn9G5VDRpKknlkIkiTgECyEJGuT3Jtkd5JNMyxPkiva8q8neWUfOWfTIf+vJ7k5yRNJ3t1Hxv3pkP9t7XP/epIvJXl5Hzln0iH7upb7q0l2JfmtPnLOZq78Q+u9KsmT7fs/I6PD5z+R5NH2+X81yXv7yDmbLp9/ew9fTXJXkn9f6oxzqqpD5sHghPS3gF8GngN8DTht2jrnATcy+O7DOcCtfeeeZ/4XAa8CNgPv7jvzAvK/BjihPX/jqHz+HbMfw8/Pu70M+EbfueeTf2i9m4DPAxf0nXuen/8E8Lm+sx5A/uMZ3H3hJe31i/rOPf1xqM0QnroFRlX9HzB1C4xh64Bra+AW4Pgky5c66CzmzF9VD1XVl4Gf9hFwDl3yf6mqHmkvb2HwnZNR0CX73mp/koHnMcOXJ3vU5fc+wF8CnwQeWspwHXTNP6q65P9j4FNVdT8M/iwvccY5HWqFcBLw3aHXe9rYfNfpyyhn62K++TcwmK2Ngk7Zk7wlyTeAG4A/W6JsXcyZP8lJwFuADy9hrq66/t75zSRfS3JjktOXJlonXfL/KnBCkskktye5cMnSdTQS30M4iLrcAqPTbTJ6MsrZuuicP8m5DAphVI7Dd719yqeBTyf5beDvgdcvdrCOuuT/APCeqnoymWn1XnXJ/xUG9+HZm+Q84DPAqsUO1lGX/EcCZwFrgKOBm5PcUlX/tdjhujrUCqHLLTBG+TYZo5yti075k7wM+Ajwxqr6wRJlm8u8Pvuq+mKSX0lyYlWNwo3LuuRfDWxvZXAicF6SfVX1mSVJuH9z5q+qHw89/3ySK8fs898DPFxVjwOPJ/ki8HJgZAqh95MYB/PBoOC+DZzCz0/snD5tnfN5+knl2/rOPZ/8Q+v+LaN3UrnL5/8SYDfwmr7zLiD7qfz8pPIrge9Nve77MZ/fO239axitk8pdPv8XD33+ZwP3j9PnD7wU2NnW/QXgTuCMvrMPPw6pGULNcguMJH/Rln+YwdUV5zH4S+l/gD/tK+90XfIneTGwCzgW+FmSdzG4muHHs+13qXT8/N8LvAC4sv1LdV+NwJ0gO2b/feDCJD8F/hf4w2p/0vvWMf/I6pj/AuCSJPsYfP7rx+nzr6p7kvwL8HXgZwz+Z8g7+0v9TN66QpIEHHpXGUmSFshCkCQBFoIkqbEQJEmAhSBJaiwESRJgIUiSmv8HO77sB/WWht8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATOElEQVR4nO3dbYxc5XnG8f8dnBCCizElcRAmNS1uG16SNN4ATUq1rqnYAKmJCuqmNJjWlVVEqkRKKkw/pK0qq+ZDS4sSiKw4wkCVxSIvWBC3RYYtasNL7JRgDKEswaIGhEUwhKWBxuTuh3kWxuvZ3TPr2Z056/9PWu3Mc86ZuWYwe+1zzpmzkZlIkvS2bgeQJPUGC0GSBFgIkqTCQpAkARaCJKmY1+0A03X88cfnkiVLKq//6quvcvTRR89coA6rW16oX+a65YX6ZTbvzGs3844dO17IzHe3XJiZtfxatmxZtuOee+5pa/1uq1vezPplrlvezPplNu/MazczsD0n+LnqLiNJEuAxBElSYSFIkgALQZJUWAiSJMBCkCQVFoIkCbAQJEmFhSBJAmp86YpOWbL2zjdv715/QReTSFJ3OUOQJAEWgiSpsBAkSYCFIEkqLARJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKmwECRJgIUgSSosBEkS0EYhRMQREfFfEXFHuX9cRNwVEU+U7wub1r06IkYi4vGIOK9pfFlE7CzLrouIKONHRsStZfyBiFjSwdcoSaqgnRnCZ4HHmu6vBbZl5lJgW7lPRJwKDAKnAQPA9RFxRNnmBmANsLR8DZTx1cC+zDwFuBa4ZlqvRpI0bZUKISIWAxcAX20aXglsKrc3ARc1jQ9l5uuZ+RQwApwZEScAx2TmfZmZwE3jthl7rNuAFWOzB0nS7IjGz+YpVoq4Dfg74BeAL2TmhRHxUmYe27TOvsxcGBFfAu7PzFvK+EZgK7AbWJ+Z55bxc4CrymM9Agxk5p6y7EngrMx8YVyONTRmGCxatGjZ0NBQ5Rc6OjrK/PnzDxrf+czLb94+48QFlR9vpk2Ut5fVLXPd8kL9Mpt35rWbefny5Tsys6/Vsin/YlpEXAjszcwdEdFf4fla/Wafk4xPts2BA5kbgA0AfX192d9fJU7D8PAwrda/vPkvpl1a/fFm2kR5e1ndMtctL9Qvs3lnXiczV/kTmh8Dfi8izgfeCRwTEbcAz0fECZn5XNkdtLesvwc4qWn7xcCzZXxxi/HmbfZExDxgAfDiNF+TJGkapjyGkJlXZ+bizFxC42Dx3Zn5R8AWYFVZbRVwe7m9BRgsZw6dTOPg8YOZ+RzwSkScXY4PXDZum7HHurg8x9T7siRJHVNlhjCR9cDmiFgNPA1cApCZuyJiM/AosB+4MjPfKNtcAdwIHEXjuMLWMr4RuDkiRmjMDAYPIZckaRraKoTMHAaGy+0fAysmWG8dsK7F+Hbg9Bbjr1EKRZLUHX5SWZIEWAiSpMJCkCQBFoIkqbAQJEmAhSBJKiwESRJgIUiSCgtBkgRYCJKkwkKQJAEWgiSpsBAkScChXf56zlnS/NfT1l/QxSSSNPucIUiSAAtBklRYCJIkwEKQJBUWgiQJsBAkSYWFIEkCLARJUmEhSJIAC0GSVFgIkiTAQpAkFRaCJAmwECRJhYUgSQIsBElSYSFIkgALQZJUWAiSJMBCkCQVFoIkCbAQJEmFhSBJAiwESVIxZSFExDsj4sGI+EFE7IqIvynjx0XEXRHxRPm+sGmbqyNiJCIej4jzmsaXRcTOsuy6iIgyfmRE3FrGH4iIJTPwWiVJk6gyQ3gd+J3M/CDwIWAgIs4G1gLbMnMpsK3cJyJOBQaB04AB4PqIOKI81g3AGmBp+Roo46uBfZl5CnAtcM2hvzRJUjumLIRsGC13316+ElgJbCrjm4CLyu2VwFBmvp6ZTwEjwJkRcQJwTGbel5kJ3DRum7HHug1YMTZ7kCTNjmj8bJ5ipcZv+DuAU4AvZ+ZVEfFSZh7btM6+zFwYEV8C7s/MW8r4RmArsBtYn5nnlvFzgKsy88KIeAQYyMw9ZdmTwFmZ+cK4HGtozDBYtGjRsqGhocovdHR0lPnz5x80vvOZl6fc9owTF1R+nk6ZKG8vq1vmuuWF+mU278xrN/Py5ct3ZGZfq2XzqjxAZr4BfCgijgW+FRGnT7J6q9/sc5LxybYZn2MDsAGgr68v+/v7J4lxoOHhYVqtf/naO6fcdvel1Z+nUybK28vqlrlueaF+mc078zqZua2zjDLzJWCYxr7/58tuIMr3vWW1PcBJTZstBp4t44tbjB+wTUTMAxYAL7aTTZJ0aKqcZfTuMjMgIo4CzgV+CGwBVpXVVgG3l9tbgMFy5tDJNA4eP5iZzwGvRMTZ5fjAZeO2GXusi4G7s8q+LElSx1TZZXQCsKkcR3gbsDkz74iI+4DNEbEaeBq4BCAzd0XEZuBRYD9wZdnlBHAFcCNwFI3jClvL+Ebg5ogYoTEzGOzEi5MkVTdlIWTmw8BvtBj/MbBigm3WAetajG8HDjr+kJmvUQpFktQdflJZkgRYCJKkwkKQJAEWgiSpsBAkSYCFIEkqLARJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKmwECRJgIUgSSosBEkSUPFvKh/uloz7u8u711/QpSSSNHMOy0IY/wNekuQuI0lSYSFIkgALQZJUWAiSJMBCkCQVFoIkCbAQJEmFhSBJAiwESVJhIUiSAAtBklRYCJIk4DC9uN2har44nlc+lTRXOEOQJAEWgiSpsBAkSYCFIEkqLARJEmAhSJIKC0GSBFgIkqTCD6YdIj+kJmmumHKGEBEnRcQ9EfFYROyKiM+W8eMi4q6IeKJ8X9i0zdURMRIRj0fEeU3jyyJiZ1l2XUREGT8yIm4t4w9ExJIZeK2SpElU2WW0H/h8Zr4fOBu4MiJOBdYC2zJzKbCt3KcsGwROAwaA6yPiiPJYNwBrgKXla6CMrwb2ZeYpwLXANR14bZKkNkxZCJn5XGZ+v9x+BXgMOBFYCWwqq20CLiq3VwJDmfl6Zj4FjABnRsQJwDGZeV9mJnDTuG3GHus2YMXY7EGSNDui8bO54sqNXTn3AqcDT2fmsU3L9mXmwoj4EnB/Zt5SxjcCW4HdwPrMPLeMnwNclZkXRsQjwEBm7inLngTOyswXxj3/GhozDBYtWrRsaGiocvbR0VHmz58PwM5nXq68XTvOOHFBxx6rOW9d1C1z3fJC/TKbd+a1m3n58uU7MrOv1bLKB5UjYj7wDeBzmfmTSX6Bb7UgJxmfbJsDBzI3ABsA+vr6sr+/f4rUbxkeHmZs/cubDgR30u5Lq+eZSnPeuqhb5rrlhfplNu/M62TmSqedRsTbaZTBP2fmN8vw82U3EOX73jK+BzipafPFwLNlfHGL8QO2iYh5wALgxXZfjCRp+qqcZRTARuCxzPyHpkVbgFXl9irg9qbxwXLm0Mk0Dh4/mJnPAa9ExNnlMS8bt83YY10M3J3t7MuSJB2yKruMPgZ8GtgZEQ+Vsb8E1gObI2I18DRwCUBm7oqIzcCjNM5QujIz3yjbXQHcCBxF47jC1jK+Ebg5IkZozAwGD+1ldYefSZBUZ1MWQmb+B6338QOsmGCbdcC6FuPbaRyQHj/+GqVQJEnd4aUrJEmAhSBJKiwESRJgIUiSCq92OkM840hS3ThDkCQBFoIkqbAQJEmAhSBJKiwESRLgWUazwjOOJNWBMwRJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKnwtNNZ5imoknqVMwRJEmAhSJIKC0GSBFgIkqTCQpAkARaCJKnwtNMu8hRUSb3EGYIkCbAQJEmFhSBJAjyG0DM8niCp25whSJIAC0GSVFgIkiTAQpAkFRaCJAmwEHrSkrV3svOZlw8480iSZpqFIEkCLARJUmEhSJKACoUQEV+LiL0R8UjT2HERcVdEPFG+L2xadnVEjETE4xFxXtP4sojYWZZdFxFRxo+MiFvL+AMRsaTDr1GSVEGVGcKNwMC4sbXAtsxcCmwr94mIU4FB4LSyzfURcUTZ5gZgDbC0fI095mpgX2aeAlwLXDPdFyNJmr4pCyEz7wVeHDe8EthUbm8CLmoaH8rM1zPzKWAEODMiTgCOycz7MjOBm8ZtM/ZYtwErxmYPapxxNPYlSTMpGj+fp1ipsRvnjsw8vdx/KTOPbVq+LzMXRsSXgPsz85YyvhHYCuwG1mfmuWX8HOCqzLyw7IoayMw9ZdmTwFmZ+UKLHGtozDJYtGjRsqGhocovdHR0lPnz5wOw85mXK2/XLYuOgud/euDYGScu6E6Yiprf4zqoW16oX2bzzrx2My9fvnxHZva1Wtbpq522+s0+JxmfbJuDBzM3ABsA+vr6sr+/v3Kw4eFhxta/vAa/bX/+jP38/c4D//PsvrS/O2Eqan6P66BueaF+mc078zqZebpnGT1fdgNRvu8t43uAk5rWWww8W8YXtxg/YJuImAcs4OBdVJKkGTbdQtgCrCq3VwG3N40PljOHTqZx8PjBzHwOeCUizi7HBy4bt83YY10M3J1V9mNJkjpqyl1GEfF1oB84PiL2AH8FrAc2R8Rq4GngEoDM3BURm4FHgf3AlZn5RnmoK2icsXQUjeMKW8v4RuDmiBihMTMY7Mgrm4P8IzqSZtKUhZCZn5pg0YoJ1l8HrGsxvh04vcX4a5RCkSR1j59UliQBFoIkqbAQJElA5z+HoFniAWZJneYMQZIEWAiSpMJCkCQBHkOYEzyeIKkTnCFIkgALQZJUWAiSJMBjCHOOxxMkTZczBEkSYCFIkgoLQZIEeAxhTvN4gqR2OEOQJAEWgiSpcJfRYcLdR5Km4gxBkgRYCJKkwl1GhyF3H0lqxRmCJAlwhnDYc7YgaYwzBEkSYCFIkgp3GelN7j6SDm/OECRJgDMETcDZgnT4cYYgSQKcIagCZwvS4cFCUFssB2nucpeRJAlwhqBD0DxbALhx4OguJZHUCc4Q1DE7n3mZJWvvPKgoJNWDMwTNCI81SPVjIWjGWQ5SPVgImlUT7U6yKKTusxDUE5xFSN3XM4UQEQPAPwFHAF/NzPVdjqQucRYhdUdPFEJEHAF8GfhdYA/wvYjYkpmPdjeZekmnzl6yWKTWeqIQgDOBkcz8EUBEDAErAQtBHTdWLJ8/Yz+Xz8IpshaQ6iIys9sZiIiLgYHM/NNy/9PAWZn5mXHrrQHWlLu/BjzextMcD7zQgbizpW55oX6Z65YX6pfZvDOv3cy/lJnvbrWgV2YI0WLsoKbKzA3Ahmk9QcT2zOybzrbdULe8UL/MdcsL9cts3pnXycy98knlPcBJTfcXA892KYskHZZ6pRC+ByyNiJMj4h3AILCly5kk6bDSE7uMMnN/RHwG+Fcap51+LTN3dfhpprWrqYvqlhfql7lueaF+mc078zqWuScOKkuSuq9XdhlJkrrMQpAkAXOwECJiICIej4iRiFjbYnlExHVl+cMR8eFu5GzKM1XeX4+I+yLi9Yj4QjcyjsszVd5Ly/v6cER8NyI+2I2c4zJNlXllyftQRGyPiN/qRs6mPJPmbVrvIxHxRvkcT1dVeI/7I+Ll8h4/FBFf7EbOpjxTvscl80MRsSsi/n22M47LMtX7+xdN7+0j5d/FcW0/UWbOmS8aB6SfBH4ZeAfwA+DUceucD2yl8dmHs4EHejzve4CPAOuAL9Tg/f0osLDc/ng33982Ms/nreNpHwB+2Mt5m9a7G/gOcHEN3uN+4I5u5mwz77E0rpTwvnL/Pb2cd9z6nwDuns5zzbUZwpuXwMjM/wPGLoHRbCVwUzbcDxwbESfMdtBiyryZuTczvwf8rBsBx6mS97uZua/cvZ/GZ0q6qUrm0Sz/JwFH0+JDkbOoyr9hgD8HvgHsnc1wE6iauVdUyfuHwDcz82lo/H84yxmbtfv+fgr4+nSeaK4VwonA/zTd31PG2l1ntvRSlirazbuaxmysmypljohPRsQPgTuBP5mlbK1MmTciTgQ+CXxlFnNNpuq/i9+MiB9ExNaIOG12orVUJe+vAgsjYjgidkTEZbOW7mCV/7+LiHcBAzR+WWhbT3wOoYOqXAKj0mUyZkkvZamict6IWE6jELq6P57ql0X5FvCtiPht4G+Bc2c62ASq5P1H4KrMfCOi1eqzrkrm79O4hs5oRJwPfBtYOtPBJlAl7zxgGbACOAq4LyLuz8z/nulwLbTzc+ITwH9m5ovTeaK5VghVLoHRS5fJ6KUsVVTKGxEfAL4KfDwzfzxL2SbS1nucmfdGxK9ExPGZ2Y2LnFXJ2wcMlTI4Hjg/IvZn5rdnJeHBpsycmT9puv2diLi+x9/jPcALmfkq8GpE3At8EOhGIbTzb3iQae4uAubcQeV5wI+Ak3nr4Mtp49a5gAMPKj/Yy3mb1v1run9Qucr7+z5gBPhot/89tJH5FN46qPxh4Jmx+72Yd9z6N9L9g8pV3uP3Nr3HZwJP9/J7DLwf2FbWfRfwCHB6r+Yt6y0AXgSOnu5zzakZQk5wCYyI+LOy/Cs0zso4n8YPrf8F/riX80bEe4HtwDHAzyPiczTOMPjJRI/bzbzAF4FfBK4vv8Huzy5ePbJi5t8HLouInwE/Bf4gy/9hPZq3p1TMfDFwRUTsp/EeD/bye5yZj0XEvwAPAz+n8VccH+nVvGXVTwL/lo1ZzbR46QpJEjD3zjKSJE2ThSBJAiwESVJhIUiSAAtBklRYCJIkwEKQJBX/D/8h2YbfTS1iAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbiUlEQVR4nO3df3BV533n8fcnxm2oFX44TlSK6EIL2a2BxqlUzDbrHamwa2o7iz2LJ8p6A2zYIetxdtIZZxfcP1p3PEzxTFPvehzTVULG2O5GZpy4ZmzTXRdb9WQLJpB1LLDNWq41joCBIcYEeWM2It/94zyyD+JK90i6uj/w5zWj0bnf8zxH33MF+t7nPOfeRxGBmZnZR2qdgJmZ1QcXBDMzA1wQzMwscUEwMzPABcHMzJJptU5goq666qqYP39+4fbvvvsuV1xxxdQlVCHOs7IaJU9onFydZ2VVO8+DBw+eiohPlNwZEQ351draGuPx/PPPj6t9rTjPymqUPCMaJ1fnWVnVzhM4EKP8XfUlIzMzAzyHYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGdDAH11RKfM3P/3+dv/WG2uYiZlZbXmEYGZmgAuCmZklLghmZga4IJiZWVK4IEi6TNL/lvRUenylpGclvZ6+z861vUtSn6Qjkq7PxVsl9aZ990tSiv+ypMdS/EVJ8yt4jmZmVsB4RghfBV7NPd4M7ImIRcCe9BhJVwOdwGJgFfCgpMtSn23ARmBR+lqV4huA0xGxELgPuHdCZ2NmZhNWqCBIagFuBL6VC68GdqTtHcDNuXh3RJyLiDeBPmCZpDnAjIjYmxZpeHhEn+FjPQ6sGB49mJlZdSj721ymkfQ48GfAx4CvRcRNkt6JiFm5NqcjYrakB4B9EfFoim8HdgP9wNaIWJni1wGb0rEOAasiYiDtewO4NiJOjchjI9kIg+bm5tbu7u7CJzo4OEhTU9NF8d6jZ97fXjp3ZuHjTZXR8qw3zrPyGiVX51lZ1c6zo6PjYES0ldpX9o1pkm4CTkbEQUntBX5eqVf2MUZ8rD4XBiK6gC6Atra2aG8vkk6mp6eHUu3X59+Ydlvx402V0fKsN86z8holV+dZWfWUZ5F3Kn8W+FeSbgA+CsyQ9ChwQtKciDieLgedTO0HgHm5/i3AsRRvKRHP9xmQNA2YCbw9wXMyM7MJKDuHEBF3RURLRMwnmyx+LiL+LbALWJearQOeTNu7gM5059ACssnj/RFxHDgraXmaH1g7os/wsdakn1H+WpaZmVXMZD7LaCuwU9IG4C3gVoCIOCxpJ/AKMATcERHnU5/bgYeA6WTzCrtTfDvwiKQ+spFB5yTyMjOzCRhXQYiIHqAnbf8EWDFKuy3AlhLxA8CSEvH3SAXFzMxqw+9UNjMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLClbECR9VNJ+ST+SdFjSn6b43ZKOSnopfd2Q63OXpD5JRyRdn4u3SupN++5PS2mSltt8LMVflDR/Cs7VzMzGUGTFtHPA70fEoKTLge9LGl768r6I+PN8Y0lXky2BuRj4NeBvJX0qLaO5DdgI7AOeAVaRLaO5ATgdEQsldQL3Ap+f/OmNz/zNT7+/3b/1xmr/eDOzmio7QojMYHp4efqKMbqsBroj4lxEvAn0AcskzQFmRMTeiAjgYeDmXJ8daftxYMXw6MHMzKpD2d/mMo2ky4CDwELgGxGxSdLdwHrgp8AB4M6IOC3pAWBfRDya+m4nGwX0A1sjYmWKXwdsioibJB0CVkXEQNr3BnBtRJwakcdGshEGzc3Nrd3d3YVPdHBwkKampovivUfPlGy/dO7MwseupNHyrDfOs/IaJVfnWVnVzrOjo+NgRLSV2lfkkhHpcs81kmYBT0haQnb55x6y0cI9wNeBLwGlXtnHGHHK7Mvn0QV0AbS1tUV7e3uR9AHo6emhVPv1uctEef23FT92JY2WZ71xnpXXKLk6z8qqpzzHdZdRRLwD9JC9mj8REecj4hfAN4FlqdkAMC/XrQU4luItJeIX9JE0DZgJvD2e3MzMbHKK3GX0iTQyQNJ0YCXwWpoTGHYLcCht7wI6051DC4BFwP6IOA6clbQ8zQ+sBZ7M9VmXttcAz0WRa1lmZlYxRS4ZzQF2pHmEjwA7I+IpSY9Iuobs0k4/8GWAiDgsaSfwCjAE3JEuOQHcDjwETCebVxi+W2k78IikPrKRQefkT83MzMajbEGIiJeBz5SIf3GMPluALSXiB4AlJeLvAbeWy8XMzKaO36lsZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZ4oJgZmaAC4KZmSUuCGZmBrggmJlZUmQJzY9K2i/pR5IOS/rTFL9S0rOSXk/fZ+f63CWpT9IRSdfn4q2SetO++9NSmqTlNh9L8RclzZ+CczUzszEUGSGcA34/Ij4NXAOskrQc2AzsiYhFwJ70GElXky2BuRhYBTyYlt8E2AZsJFtneVHaD7ABOB0RC4H7gHsnf2pmZjYeZQtCZAbTw8vTVwCrgR0pvgO4OW2vBroj4lxEvAn0AcskzQFmRMTeiAjg4RF9ho/1OLBiePRgZmbVoexvc5lG2Sv8g8BC4BsRsUnSOxExK9fmdETMlvQAsC8iHk3x7cBuoB/YGhErU/w6YFNE3CTpELAqIgbSvjeAayPi1Ig8NpKNMGhubm7t7u4ufKKDg4M0NTVdFO89eqZs36VzZxb+OZM1Wp71xnlWXqPk6jwrq9p5dnR0HIyItlL7phU5QEScB66RNAt4QtKSMZqXemUfY8TH6jMyjy6gC6CtrS3a29vHSONCPT09lGq/fvPTZfv231b850zWaHnWG+dZeY2Sq/OsrHrKc1x3GUXEO0AP2bX/E+kyEOn7ydRsAJiX69YCHEvxlhLxC/pImgbMBN4eT25mZjY5Re4y+kQaGSBpOrASeA3YBaxLzdYBT6btXUBnunNoAdnk8f6IOA6clbQ8zQ+sHdFn+FhrgOeiyLUsMzOrmCKXjOYAO9I8wkeAnRHxlKS9wE5JG4C3gFsBIuKwpJ3AK8AQcEe65ARwO/AQMJ1sXmF3im8HHpHURzYy6KzEyZmZWXFlC0JEvAx8pkT8J8CKUfpsAbaUiB8ALpp/iIj3SAXFzMxqw+9UNjMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwNcEMzMLHFBMDMzwAXBzMwSFwQzMwOKrZg2T9Lzkl6VdFjSV1P8bklHJb2Uvm7I9blLUp+kI5Kuz8VbJfWmffenldNIq6s9luIvSpo/BedqZmZjKLJi2hBwZ0T8UNLHgIOSnk377ouIP883lnQ12Ypni4FfA/5W0qfSqmnbgI3APuAZsrWZdwMbgNMRsVBSJ3Av8PnJn15lzN/89AWP+7feWKNMzMymTtkRQkQcj4gfpu2zwKvA3DG6rAa6I+JcRLwJ9AHLJM0BZkTE3rRe8sPAzbk+O9L248CK4dGDmZlVx7jmENKlnM8AL6bQVyS9LOnbkman2Fzgx7luAyk2N22PjF/QJyKGgDPAx8eTm5mZTY6yF+sFGkpNwN8BWyLie5KagVNAAPcAcyLiS5K+AeyNiEdTv+1kl4feAv4sIlam+HXAf46Iz0k6DFwfEQNp3xvAsrRucz6HjWSXnGhubm7t7u4ufKKDg4M0NTVdFO89eqbwMYYtnTtz3H2KGi3PeuM8K69RcnWelVXtPDs6Og5GRFupfUXmEJB0OfBd4K8i4nsAEXEit/+bwFPp4QAwL9e9BTiW4i0l4vk+A5KmATOBt0fmERFdQBdAW1tbtLe3F0kfgJ6eHkq1Xz9ifqCI/tuK/9zxGi3PeuM8K69RcnWelVVPeRa5y0jAduDViPiLXHxOrtktwKG0vQvoTHcOLQAWAfsj4jhwVtLydMy1wJO5PuvS9hrguSg6dDEzs4ooMkL4LPBFoFfSSyn2R8AXJF1DdsmoH/gyQEQclrQTeIXsDqU70h1GALcDDwHTye4u2p3i24FHJPWRjQw6J3NSZmY2fmULQkR8Hyh1x88zY/TZAmwpET8ALCkRfw+4tVwuZmY2dfxOZTMzA1wQzMwscUEwMzPABcHMzBIXBDMzA1wQzMwsKfROZbtQ/tNP/cmnZnap+FAWhJEfZ21mZr5kZGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGVBsCc15kp6X9Kqkw5K+muJXSnpW0uvp++xcn7sk9Uk6Iun6XLxVUm/ad39aSpO03OZjKf6ipPlTcK5TYv7mp9//MjNrZEVGCEPAnRHxW8By4A5JVwObgT0RsQjYkx6T9nUCi4FVwIOSLkvH2gZsJFtneVHaD7ABOB0RC4H7gHsrcG5mZjYOZQtCRByPiB+m7bPAq8BcYDWwIzXbAdyctlcD3RFxLiLeBPqAZZLmADMiYm9EBPDwiD7Dx3ocWDE8ejAzs+pQ9re5YOPsUs4LZOsivxURs3L7TkfEbEkPAPsi4tEU3w7sBvqBrRGxMsWvAzZFxE2SDgGrImIg7XsDuDYiTo34+RvJRhg0Nze3dnd3F859cHCQpqYmAHqPnincbzyWzp056WPk86xnzrPyGiVX51lZ1c6zo6PjYES0ldpX+MPtJDUB3wX+MCJ+OsYL+FI7Yoz4WH0uDER0AV0AbW1t0d7eXibrD/T09DDcfv0UXe/vv614PqPJ51nPnGflNUquzrOy6inPQncZSbqcrBj8VUR8L4VPpMtApO8nU3wAmJfr3gIcS/GWEvEL+kiaBswE3h7vyZiZ2cQVuctIwHbg1Yj4i9yuXcC6tL0OeDIX70x3Di0gmzzeHxHHgbOSlqdjrh3RZ/hYa4DnYjzXsszMbNKKXDL6LPBFoFfSSyn2R8BWYKekDcBbwK0AEXFY0k7gFbI7lO6IiPOp3+3AQ8B0snmF3Sm+HXhEUh/ZyKBzcqdlZmbjVbYgRMT3KX2NH2DFKH22AFtKxA+QTUiPjL9HKihmZlYbH8oV06aKl9Y0s0bmj64wMzPABcHMzBIXBDMzA1wQzMwscUEwMzPAdxlNGd9xZGaNxiMEMzMDXBDMzCxxQTAzM8AFwczMEk8qV4EnmM2sEXiEYGZmgAuCmZklLghmZga4IJiZWVJkCc1vSzop6VAudreko5JeSl835PbdJalP0hFJ1+firZJ607770zKapKU2H0vxFyXNr/A5mplZAUVGCA8Bq0rE74uIa9LXMwCSriZb/nJx6vOgpMtS+23ARrI1lhfljrkBOB0RC4H7gHsneC5mZjYJRZbQfGEcr9pXA90RcQ54M62RvExSPzAjIvYCSHoYuJlsTeXVwN2p/+PAA5IUETGO82gYvgXVzOrVZN6H8BVJa4EDwJ0RcRqYC+zLtRlIsZ+n7ZFx0vcfA0TEkKQzwMeBUyN/oKSNZKMMmpub6enpKZzs4ODg++3vXDpUuN9UKpV/Ps965jwrr1FydZ6VVU95TrQgbAPuASJ9/zrwJUAl2sYYccrsuzAY0QV0AbS1tUV7e3vhhHt6ehhuvz73Kr2W+m9rvyiWz7OeOc/Ka5RcnWdl1VOeE7rLKCJORMT5iPgF8E1gWdo1AMzLNW0BjqV4S4n4BX0kTQNmAm9PJC8zM5u4CRUESXNyD28Bhu9A2gV0pjuHFpBNHu+PiOPAWUnL091Fa4Enc33Wpe01wHOX6vyBmVk9K3vJSNJ3gHbgKkkDwJ8A7ZKuIbu00w98GSAiDkvaCbwCDAF3RMT5dKjbye5Ymk42mbw7xbcDj6QJ6LfJ7lIyM7MqK3KX0RdKhLeP0X4LsKVE/ACwpET8PeDWcnmYmdnU8juVzcwM8Mdf15Tfk2Bm9cQjBDMzA1wQzMwscUEwMzPAcwh1Y3g+4c6lQ7TXNhUz+5DyCMHMzAAXBDMzS1wQzMwMcEEwM7PEBcHMzADfZVSX/A5mM6sFjxDMzAxwQTAzs8QFwczMABcEMzNLyhYESd+WdFLSoVzsSknPSno9fZ+d23eXpD5JRyRdn4u3SupN++5PS2mSltt8LMVflDS/wudoZmYFFBkhPASsGhHbDOyJiEXAnvQYSVeTLYG5OPV5UNJlqc82YCPZOsuLcsfcAJyOiIXAfcC9Ez2ZS9H8zU+//2VmNpXKFoSIeIFsreO81cCOtL0DuDkX746IcxHxJtAHLJM0B5gREXsjIoCHR/QZPtbjwIrh0YOZmVWPsr/PZRpll3Geiogl6fE7ETErt/90RMyW9ACwLyIeTfHtwG6gH9gaEStT/DpgU0TclC5FrYqIgbTvDeDaiDhVIo+NZKMMmpubW7u7uwuf6ODgIE1NTQD0Hj1TuF+1NU+HEz8rvW/p3JnVTWYM+eeznjVKntA4uTrPyqp2nh0dHQcjoq3Uvkq/Ma3UK/sYIz5Wn4uDEV1AF0BbW1u0t7cXTqynp4fh9uvr+PLLnUuH+Hpv6V9L/23t1U1mDPnns541Sp7QOLk6z8qqpzwnepfRiXQZiPT9ZIoPAPNy7VqAYyneUiJ+QR9J04CZXHyJyszMpthEC8IuYF3aXgc8mYt3pjuHFpBNHu+PiOPAWUnL0/zA2hF9ho+1BnguilzH+hDyBLOZTaWyl4wkfQdoB66SNAD8CbAV2ClpA/AWcCtARByWtBN4BRgC7oiI8+lQt5PdsTSdbF5hd4pvBx6R1Ec2MuisyJmZmdm4lC0IEfGFUXatGKX9FmBLifgBYEmJ+HukgmJmZrXjdyqbmRnggmBmZonXQ2hQXjPBzCrNIwQzMwNcEMzMLHFBMDMzwHMIlwTPJ5hZJXiEYGZmgAuCmZklLghmZga4IJiZWeJJ5UuMJ5jNbKI8QjAzM8AFwczMEl8yuoT58pGZjYdHCGZmBkyyIEjql9Qr6SVJB1LsSknPSno9fZ+da3+XpD5JRyRdn4u3puP0Sbo/LbNpZmZVVIkRQkdEXBMRbenxZmBPRCwC9qTHSLqabHnMxcAq4EFJl6U+24CNZGswL0r7zcysiqZiDmE12RrMADuAHmBTindHxDngzbSG8jJJ/cCMiNgLIOlh4GY+WHPZKsDzCWZWjiJi4p2lN4HTQAD/LSK6JL0TEbNybU5HxGxJDwD7IuLRFN9O9ke/H9gaEStT/DpgU0TcVOLnbSQbSdDc3Nza3d1dONfBwUGampoA6D16ZgJnWx3N0+HEz6b2ZyydO3PSx8g/n/WsUfKExsnVeVZWtfPs6Og4mLuic4HJjhA+GxHHJH0SeFbSa2O0LTUvEGPELw5GdAFdAG1tbdHe3l440Z6eHobbr8+9Wq43dy4d4uu9U3vzV/9t7ZM+Rv75rGeNkic0Tq7Os7LqKc9J/eWJiGPp+0lJTwDLgBOS5kTEcUlzgJOp+QAwL9e9BTiW4i0l4jZFfPnIzEqZ8KSypCskfWx4G/iXwCFgF7AuNVsHPJm2dwGdkn5Z0gKyyeP9EXEcOCtpebq7aG2uj5mZVclkRgjNwBPpDtFpwH+PiL+R9ANgp6QNwFvArQARcVjSTuAVYAi4IyLOp2PdDjwETCebV/CEcpV4tGBmwyZcECLiH4BPl4j/BFgxSp8twJYS8QPAkonmYmZmk+d3KpuZGeDPMrIcXz4y+3DzCMHMzACPEGwUHi2Yffh4hGBmZoBHCFaARwtmHw4eIZiZGeARgo3T8GjhzqVD73+krZldGlwQbMLmj/iQQF9OMmtsvmRkZmaARwhWQZ58NmtsLgg2JVwczBqPC4JNORcHs8bggmBV5eJgVr9cEKxmRt6lNMyFwqw2XBCs7rhQmNVG3RQESauA/wpcBnwrIrbWOCWrMy4UZlOrLgqCpMuAbwD/AhgAfiBpV0S8UtvMrBGMVigge0f1+jH2u5iYfaAuCgKwDOhLy3IiqRtYTbb+stmUGauYTDUXI6s3ioha54CkNcCqiPj36fEXgWsj4isj2m0ENqaH/xg4Mo4fcxVwqgLpTjXnWVmNkic0Tq7Os7Kqnec/iohPlNpRLyMElYhdVKkiogvomtAPkA5ERNtE+laT86ysRskTGidX51lZ9ZRnvXyW0QAwL/e4BThWo1zMzD6U6qUg/ABYJGmBpF8COoFdNc7JzOxDpS4uGUXEkKSvAP+D7LbTb0fE4Qr/mAldaqoB51lZjZInNE6uzrOy6ibPuphUNjOz2quXS0ZmZlZjLghmZgZcYgVB0ipJRyT1SdpcYr8k3Z/2vyzpd2qRZ8qlXK7/RNJeSeckfa0WOaY8yuV5W3ouX5b095I+Xad5rk45viTpgKR/Vo955tr9rqTz6T06NVHgOW2XdCY9py9J+uN6zDO1aU85Hpb0d9XOMeVQ7vn8T7nn8lD6/V9Z1SQj4pL4IpuMfgP4DeCXgB8BV49ocwOwm+x9D8uBF+s4108CvwtsAb5Wx3n+HjA7bf9BLZ7Tgnk28cGc2W8Dr9Vjnrl2zwHPAGvq+HffDjxVi/zGmecssk89+PX0+JP1mOeI9p8Dnqt2npfSCOH9j7+IiP8HDH/8Rd5q4OHI7ANmSZpT7UQpkGtEnIyIHwA/r0F+w4rk+fcRcTo93Ef2HpJqK5LnYKT/acAVlHjjYxUU+TcK8B+B7wInq5ncCEVzrbUief4b4HsR8RZk/7eqnCOM//n8AvCdqmSWcykVhLnAj3OPB1JsvG2qoV7yKGe8eW4gG4FVW6E8Jd0i6TXgaeBLVcotr2yekuYCtwB/WcW8Sin6u/+nkn4kabekxdVJ7QJF8vwUMFtSj6SDktZWLbsPFP6/JOlXgFVkLwqqqi7eh1AhRT7+otBHZFRBveRRTuE8JXWQFYRaXJsv+tEnTwBPSPrnwD3AyqlObIQief4XYFNEnJdKNa+aIrn+kOxzcQYl3QD8NbBoqhMboUie04BWYAUwHdgraV9E/J+pTi5nPP/nPwf8r4h4ewrzKelSKghFPv6iXj4io17yKKdQnpJ+G/gW8AcR8ZMq5ZY3ruczIl6Q9JuSroqIan6oWJE824DuVAyuAm6QNBQRf12VDD9QNteI+Glu+xlJD9bpczoAnIqId4F3Jb0AfBqoZkEYz7/RTmpwuQi4pCaVpwH/ACzgg0mbxSPa3MiFk8r76zXXXNu7qd2kcpHn9NeBPuD36vx3v5APJpV/Bzg6/Lie8hzR/iFqN6lc5Dn91dxzugx4qx6fU+C3gD2p7a8Ah4Al9ZZnajcTeBu4oha/90tmhBCjfPyFpP+Q9v8l2V0bN5D9Afu/wL+r11wl/SpwAJgB/ELSH5LdlfDT0Y5bizyBPwY+DjyYXtUORZU/ubFgnv8aWCvp58DPgM9H+h9YZ3nWhYK5rgFulzRE9px21uNzGhGvSvob4GXgF2QrMh6qtzxT01uA/xnZaKbq/NEVZmYGXFp3GZmZ2SS4IJiZGeCCYGZmiQuCmZkBLghmZpa4IJiZGeCCYGZmyf8HgNvA4hA6yAEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAD4CAYAAAAdIcpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcMUlEQVR4nO3df5Bd5X3f8ffHCMcKCwKM2aiSUpGgJAYplqONUEPprCxaNhhXMBWTdaklxerIZXDHmSENwn8kZBhNxR8OCYMhlS2PBKReNNgUFZBbCmxoGglZcmUW8aMsQYNX0qABZMFSo1ri2z/Os/houbvP2b27dw/i85q5s+c+53nOfs4F6avnnHPPUURgZmY2mo9NdQAzM6s/FwszM8tysTAzsywXCzMzy3KxMDOzrGlTHWC8zjvvvJg7d27l/u+88w5nnHHG5AVqkvM1r+4Zna95dc9Y93wAe/bseT0iPjXmgRHxoXwtWrQoxuLJJ58cU/9Wc77m1T2j8zWv7hnrni8iAtgd4/g714ehzMwsy8XCzMyyXCzMzCzLxcLMzLJcLMzMLMvFwszMsioXC0mnSfrfkh5O78+V9Jikl9LPc0p9b5bUL+lFSVeU2hdJ6kvr7pCk1P5Lku5P7U9LmjuB+2hmZk0ay8zia8DzpffrgMcjYh7weHqPpIuAbuBioAu4S9JpaczdwFpgXnp1pfY1wJGIuBC4HbhtXHtjZmaTolKxkDQb+Dzw7VLzcmBLWt4CXF1q74mIYxHxCtAPLJY0EzgrInakL4bcM2zM0LYeAJYNzTrMzGzqVb3dx18CfwKcWWprj4hDABFxSNL5qX0WsLPUbyC1/TwtD28fGvOTtK3jko4CnwReL4eQtJZiZkJ7ezu9vb0V48Pg4GDD/n0Hjr6/vGDWjMrbm2gj5auLuueD+md0vubVPWPd8zUjWywkXQUcjog9kjorbLPRjCBGaR9tzMkNERuBjQAdHR3R2VklTqG3t5dG/Veve+T95f3XVd/eRBspX13UPR/UP6PzNa/uGeuerxlVZhaXAv9S0pXAJ4CzJN0HvCZpZppVzAQOp/4DwJzS+NnAwdQ+u0F7ecyApGnADODNce6TmZlNsOw5i4i4OSJmR8RcihPXT0TEvwG2AatSt1XAQ2l5G9CdrnC6gOJE9q50yOptSUvS+YiVw8YMbWtF+h1+OLiZWU00c4vyDcBWSWuAV4FrASJin6StwHPAceCGiDiRxlwPbAamA9vTC2ATcK+kfooZRXcTuczMbIKNqVhERC/Qm5bfAJaN0G89sL5B+25gfoP2d0nFxszM6sff4DYzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7OsbLGQ9AlJuyT9WNI+SX+e2m+RdEDS3vS6sjTmZkn9kl6UdEWpfZGkvrTujvQsbtLzuu9P7U9LmjsJ+2pmZuNUZWZxDPhcRHwGWAh0SVqS1t0eEQvT61EASRdRPEP7YqALuEvSaan/3cBaYF56daX2NcCRiLgQuB24rek9MzOzCZMtFlEYTG9PT68YZchyoCcijkXEK0A/sFjSTOCsiNgREQHcA1xdGrMlLT8ALBuadZiZ2dRT8fd2plMxM9gDXAh8MyJuknQLsBp4C9gN3BgRRyTdCeyMiPvS2E3AdmA/sCEiLk/tlwE3RcRVkp4FuiJiIK17GbgkIl4flmMtxcyE9vb2RT09PZV3dHBwkLa2tg+09x042rD/glkzKm97IoyUry7qng/qn9H5mlf3jHXPB7B06dI9EdEx1nHTqnSKiBPAQklnAw9Kmk9xSOlWilnGrcA3gC8DjWYEMUo7mXXlHBuBjQAdHR3R2dlZJT4Avb29NOq/et0jDfvvv676tifCSPnqou75oP4Zna95dc9Y93zNGNPVUBHxU6CXYhbwWkSciIj3gG8Bi1O3AWBOadhs4GBqn92g/aQxkqYBM4A3x5LNzMwmT5WroT6VZhRImg5cDryQzkEMuQZ4Ni1vA7rTFU4XUJzI3hURh4C3JS1J5yNWAg+VxqxKyyuAJ6LK8TEzM2uJKoehZgJb0nmLjwFbI+JhSfdKWkhxuGg/8BWAiNgnaSvwHHAcuCEdxgK4HtgMTKc4j7E9tW8C7pXUTzGj6G5+18zMbKJki0VEPAN8tkH7l0YZsx5Y36B9NzC/Qfu7wLW5LGZmNjX8DW4zM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzrCqPVf2EpF2Sfixpn6Q/T+3nSnpM0kvp5zmlMTdL6pf0oqQrSu2LJPWldXekx6uSHsF6f2p/WtLcSdhXMzMbpyozi2PA5yLiM8BCoEvSEmAd8HhEzAMeT++RdBHFY1EvBrqAu9IjWQHuBtZSPJd7XloPsAY4EhEXArcDtzW/a2ZmNlGyxSIKg+nt6ekVwHJgS2rfAlydlpcDPRFxLCJeAfqBxZJmAmdFxI6ICOCeYWOGtvUAsGxo1mFmZlOv0jkLSadJ2gscBh6LiKeB9og4BJB+np+6zwJ+Uho+kNpmpeXh7SeNiYjjwFHgk+PYHzMzmwTTqnSKiBPAQklnAw9Kmj9K90YzghilfbQxJ29YWktxGIv29nZ6e3tHiXGywcHBhv1vXHC8Yf+xbHsijJSvLuqeD+qf0fmaV/eMdc/XjErFYkhE/FRSL8W5htckzYyIQ+kQ0+HUbQCYUxo2GziY2mc3aC+PGZA0DZgBvNng928ENgJ0dHREZ2dn5ey9vb006r963SMN+++/rvq2J8JI+eqi7vmg/hmdr3l1z1j3fM2ocjXUp9KMAknTgcuBF4BtwKrUbRXwUFreBnSnK5wuoDiRvSsdqnpb0pJ0PmLlsDFD21oBPJHOa0yZueseef9lZvZRV2VmMRPYkq5o+hiwNSIelrQD2CppDfAqcC1AROyTtBV4DjgO3JAOYwFcD2wGpgPb0wtgE3CvpH6KGUX3ROycmZlNjGyxiIhngM82aH8DWDbCmPXA+gbtu4EPnO+IiHdJxcbMzOrH3+A2M7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzLBcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzrCrP4J4j6UlJz0vaJ+lrqf0WSQck7U2vK0tjbpbUL+lFSVeU2hdJ6kvr7kjP4iY9r/v+1P60pLmTsK9mZjZOVWYWx4EbI+LTwBLgBkkXpXW3R8TC9HoUIK3rBi4GuoC70vO7Ae4G1gLz0qsrta8BjkTEhcDtwG3N75qZmU2UbLGIiEMR8aO0/DbwPDBrlCHLgZ6IOBYRrwD9wGJJM4GzImJHRARwD3B1acyWtPwAsGxo1mFmZlNv2lg6p8NDnwWeBi4FvippJbCbYvZxhKKQ7CwNG0htP0/Lw9tJP38CEBHHJR0FPgm8Psb9mRRz1z1y0vv9Gz4/RUnMzKaGin/kV+gotQF/C6yPiO9Laqf4yzyAW4GZEfFlSd8EdkTEfWncJuBR4FXgP0bE5an9MuBPIuILkvYBV0TEQFr3MrA4It4YlmEtxWEs2tvbF/X09FTe0cHBQdra2j7Q3nfgaOVtDFkwa8aYx+SMlK8u6p4P6p/R+ZpX94x1zwewdOnSPRHRMdZxlWYWkk4Hvgf8TUR8HyAiXiut/xbwcHo7AMwpDZ8NHEztsxu0l8cMSJoGzADeHJ4jIjYCGwE6Ojqis7OzSnwAent7adR/9bBZQxX7r6v+e6saKV9d1D0f1D+j8zWv7hnrnq8ZVa6GErAJeD4i/qLUPrPU7Rrg2bS8DehOVzhdQHEie1dEHALelrQkbXMl8FBpzKq0vAJ4IqpOeczMbNJVmVlcCnwJ6JO0N7V9HfiipIUUh6H2A18BiIh9krYCz1FcSXVDRJxI464HNgPTge3pBUUxuldSP8WMoruZnTIzs4mVLRYR8XdAoyuTHh1lzHpgfYP23cD8Bu3vAtfmspiZ2dTwN7jNzCzLxcLMzLJcLMzMLMvFwszMslwszMwsy8XCzMyyXCzMzCxrTDcStEL5xoK+qaCZfRR4ZmFmZlkuFmZmluViYWZmWS4WZmaW5WJhZmZZLhZmZpblYmFmZlkuFmZmluViYWZmWVWewT1H0pOSnpe0T9LXUvu5kh6T9FL6eU5pzM2S+iW9KOmKUvsiSX1p3R3pWdyk53Xfn9qfljR3EvbVzMzGqcrtPo4DN0bEjySdCeyR9BiwGng8IjZIWgesA26SdBHFM7QvBv4R8D8k/UZ6DvfdwFpgJ8VjWbsonsO9BjgSERdK6gZuA/5gIne0rHy7jonclm/9YWanquzMIiIORcSP0vLbwPPALGA5sCV12wJcnZaXAz0RcSwiXgH6gcWSZgJnRcSOiAjgnmFjhrb1ALBsaNZhZmZTT8Xf2xU7F4eHngLmA69GxNmldUci4hxJdwI7I+K+1L6JYvawH9gQEZen9suAmyLiKknPAl0RMZDWvQxcEhGvD/v9aylmJrS3ty/q6empnH1wcJC2tjYA+g4crTxuLBbMmjHuseV8dVT3fFD/jM7XvLpnrHs+gKVLl+6JiI6xjqt811lJbcD3gD+KiLdG+Yd/oxUxSvtoY05uiNgIbATo6OiIzs7OTOpf6O3tZaj/6gk8DFW2/7rqeYYr56ujuueD+md0vubVPWPd8zWj0tVQkk6nKBR/ExHfT82vpUNLpJ+HU/sAMKc0fDZwMLXPbtB+0hhJ04AZwJtj3RkzM5scVa6GErAJeD4i/qK0ahuwKi2vAh4qtXenK5wuAOYBuyLiEPC2pCVpmyuHjRna1grgiRjL8TEzM5tUVQ5DXQp8CeiTtDe1fR3YAGyVtAZ4FbgWICL2SdoKPEdxJdUN6UoogOuBzcB0ivMY21P7JuBeSf0UM4ru5nbLzMwmUrZYRMTf0ficAsCyEcasB9Y3aN9NcXJ8ePu7pGJjZmb1429wm5lZlouFmZllVb501vL8bW4zO1V5ZmFmZlkuFmZmluViYWZmWS4WZmaW5WJhZmZZvhpqkvjKKDM7lXhmYWZmWS4WZmaW5WJhZmZZLhZmZpblYmFmZlm+GqoFfGWUmX3YeWZhZmZZLhZmZpZV5Rnc35F0WNKzpbZbJB2QtDe9riytu1lSv6QXJV1Ral8kqS+tuyM9h5v0rO77U/vTkuZO8D6amVmTqswsNgNdDdpvj4iF6fUogKSLKJ6ffXEac5ek01L/u4G1wLz0GtrmGuBIRFwI3A7cNs59MTOzSZItFhHxFPBmxe0tB3oi4lhEvAL0A4slzQTOiogdERHAPcDVpTFb0vIDwLKhWYeZmdWDir+7M52KQ0MPR8T89P4WYDXwFrAbuDEijki6E9gZEfelfpuA7cB+YENEXJ7aLwNuioir0uGtrogYSOteBi6JiNcb5FhLMTuhvb19UU9PT+UdHRwcpK2tDYC+A0crj5tMC2bNeH+5nK+O6p4P6p/R+ZpX94x1zwewdOnSPRHRMdZx47109m7gViDSz28AXwYazQhilHYy605ujNgIbATo6OiIzs7OyoF7e3sZ6r+6dCnrVNp/Xef7y+V8dVT3fFD/jM7XvLpnrHu+ZozraqiIeC0iTkTEe8C3gMVp1QAwp9R1NnAwtc9u0H7SGEnTgBlUP+xlZmYtMK5ikc5BDLkGGLpSahvQna5wuoDiRPauiDgEvC1pSTofsRJ4qDRmVVpeATwRVY6NmZlZy2QPQ0n6LtAJnCdpAPgzoFPSQorDRfuBrwBExD5JW4HngOPADRFxIm3qeoorq6ZTnMfYnto3AfdK6qeYUXRPwH6ZmdkEyhaLiPhig+ZNo/RfD6xv0L4bmN+g/V3g2lwOMzObOv4Gt5mZZflGglOofIPBzV1nTGESM7PReWZhZmZZLhZmZpblYmFmZlkuFmZmluViURN9B44yd90jJ530NjOrCxcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy/LtPmqofEXU/g2fn8IkZmYFzyzMzCzLxcLMzLJcLMzMLMvnLGrO5y/MrA6yMwtJ35F0WNKzpbZzJT0m6aX085zSupsl9Ut6UdIVpfZFkvrSujvSs7hJz+u+P7U/LWnuBO+jmZk1qcphqM1A17C2dcDjETEPeDy9R9JFFM/QvjiNuUvSaWnM3cBaYF56DW1zDXAkIi4EbgduG+/OmJnZ5MgWi4h4CnhzWPNyYEta3gJcXWrviYhjEfEK0A8sljQTOCsidkREAPcMGzO0rQeAZUOzDjMzqwcVf3dnOhWHhh6OiPnp/U8j4uzS+iMRcY6kO4GdEXFfat8EbAf2Axsi4vLUfhlwU0RclQ5vdUXEQFr3MnBJRLzeIMdaitkJ7e3ti3p6eirv6ODgIG1tbUBxh9e6aZ8Or/1s9D4LZs1oTZgGyp9fXdU9o/M1r+4Z654PYOnSpXsiomOs4yb6BHejGUGM0j7amA82RmwENgJ0dHREZ2dn5WC9vb0M9V9dw9uA37jgON/oG/0/x/7rOlsTpoHy51dXdc/ofM2re8a652vGeC+dfS0dWiL9PJzaB4A5pX6zgYOpfXaD9pPGSJoGzOCDh73MzGwKjbdYbANWpeVVwEOl9u50hdMFFCeyd0XEIeBtSUvS+YiVw8YMbWsF8ERUOTb2ETT0cCQ/IMnMWi17GErSd4FO4DxJA8CfARuArZLWAK8C1wJExD5JW4HngOPADRFxIm3qeoorq6ZTnMfYnto3AfdK6qeYUXRPyJ6ZmdmEyRaLiPjiCKuWjdB/PbC+QftuYH6D9ndJxcbMzOrJt/swM7Ms3+7jQ8q3ATGzVvLMwszMslwszMwsy8XCzMyyfM7iFODzF2Y22TyzMDOzLBcLMzPLcrEwM7MsFwszM8vyCe5TjE92m9lk8MzCzMyyXCzMzCzLh6FOYT4kZWYTxTMLMzPLcrEwM7MsH4b6iPAhKTNrRlMzC0n7JfVJ2itpd2o7V9Jjkl5KP88p9b9ZUr+kFyVdUWpflLbTL+mO9JxuMzOriYk4DLU0IhZGREd6vw54PCLmAY+n90i6iOL52hcDXcBdkk5LY+4G1gLz0qtrAnKZmdkEmYxzFsuBLWl5C3B1qb0nIo5FxCtAP7BY0kzgrIjYEREB3FMaY2ZmNaDi7+dxDpZeAY4AAfyniNgo6acRcXapz5GIOEfSncDOiLgvtW8CtgP7gQ0RcXlqvwy4KSKuavD71lLMQGhvb1/U09NTOevg4CBtbW0A9B04Oo69nVzt0+G1n7X+9y6YNaNSv/LnV1d1z+h8zat7xrrnA1i6dOme0pGgypo9wX1pRByUdD7wmKQXRunb6DxEjNL+wcaIjcBGgI6Ojujs7KwctLe3l6H+q0sne+vixgXH+UZf66832H9dZ6V+5c+vruqe0fmaV/eMdc/XjKYOQ0XEwfTzMPAgsBh4LR1aIv08nLoPAHNKw2cDB1P77AbtZmZWE+MuFpLOkHTm0DLwL4BngW3AqtRtFfBQWt4GdEv6JUkXUJzI3hURh4C3JS1JV0GtLI2xSTZ33SPvv8zMRtLMcY924MF0les04D9HxA8k/RDYKmkN8CpwLUBE7JO0FXgOOA7cEBEn0rauBzYD0ynOY2xvIpeZmU2wcReLiPgH4DMN2t8Alo0wZj2wvkH7bmD+eLPYxPAX98xsJL7dh5mZZblYmJlZlu8NZQ35kJSZlXlmYWZmWS4WljV33SP0HTjqy2vNPsJcLMzMLMvnLGxMfC7D7KPJMwszM8vyzMLGbfg5DM80zE5dLhY2YXyIyuzU5WJhk8KFw+zU4mJhk86Fw+zDzye4zcwsyzMLa6mRvtjnGYdZvblYWC34UJVZvblYWO24cJjVj4uF1ZoPW5nVQ22KhaQu4K+A04BvR8SGKY5kNdaoiNy44DidrY9i9pFQi2Ih6TTgm8A/BwaAH0raFhHPTW0y+7CZqDvjeuZidrJaFAtgMdCfnuuNpB5gOeBiYVNiMm7HfuOC46z2YTX7kFJETHUGJK0AuiLi36b3XwIuiYivDuu3Flib3v4m8OIYfs15wOsTEHeyOF/z6p7R+ZpX94x1zwfwmxFx5lgH1WVmoQZtH6hiEbER2DiuXyDtjoiO8YxtBedrXt0zOl/z6p6x7vmgyDiecXX5BvcAMKf0fjZwcIqymJnZMHUpFj8E5km6QNLHgW5g2xRnMjOzpBaHoSLiuKSvAv+N4tLZ70TEvgn+NeM6fNVCzte8umd0vubVPWPd88F4D+XX4QS3mZnVW10OQ5mZWY25WJiZWdYpVSwkdUl6UVK/pHUN1kvSHWn9M5J+p4YZf0vSDknHJP1xDfNdlz67ZyT9vaTP1Czf8pRtr6Tdkv5pK/NVyVjq97uSTqTvGdUmn6ROSUfTZ7hX0p/WKV8p415J+yT9bSvzVcko6T+UPr9n03/nc2uUb4ak/yrpx+kz/MPsRiPilHhRnBh/Gfg14OPAj4GLhvW5EthO8b2OJcDTNcx4PvC7wHrgj2uY7/eAc9Ly77fyM6yYr41fnIv7beCFun2GpX5PAI8CK+qUD+gEHm7l5zbGfGdT3N3hV9P78+uWcVj/LwBP1Ckf8HXgtrT8KeBN4OOjbfdUmlm8f8uQiPh/wNAtQ8qWA/dEYSdwtqSZdcoYEYcj4ofAz1uYayz5/j4ijqS3Oym+E1OnfIOR/gQAZ9Dgy51TnTH598D3gMOtDEf1fFOlSr5/DXw/Il6F4s9MDTOWfRH4bkuSFarkC+BMSaL4B9abwPHRNnoqFYtZwE9K7wdS21j7TKap/v05Y823hmKm1iqV8km6RtILwCPAl1uUbUg2o6RZwDXAX7cw15Cq/43/STpEsV3Sxa2JBlTL9xvAOZJ6Je2RtLJl6QqV/5xI+mWgi+IfBq1SJd+dwKcpvvzcB3wtIt4bbaO1+J7FBKlyy5BKtxWZRFP9+3Mq55O0lKJYtPKcQNXbwjwIPCjpnwG3ApdPdrCSKhn/ErgpIk4U/7BrqSr5fgT844gYlHQl8F+AeZMdLKmSbxqwCFgGTAd2SNoZEf9nssMlY/lz/AXgf0XEm5OYZ7gq+a4A9gKfA34deEzS/4yIt0ba6Kk0s6hyy5Cpvq3IVP/+nEr5JP028G1geUS80aJsMMbPLyKeAn5d0nmTHaykSsYOoEfSfmAFcJekq1uSrkK+iHgrIgbT8qPA6S38DKv+Of5BRLwTEa8DTwGtvNBiLP8fdtPaQ1BQLd8fUhzKi4joB14BfmvUrbbyxNAkn9SZBvwDcAG/OKlz8bA+n+fkE9y76pax1PcWWn+Cu8pn+KtAP/B7Nf1vfCG/OMH9O8CBofd1yTis/2Zae4K7ymf4K6XPcDHwaqs+w4r5Pg08nvr+MvAsML9On2HqN4PiXMAZrco2hs/wbuCWtNye/pycN9p2T5nDUDHCLUMk/bu0/q8prjy5kuIvu/9LUV1rlVHSrwC7gbOA9yT9EcWVDCNOD1uZD/hT4JMU/xoGOB4tustmxXz/Clgp6efAz4A/iPQnokYZp0zFfCuA6yUdp/gMu1v1GVbJFxHPS/oB8AzwHsWTNZ9tRb6qGVPXa4D/HhHvtCrbGPLdCmyW1Efxj+ebopiljci3+zAzs6xT6ZyFmZlNEhcLMzPLcrEwM7MsFwszM8tysTAzsywXCzMzy3KxMDOzrP8P/BcSrUrDMSYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZqklEQVR4nO3df5Bd5X3f8ffHCBOFDQIHe6ORSESC2hhQTLJrocals2vRsgEyggm061IjYnXkMqS1p6Qj8B8JGY9mxB8OLYMhlSMPAlIvGmwXBSOnLrClafhhyYMtiR/1YnaoBAODET+WGhqJT/84z5qr5Wr33Lu/LtLnNXNnz/2e5zn3e66k/d7nec49km0iIiI+NN8JREREZ0hBiIgIIAUhIiKKFISIiABSECIiolgw3wm069RTT/WyZctqt3/rrbc48cQTZy+haUhu7Ulu7Ulu7Tlactu1a9crtj/adKftD+Sjp6fHrXjooYdaaj+Xklt7klt7klt7jpbcgJ0+wu/VTBlFRASQNYSIiChSECIiAkhBiIiIIgUhIiKAFISIiChSECIiAkhBiIiIIgUhIiKAD/CtK2bKsuu+8/Pt0U0XzWMmERHzKyOEiIgAUhAiIqJIQYiICCAFISIiihSEiIgAUhAiIqJIQYiICCAFISIiihSEiIgAahQESb8g6XFJP5S0V9KflfgNkvZLeqI8Lmzoc72kEUnPSLqgId4jaXfZd7MklfgJku4u8cckLZuFc42IiEnUGSG8A3za9ieAc4ABSavKvptsn1Me9wNIOhMYBM4CBoBbJR1X2t8GrAeWl8dAia8DDtg+A7gJuHHaZxYRES2ZsiC4MlaeHl8enqTLGmDI9ju2nwNGgJWSFgMn2X7EtoE7gEsa+mwt2/cAq8dHDxERMTdU/W6eolH1CX8XcAbwVdsbJN0AXAW8AewErrV9QNItwKO27yp9twA7gFFgk+3zS/w8YIPtiyXtAQZs7yv7ngXOtf3KhDzWU40w6O7u7hkaGqp9omNjY3R1db0vvnv/6z/fXrFkUe3jzaQj5dYJklt7klt7klt7Wsmtv79/l+3epjtt134AJwMPAWcD3cBxVKOMjcDXS5uvAv+qoc8W4A+ATwL/vSF+HvDXZXsvsLRh37PAL0+WS09Pj1vx0EMPNY3/2ob7fv6YL0fKrRMkt/Ykt/Ykt/a0khuw00f4vdrSVUa2XwOGqT7Nv2T7kO13ga8BK0uzfcBpDd2WAi+U+NIm8cP6SFoALAJebSW3iIiYnjpXGX1U0slleyFwPvB0WRMYdymwp2xvBwbLlUOnUy0eP277ReBNSavK+sCVwL0NfdaW7cuAB0sli4iIOVLnP8hZDGwt6wgfArbZvk/SnZLOoVpgHgU+D2B7r6RtwJPAQeAa24fKsa4GbgcWUq0r7CjxLcCdkkaoRgaD0z+1iIhoxZQFwfaPgN9uEv/sJH02Uq0rTIzvpFp/mBh/G7h8qlwiImL25JvKEREB5P9UPkz+f+WIOJZlhBAREUAKQkREFCkIEREBpCBERESRghAREUAKQkREFCkIEREBpCBERESRghAREUAKQkREFCkIEREBpCBERESRghAREUAKQkREFCkIEREBpCBERESRghAREUCNgiDpFyQ9LumHkvZK+rMS/4ik70n6cfl5SkOf6yWNSHpG0gUN8R5Ju8u+myWpxE+QdHeJPyZp2Syca0RETKLOCOEd4NO2PwGcAwxIWgVcBzxgeznwQHmOpDOBQeAsYAC4VdJx5Vi3AeuB5eUxUOLrgAO2zwBuAm6c/qlFREQrpiwIroyVp8eXh4E1wNYS3wpcUrbXAEO237H9HDACrJS0GDjJ9iO2Ddwxoc/4se4BVo+PHiIiYm6o+t08RaPqE/4u4Azgq7Y3SHrN9skNbQ7YPkXSLcCjtu8q8S3ADmAU2GT7/BI/D9hg+2JJe4AB2/vKvmeBc22/MiGP9VQjDLq7u3uGhoZqn+jY2BhdXV3vi+/e/3rT9iuWLKp97Ok6Um6dILm1J7m1J7m1p5Xc+vv7d9nubbZvQZ0D2D4EnCPpZODbks6epHmzT/aeJD5Zn4l5bAY2A/T29rqvr2+SNA43PDxMs/ZXXfedpu1Hr6h/7Ok6Um6dILm1J7m1J7m1Z6Zya+kqI9uvAcNUc/8vlWkgys+XS7N9wGkN3ZYCL5T40ibxw/pIWgAsAl5tJbeIiJieOlcZfbSMDJC0EDgfeBrYDqwtzdYC95bt7cBguXLodKrF48dtvwi8KWlVWR+4ckKf8WNdBjzoOnNZERExY+pMGS0GtpZ1hA8B22zfJ+kRYJukdcDzwOUAtvdK2gY8CRwErilTTgBXA7cDC6nWFXaU+BbgTkkjVCODwZk4uYiIqG/KgmD7R8BvN4n/FFh9hD4bgY1N4juB960/2H6bUlAiImJ+5JvKEREB1LzK6Fi0rOHqo9FNF81jJhERcyMjhIiIAFIQIiKiSEGIiAggBSEiIooUhIiIAFIQIiKiSEGIiAggBSEiIooUhIiIAFIQIiKiSEGIiAggBSEiIooUhIiIAFIQIiKiSEGIiAggBSEiIoopC4Kk0yQ9JOkpSXslfaHEb5C0X9IT5XFhQ5/rJY1IekbSBQ3xHkm7y76bJanET5B0d4k/JmnZLJxrRERMos4I4SBwre2PA6uAaySdWfbdZPuc8rgfoOwbBM4CBoBbJR1X2t8GrAeWl8dAia8DDtg+A7gJuHH6pxYREa2YsiDYftH2D8r2m8BTwJJJuqwBhmy/Y/s5YARYKWkxcJLtR2wbuAO4pKHP1rJ9D7B6fPQQERFzQ9Xv5pqNq6mch4GzgX8PXAW8AeykGkUckHQL8Kjtu0qfLcAOYBTYZPv8Ej8P2GD7Ykl7gAHb+8q+Z4Fzbb8y4fXXU40w6O7u7hkaGqqd+9jYGF1dXe+L797/eu1jjFuxZFHLfSZzpNw6QXJrT3JrT3JrTyu59ff377Ld22zfgrovKKkL+CbwRdtvSLoN+DLg8vMrwOeAZp/sPUmcKfa9F7A3A5sBent73dfXVzd9hoeHadb+quu+U/sY40avqP+6dRwpt06Q3NqT3NqT3NozU7nVuspI0vFUxeCvbH8LwPZLtg/Zfhf4GrCyNN8HnNbQfSnwQokvbRI/rI+kBcAi4NV2TigiItpT5yojAVuAp2z/eUN8cUOzS4E9ZXs7MFiuHDqdavH4cdsvAm9KWlWOeSVwb0OftWX7MuBBtzKXFRER01ZnyuhTwGeB3ZKeKLEvAZ+RdA7V1M4o8HkA23slbQOepLpC6Rrbh0q/q4HbgYVU6wo7SnwLcKekEaqRweB0TioiIlo3ZUGw/bc0n+O/f5I+G4GNTeI7qRakJ8bfBi6fKpeIiJg9+aZyREQAKQgREVGkIEREBJCCEBERRQpCREQAKQgREVGkIEREBJCCEBERRQpCREQAKQgREVHUvv11vGdZwy2zRzddNI+ZRETMnIwQIiICSEGIiIgiBSEiIoAUhIiIKFIQIiICSEGIiIgiBSEiIoAUhIiIKKYsCJJOk/SQpKck7ZX0hRL/iKTvSfpx+XlKQ5/rJY1IekbSBQ3xHkm7y76bJanET5B0d4k/JmnZLJxrRERMos4I4SBwre2PA6uAaySdCVwHPGB7OfBAeU7ZNwicBQwAt0o6rhzrNmA9sLw8Bkp8HXDA9hnATcCNM3BuERHRgikLgu0Xbf+gbL8JPAUsAdYAW0uzrcAlZXsNMGT7HdvPASPASkmLgZNsP2LbwB0T+owf6x5g9fjoISIi5oaq3801G1dTOQ8DZwPP2z65Yd8B26dIugV41PZdJb4F2AGMAptsn1/i5wEbbF8saQ8wYHtf2fcscK7tVya8/nqqEQbd3d09Q0NDtXMfGxujq6vrffHd+1+vfYyprFiyqK1+R8qtEyS39iS39iS39rSSW39//y7bvc321b65naQu4JvAF22/MckH+GY7PEl8sj6HB+zNwGaA3t5e9/X1TZH1e4aHh2nW/qqGG9VN1+gV9fNpdKTcOkFya09ya09ya89M5VbrKiNJx1MVg7+y/a0SfqlMA1F+vlzi+4DTGrovBV4o8aVN4of1kbQAWAS82urJRERE++pcZSRgC/CU7T9v2LUdWFu21wL3NsQHy5VDp1MtHj9u+0XgTUmryjGvnNBn/FiXAQ+6lbmsiIiYtjpTRp8CPgvslvREiX0J2ARsk7QOeB64HMD2XknbgCeprlC6xvah0u9q4HZgIdW6wo4S3wLcKWmEamQwOL3TioiIVk1ZEGz/Lc3n+AFWH6HPRmBjk/hOqgXpifG3KQUlIiLmR76pHBERQApCREQUKQgREQG08D2EmNqyhu80jG66aB4ziYho3TFZEJbN4JfRIiKOFpkyiogIIAUhIiKKFISIiABSECIiokhBiIgIIAUhIiKKY/Ky07mQ7yRExAdNRggREQGkIERERJGCEBERQApCREQUWVSeA1lgjogPgowQIiICSEGIiIhiyoIg6euSXpa0pyF2g6T9kp4ojwsb9l0vaUTSM5IuaIj3SNpd9t0sSSV+gqS7S/wxSctm+BwjIqKGOiOE24GBJvGbbJ9THvcDSDoTGATOKn1ulXRcaX8bsB5YXh7jx1wHHLB9BnATcGOb5xIREdMwZUGw/TDwas3jrQGGbL9j+zlgBFgpaTFwku1HbBu4A7ikoc/Wsn0PsHp89BAREXNH1e/nKRpV0zj32T67PL8BuAp4A9gJXGv7gKRbgEdt31XabQF2AKPAJtvnl/h5wAbbF5epqAHb+8q+Z4Fzbb/SJI/1VKMMuru7e4aGhmqf6NjYGF1dXQDs3v967X6zacWSRcDhuXWa5Nae5Nae5NaeVnLr7+/fZbu32b52Lzu9Dfgy4PLzK8DngGaf7D1JnCn2HR60NwObAXp7e93X11c74eHhYcbbX9Uh/4Xm6BV9wOG5dZrk1p7k1p7k1p6Zyq2tq4xsv2T7kO13ga8BK8uufcBpDU2XAi+U+NIm8cP6SFoALKL+FFVERMyQtgpCWRMYdykwfgXSdmCwXDl0OtXi8eO2XwTelLSqrA9cCdzb0Gdt2b4MeNB15rEiImJGTTllJOkbQB9wqqR9wJ8CfZLOoZraGQU+D2B7r6RtwJPAQeAa24fKoa6mumJpIdW6wo4S3wLcKWmEamQwOAPnFRERLZqyINj+TJPwlknabwQ2NonvBM5uEn8buHyqPCIiYnblXkbzaPweR9euOEjf/KYSEZFbV0RERCUFISIigBSEiIgoUhAiIgJIQYiIiCJXGXWI/K9qETHfMkKIiAggBSEiIooUhIiIAFIQIiKiyKJyB8oCc0TMh4wQIiICSEGIiIgiBSEiIoAUhIiIKFIQIiICyFVGHS9XHEXEXJlyhCDp65JelrSnIfYRSd+T9OPy85SGfddLGpH0jKQLGuI9knaXfTdLUomfIOnuEn9M0rIZPseIiKihzpTR7cDAhNh1wAO2lwMPlOdIOhMYBM4qfW6VdFzpcxuwHlheHuPHXAccsH0GcBNwY7snExER7ZuyINh+GHh1QngNsLVsbwUuaYgP2X7H9nPACLBS0mLgJNuP2DZwx4Q+48e6B1g9PnqIiIi5o+r38xSNqmmc+2yfXZ6/Zvvkhv0HbJ8i6RbgUdt3lfgWYAcwCmyyfX6JnwdssH1xmYoasL2v7HsWONf2K03yWE81yqC7u7tnaGio9omOjY3R1dUFwO79r9fuNxe6F8JLP2utz4oli2YnmQka37dOk9zak9zac7Tk1t/fv8t2b7N9M72o3OyTvSeJT9bn/UF7M7AZoLe31319fbUTGx4eZrz9VQ0LtZ3g2hUH+cru1v4oRq/om51kJmh83zpNcmtPcmvPsZBbu5edvlSmgSg/Xy7xfcBpDe2WAi+U+NIm8cP6SFoALOL9U1QRETHL2i0I24G1ZXstcG9DfLBcOXQ61eLx47ZfBN6UtKqsD1w5oc/4sS4DHnSdeayIiJhRU85TSPoG0AecKmkf8KfAJmCbpHXA88DlALb3StoGPAkcBK6xfagc6mqqK5YWUq0r7CjxLcCdkkaoRgaDM3JmERHRkikLgu3PHGHX6iO03whsbBLfCZzdJP42paBERMT8yTeVP6DyDeaImGm5l1FERAApCBERUaQgREQEkDWEo0LWEyJiJmSEEBERQApCREQUKQgREQFkDeGok/WEiGhXRggREQGkIERERJGCEBERQApCREQUWVQ+imWBOSJakRFCREQAKQgREVFkyugYkemjiJhKRggREQGkIERERDGtKSNJo8CbwCHgoO1eSR8B7gaWAaPAP7d9oLS/HlhX2v87239T4j3A7cBC4H7gC7Y9ndziyDJ9FBHNzMQIod/2ObZ7y/PrgAdsLwceKM+RdCYwCJwFDAC3Sjqu9LkNWA8sL4+BGcgrIiJaMBtTRmuArWV7K3BJQ3zI9ju2nwNGgJWSFgMn2X6kjAruaOgTERFzRNOZmZH0HHAAMPCfbW+W9JrtkxvaHLB9iqRbgEdt31XiW4AdVNNKm2yfX+LnARtsX9zk9dZTjSTo7u7uGRoaqp3r2NgYXV1dAOze/3obZzt7uhfCSz+bn9desWTRpPsb37dOk9zak9zac7Tk1t/fv6thRucw073s9FO2X5D0MeB7kp6epK2axDxJ/P1BezOwGaC3t9d9fX21Ex0eHma8/VUNc+id4NoVB/nK7vm5Anj0ir5J9ze+b50mubUnubXnWMhtWr+FbL9Qfr4s6dvASuAlSYttv1img14uzfcBpzV0Xwq8UOJLm8RjDmSBOSLGtb2GIOlESb80vg38M2APsB1YW5qtBe4t29uBQUknSDqdavH4cdsvAm9KWiVJwJUNfSIiYo5MZ4TQDXy7+h3OAuC/2P6upO8D2yStA54HLgewvVfSNuBJ4CBwje1D5VhX895lpzvKI+ZYRgsRx7a2C4LtnwCfaBL/KbD6CH02AhubxHcCZ7ebS0RETF++qRwREUBubhdHMD59dO2Kg/TNbyoRMUcyQoiICCAjhKghi80Rx4aMECIiAsgIIVqU0ULE0SsjhIiIADJCiGlYNuGeUBkxRHywZYQQERFARggxg7K+EPHBlhFCREQAGSHELJm4vjAuI4eIzpURQkREABkhxBzLOkNE50pBiHmT4hDRWVIQoiOkOETMvxSE6DhZkI6YHykI8YGRUUTE7EpBiA+kZdd9h2tXHOSq3D4jYsZ0TEGQNAD8J+A44C9tb5rnlOIDKNNNEe3riIIg6Tjgq8A/BfYB35e03faT85tZHC2OVChalcISR7OOKAjASmDE9k8AJA0Ba4AUhOgodQtLs+msdqQAxVyS7fnOAUmXAQO2/3V5/lngXNt/NKHdemB9efoPgWdaeJlTgVdmIN3ZkNzak9zak9zac7Tk9mu2P9psR6eMENQk9r5KZXszsLmtF5B22u5tp+9sS27tSW7tSW7tORZy65R7Ge0DTmt4vhR4YZ5yiYg4JnVKQfg+sFzS6ZI+DAwC2+c5p4iIY0pHTBnZPijpj4C/obrs9Ou2987wy7Q11TRHklt7klt7klt7jvrcOmJROSIi5l+nTBlFRMQ8S0GIiAjgKCsIkgYkPSNpRNJ1TfZL0s1l/48k/U4H5fabkh6R9I6kP56rvGrmdkV5v34k6e8kfaKDcltT8npC0k5J/7hTcmto90lJh8r3bToiN0l9kl4v79sTkv6kU3JryO8JSXsl/Y9OyU3Sf2h4z/aUP9ePdFB+iyT9taQflvfuD1t6AdtHxYNqMfpZ4NeBDwM/BM6c0OZCYAfV9x5WAY91UG4fAz4JbAT+uMPet98FTinbv9dh71sX762F/RbwdKfk1tDuQeB+4LJOyQ3oA+6bq79nLeZ2MtVdCn61PP9Yp+Q2of3vAw922Hv3JeDGsv1R4FXgw3Vf42gaIfz89he2/x8wfvuLRmuAO1x5FDhZ0uJOyM32y7a/D/z9HOTTam5/Z/tAefoo1fdEOiW3MZe//cCJNPlC43zlVvxb4JvAy3OUVyu5zYc6uf1L4Fu2n4fq30YH5dboM8A35iSzSp38DPySJFF9WHoVOFj3BY6mgrAE+D8Nz/eVWKttZsN8vW4drea2jmqUNRdq5SbpUklPA98BPtcpuUlaAlwK/MUc5TSu7p/pPypTCzsknTU3qdXK7R8Ap0galrRL0pUdlBsAkn4RGKAq9nOlTn63AB+n+mLvbuALtt+t+wId8T2EGVLn9he1bpExC+brdeuonZukfqqCMFfz9HVvafJt4NuS/gnwZeD82U6Mern9R2CD7UPVB7Y5Uye3H1Dd02ZM0oXAfwWWz3Zi1MttAdADrAYWAo9IetT2/+6A3Mb9PvC/bL86i/lMVCe/C4AngE8DvwF8T9L/tP1GnRc4mkYIdW5/MV+3yOjkW3PUyk3SbwF/Cayx/dNOym2c7YeB35B06mwnRr3ceoEhSaPAZcCtki7phNxsv2F7rGzfDxzfQe/bPuC7tt+y/QrwMDAXFzK08vdtkLmdLoJ6+f0h1XSbbY8AzwG/WfsV5mpBZA4WXBYAPwFO570Fl7MmtLmIwxeVH++U3Bra3sDcLirXed9+FRgBfrcD/0zP4L1F5d8B9o8/n+/cJrS/nblbVK7zvv1Kw/u2Eni+U943qimPB0rbXwT2AGd3Qm6l3SKqufkT5+LPs8X37jbghrLdXf49nFr3NY6aKSMf4fYXkv5N2f8XVFd6XEj1y+3/UlXTjshN0q8AO4GTgHclfZHqCoJaQ73ZzA34E+CXqT7hAhz0HNz1sWZufwBcKenvgZ8B/8LlX0MH5DYvauZ2GXC1pINU79tgp7xvtp+S9F3gR8C7VP+D4p5OyK00vRT4b7bfmu2c2sjvy8DtknZTffDd4GqUVUtuXREREcDRtYYQERHTkIIQERFACkJERBQpCBERAaQgREREkYIQERFACkJERBT/H712dFYLLWRxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZoUlEQVR4nO3db5BV933f8ffHICtEGyHJkjcUSFADbSwgJmGNaFx1do1abWVlkCZosq5qIKaDqyEde6p0kPwgUcbDDHpgq1VkkeLgAUmJV4xsVUQWbhWkjZIGhMGDtSCJemV2lAVGDAYjVo2oQd8+OL9Fh9Vl95zd+4/l85q5s+d+zzl3P+ci7ff+zu/cexURmJmZfaTRAczMrDm4IZiZGeCGYGZmiRuCmZkBbghmZpZMbnSAsbr++utj1qxZhbZ99913ueqqq2obaAycqxznKse5ymnGXLXItHfv3uMRcUPFlRFxSd4WLlwYRb300kuFt60n5yrHucpxrnKaMVctMgF74iJ/V33KyMzMAM8hmJlZ4oZgZmaAG4KZmSVuCGZmBrghmJlZ4oZgZmaAG4KZmSVuCGZmBlzCH11RLbPu/9755f71n21gEjOzxvIIwczMADcEMzNL3BDMzAwo0BAk/YKk3ZJ+JOmApD9J9QclHZa0L91uz+3zgKQ+SQcl3ZarL5TUm9Y9IkmpfqWkp1L9FUmzanCsZmY2giIjhDPAZyLik8ACoFPS4rTu4YhYkG7PA0i6CegC5gKdwGOSJqXtNwCrgTnp1pnqq4CTETEbeBh4aNxHZmZmpYzaENJHaA+mu1ekW4ywy1KgOyLORMQhoA9YJGkacHVE7Eyfyf04cGduny1p+WlgydDowczM6kPZ3+ZRNspe4e8FZgPfiIi1kh4EVgLvAHuA+yLipKRHgV0R8WTadxOwHegH1kfEral+C7A2Iu6QtB/ojIiBtO5N4OaIOD4sx2qyEQatra0Lu7u7Cx3k4OAgLS0tFdf1Hj51fnn+9KmFHq9aRsrVSM5VjnOV41zF1SJTR0fH3ohoq7jyYt+cU+kGXAO8BMwDWoFJZKOMdcC30jbfAP59bp9NwO8CnwL+Ole/BfirtHwAmJFb9ybwsZGyVOsb03517XPnb/XWjN/QFOFcZTlXOc5VXFN/Y1pE/AzoIXs1/3ZEnIuI94FvAovSZgPAzNxuM4AjqT6jQv2CfSRNBqYCJ8pkMzOz8SlyldENkq5Jy1OAW4E30pzAkLuA/Wl5G9CVrhy6kWzyeHdEHAVOS1qc5geWA8/m9lmRlpcBL6ZOZmZmdVLkoyumAVvSPMJHgK0R8ZykJyQtIJtg7ge+CBARByRtBV4DzgJrIuJceqx7gc3AFLJ5he2pvgl4QlIf2ciga/yHZmZmZYzaECLiVeA3K9Q/P8I+68jmFYbX95DNPwyvvwfcPVoWMzOrHb9T2czMADcEMzNL3BDMzAxwQzAzs+Sy/4KcPH9ZjpldzjxCMDMzwA3BzMwSNwQzMwPcEMzMLHFDMDMzwA3BzMwSNwQzMwPcEMzMLHFDMDMzwA3BzMwSNwQzMwPcEMzMLHFDMDMzwA3BzMySURuCpF+QtFvSjyQdkPQnqX6dpBck/Tj9vDa3zwOS+iQdlHRbrr5QUm9a94gkpfqVkp5K9VckzarBsZqZ2QiKjBDOAJ+JiE8CC4BOSYuB+4EdETEH2JHuI+kmoAuYC3QCj0malB5rA7AamJNunam+CjgZEbOBh4GHxn9oZmZWxqgNITKD6e4V6RbAUmBLqm8B7kzLS4HuiDgTEYeAPmCRpGnA1RGxMyICeHzYPkOP9TSwZGj0YGZm9aHsb/MoG2Wv8PcCs4FvRMRaST+LiGty25yMiGslPQrsiognU30TsB3oB9ZHxK2pfguwNiLukLQf6IyIgbTuTeDmiDg+LMdqshEGra2tC7u7uwsd5ODgIC0tLRXX9R4+VbE+f/rUQo89HiPlaiTnKse5ynGu4mqRqaOjY29EtFVaV+grNCPiHLBA0jXAM5LmjbB5pVf2MUJ9pH2G59gIbARoa2uL9vb2EWJ8oKenh4ttuzL3tZl5/fcUe+zxGClXIzlXOc5VjnMVV+9Mpa4yioifAT1k5/7fTqeBSD+Ppc0GgJm53WYAR1J9RoX6BftImgxMBU6UyWZmZuNT5CqjG9LIAElTgFuBN4BtwIq02Qrg2bS8DehKVw7dSDZ5vDsijgKnJS1O8wPLh+0z9FjLgBejyLksMzOrmiKnjKYBW9I8wkeArRHxnKSdwFZJq4C3gLsBIuKApK3Aa8BZYE065QRwL7AZmEI2r7A91TcBT0jqIxsZdFXj4MzMrLhRG0JEvAr8ZoX6T4ElF9lnHbCuQn0P8KH5h4h4j9RQzMysMfxOZTMzA9wQzMwscUMwMzPADcHMzBI3BDMzA9wQzMwsKfTRFZejWbmPtOhf/9kGJjEzqw+PEMzMDHBDMDOzxA3BzMwANwQzM0vcEMzMDHBDMDOzxA3BzMwANwQzM0vcEMzMDHBDMDOzxA3BzMwANwQzM0vcEMzMDCjQECTNlPSSpNclHZD0pVR/UNJhSfvS7fbcPg9I6pN0UNJtufpCSb1p3SOSlOpXSnoq1V+RNKsGx2pmZiMoMkI4C9wXEZ8AFgNrJN2U1j0cEQvS7XmAtK4LmAt0Ao9JmpS23wCsBuakW2eqrwJORsRs4GHgofEfmpmZlTFqQ4iIoxHxw7R8GngdmD7CLkuB7og4ExGHgD5gkaRpwNURsTMiAngcuDO3z5a0/DSwZGj0YGZm9aHsb3PBjbNTOS8D84D/DKwE3gH2kI0iTkp6FNgVEU+mfTYB24F+YH1E3JrqtwBrI+IOSfuBzogYSOveBG6OiOPDfv9qshEGra2tC7u7uwvlHhwcpKWlpeK63sOnRt1//vSphX5PWSPlaiTnKse5ynGu4mqRqaOjY29EtFVaV/gb0yS1AN8BvhwR70jaAHwViPTza8AXgEqv7GOEOqOs+6AQsRHYCNDW1hbt7e2Fsvf09HCxbVfmvhntYvrvKfZ7yhopVyM5VznOVY5zFVfvTIWuMpJ0BVkz+IuI+C5ARLwdEeci4n3gm8CitPkAMDO3+wzgSKrPqFC/YB9Jk4GpwImxHJCZmY3NqCOEdC5/E/B6RHw9V58WEUfT3buA/Wl5G/CXkr4O/BOyyePdEXFO0mlJi4FXgOXAn+b2WQHsBJYBL0aZc1k1NmvYKMLfsWxmE1GRU0afBj4P9Eral2pfAT4naQHZqZ1+4IsAEXFA0lbgNbIrlNZExLm0373AZmAK2bzC9lTfBDwhqY9sZNA1noMyM7PyRm0IEfF3VD7H//wI+6wD1lWo7yGbkB5efw+4e7QsZmZWO36nspmZAW4IZmaWuCGYmRnghmBmZokbgpmZAW4IZmaWuCGYmRnghmBmZokbgpmZAW4IZmaWuCGYmRnghmBmZokbgpmZAW4IZmaWFP4KTftA/gtz/GU5ZjZReIRgZmaAG4KZmSVuCGZmBrghmJlZMmpDkDRT0kuSXpd0QNKXUv06SS9I+nH6eW1unwck9Uk6KOm2XH2hpN607hFJSvUrJT2V6q9ImlWDYzUzsxEUGSGcBe6LiE8Ai4E1km4C7gd2RMQcYEe6T1rXBcwFOoHHJE1Kj7UBWA3MSbfOVF8FnIyI2cDDwENVODYzMyth1IYQEUcj4odp+TTwOjAdWApsSZttAe5My0uB7og4ExGHgD5gkaRpwNURsTMiAnh82D5Dj/U0sGRo9GBmZvWh7G9zwY2zUzkvA/OAtyLimty6kxFxraRHgV0R8WSqbwK2A/3A+oi4NdVvAdZGxB2S9gOdETGQ1r0J3BwRx4f9/tVkIwxaW1sXdnd3F8o9ODhIS0tLxXW9h08VO/iLmD996pj3HSlXIzlXOc5VjnMVV4tMHR0deyOirdK6wm9Mk9QCfAf4ckS8M8IL+EorYoT6SPtcWIjYCGwEaGtri/b29lFSZ3p6erjYtitzbzIbi/57imWoZKRcjeRc5ThXOc5VXL0zFbrKSNIVZM3gLyLiu6n8djoNRPp5LNUHgJm53WcAR1J9RoX6BftImgxMBU6UPRgzMxu7IlcZCdgEvB4RX8+t2gasSMsrgGdz9a505dCNZJPHuyPiKHBa0uL0mMuH7TP0WMuAF6PMuSwzMxu3IqeMPg18HuiVtC/VvgKsB7ZKWgW8BdwNEBEHJG0FXiO7QmlNRJxL+90LbAamkM0rbE/1TcATkvrIRgZd4zus+vHnGpnZRDFqQ4iIv6PyOX6AJRfZZx2wrkJ9D9mE9PD6e6SGYmZmjeF3KpuZGeCGYGZmiRuCmZkBbghmZpa4IZiZGeCGYGZmib9TuYr8ngQzu5R5hGBmZoAbgpmZJW4IZmYGuCGYmVnihmBmZoAbgpmZJZflZaezxvktaWZmE5FHCGZmBlymI4R68JvUzOxS4xGCmZkBbghmZpa4IZiZGeA5hLrwfIKZXQpGHSFI+pakY5L252oPSjosaV+63Z5b94CkPkkHJd2Wqy+U1JvWPSJJqX6lpKdS/RVJs6p8jGZmVkCRU0abgc4K9YcjYkG6PQ8g6SagC5ib9nlM0qS0/QZgNTAn3YYecxVwMiJmAw8DD43xWMzMbBxGbQgR8TJwouDjLQW6I+JMRBwC+oBFkqYBV0fEzogI4HHgztw+W9Ly08CSodGDmZnVj7K/z6NslJ3GeS4i5qX7DwIrgXeAPcB9EXFS0qPAroh4Mm23CdgO9APrI+LWVL8FWBsRd6RTUZ0RMZDWvQncHBHHK+RYTTbKoLW1dWF3d3ehgxwcHKSlpeX8/d7DpwrtVwvzp089vzw8V7NwrnKcqxznKq4WmTo6OvZGRFuldWOdVN4AfBWI9PNrwBeASq/sY4Q6o6y7sBixEdgI0NbWFu3t7YXC9vT0kN92ZQM/uqL/ng9yDM/VLJyrHOcqx7mKq3emMTWEiHh7aFnSN4Hn0t0BYGZu0xnAkVSfUaGe32dA0mRgKsVPUV1y8lccbe68qoFJzMwuNKb3IaQ5gSF3AUNXIG0DutKVQzeSTR7vjoijwGlJi9P8wHLg2dw+K9LyMuDFKHIey8zMqmrUEYKkbwPtwPWSBoA/BtolLSA7tdMPfBEgIg5I2gq8BpwF1kTEufRQ95JdsTSFbF5he6pvAp6Q1Ec2MuiqwnGZmVlJozaEiPhchfKmEbZfB6yrUN8DzKtQfw+4e7QcZmZWW/7oCjMzA9wQGqr38Clm3f89f2GPmTUFNwQzMwPcEMzMLHFDMDMzwA3BzMwSNwQzMwP8BTlNw1+iY2aN5hGCmZkBbghmZpa4IZiZGeCGYGZmiRuCmZkBvsqoKfmKIzNrBI8QzMwMcEMwM7PEp4yanE8fmVm9eIRgZmaAG4KZmSWjNgRJ35J0TNL+XO06SS9I+nH6eW1u3QOS+iQdlHRbrr5QUm9a94gkpfqVkp5K9VckzaryMZqZWQFFRgibgc5htfuBHRExB9iR7iPpJqALmJv2eUzSpLTPBmA1MCfdhh5zFXAyImYDDwMPjfVgzMxs7EZtCBHxMnBiWHkpsCUtbwHuzNW7I+JMRBwC+oBFkqYBV0fEzogI4PFh+ww91tPAkqHRg5mZ1c9YrzJqjYijABFxVNLHU306sCu33UCq/TwtD68P7fMP6bHOSjoFfAw4PsZsE5avODKzWqr2ZaeVXtnHCPWR9vnwg0uryU470draSk9PT6FQg4ODF2x73/yzhfartdYpY89S9NjHYvjz1SycqxznKqcZc9U701gbwtuSpqXRwTTgWKoPADNz280AjqT6jAr1/D4DkiYDU/nwKSoAImIjsBGgra0t2tvbC4Xt6ekhv+3K3CvtRrpv/lm+1ju2f4L+e9qrGyZn+PPVLJyrHOcqpxlz1TvTWC873QasSMsrgGdz9a505dCNZJPHu9PppdOSFqf5geXD9hl6rGXAi2mewczM6mjUl6eSvg20A9dLGgD+GFgPbJW0CngLuBsgIg5I2gq8BpwF1kTEufRQ95JdsTQF2J5uAJuAJyT1kY0MuqpyZBOc5xPMrNpGbQgR8bmLrFpyke3XAesq1PcA8yrU3yM1FDMzaxy/U9nMzAA3BDMzS9wQzMwM8MdfTwieYDazavAIwczMADcEMzNL3BDMzAxwQzAzs8STyhOMJ5jNbKw8QjAzM8ANwczMEp8ymsB8+sjMyvAIwczMADcEMzNL3BDMzAzwHMJlw/MJZjYajxDMzAxwQzAzs8QNwczMAM8hXJY8n2BmlYxrhCCpX1KvpH2S9qTadZJekPTj9PPa3PYPSOqTdFDSbbn6wvQ4fZIekaTx5DIzs/KqccqoIyIWRERbun8/sCMi5gA70n0k3QR0AXOBTuAxSZPSPhuA1cCcdOusQi4rYNb93zt/M7PLWy3mEJYCW9LyFuDOXL07Is5ExCGgD1gkaRpwdUTsjIgAHs/tY2ZmdaLsb/AYd5YOASeBAP57RGyU9LOIuCa3zcmIuFbSo8CuiHgy1TcB24F+YH1E3JrqtwBrI+KOCr9vNdlIgtbW1oXd3d2Fcg4ODtLS0nL+fu/hU2M42uprnQJv/2OjU3xg/vSpwIefr2bhXOU4VznNmKsWmTo6OvbmzuhcYLyTyp+OiCOSPg68IOmNEbatNC8QI9Q/XIzYCGwEaGtri/b29kIhe3p6yG+7sklOj9w3/yxf622eef3+e9qBDz9fzcK5ynGucpoxV70zjeuUUUQcST+PAc8Ai4C302kg0s9jafMBYGZu9xnAkVSfUaFuZmZ1NOaGIOkqSb80tAz8G2A/sA1YkTZbATyblrcBXZKulHQj2eTx7og4CpyWtDhdXbQ8t4/V0dDkcrOcUjOz+hrP+YpW4Jl0hehk4C8j4vuSfgBslbQKeAu4GyAiDkjaCrwGnAXWRMS59Fj3ApuBKWTzCtvHkcvMzMZgzA0hIn4CfLJC/afAkovssw5YV6G+B5g31ixWfX7zmtnlxx9dYWZmgD+6wgrwaMHs8uARgpmZAR4hWEkeLZhNXB4hmJkZ4BGCjcPwD8TziMHs0uYRgpmZAR4hWBV5fsHs0uYRgpmZAR4hWI14tGB26fEIwczMAI8QrA48WjC7NLghWF25OZg1L58yMjMzwCMEa6Dhb2wb4pGDWWN4hGBmZoBHCNaELjZy2Nx5VZ2TmF1ePEKwS0bv4VPnv/fZzKrPIwS7JHn+waz63BBsQnGjMBu7pmkIkjqB/wZMAv48ItY3OJJNIG4UZqNrioYgaRLwDeBfAwPADyRti4jXGpvMJrrxzEe4mdhE0xQNAVgE9EXETwAkdQNLATcEa1pDzeS++WdZWYeJbjcgqzVFRKMzIGkZ0BkR/yHd/zxwc0T8wbDtVgOr091/Dhws+CuuB45XKW41OVc5zlWOc5XTjLlqkelXI+KGSiuaZYSgCrUPdaqI2AhsLP3g0p6IaBtLsFpyrnKcqxznKqcZc9U7U7O8D2EAmJm7PwM40qAsZmaXpWZpCD8A5ki6UdJHgS5gW4MzmZldVprilFFEnJX0B8D/JLvs9FsRcaCKv6L0aaY6ca5ynKsc5yqnGXPVNVNTTCqbmVnjNcspIzMzazA3BDMzAyZYQ5DUKemgpD5J91dYL0mPpPWvSvqtJsn165J2Sjoj6Q/rkalgrnvS8/SqpL+X9MkmyLQ05dknaY+kf1nrTEVy5bb7lKRz6b01Dc8lqV3SqfR87ZP0R82QK5dtn6QDkv6mGXJJ+i+552p/+re8rglyTZX0V5J+lJ6v369JkIiYEDeyyeg3gX8KfBT4EXDTsG1uB7aTve9hMfBKk+T6OPApYB3wh030fP02cG1a/re1fr4KZmrhg7mv3wDeaIbnKrfdi8DzwLJmyAW0A8/V47+pkrmuIfskgl9J9z/eDLmGbf87wIvNkAv4CvBQWr4BOAF8tNpZJtII4fzHX0TE/wOGPv4ibynweGR2AddImtboXBFxLCJ+APy8xlnK5vr7iDiZ7u4ie39IozMNRvq/AriKCm9gbESu5D8B3wGO1SFTmVz1ViTXvwO+GxFvQfb/QJPkyvsc8O0myRXAL0kS2YuiE8DZageZSA1hOvAPufsDqVZ2m0bkaoSyuVaRja5qqVAmSXdJegP4HvCFGmcqlEvSdOAu4M/qkKdwruRfpFMN2yXNbZJc/wy4VlKPpL2SljdJLgAk/SLQSdbgmyHXo8AnyN6w2wt8KSLer3aQpngfQpUU+fiLQh+RUWWN+J1FFM4lqYOsIdT6fH3RjzB5BnhG0r8Cvgrc2gS5/iuwNiLOZS/i6qJIrh+SfXbNoKTbgf8BzGmCXJOBhcASYAqwU9KuiPg/Dc415HeA/x0RJ2qYZ0iRXLcB+4DPAL8GvCDpbyPinWoGmUgjhCIff9GIj8ho1o/lKJRL0m8Afw4sjYifNkOmIRHxMvBrkq5vglxtQLekfmAZ8JikOxudKyLeiYjBtPw8cEWTPF8DwPcj4t2IOA68DNT6ooUy/311UZ/TRVAs1++TnWKLiOgDDgG/XvUktZ4wqdeN7BXHT4Ab+WBiZu6wbT7LhZPKu5shV27bB6nfpHKR5+tXgD7gt5so02w+mFT+LeDw0P1m+DdM22+mPpPKRZ6vX849X4uAt5rh+SI7/bEjbfuLwH5gXqNzpe2mkp2jv6rW/4Ylnq8NwINpuTX9d399tbNMmFNGcZGPv5D0H9P6PyO7+uN2sj9y/5es6zY8l6RfBvYAVwPvS/oy2VUGVR0Ols0F/BHwMbJXuwBno4afvFgw0+8CyyX9HPhH4Pci/V/S4Fx1VzDXMuBeSWfJnq+uZni+IuJ1Sd8HXgXeJ/uWxP2NzpU2vQv4XxHxbi3zlMz1VWCzpF6yF7RrIxtZVZU/usLMzICJNYdgZmbj4IZgZmaAG4KZmSVuCGZmBrghmJlZ4oZgZmaAG4KZmSX/H119cOdad94+AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXUElEQVR4nO3df4xd5Z3f8fdnIWFpshACyciy2ZoWtw0/GlKmrtW00mzYFof8AZFAcopi2CA5paTNSv4jkD+6WUWW4I8sLdrA1lkifmi7YJGkuJuwLYK9TVfLj5gViTGEZhpccLBABJYwqaAZ59s/7uNwPYznnhnbM9cz75d0dc/9nuc585yvDN95znPumVQVkiT92lIPQJI0GiwIkiTAgiBJaiwIkiTAgiBJak5c6gEs1BlnnFFr167t1PbnP/8573nPe47tgI5z5qgb8zScOepmqfL0xBNPvFJVH5ht33FbENauXcuuXbs6te31ekxMTBzbAR3nzFE35mk4c9TNUuUpyf853D4vGUmSAAuCJKmxIEiSAAuCJKmxIEiSgA4FIcmvJ3k8yfeT7Eny+y3+pSQ/SfJke10y0OeGJJNJnk1y8UD8wiS7275bkqTFT0pyb4s/lmTtMThXSdIcuswQ3gI+VlUfBi4ANibZ0PbdXFUXtNd3AJKcA2wCzgU2ArcmOaG1vw3YAqxrr40tfg3wWlWdDdwM3HTEZyZJmpehBaH6ptrHd7XXXM/MvhS4p6reqqrngElgfZJVwClV9Uj1n7l9F3DZQJ872/Z9wEUHZw+SpMXR6Ytp7Tf8J4Czga9W1WNJPg58LslmYBewtapeA1YDjw5039div2jbM+O09xcAqmo6yevA6cArM8axhf4Mg7GxMXq9XqeTnJqa6tx2pTJH3Zin4cxRN6OYp04FoaoOABckeR/wrSTn0b/882X6s4UvA18BPgPM9pt9zRFnyL7BcWwHtgOMj49X12/5zfWNwLXXf/tX23tv/ESn4y1Hfru0G/M0nDnqZhTzNK+7jKrqb4AesLGqXqqqA1X1S+BrwPrWbB9w5kC3NcCLLb5mlvghfZKcCJwKvDqfsUmSjkyXu4w+0GYGJDkZ+G3gh21N4KBPAk+17Z3Apnbn0Fn0F48fr6r9wBtJNrT1gc3A/QN9rmrblwMPl3/bU5IWVZdLRquAO9s6wq8BO6rqz5LcneQC+pd29gKfBaiqPUl2AE8D08B17ZITwLXAHcDJwAPtBXA7cHeSSfozg01HfmqSpPkYWhCq6gfAR2aJf3qOPtuAbbPEdwHnzRJ/E7hi2FgkSceO31SWJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElS0+kP5KwU/rEcSSuZMwRJEmBBkCQ1FgRJEmBBkCQ1FgRJEmBBkCQ1FgRJEmBBkCQ1QwtCkl9P8niS7yfZk+T3W/z9SR5M8qP2ftpAnxuSTCZ5NsnFA/ELk+xu+25JkhY/Kcm9Lf5YkrXH4FwlSXPoMkN4C/hYVX0YuADYmGQDcD3wUFWtAx5qn0lyDrAJOBfYCNya5IR2rNuALcC69trY4tcAr1XV2cDNwE1HfmqSpPkYWhCqb6p9fFd7FXApcGeL3wlc1rYvBe6pqreq6jlgElifZBVwSlU9UlUF3DWjz8Fj3QdcdHD2IElaHJ2eZdR+w38COBv4alU9lmSsqvYDVNX+JB9szVcDjw5039div2jbM+MH+7zQjjWd5HXgdOCVGePYQn+GwdjYGL1er9NJTk1NHbbt1vOnZ413PfZyMVeO9DbzNJw56mYU89SpIFTVAeCCJO8DvpXkvDmaz/abfc0Rn6vPzHFsB7YDjI+P18TExBzDeFuv1+Nwba8eeKDdoL1Xdjv2cjFXjvQ28zScOepmFPM0r7uMqupvgB79a/8vtctAtPeXW7N9wJkD3dYAL7b4mlnih/RJciJwKvDqfMYmSToyXe4y+kCbGZDkZOC3gR8CO4GrWrOrgPvb9k5gU7tz6Cz6i8ePt8tLbyTZ0NYHNs/oc/BYlwMPt3UGSdIi6XLJaBVwZ1tH+DVgR1X9WZJHgB1JrgGeB64AqKo9SXYATwPTwHXtkhPAtcAdwMnAA+0FcDtwd5JJ+jODTUfj5CRJ3Q0tCFX1A+Ajs8R/Clx0mD7bgG2zxHcB71h/qKo3aQVFkrQ0/KayJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSmk5/IGclWjvwh3P23viJJRyJJC0OZwiSJMCCIElqLAiSJMCCIElqLAiSJMCCIElqLAiSJMCCIElqhhaEJGcm+YskzyTZk+TzLf6lJD9J8mR7XTLQ54Ykk0meTXLxQPzCJLvbvluSpMVPSnJviz+WZO0xOFdJ0hy6zBCmga1V9SFgA3BdknPavpur6oL2+g5A27cJOBfYCNya5ITW/jZgC7CuvTa2+DXAa1V1NnAzcNORn5okaT6GFoSq2l9Vf9223wCeAVbP0eVS4J6qequqngMmgfVJVgGnVNUjVVXAXcBlA33ubNv3ARcdnD1IkhbHvJ5l1C7lfAR4DPgo8Lkkm4Fd9GcRr9EvFo8OdNvXYr9o2zPjtPcXAKpqOsnrwOnAKzN+/hb6MwzGxsbo9Xqdxj01NXXYtlvPnx7av+vPOZ7NlSO9zTwNZ466GcU8dS4ISd4LfAP43ar6WZLbgC8D1d6/AnwGmO03+5ojzpB9bweqtgPbAcbHx2tiYqLT2Hu9Hodre/XAQ+wOZ++V3X7O8WyuHOlt5mk4c9TNKOap011GSd5Fvxj8SVV9E6CqXqqqA1X1S+BrwPrWfB9w5kD3NcCLLb5mlvghfZKcCJwKvLqQE5IkLUyXu4wC3A48U1V/MBBfNdDsk8BTbXsnsKndOXQW/cXjx6tqP/BGkg3tmJuB+wf6XNW2LwcebusMkqRF0uWS0UeBTwO7kzzZYl8EPpXkAvqXdvYCnwWoqj1JdgBP079D6bqqOtD6XQvcAZwMPNBe0C84dyeZpD8z2HQkJyVJmr+hBaGq/pLZr/F/Z44+24Bts8R3AefNEn8TuGLYWCRJx47fVJYkARYESVJjQZAkAfP8YtpKtXbGdxX23viJJRqJJB07zhAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLU+PjrBRh8HLaPwpa0XDhDkCQBHQpCkjOT/EWSZ5LsSfL5Fn9/kgeT/Ki9nzbQ54Ykk0meTXLxQPzCJLvbvluSpMVPSnJviz+WZO0xOFdJ0hy6zBCmga1V9SFgA3BdknOA64GHqmod8FD7TNu3CTgX2AjcmuSEdqzbgC3Auvba2OLXAK9V1dnAzcBNR+HcJEnzMLQgVNX+qvrrtv0G8AywGrgUuLM1uxO4rG1fCtxTVW9V1XPAJLA+ySrglKp6pKoKuGtGn4PHug+46ODsQZK0OOa1qNwu5XwEeAwYq6r90C8aST7Ymq0GHh3otq/FftG2Z8YP9nmhHWs6yevA6cArM37+FvozDMbGxuj1ep3GPTU1ddi2W8+f7nSMw+k6hlE3V470NvM0nDnqZhTz1LkgJHkv8A3gd6vqZ3P8Aj/bjpojPlefQwNV24HtAOPj4zUxMTFk1H29Xo/Dtb164I6hhdh7ZbcxjLq5cqS3mafhzFE3o5inTncZJXkX/WLwJ1X1zRZ+qV0Gor2/3OL7gDMHuq8BXmzxNbPED+mT5ETgVODV+Z6MJGnhutxlFOB24Jmq+oOBXTuBq9r2VcD9A/FN7c6hs+gvHj/eLi+9kWRDO+bmGX0OHuty4OG2ziBJWiRdLhl9FPg0sDvJky32ReBGYEeSa4DngSsAqmpPkh3A0/TvULquqg60ftcCdwAnAw+0F/QLzt1JJunPDDYd2WlJkuZraEGoqr9k9mv8ABcdps82YNss8V3AebPE36QVFEnS0vCbypIkwGcZHTGfayRpuXCGIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMYvph1FfklN0vHMGYIkCbAgSJIaC4IkCbAgSJIaC4IkCbAgSJKaFXnb6eDtoZKkvhVZEBaD30mQdLzxkpEkCbAgSJKaoQUhydeTvJzkqYHYl5L8JMmT7XXJwL4bkkwmeTbJxQPxC5PsbvtuSZIWPynJvS3+WJK1R/kcJUkddJkh3AFsnCV+c1Vd0F7fAUhyDrAJOLf1uTXJCa39bcAWYF17HTzmNcBrVXU2cDNw0wLPRZJ0BIYuKlfVd+fxW/ulwD1V9RbwXJJJYH2SvcApVfUIQJK7gMuAB1qfL7X+9wF/mCRVVfM4j5HmArOk48GR3GX0uSSbgV3A1qp6DVgNPDrQZl+L/aJtz4zT3l8AqKrpJK8DpwOvzPyBSbbQn2UwNjZGr9frNNCpqalD2m49f7pTv2Oh65gX28wcaXbmaThz1M0o5mmhBeE24MtAtfevAJ8BMkvbmiPOkH2HBqu2A9sBxsfHa2JiotNge70eg22vXsLvIey9cmJom6UwM0eanXkazhx1M4p5WtBdRlX1UlUdqKpfAl8D1rdd+4AzB5quAV5s8TWzxA/pk+RE4FTg1YWMS5K0cAsqCElWDXz8JHDwDqSdwKZ259BZ9BePH6+q/cAbSTa0u4s2A/cP9LmqbV8OPLyc1g8k6Xgx9JJRkj8FJoAzkuwDfg+YSHIB/Us7e4HPAlTVniQ7gKeBaeC6qjrQDnUt/TuWTqa/mPxAi98O3N0WoF+lf5fSsuUCs6RR1eUuo0/NEr59jvbbgG2zxHcB580SfxO4Ytg4JEnHlt9UliQBFgRJUuPTTpeQ6wmSRokzBEkSYEGQJDUWBEkSYEGQJDUWBEkS4F1GI8M7jiQtNWcIkiTAgiBJaiwIkiTAgiBJalxUHkEuMEtaCs4QJEmABUGS1FgQJEmABUGS1LioPOJcYJa0WJwhSJKADgUhydeTvJzkqYHY+5M8mORH7f20gX03JJlM8mySiwfiFybZ3fbdkiQtflKSe1v8sSRrj/I5SpI66DJDuAPYOCN2PfBQVa0DHmqfSXIOsAk4t/W5NckJrc9twBZgXXsdPOY1wGtVdTZwM3DTQk9muVt7/bd/9ZKko21oQaiq7wKvzghfCtzZtu8ELhuI31NVb1XVc8AksD7JKuCUqnqkqgq4a0afg8e6D7jo4OxBkrR4FrqGMFZV+wHa+wdbfDXwwkC7fS22um3PjB/Sp6qmgdeB0xc4LknSAh3tu4xm+82+5ojP1eedB0+20L/sxNjYGL1er9OgpqamDmm79fzpTv1GWddz72pmjjQ78zScOepmFPO00ILwUpJVVbW/XQ56ucX3AWcOtFsDvNjia2aJD/bZl+RE4FTeeYkKgKraDmwHGB8fr4mJiU6D7fV6DLa9ehlcg9975cRRPd7MHGl25mk4c9TNKOZpoZeMdgJXte2rgPsH4pvanUNn0V88frxdVnojyYa2PrB5Rp+Dx7oceLitM2gOLjBLOtqGzhCS/CkwAZyRZB/we8CNwI4k1wDPA1cAVNWeJDuAp4Fp4LqqOtAOdS39O5ZOBh5oL4DbgbuTTNKfGWw6KmcmSZqXoQWhqj51mF0XHab9NmDbLPFdwHmzxN+kFRRJ0tLxm8qSJMCCIElqfLjdMuAD8CQdDc4QJEmABUGS1FgQJEmAawjLjusJkhbKGYIkCbAgSJIaC4IkCXANYVlzPUHSfDhDkCQBFgRJUuMloxXCy0eShnGGIEkCLAiSpMaCIEkCXENYkVxPkDQbZwiSJMCCIElqLAiSJOAIC0KSvUl2J3kyya4We3+SB5P8qL2fNtD+hiSTSZ5NcvFA/MJ2nMkktyTJkYxL3a29/tusvf7b7P7J60s9FElL7GjMEH6rqi6oqvH2+XrgoapaBzzUPpPkHGATcC6wEbg1yQmtz23AFmBde208CuOSJM3DsbjL6FJgom3fCfSAL7T4PVX1FvBckklgfZK9wClV9QhAkruAy4AHjsHYNAfvPpJWtiMtCAX89yQF/Keq2g6MVdV+gKran+SDre1q4NGBvvta7Bdte2b8HZJsoT+TYGxsjF6v12mQU1NTh7Tdev50p34rydjJh+ala25Xmpn/lvRO5qibUczTkRaEj1bVi+1/+g8m+eEcbWdbF6g54u8M9gvOdoDx8fGamJjoNMher8dg26sHfhNW39bzp/nK7rf/Oey9cmLpBjPCZv5b0juZo25GMU9HtIZQVS+295eBbwHrgZeSrAJo7y+35vuAMwe6rwFebPE1s8QlSYtowQUhyXuS/MbBbeBfAk8BO4GrWrOrgPvb9k5gU5KTkpxFf/H48XZ56Y0kG9rdRZsH+miJHLz7aK2zKWnFOJJLRmPAt9odoicC/7mq/jzJ94AdSa4BngeuAKiqPUl2AE8D08B1VXWgHeta4A7gZPqLyS4oS9IiW3BBqKofAx+eJf5T4KLD9NkGbJslvgs4b6Fj0bHl3UfSyuA3lSVJgAVBktT4+GvNi5ePpOXLgqAFm3kHkgVCOr55yUiSBFgQJEmNl4x01Li+IB3fLAg6JiwO0vHHS0aSJMAZghaBswXp+OAMQZIEOEPQInO2II0uC4KWjMVBGi1eMpIkAc4QNCKcLUhLz4KgkWNxkJaGBUEjzeIgLR4Lgo4bh/v7zhYK6eiwIOi45yxCOjosCFpWnEVIC2dB0IpgoZCGG5mCkGQj8B+BE4A/rqobl3hIWgEsFNLbRqIgJDkB+CrwL4B9wPeS7Kyqp5d2ZFqpDlcotp4/zdWH2XeQxUTHq5EoCMB6YLKqfgyQ5B7gUsCCoOPO4YrJsWIB0tEyKgVhNfDCwOd9wD+Z2SjJFmBL+ziV5NmOxz8DeOWIRrjM/Ttz1Mko5ik3LfUI3mHkcjSilipPf/twO0alIGSWWL0jULUd2D7vgye7qmp8IQNbKcxRN+ZpOHPUzSjmaVQebrcPOHPg8xrgxSUaiyStSKNSEL4HrEtyVpJ3A5uAnUs8JklaUUbiklFVTSf5HPDf6N92+vWq2nMUf8S8LzOtQOaoG/M0nDnqZuTylKp3XKqXJK1Ao3LJSJK0xCwIkiRgGRWEJBuTPJtkMsn1s+xPklva/h8k+UdLMc6l1iFPV7b8/CDJXyX58FKMcykNy9FAu3+c5ECSyxdzfKOiS56STCR5MsmeJP9jscc4Cjr8N3dqkv+a5PstT7+zFOMEoKqO+xf9hej/Dfwd4N3A94FzZrS5BHiA/nceNgCPLfW4RzRP/xQ4rW1/fKXlqUuOBto9DHwHuHypxz2KeQLeR/9pA7/ZPn9wqcc9onn6InBT2/4A8Crw7qUY73KZIfzq0RdV9f+Ag4++GHQpcFf1PQq8L8mqxR7oEhuap6r6q6p6rX18lP53QlaSLv+WAP4t8A3g5cUc3Ajpkqd/BXyzqp4HqKqVmKsueSrgN5IEeC/9gjC9uMPsWy4FYbZHX6xeQJvlbr45uIb+rGolGZqjJKuBTwJ/tIjjGjVd/i39PeC0JL0kTyTZvGijGx1d8vSHwIfofxl3N/D5qvrl4gzvUCPxPYSjoMujLzo9HmOZ65yDJL9FvyD8s2M6otHTJUf/AfhCVR3o/1K3InXJ04nAhcBFwMnAI0kerar/dawHN0K65Oli4EngY8DfBR5M8j+r6mfHeGzvsFwKQpdHX/h4jI45SPIPgT8GPl5VP12ksY2KLjkaB+5pxeAM4JIk01X1XxZlhKOh639zr1TVz4GfJ/ku8GFgJRWELnn6HeDG6i8iTCZ5DvgHwOOLM8S3LZdLRl0efbET2NzuNtoAvF5V+xd7oEtsaJ6S/CbwTeDTK+w3uYOG5qiqzqqqtVW1FrgP+DcrrBhAt//m7gf+eZITk/wt+k8wfmaRx7nUuuTpefqzKJKMAX8f+PGijrJZFjOEOsyjL5L867b/j+jfDXIJMAn8X/pVeUXpmKd/D5wO3Np+A56uEXsi47HUMUcrXpc8VdUzSf4c+AHwS/p/CfGppRv14uv47+nLwB1JdtO/xPSFqlqSx4f76ApJErB8LhlJko6QBUGSBFgQJEmNBUGSBFgQJEmNBUGSBFgQJEnN/wfHP0rZz5ES9AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVgElEQVR4nO3df4xl5X3f8fcnYFNqAsZgRiuWdGjZtuZHjcuUrOpGGkJSNrgSWIJqXWQg2WpTiltH4g+D/2hSWSvBHw4tSiDdBIuFpllW2C7bGBIhyNSNwg8vEWZZCPXWbGHNCoQhmKWFevC3f9xn8N1hZu6Z3dmZOzPvl3R1z33Oec4856uBzzznnHs2VYUkST+z1AOQJA0HA0GSBBgIkqTGQJAkAQaCJKk5dqkHcLhOPfXUGh0d7bTt22+/zUc+8pGjO6BlzPrMzfrMzfoMNkw1evLJJ1+rqo/PtG7ZBsLo6Ci7du3qtO3ExATj4+NHd0DLmPWZm/WZm/UZbJhqlOR/z7bOU0aSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkYBl/U3mhjN74rfeX9938mSUciSQtLWcIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1q/7RFf18jIWk1cwZgiQJ6BAISf5GkieSfDfJniT/vrV/LMlDSb7X3k/u63NTkr1Jnk9ySV/7BUl2t3W3JUlrPy7Jva398SSjR+FYJUlz6DJDeBf4xar6JHA+sCHJeuBG4OGqWgc83D6T5GxgI3AOsAG4PckxbV93AJuBde21obVvAt6oqrOAW4FbjvzQJEnzMTAQqudg+/ih9irgMmBba98GXN6WLwO2V9W7VfUCsBe4MMka4MSqerSqCrh7Wp+pfd0HXDw1e5AkLY5OF5XbX/hPAmcBv1tVjycZqaoDAFV1IMlpbfPTgcf6uu9vbT9uy9Pbp/q81PY1meRN4BTgtWnj2ExvhsHIyAgTExOdDvLgwYOzbnvDeZMztnfd90owV31kfQaxPoMtlxp1CoSqeg84P8lHgW8mOXeOzWf6y77maJ+rz/RxbAW2AoyNjdX4+Pgcw/ipiYkJZtv22r47i/rtu6rbvleCueoj6zOI9RlsudRoXncZVdVfAxP0zv2/0k4D0d5fbZvtB87o67YWeLm1r52h/ZA+SY4FTgJen8/YJElHpstdRh9vMwOSHA/8EvBXwE7gmrbZNcD9bXknsLHdOXQmvYvHT7TTS28lWd+uD1w9rc/Uvq4AHmnXGSRJi6TLKaM1wLZ2HeFngB1V9cdJHgV2JNkEvAhcCVBVe5LsAJ4FJoHr2ykngOuAu4DjgQfbC+BO4J4ke+nNDDYuxMFJkrobGAhV9TTwqRnafwhcPEufLcCWGdp3AR+4/lBV79ACRZK0NPymsiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJKDjv6m8Go32/VvL+27+zBKORJIWhzMESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSUCHQEhyRpI/S/Jckj1JvtjafyvJD5I81V6X9vW5KcneJM8nuaSv/YIku9u625KktR+X5N7W/niS0aNwrJKkOXSZIUwCN1TVJ4D1wPVJzm7rbq2q89vrAYC2biNwDrABuD3JMW37O4DNwLr22tDaNwFvVNVZwK3ALUd+aJKk+RgYCFV1oKr+si2/BTwHnD5Hl8uA7VX1blW9AOwFLkyyBjixqh6tqgLuBi7v67OtLd8HXDw1e5AkLY55Pbqincr5FPA48GngC0muBnbRm0W8QS8sHuvrtr+1/bgtT2+nvb8EUFWTSd4ETgFem/bzN9ObYTAyMsLExESncR88eHDWbW84b3Jg/64/Z7maqz6yPoNYn8GWS406B0KSE4CvA79RVT9KcgfwFaDa+1eBXwNm+su+5mhnwLqfNlRtBbYCjI2N1fj4eKexT0xMMNu21/Y9s2g2+67q9nOWq7nqI+sziPUZbLnUqNNdRkk+RC8M/rCqvgFQVa9U1XtV9RPg94EL2+b7gTP6uq8FXm7ta2doP6RPkmOBk4DXD+eAJEmHp8tdRgHuBJ6rqt/ua1/Tt9lngWfa8k5gY7tz6Ex6F4+fqKoDwFtJ1rd9Xg3c39fnmrZ8BfBIu84gSVokXU4ZfRr4PLA7yVOt7cvA55KcT+/Uzj7g1wGqak+SHcCz9O5Qur6q3mv9rgPuAo4HHmwv6AXOPUn20psZbDySg5Ikzd/AQKiqP2fmc/wPzNFnC7BlhvZdwLkztL8DXDloLJKko8dvKkuSAANBktQYCJIkwECQJDXz+qbyajU67ctr+27+zBKNRJKOHmcIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUDAyHJGUn+LMlzSfYk+WJr/1iSh5J8r72f3NfnpiR7kzyf5JK+9guS7G7rbkuS1n5ckntb++NJRo/CsS6Y0Ru/9f5LklaKLjOESeCGqvoEsB64PsnZwI3Aw1W1Dni4faat2wicA2wAbk9yTNvXHcBmYF17bWjtm4A3quos4FbglgU4NknSPAwMhKo6UFV/2ZbfAp4DTgcuA7a1zbYBl7fly4DtVfVuVb0A7AUuTLIGOLGqHq2qAu6e1mdqX/cBF0/NHiRJi+PY+WzcTuV8CngcGKmqA9ALjSSntc1OBx7r67a/tf24LU9vn+rzUtvXZJI3gVOA16b9/M30ZhiMjIwwMTHRadwHDx6cddsbzpvstI/ZdB3DMJurPrI+g1ifwZZLjToHQpITgK8Dv1FVP5rjD/iZVtQc7XP1ObShaiuwFWBsbKzGx8cHjLpnYmKC2ba99givA+y7qtsYhtlc9ZH1GcT6DLZcatTpLqMkH6IXBn9YVd9oza+000C091db+37gjL7ua4GXW/vaGdoP6ZPkWOAk4PX5Howk6fB1ucsowJ3Ac1X1232rdgLXtOVrgPv72je2O4fOpHfx+Il2eumtJOvbPq+e1mdqX1cAj7TrDJKkRdLllNGngc8Du5M81dq+DNwM7EiyCXgRuBKgqvYk2QE8S+8Opeur6r3W7zrgLuB44MH2gl7g3JNkL72ZwcYjOyxJ0nwNDISq+nNmPscPcPEsfbYAW2Zo3wWcO0P7O7RAkSQtDb+pLEkC5nnbqT6o/9vK+27+zBKORJKOjDMESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBPgsowXlc40kLWfOECRJgIEgSWoMBEkSYCBIkhoDQZIEeJfRUeMdR5KWG2cIkiTAQJAkNQMDIcnXkrya5Jm+tt9K8oMkT7XXpX3rbkqyN8nzSS7pa78gye627rYkae3HJbm3tT+eZHSBj1GS1EGXGcJdwIYZ2m+tqvPb6wGAJGcDG4FzWp/bkxzTtr8D2Aysa6+pfW4C3qiqs4BbgVsO81gkSUdgYCBU1beB1zvu7zJge1W9W1UvAHuBC5OsAU6sqkerqoC7gcv7+mxry/cBF0/NHiRJi+dIriF8IcnT7ZTSya3tdOClvm32t7bT2/L09kP6VNUk8CZwyhGMS5J0GA73ttM7gK8A1d6/CvwaMNNf9jVHOwPWHSLJZnqnnRgZGWFiYqLTYA8ePDjrtjecN9lpH0ei6ziXylz1kfUZxPoMtlxqdFiBUFWvTC0n+X3gj9vH/cAZfZuuBV5u7WtnaO/vsz/JscBJzHKKqqq2AlsBxsbGanx8vNN4JyYmmG3ba/u+L3DU7H77/cVh/E7CXPWR9RnE+gy2XGp0WKeM2jWBKZ8Fpu5A2glsbHcOnUnv4vETVXUAeCvJ+nZ94Grg/r4+17TlK4BH2nUGSdIiGjhDSPJHwDhwapL9wG8C40nOp3dqZx/w6wBVtSfJDuBZYBK4vqrea7u6jt4dS8cDD7YXwJ3APUn20psZbFyA45IkzdPAQKiqz83QfOcc228BtszQvgs4d4b2d4ArB41DknR0rcpnGY0uxnWDDj97GK8nSFq9fHSFJAkwECRJjYEgSQIMBElSsyovKg8LLzBLGibOECRJgIEgSWoMBEkS4DWEoeH1BElLzRmCJAkwECRJjYEgSQIMBElSYyBIkgDvMhpK3nEkaSk4Q5AkAQaCJKkxECRJgIEgSWq8qDzkvMAsabE4Q5AkAQaCJKkZGAhJvpbk1STP9LV9LMlDSb7X3k/uW3dTkr1Jnk9ySV/7BUl2t3W3JUlrPy7Jva398SSjC3yMkqQOuswQ7gI2TGu7EXi4qtYBD7fPJDkb2Aic0/rcnuSY1ucOYDOwrr2m9rkJeKOqzgJuBW453INZ6UZv/Nb7L0laaAMDoaq+Dbw+rfkyYFtb3gZc3te+vareraoXgL3AhUnWACdW1aNVVcDd0/pM7es+4OKp2YMkafEc7l1GI1V1AKCqDiQ5rbWfDjzWt93+1vbjtjy9farPS21fk0neBE4BXpv+Q5NspjfLYGRkhImJiU6DPXjw4CHb3nDeZKd+w6zrsXcxvT46lPWZm/UZbLnUaKFvO53pL/uao32uPh9srNoKbAUYGxur8fHxToOamJigf9trV8Apl31XjS/YvqbXR4eyPnOzPoMtlxodbiC8kmRNmx2sAV5t7fuBM/q2Wwu83NrXztDe32d/kmOBk/jgKSpN4/cTJC20w73tdCdwTVu+Bri/r31ju3PoTHoXj59op5feSrK+XR+4elqfqX1dATzSrjNIkhbRwBlCkj8CxoFTk+wHfhO4GdiRZBPwInAlQFXtSbIDeBaYBK6vqvfarq6jd8fS8cCD7QVwJ3BPkr30ZgYbF+TIJEnzMjAQqupzs6y6eJbttwBbZmjfBZw7Q/s7tECRJC0dn2W0Ang9QdJC8NEVkiTAQJAkNQaCJAkwECRJjReVVxgvMEs6XM4QJEmAgSBJagwESRLgNYQVzesJkubDGYIkCTAQJEmNgSBJAryGsGp4PUHSIM4QJEmAgSBJajxltAp5+kjSTJwhSJIAA0GS1BgIkiTAQJAkNQbCKjd647fY/YM3D7nQLGl1MhAkScAR3naaZB/wFvAeMFlVY0k+BtwLjAL7gH9eVW+07W8CNrXt/21V/WlrvwC4CzgeeAD4YlXVkYxN8+ftqNLqthAzhIuq6vyqGmufbwQerqp1wMPtM0nOBjYC5wAbgNuTHNP63AFsBta114YFGJckaR6Oximjy4BtbXkbcHlf+/aqereqXgD2AhcmWQOcWFWPtlnB3X19JEmLJEdyZibJC8AbQAH/qaq2Jvnrqvpo3zZvVNXJSX4HeKyq/nNrvxN4kN5ppZur6pda+y8AX6qqfzbDz9tMbybByMjIBdu3b+80zoMHD3LCCSe8/3n3D948jKNduUaOh1f+7+zrzzv9pMUbzBCa/vujQ1mfwYapRhdddNGTfWd0DnGkj674dFW9nOQ04KEkfzXHtpmhreZo/2Bj1VZgK8DY2FiNj493GuTExAT9217rHTWHuOG8Sb66e/ZfhX1XjS/eYIbQ9N8fHcr6DLZcanREp4yq6uX2/irwTeBC4JV2Goj2/mrbfD9wRl/3tcDLrX3tDO2SpEV02IGQ5CNJfnZqGfinwDPATuCattk1wP1teSewMclxSc6kd/H4iao6ALyVZH2SAFf39ZEkLZIjOWU0Anyz9/9wjgX+S1X9SZLvADuSbAJeBK4EqKo9SXYAzwKTwPVV9V7b13X89LbTB9tLQ8LbUaXV4bADoaq+D3xyhvYfAhfP0mcLsGWG9l3AuYc7FknSkfPfQ9C8OFuQVi4fXSFJAgwESVLjKSMdtulPSPUUkrS8GQhaMF5fkJY3TxlJkgBnCDpKnC1Iy48zBEkS4AxBi8DZgrQ8OEOQJAHOELTInC1Iw8sZgiQJcIagJeRsQRouzhAkSYAzBA0JZwvS0jMQNHQMB2lpGAgaaoaDtHgMBC0bhoN0dBkIWpYMB2nhGQha9qb/uwxTDAppfgwErVjOIqT5MRC0KjiLkAYzELSqOYuQfmpoAiHJBuA/AscAf1BVNy/xkLTKzDaLuOG8Sa5t6wwNrWRDEQhJjgF+F/hlYD/wnSQ7q+rZpR2ZdKjZQqMrA0XDbCgCAbgQ2FtV3wdIsh24DDAQtKIcaaDMR3/4eGpMXaSqlnoMJLkC2FBV/7J9/jzw81X1hWnbbQY2t49/D3i+4484FXhtgYa7ElmfuVmfuVmfwYapRn+rqj4+04phmSFkhrYPJFVVbQW2znvnya6qGjucga0G1mdu1mdu1mew5VKjYXn89X7gjL7Pa4GXl2gskrQqDUsgfAdYl+TMJB8GNgI7l3hMkrSqDMUpo6qaTPIF4E/p3Xb6taras4A/Yt6nmVYZ6zM36zM36zPYsqjRUFxUliQtvWE5ZSRJWmIGgiQJWEGBkGRDkueT7E1y4wzrk+S2tv7pJP9wKca5lDrU6KpWm6eT/EWSTy7FOJfKoPr0bfePkrzXvj+zanSpT5LxJE8l2ZPkvy/2GJdSh/++Tkry35J8t9XnV5dinHOqqmX/onch+n8Bfxv4MPBd4Oxp21wKPEjvOw/rgceXetxDWKN/DJzcln9lNdWoS336tnsEeAC4YqnHPUz1AT5K7+kCP9c+n7bU4x6y+nwZuKUtfxx4HfjwUo+9/7VSZgjvP/qiqv4fMPXoi36XAXdXz2PAR5OsWeyBLqGBNaqqv6iqN9rHx+h9H2S16PI7BPBvgK8Dry7m4IZAl/r8C+AbVfUiQFWtphp1qU8BP5skwAn0AmFycYc5t5USCKcDL/V93t/a5rvNSjbf499Eb0a1WgysT5LTgc8Cv7eI4xoWXX5//i5wcpKJJE8muXrRRrf0utTnd4BP0PvS7W7gi1X1k8UZXjdD8T2EBdDl0RedHo+xgnU+/iQX0QuEf3JURzRcutTnPwBfqqr3en/krSpd6nMscAFwMXA88GiSx6rqfx7twQ2BLvW5BHgK+EXg7wAPJfkfVfWjozy2zlZKIHR59MVqfzxGp+NP8g+APwB+pap+uEhjGwZd6jMGbG9hcCpwaZLJqvqvizLCpdX1v7HXqupt4O0k3wY+CayGQOhSn18Fbq7eRYS9SV4A/j7wxOIMcbCVcsqoy6MvdgJXt7uN1gNvVtWBxR7oEhpYoyQ/B3wD+Pwq+auu38D6VNWZVTVaVaPAfcC/XiVhAN3+G7sf+IUkxyb5m8DPA88t8jiXSpf6vEhv9kSSEXpPbP7+oo5ygBUxQ6hZHn2R5F+19b9H766QS4G9wP+hl9arRsca/TvgFOD29lfwZC2DJzQuhI71WbW61KeqnkvyJ8DTwE/o/cuHzyzdqBdPx9+frwB3JdlN7xTTl6pqWB6JDfjoCklSs1JOGUmSjpCBIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNf8fmq990j9gAncAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVb0lEQVR4nO3db4yd5Znf8e9vIaGULIRAGFmY7dDFbcOfhpSp12paaXbZFi95AZFAchrFZteVt5RUWckvYvKimyqyBC+ytGgXtt4lwqDtgkWSxS1hWwQ7TVfLn5iKxBiWZhpccLBABEowFZRxrr44t53j4ZyZM2N7zvz5fqSj85zree5n7ueS4Zr7vp/zTKoKSZJ+YdgdkCQtDhYESRJgQZAkNRYESRJgQZAkNacOuwPzde6559bo6OhAx77zzjucccYZJ7dDS5S56c289Gdu+lsKuXn66adfr6qP99q3ZAvC6Ogoe/bsGejYiYkJxsfHT26Hlihz05t56c/c9LcUcpPkf/fb55SRJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSGguCJAlYwt9UPlFGtz10dHv/LZ8ZYk8kabhmHSEk+RtJnkry/ST7kvzbFv9YkkeS/LC9n93V5uYkk0leSHJVV/yKJHvbvtuTpMVPS3J/iz+ZZPQkXKskaQaDTBm9B/xaVX0SuBxYn2QdsA14tKrWAI+2zyS5GNgAXAKsB+5Icko7153AFmBNe61v8c3Am1V1EXAbcOvxX5okaS5mLQjVcah9/FB7FXANsLPFdwLXtu1rgPuq6r2qehGYBNYmWQWcWVWPV+cPOd8zrc2Rcz0AXHlk9CBJWhgDrSG03/CfBi4C/qCqnkwyUlUHAarqYJLz2uHnA090NT/QYu+37enxI21ebueaSvIWcA7w+rR+bKEzwmBkZISJiYmBLvLQoUN9j9162dTR7UHPt5zMlJuVzLz0Z276W+q5GaggVNVh4PIkHwW+neTSGQ7v9Zt9zRCfqc30fuwAdgCMjY3VoI+ZnemRtDd0LSqz952jmytlgXkpPK53GMxLf+amv6WemznddlpV/weYoDP3/2qbBqK9v9YOOwBc0NVsNfBKi6/uET+mTZJTgbOAN+bSN0nS8RnkLqOPt5EBSU4Hfh34a2A3sKkdtgl4sG3vBja0O4cupLN4/FSbXno7ybq2PrBxWpsj57oOeKytM0iSFsggU0argJ1tHeEXgF1V9Z+TPA7sSrIZeAm4HqCq9iXZBTwHTAE3tSkngBuBu4HTgYfbC+Au4N4kk3RGBhtOxMVJkgY3a0Goqh8An+oR/wlwZZ8224HtPeJ7gA+sP1TVu7SCIkkaDh9dIUkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkCLAiSpMaCIEkC4NRhd2CxGt320NHt/bd8Zog9kaSF4QhBkgRYECRJjQVBkgQMUBCSXJDkL5I8n2Rfki+1+FeT/DjJM+11dVebm5NMJnkhyVVd8SuS7G37bk+SFj8tyf0t/mSS0ZNwrZKkGQwyQpgCtlbVJ4B1wE1JLm77bquqy9vrOwBt3wbgEmA9cEeSU9rxdwJbgDXttb7FNwNvVtVFwG3Arcd/aZKkuZi1IFTVwar6H237beB54PwZmlwD3FdV71XVi8AksDbJKuDMqnq8qgq4B7i2q83Otv0AcOWR0YMkaWHM6bbTNpXzKeBJ4NPAF5NsBPbQGUW8SadYPNHV7ECLvd+2p8dp7y8DVNVUkreAc4DXp/38LXRGGIyMjDAxMTFQvw8dOtT32K2XTc3aftCfsxTNlJuVzLz0Z276W+q5GbggJPkI8E3gd6rqp0nuBL4GVHv/OvBbQK/f7GuGOLPs+3mgagewA2BsbKzGx8cH6vvExAT9jr2h6/sG/ez//GA/ZymaKTcrmXnpz9z0t9RzM9BdRkk+RKcY/ElVfQugql6tqsNV9TPgj4C17fADwAVdzVcDr7T46h7xY9okORU4C3hjPhckSZqfQe4yCnAX8HxV/V5XfFXXYZ8Fnm3bu4EN7c6hC+ksHj9VVQeBt5Osa+fcCDzY1WZT274OeKytM0iSFsggU0afBr4A7E3yTIt9BfhcksvpTO3sB34boKr2JdkFPEfnDqWbqupwa3cjcDdwOvBwe0Gn4NybZJLOyGDD8VyUJGnuZi0IVfWX9J7j/84MbbYD23vE9wCX9oi/C1w/W18kSSeP31SWJAEWBElSY0GQJAEWBElSY0GQJAEWBElSY0GQJAEWBElSM6enna5Uo9MegLf/ls8MqSeSdPI4QpAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVJjQZAkARYESVIza0FIckGSv0jyfJJ9Sb7U4h9L8kiSH7b3s7va3JxkMskLSa7qil+RZG/bd3uStPhpSe5v8SeTjJ6Ea5UkzWCQEcIUsLWqPgGsA25KcjGwDXi0qtYAj7bPtH0bgEuA9cAdSU5p57oT2AKsaa/1Lb4ZeLOqLgJuA249AdcmSZqDWf+EZlUdBA627beTPA+cD1wDjLfDdgITwJdb/L6qeg94MckksDbJfuDMqnocIMk9wLXAw63NV9u5HgB+P0mqqo77Ck+C7j+p6Z/TlLRczOlvKrepnE8BTwIjrVhQVQeTnNcOOx94oqvZgRZ7v21Pjx9p83I711SSt4BzgNen/fwtdEYYjIyMMDExMVC/Dx061PfYrZdNDXSOfgbtw2I1U25WMvPSn7npb6nnZuCCkOQjwDeB36mqn7bp/56H9ojVDPGZ2hwbqNoB7AAYGxur8fHxWXrdMTExQb9jb+j6bX8+9n9+sD4sVjPlZiUzL/2Zm/6Wem4GussoyYfoFIM/qapvtfCrSVa1/auA11r8AHBBV/PVwCstvrpH/Jg2SU4FzgLemOvFSJLmb5C7jALcBTxfVb/XtWs3sKltbwIe7IpvaHcOXUhn8fipNr30dpJ17Zwbp7U5cq7rgMcW6/qBJC1Xg0wZfRr4ArA3yTMt9hXgFmBXks3AS8D1AFW1L8ku4Dk6dyjdVFWHW7sbgbuB0+ksJj/c4ncB97YF6Dfo3KUkSVpAg9xl9Jf0nuMHuLJPm+3A9h7xPcClPeLv0gqKJGk4/KayJAmwIEiSGguCJAmwIEiSGguCJAmwIEiSmjk9y0gf5IPuJC0XjhAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLUWBAkSYAFQZLU+MW0E8gvqUlayhwhSJIAC4IkqbEgSJIAC4IkqbEgSJIAC4IkqbEgSJIAv4dw0vidBElLzawjhCTfSPJakme7Yl9N8uMkz7TX1V37bk4ymeSFJFd1xa9Isrftuz1JWvy0JPe3+JNJRk/wNUqSBjDIlNHdwPoe8duq6vL2+g5AkouBDcAlrc0dSU5px98JbAHWtNeRc24G3qyqi4DbgFvneS2SpOMwa0Goqu8Cbwx4vmuA+6rqvap6EZgE1iZZBZxZVY9XVQH3ANd2tdnZth8ArjwyepAkLZzjWUP4YpKNwB5ga1W9CZwPPNF1zIEWe79tT4/T3l8GqKqpJG8B5wCvT/+BSbbQGWUwMjLCxMTEQB09dOhQ32O3XjY10DmOx6D9HIaZcrOSmZf+zE1/Sz038y0IdwJfA6q9fx34LaDXb/Y1Q5xZ9h0brNoB7AAYGxur8fHxgTo7MTFBv2Nv6Fr8PVn2f773z14MZsrNSmZe+jM3/S313MzrttOqerWqDlfVz4A/Ata2XQeAC7oOXQ280uKre8SPaZPkVOAsBp+ikiSdIPMqCG1N4IjPAkfuQNoNbGh3Dl1IZ/H4qao6CLydZF1bH9gIPNjVZlPbvg54rK0zLBuj2x46+pKkxWrWKaMkfwqMA+cmOQD8LjCe5HI6Uzv7gd8GqKp9SXYBzwFTwE1Vdbid6kY6dyydDjzcXgB3AfcmmaQzMthwAq5LkjRHsxaEqvpcj/BdMxy/HdjeI74HuLRH/F3g+tn6IUk6uXx0hSQJsCBIkhoLgiQJ8OF2C86H3klarBwhSJIAC4IkqXHKaIicPpK0mDhCkCQBFgRJUmNBkCQBK3QNwYfMSdIHrciCsBi5wCxp2JwykiQBFgRJUmNBkCQBFgRJUuOi8iLkArOkYXCEIEkCLAiSpMaCIEkCLAiSpMZF5UXOBWZJC8URgiQJsCBIkhoLgiQJGKAgJPlGkteSPNsV+1iSR5L8sL2f3bXv5iSTSV5IclVX/Ioke9u+25OkxU9Lcn+LP5lk9ARfoyRpAIOMEO4G1k+LbQMerao1wKPtM0kuBjYAl7Q2dyQ5pbW5E9gCrGmvI+fcDLxZVRcBtwG3zvdilrvRbQ8dfUnSiTZrQaiq7wJvTAtfA+xs2zuBa7vi91XVe1X1IjAJrE2yCjizqh6vqgLumdbmyLkeAK48MnqQJC2c+d52OlJVBwGq6mCS81r8fOCJruMOtNj7bXt6/Eibl9u5ppK8BZwDvD79hybZQmeUwcjICBMTEwN19tChQ8ccu/WyqYHaLWaDXvtspudGHealP3PT31LPzYn+HkKv3+xrhvhMbT4YrNoB7AAYGxur8fHxgTo1MTFB97E3LIcpl73vHN08nu8nTM+NOsxLf+amv6Wem/neZfRqmwaivb/W4geAC7qOWw280uKre8SPaZPkVOAsPjhFJUk6yeZbEHYDm9r2JuDBrviGdufQhXQWj59q00tvJ1nX1gc2Tmtz5FzXAY+1dQZJ0gKadcooyZ8C48C5SQ4AvwvcAuxKshl4CbgeoKr2JdkFPAdMATdV1eF2qhvp3LF0OvBwewHcBdybZJLOyGDDCbkySdKczFoQqupzfXZd2ef47cD2HvE9wKU94u/SCookaXh8uN0y4APwJJ0IPrpCkgRYECRJjVNGy4zTR5LmyxGCJAmwIEiSGguCJAmwIEiSGheVlzEXmCXNhSMESRJgQZAkNRYESRLgGsKK4XqCpNk4QpAkARYESVJjQZAkAa4hrEjd6wl3rz9jiD2RtJg4QpAkARYESVJjQVjh9v74LUa3PXTMNJKklcmCIEkCLAiSpMaCIEkCvO1UXXy8hbSyOUKQJAHHWRCS7E+yN8kzSfa02MeSPJLkh+397K7jb04ymeSFJFd1xa9o55lMcnuSHE+/JElzdyJGCL9aVZdX1Vj7vA14tKrWAI+2zyS5GNgAXAKsB+5IckprcyewBVjTXutPQL90HI7ciurtqNLKcTKmjK4BdrbtncC1XfH7quq9qnoRmATWJlkFnFlVj1dVAfd0tZEkLZDjXVQu4L8mKeA/VNUOYKSqDgJU1cEk57Vjzwee6Gp7oMXeb9vT4x+QZAudkQQjIyNMTEwM1MlDhw4dc+zWy6YGarcSjJw+ez4GzfNyMv3fjH7O3PS31HNzvAXh01X1Svuf/iNJ/nqGY3utC9QM8Q8GOwVnB8DY2FiNj48P1MmJiQm6j73BaZCjtl42xdf3zvLPYO87RzdXyt1H0//N6OfMTX9LPTfHNWVUVa+099eAbwNrgVfbNBDt/bV2+AHggq7mq4FXWnx1j7gkaQHNuyAkOSPJLx7ZBv4Z8CywG9jUDtsEPNi2dwMbkpyW5EI6i8dPtemlt5Osa3cXbexqI0laIMczZTQCfLvdIXoq8B+r6s+TfA/YlWQz8BJwPUBV7UuyC3gOmAJuqqrD7Vw3AncDpwMPt5ckaQHNuyBU1Y+AT/aI/wS4sk+b7cD2HvE9wKXz7YsWjt9mlpYvv6ksSQJ8lpGOw/QvrTlikJY2RwiSJMARgk4g1xekpc0RgiQJcISgk8TRgrT0OEKQJAGOELQAHC1IS4MjBEkS4AhBC8zRgrR4OUKQJAGOEDREjhakxcURgiQJcISgRcLRgjR8jhAkSYAjBC1Cjhak4bAgaFGzOEgLxykjSRLgCEFLyPQ/yHOEIwfpxHCEIEkCHCFoGXDkIJ0YFgQtWy5IS3NjQdCK4ChCmp0FQStav0Jx9/ozFrgn0vC5qCz1sPfHbzG67aG+BUNajhbNCCHJeuDfA6cAf1xVtwy5SxLQfxTRzaknLQeLoiAkOQX4A+CfAgeA7yXZXVXPDbdn0mCOdyRhQdFisCgKArAWmKyqHwEkuQ+4BrAgaEUY1tRUdyHyriylqobdB5JcB6yvqn/RPn8B+JWq+uK047YAW9rHvwu8MOCPOBd4/QR1d7kxN72Zl/7MTX9LITd/q6o+3mvHYhkhpEfsA5WqqnYAO+Z88mRPVY3Np2PLnbnpzbz0Z276W+q5WSx3GR0ALuj6vBp4ZUh9kaQVabEUhO8Ba5JcmOTDwAZg95D7JEkryqKYMqqqqSRfBP4LndtOv1FV+07gj5jzNNMKYm56My/9mZv+lnRuFsWisiRp+BbLlJEkacgsCJIkYBkVhCTrk7yQZDLJth77k+T2tv8HSf7BMPo5DAPk5vMtJz9I8ldJPjmMfg7DbLnpOu4fJjncvjOzIgySmyTjSZ5Jsi/Jf1voPg7LAP9NnZXkPyX5fsvNbw6jn3NWVUv+RWch+n8Bfxv4MPB94OJpx1wNPEznOw/rgCeH3e9FlJt/BJzdtn/D3PQ87jHgO8B1w+73YskN8FE6TxP4pfb5vGH3exHl5ivArW3748AbwIeH3ffZXstlhHD00RdV9f+AI4++6HYNcE91PAF8NMmqhe7oEMyam6r6q6p6s318gs73QFaCQf7dAPxr4JvAawvZuSEbJDf/HPhWVb0EUFUrJT+D5KaAX0wS4CN0CsLUwnZz7pZLQTgfeLnr84EWm+sxy9Fcr3sznZHUSjBrbpKcD3wW+MMF7NdiMMi/m78DnJ1kIsnTSTYuWO+Ga5Dc/D7wCTpfsN0LfKmqfrYw3Zu/RfE9hBNgkEdfDPR4jGVo4OtO8qt0CsI/Pqk9WjwGyc2/A75cVYc7v+ytGIPk5lTgCuBK4HTg8SRPVNX/PNmdG7JBcnMV8Azwa8AvA48k+e9V9dOT3LfjslwKwiCPvlipj8cY6LqT/H3gj4HfqKqfLFDfhm2Q3IwB97VicC5wdZKpqvqzBenh8Az639TrVfUO8E6S7wKfBJZ7QRgkN78J3FKdRYTJJC8Cfw94amG6OD/LZcpokEdf7AY2truN1gFvVdXBhe7oEMyamyS/BHwL+MIK+O2u26y5qaoLq2q0qkaBB4B/tQKKAQz239SDwD9JcmqSvwn8CvD8AvdzGAbJzUt0Rk4kGaHzdOYfLWgv52FZjBCqz6MvkvzLtv8P6dwhcjUwCfxfOhV82RswN/8GOAe4o/0mPFVL+ImNgxowNyvSILmpqueT/DnwA+BndP7S4bPD6/XCGPDfzdeAu5PspTPF9OWqWuyPxfbRFZKkjuUyZSRJOk4WBEkSYEGQJDUWBEkSYEGQJDUWBEkSYEGQJDX/HxBIahH6UL9yAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVaklEQVR4nO3db5Cd5Xnf8e8vyKbUNhiD2VEkUtEit+FPjautoqnbmU3UFgW/EJ6BRi5jiUQdpRS3zoxeWPhFk45HMzATh5ZJIVWCB8GkAQ22i1pQUgJs3Uz4Y+HBFoJQq0YDMhoYDMWIDtQrX31xbuGj3aPdo9Vq/5z9fmbO7HOu89xn73Ox4rf38zznbKoKSZJ+bq4nIEmaHwwESRJgIEiSGgNBkgQYCJKkZslcT2C6zj///FqxYkVf+77zzjt86EMfOr0TWmDsSW/2pTf7MtFC7cnTTz/9elV9vOeDVTXpDfhrwFPAd4H9wL9r9Y8BDwPfb1/P7RpzE3AAeAG4squ+CtjXHrsNSKufCdzX6k8CK6aa16pVq6pfjz32WN/7Lhb2pDf70pt9mWih9gTYWyf4/2o/h4zeA36lqj4JXAGsS7IG2AY8UlUrgUfafZJcAmwALgXWAbcnOaM91x3AFmBlu61r9c3Am1V1MXArcEsf85IkzaApA6GFypF29wPtVsB6YGer7wSubtvrgXur6r2qepHOb/2rkywFzq6qx1tK3T1uzLHnuh9YmySn8sIkSSenr5PKSc5I8gzwGvBwVT0JDFXVYYD29YK2+zLg5a7hh1ptWdseXz9uTFWNAW8B503j9UiSpqmvk8pVdRS4IslHgW8muWyS3Xv9Zl+T1Ccbc/wTJ1voHHJiaGiI0dHRSabxM0eOHOl738XCnvRmX3qzLxMNYk9O6iqjqvo/SUbpHPt/NcnSqjrcDge91nY7BFzYNWw58EqrL+9R7x5zKMkS4BzgjR7ffwewA2B4eLhGRkb6mvfo6Cj97rtY2JPe7Etv9mWiQezJlIeMkny8rQxIchbwj4G/AnYDm9pum4AH2vZuYEOSM5NcROfk8VPtsNLbSda08wMbx4059lzXAI+28wySpFnSzwphKbCzXSn0c8CuqvpvSR4HdiXZDLwEXAtQVfuT7AKeA8aAG9shJ4AbgLuAs4A97QZwJ3BPkgN0VgYbZuLFSZL6N2UgVNX3gE/1qP8IWHuCMduB7T3qe4EJ5x+q6l1aoEiS5oYfXSFJAhbwR1ecDiu2Pfj+9sGbPzOHM5Gk2ecKQZIEuEI4blUgSYuZKwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSUAfgZDkwiSPJXk+yf4kX2z130nywyTPtNtVXWNuSnIgyQtJruyqr0qyrz12W5K0+plJ7mv1J5OsOA2vVZI0iSV97DMGbK2q7yT5CPB0kofbY7dW1e9275zkEmADcCnw88CfJ/lEVR0F7gC2AE8ADwHrgD3AZuDNqro4yQbgFuDXTv3lTd+KbQ++v33w5s/M4UwkaXZMuUKoqsNV9Z22/TbwPLBskiHrgXur6r2qehE4AKxOshQ4u6oer6oC7gau7hqzs23fD6w9tnqQJM2OflYI72uHcj4FPAl8GvhCko3AXjqriDfphMUTXcMOtdpP2vb4Ou3rywBVNZbkLeA84PVx338LnRUGQ0NDjI6O9jXvI0eOnHDfrZePTTm+3++zkEzWk8XMvvRmXyYaxJ70HQhJPgx8HfitqvpxkjuArwDVvn4V+A2g12/2NUmdKR77WaFqB7ADYHh4uEZGRvqa++joKCfa9/quQ0MncvC6/r7PQjJZTxYz+9KbfZloEHvS11VGST5AJwz+uKq+AVBVr1bV0ar6KfCHwOq2+yHgwq7hy4FXWn15j/pxY5IsAc4B3pjOC5IkTU8/VxkFuBN4vqp+r6u+tGu3zwLPtu3dwIZ25dBFwErgqao6DLydZE17zo3AA11jNrXta4BH23kGSdIs6eeQ0aeBzwP7kjzTal8GPpfkCjqHdg4CvwlQVfuT7AKeo3OF0o3tCiOAG4C7gLPoXF20p9XvBO5JcoDOymDDqbwoSdLJmzIQquov6H2M/6FJxmwHtveo7wUu61F/F7h2qrlIkk4f36ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUn9TeVF6sV4/7M5sGbPzNHM5Gk08cVgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQL6CIQkFyZ5LMnzSfYn+WKrfyzJw0m+376e2zXmpiQHkryQ5Mqu+qok+9pjtyVJq5+Z5L5WfzLJitPwWiVJk+hnhTAGbK2qXwTWADcmuQTYBjxSVSuBR9p92mMbgEuBdcDtSc5oz3UHsAVY2W7rWn0z8GZVXQzcCtwyA69NknQSpgyEqjpcVd9p228DzwPLgPXAzrbbTuDqtr0euLeq3quqF4EDwOokS4Gzq+rxqirg7nFjjj3X/cDaY6sHSdLsOKlzCO1QzqeAJ4GhqjoMndAALmi7LQNe7hp2qNWWte3x9ePGVNUY8BZw3snMTZJ0avr+ewhJPgx8HfitqvrxJL/A93qgJqlPNmb8HLbQOeTE0NAQo6OjU8y648iRIyfcd+vlY309R7d+v+98NllPFjP70pt9mWgQe9JXICT5AJ0w+OOq+kYrv5pkaVUdboeDXmv1Q8CFXcOXA6+0+vIe9e4xh5IsAc4B3hg/j6raAewAGB4erpGRkX6mz+joKCfa9/pxf/ymL/veeX9zof6xnMl6spjZl97sy0SD2JN+rjIKcCfwfFX9XtdDu4FNbXsT8EBXfUO7cugiOiePn2qHld5OsqY958ZxY4491zXAo+08gyRplvSzQvg08HlgX5JnWu3LwM3AriSbgZeAawGqan+SXcBzdK5QurGqjrZxNwB3AWcBe9oNOoFzT5IDdFYGG07tZUmSTtaUgVBVf0HvY/wAa08wZjuwvUd9L3BZj/q7tECRJM0N36ksSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLT98dfq7cVXZ+WulA/+VSSwBWCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBvjFtRvkmNUkLmSsESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSUAfgZDka0leS/JsV+13kvwwyTPtdlXXYzclOZDkhSRXdtVXJdnXHrstSVr9zCT3tfqTSVbM8GuUJPWhnzem3QX8PnD3uPqtVfW73YUklwAbgEuBnwf+PMknquoocAewBXgCeAhYB+wBNgNvVtXFSTYAtwC/Nu1XNE/4JjVJC82UK4Sq+hbwRp/Ptx64t6req6oXgQPA6iRLgbOr6vGqKjrhcnXXmJ1t+35g7bHVgyRp9pzKR1d8IclGYC+wtareBJbRWQEcc6jVftK2x9dpX18GqKqxJG8B5wGvj/+GSbbQWWUwNDTE6OhoXxM9cuTICffdevlYX89xKvqd52yarCeLmX3pzb5MNIg9mW4g3AF8Baj29avAbwC9frOvSepM8djxxaodwA6A4eHhGhkZ6Wuyo6OjnGjf67sO7ZwuB6/r/b3n0mQ9WczsS2/2ZaJB7Mm0rjKqqler6mhV/RT4Q2B1e+gQcGHXrsuBV1p9eY/6cWOSLAHOof9DVJKkGTKtQGjnBI75LHDsCqTdwIZ25dBFwErgqao6DLydZE07P7AReKBrzKa2fQ3waDvPIEmaRVMeMkryJ8AIcH6SQ8BvAyNJrqBzaOcg8JsAVbU/yS7gOWAMuLFdYQRwA50rls6ic3XRnla/E7gnyQE6K4MNM/C65hWvOJK0EEwZCFX1uR7lOyfZfzuwvUd9L3BZj/q7wLVTzUOSdHr5TmVJEmAgSJIaA0GSBBgIkqTGQJAkAaf20RWaBi9BlTRfuUKQJAEGgiSpMRAkSYDnEOaU5xMkzSeuECRJgIEgSWoMBEkS4DmEecPzCZLmmisESRJgIEiSGgNBkgR4DmFe8nyCpLngCkGSBBgIkqRmUR4y6j4kI0nqcIUgSQIW6QphIfEEs6TZ4gpBkgQYCJKkxkCQJAEGgiSpmTIQknwtyWtJnu2qfSzJw0m+376e2/XYTUkOJHkhyZVd9VVJ9rXHbkuSVj8zyX2t/mSSFTP8GgfGim0Pvn+TpJnWzwrhLmDduNo24JGqWgk80u6T5BJgA3BpG3N7kjPamDuALcDKdjv2nJuBN6vqYuBW4JbpvhhJ0vRNGQhV9S3gjXHl9cDOtr0TuLqrfm9VvVdVLwIHgNVJlgJnV9XjVVXA3ePGHHuu+4G1x1YPkqTZM933IQxV1WGAqjqc5IJWXwY80bXfoVb7SdseXz825uX2XGNJ3gLOA14f/02TbKGzymBoaIjR0dG+JnvkyJHj9t16+Vhf4+azfl/7iYzviTrsS2/2ZaJB7MlMvzGt12/2NUl9sjETi1U7gB0Aw8PDNTIy0tekRkdH6d73+gE4Bn/wupFTGj++J+qwL73Zl4kGsSfTDYRXkyxtq4OlwGutfgi4sGu/5cArrb68R717zKEkS4BzmHiISuP4DmZJM226l53uBja17U3AA131De3KoYvonDx+qh1eejvJmnZ+YOO4Mcee6xrg0XaeQZI0i6ZcIST5E2AEOD/JIeC3gZuBXUk2Ay8B1wJU1f4ku4DngDHgxqo62p7qBjpXLJ0F7Gk3gDuBe5IcoLMy2DAjr2wRcbUgaSZMGQhV9bkTPLT2BPtvB7b3qO8FLutRf5cWKJKkueM7lSVJgIEgSWoMBEkS4B/IGTieYJY0Xa4QJEmAgSBJajxkNMA8fCTpZLhCkCQBBoIkqTEQJEmAgSBJajypvEh4glnSVFwhSJIAA0GS1BgIi9CKbQ+y74dvHXcYSZIMBEkSYCBIkhoDQZIEGAiSpMb3ISxyvj9B0jGuECRJgCsEdXG1IC1urhAkSYCBIElqDARJEmAgSJKaUzqpnOQg8DZwFBirquEkHwPuA1YAB4F/VlVvtv1vAja3/f9NVf1Zq68C7gLOAh4CvlhVdSpz06nxBLO0+MzECuGXq+qKqhpu97cBj1TVSuCRdp8klwAbgEuBdcDtSc5oY+4AtgAr223dDMxLknQSTsdlp+uBkba9ExgFvtTq91bVe8CLSQ4Aq9sq4+yqehwgyd3A1cCe0zA3TYOrBWlxONVAKOC/JyngP1XVDmCoqg4DVNXhJBe0fZcBT3SNPdRqP2nb4+sTJNlCZyXB0NAQo6OjfU3yyJEjx+279fKxvsYNsqGzpteHfnu+UI3/WVGHfZloEHtyqoHw6ap6pf1P/+EkfzXJvulRq0nqE4udwNkBMDw8XCMjI31NcnR0lO59r/fvALD18jG+uu/k//MfvG5k5iczj4z/WVGHfZloEHtySoFQVa+0r68l+SawGng1ydK2OlgKvNZ2PwRc2DV8OfBKqy/vUdc85OEjaXBN+6Rykg8l+cixbeCfAs8Cu4FNbbdNwANtezewIcmZSS6ic/L4qXZ46e0ka5IE2Ng1RpI0S05lhTAEfLPz/3CWAP+5qv40ybeBXUk2Ay8B1wJU1f4ku4DngDHgxqo62p7rBn522ekePKEsSbNu2oFQVT8APtmj/iNg7QnGbAe296jvBS6b7lw0N8b/TWYPIUkLm+9UliQBBoIkqfHvIWjGeAWStLC5QpAkAa4QdJq4WpAWHlcIkiTAQJAkNR4y0mnn4SNpYTAQNKsMB2n+8pCRJAlwhaA55GpBml9cIUiSAFcImidcLUhzzxWCJAlwhaB5yNWCNDdcIUiSAFcImudcLUizx0DQgmE4SKeXgaAFyXCQZp6BoAXPcJBmhieVJUmAKwQNGFcL0vQZCBpY3eHQzaCQejMQtOi4ipB6MxC0qBkO0s8YCFKzYtuDbL18jOvHHWoyKLRYGAjSFDwXocVi3gRCknXAfwDOAP6oqm6e4ylJk+o3KDwspYViXgRCkjOA/wj8E+AQ8O0ku6vqubmdmXTyThQUUz12THdoGCaaTfMiEIDVwIGq+gFAknuB9YCBoEXnRKHRT5icLsfOrRhKgy1VNddzIMk1wLqq+hft/ueBX6qqL4zbbwuwpd3928ALfX6L84HXZ2i6g8Ke9GZferMvEy3UnvyNqvp4rwfmywohPWoTkqqqdgA7TvrJk71VNTydiQ0qe9KbfenNvkw0iD2ZL59ldAi4sOv+cuCVOZqLJC1K8yUQvg2sTHJRkg8CG4DdczwnSVpU5sUho6oaS/IF4M/oXHb6taraP4Pf4qQPMy0C9qQ3+9KbfZlo4HoyL04qS5Lm3nw5ZCRJmmMGgiQJGKBASLIuyQtJDiTZ1uPxJLmtPf69JH9vLuY52/roy3WtH99L8pdJPjkX85xtU/Wla7+/n+Roe6/MQOunJ0lGkjyTZH+S/zHbc5wLffwbOifJf03y3daXX5+Lec6IqlrwNzonov838DeBDwLfBS4Zt89VwB4673lYAzw51/OeJ335B8C5bftX7cuE/R4FHgKumet5z3VPgI/S+fSAX2j3L5jrec+TvnwZuKVtfxx4A/jgXM99OrdBWSG8/9EXVfX/gGMffdFtPXB3dTwBfDTJ0tme6Cybsi9V9ZdV9Wa7+wSd94AMun5+XgD+NfB14LXZnNwc6acn/xz4RlW9BFBV9qWjgI8kCfBhOoEwNrvTnBmDEgjLgJe77h9qtZPdZ9Cc7GveTGcVNeim7EuSZcBngT+YxXnNpX5+Vj4BnJtkNMnTSTbO2uzmTj99+X3gF+m8mXYf8MWq+unsTG9mzYv3IcyAfj76oq+Pxxgwfb/mJL9MJxD+4Wmd0fzQT1/+PfClqjra+cVv4PXTkyXAKmAtcBbweJInqup/ne7JzaF++nIl8AzwK8DfAh5O8j+r6seneW4zblACoZ+PvliMH4/R12tO8neBPwJ+tap+NEtzm0v99GUYuLeFwfnAVUnGquq/zMoMZ1+//4Zer6p3gHeSfAv4JDDIgdBPX34duLk6JxEOJHkR+DvAU7MzxZkzKIeM+vnoi93Axna10Rrgrao6PNsTnWVT9iXJLwDfAD4/4L/pdZuyL1V1UVWtqKoVwP3AvxrgMID+/g09APyjJEuS/HXgl4DnZ3mes62fvrxEZ9VEkiE6n8T8g1md5QwZiBVCneCjL5L8y/b4H9C5UuQq4ADwf+mk+kDrsy//FjgPuL39NjxWA/YJjuP12ZdFpZ+eVNXzSf4U+B7wUzp/2fDZuZv16dfnz8pXgLuS7KNziOlLVbUQPxbbj66QJHUMyiEjSdIpMhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTm/wPgEQaQCrDSVQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATeklEQVR4nO3dbZCd5X3f8e8vEHsoFIzB3qGIdGmttuahJmWraOpmZilpUUhnwDPQkeuxIFFHKcWtM6MXFn7RZOrRDLywaWkKqRI8gJtEMNgp6gDJeCBbNxMeLDLEsqA0qlFBhoEhqFiiNfXK/74415KjPUd7jlbas6uz38/MmXOf69z3vdf5z0q/va774aSqkCTpJ5a7A5KklcFAkCQBBoIkqTEQJEmAgSBJak5f7g4s1vnnn1+Tk5MD13v33Xc588wzl75DpxBr0sua9LImvcahJs8999xbVfWRfu+dsoEwOTnJ7t27B643MzPD9PT00nfoFGJNelmTXtak1zjUJMn/OtZ7ThlJkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSgFP4SuWlMLnt0feX99/+C8vYE0kaPUcIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSs+pPO+0+1VSSVjNHCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkYIhCSXJTkD5O8mGRvks+39l9L8v0kz7fHtV3b3JZkX5KXklzT1X5lkj3tvbuSpLV/MMmDrf2ZJJNL8FklSQsYZoQwC2ytqo8D64Fbk1zS3ruzqq5oj8cA2nsbgUuBDcDdSU5r698DbAHWtseG1r4ZOFhVHwPuBO448Y8mSToeAwOhql6vqj9py4eAF4ELF9jkOmBnVb1XVS8D+4B1SS4Azq6qp6qqgAeA67u2ub8tPwxcPTd6kCSNxnHd/rpN5fw08AzwSeBzSTYBu+mMIg7SCYunuzY70Np+1Jbnt9OeXwWoqtkk7wDnAW/N+/lb6IwwmJiYYGZmZmCfDx8+vOB6Wy+f7ds+zL5PVYNqshpZk17WpNe412ToQEhyFvB14Feq6gdJ7gG+BFR7/jLwS0C/v+xrgXYGvPcXDVU7gB0AU1NTNT09PbDfMzMzLLTezcf4PoT9nxm871PVoJqsRtaklzXpNe41GeosoyQ/SScMfruqvgFQVW9U1ZGq+jHwm8C6tvoB4KKuzdcAr7X2NX3aj9omyenAOcDbi/lAkqTFGeYsowD3Ai9W1Ve62i/oWu1TwHfb8i5gYztz6GI6B4+frarXgUNJ1rd9bgIe6drmprZ8A/BkO86wbCa3Pfr+Q5JWg2GmjD4JfBbYk+T51vZF4NNJrqAztbMf+GWAqtqb5CHgBTpnKN1aVUfadrcA9wFnAI+3B3QC52tJ9tEZGWw8kQ8lSTp+AwOhqv6I/nP8jy2wzXZge5/23cBlfdp/CNw4qC+SpKXjlcqSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNcN8p/KqN7nt0aNe77/9F5apJ5K0dBwhSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkoAhAiHJRUn+MMmLSfYm+Xxr/3CSbyb5s/Z8btc2tyXZl+SlJNd0tV+ZZE97764kae0fTPJga38myeQSfFZJ0gKGGSHMAlur6uPAeuDWJJcA24Anqmot8ER7TXtvI3ApsAG4O8lpbV/3AFuAte2xobVvBg5W1ceAO4E7TsJnkyQdh4GBUFWvV9WftOVDwIvAhcB1wP1ttfuB69vydcDOqnqvql4G9gHrklwAnF1VT1VVAQ/M22ZuXw8DV8+NHiRJo3FcN7drUzk/DTwDTFTV69AJjSQfbatdCDzdtdmB1vajtjy/fW6bV9u+ZpO8A5wHvDXv52+hM8JgYmKCmZmZgX0+fPjwguttvXx24D7mG+bnrmSDarIaWZNe1qTXuNdk6EBIchbwdeBXquoHC/wB3++NWqB9oW2ObqjaAewAmJqaqunp6QG97vznvdB6N8+7k+kw9n9m8M9dyQbVZDWyJr2sSa9xr8lQZxkl+Uk6YfDbVfWN1vxGmwaiPb/Z2g8AF3VtvgZ4rbWv6dN+1DZJTgfOAd4+3g8jSVq8Yc4yCnAv8GJVfaXrrV3ATW35JuCRrvaN7cyhi+kcPH62TS8dSrK+7XPTvG3m9nUD8GQ7ziBJGpFhpow+CXwW2JPk+db2ReB24KEkm4FXgBsBqmpvkoeAF+icoXRrVR1p290C3AecATzeHtAJnK8l2UdnZLDxxD7W0ur+why/LEfSuBgYCFX1R/Sf4we4+hjbbAe292nfDVzWp/2HtECRJC0Pr1SWJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWqO6xvT1Ms7n0oaF44QJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp8cK0k8iL1CSdyhwhSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJzcBASPLVJG8m+W5X268l+X6S59vj2q73bkuyL8lLSa7par8yyZ723l1J0to/mOTB1v5MksmT/BklSUMYZoRwH7ChT/udVXVFezwGkOQSYCNwadvm7iSntfXvAbYAa9tjbp+bgYNV9THgTuCORX4WSdIJGBgIVfUt4O0h93cdsLOq3quql4F9wLokFwBnV9VTVVXAA8D1Xdvc35YfBq6eGz1IkkbnRK5U/lySTcBuYGtVHQQuBJ7uWudAa/tRW57fTnt+FaCqZpO8A5wHvDX/BybZQmeUwcTEBDMzMwM7efjw4QXX23r57MB9LMYwfVsug2qyGlmTXtak17jXZLGBcA/wJaDa85eBXwL6/WVfC7Qz4L2jG6t2ADsApqamanp6emBHZ2ZmWGi9m7tuN3FS7Xn3/cWVdhuLQTVZjaxJL2vSa9xrsqizjKrqjao6UlU/Bn4TWNfeOgBc1LXqGuC11r6mT/tR2yQ5HTiH4aeoJEknyaICoR0TmPMpYO4MpF3Axnbm0MV0Dh4/W1WvA4eSrG/HBzYBj3Rtc1NbvgF4sh1nkCSN0MApoyS/C0wD5yc5APwqMJ3kCjpTO/uBXwaoqr1JHgJeAGaBW6vqSNvVLXTOWDoDeLw9AO4FvpZkH52RwcaT8LkkScdpYCBU1af7NN+7wPrbge192ncDl/Vp/yFw46B+SJKWlt+HMAJ+T4KkU4G3rpAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhpPOx0xT0GVtFI5QpAkAQaCJKkxECRJgIEgSWo8qLyMPMAsaSVxhCBJAgwESVLjlNEK4fSRpOXmCEGSBBgIkqTGKaMVyOkjScvBEYIkCTAQJEmNgSBJAgwESVLjQeUVzgPMkkbFEYIkCTAQJEmNgSBJAgwESVIzMBCSfDXJm0m+29X24STfTPJn7fncrvduS7IvyUtJrulqvzLJnvbeXUnS2j+Y5MHW/kySyZP8GcfG5LZH339I0sk2zAjhPmDDvLZtwBNVtRZ4or0mySXARuDSts3dSU5r29wDbAHWtsfcPjcDB6vqY8CdwB2L/TDD8j9WSeo1MBCq6lvA2/OarwPub8v3A9d3te+sqveq6mVgH7AuyQXA2VX1VFUV8MC8beb29TBw9dzoQZI0Oou9DmGiql4HqKrXk3y0tV8IPN213oHW9qO2PL99bptX275mk7wDnAe8Nf+HJtlCZ5TBxMQEMzMzAzt6+PDhnvW2Xj47cLuVbpjPfiz9arLaWZNe1qTXuNfkZF+Y1u8v+1qgfaFtehurdgA7AKampmp6enpgh2ZmZpi/3s3jMFW05933F4/3grV+NVntrEkva9Jr3Guy2LOM3mjTQLTnN1v7AeCirvXWAK+19jV92o/aJsnpwDn0TlFJkpbYYgNhF3BTW74JeKSrfWM7c+hiOgePn23TS4eSrG/HBzbN22ZuXzcAT7bjDJKkERo4ZZTkd4Fp4PwkB4BfBW4HHkqyGXgFuBGgqvYmeQh4AZgFbq2qI21Xt9A5Y+kM4PH2ALgX+FqSfXRGBhtPyieTJB2XgYFQVZ8+xltXH2P97cD2Pu27gcv6tP+QFihaHG+AJ+lk8EplSRJgIEiSGr8PYcw4fSRpsRwhSJIAA0GS1BgIkiTAYwhjzeMJko6HIwRJEmAgSJIap4xWie7po/s2nLmMPZG0UjlCkCQBBoIkqTEQJEmAgSBJagyEVWjP999hctujRx1oliQDQZIEGAiSpMbrEFY5b28haY4jBEkSYCBIkhoDQZIEeAxBXTyeIK1ujhAkSYCBIElqnDJSX04fSauPIwRJEmAgSJIaA0GSBJzgMYQk+4FDwBFgtqqmknwYeBCYBPYD/6SqDrb1bwM2t/X/VVX9QWu/ErgPOAN4DPh8VdWJ9E0nj8cTpNXhZIwQrqqqK6pqqr3eBjxRVWuBJ9prklwCbAQuBTYAdyc5rW1zD7AFWNseG05CvyRJx2EppoyuA+5vy/cD13e176yq96rqZWAfsC7JBcDZVfVUGxU80LWNJGlEciIzM0leBg4CBfzHqtqR5H9X1Ye61jlYVecm+XXg6ar6T639XuBxOtNKt1fVz7X2nwW+UFX/uM/P20JnJMHExMSVO3fuHNjHw4cPc9ZZZx3Vtuf77yzi046PiTPgjf974vu5/MJzTnwnK0S/35PVzpr0GoeaXHXVVc91zegc5USvQ/hkVb2W5KPAN5P89wXWTZ+2WqC9t7FqB7ADYGpqqqanpwd2cGZmhvnr3bzKvyls6+WzfHnPiV+Csv8z0yfemRWi3+/JamdNeo17TU5oyqiqXmvPbwK/B6wD3mjTQLTnN9vqB4CLujZfA7zW2tf0aZckjdCi/0xMcibwE1V1qC3/I+DfALuAm4Db2/MjbZNdwO8k+QrwV+gcPH62qo4kOZRkPfAMsAn494vtl0Zn/ncyewaSdGo7kXmDCeD3kszt53eq6veTfBt4KMlm4BXgRoCq2pvkIeAFYBa4taqOtH3dwl+cdvp4e0iSRmjRgVBV3wM+0af9z4Grj7HNdmB7n/bdwGWL7YtWBq9XkE5tXqksSQIMBElS4+2vtSScPpJOPY4QJEmAIwSNgKMF6dTgCEGSBBgIkqTGKSONlNNH0splIGjZGA7SyuKUkSQJcISgFcLRgrT8HCFIkgBHCFqBHC1Iy8MRgiQJcISgFc7RgjQ6jhAkSYAjBJ1CHC1IS8sRgiQJcISgU1T3aKGbIwdp8RwhSJIARwgaMx5nkBbPQNDYMhyk42MgaFUwHKTBDAStOoaD1J+BoFVtLhy2Xj7LzQaFVjkDQerDUYRWIwNBGsBrHrRaGAjSIhkUGjcrJhCSbAD+HXAa8FtVdfsyd0lalGMFxXwGh1aaFREISU4D/gPwD4EDwLeT7KqqF5a3Z9LSGTY4+jFMtBRWRCAA64B9VfU9gCQ7gesAA0Hq40TCZFjzz7yaz1AaP6mq5e4DSW4ANlTVP2uvPwv8TFV9bt56W4At7eXfBF4aYvfnA2+dxO6OA2vSy5r0sia9xqEmf7WqPtLvjZUyQkiftp6kqqodwI7j2nGyu6qmFtuxcWRNelmTXtak17jXZKXc7fQAcFHX6zXAa8vUF0lalVZKIHwbWJvk4iQfADYCu5a5T5K0qqyIKaOqmk3yOeAP6Jx2+tWq2nuSdn9cU0yrhDXpZU16WZNeY12TFXFQWZK0/FbKlJEkaZkZCJIkYIwCIcmGJC8l2ZdkW5/3k+Su9v53kvyd5ejnKA1Rk8+0WnwnyR8n+cRy9HOUBtWka72/m+RIu0ZmbA1TjyTTSZ5PsjfJfx11H0dtiH835yT5L0n+tNXkF5ejn0uiqk75B50D0f8T+GvAB4A/BS6Zt861wON0rnlYDzyz3P1eATX5e8C5bfnnrclR6z0JPAbcsNz9XubfkQ/RuWPAT7XXH13ufq+AmnwRuKMtfwR4G/jAcvf9ZDzGZYTw/q0vqur/AXO3vuh2HfBAdTwNfCjJBaPu6AgNrElV/XFVHWwvn6Zz/cc4G+b3BOBfAl8H3hxl55bBMPX4p8A3quoVgKqyJp2LZv9ykgBn0QmE2dF2c2mMSyBcCLza9fpAazvedcbJ8X7ezXRGUONsYE2SXAh8CviNEfZruQzzO/I3gHOTzCR5LsmmkfVueQxTk18HPk7n4tk9wOer6sej6d7SWhHXIZwEw9z6YqjbY4yRoT9vkqvoBMLfX9IeLb9havJvgS9U1ZHOH4BjbZh6nA5cCVwNnAE8leTpqvofS925ZTJMTa4Bngf+AfDXgW8m+W9V9YMl7tuSG5dAGObWF6vt9hhDfd4kfxv4LeDnq+rPR9S35TJMTaaAnS0MzgeuTTJbVf95JD0crWH/3bxVVe8C7yb5FvAJYFwDYZia/CJwe3UOIuxL8jLwt4BnR9PFpTMuU0bD3PpiF7CpnW20Hninql4fdUdHaGBNkvwU8A3gs2P8F1+3gTWpqourarKqJoGHgX8xpmEAw/27eQT42SSnJ/lLwM8AL464n6M0TE1eoTNiIskEnTsvf2+kvVwiYzFCqGPc+iLJP2/v/wadM0auBfYB/4dOyo+tIWvyr4HzgLvbX8SzNcZ3chyyJqvGMPWoqheT/D7wHeDHdL7N8LvL1+ulNeTvyJeA+5LsoTPF9IWqOtVviQ146wpJUjMuU0aSpBNkIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSc3/Bxv/r87sxWCkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATa0lEQVR4nO3db4yl5X3e8e9VNkYEB4LBjFa7pEvrbWNga1K2ZFW30qSoZYNfgCWQ1kEGEqJNKa4caV8Y/KKJZK0ELxxa2kK0CRZgucEIO2Ubm7QIMnWj8MdLRLwslHpqtjBmBSIgzFKZesivL8491jnD7JwzszPnzMz5fqSj85z7+TP3+Wl2r3M/93OeSVUhSdLfGnUHJElrg4EgSQIMBElSYyBIkgADQZLUbBp1B5brnHPOqW3btvXd7t133+X0009f/Q6tE9ajl/XoZT16bcR6PPPMM29U1UcXWrduA2Hbtm0cOnSo73ZTU1NMTk6ufofWCevRy3r0sh69NmI9kvyfE63zlJEkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJWMffVF4N22751k+Xj972qRH2RJKGzxGCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgYIhCTnJfmzJC8kOZLk8639d5P8MMmz7XFF1z63JplO8mKSy7vaL0lyuK27M0la+6lJvt7an0qybRXe64K23fKtnz4kaZwNMkKYBfZV1ceBXcDNSS5o6+6oqovb49sAbd0e4EJgN3BXklPa9ncDe4Ht7bG7td8IvFVVHwPuAG4/+bcmSVqKvoFQVceq6i/b8jvAC8CWRXa5Enigqt6rqpeAaeDSJJuBM6rqiaoq4H7gqq597mvLDwGXzY0eJEnDsaQ5hHYq55eAp1rT55J8L8lXkpzV2rYAr3TtNtPatrTl+e09+1TVLPA2cPZS+iZJOjkD/z2EJB8GvgH8dlX9KMndwJeAas9fBn4DWOiTfS3STp913X3YS+eUExMTE0xNTfXt9/Hjxxfdbt+O2QXbBzn2etSvHuPGevSyHr3GrR4DBUKSn6ETBl+rqm8CVNVrXev/APiT9nIGOK9r963Aq6196wLt3fvMJNkEnAm8Ob8fVXUAOACwc+fOmpyc7Nv3qakpFtvuhhNMJh+9tv+x16N+9Rg31qOX9eg1bvUY5CqjAPcAL1TV73W1b+7a7NPAc235ILCnXTl0Pp3J46er6hjwTpJd7ZjXAQ937XN9W74aeLzNM0iShmSQEcIngc8Ch5M829q+CHwmycV0Tu0cBX4LoKqOJHkQeJ7OFUo3V9X7bb+bgHuB04BH2gM6gfPVJNN0RgZ7TuZNSZKWrm8gVNWfs/A5/m8vss9+YP8C7YeAixZo/zFwTb++SJJWj99UliQBBoIkqRn4stNx030ri6O3fWqEPZGk4XCEIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktRsGnUH1oNtt3yr5/XR2z41op5I0upxhCBJAgwESVJjIEiSAANBktQYCJIkwECQJDV9AyHJeUn+LMkLSY4k+Xxr/0iSR5N8vz2f1bXPrUmmk7yY5PKu9kuSHG7r7kyS1n5qkq+39qeSbFuF9ypJWsQgI4RZYF9VfRzYBdyc5ALgFuCxqtoOPNZe09btAS4EdgN3JTmlHetuYC+wvT12t/Ybgbeq6mPAHcDtK/DeJElL0DcQqupYVf1lW34HeAHYAlwJ3Nc2uw+4qi1fCTxQVe9V1UvANHBpks3AGVX1RFUVcP+8feaO9RBw2dzoQZI0HEv6pnI7lfNLwFPARFUdg05oJDm3bbYFeLJrt5nW9pO2PL99bp9X2rFmk7wNnA28Me/n76UzwmBiYoKpqam+fT5+/Pii2+3bMdv3GPMN8nPXqn71GDfWo5f16DVu9Rg4EJJ8GPgG8NtV9aNFPsAvtKIWaV9sn96GqgPAAYCdO3fW5ORkn153/vNebLsb5t2WYhBHr+3/c9eqfvUYN9ajl/XoNW71GOgqoyQ/QycMvlZV32zNr7XTQLTn11v7DHBe1+5bgVdb+9YF2nv2SbIJOBN4c6lvRpK0fINcZRTgHuCFqvq9rlUHgevb8vXAw13te9qVQ+fTmTx+up1eeifJrnbM6+btM3esq4HH2zyDJGlIBjll9Engs8DhJM+2ti8CtwEPJrkReBm4BqCqjiR5EHiezhVKN1fV+22/m4B7gdOAR9oDOoHz1STTdEYGe07ubUmSlqpvIFTVn7PwOX6Ay06wz35g/wLth4CLFmj/MS1Q1oPu22F7K2xJG4XfVJYkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkZpC/mKZF+MdyJG0UjhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgN9UXlF+a1nSeuYIQZIEGAiSpKZvICT5SpLXkzzX1fa7SX6Y5Nn2uKJr3a1JppO8mOTyrvZLkhxu6+5MktZ+apKvt/ankmxb4fcoSRrAICOEe4HdC7TfUVUXt8e3AZJcAOwBLmz73JXklLb93cBeYHt7zB3zRuCtqvoYcAdw+zLfiyTpJPQNhKr6DvDmgMe7Enigqt6rqpeAaeDSJJuBM6rqiaoq4H7gqq597mvLDwGXzY0eJEnDczJXGX0uyXXAIWBfVb0FbAGe7NpmprX9pC3Pb6c9vwJQVbNJ3gbOBt6Y/wOT7KUzymBiYoKpqam+nTx+/Pii2+3bMdv3GMsxSN9GoV89xo316GU9eo1bPZYbCHcDXwKqPX8Z+A1goU/2tUg7fdb1NlYdAA4A7Ny5syYnJ/t2dGpqisW2u6HrUtGVdPTaE//MUepXj3FjPXpZj17jVo9lBUJVvTa3nOQPgD9pL2eA87o23Qq82tq3LtDevc9Mkk3AmQx+imrN8jsJktabZV122uYE5nwamLsC6SCwp105dD6dyeOnq+oY8E6SXW1+4Drg4a59rm/LVwOPt3kGSdIQ9R0hJPkjYBI4J8kM8DvAZJKL6ZzaOQr8FkBVHUnyIPA8MAvcXFXvt0PdROeKpdOAR9oD4B7gq0mm6YwM9qzA+5IkLVHfQKiqzyzQfM8i2+8H9i/Qfgi4aIH2HwPX9OuHJGl1+U1lSRJgIEiSGgNBkgR4++uh8BJUSeuBIwRJEmAgSJIaA0GSBBgIkqTGSeUhc4JZ0lrlCEGSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWq87HSEvARV0lriCEGSBBgIkqTGU0ZrhKePJI2aIwRJEmAgSJIaTxmtQZ4+kjQKjhAkSYCBIElqDARJEuAcwprnfIKkYXGEIEkCDARJUuMpo3XE00eSVlPfEUKSryR5PclzXW0fSfJoku+357O61t2aZDrJi0ku72q/JMnhtu7OJGntpyb5emt/Ksm2FX6PkqQBDHLK6F5g97y2W4DHqmo78Fh7TZILgD3AhW2fu5Kc0va5G9gLbG+PuWPeCLxVVR8D7gBuX+6bkSQtX99AqKrvAG/Oa74SuK8t3wdc1dX+QFW9V1UvAdPApUk2A2dU1RNVVcD98/aZO9ZDwGVzowdJ0vAsdw5hoqqOAVTVsSTntvYtwJNd2820tp+05fntc/u80o41m+Rt4Gzgjfk/NMleOqMMJiYmmJqa6tvR48ePL7rdvh2zfY+xFg3y3hfSrx7jxnr0sh69xq0eKz2pvNAn+1qkfbF9PthYdQA4ALBz586anJzs26GpqSkW2+6Grona9eTotZPL2q9fPcaN9ehlPXqNWz2WGwivJdncRgebgddb+wxwXtd2W4FXW/vWBdq795lJsgk4kw+eotI8XnEkaaUt93sIB4Hr2/L1wMNd7XvalUPn05k8frqdXnonya42P3DdvH3mjnU18HibZ5AkDVHfEUKSPwImgXOSzAC/A9wGPJjkRuBl4BqAqjqS5EHgeWAWuLmq3m+HuonOFUunAY+0B8A9wFeTTNMZGexZkXcmSVqSvoFQVZ85warLTrD9fmD/Au2HgIsWaP8xLVC0PJ4+krQSxvKbytvW6USyJK0m72UkSQIMBElSM5anjDYy5xMkLZcjBEkSYCBIkhpPGW1gnj6StBSOECRJgIEgSWo8ZTQm5k4f7dsxy+RouyJpjXKEIEkCDARJUmMgSJIA5xDGkpejSlqIIwRJEmAgSJIaA0GSBBgIkqTGSeUx5wSzpDmOECRJgCMEdXG0II03RwiSJMBAkCQ1BoIkCXAOQSfgfII0fhwhSJIARwgagKMFaTw4QpAkAQaCJKk5qUBIcjTJ4STPJjnU2j6S5NEk32/PZ3Vtf2uS6SQvJrm8q/2SdpzpJHcmycn0S5K0dCsxQviVqrq4qna217cAj1XVduCx9pokFwB7gAuB3cBdSU5p+9wN7AW2t8fuFeiXJGkJVmNS+Upgsi3fB0wBX2jtD1TVe8BLSaaBS5McBc6oqicAktwPXAU8sgp900lyglnauE52hFDAf0vyTJK9rW2iqo4BtOdzW/sW4JWufWda25a2PL9dkjREJztC+GRVvZrkXODRJP9zkW0XmheoRdo/eIBO6OwFmJiYYGpqqm8Hjx8//oHt9u2Y7bvfRjVx2sq9/3//tYd7Xu/YcuaKHHeYFvr9GGfWo9e41eOkAqGqXm3Pryf5Y+BS4LUkm6vqWJLNwOtt8xngvK7dtwKvtvatC7Qv9PMOAAcAdu7cWZOTk337ODU1xfztbug67TFu9u2Y5cuHV+frJ0evnVyV466mhX4/xpn16DVu9Vj2KaMkpyf5ubll4F8AzwEHgevbZtcDcx8jDwJ7kpya5Hw6k8dPt9NK7yTZ1a4uuq5rH0nSkJzMR8UJ4I/bFaKbgP9UVX+a5LvAg0luBF4GrgGoqiNJHgSeB2aBm6vq/Xasm4B7gdPoTCY7obwOOeEsrW/LDoSq+gHwiQXa/xq47AT77Af2L9B+CLhouX2RJJ0872WkVeFoQVp/vHWFJAkwECRJjYEgSQKcQ9AQOJ8grQ+OECRJgCMEDZmjBWntcoQgSQIMBElS4ykjjcy2E9xk0FNJ0mg4QpAkAY4QtAY58SyNhiMESRLgCEFrnKMFaXgcIUiSAEcIWkccLUiryxGCJAlwhKB1ytGCtPIcIUiSAEcI2gAcLUgrw0DQhmI4SMtnIGjDMhykpTEQNBYMB6k/A0Fjpzsc7t19+gh7Iq0tXmWksXb4h2+z7ZZvnfBW3NI4cYQgNZ5W0rgzEKQFGA4aRwaC1IfhoHFhIEhL4J/91EZmIEgrYLFJacNC68WaCYQku4F/B5wC/GFV3TbiLkkrYqlXMBkgGpU1EQhJTgH+I/DPgRngu0kOVtXzo+2ZNHwncwmsYaKTsSYCAbgUmK6qHwAkeQC4EjAQpCU42e9T7Nsxyw3LOIZBtDGkqkbdB5JcDeyuqt9srz8L/HJVfW7ednuBve3l3wdeHODw5wBvrGB31zvr0ct69LIevTZiPf52VX10oRVrZYSQBdo+kFRVdQA4sKQDJ4eqaudyO7bRWI9e1qOX9eg1bvVYK7eumAHO63q9FXh1RH2RpLG0VgLhu8D2JOcn+RCwBzg44j5J0lhZE6eMqmo2yeeA/0rnstOvVNWRFTr8kk4xjQHr0ct69LIevcaqHmtiUlmSNHpr5ZSRJGnEDARJErCBAiHJ7iQvJplOcssC65Pkzrb+e0n+4Sj6OSwD1OPaVofvJfmLJJ8YRT+HpV89urb7R0neb9+N2bAGqUeSySTPJjmS5L8Pu4/DMsC/lTOT/Jckf9Vq8euj6OdQVNW6f9CZiP7fwN8BPgT8FXDBvG2uAB6h852HXcBTo+73iOvxj4Gz2vKvjns9urZ7HPg2cPWo+z3i34+fp3OngF9or88ddb9HWIsvAre35Y8CbwIfGnXfV+OxUUYIP731RVX9P2Du1hfdrgTur44ngZ9PsnnYHR2SvvWoqr+oqrfayyfpfPdjoxrk9wPgXwPfAF4fZudGYJB6/Brwzap6GaCqNmpNBqlFAT+XJMCH6QTC7HC7ORwbJRC2AK90vZ5pbUvdZqNY6nu9kc7oaaPqW48kW4BPA78/xH6NyiC/H38POCvJVJJnklw3tN4N1yC1+A/Ax+l8WfYw8Pmq+pvhdG+41sT3EFbAILe+GOj2GBvEwO81ya/QCYR/sqo9Gq1B6vFvgS9U1fudD4Ib2iD12ARcAlwGnAY8keTJqvpfq925IRukFpcDzwL/DPi7wKNJ/kdV/WiV+zZ0GyUQBrn1xTjdHmOg95rkHwB/CPxqVf31kPo2CoPUYyfwQAuDc4ArksxW1X8eSg+Ha9B/L29U1bvAu0m+A3wC2GiBMEgtfh24rTqTCNNJXgJ+EXh6OF0cno1yymiQW18cBK5rVxvtAt6uqmPD7uiQ9K1Hkl8Avgl8dgN+6puvbz2q6vyq2lZV24CHgH+1QcMABvv38jDwT5NsSvKzwC8DLwy5n8MwSC1epjNSIskEnTst/2CovRySDTFCqBPc+iLJv2zrf5/OlSNXANPA/6WT+hvSgPX4N8DZwF3tU/FsbdC7Og5Yj7ExSD2q6oUkfwp8D/gbOn/F8LnR9Xp1DPi78SXg3iSH6Zxi+kJVbbRbYgPeukKS1GyUU0aSpJNkIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSc3/B/8Tgj8jlcVDAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATWUlEQVR4nO3df4yl1X3f8fenbIyoHQgGe4R2SZfW29bA1qRMyapupUlRy4b8AZZAWtcykFBtSnHlSPuHwX80kayV4A+HlraQboIFWG4wwk7Z1iYtgkzdKPzwOiJeFko9NRTWrEAEhFkqUw/+9o97hr0zzM698+vemXvfL+lqnnvu8zx77pddPnPOee5zU1VIkvRXht0BSdLGYCBIkgADQZLUGAiSJMBAkCQ1W4bdgZU6++yza/v27T33e/vtt/ngBz+4/h3aBKzFfNbjBGsx3yjX43vf+95rVfWRxV7btIGwfft2Dh061HO/6elppqam1r9Dm4C1mM96nGAt5hvleiT5Pyd7zSkjSRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJErCJP6m8Hrbf9K33tl+45deG2BNJGjxHCJIkwECQJDU9AyHJuUn+JMmzSY4k+Xxr/50kP0ryVHtc3nXMzUlmkjyX5LKu9ouTHG6v3Z4krf3UJF9v7U8k2b4O71WStIR+RgizwL6q+jiwC7gxyfnttduq6qL2+DZAe20PcAGwG7gjySlt/zuBvcCO9tjd2q8H3qiqjwG3Abeu/q1JkpajZyBU1bGq+vO2/RbwLLB1iUOuAO6rqneq6nlgBrgkyTnA6VX1WFUVcC9wZdcx97TtB4BL50YPkqTBWNZVRm0q55eAJ4BPAp9Lcg1wiM4o4g06YfF412FHW9tP2/bCdtrPlwCqajbJm8BZwGsL/vy9dEYYTExMMD093bPPx48f72s/gH07Z9/b7veYzWQ5tRgH1uMEazHfuNaj70BI8iHgG8BvVdWPk9wJfAmo9vPLwG8Ai/1mX0u00+O1Ew1VB4ADAJOTk9XPF1gs54suruu+7PQz/R2zmYzyl36shPU4wVrMN6716OsqoyQ/RycMvlZV3wSoqleq6t2q+hnw+8AlbfejwLldh28DXm7t2xZpn3dMki3AGcDrK3lDkqSV6ecqowB3Ac9W1e92tZ/TtdungKfb9kFgT7ty6Dw6i8dPVtUx4K0ku9o5rwEe7Drm2rZ9FfBoW2eQJA1IP1NGnwQ+CxxO8lRr+yLw6SQX0ZnaeQH4TYCqOpLkfuAZOlco3VhV77bjbgDuBk4DHmoP6ATOV5PM0BkZ7FnNm5IkLV/PQKiqP2XxOf5vL3HMfmD/Iu2HgAsXaf8JcHWvvkiS1o+fVJYkAQaCJKkxECRJgIEgSWoMBEkS4BfkzPtSHEkaZ44QJEmAI4ST8us0JY0bRwiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJzZZhd2Az2H7Tt+Y9f+GWXxtSTyRp/ThCkCQBBoIkqekZCEnOTfInSZ5NciTJ51v7h5M8nOQH7eeZXcfcnGQmyXNJLutqvzjJ4fba7UnS2k9N8vXW/kSS7evwXiVJS+hnhDAL7KuqjwO7gBuTnA/cBDxSVTuAR9pz2mt7gAuA3cAdSU5p57oT2AvsaI/drf164I2q+hhwG3DrGrw3SdIy9AyEqjpWVX/ett8CngW2AlcA97Td7gGubNtXAPdV1TtV9TwwA1yS5Bzg9Kp6rKoKuHfBMXPnegC4dG70IEkajGWtIbSpnF8CngAmquoYdEID+GjbbSvwUtdhR1vb1ra9sH3eMVU1C7wJnLWcvkmSVqfvy06TfAj4BvBbVfXjJX6BX+yFWqJ9qWMW9mEvnSknJiYmmJ6e7tFrOH78+JL77ds52/McC/Xz525EvWoxbqzHCdZivnGtR1+BkOTn6ITB16rqm635lSTnVNWxNh30ams/Cpzbdfg24OXWvm2R9u5jjibZApwBvL6wH1V1ADgAMDk5WVNTUz37Pj09zVL7XbfgMwb9eOEzvf/cjahXLcaN9TjBWsw3rvXo5yqjAHcBz1bV73a9dBC4tm1fCzzY1b6nXTl0Hp3F4yfbtNJbSXa1c16z4Ji5c10FPNrWGSRJA9LPCOGTwGeBw0meam1fBG4B7k9yPfAicDVAVR1Jcj/wDJ0rlG6sqnfbcTcAdwOnAQ+1B3QC56tJZuiMDPas7m1JkparZyBU1Z+y+Bw/wKUnOWY/sH+R9kPAhYu0/4QWKJKk4fCTypIkwECQJDUGgiQJMBAkSY3fh7AC3d+P4HcjSBoVjhAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMbbX6+St8KWNCocIUiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1HjrijXkbSwkbWY9RwhJvpLk1SRPd7X9TpIfJXmqPS7veu3mJDNJnktyWVf7xUkOt9duT5LWfmqSr7f2J5JsX+P3KEnqQz9TRncDuxdpv62qLmqPbwMkOR/YA1zQjrkjySlt/zuBvcCO9pg75/XAG1X1MeA24NYVvhdJ0ir0DISq+g7wep/nuwK4r6reqarngRngkiTnAKdX1WNVVcC9wJVdx9zTth8ALp0bPUiSBmc1i8qfS/L9NqV0ZmvbCrzUtc/R1ra1bS9sn3dMVc0CbwJnraJfkqQVWOmi8p3Al4BqP78M/Aaw2G/2tUQ7PV6bJ8leOtNOTExMMD093bOjx48fX3K/fTtne55jJfrp26D1qsW4sR4nWIv5xrUeKwqEqnplbjvJ7wP/pT09Cpzbtes24OXWvm2R9u5jjibZApzBSaaoquoAcABgcnKypqamevZ1enqapfa7ruvKoDV1+O33NjfKFUe9ajFurMcJ1mK+ca3HiqaM2prAnE8Bc1cgHQT2tCuHzqOzePxkVR0D3kqyq60PXAM82HXMtW37KuDRts4gSRqgniOEJH8ITAFnJzkK/DYwleQiOlM7LwC/CVBVR5LcDzwDzAI3VtW77VQ30Lli6TTgofYAuAv4apIZOiODPWvwviRJy9QzEKrq04s037XE/vuB/Yu0HwIuXKT9J8DVvfohSVpf3rpCkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIavzFtAPwmNUmbgSMESRJgIEiSGqeMBszpI0kblSMESRJgIEiSGgNBkgQYCJKkxkCQJAFeZTRUXnEkaSNxhCBJAgwESVJjIEiSANcQNgzXEyQNmyMESRJgIEiSGqeMNiCnjyQNgyMESRJgIEiSGgNBkgS4hrDhuZ4gaVAcIUiSAANBktQ4ZbSJOH0kaT31HCEk+UqSV5M83dX24SQPJ/lB+3lm12s3J5lJ8lySy7raL05yuL12e5K09lOTfL21P5Fk+xq/R0lSH/qZMrob2L2g7SbgkaraATzSnpPkfGAPcEE75o4kp7Rj7gT2AjvaY+6c1wNvVNXHgNuAW1f6ZiRJK9czEKrqO8DrC5qvAO5p2/cAV3a131dV71TV88AMcEmSc4DTq+qxqirg3gXHzJ3rAeDSudGDJGlwVrqGMFFVxwCq6liSj7b2rcDjXfsdbW0/bdsL2+eOeamdazbJm8BZwGsL/9Ake+mMMpiYmGB6erpnR48fP77kfvt2zvY8x0b0b7/24HvbO7ee0dcxvWoxbqzHCdZivnGtx1ovKi/2m30t0b7UMe9vrDoAHACYnJysqampnh2anp5mqf2u61qo3axe+MxUX/v1qsW4sR4nWIv5xrUeK73s9JU2DUT7+WprPwqc27XfNuDl1r5tkfZ5xyTZApzB+6eoJEnrbKWBcBC4tm1fCzzY1b6nXTl0Hp3F4yfb9NJbSXa19YFrFhwzd66rgEfbOoMkaYB6Thkl+UNgCjg7yVHgt4FbgPuTXA+8CFwNUFVHktwPPAPMAjdW1bvtVDfQuWLpNOCh9gC4C/hqkhk6I4M9a/LOJEnL0jMQqurTJ3np0pPsvx/Yv0j7IeDCRdp/QgsUrYwfWJO0Frx1hSQJMBAkSY2BIEkCvLndyHE9QdJKOUKQJAGOEEaaowVJy+EIQZIEGAiSpMZAGBPbb/oWh3/05rxpJEnqNpZrCP5PUZLezxGCJAkwECRJzVhOGY07L0eVtBhHCJIkwECQJDUGgiQJcA1h7LmeIGmOIwRJEmAgSJIaA0GSBLiGoC6uJ0jjzRGCJAlwhKCTcLQgjR9HCJIkwECQJDUGgiQJMBAkSY2LyurJBWZpPBgIWhbDQRpdThlJkgADQZLUrCoQkryQ5HCSp5Icam0fTvJwkh+0n2d27X9zkpkkzyW5rKv94naemSS3J8lq+iVJWr61GCH8SlVdVFWT7flNwCNVtQN4pD0nyfnAHuACYDdwR5JT2jF3AnuBHe2xew36JUlahvVYVL4CmGrb9wDTwBda+31V9Q7wfJIZ4JIkLwCnV9VjAEnuBa4EHlqHvmkNdS8wg4vM0ma32kAo4L8lKeA/VNUBYKKqjgFU1bEkH237bgUe7zr2aGv7adte2P4+SfbSGUkwMTHB9PR0zw4eP378ffvt2znb87hRNHHa+r73fv57bCSL/d0YV9ZivnGtx2oD4ZNV9XL7n/7DSf7nEvsuti5QS7S/v7ETOAcAJicna2pqqmcHp6enWbjfdQt+sx0X+3bO8uXD63il8eG339vcDKOFxf5ujCtrMd+41mNVawhV9XL7+SrwR8AlwCtJzgFoP19tux8Fzu06fBvwcmvftki7JGmAVhwIST6Y5OfntoF/AjwNHASubbtdCzzYtg8Ce5KcmuQ8OovHT7bppbeS7GpXF13TdYwkaUBWM38wAfxRu0J0C/Afq+qPk3wXuD/J9cCLwNUAVXUkyf3AM8AscGNVvdvOdQNwN3AancVkF5Q3OT/RLG0+Kw6Eqvoh8IlF2v8SuPQkx+wH9i/Sfgi4cKV9kSStnvcy0rpztCBtDt66QpIEGAiSpMYpIw2U00fSxuUIQZIEGAiSpMYpIw2N00fSxuIIQZIEOELQBuFoQRo+RwiSJMARgjYgRwvScBgI2tAMB2lwnDKSJAGOELSJOFqQ1pcjBEkS4AhBm5SjBWntOUKQJAEGgiSpccpIm57TR9LaMBA0UgwHaeUMBI0sw0FaHgNBY8FwkHpzUVmSBDhC0BiaGy3s2znL1HC7Im0oBoLGmlNJ0gkGgtQYDhp3BoK0iO5w6GZQaJQZCNIyOIrQKDMQpBVyFKFRYyBIa2xhUBgQ2iwMBGmdOZLQZrFhAiHJbuDfAKcAf1BVtwy5S9K6OllQnIwBovW2IQIhySnAvwf+MXAU+G6Sg1X1zHB7Jm0cyw2QboaJ+rEhAgG4BJipqh8CJLkPuAIwEKQ10CtM9u2c5bpVBE43w2fzSlUNuw8kuQrYXVX/rD3/LPDLVfW5BfvtBfa2p38LeK6P058NvLaG3d3MrMV81uMEazHfKNfjr1XVRxZ7YaOMELJI2/uSqqoOAAeWdeLkUFVNrrRjo8RazGc9TrAW841rPTbK3U6PAud2Pd8GvDykvkjSWNoogfBdYEeS85J8ANgDHBxynyRprGyIKaOqmk3yOeC/0rns9CtVdWSNTr+sKaYRZy3msx4nWIv5xrIeG2JRWZI0fBtlykiSNGQGgiQJGKFASLI7yXNJZpLctMjrSXJ7e/37Sf7uMPo5CH3U4jOtBt9P8mdJPjGMfg5Kr3p07ff3krzbPhczkvqpRZKpJE8lOZLkvw+6j4PUx7+VM5L85yR/0erx68Po58BU1aZ/0FmI/t/AXwc+APwFcP6CfS4HHqLzmYddwBPD7vcQa/H3gTPb9q+Oai36rUfXfo8C3wauGna/h/h34xfo3CHgF9vzjw6730OuxxeBW9v2R4DXgQ8Mu+/r9RiVEcJ7t76oqv8HzN36otsVwL3V8TjwC0nOGXRHB6BnLarqz6rqjfb0cTqf+xhV/fzdAPiXwDeAVwfZuQHrpxb/FPhmVb0IUFXjXo8Cfj5JgA/RCYTZwXZzcEYlELYCL3U9P9ralrvPKFju+7yezshpVPWsR5KtwKeA3xtgv4ahn78bfxM4M8l0ku8luWZgvRu8furx74CP0/mg7GHg81X1s8F0b/A2xOcQ1kA/t77o6/YYI6Dv95nkV+gEwj9Y1x4NVz/1+NfAF6rq3c4vgiOrn1psAS4GLgVOAx5L8nhV/a/17twQ9FOPy4CngH8E/A3g4ST/o6p+vM59G4pRCYR+bn0xLrfH6Ot9Jvk7wB8Av1pVfzmgvg1DP/WYBO5rYXA2cHmS2ar6TwPp4eD0++/ktap6G3g7yXeATwCjGAj91OPXgVuqs4gwk+R54G8DTw6mi4M1KlNG/dz64iBwTbvaaBfwZlUdG3RHB6BnLZL8IvBN4LMj+ptft571qKrzqmp7VW0HHgD+xQiGAfT37+RB4B8m2ZLkrwK/DDw74H4OSj/1eJHOaIkkE3TusvzDgfZygEZihFAnufVFkn/eXv89OlePXA7MAP+XTvKPnD5r8a+As4A72m/FszWid3bssx5joZ9aVNWzSf4Y+D7wMzrfXvj08Hq9fvr8u/El4O4kh+lMMX2hqkb1ttjeukKS1DEqU0aSpFUyECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpOb/A3LqilfAkpYcAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATY0lEQVR4nO3df4zk9X3f8eerECNiAsZgr053pEfqa2t+1KRsyalupKW05UIrgSWQzrUMJESXUlw5En8Y/EcTyToJ/nBoUQrpJViAk+aMsFOutUmFIFs3Cj98RMTHQam3hsKZE4hAMUdrmsXv/jGf9cwtw87s3t7M7s7zIY32O5/vj/nMW3v32s/n+53vpKqQJOmvjbsDkqS1wUCQJAEGgiSpMRAkSYCBIElqThx3B1bqzDPPrK1btw7c7u233+aDH/zg8e/QOmAtuqxFl7XomoRaPPnkk69V1Uf6rVu3gbB161b2798/cLvZ2VlmZmaOf4fWAWvRZS26rEXXJNQiyf96v3VOGUmSAANBktQYCJIkwECQJDUDAyHJWUn+JMmzSQ4m+Xxr/80kP0jyVHtc1rPPzUnmkjyX5NKe9guTHGjrbk+S1n5Skq+19seTbD0O71WStIRhRgjzwI1V9XFgO3BDknPautuq6oL2+BZAW7cTOBfYAdyR5IS2/Z3ALmBbe+xo7dcBb1TVx4DbgFuP/a1JkpZjYCBU1eGq+vO2/BbwLLB5iV0uB/ZW1TtV9TwwB1yUZBNwalU9Wp1brN4LXNGzzz1t+X7gkoXRgyRpNJZ1DqFN5fw88Hhr+lyS7yb5SpLTW9tm4KWe3Q61ts1teXH7UftU1TzwJnDGcvomSTo2Q38wLckpwNeBX6+qHya5E/gSUO3nl4FfAfr9ZV9LtDNgXW8fdtGZcmJqaorZ2dmB/T5y5MhQ200Ca9FlLbqsRdek12KoQEjyU3TC4A+q6hsAVfVKz/rfBf5ze3oIOKtn9y3Ay619S5/23n0OJTkROA14fXE/qmoPsAdgenq6hvlE4XI+ebj1pm/+ZPmFW/7pUPusJ5PwKcxhWYsua9E16bUY5iqjAHcBz1bVb/W0b+rZ7FPA0215H7CzXTl0Np2Tx09U1WHgrSTb2zGvBh7o2eeatnwl8Ej5VW6SNFLDjBA+CXwWOJDkqdb2ReDTSS6gM7XzAvBrAFV1MMl9wDN0rlC6oarebftdD9wNnAw82B7QCZyvJpmjMzLYeSxvSpK0fAMDoar+lP5z/N9aYp/dwO4+7fuB8/q0/wi4alBfJEnHj59UliQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJErCMb0ybNBv9y3IkaTFHCJIkwECQJDUGgiQJ8BzCUecKJGmSOUKQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkpqJv/31MBbfItuv1JS0EQ0cISQ5K8mfJHk2ycEkn2/tH07yUJLvtZ+n9+xzc5K5JM8lubSn/cIkB9q625OktZ+U5Gut/fEkW4/De5UkLWGYKaN54Maq+jiwHbghyTnATcDDVbUNeLg9p63bCZwL7ADuSHJCO9adwC5gW3vsaO3XAW9U1ceA24BbV+G9SZKWYWAgVNXhqvrztvwW8CywGbgcuKdtdg9wRVu+HNhbVe9U1fPAHHBRkk3AqVX1aFUVcO+ifRaOdT9wycLoQZI0Gss6h9Cmcn4eeByYqqrD0AmNJB9tm20GHuvZ7VBr+6u2vLh9YZ+X2rHmk7wJnAG8tuj1d9EZYTA1NcXs7OzAPh85cmTJ7W48f37gMRYb5nXXokG1mCTWostadE16LYYOhCSnAF8Hfr2qfrjEH/D9VtQS7Uvtc3RD1R5gD8D09HTNzMwM6HXnP++ltrt2Bd+p/MJnBr/uWjSoFpPEWnRZi65Jr8VQl50m+Sk6YfAHVfWN1vxKmwai/Xy1tR8CzurZfQvwcmvf0qf9qH2SnAicBry+3DcjSVq5Ya4yCnAX8GxV/VbPqn3ANW35GuCBnvad7cqhs+mcPH6iTS+9lWR7O+bVi/ZZONaVwCPtPIMkaUSGmTL6JPBZ4ECSp1rbF4FbgPuSXAe8CFwFUFUHk9wHPEPnCqUbqurdtt/1wN3AycCD7QGdwPlqkjk6I4Odx/a2JEnLNTAQqupP6T/HD3DJ++yzG9jdp30/cF6f9h/RAkWSNB7eukKSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkS4BfkrEjvF+b4ZTmSNgpHCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElS4+2vj5G3wpa0UThCkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSpGRgISb6S5NUkT/e0/WaSHyR5qj0u61l3c5K5JM8lubSn/cIkB9q625OktZ+U5Gut/fEkW1f5PY7M1pu++ZOHJK03w4wQ7gZ29Gm/raouaI9vASQ5B9gJnNv2uSPJCW37O4FdwLb2WDjmdcAbVfUx4Dbg1hW+F0nSMRgYCFX1beD1IY93ObC3qt6pqueBOeCiJJuAU6vq0aoq4F7gip597mnL9wOXLIweJEmjcyx3O/1ckquB/cCNVfUGsBl4rGebQ63tr9ry4nbaz5cAqmo+yZvAGcBri18wyS46owympqaYnZ0d2MkjR44sud2N588PPMZKDNO3URtUi0liLbqsRdek12KlgXAn8CWg2s8vA78C9PvLvpZoZ8C6oxur9gB7AKanp2tmZmZgR2dnZ1lqu2uP03z/C595/9ccl0G1mCTWostadE16LVZ0lVFVvVJV71bVj4HfBS5qqw4BZ/VsugV4ubVv6dN+1D5JTgROY/gpKknSKllRILRzAgs+BSxcgbQP2NmuHDqbzsnjJ6rqMPBWku3t/MDVwAM9+1zTlq8EHmnnGSRJIzRwyijJHwIzwJlJDgG/AcwkuYDO1M4LwK8BVNXBJPcBzwDzwA1V9W471PV0rlg6GXiwPQDuAr6aZI7OyGDnKrwvSdIyDQyEqvp0n+a7lth+N7C7T/t+4Lw+7T8CrhrUj/XGr9aUtN74SWVJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWqO5W6nGpIfUpO0HjhCkCQBBoIkqTEQJEmAgSBJajypPGKeYJa0VjlCkCQBBoIkqTEQJEmAgSBJajypPEaeYJa0ljhCkCQBBoIkqTEQJEmAgSBJagwESRLgVUZrhlccSRo3RwiSJMBAkCQ1ThmtQU4fSRoHRwiSJMBAkCQ1ThmtcU4fSRoVA2EdMRwkHU8Dp4ySfCXJq0me7mn7cJKHknyv/Ty9Z93NSeaSPJfk0p72C5McaOtuT5LWflKSr7X2x5NsXeX3KEkawjDnEO4Gdixquwl4uKq2AQ+35yQ5B9gJnNv2uSPJCW2fO4FdwLb2WDjmdcAbVfUx4Dbg1pW+GUnSyg0MhKr6NvD6oubLgXva8j3AFT3te6vqnap6HpgDLkqyCTi1qh6tqgLuXbTPwrHuBy5ZGD1IkkZnpVcZTVXVYYD286OtfTPwUs92h1rb5ra8uP2ofapqHngTOGOF/ZIkrdBqn1Tu95d9LdG+1D7vPXiyi860E1NTU8zOzg7s0JEjR5bc7sbz5wceYy0a5r0vNqgWk8RadFmLrkmvxUoD4ZUkm6rqcJsOerW1HwLO6tluC/Bya9/Sp713n0NJTgRO471TVABU1R5gD8D09HTNzMwM7Ojs7CxLbXdtz5U768qBt3+yOOwVR4NqMUmsRZe16Jr0Wqx0ymgfcE1bvgZ4oKd9Z7ty6Gw6J4+faNNKbyXZ3s4PXL1on4VjXQk80s4zSJJGaOAIIckfAjPAmUkOAb8B3ALcl+Q64EXgKoCqOpjkPuAZYB64oarebYe6ns4VSycDD7YHwF3AV5PM0RkZ7FyVdyZJWpaBgVBVn36fVZe8z/a7gd192vcD5/Vp/xEtULQyfmBN0mrwXkaSJMBAkCQ1BoIkCTAQJEmNdzvdYDzBLGmlHCFIkgADQZLUOGW0gTl9JGk5HCFIkgADYWJsvembHPjBm0eNGiSpl4EgSQIMBElS40nlCeTJZkn9OEKQJAEGgiSpMRAkSYDnECae5xMkLZjIQPBafEl6L6eMJEmAgSBJaiZyykj9eT5BmmyOECRJgIEgSWqcMlJfTh9Jk8cRgiQJMBAkSY1TRhrI6SNpMjhCkCQBBoIkqTEQJEmA5xC0TJ5PkDYuRwiSJMARgo7B4tuIO2KQ1rdjGiEkeSHJgSRPJdnf2j6c5KEk32s/T+/Z/uYkc0meS3JpT/uF7ThzSW5PkmPplyRp+VZjyujiqrqgqqbb85uAh6tqG/Bwe06Sc4CdwLnADuCOJCe0fe4EdgHb2mPHKvRLkrQMx+McwuXAPW35HuCKnva9VfVOVT0PzAEXJdkEnFpVj1ZVAff27CNJGpF0/g9e4c7J88AbQAH/vqr2JPnfVfWhnm3eqKrTk/w28FhV/X5rvwt4EHgBuKWq/lFr/0XgC1X1z/q83i46IwmmpqYu3Lt378A+HjlyhFNOOeWotgM/eHMF73b9mzoZXvm/o3mt8zefNpoXWqF+vxeTylp0TUItLr744id7ZnSOcqwnlT9ZVS8n+SjwUJL/vsS2/c4L1BLt722s2gPsAZienq6ZmZmBHZydnWXxdtdO6Hcq33j+PF8+MJrrCF74zMxIXmel+v1eTCpr0TXptTim/x2q6uX289UkfwRcBLySZFNVHW7TQa+2zQ8BZ/XsvgV4ubVv6dOudczPK0jrz4rPIST5YJKfWVgG/gnwNLAPuKZtdg3wQFveB+xMclKSs+mcPH6iqg4DbyXZ3q4uurpnH0nSiBzLCGEK+KN2heiJwH+oqj9O8h3gviTXAS8CVwFU1cEk9wHPAPPADVX1bjvW9cDdwMl0zis8eAz9kiStwIoDoaq+D3yiT/tfApe8zz67gd192vcD5620L1rbnD6S1gdvXSFJAgwESVLjvYw0Uk4fSWuXIwRJEuAIQWPkaEFaWxwhSJIARwhaIxwtSOPnCEGSBBgIkqTGQJAkAZ5D0Brk+QRpPAwErWmGgzQ6BoLWDcNBOr48hyBJAhwhaJ1ytCCtPkcIkiTAEYI2AEcL0upwhCBJAgwESVLjlJE2FKePpJUzELRhGQ7S8jhlJEkCHCFoQvSOFgBuPH+ea2/6piMHqYcjBEkS4AhBE87zDFKXgSA1hoMmnYEg9WE4aBIZCNIAhoMmhYEgLYPhoI3MQJBWaPGlrAsMCq1XBoK0yt4vKMCw0Nrm5xAkSYAjBGmklho9LHAUoXFZM4GQZAfwb4ETgN+rqlvG3CVpLIYJjV4GiFbLmgiEJCcA/w74x8Ah4DtJ9lXVM+PtmbT2GSBaLWsiEICLgLmq+j5Akr3A5YCBIK2y97vR3/HQGz6LX9dgWntSVePuA0muBHZU1a+2558FfqGqPrdou13Arvb0bwHPDXH4M4HXVrG765m16LIWXdaiaxJq8der6iP9VqyVEUL6tL0nqapqD7BnWQdO9lfV9Eo7tpFYiy5r0WUtuia9FmvlstNDwFk9z7cAL4+pL5I0kdZKIHwH2Jbk7CQfAHYC+8bcJ0maKGtiyqiq5pN8DvgvdC47/UpVHVylwy9rimmDsxZd1qLLWnRNdC3WxEllSdL4rZUpI0nSmBkIkiRggwRCkh1Jnksyl+SmPuuT5Pa2/rtJ/u44+jkKQ9TiM60G303yZ0k+MY5+jsKgWvRs9/eSvNs+D7MhDVOLJDNJnkpyMMl/HXUfR2WIfyOnJflPSf6i1eKXx9HPsaiqdf2gcxL6fwI/B3wA+AvgnEXbXAY8SOfzDtuBx8fd7zHW4u8Dp7flX5rkWvRs9wjwLeDKcfd7jL8XH6JzZ4Cfbc8/Ou5+j7EWXwRubcsfAV4HPjDuvo/isRFGCD+57UVV/T9g4bYXvS4H7q2Ox4APJdk06o6OwMBaVNWfVdUb7eljdD7zsREN83sB8K+ArwOvjrJzIzZMLf458I2qehGgqjZqPYapRQE/kyTAKXQCYX603RyPjRAIm4GXep4fam3L3WYjWO77vI7OyGkjGliLJJuBTwG/M8J+jcMwvxd/Ezg9yWySJ5NcPbLejdYwtfht4ON0Phx7APh8Vf14NN0brzXxOYRjNMxtL4a6NcYGMPT7THIxnUD4B8e1R+MzTC3+DfCFqnq388fghjVMLU4ELgQuAU4GHk3yWFX9j+PduREbphaXAk8B/xD4G8BDSf5bVf3wOPdt7DZCIAxz24tJuTXGUO8zyd8Bfg/4par6yxH1bdSGqcU0sLeFwZnAZUnmq+o/jqSHozPsv5HXqupt4O0k3wY+AWy0QBimFr8M3FKdkwhzSZ4H/jbwxGi6OD4bYcpomNte7AOublcbbQferKrDo+7oCAysRZKfBb4BfHYD/vXXa2AtqursqtpaVVuB+4F/uQHDAIb7N/IA8ItJTkzy08AvAM+OuJ+jMEwtXqQzUiLJFJ07K39/pL0ck3U/Qqj3ue1Fkn/R1v8OnStILgPmgP9D5y+ADWfIWvxr4AzgjvaX8XxtwLs7DlmLiTBMLarq2SR/DHwX+DGdby18eny9Pj6G/L34EnB3kgN0ppi+UFUb/ZbYgLeukCQ1G2HKSJK0CgwESRJgIEiSGgNBkgQYCJKkxkCQJAEGgiSp+f+htpzszYxtCQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD7CAYAAABqvuNzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAATXElEQVR4nO3df4xl5X3f8fenECMKgdhgj1a7pEvrbWp+1KRMN6u6lYaihg35AyxBtC7yQrLRphS3jrR/GPxHY8laCSQ7tNSFdBMswHIDCDtlq0BSCzJ1ovDDWCJeFkqzNVtYswIREGapTJn1t3+cZ5nLMDv3zuzsvbN33i/pas79nh/z3IdhP/Oc55wzqSokSfpbo26AJGllMBAkSYCBIElqDARJEmAgSJIaA0GSBAwQCEnOSfJnSZ5LsjfJ51v9S0l+lOTp9rq8Z5+bkuxL8nySy3rqFyfZ09bdliStfkqS+1r9iSTrj8NnlSQtYJARwgywo6o+AWwCbkhyXlt3a1Vd1F4PAbR1W4Dzgc3A7UlOatvfAWwHNrTX5lbfBrxRVR8HbgVuOfaPJklajJP7bVBVB4GDbfmtJM8BaxfY5Qrg3qp6B3ghyT5gY5L9wBlV9RhAknuAK4GH2z5favs/AHwtSWqBu+bOPvvsWr9+fb/m8/bbb3Paaaf13W7c2Q8d+2GWfdFZbf3w/e9//7Wq+uh86/oGQq92KucXgSeATwGfS7IVeIpuFPEGXVg83rPbgVZ7ty3PrdO+vgRQVTNJ3gTOAl6b8/23040wmJiY4Ctf+UrfNh86dIjTTz99MR9zLNkPHfthln3RWW39cMkll/yfo60bOBCSnA58C/jtqvpxkjuALwPVvn4V+A0g8+xeC9Tps262ULUL2AUwOTlZU1NTfds9PT3NINuNO/uhYz/Msi869sOsga4ySvIzdGHwzar6NkBVvVJVh6vqp8DvAxvb5geAc3p2Xwe83Orr5qm/b58kJwNnAq8v5QNJkpZmkKuMAtwJPFdVv9tTX9Oz2aeBZ9rybmBLu3LoXLrJ4yfbXMRbSTa1Y24FHuzZ59q2fBXw6ELzB5Kk5TfIKaNPAZ8F9iR5utW+CHwmyUV0p3b2A78FUFV7k9wPPEt3hdINVXW47Xc9cBdwKt1k8sOtfifwjTYB/TrdVUqSpCEa5Cqjv2D+c/wPLbDPTmDnPPWngAvmqf8EuLpfWyRJx493KkuSAANBktQYCJIkwECQJDWLulN53K2/8Y/fW95/86+OsCWSNHyOECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGh9udxQ+6E7SauMIQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkZtU/uqL3ERWStJo5QpAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkpq+gZDknCR/luS5JHuTfL7VP5LkO0n+un39cM8+NyXZl+T5JJf11C9Osqetuy1JWv2UJPe1+hNJ1h+HzypJWsAgI4QZYEdVfQLYBNyQ5DzgRuCRqtoAPNLe09ZtAc4HNgO3JzmpHesOYDuwob02t/o24I2q+jhwK3DLMnw2SdIi9L0xraoOAgfb8ltJngPWAlcAU22zu4Fp4Autfm9VvQO8kGQfsDHJfuCMqnoMIMk9wJXAw22fL7VjPQB8LUmqqo75Ey6DuTev+TeWJY2jRd2p3E7l/CLwBDDRwoKqOpjkY22ztcDjPbsdaLV32/Lc+pF9XmrHmknyJnAW8Nqc77+dboTBxMQE09PTfdt86NChBbfbceFM32PMNcj3XWn69cNqYT/Msi869sOsgQMhyenAt4Dfrqoft9P/8246T60WqC+0z/sLVbuAXQCTk5M1NTXVp9XdP94LbXfdEh5dsf+a/t93penXD6uF/TDLvujYD7MGusooyc/QhcE3q+rbrfxKkjVt/Rrg1VY/AJzTs/s64OVWXzdP/X37JDkZOBN4fbEfRpK0dINcZRTgTuC5qvrdnlW7gWvb8rXAgz31Le3KoXPpJo+fbKeX3kqyqR1z65x9jhzrKuDRlTJ/IEmrxSCnjD4FfBbYk+TpVvsicDNwf5JtwIvA1QBVtTfJ/cCzdFco3VBVh9t+1wN3AafSTSY/3Op3At9oE9Cv012lJEkaokGuMvoL5j/HD3DpUfbZCeycp/4UcME89Z/QAkWSNBreqSxJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJKARf6BHHV6/4Kafz1N0rhwhCBJAgwESVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAn2V0zHyukaRx4QhBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqSmbyAk+XqSV5M801P7UpIfJXm6vS7vWXdTkn1Jnk9yWU/94iR72rrbkqTVT0lyX6s/kWT9Mn9GSdIABhkh3AVsnqd+a1Vd1F4PASQ5D9gCnN/2uT3JSW37O4DtwIb2OnLMbcAbVfVx4FbgliV+FknSMegbCFX1XeD1AY93BXBvVb1TVS8A+4CNSdYAZ1TVY1VVwD3AlT373N2WHwAuPTJ6kCQNz7E87fRzSbYCTwE7quoNYC3weM82B1rt3bY8t077+hJAVc0keRM4C3ht7jdMsp1ulMHExATT09N9G3no0KEFt9tx4UzfYwzqP37zwfeWL1x75rIddzn064fVwn6YZV907IdZSw2EO4AvA9W+fhX4DWC+3+xrgTp91r2/WLUL2AUwOTlZU1NTfRs6PT3NQttd1/P46uW0/5qjf89R6NcPq4X9MMu+6NgPs5Z0lVFVvVJVh6vqp8DvAxvbqgPAOT2brgNebvV189Tft0+Sk4EzGfwUlSRpmSwpENqcwBGfBo5cgbQb2NKuHDqXbvL4yao6CLyVZFObH9gKPNizz7Vt+Srg0TbPIEkaor6njJL8ITAFnJ3kAPA7wFSSi+hO7ewHfgugqvYmuR94FpgBbqiqw+1Q19NdsXQq8HB7AdwJfCPJPrqRwZZl+FySpEXqGwhV9Zl5yncusP1OYOc89aeAC+ap/wS4ul87JEnHl3cqS5IAA0GS1BgIkiTg2G5M0wLW99zfsP/mXx1hSyRpMI4QJEmAgSBJagwESRJgIEiSGgNBkgR4ldFQeMWRpBOBIwRJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJgPchDJ33JEhaqRwhSJIAA0GS1BgIkiTAOYSRcj5B0kriCEGSBBgIkqTGQJAkAQaCJKkxECRJgFcZrRhecSRp1BwhSJIAA0GS1HjKaAXy9JGkUXCEIEkCHCGseI4WJA2LIwRJEjBAICT5epJXkzzTU/tIku8k+ev29cM9625Ksi/J80ku66lfnGRPW3dbkrT6KUnua/Unkqxf5s8oSRrAICOEu4DNc2o3Ao9U1QbgkfaeJOcBW4Dz2z63Jzmp7XMHsB3Y0F5HjrkNeKOqPg7cCtyy1A8z7tbf+MfvvSRpufUNhKr6LvD6nPIVwN1t+W7gyp76vVX1TlW9AOwDNiZZA5xRVY9VVQH3zNnnyLEeAC49MnqQJA3PUieVJ6rqIEBVHUzysVZfCzzes92BVnu3Lc+tH9nnpXasmSRvAmcBr839pkm2040ymJiYYHp6um9DDx06tOB2Oy6c6XuMlWiQz96rXz+sFvbDLPuiYz/MWu6rjOb7zb4WqC+0zweLVbuAXQCTk5M1NTXVt0HT09MstN11J+jpl/3XTC1q+379sFrYD7Psi479MGupgfBKkjVtdLAGeLXVDwDn9Gy3Dni51dfNU+/d50CSk4Ez+eApKs3h5aiSlttSLzvdDVzblq8FHuypb2lXDp1LN3n8ZDu99FaSTW1+YOucfY4c6yrg0TbPIEkaor4jhCR/CEwBZyc5APwOcDNwf5JtwIvA1QBVtTfJ/cCzwAxwQ1Udboe6nu6KpVOBh9sL4E7gG0n20Y0MtizLJ5MkLUrfQKiqzxxl1aVH2X4nsHOe+lPABfPUf0ILFC2Np48kLQfvVJYkAQaCJKkxECRJgIEgSWp8/PWYcYJZ0lI5QpAkAY4QxlrvaOGuzaeNsCWSTgSOECRJgIEgSWoMBEkSYCBIkhonlVeJPT96c96//eClqZKOcIQgSQIMBElSYyBIkgADQZLUOKm8yvnsI0lHOEKQJAGOENTD0YK0ujlCkCQBBoIkqTEQJEmAgSBJalblpPL6eZ7po/dzgllafRwhSJIAA0GS1KzKU0ZaHE8fSauDIwRJEuAIQYvkaEEaX44QJEmAgSBJagwESRLgHIKOwdwb/JxTkE5sjhAkScAxjhCS7AfeAg4DM1U1meQjwH3AemA/8GtV9Ubb/iZgW9v+31bVn7b6xcBdwKnAQ8Dnq6qOpW0aPq9Akk5syzFCuKSqLqqqyfb+RuCRqtoAPNLek+Q8YAtwPrAZuD3JSW2fO4DtwIb22rwM7ZIkLcLxOGV0BXB3W74buLKnfm9VvVNVLwD7gI1J1gBnVNVjbVRwT88+kqQhOdZJ5QL+e5IC/nNV7QImquogQFUdTPKxtu1a4PGefQ+02rtteW79A5JspxtJMDExwfT0dN8GHjp06APb7bhwpu9+42bi1OF+7kH+24zCfD8Pq5V90bEfZh1rIHyqql5u/+h/J8n/XGDbzFOrBeofLHaBswtgcnKypqam+jZwenqaudtdtwoff73jwhm+umd4F5Xtv2ZqaN9rMeb7eVit7IuO/TDrmP6FqKqX29dXk/wRsBF4JcmaNjpYA7zaNj8AnNOz+zrg5VZfN09dJzAnmKUTz5LnEJKcluRnjywDvww8A+wGrm2bXQs82JZ3A1uSnJLkXLrJ4yfb6aW3kmxKEmBrzz6SpCE5lhHCBPBH3b/hnAz8l6r6kyTfA+5Psg14EbgaoKr2JrkfeBaYAW6oqsPtWNcze9npw+2lMeFoQToxLDkQquqHwCfnqf8NcOlR9tkJ7Jyn/hRwwVLbIkk6dj66QkPlaEFauXx0hSQJcISgEXK0IK0sjhAkSYCBIElqDARJEuAcglYI5xOk0TMQtOIYDtJoeMpIkgQYCJKkxkCQJAHOIWiFcz5BGh4DQScMw0E6vgwEnZAMB2n5OYcgSQIMBElS4ykjnfA8fSQtDwNBY8VwkJbOU0aSJMARgsaYowVpcRwhSJIARwhaJY6MFnZcOMPUaJsirViOECRJgCMErULOLUjzMxC0qhkO0ixPGUmSAEcI0nt6Rwu9HDlotXCEIEkCHCFIfTly0GphIEhL5IS0xo2BIC0Dw0HjwECQltncU0wGhE4UBoJ0nDkHoROFgSCNiEGhlcZAkFYY5yM0KismEJJsBv4DcBLwB1V184ibJI3c0UYRi2WwaBArIhCSnAT8J+BfAAeA7yXZXVXPjrZl0niYL1h2XDjDdY5G1GNFBAKwEdhXVT8ESHIvcAVgIEhDslyjkaUwjFaGVNWo20CSq4DNVfWb7f1ngV+qqs/N2W47sL29/QXg+QEOfzbw2jI290RlP3Tsh1n2RWe19cPfqaqPzrdipYwQMk/tA0lVVbuAXYs6cPJUVU0utWHjwn7o2A+z7IuO/TBrpTzc7gBwTs/7dcDLI2qLJK1KKyUQvgdsSHJukg8BW4DdI26TJK0qK+KUUVXNJPkc8Kd0l51+var2LtPhF3WKaYzZDx37YZZ90bEfmhUxqSxJGr2VcspIkjRiBoIkCRiTQEiyOcnzSfYluXGe9UlyW1v/gyT/aBTtHIYB+uKa1gc/SPKXST45inYeb/36oWe7f5zkcLsXZuwM0g9JppI8nWRvkv8x7DYOywD/b5yZ5L8l+avWF78+inaOVFWd0C+6Sej/Dfxd4EPAXwHnzdnmcuBhuvsdNgFPjLrdI+yLfwJ8uC3/yjj2xSD90LPdo8BDwFWjbveIfh5+ju6JAD/f3n9s1O0eYV98EbilLX8UeB340KjbPszXOIwQ3nvsRVX9P+DIYy96XQHcU53HgZ9LsmbYDR2Cvn1RVX9ZVW+0t4/T3fMxbgb5mQD4N8C3gFeH2bghGqQf/iXw7ap6EaCqVnNfFPCzSQKcThcIM8Nt5miNQyCsBV7qeX+g1Ra7zThY7OfcRjdyGjd9+yHJWuDTwO8NsV3DNsjPw98HPpxkOsn3k2wdWuuGa5C++BrwCbqbYvcAn6+qnw6neSvDirgP4RgN8tiLgR6NMQYG/pxJLqELhH96XFs0GoP0w78HvlBVh7tfCMfSIP1wMnAxcClwKvBYkser6n8d78YN2SB9cRnwNPDPgb8HfCfJn1fVj49z21aMcQiEQR57sVoejTHQ50zyD4E/AH6lqv5mSG0bpkH6YRK4t4XB2cDlSWaq6r8OpYXDMej/G69V1dvA20m+C3wSGLdAGKQvfh24ubpJhH1JXgD+AfDkcJo4euNwymiQx17sBra2q402AW9W1cFhN3QI+vZFkp8Hvg18dgx/Czyibz9U1blVtb6q1gMPAP96zMIABvt/40HgnyU5OcnfBn4JeG7I7RyGQfriRbqREkkm6J6o/MOhtnLETvgRQh3lsRdJ/lVb/3t0V5FcDuwD/i/dbwJjZ8C++HfAWcDt7bfjmRqzJz0O2A9jb5B+qKrnkvwJ8APgp3R/rfCZ0bX6+BjwZ+LLwF1J9tCdYvpCVa2mx2L76ApJUmccThlJkpaBgSBJAgwESVJjIEiSAANBktQYCJIkwECQJDX/H8tpij6s6SY/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARUElEQVR4nO3db4xc1XnH8e9TXBAlgQCGFbJJlxa3DeBCy9axmlbaFLU45IWJBJVThE3qyi2Flkp+gcmLJlJkCV6ktCiF1A2RDWoDFiHFLZAUQae0CgZMRTCG0mzBhcUWFsEimArKOk9f3LMw7M7uzP6bmZ35fqTRzpy59+6ZhzW/OefcuROZiSRJP9XpDkiSuoOBIEkCDARJUmEgSJIAA0GSVCzpdAdma+nSpTk4ONh0u7fffpsTTjhh4TvUxaxBxTpUrEOlX+vw1FNPvZ6ZpzV6btEGwuDgIHv27Gm6Xa1WY3h4eOE71MWsQcU6VKxDpV/rEBH/M9VzThlJkgADQZJUGAiSJMBAkCQVBoIkCTAQJEmFgSBJAgwESVJhIEiSgEX8SeWFMLjl/vfv77/xsx3siSS1nyMESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKL10xBS9jIanfOEKQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSqaBkJEnBkR/xIRz0fEvoi4rrSfEhEPRcQPy8+T6/a5ISJGIuKFiLi4rv3CiNhbnrslIqK0HxcRd5f2xyNicAFeqyRpGq2MEMaAzZn5CWA1cE1EnANsAR7OzBXAw+Ux5bl1wLnAGuDWiDimHOs2YBOwotzWlPaNwOHMPBu4GbhpHl6bJGkGmgZCZh7MzP8o998CngeWAWuBHWWzHcCl5f5a4K7MfDczXwJGgFURcQZwYmY+lpkJ3DFhn/Fj3QNcND56kCS1x4y+D6FM5fwK8DgwkJkHoQqNiDi9bLYM2F2322hpe6/cn9g+vs8r5VhjEfEmcCrw+oTfv4lqhMHAwAC1Wq1pn48cOdLSdgCbV441bG91/241kxr0MutQsQ4V6zBZy4EQER8Bvg38WWb+eJo38I2eyGnap9vnww2Z24BtAENDQzk8PNyk19X/zKfbrv6LcKYqx/4rmv+ebtasBv3COlSsQ8U6TNbSWUYR8dNUYfB3mXlvaX6tTANRfh4q7aPAmXW7LwcOlPblDdo/tE9ELAFOAt6Y6YuRJM1eK2cZBXA78Hxm/kXdU7uADeX+BuC+uvZ15cyhs6gWj58o00tvRcTqcsz1E/YZP9ZlwCNlnUGS1CatTBl9CrgS2BsRT5e2LwI3AjsjYiPwMnA5QGbui4idwHNUZyhdk5lHy35XA9uB44EHyw2qwLkzIkaoRgbr5vayJEkz1TQQMvPfaTzHD3DRFPtsBbY2aN8DnNeg/R1KoHSjD68zwP4bP9uhnkjSwvGTypIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJhYEgSQIMBElSYSBIkoAZfKeyPlD//Qh+N4KkXuEIQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSp8OJ2c+SF7iT1CkcIkiTAQJAkFQaCJAkwECRJhYEgSQIMBElSYSBIkoAWAiEivhkRhyLi2bq2L0fEqxHxdLldUvfcDRExEhEvRMTFde0XRsTe8twtERGl/biIuLu0Px4Rg/P8GiVJLWhlhLAdWNOg/ebMvKDcHgCIiHOAdcC5ZZ9bI+KYsv1twCZgRbmNH3MjcDgzzwZuBm6a5WuRJM1B00DIzEeBN1o83lrgrsx8NzNfAkaAVRFxBnBiZj6WmQncAVxat8+Ocv8e4KLx0YMkqX3mcumKayNiPbAH2JyZh4FlwO66bUZL23vl/sR2ys9XADJzLCLeBE4FXp/4CyNiE9Uog4GBAWq1WtNOHjlyZNrtNq8ca3qMVrXSn05oVoN+YR0q1qFiHSabbSDcBnwFyPLzq8DvA43e2ec07TR57sONmduAbQBDQ0M5PDzctKO1Wo3ptruq7lpEc7X/iub96YRmNegX1qFiHSrWYbJZBUJmvjZ+PyL+Fvin8nAUOLNu0+XAgdK+vEF7/T6jEbEEOInWp6i6ihe6k7SYzeq007ImMO5zwPgZSLuAdeXMobOoFo+fyMyDwFsRsbqsD6wH7qvbZ0O5fxnwSFlnkCS1UdMRQkR8CxgGlkbEKPAlYDgiLqCa2tkP/CFAZu6LiJ3Ac8AYcE1mHi2HuprqjKXjgQfLDeB24M6IGKEaGaybh9clSZqhpoGQmZ9v0Hz7NNtvBbY2aN8DnNeg/R3g8mb9kCQtLD+pLEkCDARJUmEgSJIAA0GSVBgIkiTAQJAkFXO5lpGm4aeWJS02jhAkSYCBIEkqDARJEmAgSJIKF5XbwAVmSYuBIwRJEmAgSJIKA0GSBBgIkqTCQJAkAQaCJKkwECRJgIEgSSoMBEkS4CeV285PLUvqVo4QJEmAI4SOcrQgqZs4QpAkAQaCJKkwECRJgIEgSSoMBEkS4FlGXcMzjiR1miMESRJgIEiSCgNBkgQYCJKkwkXlLuQCs6ROcIQgSQJaCISI+GZEHIqIZ+vaTomIhyLih+XnyXXP3RARIxHxQkRcXNd+YUTsLc/dEhFR2o+LiLtL++MRMTjPr1GS1IJWRgjbgTUT2rYAD2fmCuDh8piIOAdYB5xb9rk1Io4p+9wGbAJWlNv4MTcChzPzbOBm4KbZvhhJ0uw1XUPIzEcbvGtfCwyX+zuAGnB9ab8rM98FXoqIEWBVROwHTszMxwAi4g7gUuDBss+Xy7HuAb4WEZGZOdsX1Uvq1xPqubYgab7NdlF5IDMPAmTmwYg4vbQvA3bXbTda2t4r9ye2j+/zSjnWWES8CZwKvD7xl0bEJqpRBgMDA9RqtaYdPXLkyLTbbV451vQY3aiV1z6uWQ36hXWoWIeKdZhsvs8yigZtOU37dPtMbszcBmwDGBoayuHh4aYdqtVqTLfdVVO8A+92+68YbnnbZjXoF9ahYh0q1mGy2Z5l9FpEnAFQfh4q7aPAmXXbLQcOlPblDdo/tE9ELAFOAt6YZb8kSbM020DYBWwo9zcA99W1rytnDp1FtXj8RJleeisiVpezi9ZP2Gf8WJcBj7h+0Nzglvvfv0nSfGg6ZRQR36JaQF4aEaPAl4AbgZ0RsRF4GbgcIDP3RcRO4DlgDLgmM4+WQ11NdcbS8VSLyQ+W9tuBO8sC9BtUZylJktqslbOMPj/FUxdNsf1WYGuD9j3AeQ3a36EEiiSpc7x0RQ/wUheS5oOXrpAkAQaCJKlwyqjHOH0kabYcIUiSAANBklQYCJIkwECQJBUuKvew8QXmzSvH3r9WuSRNxRGCJAlwhNA3PB1VUjOOECRJgIEgSSqcMupDTh9JasQRgiQJcITQ9xwtSBrnCEGSBBgIkqTCQJAkAa4hqI7rCVJ/c4QgSQIcIWgKjhak/uMIQZIEGAiSpMJAkCQBBoIkqXBRWU25wCz1B0cIkiTAQJAkFX05ZVQ/BaKZcfpI6l2OECRJQJ+OEDQ/Jo60HDFIi5sjBEkSYCBIkgoDQZIEuIageeQZSNLiNqdAiIj9wFvAUWAsM4ci4hTgbmAQ2A/8bmYeLtvfAGws2/9pZn6vtF8IbAeOBx4ArsvMnEvf1FmGg7T4zMeU0acz84LMHCqPtwAPZ+YK4OHymIg4B1gHnAusAW6NiGPKPrcBm4AV5bZmHvolSZqBhVhDWAvsKPd3AJfWtd+Vme9m5kvACLAqIs4ATszMx8qo4I66fSRJbTLXNYQE/jkiEvibzNwGDGTmQYDMPBgRp5dtlwG76/YdLW3vlfsT2yeJiE1UIwkGBgao1WpNO3jkyJFJ221eOdZ0v14ycHxnX3Mr/53aodHfQj+yDhXrMNlcA+FTmXmg/E//oYj4z2m2jQZtOU375MYqcLYBDA0N5fDwcNMO1mo1Jm53VZ9dumLzyjG+urdz5w/sv2K4Y7+7XqO/hX5kHSrWYbI5TRll5oHy8xDwHWAV8FqZBqL8PFQ2HwXOrNt9OXCgtC9v0C5JaqNZB0JEnBARHx2/D/wO8CywC9hQNtsA3Ffu7wLWRcRxEXEW1eLxE2V66a2IWB0RAayv20c9YHDL/e/fJHWvucwjDADfqf4fzhLg7zPzuxHxJLAzIjYCLwOXA2TmvojYCTwHjAHXZObRcqyr+eC00wfLTT3I01Gl7jXrQMjMF4HzG7T/CLhoin22AlsbtO8BzpttXyRJc+elKyRJgJeuUAc5fSR1F0cIkiTAEYK6hKMFqfMcIUiSAANBklQ4ZaSu4/SR1BmOECRJgCMEdTlHC1L7OEKQJAGOELSIOFqQFpYjBEkSYCBIkgqnjLQoTfXdCk4lSbPnCEGSBBgIkqTCKSP1FM9EkmbPQFDPMhykmXHKSJIEGAjqE4Nb7mfvq29OeXaSJANBklQYCJIkwEVl9SEXm6XGDAT1NcNB+oCBIBWGg/qdgSA1YDioH7moLEkCHCFITTlaUL8wEKQZMBzUywwEaZYMB/UaA0GaB9NdEsOw0GJhIEgLzJGEFgsDQWojw0HdzECQOsTvhVa3MRCkLuMoQp1iIEhdzFGE2qlrAiEi1gB/BRwDfCMzb+xwl6SuNZcv+tm+5oR57Il6SVcEQkQcA/w18NvAKPBkROzKzOc62zOp9+x99U2uahIojkD6U1cEArAKGMnMFwEi4i5gLWAgSB3QLV81ajC1V2Rmp/tARFwGrMnMPyiPrwQ+mZnXTthuE7CpPPxF4IUWDr8UeH0eu7sYWYOKdahYh0q/1uFnM/O0Rk90ywghGrRNSqrM3AZsm9GBI/Zk5tBsO9YLrEHFOlSsQ8U6TNYtl78eBc6se7wcONChvkhSX+qWQHgSWBERZ0XEscA6YFeH+yRJfaUrpowycywirgW+R3Xa6Tczc988HX5GU0w9yhpUrEPFOlSswwRdsagsSeq8bpkykiR1mIEgSQJ6JBAiYk1EvBARIxGxpcHzERG3lOefiYhf7UQ/F1oLdbiivP5nIuL7EXF+J/q50JrVoW67X4uIo+VzMD2nlTpExHBEPB0R+yLiX9vdx4XWwr+JkyLiHyPiB6UGX+hEP7tGZi7qG9Ui9H8DPwccC/wAOGfCNpcAD1J93mE18Hin+92hOvw6cHK5/5l+rUPddo8ADwCXdbrfHfp7+BjV1QA+Xh6f3ul+d6AGXwRuKvdPA94Aju103zt164URwvuXvcjM/wPGL3tRby1wR1Z2Ax+LiDPa3dEF1rQOmfn9zDxcHu6m+rxHr2nl7wHgT4BvA4fa2bk2aqUOvwfcm5kvA2Rmr9WilRok8NGICOAjVIEw1t5udo9eCIRlwCt1j0dL20y3Wexm+ho3Uo2aek3TOkTEMuBzwNfb2K92a+Xv4ReAkyOiFhFPRcT6tvWuPVqpwdeAT1B9EHYvcF1m/qQ93es+XfE5hDlq5bIXLV0aY5Fr+TVGxKepAuE3FrRHndFKHf4SuD4zj1ZvDHtSK3VYAlwIXAQcDzwWEbsz878WunNt0koNLgaeBn4L+HngoYj4t8z88QL3rSv1QiC0ctmLfrg0RkuvMSJ+GfgG8JnM/FGb+tZOrdRhCLirhMFS4JKIGMvMf2hLD9uj1X8Xr2fm28DbEfEocD7QK4HQSg2+ANyY1SLCSES8BPwS8ER7uthdemHKqJXLXuwC1pezjVYDb2bmwXZ3dIE1rUNEfBy4F7iyh94FTtS0Dpl5VmYOZuYgcA/wxz0WBtDav4v7gN+MiCUR8TPAJ4Hn29zPhdRKDV6mGiEREQNUV1F+sa297CKLfoSQU1z2IiL+qDz/daozSS4BRoD/pXpX0FNarMOfA6cCt5Z3x2PZY1d7bLEOPa+VOmTm8xHxXeAZ4CdU31T4bOd6Pb9a/Fv4CrA9IvZSTTFdn5n9eElswEtXSJKKXpgykiTNAwNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkq/h/4+Lil9hAhGQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARSklEQVR4nO3dX4xc5XnH8e9Tu0EuCQQwrCzb6brFbQO40LJ1rKaVNrUaHHJhIkHlFGGTunJLoaWSL2Jy0VSKLJmLlJa2kLoB2aA0xiKkdgUkRaZTWgUDpiIYQ2m24MLGFpaDRWwqKGueXsy7ZFhmZ2b/zczOfj/SaM+858++87Lmt895zzkbmYkkST/V6Q5IkrqDgSBJAgwESVJhIEiSAANBklTM73QHJmvhwoXZ39/fcJs333yTM888sz0d6mKOg2MwynFwDJ5++unjmXl+vXWzNhD6+/s5cOBAw20qlQqDg4Pt6VAXcxwcg1GOg2MQEf8z3jpPGUmSAANBklQYCJIkwECQJBUGgiQJMBAkSYWBIEkCDARJUmEgSJKAWXyn8kzo3/Lge8uHt322gz2RpPazQpAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEeB/CuLwnQdJcY4UgSQIMBElSYSBIkgADQZJUGAiSJMBAkCQVBoIkCWghECJiaUT8S0S8EBGHIuLm0n5uRDwSET8oX8+p2eeWiBiKiBcj4oqa9ssj4mBZd3tERGk/IyLuK+1PRET/DHxWSVIDrVQII8DmzPw4sAq4MSIuArYA+zJzObCvvKesWwdcDKwB7oiIeeVYdwKbgOXltaa0bwROZOaFwG3ArdPw2SRJE9A0EDLzaGb+R1k+CbwALAbWAjvLZjuBq8ryWmBXZr6dmS8DQ8DKiFgEnJWZj2dmAveM2Wf0WPcDq0erB0lSe0zo0RXlVM6vAE8AfZl5FKqhEREXlM0WA/trdhsube+U5bHto/u8Wo41EhFvAOcBx8d8/01UKwz6+vqoVCoN+3vq1Kmm29TavGKkbvtEjtGNJjoOvcgxqHIcHINGWg6EiPgw8C3gTzPzxw1+ga+3Ihu0N9rn/Q2Z24HtAAMDAzk4ONiwz5VKhWbb1Lq+5vlFtQ5f2/oxutFEx6EXOQZVjoNj0EhLVxlFxE9TDYNvZOYDpfm1chqI8vVYaR8GltbsvgQ4UtqX1Gl/3z4RMR84G3h9oh9GkjR5rVxlFMBdwAuZ+Rc1q/YCG8ryBmBPTfu6cuXQMqqTx0+W00snI2JVOeb6MfuMHutq4NEyzyBJapNWThl9ErgOOBgRz5S2LwHbgN0RsRF4BbgGIDMPRcRu4HmqVyjdmJmny343ADuABcDD5QXVwLk3IoaoVgbrpvaxJEkT1TQQMvPfqX+OH2D1OPtsBbbWaT8AXFKn/S1KoEiSOsM7lSVJgIEgSSoMBEkSYCBIkooJ3ak8V/WPuWHt8LbPdqgnkjRzrBAkSYCBIEkqDARJEmAgSJKKOT+pPHbCWJLmKisESRJgIEiSCgNBkgQYCJKkwkCQJAEGgiSpMBAkSYCBIEkqDARJEmAgSJKKOf/oismofdyFfxtBUq+wQpAkAQaCJKkwECRJgIEgSSoMBEkSYCBIkgoDQZIEGAiSpMJAkCQBBoIkqTAQJEmAgSBJKny43RT5oDtJvcIKQZIEGAiSpMJAkCQBBoIkqWgaCBFxd0Qci4jnatr+PCJ+GBHPlNeVNetuiYihiHgxIq6oab88Ig6WdbdHRJT2MyLivtL+RET0T/NnlCS1oJUKYQewpk77bZl5WXk9BBARFwHrgIvLPndExLyy/Z3AJmB5eY0ecyNwIjMvBG4Dbp3kZ5EkTUHTQMjMx4DXWzzeWmBXZr6dmS8DQ8DKiFgEnJWZj2dmAvcAV9Xss7Ms3w+sHq0eJEntM5X7EG6KiPXAAWBzZp4AFgP7a7YZLm3vlOWx7ZSvrwJk5khEvAGcBxwf+w0jYhPVKoO+vj4qlUrDDp46darpNptXjDRcPxHNvlentDIOvc4xqHIcHINGJhsIdwJfAbJ8/Srwe0C93+yzQTtN1r2/MXM7sB1gYGAgBwcHG3ayUqnQbJvra24sm6rD1zb+Xp3Syjj0OsegynFwDBqZ1FVGmflaZp7OzHeBvwdWllXDwNKaTZcAR0r7kjrt79snIuYDZ9P6KSpJ0jSZVCCUOYFRnwNGr0DaC6wrVw4tozp5/GRmHgVORsSqMj+wHthTs8+Gsnw18GiZZ5AktVHTU0YR8U1gEFgYEcPAl4HBiLiM6qmdw8AfAGTmoYjYDTwPjAA3ZubpcqgbqF6xtAB4uLwA7gLujYghqpXBumn4XB3hc40kzWZNAyEzP1+n+a4G228FttZpPwBcUqf9LeCaZv2QJM0s71SWJAEGgiSpMBAkSYCBIEkqDARJEmAgSJIKA0GSBBgIkqRiKk87VQPetSxptrFCkCQBBoIkqTAQJEmAgSBJKgwESRJgIEiSCi87bQMvQZU0G1ghSJIAA0GSVBgIkiTAQJAkFQaCJAkwECRJhZedtpmXoErqVlYIkiTAQJAkFQaCJAkwECRJhZPKHeQEs6RuYoUgSQIMBElSYSBIkgADQZJUOKncJZxgltRpVgiSJMBAkCQVBoIkCTAQJEmFk8pdyAlmSZ3QtEKIiLsj4lhEPFfTdm5EPBIRPyhfz6lZd0tEDEXEixFxRU375RFxsKy7PSKitJ8REfeV9icion+aP6MkqQWtnDLaAawZ07YF2JeZy4F95T0RcRGwDri47HNHRMwr+9wJbAKWl9foMTcCJzLzQuA24NbJfhhJ0uQ1DYTMfAx4fUzzWmBnWd4JXFXTvisz387Ml4EhYGVELALOyszHMzOBe8bsM3qs+4HVo9WDJKl9JjuH0JeZRwEy82hEXFDaFwP7a7YbLm3vlOWx7aP7vFqONRIRbwDnAcfHftOI2ES1yqCvr49KpdKwk6dOnWq6zeYVIw3Xd9pff2PPe8srFp89qWO0Mg69zjGochwcg0ame1K53m/22aC90T4fbMzcDmwHGBgYyMHBwYadqVQqNNvm+poJ3G53+NrBSe3Xyjj0OsegynFwDBqZbCC8FhGLSnWwCDhW2oeBpTXbLQGOlPYlddpr9xmOiPnA2XzwFJXw6iNJM2uy9yHsBTaU5Q3Anpr2deXKoWVUJ4+fLKeXTkbEqjI/sH7MPqPHuhp4tMwzSJLaqGmFEBHfBAaBhRExDHwZ2AbsjoiNwCvANQCZeSgidgPPAyPAjZl5uhzqBqpXLC0AHi4vgLuAeyNiiGplsG5aPlmPs1qQNN2aBkJmfn6cVavH2X4rsLVO+wHgkjrtb1ECRZLUOd6p3AOsFiRNB59lJEkCDARJUmEgSJIA5xB6jvMJkibLCkGSBBgIkqTCU0Y9bPT00eYVIwx2tiuSZgErBEkSYCBIkgoDQZIEGAiSpMJJ5TnC+xMkNWOFIEkCDARJUuEpoznI00eS6rFCkCQBVghzntWCpFFWCJIkwApBNawWpLnNCkGSBBgIkqTCU0aqy9NH0txjhSBJAqwQ1AKrBWlusEKQJAEGgiSpMBAkSYCBIEkqnFTWhDjBLPUuKwRJEmAgSJIKTxlp0mpPH4GnkKTZzgpBkgRYIWgaOeEszW5WCJIkwECQJBVz8pTR2MlQSdIUAyEiDgMngdPASGYORMS5wH1AP3AY+J3MPFG2vwXYWLb/k8z8bmm/HNgBLAAeAm7OzJxK39RZzidIs890nDL6VGZelpkD5f0WYF9mLgf2lfdExEXAOuBiYA1wR0TMK/vcCWwClpfXmmnol7pE/5YH33tJ6l4zMYewFthZlncCV9W078rMtzPzZWAIWBkRi4CzMvPxUhXcU7OPJKlNpjqHkMA/R0QCf5eZ24G+zDwKkJlHI+KCsu1iYH/NvsOl7Z2yPLb9AyJiE9VKgr6+PiqVSsPOnTp1qu42m1eMNPtcPaVvQfd85mb/zWbKeD8Lc43j4Bg0MtVA+GRmHin/038kIv6zwbZRpy0btH+wsRo42wEGBgZycHCwYecqlQr1trl+jp262LxihK8e7I7rBw5fO9iR7zvez8Jc4zg4Bo1M6ZRRZh4pX48B3wZWAq+V00CUr8fK5sPA0prdlwBHSvuSOu2SpDaadCBExJkR8ZHRZeDTwHPAXmBD2WwDsKcs7wXWRcQZEbGM6uTxk+X00smIWBURAayv2UeS1CZTOY/QB3y7+v9w5gP/kJnfiYingN0RsRF4BbgGIDMPRcRu4HlgBLgxM0+XY93ATy47fbi81IPGu9LIS1Olzpt0IGTmS8Clddp/BKweZ5+twNY67QeASybbF0nS1PnoCkkSYCBIkoruuBZRc56PupA6zwpBkgRYIagLWS1InWGFIEkCrBDU5awWpPaxQpAkAQaCJKnwlJFmDU8fSTPLCkGSBFghaJayWpCmnxWCJAkwECRJhaeMNOv5Nxak6WGFIEkCrBDUw2orhx1rzuxgT6TZwQpBkgQYCJojDv7wDfq3PDjufIMkA0GSVDiHoDnHm9qk+qwQJEmAFYLmOKsF6SesECRJgBWC9B6rBc11VgiSJMAKQarL5yNpLrJCkCQBVgjShDjPoF5mIEiTZDio1xgI0jQwHNQLDARpmo2dkDYgNFsYCNIMs3rQbGEgSG3k5azqZl52KkkCrBCkrmDloG5gIEhdzKBQOxkI0ixkUGgmdE0gRMQa4K+AecDXM3Nbh7skzTrN/mb05hUjXO9VTxpHVwRCRMwD/hb4bWAYeCoi9mbm853tmdTbmgXIWAZIb+uKQABWAkOZ+RJAROwC1gIGgtRFJhog08kwmnmRmZ3uAxFxNbAmM3+/vL8O+ERm3jRmu03ApvL2F4EXmxx6IXB8mrs7GzkOjsEox8Ex+NnMPL/eim6pEKJO2weSKjO3A9tbPmjEgcwcmErHeoHj4BiMchwcg0a65ca0YWBpzfslwJEO9UWS5qRuCYSngOURsSwiPgSsA/Z2uE+SNKd0xSmjzByJiJuA71K97PTuzDw0DYdu+fRSj3McHINRjoNjMK6umFSWJHVet5wykiR1mIEgSQJ6JBAiYk1EvBgRQxGxpc76iIjby/pnI+JXO9HPmdTCGFxbPvuzEfG9iLi0E/2cac3GoWa7X4uI0+UemJ7TyjhExGBEPBMRhyLiX9vdx5nWwr+JsyPinyLi+2UMvtCJfnaVzJzVL6qT0P8N/BzwIeD7wEVjtrkSeJjq/Q6rgCc63e8OjMGvA+eU5c/02hi0Og412z0KPARc3el+d+jn4aNUnwTwsfL+gk73uwNj8CXg1rJ8PvA68KFO972Tr16oEN577EVm/h8w+tiLWmuBe7JqP/DRiFjU7o7OoKZjkJnfy8wT5e1+qvd69JpWfhYA/hj4FnCsnZ1ro1bG4XeBBzLzFYDM7LWxaGUMEvhIRATwYaqBMNLebnaXXgiExcCrNe+HS9tEt5nNJvr5NlKtmHpN03GIiMXA54CvtbFf7dbKz8MvAOdERCUino6I9W3rXXu0MgZ/A3yc6k2wB4GbM/Pd9nSvO3XFfQhT1MpjL1p6NMYs1vLni4hPUQ2E35jRHnVGK+Pwl8AXM/N09RfDntTKOMwHLgdWAwuAxyNif2b+10x3rk1aGYMrgGeA3wJ+HngkIv4tM388w33rWr0QCK089qLXH43R0ueLiF8Gvg58JjN/1Ka+tVMr4zAA7CphsBC4MiJGMvMf29LD9mj138TxzHwTeDMiHgMuBXolEFoZgy8A27I6iTAUES8DvwQ82Z4udp9eOGXUymMv9gLry9VGq4A3MvNouzs6g5qOQUR8DHgAuK6Hfgscq+k4ZOayzOzPzH7gfuCPeiwMoLV/E3uA34yI+RHxM8AngBfa3M+Z1MoYvEK1QiIi+qg+Qfmltvayy8z6CiHHeexFRPxhWf81qleTXAkMAf9L9TeDntHiGPwZcB5wR/nteCR77ImPLY5Dz2tlHDLzhYj4DvAs8C7Vv1L4XOd6Pb1a/Fn4CrAjIg5SPcX0xcycy4/F9tEVkqSqXjhlJEmaBgaCJAkwECRJhYEgSQIMBElSYSBIkgADQZJU/D8b1sNvVbQ9CwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "pd.set_option('display.max_rows', 100)\n", - "for t in range(1, 27, 1):\n", - " predictions_df[[col for col in predictions_df.columns.to_list() if f\"_{t}_Ft\" in col]+[\"partition\", \"split\"]][f\"0_{t}_Ft_calibrated\"].hist(bins=100)\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:miniconda3-pl1.x]", - "language": "python", - "name": "conda-env-miniconda3-pl1.x-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/9_Check_h5ad.ipynb b/neuralcvd/preprocessing/ukbb_tabular/9_Check_h5ad.ipynb deleted file mode 100644 index 676aa85..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/9_Check_h5ad.ipynb +++ /dev/null @@ -1,8163 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. Check h5ad" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "from tqdm.auto import tqdm\n", - "import matplotlib.pyplot as pl\n", - "import pathlib\n", - "import anndata as ad\n", - "\n", - "import numpy as np\n", - "import pandas as pd\n", - "import lifelines\n", - "from lifelines import CoxPHFitter\n", - "from sklearn.model_selection import StratifiedKFold\n", - "from collections import OrderedDict\n", - "\n", - "\n", - "from joblib import Parallel, delayed\n", - "from tqdm.notebook import tqdm\n", - "import neptune\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "import shutil\n", - "\n", - "#project_path = \"/home/steinfej/projects/uk_biobank/\"\n", - "#dataset_path = \"data/datasets/\"\n", - "project_name = \"cvd_massive_excl_emb_ind\"\n", - "shared_path = \"/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/3_datasets_post\"\n", - "from utils import setup, nanstr_to_nan, h5ad_ensure_dimensionality, h5ad_fillna" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Read data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Utils" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "h5ad_fp = f\"{shared_path}/{project_name}/prep/derived.filtered.transformed.h5ad\"" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "h5ad_fp = f\"{shared_path}/{project_name}/partition_0/valid/data.normalized.scores.h5ad\"\n", - "data = ad.read_h5ad(h5ad_fp)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 39888 × 4167\n", - " obs: 'eid'\n", - " var: 'dtype', 'isTarget', 'based_on', 'aggr_fn', 'recoding', 'NewLevels'" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "#h5ad_fp = f\"{shared_path}/{project_name}/prep/derived.filtered.transformed.h5ad\"\n", - "h5ad_fp_train = f\"{shared_path}/{project_name}/partition_0/train/data.normalized.h5ad\"\n", - "h5ad_fp_valid = f\"{shared_path}/{project_name}/partition_0/valid/data.normalized.h5ad\"\n", - "h5ad_fp_test = f\"{shared_path}/{project_name}/partition_0/test/data.normalized.h5ad\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "data_train = ad.read_h5ad(h5ad_fp_train)\n", - "data_valid = ad.read_h5ad(h5ad_fp_valid)\n", - "data_test = ad.read_h5ad(h5ad_fp_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "data_complete = data_train.concatenate(data_valid, data_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "data_complete.write_h5ad(f\"{shared_path}/cvd_massive_complete/complete.data.normalized.h5ad\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from pprint import pprint" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "measurements = ['body_mass_index_bmi',\n", - " 'weight',\n", - " 'pulse_wave_arterial_stiffness_index',\n", - " 'pulse_wave_reflection_index',\n", - " 'waist_circumference',\n", - " 'hip_circumference',\n", - " 'trunk_fat_percentage',\n", - " 'body_fat_percentage',\n", - " 'basal_metabolic_rate',\n", - " 'forced_vital_capacity_fvc_best_measure',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure',\n", - " 'fev1_fvc_ratio_zscore',\n", - " 'peak_expiratory_flow_pef_f3064_0_2',\n", - " 'peak_expiratory_flow_pef_f3064_0_1',\n", - " 'peak_expiratory_flow_pef',\n", - " 'systolic_blood_pressure',\n", - " 'diastolic_blood_pressure',\n", - " 'pulse_rate']\n", - "labs = ['basophill_count',\n", - " 'basophill_percentage',\n", - " 'eosinophill_count',\n", - " 'eosinophill_percentage',\n", - " 'haematocrit_percentage',\n", - " 'haemoglobin_concentration',\n", - " 'high_light_scatter_reticulocyte_count',\n", - " 'high_light_scatter_reticulocyte_percentage',\n", - " 'immature_reticulocyte_fraction',\n", - " 'lymphocyte_count',\n", - " 'lymphocyte_percentage',\n", - " 'mean_corpuscular_haemoglobin',\n", - " 'mean_corpuscular_haemoglobin_concentration',\n", - " 'mean_corpuscular_volume',\n", - " 'mean_platelet_thrombocyte_volume',\n", - " 'mean_reticulocyte_volume',\n", - " 'mean_sphered_cell_volume',\n", - " 'monocyte_count',\n", - " 'monocyte_percentage',\n", - " 'neutrophill_count',\n", - " 'neutrophill_percentage',\n", - " 'nucleated_red_blood_cell_count',\n", - " 'nucleated_red_blood_cell_percentage',\n", - " 'platelet_count',\n", - " 'platelet_crit',\n", - " 'platelet_distribution_width',\n", - " 'red_blood_cell_erythrocyte_count',\n", - " 'red_blood_cell_erythrocyte_distribution_width',\n", - " 'reticulocyte_count',\n", - " 'reticulocyte_percentage',\n", - " 'white_blood_cell_leukocyte_count',\n", - " 'alanine_aminotransferase',\n", - " 'albumin',\n", - " 'alkaline_phosphatase',\n", - " 'apolipoprotein_a',\n", - " 'apolipoprotein_b',\n", - " 'aspartate_aminotransferase',\n", - " 'creactive_protein',\n", - " 'calcium',\n", - " 'cholesterol',\n", - " 'creatinine',\n", - " 'cystatin_c',\n", - " 'direct_bilirubin',\n", - " 'gamma_glutamyltransferase',\n", - " 'glucose',\n", - " 'glycated_haemoglobin_hba1c',\n", - " 'hdl_cholesterol',\n", - " 'igf1',\n", - " 'ldl_direct',\n", - " 'lipoprotein_a',\n", - " 'oestradiol',\n", - " 'phosphate',\n", - " 'rheumatoid_factor',\n", - " 'shbg',\n", - " 'testosterone',\n", - " 'total_bilirubin',\n", - " 'total_protein',\n", - " 'triglycerides',\n", - " 'urate',\n", - " 'urea',\n", - " 'vitamin_d']" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "content = measurements + labs\n", - "content_original = [f\"{e}_original\" for e in content]\n", - "df_original = pd.DataFrame(data=data[:,content_original].X, columns = content_original)\n", - "df_scaled = pd.DataFrame(data=data[:, content].X, columns = content )" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
body_mass_index_bmi_originalweight_originalpulse_wave_arterial_stiffness_index_originalpulse_wave_reflection_index_originalwaist_circumference_originalhip_circumference_originaltrunk_fat_percentage_originalbody_fat_percentage_originalbasal_metabolic_rate_originalforced_vital_capacity_fvc_best_measure_original...phosphate_originalrheumatoid_factor_originalshbg_originaltestosterone_originaltotal_bilirubin_originaltotal_protein_originaltriglycerides_originalurate_originalurea_originalvitamin_d_original
026.55570063.7999997.2770080.085.000000107.00000037.50000039.5000005012.03.21...1.42238.20000170.1100011.5600007.4171.9700011.247221.3000035.4870.699997
122.74650070.69999712.3077045.087.80000394.40000233.40000228.7000016171.04.19...1.26411.80000055.31000112.2370008.0778.4499971.906374.7000125.2835.900002
229.56790095.80000311.1111078.098.000000104.00000027.60000025.6000008711.04.14...0.92819.00000031.62999911.3980008.6569.6999975.184322.7999886.6763.599998
325.01560060.09999810.9816052.086.00000094.00000034.20000136.5000004879.02.34...1.20130.7999996.7500000.9750006.2972.4199981.740230.1999978.1660.400002
429.36319988.90000211.9149050.0106.000000104.00000028.70000127.0000007991.03.63...1.21811.00000027.2099997.0570009.5278.9199982.847428.3999944.5026.100000
..................................................................
31910321.93630059.00000012.1970076.071.00000088.00000022.20000119.2999995786.04.50...1.13611.50000067.93000020.20700115.5673.5899960.965262.6000063.6531.900000
31910425.34930072.4000025.4761939.086.000000105.00000037.00000037.5000005782.03.87...1.05713.50000061.5900001.05900012.9372.0999980.730298.7999884.2141.599998
31910524.22750162.79999911.1266065.074.00000094.00000028.79999932.0999985381.03.47...0.99616.29999973.3799970.65200011.1974.1999971.442220.1999974.0172.699997
31910629.142500104.0999988.9150963.0108.000000104.00000032.09999827.5000009330.04.80...0.98617.20000124.48000010.9510009.9570.6500025.756353.6000064.4245.900002
31910729.598801102.40000216.0345074.0110.000000108.00000031.50000030.0000008849.04.26...1.16320.60000045.09000015.03000011.8570.6200032.327454.7999885.1420.200001
\n", - "

319108 rows × 79 columns

\n", - "
" - ], - "text/plain": [ - " body_mass_index_bmi_original weight_original \\\n", - "0 26.555700 63.799999 \n", - "1 22.746500 70.699997 \n", - "2 29.567900 95.800003 \n", - "3 25.015600 60.099998 \n", - "4 29.363199 88.900002 \n", - "... ... ... \n", - "319103 21.936300 59.000000 \n", - "319104 25.349300 72.400002 \n", - "319105 24.227501 62.799999 \n", - "319106 29.142500 104.099998 \n", - "319107 29.598801 102.400002 \n", - "\n", - " pulse_wave_arterial_stiffness_index_original \\\n", - "0 7.27700 \n", - "1 12.30770 \n", - "2 11.11110 \n", - "3 10.98160 \n", - "4 11.91490 \n", - "... ... \n", - "319103 12.19700 \n", - "319104 5.47619 \n", - "319105 11.12660 \n", - "319106 8.91509 \n", - "319107 16.03450 \n", - "\n", - " pulse_wave_reflection_index_original waist_circumference_original \\\n", - "0 80.0 85.000000 \n", - "1 45.0 87.800003 \n", - "2 78.0 98.000000 \n", - "3 52.0 86.000000 \n", - "4 50.0 106.000000 \n", - "... ... ... \n", - "319103 76.0 71.000000 \n", - "319104 39.0 86.000000 \n", - "319105 65.0 74.000000 \n", - "319106 63.0 108.000000 \n", - "319107 74.0 110.000000 \n", - "\n", - " hip_circumference_original trunk_fat_percentage_original \\\n", - "0 107.000000 37.500000 \n", - "1 94.400002 33.400002 \n", - "2 104.000000 27.600000 \n", - "3 94.000000 34.200001 \n", - "4 104.000000 28.700001 \n", - "... ... ... \n", - "319103 88.000000 22.200001 \n", - "319104 105.000000 37.000000 \n", - "319105 94.000000 28.799999 \n", - "319106 104.000000 32.099998 \n", - "319107 108.000000 31.500000 \n", - "\n", - " body_fat_percentage_original basal_metabolic_rate_original \\\n", - "0 39.500000 5012.0 \n", - "1 28.700001 6171.0 \n", - "2 25.600000 8711.0 \n", - "3 36.500000 4879.0 \n", - "4 27.000000 7991.0 \n", - "... ... ... \n", - "319103 19.299999 5786.0 \n", - "319104 37.500000 5782.0 \n", - "319105 32.099998 5381.0 \n", - "319106 27.500000 9330.0 \n", - "319107 30.000000 8849.0 \n", - "\n", - " forced_vital_capacity_fvc_best_measure_original ... \\\n", - "0 3.21 ... \n", - "1 4.19 ... \n", - "2 4.14 ... \n", - "3 2.34 ... \n", - "4 3.63 ... \n", - "... ... ... \n", - "319103 4.50 ... \n", - "319104 3.87 ... \n", - "319105 3.47 ... \n", - "319106 4.80 ... \n", - "319107 4.26 ... \n", - "\n", - " phosphate_original rheumatoid_factor_original shbg_original \\\n", - "0 1.422 38.200001 70.110001 \n", - "1 1.264 11.800000 55.310001 \n", - "2 0.928 19.000000 31.629999 \n", - "3 1.201 30.799999 6.750000 \n", - "4 1.218 11.000000 27.209999 \n", - "... ... ... ... \n", - "319103 1.136 11.500000 67.930000 \n", - "319104 1.057 13.500000 61.590000 \n", - "319105 0.996 16.299999 73.379997 \n", - "319106 0.986 17.200001 24.480000 \n", - "319107 1.163 20.600000 45.090000 \n", - "\n", - " testosterone_original total_bilirubin_original \\\n", - "0 1.560000 7.41 \n", - "1 12.237000 8.07 \n", - "2 11.398000 8.65 \n", - "3 0.975000 6.29 \n", - "4 7.057000 9.52 \n", - "... ... ... \n", - "319103 20.207001 15.56 \n", - "319104 1.059000 12.93 \n", - "319105 0.652000 11.19 \n", - "319106 10.951000 9.95 \n", - "319107 15.030000 11.85 \n", - "\n", - " total_protein_original triglycerides_original urate_original \\\n", - "0 71.970001 1.247 221.300003 \n", - "1 78.449997 1.906 374.700012 \n", - "2 69.699997 5.184 322.799988 \n", - "3 72.419998 1.740 230.199997 \n", - "4 78.919998 2.847 428.399994 \n", - "... ... ... ... \n", - "319103 73.589996 0.965 262.600006 \n", - "319104 72.099998 0.730 298.799988 \n", - "319105 74.199997 1.442 220.199997 \n", - "319106 70.650002 5.756 353.600006 \n", - "319107 70.620003 2.327 454.799988 \n", - "\n", - " urea_original vitamin_d_original \n", - "0 5.48 70.699997 \n", - "1 5.28 35.900002 \n", - "2 6.67 63.599998 \n", - "3 8.16 60.400002 \n", - "4 4.50 26.100000 \n", - "... ... ... \n", - "319103 3.65 31.900000 \n", - "319104 4.21 41.599998 \n", - "319105 4.01 72.699997 \n", - "319106 4.42 45.900002 \n", - "319107 5.14 20.200001 \n", - "\n", - "[319108 rows x 79 columns]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_original" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
body_mass_index_bmiweightpulse_wave_arterial_stiffness_indexpulse_wave_reflection_indexwaist_circumferencehip_circumferencetrunk_fat_percentagebody_fat_percentagebasal_metabolic_rateforced_vital_capacity_fvc_best_measure...phosphaterheumatoid_factorshbgtestosteronetotal_bilirubintotal_proteintriglyceridesurateureavitamin_d
937703.0000001.697369-0.993863-0.6032882.2332552.6560921.0301251.6374060.570121-0.515888...0.616273-0.2068520.325754-0.768892-0.688897-0.8974590.6753060.083443-0.928118-0.761460
3168650.4815310.242866-0.5408300.0846801.0051160.1154560.6957860.1851220.1375300.685692...0.7662220.062543-0.7209490.6305280.2324890.1430040.2406121.099900-0.157219-1.110865
270154-0.211962-0.329925-0.162804-0.4584530.084011-0.4368560.3985960.591761-0.6087260.033988...-0.183454-0.5947800.076522-0.836271-0.638598-0.7138482.042763-0.447713-0.538775-1.608648
2668220.041533-0.407155-0.916272-0.241199-1.4511630.4468430.2995330.580143-0.636971-1.299970...1.853351-0.691762-0.382607-0.858069-0.5791540.728114-1.042678-0.6387761.3300721.875831
188910-0.2404540.217123-0.514518-0.530870-0.069506-0.436856-0.492975-0.8489050.6199210.033988...-0.664540-0.196076-0.8124961.3173570.7194740.737905-0.1663580.497414-0.671152-0.747101
..................................................................
500111.8227591.7359840.7148020.2657241.3121502.8770171.4635271.5793150.613231-0.811191...-0.1334713.0000000.747637-0.845188-0.377958-0.508202-0.762454-0.6298600.5513860.593083
124938-1.305707-0.432899-0.926827-0.313617-0.299782-0.657781-1.954159-1.9874960.4638311.245751...0.241401-0.729477-0.0035381.947212-0.2522110.439232-0.711954-1.0247241.0886790.186241
54036-0.447699-0.735384-0.529246-0.386035-0.2997820.0049930.9310610.882218-1.059899-0.913020...0.328871-0.686374-0.421244-0.799279-1.0798580.3682350.905031-1.149552-0.118285-0.249318
43019-0.921214-1.2953032.1643390.482977-0.990611-1.431018-0.1462530.173504-1.280654-0.536254...0.791214-0.535513-0.249985-0.854106-0.8397941.2348800.282200-0.299957-1.628936-1.015138
243869-0.056721-0.5937950.4967300.012262-0.299782-0.1054690.2376180.556907-0.801980-0.342779...0.5537950.2349551.071360-0.864180-0.7254780.955792-0.136652-1.251453-0.0871370.176669
\n", - "

1000 rows × 79 columns

\n", - "
" - ], - "text/plain": [ - " body_mass_index_bmi weight pulse_wave_arterial_stiffness_index \\\n", - "93770 3.000000 1.697369 -0.993863 \n", - "316865 0.481531 0.242866 -0.540830 \n", - "270154 -0.211962 -0.329925 -0.162804 \n", - "266822 0.041533 -0.407155 -0.916272 \n", - "188910 -0.240454 0.217123 -0.514518 \n", - "... ... ... ... \n", - "50011 1.822759 1.735984 0.714802 \n", - "124938 -1.305707 -0.432899 -0.926827 \n", - "54036 -0.447699 -0.735384 -0.529246 \n", - "43019 -0.921214 -1.295303 2.164339 \n", - "243869 -0.056721 -0.593795 0.496730 \n", - "\n", - " pulse_wave_reflection_index waist_circumference hip_circumference \\\n", - "93770 -0.603288 2.233255 2.656092 \n", - "316865 0.084680 1.005116 0.115456 \n", - "270154 -0.458453 0.084011 -0.436856 \n", - "266822 -0.241199 -1.451163 0.446843 \n", - "188910 -0.530870 -0.069506 -0.436856 \n", - "... ... ... ... \n", - "50011 0.265724 1.312150 2.877017 \n", - "124938 -0.313617 -0.299782 -0.657781 \n", - "54036 -0.386035 -0.299782 0.004993 \n", - "43019 0.482977 -0.990611 -1.431018 \n", - "243869 0.012262 -0.299782 -0.105469 \n", - "\n", - " trunk_fat_percentage body_fat_percentage basal_metabolic_rate \\\n", - "93770 1.030125 1.637406 0.570121 \n", - "316865 0.695786 0.185122 0.137530 \n", - "270154 0.398596 0.591761 -0.608726 \n", - "266822 0.299533 0.580143 -0.636971 \n", - "188910 -0.492975 -0.848905 0.619921 \n", - "... ... ... ... \n", - "50011 1.463527 1.579315 0.613231 \n", - "124938 -1.954159 -1.987496 0.463831 \n", - "54036 0.931061 0.882218 -1.059899 \n", - "43019 -0.146253 0.173504 -1.280654 \n", - "243869 0.237618 0.556907 -0.801980 \n", - "\n", - " forced_vital_capacity_fvc_best_measure ... phosphate \\\n", - "93770 -0.515888 ... 0.616273 \n", - "316865 0.685692 ... 0.766222 \n", - "270154 0.033988 ... -0.183454 \n", - "266822 -1.299970 ... 1.853351 \n", - "188910 0.033988 ... -0.664540 \n", - "... ... ... ... \n", - "50011 -0.811191 ... -0.133471 \n", - "124938 1.245751 ... 0.241401 \n", - "54036 -0.913020 ... 0.328871 \n", - "43019 -0.536254 ... 0.791214 \n", - "243869 -0.342779 ... 0.553795 \n", - "\n", - " rheumatoid_factor shbg testosterone total_bilirubin \\\n", - "93770 -0.206852 0.325754 -0.768892 -0.688897 \n", - "316865 0.062543 -0.720949 0.630528 0.232489 \n", - "270154 -0.594780 0.076522 -0.836271 -0.638598 \n", - "266822 -0.691762 -0.382607 -0.858069 -0.579154 \n", - "188910 -0.196076 -0.812496 1.317357 0.719474 \n", - "... ... ... ... ... \n", - "50011 3.000000 0.747637 -0.845188 -0.377958 \n", - "124938 -0.729477 -0.003538 1.947212 -0.252211 \n", - "54036 -0.686374 -0.421244 -0.799279 -1.079858 \n", - "43019 -0.535513 -0.249985 -0.854106 -0.839794 \n", - "243869 0.234955 1.071360 -0.864180 -0.725478 \n", - "\n", - " total_protein triglycerides urate urea vitamin_d \n", - "93770 -0.897459 0.675306 0.083443 -0.928118 -0.761460 \n", - "316865 0.143004 0.240612 1.099900 -0.157219 -1.110865 \n", - "270154 -0.713848 2.042763 -0.447713 -0.538775 -1.608648 \n", - "266822 0.728114 -1.042678 -0.638776 1.330072 1.875831 \n", - "188910 0.737905 -0.166358 0.497414 -0.671152 -0.747101 \n", - "... ... ... ... ... ... \n", - "50011 -0.508202 -0.762454 -0.629860 0.551386 0.593083 \n", - "124938 0.439232 -0.711954 -1.024724 1.088679 0.186241 \n", - "54036 0.368235 0.905031 -1.149552 -0.118285 -0.249318 \n", - "43019 1.234880 0.282200 -0.299957 -1.628936 -1.015138 \n", - "243869 0.955792 -0.136652 -1.251453 -0.087137 0.176669 \n", - "\n", - "[1000 rows x 79 columns]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERROR! Session/line number was not unique in database. History logging moved to new session 2143\n" - ] - } - ], - "source": [ - "df_scaled.sample(1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "import plotly.io as pio\n", - "png_renderer = pio.renderers[\"png\"]\n", - "png_renderer.width = 2000\n", - "png_renderer.height = 500\n", - "\n", - "pio.renderers.default = \"png\"" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "df = pd.concat([df_original, df_scaled]).sample(50000)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAH0CAYAAABl1bZjAAAgAElEQVR4XuzdCZzN1f/H8fdg7FtKkfbt1178SqVIKbInQrasNfY9a2Mf+04MJUuWKCKhFNGqhRZJivxSRJa02GaY/+Mcf9PQzLh3zr1jvt95fR+P3+NRv/s9557z/JxbXe97zjciISEhQVwIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghkcoEIAvRMvgKYPgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAFSBAZyEggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgM4aQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4KQAO9BZCQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBCgswYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4KcAOdFYCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBOisAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBE4KsAOdlYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAABOmsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkwLsQGclIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIDOGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOCkADvQWQkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQoLMGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOCnADnRWAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgTorAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROCrADnZWAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAATprAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZMC7EBnJSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAzhpAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgpAA70FkJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKCzBhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgpwA50VgICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIE6KwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEETgqwA52VgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAE6awABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGTAuxAZyUggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgM4aQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4KQAO9BZCQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBCgswYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4KcAOdFYCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBOisAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBE4KsAOdlYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAABOmsAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBkwLsQGclIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIDOGkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOCkADvQWQkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQoLMGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOCnADnRWAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgTorAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROCrADnZWAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAATprAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZMC7EBnJSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAzhpAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgpAA70FkJCCCAAAJOAk91HaHm9aqoZPHr/9XPl5u2alTsfM0Y2yPN75Fa/8F22rnfcyp//52qUPbOYJv64v4yNdpp8fRBOq9AvpDNZ+rspTp2LE6tm9QIWZ9e7CiU69SL82fMCCCAAAIIIIAAAudOgO9k584+2HfmO1mwYtyPAAIIIIAAAgicGwEC9HPjzrsigAACGV5g9sKVOnT4qFrUr5LqWPnDmvQtZcc+E9SwVgWVuOXaoN84I/9hTUJCgh6p94yWzhysyMhsQc8tuQaBrmEX01PvS4AekpLRCQIIIIAAAggggEASgUD/e5bvZOm7bFy+P2S272TpWxneDQEEEEAAAQQQCJ0AAXroLOkJAQQQ8JXAzl/3Kv74CV1W7MJU52X+sMaE7HfeHr4d6Cn1Hyy4H3agf/3tNl11+cXKkztnsNNXuP6wJi4uXq0aPxr0eM5s8PHnm3T3f2907udUB4GuYRfTU+9FgB6ystERAggggAACCCCAwP8LBPrfs3wnS98l4/L9IbN9J0vfyvBuCCCAAAIIIIBA6AQI0ENnSU8IIIBAhhCo3qSXBj7TTLfccJUdzzffbVe3QbF2Z++i5e9p2txlOnIsTuefl18jolvqkqKFZY5an79ktYpcWEhzFr6tzlF1dODgn6cdzR0z7iWt/fgrxcfH69Ybr9bQ3lGKzJZV5g9rbr/5Wq1YtU5/HzqiksVvUHSnJ5UrZ3bbb9Ij3Nd+/KVGxS7QkaPH7JHvvds3VPbskeoQPUHf//jzaX4P3FtcXaLqpNq/abDmoy81esoC/XXosC4vdpH6dG6cGPp/vflH9R3xog4fOaobr7tC8fHHVfHBu/TlNz8oX77catmoun3P48dP6MHHO+rl2D4qUrjQv+po5jHlpddVuFBB/fTLbu3df1BdWz2ht9Z8qu07dtl5d29TP/EY+5SsPv1is4ZOnKu/Dx02T1FRz3b1VfquWzVn0Tuas+ht650vb25NHNwh2XGYgSUNas1fly1VXGs++kKHDh9Rrpw5NPzZliqQP4+dw8Jla2WOWI+MjFSF++/QohXva8GUvvYI9//9vFvPDntBe/b+rmJFLtDA7s1V9MJCGjB6pm3frllN20ezTsNUo2JpVXn4nmTXt+nf/MHeD9t/0S+/7rXraVD35rr04gtt/YNxu/3h5vpi5fMpfo7MLvXn57yhhcveU/zx47qr+A3WMHeunGddw/sO/KFeQ5639pt/2KG4+Hg9VPq/9jMQqOnvB/9S95gp+vGnXXYt1X30wcQTGgjQM8Q//hgEAggggAACCCCQIQTC8Z3sbP8tyncyvpOlx3eyDPEBYxAIIIAAAggggEA6CBCgpwMyb4EAAgikp4AJLA/++be6tqxr39aEyzlzZrdh8Xdbd9iQvEC+PBo5eb4Nlnt3aGjDx5bdR6lBzfJ6qkEVZcua1QavSZ9tvWHj94mhfOP2Q9SwVnn7LHETHJoA2oS+2SMjFT18mi4qfJ7aNn3stAB91579atB6oF6a0MuOoefg53X1FRereb3KqfKk1v/Pu35To3Yxmj6mhw3N31rzmZ6b/poWvjBAx0+cUMX6z6h/1yYqdcfN2vjdj3qiZX+NiG6lKy8rKnPs3huzhtj3/nj9Jttu5rieyY7F+NRvPdD2e91Vl+jNdz9Vp74TNX1Md7vzfv3XWzRs4lzNm9zHtk/JqlaLPhrcs4WuvfISW6OIiAhFSHq0SW8tmz1UObJH2hDaBNopXWeGvea483ED2ilr1ix2DHnz5larJ6tr20+71KTDkMQfBcxY8KZ9/f3F41UgX17VaNbb/kDBBPgmaDdzih3W2QbxNZv30YRB7fTNlu1avuoTTRrSMcXxmHXy0qsrNW9StIpedL79kYYJuGeN72nrH4zb2QL0pSs/0oKl72rSkE72BxqDx8/R8ePH9WzHRmddw+ZHDSbcb/R4Bf3w4y/q0n+SXntxoJ1XoKYnTiToi2++V4lbrrM/oqjSqIeWvTRUhQrmO62P9Py8814IIIAAAggggAACGU8gHN/Jzvbfonwn4ztZenwny3ifNkaEAAIIIIAAAgiER4AAPTyu9IoAAgicM4EdO/eoaadhWjlvhB2DCZEnD+2syy+56LQxffjZRs1e+LYmxnSw4aMJlN+ZP8qGuuY6M0BP2njM1FdUsEBeNa79iA0Oqz9ynyqXu9vesvmHn9QjZooWTRt4WoA+c8Gb2rl7n7q3qWfv+2TDZo2fttAGraldqfU/ff4K7dq9Tz3a1k/swoTRQ3o9pbj44+ozfJoNvU9dDdsOsj8SMMF/zebR6te1iW7+z5XqO2K6brzuctWu9kCyQzE+5ocBi18cZF83xg3aDNKahWPt3x8+ckzlanfUh0sm/qt9UquuAyapYP689rhzswvcXOYPuio16KZm9SqrxiP3nfX532eGvTUrl1GFsiVtX8tXrdO7H32hob2e1rR5y7T7twOJNuaY9RIVWmjtonH2/ze7sV99vr9tZ3Zz31HhKX26Yoo9VcCsjXEvLJTZ5TJ9bPcUd8OfWie/7Nqrvl0a277MLvFSVVtrxdzh2r7j16Dczhagt+45Ro9VLKNypUvY9zr4x98q/0QXrXtj0lnXcLPOw+yu+ttuvNq2LVkpSp8sm2z/OlDTM4trfhzQq30De7oBO9BT/RjzIgIIIIAAAgggkKkE0uM72Zn/Lcp3Mr6Tpcd3skz1QWayCCCAAAIIIJCpBQjQM3X5mTwCCPhVoG7L/urVvqENQ03wOz+2r52q2b379trPbchpwsdC5+W3u4tNQDxy8sun7cBOGqCbgDh21hK7iztLRIR++mWP6lR7QE3qVrTBYeM6j9hd3uYyR4LXahFtg9qkR7gPnzRPi1d8kHi8+IkTJ+xOeLNru23vcfp+2+lHuJe7r4S6tqqbav9mR/X5hQqo2ROVEkv59DMjVa/GQ3aO8xa/Y388cOoyR8WbI9xNgG52TZsd7GanfrnanfTatIH2RwHJXWf6mF3iZt6ndrAfPRZnny9ugtzUrA4dPqrpLy+3O77vv+d2dY6qbY8fN0egT5q5RB99ttHukDb/S+k6M+w1wbs5ytxcZhe5OVZ+ZJ9WGv7cPFvfpDalqrW2Y/5q0zZ17jdRFyU5rt6sB7Mj+4JCBWxfVRv10G03XaOB3Zql+jEx68QcYd+hRa3E+yrW72ZPJPjzr0OnravU3EzjswXoZgd/n05PJp6EYNoUL99CHyw++QiA1NZwzLjZdqd4VKNqdl2atTN7Ym875kBNzR+Exs563f4AwfzOxDz7cOrIrvZHGATofv2nKfNCAAEEEEAAAQTSJhDq72Rn+29RvpPxnSw9vpOl7dNAKwQQQAABBBBAwHsCBOjeqxkjRgABBM4qMOuVt/Tbvt+VLVtW5c+Xx+4UN88Kn/DiIk0b9Yx9zva7H36hl5esTgzQkz6r3LxB0gDdhN8m/DW7bc3x7iacNUHrqQC9Wvl7E5+RvWnLdru7+cwd6OYI8b37DtrQOJjLBJMp9X/mLmvTb9Id6P1HzbDP/D51Nek4RHWrl7MBunnGe52n+6lflyaa+cpbqR5Tfuaz3FMLglOzOjUOczT+gDGzlD9f7sSj9s1r5ljwlt1Hq02TGrr/ntuSZToz7G1er0ris9eTBujGZt/+P+yPEMxldrqXKN9C7y4co1/37Fe/kdMTj5w/841efWOtVn2w3j4n3YTx/7n60hRLZtaJ+cO8/l2b2nvM0ZL3VG2lt+aNsDvQk64r1wA9qtsoPV6l7Gk70B+u29nuJD+zRmeuYfMDgceaPasrLitij7Dv+FQt+5x2cwVqWvvpvmpUq0LiWn/8qb7q0/lJAvRgPtDciwACCCCAAAIIZBKBUH8nO9t/i/Kd7J8Ane9k4ftOlkk+vkwTAQQQQAABBBAQATqLAAEEEPChgAlizZHVJux+bnBH+0xy82xqE7CaHedmx3S3gbE6FhcfUIDeI2aqrrmymN3NbHaYP9k+RrWr/rMD/cjRY3and84c2dVzyFT7DO9/PQN99z41bBejyUM62b7MGEzIb55Lndplws2U+jc74Rt3GKwXR3e3R9SvXPuZxk9bZHeTm2djm+PrB/d8yj6n/Nvv/2efgT60d5QN0M1ldr6bXdK1Kt+fGIomN5ZgAvTUrMzx9tdfc5l9C7MD/qdfdqvjU7W1+7f9uuLSIjZ8Ns9Wr/zQ3Xq4zB3JsgQa9prnfJvd+HMnRevCCwpqzqJ3NGjsLPsM9Px589hTAqIaVbcWZre+CbvNs+FNfeu3Gag5E3tr6/adGjVlvuY+F22fsZ7cZQL0GfPf1LzJ0baWryxdo8VvfpD4DPRQBuivv/Wh5r/+rmKHmWeg59CQCXPsGja70s8WoL/93udat36TPZnhzCtQ04dqd9Lofm3sDvjPv9piP2MvTehFgO7Df4YyJQQQQAABBBBAwFUg1N/Jzvbfonwn+ydA5ztZ+L6TuX4uaI8AAggggAACCHhFgADdK5VinAgggECQAs06DbPPtp4xtodteejwEbV/doK2//yr3T3esGZ5vb7yw4AC9C3bfpZ5fnd8/HEbkt5V4gZFKMLuQDchbZWH7pHZYX7g9z91Z/Hr1adTY+XKmf1foeZHn32jEZNftsF59shs9lngj1Uqk+rMUuvfNFz1wQa7y/nIkaO6tNiF6tu5SeLz3k2oanZamyPGr7vqEhXIn1el77o1MUBf9f56dR0wWe+9Ns4epZ7SFUyAnppVz8FT9fH6TcqRPbsuvbiwYnq0UPbskXqqy3DtPfCHPXLfHIXfs12DFAPrQMNeMxcTZpuA24TfD5QqrnUbvtXUEV3s89fNjw8Gjpmp77busAH6Q2XuUHTHRmrba6xK332balctazl6D33BeraoXyVZHtN/RESEPvx0o37auUdFLzxfMT2a293dwbiZzs92hLu5xxyhPn/JamXJmkUlb7/eWuXJnfOsAboJvM0JBOZHHuZkhqsvv1h9OzfW1VcUC3gH+hvvfKzRUxbY9yt+07U6Fheneo89RIAe5D+buB0BBBBAAAEEEMgsAqH8Tpbaf4vynUz2B9qnHqvFd7LwfifLLJ9f5okAAggggAACmVuAAD1z15/ZI4AAAplaYPmqdXrn/fUaEd0yUzv4ffJm90/zzsPtj0WKXnS+4uKP6+XFq/T15m0a2utpv0+f+SGAAAIIIIAAAgggkGEF+E6WYUvDwBBAAAEEEEAAgUwtQICeqcvP5BFAAIHMK2COOGzYNkY92tZTiVuusxDdY6Zoy9Ydp6HcV/IWdXo6uOe2u6rGxcWrTlS/f3XzdMNqibvnXd8jmPbpOZ5wvJc5vr/PiBcTj6I3R+WPmbpAWbJkUYcWtYKh4F4EEEAAAQQQQAABBBAIkQDfyQKHDMf3pMDfnTsRQAABBBBAAIHMJ0CAnvlqzowRQACBTC8w/Ll5WrH6Ez1etayiGlXL9B6ZAWDcC69q9QcbFBmZTcePn9B/b/2POkfVVo7skZlh+swRAQQQQAABBBBAAIEMJcB3sgxVDgaDAAIIIIAAAgggcIYAATpLAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAUkE6CwDBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEECNBZAwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJwUYAe640rYue+wYw80RwABBBBAAAEEEEAAAQRCLxARIRUtlCv0HQfZ468HjkgJQTbidgQQQAABBFIQMP9KiUAHAQQQQACBEAkUKZQzRD3RDQII+EmAAN2xmgTojoA0RwABBBBAAAEEEEAAgbAIZJQA/fiJBJmxcCGAAAIIIBASARL0kDDSCQIIIIDASYEsfFlhKSCAQDICBOiOy4IA3RGQ5ggggAACCCCAAAIIIBAWgYwSoO/af1gJ7EAPS43pFAEEEEAAAQQQQAABBNwELj7/3J/a5TYDWiOAQDgECNAdVQnQHQFpjgACCCCAAAIIIIAAAmERIEAPCyudIoAAAggggAACCCCAgI8ECNB9VEymgkAIBQjQHTEJ0B0BaY4AAggggAACCCCAAAJhESBADwsrnSKAAAIIIIAAAggggICPBAjQfVRMpoJACAUI0B0xCdAdAWmOAAIIIIAAAggggAACYREgQA8LK50igAACCCCAAAIIIICAjwQI0H1UTKaCQAgFCNAdMQnQHQFpjgACCCCAAAIIIIAAAmERIEAPCyudIoAAAggggAACCCCAgI8EMnOAPnX2Uh07FqfWTWr8q6JfbtqqUbHzNWNsDx9Vm6kgELgAAXrgVsneSYDuCEhzBBBAAAEEEEAAAQQQCIsAAXpYWOkUAQQQQAABBBBAAAEEfCTgxwB905btGj9tkSYN6ZhqpQjQfbSQmUrIBQjQHUkJ0B0BaY4AAggggAACCCCAAAJhESBADwsrnSKAAAIIIIAAAggggICPBPwYoB8+ckxbtu3QbTdefdYAPS4uXq0aP/qv+9iB7qNFzlTSJECAnia2fxoRoDsC0hwBBBBAAAEEEEAAAQTCIkCAHhZWOkUAAQQQQAABBBBAAAEfCWSkAH3gmFkqetH5avZEJSscF39cZWu212vTBmrX7n2KGfeSDhz8S1myZFHPdg1U+q5bZILu+UtWq8iFhTRn4dvqHFVH1151yWnHr5t2az/+SvHx8br1xqs1tHeUIrNlldmBvvPXvfph+y/65de9uqRoYQ3q3lyXXnyh7TfpEe5rP/5So2IX6MjRYypZ/Hr1bt9Q2bNH+mglMBUEThcgQHdcEQTojoA0RwABBBBAAAEEEEAAgbAIEKCHhZVOEUAAAQQQQAABBBBAwEcCGSlA37Dxew0eP1vzY/ta4fc/+VrT5i7TtNHdtGfv7zpy9KguK3aR3lv3lYZPellLpg+yQXfL7qPUoGZ5PdWgirJlzfqv8Nv0e8sNV9k+G7cfooa1yqtC2TttgP7Sqys1b1K0De4XLX9PC5e9p1nje57Wx649+9Wg9UC9NKGXDep7Dn5eV19xsZrXq+yjlcBUEDhdgADdcUUQoDsC0hwBBBBAAAEEEEAAAQTCIkCAHhZWOkUAAQQQQAABBBBAAAEfCWSkAD0hIUHln+iq6WO6q1iRCxQ9fJpuveFq1apy/2niZmd6qaqt9enyyTbo7thngt6ZP0oR5kug9K8APWnjMVNfUcECedW49iM2QP9l11717dLY3mLe3/S7Yu5wbd/xa+IO9JkL3tTO3fvUvU09e98nGzZr/LSFNmjnQsCvAgTojpUlQHcEpDkCCCCAAAIIIIAAAgiERYAAPSysdIoAAggggAACCCCAAAI+EshIAbphNcemm4C70eMV9FDtzlo8fZAK5MujdRu+1eyFK3XkyDGrv/7rLfpsxRQblo+c/LJmjvsnzE56/Lp5HnrsrCXa+N2PyhIRoZ9+2aM61R5Qk7oVbYD+96Ej6tCiVmJFK9bvpomDO+jPvw4lBujDJ83T4hUfqED+PPa+EydO2DHNm9zHRyuBqSBwugABuuOKIEB3BKQ5AggggAACCCCAAAIIhEWAAD0srHSKAAIIIIAAAggggAACPhLIaAH65h9+Ut+R09WheS3NevUtTYzpoIN//K2K9Z/R7Im9deVlRXXo8BGVqdEuMUBP+qxyU5qkAboJvw8dPqpe7RvY492HPzdPFxQqkBig79i5R/27NrUVPXEiQfdUbaW35o04bQf6jAVvau++g+ocVdtHlWcqCKQuQIDuuEII0B0BaY4AAggggAACCCCAAAJhESBADwsrnSKAAAIIIIAAAggggICPBDJagG5oqzXupWuuKKZypUuocrm79fOu31Q3qr8NtnPnyqEX5i7T5JmL9eny2GSPa08aoPeImaprriymZk9Uss9Rf7J9jGpX/WcH+oz5b2re5GhdUrSwXlm6Rovf/ODfz0DfvU8N28Vo8pBOtq+jx+L0277fbRsuBPwqQIDuWFkCdEdAmiOAAAIIIIAAAggggEBYBAjQw8JKpwgggAACCCCAAAIIIOAjgYwYoE+auVgvzHlDaxeNt4G5uczO8WWrPlahgvn1eNWymr9ktRa+MOCsAfqWbT+r64BJio8/bgPvu0rcoAhFJO5AN89N//DTjfpp5x4VvfB8xfRorksvvvBf/X702TcaMfllG5xnj8ymVo0f1WOVyvhoJTAVBE4XIEB3XBEE6I6ANEcAAQQQQAABBBBAAIGwCBCgh4WVThFAAAEEEEAAAQQQQMBHAhkxQPcRL1NBwLMCBOiOpSNAdwSkOQIIIIAAAggggAACCIRFgAA9LKx0igACCCCAAAIIIIAAAj4SIED3UTGZCgIhFCBAd8QkQHcEpDkCCCoFuIoAACAASURBVCAgKbp/tmQd+kfH44MAAggggAACaRTI7AF67pYPJyt3aNLKNIrSDAEEEEAAAQQQQAABBPwmQIDut4oyHwRCI0CA7uhIgO4ISHMEEECAAJ01gAACCCCAQFgECNAJ0MOysOgUAQQQQAABBBBAAAEfCRCg+6iYTAWBEAoQoDtiEqA7AtIcAQQQIEBnDSCAAAIIIBAWAQJ0AvSwLCw6RQABBBBAAAEEEEDARwIE6D4qJlNBIIQCBOiOmATojoA0RwABBAjQWQMIIIAAAgiERYAAnQA9LAuLThFAAAEEEEAAAQQQ8JEAAbqPislUEAihAAG6IyYBuiMgzRFAAIFUAvSUcHg2OssGAQQQQACBswsQoBOgn32VcAcCCCCAAAIIIIAAAplbgAA9c9ef2SOQkgABuuPaIEB3BKQ5AgggQIDOGkAAAQQQQCAsAgToBOhhWVh0igACCCCAAAIIIICAjwQI0H1UTKaCQAgFCNAdMQnQHQFpjgACCKQhQE8JjZ3pLCcEEEAAAQT+ESBAJ0Dn84AAAggggAACCCCAAAKpC3g5QO/RP06/7Qu8wjHPRurCCwK/nzsRyMwCBOiO1SdAdwSkOQIIIECAzhpAAAEEEEAgLAIE6AToYVlYdIoAAggggAACCCCAgI8ECNADK+ZTXUeoeb0qKln8+sAapHJXmRrttHj6IJ1XIJ9zX17rYNtPu9QheoKWTB8U0qGHsj4hHVg6d3b7w831xcrnQ/KuBOiOjATojoA0RwABBAjQWQMIIIAAAgiERYAAnQA9LAuLThFAAAEEEEAAAQQQ8JEAAXpgxQxlQOuHAL1jnwlqWKuCStxybWCA/39XRg/QN23ZrvHTFmnSkI5BzSu1m2cvXKlDh4+qRf0qKd6WkJCgR+o9o6UzBysyMlua35sAPc10oW9IgB56U3pEAIHMJxDdP+3/UkyqxRHumW/tMGMEEEAAgZQFCNAJ0Pl8IIAAAggggAACCCCAQOoCBOiBrRAToJsA9M7b2YFuxL7+dpuuuvxi5cmdMzDA/78rnAF6KOpz+Mgxbdm2Q7fdeHVQ80rt5p2/7lX88RO6rNiFqfb58eebdPd/b3R6XwJ0J77QNiZAD60nvSGAQOYUIEDPnHVn1ggggAAC4RUgQCdAD+8Ko3cEEEAAAQQQQAABBLwvQIAeWA1NgH77zddqxap1+vvQEZUsfoOiOz2pXDmzy+wefn7OG1q47D3FHz+uu4rfoJ7t6it3rpPh8sJlazV19lJFRkaqwv13aNGK97VgSl+16DJCPdrW139vvc7e98OPv6ht73FaPntosoMyfRz882/99Mtu7dv/h33frq3qKnbWEjsmc42IbqWLCp9n/zpm3Eta+/FXio+P1603Xq2hvaMUmS2r5ix6R3MWva1jx+KUL29uTRzcQRcUKqABo2fqkw2bFRcXp+uvuVwTYtqniJN0R77567KlimvNR1/o0OEjypUzh4Y/21IF8uexHsMmztOqD9arQL48evSR+7Rg6ZrEI9z/9/NuPTvsBe3Z+7uKFblAA7s3V9ELC9mxmPbtmtW0Y2jWaZhqVCytKg/fk+yYUqvPl5u2aspLr6twoYLWbu/+g+ra6gm9teZTbd+xy9p1b1PfHs9v7h0VO18zxvZIce5//X3Y2n725XfKmjWLHq9aVk3rVrL3mxrlzZNLH366Ues2fKuXJ/fR2+99bq1bN6mhfQf+UK8hz+vvQ4e1+YcdiouP10Ol/6sR0S2VNPx+qHYnNXy8gj76bKP27v9DxW++Rr3aN7Tv8fvBv9Q9Zop+/GmX4uOPq+6jDybubidAD+zznC53EaCnCzNvggACPhcgQPd5gZkeAggggMA5ESBAJ0A/JwuPN0UAAQQQQAABBBBAwEMCBOiBFcsEtMePn7Bhc/bISEUPn2aD6rZNH9PSlR9pwdJ3NWlIJxuoDx4/R8ePH9ezHRvJ7Lhu0mGIXo7toyKFC2nGgjc1bOJcvb94vJa987ENzft0bmwHMX7aQkUoQm2a1kh2UCacfWXpGi18YYDd+T1wzCytWP2JXp8ZY5+nPnnmySC9c1Rt237Dxu91yw1X2b9u3H6IGtYqr1J33KRHm/TWstlDlSN7pH75da8Nrld/uEFL3vxAo/u1sff/vOs3XVK0cIo4Zwbo5tjxcQPa2UDZzC9v3txq9WR1zV+yWstXr1Ps0M7KkjWLuvSbZE3MM9BPnEhQjWa91SWqjkrfdav9ocGb736q2GGdbRBfs3kfTRjUTt9s2a7lqz5J9Vj11OpjQvH6rQdat+uuusS+R6e+EzV9THd7osD6r7fYMc+b3CegAN3UPn++POr8dG17NLt570aPl1eFsiVtgP7Sqys1sFtzlb7rFutn/r9TAboJ3o1ro8cr2Np36T9Jr7040N6XNPw2f23WVrMnKtl1V6/VAPtjiTtu+491++Kb71XiluvsjwGqNOqhZS8NVaGC+U7rI7CVnfJdPAPdUZAA3RGQ5ggggADPQGcNIIAAAgggEBYBAnQC9LAsLDpFAAEEEEAAAQQQQMBHAgTogRXThKTVH7lPlcvdbRts/uEn9YiZokXTBqp1zzF6rGIZlStdwr528I+/Vf6JLlr3xiRNm7dMu387YHeamysuLl4lKrTQ2kXjbFhevUkvvf3ySPvc68oNu2vCoPa68rKiyQ7KBLF79h5I3IlsAucPP/vG7l4219qPv7S74Mf0PxmCJ73GTH1FBQvkVcOa5VWpQTc1q1dZNR65L/F529//+LPa9Byrfl2aBHSM+JkBes3KZWyAbK7lq9bp3Y++0NBeTyuq2yg9XqVsoo05pjxm/GwboBtDsxv71ef723Zmt/odFZ7Spyum2J3yH362UeNeWGh3XE8f293+ACGlK7X6mADdhN6LXxxkm+/YuUcN2gzSmoVj7d+bY9vL1e6oD5dMDChAL1kpSm/PH6X8eXPb9ivXfmZ/fDB+UHsbln+/7WcNezYqcahJA/RmnYfZXfWnjog3fX2ybLK998wAfdWC0TYUN1e/UTN083+ulHE+8zI/DujVvoFuvO4KAvQUV8g5eIEA/Ryg85YIIOBZgVDtNE8JgGege3ZpMHAEEEAAgTAIEKAToIdhWdElAggggAACCCCAAAK+EiBAD6ycJqBtXOcRlbrjZtvAHDleq0W0DcJrteijPp2eTNztbV4vXr6FPlg8QRNfXKRC5+W3O4lPXaWqtdYbs4bYXePtnh2nRyvcp2JFC6vn4KmJYXJyozJB7NGjcYk71Bctf09fbdqauIP9vXVfa/6SVTbINaGwOdp943c/KktEhH76ZY/qVHtATepWlHkm96SZS+zx4GYntPmfudZ//b0mz1xs59alZR3dV/LkDurkrjMDdBPIm6PrzWV2eJvj0Uf2aaXHn+qr6I6NEm1MUN+53yQboK/56Et17jdRFyUJxs2PD8yObHOkvLmqNuqh2266RgO7NUu1UKnVxwToIye/rJnjeto+zK57c7+pgbmOHotTmRrt7A8eznaEu9nhX/rRtlr/1tTE8ZgaDBw7S/Nj+9oAPWmNzE2n70CfbUPxqEbV7HuZne+zJ/a2fZ0ZoG94a6oizB9sSPa0gWuvLKY61R+0PwCInfW6/WGGedk8j37qyK42YOcI98A+z+lyFwF6ujDzJggg4BMBAnSfFJJpIIAAAgh4QoAAnQDdEwuVQSKAAAIIIIAAAgggcA4FCNADwzeBa7Xy9yY+g3vTlu1297TZgX7mLmsTAj9ct7PdWWx2oJvnlZvjt81ljuMuUb6F3l04xgboq95fb49hv+TiwsqXJ7cNuFO6kgax5p7UAvThk+bZ48XNzuRsWbNq+HPzbCidtH9z/HfL7qPVpkkN3X/PbYlv+8132xXVbaSWzhxin0Oe3HVmgN68XhX7DHFzJQ3QjU3d6g+qbKnb7WvmueH9R8+0Afq33/9P/UZOt0enJ3e9+sZa++x085x0E8b/5+pLU7RJrT5nhuIuAbp57vypHejmme7mOnMH+qnj2k8NNmndzNp4rNmzuuKyIiqQL686PlVLl158ob31zAD9i5XPJ843aYBe++m+alSrQuJaND9S6NP5SQL0wD7K6XcXAXr6WfNOCCDgfYFwB+ipCbE73fvrhxkggAACCAQnQIBOgB7ciuFuBBBAAAEEEEAAAQQynwABemA1NwHtkaPHNHloZ+XMkV09h0y1zw43z6l+/a0PNf/1dxU7zDwDPYeGTJijY3Hxdle6ec7108+M1NxJ0brwgoKas+gdDRo7yz4D3QTo5thy80zy7JHZNHFwRxW9MOVjyoMJ0HvETNU1VxazO9/NjvIn28eodtUHVPfRctr9235dcWkR+yxt8yzwyg/drZuvv0q5cmS3x7yb549Xb9Jb82P72DEmdwUaoM9bvEqrP9hgj6aPyBJhj73/buvPNkA3PyYwu/ijGlVXhbJ3yoTT23f8ao+wN2Ou32ag5kzsra3bd2rUlPma+1y0fcZ6SuNJqT6hDNDNez87bJry5cllfxRx6hnoDWo+rIoP3nXabvNT40xat7ff+1zr1m9KPIY/6VwCDdAfqt3JPqvePN/+86+2yBwL/9KEXgTogX2U0+8uAvT0s+adEEDA+wIE6N6vITNAAAEEEPCOAAE6Abp3VisjRQABBBBAAAEEEEDg3AgQoAfmbkLwKg/doxkL3tSB3//UncWvV59OjZUrZ3bbgTlSe/6S1cqSNYtK3n69erZroDy5c9rXXlm6xgarJvx9oFRxrdvwraaO6JIYTpvA3exoP3XEeEojCiZA37LtZ3UdMEnx8cd1SdHCuqvEDfaZ6zWr3K+nugzX3gN/2OeMmyPpzVi/+nareg99wd5vnsf+ZO0K9tnlKV2BBuhx8cc1bOIcrXp/g/LmzaX6NR7S7EVvJz6P3BwtP3DMTH23dYcN0B8qc4c98r1tr7Eqffdtql315BjM2C6/5CK1qF8l2SGlVp9QB+jmGPf+o2do3fpvbf1rVr7f/lDBHLd+Zo3MYJP+fybwbtJxiP0RRrZsWXX15Rerb+fGuvqKYgHvQH/jnY81esoCu76K33StjsXFqd5jDxGgB/JRNr8O6TYw1t5qnnVw6jLHLoyKna8t23bYX8E0rlNR9WqUsy8fOPin/eXHV99uU6GC+dW/a1OVuOXas75GgB5IRbgHAQQQOClAgM5KQAABBBBAIP0ECNAJ0NNvtfFOCCCAAAIIIIAAAgh4U4AA/dzXrd+oGbrhmstUu9oD534wjCBsAubI/Oadh2vSkI4qetH5Mj8ueHnxKn29eZuG9no6bO+b1o4jEsxPGnx07dqzX216jtHtN12jPXsPnBagm+chmGMZit98rX7b97vMOflTh3e1xzh0GxRrj5to0+Qxbdy8TZ36PaelMwfbX0Gk9hoBuo8WD1NBAIGwCxCgh52YN0AAAQQQQCBRgACdAJ2PAwIIIIAAAggggAACCKQu4OUA3Q+1NTuwm3QYoiUzYhJ3rHePmaItW3ecNr37St6iTk/XTtcpb9j4vQaMnvmv9zQbd02emN5XXFy86kT1+9fbPt2wmj0CPpRXON7LPPO9z4gXE4+iN0foj5m6QFmyZFGHFrVCOfyQ9OW7AN0cHWCOOjBb9me/uvK0AP1MMXMEQvVH7tOD95ZQqWqttfqVMYnHTbTtPU41K5VRmbtvS/G1sqVuFwF6SNYhnSCAQCYRIEDPJIVmmggggAACGUKAAJ0APUMsRAaBAAIIIIAAAggggEAGFiBAP3fFadg2xm6ENUeo33/PbeduILxzugmMe+FV+0x4c0y+eQb8f2/9jzpH1VaO7JHpNoZA38h3AfqpiX/02Teas+jtFAN08+uJig26ada4nvbXDQ3aDtLKeSMS3cxR7wUL5FXlcvek+FrTupUI0ANdadyHAAIIcIQ7awABBBBAAIF0FSBAJ0BP1wXHmyGAAAIIIIAAAggg4EEBAnQPFo0hI5AOApk2QDe/cjC71Xu0ra///bzbHvv++szBieTPTX9N5viAquVLpfham6Y1dOhofDqUibdAAAEE/CHQ7plz99SQccMiMjyieaiKCTu4EEAAAQQQCIWA+fdKnpzZQtGVUx+79h/WuXhwWO6WBOhOhaMxAggggAACCCCAAAKZQIAAPRMUmSkikAaBTBmgm4fSr3zvc00a3NEeE7Bn7++qE9XXHuF+6ho6ca4uKFRAVR8uleJrzZ6opN//jksDO00QQACBzCnQpee5m/eImHP33gG/s/l9AQF6wFzciAACCCBwNoEEFcyT/Ww3hf11AvSwE/MGCCCAAAIIIIAAAgggkEYBAvQ0wtEMAZ8LZLoAffGbH+iVpWsUO6yTcufKacubkJCge6u10Yq5w5U/b277/0V1G6XHq5TVg/cVT/G1cqVLcIS7zz8gTA8BBNImcC6fdZ7SiPtHc2JI2qpJKwQQQAABrwpwhDs70L26dhk3AggggAACCCCAAALpJUCAnl7SvA8C3hLIVAH6m+9+opdefVuTh3ZSntwnw/NTV/TwaTr/vAJq2/Qxbdy8TW16jdXy2cPsfam9tnPfYW9VnNEigAAC6SBAgJ4OyLwFAggggAACZxEgQCdA50OCAAIIIIAAAggggAACqQsQoLNCEEAgOYFMFaDf/1h77Tvwx2nPl733zltsoP7HX4fUM2aq1m/covx58+jZjo107503W7PUXiNA54OFAAII/FuAAJ1VgQACCCCAwLkXIEAnQD/3q5ARIIAAAggggAACCCCQsQW8HKD/0ba2TuzeGTBw/nEvK0uRYgHfz40IZGYB3wbo6VVUAvT0kuZ9EEDASwIE6F6qFmNFAAEEEPCrAAE6Abpf1zbzQgABBBBAAAEEEEAgVAIE6IFJPtV1hJrXq6KSxa8PrEEqd5Wp0U6Lpw/SeQXyOffltQ62/bRLHaInaMn0QSEdeijrE9KBebgzAnTH4hGgOwLSHAEEfClAgO7LsjIpBBBAAAGPCRCgE6B7bMkyXAQQQAABBBBAAAEE0l2AAD0w8lAGtH4I0Dv2maCGtSqoxC3XBgb4/3dl9AB905btGj9tkSYN6RjUvPx4MwG6Y1UJ0B0BaY4AAr4UIED3ZVmZFAIIIICAxwQI0AnQPbZkGS4CCCCAAAIIIIAAAukuQIAeGLkJ0FvUr6I7b2cHuhH7+tttuuryi5Und87AANMhQA9FfQ4fOaYt23bothuvDmpefryZAN2xqgTojoA0RwABXwoQoPuyrEwKAQQQQMBjAgToBOgeW7IMFwEEEEAAAQQQQACBdBcgQA+M3ATot998rVasWqe/Dx1RyeI3KLrTk8qVM7sSEhL0/Jw3tHDZe4o/flx3Fb9BPdvVV+5cJ8PlhcvWaurspYqMjFSF++/QohXva8GUvmrRZYR6tK2v/956nb3vhx9/Udve47R89tBkB2X6OPjn3/rpl93at/8P+75dW9VV7KwldkzmGhHdShcVPs/+dcy4l7T2468UHx+vW2+8WkN7RykyW1bNWfSO5ix6W8eOxSlf3tyaOLiDLihUQANGz9QnGzYrLi5O119zuSbEtE8RJ+mOfPPXZUsV15qPvtChw0eUK2cODX+2pQrkz2M9hk2cp1UfrFeBfHn06CP3acHSNYlHuP/v5916dtgL2rP3dxUrcoEGdm+uohcWsmMx7ds1q2nH0KzTMNWoWFpVHr4n2TGlVp8vN23VlJdeV+FCBa3d3v0H1bXVE3przafavmOXtevepr49nt/cOyp2vmaM7RHYwvDxXQTojsUlQHcEpDkCCPhSgADdl2VlUggggAACHhMgQCdA99iSZbgIIIAAAggggAACCKS7AAF6YOQmoD1+/IQNm7NHRip6+DQbVLdt+piWrvxIC5a+q0lDOtlAffD4OTp+/Lie7dhI5sjyJh2G6OXYPipSuJBmLHhTwybO1fuLx2vZOx/b0LxP58Z2EOOnLVSEItSmaY1kB2UC9FeWrtHCFwbYnd8Dx8zSitWf6PWZMfZ56pNnngzSO0fVtu03bPxet9xwlf3rxu2HqGGt8ip1x016tElvLZs9VDmyR+qXX/fa4Hr1hxu05M0PNLpfG3v/z7t+0yVFC6eIc2aAHhmZTeMGtFPWrFns/PLmza1WT1bX/CWrtXz1OsUO7awsWbOoS79J1sQ8A/3EiQTVaNZbXaLqqPRdt9ofGrz57qeKHdbZBvE1m/fRhEHt9M2W7Vq+6pNUj1VPrT4mFK/feqB1u+6qS+x7dOo7UdPHdLcnCqz/eosd87zJfQjQk1ScAD2wfzakeBcBuiMgzRFAwNMCGTEoTwm0f3S8p60ZPAIIIIAAAsEKEKAToAe7ZrgfAQQQQAABBBBAAIHMJkCAHljFTUBb/ZH7VLnc3bbB5h9+Uo+YKVo0baBa9xyjxyqWUbnSJexrB//4W+Wf6KJ1b0zStHnLtPu3A3anubni4uJVokILrV00zobl1Zv00tsvj5QJoCs37K4Jg9rrysuKJjsoE6Dv2XtAvdo3tK+bwPnDz77RiOiW9u/Xfvyl3QU/pv/JEDzpNWbqKypYIK8a1iyvSg26qVm9yqrxyH32fc31/Y8/q03PserXpYnu/u+NZ0U5M0CvWbmMKpQtadstX7VO7370hYb2elpR3Ubp8SplE20+/nyTYsbPtgG6Mew15Hm9+nx/287sVr+jwlP6dMUUu1P+w882atwLC/X7wb80fWx3+wOElK7U6mMCdPODh8UvDrLNd+zcowZtBmnNwrH2782x7eVqd9SHSyYSoCcBJkA/68cg9RsI0B0BaY4AAp4WIED3dPkYPAIIIICAzwUI0AnQfb7EmR4CCCCAAAIIIIAAAs4CBOiBEZqAtnGdR1TqjpttA3PkeK0W0TYIr9Wij/p0ejJxt7d5vXj5Fvpg8QRNfHGRCp2XX82eqJT4RqWqtdYbs4bYXePtnh2nRyvcp2JFC6vn4KmJYXJyozIB+tGjcYk71Bctf09fbdqauIP9vXVfa/6SVRo/qL0Nhc3R7hu/+1FZIiL00y97VKfaA2pSt6J2/rpXk2Yu0UefbVSjxyvY/5lr/dffa/LMxXZuXVrW0X0lb0kR58wA3QTy5uh6c5kd3uZ49JF9Wunxp/oqumOjRBsT1HfuN8kG6Gs++lKd+03URUmCcfPjg9deHGiPlDdX1UY9dNtN12hgt2apFiq1+pgAfeTklzVzXE/bh9l1b+43NTDX0WNxKlOjnf3BA0e4/8NMgB7YPxtSvIsA3RGQ5ggg4GkBAnRPl4/BI4AAAgj4XIAAnQDd50uc6SGAAAIIIIAAAggg4CxAgB4YoQlcq5W/N/EZ3Ju2bLe7p80O9DN3WZsQ+OG6nfXJssl2B7p5Xrl5Vrm5zDHwJcq30LsLx9gAfdX76+0x7JdcXFj58uS2AXdKlwnQzXPLWzc5ecR7agH68EnzdOjwUfVq30DZsmbV8Ofm2VA6af/mWeAtu49WmyY1dP89tyW+7TffbVdUt5FaOnOIfQ55cteZAXrzelXsM8TNlTRANzZ1qz+osqVut6999uV36j96pg3Qv/3+f+o3cro9Oj2569U31tpnp5vnpJsw/j9XX5qiTWr1OTMUJ0APbM0ToAfmlOJdBOiOgDRHAAFPCxCge7p8DB4BBBBAwOcCBOgE6D5f4kwPAQQQQAABBBBAAAFnAQL0wAhNQHvk6DFNHtpZOXNkV88hU+2zw80z0F9/60PNf/1dxQ4zz0DPoSET5uhYXLzdlW6ecf70MyM1d1K0LrygoOYsekeDxs6yz0A3Abo5ttw8kzx7ZDZNHNxRRS9M+ZjyYAL0HjFTdc2VxezOd7Oj/Mn2Mapd9QHVfbScdv+2X1dcWsQ+g9w8C7zyQ3fr5uuvUq4c2e0x7+b549Wb9Nb82D52jMldgQbo8xav0uoPNtij6SOyRNhj77/b+rMN0M2PCcwu/qhG1VWh7J1KSEjQ9h2/2iPszZjrtxmoORN7a+v2nRo1Zb7mPhdtn7Ge0nhSqg8BemBr/My7CNDT5pbYigDdEZDmCCDgaQECdE+Xj8EjgAACCPhcgACdAN3nS5zpIYAAAggggAACCCDgLECAHhihCcGrPHSPZix4Uwd+/1N3Fr9efTo1Vq6c2W0HsbNe1/wlq5UlaxaVvP169WzXQHly57SvvbJ0jUz4bcLfB0oV17oN32rqiC6J4bQJ3M2O9lNHjKc0omAC9C3bflbXAZMUH39clxQtrLtK3GCfuV6zyv16qstw7T3wh33OuDmS3oz1q2+3qvfQF+z95rnoT9auYJ9dntIVaIAeF39cwybO0ar3Nyhv3lyqX+MhzV70duLzyM3R8gPHzNR3W3fYAP2hMnfYI9/b9hqr0nffptpVT47BjO3ySy5Si/pVkh1SavUhQA9sjZ95FwF62twSWxGgOwLSHAEEPC1AgO7p8jF4BBBAAAGfCxCgE6D7fIkzPQQQQAABBBBAAAEEnAUI0J0JnTvoN2qGbrjmMtWu9oBzX3SAQKgECNAdJQnQHQFpjgACnhYgQPd0+Rg8AggggIDPBQjQCdB9vsSZHgIIIIAAAggggAACzgJeDtCdJ58BOjA7sJt0GKIlM2ISd6x3j5miLVt3nDa6+0reok5P107XEW/Y+L0GjJ75r/ccP6i9Pb4+va+4uHjVier3r7d9umE1ewQ8V2gFCNAdPQnQHQFpjgACnhYgQPd0+Rg8AggggIDPBQjQCdB9vsSZHgIIIIAAAggggAACzgIE6M6Eae6gYdsY7dl7wB6hfv89t6W5HxoiEA4BAnRHVQJ0R0CaI4CApwUI0D1dPgaPAAIIIOBzgcwSoOdumXxQnlJ5D01a6fPKMz0EEEAAAQQQQAABBBAIVIAAPVAp7kMgcwkQoDvWmwDdEZDmCCDgaQECdE+Xj8EjgAACCPhcgAA9+QIToPt84TM9BBBAAAEEEEAAAQSCECBADwKLWxHIRAIE6I7FJkB3BKQ5Agh4WoAAmB12NAAAIABJREFU3dPlY/AIIIAAAj4XIEAnQPf5Emd6CCCAAAIIIIAAAgg4CxCgOxPSAQK+FCBAdywrAbojIM0RQMDTAgToni4fg0cAAQQQ8LlARgnQ9/1xNKzSWZuXC6r/48+/E9T93IwAAgggkDaBiLQ1O2urBEnh6vusb84N51zA1J8LAQQQCKXA+flzhLI7+kIAAZ8IEKA7FpIA3RGQ5ggg4GkBAnRPl4/BI4AAAgj4XCCjBOiHj8YrwgwmTNeRBvcH1XPOl9YEdT83I4AAAgikTSBsQScJetoK4pNW4fsvCp8AMQ0EEAhaIGf2rEG3oQECCPhfgADdscYE6I6ANEcAAU8LEKB7unwMHgEEEEDA5wIZJUDftf+wEsKWoki5Wz4cVCV5BnpQXNyMAAIIIIAAAggggICvBTjC3dflZXIIpFmAAD3NdCcbEqA7AtIcAQQ8LUCA7unyMXgEEEAAAZ8LEKAnX2ACdJ8vfKaHAAIIIIAAAggggEAQAgToQWBxKwKZSIAA3bHYBOiOgDRHAAFPCxCge7p8DB4BBBBAwOcCBOgE6D5f4kwPAQQQQAABBBBAAAFnAQJ0Z0I6QMCXAgTojmUlQHcEpDkCCHhawEsBekrQ/aPjPV0DBo8AAggggEBKAgToBOh8OhBAAAEEEEAAAQQQQCB1AQJ0VggCCCQnQIDuuC4I0B0BaY4AAp4WIED3dPkYPAIIIICAzwUI0AnQfb7EmR4CCCCAAAIIIIAAAs4CBOjOhHSAgC8FCNAdy0qA7ghIcwQQ8LQAAbqny8fgEUAAAQR8LkCAToDu8yXO9BBAAAEEEEAAAQQQcBYgQHcmpAMEfClAgO5YVgJ0R0CaI4CApwUI0D1dPgaPAAIIIOBzAQJ0AnSfL3GmhwACCCCAAAIIIICAswABujMhHSDgSwECdMeyEqA7AtIcAQQ8LUCA7unyMXgEEEAAAZ8LEKAToPt8iTM9BBBAAAEEEEAAAQScBQjQnQnpAAFfChCgO5aVAN0RkOYIIOBpAQJ0T5ePwSOAAAII+FyAAJ0A3edLnOkhgAACCCCAAAIIIOAsQIDuTEgHCPhSgADdsawE6I6ANEcAAU8LEKB7unwMHgEEEEDA5wIE6AToPl/iTA8BBBBAAAEEEEAAAWcBAnRnQjpAwJcCBOiOZSVAdwSkOQIIeFqAAN3T5WPwCCCAAAI+FyBAJ0D3+RJneggggAACCCCAAAIIOAsQoDsT0gECvhQgQHcsKwG6IyDNEUDA0wIE6J4uH4NHAAEEEPC5AAE6AbrPlzjTQwABBBBAAAEEEEDAWYAA3ZmQDhDwpQABumNZCdAdAWmOAAKeFiBA93T5GDwCCCCAgM8FCNAJ0H2+xJkeAggggAACCCCAAALOAgTozoR0gIAvBQjQHctKgO4ISHMEEPC0AAG6p8vH4BFAAAEEfC5AgE6A7vMlzvQQQAABBBBAAAEEEHAWIEB3JqQDBHwpQIDuWFYCdEdAmiOAgKcFCNA9XT4GjwACCCDgcwECdAJ0ny9xpocAAggggAACCCCAgLMAAbozIR0g4EsBAnTHshKgOwLSHAEEPC1AgO7p8jF4BBBAAAGfCxCgE6D7fIkzPQQQQAABBBBAAAEEnAUI0J0J6QABXwoQoDuWlQDdEZDmCCDgaQECdE+Xj8EjgAACCPhcgACdAN3nS5zpIYAAAggggAACCCDgLECA7kxIBwj4UoAA3bGsBOiOgDRHAAFPCxCge7p8DB4BBBBAwOcCBOgE6D5f4kwPAQQQQAABBBBAAAFnAQJ0Z0I6QMCXAgTojmUlQHcEpDkCCHhagADd0+Vj8AgggAACPhcgQCdA9/kSZ3oIIIAAAggggAACCDgLEKA7E9IBAr4UIEB3LCsBuiMgzRFAwNMCBOieLh+DRwABBBDwuQABOgG6z5c400MAAQQQQAABBBBAwFmAAN2ZkA4Q8KUAAbpjWQnQHQFpjgACnhYgQPd0+Rg8AggggIDPBQjQCdB9vsSZHgIIIIAAAggggAACzgIE6M6EdICALwUI0B3LSoDuCEhzBBDwhIAfgvKUoPtHx3uiBgwSAQQQQACBYAUI0AnQg10z3I8AAggggAACCCCAQGYTIEDPbBVnvggEJkCAHphTincRoDsC0hwBBDwhQIDuiTIxSAQQQAABBE4TIEAnQOcjgQACCCCAAAIIIIAAAqkLEKCzQhBAIDkBAnTHdUGA7ghIcwQQ8IQAAbonysQgEUAAAQQQIEAPYA0cmrQygLu4BQEEEEAAAQQQQAABBDKDAAF6Zqgyc0QgeAEC9ODNTmtBgO4ISHMEEPCEAAG6J8rEIBFAAAEEEDhNgB3oyS8IAnQ+KAgggAACCCCAAAIIIHBKgACdtYAAAskJEKA7rgsCdEdAmiOAgCcECNA9USYGiQACCCCAAAF6AGuAAD0AJG5BAAEEEEAAAQQQQCCTCBCgZ5JCM00EghTwZYB+6PARdRsYaynGD2qfSHLiRIKGTJijZe98rMjIrHq6YTXVrf6gff3AwT/VI2aKvvp2mwoVzK/+XZuqxC3XnvU1AvQgVxy3I4CAJwUI0D1ZNgaNAAIIIJDJBdiBnvwCIEDP5B8Mpo8AAggggAACCCCAQBIBAnSWAwIIJCfguwB91579atNzjG6/6Rrt2XvgtAD91TfW2vB84uAOOnT4qBq2HaRhvaN003+uULdBsSpW5AK1afKYNm7epk79ntPSmYOVM0f2VF8jQOeDhQACmUGAAD0zVJk5IoAAAgj4TYAAnQDdb2ua+SCAAAIIIIAAAgggEGoBAvRQi9IfAv4Q8F2A/vehI/pu6w4di4vT7FdXnhagR3UbqYa1KujeO2+21Zv1ylv6dc9+dY6qo1LVWmv1K2OUK2d2+1rb3uNUs1IZlbn7thRfK1vqdhGg++ODwCwQQCB1AT8H6CnNvH90PMsCAQQQQAABTwsQoCdfPnage3pZM3gEEEAAAQQQQAABBEIqQIAeUk46Q8A3Ar4L0E9V5qPPvtGcRW+fFqBXrP+MXhj5jC4ucoG97b11X2v2wpXq16WJGrQdpJXzRiQWdlTsfBUskFeVy92T4mtN61YiQPfNR4GJIIBAagIE6KwPBBBAAAEEvCdAgJ58zQjQvbeWGTECCCCAAAIIIIAAAuESIEAPlyz9IuBtgUwVoJet2UGvPt9f55+X31bt0y82a/y0hRrwTDN77PvrMwcnVvO56a/JPDO9avlSKb7WpmkN7fvzmLdXAKNHAAEEAhDo1jsigLv8dcvQgQnpPyHzlpmPOv2deUcEEEAgkwiYf6UUynfyhK1zee3af1gJYfzXau6WDwc1PQL0oLi4GQEEEEAAAQQQQAABXwsQoPu6vEwOgTQLZKoAvWL9bood1kmXFbvIgq36YIPmL1ml/l2bqU5UX3uE+6lr6MS5uqBQAVV9uFSKrzV7opKOHjueZnwaIoAAAl4RaN31hFeGGrJxThyeJWR9BdoR+XmgUtyHAAIIIBCIgPm3d67sWQO5Naz3ZLQAPaXJEqyHdRnQOQIIIIAAAggggAACGVKAAD1DloVBIXDOBTJVgN665xg9XqWszLPLzTVt3jLt/u2Aurepp3urtdGKucOVP29u+1pUt1H23gfvK57ia+VKl+AI93O+hBkAAgikhwBHuKeHMu+BAAIIIIBAaAU4wj04TwL04Ly4GwEEEEAAAQQQQAABPwgQoPuhiswBgdALZKoAfenKj7Ro+XuaOLiDDh0+qvqtB2pgt2b6763XKXr4NJ1/XgG1bfqYNm7epja9xmr57GHKkztnqq/t3Hc49FWhRwQQQCCDCRCgZ7CCMBwEEEAAAQQCECBADwApyS0E6MF5cTcCCCCAAAIIIIAAAn4QIED3QxWZAwKhF8hUAbrhGzl5vl5b8Z4iIiLUuM4jalq3klX9469D6hkzVes3blH+vHn0bMdGuvfOm8/6GgF66BclPSKAQMYTIEDPeDVhRAgggAACCJxNgAD9bEKnv06AHpwXdyOAAAIIIIAAAggg4AcBAnQ/VJE5IBB6Ad8G6KGnSr5HAvT0kuZ9EEDgXApkxgA9Je/+0fHnshS8NwIIIIAAAgELEKAHTGVvJEAPzou7EUAAAQQQQAABBBDwgwABuh+qyBwQCL0AAbqjKQG6IyDNEUDAEwIE6P+UiQDdE0uWQSKAAAIISCJAD24ZEKAH58XdCCCAAAIIIIAAAgj4QYAA3Q9VZA4IhF6AAN3RlADdEZDmCCDgCQECdAJ0TyxUBokAAgggcJoAAXpwC4IAPTgv7kYAAQQQQAABBBBAwA8CBOh+qCJzQCD0AgTojqYE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAAECdIc1QIDugEdTBBBAAAEEEEAAAQQ8KkCA7tHCMWwEwixAgO4ITIDuCEhzBBDwhAABOgG6JxYqg0QAAQQQIEB3WAME6A54NEUAAQQQQAABBBBAwKMCBOgeLRzDRiDMAgTojsAE6I6ANEcAAU8IEKAToHtioTJIBBBAAIEMGaD/eThOEWGsTfyTD4Sk92wzVoekHzpBAIGkAuH89COdeQUSpLD+myXzyjJzBDK+gPn8cyEQWoG8uSJD2yG9IYCALwQI0B3LSIDuCEhzBBDwhAAB+j9l6h8d74maMUgEEEAAAQQiIqSihXKdc4iDfx8La9CR0CQ0AXrEiwTo53yxMAAfChB0+LCo53xKxOfnvAQMAIFzKMAPs84hvm/fukAeAnTfFpeJIeAgQIDugGeaEqA7AtIcAQQylABB+dnLQYB+diPuQAABBBDIGAIZJUDftf+wEsKYoeVu+XBIwDnCPSSMdIIAAggggAACCCCAgKcEOMLdU+VisAikmwABuiM1AbojIM0RQCBDCRCgn70cBOhnN+IOBBBAAIGMIUCAHlwdCNCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvB8F62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6GkvBwF62u1oiQACCCAQHgEC9OBcCdCD8+JuBBBAAAEEEEAAAQT8IECA7ocqMgcEQi9AgO5oSoDuCEhzBBDIUAIE6KEvB8F66E3pEQEEEEAgMAEC9MCcTt1FgB6cF3cjgAACCCCAAAIIIOAHAQJ0P1SROSAQeoFMFaAfPnJMfUe8qC83bdWJEyf0wL3F1a11PWXJEqEDB/9Uj5gp+urbbSpUML/6d22qErdca8VTe40APfSLkh4RQODcCRCgh96eAD30pvSIAAIIIBCYAAF6YE6n7iJAD86LuxFAAAEEEEAAAQQQ8IMAAbofqsgcEAi9QKYK0KfOXqpfdu1Vn85PKj7+uKK6jVLtamVVoWxJdRsUq2JFLlCbJo9p4+Zt6tTvOS2dOVg5c2RP9TUC9NAvSnpEAIHwCxCUh9/41DsQoKefNe+EAAIIIHC6AAF6cCuCAD04L+5GAAEEEEAAAQQQQMAPAgTofqgic0Ag9AKZKkAfMfllFSlcSA1qPmwlB4yeqRuvu0I1KpZWqWqttfqVMcqVM7t9rW3vcapZqYzK3H1biq+VLXW7CNBDvyjpEQEEwi9AgB5+41PvQICefta8EwIIIIDA6QIE6MGtCAL04Ly4GwEEEEAAAQQQQAABPwgQoPuhiswBgdALZKoA/adf9qhl91GKalhNfx06rLfWfKqJMR3151+H1KDtIK2cNyJReFTsfBUskFeVy92T4mtN61YiQA/9mqRHBBBIBwEC9HRA/v+3IEBPP2veCQEEEECAAN1lDRCgu+jRFgEEEEAAAQQQQAABbwoQoHuzbowagXALZKoAPSEhQSNj5+utdz/VgYN/qV+XJqpU7i797+fdatNzjF6fOTjR+7npr+nEiQRVLV8qxdfaNK1h7+FCAAEEvCbwVMd4rw3Zs+OdMjpbwGNPSJDMbkEuBBBAAAEEQiFwIiFB2bJmCUVXTn3s2n9Y5t9x4bpytzx5wpjrRYDuKkh7BBBAAAEEEEAAAQS8J0CA7r2aMWIE0kMgUwXoY59/Vb//8Zd6t2+o/b//oY59JtpnoN9d4ibVieprj3A/dQ2dOFcXFCqgqg+XSvG1Zk9UkvnDIC4EEEDAawLP9gs81PXa3DLaeAf04ccKGa0mjAcBBBDILALmR1lFzst1zqdLgH7OS8AAEEAAAQQQQAABBBBAIAUBAnSWBgIIJCeQqQL0Sg26aeqIripW5AJr8cGnGzXvtXc0bmA73VutjVbMHa78eXPb16K6jdLjVcrqwfuKp/haudIlOMKdzxUCCHhSgCPc069sHOGefta8EwIIIIDA6QI8Az24FcEO9OC8uBsBBBBAAAEEEEAAAT8IEKD7oYrMAYHQC2SqAL1Vj9EqfdeteuLRcvbo9aET5yh3rpxq37ymoodP0/nnFVDbpo9p4+ZtatNrrJbPHqY8uXOm+trOfexAD/2ypEcEEAi3AAF6uIX/6Z8APf2seScEEEAAAQJ0lzVAgO6iR1sEEEAAAQQQQAABBLwpQIDuzboxagTCLZCpAvSdv+5V/9EztGPnbzLPQy9+87Xq3aGRcuXMrj/+OqSeMVO1fuMW5c+bR892bKR777zZ+qf2GgF6uJco/SOAQDgECNDDoZp8nwTo6WfNOyGAAAIInC7ADvTgVgQBenBe3I0AAggggAACCCCAgB8ECND/r717j79srhc//p6LmTGENImU5KScExWnUuOSMJ0ohHKJxFBmMuOuYdyHmcHguE4GSe6JlBSlUulenA6KVJQuErln3Ga+57F3mdPwnfHd3/VZe3/WWs/55/frfPf6rM/n+V5Ns+c13/2twxSdgUB6gUYF9PR84SPcy0C1JgECpQsI6KUTL7iBgN49a3ciQIAAAQG9yDMgoBfRcy0BAgQIECBAgACBagoI6NWcm10TKFtAQC8o7DvQCwK6nACBnggI6N1jF9C7Z+1OBAgQICCgF3kGBPQieq4lQIAAAQIECBAgUE0BAb2ac7NrAmULCOgFhQX0goAuJ0CgJwICevfYBfTuWbsTAQIECAjoRZ4BAb2InmsJECBAgAABAgQIVFNAQK/m3OyaQNkCAnpBYQG9IKDLCRDoiYCA3j12Ab171u5EgAABAgJ6kWdAQC+i51oCBAgQIECAAAEC1RQQ0Ks5N7smULaAgF5QWEAvCOhyAgR6IiCgd49dQO+etTsRIECAgIBe5BkQ0IvouZYAAQIECBAgQIBANQUE9GrOza4JlC0goBcUFtALArqcAIGeCAjoPWFf6KbCeu9nYAcECBCou8CQIRErLb9kz49574Nzo6+vvG2MnjguyeICehJGixAgQIAAAQIECBColICAXqlx2SyBrgkI6AWpBfSCgC4nQKAnAgJ6T9gXuqmA3vsZ2AEBAgTqLiCgdzZhAb0zL68mQIAAAQIECBAgUAcBAb0OU3QGAukFBPSCpgJ6QUCXEyDQEwEBvSfsAnrv2e2AAAECjRIQ0Dsbt4DemZdXEyBAgAABAgQIEKiDgIBehyk6A4H0AgJ6QVMBvSCgywkQ6ImAgN4TdgG99+x2QIAAgUYJCOidjVtA78zLqwkQIECAAAECBAjUQUBAr8MUnYFAegEBvaCpgF4Q0OUECPREQEDvCbuA3nt2OyBAgECjBAT0zsYtoHfm5dUECBAgQIAAAQIE6iAgoNdhis5AIL1A0oD+jRtvik03+M8X7PKpp5+Jb33v5ths43XTn6DHKwroPR6A2xMgMCgBAX1QbEkv8jPQk3JajAABAgT6ERDQO3ssBPTOvLyaAAECBAgQIECAQB0EBPQ6TNEZCKQXSBrQx265V/zg6jNfsMtn582Lt282IW7++jnpT9DjFQX0Hg/A7QkQGJSAgD4otqQXCehJOS1GgAABAv0ICOidPRYCemdeXk2AAAECBAgQIECgDgICeh2m6AwE0gskCei/vvuP7Z19ZPKMuPD0qQvtct68+fHdH/1vXHHNd+Lrl52Y/gQ9XlFA7/EA3J4AgUEJCOiDYkt6kYCelNNiBAgQINCPgIDe2WMhoHfm5dUECBAgQIAAAQIE6iAgoNdhis5AIL1AkoB+2PGfjh/+7Bfxl/sfjCWWGL7QLocNHRorr/TyOHjSjjHpkYm+AAAgAElEQVT2rWumP0GPVxTQezwAtydAYFACAvqg2JJeJKAn5bQYAQIECPQjIKB39lgI6J15eTUBAgQIECBAgACBOggI6HWYojMQSC+QJKC3tvXMM8/GDhOnxZXnTku/y4xXFNAzHo6tESCwSAEBvfcPh4De+xnYAQECBOouIKB3NmEBvTMvryZAgAABAgQIECBQBwEBvQ5TdAYC6QWSBfTW1lo/63z4sGHpd5nxigJ6xsOxNQIEBPSMnwEBPePh2BoBAgRqIiCgdzZIAb0zL68mQIAAAQIECBAgUAcBAb0OU3QGAukFkgb01vZu+eVv4xd3/i4e//vcF+z2Yzu9P/0JeryigN7jAbg9AQKDEvAd6INiS3qRgJ6U02IECBAg0I+AgN7ZYyGgd+bl1QQIECBAgAABAgTqICCg12GKzkAgvUDSgH7uJV+Jcy6+JtZe83UxauTIF+z2lGmT0p+gxysK6D0egNsTIDAoAQF9UGxJLxLQk3JajAABAgT6ERDQO3ssBPTOvLyaAAECBAgQIECAQB0EBPQ6TNEZCKQXSBrQx+1wYJx/ysGx8opj0u800xUF9EwHY1sECCxWQEDv/QMioPd+BnZAgACBugsI6J1NWEDvzMurCRAgQIAAAQIECNRBQECvwxSdgUB6gaQB/T07HBhfv+zE9LvMeEUBPePh2BoBAosUENB7/3AI6L2fgR0QIECg7gICemcTFtA78/JqAgQIECBAgAABAnUQENDrMEVnIJBeIGlA33Xf4+KoA3aNVV+9YvqdZrqigJ7pYGyLAIHFCgjovX9ABPTez8AOCBAgUHcBAb2zCQvonXl5NQECBAgQIECAAIE6CAjodZiiMxBIL5A0oH/xuu/FqedeEdtsvmG8+pUrxIglllhox5tvsm76E/R4RQG9xwNwewIEBiUgoA+KLelFAnpSTosRIECAQD8CAnpnj4WA3pmXVxMgQIAAAQIECBCog4CAXocpOgOB9AJJA/qHPn7UYnf4+bMX//X0xyt/RQG9fGN3IEAgvYCAnt600xUF9E7FvJ4AAQIEOhUQ0DsTE9A78/JqAgQIECBAgAABAnUQENDrMEVnIJBeIGlAT7+9/FcU0POfkR0SIPBCAQG990+FgN77GdgBAQIE6i4goHc2YQG9My+vJkCAAAECBAgQIFAHAQG9DlN0BgLpBQT0gqYCekFAlxMg0BMBAb0n7AvdVEDv/QzsgAABAnUXENA7m7CA3pmXVxMgQIAAAQIECBCog4CAXocpOgOB9AJJA/q7P7jvYnd4wxWnpD9Bj1cU0Hs8ALcnQGBQAgL6oNiSXiSgJ+W0GAECBAj0IyCgd/ZYCOideXk1AQIECBAgQIAAgToICOh1mKIzEEgvkDSg/+R/7lhoh089/Uz84c9/jUuu+kbstesHYrON101/gh6vKKD3eABuT4DAoAQE9EGxJb1IQE/KaTECBAgQ6EdAQO/ssRDQO/PyagIECBAgQIAAAQJ1EBDQ6zBFZyCQXiBpQF/U9u67/6HY98gz4tLZh6c/QY9XFNB7PAC3J0BgUAIC+qDYkl4koCfltBgBAgQI9CMgoHf2WAjonXl5NQECBAgQIECAAIE6CAjodZiiMxBIL9CVgN7a9rgdDozrLzsx/Ql6vKKA3uMBuD0BAoMSENAHxZb0IgE9KafFCBAgQKAfAQG9s8dCQO/My6sJECBAgAABAgQI1EFAQK/DFJ2BQHqBrgT0O35zT+x7xBlx3SUnpD9Bj1cU0Hs8ALcnQGBQAgL6oNiSXiSgJ+W0GAECBAj0I5BLQH/qmXkxpLWZkn498eENk6w8+pLvJlnHIgQIECBQskBfRJT3Pyslb97yBAgQIJCbwIjhQ3Pbkv0QIJCBQNKAvvOk6S840pNPPR13/f7PccjeO8WH3r9RBkdOuwUBPa2n1QgQ6I6AgN4d58XdRUDv/QzsgAABAnUXyCWgP/DoUxGt2FHSr+Ef2yTJys+e880k61iEAAECBAgQIECAAIHqCIxZdmR1NmunBAh0TSBpQL/q2htfsPGlRi8Za7xulVhl5RW6dqhu3khA76a2exEgkEpAQE8lOfh1BPTB27mSAAECBAYmkEtAv/fBudFXYkAfPXHcwEBe5FU+wj0Jo0UIECBAgAABAgQIVErAR7hXalw2S6BrAkkDetd2ndGNBPSMhmErBAgMWEBAHzBVaS8U0EujtTABAgQI/FNAQO/sURDQO/PyagIECBAgQIAAAQJ1EBDQ6zBFZyCQXiB5QP/7E09G6zvRf3P3n6Iv+mK117wyttlsg3jJ0qPT7z6DFQX0DIZgCwQIdCwgoHdMlvwCAT05qQUJECBA4HkCAnq6R0JcT2dpJQIECBAgQIAAAQI5CQjoOU3DXgjkI5A0oN/xm3viYwfOiteuslL8x+tXjSFDhsQvfnV3/OZ3f4pzZh0Ub3zDqvmcPNFOBPREkJYhQKCrAgJ6V7n7vZmA3vsZ2AEBAgTqLiCgp5uwgJ7O0koECBAgQIAAAQIEchIQ0HOahr0QyEcgaUD/yOTpsemGb42Pfui/FjrhZz//tfjGd2+KC0+fms/JE+1EQE8EaRkCBLoqIKB3lbvfmwnovZ+BHRAgQKDuAgJ6ugkL6OksrUSAAAECBAgQIEAgJwEBPadp2AuBfASSBvS3jNsjbrzqtBd8XPujjz8RG269d/z8+nPzOXminQjoiSAtQ4BAVwUE9K5yd3QzYb0jLi8mQIAAgcUICOjpHg8BPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj0DSgL7+VpPjojMOjVVfveJCJ/zt7/8c4/c7Pr7zhVPzOXminQjoiSAtQ4BAKQJCeSmspS4qoJfKa3ECBAg0SkBATzduAT2dpZUIECBAgAABAgQI5CQgoOc0DXshkI9A0oB+3BmXxP/+8rcxdfJOscbrVom+vr64/Tf3xPRTL4z13rZW7LPHtvmcPNFOBPREkJYhQKAUAQG9FNZSFxXQS+W1OAECBBolIKCnG7eAns7SSgQIECBAgAABAgRyEhDQc5qGvRDIRyBpQH/66Wfi1E9fGZdc9c1o/f9bv0aNHBE7fGDj2P/j28WwYUPzOXminQjoiSAtQ4BAKQICeimspS4qoJfKa3ECBAg0SkBATzduAT2dpZUIECBAgAABAgQI5CQgoOc0DXshkI9A0oD+3LGeeebZ+OO998ez8+bFq1+5Qjui1/WXgF7XyToXgXoICOjVm6OAXr2Z2TEBAgRyFRDQ001GQE9naSUCBAgQIECAAAECOQkI6DlNw14I5COQNKB/9vNfiw3XfVO8dpWVFjrhbb+6O269/a7Y8QOb5HPyRDsR0BNBWoYAgVIEBPRSWEtdVEAvldfiBAgQaJSAgJ5u3AJ6OksrESBAgAABAgQIEMhJQEDPaRr2QiAfgaQBfeyWe8VFZxwWqz0voP/hz3+ND3/imLjxi6fnc/JEOxHQE0FahgCBUgQE9FJYS11UQC+V1+IECBBolICAnm7cAno6SysRIECAAAECBAgQyElAQM9pGvZCIB+BpAH9LZvuHl+/7KRYYcxyC53wwYcfi40/uG/8/BufzufkiXYioCeCtAwBAqUICOilsJa6qIBeKq/FCRAg0CgBAT3duAX0dJZWIkCAAAECBAgQIJCTgICe0zTshUA+AkkD+vZ7Hh2bbbJu7Lrdexc64cVf+EZcde2NccU5R/f85Pf86a8xa/alcesdd8fwYUPjsrOOjDHLLxsPPfJYHDLj7Ljl9rti+eWWiWkHjY911lq9vd/FfU1A7/lIbYAAgcUICOjVezwE9OrNzI4JECCQq4CAnm4yAno6SysRIECAAAECBAgQyElAQM9pGvZCIB+BpAH9pz+/IyYefHKsvebr441vWLV9ytt//fv42f/+Ks6Yvk+8861v7OnJH//73Nhuz6PigD23j43XXzuGtP5G6Z+/pkyfEyuvOCYm7bZN3HbHXbH/0bPjmgtmxqiRI2JxXxPQezpSNydA4EUEBPTqPSICevVmZscECBDIVUBATzcZAT2dpZUIECBAgAABAgQI5CQgoOc0DXshkI9A0oDeOtYDDz4Sl3/523H3PX+O+fP7YtVXrxgf2mKjWPHly/f81BddeX3cd/9DccCE7RbaS2ufrZ/ffsMVp8SSo0a0vzb5sNNi2803jA3f8eZFfm2jsW8JAb3nY7UBAgQWIyCgV+/xENCrNzM7JkCAQK4CAnq6yQjo6SytRIAAAQIECBAgQCAnAQE9p2nYC4F8BJIH9HyO9sKd7HP46bHG6qvED376i3js8Sdi3XX+PQ7Yc7t46JHHY+fJ0+P6y05ccNHJcy6P5ZZdOt63yTsX+bXxO2wuoOc8cHsjQCAE9Oo9BAJ69WZmxwQIEMhVQEBPNxkBPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj0CjAvoOE6fFMkuPjuMP2zNesvToOHj62bHG61aJcRu+NSZNPSW+fMHMBZOZff4X299Bv8V7xi7ya5PGbx2Pz302n2naCQECBJ4nsO/BfUwqJnDKcf//40UqtnXbJUCAAIHMBPqiL16y5BI939W9D86NvhL/SDJ64rjSzyigl07sBgQIECBAgAABAgR6IiCg94TdTQlkL9CogL7zpOnRit7vWOc/2oO56ZY7Y86FV8exU/aI7Scc1f4I9+d+HX/mpTFm+WVji3FjF/m13XfcPB594pnsh2yDBAg0V2D/Q5p79qqe/OT//7dcVT2CfRMgQIBAJgKtZr3saAE9xTgE9BSK1iBAgAABAgQIECCQn4CAnt9M7IhADgKNCuhTps9p/0zz923yjrb9D3/2i7j4C9+I06fvHettOSmuu3RW+zvUW78mTDk5PvT+jWLj9dde5Nc22WAdH+Gew1NsDwQILFLAR7hX7+HwEe7Vm5kdEyBAIFcBH+GebjICejpLKxEgQIAAAQIECBDISUBAz2ka9kIgH4FGBfQf3fTLmHH6xXHRGYfGkiNHxH5HnhnrvX3N2PEDm8QRs86Ll7102Zg8fpu47Y67YtKhp8a1F58QS40etdiv/flvc/OZpp0QIEDgeQICevUeCQG9ejOzYwIECOQqIKCnm4yAns7SSgQIECBAgAABAgRyEhDQc5qGvRDIR6BRAb3Ffu4lX4lLrvpGDIkh8Z6N3hYHTNguhg8bFo8+/kRMnXFO3HzbnbHM0kvF4fvtEuu9bc32pBb3NQE9n4fZTggQeKGAgF69p0JAr97M7JgAAQK5Cgjo6SYjoKeztBIBAgQIECBAgACBnAQE9JymYS8E8hFoXEBPTS+gpxa1HgECKQUE9JSa3VlLQO+Os7sQIECgCQJ1C+ijJ47r2dgE9J7RuzEBAgQIECBAgACBUgUE9FJ5LU6gsgICesHRCegFAV1OgECpAgJ6qbylLC6gl8JqUQIECDRSQEBPN3YBPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTIFCqgIBeKm8piwvopbBalAABAo0UENDTjV1AT2dpJQIECBAgQIAAAQI5CQjoOU3DXgjkIyCgF5yFgF4Q0OUECJQqIKCXylvK4gJ6KawWJUCAQCMFBPR0YxfQ01laiQABAgQIECBAgEBOAgJ6TtOwFwL5CAjoBWchoBcEdDkBAqUKCOil8payuIBeCqtFCRAg0EgBAT3d2AX0dJZWIkCAAAECBAgQIJCTgICe0zTshUA+AgJ6wVkI6AUBXU6AQKkCAnqpvKUsLqCXwmpRAgQINFJAQE83dgE9naWVCBAgQIAAAQIECOQkIKDnNA17IZCPgIBecBYCekFAlxMgUKqAgF4qbymLC+ilsFqUAAECjRQQ0NONXUBPZ2klAgQIECBAgAABAjkJCOg5TcNeCOQjIKAXnIWAXhDQ5QQIlCogoJfKW8riAnoprBYlQIBAIwUE9HRjF9DTWVqJAAECBAgQIECAQE4CAnpO07AXAvkICOgFZyGgFwR0OQECSQSE8iSMWSwioGcxBpsgQIBALQQE9HRjFNDTWVqJAAECBAgQIECAQE4CAnpO07AXAvkICOgFZyGgFwR0OQECSQQE9CSMWS8irGc9HpsjQIBAlgICerqxCOjpLK1EgAABAgQIECBAICcBAT2nadgLgXwEBPSCsxDQCwK6nACBJAICehLGrBcR0LMej80RIEAgSwEBPd1YBPR0llYiQIAAAQIECBAgkJOAgJ7TNOyFQD4CAnrBWQjoBQFdToBAEgEBPQlj1osI6FmPx+YIECCQpYCAnm4sAno6SysRIECAAAECBAgQyElAQM9pGvZCIB8BAb3gLAT0goAuJ0AgiYCAnoQx60UE9KzHY3MECBDIUkBATzcWAT2dpZUIECBAgAABAgQI5CQgoOc0DXshkI+AgF5wFgJ6QUCXEyCQREBAT8KY9SICetbjsTkCBAhkKSCgpxuLgJ7O0koECBAgQIAAAQIEchIQ0HOahr0QyEdAQC84CwG9IKDLCRBIIiCgJ2HMehEBPevx2BwBAgSyFBDQ041FQE9naSUCBAgQIECAAAECOQkI6DlNw14I5CMgoBechYBeENDlBAgkERDQkzBmvYiAnvV4bI4AAQJZCgjo6cYioKeztBIBAgQIECBAgACBnAQE9JymYS8E8hEQ0AvOQkAvCOhyAgSSCAjoSRizXkRAz3o8NkeAAIEsBQT0dGMR0NNZWokAAQIECBAgQIBATgICek7TsBcC+QgI6AVnIaAXBHQ5AQJJBAT0JIxZLyKgZz0emyNAgECWAgJ6urEI6OksrUSAAAECBAgQIEAgJwEBPadp2AuBfAQE9IKzENALArqcAIEkAgJ6EsasFxHQsx6PzREgQCBLAQE93VgE9HSWViJAgAABAgQIECCQk4CAntM07IVAPgICesFZCOgFAV1OgEASAQE9CWMlFxHWKzk2myZAgEBXBAT0dMwCejpLKxEgQIAAAQIECBDISUBAz2ka9kIgHwEBveAsBPSCgC4nQCCJgICehLGSiwjolRybTRMgQKArAgJ6OmYBPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTIJBEQEBPwljJRQT0So7NpgkQINAVAQE9HbOAns7SSgQIECBAgAABAgRyEhDQc5qGvRDIR0BALzgLAb0goMsJEEgiIKAnYazkIgJ6Jcdm0wQIEOiKgICejllAT2dpJQIECBAgQIAAAQI5CQjoOU3DXgjkIyCgF5yFgF4Q0OUECCQRENCTMFZyEQG9kmOzaQIECHRFQEBPxyygp7O0EgECBAgQIECAAIGcBAT0nKZhLwTyERDQC85CQC8I6HICBJIICOhJGCu5iIBeybHZNAECBLoiIKCnYxbQ01laiQABAgQIECBAgEBOAgJ6TtOwFwL5CAjoBWchoBcEdDkBAkkEBPQkjJVcRECv5NhsmgABAl0RENDTMQvo6SytRIAAAQIECBAgQCAnAQE9p2nYC4F8BAT0grMQ0AsCupwAgSQCAnoSxkouIqBXcmw2TYAAga4ICOjpmAX0dJZWIkCAAAECBAgQIJCTgICe0zTshUA+AgJ6wVkI6AUBXU6AQBIBAT0JYyUXEdArOTabJkCAQFcEBPR0zAJ6OksrESBAgAABAgQIEMhJQEDPaRr2QiAfAQG94CwE9IKALidAIImAgJ6EsZKLCOiVHJtNEyBAoCsCAno6ZgE9naWVCBAgQIAAAQIECOQkIKDnNA17IZCPgIBecBYCekFAlxMgkERAQE/CWMlFBPRKjs2mCRAg0BUBAT0ds4CeztJKBAgQIECAAAECBHISENBzmoa9EMhHQEAvOAsBvSCgywkQSCIgoCdhrOQiAnolx2bTBAgQ6IqAgJ6OWUBPZ2klAgQIECBAgAABAjkJCOg5TcNeCOQjIKAXnIWAXhDQ5QQIJBEQ0JMwVnIRAb2SY7NpAgQIdEVAQE/HLKCns7QSAQIECBAgQIAAgZwEBPScpmEvBPIRENALzkJALwjocgIEkggI6EkYK7mIgF7Jsdk0AQIEuiIgoKdjFtDTWVqJAAECBAgQIECAQE4CAnpO07AXAvkICOgFZyGgFwR0OQECSQQE9CSMlVxEQK/k2GyaAAECXREQ0NMxC+jpLK1EgAABAgQIECBAICcBAT2nadgLgXwEBPSCsxDQCwK6nACBJAICehLGWi0irNdqnA5DgACBQQkI6INi6/ciAT2dpZUIECBAgAABAgQI5CQgoOc0DXshkI+AgF5wFgJ6QUCXEyCQREBAT8JYq0UE9FqN02EIECAwKIFcAvpfHpwbfYM6wcIXLTlhXIJVBrfE3LOuH9yFriJAgACB9AKt/1EZkn5ZKxIgQIBAMwVWWn7JZh7cqQkQWKyAgF7wARHQCwK6nACBJAICehLGWi0ioNdqnA5DgACBQQnkEtDnz++LIa3NFPz1yPbrF1xh8Jcv+7nvDf5iVxIgQIBAUoG+6IshCnpSU4sRIECgyQIJ3qo0mc/ZCdRWQEAvOFoBvSCgywkQSCIgoCdhrNUiAnqtxukwBAgQGJRALgH93tZ3oCf4FvTRE3v3Heg+wn1Qj6CLCBAgQIAAAQIECGQv4CPcsx+RDRLoiYCAXpBdQC8I6HICBJIICOhJGGu1iIBeq3E6DAECBAYlIKAPiq3fiwT0dJZWIkCAAAECBAgQIJCTgICe0zTshUA+AgJ6wVkI6AUBXU6AQBIBAT0JY60WEdBrNU6HIUCAwKAEBPRBsQno6disRIAAAQIECBAgQCB7AQE9+xHZIIGeCAjoBdkF9IKALidAoCMBobwjrka/WEBv9PgdngABAm0BAT3dg+A70NNZWokAAQIECBAgQIBATgICek7TsBcC+QgI6AVnIaAXBHQ5AQIdCQjoHXE1+sUCeqPH7/AECBAQ0BM/AwJ6YlDLESBAgAABAgQIEMhEQEDPZBC2QSAzAQG94EAE9IKALidAoCMBAb0jrka/WEBv9PgdngABAgJ64mdAQE8MajkCBAgQIECAAAECmQgI6JkMwjYIZCYgoBcciIBeENDlBAh0JCCgd8TV6BcL6I0ev8MTIEBAQE/8DAjoiUEtR4AAAQIECBAgQCATAQE9k0HYBoHMBBob0E8554q4/rs/i69ceFx7JA898lgcMuPsuOX2u2L55ZaJaQeNj3XWWv1FvyagZ/ZE2w6BmgsI6DUfcBeOJ6x3AdktCBAgkImAn4GebhACejpLKxEgQIAAAQIECBDISUBAz2ka9kIgH4FGBvRb77g7zjjvC/HHe+9fENCnTJ8TK684Jibttk3cdsddsf/Rs+OaC2bGqJEjYnFfE9DzeZjthEATBAT0Jky53DMK6OX6Wp0AAQI5CQjo6aYhoKeztBIBAgQIECBAgACBnAQE9JymYS8E8hFoXEB/+uln4iOTZ8Th++8SU46d0w7o8+f3xdgt94obrjgllhw1oj2dyYedFttuvmFs+I43L/JrG419Swjo+TzMdkKgCQICehOmXO4ZBfRyfa1OgACBnAQE9HTTENDTWVqJAAECBAgQIECAQE4CAnpO07AXAvkINC6gn3TW5bHiCsvH5pusGztPmt4O6Pfd/1DsPHl6XH/ZiQsmc/Kcy2O5ZZeO923yzkV+bfwOmwvo+TzLdkKgEQICeiPGXOohBfRSeS1OgACBrAQE9HTjENDTWVqJAAECBAgQIECAQE4CAnpO07AXAvkINCqg3/LL38apn74yzj3xoHj40ccXBPTf//G+mDT1lPjyBTMXTGb2+V9sf2f6Fu8Zu8ivTRq/dTzwyFP5TNNOCBCovcDBRwyt/RkdsFyB46bNL/cGVidAgACBfASGRIxZZmTP93Pvg3Ojr6/4NkZPHFd8kUGuIKAPEs5lBAgQIECAAAECBDIXENAzH5DtEeiRQGMC+lNPPxO7TJ4RJx+9V/tnnT/0yGMLAvpfH3g4tp9wVPsj3J/7dfyZl8aY5ZeNLcaNXeTXdt9x83j6WSGiR8+u2xJopMAnDpjXyHM7dDqB2ScNS7eYlQgQIEAga4G+vr4YuUTvf98X0LN+TGyOAAECBAgQIECAQKMFBPRGj9/hCSxSoDEB/aZb7oyPH3RiDB/+j79Aav1l0hNzn4qlRo+Kqz59THzwY0fGdZfOimWWHt3++oQpJ8eH3r9RbLz+2rHelpP6/domG6zjI9z9l4sAga4K+Aj3rnLX8mY+wr2WY3UoAgQI9CvgI9zTPRi+Az2dpZUIECBAgAABAgQI5CQgoOc0DXshkI9AYwL688n/9TvQW187YtZ58bKXLhuTx28Tt91xV0w69NS49uIT2oF9cV/789/m5jNNOyFAoPYCAnrtR1z6AQX00ondgAABAtkICOjpRiGgp7O0EgECBAgQIECAAIGcBAT0nKZhLwTyERDQLzyuPY1HH38ips44J26+7c5YZuml4vD9don13rbmi35NQM/nYbYTAk0QENCbMOVyzyigl+trdQIECOQkIKCnm4aAns7SSgQIECBAgAABAgRyEhDQc5qGvRDIR6CxAT3VCAT0VJLWIUBgIAIC+kCUvGZxAgK654MAAQLNERDQ081aQE9naSUCBAgQIECAAAECOQkI6DlNw14I5CMgoBechYBeENDlBAh0JCCgd8Tlxf0ICOgeCwIECDRHQEBPN2sBPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEBPN34BPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEBPN34BPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEBPN34BPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTINCRgIDeEZcXC+ieAQIECGIMkX0AACAASURBVDRaQEBPN34BPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEBPN34BPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEBPN34BPZ2llQgQIECAAAECBAjkJCCg5zQNeyGQj4CAXnAWAnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEAvf/zCevnG7kCAAAECBAgQIECgTAEBvUxdaxOoroCAXnB2AnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEAvf/wCevnG7kCAAAECBAgQIECgTAEBvUxdaxOoroCAXnB2AnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEAvf/wCevnG7kCAAAECBAgQIECgTAEBvUxdaxOoroCAXnB2AnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEAvf/wCevnG7kCAAAECBAgQIECgTAEBvUxdaxOoroCAXnB2AnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEAvf/wCevnG7kCAAAECBAgQIECgTAEBvUxdaxOoroCAXnB2AnpBQJcTINCRgIDeEZcXC+ieAQIECDRaQEAvf/wCevnG7kCAAAECBAgQIECgTAEBvUxdaxOoroCAXnB2AnpBQJcTINCRgIDeEZcXdyAw7YhnO3i1lxIgQIBAFQQE9PKnJKCXb+wOBAgQIECAAAECBMoUENDL1LU2geoKCOgFZyegFwR0OQECHQkI6B1xeXEHAgJ6B1heSoAAgYoICOjlD0pAL9/YHQgQIECAAAECBAiUKSCgl6lrbQLVFRDQC85OQC8I6HICBDoSENA74vLiDgQE9A6wvJQAAQIVERDQyx+UgF6+sTsQIECAAAECBAgQKFNAQC9T19oEqisgoBecnYBeENDlBAh0JCCgd8TlxR0ICOgdYHkpAQIEKiIgoJc/KAG9fGN3IECAAAECBAgQIFCmgIBepq61CVRXQEAvODsBvSCgywkQ6EhAQO+Iy4s7EBDQO8DyUgIECFREQEAvf1ACevnG7kCAAAECBAgQIECgTAEBvUxdaxOoroCAXnB2AnpBQJcTINCRgIDeEZcXJxAQ1hMgWoIAAQI9EhDQy4cX0Ms3dgcCBAgQIECAAAECZQoI6GXqWptAdQUE9IKzE9ALArqcAIF+BYRyD0YuAgJ6LpOwDwIECHQuIKB3btbpFQJ6p2JeT4AAAQIECBAgQCAvAQE9r3nYDYFcBAT0gpMQ0AsCupwAAQHdM5C1gICe9XhsjgABAosVENDLf0AE9PKN3YEAAQIECBAgQIBAmQICepm61iZQXQEBveDsBPSCgC4nQEBA9wxkLSCgZz0emyNAgICA3uNnQEDv8QDcngABAgQIECBAgEBBAQG9IKDLCdRUQEAvOFgBvSCgywkQENA9A1kLCOhZj8fmCBAgIKD3+BkQ0Hs8ALcnQIAAAQIECBAgUFBAQC8I6HICNRUQ0AsOVkAvCOhyAgQEdM9A1gICetbjsTkCBAgI6D1+BgT0Hg/A7QkQIECAAAECBAgUFBDQCwK6nEBNBQT0goMV0AsCupwAAQHdM5C1gICe9XhsjgABAgJ6j58BAb3HA3B7AgQIECBAgAABAgUFBPSCgC4nUFMBAb3gYAX0goAuJ0BAQPcMVFJAWK/k2GyaAIGGCQwZErHS8kv2/NT3Pjg3+vqKb2P0xHHFF0m8goCeGNRyBAgQIECAAAECBLosIKB3GdztCFREQEAvOCgBvSCgywkQ6FfgiGnDyRDIWkBAz3o8NkeAAIG2gIBe/oMgoJdv7A4ECBAgQIAAAQIEyhQQ0MvUtTaB6goI6AVnJ6AXBHQ5AQL9CgjoHozcBQT03CdkfwQIEBDQu/EMCOjdUHYPAgQIECBAgAABAuUJCOjl2VqZQJUFBPSC0xPQCwK6nAABAd0zUEkBAb2SY7NpAgQaJuA70MsfuIBevrE7ECBAgAABAgQIEChTQEAvU9faBKorIKAXnJ2AXhDQ5QQICOiegUoKCOiVHJtNEyDQMAEBvfyBC+jlG7sDAQIECBAgQIAAgTIFBPQyda1NoLoCAnrB2QnoBQFdToCAgO4ZqKSAgF7Jsdk0AQINExDQyx+4gF6+sTsQIECAAAECBAgQKFNAQC9T19oEqisgoBecnYBeENDlBAgI6J6BSgoI6JUcm00TINAwAQG9/IEL6OUbuwMBAgQIECBAgACBMgUE9DJ1rU2gugICesHZCegFAV1OgICA7hmopICAXsmx2TQBAg0TENDLH7iAXr6xOxAgQIAAAQIECBAoU0BAL1PX2gSqKyCgF5ydgF4Q0OUECAjonoFKCgjolRybTRMg0DABAb38gQvo5Ru7AwECBAgQIECAAIEyBQT0MnWtTaC6AgJ6wdkJ6AUBXU6AgIDuGaikgIBeybHZNAECDRMQ0MsfuIBevrE7ECBAgAABAgQIEChTQEAvU9faBKorIKAXnJ2AXhDQ5QQICOiegUoKCOiVHJtNEyDQMAEBvfyBC+jlG7sDAQIECBAgQIAAgTIFBPQyda1NoLoCAnrB2QnoBQFdTqDhAkdMG95wAcevqoCAXtXJ2TcBAk0SENDLn7aAXr6xOxAgQIAAAQIECBAoU0BAL1PX2gSqKyCgF5ydgF4Q0OUEGi4goDf8Aajw8QX0Cg/P1gkQaIyAgF7+qAX08o3dgQABAgQIECBAgECZAgJ6mbrWJlBdAQG94OwE9IKALifQcAEBveEPQIWPL6BXeHi2ToBAYwQE9PJHLaCXb+wOBAgQIECAAAECBMoUENDL1LU2geoKCOgFZyegFwR0OYGGCwjoDX8Aanh8Yb2GQ3UkAgQqKyCglz86Ab18Y3cgQIAAAQIECBAgUKaAgF6mrrUJVFdAQC84OwG9IKDLCTRcQEBv+ANQw+ML6DUcqiMRIFBZAQG9/NEJ6OUbuwMBAgQIECBAgACBMgUE9DJ1rU2gugICesHZCegFAV1OoOECAnrDH4AaHl9Ar+FQHYkAgcoK5BLQ//boU9GXQHH4HpskWCXtEs+e+820C9ZwtSE1PJMjESDQW4HW/6b4vaW3M3B3AgQI9EIgxXuK/vY9ZpmRvTiOexIgkLmAgF5wQAJ6QUCXE2i4gIDe8AeghscX0Gs4VEciQKCyArkE9CefnpckdMzd+V3ZzWLJi76T3Z5y21BZf9GZ2znthwABAgQIECBAoFyBsv7x1MgRw8rduNUJEKikgIBecGwCekFAlxNouICA3vAHoIbHF9BrOFRHIkCgsgK5BPR7H5wbfQkq6uiJ47KbhY9wz24kNkSAAAECBAgQIECgIwEf4d4RlxcTaIxAowL6L371uzh5zuVx511/iCVHjYxdt98sPrz1Pz4G8KFHHotDZpwdt9x+Vyy/3DIx7aDxsc5aq7/o1wT0xvx3xUEJlCIgoJfCatEeCgjoPcR3awIECDxPQEAv/5EQ0Ms3dgcCBAgQIECAAAECZQoI6GXqWptAdQUaFdCvuvbGWPXVK8baa64e9//t4dhuz6PinFkHxeteu3JMmT4nVl5xTEzabZu47Y67Yv+jZ8c1F8yMUSNHLPZrAnp1H347J5CDgICewxTsIaWAgJ5S01oECBAoJiCgF/MbyNUC+kCUvIYAAQIECBAgQIBAvgICer6zsTMCvRRoVEB/PvTkQ0+Nrd67fmy83joxdsu94oYrToklR41ov2zyYafFtptvGBu+482L/NpGY98SAnovH1/3JlB9AQG9+jN0goELiOsDt/JKAgQIpBAQ0FMoLn4NAb18Y3cgQIAAAQIECBAgUKaAgF6mrrUJVFegsQH9mWeejc12nhIXnjY1hg4dGjtPnh7XX3bigkm2Pup9uWWXjvdt8s5Ffm38DpsL6NV99u2cQBYCAnoWY7CJLgkI6F2CdhsCBAj8U0BAL/9RENDLN3YHAgQIECBAgAABAmUKCOhl6lqbQHUFGhvQT/v0lfH3J56MQybvFL//430xaeop8eULZi6Y5Ozzvxjz5/fFFu8Zu8ivTRq/dTw7b351p2/nBAj0XGDC/vN6vgcbINAtgbNOHtatW7kPAQIECETE/L6IEcOH9tzi3gfnRl9f8W2Mnjiu+CKJVxDQE4NajgABAgQIECBAgECXBQT0LoO7HYGKCDQyoH/uS9+K62+8KT41c79YYonh8dcHHo7tJxzV/gj3534df+alMWb5ZWOLcWMX+bXdd9w87nvoyYqM2jYJEMhR4NCjBMUc52JP5QhMP8o/GClH1qoECBDoX6D1HegrLDeq5zwCes9HYAMECBAgQIAAAQIECCxCQED3aBAg0J9A4wL6l772/bjimu/EnBP2j9FL/uMvk/r6+mK9LSfFdZfOimWWHt3+v02YcnJ86P0bxcbrr73Ir22ywTo+wt1/rwgQKCTgI9wL8bm4YgI+wr1iA7NdAgQqL+Aj3Msfoe9AL9/YHQgQIECAAAECBAiUKSCgl6lrbQLVFWhUQP/at38SF135jTjr+P1jqdELfyfGEbPOi5e9dNmYPH6buO2Ou2LSoafGtRef0H7d4r7257/Nre707ZwAgZ4LCOg9H4ENdFFAQO8itlsRIEAgIgT08h8DAb18Y3cgQIAAAQIECBAgUKaAgF6mrrUJVFegUQH9XdvsE3976NH2XyQ992u9t63VDuqPPv5ETJ1xTtx8252xzNJLxeH77RLrvW3N9ssW9zUBvboPv50TyEFAQM9hCvbQawFhvdcTcH8CBOoqIKCXP1kBvXxjdyBAgAABAgQIECBQpoCAXqautQlUV6BRAb2MMQnoZahak0BzBAT05szaSRctIKB7OggQIFCOgIBejutAVhXWB6LkNQQIECBAgAABAgR6LyCg934GdkAgRwEBveBUBPSCgC4n0HABAb3hD4DjtwUEdA8CAQIEyhEQ0MtxHciqAvpAlLyGAAECBAgQIECAQO8FBPTez8AOCOQoIKAXnIqAXhDQ5QQaLiCgN/wBcHwB3TNAgACBEgUE9BJxX2RpAb139u5MgAABAgQIECBAoBMBAb0TLa8l0BwBAb3grAX0goAuJ9BwAQG94Q+A4wvongECBAiUKCCgl4groPcO150JECBAgAABAgQIJBQQ0BNiWopAjQQE9ILDFNALArqcQMMFBPSGPwCOL6B7BggQIFCigIBeIq6A3jtcdyZAgAABAgQIECCQUEBAT4hpKQI1EhDQCw5TQC8I6HICDRcQ0Bv+ADi+gO4ZIECAQIkCAnqJuAJ673DdmQABAgQIECBAgEBCAQE9IaalCNRIQEAvOEwBvSCgywk0XEBAb/gD4PgCumeAAAECJQoI6CXiCui9w3VnAgQIECBAgAABAgkFBPSEmJYiUCMBAb3gMAX0goAuJ9BwAQG94Q+A4wvongECBAiUKCCgl4groPcO150JECBAgAABAgQIJBQQ0BNiWopAjQQE9ILDFNALArqcQMMFBPSGPwCOL6B7BggQIFCigIBeIq6A3jtcdyZAgAABAgQIECCQUEBAT4hpKQI1EhDQCw5TQC8I6HICDRcQ0Bv+ADj+YgWmHfEsIQIECBAoICCgF8AreOkTn7q+4AouJ0CAAAECBAgQIECgGwICejeU3YNA9QQE9IIzE9ALArqcQEMEhPKGDNoxkwoI6Ek5LUaAQAMFqhrQR08cV/lpCeiVH6EDECBAgAABAgQINERAQG/IoB2TQIcCAnqHYM9/uYBeENDlBBoiIKA3ZNCOmVRAQE/KaTECBBooIKD3bugCeu/s3ZkAAQIECBAgQIBAJwICeidaXkugOQICesFZC+gFAV1OoCECAnpDBu2YSQUE9KScFiNAoIECAnrvhi6g987enQkQIECAAAECBAh0IiCgd6LltQSaIyCgF5y1gF4Q0OUEGiIgoDdk0I7ZFQFhvSvMbkKAQA0EBPTeDVFA7529OxMgQIAAAQIECBDoREBA70TLawk0R0BALzhrAb0goMsJNERAQG/IoB2zKwICeleY3YQAgRoICOi9G6KA3jt7dyZAgAABAgQIECDQiYCA3omW1xJojoCAXnDWAnpBQJcTaIiAgN6QQTtmVwQE9K4wuwkBAjUQENB7N0QBvXf27kyAAAECBAgQIECgEwEBvRMtryXQHAEBveCsBfSCgC4n0BABAb0hg3bMrggI6F1hdhMCBGogIKD3bogCeu/s3ZkAAQIECBAgQIBAJwICeidaXkugOQICesFZC+gFAV1OoCECAnpDBu2YXRFYVEBf1H/PBPeujMVNCBDIUEBA791QBPTe2bszAQIECBAgQIAAgU4EBPROtLyWQHMEBPSCsxbQCwK6nEBDBAT0hgzaMbMUENCzHItNESDQBQEBvQvIi7iFgN47e3cmQIAAAQIECBAg0ImAgN6JltcSaI6AgF5w1gJ6QUCXE2iIgIDekEE7ZpYCAnqWY7EpAgS6ICCgdwFZQO8dsjsTIECAAAECBAgQSCAgoCdAtASBGgoI6AWHKqAXBHQ5gYYICOgNGbRjZikgoGc5FpsiQKALAgJ6F5A7vIXvTO8QzMsJECBAgAABAgQIlCwgoJcMbHkCFRUQ0AsOTkAvCOhyAjUTEMprNlDHqYWAgF6LMToEAQKDEBDQB4FW8iUCesnAlidAgAABAgQIECDQoYCA3iGYlxNoiICAXnDQAnpBQJcTqJmAgF6zgTpOLQQE9FqM0SEIEBiEgIA+CLSSLxHQSwa2PAECBAgQIECAAIEOBQT0DsG8nEBDBAT0goMW0AsCupxAzQQE9JoN1HFqLSCs13q8DkeAQEQI6Pk9BgJ6fjOxIwIECBAgQIAAgWYLCOjNnr/TE1iUgIBe8NkQ0AsCupxAzQQE9JoN1HFqLSCg13q8DkeAgICe5TMgoGc5FpsiQIAAAQIECBBosICA3uDhOzqBxQgI6AUfDwG9IKDLCdRMQECv2UAdp9YCAnqtx+twBAgI6Fk+AwJ6lmOxKQIECBAgQIAAgQYLCOgNHr6jExDQy3sGBPTybK1MoIoCAnoVp2bPBBYWENY9EQQI1EXAR7jnN0kBPb+Z2BEBAgQIECBAgECzBQT0Zs/f6QksSsB3oBd8NgT0goAuJ1AzAQG9ZgN1nEYKCOiNHLtDE6ilgICe31gF9PxmYkcECBAgQIAAAQLNFhDQmz1/pycgoJf0DAjoJcFalkBFBQT0ig7OtgkMQEBYHwCSlxAgkJWAgJ7VONqbEdDzm4kdESBAgAABAgQINFtAQG/2/J2egIBe0jMgoJcEa1kCFRUQ0Cs6ONsmMAABAX0ASF5CgEBWAgJ6VuMQ0PMbhx0RIECAAAECBAgQCAHdQ0CAQH8CPsK94HMhoBcEdDmBCgqI5BUcmi0TSCAgoCdAtAQBAl0VENC7yj2gm/kO9AExeREBAgQIECBAgACBrgkI6F2jdiMClRIQ0AuOS0AvCOhyAhUUENArODRbJpBAQEBPgGgJAgS6KiCgd5V7QDcT0AfE5EUECBAgQIAAAQIEuiYgoHeN2o0IVEpAQC84LgG9IKDLCVRQQECv4NBsmUACgUUF9EX9niC4J0C3BAEChQQE9EJ8pVy8qIA+euK4fu8nuJcyBosSIECAAAECBAgQWCAgoHsYCBDoT0BAL/hcCOgFAV1OoIICAnoFh2bLBBIICOgJEC1BgEBXBQT0rnIP6GYC+oCYvIgAAQIECBAgQIBA1wQE9K5RuxGBSgkI6AXHJaAXBHQ5gQoKCOgVHJotE+iBgO9A7wG6WxIgsJCAgF79B8J3oFd/hk5AgAABAgQIECCQt4CAnvd87I5ArwQE9ILyAnpBQJcTqKCAgF7BodkygR4I+I71HqC7JQECAnrNngEBvWYDdRwCBAgQIECAAIHsBAT07EZiQwSyEBDQC45BQC8I6HICFRQQ0Cs4NFsm0AMBAb0H6G5JgICAXrNnQECv2UAdhwABAgQIECBAIDsBAT27kdgQgSwEBPSCYxDQCwK6nEDGAkJ5xsOxNQI1FPCR7zUcqiMR6LGAj3Dv8QAS3F5AT4BoCQIECBAgQIAAAQKLERDQPR4ECPQnIKAXfC4E9IKALieQsYCAnvFwbI1ADQUE9BoO1ZEI9FhAQO/xABLcXkBPgGgJAgQIECBAgAABAgK6Z4AAgQ4FBPQOwZ7/cgG9IKDLCWQsIKBnPBxbI1BDgU4D+qJ+j+p0nRpSOhIBAv8UENCr/ygI6NWfoRMQIECAAAECBAjkLeA70POej90R6JWAgF5QXkAvCOhyAhkLCOgZD8fWCDRIwM9Sb9CwHZVAYgEBPTFoD5YT0HuA7pYECBAgQIAAAQKNEhDQGzVuhyUwYAEBfcBU/b9QQC8I6HICGQsI6BkPx9YINEhAQG/QsB2VQGIBAT0xaA+WE9B7gO6WBAgQIECAAAECjRIQ0Bs1boclMGABAX3AVAJ6QSqXE8hWQCjPdjQ2RoDAIAQ6De6tW/jY90FAu4RABQQE9AoM6UW2KKBXf4ZOQIAAAQIECBAgkLeAgJ73fOyOQK8EBPSC8r4DvSCgywlkICCgZzAEWyBAIJnAYAJ6pzcX3DsV83oCvREQ0HvjnvKuAnpKTWsRIECAAAECBAgQeKGAgO6pIECgPwEBfQDPxUOPPBaHzDg7brn9rlh+uWVi2kHjY521Vm9fKaAPANBLCGQuIKBnPiDbI0AgO4FOA/qifp/tdJ3sIGyIQOYCAnrmAxrA9gT0ASB5CQECBAgQIECAAIECAgJ6ATyXEqixgIA+gOFOmT4nVl5xTEzabZu47Y67Yv+jZ8c1F8yMUSNHCOgD8PMSArkLCOi5T8j+CBCoq4CAXtfJOlcuArkH9NETx+VCle0+BPRsR2NjBAgQIECAAAECNREQ0GsySMcgkFhAQH8R0Pnz+2LslnvFDVecEkuOGtF+9eTDTottN98wNhr7FgE98QNpOQIpBATxFIrWIECAQPkCAnr5xu7QbAEBvfrzF9CrP0MnIECAAAECBAgQyFtAQM97PnZHoFcCAvqLyN93/0Ox8+Tpcf1lJy545clzLo/lll06xu+wuYDeqyfXfQksRkBA93gQIECg2gKd/hz3TkN8px8p3+nrq61v93USENCrP00BvfozdAICBAgQIECAAIG8BQT0vOdjdwR6JSCgv4j87/94X0yaekp8+YKZC145+/wvRus70yeN37pXc3NfArUU2GOfZzo617mnLtHv6ztdp6ObejEBAgQIEPinQKf/O7So1y8ONNX/pg3m3mUOelHnym2fZRp0Y+2+vohWRO/1r0Xt4+Ht1u/11rK//3KXfy/7PdogAQIECBAgQIAAAQIECBCom4CA/iIT/esDD8f2E45qf4T7c7+OP/PSGLP8srH7jpvX7XlwHgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRWQEB/kdH39fXFeltOiusunRXLLD26/eoJU06OD71/o9hkg3Ua++A4OAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOomIKAPYKJHzDovXvbSZWPy+G3itjvuikmHnhrXXnxCLDV61ACu9hICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqIKAgD6AKT36+BMxdcY5cfNtd8YySy8Vh++3S6z3tjUHcKWXECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBVBAT0qkzqRfZ56x13x2HHnxv3/+3hWOPfVonjD9szXv6y5WpyuuYeo/UjBM668Oq44PKvxQ+vmb0AYv78vjjujEviq9/8USyxxLDY8yNbxg5bbdxcqIqe/IEHH4mTzro8vv/TW2P48GGxwbpvisP23SWWGD6sfaKrrr0xTj/vC/H008/Gphv8Z/sf7wwbNrSip23mtlv/AOusz34prr3hx22A17xqxTj6wN3iNa96Rfs/+727Xs9F6/fmj+4zI1636spx5AG7mnGNxnvzrXfGrvseFyOWGL7gVDdccUq8ZOnR8dAjj8UhM86OW26/K5ZfbpmYdtD4WGet1Wt0+uYc5Z4//TVmzb60/Xvz8GFD47Kzjowxyy8b/txVn2fA/+7WZ5b/ehLvmeo51+dO9cyz8+LsC69uvzd6dt78WP21r4ppnxwfK62wvPdMNRm990w1GeQAj9HfeyZ/nh4gXuYv854p8wEl2t4Tc5+K/z778vjW9/4nhgwdEodM2qn9Y269Z0oEbBkCBLISENCzGsfgNjNv3vzYfOcp7fC2wbprxUVXXh8/vOkXceaMfQe3oKuyEGj9RcFB0z4VK4xZLq75xg/jB1efuWBfV37lu+14fubMfaP1B5ePTJ4eJxw2Id74hlWz2LtNDEzg57/4TfzuD3+J9497Z8yfNz8mH3ZabDT2LbHjBzZp/9/H7398XHT6ofHyMS+NKcfOiTf9x2qx63bvHdjiXpWFQOsfSXzr+/8TW75nbIwaOSIuvOLrceOPb4mzZx0Yfu/OYkRJN3H+5de157vKK1doB3QzTsrb08Wu/+7P4kc3/bL9D5me/2vK9Dmx8opjYtJu//hRP/sfPTuuuWBm+7/zflVH4PG/z43t9jwqDthz+9h4/bVjyJAh/txVnfENaKd+Tx4QU+Ve5D1T5UbW8YYfefTvcdmXvhU7bbNpLL3UkjH7s1+K39z9xzj5qL28Z+pYM88LvGfKcy5l7er575la9/Hn6bK0u7uu90zd9e7V3SZNPTXWeN0qsecuWy74BqDWXvxdda8m4r4ECJQpIKCXqdultW+9/a6YefrFccnsw9t3bP2Lr3dts3d89aLj298Z5Vd1BW788a3tHxfwzi0+ET/+yqcWHGTClJPiIx/8rwU/SqAV5f7y1wfjoE/sUN3D2nlc8PmvxR/vfSCm7r1TfPrSr8Zjjz8R+37sg22ZO35zTxx+wnnx+bOPIlVhgd/c/afY9dZuXwAAGFZJREFU98gz2nHN790VHmQ/W2/9o5eDp8+JXbffLH588y/bAd2M6zPjz33pW/HgI4/FxF22WuhQrT9zjd1yr2h9N/qSo/4RzFv/GGrbzTds/4Mov6oj0PoHqPfd/1AcMGG7F2zan7uqM8fF7dTvyfWYY3+n8J6pvrPt72St90WtT3656rxjvWeq6ei9Z6rpYCPa/+jl+e+Z/Hm6PvP2nqk+s1zUSX712z/EkbPOa39S1/N/ec9U//k7IYEmCgjoNZj6Ndf/sP0d59MP3mPBaXaYOC0O3ecjsdYar63BCZt9hGfnzYv1tpy0UEDfbKdPxqdP+mS8csUxbZzWXxpd/IXr46zj9282VsVPv/9Rs2Pj9dZuf0f6EbPOi3XWen184L3rt0/11NPPxNgt9oqbvnZ2xU/Z3O23PpbumP++MN7wb6+OPT+yRfi9uz7PQusvfXbb77g4eNKHo/UR0D+66RftgG7G9ZnxZy67Nj77+a/FyBFLxJKjRsZ2W747Prz1Ju3guvPk6XH9ZScuOOzJcy6P5ZZdOsbvsHl9ABpwkn0OPz3WWH2V+MFPf9H+B2zrrvPvccCe28WIEUuEP3fV4wHwe3I95rioU3jPVO/5/uvpWt+N/ss7f9f+kSneM9Vv7t4z1W+mz51oUe+Z/Hm6PjP3nqk+s1zUSVp/93z7r++J1qd33XXPve0fT3jYPh+JV7z8pd4z1X/8TkigkQICeg3G/vlrvt3+H68j/uVjRVs/p3PiR7eKddf+9xqcsNlH6O8vgzbadt+48txp8bKXLtPG+enP72j/rOwLTpvabKwKn/4HP7stTjv3yrjozMNi+LBh8cljzoqN118n3vvuty841Rs32jVuu+EzC32sbIWP3Jit/+kvD8T2ex7d/jnJ6799rZg59eOx/HIvCb931+cRaP1FwRNzn4y9dts6vvbtny4I6GZcnxm3Pvq59Q+ZRi85Mu75033t7zKftNvW8frVXh2Tpp4SX75g5oLDzj7/i+1PA5o0fuv6ADTgJK1/fLrM0qPj+MP2bH+C08HTz25/NOEeH35f+HNXPR4AvyfXY46dBHT/3a3fzFuhrfWPFs898aD2Pyb3nqk+M/aeqT6zXNRJFvWe6fd/vM+fp2syfu+ZajLIxRyj9Y/Fr7vhJ3H69H3a3xxyyVXfjO/88Ocx54QDvGeq//idkEAjBQT0Goy99fOxb/zRLe2/8Hvu17Z7HBFHHbBrrPXvq9XghM0+Qv/fTTEl5pywf6yy8ivaOK2fsXz51d+Ks44/oNlYFT39rXfcHVNnnB1nn3hQrLTC8u1THHniZ2KtNVaLD77/Xe3/3PrXnRtuvXfc/PVzKnpK227Ft69+80dx9kXXxJcvmNF+0+H37uo/F61/dX3YcefGZ0+b2v75X/8a0P3vc/Xnu6gTXP7lb7d/3nnr555vP+Go9ke4P/fr+DMvjTHLLxu77+g70Kv0BOw8aXr7Hz28Y53/aG/7plvujDkXXh1nzzowNtvJn7uqNMtF7dXvyXWY4qLP4D1TvefbOt3Djzweux9wQuy/53YLfpSZ90z1m7v3TPWbaetEi3vP9NcHHvbn6XqOPbxnqt9gTz33yhg6dEhMHr9N+3CtfzTx3I8d3Xzng/1ddf1G7kQEGi8goNfgEWh9fNmRJ56/4Gcjt/7yYP2tJsfXLpkVyy6zVA1O2Owj9PeXQXtNPSU+9P6NFvx81fMu+2r7Y2QPmbxTs7EqePrWzw86aNqn4pRjJsdqq6y04ATnX35d3P/Awwt+rn0rsrd+ztAXPn1MBU9py/8q0PpuqM+ddWT87aFH/N5dg0djzoVfjnMvuSaGDh3aPs2zz86LefPmxaqvXilmHLKHGddgxv0d4dIvfjPuvucvccjkD7d/zMp1l85qf/dy69eEKSe3/zd6kw3Wqenp63msKdPnxIbveHO8b5N3tA/4w5/9Ii7+wjfijBn7hD931WPm3jPVY46LOoX3TPWeb+tHa3zsoBNjt+3fG/+10f9/Qpf3TPWdu/dM9Zrt4t4zXXXeMf48Xa9xLziN90z1G+yVX/lu3Hr7XXHUgbu2D/fMM8+2v9nnh9fM9p6pfuN2IgIEIkJAr8Fj0PqY0C0+ekg7nrY+HviiK6+Pb33v5jjvv6fU4HSO0N9fBrV+huNV194YZ87cN56Y+1TstNexceyU3eM/3/R6YBUSaP0r7P2PPDNOOuoT8W+veeVCO299hN1H957R/lj+l495aUw59qxYfbVXxcRdtqrQCW317nvujaVGLxkrjFmujXH9d38Wx59xSVz/uZOiry/83l3DR+RfvwPd/z7XZ8A/uumX7U/1WWr0qPjzXx6Ij3/ypDhy/4/G296yRvvnr77spcu2/xV++7vSDz01rr34hPZr/aqOQGvGM06/OC4649BYcuSI2O/IM2O9t68ZO35gk/DnrurMcXE79XtyPebYSUD33916zLz1Y3L2/OTJsdM2my70461ap/OeqR4z9p6pHnPs5BT/+p6pdZ0/T3eil+9rvWfKdzapdvbIY3+PLT86tf2R7a0fd3XuJV+J1j9SPfmovbxnSoVsHQIEshIQ0LMax+A30/ou1qkzz4l77/tbrPaaV8Zxh348XrXSywe/oCuzEegvoLc2d9JZl8cXr7ux/fOwd93+vTF+Bx8Vm83QBriRg475VHz1mz9uf/zRc79Gjlgifnbd2e3/2PraSWd9LuY+9VRssO6b4piDxseIEUsMcHUvy0Gg9QbyuDMuaf/889bHe7d+fz5w4g7x+tVe1d6e37tzmFLaPTz/L4PMOK1vr1Y75+Jr2t+N3Pq1zEuWij0+vHls+Z712v/50cefiKkzzombb7szlll6qTh8v10WfLRsr/brvoMTaP0F0CVXfSOGxJB4z0ZviwMmbBfDhw1rL+bPXYMzze0qvyfnNpF0+/GeKZ1lbiu1PgL46JPOX+g9U2uPF59xWLzpP/7Ne6bcBjaI/XjPNAi0il/y/PdM/jxd8YH+c/veM9Vjji92iht/fGscd8bF8fcnnow3vmHVOPrA3do/wsx7pheT83UCBKooIKBXcWr2TIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLJBQT05KQWJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEqCgjoVZyaPRMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAcgEBPTmpBQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgigICehWnZs8ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkFxAQE9OakECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKKAgF7FqdkzAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQXENCTk1qQAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKooIKBXcWr2TIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLJBQT05KQWJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEqCgjoVZyaPRMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAcgEBPTmpBQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgigICehWnZs8ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkFxAQE9OakECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKKAgF7FqdkzAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQXENCTk1qQAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKooIKBXcWr2TIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLJBQT05KQWJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEqCgjoVZyaPRMgQIBA7QRmzb4snpj7ZBx5wK61O5sDESBAgAABAgQIECBAoKjAt3/w85j1qcviKxceV3Qp1xMgQIAAAQIECBBYrICA7gEhQIAAAQIZCAjoGQzBFggQIECAAAECBAgQyFZAQM92NDZGgAABAgQIEKidgIBeu5E6EAECBAhUUUBAr+LU7JkAAQIECBAgQIAAgW4JCOjdknYfAgQIECBAgAABAd0zQIAAAQIEEgh8/Ts/ixPOvCSu/9xJMWTIkAUrjtvhwDhwwnbxXxu9PU4998r42rd/En/564Ox0iteFgdO3D7ePXbt9mufH9A33f6AOOag8fHOt75xwVof3WdmbDFubHzw/e9q/99uvvXXMeO0i+K3v/9zrLLyCrHvxz64YL0ER7IEAQIECBAgQIAAAQIEkgn87aFH490f3DeuueC49vuX535NnXlOLDlqZBy+3y7x1W/+OM6//Nq4+557Y/SSo2LHD2wSE3bZsv3S5wd075mSjcZCBAgQIECAAAECzxMQ0D0SBAgQIEAggcDTTz8TG2y9d5x1/P6x9pqrt1e85Ze/jd0PmBU3fvG0GDVyRFz/3Z/FGq9bJVZc4WXx1W/+qB2/v3/1GTF82LCOA/pDjzwWW+wyNaZ9cny88z/fGD+/7dex9+Gnx6WzD4/XvXblBCeyBAECBAgQIECAAAECBNIKfPygE+Otb35DfHznLdoLP/PMs7H+ByYveB910y13tt87vX61V7X/ofBHJs+Iz5wyJdZ8w2s7DujeM6WdndUIECBAgAABAk0SENCbNG1nJUCAAIFSBQ47/tPt75KYuvdO7fscf+al8ehjf4/pB+/xgvv29fXF2uP2iK9cdHysvOKYjgP6nAu/HH+89/445pPjF6y935FnxOtWXTn22m3rUs9pcQIECBAgQIAAAQIECAxG4Oqvfz8+c9m1cdV5x7Yv/9b3/ydmnn5xfP3SWQt9ktdza+9+wAnx/k3fGVtvtkHHAd17psFMyDUECBAgQIAAAQItAQHdc0CAAAECBBIJ/OjmX8aUY+fEDVecEq1Pcd90uwPi2Cm7tz+G/Zln58X5n7s2bvj+/8TcJ59q/+XQr377h/jyBTNjtVVW6jigf/KYs+K6b/8khg4dumD3ffP7Yqv3rhfTDvr/qJ7oaJYhQIAAAQIECBAgQIBAYYEn5j4ZG3xg7/j8OUe33we13j+9csUxsc8e27bXvu6Gn8QVX/lOPPjQo+3//Ic/39/+kVjbb7VxxwHde6bC47IAAQIECBAgQKCxAgJ6Y0fv4AQIECCQWmD+/L7YZLv94oTDJsTw4cNi3yPOiG99/r9j2LCh7e9Gv+2Ou2LWERNjxZcvH63vQF9r4/Fx9WdnDDig7zBxWnzwfe9q/wz0A46e/Y+foz5h+9THsB4BAgQIECBAgAABAgRKEzhw2qfa74F2//D7Yv2tJsdlnzo8/m3VldvfjX7krPNi9nH7x1prvLZ9/932Oy7eu9HbBxzQvWcqbWwWJkCAAAECBAg0SkBAb9S4HZYAAQIEyhaYNfuy9nebt6J569eUvXZs/7/b7nFE7LztuPZHD7Z+/f6P98XmO09Z5Hegb7XbobHvxz4Y7x67dvv1rTi/0bb7xN67b9sO6LM/+6X43o9viUtmH172kaxPgAABAgQIECBAgACBZALf/sHP49Rzr4jJu28bZ37mqrjy3GnttY8745L2j8CaccjHFrwH2nT7/WPPnbfoN6B7z5RsJBYiQIAAAQIECBB4noCA7pEgQIAAAQIJBW7/9e/b33ne+oj2k478RLzxDau2V5982GkxauQSccwnd48HHnwkjj3lgvjRzbfHFz59TL/fgX7IjHNi/vz5MXPqx2Po0CFx/ueui1mfuiyOPnC3dkB/8OHHYrOdPhkf3nrT2GGrjduvufX2u2LVVVZqr+cXAQIECBAgQIAAAQIEchRo/YPj1j8O/vfVXxPrv22t2HX797a3eeEVX4/PXX1DnH/KwbHEEsPjrAuujiu/8p04YM/+P8Lde6Ycp2tPBAgQIECAAIF6CAjo9ZijUxAgQIBARgJbfnRqPDtvXnz1ouMX7Op3f/hLHDLznGgF9tZHuE+ZtGOcfdE1Mf3gPfoN6H+5/8E4ctZn4jd3/6n93ezvXm/tePjRx+Ntb16jHdBbv1rBvBXVb7n9rlhi+LB4/WqvjmkH7db++EO/CBAgQIAAAQIECBAgkKvAtP++IC6/+ob45uUnxyte/tL2Np986umYOvPcuPHH/xsjR4yInbbdNJ588ul45Ste1u93oHvPlOt07YsAAQIECBAgUH0BAb36M3QCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEggIKAnQLQEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRfQECv/gydgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQSCAjoCRAtQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLVFxDQqz9DJyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBAICegJESxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA9QUE9OrP0AkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIIGAgJ4A0RIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUH0BAb36M3QCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEggIKAnQLQEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRfQECv/gydgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQSCAjoCRAtQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLVFxDQqz9DJyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBAICegJESxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA9QUE9OrP0AkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIIGAgJ4A0RIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUH0BAb36M3QCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEggIKAnQLQEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRfQECv/gydgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQSCAjoCRAtQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLVFxDQqz9DJyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBAICegJESxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA9QUE9OrP0AkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIIGAgJ4A0RIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUH0BAb36M3QCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEggIKAnQLQEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRfQECv/gydgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQSCAjoCRAtQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLVFxDQqz9DJyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBAICegJESxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA9QUE9OrP0AkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIIGAgJ4A0RIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUH0BAb36M3QCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEggIKAnQLQEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRfQECv/gydgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQSCAjoCRAtQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLVFxDQqz9DJyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBAICegJESxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA9QX+D0QDo11BHnacAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAH0CAYAAABl1bZjAAAgAElEQVR4Xuzdd7wdVbk/4De9ktDkIigXURG5gFRBmggEIYYWWmghhBZIQgs1VBMIgVBCJwRQQq+RoogBaT+9WFAEBKQqAtIEQklIPb/PTG5ievY5c87eM7Of/Rdkz5r1rudd0c/he9ZMq4aGhobwIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdS7QSoBe5zvA8gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgFRCg2wgECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZAk6g2wkECBAgQCCjwKHHnx8H79MrvrveGgvc6S/PvxoXjrk9rr/45IyztPzwdXscHE9PuKblJ6rBDEXqQw14TEmAAAECBAgQIECAQJUE/PxYJWjTECBAgAABAgQyCAjQM+AZSoAAAQLlFrjp7gkxafKUOGTfXotdaN7/A8gxZ1wW++/+w1h/7W8udh2LC9Bff+NfMXPmzPj6qis3W9MbGhpi+31OiPvHnRPt2rVd5H2ff+nvcel14+PKkcc0eW4BepPpDCRAgAABAgQIECBAoAIBPz/+B6klfn6soAUuIUCAAAECBAg0m4AAvdko3YgAAQIEyibw9jsfxPQZM2OVlVdY7NKSAD0J2TdaN58n0J994bVY7b9Xii6dOy52HYsL0M+/6rZYe43V4odbbdSsbX7yqedjkw3WXOw9J38xNV567Z/xnTW/3uS5BehNpjOQAAECBAgQIECAAIEKBPz8+B+klvr5sYI2uIQAAQIECBAg0CwCAvRmYXQTAgQIEMiTwM4HnhJnnXBQrP3t1dKy/vq3v8eJZ49JTzqPf+CJuO6WX8QXU6fFcst0i/NPPzy+8uUvRRKw3n7vI7HiCsvGzXc/FEMG7BUfTfw0pk6dFgMP3DW9z4hLbozHn3wmpk+fHuus+fU499QB0a5tm0gC9HXX+mb88te/i88nfRHfXe/bcfqxB0Snju3T+879CPfHn/xLXDjmjvhiytT0ke+nHrV/tG/fLo4+/bJ4+fU352H8wWbrpaH3lCnT4uhDdk+/O/CYkbHqV1aMM4b0S/89OV2+w9abxHbf3zDG3nR/3PPgb2LGjJmxb+9tY7/deqTXzH1C/t8ffRKnjLwmPp80OV585Z8xbfr02HaLDVKHjXYYECcN2ie9z9Rp06LHlhvGyYP3jZ8//GScffENsVSXztFtqS4x6rQBsepXV1xoy5OTBsMuuj7++fb70bVzpzju8L1i8++uPaeOfnttH+dfeVvq9OAto2Lu0P7uXzwet93zSEyeMjVe/ftbsfyy3ePi4YOjVatWcwwTz6tvvC9W/NKy8Y+33o1/fzgxDthz+9hl+83TORbX36I8Sj9Pf5fUQoAAAQIECBAgQKDsAi3x8+PHEz+Lk0ZcHcnPR9Onz4g+u2w958lmfn4s+46yPgIECBAgQKAMAgL0MnTRGggQIEBgHoEkYJ346edx/OF90j+/6Oo7omPH9nF4353jb6/+Mw3Juy/VJS646vaY/MWUOPXo/dOg+/CTLoz9dtsuDt2vV7Rt02ZWkDxXgP7n516eE8r3O2pk7L/7dumJ7OQ/gCSh9eXnHB3t27WL00ddF//1pWVicP/e8wTo/3rvw9hv4Flx42WnpDUMPeea+PqqK8XB+/xokR186pmXYvTYO+OGS4emofO+A89Kw+1f3HhuOub7vY+Kn/3krPjdn16IW+/5dYw5b0j6H2j2PmJ4DD+hf3pqe+4APfklgOQXBvru8cN45fW34rhhV6bjk8962x0S++y6TRw3YK9ITn33GfDjNKjfYJ3V48SzxsTWm6+/2BPoiUHyH5+S8Vttum78/Z/vpIH/zVecHl9eYdm0jo8/+SwN61dZ+b/SOWcH6B98ODGt+Z6fnB2dO3VIfzGg5zabpCH+3L+EkPzzPkcMj1uuOC39JYbkFwJ27HtyPHrX6PQXERbXXwG6/6EgQIAAAQIECBAgQGB+gZb4+XHmzIZ4+q8vx/prrx7Jzzq9+p6c/gy37NJL+fnRFiRAgAABAgQIFEBAgF6AJimRAAECBBon8M+334v+x54XE249Px24w74nxFXnDon//sqs0Hb257d/fC5uuvuhuHzE0WlIm4S2D99+YXriOfnMH6DPPTYJtZfu3jX67bl9+h9Adt5+8/jRNpukl7z4yhtx8oirY/x1Z80T/o6748F4+91/p6e8k8/v//xiXHrd3Wk4vqjPtGnT05D8sbsvjkd++3T84ekX0pD4tGP6Rru2bdOT60kAPviUi2PXHbZIQ+7kc/lPxsfMhoY0xJ87QD9oyHlx5EG7zXkc+nd7Dojf/+KqdEwSZidmX1pu6fTff3zBT2OtNVaL3X60ZUUBevKu8lPPvTbuvnb4nOXMHdgndfT4/oaxR6+t5nw/O0D/07Mvx1Xj7omrRx03xz75h+TR+PMH6Kede23ce/2IOfdI/mPUFeccs8Cj9ufvrwC9cX+PXE2AAAECBAgQIECgHgSq8fNj8ovQpxy1X6y5+qp+fqyHTWWNBAgQIECAQOEFBOiFb6EFECBAgMDCBPocPixOOWr/9BHryYnw28ecmV52x/2PxkOPPxUNDQ0x8ZPPY9llusWVI49JQ9oLrrotxl3ynzB77gA9OZE95oZ747m/vR6tW7WKN956L/ba6QdxYJ8d0v8AkjyafNMN10rneO+Dj2P3Q06Px8dfMk/4O+rKW+OeX/4munfrkl43c+bM9CT8rVedEYNPvSRefm3eR7hvs/n6cfwRfaL/MefGkQfvFnfe/1j6qPYXXn4j2rVrE92X6pqG6UOP3Df2POzM+PDjT6ND+3bpvadMnfUI9hMH7j3fCfSb0lMPA/rulNZ23uW3xE2Xn5qOScLsP/9q7JxfIDhr9A3xza+tHHvtvHVFAfojv/1z3HbPr9NfVpj9uebmn6ePwk+eBpA4HbTPj2Lj9b495/vZAXpyknyPQ8+Iu64Zlq7riJMvir57bJeazh+gz9+nnfqdEqOHDYrVVvnyYvsrQPe/FQQIECBAgAABAgQIVOPnxySUH3PDffHu+x9F8vvZz77wWoy94PhY61tf8/OjLUiAAAECBAgQKICAAL0ATVIiAQIECDRe4IY7fxXv//vjaNu2Tfre7uSk+GP/+5e47Cfj47oLT4ilunaOR3/7dNx27yNzAvT5A9a5A/Qk/J40eUp6aiB5vPuoK25N39E9O0DfabvNoleP76WFJiexk/eMz38C/fo7HowP/j0xhgzYs1ELunLcPdGxffu01uS0efIevWT+5DHwyYnz5B3mg4ZeHHvt/IPYYuN1Frj33CfQk18a6H3QabHqKiumQfUxh+4eX11phXTM3O8jT/59ngD97DGx9WaLf4T7sy++HmeMum6xJ9AP3qdX+u732Z+550y8k/egJ/Uk60gekZ985g/Q5+/T7AD9n2+916j+NqoJLiZAgAABAgQIECBAoLQCzf3zY/ILzn13/+GcnxH3OPTMOGPIAXMCdD8/lnYrWRgBAgQIECBQEgEBekkaaRkECBAgMK9A8p655HHlSdidPN47eSf5+AeeiAcf/UMamCcntJP3ek+dNr2iAP3kEWPjG19bOQ7au2d6wvyAo0bEnjv+5wT6F1OmpievO3ZoH0NHjo2VV1x+wXegv/vv2P/IEXHVyGPTeyU1JCF/8k7yxX2S96Anj0JfYfll0lqTz/b7nBCtW7eKW644PT3R/stHfh+3/OzhuGT4kem/fzzxs/QR7rPfsTc7uH7oiafid396Pj2dP/9ncQH6OZfeFMt0n3VyfVGf5D1/vfqeFEMO2yu22WL9/7wD/fLT4sv/tdw8J+Fn32PuOZNg/9oLT0jnmftTaYD+l7++0qj++jtDgAABAgQIECBAgACBRKC5f37cds9j46IfD4q1v71aJD/PJT+b3njZKXMCdD8/2ncECBAgQIAAgXwLCNDz3R/VESBAgEAGgYOOPS+mz5gR1198cnqXSZO/iKNOuyz+/uY76enx/XfbLu6b8NuKAvSXXnszjh9+ZUyfPiMNvDde/9vRKlqlJ9APO+GC6LXt9yI5Yf7Rx5/GRuutEWcc2y86dWw/z+nppIb//eNf4/yrbkuD8/bt2sYR/XaJ3j23XOwqk/egb9LriPRx7n123jq9NnnXeHLSfe73jSfz3zL+4XSdS3frGiOGHjLnP9DMDtCT/3hz4DEj06A/OZ3/9f9eKc4c0i++vurKiz2Bnpx6P/LUS2LGzJlx4ZkDY41vrLLQmpPrkkfmv/mv99MT7slp+9mn4uc+CT978OwAPQnfDz/pwvjdn19IH0O/VJdOscv2W8Sg/rtWfAJ9xS8t06j+ZthahhIgQIAAAQIECBAgUDKB5vz58ecPPxkXXX1HdOncMdb7n2/G1GnTYp/e26Y/n/n5sWQbx3IIECBAgACBUgoI0EvZVosiQIAAAQILCiSnKg4eMir9hYHkRPi06TPSd5Y/++Jrce4ph9WULHlEfhL699trh/S99ck70fcdeFZcPeq4WGXlWY+Y9yFAgAABAgQIECBAgACB6gjk+efH6giYhQABAgQIEKhnAQF6PXff2gkQIECgrgReePkfccb5P0kf+96mTetITn2PHntHtG7dOo4+ZPeKLW68a0L6rvK5P8lj15PHrzf1k7zDvXfPLdJ3uieft975IPoOHhH3Xj8iPbXhQ4AAAQIECBAgQIAAAQLVE2iunx+rV7GZCBAgQIAAAQLNJyBAbz5LdyJAgAABArkXuOTau+KR3/w52rVrGzNmzIwN1vlW+pj15LHptfwkj8gfftG4mDJ1arRu1So6dGgfh/fdOTbZYM1almVuAgQIECBAgAABAgQI1K1AXn9+rNuGWDgBAgQIECBQNQEBetWoTUSAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECeRaoqwB9y12PjEmTv5jTjxkzG2Ld//l6/OSik+KjiZ/GySOujmdeeC2WXbpbDDu+f6y/9jfTaxf3XZ6bqzYCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqFygrgL0+VlGj70zluraOQ7au2ecePaYWHnF5WPQgb3juRdfi2N/fEXcP+6c6Nih/WK/q5zalQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQZ4G6DdC/mDI1eu53Yoy/9qw0RN90p4HxyJ2jo1PH9mm/Bp96SezWc8vYcpPvLPK7rTZdN97+9+Q891dtBAgQIECAAAECBAgQyL3Aist2itatal/mzIaIdz70M17tO6ECAgQIECBAgAABAgSKLLDScp2KXL7aCUTdBui33/tI/PWlv8ePjzsw3n3/o9hv8Nkx4dbz52yJC8fcHkt37xo/2uZ7i/yuf5+eAnR/iQgQIECAAAECBAgQIJBRQICeEdBwAgQIECBAgAABAgQI5EhAgJ6jZiilSQJ1GaA3NDTETgcMjQvOHBirr/aV+Meb78agoaPjvnHnzEG84qc/i5kzG2LH7TZd5HeD+u8a06bPbBK8QQQIECBAoFoCDRGRg0N91VqueQgQIECggAJt2rR2Ar2AfVMyAQIECBAgQIAAAQIEFiYgQLcvii5QlwH6E797Jq695Rfx09Enpf1774OPY68BZ6aPcJ/9OffyW2L5ZbvHjj02XeR3ybvT3584peh7QP0ECBAgQIAAAQIECBCoqcBy3ToI0GvaAZMTIECAAAECBAgQIECg+QQE6M1n6U61EajLAP3g40ZFn523jm232CBVT06kb7bToPjlLaOiW9fO6Z8NOPHC2KPXVrH15ust8rtttljfI9xrs2/NSoAAAQIECBAgQIBAiQQ8wr1EzbQUAgQIECBAgAABAgTqXkCAXvdboPAAdRegv/L6WzHgpAvjwZtHRfKYwNmf00ddF8st0z0G9+8dz734Wgw65eJ44KbzokvnjrG4797+9+TCbwILIECAAAECBAgQIECAQC0FBOi11Dc3AQIECBAgQIAAAQIEmldAgN68nu5WfYG6C9BPO++6WPWrK0by+PW5P598NimGjhgbf3rupejWtUucdkzf2GyjtdJLFvedAL36m9aMBAgQIECAAAECBAiUS0CAXq5+Wg0BAgQIECBAgAABAvUtIECPOPT48+PgfXrFd9dbY4HNMPam+2Pq1Gkx8MBd63uj5Hj1dRegN3cvBOjNLep+BAgQIECAAAECBAjUm4AAvd46br0ECBAgQIAAAQIECJRZoMwB+k13T4hJk6fEIfv2WmwLBejF3uEC9Iz9E6BnBDScAAECBAgQIECAAIG6FxCg1/0WAECAAAECBAgQIECAQIkEyhygv/3OBzF9xsxYZeUVlhigJyH7Rus6gV7ErS1Az9g1AXpGQMMJECBAgAABAgQIEKh7AQF63W8BAAQIECBAgAABAgQIlEggbwH6Bx9OjJ36DY3H7ro42rVrm0r/9LZfxhtvvxenH9M3RlxyYzz+5DMxffr0WGfNr8e5pw6Idm3bRPKo9a5dOsVv//Bc/O7PL8RtV50RDz3x1JzHr3888bM4acTV8fob/4rp02dEn122nnMyPTmBvu5a34xf/vp38fmkL+K76307Tj/2gOjUsX1637kf4Z78+z0P/iZmzJgZ+/beNvbbrUeJdkMxlyJAz9g3AXpGQMMJECBAgAABAgQIEKh7AQF63W8BAAQIECBAgAABAgQIlEggbwF6QnvwcaNi/922i+9/7zup9N5HDI/jBuwVG6yzevz5uZdj7W+vlv55v6NGxv67bxc/3GqjNOi+8a4JcdaJB8cWG6+dfj93+D1zZkM8/deXY/21V48kpO/V9+T4xY3nxrJLL5W+Az0JxC8/5+ho365dnD7quvivLy0Tg/v3nucev3zk93HrPb+OMecNSUP4pK7hJ/SP76z59RLtiOItRYCesWcC9IyAhhMgQIAAAQIECBAgUPcCeQrQZ86cWff9AECAAAEC+RVoaIho1Sq/9amMAAECBAgkAm3btM4dxPgHnog/PP1ijDj5kHjn/Q9jv4FnxYTbLohW8/0f6+ixd8bS3btGvz23T4Pul197M847bcCc9cx/enzuhe478Kw45aj9Ys3VV00D9J233zx+tM0m6SUvvvJGnDzi6hh/3VnzBOiDT7k4dt1hi9h68/XT6y7/yfiY2dCQBu0+tRMQoGe0F6BnBDScAAECBAgQIECAAIG6F8hTgP7BxCl13w8ABAgQIJBngYaIkKDnuUNqI0CAAIGIFZbukDuGTz+bFD/a/6R4+PYL45afPRzvfvBRHH94n5j8xdQYc8O98dzfXo/WrVrFG2+9F3vt9IM4sM8OadA9Zcq0GNR/1znrmTtA/+fb78WYG+6Ld9//KP0Ft2dfeC3GXnB8rPWtr6UBer+9to9NN1wrHfveBx/H7oecHo+Pv2SeAH3Pw86MDz/+NDq0b5deN2XqtOix5YZx4sC9c2dYTwUJ0DN2W4CeEdBwAgQIECBAgAABAgTqXiBPAfo7H06u+34AIECAAAECBAgQIECAQBaBPD7CPVnP4FMviT13/EFcfeO9cfLgfdOT4qOuvDUmTZ6Snhxv26ZNjLri1lh+2e5zAvS531We3GPuAD0Jv/vu/sPo1eN7Kdceh54ZZww5YE6AvtN2m8357vmX/h6njLxmgRPog4ZeHHvt/IPYYuN1spAb28wCAvSMoAL0jICGEyBAgAABAgQIECBQ9wIC9LrfAgAIECBAgAABAgQIECiRQF4D9OR947967A/pY9nvG3dOKn7yiLHxja+tHAft3TM9JX7AUSPSkH32CfTFBejb7nlsXPTjQen705965qU4aMh5ceNlp8wJ0L+YMjWuOndIdOzQPoaOHBsrr7j8Qt+BnpyIv2T4kdG9W5f4eOJn6SPck/eo+9ROQICe0V6AnhHQcAIECBAgQIAAAQIE6l5AgF73WwAAAQIECBAgQIAAAQIlEshrgJ4E2lvscmT02/OHMfDAWY9lf+m1N+P44VfG9Okz4itf/lJsvP63o1W0qihA//nDT8ZFV98RXTp3jPX+55sxddq02Kf3tmmAftgJF0Svbb8X19/xYHz08aex0XprxBnH9otOHdvPc4o9qSG55pbxD8ekyV/E0t26xoihh6T38KmdgAA9o70APSOg4QQIECBAgAABAgQI1L2AAL3utwAAAgQIECBAgAABAgRKJJDXAL1ExJbSwgIC9IzAAvSMgIYTIECAAAECBAgQIFD3AgL0ut8CAAgQIECAAAECBAgQKJGAAL1EzazTpQjQMzZegJ4R0HACBAjkROD0YW0XqGTY6dNzUp0yCBAgQIBAuQWKFqB3PrzHAg2ZdOWEcjfJ6ggQIECAAAECBAgQIFChgAC9QiiX5VZAgJ6xNQL0jICGEyBAoJkFmhqEN3VcM5fvdgQIECBAoC4FBOh12XaLJkCAAAECBAgQIECgpAIC9JI2to6WJUDP2GwBekZAwwkQINDMAk0Nwps6rpnLdzsCBAgQIFCXAgL0umy7RRMgQIAAAQIECBAgUFIBAXpJG1tHyxKgZ2y2AD0joOEECBBoZoGmBuFNHdfM5bsdAQIECBCoSwEBel223aIJECBAgAABAgQIECipgAC9pI2to2UJ0DM2W4CeEdBwAgQILEJg/kC70veRNzUIb+o4DSRAgAABAgSyCwjQsxu6AwECBAgQIECAAAECBPIiIEDPSyfU0VQBAXpT5f5vnAA9I6DhBAgQWISAAN3WIECAAAEC9SMgQK+fXlspAQIECBAgQIAAAQLlFxCgl7/HZV+hAD1jhwXoGQENJ0Cg1AJZTnUL0Eu9NSyOAAECBAjMIyBAtyEIECBAgAABAgQIECBQHoGiB+jvvR8x9KxpFTdkheUjRpzWruLrXZh/AU8GU/oAACAASURBVAF6xh4J0DMCGk6AQKkF8hKgz4+8sMfBZ6m11E20OAIECBAgUAUBAXoVkE1BgAABAgQIECBAgACBKgkI0KsE3Yhpxt50f0ydOi0GHrhrI0YV59JDjz8/Dt6nV3x3vTWapWgBekZGAXpGQMMJECi1QJZQujlPoM+PLEAv9bazOAIECBAooIAAvYBNUzIBAgQIECBAgAABAgQWISBAr97WaGhoiO33OSHuH3dOtGvXdpETLylA/3+/fzY2WOdb0alj+2Yr/vmX/h6XXjc+rhx5zGLvecwZl8X+u/8w1l/7m02eW4DeZLqWGShAbxlXdyVAoBwCAvRy9NEqCBAgQIBASwsI0Fta2P0JECBAgAABAgQIECBQPQEBevWsk5mefOr52GSDNRc76eIC9CSE3/uI4WnQvUz3pZqt+MlfTI2XXvtnfGfNry/2ns++8Fqs9t8rRZfOHZs8twC9yXQtM1CA3jKu7kqAQDkEBOjl6KNVECBAgACBlhYQoLe0sPsTIECAAAECBAgQIECgegIC9Mqsp02bHpvtPCgeu/uS9OT3H//ytzjgqHPi0btGx5eWWzpeef2tGDLsirjnJ2fHpMlfxLCLxsVf/vpKdOzQPoYeuV9stO6sx5Wv2+PgeHrCNek/3/2Lx+O2ex6JyVOmxqt/fyuWX7Z7XDx8cPzh6Rfj3x99Ei+//mb8/Y13YunuXWP4Cf1jzdVXjVFX3Bo33jUhvr7qStFtqS7x09EnLXQBSdB+zc0/j7t/8URMnzEjNl7v2zH0yH2jc6eO8ZfnX43b730kVlxh2bj57odiyIC94purfSUuHHN7XH/xyZGMPWv0DfHiK2/E2+9+EO//e2J85ctfivuuHxEDh46e8/j1JAjfatP14rH/fTpdc6eOHWLUaYdH925d0ppGXHJjPP7kMzF9+vRYZ82vx7mnDoh2bduEAL2yPVe1qwToVaM2EQECBRRo6QB9YfevhMkj3CtRcg0BAgQIEKiegAC9etZmIkCAAAECBAgQIECAQEsLCNArF+5/zLlx6P47xibrr5mGzb/5w3Oxb+9to3fPLeO2e34dr/7j7TQsT8Lzrp07xrGH7Zn+2cFDzouf3zAyDa9nB+gffDgxPUmeBO6dO3WI5NHoPbfZJHpsuWEkJ9DH3fFg3HT5abHKyivE+AeeiPt+9du47qIT02J/sPvRcfe1wxd7Av3+Cf8bd9z/aFw58tg08D/n0ptjxowZcdoxfdMA/fCTLoz9dtsuDt2vV7Rt0yb9s9kB+oTH/xj3/uq3celZR8aUqdNipwOGxk2Xn5oG/HOH38k/J4+iv2T4kdGmTes47/JbomvXznHEATundf75uZdj7W+vlv5zv6NGxv67bxc/3GojAXrlW646VwrQq+NsFgIEiinQnAF6cwoI0JtT070IECBAgEB2AQF6dkN3IECAAAECBAgQIECAQF4EBOiVd+LKcfdEQ0OkAfGu/U+NQ/fbMR589A8xetigOH74lbHd9zdKA/BNeh0RD94yKrovNeskdnJS/fADdk6D99kB+p+efTmuGndPXD3quPSaJDRPPofs2yv957f+9UGceVy/9M+SsH3Pw86MX99xUfrvlQToyUnx3jtsGdtssX46ZuInn8d2ex8Xv/v5lWlYngT2D99+YbRq1Sr9fu4AfcwN90Xr1q3SWpJPEpQf0W+XWPd/vrFAgL7bj7aMH2713fS6B379u3j0f5+Oc085bAHU0WPvTE/S99tzewF65VuuOlcK0KvjbBYCBIopIEAvZt9UTYAAAQIEqi0gQK+2uPkIECBAgAABAgQIECDQcgIC9Mptn3rmpbhq3L0x7IT+cfRpl8aNl50SPfocFw/dfkFsv/fxcefYYdG+fbvYaIfDYtWvrjjnxp9P+iI9mb7d9zecE6Anj2jf49Az4q5rhkX3pbrGESdfFH332C423XCtNECfMmVaDOq/a3qPjyZ+Gjv3OyUeH39J+u+VBOi7H3JGnHHsAXNOgCfj1tvukPjNPZelj4a/4KrbYtwlQ+fUOHeA/tATT6WPeL9i5DGR1N5nwLC49crT00ezz38C/aB9fpQ+Hj75JL9M8KvH/hAXnHFEJO9UH3PDvfHc316P1q1axRtvvRd77fSDOLDPDgL0yrdcda4UoFfH2SwECBRTQIBezL6pmgABAgQIVFtAgF5tcfMRIECAAAECBAgQIECg5QQE6JXbJu9B33avIelp8g8/+iQ9lT1o6MXR4/sbxk9veyDGX3dWerPkBHpyWjx5NPv8n7nfgZ4E5cl70L+60gqxxcbrpI84Tz7Jn0+dOi0GHrjwAH3rPY5Jg/dlui+1yOIHnHhh7NFrq3lOoPfoMyR+/4ur5jltPvsGcwfoyTvQDzvhgvjk089j6e5LxQF7/DC+t+H/pJfOH6AfvE+v+O56s97vPneAPurKW2PS5ClxylH7pY+IT97dnjwCXoBe+X6r2pUC9KpRm4gAgQIKFD1AXxj5wh7/XsDWKJkAAQIECORKQICeq3YohgABAgQIECBAgAABApkEBOiN40vegz7x08/jx8cfGGt962vpSe2bxz8cG6//7Th58L7pzZJ3oHdo3y59B3q7tm3S09dfXmHZ9H3hcwfovQ86La698IQFgvAlBejJuFOP3j/WX3v1RRafvDP99vsejTHnJe9A7xAjL7s5pk6bnp5Knzssn32Duf/sw48/jUOOG5WG9PN/Kg3QTx4xNr7xtZXjoL17xnsffBwHHDUi9tzRCfTG7bYqXS1ArxK0aQgQKKSAAL2QbVM0AQIECBCouoAAverkJiRAgAABAgQIECBAgECLCQjQG0ebPML95vEPxWN3X5y+P/xf730Y2+55bFwy/Mg5p70nTf4iPXH9+JPPxNRp09LHuY8577j0RPrsAH3mzIY4/KQL43d/fiEN25fq0il22X6L9LHtSwrQf/XYH2PkZTel71iffep9YatI3mWeBPyt27SO7667RvoY+S6dOy4xQP944mex84GnxOeTJkfbtm1jheWWjiMP3i223WKDik+gv/Tam+l74adPnxFf+fKX0l8waBWtnEBv3HarztUC9Oo4m4UAgWIKCNCL2TdVEyBAgACBagsI0Kstbj4CBAgQIECAAAECBAi0nIAAveVsF3fn5BHnS3frGv322iE9pZ68E33fgWfF1aOOi1VWXqE2Rf3frH0G/DiOO7xPbLDO6tHQEPG3V99IH1X/8B0X1rSuRU3eqiF56LxPkwUE6E2mM5AAgToQEKDXQZMtkQABAgQINIOAAL0ZEN2CAAECBAgQIECAAAECOREoeoCeE8ZGl5EE0r17bhFbb75+Ovatdz6IvoNHxL3Xj0hPiVf6OWnE1fHSq/+c5/LNv7t2+vj4pn4233lwWseyS896x/rjT/4lktPsN11+alNv2aLjBOgZeQXoGQENJ0Cg1AILC9AXtuCFvVe80rFNAWzO+bwTvSkdMIYAAQIECMwrIEC3IwgQIECAAAECBAgQIFAeAQF6bXqZPOJ8+EXjYsrUqdG6Vavo0KF9HN5359hkgzVrU9Bcsz746O9j7E0/jzatW8fMhoZY6b+Wi+OP6JM+ij2PHwF6xq4I0DMCGk6AQKkFKg3BmzPQrgS0OecToFci7hoCBAgQILB4AQG6HUKAAAECBAgQIECAAIHyCAjQy9PLel2JAD1j5wXoGQENJ0Cg1AKVBujVRhCgV1vcfAQIECBAQIBuDxAgQIAAAQIECBAgQKBeBATo9dLp8q5TgJ6xtwL0jICGEyBQagEBeqnba3EECBAgQKDZBJxAbzZKNyJAgAABAgQIECBAgEDNBQToNW+BAjIKCNAzAgrQMwIaToBAqQUE6KVur8URIECAAIFmExCgNxulGxEgQIAAAQIECBAgQKDmAgL0mrdAARkFBOgZAQXoGQENJ0Cg1AIC9FK31+IIECBAgECzCQjQm43SjQgQIECAAAECBAgQIFBzAQF6zVuggIwCAvSMgAL0jICGEyBQagEBeqnba3EECBAgQKDZBATozUbpRgQIECBAgAABAgQIEKi5QNED9JnvvBmfHNmnYsfWK64c3S65reLrXZh/AQF6xh4J0DMCGk6AQKkFBOilbq/FESBAgACBZhMQoDcbpRsRIECAAAECBAgQIECg5gIC9Jq3YIECxt50f0ydOi0GHrhr/orLYUUC9IxNEaBnBDScAIFSCwjQS91eiyNAgAABAs0mIEBvNko3IkCAAAECBAgQIECAQM0FBOjVa0FDQ0Nsv88Jcf+4c6Jdu7aLnHhJAfr/+/2zscE634pOHdtXr/gczyRAz9gcAXpGQMMJECi1gAC91O21OAIECBAg0GwCAvRmo3QjAgQIECBAgAABAgQI1FxAgF7dFjz51POxyQZrLnbSxQXoSQi/9xHD48qRx8Qy3ZeqbvE5nU2AnrExAvSMgIYTIFBqAQF6qdtrcQQIECBAoNkEBOjNRulGBAgQIECAAAECBAgQqLmAAL2yFkybNj0223lQPHb3JenJ7z/+5W9xwFHnxKN3jY4vLbd0vPL6WzFk2BVxz0/OjkmTv4hhF42Lv/z1lejYoX0MPXK/2GjdNdKJ1u1xcDw94Zr0n+/+xeNx2z2PxOQpU+PVv78Vyy/bPS4ePjj+8PSL8e+PPomXX38z/v7GO7F0964x/IT+sebqq8aoK26NG++aEF9fdaXotlSX+OnokypbQImvEqBnbK4APSOg4QQIlFogrwF6c6IPO316c97OvQgQIECAQF0KCNDrsu0WTYAAAQIECBAgQIBASQUE6JU3tv8x58ah++8Ym6y/Zlw45vb4zR+ei317bxu9e24Zt93z63j1H2+nYXkSnnft3DGOPWzP9M8OHnJe/PyGkdG5U8c5AfoHH05MT5IngXvnTh3imDMui57bbBI9ttwwkhPo4+54MG66/LRYZeUVYvwDT8R9v/ptXHfRiWmxP9j96Lj72uFOoP9f6+ouQH/jrfdi1BW3xLMvvh5t27SOW686I/3ti48mfhonj7g6nnnhtVh26W4x7Pj+sf7a30yZFvedAL3y/xFwJQEC9ScgQK+/nlsxAQIECBBoioAAvSlqxhAgQIAAAQIECBAgQCCfAgL0yvty5bh7oqEh4ogDdo5d+58ah+63Yzz46B9i9LBBcfzwK2O772+UBuCb9DoiHrxlVHRfqkt68+Sk+uEH7JwG77NPoP/p2ZfjqnH3xNWjjkuvSULz5HPIvr3Sf37rXx/Emcf1S/8sCdv3POzM+PUdF6X/LkCft2d1FaB/9vnkdDMMOWyv2Hrz9aJVq1ZzNE48e0ysvOLyMejA3vHci6/FsT++Iu4fd076GITFfSdAr/x/BFxJgED9CQjQ66/nVkyAAAECBJoiIEBvipoxBAgQIECAAAECBAgQyKeAAL3yvjz1zEtx1bh7Y9gJ/ePo0y6NGy87JXr0OS4euv2C2H7v4+POscOifft2sdEOh8WqX11xzo0/n/RFejJ9u+9vOCdATx7RvsehZ8Rd1wyL7kt1jSNOvij67rFdbLrhWmmAPmXKtBjUf9f0Hsnh4Z37nRKPj78k/XcB+rw9q6sAPXl+/7vvfxRDBuw5j8LMmQ2x6U4D45E7R6fvGEg+g0+9JHbruWVsucl3FvndVpuuGwL0yv9HwJUECNSfgAC9/npuxQQIECBAoCkCAvSmqBlDgAABAgQIECBAgACBfAoI0CvvS/Ie9G33GpKeJv/wo0/iiH67xKChF0eP728YP73tgRh/3VnpzZIT6Mlp8eTR7PN/5n4HehKUJ+9B/+pKK8QWG68T++++XXp58udTp06LgQcuPEDfeo9j0uB9me5LVV58ia+sqwD9qNMujTW+uUr89g9/jU8/mxQbr//tGHLYnvHRxM9iv8Fnx4Rbz5/T6uQ9A0t37xo/2uZ7i/yuf5+eAvQS/+WwNAIEsgsI0LMbugMBAgQIEKgHAQF6PXTZGgkQIECAAAECBAgQqBcBAXrjOp28B33ip5/Hj48/MNb61tfi9nsfiZvHP5zmmCcP3je9WfIO9A7t26XvQG/Xtk0kr6z+8grLRrt2beecQE+u633QaXHthScsEIQvKUBPxp169P6x/tqrN674kl5dVwF6n8OHRbeunePcUw+Lpbp2jpPOvjrW+MYq6bsDBg0dHfeNO2dOm6/46c8iOZm+43abLvK75DEHU6fPLOnWsCwCBAhkFzhiyIzsN8n5Ha64oE1FFS7MotKxFU2wuIsaIuI/by3JfDs3IECAAAECzS3Qtk3raJ2D/6+a2RDxzoeTl7i8zof3WOCaSVdOWOI4FxAgQIAAAQIECBAgQKAeBATojety8gj3m8c/FI/dfXH6+ul/vfdhbLvnsXHJ8CNjmy3WT282afIXMeqKW+PxJ5+JqdOmpY9zH3PecemJ9Nkn0JNc8/CTLozf/fmFNGxfqkun2GX7LdLHti8pQP/VY3+MkZfdlL5jffap98atolxX11WAvt+gs9NNssn6a6ZdTN4rMOaGe+OsEw+OvQacmT7Cffbn3MtvieWX7R479th0kd8dtHfP+GDilHLtCKshQIBAMwqcdHrrZrxbPm81clhlv0i1MItKx+Zz5aoiQIAAAQLNJ7Bstw4C9ObjdCcCBAgQIECAAAECBAjUVECAXhv+UVfeGkt36xr99tohPaWevBN934FnxdWjjotVVl6hNkUVdNa6CtBPPHtM+k7zH22zSdqu//3jX+Omux+KS88+MjbbaVD88pZR6Qn15DPgxAtjj15bxdabr7fI75Lf+vAO9ILufGUTINDsAvXwuPaFoQ07fXpFlgvzqXRsRRO4iAABAgQIFFjAI9wL3DylEyBAgAABAgQIECBAYD6BogfoRW1o8u703j23iK03n3Vq/a13Poi+g0fEvdePiC6dOxZ1WTWpu64C9Cefej5GXHpT3HjZKdGpQ/s45ozLY7PvrhV777JNnD7qulhume4xuH/veO7F12LQKRfHAzedl26oxX0nQK/JvjUpAQJVFqgk/BWgL74plRhWua2mI0CAAAECuREQoOemFQohQIAAAQIECBAgQIBAZgEBembCJt3gpdfejOEXjYspU6dG61atokOH9nF4351jkw1mPZnbp3KBugrQE5Zrbv55+h6BVtEqtttqoxgyYM9o26ZNfPLZpBg6Ymz86bmXolvXLnHaMX1js43WSiUX950AvfLN5koCBIorUEn4K0BffH8rMSzuDlE5AQIECBDIJiBAz+ZnNAECBAgQIECAAAECBPIkIEDPUzfU0hSBugvQm4K0uDEC9OYWdT8CBPIoUEn4K0BffOcqMcxj79VEgAABAgSqISBAr4ayOQgQIECAAAECBAgQIFAdAQF6dZzN0nICAvSMtgL0jICGEyBQCIFKwl8B+n9aWamFd6AXYvsrkgABAgSqICBArwKyKQgQIECAAAECBAgQIFAlAQF6laBN02ICAvSMtAL0jICGEyBQCAEB+qLbtLAQXIBeiG2tSAIECBDIkYAAPUfNUAoBAgQIECBAgAABAgQyCgjQMwIaXnMBAXrGFgjQMwIaToBAIQQE6AL0QmxURRIgQIBAYQUE6IVtncIJECBAgAABAgQIECCwgIAA3aYouoAAPWMHBegZAQ0nQKAQAgJ0AXohNqoiCRAgQKCwAgL0wrZO4QQIECBAgAABAgQIEBCg2wOlExCgZ2ypAD0joOEECBRCQIAuQC/ERlUkAQIECBRWQIBe2NYpnAABAgQIECBAgAABAgJ0e6B0AgL0jC0VoGcENJwAgUIICNAF6IXYqIokQIAAgcIKCNAL2zqFEyBAgAABAgQIECBAQIBuD5ROQICesaUC9IyAhhMgUAgBAboAvRAbVZEECBAgUFgBAXphW6dwAgQIECBAgAABAgQICNDtgdIJCNAztlSAnhHQcAIECiGwsAC9EIVXochhp09fYJZKvRY2tgolm4IAAQIECOROQICeu5YoiAABAgQIECBAgAABAk0WWGm5Tk0eayCBPAgI0DN2QYCeEdBwAgQKIVBpIFyIxTRzkQL0ZgZ1OwIECBCoSwEBel223aIJECBAgAABAgQIECipgAC9pI2to2UJ0DM2W4CeEdBwAgQKISBAX3SbBOiF2MKKJECAAIGcCwjQc94g5REgQIAAAQIECBAgQKARAgL0RmC5NJcCAvSMbRGgZwQ0nACBQggI0FumTR7h3jKu7kqAAAECxRMQoBevZyomQIAAAQIECBAgQIDAogQE6PZG0QUE6Bk7KEDPCGg4AQK5ExCWV68lAvTqWZuJAAECBPItIEDPd39UR4AAAQIECBAgQIAAgcYICNAbo+XaPAoI0DN2RYCeEdBwAgRyJyBAr15LBOjVszYTAQIECORbQICe7/6ojgABAgQIECBAgAABAo0REKA3Rsu1eRQQoGfsigA9I6DhBAjkTkCAXr2WCNCrZ20mAgQIEMi3gAA93/1RHQECBAgQIECAAAECBBojIEBvjJZr8yggQM/YFQF6RkDDCRDInYAAvXotEaBXz9pMBAgQIJBvAQF6vvujOgIECBAgQIAAAQIECDRGQIDeGC3X5lFAgJ6xKwL0jICGEyCQOwEBevVaIkCvnrWZCBAgQCDfAgL0fPdHdQQIECBAgAABAgQIEGiMgAC9MVquzaOAAD1jVwToGQENJ0AgdwIC9Oq1RIBePWszESBAgEC+BQTo+e6P6ggQIECAAAECBAgQINAYAQF6Y7Rcm0cBAXrGrgjQMwIaToBA7gQE6NVrycIC9Pn9hezV64eZCBAgQKB2AgL02tmbmQABAgQIECBAgAABAs0tIEBvblH3q7aAAD2juAA9I6DhBAjkTkCAXr2WCNCrZ20mAgQIEMi3gAA93/1RHQECBAgQIECAAAECBBojIEBvjJZr8yggQM/YFQF6RkDDCRDInYAAvXotEaBXz9pMBAgQIJBvAQF6vvujOgIECBAgQIAAAQIECDRGQIDeGC3X5lFAgJ6xKwL0jICGEyBQUwFheU35Q4BeW3+zEyBAgEB+BATo+emFSggQIECAAAECBAgQIJBVQICeVdD4WgsI0DN2QICeEdBwAgRqKiBArym/AL22/GYnQIAAgRwJ5ClA/2DiF0uUaX/otgtcM/Xqh5Y4zgUECBAgQIAAAQIECBCoB4EVlu5YD8u0xhILCNAzNleAnhHQcAIEaiogQK8pvwC9tvxmJ0CAAIEcCeQpQJ8xY+YSZT7fZ8sFruly8+NLHOcCAgQIECCQVaChoSFatWqV9TbGEyBAgACBFhVo17Z1i97fzQm0tIAAPaOwAD0joOEECNRUQIBeU34Bem35zU6AAAECORLIU4D+zoeTlyjT+fAeC1wz6coJSxznAgIECBAgQIAAAQIECNSDgEe410OXy71GAXrG/grQMwIaToBATQUE6DXlF6DXlt/sBAgQIJAjAQF6jpqhFAIECBAgQIAAAQIECGQUEKBnBDS85gIC9IwtEKBnBDScAIGaCgjQa8ovQK8tv9kJECBAIEcCAvQcNUMpBAgQIECAAAECBAgQyCggQM8IaHjNBQToGVsgQM8IaDgBAjUVEKDXlF+AXlt+sxMgQIBAjgQE6DlqhlIIECBAgAABAgQIECCQUUCAnhHQ8JoLCNAztkCAnhHQcAIEaiogQK8pvwC9tvxmJ0CAAIEcCQjQc9QMpRAgQIAAAQIECBAgQCCjgAA9I6DhNRcQoGdsgQA9I6DhBAjUVECAXlN+AXpt+c1OgAABAjkSEKDnqBlKIUCAAAECBAgQIECAQEYBAXpGQMNrLiBAz9gCAXpGQMMJEKipgAC9pvwC9Nrym50AAQIEciQgQM9RM5RCgAABAgQIECBAgACBjAIC9IyAhtdcQICesQUC9IyAhhMgUFMBAXpN+QXoteU3OwECBAjkSECAnqNmKIUAAQIECBAgQIAAAQIZBQToGQENr7mAAD1jCwToGQENJ0CgpgIC9JryVzT5sNOnV3SdiwgQIECAQJEFBOhF7p7aCRAgQIAAAQIECBAgMK+AAN2OKLqAAD1jBwXoGQENJ0CgpgIC9JryVzS5AL0iJhcRIECAQMEFBOgFb6DyCRAgQIAAAQIECBAgMJeAAN12KLqAAD1jBwXoGQENJ0CgpgIC9JryVzS5AL0iJhcRIECAQMEFBOgFb6DyCRAgQIAAAQIECBAgIEC3B0okIEDP2EwBekZAwwkQqKmAAL2m/BVNLkCviMlFBAgQIFBwgTIE6AtrwaQrJxS8M8onQIAAAQIECBAgQIBA4wWcQG+8mRH5EhCgZ+yHAD0joOEECNRUQIBeU/6KJhegV8TkIgIECBAouIAAveANVD4BAgQIECBAgAABAgTmEhCg2w5FFxCgZ+ygAD0joOEECNRUQIBeU/4mTy5UbzKdgQQIECCQUwEBek4boywCBAgQIECAAAECBAg0QUCA3gQ0Q3IlIEDP2A4BekZAwwkQqKmAAL2m/E2eXIDeZDoDCRAgQCCnAgL0nDZGWQQIECBAgAABAgQIEGiCgAC9CWiG5EpAgJ6xHQL0jICGEyBQUwEBek35mzy5AL3JdAYSIECAQE4FBOg5bYyyCBAgQIAAAQIECBAg0AQBAXoT0AzJlYAAPWM7BOgZAQ0nQKCmAgL0mvI3eXIBepPpDCRAgACBnAoI0HPaGGURIECAAAECBAgQIECgCQIC9CagGZIrAQF6xnYI0DMCGk6AQE0FBOg15W/y5AL0JtMZSIAAAQI5FRCg57QxyiJAgAABAgQIECBAgEATBAToTUAzJFcCdRWg/+nZl6Lf0SOjfbu2c5rwyJ2jY6muneOjiZ/GySOujmdeeC2WXbpbDDu+f6y/9jfT6xb3nQA9V/tZMQQINFJAgN5IsJxcXmmAPn9/Kx2Xk2UqgwABAgTqSECAXkfNtlQCBAgQIECAAAECBEovIEAvfYtLv8C6CtAnPP7HePKp5+O0Y/ou0NgTmxHSugAAIABJREFUzx4TK6+4fAw6sHc89+JrceyPr4j7x50THTu0j8V9J0Av/d8RCyRQagEBennau7BwXIBenv5aCQECBMouIEAve4etjwABAgQIECBAgACBehIQoNdTt8u51roK0G+759fx4cRP4/C+O8/TzZkzG2LTnQZGchq9U8f26XeDT70kduu5ZWy5yXcW+d1Wm64bAvRy/sWwKgL1IiBAL0+nBejl6aWVECBAoB4FBOj12HVrJkCAAAECBAgQIECgrAIC9LJ2tn7WVVcB+k9ufSCuv+PB6NC+XXTq2CH23OkHsc+u28S7738U+w0+Oybcev6czl845vZYunvX+NE231vkd/379BSg18/fFSslUAoBgXkp2rjQRQjQy9tbKyNAgEA9CAjQ66HL1kiAAAECBAgQIECAQL0ICNDrpdPlXWddBegzZsyMKVOnRedOHeKNt95NT5kPOnDXWH21r8agoaPjvnHnzOn0FT/9WSQn03fcbtNFfjeo/64xZdqM8u4OKyNAoHQCA4+bWbo1WdAsgcvPb70Axfz9Xtg1/AgQIECAQB4E2rVtE61b1b6SmQ0R73w4eYmFdD68xxKvSS6YdOWEiq5zEQECBAgQIECAAAECBMokIEAvUzfrcy11FaDP3+Lb73s0fd958t7zvQacmT7Cffbn3MtvieWX7R479th0kd8dtHfP+GDilPrcOVZNgEAhBU46fcGQtZALUfQCAiOHLfjLEfP3e2HXoCRAgAABAnkQWLZbBwF6HhqhBgIECBAgQIAAAQIECDSDgAC9GRDdoqYCdR2g3/Kzh+P1N96JkwfvE5vtNCh+ecuo6Na1c9qQASdeGHv02iq23ny9RX63zRbre4R7TbevyQkQaKyAR7g3Vqxc1y/sMe/lWqHVECBAgEBRBTzCvaidUzcBAgQIECBAgAABAgQWFBCg2xVFF6irAP3Jp56Ptb+9WnTp3DHefueDOPSEC+KMYw+IjdZdI04fdV0st0z3GNy/96xT6adcHA/cdF567eK+e/vfS368X9E3ifoJECiPgAC9PL1sykoE6E1RM4YAAQIEqiEgQK+GsjkIECBAgAABAgQIECBQHQEBenWczdJyAnUVoI+96f646e6HUs1uS3WJg/fpGTttt1n67598NimGjhgbf3rupejWtUucdkzf2GyjtZb4nQC95TanOxMg0PwCAvTmNy3SHQXoReqWWgkQIFBfAgL0+uq31RIgQIAAAQIECBAgUG4BAXq5+1sPq6urAL0lGipAbwlV9yRAoKUEBOgtJVuM+wrQi9EnVRIgQKAeBQTo9dh1ayZAgAABAgQIECBAoKwCAvSydrZ+1iVAz9hrAXpGQMMJEKiqgAC9qty5m0yAnruWKIgAAQIE/k9AgG4rECBAgAABAgQIECBAoDwCAvTy9LJeVyJAz9h5AXpGQMMJEKiqgAC9qty5m0yAnruWKIgAAQIEBOj2AAECBAgQIECAAAECBEonIEAvXUvrbkEC9IwtF6BnBDScAIGqCgjQq8qdu8kE6LlriYIIECBAQIBuDxAgQIAAAQIECBAgQKB0AgL00rW07hYkQM/YcgF6RkDDCRCoqoAAvarcuZtMgJ67liiIAAECBATo9gABAgQIECBAgAABAgRKJyBAL11L625BAvSMLRegZwQ0nACBqgoI0KvKnbvJBOi5a4mCCBAgQECAbg8QIECAAAECBAgQIECgdAIC9NK1tO4WJEDP2HIBekZAwwkQqKqAAL2q3LmbTICeu5YoiAABAgQE6PYAAQIECBAgQIAAAQIESicgQC9dS+tuQQL0jC0XoGcENJwAgaoKCNCryp27yQTouWuJgggQIEBAgG4PECBAgAABAgQIECBAoHQCAvTStbTuFiRAz9hyAXpGQMMJEKiqgAC9qty5m0yAnruWKIgAAQIEBOj2AAECBAgQIECAAAECBEonIEAvXUvrbkEC9IwtF6BnBDScAIGqCgjQq8qdu8kE6LlriYIIECBAQIBuDxAgQIAAAQIECBAgQKB0AgL00rW07hYkQM/YcgF6RkDDCRCoqoAAvarcuZtMgJ67liiIAAECBATo9gABAgQIECBAgAABAgRKJyBAL11L625BAvSMLRegZwQ0nACBqgoI0KvKnbvJBOi5a4mCCBAgQECAbg8QIECAAAECBAgQIECgdAIC9NK1tO4WJEDP2HIBekZAwwkQqKqAAL2q3LmbTICeu5YoiAABAgQE6PYAAQIECBAgQIAAAQIESicgQC9dS+tuQQL0jC0XoGcENJwAgaoKCNCryl2IyYTqhWiTIgkQIFB6gRWX7RStW9V+mTMbIt75cPISC+l8eI8lXpNcMOnKCRVd5yICBAgQIECAAAECBAiUSUCAXqZu1udaBOgZ+y5AzwhoOAECVRUQoFeVuxCTCdAL0SZFEiBAoPQCAvTSt9gCCRAgQIAAAQIECBCoIwEBeh01u6RLFaBnbKwAPSOg4QQIVFVAgF5V7kJMJkAvRJsUSYAAgdILCNBL32ILJECAAAECBAgQIECgjgQE6HXU7JIuVYCesbEC9IyAhhMgUFUBAXpVuQsxmQC9EG1SJAECBEovIEAvfYstkAABAgQIECBAgACBOhIQoNdRs0u6VAF6xsYK0DMCGk6AQFUFBOhV5S7EZAL0QrRJkQQIECi9gAC99C22QAIECBAgQIAAAQIE6khAgF5HzS7pUgXoGRsrQM8IaDgBAlUVEKBXlbsQkwnQC9EmRRIgQKD0AgL00rfYAgkQIECAAAECBAgQqCMBAXodNbukSxWgZ2ysAD0joOEECFRVQIBeVe5CTCZAL0SbFEmAAIHSCwjQS99iCyRAgAABAgQIECBAoI4EBOh11OySLlWAnrGxAvSMgIYTIFBVAQF6VbkLMZkAvRBtUiQBAgRKLyBAL32LLZAAAQIECBAgQIAAgToSEKDXUbNLulQBesbGCtAzAhpOgEBVBQToVeUuxGQC9EK0SZEECBAovYAAvfQttkACBAgQIECAAAECBOpIQIBeR80u6VIF6BkbK0DPCGg4AQJVFRCgV5W7EJMJ0AvRJkUSIECg9AIC9NK32AIJECBAgAABAgQIEKgjAQF6HTW7pEsVoGdsrAA9I6DhBAhUVUCAXlXuQkwmQC9EmxRJgACB0gsI0EvfYgskQIAAAQIECBAgQKCOBAToddTski5VgJ6xsQL0jICGEyBQVQEBelW5CzGZAL0QbVIkAQIESi8gQC99iy2QAAECBAgQIECAAIE6EhCg11GzS7pUAXrGxgrQMwIaToBAVQUE6FXlLsRkAvRCtEmRBAgQKL2AAL30LbZAAgQIECBAgAABAgTqSECAXkfNLulSBegZGytAzwhoOAECVRUQoFeVuxCTCdAL0SZFEiBAoPQCAvTSt9gCCRAgQIAAAQIECBCoIwEBeh01u6RLFaBnbKwAPSOg4QQIVFVAgF5V7kJMJkAvRJsUSYAAgdILCNBL32ILJECAAAECBAgQIECgjgQE6HXU7JIuVYCesbEC9IyAhhMgUFUBAXpVuQsxmQC9EG1SJAECBEovIEAvfYstkAABAgQIECBAgACBOhIQoNdRs0u6VAF6xsYK0DMCGk6AQFUFBOhV5S7EZAL0QrRJkQQIECi9gAC99C22QAIECBAgQIAAAQIE6khAgF5HzS7pUgXoGRsrQM8IaDgBAlUVEKBXlbsQkwnQC9EmRRIgQKD0AgL00rfYAgkQIECAAAECBAgQqCMBAXodNbukSxWgZ2ysAD0joOEECFRVQIBeVe5CTCZAL0SbFEmAAIHSCwjQS99iCyRAgAABAgQIECBAoI4EBOh11OySLlWAnrGxAvSMgIYTIFBVAQF6VbkLMZkAvRBtUiQBAgRKLyBAL32LLZAAAQIECBAgQIAAgToSEKDXUbNLulQBesbGCtAzAhpOgEBVBQToVeUuxGQC9EK0SZEECBAovYAAvfQttkACBAgQIECAAAECBOpIQIBeR80u6VIF6BkbK0DPCGg4AQJVFRCgV5W7EJMJ0AvRJkUSIECg9AIC9NK32AIJECBAgAABAgQIEKgjAQF6HTW7pEsVoGdsrAA9I6DhBAi0mICwvMVoS3VjAXqp2mkxBAgQKKyAAL2wrVM4AQIECBAgQIAAAQIEFhAQoNsURRcQoGfsoAA9I6DhBAi0mIAAvcVoS3VjAXqp2mkxBAgQKKyAAL2wrVM4AQIECBAgQIAAAQIEBOj2QOkEBOgZWypAzwhoOAECLSYgQG8x2lLdWIBeqnZaDAECBAorIEAvbOsUToAAAQIECBAgQIAAAQG6PVA6AQF6xpYK0DMCGk6AQIsJCNBbjLZUNxagl6qdFkOAAIHCCgjQC9s6hRMgQIAAAQIECBAgQECAbg+UTkCAnrGlAvSMgIYTINBiAgL0FqMt1Y0F6KVqp8UQIECgsAIC9MK2TuEECBAgQIAAAQIECBAQoNsDpRMQoGdsqQA9I6DhBAi0mIAAvcVoS3VjAXqp2mkxBAgQKKyAAL2wrVM4AQIECBAgQIAAAQIEBOj2QOkEBOgZWypAzwhoOAECzSIgLG8Wxrq8iQC9Lttu0QQIEMidQJ4C9M+/mL5EnxkHbLXEa5IL2lz/aEXXuYgAAQIECFQs0BARrSq+2oUECBAgQKAmAkt1aluTeU1KoLkE6jZAHz32zpjw+B/j5zeMTC0/mvhpnDzi6njmhddi2aW7xbDj+8f6a39zid8J0JtrK7oPAQJZBAToWfTqe6wAvb77b/UECBDIi0CuAvTJ05bIMqPfD5Z4TXJBm58+UtF1LiJAgAABAhULtGoV0ZCk6D4ECBAgQCC/Akt1bpff4lRGoAKBugzQn33x9bjsurvjzX+9PydAP/HsMbHyisvHoAN7x3MvvhbH/viKuH/cOdGxQ/tY3HcC9Ap2mUsIEGhxAQF6ixOXdgIBemlba2EECBAolECeAvR3Ppy8RLvOh/dY4jXJBZOunFDRdS4iQIAAAQIECBAgQIBAmQRWWq5TmZZjLXUoUHcB+tSp02L/wSPitGP7xolnjUkD9JkzG2LTnQbGI3eOjk4d26fbYPCpl8RuPbeMLTf5ziK/22rTdUOAXod/ayyZQA4FBOg5bEpBShKgF6RRyiRAgEDJBQToJW+w5REgQIAAAQIECBAgUFcCAvS6ancpF1t3AfoFV90eK66wbPTcZuPYb9DZaYD+7vsfxX6Dz44Jt54/p8kXjrk9lu7eNX60zfcW+V3/Pj0F6KX8a2FRBIonIEAvXs/yUrEAPS+dUAcBAgTqW0CAXt/9t3oCBAgQIECAAAECBMolIEAvVz/rcTV1FaA/8/yrcfG1d8U15x8fH3/y2ZwA/R9vvhuDho6O+8adM2cPXPHTn6Un03fcbtNFfjeo/67xxdQZ9bhvrJkAgZwJDDp+Zs4qUk5RBC4b1boopaqTAAECBEos0L5dm2jdqvYLnNkQ4RHute+DCggQIECAAAECBAgQKLaAAL3Y/VN9RN0E6FOmTou+g0fEhT8emL7r/KOJn84J0N/74OPYa8CZ6SPcZ3/OvfyWWH7Z7rFjj00X+d1Be/eMDz+dah8RIECg5gInnJqD/+JccwUFNJfAeWc1NNet3IcAAQIECFQksHTX9gL0iqRcRIAAAQIECBAgQIAAgfwLCNDz3yMVLl6gbgL0p555KQ49/vxo27ZNKtLQ0BCTJk+JLp07xvhrh8fuh5wRv7xlVHTr2jn9fsCJF8YevbaKrTdfLzbbadBCv9tmi/U9wt3fMAIEciHgEe65aENpivBY99K00kIIECBQGAGPcC9MqxRKgAABAgQIECBAgACBJQoI0JdI5IKcC9RNgD5/H+Y+gZ58d/qo62K5ZbrH4P6947kXX4tBp1wcD9x0XhqwL+67t/89OectVh4BAvUgIECvhy5Xb40C9OpZm4kAAQIEZgkI0O0EAgQIECBAgAABAgQIlEdAgF6eXtbrSgToN4xMe//JZ5Ni6Iix8afnXopuXbvEacf0jc02WmuJ3wnQ6/WvjnUTyJeAAD1f/Sh6NQL0ondQ/QQIECiegAC9eD1TMQECBAgQIECAAAECBBYlIEC3N4ouULcBenM1ToDeXJLuQ4BAFgEBehY9Y+cXEKDbEwQIECBQbQEBerXFzUeAAAECBAgQIECAAIGWExCgt5ytO1dHoGoB+kNPPBXbbrHBAquaMnVa/Pr//Sl22Hrj6qy4mWcRoDczqNsRINAkAQF6k9gMWoSAAN3WIECAAIFqCwjQqy1uPgIECBAgQIAAAQIECLScgAC95WzduToCVQvQN91pYPz23ssXWNX0GTPiuzsMiD/9amx1VtzMswjQmxnU7QgQaJKAAL1JbAY1QkCo3ggslxIgQIBAowUE6I0mM4AAAQIECBAgQIAAAQK5FRCg57Y1CqtQoMUD9JdffzMtZf/BI+KGS4fOU9aMGTPj8Sf/Enfe/1j86tbzKyw5X5cJ0PPVD9UQqFcBAXq9dr566xagV8/aTAQIEKhHAQF6PXbdmgkQIECAAAECBAgQKKuAAL2sna2fdbV4gH7qudfG//7xr/HO+x9Gu3Zt55Ft07p1rPzlL8VJg/aOTTdcq5DqAvRCtk3RBEonIEAvXUtztyABeu5aoiACBAiUSkCAXqp2WgwBAgQIECBAgAABAnUuIECv8w1QguW3eICeGE2bNj36HD4s7rpmWAnI5l2CAL10LbUgAoUUEKAXsm2FKlqAXqh2KZYAAQKFExCgF65lCiZAgAABAgQIECBAgMAiBQToNkfRBaoSoCdIybvO27ZpU3SvBeoXoJeupRZEoJACAvRCtq1QRQvQC9UuxRIgQKBwAgL0wrVMwQQIECBAgAABAgQIEBCg2wOlFahagJ4IPvP8q/HXl/4en30+eQHQQ/btVUhkAXoh26ZoAqUTEKCXrqW5W5AAPXctURABAgRKJSBAL1U7LYYAAQIECBAgQIAAgToXcAK9zjdACZZftQD9mpt/HmNvuj/WW+sb0bFDhwXoRg8bVEhOAXoh26ZoAoUWEJYXun2FLV6AXtjWKZwAAQKFEBCgF6JNiiRAgAABAgQIECBAgEBFAgL0iphclGOBqgXoPfocFz8dfVKsvOLyOeZofGkC9MabGUGAQDYBAXo2P6ObJiBAb5qbUQQIECBQmYAAvTInVxEgQIAAAQIECBAgQKAIAgL0InRJjYsTqFqAvl2f4+JXt55fum4I0EvXUgsikHsBAXruW1TKAgXopWyrRREgQCA3AgL03LRCIQQIECBAgAABAgQIEMgsIEDPTOgGNRaoWoDe7+iRceaQfrHqV1es8ZKbd3oBevN6uhsBAksWEKAv2cgVzS8gQG9+U3ckQIAAgf8ICNDtBgIECBAgQIAAAQIECJRHQIBenl7W60qqFqD/7Jf/Ly6+5s7o3XPL+OpKK0T7du3mMe+5zcaF7IEAvZBtUzSBQgsI0AvdvsIWL0AvbOsUToAAgUIICNAL0SZFEiBAgAABAgQIECBAoCIBAXpFTC7KsUDVAvQ9Dj1zsQx3XL347/NqKEDPa2fURaC8AgL08vY2zysToOe5O2ojQIBA8QUE6MXvoRUQIECAAAECBAgQIEBgtoAA3V4oukDVAvSiQy2qfgF6WTtrXQTyKyBAz29vylyZAL3M3bU2AgQI1F5AgF77HqiAAAECBAgQIECAAAECzSUgQG8uSfeplYAAPaO8AD0joOEECDRaQIDeaDIDmkFAgN4MiG5BgAABAosUEKDbHAQIECBAgAABAgQIECiPgAC9PL2s15VULUD/we5HL9b4kTtHF7IHAvRCtk3RBAotIEAvdPsKW7wAvbCtUzgBAgQKISBAL0SbFEmAAAECBAgQIECAAIGKBAToFTG5KMcCVQvQf//nF+dhmDJ1Wvzz7ffi5vEPxcB+u8QOW2+cY6ZFlyZAL2TbFE2g0AIC9EK3r7DFLyxAn38vCtkL216FEyBAoOYCAvSat0ABBAgQIECAAAECBAgQaDYBAXqzUbpRjQSqFqAvan3vvv9RHH3GZXHLFafViCDbtAL0bH5GEyDQeAEBeuPNjMguIEDPbugOBAgQILBoAQG63UGAAAECBAgQIECAAIHyCAjQy9PLel1JzQP0BL5Hn+Niwq3nF7IHAvRCtk3RBAotIEAvdPsKW7wAvbCtUzgBAgQKISBAL0SbFEmAAAECBAgQIECAAIGKBAToFTG5KMcCNQ/QX3zljTj69Mvilzefl2OmRZcmQC9k2xRNoNACAvRCt6+wxQvQC9s6hRMgQKAQAgL0QrRJkQQIECBAgAABAgQIEKhIQIBeEZOLcixQtQB9v0FnL8DwxZSp8do/3o6Tj9w39ui1VY6ZBOiFbI6iCZRUQIBe0saWYFnegV6CJloCAQIEaiQgQK8RvGkJECBAgAABAgQIECDQAgIC9BZAdcuqClQtQB//wBMLLKxL506xxjdWiVVWXqGqi27OyZxAb05N9yJAoBIBAXolSq7Ji4BQPS+dUAcBAgTyLSBAz3d/VEeAAAECBAgQIECAAIHGCAjQG6Pl2jwKVC1Az+Pim6MmAXpzKLoHAQKNERCgN0bLtbUWEKDXugPmJ0CAQDEEBOjF6JMqCRAgQIAAAQIECBAgUImAAL0SJdfkWaCqAfrnk76I5CT6K6+/FQ3REKv990rRe4ctYqmunfNstNjaBOiFbZ3CCRRWQIBe2NbVZeEC9Lpsu0UTIECg0QIC9EaTGUCAAAECBAgQIECAAIHcCgjQc9sahVUoULUA/cVX3ohDjhsVX1vly7Hm6qtGq1at4q9/ez1e+ftbMXbU8fE/31q1wpLzdZkAPV/9UA2BehAQoNdDl8uzRgF6eXppJQQIEGhJAQF6S+q6NwECBAgQIECAAAECBKorIECvrrfZml+gagH6/oPPjm233DAO2OOH86zi+jsejIcefypuuHRo86+uCncUoFcB2RQECMwjIEC3IYokIEAvUrfUSoAAgdoJCNBrZ29mAgQIECBAgAABAgQINLeAAL25Rd2v2gJVC9DX7XFwPDH+kgUe1/7JZ5Niy12PjKcnXFPttTfLfAL0ZmF0EwIEGiEgQG8ElktrLiBAr3kLFECAAIFCCAjQC9EmRRIgQIAAAQIECBAgQKAiAQF6RUwuyrFA1QL0zXceHDdedkqs+tUV5+F49R9vR/9jzo3H7r44x0yLLk2AXsi2KZpAoQUE6IVuX90VL0Cvu5ZbMAECBJokIEBvEptBBAgQIECAAAECBAgQyKWAAD2XbVFUIwSqFqCPvOzm+Mvzr8bQwfvGGt9YJRoaGuKFV96Isy++ITbbaO046uDdGlF2fi4VoOenFyohUC8CAvR66XQ51ilAL0cfrYIAAQItLSBAb2lh9ydAgAABAgQIECBAgED1BATo1bM2U8sIVC1Anzp1Wlx87V1x8/iHI/nn5NOxQ/vos8vWceyhe0abNq1bZoUtfFcBegsDuz0BAiEwtwmKLCBAL3L31E6AAIHqCQjQq2dtJgIECBAgQIAAAQIECLS0gAC9pYXdv6UFqhagz17ItGnT481/vR/TZ8yIr660QhqiF/kjQC9y99ROoBgCAvRi9EmVCxcQoNsZBAgQIFCJgAC9EiXXECBAgAABAgQIECBAoBgCAvRi9EmVixaoWoB+/R0PxpYbrxNfW+XL81Tz3N9ej2dfeC323mWbQvZJgF7ItimaQKEEBOiFapdi5xMQoNsSBAgQIFCJgAC9EiXXECBAgAABAgQIECBAoBgCAvRi9EmVOQjQN91pYNx42amx2nwB+j/ffi/2OWJ4PPGzSwvZJwF6IdumaAKFEhCgF6pdihWg2wMECBAg0AQBAXoT0AwhQIAAAQIECBAgQIBATgUE6DltjLIqFqjaCfR1/3979x0vR1X+D/xJgBBCJDQVxYIINkCFr+iXUESK0pEmIIgQQEASeoiE0EkCBDAgJIQm0qsoRdCAgNiwoF9EwRYFLNRAKKEnv99O5Epubtl7Z3Z3ds77/uMLd86Z87yfk7s7+7mzu9Ge8YMrT4u3LbvkfIub+cxzscH2B8Vvb7ug7kWX6UABepm6YS0EqikgQK9mX1Opyh3oqXRanQQIEMgnIEDP52c0AQIECBAgQIAAAQIEyiQgQC9TN6ylPwJNC9B33Oe42HTDT8XuX9hkvnVe9u3b4vpb7o5rzzuuP+tv+RgBestbYAEEKi8gQK98iytdoAC90u1VHAECBAoTEKAXRmkiAgQIECBAgAABAgQItFxAgN7yFlhAToGmBei//O2Dsd/XTo/VV/1ArPLBFbJlP/Dnh+JX//fHOGv8gbHWJ1bJWUprhgvQW+PurARSEhCgp9Tt6tUqQK9eT1VEgACBRggI0Buhak4CBAgQIECAAAECBAi0RkCA3hp3Zy1OoGkBem3JT86cFVffeGf87eF/xZw5c2OFdy8XO2y5fiz31qWLq6jJMwnQmwzudAQSFBCgJ9j0CpUsQK9QM5VCgACBBgoI0BuIa2oCBAgQIECAAAECBAg0WUCA3mRwpytcoKkBeuGrL8GEAvQSNMESCFRcQIBe8QZXvDwBesUbrDwCBAgUJCBALwjSNAQIECBAgAABAgQIECiBgAC9BE2whFwCAvRcfBEC9JyAhhMg0KuAAL1XIgeUWECAXuLmWBoBAgRKJCBAL1EzLIUAAQIECBAgQIAAAQI5BQToOQENb7mAAD1nCwToOQENJ0CgVwEBeq9EDiixgAC9xM2xNAIECJRIQIBeomZYCgECBAgQIECAAAECBHIKCNBzAhrecgEBes4WCNBzAhpOgECvAgL0XokcUGIBAXqJm2NpBAgQKJGAAL1EzbAUAgQIECBAgAABAgQI5BQQoOcENLzlAkkF6D/91f1x9je/Ew//87EYPHjR2GnrDWLPnTfLmvD0rOfiiAnnxn0PzIill1wijh89ItZYbeVeHxOgt3wPWwCBSgkIyyvVTsVEhADfsJaRAAAgAElEQVTdNiBAgACBegQE6PUoOYYAAQIECBAgQIAAAQLtISBAb48+WWX3AkkF6Df+4Kfx4ZXfGyu9b/l4ZtbzsfNXj4+TjtwnPvaR98eY8dNi+eWWjZF7bBv3PzgjDjluStx08cQYvOigHh8ToPvnRYBAkQIC9CI1zVVWAaF6WTtjXQQIEGidgAC9dfbOTIAAAQIECBAgQIAAgaIFBOhFi5qv2QJJBeidcQ8+5qz47KfXjM+t/8kYvtX+cce1k2OxwYOyw0aNOzO222y9WO9/P9btY+sP/3gI0Ju9ZZ2PQLUFBOjV7q/q5gkI0O0EAgQIEOgsIEC3JwgQIECAAAECBAgQIFAdAQF6dXqZaiVJBuhz5syNn/3693Hi5Ivj8ilHxSuvvBa7jhof0688tWMfnD7t6lhy2NDYfMO1un1sxE6bCdBT/ZejbgINEhCgNwjWtKUSEKCXqh0WQ4AAgVIICNBL0QaLIECAAAECBAgQIECAQCECAvRCGE3SQoHkAvQTJ18S199ydyy88EIx7sAvxZafHR4P/eOxGDl2ctx48cSOVky56DtRC9prj3f32MgR28Tsl19rYfucmgCBqgkccPjcqpWkHgILCHzjlAFUmijgt0oTsZ2KAIF+CwwetHAMLMHTw5y5EY/OfLHXOobst3Gvx9QOmD11el3HOYgAAQIECBAgQIAAAQJVEhCgV6mbadaSXID+Rpsf/ufjceRJ58V2m386hn9i1dhx32Ozj3B/4+fks6+IZZceFltuPLzbx/bcebN4+rlX0tw5qiZAoCECo8eV4J3jhlRmUgL/FTjlRJFuM/eD3yrN1HYuAgT6KzBs6CABen/xjCNAgAABAgQIECBAgEDJBAToJWuI5fRZINkAvSZ1zU13xu8emBHHHbZHrL3VyLj1ikmxxNAhGeK+Y06PHbZYPzZYZ/VuH9tw3TV8hHuft5wBBAj0JOAj3O2PFAR8hHsKXVYjAQIE+ibgI9z75uVoAgQIECBAgAABAgQIlFlAgF7m7lhbPQJJBei/+r8/xuqrrhwLLTQwnpn1fBx87FnZd5xvv8Wn4+hJF8YySw2LUSO2jfsfnBEjjzwjbrnslFh8yOAeH/vXU71/vF89jXAMAQIEagICdPsgBQEBegpdViMBAgT6JiBA75uXowkQIECAAAECBAgQIFBmAQF6mbtjbfUIJBWgjxk/LX7+6z9kAfrgRQfF1p9bJ76y6xYxYMCAePb52TF2wnlx7/1/iiWGLh5HHbxbrL3mqplhT48J0OvZZo4hQKBeAQF6vVKOa2cBAXo7d8/aCRAg0BgBAXpjXM1KgAABAgQIECBAgACBVggI0Fuh7pxFCiQVoBcJ98ZcAvRGqJqTQLoCAvR0e59S5QL0lLqtVgIECNQnIECvz8lRBAgQIECAAAECBAgQaAcBAXo7dMkaexIQoOfcHwL0nICGEyAwn4AA3YZIQUCAnkKX1UiAAIG+CQjQ++blaAIECBAgQIAAAQIECJRZQIBe5u5YWz0CAvR6lHo4RoCeE9BwAgQE6PZAcgIC9ORarmACBAj0KiBA75XIAQQIECBAgAABAgQIEGgbAQF627TKQrsREKDn3BoC9JyAhhMgIEC3B5ITEKAn13IFEyBAoFcBAXqvRA4gQIAAAQIECBAgQIBA2wgI0NumVRYqQG/MHhCgN8bVrARSFfAR7ql2Pq26Behp9Vu1BAgQqEdAgF6PkmMIECBAgAABAgQIECDQHgIC9Pbok1V2L+AO9Jy7Q4CeE9BwAgTmExCg2xApCAjQU+iyGgkQINA3AQF637wcTYAAAQIECBAgQIAAgTILCNDL3B1rq0dAgF6PUg/HCNBzAhpOgIAA3R5ITkCAnlzLFUyAAIFeBQTovRI5gAABAgQIECBAgAABAm0jIEBvm1ZZaDcCAvScW0OAnhPQcAIEBOj2QHICAvTkWq5gAgQI9CogQO+VyAEECBAgQIAAAQIECBBoGwEBetu0ykIF6I3ZAwL0xrialUCqAj7CPdXOp1W3AD2tfquWAAEC9QgI0OtRcgwBAgQIECBAgAABAgTaQ0CA3h59ssruBdyBnnN3CNBzAhpOgMB8AgJ0GyIFAQF6Cl1WIwECBPomUKYAfc6cOb0u/vmd1+v1mNoBQ6/4UV3HOYgAAQIECNQrMHduxIAB9R7tOAIECBAg0BqBhRca2JoTOyuBggQE6DkhBeg5AQ0nQGA+AQG6DZGCgAA9hS6rkQABAn0TKFOA/uSsl3td/KCvbNjrMbUDXjn39rqOcxABAgQIEKhfYG5ESNDr93IkAQIECLRC4G1LLtqK0zongcIEBOg5KQXoOQENJ0BgPgEBug2RgoAAPYUuq5EAAQJ9EyhTgP7ozBd7XfyQ/Tbu9ZjaAbOnTq/rOAcRIECAAAECBAgQIECgSgI+wr1K3UyzFgF6zr4L0HMCGk4gYQFhecLNT7x0AXriG0D5BAgQ6EJAgG5bECBAgAABAgQIECBAoDoCAvTq9DLVSgToOTsvQM8JaDiBhAUE6Ak3P/HSBeiJbwDlEyBAQIBuDxAgQIAAAQIECBAgQKDSAgL0Src3ieIE6DnbLEDPCWg4gYQFBOgJNz/x0rsK0Dv/exCyJ75JlE+AQHIC7kBPruUKJkCAAAECBAgQIECgwgIC9Ao3N5HSBOg5Gy1AzwloOIGEBQToCTc/8dIF6IlvAOUTIECgCwEBum1BgAABAgQIECBAgACB6ggI0KvTy1QrEaDn7LwAPSeg4QQSFhCgJ9z8xEsXoCe+AZRPgAABAbo9QIAAAQIECBAgQIAAgUoLCNAr3d4kihOg52yzAD0noOEEEhYQoCfc/MRLF6AnvgGUT4AAAQG6PUCAAAECBAgQIECAAIFKCwjQK93eJIoToOdsswA9J6DhBBIWEKAn3PzESxegJ74BlE+AAAEBuj1AgAABAgQIECBAgACBSgsI0Cvd3iSKE6DnbLMAPSeg4QQSFhCgJ9z8xEsXoCe+AZRPgACBNgzQh+y3cb/6Nnvq9H6NM4gAAQIECBAgQIAAAQLtLCBAb+fuWXtNQICecx8I0HMCGk4gYQEBesLNT7x0AXriG0D5BAgQEKDbAwQIECBAgAABAgQIEKi0gAC90u1NojgBes42C9BzAhpOIGEBAXrCzU+8dAF64htA+QQIEBCg2wMECBAgQIAAAQIECBCotIAAvdLtTaI4AXrONgvQcwIaTiBhAQF6ws1PvHQBeuIbQPkECBAQoNsDBAgQIECAAAECBAgQqLSAAL3S7U2iOAF6zjYL0HMCGk4gYQEBesLNT7x0AXriG0D5BAgQEKDbAwQIECBAgAABAgQIEKi0gAC90u1NojgBes42C9BzAhpOIGEBAXrCzU+8dAF64htA+QQIEBCg2wMECBAgQIAAAQIECBCotIAAvdLtTaI4AXrONgvQcwIaTiBhAQF6ws1PvHQBeuIbQPkECBAQoNsDBAgQIECAAAECBAgQqLSAAL3S7U2iOAF6zjYL0HMCGk4gYQEBesLNT7x0AXriG0D5BAgQEKDbAwQIECBAgAABAgQIEKi0gAC90u1NojgBes42C9BzAhpOIGEBAXrCzVd6rwL1hOy1Sbo6rtfJHUCAAAECpRNYbunFYuCA1i9rztyIR2e+uMBChuy3cb8WN3vq9H6NM4gAAQIECBAgQIAAAQLtLCBAb+fuWXtNQICecx8I0HMCGk4gYQEBesLNV3qvAgL0XokcQIAAgUoJCNAr1U7FECBAgAABAgQIECCQuIAAPfENUIHyBeg5myhAzwloOIGEBQToCTdf6b0KCNB7JXIAAQIEKiUgQK9UOxVDgAABAgQIECBAgEDiAgL0xDdABcoXoOdsogA9J6DhBBIWEKAn3HylFybgI9wLozQRAQIEWiogQG8pv5MTIECAAAECBAgQIECgUAEBeqGcJmuBgAA9J7oAPSeg4QQSFhCgJ9x8pRcmIEAvjNJEBAgQaKmAAL2l/E5OgAABAgQIECBAgACBQgUE6IVymqwFAgL0nOgC9JyAhhNIWECAnnDzlV6YgAC9MEoTESBAoKUCAvSW8js5AQIECBAgQIAAAQIEChUQoBfKabIWCAjQc6IL0HMCGk4gYQEBesLNV3phAgL0wihNRIAAgZYKCNBbyu/kBAgQIECAAAECBAgQKFRAgF4op8laICBAz4kuQM8JaDiBhAUE6Ak3X+mFCQjQC6M0EQECBFoqIEBvKb+TEyBAgAABAgQIECBAoFABAXqhnCZrgYAAPSe6AD0noOEEEhYQoCfcfKUXJiBAL4zSRAQIEGipgAC9pfxOToAAAQIECBAgQIAAgUIFBOiFcpqsBQIC9JzoAvScgIYTSFhAgJ5w85VemIAAvTBKExEgQKClAgL0lvI7OQECBAgQIECAAAECBAoVEKAXymmyFggI0HOiC9BzAhpOIGEBAXrCzVd6YQIC9MIoTUSAAIGWCgjQW8rv5AQIECBAgAABAgQIEChUQIBeKKfJWiAgQM+JLkDPCWg4gYQFBOgJN1/phQkI0AujNBEBAgRaKiBAbym/kxMgQIAAAQIECBAgQKBQAQF6oZwma4GAAD0nugA9J6DhBBIWEKAn3HylFyYgQC+M0kQECBBoqYAAvaX8Tk6AAAECBAgQIECAAIFCBQTohXKarAUCAvSc6AL0nICGE0hYQICecPOVXpiAAL0wShMRIECgpQIC9JbyOzkBAgQIECBAgAABAgQKFRCgF8ppshYICNBzogvQcwIaTiBhAQF6ws1XekMFhOoN5TU5AQIEGiIgQG8Iq0kJECBAgAABAgQIECDQEgEBekvYnbRAgaQC9N//8e9x+rSr408zHonFBi8au++4aXxxmw0zzqdnPRdHTDg37ntgRiy95BJx/OgRscZqK/f6mAC9wN1oKgKJCQjQE2u4cpsmIEBvGrUTESBAoDABAXphlCYiQIAAAQIECBAgQIBAywUE6C1vgQXkFEgqQL/+lrtjhXcvF6uvunI88dQz8YV9jo3zJo2Old63fIwZPy2WX27ZGLnHtnH/gzPikOOmxE0XT4zBiw7q8TEBes4daDiBhAUE6Ak3X+kNFRCgN5TX5AQIEGiIgAC9IawmJUCAAAECBAgQIECAQEsEBOgtYXfSAgWSCtA7u4068ozYepN1YoO114jhW+0fd1w7ORYbPCg7bNS4M2O7zdaL9f73Y90+tv7wj4cAvcDdaCoCiQkI0BNruHKbJiBAbxq1ExEgQKAwAQF6YZQmIkCAAAECBAgQIECAQMsFBOgtb4EF5BRINkB/9dXXYtNdx8QlZ46NgQMHxq6jxsf0K0/t4Kx91PuSw4bG5huu1e1jI3baTICecwMaTiBlAQF6yt1XeyMFBOiN1DU3AQIEGiMgQG+Mq1kJECBAgAABAgQIECDQCgEBeivUnbNIgWQD9DMvuC5emP1SHDFql3joH4/FyLGT48aLJ3bYTrnoOzFnztzY8rPDu31s5Iht4oWXXiuyH+YiQCAhgQPHzE2oWqUSaJ7AGScPaN7JnIkAAQIEChFYbNGFY2AJfn3PmRvx6MwXF6hpyH4b96vO2VOn92ucQQQIECBAgAABAgQIEGhnAQF6O3fP2msCSQboV333hzH97l/H1IkHxyKLLByPP/lM7LjvsdlHuL/xc/LZV8SySw+LLTce3u1je+68Wcx64VU7iQABAv0SOHRsv4YZRIBALwKnTUBEgAABAu0m8JYhiwjQ261p1kuAAAECBAgQIECAAIFuBATotka7CyQXoH/3+z+Ja2+6K6adckgMWWxw1r+5c+fG2luNjFuvmBRLDB2S/X/7jjk9dthi/dhgndW7fWzDddfwEe7t/i/A+gm0UMBHuLcQ36krLeAj3CvdXsURIFBRAR/hXtHGKosAAQIECBAgQIAAgSQFBOhJtr1SRScVoH//zl/EpdfdFuecfEgsPmReeP7Gz9GTLoxllhoWo0ZsG/c/OCNGHnlG3HLZKdlxPT32r6cW/Hi/Su0QxRAg0DABAXrDaE2cuIAAPfENoHwCBNpSQIDelm2zaAIECBAgQIAAAQIECHQpIEC3MdpdIKkA/dPbHhhPPf1sDHjTd+utveZqWaD+7POzY+yE8+Le+/8USwxdPI46eLdYe81Vs/729JgAvd3/CVg/geYICMub4+wsBLoSEKjbFwQIECi/QFUD9K7kfS96+fejFRIgQIAAAQIECBAgkE9AgJ7Pz+jWCyQVoDeCW4DeCFVzEqiegAC9ej1VUfsICNDbp1dWSoBAugIC9HR7r3ICBAgQIECAAAECBKonIECvXk9Tq0iAnrPjAvScgIYTSERAgJ5Io5VZSgEBeinbYlEECBCYT0CAbkMQIECAAAECBAgQIECgOgIC9Or0MtVKBOg5Oy9AzwloOIFEBAToiTRamaUUEKCXsi0WRYAAAQG6PUCAAAECBAgQIECAAIGKCgjQK9rYhMoSoOdstgA9J6DhBBIREKAn0mhlllJAgF7KtlgUAQIEBOj2AAECBAgQIECAAAECBCoqIECvaGMTKkuAnrPZAvScgIYTSERAgJ5Io5VZSgEBeinbYlEECBAQoNsDBAgQIECAAAECBAgQqKiAAL2ijU2oLAF6zmYL0HMCGk4gEQEBeiKNVmYpBQTopWyLRREgQECAbg8QIECAAAECBAgQIECgogIC9Io2NqGyBOg5my1AzwloOIFEBAToiTRamaUU6CpA7+rfpKC9lO2zKAIEEhFYbunFYuCA1hc7Z27EozNfXGAhQ/bbuLDFzZ46vbC5TESAAAECBAgQIECAAIEyCgjQy9gVa+qLgAC9L1pdHCtAzwloOIEKCgjLK9hUJbW1gAC9rdtn8QQIJCIgQE+k0cokQIAAAQIECBAgQCAJAQF6Em2udJEC9JztFaDnBDScQAUFBOgVbKqS2lpAgN7W7bN4AgQSERCgJ9JoZRIgQIAAAQIECBAgkISAAD2JNle6SAF6zvYK0HMCGk6gggIC9Ao2VUltLSBAb+v2WTwBAokICNATabQyCRAgQIAAAQIECBBIQkCAnkSbK12kAD1newXoOQENJ1BBAQF6BZuqpLYWEKC3dfssngCBRAQE6Ik0WpkECBAgQIAAAQIECCQhIEBPos2VLlKAnrO9AvScgIYTqKCAAL2CTVVSWwsI0Nu6fRZPgEAiAgL0RBqtTAIECBAgQIAAAQIEkhAQoCfR5koXKUDP2V4Bek5AwwlUUECAXsGmKikJga6C9iQKVyQBAgRKICBAL0ETLIEAAQIECBAgQIAAAQIFCQjQC4I0TcsEBOg56QXoOQENJ1BBAQF6BZuqpCQEBOhJtFmRBAiUVECAXtLGWBYBAgQIECBAgAABAgT6ISBA7weaIaUSEKDnbIcAPSeg4QQqKCBAr2BTlZSEgAA9iTYrkgCBkgoI0EvaGMsiQIAAAQIECBAgQIBAPwQE6P1AM6RUAgL0nO0QoOcENJxABQUE6BVsqpKSEBCgJ9FmRRIgUFIBAXpJG2NZBAgQIECAAAECBAgQ6IeAAL0faIaUSkCAnrMdAvScgIYTqKCAAL2CTVVSEgIC9CTarEgCBEoqIEAvaWMsiwABAgQIECBAgAABAv0QEKD3A82QUgkI0HO2Q4CeE9BwAhUUEKBXsKlKSkJAgJ5EmxVJgEBJBQToJW2MZREgQIAAAQIECBAgQKAfAgL0fqAZUioBAXrOdgjQcwIaTqCCAgL0CjZVSUkICNCTaLMiCRAoqYAAvaSNsSwCBAgQIECAAAECBAj0Q0CA3g80Q0olIEDP2Q4Bek5AwwlUUECAXsGmKikJAQF6Em1WJAECJRUQoJe0MZZFgAABAgQIECBAgACBfggI0PuBZkipBAToOdshQM8JaDiBCgoI0CvYVCUlISBAT6LNiiRAoKQCAvSSNsayCBAgQIAAAQIECBAg0A8BAXo/0AwplYAAPWc7BOg5AQ0nUEEBAXoFm6qkJAQE6Em0WZEECJRUQIBe0sZYFgECBAgQIECAAAECBPohIEDvB5ohpRIQoOdshwA9J6DhBCooIECvYFOVlISAAD2JNiuSAIGSCgjQS9oYyyJAgAABAgQIECBAgEA/BATo/UAzpFQCAvSc7RCg5wQ0nEAFBATmFWiiEghEhADdNiBAgEDrBATorbN3ZgIECBAgQIAAAQIECBQtIEAvWtR8zRYQoOcUF6DnBDScQAUEBOgVaKISCAjQ7QECBAi0VECA3lJ+JydAgAABAgQIECBAgEChAgL0QjlN1gIBAXpOdAF6TkDDCVRAQIBegSYqgYAA3R4gQIBASwUE6C3ld3ICBAgQIECAAAECBAgUKiBAL5TTZC0QEKDnRBeg5wQ0nEAFBAToFWiiEggI0O0BAgQItFRAgN5SficnQIAAAQIECBAgQIBAoQIC9EI5TdYCAQF6TnQBek5AwwlUQECAXoEmKoGAAN0eIECAQEsFyhSgPznrpQUsBn1lo8J8Xjn3tsLmMhEBAgQIECBAgAABAgTKKPC2JQeXcVnWRKBuAQF63VRdHyhAzwloOIEKCAjQK9BEJRDoRuD4o19jQ4AAAQJNEChTgP7663MWqPiFL65XmMLil/+osLlMRIAAAQLpCcydOzcGDBiQXuEqJkCAAIG2Elhk4YFttV6LJdBZQICec08I0HMCGk6gAgIC9Ao0UQkEuhEQoNsaBAgQaI5AmQL0R2e+uEDRQ/bbuDCI2VOnFzaXiQgQIECAAAECBAgQIFBGAR/hXsauWFNfBATofdHq4lgBek5AwwlUQECAXoEmKoFANwICdFuDAAECzREQoDfH2VkIECBAgAABAgQIECDQDAEBejOUnaORAgL0nLoC9JyAhhOogIAAvQJNVAIBAbo9QIAAgZYKCNBbyu/kBAgQIECAAAECBAgQKFRAgF4op8laICBAz4kuQM8JaDiBCggI0CvQRCUQ6IOAu9L7gOVQAgQI1CkgQK8TymEECBAgQIAAAQIECBBoAwEBehs0yRJ7FBCg59wgAvScgIYTqICAAL0CTVQCgT4ICND7gOVQAgQI1CkgQK8TymEECBAgQIAAAQIECBBoAwEBehs0yRIF6I3cAwL0Ruqam0B7CAjQ26NPVkmgKAEBelGS5iFAgMB/BQTodgMBAgQIECBAgAABAgSqIyBAr04vU63EHeg5Oy9AzwloOIEKCAjQK9BEJRDog4AAvQ9YDiVAgECdAgL0OqEcRoAAAQIECBAgQIAAgTYQEKC3QZMssUcBAXrODSJAzwloOIEKCAjQK9BEJRDog4AAvQ9YDiVAgECdAgL0OqEcRoAAAQIECBAgQIAAgTYQEKC3QZMsUYDeyD0gQG+krrkJtIeAAL09+mSVBIoSEKAXJWkeAgQI/FdAgG43ECBAgAABAgQIECBAoDoCAvTq9DLVStyBnrPzAvScgIYTqICAAL0CTVQCgT4ICND7gOVQAgQI1CkgQK8TymEECBAgQIAAAQIECBBoAwEBehs0yRJ7FBCg59wgAvScgIYTqICAAL0CTVQCgT4ICND7gOVQAgQI1CkgQK8TymEECBAgQIAAAQIECBBoAwEBehs0yRIF6I3cAwL0Ruqam0B7CAjQ26NPVkmgUQIC9UbJmpcAgZQEBOgpdVutBAgQIECAAAECBAhUXUCAXvUOV78+d6Dn7LEAPSeg4QQqICBAr0ATlUAgh4AAPQeeoQQIEPiPgADdViBAgAABAgQIECBAgEB1BATo1ellqpUkF6DPfvGlGHPitKzf3xh/YEffn571XBwx4dy474EZsfSSS8Txo0fEGqutnD3e02MC9FT/6ag7VQFheaqdVzeB7gUE6HYHAQIE8gsI0PMbmoEAAQIECBAgQIAAAQJlERCgl6UT1tFfgaQC9H8/PjNGjp0cH19lpXj8yafnC9DHjJ8Wyy+3bIzcY9u4/8EZcchxU+KmiyfG4EUHRU+PCdD7u/WMI9CeAgL09uybVRNopIAAvZG65iZAIBUBAXoqnVYnAQIECBAgQIAAAQIpCAjQU+hytWtMKkB/YfZL8ce/PhKvvPpqXHbd9I4Afc6cuTF8q/3jjmsnx2KDB2UdHzXuzNhus/Vivf/9WLePrT/84yFAr/Y/ENUR6CwgQLcnCBDoLCBAtycIECCQX0CAnt/QDAQIECBAgAABAgQIECiLgAC9LJ2wjv4KJBWgv4H0s1/9Pi6//raOAP2xJ56OXUeNj+lXntrhePq0q2PJYUNj8w3X6vaxETttJkDv784zjkCbCgjQ27Rxlk2ggQIC9AbimpoAgWQEBOjJtFqhBAgQIECAAAECBAgkICBAT6DJFS9RgB4RD/3jseyj3W+8eGJHu6dc9J2o3Zm+5WeHd/vYyBHbxPMvvlrxLaI8AgTeLHDQ13gQIEBgfoHJJw1AQqDEAnNLvDZLI/BfgSGDF4mBJfh1OmduxKMzX1ygNUP227iwds2eOr2wuUxEgAABAgQIECBAgACBMgoI0MvYFWvqi4AAPSIef/KZ2HHfY7OPcH/j5+Szr4hllx4WW248vNvH9tx5s5j1ggC9LxvOsQTaXeDQse1egfUTIFC0wGkTFgwoDx27YArU1XFFr8V8BBYUKEEiqS0E6hB4yxABeh1MDiFAgAABAgQIECBAgEBbCAjQ26JNFtmDgAA9IubOnRtrbzUybr1iUiwxdEjGte+Y02OHLdaPDdZZvdvHNlx3DR/h7p8XgcQEfIR7Yg1XLoE6BLr6CPeuflf4qPc6MB1CgECyAj7CPdnWK5wAAQIECBAgQIAAgQoKCNAr2NTEShKg/6fhR0+6MJZZaliMGrFt3P/gjBh55Blxy2WnxOJDBkdPj/3rqQU/3i+xPaRcAkkJCNCTardiCdQlIECvi8lBBAgQ6FFAgG6DECBAgAABAgQIECBAoDoCAvTq9DLVSgTo/+n8s8/PjrETzot77/9TLDF08Tjq4N1i7TVXzR7t6TEBeqr/dNSdqoAAPbN9eLgAACAASURBVNXOq5tA9wICdLuDAAEC+QUE6PkNzUCAAAECBAgQIECAAIGyCAjQy9IJ6+ivQJIBen+xuhonQC9S01wEyi8gQC9/j6yQQLMFBOjNFnc+AgSqKCBAr2JX1USAAAECBAgQIECAQKoCAvRUO1+dugXoOXspQM8JaDiBNhMQoLdZwyyXQBME6g3Q61mK70mvR8kxBAhUUUCAXsWuqokAAQIECBAgQIAAgVQFBOipdr46dQvQc/ZSgJ4T0HACbSYgQG+zhlkugSYICNCbgOwUBAhUXkCAXvkWK5AAAQIECBAgQIAAgYQEBOgJNbuipQrQczZWgJ4T0HACbSYgQG+zhlkugSYICNCbgOwUBAhUXkCAXvkWK5AAAQIECBAgQIAAgYQEBOgJNbuipQrQczZWgJ4T0HACbSYgQG+zhlkugSYICNCbgOwUBAhUXkCAXvkWK5AAAQIECBAgQIAAgYQEBOgJNbuipQrQczZWgJ4T0HACJRYQlpe4OZZGoKICvgO9oo1VFgECvQoI0HslcgABAgQIECBAgAABAgTaRkCA3jatstBuBAToObeGAD0noOEESiwgQC9xcyyNQEUFBOgVbayyCBDoVUCA3iuRAwgQIECAAAECBAgQINA2AgL0tmmVhQrQG7MHBOiNcTUrgTIICNDL0AVrIJCWgAA9rX6rlgCB/woI0O0GAgQIECBAgAABAgQIVEdAgF6dXqZaiTvQc3ZegJ4T0HACJREQlpekEZZBIHEBAXriG0D5BBIWEKAn3HylEyBAgAABAgQIECBQOQEBeuVamlxBAvScLReg5wQ0nEBJBAToJWmEZRBIXECAnvgGUD6BhAUE6Ak3X+kECBAgQIAAAQIECFROQIBeuZYmV5AAPWfLBeg5AQ0nUBIBAXpJGmEZBBIXEKAnvgGUTyBhAQF6ws1XOgECBAgQIECAAAEClRMQoFeupckVJEDP2XIBek5AwwmURECAXpJGWAaBxAXqDdC7+p1V79jEiZVPgEBJBQToJW2MZREgQIAAAQIECBAgQKAfAgL0fqAZUioBAXrOdgjQcwIaTqAkAgL0kjTCMggkLlBvCC5AT3yjKJ9ABQUE6BVsqpIIECBAgAABAgQIEEhWQICebOsrU7gAPWcrBeg5AQ0nUBIBAXpJGmEZBAj0W6De8L3fJzCQAAECDRQQoDcQ19QECBAgQIAAAQIECBBosoAAvcngTle4gAA9J6kAPSeg4QRKIiBAL0kjLIMAgX4LCND7TWcgAQIlEBCgl6AJlkCAAAECBAgQIECAAIGCBAToBUGapmUCAvSc9AL0nICGEyiJgAC9JI2wDAIE+i0gQO83nYEECJRAQIBegiZYAgECBAgQIECAAAECBAoSEKAXBGmalgkI0HPSC9BzAhpOoCQCAvSSNMIyCBDot4AAvd90BhIgUAIBAXoJmmAJBAgQIECAAAECBAgQKEhAgF4QpGlaJiBAz0kvQM8JaDiBkggI0EvSCMsgQKDfAp0D9K5+rwnZ+81rIAECDRYQoDcY2PQECBAgQIAAAQIECBBoooAAvYnYTtUQAQF6TlYBek5AwwmURECAXpJGWAYBAv0WEKD3m85AAgRKICBAL0ETLIEAAQIECBAgQIAAAQIFCQjQC4I0TcsEBOg56QXoOQENJ1ASAQF6SRphGQQINF3AXelNJ3dCAgS6EBCg2xYECBAgQIAAAQIECBCojoAAvTq9TLUSAXrOzgvQcwIaTqAkAgL0kjTCMggQaLpAvQF659+T9Y5rekFOSIBAWwoI0NuybRZNgAABAgQIECBAgACBLgUE6DZGuwsI0HN2UICeE9BwAiUREKCXpBGWQYBA0wXqDcIF6E1vjRMSSEpAgJ5UuxVLgAABAgQIECBAgEDFBQToFW9wAuUJ0HM2WYCeE9BwAiUREKCXpBGWQYBA0wUE6E0nd0ICBLoQEKDbFgQIECBAgAABAgQIEKiOgAC9Or1MtRIBes7OC9BzAhpOoCQCAvSSNMIyCBBouoAAvenkTkiAQOIBelcbYPbU6fYFAQIECBAgQIAAAQIEKiMgQK9MK5MtRICes/UC9JyAhhNokYDAvEXwTkuAQOkEBOila4kFEUhSIKU70AXoSW5xRRMgQIAAAQIECBBISkCAnlS7K1msAD1nWwXoOQENJ9AiAQF6i+CdlgCB0gkI0EvXEgsikKSAAN0d6ElufEUTIECAAAECBAgQqKiAAL2ijU2oLAF6zmYL0HMCGk6gRQIC9BbBOy0BAm0h0FWo3vn3Zr3Be1sUbJEECLRcQIAuQG/5JrQAAgQIECBAgAABAgQKExCgF0ZpohYJCNBzwgvQcwIaTqBFAgL0FsE7LQEClREQoFemlQohUAoBAboAvRQb0SIIECBAgAABAgQIEChEQIBeCKNJWiggQM+JL0DPCWg4gRYJCNBbBO+0BAhURkCAXplWKoRAKQQE6AL0UmxEiyBAgAABAgQIECBAoBABAXohjCZpoYAAPSe+AD0noOEEWiQgQG8RvNMSIFAZAQF6ZVqpEAKlEBCgC9BLsREtggABAgQIECBAgACBQgQE6IUwmqSFAgL0nPgC9JyAhhNokYAAvUXwTkuAQGUE6g3Qu/p9W+/YymAphACBXgUE6AL0XjeJAwgQIECAAAECBAgQaBsBAXrbtMpCuxEQoOfcGgL0nICGE2iRgAC9RfBOS4BApQW6CsYF6JVuueIIFCYgQBegF7aZTESAAAECBAgQIECAQMsFBOgtb4EF5BQQoOcEFKDnBDScQBMEhOVNQHYKAgQIRIQA3TYgQKC/AgJ0AXp/945xBAgQIECAAAECBAiUT0CAXr6eWFHfBAToffNa4GgBek5Awwk0QUCA3gRkpyBAgIAA3R4gQCCHgABdgJ5j+xhKgAABAgQIECBAgEDJBAToJWuI5fRZQIDeZ7L5BwjQcwIaTqAJAgL0JiA7BQECBPog4DvQ+4DlUAKJCAjQBeiJbHVlEiBAgAABAgQIEEhCQICeRJsrXaQAPWd7Beg5AQ0n0AQBAXoTkJ2CAAECOQQE6jnwDCVQEQEBugC9IltZGQQIECBAgAABAgQIRIQA3TZodwEBes4OCtBzAhpOoAkCAvQmIDsFAQIEcggI0HPgGUqgIgICdAF6RbayMggQIECAAAECBAgQEKDbAxUQEKDnbKIAPSeg4QSaICBAbwKyUxAgQCCHQJ4Avavf8Xnmy1GGoQQI5BAQoAvQc2wfQwkQIECAAAECBAgQKJmAO9BL1hDL6bOAAL3PZPMPEKDnBDScQMECwvKCQU1HgACBCggI1CvQRCVUXkCALkCv/CZXIAECBAgQIECAAIGEBAToCTW7oqUK0HM2VoCeE9BwAnUK1HuHoQC9TlCHESBAICEBAXpCzVZq2woI0AXobbt5LZwAAQIECBAgQIAAgQUEBOg2RbsLCNBzdlCAnhPQcAJ1CgjQ64RyGAECBAjUJVBkqF7vc1RdC3MQgUQFUg/QO7d99lSBeqL/FJRNgAABAgQIECBAoBICAvRKtDHpIgToOdsvQM8JaDiBOgXcWV4nlMMIECBAoN8C/Q3VBej9JjeQQIeAAH3+zSBA94+DAAECBAgQIECAAIF2FhCgt3P3rL0mIECvYx88Peu5OGLCuXHfAzNi6SWXiONHj4g1Vls5GylArwPQIQT6ISAw7weaIQQIECCQS6CrAL3z81E9x9QWUc9x/Q3scxVpMIGSCgjQ52+MAL2kG9WyCBAgQIAAAQIECBCoS0CAXheTg0osIECvozljxk+L5ZdbNkbusW3c/+CMOOS4KXHTxRNj8KKDBOh1+DmEQH8EBOj9UTOGAAECBPII9Df0rvcO9Hqe2+oN1YucK4+ZsQSKEhCgzy8pQC9qZ5mHAAECBAgQIECAAIFWCAjQW6HunEUKCNB70ZwzZ24M32r/uOPaybHY4EHZ0aPGnRnbbbZerD/84wL0InejuZIQKDJkSAJMkQQIECBAoJ8C9Ybx/Zy+y2H1Ps/Xc84i56rnfI5prYAAfX5/AXpr96OzEyBAgAABAgQIECCQT0CAns/P6NYLCNB76cFjTzwdu44aH9OvPLXjyNOnXR1LDhsaI3baTIDe+j1sBW0mUM8dc21WkuUSIECAAIFSCtQboDf6ubnedXRGFKCXcls1bFFlCtCf3XGdhtVZ78QC9HqlHEeAAAECBAgQIECAQBkFBOhl7Io19UVAgN6L1kP/eCxGjp0cN148sePIKRd9J2p3po8csU1frB1LIDmBvQ58NbmaFUyAAAECBAjML3D+GYv0SlLva4au5qp3bOdF9Hdd9YyrnaurdXUeW+/a+1t3vePqWVe9dXfV7HrqPHfyIjFwQK9bpeEHzJkbUYYAfcmrf9zwWp2AAAECBAgQIECAAAECBAgQ6FpAgN7Lznj8yWdix32PzT7C/Y2fk8++IpZdeljsufNm9hUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVERAgN5LI+fOnRtrbzUybr1iUiwxdEh29L5jTo8dtlg/Nlx3jYpsA2UQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgAC9jj1w9KQLY5mlhsWoEdvG/Q/OiJFHnhG3XHZKLD5kcB2jHUKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC7SAgQK+jS88+PzvGTjgv7r3/T7HE0MXjqIN3i7XXXLWOkQ4hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXYREKA3uVO/e/BvMe7k8+OJp56JD73/PXHyuH3ircss2eRVpHG6V197Pc695Ia4/pa747XX58TK73tXHH/4iHjH25bOAGr//zcu/Ha88sprsdG6/5P9YcRCCw1MA6eJVc6ZMze+fOCEWGmF5eOYQ3fPzvz0rOfiiAnnxn0PzIill1wijh89ItZYbeUmrqr6p5r94svx9XOvjh/++DcxYOCAOGLkLtnXTtT6cdJZl8f3bv95LLLIQrHPl7aKnbbeoPogTazw7488Gsec+s14/MmnY+DAgbHXFzePbTZdN1uB54DGNOKhfzwW+4+dHF/Ycv3YbYfPdZykJ2+9KKYXs198KcacOC2b7BvjD+yY9Pd//HucPu3q+NOMR2KxwYvG7jtuGl/cZkPPAcWwd8xy18/+L0afMDUuPnNsfGil9yww+09+eX98ZfSpcde3z4hllx7m9U+B/t3t/dopfvar38cZF1wXTzz5TLxzuWXjkm+MtfcLtC/jVK4rmteVJ2fOitPOuTp+8svfxcILLxTrfuqjMe6g3WKRhRfyO655bciuKTpf43lt1fgGuMZrvHF3Z6i95vr6udfEy6+8Em8ZOiTGHfil+OhH3u8ar4Et6e51bk+/azwfF9OQ7l7nfu/2e2LapTfEM7Oej6WXfEuMPWDXWPPjH/I6txh213gFO/Znuu7eW+rpGs/rn/5IG0OgfQQE6E3s1euvz4nNdh2TXeCv+6nV4tLrpsfPfv37OHvCQU1cRTqnmvXsC3Hld38Yu2y7UQxdfLGY8q3vxl/+9o84/dj9oxZwjTjk5Lj0G0fGW5ddKnvz/6MfWTF2/8Im6QA1qdKLrr417r7nvnjPO9/WEaCPGT8tll9u2Ri5x7yvRTjkuClx08UTY/Cig5q0quqfZuTYM7IwZZ/dtup4Q7FW9XU3/ygLz8+eeFDU3oD50qjxccq4fWOVD65QfZQmVbj3YafG1pusHVtstFbU3uTdbq+j47rzj4+lhr3Fc0ADenDPbx6I8ZMviZXe9674+Crv7wjQe3rO9XxcTCP+/fjMGDl2cnx8lZWyPxh5c4Bee/NqhXcvF6uvunL2R4Nf2OfYOG/S6FjpfcuH54Bi/C+66ta446e/iRdfejn7Q7TOAfrzL7wYex5ySrz0yitxwWmHZwG61z/F2Pe09+/7w19j3CkXxqlH7xcfWPFd853Q3i/Gv2yz+HfV3I789vd/yX6XbbHxWjHn9TkxatyZsf7wj8fOn9/Q77gmtqLzNZ7XVs3Bd43XHOfOZ6ndnPGZ7Q6Ky6eMi/cs//b4+b1/iAlnXBo3fGtC2PuN6Ul3r3N78vZ8XEwvenqde87FN8RWnx2e/YHoL3/7YBx63JTsD3UHDBjgGq8Y/nCNVxBkP6bp7r2l2lTdXeN5DugHtCEE2kxAgN7Ehv3ugRkx8RuXxeVTjsrOWvur7U9ve0B879KTs79g9dNYgQf/8nB21/P1F54YF1zxvXju+dlx0N7bZyetPXbUKRfGNece29hFJDZ77QLma+OnZXce3nPvH7IAvbbvh2+1f9xx7eRYbPC8wLz2xtd2m62XvfnlJ7/AH//6SBwz6cK48pxjFphs3zGnxZe2/1zH11Bccu0P4tHHZ8bor+6U/8RmyAR23Oe47NMuPvj+d2f/vdWXx8ZZEw6M2h/1eA4ofpP85W//jKFDF4trbrwzhr1l8Y4Avafn3NrvJr3I34sXZr8Utd83r7z6alx23fT5AvTOs4868ozYepN1YoO11/AckJ8+m6F2gb/6KivFnodOiiMP3HWBAH3cyRfEWp9YJS64/OY4d9JhWYDu9U8x+D3t/QOOOjN22GL97K7YN/94/VOMfRln8e+qtV25+Jrvxz/+/WSMPWAXv+Oa1IqurvG819F4fNd4jTfu7gy15/3azTA/vObr2acWznzmudh+76Oz/7b3G9OX7l7n9uR99Y13ep+vgHb05RrvU5vvFz+48tR4y+JDXOMVYO8aryDEfk7T3XtLtem6u8bzHNBPbMMItJGAAL2Jzbpp+s+yO87Hf22vjrPutN/xceSBX4rVPvS+Jq4kzVPV7kb/w5/+nt2ldfSkC2ON1T4Qn99knQzj5VdejeFb7h+//v65aeI0oOraG8V7HHxSfG3kF+Phfz4eP//177MA/bEnno5dR42P6Vee2nHW2sf8LjlsaIzYabMGrCS9KS/79vR44M8PR+3uwxkP/zve+663Zx8x9/a3LhWb7nJ4didi7S+Gaz933/O7qB1/zsmHpAfVoIpvu/vXUfvL7EP22SFuv/ve7E2W2kebeQ5oEPh/pj3j/OtiqWFDOwL0nrwfeuRRz8cFtqP2cdWXX39btwH6q6++FpvuOiYuOXNs9rUGngMKxI+IXUeOj3EHfWm+AL32yS+1TxyZfPzI2Gr3I+PC0+fdge71T7H2Xe392h8JHrjndnHtzT+KOXPmxI5bfSa+sNVnvP4plr5Us/l31dp2HHLslNhg7dWzO9L1ovG96O4az+vcxtu7xmu8cU9nOOXsK+Jfjz0VX9xmozjvspuyr+jabMNPucZrcFs6v87t6XfNNTfe4X2+AvvR2zXeXx/6V/ZpZLdcdorXuQW6vzGVa7wGoNY5Zef3lmrDurvG8/qnTlSHEWhjAQF6E5t3zU13ZqHW0Qfv1nHW3Q86Kfb78tbxqdU/3MSVpHeqWmhbC3PPP3V0FhwefsI5scE6a8Qmn/lkB8Yq6+8e99/xzeyjh/zkF/jmlbdE7XuT9t9jm/j+nb/sCNBr3ydTe5F948UTO04y5aLvZHemjxyxTf4TmyH73uFb7/hFFmbV7oK+/Prb466f/TamnXJorL/dQdnHiS+z1BKZVO1jt75x4bez78/1U4xA9ukWR58Vjz35dLz00stx1oSDsmDLc0Axvt3N0vkipyfvh//5mOfjAtvR25srZ15wXdTuZDhi1C7hOaBA+P9M1fnNldrvoNrry/NOHZ19N+GbA3Svf4r177z3a3+Q+T+f+0rs9cXNs9f3tddBu42akP3x7LAlhnr9Uyx/aWbz76p1rfjpr+6PM8+/Li49e1wsvNBCrvGa0IrurvG8zm08vmu8xhv3dIa/Pfzv2Ofw07I/jn7H25aJU4/5avY6y95vbF86v87tyfu6m+7yPl+B7ejpGu+111+PvQ+bFLtu+9nYcN01XOMV6P7GVK7xGoBa55Sd31vq6RrvjzMe8d5Sna4OI9CuAgL0Jnbuptt+Fnf//L44edw+HWetfTfusYfuHqt9eMUmriStUz0z6/nY89BT4pB9vtDxsdXHnPrNWO1DK8b2W3w6w6jdqbveNgfEvT84Ly2cBlVbu+t53Ennx7fOHJt9//abA/THn3wmdtz32Owj3N/4OfnsK7I74/bc2R3oRbSk9mJv4MABMWrEttl0te/kWWvLr8Y9N0+NzXb9Wkw75ZDsu9tqPz/8yW/i6ht+GOecfGgRpzZHRPa98jtuvUH2Hei/e/BvcdhxU7I7/H//p797DmjgDlngDvQennMf+udjelFgL3p6c+Wq7/4wpt/965g68eBYZJGFw3NAgfD/marzmytHnnR+rPe/H4vPrb9mdsSbA3Svf4r177z3a5+2sOam+8QvvndODBq0SHayqRd/Nwv2tv7cOl7/FMtfmtn8u2pNK2qvscZOODfOPXV0vONtS2eL0IvG9qKnazzvdTTWvja7a7zGG3d3hqeefjZ2HXlinHniAbHy+94V37n1x3HhlbfEdecdF9+/65euKxrYmgXuQO/hGu/am+/yPl+BvejuGq9280vtqxpr7ym9cROMa7wC4V3jFY/Zxxk7v7fU0zXeO96+jOeAPvo6nEC7CQjQm9ix2seHH3PqRR3fs137i711th4V3798UgxbYvEmriSdU9Xuwtp79Kmxx46bxOfW/+/d5hddfWs88eQzHd/7XHsDpvad0d++4IR0cBpY6bRLbozzL78p+6je2s9rr70er7/+eqzw7nfE9ReeEGtvNTJuvWJSLDF0SPb4vmNOz74vtPaXq37yC9Q+trf2PTzHHrZ7NlntxV7tD0R+dtOU2H/s5Mz6je+bv/DK72Uft1W7M9RPfoEnnnomdv7qCXHbVad1TDb5vGuzuxM+8bEPeg7IT9ztDJ0vcnp6zv3no0/oRYG96O7Nle9+/ydx7U13ZX+0M2SxwdkZ586d6zmgQPvaVJ3fWFz9s3vHoEUW7jhL7e7/IYstGkcf8uV4cuYsr38K9O9q72+ww8Fx1TnHxFuXWTI7U+13U+1ranbb/rP2foH2ZZrKdUXzu1H7LujRx0+NySeMihXf846OBehFY3vR0zXehCP28tqqsfzZV7O4xmswcjfT33z7z+Mnv/hdTDhi744jvvjVE7LXVrWva/E+X+P60vl1bk/XeNfferfXuQW2oqvXubVrudofq9Wu7Wpf1/jGj2u8AuH/M5VrvOJN652xq49w7+4ab03v89XL6jgCbSsgQG9i62p/pbfll4/Igqp1PrlaXHrd9Pjhj++NC78+pomrSOdUtY/N3Ofw02OXbTea76PaawL/fPTJ+PIBE7KPrX7rskvFmBPPiZVXfFfst9vW6QA1sdI334FeO23t+wmXWWpYdof0/Q/OiJFHnpF9b9LiQ+YFLH7yCcx67oXY6stjs49sr310+PmX3xy1C83Tj90/+46262+5O86eeFDMfvHl2GX/E+PEMXvG/3z0A/lOanQmUPvDqA22Pziz//DK780+vnevQydle/1Ta3zEc0AD90nni5yennM9HxfbiK7eXPn+nb+IS6+7Lfv0hc6/2z0HFOvf1ffjvfkMb74D3eufYu272vu1ryz492Mzs+fWp2c9l/2BQ+2OtQ+s+C6vf4rlL81s/l01txW1u6APOebsOO3Yr8b73/vO+U6uF83txZuv8by2ary9a7zGG3d3ht//8e9x+InnxOVnH5Xd/PLwPx+PLx84IW64aEIsPmQx13gNbE3n17k9/a7xHFBsI7p6nTvhzMtqfxIdYw/YdYGTucYr1t81XrGefZmtqwC9u2u8lVZY3nNAX3AdS6ANBQToTW5a7a/lx048L/792FOx4nvfGScd+ZV41zve2uRVpHG6q2+8M4477aLso6zf/HPZWePiox95f3zv9nvitHOuihdffjnW/dRH44TRIzo+bjMNoeZV2TlAf/b52TF2wnlx7/1/iiWGLh5HHbxbx8frN29V1T7T3ff8Lk4667Lse4dX+eAKcdxhe2Qfk1/7Oe2cq+M7t94dAwYMiN133CRG7OSj84vcDT+/9w/x9WnXxAsvvpTdbbvd5ut1GHsOKFJ6/rm6usjpyVsviutFV2+ufHrbA6P2cZcD3vQUvPaaq2WBuueA4uxrM/XlzZXa8V7/FOff1d5/6eVX4tjTLoraY4sNXjT2+dKWsc2m62YntfeLsy/bTP5dNa8jo0+Ymv0ee/M13qKDFolf3Xputgi9aF4vOl/jeW3VeHvXeI037u4Ml337trjyO7fH3Iio/c45aO/ts/eRaj/2fuP60tXr3J68PQcU14vOr3P//sijsfmXvrbAe6wH7b1D9nWMXucWZ+8ar1jLvs7W1XtLPV3jeQ7oq7DjCbSXgAC9vfpltQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQIAEBeoNgTUuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC7SUgQG+vflktAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRIQIDeIFjTEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB7CQjQ26tfVkuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECDRIQoDcI1rQECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0F4CAvT26pfVEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECDBAToDYI1LQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi0l4AAvb36ZbUECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0CABAXqDYE1LgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAu0lIEBvr35ZLQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0DaimEwAADWlJREFUSECA3iBY0xIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAewkI0NurX1ZLgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0SEKA3CNa0BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBeAgL09uqX1RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAgwQE6A2CNS0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItJeAAL29+mW1BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAgAQF6g2BNS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLtJSBAb69+WS0BAgQIEKhb4M6f/jYmTb0ybr7kpLrHOJAAAQIECBAgQIAAAQIEyikwacqVMfvFl+KYQ3cv5wKtigABAgQIECBQEQEBekUaqQwCBAgQINBZQIBuTxAgQIAAAQIECBAgQKA6AgL06vRSJQQIECBAgEC5BQTo5e6P1REgQIAAgX4LCND7TWcgAQIECBAgQIAAAQIESicgQC9dSyyIAAECBAgQqKiAAL2ijVUWAQIECLS/wFNPPxuf2f6guOnik+I9y7+to6CxE8+LxQYvGkcdvFt87/Z74qKrb4m/PfzvGLLY4Nj58xvGvrttlR3bOUDfaMdD44TRI2KtT6zSMdeXD5wYW248PLbf4tPZ/3fv7/4cE868NP760L+ycx609/bxmeGrtz+mCggQIECAAAECBAgQINBigR/c9as45ezLY/pVp8WAAQM6VrPxTofFYft+IT63/ifjjPOvi+/f+Yt49PGZ8Y63LxOH7bdjxzVZ5wDdNV6LG+r0BAgQIECAQGUFBOiVba3CCBAgQKAKAl8ZfWp84mMfjK/sumVWzquvvhbrfH5UnHPyIbH6qivHr+/7UwxedFB8YMV3ZaH3l0ZNiG9OHhOrfvB9fQ7Qn571XGy529g4/vARsdb/rBK/vf/PccBR34grphwVK71v+SpwqoEAAQIECBAgQIAAAQItE3jllVdj3W0O6Lieqy3kvj/8NfY8dFLc/Z0zs2u76T/6VXxopffEcm9bJr53+8+zP3D+yQ1nxcILLRR9DdBd47Ws1U5MgAABAgQItLmAAL3NG2j5BAgQIFBtgRt+8JP45pW3xPUXnpgV+sOf/CYmfuOy+MEVk+a7Y+ENhT0PPSW22Git2GbTdfscoE+75Mb4x7+fiBMOH9GBevAxZ8VKKywf+++xTbWhVUeAAAECBAgQIECAAIEmCIw7+YLs08PGHrBLdraTz74inn3uhRj/tb0WOPvcuXNj9Y33ipsvPTmWX27ZPgforvGa0FCnIECAAAECBCopIECvZFsVRYAAAQJVEZj94kux7ucPiGvOOy5WfM87YsyJ0+Kdyy0bB+61XVbirXf8Iq69+a6Y+fSz2X8/8q8nso/+23HrDfocoB9+wjlx652/iIEDB3bwzZ0zN7beZO04fvR/Q/Wq2KqDAAECBAgQIECAAAECzRb4+b1/yK7r7rh2ctQ+xX2jLxwaJ47ZM/uqrVdfez0uuuqWuOMnv4kXX3o5+6PpP/71kbjx4onZ9WBf70B3jdfs7jofAQIECBAgUBUBAXpVOqkOAgQIEKiswGHHT83eLNnzi5vHOluPiiunHhXvX2H57G70YyZdGFNOOiRW+9D7svr3OPik2GT9T9YdoO+03/Gx/eafzr4D/dDjpsz7jr19d6yspcIIECBAgAABAgQIECDQSoE5c+bGhl84OE4Zt28svPBCcdDRZ8UPr/l6LLTQwOxu9PsfnBGTjt4vlnvr0lG7A321DUbEDd+aUHeA7hqvld11bgIECBAgQKAqAgL0qnRSHQQIECBQWYE7f/rbOOP8a2PUntvF2d+8Pq47//is1pPOujz7qL8JR+yd/XftjZiNdjwk9tl1yy4D9K33ODIO2nv7+Mzw1TuOX3+7A+OAPbfLAvQp3/pu/Pie++LyKUdV1lJhBAgQIECAAAECBAgQaLVA7U7y2t3mtdC89jNm/52z/91ur6Nj1+02zr6Sq/bz0D8ei812HdPtHeiu8VrdSecnQIAAAQIEqiogQK9qZ9VFgAABApURqL2xUgu6P7zye2OdNVeL3XfcJKvtkmt/EFfdcEdcNPlrscgiC8c5F98Q1918Vxy6T9cf4X7EhPNizpw5MXHsV2LgwAFx0VW3xqSpV8Zxh+2RBegzn3kuNt3l8PjiNhvFTltvkB3zuwdmxArveUd2t4MfAgQIECBAgAABAgQIEMgv8MCfH8ruPK99RPtpx3w1VvngCtmko8adGYMXXSROOHzPeHLmrDhx8sXx83sfiG9fcEKXd6C7xsvfCzMQIECAAAECBLoSEKDbFwQIECBAoA0Ejv/6xXH1DXfE7VefHm9/61LZil96+ZUYO/H8uPue/4tFBw2KXbbbKF566ZV459uX6fIO9EefmBnHTPpm/OVv/8zudPjM2qvHM88+H2t+7ENZgF77qQXmtVD9vgdmxCILLxQfWPHdcfzoPbKPjPdDgAABAgQIECBAgAABAsUIbPXlsfHa66/H9y49uWPCvz/yaBwx8byoBey1j3AfM3LnOPfSm2L81/bqMkB3jVdML8xCgAABAgQIEOgsIEC3JwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEQI0G0DAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAgQLcHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAPAF3oNsJBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBAgG4PECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBeQLuQLcTCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAAN0eIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC8wTcgW4nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAbo9QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE5gm4A91OIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECAnR7gAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIzBNwB7qdQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBOj2AAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQmCfgDnQ7gQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQICNDtAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgME/AHeh2AgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQEKDbAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYJ6AO9DtBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIEC3BwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwDwBd6DbCQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQIBuDxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXkC7kC3EwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgADdHiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvME3IFuJxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQG6PUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOYJuAPdTiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgJ0e4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECMwTcAe6nUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBATo9gABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEJgn4A50O4EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAjQ7QECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDBPwB3odgIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBCg2wMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGCegDvQ7QQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQICBAtwcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMA8AXeg2wkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQECAbg8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF5Au5AtxMIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMD/F/h/JIflA5OGs/IAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9AAAAH0CAYAAABl1bZjAAAgAElEQVR4XuzdB3RVxdrG8SeBBAghNDt25YqKBVREEESq9N47UkLvLfQWegchIEWKNAVBpCuKVy8KCio2uGLDAlIFgRSSb83wJTeE5JCwyUmy899r3XUJ5+y9Z37vJHjy7JnxiYmJiREHAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACmVzAhwA9k48Auo8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggYAUI0BkICCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKAzBhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEELgswAx0RgICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIE6IwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEELgswA52RgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAE6YwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHLAsxAZyQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgM4YQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4LIAM9AZCQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBCgMwYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBC4LMAMdEYCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBOiMAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBC4LMAOdkYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAABOmMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBywLMQGckIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIDOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOCyADPQGQkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQoDMGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQuCzADHRGAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgTojAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQuCzADnZGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAATpjAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcsCzEBnJCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAzhhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgsgAz0BkJCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKAzBhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEELgswAx0RgICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIE6IwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEELgswA52RgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAE6YwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHLAsxAZyQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgM4YQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4LIAM9AZCQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBCgMwYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBC4LMAMdEYCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBOiMAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBC4LMAOdkYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAABOmMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBywLMQGckIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIDOGEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOCyADPQGQkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQoDMGEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQuCzADHRGAgIIIOAlgfZ9J6ltk2oqVqTQVXf84psfNCVstV6bPtBLrbnyNk9WaKv9219Nk3tnxpt6GgtOPJa9uV1L39imnAHZ9cb8kdqw7SPNeW29smTx1ZuvjlKO7P5OLp8m5/Ye8YoqvvCMKpV5Jk3u7+2bzl++URERkercura3b839EEAAAQQQQACBGyrA558bypmhL8bnn+SXL7N9/km+DO9EAAEEEEAAAQS8K0CA7l1v7oYAAi4UWL52u85fCFe7ptU89o5fIKX/4pvg8pN936rUs49fV2NvxFjwdOMff/lD0dHReuDeAvZt8e/3z/mLeqlJX215faJyZM9mXy9du5veWjRa+fIEydfX57r6dCNO+ubgT5q5cJ3mjOuZ4sulh18gxcTE6KUm/bRxyVj5+WVNsg/Jrb8nBAL0FA8RTkAAAQQQQAABLwsk9795+Pzj5cJcx+34/HMdaMk4JaN//klGF3kLAggggAACCCDgegECdNeXmA4igEBqC/z+53FFXYrW3QVu8Xgr8wskE7I/8yQz0FO7Jtd7/V27v9Cu3V9qcI/m13WJlIyFpFYj8HTjSXNX6bFC98fNxo5/v//++Jv6jwnTm6+OtJc4fvKMmnQapW0rJ11XX27kSRcuRujg4V/1xCMPpPiy6SFAN43e/dk3Kv7UIx7bn9z6e7oIAXqKhwgnIIAAAggggICXBZL73zx8/vFyYa7jdnz+uQ60ZJzihs8/yegmb0EAAQQQQAABBFwtQIDu6vLSOQQQ8CRQs/Ugje73sh57+H77tq+//8kGkGaW6brNH2rhik26GBGp/HmDNGloR915+80yS62v3rBTt92ST6+v3aHewQ116szZK5ZcDp2xzIawUVFRevyRBzR+cLD8smaR+QXSk4ULast7n8jMFi5W5GEN7dXSLqudcAl384uMKWFrdDE8wi75Prh7c/n7+6nH0Fk69OORK7r1Yski6hPc0F7/2aKP2KDv3PkLuufOWzWsVyt7/Q8/+Uqvr9txxQzgF+v10NoFo5Q3dy7FLuEedemSRk1dok/3fafIyEgVevAezQrtbu+XVJsSM27Tc7zaNq2qEk8XVnhEpEpU76xR/V5WlXLP2reXqtVVG14L1a+/HZPxOnXmnHx9fRXSrZlKPfuYPNXm5yNHNWTCAh07floFbrtJowe01e235Euy1MmtZdO6FbX5vd068/c/uv3W/GrV8CVVLVc8yX6boDMwZw59vOeAnbW+au4w7fjws7ixcPrMOQ0InSczazwq6pIa1Sobt0rBtZYw3LP/O42fvUL/nL9gdltRSLem+vvceY2ZvlS5cgYoKFdOTRwSrO279tr7VSpTTCOnvmbH8P333KGKLzwtc41P93+ngvfdqfrVy+ihB+7SvGVv67ab8+nn347qxMkzatngJdV66Xlrl5Tr0b9OKWTsfP1x7IS9V/3qL6pD8+r2+gnbmNTM/fjj2/zZUzu++u5HDZ+0SBcuhuuRf91r7SqXfTbuoQHjvn7rR7p0KVpN65RXs7oVtPX9T7XszR1aMmOgfHx8NGfJev1x9IRG9m2T5Lj44D9faOq8NZe/VwrcqmG9W8U9BFOtxUD1bFdfY2Ystd+n40Lax32PmAuu3bRLq9bv1IXwCP3w02+6KV9uTR/V1ZrELr9u2nn23Hn98tsxnTl7TufPh2tIrxYq/NB9tk1JjUsCdP7dQgABBBBAAIHUEuDzT+p8/omMjFLJml30wdoZ9rPX3i++V8vuY/X+m9N0c/48Mg+69h75itYvGqMvv/mBzz+JDHA+/6T+55/U+rnCdRFAAAEEEEAAAbcKEKC7tbL0CwEErilgQrwzZ/9R346N7HtNmJY9u786tqip73/41YbkuXPl1OS5q22YZ2Ylm/Cv44Apala3oto3q6asWbIoYeC178ChuFC+Vfdxal6vog3/TGhqQr/ZY3vI389PQycu1K0351XXNnWuCND/OHZSzTqP1rJZg2wbQsa+qgfuvUNtm1T12Cdz/YAc2TVleGe7XPfIqUuUN3egvX5yA/SdH+/Thq0faeqILvZeR/74yz44kNI2mQDTBJ+x9542f40K3n+nDSIP//KHeg2bbZcWNyH4xfBw3V3gVn34yZeaOGeVNiweYwPWxGrToVkN1X55sH1gwIS1Jsjc+v4ehU3onaRNSmr5xsYP9N1/f4mbge6p36buZs/x0f3b2tDfHPHHQnR0jPZ/fUhFH/uXnQ1uQtlNy8YrX55cdix4moFer90wjQ1pZ8Nv42BC4aDAAPUfHaayzxe9IkyODWxNu4dMWKg184bbtvz510mZ8bfl9Qn2azN2zYz0Fa8MsQ92nDj1t6q3GGh/sZc1a9YkXSfMXqECt99sw2rzy8GTp8/acZtUGxMrRMIAPal2+Pj6qnLTfhrZt7V9+OLA9z+qcceRmjS0k+3zlp2fauX692y9zfhq3GmURvVrY2e2m4dLni/2mF3hwfi+MX+EcgUGJDouzLhu0S1Ui6cNtKH5tg/26pXFb9kHSsz3TrEqwXZ8jejT2j4kYY7Yh0xMLc19zS9AA3JkU89hs1SlXHFVKP30FfU3Y2HFW+9q3YLRyh2UU+Z7a8marVo0dYC9XlLjkgD9mj+6eQMCCCCAAAIIXKcAn3+uDtBv1Ocf8wBx++bVVbzoI5oStlof7Tlg//u5TpXSWrX+Pf3w8+/2YWE+/1y9GpsZznz+Sd3PP9f5I4PTEEAAAQQQQACBTC1AgJ6py0/nEcjcAr/+fkxtek3Q9v9f4toEd3PH97Yzt+MfH+89oOVrd2h2aA8bQprA7N3VU2yoaQ5Pgde0+W8oT+5AtWrwkg31ar70vJ3VbA4TeA4Mnad1C0dfEaCbkO33oyc0oEsT+z4zG3zmwrVaOjPEY8HM9etVK2NnHye8fnIDdDO7vUvIdBscxl+uOqVt+uzLg5q1aK0NC82s6ccffkDGYsfqyVqz8QP998cj9hdI8Y/IqEt2pvqezXOVVG3MgwyDxr0at0y5mTH/dKX22rNlnp3lf63jWrVMGKB76rep+6HDRzRhSHDcbT2NhaadR2tQ92Z2VvW1AvS+o+YoT1CgOrWqZVcIiD2cBuhDxi+wM/9jDxPqvzK2p85fuJikq5kpvend3Xa1hPvvvj3u3KTamFgNEgboSbXDPCwwbOJCG2THHs27jrEPrJgAveug6apduZR9iMAcsxetU3RMjH1QwwTb5r1mv3ez+sGLJYokORwWr95iZ6gP7No07j21Wg/WuEHtVejBu21YbgLy+D8LYgP0z786pLlL1mvexD5x3//mD2Z7hvj1N3/+89hJDenZwr7PtK9Bh+F6b83Uq9oVf1wSoF/ru5jXEUAAAQQQQOB6Bfj8c3WAfqM+/5gHiGNipE4ta6p2m8Fq36y6fdB32sguMv/dXPGFZ+wDl3z+STxA5/NP6n7+ud6fGZyHAAIIIIAAAghkZgEC9MxcffqOAAJq1HGkBnVvbsNXMyN8ddjl2btrNr6vHbs+U0xMjF3SO1/eILv8uQkCJ89dpSUz/hdmxw+8zF5nYUs32Jmzvj4+dvnmhjVeVOtGlW1oapYFNzNrzWFmH9RrN1S71s24IkCfOGel1m/5yM5aNUd0dLSdCb9y7jB1HTzDhrbxj3LPF1XfTo3s9Vs3rKznnn70qusnFqCXqdtD6xZeuYS7OTE2IDTt69OxoZ3V66lNiQ0jM1O5TL0e+mDtdNVoGWKXN+8xbJZ6tKuvZW9us788Kl/qKbv0+fK123XxYoS9zOdfHdTeLfPsnxOrjVl2u/eI2br15v8t2W7qY2azm2W0EztSUsuEAbqnfpu6h4dHqkub2nG3jT8WzC8ow5a+LbMEunnW4qtvD2v+5L52Ce9rBejnL4Rr8arNdob9C889qd7BDezqAk4D9IRjt0arQfaXemYpfU+ub235txat2myXfzcPAZgVA5JqY2I1SBigJ9WOX44c1cr179oHWWIPM7M8dgl3E0CbGfDZ/P3sy2Z7ADOW+ndubL8eMeU1u6S+mXUf+4BLYu0xs+rz58utlxtXiXu5Q7/JalK7vF547gkboO/bNv+Ka8QG6Gbmfv32w+xDHLlzBarTwKlqUb+i/b5OGKDHHx9mq4earQbZ73dPP2MI0PmHCQEEEEAAAQRSU4DPP6nz+cc8QDx3yQaN7NdGPYbMtKuJVWjUxz5A/FLjvnpj/kj7YDWffxIP0Pn8k7qff1LzZwrXRgABBBBAAAEE3CpAgO7WytIvBBBIlsDSN7bprxOnlTVrFruvtJkpbkLaWYvWaeGUfnYJ6Pc/3q9VG3bGBehmSb7Xpg+Mu378wMsErubDvwkZzfLuE19ZaYPd2AC9RsWSqlbhOXvuNwd/srN+E85Af23NVh0/ccaGpik5TChrrm3uYY79X/9XIyYvttf/z96v9dqaLXHBpHkwoEjFdtr5xtQr9kCPfz+zn3Zw/8nauGSc3tr67xS3ySxjWKdqaZlQevG0ATL9MjOd1276UG/MG2FvZWb9L589WPfdfbt9rXTtbnEBemK1+fbQz7ZP5mGC5BwpreWb7+ySuYdZrt8cnmqRWNAZ/+9M2NuiXqW4etdvP1zDerdMVoAe2zezPPuoaUsVlCvAbjXQf0yYypa8/iXcE47d2AA9PDwiWa7GZ9WG9+IeNDHtTNjGxOqSMEBPqh3/nL+okVNei1uG3lyrdc9xalSznJ2BblZHaFjzRbu8esLD7EXeZdAMFby/gEo+XVgNa5ZNcogsXLnJPtjgaQb6/u2vXnF+bIBu/tLU2TzccNcdt9i2mG0aYv8+/h7osX82r8UP0D2NSwL05Hxn8x4EEEAAAQQQuF4BPv+kzucf8wBx+Ya91bFlTZ089bddScr8t2uFF562D8aaz2TmwV8+/yQeoPP55/KD/Kn1+ed6f15wHgIIIIAAAgggkJkFCNAzc/XpOwII2GWVX+49wYbdZilrs7ezWbLaLLdnZpybGa5m1m9EZFSyAvSBofP14H0F7MxWM4O7ZfdQNaj+vxnoF8MjbIidPZu/QsbNV4Hbbrp6D/SjJ9S8W6jmjutlr2XaYEJ+sxe5p8ME6GaJ87AJfeTvn1W9hs+2e2ib5a3Nns+tuo/VO8vG29m7m979xC4l+O/1M68I0M2e3zmy+dvZESbQrtl6sFaHDbMzxFPaJrOMoZnFX638c/YBgh9/+UM9h822e0ybJbpNmxoFj9S2lWbv9mxasGKTXRp7z+Yw283EamP2kDez9oNb1LSBqnkQ4Kdf/7QBfGJHSmv57oef6/W3dmjB5H72cmaZ76T6fa0AvXyDXnYv+ccevl9mRooZZ2YmSnJmoJvl/c1S4uYw+6z/8ttRu+T92JnLbb2CW9Swr8VvQ3L2QE8quL6nwK1Juppg2gTF/v5+dt9u8/1gZvwn1cbE6pDcAP2u22+2v1QcG9Le7mVuHmYwe6CPHxwctwe62Vd8xqhudoWG02fO2SXczXL3TbuMVscWNVS40P1qGDzCrhJx+y3/W6kgfrvMyhCteoy1WwyYZdq379qrmQvX6a2Fo+34jB+Wx54X/+/qvDxEC6b0u2J5/YT1SDg+4gfonsYlATr/MCGAAAIIIIBAagrw+Sf1Pv+YB4jNlkQj+ra2/82/esNOvb7uXT1b9GH74Caff6qpWJHEA3Q+/6Tu55/U/JnCtRFAAAEEEEAAAbcKEKC7tbL0CwEEki3wcq8JMntpx84qN8Fx9yGz9NORP+3s8eZ1K+rt7R8nK0A/ePiIDaajoi7ZwNv8ssRHPjZANktEmzDZzGo+dfqsnilSSMN6tVKO7P5XLOFuGm5mjE+au8oG5/5+We0MhjpVSnvskwnQnyxcUO/9+3OdPP23ihV5OO765kSzpOC2D/Yof97cNpw1+y6/OrnvFQH6vgOHNHj8Att+P7+satmgkupXK2Pvm9I2meXYm3cNtXtuP3DPHfYaLzXpZ5fIjp35a2bob3pvt923un71MvaXTPH3v05YG3MNE36OnrbEhrkmQC9f+mkN/f99phMCpbSWZsZwx4FT9fORowpuXkP1qr2QZL+vFaC/8+5uTZ23RjkDsqvIowUVERmpJnXKJytADxk7X7s//0bZ/P111x03K3RgOzsWzUMI3QbP0KXoaE0Z3lkffvKlnQHeuXVtG2gPmbAwbvb2n3+dVKvu4+xy5uaIH2LHOsXOQDd7myflagLrBa+/Y8dDYM4AW7uijxVUUm1MbJAmN0A37TDvNasMmNno/7r/TuUOCrSzvM0DE+Yw3z8r1r1rH/AwwXloSDv7gMKB7w5r4pCO9j3rt35k920Pm/C/pRATtuu9j/bJPFBw8WK47ipwi4b3bh2357mnAD06OkYdB0yxy2+ah1Fy5cyhWi+Vskv5J1zCPakZ6J7GJQF6sn9080YEEEAAAQQQuE4BPv/kintg8kZ+/jGft15ft8NuY2W2EzIPJ5uHas3Dn+VKFbXV4vNP4gE6n39S//PPdf644DQEEEAAAQQQQCDTChCgZ9rS03EEEHCbgAnQ2zWtZmfuciCAQOoImG0aTHDfqmFl+WXNIrMnetPOozVvYh/dXeCW1LkpV0UAAQQQQAABBBC4SoDPPwwKBBBAAAEEEEAAAQQQSC0BAvTUkuW6CCCAgJcFzC+Q2jZJelm81GiOWV7c7AUd/zBLjJvlrb15mJkjo6YuueqWM8d0t8vkp9djQOg8Hfzh1yua93yxx9SrQ4P02mSP7Upv/UmN8Wn2sqxTpZTKPn95FtFvfx5Xi/9facGsNsCBAAIIIIAAAggg4B2BzPz5JzX+O9cbVUtvnxec9tlt/XHqwfkIIIAAAggggICbBAjQ3VRN+oIAAplaIC1+gZSpwel8phQw2zSYhzXCIyLk6+OjbNn81bFFTRV/6pFM6UGnEUAAAQQQQACBtBLg809ayXNfBBBAAAEEEEAAAQTcL0CA7v4a00MEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWQIEKAnA4m3IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgi4X4AA3f01pocIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAskQIEBPBpKnt/x+4oLDK3A6AggggAACCCCAAAIIuEUgh38W5c3ln2bdOXU2QhciLqXZ/bkxAggggAACCCCAAAIIpC+BO/LnSF8NojUIIIBABhAgQHdYJAJ0h4CcjgACCCCAAAIIIICAiwQI0F1UTLqCAAIIIIAAAggggIALBAjQXVBEuoAAAl4XIEB3SE6A7hCQ0xFAAAEEEEAAAQQQcJEAAbqLiklXEEAAAQQQQAABBBBwgQABuguKSBcQQMDrAgToDskJ0B0CcjoCCCCAAAIIIIAAAi4SIEB3UTHpCgIIIIAAAggggAACLhAgQHdBEekCAgh4XYAA3SE5AbpDQE5HAAEEEEAAAQQQQMBFAgToLiomXUEAAQQQQAABBBBAwAUCBOguKCJdQAABrwsQoDskJ0B3CMjpCCCAAAIIIIAAAgi4SIAA3UXFpCsIIIAAAggggAACCLhAgADdBUWkCwgg4HUBAnSH5AToDgE5HQEEEEAAAQQQQAABFwkQoLuomHQFAQQQQAABBBBAAAEXCGTWAP3JCm21f/uriVawfd9JatukmooVKeSCCtMFBBBIDQECdIeqBOgOATkdAQQQQAABBBBAAAEXCRCgu6iYdAUBBBBAAAEEEEAAARcIuC1A7zlslprXq6SijxX0WB0CdBcMXrqAQBoKEKA7xCdAdwjI6QgggAACCCCAAAIIuEiAAN1FxaQrCCCAAAIIIIAAAgi4QMBtAfpX3x7W/ffcoZwB2T1Wp0jFdtq3bX6i72EGugsGNl1AIJUFCNAdAhOgOwTkdAQQQAABBBBAAAEEXCRAgO6iYtIVBBBAAAEEEEAAAQRcIJAeAvTjJ8+oRqsQffDmdPn5ZbWqi1dt0S+/H9PQni0UOmOZdu3+UlFRUXr8kQc0fnCw/LJm0fzlGxWYM4c+3nNAn+z7VqvmDtPYmcvjll//8psf7LmnzpyTr6+vQro1U6lnH7PXf7ZqR7VvVl2rN+zUpehoNapZVm2bVLWvJQzQzX3Wb/1Ily5Fq2md8mpWt4ILKk8XEEDAiQABuhM9SQToDgE5HQEEEEAAAQQQQAABFwkQoLuomHQFAQQQQAABBBBAAAEXCKSHAN0wtu0zUc3rVtQLzz1hVRt3GqU+wQ311OP/0r4Dh/TYw/fbv2/VfZya16uoSmWesQH6sje3a3T/tnHBePzw+9jx07oYHq67C9yqDz/5UhPnrNKGxWPsdcwM9Jb1K6lHu3o6e+68WnYfq36dG6t40UeuCNC37PxUK9e/p7689NMAACAASURBVLAJvRUVdcm2a1S/NnrikQdcUH26gAAC1yuQqQL0CxcjNHzSIn3xzQ+Kjo7WiyWLqH/nJvL19dGpM2c1MHSevvz2sPLlCdLIvm3i9tDw9BoB+vUOPc5DAAEEEEAAAQQQQMB9AgTo7qspPUIAAQQQQAABBBBAICMLpJcAfd3mD7Vn/3cKHdhOf/51Us06j9b2VZPl4+NzBe+0+W8oT+5AtWrwkg3QDx0+oglDguPek9Ty65FRl1Siemft2TzXvtfsgb595STdnD+P/XrJmq068sdxhXRrekWA3nXQdNWuXEplny9q3zd70TpFx8Soa5s6GbnstB0BBBwKZKoA3fyw/e2P4xrWu6V9kii4/xQ1qFFGlcoUU/8xYSpw203q0rqODnx3WL1GvKKNS8YqezZ/j68RoDscgZyOAAIIIIAAAggggICLBAjQXVRMuoIAAggggAACCCCAgAsE0kuAbmaBV20+QO+unqIVb72ro8dPqW/HRjITH8OWbtCB73+Ur4+PfvntmBrWeFGtG1W2AXp4eKS6tKkdV4n4AbpZ1n352u26eDHCvv75Vwe1d8s8+2cToO/ZHGaXgjfHxh3/0c6P9mnysE5XBOgNOgzXydNnlc3fz74vPCJSFUo/rf6dG7ug+nQBAQSuVyBTBeiT5q7SbTfni9u/YtTUJXrkX/fap4tK1OisnW9MU47s/tay6+AZqlultEoXfyLJ18qUeJIl3K935HEeAggggAACCCCAAAIuFCBAd2FR6RICCCCAAAIIIIAAAhlYIL0E6LG5S4PqL2resg0a2LWpzWcmzlmp8xfCNah7M2XNkkUTX1mpm/LljgvQIyIi1bn11QH6Qw/cpcpN+2n57MG67+7bdf7CRZWu3e2KAH3r6xN16815bfUWr96i3/88cdUM9C4h09Ww5osq9ezjGbjKNB0BBG60QKYK0M2TSx0HTFFw8xo6d/6Ctn2wR7NDe9r9L5p1HWOX84g9poSttsuEVC33XJKvtWlUhQD9Ro9IrocAAggggAACCCCAQAYWIEDPwMWj6QgggAACCCCAAAIIuFAgPQXoZr9xk8uYZdnfXjLWag8Mna8H7yuglxtXkdnTvGX3UJmQPXYGelIB+h235Vej4JHatnKSAnJk04IVmzR3yXo769wcZg/0JrXL2X3Wz/5zQc26jLHheWJ7oJsZ8TNGdVPuoJw6feacXcI9X55cLhwNdAkBBJIrkKkC9JiYGE0OW61t7+/RqTPnNKJPa1Up96x+PnJUXUKmxf3ANnivLH5L0dExql6xRJKvmWVDLoRfSq4170MAAQQQcLFAdIzke+WWTS7uLV1DAAEEEEhKIEZSQLbLSwSmxXHqbIQuRPAZJS3suScCCCCAAAIIIIAAAulRID0F6BfDI1SqVje1alApblb5wcNH1HfUHLvt7p2336xniz4sH/lcM0AvVqSQna2+6b3dypcnSPWrl9HqDTu1dsEoW4Z67YapctlntX7Lv3X+YrhdFr5d02r2tYT7qL+2ZqtWrHvXzmLPExSo0JB2KvzQfemxnLQJAQS8JJCpAvTpr76p03+f0+DuzXXy9N/qOWy23QO9eNFH1TB4uF3CPfYYP3uFXSakeoUSSb5mnog6de7y3hocCCCAAAKZXMAkJgTomXwQ0H0EEEBAyurrq1wBWdOMggA9zei5MQIIIIAAAggggAAC6VIgPQXo6RKIRiGAAAKJCGSqAL1Ks/6aP6mvCtx2k6X4aM8BrTRLc4zuppI1umjLiokKCgywrwX3n6L61cqo7PNFknytXKmiLOHOtxUCCCCAAAIIIIAAAgjECbCEO4MBAQQQQAABBBBAAAEE0pMAAXp6qgZtQQCBjCKQqQL0TgOnqtSzj6txrXJ2efbxs19XQI7s6t62roZOXKj8eXOra5s6OvDdYXUZNF2bl09QzoDsHl/7/cSFNK310JFZNXJoVJq2gZsjgAACCCCAAAIIIIDAZYH0GqAHdKyg83O2UyYEEEAAAQQQQAABBBDIZAIE6Jms4HQXAQRuiECmCtB///O4Rk59Tb/+/pfMfuhFChfU4B4tlCO7v/4+d14hofP1+YGDCgrMqSE9W6jkM4UtsqfXCNBvyDjkIggggAACCCCAAAIIuEKAAN0VZaQTCCCAAAIIIIAAAgi4RoAA3TWlpCMIIOBFgUwVoKeGKwF6aqhyTQQQQAABBBBAAAEEMqYAAXrGrButRgABBBBAAAEEEEDArQIE6G6tLP1CAIHUFCBAd6hLgO4QkNMRQAABBBBAAAEEEHCRAAG6i4pJVxBAAAEEEEAAAQQQcIEAAboLikgXEEDA6wIE6A7JCdAdAnI6AggggAACCCCAAAIuEiBAd1Ex6QoCCCCAAAIIIIAAAi4QIEB3QRHpAgIIeF2AAN0hOQG6Q0BORwABBBBAAAEEEEDARQIE6C4qJl1BAAEEEEAAAQQQQMAFAgToLigiXUAAAa8LEKA7JE+LAH3oyKwaOTTKtjz+nx12hdMRQAABBBBAAAEEEEDAoQABukNATkcAAQQQQAABBBBAAIEbKpARA/QvDsRo5vzLGUhyjice9VHX9lmT81begwACCCRLgAA9WUxJv4kA3SEgpyOAAAIIIIAAAggg4CKBtA7QIyIvyS+r71WiZxqWUu5VH7pImq4ggAACCHgSiIiKln8i/x6ghgACCCCQ+QR8fHwyXKczSoA+f/lGRUREqnPr2hnOOCM2OLW8/zpxWj2Hzdax46fUoXkNlS/9lHoNm60jf/ylRjXLqnWjyhmO6/Avf6jH0FnasHhMhmv79Tb4yQpttX/7q9d7+lXnEaA7pCRAdwjI6QgggAACCCCAAAIIuEggrQP0U2cjdCHi0lWiAR0r6Pyc7S6SpisIIIAAAggggAACCCCQHAFmoCdH6frek1qB7vW1Jm3P+venX+mpxx9Sjuz+KW7INwd/0syF6zRnXE+P5zrx3vHhZypf6il7/ZiYGL3UpJ82LhkrP7+smjb/Dfn7+6lTy5qKjo7RkjVb9cexExrYtan92tc3bR5CSdjOlMCmlwC957BZal6vkoo+VjDJ5jvpZ/yLEqCnZIR44b0E6F5A5hYIIIAAAggggAACCGQQAQL0DFIomokAAggggAACCCCAQCYRIEBPvUI7CXRTr1Xev7IJQBt3GmUD8Ly5c6W4ARcuRujg4V/1xCMPeDz3er3/PndebXqO1xvzR8Rdf/dn36j4U4/Yr03IW71iSZUtWcR+PWLKa3ry0QdVs1LJFPflRp8Qv50puXZ6CdC/+vaw7r/nDuUMyO6x+dfbz/gXJUBPyQjxwnsJ0L2AzC0QQAABBBBAAAEEEMggAgToGaRQNBMBBBBAAAEEEEAAgUwiQIDuudBffPOD5i/bqMDAHDr21ymdO39B3V6uq+eLPabwiEiVrNFZe7fMi7tI/9FhKvt8UVUq84ziB7p79n+n8bNX6J/zFyT5KKRbU5V69nGdv3BRI6cu0Rdf/1fZs/krpFszPfNkoUQbNWfJeoWHR6pHu3r29dY9x+neO2/TsN6t7Ncm6K1ctriKPVlIA0Ln6cdf/lBU1CU1qlVW7ZpW0+hpS3X7rfn1cuMq9v2RUZdUpm53vbVwtA0wk9sOc+7pM+cSvYd5rVqLgerZrr7GzFiqYkUeVv48QVr25nY9cO8dCsqVU4unDfDY74TnN65VTlPCVuu16QNtu9dt/lALV2zSxYhI5c8bpElDO+rO22++wjsxwKhLlzRq6hJ9uu87RUZGqtCD92jy8E4K7j9Z+7/+QQ/eW8Da9e3USLFh6yuvrdeyN7Ypd1BO3XHrTSpV/HF7b1Or3EGBWjNvuMo36KXm9SvpP3sP6PjJv1Wk8IMa1L15XBPMOFi/9SNduhStpnXKq1ndCva119e9q9fX7bDL/OcKDNDssT10U77cV7VxVmj3JAdp/FDYUztM3yfMXqn3PvpcuXPlVK2XnteajR/ELeG+a/cXmhK2RhfDI1SsSCEN7t5cvll81bDDCPUJbqjnnn5UZ/7+R3XbDtGCKf11z523Jtqmc/9cUOiMZdr7xffKksVX9auXUZtGl8ebcQjMmUMf7zmgT/Z9q1Vzh2nszOVq26SaveeJU39r0LhX7ffId//9VZFRUXZVAFPf5Pbzy29+sPc/deacfH197fdTqWcfs/cnQE9n/6ilVYBuGEYOjdLQkVnt/3MggAACCCCAAAIIIIBA2gsQoKd9DWgBAggggAACCCCAAAII/E+AAN3zaDABetPOo21Q+nDBe+y+1+brt5eMVTZ/v2QH6PXaDdPYkHYqeN+dOnP2H5m954MCA2xoHRiQXb06NNAPP/+utr0n6J2l4xSQ4+oZuZ99edAuJ750Zoj+OX/RtiMiMlKblo23nXihTne9tWi0cucK1P6vD6noY//S8ZNnbKBt3vPzkT9tYLk6bLh9v1lW3YTBC6f2T1E7zLlm6fLE7pEvTy4VqxJsHw4Y0ae1DUzN8WK9Hlq7YFTcDHRP/U54vqlB/AD9+x9+1W235LNB8OS5q3XhYrgG92h+zQB958f7tGHrR5o6oottk6mlCd5/+e2ougyaccV+4PHD1q6Dpqtu1RdUpsST9rwhExbaoL16xRL2a/Perm3q2AcTTEjepNMoG8I//cRD2rLzU61c/57CJvS2DzOYmfij+rXR/XffrlqtB2vT8vF2HP3253EVuO0mJdXGpEZp/HZ6asfqDTu1eecnChvf2wbjfUbMkZmFbvZA/+PYSTXrPFrLZg2yriFjX7UPO7RtUlXfHvpZfUfN1ZuvjrTB/gP33OFxz/ehExfahyR6d2ig8xfC1b7vJLWoX1GVyhSz9TEPUozu3zYu1DavxwboJvg29WhRv5L+++Nv6jNyjh3Pscax+5d76uex46d1MTxcdxe4VR9+8qUmzlkVV1cC9HT2Lx8BejorCM1BAAEEEEAAAQQQQCANBQjQ0xCfWyOAAAIIIIAAAggggMBVAgTongeFCW9NKLh+0Zi4N3YdPMMu321C4uTOQO87ao7yBAWqU6taVyxjXrxaJ21dMdGGweZo2X2sOrasqeJFLy8fHv+IjIyyIfkHa6dr58f7tWf/tzJh8pCeLeSXNat6DJ0VFzjGP88E7YO6N7MPAFRs3NfOADdhrenX4w8/oHrVXlBK2pGYWOw9HvnXvTZQNl7xZyknDNA93S/h+QkD9Pj3/3jvAS1fu0OzQ3tcM0A/9OMRdQmZboP92OXZzbVuRID+3pqpMg8PmMMs8V74oftUt2ppmfC9duVSdlUCc8xetE7RMTHq1LKWqjTrr5ebVFXtl563e62bI6k2JjVKEwboSbUjuP8U1a9WRuVKXW6HWRI9dOZyGy6bPd1/P3pCA7o0sa+ZGfozF661D2qYwzy0YcbZqdN/a/nsIXZmeVKHefhhx+op9uEQc2zftdc+tDBzTHdbn0OHj2jCkOC40+MH6C/3nmBXd4hdqt9c69NNc+17k9vPK75foi6pRPXO2rP56msk2YEUvOATYzYn4LhuAQL066bjRAQQQAABBBBAAAEEXCdAgO66ktIhBBBAAAEEEEAAAQQytAABuufymfB24isr7ezc2GPYpEV6pOA9qlW51FUBer9Rc1Wu1FNXLeFuZuMuXrVZazft0gvPPanewQ3sUu7PVO6ge++6Le7aZma5WXa64gtPJ9ows1d3t7Z19cbGD+x7vj30i/z8sthZ5ybkNEvD//r7MYUtfVtH/zolHx/J7DM9f3JfG+qamdx5cgfaWb7lG/TW+sVjbPie0nZ4uocJO/dtm29n2cce8QN0Y+HpfgnPTxigr9n4vnbs+kwmvjTLiufLG2T3V0/OHuiff3VIc5esl5mp3KdjQ7sU/40I0OP31yyVX/C+AmpYs6wadBiuk6fP2lnm5jDL/lco/bT6d26s3/88rjlLNtil3009zP/MkVgbkxqlCYPlpNpRv/1wDe3ZQo89fL+9lAnqe4+YYwP0iXNWav2Wj+wy9eaIjo62D3SsnDvMfv3XidN6sV5PjRnQ1uO+72bslqrVVZ9vmx/XXLOk+ujpS+2qB6Y+ZguCLm1qx71+5Qz05fYhhOAWNWRqPmH2Ci2fPdi+N7n9NEvDL1+7XRcvRvy/5cG4LRaYgZ7O/qkiQE9nBaE5CCCAAAIIIIAAAgikoQABehric2sEEEAAAQQQQAABBBC4SoAA3fOgMEGeCcXNLPHYo12fSWpY80W7pPezVTrqs63/2wO9bZ+JdqZvwj3QY881+12PmrZUQbkC1LdjIzvz28waDsiRLVmj0+yDnt3fX6s27LSzzc0+5ybgN0tvm1nOZs9oE9q2qFdJ1So8Z69pwtNhvVvaAP27//6i4ZMXq0fbelr65jY7c9scKW2Hp3skFlSWrd/TLgOeN/flWdqe7pfw/PgB+gf/+UKzFq3Twin97L7h73+831okN0CPRf76+5/s3ucbl4yzS+p3GTTd0RLuscuLm+vHD9DNjHczVsxqBUkdZpn9jgOmqkvr2nrhuSfi3ha/jbHhdsJrJAyWk2qHmYHeqGbZuGXozR7lZhl9E6C/tmarjp848/8PdVzdyv5jwhQYkMPuW75m3gjlyO6faFfMAw2xM9BjV1RIOAPdjP/OrRMP0M3DEHVeHqJ7777NPhDSs3093XXHLfZeyennSy8+q8pN+9nQ/b67b9f5CxdVunY3AvRk/WRJgzcRoKcBOrdEAAEEEEAAAQQQQCCdChCgp9PC0CwEEEAAAQQQQAABBDKpAAG658Kb8NbsaT1zdDcbUJsZtSaM3LJiol2munzD3gob30sP3FvA7qldo2WIxoa0vypAN8F1oQfvtjcz+0CbWc9mprkJMc3sZLMHul/WLPrlt2O6/ZZ8cUt6J2yd2Qfd7BV9y015bWhsjpea9JOvr49WvDLUziIu36CX3efbzDY27zdLY5sZ9CZAN0eNVoP04L0F7HLeVcsVt3+X0nZ4ukdiAboJRs0+5WZf9mvdz1OAvm7zh9r6/h7bdzObu//oMEVERiUrQDd7fefI5m9n4JtwtWbrwVodNky+vr56qXFfvbtmStze8yndAz2p4Nrsgb7irXc1Y1Q3W5vTZ87ZJdxzZM+mo3+dtKsPmP3kew2frarli6twofsTbWPsgwcJx0NygmUzE97sw77zo32aNaa7fHx9NDB0nr7/4cjlPdCPnlDzbqGaO66XHryvgHU1s87NfuS7dn9hZ8kvnzVYsxatlZllPrBr0yS/acz+8Lly5rB7wMfugd6sbgVVLvtsoisExJ+BvuPDz/TJ599oUPfmV10/Of0sWewxNQoeqW0rJ9kHUhas2GRXG9izOcxejxno6ewfOQL0dFYQmoMAAggggAACCCCAQBoKpMcAPaBjBStyfs72NJTh1ggggAACCCCAAAIIIJAWAgTontVNgD513hrdfkt+7f/6kLJkyWL3ijZLf5vDzIieseBNu+R1/nxB8vfzU+niT1wVoIeMna/dn3+jbP7+uuuOmxU6sJ1uypfbBrlmBvmu3V8qIjLSBqphE/okOSPd7INuZm+bgNLMKDbH4PEL9M3Bn7R2wSj79Tvv7rZtzhmQXUUeLWiv26RO+bgA3cxiX/D6O9q1bmbcfVLaDk/3SCyo3PbBXo2btdw6rVs42mO/PQXopp3dh8zST0f+tH7N61bU29s/TlaAvu/AIWsVFXXJPqDQskElu1qAOSbPXa2NOz62tTN7pN+oAN1c28zwXrHuXdvnPEGBCg1pp7sL3Kr2fSbq+Km/7YMTJZ4ubB+o+PLbH5JsY2IjNTnBsgnQI6MuacLs1/Xev/cpMDCHmtYur+Xrdti96s3xn71fa9LcVTY49/fLqk6taqlSmWJ2Rvis0O4qeN+dMrPH67UfrhF9WqlI4YKJfuOYgH3k1Nf0yeff2pnqdau+oJcbV7HL+Se2xH78AN087NG65zhlz+avrFmz6IF77tDw3q3swynJ7af5Xtr03m7lyxOk+tXLaPWGnXHfFwToafEvjId7EqCns4LQHAQQQAABBBBAAAEE0lCAAD0N8bk1AggggAACCCCAAAIIXCVAgO55UMQG6IunDWD0IIBAKgmYZezb9p5oH4S4/db8NvBftf49ffXdYY0f1CGV7urssj4xZtF6jusWIEC/bjpORAABBBBAAAEEEEDAdQIE6K4rKR1CAAEEEEAAAQQQQCBDC2TEAN2b4PH33/bWfc0s84bBI666XYfmNezMdm8d6aUdKe2vWSJ/7aZdV5xmlkBfMKVfSi+VLt5vZs6PmrrkqrbMHNNdBW67yettTI32fHvoZw2btMhuQ5Ali69d1n7a/DV2ef0e7ep5vY/JuSEBenKUPLyHAN0hIKcjgAACCCCAAAIIIOAiAQJ0FxWTriCAAAIIIIAAAggg4AIBAnTPRUyLAN0Fw4ouIJBiAbMVgtmn3Syvf+lStJ56/CH1Dm6gbP5+Kb6WN04gQHeoTIDuEJDTEUAAAQQQQAABBBBwkQABuouKSVcQQAABBBBAAAEEEHCBAAG6C4pIFxBAwOsCBOgOyQnQHQJyOgIIIIAAAggggAACLhIgQHdRMekKAggggAACCCCAAAIuECBAd0ER6QICCHhdgADdITkBukNATkcAAQQQQAABBBBAwEUCBOguKiZdQQABBBBAAAEEEEDABQIE6C4oIl1AAAGvCxCgOyQnQHcIyOkIIIAAAggggAACCLhIgADdRcWkKwgggAACCCCAAAIIuECAAN0FRaQLCCDgdQECdIfkBOgOATkdAQQQQAABBBBAAAEXCRCgu6iYdAUBBBBAAAEEEEAAARcIEKC7oIh0AQEEvC5AgO6QnADdISCnI4AAAggggAACCCDgIgECdBcVk64ggAACCCCAAAIIIOACgYwYoEfu/bf+mTAg2fp+T5VUzv7jk/1+3ogAAghcS4AA/VpC13idAN0hIKcjgAACCCCAAAIIIOAiAQJ0FxWTriCAAAIIIIAAAggg4AIBAvTUK+L85RsVERGpzq1rp95NuHKcQGp5/3XitHoOm61jx0+pQ/MaKl/6KfUaNltH/vhLjWqWVetGlTNcFQ7/8od6DJ2lDYvHZLi2p5cGE6A7rAQBukNATkcAAQQQQAABBBBAwEUCBOguKiZdQQABBBBAAAEEEEDABQIE6KlXxNQKdFOvxal35X9/+pWeevwh5cjun+KbfHPwJ81cuE5zxvX0eK4T7x0ffqbypZ6y14+JidFLTfpp45Kx8vPLqmnz35C/v586tayp6OgYLVmzVX8cO6GBXZvar319fVLcpxtxQsJ2puSaBOgp0Ur8vQToDg0J0B0CcjoCCCCAAAIIIIAAAi4SIEB3UTHpCgIIIIAAAggggAACLhAgQE+9IjoJdFOvVd6/sgl6G3caZQPwvLlzpbgBFy5G6ODhX/XEIw94PPd6vf8+d15teo7XG/NHxF1/92ffqPhTj9ivew6bpeoVS6psySL26xFTXtOTjz6ompVKprgvN/qE+O1MybUJ0FOilfh7CdAdGhKgOwTkdAQQQAABBBBAAAEEXCRAgO6iYtIVBBBAAAEEEEAAAQRcIECA7rmIX3zzg+Yv26jAwBw69tcpnTt/Qd1erqvniz2m8IhIlazRWXu3zIu7SP/RYSr7fFFVKvOM4ge6e/Z/p/GzV+if8xck+SikW1OVevZxnb9wUSOnLtEXX/9X2bP5K6RbMz3zZKFEGzVnyXqFh0eqR7t69vXWPcfp3jtv07DerezXJuitXLa4ij1ZSANC5+nHX/5QVNQlNapVVu2aVtPoaUt1+6359XLjKvb9kVGXVKZud721cLRyBmRPdjvMuafPnEv0Hua1ai0Gqme7+hozY6mKFXlY+fMEadmb2/XAvXcoKFdOLZ42wGO/E57fuFY5TQlbrdemD7TtXrf5Qy1csUkXIyKVP2+QJg3tqDtvv/kK78QAoy5d0qipS/Tpvu8UGRmpQg/eo8nDOym4/2Tt//oHPXhvAWvXt1MjPVmhrfZvf1WvvLZey97YptxBOXXHrTepVPHH7b1NrXIHBWrNvOEq36CXmtevpP/sPaDjJ/9WkcIPalD35nFNMONg/daPdOlStJrWKa9mdSvY115f965eX7fDLvOfKzBAs8f20E35cl/Vxlmh3ZMcpLHtNG/w1A7T9wmzV+q9jz5X7lw5Veul57Vm4wdxS7jv2v2FpoSt0cXwCBUrUkiDuzeXbxZfNewwQn2CG+q5px/Vmb//Ud22Q7RgSn/dc+etLvjp56wLBOjO/ESA7hCQ0xFAAAEEEEAAAQQQcJEAAbqLiklXEEAAAQQQQAABBBBwgQABuucimgC9aefRNih9uOA9dt9r8/XbS8Yqm79fsgP0eu2GaWxIOxW8706dOfuPfHx8FBQYYEPrwIDs6tWhgX74+Xe17T1B7ywdp4Ac2a9q2GdfHrTLiS+dGaJ/zl+07YiIjNSmZePte1+o011vLRqt3LkCtf/rQyr62L90/OQZG2ib9/x85E+Nnblcq8OG2/ebZdVNGLxwav8UtcOca5YuT+we+fLkUrEqwfbhgBF9WiswZw57rxfr9dDaBaPiZqB76nfC800N4gfo3//wq267JZ8NgifPXa0LF8M1uEfzawboOz/epw1bP9LUEV1sm0wtTfD+y29H1WXQjCv2A48fTHcdNF11q76gMiWetOcNmbDQBu3VK5awX5v3dm1Txz6YYELyJp1G2RD+6Sce0padn2rl+vcUNqG3fZjBzMQf1a+N7r/7dtVqPViblo+34+i3P4+rwG03Kak2JjVK47fTUztWb9ipzTs/Udj43jYY7zNijswsdLMH+h/HTqpZ59FaNmuQdQ0Z+6p92KFtk6r69tDP6jtqrt58daQN9h+4544Mued7avyoJkB3qEqA7hCQ0xFAAAEEEEAAAQQQcJEAAbqLiklXEEAAAQQQQAABBBBwgQABuucimvB26MSFWr9oTNwbEW6GfgAAIABJREFUuw6eYZfvNiFxcmeg9x01R3mCAtWpVa0rljEvXq2Ttq6YaMNgc7TsPlYdW9ZU8aKXlw+Pf0RGRtmQ/IO107Xz4/3as/9bmTB5SM8W8suaVT2GzrIBesLDBO2DujezDwBUbNzXzgA3Ya3p1+MPP6B61V5QStqRmFjsPR751702UDZe8WcpJwzQPd0v4fkJA/T49/947wEtX7tDs0N7XDNAP/TjEXUJmW6D/djl2c21bkSA/t6aqTIPD5jDLPFe+KH7VLdqaZnwvXblUnZVAnPMXrRO0TEx6tSylqo066+Xm1RV7Zeet3utmyOpNiY1ShMG6Em1I7j/FNWvVkblSl1uh1n6PXTmchugmz3dfz96QgO6NLGvmRn6MxeutQ9qmMM8tGHG2anTf2v57CHKksXXBT/5nHeBAN2hIQG6Q0BORwABBBBAAAEEEEDARQIE6C4qJl1BAAEEEEAAAQQQQMAFAgTonotowtuJr6y0s3Njj2GTFumRgveoVuVSVwXo/UbNVblST121hPv5C+FavGqz1m7apReee1K9gxvYpdyfqdxB9951W9y1zcxys4x7xReeTrRhZq/ubm3r6o2NH9j3fHvoF/n5ZbGzzk3IaZaG//X3Ywpb+raO/nVKPj7SV98e1vzJfW2oa2Zy58kdqBb1K6l8g95av3iMDd9T2g5P9zCh7r5t8+0s+9gjfoBuLDzdL+H5CQP0NRvf145dn8nsrW6WFc+XN8jur56cPdA//+qQ5i5Zr2PHT6tPx4Z2Kf4bEaDH769ZKr/gfQXUsGZZNegwXCdPn7WzzM1hlv2vUPpp9e/cWL//eVxzlmywS7+bepj/mSOxNiY1ShMG6Em1o3774Rras4Uee/h+eykT1PceMccG6BPnrNT6LR/ZZerNER0dbR/oWDl3mP36rxOn9WK9nhozoG262Pc9vfzYJUB3WAkCdIeAnI4AAggggAACCCCAgIsECNBdVEy6ggACCCCAAAIIIICACwQI0D0X0YS3JhQ3s8Rjj3Z9JqlhzRftkt7PVumoz7b+bw/0tn0m2pm+CfdAjz3X7Hc9atpSBeUKUN+OjezMbzNrOCBHtmSNJrMPenZ/f63asNPONjf7nJuA3yy9bWY5ly/1lA1tW9SrpGoVnrPXNOHpsN4tbYD+3X9/0fDJi9WjbT0tfXObnbltjpS2w9M94oe6sZ0qW7+nXQY8b+7Ls7Q93S/h+fED9A/+84VmLVqnhVP62X3D3/94v7VIboAe256vv//J7n2+cck4u6R+l0HTHS3hbvZLjz3iB+hmxrsZK2a1gqQOs8x+xwFT1aV1bb3w3BNxb4vfxthwO+E1EgboSbXDzEBvVLNs3DL0e7/43i7bbwL019Zs1fETZ/7/oY6rW9l/TJgCA3Lok33fas28EcqR3T9ZY9XtbyJAd1hhAnSHgJyOAAIIIIAAAggggICLBAjQXVRMuoIAAggggAACCCCAgAsECNA9F9GEt2ZP65mju9mA+stvfpAJI7esmGj3MC/fsLfCxvfSA/cWsHtq12gZorEh7a8K0E1wXejBu+3Nlr253c56NjPNTYhpZiebPdD9smbRL78d0+235Itb0jth68w+6KEzlumWm/La0NgcLzXpJ19fH614ZaidRVy+QS+7z7eZbWze/3LvCXYGvQnQzVGj1SA9eG8Bu5x31XLF7d+ltB2e7pFYgF7n5SF2n3KzL/u17ucpQF+3+UNtfX+P7buZzd1/dJgiIqOSFaCbvb5zZPO3M/DPX7iomq0Ha3XYMPn6+uqlxn317popcXvPp3QP9KSCa7MH+oq33tWMUd1sbU6fOWeXcM+RPZuO/nXSrj5g9pPvNXy2qpYvrsKF7k+0jbEPHiQcD8kN0M0+7Ds/2qdZY7rLx9dHA0Pn6fsfjlzeA/3oCTXvFqq543rpwfsKWFcz69zsD79r9xd2lvzyWYM1a9FamRUSBnZt6oKffM67QIDu0JAA3SEgpyOAAAIIIIAAAggg4CIBAnQXFZOuIIAAAggggAACCCDgAgECdM9FNAH61HlrdPst+bX/60PKkiWL3SvaLP1tDjMjesaCN+2S1/nzBcnfz0+liz9xVYAeMna+dn/+jbL5++uuO25W6MB2uilfbhvkmhnku3Z/qYjISBuohk3ok+SMdLMPupm93bdTIzuj2ByDxy/QNwd/0toFo+zX77y727Y5Z0B2FXm0oL1ukzrl4wJ0M4t9wevvaNe6mXH3SWk7PN0jsQB92wd7NW7Wcuu0buFoj/32FKCbdnYfMks/HfnT+jWvW1Fvb/84WQH6vgOHrFVU1CX7gELLBpXsagHmmDx3tTbu+NjWzuyRfqMCdHNtM8N7xbp3bZ/zBAUqNKSd7i5wq9r3majjp/62D06UeLqwfaDiy29/SLKNiY3U5AbokVGXNGH263rv3/sUGJhDTWuX1/J1O+xe9eb4z96vNWnuKhuc+/tlVadWtVSpTDGZBx9mhXZXwfvulFk9oV774RrRp5WKFC7ogp9+zrqQqQL00rW72QEce1yKjtGTjz6gRVMH6NSZs/aJjC+/Pax8eYI0sm8bFX3s8gDx9BoBurMByNkIIIAAAggggAACCLhJgADdTdWkLwgggAACCCCAAAIIZHwBAnTPNYwN0BdPG5Dxi00PEEDghglkqgA9odq0+W/YPRReblxFZo3/ArfdpC6t6+jAd4fVa8Qr2rhkrLJn8/f4GgH6DRuLXAgBBBBAAAEEEEAAgQwvQICe4UtIBxBAAAEEEEAAAQQQcJVARgzQvVmA+Ptve+u+ZpZ5w+ARV92uQ/Madma7t4700o6U9tcskb92064rTjNLoC+Y0i+ll0oX7zcz50dNXXJVW2aO6W5zS460Eci0AfrF8AhVadZf6xaMtiF6iRqdtfONacqR3d9WouvgGapbpbRdziGp18qUeFIE6GkzcLkrAggggAACCCCAAALpUYAAPT1WhTYhgAACCCCAAAIIIJB5BQjQPdc+LQL0zDsa6TkCGUcg0wboqzfs1NcHf7J7HRz965SadR2j7SsnxVVuSthq5ckdqKrlnkvytTaNqhCgZ5yxTksRQAABBBBAAAEEEEh1AQL0VCfmBggggAACCCCAAAIIIJACAQL0FGDxVgQQQOD/BTJlgB4TE6MaLUM0eXhn/ev+O/XzkaPqEjJNby8ZGzcwXln8lqKjY1S9YokkX+vSprbOh0d5fTB16xdj7zljgo/Mn83/cyCAAAIIeFcg4U/eS9ExyuLLz2PvViH93O3yv8wcCCCAgBQTI+XMnjXNKE6djdCFiEtX3D+gYwX79fk529OsXdwYAQQQQAABBBBAAAEE0kaAAD1t3LkrAghkbIFMGaB/+MmXWrBikxZPG2Crd+z4aTUMHm6XcI89xs9eoZvy5Vb1CiWSfM3snW5+QeXto+/gywHNxNExMn82/8+BAAIIIOBdgYQ/ec3DWT4+BOjerUL6uRuVTz+1oCUIpLWAeZgqKKdfmjWDAD3N6LkxAggggAACCCCAAALpUoAAPV2WhUYhgEA6F8iUAXrbPhPVqGZZlS/1lC2PCT1K1uiiLSsmKigwwP5dcP8pql+tjMo+XyTJ18qVKsoS7ul8gNM8BBBAAAEEEEAAAQS8KcAS7t7U5l4IIIAAAggggAACCCBwLQEC9GsJ8ToCCCBwtUCmC9D/++NvCh4wRVtfn6gsWXzjRIZOXKj8eXOra5s6OvDdYXUZNF2bl09QzoDs8vTa7ycueH1cDR15eUnIkUOjZP5s/p8DAQQQQAABBBBAAAEE0l6AAD3ta0ALEEAAAQQQQAABBBBA4H8CBOiMBgQQQCDlApkuQB8yYaHuves2meXX4x9/nzuvkND5+vzAQQUF5tSQni1U8pnC9i2eXiNAT/mg4wwEEEAAAQQQQAABBNwqQIDu1srSLwQQQAABBBBAAAEEMqYAAXrGrButRgCBtBXIdAH6jeYmQL/RolwPAQQQQAABBBBAAIGMK0CAnnFrR8sRQAABBBBAAAEEEHCjAAG6G6tKnxBAILUFCNAdChOgOwTkdAQQQAABBBBAAAEEXCRAgO6iYtIVBBBAAAEEEEAAAQRcIECA7oIi0gUEEPC6AAG6Q3ICdIeAnI4AAggggAACCCCAgIsECNBdVEy6ggACCCCAAAIIIICACwQI0F1QRLqAAAJeFyBAd0hOgO4QkNMRQAABBBBAAAEEEHCRAAG6i4pJVxBAAAEEEEAAAQQQcIEAAboLikgXEEDA6wIE6A7JCdAdAnI6AggggAACCCCAAAIuEiBAd1Ex6QoCCCCAAAIIIIAAAi4QIEB3QRHpAgIIeF2AAN0heVoG6LFNHzk0ymEvOB0BBBBAAAEEEEAAAQRuhAAB+o1Q5BoIIIAAAggggAACCCBwowQI0G+UJNdBAIHMJECA7rDa6SFAN10gRHdYSE5HAAEEEEAAAQQQQOAGCBCg3wBELoEAAggggAACCCCAAAI3TIAA/YZRciEEEMhEAgToDotNgO4QkNMRQAABBBBAAAEEEHCRAAG6i4pJVxBAAAEEEEAAAQQQcIEAAboLikgXEEDA6wIE6A7JCdAdAnI6AggggAACCCCAAAIuEiBAd1Ex6QoCCCCAAAIIIIAAAi4QIEB3QRHpAgIIeF2AAN0hOQG6Q0BORwABBBBAAAEEEEDARQIE6C4qJl1BAAEEEEAAAQQQQMAFAgToLigiXUAAAa8LEKA7JCdAdwjI6QgggAACCCCAAAIIuEiAAN1FxaQrCCCAAAIIIIAAAgi4QIAA3QVFpAsIIOB1AQJ0h+QE6A4BOR0BBBBAAAEEEEAAARcJEKC7qJh0BQEEEEAAAQQQQAABFwgQoLugiHQBAQS8LkCA7pCcAN0hIKcjgAACCCCAAAIIIOAiAQJ0FxWTriCAAAIIIIAAAggg4AIBAnQXFJEuIICA1wUI0B2SE6A7BOR0BBBAAAEEEEAAAQRcJECA7qJi0hUEEEAAAQQQQAABBFwgQIDugiLSBQQQ8LoAAbpDcgJ0h4CcjgACCCCAAAIIIICAiwQI0F1UTLqCAAIIIIAAAggggIALBAjQXVBEuoAAAl4XIEB3SE6A7hCQ0xFAAAEEEEAAAQQQcJEAAbqLiklXEEAAAQQQQAABBBBwgQABuguKSBcQQMDrAgToDskJ0B0CcjoCCCCAAAIIIIAAAi4SIEB3UTHpCgIIIIAAAggggAACLhAgQHdBEekCAgh4XYAA3SE5AbpDQE5HAAEEEEAAAQQQQMBFAgToLiomXUEAAQQQQAABBBBAwAUCBOguKCJdQAABrwsQoDskJ0B3CMjpCCCAAAIIIIAAAgi4SIAA3UXFpCsIIIAAAggggAACCLhAgADdBUWkCwgg4HUBAnSH5AToDgE5HQEEEEAAAQQQQAABFwkQoLuomHQFAQQQQAABBBBAAAEXCBCgu6CIdAEBBLwuQIDukJwA3SEgpyOAAAIIIIAAAggg4CIBAnQXFZOuIIAAAggggAACCCDgAgECdBcUkS4ggIDXBQjQHZIToDsE5HQEEEAAAQQQQAABBFwkQIDuomLSFQQQQAABBBBAAAEEXCBAgO6CItIFBBDwugABukNyAnSHgJyOAAIIIIAAAggggICLBAjQXVRMuoIAAggggAACCCCAgAsECNBdUES6gAACXhcgQHdIToDuEJDTEUAAAQQQQAABBBBwkQABuouKSVcQQAABBBBAAAEEEHCBAAG6C4pIFxBAwOsCBOgOyQnQHQJyOgIIIIAAAggggAACLhIgQHdRMekKAggggAACCCCAAAIuECBAd0ER6QICCHhdgADdITkBukNATkcAAQQQQAABBBBAwEUCBOguKiZdQQABBBBAAAEEEEDABQIE6C4oIl1AAAGvCxCgOyQnQHcIyOkIIIAAAggggAACCLhIgADdRcWkKwgggAACCCCAAAIIuECAAN0FRaQLCCDgdQECdIfk6SVAN90YOTTKYW84HQEEEEAAAQQQQAABBJwIEKA70eNcBBBAAAEEEEAAAQQQuNECBOg3WpTrIYBAZhAgQHdYZQJ0h4CcjgACCCCAAAIIIICAiwTSOkA/fS5S4ZGXrhDN1qG8/To8bIeLpOkKAggggIBHAR9JMRghgAACCCAg3Zo3OwwIIIAAAikUIEBPIVjCtxOgOwTkdAQQQAABBBBAAAEEXCSQ1gH6xYhL8svqe4Xo2Ual7Ne5Vn7oImm6ggACCCDgSSDyUrT8slz57wFiCCCAAAKZUyCLr3mqigMBBBBAICUCBOgp0UrkvQToDgE5HQEEEEAAAQQQQAABFwmkdYB+6myELkRcOQM9oGMFK3x+znYXSdMVBBBAAAEEEEAAAQQQSI4AS7gnR4n3IIAAAlcKEKA7HBEE6A4BOR0BBBBAAAEEEEAAARcJEKC7qJh0BQEEEEAAAQQQQAABFwgQoLugiHQBAQS8LkCA7pCcAN0hIKcjgAACCCCAAAIIIOAiAQJ0FxWTriCAAAIIIIAAAggg4AIBAnQXFJEuIICA1wUI0B2SE6A7BOR0BBBAAAEEEEAAAQRcJECA7qJi0hUEEEAAAQQQQAABBFwgQIDugiLSBQQQ8LpApgvQf/ntmCa+skJfffejsmbx1cq5w3RTvtw6deasBobO05ffHla+PEEa2beNij5W0BbE02sE6F4fs9wQAQQQQAABBBBAAIF0K0CAnm5LQ8MQQAABBBBAAAEEEMiUAgTombLsdBoBBBwKZKoA/dw/F9Sgw3D17tBQZZ8vIh8fnzi+/mPCVOC2m9SldR0d+O6weo14RRuXjFX2bP7y9BoBusMRyOkIIIAAAggggAACCLhIgADdRcWkKwgggAACCCCAAAIIuECAAN0FRaQLCCDgdYFMFaAve3O7jv51Sr2DG1wBHR0doxI1OmvnG9OUI7u/fa3r4BmqW6W0Shd/IsnXypR4UukpQDftHjk0yuuDiBsigAACCCCAAAIIIIDAZYH0HKCb9p2fs51SIYAAAggggAACCCCAQCYSIEDPRMWmqwggcMMEMlWA3n3ITBUqeLc+3vO1zp47r2eLPqzeHRro1JlzatZ1jLavnBQHOyVstfLkDlTVcs8l+VqbRlUI0G/YUORCCCCAAAIIIIAAAghkfAEC9IxfQ3qAAAIIIIAAAggggICbBAjQ3VRN+oIAAt4SyFQBeqOOIxUUGKDxgzsoV2CABoyZp0IP3q0KpZ9Wl5BpenvJ2Dj3Vxa/JTMzvXrFEkm+1qVNbZ0P9/6M7279YjyOjxkT/rc0vbcGEvdBAAEEMrtAdIzky4/fzD4M6D8CCCAgyUcB2bKkmcSpsxG6EHHpivsHdKwQ9zUz0NOsNNwYAQQQQAABBBBAAIE0ESBATxN2booAAhlcIFMF6M26jJEJvYsXfcSW7bMvDyps6QaN7t9WDYOH2yXcY4/xs1fopny5Vb1CiSRfe7lxFZ3+J9LrQ6BPiOdbTgr1epO4IQIIIJDpBWJiYuTjQ4Ke6QcCAAggkOkFsvj4KFdA1jRzIEBPM3pujAACCCCAAAIIIIBAuhQgQE+XZaFRCCCQzgUyVYDef0yY3dO8arnitiz/2fu1lq/doZljuqlkjS7asmKinaFujuD+U1S/WhmVfb5Ikq+VK1U03S3hbtrOPujp/LuO5iGAAAIIIIAAAgi4ViC9L+Fu4JmF7trhR8cQQAABBBBAAAEEELhKgACdQYEAAgikXCBTBei7P/tGoTOXa9msQcqRzV89h81WyWKF1bhWOQ2duFD58+ZW1zZ1dOC7w+oyaLo2L5+gnAHZPb72+4kLKVd3eMbQkZ5ntBCgOwTmdAQQQAABBBBAAAEErlOAAP064TgNAQQQQAABBBBAAAEEUkWAAD1VWLkoAgi4XCBTBeimlq++/o5eX7dDPvJRxTLPqHdwA2XNkkV/nzuvkND5+vzAQQUF5tSQni1U8pnCtvyeXiNAd/l3CN1DAAEEEEAAAQQQQCAFAgToKcDirQgggAACCCCAAAIIIJDqAgToqU7MDRBAwIUCmS5Av9E1JEC/0aJcDwEEEEAAAQQQQACBjCuQEQJ0o8sy7hl3jNFyBBBAAAEEEEAAAQRSIkCAnhIt3osAAghcFiBAdzgSCNAdAnI6AggggAACCCCAAAIuEiBAd1Ex6QoCCCCAAAIIIIAAAi4QIEB3QRHpAgIIeF2AAN0hOQG6Q0BORwABBBBAAAEEEEDARQIE6C4qJl1BAAEEEEAAAQQQQMAFAgToLigiXUAAAa8LEKA7JCdAdwjI6QgggAACCCCAAAIIuEiAAN1FxaQrCCCAAAIIIIAAAgi4QIAA3QVFpAsIIOB1AQJ0h+TpOUAfOjKrRg6NcthDTkcAAQQQQAABBBBAAIHkChCgJ1eK9yGAAAIIIIAAAggggIA3BAjQvaHMPRBAwG0CBOgOK5oRA3SCdYdF53QEEEAAAQQQQAABBJIQIEBnaCCAAAIIIIAAAggggEB6EiBAT0/VoC0IIJBRBAjQHVaKAN0hIKcjgAACCCCAAAIIIOAiAQJ0FxWTriCAAAIIIIAAAggg4AIBAnQXFJEuIICA1wUI0B2Sp9cA3cwyN0diS7gzA91h0TkdAQQQQAABBBBAAIEkBAjQGRoIIIAAAggggAACCCCQngQI0NNTNWgLAghkFAECdIeVIkB3CMjpCCCAAAIIIIAAAgi4SIAA3UXFpCsIIIAAAggggAACCLhAgADdBUWkCwgg4HUBAnSH5AToDgE5HQEEEEAAAQQQQAABFwkQoLuomHQFAQT+j707j5eqrvsA/mVfBSXqsSwrH+2pJym1TANFkrQkl9xySU3RDPWSgiGKingVEFECFxBRc8fcS0sNU8v2R60UFa3QTM01VPSibPd5zRg3WS5wOTPnzvzmPf+UzvzO+X3fn+PA5cOcIUCAAAECBAgkIKBATyBEIxAgkLuAAj0juQI9I6DlBAgQIECAAAECBBISUKAnFKZRCBAgQIAAAQIECCQgoEBPIEQjECCQu4ACPSO5Aj0joOUECBAgQIAAAQIEEhJQoCcUplEIECBAgAABAgQIJCCgQE8gRCMQIJC7gAI9I3k1Feij69tH/ejFsex/M45uOQECBAgQIECAAAECKwhUS4Fe2HbDtFnyI0CAAAECBAgQIEAgcQEFeuIBG48AgbIIKNAzslZLgV4ozQsPBXrGwC0nQIAAAQIECBAgsBoBBbrLgwABAgQIECBAgACBShJQoFdSGvZCgEC1CCjQMyZViQX6e0cqFOaFhwI9Y9CWEyBAgAABAgQIEFgLAQX6WiB5CQECBAgQIECAAAECuQko0HOjdiICBBISUKBnDFOBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF1AgZ6RvBoK9GWfPi+M6hbuGQO3nAABAgQIECBAgMBqBBToLg8CBAgQIECAAAECBCpJQIFeSWnYCwEC1SKgQM+YlAI9I6DlBAgQIECAAAECBBISUKAnFKZRCBAgQIAAAQIECCQgoEBPIEQjECCQu4ACPSO5Aj0joOUECBAgQIAAAQIEEhJQoCcUplEIECBAgAABAgQIJCCgQE8gRCMQIJC7gAI9I7kCPSOg5QQIECBAgAABAgQSElCgJxSmUQgQIECAAAECBAgkIKBATyBEIxAgkLuAAj0juQI9I6DlBAgQIECAAAECBBISUKAnFKZRCBAgQIAAAQIECCQgoEBPIEQjECCQu4ACPSN5pRfoK45XP3pxjK5vH4X/9SBAgAABAgQIECBAoLQCCvTSejoaAQIECBAgQIAAAQLZBBTo2fysJkCgNgUU6BlzV6BnBLScAAECBAgQIECAQEICCvSEwjQKAQIECBAgQIAAgQQEFOgJhGgEAgRyF1CgZyRXoGcEtJwAAQIECBAgQIBAQgIK9ITCNAoBAgQIECBAgACBBAQU6AmEaAQCBHIXUKBnJM+7QC/cfj3Lwy3cs+hZS4AAAQIECBAgQGD1Agp0VwgBAgQIECBAgAABApUkoECvpDTshQCBahFQoGdMSoGeEdByAgQIECBAgAABAgkJKNATCtMoBAgQIECAAAECBBIQUKAnEKIRCBDIXUCBnpG82gr0ZeMWPonuQYAAAQIECBAgQIBAaQUU6KX1dDQCBAgQIECAAAECBLIJKNCz+VlNgEBtCijQM+auQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuUFMF+kOPPBmHHndWdOzQvgn63hsnx3rdu8a81+fHSeMujocfnxu91u8R9SMGx1Z9Niu+bnXPKdBzv2adkAABAgQIECBAgEDFCijQKzYaGyNAgAABAgQIECBQkwIK9JqM3dAECGQUqKkCfdYvH4jfPfhYnDrskJXYRo6dHhtt2DvqDtsrZs+ZG8NPnxq3Xzk+OnfqGKt7ToGe8Qq0nAABAgQIECBAgEBCAtVUoBfYG6bNSkjfKAQIECBAgAABAgQIrCigQHdNECBAoOUCNVWg//BH98S/Xp8fRx2yx3JSS5c2Rt/dj4nCp9G7dO7IccpyAAAgAElEQVRYfG7oKefF3oP6R/9tP9vscwP6bhEK9JZfdFYQIECAAAECBAgQSFVAgZ5qsuYiQIAAAQIECBAgUJ0CCvTqzM2uCRBoXYGaKtB/cN0dccUNd0Wnjh2iS+dO8Y3dvxQH7jkwXnx5Xhw0dGzMuu6cpjQmTb8+1u/ZPb428IvNPjd4/0EK9Na9fp2dAAECBAgQIECAQEUJKNArKg6bIUCAAAECBAgQIFDzAgr0mr8EABAgsA4CNVWgL1myNN5ZuCi6dukUzzz3YvFT5nWH7Rmf2OQjUTdqctx25fgmwqmX3xqFT6bvtnPfZp+rG7xnvPX24nVgX/clx45sXPfF71k5ZUKbkhzHQQgQIEDgXYHGxog23lpdDgQIEKh5gTbRJrp2btdqDvPmL4wFC5csd/6uR+3U7H7cwr3VonJiAgQIECBAgAABArkIKNBzYXYSAgQSE6ipAn3F7K6/7b7i950Xvvd8vyFjirdwX/aYcOHM6N2rZ+y2U99mnzv8gEHx+luLcr0kjh9VmtOdO640x3EUAgQIEHhXoDEao1CaeBAgQIBAbQu0a9smundp32oICvRWo3diAgQIECBAgAABAhUpoECvyFhsigCBCheo6QJ95q0/j6eeeSFOGnpg9Nu9Lu6cOTF6dO9ajGzIyEmx764DYsfttmz2uYHbb1XVt3AfXd8+6kfn+wn6Cv/vwfYIECBAgAABAgQIZBJwC/dMfBYTIECAAAECBAgQIFBiAQV6iUEdjgCBmhCoqQL9dw8+Fn0+tUl069o5nn/hlTjyhHPjtOHfiq23+GSMnnhZvG+DnjF08F7vfir95ClxxzVnF1+7uueef3VBrhdKofQuxaNQnCvQSyHpGAQIECBAgAABAgT+I6BAdzUQIECAAAECBAgQIFBJAgr0SkrDXggQqBaBmirQZ1xze1xz893FbHqs1y2OOHBQ7L5zv+I/v/FmQ4waNyMemv1k9OjeLU4ddkj023rzNT5XrQX6sgvUJ9Cr5T9V+yRAgAABAgQIEKgGAQV6NaRkjwQIECBAgAABAgRqR0CBXjtZm5QAgdIJ1FSBXjq2/xxJgV4OVcckQIAAAQIECBAgUJ0CCvTqzM2uCRAgQIAAAQIECKQqoEBPNVlzESBQTgEFekZdBXpGQMsJECBAgAABAgQIJCSgQE8oTKMQIECAAAECBAgQSEBAgZ5AiEYgQCB3AQV6RnIFekZAywkQIECAAAECBAgkJKBATyhMoxAgQIAAAQIECBBIQECBnkCIRiBAIHcBBXpGcgV6RkDLCRAgQIAAAQIECCQkoEBPKEyjECBAgAABAgQIEEhAQIGeQIhGIEAgdwEFekZyBXpGQMsJECBAgAABAgQIJCSgQE8oTKMQIECAAAECBAgQSEBAgZ5AiEYgQCB3AQV6RnIFekZAywkQIECAAAECBAgkJKBATyhMoxAgQIAAAQIECBBIQECBnkCIRiBAIHcBBXpG8hQK9NH17aN+9OKMEpYTIECAAAECBAgQIKBAdw0QIECAAAECBAgQIFBJAgr0SkrDXggQqBYBBXrGpKq9QF82vgI944VgOQECBAgQIECAAIGIUKC7DAgQIECAAAECBAgQqCQBBXolpWEvBAhUi4ACPWNSCvSMgJYTIECAAAECBAgQSEhAgZ5QmEYhQIAAAQIECBAgkICAAj2BEI1AgEDuAgr0jOQK9IyAlhMgQIAAAQIECBBISKC1C/TX31wYCxcvXU60w5FfblZ40cV3J6RvFAIEog0DAu8KNDZGtHE9uBwI1KZAY22ObermBd6/fmc8BAgQINBCAQV6C8FWfLkCPSOg5QQIECBAgAABAgQSEmjtAn3BO0uiXbvlG5OGA/s3K9z12l8mpG8UAgRCaeIi+LfA4qVLo33btjwIEKhFAX95phZTX+3MHdv79cBFQYAAgZYKKNBbKrbC6xXoGQEtJ0CAAAECBAgQIJCQQGsX6PPmL4wFC5csJ9r1qJ2aFW6YNishfaMQIECAAAECBAgQILCigFu4uyYIECDQcoHcCvS7738wvrz951ba4TsLF8U9v3oodtlxm5bvvgJWKNArIARbIECAAAECBAgQIFAhAgr0CgnCNggQIECAAAECBAgQKAoo0F0IBAgQaLlAbgV6392Pid/8+MKVdrh4yZL4wi5D4qGfzWj57itghQK9AkKwBQIECBAgQIAAAQIVIqBAr5AgbIMAAQIECBAgQIAAgaKAAt2FQIAAgZYLlL1A/8tTzxZ3dfDQcXHV+aOW2+GSJUvjl7/7c9x4+y/iZ9ed0/LdV8AKBXoFhGALBAgQIECAAAECBCpEQIFeIUHYBgECBAgQIECAAAECRQEFuguBAAECLRcoe4F+yoRL47cPPBovvPyv6NCh/XI7bNe2bWz0wffHiXUHRN/Pb97y3VfACgV6BYRgCwQIECBAgAABAgQqRECBXiFB2AYBAgQIECBAgAABAkUBBboLgQABAi0XKHuBXtjSokWLY/+j6uOmS+pbvsMKX6FAr/CAbI8AAQIECBAgQIBAjgIK9ByxnYoAAQIECBAgQIAAgTUKKNDXSOQFBAgQWEkglwK9cNbCd523b9cuuQgU6MlFaiACBAgQIECAAAEC6yygQF9nOgsJECBAgAABAgQIECiDgAK9DKgOSYBA8gK5FegFyYcf+1s8+uTT8eZbC1aC/fY3d61KbAV6VcZm0wQIECBAgAABAgTKIqBALwurgxIgQIAAAQIECBAgsI4CCvR1hLOMAIGaFsitQL/k2p/EjGtujy033zQ6d+q0Evrk+rqqDEKBXpWx2TQBAgQIECBAgACBsggo0MvC6qAECBAgQIAAAQIECKyjgAJ9HeEsI0CgpgVyK9B32v97cfnkE2OjDXsnBa5ATypOwxAgQIAAAQIECBDIJKBAz8RnMQECBAgQIECAAAECJRZQoJcY1OEIEKgJgdwK9J33/1787LpzkkNVoCcXqYEIECBAgAABAgQIrLOAAn2d6SwkQIAAAQIECBAgQKAMAgr0MqA6JAECyQvkVqAfetxZMeb4Q+NjH9kwKVQFelJxGoYAAQIECBAgQIBAJgEFeiY+iwkQIECAAAECBAgQKLGAAr3EoA5HgEBNCORWoN96569iyiU3xl6D+sdHPvSB6Nihw3LAgwZuU5XgCvSqjM2mCRAgQIAAAQIECJRFQIFeFlYHJUCAAAECBAgQIEBgHQUU6OsIZxkBAjUtkFuBvu+RY1YLfcPFq3++UlNSoFdqMvZFgAABAgQIECBAIH8BBXr+5s5IgAABAgQIECBAgEDzAgp0VwcBAgRaLpBbgd7yrVXHCgV6deRklwQIECBAgAABAgTyEFCg56HsHAQIECBAgAABAgQIrK2AAn1tpbyOAAEC/xFQoGe8GhToGQEtJ0CAAAECBAgQIJCQgAI9oTCNQoAAAQIECBAgQCABAQV6AiEagQCB3AVyK9C/tM9xqx3u3hsn5z58KU6oQC+FomMQIECAAAECBAgQSENAgZ5GjqYgQIAAAQIECBAgkIqAAj2VJM1BgECeArkV6H/445zl5npn4aL4x/MvxbW33B3HHPr12GXHbfKcu2TnUqCXjNKBCBAgQIAAAQIECFS9gAK96iM0AAECBAgQIECAAIGkBBToScVpGAIEchLIrUBvbp4XX54Xx512QcycempOI5f2NKkU6AWV+tGLS4vjaAQIECBAgAABAgRqTECBXmOBG5cAAQIECBAgQIBAhQso0Cs8INsjQKAiBVq9QC+o7LT/92LWdedUJNCaNqVAX5OQ5wkQIECAAAECBAjUjoACvXayNikBAgQIECBAgACBahBQoFdDSvZIgEClCbR6gT7nr8/EcaMviDuvPbvSbNZqPwr0tWLyIgIECBAgQIAAAQI1IaBAr4mYDUmAAAECBAgQIECgagQU6FUTlY0SIFBBArkV6AfVjV1p7LffWRhz//58nPTdb8a+uw6oIJa134oCfe2tvJIAAQIECBAgQIBA6gIK9NQTNh8BAgQIECBAgACB6hJQoFdXXnZLgEBlCORWoN9yx/0rTdyta5f45KYbx8YbfaAyNNZhFwr0dUCzhAABAgQIECBAgECiAgr0RIM1FgECBAgQIECAAIEqFVCgV2lwtk2AQKsK5Fagt+qUqzj55Bk3xqxfPhA/ueqs4rPzXp8fJ427OB5+fG70Wr9H1I8YHFv12WyNzynQKy1Z+yFAgAABAgQIECDQegIK9Nazd2YCBAgQIECAAAECBFYWUKC7KggQINBygVwL9Lca3o7CJ9H/+tRz0RiNsclHPxR77bJ9rNe9a8t3nmHFI3Oeigsuuzme/efLTQX6yLHTY6MNe0fdYXvF7DlzY/jpU+P2K8dH504dY3XPKdAzBGEpAQIECBAgQIAAgcQEFOiJBWocAgQIECBAgAABAlUuoECv8gBtnwCBVhHIrUCf89dn4tvfmxgf3/iD8b+f+Fi0adMmHn3iqfjr08/FjIkj4tP/87FcABYuXBQHDx0Xpw4/JEaeOb1YoC9d2hh9dz8m7r1xcnTp3LG4j6GnnBd7D+of/bf9bLPPDei7RSjQc4nNSQgQIECAAAECBAhUhYACvSpiskkCBAgQIECAAAECNSOgQK+ZqA1KgEAJBXIr0A8eOja+3P/z8a19v7Lc9q+44a64+5cPxlXnjyrhWM0f6tyLro8NP9ArBg3cJg6qG1ss0F98eV4cNHRszLrunKaFk6ZfH+v37B5fG/jFZp8bvP8gBXouqTkJAQIECBAgQIAAgeoQUKBXR052SYAAAQIECBAgQKBWBBTotZK0OQkQKKVAbgX6FjsdEfffct5Kt2t/482G6L/nd+NPsy4p5VyrPNbDj/0tplx6U1xyzoh47Y03mwr0vz/7YtSNmhy3XTm+ad3Uy28tfjJ9t537Nvtc3eA94623F5d93+89wbEjG8t2vikT2pTt2A5MgACB1AUaGyPaeBtNPWbzESBAYI0CbaJNdO3cbo2vK9cL5s1fGAsWLlnu8F2P2qnZ0zVMm1WurTguAQIECBAgQIAAAQIVIKBAr4AQbIEAgaoTyK1A326PoXH1BSfHxz6y4XJIf/v78zF42IT4xc1Tyor3zsJFccjQcTHp9GOK33U+7/X5TQX6S6+8FvsNGVO8hfuyx4QLZ0bvXj1jt536Nvvc4QcMitffWlTWfa948OPL+EH9c8flOoqTESBAICmBxmiMQmniQYAAAQK1LdCubZvo3qV9qyEo0FuN3okJECBAgAABAgQIVKSAAr0iY7EpAgQqXCC3Av2sC66NPz/2txg19JvxyU03jsbGxnj8r8/E2ClXRb+t+8SxR+xdVqoHH34yjhxxTrRv/+6nQQrnb1jwTnTr2jluufSM2Ofbp8WdMydGj+5di88PGTkp9t11QOy43ZbRb/e6VT43cPutcr2F++j68v5BXP3ofD9NX9bAHZwAAQIECBAgQIBAKwi4hXsroDslAQIECBAgQIAAAQLNCijQXRwECBBouUBuBfrChYuKt0+/9pafR+H/Fx6dO3WM/b++Yww/8hvRrl3blu8+w4r3fgK9cJjREy+L923QM4YO3itmz5kbdSdPiTuuObtYsK/uuedfXZBhFy1bqkBvmZdXEyBAgAABAgQIEMhbQIGet7jzESBAgAABAgQIECCwOgEFuuuDAAECLRfIrUBftrVFixbHs/98ORYvWRIf+dAHiiV6azxWLNAL38U+atyMeGj2k9Gje7c4ddgh0W/rzYtbW91zCvTWSM85CRAgQIAAAQIECFSmgAK9MnOxKwIECBAgQIAAAQK1KqBAr9XkzU2AQBaB3Ar0K264K/pv85n4+MYfXG6/s594Kh55fG4c8PWBWeZotbUK9Fajd2ICBAgQIECAAAECFSegQK+4SGyIAAECBAgQIECAQE0LKNBrOn7DEyCwjgK5Feh9dz8mrr7glNhkhQL9H8+/FAcefUbcf+v56zhC6y5ToLeuv7MTIECAAAECBAgQqCQBBXolpWEvBAgQIECAAAECBAgo0F0DBAgQaLlAbgX6Fl8+PH523bnxgd7rL7fLf702P3bc57j4092Xtnz3FbBCgV4BIdgCAQIECBAgQIAAgQoRUKBXSBC2QYAAAQIECBAgQIBAUUCB7kIgQIBAywVyK9D3+87pscvAbeLQb3x1uV1ec/Pdccsd98eNM05v+e4rYIUCvQJCsAUCBAgQIECAAAECFSKgQK+QIGyDAAECBAgQIECAAIGigALdhUCAAIGWC+RWoP/fn+bEUSdOii03/0R8+n8+Vtzp43/5ezzw5yfigrHHxhc//+mW774CVijQKyAEWyBAgAABAgQIECBQIQIK9AoJwjYIECBAgAABAgQIECgKKNBdCAQIEGi5QG4FemFrr/zr9bj+tvviqWeej6VLG+NjH9kw9t1tQGz4/l4t33mFrFCgV0gQtkGAAAECBAgQIECgAgQU6BUQgi0QIECAAAECBAgQINAkoEB3MRAgQKDlArkW6C3fXuWvUKBXfkZ2SIAAAQIECBAgQCAvAQV6XtLOQ4AAAQIECBAgQIDA2ggo0NdGyWsIECCwvIACPeMVoUDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9InlKBvoyifvTijCqWEyBAgAABAgQIEKhNAQV6beZuagIECBAgQIAAAQKVKqBAr9Rk7IsAgUoWUKBnTEeBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF1AgZ6RXIGeEdByAgQIECBAgAABAgkJKNATCtMoBAgQIECAAAECBBIQUKAnEKIRCBDIXUCBnpFcgZ4R0HICBAgQIECAAAECCQko0BMK0ygECBAgQIAAAQIEEhBQoCcQohEIEMhdQIGekVyBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF1AgZ6RXIGeEdByAgQIECBAgAABAgkJKNATCtMoBAgQIECAAAECBBIQUKAnEKIRCBDIXUCBnpFcgZ4R0HICBAgQIECAAAECCQko0BMK0ygECBAgQIAAAQIEEhBQoCcQohEIEMhdQIGekVyBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF1AgZ6RXIGeEdByAgQIECBAgAABAgkJKNATCtMoBAgQIECAAAECBBIQUKAnEKIRCBDIXUCBnpFcgZ4R0HICBAgQIECAAAECCQko0BMK0ygECBAgQIAAAQIEEhBQoCcQohEIEMhdQIGekVyBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF1AgZ6RXIGeEdByAgQIECBAgAABAgkJKNATCtMoBAgQIECAAAECBBIQUKAnEKIRCBDIXUCBnpFcgZ4R0HICBAgQIECAAAECCQko0BMK0ygECBAgQIAAAQIEEhBQoCcQohEIEMhdQIGekVyBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF1AgZ6RXIGeEdByAgQIECBAgAABAgkJtHaBPr9hUSxa0ricaNvDd2xWeOml9ySkbxQCBAgQIECAAAECBFYU6LVeRygECBAg0EKBmirQf/PA7LjwB7fGM8+9GJ07d4r999gxDj9gUJFs3uvz46RxF8fDj8+NXuv3iPoRg2OrPput8bkUC/TC0PWjF7fwUvJyAgQIECBAgAABAgRau0Bf8M6SaNNm+RzePmiHZoPpfPUvhEaAAAECCQosWRrRrm2CgxmJAAECBFos0LljuxavsYAAAQK1LlBTBfptP/tNfGqzj8amH98oXnv9zTjg6Po46+TvxGf/979j5NjpsdGGvaPusL1i9py5Mfz0qXH7leOjc6eOq31OgV7r/wmZnwABAgQIECBAgMB/BFq7QJ83f2EsWLhkuUi6HrVTsxE1TJslPgIECBAgQIAAAQIEEhZwC/eEwzUaAQJlE6ipAn1FxWGnXRA777B1fGXAF6Lv7sfEvTdOji6d372dydBTzou9B/WP/tt+ttnnBvTdIhToZbs2HZgAAQIECBAgQIBA1Qko0KsuMhsmQIAAAQIECBAgkLSAAj3peA1HgECZBGqyQF+6tDF+++CjcebkK+PaqafGwoWL46ChY2PWdec0MU+afn2s37N7fG3gF5t9bvD+gxToZbowHZYAAQIECBAgQIBANQoo0KsxNXsmQIAAAQIECBAgkK6AAj3dbE1GgED5BGquQD9z8lVxyx33R/v27eKUYw+O3XbuG39/9sWoGzU5brtyfJP01MtvjULRXni+uefqBu8Zby7I77vCjzuxsXxXwgpHnnzWCl+cmNuZnYgAAQLVKVB4h/bOWZ3Z2TUBAgRKKVD4/vFunduX8pAtOpZbuLeIy4sJECBAgAABAgQIJC+gQE8+YgMSIFAGgZor0JcZPvPcS3HyWTNi76/tEH0/v3nsN2RM8Rbuyx4TLpwZvXv1jN126tvsc4cfMCjeaFhUhlhWfcjhJ+V2qpj0n79LkN9JnYkAAQJVLNDYGFEoTTwIECBAoLYF2rZpE927KNBr+yowPQECBAgQIECAAIHKEVCgV04WdkKAQPUI1GyBXojohtvvi0cenxunf++w6Ld7Xdw5c2L06N61mN6QkZNi310HxI7bbdnscwO338ot3KvnWrdTAgQIECBAgAABAmUXcAv3shM7AQECBAgQIECAAAECLRBQoLcAy0sJECDwb4GaKtAf+PMTseXmm0W7dm3jtdffjGFjLih+x/k+u+4QoydeFu/boGcMHbxXzJ4zN+pOnhJ3XHN2dOvaebXPPf/qgtwuptH1+X2SpX50fremzw3QiQgQIECAAAECBAiUWUCBXmZghydAgAABAgQIECBAoEUCCvQWcXkxAQIEigI1VaCPHDs9fvfgY8UCvXOnjrHHV7aLIw/aNdq0aRNvvNkQo8bNiIdmPxk9uneLU4cdEv223ryItLrnFOj+SyJAgAABAgQIECBAYJmAAt21QIAAAQIECBAgQIBAJQko0CspDXshQKBaBGqqQC9HKAr0cqg6JgECBAgQIECAAIHqFKi2Ar2g3DBtVnVi2zUBAgQIECBAgAABAmsUUKCvkcgLCBAgsJKAAj3jRaFAzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSJ5qgV5gqR+9OKOO5T+W0pwAACAASURBVAQIECBAgAABAgRqS0CBXlt5m5YAAQIECBAgQIBApQso0Cs9IfsjQKASBRToGVNRoGcEtJwAAQIECBAgQIBAQgIK9ITCNAoBAgQIECBAgACBBAQU6AmEaAQCBHIXUKBnJFegZwS0nAABAgQIECBAgEBCAgr0hMI0CgECBAgQIECAAIEEBBToCYRoBAIEchdQoGckV6BnBLScAAECBAgQIECAQEICCvSEwjQKAQIECBAgQIAAgQQEFOgJhGgEAgRyF1CgZyRXoGcEtJwAAQIECBAgQIBAQgIK9ITCNAoBAgQIECBAgACBBAQU6AmEaAQCBHIXUKBnJFegZwS0nAABAgQIECBAgEBCAgr0hMI0CgECBAgQIECAAIEEBBToCYRoBAIEchdQoGckV6BnBLScAAECBAgQIECAQEICCvSEwjQKAQIECBAgQIAAgQQEFOgJhGgEAgRyF1CgZyRPuUAv0NSPXpxRyHICBAgQIECAAAECtSOgQK+drE1KgAABAgQIECBAoBoEFOjVkJI9EiBQaQIK9IyJKNAzAlpOgAABAgQIECBAICEBBXpCYRqFAAECBAgQIECAQAICCvQEQjQCAQK5CyjQM5Ir0DMCWk6AAAECBAgQIEAgIQEFekJhGoUAAQIECBAgQIBAAgIK9ARCNAIBArkLKNAzkivQMwJaToAAAQIECBAgQCAhgWos0Av8DdNmJZSCUQgQIECAAAECBAgQWCagQHctECBAoOUCCvSWmy23Iq8CfXR9+4w7XbflvgN93dysIkCAAAECBAgQqE0BBXpt5m5qAgQIECBAgAABApUqoECv1GTsiwCBShZQoGdMR4GeEdByAgQIECBAgAABAgkJKNATCtMoBAgQIECAAAECBBIQUKAnEKIRCBDIXUCBnpFcgZ4R0HICBAgQIECAAAECCQko0BMK0ygECBAgQIAAAQIEEhBQoCcQohEIEMhdQIGekVyBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF1AgZ6RXIGeEdByAgQIECBAgAABAgkJKNATCtMoBAgQIECAAAECBBIQUKAnEKIRCBDIXUCBnpFcgZ4R0HICBAgQIECAAAECCQko0BMK0ygECBAgQIAAAQIEEhBQoCcQohEIEMhdQIGekVyBnhHQcgIECBAgQIAAAQIJCSjQEwrTKAQIECBAgAABAgQSEFCgJxCiEQgQyF2gpgr0R594OiZNvz6enPuP6NK5Uxy63y5x4J4Di+jzXp8fJ427OB5+fG70Wr9H1I8YHFv12WyNzynQc79mnZAAAQIECBAgQIBAxQoo0Cs2GhsjQIAAAQIECBAgUJMCCvSajN3QBAhkFKipAv2WO+6Pj31kw9hy883i5Vdfi298Z0zMmDgiNv34RjFy7PTYaMPeUXfYXjF7ztwYfvrUuP3K8dG5U8fVPqdAz3gFWk6AAAECBAgQIEAgIQEFekJhGoUAAQIECBAgQIBAAgIK9ARCNAIBArkL1FSBvqLu0JOnxB5f3S527LdV9N39mLj3xsnRpXPH4suGnnJe7D2of/Tf9rPNPjeg7xahQM/9mnVCAgQIECBAgAABAhUroECv2GhsjAABAgQIECBAgEBNCijQazJ2QxMgkFGgZgv0RYsWxy4HjYyrzhsVbdu2jYOGjo1Z153TxFm41fv6PbvH1wZ+sdnnBu8/SIGe8QK0nAABAgQIECBAgEBKAgr0lNI0CwECBAgQIECAAIHqF1CgV3+GJiBAIH+Bmi3Qz7v0pnir4e04aeg34+/Pvhh1oybHbVeOb0pg6uW3xtKljbHbzn2bfa5u8J7x5oJFuaR23Im5nGalk0w+q3XO66wEqkOgTXVs0y5zEVja2Bht27gmcsF2EgIVJ9BYcTuyodYUaBPdu7RvtQ3Mm78wFixcstz5ux610xr30zBt1hpf4wUECBAgQIAAAQIECFSfgAK9+jKzYwIEWl+gJgv0H/7onph1/4Mxbfyw6NChfbz0ymux35AxxVu4L3tMuHBm9O7VM3bbqW+zzx1+wKB4/a18CvTjR7XOxXLuuNY5r7MSqA4BhUl15JTPLpc2RrTVn+eD7SwEKk7Af/wVF0krbqjwa8F6XTu02g4U6K1G78QECBAgQIAAAQIEKlJAgV6RsdgUAQIVLlBzBfqP7vp13Hj7L2L62cOja5fOxXgaGxuj3+51cefMidGje9fivxsyclLsu+uA2HG7LZt9buD2W7mFe4Vf4LZHgAABAgQIECBAIE8Bt3DPU9u5CBAgQIAAAQIECBBYk4ACfU1CnidAgMDKAjVVoN913x/i6pvujosmDI9uXd8tz5c9Rk+8LN63Qc8YOnivmD1nbtSdPCXuuObs4utW99zzry7I5boaXd86t4GsH704l/mchAABAgQIECBAgEAKAgr0FFI0AwECBAgQIECAAIF0BBTo6WRpEgIE8hOoqQJ9h72OjVfnvRHv/Yraflv3KRbqb7zZEKPGzYiHZj8ZPbp3i1OHHRL9tt68mMTqnlOg53exOhMBAgQIECBAgACBShdQoFd6QvZHgAABAgQIECBAoLYEFOi1lbdpCRAojUBNFeilIVv+KAr0cqg6JgECBAgQIECAAIHqFFCgV2dudk2AAAECBAgQIEAgVQEFeqrJmosAgXIKKNAz6irQMwJaToAAAQIECBAgQCAhAQV6QmEahQABAgQIECBAgEACAgr0BEI0AgECuQso0DOSp16gF3h8D3rGi8RyAgQIECBAgACBmhFQoNdM1AYlQIAAAQIECBAgUBUCCvSqiMkmCRCoMAEFesZAFOgZAS0nQIAAAQIECBAgkJCAAj2hMI1CgAABAgQIECBAIAEBBXoCIRqBAIHcBRToGckV6BkBLSdAgAABAgQIECCQkIACPaEwjUKAAAECBAgQIEAgAQEFegIhGoEAgdwFFOgZyWuhQC8QuY17xgvFcgIECBAgQIAAgZoQUKDXRMyGJECAAAECBAgQIFA1Agr0qonKRgkQqCABBXrGMBToGQEtJ0CAAAECBAgQIJCQQLUW6IUIGqbNSigJoxAgQIAAAQIECBAgUBBQoLsOCBAg0HIBBXrLzZZboUDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0iuQM8IaDkBAgQIECBAgACBhAQU6AmFaRQCBAgQIECAAAECCQgo0BMI0QgECOQuoEDPSK5AzwhoOQECBAgQIECAAIGEBBToCYVpFAIECBAgQIAAAQIJCCjQEwjRCAQI5C6gQM9IrkDPCGg5AQIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0heKwV6gal+9OKMWpYTIECAAAECBAgQSFugtQv0NxcsjiVLG5dDbjzsS2uF3uYH967V67yIAAECBCpfoLExok2byt+nHRIgQIBA+QV6dutQ/pM4AwECBBITUKBnDLSWCvQClRI94wVjOQECBAgQIECAQNICrV2gN7y9JBpj+QJ90SED1sq8w5X3rdXrvIgAAQIEKl9AgV75GdkhAQIE8hLo1rl9XqdyHgIECCQjoEDPGKUCPSOg5QQIECBAgAABAgQSEmjtAn3e/IWxYOGS5US7HrXTWgk3TJu1Vq/zIgIECBAgQIAAAQIEqkfALdyrJys7JUCgcgQU6BmzUKBnBLScAAECBAgQIECAQEICCvSEwjQKAQIECBAgQIAAgQQEFOgJhGgEAgRyF1CgZyRXoGcEtJwAAQIECBAgQIBAQgIK9ITCNAoBAgQIECBAgACBBAQU6AmEaAQCBHIXUKBnJFegZwS0nAABAgQIECBAgEBCAgr0hMI0CgECBAgQIECAAIEEBBToCYRoBAIEchdQoGckV6BnBLScAAECBAgQIECAQEICCvSEwjQKAQIECBAgQIAAgQQEFOgJhGgEAgRyF1CgZyRXoGcEtJwAAQIECBAgQIBAQgIK9ITCNAoBAgQIECBAgACBBAQU6AmEaAQCBHIXUKBnJFegZwS0nAABAgQIECBAgEBCAgr0hMI0CgECBAgQIECAAIEEBBToCYRoBAIEchdQoGckV6BnBLScAAECBAgQIECAQEICCvSEwjQKAQIECBAgQIAAgQQEFOgJhGgEAgRyF1CgZyRXoGcEtJwAAQIECBAgQIBAQgIK9ITCNAoBAgQIECBAgACBBAQU6AmEaAQCBHIXUKBnJFegZwS0nAABAgQIECBAgEBCAgr0hMI0CgECBAgQIECAAIEEBBToCYRoBAIEchdQoGckV6BnBLScAAECBAgQIECAQEICCvSEwjQKAQIECBAgQIAAgQQEFOgJhGgEAgRyF1CgZyRXoGcEtJwAAQIECBAgQIBAQgIK9ITCNAoBAgQIECBAgACBBAQU6AmEaAQCBHIXUKBnJK+1Ar3AVT96cUY1ywkQIECAAAECBAikKaBATzNXUxEgQIAAAQIECBCoVgEFerUmZ98ECLSmgAI9o74CPSOg5QQIECBAgAABAgQSElCgJxSmUQgQIECAAAECBAgkIKBATyBEIxAgkLuAAj0juQI9I6DlBAgQIECAAAECBBISUKAnFKZRCBAgQIAAAQIECCQgoEBPIEQjECCQu4ACPSO5Aj0joOUECBAgQIAAAQIEEhJQoCcUplEIECBAgAABAgQIJCCgQE8gRCMQIJC7gAI9I7kCPSOg5QQIECBAgAABAgQSElCgJxSmUQgQIECAAAECBAgkIKBATyBEIxAgkLuAAj0juQI9I6DlBAgQIECAAAECBBISUKAnFKZRCBAgQIAAAQIECCQgoEBPIEQjECCQu0DNFegNC96OkWdOL0KfP/bYJvB5r8+Pk8ZdHA8/Pjd6rd8j6kcMjq36bFZ8fnXPKdBzv2adkAABAgQIECBAgEDFCijQKzYaGyNAgAABAgQIECBQkwIK9JqM3dAECGQUqKkC/Z8v/SvqRk2OLT69abz0yrzlCvSRY6fHRhv2jrrD9orZc+bG8NOnxu1Xjo/OnTrG6p5ToGe8Ai0nQIAAAQIECBAgkJCAAj2hMI1CgAABAgQIECBAIAEBBXoCIRqBAIHcBWqqQH+r4e144m//iIWLFsU1N81qKtCXLm2MvrsfE/feODm6dO5YDGHoKefF3oP6R/9tP9vscwP6bhG1WqCPrm8f9aMX537BOiEBAgQIECBAgACBShZQoFdyOvZGgAABAgQIECBAoPYEFOi1l7mJCRDILlBTBfoyrt8+8Ghce8vdTQX6iy/Pi4OGjo1Z153TJDpp+vWxfs/u8bWBX2z2ucH7D1KgZ78GHYEAAQIECBAgQIBAMgIK9GSiNAgBAgQIECBAgACBJAQU6EnEaAgCBHIWUKBHxN+ffbF4a/fbrhzfxD/18luj8Mn03Xbu2+xzdYP3jPkLFuUS2bATczlNi07y/bNa9HIvJkCAQNICjY1tok2bxqRnNBwBAgQIrFmgbZs20a1z+zW/sEyvmDd/YSxYuGS5o3c9aqe1OlvDtFlr9TovIkCAAAECBAgQIECgegQU6NWTlZ0SIFA5Agr0iHjplddivyFjirdwX/aYcOHM6N2rZ+y2U99mnzv8gEExvyGf25gPO6nySpnvj29TOVeynRAgQKCVBZY2NkahNPEgQIAAgdoWKPxS0L1LdRboheSU6LV9/ZqeAAECBAgQIEAgPQEFenqZmogAgfILKNAjorGxMfrtXhd3zpwYPbp3LaoPGTkp9t11QOy43ZbNPjdw+61q8hbuyy5L34Fe/v9AnYEAAQIECBAgQKC6BKr5Fu4K9Oq61uyWAAECBAgQIECAwNoIKNDXRslrCBAgsLyAAv3fHqMnXhbv26BnDB28V8yeMzfqTp4Sd1xzdnTr2jlW99zzry7I5ZoaXd96n2JpbkAFei7ROwkBAgQIECBAgEAVCSjQqygsWyVAgAABAgQIECBQAwIK9BoI2YgECJRcQIH+b9I33myIUeNmxEOzn4we3bvFqcMOiX5bb158dnXPKdBLfk06IAECBAgQIECAAIGqFVCgV210Nk6AAAECBAgQIEAgSQEFepKxGooAgTIL1GSBXkpTBXopNR2LAAECBAgQIECAQHULKNCrOz+7J0CAAAECBAgQIJCagAI9tUTNQ4BAHgIK9IzKCvSMgJYTIECAAAECBAgQSEhAgZ5QmEYhQIAAAQIECBAgkICAAj2BEI1AgEDuAgr0jOQK9IyAlhMgQIAAAQIECBBISECBnlCYRiFAgAABAgQIECCQgIACPYEQjUCAQO4CCvSM5Ar0jICWEyBAgAABAgQIEEhIQIGeUJhGIUCAAAECBAgQIJCAgAI9gRCNQIBA7gIK9IzkCvSMgJYTIECAAAECBAgQSEhAgZ5QmEYhQIAAAQIECBAgkICAAj2BEI1AgEDuAgr0jOQK9IyAlhMgQIAAAQIECBBISECBnlCYRiFAgAABAgQIECCQgIACPYEQjUCAQO4CCvSM5Ar0jICWEyBAgAABAgQIEEhIQIGeUJhGIUCAAAECBAgQIJCAgAI9gRCNQIBA7gIK9IzktV6gj65vH/WjF2dUtJwAAQIECBAgQIBAGgIK9DRyNAUBAgQIECBAgACBVAQU6KkkaQ4CBPIUUKBn1K7lAn0ZnQI940VkOQECBAgQIECAQDIClVagdz1qpxbZNkyb1aLXezEBAgQIECBAgAABApUtoECv7HzsjgCByhRQoGfMJY8CvfAp70p+KNArOR17I0CAAAECBAgQyFNAgZ6ntnMRIECAAAECBAgQILAmAQX6moQ8T4AAgZUFFOgZr4pyF+iVXp4X+BToGS8iywkQIECAAAECBJIRUKAnE6VBCBAgQIAAAQIECCQhoEBPIkZDECCQs4ACPSN4uQr0Zd8trkDPGJDlBAgQIECAAAECBHIUqPYCvUDlNu45XjBORYAAAQIECBAgQKDMAgr0MgM7PAECSQoo0DPGWs4CPePWclvuE+i5UTsRAQIECBAgQIBAhQso0Cs8INsjQIAAAQIECBAgUGMCCvQaC9y4BAiURECBnpFRge4W7hkvIcsJECBAgAABAgQSElCgJxSmUQgQIECAAAECBAgkIKBATyBEIxAgkLuAAj0juQL93QJ92S3nM3JaToAAAQIECBAgQKCqBRToVR2fzRMgQIAAAQIECBBITkCBnlykBiJAIAcBBXpGZAX68gW6Ij3jBWU5AQIECBAgQIBAVQso0Ks6PpsnQIAAAQIECBAgkJyAAj25SA1EgEAOAgr0jMgKdAV6xkvIcgIECBAgQIAAgYQEFOgJhWkUAgQIECBAgAABAgkIKNATCNEIBAjkLqBAz0hejgK98Cnuan4UbunuQYAAAQIECBAgQKAWBSqpQO961E7rFEHDtFnrtM4iAgQIECBAgAABAgQqT0CBXnmZ2BEBApUvoEDPmJECfWVABXrGi8pyAgQIECBAgACBqhVQoFdtdDZOgAABAgQIECBAIEkBBXqSsRqKAIEyCyjQMwIr0BXoGS8hywkQIECAAAECBBISUKAnFKZRCBAgQIAAAQIECCQgoEBPIEQjECCQu4ACPSN5qQv0ar99+3s5fRI948VlOQECBAgQIECAQNUJKNCrLjIbJkCAAAECBAgQIJC0gAI96XgNR4BAmQQU6BlhFejNAyrQM15clhMgQIAAAQIECFSdgAK96iKzYQIECBAgQIAAAQJJCyjQk47XcAQIlElAgZ4RVoGuQM94CVlOgAABAgQIECCQkEClFOhdj9ppnVUbps1a57UWEiBAgAABAgQIECBQWQIK9MrKw24IEKgOAQV6xpwU6Ksv0Au3pPdJ9IwXmeUECBAgQIAAAQJVI5BCgb4MW5FeNZedjRIgQIAAAQIECBBoVkCB7uIgQIBAywUU6C03W26FAn3NgAr0NRt5BQECBAgQIECAQBoCCvQ0cjQFAQIECBAgQIAAgVQEFOipJGkOAgTyFFCgZ9RWoK8ZsFCg+yT6mp28ggABAgQIECBAoPoFFOjVn6EJCBAgQIAAAQIECKQkoEBPKU2zECCQl4ACPaO0An3NgAr0NRt5BQECBAgQIECAQBoCCvQ0cjQFAQIECBAgQIAAgVQEFOipJGkOAgTyFFCgZ9RWoK8ZUIG+ZiOvIECAAAECBAgQSENAgZ5GjqYgQIAAAQIECBAgkIqAAj2VJM1BgECeAgr0jNoK9DUDKtDXbOQVBAgQIECAAAECaQgo0NPI0RQECBAgQIAAAQIEUhFQoKeSpDkIEMhTQIGeUbuUBXrhe8JTfCjQU0zVTAQIECBAgAABAqsSSKlAL8zXMG2WoAkQIECAAAECBAgQqGIBBXoVh2frBAi0moACPSO9Ar1lgIUy3YMAAQIECBAgQIBAqgIK9FSTNRcBAgQIECBAgACB6hRQoFdnbnZNgEDrCijQM/or0FsOqERvuZkVBAgQIECAAAEC1SGgQK+OnOySAAECBAgQIECAQK0IKNBrJWlzEiBQSgEFekZNBXrLARXoLTezggABAgQIECBAoDoEFOjVkZNdEiBAgAABAgQIEKgVAQV6rSRtTgIESimgQM+oqUBfd0BF+rrbWUmAAAECBAgQIFCZAgr0yszFrggQIECAAAECBAjUqoACvVaTNzcBAlkEFOhroTfv9flx0riL4+HH50av9XtE/YjBsVWfzYorS1Wgj65vvxY7Se8lSvT0MjURAQIECBAgQKCWBRTotZy+2QkQIECAAAECBAhUnoACvfIysSMCBCpfQIG+FhmNHDs9Ntqwd9QdtlfMnjM3hp8+NW6/cnx07tQxU4FeKM2XFcgK9LUIwksIECBAgAABAgQIVLiAAr3CA7I9AgQIECBAgAABAjUmoECvscCNS4BASQQU6GtgXLq0Mfrufkzce+Pk6NK5Y/HVQ085L/Ye1D8G9N1CgZ7xMnzvJ9Df+xcKMh7WcgIECBAgQIAAAQKtIqBAbxV2JyVAgAABAgQIECBAoBkBBbpLgwABAi0XUKCvwezFl+fFQUPHxqzrzml65aTp18f6PbvH4P0HrVOBvqwo9gn0KH4C/72fvl/2z83d2l3J3vL/yK0gQIAAAQIECBDIT6ASCvQ2h+9YsoEbps0q2bEciAABAgQIECBAgACB/AUU6PmbOyMBAtUvoEBfQ4Z/f/bFqBs1OW67cnzTK6defmsUPpleN3jPdboCjjh20Tqtq6VFl0zp0DTuMq/Cvyv8//c+V0smZk1HwHWcTpYmIUCAAAECKwosXLw0OrZv22owDT+9MRZePrlk51//+l+V7FgORIAAAQIECBAgQIAAAQIECBCoBgEF+hpSeumV12K/IWOKt3Bf9phw4czo3atnHH7AoGrI2B4JECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYC0EFOhrQGpsbIx+u9fFnTMnRo/uXYuvHjJyUuy764AYuP1Wa0HsJQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQDQIK9LVIafTEy+J9G/SMoYP3itlz5kbdyVPijmvOjm5dO6/Fai8hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgWoQUKCvRUpvvNkQo8bNiIdmPxk9uneLU4cdEv223nwtVnoJAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFSLgAK9TEktXdoYZ11wbfz057+LDh3axXcO3j3232PHMp3NYQmUTuChR56MQ487Kzp2aN900HtvnBzrde8aruvSOTtSeQQaFrwdI8+cXjz4+WOPbTrJ6q7dea/Pj5PGXRwPPz43eq3fI+pHDI6t+mxWng06KoG1FPjFb/8cI86YFleeNyo+uenGTau2+PLh0b59u6Z/Pmf00TGg7xbFf77ljvvj/MtujoULF8eXt/9c8S/8tWvXdi3P6GUESivw6BNPx6Tp18eTc/8RXTp3ikP32yUO3HNg8SSre9/1nlzaHFY8mveJ8vo6evkE/PpXPltHLr9Ac7+va+492c/d5c/EGVou8PdnX4xjRk2Ob+w2IA7Z9ytNB7joyh/HRVf9ONr/++eOT2zykbh26qnF5x+Z81ScMuGSePnV1+KT/71xTDjlO/H+963f8pNbQaAEAq/86/U496Lr49f/90jxZ+rtt/lMnHLcIdHh3z9fe08uAbJDECBAIDEBBXqZAr3pJ78slucXjj8uGha8EwcPHRtnnzIkPv0/HyvTGR2WQGkEZv3ygfjdg48Vi5cVH67r0hg7SnkE/vnSv6Ju1OTY4tObxkuvzFuuQF/dtTty7PTYaMPeUXfYu1/TMfz0qXH7leOjc6eO5dmooxJYg8DlP7wz7v3NH2PB2+8U/0LHsgL99TfeKv5+4sdXjFvpCE//44UYPHxCXH3+yfH+3hsU/yLJZ/53kzj0G1/lTaBVBAp/APWxj2wYW26+WfEPTb/xnTExY+KI2PTjG8Xq3ne9J5cvLu8T5bN15PIK+PWvvL6OXl6B5n5ft7r3ZD93lzcTR2+5wO//+HiMnXxVbPrxD8cWn/7v5Qr0ceddHZ/7zCfiKwO+sNyBlyxZGoMOGlksKLffpk9cfdOs+O2Dj8aF445r+QasIFACgT89+tcovPfuutMXY+mSpTH0lPOKfxn9gK8PLP775n6e9p5cAnyHIECAQJUKKNDLFNyQkefGwft8pelW71fd+LN44aV/xYij9y/TGR2WQGkEfvije+Jfr8+Pow7ZY6UDJGjR5wAAGI9JREFUuq5LY+wo5RF4q+HteOJv/4iFixbFNTfNWq5Ab+7aPX7IftF392OicJeFLp3fLcwLP0TtPah/06d6y7NbRyXQvEDhD6i2/PSmcfjxE+PkYw9qKtDnPvPPOPP7V8Zl3x+50uJLZ/405r/ZEMd9e5/ic3P++kycevZlccPFY1ATqAiBoSdPiT2+ul3s2G+rZt93+2/7We/JZUzL+0QZcR26rAJ+/Ssrr4OXWaC539et7j3Zz91lDsXhWyzw16eei+7du8QNt90XPdfrtlyBfvzpU+PAPb9cLNHf+3jk8bkx/vxrmj6NXrizwg57fTd+evWE4h0OPQi0tsCVN9wVz/7zlRj13W+G9+TWTsP5CRAgUJkCCvQy5bLLN0+IS889IT60Ye/iGe7//SNxzc2z4qIJw8t0RoclUBqBH1x3R1xxw13RqWOH4i1Xv7H7l5puueq6Lo2xo5RX4LcPPBrX3nL3cgV6c9fu6d87LA4aOjZmXXdO06YKtxxev2f3GLz/oPJu1NEJrEHgoLqxccpxBzcV6LOfeCoOH3528baHS5Ysie23+WyxMO/apVOMnnhZbNXnE/H1r25XPOo7CxdF392OiQfvupgzgVYXWLRocexy0Mi46rxR0bZt22bfd7828Ivek8uYlveJMuI6dFkF/PpXVl4Hz0lgxd/Xre492c/dOYXiNC0WmHLJTbFBz+7LFehHnfj9ePof/4xFi5fEhu/vFUMP3yu22fJTcfus3xY/cT72xCOazrP/UfVx8rEHR59PfrzF57aAQKkFho+ZGjv227L4iXTvyaXWdTwCBAikIaBAL1OOA/Y+Lm66pD7et0GP4hn+709zit9LWvguUw8ClSxQuM1WoXgpFDLPPPdi8dO4dYftGTv1/3y4ris5OXtbJrCqAr25a/eMEw4v3vb9tivHNwFOvfzWKPzt+LrBe0Il0KoCK/5Ba2Ezb761ILp36xJvvNkQ9ZOuiF7rrxejvntQnHDGRbHjdlvFV7/0n1snfnrAoTH73h9EmzZtWnUOJydw3qU3ReEuIScN/WYUvj+zuffd3Xbu6z25jJeL94ky4jp02QX8+ld2Yicos8CKv69b3Xvyl/YZ5s+TypyHw6+bwKoK9LffWRjt2rUrfgf6//3piRg+5sK4Ycbp8as/PByP/+WZGP2erwc89Liz4qhv7VEs2D0ItKbAbx6YHeddclNcfeEp0b5du9X+PO09uTWTcm4CBAi0roACvUz+u3xzZEw/e3hsvNF/Fc9wz6//GNf/+J64aMLxZTqjwxIoj8D1t91X/F7owvfwuq7LY+yopRVY9SfQV/2eXD/i8NhvyJjiLdyXPSZcODN69+oZhx/gE+ilTcbRWiqwqgL9vccofE/bUSdOijuuOTtOO+cH0eeTm8Q+u+5QfEmhaOi/53fjoZ/NaOlpvZ5ASQUKXw0z6/4HY9r4YdGhQ/t46ZXXmn3f3W2nvt6TS6q//MG8T5QR16FzFfDrX67cTlYigRV/X7e692Q/d5cI3WFKLrCqAn3Fk4w4Y1rssO0WEW0i7v/dwzHhlO80vWTvI0bHmOMPjT6f2qTke3NAAmsr8Micp2LUuIvj4nNGxAc/0Ku4zHvy2up5HQECBGpLQIFepryPGTU59t11QNN36F523U/jxZfnFT9540GgmgRm3vrzeOqZF4rfCeS6rqbkanevqyrQm7t2T6w7MPrtXhd3zpwYPf79PWxDRk4qvn8P3H6r2kU0eUUIrKlA/9vTz8X36qfFLZedGZdff2e8/MprMeLo/Yt7L/yhwGkTL4ubLz2jImaxidoU+NFdv44bb/9F8S+Vdu3SuYjQ2NjY7Pvujttt6T25jJeK94ky4jp0rgJ+/cuV28lKJLDi7+tW957s5+4SoTtMyQXWpkAvfAJ90MBt40P/9b447ZzL44aLxxT3sXjJkthuj6Fx17UTo2ePbiXfmwMSWBuBJ/72jxhRPy0mnzE0Ntn4g01LvCevjZ7XECBAoPYEFOhlyrzwXT+33HF/XDj+uGhY8E5885gz48yRh8fnPvOJMp3RYQmURuB3Dz5W/NvA3bp2judfeCWOPOHcOG34t2LrLT5Z/A4r13VpnB2lfAKrKtBXd+0WvuvqfRv0jKGD9yrebaHu5CnFT/QW/hvwINCaAiv+QetjTz4dG6zfo/i35Au/tzj5rBmx2SYfiaO/tUc898Ir8a3vjit+Vcz7e28QI8+8KDbb5MNx1CF7tOYIzl3DAnfd94e4+qa746IJw1d6P13d+6735PJdNN4nymfryOUV8OtfeX0dPR+BFX9ft7r3ZD9355OJs7RcYFUF+n2/+VNst02f4m2wC19fOXLs9Ljl0jNjve5dY7dvnVT8INF2X+gTV980K+751UNx2fdHtvzEVhAogcDcZ/4Zw0+7MM4dc3T890c/tNwRvSeXANghCBAgkKCAAr2MoZ570fVx6533F7979ND9vhqD93c74DJyO3SJBGZcc3tcc/PdxaP1WK9bHHHgoNh9535NR3ddlwjaYcomsKoCvXCy5q7dwndJjxo3Ix6a/WT06N4tTh12SPTbevOy7c+BCaytwIp/0Hr/7x+JceddHQ0L3o7OnToWv++87rA9i7fFLjx++vPfx7kX/TAWvPNObL/NZ+KMEYOjY8cOa3s6ryNQUoEd9jo2Xp33RrRp85/D9tu6T7FQX937rvfkksaw0sG8T5TX19HLI+DXv/K4Omq+Aqu6s9Dq3pP93J1vPs62dgKrKtC/e+p58cdH/lL8mWSjDXvHCUcf0HSL9sKnfUeNnxH/fPHV2OSjH4qzTj4yPvzB96/dybyKQIkFCl8vUHjfbdv2Pz+gdOrYIR648+I1/jztPbnEYTgcAQIEqkRAgV4lQdkmAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECJRXQIFeXl9HJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEqEVCgV0lQtkmAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC5RVQoJfX19EJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEoEFOhVEpRtEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5BRTo5fV1dAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoEgEFepUEZZsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF4BBXp5fR2dAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKpEQIFeJUHZJgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAiUV0CBXl5fRydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBKhFQoFdJULZJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUVUKCX19fRCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBKBBToVRKUbRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAeQUU6OX1dXQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqBIBBXqVBGWbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBeAQV6eX0dnQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqRECBXiVB2SYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlFdAgV5eX0cnQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSoRUKBXSVC2SYAAAQKVKdCw4O3Yepch8Yubp0TvXj0rc5N2RYAAAQIECBAgQIBAzQjse+SYOGy/XWLQwG1qZmaDEiBAgAABAgQIECilgAK9lJqORYAAAQI1J6BAr7nIDUyAAAECBAgQIECgogUU6BUdj80RIECAAAECBAhUgYACvQpCskUCBAgQqFwBBXrlZmNnBAgQIECAAAECBGpRQIFei6mbmQABAgQIECBAoJQCCvRSajoWAQIECFSlwB6HnRyH7POV2Ptr/Zv2f8sd98dlM38at105Ph594umYPOPGePTJp2Lp0sbY7gt94owTDo8unTvGigX6qPEz4r/e3yuOPWLvpmNd+INb4pnnXooJp3yn+O9efHle1H//ivjtA49Grw16xDd2GxDf/uau0aZNm6r0s2kCBAgQIECAAAECBEonMHbKVfHGmw0x4eR3f34oPJ574ZX46oEj4p4bvh/t27eLCRfOjN8/9FjMf7MhPrXZR6N+xOD4+MYfLL72vQV64eeam37yy7j6gpObjvWHP86JkWMvintvnNz0766/7b6Ycc3tMe+1N6LPpzaJU4d9Kzb59/FKN5kjESBAgAABAgQIEKgOAQV6deRklwQIECBQRoHCHxT9/o+PxyXnjGg6y3dOODc+95lPxJEH7VYsv5957sXYqs9mseDthXHUiZNily9tE4ftv8s6FegHHn1GsYQ/ZN+vxMuvvhZDTzmv+P8LRboHAQIECBAgQIAAAQK1LfDnx/4WRxw/MX71o/OjU8cORYxLrv1J/O6hx4o/syxavCTuuvcP0XfrzaNrl05x1vnXxouvzItpZw0rvralBfqv/vBIjJ1ydXz/9GNi440+ENf96J744Y/ujR9fMa7p/LWdiOkJECBAgAABAgRqTUCBXmuJm5cAAQIEVhL454uvxlcPPCHuvWly9Fp/vXj9jbei/57fjZ9cfVZ8+IPvX+n106+6Lf7+7Asx7qRvt7hAf+iRv0ThU+p3Xnt203GvveXncdd9f4grppwkHQIECBAgQIAAAQIECBR/PvneUfvFl7f/XFFj7yNGx8H77Bxf/+p2K+kUfsY44cyL4u4fnlt8rqUF+uHHnx1f/8p2sdvOfZuO3W+Puvj+mLr4wpaflAYBAgQIECBAgACBmhNQoNdc5AYmQIAAgVUJHDx0XOz65W1jvz12jBtv/0Xceuevmm5zOPuJp+IH190RT//jhWhsbIxX570Rn//s/8S5px3d4gL9htvvi9PPvaJ428WmR2NjfPC/escd10wQDgECBAgQIECAAAECBOL8y24u/vxR+JmjcDesrx92SvzylvOie7cu8dIrr8Ul194ef3r0r7Fo0eJ4+51F8VbDguLzhUdLC/QBex8Xr70+P+I9Xym1dOnSGDvyiOVKdbEQIECAAAECBAgQqBUBBXqtJG1OAgQIEFitwPU/vjd+es/v4/LJJ8YR35tY/KTH/nvsWPzDqV0POTFOOe7g+NrAL0a7dm1j6hU/ir89/dxaF+iTpl9f/N7zwneg//BH98TNP70/fjj9NIkQIECAAAECBAgQIEBglQJPPfPP2PfI0+L+Wy+Iq268K+b89R8xaczRxdcWPo1e+HqpYUfuG127dI4H/vxEDB9z4VoX6Pf//pEYPfHSpu9AL9x968yRh0f/bT8rDQIECBAgQIAAAQIEIkKB7jIgQIAAAQIRxdu2f2mf4+KmS+qLfyD18xsmxQY914t7fvVQjDv/mqbbIRawTjjjoliydOkqC/SxU66KDu3bxwnHHNDkOuy0C6Jjhw7FAr3wh1tDRp4bP7/h+9FzvW7sCRAgQIAAAQIECBAgsEqBwifJv3PwbjHtih/FMYftGTv22zLmv9kQ2+56dPzsunNiow17F9cV7nJ1/qU3r7JA/9kvHoiLr74tbpxxetM5Cl8hNeOa25oK9MOGnRWf/d9N47hv7yMJAgQIECBAgAABAgQU6K4BAgQIECDwH4G6UVPinYWLokOHdjF1/LDiE3P++kzsP+T0uOr8k2OzTT4cd9//YIybcnV88fOfXmWBfssd98elM38aM6eeGut17xqF7yMsfKfgzv0/XyzQC49vHnNm9FivW4w4ev/o1XO9mPvM8/H2Owuj7+c3FwcBAgQIECBAgAABAgSKAlfccFfc//uH47Enno5f3DwlOnRoX/xKqX6718Uxh309vrHbl+LRJ5+O0RN/ULwF+6pu4V64/fseh50SP7zotPjEJh8u3hmr8PNJ4Zbv9944uXieX//f7Dj21PNizPGHxXZf6BNvNiyI3z74aOyxc7/o2LGDNAgQIECAAAECBAjUnIBPoNdc5AYmQIAAgeYE7rz3D3H86VPj7FOHxNcGbtv0souu/HFcddPP4p13FsaAvlvGzjtsHXfd94dVFuiLlyyJsVOujl/+9s/Rtl3b4h9Sbbn5ZvGXuc82Feiv/Ov1OOuCa4t/GLZw0eL48Ia9Y+jhe8fOO3xeOAQIECBAgAABAgQIECgKvPzqa7HjvsNi70E7xJjvHdqkct9v/hTjz78mXnxlXvzvZh+N0cO/FUNGTor7bnq3EH/vd6AX/rnwNVKXXXdHLG1sLP4F3m9946sxcdrMpgK98Jof/+zXMePq2+OZ516Kbt06x+f6fCImjTmmWNp7ECBAgAABAgQIEKg1AQV6rSVuXgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBYpYAC3YVBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR8B7prgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIvCvgE+iuBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgoEB3DRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXcFfALdlUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBTorgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIPCugE+guxIIECBAgAABAgQIECBAgAABAgQIECBA4P/bt4MSAAAABGL9WytcjVUY9xMJECBAgAABAgQIGNA1QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEvBAVwIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEDCga4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCTgga4EAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBgQNcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBIwANdCQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAwICuAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkIAHuhIIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgIABXQMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCABD3QlECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABA7oGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAAh7oSiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgZ0DRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQQ80JVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQM6BogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIJeKArgQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIGNA1QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEvBAVwIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEDCga4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCTgga4EAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBgQNcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBIwANdCQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAwICuAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkIAHuhIIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgIABXQMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCABD3QlECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABA7oGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAAh7oSiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgZ0DRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQQ80JVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQuMJDmoRE00eTPAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for col in range(3):\n", - " import plotly.express as px\n", - " fig = px.histogram(df, x=[content_original[col]] + [content[col]], facet_col = \"variable\")\n", - " fig.update_yaxes(matches=None)\n", - " fig.show()\n", - "\n", - " #fig = px.histogram(df_scaled.sample(50000), x=content[col])\n", - " #fig.show(renderer=\"png\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ERROR! Session/line number was not unique in database. History logging moved to new session 2142\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "ERROR:root:Internal Python error in the inspect module.\n", - "Below is the traceback from this internal error.\n", - "\n", - "ERROR:root:Internal Python error in the inspect module.\n", - "Below is the traceback from this internal error.\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3343, in run_code\n", - " exec(code_obj, self.user_global_ns, self.user_ns)\n", - " File \"\", line 2, in \n", - " fig = px.histogram(df_original.sample(1000), x=content_original)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/express/_chart_types.py\", line 456, in histogram\n", - " layout_patch=dict(barmode=barmode, barnorm=barnorm),\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/express/_core.py\", line 2053, in make_figure\n", - " fig.update_layout(template=args[\"template\"], overwrite=True)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 965, in update_layout\n", - " self.layout.update(dict1, overwrite=overwrite, **kwargs)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4256, in update\n", - " BaseFigure._perform_update(self, kwargs, overwrite=overwrite)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 3349, in _perform_update\n", - " plotly_obj[key] = val\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4995, in __setitem__\n", - " super(BaseLayoutHierarchyType, self).__setitem__(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4011, in __setitem__\n", - " self._set_compound_prop(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4396, in _set_compound_prop\n", - " val = validator.validate_coerce(val, skip_invalid=self._skip_invalid)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2740, in validate_coerce\n", - " v, skip_invalid=skip_invalid\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2450, in validate_coerce\n", - " v = self.data_class(v)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/graph_objs/layout/_template.py\", line 323, in __init__\n", - " self[\"layout\"] = _v\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4011, in __setitem__\n", - " self._set_compound_prop(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4396, in _set_compound_prop\n", - " val = validator.validate_coerce(val, skip_invalid=self._skip_invalid)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2446, in validate_coerce\n", - " v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/graph_objs/_layout.py\", line 6026, in __init__\n", - " self[\"ternary\"] = _v\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4995, in __setitem__\n", - " super(BaseLayoutHierarchyType, self).__setitem__(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4011, in __setitem__\n", - " self._set_compound_prop(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4396, in _set_compound_prop\n", - " val = validator.validate_coerce(val, skip_invalid=self._skip_invalid)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2446, in validate_coerce\n", - " v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2416, in data_class\n", - " self._data_class = getattr(module, self.data_class_str)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/importers.py\", line 36, in __getattr__\n", - " class_module = importlib.import_module(rel_module, parent_name)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/importlib/__init__.py\", line 127, in import_module\n", - " return _bootstrap._gcd_import(name[level:], package, level)\n", - " File \"\", line 1006, in _gcd_import\n", - " File \"\", line 983, in _find_and_load\n", - " File \"\", line 967, in _find_and_load_unlocked\n", - " File \"\", line 677, in _load_unlocked\n", - " File \"\", line 724, in exec_module\n", - " File \"\", line 818, in get_code\n", - " File \"\", line 917, in get_data\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1169, in get_records\n", - " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 316, in wrapped\n", - " return f(*args, **kwargs)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 350, in _fixed_getinnerframes\n", - " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 1502, in getinnerframes\n", - " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 1460, in getframeinfo\n", - " filename = getsourcefile(frame) or getfile(frame)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 696, in getsourcefile\n", - " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 742, in getmodule\n", - " os.path.realpath(f)] = module.__name__\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/posixpath.py\", line 395, in realpath\n", - " path, ok = _joinrealpath(filename[:0], filename, {})\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/posixpath.py\", line 429, in _joinrealpath\n", - " if not islink(newpath):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/posixpath.py\", line 171, in islink\n", - " st = os.lstat(path)\n", - "KeyboardInterrupt\n", - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3343, in run_code\n", - " exec(code_obj, self.user_global_ns, self.user_ns)\n", - " File \"\", line 2, in \n", - " fig = px.histogram(df_original.sample(1000), x=content_original)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/express/_chart_types.py\", line 456, in histogram\n", - " layout_patch=dict(barmode=barmode, barnorm=barnorm),\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/express/_core.py\", line 2053, in make_figure\n", - " fig.update_layout(template=args[\"template\"], overwrite=True)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 965, in update_layout\n", - " self.layout.update(dict1, overwrite=overwrite, **kwargs)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4256, in update\n", - " BaseFigure._perform_update(self, kwargs, overwrite=overwrite)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 3349, in _perform_update\n", - " plotly_obj[key] = val\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4995, in __setitem__\n", - " super(BaseLayoutHierarchyType, self).__setitem__(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4011, in __setitem__\n", - " self._set_compound_prop(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4396, in _set_compound_prop\n", - " val = validator.validate_coerce(val, skip_invalid=self._skip_invalid)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2740, in validate_coerce\n", - " v, skip_invalid=skip_invalid\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2450, in validate_coerce\n", - " v = self.data_class(v)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/graph_objs/layout/_template.py\", line 323, in __init__\n", - " self[\"layout\"] = _v\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4011, in __setitem__\n", - " self._set_compound_prop(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4396, in _set_compound_prop\n", - " val = validator.validate_coerce(val, skip_invalid=self._skip_invalid)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2446, in validate_coerce\n", - " v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/graph_objs/_layout.py\", line 6026, in __init__\n", - " self[\"ternary\"] = _v\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4995, in __setitem__\n", - " super(BaseLayoutHierarchyType, self).__setitem__(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4011, in __setitem__\n", - " self._set_compound_prop(prop, value)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\", line 4396, in _set_compound_prop\n", - " val = validator.validate_coerce(val, skip_invalid=self._skip_invalid)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2446, in validate_coerce\n", - " v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\", line 2416, in data_class\n", - " self._data_class = getattr(module, self.data_class_str)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/importers.py\", line 36, in __getattr__\n", - " class_module = importlib.import_module(rel_module, parent_name)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/importlib/__init__.py\", line 127, in import_module\n", - " return _bootstrap._gcd_import(name[level:], package, level)\n", - " File \"\", line 1006, in _gcd_import\n", - " File \"\", line 983, in _find_and_load\n", - " File \"\", line 967, in _find_and_load_unlocked\n", - " File \"\", line 677, in _load_unlocked\n", - " File \"\", line 724, in exec_module\n", - " File \"\", line 818, in get_code\n", - " File \"\", line 917, in get_data\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3263, in run_ast_nodes\n", - " if (await self.run_code(code, result, async_=asy)):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 3360, in run_code\n", - " self.showtraceback(running_compiled_code=True)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2047, in showtraceback\n", - " value, tb, tb_offset=tb_offset)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1436, in structured_traceback\n", - " self, etype, value, tb, tb_offset, number_of_lines_of_context)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1336, in structured_traceback\n", - " self, etype, value, tb, tb_offset, number_of_lines_of_context\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1193, in structured_traceback\n", - " tb_offset)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1150, in format_exception_as_a_whole\n", - " last_unique, recursion_repeat = find_recursion(orig_etype, evalue, records)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 451, in find_recursion\n", - " return len(records), 0\n", - "TypeError: object of type 'NoneType' has no len()\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'TypeError' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 1169, in get_records\n", - " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 316, in wrapped\n", - " return f(*args, **kwargs)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\", line 350, in _fixed_getinnerframes\n", - " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 1502, in getinnerframes\n", - " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 1460, in getframeinfo\n", - " filename = getsourcefile(frame) or getfile(frame)\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 696, in getsourcefile\n", - " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/inspect.py\", line 742, in getmodule\n", - " os.path.realpath(f)] = module.__name__\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/posixpath.py\", line 395, in realpath\n", - " path, ok = _joinrealpath(filename[:0], filename, {})\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/posixpath.py\", line 429, in _joinrealpath\n", - " if not islink(newpath):\n", - " File \"/home/steinfej/miniconda3/envs/python/lib/python3.7/posixpath.py\", line 171, in islink\n", - " st = os.lstat(path)\n", - "KeyboardInterrupt\n" - ] - }, - { - "ename": "TypeError", - "evalue": "object of type 'NoneType' has no len()", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - " \u001b[0;31m[... skipping hidden 1 frame]\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mplotly\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexpress\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mfig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistogram\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf_original\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcontent_original\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/express/_chart_types.py\u001b[0m in \u001b[0;36mhistogram\u001b[0;34m(data_frame, x, y, color, facet_row, facet_col, facet_col_wrap, facet_row_spacing, facet_col_spacing, hover_name, hover_data, animation_frame, animation_group, category_orders, labels, color_discrete_sequence, color_discrete_map, marginal, opacity, orientation, barmode, barnorm, histnorm, log_x, log_y, range_x, range_y, histfunc, cumulative, nbins, title, template, width, height)\u001b[0m\n\u001b[1;32m 455\u001b[0m ),\n\u001b[0;32m--> 456\u001b[0;31m \u001b[0mlayout_patch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbarmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbarmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbarnorm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbarnorm\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 457\u001b[0m )\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/express/_core.py\u001b[0m in \u001b[0;36mmake_figure\u001b[0;34m(args, constructor, trace_patch, layout_patch)\u001b[0m\n\u001b[1;32m 2052\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m\"template\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0margs\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"template\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2053\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_layout\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtemplate\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"template\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moverwrite\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2054\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mframes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe_list\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframes\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36mupdate_layout\u001b[0;34m(self, dict1, overwrite, **kwargs)\u001b[0m\n\u001b[1;32m 964\u001b[0m \"\"\"\n\u001b[0;32m--> 965\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdict1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moverwrite\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moverwrite\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, dict1, overwrite, **kwargs)\u001b[0m\n\u001b[1;32m 4255\u001b[0m \u001b[0mBaseFigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_perform_update\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moverwrite\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moverwrite\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4256\u001b[0;31m \u001b[0mBaseFigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_perform_update\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moverwrite\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moverwrite\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4257\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m_perform_update\u001b[0;34m(plotly_obj, update_obj, overwrite)\u001b[0m\n\u001b[1;32m 3348\u001b[0m \u001b[0;31m# Don't recurse and assign property as-is\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3349\u001b[0;31m \u001b[0mplotly_obj\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mval\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3350\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, prop, value)\u001b[0m\n\u001b[1;32m 4994\u001b[0m \u001b[0;31m# Set as ordinary property\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4995\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseLayoutHierarchyType\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__setitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4996\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, prop, value)\u001b[0m\n\u001b[1;32m 4010\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalidator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCompoundValidator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4011\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_compound_prop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m_set_compound_prop\u001b[0;34m(self, prop, val)\u001b[0m\n\u001b[1;32m 4395\u001b[0m \u001b[0mvalidator\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_validator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4396\u001b[0;31m \u001b[0mval\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalidator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalidate_coerce\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mval\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskip_invalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_skip_invalid\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4397\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\u001b[0m in \u001b[0;36mvalidate_coerce\u001b[0;34m(self, v, skip_invalid)\u001b[0m\n\u001b[1;32m 2739\u001b[0m return super(BaseTemplateValidator, self).validate_coerce(\n\u001b[0;32m-> 2740\u001b[0;31m \u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskip_invalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskip_invalid\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2741\u001b[0m )\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\u001b[0m in \u001b[0;36mvalidate_coerce\u001b[0;34m(self, v, skip_invalid, _validate)\u001b[0m\n\u001b[1;32m 2449\u001b[0m \u001b[0;31m# Copy object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2450\u001b[0;31m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2451\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/graph_objs/layout/_template.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg, data, layout, **kwargs)\u001b[0m\n\u001b[1;32m 322\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_v\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 323\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"layout\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_v\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 324\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, prop, value)\u001b[0m\n\u001b[1;32m 4010\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalidator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCompoundValidator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4011\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_compound_prop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m_set_compound_prop\u001b[0;34m(self, prop, val)\u001b[0m\n\u001b[1;32m 4395\u001b[0m \u001b[0mvalidator\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_validator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4396\u001b[0;31m \u001b[0mval\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalidator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalidate_coerce\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mval\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskip_invalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_skip_invalid\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4397\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\u001b[0m in \u001b[0;36mvalidate_coerce\u001b[0;34m(self, v, skip_invalid, _validate)\u001b[0m\n\u001b[1;32m 2445\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2446\u001b[0;31m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskip_invalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskip_invalid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_validate\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0m_validate\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/graph_objs/_layout.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, arg, activeshape, angularaxis, annotations, annotationdefaults, autosize, bargap, bargroupgap, barmode, barnorm, boxgap, boxgroupgap, boxmode, calendar, clickmode, coloraxis, colorscale, colorway, datarevision, direction, dragmode, editrevision, extendfunnelareacolors, extendpiecolors, extendsunburstcolors, extendtreemapcolors, font, funnelareacolorway, funnelgap, funnelgroupgap, funnelmode, geo, grid, height, hiddenlabels, hiddenlabelssrc, hidesources, hoverdistance, hoverlabel, hovermode, images, imagedefaults, legend, mapbox, margin, meta, metasrc, modebar, newshape, orientation, paper_bgcolor, piecolorway, plot_bgcolor, polar, radialaxis, scene, selectdirection, selectionrevision, separators, shapes, shapedefaults, showlegend, sliders, sliderdefaults, spikedistance, sunburstcolorway, template, ternary, title, titlefont, transition, treemapcolorway, uirevision, uniformtext, updatemenus, updatemenudefaults, violingap, violingroupgap, violinmode, waterfallgap, waterfallgroupgap, waterfallmode, width, xaxis, yaxis, **kwargs)\u001b[0m\n\u001b[1;32m 6025\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_v\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6026\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"ternary\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_v\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6027\u001b[0m \u001b[0m_v\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"title\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, prop, value)\u001b[0m\n\u001b[1;32m 4994\u001b[0m \u001b[0;31m# Set as ordinary property\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4995\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseLayoutHierarchyType\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__setitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4996\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, prop, value)\u001b[0m\n\u001b[1;32m 4010\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalidator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCompoundValidator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4011\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_set_compound_prop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4012\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/plotly/basedatatypes.py\u001b[0m in \u001b[0;36m_set_compound_prop\u001b[0;34m(self, prop, val)\u001b[0m\n\u001b[1;32m 4395\u001b[0m \u001b[0mvalidator\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_validator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprop\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4396\u001b[0;31m \u001b[0mval\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalidator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalidate_coerce\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mval\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskip_invalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_skip_invalid\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4397\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\u001b[0m in \u001b[0;36mvalidate_coerce\u001b[0;34m(self, v, skip_invalid, _validate)\u001b[0m\n\u001b[1;32m 2445\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2446\u001b[0;31m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskip_invalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskip_invalid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_validate\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0m_validate\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/basevalidators.py\u001b[0m in \u001b[0;36mdata_class\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 2415\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_str\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2416\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data_class\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_class_str\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2417\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/_plotly_utils/importers.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(import_name)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0mclass_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimport_name\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0mclass_module\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrel_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparent_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mclass_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclass_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 127\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_gcd_import\u001b[0;34m(name, package, level)\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_find_and_load\u001b[0;34m(name, import_)\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_find_and_load_unlocked\u001b[0;34m(name, import_)\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_load_unlocked\u001b[0;34m(spec)\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/_bootstrap_external.py\u001b[0m in \u001b[0;36mexec_module\u001b[0;34m(self, module)\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/_bootstrap_external.py\u001b[0m in \u001b[0;36mget_code\u001b[0;34m(self, fullname)\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/importlib/_bootstrap_external.py\u001b[0m in \u001b[0;36mget_data\u001b[0;34m(self, path)\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2043\u001b[0m \u001b[0;31m# in the engines. This should return a list of strings.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2044\u001b[0;31m \u001b[0mstb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_render_traceback_\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2045\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: 'KeyboardInterrupt' object has no attribute '_render_traceback_'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mrun_ast_nodes\u001b[0;34m(self, nodelist, cell_name, interactivity, compiler, result)\u001b[0m\n\u001b[1;32m 3262\u001b[0m \u001b[0masy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompare\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3263\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;32mawait\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_code\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0masync_\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0masy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3264\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - " \u001b[0;31m[... skipping hidden 1 frame]\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2046\u001b[0m stb = self.InteractiveTB.structured_traceback(etype,\n\u001b[0;32m-> 2047\u001b[0;31m value, tb, tb_offset=tb_offset)\n\u001b[0m\u001b[1;32m 2048\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1435\u001b[0m return FormattedTB.structured_traceback(\n\u001b[0;32m-> 1436\u001b[0;31m self, etype, value, tb, tb_offset, number_of_lines_of_context)\n\u001b[0m\u001b[1;32m 1437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1335\u001b[0m return VerboseTB.structured_traceback(\n\u001b[0;32m-> 1336\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb_offset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumber_of_lines_of_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1337\u001b[0m )\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, evalue, etb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1192\u001b[0m formatted_exception = self.format_exception_as_a_whole(etype, evalue, etb, number_of_lines_of_context,\n\u001b[0;32m-> 1193\u001b[0;31m tb_offset)\n\u001b[0m\u001b[1;32m 1194\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mformat_exception_as_a_whole\u001b[0;34m(self, etype, evalue, etb, number_of_lines_of_context, tb_offset)\u001b[0m\n\u001b[1;32m 1149\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1150\u001b[0;31m \u001b[0mlast_unique\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecursion_repeat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfind_recursion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0morig_etype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mevalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mfind_recursion\u001b[0;34m(etype, value, records)\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_recursion_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 451\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 452\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: object of type 'NoneType' has no len()", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2043\u001b[0m \u001b[0;31m# in the engines. This should return a list of strings.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2044\u001b[0;31m \u001b[0mstb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_render_traceback_\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2045\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: 'TypeError' object has no attribute '_render_traceback_'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/async_helpers.py\u001b[0m in \u001b[0;36m_pseudo_sync_runner\u001b[0;34m(coro)\u001b[0m\n\u001b[1;32m 66\u001b[0m \"\"\"\n\u001b[1;32m 67\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 68\u001b[0;31m \u001b[0mcoro\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 69\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mexc\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mexc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mrun_cell_async\u001b[0;34m(self, raw_cell, store_history, silent, shell_futures)\u001b[0m\n\u001b[1;32m 3070\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3071\u001b[0m has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n\u001b[0;32m-> 3072\u001b[0;31m interactivity=interactivity, compiler=compiler, result=result)\n\u001b[0m\u001b[1;32m 3073\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3074\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlast_execution_succeeded\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_raised\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mrun_ast_nodes\u001b[0;34m(self, nodelist, cell_name, interactivity, compiler, result)\u001b[0m\n\u001b[1;32m 3280\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3281\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merror_before_exec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3282\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshowtraceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3283\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3284\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/interactiveshell.py\u001b[0m in \u001b[0;36mshowtraceback\u001b[0;34m(self, exc_tuple, filename, tb_offset, exception_only, running_compiled_code)\u001b[0m\n\u001b[1;32m 2045\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2046\u001b[0m stb = self.InteractiveTB.structured_traceback(etype,\n\u001b[0;32m-> 2047\u001b[0;31m value, tb, tb_offset=tb_offset)\n\u001b[0m\u001b[1;32m 2048\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2049\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_showtraceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1434\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1435\u001b[0m return FormattedTB.structured_traceback(\n\u001b[0;32m-> 1436\u001b[0;31m self, etype, value, tb, tb_offset, number_of_lines_of_context)\n\u001b[0m\u001b[1;32m 1437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1438\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, value, tb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1334\u001b[0m \u001b[0;31m# Verbose modes need a full traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1335\u001b[0m return VerboseTB.structured_traceback(\n\u001b[0;32m-> 1336\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtb_offset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumber_of_lines_of_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1337\u001b[0m )\n\u001b[1;32m 1338\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'Minimal'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mstructured_traceback\u001b[0;34m(self, etype, evalue, etb, tb_offset, number_of_lines_of_context)\u001b[0m\n\u001b[1;32m 1209\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mevalue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1210\u001b[0m formatted_exceptions += self.format_exception_as_a_whole(etype, evalue, etb, lines_of_context,\n\u001b[0;32m-> 1211\u001b[0;31m chained_exceptions_tb_offset)\n\u001b[0m\u001b[1;32m 1212\u001b[0m \u001b[0mexception\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_parts_of_chained_exception\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mevalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1213\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mformat_exception_as_a_whole\u001b[0;34m(self, etype, evalue, etb, number_of_lines_of_context, tb_offset)\u001b[0m\n\u001b[1;32m 1148\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1149\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1150\u001b[0;31m \u001b[0mlast_unique\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecursion_repeat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfind_recursion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0morig_etype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mevalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1152\u001b[0m \u001b[0mframes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_records\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlast_unique\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecursion_repeat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/IPython/core/ultratb.py\u001b[0m in \u001b[0;36mfind_recursion\u001b[0;34m(etype, value, records)\u001b[0m\n\u001b[1;32m 449\u001b[0m \u001b[0;31m# first frame (from in to out) that looks different.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 450\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_recursion_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0metype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 451\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrecords\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 452\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;31m# Select filename, lineno, func_name to track frames with\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: object of type 'NoneType' has no len()" - ] - } - ], - "source": [ - "import plotly.express as px\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for lab in labs:\n", - " X = data[:1000, labs]\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1000, 61)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAaECAYAAAB+WO7VAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdb2ze9X3v/1diSteNALZJbGf8SRk0s6ZuN4a0nXPGtAMGR+A1bUoalHaTqJqx02psCOUs3WhC1D+cDG5sQLtuN9YVZRIobKf94UYE5cbRxtHWnRuVQPNJc8YCocVxEtsJgVQQ7Ot3AzXOpW+u2Ens5Pp8eTykSrP1sfnsevp9563re2VRo9FoBAAAAABOsfhiXwAAAACA9mNpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQMWsS6Nt27bllltuycqVK7N3797TnpmamsrWrVszMDCQ2267LTt27Jj3i3J+dCyfhvWgY/k0rAcdy6dhPehYPg3rQUdamXVpdOutt+bv/u7v8vM///Mtzzz77LPZv39/nn/++Tz99NN5/PHH86Mf/WheL8r50bF8GtaDjuXTsB50LJ+G9aBj+TSsBx1pZdal0U033ZS+vr4zntm5c2fWrl2bxYsXp6urKwMDA3nuuefm7ZKcPx3Lp2E96Fg+DetBx/JpWA86lk/DetCRVublM41GR0ezfPnyk1/39fXlwIED8/GruYB0LJ+G9aBj+TSsBx3Lp2E96Fg+DetBx/enSy72BU41OflWpqcbF/saZ627+7KMj795sa8xJ1NT0zly5PjJ+y5evCidnT83r/8NHReWhq2V0jDR8UxK6ahha6U0THQ8k1I6athaKQ0THc+klI4atlZKw2ThO5baMCmr46nOt+G8LI36+vry+uuv55d/+ZeTVDeQczU93Sj2D6ikezcap3+ddSyno4atlXRvHVsr5d4atlbSvXVsrZR7a9haSffWsbVS7q1hayXdeyE7ltwwKavjfJmXx9NWrVqVHTt2ZHp6OhMTE9m9e3cGBwfn41dzAelYPg3rQcfyaVgPOpZPw3rQsXwa1oOO70+zLo2+8pWv5Dd/8zdz4MCB3HPPPbnzzjuTJBs2bMhLL72UJFm9enWuvvrq3H777fnUpz6VL3zhC7nmmmsW9uaclT//80fyiU/ckUOHDuaP/ugL+cxnPpUkeeCB+3QshIb1oGP5NKwHHcunYT3oWD4N60FHWlnUaDTa5v1V4+NvFvl2r6VLl+TQoWMX+xrnZPHiRenuvmxef6eOF5aGM0ptmOh4qlI7ajij1IaJjqcqtaOGM0ptmOh4qlI7ajij1IbJ/HcstWFSbsfzbTgvj6cBAAAAUC+WRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQcclcDu3bty+bNm3KkSNHcuWVV2bbtm1ZsWJF05nx8fF88YtfzOjoaE6cOJFf//Vfz4MPPphLLpnTf4IFtn//q/nqVx/K0aNHc8UVV+TBB7fmmmuubTqjYfs7Xcfrrruu6YyO7c0s1oNZLJ9ZrAezWD6zWA9msXxmkVbm9E6jLVu2ZP369dm1a1fWr1+fzZs3V85885vfzC/8wi/k2WefzbPPPpt/+7d/y/PPPz/vF+bcPProw1mzZm2eeuofsmbN2jzyyNcqZzRsfzqWT8N60LF8GtaDjuXTsB50LJ+GtDLr0mh8fDwjIyMZGhpKkgwNDWVkZCQTExNN5xYtWpS33nor09PTeeedd3LixIn09PQszK05K5OTE9m7d08GBgaTJAMDg9m7d08mJyebzmnY3nQsn4b1oGP5NKwHHcunYT3oWD4NOZNZ30c2Ojqanp6edHR0JEk6OjqybNmyjI6Opqur6+S5z3/+8/mDP/iD/MZv/EZ+8pOf5NOf/nR+9Vd/9awu09192Vlev30sXbrkYl+hpbGxV9Pb25ve3itPfq+npycnThxLd/fMWw7no2Gi40Jp1fHtt99oOmcWy2toFqtK7GgWm5XY0CxWldjRLDYrsaFZrCqxo1lsVmLDhZjFkhsm7d1xoczbw4fPPfdcVq5cmW9/+9t56623smHDhjz33HNZtWrVnH/H+PibmZ5uzNeVLpilS5fk0KFjF/saLU1OHs+770433XFqajqTk8czPv7mycGdj4aJjgulVcejR483nTOL5TU0i81K7WgWZ5Ta0Cw2K7WjWZxRakOz2KzUjmZxRqkNF2IWS22YtH/HVhYvXnRey7pZH0/r6+vL2NhYpqamkiRTU1M5ePBg+vr6ms5t3749H/vYx7J48eIsWbIkt9xyS77//e+f88WYPz09PTl8+GBTw8OHD2XZsua3EmrY3lp37G06p2P7Mov1YBbLZxbrwSyWzyzWg1ksn1nkTGZdGnV3d6e/vz/Dw8NJkuHh4fT39zc9mpYkV199df7xH/8xSfLOO+/kn//5n3PjjTcuwJU5W52dXbnhho9k9+5dSZLdu3flxhtXprOzs+mchu1Nx/JpWA86lk/DetCxfBrWg47l05AzWdRoNGZ9b9jLL7+cTZs25Y033sjll1+ebdu25frrr8+GDRty33335aMf/Wj279+fLVu25PDhw5mamsqv/dqv5U//9E/P6p/fK/WtaiW8Te3VV1/JV76yJceOHcuSJUvypS9tzbXXrsjGjX+YBx64f94aJjoupNN1XLHiw9m06X6zmHIbmsVmpXY0izNKbWgWm5Xa0SzOKLWhWWxWakezOKPUhgsxi6U2TMroeDrn+3janJZGF0qpf0Cl/vEk5/8HdDo6Xlgazii1YaLjqUrtqOGMUhsmOp6q1I4azii1YaLjqUrtqOGMUhsm89+x1IZJuR0X/DONAAAAAHj/sTQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgIpL5nJo37592bRpU44cOZIrr7wy27Zty4oVKyrndu7cmb/8y79Mo9HIokWL8q1vfStXXXXVfN+Zc7B//6v56lcfytGjR3PFFVfkwQe35pprrq2c07C9na7jddddVzmnY/syi/VgFstnFuvBLJbPLNaDWSyfWaSVOS2NtmzZkvXr12f16tX57ne/m82bN+fJJ59sOvPSSy/liSeeyLe//e0sXbo0x44dy6WXXrogl+bsPfrow1mzZm0GB+/Irl0788gjX8tjj32z6YyG7e90HZ944q+azujY3sxiPZjF8pnFejCL5TOL9WAWy2cWaWXWx9PGx8czMjKSoaGhJMnQ0FBGRkYyMTHRdO5v//Zv89nPfjZLly5NkixZsiQf/OAHF+DKnK3JyYns3bsnAwODSZKBgcHs3bsnk5OTTec0bG86lk/DetCxfBrWg47l07AedCyfhpzJrO80Gh0dTU9PTzo6OpIkHR0dWbZsWUZHR9PV1XXy3Msvv5yrr746n/70p3P8+PHcdttt+W//7b9l0aJFc75Md/dl5/D/QntYunTJxb5CS2Njr6a3tze9vVee/F5PT09OnDiW7u6ZtxzOR8NEx4XSquPbb7/RdM4sltfQLFaV2NEsNiuxoVmsKrGjWWxWYkOzWFViR7PYrMSGCzGLJTdM2rvjQpnT42lzMTU1lR/+8If51re+lXfeeSef+9znsnz58nz84x+f8+8YH38z09ON+brSBbN06ZIcOnTsYl+jpcnJ43n33emmO05NTWdy8njGx988Objz0TDRcaG06nj06PGmc2axvIZmsVmpHc3ijFIbmsVmpXY0izNKbWgWm5Xa0SzOKLXhQsxiqQ2T9u/YyuLFi85rWTfr42l9fX0ZGxvL1NRUkvf+UA4ePJi+vr6mc8uXL8+qVaty6aWX5rLLLsutt96aF1988Zwvxvzp6enJ4cMHmxoePnwoy5b1NJ3TsL217tjbdE7H9mUW68Esls8s1oNZLJ9ZrAezWD6zyJnMujTq7u5Of39/hoeHkyTDw8Pp7+9vejQtee+zjl544YU0Go2cOHEi//Iv/5Jf/MVfXJhbc1Y6O7tyww0fye7du5Iku3fvyo03rkxnZ2fTOQ3bm47l07AedCyfhvWgY/k0rAcdy6chZzLr0ihJHnrooWzfvj2Dg4PZvn17tm7dmiTZsGFDXnrppSTJnXfeme7u7txxxx35+Mc/nhtuuCF33XXXwt2cs7Jx45/kmWeezt13r8kzzzydjRu/mCR54IH7NCxIq45msRxmsR7MYvnMYj2YxfKZxXowi+Uzi7SyqNFotM0DhaU+31jqs43J+T/feDo6Xlgazii1YaLjqUrtqOGMUhsmOp6q1I4azii1YaLjqUrtqOGMUhsm89+x1IZJuR0X/DONAAAAAHj/sTQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgIo5LY327duXdevWZXBwMOvWrcsrr7zS8ux//Md/5Fd+5Veybdu2+boj82D//ldz77335O671+Tee+/Ja6/tb3lWw/alY/k0rAcdy6dhPehYPg3rQcfyaUgrc1oabdmyJevXr8+uXbuyfv36bN68+bTnpqamsmXLlgwMDMzrJTl/jz76cNasWZunnvqHrFmzNo888rXTntOwvelYPg3rQcfyaVgPOpZPw3rQsXwa0sqsS6Px8fGMjIxkaGgoSTI0NJSRkZFMTExUzv71X/91fuu3fisrVqyY94ty7iYnJ7J3754MDAwmSQYGBrN3755MTk5WzmrYvnQsn4b1oGP5NKwHHcunYT3oWD4NOZNLZjswOjqanp6edHR0JEk6OjqybNmyjI6Opqur6+S5PXv25IUXXsiTTz6Zb3zjG+d0me7uy87p59rB0qVLLvYVWhobezW9vb3p7b3y5Pd6enpy4sSxdHdfe/J789Ew0XGhtOr49ttvNJ0zi+U1NItVJXY0i81KbGgWq0rsaBabldjQLFaV2NEsNiux4ULMYskNk/buuFBmXRrNxYkTJ/KlL30pDz/88Mnl0rkYH38z09ON+bjSBbV06ZIcOnTsYl+jpcnJ43n33emmO05NTWdy8njGx99Md/dl89Yw0XGhtOp49Ojxk1+bxTIbmsVmpXY0izNKbWgWm5Xa0SzOKLWhWWxWakezOKPUhgsxi6U2TNq/YyuLFy86r2XdrEujvr6+jI2NZWpqKh0dHZmamsrBgwfT19d38syhQ4eyf//+/N7v/V6S5I033kij0cibb76ZL3/5y+d8OeZHT09PDh8+2NTw8OFDWbas5+QZDdtf6469J8/o2N7MYj2YxfKZxXowi+Uzi/VgFstnFjmTWZdG3d3d6e/vz/DwcFavXp3h4eH09/c3PZq2fPnyfP/73z/59eOPP57jx4/nj//4jxfm1pyVzs6u3HDDR7J7964MDt6R3bt35cYbV6azs/PkGQ3bn47l07AedCyfhvWgY/k0rAcdy6chZzKnfz3toYceyvbt2zM4OJjt27dn69atSZINGzbkpZdeWtALMj82bvyTPPPM07n77jV55pmns3HjF5MkDzxwn4YFadXRLJbDLNaDWSyfWawHs1g+s1gPZrF8ZpFWFjUajbZ5oLDU5xtLfbYxOf/nG09HxwtLwxmlNkx0PFWpHTWcUWrDRMdTldpRwxmlNkx0PFWpHTWcUWrDZP47ltowKbfj+Tac0zuNAAAAAHh/sTQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACg4pK5HNq3b182bdqUI0eO5Morr8y2bduyYsWKpjNf//rXs3PnznR0dOSSSy7J/fffn5tvvnkh7sw52L//1Xz1qw/l6NGjueKKK/Lgg1tzzTXXNp3RsP2druN1113XdEbH9mYW68Esls8s1oNZLJ9ZrAezWD6zSCuLGo1GY7ZDv/u7v5tPfvKTWb16db773e/m7//+7/Pkk082nfmnf/qn3HTTTfnQhz6UPXv25DOf+UxeeOGF/MzP/MycLzM+/mamp2e9TttZunRJDh06drGvcUb33ff7ufPOj2Vw8I7s2rUz3/ve/5fHHvtmFi9elO7uy5LMT8NEx4V0uo5PPPFXJxsmZrHEhmaxWakdzeKMUhuaxWaldjSLM0ptaBabldrRLM4oteFCzGKpDZMyOp7OqQ3P6ednOzA+Pp6RkZEMDQ0lSYaGhjIyMpKJiYmmczfffHM+9KEPJUlWrlyZRqORI0eOnPPFmD+TkxPZu3dPBgYGkyQDA4PZu3dPJicnm85p2N50LJ+G9aBj+TSsBx3Lp2E96Fg+DTmTWZdGo6Oj6enpSUdHR5Kko6Mjy5Yty+joaMuf+c53vpNrr702vb2983dTztnY2FiuumpZU8OrrlqagwfHWv6Mhu2ndccDLX9Gx/ZiFuvBLJbPLNaDWSyfWawHs1g+s8iZzOkzjc7Gv/7rv+Yv/uIv8jd/8zdn/bPn85api23p0iUX+wotjY39bC65ZHHTHTs6Fqez82dP+5qfT8NEx4XSquMVV/zsac+bxfZjFueuxI5msVmJDc1iVYkdzWKzEhuaxaoSO5rFZiU2XIhZLLlh0t4dF8qsS6O+vr6MjY1lamoqHR0dmZqaysGDB9PX11c5+4Mf/CAbN27MN77xjVx//fVnfZlSn29s92cbL710SQ4cOJADB46cbDg2NpYPfGBJxsffbBrc822Y6LhQWnX84Acvr5w1i+3JLM5NqR3N4oxSG5rFZqV2NIszSm1oFpuV2tEszii14ULMYqkNk/bv2MqCf6ZRd3d3+vv7Mzw8nCQZHh5Of39/urq6ms69+OKLuf/++/PYY4/ll37pl875Qsy/zs6u3HDDR7J7964kye7du3LjjSvT2dnZdE7D9qZj+TSsBx3Lp2E96Fg+DetBx/JpyJnM6V9Pe/nll7Np06a88cYbufzyy7Nt27Zcf/312bBhQ+6777589KMfzSc/+cn8+Mc/Tk9Pz8mf+7M/+7OsXLlyzpcpdetYwsbx1VdfyVe+siXHjh3LkiVL8qUvbc21167Ixo1/mAceuH/eGiY6LqTTdVyx4sPZtOl+s5hyG5rFZqV2NIszSm1oFpuV2tEszii1oVlsVmpHszij1IYLMYulNkzK6Hg65/tOozktjS6UUv+ASv3jSc7/D+h0dLywNJxRasNEx1OV2lHDGaU2THQ8VakdNZxRasNEx1OV2lHDGaU2TOa/Y6kNk3I7LvjjaQAAAAC8/1gaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAEDFnJZG+/bty7p16zI4OJh169bllVdeqZyZmprK1q1bMzAwkNtuuy07duyY77tyHvbvfzX33ntP7r57Te6995689tr+yhkN25+O5dOwHnQsn4b1oGP5NKwHHcunIa3MaWm0ZcuWrF+/Prt27cr69euzefPmyplnn302+/fvz/PPP5+nn346jz/+eH70ox/N+4U5N48++nDWrFmbp576h6xZszaPPPK1yhkN25+O5dOwHnQsn4b1oGP5NKwHHcunIa3MujQaHx/PyMhIhoaGkiRDQ0MZGRnJxMRE07mdO3dm7dq1Wbx4cbq6ujIwMJDnnnvu7C6zeFGR/2v3ux85Mpm9e/fk9ttXZfHiRbn99lXZu3dPjh49cvL+89Ww3V+LunY0i+U3/On9zWLZHc1i+Q1/en+zWHZHs1h+w5/e3yyW3dEslt/wp/d/vzcsoeNsdz9Xl8x2YHR0ND09Peno6EiSdHR0ZNmyZRkdHU1XV1fTueXLl5/8uq+vLwcOHDiry3R2/txZnW8n3d2XXewrtDQ6+kp6e3uzbNkVJ7/X09OTt99+I52d15xy7vwbJjoulNHR03f8yU+OJrn6lHNmsV2NjprFuSqxo1lsVmJDs1hVYkez2KzEhmaxqsSOZrFZiQ0XYhZLbpi0d8eF4oOwAQAAAKiYdWnU19eXsbGxTE1NJXnvw68OHjyYvr6+yrnXX3/95Nejo6Pp7e2d5+tyLjSsBx3Lp2E96Fg+DetBx/JpWA86lk9DzmTWpVF3d3f6+/szPDycJBkeHk5/f3/To2lJsmrVquzYsSPT09OZmJjI7t27Mzg4uDC35qxoWA86lk/DetCxfBrWg47l07AedCyfhpxRYw7+/d//vXHXXXc1br/99sZdd93VePnllxuNRqPxuc99rvHiiy82Go1G4913321s3ry5ceuttzZuvfXWxlNPPTWXX80FomE96Fg+DetBx/JpWA86lk/DetCxfBrSyqJGo9G42IsrAAAAANqLD8IGAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACg4oIujfbt25d169ZlcHAw69atyyuvvFI5MzU1la1bt2ZgYCC33XZbduzYcSGv2NJc7v7444/nP/2n/5TVq1dn9erV2bp164W/6Gls27Ytt9xyS1auXJm9e/ee9szZvO46Xhzz2VHDi8MsztDxPRpeHGZxho7v0fDiMIszdHyPhheHWZyh42k0LqDf+Z3faXznO99pNBqNxne+853G7/zO71TO/M//+T8bn/3sZxtTU1ON8fHxxs0339x47bXXLuQ1T2sud3/sscca/+N//I8LfbVZ/Z//838ar7/+euO//tf/2vjhD3942jNn87rreHHMZ0cNLw6zOEPH92h4cZjFGTq+R8OLwyzO0PE9Gl4cZnGGjlUX7J1G4+PjGRkZydDQUJJkaGgoIyMjmZiYaDq3c+fOrF27NosXL05XV1cGBgby3HPPXahrntZc796ubrrppvT19Z3xzFxfdx0vnvnqqOHFYxbfo+N7NLx4zOJ7dHyPhhePWXyPju/R8OIxi+/R8fQu2NJodHQ0PT096ejoSJJ0dHRk2bJlGR0drZxbvnz5ya/7+vpy4MCBC3XN05rr3ZPke9/7Xn77t387n/3sZ/ODH/zgQl/1nM31ddexvc3lddewvZnFZnXuqGF7M4vN6txRw/ZmFpvVuaOG7c0sNqt7x1NdstCXej+5++678/u///v5wAc+kP/9v/93Pv/5z2fnzp3p7Oy82FfjLOhYPg3rQcfyaVgPOpZPw3rQsXwa1sP7reMFe6dRX19fxsbGMjU1leS9D2A6ePBg5e1TfX19ef31109+PTo6mt7e3gt1zdOa692XLl2aD3zgA0mS//Jf/kv6+vry//7f/7vg9z0Xc33ddWxvc3ndNWxvZnFG3Ttq2N7M4oy6d9SwvZnFGXXvqGF7M4sz3g8dT3XBlkbd3d3p7+/P8PBwkmR4eDj9/f3p6upqOrdq1ars2LEj09PTmZiYyO7duzM4OHihrnlac7372NjYyf/7//7f/5sf//jH+fCHP3xB73qu5vq669je5vK6a9jezOKMunfUsL2ZxRl176hhezOLM+reUcP2ZhZnvB86NlmIT+1u5d///d8bd911V+P2229v3HXXXY2XX3650Wg0Gp/73OcaL774YqPRaDTefffdxubNmxu33npr49Zbb2089dRTF/KKLc3l7v/9v//3xp133tn47d/+7caaNWsa/+t//a+LeeWTvvzlLzduvvnmRn9/f+M//+f/3Ljjjjsajca5v+46Xhzz2VHDi8MsztDxPRpeHGZxho7v0fDiMIszdHyPhheHWZyhY9WiRqPRuDA7LQAAAABKccEeTwMAAACgHJZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVsy6Ntm3blltuuSUrV67M3r17T3tmamoqW7duzcDAQG677bbs2LFj3i/K+dGxfBrWg47l07AedCyfhvWgY/k0rAcdaWXWpdGtt96av/u7v8vP//zPtzzz7LPPZv/+/Xn++efz9NNP5/HHH8+Pfrb1cekAACAASURBVPSjeb0o50fH8mlYDzqWT8N60LF8GtaDjuXTsB50pJVZl0Y33XRT+vr6znhm586dWbt2bRYvXpyurq4MDAzkueeem7dLcv50LJ+G9aBj+TSsBx3Lp2E96Fg+DetBR1qZl880Gh0dzfLly09+3dfXlwMHDszHr+YC0rF8GtaDjuXTsB50LJ+G9aBj+TSsBx3fny652Bc41eTkW5meblzsa5y17u7LMj7+5sW+xpxMTU3nyJHjJ++7ePGidHb+3Lz+N3RcWBq2VkrDRMczKaWjhq2V0jDR8UxK6ahha6U0THQ8k1I6athaKQ2The9YasOkrI6nOt+G87I06uvry+uvv55f/uVfTlLdQM7V9HSj2D+gku7daJz+ddaxnI4atlbSvXVsrZR7a9haSffWsbVS7q1hayXdW8fWSrm3hq2VdO+F7Fhyw6SsjvNlXh5PW7VqVXbs2JHp6elMTExk9+7dGRwcnI9fzQWkY/k0rAcdy6dhPehYPg3rQcfyaVgPOr4/zbo0+spXvpLf/M3fzIEDB3LPPffkzjvvTJJs2LAhL730UpJk9erVufrqq3P77bfnU5/6VL7whS/kmmuuWdibc1b+/M8fySc+cUcOHTqYP/qjL+Qzn/lUkuSBB+7TsRAa1oOO5dOwHnQsn4b1oGP5NKwHHWllUaPRaJv3V42Pv1nk272WLl2SQ4eOXexrnJPFixelu/uyef2dOl5YGs4otWGi46lK7ajhjFIbJjqeqtSOGs4otWGi46lK7ajhjFIbJvPfsdSGSbkdz7fhvDyeBgAAAEC9WBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQMUlczm0b9++bNq0KUeOHMmVV16Zbdu2ZcWKFU1nxsfH88UvfjGjo6M5ceJEfv3Xfz0PPvhgLrlkTv8JFtj+/a/mq199KEePHs0VV1yRBx/cmmuuubbpjIbt73Qdr7vuuqYzOrY3s1gPZrF8ZrEezGL5zGI9mMXymUVamdM7jbZs2ZL169dn165dWb9+fTZv3lw5881vfjO/8Au/kGeffTbPPvts/u3f/i3PP//8vF+Yc/Poow9nzZq1eeqpf8iaNWvzyCNfq5zRsP3pWD4N60HH8mlYDzqWT8N60LF8GtLKrEuj8fHxjIyMZGhoKEkyNDSUkZGRTExMNJ1btGhR3nrrrUxPT+edd97JiRMn0tPTszC35qxMTk5k7949GRgYTJIMDAxm7949mZycbDqnYXvTsXwa1oOO5dOwHnQsn4b1oGP5NORMZn0f2ejoaHp6etLR0ZEk6ejoyLJlyzI6Opqurq6T5z7/+c/nD/7gD/Ibv/Eb+clPfpJPf/rT+dVf/dWzukx392Vnef32sXTpkot9hZbGxl5Nb29venuvPPm9np6enDhxLN3dM285nI+GiY4LpVXHt99+o+mcWSyvoVmsKrGjWWxWYkOzWFViR7PYrMSGZrGqxI5msVmJDRdiFktumLR3x4Uybw8fPvfcc1m5cmW+/e1v56233sqGDRvy3HPPZdWqVXP+HePjb2Z6ujFfV7pgli5dkkOHjl3sa7Q0OXk877473XTHqanpTE4ez/j4mycHdz4aJjoulFYdjx493nTOLJbX0Cw2K7WjWZxRakOz2KzUjmZxRqkNzWKzUjuaxRmlNlyIWSy1YdL+HVtZvHjReS3rZn08ra+vL2NjY5mamkqSTE1N5eDBg+nr62s6t3379nzsYx/L4sWLs2TJktxyyy35/ve/f84XY/709PTk8OGDTQ0PHz6UZcua30qoYXtr3bG36ZyO7css1oNZLJ9ZrAezWD6zWA9msXxmkTOZdWnU3d2d/v7+DA8PJ0mGh4fT39/f9Ghaklx99dX5x3/8xyTJO++8k3/+53/OjTfeuABX5mx1dnblhhs+kt27dyVJdu/elRtvXJnOzs6mcxq2Nx3Lp2E96Fg+DetBx/JpWA86lk9DzmRRo9GY9b1hL7/8cjZt2pQ33ngjl19+ebZt25brr78+GzZsyH333ZePfvSj2b9/f7Zs2ZLDhw9namoqv/Zrv5Y//dM/Pat/fq/Ut6qV8Da1V199JV/5ypYcO3YsS5YsyZe+tDXXXrsiGzf+YR544P55a5jouJBO13HFig9n06b7zWLKbWgWm5Xa0SzOKLWhWWxWakezOKPUhmaxWakdzeKMUhsuxCyW2jApo+PpnO/jaXNaGl0opf4BlfrHk5z/H9Dp6HhhaTij1IaJjqcqtaOGM0ptmOh4qlI7ajij1IaJjqcqtaOGM0ptmMx/x1IbJuV2XPDPNAIAAADg/cfSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgIpL5nJo37592bRpU44cOZIrr7wy27Zty4oVKyrndu7cmb/8y79Mo9HIokWL8q1vfStXXXXVfN+Zc7B//6v56lcfytGjR3PFFVfkwQe35pprrq2c07C9na7jddddVzmnY/syi/VgFstnFuvBLJbPLNaDWSyfWaSVOS2NtmzZkvXr12f16tX57ne/m82bN+fJJ59sOvPSSy/liSeeyLe//e0sXbo0x44dy6WXXrogl+bsPfrow1mzZm0GB+/Irl0788gjX8tjj32z6YyG7e90HZ944q+azujY3sxiPZjF8pnFejCL5TOL9WAWy2cWaWXWx9PGx8czMjKSoaGhJMnQ0FBGRkYyMTHRdO5v//Zv89nPfjZLly5NkixZsiQf/OAHF+DKnK3JyYns3bsnAwODSZKBgcHs3bsnk5OTTec0bG86lk/DetCxfBrWg47l07AedCyfhpzJrEuj0dHR9PT0pKOjI0nS0dGRZcuWZXR0tOncyy+/nNdeey2f/vSn84lPfCLf+MY30mg0FubWnJWxsbFcddWypoZXXbU0Bw+ONZ3TsL217nig6ZyO7css1oNZLJ9ZrAezWD6zWA9msXxmkTOZ0+NpczE1NZUf/vCH+da3vpV33nknn/vc57J8+fJ8/OMfn/Pv6O6+bL6uc8EtXbrkYl+hpbGxn80llyxuumNHx+J0dv5s02s+Hw0THRdKq45XXPGzTefMYnkNzWJViR3NYrMSG5rFqhI7msVmJTY0i1UldjSLzUpsuBCzWHLDpL07LpRZl0Z9fX0ZGxvL1NRUOjo6MjU1lYMHD6avr6/p3PLly7Nq1apceumlufTSS3PrrbfmxRdfPKs/oPHxNzM9Xd6mcunSJTl06NjFvkZLl166JAcOHMiBA0dONhwbG8sHPrAk4+Nvnhzc+WiY6LhQWnX84AcvbzpnFstraBabldrRLM4otaFZbFZqR7M4o9SGZrFZqR3N4oxSGy7ELJbaMGn/jq0sXrzovJZ1sz6e1t3dnf7+/gwPDydJhoeH09/fn66urqZzQ0NDeeGFF9JoNHLixIn8y7/8S37xF3/xnC/G/Ons7MoNN3wku3fvSpLs3r0rN964Mp2dnU3nNGxvOpZPw3rQsXwa1oOO5dOwHnQsn4acyaxLoyR56KGHsn379gwODmb79u3ZunVrkmTDhg156aWXkiR33nlnuru7c8cdd+TjH/94brjhhtx1110Ld3POysaNf5Jnnnk6d9+9Js8883Q2bvxikuSBB+7TsCCtOprFcpjFejCL5TOL9WAWy2cW68Esls8s0sqiRht9clWpb1Ur9W1qyfm/Ve10dLywNJxRasNEx1OV2lHDGaU2THQ8VakdNZxRasNEx1OV2lHDGaU2TOa/Y6kNk3I7LvjjaQAAAAC8/1gaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAEDFnJZG+/bty7p16zI4OJh169bllVdeaXn2P/7jP/Irv/Ir2bZt23zdkXmwf/+ruffee3L33Wty77335LXX9rc8q2H70rF8GtaDjuXTsB50LJ+G9aBj+TSklTktjbZs2ZL169dn165dWb9+fTZv3nzac1NTU9myZUsGBgbm9ZKcv0cffThr1qzNU0/9Q9asWZtHHvnaac9p2N50LJ+G9aBj+TSsBx3Lp2E96Fg+DWll1qXR+Ph4RkZGMjQ0lCQZGhrKyMhIJiYmKmf/+q//Or/1W7+VFStWzPtFOXeTkxPZu3dPBgYGkyQDA4PZu3dPJicnK2c1bF86lk/DetCxfBrWg47l07AedCyfhpzJJbMdGB0dTU9PTzo6OpIkHR0dWbZsWUZHR9PV1XXy3J49e/LCCy/kySefzDe+8Y1zukx392Xn9HPtYOnSJRf7Ci2Njb2a3t7e9PZeefJ7PT09OXHiWLq7rz35vflomOi4UFp1fPvtN5rOmcXyGprFqhI7msVmJTY0i1UldjSLzUpsaBarSuxoFpuV2HAhZrHkhkl7d1wosy6N5uLEiRP50pe+lIcffvjkculcjI+/menpxnxc6YJaunRJDh06drGv0dLk5PG8++500x2npqYzOXk84+Nvprv7snlrmOi4UFp1PHr0+MmvzWKZDc1is1I7msUZpTY0i81K7WgWZ5Ta0Cw2K7WjWZxRasOFmMVSGybt37GVxYsXndeybtalUV9fX8bGxjI1NZWOjo5MTU3l4MGD6evrO3nm0KFD2b9/f37v934vSfLGG2+k0WjkzTffzJe//OVzvhzzo6enJ4cPH2xqePjwoSxb1nPyjIbtr3XH3pNndGxvZrEezGL5zGI9mMXymcV6MIvlM4ucyaxLo+7u7vT392d4eDirV6/O8PBw+vv7mx5NW758eb7//e+f/Prxxx/P8ePH88d//McLc2vOSmdnV2644SPZvXtXBgfvyO7du3LjjSvT2dl58oyG7U/H8mlYDzqWT8N60LF8GtaDjuXTkDOZ07+e9tBDD2X79u0ZHBzM9u3bs3Xr1iTJhg0b8tJLLy3oBZkfGzf+SZ555uncffeaPPPM09m48YtJkgceuE/DgrTqaBbLYRbrwSyWzyzWg1ksn1msB7NYPrNIK4sajUbbPFBY6vONpT7bmJz/842no+OFpeGMUhsmOp6q1I4azii1YaLjqUrtqOGMUhsmOp6q1I4azii1YTL/HUttmJTb8XwbzumdRgAAAAC8v1gaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAEDFJXM5tG/fvmzatClHjhzJlVdemW3btmXFihVNZ77+9a9n586d6ejoyCWXXJL7778/N99880LcmXOwf/+r+epXH8rRo0dzxRVX5MEHt+aaa65tOqNh+ztdx+uuu67pjI7tzSzWg1ksn1msB7NYPrNYD2axfGaRVhY1Go3GbId+93d/N5/85CezevXqfPe7383f//3f58knn2w680//9E+56aab8qEPfSh79uzJZz7zmbzwwgv5mZ/5mTlfZnz8zUxPz3qdtrN06ZIcOnTsYl/jjO677/dz550fy+DgHdm1a2e+973/L4899s0sXrwo3d2XJZmfhomOC+l0HZ944q9ONkzMYokNzWKzUjuaxRmlNjSLzUrtaBZnlNrQLDYrtaNZnFFqw4WYxVIbJmV0PJ1TG57Tz892YHx8PCMjIxkaGkqSDA0NZWRkJBMTE03nbr755nzoQx9KkqxcuTKNRiNHjhw554sxfyYnJ7J3754MDAwmSQYGBrN3755MTk42ndOwvelYPg3rQcfyaVgPOpZPw3rQsXwaciazPp42Ojqanp6edHR0JEk6OjqybNmyjI6Opqur67Q/853vfCfXXnttent7z+oy57P9utiWLl1ysa/Q0tjYq+nt7U1v75Unv9fT05MTJ46lu/va0/7MuTZMdFworTq+/fYbLX/GLLYXszh3JXY0i81KbGgWq0rsaBabldjQLFaV2NEsNiux4ULMYskNk/buuFDm9JlGZ+Nf//Vf8xd/8Rf5m7/5m7P+2VLfqtbub1ObnDyed9+dbrrj1NR0JiePZ3z8zcrgnk/DRMeF0qrj0aPHT3veLLYfszg3pXY0izNKbWgWm5Xa0SzOKLWhWWxWakezOKPUhgsxi6U2TNq/YysL/nhaX19fxsbGMjU1lSSZmprKwYMH09fXVzn7gx/8IBs3bszXv/71XH/99ed8KeZXT09PDh8+2NTw8OFDWbasp3JWw/bVumN1u69jezKL9WAWy2cW68Esls8s1oNZLJ9Z5ExmXRp1d3env78/w8PDSZLh4eH09/dXHk178cUXc//99+exxx7LL/3SLy3MbTknnZ1dueGGj2T37l1Jkt27d+XGG1ems7Oz6ZyG7U3H8mlYDzqWT8N60LF8GtaDjuXTkDOZ07+e9vLLL2fTpk154403cvnll2fbtm25/vrrs2HDhtx333356Ec/mk9+8pP58Y9/nJ6emW3kn/3Zn2XlypVzvkypb1Ur4W1qr776Sr7ylS05duxYlixZki99aWuuvXZFNm78wzzwwP3z1jDRcSGdruOKFR/Opk33m8WU29AsNiu1o1mcUWpDs9is1I5mcUapDc1is1I7msUZpTZciFkstWFSRsfTOd/H0+a0NLpQSv0DKvWPJzn/P6DT0fHC0nBGqQ0THU9VakcNZ5TaMNHxVKV21HBGqQ0THU9VakcNZ5TaMJn/jqU2TMrtuOCfaQQAAADA+4+lEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUzGlptG/fvqxbty6Dg4NZt25dXnnllcqZqampbN26NQMDA7ntttuyY8eO+b4r52H//ldz77335O671+Tee+/Ja6/tr5zRsP3pWD4N60HH8mlYDzqWT8N60LF8GtLKnJZGW7Zsyfr167Nr166sX78+mzdvrpx59tlns3///jz//PN5+umn8/jjj+dHP/rRvF+Yc/Poow9nzZq1eeqpf8iaNWvzyCNfq5zRsP3pWD4N60HH8mlYDzqWT8N60LF8GtLKrEuj8fHxjIyMZGhoKEkyNDSUkZGRTExMNJ3buXNn1q5dm8WLF6erqysDAwN57rnnzu4yixcV+b92v/uRI5PZu3dPbr99VRYvXpTbb1+VvXv35OjRIyfvP18N2/21qGtHs1h+w5/e3yyW3dEslt/wp/c3i2V3NIvlN/zp/c1i2R3NYvkNf3r/93vDEjrOdvdzdclsB0ZHR9PT05OOjo4kSUdHR5YtW5bR0dF0dXU1nVu+fPnJr/v6+nLgwIGzukxn58+d1fl20t192cW+Qkujo6+kt7c3y5ZdcfJ7PT09efvtN9LZec0p586/YaLjQhkdPX3Hn/zkaJKrTzlnFtvV6KhZnKsSO5rFZiU2NItVJXY0i81KbGgWq0rsaBabldhwIWax5IZJe3dcKD4IGwAAAICKWZdGfX19GRsby9TUVJL3Pvzq4MGD6evrq5x7/fXXT349Ojqa3t7eeb4u50LDetCxfBrWg47l07AedCyfhvWgY/k05ExmXRp1d3env78/w8PDSZLh4eH09/c3PZqWJKtWrcqOHTsyPT2diYmJ7N69O4ODgwtza86KhvWgY/k0rAcdy6dhPfz/7N1vbNX3fff/F5ika6+QBBxjzPKHZkmZNXW7sUj7m2kLThwl7ugoKRFtp6tRWLtWV7YoYqNbCkH9N5beuJa0W7cb6xoxKRHZlv7iohBxY9oybd1uVEo0j7IyEtrGGGJMQsqlhpjzu4HE4ejrAwb853y+eTykSjX62Hxynud9563zNTqWT8N60LF8GnJOjWn43ve+11i3bl3jjjvuaKxbt66xf//+RqPRaNx///2NF198sdFoNBpvv/12Y8uWLY3Vq1c3Vq9e3XjyySen86OZIxrWg47l07AedCyfhvWgY/k0rAcdy6ch7SxoNBqN+V5cAQAAANBZ/CJsAAAAACosjQAAAACosDQCAAAAoMLSCAAAAICKOV0aHThwIOvXr8/g4GDWr1+fl19+uXJmcnIy27Zty8DAQG6//fbs3LlzLq/Y1nTu/vjjj+eXfumXsmbNmqxZsybbtm2b+4tOYfv27bntttuyatWq7Nu3b8ozF/K66zg/ZrKjhvPDLDbpeJqG88MsNul4mobzwyw26XiahvPDLDbpOIW5/KfaPvaxjzWeeeaZRqPRaDzzzDONj33sY5Uz//AP/9C47777GpOTk43x8fHGrbfe2vj+978/l9ec0nTu/thjjzX+5E/+ZK6vdl7/8R//0Xj11Vcbv/Ebv9H47ne/O+WZC3nddZwfM9lRw/lhFpt0PE3D+WEWm3Q8TcP5YRabdDxNw/lhFpt0rJqzTxqNj49nZGQkQ0NDSZKhoaGMjIzk6NGjLed27dqVe+65JwsXLszSpUszMDCQ5557bq6uOaXp3r1T3XLLLenr6zvnmem+7jrOn5nqqOH8MYun6XiahvPHLJ6m42kazh+zeJqOp2k4f8ziaTpObc6WRqOjo+nt7U1XV1eSpKurK8uWLcvo6Gjl3IoVK8583dfXl0OHDs3VNac03bsnybe+9a184AMfyH333ZfvfOc7c33Vizbd113Hzjad113DzmYWW9W5o4adzSy2qnNHDTubWWxV544adjaz2KruHc+2aLYv9U5y77335pOf/GQuu+yy/Mu//Es+9alPZdeuXVmyZMl8X40LoGP5NKwHHcunYT3oWD4N60HH8mlYD++0jnP2SaO+vr6MjY1lcnIyyelfwHT48OHKx6f6+vry6quvnvl6dHQ0y5cvn6trTmm6d+/p6clll12WJPmVX/mV9PX15b//+7/n/L4XY7qvu46dbTqvu4adzSw21b2jhp3NLDbVvaOGnc0sNtW9o4adzSw2vRM6nm3Olkbd3d3p7+/P8PBwkmR4eDj9/f1ZunRpy7k777wzO3fuzKlTp3L06NHs2bMng4ODc3XNKU337mNjY2f+/3/913/lhz/8Yd773vfO6V0v1nRfdx0723Redw07m1lsqntHDTubWWyqe0cNO5tZbKp7Rw07m1lseid0bDEbv7W7ne9973uNdevWNe64447GunXrGvv37280Go3G/fff33jxxRcbjUaj8fbbbze2bNnSWL16dWP16tWNJ598ci6v2NZ07v4Hf/AHjbvvvrvxgQ98oLF27drGP/7jP87nlc/43Oc+17j11lsb/f39jV/+5V9u3HXXXY1G4+Jfdx3nx0x21HB+mMUmHU/TcH6YxSYdT9NwfpjFJh1P03B+mMUmHasWNBqNxtzstAAAAAAoxZw9ngYAAABAOSyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqDjv0mj79u257bbbsmrVquzbt2/KM5OTk9m2bVsGBgZy++23Z+fOnTN+US6NjuXTsB50LJ+G9aBj+TSsBx3Lp2E96Eg7510arV69On/7t3+bn/zJn2x75tlnn83Bgwfz/PPP56mnnsrjjz+eH/zgBzN6US6NjuXTsB50LJ+G9aBj+TSsBx3Lp2E96Eg7510a3XLLLenr6zvnmV27duWee+7JwoULs3Tp0gwMDOS5556bsUty6XQsn4b1oGP5NKwHHcunYT3oWD4N60FH2pmR32k0OjqaFStWnPm6r68vhw4dmokfzRzSsXwa1oOO5dOwHnQsn4b1oGP5NKwHHd+ZFs33Bc42MfGjnDrVmO9rXLDu7isyPv7mfF9jWiYnT+XYsRNn7rtw4YIsWfK/ZvTv0HF2adhepJln8AAAIABJREFUKQ0THc+llI4atldKw0THcymlo4btldIw0fFcSumoYXulNExmv2OpDZOyOp7tUhvOyNKor68vr776an72Z382SXUDOV2nTjWKfQOVdO9GY+rXWcdyOmrYXkn31rG9Uu6tYXsl3VvH9kq5t4btlXRvHdsr5d4atlfSvWezY8kNk7I6zpQZeTztzjvvzM6dO3Pq1KkcPXo0e/bsyeDg4Ez8aOaQjuXTsB50LJ+G9aBj+TSsBx3Lp2E96PjOdN6l0ec///n82q/9Wg4dOpSPf/zjufvuu5MkGzduzEsvvZQkWbNmTa699trccccd+fCHP5xPf/rTue6662b35lyQ//t/H81v/dZdOXLkcH7/9z+dj370w0mShx56QMdCaFgPOpZPw3rQsXwa1oOO5dOwHnSknQWNRqNjPl81Pv5mkR/36ulZnCNHjs/3NS7KwoUL0t19xYz+TB3nloZNpTZMdDxbqR01bCq1YaLj2UrtqGFTqQ0THc9WakcNm0ptmMx8x1IbJuV2vNSGM/J4GgAAAAD1YmkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAxaLpHDpw4EA2b96cY8eO5eqrr8727duzcuXKljPj4+P5zGc+k9HR0Zw8eTK/+Iu/mIcffjiLFk3rr2CWHTz4Sr7whUfy+uuv56qrrsrDD2/Ldddd33JGw843Vccbbrih5YyOnc0s1oNZLJ9ZrAezWD6zWA9msXxmkXam9UmjrVu3ZsOGDdm9e3c2bNiQLVu2VM587Wtfy0/91E/l2WefzbPPPpv//M//zPPPPz/jF+bifPnLX8ratffkySf/PmvX3pNHH/1i5YyGnU/H8mlYDzqWT8N60LF8GtaDjuXTkHbOuzQaHx/PyMhIhoaGkiRDQ0MZGRnJ0aNHW84tWLAgP/rRj3Lq1Km89dZbOXnyZHp7e2fn1lyQiYmj2bdvbwYGBpMkAwOD2bdvbyYmJlrOadjZdCyfhvWgY/k0rAcdy6dhPehYPg05l/MujUZHR9Pb25uurq4kSVdXV5YtW5bR0dGWc5/61Kdy4MCB/Oqv/uqZ//38z//87NyaCzI2NpZrrlnW0vCaa3py+PBYyzkNO1v7jodazunYucxiPZjF8pnFejCL5TOL9WAWy2cWOZcZe/jwueeey6pVq/KNb3wjP/rRj7Jx48Y899xzufPOO6f9M7q7r5ip68y5np7F832FtsbG3pNFixa23LGra2GWLHlPy2s+Ew0THWdLu45XXfWelnNmsbyGZrGqxI5msVWJDc1iVYkdzWKrEhuaxaoSO5rFViU2nI1ZLLlh0tkdZ8t5l0Z9fX0ZGxvL5ORkurq6Mjk5mcOHD6evr6/l3I4dO/LFL34xCxcuzOLFi3Pbbbfl29/+9gW9gcbH38ypU40L/6+YZz09i3PkyPH5vkZbl1++OIcOHcqhQ8fONBwbG8tlly3O+PibZwZ3JhomOs6Wdh3f9a4rW86ZxfIamsVWpXY0i02lNjSLrUrtaBabSm1oFluV2tEsNpXacDZmsdSGSed3bGfhwgWXtKw77+Np3d3d6e/vz/DwcJJkeHg4/f39Wbp0acu5a6+9Nv/0T/+UJHnrrbfyr//6r7n55psv+mLMnCVLluamm96XPXt2J0n27Nmdm29elSVLlrSc07Cz6Vg+DetBx/JpWA86lk/DetCxfBpyLgsajcZ513z79+/P5s2b88Ybb+TKK6/M9u3bc+ONN2bjxo154IEH8v73vz8HDx7M1q1b89prr2VycjK/8Au/kD/+4z++oH9+r9StYwkbx1deeTmf//zWHD9+PIsXL85nP7st11+/Mps2/V4eeujBGWuY6Dibpuq4cuV7s3nzg2Yx5TY0i61K7WgWm0ptaBZbldrRLDaV2tAstiq1o1lsKrXhbMxiqQ2TMjpO5VI/aTStpdFcKfUNVOqbJ7n0N9BUdJxbGjaV2jDR8WyldtSwqdSGiY5nK7Wjhk2lNkx0PFupHTVsKrVhMvMdS22YlNtx1h9PAwAAAOCdx9IIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACoWTefQgQMHsnnz5hw7dixXX311tm/fnpUrV1bO7dq1K3/xF3+RRqORBQsW5Otf/3quueaamb4zF+HgwVfyhS88ktdffz1XXXVVHn54W6677vrKOQ0721Qdb7jhhso5HTuXWawHs1g+s1gPZrF8ZrEezGL5zCLtTGtptHXr1mzYsCFr1qzJN7/5zWzZsiVPPPFEy5mXXnopX/nKV/KNb3wjPT09OX78eC6//PJZuTQX7stf/lLWrr0ng4N3ZffuXXn00S/msce+1nJGw843VcevfOUvW87o2NnMYj2YxfKZxXowi+Uzi/VgFstnFmnnvI+njY+PZ2RkJENDQ0mSoaGhjIyM5OjRoy3n/uZv/ib33Xdfenp6kiSLFy/Ou971rlm4MhdqYuJo9u3bm4GBwSTJwMBg9u3bm4mJiZZzGnY2HcunYT3oWD4N60HH8mlYDzqWT0PO5byfNBodHU1vb2+6urqSJF1dXVm2bFlGR0ezdOnSM+f279+fa6+9Nh/5yEdy4sSJ3H777fnd3/3dLFiwYNqX6e6+4iL+EzpDT8/i+b5CW2Njr2T58uVZvvzqM3/W29ubkyePp7u7+ZHDmWiY6Dhb2nX88Y/faDlnFstraBarSuxoFluV2NAsVpXY0Sy2KrGhWawqsaNZbFViw9mYxZIbJp3dcbZM6/G06ZicnMx3v/vdfP3rX89bb72V+++/PytWrMgHP/jBaf+M8fE3c+pUY6auNGd6ehbnyJHj832NtiYmTuTtt0+13HFy8lQmJk5kfPzNM4M7Ew0THWdLu46vv36i5ZxZLK+hWWxVakez2FRqQ7PYqtSOZrGp1IZmsVWpHc1iU6kNZ2MWS22YdH7HdhYuXHBJy7rzPp7W19eXsbGxTE5OJjn9Rjl8+HD6+vpazq1YsSJ33nlnLr/88lxxxRVZvXp1XnzxxYu+GDOnt7c3r712uKXha68dybJlvS3nNOxs7TsubzmnY+cyi/VgFstnFuvBLJbPLNaDWSyfWeRczrs06u7uTn9/f4aHh5Mkw8PD6e/vb3k0LTn9u45eeOGFNBqNnDx5Mv/2b/+Wn/7pn56dW3NBlixZmptuel/27NmdJNmzZ3duvnlVlixZ0nJOw86mY/k0rAcdy6dhPehYPg3rQcfyaci5nHdplCSPPPJIduzYkcHBwezYsSPbtm1LkmzcuDEvvfRSkuTuu+9Od3d37rrrrnzwgx/MTTfdlHXr1s3ezbkgmzb9UZ5++qnce+/aPP30U9m06TNJkoceekDDgrTraBbLYRbrwSyWzyzWg1ksn1msB7NYPrNIOwsajUbHPFBY6vONpT7bmFz6841T0XFuadhUasNEx7OV2lHDplIbJjqerdSOGjaV2jDR8WyldtSwqdSGycx3LLVhUm7HWf+dRgAAAAC881gaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAEDFtJZGBw4cyPr16zM4OJj169fn5Zdfbnv2f/7nf/JzP/dz2b59+0zdkRlw8OAr+cQnPp57712bT3zi4/n+9w+2Path59KxfBrWg47l07AedCyfhvWgY/k0pJ1pLY22bt2aDRs2ZPfu3dmwYUO2bNky5bnJycls3bo1AwMDM3pJLt2Xv/ylrF17T5588u+zdu09efTRL055TsPOpmP5NKwHHcunYT3oWD4N60HH8mlIO+ddGo2Pj2dkZCRDQ0NJkqGhoYyMjOTo0aOVs3/1V3+VX//1X8/KlStn/KJcvImJo9m3b28GBgaTJAMDg9m3b28mJiYqZzXsXDqWT8N60LF8GtaDjuXTsB50LJ+GnMui8x0YHR1Nb29vurq6kiRdXV1ZtmxZRkdHs3Tp0jPn9u7dmxdeeCFPPPFE/vzP//yiLtPdfcVFfV8n6OlZPN9XaGts7JUsX748y5dffebPent7c/Lk8XR3X3/mz2aiYaLjbGnX8cc/fqPlnFksr6FZrCqxo1lsVWJDs1hVYkez2KrEhmaxqsSOZrFViQ1nYxZLbph0dsfZct6l0XScPHkyn/3sZ/OlL33pzHLpYoyPv5lTpxozcaU51dOzOEeOHJ/va7Q1MXEib799quWOk5OnMjFxIuPjb6a7+4oZa5joOFvadXz99RNnvjaLZTY0i61K7WgWm0ptaBZbldrRLDaV2tAstiq1o1lsKrXhbMxiqQ2Tzu/YzsKFCy5pWXfepVFfX1/GxsYyOTmZrq6uTE5O5vDhw+nr6ztz5siRIzl48GB+53d+J0nyxhtvpNFo5M0338znPve5i74cM6O3tzevvXa4peFrrx3JsmW9Z85o2Pnad1x+5oyOnc0s1oNZLJ9ZrAezWD6zWA9msXxmkXM579Kou7s7/f39GR4ezpo1azI8PJz+/v6WR9NWrFiRb3/722e+fvzxx3PixIn84R/+4ezcmguyZMnS3HTT+7Jnz+4MDt6VPXt25+abV2XJkiVnzmjY+XQsn4b1oGP5NKwHHcunYT3oWD4NOZdp/etpjzzySHbs2JHBwcHs2LEj27ZtS5Js3LgxL7300qxekJmxadMf5emnn8q9967N008/lU2bPpMkeeihBzQsSLuOZrEcZrEezGL5zGI9mMXymcV6MIvlM4u0s6DRaHTMA4WlPt9Y6rONyaU/3zgVHeeWhk2lNkx0PFupHTVsKrVhouPZSu2oYVOpDRMdz1ZqRw2bSm2YzHzHUhsm5Xa81IbT+qQRAAAAAO8slkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAULFoOocOHDiQzZs359ixY7n66quzffv2rFy5suXMV7/61ezatStdXV1ZtGhRHnzwwdx6662zcWcuwsGDr+QLX3gkr7/+eq666qo8/PC2XHfd9S1nNOx8U3W84YYbWs7o2NnMYj2YxfKZxXowi+Uzi/VgFstnFmlnQaPRaJzv0G//9m/nQx/6UNasWZNvfvOb+bu/+7s88cQTLWf++Z//Obfcckve/e53Z+/evfnoRz+aF154IT/xEz8x7cuMj7+ZU6fOe52O09OzOEeOHJ/va5zTAw98Mnff/ZsZHLwru3fvyre+9f/lsce+loULF6S7+4okM9Mw0XE2TdXxK1/5yzMNE7NYYkOz2KrUjmaxqdSGZrFVqR3NYlOpDc1iq1I7msWmUhvOxiyW2jApo+NUzm54Ud9/vgPj4+MZGRnJ0NBQkmRoaCgjIyM5evRoy7lbb7017373u5Mkq1atSqPRyLFjxy76YsyciYmj2bdvbwYGBpMkAwOD2bdvbyYmJlrOadjZdCyfhvWgY/k0rAcdy6dhPehYPg05l/M+njY6Opre3t50dXUlSbq6urJs2bKMjo5m6dKlU37PM888k+uvvz7Lly+/oMtcyvZrvvX0LJ7vK7Q1NvZKli9fnuXLrz7zZ729vTl58ni6u6+f8nsutmGi42xp1/HHP36j7feYxc5iFqevxI5msVWJDc1iVYkdzWKrEhuaxaoSO5rFViU2nI1ZLLlh0tkdZ8u0fqfRhfj3f//3/Nmf/Vn++q//+oK/t9SPqnX6x9QmJk7k7bdPtdxxcvJUJiZOZHz8zcrgXkrDRMfZ0q7j66+fmPK8Wew8ZnF6Su1oFptKbWgWW5Xa0Sw2ldrQLLYqtaNZbCq14WzMYqkNk87v2M6sP57W19eXsbGxTE5OJkkmJydz+PDh9PX1Vc5+5zvfyaZNm/LVr341N95440VfipnV29ub11473NLwtdeOZNmy3spZDTtX+47V7b6Oncks1oNZLJ9ZrAezWD6zWA9msXxmkXM579Kou7s7/f39GR4eTpIMDw+nv7+/8mjaiy++mAcffDCPPfZYfuZnfmZ2bstFWbJkaW666X3Zs2d3kmTPnt25+eZVWbJkScs5DTubjuXTsB50LJ+G9aBj+TSsBx3LpyHnMq1/PW3//v3ZvHlz3njjjVx55ZXZvn17brzxxmzcuDEPPPBA3v/+9+dDH/pQfvjDH6a3t7mN/NM//dOsWrVq2pcp9aNqJXxM7ZVXXs7nP781x48fz+LFi/PZz27L9devzKZNv5eHHnpwxhomOs6mqTquXPnebN78oFlMuQ3NYqtSO5rFplIbmsVWpXY0i02lNjSLrUrtaBabSm04G7NYasOkjI5TudTH06a1NJorpb6BSn3zJJf+BpqKjnNLw6ZSGyY6nq3Ujho2ldow0fFspXbUsKnUhomOZyu1o4ZNpTZMZr5jqQ2TcjvO+u80AgAAAOCdx9IIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACAimktjQ4cOJD169dncHAw69evz8svv1w5Mzk5mW3btmVgYCC33357du7cOdN35RIcPPhKPvGJj+fee9fmE5/4eL7//YOVMxp2Ph3Lp2E96Fg+DetBx/JpWA86lk9D2pnW0mjr1q3ZsGFDdu/enQ0bNmTLli2VM88++2wOHjyY559/Pk899VQef/zx/OAHP5jxC3NxvvzlL2Xt2nvy5JN/n7Vr78mjj36xckbDzqdj+TSsBx3Lp2E96Fg+DetBx/JpSDvnXRqNj49nZGQkQ0NDSZKhoaGMjIzk6NGjLed27dqVe+65JwsXLszSpUszMDCQ5557bnZuzQWZmDiaffv2ZmBgMEkyMDCYffv2ZmJiouWchp1Nx/JpWA86lk/DetCxfBrWg47l05BzWXS+A6Ojo+nt7U1XV1eSpKurK8uWLcvo6GiWLl3acm7FihVnvu7r68uhQ4cu6DILFy64oPOdpJPvfuTI4fT0LMtll53OvXDholxzTU9ee20sPT3dZ87NRMPTP79zX4vz6eS7t+t45MhYbrrpujPnzGLn3t0sTl8n390sTk8n390sTl8n390sTk8n390sTl8n390sTk8n330uZ7GTX4fpKPH+l3rn8y6N5tKSJf9rvq9w0bq7r5jvK7R11VXvTlfXwpY7dnUtzFVXvWdWXnMdZ0e7jlde+e4Z/7s0nB1mcfpK7GgWW5XY0CxWldjRLLYqsaFZrCqxo1lsVWLD2ZjFkhsmnd1xtpz38bS+vr6MjY1lcnIyyelffnX48OH09fVVzr366qtnvh4dHc3y5ctn+LpcDA3rQcfyaVgPOpZPw3rQsXwa1oOO5dOQcznv0qi7uzv9/f0ZHh5OkgwPD6e/v7/l0bQkufPOO7Nz586cOnUqR48ezZ49ezI4ODg7t+aCaFgPOpZPw3rQsXwa1oOO5dOwHnQsn4acU2Mavve97zXWrVvXuOOOOxrr1q1r7N+/v9FoNBr3339/48UXX2w0Go3G22+/3diyZUtj9erVjdWrVzeefPLJ6fxo5oiG9aBj+TSsBx3Lp2E96Fg+DetBx/JpSDsLGo1GY74XVwAAAAB0lvM+ngYAAADAO4+lEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAxZwujQ4cOJD169dncHAw69evz8svv1w5Mzk5mW3btmVgYCC33357du7cOZdXbGs6d3/88cfzS7/0S1mzZk3WrFmTbdu2zf1Fp7B9+/bcdtttWbVqVfbt2zflmQt53XWcHzPZUcP5YRabdDxNw/lhFpt0PE3D+WEWm3Q8TcP5YRabdJxCYw597GMfazzzzDONRqPReOaZZxof+9jHKmf+4R/+oXHfffc1JicnG+Pj441bb7218f3vf38urzml6dz9sccea/zJn/zJXF/tvP7jP/6j8eqrrzZ+4zd+o/Hd7353yjMX8rrrOD9msqOG88MsNul4mobzwyw26XiahvPDLDbpeJqG88MsNulYNWefNBofH8/IyEiGhoaSJENDQxkZGcnRo0dbzu3atSv33HNPFi5cmKVLl2ZgYCDPPffcXF1zStO9e6e65ZZb0tfXd84z033ddZw/M9VRw/ljFk/T8TQN549ZPE3H0zScP2bxNB1P03D+mMXTdJzanC2NRkdH09vbm66uriRJV1dXli1bltHR0cq5FStWnPm6r68vhw4dmqtrTmm6d0+Sb33rW/nABz6Q++67L9/5znfm+qoXbbqvu46dbTqvu4adzSy2qnNHDTubWWxV544adjaz2KrOHTXsbGaxVd07nm3RbF/qneTee+/NJz/5yVx22WX5l3/5l3zqU5/Krl27smTJkvm+GhdAx/JpWA86lk/DetCxfBrWg47l07Ae3mkd5+yTRn19fRkbG8vk5GSS07+A6fDhw5WPT/X19eXVV1898/Xo6GiWL18+V9ec0nTv3tPTk8suuyxJ8iu/8ivp6+vLf//3f8/5fS/GdF93HTvbdF53DTubWWyqe0cNO5tZbKp7Rw07m1lsqntHDTubWWx6J3Q825wtjbq7u9Pf35/h4eEkyfDwcPr7+7N06dKWc3feeWd27tyZU6dO5ejRo9mzZ08GBwfn6ppTmu7dx8bGzvz///qv/8oPf/jDvPe9753Tu16s6b7uOna26bzuGnY2s9hU944adjaz2FT3jhp2NrPYVPeOGnY2s9j0TujYYjZ+a3c73/ve9xrr1q1r3HHHHY1169Y19u/f32g0Go3777+/8eKLLzYajUbj7bffbmzZsqWxevXqxurVqxtPPvnkXF6xrenc/Q/+4A8ad999d+MDH/hAY+3atY1//Md/nM8rn/G5z32uceuttzb6+/sbv/zLv9y46667Go3Gxb/uOs6Pmeyo4fwwi006nqbh/DCLTTqepuH8MItNOp6m4fwwi006Vi1oNBqNudlpAQAAAFCKOXs8DQAAAIByWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFScd2m0ffv23HbbbVm1alX27ds35ZnJycls27YtAwMDuf3227Nz584ZvyiXRsfyaVgPOpZPw3rQsXwa1oOO5dOwHnSknfMujVavXp2//du/zU/+5E+2PfPss8/m4MGDef755/PUU0/l8ccfzw9+8IMZvSiXRsfyaVgPOpZPw3rQsXwa1oOO5dOwHnSknfMujW655Zb09fWd88yuXbtyzz33ZOHChVm6dGkGBgby3HPPzdgluXQ6lk/DetCxfBrWg47l07AedCyfhvWgI+3MyO80Gh0dzYoVK8583dfXl0OHDs3Ej2YO6Vg+DetBx/JpWA86lk/DetCxfBrWg47vTIvm+wJnm5j4UU6dasz3NS5Yd/cVGR9/c76vMS2Tk6dy7NiJM/dduHBBliz5XzP6d+g4uzRsr5SGiY7nUkpHDdsrpWGi47mU0lHD9kppmOh4LqV01LC9Uhoms9+x1IZJWR3PdqkNZ2Rp1NfXl1dffTU/+7M/m6S6gZyuU6caxb6BSrp3ozH166xjOR01bK+ke+vYXin31rC9ku6tY3ul3FvD9kq6t47tlXJvDdsr6d6z2bHkhklZHWfKjDyeduedd2bnzp05depUjh49mj179mRwcHAmfjRzSMfyaVgPOpZPw3rQsXwa1oOO5dOwHnR8Zzrv0ujzn/98fu3Xfi2HDh3Kxz/+8dx9991Jko0bN+all15KkqxZsybXXntt7rjjjnz4wx/Opz/96Vx33XWze3MuyP/9v4/mt37rrhw5cji///sYpFaXAAAgAElEQVSfzkc/+uEkyUMPPaBjITSsBx3Lp2E96Fg+DetBx/JpWA860s6CRqPRMZ+vGh9/s8iPe/X0LM6RI8fn+xoXZeHCBenuvmJGf6aOc0vDplIbJjqerdSOGjaV2jDR8WyldtSwqdSGiY5nK7Wjhk2lNkxmvmOpDZNyO15qwxl5PA0AAACAerE0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAICKRdM5dODAgWzevDnHjh3L1Vdfne3bt2flypUtZ8bHx/OZz3wmo6OjOXnyZH7xF38xDz/8cBYtmtZfwSw7ePCVfOELj+T111/PVVddlYcf3pbrrru+5YyGnW+qjjfccEPLGR07m1msB7NYPrNYD2axfGaxHsxi+cwi7Uzrk0Zbt27Nhg0bsnv37mzYsCFbtmypnPna176Wn/qpn8qzzz6bZ599Nv/5n/+Z559/fsYvzMX58pe/lLVr78mTT/591q69J48++sXKGQ07n47l07AedCyfhvWgY/k0rAcdy6ch7Zx3aTQ+Pp6RkZEMDQ0lSYaGhjIyMpKjR4+2nFuwYEF+9KMf5dSpU3nrrbdy8uTJ9Pb2zs6tuSATE0ezb9/eDAwMJkkGBgazb9/eTExMtJzTsLPpWD4N60HH8mlYDzqWT8N60LF8GnIu5/0c2ejoaHp7e9PV1ZUk6erqyrJlyzI6OpqlS5eeOfepT30q/+f//J/86q/+av7f//t/+chHPpKf//mfv6DLdHdfcYHX7xw9PYvn+wptjY29kuXLl2f58qvP/Flvb29Onjye7u7mRw5nomGi42xp1/HHP36j5ZxZLK+hWawqsaNZbFViQ7NYVWJHs9iqxIZmsarEjmaxVYkNZ2MWS26YdHbH2TJjDx8+99xzWbVqVb7xjW/kRz/6UTZu3Jjnnnsud95557R/xvj4mzl1qjFTV5ozPT2Lc+TI8fm+RlsTEyfy9tunWu44OXkqExMnMj7+5pnBnYmGiY6zpV3H118/0XLOLJbX0Cy2KrWjWWwqtaFZbFVqR7PYVGpDs9iq1I5msanUhrMxi6U2TDq/YzsLFy64pGXdeR9P6+vry9jYWCYnJ5Mkk5OTOXz4cPr6+lrO7dixI7/5m7+ZhQsXZvHixbntttvy7W9/+6Ivxszp7e3Na68dbmn42mtHsmxZ60cJNexs7TsubzmnY+cyi/VgFstnFuvBLJbPLNaDWSyfWeRczrs06u7uTn9/f4aHh5Mkw8PD6e/vb3k0LUmuvfba/NM//VOS5K233sq//uu/5uabb56FK3OhlixZmptuel/27NmdJNmzZ3duvnlVlixZ0nJOw86mY/k0rAcdy6dhPehYPg3rQcfyaci5LGg0Guf9bNj+/fuzefPmvPHGG7nyyiuzffv23Hjjjdm4cWMeeOCBvP/978/BgwezdevWvPbaa5mcnMwv/MIv5I//+I8v6J/fK/WjaiV8TO2VV17O5z+/NcePH8/ixYvz2c9uy/XXr8ymTb+Xhx56cMYaJjrOpqk6rlz53mze/KBZTLkNzWKrUjuaxaZSG5rFVqV2NItNpTY0i61K7WgWm0ptOBuzWGrDpIyOU7nUx9OmtTSaK6W+gUp98ySX/gaaio5zS8OmUhsmOp6t1I4aNpXaMNHxbKV21LCp1IaJjmcrtaOGTaU2TGa+Y6kNk3I7zvrvNAIAAADgncfSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqFk3n0IEDB7J58+YcO3YsV199dbZv356VK1dWzu3atSt/8Rd/kUajkQULFuTrX/96rrnmmpm+Mxfh4MFX8oUvPJLXX389V111VR5+eFuuu+76yjkNO9tUHW+44YbKOR07l1msB7NYPrNYD2axfGaxHsxi+cwi7UxrabR169Zs2LAha9asyTe/+c1s2bIlTzzxRMuZl156KV/5ylfyjW98Iz09PTl+/Hguv/zyWbk0F+7LX/5S1q69J4ODd2X37l159NEv5rHHvtZyRsPON1XHr3zlL1vO6NjZzGI9mMXymcV6MIvlM4v1YBbLZxZp57yPp42Pj2dkZCRDQ0NJkqGhoYyMjOTo0aMt5/7mb/4m9913X3p6epIkixcvzrve9a5ZuDIXamLiaPbt25uBgcEkycDAYPbt25uJiYmWcxp2Nh3Lp2E96Fg+DetBx/JpWA86lk9DzuW8nzQaHR1Nb29vurq6kiRdXV1ZtmxZRkdHs3Tp0jPn9u/fn2uvvTYf+chHcuLEidx+++353d/93SxYsGDal+nuvuIi/hM6Q0/P4vm+QltjY69k+fLlWb786jN/1tvbm5Mnj6e7u/mRw5lomOg4W9p1/PGP32g5ZxbLa2gWq0rsaBZbldjQLFaV2NEstiqxoVmsKrGjWWxVYsPZmMWSGyad3XG2TOvxtOmYnJzMd7/73Xz961/PW2+9lfvvvz8rVqzIBz/4wWn/jPHxN3PqVGOmrjRnenoW58iR4/N9jbYmJk7k7bdPtdxxcvJUJiZOZHz8zTODOxMNEx1nS7uOr79+ouWcWSyvoVlsVWpHs9hUakOz2KrUjmaxqdSGZrFVqR3NYlOpDWdjFkttmHR+x3YWLlxwScu68z6e1tfXl7GxsUxOTiY5/UY5fPhw+vr6Ws6tWLEid955Zy6//PJcccUVWb16dV588cWLvhgzp7e3N6+9dril4WuvHcmyZb0t5zTsbO07Lm85p2PnMov1YBbLZxbrwSyWzyzWg1ksn1nkXM67NOru7k5/f3+Gh4eTJMPDw+nv7295NC05/buOXnjhhTQajZw8eTL/9m//lp/+6Z+enVtzQZYsWZqbbnpf9uzZnSTZs2d3br55VZYsWdJyTsPOpmP5NKwHHcunYT3oWD4N60HH8mnIuZx3aZQkjzzySHbs2JHBwcHs2LEj27ZtS5Js3LgxL730UpLk7rvvTnd3d+6666588IMfzE033ZR169bN3s25IJs2/VGefvqp3Hvv2jz99FPZtOkzSZKHHnpAw4K062gWy2EW68Esls8s1oNZLJ9ZrAezWD6zSDsLGo1GxzxQWOrzjaU+25hc+vONU9FxbmnYVGrDRMezldpRw6ZSGyY6nq3Ujho2ldow0fFspXbUsKnUhsnMdyy1YVJux1n/nUYAAAAAvPNYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFAxraXRgQMHsn79+gwODmb9+vV5+eWX2579n//5n/zcz/1ctm/fPlN3ZAYcPPhKPvGJj+fee9fmE5/4eL7//YNtz2rYuXQsn4b1oGP5NKwHHcunYT3oWD4NaWdaS6OtW7dmw4YN2b17dzZs2JAtW7ZMeW5ycjJbt27NwMDAjF6SS/flL38pa9fekyef/PusXXtPHn30i1Oe07Cz6Vg+DetBx/JpWA86lk/DetCxfBrSznmXRuPj4xkZGcnQ0FCSZGhoKCMjIzl69Gjl7F/91V/l13/917Ny5coZvygXb2LiaPbt25uBgcEkycDAYPbt25uJiYnKWQ07l47l07AedCyfhvWgY/k0rAcdy6ch53LepdHo6Gh6e3vT1dWVJOnq6sqyZcsyOjracm7v3r154YUX8r//9/+elYty8cbGxnLNNctaGl5zTU8OHx5rOadhZ2vf8VDLOR07l1msB7NYPrNYD2axfGaxHsxi+cwi57JoJn7IyZMn89nPfjZf+tKXzrzRLkZ39xUzcZ150dOzeL6v0NbY2HuyaNHCljt2dS3MkiXvOfOaz1TDRMfZ0q7jVVe958zXZrHMhmaxqsSOZrFViQ3NYlWJHc1iqxIbmsWqEjuaxVYlNpyNWSy5YdLZHWfLeZdGfX19GRsby+TkZLq6ujI5OZnDhw+nr6/vzJkjR47k4MGD+Z3f+Z0kyRtvvJFGo5E333wzn/vc56Z9mfHxN3PqVOMi/jPmV0/P4hw5cny+r9HW5ZcvzqFDh3Lo0LEzDcfGxnLZZYszPv5muruvmLGGiY6zpV3Hd73ryjNnzGKZDc1iq1I7msWmUhuaxValdjSLTaU2NIutSu1oFptKbTgbs1hqw6TzO7azcOGCS1rWnXdp1N3dnf7+/gwPD2fNmjUZHh5Of39/li5deubMihUr8u1vf/vM148//nhOnDiRP/zDP7zoizFzlixZmptuel/27NmdwcG7smfP7tx886osWbLkzBkNO5+O5dOwHnQsn4b1oGP5NKwHHcunIecyrX897ZFHHsmOHTsyODiYHTt2ZNu2bUmSjRs35qWXXprVCzIzNm36ozz99FO59961efrpp7Jp02eSJA899ICGBWnX0SyWwyzWg1ksn1msB7NYPrNYD2axfGaRdhY0Go2O+WxYqR9VK/Vjasmlf1RtKjrOLQ2bSm2Y6Hi2Ujtq2FRqw0THs5XaUcOmUhsmOp6t1I4aNpXaMJn5jqU2TMrteKkNp/VJIwAAAADeWSyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKBi0XQOHThwIJs3b86xY8dy9dVXZ/v27Vm5cmXLma9+9avZtWtXurq6smjRojz44IO59dZbZ+POXISDB1/JF77wSF5//fVcddVVefjhbbnuuutbzmjY+abqeMMNN7Sc0bGzmcV6MIvlM4v1YBbLZxbrwSyWzyzSzoJGo9E436Hf/u3fzoc+9KGsWbMm3/zmN/N3f/d3eeKJJ1rO/PM//3NuueWWvPvd787evXvz0Y9+NC+88EJ+4id+YtqXGR9/M6dOnfc6HaenZ3GOHDk+39c4pwce+GTuvvs3Mzh4V3bv3pVvfev/y2OPfS0LFy5Id/cVSWamYaLjbJqq41e+8pdnGiZmscSGZrFVqR3NYlOpDc1iq1I7msWmUhuaxValdjSLTaU2nI1ZLLVhUkbHqZzd8KK+/3wHxsfHMzIykqGhoSTJ0NBQRkZGcvTo0ZZzt956a9797ncnSVatWpVGo5Fjx45d9MWYORMTR7Nv394MDAwmSQYGBrNv395MTEy0nNOws+lYPg3rQcfyaVgPOpZPw3rQsXwaci7nXRqNjo6mt7c3XV1dSZKurq4sW7Yso6Ojbb/nmWeeyfXXX5/ly5fP3E25aGNjY7nmmmUtDa+5pieHD4+1/R4NO0/7jofafo+OncUs1oNZLJ9ZrAezWD6zWA9msXxmkXOZ1u80uhD//u//nj/7sz/LX//1X1/w917KR6bmW0/P4vm+QltjY+/JokULW+7Y1bUwS5a8Z8rX/FIaJjrOlnYdr7rqPVOeN4udxyxOX4kdzWKrEhuaxaoSO5rFViU2NItVJXY0i61KbDgbs1hyw6SzO86W8y6N+vr6MjY2lsnJyXR1dWVycjKHDx9OX19f5ex3vvOdbNq0KX/+53+eG2+88YIvU+rzjZ3+bOPlly/OoUOHcujQsTMNx8bGctllizM+/mbL4F5qw0TH2dKu47vedWXlrFnsTGZxekrtaBabSm1oFluV2tEsNpXa0Cy2KrWjWWwqteFszGKpDZPO79jOrP9Oo+7u7vT392d4eDhJMjw8nP7+/ixdurTl3IsvvpgHH3wwjz32WH7mZ37moi/EzFuyZGluuul92bNnd5Jkz57dufnmVVmyZEnLOQ07m47l07AedCyfhvWgY/k0rAcdy6ch5zKtfz1t//792bx5c954441ceeWV2b59e2688cZs3LgxDzzwQN7//vfnQx/6UH74wx+mt7f3zPf96Z/+aVatWjXty5S6dSxh4/jKKy/n85/fmuPHj2fx4sX57Ge35frrV2bTpt/LQw89OGMNEx1n01QdV658bzZvftAsptyGZrFVqR3NYlOpDc1iq1I7msWmUhuaxValdjSLTaU2nI1ZLLVhUkbHqVzqJ42mtTSaK6W+gUp98ySX/gaaio5zS8OmUhsmOv7/7N1fjN31fef/lz1Ati0OzAz2eFz+OCnEHa3SXhSpf6laPHgsmNSJa8fISVYC4ZJNtGwjROu0xMbKv3rhogtpmu3FpkGOBDLbkh8Ty0a+qLpUbbYXkUCdEjfUYBLGYzMeGxMqMOPzu7Di46Ovjz2258/5fHk8JCRm9PHw4TznffPW+R6fqdSOGjaV2jDR8UyldtSwqdSGiY5nKrWjhk2lNkxmvmOpDZNyO87642kAAAAAvPdYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAxbSWRvv378+GDRsyNDSUDRs25OWXX66cmZqayrZt2zI4OJjbbrstO3funOm7cgkOHHgl9957V+68c23uvfeuvPrqgcoZDTufjuXTsB50LJ+G9aBj+TSsBx3LpyHtTGtptHXr1mzcuDF79uzJxo0bs2XLlsqZZ555JgcOHMizzz6bJ598Mo899lh+9KMfzfiFuTiPPPLVrF27Pk888TdZu3Z9Hn74K5UzGnY+HcunYT3oWD4N60HH8mlYDzqWT0PaOe/SaGJiIqOjoxkeHk6SDA8PZ3R0NEeOHGk5t2vXrqxfvz4LFy5MT09PBgcHs3v37gu7zMIFRf7T6Xc/enQy+/a9mFWrVmfhwgVZtWp19u17MceOHT19/5lq2OmvRV07msXyG/70/max7I5msfyGP72/WSy7o1ksv+FP728Wy+5oFstv+NP7v9cbltDxfHe/WJed78DY2Fj6+vrS1dWVJOnq6sqSJUsyNjaWnp6elnPLli07/XV/f38OHjx4QZfp7v65CzrfSXp7r5zvK7Q1NvZyli5dmiVLrjr9vb6+vrz99hvp7r7ujHOX3jDRcbaMjZ2943/8x7Ek155xzix2qrExszhdJXY0i61KbGgWq0rsaBZbldjQLFaV2NEstiqx4WzMYskNk87uOFt8EDYAAAAAFeddGvX392d8fDxTU1NJTn341aFDh9Lf318599prr53+emxsLEuXLp3h63IxNKwHHcunYT3oWD4N60HH8mlYDzqWT0PO5bxLo97e3gwMDGRkZCRJMjIykoGBgZZH05Jk9erV2blzZ06ePJkjR45k7969GRoamp1bc0E0rAcdy6dhPehYPg3rQcfyaVgPOpZPQ86pMQ0//OEPG+vWrWusWrWqsW7dusZLL73UaDQajXvuuafx/PPPNxqNRuPdd99tbNmypbFy5crGypUrG0888cR0fjRzRMN60LF8GtaDjuXTsB50LJ+G9aBj+TSknQWNRqMx34srAAAAADqLD8IGAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgYk6XRvv378+GDRsyNDSUDRs25OWXX66cmZqayrZt2zI4OJjbbrstO3funMsrtjWduz/22GP59V//9axZsyZr1qzJtm3b5v6iZ7F9+/bceuutWbFiRfbt23fWMxfyuus4P2ayo4bzwyw26XiKhvPDLDbpeIqG88MsNul4iobzwyw26XgWjTn0qU99qvH00083Go1G4+mnn2586lOfqpz527/928bdd9/dmJqaakxMTDRuueWWxquvvjqX1zyr6dz90UcfbfzZn/3ZXF/tvP75n/+58dprrzV+93d/t/GDH/zgrGcu5HXXcX7MZEcN54dZbNLxFA3nh1ls0vEUDeeHWWzS8RQN54dZbNKxas7eaTQxMZHR0dEMDw8nSYaHhzM6OpojR460nNu1a1fWr1+fhQsXpqenJ4ODg9m9e/dcXfOspnv3TnXzzTenv7//nGem+7rrOH9mqqOG88csnqLjKRrOH7N4io6naDh/zOIpOp6i4fwxi6foeHZztjQaGxtLX19furq6kiRdXV1ZsmRJxsbGKueWLVt2+uv+/v4cPHhwrq55VtO9e5J897vfzUc+8pHcfffd+f73vz/XV71o033ddexs03ndNexsZrFVnTtq2NnMYqs6d9Sws5nFVnXuqGFnM4ut6t7xTJfN9qXeS+688858+tOfzuWXX55/+Id/yGc+85ns2rUr3d3d8301LoCO5dOwHnQsn4b1oGP5NKwHHcunYT281zrO2TuN+vv7Mz4+nqmpqSSnPoDp0KFDlbdP9ff357XXXjv99djYWJYuXTpX1zyr6d598eLFufzyy5Mkv/mbv5n+/v7827/925zf92JM93XXsbNN53XXsLOZxaa6d9Sws5nFprp31LCzmcWmunfUsLOZxab3QsczzdnSqLe3NwMDAxkZGUmSjIyMZGBgID09PS3nVq9enZ07d+bkyZM5cuRI9u7dm6Ghobm65llN9+7j4+On//1f//Vf8+Mf/zgf+MAH5vSuF2u6r7uOnW06r7uGnc0sNtW9o4adzSw21b2jhp3NLDbVvaOGnc0sNr0XOraYjU/tbueHP/xhY926dY1Vq1Y11q1b13jppZcajUajcc899zSef/75RqPRaLz77ruNLVu2NFauXNlYuXJl44knnpjLK7Y1nbv/0R/9UeOOO+5ofOQjH2msXbu28Xd/93fzeeXTvvjFLzZuueWWxsDAQOM3fuM3Grfffnuj0bj4113H+TGTHTWcH2axScdTNJwfZrFJx1M0nB9msUnHUzScH2axSceqBY1GozE3Oy0AAAAASjFnj6cBAAAAUA5LIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACAivMujbZv355bb701K1asyL59+856ZmpqKtu2bcvg4GBuu+227Ny5c8YvyqXRsXwa1oOO5dOwHnQsn4b1oGP5NKwHHWnnvEujlStX5tvf/nZ+/ud/vu2ZZ555JgcOHMizzz6bJ598Mo899lh+9KMfzehFuTQ6lk/DetCxfBrWg47l07AedCyfhvWgI+2cd2l08803p7+//5xndu3alfXr12fhwoXp6enJ4OBgdu/ePWOX5NLpWD4N60HH8mlYDzqWT8N60LF8GtaDjrQzI59pNDY2lmXLlp3+ur+/PwcPHpyJH80c0rF8GtaDjuXTsB50LJ+G9aBj+TSsBx3fmy6b7wucaXLyJzl5sjHf17hgvb1XZmLizfm+xrRMTZ3M0aNvnb7vwoUL0t39czP639BxdmnYXikNEx3PpZSOGrZXSsNEx3MppaOG7ZXSMNHxXErpqGF7pTRMZr9jqQ2Tsjqe6VIbzsjSqL+/P6+99lp+6Zd+KUl1AzldJ082iv0FKunejcbZX2cdy+moYXsl3VvH9kq5t4btlXRvHdsr5d4atlfSvXVsr5R7a9heSfeezY4lN0zK6jhTZuTxtNWrV2fnzp05efJkjhw5kr1792ZoaGgmfjRzSMfyaVgPOpZPw3rQsXwa1oOO5dOwHnR8bzrv0uhLX/pSfvu3fzsHDx7MXXfdlTvuuCNJsmnTprzwwgtJkjVr1uTaa6/NqlWr8vGPfzyf/exnc911183uzbkgf/7nD+djH7s9hw8fyh/+4WfzyU9+PEly//336VgIDetBx/JpWA86lk/DetCxfBrWg460s6DRaHTM+6smJt4s8u1eixcvyuHDx+f7Ghdl4cIF6e29ckZ/po5zS8OmUhsmOp6p1I4aNpXaMNHxTKV21LCp1IaJjmcqtaOGTaU2TGa+Y6kNk3I7XmrDGXk8DQAAAIB6sTQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqF+9gDMAACAASURBVLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgIrLpnNo//792bx5c44ePZqrr74627dvz/Lly1vOTExM5POf/3zGxsZy4sSJ/Nqv/VoefPDBXHbZtP4TzLIDB17Jl7/8UI4dO5arrroqDz64Ldddd33LGQ0739k63nDDDS1ndOxsZrEezGL5zGI9mMXymcV6MIvlM4u0M613Gm3dujUbN27Mnj17snHjxmzZsqVy5hvf+EZ+4Rd+Ic8880yeeeaZ/Mu//EueffbZGb8wF+eRR76atWvX54kn/iZr167Pww9/pXJGw86nY/k0rAcdy6dhPehYPg3rQcfyaUg7510aTUxMZHR0NMPDw0mS4eHhjI6O5siRIy3nFixYkJ/85Cc5efJk3nnnnZw4cSJ9fX2zc2suyOTkkezb92IGB4eSJIODQ9m378VMTk62nNOws+lYPg3rQcfyaVgPOpZPw3rQsXwaci7nfR/Z2NhY+vr60tXVlSTp6urKkiVLMjY2lp6entPnPvOZz+S//bf/lt/6rd/Kf/zHf+QTn/hEfuVXfuWCLtPbe+UFXr9zLF68aL6v0Nb4+CtZunRpli69+vT3+vr6cuLE8fT2Nt9yOBMNEx1nS7uOb7/9Rss5s1heQ7NYVWJHs9iqxIZmsarEjmaxVYkNzWJViR3NYqsSG87GLJbcMOnsjrNlxh4+3L17d1asWJFvfetb+clPfpJNmzZl9+7dWb169bR/xsTEmzl5sjFTV5ozixcvyuHDx+f7Gm1NTr6Vd9892XLHqamTmZx8KxMTb54e3JlomOg4W9p1PHbsrZZzZrG8hmaxVakdzWJTqQ3NYqtSO5rFplIbmsVWpXY0i02lNpyNWSy1YdL5HdtZuHDBJS3rzvt4Wn9/f8bHxzM1NZUkmZqayqFDh9Lf399ybseOHfm93/u9LFy4MIsWLcqtt96a733vexd9MWZOX19fXn/9UEvD118/nCVLWt9KqGFna99xacs5HTuXWawHs1g+s1gPZrF8ZrEezGL5zCLnct6lUW9vbwYGBjIyMpIkGRkZycDAQMujaUly7bXX5u///u+TJO+8807+8R//MTfddNMsXJkL1d3dkxtv/FD27t2TJNm7d09uumlFuru7W85p2Nl0LJ+G9aBj+TSsBx3Lp2E96Fg+DTmXBY1G47zvDXvppZeyefPmvPHGG3n/+9+f7du354Mf/GA2bdqU++67Lx/+8Idz4MCBbN26Na+//nqmpqbyq7/6q/nTP/3TC/rr90p9q1oJb1N75ZWX86Uvbc3x48ezaNGifOEL23L99cvzwAP/Pfff/7kZa5joOJvO1nH58g9k8+bPmcWU29Astiq1o1lsKrWhWWxVakez2FRqQ7PYqtSOZrGp1IazMYulNkzK6Hg2l/p42rSWRnOl1F+gUn95kkv/BTobHeeWhk2lNkx0PFOpHTVsKrVhouOZSu2oYVOpDRMdz1RqRw2bSm2YzHzHUhsm5Xac9c80AgAAAOC9x9IIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACAisumc2j//v3ZvHlzjh49mquvvjrbt2/P8uXLK+d27dqVv/zLv0yj0ciCBQvyzW9+M9dcc81M35mLcODAK/nylx/KsWPHctVVV+XBB7fluuuur5zTsLOdreMNN9xQOadj5zKL9WAWy2cW68Esls8s1oNZLJ9ZpJ1pLY22bt2ajRs3Zs2aNfnOd76TLVu25PHHH28588ILL+RrX/tavvWtb2Xx4sU5fvx4rrjiilm5NBfukUe+mrVr12do6Pbs2bMrDz/8lTz66DdazmjY+c7W8Wtf+18tZ3TsbGaxHsxi+cxiPZjF8pnFejCL5TOLtHPex9MmJiYyOjqa4eHhJMnw8HBGR0dz5MiRlnN//dd/nbvvvjuLFy9OkixatCjve9/7ZuHKXKjJySPZt+/FDA4OJUkGB4eyb9+LmZycbDmnYWfTsXwa1oOO5dOwHnQsn4b1oGP5NORczrs0GhsbS19fX7q6upIkXV1dWbJkScbGxlrOvfTSS3n11VfziU98Ih/72Mfy9a9/PY1GY3ZuzQUZHx/PNdcsaWl4zTWLc+jQeMs5DTtb+44HW87p2LnMYj2YxfKZxXowi+Uzi/VgFstnFjmXaT2eNh1TU1P5wQ9+kG9+85t55513cs8992TZsmX56Ec/Ou2f0dt75UxdZ84tXrxovq/Q1vj4z+ayyxa23LGra2G6u3+25TWfiYaJjrOlXcerrvrZlnNmsbyGZrGqxI5msVWJDc1iVYkdzWKrEhuaxaoSO5rFViU2nI1ZLLlh0tkdZ8t5l0b9/f0ZHx/P1NRUurq6MjU1lUOHDqW/v7/l3LJly7J69epcccUVueKKK7Jy5co8//zzF/QLNDHxZk6eLG9TuXjxohw+fHy+r9HWFVcsysGDB3Pw4NHTDcfHx3P55YsyMfHm6cGdiYaJjrOlXcf3ve/9LefMYnkNzWKrUjuaxaZSG5rFVqV2NItNpTY0i61K7WgWm0ptOBuzWGrDpPM7trNw4YJLWtad9/G03t7eDAwMZGRkJEkyMjKSgYGB9PT0tJwbHh7Oc889l0ajkRMnTuSf/umf8ou/+IsXfTFmTnd3T2688UPZu3dPkmTv3j256aYV6e7ubjmnYWfTsXwa1oOO5dOwHnQsn4b1oGP5NORczrs0SpKHHnooO3bsyNDQUHbs2JFt27YlSTZt2pQXXnghSXLHHXekt7c3t99+ez760Y/mxhtvzLp162bv5lyQBx74kzz11JO58861eeqpJ/PAA59Pktx//30aFqRdR7NYDrNYD2axfGaxHsxi+cxiPZjF8plF2lnQ6KBPrir1rWqlvk0tufS3qp2NjnNLw6ZSGyY6nqnUjho2ldow0fFMpXbUsKnUhomOZyq1o4ZNpTZMZr5jqQ2TcjvO+uNpAAAAALz3WBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQMW0lkb79+/Phg0bMjQ0lA0bNuTll19ue/bf//3f88u//MvZvn37TN2RGXDgwCu59967cueda3PvvXfl1VcPtD2rYefSsXwa1oOO5dOwHnQsn4b1oGP5NKSdaS2Ntm7dmo0bN2bPnj3ZuHFjtmzZctZzU1NT2bp1awYHB2f0kly6Rx75atauXZ8nnvibrF27Pg8//JWzntOws+lYPg3rQcfyaVgPOpZPw3rQsXwa0s55l0YTExMZHR3N8PBwkmR4eDijo6M5cuRI5exf/dVf5Xd+53eyfPnyGb8oF29y8kj27Xsxg4NDSZLBwaHs2/diJicnK2c17Fw6lk/DetCxfBrWg47l07AedCyfhpzLZec7MDY2lr6+vnR1dSVJurq6smTJkoyNjaWnp+f0uRdffDHPPfdcHn/88Xz961+/qMv09l55UX+uEyxevGi+r9DW+PgrWbp0aZYuvfr09/r6+nLixPH09l5/+nsz0TDRcba06/j222+0nDOL5TU0i1UldjSLrUpsaBarSuxoFluV2NAsVpXY0Sy2KrHhbMxiyQ2Tzu44W867NJqOEydO5Atf+EK++tWvnl4uXYyJiTdz8mRjJq40pxYvXpTDh4/P9zXampx8K+++e7LljlNTJzM5+VYmJt5Mb++VM9Yw0XG2tOt47Nhbp782i2U2NIutSu1oFptKbWgWW5Xa0Sw2ldrQLLYqtaNZbCq14WzMYqkNk87v2M7ChQsuaVl33qVRf39/xsfHMzU1la6urkxNTeXQoUPp7+8/febw4cM5cOBA/uAP/iBJ8sYbb6TRaOTNN9/MF7/4xYu+HDOjr68vr79+qKXh668fzpIlfafPaNj52ndcevqMjp3NLNaDWSyfWawHs1g+s1gPZrF8ZpFzOe/SqLe3NwMDAxkZGcmaNWsyMjKSgYGBlkfTli1blu9973unv37sscfy1ltv5Y//+I9n59ZckO7untx444eyd++eDA3dnr179+Smm1aku7v79BkNO5+O5dOwHnQsn4b1oGP5NKwHHcunIecyrb897aGHHsqOHTsyNDSUHTt2ZNu2bUmSTZs25YUXXpjVCzIzHnjgT/LUU0/mzjvX5qmnnswDD3w+SXL//fdpWJB2Hc1iOcxiPZjF8pnFejCL5TOL9WAWy2cWaWdBo9HomAcKS32+sdRnG5NLf77xbHScWxo2ldow0fFMpXbUsKnUhomOZyq1o4ZNpTZMdDxTqR01bCq1YTLzHUttmJTb8VIbTuudRgAAAAC8t1gaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAEDFZdM5tH///mzevDlHjx7N1Vdfne3bt2f58uUtZ/7iL/4iu3btSldXVy677LJ87nOfyy233DIbd+YiHDjwSr785Ydy7NixXHXVVXnwwW257rrrW85o2PnO1vGGG25oOaNjZzOL9WAWy2cW68Esls8s1oNZLJ9ZpJ0FjUajcb5D/+W//Jf8/u//ftasWZPvfOc7+T//5//k8ccfbznzf//v/83NN9+cn/mZn8mLL76YT37yk3nuuefyn/7Tf5r2ZSYm3szJk+e9TsdZvHhRDh8+Pt/XOKf77vt07rjj9zI0dHv27NmV7373/8ujj34jCxcuSG/vlUlmpmGi42w6W8evfe1/nW6YmMUSG5rFVqV2NItNpTY0i61K7WgWm0ptaBZbldrRLDaV2nA2ZrHUhkkZHc/mzIYX9efPd2BiYiKjo6MZHh5OkgwPD2d0dDRHjhxpOXfLLbfkZ37mZ5IkK1asSKPRyNGjRy/6Ysycyckj2bfvxQwODiVJBgeHsm/fi5mcnGw5p2Fn07F8GtaDjuXTsB50LJ+G9aBj+TTkXM77eNrY2Fj6+vrS1dWVJOnq6sqSJUsyNjaWnp6es/6Zp59+Otdff32WLl16QZe5lO3XfFu8eNF8X6Gt8fFXsnTp0ixdevXp7/X19eXEiePp7b3+rH/mYhsmOs6Wdh3ffvuNtn/GLHYWszh9JXY0i61KbGgWq0rsaBZbldjQLFaV2NEstiqx4WzMYskNk87uOFum9ZlGF+L//b//l//5P/9n/vf//t8X/GdLfatap79NbXLyrbz77smWO05Nnczk5FuZmHizMriX0jDRcba063js2FtnPW8WO49ZnJ5SO5rFplIbmsVWpXY0i02lNjSLrUrtaBabSm04G7NYasOk8zu2M+uPp/X392d8fDxTU1NJkqmpqRw6dCj9/f2Vs9///vfzwAMP5C/+4i/ywQ9+8KIvxczq6+vL668famn4+uuHs2RJX+Wshp2rfcfqdl/HzmQW68Esls8s1oNZLJ9ZrAezWD6zyLmcd2nU29ubgYGBjIyMJElGRkYyMDBQeTTt+eefz+c+97k8+uij+c//+T/Pzm25KN3dPbnxxg9l7949SZK9e/fkpptWpLu7u+Wchp1Nx/JpWA86lk/DetCxfBrWg47l05BzmdbfnvbSSy9l8+bNeeONN/L+978/27dvzwc/+MFs2rQp9913Xz784Q/n93//9/PjH/84fX3NbeT/+B//IytWrJj2ZUp9q1oJb1N75ZWX86Uvbc3x48ezaNGifOEL23L99cvzwAP/Pfff/7kZa5joOJvO1nH58g9k8+bPmcWU29Astiq1o1lsKrWhWWxVakez2FRqQ7PYqtSOZrGp1IazMYulNkzK6Hg2l/p42rSWRnOl1F+gUn95kkv/BTobHeeWhk2lNkx0PFOpHTVsKrVhouOZSu2oYVOpDRMdz1RqRw2bSm2YzHzHUhsm5Xac9c80AgAAAOC9x9IIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACqmtTTav39/NmzYkKGhoWzYsCEvv/xy5czU1FS2bduWwcHB3Hbbbdm5c+dM35VLcODAK7n33rty551rc++9d+XVVw9UzmjY+XQsn4b1oGP5NKwHHcunYT3oWD4NaWdaS6OtW7dm48aN2bNnTzZu3JgtW7ZUzjzzzDM5cOBAnn322Tz55JN57LHH8qMf/WjGL8zFeeSRr2bt2vV54om/ydq16/Pww1+pnNGw8+lYPg3rQcfyaVgPOpZPw3rQsXwa0s55l0YTExMZHR3N8PBwkmR4eDijo6M5cuRIy7ldu3Zl/fr1WbhwYXp6ejI4OJjdu3df2GUWLijyn06/+9Gjk9m378WsWrU6CxcuyKpVq7Nv34s5duzo6fvPVMNOfy3q2tEslt/wp/c3i2V3NIvlN/zp/c1i2R3NYvkNf3p/s1h2R7NYfsOf3v+93rCEjue7+8W67HwHxsbG0tfXl66uriRJV1dXlixZkrGxsfT09LScW7Zs2emv+/v7c/DgwQu6THf3z13Q+U7S23vlfF+hrbGxl7N06dIsWXLV6e/19fXl7bffSHf3dWecu/SGiY6zZWzs7B3/4z+OJbn2jHNmsVONjZnF6Sqxo1lsVWJDs1hVYkez2KrEhmaxqsSOZrFViQ1nYxZLbph0dsfZ4oOwAQAAAKg479Kov78/4+PjmZqaSnLqw68OHTqU/v7+yrnXXnvt9NdjY2NZunTpDF+Xi6FhPehYPg3rQcfyaVgPOpZPw3rQsXwaci7nXRr19vZmYGAgIyMjSZKRkZEMDAy0PJqWJKtXr87OnTtz8uTJHDlyJHv37s3Q0NDs3JoLomE96Fg+DetBx/JpWA86lk/DetCxfBpyTo1p+OEPf9hYt25dY9WqVY1169Y1XnrppUaj0Wjcc889jeeff77RaDQa7777bmPLli2NlStXNlauXNl44oknpvOjmSMa1oOO5dOwHnQsn4b1oGP5NKwHHcunIe0saDQajfleXAEAAADQWXwQNgAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAxZwujfbv358NGzZkaGgoGzZsyMsvv1w5MzU1lW3btmVwcDC33XZbdu7cOZdXbGs6d3/sscfy67/+61mzZk3WrFmTbdu2zf1Fz2L79u259dZbs2LFiuzbt++sZy7kdddxfsxkRw3nh1ls0vEUDeeHWWzS8RQN54dZbNLxFA3nh1ls0vEs5vKvavvUpz7VePrppxuNRqPx9NNPNz71qU9Vzvzt3/5t4+67725MTU01JiYmGrfcckvj1VdfnctrntV07v7oo482/uzP/myur3Ze//zP/9x47bXXGr/7u7/b+MEPfnDWMxfyuus4P2ayo4bzwyw26XiKhvPDLDbpeIqG88MsNul4iobzwyw26Vg1Z+80mpiYyOjoaIaHh5Mkw8PDGR0dzZEjR1rO7dq1K+vXr8/ChQvT09OTwcHB7N69e66ueVbTvXunuvnmm9Pf33/OM9N93XWcPzPVUcP5YxZP0fEUDeePWTxFx1M0nD9m8RQdT9Fw/pjFU3Q8uzlbGo2NjaWvry9dXV1Jkq6urixZsiRjY2OVc8uWLTv9dX9/fw4ePDhX1zyr6d49Sb773e/mIx/5SO6+++58//vfn+urXrTpvu46drbpvO4adjaz2KrOHTXsbGaxVZ07atjZzGKrOnfUsLOZxVZ173imy2b7Uu8ld955Zz796U/n8ssvzz/8wz/kM5/5THbt2pXu7u75vhoXQMfyaVgPOpZPw3rQsXwa1oOO5dOwHt5rHefsnUb9/f0ZHx/P1NRUklMfwHTo0KHK26f6+/vz2muvnf56bGwsS5cunatrntV077548eJcfvnlSZLf/M3fTH9/f/7t3/5tzu97Mab7uuvY2abzumvY2cxiU907atjZzGJT3Ttq2NnMYlPdO2rY2cxi03uh45nmbGnU29ubgYGBjIyMJElGRkYyMDCQnp6elnOrV6/Ozp07c/LkyRw5ciR79+7N0NDQXF3zrKZ79/Hx8dP//q//+q/58Y9/nA984ANzeteLNd3XXcfONp3XXcPOZhab6t5Rw85mFpvq3lHDzmYWm+reUcPOZhab3gsdW8zGp3a388Mf/rCxbt26xqpVqxrr1q1rvPTSS41Go9G45557Gs8//3yj0Wg03n333caWLVsaK1eubKxcubLxxBNPzOUV25rO3f/oj/6occcddzQ+8pGPNNauXdv4u7/7u/m88mlf/OIXG7fccktjYGCg8Ru/8RuN22+/vdFoXPzrruP8mMmOGs4Ps9ik4ykazg+z2KTjKRrOD7PYpOMpGs4Ps9ikY9WCRqPRmJudFgAAAAClmLPH0wAAAAAoh6URAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAECFpREAAAAAFZZGAAAAAFRYGgEAAABQYWkEAAAAQIWlEQAAAAAVlkYAAAAAVFgaAQAAAFBhaQQAAABAhaURAAAAABWWRgAAAABUWBoBAAAAUGFpBAAAAEDFeZdG27dvz6233poVK1Zk3759Zz0zNTWVbdu2ZXBwMLfddlt27tw54xfl0uhYPg3rQcfyaVgPOpZPw3rQsXwa1oOOtHPepdHKlSvz7W9/Oz//8z/f9swzzzyTAwcO5Nlnn82TTz6Zxx57LD/60Y9m9KJcGh3Lp2E96Fg+DetBx/JpWA86lk/DetCRds67NLr55pvT399/zjO7du3K+vXrs3DhwvT09GRwcDC7d++esUty6XQsn4b1oGP5NKwHHcunYT3oWD4N60FH2pmRzzQaGxvLsmXLTn/d39+fgwcPzsSPZg7pWD4N60HH8mlYDzqWT8N60LF8GtaDju9NPggbAAAAgIrLZuKH9Pf357XXXssv/dIvJaluIKdrcvInOXmyMRNXmlO9vVdmYuLN+b7GtExNnczRo2+dvu/ChQvS3f1zSXQspaOG7ZXSMNHxXErpqGF7pTRMdDyXUjpq2F4pDRMdz6WUjhq2V0rDZPY7ltowKavjmc5seDFmZGm0evXq7Ny5M6tWrcrRo0ezd+/efPvb377gn3PyZKPYX6CS7t1onP111rGcjhq2V9K9dWyvlHtr2F5J99axvVLurWF7Jd1bx/ZKubeG7ZV079nsWHLDpKyOM+W8j6d96Utfym//9m/n4MGDueuuu3LHHXckSTZt2pQXXnghSbJmzZpce+21WbVqVT7+8Y/ns5/9bK677rrZvTkX5M///OF87GO35/DhQ/nDP/xsPvnJjydJ7r//Ph0LoWE96Fg+DetBx/JpWA86lk/DetCRdhY0Go2OWZVNTLxZ5OZu8eJFOXz4+Hxf46IsXLggvb1XzujP1HFuadhUasNExzOV2lHDplIbJjqeqdSOGjaV2jDR8UyldtSwqdSGycx3LLVhUm7HS23og7ABAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAICKy6ZzaP/+/dm8eXOOHj2aq6++Otu3b8/y5ctbzkxMTOTzn/98xsbGcuLEifzar/1aHnzwwVx22bT+E8yyAwdeyZe//FCOHTuWq666Kg8+uC3XXXd9yxkNO9/ZOt5www0tZ3TsbGaxHsxi+cxiPZjF8pnFejCL5TOLtDOtdxpt3bo1GzduzJ49e7Jx48Zs2bKlcuYb3/hGfuEXfiHPPPNMnnnmmfzLv/xLnn322Rm/MBfnkUe+mrVrITK63wAAIABJREFU1+eJJ/4ma9euz8MPf6VyRsPOp2P5NKwHHcunYT3oWD4N60HH8mlIO+ddGk1MTGR0dDTDw8NJkuHh4YyOjubIkSMt5xYsWJCf/OQnOXnyZN55552cOHEifX19s3NrLsjk5JHs2/diBgeHkiSDg0PZt+/FTE5OtpzTsLPpWD4N60HH8mlYDzqWT8N60LF8GnIu510ajY2Npa+vL11dXUmSrq6uLFmyJGNjYy3nPvOZz2T//v35rd/6rdP//Mqv/Mrs3JoLMj4+nmuuWdLS8JprFufQofGWcxp2tvYdD7ac07FzmcV6MIvlM4v1YBbLZxbrwSyWzyxyLjP28OHu3buzYsWKfOtb38pPfvKTbNq0Kbt3787q1aun/TN6e6+cqevMucWLF833FdoaH//ZXHbZwpY7dnUtTHf3z7a85jPRMNFxtrTreNVVP9tyziyW19AsVpXY0Sy2KrGhWawqsaNZbFViQ7NYVWJHs9iqxIazMYslN0w6u+NsOe/SqL+/P+Pj45mamkpXV1empqZy6NCh9Pf3t5zbsWNHvvKVr2ThwoVZtGhRbr311nzve9+7oF+giYk3c/Jk48L/L+bZ4sWLcvjw8fm+RltXXLEoBw8ezMGDR083HB8fz+WXL8rExJunB3cmGiY6zpZ2Hd/3vve3nDOL5TU0i61K7WgWm0ptaBZbldrRLDaV2tAstiq1o1lsKrXhbMxiqQ2Tzu/YzsKFCy5pWXfex9N6e3szMDCQkZGRJMnIyEgGBgbS09PTcu7aa6/N3//93ydJ3nnnnfzjP/5jbrrppou+GDOnu7snN974oezduydJsnfvntx004p0d3e3nNOws+lYPg3rQcfyaVgPOpZPw3rQsXwaci4LGo3Gedd8L730UjZv3pw33ngj73//+7N9+/Z88IMfzKZNm3Lfffflwx/+cA4cOJCtW7fm9ddfz9TUVH71V381f/qnf3pBf/1eqVvHEjaOr7zycr70pa05fvx4Fi1alC98YVuuv355Hnjgv+f++z83Yw0THWfT2TouX/6BbN78ObOYchuaxValdjSLTaU2NIutSu1oFptKbWgWW5Xa0Sw2ldpwNmax1IZJGR3P5lLfaTStpdFcKfUXqNRfnuTSf4HORse5pWFTqQ0THc9UakcNm0ptmOh4plI7athUasNExzOV2lHDplIbJjPfsdSGSbkdZ/3xNAAAAADeeyyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDisukc2r9/fzZv3pyjR4/m6quvzvbt27N8+fLKuV27duUv//Iv02g0smDBgnzzm9/MNddcM9N35iIcOPBKvvzlh3Ls2LFcddVVefDBbbnuuusr5zTsbGfreMMNN1TO6di5zGI9mMXymcV6MIvlM4v1YBbLZxZpZ1pLo61bt2bjxo1Zs2ZNvvOd72TLli15/PHHW8688MIL+drXvpZvfetbWbx4cY4fP54rrrhiVi7NhXvkka9m7dr1GRq6PXv27MrDD38ljz76jZYzGna+s3X82tf+V8sZHTubWawHs1g+s1gPZrF8ZrEezGL5zCLtnPfxtImJiYyOjmZ4eDhJMjw8nNHR0Rw5cqTl3F//9V/n7rvvzuLFi5MkixYtyvve975ZuDIXanLySPbtezGDg0NJksHBoezb92ImJydbzmnY2XQsn4b1oGP5NKwHHcunYT3oWD4NOZfzvtNobGwsfX196erqSpJ0dXVlyZIlGRsbS09Pz+lzL730Uq699tp84hOfyFtvvZXbbrst//W//tcsWLBg2pfp7b3yIv4XOsPixYvm+wptjY+/kqVLl2bp0qtPf6+vry8nThxPb2/zLYcz0TDRcba06/j222+0nDOL5TU0i1UldjSLrUpsaBarSuxoFluV2NAsVpXY0Sy2KrHhbMxiyQ2Tzu44W6b1eNp0TE1N5Qc/+EG++c1v5p133sk999yTZcuW5aMf/ei0f8bExJs5ebIxU1eaM4sXL8rhw8fn+xptTU6+lXffPdlyx6mpk5mcfCsTE2+eHtyZaJjoOFvadTx27K2Wc2axvIZmsVWpHc1iU6kNzWKrUjuaxaZSG5rFVqV2NItNpTacjVkstWHS+R3bWbhwwSUt6877eFp/f3/Gx8czNTWV5NQvyqFDh9Lf399ybtmyZVm9enWuuOKKXHnllVm5cmWef/75i74YM6evry+vv36opeHrrx/OkiV9Lec07GztOy5tOadj5zKL9WAWy2cW68Esls8s1oNZLJ9Z5FzOuzTq7e3NwMBARkZGkiQjIyMZGBhoeTQtOfVZR88991wajUZOnDiRf/qnf8ov/uIvzs6tuSDd3T258cYPZe/ePUmSvXv35KabVqS7u7vlnIadTcfyaVgPOpZPw3rQsXwa1oOO5dOQcznv0ihJHnrooezYsSNDQ0PZsWNHtm3bliTZtGlTXnjhhSTJHXfckd7e3tx+++356Ec/mhtvvDHr1q2bvZtzQR544E/y1FNP5s471+app57MAw98Pkly//33aViQdh3NYjnMYj2YxfKZxXowi+Uzi/VgFstnFmlnQaPR6JgHCkt9vrHUZxuTS3++8Wx0nFsaNpXaMNHxTKV21LCp1IaJjmcqtaOGTaU2THQ8U6kdNWwqtWEy8x1LbZiU23HWP9MIAAAAgPceSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqJjW0mj//v3ZsGFDhoaGsmHDhrz88sttz/77v/97fvmXfznbt2+fqTsyAw4ceCX33ntX7rxzbe699668+uqBtmc17Fw6lk/DetCxfBrWg47l07AedCyfhrQzraXR1q1bs3HjxuzZsycbN27Mli1bznpuamoqW7duzeDg4Ixekkv3yCNfzdq16/PEE3+TtWvX5+GHv3LWcxp2Nh3Lp2E96Fg+DetBx/JpWA86lk9D2jnv0mhiYiKjo6MZHh5OkgwPD2d0dDRHjhypnP2rv/qr/M7v/E6WL18+4xfl4k1OHsm+fS9mcHAoSTI4OJR9+17M5ORk5ayGnUvH8mlYDzqWT8N60LF8GtaDjuXTkHO57HwHxsbG0tfXl66uriRJV1dXlixZkrGxsfT09Jw+9+KLL+a5557L448/nq9//esXdZne3isv6s91gsWLF833FdoaH38lS5cuzdKlV5/+Xl9fX06cOJ7e3utPf28mGiY6zpZ2Hd9++42Wc2axvIZmsarEjmaxVYkNzWJViR3NYqsSG5rFqhI7msVWJTacjVksuWHS2R1ny3mXRtNx4sSJfOELX8hXv/rV08ulizEx8WZOnmzMxJXm1OLFi3L48PH5vkZbk5Nv5d13T7bccWrqZCYn38rExJvp7b1yxhomOs6Wdh2PHXvr9NdmscyGZrFVqR3NYlOpDc1iq1I7msWmUhuaxValdjSLTaU2nI1ZLLVh0vkd21m4cMElLevOuzTq7+/P+Ph4pqam0tXVlampqRw6dCj9/f2nzxw+fDgHDhzIH/zBHyRJ3njjjTQajbz55pv54he/eNGXY2b09fXl9dcPtTR8/fXDWbKk7/QZDTtf+45LT5/RsbOZxXowi+Uzi/VgFstnFuvBLJbPLHIu510a9fb2ZmBgICMjI1mzZk1GRkYyMDDQ8mjasmXL8r3vfe/014899ljeeuut/PEf//Hs3JoL0t3dkxtv/FD27t2ToaHbs3fvntx004p0d3efPqNh59OxfBrWg47l07AedCyfhvWgY/k05Fym9benPfTQQ9mxY0eGhoayY8eObNu2LUmyadOmvPDCC7N6QWbGAw/8SZ566snceefaPPXUk3nggc8nSe6//z4NC9Kuo1ksh1msB7NYPrNYD2axfGaxHsxi+cwi7SxoNBod80Bhqc83lvpsY3LpzzeejY5zS8OmUhsmOp6p1I4aNpXaMNHxTKV21LCp1IaJjmcqtaOGTaU2TGa+Y6kNk3I7XmrDab3TCAAAAID3FksjAAAAACosjQAAAACosDQCAAAAoMLSCAAAAIAKSyMAAAAAKiyNAAAAAKiwNAIAAACgwtIIAAAAgApLIwAAAAAqLI0AAAAAqLA0AgAAAKDC0ggAAACACksjAAAAACosjQAAAACosDTi/2/vbmPrrO+Dj/9iB1o6QrCNH07GQ8qgmVV1ezGkre0yrcTEEZimd0gWlJZqRWR0ncaGULp0owlRH1N4cRfarduLdq2YFJR2pTcmSlBeVCvV1vYFUtDc1CVLCCUnTrCdEErVwvF1v7Dmk6PLJz5J/HD+F5+PhISjv82f8/XvzU/XOQEAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAchY3cujw4cOxdevWOHXqVFx55ZWxc+fOWL58ec2Zr371q7Fnz55obW2NxYsXx/333x8rV66ciztzAY4efTE+97mH4vTp07F06dJ48MEdcc0119ac0bD5TdfxuuuuqzmjY3Mzi8VgFtNnFovBLKbPLBaDWUyfWaSeRVmWZTMd+uhHPxp33HFHrF27Nr73ve/Fd77znfjWt75Vc+YHP/hB3HTTTXHZZZfFwYMH4yMf+Ug8++yz8fa3v73hy4yOvhYTEzNep+l0di6JkyfPLPQ1zum++z4et932wejvvzX27dsTTz/9/+LRR78WLS2LoqPj8oiYnYYROs6l6Tp+5Sv/PNUwwiym2NAs1kq1o1msSrWhWayVakezWJVqQ7NYK9WOZrEq1YZzMYupNoxIo+N0zm54Qd8/04HR0dEYGhqKgYGBiIgYGBiIoaGhGBsbqzm3cuXKuOyyyyIiYsWKFZFlWZw6deqCL8bsGR8fi+Hhg9HX1x8REX19/TE8fDDGx8drzmnY3HRMn4bFoGP6NCwGHdOnYTHomD4NOZcZ355WLpeju7s7WltbIyKitbU1urq6olwuR3t7+7Tf8+STT8a1114bPT0953WZi9l+LbTOziULfYW6RkZejJ6enujpuXLqz7q7u+ONN85ER8e1037PhTaM0HGu1Ov461+/Wvd7zGJzMYuNS7GjWayVYkOzmJdiR7NYK8WGZjEvxY5msVaKDediFlNuGNHcHedKQ59pdD5+/OMfx5e//OX4+te/ft7fm+qjas3+mNr4+Ovx5psTNXesVCZifPz1GB19LTe4F9MwQse5Uq/j6dOvT3veLDYfs9iYVDuaxapUG5rFWql2NItVqTY0i7VS7WgWq1JtOBezmGrDiObvWM+cvz2tVCrFyMhIVCqViIioVCpx4sSJKJVKubPPPfdcbNmyJb761a/G9ddff8GXYnZ1d3fHK6+cqGn4yisno6urO3dWw+ZVv2N+u69jczKLxWAW02cWi8Esps8sFoNZTJ9Z5FxmXBp1dHREb29vDA4ORkTE4OBg9Pb25t6aduDAgbj//vvj0UcfjXe/+91zc1suSFtbe9xww7ti//59ERGxf/++uPHGFdHW1lZzTsPmpmP6NCwGHdOnYTHomD4Ni0HH9GnIuTT0t6cdOnQotm7dGq+++mpcccUVsXPnzrj++utj8+bNcd9998V73vOeuOOOO+Lll1+O7u7qNvJLX/pSrFixouHLpPqoWgqPqb344pH47Ge3x5kzZ2LJkiXx6U/viGuvXR5btvxNPPDA/bPWMELHuTRdx+XL3xlbt95vFiPdhmaxVqodzWJVqg3NYq1UO5rFqlQbmsVaqXY0i1WpNpyLWUy1YUQaHadzsW9Pa2hpNF9S/QVK9Zcn4uJ/gaaj4/zSsCrVhhE6ni3VjhpWpdowQsezpdpRw6pUG0boeLZUO2pYlWrDiNnvmGrDiHQ7zvlnGgEAAADw1mNpBAAAAECOpREAAAAAOZZGAAAAAORYGgEAAACQY2kEAAAAQI6lEQAAAAA5lkYAAAAA5FgaAQAAAJBjaQQAAABAjqURAAAAADmWRgAAAADkWBoBAAAAkGNpBAAAAECOpREAAAAAOZZGAAAAAORYGgEAAACQY2kEAAAAQI6lEQAAAAA5lkYAAAAA5FgaAQAAAJBjaQQAAABAjqURAAAAADmWRgAAAADkWBoBAAAAkGNpBAAAAECOpREAAAAAOZZGAAAAAORYGgEAAACQY2kEAAAAQE5DS6PDhw/Hxo0bo7+/PzZu3BhHjhzJnalUKrFjx47o6+uLW265JXbv3j3bd+UiHD36Ytx778fizjvXxb33fixeeulo7oyGzU/H9GlYDDqmT8Ni0DF9GhaDjunTkHoaWhpt3749Nm3aFPv27YtNmzbFtm3bcmeeeuqpOHr0aDzzzDPxxBNPxGOPPRa/+MUvZv3CXJhHHvlCrFu3IXbt+vdYt25DPPzw53NnNGx+OqZPw2LQMX0aFoOO6dOwGHRMn4bUM+PSaHR0NIaGhmJgYCAiIgYGBmJoaCjGxsZqzu3Zsyc2bNgQLS0t0d7eHn19fbF37965uTXnZXx8LIaHD0ZfX39ERPT19cfw8MEYHx+vOadhc9MxfRoWg47p07AYdEyfhsWgY/o05FwWz3SgXC5Hd3d3tLa2RkREa2trdHV1Rblcjvb29ppzy5Ytm/q6VCrF8ePHz+syLS2Lzut8M2nmu588eSI6O7vikksmc7e0LI6rruqMV14Zic7Ojqlzs9Fw8uc372sxk2a+e72OJ0+OxA03XDN1ziw2793NYuOa+e5msTHNfHez2LhmvrtZbEwz390sNq6Z724WG9PMd5/PWWzm16ERKd7/Yu8849JoPrW1/dZCX+GCdXRcvtBXqGvp0suitbWl5o6trS2xdOk75uQ113Fu1Ot4xRWXzfp/S8O5YRYbl2JHs1grxYZmMS/FjmaxVooNzWJeih3NYq0UG87FLKbcMKK5O86VGd+eViqVYmRkJCqVSkRMfvjViRMnolQq5c4dO3Zs6utyuRw9PT2zfF0uhIbFoGP6NCwGHdOnYTHomD4Ni0HH9GnIucy4NOro6Ije3t4YHByMiIjBwcHo7e2teWtaRMSaNWti9+7dMTExEWNjY7F///7o7++fm1tzXjQsBh3Tp2Ex6Jg+DYtBx/RpWAw6pk9DzilrwAsvvJCtX78+W716dbZ+/frs0KFDWZZl2T333JMdOHAgy7Ise/PNN7Nt27Zlq1atylatWpXt2rWrkR/NPNGwGHRMn4bFoGP6NCwGHdOnYTHomD4NqWdRlmXZQi+uAAAAAGguM749DQAAAIC3HksjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAICceV0aHT58ODZu3Bj9/f2xcePGOHLkSO5MpVKJHTt2RF9fX9xyyy2xe/fu+bxiXY3c/bHHHov3vve9sXbt2li7dm3s2LFj/i86jZ07d8bNN98cK1asiOHh4WnPnM/rruPCmM2OGi4Ms1il4yQNF4ZZrNJxkoYLwyxW6ThJw4VhFqt0nEY2j+66667sySefzLIsy5588snsrrvuyp357ne/m919991ZpVLJRkdHs5UrV2YvvfTSfF5zWo3c/dFHH82++MUvzvfVZvSTn/wkO3bsWPaBD3wg+9nPfjbtmfN53XVcGLPZUcOFYRardJyk4cIwi1U6TtJwYZjFKh0nabgwzGKVjnnz9qTR6OhoDA0NxcDAQEREDAwMxNDQUIyNjdWc27NnT2zYsCFaWlqivb09+vr6Yu/evfN1zWk1evdmddNNN0WpVDrnmUZfdx0Xzmx11HDhmMVJOk7ScOGYxUk6TtJw4ZjFSTpO0nDhmMVJOk5v3pZG5XI5uru7o7W1NSIiWltbo6urK8rlcu7csmXLpr4ulUpx/Pjx+brmtBq9e0TE008/Hbfffnvcfffd8dxzz833VS9Yo6+7js2tkdddw+ZmFmsVuaOGzc0s1ipyRw2bm1msVeSOGjY3s1ir6B3PtniuL/VWcuedd8bHP/7xuOSSS+KHP/xhfOITn4g9e/ZEW1vbQl+N86Bj+jQsBh3Tp2Ex6Jg+DYtBx/RpWAxvtY7z9qRRqVSKkZGRqFQqETH5AUwnTpzIPT5VKpXi2LFjU1+Xy+Xo6emZr2tOq9G7d3Z2xiWXXBIREe9///ujVCrFz3/+83m/74Vo9HXXsbk18rpr2NzMYlXRO2rY3MxiVdE7atjczGJV0Ttq2NzMYtVboePZ5m1p1NHREb29vTE4OBgREYODg9Hb2xvt7e0159asWRO7d++OiYmJGBsbi/3790d/f/98XXNajd59ZGRk6t9/+tOfxssvvxzvfOc75/WuF6rR113H5tbI665hczOLVUXvqGFzM4tVRe+oYXMzi1VF76hhczOLVW+FjjXm4lO763nhhRey9evXZ6tXr87Wr1+fHTp0KMuyLLvnnnuyAwcOZFmWZW+++Wa2bdu2bNWqVdmqVauyXbt2zecV62rk7p/85Cez2267Lbv99tuzdevWZd///vcX8spTPvOZz2QrV67Ment7s/e9733ZrbfemmXZhb/uOi6M2eyo4cIwi1U6TtJwYZjFKh0nabgwzGKVjpM0XBhmsUrHvEVZlmXzs9MCAAAAIBXz9vY0AAAAANJhaQQAAABAjqURAAAAADmWRgAAAADkWBoBAAAAkGNpBAAAAECOpREAAAAAOZZGAAAAAORYGgEAAACQY2kEAAAAQI6lEQAAAAA5lkYAAAAA5FgaAQAAAJBjaQQAAABAjqURAAAAADmWRgAAAADkWBoBAAAAkDPj0mjnzp1x8803x4oVK2J4eHjaM5VKJXbs2BF9fX1xyy23xO7du2f9olwcHdOnYTHomD4Ni0HH9GlYDDqmT8Ni0JF6ZlwarVq1Kv7t3/4tfvu3f7vumaeeeiqOHj0azzzzTDzxxBPx2GOPxS9+8YtZvSgXR8f0aVgMOqZPw2LQMX0aFoOO6dOwGHSknhmXRjfddFOUSqVzntmzZ09s2LAhWlpaor29Pfr6+mLv3r2zdkkuno7p07AYdEyfhsWgY/o0LAYd06dhMehIPbPymUblcjmWLVs29XWpVIrjx4/Pxo9mHumYPg2LQcf0aVgMOqZPw2LQMX0aFoOOb02LF/oCZxsf/2VMTGQLfY3z1tFxeYyOvrbQ12hIpTIRp069PnXflpZF0db2W7P639BxbmlYXyoNI3Q8l1Q6alhfKg0jdDyXVDpqWF8qDSN0PJdUOmpYXyoNI+a+Y6oNI9LqeLaLbTgrS6NSqRTHjh2L3/u934uI/AayURMTWbK/QCndO8umf511TKejhvWldG8d60vl3hrWl9K9dawvlXtrWF9K99axvlTurWF9Kd17Ljum3DAirY6zZVbenrZmzZrYvXt3TExMxNjYWOzfvz/6+/tn40czj3RMn4bFoGP6NCwGHdOnYTHomD4Ni0HHt6YZl0af/exn40/+5E/i+PHj8bGPfSxuu+22iIjYvHlzPP/88xERsXbt2rj66qtj9erV8Wd/9mfxV3/1V3HNNdfM7c05L//3/z4c/+f/3BonT56Iv/3bv4qPfOTPIiLigQfu0zERGhaDjunTsBh0TJ+GxaBj+jQsBh2pZ1GWZU3zfNXo6GtJPu7V2bkkTp48s9DXuCAtLYuio+PyWf2ZOs4vDatSbRih49lS7ahhVaoNI3Q8W6odNaxKtWGEjmdLtaOGVak2jJj9jqk2jEi348U2nJW3pwEAAABQLJZGAAAAAORYGgEAAACQY2kEAAAAQI6lEQAAAAA5lkYAAAAA5FgaAQAAAJBjaQQAAABAjqURAAAAADmWRgAAAADkWBoBAAAAkGNpBAAAAECOpREAAAAAOZZGAAAAAORYGgEAAACQY2kEAAAAQI6lEQAAAAA5lkYAAAAA5FgaAQAAAJBjaQQAAABAjqURAAAAADmWRgAAAADkWBoBAAAAkGNpBAAAAECOpREAAAAAOZZGAAAAAORYGgEAAACQY2kEAAAAQI6lEQAAAAA5lkYAAAAA5FgaAQAAAJCzuJFDhw8fjq1bt8apU6fiyiuvjJ07d8by5ctrzoyOjsanPvWpKJfL8cYbb8Qf/dEfxYMPPhiLFzf0n2COHT36Ynzucw/F6dOnY+nSpfHggzvimmuurTmjYfObruN1111Xc0bH5mYWi8Esps8sFoNZTJ9ZLAazmD6zSD0NPWm0ffv22LRpU+zbty82bdoU27Zty5352te+Fr/zO78TTz31VDz11FPx3//93/HMM8/M+oW5MI888oVYt25D7Nr177Fu3YZ4+OHP585o2Px0TJ+GxaBj+jQsBh3Tp2Ex6Jg+DalnxqXR6OhoDA0NxcDAQEREDAwMxNDQUIyNjdWcW7RoUfzyl7+MiYmJ+M1vfhNvvPFGdHd3z82tOS/j42MxPHww+vr6IyKir68/hocPxvj4eM05DZubjunTsBh0TJ+GxaBj+jQsBh3TpyHnMuNG8PsgAAAZoElEQVRzZOVyObq7u6O1tTUiIlpbW6OrqyvK5XK0t7dPnfvEJz4Rf/3Xfx1//Md/HL/61a/iwx/+cPzBH/zBeV2mo+Py87x+8+jsXLLQV6hrZOTF6OnpiZ6eK6f+rLu7O95440x0dFQfOZyNhhE6zpV6HX/961drzpnF9BqaxbwUO5rFWik2NIt5KXY0i7VSbGgW81LsaBZrpdhwLmYx5YYRzd1xrszamw/37t0bK1asiG9+85vxy1/+MjZv3hx79+6NNWvWNPwzRkdfi4mJbLauNG86O5fEyZNnFvoadY2Pvx5vvjlRc8dKZSLGx1+P0dHXpgZ3NhpG6DhX6nU8ffr1mnNmMb2GZrFWqh3NYlWqDc1irVQ7msWqVBuaxVqpdjSLVak2nItZTLVhRPN3rKelZdFFLetmfHtaqVSKkZGRqFQqERFRqVTixIkTUSqVas49/vjj8cEPfjBaWlpiyZIlcfPNN8ePfvSjC74Ys6e7uzteeeVETcNXXjkZXV21jxJq2Nzqd+ypOadj8zKLxWAW02cWi8Esps8sFoNZTJ9Z5FxmXBp1dHREb29vDA4ORkTE4OBg9Pb21rw1LSLi6quvjv/4j/+IiIjf/OY38Z//+Z9x4403zsGVOV9tbe1xww3viv3790VExP79++LGG1dEW1tbzTkNm5uO6dOwGHRMn4bFoGP6NCwGHdOnIeeyKMuyGZ8NO3ToUGzdujVeffXVuOKKK2Lnzp1x/fXXx+bNm+O+++6L97znPXH06NHYvn17vPLKK1GpVOIP//AP4x/+4R/O66/fS/VRtRQeU3vxxSPx2c9ujzNnzsSSJUvi05/eEddeuzy2bPmbeOCB+2etYYSOc2m6jsuXvzO2br3fLEa6Dc1irVQ7msWqVBuaxVqpdjSLVak2NIu1Uu1oFqtSbTgXs5hqw4g0Ok7nYt+e1tDSaL6k+guU6i9PxMX/Ak1Hx/mlYVWqDSN0PFuqHTWsSrVhhI5nS7WjhlWpNozQ8WypdtSwKtWGEbPfMdWGEel2nPPPNAIAAADgrcfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByFjdy6PDhw7F169Y4depUXHnllbFz585Yvnx57tyePXvin/7pnyLLsli0aFF84xvfiKuuumq278wFOHr0xfjc5x6K06dPx9KlS+PBB3fENddcmzunYXObruN1112XO6dj8zKLxWAW02cWi8Esps8sFoNZTJ9ZpJ6Glkbbt2+PTZs2xdq1a+N73/tebNu2Lb71rW/VnHn++efjK1/5Snzzm9+Mzs7OOHPmTFx66aVzcmnO3yOPfCHWrdsQ/f23xr59e+Lhhz8fjz76tZozGja/6Tp+5Sv/XHNGx+ZmFovBLKbPLBaDWUyfWSwGs5g+s0g9M749bXR0NIaGhmJgYCAiIgYGBmJoaCjGxsZqzv3rv/5r3H333dHZ2RkREUuWLIm3ve1tc3Blztf4+FgMDx+Mvr7+iIjo6+uP4eGDMT4+XnNOw+amY/o0LAYd06dhMeiYPg2LQcf0aci5zPikUblcju7u7mhtbY2IiNbW1ujq6opyuRzt7e1T5w4dOhRXX311fPjDH47XX389brnllvjLv/zLWLRoUcOX6ei4/AL+F5pDZ+eShb5CXSMjL0ZPT0/09Fw59Wfd3d3xxhtnoqOj+sjhbDSM0HGu1Ov461+/WnPOLKbX0CzmpdjRLNZKsaFZzEuxo1mslWJDs5iXYkezWCvFhnMxiyk3jGjujnOlobenNaJSqcTPfvaz+MY3vhG/+c1v4p577olly5bFhz70oYZ/xujoazExkc3WleZNZ+eSOHnyzEJfo67x8dfjzTcnau5YqUzE+PjrMTr62tTgzkbDCB3nSr2Op0+/XnPOLKbX0CzWSrWjWaxKtaFZrJVqR7NYlWpDs1gr1Y5msSrVhnMxi6k2jGj+jvW0tCy6qGXdjG9PK5VKMTIyEpVKJSImf1FOnDgRpVKp5tyyZctizZo1cemll8bll18eq1atigMHDlzwxZg93d3d8corJ2oavvLKyejq6q45p2Fzq9+xp+acjs3LLBaDWUyfWSwGs5g+s1gMZjF9ZpFzmXFp1NHREb29vTE4OBgREYODg9Hb21vz1rSIyc86evbZZyPLsnjjjTfiv/7rv+J3f/d35+bWnJe2tva44YZ3xf79+yIiYv/+fXHjjSuira2t5pyGzU3H9GlYDDqmT8Ni0DF9GhaDjunTkHOZcWkUEfHQQw/F448/Hv39/fH444/Hjh07IiJi8+bN8fzzz0dExG233RYdHR1x6623xoc+9KG44YYbYv369XN3c87Lli1/H9/+9hNx553r4tvffiK2bPlUREQ88MB9GiakXkezmA6zWAxmMX1msRjMYvrMYjGYxfSZRepZlGVZ07yhMNX3N6b63saIi39/43R0nF8aVqXaMELHs6XaUcOqVBtG6Hi2VDtqWJVqwwgdz5ZqRw2rUm0YMfsdU20YkW7HOf9MIwAAAADeeiyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyGloaXT48OHYuHFj9Pf3x8aNG+PIkSN1z/7P//xP/P7v/37s3Llztu7ILDh69MW4996PxZ13rot77/1YvPTS0bpnNWxeOqZPw2LQMX0aFoOO6dOwGHRMn4bU09DSaPv27bFp06bYt29fbNq0KbZt2zbtuUqlEtu3b4++vr5ZvSQX75FHvhDr1m2IXbv+Pdat2xAPP/z5ac9p2Nx0TJ+GxaBj+jQsBh3Tp2Ex6Jg+DalnxqXR6OhoDA0NxcDAQEREDAwMxNDQUIyNjeXO/su//Ev86Z/+aSxfvnzWL8qFGx8fi+Hhg9HX1x8REX19/TE8fDDGx8dzZzVsXjqmT8Ni0DF9GhaDjunTsBh0TJ+GnMuMS6NyuRzd3d3R2toaERGtra3R1dUV5XK55tzBgwfj2WefjT//8z+fk4ty4UZGRuKqq7pqGl51VWecODFSc07D5la/4/Gaczo2L7NYDGYxfWaxGMxi+sxiMZjF9JlFzmXxbPyQN954Iz796U/HF77whalftAvR0XH5bFxnQXR2LlnoK9Q1MvKOWLy4peaOra0t0db2jqnXfLYaRug4V+p1XLr0HVNfm8U0G5rFvBQ7msVaKTY0i3kpdjSLtVJsaBbzUuxoFmul2HAuZjHlhhHN3XGuzLg0KpVKMTIyEpVKJVpbW6NSqcSJEyeiVCpNnTl58mQcPXo0/uIv/iIiIl599dXIsixee+21+MxnPtPwZUZHX4uJiewC/jcWVmfnkjh58sxCX6OuSy9dEsePH4/jx09NNRwZGYlLLlkSo6OvRUfH5bPWMELHuVKv49vedsXUGbOYZkOzWCvVjmaxKtWGZrFWqh3NYlWqDc1irVQ7msWqVBvOxSym2jCi+TvW09Ky6KKWdTMujTo6OqK3tzcGBwdj7dq1MTg4GL29vdHe3j51ZtmyZfGjH/1o6uvHHnssXn/99fi7v/u7C74Ys6etrT1uuOFdsX//vujvvzX2798XN964Itra2qbOaNj8dEyfhsWgY/o0LAYd06dhMeiYPg05l4b+9rSHHnooHn/88ejv74/HH388duzYERERmzdvjueff35OL8js2LLl7+Pb334i7rxzXXz720/Eli2fioiIBx64T8OE1OtoFtNhFovBLKbPLBaDWUyfWSwGs5g+s0g9i7Isa5pnw1J9VC3Vx9QiLv5RtenoOL80rEq1YYSOZ0u1o4ZVqTaM0PFsqXbUsCrVhhE6ni3VjhpWpdowYvY7ptowIt2OF9uwoSeNAAAAAHhrsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgJzFjRw6fPhwbN26NU6dOhVXXnll7Ny5M5YvX15z5qtf/Wrs2bMnWltbY/HixXH//ffHypUr5+LOXICjR1+Mz33uoTh9+nQsXbo0HnxwR1xzzbU1ZzRsftN1vO6662rO6NjczGIxmMX0mcViMIvpM4vFYBbTZxapZ1GWZdlMhz760Y/GHXfcEWvXro3vfe978Z3vfCe+9a1v1Zz5wQ9+EDfddFNcdtllcfDgwfjIRz4Szz77bLz97W9v+DKjo6/FxMSM12k6nZ1L4uTJMwt9jXO6776Px223fTD6+2+Nffv2xNNP/7949NGvRUvLoujouDwiZqdhhI5zabqOX/nKP081jDCLKTY0i7VS7WgWq1JtaBZrpdrRLFal2tAs1kq1o1msSrXhXMxiqg0j0ug4nbMbXtD3z3RgdHQ0hoaGYmBgICIiBgYGYmhoKMbGxmrOrVy5Mi677LKIiFixYkVkWRanTp264Isxe8bHx2J4+GD09fVHRERfX38MDx+M8fHxmnMaNjcd06dhMeiYPg2LQcf0aVgMOqZPQ85lxqVRuVyO7u7uaG1tjYiI1tbW6OrqinK5XPd7nnzyybj22mujp6dn9m7KBRsZGYmrruqqaXjVVZ1x4sRI3e/RsPnU73i87vfo2FzMYjGYxfSZxWIwi+kzi8VgFtNnFjmXhj7T6Hz8+Mc/ji9/+cvx9a9//by/92IemVponZ1LFvoKdY2MvCMWL26puWNra0u0tb1j2tf8YhpG6DhX6nVcuvQd0543i83HLDYuxY5msVaKDc1iXoodzWKtFBuaxbwUO5rFWik2nItZTLlhRHN3nCszLo1KpVKMjIxEpVKJ1tbWqFQqceLEiSiVSrmzzz33XGzZsiX+8R//Ma6//vrzvkyq729s9vc2Xnrpkjh+/HgcP35qquHIyEhccsmSGB19rWZwL7ZhhI5zpV7Ht73titxZs9iczGJjUu1oFqtSbWgWa6Xa0SxWpdrQLNZKtaNZrEq14VzMYqoNI5q/Yz1z/plGHR0d0dvbG4ODgxERMTg4GL29vdHe3l5z7sCBA3H//ffHo48+Gu9+97sv+ELMvra29rjhhnfF/v37IiJi//59ceONK6Ktra3mnIbNTcf0aVgMOqZPw2LQMX0aFoOO6dOQc2nob087dOhQbN26NV599dW44oorYufOnXH99dfH5s2b47777ov3vOc9cccdd8TLL78c3d3dU9/3pS99KVasWNHwZVLdOqawcXzxxSPx2c9ujzNnzsSSJUvi05/eEddeuzy2bPmbeOCB+2etYYSOc2m6jsuXvzO2br3fLEa6Dc1irVQ7msWqVBuaxVqpdjSLVak2NIu1Uu1oFqtSbTgXs5hqw4g0Ok7nYp80amhpNF9S/QVK9Zcn4uJ/gaaj4/zSsCrVhhE6ni3VjhpWpdowQsezpdpRw6pUG0boeLZUO2pYlWrDiNnvmGrDiHQ7zvnb0wAAAAB467E0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAgx9IIAAAAgBxLIwAAAAByLI0AAAAAyLE0AgAAACDH0ggAAACAHEsjAAAAAHIsjQAAAADIsTQCAAAAIMfSCAAAAICchpZGhw8fjo0bN0Z/f39s3Lgxjhw5kjtTqVRix44d0dfXF7fcckvs3r17tu/KRTh69MW4996PxZ13rot77/1YvPTS0dwZDZufjunTsBh0TJ+GxaBj+jQsBh3TpyH1NLQ02r59e2zatCn27dsXmzZtim3btuXOPPXUU3H06NF45pln4oknnojHHnssfvGLX8z6hbkwjzzyhVi3bkPs2vXvsW7dhnj44c/nzmjY/HRMn4bFoGP6NCwGHdOnYTHomD4NqWfGpdHo6GgMDQ3FwMBAREQMDAzE0NBQjI2N1Zzbs2dPbNiwIVpaWqK9vT36+vpi796953eZlkVJ/tPsdz91ajyGhw/G6tVroqVlUaxevSaGhw/G6dOnpu4/Ww2b/bUoakezmH7D/72/WUy7o1lMv+H/3t8spt3RLKbf8H/vbxbT7mgW02/4v/d/qzdMoeNMd79Qi2c6UC6Xo7u7O1pbWyMiorW1Nbq6uqJcLkd7e3vNuWXLlk19XSqV4vjx4+d1mba23zqv882ko+Pyhb5CXeXykejp6YmurqVTf9bd3R2//vWr0dZ2zVnnLr5hhI5zpVyevuOvfnU6Iq4+65xZbFblsllsVIodzWKtFBuaxbwUO5rFWik2NIt5KXY0i7VSbDgXs5hyw4jm7jhXfBA2AAAAADkzLo1KpVKMjIxEpVKJiMkPvzpx4kSUSqXcuWPHjk19XS6Xo6enZ5avy4XQsBh0TJ+GxaBj+jQsBh3Tp2Ex6Jg+DTmXGZdGHR0d0dvbG4ODgxERMTg4GL29vTVvTYuIWLNmTezevTsmJiZibGws9u/fH/39/XNza86LhsWgY/o0LAYd06dhMeiYPg2LQcf0acg5ZQ144YUXsvXr12erV6/O1q9fnx06dCjLsiy75557sgMHDmRZlmVvvvlmtm3btmzVqlXZqlWrsl27djXyo5knGhaDjunTsBh0TJ+GxaBj+jQsBh3TpyH1LMqyLFvoxRUAAAAAzcUHYQMAAACQY2kEAAAAQI6lEQAAAAA5lkYAAAAA5FgaAQAAAJAzr0ujw4cPx8aNG6O/vz82btwYR44cyZ2pVCqxY8eO6Ovri1tuuSV27949n1esq5G7P/bYY/He97431q5dG2vXro0dO3bM/0WnsXPnzrj55ptjxYoVMTw8PO2Z83nddVwYs9lRw4VhFqt0nKThwjCLVTpO0nBhmMUqHSdpuDDMYpWO08jm0V133ZU9+eSTWZZl2ZNPPpnddddduTPf/e53s7vvvjurVCrZ6OhotnLlyuyll16az2tOq5G7P/roo9kXv/jF+b7ajH7yk59kx44dyz7wgQ9kP/vZz6Y9cz6vu44LYzY7argwzGKVjpM0XBhmsUrHSRouDLNYpeMkDReGWazSMW/enjQaHR2NoaGhGBgYiIiIgYGBGBoairGxsZpze/bsiQ0bNkRLS0u0t7dHX19f7N27d76uOa1G796sbrrppiiVSuc80+jrruPCma2OGi4cszhJx0kaLhyzOEnHSRouHLM4ScdJGi4cszhJx+nN29KoXC5Hd3d3tLa2RkREa2trdHV1Rblczp1btmzZ1NelUimOHz8+X9ecVqN3j4h4+umn4/bbb4+77747nnvuufm+6gVr9HXXsbk18rpr2NzMYq0id9SwuZnFWkXuqGFzM4u1itxRw+ZmFmsVvePZFs/1pd5K7rzzzvj4xz8el1xySfzwhz+MT3ziE7Fnz55oa2tb6KtxHnRMn4bFoGP6NCwGHdOnYTHomD4Ni+Gt1nHenjQqlUoxMjISlUolIiY/gOnEiRO5x6dKpVIcO3Zs6utyuRw9PT3zdc1pNXr3zs7OuOSSSyIi4v3vf3+USqX4+c9/Pu/3vRCNvu46NrdGXncNm5tZrCp6Rw2bm1msKnpHDZubWawqekcNm5tZrHordDzbvC2NOjo6ore3NwYHByMiYnBwMHp7e6O9vb3m3Jo1a2L37t0xMTERY2NjsX///ujv75+va06r0buPjIxM/ftPf/rTePnll+Od73znvN71QjX6uuvY3Bp53TVsbmaxqugdNWxuZrGq6B01bG5msaroHTVsbmax6q3QscZcfGp3PS+88EK2fv36bPXq1dn69euzQ4cOZVmWZffcc0924MCBLMuy7M0338y2bduWrVq1Klu1alW2a9eu+bxiXY3c/ZOf/GR22223Zbfffnu2bt267Pvf//5CXnnKZz7zmWzlypVZb29v9r73vS+79dZbsyy78Nddx4Uxmx01XBhmsUrHSRouDLNYpeMkDReGWazScZKGC8MsVumYtyjLsmx+dloAAAAApGLe3p4GAAAAQDosjQAAAADIsTQCAAAAIMfSCAAAAIAcSyMAAAAAciyNAAAAAMixNAIAAAAg5/8DCw151iQ2XZoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn as sns\n", - "sns.set(rc={'figure.figsize':(20,30)})\n", - "import matplotlib.pyplot as plt\n", - "fig, axes = plt.subplots(nrows=7, ncols=10);" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - " \u001b[0;31m[... skipping hidden 1 frame]\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m//\u001b[0m\u001b[0;36m7\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m%\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/seaborn/distributions.py\u001b[0m in \u001b[0;36mhistplot\u001b[0;34m(data, x, y, hue, weights, stat, bins, binwidth, binrange, discrete, cumulative, common_bins, common_norm, multiple, element, fill, shrink, kde, kde_kws, line_kws, thresh, pthresh, pmax, cbar, cbar_ax, cbar_kws, palette, hue_order, hue_norm, color, log_scale, legend, ax, **kwargs)\u001b[0m\n\u001b[1;32m 1391\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1392\u001b[0;31m \u001b[0mvariables\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0m_DistributionPlotter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_semantics\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlocals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1393\u001b[0m )\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/seaborn/distributions.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, variables)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 108\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariables\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 109\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/seaborn/_core.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, variables)\u001b[0m\n\u001b[1;32m 603\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 604\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0massign_variables\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 605\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/seaborn/_core.py\u001b[0m in \u001b[0;36massign_variables\u001b[0;34m(self, data, variables)\u001b[0m\n\u001b[1;32m 662\u001b[0m plot_data, variables = self._assign_variables_wideform(\n\u001b[0;32m--> 663\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 664\u001b[0m )\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/seaborn/_core.py\u001b[0m in \u001b[0;36m_assign_variables_wideform\u001b[0;34m(self, data, **kwargs)\u001b[0m\n\u001b[1;32m 719\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 720\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_1d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 721\u001b[0m flat = not any(\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/numpy/core/_asarray.py\u001b[0m in \u001b[0;36masarray\u001b[0;34m(a, dtype, order)\u001b[0m\n\u001b[1;32m 84\u001b[0m \"\"\"\n\u001b[0;32m---> 85\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 86\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/anndata/_core/anndata.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, index)\u001b[0m\n\u001b[1;32m 1087\u001b[0m \u001b[0moidx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvidx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_normalize_indices\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1088\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mAnnData\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moidx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moidx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvidx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvidx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0masview\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1089\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/anndata/_core/anndata.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, X, obs, var, uns, obsm, varm, layers, raw, dtype, shape, filename, filemode, asview, obsp, varp, oidx, vidx)\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"`X` has to be an AnnData object.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 305\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_init_as_view\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moidx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvidx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 306\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/anndata/_core/anndata.py\u001b[0m in \u001b[0;36m_init_as_view\u001b[0;34m(self, adata_ref, oidx, vidx)\u001b[0m\n\u001b[1;32m 357\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_remove_unused_categories\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0madata_ref\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobs_sub\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muns_new\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 358\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_remove_unused_categories\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0madata_ref\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvar_sub\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muns_new\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 359\u001b[0m \u001b[0;31m# set attributes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/anndata/_core/anndata.py\u001b[0m in \u001b[0;36m_remove_unused_categories\u001b[0;34m(self, df_full, df_sub, uns)\u001b[0m\n\u001b[1;32m 1092\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1093\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdf_full\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1094\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_categorical\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf_full\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: ", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "for i in range(X.shape[1]):\n", - " sns.histplot(X[:, i],ax=axes[i//7,i%10])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'PGS': ['PGS000011',\n", - " 'PGS000013',\n", - " 'PGS000016',\n", - " 'PGS000018',\n", - " 'PGS000039',\n", - " 'PGS000057',\n", - " 'PGS000058',\n", - " 'PGS000059',\n", - " 'PGS000116',\n", - " 'PGS000117',\n", - " 'PGS000192',\n", - " 'PGS000296'],\n", - " 'basics': ['age_at_recruitment',\n", - " 'townsend_deprivation_index_at_recruitment',\n", - " 'ethnic_background_0.0',\n", - " 'ethnic_background_1.0',\n", - " 'ethnic_background_2.0',\n", - " 'ethnic_background_3.0',\n", - " 'ethnic_background_4.0',\n", - " 'ethnic_background',\n", - " 'sex'],\n", - " 'diagnoses': ['coronary_heart_disease',\n", - " 'myocardial_infarction',\n", - " 'stroke',\n", - " 'diabetes1',\n", - " 'diabetes2',\n", - " 'chronic_kidney_disease',\n", - " 'atrial_fibrillation',\n", - " 'migraine',\n", - " 'rheumatoid_arthritis',\n", - " 'systemic_lupus_erythematosus',\n", - " 'severe_mental_illness',\n", - " 'erectile_dysfunction',\n", - " 'hypertensive_disorder_systemic_arterial',\n", - " 'hyperlipidemia',\n", - " 'depressive_disorder',\n", - " 'gastroesophageal_reflux_disease',\n", - " 'diabetes_mellitus_type_2',\n", - " 'essential_hypertension',\n", - " 'obesity',\n", - " 'diabetes_mellitus',\n", - " 'asthma',\n", - " 'coronary_arteriosclerosis',\n", - " 'allergic_rhinitis',\n", - " 'hypothyroidism',\n", - " 'upper_respiratory_infection',\n", - " 'hypercholesterolemia',\n", - " 'backache',\n", - " 'abdominal_pain',\n", - " 'osteoarthritis',\n", - " 'low_back_pain',\n", - " 'anemia',\n", - " 'anxiety',\n", - " 'urinary_tract_infectious_disease',\n", - " 'chronic_obstructive_lung_disease',\n", - " 'pneumonia',\n", - " 'chest_pain',\n", - " 'congestive_heart_failure',\n", - " 'headache',\n", - " 'pregnant',\n", - " 'knee_pain',\n", - " 'osteoporosis',\n", - " 'polyp_of_colon',\n", - " 'otitis_media',\n", - " 'sinusitis',\n", - " 'cough',\n", - " 'sleep_apnea',\n", - " 'insomnia',\n", - " 'inflammatory_disorder_due_to_increased_blood_urate_level',\n", - " 'tobacco_dependence_syndrome',\n", - " 'malignant_tumor_of_prostate',\n", - " 'constipation',\n", - " 'hearing_loss',\n", - " 'fatigue',\n", - " 'obstructive_sleep_apnea_syndrome',\n", - " 'malignant_neoplasm_of_breast',\n", - " 'delivery_normal',\n", - " 'irritable_bowel_syndrome',\n", - " 'tobacco_user',\n", - " 'neck_pain',\n", - " 'cerebrovascular_accident',\n", - " 'asthenia',\n", - " 'shoulder_pain',\n", - " 'acne_vulgaris',\n", - " 'benign_prostatic_hyperplasia',\n", - " 'dyspnea',\n", - " 'carpal_tunnel_syndrome',\n", - " 'bronchitis',\n", - " 'pharyngitis',\n", - " 'arthritis',\n", - " 'diarrhea',\n", - " 'dizziness',\n", - " 'alcohol_abuse',\n", - " 'dementia',\n", - " 'eczema',\n", - " 'syncope',\n", - " 'acute_sinusitis',\n", - " 'iron_deficiency_anemia',\n", - " 'allergic_rhinitis_caused_by_pollen',\n", - " 'gastritis',\n", - " 'cataract',\n", - " 'hematuria_syndrome',\n", - " 'disorder_of_the_peripheral_nervous_system',\n", - " 'viral_hepatitis_type_c',\n", - " 'palpitations',\n", - " 'eruption_of_skin',\n", - " 'diabetes_mellitus_type_1',\n", - " 'renal_failure_syndrome',\n", - " 'routine_antenatal_care',\n", - " 'peripheral_vascular_disease',\n", - " 'hyperglycemia',\n", - " 'seizure_disorder',\n", - " 'fever',\n", - " 'osteoarthritis_of_knee',\n", - " 'actinic_keratosis',\n", - " 'urinary_incontinence',\n", - " 'hemorrhoids',\n", - " 'seizure',\n", - " 'laceration_-_injury',\n", - " 'glaucoma',\n", - " 'body_mass_index_30+_-_obesity',\n", - " 'breast_lump',\n", - " 'viral_disease',\n", - " 'abnormal_cervical_smear',\n", - " 'cellulitis',\n", - " 'senile_hyperkeratosis',\n", - " 'anxiety_disorder',\n", - " 'vertigo',\n", - " 'dysphagia',\n", - " 'fall_on_same_level_from_slipping_tripping_or_stumbling',\n", - " 'edema',\n", - " 'malignant_neoplasm_of_colon',\n", - " 'hip_pain',\n", - " 'posttraumatic_stress_disorder',\n", - " 'inflammatory_dermatosis',\n", - " 'psoriasis',\n", - " 'myopia',\n", - " 'motor_vehicle_traffic_accident',\n", - " 'senile_cataract',\n", - " 'heart_murmur',\n", - " 'liver_function_tests_abnormal',\n", - " 'angina',\n", - " 'impaired_fasting_glycemia',\n", - " 'chronic_ischemic_heart_disease',\n", - " 'chronic_sinusitis',\n", - " 'menopause_present',\n", - " 'basal_cell_carcinoma_of_skin',\n", - " 'screening_procedure',\n", - " 'raised_prostate_specific_antigen',\n", - " 'impaired_glucose_tolerance',\n", - " 'smoker',\n", - " 'hypertriglyceridemia',\n", - " 'irregular_periods',\n", - " 'herpes_zoster',\n", - " 'sensorineural_hearing_loss',\n", - " 'rectal_hemorrhage',\n", - " 'history_of_surgery',\n", - " 'peptic_ulcer',\n", - " 'tinnitus',\n", - " 'bipolar_disorder',\n", - " 'vitamin_d_deficiency',\n", - " 'transient_ischemic_attack',\n", - " 'streptococcal_sore_throat',\n", - " 'onychomycosis',\n", - " 'deep_venous_thrombosis',\n", - " 'presbyopia',\n", - " 'neonatal_jaundice',\n", - " 'bacterial_vaginosis',\n", - " 'impacted_cerumen',\n", - " 'foot_pain',\n", - " 'sciatica',\n", - " 'vomiting',\n", - " 'history_of_polyp_of_colon',\n", - " 'benign_prostatic_hypertrophy_with_outflow_obstruction',\n", - " 'type_ii_diabetes_mellitus_without_complication',\n", - " 'calculus_in_biliary_tract',\n", - " 'epigastric_pain',\n", - " 'late_effects_of_cerebrovascular_disease',\n", - " 'gastroenteritis',\n", - " 'pulmonary_embolism',\n", - " 'inguinal_hernia',\n", - " 'verruca_vulgaris',\n", - " 'sepsis',\n", - " 'disorder_of_kidney_due_to_diabetes_mellitus',\n", - " 'nausea_and_vomiting',\n", - " 'hyperthyroidism',\n", - " 'abscess',\n", - " 'dental_caries',\n", - " 'gastrointestinal_hemorrhage',\n", - " 'rosacea',\n", - " \"parkinson's_disease\",\n", - " 'menorrhagia',\n", - " 'malignant_tumor_of_lung',\n", - " 'joint_pain',\n", - " 'morbid_obesity',\n", - " 'hiatal_hernia',\n", - " 'arthralgia_of_the_ankle_and/or_foot',\n", - " 'restless_legs',\n", - " 'thrombocytopenic_disorder',\n", - " 'old_myocardial_infarction',\n", - " 'neuropathy',\n", - " 'cardiomyopathy',\n", - " 'atopic_dermatitis',\n", - " 'pain_in_pelvis',\n", - " 'contact_dermatitis',\n", - " 'indigestion',\n", - " 'nicotine_dependence',\n", - " 'sprain_of_ankle',\n", - " 'degenerative_disorder_of_macula',\n", - " 'exacerbation_of_asthma',\n", - " 'alcohol_dependence',\n", - " 'hypokalemia',\n", - " 'mitral_valve_regurgitation',\n", - " 'hyponatremia',\n", - " 'abdominal_aortic_aneurysm',\n", - " 'cyst_of_ovary',\n", - " 'otitis_externa',\n", - " 'threatened_abortion',\n", - " 'scoliosis_deformity_of_spine',\n", - " 'seborrheic_dermatitis',\n", - " 'spinal_stenosis',\n", - " 'dysmenorrhea',\n", - " 'acute_otitis_media',\n", - " \"alzheimer's_disease\",\n", - " 'neuropathy_due_to_diabetes_mellitus',\n", - " 'acute_pharyngitis',\n", - " 'degeneration_of_intervertebral_disc',\n", - " 'attention_deficit_hyperactivity_disorder_predominantly_inattentive_type',\n", - " 'unplanned_pregnancy',\n", - " 'secondary_erectile_dysfunction',\n", - " 'spinal_stenosis_of_lumbar_region',\n", - " 'accidental_physical_contact',\n", - " 'proteinuria',\n", - " 'urticaria',\n", - " 'genital_herpes_simplex',\n", - " 'malignant_neoplasm_of_female_breast',\n", - " 'nausea',\n", - " 'chronic_rhinitis',\n", - " 'multiple_sclerosis',\n", - " 'chronic_kidney_disease_stage_3',\n", - " 'panic_disorder',\n", - " 'attention_deficit_hyperactivity_disorder',\n", - " 'amnesia',\n", - " 'otalgia',\n", - " 'tremor',\n", - " 'retention_of_urine',\n", - " \"non-hodgkin's_lymphoma\",\n", - " 'alcoholism',\n", - " 'dysuria',\n", - " 'generalized_anxiety_disorder',\n", - " 'paroxysmal_atrial_fibrillation',\n", - " 'peripheral_venous_insufficiency',\n", - " 'nonproliferative_retinopathy_due_to_diabetes_mellitus',\n", - " 'shoulder_joint_pain',\n", - " 'moderate_recurrent_major_depression',\n", - " 'diverticulitis',\n", - " 'solitary_nodule_of_lung',\n", - " 'hyperkalemia',\n", - " 'recurrent_major_depressive_episodes',\n", - " 'multiple_myeloma',\n", - " 'regular_astigmatism',\n", - " 'secondary_malignant_neoplasm_of_liver',\n", - " 'ulcerative_colitis',\n", - " 'vaginitis',\n", - " 'acute_renal_failure_syndrome',\n", - " 'amenorrhea',\n", - " 'tendinitis',\n", - " 'rhinitis',\n", - " 'bleeding_from_nose',\n", - " \"crohn's_disease\",\n", - " 'nuclear_senile_cataract',\n", - " 'muscle_pain',\n", - " 'epidermoid_cyst',\n", - " 'impaired_cognition',\n", - " 'acute_exacerbation_of_chronic_obstructive_airways_disease',\n", - " 'eustachian_tube_disorder',\n", - " 'internal_hemorrhoids',\n", - " 'substance_abuse',\n", - " 'melanocytic_nevus',\n", - " 'pain',\n", - " \"barrett's_esophagus\",\n", - " 'cerebrovascular_disease',\n", - " 'malignant_melanoma',\n", - " 'folliculitis',\n", - " 'family_history_of_diabetes_mellitus',\n", - " 'mitral_valve_prolapse',\n", - " 'chronic_hepatitis_c',\n", - " 'hypermetropia',\n", - " 'endometriosis',\n", - " 'gestational_diabetes_mellitus',\n", - " 'cirrhosis_of_liver',\n", - " 'injury_of_head',\n", - " 'dehydration',\n", - " 'herpes_simplex',\n", - " 'fracture_of_bone',\n", - " 'overweight',\n", - " 'right_inguinal_hernia',\n", - " 'adjustment_disorder',\n", - " 'tinea_pedis',\n", - " 'aortic_valve_stenosis',\n", - " 'viral_hepatitis_type_b',\n", - " 'umbilical_hernia',\n", - " 'ingrowing_nail',\n", - " 'postmenopausal_bleeding',\n", - " 'goiter',\n", - " 'secondary_malignant_neoplasm_of_bone',\n", - " 'pulmonary_emphysema',\n", - " 'left_inguinal_hernia',\n", - " 'snoring',\n", - " 'polycystic_ovary_syndrome',\n", - " 'polycystic_ovary',\n", - " 'microscopic_hematuria',\n", - " 'pain_in_wrist',\n", - " 'pleural_effusion',\n", - " 'false_labor',\n", - " 'bleeding_from_vagina',\n", - " 'acquired_hypothyroidism',\n", - " 'premature_rupture_of_membranes',\n", - " 'human_immunodeficiency_virus_infection',\n", - " 'contusion',\n", - " 'secondary_malignant_neoplasm_of_lung',\n", - " 'problem_situation_relating_to_social_and_personal_history',\n", - " 'hypercalcemia',\n", - " 'occlusion_of_carotid_artery',\n", - " 'prolonged_second_stage_of_labor',\n", - " 'lipoma',\n", - " 'poisoning_caused_by_drug_and/or_medicinal_substance',\n", - " 'paranoid_schizophrenia',\n", - " 'hypersensitivity_reaction',\n", - " 'dysthymia',\n", - " 'fetal_or_neonatal_effect_of_maternal_premature_rupture_of_membrane',\n", - " 'noncompliance_with_treatment',\n", - " 'falls',\n", - " 'muscle_strain',\n", - " 'schizophrenia',\n", - " 'left_bundle_branch_block',\n", - " 'elevated_blood_pressure_reading_without_diagnosis_of_hypertension',\n", - " 'disorder_of_nervous_system_due_to_type_2_diabetes_mellitus',\n", - " 'preinfarction_syndrome',\n", - " 'conduction_disorder_of_the_heart',\n", - " 'lateral_epicondylitis',\n", - " 'burn',\n", - " 'pyelonephritis',\n", - " 'intermittent_claudication',\n", - " 'varicose_veins_of_lower_extremity',\n", - " 'hemiplegia',\n", - " 'chronic_pain',\n", - " 'bronchiolitis',\n", - " 'mild_persistent_asthma',\n", - " 'secondary_malignant_neoplasm_of_lymph_node',\n", - " 'mixed_hyperlipidemia',\n", - " 'female_urinary_stress_incontinence',\n", - " 'localized_primary_osteoarthritis_of_the_ankle_and/or_foot',\n", - " 'hypesthesia',\n", - " 'hand_pain',\n", - " 'psychotic_disorder',\n", - " 'menopausal_syndrome',\n", - " 'acute_myocardial_infarction_of_anterior_wall',\n", - " 'bronchiectasis',\n", - " 'lumbar_radiculopathy',\n", - " 'osteoarthritis_of_hip',\n", - " 'deviated_nasal_septum',\n", - " 'paresthesia',\n", - " 'hypoglycemia',\n", - " 'deep_venous_thrombosis_of_lower_extremity',\n", - " 'complication_of_surgical_procedure',\n", - " 'mild_intermittent_asthma',\n", - " 'generalized_ischemic_myocardial_dysfunction',\n", - " 'lumbar_spondylosis',\n", - " 'acute_tonsillitis',\n", - " 'esophagitis',\n", - " 'aortic_valve_regurgitation',\n", - " 'malignant_neoplasm_of_skin',\n", - " 'altered_mental_status',\n", - " 'atrial_flutter',\n", - " 'alopecia',\n", - " 'high_risk_pregnancy',\n", - " 'missed_abortion',\n", - " 'malignant_tumor_of_urinary_bladder',\n", - " 'pulmonary_hypertension',\n", - " 'nasal_congestion',\n", - " 'hemoptysis',\n", - " 'viral_gastroenteritis',\n", - " 'right_upper_quadrant_pain',\n", - " 'primary_open_angle_glaucoma',\n", - " 'malignant_tumor_of_ovary',\n", - " 'incomplete_emptying_of_bladder',\n", - " 'pruritic_disorder',\n", - " 'fibrocystic_breast_changes',\n", - " 'tinea_corporis',\n", - " 'acute_pancreatitis',\n", - " 'acute_myocardial_infarction',\n", - " 'cerebral_hemorrhage',\n", - " 'urge_incontinence_of_urine',\n", - " 'megaloblastic_anemia_due_to_vitamin_b>12<_deficiency',\n", - " 'chronic_lymphoid_leukemia_disease',\n", - " 'disorder_of_lymphatic_system',\n", - " 'diverticular_disease',\n", - " 'tonsillitis',\n", - " 'tear_film_insufficiency',\n", - " 'abnormal_gait',\n", - " 'assault',\n", - " 'accidental_fall',\n", - " 'orthostatic_hypotension',\n", - " 'pancreatitis',\n", - " 'closed_fracture_of_distal_end_of_radius',\n", - " 'first_degree_perineal_laceration',\n", - " 'not_for_resuscitation',\n", - " 'gastroesophageal_reflux_disease_with_esophagitis',\n", - " 'intracranial_injury',\n", - " \"bell's_palsy\",\n", - " 'bradycardia',\n", - " 'polymyalgia_rheumatica',\n", - " 'dysplasia_of_cervix',\n", - " 'serous_otitis_media',\n", - " 'angioedema',\n", - " 'venous_varices',\n", - " 'spasm',\n", - " 'sleep_disorder',\n", - " 'pain_of_breast',\n", - " 'malabsorption_syndrome_due_to_intolerance_to_lactose',\n", - " 'tachycardia',\n", - " 'acute_conjunctivitis',\n", - " 'malignant_lymphoma',\n", - " 'supraventricular_tachycardia',\n", - " 'hyperparathyroidism',\n", - " 'periodontitis',\n", - " 'history_of_malignant_neoplasm_of_prostate',\n", - " 'renal_disorder_due_to_type_2_diabetes_mellitus',\n", - " 'nerve_root_disorder',\n", - " 'nonexudative_age-related_macular_degeneration',\n", - " 'history_of_primary_malignant_neoplasm_of_skin',\n", - " 'tension-type_headache',\n", - " 'chronic_pain_syndrome',\n", - " 'abnormal_weight_loss',\n", - " 'pure_hypercholesterolemia',\n", - " 'acute_upper_respiratory_infection',\n", - " 'inflammatory_disease_of_liver',\n", - " 'colitis',\n", - " 'prolonged_pregnancy',\n", - " 'major_depression_single_episode',\n", - " 'croup',\n", - " 'family_history_of_malignant_neoplasm_of_breast',\n", - " 'skin_tag',\n", - " 'metabolic_syndrome_x',\n", - " 'adverse_reaction_caused_by_drug',\n", - " 'retinopathy_due_to_diabetes_mellitus',\n", - " 'female_infertility',\n", - " 'open-angle_glaucoma',\n", - " \"tietze's_disease\",\n", - " 'postpartum_care',\n", - " 'gallbladder_calculus',\n", - " 'sarcoidosis',\n", - " 'neurogenic_bladder',\n", - " 'tobacco_dependence_in_remission',\n", - " 'wheezing',\n", - " 'elevated_levels_of_transaminase_&_lactic_acid_dehydrogenase',\n", - " 'ascites',\n", - " 'low_blood_pressure',\n", - " 'bursitis',\n", - " 'miscarriage',\n", - " 'methicillin_resistant_staphylococcus_aureus_carrier',\n", - " 'urethritis',\n", - " 'noninfectious_gastroenteritis',\n", - " 'malignant_tumor_of_thyroid_gland',\n", - " 'pressure_ulcer',\n", - " 'verruca_plantaris',\n", - " 'anemia_of_chronic_disorder',\n", - " 'hernia_of_anterior_abdominal_wall',\n", - " 'degeneration_of_lumbar_intervertebral_disc',\n", - " 'right_lower_quadrant_pain',\n", - " 'infertile',\n", - " 'hernia_of_abdominal_wall',\n", - " 'benign_paroxysmal_positional_vertigo',\n", - " 'pityriasis_versicolor',\n", - " 'injury_of_lower_leg',\n", - " 'dry_skin',\n", - " 'impacted_tooth',\n", - " 'acquired_trigger_finger',\n", - " 'chronic_osteoarthritis',\n", - " 'acute_stress_disorder',\n", - " 'peripheral_circulatory_disorder_due_to_type_2_diabetes_mellitus',\n", - " 'respiratory_failure',\n", - " 'allergic_disposition',\n", - " 'stress',\n", - " 'atrophic_vaginitis',\n", - " 'degeneration_of_lumbosacral_intervertebral_disc',\n", - " 'astigmatism',\n", - " 'sick_sinus_syndrome',\n", - " 'cocaine_abuse',\n", - " 'intermittent_asthma',\n", - " 'cervical_radiculopathy',\n", - " 'atherosclerosis_of_coronary_artery',\n", - " 'methicillin_resistant_staphylococcus_aureus_infection',\n", - " 'female_pelvic_inflammatory_disease',\n", - " 'pain_in_eye',\n", - " 'cervical_spondylosis',\n", - " 'prematurity_of_infant',\n", - " 'postoperative_care',\n", - " 'postmature_infancy',\n", - " 'temporomandibular_joint_disorder',\n", - " 'nocturia',\n", - " 'adjustment_disorder_with_depressed_mood',\n", - " 'visual_impairment',\n", - " 'male_hypogonadism',\n", - " 'closed_intertrochanteric_fracture',\n", - " 'pain_in_limb',\n", - " 'complication_occurring_during_pregnancy',\n", - " 'sprain_of_knee',\n", - " 'history_of_malignant_neoplasm_of_colon',\n", - " 'fracture_of_ankle',\n", - " 'injury_of_hand',\n", - " 'postoperative_wound_infection',\n", - " 'congestive_cardiomyopathy',\n", - " 'nocturnal_enuresis',\n", - " 'proliferative_retinopathy_due_to_diabetes_mellitus',\n", - " 'major_depressive_disorder',\n", - " 'fall_on_same_level_from_slipping',\n", - " 'chronic_bronchitis',\n", - " 'advanced_maternal_age_gravida',\n", - " 'recurrent_major_depression_in_full_remission',\n", - " 'pregnancy-induced_hypertension',\n", - " 'epididymitis',\n", - " 'impetigo',\n", - " 'schizoaffective_disorder',\n", - " 'candidiasis_of_mouth',\n", - " 'mild_recurrent_major_depression',\n", - " 'cerebral_palsy',\n", - " 'squamous_cell_carcinoma_of_skin',\n", - " 'hypogonadism',\n", - " 'greater_trochanteric_pain_syndrome',\n", - " \"graves'_disease\",\n", - " 'malignant_neoplastic_disease',\n", - " 'moderate_persistent_asthma',\n", - " 'steatosis_of_liver',\n", - " 'obsessive-compulsive_disorder',\n", - " 'mood_disorder',\n", - " 'degeneration_of_cervical_intervertebral_disc',\n", - " 'corneal_abrasion',\n", - " 'anal_fissure',\n", - " 'heart_failure',\n", - " 'adjustment_disorder_with_mixed_emotional_features',\n", - " 'febrile_convulsion',\n", - " 'degenerative_joint_disease_of_hand',\n", - " 'chronic_type_b_viral_hepatitis',\n", - " 'blepharitis',\n", - " 'cyst',\n", - " 'heartburn',\n", - " 'history_of_malignant_melanoma',\n", - " 'intellectual_disability',\n", - " 'exudative_age-related_macular_degeneration',\n", - " 'hypoxia',\n", - " 'influenza',\n", - " 'intervertebral_disc_prolapse',\n", - " 'swelling_of_first_metatarsophalangeal_joint_of_hallux',\n", - " 'genuine_stress_incontinence',\n", - " 'opioid_dependence',\n", - " 'antepartum_hemorrhage',\n", - " 'pneumothorax',\n", - " 'kidney_disease',\n", - " 'atopic_conjunctivitis',\n", - " 'dermatophytosis',\n", - " 'influenza_caused_by_influenza_a_virus',\n", - " 'cystitis',\n", - " 'moderate_major_depression_single_episode',\n", - " 'furuncle',\n", - " 'cannabis_abuse',\n", - " 'conductive_hearing_loss',\n", - " 'neutropenic_disorder',\n", - " 'injury_of_finger',\n", - " 'intestinal_obstruction',\n", - " 'lymphadenopathy',\n", - " 'mass_of_pelvic_structure',\n", - " 'myelodysplastic_syndrome',\n", - " 'jaundice',\n", - " 'severe_recurrent_major_depression_without_psychotic_features',\n", - " 'inflammation_of_cervix',\n", - " 'sickle_cell_trait',\n", - " 'squamous_cell_carcinoma',\n", - " 'small_bowel_obstruction',\n", - " 'premenstrual_tension_syndrome',\n", - " 'fracture_of_proximal_end_of_femur',\n", - " 'developmental_delay',\n", - " 'drug_abuse',\n", - " 'left_lower_quadrant_pain',\n", - " 'hordeolum',\n", - " 'disorder_of_lung',\n", - " 'migraine_without_aura',\n", - " 'open-angle_glaucoma_-_borderline',\n", - " 'disorder_of_refraction',\n", - " 'acute_appendicitis',\n", - " 'amyloidosis',\n", - " \"hodgkin's_disease\",\n", - " 'contraception_care',\n", - " 'hydrocele_of_testis',\n", - " 'cellulitis_of_foot',\n", - " 'pancytopenia',\n", - " 'pain_in_elbow',\n", - " 'peripheral_nerve_disease',\n", - " 'eating_disorder',\n", - " 'hernia_of_abdominal_cavity',\n", - " 'secondary_malignant_neoplasm_of_brain',\n", - " 'late_effects_of_respiratory_tuberculosis',\n", - " 'alcohol_intoxication',\n", - " 'abrasion',\n", - " 'breech_presentation',\n", - " 'premature_labor',\n", - " 'family_history:_cardiovascular_disease',\n", - " \"raynaud's_phenomenon\",\n", - " 'history_of_fall',\n", - " 'posterior_rhinorrhea',\n", - " 'acute_gastritis',\n", - " 'polyp_of_nasal_cavity',\n", - " 'essential_tremor',\n", - " 'candidiasis',\n", - " 'ocular_hypertension',\n", - " 'aortic_valve_disorder',\n", - " 'diaper_rash',\n", - " 'cholangitis',\n", - " 'primary_malignant_neoplasm_of_lung',\n", - " 'impingement_syndrome_of_shoulder_region',\n", - " 'idiopathic_urticaria',\n", - " 'arthritis_of_knee',\n", - " 'ulcer_of_duodenum',\n", - " 'peripheral_neuropathy_due_to_diabetes_mellitus',\n", - " 'hypervolemia',\n", - " 'cholecystitis',\n", - " 'deficiency_of_glucose-6-phosphate_dehydrogenase',\n", - " 'acute_pyelonephritis',\n", - " 'musculoskeletal_chest_pain',\n", - " 'melena',\n", - " 'dog_bite',\n", - " 'cigarette_smoker',\n", - " 'infectious_mononucleosis',\n", - " 'hypertensive_renal_failure',\n", - " 'cocaine_dependence',\n", - " 'abdominal_aortic_aneurysm_without_rupture',\n", - " 'right_bundle_branch_block',\n", - " 'alcoholic_cirrhosis',\n", - " 'fibrosis_of_lung',\n", - " 'neoplasm_of_uncertain_behavior_of_skin',\n", - " 'malignant_melanoma_of_skin',\n", - " 'urgent_desire_to_urinate',\n", - " 'bursitis_of_hip',\n", - " 'chronic_alcoholism_in_remission',\n", - " 'chronic_pancreatitis',\n", - " 'gastroparesis',\n", - " 'ectopic_pregnancy',\n", - " 'muscle_weakness',\n", - " 'recurrent_major_depression',\n", - " 'pilonidal_cyst',\n", - " 'pain_in_toe',\n", - " 'pulmonary_tuberculosis',\n", - " 'celiac_disease',\n", - " 'cramp_in_lower_leg',\n", - " 'secondary_malignant_neoplasm_of_pleura',\n", - " 'fracture_of_hand',\n", - " 'cyst_of_breast',\n", - " 'nephrotic_syndrome',\n", - " 'polyp_of_nasal_sinus',\n", - " 'chondromalacia_of_patella',\n", - " 'spinal_stenosis_in_cervical_region',\n", - " 'disorder_of_artery',\n", - " 'vitiligo',\n", - " 'female_cystocele',\n", - " 'dysphasia',\n", - " 'retinal_disorder',\n", - " 'epiretinal_membrane',\n", - " 'recurrent_major_depression_in_partial_remission',\n", - " 'infection_caused_by_trichomonas',\n", - " 'osteomyelitis',\n", - " 'polyp_of_nasal_cavity_and/or_nasal_sinus',\n", - " 'mass_of_neck',\n", - " 'fall_from_one_level_to_another',\n", - " 'idiopathic_thrombocytopenic_purpura',\n", - " 'complete_miscarriage',\n", - " 'gastric_ulcer',\n", - " 'papilloma_of_skin',\n", - " 'fetal_or_neonatal_effect_of_breech_delivery_and_extraction',\n", - " 'secondary_malignant_neoplastic_disease',\n", - " 'hypoxemia',\n", - " 'paraplegia',\n", - " 'perforation_of_tympanic_membrane',\n", - " 'ventricular_tachycardia',\n", - " 'mixed_incontinence',\n", - " 'disorder_of_eye_due_to_type_2_diabetes_mellitus',\n", - " 'trigeminal_neuralgia',\n", - " 'retinal_detachment',\n", - " 'leukopenia',\n", - " 'vitreous_hemorrhage',\n", - " 'ischemic_ulcer',\n", - " 'intramural_leiomyoma_of_uterus',\n", - " 'viral_hepatitis_type_a',\n", - " \"ménière's_disease\",\n", - " 'fracture_of_phalanx_of_hand',\n", - " 'muscle_atrophy',\n", - " 'incontinence_of_feces',\n", - " 'mitral_valve_disorder',\n", - " 'atherosclerosis_of_arteries_of_the_extremities',\n", - " 'spondylosis',\n", - " 'pterygium',\n", - " 'history_of_peptic_ulcer',\n", - " 'ulnar_neuropathy',\n", - " 'lung_mass',\n", - " 'foreign_body_in_respiratory_tract',\n", - " 'chronic_kidney_disease_stage_4',\n", - " 'myocardial_ischemia',\n", - " 'non-toxic_multinodular_goiter',\n", - " 'pain_in_finger',\n", - " 'cervical_spondylosis_without_myelopathy',\n", - " 'body_mass_index_25-29_-_overweight',\n", - " 'clouded_consciousness',\n", - " 'mixed_conductive_and_sensorineural_hearing_loss',\n", - " 'tooth_eruption_disorder',\n", - " 'hyperuricemia',\n", - " 'closed_fracture_of_neck_of_femur',\n", - " 'bipolar_ii_disorder',\n", - " 'disturbance_in_sleep_behavior',\n", - " 'relationship_problems',\n", - " 'sprain_of_wrist',\n", - " 'personality_disorder',\n", - " 'external_hemorrhoids',\n", - " 'abnormal_vision',\n", - " 'hyperprolactinemia',\n", - " 'hemochromatosis',\n", - " 'lumbosacral_radiculopathy',\n", - " 'heart_valve_disorder',\n", - " 'cardiac_arrest',\n", - " 'infection_caused_by_molluscum_contagiosum',\n", - " 'chronic_kidney_disease_stage_2',\n", - " 'secondary_malignant_neoplasm_of_peritoneum',\n", - " 'thoracic_back_pain',\n", - " 'blood_in_urine',\n", - " 'adhesive_capsulitis_of_shoulder',\n", - " 'diplopia',\n", - " \"sjögren's_syndrome\",\n", - " 'ureteric_stone',\n", - " 'bronchospasm',\n", - " 'chronic_fatigue_syndrome',\n", - " 'cannabis_dependence',\n", - " 'neck_sprain',\n", - " 'multinodular_goiter',\n", - " 'ptosis_of_eyelid',\n", - " 'failure_to_thrive',\n", - " 'torticollis',\n", - " 'acute_bronchiolitis',\n", - " 'viral_exanthem',\n", - " 'talipes_planus',\n", - " 'idiopathic_peripheral_neuropathy',\n", - " 'foreign_body_in_pharynx',\n", - " 'jaw_pain',\n", - " 'renal_impairment',\n", - " 'ataxia',\n", - " 'age-related_macular_degeneration',\n", - " 'uterine_prolapse',\n", - " 'renal_mass',\n", - " 'pneumonitis',\n", - " 'coordination_problem',\n", - " 'blindness_-_both_eyes',\n", - " 'primary_hyperparathyroidism',\n", - " 'musculoskeletal_pain',\n", - " 'mycosis',\n", - " 'primigravida',\n", - " 'urethral_stricture',\n", - " 'leukocytosis',\n", - " 'ventricular_premature_complex',\n", - " 'ulcer_of_foot_due_to_diabetes_mellitus',\n", - " 'chronic_headache_disorder',\n", - " 'hemangioma',\n", - " 'lymphedema',\n", - " 'postmenopausal_state',\n", - " 'chronic_ulcer_of_skin',\n", - " 'left_heart_failure',\n", - " 'excessive_and_frequent_menstruation',\n", - " 'thrombocytosis',\n", - " 'disorder_of_liver',\n", - " 'disorder_of_carotid_artery',\n", - " 'altered_bowel_function',\n", - " 'abscess_of_foot',\n", - " 'malignant_tumor_of_head_and/or_neck',\n", - " 'streptococcus_group_b_infection_of_the_infant',\n", - " 'concussion_injury_of_brain',\n", - " 'feeding_problems_in_newborn',\n", - " 'bipolar_i_disorder',\n", - " 'viral_pharyngitis',\n", - " 'lower_respiratory_tract_infection',\n", - " 'hydronephrosis',\n", - " 'borderline_personality_disorder',\n", - " 'esophageal_varices',\n", - " 'hypersomnia',\n", - " 'sensorineural_hearing_loss_bilateral',\n", - " 'varicocele',\n", - " 'subarachnoid_intracranial_hemorrhage',\n", - " 'incisional_hernia',\n", - " 'varicella',\n", - " 'pain_in_testicle',\n", - " 'transplant_follow-up',\n", - " 'tinea_cruris',\n", - " 'laryngitis',\n", - " 'hypertrophy_of_nail',\n", - " 'crushed_in_between_objects',\n", - " 'amblyopia',\n", - " 'polyp_of_cervix',\n", - " 'cyst_of_kidney',\n", - " 'hepatic_encephalopathy',\n", - " 'blood_glucose_abnormal',\n", - " 'postherpetic_neuralgia',\n", - " 'frank_hematuria',\n", - " 'cramp',\n", - " 'interstitial_lung_disease',\n", - " 'complete_atrioventricular_block',\n", - " 'malignant_tumor_of_kidney',\n", - " 'otitis',\n", - " 'septic_shock',\n", - " 'disorder_of_thyroid_gland',\n", - " 'hypertrophic_cardiomyopathy',\n", - " 'respiratory_distress_syndrome_in_the_newborn',\n", - " 'infectious_gastroenteritis',\n", - " 'subdural_intracranial_hemorrhage',\n", - " 'hepatitis_b_carrier',\n", - " 'manic_bipolar_i_disorder',\n", - " 'secondary_pulmonary_hypertension',\n", - " 'history_of_thrombosis',\n", - " 'gonorrhea',\n", - " 'derangement_of_knee',\n", - " 'appendicitis',\n", - " 'polyneuropathy_due_to_diabetes_mellitus',\n", - " 'neonatal_hypoglycemia',\n", - " 'prolonged_rupture_of_membranes',\n", - " 'vasomotor_rhinitis',\n", - " 'renal_disorder_due_to_type_1_diabetes_mellitus',\n", - " 'tuberculosis',\n", - " 'feeding_problem',\n", - " 'chronic_tonsillitis',\n", - " 'history_of_tuberculosis',\n", - " 'acute_duodenal_ulcer_with_hemorrhage',\n", - " 'hammer_toe',\n", - " 'malignant_tumor_of_cervix',\n", - " 'prolapsed_lumbar_intervertebral_disc',\n", - " 'hematemesis',\n", - " 'perianal_abscess',\n", - " 'nonvenomous_insect_bite',\n", - " 'spondylolisthesis',\n", - " 'malignant_tumor_of_esophagus',\n", - " 'aphthous_ulcer_of_mouth',\n", - " 'ventricular_septal_defect',\n", - " 'oropharyngeal_dysphagia',\n", - " 'injury_of_knee',\n", - " 'traumatic_brain_injury',\n", - " 'osteoarthritis_of_glenohumeral_joint',\n", - " 'fetal_or_neonatal_effect_of_maternal_medical_problem',\n", - " 'portal_hypertension',\n", - " 'duodenitis',\n", - " 'non-toxic_uninodular_goiter',\n", - " 'acute_cholecystitis',\n", - " 'renal_colic',\n", - " 'atrial_arrhythmia',\n", - " 'mass_of_body_structure',\n", - " 'nuclear_cataract',\n", - " 'drug-induced_hypoglycemia',\n", - " 'disorder_of_brain',\n", - " 'cystoid_macular_edema',\n", - " 'malocclusion_of_teeth',\n", - " 'aortic_aneurysm',\n", - " 'cyst_of_meibomian_gland',\n", - " 'allergy_to_drug',\n", - " 'malignant_tumor_of_nasopharynx',\n", - " 'history_of_musculoskeletal_disease',\n", - " 'respiratory_tract_infection',\n", - " 'hemiplegia_as_late_effect_of_cerebrovascular_disease',\n", - " 'lower_abdominal_pain',\n", - " 'chronic_maxillary_sinusitis',\n", - " 'cervical_lymphadenopathy',\n", - " 'common_cold',\n", - " 'administrative_procedure',\n", - " 'psychosexual_dysfunction',\n", - " 'hypertensive_renal_disease',\n", - " 'ketoacidosis_due_to_diabetes_mellitus',\n", - " 'polyp_of_corpus_uteri',\n", - " 'delirium',\n", - " 'pityriasis_rosea',\n", - " 'cutis_laxa',\n", - " 'arthralgia_of_the_pelvic_region_and_thigh',\n", - " 'thyroiditis',\n", - " 'fracture_of_rib',\n", - " 'chronic_serous_otitis_media',\n", - " 'sarcoma',\n", - " 'rheumatic_fever',\n", - " 'complication_of_implant',\n", - " 'atrial_septal_defect',\n", - " 'disorder_of_skeletal_and/or_smooth_muscle',\n", - " 'plagiocephaly',\n", - " 'contusion_of_knee',\n", - " 'clostridioides_difficile_infection',\n", - " 'traumatic_injury',\n", - " 'physical_examination_procedure',\n", - " 'disorder_of_lipid_metabolism',\n", - " 'tricuspid_valve_regurgitation',\n", - " 'intertrigo',\n", - " 'acute_myeloid_leukemia_disease',\n", - " 'upper_gastrointestinal_hemorrhage',\n", - " 'breathing-related_sleep_disorder',\n", - " 'intestinal_adhesions_with_obstruction',\n", - " \"raynaud's_disease\",\n", - " 'paralytic_syndrome_of_dominant_side_as_late_effect_of_stroke',\n", - " 'acute_gastric_ulcer_with_hemorrhage',\n", - " 'esotropia',\n", - " 'closed_fracture_of_metacarpal_bone',\n", - " 'syphilis',\n", - " 'parkinsonism',\n", - " 'cut_-_accidental',\n", - " 'disorder_of_joint_of_spine',\n", - " 'constipation_due_to_outlet_obstruction',\n", - " 'psoriasis_with_arthropathy',\n", - " 'amyotrophic_lateral_sclerosis',\n", - " 'twin_pregnancy',\n", - " 'closed_fracture_of_pelvis',\n", - " 'infection_caused_by_antimicrobial_resistant_bacteria',\n", - " 'enteritis_caused_by_rotavirus',\n", - " 'digestive_system_reflux',\n", - " 'unemployed',\n", - " 'closed_fracture_of_metatarsal_bone',\n", - " 'pneumonia_caused_by_pseudomonas',\n", - " 'hydrocephalus',\n", - " 'family_history_of_cancer',\n", - " 'closed_fracture_of_patella',\n", - " 'rectal_polyp',\n", - " 'animal_bite_wound',\n", - " 'acute_cholangitis',\n", - " 'disorder_of_intestine',\n", - " 'pleurisy',\n", - " 'family_history_of_prostate_cancer',\n", - " 'cerebral_atherosclerosis',\n", - " 'fracture_of_radius',\n", - " 'acute_duodenal_ulcer',\n", - " 'hypomagnesemia',\n", - " 'hyperbilirubinemia',\n", - " 'complete_trisomy_21_syndrome',\n", - " 'cervical_spondylosis_with_myelopathy',\n", - " 'pressure_ulcer_of_buttock',\n", - " 'cervical_arthritis',\n", - " 'radiology_result_abnormal',\n", - " 'complication_of_transplanted_kidney',\n", - " 'acute_bronchiolitis_caused_by_respiratory_syncytial_virus',\n", - " 'pleuritic_pain',\n", - " 'abnormal_findings_on_diagnostic_imaging_of_lung',\n", - " 'paralytic_syndrome_of_nondominant_side_as_late_effect_of_stroke',\n", - " 'benign_neoplasm_of_colon',\n", - " 'complication_of_renal_dialysis',\n", - " 'failed_induction_of_labor',\n", - " 'herniation_of_nucleus_pulposus',\n", - " 'myasthenia_gravis',\n", - " 'neoplasm_of_brain',\n", - " 'short_stature_disorder',\n", - " 'hypertrophy_of_nasal_turbinates',\n", - " 'lymphadenitis',\n", - " 'excessive_cerumen_in_ear_canal',\n", - " 'cognitive_disorder',\n", - " 'postconcussion_syndrome',\n", - " 'polyuria',\n", - " 'herniation_of_rectum_into_vagina',\n", - " 'hallucinations',\n", - " 'nutritional_deficiency_disorder',\n", - " 'epicondylitis',\n", - " 'gangrenous_disorder',\n", - " 'iritis',\n", - " 'disorder_due_to_type_2_diabetes_mellitus',\n", - " 'cortical_senile_cataract',\n", - " 'disorder_of_rotator_cuff',\n", - " 'exanthema_subitum',\n", - " 'intrauterine_pregnancy',\n", - " 'abdominal_mass',\n", - " 'hirsutism',\n", - " 'acute_maxillary_sinusitis',\n", - " 'localization-related_epilepsy',\n", - " 'human_papillomavirus_infection',\n", - " 'hand_joint_inflamed',\n", - " 'hypertrophy_of_breast',\n", - " 'cervical_intraepithelial_neoplasia',\n", - " 'collapse_of_vertebra',\n", - " 'bacteremia',\n", - " 'hypertensive_heart_disease',\n", - " 'mixed_bipolar_i_disorder',\n", - " 'malaise_and_fatigue',\n", - " 'insect_bite_-_wound',\n", - " 'arteriosclerotic_vascular_disease',\n", - " 'thyrotoxicosis',\n", - " 'renal_artery_stenosis',\n", - " 'aspiration_pneumonia',\n", - " 'carcinoma_in_situ_of_breast',\n", - " 'polyneuropathy_due_to_type_2_diabetes_mellitus',\n", - " 'abdominal_pregnancy',\n", - " 'onychogryposis',\n", - " 'fracture_of_tibia',\n", - " 'compression_fracture_of_vertebral_column',\n", - " 'closed_supracondylar_fracture_of_humerus',\n", - " 'dysarthria',\n", - " 'maternal_pyrexia_in_labor',\n", - " 'synovial_cyst_of_knee',\n", - " 'lichen_simplex_chronicus',\n", - " 'inflamed_seborrheic_keratosis',\n", - " 'fracture_of_clavicle',\n", - " 'prostate_specific_antigen_abnormal',\n", - " 'chronic_purulent_otitis_media',\n", - " 'abdominal_abscess',\n", - " 'excessive_vomiting_in_pregnancy',\n", - " 'postoperative_hypothyroidism',\n", - " 'allergy_to_food',\n", - " 'non-toxic_nodular_goiter',\n", - " 'preterm_premature_rupture_of_membranes',\n", - " 'prostate_mass',\n", - " 'reduced_libido',\n", - " 'abnormal_cervical_papanicolaou_smear',\n", - " 'infectious_disease',\n", - " 'keratosis_pilaris',\n", - " 'oligomenorrhea',\n", - " \"cyst_of_bartholin's_gland_duct\",\n", - " 'undifferentiated_schizophrenia',\n", - " 'open_wound',\n", - " 'alcohol_withdrawal_syndrome',\n", - " 'respiratory_syncytial_virus_infection',\n", - " 'urinary_bladder_stone',\n", - " 'fetal_or_neonatal_effect_of_multiple_pregnancy',\n", - " 'vesicoureteric_reflux',\n", - " 'hyperhidrosis',\n", - " 'temporal_arteritis',\n", - " 'erythrocytosis',\n", - " 'spontaneous_pneumothorax',\n", - " 'aphasia',\n", - " 'bleeding',\n", - " 'heterozygous_thalassemia',\n", - " 'chronic_ulcer_of_lower_extremity',\n", - " 'disorder_of_nervous_system_due_to_diabetes_mellitus',\n", - " 'family_history_of_disorder',\n", - " 'injury_of_upper_extremity',\n", - " 'mild_major_depression_single_episode',\n", - " 'parainfluenza',\n", - " 'balanitis',\n", - " 'hypertrophy_of_tonsils',\n", - " 'fracture_of_humerus',\n", - " 'mild_nonproliferative_retinopathy_due_to_diabetes_mellitus',\n", - " 'disorder_of_cardiovascular_system',\n", - " 'dyssomnia',\n", - " 'transitory_tachypnea_of_newborn',\n", - " 'hypocalcemia',\n", - " 'gastroduodenitis',\n", - " 'spinal_cord_disorder',\n", - " 'alveolar_hypoventilation',\n", - " 'hand_joint_pain',\n", - " 'vasculitis',\n", - " 'inflammation_of_sacroiliac_joint',\n", - " 'patent_ductus_arteriosus',\n", - " 'radial_styloid_tenosynovitis',\n", - " 'current_tear_of_medial_cartilage_and/or_meniscus_of_knee',\n", - " 'closed_fracture_of_lateral_malleolus',\n", - " 'iron_deficiency',\n", - " 'chronic_constipation',\n", - " 'noncompliance_with_medication_regimen',\n", - " 'fibroadenosis_of_breast',\n", - " 'sprain_of_spinal_ligament',\n", - " 'hemiplegia_as_late_effect_of_cerebrovascular_accident',\n", - " 'achilles_tendinitis',\n", - " \"gilbert's_syndrome\",\n", - " 'knee_joint_effusion',\n", - " 'left_upper_quadrant_pain',\n", - " 'disorder_of_nervous_system_due_to_type_1_diabetes_mellitus',\n", - " 'panic_disorder_without_agoraphobia',\n", - " 'large_liver',\n", - " 'hyperparathyroidism_due_to_renal_insufficiency',\n", - " 'macrocytic_anemia',\n", - " 'chronic_pulmonary_heart_disease',\n", - " 'hypovolemia',\n", - " 'suicide_attempt',\n", - " 'puncture_wound_-_injury',\n", - " 'chronic_post-traumatic_stress_disorder',\n", - " 'congenital_heart_disease',\n", - " 'acute_otitis_externa',\n", - " 'autistic_disorder',\n", - " 'aneurysm_of_thoracic_aorta',\n", - " 'ultrasound_scan_abnormal',\n", - " 'fracture_of_phalanx_of_foot',\n", - " 'excessive_fetal_growth_affecting_management_of_mother',\n", - " 'fracture_of_mandible',\n", - " 'disorder_of_lower_extremity',\n", - " 'radiation_therapy_complication',\n", - " 'malignant_tumor_of_pancreas',\n", - " 'exotropia',\n", - " 'fractured_nasal_bones',\n", - " 'drowsy',\n", - " 'nonunion_of_fracture',\n", - " 'residual_cognitive_deficit_as_late_effect_of_cerebrovascular_accident',\n", - " 'asbestosis',\n", - " 'autonomic_neuropathy_due_to_type_2_diabetes_mellitus',\n", - " 'splenomegaly',\n", - " 'closed_fracture_of_shaft_of_femur',\n", - " 'closed_fracture_of_clavicle',\n", - " 'open_wound_of_finger',\n", - " 'chronic_prostatitis',\n", - " 'malignant_tumor_of_stomach',\n", - " 'patellar_tendonitis',\n", - " 'neoplastic_disease',\n", - " 'scar',\n", - " 'hematoma',\n", - " 'syndrome_of_inappropriate_vasopressin_secretion',\n", - " 'administrative_reason_for_encounter',\n", - " 'viral_gastroenteritis_caused_by_norwalk-like_agent',\n", - " 'disorder_of_stoma',\n", - " 'cardiomegaly',\n", - " 'chronic_mucoid_otitis_media',\n", - " 'inflammatory_disorder_of_breast',\n", - " 'non-infective_non-allergic_rhinitis',\n", - " 'fracture_of_fibula',\n", - " 'incomplete_miscarriage',\n", - " 'periapical_abscess',\n", - " 'motor_vehicle_on_road_in_collision_with_pedestrian',\n", - " 'chronic_duodenal_ulcer',\n", - " 'retinal_edema',\n", - " 'kyphosis_deformity_of_spine',\n", - " 'nummular_eczema',\n", - " 'adjustment_disorder_with_anxious_mood',\n", - " 'bipolar_affective_disorder_current_episode_depression',\n", - " 'pre-eclampsia',\n", - " 'degenerative_joint_disease_of_ankle_and/or_foot',\n", - " 'mitral_valve_stenosis',\n", - " 'induratio_penis_plastica',\n", - " 'malignant_tumor_of_testis',\n", - " 'systemic_sclerosis',\n", - " 'polycythemia_vera',\n", - " 'chronic_otitis_media',\n", - " 'retinopathy_of_prematurity',\n", - " 'foreign_body_in_ear',\n", - " 'teething_syndrome',\n", - " 'drug_dependence',\n", - " 'sprain_of_ligament_of_finger',\n", - " 'sprain_of_ligament_of_thumb',\n", - " 'atypical_squamous_cells_of_undetermined_significance_on_cervical_papanicolaou_smear',\n", - " 'low_tension_glaucoma',\n", - " 'complication_due_to_diabetes_mellitus',\n", - " 'dizziness_and_giddiness',\n", - " 'cough_variant_asthma',\n", - " 'fracture_of_foot',\n", - " 'haemophilus_influenzae_pneumonia',\n", - " 'delusional_disorder',\n", - " 'retinal_lattice_degeneration',\n", - " 'pericardial_effusion',\n", - " 'chronic_kidney_disease_stage_5',\n", - " 'disorder_of_eye_due_to_diabetes_mellitus',\n", - " 'primary_biliary_cholangitis',\n", - " 'dislocation_of_shoulder_joint',\n", - " 'hemangioma_of_skin',\n", - " 'basal_cell_carcinoma_of_face',\n", - " 'disease_caused_by_adenovirus',\n", - " 'exposure_to_communicable_disease',\n", - " 'poisoning_caused_by_anticoagulant',\n", - " 'complex_regional_pain_syndrome',\n", - " 'enlargement_of_tonsil_or_adenoid',\n", - " 'hidradenitis',\n", - " 'acute_lymphoid_leukemia_disease',\n", - " 'not_up_to_date_with_immunizations',\n", - " 'labyrinthitis',\n", - " 'peripheral_angiopathy_due_to_diabetes_mellitus',\n", - " 'chronic_tension-type_headache',\n", - " 'fetal_or_neonatal_effect_of_maternal_anesthesia_and/or_analgesia',\n", - " 'closed_fracture_of_ankle',\n", - " 'narcolepsy',\n", - " 'congenital_cystic_kidney_disease',\n", - " 'inflammation_of_bursa_of_olecranon',\n", - " 'eruption_caused_by_drug',\n", - " 'metabolic_acidosis',\n", - " 'disorder_of_autonomic_nervous_system',\n", - " 'mallory-weiss_syndrome',\n", - " 'chronic_interstitial_cystitis',\n", - " 'alcoholic_liver_damage',\n", - " 'alopecia_areata',\n", - " 'trichiasis',\n", - " 'orchitis_and_epididymitis',\n", - " 'perimenopausal_disorder',\n", - " 'injury_of_eye_region',\n", - " 'shoulder_joint_inflamed',\n", - " 'graft-versus-host_disease',\n", - " 'end-stage_renal_disease',\n", - " 'hallux_valgus',\n", - " 'dystrophia_unguium',\n", - " 'senile_dementia',\n", - " 'type_ii_diabetes_mellitus_with_ulcer',\n", - " 'keratitis',\n", - " 'plantar_fascial_fibromatosis',\n", - " 'neurogenic_bowel',\n", - " 'complication_of_procedure',\n", - " 'homeless',\n", - " 'cerebral_embolism',\n", - " 'chronic_duodenal_ulcer_with_hemorrhage',\n", - " 'lichen_planus',\n", - " 'abnormal_sexual_function',\n", - " 'meningitis',\n", - " 'leukemia_disease',\n", - " 'bursitis_of_shoulder',\n", - " 'venous_retinal_branch_occlusion',\n", - " 'abscess_of_skin_and/or_subcutaneous_tissue',\n", - " 'anomaly_of_tooth_position',\n", - " 'bacterial_conjunctivitis',\n", - " 'malignant_tumor_of_ascending_colon',\n", - " 'aftercare',\n", - " 'neuralgia',\n", - " 'vulvovaginitis',\n", - " 'pulmonary_edema',\n", - " 'visual_disturbance',\n", - " 'arthritis_of_spine',\n", - " 'contusion_of_hip',\n", - " 'anxiety_state',\n", - " 'anorectal_fistula',\n", - " 'uveitis',\n", - " 'wound_dehiscence',\n", - " 'fracture_of_pelvis',\n", - " 'cocaine_dependence_in_remission',\n", - " 'granulomatosis_with_polyangiitis',\n", - " 'head_and_neck_injury',\n", - " 'vascular_dementia',\n", - " 'severe_major_depression_single_episode_without_psychotic_features',\n", - " 'anemia_of_pregnancy',\n", - " 'vocal_cord_palsy',\n", - " 'arthropathy',\n", - " 'history_of_pulmonary_embolus',\n", - " 'herpangina',\n", - " 'idiopathic_scoliosis',\n", - " 'inflammatory_polyarthropathy',\n", - " 'mass_of_pancreas',\n", - " 'peritonitis',\n", - " 'stomatitis',\n", - " 'vitreous_degeneration',\n", - " 'central_retinal_vein_occlusion',\n", - " 'closed_fracture_of_carpal_bone',\n", - " 'social_phobia',\n", - " 'atelectasis',\n", - " 'discharge_from_nipple',\n", - " 'biceps_tendinitis',\n", - " 'keratosis',\n", - " 'scarlet_fever',\n", - " 'acute_urinary_tract_infection',\n", - " 'nasal_discharge',\n", - " 'mood_disorder_due_to_a_general_medical_condition',\n", - " 'concussion_with_no_loss_of_consciousness',\n", - " 'malignant_lymphoma_of_extranodal_and/or_solid_organ_site',\n", - " 'staphylococcal_pneumonia',\n", - " 'anorectal_disorder',\n", - " 'sepsis_caused_by_escherichia_coli',\n", - " 'chronic_gastric_ulcer_with_hemorrhage',\n", - " 'galactorrhea_not_associated_with_childbirth',\n", - " 'anemia_in_neoplastic_disease',\n", - " 'lumbar_sprain',\n", - " 'hip_joint_inflamed',\n", - " 'sprain_of_shoulder',\n", - " 'anisometropia',\n", - " 'tricuspid_incompetence_non-rheumatic',\n", - " 'expressive_language_disorder',\n", - " 'chronic_diarrhea',\n", - " 'cervical_intraepithelial_neoplasia_grade_1',\n", - " 'epidemic_vertigo',\n", - " 'disorder_of_kidney_and/or_ureter',\n", - " 'incontinence',\n", - " 'closed_fracture_of_surgical_neck_of_humerus',\n", - " 'bacterial_enteritis',\n", - " 'closed_fracture_of_femur',\n", - " 'meralgia_paresthetica',\n", - " 'corneal_ulcer',\n", - " 'foreign_body',\n", - " 'ecchymosis',\n", - " 'panic_disorder_with_agoraphobia',\n", - " 'mild_intellectual_disability',\n", - " 'single_episode_of_major_depression_in_full_remission',\n", - " 'streptococcal_tonsillitis',\n", - " 'malignant_tumor_of_lower_third_of_esophagus',\n", - " 'malignant_neoplasm_of_upper-outer_quadrant_of_female_breast',\n", - " 'primary_sclerosing_cholangitis',\n", - " 'malignant_tumor_of_large_intestine',\n", - " 'second_degree_perineal_laceration',\n", - " 'thyroid_function_tests_abnormal',\n", - " 'closed_fracture_of_calcaneus',\n", - " 'bulimia_nervosa',\n", - " 'sexually_transmitted_infectious_disease',\n", - " 'injury_of_lower_extremity',\n", - " 'herpesvirus_infection',\n", - " 'worried_well',\n", - " 'peritonsillar_abscess',\n", - " 'rhd_negative',\n", - " 'rhegmatogenous_retinal_detachment',\n", - " 'conjunctival_hemorrhage',\n", - " 'central_sleep_apnea_syndrome',\n", - " 'delayed_milestone',\n", - " 'viral_enteritis',\n", - " 'retained_foreign_body_in_eye',\n", - " 'chronic_anemia',\n", - " 'family_history_of_stroke',\n", - " 'malignant_tumor_of_larynx',\n", - " 'cystic_fibrosis',\n", - " 'perioral_dermatitis',\n", - " 'closed_fracture_of_upper_end_of_humerus',\n", - " 'pyuria',\n", - " 'herpetic_gingivostomatitis',\n", - " 'fracture_of_tooth',\n", - " 'familial_hypercholesterolemia',\n", - " 'dysphagia_as_a_late_effect_of_cerebrovascular_accident',\n", - " 'migraine_with_aura',\n", - " 'hyperpigmentation_of_skin',\n", - " 'peripheral_vertigo',\n", - " 'benign_neoplasm_of_skin',\n", - " 'neoplasm_of_uncertain_behavior_of_brain_and/or_spinal_cord',\n", - " 'cellulitis_and_abscess_of_face',\n", - " 'accident_caused_by_hot_liquid_and_vapor_including_steam',\n", - " 'fracture_of_face_bones',\n", - " 'infection_caused_by_methicillin_susceptible_staphylococcus_aureus',\n", - " 'disorder_of_joint_of_ankle_and/or_foot',\n", - " 'obstruction_co-occurrent_and_due_to_left_inguinal_hernia',\n", - " 'obstruction_co-occurrent_and_due_to_right_inguinal_hernia',\n", - " 'opioid_abuse',\n", - " 'keratoconus',\n", - " 'tenosynovitis',\n", - " 'disorder_of_breast',\n", - " 'bilateral_inguinal_hernia',\n", - " 'bleeding_esophageal_varices',\n", - " 'brachial_plexus_disorder',\n", - " 'endometriosis_of_pelvis',\n", - " 'benign_neoplasm_of_skin_of_face',\n", - " 'moderate_depression',\n", - " 'epidermoid_cyst_of_skin',\n", - " 'anorexia_nervosa',\n", - " 'oppositional_defiant_disorder',\n", - " 'closed_fracture_of_upper_end_of_tibia',\n", - " 'anatomical_narrow_angle_glaucoma',\n", - " 'chloasma',\n", - " 'secondary_polycythemia',\n", - " 'chronic_myeloid_leukemia_disease',\n", - " 'dystonia',\n", - " 'lumbosacral_spondylosis_without_myelopathy',\n", - " 'fracture_of_femur',\n", - " 'liver_mass',\n", - " 'closed_fracture_of_tibia_and_fibula',\n", - " 'educational_problem',\n", - " 'oligohydramnios',\n", - " 'swollen_abdomen',\n", - " 'degenerative_joint_disease_of_shoulder_region',\n", - " 'pediculosis_capitis',\n", - " 'cephalhematoma_due_to_birth_trauma',\n", - " 'inflammatory_bowel_disease',\n", - " 'closed_fracture_of_phalanx_of_foot',\n", - " 'abscess_of_breast',\n", - " 'secondary_cataract',\n", - " 'metatarsal_bone_fracture',\n", - " 'rheumatic_mitral_stenosis',\n", - " 'opioid_withdrawal',\n", - " 'multiple_pregnancy',\n", - " 'tuberculosis_of_pleura',\n", - " 'acute_viral_pharyngitis',\n", - " 'meibomian_gland_dysfunction',\n", - " 'major_depression_single_episode_in_partial_remission',\n", - " 'acute_type_b_viral_hepatitis',\n", - " 'cardiogenic_shock',\n", - " 'blindness_of_one_eye',\n", - " 'first_degree_atrioventricular_block',\n", - " 'closed_fracture_of_nasal_bones',\n", - " 'undescended_testicle',\n", - " 'malignant_tumor_of_oral_cavity',\n", - " 'bacterial_pneumonia',\n", - " 'perirectal_abscess',\n", - " 'cervical_intraepithelial_neoplasia_grade_2',\n", - " 'malignant_tumor_of_cecum',\n", - " 'cerebral_infarction_due_to_embolism_of_cerebral_arteries',\n", - " 'panniculitis',\n", - " 'maculopapular_eruption',\n", - " 'aphakia',\n", - " 'medial_epicondylitis_of_elbow_joint',\n", - " 'open_wound_of_hand',\n", - " 'diastolic_dysfunction',\n", - " 'asteatosis_cutis',\n", - " 'secondary_malignant_neoplasm_of_skin',\n", - " 'chest_injury',\n", - " 'macular_edema_due_to_diabetes_mellitus',\n", - " 'cerebral_infarction',\n", - " 'closed_fracture_of_base_of_neck_of_femur',\n", - " 'toxic_diffuse_goiter',\n", - " 'acute_appendicitis_with_generalized_peritonitis',\n", - " 'rheumatic_mitral_regurgitation',\n", - " 'non-traumatic_intracerebral_ventricular_hemorrhage',\n", - " 'congenital_pneumonia',\n", - " 'discoid_lupus_erythematosus',\n", - " 'blood_coagulation_disorder',\n", - " 'neurofibromatosis_syndrome',\n", - " 'strabismus',\n", - " 'quadriplegia',\n", - " 'infection_of_skin',\n", - " 'cannabis_dependence_in_remission',\n", - " 'cellulitis_of_face',\n", - " 'talipes_equinovarus',\n", - " 'callosity',\n", - " 'benign_neoplastic_disease',\n", - " 'rhabdomyolysis',\n", - " 'placenta_previa',\n", - " 'atherosclerosis_of_artery',\n", - " 'secondary_malignant_neoplasm_of_female_breast',\n", - " 'pneumonia_caused_by_klebsiella_pneumoniae',\n", - " 'poisoning_caused_by_sedative_and/or_hypnotic',\n", - " 'essential_thrombocythemia',\n", - " 'heart_block',\n", - " 'sprain_of_ligament_of_lower_limb',\n", - " 'microcytic_anemia',\n", - " 'dental_consultation_and_report',\n", - " 'severe_persistent_asthma',\n", - " 'hyperplasia_of_prostate',\n", - " 'skin_ulcer',\n", - " 'sinus_node_dysfunction',\n", - " 'testicular_hypofunction',\n", - " 'benign_neoplasm_of_skin_of_trunk',\n", - " 'atrial_fibrillation_and_flutter',\n", - " 'respiratory_distress',\n", - " 'anticoagulant_adverse_reaction',\n", - " 'disorder_of_gallbladder',\n", - " 'rheumatic_heart_disease',\n", - " 'history_of_malignant_neoplasm_of_cervix',\n", - " 'foot-drop',\n", - " 'chronic_hepatitis',\n", - " 'blood_chemistry_abnormal',\n", - " 'malaise',\n", - " 'nonulcer_dyspepsia',\n", - " 'viral_conjunctivitis',\n", - " 'calcaneal_spur',\n", - " 'lupus_erythematosus',\n", - " 'benign_tumor_of_eyelid',\n", - " 'laceration_of_finger',\n", - " 'moderate_nonproliferative_retinopathy_due_to_diabetes_mellitus',\n", - " 'malignant_tumor_of_head_of_pancreas',\n", - " 'autoimmune_hepatitis',\n", - " 'chronic_kidney_disease_stage_1',\n", - " 'papular_eruption',\n", - " 'low_birth_weight_infant',\n", - " 'neoplasm_of_uncertain_behavior_of_soft_tissues',\n", - " 'esophageal_dysmotility',\n", - " 'hereditary_factor_viii_deficiency_disease',\n", - " 'clostridium_difficile_colitis',\n", - " 'cyst_of_liver',\n", - " 'monoclonal_gammopathy',\n", - " 'disorder_of_peripheral_autonomic_nervous_system',\n", - " 'developmental_academic_disorder',\n", - " 'hypoadrenalism',\n", - " 'degenerative_progressive_high_myopia',\n", - " 'solar_degeneration',\n", - " 'overactive_bladder',\n", - " \"hodgkin's_disease_nodular_sclerosis\",\n", - " 'single_live_birth',\n", - " 'fracture_of_radial_head',\n", - " 'high_birth_weight',\n", - " 'local_infection_of_wound',\n", - " 'tubal_pregnancy',\n", - " 'fetal_or_neonatal_effect_of_placenta_previa',\n", - " 'poisoning_caused_by_analgesic_drug',\n", - " 'vernal_conjunctivitis',\n", - " 'injury_of_brachial_plexus',\n", - " 'eosinophil_count_raised',\n", - " 'hypospadias',\n", - " 'aneurysm',\n", - " 'cellulitis_of_hand',\n", - " 'occlusion_of_ureter',\n", - " 'lobar_pneumonia',\n", - " 'chronic_respiratory_failure',\n", - " 'myeloproliferative_disorder',\n", - " 'subclinical_hypothyroidism',\n", - " \"crohn's_disease_of_small_intestine\",\n", - " 'acute_lymphoid_leukemia_in_remission',\n", - " 'peripheral_circulatory_disorder_due_to_type_1_diabetes_mellitus',\n", - " 'hypertensive_heart_failure',\n", - " 'bladder_neck_obstruction',\n", - " 'closed_fracture_of_rib',\n", - " 'injury_of_foot',\n", - " 'female_hypogonadism_syndrome',\n", - " 'visual_field_scotoma',\n", - " 'ulcer_of_heel',\n", - " 'intervertebral_disc_disorder',\n", - " 'dermatomyositis',\n", - " 'periodic_limb_movement_disorder',\n", - " 'closed_fracture_of_fibula',\n", - " 'ganglion_of_wrist',\n", - " 'gingivitis',\n", - " 'systemic_lupus_erythematosus_glomerulonephritis_syndrome',\n", - " 'rheumatic_mitral_stenosis_with_regurgitation',\n", - " 'disorder_of_skin_and/or_subcutaneous_tissue',\n", - " 'drug-induced_disorder_of_liver',\n", - " 'suicidal_thoughts',\n", - " 'cluster_headache_syndrome',\n", - " 'closed_bimalleolar_fracture',\n", - " 'ventricular_fibrillation',\n", - " 'neoplasm_of_pituitary_gland',\n", - " 'myoclonus',\n", - " 'pressure_ulcer_of_heel',\n", - " 'cytomegalovirus_infection',\n", - " 'closed_fracture_of_shaft_of_radius',\n", - " 'thalassemia',\n", - " 'diastolic_heart_failure',\n", - " 'bullous_pemphigoid',\n", - " 'closed_fracture_of_shaft_of_humerus',\n", - " 'deficiency_of_macronutrients',\n", - " 'abscess_of_liver',\n", - " 'neonatal_jaundice_associated_with_preterm_delivery',\n", - " \"crohn's_disease_of_large_bowel\",\n", - " 'gastric_polyp',\n", - " 'subsequent_myocardial_infarction',\n", - " 'generalized_epilepsy',\n", - " 'multiparous',\n", - " 'pericarditis',\n", - " 'mass_of_adrenal_gland',\n", - " 'shoulder_joint_unstable',\n", - " 'proctitis',\n", - " 'optic_atrophy',\n", - " 'mass_of_testicle',\n", - " 'neoplasm_of_liver',\n", - " 'burn_of_hand',\n", - " 'malignant_neoplasm_of_brain',\n", - " 'chronic_gastritis',\n", - " 'benign_neoplasm_of_prostate',\n", - " 'malignant_neoplasm_of_corpus_uteri_excluding_isthmus',\n", - " 'malignant_neoplasm_of_gastrointestinal_tract',\n", - " 'traumatic_arthropathy',\n", - " 'recurrent_left_inguinal_hernia',\n", - " 'recurrent_right_inguinal_hernia',\n", - " 'cholesteatoma',\n", - " 'guillain-barré_syndrome',\n", - " 'sprain_of_medial_collateral_ligament_of_knee',\n", - " 'lichen_sclerosus_et_atrophicus',\n", - " 'pain_in_thoracic_spine',\n", - " 'tear_of_medial_meniscus_of_knee',\n", - " 'retinal_detachment_with_retinal_defect',\n", - " 'skin_ulcer_of_calf',\n", - " 'acute_atopic_conjunctivitis',\n", - " 'livebirth',\n", - " 'spinal_cord_compression',\n", - " 'mammography',\n", - " \"crohn's_disease_of_small_and_large_intestines\",\n", - " 'endometriosis_of_uterus',\n", - " 'myositis',\n", - " 'retinal_hemorrhage',\n", - " 'polyneuropathy',\n", - " 'acquired_nasolacrimal_duct_stenosis',\n", - " 'tooth_disorder',\n", - " 'malignant_neoplasm_of_uterus',\n", - " 'acanthosis_nigricans',\n", - " 'fracture_of_tibia_and_fibula',\n", - " 'exostosis',\n", - " 'endometritis',\n", - " 'primary_malignant_neoplasm_of_skin_of_face',\n", - " 'paroxysmal_tachycardia',\n", - " 'polyp_of_vocal_cord_or_larynx',\n", - " 'pulmonary_sarcoidosis',\n", - " 'blister_of_skin_and/or_mucosa',\n", - " 'congenital_dislocation_of_hip',\n", - " 'cellulitis_of_toe',\n", - " 'secondary_malignant_neoplasm_of_soft_tissues',\n", - " 'neonatal_jaundice_due_to_delayed_conjugation',\n", - " 'nondependent_cocaine_abuse_in_remission',\n", - " 'placenta_previa_with_hemorrhage',\n", - " 'fetal_or_neonatal_effect_of_maternal_oligohydramnios',\n", - " 'gallbladder_and_bile_duct_calculi',\n", - " 'secondary_hypertension',\n", - " 'pneumonia_caused_by_gram_negative_bacteria',\n", - " 'periodic_leg_movements_of_sleep',\n", - " 'epiphora',\n", - " 'aplastic_anemia',\n", - " 'injury_of_shoulder_region',\n", - " 'diabetes_insipidus',\n", - " 'hepatitis_c_carrier',\n", - " 'facial_laceration',\n", - " 'closed_fracture_of_humerus',\n", - " 'thrombophlebitis',\n", - " 'cerebellar_ataxia',\n", - " 'xerostomia',\n", - " 'mass_of_thyroid_gland',\n", - " 'angle-closure_glaucoma',\n", - " 'concussion_with_less_than_1_hour_loss_of_consciousness',\n", - " 'retinal_defect',\n", - " 'anterior_horn_cell_disease',\n", - " 'pruritus_ani',\n", - " 'juvenile_chronic_arthritis',\n", - " 'somatization_disorder',\n", - " 'fracture_of_vertebral_column',\n", - " \"gilles_de_la_tourette's_syndrome\",\n", - " 'hypernatremia',\n", - " 'erythrocyte_sedimentation_rate_raised',\n", - " 'lesion_of_vulva',\n", - " 'pneumonia_caused_by_mycoplasma_pneumoniae',\n", - " 'disorder_of_the_larynx',\n", - " 'vulvitis',\n", - " 'adjustment_disorder_with_mixed_disturbance_of_emotions_and_conduct',\n", - " 'hypopituitarism',\n", - " 'atherosclerosis_of_aorta',\n", - " 'dementia_associated_with_another_disease',\n", - " 'anogenital_warts',\n", - " 'fracture_of_calcaneus',\n", - " 'acute_poliomyelitis',\n", - " 'wound',\n", - " 'disorder_due_to_type_1_diabetes_mellitus',\n", - " 'secondary_malignant_neoplasm_of_ovary',\n", - " 'history_of_head_injury',\n", - " 'gallbladder_calculus_with_acute_cholecystitis_and_no_obstruction',\n", - " 'accidents_caused_by_cutting_and_piercing_instruments_or_objects',\n", - " 'infected_hand',\n", - " 'elbow_fracture',\n", - " 'pervasive_developmental_disorder',\n", - " 'severe_nonproliferative_retinopathy_with_clinically_significant_macular_edema_due_to_diabetes_mellitus',\n", - " 'refractory_migraine_without_aura',\n", - " 'disorder_of_bone',\n", - " 'achalasia_of_esophagus',\n", - " 'venous_thrombosis',\n", - " 'macrocephaly',\n", - " 'normal_pressure_hydrocephalus',\n", - " 'hypertensive_retinopathy',\n", - " 'traumatic_subdural_intracranial_hemorrhage',\n", - " 'malabsorption_syndrome',\n", - " 'demyelinating_disease_of_central_nervous_system',\n", - " 'optic_neuritis',\n", - " 'autoimmune_thyroiditis',\n", - " 'macular_hole',\n", - " 'telangiectasia_disorder',\n", - " 'post-laminectomy_syndrome',\n", - " 'mass_in_head_or_neck',\n", - " 'closed_fracture_of_shaft_of_tibia',\n", - " 'disorder_of_prostate',\n", - " 'median_neuropathy',\n", - " \"abscess_of_bartholin's_gland\",\n", - " 'acute_respiratory_distress_syndrome',\n", - " 'atypical_facial_pain',\n", - " 'acute_myeloid_leukemia_in_remission',\n", - " 'benign_neoplasm_of_cerebral_meninges',\n", - " 'liver_cell_carcinoma',\n", - " 'assault_by_striking_by_blunt_or_thrown_object',\n", - " 'history_of_disorder',\n", - " 'onychomycosis_caused_by_dermatophyte',\n", - " 'gravid_uterus_size_for_dates_discrepancy',\n", - " 'underweight',\n", - " 'recurrent_dislocation_of_shoulder_region',\n", - " 'ectropion_of_eyelid',\n", - " 'injury_of_ankle',\n", - " 'obsessive_compulsive_personality_disorder',\n", - " 'acute_non-suppurative_otitis_media_-_serous',\n", - " 'family_problems',\n", - " 'communicating_hydrocephalus',\n", - " 'disorder_of_pancreas',\n", - " 'precocious_puberty',\n", - " 'pulmonary_aspiration',\n", - " 'contusion_of_elbow',\n", - " 'elderly_primigravida',\n", - " 'lesion_of_brain',\n", - " 'cyst_of_pancreas',\n", - " 'malignant_tumor_of_descending_colon',\n", - " 'alcoholic_fatty_liver',\n", - " 'paralytic_ileus',\n", - " 'burn_of_lower_limb',\n", - " 'secondary_hyperparathyroidism',\n", - " 'melanocytic_nevus_of_face',\n", - " 'neoplasm_of_ovary',\n", - " 'legal_problem',\n", - " 'acute_non-st_segment_elevation_myocardial_infarction',\n", - " 'drug-induced_mood_disorder',\n", - " 'rheumatic_tricuspid_valve_regurgitation',\n", - " 'rheumatic_aortic_regurgitation',\n", - " 'microcephalus',\n", - " 'erythema_nodosum',\n", - " 'postpartum_depression',\n", - " 'renovascular_hypertension',\n", - " 'aneurysm_of_iliac_artery',\n", - " 'encopresis',\n", - " 'closed_fracture_of_navicular_bone_of_wrist',\n", - " 'closed_fracture_of_facial_bone',\n", - " 'closed_fracture_of_olecranon_process_of_ulna',\n", - " 'antisocial_personality_disorder',\n", - " 'open_wound_of_lower_limb',\n", - " 'ketoacidosis_due_to_type_2_diabetes_mellitus',\n", - " 'arteriosclerosis_of_coronary_artery_bypass_graft',\n", - " 'peripheral_nerve_entrapment_syndrome',\n", - " 'corneal_opacity',\n", - " 'autosomal_dominant_polycystic_kidney_disease',\n", - " 'aortic_incompetence_non-rheumatic',\n", - " 'closed_fracture_proximal_humerus_greater_tuberosity',\n", - " 'bladder_outflow_obstruction',\n", - " 'blow_out_fracture_of_orbit',\n", - " 'scalp_laceration',\n", - " 'congenital_malformation',\n", - " 'squamous_cell_carcinoma_of_skin_of_face',\n", - " 'itching',\n", - " 'choroidal_retinal_neovascularization',\n", - " 'anemia_due_to_and_following_chemotherapy',\n", - " 'anal_polyp',\n", - " 'adult_failure_to_thrive_syndrome',\n", - " 'anaphylaxis',\n", - " 'urinary_tract_obstruction',\n", - " 'amaurosis_fugax',\n", - " 'lesion_of_ulnar_nerve',\n", - " 'congenital_pectus_excavatum',\n", - " 'acute_myocardial_infarction_of_inferior_wall',\n", - " 'acute_prostatitis',\n", - " 'arthralgia_of_temporomandibular_joint',\n", - " 'neurofibromatosis_type_1',\n", - " 'allergic_contact_dermatitis',\n", - " 'periodontal_disease',\n", - " 'ulcer_of_esophagus',\n", - " 'fasciitis',\n", - " 'disorder_of_eye_proper',\n", - " 'traumatic_and/or_non-traumatic_injury',\n", - " 'atherosclerosis_of_bypass_graft_of_limb',\n", - " 'idiopathic_pulmonary_fibrosis',\n", - " 'lipids_abnormal',\n", - " 'acute_peptic_ulcer',\n", - " 'closed_traumatic_subdural_intracranial_hemorrhage',\n", - " 'residual_schizophrenia',\n", - " 'subtrochanteric_fracture_of_femur',\n", - " 'hemolytic_disease_of_fetus_or_newborn_due_to_abo_immunization',\n", - " 'acute_pulmonary_edema',\n", - " 'closed_fracture_of_vertebral_column',\n", - " 'disorder_of_respiratory_system',\n", - " 'senile_entropion',\n", - " 'primary_malignant_neoplasm_of_rectosigmoid_junction',\n", - " 'tenosynovitis_of_hand',\n", - " 'sprain_of_upper_extremity',\n", - " 'primary_hyperaldosteronism',\n", - " 'hand_foot_and_mouth_disease',\n", - " 'history_of_malignant_neoplasm_of_ovary',\n", - " 'atherosclerosis_of_renal_artery',\n", - " 'contusion_of_hand',\n", - " 'hidradenitis_suppurativa',\n", - " 'lymphocytosis',\n", - " 'hypercalciuria',\n", - " 'contusion_of_foot',\n", - " 'accidental_needle_stick_injury',\n", - " 'pseudoexfoliation_glaucoma',\n", - " 'flushing',\n", - " 'lesion_of_liver',\n", - " 'injury_of_tendon_of_the_rotator_cuff_of_shoulder',\n", - " 'malignant_tumor_of_transverse_colon',\n", - " 'supernumerary_tooth',\n", - " 'melanocytic_nevus_of_skin',\n", - " 'hemiplegia_of_nondominant_side',\n", - " 'multigravida_of_advanced_maternal_age',\n", - " 'bacterial_arthritis',\n", - " 'burn_of_upper_limb',\n", - " 'viral_pneumonia',\n", - " 'polyhydramnios',\n", - " 'assault_by_cutting_and_stabbing_instruments',\n", - " 'physical_child_abuse',\n", - " 'disorder_of_oral_soft_tissues',\n", - " 'postpartum_hemorrhage',\n", - " 'von_willebrand_disorder',\n", - " 'muscular_dystrophy',\n", - " 'intracranial_hemorrhage',\n", - " 'osteitis_deformans',\n", - " 'congenital_arteriovenous_malformation',\n", - " 'entropion_of_eyelid',\n", - " 'malignant_tumor_of_tongue',\n", - " 'sprain_of_foot',\n", - " 'cor_pulmonale',\n", - " 'male_pattern_alopecia',\n", - " 'fracture_of_thoracic_spine',\n", - " 'neoplasm_of_skin',\n", - " 'victim_of_physical_abuse',\n", - " 'absence_of_breast',\n", - " 'mass_of_parotid_gland',\n", - " 'slow_transit_constipation',\n", - " 'malignant_tumor_of_tonsil',\n", - " 'malignant_tumor_of_hepatic_flexure',\n", - " \"iatrogenic_cushing's_disease\",\n", - " 'ankle_ulcer',\n", - " 'fracture_malunion',\n", - " 'hemiplegia_of_dominant_side',\n", - " 'hepatic_failure',\n", - " 'disorder_of_eye_due_to_type_1_diabetes_mellitus',\n", - " 'tetralogy_of_fallot',\n", - " 'neoplasm_of_uncertain_behavior_of_meninges',\n", - " 'fracture_of_cervical_spine',\n", - " 'bipolar_affective_disorder_currently_manic_severe_with_psychosis',\n", - " 'non-rheumatic_mitral_regurgitation',\n", - " 'pneumonia_caused_by_respiratory_syncytial_virus',\n", - " 'mental_disorders_during_pregnancy_childbirth_and_the_puerperium',\n", - " 'closed_fracture_pubis',\n", - " 'open_wound_of_face',\n", - " 'puerperal_pyrexia',\n", - " 'nontraumatic_rotator_cuff_tear',\n", - " 'complication_of_urinary_catheter',\n", - " 'posterior_subcapsular_polar_senile_cataract',\n", - " 'female_pelvic_peritoneal_adhesions',\n", - " 'prepatellar_bursitis',\n", - " 'closed_fracture_of_phalanx_of_finger',\n", - " 'atrial_premature_complex',\n", - " 'hypoparathyroidism',\n", - " \"marfan's_syndrome\",\n", - " 'renal_hypertension',\n", - " 'central_serous_chorioretinopathy',\n", - " 'intervertebral_disc_disorder_of_lumbar_region_with_myelopathy',\n", - " 'history_of_malignant_lymphoma',\n", - " 'fecal_impaction',\n", - " 'autonomic_neuropathy_due_to_diabetes_mellitus',\n", - " 'fracture_of_lumbar_spine',\n", - " 'neoplasm_of_parotid_gland',\n", - " 'lyme_disease',\n", - " 'corneal_foreign_body',\n", - " 'abducens_nerve_disorder',\n", - " 'carbuncle',\n", - " 'pain_at_rest_due_to_peripheral_vascular_disease',\n", - " 'incipient_cataract',\n", - " 'fracture_of_ulna',\n", - " 'severe_major_depression_with_psychotic_features',\n", - " 'esophageal_varices_without_bleeding',\n", - " 'congenital_anomaly_of_eye',\n", - " 'abnormal_findings_on_antenatal_screening_of_mother',\n", - " 'closed_fracture_of_intracapsular_section_of_femur',\n", - " 'accident_caused_by_glass_edge',\n", - " 'dehiscence_of_surgical_wound',\n", - " 'obstructive_hydrocephalus',\n", - " 'calculus_of_kidney_and_ureter',\n", - " 'shock',\n", - " 'lesion_of_bladder',\n", - " 'colostomy_present',\n", - " 'radiographic_imaging_procedure',\n", - " 'primary_malignant_neoplasm_of_the_peritoneum',\n", - " 'incomplete_quadriplegia_due_to_spinal_cord_lesion_between_first_and_fourth_cervical_vertebra',\n", - " 'history_of_malignant_neoplasm_of_thyroid',\n", - " 'tic_disorder',\n", - " 'histoplasmosis',\n", - " 'polymyositis',\n", - " 'mumps',\n", - " 'moderate_intellectual_disability',\n", - " 'coarctation_of_aorta',\n", - " 'exophthalmos',\n", - " 'immunoglobulin_a_vasculitis',\n", - " 'inflammatory_neuropathy',\n", - " 'parastomal_hernia',\n", - " 'cellulitis_of_finger',\n", - " 'empyema',\n", - " 'primary_degenerative_dementia_of_the_alzheimer_type_senile_onset',\n", - " 'dysenteric_diarrhea',\n", - " 'developmental_disorder',\n", - " 'congenital_stenosis_of_pulmonary_valve',\n", - " 'sudden_hearing_loss',\n", - " 'bipolar_affective_disorder_current_episode_manic',\n", - " 'open_wound_of_anterior_abdominal_wall',\n", - " 'drug-induced_hypotension',\n", - " 'deficiency_anemias',\n", - " 'blind_or_low_vision_-_both_eyes',\n", - " 'acute_angle-closure_glaucoma',\n", - " 'hypothermia',\n", - " 'lower_urinary_tract_infectious_disease',\n", - " 'rickets',\n", - " 'disruptive_behavior_disorder',\n", - " 'hypertensive_heart_disease_without_congestive_heart_failure',\n", - " 'gastric_hemorrhage',\n", - " 'disorder_of_menstruation',\n", - " 'acquired_deformity_of_distal_interphalangeal_joint_of_finger_due_to_trauma',\n", - " 'pyogenic_granuloma',\n", - " 'chronic_cholecystitis',\n", - " 'laceration_of_hand',\n", - " 'erythema_multiforme',\n", - " 'aseptic_necrosis_of_bone',\n", - " 'sialoadenitis',\n", - " 'hypoplasia_of_maxillary_bone',\n", - " 'round_hole_of_retina_without_detachment',\n", - " 'impulse_control_disorder',\n", - " 'articular_disc_disorder_of_temporomandibular_joint',\n", - " 'neoplasm_of_bladder',\n", - " 'schwannoma',\n", - " 'labyrinthine_disorder',\n", - " 'shoulder_stiff',\n", - " 'lymphoproliferative_disorder',\n", - " 'diaphragmatic_hernia',\n", - " 'periumbilical_pain',\n", - " 'foreign_body_in_skin',\n", - " 'traumatic_dislocation_of_joint_of_finger',\n", - " 'deep_venous_thrombosis_of_upper_extremity',\n", - " 'respiratory_condition_of_fetus_or_newborn',\n", - " 'prosthetic_joint_dislocation',\n", - " 'macular_drusen',\n", - " 'fracture_of_distal_end_of_radius',\n", - " 'neurogenic_claudication',\n", - " 'sacral_dimple',\n", - " 'post_infarct_angina',\n", - " 'malignant_tumor_of_sigmoid_colon',\n", - " 'thrombotic_stroke',\n", - " 'impairment_of_balance',\n", - " 'child_abuse',\n", - " 'sepsis_caused_by_gram_negative_bacteria',\n", - " 'retinal_neovascularization',\n", - " 'spasmodic_torticollis',\n", - " 'retinitis_pigmentosa',\n", - " 'hereditary_motor_and_sensory_neuropathy',\n", - " 'cervical_disc_disorder',\n", - " 'loose_body_in_knee',\n", - " 'cleft_palate',\n", - " 'closed_fracture_of_acetabulum',\n", - " 'postoperative_seroma',\n", - " 'hyperplasia_of_mandibular_bone',\n", - " 'uremia',\n", - " 'rectal_prolapse',\n", - " 'empyema_of_pleura',\n", - " 'premenstrual_dysphoric_disorder',\n", - " 'hemolytic_anemia',\n", - " 'spina_bifida',\n", - " 'closed_fracture_of_head_of_radius',\n", - " 'closed_fracture_of_radius',\n", - " 'burn_of_foot',\n", - " 'injury_of_wrist',\n", - " 'viral_bronchitis',\n", - " 'horseshoe_retinal_tear_without_detachment',\n", - " 'impaired_renal_function_disorder',\n", - " 'biliary_stricture',\n", - " 'cachexia',\n", - " 'ptosis_of_eyebrow',\n", - " 'calcific_tendinitis_of_shoulder',\n", - " 'chronic_laryngitis',\n", - " 'mixed_bipolar_i_disorder_in_partial_remission',\n", - " 'seasonal_allergic_rhinitis',\n", - " 'simple_obesity',\n", - " 'incomplete_quadriplegia_due_to_spinal_cord_lesion_between_fifth_and_seventh_cervical_vertebra',\n", - " 'diffuse_lewy_body_disease',\n", - " 'megaloblastic_anemia_due_to_folate_deficiency',\n", - " 'contracture_of_joint_of_hand',\n", - " 'atrophy_of_edentulous_alveolar_ridge',\n", - " 'retained_placenta',\n", - " 'disorder_of_mouth',\n", - " 'apnea_in_the_newborn',\n", - " 'pneumonia_and_influenza',\n", - " 'fracture_of_clavicle_due_to_birth_trauma',\n", - " 'functional_disorder_of_bladder',\n", - " 'menopausal_and_postmenopausal_disorders',\n", - " 'alcohol-induced_organic_mental_disorder',\n", - " 'calcification_of_breast',\n", - " 'disorder_of_tooth_development',\n", - " 'effusion_of_joint',\n", - " 'nightmares',\n", - " 'smoke_inhalation_injury',\n", - " 'acute_duodenal_ulcer_with_perforation',\n", - " 'hemianopia',\n", - " 'mechanical_complication_due_to_urethral_indwelling_catheter',\n", - " 'physical_therapy_procedure',\n", - " 'hypertrophy_of_adenoids',\n", - " 'ischemic_optic_neuropathy',\n", - " 'ankle_joint_inflamed',\n", - " 'mononeuritis',\n", - " 'glomerulonephritis',\n", - " 'allergic_urticaria',\n", - " 'blepharospasm',\n", - " 'acquired_hallux_rigidus',\n", - " 'membranous_glomerulonephritis',\n", - " 'diffuse_spasm_of_esophagus',\n", - " 'opioid_dependence_in_remission',\n", - " 'fourth_nerve_palsy',\n", - " 'antiphospholipid_syndrome',\n", - " 'hypnotic_or_anxiolytic_dependence',\n", - " 'reduced_fetal_movement',\n", - " 'lesion_of_eyelid',\n", - " 'vaginal_wall_prolapse',\n", - " 'ventricular_arrhythmia',\n", - " 'fussy_infant',\n", - " 'depressed_bipolar_i_disorder_in_partial_remission',\n", - " 'presbycusis',\n", - " 'hypophosphatemia',\n", - " 'otorrhea',\n", - " 'hyperventilation',\n", - " 'rheumatic_aortic_stenosis',\n", - " 'acquired_thrombocytopenia',\n", - " 'metabolic_disease',\n", - " 'benign_neoplasm_of_meninges',\n", - " 'acute_peptic_ulcer_with_hemorrhage',\n", - " 'waldenström_macroglobulinemia',\n", - " 'recurrent_sinusitis',\n", - " 'claustrophobia',\n", - " 'head_burn',\n", - " 'burn_of_face',\n", - " 'hemorrhage_of_rectum_and_anus',\n", - " 'acute_asthma',\n", - " 'gestational_proteinuria',\n", - " 'rapid_eye_movement_sleep_behavior_disorder',\n", - " 'embolism_from_thrombosis_of_vein_of_lower_extremity',\n", - " 'retinal_scar',\n", - " 'infection_caused_by_escherichia_coli',\n", - " 'onycholysis',\n", - " 'dermal_mycosis',\n", - " 'contusion_of_shoulder_region',\n", - " 'family_history_of_polyp_of_colon',\n", - " 'spermatocele',\n", - " 'endocarditis',\n", - " 'granuloma_annulare',\n", - " 'benign_intracranial_hypertension',\n", - " 'stridor',\n", - " 'complex_regional_pain_syndrome_of_lower_limb',\n", - " 'postoperative_urethral_stricture',\n", - " 'consultation',\n", - " 'hypertensive_heart_and_renal_disease_with',\n", - " 'closed_fracture_distal_humerus_lateral_epicondyle',\n", - " 'osteoarthritis_of_wrist',\n", - " 'pathological_fracture_of_vertebra',\n", - " 'malignant_tumor_of_oropharynx',\n", - " 'compression_fracture_of_lumbar_spine',\n", - " 'family_history_of_malignant_neoplasm_of_ovary',\n", - " 'chronic_diastolic_heart_failure',\n", - " 'abnormal_cervical_papanicolaou_smear_with_positive_human_papillomavirus_deoxyribonucleic_acid_test',\n", - " 'exposure_to_mycobacterium_tuberculosis',\n", - " 'delay_when_starting_to_pass_urine',\n", - " 'upper_respiratory_tract_obstruction',\n", - " 'abscess_of_vulva',\n", - " 'acromegaly',\n", - " 'benign_neoplasm_of_thyroid_gland',\n", - " 'poisoning_caused_by_opiate_and/or_related_narcotic',\n", - " 'primary_bacterial_peritonitis',\n", - " 'burn_of_multiple_sites_of_trunk',\n", - " 'injury_of_abdomen',\n", - " 'malignant_neoplasm_of_central_part_of_female_breast',\n", - " 'fracture_of_metacarpal_bone',\n", - " 'maternal_infection',\n", - " 'urine_cytology_abnormal',\n", - " 'pneumonia_caused_by_streptococcus',\n", - " 'acquired_absence_of_teeth',\n", - " 'peripheral_arterial_occlusive_disease',\n", - " 'midline_cystocele',\n", - " 'foreign_body_in_esophagus',\n", - " 'fetal_or_neonatal_effect_of_malpresentation_malposition_and/or_disproportion_during_labor_and/or_delivery',\n", - " 'swelling',\n", - " 'acquired_hallux_valgus',\n", - " 'vasospasm',\n", - " 'upper_abdominal_pain',\n", - " 'lumbosacral_spondylosis',\n", - " 'toxic_multinodular_goiter',\n", - " 'female_infertility_of_tubal_origin',\n", - " 'chronic_osteomyelitis',\n", - " 'cervico-occipital_neuralgia',\n", - " 'pinguecula',\n", - " 'multiple_myeloma_in_remission',\n", - " 'hearing_disorder',\n", - " 'malignant_neoplasm_of_lateral_wall_of_urinary_bladder',\n", - " 'excoriation_of_skin',\n", - " 'thumb_injury',\n", - " 'malignant_melanoma_of_trunk',\n", - " 'mass_of_ovary',\n", - " 'partial_seizure',\n", - " 'common_peroneal_neuropathy',\n", - " 'primary_cutaneous_t-cell_lymphoma',\n", - " 'facial_nerve_disorder',\n", - " 'disorder_of_vocal_cord',\n", - " 'stenosis_of_lacrimal_canaliculi',\n", - " 'contusion_of_lower_limb',\n", - " 'increased_lipid',\n", - " 'polyradiculoneuropathy',\n", - " 'malignant_neoplasm_of_upper-inner_quadrant_of_female_breast',\n", - " 'contracture_of_multiple_joints',\n", - " 'family_history:_raised_blood_lipids',\n", - " 'laceration_of_skin',\n", - " 'mild_depression',\n", - " 'screening_for_disorder',\n", - " 'disorder_of_esophagus',\n", - " 'febrile_disorder',\n", - " 'psychophysiologic_insomnia',\n", - " 'mental_disorder_caused_by_drug',\n", - " 'closed_fracture_of_shaft_of_ulna',\n", - " 'disorder_of_ovary',\n", - " 'disseminated_intravascular_coagulation',\n", - " 'acute_febrile_mucocutaneous_lymph_node_syndrome',\n", - " 'neoplasm_of_uncertain_behavior_of_endocrine_gland',\n", - " 'candidiasis_of_the_esophagus',\n", - " 'closed_fracture_of_foot',\n", - " 'chronic_pharyngitis',\n", - " 'sprain_of_hip',\n", - " 'closed_fracture_of_cervical_spine',\n", - " 'closed_fracture_of_the_distal_humerus',\n", - " 'mass_of_chest_wall',\n", - " 'loss_of_sense_of_smell',\n", - " 'depressed_bipolar_i_disorder',\n", - " 'heart_disease',\n", - " 'bullous_keratopathy',\n", - " 'hyphema',\n", - " 'syringomyelia',\n", - " 'irradiation_cystitis',\n", - " 'bone_pain',\n", - " 'closed_fracture_of_medial_malleolus',\n", - " 'family_history_of_osteoporosis',\n", - " 'portal_vein_thrombosis',\n", - " 'diverticulum_of_bladder',\n", - " 'unstable_knee',\n", - " 'thrombosed_external_hemorrhoids',\n", - " 'acute_pain',\n", - " 'severe_intellectual_disability',\n", - " 'chronic_hypoxemic_respiratory_failure',\n", - " 'refractory_epilepsy',\n", - " 'nephritis',\n", - " 'phlebitis',\n", - " 'hemoglobinopathy',\n", - " 'benign_neoplasm_of_brain',\n", - " 'mass_of_mediastinum',\n", - " 'disorder_of_knee',\n", - " 'primary_gout',\n", - " 'nutritional_disorder',\n", - " 'fetal_or_neonatal_effect_of_maternal_polyhydramnios',\n", - " 'disorder_of_stomach',\n", - " 'bacterial_endocarditis',\n", - " 'closed_supracondylar_fracture_of_femur',\n", - " 'neonatal_polycythemia',\n", - " 'disorder_of_eye_region',\n", - " 'pedal_cycle_accident',\n", - " 'hemoglobin_ss_disease_with_crisis',\n", - " 'fistula',\n", - " 'oral_phase_dysphagia',\n", - " 'localized_infection_of_skin_and/or_subcutaneous_tissue',\n", - " 'chill',\n", - " 'high_risk_pregnancy_due_to_history_of_preterm_labor',\n", - " 'maternal_obesity_syndrome',\n", - " 'nontraumatic_hemoperitoneum',\n", - " 'mechanical_complication_due_to_breast_prosthesis',\n", - " 'pneumonia_caused_by_escherichia_coli',\n", - " 'apraxia',\n", - " 'varicose_veins_of_lower_extremity_with_ulcer_and_inflammation',\n", - " 'neonatal_jaundice_due_to_delayed_conjugation_from_breast_milk_inhibitor',\n", - " 'secondary_malignant_neoplasm_of_intra-abdominal_lymph_nodes',\n", - " 'otosclerosis',\n", - " 'disorder_of_adrenal_gland',\n", - " 'pancreatic_insufficiency',\n", - " 'encephalitis',\n", - " 'arthropathy_associated_with_a_neurological_disorder',\n", - " 'complex_regional_pain_syndrome_of_upper_limb',\n", - " 'derangement_of_medial_meniscus',\n", - " 'hypogammaglobulinemia',\n", - " 'financial_problem',\n", - " 'c-reactive_protein_abnormal',\n", - " 'congenital_pes_planus',\n", - " 'disorder_of_blood_vessel',\n", - " 'male_infertility',\n", - " 'complication_of_transplanted_liver',\n", - " 'glaucoma_associated_with_ocular_inflammation',\n", - " 'autoimmune_hemolytic_anemia',\n", - " 'ketoacidosis_due_to_type_1_diabetes_mellitus',\n", - " 'history_of_malignant_neoplasm_of_tongue',\n", - " 'history_of_malignant_neoplasm_of_esophagus',\n", - " 'arteriovenous_fistula',\n", - " 'early_satiety',\n", - " 'hypoplasia_of_mandibular_bone',\n", - " 'disorder_of_eyelid',\n", - " 'acute_laryngitis',\n", - " 'bronchopulmonary_dysplasia_of_newborn',\n", - " 'perforation_of_nasal_septum',\n", - " 'herpes_zoster_without_complication',\n", - " 'neoplasm_of_kidney',\n", - " 'chronic_peptic_ulcer',\n", - " 'coagulation/bleeding_tests_abnormal',\n", - " 'sclerosing_cholangitis',\n", - " 'tophus',\n", - " 'malignant_tumor_of_lesser_curve_of_stomach',\n", - " 'abnormal_sputum',\n", - " 'homonymous_hemianopia',\n", - " 'malignant_tumor_of_urinary_tract_proper',\n", - " 'hematometra',\n", - " 'victim_of_abuse',\n", - " 'basal_cell_carcinoma_of_truncal_skin',\n", - " 'disorder_of_hematopoietic_structure',\n", - " 'ulcerative_pancolitis',\n", - " 'severe_pre-eclampsia',\n", - " 'vitamin_b_deficiency',\n", - " 'disorder_of_bursa_of_shoulder_region',\n", - " 'helicobacter-associated_disease',\n", - " 'infection_of_gastrointestinal_tract',\n", - " 'thoracic_aortic_aneurysm_without_rupture',\n", - " 'disorder_of_tendon_of_shoulder_region',\n", - " 'pneumoconiosis_caused_by_silica',\n", - " 'vomiting_of_pregnancy',\n", - " 'primary_malignant_neoplasm_of_female_genital_organ',\n", - " 'corneal_edema',\n", - " 'hemospermia',\n", - " 'disorder_of_urinary_bladder',\n", - " 'mass_of_scrotum',\n", - " 'fracture_of_neck_of_femur',\n", - " 'malignant_neoplasm_of_posterior_wall_of_urinary_bladder',\n", - " \"asperger's_disorder\",\n", - " 'insomnia_disorder_related_to_another_mental_disorder',\n", - " 'ulcer_of_mouth',\n", - " 'closed_fracture_of_femur_distal_end',\n", - " \"closed_colles'_fracture\",\n", - " 'mass_of_axilla',\n", - " 'malignant_tumor_of_rectosigmoid_junction',\n", - " 'acute_ischemic_heart_disease',\n", - " 'iliotibial_band_friction_syndrome',\n", - " 'stricture_of_bile_duct',\n", - " 'mass_of_thoracic_structure',\n", - " 'hypercortisolism',\n", - " 'white_blood_cell_disorder',\n", - " 'nystagmus',\n", - " 'contusion_of_finger',\n", - " 'alcohol_withdrawal_delirium',\n", - " 'acute_leukemia_disease',\n", - " 'psychoactive_substance-induced_organic_mental_disorder',\n", - " 'history_of_respiratory_disease',\n", - " 'amniotic_fluid_-meconium_stain',\n", - " 'convergence_insufficiency',\n", - " 'non-neoplastic_nevus',\n", - " 'drug-induced_gastrointestinal_disturbance',\n", - " 'urinary_tract_infection_following_delivery',\n", - " 'fetal_or_neonatal_effect_of_maternal_complication_of_pregnancy',\n", - " 'closed_fracture_finger_proximal_phalanx',\n", - " 'closed_fracture_finger_middle_phalanx',\n", - " 'tenderness',\n", - " 'disorder_of_endocrine_system',\n", - " 'infective_eczematoid_dermatitis',\n", - " 'primary_focal_hyperhidrosis',\n", - " 'fracture_of_tibial_plateau',\n", - " 'malignant_adenomatous_neoplasm',\n", - " 'malignant_carcinoid_tumor',\n", - " 'chronic_duodenal_ulcer_with_perforation',\n", - " 'alpha_thalassemia',\n", - " 'mechanical_ptosis',\n", - " 'failed_medical_induction_of_labor',\n", - " 'benign_neoplasm_of_adrenal_gland',\n", - " 'pseudocyst_of_pancreas',\n", - " 'neoplasm_of_adrenal_gland',\n", - " 'abnormal_involuntary_movement',\n", - " 'post_poliomyelitis_syndrome',\n", - " 'anoxic_encephalopathy',\n", - " 'perforation_of_intestine',\n", - " 'chondromalacia',\n", - " 'respiratory_arrest',\n", - " 'history_of_poliomyelitis',\n", - " 'congenital_malformation_of_genital_organs',\n", - " 'depressed_bipolar_i_disorder_in_full_remission',\n", - " 'transient_global_amnesia',\n", - " 'radiation_proctitis',\n", - " 'alcoholic_hepatitis',\n", - " 'contracture_of_knee_joint',\n", - " 'erythema',\n", - " 'dislocation_of_patellofemoral_joint',\n", - " 'abrasion_of_lower_limb',\n", - " 'alpha-1-antitrypsin_deficiency',\n", - " 'mass_of_lower_limb',\n", - " 'bladder_dysfunction',\n", - " 'placental_abruption',\n", - " 'chronic_atrial_fibrillation',\n", - " 'retraction_of_eyelid',\n", - " 'irregular_astigmatism',\n", - " 'contusion_of_toe',\n", - " 'fracture_of_skull',\n", - " 'foreign_body_in_nose',\n", - " 'closed_fracture_of_distal_phalanx_of_finger',\n", - " 'steinert_myotonic_dystrophy_syndrome',\n", - " 'episcleritis',\n", - " 'stenosis_of_cervix',\n", - " 'infective_otitis_externa',\n", - " 'refractive_amblyopia',\n", - " 'acquired_scoliosis',\n", - " 'neoplasm_of_breast',\n", - " 'chronic_inflammatory_demyelinating_polyradiculoneuropathy',\n", - " 'gastric_ulcer_with_hemorrhage',\n", - " 'family_history:_breast_disease',\n", - " 'history_of_artificial_joint',\n", - " 'neutropenia',\n", - " 'malignant_neoplasm_of_lower-outer_quadrant_of_female_breast',\n", - " 'emotionally_unstable_personality_disorder',\n", - " 'nondependent_cannabis_abuse_in_remission',\n", - " 'chronic_obstructive_pulmonary_disease_with_acute_lower_respiratory_infection',\n", - " 'non-obstructive_reflux-associated_chronic_pyelonephritis',\n", - " 'accidents_caused_by_knives_swords_and_daggers',\n", - " 'mononeuropathy_due_to_diabetes_mellitus',\n", - " 'dissection_of_thoracic_aorta',\n", - " 'measurement_of_respiratory_function',\n", - " 'immunodeficiency_disorder',\n", - " 'perforation_of_small_intestine',\n", - " 'simple_goiter',\n", - " 'fracture_of_greater_trochanter',\n", - " 'primate_erythroparvovirus_1_infection',\n", - " 'corpus_luteum_cyst',\n", - " 'memory_impairment',\n", - " 'avascular_necrosis_of_bone',\n", - " 'acute_st_segment_elevation_myocardial_infarction',\n", - " 'gastrointestinal_stromal_tumor',\n", - " 'snapping_thumb_syndrome',\n", - " 'major_depression_in_remission',\n", - " 'abnormal_posture',\n", - " 'injury_of_digital_nerve',\n", - " 'exposure_to_human_immunodeficiency_virus',\n", - " 'generalized-onset_seizures',\n", - " 'complication_associated_with_device',\n", - " 'arteriosclerotic_gangrene',\n", - " 'fracture_of_shaft_of_femur',\n", - " 'abscess_of_lung',\n", - " 'contusion_of_head',\n", - " 'chronic_mastoiditis',\n", - " 'congenital_hydrocele',\n", - " 'poisoning_caused_by_antidepressant',\n", - " 'epilepsy',\n", - " 'mycobacteriosis',\n", - " 'anisocoria',\n", - " 'microcytosis_red_cells',\n", - " 'recurrent_erosion_of_cornea',\n", - " 'lacunar_infarction',\n", - " 'hypogonadotropic_hypogonadism',\n", - " 'contusion_of_wrist',\n", - " 'cellulitis_of_periorbital_region',\n", - " 'derangement_of_meniscus_of_knee_joint',\n", - " 'injury_of_face',\n", - " 'radial_neuropathy',\n", - " 'orbital_cellulitis',\n", - " 'cardiomyopathy_associated_with_another_disorder',\n", - " 'open_wound_of_scalp',\n", - " 'tachypnea',\n", - " 'foreign_body_-_finger',\n", - " 'facial_palsy',\n", - " 'premature_beats',\n", - " 'dissection_of_aorta',\n", - " 'alternating_exotropia',\n", - " 'chandler_syndrome',\n", - " 'stuttering',\n", - " 'sickling_disorder_due_to_hemoglobin_s',\n", - " 'prolapse_of_vaginal_vault_after_hysterectomy',\n", - " 'mass_of_urinary_bladder',\n", - " 'cyst_of_jaw',\n", - " 'pain_in_forearm',\n", - " 'acquired_hemolytic_anemia',\n", - " 'quadriplegic_cerebral_palsy',\n", - " 'tibialis_tendinitis',\n", - " 'chronic_otitis_externa',\n", - " 'cellulitis_of_abdominal_wall',\n", - " 'late_effect_of_spinal_cord_injury',\n", - " 'chronic_pansinusitis',\n", - " 'photosensitivity',\n", - " 'benign_neoplasm_of_soft_tissues_of_upper_limb',\n", - " 'tuberculous_adenitis',\n", - " 'melanoma_in_situ_of_skin',\n", - " 'rheumatic_aortic_stenosis_with_regurgitation',\n", - " 'non-rheumatic_mitral_valve_stenosis',\n", - " 'fetal_or_neonatal_effect_of_maternal_infection',\n", - " 'neonatal_dacryocystitis_and_conjunctivitis',\n", - " 'traumatic_rupture_of_lumbar_intervertebral_disc',\n", - " 'late_effect_of_motor_vehicle_accident',\n", - " 'subglottic_stenosis',\n", - " 'mixed_receptive-expressive_language_disorder',\n", - " 'accident_caused_by_machinery',\n", - " 'hemangioma_of_skin_and_subcutaneous_tissue',\n", - " 'acute_schizophrenia-like_psychotic_disorder',\n", - " 'soft_tissue_injury',\n", - " 'traction_detachment_of_retina',\n", - " 'toxic_effect_of_lead_compound',\n", - " 'basal_cell_carcinoma_of_nose',\n", - " 'refractory_migraine_with_aura',\n", - " 'passive_smoker',\n", - " 'permanent_atrial_fibrillation',\n", - " 'complete_quadriplegia_due_to_spinal_cord_lesion_between_fifth_and_seventh_cervical_vertebra',\n", - " 'closed_fracture_of_one_rib',\n", - " 'calculus_of_bile_duct_with_obstruction',\n", - " 'brain_injury_without_open_intracranial_wound_and_with_loss_of_consciousness',\n", - " 'fracture_of_acetabulum',\n", - " 'noninflammatory_disorder_of_fallopian_tube',\n", - " 'congenital_anomaly_of_cerebrovascular_system',\n", - " 'acquired_deformity_of_hip',\n", - " 'acute_infectious_conjunctivitis',\n", - " 'prolapse_of_female_genital_organs',\n", - " 'employment_problem',\n", - " 'neutropenia_due_to_and_following_chemotherapy',\n", - " 'frontal_sinusitis',\n", - " 'primary_malignant_neoplasm_of_ovary',\n", - " 'rupture_of_achilles_tendon',\n", - " 'autoimmune_disease',\n", - " 'disorder_of_shoulder_region',\n", - " 'exposure_keratoconjunctivitis',\n", - " 'laboratory_test',\n", - " 'chronic_urinary_tract_infection',\n", - " 'congenital_iodine_deficiency_syndrome',\n", - " 'injury_of_toe',\n", - " 'osteomyelitis_of_ankle_and/or_foot',\n", - " 'disturbance_in_speech',\n", - " 'malignant_tumor_of_ureter',\n", - " 'respiratory_insufficiency',\n", - " 'leukoplakia_of_oral_mucosa',\n", - " 'aphasia_as_late_effect_of_cerebrovascular_disease',\n", - " 'sepsis_caused_by_staphylococcus',\n", - " 'osteomalacia',\n", - " 'closed_fracture_of_orbital_floor',\n", - " 'rheumatic_disease_of_tricuspid_valve',\n", - " 'acute_cystitis',\n", - " 'vascular_insufficiency_of_intestine',\n", - " 'gastric_varices',\n", - " 'defective_dental_restoration',\n", - " 'sequela_of_infection_caused_by_human_poliovirus',\n", - " 'inactive_tuberculosis',\n", - " 'injury_of_elbow',\n", - " 'open_wound_of_wrist',\n", - " 'neoplasm_of_lung',\n", - " 'neoplasm_of_prostate',\n", - " 'chronic_myelomonocytic_leukemia',\n", - " 'history_of_urinary_stone',\n", - " 'malignant_tumor_of_trigone_of_urinary_bladder',\n", - " 'lupus_anticoagulant_disorder',\n", - " 'non-traumatic_intracranial_subdural_hemorrhage',\n", - " 'cerebral_edema',\n", - " 'lumbar_spina_bifida_with_hydrocephalus',\n", - " \"ebstein's_anomaly_of_tricuspid_valve\",\n", - " 'closed_fracture_distal_tibia',\n", - " 'syndrome_of_infant_of_diabetic_mother',\n", - " 'late_effect_of_accidental_injury',\n", - " 'multiple_system_atrophy',\n", - " 'common_variable_agammaglobulinemia',\n", - " 'tear_of_meniscus_of_knee',\n", - " 'acute_osteomyelitis_of_ankle_and/or_foot',\n", - " 'nodular_lymphoma',\n", - " 'history_of_pregnancy',\n", - " 'localized_edema',\n", - " 'occlusion_of_artery',\n", - " 'lesion_of_penis',\n", - " 'transient_synovitis_of_hip',\n", - " 'ileostomy_present',\n", - " 'bipolar_i_disorder_most_recent_episode_hypomanic',\n", - " 'posterior_subcapsular_cataract',\n", - " 'erythromelalgia',\n", - " 'pneumoconiosis',\n", - " 'hereditary_factor_ix_deficiency_disease',\n", - " 'cramp_in_limb',\n", - " 'ileal_pouchitis',\n", - " 'polyp',\n", - " 'mass_of_tongue',\n", - " 'glycosuria',\n", - " 'neonatal_acne',\n", - " 'abnormal_auditory_perception',\n", - " 'malaria',\n", - " 'intermittent_exotropia',\n", - " 'costal_chondritis',\n", - " 'peptic_ulcer_with_hemorrhage',\n", - " 'retained_dental_root',\n", - " 'recurrent_major_depression_in_remission',\n", - " 'closed_fracture_of_fifth_metatarsal_bone',\n", - " 'feeding_disorder_of_infancy_or_early_childhood',\n", - " 'poisoning_caused_by_wasp_sting',\n", - " 'cyclothymia',\n", - " 'muscle_fasciculation',\n", - " 'disorder_of_phosphorus_metabolism',\n", - " 'herpes_zoster_ophthalmicus',\n", - " 'keratoconjunctivitis',\n", - " 'shoulder_girdle_dystocia',\n", - " 'pulmonic_valve_regurgitation',\n", - " 'benign_neoplasm_of_ovary',\n", - " 'benign_neoplasm_of_skin_of_upper_limb',\n", - " 'malignant_lymphoma_of_lymph_nodes_of_multiple_sites',\n", - " 'open_wound_of_forearm',\n", - " 'open_wound_of_foot',\n", - " 'transverse_myelopathy_syndrome',\n", - " 'cervical_incompetence',\n", - " 'malignant_tumor_of_body_of_pancreas',\n", - " 'chronic_active_hepatitis',\n", - " 'closed_fracture_lumbar_vertebra',\n", - " 'secondary_parkinsonism',\n", - " 'atrioventricular_block',\n", - " 'acute_hepatitis_c',\n", - " 'organic_mood_disorder',\n", - " 'osteoarthritis_of_elbow',\n", - " 'congenital_ptosis',\n", - " 'intra-abdominal_and_pelvic_swelling_mass_and_lump',\n", - " 'perinatal_disorder_of_growth_and/or_development',\n", - " 'groin_mass',\n", - " 'malignant_tumor_of_vulva',\n", - " 'malignant_tumor_of_maxillary_sinus',\n", - " 'pyloric_stenosis',\n", - " 'motor_neuron_disease',\n", - " 'edema_of_optic_disc',\n", - " 'hyperplasia_of_maxillary_bone',\n", - " 'cleft_palate_with_cleft_lip',\n", - " 'tongue_tie',\n", - " 'acute_severe_exacerbation_of_asthma',\n", - " 'mental_disorder',\n", - " 'cheilitis',\n", - " 'ankle_instability',\n", - " 'insomnia_disorder_related_to_known_organic_factor',\n", - " 'dilated_cardiomyopathy_caused_by_alcohol',\n", - " 'secondary_physiologic_amenorrhea',\n", - " 'idiopathic_peripheral_autonomic_neuropathy',\n", - " 'cystic_fibrosis_of_the_lung',\n", - " 'asymptomatic_human_immunodeficiency_virus_infection',\n", - " 'overlapping_malignant_neoplasm_of_bronchus_and_lung',\n", - " 'intraductal_carcinoma_in_situ_of_breast',\n", - " 'mixed_bipolar_i_disorder_in_full_remission',\n", - " 'visual_field_defect',\n", - " 'fracture_of_multiple_ribs',\n", - " 'paraphimosis',\n", - " 'family_history:_neoplasm_of_ovary',\n", - " 'history_of_malaria',\n", - " 'primary_hyperoxaluria',\n", - " 'compulsive_gambling',\n", - " 'esophageal_varices_associated_with_another_disorder',\n", - " 'synovitis_and_tenosynovitis',\n", - " 'bone_cyst',\n", - " 'derangement_of_lateral_meniscus',\n", - " 'accidentally_struck_by_or_against_objects_or_persons',\n", - " 'eosinophilic_esophagitis',\n", - " 'spasm_of_bladder',\n", - " 'congenital_laryngomalacia',\n", - " 'embryonic_cyst_of_broad_ligament',\n", - " 'prostatic_intraepithelial_neoplasia',\n", - " 'malignant_tumor_of_salivary_gland',\n", - " 'fracture_of_radial_neck',\n", - " 'chronic_osteomyelitis_of_ankle_and/or_foot',\n", - " 'malignant_melanoma_of_lower_limb',\n", - " 'current_knee_cartilage_tear',\n", - " 'rheumatoid_arthritis_of_hand_joint',\n", - " 'scoliosis_of_lumbar_spine',\n", - " 'deformity_of_hand',\n", - " 'lesion_of_nose',\n", - " 'squamous_cell_carcinoma_of_mouth',\n", - " 'obstruction_of_nasolacrimal_duct',\n", - " 'vertebral_artery_syndrome',\n", - " 'malignant_tumor_of_gallbladder',\n", - " 'malignant_tumor_of_parotid_gland',\n", - " 'malignant_tumor_of_splenic_flexure',\n", - " 'systolic_dysfunction',\n", - " 'perineal_laceration_during_delivery',\n", - " 'solar_erythema',\n", - " 'adult_victim_of_abuse',\n", - " 'plasmacytoma',\n", - " 'nodular_goiter',\n", - " 'closed_fracture_of_bone',\n", - " 'malignant_neoplasm_of_bone',\n", - " 'late_effect_of_traumatic_injury_to_brain',\n", - " 'acquired_absence_of_all_teeth',\n", - " 'anemia_of_prematurity',\n", - " 'cerebral_herniation',\n", - " 'nasopharyngitis',\n", - " 'mastoiditis',\n", - " 'ulcer_of_rectum',\n", - " 'movement_disorder',\n", - " 'burn_of_neck',\n", - " 'manic_bipolar_i_disorder_in_partial_remission',\n", - " 'basilar_artery_syndrome',\n", - " 'degeneration_of_thoracic_intervertebral_disc',\n", - " 'pressure_ulcer_of_lower_back',\n", - " 'perinatal_intraventricular_hemorrhage',\n", - " 'traumatic_and/or_non-traumatic_injury_of_back',\n", - " 'inflammatory_disorder_of_bone_of_jaw',\n", - " 'injury_of_trigeminal_nerve',\n", - " 'polyneuropathy_caused_by_drug',\n", - " 'infestation_caused_by_anoplura',\n", - " 'severe_major_depression_without_psychotic_features',\n", - " 'polyradiculopathy',\n", - " 'hereditary_corneal_dystrophy',\n", - " 'dependent_personality_disorder',\n", - " 'closed_fracture_of_forearm',\n", - " 'secondary_malignant_neoplasm_of_intrapelvic_lymph_nodes',\n", - " 'closed_fracture_of_multiple_ribs',\n", - " 'developmental_speech_disorder',\n", - " 'history_of_pneumonia',\n", - " 'coxsackie_virus_disease',\n", - " 'traumatic_arthropathy_of_the_ankle_and/or_foot',\n", - " 'endometrial_hyperplasia',\n", - " 'retinal_drusen',\n", - " 'wrist_joint_inflamed',\n", - " 'lesion_of_tongue',\n", - " 'attention_deficit_hyperactivity_disorder_combined_type',\n", - " 'central_retinal_artery_occlusion',\n", - " 'turner_syndrome',\n", - " 'primary_angle-closure_glaucoma',\n", - " 'vaginal_enterocele',\n", - " 'neuroma',\n", - " 'aspergillosis',\n", - " 'congenital_cystic_disease_of_liver',\n", - " 'moderate_major_depression',\n", - " 'contusion_of_thigh',\n", - " 'postoperative_hemorrhage',\n", - " 'irritant_contact_dermatitis',\n", - " 'sprain_of_sacroiliac_region',\n", - " 'occupational_disorder',\n", - " 'disorder_of_uterus',\n", - " 'brain_disorder_resulting_from_a_period_of_impaired_oxygen_delivery_to_the_brain',\n", - " 'toxic_effect_of_carbon_monoxide',\n", - " 'malignant_neoplasm_of_lower-inner_quadrant_of_female_breast',\n", - " 'cataplexy_and_narcolepsy',\n", - " 'noninflammatory_cervical_disorder',\n", - " 'umbilical_granuloma',\n", - " 'wrist_joint_pain',\n", - " 'radial_polydactyly',\n", - " 'infections_specific_to_perinatal_period',\n", - " 'fracture_of_mandible_closed',\n", - " 'acute_periodontitis',\n", - " 'injury_of_unknown_intent_due_to_fall_from_height',\n", - " 'pressure_ulcer_of_sacral_region',\n", - " 'deformity_of_foot',\n", - " 'persistent_pulmonary_hypertension_of_the_newborn',\n", - " 'uninodular_goiter',\n", - " 'breastfeeding_problem_in_the_newborn',\n", - " 'self_poisoning_caused_by_carbon_monoxide',\n", - " 'malignant_mesothelioma_of_pleura',\n", - " 'chronic_allergic_conjunctivitis',\n", - " 'follicular_cyst_of_ovary',\n", - " 'pure_hyperglyceridemia',\n", - " 'autonomic_neuropathy',\n", - " 'laceration_of_lip',\n", - " 'puncture_wound_of_skin',\n", - " 'acute_epiglottitis',\n", - " 'abnormal_vaginal_bleeding',\n", - " 'myelosclerosis_with_myeloid_metaplasia',\n", - " 'closed_fracture_of_distal_fibula',\n", - " 'manic_bipolar_i_disorder_in_full_remission',\n", - " 'hemothorax',\n", - " 'closed_fracture_of_malar_and/or_maxillary_bones',\n", - " 'tonic-clonic_epilepsy',\n", - " 'complication_of_medical_care',\n", - " 'carcinoid_syndrome',\n", - " 'primary_malignant_neoplasm_of_pancreas',\n", - " 'primary_malignant_neoplasm_of_soft_tissues',\n", - " 'secondary_peripheral_neuropathy',\n", - " 'cesarean_wound_disruption',\n", - " 'spider_bite_wound',\n", - " 'synovitis',\n", - " 'severe_major_depression_single_episode_with_psychotic_features',\n", - " 'mass_of_head',\n", - " 'pathological_fracture_due_to_osteoporosis',\n", - " 'chronic_peptic_ulcer_with_hemorrhage',\n", - " 'thyrotoxicosis_factitia',\n", - " 'hepatorenal_syndrome',\n", - " 'parent-child_problem',\n", - " 'anxiety_disorder_of_childhood',\n", - " 'chronic_periodontitis',\n", - " 'bleeding_ulcer_of_esophagus',\n", - " 'residual_foreign_body_in_soft_tissue',\n", - " 'bleeding_from_anus',\n", - " 'concussion_with_loss_of_consciousness',\n", - " 'trigeminal_nerve_disorder',\n", - " 'hereditary_peripheral_neuropathy',\n", - " 'acute_respiratory_failure',\n", - " 'closed_trimalleolar_fracture',\n", - " 'contusion_of_upper_limb',\n", - " 'obstruction_co-occurrent_and_due_to_left_femoral_hernia',\n", - " 'obstruction_co-occurrent_and_due_to_right_femoral_hernia',\n", - " 'injury_of_neck',\n", - " 'benign_neoplasm_of_skin_of_lower_limb',\n", - " 'malignant_melanoma_of_skin_of_face',\n", - " 'seborrheic_dermatitis_of_scalp',\n", - " 'closed_fracture_of_acromial_end_of_clavicle',\n", - " 'phantom_limb',\n", - " 'localized_primary_osteoarthritis_of_the_shoulder_region',\n", - " 'elbow_joint_pain',\n", - " 'odontogenic_cyst',\n", - " 'post-infective_arthritis',\n", - " 'synovial_cyst',\n", - " 'disorder_of_iron_metabolism',\n", - " 'infection_and/or_inflammatory_reaction_due_to_internal_prosthetic_device_implant_and/or_graft',\n", - " 'hepatosplenomegaly',\n", - " 'pityriasis_alba',\n", - " 'retinoschisis',\n", - " 'injury_of_ulnar_nerve',\n", - " 'lipodystrophy',\n", - " 'scleritis',\n", - " 'breath_smells_unpleasant',\n", - " 'osteochondritis_dissecans',\n", - " 'carcinoma_in_situ_of_uterine_cervix',\n", - " 'chronic_lymphoid_leukemia_in_remission',\n", - " 'malignant_melanoma_of_skin_of_trunk',\n", - " 'compartment_syndrome',\n", - " 'avascular_necrosis_of_the_capital_femoral_epiphysis',\n", - " 'chorioamnionitis',\n", - " 'contusion_of_face',\n", - " 'torsion_of_ovary',\n", - " 'vulval_pain',\n", - " \"sézary's_disease_of_lymph_nodes_of_multiple_sites\",\n", - " 'hyperosmolar_coma_due_to_type_2_diabetes_mellitus',\n", - " 'fall',\n", - " 'collagenous_colitis',\n", - " 'cataract_secondary_to_ocular_disease',\n", - " 'low_vision_both_eyes',\n", - " 'disorder_of_soft_tissue',\n", - " 'acute_gastric_ulcer_with_perforation',\n", - " 'osteolysis',\n", - " 'postphlebitic_syndrome',\n", - " 'foreign_body_in_hand',\n", - " 'acute_drug_intoxication',\n", - " 'cellulitis_of_pinna',\n", - " 'chronic_pelvic_inflammatory_disease',\n", - " 'post-inflammatory_hyperpigmentation',\n", - " 'contracture_of_elbow_joint',\n", - " 'acquired_deformity_of_joint_of_foot',\n", - " 'psychoactive_substance_dependence',\n", - " 'accidental_exposure_to_metallic_lead',\n", - " 'benign_neoplasm_of_respiratory_system',\n", - " 'calculus_of_gallbladder_with_cholecystitis',\n", - " 'enterobiasis',\n", - " 'self_inflicted_injury',\n", - " 'b-cell_acute_lymphoblastic_leukemia',\n", - " 'closed_fracture_of_shaft_of_bone_of_forearm',\n", - " 'superficial_injury_of_forearm',\n", - " 'pathological_fracture_-_upper_arm',\n", - " 'vaginal_lesion',\n", - " 'scoliosis_of_thoracic_spine',\n", - " 'secondary_hemorrhage_postprocedure',\n", - " 'postmastectomy_lymphedema_syndrome',\n", - " 'disorganized_schizophrenia',\n", - " 'postoperative_complication',\n", - " 'disorder_of_function_of_stomach',\n", - " 'abnormal_blood_pressure',\n", - " 'chronic_anterior_uveitis',\n", - " 'sprain_of_ligament',\n", - " 'basal_cell_carcinoma_of_ear',\n", - " 'body_mass_index_40+_-_severely_obese',\n", - " 'pathological_fracture_of_femur',\n", - " 'intermittent_explosive_disorder',\n", - " 'fracture_of_lower_leg',\n", - " 'restrictive_cardiomyopathy',\n", - " 'accidental_poisoning_caused_by_carbon_monoxide',\n", - " 'mass_lesion_of_brain',\n", - " 'punctate_keratitis',\n", - " 'history_of_non-hodgkins_lymphoma',\n", - " 'recurrent_bacterial_infection',\n", - " 'atypical_squamous_cells_on_cervical_papanicolaou_smear_cannot_exclude_high_grade_squamous_intraepithelial_lesion',\n", - " 'atherosclerosis_of_autologous_vein_bypass_graft_of_limb',\n", - " 'cocaine-induced_organic_mental_disorder',\n", - " 'influenza_with_non-respiratory_manifestation',\n", - " 'parainfluenza_virus_pneumonia',\n", - " 'pruritus_of_vulva',\n", - " 'agoraphobia',\n", - " 'autonomic_neuropathy_due_to_type_1_diabetes_mellitus',\n", - " 'food_poisoning',\n", - " 'skin_sensation_disturbance',\n", - " 'functional_disorder_of_intestine',\n", - " 'bipolar_disorder_in_remission',\n", - " 'dacryocystitis',\n", - " 'chronic_tubotympanic_suppurative_otitis_media',\n", - " 'lower_gastrointestinal_hemorrhage',\n", - " 'benign_neoplasm_of_cranial_nerve',\n", - " 'secondary_malignant_neoplasm_of_adrenal_gland',\n", - " 'neoplasm_of_uncertain_behavior_of_bladder',\n", - " 'scarred_macula',\n", - " 'hypertrophic_condition_of_skin',\n", - " 'history_of_cardiovascular_disease',\n", - " 'malignant_tumor_of_peritoneum',\n", - " 'myelofibrosis',\n", - " 'pressure_ulcer_of_ankle',\n", - " 'osteogenesis_imperfecta',\n", - " 'narcissistic_personality_disorder',\n", - " 'sprain_of_hand',\n", - " 'malignant_neoplasm_of_liver',\n", - " 'combined_form_of_senile_cataract',\n", - " 'hairy_cell_leukemia',\n", - " 'retroperitoneal_lymphadenopathy',\n", - " 'vascular_headache',\n", - " 'disorder_of_lumbar_spine',\n", - " 'hematologic_neoplasm',\n", - " 'noncompliance_with_dietary_regimen',\n", - " 'ruptured_abdominal_aortic_aneurysm',\n", - " 'esophageal_bleeding',\n", - " 'right_femoral_hernia',\n", - " 'left_femoral_hernia',\n", - " 'learning_difficulties',\n", - " 'abnormal_weight_gain',\n", - " 'serum_cholesterol_raised',\n", - " 'renal_function_tests_abnormal',\n", - " 'renal_osteodystrophy',\n", - " 'arthritis_associated_with_another_disorder',\n", - " 'mediastinal_emphysema',\n", - " 'enteric_campylobacteriosis',\n", - " 'chronic_viral_hepatitis_b_without_delta-agent',\n", - " 'malignant_tumor_of_glottis',\n", - " 'malignant_tumor_of_supraglottis',\n", - " 'malignant_neoplasm_of_connective_and_soft_tissue_of_hip_and_lower_limb',\n", - " 'mood_swings',\n", - " 'mixed_bipolar_affective_disorder',\n", - " 'current_tear_of_semilunar_cartilage',\n", - " 'pulmonary_stenosis_non-rheumatic',\n", - " 'torsion_of_appendix_of_testis',\n", - " 'infection_of_obstetric_surgical_wound',\n", - " 'localized_morphea',\n", - " 'hemarthrosis_of_knee',\n", - " 'calculus_in_urethra',\n", - " 'transplanted_organ_rejection',\n", - " 'osler_hemorrhagic_telangiectasia_syndrome',\n", - " 'neurosarcoidosis',\n", - " 'discitis',\n", - " 'delayed_and/or_secondary_postpartum_hemorrhage',\n", - " 'rupture_of_globe',\n", - " 'basal_cell_carcinoma_of_eyelid',\n", - " 'stenosis_of_nasolacrimal_duct',\n", - " 'thoracoabdominal_aortic_aneurysm',\n", - " 'cerebral_arteriovenous_malformation',\n", - " 'bolus_obstruction_of_intestine',\n", - " 'liver_transplant_rejection',\n", - " 'coronary_artery_spasm',\n", - " 'perinatal_jaundice_from_excessive_hemolysis',\n", - " 'nasal_deviation',\n", - " 'ligament_rupture',\n", - " 'endometriosis_of_ovary',\n", - " 'symbolic_dysfunction',\n", - " 'epicranial_subaponeurotic_hemorrhage',\n", - " 'atrophy_of_vagina',\n", - " 'lower_limb_nerve_lesion',\n", - " 'multiple_endocrine_neoplasia_type_1',\n", - " 'urinary_tract_infection_in_pregnancy',\n", - " 'severe_nonproliferative_retinopathy_due_to_diabetes_mellitus',\n", - " 'chronic_gastric_ulcer_with_perforation',\n", - " 'nephrosclerosis',\n", - " 'floppy_infant_syndrome',\n", - " 'bullous_myringitis',\n", - " 'polyotia',\n", - " 'contusion_of_eye',\n", - " 'systemic_mast_cell_disease',\n", - " 'disorder_of_pituitary_gland',\n", - " 'internal_hordeolum',\n", - " 'open_fracture_of_tibia_and_fibula',\n", - " 'mononeuropathy_due_to_type_2_diabetes_mellitus',\n", - " 'embolism_from_thrombosis_of_vein_of_distal_lower_extremity',\n", - " 'iatrogenic_pneumothorax',\n", - " 'idiopathic_hypersomnia_without_long_sleep_time',\n", - " 'glossitis',\n", - " 'severe_mixed_bipolar_i_disorder_without_psychotic_features',\n", - " 'pyonephrosis',\n", - " 'closed_fracture_of_distal_end_of_ulna',\n", - " 'acidosis',\n", - " 'ischemia',\n", - " 'parasomnia',\n", - " 'acquired_pancytopenia',\n", - " 'prurigo_nodularis',\n", - " 'abscess_of_buttock',\n", - " 'interstitial_pneumonia',\n", - " 'beta_thalassemia',\n", - " 'peritoneal_adhesion',\n", - " 'pyoderma',\n", - " 'struck_by_falling_object',\n", - " 'tuberous_sclerosis_syndrome',\n", - " 'chronic_gingivitis',\n", - " 'heavy-for-dates_at_birth_regardless_of_gestation_period',\n", - " 'stevens-johnson_syndrome',\n", - " 'chronic_tophaceous_gout',\n", - " 'open_fracture_of_phalanx_of_foot',\n", - " 'renal_disease_in_pregnancy_and/or_puerperium_without_hypertension',\n", - " 'thrombosed_hemorrhoids',\n", - " 'obstruction_co-occurrent_and_due_to_recurrent_right_inguinal_hernia',\n", - " 'obstruction_co-occurrent_and_due_to_recurrent_left_inguinal_hernia',\n", - " 'derangement_of_posterior_horn_of_lateral_meniscus',\n", - " 'alcoholic_polyneuropathy',\n", - " 'collagen_disease',\n", - " 'chews_tobacco',\n", - " 'fall_from_ladder',\n", - " 'contracture_of_joint_of_shoulder_region',\n", - " 'benign_neoplasm_of_pituitary_gland',\n", - " 'biventricular_congestive_heart_failure',\n", - " 'primary_malignant_neoplasm_of_thyroid_gland',\n", - " 'secondary_malignant_neoplasm_of_large_intestine',\n", - " 'open_fracture_of_phalanx_of_finger',\n", - " 'malignant_tumor_of_hypopharynx',\n", - " 'serous_detachment_of_retinal_pigment_epithelium',\n", - " 'absence_seizure',\n", - " 'respiratory_obstruction',\n", - " 'nocturnal_muscle_spasm',\n", - " 'lobular_carcinoma_in_situ_of_breast',\n", - " 'ovarian_failure',\n", - " 'neoplasm_of_oropharynx',\n", - " 'neoplasm_of_rectum',\n", - " 'abscess_of_axilla',\n", - " 'history_of_injury',\n", - " 'rheumatoid_factor_positive',\n", - " 'biliary_cirrhosis',\n", - " 'malignant_tumor_of_middle_third_of_esophagus',\n", - " \"pituitary-dependent_cushing's_disease\",\n", - " 'recurrent_depression',\n", - " 'nonorganic_insomnia',\n", - " 'cauda_equina_syndrome',\n", - " 'anal_skin_tag',\n", - " 'stenosis_of_urinary_meatus',\n", - " 'hypertrophic_scar',\n", - " 'deliveries_by_cesarean',\n", - " 'neuropathic_arthropathy_due_to_diabetes_mellitus',\n", - " 'sacroiliac_disorder',\n", - " 'capsular_cataract',\n", - " 'pain_in_scrotum',\n", - " 'fetal_or_neonatal_effect_of_vacuum_extraction_delivery',\n", - " 'neonatal_necrotizing_enterocolitis',\n", - " 'postoperative_pain',\n", - " 'closed_fracture_of_medial_condyle_of_humerus',\n", - " 'platelet_disorder',\n", - " 'frontotemporal_dementia',\n", - " 'brainstem_death',\n", - " 'mania',\n", - " 'motility_disorder_of_intestine',\n", - " 'mass_of_pituitary',\n", - " 'deficiency_of_anterior_cruciate_ligament',\n", - " 'seronegative_rheumatoid_arthritis',\n", - " 'microscopic_polyarteritis_nodosa',\n", - " 'bone_necrosis',\n", - " 'placenta_previa_partialis',\n", - " 'self-injurious_behavior',\n", - " 'merkel_cell_carcinoma',\n", - " 'trichilemmal_cyst',\n", - " 'benign_neoplasm_of_ear',\n", - " 'subarachnoid_hemorrhage_due_to_traumatic_injury',\n", - " 'iliopsoas_abscess',\n", - " 'hypo-osmolality_and_or_hyponatremia',\n", - " 'neonatal_hypocalcemia',\n", - " 'breasts_asymmetrical',\n", - " 'burping',\n", - " 'fracture_of_phalanx_of_thumb',\n", - " 'disorder_of_smell',\n", - " 'extreme_immaturity',\n", - " 'benign_tumor_of_external_ear',\n", - " 'family_disruption',\n", - " 'immune_thrombocytopenia',\n", - " 'closed_fracture_of_scapula',\n", - " 'mass_of_skin',\n", - " 'lesion_of_lip',\n", - " 'mononeuritis_multiplex',\n", - " 'acute_gingivitis',\n", - " 'cyanosis',\n", - " \"takayasu's_disease\",\n", - " 'tuberculosis_of_vertebral_column',\n", - " 'malignant_tumor_of_anal_canal',\n", - " 'malignant_tumor_of_nasal_cavity',\n", - " 'dysplasia_of_vagina',\n", - " 'hypovolemic_shock',\n", - " 'bronchopneumonia',\n", - " 'drug-induced_hyperpyrexia',\n", - " 'flaccid_neurogenic_bladder',\n", - " 'family_history_of_malignant_neoplasm_of_genital_structure',\n", - " 'chronic_systolic_heart_failure',\n", - " 'complete_quadriplegia_due_to_spinal_cord_lesion_between_first_and_fourth_cervical_vertebra',\n", - " 'disorder_of_joint_of_shoulder_region',\n", - " 'exposure_to_viral_hepatitis',\n", - " 'spondylolysis_of_cervical_spine',\n", - " 'low_lying_placenta',\n", - " 'left_sided_ulcerative_colitis',\n", - " 'foreign_body_in_lower_limb',\n", - " 'sepsis_caused_by_streptococcus',\n", - " 'torsion_of_spermatic_cord',\n", - " 'acute_cor_pulmonale',\n", - " 'fracture_of_patella',\n", - " 'sciatic_neuropathy',\n", - " 'alcohol-induced_mood_disorder',\n", - " 'retinal_vascular_disorder',\n", - " 'tuberculosis_of_meninges',\n", - " 'lagophthalmos',\n", - " 'coccidioidomycosis',\n", - " 'disorder_of_uterine_cervix',\n", - " 'bacterial_infection_caused_by_pseudomonas',\n", - " 'lumbar_spondylosis_with_myelopathy',\n", - " 'closed_fracture_of_coronoid_process_of_ulna',\n", - " 'mucocele_of_salivary_gland',\n", - " 'cryptogenic_organizing_pneumonia',\n", - " 'chronic_ethmoidal_sinusitis',\n", - " 'closed_fracture_of_neck_of_metacarpal_bone',\n", - " 'blind_loop_syndrome',\n", - " 'iridocyclitis',\n", - " 'convulsions_in_the_newborn',\n", - " 'hematoma_of_pinna',\n", - " 'spinal_cord_injury',\n", - " 'mural_thrombus_of_heart',\n", - " 'allergy_to_peanut',\n", - " 'carcinoma_in_situ_of_bladder',\n", - " 'acute_promyelocytic_leukemia_fab_m3',\n", - " 'ankylosis_of_joint',\n", - " 'neoplasm_of_pelvis',\n", - " 'neoplasm_of_larynx',\n", - " 'neoplasm_of_small_intestine',\n", - " 'neoplasm_of_retroperitoneum',\n", - " 'separation_anxiety',\n", - " 'disorder_of_elbow',\n", - " 'disorder_of_sacrum',\n", - " 'autonomic_dysreflexia',\n", - " 'congenital_spondylolisthesis',\n", - " 'hypothermia_of_newborn',\n", - " 'family_history:_glaucoma',\n", - " 'history_of_radiation_exposure',\n", - " 'pain_in_female_genitalia',\n", - " 'raised_serum_calcium_level',\n", - " 'antenatal_ultrasound_scan_abnormal',\n", - " 'fluid_volume_disorder',\n", - " 'alcohol_intoxication_delirium',\n", - " 'malignant_melanoma_of_scalp_and/or_neck',\n", - " 'hemangioma_of_intra-abdominal_structure',\n", - " 'uterovaginal_prolapse',\n", - " 'iodine_hypothyroidism',\n", - " 'nondependent_opioid_abuse_in_remission',\n", - " 'chronic_adenotonsillitis',\n", - " 'endometriosis_of_pelvic_peritoneum',\n", - " 'localized_secondary_osteoarthritis_of_the_shoulder_region',\n", - " 'clicking_hip',\n", - " 'transient_synovitis',\n", - " 'drowning_and_non-fatal_immersion',\n", - " 'mechanical_lagophthalmos',\n", - " 'episodic_tension-type_headache',\n", - " 'motor_neuropathy_with_multiple_conduction_block',\n", - " 'menstrual_migraine',\n", - " 'fracture_of_upper_limb',\n", - " 'metatarsus_adductus',\n", - " 'postoperative_intestinal_obstruction',\n", - " 'pseudo-obstruction_of_intestine',\n", - " 'polymorphic_light_eruption',\n", - " 'accident_due_to_contact_with_hot_or_corrosive_substance',\n", - " 'neurosyphilis',\n", - " 'sprain_of_ligament_of_elbow',\n", - " 'bimalleolar_fracture_of_ankle',\n", - " 'pruritus_of_genital_organs',\n", - " 'benign_neoplasm_of_nose_middle_ear_and_accessory_sinuses',\n", - " 'disorder_of_sleep-wake_cycle',\n", - " 'thoracic_back_sprain',\n", - " 'superficial_injury_of_wrist',\n", - " 'fall_on_same_level_due_to_impact_against_another_person',\n", - " 'family_history:_arthritis',\n", - " 'metastasis_to_digestive_organs',\n", - " 'non-suppurative_otitis_media',\n", - " 'peripheral_arteriovenous_malformation',\n", - " 'developmental_language_disorder',\n", - " 'dementia_associated_with_alcoholism',\n", - " 'left_sided_abdominal_pain',\n", - " 'mass_of_vulva',\n", - " 'progressive_supranuclear_ophthalmoplegia',\n", - " 'motorcycle_accident',\n", - " 'deformity_of_knee_joint',\n", - " 'gastrostomy_present',\n", - " 'vulvar_vestibulitis',\n", - " 'caffeine-related_disorder',\n", - " 'cryoglobulinemia',\n", - " 'varicella-zoster_virus_infection',\n", - " 'localized_primary_osteoarthritis_of_elbow',\n", - " 'lymphocytic-plasmacytic_colitis',\n", - " 'idiopathic_progressive_polyneuropathy',\n", - " 'foreign_body_in_digestive_tract',\n", - " 'drusen_of_optic_disc',\n", - " 'postoperative_infection',\n", - " 'traumatic_cataract',\n", - " 'pityriasis',\n", - " 'strabismic_amblyopia',\n", - " 'malignant_tumor_of_palate',\n", - " 'malignant_tumor_of_neck',\n", - " 'right_ventricular_failure',\n", - " 'fracture_of_distal_phalanx_of_finger',\n", - " 'lumbosacral_stenosis',\n", - " 'malignant_neoplasm_of_skin_of_trunk',\n", - " 'macular_retinal_edema',\n", - " 'premature_menopause',\n", - " 'laryngomalacia',\n", - " 'cholesteatoma_of_attic',\n", - " 'follow-up_encounter',\n", - " 'telogen_effluvium',\n", - " 'infective_arthritis',\n", - " 'acute_and_chronic_cholecystitis',\n", - " 'ehlers-danlos_syndrome',\n", - " 'generalized_atherosclerosis',\n", - " 'squamous_cell_carcinoma_of_skin_of_lower_extremity',\n", - " 'acute_osteomyelitis',\n", - " 'juvenile_rheumatoid_arthritis',\n", - " 'acquired_kyphosis',\n", - " 'fall_from_playground_equipment',\n", - " 'disorder_of_pinna',\n", - " 'saint_louis_encephalitis_virus_infection',\n", - " 'deformity',\n", - " 'peripheral_vascular_disorder_due_to_diabetes_mellitus',\n", - " 'cataract_of_eye_due_to_diabetes_mellitus_type_1',\n", - " 'thoracic_radiculopathy',\n", - " 'chronic_organic_mental_disorder',\n", - " 'cerebral_vasculitis',\n", - " 'transformed_migraine',\n", - " 'infection_of_amputation_stump',\n", - " 'closed_fracture_of_tibial_plateau',\n", - " 'congenital_anomaly_of_peripheral_blood_vessel',\n", - " 'intentional_poisoning_caused_by_drug',\n", - " 'chronic_pain_due_to_injury',\n", - " 'increased_cancer_antigen_125',\n", - " 'hereditary_thrombophilia',\n", - " 'stimulant_abuse',\n", - " 'carcinoid_tumor',\n", - " 'latent_syphilis',\n", - " 'sepsis_caused_by_staphylococcus_aureus',\n", - " 'mesenteric_lymphadenitis',\n", - " 'cyst_of_eyelid',\n", - " 'closed_fracture_of_shaft_of_metacarpal_bone',\n", - " 'miliary_tuberculosis',\n", - " 'typhoid_fever',\n", - " 'intussusception_of_intestine',\n", - " 'arterial_retinal_branch_occlusion',\n", - " 'myocarditis',\n", - " 'disorder_of_anterior_pituitary',\n", - " 'arteritis',\n", - " 'ileitis',\n", - " 'necrotizing_fasciitis',\n", - " 'foreign_body_in_conjunctival_sac',\n", - " 'derangement_of_posterior_horn_of_medial_meniscus',\n", - " 'megaloblastic_anemia',\n", - " 'peroneal_tendinitis',\n", - " 'simple_phobia',\n", - " 'staphylococcal_infectious_disease',\n", - " 'viral_meningitis',\n", - " 'dribbling_of_urine',\n", - " 'disorder_of_magnesium_metabolism',\n", - " 'peripheral_retinal_degeneration',\n", - " 'orthopnea',\n", - " 'tachyarrhythmia',\n", - " 'nonobliterative_otosclerosis_involving_oval_window',\n", - " 'distorted_body_image',\n", - " 'pruritic_rash',\n", - " 'inflammation_of_small_intestine',\n", - " 'arterial_thrombosis',\n", - " 'langerhans_cell_histiocytosis',\n", - " 'closed_fracture_of_sternum',\n", - " 'latent_syphilis_with_positive_serology',\n", - " 'disturbance_of_temperature_regulation_of_newborn',\n", - " 'mass_of_retroperitoneal_structure',\n", - " 'cholelithiasis_without_obstruction',\n", - " 'anophthalmos',\n", - " 'inclusion_body_myositis',\n", - " 'nodular_degeneration_of_cornea',\n", - " 'supraventricular_arrhythmia',\n", - " 'prickly_heat',\n", - " 'stenosis_of_lacrimal_punctum',\n", - " 'opioid_intoxication',\n", - " 'placenta_previa_without_hemorrhage',\n", - " 'fibromuscular_dysplasia_of_wall_of_artery',\n", - " 'thigh_pain',\n", - " 'late_effect_of_radiation',\n", - " 'congenital_cataract',\n", - " 'postgastric_surgery_syndrome',\n", - " 'hemarthrosis',\n", - " 'parapharyngeal_abscess',\n", - " 'acute_suppurative_otitis_media_with_spontaneous_rupture_of_ear_drum',\n", - " 'disorder_of_skeletal_system',\n", - " 'brain_injury_without_open_intracranial_wound',\n", - " 'benign_neoplasm_of_choroid',\n", - " 'benign_neoplasm_of_orbit',\n", - " 'neurofibromatosis_type_2',\n", - " 'chronic_leukemia_disease',\n", - " 'dermatitis_of_eyelid',\n", - " 'herpes_simplex_keratitis',\n", - " 'secondary_malignant_neoplasm_of_bladder',\n", - " 'neoplasm_of_uncertain_behavior_of_kidney',\n", - " 'neoplasm_of_uncertain_behavior_of_nervous_system',\n", - " 'neoplasm_of_uncertain_behavior_of_parotid_gland',\n", - " \"dieulafoy's_vascular_malformation\",\n", - " 'myelodysplastic_syndrome:_refractory_anemia_without_ringed_sideroblasts_without_excess_blasts',\n", - " 'injury_of_penis',\n", - " 'dermatitis_herpetiformis',\n", - " 'diastasis_of_muscle',\n", - " 'ureteritis',\n", - " 'hemolytic_uremic_syndrome',\n", - " 'breast_finding',\n", - " 'hodgkin_lymphoma_lymphocyte-rich',\n", - " 'open_wound_of_toe',\n", - " 'neoplasm_of_submaxillary_gland',\n", - " 'intertrochanteric_fracture',\n", - " 'traumatic_and/or_non-traumatic_brain_injury',\n", - " 'disorder_of_cervical_spine',\n", - " 'hemifacial_spasm',\n", - " 'lymphangitis',\n", - " 'measles',\n", - " 'urethral_fistula',\n", - " 'disorder_of_cornea',\n", - " 'polyarteritis_nodosa',\n", - " 'acute_pericarditis',\n", - " 'history_of_diabetes_mellitus',\n", - " 'pneumococcal_infectious_disease',\n", - " 'mitochondrial_myopathy',\n", - " 'hereditary_coagulation_factor_deficiency',\n", - " 'trichotillomania',\n", - " 'hypochondriasis',\n", - " 'endophthalmitis',\n", - " 'congenital_stenosis_of_aortic_valve',\n", - " 'late_latent_syphilis',\n", - " 'cyclical_vomiting_syndrome',\n", - " 'malignant_tumor_of_tail_of_pancreas',\n", - " 'cerebral_venous_sinus_thrombosis',\n", - " 'drug-induced_immune_thrombocytopenia',\n", - " 'stimulus_deprivation_amblyopia',\n", - " 'cerebral_infarction_due_to_thrombosis_of_cerebral_arteries',\n", - " 'spontaneous_tension_pneumothorax',\n", - " 'paroxysmal_nocturnal_hemoglobinuria',\n", - " 'monocytosis',\n", - " 'atrophy_of_kidney',\n", - " 'rhinophyma',\n", - " 'pre-existing_type_2_diabetes_mellitus',\n", - " 'abnormal_biochemical_finding_on_antenatal_screening_of_mother',\n", - " 'congenital_anomaly_of_skin',\n", - " 'carbuncle_of_back',\n", - " 'abscess_of_face',\n", - " 'localized_primary_osteoarthritis_of_the_hand',\n", - " 'osteomyelitis_of_vertebra',\n", - " 'aneurysmal_bone_cyst',\n", - " 'alcoholic_gastritis',\n", - " 'congenital_atresia_of_the_pulmonary_valve',\n", - " 'hypospadias_penile',\n", - " 'hypospadias_balanic',\n", - " 'gingivostomatitis',\n", - " 'fetal_or_neonatal_effect_of_prolapsed_cord',\n", - " 'vertical_heterophoria',\n", - " 'psychologic_conversion_disorder',\n", - " 'closed_fracture_thoracic_vertebra',\n", - " 'abrasion_of_face',\n", - " 'osteomyelitis_of_lower_leg',\n", - " 'chronic_meningitis',\n", - " 'bite_of_nonvenomous_snakes_and_lizards',\n", - " 'accident_caused_by_electric_current',\n", - " 'perineal_pain',\n", - " 'speech_and_language_disorder',\n", - " 'conjunctival_foreign_body',\n", - " 'chronic_non-suppurative_otitis_media',\n", - " 'disorder_of_nasal_cavity',\n", - " 'asbestos-induced_pleural_plaque',\n", - " 'postoperative_cardiac_complication',\n", - " 'carotid_artery_aneurysm',\n", - " 'microscopic_colitis',\n", - " 'angiodysplasia_of_intestine',\n", - " 'malignant_ascites',\n", - " 'renal_transplant_rejection',\n", - " 'acne_keloid',\n", - " 'knee_pyogenic_arthritis',\n", - " 'seropositive_rheumatoid_arthritis',\n", - " 'enthesopathy_of_foot_region',\n", - " 'erythroderma_neonatorum',\n", - " 'epstein-barr_virus_disease',\n", - " 'rectal_mass',\n", - " 'atrophic_vulva',\n", - " 'hand_joint_stiff',\n", - " 'chiari_malformation',\n", - " 'polyp_of_intestine',\n", - " 'malignant_neoplasm_of_unknown_origin',\n", - " 'traumatic_injury_of_common_peroneal_nerve',\n", - " 'rupture_of_muscle',\n", - " 'undescended_testes_-_bilateral',\n", - " 'malignant_tumor_of_greater_curve_of_stomach',\n", - " 'benign_tumor_of_breast',\n", - " 'malignant_melanoma_of_head_and_neck',\n", - " 'edema_generalized',\n", - " 'leukoplakia',\n", - " 'open_wound_of_abdominal_wall',\n", - " 'superficial_vein_thrombosis',\n", - " 'large_cell_anaplastic_lymphoma',\n", - " 'pain_in_cervical_spine',\n", - " 'clavicle_injury',\n", - " 'lesion_of_cervix',\n", - " 'lesion_of_external_ear',\n", - " 'keratoconjunctivitis_sicca',\n", - " 'glossodynia',\n", - " 'abscess_of_back',\n", - " 'profound_intellectual_disability',\n", - " 'dislocation_of_hip_joint_prosthesis',\n", - " 'disseminated_idiopathic_skeletal_hyperostosis',\n", - " 'multiple_personality_disorder',\n", - " 'fracture_of_navicular_bone_of_wrist',\n", - " 'facial_spasm',\n", - " 'compensatory_emphysema',\n", - " 'benign_mucous_membrane_pemphigoid',\n", - " 'band-shaped_keratopathy',\n", - " 'frostbite_of_foot',\n", - " 'congenital_syphilis',\n", - " 'chronic_arthritis',\n", - " 'ischiorectal_abscess',\n", - " 'malignant_tumor_of_anterior_two-thirds_of_tongue',\n", - " 'malignant_tumor_of_appendix',\n", - " 'malignant_tumor_of_vagina',\n", - " 'malignant_tumor_of_renal_pelvis',\n", - " 'malignant_tumor_of_urethra',\n", - " 'malignant_tumor_of_penis',\n", - " 'late_effect_of_fracture_of_lower_extremities',\n", - " 'motion_sickness',\n", - " 'infection_caused_by_mycobacterium_avium-intracellulare_group',\n", - " \"meckel's_diverticulum\",\n", - " 'extrinsic_allergic_alveolitis',\n", - " 'acute_hepatitis',\n", - " 'contusion_of_abdominal_wall',\n", - " 'rumination_disorder',\n", - " 'primary_insomnia',\n", - " 'alternating_esotropia',\n", - " 'thiamine_deficiency',\n", - " 'acquired_plantar_keratoderma',\n", - " 'delayed_puberty',\n", - " 'congenital_vascular_malformation',\n", - " 'dermatitis_of_external_ear',\n", - " 'partial_thickness_burn',\n", - " 'obstruction_of_colon',\n", - " 'complex_regional_pain_syndrome_type_ii_upper_limb',\n", - " 'adenoviral_pneumonia',\n", - " 'acute_follicular_conjunctivitis',\n", - " 'anemia_due_to_blood_loss',\n", - " 'neonatal_candidiasis',\n", - " 'disorder_of_right_cardiac_ventricle',\n", - " 'hydatidiform_mole_benign',\n", - " 'systolic_heart_failure',\n", - " 'benign_neoplasm_of_oral_cavity',\n", - " 'alcohol-induced_psychosis',\n", - " 'foreign_body_of_neck',\n", - " 'chemical_burn',\n", - " 'central_pain_syndrome',\n", - " 'chronic_hypercapnic_respiratory_failure',\n", - " 'mass_of_shoulder_region',\n", - " 'disorder_of_tendon_of_biceps',\n", - " 'crushing_injury_of_foot',\n", - " 'atypical_squamous_cells_of_undetermined_significance_on_vaginal_papanicolaou_smear',\n", - " 'nonspecific_tuberculin_test_reaction',\n", - " 'flaccid_hemiplegia_of_nondominant_side',\n", - " 'mass_of_foot',\n", - " 'neoplasm_of_lymphoid_system_structure',\n", - " 'sleep_hypoventilation',\n", - " 'hypersomnia_disorder_related_to_a_known_organic_factor',\n", - " 'edema_of_face',\n", - " 'degenerative_joint_disease_of_pelvis',\n", - " 'erysipelas',\n", - " 'paralysis',\n", - " 'contusion_of_lower_leg',\n", - " 'anemia_in_mother_complicating_pregnancy_childbirth_and/or_puerperium',\n", - " 'tarsal_tunnel_syndrome',\n", - " 'chronic_nasopharyngitis',\n", - " 'lymphocytopenia',\n", - " 'disorder_of_external_ear',\n", - " 'pure_red_cell_aplasia',\n", - " 'corneal_erosion',\n", - " 'crushing_injury_of_hand',\n", - " 'developmental_reading_disorder',\n", - " 'chorioretinal_scar',\n", - " 'posttraumatic_headache',\n", - " 'closed_fracture_of_base_of_metacarpal_bone_other_than_first_metacarpal',\n", - " 'arterial_embolism',\n", - " 'contusion_of_ankle',\n", - " 'organic_delusional_disorder',\n", - " 'craniosynostosis_syndrome',\n", - " 'alternating_exotropia_with_v_pattern',\n", - " 'hypersplenism',\n", - " 'vaccine_refused_by_patient',\n", - " 'disorder_of_conjunctiva',\n", - " 'paralytic_lagophthalmos',\n", - " 'bowing_deformity_of_lower_limb',\n", - " 'pre-existing_type_1_diabetes_mellitus_in_pregnancy',\n", - " 'aggressive_behavior',\n", - " 'simple_chronic_bronchitis',\n", - " 'bundle_branch_block',\n", - " 'sedative_abuse',\n", - " 'congenital_nystagmus',\n", - " 'rectovaginal_fistula',\n", - " 'subluxation_of_lens',\n", - " 'hiccoughs',\n", - " 'closed_fracture_of_femoral_condyle_of_femur',\n", - " 'acute-on-chronic_respiratory_failure',\n", - " 'tracheostomy_complication',\n", - " 'urethral_caruncle',\n", - " 'fracture_of_shaft_of_tibia',\n", - " 'monoarthritis',\n", - " 'mastitis_associated_with_lactation',\n", - " 'dissection_of_thoracoabdominal_aorta',\n", - " 'precordial_pain',\n", - " 'disorder_of_refraction_and/or_accommodation',\n", - " 'relapsing_polychondritis',\n", - " 'bullous_dermatosis',\n", - " 'recurrent_ulcer_of_mouth',\n", - " 'recurrent_pterygium',\n", - " 'enteritis_caused_by_radiation',\n", - " 'mucopurulent_chronic_bronchitis',\n", - " 'crushing_injury_of_toe',\n", - " 'classical_phenylketonuria',\n", - " 'congenital_dislocation_of_left_hip',\n", - " 'congenital_dislocation_of_right_hip',\n", - " 'tetanus',\n", - " 'adhesive_middle_ear_disease',\n", - " 'spina_bifida_of_lumbar_region',\n", - " 'erb-duchenne_paralysis',\n", - " 'enophthalmos',\n", - " 'sleep-wake_schedule_disorder_delayed_phase_type',\n", - " 'atrophic_gastritis',\n", - " 'schizoaffective_disorder_depressive_type',\n", - " 'epiphora_due_to_insufficient_drainage',\n", - " 'ulceration_of_intestine',\n", - " 'hypertensive_heart_and_renal_disease',\n", - " 'traumatic_urethral_stricture',\n", - " 'cholesteatoma_of_middle_ear',\n", - " 'acquired_deformity_of_ankle_and/or_foot',\n", - " 'chronic_congestive_heart_failure',\n", - " 'edema_of_eyelid',\n", - " 'vesicovaginal_fistula',\n", - " 'pneumothorax_due_to_trauma',\n", - " 'burning_sensation',\n", - " 'benign_neoplasm_of_skin_of_lip',\n", - " 'benign_neoplasm_of_soft_tissues_of_lower_limb',\n", - " 'malignant_lymphoma_of_lymph_nodes_of_head_face_and/or_neck',\n", - " 'primary_malignant_neoplasm_of_prostate',\n", - " 'secondary_malignant_neoplasm_of_central_nervous_system',\n", - " 'secondary_malignant_neoplasm_of_intrathoracic_lymph_nodes',\n", - " 'secondary_malignant_neoplasm_of_mediastinum',\n", - " 'secondary_malignant_neoplasm_of_retroperitoneum',\n", - " \"kaposi's_sarcoma\",\n", - " 'hepatoblastoma',\n", - " \"follicular_non-hodgkin's_lymphoma_large_cell\",\n", - " 'organic_mental_disorder',\n", - " \"fuchs'_heterochromic_cyclitis\",\n", - " 'necrotizing_vasculitis',\n", - " 'mycosis_fungoides',\n", - " 'disorder_of_neck',\n", - " 'crowding_of_teeth',\n", - " 'cholangiectasis',\n", - " 'injury_of_forearm',\n", - " 'crushing_injury',\n", - " 'neoplasm_of_stomach',\n", - " 'neoplasm_of_thyroid_gland',\n", - " 'eye_infection',\n", - " 'infectious_disorder_of_kidney',\n", - " 'bladder_pain',\n", - " 'family_history:_gastrointestinal_disease',\n", - " 'family_history:_congenital_anomaly',\n", - " 'chronic_disease_of_tonsils_and/or_adenoids',\n", - " 'abnormal_defecation',\n", - " 'acquired_deformity_of_nose',\n", - " 'disorder_of_appendix',\n", - " 'ethmoidal_sinusitis',\n", - " 'malignant_tumor_of_cardia',\n", - " 'malignant_tumor_of_pancreatic_duct',\n", - " 'malignant_melanoma_of_ear_and/or_external_auditory_canal',\n", - " 'malignant_tumor_of_vault_of_bladder',\n", - " 'corticobasal_degeneration',\n", - " 'type_i_diabetes_mellitus_with_ulcer',\n", - " 'lesion_of_radial_nerve',\n", - " 'recurrent_acute_tonsillitis',\n", - " 'rectal_abscess',\n", - " 'café_au_lait_spot',\n", - " 'systemic_onset_juvenile_chronic_arthritis',\n", - " 'recurrent_subluxation_of_the_patella',\n", - " 'spasm_of_back_muscles',\n", - " 'congenital_pigmentary_skin_anomalies',\n", - " 'tricuspid_valve_disorder',\n", - " 'fracture_of_orbital_floor',\n", - " 'infestation_caused_by_pediculus',\n", - " 'chronic_glomerulonephritis',\n", - " 'sexual_abuse',\n", - " 'retractile_testis',\n", - " 'spastic_cerebral_palsy',\n", - " 'giant_papillary_conjunctivitis',\n", - " 'thrombophilia',\n", - " 'obstruction_of_biliary_tree',\n", - " 'chronic_pericarditis',\n", - " 'vulvodynia',\n", - " 'contracture_of_wrist_joint',\n", - " 'sprain_of_interphalangeal_joint_of_toe',\n", - " 'knee_stiff',\n", - " 'hip_stiff',\n", - " 'peripheral_neuralgia',\n", - " 'squamous_cell_carcinoma_of_lip',\n", - " 'laceration_of_liver',\n", - " 'fracture_of_shaft_of_radius_and/or_ulna',\n", - " 'slipped_upper_femoral_epiphysis',\n", - " 'ventricular_hypertrophy',\n", - " 'dilatation_of_aorta',\n", - " 'history_of_gastrointestinal_disease',\n", - " 'excessive_eating_-_polyphagia',\n", - " 'thoracic_spondylosis_without_myelopathy',\n", - " 'chorea',\n", - " 'electroencephalogram_abnormal',\n", - " 'orchitis',\n", - " 'injury_of_nail',\n", - " 'history_of_heart_disorder',\n", - " 'pertussis',\n", - " 'anterior_cord_syndrome',\n", - " 'synovitis/tenosynovitis_-_knee',\n", - " 'elbow_joint_unstable',\n", - " 'deformity_of_hip_joint',\n", - " 'lesion_of_testis',\n", - " 'lesion_of_vocal_cord',\n", - " 'congenital_deformity_of_foot',\n", - " 'infective_discitis',\n", - " 'decreased_range_of_knee_movement',\n", - " \"behcet's_syndrome\",\n", - " 'foreign_body_in_vagina',\n", - " 'mixed_bipolar_i_disorder_in_remission',\n", - " 'aneurysm_of_renal_artery',\n", - " 'malignant_tumor_of_floor_of_mouth',\n", - " 'malignant_tumor_of_spinal_cord',\n", - " 'malignant_tumor_of_mediastinum',\n", - " 'malignant_tumor_of_face',\n", - " 'guttate_psoriasis',\n", - " 'adverse_reaction_caused_by_food',\n", - " 'disorder_of_endocrine_ovary',\n", - " 'congenital_pelviureteric_junction_obstruction',\n", - " 'avoidant_personality_disorder',\n", - " 'osteoarthrosis_of_the_carpometacarpal_joint_of_the_thumb',\n", - " 'contusion_of_forearm',\n", - " 'pseudofolliculitis_barbae',\n", - " 'erythroderma',\n", - " 'congenital_malformation_syndrome',\n", - " 'lymphangioma',\n", - " 'basal_cell_carcinoma_of_lower_extremity',\n", - " 'squamous_cell_carcinoma_of_skin_of_trunk',\n", - " 'widespread_metastatic_malignant_neoplastic_disease',\n", - " 'complex_regional_pain_syndrome_type_ii_lower_limb',\n", - " 'subluxation_of_radial_head',\n", - " 'narrow_angle',\n", - " 'gangrene_due_to_type_2_diabetes_mellitus',\n", - " 'chronic_ulcer_of_ankle',\n", - " 'tubulointerstitial_nephritis',\n", - " 'anemia_caused_by_medication',\n", - " 'history_of_malignant_neoplasm_of_ureter',\n", - " 'posterior_uveitis',\n", - " 'cataract_of_eye_due_to_diabetes_mellitus',\n", - " 'arthritis_of_elbow',\n", - " 'premature_ejaculation',\n", - " 'stress_fracture_of_tibia',\n", - " 'hypertensive_urgency',\n", - " 'cellulitis_of_buttock',\n", - " 'acute_exacerbation_of_bronchiectasis',\n", - " 'nondiabetic_proliferative_retinopathy',\n", - " 'cellulitis_of_trunk',\n", - " 'congenital_hydrocephalus',\n", - " 'disorder_of_diaphragm',\n", - " 'dermatitis_caused_by_radiation',\n", - " 'congenital_anomaly_of_skull',\n", - " 'acquired_genu_valgum',\n", - " 'stiff-man_syndrome',\n", - " 'chronic_ulcerative_rectosigmoiditis',\n", - " 'articular_cartilage_disorder',\n", - " 'injury_to_brachial_plexus_as_birth_trauma',\n", - " 'partial_thickness_burn_of_hand',\n", - " 'disorder_of_pericardium',\n", - " 'localized_amyloidosis',\n", - " 'traumatic_dislocation_of_knee_joint',\n", - " \"huntington's_chorea\",\n", - " 'pseudohypoparathyroidism',\n", - " 'contusion_of_nose',\n", - " 'abscess_of_neck',\n", - " 'glaucoma_associated_with_ocular_trauma',\n", - " 'capsulitis',\n", - " 'congenital_anomaly_of_esophagus',\n", - " 'decrease_in_height',\n", - " 'urgent_desire_for_stool',\n", - " 'generalized_seborrheic_dermatitis_of_infants',\n", - " 'congenital_subaortic_stenosis',\n", - " 'thickening_of_pleura',\n", - " 'central_corneal_ulcer',\n", - " 'congenital_disorder_due_to_abnormality_of_chromosome_number_or_structure',\n", - " 'pauciarticular_juvenile_rheumatoid_arthritis',\n", - " 'double_outlet_right_ventricle',\n", - " 'congenital_anomaly_of_spine',\n", - " 'agenesis_of_left_kidney',\n", - " 'agenesis_of_right_kidney',\n", - " 'extrapyramidal_disease',\n", - " 'neurotrophic_keratoconjunctivitis',\n", - " 'disorder_of_optic_nerve',\n", - " 'congenital_biliary_atresia',\n", - " 'multiple_cranial_nerve_palsy',\n", - " 'contracture_of_joint',\n", - " \"tailor's_bunion\",\n", - " 'mesangiocapillary_glomerulonephritis',\n", - " 'prolapsed_internal_hemorrhoids',\n", - " 'sleep_walking_disorder',\n", - " 'cyst_of_nasal_sinus',\n", - " 'bacterial_infectious_disease',\n", - " 'congenital_anomaly_of_nervous_system',\n", - " 'sleep_terror_disorder',\n", - " 'acute_frontal_sinusitis',\n", - " 'benign_neoplasm_of_pancreas',\n", - " 'primary_malignant_neoplasm_of_soft_tissues_of_lower_limb',\n", - " 'neoplasm_of_uncertain_behavior_of_neck',\n", - " 'injury_of_peroneal_nerve',\n", - " \"dupuytren's_disease\",\n", - " 'stem_cell_donor',\n", - " 'endemic_goiter',\n", - " 'diplegic_cerebral_palsy'],\n", - " 'diagnoses_emb': ['node2vec_available',\n", - " 'node2vec_0',\n", - " 'node2vec_1',\n", - " 'node2vec_2',\n", - " 'node2vec_3',\n", - " 'node2vec_4',\n", - " 'node2vec_5',\n", - " 'node2vec_6',\n", - " 'node2vec_7',\n", - " 'node2vec_8',\n", - " 'node2vec_9',\n", - " 'node2vec_10',\n", - " 'node2vec_11',\n", - " 'node2vec_12',\n", - " 'node2vec_13',\n", - " 'node2vec_14',\n", - " 'node2vec_15',\n", - " 'node2vec_16',\n", - " 'node2vec_17',\n", - " 'node2vec_18',\n", - " 'node2vec_19',\n", - " 'node2vec_20',\n", - " 'node2vec_21',\n", - " 'node2vec_22',\n", - " 'node2vec_23',\n", - " 'node2vec_24',\n", - " 'node2vec_25',\n", - " 'node2vec_26',\n", - " 'node2vec_27',\n", - " 'node2vec_28',\n", - " 'node2vec_29',\n", - " 'node2vec_30',\n", - " 'node2vec_31',\n", - " 'node2vec_32',\n", - " 'node2vec_33',\n", - " 'node2vec_34',\n", - " 'node2vec_35',\n", - " 'node2vec_36',\n", - " 'node2vec_37',\n", - " 'node2vec_38',\n", - " 'node2vec_39',\n", - " 'node2vec_40',\n", - " 'node2vec_41',\n", - " 'node2vec_42',\n", - " 'node2vec_43',\n", - " 'node2vec_44',\n", - " 'node2vec_45',\n", - " 'node2vec_46',\n", - " 'node2vec_47',\n", - " 'node2vec_48',\n", - " 'node2vec_49',\n", - " 'node2vec_50',\n", - " 'node2vec_51',\n", - " 'node2vec_52',\n", - " 'node2vec_53',\n", - " 'node2vec_54',\n", - " 'node2vec_55',\n", - " 'node2vec_56',\n", - " 'node2vec_57',\n", - " 'node2vec_58',\n", - " 'node2vec_59',\n", - " 'node2vec_60',\n", - " 'node2vec_61',\n", - " 'node2vec_62',\n", - " 'node2vec_63',\n", - " 'node2vec_64',\n", - " 'node2vec_65',\n", - " 'node2vec_66',\n", - " 'node2vec_67',\n", - " 'node2vec_68',\n", - " 'node2vec_69',\n", - " 'node2vec_70',\n", - " 'node2vec_71',\n", - " 'node2vec_72',\n", - " 'node2vec_73',\n", - " 'node2vec_74',\n", - " 'node2vec_75',\n", - " 'node2vec_76',\n", - " 'node2vec_77',\n", - " 'node2vec_78',\n", - " 'node2vec_79',\n", - " 'node2vec_80',\n", - " 'node2vec_81',\n", - " 'node2vec_82',\n", - " 'node2vec_83',\n", - " 'node2vec_84',\n", - " 'node2vec_85',\n", - " 'node2vec_86',\n", - " 'node2vec_87',\n", - " 'node2vec_88',\n", - " 'node2vec_89',\n", - " 'node2vec_90',\n", - " 'node2vec_91',\n", - " 'node2vec_92',\n", - " 'node2vec_93',\n", - " 'node2vec_94',\n", - " 'node2vec_95',\n", - " 'node2vec_96',\n", - " 'node2vec_97',\n", - " 'node2vec_98',\n", - " 'node2vec_99',\n", - " 'node2vec_100',\n", - " 'node2vec_101',\n", - " 'node2vec_102',\n", - " 'node2vec_103',\n", - " 'node2vec_104',\n", - " 'node2vec_105',\n", - " 'node2vec_106',\n", - " 'node2vec_107',\n", - " 'node2vec_108',\n", - " 'node2vec_109',\n", - " 'node2vec_110',\n", - " 'node2vec_111',\n", - " 'node2vec_112',\n", - " 'node2vec_113',\n", - " 'node2vec_114',\n", - " 'node2vec_115',\n", - " 'node2vec_116',\n", - " 'node2vec_117',\n", - " 'node2vec_118',\n", - " 'node2vec_119',\n", - " 'node2vec_120',\n", - " 'node2vec_121',\n", - " 'node2vec_122',\n", - " 'node2vec_123',\n", - " 'node2vec_124',\n", - " 'node2vec_125',\n", - " 'node2vec_126',\n", - " 'node2vec_127',\n", - " 'node2vec_128',\n", - " 'node2vec_129',\n", - " 'node2vec_130',\n", - " 'node2vec_131',\n", - " 'node2vec_132',\n", - " 'node2vec_133',\n", - " 'node2vec_134',\n", - " 'node2vec_135',\n", - " 'node2vec_136',\n", - " 'node2vec_137',\n", - " 'node2vec_138',\n", - " 'node2vec_139',\n", - " 'node2vec_140',\n", - " 'node2vec_141',\n", - " 'node2vec_142',\n", - " 'node2vec_143',\n", - " 'node2vec_144',\n", - " 'node2vec_145',\n", - " 'node2vec_146',\n", - " 'node2vec_147',\n", - " 'node2vec_148',\n", - " 'node2vec_149',\n", - " 'node2vec_150',\n", - " 'node2vec_151',\n", - " 'node2vec_152',\n", - " 'node2vec_153',\n", - " 'node2vec_154',\n", - " 'node2vec_155',\n", - " 'node2vec_156',\n", - " 'node2vec_157',\n", - " 'node2vec_158',\n", - " 'node2vec_159',\n", - " 'node2vec_160',\n", - " 'node2vec_161',\n", - " 'node2vec_162',\n", - " 'node2vec_163',\n", - " 'node2vec_164',\n", - " 'node2vec_165',\n", - " 'node2vec_166',\n", - " 'node2vec_167',\n", - " 'node2vec_168',\n", - " 'node2vec_169',\n", - " 'node2vec_170',\n", - " 'node2vec_171',\n", - " 'node2vec_172',\n", - " 'node2vec_173',\n", - " 'node2vec_174',\n", - " 'node2vec_175',\n", - " 'node2vec_176',\n", - " 'node2vec_177',\n", - " 'node2vec_178',\n", - " 'node2vec_179',\n", - " 'node2vec_180',\n", - " 'node2vec_181',\n", - " 'node2vec_182',\n", - " 'node2vec_183',\n", - " 'node2vec_184',\n", - " 'node2vec_185',\n", - " 'node2vec_186',\n", - " 'node2vec_187',\n", - " 'node2vec_188',\n", - " 'node2vec_189',\n", - " 'node2vec_190',\n", - " 'node2vec_191',\n", - " 'node2vec_192',\n", - " 'node2vec_193',\n", - " 'node2vec_194',\n", - " 'node2vec_195',\n", - " 'node2vec_196',\n", - " 'node2vec_197',\n", - " 'node2vec_198',\n", - " 'node2vec_199'],\n", - " 'family_history': [\"fh_alzheimer's_disease/dementia\",\n", - " 'fh_bowel_cancer',\n", - " 'fh_breast_cancer',\n", - " 'fh_chronic_bronchitis/emphysema',\n", - " 'fh_diabetes',\n", - " 'fh_heart_disease',\n", - " 'fh_high_blood_pressure',\n", - " 'fh_lung_cancer',\n", - " \"fh_parkinson's_disease\",\n", - " 'fh_severe_depression',\n", - " 'fh_stroke'],\n", - " 'labs': ['basophill_count',\n", - " 'basophill_percentage',\n", - " 'eosinophill_count',\n", - " 'eosinophill_percentage',\n", - " 'haematocrit_percentage',\n", - " 'haemoglobin_concentration',\n", - " 'high_light_scatter_reticulocyte_count',\n", - " 'high_light_scatter_reticulocyte_percentage',\n", - " 'immature_reticulocyte_fraction',\n", - " 'lymphocyte_count',\n", - " 'lymphocyte_percentage',\n", - " 'mean_corpuscular_haemoglobin',\n", - " 'mean_corpuscular_haemoglobin_concentration',\n", - " 'mean_corpuscular_volume',\n", - " 'mean_platelet_thrombocyte_volume',\n", - " 'mean_reticulocyte_volume',\n", - " 'mean_sphered_cell_volume',\n", - " 'monocyte_count',\n", - " 'monocyte_percentage',\n", - " 'neutrophill_count',\n", - " 'neutrophill_percentage',\n", - " 'nucleated_red_blood_cell_count',\n", - " 'nucleated_red_blood_cell_percentage',\n", - " 'platelet_count',\n", - " 'platelet_crit',\n", - " 'platelet_distribution_width',\n", - " 'red_blood_cell_erythrocyte_count',\n", - " 'red_blood_cell_erythrocyte_distribution_width',\n", - " 'reticulocyte_count',\n", - " 'reticulocyte_percentage',\n", - " 'white_blood_cell_leukocyte_count',\n", - " 'alanine_aminotransferase',\n", - " 'albumin',\n", - " 'alkaline_phosphatase',\n", - " 'apolipoprotein_a',\n", - " 'apolipoprotein_b',\n", - " 'aspartate_aminotransferase',\n", - " 'creactive_protein',\n", - " 'calcium',\n", - " 'cholesterol',\n", - " 'creatinine',\n", - " 'cystatin_c',\n", - " 'direct_bilirubin',\n", - " 'gamma_glutamyltransferase',\n", - " 'glucose',\n", - " 'glycated_haemoglobin_hba1c',\n", - " 'hdl_cholesterol',\n", - " 'igf1',\n", - " 'ldl_direct',\n", - " 'lipoprotein_a',\n", - " 'oestradiol',\n", - " 'phosphate',\n", - " 'rheumatoid_factor',\n", - " 'shbg',\n", - " 'testosterone',\n", - " 'total_bilirubin',\n", - " 'total_protein',\n", - " 'triglycerides',\n", - " 'urate',\n", - " 'urea',\n", - " 'vitamin_d'],\n", - " 'measurements': ['body_mass_index_bmi',\n", - " 'weight',\n", - " 'pulse_wave_arterial_stiffness_index',\n", - " 'pulse_wave_reflection_index',\n", - " 'waist_circumference',\n", - " 'hip_circumference',\n", - " 'standing_height',\n", - " 'trunk_fat_percentage',\n", - " 'body_fat_percentage',\n", - " 'basal_metabolic_rate',\n", - " 'forced_vital_capacity_fvc_best_measure',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure',\n", - " 'fev1_fvc_ratio_zscore',\n", - " 'peak_expiratory_flow_pef_f3064_0_2',\n", - " 'peak_expiratory_flow_pef_f3064_0_1',\n", - " 'peak_expiratory_flow_pef',\n", - " 'systolic_blood_pressure',\n", - " 'diastolic_blood_pressure',\n", - " 'pulse_rate'],\n", - " 'medications': ['stomatological_preparations',\n", - " 'drugs_for_acid_related_disorders',\n", - " 'drugs_for_functional_gastrointestinal_disorders',\n", - " 'antiemetics_and_antinauseants',\n", - " 'bile_and_liver_therapy',\n", - " 'drugs_for_constipation',\n", - " 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents',\n", - " 'antiobesity_preparations,_excl._diet_products',\n", - " 'digestives,_incl._enzymes',\n", - " 'drugs_used_in_diabetes',\n", - " 'vitamins',\n", - " 'mineral_supplements',\n", - " 'tonics',\n", - " 'anabolic_agents_for_systemic_use',\n", - " 'appetite_stimulants',\n", - " 'other_alimentary_tract_and_metabolism_products',\n", - " 'antithrombotic_agents',\n", - " 'antihemorrhagics',\n", - " 'antianemic_preparations',\n", - " 'blood_substitutes_and_perfusion_solutions',\n", - " 'other_hematological_agents',\n", - " 'cardiac_therapy',\n", - " 'antihypertensives',\n", - " 'diuretics',\n", - " 'peripheral_vasodilators',\n", - " 'vasoprotectives',\n", - " 'beta_blocking_agents',\n", - " 'calcium_channel_blockers',\n", - " 'agents_acting_on_the_renin-angiotensin_system',\n", - " 'lipid_modifying_agents',\n", - " 'antifungals_for_dermatological_use',\n", - " 'emollients_and_protectives',\n", - " 'preparations_for_treatment_of_wounds_and_ulcers',\n", - " 'antipruritics,_incl._antihistamines,_anesthetics,_etc.',\n", - " 'antipsoriatics',\n", - " 'antibiotics_and_chemotherapeutics_for_dermatological_use',\n", - " 'corticosteroids,_dermatological_preparations',\n", - " 'antiseptics_and_disinfectants',\n", - " 'medicated_dressings',\n", - " 'anti-acne_preparations',\n", - " 'other_dermatological_preparations',\n", - " 'gynecological_antiinfectives_and_antiseptics',\n", - " 'other_gynecologicals',\n", - " 'sex_hormones_and_modulators_of_the_genital_system',\n", - " 'urologicals',\n", - " 'pituitary_and_hypothalamic_hormones_and_analogues',\n", - " 'corticosteroids_for_systemic_use',\n", - " 'thyroid_therapy',\n", - " 'pancreatic_hormones',\n", - " 'calcium_homeostasis',\n", - " 'antibacterials_for_systemic_use',\n", - " 'antimycotics_for_systemic_use',\n", - " 'antimycobacterials',\n", - " 'antivirals_for_systemic_use',\n", - " 'immune_sera_and_immunoglobulins',\n", - " 'vaccines',\n", - " 'antineoplastic_agents',\n", - " 'endocrine_therapy',\n", - " 'immunostimulants',\n", - " 'immunosuppressants',\n", - " 'antiinflammatory_and_antirheumatic_products',\n", - " 'topical_products_for_joint_and_muscular_pain',\n", - " 'muscle_relaxants',\n", - " 'antigout_preparations',\n", - " 'drugs_for_treatment_of_bone_diseases',\n", - " 'other_drugs_for_disorders_of_the_musculo-skeletal_system',\n", - " 'anesthetics',\n", - " 'analgesics',\n", - " 'antiepileptics',\n", - " 'anti-parkinson_drugs',\n", - " 'psycholeptics',\n", - " 'psychoanaleptics',\n", - " 'other_nervous_system_drugs',\n", - " 'antiprotozoals',\n", - " 'anthelmintics',\n", - " 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents',\n", - " 'nasal_preparations',\n", - " 'throat_preparations',\n", - " 'drugs_for_obstructive_airway_diseases',\n", - " 'cough_and_cold_preparations',\n", - " 'antihistamines_for_systemic_use',\n", - " 'other_respiratory_system_products',\n", - " 'ophthalmologicals',\n", - " 'otologicals',\n", - " 'ophthalmological_and_otological_preparations',\n", - " 'allergens',\n", - " 'all_other_therapeutic_products',\n", - " 'diagnostic_agents',\n", - " 'general_nutrients',\n", - " 'all_other_non-therapeutic_products',\n", - " 'contrast_media',\n", - " 'diagnostic_radiopharmaceuticals',\n", - " 'therapeutic_radiopharmaceuticals',\n", - " 'surgical_dressings',\n", - " 'statins',\n", - " 'ass',\n", - " 'atypical_antipsychotics',\n", - " 'glucocorticoids'],\n", - " 'questionnaire': ['overall_health_rating_0.0',\n", - " 'overall_health_rating_1.0',\n", - " 'overall_health_rating_2.0',\n", - " 'overall_health_rating_3.0',\n", - " 'smoking_status_0.0',\n", - " 'smoking_status_1.0',\n", - " 'smoking_status_2.0',\n", - " 'alcohol_intake_frequency_0.0',\n", - " 'alcohol_intake_frequency_1.0',\n", - " 'alcohol_intake_frequency_2.0',\n", - " 'alcohol_intake_frequency_3.0',\n", - " 'alcohol_intake_frequency_4.0',\n", - " 'alcohol_intake_frequency_5.0',\n", - " 'overall_health_rating',\n", - " 'smoking_status',\n", - " 'alcohol_intake_frequency']}\n" - ] - } - ], - "source": [ - "isTarget=False\n", - "feature_dict = {}\n", - "for group in list(data.var[data.var.isTarget==isTarget].based_on.unique()):\n", - " group_features = [x for x in list(data.var[(data.var.isTarget==isTarget) & (data.var.based_on == group)].index) if \"_scaled\" not in x]\n", - " feature_dict[group] = group_features\n", - "pprint(feature_dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
dtypeisTargetbased_onaggr_fnrecodingNewLevels
PGS000011numericFalsePGSNaN{}
PGS000013numericFalsePGSNaN{}
PGS000016numericFalsePGSNaN{}
PGS000018numericFalsePGSNaN{}
PGS000039numericFalsePGSNaN{}
.....................
score_SCOREnumericTruenanNaN{}
score_ASCVDnumericTruenanNaN{}
score_QRISK3numericTruenanNaN{}
score_COX_MACE_clinicalnumericTruenanNaN{}
score_COX_MACE_clinical_with_pgsnumericTruenanNaN{}
\n", - "

4073 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - " dtype isTarget based_on aggr_fn \\\n", - "PGS000011 numeric False PGS NaN \n", - "PGS000013 numeric False PGS NaN \n", - "PGS000016 numeric False PGS NaN \n", - "PGS000018 numeric False PGS NaN \n", - "PGS000039 numeric False PGS NaN \n", - "... ... ... ... ... \n", - "score_SCORE numeric True nan NaN \n", - "score_ASCVD numeric True nan NaN \n", - "score_QRISK3 numeric True nan NaN \n", - "score_COX_MACE_clinical numeric True nan NaN \n", - "score_COX_MACE_clinical_with_pgs numeric True nan NaN \n", - "\n", - " recoding NewLevels \n", - "PGS000011 {} \n", - "PGS000013 {} \n", - "PGS000016 {} \n", - "PGS000018 {} \n", - "PGS000039 {} \n", - "... ... ... \n", - "score_SCORE {} \n", - "score_ASCVD {} \n", - "score_QRISK3 {} \n", - "score_COX_MACE_clinical {} \n", - "score_COX_MACE_clinical_with_pgs {} \n", - "\n", - "[4073 rows x 6 columns]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.var" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "test = [\n", - " 'age_at_recruitment', 'standing_height', 'townsend_deprivation_index_at_recruitment',\n", - " 'diastolic_blood_pressure_automated_reading', 'systolic_blood_pressure_automated_reading',\n", - " 'body_mass_index_bmi','weight', 'cholesterol', 'hdl_cholesterol', 'ldl_direct', 'triglycerides',\n", - " 'overall_health_rating_0.0', 'overall_health_rating_1.0', 'overall_health_rating_2.0',\n", - " 'overall_health_rating_3.0', 'smoking_status_0.0', 'smoking_status_1.0', 'smoking_status_2.0',\n", - " 'ethnic_background_0.0', 'ethnic_background_1.0', 'ethnic_background_2.0', 'ethnic_background_3.0',\n", - " 'ethnic_background_4.0', 'sex', 'coronary_heart_disease', 'myocardial_infarction', 'stroke',\n", - " 'diabetes1', 'diabetes2', 'chronic_kidney_disease', 'atrial_fibrillation', 'migraine',\n", - " 'rheumatoid_arthritis', 'systemic_lupus_erythematosus', 'severe_mental_illness', 'erectile_dysfunction',\n", - " 'antihypertensives', 'statins', 'ass', 'atypical_antipsychotics', 'glucocorticoids']" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "41" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(test)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'diagnoses': ['hypoglycemic_event_due_to_diabetes'],\n", - " 'endpoints_death': ['death_allcause_event',\n", - " 'death_allcause_event_time',\n", - " 'death_cvd_event',\n", - " 'death_cvd_event_time'],\n", - " 'endpoints_hospital': ['myocardial_infarction_event',\n", - " 'myocardial_infarction_event_time',\n", - " 'stroke_event',\n", - " 'stroke_event_time',\n", - " 'cancer_breast_event',\n", - " 'cancer_breast_event_time',\n", - " 'diabetes_event',\n", - " 'diabetes_event_time',\n", - " 'atrial_fibrillation_event',\n", - " 'atrial_fibrillation_event_time',\n", - " 'copd_event',\n", - " 'copd_event_time',\n", - " 'dementia_event',\n", - " 'dementia_event_time'],\n", - " 'nan': ['score_SCORE',\n", - " 'score_ASCVD',\n", - " 'score_QRISK3',\n", - " 'score_COX_MACE_clinical',\n", - " 'score_COX_MACE_clinical_with_pgs'],\n", - " 'score_ASCVD': ['ASCVD_event', 'ASCVD_event_time'],\n", - " 'score_MACE': ['MACE_event', 'MACE_event_time'],\n", - " 'score_QRISK3': ['QRISK3_event', 'QRISK3_event_time'],\n", - " 'score_SCORE': ['SCORE_event', 'SCORE_event_time']}\n" - ] - } - ], - "source": [ - "isTarget=True\n", - "feature_dict = {}\n", - "for group in list(data.var[data.var.isTarget==isTarget].based_on.unique()):\n", - " group_features = [x for x in list(data.var[(data.var.isTarget==isTarget) & (data.var.based_on == group)].index) if \"_scaled\" not in x]\n", - " feature_dict[group] = group_features\n", - "pprint(feature_dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "output_categorical=False" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - " if output_categorical:\n", - " basics = [\n", - " 'age_at_recruitment',\n", - " 'ethnic_background',\n", - " 'sex'\n", - " ]\n", - " questionnaire = [\n", - " 'overall_health_rating',\n", - " 'smoking_status',\n", - " 'alcohol_intake_frequency']\n", - " else:\n", - " basics = [\n", - " 'age_at_recruitment',\n", - " 'ethnic_background_0.0',\n", - " 'ethnic_background_1.0',\n", - " 'ethnic_background_2.0',\n", - " 'ethnic_background_3.0',\n", - " 'ethnic_background_4.0',\n", - " 'sex'\n", - " ]\n", - " questionnaire = [\n", - " 'overall_health_rating_0.0',\n", - " 'overall_health_rating_1.0',\n", - " 'overall_health_rating_2.0',\n", - " 'overall_health_rating_3.0',\n", - " 'smoking_status_0.0',\n", - " 'smoking_status_1.0',\n", - " 'smoking_status_2.0',\n", - " 'alcohol_intake_frequency_0.0',\n", - " 'alcohol_intake_frequency_1.0',\n", - " 'alcohol_intake_frequency_2.0',\n", - " 'alcohol_intake_frequency_3.0',\n", - " 'alcohol_intake_frequency_4.0',\n", - " 'alcohol_intake_frequency_5.0'\n", - " ]\n", - " measurements = [\n", - " 'body_mass_index_bmi',\n", - " 'weight',\n", - " 'pulse_wave_arterial_stiffness_index',\n", - " 'pulse_wave_reflection_index',\n", - " 'waist_circumference',\n", - " 'hip_circumference',\n", - " 'trunk_fat_percentage',\n", - " 'body_fat_percentage',\n", - " 'basal_metabolic_rate',\n", - " 'forced_vital_capacity_fvc_best_measure',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure',\n", - " 'fev1_fvc_ratio_zscore',\n", - " 'peak_expiratory_flow_pef_f3064_0_2',\n", - " 'peak_expiratory_flow_pef_f3064_0_1',\n", - " 'peak_expiratory_flow_pef',\n", - " 'systolic_blood_pressure',\n", - " 'diastolic_blood_pressure',\n", - " 'pulse_rate'\n", - " ]\n", - " labs = [\n", - " 'basophill_count',\n", - " 'basophill_percentage',\n", - " 'eosinophill_count',\n", - " 'eosinophill_percentage',\n", - " 'haematocrit_percentage',\n", - " 'haemoglobin_concentration',\n", - " 'high_light_scatter_reticulocyte_count',\n", - " 'high_light_scatter_reticulocyte_percentage',\n", - " 'immature_reticulocyte_fraction',\n", - " 'lymphocyte_count',\n", - " 'lymphocyte_percentage',\n", - " 'mean_corpuscular_haemoglobin',\n", - " 'mean_corpuscular_haemoglobin_concentration',\n", - " 'mean_corpuscular_volume',\n", - " 'mean_platelet_thrombocyte_volume',\n", - " 'mean_reticulocyte_volume',\n", - " 'mean_sphered_cell_volume',\n", - " 'monocyte_count',\n", - " 'monocyte_percentage',\n", - " 'neutrophill_count',\n", - " 'neutrophill_percentage',\n", - " 'nucleated_red_blood_cell_count',\n", - " 'nucleated_red_blood_cell_percentage',\n", - " 'platelet_count',\n", - " 'platelet_crit',\n", - " 'platelet_distribution_width',\n", - " 'red_blood_cell_erythrocyte_count',\n", - " 'red_blood_cell_erythrocyte_distribution_width',\n", - " 'reticulocyte_count',\n", - " 'reticulocyte_percentage',\n", - " 'white_blood_cell_leukocyte_count',\n", - " 'alanine_aminotransferase',\n", - " 'albumin',\n", - " 'alkaline_phosphatase',\n", - " 'apolipoprotein_a',\n", - " 'apolipoprotein_b',\n", - " 'aspartate_aminotransferase',\n", - " 'creactive_protein',\n", - " 'calcium',\n", - " 'cholesterol',\n", - " 'creatinine',\n", - " 'cystatin_c',\n", - " 'direct_bilirubin',\n", - " 'gamma_glutamyltransferase',\n", - " 'glucose',\n", - " 'glycated_haemoglobin_hba1c',\n", - " 'hdl_cholesterol',\n", - " 'igf1',\n", - " 'ldl_direct',\n", - " 'lipoprotein_a',\n", - " 'oestradiol',\n", - " 'phosphate',\n", - " 'rheumatoid_factor',\n", - " 'shbg',\n", - " 'testosterone',\n", - " 'total_bilirubin',\n", - " 'total_protein',\n", - " 'triglycerides',\n", - " 'urate',\n", - " 'urea',\n", - " 'vitamin_d'\n", - " ]\n", - " family_history = [\n", - " \"fh_alzheimer's_disease/dementia\",\n", - " 'fh_bowel_cancer',\n", - " 'fh_breast_cancer',\n", - " 'fh_chronic_bronchitis/emphysema',\n", - " 'fh_diabetes',\n", - " 'fh_heart_disease',\n", - " 'fh_high_blood_pressure',\n", - " 'fh_lung_cancer',\n", - " \"fh_parkinson's_disease\",\n", - " 'fh_severe_depression',\n", - " 'fh_stroke'\n", - " ]\n", - " diagnoses = [\n", - " 'intestinal_infection',\n", - " 'bacterial_infection',\n", - " 'arthropathies',\n", - " 'viral_infection',\n", - " 'infections_specific_to_the_perinatal_period',\n", - " 'acute_upper_respiratory_infections',\n", - " 'mycoses',\n", - " \"kaposi's_sarcoma\",\n", - " 'malaise_and_fatigue',\n", - " 'malignant_neoplasm_of_skin',\n", - " 'benign_neoplasm_of_respiratory_and_intrathoracic_organs',\n", - " 'benign_neoplasm_of_skin',\n", - " 'nonmalignant_breast_conditions',\n", - " 'anemias',\n", - " 'other_endocrine_disorders',\n", - " 'diabetes',\n", - " 'disorders_of_mineral_metabolism',\n", - " 'obesity',\n", - " 'respiratory_abnormalities',\n", - " 'disorders_of_lipoid_metabolism',\n", - " 'nonspecific_findings_on_examination_of_blood',\n", - " 'sleep_disorders',\n", - " 'male_genital_disorders',\n", - " 'cerebrovascular_disease',\n", - " 'cataract',\n", - " 'blindness_and_low_vision',\n", - " 'disorders_of_external_ear',\n", - " 'heart_valve_disorders',\n", - " 'ischemic_heart_disease',\n", - " 'cardiac_conduction_disorders',\n", - " 'heart_failure',\n", - " 'noninfectious_disorders_of_lymphatic_channels',\n", - " 'other_symptoms_of_respiratory_system',\n", - " 'disorders_of_stomach',\n", - " 'abdominal_pain',\n", - " 'abdominal_hernia',\n", - " 'liver_disease',\n", - " 'biliary_tract_disease',\n", - " 'bariatric_surgery',\n", - " 'complications',\n", - " 'other_hypertrophic_and_atrophic_conditions_of_skin',\n", - " 'symptoms_affecting_skin',\n", - " 'chronic_ulcer_of_skin',\n", - " 'gout',\n", - " 'osteoarthritis',\n", - " 'acquired_deformities',\n", - " 'pain_in_joint',\n", - " 'back_pain',\n", - " 'myalgia_and_myositis_unspecified',\n", - " 'symptoms_involving_nervous_and_musculoskeletal_systems',\n", - " 'pain_in_limb',\n", - " 'musculoskeletal_symptoms_referable_to_limbs',\n", - " 'congenital_musculoskeletal_anomalies',\n", - " 'other_symptoms/disorders_or_the_urinary_system',\n", - " 'urinary_calculus',\n", - " 'symptoms_involving_female_genital_tract',\n", - " 'other_nonmalignant_breast_conditions',\n", - " 'complications_of_the_puerperium',\n", - " 'complications_of_pregnancy',\n", - " 'postoperative_infection',\n", - " 'other_complications_of_pregnancy_nec',\n", - " 'excessive_vomiting_in_pregnancy',\n", - " 'infectious_and_parasitic_complications_affecting_pregnancy',\n", - " 'multiple_gestation',\n", - " 'late_pregnancy_and_failed_induction',\n", - " 'normal_delivery',\n", - " 'anemia_during_pregnancy',\n", - " 'maternal_complication_of_pregnancy_affecting_fetus_or_newborn',\n", - " 'gangrene',\n", - " 'abnormal_sputum',\n", - " 'symptoms_involving_head_and_neck',\n", - " 'nonspecific_chest_pain',\n", - " 'nausea_and_vomiting',\n", - " 'nonspecific_findings_on_examination_of_urine',\n", - " 'fever',\n", - " 'pain',\n", - " 'syncope_and_collapse',\n", - " 'shock',\n", - " 'hypothermia/chills',\n", - " 'abnormal_findings_examination_of_lungs',\n", - " 'contusion',\n", - " 'open_wound',\n", - " 'bone_marrow_or_stem_cell_transplant']\n", - " medications=[\n", - " 'stomatological_preparations',\n", - " 'drugs_for_acid_related_disorders',\n", - " 'drugs_for_functional_gastrointestinal_disorders',\n", - " 'antiemetics_and_antinauseants',\n", - " 'bile_and_liver_therapy',\n", - " 'drugs_for_constipation',\n", - " 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents',\n", - " 'antiobesity_preparations,_excl._diet_products',\n", - " 'digestives,_incl._enzymes',\n", - " 'drugs_used_in_diabetes',\n", - " 'vitamins',\n", - " 'mineral_supplements',\n", - " 'tonics',\n", - " 'anabolic_agents_for_systemic_use',\n", - " 'appetite_stimulants',\n", - " 'other_alimentary_tract_and_metabolism_products',\n", - " 'antithrombotic_agents',\n", - " 'antihemorrhagics',\n", - " 'antianemic_preparations',\n", - " 'blood_substitutes_and_perfusion_solutions',\n", - " 'other_hematological_agents',\n", - " 'cardiac_therapy',\n", - " 'antihypertensives',\n", - " 'diuretics',\n", - " 'peripheral_vasodilators',\n", - " 'vasoprotectives',\n", - " 'beta_blocking_agents',\n", - " 'calcium_channel_blockers',\n", - " 'agents_acting_on_the_renin-angiotensin_system',\n", - " 'lipid_modifying_agents',\n", - " 'antifungals_for_dermatological_use',\n", - " 'emollients_and_protectives',\n", - " 'preparations_for_treatment_of_wounds_and_ulcers',\n", - " 'antipruritics,_incl._antihistamines,_anesthetics,_etc.',\n", - " 'antipsoriatics',\n", - " 'antibiotics_and_chemotherapeutics_for_dermatological_use',\n", - " 'corticosteroids,_dermatological_preparations',\n", - " 'antiseptics_and_disinfectants',\n", - " 'medicated_dressings',\n", - " 'anti-acne_preparations',\n", - " 'other_dermatological_preparations',\n", - " 'gynecological_antiinfectives_and_antiseptics',\n", - " 'other_gynecologicals',\n", - " 'sex_hormones_and_modulators_of_the_genital_system',\n", - " 'urologicals',\n", - " 'pituitary_and_hypothalamic_hormones_and_analogues',\n", - " 'corticosteroids_for_systemic_use',\n", - " 'thyroid_therapy',\n", - " 'pancreatic_hormones',\n", - " 'calcium_homeostasis',\n", - " 'antibacterials_for_systemic_use',\n", - " 'antimycotics_for_systemic_use',\n", - " 'antimycobacterials',\n", - " 'antivirals_for_systemic_use',\n", - " 'immune_sera_and_immunoglobulins',\n", - " 'vaccines',\n", - " 'antineoplastic_agents',\n", - " 'endocrine_therapy',\n", - " 'immunostimulants',\n", - " 'immunosuppressants',\n", - " 'antiinflammatory_and_antirheumatic_products',\n", - " 'topical_products_for_joint_and_muscular_pain',\n", - " 'muscle_relaxants',\n", - " 'antigout_preparations',\n", - " 'drugs_for_treatment_of_bone_diseases',\n", - " 'other_drugs_for_disorders_of_the_musculo-skeletal_system',\n", - " 'anesthetics',\n", - " 'analgesics',\n", - " 'antiepileptics',\n", - " 'anti-parkinson_drugs',\n", - " 'psycholeptics',\n", - " 'psychoanaleptics',\n", - " 'other_nervous_system_drugs',\n", - " 'antiprotozoals',\n", - " 'anthelmintics',\n", - " 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents',\n", - " 'nasal_preparations',\n", - " 'throat_preparations',\n", - " 'drugs_for_obstructive_airway_diseases',\n", - " 'cough_and_cold_preparations',\n", - " 'antihistamines_for_systemic_use',\n", - " 'other_respiratory_system_products',\n", - " 'ophthalmologicals',\n", - " 'otologicals',\n", - " 'ophthalmological_and_otological_preparations',\n", - " 'allergens',\n", - " 'all_other_therapeutic_products',\n", - " 'diagnostic_agents',\n", - " 'general_nutrients',\n", - " 'all_other_non-therapeutic_products',\n", - " 'contrast_media',\n", - " 'diagnostic_radiopharmaceuticals',\n", - " 'therapeutic_radiopharmaceuticals',\n", - " 'surgical_dressings'\n", - " ]\n", - "\n", - " pgs = [\n", - " 'PGS000011',\n", - " 'PGS000013',\n", - " 'PGS000016',\n", - " 'PGS000018',\n", - " 'PGS000039',\n", - " 'PGS000057',\n", - " 'PGS000058',\n", - " 'PGS000059',\n", - " 'PGS000116',\n", - " 'PGS000117',\n", - " 'PGS000192',\n", - " 'PGS000296']\n", - " \n", - " feature_dict = {\n", - " \"pgs\": pgs,\n", - " \"basics\": basics,\n", - " \"questionnaire\": questionnaire ,\n", - " \"measurements\": measurements,\n", - " \"labs\": labs,\n", - " \"family_history\": family_history,\n", - " \"medications\": medications,\n", - " \"diagnoses\": diagnoses,\n", - " }\n", - "\n", - " #features = self.pgs + self.features" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "features = [f for group_list in feature_dict.values() for f in group_list]" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.3990433 , 0.4383982 , 0.85513496, ..., nan, nan,\n", - " nan], dtype=float32)" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.X[1, :]" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 319108 × 4073\n", - " obs: 'eid'\n", - " var: 'dtype', 'isTarget', 'based_on', 'aggr_fn', 'recoding', 'NewLevels'" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PGS000011\n", - "PGS000013\n", - "PGS000016\n", - "PGS000018\n", - "PGS000039\n", - "PGS000057\n", - "PGS000058\n", - "PGS000059\n", - "PGS000116\n", - "PGS000117\n", - "PGS000192\n", - "PGS000296\n", - "age_at_recruitment\n", - "ethnic_background_0.0\n", - "ethnic_background_1.0\n", - "ethnic_background_2.0\n", - "ethnic_background_3.0\n", - "ethnic_background_4.0\n", - "sex\n", - "overall_health_rating_0.0\n", - "overall_health_rating_1.0\n", - "overall_health_rating_2.0\n", - "overall_health_rating_3.0\n", - "smoking_status_0.0\n", - "smoking_status_1.0\n", - "smoking_status_2.0\n", - "alcohol_intake_frequency_0.0\n", - "alcohol_intake_frequency_1.0\n", - "alcohol_intake_frequency_2.0\n", - "alcohol_intake_frequency_3.0\n", - "alcohol_intake_frequency_4.0\n", - "alcohol_intake_frequency_5.0\n", - "body_mass_index_bmi\n", - "weight\n", - "pulse_wave_arterial_stiffness_index\n", - "pulse_wave_reflection_index\n", - "waist_circumference\n", - "hip_circumference\n", - "trunk_fat_percentage\n", - "body_fat_percentage\n", - "basal_metabolic_rate\n", - "forced_vital_capacity_fvc_best_measure\n", - "forced_expiratory_volume_in_1second_fev1_best_measure\n", - "fev1_fvc_ratio_zscore\n", - "peak_expiratory_flow_pef_f3064_0_2\n", - "peak_expiratory_flow_pef_f3064_0_1\n", - "peak_expiratory_flow_pef\n", - "systolic_blood_pressure\n", - "diastolic_blood_pressure\n", - "pulse_rate\n", - "basophill_count\n", - "basophill_percentage\n", - "eosinophill_count\n", - "eosinophill_percentage\n", - "haematocrit_percentage\n", - "haemoglobin_concentration\n", - "high_light_scatter_reticulocyte_count\n", - "high_light_scatter_reticulocyte_percentage\n", - "immature_reticulocyte_fraction\n", - "lymphocyte_count\n", - "lymphocyte_percentage\n", - "mean_corpuscular_haemoglobin\n", - "mean_corpuscular_haemoglobin_concentration\n", - "mean_corpuscular_volume\n", - "mean_platelet_thrombocyte_volume\n", - "mean_reticulocyte_volume\n", - "mean_sphered_cell_volume\n", - "monocyte_count\n", - "monocyte_percentage\n", - "neutrophill_count\n", - "neutrophill_percentage\n", - "nucleated_red_blood_cell_count\n", - "nucleated_red_blood_cell_percentage\n", - "platelet_count\n", - "platelet_crit\n", - "platelet_distribution_width\n", - "red_blood_cell_erythrocyte_count\n", - "red_blood_cell_erythrocyte_distribution_width\n", - "reticulocyte_count\n", - "reticulocyte_percentage\n", - "white_blood_cell_leukocyte_count\n", - "alanine_aminotransferase\n", - "albumin\n", - "alkaline_phosphatase\n", - "apolipoprotein_a\n", - "apolipoprotein_b\n", - "aspartate_aminotransferase\n", - "creactive_protein\n", - "calcium\n", - "cholesterol\n", - "creatinine\n", - "cystatin_c\n", - "direct_bilirubin\n", - "gamma_glutamyltransferase\n", - "glucose\n", - "glycated_haemoglobin_hba1c\n", - "hdl_cholesterol\n", - "igf1\n", - "ldl_direct\n", - "lipoprotein_a\n", - "oestradiol\n", - "phosphate\n", - "rheumatoid_factor\n", - "shbg\n", - "testosterone\n", - "total_bilirubin\n", - "total_protein\n", - "triglycerides\n", - "urate\n", - "urea\n", - "vitamin_d\n", - "fh_alzheimer's_disease/dementia\n", - "fh_bowel_cancer\n", - "fh_breast_cancer\n", - "fh_chronic_bronchitis/emphysema\n", - "fh_diabetes\n", - "fh_heart_disease\n", - "fh_high_blood_pressure\n", - "fh_lung_cancer\n", - "fh_parkinson's_disease\n", - "fh_severe_depression\n", - "fh_stroke\n", - "stomatological_preparations\n", - "drugs_for_acid_related_disorders\n", - "drugs_for_functional_gastrointestinal_disorders\n", - "antiemetics_and_antinauseants\n", - "bile_and_liver_therapy\n", - "drugs_for_constipation\n", - "antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents\n", - "antiobesity_preparations,_excl._diet_products\n", - "digestives,_incl._enzymes\n", - "drugs_used_in_diabetes\n", - "vitamins\n", - "mineral_supplements\n", - "tonics\n", - "anabolic_agents_for_systemic_use\n", - "appetite_stimulants\n", - "other_alimentary_tract_and_metabolism_products\n", - "antithrombotic_agents\n", - "antihemorrhagics\n", - "antianemic_preparations\n", - "blood_substitutes_and_perfusion_solutions\n", - "other_hematological_agents\n", - "cardiac_therapy\n", - "antihypertensives\n", - "diuretics\n", - "peripheral_vasodilators\n", - "vasoprotectives\n", - "beta_blocking_agents\n", - "calcium_channel_blockers\n", - "agents_acting_on_the_renin-angiotensin_system\n", - "lipid_modifying_agents\n", - "antifungals_for_dermatological_use\n", - "emollients_and_protectives\n", - "preparations_for_treatment_of_wounds_and_ulcers\n", - "antipruritics,_incl._antihistamines,_anesthetics,_etc.\n", - "antipsoriatics\n", - "antibiotics_and_chemotherapeutics_for_dermatological_use\n", - "corticosteroids,_dermatological_preparations\n", - "antiseptics_and_disinfectants\n", - "medicated_dressings\n", - "anti-acne_preparations\n", - "other_dermatological_preparations\n", - "gynecological_antiinfectives_and_antiseptics\n", - "other_gynecologicals\n", - "sex_hormones_and_modulators_of_the_genital_system\n", - "urologicals\n", - "pituitary_and_hypothalamic_hormones_and_analogues\n", - "corticosteroids_for_systemic_use\n", - "thyroid_therapy\n", - "pancreatic_hormones\n", - "calcium_homeostasis\n", - "antibacterials_for_systemic_use\n", - "antimycotics_for_systemic_use\n", - "antimycobacterials\n", - "antivirals_for_systemic_use\n", - "immune_sera_and_immunoglobulins\n", - "vaccines\n", - "antineoplastic_agents\n", - "endocrine_therapy\n", - "immunostimulants\n", - "immunosuppressants\n", - "antiinflammatory_and_antirheumatic_products\n", - "topical_products_for_joint_and_muscular_pain\n", - "muscle_relaxants\n", - "antigout_preparations\n", - "drugs_for_treatment_of_bone_diseases\n", - "other_drugs_for_disorders_of_the_musculo-skeletal_system\n", - "anesthetics\n", - "analgesics\n", - "antiepileptics\n", - "anti-parkinson_drugs\n", - "psycholeptics\n", - "psychoanaleptics\n", - "other_nervous_system_drugs\n", - "antiprotozoals\n", - "anthelmintics\n", - "ectoparasiticides,_incl._scabicides,_insecticides_and_repellents\n", - "nasal_preparations\n", - "throat_preparations\n", - "drugs_for_obstructive_airway_diseases\n", - "cough_and_cold_preparations\n", - "antihistamines_for_systemic_use\n", - "other_respiratory_system_products\n", - "ophthalmologicals\n", - "otologicals\n", - "ophthalmological_and_otological_preparations\n", - "allergens\n", - "all_other_therapeutic_products\n", - "diagnostic_agents\n", - "general_nutrients\n", - "all_other_non-therapeutic_products\n", - "contrast_media\n", - "diagnostic_radiopharmaceuticals\n", - "therapeutic_radiopharmaceuticals\n", - "surgical_dressings\n", - "intestinal_infection\n", - "bacterial_infection\n", - "arthropathies\n", - "viral_infection\n", - "infections_specific_to_the_perinatal_period\n", - "acute_upper_respiratory_infections\n", - "mycoses\n", - "kaposi's_sarcoma\n", - "malaise_and_fatigue\n", - "malignant_neoplasm_of_skin\n", - "benign_neoplasm_of_respiratory_and_intrathoracic_organs\n", - "benign_neoplasm_of_skin\n", - "nonmalignant_breast_conditions\n", - "anemias\n", - "other_endocrine_disorders\n", - "diabetes\n", - "disorders_of_mineral_metabolism\n", - "obesity\n", - "respiratory_abnormalities\n", - "disorders_of_lipoid_metabolism\n", - "nonspecific_findings_on_examination_of_blood\n", - "sleep_disorders\n", - "male_genital_disorders\n", - "cerebrovascular_disease\n", - "cataract\n", - "blindness_and_low_vision\n", - "disorders_of_external_ear\n", - "heart_valve_disorders\n", - "ischemic_heart_disease\n", - "cardiac_conduction_disorders\n", - "heart_failure\n", - "noninfectious_disorders_of_lymphatic_channels\n", - "other_symptoms_of_respiratory_system\n", - "disorders_of_stomach\n", - "abdominal_pain\n", - "abdominal_hernia\n", - "liver_disease\n", - "biliary_tract_disease\n", - "bariatric_surgery\n", - "complications\n", - "other_hypertrophic_and_atrophic_conditions_of_skin\n", - "symptoms_affecting_skin\n", - "chronic_ulcer_of_skin\n", - "gout\n", - "osteoarthritis\n", - "acquired_deformities\n", - "pain_in_joint\n", - "back_pain\n", - "myalgia_and_myositis_unspecified\n", - "symptoms_involving_nervous_and_musculoskeletal_systems\n", - "pain_in_limb\n", - "musculoskeletal_symptoms_referable_to_limbs\n", - "congenital_musculoskeletal_anomalies\n", - "other_symptoms/disorders_or_the_urinary_system\n", - "urinary_calculus\n", - "symptoms_involving_female_genital_tract\n", - "other_nonmalignant_breast_conditions\n", - "complications_of_the_puerperium\n", - "complications_of_pregnancy\n", - "postoperative_infection\n", - "other_complications_of_pregnancy_nec\n", - "excessive_vomiting_in_pregnancy\n", - "infectious_and_parasitic_complications_affecting_pregnancy\n", - "multiple_gestation\n", - "late_pregnancy_and_failed_induction\n", - "normal_delivery\n", - "anemia_during_pregnancy\n", - "maternal_complication_of_pregnancy_affecting_fetus_or_newborn\n", - "gangrene\n", - "abnormal_sputum\n", - "symptoms_involving_head_and_neck\n", - "nonspecific_chest_pain\n", - "nausea_and_vomiting\n", - "nonspecific_findings_on_examination_of_urine\n", - "fever\n", - "pain\n", - "syncope_and_collapse\n", - "shock\n", - "hypothermia/chills\n", - "abnormal_findings_examination_of_lungs\n", - "contusion\n", - "open_wound\n", - "bone_marrow_or_stem_cell_transplant\n" - ] - } - ], - "source": [ - "for group, group_list in feature_dict.items():\n", - " for f in group_list:\n", - " print(f)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'pgs': ['PGS000011',\n", - " 'PGS000013',\n", - " 'PGS000016',\n", - " 'PGS000018',\n", - " 'PGS000039',\n", - " 'PGS000057',\n", - " 'PGS000058',\n", - " 'PGS000059',\n", - " 'PGS000116',\n", - " 'PGS000117',\n", - " 'PGS000192',\n", - " 'PGS000296'],\n", - " 'basics': ['age_at_recruitment',\n", - " 'ethnic_background_0.0',\n", - " 'ethnic_background_1.0',\n", - " 'ethnic_background_2.0',\n", - " 'ethnic_background_3.0',\n", - " 'ethnic_background_4.0',\n", - " 'sex'],\n", - " 'questionnaire': ['overall_health_rating_0.0',\n", - " 'overall_health_rating_1.0',\n", - " 'overall_health_rating_2.0',\n", - " 'overall_health_rating_3.0',\n", - " 'smoking_status_0.0',\n", - " 'smoking_status_1.0',\n", - " 'smoking_status_2.0',\n", - " 'alcohol_intake_frequency_0.0',\n", - " 'alcohol_intake_frequency_1.0',\n", - " 'alcohol_intake_frequency_2.0',\n", - " 'alcohol_intake_frequency_3.0',\n", - " 'alcohol_intake_frequency_4.0',\n", - " 'alcohol_intake_frequency_5.0'],\n", - " 'measurements': ['body_mass_index_bmi',\n", - " 'weight',\n", - " 'pulse_wave_arterial_stiffness_index',\n", - " 'pulse_wave_reflection_index',\n", - " 'waist_circumference',\n", - " 'hip_circumference',\n", - " 'trunk_fat_percentage',\n", - " 'body_fat_percentage',\n", - " 'basal_metabolic_rate',\n", - " 'forced_vital_capacity_fvc_best_measure',\n", - " 'forced_expiratory_volume_in_1second_fev1_best_measure',\n", - " 'fev1_fvc_ratio_zscore',\n", - " 'peak_expiratory_flow_pef_f3064_0_2',\n", - " 'peak_expiratory_flow_pef_f3064_0_1',\n", - " 'peak_expiratory_flow_pef',\n", - " 'systolic_blood_pressure',\n", - " 'diastolic_blood_pressure',\n", - " 'pulse_rate'],\n", - " 'labs': ['basophill_count',\n", - " 'basophill_percentage',\n", - " 'eosinophill_count',\n", - " 'eosinophill_percentage',\n", - " 'haematocrit_percentage',\n", - " 'haemoglobin_concentration',\n", - " 'high_light_scatter_reticulocyte_count',\n", - " 'high_light_scatter_reticulocyte_percentage',\n", - " 'immature_reticulocyte_fraction',\n", - " 'lymphocyte_count',\n", - " 'lymphocyte_percentage',\n", - " 'mean_corpuscular_haemoglobin',\n", - " 'mean_corpuscular_haemoglobin_concentration',\n", - " 'mean_corpuscular_volume',\n", - " 'mean_platelet_thrombocyte_volume',\n", - " 'mean_reticulocyte_volume',\n", - " 'mean_sphered_cell_volume',\n", - " 'monocyte_count',\n", - " 'monocyte_percentage',\n", - " 'neutrophill_count',\n", - " 'neutrophill_percentage',\n", - " 'nucleated_red_blood_cell_count',\n", - " 'nucleated_red_blood_cell_percentage',\n", - " 'platelet_count',\n", - " 'platelet_crit',\n", - " 'platelet_distribution_width',\n", - " 'red_blood_cell_erythrocyte_count',\n", - " 'red_blood_cell_erythrocyte_distribution_width',\n", - " 'reticulocyte_count',\n", - " 'reticulocyte_percentage',\n", - " 'white_blood_cell_leukocyte_count',\n", - " 'alanine_aminotransferase',\n", - " 'albumin',\n", - " 'alkaline_phosphatase',\n", - " 'apolipoprotein_a',\n", - " 'apolipoprotein_b',\n", - " 'aspartate_aminotransferase',\n", - " 'creactive_protein',\n", - " 'calcium',\n", - " 'cholesterol',\n", - " 'creatinine',\n", - " 'cystatin_c',\n", - " 'direct_bilirubin',\n", - " 'gamma_glutamyltransferase',\n", - " 'glucose',\n", - " 'glycated_haemoglobin_hba1c',\n", - " 'hdl_cholesterol',\n", - " 'igf1',\n", - " 'ldl_direct',\n", - " 'lipoprotein_a',\n", - " 'oestradiol',\n", - " 'phosphate',\n", - " 'rheumatoid_factor',\n", - " 'shbg',\n", - " 'testosterone',\n", - " 'total_bilirubin',\n", - " 'total_protein',\n", - " 'triglycerides',\n", - " 'urate',\n", - " 'urea',\n", - " 'vitamin_d'],\n", - " 'family_history': [\"fh_alzheimer's_disease/dementia\",\n", - " 'fh_bowel_cancer',\n", - " 'fh_breast_cancer',\n", - " 'fh_chronic_bronchitis/emphysema',\n", - " 'fh_diabetes',\n", - " 'fh_heart_disease',\n", - " 'fh_high_blood_pressure',\n", - " 'fh_lung_cancer',\n", - " \"fh_parkinson's_disease\",\n", - " 'fh_severe_depression',\n", - " 'fh_stroke'],\n", - " 'medications': ['stomatological_preparations',\n", - " 'drugs_for_acid_related_disorders',\n", - " 'drugs_for_functional_gastrointestinal_disorders',\n", - " 'antiemetics_and_antinauseants',\n", - " 'bile_and_liver_therapy',\n", - " 'drugs_for_constipation',\n", - " 'antidiarrheals,_intestinal_antiinflammatory/antiinfective_agents',\n", - " 'antiobesity_preparations,_excl._diet_products',\n", - " 'digestives,_incl._enzymes',\n", - " 'drugs_used_in_diabetes',\n", - " 'vitamins',\n", - " 'mineral_supplements',\n", - " 'tonics',\n", - " 'anabolic_agents_for_systemic_use',\n", - " 'appetite_stimulants',\n", - " 'other_alimentary_tract_and_metabolism_products',\n", - " 'antithrombotic_agents',\n", - " 'antihemorrhagics',\n", - " 'antianemic_preparations',\n", - " 'blood_substitutes_and_perfusion_solutions',\n", - " 'other_hematological_agents',\n", - " 'cardiac_therapy',\n", - " 'antihypertensives',\n", - " 'diuretics',\n", - " 'peripheral_vasodilators',\n", - " 'vasoprotectives',\n", - " 'beta_blocking_agents',\n", - " 'calcium_channel_blockers',\n", - " 'agents_acting_on_the_renin-angiotensin_system',\n", - " 'lipid_modifying_agents',\n", - " 'antifungals_for_dermatological_use',\n", - " 'emollients_and_protectives',\n", - " 'preparations_for_treatment_of_wounds_and_ulcers',\n", - " 'antipruritics,_incl._antihistamines,_anesthetics,_etc.',\n", - " 'antipsoriatics',\n", - " 'antibiotics_and_chemotherapeutics_for_dermatological_use',\n", - " 'corticosteroids,_dermatological_preparations',\n", - " 'antiseptics_and_disinfectants',\n", - " 'medicated_dressings',\n", - " 'anti-acne_preparations',\n", - " 'other_dermatological_preparations',\n", - " 'gynecological_antiinfectives_and_antiseptics',\n", - " 'other_gynecologicals',\n", - " 'sex_hormones_and_modulators_of_the_genital_system',\n", - " 'urologicals',\n", - " 'pituitary_and_hypothalamic_hormones_and_analogues',\n", - " 'corticosteroids_for_systemic_use',\n", - " 'thyroid_therapy',\n", - " 'pancreatic_hormones',\n", - " 'calcium_homeostasis',\n", - " 'antibacterials_for_systemic_use',\n", - " 'antimycotics_for_systemic_use',\n", - " 'antimycobacterials',\n", - " 'antivirals_for_systemic_use',\n", - " 'immune_sera_and_immunoglobulins',\n", - " 'vaccines',\n", - " 'antineoplastic_agents',\n", - " 'endocrine_therapy',\n", - " 'immunostimulants',\n", - " 'immunosuppressants',\n", - " 'antiinflammatory_and_antirheumatic_products',\n", - " 'topical_products_for_joint_and_muscular_pain',\n", - " 'muscle_relaxants',\n", - " 'antigout_preparations',\n", - " 'drugs_for_treatment_of_bone_diseases',\n", - " 'other_drugs_for_disorders_of_the_musculo-skeletal_system',\n", - " 'anesthetics',\n", - " 'analgesics',\n", - " 'antiepileptics',\n", - " 'anti-parkinson_drugs',\n", - " 'psycholeptics',\n", - " 'psychoanaleptics',\n", - " 'other_nervous_system_drugs',\n", - " 'antiprotozoals',\n", - " 'anthelmintics',\n", - " 'ectoparasiticides,_incl._scabicides,_insecticides_and_repellents',\n", - " 'nasal_preparations',\n", - " 'throat_preparations',\n", - " 'drugs_for_obstructive_airway_diseases',\n", - " 'cough_and_cold_preparations',\n", - " 'antihistamines_for_systemic_use',\n", - " 'other_respiratory_system_products',\n", - " 'ophthalmologicals',\n", - " 'otologicals',\n", - " 'ophthalmological_and_otological_preparations',\n", - " 'allergens',\n", - " 'all_other_therapeutic_products',\n", - " 'diagnostic_agents',\n", - " 'general_nutrients',\n", - " 'all_other_non-therapeutic_products',\n", - " 'contrast_media',\n", - " 'diagnostic_radiopharmaceuticals',\n", - " 'therapeutic_radiopharmaceuticals',\n", - " 'surgical_dressings'],\n", - " 'diagnoses': ['intestinal_infection',\n", - " 'bacterial_infection',\n", - " 'arthropathies',\n", - " 'viral_infection',\n", - " 'infections_specific_to_the_perinatal_period',\n", - " 'acute_upper_respiratory_infections',\n", - " 'mycoses',\n", - " \"kaposi's_sarcoma\",\n", - " 'malaise_and_fatigue',\n", - " 'malignant_neoplasm_of_skin',\n", - " 'benign_neoplasm_of_respiratory_and_intrathoracic_organs',\n", - " 'benign_neoplasm_of_skin',\n", - " 'nonmalignant_breast_conditions',\n", - " 'anemias',\n", - " 'other_endocrine_disorders',\n", - " 'diabetes',\n", - " 'disorders_of_mineral_metabolism',\n", - " 'obesity',\n", - " 'respiratory_abnormalities',\n", - " 'disorders_of_lipoid_metabolism',\n", - " 'nonspecific_findings_on_examination_of_blood',\n", - " 'sleep_disorders',\n", - " 'male_genital_disorders',\n", - " 'cerebrovascular_disease',\n", - " 'cataract',\n", - " 'blindness_and_low_vision',\n", - " 'disorders_of_external_ear',\n", - " 'heart_valve_disorders',\n", - " 'ischemic_heart_disease',\n", - " 'cardiac_conduction_disorders',\n", - " 'heart_failure',\n", - " 'noninfectious_disorders_of_lymphatic_channels',\n", - " 'other_symptoms_of_respiratory_system',\n", - " 'disorders_of_stomach',\n", - " 'abdominal_pain',\n", - " 'abdominal_hernia',\n", - " 'liver_disease',\n", - " 'biliary_tract_disease',\n", - " 'bariatric_surgery',\n", - " 'complications',\n", - " 'other_hypertrophic_and_atrophic_conditions_of_skin',\n", - " 'symptoms_affecting_skin',\n", - " 'chronic_ulcer_of_skin',\n", - " 'gout',\n", - " 'osteoarthritis',\n", - " 'acquired_deformities',\n", - " 'pain_in_joint',\n", - " 'back_pain',\n", - " 'myalgia_and_myositis_unspecified',\n", - " 'symptoms_involving_nervous_and_musculoskeletal_systems',\n", - " 'pain_in_limb',\n", - " 'musculoskeletal_symptoms_referable_to_limbs',\n", - " 'congenital_musculoskeletal_anomalies',\n", - " 'other_symptoms/disorders_or_the_urinary_system',\n", - " 'urinary_calculus',\n", - " 'symptoms_involving_female_genital_tract',\n", - " 'other_nonmalignant_breast_conditions',\n", - " 'complications_of_the_puerperium',\n", - " 'complications_of_pregnancy',\n", - " 'postoperative_infection',\n", - " 'other_complications_of_pregnancy_nec',\n", - " 'excessive_vomiting_in_pregnancy',\n", - " 'infectious_and_parasitic_complications_affecting_pregnancy',\n", - " 'multiple_gestation',\n", - " 'late_pregnancy_and_failed_induction',\n", - " 'normal_delivery',\n", - " 'anemia_during_pregnancy',\n", - " 'maternal_complication_of_pregnancy_affecting_fetus_or_newborn',\n", - " 'gangrene',\n", - " 'abnormal_sputum',\n", - " 'symptoms_involving_head_and_neck',\n", - " 'nonspecific_chest_pain',\n", - " 'nausea_and_vomiting',\n", - " 'nonspecific_findings_on_examination_of_urine',\n", - " 'fever',\n", - " 'pain',\n", - " 'syncope_and_collapse',\n", - " 'shock',\n", - " 'hypothermia/chills',\n", - " 'abnormal_findings_examination_of_lungs',\n", - " 'contusion',\n", - " 'open_wound',\n", - " 'bone_marrow_or_stem_cell_transplant']}" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "feature_dict" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['PGS000011', 'PGS000013', 'PGS000016', 'PGS000018', 'PGS000039',\n", - " 'PGS000057', 'PGS000058', 'PGS000059', 'PGS000116', 'PGS000117',\n", - " 'PGS000192', 'PGS000296', 'PGS000011_scaled', 'PGS000013_scaled',\n", - " 'PGS000016_scaled', 'PGS000018_scaled', 'PGS000039_scaled',\n", - " 'PGS000057_scaled', 'PGS000058_scaled', 'PGS000059_scaled',\n", - " 'PGS000116_scaled', 'PGS000117_scaled', 'PGS000192_scaled',\n", - " 'PGS000296_scaled'],\n", - " dtype='object')" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.var.index[data.var.based_on == \"PGS\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.var[data.var.isTarget==\"False\"].index.to_list()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "data = pd.read_feather(os.path.join(project_path, dataset_path, project_name, \"baseline.feather\"))\n", - "data_description = pd.read_feather(os.path.join(project_path, dataset_path, project_name, \"baseline_description.feather\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
covariatedtypeisTargetbased_onaggr_fn
0eidintegerFalseadminNaN
1PGS000011numericFalsePGSNaN
2PGS000013numericFalsePGSNaN
3PGS000016numericFalsePGSNaN
4PGS000018numericFalsePGSNaN
..................
307ASCVD_event_timenumericTruescore_ASCVDNaN
308QRISK3_eventintegerTruescore_QRISK3NaN
309QRISK3_event_timenumericTruescore_QRISK3NaN
310MACE_eventintegerTruescore_MACENaN
311MACE_event_timenumericTruescore_MACENaN
\n", - "

312 rows × 5 columns

\n", - "
" - ], - "text/plain": [ - " covariate dtype isTarget based_on aggr_fn\n", - "0 eid integer False admin NaN\n", - "1 PGS000011 numeric False PGS NaN\n", - "2 PGS000013 numeric False PGS NaN\n", - "3 PGS000016 numeric False PGS NaN\n", - "4 PGS000018 numeric False PGS NaN\n", - ".. ... ... ... ... ...\n", - "307 ASCVD_event_time numeric True score_ASCVD NaN\n", - "308 QRISK3_event integer True score_QRISK3 NaN\n", - "309 QRISK3_event_time numeric True score_QRISK3 NaN\n", - "310 MACE_event integer True score_MACE NaN\n", - "311 MACE_event_time numeric True score_MACE NaN\n", - "\n", - "[312 rows x 5 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "covariates = data_description[data_description.isTarget==\"False\"].covariate.to_list()[1:]\n", - "targets = data_description[data_description.isTarget==\"True\"].covariate.to_list()\n", - "data_description" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize missing values" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib as mpl\n", - "from matplotlib import gridspec\n", - "import matplotlib.pyplot as plt\n", - "from scipy.cluster import hierarchy\n", - "import seaborn as sns\n", - "import pandas as pd\n", - "import warnings\n", - "\n", - "def nullity_sort(df, sort=None, axis='columns'):\n", - " \"\"\"\n", - " Sorts a DataFrame according to its nullity, in either ascending or descending order.\n", - " :param df: The DataFrame object being sorted.\n", - " :param sort: The sorting method: either \"ascending\", \"descending\", or None (default).\n", - " :return: The nullity-sorted DataFrame.\n", - " \"\"\"\n", - " if sort is None:\n", - " return df\n", - " elif sort not in ['ascending', 'descending']:\n", - " raise ValueError('The \"sort\" parameter must be set to \"ascending\" or \"descending\".')\n", - "\n", - " if axis not in ['rows', 'columns']:\n", - " raise ValueError('The \"axis\" parameter must be set to \"rows\" or \"columns\".')\n", - "\n", - " if axis == 'columns':\n", - " if sort == 'ascending':\n", - " return df.iloc[np.argsort(df.count(axis='columns').values), :]\n", - " elif sort == 'descending':\n", - " return df.iloc[np.flipud(np.argsort(df.count(axis='columns').values)), :]\n", - " elif axis == 'rows':\n", - " if sort == 'ascending':\n", - " return df.iloc[:, np.argsort(df.count(axis='rows').values)]\n", - " elif sort == 'descending':\n", - " return df.iloc[:, np.flipud(np.argsort(df.count(axis='rows').values))]\n", - "\n", - "\n", - "def nullity_filter(df, filter=None, p=0, n=0):\n", - " \"\"\"\n", - " Filters a DataFrame according to its nullity, using some combination of 'top' and 'bottom' numerical and\n", - " percentage values. Percentages and numerical thresholds can be specified simultaneously: for example,\n", - " to get a DataFrame with columns of at least 75% completeness but with no more than 5 columns, use\n", - " `nullity_filter(df, filter='top', p=.75, n=5)`.\n", - " :param df: The DataFrame whose columns are being filtered.\n", - " :param filter: The orientation of the filter being applied to the DataFrame. One of, \"top\", \"bottom\",\n", - " or None (default). The filter will simply return the DataFrame if you leave the filter argument unspecified or\n", - " as None.\n", - " :param p: A completeness ratio cut-off. If non-zero the filter will limit the DataFrame to columns with at least p\n", - " completeness. Input should be in the range [0, 1].\n", - " :param n: A numerical cut-off. If non-zero no more than this number of columns will be returned.\n", - " :return: The nullity-filtered `DataFrame`.\n", - " \"\"\"\n", - " if filter == 'top':\n", - " if p:\n", - " df = df.iloc[:, [c >= p for c in df.count(axis='rows').values / len(df)]]\n", - " if n:\n", - " df = df.iloc[:, np.sort(np.argsort(df.count(axis='rows').values)[-n:])]\n", - " elif filter == 'bottom':\n", - " if p:\n", - " df = df.iloc[:, [c <= p for c in df.count(axis='rows').values / len(df)]]\n", - " if n:\n", - " df = df.iloc[:, np.sort(np.argsort(df.count(axis='rows').values)[:n])]\n", - " return df\n", - "\n", - "def matrix(df,\n", - " filter=None, n=0, p=0, sort=None,\n", - " figsize=(25, 10), width_ratios=(15, 1), color=(0.25, 0.25, 0.25),\n", - " fontsize=16, labels=None, sparkline=True, inline=False,\n", - " freq=None, ax=None):\n", - " \"\"\"\n", - " A matrix visualization of the nullity of the given DataFrame.\n", - " :param df: The `DataFrame` being mapped.\n", - " :param filter: The filter to apply to the heatmap. Should be one of \"top\", \"bottom\", or None (default).\n", - " :param n: The max number of columns to include in the filtered DataFrame.\n", - " :param p: The max percentage fill of the columns in the filtered DataFrame.\n", - " :param sort: The row sort order to apply. Can be \"ascending\", \"descending\", or None.\n", - " :param figsize: The size of the figure to display.\n", - " :param fontsize: The figure's font size. Default to 16.\n", - " :param labels: Whether or not to display the column names. Defaults to the underlying data labels when there are\n", - " 50 columns or less, and no labels when there are more than 50 columns.\n", - " :param sparkline: Whether or not to display the sparkline. Defaults to True.\n", - " :param width_ratios: The ratio of the width of the matrix to the width of the sparkline. Defaults to `(15, 1)`.\n", - " Does nothing if `sparkline=False`.\n", - " :param color: The color of the filled columns. Default is `(0.25, 0.25, 0.25)`.\n", - " :return: If `inline` is False, the underlying `matplotlib.figure` object. Else, nothing.\n", - " \"\"\"\n", - " df = nullity_filter(df, filter=filter, n=n, p=p)\n", - " df = nullity_sort(df, sort=sort, axis='columns')\n", - "\n", - " height = df.shape[0]\n", - " width = df.shape[1]\n", - "\n", - " # z is the color-mask array, g is a NxNx3 matrix. Apply the z color-mask to set the RGB of each pixel.\n", - " z = df.notnull().values\n", - " g = np.zeros((height, width, 3))\n", - "\n", - " g[z < 0.5] = [1, 1, 1]\n", - " g[z > 0.5] = color\n", - "\n", - " # Set up the matplotlib grid layout. A unary subplot if no sparkline, a left-right splot if yes sparkline.\n", - " if ax is None:\n", - " plt.figure(figsize=figsize)\n", - " if sparkline:\n", - " gs = gridspec.GridSpec(1, 2, width_ratios=width_ratios)\n", - " gs.update(wspace=0.08)\n", - " ax1 = plt.subplot(gs[1])\n", - " else:\n", - " gs = gridspec.GridSpec(1, 1)\n", - " ax0 = plt.subplot(gs[0])\n", - " else:\n", - " if sparkline is not False:\n", - " warnings.warn(\n", - " \"Plotting a sparkline on an existing axis is not currently supported. \"\n", - " \"To remove this warning, set sparkline=False.\"\n", - " )\n", - " sparkline = False\n", - " ax0 = ax\n", - "\n", - " # Create the nullity plot.\n", - " ax0.imshow(g, interpolation='none')\n", - "\n", - " # Remove extraneous default visual elements.\n", - " ax0.set_aspect('auto')\n", - " ax0.grid(b=False)\n", - " ax0.xaxis.tick_top()\n", - " ax0.xaxis.set_ticks_position('none')\n", - " ax0.yaxis.set_ticks_position('none')\n", - " ax0.spines['top'].set_visible(False)\n", - " ax0.spines['right'].set_visible(False)\n", - " ax0.spines['bottom'].set_visible(False)\n", - " ax0.spines['left'].set_visible(False)\n", - "\n", - " # Set up and rotate the column ticks. The labels argument is set to None by default. If the user specifies it in\n", - " # the argument, respect that specification. Otherwise display for <= 50 columns and do not display for > 50.\n", - " if labels or (labels is None and len(df.columns) <= 50):\n", - " ha = 'left'\n", - " ax0.set_xticks(list(range(0, width)))\n", - " ax0.set_xticklabels(list(df.columns), rotation=45, ha=ha, fontsize=fontsize)\n", - " else:\n", - " ax0.set_xticks([])\n", - "\n", - " # Adds Timestamps ticks if freq is not None, else set up the two top-bottom row ticks.\n", - " if freq:\n", - " ts_list = []\n", - "\n", - " if type(df.index) == pd.PeriodIndex:\n", - " ts_array = pd.date_range(df.index.to_timestamp().date[0],\n", - " df.index.to_timestamp().date[-1],\n", - " freq=freq).values\n", - "\n", - " ts_ticks = pd.date_range(df.index.to_timestamp().date[0],\n", - " df.index.to_timestamp().date[-1],\n", - " freq=freq).map(lambda t:\n", - " t.strftime('%Y-%m-%d'))\n", - "\n", - " elif type(df.index) == pd.DatetimeIndex:\n", - " ts_array = pd.date_range(df.index[0], df.index[-1],\n", - " freq=freq).values\n", - "\n", - " ts_ticks = pd.date_range(df.index[0], df.index[-1],\n", - " freq=freq).map(lambda t:\n", - " t.strftime('%Y-%m-%d'))\n", - " else:\n", - " raise KeyError('Dataframe index must be PeriodIndex or DatetimeIndex.')\n", - " try:\n", - " for value in ts_array:\n", - " ts_list.append(df.index.get_loc(value))\n", - " except KeyError:\n", - " raise KeyError('Could not divide time index into desired frequency.')\n", - "\n", - " ax0.set_yticks(ts_list)\n", - " ax0.set_yticklabels(ts_ticks, fontsize=int(fontsize / 16 * 20), rotation=0)\n", - " else:\n", - " ax0.set_yticks([0, df.shape[0] - 1])\n", - " ax0.set_yticklabels([1, df.shape[0]], fontsize=int(fontsize / 16 * 20), rotation=0)\n", - "\n", - " if sparkline:\n", - " # Calculate row-wise completeness for the sparkline.\n", - " completeness_srs = df.notnull().astype(bool).sum(axis=1)\n", - " x_domain = list(range(0, height))\n", - " y_range = list(reversed(completeness_srs.values))\n", - " min_completeness = min(y_range)\n", - " max_completeness = max(y_range)\n", - " min_completeness_index = y_range.index(min_completeness)\n", - " max_completeness_index = y_range.index(max_completeness)\n", - "\n", - " # Set up the sparkline, remove the border element.\n", - " ax1.grid(b=False)\n", - " ax1.set_aspect('auto')\n", - " # GH 25\n", - " if int(mpl.__version__[0]) <= 1:\n", - " ax1.set_axis_bgcolor((1, 1, 1))\n", - " else:\n", - " ax1.set_facecolor((1, 1, 1))\n", - " ax1.spines['top'].set_visible(False)\n", - " ax1.spines['right'].set_visible(False)\n", - " ax1.spines['bottom'].set_visible(False)\n", - " ax1.spines['left'].set_visible(False)\n", - " ax1.set_ymargin(0)\n", - "\n", - " # Plot sparkline---plot is sideways so the x and y axis are reversed.\n", - " ax1.plot(y_range, x_domain, color=color)\n", - "\n", - " if labels:\n", - " # Figure out what case to display the label in: mixed, upper, lower.\n", - " label = 'Data Completeness'\n", - " if str(df.columns[0]).islower():\n", - " label = label.lower()\n", - " if str(df.columns[0]).isupper():\n", - " label = label.upper()\n", - "\n", - " # Set up and rotate the sparkline label.\n", - " ha = 'left'\n", - " ax1.set_xticks([min_completeness + (max_completeness - min_completeness) / 2])\n", - " ax1.set_xticklabels([label], rotation=45, ha=ha, fontsize=fontsize)\n", - " ax1.xaxis.tick_top()\n", - " ax1.set_yticks([])\n", - " else:\n", - " ax1.set_xticks([])\n", - " ax1.set_yticks([])\n", - "\n", - " # Add maximum and minimum labels, circles.\n", - " ax1.annotate(max_completeness,\n", - " xy=(max_completeness, max_completeness_index),\n", - " xytext=(max_completeness + 2, max_completeness_index),\n", - " fontsize=int(fontsize / 16 * 14),\n", - " va='center',\n", - " ha='left')\n", - " ax1.annotate(min_completeness,\n", - " xy=(min_completeness, min_completeness_index),\n", - " xytext=(min_completeness - 2, min_completeness_index),\n", - " fontsize=int(fontsize / 16 * 14),\n", - " va='center',\n", - " ha='right')\n", - "\n", - " ax1.set_xlim([min_completeness - 2, max_completeness + 2]) # Otherwise the circles are cut off.\n", - " ax1.plot([min_completeness], [min_completeness_index], '.', color=color, markersize=10.0)\n", - " ax1.plot([max_completeness], [max_completeness_index], '.', color=color, markersize=10.0)\n", - "\n", - " # Remove tick mark (only works after plotting).\n", - " ax1.xaxis.set_ticks_position('none')\n", - "\n", - " if inline:\n", - " warnings.warn(\n", - " \"The 'inline' argument has been deprecated, and will be removed in a future version \"\n", - " \"of missingno.\"\n", - " )\n", - " plt.show()\n", - " else:\n", - " return ax0\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACRsAAAJACAYAAAAHTyPNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5ScdX0H/s+zm9uakHCTS4JAhNBSygGKpdwOLDcFRdFa0Fh6tCKI9YcVyw+BVouC1F9pbRWpqNBGVLScWCNN8VbDClUKokKq3EJDg5AL2cRkN5u9zjy/P2DXXHZnd5+dmWcur9c5c3bmuc3neSYzT875vs/nm6RpGgAAAAAAAAAAAONpybsAAAAAAAAAAACgPggbAQAAAAAAAAAAEyJsBAAAAAAAAAAATIiwEQAAAAAAAAAAMCHCRgAAAAAAAAAAwIQIGwEAAAAAAAAAABMibAQAAAAAAAAAAExI3YeNkiT5oyRJbkmS5IEkSbqSJEmTJPlK3nUBAAAAAAAAAECjmZZ3AWXwVxFxTERsi4jnI+K38y0HAAAAAAAAAAAaU913NoqIKyPiiIiYGxHvy7kWAAAAAAAAAABoWHXf2ShN0/uGnydJkmcpAAAAAAAAAADQ0BqhsxEAAAAAAAAAAFAFwkYAAAAAAAAAAMCE1P00auXQ3t6e5l0D9aWjoyPTfu3t7WWtA4DGVOo+0wj3kqmcX6NfGwAAAACAetTR0ZHkXUMDkmNoAsViMV588cVYvHjxyLLbb789DjvssLF2qYnvmrARAECNaYTQTNZgLgAAAAAAQD3Ztm1bvPe97421a9eW5Xjvec974p577ok99tijLMerBGEjoKx0nAD4jay/idXer5Rqh4am8n6VqLVePicAAAAAACAfPT09ZQsaHXLIIfGOd7wj5syZU5bjVUqSpo3TeStJkvaIuC8ivpqm6cUT3c80akyWadQAIDvTqAEAAAAANBbTqFWEHEOdKhQKMTAwEP39/bFixYq45ZZbJrzvG97whrjqqqtKbVIT3zWdjSCDRhnMrHYHCACah2nUAAAAAACAZtTa2hptbW3R1tYWJ598cnz5y1+OLVu2jLvfcccdF3/0R39UhQqnTtgIMmiUzka1Vg8AjMe9CwAAAAAAqBcHHHBAfPOb3xxz/eDgYKxevTouv/zy+PnPfx633XZbfPKTn6xihdnUfdgoSZI3R8SbX355wMt/T0qSZMnLzzvTNC3ZYwoAqB+m0aoPpT6LqXQ98vkDAAAAAEBtKhaL8dBDD8XAwMDIsiRJdvq76/LJHDtN05G/Oz4vFosT2mZ4WTn3zXK8XZ8///zzERFxzDHHxHXXXZft4ldZ3YeNIuLYiHjnLste/fIjImJNRAgbwSgapUMT0Fz8BgEAAAAAANSeu+66K+644468y6g7c+bMibe97W3xxje+MWbPnp13OROSpGmadw25a29vdxGYlEYJ6TTKeQD1KWuHmjw629RLN516uqZjmUrXo1KynkctXRsAAAAAgFrV0dExuTY1TETd5Ri2bdsWt9xyS/T29o4s2zWTMlpGZaK5leFOQFn3ncjxInbvSjSRv2MtGxwcjN7e3ujr65tQnccdd1z83d/9XbS0tIy1SU1814SNQtiI5lWpAd1yM5gLwDDhHwAAAACA2iNsVBFyDBXw/e9/f8zuS0mSTGi6t8lMDTe8LE3T2L59e/T09EwoeLR8+fKxuhzVxHetEaZRAzJq5kHZeglaQb1r5t8ZxiYwBAAAAAAA5OGmm27Ku4RxveENb4hZs2blXUZJwkaQgenH6p/PAgAAAAAAAKC5fPe7340tW7bsNIVamqZRKBSiWCxGoVCY8GOs7Se6/Bvf+MZu9Z188slx1VVXVfuyTJqwEdSJSnTiEbgBAAAAAAAAoFnMmDEj9ttvv7zLiIiIRYsWxSc/+cmR1wcddFAcf/zxsWbNmjjkkENyrGx8wkZQJ+olGGRqHAAAAAAAAAAo7XWve12cccYZcf/998d3v/vdeOSRR+KWW26JiIhly5bFvHnzcq5wbMJGQFkJFAEAAAAAAADA+GbMmBFnn312nH322XH99dfHD3/4w4iI+NCHPhQf+9jH4qCDDsq5wtEJG0EGAjUAAAAAAAAAQFbPPPNM/PVf/3UUi8WYMWNGrF27dmTd6tWrY9WqVcJGQO0pNeVZJQhpAUyMKSkBAAAAAAAa27333rtTwGjYJZdcEmeccUYsWLAgh6omRtgIMsga0qm1AeJaqweAl/h9BgAAAAAAaCydnZ1x//33R3d3d6xduzZeeOGF3bY57rjj4uKLL86huskRNoImVu3ORlkZdAcAAAAAAACgnn3qU5+KBx98cKdlxxxzTBx77LFx0EEHxfz582PhwoU5VTc5wkaQgfALAJRWL4FWAAAAAACAarjqqqvin/7pn+Kpp56KtWvXRrFYjMceeyz+53/+J2bMmBF9fX1xzTXXxOte97q8Sx2XsBE0sUqEpkoNLgtpAUxMI/yWlqpTEAkAAAAAAGh0aZrG9u3bY/v27bFt27bYvn17vPa1r42TTz45Nm/eHCtXrownnngiOjs7o6+vLyIiVq9enXPVEyNsBBlkHSSttQHiSpxHrZ0jALXHvQIAAAAAAGh0H/zgB2PlypUT3v7aa6+Nc845p4IVlY+wEWTQKIOkjXIeABPVCB2DGsFUPoesn1OjBIUBAAAAAID6cNFFF8UTTzwRSZJES0vLqH/TNI3e3t4YHByMv/mbv4lHHnkkrrvuurxLH5ewEWRgwBKgPtXL73C91JnVVM6vEoGxRr/eAAAAAABA9Z1yyinxve99b6dlaZrGwMBA9Pb2jkyxtn379rj66qujv78/Ojs7c6p2coSNgEnTGQSAqcjjPuL+BAAAAAAAVNMXvvCF+NrXvjapfa699toKVVNewkbQxLJ2aKr2MSvBoDMAAAAAAAAAteSd73xnfOUrX4m9994771JKEjaCDARVxubaABBRP+FTAAAAAACASrjsssvisssu2215sViMvr6+6O3tjccffzw++tGPjqzr7e2Nt771rbFs2bKYN29eNcudFGEjyCDrAGqtBXFqrR4AGkepe4wgEgAAAAAAVN6//Mu/THoarx0lSRJpmo76vNQ+kzlmuU32/ctxTsOKxeLI8dI0jWKxOOrz4W3G8q53vSvmzp07offMSzLeSTQJF6HMGj3E0ihhI4O9AFA/au3/EQAAAAAAwzo6OsqfGmHKOYYzzjijHHVQRUcddVScdNJJMXv27DjmmGNi4cKFu25SE981YaOIaG9vdxEAAKqkVNi1UoGaPN4TAAAAAKBZCBtVxJRzDIVCIQqFwm8O+HJXneHHWJ13hp/v2Kln+PlUH1nec6rvP5X3rERNQ0ND0dPTEz09PbF9+/bo6emJLVu2xMaNG3f7DN/whjfEVVddteOimviumUYNAICyq1T3vKyhIYEiAAAAAACaTWtra7S2tuZdRsMbDi4NPwqFwsjf4eejLV++fHn827/9W8ljH3bYYVU6i8kRNoIMTKM2tlo7RwDyUep+YBpPAAAAAACgGq677rp48MEH8y5jQn7v934vLrzwwnjlK18ZBx98cEyfPj3vksYkbARMWrUDRUJRUL+ESmpHvYR/plJLLZ1HJbh3AQAAAADA5DzzzDN5lzAhf/EXfxHnnXde3XSiEjaibmSdNqUSmn2wr9qfRbNfbwAAAAAAAAAm7+67797p9eLFi2P9+vU5VTO2p59+Ov77v/87nn322Tj55JPj8ssvr+ngUZKmad415K69vd1FAAAoo0pNOVpL4WMAAAAAAF7S0dGR5F1DA5JjqII0TWNoaCiGhoZicHBw3L/Dj1LrBwYGRn0MDg7Gli1b4vHHHx+3rn//93+POXPmjLaqJr5rOhtBBpUaQK22epluptauGwDjq9S0be4JAAAAAABAuSRJEtOnT4/p06dHW1tbxd/vxz/+cfzlX/5lyW1aWlpquqtRhLARNDUDtgDUG52NAAAAAACAenXyySfHXXfdFb29vbFt27bo6uqKbdu2RXd3d/zTP/1TREQUi8UYGBioSvgpK2EjyMBgJgCUVi/d8wAAAAAAAKrpwAMPHHmepmn86Ec/ip/85Cex1157xa9//euIiNi2bVvMmzcvrxLHJWwETaxRpoMDaDSN0L2nUtOoAQAAAAAANIqf/exn8ZGPfGSnZb/9278d+++/f04VTYywETSxehmwBmg2jfD7LFAEAAAAAABQ2tFHHx3ve9/7YvPmzXH//ffHunXr4sknn4wXXnghDjnkkLzLG5OwETQxnY0AqBSdjQAAAAAAAMb2f//3f/Hxj388+vr6IkmSWLduXUREvPe9742DDjoo5+pKEzaCDBolpFOJehph6h+AvPktLT/XFAAAAAAA2NVTTz0VX/3qVye9X5IkJdenaRrFYjEKhcKYj6effnq3/Q466KB4+9vfPul6qk3YCDIwKAkwMTrYlF8lAq+19DlNpZas+9bS+Zfi/x8AAAAAAFBe11xzTWzZsiXvMkbMmTMn7xImJEnTNO8actfe3u4iMCmN0tkIAPIwlS5DOhQBAAAAANSejo6O0m1eyEKOoQq2bt0ajz766IS2nUi3olKPXff9zne+M+r7fPGLX4zDDz98rDJq4rumsxEAAAAAAAAAAE1n3rx5cfrpp+fy3u973/vim9/8Zqxbty6efvrpePbZZyMi4tJLL42vfe1rccABB+RS10QIG0EGzd45QVcJAAAAAAAAABpJls5Fo20/1jFGW7569eq4//77d6tl8eLFNR04EjYCJk2gCAAAAAAAAIBGcN9998XHP/7xvMvYzapVq4SNoJGU6uxTSjOEdHQ9AgAAAAAAAKhdxWIx7rrrrnj88ccj4qWOPjtKkmS3ZbvKsk+5ZHmfsepN0zTWrVtXrtKm5OMf/3iccsop0dLSkncp4xI2iuzBEcYmVEI5+Y4CNI+p/OY3+v3C/68AAAAAACiH5557Lu644468y2AX+++/f10EjSKEjSLCwA3UOt9RgPpTqU53OugBAAAAAMDUHHroofHFL34xXnzxxUntlyRJ5vcsFosj3YWGn2d5FIvFiIidnu967LHeb/j5l770pZHtasnMmTPzLmHCkmq1sapl7e3tLgJNqV46QBg8BmgsAkMAAAAAAI2lo6MjewqFscgxVMjg4GB861vfiv7+/lGnZBtr2Y7L0zSNQqGw22NoaGjU5cOP559/Pl544YVR6zr33HPjjW98Y7S1tcWMGTNiwYIFo21WE981YaMQNgKAPGQNnOQRVKmXcEw9XdOxVCoIm/U8aunaAAAAAADUKmGjipBjaECPP/54vP/975/Qttdcc0287nWv23VxTXzXhI1C2IjJyzoQ2gyDkgZlAaauEX5LK3WvbIRAFQAAAABAoxE2qgg5hgbU3d0dH/3oR+PRRx8ddf1BBx0USZLEAQccEH/5l38Z8+bN23WTmviuTcu7ACA/1Z5GTUgLYGIa4Xcva/BnKsetxH4AAAAAAADl8Nxzz8UVV1wRXV1dY25z4oknTrjzUZ6EjaBOVDsYVIoBW4DK0oVnbK4NAAAAAABQj+64446SQaOIiPnz51epmqkRNoI6UUsDqAZ6ASrLb+nYXBsAAAAAAKAeXXvttXHqqafG2rVrY8mSJaNu85Of/CTe8pa3VLewDISNoInVUrckAH5DqHNsrg0AAAAAAFCPZs2aFeecc04UCoX4zne+E+vXr99tmwcffDD+/M//PG6++eaYMWNGDlVOjLARZNDsg5nNfv4Aldbov7ONfn4AAAAAAABjaW1tja997Wvx05/+NG699dZ49tlnd1q/cuXKKBQKOVU3McJGkEHWjkC1Nrhaa/WMpRIdmOrl3AEake5EAAAAAABAs3vsscdizZo1o64bHByMtra2Klc0ccJGQM0z8AwAAAAAAABANaVpGsViMQqFwk6P4WW7/p3sNgsXLowPf/jDsXHjxrj99ttH3vecc86JOXPm5Hjm4xM2AgCg7CrRlQ4AAAAAACCL9evXx+LFi/Muo6Q3vOEN8cEPfjCmTav9KE/tVwhUTL0MBOtsBAAAAAAAAEBWs2bNiiRJIk3TvEvZzfTp02PfffeNiIivfvWr8ZrXvCaOOuqonKsqTdgImlglQjylAkxCQwDNo9Rvfr2EXQEAAAAAgMaw5557xooVK8p2vOEp1oaGhqJQKOz2d/gx/HpwcDB6enqiu7s7tm3bFt3d3bFp06b45je/GYODg7Fu3br4j//4j4iIWLJkSSxbtizmzZtXtnrLTdgIKCuBIoCpq0RwUxgUAAAAAACgPJIkidbW1mhtbZ30vr29vbFly5b4q7/6q93WzZ8/P973vvfVdNAoQtgIAKDmVCL8I1AEAAAAAACQr4cffjg+/OEPj7l+9uzZceqpp1axomyEjQAAKDudlAAAAAAAgGazdevWWLFiRXR1dcXWrVuju7s7urq6Rh5r164tuf+hhx5anUKnSNgImlipgeBSDBID5ZA1jJJHiKXa71mJa5NV1vOrxHRvU9nX9HMAAAAAAECl/ed//md89rOfzbz//vvvX8ZqKidJ0zTvGnLX3t7uIjApQjoAUFql7pXCPwAAAAAAtaejoyPJu4YGJMdQh9I0jY0bN0ZfX1/09/fv9Ojr64uBgYFRly1dujQiXgobff3rXy/1FjXxXdPZCDJolMFMoSkAKqXaHZgAAAAAAADyliRJ7LfffpPaZ2hoaCRsdPbZZ1eirLITNoIMGiWkU2v1ANA4BIoAAAAAAABe0t/fH52dnbFp06aRR2dnZ2zYsCFeeOGFke2effbZHKucOGEjAIAaU4mpwqo9/VitdTYy/RoAAAAAAJCHnp6eOP/888dc/8pXvjJOO+20mDt3bvzhH/5hFSvLTtgImli9dJ0wCAw0m2qHfyqhUuGerPu6lwAAAAAAAHloa2uLiy66KO6+++5R12/cuDE2btwYERGDg4NxzTXXVLO8TISNIINmH7Bs9vMHYHxZOxuNd4/RoQgAAAAAAMhLmqZRLBajUChM6nH66afHqaeeGoVCIfr6+mLz5s0jjyeeeCKefPLJiIjo7OzM+QwnRtgIMsjaEcggKAAAAAAAAADk56GHHqrJ7kFXXXVVnHnmmXmXMSHCRtDEKhF+0nEC2FG9TNfYDLJ2Gqq2qdRSS+dRCe6jAAAAAAA0s97e3rjwwgujp6cn71Iqoq2tLdra2vIuY0KSNE3zrqEWuAhlZjCsPlRiUNZnD+yo0cMfUE3usQAAAABArero6EjyrqEByTHsoru7O970pjflXUbFHHfccbFq1ao45ZRT4qqrropp00btH1QT3zVho4hob293EaBMdDYCIKJy9wP3GQAAAACA2iNsVBFyDBWQpmkUi8UoFApRLBZHHuV4veuy++67L1asWJGpzuXLl8fs2bNHW1UT3zXTqAEAucgaGskjbFLt96zEtckq6/nlMW1bJT4n4SYAAAAAAGgcSZJEa2trRETcdttt8cgjj2Q6xkS2WbNmzaSPPez888+PG264IU499dTMx6gknY1CZyMmL+sgqUFJoNmYRq125BH+obz8PwIAAAAAqFU6G1WEHEMFrV+/PhYvXpx3GWOaOXNmLFmyJA444IBdV9XEd01nI2hiQlNApfm9yKba3XSq/TlN5fwavdOQ4BcAAAAAAOXU29sbS5cujWKxGMPNaJIkiak0pslynKm+9/D0ZxGx07kMP8/y+P3f//3o7u7e6RjDz4eGhnZ6FAqFnV4P11IJv/VbvxW33HJLTJ8+vWLvMVXCRtDEamnqn6zHzKoRBqSBxlVLv1GNHu6pNa4pAAAAAADldNttt8U999yTdxmM4tWvfnXMmzcvZsyYES0tLTF//vw44ogj4qijjqrpoFGEsBGQQaN33ADgN/wGAwAAAABA/Xrve98be++9d8lOPDt2G9r1eVblOk7WrkWVeAzXM3wtp/q8UCjEqlWrYtu2bbud97Jly2LevHmZr1ulCRsBk2bgGQAAAAAAAKD2veIVr4h3vvOdeZfBKP7+7/8+nnrqqZHXra2t0dbWFu9+97trOmgUIWwETS3r9GTCRgBMRR73EdPBAQAAAAAAteSCCy6I5cuXj7w+/fTT48ILL4wDDzww0jSdUkeoShM2giaWdXDVgC0AU5HHfcT9CQAAAAAAqCWHH3543HfffbF+/fpYvHhxrFixIlasWDGy/qabboqTTjopxwrHJmwETJoBWwAAAAAAAACYugMOOCC+/e1vxwc/+MGdplVbv359jlWVJmwEAAAAAAAAAABVNjAwEN3d3dHV1RXPP//8TuuOPPLInKoan7ARZKCzDwCUVmqqNAAAAAAAgEZULBbjxRdfjE2bNkVnZ2ds3rx55G9XV1d0d3dHd3d3bNu2Lbq7u6O/v3+3Y+y///7xL//yL9HW1pbDGUyMsBFkkHUAtdZCSvUyEFxr1w0AAAAAAAAAdnT33XfH5z73uXG323fffWOfffaJI444IvbZZ5+RxxFHHBGvfvWrY9q02o/y1H6FVVAvgYt6IhxSH3xOAFRKqXuM/3sBAAAAAACN5ic/+cmEtuvs7IzOzs5R151xxhnx0Y9+tJxlVYSwUQhcMHmN8m+mEoO9jXJtAKgc9woAAAAAAKDR3HzzzRERUSgUor+/P375y1/GT3/601i/fn1s2LAhNmzYEL/+9a9LHqOvr68apU6ZsBFk0CjTqFWCABMAEfncK92fAQAAAAAgP319fXHXXXftFJhJ07Ss7zF8vIked3i7YrEYaZru9Hf4sevyNE1HXVbq72jHeuaZZyIioqWlJebNmxd77bVXvPrVr4699tprp8fee++90+t6IGwETawSg6ulBnpraTDXFD5As6mXac3yqKWWzr+UWrqPAgAAAADArv71X/81vvzlL+ddRs056qijYtq0aZEkScycOTNmzJgR06ZNi9bW1igUCtHZ2RmFQiEOP/zwSJIk73InJCl3iqwetbe3uwg0JYOrAM2j2mHQSnUZqpdQKwAAAABAM+no6KiPhER9qbscw+DgYCxfvjwGBwcnvE+WcM2u+0ymA9Guf6u5/8qVK0ue10c+8pE488wzxz39SV+wCtDZCDIwTcvYamnAupRm+CwAdlTt37166aQEAAAAAACUx/Tp0+Mtb3lL3mXUrCVLlsSXvvSlMdffcMMNMW3atDjttNOqWFU2wkaQQaMEVerlPOqlToBy0b2n/FxTAAAAAACg0tI0jUKhEAMDAzEwMBCDg4Mjz0866aQ4/vjjo7+/PzZv3hwbN26MH/7wh7Fq1aqR/W+//XZhI2hUOhsBUEnuF+XnmgIAAAAAAJWwYcOGePvb316WY/3qV7+KpUuXxlvf+tZMU8xVi7ARAABVJfgDAAAAAACMJ03TuPfee0c6/+wavhnv9US2KRaLI49CoVDy9VjLtm3bVo7THXHrrbfGueeeG3PmzCnrccspSdM07xpqgYtQZgYR60PWDk3V5t8T1K96+Z2BeuB+CAAAAADUqo6OjtptwVK/ypJjGBgYiO9///tRLBYj4jdhm7FCOEmS7LRutO1Hez6cPSkWi5Gm6W6P0ZYP17Tj3x3Xr169OlasWFGOy1A1s2fPjmOOOSZaWlqipaUlZsyYETNnzoxZs2aNPHZ8PXPmzJg+fXq0traO7DN//vw44IADxnqLmviu6WwUBm6gWnzXoPmU+t6XCiJVYr+pqPZ7VuLaZFXt86uUrOeRx783AAAAAAAol1tvvTXuueeevMtoGq997WvjmGOOidbW1pEA0Y5BolLLC4VCDAwMxLRptR/l0dkoItrb210EJiXrIKlBydqh2wpUh989yk34BwAAAACg9uhsVBFlyTF0dXXFHXfcEYVC4TcHfjknsuvf4eejLR9t3x3XFwqF6Ovr22ldmqYj044NPx/uaLTro9TyHfcrFApRKBRiaGhoZHkj+vd///explGrie9a7cehACrAgDTkT2ej8quXa1qpwGclzqNePnsAAAAAABjN3Llz48orr6z4+5x11lkj06ExNe9617ti9uzZeZdRks5GobMRk6ezEQBkN5UAj/APAAAAAEDt0dmoIuoqx3DPPffEbbfdFhERSfKbfw47Pt/VZNZNdNty7jecpyl1jGHDXZiGOzDt2N1pvHWj0dkIAAAAAAAAAICG9aY3vSne9KY35V1GzRsaGoqvfvWr8X//938xMDAQ27dvj+effz46OztHtjn77LNj1qxZOVY5PmEjaGKVmsam3HSqAGgsftcBAAAAAIBm9MADD8SSJUtGXXfUUUfFtddeGwsWLKhuURkIG0ETq8Rgr+ltAIhwPwAAAAAAANhVe3t7zJw5M7q7u2P79u3R2dkZmzdvju985zvxy1/+Mi6++OL413/919hvv/3yLrUkYSMAgBrTCEGdeqkTAAAAAACgHIaGhqKnpyeGhoaiv78/+vv7Y2BgYOQx/Hr4b6FQiNmzZ8f06dN3Os7b3va2WLZsWcybNy+nMxmfsBFk0CgDqFmnUSt1/o1ybQDy1Oi/pY0QpgIAAAAAANjRRRddFL/+9a8z7Tt9+vRIkiQGBwfj0ksvjblz55a5uvISNoIMKhHSyYNp1ACah99nAAAAAACAynn/+98fn/nMZ6JYLEaappGm6cjzYrEYERHFYjEKhcJu+7773e+ORYsWxaJFi2o+aBQhbASZNMqgbNbQVCmNcm0AGo3fZwAAAAAAgMo566yz4qyzzhp3uzRN49Zbb41vfOMbI8s+//nPjzzfZ599YsmSJTFnzpyK1FkOwkbQxAw8A9QmXYgAAAAAAAAay9KlS+PWW28dd7tNmzZFT0+PsBEAwK6yBmryCOJU+z2zHrOerulYptJ1rxLnUUvXBgAAAAAAqF/TppWO6Bx88MHx3ve+NxYuXBj7779/larKJknTNO8actfe3u4iMClZB0KbYVDSoCwA45nKvcJ9BgAAAACg9nR0dCR519CA5Bhq3ODgYHR1dcX27dtj+/bt0dPTM+rz0V5v27Yt1q1bF8VicadjnnLKKXHjjTeWetua+K7pbARNbCrdI6r5fgaPAepPte8xAAAAAAAA1XT55ZfH6tWry3KsWbNmxdy5c+Occ3+S7DIAACAASURBVM6JQqEQra2tZTlupQgbQRMzpQwAlZJ12jYAAAAAAIB6cOmll8bq1atjYGAgBgcHY2BgYOT58Osdn5da19fXF319fXH99ddHRMQ999wTe+yxR74nWIKwETBpAkUAAAAAAAAANLMTTzwxTjzxxCkd45lnnolLL710p2Xt7e3xile8YkrHrTRhIwAA6kbWjkmCsgAAAAAAQJ62bNkSd999d/T09ERvb29s3rw5Vq5cudM2r3nNa+Kv//qvc6pw4oSNgEkzmAtQf6r9212pqdLcgwAAAAAAgHr0iU98Ih555JEx11966aXx5je/uYoVZSdsBEyarhIA9afav8FZ7xUAAAAAAACNqL+/v+T6L37xi7FgwYI4/fTTq1RRdsJGQFkJFAEAAAAAAADAzq655pr43Oc+Fy0tLdHa2hr33Xffbtt8+ctfFjYCAAAAAAAAAIBmN3/+/LjhhhtGXm/fvj0eeuihnbZJkqTaZWUibAQAAAAAAAAAAFVQLBbjrLPOGnXdwQcfXOVqshE2Asqqo6NjzHWmWAOYmEb/LW2EcwAAAAAAAOrb008/HVu2bIlCobDbY2hoaNTnpbYbbb9isbjbusHBwVHrueSSS2Lx4sVVvgrZJGma5l1D7trb210EmlKpwexSDBIDE5X1d4byK/Xb7XOqD+6/AAAAAECt6ujoqI+5n8okSZLTIuKqiDg+IuZHxJ+mabpkh/X7R8T/FxGvjYg9I+L+iLgiTdNVO2wzMyL+LiIWR0RbRPwgIv4sTdPnX95EjqGCXnjhhbj44ovzLiP23nvvWLhwYcyfPz+OO+64OPHEE6Otra3ULjXxXRM2eomLUGYGw5pXo3fjAKhX1f59rlSg1X0GAAAAAKD2NGHY6PURcWpE/Cwi7oyXQkJLXl6XRMSPI6IYEVdGxNaI+FBEnBsRv5Omac/L230uIi6IiHdGxKaI+FS8FEw6Pk3TQsgxVNwzzzwTv/71r2NwcDAGBgZG/u76fLRl4z0fHByMrq6uSdf0mte8Jm6++eZSm9TEd800amFgqplVu5PDVP6t1VLXiVLn4fsEMHWVCNRU+/e51jopCSkBAAAAAFAuaZreGxH3RkQkSbJkl9WLIuLEiDg2TdPHXt7mfRGxPl7qYnR7kiTzIuKSeKkj0vdf3uZPImJNRJwdEd+NiCgUCvHwww/HqlWrYtGiRXHCCSdEa2trxc+vWRx++OEVPf6NN94YP/jBDya1zwknnFChaspL2IimlnVwMY9BUgOhADSKPO5p7qMAAAAAAFTJzJf/9g0vSNO0mCRJf7zUDen2eGn6tekR8b0dtvlVkiRPRMTJEfHdQqEQV199dTzxxBPR19cXs2bNiiOPPDL+9m//VuAoZ319fXHTTTfFypUro1AoRKFQiGKxGMViceR5VmvWrCljpZUjbERD0K0gm1rqllSKzxAaU9bf7jx+86v9npUIw1b7mjZK9yL/xwAAAAAAYJKejJc6FN2UJMmlEbEtXppO7aCIOPDlbQ6IiEJEdO6y74aX18XDDz8cTzzxRPT29kZERG9vbzz66KNx+eWXx5577ln5s8hJmr40e9xLs9HtvnzYjut3Xbfj+h3XpWk68nr4+a6P4XXDgaHR1j3zzDNTOsex/MM//EMce+yxFTl2uSWjXfQm5CKUWT0NTAIA1APhJgAAAACgVnV0dCTjb9WYkiTZFhH/T5qmS3ZYdnxE3BERx8RLoaL/jIhiRESapq9PkuQdEXFnRExPdwhtJElyX0Q8labp5XfeeWe6ZMmSUYM0NKbZs2fH4YcfHnvvvXcccsghsXjx4pgxY8aum9XEd01nozBwU0t8FvVPBwgAKsl9BgAAAACAWpem6U8j4tgkSeZFxIw0TTcmSfJQRDzy8ibrI6I1IvaNiI077LpfRNwfEbFo0aKYNWvWSGejiIgZM2bEO97xjjjyyCNLvn+SJGOGlEbr+LPrul3Xj9bdp1RXoKmui4goFotjrsv7vUt1Pcry/n19ffHQQw9FT09PPPbYYyPXfd68efHmN7951M8xb8JGkEHWDkwGQQFAYAgAAAAAgOaQpunWiIgkSRZFxGsi4iMvr/ppRAxGxDkRcdfL2xwUEUdGxI8jIk444YQ48sgj4/HHH4/+/v6YOXNm/M7v/E5cfPHF0draWu1TYQxjBZV2fAwODsYHPvCBWLNmzYSOecUVV8Ts2bPj7LPPrmTpUyJsBE2s2tPWCWkBTIwwDgAAAAAA1K4kSeZExOEvv2yJiIOTJDk2IjanafpckiQXRkRnRKyJiKMj4tMRsSxN0+9FvBRCSpLkjoi4OUmSFyNiU0R8KiJWxktTrkVra2v87d/+bTz88MPxzDPPxOGHHx4nnHBCRYJGAwMDcc0118TPf/7zsh+bifnABz4QQ0NDceqpp8aBBx6YdznjSszvFxERLkKZGQitD5UIG9XLZ1/toBUATFW93GMBAAAAgObT0dGRjL9V40iSpD0i7htl1ZfSNH1XkiQfiIj/NyL2j4h1EXFnRNyQpunADseYFRE3R8Q7IqItIn4QEX+WpumvXt6kajmGLVu2xFve8pZqvR0ve+UrXxkLFiyI9vb2uOCCCya6W01814SNIqK9vd1FgCYjbATVIRyRTSN0NqpUN7tGuDYAAAAAAI2m2cJGVVJzOYZdpwfb8VEsFiNi9GnEJrq+EseMiLjzzjtj5cqVOVyx8U2fPj1aW1tjaGgohoaGIiJi7ty5cfTRR8c111wTc+bM2XWXmviumUYNaEoGpIFa1gi/UaXOQeATAAAAAADqT5IkkSQ1kXWZlOOPPz66u7tHXheLxSgUClEoFEaeF4vFqi0f/rt06dLo7e2NwcHBnert6uqKH/3oR9HR0RHnn39+tS/XhAgbQQaV6tYAAAAAAAAAAJTXHnvskXcJsXnz5nj++eejq6srtm3bFocddlj84he/2G27z3zmMzFnzpw49NBDq1/kBAkbQQZCQwBUkqnCys81BQAAAAAA8jAwMBCXXXZZrFmzZtT1c+bMiba2thgYGIi3ve1tcfTRR1e5wskTNoIMGqWzUb1MY1Nr1w2g0hrhd6/W7jGNcE0BAAAAAID6Mzg4OGbQ6Nxzz40Pf/jDVa5o6oSNIAMDlgBUki48zctnDwAAAAAAjaWlpWXMdd/5znfi6aefjgMPPDD+4i/+Ivbaa68qVpadsBEwaQY7ASrL72zz8tkDAAAAAEBjaWtri/vuuy8GBgZi06ZN0dnZGRs2bIjnn38+7rnnnli9enWsXr06fvSjH8Wee+4Zr3jFK+LQQw+Na6+9NubMmZN3+aMSNoImZkAToDY1QnebeqkTAAAAAACgkvr7++Pcc8+d0LZbtmyJLVu2xNq1a+MHP/hBXHDBBRWuLhthIwCAGtPoQZ1GCFMBAAAAAABMREtLSxx22GHxv//7v5PaL0mSClU0dcJGkEGpQdJSmmEA1QAyABHZ75UAAAAAAACNZPr06XH77bfvtvyHP/xhXH/99bstf8973hP77bdfnHXWWVWoLhthI8igUUIzBoIBalMlgpvVDoM2yr0SAAAAAACgEjZu3Ljbsle96lXxx3/8xzlUMznCRpBBo3Q2qrV6AHhJo4d/dMEDAAAAAACaQWdnZ1x55ZXx/PPPT2j7o48+usIVlYewEU2tnjr71EutBokBAAAAAAAAIOKXv/zlhINGERH33ntv3HvvvbF8+fKYPXt2BSubGmEjmlolpqKpFCEeAOpJvYRkAQAAAAAAKuX000+P733ve9HX1xd9fX3R29sbvb290dfXF0uWLIlHH310t31mzZoVM2fOzKHaiRM2AgCg7EqFZKcSRBK+BQAAAAAA6sn06dNj+vTpsccee+y0/K1vfWu0tbXFgw8+uNPyvr6+2LBhQyxYsKCaZU6KsBFkYKBzbKUGkF03gPzU0u/zVN6vls4DAAAAAAAgi40bN8bQ0FBs2rRpZFmSJDFz5sz43d/93dhnn31yrG58wkaQQdaODLU2CFqJ86i1cwTgJbX0+ywwBAAAAAAANKvBwcG46KKLRl6/6lWvihtvvDEWLFgQra2tOVY2ccJGAACU3VSmSgMAAAAAAGhUSZLs9Hru3Llxxx13xD777BPz58+PI444IhYtWhRtbW05VTg+YSNoYrpHAFAppe4xgkgAAAAAAECzmjZtWhx77LHx6KOPRkTEL3/5y1G3u/766+P000+vZmkTJmwETawSg70CTABECBQBAAAAAAATk6Zp2R8REcVisSzP0zSNYrFYludpmsbQ0NBI0GjYwoULY4899oiBgYFYt25d7LHHHnHEEUeU+1KXjbARNLFKBINKDS4LIgEAAAAAAABUx4UXXhidnZ15l8EEXH755TFjxow4+OCDY++99867nHEJGwGTJlAEwHgqNY2a+wwAAAAAAEzMXnvtJWxUJz784Q9HRMRRRx0Vn/3sZ3OuZnzCRsCkZR1ANkAMQEQ+9wP3JwAAAAAAms0XvvCFvEuoinJOsTbeFGjlfI9CoRAPPfRQfP3rXx85l6OOOqoKV2zqhI2giWXtLFFqUNaALQCVlDU05P4EAAAAAACNKUmSSJJk5PXjjz8e73//+3OsKLv169fnXcKECBsBk9YI3SGmMoUPMHH18ptQaxrhdxYAAAAAACAPDz74YN4lZHLSSSfF4sWL8y5jQoSNgElrhIHuRjgHoHH5jQIAAAAAAMjmkksuiUsuuWRkurLhR6FQ2OnvaMtKrSu1bMfXpZbt+PfOO++MQqEwUveaNWti9uzZOV65iRM2giZmMBuAPOjcBAAAAAAAVFqSJNHa2hqtra15lxIREVu2bImlS5dGRESaprFgwYJ47rnnRtavXbs2Pve5z8VNN92UV4kTJmwETaxephIz8AwAAAAAAABAPbv55pvjxz/+8Zjr/+AP/iCuvfbaKlaUnbARZCD8MjbXBgAAAAAAAAB2dvXVV8eyZcsiSZLo6uqKlStXxqpVq0bWH3/88bHHHnvkWOHECRtBBlk7AjVKEKdRzgMAAAAAAAAAqmHevHnxzne+MwqFQpx99tm7rT/hhBNyqCobYSNoYpUIDZUKYgkpAeSnln6f3Q8AAAAAAIBm1dLSEldeeWUsX748Wltb48knn4yIiNtvvz0uv/zy2GeffWLWrFk5V1masBEAUFdqKTRTT2rp2vgMAQAAAACAZpGmaSxfvjx+/OMfx/Tp06O1tTWmT58ehx12WPz85z8f2e6//uu/4r/+679GXv/N3/xNnHjiiXmUPC5hI2hiWaeDq/b7GXgGduQ3oT5U+x4DAAAAAABQi7Zv3x6f+tSnJr3f/PnzK1BNeQgbAQBQdqVCYYJIAAAAAABAs5g9e3Z85StfiT/5kz+JNE3H3O7MM8+MK664Ivbcc88qVpeNsBE0sUp0BzE1DgAAAAAAAAD8xoIFC2LZsmXxH//xH5EkSaRpGtu3b48tW7bE1q1b44EHHogVK1ZEZ2dnfPrTn8673HEJGwFlJVAEQITuRQAAAAAAADuaO3duLF68eLfl27ZtiwceeCAiItavX1/tsjIRNoIMBGrGprMRABG1N42a+xMAAAAAAFBNxWIx+vv7d3oMDAxEX1/fyPOf/exnsXTp0pF9Wlpacqx44oSNoIllHewtNShrwBaAWuT+BAAAAAAAVNp9990XH//4xzPvXygUolgs1nzoSNgImpiBV4DapAtP+bmmAAAAAABApR166KFT2n/jxo3xpje9Ke6+++54xSteUZ6iKkDYCCgrg7kAU9cIv5d5TJVWSiNcUwAAAAAAoLYdcsgh8b3vfS+KxWIUi8UoFAojj+HXO6577rnn4iMf+chOxzjssMOitbU1pzOYGGEjaGKmUQOoTY0Q3CxVZ60FkWpJI3z2AAAAAABQS37605/GVVddlXcZ41q0aFF87GMfiwMPPDDvUsYlbAQZVCKkk4daq6eaDHRDdTTz78xUuG7Ny2cPAAAAAADltXHjxrxLmJBVq1bFpz71qbj55pvzLmVcwkaQQaMMBDZKaCqLRjgHAAAAAAAAAEo799xz49xzz53UPjtOdbbjdGjDy3ddtuv0aDsuHxoaittvvz2efPLJcd933333zXqaVSVsBBk0c0gnovpdgRrlugGQH9OTAQAAAAAAE9XS0hItLS0xbdrUYzU9PT0lg0azZ8+OPffcM+bNmxcXXXTRlN+vGoSNoIkZXAWgWbjnAQAAAAAAlZCmaSxfvjyeeuqpSNN05DG8LiLitNNOiyeeeGLUKd16enqip6cnXnjhhViyZEl87GMfq2r9WSTDJ9bM2tvbXQQoE50jyq8SnaTq5bNo9i5i1Vbt65319yKP35l6+W2rp2s6lkp1z6v2v1MAAAAAgGbS0dGR5F1DA5JjqBPPPvtsvPvd757SMU4++eQ4//zz4/jjj48ZM2aU2rQmvmvCRiFsxOQ1ewDCwCsA46nUvdI9CAAAAACg9ggbVYQcQx159NFH46mnnopnnnlmp65G27dvj+7u7ujq6oru7u7o7u6OQqEw5nE++MEPxgUXXFDqrWriu2YaNWDSDOYCMJ6snZQAAAAAAADqzbHHHhvXXntt9PX1Tek4//iP/xi33XZbtLW1xac//el41ateVaYKy0vYCDIQtgGA7NxHx6ZzEwAAAAAA1Kcbb7wxvvzlL0eSJJEkLzUgSpIk0jSNn//85xM+Tl9fX/T19cWvfvWrmg0bmUYtTKPG5DX7NGoA5ZA1VJFHGKNeAiD1dE3HUqmuR1nPo5auDQAAAABArTKNWkXIMTSI3t7eeP3rX59p31NOOSVuvPHGHRfVxHdN2CiEjZg8YaOxGZQFoJLcZwAAAAAAao+wUUXIMdSh3t7euOOOO6K7u3ukw9Fwd6OBgYHo7++Pnp6e6Orqiq1bt8bWrVtjaGhozONdffXVcd555+24qCa+a6ZRgyZWie4RBnqBiaqnLjz1EnCppWtaiVoq9Z7VPiYAAAAAANCY7rnnnvjGN76Rad8FCxbE29/+9jj//PPLXFX56WwUOhsxec3e2cjAKwBTMZX7iHsQAAAAAEDt0dmoIuQY6lChUIj7778/+vr6Ik3TGM7kFAqF6O/vj/7+/ujr6xt5PPDAA9HV1TWy/3nnnReLFi2Kgw8+OH7v934vkmS3r1ZNfNd0NgImzWAuAAAAAAAAAOystbU1zjjjjAlvf+WVV8btt98eX//61yMi4tvf/nZ8+9vfjoiID33oQ/HGN76xInVOlbARUFY6TgAAAAAAAADA+H7xi1+MBI0iImbNmhUnnnhizJ07N84888wcKytN2AgAgKoSPgUAAAAAAIg4/PDD4/Wvf3089dRT8b//+7/R19cXBxxwQFx22WWjTaFWM4SNgLIygAwAAAAAAAAA49uwYUPce++9Oy37+te/Hvvuu2+8/vWvj7a2tpwqK03YCDIQqAGA7Ey5CQAAAAAAEDF37tyYPXt29PT07LT8s5/9bEybNi0uuOCCnCorTdgIMig1SFqKAVQAAAAAAAAAaF4rV66MrVu3xrZt22LTpk1xzjnnxLp16+KRRx6JQqEQxx13XJx//vlx+umn513qmISNAACagG5CAAAAAAAA5dPX1xebNm2KiIg0TWNwcDAGBgZiYGBg5Png4OBOy3/wgx/EypUrRz3eaaedFu95z3viVa96VTVPIxNhIwCAJiBQVB+EwgAAAAAAoD6cd955ZT3eww8/HI8//niccsopccUVV0Rra2tZj19OwkYAAFSV0MzYXBsAAAAAAKgPV199ddx5552RJEkkSRIRsdvz0ZYNPwqFQgwODsaLL74YQ0ND0dfXF319ffGtb30rLr300pg9e3Y+JzYBwkYAAFSV7j0AAAAAAEC9O++88ybV3eiFF16If/zHf4yenp7Yvn179PT0RHd3dwwNDY1ss2DBgvjSl75U012NIoSNoKmVGuytJQaeAeqPQBEAAAAAAMBvfP7zn49HHnlkzPXXXXddnHnmmTUfNIoQNoKmVonBXoPLAIzHvQIAAAAAAGg21113XXzrW9+K2267bdT1++23X10EjSIikjRN864hd+3t7S4CAFRZ1sBJHkGVegnH1NM1HUuluu5lPY9aujYAAAAAALWqo6MjybuGBiTH0IBWrVoVl1122YS2/ed//udYuHDhrotr4rsmbBTCRgAA1TSVAI/wDwAAAABA7RE2qgg5hgY3ODgYv/rVr+J//ud/YuXKlbFixYqd1n/yk5+MP/iDP9h1t5r4rplGDZpY1u4RBnMBAAAAAAAAILtbb701vvWtb+207JBDDokbbrghFixYEC0tLTlVNj5hI8igUUI6tVYPAC+pRPeeancEqtR0aAAAAAAAAI2gt7d3p9eHHHJI7LnnnvHoo4/GQQcdlFNVE2MatTCNGpST6W0AGI9p1AAAAAAAGotp1CpCjqHBFQqFeO655+Lpp5+OT37ykzutW7ZsWcybN2+03Wriu6azEWTQKJ2NKqEZzhGA/NRLZycAAAAAAIBSWltbY+HChbFw4cKdwkZ33nnnWEGjmiFsBBk0yqBkJaa4aZRrA0Btyhoacn8CAAAAAADylqZpFIvFKBQKUSwWRx6/+7u/G7/4xS8iIuIzn/lMfOITn4gZM2bkXO3YhI2giRl4BWgeOvsAAAAAAADNYuvWrfFnf/ZnsXbt2rxLmbTHHnssBgcHhY2AxmLAurqauQOVKQurqxLXuxL/fsmmXj6nqdRSS+dRCX7bAAAAAABgYjZs2FCXQaM//uM/jj/90z+N1tbWvEspKUnTNO8actfe3u4iMCkCEACQ3VRCqwKvAAAAAAC1p6OjI8m7hgYkx1BmO05bVigURqYy23FKsx2X77huossneuwdl3d1dcXSpUsjIuL000+P66+/vtRp1MR3TWcjoKwMAgMAAAAAAABQa1paWqKlpSXvMnbT398fS5cujTe+8Y1xxRVX5F3OhAgbAQDUmEYPbjbCOQAAAAAAAPVt5cqVsWbNmt2Wl5ohLE3T3ToV7dqxaLKPwcHB/5+9e4+Wq67vxv/Z55aTe4CEQKIFgSZIgaKVi4py8BFvFCxVFAW8VO0qgqh9tBUXPI+P9FHQVJZVqNquoiJLbLEoCFJK4SBSCD8eoCiI3CRgSICE5FySc5uZ/fsDc5qTnOucmdl7Zl6vtWadc/bs2fPZ38nszeL7Xp9vRETsu+++0d7eXrXzrSTLqIVl1Ghe5S4HNxkTyEC1NXoQpxn4DAEAAAAAGotl1KpCjqGK1q9fH2eccUbWZYxr9erV8bWvfW2i4FEuvms6G0ETM6EL1KNmuHYJ40zM2AAAAAAAALO1YsWK+NSnPhW/+tWvJtwnSZIpf9/Zjq5Hk3U8evbZZ+PJJ5+ctLZf//rXUSgUct3lSNgIylBuR6BmmAStxiSwDkxAs2mEa1Q1rt0AAAAAAEC+DQ8Px8UXXxx33nlnWa/fsTrXjkBPJf/eeeWvSv89XYODg9PaL++rlAkbARVVjQnyahzTJDjQbCa7lubpmjibWvJ0HtXQCCE0AAAAAAAa25YtW+KWW27Juoy6J2wEMEs6GwFUVz1dEy2jBgAAAAAA+bV8+fL4t3/7tygUCqPb0jQdfZRKpQn/ns5zpVIpImLM33k99m9/+9t47LHHYvv27TEwMBCDg4MxMDAwrSCRsBHQVKoxCWzyGBpTudeLLMIm9RJwqZcxrVYHolov5Zmnzx4AAAAAAPKio6MjOjo6si5jQoVCIW666aYYGhoaDQjtsGvIZ0d4qFAojPsYGRmJYrEYIyMjY7YXi8W45557xn3/tra2mDNnTsydOzfmzJkTGzdujGKxOPr8wQcfHHPmzKnOyVeIsBEAQM40esClXpZ0AwAAAAAAGs+VV14Z3/72t2v2fi972cti/vz5sWjRoli8eHHMmzcv5syZM/ro6OiIzs7OMb8//PDD0dbWFoVCIZYuXRr77rtvzeqdDmEjKEMjTPRWi7EBmL166iZUjjzVAgAAAAAANJd3vetdMTg4GIODgxERkSTJmJ8TbYuI0S5HxWJxt05GO2/b9fne3t7YtGlTDA0NxfDwcAwODo7pZjSVH/zgB7H33nvP9tQrJsn7Om+10NXVZRCYkXInSfO2vE/ezgOA5jCbzk2N3vUJAAAAAKAedXd3J1PvxQzJMTSwQqEQl112WVxzzTUT7rNkyZJYsWJFHHPMMXH66adHS0tLREQuvms6G0EZ8jaZWW49eTsPAAAAAAAAAGhU999/f3zyk5+c1r4f/ehH44QTTqhyReURNoIy6AgEQDU1QvceS6UBAAAAAADNIE3T+PGPfxyPPvpotLW1jXmUSqUYGhoafaxfv37cY1xwwQWxcuXKmD9//uijo6OjxmcyfcJG0MTqJTRVjQnrepmsh0ZWjSUg87ZcZbnKPWaexrTc95vNNb8a59EIwS8AAAAAAKA6hoeH4+///u/jRz/60bRfc/DBB8ecOXOis7Mz2traYu+9946urq4dy6TVBWEjYMbqZdIdoF4JuNS/egn0AgAAAAAA5fvOd74zo6DRUUcdFW9729ti8eLFsXDhwthjjz1iyZIldRU0ihA2grKYCASgmtxn6p/PEAAAAAAAGt8ZZ5wRERHbtm2LkZGRGBkZiUKhECMjI9Hf3x+9vb2jj+Hh4bj77rvj7rvvHnOMlpaW2HPPPWPp0qWx1157xbJly+Kggw6Kgw46KA444IBob2/P4tQmlaRpmnUNmevq6jIIzIhuBQCQDV2fAAAAAADyp7u7O8m6hgYkx9BgBgcHo6+vL3p6ekYDSFu2bInNmzfHlVdeOe5rjjjiiLjkkkt23pSL75rORlAGk5kTMwkMMHuNfi3N4vwafUwBAAAAAIB8KhaLMTQ0FAMDAzE8PBwREe3t7TF//vxobW2N+fPnT/ja97///bUqc0aEjaAMOhsBUE3uF5VnTAEAAAAAgFro7e2Nt7/97bM6xpIlS+LSDyvejQAAIABJREFUSy+NFStWVKiqyhI2AirKZC4AU3GvAAAAAAAAGlVHR0fst99+sW7durKP8Z3vfCcWLVpUwaoqS9gIAICams2SZoJKAAAAAABAnnV2dsa3v/3tiIh47LHH4iMf+Ui2BVWBsBGUoVEmOstdDm4yjTI2QPWVGziZTVClXFm8ZznqZUzLraVa7zmZevnsAQAAAACA/Nm+ffuM9n/lK18ZZ555Zq67GkVEJGmaZl1D5rq6ugwCM1LuRKhJSQCYXYBH+AcAAAAAIH+6u7uTrGtoQHIMDaJUKsW2bduir68vXnjhhdiwYcPo45lnnolHH300BgYGIiLiT/7kT+LjH//4ZIfLxXdNZyNoYkJTAAAAAAAAAFAdP//5z+OCCy6Ycr+TTz45TjrppDjooINqUNXsCRtBGYRtAKgm3Xual88eAAAAAAAaR09Pz7T2e+lLXxp33nlndHZ2xkte8pIqVzV7wkZQhkbpCJS3egB4ketz8/LZAwAAAABA4zjssMOmtd+ll14aERE/+clP4sorr4y2tnzHefJdHVB3dGQAYCruBwAAAAAAQCN7/PHHY8OGDdHW1hZf+tKXYmRkJIaGhmJ4eHj0547ft23bFj/84Q8jIuK5556LE044ISIi/v7v/z4OPvjgLE9jQsJGUAaTpBMzNgBMRTAVAAAAAABoVM8//3x8+MMfnvVxhoaGKlBNdQgbkSv1MvnYKMuolXsek8nbOQKQP+4VAAAAAABAloaGhuKHP/xh9PT0RLFYjFKpFMViccxjx7aJfu66386/V8Jzzz1XkeNUg7ARuWLysbaMN1Bt1Qg1Up7JrvmN8jk1ynlMxH0bAAAAAAAqo7e3N66++urYsmVL1qWM6+ijj46jjjoq6zImlKRpmnUNmevq6jIIUCH10p0KgOzM5l7hPgMAAAAAkD/d3d1J1jU0IDmGGkjTNEZGRkYfw8PDoz93/D6d7bs+N53Xrl+/fsK6rrvuuliwYMF4T+Xiu6azEZShUZZRA6B51Dqk0+hdhgAAAAAAgPxbv359rF+/fnSJsx2PnZc9G2+ZtPF+n+oYu26LiGhpaYmOjo5oa2uLjo6OMccdL2y0evXquPjiiycKGuWGsBFQUfUSqDIJDrVRL9eEZlDrzyJvy7bpiAQAAAAAAM3nnHPOia1bt2ZdxrStXLkytm7dGosXL866lElZRi0so0Z9aOZwTLNPAlfjs6+XMdVFrLaMN7ViGTUAAAAAgMZiGbWqkGOogI0bN8aGDRtiZGQkCoXCmJ8T/b7ztunsM9m2YrFYVt3XXnttLFy4cLyncvFd09kIypDFhHyelrgxmVtbzTzezXzuWTDeAAAAAAAANJJ99tkn9tlnn5q8V5qmMTw8HIODgzEwMBADAwOxffv26Ovr2+3R29sbfX198f/+3/+LkZGRmtRXScJG0MRqHWASZABoHnnryOf+BAAAAAAAVNN73vOeePbZZ2f8uoULF8ZLXvKSaG1tjZGRkTjuuONiwYIFVaiwciyjFpZRA4AslBv+yCI0Ui9BlXoa04lUK6RU7nnkaWwAAAAAAPLKMmpVIcdQZ2644Yb48pe/PKtj/Omf/ml87GMfm2yXXHzXhI1C2IiZs/zYxEzKAjCV2dwr3GcAAAAAAPJH2Kgq5BgaUKlUiu3bt0dPT0/09PTE1q1bY9OmTXHJJZdERMSnPvWpOPHEEyc7RC6+a5ZRAwBoAnkK6QgFAQAAAAAAzailpSUWLFgQCxYsiJUrV0ZERKFQiEsvvTSGh4djzZo1sWbNmoiI+NrXvhaHHnpoluVOSNgIymCSdGLGBiCf8nR9zlPwCQAAAAAAIEttbW3x9a9/PW6++eb453/+59HtDz/8sLARAAAAAAAAAADw34rFYnzqU5+K3t7eMdt/7/d+L6OKpiZsBGWYrCPDZJqhW4NuFQAAAAAAAAAwsTRN47nnnotHHnkkHn744dGg0QEHHBCXXXZZzJkzJ+MKJydsBGUQmgGgmhohuFluMLdaGmFMAQAAAACA+jQ8PBwbN26MDRs2xAMPPBA33XRTbNq0KSIiWlpaYv/99480TeOcc87JfdAoIiJJ0zTrGjLX1dVlEJiRRulslLeJ4InkbdwAyI7QEAAAAABA/nR3dydZ19CA5BjqQH9/f1x55ZVRKBSio6MjIiL6+vrGPLZs2RKbNm2KHfmclpaWOOaYY+LII4+MVatWxYEHHjiTgFEuvms6GwEAmSg3NJJF2KReAi71MqbVCrtW4zzq5bMHAAAAAABq7/vf/35cddVVU+7X0tISq1evjlWrVsWqVati+fLl8Ud/9EeRJLnIDs2YzkahsxEzl0Vno3rpQlQvTBADAAAAAABAZehsVBVyDHVgeHg4brrppujv74+hoaHYtm1bbN68OV544YXo7e2N/v7+6Ovri4GBgd1ee/TRR8cb3vCGWLhwYSxYsCAWLlwYK1asGO2QNIFcfNd0NoI6kafOErUO6ghaAc2m0bvpzOb8Gn1sAAAAAACA+tHR0RF//Md/POV+hUIhLrvssrjmmmtGt61duzbWrl07Zr8/+qM/ijVr1lS8zkoTNoImVi+TsvVSJ0CluO4BAAAAAAA0jra2tjj33HPjmGOOib/+67+ecL+NGzfWsKryCRsBAAAAAAAAAFA1aZpGqVSKiIhSqRRpmo5u2/H7rn9Xav9qvudUxxgeHo6BgYEYHByMwcHBeO655yYdp3nz5lVl/CstSVPL/HV1dRkEmlK9LKMGNKZyl8PKYhmtelm6K09jmrclMKtxHnn67AEAAAAAstTd3Z1kXUMDqnmO4cILL4xbbrml1m/b1A466KBYsWJFdHZ2RmdnZxx55JFx7LHHTvaSXHzXhI1C2IiZa5SQTjUmgvN2jgDkz2wCPMI/AAAAAAD5I2xUFTXPMXz/+9+Pb33rW7V+26Z37rnnxty5c2Pu3LkxMDAQ++23X7z85S+faPdcfNeEjULYiJlrlLARANQbYSMAAAAAgPwRNqoKOYYaGG85tIipl2Kb6jU7P4aGhuLDH/7wjOq69tprY+HCheM9lYvvWlvWBUA9MpkJQDU1QqAmb8uolasRPgsAAAAAAJiOYrEYPT09U+43VeimnIBOHvadzqPc47/73e/ebd9SqRSPPfZY/OIXvxh3jPNM2AiaWDU6NJmUBZi9RrheVuscah1iaoTPAgAAAAAApuOss86KRx99NOsymt5HPvKRWLx4cdZlTErYCKgok7IATEUwFQAAAAAA8ufP/uzP4ktf+lLWZdS96XRK2rVD0q6djNI0jSTJxYpp40p2tHVqZl1dXQaBGalGRyAAaBbCRgAAAAAAjaW7uzu/qYj6JcfQBAqFQnz3u9+NK664Ysz2H//4x7Fo0aLxXpKL75rORkDuVWPJHJPZANmZzTVYUAkAAAAAAGgU99xzz2jQ6NWvfnWcfPLJsWrVqomCRrkhbARUVDUmgU0eA82mEQI1jXAOAAAAAAAAlVAqlaJYLEaxWBzz++bNm0f36evri0MOOST3QaMIYSOgDCaQAaqrEa6lk52D+wgAAAAAAJClgYGB+Iu/+It46qmnsi5l1C9/+cu4+OKL4//+3/+bdSlTStLUMn9dXV0GgaZU7vJkJoKB6arGMoiUp9zwD/nh/gsAAAAA5FV3d3eSdQ0NSI6hil544YV4xzvekXUZuznssMPiFa94RRx00EGxatWq2HvvvSNJxny9cvFdEzYKYSOoJN0qAJjKbO4V7jMAAAAAAPkjbFQVcgwZSdN0zFJnOz8KhcKUv0+0/3iv2bZtW2zevDmuu+66cWs5+uij46KLLtp5Uy6+a5ZRgzI0SkegapxH3s4RgMbiPgMAAAAAAFRTkiTR2toara2tNXvPXcNGbW1tUSgU4o//+I9rVsNMCBtBEzNhCwAAAAAAAADZuu666+KrX/1q3HzzzRERccUVV8Q+++yTcVUTEzaCMjRKSKdROjQBUF9mcx+xjBoAAAAAANBoOjs7Y8OGDWP+zjNhI2hi1ZiUNQkMMHuNfi1t9PMDAAAAAACYSJqmccEFF8Qdd9wx7vPnn39+LFmypMZVzYywEZShUToClXsek8nbOQLUo0a4llbjHgMAAAAAAFDv0jSdMGgUEfE3f/M3cfTRR8eCBQtqWNXMCBsBAFBxkwWmBJEAAAAAAIBm1dLSErfeemt861vfiu9///u7Pf/+978/5s2bl0Fl0ydsBE2sETpnAAAAAAAAAEC9+fM///M49dRT45FHHonPfOYzo9sffPDB+MpXvhIf/ehHcxs6EjaCMgjpAAAAAAAAAACzsccee8TRRx89Zts999wTERGrV6+Ok046KYuypiRsBGUod/kXISUAAAAAAAAAICLimWeeidNPP33MtjPOOCNe+cpXxhFHHJFRVVMTNoIyNEpoqNzQ1GQaZWwAmJ1q3GMAAAAAAAAaxR133BHnn3/+btu/973vxamnnhpJkmRQ1fQIG0EZGqWzUbn1THb+kz2Xt/MHAAAAAAAAgCw89dRTY/7u7OyMrq6ueNWrXhWLFi3KqKrpETaCMjRKaEZnIwCqZbL7ga5HAAAAAABAM9iyZUt89rOfjfXr10exWIxSqRTFYnH09529//3vj9NOOy2jSmcmSdM06xoy19XVZRCYkUbpbASQpXI7oWXRQa1eurbVy5hmETaqRje/PH32AAAAAABZ6u7uzu96T/VLjiEndoSDisViFAqF0Z87fp9s+8033xw33njjjN/zhhtuiLlz5473VC6+a8JGIWzEzDVK2KheOkvkbdwAyI7wDwAAAABA/ggbVYUcQxVt3bo1TjnllKzLGNfhhx8ef/u3fxttbeMuVpaL75pl1KCJmZQFIAsCQwAAAAAAQJba2tpi3rx5sX379qxL2c0DDzwQJ5xwQnz961+PP/iDP8i6nHEJG0EZTIROzAQyAFNxPwAAAAAAALK0YMGCuP7666ty7DRNo1QqjVl+baLH+vXr47Of/ey4xymVSlWprxKEjaAMzb6M2mTnkbdzBCB/BFMBAAAAAIBqSdM0hoaGIk3T0VBPoVAY9+euz09nn1237/pcoVCIgYGBGBoaiqGhoRgcHBx97Ni24/lCoTBa93ve855497vfHYsWLYokycVqaRMSNgJmzCQxUAnlXkuyuAbVy3WvnsZ0IuUGYad6bbnnkaexAQAAAAAApvbNb34zfvCDH2Rdxozdcsst8bOf/SyGhoZijz32iC9+8Yux1157ZV3WuJI0TbOuIXNdXV0GAQCgRmYT4BH+AQAAAADIn+7u7ny3YalPcgxleuSRR+LjH/94REQkSTLm0dLSMvpz5+fTNB3thLRjGbRdf+541Cpnc8EFF8Qb3vCGXTfn4rumsxGUodmXUau1vI0bAFOrl3sMAAAAAADQWFatWhXf+MY34gMf+EDWpexmzpw5sXDhwpg/f34sWLAgFixYMPr7/Pnzo1QqxcDAQCxYsCCOPfbYrMudkLARlKFRwi+Nch4A5E+5y7YBAAAAAADM1rx587IuYVxDQ0MxNDQUmzZtmnLf5cuXx8knn1yDqmZO2AjK0CidjQAAAAAAAABgup5//vl417velXUZDe29731vrFixIt761rdmXcqEhI2giVUjNFWNbhXVCGnpqgGQT7O5Pjf6tV1oGQAAAACArG3bti3rEhra8uXLY2hoKA488MBoaWnJupwJJWmaZl1D5rq6ugwCTUmHJgDqzWT3LvcnAAAAAIBsdHd3J1nX0ICaPseQpmmUSqVI03TMY9dtU+1TKpUiIqa1bTbvVSqVYnh4OAYHB2P79u0xMDAQg4ODMTAwMOax8/P9/f2xZcuW0Xp2dt5558Wb3vSmXTfn4rumsxGUoVFCOnmrZyL10i0JgOkRGAIAAAAAAKaSJEm0trZmXcaUNm7cGO95z3tmfZyDDz449t1332hra4vh4eF4xSteUYHqqkPYCKioakwgm3gGAAAAAAAAII8WLVoUBx98cDz88MOzOs7pp58exx57bIWqqi7LqIVl1GheOgYBWSo3nJhFV5xav2etx6Ya51eNe8xsVOM83PMAAAAAAF5kGbWqkGOoQ1dddVV885vfLOu1++23X0REFIvFeP3rXx8f+MAHor29fdfdcvFdEzYKYSMAgFqaTYBH+AcAAAAAIH+EjapCjqEOFYvFuP3226NQKER7e3u0trbGyMhIDA0NxfDw8OhjaGgobr755njmmWcmPNa5554bp5xyyq6bc/Fds4walKHcbg2NMgmapw4f5WqUzwKgHrkGAwAAAAAAjai1tXXCeZA0TaNUKkWxWIz+/v646aabxjy/fPnyePvb3x6LFi2Ktra2OP7442tQcXmEjaAMWUyS5ilwU+uleExKA9SfZg/mAgAAAAAA2fvud78bl19+edmvT5LxGwlNtH2ifXcEjXa13377xcKFC+NlL3tZnHXWWTF37tyya60lYSMoQxYTqHmafG2EJWyqEd4Cdlcv1wQqr9xgKgAAAAAAQKXMJmgU8WI3oplsn67jjjsuXv/618chhxwS8+bNi3nz5kVbW/1EeOqnUqDiqjHZm6cOTLU+JkClNEKoEwAAAAAAIGu33HJLlEql0eXLdn3MdPtMj7F9+/a44oordqvrtttui9tuu23Cum+44YZcdzkSNoImZsIayFK5gZosgji1fs9yj1lPYzqR2YRWq3EeeRobAAAAAABgZpIkidbW1mhtbY329vaav//1118/49ccfPDBue9ylMy2tVMj6OrqMgjMSBbLqAHQPBo94DKb82v0sQEAAAAAqEfd3d1J1jU0IDmGBpCmadx5553R19c32u1oeHg4vva1r+227+GHHx4XXXTRVB2NcvFdy3cUCsilWk/01svSbACV4hoFAAAAAABQ36699tq45JJLpr3/Aw88EBdeeGF84QtfqGJVlSFsBOSeSXdoTPW05Fe9dNOppzGdiGXUAAAAAACARnDvvffOaP/Vq1fH2WefXaVqKssyamEZNWbOMmoAVFOjB1wsowYAAAAA0Fgso1YVcgwNIk3TGBgYiG3bto0+rrjiili7du2Y/c4666x417veNdXhcvFd09kIyD3LqAHNphGuUdW4dgMAAAAAANSbJEli3rx5MW/evFi2bFkUi8XdgkYREXfddVe86lWvigMOOCCDKmdG2AjIvUaYdAdoNuUu2wYAAAAAANCI0jSNTZs2xbp16+ITn/hE/OpXv4qHH3441q1bFxER9913X1x88cXxzW9+M+NKpyZsBE3McnAAVEsWgSL3NQAAAAAAIG+Gh4fjzDPPjOeee27S/VatWhVvectbalTV7CRpapm/rq4ugwAVMtlEr8lcYGflXi+yuM7Uy7WtXsY0iyBSuedRL589AAAAAECWuru7k6xraEByDA1iaGgo3vGOd8S2bdumtf/LX/7y+OpXvxrt7e3jPZ2L75qwUQgbQSWZlAVgKrO5V7jPAAAAAADkj7BRVcgxNIhisRg9PT3x6U9/Op544olpveaGG26IuXPnjvdULr5rllGDMmSxTEs1ukBUY1LWRC8AAAAAAAAAzShN0+jr64vNmzfHpk2b4l//9V/jrrvumnD/V7/61fHJT34y5s+fH52dndHS0lLDassnbARlyCJQk6dlbASKaqtegmbV4N9obRlvKimLpdIAAAAAAAAqLU3TKBaLYx6FQmG3vz/60Y9Oa6m0RYsWxate9ar49Kc/HZ2dnTU4g8oTNoIyNPuEvCVsaquZx7SZzz0LxptKmuzfkyDSxNxjAQAAAACguu644444//zzM3v/3t7euOWWW2LPPfeMI488MubMmRPLly+PZcuWRWtra2Z1zYSwEZTBZB8A9UaIpT74LAAAAAAAoLrmz5+fdQkREXH11VfH1Vdfvdv2Qw45JL7yla/EnDlzMqhqeoSNoImVO6GpIwVA/RFiAQAAAAAAiDjiiCPi1ltvregxS6XSbkutFYvFCbc/88wzcf3118eDDz4YfX19Y4718MMPR6lUqmh9lSZsBGVo9mXUyl0ap1HOH6DaGuFaKpgKAAAAAAA0i5aWlmhpaYn29vYp9y0UCvGhD31o3Oc++MEPxplnnhlJklS6xIoSNoIy1MtELwBkpdxgKgAAAAAAQL16/vnn47zzzoutW7dGkiSjIaSdH5MFiTZs2JD7oFGEsBE0tVpP9jZ7R6hyVeNzqpcx9W+mtox3fhhTAAAAAACA+nPXXXfF448/XtZrL7744jjyyCMrXFF1CBtBE6vGZHYjLP2TN808bs187lkw3vnhWlp5xhQAAAAAAKi2k046KY499tgYHh6OgYGB+NnPfhaXX375tF67ffv2uuhqFCFsBGVplO4fOhsB9agZQiONcB55WyqtEcYUAAAAAADIvz322GP09zvvvHPar3niiSfiD//wD8e8Pq+EjaAMzT5h2eznD2TLNQgAAAAAAIB6cOqpp8ahhx4a/f390d/fH9u3b49t27aNPvr7++Oee+6JLVu2xBVXXBG//vWv4+KLL8667CkJG0EZGqVDj2XUAKiWya75eet6BAAAAAAAUA1tbW1x2GGHjdlWKpXiy1/+ctx4441jtq9cuTLe+973RqFQiLa2fMd58l0dkEsCRQDV1QjX2bwFihphTAEAAAAAgNnbsGFD/M//+T+jr68vkiSJJEmipaVlzO8RMeW2XV+386NUKkWxWNztZ7FYjEKhEFu3bt2trvXr18cnPvGJiIj4yU9+EvPnz6/doMyQsBEAUDV5C5w0gmp018vT5zSbWsp9bZ7OfzJCUQAAAAAAMHt33XVXbNiwIesydrNs2bIYGRmJ448/Pjo7O7MuZ1LCRgBA1QhH1Idaf06z6TKkQxEAAAAAADAbp5xySpxwwgmRpmmUSqUoFArjPnZ0IZruc5dddtms6jrggAPiDW94Q3R0dMTdd98dRxxxRMydO7dCZ11ZwkbAjJnMBWA2ZnMfcQ8CAAAAAABma8GCBZGm6YSPUqkUERGlUmnazz/44INx2223lV3T2rVrY+3ataN/f/CDH4z3ve99szvRKhE2AipKxwkApqKzEQAAAAAA5MtvfvObuOeee+LRRx+NjRs3RkREmqazOuaO188ksFOp4M94z++6b54tWrQoDj/88KzLmFAy238cDcIgVJjJvuZVL5PAk9UJAHmUp/soAAAAAMDOuru7k6xraEA1yzE8//zz8a53vatWb9dUWlpaorW1NVpaWsZ97Hiura0tDjvssDjuuOOmWj4tF981YaOI6OrqMgjMSLlBlWaYJKyXsBEA2dHZCAAAAACgsQgbVUXNcgzFYjGuueaaeOqpp2L//fePtra2STsNTdUxaLqvK2ffyV63a9eiLOoq9/XFYjG2bds2+pn86Ec/isWLF4/3ceXiu2YZNaCiTPQCAAAAAAAA1I/W1tZ45zvfmXUZTe+cc86JBx98MCIiLrroojjvvPNi0aJFGVc1PmEjKINADQAAAAAAAAAwkZGRkRgaGorBwcHRx46/BwYG4tlnn40NGzbEhg0bYv369bFu3brR1951111x++23x4knnpjhGUxM2AjK0CjLqJV7HpPJ2zkCQITl1wAAAAAAgMq744474vzzz6/Isdrb2+N973tfrFq1KpYtWxb7779/RY5bDcJGUIZGmZQs9zyqEVICoLHk7V7RKPduAAAAAAAgP1pbWyt2rJGRkbj//vvjjDPOqNgxq0XYCMqgs1Ftj5m3cQOotkbowjNZnXkLIgEAAAAAAJTjmGOOiVtvvXXSfQYGBuJtb3vbtI732te+thJlVZ2wETSxepmwBmg2rs8AAAAAAAD155lnnolPfvKTsXnz5mhtbY22trZobW2NxYsXR09Pz7ReXw+EjaCJNUqHJqA+ldu9J4uuP/XSaShPY1ruPWY2XY9qfR55+uwBAAAAAICp3XbbbfHtb3979O80Tcc8v/PfEz2368+dn9+wYcPo38ViMYaHh8et47TTTot58+bF4sWLY+XKlbFixYrYe++9K7osWzUlu558M+rq6jII0GQs4QO1IYzBeGYT4BH+AQAAAADIn+7u7iTrGhqQHEMVHH/88VmXEBERe+yxR7S2tkZra2t0dnbGgQceGMuWLYuTTjopVq5cOdlLc/Fd09kIyqAjUP3zWQAAAAAAAAA0lxtuuCE2bNgQSfLfmZ1isRjXX3999Pb2RqFQiGKxGKVSKUqlUhSLxUkfIyMjMTIyEsPDw6OPYrE4ZR1btmwZ8/e6desiIuLJJ5+Miy66qLInXQU6G4XORgBQLbqI5Ue5y6iRH4KyAAAAAEBe6WxUFXIMNfKv//qv8bWvfS3rMuK1r31tfPrTn47FixdPtlsuvms6G0EZmr2zkSVsgOlyTagPtf6cLKMGAAAAAADkxUknnRQDAwPR398/6X5XXXVVVes488wzpwoa5YawEZShUSYzdbIAoFrcYwAAAAAAgHrQ3t4ep59++pT7rV69Om688caIiNixith4q4mNt61UKsW999474bFvuummaG9vn27JmRM2gjI0e2cjAOpPrTsCWbatPDo3AQAAAABAPnV1dc3q/9X/8pe/jI997GPjPveWt7wl9tprr0iSJE466aR473vfGy0tLWW/V7Ul4yWqmk1XV5dBAACooGoFc4VxAAAAAADyp7u7O8m6hgYkx9CgCoVCXHPNNfGd73wntm3bNu4+P/7xj2PRokXjPZWL75rORlCGRulsVI3OEnk7R4B61AiBGp2NAAAAAAAA/ltPT0/86Ec/ioiIb3/725PuO2fOnBpUVD5hI6CiBJgAZs91DwAAAAAAoLFccMEF8Ytf/GLK/fbee+9Iklw0MJqQsBE0MZPZAAAAAAAAAFA9IyMjcfbZZ8ejjz465b4f+MAH4v3vf38NqpodYSNoYvWyjI1QFED9qZd7DAAAAAAAQKX89re/jY985CMxODhY1usfe+yxCldUHcJG0MSqEeKZbHJSHvgJAAAgAElEQVRZaAjYWbnXiyyuM7V+z1qPTTXOr9z3m01IqdzX5u3fGwAAAAAAUJ8eeuihsoNGERFPPvlk5YqpoiRN06xryFxXV5dBYEaqMZkJAM1iNgEe4R8AAAAAgPzp7u5Osq6hAckx1Kk0TaNQKMTQ0FAMDw/H4OBgDA0Nxde//vW49957J33tAQccEN/61reitbV1ol1y8V3T2QgAAHJCmAoAAAAAAOpbkiTR3t4e7e3tY7affPLJU4aNnnjiiXjjG98YERGXXHJJHHHEEVWrczaEjaCJ6dAEQBbcRyZmbAAAAAAAYGppmsZdd90V27dvj4gXAz4TreyVJLs3A0rTNEql0phHsVjcbduuz+943a77Tve5173udWOef/bZZ2PdunXj1j137tzKDViFCRtBE6vGhKaODACz1wjXUoFWAAAAAACgWm644YZYs2ZN1mVUxPz58+OVr3xlHHrooXHggQfG4sWLY+7cubFy5cqsS5uQsBE0sWpMBJskBpg919LKa4QAFwAAAAAA8KI3vvGN8Zvf/Ca2bNmyW0ejXTsZTdTxaNfnJuqAtOvfU3U/mqpb0tNPPz3mmNu2bYvbb789br/99jHbP/OZz8Sb3/zmyQciI8JGwIyZsAWorka4zk5WZ7lh19mol3EDAAAAAACmNmfOnDjnnHOm3O/qq6+OK6+8MiL+Ozg0XoBo19+rtU+xWIyIiJaWlliyZEnMnz8/Wltbd9tv+fLlccwxx0x5fllJJktwNYuuri6DwIw0ytIwWUz2TiRvYwNURp6uM80ub+EfZs69EgAAAADIq+7u7t1bwjBbcgwVcPzxx2ddwrRdfPHFcdRRR021Wy6+azobQRMzaQlUm+tMfajG51StYG4jdH0CAAAAAABq49/+7d+iv78/Il5cJi1N0ygWi6PLm+28zFkttj/88MOxdu3acWv9zne+EwcccEAsXbq0lkNUFmEjAAAqrlqdlBo9UCRMBQAAAAAAldPR0RF77rln1mWMevrppycMGz300EOxZs2auOiii2pc1cwJG0ETq8ayOSZCAaimRg/jNMI5AAAAAAAA43vpS18at956a0S8uGzajTfeOOb5tWvXxic+8Yn40pe+FB0dHVmUOC3CRtDETGgCkAX3HwAAAAAAoFENDw/HZz7zmbjvvvvKev1//dd/xeDgoLARkE/ldjYySQxUQrkdarLobFMv3XTqZUyr0VlvquOWex718tkDAAAAAAD5sH379rKDRju8/e1vj//9v/93bucihI2gDHn9Qs9UrSeQG2XcAKrNtRQAAAAAAKA+LVmyZHSptFtuuSUuvPDCso6z//77V7CqykrSNM26hsx1dXUZBACAGplNmEoQCwAAAAAgf7q7u5Osa2hAcgwNor+/PwYGBmLbtm1jHk8//XT88Ic/jN7e3nFf96lPfSpOPPHEXTfn4rumsxGUwfJjE6v1EjblaobPAiCvXIMBAAAAAICsFIvF+Pd///cYHByMiIhdm/SM17Rnx7Y0TSNN0ygWizN+lEqlMX/fddddo8d/xSteES972cti3333jRUrVsSee+4Zq1evruIozI6wETBjte4qYVIa6lc1woKUZ7JraaN8To1yHhNxPwQAAAAAgNm78sor4/LLL8+6jDE6Ojri2WefjWeeeSYef/zx+Mu//MtIklw0MRqXsBEwY+VOWJskhebje18ffE4AAAAAAECzOPXUU2Pz5s0xMDAwYdehqToT7fx7oVCIkZGRGB4ejpGRkXE7I01l7dq1Y/5+73vfGy996UsrdcoVJ2wEVFQ1JqwtowbADuWGWoVhAQAAAACAiIgbb7wxrr322qzLiPnz58e8efNi6dKlsddee8Vee+0VS5cujZe85CXxkpe8JOvyJiVsBOSeSWBoTPUUGqn1e9Z6bPJ0flOp9XJwQkoAAAAAANBYjjnmmLjqqquit7c3SqXSaCeiNE13e1TT0NBQLFiwIObMmRMjIyOxbt26OOmkk+LAAw+s6vtWQlLtwakHXV1dBoEZKXcy06QkAMwuwCP8AwAAAACQP93d3UnWNTQgOYY6VywWY2BgIPr6+kYf/f390dvbG/39/fH444/Hf/zHf4x5zete97r4/Oc/P9lhc/Fd09kIytAok5nV6ABRrkYZUwAAAAAAAABobW2NBQsWxIIFC2Lffffd7fnzzz9/t22rVq2qRWmzJmwEZWj2zkaNch4ANA8dkQAAAAAAgKxs3Lgxnn766SgUCtHb2xs9PT1xxx137Lbf3LlzM6hu5oSNAABoeAJFAAAAAABQGdu2bYvh4eFIkv9e0StN0zG/l0qlSNN0zGPnbaVSKSJiWtsmO06l32uq9y/nWP39/fHjH/94ynG96qqrYvny5bP6bGpF2AiamIlXAMgXHZgAAAAAAMizBx98MM4555ysy2hIX/jCF+IP//APo7e3N1544YU4++yzcxs+EjaCMpjsAwCqwX9jAAAAAACQZy972cviyCOPjEceeWTCfcbreLTztqnMZN/ZKreuqc5rsq5LE3VD+uUvfxkPPPDA6DFe//rXCxsBANA8JuvQAwAAAAAA1Kd58+bFl770pazLaBiFQiGuvfbaWLduXTz++OPx4IMPRkTERRddFEcffXTG1U1M2AjKUO4Eat66FTTKeQCQP5PdKwSRAAAAAACAWnj88cfj7rvvHv17R0eiXe3cqWiyfUqlUhSLxSiVSqO/7/h7ou2TPXfvvfeOHr+joyPOOOOMeNvb3hb77rtvBUeh8oSNoIk1c2jIRDfURjNfZ5qd6ywAAAAAAJC1D3/4w1mXMG3Dw8Oxzz775D5oFCFsBDQpAQiA6tLZCAAAAAAAyNqll14at99++5htO3cvSpJkWsfZeb+JOhxNtG2q54vFYvzqV7+KiIg1a9bE0UcfHUuXLq3QCFSHsBGUQVBlYpNNIBs3gOYhUAQAAAAAAGTtkEMOiUMOOSTrMqa0du3a+OIXvxg9PT3x7ne/O17zmtfE2WefHfvss0/WpY1L2AioKIEiACJ0NgIAAAAAAJiONE3jM5/5zOjfpVIpfv7zn0dXV5ewETSScidJBXEAAAAAAAAAoPE89NBDcdVVV0WapqOPUqk05ueO30dGRmJoaCgGBwdj69ato8dobW2Nf/iHf4h99903Ojs7MzybyQkbQRMTmgKyVO6yi1ks11gvS0RWo2NQrc9vNudQjftavXz2AAAAAABAtj75yU/G8PDwrI5x+OGHx3/8x3/E6tWr45hjjon29vYKVVdZSZqmWdeQua6uLoMAAFAjswnwCP8AAAAAAORPd3d3knUNDUiOoc5s2bIl/uu//iuSJImWlpZIkiSKxWIMDw+PPoaGhmJoaGi3bcPDw9HX1xf33HPP6PHOPffcOOWUU3Z9m1x813Q2AirKJDAAAAAAAABAfent7Y2+vr6IiEiSifMsO54rlUqjP3c0udl5qbCJHjtet/PvlTzGdB/Tee9a1BMR0dHREW1tbXHrrbeOjvNZZ50VJ554YpmfZvUJGwEzJlAEAAAAAAAA0Bg2b94c73znO7Muo6ksWLAgWltbI0mS0ccOLS0tcdJJJ0VHR0eGFU5O2Aia2GShIYBqKze4mEXgsV5ClvU0phOZzb2pGueRp7EBAAAAAIBqWLJkSbzjHe+IO++8c7Tbzs523jbe8+OZaL9KHWs6x5/O9pkef7x9du5wtGvHo0KhMO5r+/v7IyLim9/8ZqxatWrK98qbZLofXiPr6uoyCDSlWoeNTMoCVFe9BGNmU2e9nCMAAAAAQDPp7u6eeN0tyiXHUOcuvPDCuOWWWybdZ4899ogvfvGLsddee8Uee+wRra2tUx02F981nY2gDOWGdJphErQZzhEgr1yDAQAAAAAAdpemadx8882xbt26ae0bEZEkyZS/l0qlKJVKUSwWR3/u+H2qoFFExJYtW+Iv/uIvdtv+05/+NDo7O6d9frUmbARNrJknpS0hB7XRzNcZJubfBQAAAAAAUEuPPPJIfOELX8i6jGkrFotZlzApYSMog0nSidXL8jZ5qgWg2dTLvQIAAAAAAGgMq1evjs997nPx9NNPj9l+5ZVXxuDgYEZVTaytLd9xnnxXBwDUNV3E8mOyEE+ePqfZ1JKn86gGQSwAAAAAACjfcccdt9u2X/7yl7F27doMqhnfcccdF5/73Ocm3SdJkvMi4k8jYnVEDEXEXRFxXpqmv9xpnwUR8cWIOCUi9oqIpyLiG2maXrLTPt0Rseug/CBN09OmqlPYCMpQ7mSmSUKg2bju5UeeugnNppY8nQcAAAAAAFDfLrrootHfS6VSFAqFKBaLUSwWR38fGRmJoaGhGBoaiuHh4RgeHh7391237bp9cHAw7rvvvglr6ezsjHe/+93TKbsrIi6LiP8vIpKI+HxE3JwkySFpmr7wu32+EhFvjIgzI+I3EfH6iPiHJEk2pWl6xU7HujwiPrvT3wPTKUDYCMrQKJOZte4AIaQFQFaElAAAAAAAgIiIf//3f48vfOELmb3/a17zmjjssMNi9erVsf/++8eSJUsiSZJpvz5N0zfv/HeSJGdGRE9EvDYirtvxNhFxRZqmt/7u7yeTJPlQRBwdETuHjbanabpxpucgbARlEJoBoN64BwEAAAAAAETsv//+mb7/f/7nf8Z//ud/RkREe3t7LFiwIBYtWhTLli2LFStWxL777huLFy+Orq6uuP/+++PRRx+N3//934+jjjoqWltbxzvkwohoiYgtO237eUSclCTJP6Zp+nSSJK+JiCMi4su7vPa0JElOi4hnI+KnEfF/0jTtm+ockjRNZ3zijaarq8sgAADUiGXUAAAAAAAaS3d39/TbsjBdcgx1Jk3T0eXXdizBtuP3QqEQ/f390d/fH729vdHX1xf9/f3R19cXfX190dvbG88991z8+te/Hj1ee3t7RESMjIzE3Llz4+Uvf3nce++9bbfeemtx5/dNkuSfI+L3I+JVaZoWf7etIyK+EREfjIjC73b9WJqm39jpdX8eEesi4pmI+IOI+GJEPJam6QlTnavORgAA1NRsQkECRQAAAAAAQB4lSRJtbW3R1ja9KE6xWIynnnoqtm7dGps2bYoXXnghli9fHj/72c8i4sWQ0Q4DAwPx0EMPRUS8NSJ+stN7fiUijo2IY3cEjX7nY/Hismonx4uBotdHxJokSZ5M0/TGiIg0Tb+10/6/SJLkiYhYmyTJK9M0vXey2oWNoAyWUQOAbOhsBAAAAAAAZGlkZCQKhUIMDw9HoVCIkZGR3R7jbd/1Nd/4xjd2O3ZnZ2esXLky0jSNZ555ZsxzQ0NDES8uhfaTiIgkSS6JiNMi4vg0TZ/YsV+SJHPjxS5Fp6Zpet3vNj+QJMkREfGpiLhxglO7JyKK8WKXJGEjAABqSzAXAAAAAABoNJdffnl897vfrcqx/9f/+l/R1dUVSZLEnXfeGRdeeGEMDAyMPj9nzpwYHBy8PyIiSZKvxotBo640TR/e5VDtv3sUd9lejIiWSUo4LCJaI2LDVLUKG0ETK3cieDImiQGImPx+UI37DwAAAAAAQLW97nWvix/84AejS5ylaRppmlbk2J///OfjgQceiI9//ONx1FFHxctf/vJ46KGHYmhoKObMmROHHHJI3HvvvT9NkuTSiDgzIv4kIrYkSbLP7w7Rn6Zpf5qmvUmS3BYRFyVJ0h8vLqN2XES8LyL+KiIiSZIDI+L0iLghIjZFxCER8bcRcV9E3DFVrUmlTrqedXV1GQRmRLeGiVneBpiucq8XWVxn6uXaVi9jmkXYqNzzqJfPHgAAAAAgS93d3UnWNTQgOYY696EPfSieeOKJqXccx09/+tNob2+Pu+++Ox577LE46KCD4qijjorW1tYkSZKJ/m38nzRNPxcR8bsA0hcj4k0RsWe8GDj6x4j42zRN0yRJXhoR34uIQyNiQUQ8HRHX/+4YL0xVn7BRCBsxc8JGANSbPIVmZlNLns4DAAAAAIAXCRtVhRxDnRsYGIhHH300kiSJNE1jZGQkBgYGYmhoKAYHB+Oaa66Jxx9/fLfXrVy5Mv7pn/4pOjo6xjtsLr5rllEDZsxEL0D9yVOgaDbcZwAAAAAAgHowd+7cOPzwwyfdZ82aNbttW79+fbz5zW+OiIizzz473vnOd1alvtkQNoIyNPtEZ7OfPwBTK3fZNgAAAAAAgGZw4oknxoknnhg9PT3xuc99Lu6///7d9nnyySdrX9g0CBtBGSyjBkA16SA3MWMDAAAAAADUszRN45/+6Z/ie9/73rjP/93f/V3st99+sWjRohpXNn3CRkDuVaMDhglpAAAAAAAAAGotTdMJg0YREeeee25ERJx//vnxP/7H/6hVWTMibARlEFSpLeMNNBvXPQAAAAAAgMbU0tISN998c/T390dfX1/09vbGCy+8EGvWrImenp7R/V544YUMq5ycsBEAQM5YKqzyjCkAAAAAAJAXra2tsXjx4ujr64uzzz57zHN/9Vd/FatWrYoDDjggo+qmJmwETazc5clMygJUVyNcZ/MW7mmEMQUAAAAAABpHmqaxbdu2MdsOPvjgeOtb35pRRdMnbATMWN4mkAHIn8nuB+4jAAAAAADQuAYGBmJwcHDMtjRNR3+WSqW6+lmJYxSLxejt7Y2enp7o6emJrVu3Rk9PTxSLxYiImD9/frzpTW+Kd77znTX/vMohbARNzIQukKVyAydZBFVq/Z61Hps8hX/K7bo31WvLPY88jQ0AAAAAAOTds88+G6eddlrWZdSNzs7OWL58eRx77LFxyimnxF577ZV1SdOS7EiPNbOuri6DwIxYfgyAamr0gMtszq/RxwYAAAAAoB51d3cnWdfQgOoyxzAyMhJr1qyJu+++e9znk2R6/1Qm2m+87dM95kxeP5NjTtQNabpdknbkdpYuXRpnnXVWrF69OlasWDFRDbn4rulsBACQM0IzAAAAAABAPWpvb4/zzjsv6zLqwubNm+O73/1utLa2xjXXXBObNm2KCy+8cPT5iy++OI466qgMK5yYsBE0sWp0aNJxAgAAAAAAAAAm94//+I9x4403Tvj80qVLa1jNzAgbQROrRvhHoAiAanKfAQAAAAAAGsHHP/7xOPTQQ2Pbtm3R09MT//Iv/xIjIyMREXHNNdfEkiVLMq5wYsJGAADUDR30AAAAAACARtDZ2Rknnnhi/OY3v4kbb7xxNGgUEZEkSYaVTU3YCACAiit3qU4AAAAAAIBmcd9998Vf/uVfjv59wgknxJFHHhmLFi3KsKqpCRsBM6arBACz4V4BAAAAAAAQsd9++435u6WlJU444YSMqpk+YSNoYuV2nTBJDMBUJrtXCK0CAAAAAABEPPXUU2P+Pu644zKqZGaEjaCJmdAFoFkIOAEAAAAAALWUpmkUCoUYGRkZfez6d1tbW5x++ulx5ZVXRkTEI488Eq9+9aszrnxqwkbAjJmwBWAq5XbPqxb3JwAAAAAAYDbOOeecePDBB6v6HgsXLqzq8StF2CjyNxnWCEzo1Ydq/NuvxjH9ewKoP+UuowYAAAAAAJBHGzdurOrxly1bFhs3boxbbrklDjrooPi93/u9qr7fbAgbhSADM9fs/2aa/fwBAAAAAAAAaC5XX331lPsUi8UoFovjLplWKBRi27ZtsXnz5ti0adPoY/PmzfHb3/42nn/++fiXf/mX0WP99V//dbzlLW+p5imVTdgIylBuR4a8hXTyVg8AjUP3IgAAAAAAoNm0trZGa2trdHR07PbcV77ylbjuuuvGfV1LS0ssX748li1bFkNDQ7F06dI4+uijq11u2YSNoIk1SmgKoNFMdn2ul2tw3pZRa4QxBQAAAAD4/9u79yC7yjpf+N/VnYSQBEgCBNAJKC83jQyjxlI4M9pyKV9E9FjKgC+KlFbhjVPOHJjBgiNap2AolcucjA7vOMNNZ0ZwMjIYQArmQDMMEsCBueiRi0Y5COESLkm6c+nuvdf5I0mfJPR19969L/35VK3au9del996dvZaqXq+9TxA+3r3u9+dV199Nffdd99rPrvjjjsye/bsJlRVG2EjAGDGEDiZuWoNP/l3AQAAAAAA1MPy5cvT398/YtjoM5/5TD7/+c9n+fLlTahs8oSNYAZrRAeqDluglbXLfahd6uwU2hsAAAAAAGikarWaarWad73rXfna176W9evX5+WXX84LL7yQtWvX5oEHHsgf/dEf5aijjsphhx2Wt7zlLTnppJPS1dXV7NJHJGwENdApOTptAzB1nR7c7IRrAAAAAAAA2tPPf/7zfP7zn292GSN67LHH8thjj+XWW2/NwMBATj311GaXNCJhI5jBxurMrpUOZGBnjbjPzHS1tmmt04i1k065jtF4xgIAAAAAwNStXbu22SW8xvz583PAAQdk6dKlmT9/fhYuXJgTTzyx2WWNqijLstk1NF1PT49GYFIa0dELADt0+shGU7m+Tm8bAAAAAIB21NvbWzS7hg4kx9AEZVmmWq1maGhoeKlUKqlUKq9ZN9lt+vv7s3HjxmzYsCF9fX3ZuHFjNm7cmL6+vmzYsCFbtmzZpZaLLrpopMBRS/zWjGwENdCZOTqdwABT1wn3y04fZQgAAAAAAOg8RVGku7s73d3d2WOPPWo6RlmW+bu/+7v8y7/8y/DxiqJIV1fX8OucOXOy7777ZuHChRkYGMjWrVvzyCOP7HKcSy+9NL29vbnkkkvqcWl1JWwENTCy0egacY2me4POVGs4sRmhxnYJUrZSm9a631Tu+Y24jnb57gEAAAAAgObaMSrS888/n6uvvrouxzzuuOPqcpx6M41aTKMGAFBvjQrmCv8AAAAAALQe06g1hBzDNPnZz36Wc889t9ll7OKWW27J3nvvPdJHLfFbM7IR1MDIRqPTCQzQmqb7/lzrSEoAAAAAAADTaWhoqNkl7GLevHmZO3dus8sYk7ARUFcCRQCtqZXuz61UCwAAAAAAMLMdc8wxueeeeya9X7VaTaVSSaVSydDQ0PD73dft/rpjWb16dVauXPma427atCmVSqUel9YwwkYwgxmhCYBG8YwBAAAAAAA6WVdXV7q6ujJ79uya9n/ooYeG35933nlZvnx59t9//3R3d9erxIYRNoIZTIcuQGvqhCkpTaNWm0747gEAAAAAgG36+/tz5ZVXZu3atbuMeFStVneZvu2KK67IFVdckQMPPLCJ1U6csBHMYO3S2atzFagXQY7214jvqZX+Xfh3CAAAAAAAneO+++7L3XffPaFtzzvvvF3+vvLKK/PWt761EWVNmbARMGk6QoF21S73r3apsxkaEQzS3gAAAAAAQL19+9vfzve+972a999rr73qWE19CRvBDKZzFYBGaaXRggAAAAAAABpl48aN+djHPpb+/v4pH+ttb3tbrrjiijpU1VjCRrQUHZPTqxHTqPmegImq9Z7fjGdFuzyf2qVNGzWNZyOuo12+ewAAAAAAoDm2bNky5aDRe9/73ixYsCBnnnlmnapqrKIsy2bX0HQ9PT0agUmptZO01TolhY0AaJRGPSuFfwAAAAAAWk9vb2/R7Bo6kBxDGyvLMoODg9m6detrlg0bNuRLX/rSqPueeuqp+eIXv5ju7u6RPm6J35qRjaAGndKZOd2jVXRKuwEwvlpHUgIAAAAAAGh3RVFkzpw5mTNnTvbaa68kyZ/92Z/lBz/4wbj7rlq1Kuecc04WLFjQ6DJrJmwENeiUkY0aYSZcIwBT41kBAAAAAADMNMuXL59Q2CjZNjJSKxM2ghroJB2dkY0AWlMr3Z9bqRYAAAAAAIDpcOyxx+aee+5JtVrN2Wefnaeffvo128ydOzc33HDD8GhIrUrYCGow00c20kkM0H7cnwEAAAAAAF6rLMv8/Oc/z9atW1MUxfD6oihSFEWq1WoqlUpdlqGhoQwNDY0YNEqST3ziE1myZMl0XXrNhI2ASdNhDQAAAAAAAEAnWLVqVa666qpml5EkGRgYaHYJEyJsBNSVUY8ASGofBXCm8xwFAAAAAIDpdfzxx+fRRx/NK6+8krIsh9fveD/Suh3vR9pm933LstxlZKOdX1955ZVd9rvhhhtyww035HWve13+9E//NPvvv399L7ZOhI2gBjr7AGBsnpW10W4AAAAAADC9FixYkK985SvTft5rr7023/3ud0f87Nlnn81//Md/5Pjjj5/mqiZG2AhqUOtoDTOhA3EmXCMAU2P0HgAAAAAAYKaqVqs56aSTUq1WR/z8pptuyj777JM99thjmiubOGEjAAAAAAAAAADaXlmWwyGe0d5Xq9Xhac7Ge1/PZefz77nnnunv7x/xGk4//fTcfvvtjWukOhA2AlperSNJjcXIGQCN1Yh7NwAAAAAAMDk//vGPc9FFFzW7DCbhqKOOSnd3d7PLGJOwUXSGNYIgR3toxHRw7fJ7apc6AWaaqdyfO/3e7v9XAAAAAABM1quvvtrsEpigrq6uVKvVLF26NEVRNLucMRU7hoCayXp6ejQCk9KIkA4AML6xnsGeswAAAAAAzdHb29vayYj21LE5hnpPTzbRKdEm+n4iU7FN5H2lUsnWrVuzefPmbN68OVu2bNnldef3fX19WbNmzXAb3XrrrZk/f/5IzdcSvzUjGwEAMK0EhgAAAAAAoLNMNSw0XnBnpGBQvc4zXgBpsssrr7ySq6++uqZ2XLZsWa666qrMnj27xm9ieggbQQ06pSO0Xaab6ZT2BmAb93UAAAAAAJh+p512WtatW9fsMtjNBRdckGOPPTbz58/PrFntEeNpjyqBjqBzGYDEyEYAAAAAANAM73znO3Pbbbc1uwx287WvfS3z58/PZZddlqOPPrrZ5UyIsBHMYI3o0G2X0ZIAaKxWex4IOAEAAAAAMNOdf/75Of/885tdRkuarqnfdn//zDPP5MILL0x/f38ef/xxYSPoZLV2oM6EzsyZcI0AjSYYU3/aDQAAAAAAGJBPjK0AABwfSURBVE1RFCmKYtrPW6lUht9/61vfyl577ZX3ve99017HZBU70lIzWU9Pj0ZgRmrEqBM6cwFoJEEsAAAAAIDW09vbO/0pjc4nxzBDDA0N5aSTTkqSHHDAAbnxxhvH2rwlfmtGNoIadMrIRq1WDwAzg8AQAAAAAADANrNm/d/ozvPPP5+bb745PT09WbRoUROrGpuwEdRARygAtBcBJwAAAAAASNavX58VK1Zky5YtzS6lZZRlWZclSarV6oTe7zjvjvc7W7FiRVasWJFLL700xx133HQ0waQJG6UxU0nNdJ3eadcpIxs14jraZWo2v3uA1jSV+3Ot+7bLM6HV/h8BAAAAAED7+fu///vcfffdzS6DCVi3bl2zSxiVsFF03DBzNeLffrsEg/zuAZpnKqMMGaEIAAAAAABq98lPfjJvetObUqlUmnL+eo0iVK9RhnYeXajW9+vXr8+9995b97Y68sgj637MehE2AuqqEZ3AOo8BAAAAAAAApq67uzvHHntss8voKC+//HJdwkbnnXdePvCBD9ShosYTNgImzagSAIynUVOTec4AAAAAAACtZPHixbnnnntG/KwsywwNDWXr1q156aWX8sILL+S5557LlVde+ZptDzrooEaXWjfCRsCkjdXRK4gEQCN5zgAAAAAAAO2iKIoMDQ3l1FNPHXO7O++8M7Nnz56mqqZO2AhmsFpHnRirM1dHLwAAAAAAAABsM2fOnJxyyim57bbbRt3mgx/8YI477ricccYZOfzww6exutoIG8EMJhgEQKPUOgoeAAAAAABAJ+nu7s7555+f888/f5f1Q0ND+eUvf5mf/OQnWb16de6+++785je/yV/8xV80qdKJEzaCGnRKSKcRIxsBAAAAAAAAALv64Q9/mKuuumrMbdplKjVhI6hBp4R0aq1nrOtvtWsEaEfuswAAAAAAAJ1hzZo1Wb9+fe68885Rt7nwwguzaNGiHHbYYdNYWe2EjWAGM40NQGvqhECRZwwAAAAAADDT3XXXXfmTP/mTMbeZN29ennjiiXz0ox/NwoULp6myqRE2ghmsEzqzAQAAAAAAAKAVvetd78q73/3uvPLKK5k7d25mz56dgYGBvPTSS3nxxRfT19eXTZs2ZeXKlVm5cmWS5MMf/nDOPffcdHV1Nbn60QkbQQ2EdABopE6YRm2sOo16BAAAAAAAdLqyLDNr1qx87nOfy8c+9rEJ73fzzTfnU5/6VBYsWNDA6qZG2AhqUGsnabt0EI9nujvBG9Ep3SnfBdCZOv0e1enXBwAAAAAAzDwXXHBBHnrooUnv9+EPfziLFy/OO97xjixZsiTz58/PnDlzGlBh/QgbAZNW62gVtXYu65QG6CydMHITAAAAAADAzg4++OCawkY333xzkuSaa67JOeecM6lRkJqlKMuy2TU0XU9Pj0ZgUmb6yEYA9VBr4KQZQZV2Cce0S5s2Yxq1Wq+jXb57AAAAAIBm6u3tLZpdQweSY+gAt912Wy6//PKa9//MZz6TM844Y+dVLfFbEzaKsBEAQLsQ/gEAAAAAaD3CRg0hx9ABBgYG8t3vfjcbNmxIV1dXuru7093dna6urtx4443j7n/iiSfmoosu2nlVS/zWTKMGNeiUkY065ToAaC8CQ6PTNgAAAAAA0BlWr16dSy65JLNnz86sWbMyZ86czJ49e3gZy6233pr58+dPU6WTJ2wEM5gpZYBmapcpv5p1zlq0U5uOZipTrDXiOqa7bVrp3xMAAAAAAHSCF198MZdddlkGBgZSFEW6urqSJF1dXSmKYpf3O38+0vsd21er1VSr1VQqldcsO9Y/8cQTE6pv+fLl6evrS39/f/r6+nLCCSdk7ty59W6GuhI2oqW0UmfnTDCVDl2Aiaj1PjPd+01Fp99LO+X6GnEd0902/i8EAAAAAACT9w//8A959NFHm13GiK644oq87W1va3YZk1aUpWn+enp6NAKTYvoxgKlrp1F42iUM2y5t2owAU7uMbAQAAAAA0I56e3uLZtfQgeQY6qRareaxxx5LpVJJWZapVqtJssv7SqWSoaGhDA4ODr/fsez+93jr+/r6snbt2qxduzaDg4OTqvVzn/tcfv/3f3+sTVrit2ZkI5jB2mW0Cp250Jlq/W03457QLvehdmrT0YxXi2nNAAAAAACAyejq6sqb3/zmaT9vtVrNunXrcv/99+fFF1/M9773vWmvoVGEjWAG04EKQKO0S6AVAAAAAACgEbq6uvLII49kxYoVE97n6quvziOPPJJLLrkks2a1bqSndSuDFiakA9Caxgu4uH9Pn1qnbQMAAAAAAGhn1Wo1AwMD2bp1a970pjdl2bJlefbZZzM0NJSNGzeOu/+DDz6YwcFBYSPoNLV2kurkBmgs91kAAAAAAACa4eyzz85TTz01pWOceOKJueiii+pUUeMIGwF1NVYQSwgAYGI6/V7ajGvo9DYFAAAAAACa65RTTsmf//mfT+kYS5YsqVM1jSVsBNRVIzpsGzHdjo5lgOZpRvCnXe77QlEAAAAAANCeTjvttJx22mmjfv43f/M3+au/+qsxj/HLX/4yt956a+bMmZMTTjgh3d3d9S6zLoSNoAY6+6aX9gZmGve9mct3DwAAAAAA7edXv/pVXnjhhZRlmSQpyzIDAwPZunXr8HLLLbeMe5wHH3wwDz74YJJk8+bN+dCHPtTQumslbAQzmBGDAJgpjBgEAAAAAAA0wq9//et86lOfmvJxli5dmkMPPTTz5s3LgQcemPe///11qK4xhI2AutKZC8B4mvE88AwCAAAAAAAaYenSpTn77LPz05/+NEVRpCiKJNnldcdSrVYzODiYrVu3ZuPGjXnqqaeGj/P000/n6aefzsknn5wzzzyzZadQS4SNoCa1jgjUah2drVYPAAAAAAAAALtat25dLr744vT39++yfseUXTtCLWOt37Fu5/Xjrduxfvd1Y63vFGVZjrjs+KxarU5pux2ho5H86Ec/yhe+8IXMnz9/Gq60NkUnf/mToBHqrNYQSyNCPI2YKgwAYLoJCQMAAAAAraq3t7cYfysmaTjH8P3vfz9XX311M2uhwY466qicd955WbJkSRYsWJCurq7RNm2J35qwUZKenh6NwKR0yshGjWAaNQDGM5VnhecMAAAAAEDrETZqiOEcQ1mW+c1vfjM8Ss5UjDTSzo71O4/IM9ZoPaN91srHmOyxp9pO1Wo1Q0NDGRgYyODgYIaGhjI4ODj8945lzZo1w9/NhRdemJNOOmm8r7AlfmumUaPjNaJTUmcmAIyt1UYWFFICAAAAAKBdFUWRpUuXNruMGenOO+/MZZdd1vDznH766TnhhBMafp56ETai4zWiA9HIRqObCdcI0GidEIxptSlO26XdAAAAAACA1rFhw4ZpOc9NN92Uhx9+OGeffXaWLVuWxYsXT8t5ayVsBADQYjohGNNqIxsBAAAAAADs7o477sjXvva1cbcriiJFUQy/7+rqGl5XFMXw1GuVSqXm6e7WrFmTiy++OEmyatWqLFiwoKbjTAdhI6hBJ3QCN0onjMYB1I/ASetotZGGRjOVWlrpOhrBcxQAAAAAAP6varWa66+/Pv/4j/84vK4sy5Rl+Zptd1638zbr1q2b0Ll2P26lUqm17Hz0ox9Nd3f3a5b+/v6sWbMmxxxzTObNm1fz8adDMVIjzzQ9PT0agUnplGnU2qVTtpWmwgMmp9Xue0yfVntWCsMCAAAAADROb29v0ewaOpAcwzg2bdqUU045pdllTNq8efNSFEUqlUq2bNkyvP4b3/hGli9fPt7uLfFbEzaKsBGT12odqK1EZy4A45nKs8JzBgAAAACg9QgbNYQcwwT09fVl/fr1w1OcJdllWrMdU5vtPs1ZWZbD70daRtpnsstI53r88cfz6KOPjngtS5cuzYknnphly5bl7W9/+2iX3BK/NdOoQQ10ZgIAAAAAAABAcy1YsCALFixodhkT9tRTT+Xss88e8bOnn3461113XZLkhz/8Yfbaa69prGxyhI2AuhLEAiAxXSUAAAAAAMDuDjnkkNxzzz1JtgWKrrrqqhG3+4M/+INccMEFOeKII6azvAkTNgIAoO7GCp8KIgEAAAAAADNFpVLJxo0bh5e+vr5s3Lgx1Wo1n/70p7N+/fo888wzeeKJJ/LSSy8lSdasWZN//ud/FjaCTlJrJ2mrjfrTKdcBAAAAAAAAAK3mvvvuy8UXXzzh7Q888MD87u/+bvbbb7+cdNJJDaxsaoSNoAadErZpxHWMFWDqlHYDYHxGLwIAAAAAAGa6o446KgcddFDWrl2brq6uzJo1K93d3cNLWZbZsGHD8PZHHnlkvvCFLzSx4okRNoIazPQRgQSKABqr0++znXANAAAAAAAAuxsYGMj3v//9bN68OV1dXenq6sr73ve+dHV1pSzLDAwMZGBgIFu3bs3AwEAeeOCBXfa/99578973vje333579txzzyZdxfiEjYBJm+5O4kaMjqGjG5qv1kBNM4I4033OWo/ZSm1a6/mmohHX0enBLwAAAAAAoH5+8IMf5Jprrpnycbq7u+tQTeMUZVk2u4am6+np0QgAAHXUqFEAhX8AAAAAAFpPb29v0ewaOpAcQxsaGhrKqlWr0t/fn7IsU61WU6lUUq1WU61WMzg4mM2bN2fz5s3ZsmVLNm/enI0bN+YXv/jFLse55ZZbsvfee490ipb4rRnZCGow06dRAwAAAAAAAAB2NWvWrJxyyin58pe/nIceemh4fVEUmTVrVubMmZPZs2dn1qxZqVQq2bJlS7Zu3brLMS688MLRgkYtQ9iIltIuoxW0Ui1TYXqy9jCTvyfBvumlvVtHuzwPx9KMadQAAAAAAAAmYnBwMJdffnlWr16d3WcEm8gMYWNt09/fP+L2g4ODGRwcHF532GGH5a1vfWvmzp2bPfbYI88991w++MEP5vDDD5/ElTSHadRiGjUmT4c8wMQIlbQO4Z/25/8RAAAAAECrMo1aQ8gxNNDzzz+fM844o6k1FEWRgw8+OG984xtz0EEH5ROf+ET23HPPcXebjtrGY2QjoK46YTQOoH787tvDdH9PU3lWeM4AAAAAAABTdcABB+T222/PwMBAkqRSqYy6DA0Njfr37p9NdL8dfz/wwAPDfR/z5s3LmWeemaJoiTzRmISNgLrS0QtAYrQkAAAAAACgte25554TGUmooU4//fR8/OMfT6VSyTXXXJMbb7wxRx99dC6++OKm1zYWYSOogUDN6Iw4AUBi2jYAAAAAAKDzlWWZJ598MmVZpiiKlGWZwcHB4WVgYCBDQ0PD73f+bMfykY98JE8++WT+7d/+Lf39/Vm9enXWrl2bQw89tNmXNyphI6CuBIoApk5wEwAAAAAAoPV95zvfyfXXXz/l4+y9995ZtGhRZs+enYULF2bJkiVTL66BhI2gBrWOyNBqHcSNGFmi1a4RoB25lwIAAAAAADTOM888k/vvvz+bN29OpVKZ1DI0NDT8/oUXXqhLPStXrszs2bPrcqzpIGwEM5jObKDRTJfVOtplWrOp1NJK19EIntsAAAAAADB1q1atypVXXtnUGmbNmpU5c+Zk06ZNOeSQQ3LnnXfmd37nd/L617++qXVNlLARUFem/gF25nffHqb7e5rKs8JzBgAAAAAAmIqjjjoqhxxySF7/+tdnn332SVmWu4xcVK1WRx3VaLTPRlq/87qhoaFdahgaGhpe99RTT+Xyyy9Pkpx++un57Gc/O+1tMlnCRjCDdfoIEEBnEjZpD54xAAAAAABAKzr88MNz/fXXT/t5v/SlL+XBBx8cc5ubbropN910U5Lkm9/8ZpYtWzYdpU2asBHUYKZ3Zs/06weayz0IAAAAAACAdlGWZV566aWcddZZ2W+//YZHNerv788rr7ySl19+OS+++OJr9jv33HPz6U9/Oh//+MebUPXYhI1gBtNhD0CjeMYAAAAAAAAz2V133ZW77rorjz/+eDZs2FDTMZ577rk6V1UfwkZQg1qnhpkJHa+mNwImqtb7RTPuM+1yb2uXNm3UFGuNuI52+e4BAAAAAIDWsnr16jz88MNJkvnz5+fQQw/NAQccsMuyZMmSLFiwIHPnzs3cuXMza1Z7xHiKsiybXUPT9fT0aAQmpVPCRo3q7K23Vms3AMbXqGel8A8AAAAAQOvp7e0tml1DB5JjaHNlWeanP/1pVq1alXvvvTcDAwOjbvvVr341r3vd67Lvvvtm4cKF6erqGm3TlvitCRtF2IjJ65SwUSPoBAZgPFN5VrTL6E0AAAAAADOJsFFDyDF0kEqlkg0bNuTVV1/N+vXrs379+rz66qu5++678+///u8j7vP1r38973jHO3Zf3RK/tfYYfwloGzpsAWhFnk8AAAAAAECzdHd3Z9GiRVm0aNEu6z/0oQ/lxRdfzGc/+9m8/PLLu3y2ePHi6SxxUoSNAAAAAAAAAABgGm3evDm33XZbHnzwweGg0SGHHJLrrrsuRdESAxiNStgIAKDFdMKUX7VOOQoAAAAAADATrFixInfcccfw3x/4wAdy1llntXzQKBE2gpq0S0fveGrtCO6U6wdoVZ1wnx3rGpoRROqEABcAAAAAANB+yrLMwMBA+vv7d1kOPvjgXbY75phjsv/++zepyskRNoIaCOkAQO2a8Tz0DAYAAAAAAKbbj3/841x00UUT2vbSSy/NG97whhx22GENrmrqhI1gBtPxCkAzGGUIAAAAAACYCX7rt35rUtv/9V//db761a82ppg6EjYCAJqi1sBJM4Iq7RKOaac2Hc1UplhrxHW0UtsAAAAAAACtqyzLVCqVVKvVVCqVVCqV3H///ZM6xu5Tq7WqoizLZtfQdD09PRqBSTGNGgDUbioBHuEfAAAAAIDW09vbWzS7hg4kx9Ag//qv/5o//MM/bHYZI1q2bFm++c1vjrVJS/zWjGwE1NV0jypRKx3SQCvr9EBNJ1wDAAAAAADQnjZt2tTsEobtv//+2XfffbN48eIsXrw4xxxzTH71q19l0aJFWbhwYbPLG5WRjWJkI9qDwA0A7aRRowB2wlRxAAAAAACdxshGDSHH0CLKstxlarSdl6GhoVH/3v2znZeNGzfm7rvvzpNPPpm+vr4Rz/vHf/zHOfnkk3df3RK/NSMbQQ2aMY2ajlAA2kmrPbdarR4AAAAAAKA9FEWR7u7udHd31+V41Wo1mzZtytvf/vY8/PDDueqqq16zzX777Zd3vvOddTlfIwgbQQ06pcOyGaEpADDKEAAAAAAAMNP85V/+Zf72b/92zG0WLVqUlStXpqura5qqqo2wEdSgU0I6rVYPAAAAAAAAAHSiI444YtxtjjzyyJYPGiXCRrSYdhnpoJVqmYpaQ1Nj6ZS2AQAAAAAAAIB6ec973pNvfetb+fa3v53nnnsuL7zwQsqyTJK8//3vz5FHHpkTTjihyVVOzITCRkVRfDTJe5L8TpJjkuyV5G/Ksvz4GPscl+S/JXlXkrlJfpHk2iR/VpZlZZR9PpnkC0nenKSS5NEkl5dleeso2++Z5EtJzkhySJINSXqTfKUsy59P5NpoLe0SVDGy0egaERgTigJonnYJAgMAAAAAALSasiwzODiYL37xi3nsscd2+Wy//fbLYYcdlt/+7d/OW97yluy5557ZY489mlTp5Ex0ZKP/lm0ho74kv0ly1FgbF0XxoSR/n2RLkpuSvJzk1CRXJflPSU4bYZ/Lk5y3/fh/mWROtoWIVhVF8V/KsvzmbtvvkeSu7cf7SZL/kWTp9mOfUhTF8WVZPjjB64MZqREhnkacT2c2QPO0UlAUAAAAAABoHU8++WTOOeecZpfRttatW5d169Zl9erVw+uOO+64XHrppU2samImGjb6w2wLAf0i20Y4ume0DYui2DvbwkKVJD1lWf5k+/ovJ7k7yUeLojijLMsbd9rnuGwLGv0yyTvKsnxl+/pvJPmXJJcXRXFrWZa/3ulU/zXbgkYrk5xelmV1+z43JfmHJNcWRXH0jvVA87VSaEgnODDTjHUPbqV74lRqaaXraIRWeo4CAAAAAMCjjz7a7BI6zllnndXsEiak2DH/24R3KIqebAsbjTiNWlEUn0pyTZLvlGX5yd0+Oz7J/0zyT2VZvmen9d9J8okknyrL8rrd9vnvSb6c5L+XZfmV7euKJL9OcnCSQ8uy/NVu+/xTkt9LcnxZlqMGo3bo6emZXCNAh2iXTlmdqwDtx/RrAAAAAAAzR29vb9HsGjpQ2+YYyrIcXqrV6ojvR/osyaS2r+exdt6+nsfatGlTrrvuuhFaaVf77LNPrr322ixevHi8TVvitzbRkY0m4/jtr3eM8Nk/JdmU5LiiKPYoy3LrBPb5UbaFjY5P8pXt6/6fbAsaPbF70GinfX5v+z7jho1gsjplOrBWqweYWWoNozQjxNIuwZlWatNWG0mpEdPBtdJ3DwAAAAAAraIoimwbQybp7u5ucjXNdfvtt09ou/Xr1+cjH/nI8N8/+tGPMnfu3EaVNWWNCBsduf31id0/KMtyqCiKXyVZluTQJD8vimJ+ktcn6SvLcu0Ix3ty++sREznHGPtAW2tEx2wjOkl1ygIT1YgQS6O0y/2rXdp0Kueb7udMu3z3AAAAAABA6zn55JOzdOnSVCqVJMmWLVuyefPmbNmyJV//+tdH3W/H9q2qEWGjfba/rh/l8x3rF9a4fa37QN3o6AaA2gmmAgAAAAAAM0FRFDn66KNH/OzYY4/NihUr8rOf/Sx9fX3ZtGnT8GfPPvtsDj/88Okqc9IaETYaz4754yY7v+Bktp/UOcwfCdOjGdPmANBepvKs8JwBAAAAAKCDyDF0uIULF+biiy9udhk16WrAMXeMKrTPKJ/vvdt2420/0ihGkz0HAAAAAAAAAAAwRY0IGz2+/fWI3T8oimJWkjcmGUqyJknKsuxP8kySBUVRHDTC8XaMC/XERM4xxj4AAAAAAAAAAMAUNCJsdPf21/93hM/enWRekh+XZbl1gvucvNs2SfLLJP87yRFFUbxxgvsAAAAAAAAAAABT0Iiw0cok65KcURTF8h0ri6KYm+SS7X9evds+///214uKoli00z5vSPKFJFuTXLdjfVmW5U77fL0oiq6d9vlQkt9L8r+S3Dv1ywEAAAAAAAAAAJKk2JbbGWejovjPSf7z9j8PTPK+bJsG7b7t69aVZXn+btuvTLIlyY1JXk7ywSRHbl//++VuJy6K4ook/zXJb7ZvMyfJ6Un2TfJfyrL85m7b75FtIxcdl+QnSf5nkoOTnJZkIMnxZVk+OJFGAAAAAAAAAAAAxjfRsNFXk3xljE2eKsvyDbvt85+SXJTk2CRzk/wiybVJVpRlWRnlPJ9Mcm6SNyepJnkkyTfKsrx1lO33TPKlJP9ftgWNNiTpTfKVsiz/17gXBgAAAAAAAAAATNiEwkYAAAAAAAAAAABdzS4AAAAAAAAAAABoD8JGAAAAAAAAAADAhAgbAQAAAAAAAAAAEyJsBAAAAAAAAAAATIiwEQAAAAAAAAAAMCHCRgAAAAAAAAAAwIQIGwEAAAAAAAAAABMibAQAAAAAAAAAAEyIsBEAAAAAAAAAADAhwkYAAAAAAAAAAMCE/B8Rj6o8CUVadAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACUMAAAOZCAYAAAA+yqMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdebhuc93H8fdnn3Mcx1QokUoTRUrRPM+pZIrIkFRSoQlPmZ5CMstQhEQqUooGpFI0aSJUKiVNGkTmYzrnfJ8/1u/W3f0c07HPvvfwfl3Xuc59r/Vb6/z2dV9nrb3377O+31QVkiRJkiRJkiRJkiRJkjTRjQx7ApIkSZIkSZIkSZIkSZI0GgxDSZIkSZIkSZIkSZIkSZoUDENJkiRJkiRJkiRJkiRJmhQMQ0mSJEmSJEmSJEmSJEmaFAxDSZIkSZIkSZIkSZIkSZoUDENJkiRJkiRJkiRJkiRJmhQMQ0mSJEmSJEmSJEmSJEmaFAxDSZIkSZIkSZIkSZIkSZoUDENJkiRJkiRJkiRJkiRJmhQMQ0mSJEmSJEmSJEmSJEmaFAxDSZIkSZImpSQZ9hwkSZIkSZIkSWNr+rAnIEmSJEnSaEuSqqr2+pnAY4BHA2cCf6qqq/vHSJIkSZIkSZImh/h7X0mSJEnSZJVka+BA4EZgGWAe8DVgv6r61TDnJkmSJEmSJEkafbbJkyRJkiRNSkleARwOfAh4ZVU9ADgE2Bx4R5JFhjk/SZIkSZIkSdLos02eJEmSJGlSSZL28qXA94CTq+qfbdtawO+Ao6vq9iQzq+q2YcxTkiRJkiRJkjT6rAwlSZIkSZrw+gJQVAM8FZjRC0IlOYsuDPW6qrokyXOBDZLMGMqkJUmSJEmSJEmjzjCUJEmSJGnCa+Enkmyf5INJpgFXAYsmWTTJmcDqwGuq6uIkSwNbA08BDENJkiRJkiRJ0iRhGEqSJEmSNGH1V4RK8hxgX2DRqpoLfAp4DvBb4PHAq6vqoiSLAOvStdH7aVXNHvuZS5IkSZIkSZIWBsNQkiRJkqQJq68i1Ap0wacvAPu13d8BPgw8BPgucGOSNYB3AUcCR1XVqWM+aUmSJEmSJEnSQjN92BOQJEmSJOn+SPIC4Czg98BXquo6gKq6JckxwGxgL+AlwGLAX4Ddq+oj7fiRqpo3lMlLkiRJkiRJkkZV2kO0kiRJkiRNCElSVdX391LAycAr6apBbVJVVw8cswrwGLpg1JVV9fu23SCUJEmSJEmSJE0ihqEkSZIkSRNSkgdU1fW918CxwIbAdsBnq+qmtm++gademGos5yxJkiRJkiRJWrhGhj0BSZIkSZLuqySvAC5OsiZAC0W9BTgbOADYJMkSbd98Kz8ZhJIkSZIkSZKkyccwlCRJkiRpIloBmAd8KskaAFV1A7Ap8APgEGDjJEsOb4qSJEmSJEmSpLFmGEqSJEmSNGEkCUBVnQDsAQQ4pS8QdSOwCXAecBSwZZLpw5mtJEmSJEmSJGmsGYaSJEmSJE0YVVVJZrbXnwX2B+6gC0Q9qW2/EdgC+Ckwr6rmDGu+kiRJkiRJkqSxlaoa9hwkSZIkSbpbSTYGNquqDdr7mVV1W3v9BuDDwPXAxlV1ads+o6ruGNacJUmSJEmSJEljz8pQkiRJkqRxK51FgCcA6yX5LEBV3dZXIepE4GRgVeCrSZ7att/RO8dQJi9JkiRJkiRJGnOGoSRJkiRJ48pAeGmkqm4HjgJ2BTZJ8jm4MxC1SBt3CfBbup9zV+0/X1kSWZIkSZIkSZKmDMNQkiRJkqRxI0l64aUkLwf2TvKgqvoncCzwAWCjJKcAVNXtLTz1aOAE4BVV9enhzF6SJEmSJEmSNGyGoSRJkiRJ40ZfEGor4ERgZWCttu8a4Gjgf4H1k5yRZGu6ilE7AldU1WXteFvjSZIkSZIkSdIUFLsFSJIkSZLGkySvpavy9EHgpKr6+8D+BwIbArsBjwCuAg6tqgPHdqaSJEmSJEmSpPHGMJQkSZIkadxIsjjwJeBPwHZVdUfb/npgReBXwDmtPd4iwOOBm6vq8jZupKrmDWf2kiRJkiRJkqRhmz7sCUiSJEmS1GcmsArwDWBekicBhwFPBuYBSwNvAk6oqtuBS3oHJolBKEmSJEmSJEma2qwMJUmSJEkauhZkqvb6M8C6dEGnh9G1wdseuAI4GZgFvLBXNUqSJEmSJEmSpB4rQ0mSJEmSxlx/+Amg/vtJnR2Af9BViTqlqo5oxywOXA/8ziCUJEmSJEmSJGl+DENJkiRJksbUQBWoFwIvoGuN903gC1V1LbDTwLilgHWA5wLvGcrEJUmSJEmSJEnj3siwJyBJkiRJmlr6Ak5vpGt79zJgEeCTwL5JnjAw7mXAzsDHgMOq6qQhTFuSJEmSJEmSNAHkvzsRSJIkSZK08CVZFzgB+HBVHdQCUL9ou08B9qyq3yR5ELAX8DTgE1V1dDt+pKrmDWHqkiRJkiRJkqRxzDCUJEmSJGlMtYDTkcBfqmrHJKsBPwY+DVwCfBT4DLBfC0QtDyxVVZe14w1CSZIkSZIkSZLma/qwJyBJkiRJmnJmA2cDlyR5CHAGcCrwfmAe8CpgC2Akyb5V9WvgHwBJYhBKkiRJkiRJknRXRoY9AUmSJEnS1FJVs4EvV9VPgfWB6+na5d1QVTcBlwF/pwtEPWrgWMsbS5IkSZIkSZLukpWhJEmSJEkLRaviVO31LLqfQedU1S1VdXUb9jBgBeCWNm4J4IHArsA5VfW3sZ+5JEmSJEmSJGmisjKUJEmSJGnUDQShNgY+B1wCnJbk/X1DrwBmAdsmeTmwCfAa4KZeECqJP7tKkiRJkiRJku6V2GFAkiRJkrSwJNkS+ARwEnAdsCJda7zTgU2ral6STwCvp3tgZzZwUFXtO6QpS5IkSZIkSZImMMNQkiRJkqSFIsnKwNeATwFHVtV1SRYDfgXMAV5WVX9sY9dth11fVee1bSNVNW/sZy5JkiRJkiRJmqimD3sCkiRJkqRJaxlgWeD7VXVd23YKUMBGVfXHJKtV1aVV9ZX+Aw1CSZIkSZIkSZIWxMiwJyBJkiRJmrRWoAtE/RogyZnAGsAGVXVxkicAH06y1uCBBqEkSZIkSZIkSQvCylCSJEmSpFGVJNX1ZL8M+Duwc5I1gFWB9VoQaibwKuCBwC3Dm60kSZIkSZIkaTIxDCVJkiRJWmB9wSeSPAi4tf2ZU1WXJvkusBNwNbBhVf08yVLA+sAuwK5VdemQpi9JkiRJkiRJmmTSfmctSZIkSdICS7IpsD2wLPAN4EtVdV7bdxbwbOAc4EK6ClFrA4dU1T5tzJ2hKkmSJEmSJEmSFpRhKEmSJEnS/ZJkHeAk4CvAIsDLgMuBfarqtDZmH+CJwOrAd4Bzquqktm+kquYNY+6SJEmSJEmSpMnFMJQkSZIk6T7pVXHqhZiSvA9YCvhwVd2cZCPgA0CAPXqBqHbsYlU1u++9QShJkiRJkiRJ0qgZGfYEJEmSJEkTx0A7uwclWQxYA/hTVd0MUFWnAnu0MXsneU3fKW5Jkt4bg1CSJEmSJEmSpNFkGEqSJEmSdK/1glBJNgPOBc4DXgAs3bZPb+NOB3YH5gAHJ9mwd3xZoliSJEmSJEmStJAYhpIkSZIk3aP+ak5JXgp8AvgBcDlwM/DeJE+rqjlJRuDOQNRewKz2R5IkSZIkSZKkhSo+kCtJkiRJureSrAC8ka4S1C5VNbeFo/YDVgDWraoLkoz0WuAleXRV/WFok5YkSZIkSZIkTRlWhpIkSZIk3StJ1qWrBrUecHlVzW27vgO8B/gH8JUka1bVvL4KUX9ox2c+p5UkSZIkSZIkadQYhpIkSZIk3VsXAw8Ang6s2tvYQlHfB94N/BU4O8kzepWh+sZZmliSJEmSJEmStFAZhpIkSZIk3aMk06vqT8DqwJ+ALZNs3Nvfgk7fB/4HuL6NkyRJkiRJkiRpTMUHcyVJkiRJ90aSaVU1N8nDgJ8AtwDvq6pT+8aMAMtX1d+GNU9JkiRJkiRJ0tRlGEqSJEmSdK+1ClFzkjwc+DFdIGrnqvrSfMbG1niSJEmSJEmSpLFkmzxJkiRJ0r3WglDTq+ovwDOAGcBhSTabz1iDUJIkSZIkSZKkMWUYSpIkSZJEkvT+7r2+KwOBqOcCy9KFoiRJkiRJkiRJGirb5EmSJEmS+tvfjVTVvHvT4q7vmCWq6qaxmqskSZIkSZIkSXfFylCSJEmSNEUleUaS7eHOak/vAc5vgah7fHKmHRNgdjufP2NKkiRJkiRJkoZq+rAnIEmSJEkae0mmAQ8DDkmyFnAOsD+w5309V1XN6/9bkiRJkiRJkqRhsU2eJEmSJE1RSZYDtgQOAOYB76iqY+9Ni7x2/J3jkmwMzKmq0xbqpCVJkiRJkiRJuhu2MJAkSZKkKaqqrgL+AASYBry4ba8kd1tJeCAI9S7gZGDOwp2xJEmSJEmSJEl3zzZ5kiRJkjSFDISYAvwR2AJYBdgjybyq2ryq5iSZVlVz+46d3rb3n2MH4CDg7VX11TH/giRJkiRJkiRJ6mMYSpIkSZKmiIEQ08uBZwEfqaqfJ1mWrlXeB9q4zXpBqCQvAX5QVbdCVzmqbd8BOBTYtqo+MYQvSZIkSZIkSZKk/2KbPEmSJEmaIvpCTFsBJwJPAp7Z9l0DfBzYE9g0yaeTPDzJZsA3gS37z9WCUB/BIJQkSZIkSZIkaRxJ+124JEmSJGkKSLIRcDzwQeCkqvr7wP4HAdsCewDXAYsB+1fVPn1jtgOOALapquPGaOqSJEmSJEmSJN0jw1CSJEmSNEUkWQI4Dbgc2L6q5rTtmwArAr8AzqELQD2drmrUpVV1ehs3ve07GTi1qo4f8y9CkiRJkiRJkqS7YRhKkiRJkqaIJMsCF9K1tzsCWA04DHhKG/IAYKuq+vR8jh2pqnnt9ZJVdePYzFqSJEmSJEmSpHvPMJQkSZIkTSFJPg+8HLgYWAn4F7A9cAVwCjAdeHFV3TG0SUqSJrUkKX8pKUmSJEmSFpLpw56AJEmSJGl09S8yJ5kBzARubtveBOwLjABfrKrD27jFgeuAvxmEkiQtLAP3qEcCM4Cbqurvg/slSZIkSZIWhGEoSZIkSZpEBhaZXwtsBqwBXJLkB1V1MLBDkmlVNbeNWwpYB3g28O4hTV2SNAX03aM2B3YFVgR+m+TUqjqwqspAlCRJkiRJuj9Ghj0BSZIkSdLo6Vtk3hL4LHAbcAawJLBHktPauF4Q6qXAjsDHgMOq6uRhzFuSNLklSd/rVwJHAd8A9gZuBXZOcjB097L+8ZIkSZIkSfdFfMhKkiRJkiaXJKsAZwGfAI6qquuSLAn8CijguVX1lyQPBj4ErAUcW1VHt+NHqmrekKYvSZrE2v3o+cALgD2r6uYkKwG7ARsBn6qq97SxVoiSJEmSJEn3mW3yJEmSJGnyWQ5YAvh2VV3Xtn0WmANs0IJQj6mqy5N8EFiyqi4Dg1CSpIUnyYuBbwGXAce1IFSq6k9JPgQE2CrJ3KraySCUJEmSJElaELbJkyRJkqTJZzngwcAVAEnOBJ5MF4S6OMkTgQ8keWJV/b0vCBWDUJKkhWgecC7wKGDxtm1aC+L+ma5l3ueBtyc5ejhTlCRJkiRJE52VoSRJkiRp8rkSuA54U5IXAasBr2lBqJnAOsDDgNv7D7IChyRpYaqqc5OMALsCuyX5QVV9M8mdgagk+wJLARcOd7aSJEmSJGmiir/rliRJkqSJJUngP+GlJIvTtRaa3avslORLwPrA1cCGVfX9JEu2bYcBu1SVVTckSaOuVRrs3aMWoXsgc15V3dq2vRDYC3gWsHZVnZNkGt2tbV6SJarqpiFNX5IW2MD1Lz5sIEmSJA2HYShJkiRJmkB6C8RJplfVnCQbA28CHg1cBHyvqj6aZDpwKvBq4NPAH4DHAusCB1fVPu18LtJIkkbNQBBgPWATYA26+9B3quqQtu/5wIfoAlGvqKpvJ5lWVXPndy5JGq9aZbveAwkzq+q2+e2TJEmSNHZGhj0BSZIkSdK9k2R34MtJlm9BqC2AzwJzgB8BjwcOT3J0Vc2pqvWBjwEPBbYF5gHv7AtCjbjILEkaTX1BqK2AU+ha3v0cWAk4KMkJbdx3gf8Fvgd8K8na/UGo/nNJ0njU2k/TF4RaD/hikjOT7Ne/T5IkSdLYmj7sCUiSJEmS7rUVgScARyR5L/BU4IPAR6vqhiSPBLYA9kxyQ1XtXFXvbm31lqiqG3sn8il1SdJoGqgItRqwN7AncGRVXZ/kEcBmwN5JbqyqHarq3CQFLENXvVCSJoQk+wMzk3ywqq5r1VpPBL4NLAvsmOSpwMZVde0w5ypJkiRNRVaGkiRJkqRxroWZqKq3A8fTtRQ6ClgHuKyqbmj7/wgcS1cN6q1Jnt22V38Qqm0zCCVJut+SPAH+XxWn5egCTj+oquvb/j8Dx/Gfe9QL2vbzgFdV1UfHdOKStIBaRaiZwDuBnZOsALwW2AvYEHgJ8BbgicDpSZYZ1lwlSZKkqcowlCRJkiSNc1VVSaa117sAJwOrAQ8BrgJIMqPt/yddYGpJ4BFDmbAkaUpIsjdwdJJlesHdZhlgMeC6Nm46QFX9i+4eNYO+e1RV/a2N6z+HJI1LVXUbsAddBbz3A9vTfe99XlXdVlU3AV+gC0utCpxmIEqSJEkaW4ahJEmSJGkCqKq5fYGonYHPAYsDhyZZvqru6C02A9fQLUAvOZzZSpKmiAuBnarq38CD+7b/ArgS+FCSZatqTu8eBtwA/Bu4Y/BkA9WlJGnc6XsA4UZgH+AgYBfgxUDvOkdVzQa+DOwArAx8LcmyYz5hSZIkaYoyDCVJkiRJE8RAIGpXYF/g4cAnkzysLTYvDqwNzAIuH95sJUmTVV/71tOq6kdJXgGcm+RVbfvvgC8Bzwb2TLJcu4fNAl4OFPCnIU1fku6zJI8CqKo72vtX0n2//QFgd7q2eZslWbp3TFXdSheI2hF4GvDCsZ21JEmSNHVNv+chkiRJkqTxoheIqqq5VbVbC0ftAPw4yXlAgJcAe1fVt4c6WUnSpNRr31pVc9umxena4n0wSVXVWVX1riQPAjYFXpLkm3TtXV8N7FNV5w9n9pJ03yRZCdgtybyqemuSLYATgQ2q6stJPgYsSheKujrJQVV1PXSBqCSnA6u1oKgkSZKkMWAYSpIkSZImmIFA1PuT3AFsB7yIrlrUIVX1U4AkI1U1b5jzlSRNDklWB+YCv233oo3oslFfbNWi9gL2afeeM6pq8yTvAl4GbAj8HHhXVR3Xzuc9StJEcDNwC/CmJKsAzwe2Bc4GqKrrkxxI14ljN7oCegf2BaJuAX4HXvckSZKksZKqGvYcJEmSJEkLoL8qR5JDgDcBm1TV2W2biy2SpFHR2rAeBDwF2IouDHA08MaqOrGN2Rj4IHAbsHtVndl3/FLA7Kqa0957j5I0riV5FvCrqrohyUzga3QVWM+vque0MdP7rmtLAu8DdgYOAfavquuGM3tJkiRpajMMJUmSJEnjxIIsDPcfk+Q5VfWDhTM7SdJUl+RpwJnAdcCjgPdW1eED96KN6AJRtwO79AV0U+0Xkf2vJWk8SvI24EjgncCn6a5pZwPzgCcDp1bVW9rYGVV1R3u9JF11qP8BnmNLUEmSJGk4DENJkiRJ0pAleXZV/bC9XpBA1J0Votp7F5klSQtFkv3oFvn/BGxdVee27f3VUTYC9gCmAe+vqq8NabqStMCSfA9YHditqo5MsgSwNN01cEvgi1X15jZ2elXN6X1f3v/9vSRJkqSxNzLsCUiSJEnSVJbkQOCrSd4FUFXzktynn9Xagkv63leSaaM8VUmSAK4FDgdmAQcmeV4L8s7p3Xuq6lRgb7rQwJLDm6ok3XetJR5V9TzgAmD/JNsD06rqL8C+dNWiNkxyXBs7p7UKPSPJzP4HHYbyRUiSJElTnJWhJEmSJGlIWvuNQ4DZdIvLh1XVR9u+e10haqD10Eur6lsLa86SJAEkWQs4A/gr8F7ge31h3OWq6u9JHllVfxzmPCXpvhj4vnol4MHAD+mq4R0OfKqqbkjyUGAXYCvgJ8B5wK7AwVW1+1AmL0mSJOlOPpUgSZIkSUOQZBVgM+A7wIZ0Yaid2lPn97pC1MCCzQ7AN5I8f+HNXJI0FfRXHEyyfJJVkjyut62qLgBeA6wIHAw8O8miwPrAWUlW6wWh+s8lSeNZ3/fVWwE/A94NnA/MBPYE3pBkqar6G/Bh4FDg4cDWwO69IJTXPUmSJGm4rAwlSZIkSUOQ5NHA8cD+VXVmkocDpwPLAgf1VYiaVlVz7+Icg0GoQ4G3VtVxY/JFSJImpYH7y+uBdwGPo6sC9Wtgk779TwW+Akyjayf1QrpKh7sMYeqSdL8leRZwNl07vGPpHlp4OPAZ4El0FaBObBWiFgemAw+qqsvb8fe6wqskSZKkhcPKUJIkSZI0BFX1B2CDFoSaUVV/AdYDrqFViGqL0XPh/z9dPrBQ/U4MQkka5+ZzHZt+d/s1PH33l82BTwDnAC8HvgVsBHy393lV1c+A5wE/B24H3tMLQvmZShrvkiw7n81rALcCX6qqq6tqbqt09yLgMmB3YMskD6iqm6vq+r4gVAxCSZIkScNnGEqSJEmSxlAagKr6d6v8dEf7+6/0BaKA7doxiwAbJVmjd46BilAfAbY1CCVpvBq4bq2T5EjgvCT7JVkXugCO4ZnxI8nTgN2AvatqN+Bq4M3Ad4GnAN/vu59dDqwDbF5VR7fjR3qfuSSNR0mOAI5JMnNg11y6tniz+sbOqKo7gH2AZYD3AW8ZDPZ63ZMkSZLGB8NQkiRJkjSGqkny/CSL9yo/VdXcvkDU+nSBqB2T7AjsAJwCPKF3DoAk7wUOo6sI9YlhfD2SdG/0XbfeCHwBeAxduOZ1wGFJ9u4fp7E3nyDaw4DzgMOTrEzXAu9kus/scOBZwNl9gag5VXVz71xWRpE0nrVr19nA4VV1W5JZfbt/BSwJbNDb0IJQALcBv6SrHHVrVc0ZoylLkiRJug/i75gkSZIkaWwleQLwQ2CPqjp8oGLK9Kqak+QhwBnA44DF29h9+s6xKvAZ4JheFQ5JGs+SPIXuuvYR4JNVdU0L2VwI/BpYp6quGuYcBUnWpgvk/pauVdT3ga/QLfy/vaquTvIAurDAQ4HfVdXjhjVfSbq/kqwHvBPYprWyJsm+/KdS60lVdVOr1ro98Jiq2m5oE5YkSZJ0j6wMJUmSJElj7wrgT8Ar4b9bQ/WeLq+qfwJn0gWh3tMLQiXp/Rx3ObCpQShJE8hjgNnAV6vqmrbtAOBfdAvQVyV56NBmJ5JsDpxKV4nwxqr6Hl11lMcBF1fV1W3oo4GbgQ8B+w1jrpK0oPq+n+6ZATwfODTJo9q2jwKfBo4CTkxyAHAQ3XXv933nsr2rJEmSNA4ZhpIkSZKkMdRa4c0GdgNe1Bae/6s1VJKZSbYDdgd2q6rD2vaRqprXKkndXlW/G8bXIEkLaCVg+ar6DUCSM4G1gA2q6uIkTwfem+Rhw5zkVJVkGrAm3WL/KX33pVnAg4GHtHGLA6vThXKPqarj23YDAZImhF4bzySrJlkK+CKwEfA84Mgkj6iqK+laVe8APBbYou3ftao+0ncuW29IkiRJ45BhKEmSJEkaQ1U1t738Ja0tVJJFBp5QnwGsAOxYVfvCf4JQ7RwuukiaEFpLoZ6/ASNJXt2CUE8E1m1BqEWBdYCVhzHPqS7J+sC5wEuBi6rqlrZ9pFUq3Bt4e5LvAp8HPg58p6r+2juH9yZJE0U6T6Fr9/n0dv06G9gaeCZwTJKVqurmqjoSeAldxbxXVdWh7RyurUiSJEnjWPw9hSRJkiQtXG2ReQbw06r6Y9/27YHD6RZhftYqPlXbt2RV3dhe3xmEkqSJIskmwJOAI1uFDZJcADwF+DtdEOqCJIsBrwUOBt5fVZ8c1pynir7WrL02rR8C3gQsBqxdVecnWaSqbm/jHwRsAGwHXEnX6vDjvXMZhJI0ESX5ATCT7nvxeS3A+yrgeOB8YLuquqJvfHrXTa97kiRJ0vhmGEqSJEmSFqIkywIn01XbuBg4Cfg0cBVdQOonwGXAm3rhJ0maiAYCnYvQhT3fCuwCfLaq/ppkDeAYupZ5+wHX01WIeguwf1XtM3gujZ4kjwRurap/tPcvA/5J1/JuZ+B9wC+AZ7ZgwPSqmtN3/Cy6DNWt7b1hXUnj3sD9aVZV3dKCoK8GPgZ8EtirBZ2m01UqPBa4CNi2qv4wrLlLkiRJWjCWcpUkSZKkhaiqrqmql9NV1LgY2BP4OnAAsAjwLWANYEX4T7UOSZpo+haaNwVOpQs8zQU+ALw5yYOr6mLgdcDPgW2AQ4FH07UF7QWhRgxCjb4kKwL7Ax9IMivJG+nuRytV1c3AQW3/44DTe0GoFgwAoKpu6QtCxSCUpImg7/60EXBCkjXatm8DP6SrTrhKGzsH+CqwLV17vNWHMmlJkiRJ94uVoSRJkiRplAw8db40sDhwS1Vd07YtATwS+F/gucBtwFnA24DjqmqbYcxbkkZLktcCnwP2Bs6juw5uBry+bTuqqv7Zxj6IrkLetVYaGhtJ9gT2oPtsngu8k65SV7VKUEvQVYd6G/AjYINeIKq/QpQkTTRJHgCcS/cQwmy6oO6JbfevgNOqatu+8dPowqJWhZIkSZImIMNQkiRJkjQKBoJQrwe2Ax4P/A24BHhzVd3W9i8KrEDXkujFdE+i71RVhwxj7pJ0f7WqdrOA0+gWmTevqtlt3yLAgcA7gL2AE6rqL/M7hxWhFo6Be9S3gOcBP6Vr0XpZ296rBNULRL2FrqLha6rqjiFNXZIWyOA9JckM4O3AhsBvgZcBv6G7b91M1y7vLVX1xfmcy6CuJEmSNMEYhpIkSZKkUZRkM+B4ukobvwMeDmwJ/Bt4cVX9Y2D8U4EZVXX+WM9VkkZbkp8Bf6yqjQa2Lw+cDqwK7AscXVXXDmGKU1YLAswBLgBuoqsMdQxwQK/ySZJpVTW3BaJ2aX/Wq6qvDmnaknS/JFkOuLGqbmntQs+kC0AdR1cFbzMgwB3ApcD28wvsSpIkSZpYDENJkiRJ0gJK8jrgZ32LyCsCX8qY12YAACAASURBVAPOoFtcvqFtvwh4IPDSqvp92zZjsNKGT51LmuiSnAGsCDy7qmb3wjVt33HApsB04A1VdYrXvYVrftW2+gJPvZZ5x9Ldsy5v+0foPqMAa1TVT8Z63pI0GpK8FPg8cCRdVcLfJ3kecA6wUVV9JcnKwBHAy9tha1bVRcOZsSRJkqTRMjLsCUiSJEnSRNQW9Q/nv3+uWgx4JPCTviDUV+mCUOu2BZi1AObXcshAgKSJoLXEuyv707X+PBigLwi1GDCXrkXRqcC+SZb2urfwDLTGWyXJqklW630mVfUBYB9gG2DnJI9sh24AfBZYuheEagEpSZpofgh8HVgf+GaSDenaV+8PbNOuib+rqrWB7YEtDEJJkiRJk4O/yJAkSZI0ZfQv5t7DYv49nWcT4NXA5i3gtELbtTjwAODaNu5MYA26FkOXtCfP90jyigX9tyVpmAYCNo9J8owkL24t2AAupltk3jbJSUnWTPIkYAu6kM1fgPOBZYGlh/AlTBl9n9OWdFVQfgz8JMnOSZZsY/agC0S9FTguyRHAKcAv+9u6GlqTNNG0+9XsqtoM2Bn4EV0Y9yBgCWBRYM3e+Ko6sqpOase6biJJkiRNcNOHPQFJkiRJWpgGWgQtAtyaZGZV3XY/TjsTmAX8JcnmwGFJ1gT+AVwKbJ/kg8DKdBWhLm5BgXWAFYCr78e/LUlDMRCE2oJucfmhwE3AtUk2qKo/JTkGuArYG3hNO3wesH9VfSfJc4G/AreP+RcxBQx8Ts8BDgMOpftMnkQXVntokg9X1b+qao8kNwFbAcsBO1XVoYPnkqSJpKqq14q1qs4CzkpyFvBeujagTwQem+TrVXX1wLEGQCVJkqQJzjCUJEmSpElrYEF4fWCz1gbouiQHAj+sqpsX4NRXtT9fBB4HvBu4sqrmJjkJ+BBwI7BlVV2UZFm6SlIfBHarqgvu31cmSWOv73q6KXA0XajmM3TXt8OAryd5bVVdChyV5CvAq4DbgMuq6kdJnga8A/hiVf11GF/HZNf3OS1PV/XkC8DBVXVzkqWAK4B9uyHZpwWi9k/yKWBeVV3Vjh8xECBpIhu8hlXViUkuBl4JLEnX3vo5wJfHfnaSJEmSFqb4cJckSZKkyS7JG4Bjgc/RPRSyLPBi4GDg0Kr65wKc8zS6Rf4/A5tU1YV9+/ahC0j9sv1ZAVgLOLyq9mljrLYhacJJ8kTgU3Rhpn1a+88LgHPpwqHTgHWq6jcDxy0NbA7sCFxcVeu37V4LF4IkzwfOBn4NnF5Ve/XtW4wukLYfXYht38GqKH4ukiabgYckZtB9f/7Mqvr8cGcmSZIkaWEwDCVJkiRpUkuyOnA6XRjqqKq6IUmAfwMXAZvelzBUkmnA0nTt8H4KrA78AXh3VV3cN24rugDUM4FvAz+uqtPaPqttSJoQBkMxre3a6+gq4C0J/JjuGrszsAFwHHAh8IaqurR3vUvydLowVFXVu9u5vBYuJEmWBE6mC+1+FXhjVV3bt38x4G3AQcAngB3uZ/tYSZowBu8/3o8kSZKkyccwlCRJkqRJLcmr6RbnN6iq89u2M4HV2rafJ3lgVV13XyphJFmuqq5K8k66SidX0AWiLhoYN72q5vS9d7FF0rjXWqzdXFU3tvfPAP4O/AtYraouSPJpYClgm77War8CVgVuAB5dVf9u2wMs26tA5LVw9PXuYX1/Lwl8ElgP2A74XO/zbOMXA94LXF9VRwxn1pIkSZIkSaNvZNgTkCRJkqTR0hbbe6+f3F4+HFisLwh1Fl01p/VaEOrZwMlJHnIfWwJdDVBVhwMfAR4FHNr7d9P0B6HaeBf/JY1rSR4NHABs096/GfgesFJV3dKCUNOAJwD/7AtCPRq4hS5486ZeEAq6clB9Qah4LRwd/fc94IFJFgeWAWjBp62Ab9G1hd2kBaRo+2fTtcg7Yj7nkqRxaeD7/QVa3/B6J0mSJE1+hqEkSZIkTRq9MFOSNwBfam2ZfghMS7JLki/SLd6vX1UXJ5kFPANYHHjgffy35vUWYKrqUOAQukDUQUme0hb+LcUraSL6MzCX7nr2OeDjdBXwftg3ZiawCPCIJMslWYauLegc4NtV9SWY/0K118bR0V/NMMkmwGm0Fq5Jdk6ycgs8vRb4Lt19auOBQNTcvtd+LpLGvb7r3qvo7lMnJHlZkmXb9rsNOg1cO1dKMmOhT1qSJEnSmLNNniRJkqQJb2BRY1ngB3St8Y6hewjkY3Rtgm4H1qyqK1p7oI3pqmXsVlVHD5zzv9rb3c2/fWerpyQ7ALsCfwNe0auCIkkTUZKfAU8CvgZsW1X/atunVdXcJGsDX6K75l1DV3Vv76rab1hznoqSbE7XDu8o4HpgUWBn4GzgfVV1SasYdRKwNl1rvGOq6o4hTVmS7pf24MMxwK/pqsDOAo4GDq6qK++q9fXAzww701VAfHFV/XXsZi9JkiRpLEwf9gQkSZIk6f7qW9RYny78dBFwalVd37YfDKxAVxVqxyS/olvgfz1wYC8I1Z4k3wI4qarm9Bb87+HfntcLRFXVES1kdZVBKEkTWZIHAg8AfgO8GtgyyfFVdW3vulhVX2+VOXYE/g18vKqOb8fPdyFaoyvJo+iCT/sBB7XWeCTZgK7i4fUAVXVzks2AM4F5BqEkTVStsutGwP8AJ1fVv5IcS9cWdFaSD80vEDUQhNoB2Ad4j0EoSZIkaXKyMpQkSZKkSSHJ8sA5wKrAb4FnV9W1vaBSktXpFk42oWvvdAHw1ao6sR0/ArwMOAv4MrBRq3xyj4Go3vG9ClF92wwDSJoQ5ne9SvIg4Ga6ikOvp6t8d0JVXXMP5/p/10MtHEmeQnfv27qqvty2nQk8EXhNVV2U5JHAlVV1x72teihJ41GSV9N9v/40YDvg4r6A00eBzYBTgP8KRM0nCHUo8NaqOm4oX4gkSZKkhc4wlCRJkqQJ6S4W7tcH3g68kC7M9NUk04G5fQsgI3QthO7oVcboC0w9kO4p862BH3EfA1H3ND9JGo8GFokfQddSdFpVXdm2Tadrw7YJsAtwXFVdn+S1wNOB/avq38OZ/dSW5DXA54AnV9XvkpxFVwXxNVV1cZInAfsDu1TVRX3HeY+SNGG06q1LAGcAqwHXVNXj2r5Fq+rW9vqjdG2wvwLsVVV/uYsg1LZV9YkhfCmSJEmSxsjIsCcgSZIkSQuib1HjaUlWa9tOBw4DfgF8NsmTWwWMaW1sr53dbGBu25YWhJpeVdcBewLHAGsBp7Rj5iaZdk9zags1Pfc4XpLGg77r6WbAN4CLgXNb2Il2HX0TXejmw8DBSfYEvgDcZBBq4eu/vyR5WJIV2tvvA9cCeyc5jS4ksH4LQi0CPBdYloHfARqEkjSRVOdGuocefgKsnGTftu/WJDPb6+2B04A3A4/tHQuQ5N3AQRiEkiRJkqYEw1CSJEmSJqR0Hgf8GNitvaaqzgT2AC4HzusFolp1pzvbNvVe97XO6LUNWhm4mm5xeUPgxF5lqLsLRA08db418L+tmookjUsDAZuXAx+nq6ZxLHAF8IUk28OdgaitgePoqm5sCfxPVe091vOeagbuL5sAnwHenuShwE3Ax4BXAGsDL6mqC5MsCWxBF147saouHM7sJem+G3jA4E5V9StgR+BbwFZJ/qdtv60vEPU24EVV9Z2+8z0LOATYwSCUJEmSNDXYJk+SJEnShJZkV+BDwAnAAVX1m7b9lXSLwI8AXnZvFoKTbAUcDpwJ3Aw8E3g8cDqwyV21zBtYqH4nXfuNzarqc6PzVUrSwpNkCeAdwEOA3avqliQrAzsB2wDvqqoj+sY/Hritqq5o70f6w6ZaOJJsSRdYOwL4UlX9pG1fka594VbABcDPgIcDLwUOrqoPt3G2xpM07g18X70W8Ei6a9r5wG+r6rokT6QLNz0e+GhV7d/Gz6yq2/rO1WuFPQKsWVU/G+MvR5IkSdKQGIaSJEmSNCEMLuImWaSqbm+vdwIO4P8Hol5Bt1CyKrAccM1dLQS3VnvfowtDHVxVNyVZmq7K1FbAOcCmbUHlzkDUwILNDsBHgLf51LmkiaBdJ48D/gp8uqo+1rfvkXQhm23oqml8bD7HG7AZA0lWB86gu8/t39q90le58MHAc+g+q6WBC4Fzq+rUNs7Amqa0u7tWeR0bn1ql1f3oWk8vQ/egwjnAdlV1ZQtEHUxX1fXYXvBTkiRJkgBs2SBJkiRpQugLHK0KXFFVtyaZUVV3VNVBrZvGAUAlOaiqfl1VZyfZBVi8qq6+h3/iIcAs4FstCDWtqq5NshfwYGBz4IQkW7eF5wzMawe6ilDbGoSSNBpaJQsWcojln8DfgKcD5/YHTavqj0n2BeYCRySZVVUH9R9sgGDMPBaYCZzeC0I1vZav/6KrYnj6YPDJIJSmuoHg+irAEsBSwM+r6vrWMtn/J+NIq/D6MWB3ugDUFcDewGuBzyd5bVX9Ism7gSOBXZKcXVUXDG3SkiRJksaVkWFPQJIkSZLurSTPB34A7Jpk0aq6I8kMgLZAvzewNbB9e1qcqvpKVZ3cjr+7n4FuBhale/KcFniaXlXXAe8DrgZeB5zdO2CgNd5HMAglaRQkeWaS51TVvFaN7p0tmDla50/f21/QVRM6n64K3rP7r5VV9UfgQOAk4PbRmoPusxXpwhvX9m/suw+tmeTJbdu8/s/YgIemur7/J1vRfR/3TeDbwDfa93D+PxlH2vXrVXQV7k4ELqmqG4D30LUJXRnYsT0UcSmwPbClQShJkiRJ/QxDSZIkSZpILgR+Sbdgv1NfIGqRtv+jwB+BtwG7tTZ3d7qHha5/AJcC70jy+DZ+Ttu3PHATcArwmbavt7C2DV1FqAnRGm8gBCFpnEmyGPA84HtJ1k6yId01Zvb9+f87cOysdBZvLT8vAd5OVyXqeOC5A4GoK4C3V9XhC/rv6367ki6w++LBHUmWBbagC7L1AsJW7JL6tGvpx9ufjYDVgdnAQUm2HebcprIk+yVZb2DzCN3nQ1Vd3Sp3zWjfxx8AXACsDcxpY35ZVae387neIUmSJAkwDCVJkiRpnOpfuE+yQpLlquom4JXAr+kW7ndKslivpRNdVadL6Npl/KSqrr2bcy6f5OFJFgWoqj8DxwAvAXZOsmYbtwTwxHbeXavqhLa99/PUisAbRjsIleSxSZ7WqmGNmragNG00zylp9LQWaOcApwFnAJ8H3gActKABl4EWURvShTp/DpzV3i9WVZcAW/J/7J11mF3V+YXfFZIQvFCcH1K0OBSKuzvBPQlSKMW1uEOw4IGgaXEvUKwUaCkUd2txirS4ewLr98e3T3JymYTI3JlM5nufJ09mjux7zp1z9j73fmuvFc5DfwSWbhBEfV61NbrnloyYhjGqSyVsAiiF/tuAvpJWkDR+2W4SYlzcGnjX9qA2PuwkGespItOtgCuA82z/rTgKCfg3cF97Hl9npAhyJwN6Au83rib+LrNLWhSgcoMtY9ldwExEjPUwpMNXkiRJkiRJkiQVKYZKkiRJkiRJkmSso6FwvwlwEbClpJ/b/hLYiIh2+i1wQNmuK7A0MDGwh+1TqraqdmttbkmIDB4HrpO0XVl/BnAcsD5wg6SrgCsJF4EHbL9da+uH8v8Rti9t5fM/jijY3QvcLeliSdOOYZsDJF0GQyIAUxCVJGMpth8n7n8R3924cqobHdeLWt/Xi+hbPib6vw8IsVVfSdPafgboQxSmrwRWHF5bSetT+zv1JP5Of5W0s6QpyyaHAq8ANwHnSDoG6E8IeU+1fV07HHaSdAS6A4sD71RCeUm3AbMT8WrPSVpM0uLteZCdDNn+FFjA9v2S1pS0afkMMBi4FZga2FHS7DBEEDU+MBvxOeCrdjv6JEmSJEmSJEnGerq29wEkSZIkSZIkSZI0UisI9wFOJ2KbHrL9oaTxbH8paSOiWPxbSZsBLwKrAIfXZ4UXJ6S6uGo94HzgcqLQshkRqTed7WNtHyHpX8DyRBzRy8BetgeU/dVMMYCkU4EtgCMIQcIswNHA58Auo9nm/sCO5edvbW9XCaJKRFaSJGMJRdj5PfAlcCARmXeJpB9sXwG4sR8amX5J0jzAIUTf0t/2Z2X5e8CvKBPmbD8taUfgOmDG1j6/ZMRI2gK4EHgEmICIf11K0hG2H5e0FbAfsDowCfAoIQA+v+zfpdnOKJXIuIyvTX+9JBkVhtMfdgc+A6pnwVuBeYG1bT8l6f+AvQkB4iN5TbcJLn3J4OLSeikwqPx+g+0/S/o9cAIwtaSBwGvEs3kvYL/iGJskSZIkSZIkSdIiygl9SZIkSZIkSZKMjUhanoiJOga4sMweR1J3YJIijJoI2IkQCxj4s+2BZbsfFcMkTQqsC8wF9LX9taQ5CcHVPMD5to+pbT8h8L3tb8vvTS36FseqQwm3qz/b/kHSBIR4YQdgKdsvjGKbywMXEDF/bwG7AZfY7l3WpyAqSdqZEYmZSkTQYcA6wNa2L6+tm9f2cyP5GisRbk8b2b63LLuV6Ps2sP2EpCltf1Dcpya3/eGYnVkyKhQHqJOAZ4FziHFtM8L56SbgQNsvlW1nAL4DvqlFGDZtjGoQFQ8RQ7W0PknGBiTNB7xRE34OBNYmRO7TA+vafqYIUHsTIsPdbd/RXsfcGZA0se0vqj5D0hy2Xyp92r1Ev3cAcF15Dv4tMSng58DXhLPhmbZPKO1l35MkSZIkSZIkSYukM1SSJEmSJEmSJGMrSwP/JqJ/qgJsP2B+YBpJx9i+RtJptk+RNKHtr8p2PyoIS1oNuIwoopxWhFDj2X5R0u7AGcAOkgbbPh6gaq/sryYLoSYC1iKKdP+sxfB9Leleokg34Si22YWIGOlGzKx/hnCYOkgStnunQ1SStC8NIpNlgMWAT4HHbD9p+9EShwZwqaTvgeuBnsBVReR0z0gUg+cAJgIeKK91G+GMsm5xRlkcOFbSdrbfAD5sPL6keUjaEFiK+DudXxt//iDpG+BiwknlcNvPuxbbWvZv2hjVgrviFsBskl4jYmz/WRc3NOMYkuSnaLhOf0GIwI+UdFYRdh4D/AJYDvgN8Kyk6Yi+9GTCWTSFUE2kOBTuIekS2/dJ+h1wlqQFbD8raWngYeKZ1ZKutz1A0j2EgK0r8F9HpGubOOElSZIkSZIkSdJxSTFUkiRJkiRJkiRjM7MCyxe3jMOIWeF/ByYGzpb0jO1/l22/hhEWhKcgnJHmAAaXZSpCoJeKIOpUokgzge3D6zs3u8DriP57CPjC9gfVwZXXfQ74AZhmFNv8QdKDRAzMc6XNs4hZ9wePSBCVRe0kaRtqxfvewNnAR8AMRKH+bNsDbD9cBFE/EPGgjxCOTkfZ/nu9vQZBwJTAt8U56B4ifu+IUpCeF+hZhFATAEsCPQjB1I+OL2k6WwAbEfGo78HQQr/tK4sZ00VAV0mHNDqCNfPvVLueehEuVTcD/wIWJKKtrpB0cOVQlSRtTUO/tyQRMfweETU6SNLpwKvA4YTLUH9gV2A8YFKiLz25sa2k1RlMjD03SzqHiCbcD3heUlfb/5O0GEMFUZJ0ne1/EX3OEJo9SSFJkiRJkiRJko5PxuQlSZIkSZIkY4ykHra/ae/jSMYNarEZKwGHACsQBZAXgW1tfyKpDxEltITtV0ah7Y2BI4ki2Wq2/1nck1QEQXMSxeYLXeL22oKfKrxJmhj4gDj/K2rLfz4qMVZVYV3SNEQR8GCGjcz7GTAb8GQ6RSVJc2ko3k8N3AecC1wDTEfEd05JxAGdXrabB1gTWBj4i+1LyvLq3q63uTGwDXAbEY8n4BRgU2AQsIjtV4or3SZAP+Bg2wPa5A1IgGGjSiX1B3YGzidcat5p2HZLQny0tu3b2vg45ydEUOcR12QVPfYd8FdgB9v/a8tjSpJGJG0LHAf8g4iRXBiYGzgWOM72N+W5b3uin30TeMH2/WX/dBpqIgpV5+xEnzEDcJbtvWrru9oeXBy7Hga+Ij4LXJsCtSRJkiRJkiRJRpV0hkqSJEmSJEnGCElbE8KSY35i0yT5EQ2F+8mIzyhdgXdt3y3pI2Aq4Mtaoaor8DPgDcIlZbhtlt+72/4OwPa1pRBzCHCZpK0qQZSGRuatbfvT5p75sPyEEKoLMD7h5jSotnwrYCNJe9h+cyRfp4ree7c4RImIzPvB9rZAb0IktQ3w4OieT5IkP02t71sDmAR4FLi8CErekLQzIV7ao7i4nW77ecJBoy6g6VK7t+suU2cBA4FnbX9Slp9MRA0tDBwi6QkienRj4ORKCJXOKM2j8b2tC09t7yJpEiLC6x1J/W2/V1t/uaRHbL/UtkcNhKsiwJ9rQqjrCfedg4ujy9TAhymmTdoDSYsQcXcnAefZ/qiI3HcgxN8/KKKVPyEEh437pxCqSZRnb8pkh26UZ31ga0nXVM/4RQhVd4h6ihAJPw6M9OSHJEmSJEmSJEkSSDFUkiRJkiRJMgaUL7O3pkSONcZsJcmIaBBCbQJsSxToX5T0V9vH2H6yYZ8ZgVUI8d3Btl8bQZvrAOsBC0t6Erjf9kDb10gaD/g9Ee2zue37yzIqIdRYJAYQEW01COgGIGkz4GKg78gKoRopgqgzStsHSVqIiDw60nYKoZKkDZA0MyFamgF4pBSAK7e6JyTtCZwG7FIK9afCjwQ0PzS0+WsiXugE4FTbX5blXWw/J2lXIo5tc2AZQoS1m+1La9ulIKAJNIxRSwGLEC4pdwHP2H7Ndq8i+j207HKm7ferfSshVDv8naYjIhRfL69/CzAfsJbtpyUtTYjqTgDeGV4jSdJEpiXE4/fb/gigiNxPJGKWDwW+knRuS6L37PeaR63fm8L285LWAiYj+osbJW1g+76ybV0Q9SvCyTWFUEmSJEmSJEmSjDJd2vsAkiRJkiRJko5HbXbvICJeYsbyewqhkpGmVhjZBvgD8AKwL+EycZSkk+rbF/eUo6t/tdgotdBmHyJqak5i5vlawABJp5ftrgSOL691vaQVGq/fsUQIVd1XnxGipWmKEOoS4Ajbh8Cw78Eotv1eaeteQgi1r+0jS5v5eTFJWpnGe9X2f4ATgeeBxST9uirIF7HLU8AeRF91qKQFR9D2eOXHRYEvgKsqIVTDa75k+3jbCwELAFulEKptqI1R2wJ/BvYGNgNuAM6RtHbZbkvgCuAAYE9J0zSOSe3wd3oRmAJYRdKfiDFjvSKEGh9YjrieJmzj40qSiskIMVTlXNYdwPYHDI0K7QvsWNaP1rNTMnpIWhO4W9Kytp8momH3BV4C/lQElRXrS+pt+y3bF5X987k0SZIkSZIkSZJRIj9EJEmSJEmSJKNMQ0HuCWBKSZPll9TJqCJpGeBIQtizFyHKWQ14BthHUr/a5jMQBa49bZ9Q9u/SWCAuYoETgMOBDW2vA6wKnAfsJukYANtXESKEr4BZm3eWrUI34GPiPP4IHGf7aGj5PRhZJE0K9ASWBfa3fUqtzRREJEkrUxPDzF+c7rB9HnAq8DZwjaSFighS5V58mhBE7VDEUUNoKOZPXP6fA5iAEILWX7sSWc0taZay7OuWtkmah6SVgTOJcWplQrTbG1gCOFjScgC2twKuBw4EftFGx6baz92LA2jFXcCfCKHxssBytp+SNCHhMrYPcKXtV9viWJOkul5r1+3twFvEvYXt72rX8HvEM+YFwAmSlh5bRO+diOmBKYG+kpYr7/+DDBVEXSdpJ0m7E/3MLPWdc3xKkiRJkiRJkmRUyWJVkiRJkiRJMkpI2lzS5ZJ2LTN8vySiU+bML6mTUaEUqOYHbgFOkfRLQgR1BeGUcT2wV028dCFwmO1ry/7DE+zMRIiH7qjFpDwP9AOuBbaTtEBZfjWwajXrvNmMjgtBERlOQDgerAkcYvuI2roxKeZNSsQFnmj75KrNvJeTpHlImhd4inD8mQGgODMdQYyp10hasAiiupR78jHb15f9h3yXUxNX/RZ4XNJEwCvEuDxfWde19trTA78l4kMrl8e839uAWv+/GuEENtD2q7Y/s30JETu8BLBp9Te2vTmwRltFl9aup02Am4G7JB0mqXu5Tk4DbiPGo40k7QUcS4i7TrF9fsO5Jkmr0nBtVT9XfeJXxLPeUpIug3CxLX3gMkSs9wWE8LRnC+0lTaA21lxIiDunAk4sgqgfgAcIl7yngP7AwcCBlVNpkiRJkiRJkiTJ6KKcBJMkSZIkSZKMLJJ6AFcDPydcCqYGPieKYo8BjwMfEF9qfwh8bPvf7XO0SUeguDhNQVwz1Yz+3Wx/LGlJ4B6gK3CJ7d4j2WYf4CJgVtuvlyLY97ZdIjjuBda1fUvDfmorl4DRERxJOhDAdt+W2hhdEZOkmUtUVwqhkqSNkNSXcNI5BTjL9ltleS8iGq0LsIXtJ1rqm+rLJC1EREBdRThMjQfcDfQAVrT937LdhMDGlJioxj4waRuKSGMRYF7b35d4Q9v+QdJxwM6EkO1/rdHHj8bx9QQuI66hSYClCdHyrrbfkjQf4WTVk4gkexC4zfbAtjzOpPPR0O+tBawOzAM8R/SjL0ualnDS2xV4HbifiG7cDNjd9gBJrxIxoge2w2l0SiSNb/vb8nMv4CDgUyKe+d6yfCIi5vVr2w+XZdmfJEmSJEmSJEky2nT96U2SJEmSJEmSJLD9jaQNSvFuWqA7sAqwP+HEsyAwM1GEqIquKYZKhis0qiKfJM1ECOwusf1xWd2DcDj5B+EYNdw2y/X4ge3BRFHsc2B/SQfZ/qQUm78nCi9fAT8qrDRTCFVc1GYgBA532H59FPbtYvuHSgRVLQNWL64yo9xmnRRCJUnzaOz7avfzgZK+Aw4ty8+y/ZbtiyX9QLhE3SFpbkJcPAy1vm9BYDZirO1f+jsRbj0nAg9JOpPo92YHdiJiSVMI1WQaxqgJbX9VVv0X2IAo+j9UnqkqZ5t3iecpNfbHze6fa8e7DHAcIZqbGFiXcGs5WKhyagAAIABJREFUX9JOtp8F9lPE2H4FDKriFnMcSZpJ7X7qTbiR3UKI6NcgnMpWt/28pJOA+4DfEZ9T3iPEfOdJWoNw23yhPc6hMyFpPWAHoKftb4vD3HdlnOsCnEQ4w+5h+37bXxKTIKr9sz9JkiRJkiRJkmSMSDFUkiRJkiRJ0iINRbxJiCiu7rXYsXfKuquIOIMra9FdswCTVUKXpHPTcC3NTUSzTQE8bLsq8k8PzEiJfCtuTr8EHgUOr11vKg5P9TY3AXYHrpJ0ru1HJN1COFe8Iel82x9KmgBYFvgCeKdtzh4knQOsQ7i1jAecXgp1l1fOaSNypaoKQbVzHw84a0zarB1b/f3MglOStDK1fuoXhNPPNzVB1OElPehQwJLOtv2m7UuLE+M3tj8YXttlrH2CiH662/Z71WtKuh74iBAnH0T0E08TLhz9y/5ZaG4SLTnYSLrV9l+Akwmx+ImStrT9dnGF6kaMjS8BP7SFW2HDa0woaRAwEfB4uTY+k3Q18C0RLzZA0q6OeL8h43KtrbyekqZSxOUnAEfZPlnSXMAjxASN+yUtbfs5Qih1i6SJisgGSasC5wL32/5D+5xB56A8xy8LrARcLmkL29/VBFF/kDQrEZt3pqT9bd9VbyP7kyRJkiRJkiRJxpQUQyVJkiRJkiQ/ogWhSR9gbuA9SdcBp5cvtGX7S0kvAfNW+9cdarLYmjTM5D+acA2bAnha0uXASbYflHQpIepZgnA72hw4sCq41tuqtdkLOKf8e9n2oLJ+S0l3AIcA60q6k3At2wQ42vYTbXDqSNq5vOZWwLPEue9Ujmt+ScfbfmhkRUvl172b0OZUhHNCkiStTCnA3wjsJekPxSGjLoiaDNgX+EbSH22/bvuC2v7DG0f/C2xHuPgsIGkx4BEHg4E7gTsVsWafA9/WBCw5NjeR2hjVBzgduIKIlAN4n3DUPAu4WdLZhEB33rL8AJdowzY8zs0IB5epCVfGf9S2GSTphvLrAEIQ9TvbL9fbaLZwK+mcNHwmmZSIxru4CKHmJ2LwrgT+StxTfyuCqJeK+9BXpY/tRTwr3W97i9Je9oNNwvZgSccSQsrfANdI2rR8fqwi814n+r5piQj2JEmSJEmSJEmSVkX5XUWSJEmSJEkyPCRtDVwIDAS+BCYDtgGuA/auFVX7ES41v6pmXydJHUk9iWLw4cADwBtEUXVVYB/bp0uaE9iTcMx4kyh2nV72/5FDhqRFgD8B5wH9PDSmp1sliiqFmBUIl6kngGtsn1vWNb0IVorc0wIb1Y+/iKSOJd6LQ0YkzmooBO5f9vsLsG4rtnkYMMuIXGiSJBk9iuPP08DkhJPipUUQNZ4jIm0+4G6iGHwWcFDjWDo8lyBJEwM9if70NmAv22+VdS32cW3hOJSApFWAawgR8EW2P6mt60HE0Z1IjE9dCGHABbZPLts07e/UMAZsBFwC/J1wZ1yTENrubPuftX26AhsSwpOetm9qxrElCbQYMTp+6Te3A/4FvAj8DXiMuFa/UUSC7kLENy5l++na/ksA09n+U/k9hVCtQOUMV+tPqnGtch6dnBB5bgfcC2xSlo8HHAB8QDgbvtROpzDalD7x+xxPkyRJkiRJkmTsJZ2hkiRJkiRJkhaRNDsRrXMk0N/2p+WL6xWBBYHxqi+8CZeDqYEJCNFUkgyhFH03B64mCr0fleXdiYLW3QC2XwR+J+kowsHk47Ld8ApW8xHRTzdVQqjC4OratH1wKdRMCXxp+6ufaLO1mQKYqVYk6mp7sO1zJH0PnAG8I+kA2+837txQsN4dOAp4Cpi2ldvcJ4VQSdJ61ArB4xVnnfmBh4l4JyRd3tBvPQq8Bbw6IiGUIlZoYmBi2/fb/qI47HUDzga+l7Sv7beG18dl4bbNWJWIvLuqEkKV8Ui2vyFcuxYhBLtfAp95aMxpU8eo2vUkYCagL3BquZ62J0Rah0s6wvb9ZZ/BivjFOStXqCRpBsXlbipJ95RrcidgTuJZ5aKyzRpE7PKF5X4CeI54RpoYWIpwIJWDB2vtpxCqlSjjXFfi2XsdYC1J0wKPKqJBn5R0IvAD4T73N0kDgDmA/YCdKiFURxHqSvo18JHtV8rvOxP992Xte2RJkiRJkiRJkjTSpb0PIEmSJEmSJGl/JM3YwuLJgGmIyJ1Py7KbiGfIrWy/DfyiLH8EODjFFMlw6AYsAXxYE0LdRhS2trb9jKQlJC0HYPudmhBKjQWrahY6sABxPb5Qlncp+7vMSp9H0s/K7+/XhFA/arOJPAvMJGnZcmyDa8d5HuHI1Af4VcO5NQogdgNOBXYFbmjtNm33b9L5J0mnoX6vAZMWR4wekro7YusWJ1zvjgf6SBqv7LMU4cizh4sbXp3aPbsNcDMRYXaLpMclrQiMb3sg8FtgPeCE4YzrSRtRxAHLAJ+U56Uh/W81/kiaufz+N9sP14RQbTJGSVqPiFrcmIiZ/QLA9oWEk8uvgCMlLVntU4S3L5f98zvFpNUpEy/mJ1xoNy9Ck3OAN8u6irmA6QgRaXXPzQ7cDqxkewC0LP7sbEKoZtyrkg5SuK9Wz6HbAdcDv6YI14B/SNqwPNOfRLiXTgNcSkTnHW37iqrNDiKEmhTYAHhM0owKZ73+xHklSZIkSZIkSTKWkV9cJEmSJEmSdHIUEVl3SFq8/F4Vc2ckIn0eL8tvI4oTPcss3/mACyUtYPsu22eX7fIZM2mkG1AJ6pB0KzAvsI7tpyTNAOwBzNNQ6BqmMFIXO5VF9xPFhw2rzavrV9LUwBFEfOMwtHGxZQAwCDioCCOw/UN1nrZPJIQN+xXBxBC3jgbR0mnE7PkLmtRmkiRjQMP9tSlwC+EK9BIhTlrSEd+5GPAKcAxwH3AZcS/e2eAU1dj+xsD5hMNeH8Jt7xvgWmD5stnlhCBqc2CApIla+TSTkaSI314CZlc4bTaOZ7MCx0pauIV9mz5GlbHyZ8DnhHihEmj1KMdwIfB74rmvr6TlG9vobIKSpG1wOM7eSESG9gfOBPa1fVpZV3Ej8AlwiqQtiZjlHYAnbL8JPxKodjokLSRpxpoAs7ekNVuh3amIeNY+kg6QND6wKRF7t4bt+YDNiOjNqySt6HDHOxtYGFgUWNH2SaW9DvPZ0fZnRDzjy4S77dVAL+JaTZIkSZIkSZJkLKPDfNhIkiRJkiRJmsa3QHfgREmL14pwTxIOFn2LEGoeQgj1VPnSexUiomwYsjjWeRle0am4Qd0LbCfpIWBuYO1yLXUFVgcWAV5vKHQN02YL19ZTwEPAUZJWLw4bLsXcVQm3lXaLbVTEY30A/A5YFjhL0gQQxb7aub0ATEUpRpf1lahib6AfRbTUjDabc/ZJ0rmo3V9bAZcQrnCnE05OOwCnSlqlCKKWAS4AviLu0z1sn1r2H6YfldRF0mTATsC5wCm2b7D9l7L/J8Dr5RgGEYXZnYFb3BC3l7Q5/wRmAbZSxEYBIKkbsDIROdytrQ9KUo9yvV5BRCH/h3gGnMb2N4oI20oQdSgx1kze1seZdF7Kc84TDL0/VD3rlF+6EI5QexHOo5cQ4r2+tq+utTPWOw01i+JgtBVwl6QpJPUCBhKxmGOEI4J5G+I5fGfC9Wk64D7bH5Zt7iScSh8inlWnLc5y39h+0kMj5trSrbVVsP1X4FZgQuA74EXb33YkUVeSJEmSJEmSdBbUiT8XJkmSJEmSJAVJ2xORKO8D+9h+qAieziJmu34JrFmWT0o48ZxCROOd017HnYw9NLiiLEQUTr+0/XBZ9n/AhYRIaTfgPGBqYmb5icDhtk8eQZtrE9fdjMAbwKm2nysz3PsB0wNnAB8DMwM7EvEbfZt64iNBcWfpA5wM/JmYOf9aEW6JOP65iFn1X9XOeVngbiLG7txmt5kkyZihiKa7HfgLMT5+XZZvCxxOiBR3s/1iWS5gIpd4MkldWioKl3H3ReDkqp8sDnvzEQ57TytiRh+wPajeTr0fTdoeSecQ49EFwB8IV7+VCJHAkZUzShsez6aEO9nptt8swqxNiOjG74Albb9fXAW/K/vMY/v5tjzOpPNSBCUmRE7zEM5l1eeU8xpFnpKmAOYAvrD9XNVGRxPYtDbFLXQF4tl4cmBaQrh0YXGuG502DyKi8F4sjqRzlfbnIoRr89n+uKH/+B3xrLqY7WfH8LTanTKJQ8C+hLveqsT1t4Ltx8qkhe9H1EaSJEmSJEmSJG1H1/Y+gCRJkiRJkqR9KEXYLuUL20uBWYEtiLiJPW0/UhxkpiYKZ0dJupcovq4K9KuEUFlsTWpim95EpImAiST1J5xMXpN0WNn8dCLKaTxgAqIgXBX4h1xLDW0OAP5KFGuXB3pKOsH2SZIGETPUdyttPk2I+qrrs12LYra/lHQpEWl1MlE0ukLS40Shb6dyvI0uLu8Ay9h+qC3aTJJkjJmCcN243/bXkroWJ4yBxd3pZMIZ70WIPk7Sl/CT7hgTAj0oTnc1IdS6RQg1PXA0MZafX28nx+b2oRp3bO8s6XNChPAbwo3zHUIA3K9s25bPUKsB2wHfSBpg+y1JlZPOCcADkpaw/YGk8W1/S0RBtftYmoy7NDz7VdfYA8T1eBPhcnli2XSA7a/KfgsDb9SfafI6Dcrnu7sk3UgI5j8gxqbRFULNBfQG7ihCqC62X5C0BxH1uhpwFCH4/U5St+JW+DjhQDwt4ZjY4Wi4PgeXZSfZHizpLqAv8HdFHOCj1faSZrL9Rnsee5IkSZIkSZJ0dtIZKkmSJEmSpJNTXKG2IwqtkxORLg8A+9m+X9LERCTXcsDswH3AnbavLPtn0SEBQNKcRGxEf8IBZV7gOOBG4KCaG8o2RFHkf8BLVRGrpWtJ0iLADaXNc2x/Wpb/UNrd3vZHxUlg6rLbIJeYjrHp+izHOA9xLrMCUwKvAn+0fWLZZpSK4s1oM0mSn6al+0rSr4hI0CFOd5Ugqvz8JvAX2zuMbJvVcuBiYEUivnZaYAPbTxZnn+2AXYm4vbtb7SSTVqM4Jk5DiKHetd2mAqMGp8UzgV0I8VP/IojqSjgJHkuIihe1/V6zjytJGq7NlQlRzZfAw7ZvL8unIdz1fkM48twKLABcA6zuiC1LapTnw27A7sSYsSYwPiGiHWWntzIOTWb7E0krAe8Bzxdh1OyEm/CiwFm2jyj7dAf2JMRYK9p+aszPrG1puD5/TXy2eQd4wfZrZfkaRN85J7Cc7SckbQJcRcShPpvP4UmSJEmSJEnSPqQYKkmSJEmSpBOjiBi7Efg9cCchYPk94WDwGuEs82BthmvlElDtP9YITZK2p7FwL2l+Ij5xM9sflWVbEdFANwGHVREmP9VWbXkvIk5ovap4I+kG4FfA+qXgMDERyed6W80WAY1u+4rokumJeI1Pq1njpXDl1m4z79EkaV0aiqPzElGUr0maBHgU+JRwq3uxtt2MwN+BAW4hGq2hzbkIgXKPmlh0daLYPAMhejpfET+6BuHKcajtU5t53smoM6I+uJlj1HDEekOe4RTxfTvxY0HU5sA5RJTqH5txbEnSEkUofw5DBZ9dgGOq/rIIog4lJmi8TPSF/Wwf1nKLnY/h3PeVKGpZwpm1B/FM/Vxtm2lsvzuCduvRq1MRbnFvE/3FCx4amXc6sArxzP98ea2dgGNtH996Z9r2KFxqzwAGE5OH7iGcb/9c1q9BOGMtSsTlLkvEkR7SPkecJEmSJEmSJAmkGCpJkiRJkqTTUr4cP4n40noV2+/X1u1a1j0B7G770do+oyXWSMYtGgr3ixLRUJMDy9vuVZZ3KQWSLYE/AtcRBZFnRrZ9SUcBfWzPVJZX8VDrOOKhVgTWJYRWXzThVId3fFPZfn9UxUbD277MuJ+ytdvMezVJWpeGvm8rwvHiP8COtv8raQWiEHwPcJztB4pgcwNCtNTL9i0jaL83EXk3JfA9Ia46xPY/JW0G7A/8Evhn2ebnhMCqb+PxJUkRvc9qu3/5vbvt78rPlSDqeMJ58c3iNPYLFyfHJGkWDX3pNMAtwJXAQMKldg9ga0LoeWzZrhuwJeHO84jta8ryTi/8buG5/JcMdTB6s7g0LU+MQz2AtYmxax1ChLaE7Zd/4jUWJYRoiwLnl/a3B/5dnvfnJARRKwOfAEcA/7V9Q9m/w/ydGt7PWQnXxzOI8X1hYqLGt8BRtq8r2y0JbEY4RF1v+4KyvMOcd5IkSZIkSZKMa6QYKkmSJEmSpBMj6Q/ACrZnKb/Xi2QDiC+4Hyccou5rr+NMxl4k9SHcSr4HJgEGAUvafrwIfCiips2By4E7gC1sf9zQTr3oUI+V2oAQUa0K/BZYgoj4eFLSBMBewArADpUbUrMp98ZGxL3zXGsUOZrRZpIkzaOIPAcSBdG7bT9SlgvYGDgX+IGIrfwcWBzoWxX1a+3U+77ViNins4DngAkIt8bJgN1sXy1pQaIfXIoYn59xicbLfiNowbVwjAVirdFmG7gV7gPcb/uB8vtEwCPE9XOE7fPL8vqz3l+Iwv5A4Gzb/6m1l9dT0nQkrU04F21GRCpX0WNzEOLP7akJosq6+nNiXqc1iqC2HxF3OT7RB+xv+6GaIOoUQnD2N2AlItrugJ9otxfh9LoaIQxaCriEcPKqC6LmIMa/hYjJNo+X/Tvk30nSckB3QoS3r4c6364DHEO8z0dUgqiybkLbX5WfO+R5J0mSJEmSJMm4QoqhkiRJkiRJOiE1x549CAeKXsCNRbTSzfYgSQcQQpPvCXeoa9vzmJOxg4bC/VzETP6BRCTEWsDewDNExM7TDYKoPsDEts8aQZtrEoXZPwH/BqYCriDiJj4BFrD9jqQeRDzHCUTx7MLmnvmQY50eeAqYiJhRv1k5z1F1c6qfc6u3WX7PAkySNAFJsxB93w1EjNPXZXn9vp4d2A+YEXgd+IftK8u6H92bkn5OOHQsC+xl+/Oy/GfAXcCkwIq23xrOMeX93kApVq8BTEe4mDzmmgtmW7bZcG3M1NriXUVk4hPAh8BWwONl3J2dECJPDpxs+9yyfVfbgyX1A3Yhiv3L2L6/NY8r6dhIGs/297XfW7WfkTQF0b8tSAhAl6/EJmX97IQgdHvgcNtHt9Zrjys09C3zEO/nmcCfCYemHQhRVG/b9xdB1LzAnsDUwJ9sn1f2H57T6LSE49PTwBm2Py/P9yvQsiBqPmD2yhGqo1I+59xHPJ/faXu96nNyWb8WcBxgwvn22ob906kxSZIkSZIkSdqZFEMlSZIkSZKM4zR8ST7Ml9ySZgYeAl4EDqiKYCWG4nCiqPYX28+3/ZEnYzOSlgG6An2ImdIflOV7EgWW/xCCqGfqgqja/j8qEJTZ7CcS8VL9bD9Ulm8I7EsUy3Yj3FZ+CexKxFAdN7w2WxtJkxKxVW8Sri1TAhuV8xymaDiCNur35K+IyJFWbbOaiZ8kSesjaWGiQLqR7dtryxsFiZW4eMjYOxwh1NKE08YbwHW292nYfw6ij7igti6LrCOguJgMIES1PyfES2cQDiivt2WbDf3zfsDBwLy23x6d4xjB6/wauIhwKukFPFkET7MC1xLujf1sDyjbT0A4m1xLDNEPtubxJB0XSdPYfrf2+5KV41grv46A5YB9CAfQzW3f2HDPzAYcAvQGFiMEiNn3NSBpceBL4tn4QBcHVkmbAgcSgtpt6oJHSZPZ/rT8PDwhVE/ifV8D2KV+HTQIol4jHFz/1fBZs8MIdVsaw4n3bmtgQmBhR5x1XRC1JuHENTHh7vpqOxx6kiRJkiRJkiTDoUt7H0CSJEmSJEnSXBocd06QdL6klSRN5YhD2ZiIMhgg6SBJKxGzsPcE/lcJoSpBS5IUB4qbgbuB6YEhs/htnwacBswMnCZpQRfqbbQghNoQOAfoC+xdCaHKttcTjlNXl/V9gfkI95RKCNWlDYRQsv0ZEdv3IHAqIOA6SQtUoiVJ4/1EG9U9uTsxc3/m1m5T0vxjfMJJkgyPaQjh4rsQ/Q8MM96uXPq+QWX7IX3TcIrCnxLxeDMCs0iapNzX1f4vE64/89TaSTFAjfozSnHTWpt4llmViIM6mRhH9pf0i7Zqs6F/3o1w4zyotYVQAI6oxm2JMeRiYKHiAPUq8az3GbCvpKMkLUCImXsTjo0PlmPM7wk7OZLmBI6VtGv5fTvgn4q4sDFp90efI8q9cS8hhH8COL8Ir1wT0r9CPPetYvvR7Pt+TPmbPUA4N01h++PauHQ14V70GTCwiG8p6yohlGqC3ca/0+7AAcT49FbZpj7m/Z0QC81FPKf/rL5zRxFCwTBj+GySfl7G4L5E7N9ExPP1z4tIuXvZ5zbgIGJSUQqhkiRJkiRJkmQsI52hkiRJkiRJOgHFcedc4AVgJsLRZwBwmu23FXEGFwJzEs4BHwCn2j6hnQ45GYtRRNRtAOxPuBit1ehiVEQ5BxBigVVsfzictkTMpr4aeNX2LrV12xOig/eBS21/LWlGYub74CJMavNZ55IOJNwLFpS0DVEEGQ9YibiHFiCcQgY37NdYFD8d2NH2Bc1os1nnnySdHUV0zj+AvxDizQ+qe7G47ZxIFE53tf3VSLY5P9FnbgrsYPuPtXU9CAHqJ8AmkGKo4VGE36sQbjO/tf1Ybd2RwKGE8PakkXWIGt02W+ifTwN2anb/XByiLiZEeHWHqFmI+KxlgG7A18Aptvs283iSjkVxEjuVEP1dD2xJuHKeb/u70Wyzfi8sCMxGfBZ51fajZfkSxDPMLMAGjki3llxEO4zTULNowcHo58BORCTeF0Tk5WeSuld/M0kbA0cC0xIxee82tDG17fdqvy9RE0leBmxBfJY8xPaHDX9TEX3kjLYvaurJN5lyHd5PCF0vtv1RcYjaE9iDcMBavyzv3nhPtHTNJkmSJEmSJEnSfnRt7wNIkiRJkiRJmoukCYni6n7AlcXe/w/AdsAEkk6w/aykNQhhyzTARzVHqE5fdEiGxfY3km4ABhHF3fMkbWD7nUoQZfuMcu29OzwhVGnLkr4BJge+lzQRMbv8NCIKD0IU9H+Sjrb9JgyduV6fzd5sagWO64EtJE1u+xJJXYmIl0eI+2f7csyDW9i3XhT/DRFpRGu2afvCpr0JSZJg+wVJNxKuOq9KOs/2fyVNDqwHbA7sMzJCqOo+LoLS44DxCXeUKQkB1HfAysCyhBAni6wFSUcTAo03yu/dgCMI8eibhEsKksa3/a3tw8vQcSjQrTz/vNKMNttCCDWCovvjhAjqEkIU1UvSk7ZfL+L4+YmIv7dt31vayme9BADbryoij/9ECKGutd0fRv86qd0LfYDjiefHSYEekvoSEzAeLK97KnCNpE1t/7OFtjr9dVp3MALeK+Kkc4nx4kjgSmKiwneVYMf2tUVY+73td+rtKZztjpH0T9tnS9qRcAxe2fbfbG9Vns93AF4rY94ntfHLwF9r7XVkQdDjwA3E+/idpCuL8Ok0wnVvD+B6SRuW5cPcEx34vJMkSZIkSZJknCTtr5MkSZIkScZhJK1FRLJMCtxDOD5huw9wLTHL9/eSZrD9se2XbN9XE0K1mdAk6VjY/poo1O9JzOK/XtK0tr9XiXSzfbztgRDXkqT5SyGmEREzrVciouKuIFwrVgbmAJ4jZrkPEQJVxYZmFh0UcZLzNr4m8AYhHFy/LB9IxJNMBXwMPGf7W5UYkYai+BkMLYpf2Ept1gvtKYRKkiaiofFAOwK3EELjOyRdQBSgzyBcFy8emfbqfZjt54DDiELsSUR81DnA74BD6/1pq51QB0XhaLkeEdUKgCPSaC0itml2oG8RAnyroZFGhxORUTsQsU9NabPWP+9NxOk1TQglaW5Jq0jqKWnmIkh+hIiu6sLQyLzxbH9k+x7bV6YQKhkBJp7D/gWsrhKZZ/sHjSC2d0RIWptwJjsdWB1YlIggOwzYqrT/ALAX8A7wN0nTjuF5jLNIWhH4N7CdpIkdEw8uAg4HVpJ0C0AliCo/X2r7irJ/vSbwFeEUd5akS4CziL/DP4o4H9s9CTfEY4CdJP3MHhpnWKejCIIaj730hd8BmwG3Av2AzSVNUcaCU8u/eYnrc/zsO5MkSZIkSZJk7CZj8pIkSZIkScYRJO0PXFc5EhACqFsJl533bc9dtuth+5vy87lAT2L291G2/9s+R590VIq4aR2iwPUysKnt/7Ww3ZnALoTLwHWlqDCkCFscVQ4kCnD/sX12bd+LCFfbHYBBbVFkKTPAVyBEg2d4aCTfeEXwdS0RPXSMpF7AH4CbCPHWRESExlMNbd5DxCzdAPRupTb3JIo1O6YQKknaBkldK3GmpP2ApQm3nfuB221fVtaNlsikiHL2IZyn9gMucYkvqvUXdTHMkIjSzkIp0E9anDlWA16y/VpZNzlwHeEueAZwsiMmrh4Ztbjth5rZpqRFgYeB39ke0KT3oRfhYDI5MAHhDHMwcLkjvnFRwiFqELB9EUklyU8iaQ5gCuJ6Wp6IRzuzrGuMaRuuE1C1TuFKOwnxvPJhWXcbcU9tYPvJsqwL4YQ3je2rm3aC4wCSHgV+QTjTXWL7c0lTEO6/xwB32F6vbDvC8UjSZMDtwOLANbY3q63rVntuvxlYETgWOMf2x805u7ZD0nTVZ5fa55LuxHN4T2Bf4CqHA1c34vPK2/ncnSRJkiRJkiRjPymGSpIkSZIkGQco7jV/Bja2/Xht+cJEHMWqwDG2DyvLx7f9bfn5QmBbYEXb97T5wScdniKIWgu4APgf8GvX4qEk/YZwOfmKKNbuQhRaqsJK11JUbiyuTV7aPRPYw/YlbXQ+pxAuBXsA/6hEgvVCkqRDCWHT9UB/Yib+CYTY6zjggLozjKQrgU2AC4EjWqnNZYCrS3vnNefdSJKkJRoFSJImbOj3xshtR9L8RB+wDrCt7StaalPSOsCawNSE6OVhN0QgjctImoaINfoOWMH2f8ryKYi+dA5iDBlGvFQTaLT0nrZKm2X7GRtFrK147j2HGUTzAAAgAElEQVQJJ8UTgLsIockW5d/xxLjxNbAIcBXQA1i4EtYlCfzIZWwKYCKXSOKybDFCbLMsIYg6qyzfkHDt3HskXqMr8BRwt+3dyrJbCBHpOraflrQu8Lntvzfs2+mdy1p4Pq5/jrsXWBA4gGEFUX0IV7r7bC83vHZhSGT1dMTkmG7AwsCuDRMT6iLgO4BViOf9x1r9hNsQSesTbk97276hLKv68PGBa4hr/wDgekfcfP2e6ciRgEmSJEmSJEkyzpNiqCRJkiRJknGAMov6Z8XNYHngXeDF8kXuPETR7pdAP9unlH3qX6SvZPvu9jr+ZOyhhQL/SH3JXwRRGwITuhYFVJwFrgU+JNwrdiEETjsyrCCqsdCzJvBrIobvZNvHtcb5jcR5LAJcSogQbnREIY1HOFb9zPZHteO7DuhOzL7vZ/vzsm5u2/9qaPMKYCBwSmu0WZb9HJjN9sNNejuSJBkBzS6ClvH7SGBdYGeXmLza+l7AucCzwLSEIOoi4CTbrzbruMYmikvH6oTg9gdgbduvl3WVeGkW4HzgBNfiVtuyzdakCBi6E0X6r4HtbH9ZO/bjCDHv+rZvK8+IiwFztJWoOOl4SNoC2JtwGrqPENZcV9YtTjhErUT0Oa8RrpTHO2Ii6+202C9K+jvwte01Jd1ECG7Wsf2UpCmJ++0D4DBHFHPSQIOD0cgIon4HfGy7fwtt1QU909v+bxFETQL8npgos1t93wZB1Hq2b2rqCbcB5XPKU4S77UG2by7LKxfGFYhI3G8IN6z+1fueJEmSJEmSJMnYT4qhkiRJkiRJxiGKm8FLwL+ArYGXy2zfBYhZr3MAp9vuV7Yfv/6Fbs6+7rxImh74wEPjfpYm4ureGoU2hgipag4ZEwKXAQNt3yRpZuA0wq1sGEFUtR9R5L2BiGe5sHI9aovrU9J6hHhwyVIYmhQ4m4ib/BlDY/P+J+k84FXgbNuftSDoqt6DZrSZM9GTpJUYQfF+tO+z1mqzCKLOBl61vV1teQ/gj8A/gUuLGLofUcC+CTja9iujc+xjKyN4T8cnRBpnAt/yY/HSzYRQYLlGF5NmtNkMGvv+cnzPAg/Y7qVhXQanIeKuPinH/VVLbTX7mJOxmwYxzPqEaPsqYkLFVoT447RKDCPp14TIbh1ChHea7RPqbTW0uQzxjPOE7bclHQDsDnxGRP+uZPslhWtUH0KAs8+4ILBpBgoXwKMJN9Aby7K6IOohQsh2BDEmfNawvkU3I0kbAwcRz+lVDOKshPhtW2oOUZI2AxazvU/tuDrcZ8fa9VoJnmYDHgTeB/YHbqm9P0sRIqjviUkSZ7bbgSdJkiRJkiRJMsqkGCpJkiRJkmQcosz+X5OYtf0yITZ5qUEQ9QtggO0T2+9Ik7EJSb8kClRv2z5WUm9ixv8mtv82Cu0Mt6jcILqbiRBErUZco9fWRFhVZN6kwHS2XyjL26TYUopCpwKzEVEhTwIfA08TEUObEY4JvW2/oYZorLZqM0mS1qGhKDwLMCUhfnnHDXE4I9nGkNihMWyzLi6d0cPGVq1DuEUtSDh3PFJbdxzwW0IQdZTHEYcolSi68vN8wP8BnwNv2H5TUndCvNSfEHHUxUtTAsu7uNw0s81mo+LgUn5+EPjW9vLl924e6rZ4FTA3sEhdcJwkjShcJjcCpiOcnr6VNCPhgDYFIXqqRDLTARMCk9p+oixrKWqyF9AXuBfo63B/mpoQWy1LCN13Ks+fKxLPnIfZPrkNTrlDonAPvQx4jvg73VKW97D9jWISw1+Aj4hn7DN/6t6X1IcQfPYnhJU31tbNBhxCTK4ZQLh2HUq4tR7QyqfXdBrG6fGBLra/rgmi5gTuJ8SAh9q+voznvyOc9bZ3G7sAJkmSJEmSJEky5nRp7wNIkiRJkiRJWo9SjLgN2I6IxTsfmLMUKp4mZnS/BRwiaeH2O9JkLONNQqizp6TriZilQwnHkZGiocgwSX1dfVZ6+f0NIv7uL8B5wCZl/cRAH0nL2v6sJoRSG846/wSYClgB2JyI99vU9g7ANsD6RHzf4eVcRka01Iw2kyRpBWr9Vi/gLuAOQpx4r6TVRlEI1RtYo7ZuTNqshFDbAPNVyxVue7sR4oWpCFFl5RSF7YOAc4g40qNLgbfDUhxrqImWegN/Ixz1/go8ImmTsv6vRBRrd+Cm4m6C7Q88NO6rSzPabP47AZJWBu4rwi0I4fuyko4vx1QJoXoAg4BXgK7V2JskjUhaA/gHsB8hiP+2iOreBDYgnlf2lLQrgO3/2X7lJ4RQGxLPdv0IUclTZd/3gC0JV7V1Jb1P9I17AIdXQqi8XlvG9m2EeH4W4NAiisX2N2WT8Qmx/deESPKnhFArAicQgqdjPNRtavLyd32FcIw6Hehd/v2+EkJ1pL9Twzi9IeE++4Kkx4B9Jc1m+0VgSWBS4FRJNwBnEfGNj3poPGCHOe8kSZIkSZIkSVIMlSRJkiRJMs5RihJ3Ar2IGK7zgDnKF8HPEg5AvatCRtK5KdfFl7ZXB94D1iMEdX+0/d3IFHkbigz7AmcUYdMw1AUARRC1NyGIOlfS9sDOxPW60PD2axY1odadhAhsAOEI8nTlBELMIr8VOB7YWBFf1aZtJknS+kjaiBCWXAZsSEQDvQLcLmmlEexX7/t2BQYCk9h2K7b5R2ASiL6wiCV/C/ydcHrsV9Z9U9wusH1wOZYtgJlH5z0ZGyhF6z9JqmK6FiaK0+cAqxPC74eAKyTtXgRkfwN2BSYjxGeTNDTbs7XbbEOx7jSEEOIX5fe7gYuBvSQNkDRDEUptRVxzf7b9dVuMoUmHpXJ6mh6orpPBRRD1FnEdvQscUJ7vhqF+7Rex5uTAb4DLgQtsv1Rb19X2/whRzXpE5NuOwJa2Tyrbdens12tdbCOpm6SJys9dbP+VeM9mAA6WtEG1HTAP4e40l0u0Ya2dDRTxmXV+BbxBROp9IamrpJOAa4C7JG1cxG/7AgsTznhVzHqH+jvVxtRtiGvzY+BPhIvWocTnlnnK9boMIRCclXiP9q05o2XEaJIkYz0N40jWf5MkSZJOT8bkJUmSJEmSjKOULz5WIQplzxHOBi82FC7aJHosGbspRZSJiWjFj8rP/YETiyBqSFxTC/s2Fu7PAHaxfc5Ivvb05bXWL4sOtX3sGJ3QSKKIZ5mMcEv70vYn5cvDnoTAYBYiJqZX3a1J0g5l/UK2X2t2m0mSNA+F09L1RFF4P9ufluX3ADMB6xdnxR/F4dV+3o2IwtzR9kXNaLOF456Z6G8XB863fWhZPiSWVNKSth9o5beszVBEDB4EbEyIwm4lnFH2tP1F2WYGwtlkB2Bl2/8oY9oawBS2/9jsNtsSSbcRcX5L2P5S4fz1O0KA8gMR5zeYiMg6ruyTBfxkGDRspOJmwMmAiGeTu+vbKCLz/kpEs/2hoZ1hri1F5N6/gbNtHz6c1+5RczMabludkYYxoCchHFsQeI2Y6HJmES6tSfT/XYlot48Jwe1Btk+vt6VwKDwbWMC12FRJZwDrEI6lsxPuYNMBtwDLE+K4JWx/OLxj7EhImp1wIrsCOLZ6Bpd0OCEwvpMQPr1bhMUCJrb9QdkuPzMnSTLW0zCOLEW4f99u+/32PbIkSZIkaT9SGZwkSZIkSTKO4qEOUdsQM1uvIKz/G7dJOiH1GYPAlLY/Jor0iwHPEsXV35ei1ffV9pImqLfRULg/HdhhZIVQhS/K60EUo48t7TX1s4qk04DbCXeVF4CrJa1ezudWwsXpLWBFYI3qvCV1B6YEXiUKz01tM0mS1qXWl1V94ISEG91zNdHSzYQrxPq2n5a0siJGZ3iipdOIYurA1m6ziKsWk7SlpEMkLS9pGtv/AfYCHga2k3Q0RCyphjpEPVDa63Df/ZT343XgKMKppBflOaaIAcYDsP02cCbRf+5cxqxBwM2VaKn+N2/tNpt17i0s61p+vIKIR9ygHOuLhLPJYoTD4N7A5jUhVIdycEmaj6RNgBOLcAnbVwG/B74ETlLEp1GEUFVk3iKNQqiyTdVnbVqKrl3Kv0po1a3htRcBNlNxO2qprc5M7f3sBVxZFt8GTA7sC1wjaVJHZN62xPPm4sCiRITd6Y1t2b4YWNT2q5LmVUxCgIh/6wHcS/SJ/wHmtr09Ia6crvxr8Rg7INMTz9p32v6q6lNtH0mMBxsQExYAviuCvQ9hyNiRz+dJkoz11MaR3kT880qEc2CSJEmSdFo63BdiSZIkSZIkychTvri9C9ga6G/7k3Y+pGQsoKHovgkwUNLuwPhFFLUh4Sa2M7CvwhnKktYDTpY0abWstFEV7ndqycFkBMfRA9geOBg4xPYZZXlTZ19LOoyIjzoEWKL8Pwlwq6SdiqvK6cCJRCHkAuBQSTsRBcPDgYuLGKFpbSZJ0nqU/gaGfg/yf+X/LwgnnanLdjcDCwDrFNHS/xHRaavVxDJV37cnQ0VLF7RSm7sytD+9QNK2hFPHqUQ/cTtwiaS5isvHnsBjQC9JfUtb39bPvSMWccuYI0dU1zHAdYRTx/Rl/fdFSIrt5wkB6uzE+94Yy+pmtdmscweQtGAZb2V7cFl9LfABMd5UfGH7OdvH2r7E9j1l/3QySYah9DfzAHsQz3dTANi+nIitmxjoJ2mFsnxQEedVLjotCfU2BC4hnn0+JNx3DpD0y7J/l7Jdd8KJaBvCQTNpAYXb2zGEuHFr27sASxNRngsD5xSB5n1EfOfCQE/bZ5X9q/d7tlqzL0r6FfAMEas5QxG5zUe45G1uu6ftj8tYuQTR/3XIz43DEat2JYTK0wDYHlwT6x1Y/l+rrHNL/ydJknQEFBGq5xCfHQ6rnguTJEmSpLOSYqgkSZIkSZIOwHCKDyP1LGf7B9u3lEJtU90Mko5BrdDahxDl/Bt4xPZHReT0ObAR8C9CEHWRpL2BG4D/2P7MJTavFO5PpRTuR/E4vgFmAA5vcLFoSvFWQQ8iPvJC25fafsr2aURB6XKiyLRHEROcR8y8v7n8fyIRd3eQ7VOb2WYzzj9JOiuSFgL2kzRfEbz8BrhN0qxEFNADwHqSHiQiidaw/VQRDqxLuDy96FpcqKRTgFOAI2yf30pt7ktEH/2mCKFWJ2JEjyNmdk9YXnMO4AqFs9SrwG6EgHV3SUs05U1sB2qF6DeBYwkh0FKSzi/Lv4MhjoWDCJHQBC231rw2m4Gk+YAngPuAvpImkdTVEe10JLCqpE3LMbdYqE8hVNLI/7N31mF2VVcb/62JYAkEJ0Bw9+LuDsWtSCDIhwR3Le5OWopLocXdS6F4KFK0uBUPFgiaQGZ9f7zrZPac3JEkc+fOTfb7POuZObbukX323mevd78r6puzUKrIQxFpqSBEXYsIURMBfzKztWO9t0QKCXWdtZHK0KVR5q4GPkP14dLabRQB9ADgVnf/tOoXW7+YCegDPOBKhdnd3X9G9dVdwHqoTQH4yd2/d/fPoUnByMz2AN42s9Vh1Lfgf1Dq9P2Bvcysn7t/4+53uftzcfz0wLaIpH91EEfrCqUJH3OZWUG8ew8Rlbe2UMfySBWJiMw/InWsjIyMjLqFKVX3Lqi9uDT6u3l8ISMjIyNjgkb3tnfJyMjIyMjIyMioJUqDuisAM7j7LWMb5MqzWzMAYtb/ucBxwBUeqZyABjObIohRmwOXo7RuawOHu/sZiY8/oMD9rj4GilBxrEV87eBkXWeoWEyM0mDcH785kbsPd/fnzexYYDhwrpkNcffrgSeBJ81sLhQYH1kEh4KQ6B3tMwewMzI6HDMh8uFqZvYIqvf2Bz4MdYjTgIeRmttB7v6amc0ErIOIA0e7+0MVfH4TPm1cfUZ9MiWwd1KfroWUPK4Fvo664Sgz+wypzx1oZge5+//MbCCwoLs/3VE3rbNR6u9MjshfPwC/xTWeGrvuZGa9karg1Eh1awOUavX7avvsJHyE1GAOQuqeOwCXmtntSHnnHWB1M7sNtSG53choEWnfIgg2g9AE2RNj++nu/rW7XxuEzdPRe9Caz82BgWhs+bziPXH3+83sBOAQ4GlEuG8If2e4+4Vx/Kh3c0JFC/egG1Lo6gNNCkbu/rOZHY6C3MsA/y4fmyy/hYiU95rZBkVb4+47mdlwQgnJzAYlRKoNEIl/QeA0b1JrrZvnVKrv/4BSC75hZnu4+wdmdgBwKfCJmf3Z3V8P4sCySCXwg1qde0ZGRkYHoRewFHCBJ6rwaT1uUhf8pRYnl5GRkZGRUQtYnXzPZGRkZGRkZGRMkCgN6u4AnICCCke4+4tj4WMad/+qaiecUTcws6OBdYGVkvJxFkqZMT1wgrvfFuoYfYEe7v5m7NcQM8/nBhZy99vG8hzSstlpwRYzexDo7e7LxnJ3jxREZjYfUjhYFNjA3V9p69yr5TMjI6PjYFJuOgWYCjjd3Y8MElODSy1qWeDG2P0bRHScCviLu58WPsrvfYf4ROSoZ9z9hsS3ofR4M7j74rGuR6FkYWY3AksC8ybqFsWxdUeqLLUHWwH7onRe3yGVrcPd/UMzmx04HNgNqTZ9BrwPDHb301Nf1fDZGfciRQTq54xzXxcRSo4BVkaKhMu21KZkZACY2SbA5MDNLmWxYv1kiMB5IqrHznf3L2PbvEWfrwWf3RApp6j/dnL3v5b6PvMgIv3S6NvleXd/ILbVXR3V0SjVT7MDHwXxaUFEZHoAONTdPyz2B+YBngL2caU2bM3/cii16prAGp6kSTKzi1F9dyowyN0/N7OVEOnyn+5+Y+xXl8/JzLZHkzlOAJ7wptShEyElxdOAd1EqwJGonJ7i7ifX5owzMjIyxhwmRe+RpXXTAs+iSVoD43skbW8WBTYGzq0R2T8jIyMjI6PTkdPkZWRkZGRkZGR0YZRmt14EXIgGwMeGCLU/cLZFOoyMCR6GAqwrmNnmZvYySo0xFBgBXGRm87n7z+7+XkKEKlJwmLu/HYSpKU2pNZqctzONY4HOCDKb0rmAUrjMbWYnxW//Vmxz9zfQrPHJENGgIpL3qsN9ZmRkdAxM6BaLb6B38DtU7y2YvscuRaW1kOLS0yg93U4JaamhINh0pE+gJ7Aq8GlxzuG7AXgNmM3MVgSl9DGzHrH9UWA6YNrydddj8Dq5b9shJay3EEljMEoRONjM5nD39xEB42JELvsY2DohLTUUvqrhszMR7exP7v6Ku+8GbAGchFJYLY/S9y3Q2eeVUT+IfsiBKEXvxkGuA6QQhQgjDyAy4H5mNk1sG0V+L/mz2D4SuAkp73wB7GZmU0ffpyH2ecvd/+Tu/d39lEyEakLp+2xr4Fb0jdbd3f+LyDpbAXsHoR7U1iwHNKI6qqLf5Jl9jtIkfQM8aFIXBsDdd0f90iOAgWY2vbs/Duw3HhCh5kMksJOBcxIilLlUW89CxNI3gBmBnxBh4OTYL8dKMjImYCT9cMyswTQxLN1e8zrCzA6Ib46R5fMJUvMbwPrAEkGYKtqbnui7ZFmkRpuRkZGRkTFBICtDZWRkZGRkZGR0cZjZzMB9wO1IradQhVgRzfT+D/BFecC6NNC+N0pntoe7X2Jms7n7B514GRk1QktqFma2OkrrtCLwOvA2MMDdh5rZLmi2+DIRJG7N/zZIWWB2FJy/xt3vim0tBlJK5XNt4B13f28sL7O185sBkQU+An5y9xExY/ISpNR0jrv/Kfbt6e4j4v8X4py27AyfGRkZ1YNJoekbFPhcBtgTKf/s6+6vJMH7luqr0eqyjvBZbLcmtb0NkfLP34P4tApKtXcDcJK7vxbH9gTOQISYtT1Jg1FvSO+tmc0I/BMpYh3roWIT7czJwM9I4WSImc2GiEFPuPtFsV+hCNXhPqt/J1pGufyZVBk3AT7xNtRhMiZcJO9DH+B6lDZnX+A2b64QdSpSCZoKWCVIMaP5Kfks6qwpgU2B81AfcDt3H1Zp30645LqDSfX3EtTn/ndBGIttpyLi45voW29iROI52d1PacPvrogE9x0iTy1HKCC5+7+S/S4E9gDOB45Ky0W9wpQG/E6kxPp4sr6s7NgLpbG2pJ+ey2pGxgSMUnu3KfAHYGHgJeBf7n5xeb8anONJwJFo/GYLV7rPok0u/s4DPAh8icYP7zSl6l4POBul6h5Ui/PPyMjIyMioBWrOZM7IyMjIyMjIyGgTvRDx4l/Ab2bWz8zuBG4G7kYDHfOnB5QGcvZBg9y7BhFqE+B2M+vRFWa2ZVQPpXIwr5ktYWbrmVItPQzsDGwI/J+7bxJEqO6IZPchUsgYzWfy/ybAFUht428obc8ZEYQZFeRv47z2QzLus3Toxcv3McC9aADzZTTDvlfMmDwApUM6wMwOjvMtgiG9gG8RQazqPjMyMqoHM+uH0gr93t0fcan9XADMAQyKmdWNUV+tFYSkZqhAhOoonx51qpvUpv4EDAK2MrOJQtFiT2Ab4Hwz297MCkLDbsBf65UIZWYrm1RQ0nZiCmBW4Gl3/8malPduRGSLudCMdoLQvUdKWgJW6miftSZCQfPyF+f0Nkpv8vdYl/tyGc36Z9CkjBZ1xJbAi6ie2tSUIq9Iw9gLOBSYvw0i1HpIveim+NvP3YciotUBwCrA38ysd+n3M7mkAsxsITQp4VTgTE+UswDc/QhgAAp4L4HITPsURKiW3vsgAw1CJKtt3H0F1IY8D/wjSLbEb+wF/B34YHwgQgVmR2X6DRiV0jFVClzFzKZz9x9cE4xGpZnNZTUjY8JGUk/0R22boUkJswNHm9n16X6dDVPK5wGIfNwDuMnMFkiJUHF+byHF717AbWb2BfA4cDpwWkGEKvcbMjIyMjIyxlfkAZOMjIyMjIyMjC6EEtGkZ/z7GRqIOQwRT/6FAq57ocDDLMCOqY8SEeo8YHd3vyJ2mRWlR+uRB33HbyTlYEdEOHoQEeieM7OdkarEve7+ZOw3M7ADSiP0Vy+ph5XK1pRIEeU0YDd3PxCpTA0HDjWz/4tzaEaIqlA+z0Tl85GOvPaY7b4ncBuwPfAKSgfSJ87rAxQc+gQ40MyuM7O+ZjY/ISuPyE5V9ZmRkVF1/IjazVXMbAoAdz8HkYRnAy40s7UjwHAn7SNmjpPP4pg4zoEFXGmnFgY+QPXiViZluUtQQGN+lI7zMWAf4DhvUqCrq2CGme2BUnPtb0rfUfRFRqDUb7PCqHSjPYJYNgilM1q68OPuP4Q/A3bvaJ9dgQhVRkIw+S1Zl/tyEzhKfavlzWwvMzvXzDY0s5nd/XtgY0SIuhARuddAdcvmwOdeITVe4nMn4BZgPqAfItI/b2ZbBYnmBqQSujwKzo6q4zJaRD+kxvWQu/+crC9Isrj71egZLQFsX3zLWesKRouilNd3IQVTXKnvjkLty4NmttyoH3Pf3t3P78gLqzFeQ/X6wWY2sSdppGJiwoDYVqSy7nL1fEbbaK3fkwnCGeMCU6rN44ET0GTCgSi18kTAfDEhoti30/rf0a6uhhRN94lz7AncmBCiijTexPjOEsBBwDVoTHBrdz81/NUkBXRGRkZGRkYt0L3tXTIyMjIyMjIyMjoDpUDGGsCiZna/u78WAdULENHkZnc/PPabGqVP+Lzwk/gYSBChgMsjODgy2bcPGizOGI9hZpsBF6PZ5/9BaZyuRgok3dHMccxsXWBrYG3gRHe/INYb0NPdh5fUAU5DAeZT3H14qHG8Y2abI9Wyg82s0d0v86Z0RS0R9S7r4Gs+Cvg9Ur76ZwS/70fEwnmBjwHc/T0z2x7YG8ngvwsMQ4pYZ7j79dX0mZGRUX24+zdmdjVwFbAAMDjWn2NmI5HK0p2ofT3V3S+sps8IshxqZje6+/1mtifwZzNb0t3/Y2YrAM+gNHjEfteb2b+BvijwMcTdX4/t9ZjW51ZEKN0LBf7Pi/7JD8CzwPZmNtjdB7vSBXZDCplfIdXCZnB3N7MO91mNC28JXZV8lVEfSPpWAxCZ8kfUR9sPuM/MznX3f5rZOoi4dDxSGvoRqYzdm/gqK+EtjVJKHg1cFfXf3Oj7Ywcze8DdvzOzm4FuqM+5MiLjZLSM+YHJkNIo0Y/+LXmWywCveEmxKeqK1ur8GYAp3P3d2L+nu49w94fM7HLgFOBJM1vPm6flG1/qoBeAJ1F//QMzu8rdfzYplm2GUg3unxJKM+oLpe/J5VA/rA9KRX5HHfaJMroWZkZ97Xvd/btY9zc0braju39kZnO4+3udXGf+iMZybnH3V4FXzWwS4BBEiNoqxg27xzhFg7v/iMZbmqFOvx0yMjIyMjLGGpkMlZGRkZGRkZHRRZAM6vUHzkLqM8/FtkfNbEnAvCnt1mTAOsBMRCqAAjGDexCazXZFzIz9JTa/gAZTVgBuiv3zgMh4hiAxTYqCw9cAF7vSmWBm3yFSVJoOZTpULvZ391HlApGlPjCzU5IyMhsadJ4aqW4ANMbg27tmtgUKth1tZpO4+6BOJELNDvwOuBJ4NAl2TIZmiy9kZr9H79Zj7v6hmR0HnIPUm74CvnH3J5J7MGtH+8zvW0ZG9YKvBfnXpAD0K1LEex7Y18xeBEa4+0h3Pz+WpweGufv9cfxo72gH+hyOVPXuMKnNDQQOBl6KOvT7IB+khKgb3P19VG+X719d1SVxH78ws41RP2ffWH++uw8xs9NR3+SPse5+lLp1DXRPX+8Mn9VAqR3shcgq3wK/BaGrIK23y0dGRgozWxP1/U9AhMOvgE2RYt0UZvajuw8GNg8CfAPwg7s/Fse31DdZEAWB73P3b2Ld+cB7wLFBhOrp7sNMKfSedPfXqnip4wsGI0LaYcAxSfC60cwmR6kLXwBOSg9qx/t/L2qXjnX34919RNJuvQG8itqheZCaXnv9dnnE/RthmpjxBCLxbWZmg5Gq2XqIoJwnJtQxSuTP89CElH7AyHjW2xXfvBkZY4FpUN/wEwAzuwcpt/7e3V8ys8WBXczsAg9Fxc5AtBGXRxvRLb45LjMzR+3IjWa2tbv/Nw7pGWC9VXkAACAASURBVOMwo70L9fbtkJGRkZGRMa6w8eBbJyMjIyMjIyNjvIFJAepK4BikADWaWkHstyywDBogP9ndTyttnxFY2aUmsSXwZzT4/TbwHQq+HgJckZCkMsYzRLD1VeAGdz8s1t0HLARsGAN6yyKizltmNrm7D4v9GoAeqJwMjhnl3QsiUJD2zgB+QYPOTwYBq1sM1s0F/AOlcvprck6HoTR8e7r75R18vf0ROWke4Dl3fyvZdj5SDHkd6IXIXw8C+7j7xy34a0Bksg71mQcgMyZklAghk7n7j0kAeJzfjyDELI7at/8l689Dam0LufuXSXC4fHwlIlSH+jSzWVBdMSdwibvvlWzr4VIu6o0IUZOhPsHfK/muJxTPPpm1Pg0ibcyK1ArPjfU7IFKHofq1SCF4hrufVG2f1bz2+H9rYA+kDPMR8DRwsEtlsUVCVMnH2sBTHmn9MiZcJO/AmcBKqH/3VbJ9U5TibhAivI82ENxa3WtmFwAbuftssXwv6kcWgeHVgP6oX/dLe3xmgJlNB1wLzIXqoYti/aQodeHpwAHufsMY+p0eTWSYD9V/hd8eiGA1K3BSS9+Y9Y6kLZgUqWAtD8yO6tlb3f3K2C+XzzqGma2FSM4nxt8h6JvtUkSQOqQtcnHGhI1Sn6q3K50s0aY9gFSeN6X5uElPNIFhdWAPd3+nNmffvA4zs10QIWoEsFmM6+wDzAGckMmBGRkZGRkTOjIZKiMjIyMjIyOji8DM+gA3orQThxQBhSBITQN84O73mtk8aJBvDuBCb0pnVgSTRxFWYv2eaBB4emBJRF75XWx+PZZfRmkafnT3S6t/tRnVRhCTpkczo69x9+ODCLUgTQGsmYALkQz8xS34KcrVFsASKGBTKEwNAI4CvkYBm6fid7tHMH8UuSr2nxwRAK5190EdfL0Xo5QY8wCfufsv1qTkchRwBLATUnb60sxOReohu7r7dZ3lMyMjQwiC0Q5Iwe5J4HJ3/3xMA5SlYIYB96C6qjdwOfAvd7/VzKZF6dJuc/cDauETRqV0mxspS/VE7fsW3jxdURHM7YXa5hmBxTpzBno1ETPVf47/U/LSn1Hw/lczWxVYDZE7XkXEn+vjmEqEtQ73WQ2Y2baI9H4V6u8thFQ+fwQWdvfhLRyXlsl9UT9wNXd/tIPPr6LyVEvrM7oOzOx6YBFgwahnugGNCVFqACJuft6Gn2bP2jSp4ipgG9QnWhKRo16IOmp/YGlgr5aI4BnNkRDYFkKEqL7AY8CLqM+5OUpDfcpY+l0ApcSeHvgX8DDq/+8D7O0xGWF8fa+TvnpxP/ogFbRiQkcmQtU5TIqPywJ/cPdPY939aMxjW3d/Ptl3vCznGWOPUp9qQ2At4EF3vzvW3QBsiRQWN3L3p02TFDZB/a8j3P2SGp1v+n+ZEHUoIkTdh0hbh7r7WZ11nhkZGRkZGV0VmQyVkZGRkZGRkdFFEMG7F4Fz3P0cM1sMOBtYDCkZ9AH6u/u1JjUfd/d/x7EFYaXVwT4zmwSlSr4IWA6pJiyDAq2LAMe7+znVu8qMaqC1525mf0Yz9l9FykWbu/uLMUO8P1J+2tfd/9GK/25Iheww4HjgfHf/NrbtAhwODAX2c/fBRdAfRgX+m6UG8g5WsjCz9VHQZzt3/4eZze/uryfb1wN+cqWbTM/lS+AmT1RZqukzIyNDCELIFShAOxNqg14HtnelmWxXoLL07s0NfO3u35hZP2A7YCsUWH4MBYRXQamhBrj7kBr5nBm1wxMjIthpqD3eyt3vS44pCFGTAxu7+zVt3Y96gCmV18XAGu7+QayrqOYU25opJbVAhOpwn9VAlKH74rzO8iYlxtcQ0W51d3871rUU+NoH9Q338o5PM5v+zpJIWaYX8ELR38yoPUrPKSUBngvsikhyz8W64vvgQNR/m8/dP2nDZ1nJblHUH5oDpctbzt3fN7OJEEHqNBQYvqp6Vz3+IXk28yDF3nUROfZ5pOh6ebrfWPidC5GfNgNmQCp0f3b3szv6WroiMrFz/ER8YzYAjwDfufuGsf5epPa4gbu/bFKOms87ePJNxvgFM9sROBf4G3CLuz8S62dB6e43RKqKQ1F/cmvgTHc/OfarWn1SapfLkx3TbaP6tGY2EKUHnRw40kvq8RkZGRkZGRMqGmp9AhkZGRkZGRkZEzJS0ggwDPgncKyZPYqCZX2QYsCqKPC6iyl1178TIpSViVBmNruZzWtmS5tZ9+Q3RnhIgAPvuvs57r61u68EzJGJUPWHKA/F/wuY2TJmtpKZTRarLwBeINIqBhFqJmA34Hzg0taIUAAxwHYqCqT9ETjQNMuaCNachgK5F5rZKp4g9vHEVzVS+nRD3zZmSoX0X9Ns++I37/NQzyiRHIYBz3Wiz4yMDGE94DikiLQoql/6Area2azRprU6XlFq8/4A3Awcamb93P2jCABsggLBvYFtgfVRwHmlGvncGrgNzTYf4u7/QSTTwcCNZrZucuimZraPuw8riFBt3ZOuiLSfY2azAbMh5YarItiEK6XXZsD/UFqSfU0k3KL9GYWiv9PRPjvmaisjOd8pEfHvsYQIdSdKhbiBu79tZotGYKslItR5VIEIBc3asp2QGtpJwAnAYDM7w8zm6+jfzBgzlMrDesApZrZGbD4T+BY4zcz6wqj3pQcqe28DI0vfHmWfGwCXmtl18cyndfeXUKrOn4FvgDVNShrHIqLhoIIIVfad0TK8KTXsW8BBiHw4J1IhGSsiVOLXXOmbDkL14/zAigURqp7akpbKVFvX0BJBIROh6gvl5x+flyORauYcZjZ9tKNF6s6XzWwq1C+bx0Qoz8gYDSaF2j+h8Y2TCiIUgCuN6LYo7eIKqB85CZr4VRChGjqJCLUeapcfMbObzKxvaWylIEJNDPRARKgDCyJUPdX3GRkZGRkZ1UJuDDMyMjIyMjIyOhmlQb1uppnVuPsIFBD+C/AOcJ67L+Ga3f0G8D3wmrs3lgZAmhFOgrhxPwquDgbuMaU4SwOAjwMLmFk/C6AZb3nApE5gZiua2TRFeTClrHsEeDTsn2bW35VW6Y+ITHe5mT0NPIAUoU5MAiOtBrAicHsOmm14FKMTos4FZkazzzsbnwDfoSDx5cA+7v5qKWCe/t8DEQyHozRFneUzI2OChpltY2bXICLRE+7+U2w6N6wPcIuZzdIWISpp87ZHKlN3oFndHyX7fBhkz7WQEt5JwMfAHkX91Yk+dwifDyFC89DY/gJNhKjrzexgMzsIuAGYtuSr7tL6JNe/I3AdSo34LrAycEcF8tJ7KM3H4S21S9XwWQ0U5CsUQCv+9kH9OczsHqT+uVEEcOdHaU1WiO2ViFC7V4MIlZzzukgF4RxExl8IESoOBjYo+qwZtUGJsHYdUpcryO9DUDlfDLjTzHY2qVweiJ7hVe7+eTl4m/jsj8ia8wMLINL8c2a2qbvfhdLsvYkI8Fcikv3BHqncqhkYHl+R1OmNQfL4FvUjR012GUu/xXNodPeR7v6ON6USG2u/nY1SHTiDaaJPPzObuK0+Quqj+meaUQ2Unv/yZrZRsvk5RC4eDPwOKeK9aJoEtjGwBfC4J+naMzIKRF9mE+BO4EIPZVczO8DMzjGzM919hLvvg/pC8wM7ufvVsV9VFUUrtPUToZTiy6KxvZUrjEmsg/pux7r7eZ1xnhkZGRkZGXUDd8+WLVu2bNmyZcvWSQZKUxz/b4rUn14H7kXBvEljW49kv8lRap4hwNZt+N8SDaIfDWyOAoPvAF+gFDzFfusDI4F5a31Pso1VOdoaaEQBrkmBpdFs/WOQnPvawCsoJcahccxEwI5I5WFXYPnEX8MY/Hbv8DEy/vZJti1Qw3tyEfAbCnpv2NK1IfWZPVAw+sDO9pkt24RqKC3cOcCvUV8tFOsnSvbZC5F/XwZmb4fPuaMNPa1oPyvsU35f90YKJ3N2os+Fox45PvWZ+kEEhpuBEcCnRd09PhhSaBgOHIBSDE6C0jf9L571LMm+06KUwQNq4NPG9hoTH79DAbaJYrk/Irn3Qqovn8Tyg6iNXjT264EIK4OBxUo+D422aJcqnndD/L0EuB2YOtl2B/BBca7ZamuIiPkt6gP2KW2bJN6Nl6NO+gURmA5urbyg+vkZ4AhE2DNgCZTK9Cuiz4i+SaZF/Z60/9fufuT4ai29h+N6b6rlt54M2D7K9LeIfPwoMNeY3Dv0Xbxkra8lW7ufefrsdkB9qPvSdgi4EH0P3xDt68LRJ/gJOKzW15Ct6xpSgH4MuDOWV43+11dR1zQCf6/xOa4DfFa031G+vwd+iD7ZyjT/jpgX2DxZnmDaiGzZsmXLlq0tS1OmZGRkZGRkZGRkVBnunipEXIpmYN+PyCynAr83s509UomZ2QqIuLQXcJa739CS71Ck2CX8/sk1uxgz+xilx3g52f1tFOjoS1axqUfcCvwdKZL8hAhR/wQucPfvAMxsHTRzf3cze8HdHwSuLjsa0xni7v69mZ0Zi4cB3WP25FB3fy18duosRDObFqkYXIPSbx1lZiNdqexGpZA0pX/ZCc2qPNEjLWQ687iaPjMyJmS4+y9mdj6qsw4J29Hdh5tZT9cM7AtDTedYpDryfhtu+wHTA/d7k8pU+XcbAcysu7v/BtyIFO5WQ2pCneFzbqTeck/qM60nXYoGW6H+wAhXCr3xZVb36iiQeb27fwZgZpehoPalKEXg1u7+P3f/0syWdfdfqu2zXE9XaAfGqB4PlZINgN2BM81sOCI+7Rn9uh/M7GKUIvIHYEt3f8nMpgR+jwjNR7n7i4nP6ZHKxX7elDprCkRe+cXdv4u2aJzanKSM/Q543d2/jt+6BwXgNnSpV20MDHX3x8b2tzLGGesg0uj1SV/fEHngZ+B+M3sQ1Uc/At+6++ux32j1iZltg1KpfYrqqG9j0/Nmth1wF0qDvKQnKiuFKkU9KQ1VC2UFI0INzt3fb++9aaEvWhW/9YRoFy9Hqb2fQWpAOwOvmNlS7v5qC8eVlfXOBzaqtG9G10Py7P6AJqccB9zh7m8Vz9bd9zKzn9EEs1dQu/oZcKRnZZyMEpJv9wZ3H2lm16O0sp+jsvMpsGT8/0dgPTOb3GugLmZmkyGC1m3ufpaZLYSUoa4Drgr7C1KlfcqlAPgmMa6Xy31GRkZGRkZzZDJURkZGRkZGRkYnw8zmQ+oQp6BUeMNi/VCUYmxKFDCbBQXU5gKOcPeLYr8GYBl3H1xy3R0pSzySBEfui+M3cPc3zGxxlA7vU6QU9UhVLzajKnD3X0M23YCzEbnt8YQI1cPdPzWz3YFnUSD1wdjWavC3nb9fEKK6A4cjifmnk+2dPfj2NQoqDzGz9RAJ7I9xrfcm1/gJIlf8zd1vh1YHC6vhMyNjgkBLwVd3/18QVnoAh5jZD+4+0N1HJISoQWb2iLu/0o6f6ouCwz/G7zZ798xsEaC3uz8ZpCWA+RCRZGi1fSb3YR6kzvdJrO/mTWlriSDHCHd/i6QuHY/qktlQc1OQlrq7+89m9gBwN1JPusHM1o3+y8jYr7Ug/jj5LAXK1wLWQP2lp4D73P31MSUZuYiyfwZWQYG0Pkgt8OKCOOfuJ5jSsxyB0s1uDkwDrASc6e5/Ll37l8Am7v5lrN8GKREuAHxkZs8De3RgOfkKmDV+6w5gEZqIUH2Qusr3ZvZsEG8yOhGmlLwrAt9487RnDhTleRZ3/xCR5NNjRyMtBbFuO0Ti+wYp942qe9z9MzO7EKUxXRZ4oji2eC/qiWhTLWJQUpdsB+yP6pLvzexlYCDwYWu/W6qPNkSEwyer5Xfcr7hzYGZTAfsCfwZOSr6Zt0WKyWk7Oqq9rECEOgfYzd3v7uRLyBgHxFjI0cBZaMzk19i0TJSNx9z9IBPJeFakHDbU3d+J48eXPlTGWKJU5xvRTgZuR/3yhYG33P3G5LgGpBI7orPOtYTh6Hvgk2in/47O98DYdgdSE70c2BOl4B6FXO4zMjIyMjKao83c2hkZGRkZGRkZGR2OWVDQ9J5kUPc2NAttH3f/yMz6RSDjFJTWJSVCbQo8aWYDS36nQJLeQ2Pf+4AFERHqJTObDZGwlnX3H9395sRnRp0hgvA7AX9DwcpVY9C4IEt1d/cPUIqT1cxsoo4MArn79yiN1PLu/nRb+1cTMeD3Rfx/H5oxPjtwjJmtn+z3InBMe0hL1fCZkTEhoBSEXMHMBprZaWa2i5n1inppEHAmsGeQRygIUfH/K3F8Q9l36edeRSSjjSucxxRILXG1IJ8UM623RKThW6rls0BS3z6N0kv9vtiU+JwapXVZ06SKlR5fl3VJhXt6NzCvmW0SyyODEPYTSnf0IlL7uA3UhsXf9D51qM+kjO4U+6yMCOknAteYyMTtJnqY0M3dhwK3AFOhfl2vgggVRBbc/ShEaPoUKYG9B+zl7ieHr4bkPBsTItS2SOHxv+j9eQKRk541s2nac57Fubay+UZgYTP7AKlErR59yO7AFsAKwEOZCFUbRDl+B5jbzGaPdel7Midwsom0WT62EkH1O5Ty+K+ozG5WbEp2+wQpkI4PE2oLNaulzGyjpP4Yd8ciKl6O+t0HIwLHfIiUtlArx6Vt5n5ogsGk1fbbFVHUTUkdNQkwP/BC8s18N6rbN3L3181sRZN6S0tEqPOQOt/lnXw5GeOOXsDUiOjxm5nNFCTd21Af4Akzm8vd33L3B9392YQINcEr1k3oKNUF6wKDYnzsMjObyt0/dfc73P2kgghlZlOZFNy3BW73tlVKO+Q8y+tinOcf7v4c6idODlzk7j9EP+BVpJTnaHwiIyMjIyMjoxXkwFdGRkZGRkZGRudjSkRcGgKjUpAsgWbev2RmSwGHm9kc7v6GS/I6HdR7GbgCOC8lRLn7u8C/UTqvh9FA+cbhswewFjAH8Hl6MnmgsH4Rg2H7ABcj4tt2ZjZdbPvNzCYBegMfAL+2FNRtIzDa2u8PK4hQ1SbVFSSJVs7Fi+tw93tpIi8daZoNX+w3PDms1cBeNXxmZIzvSAIPA4B7EdFnIKqnnjOz+d39Y6T0cCZK5XlxHDui5KuxVD91S0hI5u4vAReid3L3JBjaGxGP/gB8ULyj7v4jcAGwbuzXUCWfZbyBAtFnm9nmic9JURrODYCvPFGLqjekz6lCW/MMIu6cYmZruDAy6vUFkBrT2cCiZrZSNX2Wznk5VAaPR+pLKyIC0OLAyibliXYh+f0Z0fM+CBGy9gQONSmf/ZoQoi5x9wHAcu5+sLvfFOdUkVBrZv1QatrTUAqgM919P0SomgoFyka7bxX8pMHBlc1sLzPbNs4bpCL5EOqrPunub5vZonEdF6Bg3K3tvS8ZVcFTwJzAtkWfD0apRq0OLIoIna0i6d88i1KI3QqcGPVeUUYmQoSbb4DvO/g6OgVmtpWZLQij2pQBqJxfC9xqZneb2eJj2xc2YTpgP6SgdbK7X+7uFyCltW7Az8n+DemxJeLOmcDu7v5gtfyOzTVWG9ZEBC7+Thl/nYSIF9/MiwC/d6nVzYYUszaI7el1742IULu7+2WdcBkZHY8hQE/Unl4CPILU0fYD1kaqmztWOrClb96MCQdJXbAjcAMi1n0ArAk8ZmYLpPub2WqIHHwOcLa7XxHrx6ptaA9MZPniPKczs9nMbBIzmyghnc8ETEtTPdgDjfsMBpbM9VtGRkZGRkY74O7ZsmXLli1btmzZOtFQeotG4P/QrMaPgEVjW0+UduwRYJ5WfPRDgYtGYNdk/crAC7F+w1g3HUq39z1K11Lze5Ctw8tUDzSrfwQa+F8QkeF2RVLq/1fhGEv+nxgFICYZw9+1cTnvMfidU9HAd8OYnBMiJwwFXgNm7Uo+s2Ubn6xcF6CA/HconUO/WLdzvDf/A2aMdf0QYaURWLU1v8AmKEXEO9FGDkTE4hmBm8LH/YgsfCNKc3dkcnxD6hMphFTD5wqIpHoisF2y71pIsagRBfVOAy4Dfkp91qOVntNaqH9yJyLPzBvr1wdeQYTsfZDK5WFIPWltFOBuBNarls/y+aL0S/9J63IUMPuQpn7Z5GNwH5ZDaZsWieUpkJrLp8BRQI+i3KC0xjONge/5ESFl/WTdXSiwV/zeYmPgrz96R79C/cM3gIVi25xRRr8I+yzu80Hlsp+tZu/Z5cBviFS6FCLwHRxl/5Cx9LkoUjVrRApkJwFnAMNQuu6a34MxvV8oZWVxPXMiQvt7iECzClL1+wKp9y3PGPZrk7pkpng/t0+23Y3au+L9XKaVe79P1B27VtNvVzREQN0XmCaWdwUeA6ZHJM9Hwh5D38wLx37d4/peBFYo+TwsrnuX9pT9bDUvAy0+C2Ad4E3gHuCMZP00qP3et9bnn63rGppw8DlwcCwvHG3acNR/Kvo9UyHS6B1Ilb04vip9HWDB0vJ2qB/2Q9TvVwOzx7YFYv190XYdglJCpu1Crs+yZcuWLVu2VqzmJ5AtW7Zs2bJlyzY+WmkguicwcWn7FWhw/hvgd7GuFwpOfYNmsY7mk6bA66IxWPxR+Nkl1veIwZSXUdD2n0gt6iPg8Ernl238sHj2V0Z5+AEFdh4qBv/S514qn5sC18WA8j3AZu38vdTH74Dpq3RdZ6KZ78uOwTHpuW1MKQjUVXxmyza+GvBHRHyaOal3eqCg1ifAP4DusX5mSoHMCv76x/t1C3BptGs/ANdHAKMPUq55PoIJNwI7JsePFsyoks8dgS+Rcsuz8f8lyfZlUfrbD5DiwQPAbq35rCdDqVt/AB4HnkPE0c8IQi6wUtzfkYjIMYQgbqD0gx8AS1fbZ+L7POCtZPkeRIQqSAarIULfZO28/pXi/PZI1k2JCFGfAEeiAO5mcQ0bjMG9XRq170vG8r00J23Ng4J4q7fD16xxL/dHKhu7oJQr39LUJ50SmBfYDZEbFx5fymk9W3rvo/z+GOXi5yjro/X52uEz7d8shgiBI4CvEVlou0q/Xy+GJpk0Ahehb6dbgWmT7UvF+/gM7SRE0URsnDj+zh+/sX4sl9/P2aIe2LzCPR9FWKqW31o/gzbu5Q7oO/UaNKGgMc69+ObdKtaNINpgRJTaERE59y3564G+a/ZO1q2DCMq3ILXKxcv3K1vNnn9aZhdHJPX9gOmS9ZMAEyXLk6I0Zp8A69T6GrJ1TQMmi3byvFheCBGhLkNKrx+jb5UFYvu0xGSNWK4WEepI1F5vGsvrIHLWRajPdQUi7X5IkKZinyGoP/w5Y0B6zpYtW7Zs2bJlMlS2bNmyZcuWLVtVDdgczeL6TwzCFgoZ88ag729o1vVxwF9QIOqo5PjRBmlR0OojFES9IwaCG4F9Ynu3GCQ+FBiEgl2rJcfXXSAjW7vLW88Y9GsETidmFLb03BEZ4BekKnUtmm3+G1Is6dPK76QD1wehgP9CVbie+WIwsJgpv04xYNmOYyu9O9bVfGbLVs+GSIBHJ8sWdhPNSSYF8al7tEufFe1hyV8zpaX4f74ICJxAQkpBilJfRtvZK9b1QumhJuoMn6Vz3xQRYQ6N5VWifm0EbirtOyVSvOjdms96MkT0+hI4Iq6vGwrUP4qCN1vGfhPF+sVp6hMtg4JSf622z5L/QxCZpB/qT31ME8lgUtQ/u5kkKNuO+3ATIs91T9ZNgfpsw4C3UL/thBaOrxicj3N8HfUd/xnld7HY1hMF+J8myEyt+USErBuBOZN16yKFle8q+Wjr/LKN8/szRsqcyXGLI4W01Un6HUh9rN0+GZ2QcE3UXdsk67uPzTnW8J72SP4/LK7nzbROALrF3yVQuzQYKfhW6u8tAQxMlvdEJM3Jwh6J5UeRskfxfvYA9kbE2uVLPo9AJJ9rq+B3OK0oI3UVQ/X6yWgy0G/E5J3i2cT/26P29c2oS58gCKYtlOG0/h2AFBgfRd/j7yM1sE1qfe3ZmpWDHYC30ffUB/F8t6H0PYra9n1RH+DwWpxrtq5ppTpgrvi7HSK8ToUmC15NU+rNi6Jd+JAgSFbyVYXzXBf1N59D5PjD0ffUxMk+WyKS+nPAzLFuJqQSNX+yX11/O2TLli1btmydZTU/gWzZsmXLli3b+GsxgFXM3B/vgydEEDhZ3grN1L47Bm5/QmoYRaBtOkSCejYGZq8C+ifHVwq2LoOCaQcTwTmUluWvMZgzsI1zzAMm47mhoOitNFemqBTUWRClhjoUmCLW9UaB5+doIfjL6LPORwB7Vulapot34/oYzGwENh5LX1YPPrNlqxdD5JTrqKDqhNLN/UYSbKSJELUtIgnNW+G42Rk99dxaiCi8XOon/r8aBUgXKfmxavqscN59keLESbG8CCK8XI3SZzYCVyb7FwH40Yha9WoogP8hEYBKnzsK1r8M9CxtmwGReN4Fbinf647wmfiq1A5Oi4KvP8fvzB3rJ0aKVJ+R9MtaKwsEWQ4Fub4gUeyMv71RqryzaJ7apKGSXxT06ktCaEGqYo1RPgulmKkQsflb2u4Drhb39BLUT2gobV8HEaK+pkkhKvcbq2zxXI8BphyDY1p8Luh7ZGx8lhWibo3yNqC9PrqSJe9+obJ0QFzPEBLCX1IPLx5l/02gb8lXN0TW+AqpdgxAqksHluqrYWFbxbrpYt9hJApG8YwaEPnqmir57dLpw+Jci7ZwI/Q9MQwRSqeK9T2T/VdD3yx3IiLresm2iu8DItQOIVEaoild/fME6TlbzcvCloiYfChS5VwlntEnaBJY79hvXjTJ7E1gv7aef7YJ01Cf6L9ICar49lgffasvl+y3G1KFfZtOUtBL6vXVUL/zqTjXIo1fSuLdE5H+tm3NV7Zs2bJly5atbav5CWTLli1btmzZxk9Ds/RvRTPgp671+XTC9U4Tf4sBjqmBP6GZXj3RIPo6KID1GMnsMxRQ7kXzGbAtDepujWbtL1laPy9KndBI8zQ+eZCkDm1cn1t7jkcqAkNIZpOjFEHv0RQEnb4lv3RC+o14L45A7lNnIAAAIABJREFUQd5fiZQX7R30Lp1v767qM1u2erOkresZfzcATku2r4CCVU/QXJmwJ1KeexGYoeTzyAgMrFx6z9aPumbDZF1BMJkGBVAPbuE8O9xnev3xfx/U5zkZzdieMerRK1BQemakFNQI3FDrZ1fFsnAiUvaYrVhPUxBqs6gb1y8dOzUKah+WrGuoks/fIxWAq4A1k/U7Aq+gINmqSNHzOBSAOqLSM0/WrQisWlo3Zfi7LVlXUVGHlvt62wEvoVQoNwNbJ9suQEHjJ5GC2V2IfNWWquhOSCnmC5pSq+3I6GSytVHamMZ4F3I/sooWZfBmRB7dnzEgL1XDZ6luWyT8NAIr1/petfP8l0Zk3ElieR+kqpQuN6JJJPMmxzUkx1fs1yLy5Mnx/vwK7BXrUzLt4Ui96X1EFn4E+JSSghFNdVxDtfzW+lmMwTNbCFgSTSI6P67rBpq+rXuU9i+TOFsjBu6MFPXmTtbdjdrkIlVei0q42Trl+c+F+orHxPKCiBR3BSI+DUWEqF5I0WdFmhNa6qasZ6taGUrbrX6o339Q2vYhNbGfaEqD3AM4FynCTl+L8wXWiHNtBM5Mtqck0M9J0m1ny5YtW7Zs2cbOGsjIyMjIyMjIqALcfTgawJoaBQcxs241PakqwcwuBa4xs4nd3c1sK5Si7HfAs+4+wt1HuvsDwCbAwsA5ZrYUgLsPdfcf3H1k4dPdG1v4uamQusCn8ds9Y/830cA+wJVmdnCs946+3ozqwsyseG5mtqSZLW1mk4+Jj+T41vr786BBwqdi3/tQ2dzU3V8wsyVRuZ69wnntg9Lx7e7ul43hJY7JdfyAgjuTIyWZ4p1pNLPurR1bOt//A44xs15dzWdGRp3C4n0YEe3QXsD/mdnxAO7+JCI9zQX82cwGmtn6SO1iX+Aqd/+85PMBRBw+G1jRzCzWf4DISVuZ2bTh/9fY1hcpMH3SwnlWw2dax+6A6sKewNnu/hoiLX8PnOruje7+cZzHK8CWZrZBS37rEUk/49+IGLZ2LDe4+2/x/y+ImDG0dOzXwAXufjqozYp71qE+0TO5Hqlrrgb8w8wOQ2XjekRm/Sz+vxwFWw9191OT82rWnzKzvui53mxmD5vZemY2q7sPRcSGdaLMk5xz+d6N1tczs7VRKsmnUL9uGeBEM9s3jtkXqYO+EtveROqMJ6fnmpR1zGwKpIBwEFJF2wBNVjgKWCNtp9z9Hyil2Pbu/lXuR1YXUQa2QYH/M4ABZjblmPhIn/W4+kzLjru/jOrx/d39sTE5p1rAzHqg784zULuzBwp2343Ir7j7IKJ8A0ea2byxvjHenWeKfm1xH0xocPcvEZG3R/hbIY79zcwmjv9PQ2SsvyIy4b+QSvIp4avBA8l97nC/rXxHdimY2XxI4W8Wd78RkfeuB1ZCz3Bqd/81nsEqZrZ4+drauNaF0bfO2/F79yKS39bu/h8zWwb4o5lNXYXLy6iAcn2FSIBPADeZ2awoDexNqLwfFNsPR6qiDe7+hLsPLnzVS1nPqB6SPvk6wJxo4uF10R8rcC/q9x9jZjujb5EBwDPuPiSOL5fNaqH4hnoIkd8/Re30NnE9I8yswcymQRMChrbiKyMjIyMjI6M9GFsWVbZs2bJly5YtW2GUZo3TfCbri8DdtT7HKl77MWj24srJuhPQDK8faK66U8wCWwWlInsSWLY99zb5OxuaIfb3ZJ9CzWJ54Bk0m7ZLp0bI1q6ytT2aBX4lMM8YHJfOjuxRXp/8XQSlAzkOKUt8SNMs6UlQsPVhSqmsEJnhFzpPTv4YpA7ypzjfq5Jt3Vo4pqxg1Qjs0NV8ZstWb4ZS8/RKlpdCs/VnRgoiHwInJ9u3Ah6K9+VXlIrioGR7uf+wCPAR8B+k5lSk0DkIBYlPAeaMdZMitZshtKJa0pE+S/XAkii92v4kyhKIgPAaTapZvZFS5qHAwrV+huP4/NPrn5jms9cnRQHM4SRqTYgodgBKy7pQZ/hMfYfP61DgqzcwByJI/AYcT6S3i/0Xi+3TJutGS2VIKJ6iPtkOKJA7BBGMdkfBrZeBY1Mfrd3T5O/OKJXeZMk79hgi8O1XOrZVxZRYt25c5z+Lch7r50ZEqreA9RhD9aps4/wuHQlslCx3R0S8Eaif1S41p1K5PL2jfCblcfpkfZctC8l7Oi2qw0egNueASueP1OMaUX09Xzt/Y35gU6Sodh4KUF+bbJ+otH+b72c1/daDIRWXl1DqzkK9qwE4BxEEbkSTqrZApJiKKRtL70E6DrEz+uZeHZEhPqJJ/bYXav//TkmpMlunPPu9CAVHRIYDODPaqpmS/Yo+ZCOwQK3PO1vXtKhLPo9y8iyRHjW2Fe3DZigl6fD4e1gnnVuq/t6D0rgAUiX9EHgVkVxB31XbxrluU+v7my1btmzZstW71fwEsmXLli1btmzjj5Gkw4uBTEMz+T6miWQx3qTbQKlQHgYuiuWtCRJSXHcjcAvNg09FcGG12L55Bb/pgO5UKOhXDBBPjoIdnwHnJvv1APYDbgNmrPW9yTbOZWsrRDg6hDEInpfKTv8oEwVZbsp4J9NUULfH73xFBJSByVBA5qtiQC7WNwDzRbndo0rX3WL9gEgYg9AMyauS9eUBxUqp/Hbpaj6zZas3QypPVwEDY3lXRAZaMZb7RRtUJkRNi5ToFgVmT9Y3I5kkyyl5aZWoe3ogtZ1G4AVEbrkepbw4ssK5dqhPpLIyRbK8CEpvcQmRLjPZtnPUEf0RYao/CuquXL72ejVgS9T/eSru4cSxfulY/1vUg0ciZZmfkdJS1X2W6usGRAi5G1gjWd8H9aVGIkJwxTRJlIhK8f/m4W8nmge4NovzGxbX0IgITH1buebU7yyoXb4aOLy035Io1df7RAqttsoRau+nRUSDL4Hnk21FqsG5ECHqNaQWVZEQla3D35/5EAntU2Dt9LkwBuSlUvk5I8rz5x3o8zDUl+nS3xVI4eyqpFz/Pt6/kcDfaE6wTN/Zg2j6Vms1VRqq8xuBFWJ5WkTYKROXDAW225V2qVp+68kQWfN7mhNgGqJMf4FSUA8jyKVtlNk1kNLfTLE8G/qeGYH6JgvH+olR2/w5SXr5bFV9zulzWj2e6ak0J63cDTyaLE+DyORrk7Th2bKVDSl97gQ8HfXnksX60n7Toz7Vgsm6qvTJGf37YFPgTtSnPa7UNq2OvlMaUR/yOTSp9Oha39ts2bJly5ZtfLCan0C2bNmyZcuWbfwwFBx6FbgAmImmGe1zopmcx9f6HDv4evvE31tjIPXgGLzYJdmnUIi6kOYB4CK4NlMbv7EF8GgMhPy9GLRBAedrY3D38fidSxGpZe/y72SrLwNmQKphg2iuwNLq82R0wk4jsGUsbwk8EoNrZwJzxfq5URqij9Hs+D2iLH0LHNWC77mqdN3pbywVdcpBaEb4lLF+RlohGlW4ByMJBauu5LOTylF+/7OVy+84DfYjYu4N8Q5ci1Q39kHB9oJ0NDMVCFGtnVcL51qQl14AVkrWbwU8CPwXKVHt0tr1dYRP4OKoT+eJdYujmdrfEyqNsV/Rtk8NXBbHDKMFwla9GrAx6tfdjhQchiPFjVlj+wKIrPQFCkg9A+zTxrOvls/LUT/tUWCOdF9gCkSIGo76UVO049p3jGd6IbBapXIX5WNP1I43InK8tfb+IXWp/yHltM9RX7pbWHG+S6LUWJ8CB47Be7UGMDjOZWCyvmjj5kQkqy+K+52tU96jDZGi2EfAOsn6dpGXGL1v8gvwlyr4HDi219hJ93FiFFz+FDg/rnVORE48IK7hGiqohMT/x5KoR7XyO9Oj79wrafrGbUZcQmT4reNdq6hg1Fl+u5q1UDcV6omzAO8hxb5uSd1k8Rz3QSm8R3t+JX/9kULf1TQnv66Cvmv+C+yC1PJORW34ka2dY7aqlIU+aLLPX4DJ0/KASI1vxDOaCbWN7wNLt/X8s0041tK7iiY5bBdl5j1gulhfEGUrfSdUiwh1OurL9Y3lrRCJ/37UTv8K3IHUSIt+3ko09cdOJ/qt1TzPbNmyZcuWbUKxmp9AtmzZsmXLlq0+rTwIASyLVBU+QgPSt6AATDfgJDTzfLyQNqdJPWIiNOD+eQxonBTb01nHherEhcBsLfirNDCzORrAvzoGSt5DM/uLWW4zoGDbU4hw8QJJarw8oFu/BswOfEcr6kskMwnLzzuCBr8RAX1gIxRkvg4FhD9H6ijF7Og50Ozr5xCB4Uagf+JvtBRBVb7+ATEI+FEMGn6BCFpFGqvpYnBxCMms+ZKP4h7s2pV9VvEepuWhH7AQUgCZptblO1unP/9JKaXY6QD/LyECyY00V4QsApgFIeo94JR2+twIBQjSWdIFeelFmqe3641SeU6S7FupHR1nn4hQ8zWwZqybHQXfr4i69PHy9cf/kwDro+Ds6q2dZ70YTcGa01Fa0AaUZmjLuEcP0Zz4PSsK9M+QrCsThzrcZ6zbFvXLnkPqTI2I6Na3tN8UwNmxfek2rn+ZeOZHEaSFNvbvEeXv3y3dy/h/BUSwOgulyHockVa2KPZN7tNS6P3bqY3fXo5IO5T8xrPondyxXGaRclv/tq4pW4e8RykRZwNEVBsj8hKtk7Q73GdXteS9mBJ9L30U71BRrqdG6TF/QaSiNCXmGpRSo9FGPxelQf6U5mlRp0GTDH6I+mEYcMwYXkdV/HZFQySXPWneLvdE9fMrNKnX9mjh+JaIUFvGvToImLnC9mVRe/C/uJcPkXxnteQ3W4c//9XRN+4rNJ90U3xrzhPvwtDkWR1R6/PO1nWs1FbNgwhEy9P0/d0D+EO0B+/SRIjqVIVmNPbXiFJxzgX8FZHjJ0LfHFujfu79NCdErRnlfrNK15wtW7Zs2bJlGzur+Qlky5YtW7Zs2erPSoMQK6GZToUiSi8k+/wQGki/A82Of7f4qO/swYgOvvajESlpjVgu1Ay+BN6hSTmiR3JMQYi6hCRlXqX7GcsNaHbsccTAPZpB/lwM9DaT/UaD/Wn6njygW8eGgpa/ANvEcpn4tESUh2KWY8UAVlI+To2BuKIs7YFm3b5BEyGqmJ3di+aBuk4tS8B6UcYPoClt35nx/pyTXMO0aEZxI7BWycceJCptXdVnJ93PHZDSyDdIneYpYP1al/FsVX3maX2wBfCPaJteAHYjIUiMpf+pEWny9ShTexXtDyJtpISou+M9WbYNn92ijvoeqfik7Weq5rRypTqJyooTHeIz3qEhqN7tj4iPM4UVgY7LkuMqBnBjW921zaXy1BsFcf4EbJ+s704TaexBpDhoZR/lvx3ps8J5X4GUJ6ZKlr+J35m+tG8fIkVVa/cAta9v0Q51RJra540QcXDxFvabBdg/zqtoN35HUwrbzZN3qziP6dr47VmiXN5NQgpA6ijPoPpgx/RdqfdyWm9G837WhrROXvqxVJZb6vN1uM9a36d23EdL3rW+iFDzPvqGKtZPSxMh6mqUrnU7WlBZqlSnlH7ja0qqh1GHbIqIkpsn6xuq7bea97a1cx9Ln5MiFaxhqB9xOLBMbFso1u8/Fn6nQOMOF9Kc8LYFMJAgJKNU89Oj1HmpIlGu8zrJgHlRm96IFNt6J9uK/uMcKHXiiQQpOD+nbGVDSp0fojG4n6K9GxDbuqH01h+iCZkFIapTSUXoO2QkGgt8kKSvSVM/9xtGJ0T1q/X9zZYtW7Zs2cY3q/kJZMuWLVu2bNnq11Bg8PMYXF6qtK0Hkra/OgYiGlEQpmctzrWDrndi4C7g+ljeBqUY2wqRI15HQab5Ynv35NjT4x6sWr5PpeXNgYdjwGSj0rY1aSJE/S7WjUrNE8t55lgdGhHsKMoNUnD4LyVZ9yiDZyKVp/Ks/rJy0eQoyDyISJeX7DsgBgffIBTbirJEG0HmKl2/hZ2PCJTTJdvupDlxqwgYzwCsUsHX9lE3dWmfnXBPt0DEjRORAsK2KP1UI7Byrct8tqo//+0RCeMSRIj8e5SHO0iUdsbAX9rOTIeIkzeiAMTeNFe0KOqrvsAG7fEb/o5FfYo7GJ289D4Koq7e3nPtCJ/A0khh6AUU0Ng78T8jIjsOBf6SHNPphO/W6uuOqMvRDPaHUbv0DiVlIhR42hgRx/4FzFtDn7dHfbxyadtlKOj0Z0qEqHLZbaE8XYyUlSZu4dg5KRGV4j38Bli0wv5rov7cc5SULxAx4A5E4NgsPY+2nivqf/ePcnkTSVANWBX1xd8Adu7scjohWxvv6Ma0TF66GrXbvysdcyCq4yuSlqrhs6talPeL0MSbYTQR04s+9DRRd/+MUox/Dxzdhs+1gN3SZ4fISbchYnkfEgJwheNbUjCqit9ql9Fx9YdUSrshQtQiUR+/SVPa0T2A+5Dy8uRjcp2I4PQJofQELIz6u0ORClEjsHVnXHO2NsuBAfMB98Sz34TmqpqdXu6zdX0rP/8oNz8Bf0T99NUQua6RGPOI+mZr9A3wNVJs7fT3HalvN0b7s3xpW9rPfQiYO9YXbUMu99myZcuWLVsHWc1PIFu2bNmyZctWn4bIG78gOfoW89nHwENflLZgCEEGqrfBxxi8mwSRlN6lSQWmUIppANZGAaZ3iKAdzQlRy5V8ngMcQRPBojua3f0lCroWigDpIOGaiIA1glCIyla/Fs99MpS+7t/xf7coB9+gQHGf2HdqYJcY0Pu/kp99o8wU5XEbRKh6OvY/qChnyTEDUBD6XULdqMb3ogEF7u5M1t2HAnmLxvIKiDBYVstqKehUFz6rcC97o0DQxTRXjXsqnvditX7e2ar6/OdE5NzjgF7J+oJUMms7/aT1RY8o+xMn6yahiRA1kJjhj4jQJ9NcoaHFsk9TWpxewAnAZ4xOXloMBbD/0M5zH2efNAUjLor69XVKCkJIIeovKOD6pxo97/Q5LYVUT3ZnHNToSj43Q0oydyGiUSPwGqOTu7uhvmEjsEln+Ex9I/LvySjg9G1Rz9E89eFlKKXpxZRS5rXgMz3nop0tyOhpWZoZpUldP1k3HWrD7ylff7LPs3FttwOTlrYthFTNGtsqoxXWd0cE2B+QWk5KiFoZkfu+JMj72aprpXK0MLAOCuYulqzfhMrkpR6EGm2ybukoF3tUy2e9GCJ+DwcOQ0HlpYAnonyfTxMhajJgSeBgEpIulQmQU6P6fgTwPFJmmjm2LYcmHmw1FudaFb9VKKProXbtLvT9Pg+tqB62w9/WSCX6aGDa0ruwe9yT16L8jVJAHsPfuAG1KQ+h1KjPodR486JvrMdIvsmzdWp56o1SIU6ZrJsrnssXKLVnfjbZKhoaK9so/rcoS7ejtHPpRIyHKX3jRlu3IzUmf6M00I2oDzpTaVvaz9241vc7W7Zs2bJlG1+t5ieQLVu2bNmyZasvi0GIydGs+2tLgxCVUpgUkuc9YsBrUK2vYRyvv1cMto5AwbQ0BUJ3RIgqFKKKlHnN0pmhgHJ3FKBaqXSfpkIznD+LQcIi/WD6O2uj1Fd71vp+ZOuwcrUxSbA3ytlRaAb711EWBqMA71HJcYUCy+k0KUJtgAJDN6KZ5h8j9ZNKyhS7IoLEDjW+/iKQfReSiu8G3IsCeEVAe2rgKkRsqKjMUQ8+qQIRtOwz6pGv0joCpUz6CFgkllcE5q912c/W8RbP9ksSYglqsz9OyukslMgXJR9pe74RGsB/BriShNhLEyHqR6S4Uwz4H9XGOW4D7Jcsp+SlExFJ6UaaE06mroHPWRGp9Mq4rn8QaX2SfWZCac5+Af5aw+c+AClhvIUIakOBv5GQgcbCZwNSVPkjQaxDakdfoqBzWX2pG20oj3WUTyr3OWeOMvgTcHOyPSXmXUUFpc6yzwrb5oh7+xZJusl4B3aI9yslQ/UmCWzR1F5PVPJbpJXeu/xOIrLAw8DACteaXv+85bKM+t1/QOSCG0rnvCYtKKVkq54BO6E+18dRBj8Azk+2F+nt3gfWq3B8UYampomU1+E+68WQytBdqB+WEr+nRN9YPwJn0QLRIrn29F2aKfGxGCLRvh3v0TmIbHoXUraZso06oyp+O6GM/oT6uP+IcvUhSuc5xm0Jqht/Qt8py5XvSyz3RSTNa5Ba0HWMYf8ZEbbORqTU/ZP1k6H+b12PP9STlcr9FlGm30AEtV1pmuQzJ/AIGh9av6X3NNuEa4iM2WwCIBqH/JhE3Y/Rv3HXIlTrS+WxZkpLKGVeIyLt9y1ta7PvnC1btmzZsmUbN6v5CWTLli1btmzZ6s9ikPYz4ORW9kkHpYvB5juQ/P1E1Ty/Dr7WM4BDk+VlYyDjJ+AVSoGFGMxYG5FPPiRSkJX2sdLfDYGTgMliuU8MRn9LMsBPc0JUv464vmydWpZGK/c0qYJNipR8HgZmiG0TA8sDFyBFsvOATZNjK81mnxGlOTmOJjWzdaIsPlMMEpaO6VRCDK0HM/rH+/U2SkdUDGr2iHfi/fQe1LNPYIGoK9auVE+M5b1dF6kiTBXP/JhYf3csF8pVsyJCwI6VylG2+jEqE0I2RQHFOWP53tLzXxLNqG5P2rH+iER0JQo0Po+Ct6sn+/SM7d8D/wMOacPn5Ch9VzMVEprIS5MjgkhjlN02Fdaq4TPWT0SoX6K2uhHVx8uW9ps57mlNVFVQPT8MOASYHfXT9o3zPWFs3vO43q8QGWyH0raCvPQwQequcHyl51QNnxsBO9OUmrQvagMbSchpNCdErVHBT/ourY4CV7cgxZkFY/12KOD2JUrrtCfqJ/4MHF7JV3reiKw8hGjnk+2DkbrYQEYnRE1VWk5VDwxYIq716Ar79kQpdBtRyszZ2nNPs3W8Rdn/Id7RBVE7fG48myOS/TagqZ6dpVyWqu2zq1qU71VK6yZFCqfXJeuKOn8a1D/7DqVha4kQVVYwehg4nuYKRnPH7z8f729j1ANzln1U22+V7/FSKN3cYTRNxpkkzus62iAPV/C3EOoPn1Cu1yrdp1g+E/gUmLyV+7kSUov5E7Bjab9UTbk3Usj7nEz+7KwylI5V7ICILBehb9krEfH3KmIcI96Bf6Ixj03rsW7KVh2L+uhTmtLerUSQJKPevzj+v4vm3zh9o4wdRKmvX2tDpNBG1L+coYV9cp8sW7Zs2bJlq4LV/ASyZcuWLVu2bPVnwGwxOHFGLHcvbV8Y2IvmcuizA78Cp9X6/MfgOqdFM4tXSNYtAawBLILSmL1CogQQ+3RDpITPyoO0FX6jIQYBhyE1g4IQNQVtEKJiOQ8a1oHF4NeWJEpp5WcYg3bfAcu3w1+lgPDvUcqdl4GdkvXdgFVpIkQt3F6fVbgPaTBj2QhS7A7MT8w4R8GNkcAgRO6aHxG8fgQOq1efJf87Rv3wGVKTGQIcNI73dgs0wLodUnh4CHgJeBzNoF0gKQ97oIHkVWv9bkxIVs36mmTAH6Uf+RUFIG+juXJZT6TwMJg20mMiot6nwMGxPEfUUd9E2S+nWVqQCOLGciXVjWLdAog81Ehz1ZsikH04UhL4nkiP0dK97Cif7Xl2iHjTEiFqss541i2c3/lxTtMn6x4A3gSWGEuff6AppdP2sS5Nk7h91GGPl8tCZ/hERKAGpMT5PQq8FoSoGahMiJq45KNSWzoA9cn+g/p4w5Ea1HaxfQOUGvXHsH8De7fmM9m2DVLBeAf4f/bOM96q4mrjf3oVLICVYu+Agt3YewErdgG7xt5LjC1GY4sxamIvMSZq9LXHaIwaY4sxdo0aO2JHBEFFPXk/PGvY68zdp1w45V6dD+t375699zqzp89azzxrQHTvMfvd/ckBDtj3BiDuri69E3AlAukfTUuGqIH2ewXLd+9S+UtSH7G6uwqNx/1c+v0oPNjI6PltqRAurR4626LYdw6xfrNSdK8zYr97EVjMp9vfq9EcNokISJXzO7tZfz4LG9tpCdRZBAEl77H+dm38TKP01qms90Zz5JIu7Ra0fwhMZCUZJXP0bYOASCtW8Wyos6XQ+iU3XBTaG7+PALV32bh2Fi2ZVtZGa6DPqMBUmaQmbWdrive2S9g4dAIO2GZt6QksPKSlLYkAgXs3+zuStB1Ba/qP0VpuV+vrG9m4fzkKifcvtMddyt7phPbr/8GFhm1LgmxCM+zvgs3OT5IkSZIkSfJDkaZnIEmSJEmSJEnSdqWcIRZR2X8KLB6ld0WnXO8Lhi7krBoF/LYa3W1ByByf4QTaFjg6bktbltKAqM64kCQVfqs7Ys16HziJloCoT6w855zV70nS1LZ0NvAtsKZdb4wck/vGbcTa0r3uOoCnOlTqMyjU3mQzFh4R3euAAFFvAM/Q5FAoiMXjC5ffj9DJ/TkQo8k5ZOFePkRMa4e79/Mc2O1F5yjkGDsBGAasiIBVBRyIrZXl2R+dMvXjx/JojC5gDgZgXuTo/wI4rNl944cg5fptpT7dit/YBHiaYiDM6YitZho2T6NwceOQc/CACjq7AWcC59j1cghwcqn93mtoXCvF4JMXymtja6ND7HoZFG43Bi91tT5xGDlAnnrobE1dIuBpAJasVi5/jWhfaL3xJHCDS7+L4pAhGwHjW6m7E2I0eRmxhYQ1nQfejbV2sE2jdbr66IXmtQ/s3RgQNQPHHFNB5xrWP44FBqD161AEKnsH2NI9OxQB/RdwaWVBxaZvW8SW8jYtAVEPI4Ds4TiGE3d/JbReLGDgLFeuv0EggmMoBscMRmEyjwL2aVTbbA/SqL6KGIxeAS52aSHEbuijawPb5rWZRulsi+L6+Rz2dz1gQ3d/T+sPp0V9sSfaqx5MZWDlUCu3kygBRIyue6H55CXcwZ9G6a1DGQdA8VnAGy79Lhv3QntaHziDKsPlIeD152TsivH3LkfEWAtsitaoG+ToG43G56PtehWr+wIChA6w9IEoXN4/KWaKbDftvj0JAqa8EurZ0tZAe5ANXNrdaL8UwPkLhHZBsnEkiQStwa5Ha7tvKF7TD0FrqAIZC/IgFIZxGm4OBEAGAAAgAElEQVQv3hYFMe0WyNlDJEmSJEmSJEnqI03PQJIkSZIkSZKkbQrFzsYlkYNxaZe2Ojop/w6wFgIHLIROtE/GnZK35314kjZvjEQOq5mAKARGmoQLO2H3PCBqk0plmXOvk/uNu2gJiOpDZuhvFZNFkuYLOhn7NrC/XW9ncj86rT4ROAQ7NY2cNhOAjSq1nRK/twEC5byOc9oGXciJNJUGh4uIxpNlzBh+OHIU9QOuQI7x21zbH4FOlW+Infi09Dy2mTarMyr/TihU6A24cEaIHe6/zAJIDTmH7kSOiB0sLZywXxOBKd9ELCdPWPsqGc4pSd3a/ToorMu5wME11DsIMX0VEOChv6Uvg8ARBeQQPgs5Cz8Djo91RTqXtfY6GoWlmNPaz9Wu3R9P5oTcvIo8j0MnvG8D1nXpy1j+CsBP0Ri2n7Xb9d1zecDCmuustuzJQuY9jgOhNbJNRenXIGaFPtYOfMiQfijM6rnksAJFdd8Jgau6uOsdyMA7wXnpwUstwi3WW6dLC8CnngiMmgeI+pnV1UZV1OuRaG0bQviEuWFhBIa9D8d+kdeHytRR0NURMUW+ieaYGBD1ImXCLSIQ7f9RHhB1ImIs7IIAsA/iwiuXyuMPSaI2OhA5V5et1OZao9enIdaf262e4tC181ndHU8O0KQeOtuLuH7VCYUALqA9lx/LQ2jASxBAZgjZmL+6e64UsGx7tB5vEUo659mwb1vZfnPDMs/WRW8dy3oX++2VUdhZzyrZw8aVP+NYfcq1UwRsKgB7+G+0//shZtX9ydasfVA4vvtydM9neTrbrpdF+5nLEbPudwhIFgBRi1NmTZ6kZm1mPLKDbBzqyf7uiFgV+9j1n6PxaQTwd6K5Pm+sS/LDEzfun2pjyKcY6Mk9syha972H7B4voXXVMbGetig45vkkSZIkSZIkSf2l6RlIkiRJkiRJkrRtQfT+E1DojmnotHwXZIQfheipC4hx5jXkmDzOvR+MGf2akf9Z+N7+uNO7ZqzrjhxhtyHHXR5D1EcIjJBL61/hNysBoubEAdGStB9B4areNgP9AdZXtrF7myFH1XQEhDkdgVc+Dcb+KvRvhwAO3sGwiRkGHycCKVi/bRolOzAcAb7uR46NMD50NYPnezbGlHJY5TkE26xOip2tYdx8ExculHwGl3VaUaYnIRaVrzDApP1OcLwPsW+5FDkHZwsMkmSW2v045LR7DBnsJyMmn1Vmpw5QyKy/Aw8hJ1PBrvvZ/UH2zCOIOepSYKdy9Y8cWy/gTivbuPQOxWwcu6IwjI8DB1XI56b2/UeQsxZATstzkDPzayufYxutsxXlHvr3tswmsG028rBO1JcPQUC3V208WdTSOyGGuzfJZ4jxY9RoxKbxmLWVUU5HAO948FI3r4N8UGlNdEZ5XhtYz113tb8BEDUR9bnA7LkAsEqV5XomWsfOG/JBBuLaFY21FXWRrevCHB2XUUdgDAJrvJrXhivU1XDyAVEdUcjEgpXF/Yhl5chmtNP2IFavL6K11wwUHnuzWdTl62hN3J7A2tYXiMXsHQwEYH1hT3JA7PXS2R6FLETx6oht6AmK56STyVg8P0Nr6+Or1H2YleMCJe6vgAPWWNooGytKsk7VS28Ny3R7itejg4BHrR98QAZs6Y7G1A+IGAZpCYDqFF3fZnXhx+xe1u8+ALb375KF4/Pr2J729xB0OGE+BCS9Co3781u+C2ie6V8uj0lq2oZOxdjEEBD5LgRaHETGpnsrmufDwZ/uaF/yGCVCtyf5YUo033W29nM2cC9a254QPT8fsBViR94JBzCiAXvcWowtjchnkiRJkiRJkiSBoZIkSZIkSZIkkURGiDXQab+fAvsgQMd36CRnMEzODRwIXIBO1Hs69GDEPAOBpro3+/sqfPsSyGm1l13vZUbs1ex6ETPy5QGiliNySrXyt2NA1Dso5EPv6LlkMGlnYn3jM2sfx+TcX90MfVMQYCGwrQwuV98IXBPYWS6iGBC1GQLsPEEJp14j2xJy0C5meX0PuN3dC47srihE0GPfJ532zjbISdAZAVNutPQ7aMnkcBkKodetFfoPtjw/hZ3it/TO5b610X3hhyiIOfFjBNoJAIu1yZx2s8TYYX18BmIuWwaYBwH0PkIOJh8mq7uNFx1dWh5wZW7gP8DR2Gl+S9/d8hsAe52AU4DzyHHyks1nHZFD82rMQeae6RDlpwOwFGJYG5GTz5rrnM16jR3AdXW2RvU0H3L6P0gxI9YfrZ6uRiExl7axYToWVqiM/rEINHaLjUuPma5jXblvh0DvH1CCGaTWOhG7hA99NQjNlY8Ca7n0MD4PRAD+Z4G9idadleoerXULOAe9u7cDAp3msrygcduHg+5B8RydB4g63+6/gwEPqm1TCKzfAhBl9/ZGDIQ3AmMb1U7bmyBA2tcISLMzCoE5kSgk4izo3d10PIwBACz9bquvnyMQxxAElJ8GHNVone1FEPj1MiyUFmIumo7CoPl958oIpLoHDlReRb/fycpw55x7/dBctw8Zg1EvxHTzQDP0zkY5+nlkAFqDFIXWRiClJ9Ecsz1ii/oZ2g8XsUpG+jZH4KSnEFPh9jbGDSMDWF2GAHxXWv35w1Mt2FTt756IPbUnGdD7QMRWuah7/nwE/itgLEVJ6ieufkYjkPDfrewPRPukEPJxKpqzl7bnQ7jmSRhrcpIk//tfi/FpGcQ4H0CwiwB/IQcQVUlXnfMZDi529H+bmb8kSZIkSZIkSb40PQNJkiRJkiRJkrYpyNl2oBlKe1vaHMih+60ZuOYs87539myAhSnAsS61NUGOq9uQY+RqFGrkYARgCN9TDhA192z+vgdE3Qt8SZVsBknanrg2s4cZiKeiMEVzWXrn6Pl5zZj/JFWyOCAAxBHWVn9LS0DU2+Yw2LrZ5WF5CuxYBWBtlx6YN44zo3nVYafaok5aOogKwL6I5e085Kx/2oy6S9hznZAD+1UqhB1DTqY4FOmRiC3hZtxJa5LBtamCAEpPAYNd2l2IDW7F6Nmq6wrNwc/iGBCQk2kX5LS8jyxcTAvgU46+LRBz2O3AkOjeXIj58FEU0uan1v5383m3ftGCkQGxrlxXKg8oNE6nnPSO9dBZrizaYn+JxpPNrP+/b/39IYoBUVchxoxp9swLwOHx90f6hyGQxRHYOgaBjqbaODWzHSHn/mdE7CD10AmMRGPn73FjLRlj6f0UAx4CoOBme28aEetKXAY45ieX9hAam1dxOrvZt7yCjdnRO71QyLKJwC9c+rxkc/QltARE7YzGh4+wUFJl6r4HmkN6R2V0KyXA+NH7CQBbXDbzWBs6H+jr0h9F66YW9Vyl3m3Q+v0wYBFfD2hcuguxUH1Exqp7pHs/r4/WXGd7EgQmnIQLJQyshAA1RQxROe/mjvm0XIM/aP1+VbK13hw23nyIW0ej9dryQW80ptREbz3rDYEAr0T7je9s/DjJ3d8Shav7xPJ4D7BvqXwh4Os0BFq6zb73E8TO2Antnc9Gc9NEBODbO08fxWPWqmgeOw5nc0B7qTfJmKv6ANejtfvgZrfXH5pYnX8LPBmlD0Zg6A/tmWOAa60vn+Cea3PrriSNlajf74j2wmdSzM68GDmAqHjMbWCeR1v7vgcLTWzpLfYeZb51ZRoYajtJkiRJkiT5IUvTM5AkSZIkSZIkaXuCmCy+Qg6rk6J7PRATxbfIgVB1+DsUvutNzJDfVgV4CQGi/oABVyw9gJUCIOr1uHzs/uyEPQq/0QMLJ5Ok/QoCth0F/BixNEwyh8A8UX3PdNZQ7PTNc4rFDp25EZNLHiBqS+Qs2qHJ5eAdHWOR4+U2itkNuiLw5bOUAVq2J51mxN3HDLqBTW8u4DnTfYalDbHnplMBCIdOx//O3t8nuncsAhXcAizX7Pb/QxbXp2/BsYghJ+A7ZCxLmwAnt0JvB5M7gX+59DCW9EVhngoIVNvN5yfOn/0/LwIXfYXAM52jb+hg+XzOxpn3iBhHEPvSSxQzMIU8/QPHdIFzXKAwQWeQH+qu5jrD97j/l0OAxVG0IhxtpGOW2L1moU3thgAR56Kwqr+0en6Q4pB5K6CwIWv4b4rbgEvfAjmXPNDgTgTYCyGLZjp5gMWqyOts60Rj7R4I3HcdxQxROyEH698oBoP1RaCj9YjmPTKGgdCut0IO9H8CvwC2sPQRaHz/xNrRAYgZ5UvKjM+IaeV6BNQ6J0o/igwQFVisOpreU4GFK7SxbdBc9Ja1fQ+4WpEMELVTifcbwpLQngSFT/wYF+oSsfJMIGNrHAYMqrYcrP3djxhwPGitI8Vj7sYI/Lx51EdasOPUWmdbl7z2ZOXwEnBPlB4AUY9SHhDl+8KmCFz1KAopub2lr4DCDX6KQlifSA6DUU6+OtZabz3rDYFpv0FMdptYu7nXxo/TomcXQePXXKXyZX3kQ+AnGKMkAhreaP3rJ66M5keAzj6l9Ln0JSxv1xGttdGeqgAcCqyLmIYm4phw21u7b49i7X9pq4vAUPf76JkF0eG6h9E682oqhGtO8sMVtPeejg5drJFzfwkEiHqTHBtcA/O5E9oz3YXspR+jtdnCdj8XEBXNRYcTrZOTJEmSJEmSJPWTpmcgSZIkSZIkSdL2BJ1wv92MWrcTMR4hoM6hdv8KqgznhBgNJiKHagvHT1sQoD8K1/JfxGCwFzCH3fNG70XMeDwVWKmMvlY7o2h5qrhdOpqSzKy/Hu7/P5ABogJbRqlT6y3aDnKI7k5LJosAiCogkGIXd29Is8sg53v2s7w+ikIPrQscYobFQ74POpET5xXkWD3S0gIrwDym8z0bE1+zMefovHzk6F4UOdULwH7RvWORUfZ2XMi8JI1r31H6cQhUsRQKafVuqBfEZnC6jQtVA4vt3QNR2Jl17XqmYxw5Cp+xdnBr9F7f6Dowk22LDPkFMlBIHAanCzCU4tA0ngVyoP2/LllIwA5ovfAVLdkUu1gfexkDH0T3a64zenas9cH3EdPVdMS8Ugnk6Mtkb3unrmGAgYVtjDgPx7CJQhpNRSFq1i3zfrnx5Ajga3cdAHsBEDISheBbOHqvXBjXmuhEgKjxCIiUB4j6wL59SxR2arz9ThEIDAFSzyADIu+G+s8j6FT/Z1a+x9v9xVC//BSBsZ7Cjflxebp+MMC+KwZEzYvY+75GYMX90Jz9OS4kX149WV7De79CTuVvLd/dXXkGEGRZ1q4at0vfFxZB49wqFIN0mr6GLVGuS6Mxcme7/nPURhdF4R2rPpiA5vbPcGHHZieP9dLZHgQdzBngrre2cjg8em4kYjf6DxXCdyLQzDTr9/ei9fhHGAgIAdOvQayqnyKne0lGpHrrrUOZdidjb+rl0pdA+/mZYUx9vsj2IHn7kjH2rcvZdQAs9wEeQAeHBkX5aKEvur8sGbvfH/PKCQHKAuvu57gQfknq2oZ8GwjgtyUR0O1kq5PrS7wb710TECrJTEHA0TfRWsnbThZHLGOBWXsJBIQva4Orc16vRvvtcNDpEMRm9W9KAKKivnMQWsft14j8JkmSJEmSJO1REDv39ph9crb1NfuDkiRJkiRJkiRtQ2LDJKLwvwE5i/bBAEHu+R7oVOlBrfiNLggg8Bo64dt0QFRkmJgXOVn7mRH3duQg3YecU6xmmNmygs7YEFKWOrtMPpPBsB0LxWxNf6QEICp65yfAju66J3JgFJATODYqL4hCYxWAX5Oxu3Qo9RtNKAfvyNiHLBTds8hRdIC7Xy14sE3qRA6i1xBg4ziXHlhB5gA2Qg7xrYCV498vl1/keA7OqxgQdYKllw23l6QubXxT4MfuOjAifoiAb4MtvQtyoL5LTnirKup/JPA4OpHs2043BJj4JRkwbmX3zpnAJna9F2KCCoCoUXb9KRZ+jIyJKpetI3xL1C4/QQ6BEAptcXR6+kPLW38UGuIQBDQ5LEd3zXVG+rew545HzBbLo5A+BauXUk5vP78faM/v2oB2NRQ5hgNwo6Mr/33JmMBKAqLK6F4HzUn7kYGWAntTTxtP7qIVa7Za6qQ8IGo7a7Nf229MIYdtBTnOCva7iyNg4pEY8M3K9ybk1N/fvbeMtb+BLq1U2wgggAFo/RwDouZBYSzfQ8C7iUQMazk6F0Nhz35KBsyfB81LU4Cb3bMrIqDDofVujzn53B2BfychYMp9wJhG56OKfA7OaRcvWd9507XRLlbGzwNrtUL/vNZPfQgfv55YB9izlXmuuc62Lgj8WrC+shMCE3VDTIv/AJa058I6dzXcuqyEzhXRPHI02dp7OQR6/JxiMPpCiNnTh08s1e/rordO5ToHYpe7yJef/T/MvqNAGcYq93wAJoy3Pu/ZyALwf6jpaxU7rZXRKZaffyIWtzDf+f3UtmgO8MyITd/rfF+F4vXP1ijk3Q6uvvtbvRUxRJExlHZI9ZOklCBWwwlufJ8LgY5eRYcWfke2B1gC2KoBeYqB7zsiBtDbiNYGaL37GtqrDLG0TrEeBIT6ju/ZvJ0kSZIkSZLUUoDeyI70NDoEURUJQ1mdzf6oJEmSJEmSJEnzJNqYz4UYoeZxaT2Qs2oKYj+IAVGdSujy//e2v8G53w05i5sOiIryuR0KQ7GLy3MvdCo8fH8vS98aOIliZ20emGVL5BC7gVac6I7yNbLZ7SRJzdpbDIj6CAEW5sl5djHk4P0QGO3SByEHyxfWVmNA1E+RQ68AbNDsby5RDnmh6G4EVnXpndurTgzsZP9vYWPd51E9dinzu3mgk02B1XPSFyYDRO0R3RtR6jeS1E6i8Xoe4F+I/WGcSz+RjDVidWBNxBg1jWIWhlLz6AqIFW4csIpL3wsxIL2D2GM2QyxFU5CDfHVrG+u49jIZgfpCiLWDcYYFYLR9wwT3XinAX4/oen77eyRi2XkEmM/SlkeOjC9MJiOnbBEbWj10xvWFgETXo3HYh/+5B42fw/LeJ9+ZsUde2dShnS2GnEEnkzmFAxCgq7WDj5CDZqly7TTnXj/gSWsPE8mYcXoikMvHwF7N1InWo3sgcGkMiBoO7ImATpu79I4U19mN9v5pyKi2hv9N5Fx7CDmyFqyiv5f7/vns94oAUXavD2I+WdzntYSeEAZskyivfdG48i2OuYhWMszVqG1uZ+X6E7Q+XgMBoz7GAbqbIVF9DbP2uLNL29j6TgFYz9IC2GwqFUCV8W8h5p3bEYBtneh+FwS+fIQKDEb11NkeBAHAXkEAyCcQCGoTNA7OAI6x5zpSgk037p/Iif0hNj665xZDoLj/UCKMe7l+Xyu9DSzbW9H+O4CZ/F72t4jJ6SscKDRHx67Adfb/+tZ/TqelnWB1tM7ZqFwbL5E+0Ma4b4Dzo3ulxssEtGlMGxqHWNp+QxTKzPruydYmrm12XpO0fXFj5rZo//QTdJjjRZv3DgQuRwc1WjBD1KvfowMS27nr7pY2w9p/CHfu91CBmfYFLPwz+XuHFuvfJEmSJEmSJIkEAaFetr3U9mRMjLM15zf9w5IkSZIkSZIkzZFoY74DcgC9bUaHYzAnDXJA3YGcAnvGhs4Kv7ENcszdi9gahlh6DIga0uSyGI/AChcSsSogQFQAhP0SOR0KVKDjR8bx6cCDZswpIOdrWTR7VC8HI+dn2VA/bUmi/CejdMvy8YCoENJmzRLPbohCTLwPbOPSByIn6zQEiAonbnsiw/ThGNNLW2gHJe57oNEBVg43YGE22qtO5BS+AgvnZWmjbAx4HmfErbZ/AHOiU7Hv4RiA3P1hdn8G+eCC1A8bIDbfHY3AOF8gYMpe7v6RwGOIweYTxOp0kLtfyrm3m9X9f2wseBkLu2j3tyULa/uN6Q6O4v2QY3MFMmdDf5ubZgAXOz2eIWJrFBbsLUowDQGrIuBVALnsjQDF/ZCD+jB7/1EyQNO8CLhyhP1GERtaPXRGf0MZ9LA+41l77kKgsuDc2AIHRqbl3FxXZwYtHe4d0HriNcRE4semgchQdCYCxxxYShcC4u2Nwu2tBvS39IWtbN8FfoGc3ReitdEJsa4G6ByIQq75OuiI1qEtAFE55efLx7ftW1FfmULGiNaJ7PT+enZ/7Wrrx755D+DnCFwz2NLnpwQgKk8XOYALl58NXF5De17I6rtFyNa4/dSxnfZF4eUuwoWXRGuXZ8kB5jVKovJcHjnwJ1vdb2/pPRGo9L8IvHUXCrs4kWJGx6rLE41D75ueUZY22NruZCowGDVKZ1sU1+67o7XsdWhPehYCRp2J5rtpVBkeCYXw6mH1XCALvepDy65DKw8R1EtvLcsxSgt52t/GpPMpZqjqgxjzTkansB9E68+esV4U5u+XLv0itK7Yh4y5pYddT6DEwZ6oj86HWPgWc2nzkjENnduafliv8sQAis3IR1sQZL+Ziuw6/aJ7gSFqAXQ4pwDc1uw8J2lbUqofA53RHvttFOr7cjIbxyA0R49uRP7Q2uBZzEbjxr4hwKloHerZz/xBqAMsrztFeg9Ga7bECJUkSZIkSZKUEHTQ707bbwypqe5mf1ySJEmSJEnyfZFmGehqkO9dkHP2fDM4nmnGq3vIHJK9kAPpa3Q6qySridO7jRlG7zKDxhQEqlra7gdA1MvICbFok75/PeQ8PpziUHjdMYYK5Hy6CRnf36VyWJO5EAjsGDMG9ycL3fOnUkbUyNh6kNVDmz85FuW7txmQZikcYHuTuN9XMw5QDIjapEJ5boCcX6UAUdMRAGMz5BR7H9jYPVdNuLWagWVoBSsFxc7qEObpPiJ2g3aks6ONIwXk8B/g7m2NTom+QIXQdXltChiB2EpexTFTuWcuRQCDAgbmSNI4QWF8vkZz6H4IGDERgYv3c8/Nh4BJS+CYZ0r1QXQK6nOMPcra0Tc2l5zsnuuNwvKshs2lKGTcBOAq91xXBFApWH6fjcYLzxAx2trrFygEZ9wuA0jjBsSUWMQyRUvw0nxlyi8GftREJzank42DS7v7/wT+ZP/fjub2sObpjxinTsc5OOzej6kTEIqWc2kPiueLhS2fjwMbWlovBPJ4Hq1b/ozGii45dba7tcunEbjuEwTyXtjuDwZ+b+3iY7Tu28O9n8eAWQ+dO5u+Kcjp+hiwNlmI0T0QMOIaDBRXRdn6tn2Nta2rMeCqayMrob6xaZV6xyO2gvfQGnEGmrNH2P35rT2/iQMPVNA5GjnTOiDA08umc+Eorwva7zbNsYZYlN7HHRCwNjjB9acVcQCHJuRxD7TPuMfy9pXV0652v6u109MRBf+xOCabvDZa4nd8/x2H5uuvUd98zdr/8XnPN1JnWxW0J/wp2cnfoQiUG+a/tey7A5PXHVQ4oINAmu8Aq6AQTN8iR3Y8N6xiY8o6Vea1LnprVI6+zQxCa4OlyEL4dUYgs4lobF4QhQ4dZ2mLAEeh/cV5wHO4NTPaE/8bOMWl9Tdd31ofOwe4zHQcW0Wed0GMlJ+hOe4esvGuH1pbfYdAcQ1t41F5bo3YeV+0MvzBgBrQfNQJ7W9uie6diA6C3IytbdHcdxZwcLPznqTtSNSfVkXgzO2wQ0bWxpbA7bEpBi1XBYKdzTyG8TuA5DdHB1MC2G8gAr8XgEvcex4QtZz7vwM6tPE17cCulyRJkiRJkjRTbN/yIjCG4oNgHRC79jbI/lo1UcNM3c3+uCRJkiRJkuT7Jug03GzHsm1QXhdGDqdT/EICGdsfw063W1ovdEq0JG2+PRcMBxcgmutg1P4JcmDeDyxjad3MwPAx5pRoQhmcbN/qHWVnIjarPwO7u/RhOMYd8p142yJHyh3Aii69LwJSBEBUt+i9PNaJNm9kjfK9PWKneBM5Kw6mSSC3SnmN0mcbDIScNn1a8Xwc1qNjqWvEEJUHiBoAXGzGuGnIIXtczm/5OloDOQZPRACqmYC/GpTBlghUUJKtI6/syYAQRwPXt0ed7rkeCCzxDWLpigFRz6DxdZsS7/u6WgUX6g6BaJ6z91cl2xT2QU6oA3Ah1NqjRN/fodw42VYEOer+hQAWvVz66siROwEYX+pby4xLi6L58kS7HorAITdZ+/0KY4CK3pvPxt43gJtLlO0yCGA31drkpu6eZ9EZhQsplfNbW9n48y1wRqyDYvDSQ0TAk3rqRIaSi8lAQ/tYmQ2365Otbl5Cztclw+8gR/erROE4ELtXi5CUdWj7WyFmjlcRIG0zspBGqyOH0BQEDHgYATuOtvv3ATfk6N8aAeuOsOtB9i0fodBIgy29u5XBPFQOBVwPnWOQw+gcFJ70CGQM+wCtMTqgteM4+61biUIrlutX7v4N9v5p2FyAxu/9rWwrjqVobp5m7TG0n+NQeK+XgOUtbV7kJP6CEkyQIc+ofb8EPOLSf4Lm9+vc7/RGc/kkGgS0yCtTBJx4D2MmQuvmd8iAUIPRergp4fLQmucLBFQO4TXXRQw431BmfMtro1W0K792WwWtB25ErLKblniu5jrbk1i774wOz0xEwMkQwnI02g+tZdcDrC5fJGLAi8vSnn0Ahc8MQMpb0Ji1Jxk4qDtaP02gBJi8XnrrUZbu/51sLPkIgYxuBH5k97qgQ1AT0Dj4GQJtnWD3z0LrmoPR2HM/xYCoJzBGOrK1THdrk89YPd6HsxmUap+InforxB443tr3q2gNE5gaB5AxDf2mSe10d8vnzcAlaH33LvC7ZvehBpfDdch2NADYyNrJh8A/0Dz9T8ymhDv8RRtcvydpnqD13WRrO99Ym/Lh5MO4soiNCVNwIbAblMcONlZOQGutHcn2IgtRARDlv8P+L8lUnSRJkiRJkiSRIB9hARchBe0VL0TskQWTh4nCNVfU3eyPS5IkSZIkSdq7RJvctRGwZzvaAYU6OqU0CdjKpd1txr3gMFyY7CRU5xJ6fBn0QujtG4morNFJ07dpCYga1MQyOMMMMBsgB+TTCHRyPXJoPYmFDCz1zS6tCzpVXkDsCMOj+3Mgh+xk5MzuEetCjFB1Db9Tp9xeWnQAACAASURBVHLcFTkwL0JO5kuR0fgezHk3CzprZjiNyngJ66trU4ZZpBW6V0Wnn4PRfpYcUuW+F9gEOf7fB7aN7q0DrA+s7tLynMwhHOQLCATxATJez1WjMt7Z2v421ZYD5vwtVRbtQWc8LiKH0EHIuPtbigFR2yJHcQvwZ9RGd7Xn/oQbHxEg6lkEONwGMW7sikKhremea3dO0ej7R6Ox9N8IVLZL3nNtQRCrwicYOwfFIXLWtbb2LrB3BT2x031RK4NFEMjkXeAKuzcCgTC+wbEz2L0FENjxJ67Nd0Rzc6/o2WHIwfAsxU71TYGxpfLn9I4kM0b8H87hSzF4KYR8fR4BTvLmz5rqtDJ6DK3JzkXz6iFk65lBdv8b4AJLWwIxe03HhSJ0OsdSARBeg/a0OxqfL0LO7L8hsMnBWBgyBIQ5Fa1TrgbGWPoa9uxxkc6FEM34Sa7ep6LxKaxZfku0FnN1kldfNdWJxtJ5EOPXhRSHZloQAYLfIgMudUcA8x9XKM8NUX84loidiCxU7XPAzxCgcWZfrqKufobGqHkp7h97WD1cifU5e6YFE2QJvaMRgGecSzsHOQ3fR+DXu6y8T6hGZ43b6BLR9U32vQ8iAMMKlt4FsTm8CKzX6HxaHsYhMMfyUfryaE31NbamsjbYIadt7oULF5rXH/LaeJn7HeuhsxnlW+O66o6An38lWz+tgg7s/IUMXNmZYmBO3vi0Phojn0Lg33BQpycC6cxA+90TELBlOjng4kbprUNZ7mzjw2kIIH0K2pM9QRZysyNijdrTxqwQDmolBGb6FZpbd0Dz6EMIANMJAZ5yDzEhgPg8FIfgC2uifdz40AExSj2KDiF5dubHbCzxB5AWRICpg2pRRq0sz6XR/HM82Tzcx8rlaSKm2O+D5IyDYXwch/aRX6KDT/dZG+uE5sQ3MUBgkiRBKN7jLYzsgcegPc6OiPH0PWBr99wmCGz3Kga6j3XVOc9h3JoLAUsn2Nga9hELIkDUt8CVlfQkSZIkSZIkSSoLYrifiMLlro7s3s8iu81DiFH2eHvm3lbpbvbHJUmSJEmSJO1Zoo39EmSOzycQsKbNMEThHFDu/82QoXYJu45PdA9FYJYVSn13lD4GobPvMiPHjpbumSaOQo77h4lOyjbDWIBAUK8iUNhrKLxdf7s3DoFHFmmFvvnJQg2eTkTdiQBR+9n9zaJ7h9JOGKGifC9shtFTgd4ufQJyYA5pbTu1//ubASoORzbLRjDkzH4TOTw/Ryemd8A5XmdBZw9kEL9oFr9z0eh6WWuX2/q+hwAKARCVyyxkz+WBdjZAJ78PwZzTyClRQA71VpVpmTHgKuSwrdhnom/eHzmi+8a627JOtDE7gIgVDDn1DkYG0l/hQjlV+k2y0KVH4pih3P0lgUes7iZZvVblvG8PYn30K8T4cgMyhE8Fzm523krktxc6CX9rGP+QUyjMs39BTrSnicZ8V5+eUWprDIALDLS/ZyJHwWD33P8hwO63RKETKQaSdEQA7YcQcOMqYG4yI/9wBIh6GoH4xlnbOqDK7/+RG0tuwYGAyRzFHRDDT1WMSrXSaXreND0XuvQAqloUrXE+RE6YN9F64Cj3bMPAdwjY+iYZ09KyaJ562/rEoThwpXuvDxqL3gRujfOOwAOnIWPSgvbcFe7+I1YGV/g2ViGv9dA5NwKunByXPQKCTsWAazn38wARuyJQ0Tv27hdEgCTgWmsf/0FA7tzwaCX0/wn4j7v2rFeXo7m6V857ReFrY93AEDTu3YhjvUJzw5WW1z/gAIvUcf0clfPSVl4Hu7Q1Lb8F7BAEAn/tZ2V+eKP6UE7ej0bzaV+79mFs9iQLGRrynQeqDKFxPeC86nGhETrbu8TtFzGsPYtA+w8jwMxOVZRtB7RveBcdPHnO3fP983w0501CLE8HlNJZT711KssVLA+BLXBpy/ODaCx8CmPait6bDx2aiOeRngis8BE6zLSkPXM6CmOxhP3mymg9sX5eHaFDMh9hh6EsbX4rK8/CfCea88IBk9V8XprUPjdCe1q/FrkVre2CzWThZuStTt/rx/zBVk9hPdod2BgxaG4ZvXeqtft5vm9jVJLaCLKVrojCaPZ36RuS2Ti2trQuNhds4p5ryFon595cyE6YB4j6BZrTmwL6TpIkSZIkSdqzoJD1a+EOLyGG90lonx4Orx1MxpbeAYGqC7QiOkLTPzZJkiRJkiT5Pghy3r6BHBdPIuf0m+h0d9dm5y/Kq3eSBsPujcix+jYW2s0WJAfY96xYhd5R6ETsbQgAMxk5iEMIm07u2WOR87UkoKPBZbISApqs7dK6IeDW4+QwV1UwmAxAbCbfIOdlz+h+H2DZKG11M7Ds0+zymIXyWwU5MDd0aXfgDMfIude7FTp3QieDJ5ph7BfMJr04AihORywRqyNH+XW2gN6qXJ2W0dkROYUvQuwHFcMCUmxkPhQ5KIbY9Vj73slkDGOXuucDQ9S7wHatyOdpiAVqQZd2DzrpODJ8yyx8/8YUM8utbuXwy7jdlymDg+xbd29nOjsip00BOVVj4GM/MuaRXxGxkOW1N+RUehkZf7tG+R2Jc7bYb46lQUbiRghi63gHAcFCqJmBaHx5HZtPmpxH3yYCqOFCBLbYlWJg09zWz05E4+Elka5+CCxyu12Ps/ays/8903Fv9N79CAxU0vhOBtj7CgHLbkNGhX8hp2UABQ2z/H2Gxp4W4Lq4vRKFJkOOsQBe8pTW6xI5XikNAqmJTlcvw5Cz8l00roaQeR3JHBn9EKPSsWgds1Jcv3VsSx5s0xHNB9fadXBgX4qAwXdY/fyYYra5zih83EvAVTltM/ztZn8PRc7wxV3a79GabEal9lRrnfZsd/sbWNbOs+tOURn9C7itmj5K1kcOQmxp6yFg4nSitSfZOO1ZyEqFdFoWreE6IsfvVIrXPqFd7YGYMyoyn5KzT0CsV7nGPVr2k0YBoVZA8877CLi/r2uDOyEAxpeIzeyfqN8dm6er3uLaauhHF+fU0VpojX8HAh3mspiicfkDaz9rxr8xi/mruc7vmwCrIaaZqWRG8BYhMUu8OxId0ihQzCjigUt9EcjDMxKV7Uv10jub5TQTIGx/N0Vr074I8PsxcJndO8Ty/jgtQUurI5a3811aCAPYGwGiPkFzzUSTb02+RmN9gfzwhaPs+U3selF0kGRRe2eUpd9N8aGsIWgc36HJbXEXtKefx67vivI5Aq0Dl2hWHuv03Tsj8O1HKDxvbrhTBH7dHc35+zU730naplh/DuP5PZbm13gbkNk4WrS1es+Pbgxdxca7/S3PIezjXNYPYkDUQBxoM0mSJEmSJElSndge42Zk5zmd4hDLYxHg6VCbg+M9z4noQGPV0T6a/sFJkiRJkiRJexcUamsaAs7Mb8a9NZFT4B0EiGoTDFEISDEFA2yg033HIufoV2RsFH2QI2dynlEzR+8ARBN9EnJezWELlw/NqBGYljwgqiLAqgHlUYrdZj7k8JmCO/2e954ZTPZHIYnGuPS+yImZC4hyz3V0z48s90xbkLwyQzGdpwJL23VszF4RsQ9VBWZCTrWvgbOsXx1p148AK89KnhG47TbEqjCnu3cfcpb7UwhVlXfUDlZGjoCyYLbonQORQXAfux6FHInHIYfL8ojF5RvgT+69DdEp+a+IWKVyfiMw1fwFeMilh3CYoY5+BBzu+2gV378sWTirs8lCX56BDOcj7LpTmfwdhBwpe7YnnS69GwKTfoGYbGJA1E+RA6hA5HgqUaZDrV4CaGMh5Kh/137/r5QYO6ttt21ZkBNvZru0tNuR8TkAKwc2IV++LQxAjp9+0TOPojnvMDQHzo3mwbeAOYHzkCNxLvdOD8TEMB2xNn2H5pM49OJZaJ0xFAFGdkYA7GXdM3mMcHMhYO6JCLDQBbEPvYZYN1YgA0QNQiGAVo11Rt8/CvgdAr9cjYA4wTARwEs3A1sitsjvcKwPJcq0Jjoj/RuitdhyiGXvCQTi2Cj8frk+Qx2dLrQESA+xv0PRXNLD2tP1ZKDAEN7zc7Ru82DJbihcqw+L2DOqw/D3MuBt924vtFbZnJYMY0Uhw2qhM6cstkTzcGDu+ZV956bRc70Q48TFefWTc90LjR1+LBmKgC9f4kKx2L0tqqi34Za31ex6RdN1O8WMIV1Rn30ac55X+P7XEUPloi59HhSK6mZaASSvY5vdA63r7kSAiUlWFoe6NjcAATR/hUAXPgxcs9gc5gF+jfr+KS69M1pb/gnYAu139o7e9ay2uyDw0p3AGtX8dnwfrfNrrrPZbaMO9RmzRA1H4/cROc+Wq/uhiD3xVVxINxxwqUy51kVvjctpQHTtWcZCKLobEOvz/CEv6CDABARyWSj6bn9gYjQKzxlOYPdG+7OX0f54NQTgHw4shkADw0rkdTTax62I5vBPUJjBXgg8+Qg6SPU22VqvCwL/PuX7R53bni+LOdz/G6A93p5Wnn7/1BWFRbyPKg7EtGWJvn8jq+ezEPD3L0SsgO65i20sOy5PV5Ik//vf/0B2x/0RsPVdstCnfj27PpmNY7F4PqhDnsZE494eaJ39OdqbTUJ7qMCiHxii3gJ2i8f9euc3SZIkSZIk+b4Ispm+hA6H70/mu6hmrzYfYmm9kyhKQ9nfbPZHJ0mSJEmSJO1dEFL5HaIwICh02MvI2NgmQuah8DvvIPT0IpY2GDkKppgh8lzk3P8Uxw5RyqhlRoRgyNzGpfcio9V/CHMc0xJwUG8jR2vDf+2AHJATgGPK6UEnuz9BLGCfmZHwVjJ2rbmA3yJn2RHkhEuJy8CMiqeg0C1HE4WIaytCMWJ/IeSo/6V9/7tkxuyuiM70CaKwiCX0DkSMAqdTfKr6WXRaoKowBEROfGTEfwf4qXsmnOwNoRg2pYqQfii85Ea0dGj/ATk/F6jUFhG4ZmZIRORIvA64F+fcQs7FU6wN+f64KbBthXyOR6fq50IOjRcR4OFO++5QR3NZ3Z1PazYScuzdjE7JT0CG8hPIHPn3xN9eogz2ak86EQB2a8wRhYy7N5MBooJTv6eV67557Zb8MWU1NBZfbPKyyQ5kIX3aHXtcK9rU/sB37joGVq6AgBcNczhFbWF7MlDNFwgEu6zd64X675cIHPo6cp4dZ/evQWCOzjm/cRUZ88XcOe1xBbLQiO8ip+IJFfK9vf3m/UShvxBwJgCihpMDgiQfXLW7fd9tlueXESjrUjLw0jgE4PzUyuGkCvmsh86+yJFxuUvbEs0tEylm8tmKKkMC1qg9jUBz+0p2vRdiQRzk6nt5tE7zbHYbobXUneSAtO2ZzsjZPQoBVu5AwKmZgHQELvvY0pdAY9YnlACukIHlaqYzyvNZVlcBjL+GlcdktL7sjIxd46zux1Qo341RuLur0PgRz9PL2zdMIYddsVQ+7V4/NI/cRMYUsJ21zUfR+LWmlcO0UvUU6dwTzUnTECDyKDL2keOtHJeolLc6t9lVrLyOdPW+MgKXt3COt6ZMa5A3Pz5vYGX2OzTvBmbaJdEcPcn6z9Fo3/M1cmZ2RWv4Q0vo3cTa4kSrp79SDBottT+Kwe9nu3ZTc53fRyFby3vGxTx2xpFoXTwqen8EAi29COxWbZusl94alsuiCOh0gF3vRRSmCR1segk4zaUtiUCWvwB2KaO/A5qTv0D7iDmdzp1sXPorEdiTbA7rGOkaidZOE9F4uQ/Z3LIPGl+mYmwwCHA+nhKHkupUpr5dbYHW75u5tJutjD/EGPvQ3nI3tDb53qzN7buOQiD+Hpa2GALXF4BDLK0TYh6+nmJgYAKEJOF//2s5l6G9957Wj55x7csDoiraOGqUt1WsPV+DGFhHoD3n0TZmLY7WOV8Bl2A2OXTA5W0bH79XbHBJkiRJkiRJIwQd5nsA2UFmHvCO1w2W1pFiYoVByFY4CRd+u6rfbfaHJ0mSJEmSJO1V3GR9CnKMLhjS3b0QVunfwAb+vSbmewsyyvPAEDU/OrV5O3K4XohzEpUzaiFHYmBd2Se61wMBoiYiR9GAWn9PiTztjzNct6bMkcPvBhwlf973I9aJqcjptTACle1hBtEHycBmA4DLrXyGV/jtwBDyAHIIv2XGorWqzX+DyndDdCp6oEs7wYxCX2KhRpAxdTxyav64St1L2aJ2J5cWTuEG8M7ilAg/SRZuJxjZB9vfTgiccIFdB0BQAFnMixgCjosW2h2iv0tZWy6ghfux7je3Rkb+VeN2Q2XATm/kVPlDeJ4MCLAQMhjeQxnQQvQbIxEQ4yj79m3JgBRvuzrqgpzM71BlGAqKgXD7IQfBdsh4+G/kfLnE2nJuvSOA3LdkAKP2onM3NJ79kWJWnh6m/0t0gnpL5Iz9ANiyQl2tgwNjWPt4HYFMfbiSLpbn71UICopDt26EgBH+9H1gOOiOmLbupkpQZI3zuRtyWp+J2A1+i+aAS3GbcOTgPsnaQQgJswoCt/w8R29vFGbzeuT4m3m6KWoni1nbOIHi+a0UyORgsrm5RUhaBIgKYLtcVsLo+eWtPo4nc4z2sDL5Gw64a216ZyIQViN0WnonxE7zAs5RgdY//0Trn32snX0D/KSB7WhjBBy6DTkRC1avnjFmTesHB7jvOdbaSMwadjZwZdROv0LzxQvIaf0A2Rp1URQWeQqam6fg2BzqpbNMecyB1tBXubRNkaO9gEB7L6F1QSUA4Firzzes/AoIGNU7em45+5YCrQRWogMD71Pc5zdC7HUzEMDmDeBId7/iGhStpa8xHS8iAMIQNG5c1qj2WSJv21t5jozSF0fAsgLF65mGO8IRqPJTjAXT6uB+MuflEHQo4QVrny8BB7myf58I8OLa/pdoPDkXrRkKiAXGM/GUY+gMLKB71EvnD0XQ2ng0tseytPFoTArhl+6w+g7rrQBcehYYW0Z3XfTWqRwGkoX5/h0a9w6iJWPgE8Cjdt0DhfJ9hGKGytx2ZmX9BzRfnkE2R4eQeWFvX1X4YnTI5ys0/60e3TsK7XnfQgeyHjL9FQ9l1aFsx6L55kJgHZc+BB34+RKtA49B68DJuLmpUfms4/dvbGX/BBE7OLJ1BEDUwZbWheLQvQkI9QOXaK7qRcs1WABEfYwOkbUARLln6wmmDkxV09ABpDE2zsese2chu80uLm0uKjDUJkmSJEmSJEnyBVgPeN7+dorWDvMi+2lse5gT2Q3Dofay/rXc3232hydJkiRJkiTtXdDp3gKwr117IMU2tsl/CRlLc+ke65y/vFOao5AD9COc4bfE+3kOzA4Ug742sDJ4hojK3gweuyBDbSNOeS1NdkrfO01bA4iao9R77pt/hdgL4lOxGyJQ0K9dWn8cQ0KJ31wdAZ8OJTt5v4aV692UYJVqZBuy/4eQhS36K5mjaXHELPQtcIv9/ztkUM41Zvu26f5fG4FTQuiyP1MMWloaOYxahExAoSvOxULeITDKJMRU0QG4ALF4PWM6Q7i0zvbsS8DGTt+KiKknhAbaGRnNBiJ2qFsQm8Ar1h4WsX51a6n2RktGqCFkwK0bkANviCuX4HT5JTJOz5mnN/qNpYADEDOGDwn4E6u3m+zbhiJg0DTg2CrbwvbIEL62S3sAuNO19auRgbOAwlvMF+nYnWKAUXvRuSNy5BwOLFWifK5C7Xc66s9ly9V+YwICwKzl0ufFjMN23Rs5aN6jwljSngQxDFxKxnzSAXjc6mQiGXtOLyurT4hCGTUon6shEPERdr0scoA9ZXm9EhdqM6rHsQjcdqv7xnhe6YkM6+MR6OBOovBH5MwBtAwnFIc1293ydyc5p5fRvPMxsHPOvaK1AwJ7voULd4oAgH58HkTO2EcEAqylzjJ1tqZ9++5R+mZoLPja2lNVoJ0at6fdrJ6/A87Kud8XeBIBgS5BLB5TKQZNdkAsHZfad55v6dcjJ22Yt45CQJ1/AoNcmW6FQKKeJatjPXT6uo++M8x9p6O52YcKG4zGh+sQuLAFqDTS1QWtFw5BAPWBZAxT++PGU3t+uNeZ1/ZL5LUvGpsui+7PixjcVsdYrqpppznfsAzwezQvfIYc7zMPLzRD0PqogLFeUgy4CEDrAlEY2QbmbxQCQoXxeSkrty+QQz+sUwPAfH6MrRdYCwHEb8jRuwhak51HMWh3LzTH308OmxPFY/DBqJ/vUS+dbVny+pKlz5KDG4FiCwhAvCCai99CQLcNrBw/QICfZcjGnxXtuffIWb/VS2+dy3Z+NAYXfPv1bQaNfZMsf39Da9hjIz154103p+Mm+/YYEFXV3h45OHqiNfFNyPHxX4xdyT23GQK8/8X+bj677WUWynQ0mmsPIdoT2P3uaG/xuJXJdcC4RuezzmUwDI2bBQQC6RrdH4yAYgVaAqnbNRAsyexLNFdtjRhz30Y2lh3JWJU9IOpfZICohvYhBBrdDwHRPwX+7O75tc79wBP2f0NZ7pMkSZIkSZLvm6BQ2F/iDlXYvuMMxJYf7AsXYcz5CAj1BjpAtvgs/W6zPzxJkiRJkiRpDxJt7LtQDHjqghyh31DM1tAVscxcAvwIOd4a6ihAToqbMBAWxYCo0cg4OgFj+CFz9syK43FLMoDMatG9njSQRtry8g7wD4rBLVUZ6Sg2JF9JDksWMtY+ac/4cu2CTpe9T47zqlQ5miHmRYqdaHcjoE0Iu9e9Nd9Rh3Idi0BmDyHnfsEMWMHRtIC1ufuRIfUiKjBsWboPC9UDGczuR0xlb5EBo7paOT0FrJyjZ20rw9eQIf074DDXrldAgIYZwCmWtjACd00DDne6OiNml/cQwG0/+949yRxqvZED+DcIYPUdcjp4NpsYhDjTYYjYJN4kW9wfgjYEvwDmj/rPHxCgIZcRyz27FnKcvkLGguUZR45BBvzPkNHvaSzcQbk6cvdPsjxPwBwqiLnqdVzoKsTAdCvRqWK7tyOwfXvSiZxjTyImQD/+b4EAAOu7tHVNPMNDnvN+B+SsPRIDFJQo82FoszgVF7qzPQotQUDBoXIuGSBqPuTgm2x9YV80pjbs9D0tDd07Iua4HijMzKcYGMLy+J3lcbnovbURC9mlIc9kc8iywPqIpSaM7XMihsEAiOqNHIk7WPubOyevZcsBOUMLCKi3WM79PIefX/MEAMR+iFElOEPDiawAWloVMQrltuV66Iz0d7W/fsy9Ec1R80bPLopAK2u6tLo7M1zdr2Z18gWa50e4Z8J8tQACbU1A81apEF4LIYdlAa03b6UYVNQRgXDfQP1qYLm81UtnXPdR2ghrBxUZukro3AYBkv+MAyVa33nC+lMLQFSlukfj+JgorRvwc2unK1V4v7Vhmju431jE2v5EjMGo0eLyMxitaf/o7oV9xcoIdHY9Wr+s1OA89kfgsZ/Z9TA0V16BDKbTgIexNZX7pnnQeuhl4MYS/WAFBFDaIbQnd+9QMqDp2nl1TgZa2queOtuqRPle1vrT8mRAmxZMpxV0hDH+WARU/wUC/P4RF4odnTCegPYrHri0CmWYPOqlt47lOwiBcp6xduPBsmEe6YVApTehfcS4vLK1601xdgpX3h3R4Y/pCLga5us5KLG3j+ptYKRvRwSIep0IEFVCV6OAUN2Qc+U63OE1tDc7GzjDpfVB67WOjc5nA8qhAzos8zDaL64bfxs6yHMtDQphmKT9iY2hIez7ZsDfkU3nBIoBUSEc5hvVzAl1ymt3ZN+ZbG1+JbK1QhhLz6XKQ2lJkiRJkiRJkpYSrZvH2ry7F7J7rI3snSGyzom2f/kOOMe9tyyzESK+6YWQJEmSJEmS1FLqbYhCJ5zuRGHQfkbmDBiOHFrfAb9Gp+Z/ZobDXRDgYioNMpaaIasrmWH9GvIBUafb/U/IcZLaM3FIllHI6XE/Otk8gsywPdr0FZ1sblQdUWx83cKMFq0CREU6lkdsPRvkPHemGW8G27U3nB5rC7sWTr8yv3s58Lq7vhuBaoJT+EfWtnpWq7PGZbspAvQdhsAAvax9TUCGeB/OqAgwmNPufBkH9o6Rdt0Vhf/4EIGWAsvTnMhQ9TllHIPWR9+3vvjz8NtkRq3VkPPgYwS6+g8yyB8T5w8xPTxs/aMAHFamrcyBDHp3oJPXpcJhebaypU2v/+1rLe9Xo4X+kiic0zSqYMRBwKn7Te9jZEwe3uG2lJXDyNB+4zoq11fs3XOsfv6GwGRHI+DBau65vrGu9qIzR9d8yIi7j10vgRzvoZ2+Rokwg3G5Wlo/5KQ/l2Kw2iYojMnSyDGzNDpBH4Mh2rXTxb7xbgR4nILAxBeShW7tjRyRT6D+dxMwvt7fTwQ2Iht/+yIndkcUXutmMmP+cAQuLFjbmjPS0YIlBjkJ3kH9eiLq93PZvbkQIOoz5DC83J47Oye/fgzaCDHI3YiAnIPIgJs/JgNE5TLMlGin+yHAzhA0pxbI1kF+fuqGDBb3UiGEYZ10bm118iMcg5b91lQM9EQJds5G9yfkAFoXOVknIRDYSu5+WK91R3PfwHJ5ReClc9C6YzIZ62E398xBKKTT05QALzVAZ5jvfwfs6NswGgs/I2JXqVQ3yCl9m9XzG2RzXmAZ6EA2jhxIFWsoe2cBxGbwLRqrdsRCvSA2mK8wVgxaCXqq9NvR9eBS92rcJkvqRuubM9Da6le+nVobvg2x53yCrZPqlde4PSCQygkIODkvAoJfSTb23UnG/jgoencrHLtSju4l0Rx/okvzIJPXrM0+ggOw2/0fkwNaqofOti60nO+uIQPUlHR+Uzy/7Y72HGFsPMHq9U1ciM3wHhlw6WG0lo73JC1Yamuttw7lGI8NndE8OgwBAgs4YH9O3vzcGLf1edBe7l1gN5ceAEwdkGNiIpoX4rVSqT3e9ggEcRAGLLP0nYkYorC9Wj3LsEL5drZ+d4tdr42Ab5+g8JoF4Npm5K0R7Sm61wkBov6F9j7r5LSZWXZEJfl+i7WXmeGCEXv45zYPfIOYque1ez0QkM92LAAAIABJREFUm/U+DcpbqX1+H2Rn+hLZOQe7e51RSMyn0R4tMaAlSZIkSZIkrRCbZ+8ns/X1QPvzacjG8LXtC44nOyzeDx1I/YAKEW2qzkezCyJJkiRJkiSphaCTsovY//Vyko6xDfLdZtibYf+HECFDEBvJROQ4+i+ZU2BbZDzdvB55y8lrcC71MwPDl7iTjmQO2e3N0PVOnhECnX4/gsyptLMZMf6OGAs+Rc6iw8gcUKOsbP4O/KjJ7aJVgCiKDbiHmOFjQVdWu7r7qyKj8VOYE9vSu6FTxY9RmXHD02/viQyu6yBAzTtk7EJ9gNPMODNvNd9eh7I8F4GHPI1pD8SsMwkZkANDVLmwOP77F0EG8q/s24db+gAENvsYGaB/g0ATH1E65F74zVXtvY+Rk3ZZS+/inlnE2sa5CJTh2UEuoBi8cDAygH+GTld3878dfyPqc+cih9bCLr2Fwwc5GG+2trKIS/81GQBrMnKcHZf33VFegvOvB/B/qK/+nKxvlgzTWUqn/b8gMmSOiJ5ZFY0fz6O+8Bpm+CyRv/aoM6QtjBxB91hb/A8Kfbo2AjVMBH7Ziv40EG36tkfOn8VM96fI2fkxFjbP2uo6cVtvr4Ic0DPQRjeA8n5LRoPs+1935KTzYL56zfHLWd8dY9d7oo33iu6ZBdDY/GOXtiJiCjwfxy4Xty3XltZAY+apCGR6ibXLv5Ft/Oe0en8cATm8gzNvXB2HAEYPICftJGuj+5DN+/tbuV8HLFkqn+7/xe33T8IAg9b2C2gsDoYMH8KwhZO+3jrt+mzUvwtWF0ciZ14HxGR4VxPbe9E8RQTGQXNMAESNdOnrA1t5HXl1754fjNicZgBXuHS/zjjUfisXuFlvnWgcPRI53achQOnOCMS7AmJiPNyerZohAAESr7f6P92lz2TTRON3gZxwlmX0LoXWtM+hMf45NH71RaxCH5bpS6cBW8xGu6kKnFyHNrqx5f02FBJ2MUtfEIE2P0brvVMRUHMGGdvlB7g1Wo3zuBK2JrbrfbBxkWztsyta9w2nOATjK5a3HeLvde2jVOjFx9HadyjFgI+F0Vh7HhFQnQx8Or4ROtuaRO2p1Hx3PxkAOG997HUcZN++U1TfR1j6a9haP6rTdcj2EXOVyW+XeuitY5nOj2wOfhweSjYG+vXJLmQssZUOA62D9suvAGNdetj3XIjA69NxzKdl9I2z58/DmAWj9r4rmrdfIWKUbnRbJdsfHoSAte8hO87D1i/7o/Xpq3wPQEBRe1oX2XGuQCyLgUUvBkStTf44mYAhP3Ch5Tr3MIxJEq2jJiNbTke07vsc7QFntrU8XXXOZ7AZ+HVFZ7RX+hrZeHdDhywOt7TEhJYkSZIkSZK0UpA/6020/+tHtufqafuEa5Dfomh/Y89chfbN3WqSl2YXRpIkSZIkSTK7ghzdk5GjY7Cl1dRZipyx16Cwd10Ra8V2yBh6PzDEPTsQnagP1PprICDUHxpUHpsjB0VXl/cDyQBRARjRATgZOQoG5+jpRQaoOMC+6wErgznsmf7IKfIBcmgF50MIB7Z1k9qEN7ZWBYiKDCQHWv73tuuewH2WFpwpnZGx5310+m1zFJ4vhDprYTCJfmNz5DwPzt+Rls8pyFGwuKV3RRSiE2lCGAaX35uB5921P8n+OyubfwB94joooW+89dlHERgohAwKJ4TnQs7g36HQi+dgjuFy+pFx60eIWeVlZGRf3ue5TJ6WRyF/1nZp2yGn52PWzsdQItSOe2cMAniF8IZxW/NGv1EI/LJd9MwIBL7aBhdGghygGQJV9UFAvFAvPZHB8QMU2q2Hf78V9b4zAvxNQcbLh9CYFsaR+VB/+TtZXO/5429uLzqjct0UAQHCeLcJYpm4CRdqz+49gDnhy+UzeudptLG7BY0hz6CQjEshJ8wfc95pt04HNOd0R2PJ3RjLirt/htXLBVQReqUO+RuGnD6vIqN9wdqMZ/0bYnX1W7vuhJzU91WTTwTEXAEBHudwOo5G4/6DFIcN7UxxyMw8R9SqqJ8fA8xjaf0t/9dG+oJTuQXbYaRzDQQGewABYsK4szICL32BGDAPQ/PY51QIYVgrnVEfHYoLTUgWGngKCpl6MZpDniNjH2wW68RWiLXrIWszA9w9D4gajUCSX9HK0MponXaO1fH5Lr3Iad4GdC5sdfUMAsE9h5jN/o36YO5cXa7urC3chBz1HjwcAFEdqR4EFs8L3RE4727kEHsGzQUfIidZzKAawqpOAzZsRnubxTa6u7XD2+37/ovWRMvZ/QGIbe0fZGF2D7B7W6BxaPs65KsH2ntMtvFid2uPh1K83j8TmOSuuyGg7eFEoJa8ukZg1yXROB1YK5ayen4YWM/SeiGgx9MUH4YIY9SqGGipHjrbi1B5vnuAHEBUVCfnoDVyANwdZn0rGNEDA/KFRHtZtObYiJxxFIW28yDjmuhtQJnujMbJT9Aa3zObeUDU+Yil+GtcaIm4fHP0r4PAeq9QHFKvh9XjKKoY09A+7GMELJvDpffG1il2vYv91ieI2a3u83PUvor2VMh+sw0Ktb5D9N7FCCRaE2dMWxA0ln6E9kZPInvVjWQHDAMg6glkhyi7dkzywxbsMBLaK62G5uBHEdNvf7u3uY1Lk5ANsqxNpU75LGUz6Gzj+74IFBlYtm+lGGTabvfiSZIkSZIkSSMF+SneQD4db9es5rDfIORvvRqz6cx2fppdIEmSJEmSJEktBIF1XrWN7RBLqwkgCoEhzrXJ2zPIdEbG/0/s3iKRgW1uZFx9C7jRpdcaqBWDIm5DRvbzyE67zoOcb+Ek/iEoFMAULFRJrMuuB6CTgl8iZ8JfyRyKHs39EnKY9HTvDmlQ3fvv74ecwEOiZ7akDCAq0nE8MrzvYdcrISPwUARaKAC72L2uCNTzuKV/iUKuHVWqTC1tHDIC3YQzKiPnYAEZJHdC4RhORU7iXEakRgkCF32LMR0gx2JoA3shB857RKCAErrWR47eQ8gMrruTsUWsVOH9XOapnOtxiB3lFYod5ltSAqhHBiYYBSzt0vsjg94HwA64xThi9envrjdCfXDjSPdqtAzT0hH12eeowPqV993Iaf4gMma/hZyBAYTVC7ENfYCYWFoVYtG+82s0luyFHCuvIifW1mSAy85ovLvQt/12rnOcldvdwCYuPQbw9EGn2z8CRuXoidukB9Ysjsbj3wM/iXT+DTitHn252YIcoPe56wDg62DlMRXNuQs1IW8rWT8qUMyEE+aKzghsPNH63TUIfHFEFbpHmN5JZEwNYQztQuYg/itRCJq8tuTSD0LsCp5d7maK2QX9eFWWGcf6yBeW1yfjPKDx7reIFeNDFEq2ZKipWuqkeOzbFTF3XOK/Ca1JFrH0h8nAj3VhrKmyXe1k7eRB5FT8FoHTl3XPHIjA1VNMTprF3wrh7QoUhzSLT9lVvRatlc64DVt/2hGBwD5BTqkCjgkv710EHh+DAAvrk43xw5EjdwrFa6burcln9GwcamoH4DLXnncp8d4IsvFso2p/L/7euMzq2Ea3wMALdr0IWtN+joCFARAV+mI/9/86iCX2pjrmbwVrJ1+gNfq+OXWzFloLnIvWWweg8XbTUm3Qpe+C9jJfWP98ApvTEXPKOwiM9QwCDnxNzphCMTir5jrbi1D9fHcfGSCqKEQaAol+Z2V3NRrzZ6D9qy/nYygBXIryNJNFFe23ZtRSb53K0ZfHKLRHuhQdcngF7Tn9WLe85XeSta8jva5I32po73UMAvuHcXQ9BAB4He3TFkNMbB9RHGK6ZLtEwOannc5OCKD1D2SrOdw9O44S42idy3NjBPC6E43pfUu8M7e1kUm0M0BihbIYbd8UxvzB1tc+sTJZ2NXdMLTe+t58f5LaCmJRKqA1WVgbLIcAdv4w28Zobf4gcEgT8lnKZjAzn2gfMdaeu53iQyXtbj5OkiRJkiRJmiFkQKi/kbFBhjVCJ1wkDUvr7P6fz/Y8H1GCiXuW8tTsQkmSJEmSJElmRyh2LO+LHGlPEoXraoW+82l5EjA4gKbhwFB2rxPZaegHKQ7vM6cZmvxJorptoJHR/RJkvJxkef6VM0TOiYAB/7VveZecUFE5egcgY3EBAVg8S03Qvb4Z0DZ394qo5+v0zd6oOQYZ1SciRqATo2cDIOpBSjhGEDVnAbjerscjx+xqdr0CAq4UsJB5CMzSGwFgVqHYuZnnFN4AOT+OAubMKa/RyFj8CQrN9ndg/wa1oXKo/GGWlxcoDtnVFTmefo0Ac5OwcAhldB2DHGeDKT4Nviky3n9OxpjV0aQcg886pvP3yFmwgLs3HgGi/otOI+6OnCvHRPq8A2Q+1I++xjHUoFPLARC1vV1vg0Bgq9ozvVDfujen/D6yuj8WF2ICAc2mYP2HCgxW7r1dLY+XobA21yGn28PYWIUMendYWzqLMqGHyBxVHRD463HE0lMEckTAx1cxZpMS7bxje9IZpW1j5Xg4ZQBqyJF0JGqvx+Xcj51YlyBn6K+Abd09v+nrjYAT79MkZr16Cpozf0/LMJJh/LuAzHF8UKk6qkO+wu8vhcbeCcjRuL17JoCLewC/tLp8hOLxudwYuhja0H8G3JKjt4u1pw+Rs7BrlXn/NfCyu74LjaND7XpD4MRYX7lyRSwkr6C5bkfywxj1R07Cbo3Wae9/iZzXLcIYhb/IADMeAfBeBxZtQpvvB1xpdduTjGXoa+BPFAN110MAfA/abnX7JwMvfQdcWKPvqKnOuP4ROOEyYL8K7423PvqhtaXp6MRgYAFcAQGiPiVaB85mfv143g1Ylpb7hfG48NAohOa9tBIQFf1W/1nJbyu/bR5EQf9zux5qeb4MgS0nI8D2kiF/aF02F1rPvAjcMDtttsp8hvBlX5ITgtDGjlOtb81A66oWc3POe2PsnXOsHR5BFlZxe1dGZ1jbugbH1ErOuF8Pne1JmIX5juJ1+EFoHXAoWosVEFNxYOyNw0gG4NKvqOIwDppraq63juXZB60NTyNjel0cAfbfphhQPydi3xvq0uLvGm/9+mU0hr6P5snedn81tN/9Dq1xJ1fZl8L8exiac7dH4IPn0V7pUsTC8iYuLGypfNaxPMfad92I1uYTUOjrJaPn1kFrrI+pwH7ZngTtX28HTrHr4WRj/i+sT9xOdsCwE47RK0kSL4gB8U7E4OiZDUdYPzvSrjvbuH95A/PWGpvBa2QMVr0RGPQg91y77vdJkiRJkiRJowTZTF9FQKietpYM9vxuNh8fR0ubUG8EVv4T8rsMr2m+ml0wSZIkSZIkyawKxc6C1ZFR8zkySuNBdq8qwxoyKt4OrBX/Dpkx9EoitgrkEAihrraK7nmgRz1BLNsho/sxlpcRZmz8GJ0Q9eFMumMhG6rNGwondb6VwdlEpyeRs/UrmhQOBIFCppsBb2vE3FFAIB1fB5sjJ9pztGTo+bHV4RsIzPJ703EAxawaHhC1czXt018jo+pDFIfI6RDlc24UZmVhGnQaLepPI5Hxen+KHXu7WNlNtHujEahrKgJ5rWDlUtbph5wKn7pr3z5PNR2fk7GalAMYjEUG9seBvyDnyQUYmMqe2R0ZuWcgsNYJpb7dpY1Gp/U/xRnHETjwH5bHfyJg4c+jd1fIqzPrJ2dbHj5CIRcC28K9wN9aUV+DkRPjbBzFvNXLuwgAFVi3eiKA1F4ldG0d5xcZDD+Ly8rurYz621ll8tcudOa8E8ILXhbV3Vi0WdsWgeXmQw7gZykOtZIH3BiLnLd3oNCjz6A+c1r03FqILaGI1aQ9SoU+O8y+8Soc0xaam85HY3hwTuWe1K9z3ocDmyHH9X9wgAccANuuWzU+o7n3Ihs/To31IgfxT3GsSHllSrER/wA0ti2OjAYTyMCkPdGYejuOlrrKclgJOUifxAFcKQGoLFfntdSJ1iP/QmubXiXKJ3b8boLWSK1m6JnNtrQtWof8gwgkjMASM6zOSoXwmuU5H60hwrptrVnV0wCdpdp13li6CZpzjwCWRgCBn6F13bNkIIHl0VhbIMfhXoM8x+2rIwLDFxA4wR8aaBUgKiqPQ5FzrqZO6BJleygKbTUAsRld6cala+3bXsOtrezehjhWl9lps2Xy28lkd8Teep+V56Y5z/ZCQLXR5IQYznm+LwK1XhG1v9XQmnJyaOtk6/jO5fTWQ2d7FGZxviNjhAqh8bYkY/j7Q6zHXR9Ftlefo0SeZh6uqKXeOpfjRmiMew07YEXm4F+MDBCVC1ai5X50Q2uDh5KBXUJ4+Gtd+SyA1qVjceM9xWvjUkxrP0KHj6ai8eRPZAxg29nvL9OkdrkZcq4EgMZQtCadgQBcS1v6PGj+voMK7JdtXSieV+a0vz+1+p0fHRi6gmxvdQ/at9xLFLa6VJ0n+WGKjaNHoHVuvD7oj9huX0WA33PQgZeD3TN1aU8Us1G1xmZwdvxePfOZpH1JagdJkiRJUp0gf9IXuDDklt4VHZJ4CneI3d2/yvYJ/wcsVfN8NbtgkiRJkiRJktkVRMs8HTlPz0BAlenIWTbYnqkWENXX/m4JjHPpHdBpzAIKQ7VA9F4nmnRiFDk7b0cO/L4uvS868TgdFzIv5/2qNnXI+X+5GQsPDWVgvx9CUazahO9fw4x4R9n1orZ4egoZ0y+g2MmwDWZgd2l7W93ugU6tvYFANTeRGZy9jgCI+o4qqf3JjMuPAXeWKnvEItE5571GhUrZDTmrX0Ago1dx4XoQE9qNVl7fIlBPKPu90Gnf3DB37ls2QuC5I9y94BzZFoEQHkfOzfnK5HU0MmoFiv+Blq8ZwO8oDp003PK+gUsrYpxCjirPyLGZlUMMiOpi7epSYKxLj081dPR/XfqqyKH3oZXx/yED4TRgTJX1NAI5GULIFd9mjkOnejcplTeXvomV2cX+WSvLyWRMEZ3d93RCgJ7ckDjtRWeJ3+mDHDcnobCjw5FD5zMyJpLgjFoR19bjenbt7l1kKA4hGBdBYD9/AnUQ6lfP0yA2wXpJ1KeWBtZG/dozOf4YjQG3Ika4EcgZ9zkaH3ZE/Xhog/LZiwhwYPl6GgGixrj0UcDRvn4iXXG43IWAfi5tCeA31pZOceldSumK0rZALG/b2vUQNFZ+hYCqYW7uhsLPvI8bp1pZRqugMf4JisMEz/J8NLs6EdDlc2C7Kp71J8LfwAEQZ+cbWvGtN1g9f4g5FCl2roxB4/5tlAhfGNV91zitwu8PImI0bYs6W1GeF6C1QX/X93ogZtjPUKjFkD6MHLBMnet7P6vrO3HrYaoEREVlGJhx9qlh/gZSDHDfnygcI1ojv46AiyGE6QlovnqLjBU1b/1as/mqXNux8vyLledm0b0W7G/l8oWAAJ8Bh9m1X0ttYmPNST5Pldp1PXS2VYnabB+0V/Qg4dbMd6Hv/pwMCDWMjF3oZLTv+r17p3OUn9NxjvYy+a6ZXnL2iTUu4zFoX/QFxpyH1roeEHUHmutzwytH5fxzdCjHs+jegwD+I31d5OjJBQegeXldisPoDUN79JVdWjc0tv2bCGTToDY6BzqQc75dL4eAUJcDW6E11PNkLHjzAgvmfX97FGTvuDbqo3ta3S+HsXKig1sTEQivRQjwJD9cceNOmLsesvH9IzK7awd3fxm013sb2VTqHhoP7d/qbjNI8sOSaC4Z2Oz8JEmSJElbFltz74P2xI+79BdRtI2FSrzXE7Glz1WXfDW7YJIkSZIkSZLZEeQEnIAcg54d5XAUJuafVBEyj2InbV90umk6EfMPMoYGQFQuy0KjDWW2WHgeuNGlBUfU3MiBMQ3HEDWreUQnxq9CRuO/IfDZpWYsa3HKqg7fugvF9Nud0UnxCxGryFK22LoEAQ4usfo6nRwwmDPULI7YpTrbN05HAIa3KKbH9u1kOAKgFZCxv1pH4k2I0adDjs5l0SnqIY1sQ+73t0NOmmPsejMESIhPyvVExveRZIavVawvXuPLtsTvDEGG9xcoBhOFU+K/RU7FqbiQfJGOeZED+Uy7Xg45Cs5DYVsK1laHlXg/BijtbvX9d4pBVLmAKN/Pqu1TcZmgU8enIoBcOJ2+WaX3LG1ldGrXsxL5tvQBcFGcN4oNOduhU8G/ICf0kdVDIdSBa7O9EdPUBe1VZ4V6+iPqB08gcN9jqK13QCdcH6NlyLFSp+NHo7nIt6nb0bg83K7ns79LUcxo1u6cLlG97Wp9530E+vOOtl7IEfkB6ufT0dh9nN0/GgExhzQgz2PIwrZcTDGbSABEvYLYIXZHY2JuiNno+3dGG/1P7dtvwJiMEGg3OIh/WqkdufvjkCH/EorDle6JWPs+RKwP2yEH7zQcW0S1fSD6zQBeegQHpJjNMp9lnYgJ9EtKMDMisPIOUV2sjJihTqA4PO2GRON6jb7Pn377tdXzZeSsGxHwL3fsj57bE815PWYxT3lgzTan0+nx9ReApA8Aj7j0ANbpiQBIL+T9LlWc7p+VvlFC/75oTdwqQFT0vQfhmHFq1CY7o5AvX5KFDC4goK5vryfYM2G/0BWxgR1Jc8ALa6ADGLtSPD+OJANEbYxCg21n35QLyC/xW72Rk9YDYfxa6knERFX1fFwPnW1RonoaY/3zI7TH+T3ZfLcYszbfLW/vhLDPA9Ae4TssnLl7dgMci285/bXQi4A+67m0XdB6vl6AqG3R+DYdmzPRgY4ATFgcrXfHu3cOxs0rlu9OCOB/n0u/G+15Q2jdtezdatfMY9E6dzpag9xc4rmF0KGZqRhQsM7ts0XYDZffkchG8jxirOmB9qBXWNt4gwigXG15tCWJ+ugyaD16HI7hDLFffeKuu1t/HYdjOk7ywxbsUAfZHntl+9uLjD3yZ2TMYzNZzxFQdk6c45P6sp0vhGwGBepsM0jywxNko5xgY2q7XsclSZIkSS3F1tP/z955x11RHX38S0eaCFhAmgoqYMGCvSK2iAULioqAvXdjLLHEGjUxiUmMJkaNRo2JMYmxJPrGxJIYW2I3NhAbiBTBhuD1/eM3h509d+/d+8BzH3hg/5jP89yzu7NnT5kzZ+Z3ZtZx639Hk5mzkW39JeRv6Z/xbEdgw7rXcXE3UkEFFVRQQQUtCiFAyhfASPvtjc0X22b3MQywkfF8d9IndtczY9iWCOjyIXYK2t1zCXKGXkUFNHMTfn8LZAy9BUUzGeiuBSfRjchI+RYC2oTTuJmRYmp458rIYVxCDu7TyUhfVYdvHYGcwDEgZT3kHG2LnAu3kTjONkMRckrAryrw9U6g/tamHRGY6knkIPfhvP14WZuME5PVDCgo8tIc4GdReVvkRHyDChG2SBs1OyDjUvta3ltD+66GHHXfdu06Gznwf2tj/sKM51ZBjqq3MAM46ROBW9l3XYYQ/p1d3zxv7ftj5Ei5GDnhRqEIWSVgTMa3B+X6WOv7nsbnRhJj9x+t/jeTE10GOdC+AE4hw9lHAoiaGo+/RWjv8A2t0Enpk8lPjTWIBNzZDYG3HkXACn9ff+SIO7nK+39u39wbnZQsMxqiU95PI8fu7kjWrIgM5HOIIrM0F55V5pJP2XY1chD4KE3tgNutTmUOr4hnP+R8Pg740pXfh+RxSGO2kfGL03Y2ayMsAqN8hiKg9UHAoBJykm7r7lsJRSIZTZIWcxg6kX5tE9RzHyRzfouct7NQxIKR7p6dbZ59ihxJucBfYAwC3/wIyanL0Hr5BhZlAMncH1u75KZyBHZAIL3TcKf63fW9EQBjps2Fh4Bj3PVFSbm2ibXNKzQw3V5j80Q6yEfAXTZ347l8CdJ1QqTPNkhPeRjpStda+eHW9rs1wrfkOfVvsnddBKyccX1gNZ5oHZ2KnJg1n5KL69VceEbXxiPQfS908GEmaZBR0HVPRvK+LNx6hbqujtbULRrYl7lgKvIBUTNIR27MAkJlprVdxHG6ts2BuSjq1FGUAwY2QLrTr5DMOdnm6V5Z9a0nIcDWx0h2zkd62AHu+kYkhxIeQ4D4ixvYb8uhdX0KAiYG3bUVsAICtF7dVDybIyEg0Fykb5+NUqJ9bP0VdNY1acB6Z8+0RvuE35GkwFyRBLh0C2n94oim4IvAIlegtWs/FFW4RIYO38B2TO1zKAdh7Ysil7xNNiAqrHktkLwsIX1mh4jPNSiaZC8koyaTgPO7ochJ36NyqkFfzy2QzP82ilp5FZLRj0fP7Il0rMlYZM1qc6gRxuQmCPQZ7AGHorTirUmiH+2O9o4eAH8Uyd5/kfpzSSIE3jsO6U1xFNTdkB58Jdr7H4N03Z3cPYXDfxkmBLa8AwNbkkRUD4DSzij60xxk8wm2ngX2oIhfU0Rm7YkOry6yzaCgZZsot7H909a8Jk+bW1BBBRW0pJKt+XchO8cmbn/SAQGiXkM+pf5W7v1wnZAvZw6yy9dNT1jsDVVQQQUVVFBBi0LIQT4XS9NlZR4Q9Roy6r9hG3W/mRmKDLMH2u/DzEgXHLJbI3BNFiAqOOS3qMd3VfjWas6iYIi9hHQ49w7IoXE8Ou04GRlB2y5iXXqSnKxazZXX85RXeywkMXLW9Mio09ukI+VsagaP7wLHVmtT5Lx+AoXKD6mr+qAT3BNJA6L2QGkG/FjLSpe0hSl+B4Z2QiCfW4BpwO+BtZBh5nQEHjitwvd7vvuh6DKTkGPt3IVozzgyUl8Eyhho3z0ZuMGurYOM2yVchCi7thKKxHRWRluMRc6gp1DalUk2brrZ9aEkkcW+QqesQlqRgxEgYqvofSciQEk7EuDTMVjKBffunyBFvIRLfRe3KTL8P4IAfh2jaz7aw65InpTQ6cb6KejZY+lA5Lz5I7CSq9OnKL3aMCvraO3+Ec7ZGvHf08bfjvZ7Zfsb5JoPK7+3tU8JAS5fsHY9pznyrGEunVehzbpYH0wjWg8y7j0KpelcFzmHPkZO3fvR6fuwxiyH0vH9mQqA3eZI6KTkU6HtkQN+to3T/yB5ui3mkHI9IrZxAAAgAElEQVTPrYAiQr0J3J3VX41cz+7I+Xk2CUh4HZs7L+OArkhODyOdAqZSGpmeSB5dAnRx5f+xcbamK1sTrdHVgIvBkX4pikpWlqY3+r0u5an5ymTKQrTXlmQ4m+vNE+luPRBguL2VHY3AET/EgIRIlh9i8/7wiN/yaM04yWTE3xBQ+oRFHV9RXbezMXwdki2ru2u3kJycX6kCr6xIS/2RHLkZlwq5gfWKI1wssTyj3+uhNe5U67+RCPDya2Cwu68dWsMf83OuyjvHIiDDTOP/MAI9t29AXcdQJf0kAkFmAaI2sPeViNJsIED2l/H4bUxC+lLJxv8hGdc7I310ps2xGcC36lWfKu3bB4Hsv4n00z3QGj/F1xuBSs9HByHGufJKETEHINDetiSyoy/SP9/AosEioP9ByCh7QE5dG4Vnc6GobfvYXLoU6GBl7ZFO9jYCloQ1bAA5613cxgiUMxmnIyHHdYhgNgXpFzVHJ24MvkjPeYkEqBfSJy/UehKNp1FovXgBOQaOdNdCyrx3SIAIccrv0N4bIv3zadIpwkNUuEnWRyElXGsECHibGlJ2I9D/jmhfF4BYweExC/inu3dPZHPZO2sc1WGMHov21IejfWMJgYG84+UUtJ6sY7/bIJ3iSjJAy82JovGwoX3n68CtGeNkZeubz4w+xu3pCyoIHbr6rc2jXyI95UTSEbI7Afea3Dwcd8CoCesZg/X7kACiFspmUFBBgVDUxFPQXnzA4q5PQQUVVNCSRsi29zzwKvLFBUBUJ9PNp5sM9QfDOyHb2Wxgo7rXcXE3UkEFFVRQQQXVQvHm1pV3A/4POZ63duUtkZPxVQT+GZPxbBcEbpiKABlfIcdYO3dPNUDU5ov6XQvz/QhgcyQCoOzryq8kScWyOXIQHIOcMRsikMRNyGh7SLV2rbFOPakAMqlzWwyw77wBd7oROZi+xMBEyKh7DDqp1tPdl3VCbSwyfp8f+pXEeRwAUW+hKB/BkZSZJsnxHGfK3jRkhHwDA89Z212NwD7zkTPudc+zypgfiwCAv0TG/Dvs92+pIS0NioTgHfT7YU7N0E4o1cOTWKQsK7sTOTzmUQ5Q8tGpQrvtjYzhp9vvwTbHpiFnyApW3gGBQga5si2Qk+LXlBt0JyGniw/xf7mN83ASsSMK8T+cHGMFMgLPxkUAqnLvKOCgavMzr/8WcsyHU/ffIu1UbUUSaWwKil7zFxtPFQ166HT5R0i+BafIqqRPUV7r7l8LmICihF0M7JnR382CZ41z6S7MqWf3fQOlHJsBnF2trxEI5b8YwAbJoWdJIumFNHEd7JumUUfHd1NQ3LboBPr3rC1Wt2/8OXKy74Zk3tMIBOqdqmsioNv3qvVbI9V5TwSqfA5zzpFEmBlg4+4lXISoat8cXVsDAQl8JJV7kOwKaWg2cddqAo6g1KKPV3tv1rgkWz6Ntnm1sClz68Yzmk/7IYfFR9Z+P8WiKKH1ei4Czz2MUv/Mwcm+jLEZTqyVkLysqhs0sP4T0Jr3PHKuzEcAyP3cPTejNfQyLD1mDs+hVteZwI0L0z8ISFQCBjUznhsgwNHNpFMbnmn3/QXN441Q9KJPqW0dD5Egz7PxtZ311xTcnM2pawDV7WW/ByC5tyXpVM7HkQ2I2iR+F4pANxc4alHGYZX6t0J7o32QMydE/MzSadohoMNOuDRJ8XyqFyGAxabocMLKrnwbkj3ZIdEzZXpoBt+xSJf/2ObhTGz9RXumF21sTEepUWeRc9igHjyXVCI7veMgtH8aHcZZ6A+0X5pPOnVbLljR7gvrwYpI97o8ur480vHPJr3WVh2jjcGXREc9x+TAVNKApYWKvGzPHmLj5Xdoz/4vtEe53t2zN9qjTcWl6ov4hH4IQJinsYMFVn6Z1f3XCAS+DgJBfoqlSs+pZ5D507CU3O5aB3QoYBbwqCv3+7a6yhKkf1+HwD1f4aJRRWN3DgakRHJxJg4IRiPu5ZqC4rFHEvksHGB7DwNpk47i3A1FbB6D2+PXu58KWrKJdGra/iT72TJQnf3fCek705GtsiZ5X4d69yXZ0/WmEWwGBS27hHTnFWwMzQeecNcWer0vqKCCClpayOmTLZCd4yXKAVEhZd4s0oCon5u+3iSpmRd7YxVUUEEFFVRQHkWb7P7opHg3t3juYsa7vwK7W9nyCEDwD1z6IbdIe6PmNJLw/iF0uj85GABR75NxCrwpN8y2aZ+NTjDNQobch0nCwJ9NEsFnlikVPmLPCjiDrSuvmFakxno1lYNkdZJT65+h6D8eEHW9ld+GADef4iI6VeA5CDkyvo0DE5kiF8ZYHxsDU2y8lJ2Sj8bp2gj89E3k4D8YGa4/J0lt0Bk5Sg5Ghvf13POVHDkDkDPlbMw5iIBEb9n7+uR8a3dro4fs93gbK2Oj++4B/uF+d0OOx1NxKa6qvKcvcgKHlHtDbdzehE45f4kAKF2j51ZCDu7/Ab/z7YEiVh0N3E15VLBDkYH3cgSkOgI5IHMNW0imzMciihGFdEeAjSwwZRa4Zs+4LRthzK+BQGgXxePT/b+Ote1D1r8H5tRzSxSx4Hkk+44nce70IsNoWKFuLZsbz4bOJbRpux4Bbo/M4bkVctQ/auMq1LUvAkh9ZP04AYF0Z5EGbjQ3p0sfXLo2FBVjXeRIH2xl1yPDuHdo/9f6bTYukqFdC4DGloHqVPdzkOP6E2DX0P4kEaIGAB8gkOreVfhkgYLWte8bbr/j1IgDEEh3tzxevl7IYP+6tXt8+nk1BIgeVsO372r1O56cSDg5fFrUmWcAgd6AgKC3I+fviySAme0QqONvCKzsgUdZc7QzAj3+2fr/WiwS5CKOp22R7nUaiezYxdrk+mie3GblmelwI759ELBwNtL1VsyTE1EbnoAc60c3J54oCtuHNgd/bWU+EufxSE6X7Ll3yEm9ZPNoBbRX+CEOhGhlr5CRJrdCXedhEc0QeOEt5PwrAY9jkYDs+tFI9v+RjEMUJOvEJsB2izoWK9U749pgBHKfR/lhj8EZ94d6xs72Rl230HoZ2vL/KNfJqu7JqvDdG8mTSzC9DumT8zGdHgGtx6K9xZk4GU22PGl0nksqIdn2EuUpfYfgUsSR3ju1QzLhslrGJgIEHoeiAIbx1gGtAc/Z2MhMu1StPevI92R0eOQldLjq8ErP1NLX1paT0N4xHA5ZGa17E7GUg1a+PwICV0zlRjYgamd3/SIkZ2ehve1zuKhd1epMWubfi6W0CG1o7XsE2ve+XKnP6zxmx9jYnIvsBh5UG9pmNFq75yI5nQsEW1IJOZwOIrEJHYP0pvCtVyJ5fxNJ+sqWlfqlljFb0NJLJofeJYmg3wvt3160eRVS5sWRtDuhNbpEhi5Rp7p6HWFnZK8bTw4gqgKvYtwXlCK3rm1oa2aJdCTSZmW/KaigggpqbIrW4YYAon6OfHZNAoT6+uuvCzBUQQUVVFBBzYcQaOQ1M+i9gAOvoJPeb5tB60nkjPiCjCgejl87BL4Ip9nfQ2mQwkLd2t27FQJWzUcniZp80wOMMKXhVNvUtyKJlvJjEgPvRiiCzQQccIUoNZ67fzfkqO3ewPo0tVHzSOun9czQcrL1x09I0tp1AX5g3/Nv0g6pSsa+EcZ305z3d0fOo3VdWZZzZDMbLzfjUuEgR8k/bVxuVeU91ZxXw5Cx1vfrPcgRFxzta+WM+QNtHL2ITsse48e63XcBAixtjpwEB9n88icEveErfr4DAntsYmN1IknKvbYoXdQcZKRdIXr2GCxVXngPAvuEE62/ctfCXG1jvD5Chvfp1BDiHynqnRGI6BUsao+73sba4mFcBJEKfFYwHndWGhu19HfG72FI5u2Yc187nBMqrw7IGD4PydQR0TUPNPpRpX5uTjwz2msT8ufSmva3ExaNJqtdrd17o3n1AemT8AFc0w2lxXwWgVh/j3Ni1TpelhRC4JvbgUvt93gk2+Jx+jhwh/u9KgKuHIBLQ2fXBiPQYwujUcBejdk2pOXW8TZ2/kU6+knos4FojclMi0h60786AmG3QHrFcyiyw99IA6HaoLXrSSJ5kzVOo2s7W30uJg0MaYeMCq+SA4ZCjtXLbN7UnMIi+tY4TV+j8Ix+90by9CrSINAjECDsERLQUZu43Uj0myyHe0frqxORbLmOKG1drd9BYiA/1+rUy127Azm2Q9978M2OtfC3e/ujiGlfARc0oE1PtGfKIs8t6TyRzL0VRdt5gST9lk/JsjrStbYHhsR9n9X/SA5/gAO0k6QvDf20MekUkxXrisAwnwNnIV1yKALDfkEaPHsk0nn+QROlX4rqvQ0CgB6LS++NdKs7kb43BoHY9kNycZuIXwxeX6dO9W6D0pY/jUAgIYWX7/utUCS4eVTYk5Hohy1QlKIHEBDRR33sifYQ86gyJ4mAYI3Js7kQOuQRUvx6fWhFlJ7yBdyaZm20ItLdTq1hjG5Okr70SSRLQmrkTW1M7h0/11R8c64NQnuq14jSviK9pmO1+rp7d0Qgvw1d2Z8Q8DPIpzXctTVq4JkXIWo9BObdlHRa11rAW/2BK6wNz3PlHhB1Eg4428Rjdig6LHMLAjudigMmu/t6or1W7qGkJZVsvu2NZPl3SFIDnkY64vk1yOZxPQkgqnDkF1RG6EDSW+gw0H5W1gfpSL/DgWAznm1HlUibjVxPL+/7IsB0CXgC2byyAFE12yEKWvYoZ71fH+nzz5MGFxdytKCCClqmCNnUrkNRpwdF11oje/ur6AByDIgKtpG5NCEQ6uuvvy7AUAUVVFBBBS25FG1udzQj3vfNsPU3dFrpZyROks3QqduHkAN9fBavDN59kPPyTeN5kNs4e2DBplSJENEE7XEZcrKs6soeMOWiam7dakY9M5R9SAOiOUTttzZ1CIOdYdx4GAHgOllZe2RknYdS5/jIC92pMRy/jacSiXE8BjpsRUaqtSyeVs9Pjd/9Gde3Q4CoT4Ats8ZmTpvsYbxXsd9xxJEhKOJI3ni4zvi8SjpiSzBgr4NO5JeQ4/ALMtKuIeP6Ku73Edipd8xxhdIO/Bc5rELZzQjYNBNLu5HVDqSdmudZfd4mDUgLc7U1MBKdlt7e84jGUisixwQCDk5D0a+2s7LeNjZmUqMhHzgDKfSZ0SVyxvje/rtc+Z6kUwfFURmGA2tn8az0TgReeIoEQPZ332Z2Xy+UjrBETtqj5sLT7h8K9EDAkry59EfKAXLVDGSjkfO2RDpCTRv3Te2Rg9CDWZqV08XV+3r71nuRHD6WNIi4E3KSPo6chd0RqPl5nCPd5mhndDLo7whodbjxPmAR65gHNjzD5vjdpMGeoc8yU9hFc/cABH66PNxvfEP0q5BKqwcCMH+MRaKrwnNrJJeOs3ZsiUACAWzycxvDWyLZ+An5qVv3s754BneiuyFtiBxsd7l50xg8r7L2X4VkDVrfvmkP++3H1ZloTdrT86rW10hP2Yg0aKYzAqbNQ7pkD/dNd9IAgDgC7jztfgd5EtIiDkfrSbz2ZIK2cPLBfvdD+m8Ji7iY06YnUA4wai48Q3+GdLdzUaTP5bLemcU7bleSiHOro7XkMPt9P2m53wftIbJSx52IwIiHu/r9AUWX8anxHkHyYEj0/MlkRGatNyGZMweB0uchYMWx7voQtMaWEFj3E+A7EY91UVSRMOcOQzrc0EWsW6VDCm2t3u+gPU6IkuMBUdsDozKePQ7bJ5EYXTug/d2P7LeXJ4MQwPJutD5n6aKNzrM5EeXRkj8kHXX4cKRD34+B6ICuJOvdLjn8xyPn+q4kEcvesHH7Cyt/AK01DZHLjcKX7LX5eLQ2hz3IEBJA1GE2hvdGtoXta6zvBJuH7e13rJcORfJmcKX6Ves/KkSIyvnehVqbSGRvq1rruYhjtJpu3gatIQEQ5eX1UMqjnTVXnbwTCch7HorsE/rBy6cfI733Z1SJKN3c5VZBC08kOtTGJjNfIL2v3YAk5bRPg3og5alHmyp6/Di0Jt9iMm4WAnMdQBoQVbPNoKBljyjfO26BDl13J/E5bGxr6X8oAFEFFVTQMkimW4cokCW0X38Q2YMHuHV3Y2T7fRP5U0N5Z7R/XL3J6764G6+gggoqqKCC8gg5u3dCpw+DMySEt38XOWT9qdxUah0ynE1ZmxXb5CwARLnykQgwVFPElUb6Zl/XkMLpYeAvrvw+5CgIzrYRVDh9m/PdW9qGrmpkpAp1Ox0ZfsvAQo3YFjvYe560Tal/vwdEXUMU3aHSN/tyBLSbh07Nd4yudUFGw/OJImtV4NkBGWNeRI6nAGDx43EbZKQp4Zy/Vdq4p1Ma17I+vwoBdyaTnNRuhxzw/yBywnm+yIH3fQQYnI6Ahd0z3tsfKahnACMz5lNX4/Oe9cO+9k0nRnxuBF53vzsiMNR4DBDWgLFwpr3jB6TTRWSe6qMcCLUXcvq9afXy6eROQ1E8PkNRxV5ETtOz3T1VUwkgxf9NJKtaVbo/o61PQkb6ACTzqRzWsXr8gsQh6E9dX4sM2g0BM7bCIl0hx38loNGqKPXUSUsDT+SgehvJynWQrG/wXMrp1z2tnk/gIllVGaPNznAWjd0nETDlr9GcDHNicyRf30WgyE/ISDNq926LnJQvI9DBCY1Yz12R3HgQgYeGu2tnIsfQH0hHBvApXyqlyTkYRYY5P2Ncno/AsU8jmfcASt1QNTUiko2zkXO5ZO22g9WnG3JwfWH0GXK6n5Y3pmzcB4NFTekZozYMkbQOb0SevwW+RutRe1c+BMlEHyXQAwg/Aq6pcRyMRXL5UyTj/YnwLiTy92EErJ5L5MypUHcfbeGHSIa0RxHmfKShTkiPuJEouk4Gz92QTvssWke2cdf6kTidq0U9Pd2+4fBmxnNlogiM1na/QNFSfk4CEmhVhe/GxruL/T4BgWrD79ts/PzDxsWGYXwhQPeLlM/lYykf+92sXt9xZfcjWRf6fhgZ6RCpo9yPxtNKCPR+BtIlt0FyaBrpubUq0t1uIL3/8RFn/4tk849IUmJWBKY1sJ4D0F5kU6C/lbVF8vV9ZGDtFsozeIV6hv3Mv0kAm+Haf4C/ume8PPkzWsuyoko2Os/mQkTrH0nK6sfQuuNTU56GZOAcBCh8FK1j5+b0fX8bj6eR7HdbI/DwuUjn+wLpBO+R7HmzDqTUha/jOZ7ytXlHEtvEECubYX3/KRGwMKOePtX7tsiBfxyap+9ggEO0tpyL9NXciFAZ74wBUU9gh1FqnKOLLPPrPU7t/8FI39uD9EGRdiSAqJNRCvu9rY9GNHWd69gWu5PoZN8jvZ/08umHSH+8jYzIZVGbrmt81ycjslZBSxdBOmUoAoO8gUDe3m6yIQkg6nKkZ8wDrloMdd7WxvOZyLbWAelfE9G+fwyJLa0PNdohClp2iSQF9hwb42+i/Xc4PBsAUU8Buy7u+hZUUEEFNSUhMNM1aI/+PopK+ldbi79Ae8FvIRvCFujg5H9RtKgFB4UXS90Xd+MVVFBBBRVUUDVChvvPkXPhPCsLi2dwkryLHFjLVeHjN/U7AVejE7vXkHbABUDUZOBClLKrhHMaNPH3j0WRIDqbUes15LT4k9UxGEm7Iaf+T6gQySLi25XEqdTbjBdxlIUyZ1PUjifYc8cu7Pfl1LGFGTNmWx887675E47trS4l5FBtl1PvtvaMNwo+jE46H0gSQaCzbYSn4k7DZfGMypdH0cU+NL4BaOQBUSOyeGbUdT/kUDieJKrSr+xbPyQ5gd3F6joDOCavnvb9yyPj0EcIENUjuqdzxnOp9DMI+PEaAlV9ZeO1XfTMOORsOA5FZTjc2nTLLL41jIvzSYy8vat9Z/TcIQjwcAuKVvUKmuunu3t2REr7vUih371aHSu07W/QpqBtlXvieTQfS61hbfp70gC0W5DB/mySlJBdrW0/pEIar7z55f7fn8pAow5ZzzQHntGzXdCm7KwwRhFApea5lMFzHeQoHU46Et3+NsYfJQ2IanbApyr90haBByYjh3AJRS8MzuIFKRvRpvcWFJFubLX2QIClEpIrW1S7twF1HW/z52ESIMALOCctAk9MQw7sDWvkO9jqeSHpVG5+bTkIOQn/BVyCSxtBNlB7dXR66gTkeNrSfr+NgNmt3H27oegoa8c8fbsZeXDaXOQg2CGnL7Ii+BxWB55v23w5jEQvWQWBOP6Niz6DnPF97F2Zeln0ju3RXL7IxsFNyEDzG3dPZ5JUsM/gHCQRL///jghAHSI8rmXvmWl1W9vK29l738U5kSrUexxaS/+AUiHORDJkjLunH4rQU8JSVEY81kYy8tglnOcuEc8Drb+nIXmyE2ld7AYUpfI6quv6LZE8noWcdMcjPfVMkrmzM5pT80nSY61CEq7dg4RaAMuhlIfjo3f1RGv9BfY7juLSNzxHFfBWvQjJh+HAL0lHlN3I+m46cHL0TMWIhShK6mTr0+uqzfMG1nMcmnsfITn9NgbIQmvMQQis8hIJIKoSOLUFAjq8gWRuAFO3sjHwGXB+9EwHtB+8Fa1rZRHmGptncyAbJ9uQROMdhwFdUOSrB5GsO9M98w20zj2BQPpeJmTp0MORzns7dpglo/1XQnL8bhRl6rYa6t4ofKltbZ6EgDcBELUmAprcTEYq5Ijn3taOh7gyH5V3UyvrhPZXH5ERXa7W8UUiAzcgST9dMTJQNEcXSeY30ZgNwOfJNl8n4gBfNhdvJDnB/ilw8eKea4307a2QrBqCotSeh/SrK0lHzvb2kxvIiXxMss+cg3Sn23FRVAtaegntOfrZ/5siAGwMiBqKgOofIz23aoTaOtQx7PfPsvneO7q+KgKVvko68n+nmEdBBQUCRqF97bcRuHYLZEOYYzI12HY3tLX0LaIIgwUVVFBBSyMh21bYC3dB9t+JwO+tbHVkV30QAUY/Mp37XtO/nyfKvNDk37C4G7GgggoqqKCCqhE66fOQbT6+58o9IOp65EC5hRyHgxl1gpPklyhKwxPAau6e7ujk43RbvDOjWNTpe+O0fPNR1IIOyFk0Cxle38FOhqKTrhOQA2H/Gt6xL3IsPGNtcIF952XVNnJUcIzWsS2CgaOfGWBK9t4FJ5TdvcshEEtZJBHKDc+3IUf4b0gAKCugkz2fmqJ2gV2fQ8Yp14jnGtZXm5GcPg79FUdeynIGVHLqHGL1uYooxQRK3zUbGabPQ8bJ6USROaJ6rosckBuQODe6IONQAEStYONpf2ujskhbGfUMxu9ZwMCMcbwGcgiWkAH9E1x6jYUcGxcYvyuozZA/wubM6fa7h7XtZCvPi6iW5cTYHTnGJpA+2b2e9c1pFXhVnEfIaToLRRHZM3ruL1bnZxHo8V57T1n6wobOMft/tI2D/8MBGpYGnsiQdRU6qb9+dK2muZTBM6RW/NzG4pMIPBvGSgBEPUzO6fvmQhXaITgAf05yOriXu15JvmWCCxFo5WcmKx7BRSzMen8NdR5m/XAGCZBwTbS23k86zedZ9g0ja+S9q83X7fK+jyg6SIXv3xQ4CoEqPHiht837yTina6X+yWsn5ACeh6J7bJvVvmTLqcPrwROtOU/bvDuMJA3BrtZPdweeJGvWDOAbOd+5IooGeA0JsKYHApXOB+6M7u9W49gdb++/jiTN63IoAsnbaF0YhNads5HcLtMjSeswOyPn92n2uztyPM5EkYpGu3v7ozlyYgbPjlikziWVJwIaf0ASEWq4tdGPEJDiceN3KIlOFXT96UhGV4sM1RnpuV8AX5LhnDPezyJnx/1I/3uHdOqvBfOJBKQ3lPT4vhWdhnwM6ebrhvmOxvKrwI4Z74/T3TaqMw5F1J2E5Nk/iQA5SA/8A5KNNUWUReDfGfa9L2MpLKvNlRrqOYokst5mCGQY9MVRri0PROv+FDIOPPg6WH+dhAyzHrw0AIFdpyDQbQcEYhyHAE3jmoJncyAEKjwH6Ti7k0RGO5oEUDOYBBD1zej5OJVa1no30MbSF8Aj8TwgWs+Q7L8U7QdXq1L3RudL/tr8NmlAVOvonVnfPw7tMX+IgTKtfAWkN35i105Esm8mab3026SjuDUUELUJGYD/jPt3oRHWkSYYs6OtPc+1eXgYSYSkPaJ7T7Q+39+VNVnE74b2WUN4umvLkQCiriKdGnBLTB+OeUXjdn0kd7+NQO8XID3078BGTd3HBTUdITD3h8jOEtbBYWQDolYwuZs6uNDE9T0b6TP9XFmwFYe060+ZnC7ATwVlEtL1OiH9+DdEB0NRqt3PSB9sGlbLWlpQQQUV1NwJ7ZmeQgfIArh4eWS/mYUivofyjmifdAzyv01yenm/xfodi7shCyqooIIKKiiLcNGN0GmMv9rCeYQrD5FXOiLnSFVgDjqxOpUEELG+Gc6+Qg6LAe7ejshQuL4rq9vGnihKEDIyH4CcbT7iyPesHe6ye9ZHDrjPcKdzq7ynJXJmXYaiaj1GctL7fQQKeA5FnroCOf1ak3banUiOY3Qh26CaUa83AnBNBPbJ6hPSAJwso+MhyPF1Gzqx+xf77h/a9dbIiPsMcgDcQ8ap3gyeryOj8ExkEP+GXWtHEnnpQaLISzltsaH1y7lUjjhyPtqsv4mACBVPYFs930PG9WloM+8R/Qfa3HjD2uZT4IqcOra2b7wIGez/hxxCa2TUdVU0/44lHTlkoeeUtU3J+qwsxL+7rz0CbF1vvwehef8TdPL9DRv3PhpIHqjyG8A+KGrJO9Z2Z5JECfk7cuC3qTSuiQAGxnMGcrh5o7Xv/7NQZJu3kczzUXYW1hnpDd/7Wts8S3S6sjnyREatFayfPkJzNRh1fbueb/1VcS5F79/c+J2DHEXbWV3eQafmg1NhHyQXnqcG0N6STNH3r2bUN7rHA6JCGPm90VrTsxrPjGtb23x4jCjNFIrIkukQz+AzHkUU8ev779CGPERw6emuZUaFir4/pFM8CjkFe9nvGPC0YWijnG9tiWRkAHLKFV0AACAASURBVIz+yV0LjsteaG16CwF8KgECfD33QGCNJ+yvj7YzHAFF/olLd5PBLwZsNipPEj2uFTKuTEepykLK2jFo3Q6pJ4OTuCoIFAErStbPl0bXuiFZOh+4I68do/Jdkew5lXJnYncbbxPRWjgbAXtOdPe09GPMfndEut7PrGywveNHJNFRXyUtlzpF724WPK1sqLXN89ae30L6ZjCedUXyeA5yYoX0sJ3Qupepe1KejriEAHr3kADAvZ44EK23v0DRIodn8XJlY1EklbtJUuuthSKklLDIUSjK1DFIjzot4tEx+l1TFLqFIQTIfcTaOkSY8XrZUATkKVFDpA+0nm6I5M/zSK6OypszVXi1Q2Dkm0incnoYyTnvWG2LAGx5+zwPXjoRzcUnMD0BRU0JkTbnIN3tQ6qnc2x0ns2BbB7ej4zbJRxozrXJILQ/n0QNqVozxsA3bRzNINk7VIxKjOwBJWDnpuBrvBqyNo+iBt0ErU8fINnno5qGdm2D5NKjNp5uwwHrkOx6zsbZPvH31PD+imBM1yYhOvMiy/wmGKtrWluFCOKDkNy7C+3HSkRpjEivBWV6fiPXz69NvdAascoi8vR9tgMCPP0W6d+rI52qFQIyfYXW2A0QaKyUN26QrN8SpWL3dqhj0L75URbzyf6C6kc2/x8AnorKNyYBRB1Q6dnFUN+9iezE7tr+aD14D63dZZHPC1p2iXKbaTtb137lytq6/18B/mj/1/VgQ0EFFVTQkkLIZ/SW6X8h6m5Ld+0SZK/7UyxX7Z6ByGY+cLF/y+KuQEEFFVRQQQXFZBva/yPtiNkMgVdm4BwhJI40H/Y7y6jTGYEfrrbf65ih7BfIsf4hMmauXqFO9QRCXW8b+BBVJzjaPyAxQPpN2KXIIfMZArb8F5fqgrTRrRaDdEcEqpmMnD3XoChBr1PuyDkJOSbrBoRCxrqRyNHcF+hi5f2tTd4gbcTLTT+CDLhvIQN5cKz1QEbml0mnW1sOOTV9m2cpdHuTnGgfjkARf8IZXY3XATbWnsGlZMyp71hktImj2CxIPeXKOkS/W0btuamNpwtQ9I6rkePin9gJZ5sfI5AT6nHguAp9kzW32to790LGgykkUSSCs6AswlRjzClk9M09gYyMursjZ+ozKNVgGAf7Ief6JMyQnsNrf9JRC7ZybToDGaR/Y/dsXYHH8Xb9MFd2DYr21NGVfQtFb/sJDnhCuUO1altm9VuV+XcQGWk4mitPu3cTJNNKWEojK49TOi4X/c6a931RypzfkXbgrogcy2+RTnE4hkaWl4uTgIORM3gGWjfHkQaWBUDU721+lnDp6Cr05cZI5u8W3bOtvedR68O2CGD2L1xquJz6ng9Mdb9DKqv17PeW6PR8z+i5ahH7JiHn6fpoHb4yfg4ZBW5FoM2aZB1K6zMfOa52yuDZE0Xsm02VyBh27zi0PoVUTS8h2Xw1Bja39v0MgZBGZPA4ECen6sTTgzMCIGoGAsGECFGbolSDD6GoeVVTL1n5YATs/dL+tsOtjQgQdabV5f4a+6cFAt/+DQP7uXKvd7W3dliPtG7REsn+6bi0SHZtOwQM6oqibdxEskaditaop3AAbfdss+Bp9wTA02CUVuVpNL8DKDj0z3IkgKhD3Tuq6vpWvjmaSzuhk4uzkW4WdMm89TJL7u+Pxv6ZOCMeGrM7IL3pM6Rf/AcBln36sBbAymiujLOyQ5EOv2m1+tQyLqtc2wfpuFPJBqpvTCR3Y57WF92i63uSAKL8CfndcMDynHp3QWl1znZlf0ag4iCfdyQBnmVG2qkyDkJ6u4kIEB3AS6sgmXIRAmSWAfTrwbM5EooEVbJ5OIEk8lFL0oCo+9GBmrK1vob2PAHJmhdI9iSZ+zq0z5qKpbCuB18SGeTHW6OtzXb/iUhXXCuj3n5st0GA/rKxj/ZsD6E1eN+8tq5SFw9+8u8JbbYtiyDzm2icDkW6QU8SW8Ev0KGdkTaGvyKKuFtpjCIw/lEI9LUVLvpvA+vVO+rPg9E+eSbSn6/EgT4X8h3jbX4+gQAqn9rYmoB05tYoak449PYJ5Wk9NyBt81jf+HwM3GRl/vrRyBbzMDBscfV7QfUhEj1tcxsHQT8LsmdjBAh5hSaMfhjLNsr38LfZmN2NxD7cDultl6F95FdEem1ByyahfWA793sI0tM7o73Jw7j1182LW9EB0GaZArmgggoqqKFEAoR6iORAfZCN3vZ5MbJt/JHED9S2qeub+z2LuwIFFVRQQQUVFBOKPFBCzgt/MnhLdEppFhUi9pBtxOxvfyfYBr47iUFvOeS4usXe+TKwZhN+677I8bej/e5jisR9yLHykLvXb9gGIgPlhjgAV1Zb2P+r2b3rkg7xH1J/nAe8GLWhj07TEhn6M09dNWJ7jEdGzCnIAPMhci4EoFhfu/4qUTQtx2PFjLLtjadPufRnFAlmaGijCvxi40tLBKq5DzlGfRSz/0OO8nVcWWf7rprBIAhQsyAdCJSdWhqMOafi+kX3rYUcsj/GHIFWHtJ9PBGNhxY44FKV8bQBAnltFT0/igQQtZqVjUbGp4HUPzVMHphmI+Sk3IlEcT/E6vs0FtmhyvPdEWDpLCKAl82tcUiGvGJz5SbK09P0tXHiZVgbtLl4ABledkKOtunIUTwXuGsh2qNsLjSk7SqULbE8c+bChtaW75MG+7VuwLs3sX59FbjW95/97Ynk088XZnwuiRSN3e2QoflilHYupDM6hzQw7Ptow/w66WgSWX03jkTez0XGR89rG5sH76CN9WfAZTn19KfYQ/SmTUgc7SEi1HIIXHw3GZGrMviuYPP7DBQSegVkfJ9KOipGBwRo/QCXSqKWcYAixJVMHmzmyoO86k2F09ju3vUQ4Ots0uvTfGuDXo7fcHtf2XqKZPaoOvIcieZjD3fdA6J8hKhUhErfJlGZBykNQWDSVEpfEnnRHaVsK0uvm9VPyKnyX+A3Vdp+1Wq8kAP7KQQiGZtx3wikl2zu2vMUG0vTcWmRomeaA88YqL2u9XMJuDhjrC+HQKdfAsfh1tK4b0IZ0nk8WHl5BE4JgCgvG3aiwgGIiO9KKA3qj0hHcfGRRdqgiBkX2vu2yvieQQjI+RZy1Jfsu9rk1aFK3Xx7htSMOwBDXPleVIncmTOfRiN95Q0E5NrYXQuAqFcQuGMskuFlKYIr9FdLtJb+1H7fg2RMkM+9EJDxlEptRBrYtQba461BcmK1hT1fpu9W+v568GwuFPcTWo9OsTEwA+nLIcraAvAMsLaN7Qk5Y9TvRXs7PiehvdNTJJEW4/1COxTl5x/15OvK48Mou7AQa3NUz1C3G4E3Ko0TKtgh0CGA9dzvcIilQYCorDpF14+2dls7eleDZH5TjldM5gE/tfHqI34+iOwJJTSXq+lghyC95Fm0/k1H0Y/7NrBupyPdcBP7vSsC1P4AHXT5rtXnUTJSqdb4ji2sft/CDnGhuRgiXHugakjbu7sfd0h/fw23D0OAgJ9aO/zbzxX3/5FIXj9HxoGngpofRfOpBdrTPgvcbmWtSKfZnEbGHqcJ6jYS6QbPA7/G7JJIBj9o8+wnNgcvRfvLCShi2mwKMNQyT2h/+FNsn4r2m1NIbMJHmHw+NnquHTrw+EebD83OrlNQQQUV1BBCvqyJKDBF2Mf4SLbDSQ4wdiYbEJUbvKBJv2lxV6CgggoqqKCCPJEYVne1zet9pAFRWyDH22c4h3YVfuOQ82pNEmDJKGTQ80b945Cz4z1yABGN/L0n2uarPwLMTEIRRnqicOfzgavc/RWR1ZU2ZMiwNxEZzOYhI9mB0T2HIidGt2p8qW9Kj5HW56ch50NbFJ6/hKJrBCWrLzLKf4Q5dhyPi9AJ5UFR+QTjE071hOggwemyPgqnnxltJG5b2wx/AJzhyu4lHXFkJ5JUUXmRy2L+o6y+B4Xrbm6shNLclTkoIx5DjcdskghjrRy/kO7jMTKcOVXG0zhr/5A648/AdlHdX0bGqLvQidVLq/FH83pnFtKg6tvHfq+BnKKxM2Nnq/N2YT6hk80XZo396Nl9UZSZhzDjtpXHToxOKJrBr62dVs6oazhxPQrYw/0/38b1JGTM702S8mMaDUirgCKX3WPf2GCHXIVxusTyjPp/UxTJ43AbB+1d+SPWvsdX6sMq72pJEsnvVdJA1PjE4HIL8z1LKqF16XQErAzRIXqg6E9fIRntQUz9iKLiZPRTACd+E22kT0Jy9RnSIMt1kbPyPuCYnL7fHUWnCgbONkgHmI+ikAT53AGtjVOpYc23+TkaGUF9vw9FMuFzFGHxSgSu/oSMNEmUy6l17ds7uDEU0j08SIbTNW/comh3k4B1Xdld9v3B0LsyycnpLPkfv6sePA9E8u5/uMgLpFPmHUYUsa1KH+2O9LjdXNnaaE7OJw1ADWOnXVyWwXc8iuiwvPXJE2RHOxyInKZVAfUo6sS/kQyJIy8dYH0fUjG2Q2D143DzqznxRHPERzYcj0XoQPJ5GtK9fUQ9D4h6EDfvaxgHjyF5EeR+ZxJA1N1oHTiEGsH9wAA0n0fXWocqY34wAhaVgFvyxl4D3jMOOa6nIPDnFOAUd31P68d3SSJ35gEm9kVy7fdI5wzRR3aJ5ty/7L4ZZKSvJC3zhiH9vh2a5zci0OxTVre17b5WCMj6Ci4Sj+OzLWm9OoDavyABGOwT3k8SzekxElBM3DeNzrO5ElqDhrnfQfbNsLHmI5gOQmDVLjk8s/aiY117noj0gYoAM9yhFRIZ0eh80Z6wBPwoui8c1mrw2mzt9ie0vz/K6urnUliTeqF97O7R86FOvwMGu/IGAaJIz8fj7Vt6+bZAcv/bpMGjC7WONPK4zAV5IR3/N66sN5Ivp5IhS6LnRyHA/2n2u4998zSk+9ec6hsdFnoNHb7bAIGffkwaULszihJ1DxUA+TnvOBmBa/tH5Z2R7PynH4tR34f5syI2123sdXDlVxGlEyatM51EE0YGKqh+hPbMlxJFdEUg73kkoL4Wbuw0OQiOJELtg0gvmYxk//V2vaON20lI53sN04Vsfr9HlDKzoGWPUKTDf5psv9bG+Ekkh9u6ocM085Dtbx1bG49C+4Ey4HdBBRVU0NJGKGjE0yYrw0H8YOtra2vwrXZf0A0CIOoDtD9ZooBQX3/9dQGGKqigggoqaMkgXPowEoPgbggccy9pQNRWKCXFURl84pOi7yFwTTdX/k3bIAeje1tkoPouDQAbNNJ3h0gjj9nf450i0Qs5Id7DRcJoiEJBOpXb1ghwFFK5fcPdt5ndN6gCn7opMWZYaYNOyt9B2in6OzNkrOPHifXt4RGf9tbXs00pG+SuDUOnQs9CRubJJAbd9uhU5YPk5DBGhvC9bcy8D3zHyv9MGlzVE6HhT6Gyw9qP1dbRtcE2Jt7AGW2srgfZmBiVU9d+KJLBNFwaIBIFtoWNt/cQeKlDDfVcG4EHzkKG+eMRsPBJ0qkjtgduQICeI115loPgEKvD7ThHey3jxv3fMeL3FjJWzEIO+02Qs2YFJDumotOw30UOvqOz+LqyNiTpvz4HtqhQJ290Xhk5Jy6oUOeDjd+XJOFmt7A29c78tsD3gL/iHBM1tM8xxn+9BjyT2abNiScCds5BDo0S2oj9FHPWkACi3qCGFIsZ726NImSUkFxdxV1rj+TrX1gCN34LSwjc9yFykJ0aXVueBBCVihqU1V+ubCAyTP8Kk/k21vdAjstnSTvo2pF2zGXJkvFI/l9D+vT7zlb3d1HawoNRyoQ5pFM0VXIeroROv5fQetTd1wEBOr6NTim/j9aDCTl1HYvACZ8Y36fQSdTgiAqA2AeoIG/iepOAXU9Ccj9EVbrX2jQAwbZCMmWV6PmsKJuNxjOj3q0QyGoyWkdiQNQT1j7H1TKfSByZD5N2MntA1Pga+MTR0ErAN+33t9BYn0B63Wlj9XwKFxmyCt9tSYBGY135hsh5+gQyup+DxrSPbFXJubnE8UQGsSuQvO1BAkI6hsTpMBit1S+QXvvC/KpJlroxdxqah1u6a52sz2baGJlNBnCnAt9BVucJ8bvc2K8KTnf3DkD6xyQ05sdVkxM18twDHRA5FwHPhiHnTsmPd7tvIjr40IUqwALkCPqOjfegM25k/fRf0vuHwShazJbVvgXJvEloXxMAWQOQ/lfCZDECIByG9n+nZvA5xr7hTPu9MZITl6LoPccgJ9fnGAASFqRNW6DvRn3Y6DybK6H17kXrE5+ufgUSQNRYYFUkc6fhUkJntQHV96J7uPuORzrba9Xak0Q21ItvXxRZpIQ7kOTmUe7aHI2vQWjunIJk4mZo/v+NNKiqHdJP3sbNMXd9jH3vnSwEICqq0wn2HR4kvBUC2DxOFDUP7flqXkcaeUy2jP7uBFxCFK3Orv3B+rmXjdHRSDcbVK2edu8DWAo5+945KAJ02P9dTwMiRCFZ/Bpa2/6JHcKAJOU9Ap2WyIn4mdWPCHz/IWldOYDqD0L7y+E18hyO5vZo0gcevofAJr/247TaeC+oeRHSX6+yfv4IrdH7I1nZA6X+/THRoSVq0PMbuZ7rmow7myTt8ao2R2eSTlneH8nxFe33Zmitvm1xt3dBSw6h/edcBHyK7Umrk9h7PkY6xFTgLHdPIfcKKqigpZJMV10B6f2TSdtMO5hu+zjpA28eEHU1sv/0WdzfUvZti7sCBRVUUEEFFWQb7u8RpeuyvyOR4e9u0kbZqifoUJqILVGEhjgyy/rIcXCjGYtONANQpgGxXhsdpyzcaButZ3CpLexabzNKvI9LI1Ij/+VQJI1fkk5r8yg6ib2BK1vV6rB9E/V5mYEWOb+9se1+lNIoOFu3Ro65ttGzLVGqosft97nI6Hw7ZvxEIIW/koAjwinITsg59xEZaeyicbCfbZiPQgCAG6wdn0aG6wDYao1SDLxIdMKuQlt8AwECbsSl67F58YJ9y8XoVOsPbeyelcfXeKxuc6sEXO3KPSDqm9TmIN4cpaz6OekIMGOQI+hpolD/pFPzZRmf90Gn7k8D1lqY8YOi/1yElPJdkfH6uwhYcLLNnTdIIlHsYfNiDopIUpbSpcI7V7F+KKE0B2Wgj+j+5ZEB/vsZdT4COdTvsfHYowKP7jY+Z2SNz5z397YxeC1Rqr6GtGlz4onCnr9tc2V9BEi7CYFgFqRIQk7dJ9DcqhmE5d7bCjlF5iOH2QbIIXwEJiMaynNhKa+9Gukdq1h7lVBqgrgPl0dO4xJyUFVNPYjAKSUb1zdF19qiaCNvI5BlTVHrEGhlhvV9lwyew5Aj9y3kwLuXNAiyqjEf6SL3IefS3lbWOq4LWlPaVeOLnF9fooh0+yOZ9ApyKp9NAvoNTtd/EwG10SnV/iS60mhgZ/t/V3tuJNKd3iUB6razdzxElBq2HjyrtOcCoIu1wdvIOeyB662QI7HqfCItE3ZHMvVRygFRN9s31BRlCDlTz0NOoACmbEMS8fAc4zvIxt0cMsAbEU8fFWJbMiIvISf1M2htnIwBsZojT6SfDUcy/gNr/6NIHLbBITyEBBCVeWqfGmUdkkfvAddF5W2QnD4ujOsa534vBOL5KxFgHumW30Y6aOY6nsFvHQQY/zfSTcZX+sZq34w51FG0ujuiuRNS220QPTOa/Kiie6L18jkSvamVq3sARO1S4flK6fbmIl1vPf9tCEz6CpIpr6PUVBMxYFLcDmhdf8zG3OloD3dDNGY3QQcS3sX2NVTRd+vBszkTAhAHMOpGrrwrAnuXkIP8U+CSHF4N2YuG9syNutBYfCvNMaSbfp9sQNTuVFibM/hsgcA7N0dz9BgEZHnR/h+D9KjPgG9V4XcA0h8aBIiK5tAJuPSxSE73sG+ai+2n7ZpPB3osDVhHGmksfgvpTGHfOh6tta8hnelLlLItALU3tv7/HK1Zn1MD8BXpcxci29GqSAbdQKKrPIIc4TdSo55jz22CQNIltF8I39HKxmVrJP9urTYeK/De3/gemNFXe1s/bVQjr1XQnnWSPesjRH0fgU1+5e5fKqLgLYtUaYyhKPpj0Nr/LqafIPvcC26OLRYACJK7M0j2HmFuroz2Je9QbkddHh3gexu405UX43cZpGgd7GXrwxS0P9mXbKDn1miPdxSwjSsvxlBBBRW0VBICM92CDvivgfZb72J2LtMX/0V2qu1gM1gel4J5SaLFXoGCCiqooIIKIkk7dAnp020tzVB0OUlo+PgEYJZTtD9JCq/HsdPngaf9HYuMaXNtY31mhbr5TdM2uJOmjfTtayGnwm0oFO9viFK1IYPsbxFg5wcV+OxAOeiru23wTnVl91IOMNoInQIvO4Vah77uTNpYNwCFtF7O+uoOK7/P6hkMHj2sbb7t+9OunWV9OMKVnUQCiFrXvTuE+fwFcojdgAx857hns8ZUe+AMG6PBUb01Mhp+QXKavC8CaHyKS1FSpT0OQhvxR5DhdQ7wW3d9V2R4nYEc+I+RThPVMhqjPWz8r+LG+mokBv3vu3vLUi5mfbuVB0flJ5gxifS8OgABop4gO6VJi/ivjbm/InBVl7w6VJiT4WTzQUjhPhqdEPQRZHojw/h/gBWsbAUbez7dVVkar4x3r4iizsxHTr2ySEfR3J4GXBiVH46cEEeiKEVziNL52X27ICDPFKpEr8loWz+/rrcx2rnat1Vp02bB036vjxyYDyHDaHhPezRv30XOsNDPm+IcRg0lNPd+RhLd6wkEtjktq76NTVZ/L/OOxUUQbAT+qflgbfowOh05GhfN0a4vjyLRnZDBKx6zyyN5OgcZ2eN0p20R6GYKAshUnGfumQuQAd+fTlqQzsGVrYEij2QCNav1GZLH/0byPQBqW2XwyJQlVp+uSO7dTFpOdSBxtg135fsCJ0V8OiM59ASK4nGYjcNxJACJPyI5Mw2Tc/aOcVZ2RL15ZrTfflgqi6idWqE1ZAZaR2pOuUOS/tivR3sgMMxjOIAuAi39IWuMZvANgLxngdOj+q5CAmL/Cs2J93CO4axxRJIStJ8r25YEaOQjD62Jovys58qyQCbNhecl1l4fUp6+NgCjhpCkTdyrxv4fhZzlPaPy861PhuY8X2uK1JBq+XpsH4Jk4iFINzo84xm/XnUmSimDAJxZgKiRwHk11qsj0h0vcWWxnr8TLpVx3rcjgPF8pHMOD/eSRPJax/rpZaJUXhX49URRUX5AOppaS9f3qyJw/BVIT9gqq54k8rYHAr28gQyyV1u5lwMjUKSL8yvUK45+12g8mwvF9Y3aegTaM6UAUXbtMgQSHZv1bHRvLXvRbXBp+Wppz8bmG+Yn6Xnbh+RAyXej+8vW5gyeQ9Ae83PgvozxdBCKDvUVskf8h/ShmEptmgeIehfYP+t7SYBQh7s5ENI8bkFiPznQPePTR65BDTK/kcZnV+vjSWhNXg2lQD0ZrcND0D7+Sytrg/SVNZG8uRwXcanSeHLtEIBKJ6G1fyCJjnErkonzqDHaUmgbpK8/jdakbaL27IFk6dXV6uZ4+Tnaxcb8J6Sd9G0RqPN/VIj47fvNff9KaE16j3JA1JVI9/1jPfq6oKahaDwNRDbAVaJx1QaB2G9COt9kkwkVQZpNVPcA/gupuVuQ6BCD7dro6Jku6NDhSa6sALEsg0T52t7DqBfa+36Ai4yXw6sYQwUVVNBSSbZuvoPslSG64kAUqOBdZPN73ORnvI/siA541HzIfbF84+KuQEEFFVRQQcsuRRvvH9km9nIcIMquHY+M/SVqcJCgKAVHIaPiVMxQSHkqsn7I8Ld+hTr5TdNYMwY8gjM8NkIbtMdOMZGENL+TbEDUg7hw9O7aASQpm3q48o7o5OQV9jtO5dYHnag9MuJXL6PmEORsDc6Vo5HzM0RvOsK+42XkjAj1bINSX71JBEZDUTj+ANzu2vBi+/9c4387iWG8MzqZ+SiKGHQ76UgHWU683RCY5rW4/dHp6f+aUvg0Ojk3EWcwipXEqH/+ggAaIRT5+QhcdU80RlZCjrdulepq3/4kMry/jpyZPexaXxJA1JXVvrdCXTuhaEuTkGEsAMLauntGW7+9TnRKgAzDsX3vR1Q5sUt5BJrYoD8fOe23s///B1zk7glGsg2Ro+H8Cu/JOjm9GQLMnQeMceVdUBSjqoAoFDXkzqhsrPXBCfZ7beMTR9QKG4m788anu1aWYhA5LWbgUvVV+va4TZsLTxLHRwlt0P7g7guOjfbIGftYBd4NSsfkxxeJo+xiXHqshvJq4Hvb2fj4Esn/cVaH01kEZ2zUxp2Q7PWRMVZCMuYDBGyJAVFtcvgPcP93RSlj5qP1v3t0b1vkHK8ayQHoZH/vB/6ddY/9zkyBGvHy/6+HQAl74ZypKGVgcBBv0tC+JjEwZEXq64bAItdV+AYPJt3O+LyOHJvHR/cOR06yuchJeBJaA2aTAa6sB8+M/jzPxukPM+Zea+RcL6HoXT2yvj0qG4nW/5CazzsY97B6pgC6GCC2hn5aFemPJaLoZVF7jEWAnA3jb4rrT5Ia9Te4kOGkgUbj8sZpc+KJgWiQbLoSRf15i/LT+wGQsi4O5JozX7uiKF0l4/srtBa0RWDkeSQpzRY2BZ1/32n2rilIh3wKAQfyxv7+aP15F4Egt3bjfjtr0zcRoHMCkutZUbYq6ZJPkujA95DW81dB4P+zyDjxXuW7w7c+QhL1tAUJICr004F59UQA/U9YiIiJFdozjJUVgX9YPf7myj3Y5BFksM2LVtjoPJsT2ZgMa6nfB++A1rs5RFE0yThoVIF3B2rbix5Bjg5RL75Its0jiYTo530/JFtKVAApVpmbYe800eZ4APz76JHLoyi+a+BAnUSHXTJ4j7E6x4Co4TY+56JDH/5bTkI61/0YCB3ZWKZh4FcUWelzFAHKA7Mzx3u1OjbS2OyP9tmvIvl4P06fQ3vJn9h3nUIFOVdtjGbcex3wjvvdEQFhdwM2XYhvaIEi3Q7MuAAAIABJREFURL1i37Ef0uNXQvr7FzjwWgUee6JDgfdjAG0r3wbpOV8gG9qpaD/yBXBGtf6iup4fA6JWQgdAmizybUH1I5K0tZ8i29U5WXMcRQUfj/SXv9MAGV2HOm9p4/oaomgTJGktd8t4rgWwpv1fgFiWQYrk3gFIj7uYBAi8Egkgaj8SXXcPZHPqtLi/oaCCCiqo3oR8ZRMREGrV6FoARM3B9l5WHvbKnZDNYTpRqu0ljRZ7BQoqqKCCClp2iByDGQIYBEBUHytrB3wHGTNzU1CQOPbaIaPZ+6RDOwdwRJazqtIJzDHIMHgqjYhyzmoP5IQKxs0YEFUtCs2vkQPlPBIEd1vkGHkdOWLeIQEetUKAsVeoIZVbI31vX9tovg9cZfU91fVJH2Rw/hKdOm6HHFonIWNNZjh+BGiaaeOkhItOQTYgKihscSqlSv1/krXhJ8B+YXy560OQs+tn6KTtdjXw3A9FRrmLNBivGwJHfQn8KebjxnfsbDoAGb6vtnF/HnI4foCF87f2vdLa6GcNGZdW3gk56z5DIK5wWtYDog4BDo6eOxwZr3q772iJnJazSKJuxBG/NgIOxE5okTZkLDjZbL83RtHESjaGlovub4McjndV+0Z3/3ikyL9l46eE5lKICNEVGd8/t/6qaiRx330ZkmVhDK6KwA97Rff3QOCAHjGPrH5CwK2QuuZUEvnZ3ur9GBFwpYY2bRY8o3laMvJRJYJB61wUwWWluP8RkC+kwWqQodT66Rc2Fr5FBOqpFyEn18/QejEfgUsXGoAVtfG+aI7/D0VbmoABHEkbDPfN6q8K/LdDst9Hzupi8+crlAI0BkRVjdiEQLKXoggRVyOQQlaUtb5ojdyqxrqOR/PyXSRXpwOXuusjSIAQFR1jFeocItXdSdoBFdbBe5HzuVXWWIza5Aob7xOJ0mHZ9Q1QdIQ3kWPrdzhAL04e14GnH09BhncFzrTx+uOMZw5G0RimU1uapKuRfL4Ni4yJS12IZMxnCNwQA6kzgUBRX6xkffUp6ah2FUEQWXzdtTZIV/jE2i0GGj1u7V4WZWgp4NnW+mZ7lBbqLSJgLImMyZSh0ZhagwRY0A+B8l5ABrr7UDSkBxC4fuVa61nDd+yKZNXfkD61T9bcdGWj0NpwG1onplqd9nHjfhsU0XAOAoifnfPtm1k/dEBOvh8h/f5ZJLPWsvtaoQiUr5ET+RXppEdHZWchGReDLcKa2i2H5y4I8D0Yyfh9/fPuvi3IiCiawzvoUN3RQZF5SO8Nc7cFWl/+YW2fu67Xg2dzIJs/X9qYDntlvybsg9aEaWSsCTXwb4PSLubtRXdYXHzRfuMxtPaMCP3trq+PQL8l4NoKPPL2TnNR+srU3il6jwcn+/IBCKC9fVR+ENmAqF2xdL6ubF+rw3dI0lGeZX1/BpLPQSZtjvZt//btt7jGvI3Rl6z9n6dchnQj2ZNVjdpb4/sOtfEeUuEeiWSzB4c1uC0QIOpFJA+fJ1mjymR+9NwB9m1/I0m5dztJNLOhCEw+08bpM6Qj4WQd+MnT80OEqL1IAFHtY54FNT9Ca+4HyCYxFq1p79kYCut72+iZbW3c1TWKfDRGu1F+MOI6k1mnY45apAsdbt+UFQnwVASUzUztW9CyQzbeP0W+hk2iayuT2KnPQ4d+SjjwaUEFFVTQ0koI+P88CijhD2cs2JOg/UiIEOUzq3S19flT3AHBJZUWewUKKqigggpaNija3O6ATmP80YxWW7tr15qR6DZkjDoVObt8uPaqBii3WLdFTs2ptrCHU681n+ZFjsvnkPHQp3UajsIur9nYBiESQNTtZIQ3j9rSA1F+SWK872llqyEDcQmL8oBOih9mysqpjVn3Gr5tJavPl+hkV2xs2cgUqRIy0L2LDIX+FGQMDGqH0tnMQ06h2EjqAVHeWJwyNufU+1hkZPmABMCRd9K4WkSo2+wbPyBxXIXv6ooAAp8C99bYpk+ijb1P/fQ0OvW3titbDQEoTs6rMwobvTYCUXW3ss42F6Yih2Mw5pedxHX9M5gk+lmcDutu65t+URu0tfc8gEX9cM+EqEAxGGYYkimfUw4u6ogcuLdU6xu7tiNySn4LnUjui07ufoSiQQyw+1Z0Y3WDrG/Peld0rS0CFZxov1shQNkM0iefq9V3X+vTXZBj6E17/jsIuLCx1XFkFR6pNm0uPP2Ysf8PNx6/Jw0ybIsc0f8Blo947onk0a+w+UPDAVEtSQy0F9FEJwjd936FS5+5iDwPRg6zaxHA4EYSx8tAu2dlm0/TkTMuF4RlffwEkusnunIPiLqaKqDnaO5sZPX8prX/KKvnD0in92qL1rtXgC1rqOdIBAI5C8mutZDDYEFEN7tvBNINSri0jBXqmkrJCFxoYyWWUx2QXL01g0dKf0Gpqg5Ba95ktAasF9fD9dcKpMFXLevBM6PeuwM/JYkI2cPadj5px0tLlErtQgzAW+N4vRzpFHeSAKICz8PQGvsZFVJiRnVtR7n+0Mv4T0SgyRb+W2uoX8yvNQLYB6CRT+u4vY3TsUsDzwrvaYX2AAEQNQiBl/dFjty1yAbp+X460MbmzSRRwVpanY9HesVXVvc52JpCWoffE+jfgHrH87tV9DsLCBXG+rluTAad/E0EQArfujoCXGySw/MQNDfvIQF+rIj05BKWLg/pLkfa2D8t59u8TnpodO1cBIj6LUmU3RakDaNZ9TwQgY8nIJ32X1bH0F8BeNQOHY64mxqjtsV9gMBLIcXoD43nELSWfUFGRN2m5LmkEwLrHI7AH/eSrAt+vtyPZHaJDEB53ryx8RhSLS3yXrQx+MbfgCLIPoTAJCOia+sj/eVGclIBU3nvdCHle6dcewSa8/9D8vEzJPtGuX4KKfNux0Undc8HGbMB0m/aIEDlR/bchRXmwBY21v8Zt0cTj89Q/35Wl5L1bxyZtBvJnqxqetQa3tkHHVaajeTfbOCsRviWFkgffMR9x1B3vdI6cjvSddsjvWsCWtvuxoF9kU2qN+40fwWeDdHzp9kYaxXPmYKaB2XIuhFILw+A8uXRHvgDKw/6io+2ujrSXY5tojqPsfk+2erk08LfYeP1cRSd+VdI3mfOURvvLyMg4c6Luz8KWjyE9vSTkN3J7139+t0DRUD7HK3XZy7uehdUUEEF1ZuQPfY1W1v/jkuPTrLnCn99yrxzkP3lJ2iP0uBDM4vlexd3BQoqqKCCClq2CIGTPkZOxOeQIe5l0k7Gi1C6rc9t05IZESjnPVmAqGdJjIe1GnLXsM3/nmYI6oecEFNIUnM0OGR6De890PjfRwUHQbR5Wxc5hz8xY4YHRG1g3xCARc+acSE3lVsjfYt3mgxEhrX3rE7bUx7xpiUy1B6JTiRmpjF0Zbsio967CBS1tX+n3XMuivTxWzKMxVltQLmz61iS0/d9rax1pedz2mQwcrCUyE5Z1BU50aqCQ+ze/shIvp8r+7O1RYiGtTmJcSsXqIEMR68gsMos4GFge7sWjPofIlBLMOrH/Tgg+r2Jfc8prmwUmuP/szHcAuiJTnTPIjK6WR+UqOCIQoCavyIj8REIyNQbGZznUsV569r+anQiNo5SM9z4/tSV9cBFAluIedEOndA+38r2Rwa9y/Lqaf+PRHLyBFf/DRHY9DXj9S8kc+9ETq94nKfatLnwjGWG+/8Eu+9RFNFgO+BE5NQ5KePZdmgDNxk515fPGs819GdL5Dy5aWHGQwPf1crGz+4oleOvkPN/kdJXIPn8Elo/Orvyd9HJ4d6ubGUkI8qiw1C+aQ7OrPWQLHmLckDU6dZvvyAn2hRyNB4L3IRF9LLyC0nSe41EKRXORetiVT3C1fVm5GDq7q49iObphtEz3wAOyOEbwAu/x4DfKCLcfcjBdhRyvK2CZNZsyqPrDbF6bWm/j7Hv3MDGwjb2jqdIr5ctrJ/aRN/Yoh48M759PFpDbiEdMbEHApt+iZwaR6LIFB+TEWkn5k35WnMVGqN3koAt2qAoVOOIwnzHfW7/74OAAK8iB8vBJMDnVdHaPwkBWGrVH/ez8RefbG+NdLzPUcSyfu5aZl2bG8+c97VC6+lzaG7eY38vr+HZg60+51FB90ayeGMEtpsM3Bdd38bG+o9xUa8ak9Ce4SF0EGP/0J72tycJIGpBhKhqY9zK9kXr2KkkQKgw/3wkj/fQuvoGTu5VG7dI9t9AdtTFc5He/geiVGlV+N2B0j6HSEPHo73JX0jA7ysi3Ww6LqJrQ8eS/Q0OrBDV7jV7V4MBDPXguaRQpTGA1uBxSAYvAETZtZWRXv1Nogh7DWzP9W0+NspedGH4kpb5Xe27e7my9VH0nY+xCChIXh2O9Kw8Wbowe6dq83IfNOfPRTJlU7Qmz0Tg3LBG7k9iM6gasc3u35gE6PMiDoCM1vjQtpsb31eJ0p839Ri1a/2QTJ2IAbui6wu9J8sYK6ugFElH4VKZ08C9QQb/ltauH5AGyWfpUHsjx/2DuPUO2bYCWPn3cd9kjXd3bWH0/KUG/LkkU9xfizrWYp5I7x+CQHDXRPd1RXuCD9BhxXhurYN09iOboB12M/l0C9oTfmpyb7S75zwbr++b3DvKXcvSn/YxWfcsBSBqmSST51OpIWoJAgOv434vFZFACyqooIJiQnuhN9Eed3+0B3oIy4hh91QCRE1Ce69mA4T6+uuvCzBUQQUVVFBBTUe2sZiFnF7hBP82tsGdCIxz9w5BTrmqQJic93lA1CH27rep7SSmT5My3Rb7XyNj+AvIKDkMASwuqVN7HYqddM25bxwyjN6EnErPW73Oc+28MnK0fh+dKNx2Ydt1Eb7nWORs2RaFdH8SGax3IH0CuZKxvlL59gg0tRFJNKRt4vtRmoISGWGySRuLRiKg0sMIrPENd+14G6v/IQFEVYyKUqnOdm1tdBozBWJw47Yb5c73LMPmmvZdu9vve61d17ffqyNj6V6V6hLx2w8Z3y9FQLMjUPqIEmaMRZEEzkPK8qPxGLJ2e5P0Sb51UYSJOMLKkcjQHtIGvESUKoYkEsHRyME+AjkHfo8Mwj6K0kYootRXyOF4L5qzZae7ssY+mutP2/s8yKYNMhBOIQJ6Lcw8InFiPI6i2eyGopudXwtPBBgabWO1Q8Z4H4jAGo8i4+YMkpSJfrwfDYxvTjyrtaf9fxxJyrznkRPruIw5tgDQYfV7CxmDa44QFb23bikkqvFDMuAmG/NxqqN1ax2bwFZo7vl5e5/No6H2e1U3dpfL4ReAZT79SnA2voVb39BG/Hwyoi5EPLdGjvn/YcZ80qDU0+wbSshw/zouOkROO7Y3vj9yZffa9wdg6c6YrK00DlzZPsg4cAYuso7rl3C6eSqSl9PJTpE1BMmJEopSNc++06dv2o4EvLQOmmv7IHm6RlPwjPhvj/SSM3CANXe9K9LLplgbfQCcUW3cW9t/F8n3C3FrOUpZ9jaK3nEoWu9n42RGVh9Z+VikM92IdKR7kPPlDix6EAKwTESOl4Orfbvj+0tr3zMoB9d2QU6eEnCre09FJ2Zz4llD27RE4MgbkYzx6Y0r9dOaCOBzAU72xHXBySe0bkwlAk7Zt85DgKi+C/MNOd93ko2pz0kD1QMAIoynd4AxObxaIODQPxBwt1N0Laxjy6PIi2cjJ7p3nmcCC6P3rEGyjsSAqAtsDOyaU9cD0F7pAQwE4q59BwG1ZiIj6xP2vw+z7+d7TWlfSYAb3ZAh9xPgejKio9SDZ3MhnHMbrT87ov1XiF7UgeTA0l9sPPRGhvGncZGKSes9uTLAzc0VEbAody/a2HyjsRVShL2D9vUXkRwgWhftAz5HwOg70HqQGVHX8VzkvZP/LjSf70MyyoO+70d7prWjZ8aRYzNwbdEX2WR2R7rYi5RH7g33bovTn+s8Rn0fDUN7h7Gkgbj9kA7yltU/M0rzoszPSmOvsea89e/KUdn3iOQrspmUkJwcGl0L0RtnoqjINa1jNLKeX1Djk43rn5j82RVYsRF4jrd+n4H2UH9BergHP3ZFOtl0tBcO8nU5FJ3prjp9b6zDnYL0hZBiexukLz2H05cQwLQbGRFqY972/74UgKhlltB+4PN4rXPXN8Q5/115s9L1CiqooIJqJbT3m4325b2sbAQ6AP5/VAdEDUARHKdQ42GpJYUWewUKKqigggpaeolyx8SJyOEXOwU3RACWB8lwmnlei1CHduh0X+7pY9ssn4WdkjfD0YvoVPRl7r72yJhf5sCrV1tmlG9sho1zQ9uhEOp3IIfGebhTrxnP122DFxkg1kCOynNIwnIPIQFEDXf37olO17bN4Vl2gg6BrJ6hMiBqWA7P8bZRfsCUwlcQiM5HMzoWOdhfoko6n4jvFvbcN7EoAVa+GjI4ZQKiom/z/AYiA1BL+/sUigb1MDJoBiBUG+SUe5oaIpgh4/vfkRHOp9x7AhmePTixM3BF1pxCp16/QNF+dnDlQ5BDtYSL0oOcD6ejEP3n4wzC8RhFBv+pKM3AvchJcTtpx98wFCWkhIwf3oHVytrdO4Z2AVay/y9Bjq/VQxu6+0L0koWOipHRVrfY98zFpauIvzt6ZoR92xtE4ImMsdMRgRpeQykkKsmSJZYntTswvYPuMJK0Dz71UOv4/ShS28E2xj8Dfk4NgKiIxzgUsaNNpfZYhDHi37MdAoKcinM2I3DlTUiWHIFOte9nbbBDje85EG1+Q3Sd+0kDKzdG6+DASvVzZTsj43VwrrQi0QWGIoDidBx4K5prlcZUexSlooTWj6yUPgORDNoMZ/Ss1pfungeB++3/P0XfvxJK9Xgh+UCwLgj0dSNp8EIccXA/BB49nSrRB6zNJlr/Xp0xLlogp+VEJE/+gGTjd6vUsdF4kjhTQh9/FxlIVon4xfN+BST/16rWT8jB/Slay55GhptPSANrT7MxMRfJnFzdDAFsXqM8SsIMZATq475tVTQ/JuTMUQ/U+TEC3ZxJOdDoFCRzFoCZmynPmuRzlT5Y3v1fTd5ui9bfLXL4LQAyo/3FXCziGOk1IoBmr6BhqRlrjQw2wd79DLCZKw+AqF42nsblvQPJ89nkADJqrS/Secp0QqSrB530kOhamf4cXW+PImvOs7m5uZW3c/fsjJz+f7d7R8V9D+xUy3jIGoMIFPM8LgqojYdG59kQXouTiJy+JDr0Zzb+3kEHStoa7Y9Aa3PQXucTHGDNeBxv87FmUGQ1OeH6vi58o7KQIuxGG4N3IOD0AyQpvXsjgNSrNlaPdc9nzadG2TtFPLugaD3nubL7Se/xNiNKJR7XMfq/vc2HADJog8AWE5GdY3V37564vXmt/dFIY3YCWoPDOj8L7WVDtMZ+Vt/XrJ5l9oJq9V3U72hMvmgfPwTpnltF19ogcF0JpS+OAVStbTyXcAe3csb/GBpJzy+o8QmB/z5DgJ2JJpu+TwN0lLi/0CGU94FvI73nRhsz33X3eEDUXZQDovtXG1eL8L2+nj2RLeB3WHpfkrVgK2uP/+IiRFXiFZV7vW8/CkDUMknosGuJjOhmyJb6PRRdPHM9Kaigggpamsh0zI3QniSOMLqj6eB5gKjVqFOU7bp+++KuQEEFFVRQQUsnxZtb+3shcmQsSEPkNt9jbYPS6OEVyTBaVzPqkDhaT8XCzSPUtH++E3Icf1DBAFWNf6MZlNAp7I/JCPmLohvMQUCpMmNpE46FYciIeX9cDxJA1CTbgJ5obZ8VxcePqW+g1Dj3IPBKcLi3REafECFq66z2tvvWJO1A3wg5AE4hAcKtg8BRL+NO5tn3zCTnRL/dOx4Zcl9AyPm5yNA4wK6H0/hzidLCVfj2MciQ830shSJJiqNPsSgEyIEzDimyVaOtON69EEDhUFf2Z9KRUbbEjKRkpAkkmdMbWX2eJH0CdR0yAFEV6hMDAna3+p1qv3sYn1lWT6+sb4pOPs7CIohYv6+CAEg/t7JDjcfe9ntjBNz7Dy5tEAJUXo6cGz0bYV6E9vqBvf/kSt+d8ewIBAabB1wa90UWH+TweYLKp6iXOJ5onoWxtjCAqJOsbW8DBle4P8yRW+zdz1l9b6QKIIr0nAyp+TINtI1FKJLOJ8hB+SWScWe462uRnCR/we69MKfuq5Csc33RenI1MkZPxtYWG/8nIIDjujXUdQJyAr5AIjtakciHnax+k3DpbHLmSktXl99ZP11OkoopcxxmfHNFRxZyPE1Fzu93/PhDkSfeIAMQksGrF5I9x1R7Zw1jOHz7EAQmfxetSVu4erVw9R+E1tr7SAPN6sITRctbK+Mb/go8VuUbV8WBj6r1DUqxOh3pZAG0ui1JpMHD3L3dELhqYNa3Z/Aebv29pSv7o7VJ0Ct6k4C4O1SrM9JNLiJJsdQCnagPQKNQ//YIMHYyGetJc+CJdCifTnJPcoBKeX2dc/8Y6+/+Wf2K9L1BGWVTgINwYDwEKt0LOQjnIidIbmSNqA1PjubDaODc6P6jkFP/PtKg3ACIKhtP0fMjkQ7d1+p5hJW3ju7bAgcsyuHZFc37t8k+Bb+BXf+CjGiMcbtH1/ojnfwL4Nfx91Z5Lsj2vayPL6rlfRGPsLa0j8rrwbOr/yYkI7vXwrMpyX170L+2RPrOhUj2jbax+TkWVQjpXv1sTlxAOrJZCyQPS+gQxuZuTi0qwKQufKN3rIEATt8hAVK3R7JrDnBndH8n0hE/K0Vy6ski7J2yvtHm/BRsn0Q5aGVVtM4eWuV7vbzaAx0OeBYBt/YN30YCiHrO7jvS+qLuh70y6rkJWpPPRrJvMxK99koSfbUfAkMtiCZbhWdPu98DgGsBx2f1S734hu8aiYvkjABP1wDz0YGyFaPn2gBrRmXDgI3c76MwOwCNqOcX1Ohjvyvah55AErHvYhv71+LAig3gvzayEd1KYn9d1fHNAkT5ta3BEfsWsh0OQgcQX0B73DOsvA2JfrCVXXuZKhFa4zoS6R/IdloAopZCyhufyP76EbJPhfWvCwKVfohLXVpQQQUVtLSSyb370D6xkh2/JkBUc6TFXoGCCiqooIKWbvp/9s473sri6ONfOoiAYgNRsStiwa6xYUew94IUu689EWs0MbYYNZbYorHEaIpGY6yJRmOJMZbYYtcoWBERUamWm/eP3yw7z57nOedcOOdeLp4/9nPveco8W2Z3Z2d+M2MH8DeQAvIwO3iPJBoCwgF3J6ToX6OAzhyDi6o4IHmFxJ+sPmMwBZW7tyEC7XxJjhE3obMSMrpsSk5qrSrrUs7rdQ+rx2B3LUQ+GYy8yyahNDhdq/1+jca+nSlhpiKD9115bUJRWR5BnugTyAFCJXRHEaM3PWnKk1kgIHtmDbv3EYlnq90PaTx8RII9kAFoFXftLuPfNe334u5exXCgKAVFSBW0BPJ429PmwXlurJYnAoRWLUNvODIynYZLA2H3foDABS+gqEh/s/Zn0s2Vmw8IXDQBi4SFlPle+R4iWe1TgS/DvF6HyoAo73HdIa9erm63Az8N/W+8fxmKqtKEIkV5g+NaCBD1ObCTXevhnn8YKZiPcGPRHnmnf4j4dkcrxxrfHV3t3G3GXJmdqAXbWP1nYvO/3LvGg/+lTFSruYzm9mjuvEBMmzc7gKgjbazvI4mSZ3w4CRn8gmGsC0ob9QkywPRIv012Hh1lPHRgNXVrJl/47/RGytvjUYSidRBoYyLOAI/ATQchYMPeOXPS09zT+uVUNL8C8GEKmrchFej8RE/9XMBmQf1HWJ1fJRoEwzwbgsBSz1MhMgqKHrQQStUQUkJ1RfP9YwTq6O7bWWWfroWiYGzv6teVmNrmIrSPBfllGlUaB1Fq2knAWQV8uQFwQjP6sjfa17ZChqrpWBSBvHmBAWXL9cmc0kTz519kUxKF8b0BrZ/ht4/6tSIC81ZlbENg+Y+QPOX7cA0UDfFVnNd60XgX3A+A8hBx4l4EEgl73npoHVjO08vrUySbfIbSaQ1O7l2OZJzLkNHnSLTG7FZunOZWmkieCWlc2iGZ4GvqCAhFALiZyIjXM7nXA6U6PRuLRITkiUdJQHmu/Tci0OujxMgbhd6NZNeOEFXqEPsd0siUAAhQVNCQbntdd31WxM+CcdoHKSEPtfbdj+SxFf07KJrP2UjWqSqdjvH1C2ju5EVMvda+nSuTUv5MtgzaR5qAy9x1D7Jsn0cDycKhH2cHvOSjgrWvB00EtvwFBlhAkRjfZy4ED6C1NrT9NATIuZZs9KKeNg++IMexJq+/ENjiA3TO+h41UozXi66jvzqSbbxsFL4RAEC5xtAKPL8wkkWafXYiu66shmSDIOdcY+PyOJKLA2ilE5LzXqaKyJ9I7zIDnaFuR4CzJrRmLmp8PQTJa18h2eXkVuDXVZHx5Q+URij8KdpjdnDXlgX2q0BzX+Tc8ilaIz14utrIr9vjANP1oovkxmeQTDLMXe+A5nEARC1cQLs92otOMr7ZEMnhTegM2wGdcWom5zdKzXh/KJKLnyYBKaPIpQEQVVWEKLRvrWnvvYHbi+1+HyIg6pxKvFqH9vp5sKXx4pVILnsbyXqb2H2fan1TJL/tWwXdYWi/exad60e5ex4QtU0t29YorVOSsd8IOdBcgDk72vU1kcw/xXjtXOQMN41W2PMapVEapVFauqBz31iUrjtXnnTP5gKi2npp9Qo0SqM0SqM0yrxVkoPIsqbU+RFRsRcUepsTw7R3RkCOtygADLlD8EbIkHEAMpBWpShN6tWp6B2y6RzussP48cQUdMuY4PAaDhRBviFjJFKQT0BGxg+oLk2fr+shyBCYCwJAiu6pyKjVKbm3CUpT8zAVIvDUmSdOsfbPwNJm5PU/8lJey/3O69P1EEjFR29aHSlzHiV6vQUl0JskKW1sPCdQGv7/NGCK+30vpaHjr6A0zWNh1BgUdvRhXEQFoztLqe2ur4xLk5RDcyXjuzPJeqF6D+NdkFHsYQTw2DGvnpQq34MytAeao/+y/nz8jwcXAAAgAElEQVSfmDaiAzLq/QfYtBz/ko36ti7FgKhf29gdXyUvHY6UZovZ2F6LRVZASo0QIcorl9dECuurkzreZt9+nLgWtXdtHY7mTxPi3UzaJSqsPUXXk2fS6A7p78y6hZTcfo3aysZqemhzAT8ui4wI17YVmvb7MOB1G78ARpgdQNSpwO9ynhmKFGLr+f5He9IdNvZXkwVNpkCob0nSCdS6ILDwUAQwWcpdXxV5EU+iNCKJXxfy+jpEmbqA7Lq8EppLMxCo8gz77me4VDl5/O/G3kdSGIUMdq8SI+10RGvJ6eQY7xOaexvvfIwAMedjxnsEXLrb7p2BAaKq7NORaL2YjPb5qURP5K4oZckHCGz2DjIm+PlfCXTVAxl0X8IBNB1/jbG6lwAJKd0b03VhS5L55PoqTW2Ru07Vgqb9H6IZ7ITtFfZ7a+Oh3ybvdkEpLN8mMS6W6ctT0VwMIBcPrNrP7lWloMnph9Xs/TEI2POe49POSJn+D5KIQzl0g7Lo+2QjCvq++ok9MxXJMZWA33M1TSSLjEdp4L61ca06vUTyzaWtv/PWEz/ed6M5O9rxXi8kJ0/ApSG2ewu4/9sjefFjdC4J8uLCKIJqAAf0r1DXsO4fkDyzFIqmUxLdFMkuHyOQelXRs9DeM2tdQ2v2u0hmCTzaF4EiJuGiVBXxe9IXa6N1+VUkp4W1oheKpng4Lr1fQV9sjubORQi0Feq6JJJ/SwBRlfgBRa24wN49zdd5NuZ3PWgubDz/ITG95DHkRL1srRL4w82ty63tnwK/yXm+P9rjbkX7c975eHgy9uui+d8s4BKlc7xedPPasLX1QwCy+QgoS6E15Myi75WZTz3ReWFOzk7D0TnjCuK5c3OkR/kai4RivHwokt++XwUvrIYAvqcQwf1+zfuxXeuIgFG7+XpWM0dqxLMrWX1mAne76x1c/R5D+3HJPkM8v3k+2AHtY79E8uarSPY4NX2vDC+FCLNb15uuXR+GzvAfkgV+BUDUDLR/LVqmL9dAaZ6nor3qULJngmbJ+Y1Sc14/i2zauU62dsxAuo3gMOrP0QEQdQ3Nc668iAiIWj651wfJe03Apa3UFwsjGf9Cooy/DdFBI+gMPCCqYnRudPachtKV34HOj58AV7ln9kKg8JeA7VubLxqlZjw1Ep3fn0Eyd5OtmUGXvzSKyv4mkjXuxunn89buRmmURmmUeaGg88rbSM8ZsvdUOl8F3dFfydELtMXS6hVolEZplEZplHmzIG+0Y5DiammiMms1O3h+jIwOhyAPtWkkgAik4B/sfh+AlH8T7WDzFIrYUqIAS+h45dOJSMnvlULb4NKdUQqImoaU/eEQtbYXBPIOTcgwOA0BbNZGoZ2vs3rvlVfPnLqGiCb7u2u9cMYduxYMMz8hAoQ62/t/aIWxD4pr38dHI6XG3biIShSnByiKZDESKYsHuGv3ICVP8Jj1aRhL0O5I4few/X8IcJ39vytSBO6GPPjfI0aEms/6908kOZULxi7U4WGyEbHuQcasEIVke/INWCVe88hY/QUOUFTUX5R6HhcBofZDYJM7iWlxNkQK1CYsYgtSkI9C8+/YnO9XEqLXt/mQAqJWsz49togeAj71SO7vj5RXqxKVhhfZ+GU8h+1e/+T3AmgduAt5Qf+KCITxEYC6IiDPemQN/XlK9zVRdLGjgEFUaRhLaPQsuL4T8lx7AXl1H+HubUEEMXzP1y/5zjk4o9JcTrOTo3kwMiI9G8aRKgBRuGgOZfp7Y8TnO7lrgZ+WIgJwbqPUUB8iQtUbCNUHgSBD+piuvh0ost7vkRHv9CppDkKKwtNwaZocX/dH8/1xFLnpWrJ7ZB7/lxv7EXZ9ItrvL0driX8mbx/YFxnGfo4M8+egdfkVLAUIAtf8GQEkLqRg3iV1Xd2ePw0ZjbZERq1vgQsDH6Doiv+HUsiUBermfQsZcmcg5cF2dq2f9e0X5HjfJ/XcBnmtPmD18HvnlshYMBXtYyFSzbktRNMDVBZGipWvsb3Zrl1gtP6K9pWhyOhRIu/l1LO3+3+I8cHpxLUhrNcb2L1CYFVCtxsOTGzXfoH2gS+I6Wu72zhNwlIdFtG2ciEygqep5NJ9fD1KU9iUpCGZm2km/fln45EXietzswAmCKD+OC4qE6XrSUjh1Q1FEp2JvBTPs/tf4qJgpvVwdd8C7UHb+rq4vvkGrTPLFtS1LAAWRcwKqW9TQFSQ6Xeq0Dd7ojnzILZuuHvBcWQ6mqvPI4BLSQTQpN5ePlnTPbMWWk/ftD5fA8mFb5EFRebtpaPR/P4XAn+MR3vVKna/HwJEfYszQJabR/b/AKvny2k/luOtpL0HoPWt5jRdfT8wPryGCukOW7IgWfjfZFN7L298+TmKphfkCC/v3gk8UUBziPXbbUmfZIBLef1Wpj9PtLrUg+6sc761fSX7vxOSo14jOkGE5/ogR5UfVPGN/jZX+hHTKW9KM89Ojt7eaE6fSpLSGclBT9g8ehA5B4zDRaYu6he7t42N++B0vhlPfEtxVO4WMwqjs96JNq9eIwfwgeS0N0n28IIx6mX9OsuBCDlchKhdPqJqucivX5E1lNeFbtKO7RDoKwVEtUcg2SZyIvolNI4jOvPslNaDKuX8Rqk5nw+0/t4gub4g0hE1oTNPAAZ5wGYALm1ehn4YXy+jhwhQl1Dq0NfHvlc26nWd+mJbYiTAI5J7mxMBUUFnENbqwoiadn0NdH4/mawz63VIpv+pe3ZPJL/sU6t2NUqL8tCqye+d0fn+BPu9ofF+EwKveweJvijq9PzuWpta9yiz9zdKozRKo/iCHDXfQSDRfnYt6Ec6kpw/kne3snX0DpyttK2WVq9AozRKozRKo8xbBSnXFrPNchoGOgn37O+SyHjxEVIcPoOLXGQ01jUaDyAgRW/keXeUHXLXRcrAd+wgmwuIIqt8OhIp/Y5y13rZQfwNXGh8ohKiC1Iqj7NDdZoyr+R7SNl6G0oD5tPKPIQUrYOK+s79fzSJ5znyYHrG6nIHMmi3Rwjvc5AR5zGk0LoWKcCOL6prrcfd/T8/ApEsmDxzAgKr3E51KeY8zRC56KfABHc9jd60obU9Da8/SzmEwnB/iNJCzIpKZLzwpl17nwiE6oaM+RNIIgEU1Hs/dODuhIysbyHwzR3IkB/qugBSQF1LKcDNt30d+zsSGZv7h7Yk76yDGfCqGWsi0GAMppRz/bQtMi6+gbyd/4HmyclpHZO6DkPRnp5ExohhgQ/IAqK2dO8UzilkvPs7AkL4ufQjoxXmaVfry12xFDJVrAe9kaHieCIgqnPyfAmwIq9viV5oE9Ca9rXVp1I0EV+fQ5Gibv4c2jMQQO8WtA42kfVu3IqY2muz5P0SYNzcTNPxVXtimPMX7Z0nMW/atA5l+vVw69eeOfywEprrt5GkHkBryVgEmBuV3AsG8bqmxnPXdkUH12mYEpws2HQAMdJZSYQcEsUxmvvv4QB+/n65OVDwTNHY/9I9MwztiZPRnlpoGLTnF7fnzsOBIdEa/RSwgmtXVwSQqCby4vrIw+nXZCN+LYTAUU1YBIZqx6fgudDXw9BaOhXt/69TAF7I6dMJNu432dj/mezauTlK9zoDKf7Lpt2rBU1K96oAfhpi4/UZppy2MTwZ7dEzkVHjVZyxmfx9ZFdkFNrLfs9P3INGEw0iXRA45F3M2F2h/XsggPLbKOXYCKO9FIqS0IQiL5yJDI6TK41TGGvjvwfKfHu55vDT3E4TgQW7GS/dZ2PzZ6Jyrdr1Oaylh7tr1ewllyLZ5CMkU45O517Bt4cZHw61334d3QDN1SYkD6R7cThDHGS/d0B7Wto3SyCjYxOWNsvdK5tKzfr1x1aPGRh4nGy0vU1QVJd7UCTQHcq1nVL55BsEmAkAkVXQ3votWpsyfF9Qz80QuPU4oI9dG2pt/j0RbLMEkoWaSFIyFtA9wMb0L0YnjMcZFdqYd37ap440l7J+/BitPzsRgdStapxCIIeQXsin9l4RzZsm4Gc5fHcrWhe75/D0Auj89aE9VxG4VKE/w1waUye6ATwZUpldiEBR7Y0fJqLzcoguNx9ywPqUMhF67dn90Tl8Ooo08igxCtR2CPhU8ezkfvdFAK3LyRpl/dq0LAIoX2FtHOzuVQJnH2h9Es60HlwRzmUHV0Orhjzqx2xp9/+iSOafjmQ0L/t1Quvyk7jI4HYvPfNvbWP5FqbzIZ4xAnBpHKUA2rw5f1A96Rqf74ZkL++cMJR8QFQHyqyldr8jijR2Mlr3pmKRb1L+C7yW1LFNAQLaUrG+DuvOtjiZC+mh/mZjfjIR/O/n7Ho5NP3YdTYe6Jo8E/bhiykFROWCC1ugL5ZEwLCQArBLcn9zCnQGRe233zvbPF3NfofzWD8kN72DOzPQjEhbjTL3FOBmpBMI82lx5GB5nv0eiOS9XxEjq/0Mk1kr8dHcXpJ5vySyv1QV6aVRGqVRvlsF6WyeQ+eTcEYPMkYX2xfPpYwzt+3JK7d2W2rSH61dgUZplEZplEZp+6VAsbIlUrA1kQUZecF9OaSc9Mpa78l9MFI034MM2vcmzy5qG/c4cgBR5BtcDnXXAihlfeSF+Bywp7sfDG7XEL1K1qrUfmRcexcLPW/X7kHG5xARaBtg/YJ+KfE8R0aX6Siq0TXW7jeRsix4eO6ElLuvIyXskeXGqB7jj9K03Wb9+U9cmja7fyIylt5KgSdqDv0DkTJvRaQw/My+E7wwg4J3fgSSuY2c1EMJzXEIAHMLpaCC/yKAxIkIgPZz5FWbGzo++X9jo3sMUmrthRTh79nfpQNvIYX8WM9zOfUcYe9uZnX7Arjc3Q9K2B7ImHsmVUQkQtHaXkQgukxkGOL8GYgAbDch5e02efPUXRuJ5vxf0Fx9GxkFziNGnVrP+vJ5SiMepPMopPG6iETxiwyaAdC2KZoznwG7pnVMxqcrpUrzRZFBJgCiOqD5tBeat2VTbxGNq6cggOLq1q9NKLJF/yrmzVEkUeDcGAReDN6NyyKlzrfA+e7ZLVGEhyMq1Let0Nzf+Okq68/b7fezRNBficG9XL+iOdmXbNSZw+2ZXxAVp93R/LyFLAgv8NSZ1AEIlbRjHdyBE0WRew4ZqkM9/dq1GjCkQn8EYOKpaB4uVPDtQWRBheXABZXG/oLk+b5kI1YUefauZm31Hu132bfC3r0KFqmvXB0Tmp8bH/0l5SFk4P4XispSYhCeg7EcYP3zG+AkDIhRVG+0pnyCgYYQcPMbq/vDZA2hfVEEqg3rTRNFlDk7jAnam98IfIoMwS/auAVA1HzAImjv3ohsVMeifeRLZPT1/bQwkm0+QfPyUGTYn5XesMIY7G7tvQ0ZXZ5BHuK/QuvCwsjI/AyKHnMdDhRHzn7i7s1nvPkCUkane9lyaB8sir7RlmmGtGjnIBnnTuKcDLLEQnk0yAGVUnk9udA92wmBNEpSgubV1fXBG8Dfc+4NRJFXLiFJLW381oQB4pHM9SySOwbn9OXK1s9N5IP/yq2pfZAh9AvgPne9bArCPJqUl09uwqJxwawojAfgZLOieiKZ6VmyQIb70BwNUfuCfNqfKlJioj3vC6MdotwOIkbVPT2vXjk8NStiY61pJteXt7Y9h84iu1BqzO1Uqd21LMlc2N7qtVtS58us7VehNX0NlJJ4Ju6MnDOnehnvfEyVwCXH74Vn3DrQPdB+74f2+jOwc6Jd74rWlwlW7kJnlpLocjnf2AqBFC9Ce9qZaL/4AkstZ/3ZnLPTqmgf3qPo2xSvZ2VBfPZ7idC3KZ+gdepTYN8W5NHU4eUJ4Bx3bSGik8qfkG5jI3SunoHTbdjz1yKAh4/qvScCZ8+KQIrO3R649GfjrXMKeCk45NWaruf9Ecajk+17t5Dl8wCIepeciIJU2O8cPwZAVBo1eaWUVqO02DxYDOl3xuGccRDQ7+9InjqFBBBFIkMk/LUj2tueRTqhzZJvBkDUz0kAUS3Y7lRX28/WgIloD02d0qrSGdizA5EucF9rZ3DWaO/m6FoUROgsN48aZe4q6Lz2SeBxZMxvhxxkVkXn2HeRnnA+dL5/zsb+QnIyB7TVYvz+qu07r+fxdqM0SqN8twuyl3yMzizbu+vdkO7uSVyE7nm9tHoFGqVRGqVRGmXeKSQRKRAw5Gs75G7qrucqh93B2Id2PtAOO68Dd7vrISLMIggY9BYKW56JLmL/B+XTI5hxCyn9P8PCjCNA1FsIpLGXe7c7MrhtiFNoFtR/faJh6Hngevv/LrLRi/oiZcUJaV+gtDQpEGphpHA9w7VvefvGOGTsCP3Rw4Qab+xvKU/PEUjZ9gukAL4fZzxyz41Byr8HyDHGJ2PXHxnGxqCD7nIIrDTTrgcjbBf7/nhchICCeq5BjP40ltLQ3EtZ3V9GCsqqcsmjKDNbIyOu9+69Eil170GeO2sjz9dpJGlUEno9kXB6gv3fAx3qJ5ANw98dAUfGA/uVm1vu9yD7/s7lniuglad8H4Q873+IefIiUNFtyEhwIga6QoCoSuki10JKwjSNV1gj5jM++wgpxyfiPK8LeGk3G4MPkdHuaHcvRIiagZSQl1r/nF+uH6yNNyJDSs/k/jHWzsNy6pJnaCsB1yAl4JfAxsn1PsiLfDrZVDZlQYBthSZx3p+P81i1Ph2HjBEhWly5NBSz+hUZMR4m7ie/J6Y3OcXG6nXgDwh4NQMXFYcWUpIiZd7KRDCdByUNRQb2z8gBRFWYo0egfWgRFF2nCdgl57lFkKFvFNWlI6xm7HOjOpTrU6IRe2v7HVKMhn10IJp7GxXNrRyaIRrfWBvrkOLEe11fi4DGZUGQzRjPcqCHvHFaEPgdMV3fqsjw9gs3bo8AW7Q0TQQmG4sAQ7+w944kaywcQgREDSzT9jxgzYZoHzuZ7LofjEG9ESD8LbQ+P0kVoG8kQ92EIu749eQXaD89x/HC/EieKAuwQfv4Fu69Paw/xpAFVXRG6bpewhnk8+rchmguh+TddcmCYX5KjBAVANC7YinwyK7VqVE47O3N2kvy6pjUdRF7dyHHR7uj9f12IkC0MwKE/INsxLh2yNg9AhiRfG8gigrzvvVxKmddgvab3JRG6fNJG/oieeobXLrrPL4smrM0Qz6pdi1x924DnnW/7yUb+XRzNK8qRhZ093aysU/PkisiOTwDLMsZ6zxHkprSND7KpNpEYJPn0f60MxFosj0C0bVI1I2k3t2tXl+iNMMeVLwcAkR9jWSJh1A0kkJ5hywg6lzKA5cex+3LFfqzXnSXRU45PyO7l4SxCWlwr0Hy5E3kgF+TPlgGyUWXJOO/EVoHPsal16x2PqGIdNNJnCHc/bWQsTM3rXxOXyyEAF/B87sH0h/MBK5wz3VGzgAf4YDPLVUQ8HkKSv21TXJvYXQm+wLN0ceRLuVY90zgg8Ox6JbJWO+CZJHpGNibLChiWST3jE6+fbL11W/qRDecSZZGeoZjjQeGo/X+EVwaNCRTPYlknmVSHkjGfj205pxMFgQ5EIH8p6JzxIJoH2wiJ9JQo7QI/3dE+rtXEJAhDxA1DulBKoJqkYzyJTrDnIci6E4ncZJB5+omtPbNX8s2lamb59H5kGzizw1LoLNt2ENTQFQ1eoiDkDy/EQKtfoVSdff2dUDr6VRcquRGaXvFxvYZ+38E0u90JEZG+j6KuLi0e+dKm1NlU03O7SWZT9uiffJ8JHM/SAXZvlEapVG+mwUBpl802XNzu/YSstUW7rNUoQ9ua6XVK9AojdIojdIobbckwvgKJnxfnTyzBTF926Z577prXRKawYt3NFKYfYWljLDrwUtqYWSA+RxYIaF5FFL4HoGUvV+YAuBrBNjp5A7I6yMj6Iv2/DLE6FSVoi5siaIM9EVKsauQ0fDfyFAS0lF0QKHuX6dUQXEsCXgIGfDvR4rA3X3fERXwY3GAqOSZljLgb24HzJBybgVkDH3H2nRI8vyPyfFATp7ZxPr/z7iQxghkN9UEuaOs7eeRePWmbXd90t/Gur+Nz1hc6kR7phNSIPclm56kSJm9PjKuTQauCTTc/fORwmsGUtY8R1ap2z6htztSFN/ieRpFGLkHKbjuR0r536P5UTatib2/ITIMbo6LdEapwWowZfJG59DdB82TANDwRs+HrI/9GC5agd4opBRbNedeMJ50QQrknckCbfLm5/5ofbgazal/IQPAz9wzi9h330BKuTR15wXkpHdEEdAe8N93vHYnUnL6VA/l0iWk4xC8GwPoz/NUSCVaAipLvtEmaCbX10BzZcccemcYvX/iDE8V+nU/ZIS4AQHzbkFGwFeIoKo9keH4FeRFfXiletazEEO6X0PWezsAoj4hRhosNKrb/wPQXvETZCRtb/33pvV1MBDOTwRW7lhlPfeZnbGvggcWsjbehMCLPrJiRwTC+Tc5aQEL6Hmj69nGH/clz3Q1HpiVPqc1ivHrNmhNeh2BpwPI9FIkxzxIM5T5taJp/PKJ9d/V7roHaQRA1CfE9EHVRO46Fq2/yyfX2xENjR2QMaU/OVHbcmjuYW19nJgazfPo79DelcqO5QyO+6E9zUeT64nAOt8ir+ONEaDvFLQ//yCnbm2CZkJ/BJL1AsjnRbJr5dlorv7H6M/ERd+xZwJQ9RMSgwRyapjt9SShtS+KkPAJ4u+riSmBj0URUf4L/NHKzKI+pSAKIQKu/osIiPLROm9A61QlcNnWaL2/Dnm1L27XFyEfEFW1UpJmyidl6KTzYQwClq9hdN7DUoATgS3X0wzvezf2y+WM/RbECL0X5rybiQhVD5pIRngKyQj3kzWyhfNYSKkeIst8v9r216ogOfYGdI7pj9a318gColZAwOCZaI/1Mnul6GoLUAxcWgfJVq+SpKIhnscPqjdd5AH9GTnpxHJ4OXVKyjtDbEGM8Ht+Di/tgM5/J5Xru4J2L4zOhXeQRKREe91ZyMlmgSpoBR592Xh0Gbu+lNFoQkaPq4xHppLjSNICPLqptfloss5DCxKBu71QGs6JyEnBn6Py1uPdERBkeXdtJ7QHvEcWuBRk3p7u2QAgfZKss0y96C6NAEqLumtbEXVmg5Pv7Z62OWn/KLTXjSVGmvojce9fFekPwvlpCnBWS4/9d7EUrQcIkDgEncXyAFH/QCC4succJEN8QNTBLYN0HkFOG5o8fxUVUpXXo+3IKe1etIc+jc6PQd7xoOIdyYmEmdBKQe9/QXJscA69HunKjiKm8u2GdLAfYhEsG6VtFqTPaAJ+i6XGJevgcRk6TwZbQi+k+zmYNpoWMV1HkM7mRKSfDPvmiijicRPubNYojdIo392S7Jc7IR3Ny0iGfYQcIBQ6j+yatxfPC6XVK9AojdIojdIobbMkm+rayMv4JRO+07Q4WyLlzsPkKCYdjZPCAQV5qD9D9C4fjpQ7D5AFJgVA1KLAqIRm8HrzKTjeQsrfG4lRQdoRlb/rICXUVARumkSiKERKz6VzvvU2URHWDxlZmrB0eUgpfTBSbOQZXJ7ARb+ya3sSlfUeJBXqu4T104cmsLSG0b4LUlj+wvpyFSLwZBBS9pWkAMvjJXdtJWvTeMyQQ1bRuCFSfLyLFN4P4ABX5CjzyfHOtnEKgKgj0/cr1dPdG4CUjp8Cf/Z94/7vj5Rea5NVqqZAqIWR0rTJeGoxux6MbMsgQ9TT1v47gJHl6m7XRyFl2Y7Ic/VdBDTrlfRZVxu7X+f1WQHtQ5HSaR13LczNNdH8D6nKZnk357Q9XD/Pxn4Bf909twqJQaTMuA1GoLwx9rsPUgK/iYwu5yXP98CFjze+WwGtCxvn1PUOoxUiTHij0sXISFrifYmMAN+gqG8+XO2hwC/t/xURaOuPbpzCHFgOrU95qTXWaQs0y/BTP+Onk1J+sv9fQ2vM28i47xVgoV+DAXMJpHg9lxidrAsC0Y1FBo0UaOGNM3WNrJfD276dJ5EPiNoOKc6bEGioUoSlAxAYuB9xnm+ODsIfItDC8WjeT6NylLV+bpxXMBrNHvuE5kJEj84QweVABGL4Bpt7SKE52q4fVdTugu+FtvdEoI0vEUhmXSSnHGZ8d2S5ujbnXrVjb326QHJ/d+P1Qa5Pzkb7zAxcWtB60vT9R4xaNgntnd7A7o3D2yLQVRMy6lTsPySXvVZmbiyHi9BQ5dgcT5ShfOSPsD8thoD2VRmGkCw6DaWaXDW51xetM03Wl1PQ3nN8ubq2IZq7GM3TkAy2BQItNAF7u+fGoHn1CllQcXskAzUhQ9XrSO4d7J5ZmRrsJQgEMxNFqxqJvMTHYqmVkRFyLav/MwgIeGjafrLzaV0kR52M5Iowf1YkAqyHW9/sb9/bzLc/p56jrU8fQYabd9F6upHdX9jGcAZwe5VriZ+HsyWfVDGvtkNrxgSkTJ0FNrL+fp+CSKVFfYzk0nE2JkH28zL/f7DUYwmdg42nDqwHTfu9o43Tr5Dx7b8IpOGB+H2ND2YgI/RJ5dpfq5KM/WpoPn+fGBFjGfIBUSsjAN73U1oJzT5on+/r+rA3mlt5wKUNKAWl5Z3H60LXru+C1vWNC/psbWLUycKIS8m3n0HywfXuupfXXgH+2MyxCzLJAVbfy7DU2tYXI9GalwsgS2gV8egmrr+HoyhW49AZ+qC0Li3Es0HHEwzVnZBzz9/RnNzDri+G9vBvrF2FEXIQkLTJ+tA7Suxq3/qAmFJpFig05YG0H2pBl6yeaSMb7yMxnQ9Z/YbXmZVE68wbJwR0/xKdGZa1cgjSmz1IdProjwC2N+MiHbbk2H/XSrJGrIr2zo3dmHRG8nIeIKo3leX8AJj0kV+/AH6JwHXhrLhlQf1aymlyfySTXY30hb+zev06zCuiTnM80n9W40SxNYqI8zxKAxzmWYhO3oTWlXPRfjeVFtqbG6UufOR5/0W0b94JLOLvo6j6X9s6+D3kyPE+zuGnLa17JA5a6Cz1LpI5D0/uLUMERJV1PG6URmmU7yCocxMAACAASURBVEZJ1s6dkN12Cln7Ylg/50e653EYYHleK61egUZplEZplEZp2wUp8iegdBNXI6V4E3Bl8lyIRPNCuqkiJdB6SHl8LzI0fIMUYF6JcCBS7N2PS7tDaThlD2zyxvs+yIA+Dinx9yMax9u795ZEgKfDvPLAntnS2nExsIS7dwzwkv3fwdF5HinKxiJF9Nu41GhO6OiNwvlvldPH29k3n8W82pN2LokMWaPTd1uQDza3w2Z3ZAT7DdGQNZJojDyuGTR/iA6uUzHPeqTc8J73vYDFyXqM5ikKd0EekX8CTk3uLUEERP3fHPTBAKRgbALOKeLP5J0ib8FtkBHrG2Jqxw5p25ASrGLaFKRsewB5zQXvoUvQfLoES1eIPLNHoTk9qhlt38ja/ZOcexsjYXtIM+jthfNmTNrYB3np7lMw1l7Yb298dJP9XgmtAVcgpfC/0vHKo4UU2YGfh2ERtez3psgAcX1On1+GImP1Suo10sb2cAQknITARXshD7fj3HcvQ2vjRUTjVje0Pk0gSXFg9+Z6mhX4v7fx63MkxmRkPHsVRbPZO3kv9Ks38Kxs47NXmEf2t4u1xafSK4wGU+9i9Qwerd6Y7QFRK7vrOwP7VqC5uL07E3goudcBKY5vRcb3ycarPspLHqh0T+RV/n20XrSfnbFP6rIvOpR/gfayC4jK8RORAfIRZOC7zb5VGAWwwrc8IOos65svETDjevL35xQQsQtaB7pVWwcKDG85fbqQu34cmmfBYNgVAUX3wQE2C75RE5oFbVkDKWLfQ4aLnd09v1ZvjQMgVUH3GKS8Xt/PVft/SRQFsWy64gK6B9g8eAAYkNxbBQGqS9KU5tBZHhm8TycbMXI9BKwIBv1ByAN+CA6IRP5+1VZodkHg6V/jAHbIsP4Gbk+0690xIHcOb25hf/dBa/lTZKNrXMGcrSeLIpDVhWRlw5eNX1dOnu9Idi7ntX8UMtCFKLQB0BWiIS2FItg12f3PqBCtE8lNE1CUquD4sanRuBsDKSFA1I/s+nYV5v2W6Oy0tqM3lWbIJwU0z0TGRA8YO9Lq9JA9swECbhVGm0no9kZyfIja0A4BYcajM1YY+y5IVrqFUqB6SJk8vI40uxkvnkkEUW6MeP9TSlM6boKLIprHT/UoCNy3DwKVBnnVO1EEQNSO7p2eFWgOR3vzJOL5e0PX1yGS0+9THvJtp/Q8Xhe67v6axpvnUrrf9kTn7R/TjBSG1r+Po/3z2OReD7TmXMNspJNAYPCTkazzDgLCPIJkk1Nznk/nazkenYSLzG335iPrrNOiRmEU1WMyAqWNRrqhDxCA45829sG43RsBkmYikKx3fkjHNkRku5JS4NKTaF/Zuky92tWZ7kgb48+IepHA916/4XVmFVOXoLX8cUoN5tuh88/Pk+sVI143yhzz+M7J75HGJ1NsTD4G9nRjvy2Spf5DTrpNXCpGdy3ICDujfacX0mfd4O55h4DdatnGZvTFSkjWO42sTDYeAZX6uWtLIl1pWZ2mzdH5EYjsS+BVd8+foc+0NWUC2mcOc/faHO9Tuva3uTbUqB9WtXn0MgJEnYiLFmzP/JEok39BFRH058aCsgv8HpdBA+2d/7b2nUNphMtl0H5aqHtPealRGqVR5q2SIzN4uXZHkzdeAnZw13ui6JHTSHQ781Jp9Qo0SqM0SqM0StstyCA2GRlrg9fx8ij0fhNwWfL8tpSmIwsKzW7E9GdfoVRIs6J1uOcPQsrne3EeuRXq6Tf+JVA45YeQAnZ/oHtenYquIQPTN0jxGDy7TgReDPUlevgtioBVZyAAQWG6PaIhfA9KFVc7W5/+BWcIcv3Xvaj9LcwTAxGAaQ93bVtk7PoDifd1AQ3f18fYOD2OGTGtf1NFZWFaQKSsnIaMS/9BSpM0PdISSKH5IS46QgVe6om8Vru58V4FAaI+xwGDKFCO59XX3dsSKcO/IhoKw5xon9IoooUM9xchhdPa7nondLieSAQC3G91PzWHvp+H3XCR1ezvpVbXQ4jpl7oiA+a7wLrN4KMlbMw/Tvi9GzKifEiiaMyhsSZS+C+OUot1RcaKm4ngr43QGvYeCYDT95P7fwHrq8nAGu7aj5GB5HajuQFKtTkdp3hzdIYTlaBroLkxFQEBRtv1wFMd7f5E5AV3AQKFTKHY4DjX0yQ7l/qhuTOQaMjZwt59EItmYH29LzLwZAyYab+6ewPQ2nlw+C5xHnVC/H5eXptbqgCboX3tR+QDos6yNvwCSzuWvF+oDEX7zyc2ZrmARJSuYwkqpB1DnpVTkSFxM3e92fzk3t0erRvXIODOb5FR7GliqqzN0Fr1N6T026Watpf5pgdEnYsiRj7k+r59Hl0EiPiCCIa4hwrpf3N4fQwuemZRn9q9kH72Twh8dRxae/aZnXFqLs2k3l2IQIJw3wOifMSR7bD51pxxQmCd15G8MDD59nD7VgkYpMoxP4Lohb6eXeuFDFRTqCLlIALCTcIiIKJ164/GrzNQJI5cD7oyvDHX0bRx7ZdcXxDtuye7a/eQTV+5Kc5RIa0nca/w8stwIiBqq/AcAmk2ey+x3wOMp/dN6vo+cd9ejWyas3Iy5BAM4GO0lydGC7mLbCrjvRAQ0af0LgKpH4GUkD5S6H1oDgQwU1f7uxgVZCi0Pk1Ea2mIetOLZsonOTRnIhDNBLRWP0Vcm/8POX18aTz3JAVRVsmuJ3uhNfdda++PEaCkPTLkvo+AAOci54oZuChjCb92qyVNoxVo7opkkAdxETrsu+sRAVG559Gisa9FSfpzbRv7j4Df+m+TBUR9gAzNexTRctf2tD76KVKaH0WMWutTIp6F5ttfqqx3XejmfOcC4plkAUd3uPVV1UBdR3MtlLrqI+A0u7Y80iV8hYu2Mxu0uyGnoiDrXIJLjUbOvtwMHp2U8igVzo615tHk+kI2F5vQ2nI78dy4BZKxvNNJb6RHub5SfZFMkwdc2h0BJ3KBz/WgS3aOLo+c2k5E4JAjkCw2jrhXe0BUic4sh2YAPT4I/Mvzif3fGTkqfoDk/IbxuwWKzckm4Ar7vSbaI39ic3wvosPbMfZMFxvzsUjW6pnQXN/WmaC/OBxFV/JA7g3R/jfEXdvH5tpjVKGDq1N/DEbyw2B3LciPYc3vQzN0mm79WgnJJE3Aj9x9f4aeH4HKWyzqc5360c/9IUiWeQBFxF6jtevXwn3Rn+goezvaf0+iFBA6HEsT31bHHjkZhGixQTbtaOvKE7a+b5qu7yhC4O/y5n3CS4vhItKl95tZ18Ye0yiN0ooFOaP5zArlAFEhZd4sQBQCUU4L6+u8Wlq9Ao3SKI3SKI3Sdosd2qfiohXZ9SWJEXLOL3i3HfIQephoINmEmLbjr2SVTT7awAFIqfAEOamyAn33/yzDt7u2IAKHTLSDUjA47IS8qHpUaPtpxAhRCyJl7t+a0XdFCsJuyCu+CTg7uReUK3+lwCjS2ocQYhSrXe13exSq+EbM871KOl6ZdzxSFj5IBERVY1htjxSLv0RGkY7I+H0CBrLI4du3KPBGS3hqb6RYmoCUTL8iKiUHGv9/gaVIrILeIARa2ots2o3BSPH+FbB5tW137/dCILApyBAUPG3DYboDMmbdhhTSN5I1ILYP77hreyKQ1nvGi0cjoNGCyGD5LYog8XPj5WnMRkhyFLHiRWSI+xFSIF+KDHiVABYHWP97g+TKSEnogRQ7IyXCQ+m4U+phNtD+bowMNx8QFTF9EHDvY2KkmXfJHkbKAd+OIa59J7jrYV3qgIAi9yMjzL04sEEeT7QhmvuhORRAJi8SlT7DkGJ4MvKA+6f1b0VPeXd9YTRXXyILrGtn916nDACyJQpal/5hbT2FCMrxqbzeQYrz35KkPquCv4aivfqvOIUpbl+tRAtFkRqL5uJ87npIFRXG/oFmjH0f5PF4PtkoBYfauNyNRWA0+oUesXn0K/R5ULovgBTKn6J1cFaqFLJr9HLW/mORMWNHNM+fIatkLRdhJURSOaJCn/o6nG1j/xVaX8qupbWimdR7DwTSGIdkth8SDZfbor3gaeub4WgPaFYKQ/eto63+41DEiFFW3+m4qF1zQLvJxvq3aJ96Fzi9yvcHIC/ku5Gh/Q20b+6JQL8TiQbyqvhxbqOJ5JAQUaWPu94VKcx+Yb/vtr4L4KIlUMTGwylYV5Lv+PnuAVEBxNMRyX7N2Uu2RuvEAGT8D3LoPUldV0YyWm7amJw14mokI6QpJ/e1vir0Ni83Zgig84b7fS+aS6GemyJAxHyVaKK9MqRHWyy5txjau8dTQT4hO+97G9+MQWt1dyT7vm7XAzhyKQRmXhlLdVqu7WjP/wqdn36CQDEz0BrTF61RR9jvT1EEzyPTurYAzXZIDg1RXA7OeWZddJacQkEa+FoXkvll49LF+OlzNPdDVJAUELWs9VNu2nJHcwEkN12KM8qjOfoO2chXCxqflvRPS9Et+NayCPz6rY3RjWjNn8ocRIhA0ageJwJ5nkey6Q/dMzvOAf2OKT+6cbwAB96fW3k01M39vxwCZm1EjPrZDukMfFTCTgho+gIOrOr43Edu2sb643dIJ7OE66ci4NJyVdS1ZnTd/cE2TreQjYKzD9pX3yYCojpSxnjlrh2IzuIdkAw9OdAmG1X9VLQf5urLGqUuvN8fyQ2T0J60NdITeTBOP6Qj+ZqYZrETchAZkdBrh/QVXyF5OMiyPyCrHw0yyVr2uwNy4LyYVkx1gxw0viBGpL2PrEy2Ljp/LZu8V+L0WEB/BVsz3gEOcddz02qWo9UWivXnRCQz/gGB5x4lcX6Z1wtZJ80/UQCISt6pJ0C9MCrk7PBc+g7S5fwFAy4RAVHPI/31xmn7qBz9cz/bgz5HstkIou6pWXUmypkdKUi/3SiN0ij1LSbzNQGXumvVAKJeRDq+WRlZ5uXS6hVolEZplEZplLZR8gRiIvAlHLpnKfBQFJGZdv/inHc7o2g1IcVeR6TM3QIpjCaZwO89pr3h8zAK8mAnG/xQFE3jIaR8Xcnd602MEHUOMZR0VQY3ZBAMgKjbkTLyeJRy5jKUouMCpPxqDhBoaXu3Cfhpcm9XZBB/iBwP/LmhoAP5O8gYcSFSwHrlRFWHq2S8xyDj6P3AKtXwqfFYRxsP7yXXCxmGplIKiKrGG21f4+0rkHHlCqvb+8RoSSsixftMCgCBjt4oFLllnD0/CbjE3d8UHVCnUsF4V0B/HaQsKZu+D2ecDP1v43cXEYS2O1Lc3W58/yxSwvwBAfm6IGXxqwgs9DeyIckrjn0yhlsiT+BPkaL3USqn8VrI6ncKWTDAWtYHI0N7bfwuJgE/oqgR5xONqQciQ+JApJTcGIFzPiQCotojo+NoFI2nJIJbUVuBg43H/4QUEse7Z9JxWpgssDNVfLQJmnZtL6S8uggZBU5FSp1JWOQvZEAJRvHrcOkbXb38+C+ODC+rJXN2IgIDBVDhgsjL9nNmM9pMLYrj4R5ovrxvvOvTWKyMjHhXAt+vMGdWQnN+26T/d0aAknsxT9xq56Q9tycCJZSETM7hlwWqGPvdEaD5GWLULv/OyWjNG1Kunmg99++tRA5YrELfhygUnwCP5Dy3jvH+bWRTzg1CCv5ncSlSCvjyaGSUPaA5fYrWm9WRMWX9cn1aD5oIqDITGdp/RATBPI7tl0hue8Xm0mScUbi588D+3x/N96+MZ/+NA1cVtb3K7xyC9oGQnmyTCu3fkxjFL+xv/0JGyAtcny6GQEe5cmlbookA5N8iubivXQvRmsYZ3feI0YE6WL++RhVpDBG47mKyc6kkQlSZOV40Tk1oT5kfRb+6F6357xKjV3VEgK3nSRw5ytT3b8Dj/vuuP39t9CvK+CTrgvXZJ0ieuNPoBHkipPG8mQTclEO3A5KT/ooDr+MAnUT55ACqkE/smSOtD5dx1zshx5UPgbsqtTHn/jLW96eTBcO8atdTY+hCOLm8oK41p+nuzYeM0x8iwMsKOc+sb985pIhOrYp9a0/ivDwYgRDbIxn8MrRe30Rcn2cZqAJvVfGdJZActr+7djfZSHDfwwArZMEX5YzWdaFb5nsLI3D1E2iPuhkHNCg39hXorokA7O+SnCHQuSVjiJjNb6SG0PkQoCJNyzhX8WjOt0cggPMU65exZCMMhrW0Hzo/fUGZCDZIfhll9B5Bsshk5PBwoOPzY4hRR1dIaRTQrjldpGt639r+BKXpjPaxb7yBOboV0PHy5Po23qcgeTv8fjLhxS7oLPtPKuwjjVIzfg974BIo1cyn6Px5i133AI4BCFz8e6JTUS4ACMk1/4d0MF8jB7F0jehpvPQ0ctI8w+bTyHI8Wq8+cL+XQ+e5c1CU0neJuuMu6Hz0T3IiH+f0w7pIF3osAmEHUPYAZMx9k6zOsU1FAaqib4eh88sP7Pcith5NsHHfpDXr1wr9kQeIOoEygKgWqMdwm3snMQfA6JxvnEN03OofvovkkRfQuWejPJ4nXy8xFDmsXmnryUtorzqJ6JRXrY4o7I/zI5n0Ygz82CiN0igtV9CZ+Aokv17urqeAKL9mDUMy5CS+I1EGW70CjdIojdIojdK2CvIa397+74eUzX8heqMFpesgpHi7CikBSg4DJjD/GIEM/kSMMNEFoZQnIeW+B0RtizPe2bUipdZIpAS4GSkQX7GN3hvJeyJF7DRkQDyhij7wB4kAiPoYefb90w6j/0YGo38wG9EMkKf1xUb7vOTebna9bJqwVuCNoNBc1nhiMlJKlBjvm0vT/v++8crTJFF7ct4LkSyesoPdqOR+D6R8mQw8VjTGCEDgPd0XRwfOs8kaXV5Cyp2V3bVVUBj0w8vUcyjy0j8RAaj6I4NOE9nIO5sYPzUhBVtZRWnOvUFEJcEYd90DGNulNIjeBTehNBxXW/1CZKluCPT2IXA58fC8CDJg+rRb/SvVM2/cw7vIkLdw0TN2bQiKSPUSSfQ0q89tSCF3hdX3S5zS3fXFmgjg8BoyLjUhw+As5QAyYD5jbS/MqZ3Tp+XGaQ2r4xfJ+LfDvIYL+LRN0EyeWxAZBi4nG+Z/AAJCTACWTN7xa2/e+O9rYxJAGQ8RjQuHoDk6BXnJP271bzZwY3ZLUv/eKGLFAsQoDj2R4f094Aw3Rw9AEZfKeskio9NbaO+chjx99iamsd2BmDK0qjzwjh9Ow3mXp/2PgILLl2tzcn0zm1dNwFnuujd+TsDSTBTQWB3tk8PcGI+lQKFeQMOnzLsMuCOnXdPQXva7tJ5Why/QvuRBt3lAqIOa2aerYetmXp1nc5yaQ3NZZKg5g+x+9y4yOnjZbABaE79XjmY1Y2H/d7O+X45sJIU5NmwQAVEX49Jt5jy3AJp3TVi6ImKESb+3dUcArnEkQJ62RJOsYuxKYoSoIN8HIFUTcJxdWxylr56KGWcq1LUDMbLqeWQBUfuhM8XTwBYFcylv3VsERfE4hZhCZickLzYFWtZPIbJsbso197+PXPVrdD5YPPStuxdAlLkyabm623wZT0zVu4Jd74zOLx9SIYKPG9fXgGvLPJNrCC/oz77AcwiI+CZxf+rg6nc+kq2XrVC3tM1rIMcRn1bzXrRuh3Q5JfuIp1UPmsm1HYz/g3GnKwVnUvfOouXqShLda3aLzZGvjde/b/x9NHE/6obO3R8igFwKiGrn6pSbdi3wCzK6hSiGaXS1EHVpTwqiIdSL7mz2Ww/rGy9fzNFegozyjyEDpHf6WAzpBmYCl9Wo/mHMwjgOm1MebYmCQAszkK5nMDrz3m18e657bkukN6gYURelAhuPDN5hve9rNG8gu+eFSE6bV1HXetFthwzUj6Pzx9CUtxGI93Ubv0Xz2u2eHYCiV91MlO1DZNaP0R69rfHI0Wgdn61InY3SbH5P96alELh8IvBPd92vQ3egc2vFSL1obwrnpksSnmxvvLaV0fsKyRVj5rRds9P25F4P5PQ0zeZAiPjbHQEQJ1FGV+bojEbnwvdsXZmA9FLL2/0VkY7uNeD/Wpsf6tDHC6IUv+fZ79WtP69A55ppSHabJwBRVB8N159dbrH5cQaJk2cd6+nn6B/ReeEl5BQ6Be3VuVHKZoP+6WifvJMIGu+A9LzPILk8d19K6PRB58GziPLj/Ogs+QHZKOVl9bZEWbKHtfthBNTv1ty2NkqjNMrsF6IttT86C35BGUCUXQty5EZUiHI6L5VWr0CjNEqjNEqjzP2FqIRbwg5aPiXMqSb0X0sEO3RDxpE7kbJwEi6Puz0TBOf5UUqD8SjyRdjEvWLvPqTUGWEHnIqejShq1Xii58yKJhBMs79rJM+vg0W/SernDw4drV5pioIQUeps7ICf9l36f5X9Xg4QVdYAMTcUlHbOp1mZXQ9cbyA9jYI0du6Z3ZGS5G92qJuJQBEDk+fmJyo0d82hcx0yUi3r+GGg8aQ3et+FjIvBq3ltIlgoN0KJm1PX2Pvem/9+pMxcK3lnK8zQWUTP/t8AeSUdjyJ/dHT1CgAWD4gqOy7EcOy/RgftELHHK+Gvtfk2KGlf+HuMfXfD2ZkLOf3WDinX+7nfXRAIcTqKTNbV19P+38jGdTxSGB1b5lsb2Lg2Ade4696oFABR44hejuUUgn6cBiBv3h3JGl7XdOP0A/vOHghMsX1bpZnzjYWRAfOUpF/bI/Df50jZm0lXVobe3miuX4QiAZyKjFTvA0Ptma2RguxxpDzcu9p5MKcl6dO9EVDzc+uD3wKb2r2eaE2YgBS6dxpPlwXqIqPTdKTA2g4pSR9BIIX9yBrRvkVA3aq99pBxxUdW88rHRdAacHA1/UhcT9dBe/KHuOhcNuZ9bfzOKLMOLIYAX2ONV75Ba03FNF2eluubA21M+ibjdabx1kTcGkdcA1dDe87bJOAaBKL8hgiE8kaQavs0T3mRiYJYa5r2ewME9PCpW0NqubDfrUKOwrkaPqg0T3LGu2Ye7cYn36A9eKUyz61nbW7CIi8ldVoNrX9fUiF9a1ugSVbeCimbz8WAqShK3RtI7n8LgeLG4kD/lcYJGcBOQOvQBZQCov6DDFrVRJna3Wj8A1tD7fqCaB+YZLT+jIAXH5ONSpLnLb0NkjU3s9+D0Ny/O/l2ZxQ983G0nxUCn9G8vND6dAwGjiFGtHoS7Z+D0R41Ja+eBX0wn9XhQXJAWSha3s9J0k5V6NddEWi4Cdgr8AZx7Q4R41avkt5mCAC8mY370nY9TZezKgL+56YCbwGanZAx7TPrs7DGp046hem20L42mJhKdCTalytGnq2yL09Dhu5vcOneXF27IQP8R8gRqPC7CY+uSgT89UIyymNIjnifmCq6A4qq+iJJlKJ6061B39U0KgrScTyC9v4xxPWkJzpffgX8jGbsh5XqWAserUff5nynC5JlbyObHmx5ZKSZgYE9gc2RY81u7rmiCLXHoDXdp6m7Dc35IJ/5yKplvdzrRTf5RkckT72KjMXrpOOA1on9KtAZQExV/sfkXmcEFnnanpmOZOgT0rY2St15vw8RSLAUEVx+bfJcN+Oxv5BEqC6guzSSGU5Be95F5JzjiOmCfVTHeqYH8+v9lgiwcb2tiUGvuyY6685EgJ7T0HlkMnBqHq3kG9shueg4LLUmkv2a0DoYdD4r2Dz7BJeCc14pCNC/LZI5X0U6rSBPXmz9+xywbWvXdQ7aWDEKcs47/qx7Py4NcgvW+6dI/zgY7X+dUXaKWY4qVdIp60SJdBJ5gKi17PujkufT6PfboPPbfzGHUCIgqof13we4CFFV1LkLOofdj5yYglzSiTkAgjVKozRK+YJ0AGNsP72JKK8ujmTtz3GOpWQjbS+PMpmcW7T3zqul1SvQKI1S60lHDb3IWqLO1Qp4zaDXlTrni65V++vQ9rqMfb36dG7nfQQ0OCC5trRtqGsm1y9FYIC3UZSPP9ph7Fi7/1+SdG++zpQHRO2AvEin2rdPLaivP4j3QAfj8+33asgAdA2KqvQRUhbmplsj3ziyMwKDvIa8kHZJ3gnRfC7FFJBkDQezC/7wgKgLc+o414V/zqvTnPJ7tTSR5/8JKNJSZyQgjkCe1LemY44U1iUKTeSl+QkxpVaIsrEmzhuUUq/mlZCSJ03zklfXzkgperW7dg/ZdBHbAntU0x92fTRSLL2GlKUfIUBYUBKFiD6f4rxvK/U50QM9NbSGubqQ3cv1PrUxeAEZUTeYU55AQI+XKY0StxgxQsZFJOlB7P+u9lxutBE3t1axfvoAKZx2dc+EQ37w+P0PAnUsUqbOfj3Zz8YopE74OzJihPViTaJ32wtIAXh6W6VZ0B8LIAOzz2nux+l54PYy73tQ2qLImHwx2dSIyyKA3BtkPWhTQGuLraMoetVXKApRSNP4HgIUhJRw3dGcuwNFdBvt3s+LstUDKcWuwgEwkQf+Gzigr13flWZ6zVof34vAb0Pd9fmQYfwjmqfsCzy0IZIXngX2sWt9rJ9m5NGkNA3IeKNxFc3wREx4/RSkVF7F+nTp5NkT0By/lZg21AOi1sRFh7Brw21uHGi/hyFZZzUkH8xWnyb1rgnNhP5Ao7UlMrgHY3W6362B5KGyUcZSnq3hXJpTueKoMD4588rvCWtb25vIGmu/Z3PsZVykIQrkvrmdpvvrjQpXURohqifa0882nto4rz5F9bTf3ZGiPQ8QNcL4dO88WgmdIB9/AwxO7nU2Xv4lSp17OrBDuboSoxT8EgNj2dw5Ds3/R1AEyi2IUTeOqFDHUWjNfwGdlUKkuQAO3wNFSfwUARwew63PRX2afOM8tAbuTtZg3wnx+RMk+0ClOYWMj8+htcSDVTsjY8xYYMUqaO6P5OndECDzLbSv3U0WSB5SFz8FrN0KNAP/90aRYN5HINsUbDIBOViUtB2tmyfbWO6M0ho1odTutdKf7Gg0QyrLxdw9D4i6wnj5FnIAwslY74tkvdsx4zoCqIR098Pt2iLGz7nR1epFN6/vfVeNPAAAIABJREFUoPSs3sx+rAlNBGx5DZ05wvvronn3MkmK8mbMvyMpAK7OCY+2VEHAt/eAi+x3B9c/qyNZ4gY3b/y61d7/TeheAbzifge5JJybt0byXJqOrn3e/7Wim4zdAsgQNT/xnBwAUW9g0YuL+CyvfnZ9URR1bDySmZdM64D21u2QbL1aJZqNUnO+H2LzcnsiwCCkzJuJ1uPlEYD9IHTOOawCzV1welQkgwX56WJcSjBcmlF3raUAkCORDBNSFH+AosSEflgZRTB6CulNbgD2de/n6vpsfbgU6YgXdffuRGvvavY76LoGeLrzQknHEMkBb9o6Evr3dFsb3sNA7G2tIFDqZLLRFpsNiGqFencGHkVRU0NEzqWQLHgjVUQHdet40G8NRXLFHTZvPEjMA6L6h/dIwJHoLHMFWQDETjZvppONxOgjRN2HZOwzq+l/W8/eQM4JYZ8fYt//GzGN+3cKcNEojVLPgvS/zyMnkjds7Zwa9j9ihKgUENUe6chvQ/qTeQ44XLHvWrsCjdK2Si0FDJuAnXDGyBrQnB+hIQ+iRmEZTbBZBSG8fYSTmhj2Sbz15oSutf9F4L4a9mnN21/Httd07OvVp452retZs/bb5vg8OtD6yBkDTfAOBhFvuB6BPH4+QMaCQ+z61sjgPaLcGNtmfiYJIMru9UMH7ME5fJQeDsNBeCRSCPRGBojridF6fk70mitJ6ZRTtxEmRNyAjI7PIEXj6OS5k43u1Sl/z+F4LElM1bXRnK4/VX6zlqDPdqHUql7kRItBRuGn0AFvj+TevggQ9UcKDEJkFaWjUQSBgTb+3yJl1lLI0HIDMZ1VUJR2QgazJ6k+BdWdCGDSwf73huZFELjw7Gr4CXn6TAaOJXoKHWN8c517bg37VhPyIio3L71RNKQWegIHILOxXR4d+AujtiEj3XMIHNksQFTOWHcipjHYGheNBXnLPYKizRxPXCsqhqDPubcmAmQ+jwBR3sDs+2YDqlS8oahA09B6sQgymDWhdWU3x+Mr2/hdg0uVQ76ycK6lWdS/xvNXoEPb3sm9HjaGl6Q0yDFmIwPBZ+QYjpBBYAYuJUdrFQTCex55CvrUgGFuPEdU6ob+9eCuIgNJd7Qune2updExvkcSubA5c9Ce3Qalgg3A3zORomtaXt9XQS+M30Y2Rk1Icf44MhblgfXOQwbGTsZDy9p7E9HaMhQHVizz7dToOAvMiZTLJVEokaL5M+APZAFRJcYxuz4rmh8y9E6wdzd0zw5Ba2qz+7RONA9EipEN0f4wHfgR8lxP97vjkSdoCbA86d8e9nyvZvJHobG6VnQpBdBsg+0nUAg02iHMTQScLpsacG6mmfRFHytpdLOrSSJEVTtedn1n49X03DcfUW4+h2yEzMJoXf5baJ6dQkznu2S5Nlbo0yEI+HMcCbAZGbdHIWXj12guvUOFiFhEReUYLHoUUVb9AItCYv2+JFrPyqYDzmsHMb3FRLQfL4kiJBwd2jSb82Mo2vObULTFY+zvFKpIv4MAAH+3MeqB1safoHX0SwyghIATAcxf1qO/HjQd7QBcWND46T0ENgnGqS4ITFyYqty+exc6NzZRRfrIasfDfi+NZLALjf5ZZNN5h7p2Q048B1egvy8y0p+ARQEkzq8d0B7wKjL0PYpk64pRy2pFN+HH/ijS80BywDPN6MNa0PTgHg9IOwAZEf+EInP918bpkmbMuwDUPaDM872NR/MAUWV5tCUKWuseQ2finnbN643+ALxCjpEYnSn9WGxPBP4caXy1DDrTv0+Uc+ez+fBnnN6yBej6sdsTyUUTkQ7xXCIQ0AOinkcG5KL5U3S9HwLCBAeAik535e41Ss35flkEFH4VyRQBYLAkMULUBOONP1FZhuiO0gB/RTaleC8iIOpCJPuFSJO71bONBe3ewXj+ePu9FpITmozXMylKkeyeC1AkWXvRWvsv4M/u2n1ofw5zdCO07nVJ3p0nQYBI19dE1Ht3trXmMNpwqiMktz6PdLmzA4hq19x3alTvfkiPEewfKyMw+h+I4KgTcTqs5P3TEXg+rBejjd5LVmYi575R7p2fIEf0+0gyRmDOWkgeCanCfXT3bW2NmohzkCIbIeoJzJmrivZvZfy4NooGer79/ofV+yucnqJRGqVR5qzYHH0bRWNbHcn+g5Ee9TNgBXsugLE/x1J3I7D+HejMPKi129Iq/dfaFWiUub8gAXw/93uOhQqksLuKmCLkApqpyM6h2QMdqB9Hiro5DsdoNP9qi0wTMlKNqFH7r0CKvCdQBJ5V3f1mH1iRh8gbSLH0TZGg1drtr1Pbaz72dezT7kh5eysyLB1Uo3GqR/sHI8X6p0R08SZIqd6PqHxJjYAh72w75P05DimV/OFkEDIGHI4Uzj7XdC4gKvlGeD6kbgqpCA7F0iq5Z7dBSgmfPuMQ4+dXqRAdAwEtPiCm2+uLDvfvokNOGj3rLCzkbC0LUn5vWmu6Bd/yY7Uh8sD+ETIQL5I+UwWNTvWgmXP/RBurL7Dw0GSV1fsiA9YdOG/Jgm8NQ8rsp9AB9EjHdz9Aa+JUYJhd600EzR1ZVO+c75yODqIvI6XO8q7eByIlelXKbBSe+e9YOgq79lejvY6vCzqsDivXxwXfCKCBWzHDKjISjkBr5ZCcd/x83INmAqKScR+Ki0yHDIjjkXfcEu76ougA/h4yQhZ6GefVIX3O+OEFSiNE7ZAz3oVyElIQ/BtLW4AOL5ORovMjDMhXpp55Bty5lmYydisiI8AOxDV7TfvOWKICqR9aH6bgopC5ccgYldBc6Y/m3pl2raOrQyekdP5DNfOongVFjvsSk6vJGoYOQmvNSN936d8Cuosar4eUg6mSuC+SOXK9j8vRzhnH9ZHi/X20Rv4NBxrKG/sKtMPz66H1+Uu0lg/Mo4k8pINhNaShGICMXC+jtWWWR7aj0bGgPUchY8IB7tqKyHt7BqV7/Ok2F35LQXTJ9DsIDDIVKa/75jy3GpJdPijXp8k7NaGZ9EU/BKQ5FUtrQ1Rofg5sYtd6oTX/M+DwCvyyu9F8DYEqRuO82KvkuY1R2P1a092EbCTPvmg/eQPbT8juX4OJxp09cujlGbLaCs390N78ib17DbClux+MeGfhZIwq+rsDAjrMRDLYfMn9xWwcQ5SbFIRUVaQWJP/kAUOqNqAQz6eLJdfTqBt7oshQg8p9B3lfn4rOUisnfbIW8Do6u+UCNSq1Oed7/VEEniYE2PoU7ddVpzAsmCfboX16JjLiHokD2BTRRIDqM9F5bi13fQEEEvkAASXOsXp/QoV0OXWiuSNZXVcARPVG6/xnSFcVQEZdKTU8XYmLPEV0HpiCZPn5yvVVleOwNTrneln3Z8Q07d5pbT3cWb1M25dFhrazSYDXjg/XRLqLWxBQ0KcJL5IBa04XyYWvo7N3E1o39mlmHx5MFlBfC5qHADva/2ugeXcKUR+ygvFsSOdUCeR7FNI7HeiubYOAo2cjw0aQfYoAUSU8Wq9SjqfRujwFnZuD3B+imd4N3Jy+j+TZG4Df2u/RuKjEjremo/keUjB2QYDVDzE5uiXoJt8YjnQQFyNZ+U/Es9Oi9kxHuzcWyemL5tDx/LAkkkm9089iaG/5BjlNtVpElEbJjFuQFZZGutk3yQKilrDxGo/OaZ3TdwvoroBS4HyGc+xBsvgJxscf2Vz7USu0e2HkdHqu/V4dneWuIzrlPY6LkpbXZrSeecDGqkjP09HWi/uQ/HSvzZ2QDmghBPw9Awd2nJcLkiHHo7P9EOScMhkXEYpmyhutXRx/LI3OdRk9fbk50tptRvva0ygK1FpIDriFuO+thuTWQ3L4vhNywJ2I9pplUGTHY7HzCJJTH0H2h13cu2ehPacIZBXkrV2RrODPR9sh3eYrZHWbYb0qciLNk8+6IZ1zE9LDvIPO6R3R+X0idbCPNEqjfBeLzbd30Xl38eTePjYPj3TXPCDqRgTSnMJ3FAj1v//9rwGGapTyBXnBPG+T6Xh3fbYBUejw+yryFLqCGH6/qrQqBTQ7mVD8N6QIbHb0h5xnu2MRgdDBdgsUgv0x5uDAicBAryEg0G+QEuAbu3bEbNa1pwkcDyBD8QTg9zZ+sxs6vObtr1Pbaz72dezTHtanTwMPIpBFE/DDuYz3U4PKQ0ig3x4ZGz9BQm3Ggwcpi4J3SnfkrfAC8Lvkuf2RAWcsUja9jQT0Xq6fzkSKvXsoBkR1QAeGmQhUFVIRHEc2YssRyCgQDF4dUWSJ88jxcCergOqOFHkhxPtAdLi/EnlAvGLfH16p31O6szvm6RjVsyBF4UQbo8/QIftmLDJEmfd8W481Hu1YR5rpeE+2sQkRLGZFpSKmLRpaRftvQ54s/wHWS+6dSkwb9msUaWkCidElqfc6yIC8O7Cuux4Oj5cjBfYKxs/TqMLz3vH1o7godkRlUeiHTZGSPRf4k9R1DeR5vn9O24Niazo6WN+LQI+FaxlZIMKeVAmIyhn3KWQNtJ2QwfFNtN74qBABEPUO8p6sCIRCaaHOQ4C5H5CN0LA90VvtOBvLmTj5qBxt+70qUsb3R+voeOBau7exte8xdJCpylt4bqWZ0Avr/pdoPX4HgX/aGb2HiQqUN9CeU5ISFUVmC9EQLkru/QrJFBv7NqE95XHg4nK8VuuS9x2k4JqMS5lCNgri28DNzaHp7l2K5uST1o9rujlyEFoTt0neWaka2gU8sigCM/dy19o3h6Z/z/6GlHkPUSE9MZqPH5MFLixNBEQNc3SHIoN0V7Kyy9EIhFECTEfGpxtJgFJ274dofb4Xl34xr8+QHHEnLh2q3TsMyTrHEuWfPnl9Wm+adm07ZMD9NzJkhL5bCBlZm6w/fm5/J1EZZLA/2kOvQtHQbrD+vA4L61+J11C6yE/JpgeoF93OZPeTADTyMsbNaA43GY9Uih4y19NEAJOZyNB+EPIk/gztddu650KE0kw60jJ97FMu3Gs8Mzx9FwFXPjHaJaD/hObmwGk29geTTa93ATnAkGoKOsM8B9xa5pncaNYFvL8Ikj+mIfmot12fJbeideQTiqOVzu55cwe0FuyNk9/IiahagY7v9+3RPv0RWRms6NzZA4Hmm6yNKyU80QMB8G5D5+LLyXqn561R9aC5CJIPMuBrsimgX8ZSDKTttT5d2fpmc3d9WyQr34/m4SgMYDqbYzoCyWG3kkSeJQJWz0RGuN2QLLRjJV5CgKSpJIa0avgkrz/rRReB72egub8DMv4+b+NSmPY14eEQbWl4HWlugeSwLZN3FidG2DsjoeH/L5FJ0H43HcnNM5EBZC/iHh8AUWON51ssDTRZMMda6EywKXFPaofWwc8RcG9BdK4YhebcqBya3dFZ/hukM/wGnYn9OfJgBFz6CO0JuyIHq6kURC2rF1137XsIWBecSJZCRuoXkd7jt2QjRG1MBSdTtF++hs5OY5HcFxzIFiICoi6lBQFRSB96EjXM8NCWCznyNTrvBUDUdkQA49JID+6j3uQCoI1Pwr3lkL5pEknaTePVk6mQBriO7e+GQFlrIaDeawgc1dHmXdBzPU8SucnRWAXpV/ey3wcjvVo4ywb93ZvorOyj1I5C6+Mu9W7r3FLQefYkJF9+jc7DJ7Z2veagPX6tXgDtz58i+cuD78vJHZ7GTjiZrIb1LFxn0Vn5Cyu3hTqhfe864/808m6Y393Ree59m0vPIV2sb9NgpJO+h2xqzPUr1Lkd2vuakKOLB84PI0a/9yCrXCA98QzTCQHuBxEzb8yHzo/DsKg0dn09tDfu1Np81iiNMi8UFAlxOtLFhwhQQfZYBZfdx60xAYzdhHQT31kg1P/+978GGKpRiottcL8yIfRJJHj7nLLNFrCRoPwYApgs665fDzwxB3VdzgSDndxkXx15jx9A1uhcFaIcKVL/jcAfYdPfxYSb3snzzfE6vTjQddeHEEO7n+afr4JmT3QoeDAINkgpNs0tjM32Qqx1++vR9nqMfR37tCsCLP0VWNGuLY4Uq9OpMqVWS/B+zrUtEeDjU6SEnYrS5LyJDI5vIeP1RGAr994gsorl9ggEMRUJ+b2NdhNS8AwnhlHvgYwjM4Hty9S3tz33FVIGlaQiQBv/hyhlwf727c/Jpv8rUUoSlRZDkEdmT+PfG1w9D7b6fwkcU02/IqPseVjI2ubMy9nhkdkt1uYvkFE1GBxCKpIrKVZm5Hm3HlJHmnugKCI93DNHI+XAw7iUU25sV6zU12h+voU80T4n8UK354YToxyeSzaFWmrAHmlt/9T4egbwE3f/z+gAPBkpul+jmSBktJ48h4zfdxsd7zV3CVrLelSgM8LefRPN7Y9w6c/smUOJnoinYqAmN9crASv2ogIgKmfcvyYnDR9aX7dH60geIOopNEfLrrNImfYxWvuvNT67HpdKE83fx9F+kAEDVKA9GlPKEFMYXoM8+hYnekq/YP06ngpe3W2I5q7G82cgBckOaD/8hhjJaDnjiZuQgbhQoYuUL8H4d5G7vqXx1ASkeG6HvFVHobnXYmkDEt4dRIz41gPJ1K9h0Y3cnOmDFOe5zgEJzVWQcmlzooy2ttGeNU+QR/lhmGd+Qu//7Nlhed9oRvtmKfHnkGY4xG+C5tcTwHaeTvLdHdAcfBPnWY8MEC+j9ft4IlD62OR7YS85yH4vbMUrGFdERos8QNS5FETaStuFgKrXIAXvusg4OAGt+ZOMn7vk9EWRAbtmNK1fOxCjwL5FBBfMSjGKAKD3IYXmFbi0oOQbr1c0fj4Vk5ns+nvkeLIV8FZY9w+rN113r9x+0hvt1T8gMXZXGK+5imZCZzHjnQuS/nwWAUpWSJ6/kQJ5N+njrY1nNrTfPdEZKACiQuSx+ZAh90Aqy2ajkDz2DDIwf43kPO/R/DN0JvhpES8U0O6CgCtP4QCW7v7yVs+Vm0FzawQCayLr9BMiDO1obSgxZCAD/C40Q99S7lm0ZswOzXTNfRI5smxTxbuDiAAQL++WpBVtRjvqQXMrG/uPyZ4NAyDq50T5fLMCGgvY313IpiztieSnyUi+6u7urZTHo5Su0XsgXcGxFMhbRJnoXXTO/klRe5P3drT3VrXfKZBmM5I1oKXpEteOK8iCDp5EMl9FMCFJtKV60LRr21u717XfHiy0gT3fhDkXJLRTmSTI239FTl/9URTMB5HubDRZQFTw9K57FGlctDP7PRKt7QGAey+wtWvH3cRoheOx6FkVvvFbe/5pYnSNNNLwX6wvJlq/VIwiUke6hyIgZnskp3yGdATdkENlE5Ing24xV45213ZAuoLLjPZFaO19g3i274sAEU3A9fUed1e3H9o3L6GZwON5raCz61/IRioMsvOySKb+DzqXBqfR+d2zeXywGyYXUAqIuhGt8acn9WiXfr/O7U73qRD9cAQ6J6zu7p2GZMppuCiMyfu9kJ3oU5s3X+MyHqC18BJ0HrvUeH8AcmyYShsGAs1u3yPHiOUQCNdHTW+zqQGJUfhuR3r3KWjPqBQtOQUVN5ETrX4O69YhqecZyLYRdNrt0H4RnEb6oyjOv0F7Y25WAqIepzs63zYhPXZYL7zT3OF2f5kcOiXOU+7/bshuMRMBs1JA1L+RTnbvSu23ufgQMQXwc8CP03qgc+qq6Iz5dxoRDBulUWpSbG6FgB0P4iLV29rzaTLHw57RH51py+pbvgul1SvQKHNvQQf2t5GSYB0EgviMbKj1ZinT0CH/UeQJ4zfnc5EH687oQNG/mXXdDB1W+9nvPa2uHxO9B6/2damC5l3APb6dSLHzFEqRcTFVotQTug8Av3e/g1BxIFKAjCNJuVOGVhdk4P07OhCERW5t64/fkKQJaUaf1rz9tWx7vca+Xn2KgElPW329wmUrJJRWlQarnu1P5uTGwOjkO/ejjfV1BCo6HqU5PAF5GxR6tyHF0AoIRPVDuzYQGahvQMaMCchAEhR7PXEAizK097a2foMUQmk4/g7WL+/aMxMwrz333HrogBAO3EchxYY3JK5rNIa4OTHC+PZRPx/K1DUoCy+nGd4qydgMrPa92eSpwPPnIcOnj7pxB07BQQJeIl9JfFA9aNrvTsTogseSBUQdh4yEjxCV8YXGEUqVOl0w7x377ufII3Nt/1yoRw6/p8CFSUh5uAryHr0IKXp+6Z7bCCm3tyKrRCqb5sLdO8j64m3jy3A474gO7eOwlDllaOyB5uUp1o4wv5pIDMdEZcMmZdq+sY3N5cgw2M3d84Co9X1bc8b9W6IRYyAC1m1INo3BMPINw32qaPf2aC0dY78HEI0W95FVcq6MZKTv5Y1RDu1tjM5pxDWmPTLo3uSeWxylFB1Gjrd0W6Np7/aw/ruRJCoCCh8+BYvkVESj4PoSROOfT5m3O9pnmpB39wtoT6wKtFaLkvDucATWuY+4Tw9CcsYjGOgLAVr2s7qW9ZxDc3k8MYXvvzBvPrQ/PWrtf8z64B2yzgxhPd4VAY7exUXKowoZuUzd5ogmcf5vZG34cc4zRwJXuu+NteIBUUuhtWUGmtcnJzQCkPlg+72P1ftDJOee5Z5djgiIyuX3cu2zeXAt2udeQ4asf6C9oAuSNUpSZVXqpzrQ7O7mzulEJazn5064NbzCHN2QUpD8vTZWswx5ZeZOZt2vF10k3++FjE9+zxxqNF9CMuJKaD98FUs/mfCs/0aboOn4O5PyGa1X7xPTbA4kJ5JqGV4aic4Lv8KBR4jAkM9RFIOt0Vz8kOx6kWfo2NTGfQzRmLwWMaqmB3L93K5vWG2d7b0x9t6BZEErnRCo8hkqpFjOGbdN0Jo8AwcqR0as05Bxe2Dy/kLIcPgpMqDOsWFrTmgm7RmK9pxZQJcKz6+KQM5pyP72nidTvqwHzXLfQHL3g5QCoroh0OmB5IMVvXGsJ5p3s8Awdr0XERA1Eskvu6Az+iYJPQ/MCYDuRxDIz/fB3kjm905H+6J5levdX9DuZYwHbw087/qwG9pnfkUzUw/NCd20zggAPxH4vrt2L9k1ai3Pj+Sv+QfVk6ZdXxCtxf8k6jOCPL0qAltdhAPX2L2Qsi3d7+ZD645PwdgLAaRCxLHwnYVxkfzqVdBcaUJ6oS7Wl+ON91ZHAPy3kN7LA+O3QcCF0cDgcjxqbbwOgYumozRzIfpEh+TZ1ZDMt2g5mvWka/c6I6eM9mgtuZWYGq8/ch76wPisG+XXo0XQ+eECIsikI9If/AdF8gjzaVEUFe6oeo99UscrbA5dRk6q5nm1UCoT72Lz4Y9kU+cGPfcBRMDAjmRThbZDabO2du/1ITocrePGPryzCtLnfItLmddCbff73fy49dvV7zy0jwaAcFebc6fhHKLLfGMs0o1fT6neYHmjHxxpx6P11q/jbRYINLt8mFxvs+1HOsNpSJ+/mM2V1YgZJfweXhS56CjkEFES8bmG9fwDWXvLQ9jea3P690j3EyKZPUzO2SFvDNGeH7KHnEncnwJgaiub+7nRoIr4wu51RfvzV5QConZA+qL9K7R9PrQHPYTk2S2QjuQb4Dr3XC+bq08huSfIQQ1AVKM0ymwUm7/DiLJFJ/v9CZI5F0D6uxmYw9L/s3fe8XvN5/9/Zk8RCWJLbEGIETu22HsLsWfsXZtSqkZLUVqqtVqqWqtq71pfFKVG7QxBkEQSifv3++N1vXOu877POfe5P5/7zmg/f7wfn899xnXe+32N13Vd0ZkdzujMiM7/a2WWV6CtzL7FGI9LSPLdr4IExxgQVXoxoZDhJ5H2kpqLJPLE53Y4v4ATCkrQXRExzZshYfNr2whWst+/Q8q/q0rS64SE4zcx1LVtLm8ghe2jxth8Bfy6JM12SPB9BAnBPaL7WyHl8McImb1ISboHEYUoRgLT3UjgDtEI6ole1dD2I0a24W1vxtg3o0/t2ROQgrS7fxcdap8A59rvuhjEJrV/hI3Fw6SNGBsj5ds4nBd21njnXO+PmOJl7P8xSBnaDYWBHWtzbgROGRzTpFq5vQYCJV2FGPGTyYh8g5jyNXDeniRgqe0Q43AlUkr8gKINeQYiKDuCkrQjEtYuoIT3ub0/EXk5ZSqN4rbF12weVXBpiBpRcr77MPCI+/0A6ZRr6yHFe6eMeuYpiZtBsw9SLE9HStYYEPUeUkoPLtN+WzfzY2Ho3fWjyQBE5c13d39dBFC4GVMM2fXebjwPL1m3dhHdw5CBzivRQpqY3yFAz0D7Tk2vOWQUfQQDIJAAFv+A9r8KERiAgmhLaC1/ggxwj9r4nUU6MuTuSGH+CRmgmHjcjebn1p5JaE/ezq3JbZAw/zLZaTCzlO59rL9+br8HIrDK1QhIORl5qK2e086i/amvjcklpI21PYA/IwXBSki5sD86WxfxtOcgmgdSvXd3RuA8D8oNCp250fr8c415mafwW4wEEPULd305ZGC/E0UO3MHXs+hbjSwIYDMVAYdDlIAgiG6EeKgJCMzyD/u/KtUk6XW/ATrTz0Jnytb2/jjMKIwU6cPRvngI1WBFn/pxSwSa+Yw6wUtRvRpFsz2JkN8/4zvrId7hImSEa48AnB8SAaLs+Q1Je8t2QAa7r7B918ZpClLmXYwi6nyPnAJCOpLlkGK+cL/O6yPE652DvEgPiZ65FvHcXevp9wbTDGuyOzLCfIGMrJ39/YL3O1BtwB6O5n+IvPAA4i0DD7UaAolURVwl2fcPbhJdf56MR+fcRCsjEaihHTJshnTxo9AaLQRWzq40M/ox9N9go721/b4/6s9l0ZrYNHo/b1/eyup3HNleiZ0RTzEFneGfE4EVc+b7mQiw6M+dO0hHwPTe0+vm0Sz4RicSkO6ZiAcaiHjLCWREn61F0/4fSpIK9lIENj/XvlPFl9mYLo3ABuOsT+s6u1yb2rnSYppRe3ajZOQhe34gcnqLwUutAd7WRTOq/+pI1jiKdCq5jREP/BXiZ5ZHOoGxROkGM+hvbfNnXSRzfBe9MzdJlLBXbe4juo8lAAAgAElEQVRfENG4BMkKsZ7sXzYf2yG5/2FbNxPRes9sf5nxRXv3NTYnZvB/Vt/97DsjWjA+ddOl2hlmAWvzwmidH23X4z1qCWR83DUef+SM4ff8RtAcGWgi3rk36bRwI5Fe806S9JhdED/2d5zTJ+JhQrojD8IbhnjyC4C/uetBPg6RrcahuTpPVMdmpsbrgaLMjULpeoYiYJuXcXdHOp2XcRE+M2jlRsFE/Mh8yOFuso1HnGI1C4yRKTc3km5eO+z/RRA/6gHGQ+3aH3HOhjm0NkH6hlHYPuv6qSOKBj8Fc97Jq28Tx9+nFfwVpmfkfwgQZW3fB9OD23yvIHl5lei5nWwdjI3HHuk/K8gJd6i7PowkCnWQHzu5uXglkp+nUwev04q2zhv93hU5YLyKzuH53L2NkAz1YwTcOBTJFIWAd7u+EIluZyziNbIAsyEd7DAive6snhct6Nv/OlBTyXbPl3HtOARI7u/7AJ3HY21exPJuTV1xA+rq7QFbIp5sY3SW7Iv0MC+TBv8uhnQQC+POxhz6w0g7c3eztfUV0vUG56TOyJb6BRnO0VFfbI4cQ25Gug2fUvwwkghR3kG5f4m+GInO9kEk/Mhhthcd455bG+lRLyfRMbSBMNpKW2lBQXz3vxFuYm+qAVFfIp5xMuYkk3e2tBXr01ldgbYyexd3wIUDbCWyAVHtiYTIApqBVjsk0I1FRrb1jVlYCwE6/lKSXjtkyHwSCZinIoXjvCQCwwJI0P2EGulcHN0Rxmi8Z+9+hgy2IcXZ3AjI8TU1IrxEjMl5xizsTjpCxjCk1NgERQupK0KSHwv7OwgpyS5uIZ2Gtb9ZbW/02JMvmLW4T0kzzwvE37E18B5wUQvGuH2j5z4yrn6HwBMLZ9zfEAnsn1MQCSqHdhcS4eZypBBcyN0P0SxywT7RWtrU5mlItTEPCp8cAFHeq3s1qsEtfhz6IkZ+GklY5lj52Qd5Z76PhK0LkXHkwKz6Re92Q2HZf0tayX0EUhb8KKdesYA3hRJpeVpaSAy/XW3ePGN1v9/mUDA49Ubr/6dUKxCPsT48qIk0s8bmF2QDok5E+1TNFFnIyBrAuc/gUnXZ/QCI+jM5wJjo+RARajLwqF3ze8JCaM0+jgweZaOn7G80R6P1MsnqFM7Xn6I1+rX9/ScuRVTBHFva+nFRJMR/ZmPSHp3RVRGiSPaa2NC6g33/RLRXB4Xf9yiyYH/37J4IMDMionEUzlMaecRORGtmKFJE3o9Ld2Rza2ur+4dEXoUZbQ4G4eEoqsZ8aE/+LTI2dCUxuJUa96gPXkJAlwMzvr2X1XMUOl/LANZmS5okETr+7vq0HVrXbwH3hHkS0f4LUiDl7Z1e6d4PKcR6kwiBA0gAgL+o0c6ZCYRaFHkBX0xaweXTdQ5ABqU70ZrdpaiuKFrlYTYfvdEppKAeVTQ/re8vQsDGZd31kPqxNHgpGsM77fuNpLkjZhgg4XkWROCYm6L2x4CoKgVrROd4BJh8BQGzT0P8aeAleqM96WvSEdGWQaDIurzvyQG5o3NrOJKpRswGNH2Y/jfR2bE/GeBk986apNOIHoXtDegM+RxF7bkbebKvave6ovP0WSJvWXTeTyedAquRdH1EqPEoYuOqSLF9HeZtj9ZqeyTvnGB0PXAiy/A6W9K0cdqTxMHpcATu62b3X0WGrRBha7A91wkZsl7DRULMW7/2/K9RFJz5o3sx37allRRYM29fQDz08+76fQi8EMD0W6D9Mf5OvSCifigSUOB3vkHGmZPjOpWgFUeIegLx8V8iIMUI/6z19RD3eykEfKkLvBR99+hG0STZQ70cU/Z9D17KTSte51jVTRMBcYLSuGLr6G8kYJ2hCGRXQTLeBArAevbOLvb8/vZ7Y6TbSgGi7N6PEZ89PO5DBJBbz/4PqdrnRQCtf6A1+jbi19ZAPPtbwG0t7D/vmHWX9csbaH+5H4Ev646q2RK6aI8aSRL17lAESO5nvx9GBsjH0J4fUqB3QHzBm7hoQ3bvIhuXHzWQ5mEk0eN2Q2t6LJLHLrMxaW/j/CnaT69H+tOpuAgmEV0fiXpvm5dvkUSovczdD2d1SFVTISetX6OLG9tuCJQ/CukL77DrHpC6m/XhCxSkKyK9Xy2BZLGhJBHFetjcCMClAITf3cau18ykW6KPFkX7xk/dOjgQ7VXds+oXvb8NAv5OwCL/kHYU6Ihk5mtnxpjn1NHrMv4nAFHRfFrL1vNxJHzV3iS6ggBg6oh0kueRk1kA8Waj0D6/sbu+KRnnCIrIdBvi9zaYCe2+CKW5DHtzAOPdhvb3cYhHXM3maRfEr/5gffQtOWdo1Kd97e9CSH/9DBapkeqItIXOo3NKidq/HNJzLevWek0n6YjGHAE2QWfidURANyTrTSBxxm9HIoPujvRPbwDHZbS9KUCoqH5HI4D1JaT1U+GsS4F/y8xJ5IT7je3p/nzoYW2djmTdo5Cd41tq6/X2s756GPGOo5Fuc08kpwXZbhJyBl3I19f6vT8ZtiMk473ofod971T73QuzDeJA2mXmcltpK20luyDbRtBLvEY1IGor5Kj8Dm0p8Mr16ayuQFuZ/UqtQ5s0IOpku7Y4CuO4dT007aC9mAiFjATTacYM1vTws98n2zvvAA+668GreQXbPLYqaFtKWWtM18+QoPM2STqTsPEsQUZI67iOpPOCd0eKoG+A05HydhtkdLnWnrkZ+GUOzbmQ8mH+vHbYc31QBJMPcTlE66HZmvZn0SQBQLSo7c0c+5Jzv3SfuneK0nKFqET/Iq3k6omY6rzoQTHNUxs093sgUNrvSINJ2kX13gAZPivIOBiPR00BFRnMH3K/50PKg2GUCPGOQFCjqU5fNS8JKOZEtIcEJXUhXRQeNjAZ11MdLr2dPfMkEu4/AE4sOQ+6oug4v7Pf6yGl9pc2blWGfGa+gLchEkCXsN9b2Tc/RgJaMDh1tv7/CGe8t3s7k0491AyaW6NIXnFqunmQp9w0JKz6VBOrlGz/lwiU8DMkPP6AM1jYcyOREugxcozu7tnuyFj5vrUteAh7Q9JVdm/uAjp+Lixm/XcSAlMsiDzGxwOPuecGI4PMWsCS7np7FAHKewhtRWIECJHvfobWuY/C8GerawWBQ/PO54WQ4iwocUOkpWuQQrCCFAm+XktHa21xxOz71HibIeWJBzouigBbU0lS7XVBYIr9aozP4Uhw6EUC4NkXKR+8p+G5SIlQwaUfiWhdAdwUXVvb5lQFB6IlrUTewebAjcDeUR/METTtb0/ru3HIsOjPkJFGO47q1hXxk3cQRZYBloue3Rspmr5F/MhtJAYNHyHq0qz6562njHsNAUyhiBLfEaVnjL+d9b2ca0Osfe/jIj2SnPPzIIDINUXtdGNxI05Ypg7wEun96FgEcGw0zcm4MxsZSkNaBJ8WMRgFAyDqPWRU6Bd/I/reIegMehOdwYdG97sh8EwFFwmTgn26zvmxDdpXvsSBoWc1TdKAqBAN9iAyjDj2zI/QmbsO8n6vkMiGPdGeMcHW7XLu+n646FxhDiBD8tfIwNIMuoGPWBVFh7mJtLK2k/XhdBygqOQanS1pWtkFrdMzSUDGx5MYGXZGa6uCpadGe8pB1sdVQBO7F8uNXVH6hFsK6pQZ/Ter/dH9C9D50s3mh09n1QNFXLodx9u0cj1tiM6d7UlHl2tRhCZH8wFrx67ueogo9C0CVwQwWt3gpeh7V5OkTG0UzdOs76uA5iX6YnnkvFPFQ1LSqa4emhnPboEA9SehPWEBtId9ATzjnpvPxmNPXMTSrH5CIMQ/Ib2G56uLAFEeMNKeyICJ5Jx7SKINDUIA/etw0WDs3l0YTxC3vcxcJdHpdEFn3r2IL76VNK/Xvpl0SaKJ3GhjUkG8QACFrY4cO2acyUjmP8TG1KdJaof2r7vQHtlImlcieXVvq+/VCPh0lf1+HoEC2iG++Va0tz5GdC7l9FtPtDZPQI5aA+z3Z8CZ7jkfYXWHWuPRyOLGrDs6hz61sQ08uZdxd7F771Ej1SoCcr+FzvbJiEfb2eZQV8S/TrQ+vhqtrUtK1LcpdAu+1xUZrb9H8tAtyOh8onumls5xC6tPhSh1NtKxvmx1nZlOHkUpAq/nvxgQRfqsWgE58F5LdRq3vRDv+gwCEZ1r8+7gmFZEc08E/MkCRP3D5uQ2KFPHPsiZsHSU8la2PciNt1jbr0KOPB2R7L4e0mX/K6rTIHSWrZlVz6j9O6Ezb0eStGDzWT+OQTaJIO9uh86UunmQ2bXYmH5g+8SHSF8WzqlcEEnUh8ORXqvhoJOydaiD3r5Y2mHSOr3tbK6dQDUAbi8kk35CtfPkaWi/zbTJNagPtrNvTMKieJOOyBcAUc+TYxPNodsZpdL8BMndHhDVHTkhVpBsdRFpnUQWT7oWspGcRKJ3Xtyt4ZBWtytyyq5QHfm3LzoT/4TT1dq9K4HX7f8QES8AoToi+8sVRCmfmzUuTRrrFskjbaWtNKvYer0ZyTVjkC1oTxJ+vCuS50PKvDZAVK0+ndUVaCuzR0GKxbXd71oC2iASQNRPULj770kbNgtpZh3e7t75SGiNmaAqmqSZwF/agTwNFzIWKZo2QcL6qiVoxmCTJZGhdQN3rQNSan6KMXPROz2QcuRe5BG1u7s3PwKcTERG9cnIqyYoNh4B/phBsxdiAu8iIw1YxvOBoQzRVLIYpiqarW1/UT2RYNOStjd87Fs498v0aQ/kEXOTtW1b0ox+3L8vAdfb/yHiVgUXmSmHpk9ldG1L2h/Voy9SZJxYqy8QaKkqVV40JsPQGrgVKSGDl0d3u/Y6Uhb3Q0Lg+5QQ7EnSVh1HtsdCTwSIqiDl2yQK0jmQKGyHIKVdAJddR3a6tk5IGTAgq67Rs/OQCPWnWF3+Y219BinjF0Jhat8kUSTOVCCUfWdLZEQ8yuZNTwRcmYzW7BJICXOStePUuM1ImbF1s2ii9fouUhhtSTUgagBSGn2LFCW9ovtF6cxGoLUXUlmuQZIabp/o2ZOpEaGLtLL4DLTfPUlacO5q33yOGsAqe34DJLj+jXT6mblQBI9JwJUF77dDiv6bsIgnyKCZMvjb9QeB+93vfgjAdzwulHu8juz/zsjgsKrN749tjs9l338GnQGXUi1k+7kfDEFr2Jz5FvOAj763ElpTvydRHlWlSYiurYLCzZ6DKQvc2I4n8YDsgRTOh5JjZLV5eS4uwoW7typSbH2Ai6JIgfceSWrZ2Z5m9Ls72svHk460MIAk0sKpSCkzAHneTyKKMmhzbDSwjf3eFvEg16G0FjehPeBdYDF7pj8C11dwKfmy1oD7P/OMakRBhr0KSZSH2Ni5ETXO5Oh5H63kWdL8QeCf7kb8RCeKz+/90ZlyE3WCl6g+m6Yhw2HDaUZ1nh95I1YQn7igu+ejZe6BQC+ZaUhInwGHo+hQUzHgJGkj3mI2l0/KoNOu6G+NseyAomk9hzvXXTsaTrPOuesBUe/YeGRGnUBK1wfsmelIGe9TefRHINqxNj9PQWf/V7jIINEcWKLRdNHZF0DZy5NEhLk3o03hjHrc+qCmU87sTNOenQvtqyH66UnRt3qjM3s0OkvvQDzAGJxHv+vP9chI02B0/mHvVkW7RA4K55MTqbZGG1ZB+8i3iKcIe38XBIL7FAeyaGmpUYcWKfSjvt4IRXMZB+wZPXcUWnOP0wLwEtV76RQby0bSnI7O93nr6QNHYyUi5xRk4LmgkTRznvuFzU+f1rUn4lu+o5h3yJL3d0VGn0cwHQnpMyYAor7BGYQjGucjQ5g/ey5Fe9kfSPjgOILC3AiQ8wWWEsHd24wcnU5OHWLnn/hb7ZtJ1/3enmSPOi9+F4GL3kLA76dIeIsq2dH1UTNo9kc6jItJ63c2tHn0INURHmpGU7P5dCrSsa7ori+FIuF9Cpzlrsd8ZTMBEXlnVg/k/BiiUASdh2/vcCLHogw6uyBe7EIbs/3QnjWRJKVxb6QD+icCAx1don5NoVuiv5ZB8tYbCOB6ZBma0VzbDO0fExAQoDPKorAf0rvv2ZK6tbA9scy9IeJRfHq0WQ6IivpvPloY3cvRWD5qu9dH3BS+SXrf3w7pS8YhgNBxefWM6psHiBqKgEIVJN9MpEFOFHX0Q5DxfmvrfAt3r731y1tWViP7vMzb9/ZHstaviLJN2Bg+h3jRc5Dut0KGXDYnlWjcN7D2X4B0nr9HdpR7SNKjVYGR3BwKzswVSkTBb0FdvUx4GpLzL8bZtlpBe2fkxOAjS99s/bEbFgUa8fnHIn7J2z8Cb/Iobt9u0pj1sDk4Fu3rQd8Yg39HozOmClBDtUwU6t8JAcTGUA2I6oZsBJNI61fy1tMRaN9Zyl27B+n3BkfPdsfxGhl0pth4e1pHovPnGsRXeV5pINr7Smc8md0KrZRH2kpbaVZBOutHkR3yLSSreEBUSJk3DgWemCkRY+fUMssr0FZmfbGD/RVjujxjW6ioBVZEgnkFKWwGt5am/b8QUgLcRNponEsz2gB+bnV6mUQxtTgyorxNOi9uqXoixfwXyIgfQuH2Q0z760QCH1IAv44E2L8hxVsFM+y559ZEYfM3cNeWRsqYo6NneyEQxcOYESyvP9077RFz/G5cx1o0XZ+2Q2CoUu0vW09k6Cjb9oaPfUvmack+nQsdTq/auL9mdfoDaQOzn/PPo/neCSkSviUNCiqiual77qp62p8zH8YBl/v2uv/Xx3klZj3jroU0Xo/YHPkPUpBsbvdXtm99gQwvNdMQ2HvzI0PwxVEf7oR5mbg5MRyBNatSD0XvxoCa+UmijV1HOgzu+kTMcUTL/78jMrLvYnN1UavTBaTTI7SzMbqDasXmiUiJ11QglPveQ8Ar7nd/EnDYJzaGr+IUO1nj3yiaUX8GYXwxFGXrA8TwxeN3NRIYK+SADSK6i1o5DZdKzu4NJgFEZRrZqLFf2N9uJNGbXrF5tAUSNL+jhACPlOGfov3Ke7AHMF9vFLnuJQq85dA+cwBSaj2DDFtHxe1A+/tYJNgOQN4//8YiMdgzK5JOkbQbluYUixiBvLueJw0e/A1a+xUyQrxn1GUZ5M00lnT0K6+AuB8pzMoYaAahdXk31ZEtdkF78M/RvnIo2qt2c89k7XlhHLYF7o7urWF1f4EaUQbmRJoRjR4kgKgHSVKPrYz204qN/WfI+ORThAb+Yw+kyHkNrfGRSDkRjCwdrf7vovUUFFKLovV/bIl65p1Rm5Ztaw36C1r9HiRJFRr2gy4IwH07dXi2Gs2r0No9jrRCsAviye9DwBi/x12JU1bZtQOpDV7aMnrH03yCKNpXA2hWAX/Rfh+Uof2s335A0f98umUPiFrKfyOjHz1fcwTaV8eRALbDGpkPAQTPyqDRJXq2Kq1wjTp0ojpiX8NptmL+hvO2JxlGzKgPTyCJqrmDa0+gsbCN7VNIoftbnBGPtLzRFLru2pL293wU5fB1jKcjzevdiM67Ljn9M0fQjOhv7/rzYqIoZ0gpPhCtsTuQ0t+D2/3YdMJkIHRueHD2jxBfEUf5DCDpF8gH14UzYBMkc55NkuKtC+IdP0Dnw3II0Hoa4qMywQuzS4nGdyg6eypU7+VHIbnoceoAL0X0r8btpQ2iGfbnZ0mAza0yFpCs0ZsaTTPjeke0VzzhroW9dm7ED76OS8Fa4zsdEMAirKmtsuqAwG+v2DPzR33ay/r/O8T3eJ72AiQj/YkkhYmPonQqMoz/KKrXCPvW+SQONnWlVyRyOGsyXd8fa5AAQG/FRYwN30NORmcgXuhonEMe2Xt+Q2hG7yyHAAn7+fllf3e17w3PaWOeLrQ7MoJXkDE1OGSEObok4u8+BM5tzRppwZqKZeYVEH8UIkz0RHv1GKT3DAb8rIiSVcZgtP4exTkk2b3e6Cwaj0t7i2RqH7U4E3jRDLp19lsHo9m3HppRfw9Dcn0FGckfQjrButNXtqIdfj+7AYGRK+ic/wvptLwBEPVzCnjYnDFr1bkd9duuaE8/iZanO/wJisrio3IuhfQRn5OOcB/LXf2QTWMJdy2rzStHv/MAUb0QyGqf6PrMjAwWZLwKGUAYFGnvdeSIulZJmpshO9LxpNOfdyCRiXqjyHqT0R5TmCJsdi9U76dDbL0EfUk3tJ+ORnt+FSAqonEd8P+QnF2o629BXcOZOheyJbyJdG3/svG4ikgPWyf9Q20+3UBy5s2LdHpTbK2dikDnk4iAqq3dM2q1O+N6AP9+i/Q7WeDfHYgcPTPoDMro4062vscgYK7XcfQkcsy167HdoB1ykP+Xu3Y/1SnFL82g5ff5wHcEEOT1uKwoiC+tIJ4q8INr2Nx4joQfmu1ksRJj3zB5pK20lUYUt566IJ3lqbYX/YfqCFEhZV4F8Wct3p//28ssr0BbmcUTQIrJW425+AApa0rluUVM/iNIkBzYUppUM4S/Qcbe5VpB81wkpHyPGLfg8bVKK2heb8zAHUhRfL/RXCl6rjtS9D5EwtQtYtd+VWM8lrDvjCJt0Ohpm91fkWHIewJ0xAlpGTRD+Mu9o+t10bRxKWx/CZp9WtD2ho99A+Z+Xp92QKl7no7G/izru+dxKZZIog49j5j9y5BCdHCdNH241PPKtD9j7XWwcboHCbGbR892Qgr7p6gRPQOlXBpjzwcjcEhx83cS5dkKSNFwMWmgQVHf90WGn5FWp+WM5ucINDQqouUFxywlxBYI9HENLuQuSp0QAFHXWF33yhr3nHruR+LltF7Bc/MggNSXVIf8Xd5oHFHre/WUrP4lCT29HlLwxqCgpa2vhpJhbG02TeSBeBDmvYLOitdIAFHhWz2tz4cTeb/k9MU+iKkcbWP7V6J9CgGigtBXd/hl155uSNk+ycp7SGA9yT1bC+B6vLV5OhbdB5deDIHnJmIRE2rQutna9IJ/nkQAXs7uVZAxdjLpiBtzIyXI8yidyL72bDyPr7Q6h3XfCyn8d8R5guXUcVMSUFV/kqh5v4ye64aUnvdRA1yCgF0VtF/cH7fb/r8YATSnIOBOTaCmvdcRefRPAm6N7g0hARqtW2us5wSaefdsjAMg6u8kipJuaL2fjzzLcg1OyHD/BlrnH5KE4A7zM4QV/w44wL3Xo0T7a51RDQm9jwBcX6I9KRgz+6DzYRw50Ytq0OyHlIbfo/NzVQQWPMSuHRw9v4A9v0EGrSLw0pNWx6r0KyTpZn7aQJpZQKjdbR6ehhmTXPunIl6sChAV/47nKdXRKg5DRud3sUg3aH87EO0B20bPr2J9ENKzHWzztOa+m1fPZtCM1yoJT156n4hpZDwzAEVhPBMZ9Su4lNoZfR1H/M1TODecLlLqVhBvNa/RngrcET3X2ebYs2i91oqyNlvTdOO+EgIsn4fW2k8okB/z+pM0bxbO0ztIwFH9kCwxEa3rZRA/cTw6V4+LaJ+MwB1hve6LIum8j86QH7C9EsnYhyCZ7WtkRHsaOKrEui/8XaPvMtdOvTSjvtsSyXffIMeVGHhUBF4ajVLmdMigewMyjJ3cQJqp/RnxdRW0Z9VlfCuYpw2jGdXdgwcvQUasVcNccfPlZJtTC5UYOw8WPcH65neko6T4NTOMnCgKCNR5B+LH9iIdaegn6Gy6k2R9zYfOxZdJp13zYOt7kGxzHomBtbXAjqbQdfSHIj5/bbTGf0Byio8YURRVPmvPbzhNu74u2pMPzZhjfbA0R0XzPYfussDlVs8zMsZ2CcSjTiJKvTgzCuLrP0by4AQU/T7Ioj1JomZ4A35N0As6y8ZgznjRWlsKAelvg8zo/blAs0bRrXccG0EjquvmiH/+Eu2P3ll4ZoJhbkL6gH2RXuYYpHd7k7TjYUjP+lOyI9p4ebsfAvo1LLWX1W8i0quu0wo6S4f3EZA16G2XINFH/CKrXXnjGY1r4J8uIn1eeEDURgU0Z9rYu2/uhfanvxGls7f7Q2xO1IoEF/rjEgRY9O0/D+l0/kgaaLcmLhrprGh/K/tuYPR7iI3/WCwtJ8le350EEPUXkv00zowReLMb0L78exoPiOpodXgUc2RAcliIVlbXGstoQwDc/I7EEaQd8DPbW75G+qDj8+g1uL1+fxqM9BeDSaLRhrNuDAJEhbHJdUqJ2ruC9dsV8VxG0SqPJYkCnhVdqn289pBst4D9fwDSBw1BvOMnmB2IBMx1H/m8buBvu1u7/2r1uYbEFrU40o1/j/ap5xCA61mSfbLh6RpnVqEV8khbaSutLbZOR1KdfakdioT+ou0V/RBPHgOiOiO+sS1VXlE/z+oKtJVZPAGk9PoYMZ17IpT3q9QAhSAjwR/skBjUIJoXI6H6U6q9JErRJM1Ir4vQ5tcYUxGn4mkJzUuREPgmUqYsH9FsjwSaJ5CByjM+dyGgzmArsSJ/Y+vTMaRBWx0QUKZCOnrRpkhIeNPKcaTTpngg0mOkjVL10Fzc3b8sr/0trWdR25s19i2dp0V9atd7IuPV+VHd5iFJY/cYsGH03r0koY/jNI5laD5O2qic237Sc7Ir1WnE1kPG5eeAvezaAGQU/BYX5rtgXzkYgbD8nLsfpWkICui54vqENVSD9tzI6+hFpBB8BymEhyLGfDRwQ606Gq3hSHD8BzLQjsNCXtv9fghcMg0JqhNwyskCusOQceNYqoE1Xdz/GyFPly/ITuvSnciDtZEF7UNxipMFkWfRAzb32pEjzMRj10SaI2xsfoNL70UCiPrE5tzqSKD+iByQRTT/17E5fSlSODyAReGiOr3nqkjYO6aFfe0BUWcjQN8zbh20p6RC3to6FhkDfVSmLgic9DouSkMOvR4k0ciC59VC0TPtEPDyR8gY60GXYY5uTpJWZzpmGIjonGJz/BjkNTQCKcq2zGpfNJd+wO2JCGT7GyR834SMHKuRgBYOKWq366cDrN6fWZ1Ce7xBY0MUnWKdonpm0J8HRQv4HPhDdG+IffMVonNgTqOJ8zRBCuO1UFIWUPAAACAASURBVKSwYCCbizQgKje1L/lrdCe0xqeRkxoE7Q1XFLU143tlzqhucX3qoB97UY9DxrFbEQ/wNTkpwkrSn58kZd4kxAM8DZyQ048h9ef2OF7CruWBl7ZFe8mB0fMj7buHN4Hmge7aPta2i4jSclr7AyDqMCIgTPRs7GF/ic3HH5OO5HEE4kEn2BjdYWugKhUF8s7+wOicbnU/mjoUf1G9OjSJZmlgRgvn9haIrw/pMNdGjiAVnAHD7q1Q9ruNohv1R0ihexoJAHI+dLZNR4rhjVHUxpHoPBlZo4/nCJoZ9+ZGivwf0Pry3vhrAv2L+pNE0R0ith2G1s3vScDLy5MAriciHmAUzqMf8RgL2fX3kfzR39p/PAJyron2zR8wxwAsipr1wXJkRPKget2fj9IqHolLV1ajnzyNeRtF09Wxp43F0tamZSkfIepJmw+LR/SPRfzRj+x3I2ke7OZAFxSNYDyKvFEzzXNGn/a3djeapv+9BdpPw7m+vc23u0g73YVojU+SERkqg+YZJMaludH6DADDVHSLDFrt43uIt70D8WO7ko5i4wFRC7l2ZkUWCI4hHayNn6B5Whq4FLW1QzPput8rIHnMg6FDBNtbSPMR65OkHy5aa62mWYP+M8jpLNajzG/XqyJpl6S7DElK4CPc9TDGSxOdg80qUV9sjHQml6EIuuch4+c3mN4P7WlnIh732az5H9EfgfE5aF+6JWuOICP843XUuyF0i8apEX1aZ/9vjRwSx2ARG2v1b4PrvTqSY/YnzQduZX38WLSmLifD4Snq/2sQrzcRyV9HU9IBoKCeq1kfnU4J55gcGmG/C2fTFsjZdxgJ/9Mf6SO+xkVZKRqTaDyHoFTd79taPzt6NgCiHqQAEDUrCgl45WYyjK1EEbeL+gLprZ5DOoStUOT3MUg3/jHiVRbPeH9OA0JdbevXRxlbCQGAvgVudtfDHOuOeI0vEW/SgfTaC2mLDyJxEJtCgwFRSAb5N5KTw9rYFfGFJ9nvwui01Nj3EH8ZAFFLu+sLIl3kojNj7KP+/R3SA4Ton69j6ZhJg3/vpUAPEdFfGumvf4J0GBe7e35vDNFEP6XaMakfioT8oP0Oztr7uXn1MpLLxpJkaumMnPFG46JaZrUfOTW+YuvvfnTWB72Oj3Z3FAKt/QKBUAPP2LFMf8xOhQbII22lrbS22NwbY2v6M9uH1iFxLF4J8R1H2+8FkO3rY+REOseCEGd6X8/qCrSVWTwBpBT6I4lBdleSdFy5hkrEnB1KBIRqJc1zkMIzi6kuTTOm24S2L44MyV1z6B6JjN3eWNcbGTk+QsadqUgAXNw9MwgptqvSeyAG8VUUSWRBBPyYhowDtyEjfgUxRvO792Yc6K2geRPp9AeL5rW/FfUsanvDx76V4z/D8zKD5kJIQXhh/C5SJk8nYfS9l35Anw9sJc1CxpO0EL6jjccnSDjb3/XF5oj5nowO1g+RMbcqnVHOd64BPnK/77fvrGy/17Nn6oq+4fprCSR43EgUJty+dXEJWh2R4uZEZLSfC4UoHgP80T03FwKX/QgXHSJrroUxtfG8L7p3Ntrf7iDxMrvSxuDAIrrNKEjZWkGRMC5FnsnBs2UXm1PbzwY0t0N75vE4g5e7Px9SSE9FCtkvyDBeZ7y3HMpTfzmJ4NbH5tW3ZAOi4vSIdY0Vyd4RvL3G2vjnes/mfQ8pJIInwB6I+T0GARmrPKey1qutgR4kypNbqQaqVikS7Ts+klTwYv6IdOQ7fwY+SOJJPL7kGM2PFC27+DagMzh4ZI5De/Z9lNyf7H43JLRPQkDchbPqXTTeRd+wuXQx2UCjtaxdWSHmZ3uaOECi/d4X7e/foSgd/8RAetbPARB1Hwm4odZc92fVdoinmEgUUQgBut4kI0KReybLGHkttc+oq8k5o2rVP/6urbHfW9/8BtgjplWGZkR/AQSmrSBl6ZJZ33bXepJ48cXnZh54qb+vp33zH1gkrmbQtOsrIgPBuaSNwn4PnJ/EYHhcVpuj+uyP1vuLKKrGN0QRCxGo43W0Vx1E2lger/8j0f7zAxEYrMTY+fm9F+I/OzSDpv0ehhSVdyEF7ABKhLCPaGZ5gA+y/j/SXVuLBLi0tbUrpA1ap+h7zaKLnDL2QOftgOheiLz0LeIjnkPpK0/O6oc5gWY0boMRv78facDOPCSAqAtQGtPQn1V8GgKEn04iJxyODP69SVLvBmD1vO69YfbsHsAaOWt5VWQAe9Pq+ifSaXWXRODHGSDMWvM1Y90/i9b+WOT8MqKO9XSy9XufBtI8xWiGiHdhzp9JOfDSsjh+y65vYjQOaRZNu7YnihIQ1uMEBN4rTCcRtf8ktP8u2kSa+6H99I+k0/6eg4yLTyN5dx2kg/iODGBh9D1Pc113PRjGqgCGtQqa879HMmnga/ckHfXwIqRH+ivOKFiw7gegyGNfIt7mbEqktqPgHGky3U4o8sM90XsBvPR7G6vdrY/2zPtWo2hGdV4Q6b+WJJHZQj+8iOmvkEx1IOKFty7RF0sgw8bqOJkTGUyDnFMFiMr73axi434cAi74qESbIiP9uyT8c3fEZxycQce3fSu0B55pY3UGUeple64bikByEzkg72bQjWhuhNb3lUj3VpX+r8RYtwjkE9HYAu1bY4jS0DZhzGMD/DDrxyHxfbQvppxhS9C/FekNjgX2RobnaUgmb7HhGZ3P/6FG5OmC90+3Nd3TXVseAQheszkfR4j6FovsU0cdxyBe5zdob68AF0XP7YGMni9QZ9rsZhdygKUFczeTR0fnwQdoL30X6QpCFMTj7XpmBJsmtWvGeZpX5xbSXRlzLiNtA1mJhL890V33gKiLMvavY6z/vQ45OPu1ChAV728kEawCYHhv+32aq+NVRI5LOfNgE6R3uh0Bage4tgZAVEpvkEeryfPgBtuf9kG88UjbF37AHKkQ33cGssXcWYLmQUi/sAqy75xn/Xhx9Nzi6Fw9h+zUeN1t/KchvVIF8R1do2+9h3j97ZAz2jmIRz7NPZd1nnZCcug/SKJlL4T26jA+ufsrczgYgxbKI22lrTSiIAebJ2zu3YbOxZeRvWsjpDs9DulMQqS2fvbcRGDnWd2GOaXM8gq0lVk08Gkl5Iywm/Z3ZzJAIXavYxaNVtL00QW6N5pmI9qOGOJaiHev1PF5gzshYMlLKIfw2iikeoXIayxmHiKaeyGlzpfIsHg6iddwN6RsrgCH1VHP2YZm3PboXkPGvpV0SyHckWLlI6qjRo1AhrtDESM51NcDE/waRbNGHUMKiusRKOz/ELN8PomxeiXESP8GHbibu/fzwsa3c/S/RHng70GAjaBwnwsx/7dTI3pN0VyLxxl5MOyNlMiFTABSLpyEGIwV3fU+SOD8HAeIyni/liH/WiQwrYgUrcHL6THr52eQILMQM8nTJaeemyMPz/EI8PZ7JPD1Qwr3hyjh3dUsmrYubkee930z5pkXrvdEe8+mJebpesh49TERyJAkVeS3SKFQFc0GGRH9Hj+QkgISaUDUmTYvXornc5m5hwz3XyEgwmgU5cenisnqp+URuG9b0iCDg0kMmQsiRntXJAx7pc2qyEthZXftEgRu/NTmvQ9p7vtpLySsD8vojyxhfAFr14nhGdemxdHe9AkuzRukowTW6MugNJpMBATLqk+NOX8uSoW2J4lRpC/5QKNCBdXsSpMkFeIJ9nsjZED8qc2p420OfBPmARLq9kbG42fqmOt+3m6LjM3vY2lKbZ7ug+b/bhnvL0M6Zc0O2BlJC88oFFFy/rh+BW2Iebr43GpfL83o/QVJQuMfSQ5I3z0/EO3JX+Eibdm9AxHI4laqo576sZh/JtDcwebjmjXa0xcBjGsZsIfYeB/v+np9ZNCODf1Ho/OhCrDm/7e5PxmddY9g/Bn1Af2Osu/v1ASaO9rv/dDaexjxIJ8jBekMD98SNI9GfMzS0TN9kcLmr6SVsGuhFBoVBLafAJxXx7xuGF0E1nnX3vk3GYBMkshLo0mnTs08T+Ygmvug8/pte+ctHFjavnkmiffxROCcnH7c0Wg9hPaaH5As60OyByPMzRTw9zl1HYyAiBXkjdwjur8ELj1myXm0ts3340jSR2xodX8cS91bYu5PwYB5zaBp1+ZBxqQpCCiVBV56GFgtrz8R+Gn9JtPcBRlgzkVG4Z3QHjyNAmNBTvuPaCLNLdD+MGPPj9493s23KYiXrAVWrEUzAKKmIr64ZgpKBMSZhsAjOyFj09P2nb1IA6Iusetb1aA5Ap0ht9j4/gfxSedQAFyi4BxpMt0AzN0b8Y6x/mWEvfMl2qPOLtGvDaNp4/CaPTcdpW8KxtB9bO58jYyXD9sYnZ5DK5Zb3ybxAL+TdGT1AIiaipPtZnZBIJh3ra7n2zWvu90Vycwj3TWvF8xaS93Q+XEFSXSxgUjmnIzWWE8UfWc/xMMUpt1qFl0EXJmAAMhvkABht6R8FKBjEMgjdjgqxfNHtLZAUZSuauKY++9dhBzINkHr/Wi3vsLfXjYHcqOhRfS3QnzoliRAiHlJUusV6txr0P4xcozLjAqFzrRMYBFyEvsJxmORBkQtY3V+k2pA1HXoHLm2RP0Go330FOyMQLqZi639F0b9P4IMYOHsUBDPNxUB2JYveC4G6q4ErO2ubYj2Ea8f6oxsCE9SoCNvQpvCuNZ0GKmDpt8Pd7A55CMTr4AAJhXSPHpVujES3uwXRAApu96NJFp6aUAUkgcGut9zY+eO/f8+4kH2s3p6B8TNkMy6TY1v7Gf7xAtoL52M9rIRYc0j20PQG8ySFE+2Hj9C9hVv+xyK+LOPSUBCPZDDRFYwBz/vF0GOoWeSnE3zk6Qtv8zGoDfiOR4m7RSSdY6GjCz/8uvG/b8HAvVMQvaRR3H2N6SDquJTSVJvnRN/H52hFeQwmLvm59RCC+WRttJWGlmQHizIWcNtj7wJyTN/QXqWl3BOwshu8hpNzCrz31ZmeQXayiyeAM4jPTqwPSgkhINcAhlMq7yDW0nzkFqHaQvrWegR0gyaMV37u7wxK/2j525CjOU8lDfe7mMb37WkjXydkHD/FDI29qC8gD2raZZSJMS/Wzn2Dafrxns1dHD9EwkHyyLl+QQk6HZA6N5CgFlEu2E0kcD5AUlY24WNzidIOD+XEumMoj6LDb6rkRhWPiEx6HVGRujR1PCgrqeg0O0nIgbhtOjeKaTTXM1Nkvv6QxLvoxlpP5DiZxRwV531CILCgTZWE5Dy8G/uO+cgg1LfrHebUYpoI8DR/EioecPqfDkSaj8kSts4M2mivfED4BcF38oU8kkbEGO6SyCD3nfAn931oPjogZTdU5HRzyt9V0TGpWC8PtjmSlWUxBJrqDsKLXx1neMZA6L+jZS0a8Rtid4bgfaRr5Bg/J6tx6CMO8Cuv4BAlpOp9lbqQAJuXZ80UCpElHsRF1kCKRerFI9kG00GoXQhXey9W3EAnajtS5J4ZPoQ9fUAmYIBdzJSGtXleYmU5FORoWCM9d9rmJKPBGiUuZ/k9MFsSxOlFPyLzaGjEJDnKtLAumWR0n8cFv0SnfsHkZFGsUb/+nNmB5vrFZvvTyGAVJXRCZ1rV1ldOyCj0zQsyhXy0KzrjAJ2s29fjilD6plrWc83iGaIkDQFgXw7FdFAhqFbyQYvHWz12axW3RtBM+8b6Nz+BosGSDWPsSIJmK9bdG/eDHrDbd4vR3oPGYTOpX+TDvu+Uom69kdGwh8hpeHDmHyU11fRfD7K5uSBzaKJUoyNtv4MUW1623jcTJTGt4BmKqoCacV88BCOI8atgDxm/4hbSxSfzQ2hm9GeNawvK0jJXAXIRMrfAAy6Na+OcwpNZFiawRMjhe40tOed6d9DxtUzSZ/bscNTV2TQ/RoBAgJIOeUIRAKI+i11GrCQ7PAEOqt2ojoyxQAUBbeCc2QooHcQOuf82r4bnYMhxVmcyjqe+z9Ec7/hNN29Piiq6g9Ug5eORGfWywgUV1YebwhNmyc9EO/8J9JnfjcEsp5q34jBrZntbxLN9lauR8bsvlEbvGFrIQRAHUraMabK2a8GTV+X7ijSWgUne+b0Z2/geaQP8qDPpRDv8g0CS/Vw93Jp2v3V7b0zSNJYzoX2lfHkRHLK6M/4bGoK3ajuyyMg8gUZdIYgXqKmY1YjaSJj4lTEHx+CwGpjkP5uDzdeV1pfZEb+zKjXnogPPwutvZFoX30SZ1A22mHPq8mXNKOgM/c9q8Nt7ro3ur4B/LUkvWEkUWSPj+6thYAVFcS7fIhkiUxwWbPpIjl3HOKtA5B+VRJjcKa+LJr3IQ30wfZ7AcTrLUB6zyvc00nvXUsWPdvK8fZr5AqkK1kVne+vWVkFBxax35+SEZ045xtHI11YSN+0PAIw3UGSonwVWgCKIuFZN8+41w/JW3vEa9N9tysyen+GwAseELUs2YCoJZEDTRk97DC09uP034ugiPcV4Ixa86rBY97iqFMkMt6wEs/uY333NTo3Xkbnb5foufmR3uIbaji7NKj9Q4Dj3O9jkR2gtIN1Hd9azfrrH6TPnoEkgCgfsTgLBOP57uDguD1OR4/4oVKAKKRvG4EA/cGR5gMUTbgH4n9+Z/S+x8DDSL+yNLLp/CVeU9E31kXg41MR8LErkuX/ic5U70hZWm/QoDGJZY217ftr2O/YsXMasGsNmn6MNrd2v2RtTjmDIZl/Ktpbnkd681OLaCMA6k1oz/wO+Lu738X939nGaGHS+pH2JKmEV4zo97cxOcv3j82rRdAanoYA3LNVxLpWzIEWyyNtpa00orj9O/zta3vrpySOwFsivmy87VGX2fUq4GxbKdHns7oCbWUmDrYUNEcgQ/8JZOfx9oezTxu2vx14k0hHT/ifpVmWrj2XlbLkFuC5esfJ6raB++2F1keAR+dgml3IyAvegHFqON08mojp3MjenYoOq2nAje6Zd7GINNG7XRGw50hkCFjIrnez63XTjOchYrj/YL+XRQLpLxFT/RJiqM8hSYWRZ7QJEZo2R4r2y5CnV4i2tQM6pP8PCVibIm+tCdSRzqpWQYr+4K2XCiVv7RtP5PWMDIRB4XCCux6Y/bkRSGUakTdpznzphBhoL3xsi4x5W7trHZAi+QmkkGl6qN+onmsjo/CZSMHn69seCThnI+VEYLJ2mhk0I/ojUNqK3mgd3ozWW2zsG2j9WcrgZuMa5u1iyIA1CVOSR3OgJ1IKHB7R6IvAQmPQupmGDISlc6MjgSs27tcVjpv0fnoUAjk9iUW3yXh+BwT4Oc3W4rLIqPM9SY75TjZv30ZKmqooU+73wtb2x5DQHEAHWyBwyYuYQh8BTF+ndpSX9Wx+TEIK7aeRgetFBAJdhWRPDB5kA5CB6hvg1y1cI51JPN3+Qo43acbcXwDtPce4eh1g9f0SA/0hUF/ufjKn0HT0VkbR2r5C6+Aaux7WVju0fschgS1c75hVvzLrxf2/NdrrQyS03Mh6CNg7BkUZmY5Aqn5/2oY6zyikDByDzrsWgZcy2tdqmkiZdjfGE5AI0uvZWB+ElI9hLFYgH7xUla63WTTz5gOwAS5NGun9ri8yOI6MrrdDvMs9VEfRPMXoBWOHB7jugUv9kdNmPwfaE0XgQvtqAC8t665viim7IxopQESjabp6H4mUlku55+4iHQktBpNl0QzgqnWJjHAIUPAyUrh3oyAaGvmG4YbQjeeRu98RGfNeQUbsdbOeRfM5pDz425xEM+qHJZGcdab9HoQU3ncgZ4ApuHQcGWssLz34luh8nog8jAP4wY+FP0/viudXyfaHdOtV7UdK/U2zaGY8exkwyv2+H839kM5pbXRO9I3rRQ5oqZE00RzvhwNPof0tD7x0Esav5bW7ETTzCtqnXiEjci7iCV9BwJPTyIh2mNWnzaBp118B/lTQlr5kOw0UAcJq0ZzXxqMnNfhde74n4pd/br89D7UmikD2MQLO5EZOj67vg87gFSKaHZHsMhnJZD4lW5n+bChdJBfsH+i5535i31kmi05R+xtNE4GUnkVRX7xhbF2bC6/jnFDK1NGur2LvB6e0QUgX83ckJ79COmrIcmTseTOjkOz9S1m9viMtG7ZHsvqLwK9K0twIySQVG5sOpA3H/RCfcyWKwFcVTXhm0UX7zkukU8P/FQEFBkfPtvN/o3kfeKjhiCf7Cp2jfwI2KdFnnuYBJM4AzXSkG4R4hl1IdHtDkNPM83a9B+L9f432qsJUgK6PzgA+tv+Xsf64nSRiyghk6K87zRfST7+OZLul3BzugZxdRhFF10P6nBEY6AHpY8+gNiBqYxIjZK+S9dsZB+gmDbRY3+5VKBEBr0HjfLK1ZfVW0CiU8eyZXRDveQ7ScW9p82gcAoiFubE7kvFG4QAhzZrraJ/Ywep2u82R75G+vCER+zE+jeTcHGzr/yWqAVEhZd6Pcmh5Xv13aC/6gSRl2pZuHocIUTdSQ1dqcy/w3qNt3vcj0Yt2Rk5o3yNA4WpIDn/O3usY18+PG7IVvUdkO0G6p/eAJ+qdU40aG/f/hdZ/S6Oz7sfunpdzJuB0xxG9M0mfO51sLleQfjX0h9eJdUPn158Rv7FvRv9l8Sw9ES97rNX3IXcvjEe3PFooQtvhOeP2IIra1TOi1x5FWrzP5sNMzWrR5LlQtzzSVtpKa4vNuw7IptGVtLzRx9bZV7hU3vbssVQDGZtuW/xvKrO8Am1lJg20vLcCuOM/SGCZghj9/tGzcZSct+0AH4+L6PG/TLMeulmbEjIe/w2FAp6Rp74GzaUy6HjF2ZJIqLhkDqXZE6FfqwxZGfTqGaeG082jGb3fFQlUB+LAH0gJ9irOA9v16VNIIJiOFIsvkzZi1UUzp40LIWVQFwR4uJUk0stGyGDyH2QUjz0lzgWOdr/3s3F/FRlIxgI/JzGQbIuAP2OtDx8nCs+at07i3zXatChOKYWL9kbiwbohsJF7ZlWk5KkAB7jrgdmfhxwP3Gicd0TAxveRJ3xmuHUkUI6w/i2V4qORBSmyRyNG/jObZ5cRpYq0/5dHSotM790m09yCdB76X1qfxdEhOqNoYI/jPPQL6G6F1vOqJPvR4kip+Sku1Y6bA7kAJ3tnKlIAdq/1/Zy5czpS9s0AeiEFSd+StPz6OQKt27dxigZbCz2QUfL6sB7s3l8QiHJgRHcunAKSagE5rO/dkRLrXsSUhzYMQ163QYk4GTi3RHuWsPZviTyoLrF+riBlT8VovowMFMEw1t/aV0oRn/PtziiF65Eln98EhbZ+BSmv/FhsjRSLf8VS5lCwn8xpNN08vRMphG53172y6Hng3paOScG62QWFL98j577//26bN69j4caR8c4b9wvPKFyYcrt2E/Jgrgu8FNUrTjfWUppe4XYcsHF4FxlMJqI1WrF1syPJ/hbAS5+TsT6t7QcHmnat1TRrjZn9ngvtT9/hvC+RkSNEecpKjXgZAkbeRJo324JECR+UxKHOa9q99TLoBdBlODN2QMrnx9D51989G8BLjyBeale098WA2mOR4vrgBtIcSdrQHCJRXgG84567z+gNst+bWp+EdhYZr1dE62QyAlb4KELnI2BliD5VmCoput4QulHdB6JzaGfSEXxWQWDKdykGGv3U5tCcQPMNorVGklJuAAJ+fwL8xu6tgdbVDO/usgUZP7ZH0UxG27wMjhOxvHAUGR79UfsHI6PYdqTTQQyu1X63R/Ul7aiyOWZcRgDgL5EB9wHrhxC9qYf13y1URx063frnoCbQPMR+74kMYaPQuhzunvXgpZPIMLKiPT6si46Nollj/NsjwMZLJHy+P4NuQQa5GR717t7xiGeOQTbNoNkOOQc87q55w9OKCLizaFF7W0DzHCyaoW9fjf58FRdRhzQP9QCJYbxmZHJ7Z2d0nq3rroUzb210Pn6Ayfik12PqHGkWXXS+B97sfQROWdPeC1E7j4nnQo29pFU00VkYp0VeHBkgjnXjFXjHzW1eeoeqUk4tKErRPUgvsCQ6/35t93a1NjxOtjPSTDc8ujYvg3jpj0iAtkuiSBlTcQbcGvQ6IH7macRLrhmPZ1E9mkWX6jOsHQJHPOeuxTzUtuSk16Sah9rN+ulCxDcfgXjoqbh1VWOeH2nzY+8mj/lvEcjxXxhPGuY3iuTzjs3/CUj38xl2DpYZM+QwE1LifY4ifQbdQj/EE99JTtrZWn2FdD4fWN3Otb7+JeJ9To3e6QTcBmxovwM/3I1iQNTbiEfZErf2S8y3viga7aNEDhoInPAsijpW6JjUwLE+HumPHqcVgKh4vEnr/nsjx44rSIOxH0H7tXf4OBjJf3vVmkcN7IO+tl6nW78f2trvRuu2Q0wL8dNZgKgVEEjy2Br0AwBxD3Sm7GW0xpJEd+pK4pxwLQXnqT2/NTrnJ5FOexp4s87IQeUNo/mSrdUqvalbD2EeXIZk9wXcM+G9EYg/3qBoTjVh3P18vdL6bghyMHsC7XM+YlVHxOt9BOyTQW99G5Mh0fU+CJxZQfrNwDvFTj55jih+Lg1APNdamK4WObRnAaL2QPtUYXYXpId+DtjFXVsH7c2PkV6zKyN71Up59Z5TC+LxHqQF8khbaSstKbY2r0A6829tb3kI8Vlhn5gHyZ9fokALQe/SFgWqtf0/qyvQVmbCIGtjv8UOrqUQQ7YcMjRWjKlZIefdeZGg9pV/5n+ZZkvoRgfpAsgo/SHOIFaSpg/j7hnOhZHieyxp8MycQrMLSeqycUajVL7TGuPUcLq1aFKgDENApF8jwc9HtOhu37ofHX49UAjpT5BCojP5CoU8mrWE8ZUQw76tu7YDEuxfIMpPjwwq4aAOip0nkQG2LxK4brE6X0+i1JgPKTYWw+WlLmpP2TZkPZPxu72NZRDa1nf3gkG/QjodQKwQK/LA/QZ5MJ2GwGVfERmAkLLsKmQ8arqXU0Y9d7Z6hrQmg5GCbixwDU7IzXk/kwe8EQAAIABJREFUS3HcapoZY9UHeRtdTJK6bUnr11EIfDM/Ar+MtLl4TMk+WM/6/0UkyAXhvD9az5+RkRs9Z04tioT2MUjBviMJw1okbGYZB57HwHgoBUNmhJICml6QPw24POOZrkjRdYm79gBphe76RODgnLbvgpR0HdFeuBPyaI4BURugiF734lKjUVJZ6J7fAe2zWyCj8cHIoHxk9Ny89dKu0Zd5e3gHm6efIqHkDXfPe3deZP1SBWyjWtkxR9DMuD+YxPh0SnSvO1J83k52VLe6xyhaP4UpIpByuysyst6H1vc92BmJSyWHhMyQtiJ1RgGHWvs2iOjXBV6K6n6j0dy4gTTPMpqPIiVZHwR0G4nO+lXRHvARMpgHBeRAElBwrLxb3a4/0iiaOXXfGilTX0QGka1tfAYjHqOCeJyL7e93RB6zEb2zEbDt9yTpD0N65tEITB726y7IEPAxUQpwo3M1CVBwH/v2M8iAXUH82crunZMRbz8ZnY9xhKyHSEe8agTN09BZEs6R/W2c5rH/pyPl7Z2IPwsRbLoh4/29OL7L7h1DOppBULwMQorct5AS/yEE0F8arbGf1rmOG0bX0dzX+ms8MjJ+hzySA3h2MDLovoXOvSyAlTd6tZuNaS5GwsPGkZ7CXncxUnL7yBZ3I2PcdHIi2ETjFEfYCEbCMWh/8G3bnGqAdRaYawQ6mybYmH+N1ubcdbR/LrRn/BZF/tzP+mJbuz8v4h2noDUeQEvBsWQ0kQEf8RkVZJBsFM2rgf+HpWRCfNNEZJy61No5mnRqlL7IUFxB67RTRPMku7dko2gWjZe7txkWGSC63gPJ9ztRDVpa1eZaZgqhRtIkMR4daO2MDd+dEaDgX7h9tsae0kyaB+EcQNz9uVGUgBFkGAgL6K5hc/MXOOcHtzbfR7JwDCBLnSPNootkuiAfroVAgqMRH/EwAj/+C3iqRjtT/GBraJJECT0bcw6z6wPQWr+ajBQUSH77OyVBUNE3A29yM3KODADmbsh4+TUOxD+ri5uvy6HoIxXr0zcR+OjMjHf8GPVA50gYp45ITvw/JKesWvR+M+kSOVTZfAg6gtNtLBZBAAXPQ/VEEajuwqUfsntxRKhgzLqStGE5RBjL00Vngasy12iDx/toEiDmthn3uyGdxRnojFw84xm/VhYkraPsjM6qKdYHYX0NQHv+aCKevM76d0JgyIeQXDURyQBHumeqZH6kcziMRAdVFCFqOaOd6QRZULcO6Pz+DDmPhMgrne3bD6I9axTOUa/J430IAn48SZ1G/oz1VJV2FJ1nY3DpK0miano9VHi+T0xjJvTBdoinqAB3ueulI79n9YnNqTvQnvQXpBMOkUM9IGoz905VCvNovq6I5O8Do28thHjXd0jkq67IiSh3Pbn5fzQCv7xmNDwgLeyx7RHvPRjtgTMiHSEg12Lu2i4kjgQh9fmuYR042ruivaAKUNnE8Y4ddq+0eoQ5uCKSz95AMnE7pBe5ztZm/wya3UgisG9C2gbWG53to60vwhlTen4jncG7SP89FecYZmNxLJKp3rD2TMTpfiNaYc9tZ/PmBaMbovp3RzqwsfbNC6y8anOsQ9yPc3Jxc3YTm4ul5ZG20lZaUmwf/RfSAV5h+/RvkG5oCopOuIA92wcBNMfZ/lHaEb+tFIzBrK5AW5kJg6yF9iJOge42/COMMbmZamEwpN2YTpSn/n+ZZivpnogUt58TKcxaQfN0pDAbS8REzkE090MC0UlIsfAtJYBLJcap4XRbQXNr5Hn0BWlDV3uUmucJqiN33IwUjJlpm2Kabhw8870cUg6uSdoIvjpCtx9hv7sgJvoK8sE/ayPD8nh0QN8LLB/NjV8jBdR1JB5PcVjWvCgeWyMGYPes+wV9W+aZTZCny5Ok0zd6QNTBtehE9D7FvEKRomci8kT7mrRHzZlo3e/trs0s4X5xpKw9w7X3W2R8/gNitq7EKRJnEc0dkXD1HDAiWh9r2fcqyHj2KdpDSwPLkLC3lq2nV6gGRP0ZMZg/KzPPUOSFRZEC41MEDovTHHXKeTcoNI9CAMIfkID1PRK46xGMq1LuZXyvD1Ka/Nh+h2gGQaHbD63ro0v0469snoeIBJ3JB0R1Ib3nZHk4rYuUOT9BgLUF/TNIKf0dpizLqE/76Pl2SBG+J5HBphVryNc3KA+GICNABUt1Ed3fyu7lpS2cI2iW6JtB6Kz8Hp1jfdGZsz9S1Oxfo55LUgPYlPVu/LeAfi/7ex5ap/dioACS9T9/Af110ZkxjhYCoqhe+8GI1GiaVyP+6gHEiz1AGlzcF3lJh7Q7Abw0CJcuJPrO/o2mGdEfgUA+D9jYvIvOj4uQAncZ5EX/AVL6PUiUYsn97xWr55EAoga6ur5t/fsnFAnuSsQXnJxRt0fQeXMRUhT+Bu3PYU4FD/0/4HhaFGFiL9JpbsJc+8S+10iav8Qidlq/f4hSYfVFBrwQeWA0yf7aBfGyo6lOu7UF2uN95KrfR/0+AAEYnkJny9doPs+IFFRij2oYXff+9iTpmtZBwJYb0Bl7EeYdi3iWt412buoIe3a2pokAY9fbvPERKjoYjQdJp9KbF4EmTyQCZOaM07YI4P4EWi8hRWM3JNeNMXrLoz2gQu2IUENsbM+y/4ch/nG69Ul7K2Xaf4J982kk0xxu74a9aBgCRbyOAPXbIIV+ZjpUFPHh5w2meQxa+6OQU9AB6LwMTiOrI4P6V8Bx0Vhdg0tL5e7thvbLhtHMGKeYPwtK2Z9Y/9yIopitiIDqY3GRLEj4s94kBs+G08xpR3+0j05Fzlr90Vw7Ae1vx+W9O5NpLoL2wclo7fdBfNEItJdvkNF2P0ZdrS/8+Xc2WksnY1HT7LnD0V7h0wWHOTrjHGkWXRSl4A17tqt7tjcyxj9i4x0iwmZGv4na3yialyM+9izSgKj70Bpbj7RupS/ShV1a75g7Gj2t7pe7a/2tzieRwT/PyuLm31LIIPo5AlcuHD8TvbczAgG8gBwkgrG1HQJABOBSXXJII+ii9XcrSWSufUkb7NdBoIDxNg+8Q8X+Rn94RDNE9/JOdv3RXuzTH92LzoWwN66Ok4eo5vMzo7Y1YFz9d/wc34vEIcLzo5kg2gKa1yJ+bhzSt4U9fyXEA1eQDuYB+9ZnlASVlmzfMoi3nNddy5qn7RFAp4LO0xBZvggQVZeegWRf7Ib2nE8RMP1Km8PfkzhLvA9c1Ojx9nUhkSO6oDP4P4j/Lgvq9eO8AXKQrZBOL9YByTvfkkTGjNMLL4xk7dgRt2lAC6rP0bWQPut0xPfd6dsQvVsqIgfaT6YgvuHXCED7FdKlhawMg9H+8k9g6+j9XllzgCSy2s7xfEbR8b4ncpCo1QfR9Y3R+fYuad11Bz//o7nUC533T6PzMYDH93Ft+Rty6lnLvdsZnXdv0woAZCvmwUU2F7/EQC4kOrJBNi7fk0Sn/4hqO9ZGpCPqD0A83b9I76l9SCLpDacOQBE676ZafYdZ/z5o14Itp7fNueBglUppG/9v9fkjAuuuiM6k70icP7rburjf6vwfpPOrAof/txSbpxdQhzzSVtpKvQWduY8jh43YZr460gdPRzbEYE/ta++MQjxKt5ld7/+2Mssr0FZmwiBLqfoKcJX9jhH8h9uGf679DgfkYiiaSZUQ+b9Ms6V0EaN/I1KsLN8gmnPbZvnoHE7zVOSJELz1L6AEyKjEODWcblmaGf2yDQofH0cf6IUi09xKomgPTGaIvpMHBEjRxAkX9nsEErQnI8PDq0gR3QUxwPchRcx1SCifSFoZmgVeWhspLD5HCqJQ5xBWugcS+D5ESo7cgzqiuyAy+FWQ0WXHvL4soLF13L/Rut4ACbgxIGoVpFCrIEBaLUBIN5S+5ef2e6DNgatJcq5XSEfEmT+uTzNKxrzrZeO7KgLvfEiSLqUXUsJ8jQxxmSjzRtNEhqbromsbIUNShRxPOCQ4no4EkvXc9TzwXve4HUiB8B7aw1YhEUQHoHV9YF7b3XrwxoGFkLH5U6RECethG7QXdiMtgMZh8zsghe00BIzKBD6WmPsnWP2rovDY/Z/YN16y9odoBp2QZ/pbwBYlvrkUUgRc5a51JAFE/YUMT+acOu2PlA/vov3kW6QoHeKeWQAZW4MypRBYh/a8UWiPqvIILtmXVelj7PquuEhkCFD3jvWnT7XZCUVdGE3tCEZzBM0a31uZZP/8EAEanyGKdJDRz3shxeA1uKgl9YyV/W4f0e2N9qGe0XM/Ruv0HhJQyE4IhLlYRGNx9/9qSPgcT53gpej/s5Bge2ADaYaw/sH7fH+0lv4N3O+eC+dzUMT9B+2ncbSR9v5vI2lmjOMqNvfOJPFgbY8Uc5OQwTXUZx4b07lq0XX3PSBqBUfnBrQeJqGogx647FNdtEcK7DHIUPEyUSoTdBYF8FKm8YB02t6G03TXVkcK7NtJG3NHoPPuC8Qj7W59M4nsNTofllIYAaYmIP5wk4xnu6K5/FMb/1xjc/ReQ+nauHVGSto7cOcoOp8uROtkO9d/a/w30LTnliYxKp4c3fsZ4u1XRHLoXtanqSjKBeM0Be3vIZXZdBJwQ1cEvBuDzu9vMJB8QV0HWZt+Szptbxcb7+9JAFe57Se9R91n7z1PdYTgjkhueR2dT5OQwfWImFYzaLrf26F953OjGUfQWQUZhL8ifX53jdveTJrumZg/m4D4s5WQnHcM2l/DuH+DRb6amTRrfG9FZIifajS/RsDazLRWs5DmQLQXTkX79GibU1VrifT5v7PN008R33UpaZBsBfEZv0Tn3nc4Aynp864pdN214WgvOR3YtGCdbI/40onA72r0W0NpIp7rB8SrBR6xP+J93kT8YicSg+PXuLQyLZif3dC++gJyJgspjV4jHRlltom8QLJXLouAXG+SBv1kjfv3Np/+SpJe6SybJ+2RbuYFtCeUiozcKLo2lueR6J5+QNEwPLDuNFsL/0R8ySZ2bRJRlDh7fmESY7LXK48jAYOEdHsBDLIU4v23z+jD3PSVDRjPGOTRK/od+NE7iRw5C8bc7yVXoTPybORs+TnSeaxk9/simfUPiCc6kVbIo1lzNeN6roMJMv6HFPAHUQ2I+gjpWuYq860aa6gL4sfvsvn1tJsfw6yvSqWebGU/HWjf/j90llUQIGq1Gu/5cT4endd7IEfecThdHtJ1hewBz9p3vB7qMMRPZQL0m9BmX/ftkd56Hfvdx9b3NOBP0XubxWNf8I0VrJ2nk44GFxyAFnZzIURi3iOicYKNRbcM2pMxvgPtd+GMngfxERfUqF94voPN78Wj+5sinv+dUC+kq7+XKFW7q8MmSB74N9qz4kwJG6M9+Tukkzka7b9TKAHeatJcONHaOB23b5Pocxe0cT8JOe4uGr0fIl6dTuIo2h3pgMdYH2YBoj5CfEQtvWZ7BJx+GMlN3dy9Re3aZJK0sB2sZIKU3ZzrhMBpb2HZWhAvfh8OEOXeW5h0FP66I6bNKQXp9hsqj7SVtuILiqj7OmnZxTvRL2hrewpR1EBkZ3yPHHtFW6ljHGZ1BdrKTBpoMfbvknhyxcajC5BQGUcr6tJGs3F0jZnJzX/eQppdKfBMmZ1p4pRwZBsuM4FL0beqlLrNoNsKmu1r1LUTyjffL6MOGyDmPFc5RBJ9J3hwBe+AzZAwfyHywD8ECSBfkgg1Q5Hh7DN0IOfmJ4/qtS5iliukFewBINYDHeCTKCHYknjA3oyUTRORN8UOWd/PqVMI6b1pzjc8IOp7qgFRq+OiLpSo84ZIWREipd1Ekt5jbyQEVimzs9rRjIKMICFUb3f7ewpSdiztxuo2pIQZX2usGkGTJKz80Az6ayEgyzuUADsV3UNe878lQtu7+RuU/KuQCLyxcsvPry2QUfFeLKqHuxcAUZ8gYTjMxRMiekch5YqPhLEgUuK+gYTZ/alx9mTULQAighJtNZuffn6viRS932NrFin5D7d5Gtd1hvE++t0VATffIG1w74D2mcn2nUJlEVKyfIui0QUh/FiSlFg+5cFonJdhAc3w/ePICNlfsi9HIoNsPBc6oDMvgP6CEmk1u/4VUvoehoCSmdFm5kSaJftwEAKxjEce+t5zNssDd28bq3Oowxs8GqvhSHHjr+2EFEb/QWfKnpgXst0/H63TN0mMj3HasV+gPcwrL4dQG7z0s2hN+Ho9ThQxpQE0ZwAro+sj0Nk/nXS6Ap97/mN7ZpmSfd0Qmp4uUpp/TuIV70GmD9k4LRC9WxUZw93blWowaxYgqhPiURYlDcaoijKFeNu7kNHzM5IUZj7iXUhz9CcKQvw3g6Z7fgA6WyrAwxn3tyMBRYxDBtjD4rZHfbCezcETSa+FdvGz9nslo3uP9W+ex3Gz6HZCCvhbMtoyH+LTniIDcBx/c06hGb27DBmAKLTPPGvXP0Z7Xk2FLvJW/wQZuYKCf0m0b79E4tXeGRk4DiWddjtr31/R6vE98OeM+/2s/Q+RDaTP69P7kLNNBe2dy2bMq04oCsgy5Kz7ZtAkvY/ugPjOCgm/5tf9Kki+nkgGULGZNCP6tfizsF/0Rzzk/hSAUZpFs2Rb5kJ7yLHIkLX6bEqzF3IwuRAZQGutpX3QWv4jSoX5FDp/nyM5aw5BPMaHaA/IjAbWbLooaty7CBDhDXmZIG/7vR/OwDczaNozl5IAosLZvDoCKP2A9tBXbC632jCGIm6GqHFPIMNHFcCmNXOr0cWt1eVJ0ilV6Y+QPHIjiiQeol8ujWToH0j0VR2QzPo+JVLANZouOsPuwdKj+uvu/5EIMDIF8S/PkObnQ594PnZ3EuBwD6RnexydK58AK7p6Hob0XzE4/hirV8NT40V1vRDJTh8gPmJTknPuEBJAVFUUft8H0fpbGgGctnPXhiIj3ms4R0/KRRD3tFu1FijQxSGQ4t1kA6LORnLzDq38fszLeV54E7S33tmab5Ssx5aIHzsOyfFdkVw+Cu39ZSJRB93WoW7cf49kLw+I2onEESU48CxsfdyiyIoNaP9+SBa7BecQiEB6ARD1R8SXBD17ZrrfDNrb2Tof7K4F4FsAgi1IEvVjvgwa85I4Hu3nrndHOvNpOJnc7i2DAC5hH8ySl8NZ3tPGKjjMXIdzKra5+ILNh98i0P1bResVnaEVtM6rHHqQg8O1CFwyEemQvS1hZkUD83z6gUg2fhezueAip5WgdQdJWqsgG3Wzuf0l1YCooDOZhJMt8voAnRGfYynvIlqDjNat6CyL95Ysp95OyHn770g/7EEYHhC1Ta2++28uKBPGYTRIHmkrbSUU2yvGYilTc55ZGUXMe4E0jzAPddg52krBOMzqCrSVmTTQ8uAZB9zhrrW3g74dYvLeQYqPwsO/jWaL6FZ5cTeIZs3DeE6gSaJEmOHZYL8DyOhmzFMIpafalHIpMxpOt0k0u3na7voqSCk51F3rQWQgdM/+AQkg+yMw1K9IR1Loh7xRRpGkCuqDhK3F4jZmfMMzwkMQEz2JNLgjRLXqSYbHfwbNjTDvFiQU90LKq+BZkgmIiv4/CgnzhV5zbuw2sOcfwyIgZD0XfyeH5ipI2N3G0d8TeXw8Qh2p9xpVkGA0AfOmJwH73Ab80z3X067tT2SMbyZN9+52wO3RvfWRwfYp0mGU6xI8SEJ1X0OU1x0Ji2fa/Wcx7zcSIbEdacFwBBLa77C2vWdz06+Zfkg5OoUohZ/d34MobL6ryyLIMH+rrYUDqT/l3kGurl+hdTkFuMk9uw0KqVxBCo23kZL4lLz5jgN9uWvL2zfjCBQdrJ25iiLXxz9G+4cHqtyFzo0Ajuhpf/+JGflyaAavqfuQ0XKuvPbk1cf+H0mG0plEaXQf5iWIO9eQAevf9u67wLnAbkV1mFNo1rnmVkdG7MNq1HMp+/4F5BixSoxVSA23i7u2L1KsXY4MxHejtfAj0uDF4Gn5JhkKOGSIHWr/z+PuF4GXbkDn/7VImZw1ry5uMM1cT3EEFBuPziAPLA3gpb64dKRlxqC1NN3fwO8cjPaoIRm0VkbAq/1Kzoc+aG9OzQm75wFRVUrHEu1uj/bmEDI9GEb8nnyo3d8yj04jacb1RYqRQ9H++QEJ8CvmKZdFyve+vi45dTwOKb2rIv1Fz/k6n43WXBWP2ki60dh7Pvwp0sZMT+NWtOY753xvjqOZcW8gCSDKn+vLIZD2GcD2tcbe7u2C+Fjv1HIf2rsH2+9+Oe/mzalFkFz4KTKAhHnvFfs3I7B1mVQ8uwDXuN8hZd7vSBt0OuBS5BT1ZTNoZtB/DcnQS2eM/6roHD20iE4zaFKOPwuRTPLSt2caYhpBk8gAF/+up7h6ze40s4BQS6B9/jyStIg9EF/0NfL2D33Wy0phiqgm090YyVAblG0riuI7nig6QaNoFq1TxEP+gM6dvnatE4oMfq31z3ZZ36h3rtj/+yI+4HbSadTyzo/1UGS63Ajn9Xy/NfMSnS2fE6WYRyDBB9A+v1V0bz50Tk0iAQS1J0PezPhuQ+kieb8vin4Y5OPfuPs+9WNPZDheitqpATshgMXnJPq2DdAe7dNb9UX6kglEgDLE1/6KJuuRkG7jI5vblyAgzkcIDBL2tADQ/zvVkRKreBUkvzyOQJR+zw8Rut9H0Q0GRfO8KMpUL3IimNcz15GTVWjX+ghwdjICaoV53dnmRAyI6oal0mpQ33udci/kYPgacFvR/GrUt1E0vFeJgDjWJ1MQADAAd7KiCGambyQNiPIp8w5BwJCJ6Dx5Ocy1vPFq4rzfEMkVp5ChN7L1dwraT8ZRIzIM0flvbf0Kk/kR//wRiY5rHRQheJHo/R4oiq8HY+5o6+96d20zpMubiHR/iyNe7wbkRNi/xpzriWSxx1CK9hDh6E84wLCtizsRmLMwRRra985AUSNHIR3rClljikBbi+EiLTVrrsf1RXtAn+j+4ciR7hnSgKg8B5zFot9/QHoLD4jqTj4gKlNnEtHcE0Wkaod0tnf5vnb/P4KcvMvY8Dqi8/MN4Hl/3f2/EnL+/ZZWRL+ck0vBuLcBodpKqwsCoH9K4vydN98ut/2jCizbVhowDrO6Am2lwQMqJn0rZEzdmESZ0ZnEeHKje94ztC+TET76f5nmnFTXOZ1m9IxnWH0auk1QOOyxVDOxDac7E2hukkXTPTsACTnD7HcvZCj5jIx0WEjguJ0kr/UvM2iugIBG18VjlvU7430/xmshpdR40oCoztE7WYqiIPSdi4wrC0b3l0FeKq9iSqOcOmQK4gX1D0LgUOunV8lRlEXfWc7qtEz0zNZGZy373QlFPLiYAoNgswsSjF6P2nAEEtT2QQLoAUhg9sboIuNYQ2jCjFQxVyHwz43R/aFIgfA0BR68OePUiwQUcoSNzXVEhlfk4fUqYjCHu+v7Rs9thZSZJ9rvgSQRUkZTLQyvS9rbMYQr3ok0sK+99YGv+8IkgKgDSBQOu6CIU92K5r7V7R0UyWFbpLD/Dnm8hkheC1ldLkIK2HUKxmkTBBr8JQ40iATpW6z/lioYiyJjw33A0+73A8izKSiJ1gtjEX8jh15PtK9dWPBMZrS/qC8PyKs3WtPvI+BBAP+GubYy2sf+L5pPneJvzWk0i8Yx49l5o99ZwN0N0Jmxbh10s8bKp+YYam0+wX6viIx3IfT5maSNFz2IUpfG7URgzQdI72VF4KU7iUB7SJE6A2DXJJrLISDaWjhDAVLAfYG8vT14qUtEryraUgNproqMdgEANZwkMt2a1o4LMvp+XbTP1ozWiPazG5AiMESdGR49cx7ax28nI1VzBs3tcQYPmx9/tLZfRBKNwCsPV5gFNJd3fdsH8ZVfISVmSD2Yu6az7rlnfgu8n7UGQ90cnTDe+yJDWmZ6v0bQjebpBsgIMNA9V6HaMNsFgVnuRsrpIoPbnEJzfQRwOh7YOlq7ARCVGWHE920G3SURz3IyMMldv590Wp81EL9Shn9elEThtzCK0DeNSEZEPNFNCCzWu8b87IjA7p+RBrueSBLNKQCDdkbAm1oAvIbQjNreBckF/tpOCJg8hsR5xhs2CkFWjaIZz4NorGvyZ+REMW00Tarlrl1woOIyJZ5LcwrNnGfWQAbaTe134O96INDZJAxEm1HHojXVLLqH2foJwKIYLLYWUdR0xH9MJkob1GiaCKC5ANVOM1cY/bOJ9BO15nodYx3LXJ1q0UX6pU+tbq8Bx7fgu37fWByBewYX1S2r7m5+pFL6oX38SsRzfUOSvscDizZB8un2RfWLrjeFrt3rR3I2VYAb3L2O8fuU46F2Rfzd8FBPdG58RQJCeATt2ZlgEOrcP1owFw5CvNWGJBFo1rU+OJN0usCjEF++iLvWzebhnhHdk0j48Y2iewEQ9bZ9e8US9dwNpbV+E0U5Xbhk+3xfXo2LFo6iAk20/v/C6nslyZnUBfFi45Gzwf9n77zjraqOt/+lNxFQkGJX7Fhi76LYIvYSFUFQrFixYIlJjC3FEltijLHEEo29xRh7irGR2GP82RUsIAgiiu2+7x/PLPbsddY+5XIOcOX+sT/3nl1mr73KrCnPzPSKaNfdKY70pT1dP1UdnNnM910HvOl+ewDOFUhOexLYKNGfZe2vKPgiAKLOcefXR8CT61B2xSHuWsOBBm7t/gxlIvWyXpvoGxdC9oVxJAIJEJhvoPu9L2brI7Mz72dz9j0y+bkT0uUfpdSOdof16zAy3rMk4k3fkgdrDkX6XpPN5fdsTZXNKIx46e0I3Njbzt2EbKKfWbt8QGoPZF9NAr4j2u3JMsZORIDIQe56G2AxIr7aiPnt3ul9NefZ901BOswod20MsiU9gcv4maD3I+TfWShaM5UAUU+m+o60HWYnJHOdYH1/OpJf4kz+3ZBN9Soc0LNCfxxv7fyWvH3X85vVrb0PN3pNzo2DxP5d63OtR+tRrwPZhL4BhhVcD3b5ISgxxrqtc7EB4zCvG9B61HEwlbahButIAAAgAElEQVQ7pCv+yjbd/7NF1MZtpE0m8PjSG71R2t4zcYLggkyzJbX1O0BzK0rrYcdZlz5BBoRPiOqYN4LuvKZp9y9v9w1FzonLkQGoMCoJOYGvRhE9t4f+j9r4GPDXOeA1KUDUZKpMHRzROgNFj/R354IAELJ//BMDhEXP3kMeDFKVkECmdAwhqmdecP/+CPgy3b7Tp0Zf2No3ESnL5yJF8hB3z9yKcvJGq7WtzRe7c6siw04TMvzMpELZjHrRjOZMyP7RF5UkmwxcF92/GVI0n8Y53SvQ3RVFNs6uwU4GiLqCzInVHimyZ+KM5cgJ9i3mLEfr9TfAL+13yI71e+TUn4aivJYoaFtJjXb7f2e0lp9FiH9fC3pxBDSaiSL2Qgarn0a0jyHKhmbtu5+s5GZ35Bz/FCnKC1XTj+7cxsgRMBEZWO5DzpJONj5fA3vZvVVlVAz3Ih71H2vjfUY/RB/2QAC2i8iXW0u1MYC8FkUGzfPDvVGfb4iMbyWgH4ojG/dAkRsjrW/PRUCiZJsQuOM1FG01vODb51ua0T1rYMbPWg6yvb6NjeF1RJG8ZBGORen3NyQP0qtmrIJhtR0CA4RyfT1QppGZyPBYslZT88rOH4cU0FvJl8FZDxnSplGc/S70w0/I7xd1pYmM+R+h/b4JAYIOcM+MRnz5ryRKkxa8py40EZ89AznutiZzXh5Mtgefi/jIGDIwUGfkeHiPMiWC7d69kTHhDGQ4PMTa+w1RxCWSzZpIyxJ+ji2CIjgn4wzKyPl3q53/JVlZ3BxPIW3UrAvNqM2boXl+JhkgqicCdH6K5KOF4+eqWcN2nIP2u41dO8Lf/mi/HBp948fAXXODLuJ3kxDwZzP3/O/RGrsKAbTXQHP2c6LMjIk2thSaB6D1OQGtn8+RUyNkU1zV6DdRQyknZLB/HIHOtrX5dSCSH94lywjVFUV/30MiVTv5ub8XAk/+lLzsd4a173bkNNoYRafPAo6osr2D0H5wZHQ+gJf+iWStr4HT5zZNBFC6CTlWLiHvTNsVOYM/IgFeivux3jRtDLyMsC7KDNSG6uSzX1FaMr4RNPshgOBd9jtkL0jKQ2XGok1Lo2m/U7x/Q6O9uzs3u9w3UWa4Gt5dF7qU8vW1Ec//VfxdyJn4J7Qv+HP34nh+nWg+gLK9BBrDgf8ie837Nv989rcLyEAhVQU3xeM3J2Nv57ztJgQ67I8c5Q+hveWMZr5vBALlTEUy073AbjXO+1EYuIy8zrUYmXz3iDsfZJsVkE1lVI1tniO6Uds7UgqYG0AaELUvsp1VDBiJxuxh4Pno+kAExLgB7Svfd9dKyjXb/+tjmT2bO78K+uNSJDOHYNdV0P7xJzK5cml3f8/o+ZWtv0pkTSSnNKGsrSVBTWjf/w8OoFTQxl0QCOAPRmsCsp3OliGrGOtzgP+HwFR9UXDjO0gvHIjsrcehvf/28M0I7BVKKJYEJ0Tv6G7zsxMZ36kmU4u3k4e/7XBBOtRgY6ly3EP7xtp68XJEWEun2Fx4n9KMu8cgnuGDkrqh7GydyfaNVdC+mANElWtTow/Xpw8Af4/H0d1XBPQPfdcNlYR7EVXECNnTDnT3XG/9NDXMcyQ/j0J6TUnWc6THvYRsb8PJ5OYi3tQfZYkah+TtJavog1WQ7rmt/f4TkslWQbr0l8i2W2IHIq3j9rE11N+1tyOys09A8uqqaD3tiTK+lw1OaNDY34x0mQuQDvIE8sX8zN1zKAoseAVYu4DOYMwXQylPvMnG/IdkpXa7kGUAfD013yIa3dCecyEZb14BZXj9AAWRtbc+3x/ZuEaUm+/xGrN5WsKfo3uWZy6tywaNd/LbU7+roVHLc61H6xEOtCfuiuStkLV0SbQv/oUyJe9QRto3Yz7TetRpbOZ1A1qPOg2kIgTvR4rxWsh4vCdSwmYiobUTMjgdi4SylxCY5XAkrE3FlZBYkGm2pLZ+R2h+hiKc46iboLD0QZEOU4giiBpBdz6iuRwy+AxDCtfnFDiQo+fWRMpnE1ENdrQh34eUnDgzTS2Ahti5/pC9L5kOtwydYDAuQUYjAf9V68tHyJdUOg8ZNqbhnJvVvpsyNbWj8+sihfQ0lA0tlLY5092zHXIMf4FABsdX04Z6HkhpeoQs6qgjMuy+Qr7M4jLImXIMrs583B/1pBnNle2QErqi/V7U5nYKELWF9fVeVXz/SGTQ+Q2l2VUONzr3IaHyZLvXA0F2R0JpiHoOjqSDbX73RjzuarLoyZB94eNwf0HbfKaP/W3O3oCU3OeRAWIPd88A5BD+EvGSEyJ6u9p7D7bfa6MMVicAl0T3LkTmHL+TzNletTKHAFonIoPPdGRA2sLm/Ms0I3KVDEz1PvAWWSRmRxvLd3El3Apo7GL9GL7pchLZZBDvPQmlE18munYEaXBNPwTE+4gsPfqH1u932RzeHxlzB5BF1q2NjLSTcYCe+Z0m+TUaHCS3Y5lMqhzT2GCwB7BVmIfu/KbWvjMpdXwujBw+Z1CaCa2kNBy21pHBZl2bP39HxqhF7NrO9tyXKANP52q/w+bHFLR2YvDSQ2hP3rpcP9STZkRnU8SzfmzfOBQ59t7GASDQevrU5kmJI6URNN19fRF4IERdx/LIsggM8i1yxF2EeN/nlM9q0wY5Hp5Ee7IH7Q5CBs9vKI1WL8k0GH3/Dmg/+qe19w3ygPYAXvrA7ksaJxpBM/GObsg59w5y1gbHVQ/yPL8QEJWaq+7aGkje/yOObyIZ8kBknBkcPbO7G58imarZdB3tXWyOHEdk+Lc5dZ59/0y01j6gQhmO+ZlmNJ8Wtz46AWX16IX25w+Bp919KyHnYROwTkH7PN3+aE8Yh/S7Pij7YxOSgVe3+7qgPWUS1QHBZiBHZDym/cmyV36BQFi34crvpr7fXWuP1s6NaG8fQN6If5i1/9/A0XODZkRrBAKsP4JkpncQnzvZ3bMbkiunUVDCsxE0kfP3GjJQ7UE2Bhvb75rls0bQtOvdyIBo/7HvPYiCrFQF3+vn+YothWaZ+5ZDuuaD5ME7bZCBfSIV1ma96UZt72TP+KyFdyKn6HHuvm5kwUbxXj2IbK22nVOaiAd/TsbHdrXfFyOn/7k2X/+F0yERSLmJMrJj9O0dor/Ncrgl6PZD2Rz2J9OtVyYDGpxZzXscvb2QTPxj+38IWpcfEGXjLtOmo5GcldTR0R5ynvXrbW48OyMA/AwqgP/rSTdq+25I5nwHyd0j3NwagPamb+3az9EefX6Cpgcs+ZKRAQyyK9KzDonvT9AqygZ2LVp7M5HNcMdaxjpFnyyr1y3Ao/b/Ssh2exOZAz6U1w2BR4XzFIFzz4yuBfvLVaQBUYUZm+13T2Qr+SmW9QTpSv9GctAm5dpk/4cgmssQv3jE5vvtlGal39fae4I71wUH0C94x55GdzLSS05zfVgu47qnMRLZ1EMWzYVQUM8jaE8/hTJZV6t5R2LMlkP2g7/hgC/IbnK2tWc1d74tkl0n48o3Ih7yCJILX0Zg/KCDr0rGp85wzzS7fGxzj6i/L7Vvn10K1V1bEdn7Vi9HC4EU/4fkl2+Bo6J7NkY8KpRdPQntOdOBUxPjEXhQd2RzexMBp4Ld0QOirp6DfuiBgpTaoTX6FhZ4iuwwT5HJMiunvt39v4/N+WnIpnklmV0uZIh6F8l+tyM+9ot5MPYjkL11C9fPO9p3XkrejnAcClhdpgLNIfb8+tH5FCCqK9qfSgBw0bPbGM3/I7KDIP/OLWjvnoL2hckUBL2Q7UPtkAwV87sjSfBnon2KFg4AsnG+HgVNVhVsk5jnFf1vrUfrER/Gyx9FMsuLyM4VAKMHIp3+9yRArMhHdhsCq9ZcIrj1qGJ85nUDWo86DaSiSl8l79xthxTGq5EBaiyZQWEtZEh73QSgR3GlfRZ0mi2prd8hml8hMEW36LklkcFrFolUyo2gO7/QRMa+D5FxaiYFEQoFPGEQGXDndKzEGwJ3fImV2HH3n4OMHh1reEfsRC1JS564ry2lkcp3IAV6MJng3gmlmf2xnW/CDHRIoXgYZQH6BzJubJ96Xy3fQcKBh8A7t5NlrVgCGcaayKd9bm/9u5T/1lra0dzD+ioorjOsz1ZDyu57FJQALdfOBtEchZziN+GiTykPiEpGZkX3bI4MeCcQRXm6e/ZARs+piEfFaYaPtTnYBwmnzyFHYzA674yMEj5t9FHIUPAu6eiusbhoYptLH5CV8hqA1vX79u64HOQg8oDSYLwcSgbaGokM+tNsrGZRCgZbCEUkfYmc5x1SfVTQb7FCfDxae03uKMxUV7TeyNb3DKTYh7JcJ1mfFAIhHJ3LkXEtpKLeBika/4c5QZCD7lBkeIozPRxh7fdZb7yxOBh/+1mfH2zzZxICgcxEBq6maD5vBJzb0mjauX2Qg+FkEgawcmMaraUd3O/dUclYb1C9EoGAR7nx64miICcTgWPJsgSOjtoaZzFYERmHhrlzmyOZ5DqsRFtEu1I5kGNIg5c2QMrtoXODZvT8Eojf3YQDuyA542FknPXA1EOobICrO033rU1ore5DaUm9PsgY+zLaWx7EZZmkYD9HBtv3yTL3eUP2JognfgXsHdNKjQ8CZn+JAL+j7e87iGfH4KU7kaGzbKnHetGM+4DMkNIVRZW9Tx4Q1ZMKPJ/8mt0cyX+XIIOxBwN/iRyChwHfR2DFz3CglZgu2b5ZN7qun7qgPeM28uV52rr3dkd7yskomGCzcmuzBdHcEq2nBykt+7kvmvO/d+dXwpUgKdOvW9o43Y8zyCF++j4CQ56B1u9FaD/14MiUs20LxOOOJs9PupHtWSFD1CTgztQcimguRmmmwVFoz9oiwQd6Y46uMn3aCJrdkPNvHAZuRE6MXyNeeKi7dzfEDw6O6TSKJnJQBf3wBqTTH0XmbK5ZPmsEzYj+n4z2C+5cxQAe8nzuaFQWZ/kWRnNRBIL05amOtfdcjdkG0J44Esl/W1XxnrrQjWjubOM/HskNu9n5JRDQaAras85EoMPPyPOSXBAN4pdzTBPYHskYbyC+eBriZd7msiHibfeQB/BfhgM/Vvj2K9GeewNR8EKVY78WUYkjsizsH2LBX66fViADGvy0yvf1Qja7S8hnR/470n2LQJQpIFTIzB3v9SELSl+k3zcZ7euR7jaVgszUlJdNmk3X0QxBSVchEMuLCAToZaj+aC28gmTfY3377F6/V+6BACvnI/nLZ0F8Hvhz6vuqGKufWNsOsDn7POLte1f5fDu0F/u2/owMjHoa2ut2RLrXLWQZJgcg+eU3JLLXR+9ZHK3NqcCJ0bWQofsqygSOJWjuheTiR4Gdov5fA9lf3qQ0oCeep98i+buz0fzQ5u4zbpy8XHa10e2baFNqvx+B+MalCBzxALJ1XeH6MvVcDNiaHfyH7DavIpDJlTa/30dzfcsa+tC/4/sI3HkHkrtCoONmaF9+HsmigxGI4zPyJUU9LT+fhiN5/jp77m7Ek18j0+9XsX5NggobdVBmrSF7yRSb457fB4D2WxSANSM6IcvpRNKZlFZDYL5XjOaN5EuzhXnngZUbktmoXkQ8y2eICu/8XaVvTc09Ox/s7X9EwFA/vnegdX8v5QGc+9nc+SWS50KQ6ANkcmpHZM98AOkYFfX7Bs2Fs5EMEXj8imid3kCmk/jMzRUDk1AG3ZfRfhJXLQmAqFPIAFF+jIvGazsUPPU1Bi7FlcVGtr4t0F5zBAWBzWQ24+7WlhB8+0cE4guA7TDPrqQG/txSDqQbf259+qr71rJyOaX7yESqKOnaerQe4UD7+P+QbFSybyM/7xm21u9GunvICvk9JENMpYbA5NajxjGa1w1oPeo0kELpTyLLFOEzUbRHAujnlGZMWIworXkrzZbV1u8YzZlkTv4gxG2EBOiikjp1pzuf0GyLnIQfIyWzZgEMKWA3kBnR7kcAl5PcPSHDwp1oMx5NMwFR7lyR4rUrMhQ/howjIUvJIGSE+xQpVEcg4WAmUkhXxinl1jdBmdkBGUNrAkSRF3L7J86thKLpxxCloEdGsgCIOqscfWoAnsxhn/8AKa03IYDYPxEIZBeqyK7UCJoRre2QsegEnIJJZgQIgKgPgBurmVOuj09FETxLlfsmlMFqWfIAo/D+NRFPe9y+7WjIpS4fZ9cXD+OKohXPJl0m5jIkwIYyIJ3t/vPcnJ9h9wWg1TRg5wrzKWeMQkCscQgIFAyOdxHxILTGx9CMUpaJ9y6EjEh/B8bMwTweYP38OVq/0xAQxBudy0VU9kfGwcvdud0RP2iyPn0H8b5Uto2NkIE5LptQZKDoh5ThALRaGvGmwmxoiFe1FJr9kHH5VzjncNF7CubGn1HGPh8xGrL/3YgBopBD+Xa05zxq6+AuxOdz0ZLWrpvIA6H6oP3sJPJAg3WRcXOc+67jsUyIUbs7Rn0wFDlTbiBdEiCAlzyIZbFG00z098bIuP8i+RIxwbA1EPGeXxU8n+L1dafpru1q4/Qk4u8/IF0WeBHkdC3ZH8rQfhp4OO5/+/8W5CD8lijTll33Rsm+yEgWR4duhdbEBBxPtXm1w9ygGdFfPP5WBIi6D/G5H5IHRFXk+YgHTkdO4qkIQPYm2d61BzKgzrJrL+JAhUVj1EC6PdG+V+hQoSBbYUumiWSXAKR7yp0PDo1QGupFEkb8Mu0MdD8CHk/Mr4Eo09p/kT5yD3leXER3LFrzs7MjoL3lAeQ82N7OL0nm2PGlP2L5bSukC92IZFAPUHoCGRs7pp4tc64RNHdEvOdV3J7r+vpmG8NV/fkKa7TuNO2e5+z7b8EBvOxas+SzetO0edMT7aF3GO174vlf8H0pZ/NBLYWm/d4b6V+T0Tq9jUxn/RECMoSMC/cjvaIoS4B/T93oOpoj7bk7kDz3H/uWC5HO1B8BMZ5F/ObPFAQj1JsmcjBsiXjP28gp6udd4KM7EwVJVHNYO2ehtXgv0kNmIT7YrcxzfkzGIefpr6LzO9sYfIUFsmEgQ/t/BWRDaqo0Rnb/YtZXPvvNX9CaDACJ7+F4SGKOzs7SSvFev55733nIBvYpAiD5wKJaZYhm07U58DYG2EE8aQbSmaaQl6E6o311OU/TaLyACwRCzum7EB9+C9kzQjmUoTauhRm3HJ04AOksFCwQxnprpDNNoQpAFNL/HkOOtkXI9KxV7friZGvqbvfc4shh/A6wQpVrYHUkg0wlArUjWTTsCyV7E8qWE9vagu6YXI8IEPW0zdstEvM0lU24M9JBXrQ+LAEsIgDaZAzIU+GbN0Wgn6BzLm5z8b9G43dkMlASCIHW0+ySczbHrkT22mXJbMxXWB9WBYSL2jkK8dG/It73Kpr3IZvrIOvLadaWj0iURKVULlsSBaD9jAxQ0s7eN9FohmDSFdF+UjbYp15H1MebowyqF6C9r6P18y9tnB5HQTQ7IZvi50SgvhR9tAcdZXRetXFfnzTvWQTxE68PpjLo32xz6gq0Xj5EutII8oCo09HauLhc++z/Tiij2gbR+zujvfVJMsDOGmj/8ry0BDhi3/lKmCeI13xqtCahoI0eUXuq1u/rOPaBd/4a+J/9vyxZFrwAWNwfZYjsXeO7tkbAypmUAqKCD+YsKgBKo+e2R/LZF2QZu9pT3tbigVDhm7vZGP0D2atPRXvoBLS/hvl3OLLH3YGzM7T0A/kW7kWyVVckL46zfr2OArmcMjJ569F6VHOgvSH4PJdx52MZr7etv0+RjPs/pKc8j/aUmrNBth41jNO8bkDrUaeBzJCHd7lzXuheBCnSb1OQOaOVZsts64JAs9w7GkF3fqGJNtIRJFJL1zCPV0fpF5uQEuhLzXnBuT+K2pqFDLtVA6Ls+cKMC3Y+IPMfQ8rxtyjSaaBd74cc4iEV+BtY6nsUyTUB59CM2j6UGgBR5IXcI5DxdDF3biRSkqZbv71GFC1h/XV26NfoWk/yTsseVCj51cyxXZJMiVva5s8vEfBhLFn5yonIqFJNGY660nTz4rc29r6f24TDfvdGkbrfEDl8yo0pEjZfKroHRaSVlDdw7w1/r7LxfJYI4ITAcZ/YnN3T+uIT8uXtPABiMrCr/V4ZKbE7I6W5J3IYXe36+kSy7CnJuu9Re7Y2etfgHKpImQ+AqLWjZ9rHbW3OGne/fbaHZhs1bM5thcBJy3iaWGmM+P02bzojoMl/yTsBV0YZLH6HACdD4naSNkDtispVjUcO220oLV36AoqWSxm6WgxN0tkwA+h012rnQtSukxAQ6nNc1jy7thdS8m7FeIatiR8j3v0WWsejUnOKPN/YHa2XBxNzvCNyYE9ERqiL7JvirGBnIEN5d/s9Au0741GGyyaULdFnADmGzNm2QdwfjaBZ0PedkPM+RMQv4doQHHq32RzoRHVZKepCs6jNdq0PAhh8iJwRnd07ViAzxMZ8uRzNI5DxPp5vPRFo40RUuuExMrkqlcVvADJEHBvmpv1tZ20NKetT66ZtI2gmzm2L5CKf6SoYxjsjA/RM5Mzr6q8X9SNy6n2KMiAsbedGIyPMdLKSQosiA/la5LOIFMl7DaFr1/pZv12Ni5Z111dDBt+SqP7vAM3DkDzaRAYmakvmLBuDjLw1Rfca3cCjtnXr0mdq7YjWcCf3XLlxOgM52waizAHPI3DFH8icJaE8SV8UOd8E3BHPV2tLHyRzh8yUD6L9owvKCPNfMudz0bysO82IfnvkXJls3xfKQft1uIO9K5VhJ7Xu607Tzi+C9M3/2pw5koT+iuSzLZGjcJkKba0LTdK8qjsCP5xIKdAoPBccf7ksv2TgjdEtiSYCA3yFnKLj7O9kZCgP83IYknVfRBmC9q9i7OeYbjxGiI+/i3hacH4vRuaw/XH07QuTBx82hGa8FpCu8Xd7/lwiZxjS1/+HBVkU9WH0zFpYSXOybBiLIVn470SgwAJ+dBRyRl5OJqsMcNe3Q7Ly55isSB4QtTKyoVSj5w9EclgAVv3F+jkAoZZF8tOeiWcDcCMAocrt9Z+SgZ/7IBvUR8AfHL1kGcl60XX90xbtw6djAVdIr5+OnOSLIvl2Bk6GKjNeITBqCFkGt+6o7NjVaJ/+ytp2CLKlXEv5ssXeJrgeAtrcjbNrub55FIGTKwW6dUTA889sjCdSmpX0B8guNxWVh7rAxn8yCUccZXQKsjJOKUDU8XY+LtXUG83dLRL0dkZ7yd9IlCyz972B0x3tfMhwV1LWEznFf4Bshk/i7D02R36JAARLUF7/aGPv+ZP9XhHpI5eh7Gt/tjZchumFBes+Bmx1Q/a1n7lze9t949w39CtqW9TODRBIbyxZEOr3rG2PkZWz62nfsBl5m0o5OW8NxJN2tN9BZuyA9pZZOD5CDX6Yeh0I9DENre+QGeY+FATUHu0vr5BlV3+FfOnVZNax6B3tUTBWAERtED23OBFPKqBzPALpben6cqDRnUgeELWEtX3ViMZKOL0S7YtPIx4Zsjbt6q4fhvaeUKp+PAKHlVvnbZBcfw3iMSugtf1bm0chY+m9pIMzGpIRyvp9bff7XKxqBdqfP0X8eAqyOQW5oj+yT11OaabYWE7rYofn19tRDIi6l6h8YmJeFdEM2d3Dnl/RnhO1+zxkd/FBwKF0aVzqehwKem7RJfHc9+yO9rO7yWf86oX47iwSgCiqkPNbj9aj0oH20peqnTtI7j4B6WOXG39dopFtbD3+XysY6rt0ILDBt7hU42QG0rbIWFZVJEkrzZbV1u8qTaoU+hpBd36gGc7XMmcL3rsWAkeMdefaIEesV4j6I0dFTYAoElmWouu9kXHoeKTAd0aAo6+Qg9UL6Ssixa+f/d6AzLFdToHcmSoAUZQKuXGZrDVsDM5Agshlds95REIJcnZehEufjwwAo5DyEdKQv4MU76qjQqro862QIexKzJmAonS+dXNyAIrC+ti+oWzK/kbQtGc6IoP69akxsXPBgNwXVyqmDM2jkRLTAYE+JiFjcDzeSyHD3uAK9FZGBozrkNHwNqIsHKh83hRkCJ5KImrO7h2BjHdL2jx/lbxhaVObE0PI1v/BCBDyNBWiT4DlbZ5/AfzFzrUnc7SMsLG5nUgpt+u/AC6t41xs01yaFDtr2thYnO76qMTwh3jbl0RlD2t5l13bn0wxvgY5R79E69uXOrwHuL/Kb5svadq9z1CatWEtooxv5PnlZiTAf/Z/MBicjMC3U4FfRPT3JgNEreLOd6fAiUXpevagnU/JZ9YJ82QhtN+9hviO589t0Fp+Ajk9RpM5fo6zdiyBMiOECP3e7vnj7N07Ru2qO814PUR/u5Cloz8xotcVOV7ujvuvkTSj+bAs2rs3Ip+5q6/10wcIVLoYMlhNIAKDJWiuhZw6Y8jANL1sPnyI9uquSH4YgZyTqyBj6EQkh+yJ+OwgR7ctcj5MBi505/18fJKsDEK/qN/qTjOxDtqi0hWvIrCaX4cBVLYK2p/eRFHa1cikJyPH7xLkjbBDkYPprxQD/MvNrYbQdff8HgGHYwBhR2TQfRgHsqjmmJ9pQg4YOhytl5eBzSOaF1q/VxXZm6D7HnI2b5K6J5r3lTIGDkTA8iZr051kQNHdkXPKl07ta+2/lvy63wY58fra755IVg3ltV9CkfRNlCkT1QiaBf3SkywA5c9kQI3wd2XkPKwYINFImvZ/H8SnbkTy5NHkwfUlZc1TY19PmhGtgUju2JjMiduTNNBoH+Ts7Eye58RZbFoKzcWR/PJzMnBrJ7QPvAY8E/Vfl6jvSsql1IsuWRCHD7DYHgFLPE9qY/dfimSf1SLabdx9dadZMP/boWCSAMxeL7reC63/i6pZ9/bMLogneyfsfWiv+579XriofSQcbki+/zN5HrkNCeeoo9khale5PfpeJCs8jOSX0M4OSB99iUhvRpmh43LV5fb613F7PZLBzsdKE1Xo0zmiS6YPBB4ZwPbLWD92tr68gayU13ZIhn+dAhmKvAy3jBwoSicAACAASURBVM2hVygNoFoVARXeRqDoJjSXlyz33fbsDUi/mYyVSiKyHyGwxINE5c/L0HzR7n2U0iza7VAm9KvQnj0elSUsKZUejcXRyDZ2KrJLhHlYDhBVlA0zyLG7EGWgJQumuZ1ovdv1WJddHoGnCst4k5XM+wDx4yNRoNHJaC89rujZiE4PFKjQ3t75J/Kl4SYjGf9mIlA8EbDQne+D1mQokRVKwp9svwNYe2+qA2uORLzd69332bwMpVCL5PFK2XlXI8qaQp6Hf44DdbnzDQHDJN6zpc3DE8mCfIbgMiqRVWLYAYEQS7LHx21G+uiemD7q5v56ZICodZF9Yw/Ea0vWU6K916BMbYFvBT42AIEZ/4fsQJ38dff8YogfPU9mg34I8Yq9bS5NtDk/0j13krX5VWT/bJ+iH72rO5Ib2iBA7a1k8k8vtCdOR9k/awqwbuZY90Z69T/J/B6TyDKSt0c8PwDCwp68BJKv38OCDRzNwJdCf+yJ7CAvIn/JKHfvNmSAqLVraHe1NNevNCYJ2g/j9lqk532DZctH9jIvn5cNbJ9fD5TNzwfMe1vhR5QCBnsg/jsDBZvMDlBw95QAVVuP1qPaw3jtLFxwaZl7615FpvWocpzmdQNaj2YMmhj8IBNAfCTtUkiI+gIXBe828PZIIDytlWbLbOuCTLMltbVBNFMAkqqVSZxD0n4PQkac58mDh2oCRJEXHE9EBgvvlN8DGUv+SQScIe8cjwXVnmSGpFtwAjoyMAxGpSNWd8/sQhlAVNTWoyk1Pq6HUin/mnwGrUuQQH0+pYCoVPTgjkipec/a8uf4uTk9kPL5G6RkTkUO+B4oSu3fwLpuLv6ARITn3KDpaN+DlO9eYRzdtZBafcnomSIjxHrIgPVz+70GUmiuwpXoRMaug5ARYtMq2jgIGZn2IwNE+fUbSnZtFs272Fm4DDIqvElWcs8bh4bb+eXsd8iQc3rcB2XaOhYZq6eSRaV6I21IL/8ILtU7UnwvpEyJx2bMxUbQPBMZUba23xsa/cuJSgmiKIp3KDViVMUfbdxfR/zGR2/OQACQfmSghNOQkXLRcvTnZ5rIULy5/e959XIoc8ddRGUMbF2cjvaGXuTXY64UgdG5ivKAqFtoZg105My7gCzTku+LYNBoj3hXX3fN85OFkPHpY2v/X8mv6W5oP/uWUvBSMmVxvWlGfdzTnvcZstojvvkl2mNXQmDi0Xbu4LlBM0F3OOJNk5EB/mny5Vb6kpUjfQoZ+c5J0XXPjER76WRkXP8K7cehNPPFiF98hgxfXwA/smd/hRyfi6LMJSEb5QaOflv73mnA8OjdfRAfPd6+5xpKs3rWjSZySm1JZoQdDvzE/t8WOateIiq5gsq0vGTXqzLeofU8IV4/9v95CMhTVfT5XKIb+NtKSCZ5B9jNxmBplCnsUxwA8rtG0/4/AMkXH6K1OQKBKj+nCmBwBbphzVYEuleg2wbtFdsTgVZR9ONzSCfyvGPh6PlRaD3fS1QGB/GufggUcS/iJ28TyQGJdtWFJuX36p4oAGSq/fUZ3I5CfGqjuUEzposcsm0pLZVyE+KbR5EHrZ1JwoHdCJoR/f3JymNNQw68kG11YbSXfo7W14X2/edFNI4hn2lpfqV5aaBJxjuWQ3vjaN/faI8OmQWPrdCHW7n/60IXOU1nkZXUCzLXIcjJFhywPnPZxtYHyQjpRtCs0C/tEPjxBcSbhyJ5sQ/igbOoLdDvVGC6+x1nWtoYgUEDSCJli4gBEafYWPyBYkBUoXM0esdySO5fxp0bbN/fBHzfzvVBgKcZlAbP9bC27B+9p6a9Hslh59l7Dy/Tp3NC92yUaTD09+FIH+rv7l/TxmgHd25PpGOVyFCUZgsJDq4jEUBhPBEgyq6vgewQr2GZzFLz0f0/1towyv7/GwK570RpBottkW2lJBtYRLMH4rk/srG9gwIQNtqz28XvStwXwE6v2/x9FoGJAp8JgKiPgNPLrUX3f0cEBPua0myvQXdMAqIScz75fdH9ARD1BllW8N8BY2KaVLAnkJUb3i9aq+8ivfCA6P7cusftn2RAvftt7jQhfhDasj7SaUrkfBw40p27EPjQ/b6PUv70exIZfFJ9G50fgOzIT5AHg7a1a2+RyIrT6INMnzrL1pBf+zfbWIXvr5hJNDo/klJ99DysnCSyUf4Xyfh/Qbz65xXaG8b2dyjQwdsHwn74Y5sLH1Jmf0KBFq+hrISbI17qs8F9D/Gsl8gDbwbg7DtkvolKc39RW0N+z9jA+vg3RHtGg8d9sPXRB9ZPQXYI8+F7NlcnocDASxEwahIue5DdexousxWS9b60Mb2FLJvY+e6ZbY3+N1SR7RvZamuhuUmZb4/XfU8b4wD6C7bnAKrsaONzbKV2zs8Hspk8jclD7vySyP7ThPa+btH14N+YnRHZXTuW1oxQrcccHMjm8zXO/pG4J/Cl71MQ2NF6NHic5nUDWo8aB0wo7CfJBPe3kWIQomNWJ6sHHkdjLImMj7FAvsDSbEltXZBptqS2NoimV/DXJhL4KvCMchG8eyIl9lnMGGbnqwJERbRChFPs/A7R1R+RKYre+bI3UibvJJ9ZoRcSJE5w59oiJXQiUjID3YvcPSFD1NvkjVyV0lIHQM0M4Bo75w2vF9v7fkl1kX37WX98QT771hwLN+SNR+siMMhXyMB1LoqGOIF0abgipb/uNKN7fmhz/iTyDq8OyAHwEqWphVMgtmWQ8fFPZKm9OyCj4SxkdNoXCZZnIyPEuApti8FMHZFzMQCiCse7TH8GAN0EDPTkrvVDhohnkcHzdJt3IyvNE/Jr51Ck8L9ElsnLG4xHk3Bq2PvPsjVQ1kBT0IY4o0zbetG0/3shHnqh/d4HZZ4aixzAH9k4b4VAOhsjfjA8nstVvntHBALyQIZ7EJgxREuHcj6HAid+F2giXvkGlkLczoUsRReSZd9ZzNbDJ1hZDXd/SLcdn68EiAo8P2nUrqIv+qEsRl+iFO/eCVvWMeTOLYQMUE3WhwOi612RI3MWWs85RxbpMkF1oUnpPv0Q4iVvIaPOKuFbgT/a+z5DBrNH/diT5qN1oZn4/n3smdNRtOXJZMbbFdx9Hez7r6CgNKI7NxTto6ci+WcttCc1oQxpPZDctaa991gyEOV69u5ryANlV7d23uHOrQ/8A/GYMW6eDUfG6ZWRLPc0clas0QCaIcveRwhIfph95yGO5vZo73iRLGNjJ5TN4XwqOLGieXYY2uf39WNjf3ezaxWjmRtNN/UelGHxb9Y/k5FzZzIW8VpunrZUmuT3//1tbn9jf3+Kcy7X2k73/4HIkfIvqgCR1zhuiyMZ/lPKOMhsHQy19XQcFUoJIif+vtYX+5W5ry40yfPSTWy+/wrtqQEY2QvpUV+jSP/LkKPrEz/2jaSZoLszcnqORzzRZwAL4KXPkYMkON7KBufUi2ZEfzd75icI5Lk1CpppAnaye3ogGfdpogyQdn0HJP8fPJ/T/AUqL3xnNP9XMTqH2bl2ZPy1G5IFLyzTh8Pivq4T3f2Qfv0WeTDK0ggIfqM7F5ypqyJZcJ+5RbMKXhQAUc/aGL6I9N3XKFhL8fx3fzdDPG0Msu+8S5ZxpSvSe/9KqS54LJJhvS3C6+JHksk5MSDqX3atJPtv9I7hyCn9CQLVHGrnOyC5PjjtHyALJjs5/lb7f2FKZdWq93r3bB9/f3RtjukiPv8OAt0Hp+Zx5Pe5DciDGjshHfNcSrOtbIgABuvZ74ORXBcyeo5BoKDZgChKs3QVlm9054cgnu+DJVdGwPnJpAFRqYA8P4d2RbJ4WzTn90b2hjvJg+O6InByUn6MaG5s37qe9fmqSN95A4GLwhiugeb9m5Rmb+pPPpBlYxTYsDTSC4p0x5lI7y0KSqnJxoZsCHvZ+L1KXpdM6WPrIhk8zla3AtqXQ8aVzgjMeaUfI0fzZ2T7SDcU4DOGLIPZdijAowkL7LDzq6B1+lA0JiuTL6u5O7Cd/b+X9edO1nfvktkMFkJ6062U6qs5UIz9v4R9qx+7UdbO28gA5j0R75kW2tHoIxqnACy7C/i7O/9n+/4AktkeGFHDO8rpo38gK5+5DLJT3oELIiqYU/7//Y3WyMS1U62PnyQN0Pf87Si07p5HcztkXgw8dE1kh3yRBFipoJ2bIB0/Lq/Wz+ZqsNl1te+4nTyoq2HOfSxjpP3/KuLt40mAhxB460qULesJG784mLItkmc/QvtvXyRvn0zmz1kB2ZnjNbqttWFMhTYvhOTiOaZJvjzl0u78JWjtH4N0GS8ProUAc2Vt5C3hILOlbY3Lso50zquQnHUokQ8D6VRrRuc2Rbb1wsyCrUfrUelA8tzXKOixrF8CAZ/vnBvtaj2ivp/XDWg9ahgsKWpPIIV1G6Rk/BwZLv4Piwg0Aed620hvRNlStkXKxSTyEdoLLM2W1NYFmWZLamujvt/RH4GE4Ycx43iVvCMGRHmFaQ+ybAJVA6LIK0gBXPQKsGXi/Zfat/6OdBm9fe36DmXa2db6aRYC1myADDE32LPXunuHIiVoJjKseDpBIYij/hZBUSITgX/7MXX/h+w3lxFFGLh7gkJyMvCY9e27mEIG+drjc7AfxACefZHR6QNr4xtUWSqlkTQjeg8jI9xFyKCyNoqOm0kimwGlCso6rh2XRdd6kTkHv7B58hL5SKWq0/4iQNRw5Di7meozNrVFytcrKIvR28jYsJS7pz0y6j2LBOX3qEEZjebzYdYfz5EZYTvGc8zmnTecrUimcJ9aw7vjNOGNoNkbGegfQiCNJjKj4QrIwPg/ZNj/FzJUP2392anW9yKHwxQsGxzpqMnriDKZxH08P9O0cXkyOr+SrZPncNm2UARxk9H+q/XxNOCHEc2FkBNwVEH/rkiWySI2aid5fi0HMk5dQwIQVe0aQs6dkEr7VKJSAcioFyL0y5bvbBDN4fZ9VyBj+bVkKd6DPNEJ8ZoQ/eZBxSlgWN1p2vnVUfaLH7q1OgMZn19Hsk3sDOwY95//jXjl9UZj4ej68URAIXdtUeRgfcvmdxPKetHZXb8QyWZ/cs9tg4znXyOn6P8wmcOu/xGB3Y5uAM2wrrsiA/ZUJFeNjfsHOUqeQPzgZmTsm0mUzSHmKZQ60tZEMs/jwBA/Lgjc+jIJma2RdGvkAW0ReOd0xAO8g6pZaf7nd5rRPNgfyRrP4HhJPB7NoDuKrCRHf+ojs26JHEOFznbXV+0RD70Dl60gcW8MSrgPZaHNyUCNoGnXDkDr9F20R36NHFWb2fVeZKDdCTb2G/l2Jfqp7jTdXAkZVM8j05F8aYkOCNg0A8mulQDVdaFJFh3bBjmn70X6Yg93z0P2vN+LOhr9JePvRzrGkBZAcysENp5MXsbqhube+xjghWxOLoL0ih/FfemeDxl36023DXK0v4nmaACE9EC8/UssE4H79jH2vg3nFs0qeVI7G8+H0H4+nHxJ86LsxJ39OeT4fhSBqiZhjlWbIyPt3EHR965r7zw0WitxObQga8SAqKFIp145ut+3c3PkpD4DAX2uM1pnkmVz648yYFyGZKoh8feT2Ovdt6+F9vp/UcVeH/epe0c96bZHgRrTyJcE8vcMQPrNO8hhfD7S94+K+xLpVk0oCCfoR0eTtw+lAFElmVUo2EuRLvUZ0ucHR+8fSAaIGkqZ/Z28Tn61fd+PQ1tt3PdB/Pg2JKf3Qjz8QaL5l6B/hPXXTeQzqPdHa/dN8oCoQUR2I6QbXkeWoeQABMjb0n6XC6YJuuPQct9erq8Tz3VFa//QCveNRODMz+3v7e5aD7J9Ocjkn+HK7UXzIOx53ZGO8gSSETs6ekejOfwgAvWdg3SsXBk16/tL0HzuTgbiHmb3rIx0oS+QzBBAhJ3I7GajEt+7ajQP90N2telItj/G3RtKTk2xufqY/f5huT5txIHAx3fa/xcB79j/dyJ7W7CZLGT9di0FZQL9eCHeU0kfPTg670FjYU3E8zS2r99gc2dPzNaM7B03YyDmMu2M7d1vIeBo0O3burm3BuKjk6gAWENzf7odQSb1wOWf2Pc/Zv38OVUE+dVpvOP+/CkK3v3W2rOpu5YKfi3SATognX4iGVB6l+jexcnAm+u682WrQaDgxmAbmSOaZPvMQsjW8HtgGzu3CVm2qVBNoQ2SD5+w/qkpgHR+Osjz1MXR/vkqpRVPrqGCrdCtz95EWb1aj9ajOQeS0d+mtPqNn7erI1BiaxayeTFG87oBrUcNgyXH/5vkjahdUTTav5GAt7GdXxYJg++haKAJyLgep4BcYGm2pLYuyDRbUlsb9f12/95IkDuRGrJpkN9wD8cMCNH5SoCozxCivlPi2dmpnslSye5OFI2BjDJNyCi3WKKdK1T4jvbI+HIf+cxCA1CE1SzyRoddgL0SffgVpcpqEIB7Gq2vyBs5fKTYlaSz7cQKVnekSO2JDBfvYQoZmaJVEtFX6xGNxYrImPK29fUe8wNN8sa5W5BxJ2QdeRcHBHJ9czJSPHu7c+3IMi69TORYt3t6oSjd9ckDFWt2YiIleRhS/P9KAQCu4NmlUGTgjsgYEQOi2iLF9Xs4YGO17SRv8Dgc8Z3xZBmiCukgQ+idyMHXZMeZNc6Lo23NrdYImohnNiGD3rkFzx6BjIRfIsNLE80o7YNAdt8avVvIZ1rqjCKK/06F8jvzK01k8DzN+une6NpAZNR9mXw01T7IyfcEMibu5a7NdpBgPAwB0kYho/tOZHvBShQDosry/Cr7JACiPrN+SRryKWMUR7z6XmTkOxCX7ceud8Ol/28kzeie5ZER62wc70GR3t8gR+fCdq6L/f7U1lHSsNsImo7Glsih1gs5MyYjg143sgxH71ADkNvoPgnc7377/eQ+JLvE/TvU2v5rFLn+ODJo7kVmXF4EZXqcRB68tKL1xx9RxGgoebSh3Xt6I2ja72DUDBkhpqMsBB38dft/IwRmew1lHjqioP+C4Xt7lOHyMpRZobs7H8DDP7TfP0Y8dWyKZiPp1uOgmaCllkKT/P4fSvA8yZyXtovlipH1+k4kC/+SxF6SmlvISXCF/U5m9kucu9rWQodG00Qgis+QkzJkbjoW7aWvkZWwCuWl3kaBIUGeLcm42wiadn5bBBw5wX4vh3jLFCRTxCUiVsXKLxeNUz1oGr/o7N+B9osJ5DOnxdkctiMRmIFkkt3IgKXzLc2I1ioIqDeVPHBpGHLujCfTH3uRZVfbMaYdvaeudH270b4XwEuhvN1AMhD1P9H+G4C6ZTOX1ZNmLQfiC9uitbRf3K7E/TtZn96KHOCh9PvGCDz6FpKvhiHZeToFgACcvQdlBHocgari7OAeEOXBWkH+LgmyQhldx1p/hbm7CLLBfIsARSX8rsKaHwr8FskxZ5FlQdka6RfN2uvrRRcX9IPk0ffJspuGrLk+Q9OWCBD0EeKx5eSdrazfvgZ+6c57mSwAop4kUTKvXP8i2fwpG+dLE/cPRAELTThHbxn6N9lc/D5RMBdaa8PQWp+AgommY5mv7J6FibKQWB80IbnXl3EKAJ5+aO2+isBF5ewQdxitW5HucUQ0NuUAUStEvwdEz25C7cGAXq9IyQaroaDWE9A+/XPrs3+5ObcOAtW9YXOubHk4pLePR2DMlUnLLTsgsPv/kGP1AjI9wc+9k21cXrT+nA2ssuuDkTz+IpLtvm/fMAMXvEbGj8fY+ARdZSjiuZciW0Mo/+zXwlCk3zyBePawcvykXgd5O9KmaD2fhvTw9ZFM8gni8cuGOYtAeO8SZamrMA+epgp9NH7W9au//zjE8x5Ccl64ZyWUVakJ2RGus7GfSuRUT/Vv9I4xSBd/BttvyAOi1rU2FAJikL/iWbQPrYcCEt+1ubS83bO0XX8OZTlpVpbaZoy9/9YfoECc8G3bkgGifLBIN/vucvwp0Ohgc/4ttN7XDfPH3RvAsrsk6CQDHJF9bRIO8NQcmm7OLISCSB9DcpQHqh5q8/ITtH9eZ/Ph3zhQZaPGaG4eyM/zHGl/1jXMga2w9Wg9qj3IdLttyPy7K8c8B+ldv7e1u9Tcbmfr8f9awVAt6UBK22dkGUZmR5yQRWS/Rj4lZQ/b8Nfw51tptqy2Lsg0W1Jb60mTvLDbDynMF5BPt1xWaItoHIFLvWvnqskQ1Y8s+1Jcz/Y4InARyo4QMjHE9bJDBoozyVJBF2atis53Q4aIa8J9ZMLGskiQuCvVJ+6+TUgoFr4dCBD1CwQQuNldL4wkcOPcERlMVqFUQXsWKY8b2LkBSAFuFmCpaJztd19gt/mJJnmjzQbI6L4DDhAQzcchZFHLPvqzA3KoNWFOaXetKGNJs5UbG9PROMW+xn7rgMqIvEUEiJrTdkb9dShZyavuRbRsnX+DDEWDkbPmJuvPc6ppG1lJzIMaSHMwGajqHlzNbUqdknugiN2yEXNl2rEQcix+iYB6wQnTFQF8PqZCxOj8ThMZto9FkaF/ia6tQAaI2smPT6KvizJZBEDvN9a+Z7CU+2QZoibhDOjlaNbYL4uR7VGDEtfjNO9j0N61IRnf74oMeNPRek86icj2krrTTJxfC8kTP3DngoHuYFwpHjvXERk1P0eG8RJjTyNoejpkZURuQOt2MXf9OSQvNKF9ttqo7XuQI6CHb6/9fwkCBZYAVck73nujsiYfof24LHgpsXb2QLzVlzJatAE0w9zZFZVleQEZskeTgdHjKNge5GXHtsjh6Z3fo5AjZDxaqx8jZ0UoNbuVfcss5Ox7lUREe6Poth61H+T3/wOQbvEWcwgyJc3j65LNlDwAs5wjog0yHvq14WXIdZBR3wdGLIOcXVfODZoo+vx5pCP5sdgPyfrXkwEDe6K9eyIqi5HMYNkgmt0QwOB8+z0IOcEvR7JaKCmyRVG/NYImAsd9hUAQgbe1ReDt98ii2O8lnwGzH3KknxDPoZZCs6BPPHDJl0c5Eum3sxDY/QmiTJ1zky7ZPhcAjm/iSgIDSyL97nE7/wCJMkGNplnLgWSXspkc3DqchYIw/g/tdw+Q2TPWQ2vgdZRR+R5cCWky+TGeY1fY3LkJAWmaEKDKyzoBEHUnpdmg+kS/h9h4P0OUdRjphwEQdToVQO7uuZG2Dp5EusJUJOPsaNcH04y9vhF0kT78LHKGn2Bz5l9kpXQ8cKYrcpQmg6ew7FXIRhd00r/gyhNG9A6z971GAhSRaKvPHLOE9cMHJIA0CCRxFxWCaKxP30QOdR/st4XN0QAM2wjxqCuxMtmOxo+t3+OsNQcjfWAy+cBPD4iaaf3fPdE237cv27je7cbGZwsLgKhC3RE5GH9Nlv1rJFqXg2vkAUnwivu9KgLOeb37MMQzn3Rt7opk8sVS3xzR3A3x4NXIZOzBKAPUFaF/UWBKL/LySru4nSgApAkFvPiy5+HezRDvmoDk9YfJZ6bzY7MTWjMfIODUbtauAKzsSxaUdW70XRXtBvU6ojYvgwIQryHTF7sgfhdAf0sgW/04m8cnV/GOI4Dr7P+7aYY+mmjrzYhH/JGs6sCvyNZBF8S7/oH0wHtI2Dfs3tngOJsn8X5wLNIN/k4eEBVn9C2ZU/Z7SZs3y4TxRfbbN2z+Lufu7UK+fHwjx973/TVoTz4eZ19AANpvUbayLdH+dzkCDfWshj5ZhqgmJIOEYL8AJFoW2XlG1tD2Dgg4Occ00Rq/Funh3u7h+cWmCNQ1HskQPyIBqmwpRzxHo2t7UhzgX2grbD1aj3ofCPA8GgHzX0ey6crItroT0umnU1D2t/WYC2M0rxvQetQwWIoK+Yw8gt8LVpsiZfovrTS/W21dkGm2pLbWgyYuMiuiO5OoTnfB86nSKKGM3YH2ezGU2SAuR1gkQC6OpVx15zZGRozD3LlQk3wIUuC+wJVvsGvXIoPWOUTlnKr4truQEhoMpO3c915mfbtwLTQj+sGY0QsBoqYAN7rrXvEaiIs8QwrW40jgaUICt0/tvpf16zQUjfWUfUtJJNicHJQ6SudYES2iiZTpqp1k5dpSRAcZhj4BdvftQUpdAOD0qaENVZdRS7W7lu91z3RAQu9bNgeWLrjvGCpki6nQtrEUlCxz7bgPGXK9U3IpFM3XRKI8RgEvGd1Amu0RL/o+Kg0ayhN44FwJIKCaeVambzZGxqavbe2PtTk2nUTUZEuiScYjF7b7KwGiSsoPlGnPNmjPG2s02gInIV78NtDX7luerETHJtXSr6Ed/Yj2qMQ9o1AUbIjGa0KlfUJ2s1A+Zgoy+JcY8ucGTUd7axvn/dy6aOO+930yZ3TgyR2Rc64IEDDHNCvNV7v/OeCSaH69bHNjz8Qz5QxbW9qc/V3iPb9BBv2FXXuLInKrAS/d4J5rjxwzIxGo7Up3rW29aLr2pZzEnZAh/GNkUAkOp7bIyT0g/lYEtP6bzctj7PwDaI2GLBa/R0b768iAS32QM2FNoiyG9rdRdIv2/ubw8RL597tMk/z+fwzZ2p3jtsbzss7fX5amXTsNOcmPis53QECOF8mXjRpia66wb+tBEwMeIl3mLU/D/X8x4vleLumBHDZNaP37PbouNMv05Z7IEdoTBeVcQ8arTiZz8u9cRKPeNJHOdDXKLnEZWYaojgh49AbKqvsu2X7aHjmgXyax37cUmmX6dBAZcOkn7vwWKDPO35C858HM1QCt6kIXRd1fgstASwK85O7vRj6zckNoMge8KX623DMoi81Jbp6fhuTcf5IBoroiftKr6NvJr/2+KPPwVvZ7CZShugnxHm93OAntvwPcuXMQaKEzGZ/qgxzfTcjZHmfO7I6AUE1ITytrhzDa/0AAgrCvb0EG9l/fvXcZCvb6RtGN+nNTVPbrp2SlAI9DYIh/kfHaNshRvmHUppQNLQAfBiFAXBPKAuczKXnH8xGU0cXdfb9CDjIPnFkKOazfIg2IqmgzQoCAF5Ac2gbtY68gYMsstNaDzNaOdJbCPmS8bofoTS3fagAAIABJREFU2oHILnM/LuiRTD7tSxlQNpJru9oYv4Z0kpNdm2avaQQKKNQdEeDsISRr34ZsCYenvqkaHkAUTIbAYzsgffu30XMeEPVP0mXJy8k4+5Jlw14SASC/trGbYP2TqpaQCrrriGwDd5ABRlcIc5NsrSyMeNNS5IHfKd68DbJrfmTzNGSBDCCKfmSAqJ9V29/1OIhs5SjQp8nm5VXRtZ4IEPQa2gOnIgCbL/NXxJ83RevmF9aPNemjBW0P6z6UrjuFTF76A2Y3sWs9bHyTlQTcuHZH6/Etm1M3kd/Px9q1v5EBtpNZi9z/myAbx5nAHxJz7vtI/nmBRMbncnO/znPhJiQvDCXhV7Dzs9C+8AIC7q9TJe0AiGpv4zYFZe0KgNKuiN98TgH4v9E00Xp+lkTwKaWAt+6ptrSkI5qjayM+tWl0z15U6c9qPVqPRhxkMkxn40H/MB4fymm/Yfy4FZg3L8dpXjeg9ahyoLIFdSFyPHnGHgShzsio8X41C2tBptmS2rog02xJba0HTWQA+xdRGTlkAGrCACGQT4mODB07xG2x/wPQIGRc2QulYX/P2nEiLjqCDBD1DAmnuPuW5cgbgvZHBgsf3fQEUkBiQNSN9j0bJuiXMxyMQ0roGeQzAnVDCvmdzGGEg/u+XsjI+BmlwIEBSIh5lAyY9S8UeXIQiuaZjgQfn2VjJ2SseMv+lpS+qaYf5uDb6kITARu8MXYHHPCrzm3ekSwd987ufFsUDfgNcGq8Zgpo7Y8Mv3M9CgYZDnZEUfzvUmqcXhoZuZ8DVm/OnK001sgA+QpwfTzvkGP9DVuXZ6ToxLykUTQDHbcWh5EGRKVKQ8xJFrA1EH9+FRmqbqIgk15LpYkMa8dRDIj6EBkMd62yLecgY8PsTBY2dsON1h/JsikMBLauQK8uGUgS82wQ2vNOQtHVK1ofNqH9aAm7rzuKgGwikY6+0TSj8wFUNJ7SSNvFkfHvhMRzHuAUr49m04zbiwxQ41CEoTfedkAGxwfs/0VQ2cXHyUeQFhnfczSRYflM67+bUTT7+igb1xfUkGGN8uCln6F9+57omc7kM9PFWR2aTdP1ZVu0PjayPujk7u1CliHqQJTlanfkhN2i4DvXRsbV6dZ39+H2FcS3L0EOl2spiJBNzJ+60iW/nrZATsQTKcgSW6mNSBZcoGiSGdbbunNt5se2lqG5GgJqDiOTqZdD0dsfIMd9d+TwOhIHyCuYV23rRdPRbovKg9xmdE5DRs2h7p4g049Aus+y0dj0Ag6J6NaNJhX2T+TcehdXwg45959HOszR5catjjTDnF0IAUInkAcabYZkxy+xTEVIRj4IBQalSmS1KJr2fw+yfS6M5xpkwKUfx3Ow6Hej6EbnLyYD6Szt1oUHL/WL+q4S8HOOaJLnI33QOupHxBcrzOFKc3xfpG/eRh780QEBT95BMkBv/87Ut0fj1BmBfG7EHKF2vh+ZzBMDonpFbTuQzKnuA1J6I+f4Z4gHdome64704ZL1Gd23GwL4P0a+rF/IyvMUyg5SlPm0aNzrThfZZg7CZA/X/+1tnN5DIIi1yfTKY8vRRrLWn9AeEUAgP7Bn78NKHNn5IZQGDhZ9f3trw0QkG3tA1NJkgKhk+eNyfYKARVNQNvnrbA7cAGyOgFAziTJBeRrR94d+Ojm67zB7RwyIqgSs87RDSe67EAjoVDJQnL9vAAndMbrnFWQPupuopGkN7TkeAfqDDD8K7cfTrA+mEMncCLhwCNJFXq7yPYE3rW9j/wmS8Seifb4TAprMwNkQq6Ab2n0K2pMfxLKIkfGk/vGz8Rwlv6/sgAA+X5Jl3/IZ8fsh/jUJuLjauTonBwlbOQLNXYCALo8g/uezjLVD+/i2yKa+TOp7o/cEfvIHssw9PahRH43GaHVk/w0BSeNs7u9Hlv3vUqrLVBjGLwTNPIEydv4I7Z1vASe5+49BNqNXqFCu3ub+V0jvDECtfaJ7OiBA6XtINmp2MPIczIW97Zs2c+tqUcSLdyTjJ4MReP03RJkVq3iHzxB1kY3zGygA4FoUrFRTyd4yNP9QiSalwaDLILnu1IL7u2OlVakg67SkAwWVzLCjCZUeXMVdD4Cosv6s1qP1aM5RzfyJ1xuSJw9BfsINcXJ/6zGPxnFeN6D1KBgYbY69kdPZK8FboDSfL+BSwJIJpUvYhpCKvF5gabakti7INFtSWxtEc11g43CfO78kcnw/QKTAICXobOSg6kVe6TqSPBBqBBK4f4aUhMvJIgM9uGgPlG72DWSUiTfzpaN+aIOMQmdF9w1GylkqQ9S2ie/39bI3QErozv6b7Tu/QkLv8siBGAzPB8U07ZmahH/yToZLiJwXdu185Iy8CxnWricfUb4DWSSiB0QtjFK1zjbSpdrp5kt736Yq2l4IDqkHTZu/v7fv7Y5AD19RJXii3JhE7+nn/t8OGZrfpxQQFQzpZ5OPwvVlg9qjdTIel16/Hu2skVZHW1ujUjRRBNprKMp8jWbQ947ANqn2IuDM62RGM7/mfoOMcU2URtkchww2oxtFs8J88ICo76Xub+6RWDPdEADBf0dNSvO8pllu3iKQxnHIsRoDolZEe8bwxPNxhFl7FB39gjsXHLftkPH9LRIGMvLG1rrzvejaRsgwdhsOtGPXDrR5daQ7150KGTLqRZNS3tof5+xChr4ZKPI5OPS7oCxBHwPblRnnNvWimaA9Au25E9D+PhHx6QB82wUBZt5GzqfPqWAsLKAZDHh9bM5+bPP2U2SAPTnVlxXeUwReWhQZoQ8uoln0jubQjMZpOBng6U0EJFjWPdMFgQ5n2d/PiOStRJu+hwDiHxnN4MAPfzsg+eZtBFosWzKgkXSR4X0aAlB+aXNgCBXWP/n1c6zNta4LIM3jjKZ3hs+vbY1p7o/2ielIlpyCHERdUGmaIPNPRev/PfIOntReVxeaUbtXRDLoqe73p0gv84EhHRFI+AXyzroYyNG2XjQdH5nt8ER64+Lks0uNQntTyAzQDoHCLiDKwJP4/rrQdM+Ftnqg0W/JHNnbokCIyQjA+7KNaSHPn59pEmWERQCbZ9D8ewqBXsK+sSYZcMln/ExlHmkI3TLzIJQpP59S8NL/oX2hcNwbRRM5k/+NgAVvomy1FbNPR+3YBdkWfHBZNzJbySQycMHssrUIRPEG4muFmYqjd12CsslMtPauFt3bFzndv0RArJh/xBketkfZpldw53qjDFGTbF7EgKgYEH8ipl/ZnO1l/TgDAUgXj59DwNhplMlq3Ci60TvWszF6h3xW0qBLtENggHeRnDkNOK0CzZFI1jof2DK6tre9716bp+H3AZXG3p3rhEBh79vciQFRT6A9rMQGVWndIv3rJWSjOsCd37JgvqXa18OOXyGg0SnR9QCIuocyGX+jed8J8iVz7fzdyB5wChlIajcEFCgpu0W2Dtoj4NtUZId4H4GqZuuiVbbrSBu/w+334kZvLFpbhyK95G4i+wwCRB2Ly5QfXfdzsAv57GaboiCaw3DBMnb+VRIBD1G7F0HraZHonlPJAFEBQL07soMtV0V/+IDH7W1+fgvskviufmg9H1jNWp3Tg7ytfEl3fjmyveQnVdIq0umS/MSu9Ucy92Qq6KPkZbRFbf6PRrbgHdH6GRm+BdkAQ0a/cntJ2A/aoawjDyJ7eBvX/nvQWt/LPXcKynAYA2r82PdCcsxY6+vtEK/+N5HtHul7u1BDibg6z4Ujre8XRnvLNmjdfoT4/F/JgGzt4u+u4T0+m9P5iC9/iPapjd19tWTfjWnOtG8ZQwQQTjzbjazkYW8b5/splQvaoL3pcsoA7IrWwfx62Fx/Fe3p26LA2i/RfueD18r6s1qP1qPWAwUxzA7oqmZOtc67+feY5w1oPRKDkkWRv2IC0WPkjRb72rXnMEeBu7amMfzBrTRbXlsXZJotqa0NoukVkWDU2s+dO5UM+R6MzoshY81UIkABEgybyErjbYyUrJDmeGVkNByPjBwXkc/uMIy0Q/wn9swm0fkngdPtf+/oHowMOjNwCoO73tba6kvOjUTKZYhI+Sd5Ze5qa3uTffsknJGGYuW2U9y+ooPM4OKBBm3If9tZyNgwHkUwdo6e3R4Zzh+nQlRCNP47IcXlQRR5Uq0x0NNYmXwK7LrRRJm5Ztq4foNQ7lVnW4poDsCVO7Rze1g7vWFhW4oBUVfj0skjpfIOYKXovf+jGVGWbj0Nj65XPZ8KaJY42lGU/ZvUCIhK0U2tA2Rc/AAZWjx4bCEU/XoyUWYqFPU2gWJDX91pFnzXMGSM+wuJcqJFz9VyRGuyMLq7pdAEtkLZJq6xcRho53tSXDKvR/R7IHlesiPGP1AE4kxcNDSZgXQ0AsEsXeX4NoLvLWXta0LA1NnZAly/3YiMJSUROqSNUI2gOYzM6fcmtl8ghftItMd9gAx7f0YOmh9W6Je607TnF0GRwoejiMRNUJbEjxEvaIMMvlsix8FVOAAoab5URHMq+RKpIVJ3F/LR6LUCCz14aU8yZ3Gncu1sBE2UNWsmWkvLIONqEzL0+axLnZFT6jeUyQRHfj2si/bCJpzjj6ycSQeU6SS3hqtYZ3NEN6I1EO13x6AMa4ORTD0Z8YSk8ZrS/fkbsgw5CyzNltRWtI5nobm/hR1/JCs32h7pOZsg3WMYFRwPDaK5jrX9Hns27LU72Lv+jZxjWyLH5kzKZJlqFE17fj9U7m8Kcg5cTwYqXRjJwU8ih8tPkK61fwUeVReaMW13vjvaJyYgGSAAjQYhfeAS4ABg83icWgJNIr0Z7ZNfWT+ehmSe91EgVXe7Z3W7PpMC4GsD6abmgNeFzycNXtob7dklTvFG0HTP7oPm5fkIVH0Kkn0mUyYDBqW8qQnJRHHw1kpG+xvyQBsP/h+HHKRFgX5eZr/WxuUGpM8E287S0TN9EahwCnmgzM/t8OeOQMCqZ4Dl3XkPiNqHCBAVfeMEIrkbRa/fYm08y50Pcv5gm3PJ7NCNopt4z2IIpBhsch7M4WX0TZCNyQPeUjx/Y5s/J+IczDh7Bco88YXNzxlEGdfcO/086xxd74RAKu8jm4q3wy2LstykSlB5kMVhKDDsYvJyQDfy+tBiKPPIEzjwjLVxd1xWWAQYvtz+XwLJnk2UAqIOsfO3xN+WWGM7obn/FAKRxaCiu9Dedw3av0vel6A50PowBKg+jNbBD8nk0TBenQtohAzVwV462L7rVvKBdbtb++5JtL1dAe0w97qjwLH/ov3xHqRLzwZEuPmwGrIbPkh5+X4PpCe9g/jWQeRtqaeioITXkN7wJYk5WkA3tsFtjfTdD8kDogIPTPKVeh6UgjeDrXyEO7eMm6tlwY4V3lXIT0J/IVDUaKrQR9F6uhPJnyEQ4LcokNiD/e6wMZ3ox7KgjZ0Rf7gXeNi1K8gx69n43xC3PZ6z7tqOwMHIdud56LpIZvgPpYCoQrtmA+dCWC8jkL/lNiTXfIZswpsiUP5UnDyWolHDOz146TK032/trredQ5ohiOjaMCdIlzBtg/j4G2TA0QORfHIG+f1qRVu3fyoaG/K8K5TcrDqz5lwa71gmXwXx+hR/vps8mGw/Ev6s1qP1qPVAwOepyKZ6BqVybYsrO7mgH/O8Aa1HNCCKGHgeCaEHIiPAA7a5300mdIYIqGnIobUiMsb8FjnnF2+l2bLauiDTbEltbdT3R32xEVJsxwPD3PlzkXP5A2RAexKBgn7o7gmOyJPIl7Majoy3XZHDeBoyvvUjUxzPJF1vO46e+gRFIHgHwvNYZDVSCLxwvaX1RZO9z9PbBBmTxtu1ntY/46zPdkcRKi/hhFmyWuZ74wyXFKc73olEaaAqeHIKYOCNmucgpXUqlnaZfJmi7ZGh4jUiA2vB+0Zaf9xm82o8UkDHUMbYELXvBORIHdhAmn9Gitd4CtKtV0FzHFZiK/r+mSh72S7Rsz5D1I5l3nGGzbWrsCheO/865pSngsIetTM4p/16mqP5VO46NQKioraeAjxg/2+KohV/AeyKjLjtER/50ObCCiiz2YGIr2znaAWDSj+yqN6606zx+0bYWBSOf/TsDyiI1G3u0YJoHoD2pecRT/0C8e7t7Hov5GydATwU9zfi40uhqPQb7dww5KDYw34PRnvJ3cA6jkYntK88QxSxWtDWuvMoO9cN7RMvIpBKCYgOgVo/rKad9aIZtXtrG6dz0R78ADJaj3F9uSYyfj2ODH4eKJ0qC1gXmjFd+93dnvHGpuURqGoqcsiWAMSK2loFzU+MZqeCvmyWsQ6Blx41+sOpQ/nUWmkimfDfZCWWVkCOkruQ0yQVwe9lq8JMcO6eddD6/BxXEoY8cGmLSvO0nnTdvRsinn4v+Qjv5W3OTiEBtInmelwKeoGl2VLaivhCF+T4uZnSssEXI/myMEMfidJe9aIZtXsQmuNvALfF6xDJRP9F+9eXSNY/Pu6DRtBMtH9vu/8sBHw40J79AAMlIjn6eZSFYyJwYoU1Whea0ff3Rg72HmROn4WREysHNKphnOZnmkeivfGvCJx3FtJTApiqE5J13kdrLATWrIac5slSsI2i6+gPxWXTJQ9euoAMYBgyj7SlcvmdutJEWSNDBiwP/HgaORZXcueKApCOsrl7kOuj7TA5134PRM7KJuBsd94DopI6TfSubkg33dw9G777IlzWGLu2GFGGEJShrAkBPjwg6mAEAnuWUkDUo8h5O4pi4GrIoLEFeef+2jZfvsGtbeQ0HYeAVmulaDaSbuI9/RGf/xbZ3bq4a0XfXGQzOtL6cvkK79wIgaKGeJqkndhXIn1q4eh8J6QDzkQZWz0gqkSGjObTrWSl9p5HvPo2ouw/aE/5A9qr4+Ckjii79hSkM9yN+Nv67p5ygKgDiILPEm3eH+mav0c6ybP2vris4HX27nfJg7NS++gwJD9fR5ZdrCcCiExEYKDw3E5o/XYnL0PHss7yKDvLB8B98Twhc7jfgQWmVjEvuyHQzuPWvz+x9k2yeR6AHYsinfwppDt38O+OaIZMuuchAPUfrX/PIC+jHWFz6nnyQYNFMsRIim1w26Lg1EnkM943HAxjc+YR8mva28r3ceeXLpqrNb5zgM2ZFD8p4huzy/K5c4ciwM5W5PeLvyCgativl7Wx2h4DTFXRxhfsO18nAzy3c+0408ZzUcro9XZucaP3BfCUOx90unWQXeFpokDvBK26gmko0C1Q0OXPbW3dRB4YNxjZ30sC61Lzqcp2hH7tQGlQe3Np+pJ5ocz89ZSxSaHgxo8wGzHa+36J9tIHERDsXOQ/eZaMx8S2Fz9Pz0K2h2fQXrVqLd/RqIM8f1kf6SSjgesT4+L5c2rcWzP0tB7NPpBfMpQN/QjJ1OcSlfFtnWct55jnDWg9ogGRc/EN8qlSByDn43SEgg3ZKIYgMMPXyPD+th1rtdJseW1dkGm2pLY26vsdLZ/i9nWUXco7KfdDwvJTyHC2p7vmFZ2gvHwfZV1YGkV2dECG05vIamlvhhzcTcjIWxLdFbXxAJQF4gFMGUBgpZFlntkc2Dv1vdZ3b6JotW2Rwcaj/bchy760X5l3FCqnqBb7NGBD388VvjNWGnzteR9h9hOkbD6ApaElD4jaFUUEVSpFsDYyAB1PZjwcgIxbj+BKHRW1k8yoO6YRNK0v2yFQ0sPWpzeQlQ5IKdgpI1ageYQ7tz4y2p+EMwSQV9a2RVFaU4gicCP6J9p8vgYZ/tsjBbMiiCbRztkRg/WcT+XmMVUCohJt/cradgBykryM+FUTUg7XQ4bPUxB/aULGjRlULhlQd5rVHtF3rljpXjsWsXmyV3Pf1dJoumub2liNxcCGyBj8COJVYd72cmtllwSddigifhJZmvyDyGe7GU2WwW+Uzd0TkbP3qCq+o+58L7qvB9o3PwL+Rh7c3MG+7yV7ZzIjRL1oJugvghxaF5Dt2Ysjh8FXiOd2KPN820bQLPjmbZCB7Xzgzvh5VKLgrzZX9qAAvDSHNGsCn1bx/t7ISZAssdtomrZWLkQOz+VQJoIrbH7tb+vqOSLnVZl1sJE9dwgqNRz6cX0kg0wnD1zqFNEqchbXja4718fm47dYVHN0fTkkU32IIq/bJdoVO7IWWJotsK1tkCxxkzvnnQLjEW+tKfPmnNDEye32OziXzkH7yzSyzLxtHO1FEcBpfZwTGosUrzfNgrYvihxrF5IHhTyHHMar+D4B1qhEt0E097PnpyA98jqykjcLk2Ve+jVRtt0y4z7f00Ty82TkAP0f2foKTqrOwE9tPvgAgqT800i6Nm87o33sI/J6mgcv3W39cwGl4IsUWLFuNMn2oKWRrLu3u3YvcoIGR+FGFGRopJTftUFBY6H0kc9EvDwqe9sEnJNqf4U1egkC2Pw38W0hM9ZFODBDmTG6wNp9GvmAokMpBkQ9hyvZa+d/4P5vb/d9ieT9dd21tZGjtAnZaM5BgIkZuAwyc4FuLK/G5bv7IRnqKwRoqgpUkHjPb4H3yrx3LRIybjTPvd2gC3JWf4uARylAVMiU9TwGgIvfGz1zOrITbE4m64cs8sPJbFZHIR3rGQpkSQQquA7pbdOwIA/y9hcPiBpXQ19ug3jl8fZ7FXvHFGQriDPor0DlfWQ4Am38yLU1fG8ARE1ANs2xqTbb/PiGSFZH2S/fQk71wPPbkPGcXY3eoySy/8bzFTlLXwRWdud7kmVa2tnOjUBr4beQLxkf0dwU2VpCfw6y/nzJ2nUOLsuczb1F3e8i/lStDe5vSOavyWbR3APZl462uXkLeVDS+mS28hgQdR4ReDU1Pu7/vkh/7u/O9UbAkGbxE2R3GQv8PHEtrNWfItvJVci2lixnhpOtyevwdxudH5OX09ra3HuViN/E3+7O7YNsOU3A9x2dMB/XRnLrG0TA3Zgu2kfvAvadw/H38+9wlOXsFgTM97b4Hu7/vtafT1MKJo7nU1mfR7n2uPGoC02kp1xs/V+SOZ+Mx3VC/qRrorm6P9r/JyF+fxVleIl79la09i+z9v8H8b+yoLe5eSCgZtifAiClEn/uPa/a23p89w4Epr4e7TkXoL36aySL3IwAmL2iZ1qBUfPxMc8b0HpEA6KonsmYIOY2x4Vsg5sG3Ovub49SXg9DoIeSbDMLMs2W1NYFmWZLams9aZJXwjpRatTZgAQgyq7F6YJTxoK90SY9yp3rj4yEPkJoHWTwPhs4sgx/8obI0chA/CDKQvE8MmBtiMAR66I041tTGvnVNvrbhsz4MAWLxvL9YXTGo6iVYUVtLNP2Pkg5uLDK+/3YnIwpskhReQoBAnxq4zOR4eUuEoAod18hIAqV1nmXfHaM+5DSGcpSLeTbR9qoO7pRNBEq3iucZ6A5/0dKy9L1cf+XbaebU+8RRaPglBz7vaPNt9zziTk6jgzgtxEyGh6M0vYvi4wlK6EMKeskni9x4NV7PtnvHmhddsMprVQARBX1KYo++wQBUpZyfdYEXODoL06WXW3LVB+6c3NMk0TWuRrXcJvorx+r83DOeDdGU4kiNmoYp7uA37UAmnsQleFERrt3kPPG99P6aD95gQwM24M0QNm/434b639jUcvkjXH7ImNvEzIavk0iqrfgW+rNo5ZCjoq1yVKId0POzSnIQHSIzd9xyLgytsL3zzFNSstjDEX7++NERi+bEwG8dCh5w3SbRtIsGKMRyGkQQJAhk2Ts8AxlPZqInH1zg2ZzDqoAbTWKJjIWhzl+LTJq+6wAwbkxg8pOlwNs3n1sz3yM9uUgZwXg0hRclpkq2tgQuvbsYMSnZqHo9tTYP2rvXTa6dqzN5diRtcDSbEltRTrPk8jxUpIBARkcX6EGAOSc0LR5fAgZeHgMyoAaSpqcipz5t+LA/3FfOHptGkHT/q5Gqb64LJLRvAP+z0gvCWCrtYAVCtpad5qJc6Gc2blIZjgVyQ3TyWTwhRCYYTLiiZVAS/M1zWj+HUTGRw9358Nc7YTWyo8q9We96ZKXKwKwYikkS7xJ3mYQ9JRfoL2hCdisXJvnlKZrZ7gvyGHLIflvTzc/33Xzc1lUomj3RJuSIE1HdwICmO3qrntA1C/KzaOoL7og4NzrRndRO++ducF5fyUFDvGI5oXUBoiK5cWd7H1/iM4PQfP6UVzmU+B7ZNkgQ/bLvdz1tg2m68duBwTMeRwF4vhM5X3JAFFH0AxAFAIWfIH2vrgUeT/kkN+t4NnlEEgnBjz1tLH6FtnL4uvnI1Djf3D7KMW85QHkvO7m3vsx2uc8YKQN4mlF9tdgx/wdkjU/xtk2yOt6S7h5WqI3JcYpgDEvtt+DEB+9AgViPof0360q0XLnVkDZCX+a+M7AH3qgdf8eAhzFQKhh9g3J8puIp07AgffIO9z3xgE6K8ylv2AZu+13CJjtiQAIt7pry7p3pMqYtUW25usQAGNltGauQI7a35GVCV6mmv5016q1wQ1FNoSDy313PQ8EQD4Y2RvvCHPernlbuQdELYOyNx5dBf2QZexDBFY9gyw4axEyQFRZfkJ+X96NTLc9u+Cey5AePM3mdDLbmJvX3VAmpKE4pzsKTp2FAJIBcL8y2gPuqjDu65DPqL0zsrFOwtYleUDUBiQCz6J2tgWWJAOl7Fr0/grjEmfBe8++Kdib7gM2jZ4ZgnjgFAqCSW2tjEZgzNupHbxUYtuvA80gr3VE/DpZds+ut7N58DowKLreE9lie8bjUvDeMchmtzHZXvAD699fkAhwmRtHNPYrIJnmVGSzPxHtU08wh/y59Wg9yh1I1/PBfkE/PMJ+b4xAh+8iGfYfyGcyYF60t/WocXzndQNaj2hAlJb5W8wphov6tsV4FIrqP7OV5nerrQsyzZbU1gbR3B1lP3gcGUO6Opobkil5PvKxkvOyC4qO/CF58MqaSOk6DYEX2iHH+f3kszEVZcTwAKVggP07Epr/a30z086HbFMl0Q2OhgdEHWffOokMUOSNMFtmEGn3AAAgAElEQVQhBXwixQb9lOEkKBinI8ND2bTr/5+984y3qjra+J/epCmKYkFFQAV7x97FEhXFLmCLxoYVO3ajMdEkauzGErvRRGwx9mjsMRpjYsUOKNgQsJ73/fDMYs9eZ+1zDnIOeHPvh/279+wye+1VZ555ZhZ5Bfxg+4ZDkAEyCCk8HyCFyDuUz7TzfyZL2V11/2DX1qcCU9z5e8mDuusgY7Bnopxl0a0NkLkLAgvOIB91djoZIaqf69P3ImCnMCV5VA8XARPjvuF+e7JE3/j5gj56jLXfOPv7X0QQDIDf13Z+z0jGwRXKWZf+ZL+Ho/EzGRn4p7u28ISoZ3AgSZV2OhuRBzw4fgtyZq4QP58aj4m+OVsyEXD8abW6qnWsROd6o/mzhAPnUFaed6iQVaVCO51IBmL9mGUeZv05JkP9jvy49/PosQisKdveMtH+bdBa8ri1/wSUVTA4cnxE/8LIqbE2+e0pqzl26zlH7YHWoS/QOvQmsJld64jIS+9aGzyHiJIHxWWKyjnbMpHzYBz5uXAAAj9LyKkVO6LnR0Buydo5bpu6yyxop3YoEvhwa+NF0TrwDhEB0e5fiirAZ71kptqrUp+rUqaKW841QmY0zp4HLnfnlrD+9DMSTrdoHCyFwMwjEcF3AeQo/BhlUgzlWAU5i0uIxJDq7w2RW+Hb10Wg9WO4bVkqtT0C60vAT1tkNt2yIp2yRJRBEuna16L5rQMFekm9ZKI5enPk/L6ILJPEkeQzypyG9JgbqC1DZV1l2v17mZxh5Of+gch22sN+30N+HR0A3AhsOSdkJt7RCzkuzsecdXb+X3b4bMvdgJtJBDw0UZm+r+2BnJZv4rZZsf6yEHL21ZR1pV5yyc/5GyPcYBn73QcRAsaTJy91RGSxtXFbJDdCJiKhH0BGit8XEUHmteMphGE8Yt8ZMkK1RdkanseyoTqZxyAndGHbIWf6JMoJUUuiiPASCrRJraO+bTz54Qyks99PpgN7QtQlSNfsXVSu6D2VCFGvoEx5A6Jnwnt72/MTcRkm7NoGaF56mDxxaVW0DdsUirN7NUSuOzfC7vszIvi/j4LUto7KEHTdo0gTSyqtI/2snH8iTxToiObLtykg8ER1fAF5YlF3RFT5HtnVwZaaD9lWo6L+0All397CnWtr908BjrFzyyBS0c1k5KjTmIXgQRR0uDaa0z+0NsyREO3/XshJHpNm4iDNEHDzE4RldkM67TVkYznYxTNIZCcuKOe6iFC1TpX7OiO9xGdkCjrrQDKC5CAr39LR8wei+fQJEg73VD+iXFeZBwWNPkF+PQlzwpnWboumZKb6qJV9FWRHPUzeJt+cLJPnb5gFIiB1wuDqeZDH2JdCdmsJOZ+LCFEeK+9aINe32Y7W/y5HJMVrETZ4d+gTyPZJzifWJ+JsQb3R2D0OzSMP4LY9I78+rIGw+WTAIBkZpSsiSj6HsMS25Mflw1a+t5Ce/hDCDittt7gUWdCoz8a2HQry+oA8ISoe460KyvkAIg1Psrp8iQpbVNfQD061smyIxnUXsoDv+7E5GgVWP4N0gsFVZHZFBLtZIi9F37x+A2T+hCxgojWaQ06O68/6zcwdFij2gVTDHy6yvtLdfi+B5qRrXTkKt+xr9IG2190QrRs+yPpA6+s1z88tR8sxKwfSWd62seyz7t1n81FIjNEW6fdTyIKCH0W6XiERseWY+8dcL0BzP2yR88zdXsiY/yf5KEEfjXK7KShlKS+bu8ymVNbmLLMplbVR3+/kDUcA5p3IeJiBIjwGkhntayIw7hUi0kaBzJ0RkPsXEmAB2jrsGwQ8XYMcvMnIGaoolQhwm4KUhQMRgDQIWNb+DqwmM6rr0cjR9g8yJcM78rfARf4kZARjbCmiKDgE9HxO5jhPGYbeIDkU2yKNzLj7i5XtG0QA2oN8ZNoZyKH7BFFq3oJ3eIN6Y2RA7Y0AuHeBlexaF0RiuI/yyPvRyNjct4EyR5qcn5MZHf49P7d+8DQC/74likI2mclsBnZ9lF3fKa4r5MQfR7QVIwXGX3RPIES9gaK61kKA7PqIaLFGdP+Bdv/ejepP9nsPBHr/BgGQdyLQ5DoyYKstijp4H4Fy80XyD7W69pHN44CH3O8QKR0cBFuQ2LKySh3+YJlW5zPQPPN26H+zekR1uRz5tO/LIQC3BOxv51aw+o0BzraxzEQ7fYvIbj9mmWebzP3s954YmIycmt/hMv2RAWKborFd5sBKvKMfGbDeDqUF/hAB7r18OXHrZIGsRs97w+33LxGQNxptQ/AlllkRGba7owizJ6I+lHKWzLZMO47E1uKoXfshXeJDFOmeIi/dSJSxsREyC/rCLigS70byWyItjMDGdyiIDrf7UnNiXWRGfagfmgMWc+dmhYgctqysm8z4fzf2xiBgdyH3LV2Qo/1+sq0adkPraZkjJ5K5BiKSP4j0z/BNXe38RPJb+qxGbdvF1kVuVB9d7fu6R/dsgNa+x4jW44K23xTb8qk5y2xKZUV6zG5ong9rhndYn4fshmWQXTGddPZP35/qItOe64Tm8W/Qunqc+w4/vwby/3Uk7Js5IHNJRBiejDIPBB21DXI4/Q05X9/FCNZ2bX+7vvYckhnPfQOs7/iML+PIk1dWxrJZkNjKtanIrDQm7P+RyNn0GEYkQ9jCHkjfqIkUUG+5yAabjJxgW7nzfRBB7C1EglgF2UlTyJM0UuvTbMtEzsX3EVHoILIApdCGYavmGRg+gJzXI5FufUhUpo4oWCzOkL0ltjWQO78EaUJUfyJHaEGd/hbNT4H80R0RIKYgrGjmtjfumQUqjaX4GsWEqAMRmbGMEOPeOz/CiyaTJi59RjlxaTVERPoEGD0n5Lp7hlp7hC3CwvZ7k9BctKW7d0EKdF3y68gKyIbdD+nzYf7bFdmtjyMy67bIFvgSIyFVGY8LIQLpJ8Ap7nwPRA4s2feeiwgtk4iy+dj3TkG68YbRtfuRfraq1fMtZFlhBprsY0hnF6mUpbyX1dsE8kSuLlZHZVsPIX1xBFnm6J+i7CyeADQEzaObuXPDkZ77GLVnWhpuddc/NT4QWapitmN3LmT0/xKNoVN9G6D5JpBLVqtSrqCDdMDpR4g8UyId1HA+ysKTIv35ProG5cSLJdC8OMqdWwsRGy6lYAxVKP8ofgAGNyvv+KEHwjceRDb2VKvPm8kHpK5BhpWPrFFua4Qx/IJsju6ICCmfA9e5e3sTzSdo/h0GnOzO/QmR21uhOehEhMfMJBf+X5UxmChnJ4Q9P4gyPiWzD5MFpfyBiEBZQfaR1u6XkM8kuD0iXr0DbFxjOTsi/OEhNM8vj7KXf2xtM8uEKISDPhC1RVhnQsDFGPvdFc3TC9Uoe5bIS1H7HWLvXquOMscC/4fm9kBE2hX5iaYgPXwkpiOgTHD/pkZyIuVb+rZC6/DD9ntJykm1+yOcuiqxC+GEncnmwtmaH5Ce+JHV80NxP0bBYjXNzy1HyzErB9IF37J+1ye6tr/1yWPduZCNbkekL76OdIuWDFE/4mOuF6A5H7ZYnIEYuWu688Ho/0NY3JCyFoyzjW0AljkUm7PMplTW5iyzKZW1Ud/v5ITUu8cjBbITSi/+IQKflyZT+NdCYEfFKC9kiJxv7/8KZzyTd/RdhAyTZ4gMu4L/N0eg3iPIaPSA075IWb0X2/IlUa5UmvNFMMIUGfGpNVIi3rGyhe0lUttaBCP9OOA0d36Iff8LyHm9hLt2A1JueqbkOZkzM44gYONpZDAMQYbOUAQMTENAszfIf4uM4WrkmC2RgRGi5/oi0G0aAsVCpEtHZPxMIr8FXitElJuZaaZBMldFfXIM+a0BFyAfSXQcAuxephwg3cDLLOgjyyPw7VHy/bYDAqzepkIEOuqjv0bZ1baMrh1h77+MAsXU+l47lIL7z/XoT+7/OIPN2og8EQz4RRFo/y8yx0HIhNMOEbdGRfLDvuj7knfIXA68bv//CYGPIZK/K8oa9HsSZM2ozLMtE5EJ/o3mhl0RsPIBs0iIisp1FJp/l4nOL4cM+BIak70RmLUyZsQjB15HBOp2S8iO2+nHKvNYe/4DBKwHcDiM2aXQ/Pkv8lGS7VGkymtUSaGPSCtPIaC+jxsj56P54CZXtmFY5jDSgHPD5j373Q2BIZeRJ6f2Q2DUZ2QRnl2RgzpEa5ZtP1YvmZB3uKLU9n8jn61xKeBVO7agHOyJtzapu8yCMdcNzYUlNPeGtThENIfsDm/itkRstEwyh3TQKfZA/XkqWnvOcPdWcvjEc8rudZa5E257YwTmz0C6zbcoK8YOZM6rzdEYCJkAp+GAloI+OsDuG09+Gw6/VchDwJMFMpI6Sr3kJurjrwgsehins9n1DdD4eYgoi0eVOm42MptaWd0zoxDA/imZLhXG8RKI2PsN0oEmIz3w+FT56i0z+vbNTdb3yDZbwF3z5KVT0Fi+k+ok4LrIjOT3RU6vT5HDKsyfm6L5pYQ5woCeZFt3lGXdq7dMMtJ1qN9Amu6H1sxd7Xe8ndlAFJyzBeVZu5qEzBrGgb9/b6T3lewdj6CAjROryWmEXKRHTEWOUZ8lOuAaC5Fl7pmO9LLjGikT07sQFvMbNN6/IyPC+PFzMNl6fTuauz6kYB4hTz4aici90xBu8iB5fSoQol7GsskU1X90vjMi6HyM9GlPiDoLzUt3uD7YIVFO//8AZAtuQN72rkSIKsyO4d5bC3HpAfIEjxWRLVjCkXMbLLc7sjN/ab+XQ3PQ7xAp9guEaw11z3Qq+n67vifSk99Ba8RryJke+t7myKk1Da0nL+CCB8mPPY+xBV1pWWTPfwqc6q63RzbxeKTzPU1BdmDrO6+gIMsN3fkx1rdmALe78/OhzDkvk7bzfDl3R4Spc1BAQuiDC5BliLoY2dsXW5stkZAZAnB+jrYwKiG8pG30ru+A9UI5UPaqSykIHiyoj3XQOD2bcsL2PNbnzqY6CWGQtfsYZEP/nAwn8tmNf4Ywh5eJiIpxnSJb8EE7Rti5HggD+czqKej8gxEmcjWVCY97Wj95lHxwxIoIez0p9EWUOenuat9e8J7ZwuAadSDCy7fWTqugNfhctGb8kTz+uiY1YOVO7kRrg/0T1wPJ1hOjY3u8NSI2TrF+c5f1ldXdPQugzD7fW9+cZYIIykb3CvksdWvZu0/Adquw8w9bHYzGrSnxe8mvLYfat8aEqG3RGjYNYfbVgk+HWZ3GxM2BaK56iYLtReOx5MrdGc3L14c6j8bc7QjrKsxeVGV89SBPXkquGVF9HUKFzJKzKfMpG2uXkxGS+ll/fQLpox8inecKpN9tGNdd9J7VcNnnrB8Osf/HovllH+vHN5HPEnULCiypNp+eifwi/0V+kEG+vX7IgeaeHREmMhHzMUV9ZH+qzM8tR8sxKwfC3v+DMGCfECPotq1tznnUft+A5txN3D19mQW9puWYS209twvQXA+kLD+DWN4XEKXxREr8FAS49I+uDbWFsF+LzKZX1uYssymVtVHf7+4ZjlLIPkBEWELg8wTk4PQZompNm744MrxCpIdXGltH39g1dS2SNwop9E8iI/lzBCCc4u75KQILH8al6K9Qxj0QADUNGWD/IAOfWyPyyrsoC0cgSqUcIr2snd7FOU9RSv1LEEj0Eoq47mfnX8GMsdQ3kxkkgbywBgJhvUHc2up5HAI4diGfsrlVkXxXp5PseQ/crYccwW8h0sJOyAj5AgfqRrJWqZdM6zftyW9RsCcytgKA0wkZaS8hIOYid29P8mlsZ0a9YoZXlX6xDeq3LyFQd1dEbppGBeDd+lMAwifiIoXcPYFA8gfMSJsb/cnOHQjcSuZ4/tTkd0FbgoW01cFB4w3m1vbcRmiu2QQBGWva9bXRGJ2MDNwl7Xx7BKi8SyKLU/SOesnsh+aMsK3YBghMrpkQRTlY8A3ws4J7l0OGewkBuZ8iMtZH1i8m2TGD8pTTZe30I5f5ewTSv4dAtpHkHTzro3H/Lopm3hWRe6djzqQKdT4SjaczyTLBzQSgkGPqAzRWzrI2OamSzEbNe/Z/D+ubp4Uyhr4DrI5AuMvJHBSdkfNkMorK7ZKQXzeZZJmHTra2vo98yuVAXnoNOV9SkdxlQGa9ZabqGDlVcvMpmSO5D1q7P6fGLTBnRybZdk472+/N7L5zESn0butfV7lnKm6PgrYg+T/g3DrKDMDytmTEur8ip8oSyAnymPWVPckAz/UQGeJK8tHelYDco8j0qA3c+dAvxyD9beEiGY2WSz4L4rb2jd/gtgV03z8dRRZX1Hebs8wfe1mjsbAMAscPQ8T67ZDO9AYWUY3GyHLIiToCc5batRSxri4yE+Ve0GQdat99BXligbelfkGFLcAbKdPu7YuyjgTyUnAajUD24+toTfgr0ik8yaQoO+9syUSOyN3JtgnfGzl6eyEiw1to7X8A6S2DQx0gnfgFyrcz+9HLJOForNBu3gbfDa0176GMJH4LvtaNkpt61r7/L+RJS7mMiWgdWxuReNdusMzfWbu0t987Ib33C5MbyCpe590akQofQHrk1gX14+eSVRCecQwKZDsc9e1ncYEzyN7/1K4tGX9v0RyI9MgHkL64KxkhqgfSnScg4kQ1XWx3pCN/YGV4inxQWiBEfWV1EEeyV3RIkm1tlyIurY/m++dx8z3CRgoJlo2QizKfb4kIP/9GdlCo09Pt+18Gdky1R3RuJ6TjHIPG/qZk20ztSpaZoytacwbjMo5QTIQ63r45lGsAwh1yhCi71sv6QvdE+eIx/R/rlxuHdyIn3JcINxiE9MkbEC61fBWZ1yP74Hmy4InhZEEu86OxNhVhYBMoCHi0+w9GpJXvSNiDaKy/gXC9o5Ht8gUuiw/ZuPFjtCMiOfmx/kcr18xMVWju3hMjHxaNSfd7dURe8Tho0N2vIE+IOpIoIC0hvwvSQx5C+IwPolkZra0lRGh40NrzBSpkUSHbPeAIoq3t0Rx7F8INbkVktS+JMuHNysEPwOBS5a7ngciET5J3Ss9LFmh2LflAzVqx8j2t/5ew+YZ8EOAiaL49NfFsjrCK8Pzp1p9DxmY/1jwh6pezWmcIa3wHzUN9TNZXaMxOtT412N3/MNIBjiPCN1BWw6LAvZL1I0+62jk1ngrKuaP1H08Ga+PkfIswwa0Szy5LPrP2kWSZ5m6xtggZkTzJ8nrgHxXKFK/32yA9bkky3CEmLyWD0Fw9fY8RoeotE2Hsl9r3XuH7tt27HvJLvW5HCRfAm/j+/mieuA+Nmz+GvmTX1yDb3usvUZ+9EukdSxXJt3tvMpmnI1LpBEQWCeSl2SFEdUQ21HiEDS3q+5X9fzhV5ueWo+Wo5UB6yks2Hk4m833FJMwDyHYd+QTpjz+4n7ccc6m953YBmuOBlOUXkCK8Cpmh34a84vQrxPx9GqV87YAUoJASsVeLzKZV1uYssymVtVHfH9XFaWgR/RoX0WHXWqNF9T0EeAV2fY5gQwVjCgF359g7YvCloiMvOr8aUpKPJcvkMRCBex/gACuk9H+PSyVfIDNsPXQOinQ40OqwhNtyDIESE5HTo3OFMg5EUVfjyUeBtkbZtc5GBu97KEq2BFyZkLMWAsFK5DORbGrftYn9bu/kb23XJmLgW6p9ov+3R8brESSiGJBz5/eIxDAJASi+PKltgmZbJgKk38YZsXZtO+sDR6IIjP8go+c0ZCh9BWxTa5+q0C9C/94UGcshEvM5XPp0ImUTjblHrXw9ESB4gbXj2Oje4+38phXKUZf+ZM/sGfcnO98ZEY7aIODsVoxEhozpSWh83UmFaBxEWpmCDOb17VxXZIx+iDLuLIDmp6MRWJNM798ImfZ980e/10cGbRkhiggIJT9uwjaD+1TqW2jLg+utX/4HEcb2RkDtvoi4ODx6Jmy9URTl9aOUiQh0JQQ8hHWiLfktVm9CAN03CJwY7eSlwNfVrf8dRR5g7IEDIZDD5Tk0Fg5PyaTB85671glFhv3enfNg2VPAvYkxuC9yuqXqoW4yydaMjsjx8j5aQz15qT8C0t9G62K1DFt1kVnUD9y1la0PlYCfuvMB8FsEt61Cg2Wuaf3iewQ+boT0sEAm8pkIfLu1SZULzSnfIeCjnjLjrUu7oLGyojs3L5r7PyFPiIqzeCX1veidB6B5+K/kQej2CFR9iYKo2UbJdfeug8DUkAVxYTQPvIjA+iui+zchEaXdIrPplRWtcXsiR4AnAK2IiFRvIr27KJo5RbJohMztgN9F4/UgMvKSd9SvT/mWram5um4yo//7kDnpF0Nkzc+wjDVIT10CzVl/QLbb0Pj7GyQzZFI4FenjJfvmMK9vQ7bFzTZ2bl5Ekv6CxHbtTUEmmW1c07Y35HGEfdB6sWWiPusuF+mYcQBXF+RUu6SC7LLstw2U2c762QbuXNiG63Kk715FRjaJt35JrqGJ9/RHmSyuJcvm2R4RQd9Fa7Ynv/SjILtxqo1cO/ZEa/1kRC4IzpXuiHj6BrBIhXraxfrdWEQKCU7ribhMVWRO+RKJLWPIj/meSM/q6epxIYqJS4Xzvb23dT3lktmArf1fd30LNNevSaYLH4Nsh/FUz6I+ABEsTrDfg6yOr0HEgonWVmUkpURd+nF3K8KsfkM+e1cgRH1CPkNUxbEdyfaEqE1DX0fkin+i8f46wi8KM4LZc5chuyAQN061fvNe1Ed7oAxve5HICBXJDFkQSygzyCLuWiD8rIHw0RnIZinLABvV7Y5orX8DOfSPcXPE/fbNj6HgmT+hebssgCaSuaKVdV8Mu8ERT8nG16Uktq2lwDZD6+M/yRNJvJ3QDdm/91hZT3f1Es9ZrRBR7gmEZ8XBNcEh2xbZUoFYVTXTf4X2qxmDQzjZDu6ZuhOiwncizOlB9+7wzgVR0HDJ6qBL9B3VCKDtEMn0v9YXF4uu97J+d2al8tn/vyHLQnoVGVnXYwYLIIJZCbfFeI39axia1160PvYRwtw7oCCGb4kCTskCD3u6c+vZ+48iG+O+n4wlI2yl+n61Ot0Y4ftlW14if8pH1q+eIK+/L4kwlfOtXcYhuyNshbkmmtsfjcZCb0Tyud7qolqGtXfRHPmltfuRZBnZA3npU3t/p0T9xJne6yqTbL3rjObo95G9kArYWxn5U56xel0rlh216/sIw/0ABcv5tWUowiJfQH30RCvvFCwraoV6PRuR8taw3wejeeN9hA+uWK3vRPXRFenbrV19dCLTy5KEqErjp+VoOWo5rO+9jXSLhxD+dQRZpjTfTwfaeJpq46fmbU9bjh/PMdcL0NwOpDj9CkVFDCi4x0coHISUg++Rkz5kDlixRWbTKmtzltmUytqo7y+QEyKQbiDa7xkpgZsjwGDHxLN+QV4fRemfDRzozi+IshuUEaJqPRDI+T7Z1kVBMe2LjLI4om/ZKvK6ImPmGvKpjVcF/oyUigDytELg1l4FsvzWhIOQI/h14Oj4Pvt7OBl5YAZuD3R7195I+Y8jCnshI+xydy6Ab/Miw/QFK3ucYWzRqLyd7B2/J2+I7I3IBTO33LN754vqqXUjZIZvIsvCtYn7xoEm+wv71mvJDLp1kfG/7g/pX4k5wkfT9kYGcq+4rO73lvZ9d5CP4luYrO/HhKhVCt5ft/5k19sioCWQ5Jazcvk2WhQp3qPcuQ0R2ew2Cvq+3bcVMr4PxwH2rs8ebbInIwD2GfLkxZRTsC4ySRvjPrPO+kSEKOQY2AEDYCgGC/z5JRFBbdXoXataPy1hqeoL6rAtAu3/CuzdxGS2sf53NQIcXiHbtq0d2VjqjMb8APLgU5GDaCRaxwKY0wGBws+hOe5Y147dyEfPh/Zv1Bzl2z43nsjS5u8XfU8Xq7eLcUCqXWvv6qlVg2RuhMbT0u76caTJSwPQWlPWF6J31EVmQu6ayOlxGLCtO78CWSYzT16KnZCpdqqLTPd7ZeSsL6H5eWz0bk9eutJ/J8VzSt1l2u/NEen7NBxxjnzk6EPWPqOIMpAWtNGyVndxlPhhiMDwIgJIt0Y65gyKsyw0RG40bx2CHNitkC7xGRo3S5Bth3NhtfK1yGxaZUU2Qgnpjbcnrq+A9Mn/IiJ+Lc66RsjsiJxXXwO/cee7kpGXLkMEq13s/bVsV14XmeTH6HDk+D2EDJztiyMvkdhS3D2fmp/rItP9PhcRTL/HiAbhnUgvGUmWDeYe5LifRIVtEX/MMpFTsUSWLfWHEJfKMtXWW66VdVPk8Fo2eqad9YFHSWeMGIR0wNgmqLvMuL0Qif4gMn20Exo7E5A+2cWVZV0SDtwC+ctY/U7BkZztWiBEhYC0sq3VKdafj8cF25CNuR4oeCaQbEKddKPCVhpoXX4q9Dv7/Tkan88ivGkrd38rXBa8VP9Hc84zJmcSwl5C9jNPXCoK8ikiatZFbiRzQYSzLBjd+zNrv0AYbI/0rIOJSA0F71oSzQH90Ro3EQV3dUT6YNjSaaZtUoPMc5Htvg7Z9lR+PAZC1EdYJtICOZW2Yt6TjBAVMi63QvbzKlZX3aqUc3PyhKoxaE3aF5FLPvB9tIKcODvOQghDGGtt8+tUW6C5oT95slgKj9gTraHXIJLf7WjOvs7dcw6aY95HRLRRVWSOsv75Jdn475doqxB4dCNVtq113/8wcEO19oz7U1F7I5LyVKqTzoMtXoaVkbfFq2WfqwmDs372DSJAbE9i3NbzQBmtv8DWGPIEo7FWjpnE5Ur91H1DIKG1RzjduwjDXwVhHmEr4K9IbOuWaNNl0bxxKeVrky9vV2SrJ7FyV67WaC7ymZJ2R3boMbgtNREB6d9kWbx9dqu+iXf8zcbAaMqznvSzuighbCo5BxT1Wbt2K5rj1iE/R2xm9bM2GteeuNeFbHvN16wMK7vrnVHg9CcI6xqNMJBb7Fuq+R6GozF/NJp/ViPLAng82Xzdgyzjy1aRjCPIZ4Sqp0wfCN7OfXMgRF1OhpG1i+du5poAACAASURBVGT0RvPYzyv1fRQM+T0iF/YNslzbb4jmuzeR3nslblvOgnpdEmHVYWePMYiYtwMaP2GeWCEuT0EZd0B60gTUpw8lywbmCVHPUMM633K0HLUeaA39AGG7gcj/F4R1HUmms3tC7mgbU2EL+RYiXhM75noBmtuBAMeHgIvtt1e8h6FIinHIORQWw8VQKt/TUVaOOHqw2cpsSmVtzjKbUlnrLZPqxudxZKDBotG11vG5xPOjkJH4DCIpTEXRbiE1aR+09cI3FES3VJF/ODIG+4bvITPWNrGy50hFcb1F8oLSHqK7vJG4EYqeSEbMFNUlAm3ORFEzM5BxcoS7HjtX10NA1ynR+TbW/p2RQRAMmY5oT/bvKN9Wbn2UQWwjq/9LTE4rBNI8R347hW7IIDkTgVcrIyDnU6SElYi2sHJ12hCZcd0iR8g0ZJAGQtTCyEE20N3XEYFn/6HGLZJm54jbH0XIhoxirxJlm7G+f671/dNmoY/Wqz/5sbIbMjAvwWXSsLqeDpwR1el15Mkg8be3R2DLPeQzL/lItXbWH7axPlENeGyEzEEI/Cnrb2jLvH8gQ38dZPR+ReQUJJuDYiLULqjfh20R/0B+K5wVycgWB8Zli76vexOTuQKOeInIJq+isRhSX4c2K4s4j/tTdC04Z3dFEW2vIID/XCt7iQrOFubMHFU2nqweH0cOrKPs3GIIUJ+GgTVF9VAvmZH8EQgUvDRq8/YILEuRl5KR6I2U6frQZ9beU61t7iYDS5cDbra2Sm5T2UiZUVutgcbMd8D5ob+T9fn5UWTrVOBWO+d1udTWpXWViYDr78mA+hJwjrs/rA09yKKbqwGPI5AzcSpaN472bUtGsC+h9etCCiLF54Rcu7YEAsHbozF/A9n4Ws76x3Tgj7X0qeYusymVFa0hU5F+VLZNMlrHXrG+t+BclLkocBFytFzozs9D5nQP42Ps3JCJxuiXKAPGBtG1vmTkpe2oQF5qlEyyeXIrsrnilyTILsjheAGypU/AOTFJbD31Y5aJMpe8iiKE+/l31FD/OXIa+TWuUXJDRP1qOOIrymzxtfUJn3mhnfXXmVmqU3293jLDd1jdl5D+H+ajLuQJUYsjJ9pUYM8a66gLcip/ifTVOJCpPbJzJiGCdFVCDCJ4lJDOmNrqc3lrz5eQbjRPQkZs662B9O75yUg7V9i1nckyRKWC5lI22a7IJr4E4VUXI/3+U7LAlAVRUOBMXaeGb6+7XKSTv0iW7Wkshq8hPOI9lGFkGMpW9zmwe1FdRrI7Olm/QU4vH9jxhNXttxQHRvpx1R3Zs2dTjhH47EBLI5LYeBLZ46N7hyIbbE9cpi80ngIhapPUs1XqdXnr+x1M1tRQb4hYEbbA3Qu31VuFb98cOQUXd+dOIIFtAkNwRI6idrL2fQ1hpD3sXFfkCH8NR/JAY7V7VHdFATRvo61v1rWyfYmIrovHYwbpwWWZBQvGaSdEwv5DQR11IxHcVvDtwTYYaHUYAqDiwJuNcJnhYpmkbfEf7KxFGMQiiKzwH2SHvkGDCFFO5rpIp3uUPObUCZFETqdg69KovoYiMtH9CMv32dV2RWPyEzT2r0e2dNnWgFE/OwGRMANpuSN5QlQg8XZBNuLiFb436CbzICLKs/bdt+AyL5LH4wZZee+N+m6bRB/15X4AjfPR5G29/igj/Tlx3/fvdd90tNXlwWRZ5hZHPomPke24NpojnkaExu4Ia7ko0b/eQX3+eqKsw/a+rRDJ+ku0lj5KNJ8k6rU/srGPs98rorXiOhT4Pg3NM6Gt5iXSS9AWqf/CtrFukMwOiFC5jXuuiBAV2iLMc7ciX0TZTgKof/dGesQlJutusjnPB0+2QeNqJmGwhnG6N1rbN0a6yCh37TakA04m2gkgIWdP5M+6kMy38gGap3u7Mf8Te88bJHSolqPl+CGHzVVPIt+RnyvvJ0GIsr+r2Hi6nxpI0y3Hj++Y6wVobocthi8C17pzfWxR+hoB6Z8gReAOalAqm7PMplTW5iyzKZW1njLJG2EbI+NiLMYgdteSoEF0TwrUWh8pmEdioL+9p4QU3kDmWRiB3SUsjWmtBwJkS4iQ0Cm6tgkiKZQ5JOLvd+c6ImDxdnfOE6IeR4ZOrUr4LgiAOwkRw4YhBfkDXEYfMnAhKPwXIiCtTHlBinYJgQiBDLQMMs6+Q0bqVgioezr0A5Qd6gYnZ5jJudfXO4oYn4aAs/HIcApg4ThkAHco+N66y0y8owPwU2RovkgE7Nk9/RDgOY1EmvMq8n8QWBI/h4y1QcjYKiHgLgYh+7i+v3oN72hEfxph4+Q4ogxayLD7HQJcxyFDehqOGIKL1nPnuiCQ5JoK35J0BFIAWtVDZnRuBav3Ian32netY312ut17UtS+QcZPI9m72TNjkdPuYLvvL8CG7r7lEfhSQsBDpfn6RyuT/FqyO4qY+gN5QtQ+ZISoAMztgEC5AZXKmRjbgfT0T+QUD5ngNsal4y54vqFzFJXH0zr23u/RmB2P1sgT5oLMnex7jyAdndkRkZfeRoBe9+h6as2vu0w7vylyeh+JyF6dkBOmhObPMGaXq9RP54BMH6G8FlnGml3cnOLJS5dSPncchtbxfRoosysi1R+JMur1Rw6EHLhOto7MS8KpEb1jBeQIOgatdRe5ulzA3fczq/dxON2MAp2qXnIrtZtdXwwB3Xu5c2E76OtJbCfanGU2pbJWkonmrG+QnlYWvY3AxLKsSI2QmbjPkx0XQXbTFKIMWIjkcTiJreHmkMyV0BgdSwFJHukXdyJ9Y+cavr3uMu2ZhZDdGLKm/gJYuNo3Vvn+H7VMZA++gJx/i4d+UGN9VdL16inXZ5wIpJ2byJOXnkL63TEoO+dAlCElFxDSSJmJd3QymV8iu7Snne+MbKdPrH6+AE6upW6c7O5ojf4O4S+x87W99ZG9a5AVnCPr2Hh5gihowMr8pL3vLSpk3kGkkZBZJGRXugI5CGPSzjvIWbNU3O6RzN7Ipv81Ds9BmMdLVqZAEFqAhK7TSLlR398O6eQXo8wwlyId/D40v7dCzqv/Ivv5QxLbtVeqD3fPg8B97vcCSA/cHLfNpGvDk8kIikGPDcSVkAk6uZ23u7ditjHr8xPJMhi9C5ztrgdC1JNYhqha5gE3pnogJ/n9iKAWnO89Te7X1fqo3T8SkdVuozzzcdgS7HykWwc8MZVpJ56v1kbjeh137i4rU8gyUpWk5s6thgLXriS/bdgpSLfx5ICKWy+Rre9tyXDWDsAf0Vgss48RXno/LttNQdm3t37dytrib2gMLR/d1w6Ni79SkFmOYlt8dghRByI7YDeELX+AMN2GZohC8/R4hH1shoLpDkS61XapMRQ9P4psXg5rUgkj/Fh97oHwiRIipCwayyU/RkMWnTHkt4QMBJYPEX6yOprHvsBtoZjqX4gI9V+EP1+KsjN9bN++LRkRaQG0jv7d7m0XldP3194IC10AR5ZB8940K/88aB3fx877YKpWKIv5iWS+hm5WzolobvrO+kHYdrQvCnT6yq59jOaqtlaWNxCO4UkHfRBOdAma68/DZcaK6muw3V8W6EX5lpMLmtzlrFzvkW2P2Qv14TfQVqGxnyPUZ1dcsFKdZHbGCFKo/y2DiKn/QjZXB3dfIERdRkaI8rs6PI1s8/b+WsF7TzFZ95Cty23QHOa/cZbGsfWP58nr0behPvogBX3f7lvX6isEHS6OyGVvoD56PvkMUcOpQS9rOVqOWg80/83jfvsMe2WEKHftNhv/VYNOW44f3zHXC9AcD+Ts/AIpOb9CSsRUpKD3QZE/Y5AydkCLzP+dsjZnmU2prLMrE4HLG7jfeyJA4xUUJfc5MCZ65ngE6FxEhciR6JkTkAN5MXfubqQ8rhzduxiwdoEcbzR1ItqbGpF9JiPHeshM0gE59t/BgLoKMtdExK2OSOG+ChlGI8lAhTYInHmMKFqkwvd3t/tvIa/ALG3nJ5PfwssbXWcgg6PM0LJyjkLG8j/JDJKlkbN8AjLUPkVRHB3Itss7CxmOwegYav3kr77+USTT2bj01/be61A0UVkUdiNkptrLte9e1k4z68CubYaiUMbjiFBRm8cRcT3Jk96qAvpxmdz59XF7kCNg8UFrr61i2cghlez7je5PKFroLbTlhQchlkUGdAc0p5yJAMjHgIMqtMt+CCTujMb+PQjEiO8biKLVlqjhu+su0+7vZXVyG4n97u2eHsihUQJGx3091FX0zEoIeD/afi+PwLlAWH2MfLa6lXEOx4JyNBWZeyBg4EQMHCU/1vZBUbOfoXE/HZcVrWB8hjVtsDs3r5XXZ4Jrj5xRr5CY83270YA5qsp4GozGUxs012yNQKOjcM4M0gBRI2SGLQ1/S37uHI5IJVvZ7w6IePklCQdBo2U6Gb9AZJ2F3Ln7ELlulejelar103rJjPrpTojg5UmEq5NljvDkpeCk9e0Z+uaN2LaHDZI5HEXL5ogaaP68D4GQflumGLhNbjWKHDk+q1Y35GD+HjkhPXHpCOQkuJNyXbDucqN2GoQcwjtgDjc7v5zV6UGun/4U6YPzxbKas8ymVNZI5uJIX8rpW2jd+pYC8lKlvl8vmdG54WRp7f32yAsju28a8Mu5LTP61veJHKKJ+xZFekVVW7ceMqniLCEjVv6SvINkdYq3q24yMl0bL4Ec2NMRKN7Xzle0c6J+vh1aIxom134Hgk3YkuYaMrJNd5Qx4ju79ikRyQQXnNEImQXf0wnZnNNQEE7IENURBQccg8uMRN5+8HXRmnLHZLzexTZckaxK2wSth3T8J8hjQWGbtKV8P0s8vyHS4X1fbIeybVzhzvVFzvsTKdgiKpLbD+mFewSZ7tpeyNmT081rGUP1lotsjbOQM9xnFNsCOddvst9tMWyL/LZRqXVkM2S/XoeySC1m5zsjp/2LCFuYH2F2b+AyWTiZh1s/vox8JqTuaD79PQ7Xctf3RGS2WgI+LkLjfXOEX6yIskl9hmUttft2RUSkh0hkLove39aONlGZ3yafuXBVpN/1q9RH7d4drW0PIxGcYfeEYM8JaPyeWkXm8sjW2caeC+THexAWG4hQgxFhrWpWcqRDfG3y/py4frK13Thqxzc6oXXxMDJywjpIJ7kTR4hCJIcnEJmrcJ23e58B/uF+74+wp7vIAsv6oGwsn1J9Cz1vi89Shijy42d5ZKetgO2cYOeXJE2IqvidtR7k59+RZFl0v7HvP74GGasifPAIbH5Ha/tVJmsvOxcIUW8hHCWQL8rGLMrS85a1ebCd/NrdBWWVnIL8CR9QnQjXGhGBnsURR6z/PI/mpP52bhQihl1NpruXBbyQZdebjPSIq3AB2dbnP0eEuz/bPUcm5FxtdXUyIlediggCy1q5B6OgpinktxLeAJG4NrP6aUWWdcsH822I5qN2aE4Oa/L55AOWOqP5IbVuLEuexLUzRgIkm0fORGNxcTLi0F/R+vU5LgNfo2Qm+kpXZIOPQwSzEvKtbObkdUZ2xDtIF+ro5Gxr58Pc6Of4/og8HG8zeypaY+5CemYbFNT7d9R3K633A0xmnEHn98BE97unlXUbogxOOHKhfcNo4A47NxCN7Yvt2t1kpNo+iW+sO/my5WgeB8I34oxtfs3xfqskIQqtgcnMhC3Hj/+Y6wX4Xz+Q4bEMUpZ6u/PjkFFTsoVoa/LO16VsET2jRWbTLGtzltmUylpvmQiYeQ0ZHusgp/JzCCScDymQ15jcE6Jnx9r5wi2I3O/WyHD5mzsXwILgJB+Ky7Tiny1os51QxpKXEVgUwMxFENgyDRkxxyGH7HQiUldC5ggr051k2zctgKJp3iGLAlgIGaFTqSGi256ZDxlUvwp1RGYUrmCyJiTquQ8y3G+mANBEQMfeiAz0Evnor54INBts7+xobfoReQM2KPtbkoERRVm0uiNQ92NgRIVvrptM8kBHF8ygd+c6kiBEIeDxOKoQAuz8zsgh/i6KTjsu9f4qZVuHLBqpv7Xp3zHwE42FAfaeJCGqWjnr1Z8SMjchb6T2QpFeryFjb2aUorWBN/rjlOhhW8pT7PdJCHjbLnpnewTQPU1i26VGyKxQp+eiyLFl7bc3YLuQbT/pHSNlEXiRzCGIfLCA9YePyCKydjV5dwKb19r+TUEmAmXewaXetvP9Qv+y38PQ3PZ33NZjpB0Eu6BsfJPRnHw1ibFj79gXy0pUpc3rPu/VOJ4+Q+OpKHtZUTs1Qub8aC45zH6vgByCU8gyS460ax0ocLg2WmYYk9YH7nTn7kFAWdAlNgUOmYXvn22ZlK9PIavULeSjxVcjIy/tFJ6lXGdq1QiZ0e8uaMyXEPgdgOsAeg5AhKjxVNgaKyrnYORc3Qs4L7rPg8bnkddhDyHb8qFvI+W6a6PQWj8ZrSOvoXUjOCCuMJnXoLlmGnB4UX02d5lNqaxoHv8X0pMCEWA7Mkfh7vaumykg084hmfOhtbGEbTFEPpvT4oiYXqL2wIy6y4zmjTOR/hDaJ85MtAzZVmVd54RM8nPJish+3Aeni9i1QDQ6FxG+hyHbebumKjN6bh/kvHwe2c4lpPNW3NouKtdoRPIYWme5v8Lp82jufpKMvDTa5F5Lnri7FSJY74jLqItsktUQQatLHWXOtHWQfXkomqN8loKYENWz4PuLyEvbIiLMq8jhvIO75glR55HYvqxCHe+HHMSnIHwnbKOxHsJInrXyDkGO6FzQDJrP4i36tkUklbbknTF3YdvXI2xpF2Sb9019f6LcC1uZTnfnPHHpfeDqSt/eaLkIa3sD2ZqeQBXmrT2tfw2v1jbu3F5WvodRMMd4NPdtZNdXIcsw9jpab8q2x3LyzkZ695Vk2YRC/5xgZfTt1sva/m6qb4O9ICIvnBLJWAzhbxPIZ8LZIe4/8fyASGC3ozXqErI5ZF6EmzxtfW55RPJ4nihLWlzH9uyDlOuOe6I5YSQZfrI1IqIkty515/ZBduiGaK7+EJHi7kP6Ssgk3AEFpD6My0JXobzzIPv1VTvK5lBEKPwIkW0qrqHumdeRDrU/GSFmJzTnvm/94Ta09v+DKHtPgcyfWF/cxZ07xr7/Syvfi9b/fFBFmD/PBa6KZHpbvCZCFPk57mfYlmrRPYGQsZh97xto3fRBrkXrVCC0ViVNkZ/TuyL8dSPyW0dWqtOd0dheIfqu/mhOnYSz1dC8Ot6+J7V97gBrgz3cuUXROnA5hmEjDHUjtOb1rbFPPU5iC1GE/0wmvw2jJzmncJtdkN58FsLXD0Tj633y22seh4iF48hnhI3t26utHx2P/A9HR23TFwVPv046O9pQNAd+RD6Y5gor1yHkyWTHojX5V2he7Izm3Ksp3wVgQUTmecy1+UxMxN13D3m/SQ+UhW97YOtGy0zUSUc0NzxkfWUhRGB7Cul7m5Nh752QrfOnqN77hH5Kfk67EBHmPkF4837kM5idguaVD8h8PNW2srvK2moGIvmdh+lzKLvTF2i+PgplyptMXj8J2RHD2hAyU3VH47otIpneTEZGXNnK/771lc60EKBajtk83Nj70uaaVQvu83rYX5Ctdjgt2+L9TxxzvQD/y4ct5L9HivebCPj3ZIr+lKc9DUrNOvbMHtH5ZiuzKZW1OctsSmVt4PevhQzWCciwvREXbWRyLyNNiEouxu76IDIDdCwy4pZCBsh7ZBlzuiMD6AaqAHt2/3ZIIfgzIq18Z3/XtOvzoAwubyCl9G/AwXG9RDKHI6XhCDIiVHB0LoRIYl8h5flNk1tx66FIfgfkDH4USxNNPiL7z0jJn+zr1erwcDJlvDMCXs9AgEmoQ08GepF0dNDmiNAwkQoRalQgBiCg6AyiiJoavv8Hy4z66/Ym4x0E2uxGtj+3r4PnXd/zqfArEaHCVia/RUDctzhDn7QB78sWojA9eH40AoQfxGXHQQDFw9bm25CIkmpkf6pQt19YmU9GhumbCJT4DTL0U2SYGISYD43nX2MKOBpD95j8AxFhZYDV2VRfpoLvrYvMuKx2LoytrlZnVxaU4Q7gnGp9KXqmM5axCM2td5GR5RZCIFYJjdmKka0/Zplka034uwkCAxax3z3Q/P6Gybkher67+z8FPO+OAM4zEAhxNhkxxK+DG6Ix/C75rSJriSyt67zHLIynWvpSPWWSz5jQATkDP0fOhrfQ/LkaAmQfReBTx0hG7JCuu8yCsl9k370AWs/eJVsH50Vg5G+ZhTTQ9ZKJCNUvWr98z/rTfeS3aluNbHu7Wkh1dZfpnlvWvqsEHBu3A9L/HkT6VjV9byQi5IWtUiYSbQ2C5pmQkeNy8pkUTsBFcTdSLtIhZyAn1foISL4HrflhK4rlrN3fRw70Q6t8f7OV2ZTKSrZt3VnIGbo30iWnIAA+gPm7kG0TW+hsbZRMJ3s9FOX5PbCpnZuZNQM5FF+z9284t2Q62dvjthci7/DojRxEI6JnqmVDqotMNJeOR2vmy0inGBbdc4G96z0055Rlq2yiMjdDNuxobP5EGZPfQA6/sF1xnK3W2wiHIHt7vzrLPdT64lcoG9GB9p5jyBNVAnlpZjangm8NpKXNkC1QD5kHk3fOjUKOuwlW/++Qz54aCCef2btrckZY23+K9OVj0Th8jXwW3m7k17sOkYwuyGnsA57usLJ8gHTIiWicBz1/CCI/TSfb6sgHLqxv77uYvMPwQOA/ie/YAulR05H+8jUJzISCsY/0rodQ9glfr20Q2f5lEgF0jZYbZJNluQjE0VMot4N6WT2eH/plFblDEE52GJldP4RM5wvktRVQNtNfYgT4xJjyc+S51levJCPXLIRIbO8BP0dO6u0RCe9TogwEBeUdYGULmUZbk+mOA9HYSwahFsi7DZGKLkcYxktobG1s11e3+plhffRDIqJoqu0RIe9F+852Vn8Po/npM5M5Jm4/32bRue7IhjmWbG2/2epiEpYZEmEKI6zuZ2Vngu5k88u9ZFnufZueTW1bYvq57u/2vfuTEULXQnPNv6yP/YIoe4+rl9jm64vm+Uui85sj+/R+q/NtE/XZjWzb15ikVjMhKmqXscD/AXe7dvdBe0G/8YSobZHusybCjXtE8o9DemW/VB0UzQ8VrlWbA8JODqF9fPvtZNfW9d9Ehl+WZfNEgSQl+85OCCP9DK0pb9q1Hat9U/wNCGd/nXzmO98WoU/F27mm8J1eiFh1PvksJv9C2PvAxDNlWY99n7X/Q7DPFOAnrr5CHwx1c0AkuxvyCdxEniR9C8IytifaFQPhz8chHeM5hHtMJ51pqS3K2DIBrUPfW7vE6/gZaJ3eGq1Ne6H1O5VZsO4yE/9vguakodG3DEYk1ZAhKmDvHVz5KuFRN6K1aHcUjPEsWoNOJp9xcn+0Pt1BhQy7du+1SP/Y08p0kNXJo/aOeUzeW1Yf/8T50BDZ9jwy3H5/K1N/d09/e8cuUR39G9l4FTPhtRwtR60HIu9NR9hHycb5tSgTddAPwjrd3j0XMpUdTA04eMvx4z7megH+Vw+krIctb0bb5J7abzic84pZTxuM/44WrGYrsymVtTnLbEplbZDMEPXTCjnSnkUL5suUGy/9yAhRJyfmkJRxsz4yQFa231sjZXciAjD6hnIgZfw9qmRZct93Gi7jCHKYlJDx4bc5WhQBPL0SMlq77+9ldXsRecd6K1dPPZBx9CtEthia+n4qG8GnIUUmB4wi4CNErpRFZriydrN2fBUZLx8io3aEXe+AAJRJODJQkIGioH5JlC0HGdK/i86VgRHI2LsApcbeL/X9DZY5AoG4v0NRO48g4+tE8oSoUcgJ/zZRxqJUO1n9n4kyDc1j53qTbflwRfx8QsYhCOzdP7SFu3YYAkRThKgnEIixeLV31LE/FaYGR1FMH1n/uYKs//dEyvcOReWx+7ZBc9XTwIHRteUQQFJCIGkAM4+p9L0NkrkhzoC1c+2tH7xHntCWer6MCFKlXroggOJX7tyS1k574xwdTU1m9HyI+Frd2uQMBFC+ioDHw8icOBUzwLlzq1v7H2O/+6F571EElP+JLNJ1UwRQV4zqtfN1maMq1Sk/cDw1WiYuk5z9XgaB4FeR3wKyPSLGXTinZFboB2He2tfa/000VmdGTiNd4h0SkfiNkBnJGorWgDFobl8MAWgl5BTwuskaaP0aPSdkVulPSyOi/ffATxP9e2mcM6Og7Qcj3e4U5AQNBKtriFJyoznmFCzTFom51LVL3eQ62Z0Q+Ho1TtdFJLj/EDnEkX44X1wvLTKbVllN5nxo3biEPGGuC9Iv3iXv/BiJC6Qo+Pa6yKTyGF0XOW+/BzZz5zujsXAEie2VGyEzISe3jqI56hFk/3mnXScU8f8hEbFnDsncEdkPxyFbKRCsviNyKqM5/ygvs6DvNwmZdv4UtL4tQt7+3dHq9X2y7bhyTnD7/xDrK/s0SO7ByBn2NbKJjkh9Exl56SqqZFohy+Y5WzLROvQdGs8Loa1aXkW67JL2rX9D9pgfS52Q465Ele2a7f9Nrb5CFupeZNsOvkM+e2o33HoXyRxp77wQ4SB7IOxgXSt/d2Q3TUDkppDxd1Erw3akgx7GWD1cRJZl6AjglfAtZGt3B0QwuBDpz7s5OSnSyVJI11+WLJvehogg9zim16L5dnc0Rsr0kkbJjWT67BdbI9LOeMq3SZ8fEQbOrtRP3f0/Q9mgvMP1HutrAUvrEpenwlzi+5YnRIXMMn0QMWyq9ZeQWbvidqRO5oLIrrsDF5Tlrr9AIgt1gaxDEGazFhlpZTcr18/JtmBaFmVl2o8C3MTJ3AjpxZ2RzfEPhHW+isbySihT2D9IbElXIHMLK89T5Ldrb4V08s8QaeJY5LgvyoqU60+UZzsPhKjPrA+UEaIK+maoO98O3jn6pMk8gMxubk85aaJsayei7aPc+J+R6jPV+ihaM861Nr4gulaVEEX5OvI1wv5C4O/zCLdN1c/iFONDugAAIABJREFUaK59HRFk/430iJi0ezaaf8cxC4SoWo+4PyDy43TyGEyw8Veyaxv7ciBCyhpRmwd5PVDWm++Q3jwROMf610D7/vOrlLFIpzjd2miDUA537UqEb7avJNvuDZjOCHfubmufkAV7eZzNF9dbJM+XI/guHiQLzgt9oD3C0n+RkNGOfCDtQUjPWdM93w1lhetP5o/Y3b77jyQIpVFfvN7K9gZZZiE/7oageWYGmhunk8gCWG+ZKID+zsR7drB+FLCx0C/bIny+ZH0s9IdaiFCHI9JbkDkGrc33Ir3wZCzrq3umYp9CGTv/i3TnUMZ5rHy/wW3TivxrS1FOgtwA+cPetDJ8b2X1dTkQzTenuP50ELJZk/NUy9Fy/JAD6Rf3IOx3F6RzfYEw8HFIp/U+P++D+iOzsEtGy/HjPeZ6Af4XD2QgPIeUhKXIlAuvSPgtB/zkvgZSdj4jz6ZttjKbUlmbs8ymVNZ6y6Sc6BS2hFoTGR9fkaWp97KWJNuzfDWqKHcIWPoC+LU7dwpSvB8zGUMQYDCdfFaCImO3J1K6x5FFooX6CIbzwziwPCpTK1w6XPfsgkihPazSNxXILEpzPxil2t+JvMPyzyi96ykIeOyNSAYfRO0egwbtrQ88QJaxYklkwH9Dls0qEKJKWKp3952tKAc8OqJsO9Wis1Z39/crKmcDZW6AIjiOtN/9rc3eRQD0SWQRrh0R0LNfQk7b6PdWCBB9m/LI8p6IzDENS1Ff0NYBzN8Xt90TeWV0tL3jQbIx1xoRBmohL9SlP0UylzC5K5GPxhqIGdH2O2zRNJ5ElFNU5sEItC8h0loKuBuKDMbdiLagaLRMNAZCROx3KBJyVzJQcEUEEpwQj51UuySurYUA7aNx5AkESD1u71sAjed9ULRq91hWU5EZ1cN6yDBb2n4fZ7//Dlzq+uAyVv9lzkvKo+9bI0DjQgRaDECA/mUIyD+NjBwRHB3JiMFGzFE0YDzNAZnbkEVt3oHGTEgH7kHzbgjYm4SLPm+kzCrf74nKAeC8Ca2DyyGgajqOCNkomeT1rzC+LkaEuZ7RvcGZfTd5R37vRstMfPv6aFyOIL8+DERjKEmIqjSekJ65AnKQdnXnz0WRlCniUu5bScyvDZTbAUVFX+Cu3YscHgF4H4K2oymc66PzzVZmUyorWt8mAWe5cwEsXwLZShcUPNswmRSvzTu782six/X3aA5dHen6HwJrxGO0ETIT5U+uoyjw4h9IxzoLZWe7EOlWhVs61Usm5Q7NJZBteKr9XgYRAG5A2Xu+B3avUKbWTUVmhWtXAe+7335dDtvuTSHKumfXZ9o4jZSLMooE4tct5HW5NtFzJQTyV8y4VA+ZiPSyI5p7HkWkomtxWxIjB1wYSzG5cGiiXB6LaGPvOB/LsoJIH1OtDtdGNtAn5Ldj84Fv8Rx4JBmR5ByEBbWL7rkCOVeSpCK7J86SGoIZLkZkrQOARwqeTc1vRYFOIYvUFETICduMbYbm12kI73gOYUsnVmr3esqNyj8UzTuBUNQO2eZvmpwNrC3nRWTFGSRs/EhmH/t7CTDenQ/bNYf1bl3rD10qfHOhzkaaENUN6cM7Ivt3/oTM5PZhbox/Y/0gbCfWCuERL1OwxXKiv16ObK5A+lncynotmW1XazbF1sjOLwFj7NwSCD+4gAjrQ6Try9E49O0y0x61b+qF1qDJwH/9/OD+P8va7W0UZLC7L1ei7bdHevy7aO4f4b7XE6LGkWXFjusuHtedkUPeb1Ho8ahnEPHtABIEJ7tnJI5shkh/HyPyrScnDUZ400n2u8yOKWifMDcsi4I0S0RZxMjb4mtE11IY3GFWT9ORLfwoaVJn0M8WR4TQEiLJtXPl83Pr8Wj+vZtZJESl6iAqe1frW8Fenhfheu9heKedb4/s0fdwJBtXj21c2bthBGQ719eeHY3DMhER8HkqE/5DnbRD5M6F3LXV0bw5Ccsgat+yNMICflckN3rHMmhM7Wy/w3gI895ApANtVkFGpTnqSmvjs8m2U26N7MvJVAlKsvt/jkhOgfS0DpoLPrDvP9Fd64KbE1J1avfchPS6DxDuFuZP3/dWRoG5Z5Ifz/E8XxeZaA48HOe7cdf7o/VyrH+v/V0MkUzfsj7areDbY513DBmZaDRaL3dBdsDtZNuCLZqSV/COPZDuFLD2pdFacivZ3LoeiUzf2Fps/2+LbKHvgZ8nxm7IeD8RZTW8xOrHk+5biFAtx2wdZHP72jaPhYC/gUiH/wD5wW5mFjJQthxN75jrBfhfPBAb/incvqvkFdkDUTSeV3znR4rp0yjqY7kWmU2vrM1ZZlMqaz1lIqP1V1hGFOTk/gjbmxw5Fh63c0PsHq/4DSAihRTMK21M3i+QAelB9aORIf41MkKewUU2Ugy674Iimp5AUXg72vn2ZADDlgiUeRxYPyFjJJYu0r8PGWJfkxGsYsLMEGx7hloOe89E+74SIphd6q5fj4z1b5ASk0wfH8kchIyM4WRRiTvbsyFjSoic62R1UWgcRrIXIdt26tfRtVCnjwLrRNcqOcdmS2bU79ogosvN9ntp5Ay92PrZ3YgYdQIZqJiKarsUEYW87NMQGPIFWRrltq5PLYEMof1T302eCLWifdfV7roHoMaSZfQo26aQ4r5fl/4UlXtXsiixElKit0jU2VIIMPsCt+1YqtzumaURKDwBAcdlkYrVvr1BMv33D0Lg3ovI2H0ZOdt6oDlqElWizhPvG2X98mV7/mvkWAmg81Fobn0Nzc/TMaC2qcu054ZaP9nVnVsQB64jgGMkAipjJ8tq1h9j4vISWLQwAjpvxrL9kQHmJRSZX/N2k9R3jqrLeGqEzMRcMh2B9TdZG3+KHAGebDUEEUGrbgdbT5mz+P2/RQ6o6daPXyK/BWjK8TDbMkmsI3bt92iO6uDuDfPUr9E6cSuOMBvK1wiZibrdw74rEEv/QT4SNxCivsZloKjS9mGblBJuuwR3/RfIkXMVjkw4p+QW1ENvq9Owdc295IH3BRGh71DSxNtmK7MplbVA5uJIh7jUfsfA/GPAAxWer7vM6N5RlK/Nd5BtNbYq2dYfU+2ouG1rI2RG8v066olrG6N57SO0Rj+CA2qprLv9YJnIGX04ed17IHJmLY6cNh8iB1lH5NSagfTqUQXlaRIyI/mxDj0MZ+faueDIGoHWureJtvYgIwnt0yi5ZGvaCsBP7Np0tD53jr/J/j+OCttr10smeSfzjihbxXcosCW2MYYgQtRXOL0i0SYjibAIO78WIpZ3RdjNNWRZm0YgR9tbpAnfnXFERzt3jL1nOm4LJdc+bVBmkOsL6jCU85DofCBE/Q7pH8FheT4an7+1409UJ2hvgvr1uSgj1Rikm3yGZXhFc9RRiCRwDm5bp6j9GiI3qo+P0baLW7vz7REh6nWERTyLnKPjqT4/7233Lobm6skoo9E4tN4F8lY3hFfciCPhpfqq/b8gIjv0iu7xhKilKpXN7u8Qff9YhEP54JB7rY/9FjnaN0FknI9T74jKOcj+Pgb8xf5f0sp4M1kmrJ8h/LJqphkn+xqUIWTR+L32uwciAU/B2a12rcgeXR9hjDOJVnE92e8u0e8iEuBn1hbDEB7xBspEEr67u903A9m47SMZKyGSZ193bl00Rz1G3r4JdsQAtIa+jEiTcdmXt++709Xd9lbOj6xfXofZxogc+PqstI09t5v1538gW6ZEtNUbmS3+iHtfEoOz39uQbSe0VXx/NGaXsfp+HLc1INna7DN9nsgsEqKicq5FeYabHdF2Wi+gALQwLy2Mgsg+tjY4zOq4KNjHj6cLTN4MhK8fTJbx3s+Vi6AAoPHAEpG8+ckT/LrZd4+3+vq5u7Y9IkSVrB/ejkin/3R1WoaZJNrivyjY937rXyGAuy3CN14kwozc82E964jm4U1x48Gu/YFsB4kdrT0f8+UskB3W7AsQNnA8IoBOQ/P2MIR9vEuCeJfqC36OQEEfRyO94gkybGtmRqMKZaq7zFCPTtZv3fl5UGalb4GR0fObo3VgMzSflm2PGr1jtP1dCgVeLoXmkEPJfBkhC3bJ6r3aeDvc/oZ5tRvZWnIT2TgYhsZV/+j5qxGmEIJj10Dr8UdWtuBLm0maRVjypQj3eo68P6uFCNVy1O1AmMhjyAZY2p1fnsyPFea4U4l0v5aj6R9zvQD/iwdydN1KOnX1qWSO1ztx0ebI+XoCCaZuc5bZlMranGU2pbLWUyZaMJ9FSl3Yq/1g8mDHWoh0lCREufuSyjh5ZXcIMsjiKKwFENCwdFS+IlBra/vGG5DB+B1StgfbdU9e2dq+K5V1ZE0EMH2E2+4JkYfuR4bugOj72iPD+D4SEXOJd2yNDNbjrb5XQsbDN8AN7r6hVvdHAlsm6rWNrwdk4JcwYws5NktYRDQyUn5JBDxR2cjzdbwwWbrqmBgQ6rQqIazeMhEo2A8BhesgI+8JZNiEtOxbIjD+U2ursogcBC7/DiPzkQcPjrZ++rpr/1D/CyFALLX10Bh77z6oL7dBRtFE8mQlH4n8gl1/FkUZVnOO1aU/RTJ3Q4b8yWgsHoaM20eAzd196yPiwGvkI9TijBtlfQxF+72NwLZNqI281GiZXezIGf3IcL7L6vSfCPT5CIHkNZFrrDyfWl9aFI3HnVEfP8fddxACeP8E7JUqZ1OTGcl/BHiq4NpgBG5MIyJXkWV1C3+HUA5mdUdA3Inu3PIosvFYou1bauwT9ZijZns8zSGZg5FzdSwZ2NMJEW4mIWdQBxRFeg0CYys6rxshs4bv3zp6/2YoQrV/lbLOtkzK1xHfl05GTsEywBatFRMQaH+xf7YRMqP7WiPH2FNofVgIzQMvoDXPO7EHkKXZT27rk6iP4xFI/JLrA16nPButYX+kIFq0EXKjeuyN1tuwZoQtZp+3d4Rsm+3Qev4a6WwezVZmUyprFZm/MJkbR890Qc6YK1NjqREyo3srrs3uXZ1QSvzh5LPCpea8usssqA+/jsbb3SyCnGvzVpM7uzKtvsOWMPsREY3s77lozvfbxo9DjscS0dYmTUVmov5ix/9ABKS/gMtUg8bSWYjIEDtFF7dn9mmkXMoDkLojHXQG0kO9Y3YTXPZQ/91UsCF+qEz3e22kbw5DOtcHZMRMb1OsRUaWWCyWY/cksQh3fQ1k62xMNkb3QbbjPyl3RLYiy6YWbyV+MNm2OT4bZJD7F+DhgvHoyxkTt8aY3I/Q3Pw3hB09bd//CNUDMxZH2MYF5Alqy1i5PiKfKbYQb2q0XOT0/xyRJBZIXA8Zop61etkBF9xIAjNDmTYmI1uzIwqo+hA5td4jwyPaIyLShyS2F4/HJXCetcWHKEPLetG9gRB1GQkyOSLWnU8+u8wt9v0fkQV1eVvkOrtesve+io2PCu1/B3JAL4C23HrTvnMKGqMhS9SS9v5zcXhKtQPp/JPJst377CibIIz0UyLCGml7dPFofD6NyAZ+boznnErr/YaIXHK0/e6DiMjvW9ucRD5D1P4ksj6g+aiEiBkeT92SjAwxNHpmYaRXf4Uw5rj/t0VZyD9BREG/+8BKaB59HdkfzyD75WuiuadK2+yAdKbjEHllHYQ31GyLk8fgwvj6C8KIXkT2wWrx+LDf/azsr5KRRNpSvjb/IEIU+XF+BJq7V4365teIPHSbleV7bEtNZKedZ+WbimznA1Py3bkb0bpxIsK17kT9/0byOOS+1q4TiQIz0dz5uZW5nR1Po/n95wh7LZHHH1dG2en/g0jCv8aRy+KxYd+2CPnxuBVaU0vApnaup7XtVMr9CMsiorPfsu4Z+96v0Ty1afRMyBA1ydr4BFe+Nv5vom67oLE0HhGefYDscLS+9q2hLyyJdIQ1XR9qR0ZeepyMtLOjtf8icbkaITPRTmGb0jvdudUR+es75INaD5HNn7J+1gnN47+rUN4rkR7mg/y3RP1uiDv3U4QlHUe0BW2i3EHmYLK59E/WH24iI5fObzLvoXynlH1d3+uEyLJrI8LyK8jeDDqfJ0S1sf7hs0rVbSvNlqP5HRT7Q3eyMbmvO3czmjv3RGvzv63fLzanyttyzKF+MbcL8L90IIVvfgSqHBzOues7IaVsKMo887EtHH57nljpb7Yym1JZm7PMplTWBn7/KkiZLwFXufMeSAmEqA+JsmJUmFM2RQz52Ki+GBlcSxQ8Vy1ipAsCVE8ni1YYhaJIXiUfPRKMmb4VyrkyMgKnkCdE7YMiOx4nH3m+L1Fq+gqyW6GU3jNTfdv5XmQp60+q8HwcZdoZgVXzIMP9SwQUBWXoeHfvNgicWruGcg7DCDMUOx/Ojp4prNMGyuyOwIwr3bnlkHG3vTu3GQLWH6LCVodkgMcwpDB6kOMYBOz8jYxk1836xddEUb7IGfYOAppH2vcth0C9C61/eUJUK2vDp9CYSAKajexPdm4l5LQIANzyKILmAWSIPkd+i4dDyEcWzkxvbr+3Rs7zp9H8sxlZFNIgBMz8GwfqF3xno2UOt298C4HDB1JOHByOyGxTrW4LtyPx77G/5yDw36cQvweBAisX9cWCcf+jlkkahAsRp8OREbZjdH11BCC+STmx7lhrkxABvRha2/5CHtxd0vroLxHQ0wGBFPF9RWtJI+ao2R5Pc0Kmnd/W2ibUcwAB2yMy4HvYOo0ApaXnksxavj9J1qjQP+smk/J1JGxv0BWB8M/h9B3rp2cgYH1/RLqMAei6yozrAK1lN+G2lUPOhyfRmPSEqGWJQOREfeyErbVk69E04N54TrD/L6SG9N2NkIsi/19HesMz1heWRXpgiSxCtS9az6cBR7XIbPplTchcETlQHkbA+a5oW5LeZE6XXeakTH7g2hzJqMt6X0mmO1/LOnpOLIcKtl49ZSId/Aqkt+9PFBxh3/9Xsjm3t9XRARRnHvjRy6Rch74S6UZ/IMu+sg5y6LyBbOptEZF5GvntnLysRestF+l9i0Yy749kdkRr4XQUCLUyWRBQGfG94PtnS6aT1x0RB8IWdsMQPvIUGWHCOy/WIxGQFclMYhF2bSsrU9imuT1ybJ5IQbQ3coTejvSxmLh0qMm7nLwO1guRd66jeLz7csZyQ3avX1DB8UJ6zIdMZ1OAi+zczCAwuz4ZZQNqXVS+OSEX6Vu3I3vcbwO5DyLsjkA6VluExbyBCLxB903p+Wsi7OBW36ZkWyA/h9aajdCY+pI85tOq4P+bEDZxgMkab88Oi94/M/Me5fjjwcjZfTsiLqyHbLT1kYN4O0QoeALLvmPPrYrG3hDSGcE8zrg5WkfXtt9DkE5eAu5z982PxvKb1JDJKvHOZ4AHfV0hvfpR1PfjzIKV7FFPDlubTH/2hKiq2YKsn4wly3o60L79IqvfF6zNTiIjMfh+lyN9ImLRF8j53zeaRz5ItNOaCOvoQMFaiuacnZD+ciflwUltEbH6OjLM5I4a26QdwgPuI79V+RLWH0vAmdEz8fsDBhe2DAq2Zx9EotnU2nc62Tzq+99iyIZKkXUWQBlivkFrs9+mO0WIqkScPwSRvg6I7rkGEYjmcd9zqvW1I1wbtEFj0GdZTs0n2yJsbAsyrHyQ1eV5ZNl2VrY2uw23FkTj7Wa0dv8M9fO7yLYc627fFEjFft2Ls6G1pZwIvjuaHz9B5KmfIOJJBzSfTkb43l3WPybhtkFG46eLPfsm0r/bIbLkXxHJcU9k238FDI/efykRvuf6QJuonCejoJzN3ff0wpFhrb5uQCSwisE+Vq63yDK4TMC2pTfZY9B4fRuNgxnAaXNKJtk62YtsB5HD7Jl73H2rIbLsl6i/foZ8Jx1QP34FW6usvXwfGYT02E3Jz2nbWZ/YD/X7eREOfHEN84mXGbCTMYgQ9zZZds2BiHz7ERG5ivyY3RnNpV5XGkkWeOhJ5T8h2gaXhL7TcrQcs3KgTGldibL6obXt78j/2cvGyBSiLURxNn/L8b9zzPUC/C8eyBC5lfIUqRuQjw48gESq5BaZTbeszVlmUyprvWSSGbgD0cL5HlLqdnb3eGNwTZS6+FuqLKooum28vf8y8ntQb4QUz+DIqGnrNrv3JwiUeJyImIDAp/+QT10ap+QtAvdWIQP3DnXnj0HG1QykbPzT7kkCUHH9IkPgX8At4f2uLCHt8SO4SMUq3x8M2ZPs9xNk21wc697R3+ooZ5gWyOyBnDYlTHkibwT0QxFVJeC8RP9JGeF1kZmqW7SH+MeYQYscZJ9jEafI2DsKR+yr8v0dyNIlx1Ffx6Mowc+RIXQHMiKLtnTqhQCVJxCAtoCdXwg5aSeHciGldldkrPeYG/3JnhuCQIaQlngScIVdC1FAD+HGsHu2qy8zMg5noLF0l5X1a+SAW8T14dcpzuAwJ2TuYTIuQeDXNfaOuyhPk9wBRQ/vVGN9hr77CPnoqbvJp/remjzoWskx2FRkro7LRmjnFkNrwWXR+aURuLRxokxj7JkHyTJ/7IGAkT+Rd8adiProX62PTMORqyq0U93nvTqMp6KxX3eZdm0Xe9YTptu57y/hSDFzUWat3/+TWsZoI2RSvo4EAG4zBJT/FxEut7X+PRXLuoIA9rLthhskczM0Zs5D5NKFon49BDl0XiUddZ5a71sh8Hcitpah8XUk5aBpWRR/hX5fd7ko+v5TFKl8PoqGn4CcRFug6OAS0vVeRyD9mBaZFdupSZS1QOaHJnMTsiwEYWx9QvUtQRshc1bW5p/WOD/VXaYbj7O8js4FmcGZGYhGnkB5LdLrV0drwS5o/vOZlVPzXlORORI5Af+ICFUvYpke7PqaCECfRpbFpeKWvY2SWyDzM5R9pyOymw5ATrdPkMOvlm17Z0tm/O12bjSy6cJ26jugOepJsnU11R6Vsqt5LMIHZy2G1uv3UIaOs6ycP61SRi8vJi4dZe3yN5RxYX9kC02lypbgVeSGrfguIdtqeybJKFVOOx8yTHyK26aPfADGs8CfaxnzjZRrfeY/iEDUDjmDH7N3vGvfHzCZDmRb5r1EZGPaPYOsL03E5mdEegh1to2108f2jsdwWxcX9Smk670CrGm/j0RkkH+iOSbOrHMalokuIet0RPj9o/1/YVSHW5IRbbaZxTY6EK2fl1PuEP/W2udolBEk9LtqWaa2Q3PmIPIEm33t+Y193SH8Zll3X632aF/3TCBEvUrta3NwzPdF+nlHNNZvIMt2vgka728iomEyQzUumw1y4E9NlHErRAj4l/WP3RCJ8wFcZhN3/8yMtfZ3Fyd3sdSYRjbIKWje3byGOuiM8JtrXPnDe5e2flfVFnf11Q6RDw8nnwluM0QqzBGiEuVPkWEWQRlkvkABuEWEqCV9ucivb2ELP0+W2wltJ/YA+SzugSR3kdVjWebHVN2788ciUkywnZZB88fMbWHJ+vMiVCDuIILPVcjuug34Y3TdZ1m8kSwYrk30PWPRuNnezq2P1t3zENHoAft9IJm9O9Dq4BaUucmT+Fo72RtaH3oeEbxuADZx9w5Gc9fXlBOiTqPcX+Db7VbUB/+L5oLvECl//kjOqohcM3Onigp1Osza9Qzkv9nV+k+JDM9uh2z/B5Deckj87XNAZkeyzGrdrK2PtPf4oKTOKEBxGxRAH/rvtWhdWzIh+1I0ph7G+p+r//ZoLfmIDNv+hOoZocpk2vlFyeakF9Ga8gSaC8vWEleOzmTZc68ln91xJBkJbxvkh/qexNaVLUfLMasHIoUehXSP6TaOnkRkdG8bHm/98y27ZwuyubGm3SxajqZ5zPUCNPXDFridkGF9gJ272Bablao8uz5S1tdqkdn0ytqcZTalsjZIZgowW8buD46FXd01b8ysSiKiuUDmYiia7DVkfPyZLDX1DcC/KpU/JdfK+BZa9I+mPPp5BDLw366hflpF3+bBvdHu/IYoGuseBEBu464l01ZG77kFt3c4eYLZ+Qg86lnwbJwGtz0C38YjgGeg9YWPEJg7PzJ+nkSRZG1rKSfKYHQfMkK3SDxzFnI2lZCBVRj1VC+ZkawF3f+DESh4m33vfIgI8RoyVH5l7zw0Vb6CsvYi74DwhKijEUj5DoqI6eeuxf1vSxSVcx8ZCBwMqgWR8TwVAeZPIODg+IJvbkR/KpIZoqRvQKBMAPK7IFDvM2Q8Lu6euR4R7gLRYSUEFpxIBpp1RiBGCQHkoT8OQoDuHlE55oTMpVCU2ankAdIJyNjuW2UMJjMuJOr0MtS/uyPQ8D2yDHM9EPhzJS7DV1OWicC0EjLEbkGgcMjedQhyiMVrUeG8hMCw161NQnk8CNvXzrVD6+PLaB74WUH55si890PH01ySubx9229xhEy7tioCfZNOjUbIrCI3RKFeX+X7+84tmeTXkQMwByCaxx41ed+iuSYAk3ujtWWVRsiMZI1Aa84EO77DttchP1bWQoDyFAoA+EQ5d0Z6yE/cuQCazgDGpcZ9o+XGdYpA4IvJgKJlENA0EYGZ3ezvsWgtXz2W35xlNqWyzqLMrdFY2wk58U+iwOnSaJnu+qVoDaznev+DZVaY91ag/vZDI2T2RGSPoOcHh2AfNM9/g+bN6SQINk1FZiRrFWQvHE22xVRXNPffTeY87owi75engo3TSLlVZN5Fpk92QNkfDscFP8wJmaRt0dvtGzugLWc+RDZHn1TdpfoAxVjEwe78LmROkTeoIWNfJXl27TA0hkoI4/gtBc7GWstp144wmVfj7KwCma0jmePs2SOjezsjgvqNCAuphBnUXa7J9HrSL6wfvYgwp78jm2IepKf/myyKvx3CB6ahucvLmdf+noawhkmYHo+cyQFDmBfNAYtTsMVo9H93hIcc5NrkG7QerYJ03Gm4LaELvtuTk05H42kCGdmrvStjIEQ9CmxbQaYv53ZWro+B0xMyt0B4zzsI17qadAYbX6dLor78NhqPD6AsIT2Q7vAxcFaFcf6D7FE7P4RMf67muN8CEZE8oXVFq2O/Vfe7MPbXAAAgAElEQVQwsuxi+xbICvXVkWw7xaIybozW12kIY3mQDCNJrUlDrZwrJeT64CQ/P/RFuNxZUfmKxtcNCNvsE/q+u3YBIhwU4oXksxAPtnd/DOxFHtPbFBGiplGwZV5C9g4I13jIyvAF6S3z3kTZBwfE30qWNe8KbC5Ba8apSM/5JrR59O1rIZLxyEr1l+gHY4F37P+lEFZ8E9mcNAJtZ5jMLJgof2+yLErP8v/s3XmcXFWZ//Hv7aSzB0jYshBIwo6ySIZVos2agM4AKogiTkRliyBxg4gLKg6Dijou6IgLKlGRYQQFBEZIA/6iuIAISiAsypIEQgJJOkl3p6vq98dzbtft21XVVV33dvWp+3m/XvVKupanzl3rnnOfc06sU7TsfHOB2y/uUImb8LJp11922+YUWaLh1ZF9Lzx3dsruH0wqt8zqf8y2yEb5e152floe3Tfde/aVJUR1KjZaeXy9R577T9l9h6Nl1w5jVGyDfHNkfX9Sdow+rMhIQSXijZD95tyhyHRtke0UruOTw2V3y7ZThWVPNKYidRPZuecuWVJieIxFE6JuL7Ocx8lGkHtRxaS76PmhVdbBOO+22Z6R18LvGSs7Xu6Q/QYMdD4tG9O9Pl5Wt/iS7PfhbFWeOWS+pL+5/7/fxV2ivglR75LdO+tWFZ1dePCo5uHONffLritvkCVxXyv7jdwsa/sIR6FtlZ2TOyW9sdFl5zGE+0mjC+Dzwx1k4XCuXe4E/xvZRfhjsgv+aGUremG2g6wycoek7YnpV1mzHNOnsqYUM1qxmSdrlPmZrEFsF9kUFA/LKipnRN77b3K9PSPPler18npZhe/LsorOOFnD7jtkFZPVsh/3z7vlWVThHBWNO1fFeZtfL+vptlylp3FaIGv86DftmAauRB6iEglRZd4bHZUnuu73lvVEPFTWkPVO2c28a9W34jFWlrxzm0qM5KO+DRtvjDx/pNsnvuP+PljWSPGC7Kboo7LG2VI9m4JYOQ+X3VQdIRtN6nZZA0G0MXi825c+UmZ9Jx4zFv8tblt/NrLPvV3WCPku9/drZRWgf8iS4T5YZl1Gt9NebnvPim2PUglRn5BVhm9XsddXa+zfnWTHZ152sRqOCtXbKCs7FubLjrnvKLKPKtLQmuT+VE3MyDb5u6SrI++bJWv8uVTS2ZHnL5MdI22R546TJSP1GRnIvbZEVkmMNppNir1nqGIe4J47JvLcr2QV57DCvptiw3uX2Tfj+/6hkg5z2+lk2Y3G52TH5sxwO8gq4P9QidGmPI05V3Ze2kvWgPV3F+tB2bQMZ8nOS+GIAeV6tfbebJE1El4lO5baVUxcCRthb5EbGcw9P0F9e8qUm1+9rnOU0jmeEo9ZZtnnyc6jN8l+82e47ZVzyxkmWI6VVbxXSjos7Zhlln8v2Q2b6A3USW75vzTIdZpWzFK/I92y5KVoz/kjZMfJHu7vQ9z6+EFKMaO//VNlvw3htd58WfLgRrkEjdh2fYMix32pZXd/R7/jr4o1jMoaTRfJfhd/W25fSjpuieWZ7pZ7kWK9NmUjzdwta6QveQMvUs7MxvSprIOIuaZCzFJ1nTRihuen8Fh+s+xGwrMa/G9zIjHLxD1ExaTkcJl7k5fc87XUH9KIubfsWmeOW8bxspsr4bk0HMFge9mN/ssUmeKizP7kRUz394mKjPzlnrtVdl0V3tgeHV+HlY77pOImHLNcsmLdMSN/V6qLnhnZN98iq2P8XWVG6Y2Xs8Tr0baIaMeeHWQ3JfcoVc7YNoteU/yLyicuhaOIf0b9p2aspZzxuJ+Mlr2GmAfL6mTdstFCJsnODe+R1c8XDHKd1hy3UkxZ28yHZDfLo9eJY2XTTv1IfUe4GSW7ERvdRm+TXZeFI6VfrmIyQZ8OTypxPMaei14zhfWlubKOWHNk5/ZzIp8Np8XLq8SosiVihr8Vl8kS0Z9QcWrLaNLWibKbcneoRD06FnOPSMwOV8YZ0eV2/2+VHVuBIte/Zfb7t7n1/ykVp5P8tYojTC10r7+kCqO3qLb6aDzZqE0D/zZvI+sg96Lsdy4c0f4wt03OiXz3xXLTOJYpa3g+GuHK8mi4bBXKOEXW5nt45POl9rV4OUst+4x4Wdz/fy1LiKhUHwv3gVNkSSzfUd+2rYmyRIhPqkx7YaT8E2Ujwtwl6wy8WVa3P0d928WOd6/nFRkFL1LO6DKc7vadK2Sjar1PNkVil4sbbSv8tCxx6d9i5fug7HfiKUlviJV5mmxkj/WS7ixRlr1knV76jagcP55iz5/olu/jsmvRn4dllbVX/lSWeDSx2riyZMJrXNxF6v97sY0sweke9f/9DKfl29Et629lnULPiy1vq6x9b4tsWr6SnTsjceN1x6NkSZN52e9z/PV93brISzq6wr4UTr+3THavJByparasDrIkuvyyZLGFKjM9rIptxeGUhaslfaHEcfE62Xnwh25dlE30Tzqm+p7zxsjaxq6X9KP4fqG+nZJ+GYs3VjZq0n+rxCiTKs7sMEGWlJSXtbOPL7Fsvb+fA+wHA8as9SFL7sureMyGCY3xhKgDZYnA/Ua658Gj1ofsPLpC1kZ3eOyYn+OOya2ykTInuGP6Cvfcexpdfh5DuK80ugC+PtxB9rTsYvGNsht/i2UVkT/KLnA2uNdfo74N77NkN2HXKdJjOMsxfSprlmP6VNa0lj/ynvfIKoj3yZKfnpNVdI+UXTQ/KGvouER2QdutEsPbl4i5TtZ7a53sgvEPko50r2/n3nOHig0w/UaZcu+N/vCfJWvMvE/Ww2GErLLzD1fOg0p8fqBeY8fJegb8SlZR3DHyWrRx74LI86UqhodEY8t62jwrqxyElb3DZBXOVS7uvrKEtvfJKurnVlinrbJEpw5ZA0FYGQt7KBzn/p4iu3FwgttXSt5gjMSNl/P3sguuw2UNF5vdtnqD2/4vqO8UjKV64KYRc4yk/3LL+pIsCfBYWUXry24bhQ0p28kqZ9PjMUtsp7NkPXg6ZBecX3LPj5I1kpVKiLpMtm/fKeslFh2B5jxZT8hDVZwW5f3q26MyXvkcWUU5696fBoj5qqyH3OGymyy/dtttrFv3C2SNCtFp/CbKbib8yP19hqwR/YOyBtDw+1pUrDQf6l57f4ljsWWIYr7dxTxN1oAX9ty73a2PsLdnWNGo2ANpgH3//7nt9EPZefY22Y3TObJz92YNMIzycI6p0ufn36pvctLZst4sG91rebcvVZNk9l7Z8fSQ7JjLu7/DxuKwEfZ/VdtISHWfo5T88RSkEbPEskd/8/8i+81f7ZbzCreO22UNnde5dbF4gO2USMwSyx89Pz+hvlMj3CtLEq91naYds9LvyLjY8k6S/Z48I+meSPwgoZjtsXKfJLvOuVd9pwF5nYqjr/RLiIrt9/8SW/boCBnhc+fIriOPCT/n/t3WlW1hidipxI19x1luXa5z6+9nJd6ze2RdnKaBe4pnNqZPZa0x5iYXs+Kw8inGjB734WgKV8nOo4P5vU88Zom4T6p482WmrEPAJtV+rZ9GzPjv/R9lv6O7ym7ShIlG/abYbIKY/y4bTeNLkp6PPB+/3j1GdmOn2qnaE4/rQ0xVVxcNO8qMk3UAe2+ZWINpi/hAFbHio9hOjP1dKXHpg4rdtBxkOS+oVM4aYv6LrP6Wl9UBlsmu0cpNUZ943AFibl+mHNvKpv9eo1hnp/gx6/bRTbKkpOj0WFfIOufcouIoORVvrKpvgtE1suvu6DSLC2TX5/vHvucX7v2lbljHY96vYoLOZ9wy3qLSo1Qfr9LTAQ4U8xW3jgdMBKtw3G+W/cadFHvtTbKp/dbJ2g56VGw/KHsdoerrozepdH201Pl5gSxp548qjnB4r+ymequsnek5t46+rMqjnYfraIzst3yZ7BzVruKIwv2mtquznKWWfdfYZw+WtVN/XgPXncJrk/+UnUduliUI7+fW/2pFElfKlHW07Fhul7VrjJGN5nODSicuvVk2CmafpNHoepXdaL5fljg0JvLarrJ2oi2ufNEp86KjfAWyNvrNsja66LSX56jYpruzLHFjqyzxKxwRaZysvrdRkUSLMsfTxbK2/7tk5/N9ZAl0ebdewunyZrnlXqXyU2KOjHz/Qtn9h3Nk7WqTZdclW91r8YSo8ZHtXGo7HSvbv191ZYt27grXT6ssmTQvS7jplwAZK+d42bHyVvf3XNnIdw+r9D2CA2T7Zdnrclmb8gTZueLd7rl9ZeePG1RMLPuMXLJMiRhz1Let+HzZ8TRaNsrb0shr0fs4t8naffolAKUUc3zs73Gy3/X/57bBXSrdyTbaKemLsddGxfeNSHlzkq6KfNd1suvcC9Q3wayqhKIaY1b1WxJ5z+9l59RwucIEqSUqk0xbbbl58Ig/ZOfYJ90xF21Tjx7L02TtgVtUnEp+b1k72Q2NXgYeQ7i/NLoAPj5kFwzPuINsqooXHmNlDQddsl5NH5JVdJ6X3YR/m2wKnl8rMoJC1mP6VNYsx/SprGktfyT+EbIfzA9K2tk99wbZxd2f3N/HyW5wbpZVTEtO5RWJeYysUts7jZgsg/5RWU+Yw2Pvf6ekt1RxvnqH7Mf+Q4olJ8gSosIhacsta6kbewtkDQV3qdjQfL36TrNxiOxGe4diQ6pH3vMut87CxpQT3PuvlEuWcWV7yv39ZVkDfl7FqdIWD1DWnWWNVc+5OCtljT17yUZ+WK7IxVLss+V6i5Yq50Mu9ttkjQ/XR8q5vtT2Tztm5Lk3yG5eL5ZNR/KEW/ZLZb3UvqkSPZtUrLjEt9Oxskr4f8oaLW+SHQ8/da+HN503ySo90caTj7v95WeynkHXuv0pL9v3R7hlvc8t+/Gq4sZiWvtTlTH/LDse3ibpIlfu52WV6065ofBjZf2FrHHq0y7+abLRuTol/VeJ94fTY51aYfmHIuYZspuUnW77h9PEhCNCjZKdF3+vSKPxIPb9h2XJrG+VNUY97r7zJdlxcXH8OPUlZoXz82vi3xn53o/Jbh7l5Rpx4u+LvP8k2TG2SJbkN1bWaL9a1sgZ9nY93b3vbpWZhqOK5a/pHKUUjqc0YpZYD6V+89+o4nD3k2S/1w/IGvtvk7tBUWHbJxKzxPKXOj+vlks4kN04frHGdTpUMSv9jkQb0qfJGpH/N4wpuzmWRMzbZMfkVFmDcovsZkNeNlJFa2y5wumoXlX5KRHDZT/b/X2K7LzxTVmDe9igH06BcGXkN6hfr071/21OOm78JuZ62TRll6o4NczFJZZzD9m5/5wSr2U2pk9l9TTmMep/3L8s6bvu9U/KjuFafu8TiVll3JckXe9enyq7cVhL/SGNmOV+71+UXVvuLLtZEp5L+9208Tjmse7975V1Atgqu/b9H9n1bjgi0jjZtdndcqMQDkVcH2KqxPWpBq6LfkPFKYhKjsgci7dACbRFlPi+T8quA56QjegyMxavYuJSAuUccPq+KmPOkdXRXpT01djny42Qk3jcamK6981z63utBp6+8lDZNehHVXr0pM/L6vc3KdLBq4r1+nNZ++E7Ytt9saw97yDZNeG2snaMxRp4xI1ozN1jZYwnbZVMWqgzZrU3xEuu0/jnZZ0HL5PVTR5V5USowdRHS460E4vZ5WKGyU+fk7XhtMsSbV6rYj3lUZUZRV/Fa96Jsuv7W2V1mLDT6b1yo+LJzoEbVKYT0SDKWbEuruLos9XUnV6WdK17/SOyhNW87HyySdInYmV7g9y0cZHnXic79s6Mrh/ZKJ43qJhQ3a+9QJb41Kc+4p4fr74j8UfPs+F0hmtkiU4TYjHj9Zz3hvuj7Ny8RXZuCes5O8kSorpknYtukJ1vSrbBq+9v3k2y88XvZdcPW2Qj6l6kYkLUj9y2/42sDaFku3kkZrhPPS+75trkyn2SLEn9OyqRbFJi+ePXz12y4/4g2e/xS4rcD1DfhKhbVKazi4odIye69bVMlgTZ4rZn2Gn6Ibnf/DJxRsraaj8Tee7XsnPUSNnx933ZKOJr3fMT3fteIzvWzlf/88xIWdtCtK04Jzs/jZSdR9bKzsHRkZkmyH6/r1P/BOc0Yo6TteN8JbJ/Pifpq7JpX38t++04RSWua2RtPWdogA4fsfPvz2THTpi8FB39ul+CXdoxVfp6L0y0u0B2zovuo+fLjqmfq0JbMQ8etTxk95CWuH1rzgDvPUB2D/Cvcsn5snaJV1VmmnsezfdoeAF8fERO4F+MPBcOXXm67EJ5P/cjMsf9eL4gu7D6m/txjM/BmtmYPpU1yzF9Kmtayx+J9V5ZBSc6zPqtsh/VaK+YHWUNXEdEnivXAPUp2Q/yVPVtRH+H7OL0J7IL7lLzcZeLuZusEvJp9e250ybr7bOnrPfHY265/6XcMkc++2ZZxfWj7u99ZQ2lOVkFMdqj5zDZUL/lbg5NlVVA87LK7jzZhcjE2HuWuvU9TTaF0JmyXkGHxtdBmfVziqyyeIKsovyArFfNdbLK36WqvgFqqovzbfVttJjqlv9pFXvknei++w3xcg5BzAMUmcdexcan8bLefT+QHQcdbr/tN5VTme30TlkF+SsqNlpvK7sRsUbFm+OjVLz58lr13af/VdZocaX7/q2KNSq7/WqZ7LisKiEqpf2p2ph3u/U4TXYDZomskvfvkfdFb0BPdMvWLUvKCqfw+A/3XdGkrFGyc9pziiVFhnEbEPMzssr9ZhVHiJogayh7Jb49B3k8RbfTDrL9do4i52bVfjwNp5jlzs9vdN+1R+z9k2UjBd4ejxX9Htnv10OKHP/utQ/JGtHuVTHx6t2K9JBL+7ynhI+ntGKWWP5yv/mPKzYFoOx8ODG+7GnFVPXn55cl/dA9d6rs/FzNOh3qmGV/R2LrrzWlmDvJGjBbVJxmb7Ssd3NeltAbH1XqALd/5VW6Z3u0nGfIpgn4luw3+XnZddLxsp7YH3bl7Tc651DFjcSfIjsffVHFGw7TZeehf6jEVMiStiGm/2X1LObrVfq4Xyfp++65SbLpyqv5bU48ZhVxX5ZL2nTPv1nVXeunEXOg3/t/uO02TsWG57LTJXkY8xjZKAnjZTfW75TdyHxZrvOMiiMgviTpfVUc94nH9SGmEqyLxuIm2RYRvdl8oyzJ8euyG5x5WftLqcSl3gSFoShnHTFvkd2Mv7DUMqcZt4qYcyLnrKtko+C+L/L5cufSs2WdBPaJPR+tS31KVh+9W9WNqHuu7LrpjSrWWcJ/J8kSGR6T3SC+w8Uu21ZYIWZ0hIL/UDFpa8ZAZUwrZqV1Wua9I2TX/C/LjYpa4j2J10ddzP+SjdCyg/oeu9GYM91zOyuSqFlqf3LL8kvZSPmzVJxe6hK3nttVnNrudNlx/591lrOzxLKXGxWu2nrOOkk/cM/tIKsPv0NSW6xcrbJEoW/FvucY2XEZjnIbtpsHKibhvKLiKD/x5JVoORdEnv+9yo+287+y9qW8SiRFuPJG44YJUaPd9loj22/jI0Stkp1njpV01ADb/zLZb9IRkXV6jmy/fVzWXn627Lfh17I64B7xOO5z0fPPj2XtQ3Nk12nHum2+Rpbotp2KIz5/TGWmm42t32NkdbxwlKqZst/gxxWZqlPF80LFkXtk90H+IDsX76lYYqfb155w66Jcp+lRsgS8zbIRs26WnUeOlB1b4RSRmyT9PPK57WVJUg+pzHlKFdqK3Wv3ydoxr5bt17vLRk3bpFiyX1ox3Tq8XHZML1FxVpLwWmk/2QhRL8iOo7KJ3uo/JWE88So8N+0oO4ZfUN/RnH7oluvDKjMSaonyJxZT1glrTOy5nWTX4j+OPf8B2TE9r5py8uAx0EP2u/AOWQLuHzVAIrw7xl9Vsf36SLkRanlk49HwAvj4kFWIwiHSP6W+NyV+4C4Ati/xmVlS2bm6MxvTp7JmOaZPZU1r+SPv/S9JKyN/x4eNP1L2Azsp9rmyvbNklaZ/RP6OVha/IquAblepXCVi7iWryJ/klmtXWePVahVHnzhE1kPoVUnvGCDedm79fc39vZ+sEfMaWaPIJlmDwmGRz+w0QMydZb1N866sXyvxnv1llfx+r5Var7JG1o8q0qAj6buyyuJYWYX3S7IhvvOyi6aSw17H4h7p3v+ipK+XKefLkq6pppwpxtxDxR5t7488f6fbfq2yaSRPj+wLJ9ewnZ6RdEX0+9X3pvMS99xoueFH3d/xSt07ZBXRTvWdTz2Mua9saOp/yhIcqkmISmN/qiVmdLjqURVivtkt+2pZw/uh7vnZbl/Nu+31TdmNnmqm3BqKmIe55/d0cXKy3kRXyxp11inSA0+Vh+OvZt9fV+q1crF9iemeL3d+XuW+70EVbxSEjRULZEm7ZRurZTduVpTZD6+TnfeWKdZrpkI5Ez1HKZ3jKfGYsc9W+5sfv66otP8nFlPVn5/XyjWWu+ejIyNVWqdDHbPs70gdy151TPeew13MheG+Imu0XSsbiWp07P1zVOF3NFbOt7nnxssawe+QnY/vl90MfUrF0Z4GmsYsrbjhcf+CXI9fFXsS7yJLKv+HIjdCq9hPMxvTp7J6GPN5VT4/XV/m80MSs4a4a2TXUyWn2hzimAP93n/d/T1Fbrrxcg9PY34l8vybZOf+VbIb2e+U3eDboCqud9OI60NMpVAXdZ9PvC3CvecqWTvB4e7vcPqaTvVPBjpCdq1dcpqktMo5yJj/IrtB/arK1PnSiFtDzDmR98+MfH6ga/I15d4rl6QkOwcOmKzo3vtN2e9QPNk9HOHitbJkiOWyJIeKiZUDxIzWPS6T1bOXqLp2jsRjVrlO47MFTJfVqfolMUfek2h91L32U0mPl4n5fdkxe7eKIzr1G2EnFm8nWceUcKq5aJvxpSqew8Kp7Y5VFR0oayhnfNT+eut45a5NossVjswzXtK/uf9vI7s++2m8zLKOcX9y+12nyozm4sp5o/qOZPVOlUggc993o6wTXb9OeRXihtNCjpZ1Io4nRE2Rje7XKddZJ3x/ibgj3Hq9xf0/uo7eLfst/C/3d7XJJRNkHSy/oFi7utvX7pX9zkxw6/UXsoS7atvLwhGIwuvn2bKEqCdU5vezXGzZyI8r5I4V99zr3fr7hPv/XBf7eZVJ/nT73xdl55wNsXhT3PJtlCUZT5Yl5f9Y9ttRcWQgWUeffm3F7rXpbtt1yJL1Vsmu+wYaWTDRmLLk8GtUvB6PJ39GO/j2SYiqcp+KdpAL2wN3kl3br1bx3DXW7U8vKnYPKu2YspHl8rL2hsWyRMZwHz3Xrct5sc8wKhSPRB+y34VTZAmNf1KJ2V8i+/uJ7jxwyFCWkcfweTS8AL4+ZBdwX3In/U+55z4lu0l1lPu7RSWGSVf5C5LMxvSprFmO6VNZ01p+9/r7ZJWvNtkNzOiw8RNkvbJ+Ijf1TTUP2YXjFkWmWVHxx/pM2UVkTdnKshEwwiGdr5NVZh6VTSXwBrduPu7eO7WKeCNlFafDZL2OVri428guPq5zMX+lyGhYVexTU2Q97brkeo3IkgOi2+Z+VRgRJRbvba4cD0S2/U6ynhq9c5y77bdclnAz4DDirpw/l1WQ6i5nWjHdZ94g693yjGzks5myysgditwQkPXiOL7KmDvLKq/dkv47cgyF63Nbt343SLot9tlSN112lzU2fE2W7BdttAgi5VvmvrPaXpOJ7k81xvx1ic+WapTaXTZV52GSHpEdS2ED/FTZVI5/lSVH/EbSuZXWZYNiTpE1ct0nq3B8W9IZA8X07XhKI6b7TKXz81xZotknY585V9ZIsVeFuB+RNTC9KfJc+FvyCVmDxmpJb23wOk3seEorZuT1NH7zE42p2s7Pvw5fH2CdNjrmgL8jKcacIhupK974/rDKJERVWc6wh3N4oyD8rXurLPH9Zff6n8vFGYq4bvlvlN2w/FZknYbnkl1kv82rJF1Sw3GfyZg+ldXTmJWO+1dV4rw/VDF9Kquq/70v9Tta6VzqW8x4L/ajZSMyvCibIuc2uVEqKsVMK65HMdOoiybeFiEbqfUmFX8/Pyy7njhVdmO7U5b4E00GGmiUhDTKOaiYkg6Wjbr030MVt4aYt6n/lHkDXZOfL7vWPzX+GdkIFz9RZKSUgWLKzh13Snqg3PvlbuTKEuPHVSpfDTFPcP9eogr1ujRj1rBOfyTpXZFyHCGrS55XIWai9VH3uY/K2oxOKhHzUtn56UlZJ7CSU8DH4k1w++b3ovtu5P93y66f71TfESArTmtVZTmfcuWsODWg+0y19Zyqfu/dNvyC+o649GFZ28OVsfceJUsAPEbWVnGd7Pgul7gVJi6F+0s4Jdy3Ze1R+8g6dz0n6djIZyv9jlaTEDUm8t5wyryfVog5StZWfE+Zbf8T2W9XtbMHBLKkoLzsJvsp7vnoaEAnyDqpLHB/T9bA9eZ+v81u24fJarPd/vQPSafXcCx9UJa8s6usve/Tbp09pmI7+jRZAuD/qEISj1vuV2RJT9fFXpvm9t1/uvhPKZJgOEAZy7YVR/b7Ntl9lPOr2Z9SinmD21fWq3R7dpgQ9ayso2m19fswITM68ld4HtlZNupUXsUEyTFyU6QOccxxssT5O2Xny+Wy88nubv99UnZfbkRkvw3XTVXrggePah6y83rFhCj3vq/IEqErTnXMo3kfDS+Azw/1Tbb4rezC5nT3WsVKHDH9LmuWY/pU1hSXf3dZb6hO2UVt2FtotOziepXKDM9aIeaesgrs3eo7HPsoWeX2EdVwozXy+WNlFddbJX0h8vwY2QXCh2LvHyiBIZwm60zZBcR+kdc+6b6rd4SCGso5VVbp7B2JIVbWO2VJA63VbDvZqCs3uG3x/2TJBV+Q9erbN/K+aSpWQqvpkTclyXKmFTMS91xZI8+Tkj4rq4heX+b91dwgnariFEPRnr5hY8x2st6FFYf5j8XcUTaUeqkKaZus8eXNjdyf0orpPvsvsiSYJ9W3oX2CrHI54JRbDVRiqzgAACAASURBVI45WrFGsRpienE8pXiMDnR+XhR5bmdZ4uavBoi5u6whIv5b0irrOfpB1dgbK6V16tMxmsZvfhoxqz0/V5zaZRjFrOV3JI2YO6l04/vDsps456nK3sKRmNEG/bPLLMdnZT19T21kXNlxX2qdho2mM2QNnu+poZyZjelTWZsgZj3np8Rj+lRWVf97P0rJX0MNh5jh+jwv9logG0V6kvpOy1dtcmmicT2LmXRdNNG2CBVvnuwguy4Pb66PkI2ecpeLd59c0nqVcRNvMxlsTPUddalUEkPicdNYfvfZ3WVtBvcolqAmS7L4p6QTa4wZTpnSLylPNirUnRpgRNFBxLxLkWm8GhWzhnU6L/L8DyX9roqYSddHw5i/KRHz8y7mlbLODyVvgsbijZJdOz+t2JRqbtnvl/R/smSTy8sdP2mX03020fqYi/czF+8d7rlw1KobZMmgC2RTqf3Svf6ApJsGiBsdyeqtkWXeJEsWeVmW2POJGrd9pYSoVbJOKuEIUdvLEqLyKj8F4QhJ18o6uBxTYn1+RZYYVHEKu1jM6W4dblXfkajDtuZd3LJ/OPa5Qf02q5hYsrv7znfXUNYDZB2xn5D0N9nv3ntkv3mHue86Or7OysTaTTaicrn23HGyNvejZKNGVhy5qET8Sm3Fr5c0uZb1mXRMt332LhfPvec1sra9W2tY7r1kiWPPq2/yUvjbepSsXr9e0mcbFTMSY5Lbd/7XHZPrZNdSd7mYA87EwYNHvQ8NkBDljtU7ZPcGa2oT5tE8j4YXwPeHbHjL/5QlWVS8MCRmc5U1yzF9KmuKy3+MrAL7iKyiOE82ksNGVTlNVImY81w5H5L1KDpWVpHbrArDUFcRd7z69koZL2uYWiVp/iBjfkjWGLNfJOY3JV2gGqfzi8SMVnIvk1Xs9pSNoNGl2m86TZL1UvijrLfMdS72N0q8t+peCUmXM62Y4f7njoEfyRoznnPfUc/+FC3r+yLPh40H0aHAq70BsZMiFUhZg/QZsh5qC5p5O7ltdIgs0WiFrBIZPV4r9hgbRjEHm7Tqy3ZK6xit6vzsjol3RP6u1Mv5aFmj459lPXPnSvq4rAHu9Mj7mvF4Sms7pfGbn0bMNM7PxOzf+B72nH1NnfvoeyLPh43a42TD6ZecenMo41ZYp2ECy/g6lz9TMX0qaxPEHFbnEp/KKk9+m4cgZr/16f4/mGvoxON6FDPxuqiLm1hbROR4uUrWgW7byGs/kHWmekbSbo0sZ60x49tooG2WRtyUlj8cYeWvshFNTpe1I3RIunQQ8fZzn/2NpCNjx8N3ZckC05sxZr3rVJWTBNKoj4Yx/+T2raNko7hskk09v7/s/HJMlfH2k9W7/k/S3Mjze7rn9pFNOfiUahhFIulyRrZzYr/3iiUuuecWyc7ROVkyw92yes8kSQ/KRgFqqRRffUesDTsi7yubpeECRZIVa9z25epky2XTLkYTLnfSAFOvyhIIN7ntHB31brJs1OZfqIZkKPfZKSommZ0fe+1wucStardRFds+rONtU0s53WcOk436uFDFTlkjZFNIPaYakn/dZ0smGMkSCy+UtGOtZYxtz3hb8dvd+lgwHGJWWP6dZb95B9eyv7vPzpYlL61S/xEP3+eOz++rzDSGQxWzxHccLUveXSdLOMzHv4sHj7Qe6j9l3nT3/DayJNgVqnHWHR7N9Wh4AZrhIcvCv8qd4D9FzOEZl5hspxSW/3BZpfCfshua9yhS6an1Ytd95ghZssFmWUPuE4r0HlGdmcuySs+Fskp/zY1FkTj7uGW+RtZYcp6sp8/b61z+nWW9kfKyXli/dhcwl0TeU/M6kI0Q9n9uneZVY4/BAcq52pXzj5IWD7acacSMxX+rbKjqPpXoOpa/3ygUdZZvJ1mlaZOscrah3uM1jf0ppZhhotFfZIl7Nffq9DVmiXU6bI+nIThGS56f4zFVXY+318l+nzbIGghfUg1TOjVonQ7bY9R9Jo3f/DRipnF+Jmbkt1PWsPvOhGL+e+T5Ee7fn8mmpBlwOpa041Zap+F6HeQxmsmYPpW1GWLWum3SjOlTWeXJNVSKMcuOtJf0dspCzEjsJOuiibdFuLI9LmmK+3u6bCq3EzXA1FhDXM602mF8KuvhsiSb9bL2nT9K+kAd5TxR1v72jOxm2Zdl1+TrJB04yG3vRcxa1ml0vaq6hJs06qOvk3Ue3SBL2lkj6aPutfNkN0D3qyHeCbK69z9kU3p9WZYM8qB7/Up3XqgpYTvpcrrPJfp7r76JS+EIURNkiWt7ya7Nxso6la5RlQkS6ptotaDMe+qt40brZGdW+EylhL2T3PG0QjYa1Eck/dIdAzV3eClRxq/Kznvvlo3w/aCqmI2gxm3fm5w2mHUaidMqG8HoXtm11GC2T5hg9KqsznmgpP92+/+gk2siseNtxZ8cTjFjy/8LSfPddl+hYl18MAlR9ykyrajbF74jmxK15v0pjZillk3SHEmfUY2jnfPgUe9D/ROi9pZdh25UnddKPPx/NLwAzfJQ3+m46vpBJqZfZc1yTJ/KmvLyT5E0S317EdZTEZksq4gcokjGcj0x3edny+arXi7ponrjyjL+18um+VmjOpKrYnGnyHph5mVJbOMHW1b1nbrrKLcPLBvsBX6Jcv5I1lj02dhrg12nacSMroNRGmTFvkTcnVXs+bQwoZiTZA3ln1Jk2Pw6j6fE9qeUYwaSDpVdsFc9zHUzxIysUx+Op8Rjus8men52n50kq/i9UdJrE4qZ1jod9seo+2wav/lpxEzj/ExMi3lR7LXB7qPRmNFpD/aQNRp/YbjE9XQ7DduYPpWVmJne9l5cQ6UUM+vbPtGYSq8ummhbhKSDXKwfS/qYpOtl08nMGk7lTCumh2XdRpawtoekHSLPD/a4P1g2dfnTsqn9fipp3zrL6EXMtNap+2wa9dHJskS7Y+SmX5K1nT4n6fuDiLefbOrV5bKOqT+VJYe0SFoq6WbVODV2GuV0n0/6/BxNXHpv7LV5suSgVZIOqqOc59dbzjJx666TyRI27pElhjwj60D72oTK2COre/2HbPS2cDqyehKi0rg2CacWvF+WEBmONjbYhKirZIlF62SjEtc0ylSF2Gm0FScaUzZC1H/IfuvWyUabDEfAHex2ny2brjXvts9DLvag99M0Ypb5nuiIdXXdz+LBo5aHilPmPeX2846kzkU8/H40vADN9JBVHMLRZz5GzOEZl5hsp6SXv8T3JD7vbBIxZcPeHqq+w2rXm2C1q6Q29R1auO6LXNm84rdLWlTvOoh/TsWeM4Pq4RmLNVXFHslh76R612niMct8TxLbaYqs59DFSZdvuO5PKccMJO2U8PrzIqaL68XxlFLMxM/PZb4nieMpjeX34hgt8z3DMmYa52di6o40Y7pz61xJ36lnX0gjrmfbadjH9KmsxMz0tvflGiqNmFnf9r7U8RJti5AlbKyUjV70sBLqQZ50OdOK6VtZS3xPvXWHUbKp/MbK3cBOoExexExrnZaJmdi2lyUffEk2ov7/DrbcsuSncZImur8nyzrWvKIaR3BKs5zuM4men9V3lMWTIs//q2xkrL0HGTfxulMacd1239k9BjUNdpkyXufW6bsjz1c93eJQbHsX8wRZp7zrVEyEGnRbuaRtJR0p6UwNYnrZGr9r2LWXyaYG3kfScSqOCFXXvQdZktmFstEqr1ECCbBpxOTBYzg93LXSGbKk5gMaXR4ew+MR3hBGQoIg2FY2tOZPC4XC34k5POMSk+2UZExfBUEQFBL+EQiCoKVQKOQTijWuUChsTiJWidiJLXsQBDtL+pqk02SV0q8Nx5hpSXM7JSmNcvqyj/oU05fjKe1jNI1tlaSU1qlXx6gPfFmnxCzGjF5H1XNNlUZcX9fpcI2ZVlxiDv+YacVNKaYX11C+XJekFdeXmGlLoi0iCILtZZ3oNhYKhZeTKVm/70iszSTNmGnFTausyKYgCC6Xjbqz2P1d1/4VBME8SVfIRsw5tVAoPDzcypn0+TkIgqmSFkq6vFAo9ESeH1UoFLrriOvN72jSgiCYIukbkt4i6f2FQuF7CcVNetsHknaR9HyhUCgEQTCiUCjkkoqfdUmuzyAIRkoqJLl90ogJDBdBEIyRJY1vbHRZMDyQDJUCXyqLvsRMKy4x2U5JxkR6hntSgNTbAP8TSasLhcKZwzVmmnzYTpIfCUFZ58vx5NsxmrS0lp9jNHm+rFNiJr+P+lLWLMdMKy4xh3/MtOImHdOXayifrkvSiutLTABIQ1JtvUEQvF/SPYVC4akEilUqflLlTOOcPzKaEJVQTG9+R5Pkrku+Kuntkv69UCj8OMHYw7pzMwAAww3JUAAAJCAIgm0KhcKG4R4T8IEvx1PWj9GsLz8AAFngyzUU1yUAkE1JJIcMRXLNcE/gQbLcqFtXSvpCIeOzUwAA0EgkQwEAkCB65ALJ8eV4yvoxmvXlBwAgC3y5huK6BAAADAcBU88BANBwLY0uQL2CIHhbEARfD4Lg/iAINgRBUAiC4PpGlwsAkE1pNLzTmI+s8uV4yvoxmvXlBwAgC3y5huK6BAAADAckQgEA0HgjG12ABHxC0oGSOiQ9L2mfxhYHAAAAAAAAAAAAAAAAQCN4PzKUpEWS9pK0jaTzG1wWAAAAAAAAAAAAAAAAAA3i/chQhUJhafj/IAgaWRQAAAAAAAAAAAAAAAAADdQMI0MBAAAAAAAAAAAAAAAAAMlQAAAAAAAAAAAAAAAAAJqD99PkJaGtra3Q6DIAAIZGe3t7o4tQtba2tkYXAVXwaZ9KGvsoAAAAAABoBmm072S93cSXNrM0thP7E7Kqvb09aHQZmhB5DE1m/fr1uvLKK7V+/Xpt2LBB69ev16ZNm/q859JLL9W8efMqheFYqwLJUAAAAHXIckMEDTsAAAAAAKAZ0B6RPNapH2jfA5AVr776qjo7OxUExTyifD6vfD6vXC6nXC7X+3f8uehr8ffG31PNa3vttVefOF1dXfrlL3/ZW6599tmnEauo6ZAMBQDIFCpiAAAAAAAAAJCuLI8M5ZOsLz+AbPj73/+uhQsXNroYVVu7dq122223RhfDeyRDAQAyxZdKuERFFBjufDqfJI3zEwAAAAAAqIS2Az8wMhSALJg1a5bmzp2rxx9/XIVCcebB6P/Dv8u9Hv9/qc9Wej36fDhKVE9PT8nyXnrppRo1apRGjRqlbbbZRp/73Oc0Y8aMKpcWoaDURvBVEARtkpZKWlIoFN5V7efa2tqaZyUAAAAAAAAAAAAATYbEHWB4a29vDwZ+F2pEHkMTe+655/Tud797wPedfvrpOv/886NPcaxVgZGhAAAA6uDL6EA07AAAAAAAAJRGkk3yfGkzSwP7EwCgGjvssIMmTZqkV155pc/zZ511lg455BBNmDBBo0eP1pQpUxpUQr95nwwVBMEpkk5xf4Z7wRFBEFzn/v9yoVD4yJAXDAAwLPlUCaeC6we2EwAAAAAAgN9o30leGuvUp7ZdAMDw0NXVpd///ve9fwdB/0GV4s+FU9mF09lF/y333EDvLff6QQcdpKVLl/b5/l133VX7779/OiskQ7xPhpJ0kKR/jz032z0k6Z+SSIYCAAAAAAAAAAAAAADIiCuuuEK//e1vG12Mmuyyyy6NLkJT8D4ZqlAoXC7p8gYXAwAAABmT5d6I9JgFAAAAAAAojXYTABg+LrjggpIjP0k2IlT4/0rPDST6vnIjRVUaNaqnp0cvvfRSb4xVq1Zpn332GfxCQ1ITJEMBAABgYGkk7mS9YSfryw8AAAAAAID+aIcDgOFj6tSp+uxnP9voYvTx85//XD/96U/V1dWl7u5u5XK53tdmz56tOXPmNLB0zYNkKAAY5qg4AcDwxMhQAAAAAAAAAACgFt/61rfKvvb000/r5JNP1gknnKDFixcPYamaD8lQADDMccMZQBI4lySPdQoAAAAAAFBaljuRAQBQTqFQ0M0336w1a9Zo3bp1Wrduna666qp+72OavPqRDAUAAFAHXxp2SNwBAAAAAADAUEmjLcqXdjgAwPDw1FNPadWqVRozZoxaW1uVz+fV09Ojnp4e5XK53v/H/y71/2rfv3XrVnV3d/d5hNPhdXd3a+vWrQOWe/HixTrhhBOGYA01N5KhAAAAAAAAAABeSuPGuC838LPe6YV1mqy0kkx8OZ584dM+6ssx6sv+5NMxmgZf9icAw8e6dev0vve9r2HfP3bsWI0bN05jx47VxIkT+/wd/f/48eM1efJkjR07VpLU09OjuXPnNqzczSQoFAqNLkPDtbW1sRIAAABqRCMEAAAAgGr5crMZQDZlOckGABIUNLoATYg8hjrcdtttWrZsmbZs2aItW7aos7Ozz7/d3d2NLmKv8ePHa9ttt9XEiRO1YcMGvfTSS5ozZ44uv/zy3kSpCI61KpAMJZKhAAAAAAAAAAAAgOHMl455vpQTSFp7ezsJGskjjyEF+Xxe3/ve93T77bf3PhfmzcTzZ3K5XO+jp6en3+tpu/766zV9+vT40xxrVSAZSiRDAQAAALWgdysAAABqxU1cAACA5kYyVCrIY6jRfffdp5tvvrn37yAIehOYgsB20e7ubj366KMNKd9gXHDBBTrttNOiT3GsVWFkowsAAMBQ8ukGPg3FfvBpn0oa+ygAAAAAAM0hrfYN2g6QRYwMBQCN8+lPf7rRRUjcXnvt1egieImRocTIUAAAAINBww4AAAAAAACGii9tUb6UE0gaI0OlgjyGGq1bt07PPPNMxff09PTo0ksvHaISDc6MGTP0ox/9qNzLHGtVIBlKJEMBQJb4NIoPFVwAAAAAQLPwqT4OIHt8SYgBgGGOBI3kkceQgp6eHv3rv/6rOjs7G12Ufq666iqNHTtW06dP1+TJk8u9jWOtCiRDiWQoAMgSnxohSIYCAAAAAAAAAOPLiEu+lFPyq6wY/hgZKhXkMQxThUJB+XxeuVyu7KPU6+U+87vf/U633HKLJk6cqI0bN+oTn/iEjj322HJfz7FWhZGNLgAAAAAAAAAAAAAAVEKSTfJYpwAwOEEQaMSIERoxYsSgY2zdulVf+tKXdNddd/U+t3HjRknSPffcUykZClUgGQoAAKAOvow2RsMGAAAAAAAAhgptZgCAZhKO6BQd2ancKE/l3hN//8qVK/skQkUtW7ZMRx99tJYsWaJp06YN8dI2B5KhAAAA6kCDCQAAAAAAANCXL9PPAQCyZ+vWrTrhhBMaXYwB7brrrtp2220bXQxvkQwFAACQAWk0FpEIBgAAAAAAgKHiS1uUL+UEgKxqaWnR7Nmz9fTTTze6KGXtvffe+va3v93oYniNZCgAAIAMoBEGAAAAAAAAPvOls58v5QSArBoxYoS+973vpf49+Xy+91FqGr3w30WLFunFF1/s89mTTjpJzz33nGbMmJF6OZsVyVAAAAAYFBp2AAAAAAAAAAAA+mtpaVFLS8uA7/viF7+oj33sY1q9enXvc1/5ylckSd/73vc0e/bs1MrYzEiGAgAAwKCQuAQAAAAAAIBS0uhE5wuf2szo7AgAjVUoFLTNNtvooIMO0h133CFJmjJliiZNmqTXve512m233RpcQn+RDAUAyBQqYkByaCwBAAAAAAAA+vKpzYy2OCDbcrmcvvvd7+qhhx7q83yhUJAkBUHQ7zPha6EgCPo910i1lD000DLk8/ne18P/V/PI5/MDfmbr1q3q6urq830LFy7UUUcdNajlR1EwnHbMBmIlABnDBX52+dQjif0UwHDl07kUAAAAAAAAwJDon32CeqWax7By5UqdeeaZaX4FarD99ttr7ty5Ov/88zVq1KhKb+VYqwLJUJLa2tpYCQCQET7dwCcZCgAAAAAAAACMLyMu+VJOIGnt7e0kaCQv9TyG1atX69VXX00k1kAjJFU7WlI1n6s1RvxzSZSh3s+tX79eDzzwQL/1eMkll2j+/PmVVjXHWhWYJg9AJlEZyS62E5LmU4Jd0jieAAAAAABoDmm1b9B2AADA8DZlyhRNmTKl0cXIpA0bNujUU0/tTZYKbdq0qUElai4kQwHIJCrhALKG8x4AAAAAACgn6+0GdJ5Fktj2AIBqbLPNNrr77rt16aWX9hkh6hvf+IYmTpyoE044oYGl8x/JUAAAAHXIcuMGDYUAAAAAAKAZ0B6BJNFmBgCoVqFQ0Omnn67HHntMGzZs6H1+2bJlJEPViWQoAECm+DSlGRVcDHfsowAAAAAAACjFp3bYpNFmBgCopFAoqLOzU88995zOPffcku85+eSTh7hUzYdkKAAAAAAAAAAAAADDGklGAABfXXnllbrrrruqfv8111yja6+9NsUSNT+SoQAAmUKFGUnLci+3rON8AgAAAAAAUFoa7Sa+TD/nSzmRbbRrA0NrxowZNb1/zpw5KZUkO0iGAgAAyAAaTAAAAAAAAOAz2reA5PiSCAg0i3e9611617vepVwup5UrV+rOO+/UkiVLyr5/xIgRQ1i65kQyFAAgU3y6GKdy7wdfthM90pLn0/kkaVnf9gAAAAAAYOjRvgUAKCWXy2nt2rUKgkCSFASBCoWCcrmc8vl8n/+XelTzWi0xqnlvpSnzPvjBD+qUU04ZqtXXtEiGAgAAAAaBxjIAAAAAAAAAABpr0aJFeuSRRxpdjEEZOXKkgiDQ1q1bJUlHHHGE5s2b1+BSNQeSoQAAAOqQ5dGBsrzsEslQAAAAAIDmkVYd35e6MyMOAciarLftorksWLBAV155pSSpUCho7dq1DS5R9Xp6eiRJF110kU499dQGl6a5BIVCodFlaLi2tjZWAgBkhE8X+DSYIEk06iFJPp1LAQAAMDxQfwAA1MuX9i1fyin5VVYMf+3t7UGjy9CEyGMYhBtvvFHXXHNNo4tRs+22206vvvqqJGnevHm69NJLy72VY60KJEOJZCgAAIDBoLEEAAAAAAAApfjSkSrryVBAkkiGSgV5DINQKBS0cuVK5XI5SVIQBH1eKxQKyufzyuVyyufzvY/w70KhUPa16N8DxYnGWrVqle688061traqtbVV+Xxemzdv1kD5OjfeeKN22GGH+NMca1VgmjwAAAAAAAAAAAAAiSF5BwDQKEEQaPr06Y0uRh+nnXaacrmccrmcOjs7q/rMmDFjNHIkKT2DxZoDAGSKLz2SJBoMMPyxjwIAAAAAAKAUX9phs96+xShWADA0vvrVr+q2225Td3e3urq61NXVpe7ubnV2dmrt2rV68skne9/78Y9/XMcff3wDS9scSIYCAADIABo2AAAAAAAAMFR8mX4u62jfA5pHOP1b/BG+ls/nh/X7yr0WTjU31O+rp+zlvmf06NEaNWqUxo8f3+d9DzzwQO92PPvss3XUUUfVsyvAIRkKAAAgA2jYAAAAAAAAAID0pJWwR9su4n71q1/py1/+cqOLgRSMGzdOXV1dGjt2bKOL4j2SoQAAAAAAAAAAADKMG/jwAfsThjv2UQyVAw88UK2trdq6dWuji4KEfeMb31BPT4/e/va3N7oo3gvC4beyrK2tjZUAABnh01DKVJww3GV96j2fzidJ82k7AQAAoLn5Ui/xpZw+YZ1mly/b3pdy+iTLbTFp8WWf4njyQ3t7e9DoMjQh8hg8cvTRRycW67TTTtMFF1xQ7mWOtSqQDCWSoQAAAAaDRggAAAAAAAAMFV/aonwpJ5A0kqFSQR6DR1555RUtX75ckhQEgYIgUD6fV09Pj7q7u/XYY4/ppptuqirWWWedpbPPPrvcyxxrVWCaPABApvjUe4gKrh982qd84NP65BgFAAAAAAAAAACSNGnSJB1xxBFlX582bVrVyVCTJk1KqliZRTIUACBTSF5A0nzZp+iRBgAAAAAAAAAA0Bj77ruvli5d2vt3V1eXNmzYoA984AN66aWX+rz31ltv1YknnqgxY8YMdTGbBslQAIBMYdQZZBX7EwAAAAAAAAAAQOPkcjk999xzWrFihVavXq2Ojg5NmDChXzLU008/rRNPPFE//vGPtcsuuzSotH4jGQoAAKAOPiXYJY0EKwAAAAAAmkNa7Ru0HQAAAJg//elP+uhHP9rv+TFjxmjmzJmaMGGCJkyYoM2bN2v16tV6zWteo+23374BJW0OJEMBAAAAAAAAAABkGElL8AH7KZCcLHfyBRplp512Kvl8Z2en3v72t2v+/PlDXKLmRjIUAAAABiXrFWYa4AAAAAAAAIZOGm1RtO8gq9LY97PeXgx//eUvf9HKlSslSYVCoff58P/xfyWb7i589PT09Pm33PN33XVX2TJMnjw5jUXLNJKhAAAAMCg0FgEAAAAAAAAAAF898cQTWrRoUUPLcMABB+jWW2/V7bffrpEjR2ratGmaMWOG9t57b+26664NLZvPSIYCAACoAwlBAAAAAAAAAAAA/tlzzz21cOFCPfXUU32eD4Kg9xF/vtS/ko0clc/n+4wOFT7iz//tb39Td3e3JOmvf/1r2fJ9//vf16xZsxJZ1qwhGQoAAKAODP2bLJLLAAAAAAAAAADAUAiCQG9729uG/HtvvPFGXXPNNf2e32WXXbTvvvuqs7NTM2fO1IwZM4a8bM2CZCgAAIA6ZDl5h0QwAAAAAAAAAACA2px22mk68cQTdcUVV+iBBx7off7555/X888/r7lz5+rss89uYAn9RzIUAABAHXxJCEojaSvLiWAAAAAAAACA79Jo26TNEAAGVigU9OSTT/ZJhIqaO3fuEJeo+ZAMBQAAUAcq99nlSyJcGtjvAQAAAAAA/EcbDwAMrUKhoAULFujZZ58t+56TTz5Zc+bMGcJSNSeSoQAAQF2ynBAi0WAAAAAAAAAAoIj2QgDInqefflorV65UR0eHNmzYoA0bNmjdunXq6OhQZ2enurq61NXVpc7OzoqJUJJ0yy236A9/+IN+8pOfDFHpm1NQKBQaXYaGa2trYyUAU2KtWwAAIABJREFUAIBByXIyGA07AAAAABrNl+l9fCmnT1in2eXLtvelnD7JcjtcWnzZpzie/NDe3h40ugxNiDwGDzzyyCO66KKLEot35JFH6txzz9Wuu+5a7i0ca1UgGUokQwFAlvhUYaYyBgAAAAAAAADGl4QYX8oJJI1kqFSQx+CB7u5uXXvttXrhhRc0YcIETZw4UWPHjlVPT49WrFihBx98sKZ4V199tQ4++OBKb+FYqwLT5AEAMoVKIwAA9fEpsThpXEdkl0/7PfspMLz5cj7hXAJkT1rnJ84nAACg2Y0aNUoLFy4s+VpXV5c+9alP6Q9/+EPZz48ZM0YTJ07UuHHjNGLECH3729/WBz7wAR1wwAFpFTkTGBlKjAwFAAAAAAAAAAAAJCXLCcCMDIWsYmSoVJDH0CQ+//nP6ze/+U3V799tt9103XXXlXuZY60KjAwFAMgUXyrhEhVcX/i0TyWNfRQAAAAAAAAAAKCyGTNmVHz9pJNO0vz58zV69GgVCgXttttuQ1Sy5kUyFAAAQB1ICMouEuEAAAAAAABK82XEpTTQbgIAiDv11FM1depUrV69Wo899ph+97vf9Xn98MMP1/7779+g0jUnkqEAAADqQCMMAAAAAAAAkD5f2rd8mibPp7ICgM8uvPBC/fOf/+z3/J577qntt99e9913nx577DEdc8wx2mOPPRpQwuYTFApMM9nW1sZKAICM8CVxRaLSCAAAAAAAAAwFEkL84Mt28qWcQNLa29uDRpehCZHH0CQef/xxLVmyRFOmTFFLS4s6Ojq0cePG3n9XrlypTZs2SZJOO+00nXHGGZo0aZKCoORhxbFWBUaGAgBkCpVGAEnxKbkyaZxLAQAAAADNhHouAACNVygUlM/nVSgUeh/Rv/P5vCT1PlfptejrlV4r9z1plOHII4/s91oul9PGjRt1zz339CZD3XjjjbrxxhslSUuWLNG0adOGdDs0C5KhAACZ4lPyAo0wAAAAAAAAAAAAGE66u7s1b968RhejKY0dO1ZbtmyRJB144IHabrvtGlwif5EMBQDIFBKMkudTglka2Keyi20PAAAAAAAAAMiaESNGaJ999tHy5csbXZSmc95552ns2LHq6urSTjvtpHHjxjW6SN4KCgWmmWxra2MlAAAAAAAAAIBn0uigk0bHB1/K6RPWaXb5su19KWfW0dGzrdFFqArHkx/a29uDRpehCZHH0EDRqfIqTYNX6rlK0+ydd9556ujoqKoM1157rfbYY4/40xxrVSAZSiRDAQCAwfOlwYRGPQAAAAAAAPjMl7YoX8oJJI1kqFSQxzDM5fN5bdy4UVu3bu19dHd3V/X3P//5T/3qV7/qF3PWrFnae++9deCBB2revHkKgn6HFsdaFZgmDwCQKb4krkhUcH2R5e2U5WUHAAAAAAAAAADZdvXVV+v2229PNOZFF12kgw46KNGYWUQyFAAAQB18SrBDskgGAwAAAAAAKI02MwBAFpxyyimaOnWqNm/erE2bNmnz5s19/r9p06beR09PT1Uxq30fKmOaPDFNHgAAAAAAAAD4yJepiHwpp09Yp9nly7b3pZw+IcEqeb7sUxxPfmCavFSQx9BEfvjDH+q6664b8H377befFi1apD322KPcWzjWqkAylEiGAgAAGAwaIQAAAAAAADBUfGmL8qWcQNJIhkoFeQwp+ctf/qK//OUvyufzkqRCodDn/wM9op/J5/PK5XLq6elRLpfr/X/876efflqbNm2qqnzTp0/X9ddfX+5ljrUqME0eACBTfOo9RAXXDz7tUz7waX1yjAIAAAAAAAAA4Jeuri4tWrSo0cWo6IUXXtDRRx+tm2++Wdtuu22ji+MlkqEAAJlC8gKSxj4FAAAAAAAAAAAwfK1bt05btmzp/fvDH/6wHn74YUnqHd0pHOmp1L/RUaC2bt1a9tHd3a2tW7cql8slUu6tW7cmEieLSIYCAAAAAAAAAADIsLRGaqYTWXb5NPo3AKC5/f3vf9fChQsbXYyqXXbZZTruuOMaXQzvkQwFAMgUnyrhNBYBAAAAAABgKNAOhaSlsU/51LYLABg+Zs+erTe+8Y1asWJFo4vSO7pUPp9XLpdTLpdTPp9XR0dH73vWrFnTwBI2D5KhAAAAAAAAAAAAACSGxCUAwHAxZswYXX755ZKkzZs36+tf/7rWr1+vIAjKfib6Wqn3lftsmOBU6RFNhMrlcr1T4bW2tur1r3+9jj766DqWFiGSoQAAADAoaTRq0RMVAAAAaE7cFAcwnDGKUXb5sp18KScADHd33XWX7rjjjkYXo6TLL79cRx55ZKOL0TSCQqHQ6DI0XFtbGysBADLCp0ojSSFIEolLAAAAAAAA8Jkv7Vu+lBNIWnt7e/lhdjBY5DEkrFAo6MEHH1RnZ2e/5+Pi09mFj56enqpGgIo+Vq9erT//+c8Dlm/p0qXVLAbHWhUYGQoAAKAOPiXYJS3Lyy7RCAUAAAAAAAAAgE+CINCcOXOG/HvPOeecAd/zute9bghKkh0kQwEAANQhywkx9HIDAAAAAAAAAACo7OMf/7h++9vfasyYMero6FBHR4c2btyojo4OLVu2TJL00EMP6eqrr9aZZ56pKVOmNLjE/iMZCgAAAAAAAAAAAAASQGc/AEDczJkzNXPmTBUKBW3YsEGrV6/WqlWrtGrVKq1Zs0YrVqyQJN16662aPn26zjjjjAaX2H8kQwEAMoWKKJKW9anikubT+uR8AgAAAAAAMHR8aYthNHUAQCl//vOf9elPf1qbNm0q+57W1lZt3rxZTzzxhPbaa68hLF3zCQqFQqPL0HBtbW2sBADICBItkFU0wgAAAAAAAAAA0tLe3h40ugxNiDyGJvLCCy/oZz/7We/0eGvXrtW6deu0YcOGfu+dNm2alixZUi4Ux1oVGBkKAJApJG8gq9j3AQAAAAAAMFR86ZSaRpuZT50SfSorAPjmnnvu0ec+97lBfXbevHkJlyZ7SIYCAACogy8NO76gsQQAAABALXy5ietLOX3COs0uX7a9L+VMiy9l9aVtL61yZnk7+bLsAPzV3d09qM995CMf0Zve9KaES5M9TJMnpskDgCzxpXIrURnzhU/7FJLFMQoAAAAAADB0fEmI8aWcQNKYJi8V5DE0kYcfflgXX3zxgO9bvHixTjjhhEpv4VirAiNDAQAA1MGXhggaYQAAAAAAAAAAgCQ9++yz+tCHPqSurq5E4wZBoEoD8pR6Pfpc/P+hUs81ykDLKFl5Sz1aW1slSblcTvl8vmx81I9kKDGiA5BF3MAHAGDwuH4GAAAAAADNwJc2Dl/KCcAf9957r9auXdvoYiDm6KOP1pw5cxpdjKbANHlimjwAyBKfKo0k7fnBl32K/QkAAAAAAAA+82Xkc1/KKflVVgx/TJOXilTzGDZu3Fj6S8uMalTNIxztqNz/8/l876hK4f+T+p5SsZP8nnqX8a9//av+9re/ld0exx9/vBYvXlzNyFAca1VgZCgAAIAMoGEDAAAAAAAAQBTte0C2TZw4sdFFyJRnnnlGZ599dr/nJ06cqP3331+jR4/WD3/4Q02ePFmTJ0/W1KlTNXv2bKbNGySSoQAAAOqQ5QYDEqwAAAAAAGgOaY18TT0fAADAzJo1S0uXLpVkI0m98sorevLJJ3Xrrbfq/vvvL/mZr371qzrwwAOHsphNg2QoAECm0AADJIfjCQAAAACA5kAdHwAAYOgEQaDJkyfr0EMP1U033VTyPdttt5122GGHIS5Z8yAZCgCQKWn1cksDjVB+8GWfYn8CAAAAAACAz2jfAgD4prOzU5///Of1pz/9SUEQqKWlRZLU0tKiIAgUBIHWr1/f5zOXXXaZjjvuuEYUt6mQDAUAyBQqzMgqprQDkBRfkkDTwHkvu3za79lPgeHNl/MJ5xIAwHBE+xYAwAeFQkE33XST7r77bj377LPavHlz1Z899thjdfDBB6dYuuwICoVCo8vQcG1tbawEAMgIXxqeJSriAAAAAAAMxJcb476U0yes02Sl1WaW5ePJl3L6xKe2XV/4sk9xPCUvpeMpSCNoxpHH4KGuri7Nnz9/UJ/dZ599NHnyZJ1zzjnabbfdyr2NY60KJEOJZCgAAIDBoBECAAAAAAAAQ8WXtihfygkkrb29nQSN5JHH4Km1a9fqxRdflCTlcjlt2bJFnZ2dfR5r1qzR//zP/5T8/J577qnvfOc75cJzrFWBafIAAJniU+8hKrgY7rK+j/p0Pkla1rc9AAAAAACojIQgAECWbb/99tp+++0rvmf9+vX9kqEWL16slpYWHXLIIWkWLxNIhgIAAAAGgQY4AAAAAECz8GmaPPiBEZeA4S3LHT2B4eDRRx/VhRde2O/5448/XkHAwE9JIBkKAACgDlmuNNJYBAAAAABAc6COj6Rluc0M8IEvCYtAs1qxYkXJ5xcsWKDOzk5dfPHFOuKII4a4VM2FZCgAAIA60FgIAAAAAAAA9EWbGQAA5Z166qk6+eSTtXbtWt1777365je/KUl69tlnJUm/+MUvSIaqE8lQAAAAGcAw4gAAAAAAABgqvowQQ/sWAKBWhUJB+XxeuVyu99/oI/5cqfdEH2EilCTNnz9fRx11lA477LAGLmFzIBkKAAAAAAAAAAAAQGKYggsAMFz19PToTW96k7q7uxtdlD5aW1t18cUXa/To0Y0uSlMICoVCo8vQcG1tbawEAMgInyrM9EoCAAAAADQLn+rjALKHxB0ASETQ6AI0IfIYErZ8+XKdf/75Q/Jd48eP18EHH6zW1la1trZq1KhRvf8v9feOO+6oHXfcUblcTp2dndp22201c+bMUqE51qrAyFAAAAAYFKbeAwAAAAAAAAAAvti0adOQftf9999fV4zvf//7mjVrVkIlyhaSoQAAAIBByHIPT5LWAAAAUCuuIQFkTdbPe760m/gyKljW9yf4wZfjHtk2Z84cLV26dFCfLRQKyufzyufzyuVyff4f/3vr1q3q7OzUli1b1NnZ2fv/LVu26Gtf+1pV33fWWWdpt912G1RZQTIUACBjqDQCSArnEwAAAAAAgNJ8STICAKBaQRBoxIgRGjFihFpbW0u+Z+nSpfrsZz9b93fts88+WrBggVpaWuqOlVUkQwEAMsWnCjOJFkgSPdIAAAAAAAAARNFmCKBZ9fT0qLOzU11dXSX/7e7uVk9PT9mRnSqN+lTq3/D/zz//fCLlX758uY499lhJ0oUXXqi3vOUticTNEpKhAAAAMoBGCAAAAACN5FPnJADZwyhG2eXLdvKlnJJfZQXgt/Xr1+uUU05pdDGqNmLECO24446aNGmSWltb1dLSonw+r61bt2rz5s3q6OhQR0eHurq6+nyOqfIGh2QoAACAOlC5z64sJ5ix3wMAAKBWWb5+BpBNnPeS58soRr6UE0gabYYYai0tLQqCQIVCodFFqUoul9Pq1av10ksvadKkSZo8ebJ23HFHzZo1S7Nnz9b++++vHXfcsdHFbBokQwEAMoVKIzC8cYz6ge0EAAAAAGgmJK8AAOCfiRMn6p577kktfqmp8aLT4sWfKze9Xvj/jRs3at26db2PtWvXatWqVVq2bFnvd15yySXaYYcdepOlJk2alNryNTuSoQAAmeJTzwRfGkx8Wqdp8GU7AQAAAAAAoDTad5Ak9icAaA4tLS1qaWnRyJHppNV0dXXphhtu0DPPPNP73FVXXdXnPddddx3T5A0SyVAAAKAuVO6RVVlOBOS4BwAAAAAAKI2RxgAA1Vi+fLl+8IMfSLLEqz333FO5XE49PT3K5XI66KCDNG3atAaX0l8kQwEAANTBl4QYGkySxzoFAAAAAAAAAAC1yufzmjlzpo499ljdfffdyufzeuGFFzR+/HiNHz9eEydO1A477KARI0Y0uqjeIhkKAJApJC8gab7sU/RIAwAAAAAAgM9oiwIA+GbNmjU6/fTTq3pvR0eHOjo6ev9+5JFHdNRRR2n27NlpFa+pkQwFAMgUX0bxkajcI1lp7E8kWAEAAAAAAGCo0BYFAPDNyJG1peR88Ytf1OjRo5XL5TRx4kQSoepAMhQAAEAdfEmwo2EHAAAAAACUk1b7Bu0RAAAgq/7whz/okksuqekzu+++uyZNmpRSibKFZCgAAIA6ZLlRL8vLDgAAAGB48GWUEF/K6RPWaXb5su19KWfW+dLRMesJixxPAHz07LPP1vyZt7zlLbrkkks0f/78FEqULUGhUGh0GRqura2NlQAAGeFL5VaiMgYAAAAAAAAAof/P3t1H2VXX9+L/nBkmk8nTkISnJARuSKLl8S7ACkWqA16MKL9FKai1Fb1t70JsXdDV22VcVr3cWwlIWVKptMgztgiiVKQFlCIM2qtX5MmFgBCICheSQJJhJsk8nnP27484c2cmM8lk5pw58z379VrrrDlnn31OPmfv/T2Z73fe+7tTCcSkUidUWnt7e6HWNdQhOYY6MjAwEL29vdHb2xs33XRTfPe73x1zvf/1v/5X/O7v/u6e3kpbmwAzQwEAAAAAAAAVk9JJqQAwHZqamqKpqSnmz58f55133phhqPvvvz9mz55dg+rqjzAUAACT4iw3AAAAABjJ+BbAzNXf3x933nln7NixIwqFwtCtoaFhzPvDl5XL5SiVSrv9HLzt6fmx7r/1rW+N559/fkR9Z555Zvz93/99HHPMMTXaQvVDGAqAXNERpdLyfJab9gQAAExUnvtOwMyXyqXSqDz7CSBf/vVf/zVuvPHGmv37TU1NsWDBgpg3b17Mnz8/jj/++GhsbIxSqRTPPPNMNDQ0xNy5c2tWXz0pZJnLTLa1tdkIAAAAAACJSWXG2lTqTIltWlnVCoTkuT2lUme1CBnll/aUX+3t7YVa11CH5BgqrFQqxb333hs7d+6MiIhyuRxZlg39HH4bvqxcLg+tPzizU7FYjGKxGKVSKQYGBkYsKxaL0dfXF9u2bYtNmzbtc50XXnhhfOhDHxrvaW1tAoShQhgKIE9S6oTrjAEAAAAA7CIQAzObMFRVyDFU0D//8z/XdFaofXH66afH5z73ufGe1tYmwGXyAACYFANQAADARKV0chIA+eH/J4D8+Pa3v13rEnazYsWKWLlyZZx00knxrne9K5qammpdUt0wM1SYGQogT1Lq3AqFAAAAAED1OeErDansp1TqJN+q9LcSs9VUnhxDFQ1e7m70bfDSd5W4jfVeAwMDsWXLlti4cWNs2rQpXnvttYiIOOigg+KOO+6IQmGvTUlbmwAzQwEAAAAAAAAVk9JJqZBHqQQBoZoaGhqioaGh5rMxfeADH4gtW7bE66+/Hr29vdHS0lLTeuqFMBQAAJPiLDcAAACgHhiPAABq5YADDogtW7ZERMT73ve+aGxsjFKpFPPmzYtbb701Fi1aVOMK0yQMBUCuGNiAytGeAAAAABiLWWcA4P/p6emJV199NQqFQvT19UVfX1/09vZGX19fnH766TF//vzYunVrbNy4MXp6eiIiYseOHXHuuefGpZdeGqecckqNP0F6hKEAAJgUM0MBAAAAMF1SGTdKpU4AqqOnpyd6e3uju7s7enp6oqenJy666KJJv98bb7xRweryQxgKgFxJ6ewhneY0pHRMVZpjFAAAAIDpksqJeanUCUDl/fu//3usW7dun16zcuXKOPzww2PBggXR2toaJ554YhxzzDFRKBSqVGU+CEMBAEyBgQgAAAAAAIA0ZFkW3/rWt+Khhx6q+Htv2bJln1/z0ksvxUsvvTT0+NZbb42TTjopLr/88kqWljvCUAAAAAAAVFWeZ9UFZr5UZgei8lLZT6nUCZCC/v7++Id/+Idal7FHzz77bK1LSJ4wFAAAAAAAVWVWXSBvfO/ll8vkkVdCe6Siubk5vvWtb8XmzZvHXSfLsiiXy1EqlXb7Ofr+4ONXX301fvjDH45YXiqVolgsRm9vbwwMDEy4xoULF1bio+aaMBQAuaLTSKXp4FWWNgoAAADAWISMAKiUxYsXx+LFiyv6nqeddtqU3+Piiy+OJUuWxFve8pYKVJRvwlAA5EpKwRUd8TTYTwAAAAAwkuASzGwp/a0EUnHdddfF/fffH4VCYegWEUM/syyLvr6+oVtXV1c8+eSTI95jzZo10dLSMu211yNhKACAKchzp9EAFAAAAABAeqoxtpvnsXKIiFi9enWsXr16wuu/8cYb8cEPfnDEsptvvjlWr14dq1atisMOOywaGxsrXWZuCEMBAEyBQBAAAAAAjJRK0MLYHgDTpVQqRW9v79Ctp6cnrrzyynjwwQfj0UcfjW3btsU3v/nNEa/553/+51i2bFmNKk6bMBQAuaJzCwAAAAAjVWs2D2NxADOTWZyg+r75zW/GP/zDP0z69ccdd1wsXLiwghXlizAUALmS0i/4BosAAABgz1KZJSSVOlNim1ZWSp89lX2fSp15l8p4cd4Di9pT5aXyvQcpO+SQQ/Zp/SVLlsS73/3uOP/882PWrFlVqio/ClmW1bqGmmtra7MRAHIipV/G894ZAwAAAIDpIGiRhlT2Uyp1QqW1t7cXal1DHZJjSFy5XI5f/epXsX379uju7o4dO3ZEd3d3dHd3x86dO4d+Pvfcc/HKK69ERMTatWvjve99757eVlubADNDAQAwKQZ2AAAAgHpgPAIAqIaGhoY44ogjRizr6+uLjo6O6Orqis7Ozujs7Ixf/OIXQ88feeSR011mXRKGAiBXDGxQaanMNlaNY197AgAAAAAA2KWvry+2bt0aW7dujW3btsW2bdtiy5YtsWnTpti4cWNs2rQpOjo69vgeW7ZsicMPP3yaKq5fwlAAADlgFiegUlIJgVaD7738Sum4d5zCzJbK94nvEgAAgH3zgQ98ILZs2TLh9RcvXhwHHnhgHHjggXHAAQfE4sWLo6WlJRYuXFjFKvOjkGUuM9nW1mYjAOREKgPPEQafU5HKMeV4AgAAAACgWtrb2wu1rqEOyTHMUFmWxX333RePP/54FAq7Dv2HHnqoYu//rne9Ky655JLxntbWJsDMUAAAOZBKaCslAmYAAFB7qcyCm0qdKbFN8yuVfZ9KndViLCoNqRxTeW9PwOT89Kc/jeeeey72ZYKg4esO3h8MO2VZFuVyOcrlcmzbti2++93vVrTeE088MXp7e+OZZ56J3/7t367oe+eRmaHCzFAAeZJSJ1xnjJnOIER+pfRdCgDAzOB3fQCmKpWxqFTqhEozM1RVyDFMUkdHR/z+7/9+rcuYlJtuuilWrFixp1W0tQkwMxQAuaLTCDB1vksBAACAPXEiFQC1tHDhwli3bl0899xzE1p/cPan4ffHmhkqy7IolUpDM0QVi8UolUrj/hy8FYvFeOqppyZUS19f3758VMYhDAVArqTUCRc2SEMqx1Q1jifHKAAAANSHao1vGDvIr1RmXALIo6uvvjq+/e1v17oMfuNb3/pWLF68uNZl1B2XydvFRoCc0QkHKsUgTGX5fk6D4x4AAAAAGMWluyqvKjmG0047rRpvyyQtX748Lr/88li6dOlEX6KtTYAwVES0tbXZCAA5kdIf8IVCqKRqHPuOUQAAAACmSyrjW6nUGZFWrcx87e3tAhqVNy05hsHLv+3tVi6Xh9YfvF8ul3P/uom819NPPx2PP/74uPvgv/7X/xof+9jHJrrLtLUJcJk8AIApSClgV2l5/uwRBnYAAACoHy6TB/mkjQIREYVCIQoF+Zpq+vjHP77H52+55Za45ZZbhh5/8IMfjE984hNVrqq+CUMBkCs6d1Rano8pZ44BAAAAMBbjRmmwn4C8ybIs/s//+T/R29u7Wwhs8PHgsizLolQqRalUinK5PHR/rGV7u798+fLIsix6enpix44dsWPHjigWi+PW2dzcXPVtUe+EoQDIlZRmstFpZKZzjAIAAEB90McnBYI7lZf3zw/kz9133x1XX311rcvYTUtLSyxfvjyuuuqqmDNnTq3LqQuFLJuWy0zOaG1tbTYCAAAAAEBiUvnDeCp1psQ2za9U9n0qdaYkpRNdU5HKMaU9paG9vd111ipPjqHCenp64tprr43Ozs6I2DX702BmZvT9QYPLR6833jqDs0IVi8URP0ulUvT19UVXV1cMDAzsVltjY2Occsop8ba3vS1Wr14dRxxxxHgzRGlrEyAMFcJQAHmSUodZZwwAAAAASFEq47DGYKFyhKGqQo6hDg1eLq+rqys6OzuHbuvXr48HH3wwOjo6hta9/vrrY9WqVaPfohARUSgU5kfE30TEORFxUEQ8GREXZ1n20988f0tEfGzUa3+SZdnJVflgM4zL5AGQKzq3VJqBHQAAAAAYyVgUAIytUCjEnDlzYvbs2fGDH/wgnnrqqZg1a1ZERCxfvjy2b98exWIxIiJKpdKe3uqGiDgudgWe/m9EfCQiHiwUCkdlWfbqb9Z5MCLOH/aa/sp+mplLGAqAXEkluBJhwIDKMpU0AAAAAClLZXwrlToBqK4dO3bE17/+9aFAU6Hw/yZPK5VK8atf/Soee+yx3V538MEHx5lnnhlnnHFGLF26dMz3LhQKLRFxbkScm2VZ+28WX1IoFP6/iPhERHz2N8v6sizbVKGPlBRhKAByRacRAAAA6kcqf3BOpc6U2Kb5lcq+T6XOvEvl5Nlq1ZnKMaU9ASm69tpr4957793n111wwQVx+umnR8Su0NSjjz4a69evj9WrV8fb3/72aGxsjNiV9WmMiN5RL++JiFOHPT61UCi8HhFvRsQjEfHXWZa9vu+fJj2FLHOZyba2NhsBICdS6dxG6IwBAAAAAAxKJRCTSp1Qae3t7YW9r8U+kmNI0EsvvRTbt2+PN998My677LLo79+3K9N99atfjbe85S1RKpXiU5/6VDz33HPR29sbs2fPjiOPPDKeeOKJ/R5++OFSoVD4UUSUIuIPImJTRHw4Im6NiBezLHtroVD4g4jojohfRsSVwMuPAAAgAElEQVR/iogvxK4A1YlZlvVV7hPPTGaGAgBgUvI+sJNSuLLSUtpPAAAAAIwt7+N7AJV27733xpVXXjml9/j4xz8+5vKenp549tlnIyLOjIh/i4jzI+KmiPi/sSsU9URE3B4RJ0REZFl2x7CXP10oFB6PiF9HxPsj4l+mVGQCzAwVZoYCAAAAAAAAgMkyM1RVyDEkprOzM6644orYvn17NDc3x8aNG+PVV1+t2PsXCoXIsuxzDz/88BeGLZsbEQuyLNtYKBS+ERHzsix7/ziv/2VEXJtl2RcrVtQMZWYoAHIlpZlcnEEDAAAAe5bKjBap1JkS2zS/Utn3qdSZklTGdlM5niLSOaa0JyAiIsuyKJfLERFRLpcjy7KKLBu8vy/L9rTOOeecM7Sst7c3/sf/+B/7/FkvueSSyLIsrrjiiujp6Rla3tzcHL29vU+N2i47I2JnoVBYGBFrIuJTY71noVA4ICKWRcTGfS4oQWaGCjNDAQAAAAAAwEyWSiAmlTrJtyoF7MwMVXkzOsfwne98J/7u7/6u1mXUpaOPPjq+/OUvx6c+9al49tlno6+vL5qbm+Ooo46KJ554Yr+HH364VCgU1kREQ0T8IiJWRcTfRkRfRJwaEc0RcUlE3BW7wk//KSIui4jlEXFklmXbp/9TTS8zQwGQK6mcPRShg8vMl/eBnZS+Tyotpf0EAAAATL88j5tAClIJAjKzLV68uNYl1IWvfOUrMX/+/GhoaIhCYVem8IADDojGxsa44oor4tFHH40XX3wxVq1aFW9/+9ujsbGx9JuXtsaugNOhEbEtdgWf/jrLsoFCobBfRBwbER+NiP1jVyDq4Yj4YB6CUBFmhooIM0MB5ElKv4wLG6QhpWOq0hyjAAAAUB/yfgkuqKS8n0BIfrW3t5sZqvLkGKporEvcjXUJvdGX1xu9TrlcjmKxGP39/TEwMBD9/f3R398ffX190dPTE729vfGlL31pn2r7b//tv8Uf/dEfjfe0tjYBZoYCIFd0Gqm0PB9TBnYAAACgPuiPkwJjUQBUQqlUiv/5P/9n/PCHP6x1KePasGFDrUtInjAUALmS0iw+OuLMdI5RAABgolLqjwP543JR+ZXKfkqlToAUlEqlGR2EiojYuXNnrUtInsvkhcvkAQCTl8pAhOASAAAAAClLZWaoVOqESnOZvKqQY5hGg5e9K5VKQ7fBx8OX722dfX3+5z//eXz/+98fuhzfkUceGeeff378zu/8znilamsTYGYoAHIlleBKhA4uAAAAAAAATIdCoRCNjY3R2NhY9X+rs7Mzbrzxxti8eXM8+uijERHxgQ98IM4888xYsWJF1f/9PBCGAgCYAqG1/EopXFlpjnsAAID6Uq0+rv4jAMDubrvttvjXf/3XEctefvnlePHFF2Pp0qXR3Nxco8rqhzAUAACTkvcpv1OqFQAAAPZEHxcAYPr86Z/+abz1rW+Nnp6e2Lx5c2zcuDGeffbZWLduXaxbty4uuOCC+PCHP1zrMpMmDAVArhjYgcrRngAAAKA+mBkKAMiT/v7+6OnpiUKhEFmWRalUinK5PObP0cuGLx+9bLzX7OlnY2NjLFmyJA466KC4/fbbIyLiuuuui+985ztx4403xty5c2u8tdIkDAUAAAAAAJBjQksAQDVlWTZ0K5fLI36Ot2yi65bL5YiICa/b398fa9eurfEWGamhoSEaGhpGLNu8eXN0dXUJQ02SMBQAuVKts9yqwSBUGlI6plLguAcAAAAAgLRccMEFsX79+lqXkZS3v/3tsW7dumhoaIhCoVDrcuqOMBQAADNGSuEywS0AAAAAAIg488wzhaEm6NRTT42WlpaYN29e3HzzzdHS0hItLS3R3Nwc5XI51qxZE7Nmzap1mckThgIgV4QXqLQ8H1PVCC7leXsCAAAA1IuUTngDYOrOOeecOOecc2pdxrTa0+X8Bn92dnbGBRdcEN3d3RERsWTJknj55Zejp6cnuru7Y+fOnbu9b1NTU7z3ve+d7o9Td4ShAMiVlDrhQiFUkuASAAAAANOlGuNGKY3tAlD/CoXC0OXtGhsbd3v+hz/8YXz+858fenzYYYdFX19fdHZ2Rm9vb/T19U1brXkkDAUAkAOpDEAJWAEAAPsilX5JKnWmxDbNr1T2fSp15l0qAatq1ZnKMaU9ASnasmXLiMcvv/xyNDQ0xIEHHhiHHnpoHHDAAUM/Z8+eHbNnz45yuRzvfOc7a1RxfRGGAiBXdHCotFQGTKpx7GtPAAAAAADATFMsFuOyyy6Lhx56qNaljFAul2Pz5s2xefPmoWV33nlnHHjggTWsqj4VsiyrdQ0119bWZiMA5EQqwZUIQRNmPmdk5VdK36UAAMwMftcHYKpSGYtKpU6otPb29kKta6hDcgyT1NXVFWeffXaty5iwQqEQDQ0Nsd9++8X+++8fjY2NcfLJJ8cnPvGJ2G+/3eY40tYmwMxQAOSKTiPA1PkuBQAAABibcROA2luwYEE8/PDDUS6Xh26lUmm3x2Mtq+RrBu+PXqdcLkexWIwf/ehH8ctf/jL6+vqG3ntw1qh/+Zd/ibPOOitWrFhR462ZJmEoAHIlpdlMdJrTkNIxVWmOUQAAAAAYycxQADNHQ0NDNDQ01LqMMf385z+Pm266aehxc3NznHzyybFixYpYvXp1rFq1Kg466KAaVpg2YSgAgClIZSAiz6EtAAAAAACAmWT58uVx3HHHxXPPPRcDAwPR19cXra2tMX/+/Oju7o6Ojg5hqCkQhgIAyIFqhLac5QYAAAAAADNff39/bN26dbflWZbt8XVZls3IW7lcHqqvEvcr/X6j33twO4++v3z58jj00EPjvvvui4iIe+65Z8T2v+GGG2LlypV73EeMTRgKgFwRtKDS8jzjkvYEAAAAwFjyPGYGMBP94R/+4ZhhKGa2JUuW1LqEZAlDAQBMgUAQAAAAAIyUyizlAHnxF3/xF3HNNdfscZ1CoTA0a1GhUNin9x/92sm+z77+m5N93UTrG+9zDc5QFTH+zE+jZ4oaftu+ffuEau3o6Ig5c+bs4yckQhgKgJxJqcMsZJOGlI6pSnOMAgAAAADAzHfqqafGqaeeWusy+I3nn38+LrzwwjGfW7t2bbzzne+MlpaWqobJ6p0wFADAFOQ5EFSNIFietycAAAAAAFD/3vrWt8bDDz8cXV1dsXHjxrjzzjvjoYceioiIL37xi/HLX/4yPvGJT9S4yrQJQwEAMCmCSwAAAAAAAJOzYMGCWLBgQXz2s5+N3/u934uLLrooIiJ27NgRWZaZGWoKGmpdAAAAAAAAAAAA5E2xWIxNmzZFU1NTNDY2RkTEfffdF6effnqcdtpp8eijj9a4wjSZGQqAXDGTDQAAAAAA1WIMGoB9sXbt2njiiSfGff7ll1+Ot7/97dNYUX0QhgIgV9rb22tdwoTpNDPTVaM9Oe4BAAAASJkxM1KQ0t9KoF50dnbG3/7t30ZnZ2csXrw4+vv7o7OzM5599tmhdf7+7/8+9t9//1iwYEHMmzcvGhpc7G2yhKEAAKZAp7GyUtqeBqEAAAAAgBRVY2wzpbFd8i3LsrjvvvviBz/4QUREFAqF3X4O3h9u+PLRz5dKpRG3YrG42/1f/epXu73niSeeGG1tbfHrX/863v/+98cxxxxTyY+aa4Usy2pdQ821tbXZCAA5kdIv44IWAAAA1IuU+uNA/ggFAFTE7ukRpkqOoQp6e3vjzDPPrHUZcdBBB8V73/vemDt3bsyZMyfmzJkT8+bNi2XLlsXSpUvHDGT9hrY2AcJQIQwFADAZpvwGAAAAYLqkMhaVSp0RadXKzNfe3i6gUXlyDFXy2muvxcsvvxwRu2aKGpRl2dDjcrkcxWJxaGansX6Ofn6sx4P3e3t7o7u7O3bu3Bnd3d1Dtz1ldu66665YtGjR6MXa2gS4TB4AAJNiYAMAAAAA0mV8D8irpUuXxtKlS2tdRpTL5di+fXvceuut8e1vf3u35zs7O8cKQzEBwlAAAAAAAAAAADCNGhoa4pJLLomnnnpqzOfnzJkzzRXVD2EoAHKlGtP+VouzcgAAAACg+lwqjLxy7AP1rlwuD91KpdJuj7MsG/e54Y/39j7lcjmyLNvr+wz/N8vlcvT09IwIQt18882xePHimDdvXhQKroY3FcJQAAAAAAAA5JbwRuWldFIq5JE2Sj3YunVrnHfeebUuo2JWrlwZzz//fBx77LExf/78WpeTPGEoAAAmxZljAAAAAIzFGE8a7Kf8qsa+F7Bius2ZMydWrlwZL730Uq1LqYiXXnopLr/88oiIWLNmTXz605+ucUVpK2RZVusaaq6trc1GAAAmRQevsgzAAAAA+yKVkzRSqTMltml+pbLvU6kzJcbh0qA95Vd7e7trelWeHENi7rrrrvjKV75S0ff8/Oc/H6eddtrwRdraBAhDhTAUAAAAAAAAzGQCMTCzCUNVhRxDYkqlUjzwwAPR3d0dhUJht1upVIqrr756n97zr//6r+O//Jf/MnyRtjYBLpMHAMCkGIACAAAAYCx5nsXJmBlAfjU2NsaZZ5455nObNm2Kv/iLv9jre1x44YXxoQ99qNKl5Y4wFAAAk2IQBvIpzwPavvfyK6Xj3nEKM1sq3ye+SyB/qvX95Pskv1K5VBoATJeXX345Nm/evNf1brnllvj6178eb3vb2+JTn/pUNDc3T0N19cdl8sJl8gAAAAAAAGAmS2XGpVTqhEpzmbyqkGOoM/39/fHrX/86Xnjhhdi8eXNs37497r777nHXv/XWW+Owww4bvVhbmwAzQwGQKymdPaSDCwAAAAAAAPVh1qxZsXr16njppZfin/7pn8Zc59xzz41zzz03Fi5cGLNnz57mCuuHMBQAAJPiLDcAAAAAAIB9c8ABB4z7XFtbWyxZsmQaq6lPwlAAAEyK4BIAAADUh2rNpm7sgEpyPAGQgnK5POZtw4YNcfHFF+/19b/4xS/imGOOmYZK65swFADAFKRy6UWDRZWXyr6vBscTAABAfcl7P8/s12mwnwCIiLj00kvjwQcfrHUZFXP66afHkUceGfPmzYvW1tY44YQTal1SXShkWVbrGmqura3NRgDIiZTCCzriwEyV0ncpAAAzQ7X6uKn8YTyVOlNim+ZXKvs+lTpTYjyi8lI5prSnNLS3txdqXUMdkmMYw2mnnVbrEqri/PPPjz/+4z+OQmGvTUlbmwBhqBCGAgAmL8+DMAYMAAAAAJguqQRiUqkTKk0YqirkGCYhy7JxL1U3U27f/OY3Y+PGjbvVvm7duli8eHEsXrw49t9//2hsbBzrI2prE+AyeQDkSkrBFR3cNNhPAAAAAECKBLeAelQoFKKxsXG8INGkDA8ylUqlKT8+++yz49prr93t3/nMZz6z27KLLroozjnnnIp9lrwQhgIAAAAAAADIGcEloB49+uijsXbt2lqXUTFLliypdQlJEoYCAJiClGYbqzSDJQAAAAAAwEzR398fnZ2dtS5jn3z2s5+NJUuWDM1mtXDhwli0aFEUCq6GNxXCUAAAU5DnQJBptAEAgFpLpV+SSp0psU3zK5V9n0qdeZfKiY7VqjOVY0p7Aoa75JJL4pFHHql1Gfusqakp5s2bF/PmzYu5c+fGvHnz4oQTTojjjjsuGhoahm6FQiF27NgRjY2NMWfOnFqXnSxhKAAAJsWAQX6lMlAIAMDMof8AAABUQopBqIiIgYGB6OjoiI6OjqFljz32WFx33XXjvubWW2+Nww47bDrKqzuFLMtqXUPNtbW12QgAOZHSH/ANFMPMltL3SaX5fgIAAKgveZ91hspLZdwk77OCpVQrM197e7trelWeHMMUZFkW5XJ56Ofg/VKpVNVlfX198bnPfW7SdTc0NMTs2bPj5JNPjrVr18asWbNGr6KtTYCZoQAAYBIM7AAAQO2l8kfcVOpMiW1aWSl99lT2fSp1VksqtaYS2sp7YDHv7QmYnEKhEI2NjdP+75ZKpVizZk1873vfG7F8zZo1cfHFF8fs2bOjUJBnqjYzQ4WZoSCP/OIMVEoqAybV4HsP8sn3HnmU0nHvOIWZLZXvE98lAMxEqYzrp1InVJqZoapCjiFhV1xxRdx///27Ld9vv/1izpw50djYGLNmzYqDDz44li1bFmeddVYcddRRE3lrbW0ChKFCGAoAYDIM7AAAAAAwljwHgFMaM0upVmY+YaiqkGNI2AMPPBCXXXbZPr3moYcemsisUdraBLhMHgAAk2JgAwAAqLVU/oibSp0psU0rK6VLcKWy71OpM+9SCW2lUme1aE/AcD09PbF9+/ZobGyMQqEQ5XJ5xC3LsjGXlUqlMZ+r9GsG79911137/NlOP/30iIj4sz/7s/jABz5Q6U2XK2aGCjNDAeRJSp1GnTEAAAAAgF0EYmBmMzNUVcgxjOG0006rdQlVd8opp8Sll1463tPa2gQIQ4UwFAAAAABANaV0chKQP6nMDAUwwwloVJ4cwxhuv/32+Pa3vx3FYjFKpdLQrVgsRrFYrHV5U7J69eq48sorY8GCBXtaTVubAGGoEIYCyJOUBiGclQQAAAAAsEsqM0OlUidUmpmhqkKOYZoMXt5ueLhqMGA1etng8oGBgejv79/t5+hlo5cPPt68eXM8++yzY9ZzxBFHxNy5c2P+/Pnx3//7f49FixYNf1pbm4D9al0AAEwnnUYAAAAAAKrFGDTAzDYwMBDnnXdedHV11bqUcW3YsGHo/kEHHRQXX3xxDatJkzAUAAAAAABVldJMzUD+pDI7EJVnPwHkU0tLS83DUM3NzbFw4cJYuHBhtLa2xpw5c6KlpSVaWlripJNOiqampujr64sTTjihpnWmymXywmXyAIDJM2CSX87yAwAAAJg+qVx+LpU6odJcJq8q5BiqrKOjI1555ZUYGBgYuiResVgccXm8wcfFYjHK5fKI58f6Ofy1HR0d8eSTT+5zXYceemj80z/903hPa2sTIAwVwlAAAAAAAClK5Q/OqdSZEts0v1LZ96nUWS1OIMwv7Sm/hKGqQo4hIXfeeWf84z/+45Tfp7m5Oa655ppYuXLleKtoaxPgMnkA5EpKnXCdsTSkckw5niovlX1fDY4nAAAAYE9SCcRUQ0qf3RgPQOXccccdU36P3/7t347Pf/7zMW/evApUlG9mhgozQwHkSSod5ggdUWY+Z2QBAAAAMF1SGYtKpU6oNDNDVYUcQ2KyLIuBgYHo6+uL/v7+6OvrG7r/v//3/97Tpe+iubk57rnnnpg1a9be/hltbQLMDAUAMAWpBOyqMWCS90GYVPZ9NeR93wMAAAB7JhAEQB4VCoWYNWvWmIGmOXPm7BaGmj17dqxYsSJWrFgRq1atiieffDKOP/74iQSi2AthKACAKTAIk1/2PQAAAMDYzLgEACMtX748vve978Wzzz4bt99+ezz66KPR29sbzz33XDz33HND6/35n/95nHfeeTWstD4IQwEAAAAAAAAAwBRkWRbPPPNMbNiwIV5++eV4/fXXo6OjI958883o6OiInTt37vH1BxxwQPzWb/3WNFVb34ShAAAAAABIUiqzhKRSZ0ps0/xKZd+nUme1VOPzV0Pe60zlmMp7ewLS8W//9m/xpS99aULrNjc3x8EHHxwHH3xwLFy4MJqbm6OlpSUOOOCAKleZD4Usy2pdQ821tbXZCAA5kUrnNkJnDAAAAABgUCqBmFTqhEprb28v1LqGOiTHUAXlcjluuOGGuO+++4aWDeZmCoXCiPv7Isuy6OrqmnJ9H//4x+MP/uAP9rSKtjYBZoYCAAAAAKCqUjo5CcifVAIxVF4q+ymVOgFSMDAwELfffnutyxiXmaEqQxgKAIBJcZYbAAAwUdX6XT+VfkkqdabENs2vPIdC8n6M5nnfV0sqx5Tv/DRoo6Siubk5vvvd70ZPT09E7JrRqVwuR6lUGvo5/DZ82Xj3x1r/S1/6UpRKpX2u75hjjqn0R84lYSgAckUHBwAAAAAAAPKrubk5mpubq/pvnHHGGfHTn/40Ojo64sorrxxznaamppgzZ07MnTs35syZE/Pnz48tW7bEIYccUtXa8qAweL3DPGtra7MRAHIipTMTBLcAAAAAAHZJZXagVOqESmtvby/UuoY6JMdQJ7Zt2xbPP/98lEql6O7ujp07d8bOnTuH7nd3d8f27dvjJz/5SUREnH322fGe97wnjjrqqLHeTlubADNDAZArOo0AAAAAwHDCKwBANS1atCh+53d+Z8znHnnkkfjxj3884pJ63/nOd+I73/lO3HTTTbFixYrpKrOuCEMBkCtmhgIAAAAAhjMOV3kpjcNCHmmjUB1vvPFG/NVf/VVs3rw5yuVyZFk2dCuXy3t87W/91m/FKaecEosWLYqmpqY46KCD4tBDD52myuuPy+TtYiNAzujcAgAAAADsUq0/iqcyDmtmqDTYTzCzuUxeVcgxJObf//3fY926dVN6j3Xr1o07i9RvaGsTIAwVEW1tbTYCQE6kdLaDjjgznQEoAAAAABjJmBl5JQxVFXIMCerp6Yn+/v7o7++Pvr6+odvwx/39/bF58+a44YYbdnv98uXL47zzzovW1tZ45zvfGYXCbk1LW5sAl8kDIFd0GqFytCcAAAAApouQEQApaGlpiZaWlt2Wl8vlaG9vj66urmhoaIjGxsYxX//KK6/EVVddFRER119/faxataqq9dYrYSgAcsXMUAAAAAAA6TFeCkDKHnjggfjiF7+41/UaGhriyCOPjLPPPlsQagqEoQAAAAAAAIAZzcxQAKTs3e9+d2zevDneeOONiIh48cUX4/nnn99tvT/+4z+Ok046KebNmxc7duyIuXPnjnWpPPZCGAoAYApSmW3MwA4AAAAAABHpjGtDPWlqaoqPfexjQ483btwYH/vYx2JgYGDEejfeeGPceOONQ48/9KEPxYUXXjhtddYLYSgAckUghEpzTAEAAAAAkJJqjGsLWFEPsiyLUqkUxWIxSqXS0G304/Ge29vr+vr6oqurK7q6uqKzszOOO+64ePPNN2PTpk2xc+fOMWt697vfPc1boT4IQwGQKyn9Mi5kk4aUjikqSxsFAAAAGFuex8yMGQFUR39/f9x8882xefPmGBgYGLoVi8Xo7++PYrE4Yvnodcrlcq0/wpD58+dHa2trLFiwIA466KBYvXp1tLa2xiGHHBJLliyJJUuWxMEHHxzNzc21LjVZhSzLal3DTGAjQM7ojACVksrAju89AACgllLpOwEAMGmFWhdQh+QYhvnud78bX/ziF2tdxqQ1NTVFc3NztLa2RlNTUzQ0NERDQ0N0dnbGG2+8MbTeV7/61XjLW96yp7fS1iZAGCoi2trabASAnEhp8FV4hZmuGu3JcQ8AAAAwtmqNbaYyHpPKWFQqdUKltbe3C2hU3j7lGDo7O2P9+vXjPl8oFGJ4PqRQ2LXLBpcNPt6nArNsaMalLMvGvFVqvXK5HD/60Y+ip6cn9ttvv6FbY2NjRMRul68rl8u73R++bKzHYy2rpbvvvjtaW1tHL9bWJsBl8gDIFZ1GqBztCQAAAOpD3kM2qcj79sz75wfYm9/7vd+rdQlUWH9/f61LSJYwFAC5YmYoAAAAAID0mHGp8mxTqC+XX355fPOb34yI3Wd7Gj0j1J6uIDaV11ba8Fr29d/d0+cYa93Rs1SVy+V9mtlqKq998803h9ZfvXp1/OEf/qHv0ykShgIgV/ziAAAAAAAjGTMDgPSddNJJcdJJJ9W6jOQMhpUGL5E3eJvOxzt37owXXnghnnzyyVi/fn1ce+21fj+bImEoAHLFzFAAAAAAAGAMGurdtm3b4pprrhkxS1FEDM1SFDFy1qLBx8NnOBr9eLzX7Mt7TPQ9x3rNvtY0kaDTdM50NRHLly+PP/qjP6p1GckrzLQdWyM2AuSMX/DzSxiKSkvpmKKy8txGHfcAAAAAwCiFWhdQh6aUY7jyyivj3nvvrVQtVFlTU1N84xvfiP3333/o0n7j0NYmwMxQke8/ZAEATJbfofLLvgcAYF8J1AMzWTX6ub73AKi1iy66KI4//vihYE2hUBi6DWpoaNjj47FeM3xmptGzNA2faWm8+8NncRp9f6K3ffm3nnjiiXj66acrsk2raWBgIBYuXFjrMuqGmaEioq2tzUYAANhH1RjUE7IBAACA6Vet4I5+fn6lEgZLJQinLZGC9vZ2s9VUnhxDBWRZFvfee29s3Lixou85eKm9Uqk04v7wS/GNXl4qleKnP/3puO97++23x8EHH2xmqAowMxQAuZJKJzxCB5eZzzEKAAAAwFhSCRlBXmlP5EmhUIizzjqr1mUMaW9vj3vuuSf6+/ujv78/du7cGZs2bYpyuRwf/vCHY8GCBbHffvvFCSecEH/5l38ZLS0ttS45SWaGCjNDAQAAAAAAwEyWyoxLqdQJlWZmqKqQY8iJ3t7e2LBhQ7zwwgvx5S9/eWj51772tVi+fPno1bW1CTAzFAAAk2JgBwAAAICx5HnWGeNbAOyLvr6+6OjoiFKpFDfccENERCxYsCBuvfXW2H///WtcXbqEoQDIlZQ64TrNzHSOUQAAAADGksqMS9XgBEIA9ub73/9+fOELXxjzuVNPPTU+85nPuDzeFAlDAZArOo1UWiqDMNWgPQEAAAAwXYxFAVAv5syZM+5z73jHOwShKqCQZS4z2dbWZiMAAJOSShjKYBEAAAAwnmqNbxiPoJJSmXEplTqh0trb2wu1rqEOyTHUgW3btsWOHTsiy7Lo6+uLvr6+6O3tHXH/tttui40bN4543cKFC+NrX/tazJs3b/RbamsTYGYoAIApyPNAhIEdAAAAqA/646TAcQpAan75y1/Gn/zJn0zqtR0dHbFjx46xwlBMgDAUAACTYgAKAAAAgOnixDyonFSueACpW7ZsWbzvfe+Ln/3sZ5Fl2YhbRAzd7+zsjP7+/qHXnToJcZsAACAASURBVHjiiXHllVfWquy6IAwFQK6k9Au+jjgAAAAAANUiYJZfqVwiEsbT0dERV111VQwMDEShUIhC4f9dOW7w8VjLxltn8GdDQ8Nu65TL5ciyLMrlcpRKpaH7e7oNX69UKkVLS8seXz8YhDrllFPinHPOieOPP76q2y8PCoOJs5yzESBn/DIOAAAAMH38cQwAoO4V9r4K+0iOYRxf/epX44477qh1GVPS3Nwcra2tccQRR8SiRYvikEMOiY985CMjQlvj0NYmQBgqItra2mwEgJxIafBVaI9KcpYXAAAAMJ5qjZkZO6CSUhnfMgZNXrW3twtoVJ4cwzhKpVI89thjQ7M2jb703ODP0fcHb4OzNA3eBh+P93Nv641+vlQqRU9PT3R3d8fOnTtj586d0d3dHX19feN+piOOOCLOPPPM+P3f//0RM1SNQVubAJfJAwDIAQMbAAAAAJAmY3sAIzU2NsZJJ51U6zIiImLr1q3xwQ9+MMrl8pTeZ8OGDXHNNdfEwMBAnHfeedHU1FShCvNJGAoAIAdSOXMuJSmd5Vdped/3AADMHKn0dVKpMyW2aX6lsu9TqTPvUhnfyfvsbdoTMJNt3759ykGo4a677rr4wQ9+EP/4j/9YsffMI5fJC5fJAwCYDIMQAAAAAEyXVMaiUqkTKs1l8qpCjiFhpVIpdu7cGddee2288sorUS6XY/PmzbF169a9vvbkk0+Oyy67bLyntbUJMDMUALmSypk+ETq4qUjpmEpBSttTGwUAAAAYW0pjPJBH2ihUX2NjY2zdujXuv//+cddZunRpXHjhhdHa2jp0mz9/fjQ2Nk5jpfVJGAoAgEkRBgIAAABgLKnMuAR5pY1C9d1zzz1x1VVX7XGd1157LTZs2BDnnntuzJs3b5oqywdhKACAHBBcAgAAAAAAGOnJJ5+M1157bcSyLMvGfZxlWRSLxSiVSkM/B2/DHz/yyCMT+vdvueWW6OnpiQsvvHDqH4YhwlAA5IpACHnlrJzK830CAAAAMH2MxQBQaS+88EL85V/+Za3LiI6OjvjGN74RixYtioULF8bRRx8dLS0ttS4racJQAORKSoEQnfs05Hk/VaM95Xl7AgAA9Uv/CWDqfJcCUGmrV6+OT37yk/HSSy+NWF4oFMZcf7zlEbtmjBo9O1RXV1f87Gc/22sdDzzwwIjHra2t8bWvfS2amppi9uzZe/x3GZswFAAAAAAASfKH8fyy7/MrlX2fSp0pSWU/VUO16kzlmNKegMl65plnYu3atSOWDQ8WjQ4ZTfa54cuGP7d169ZJVB3R2dkZZ599dkREnH/++fEnf/Ink3qfPCuMvtZhHrW1tdkIADmRSuc2QmcMmLlS+i4FAGBm0McFYKpSCcSkUidUWnt7u6lrKk+OYYouv/zy+N73vlfrMiZs6dKlUSwWY2BgIIrFYkREXHXVVbFy5crhq2lrE2BmKACAKRAKya88D0Ll+bMDAAAAe2fMDICZYO3atfHJT34yInZdxq5cLkepVIpyuTzi/uifg/fHW3f48tHLRr/m7rvvjldffXVC9b722mvxla98JY4++uhqbpZcMDNUmBkKAJi8VAZ2hFcAAIB6lMrsG6nUmRLbNL9S2fep1JmSVMbhUpLKMaU9pcHMUFUhx5C49evXxwUXXDDp1991112xaNGi0Yu1tQkQhgphKIA8SanDrDMGAAAAALBLKoGYVOqMSKtWZj5hqKqQY6gDjz32WLz22mvR0NAQDQ0NUSgUYmBgIPr6+oZud999d+zYsWO31wpDTZ7L5AEAMCkGSwAAAAAgXcbiAKrvbW97227LsiyLrq6u2LZtW2zbti26urrinnvuGXr+2GOPjauvvno6y6w7wlAAAAAAAAAAFSBgBMDe3HbbbXHjjTeO+/wJJ5wwjdXUJ2EoAHJFRxQAAAAAgGoxmzoAg3p6eoZmf9q6dWt0dHREV1dXPP3003t83VNPPTVNFdYvYSgAcqUaHdFq0cFNQyrHVDWOp7wfo6ns+2rI+74HAACoN9Xq4+o/AgB509/fH2vWrNnjOvPmzYtly5ZFa2trLFiwIFpbW2PRokWxatWqWLVqVRx66KHTVG39EoYCAMiBPAd3qsWALgAAAPVCHxcAoDIaGxvj2GOP3ePsT7Nnz47DDjssVq1aFatXr47DDz88DjnkkJg1a9Y0VlrfhKEAAKbAYCEAAACQOjNDQT65pB9A5TU2NsbVV189Yll/f39s27YtNm7cGOvXr48XX3wx1q9fHz/5yU+iXC7v9h5//ud/Huedd950lVyXhKEAyBUdMagcgyUAAABQH/THIZ+0fYDpMWvWrCiXy/FXf/VXY4afRnv55Zenoar6JgwFQK6kdKkwHdE0pHRMpSCl7amNAgAAAAAAE7Fx48YJBaEiIk488cQqV1P/hKEAyBXhBSotz8eUmaEAAAAAGItxIwAY6cQTT4yHH344SqVSXH/99fGNb3xj3HXvu+++eNe73jWN1dUfYSgAcsWsM1RaSsdUpTlGAQAAABhLNcaNBKwAqAeNjY3xzne+c7cw1EEHHRRHH310XHTRRdHa2lqj6uqHMBQAwBQYMAEAAACAkQSXAGB8Rx11VDz88MPxyiuvxEc/+tGIiHj99dfj9ddfj+3bt8enP/3pWLx4cY2rTFshy7Ja11BzbW1tNgIAAAAAAJBL1Zr5WniFSkolYJVKnVBp7e3thVrXUIfkGHLgW9/6VlxzzTUjli1dujRuu+228V6irU2AmaEAyJWULmmmgwsAAADAdDAOBQBQG62trfGOd7wjNm7cGBs2bIiIiO7u7hpXlT5hKAAAJsVZbgAAAFAfzAwFAFAbX//61+NXv/pVRESccsopccghh8T73ve+2hZVB4ShAAAAAAAAckxoCQCgNj75yU/GHXfcEY8//nj8+Mc/jhNOOCE6OztrXVbyhKEAAJgUA6UAAAAAMJIxMwD2xYknnhiNjY3x85//PHp7e+Pxxx+PYrEYJ5xwQq1LS5owFAC5oiMKleMyeQAAAFAfXCYPKielMbOUagVIWW9vb2zatCneeOON6OzsjK6urujs7By6bdiwIXp7e+PP/uzP4phjjomVK1fWuuTkCUMBkCvVGtipBp3GNKR0TKUgpe2pjQIAAFAv9HEhn7R9gOr5/ve/H1/4whfGfb5QKMT8+fOjtbU1FixYEO9///vjvPPOi0KhMI1V1i9hKACAKTBgAAAAUDupzGiRSp0psU3zK5V9n0qd1ZLKCW95rzOVYyrv7QlIU1dX1x6fP/DAA2PevHkxe/bsaGhoiMceeyw+8pGPxBVXXBHLli2bpirrVyHLslrXUHNtbW02AkBOpNK5jdAZAwAAAAAYlEogJpU6odLa29tNZ1N5cgxTlGVZlEqlKJVKUSwWh+6P9Xi856byum3btsV//Md/xI4dOyZc85e+9KU4/vjj97SKtjYBZoYCAGBSDOwAAAC1lkq/JJU6U2Kb5lcq+z6VOvMulZNnzQzVXvH3TOWzA5PT1dUVZ599dq3LmJBCoRBz586NAw44IE477bRYsWJFrUuqC2aGCjNDAeRJKp3bCJ0xAAAAAIBBqQRiUqkTKs3MUFUhxzBJxWIxLr300qT+LjjowgsvjA996EN7WkVbmwBhqBCGAsiTlH7p0cFlpjOwAwAATFRK/XEgf1IJxADMcAIalSfHUGF33313fPnLX651GeM644wz4qMf/Wgceuihe1pNW5sAYagQhgLIk5QGIYRC0pDSMUVlaaMAAAAA0yeVE/NSqRMqzcxQVSHHUGFZlsWTTz4ZfX19e1xnULlcjlKpNPRz+P2xlo2+DV9+//33R09Pz15rvP7662PVqlV7WkVbm4D9al0AAEDKDEQAAAAAAADMfIVCIU444YSq/zvlcjmKxWKUSqUoFotRLBbj7LPPjjvvvDNeeeWV2LFjR7z55puxbdu23V7b399f9fryQBgKgFwRXKHS8jwzlPYEAAAAwFjyPGYGwMxWKpVi3bp18dBDD9W6lIiIaGlpiaOPPjrOOuuseMc73hH77SfGUwkukxcukweQJyl1wgVNAAAAqBcp9ceB/EnlUmkAM5xLd1WeHEMV9Pf3x5o1a2pdxrg+85nPxBlnnLGnVbS1CRCGCmEogDxJaRBCGIqZrhrtyXEPAAAAkL5UxmGNRUHltLe3C2hUnhzDNMiyLMrlcpRKpaGfw+8PXzb8Nta6462/t3V//OMfx89+9rMRdZ1zzjnxyU9+MhoaGkaXrK1NgDBUCEMBAAAAAADATJbKiXmp1AmVJgxVFXIMdaRYLMadd94ZmzdvjmKxGAMDA1EsFqO/vz+6urripZdeiu7u7hGvuf7662PVqlWj30pbmwAXGwQgV1I5IylCBzcVKR1TVJY2CgAAAAAATMSDDz4Y119//YTWPfbYY2Pt2rWxbNmyKldVv4ShAMgV4QXyyrEPAAAAQMqMbwGQsve85z0REdHV1RURu2aK2r59e3R1dcV99903Yt3Vq1cLQk2RMBQAuZLSLD4692mwnwAAAACg+lx+DoBKevrpp+Oiiy6qdRm7+bu/+7v4z//5P9e6jOQJQwGQKzq3UDkGoAAAgIlK6eQkIH+qMR7hey8NqeynVOoESMnPfvazWpewmwceeCCamppqXUZdKGRZVusaaq6trc1GAMiJlDqNQiHMdMJQAAAAAEyXVMaiUqkTKq29vb1Q6xrqkBzDNCuXy1Eqlap6G/w3Xn/99fj6178+4t9funRptLS0RFNTUxx//PHxp3/6p9HY2Di6TG1tAswMBUCu6DRC5WhPAAAAAABAvWhoaIiGhoaqzc5UKpXiU5/6VLzyyiuxdevW3Z5/7bXXhu7/4he/iDPOOCNWrFhRlVrqnTAUABWR0oxLqUglaJL3fZ/KfgIAAAAAAKA2SqVS3HzzzfHEE0/EsmXL4qyzzorW1taYO3duzJkzJ+bOnTt0v7GxMVpbW2PZsmW1LjtZwlAAVEQqgZC8B3eqIZV9Xy2pHFN530/VkMq+rwbHEwAAALAneR43AYCxPPDAA3HbbbdFRMSrr74ar776ajQ1NQ0FoYYHopYsWRKnn366MNQUFLLMZSbb2tpsBICcSKkTLmzATFeN9uS4BwAAAABIT3t7e6HWNdQhOYY60t/fHw8++GA0NDRET09P7Ny5M7q7u6OrqyteeOGFWL9+/W6vueGGG2LlypWjF2trE2BmKAAAJkVwCQAAAIDpksqJeanUCUD19fb2xt/8zd/ET37ykyiXy7G3yYqampriiCOOiEMOOSTe8pa3xOGHHz5NldYfYSgAckWnkUpLabaxStOeIJ9875FHKR33jlOY2VL5PvFdAgAAMHWbN2+OH/3oRxNe/7777ov99hPjqQRbEYBcSWXgOSKdweeUtmk1pLKfqsFZbpBP2il55LgHKsX3CQAAQH4cfvjh8cADD0R3d3d0d3cPXRrvy1/+cmzYsGG39QsFV8CrFGEoAGBKDOanQXAJAAAAgOliLAoAdmlqaorW1tZobW0dWnbdddfF448/HmvXrh2x7n/8x3/E7/7u70ZDQ8N0l1l3hKEAAHLAYBEAAAAA06UaY1ECVgCk7plnnomurq7o7++PjRs37vb8JZdcEp/+9KdjzZo1NaiuvghDAQAAAAAA5Fg1QiYRgiYAAIMefPDBuPTSS/e63uWXXx6FQiHe8573TENV9UsYCgAAAAAAIMeElkiB4xSASuvp6YnPf/7z8fjjj0ehUIiIiEKhMHQb63FDQ8OI50avM9a65XI5duzYMeG6HnnkEWGoKRKGAiBXdJgBAABg+lVr1hmASkjlkm7kl+MJoDreeOONeOyxxyIiIsuyGlezy5L/n737j7Orru/E/z7zI5NASPgVCBIQkAABobQiW0GWga0g5ceq3RaquFqwSNsVVrT+WqE8ROgW17IoaFl+WbZiZcXytVWsgIxflRUqkvKrIYkUhUDA/JzMJJOZuffsH0mmk8nM5Gbm3Lnzuef5fDzu4/76nHPf99xzbvL5zOt+zgEHxO/93u81uozkZdPlA22kzs5OGwGgJFLqNApuAQAAAABsUY+xXWOwUJyurq6s0TU0ITmGKVCtVmNwcDAqlUoMDg4OXSqVSgwMDIz63Mh2g4ODMTAwsF270Zbv7++PjRs3xv333z9uTVmWxfe///0xny58IzQhM0MBUCo6t1AcA1AAAABAMzDGUTzbFIDp5sUXX4wf/vCHQzNADb/edtlmvMeq1epQuKlSqexwe/hlZJuBgYHYtGnTTmudN29ewe++fMwMFWaGAgCAXZHSLHsAAEwP/oANwGSlErBKpU4ompmh6kKOoUCnnXZao0sY1z777BMf+tCHolKpxJve9KaYO3fuWE0dazUwMxQApZLSH/B1cIHpyvcTAAAAQPoEt4Ayue222+LBBx+MLMsiy7bkiYZfb7s9/P7Idnmebzfz07ZZokZe7+z5ke1Wr14dv/rVr2LNmjWxaNGimDVr1hRvneYjDAVAqeiIUbSUAnZFczwBAAAAQLqM7wEpGn66utEu2wJLw2/neR4zZ86Ms846a9xlx1vf8FPkTWQdoy07ODgYa9asieeffz4iIr7whS9ERMSxxx47dJuJEYYCoFRSCq7oiAIAAAAAAFB2F1988VBgqJn9+q//eqxevTouuuiiRpeSPGEoAIBJKHNozTTaAAAA0Bzq9QNC/XzKyH4PULx3vvOd8fnPf77RZdTdX/zFX0R7e3ujy2gKwlAAAAAAAAAlJrwBxfEDQoDinXPOOXHOOec0uoxJqVQq8a1vfSvWrl0bTz75ZPzzP//zDm3OOOOMuPnmm+Poo49uQIXNRRgKAGASUjr1YgpS2p4GoQAAAABGJxAEANt74IEH4gtf+MJO23V0dExBNc1PGAoAYBIMwgAAAACpc5o8ilaPz17ACoCUve1tb4tNmzaNGojq6OiIE044IT772c82oLLmJAwFQKno3FK0lGYyoli+TwAAAAAAgFq0trbGeeedF7feemts2rRpu+cOPPDA2LRpU3zmM5+JuXPnxkEHHRSnn3567Lnnng2qNn3CUAAAkyAQAwAAAKTO+AaUk9m2AKZWa2tr/MM//EMsXrw4nnvuuVi/fn2sX78+VqxYET/72c+2a/vFL34x7rrrrjjooIMaVG3ahKEAKJWUZvHRaaRIBjYAAAAAgOGM7wHsXJ7nUa1Wo1KpRLVaHfWy7bk8z2tq197eHosWLRp6/O/+7u9Gfe2/+Iu/iKuvvjr23XffKX7X6ROGAqBUdO4oK/s+AAAAACkzvgVArTZu3Bhnn312o8uYtGeeeSa++tWvxuWXX97oUpIjDAVAqZgZirIyMxQAANCMUunrpFJnSmzTYtVrzKzMx1MqdaYkpbHdoqV0jNaD4wnYVS0tLTFnzpzo7u5udCk1a2tri9122y0OOuigOOKII+LII4+M/fffP974xjc2urQkZXmeN7qGhuvs7LQRAAAAAACAUhK06Cp8nam895Sk8jmlUicUraurK2t0DU1IjmEaqFarMTg4GJVKZegy/P622yMf6+vri5///OcxMDAQ3d3dQ5f169cP3e7p6Rn3tb/whS/EscceO/Jhx1oNzAwFAAAAAABQYmUPWpT9/QMAY2tpaYkZM2bs8nJf/OIX45vf/OYuLdPa2hozZsyITZs2xV577RV77733Lr8uWwhDAVAqKU2lbBCG6a7sv3JL6fukaCl9TgAAAMDUK/u4EQC84x3viMcffzx6e3ujr68v+vr6YnBwcId2N910Uxx22GExY8aMaG1tbUClzclp8sJp8gDKJKXwgs59GlLZp+xPAAAAwFjKfpo8imfMDMrHafLqQo6hid13331x4403xrx58+Lmm2+OefPm1bqoY60GwlAhDAVQJql0wiN0xJn+/MIPAAAAgKmSylhUKnVSbnX6W4mARvHkGJpMnufxjne8I7q7u7d7vLW1NT7ykY9Ee3t7dHZ2RlvbuCd5c6zVwGnyAACYEIMwAAAAAADpSSUICNNRpVKJrq6u6OvrG3osz/Ohy7b7g4ODMTAwEIODg9Hf3z90e2QQats6r7/++oiIqFarccYZZ0zNm2liwlAAAJOgg1dewmAAANB4qcy+kUqdKbFNi5XSafJS+exTqbNeUhkzK3udqexTZT+egOnl7rvvjjvuuKNu6+/q6oonn3wyfvu3fzuOPvrour1Os3OavHCaPAAAAAAAAJjOUgnEpFJnRFq1Mv11dXU5dVfx5BimoY0bN8Ztt90WmzZtiizbstuPdp1lWfT29sb3v//9Cb/WHXfcEYceeujIhx1rNTAzFAClksovfSJ0GgEAAGBnUvkjbip1psQ2La9UPvtU6iy7VMaLzQzVVfg6U3nvwPSz2267xWWXXVZT2xUrVuxyGOpd73pXzJo1K2bPnh0LFiyYSImEmaEiwsxQAGWSSuc2QmcMAAAAgKlR9qAFFElwh7IyM1RdyDE0if7+/li9enW89tpr8dprr8Wrr74ar732WqxcuTJ+8YtfxGuvvTbU9pOf/GScccYZ463OsVYDM0MBAAAAAACUmKAFKRAyAiAFAwMDOwszjau1tbXAaspLGAoAYBJSmm2saAaLAAAAAAAA/k1LS0ssXLgwli1bVvMy559/fpx55pkxa9asmD9/fh2rKw9hKABKRXgDilPmIFiE7xMAAACAqWQsBmB8GzZsiBdeeKGur5HneVSr1VFv78olIqJarY56u4jXaHStCxcujMMPP3yHdVWr1ejr64uenp7453/+56HtesQRR8Shhx5a7IdVcsJQAJRKSuENnXuKVI/9ydTkAAAAAEwVY1EA4zvvvPMaXQITdO2118Y111wTc+bMif/1v/5X7L///o0uKXnCUAAAk1DmAZMyv3cAAAAAAJhOPvvZz8bXvva1mtpmWTY0u9G2+xMx2nq23d+2zpH3J/Iao61nsuvdZmczStU6C9Vos0Bt2rQpent7Y3BwcNwatr1ed3d3vPzyy8JQBRCGAgCYhFRmGxNcAgAAABidGYcAaAYnn3xynHzyyY0uo/T6+/vjzDPPrLn9cccdF8ccc0wsWrQoTjnllDpWVi7CUAAAk1DmgS0DhQAAAEAzMB5RPONGAJRVa2trdHZ21vxv4ZNPPhlPPvlkRER85zvfiVmzZtWxuvLIhk9ZVladnZ02AkBJpDKLT4TOfSpS2qcolmMUAAAAYOoIWMH01tXVNblzlTEaOYYmceONN8Z99903bpsTTjghrr/++lpO++dYq4GZoQAAJsGACQAAAACwTUqhrZRqBUjZ7Nmzd9rmpz/9aSxfvjwWLlw4BRU1P2EoAIBJKPPMUAY2AAAAACBdxvcApsb73ve+OO+886KnpyfWr18f69evj6VLl8bdd9+9XbtLLrkkrrzyyjj99NMbVGnzEIYCAJgEAwYAAAA0CzOElFe9fuzl86dI9qc0+LcEYEcf+MAH4he/+EVNbY866qg6V1MOWZ47zWRnZ6eNAAAAAAAAAAVIZTb1eoRsUgoDpVQr019XV1fW6BqakBxDk/jxj38cn//856O9vT3a2tqitbU1Vq5cGQMDA6O2v+GGG+L4448fa3WOtRqYGQoAgAkxWAIAAADAaFIJGZWdsTiAqXHyySfH7Nmz47/+1/9aU/tPfvKTcf/999e5quYmDAVAqaTUYdYRZbqzjwIAAAAwVYxFAZCyvfbaq+a28+bNq2Ml5eA0eeE0eQBlIgwFxSn7zFApfZ8ULaXPCQAAAGgOZR+LgunOafLqQo6hCfzqV7+K9evXx+bNm6Ovr2/o+vnnn4+vfvWr4y573333xdy5c0c+7FirgZmhACgVnVsoTtmPp7K/fwAAoLGEAgAAYHpbvnx5XHLJJTHRSYr6+/sLrqg8hKEAACahzLMD1YOBdwAAgNroPwFMTymFVVOqFUhLnuejXqrV6i4/Vq1WIyLq/lgRtY68X6lU4td+7ddi5cqVsW7duujr69ul7bhmzRqnzJsgYSgAgEnQuQcAAAAAUmRsE5isX/7yl/G+972v0WU0rbY2kZ6JsuXCjA5QRv6DX14pfefbTwEAAACYCvUaM0tlfMvsOEx3xrWB6WrfffeNo446KpYsWdLoUprCgw8+GC0tLZFlWaNLSV420XMTNpPOzk4bAaAkdBoBAABg6qXUHwfKpx7jcL73gBKS3iieHEMd9PX1xVlnndXoMnZw6qmnxtVXX11LU8daDcwMBQAwCWUe2BLYAwAAaqX/AJSN773ipTKDVyp1QtHKPFbO9HX//ffH9ddfH3vssUfMmjWr0eWM6mtf+1rMnz+/0WU0HWEoAIBJMBBBGRnYAABgV+k7AQAAU2316tUREbFhw4bYsGFDg6vZor29PQYGBobuX3LJJXHttdfGscce28Cqmo8wFABACaQSXvEHkjT4nAAAAAAAmO4uvPDCOPvss2Px4sUxODgYlUolKpVKVKvVca/HaldLm9GWeeaZZ4ZqGh6EitgS1FqyZIkwVMGEoYBSMk0tUJRUQkapSGl7+t4HAAAAAIDpba+99orTTjutbuvP8zwGBwdjcHAwBgYGtrvedvuP//iPdwhBDfelL30pvvSlL8X8+fPjlltuiTlz5tSt3rIQhgJKyR+wgaL4PgEAAAAAAGh+55xzTvT29tZt/StXroyurq4499xzI8uyur1OGQhDAQAwIWbZAwAAAAAAyqKzszO+/e1v1/U1brjhhrjhhhsiIuKee+6JefPm1fX1mpUwFAClImhBWQkuAQAAAAAATNxHP/rR+OhHPzqpdVQqlaHT5z333HPx6quvxvr16+OVV16J5557LpYuXTrUtqenRxhqgoShAABKQHAJAAAAAOovpXE4P6AEmHpZlkWlUolnnnkmPvGJT+zwfEtLS1Sr1WhpaYnZs2c3oMLmIAwFQKnUo3NXLzqNTHcGSwAAAABgeymNmRmLAyjWihUr1ouxkwAAIABJREFU4rLLLou1a9fGnDlzYs6cObHbbrtFX19fbNy4ceiS5/moy3/ve9+L9vb2Ka66OQlDAQCUQEqDMAAAALVKpa+TSp0psU2LVa8fEJb5eEqlznpJ5UepZa8zlX2q7McTkI6lS5fGmjVrIiJi/fr1sX79+nHb77PPPnHooYfGQQcdFLNnz45vfvObccYZZ8Ree+01FeU2tWysxFmZdHZ22ggAJZFK5zZCZ4zpzyAEAAAAAFPFWBRMb11dXVmja2hCcgwJGhgYiNdeey1WrlwZK1eujNdeey02btwYmzZtik2bNsXGjRtj3bp18dJLL0VPT88Oy3/wgx+MCy64YLyXcKzVwMxQAACTkErArh4DOwaLAAAAAGB7QlsA5dbe3h4HHnhgHHjggds9/tRTT8Vll1026jJZlsWCBQvi0EMPjZNPPnkqymx6wlAAlIpOI2VlEAYAAAAYi1NwdRW+zlTeOwAwNWbPnj3mczNnzoyDDz44TjvttHjd6143hVU1L6fJC6fJAyiTVGbxiTBgkopU9in7EwAAAAAA9eI0eXUhx9CkqtVqrF69OlasWBHLly+PpUuXxqOPPhrd3d1x2WWXxTvf+c7xFnes1cDMUAAAkyBkBAAAAAD1l8oMXqnUCUD99fb2xoc//OFYtmxZzcv09/fXsaLyEIYCoFR0GimamaGAsknle68efJeWV0r7vf0UprdUvk98lwAwWan8mwcARahWqzEwMBADAwPR398/dPuFF17YpSBURMTcuXPrVGW5OE1eOE0eQJmk1Ak3+AwAAAAAsEUqMy6lUiflVqe/lTh1V/HkGKapnp6eOPfccwtf7+677x533XVX7L333uM1c6zVwMxQAJSKTiNFSylgVzTHEwAAAABAelIJAsJ0NWPGjDj++ONj8eLFha73y1/+csyePbvQdZaVMBQApZLSf8YFTdJQ5s/Jr9wAAAAAACBdixcvjl/+8pfjtsmy0SciyrIstp2JbKw2u7K+barV6tB6R7u97VJL211Z365e5s+fH2eeeeYuL/fjH/94zPf+n//zf97u/r333ruzWaIYg9PkbWEjQMn4Y3t5CUMBTF5K36UAAAAAwJRw6q7i1TXH8NJLL8V73/veer4EkzRGGMqxVgNhqIjo7Oy0EQCACREKKZYQIAAAAED6UhkzS+VUYcbMSEFXV5eARvHqmmPI8zy+853vxJIlS4buF73+iO1nkBqrTS3r2Wa89Y1lrFmgqtXq0GuMfKyWmaNGtq3ltYa3HRgYiNdeey0GBwe3q/fjH/94vP3tbx/r7TjWauA0eQAAk2AgAgAAAAAASE2WZXH22WfH2Wef3ehSClepVOLzn/98PPTQQxExeuhqIqGq0Yx2qsBaQ17Dg1HDPfbYY+OFoaiBMBQApZLKL5IihGyA6Sul71IAAKYHfVyAckllxqWyM4sV0Kx6enri/vvvb3QZE3L11VfHqaee2ugykicMBQAwCQZhyqvMAztlfu8AAAAAzcIYD9Cs5s6dGw888EBUKpWoVqvbXSqVyg6Pj3V/+OO1LDNem4ceeiiee+65ndZ+9dVXx3nnnRcf/vCHp2BLNS9hKACASTBgAAAAAADb8wNCABqtra0t2tqmTyTmd3/3d+P555+PzZs3x+DgYPT29sbGjRujt7c3vvvd78azzz471Hb//fdvYKXNYfp88gAwBQRXKFoqAzv2fQAAAGAs9RrfMB5RXj57ANjRYYcdNnS7p6cn/uAP/iBWrVq1XZsPfvCDccEFF0x1aU1HGAqAUkkluBJhwIBi1WPft48CAABAc9DHJwXGtwBoFnmex5o1a3YIQkVE3HLLLXHLLbfEgQceGLfcckvsvvvuDagwfcJQAJSKzi1FS2WfSikICAAAAAAjpTIOl0qdEQJmAI1y2223xd133z1umxUrVkR3d7cw1AQJQwFQKikFQnQaKVI99ieDJQAAAABMlVTGolKps57rBWBsp5122pjPnXrqqfHHf/zHMW/evMiybAqraj7CUACUis4dRUslYFePfd/xBAAAAAAAsKNqtRr9/f2xefPmoevNmzfHUUcdFUuWLBl1mR/84AfR2dnp7y8FEIYCoFRSCa5ECJoAAAAAAGlKaRwWACbqG9/4Rtx8882FrKujoyNOP/30aGtri0cffTQGBgZi/fr1cfrpp8esWbMKeY0yyfI8b3QNDdfZ2WkjAAAAAAAAQAFSOlUcUIyuri7n9CpeMjmGDRs2xLPPPlv4evM8H7pUq9WI2DLj0vDHRraZ6HMTWfff//3fx6ZNmwp/38Ode+65ccUVVwx/yLFWAzNDAVAqKf0iSeceAAAAAEhRPcY2UwlYpVInQJHe8573xIYNGxpdRtNYuHBh7LvvvrH//vvHRRdd1OhykiQMBUCp6DRStFQCdvZ9AAAAAACgHq699tr4m7/5m0aXURe7MuvUK6+8EuvXr5/U611zzTXx5je/Odrb26OlpaWgd1E+TpO3hY0AJSMUABRFGAoAAAAA6s+MSzC9OU1eXcgxTAPVajUqlcqYl8HBwaHbDz74YNx9992Fvv7FF18cF1544fCHHGs1MDNU+I8OQJmkElyJ8O9TKlL5nAwWAQAAAED9GYcDSMcrr7wS7373uxtdxrh+4zd+o9ElJEkYCgBgElIJ2BkwAQAAAMZSr/EN4xHllcqYGQDlMvyUdtVqNdrb26OjoyM2b97c6NJir732invvvTeyzMRPRRCGAqBUDMBQVgagiuf7BAAAgGahjwsATMZNN90U9957b6PLSNrrX/96QagCCUMBAExCmQcLTfldXsJ1AAAAQDNIZYwjlTqB8lq1alWjS0jOggUL4nWve13ssccesc8++8QBBxwQjz76aBxwwAFxwAEHRHt7e6NLTFqW53mja2i4zs5OGwGgJFLqNAqFpCGVfcr+BAAAAEDKUvlhXip1QtG6urpMaVM8OYZRjDzV3USvI6KQ9ezsenBwMHp7e6Onp2fosmHDhu2uV61aFQMDA0Pv8dd//dfjL//yL8faBI61GpgZCoBS0WmkaPYpAAAAIHX1+rGXcROY3gS3gBRlWRatra2NLmOXrV+/Pq677rpYuXJldHR0xIwZM2L27NnR3t4ebW1t8eKLLw61ffe7393ASpuDMBQApZLKLD4ROo2pSGmfoliOUQAAAJqFPi6Uk2MfYOosXrw4HnvssZ22u+uuu+Kggw6agoqamzAUAMAkGDAAAAAAAABgPKeeemp8/etfj/Xr18eaNWtizZo1sXr16rj99tu3a/fEE08IQxVAGAoAAAAAAAAAAOpov/32i/3222/ofp7n0dbWFrfccsvQYzfccEOsWbMm3v/+9zegwuYhDAUAAAAAAAAUpqurq/B1mqEdgJQ89thj8fGPf3yHx2fMmBG777579PX1RV9fX+R5vkObnp6eqSixqQlDAQAwIQa1AACARkulX5JKnSmxTcsrlc8+lTrrJZVtmop6vfdU9qmyH08wEXmeD10iIqrV6k5v53ke1Wp11NtFXIqoYyprmuxr33PPPaN+Nv39/dHf3z90/33ve1/sscceMXPmzJg1a1Ycd9xxse++++76h852stFSZmXT2dlpIwCUREodZp0xmN5S+j4pmu8nAAAAYKqlEohJpU4oWldXV9boGprQLucYHnzwwbj22mvrUQt18vWvf327U+fVwLFWAzNDAQAAAAAAAAAk7o1vfGPstddesXbt2kaXQo2+8pWvxJw5c+JNb3pTvPnNb250OU1DGAoAACbAL/IAAAAARlfmGbUBGmn+/PnxzW9+s9FlEDueWm/FihXx/ve/f4d2999/f0RsmSHqoosuine/+93R2to6laU2JWEoAAAAAAAAoDCpnH4OAOoly7LtQk2vf/3r4+GHH46IiB/96Edx5ZVX7rDMHXfcEfvvv3+cccYZU1ZnsxKGAqBUzORC0co8CON4AgAAAIDtGTMDKK/ly5fHH/7hH05qHVmWFVRNuQlDRbn/iAllpTMCFKXM3yf1+D9UmbcnAAAAAOkzZgZQXmvWrJn0Oo4++ugCKkEYKvwHAqBMUgrA+veJ6c4+CgAAAAAAlF2e5zE4OBjHHnts3HfffTEwMBCDg4OxefPm6OnpiQ0bNuxw6e7ujg0bNsRPfvKT7da1ZMmSOPDAAxv0TpqHMBQAAAAAAAAwrflhXvHMYgUwMT09PXHuuefWZd15ntdlvWUjDAUAAAAAAABMa4I7xSv7+wd29NRTT8XDDz88dD/Lsu2e33Z/rMd31m6s52ttl+f50KVarUZERLVa3e7xXX2+lrYjl+nv7x+13iK0tYnxFMFWBACYhJROvQgAAAAA/JtUxvZSqRNI32WXXdboEppeS0tLdHR0DF0OOOCAmDdvXhxyyCFx5JFHxm/8xm80usSmIAwFAMCE+OUYAAAAAFMllZmhUqkTiia01xzuvPPOePzxxyNi7NO1bXu81ueLaLdtxqaR18NnbNpZu1ra7KxdxJbZowYHB2NgYCD6+/uHroffHhwcHHMbV6vV2LRpU2zatCkiIn71q1/FwQcfHG1tbbFo0aIxl2PXCEMBAExCmQciDOwAAAAAAEDzOOSQQ+KQQw5pdBnJq1aro4alRoament74/nnn49ly5bF/fffH/fff3985CMfiXPOOafRbyF5wlAAAEyI4BIAAAAAAMD2hp8KbzQvvPBCXH755dHd3b3Dc3Pnzq13eaUgDAUAMAmm/k2D4BYAAAAAU8E4FAA786Mf/WjUIFRExFVXXRWnnXZaXHXVVVNcVXMRhgIAmASDGwAAAACwvTL/gLAe790YJEB61q1bF3fddVfkeR5tbW3R3t4eg4ODsXHjxujp6YljjjkmXnnllVizZs0Oy77pTW9qQMXNRRgKAAAAAIAkpfIH51TqTIltWl5lDtmUfR9N5fu5HupVZyr7lO98IEW33XZbfPvb3x63zZve9KY45phj4ogjjoi3ve1tsf/++09Rdc0vy/O80TU0XGdnp40AUBKpdG4jdMZSkdI+VTT7KAAAADSHsgctSEMqgZhU6oSidXV1ZY2uoQnJMSSsr68vHnjggejv74/bbrst+vr6dmhzzTXXxOzZs2P27Nmx//77xx577FHLqh1rNTAzFFBKKXVGUgla6IwBAAAAAClKabyY6c9nD0BExMyZM+Pcc8+NiIjly5fHd7/73R3aXHnllTvc32effYYus2bNmpJam5GZocLMUABlkkq4LEKnGQAAAAD4NynN4JXKOGwq791YMSkwM1RdyDE0oUqlEr29vdHT0xMbNmyIT37yk7F27dpR295xxx1x6KGHjnzYsVYDM0MBUCo6jQAAAACwvZRCNmWW0vZMJWQEAFOttbU15syZE5s3b45LL710zHYnnHBCLFiwYAoray7CUAAATIhfuQEAAEBz0B8HAMqoWq3GN77xjVi+fHmMPKtanuc7PDb8udFuD1+uUqnE4OBgVCqVUS+9vb1j1nXkkUfG5z73uUm8M5wmL5wmDwAAAACgnszmAUxnZjECKIRTdxVPjqHOli1bFpdcckmjy9jOZZddFmeddVbMnDlzrCaOtRoIQ4UwFAAwcQa2ysuvZgEAAACmTiqzlKdSJxStq6tLQKN4cgxT4Mknn4yVK1cO3c+y0XflLMsiz/OoVqtjzvZU6+W73/3umPXcdttt8YY3vGG8kh1rNXCaPABKJaXgig5uGnxOAAAAAECKBLcAIo477rg47rjjpvQ1Z8yYEd/61rdGfe4DH/hAREQcdthhceONN8bs2bOnsrSmIQwFQKnoiAEAAADA9ur1A0JjcRTJ/lQ82xSgeNVqNW688cYdwk5Zlg1dKpXKTtfz/PPPR09PjzDUBDlNXjhNHgAwcSnNNlY0gyUAAECjpTKjRSp1psQ2La9UPvtU6qyXMo+ZpSSVfarsx1MqnCavLuQYEtTf3x9nnnnmLi+3YMGCOO200+Kkk06Kgw8+OHbbbbexmjrWaiAMFcJQAAATYRACAAAAgNGkEoYqexAupVqZ/oSh6kKOIVF5nkd/f39s2rQpNm7cuN3197///fjHf/zHcZc//fTT48orrxzracdaDZwmDwBgElIZ2ElFStvTwA4AAADNwmnyKFoqIaOyc4wC1EeWZdHR0REdHR2x5557bvfcxz/+8Z0uf/zxx9ertNIwM1SYGQqgTFLqMOuIAgAAAABskcosRqnUCUUzM1RdyDE0oZdeeimeeeaZ2Lx5c/zLv/xLLF26NF5++eXo6+vboe3f/d3f7RCmCjND1cTMUACUik4jAAAAAAAA0AgLFiyIBQsWxIoVK+KGG24Yt+3AwMAUVdV8hKEAAJgQv3IDAACA5uA0eQDQeFmWfSoiro2Im/M8/y+NrofiVSqVWLNmTaxZsyZWr14dBx10ULz44ovbtfngBz8YF1xwQYMqbB7CUAAAk5DSqRcBAAAARiO0BACNlWXZb0bEH0bEk5NdV7Vaja985SvxwAMPDF//qLdH1DDm/bGWKbJtPZbb9lye50PX1Wo1IrZsp22Pb3ts+PPjtR15u9ZLpVIZWna4/fffPxYuXBiHH354nHnmmeNuB2qTjbahS8hGgJJJ5TzgEQYiipZScMVnn4aU9imKVeZj1H4PAAAAAIwwfpKFMWVZNjcifhZbwlBXRcTTW2eGmlCOoa+vL84666wCK6RI++23X+y3336xxx57xMyZM6OjoyP6+/vj9NNPj5NPPrmWVTjWaiAMFRGdnZ02AkBJpPQH/DIHLQAAAAAAhqvH2G4qP5yu11hxSrUy/XV1dQloTFCWZV+PiBfyPP94lmVdMSwMValU4rHHHotly5bFwoUL48QTT4zW1tadrrOnpye6u7t3eHysfMjIGYxGzng0/P7I2ZLGe2xX1zFeDbWsYyKvU2utlUolBgcHhy4DAwND15VKZdz7g4OD0dfXt9PP7eGHH95pmxCGqonT5AFQKjpiFC2lgB3F8n0CAAAAAMBkZFn2hxFxeES8d+RzlUolPvaxj8Wzzz4bfX190d7eHgsWLIj3vOc92wWixjtl3Lb7o51KLsuyMduPdZq3yT43/BR0O3tuZ8sMP11drc9Npt4sy6KtrS3a2tp2ua6IiKVLl8arr766w+cQEfFbv/VbcdFFF436HBNjZqgtbAQoGX/ALp5ACAAAAAAAQGmZrWYXZVl2ZET8KCJOyfN8ydbHumLrzFD/9//+3/yaa66JTZs2NbJMJqilpSXa29ujra0tZsyYEbNnz4729vZ4/vnnd2h79dVXx6mnnlrrqh1rNTAzVAhFABTBdykAAAAwFj+iAqazVE6VBkDTeUtE7BsRTw+boak1Iv59lmWX3nbbbaOeWu2QQw6Jgw8+eLvHRpsEZ+QsR6M9P/K5nZ1Gb7LrGtluZ3WPtq7RnhttNqexTpc32nPDT3+37dR229pOVLVajc2bN8fmzZujt7c31q5dO2bbAw88cFKvxY6EoYBSch5soChlHtjyvQcAANRK/wEoG997xUtlXD+VOqFoZR4rn4T7IuKnIx67MyKWRcR1ixYtemrmzJnbzQw1c+bMuOSSS+Itb3nLFJZZTttCUpVKJQYGBnYITG0LTY18fuPGjfGZz3xml17rqaeeisMPP7xO76SchKGAUtJxKK+U/jNuPwUAAAAAAGhOeZ6vi4h1wx/Lsqw3Itbkef50pVKJRYsWxbPPPhubN2+Ojo6OOProo+PEE09sTMEl09LSEjNmzIiIiFmzZtW8XLVajfPOOy++9a1v1bzMj3/845g1a1YcfPDBccABB8See+4Zw2YLYwKEoQAoFQEjAAAAAID6SulHqUUzBg0UpbW1Na6//vp47LHHYvny5XH44YfHiSeeGK2trY0ujXG0tLTEW9/61qEA1fDT+m0LOOV5HoODg/Hiiy/GP/3TP8Xjjz8ejz/++A7ruueee2LevHlTU3iTycY652OZdHZ22ggAJZFSJ1ynmenOlN8AAECjpdIvSaXOlNim5ZXS+F7Ryr6Plvmzr5dU9inf+Wno6uoyjU3x5BgStHnz5nj7299eyLruvPPOOOSQQ0Y+7FirgTBUCEMBlElKHWadMQAAAACALVIJxKRSJxRNGKou5BgS9fTTT8fTTz8dEf82M9TIWaH6+/u3u2zevDkeeuih7dZz++23x2GHHTZy9Y61GjhNHgClotMIAAAAAAAAW+R5HtVqNSIiqtVq5Hm+w2Xb87vSdqLPF7muer1WUduqUqlEb29vdHd3x/r163f4bFatWjVaGIoaCEMBUCpmhqJoqexT9icAAAAApkoqY2YARFxxxRWxePHiRpfBMEceeWScd955cfzxxze6lGQJQwFQKgIhAAAAAAD1lcrp5+rBGDSQmt/5nd+JJ598clLr2DYDEsXo6+uL3/7t3250GUkThgKgVFLpMEfoNFOseuz79lEAAAAARpPSOGzRjMMBqXnrW98aDz300KTWcc8998SXv/zlgioqh9e//vXxP//n/4wsy3Z4bvbs2Q2oqLlkeZ43uobpwEaAktFxAAAAAAAgQnglFal8TqnUCUXr6uraMdHBZMkx1EGlUokPfOAD8cILLzS0jo6Ojthjjz2io6MjOjo6olKpRGtra/zpn/5pHHXUUeMt6lirgZmhwn8gAICJS+VXbv6/AwAAADA64yYAUB6tra1x5513TmjZarUag4ODMTAwMOZ1f39/bN68eeh622Xk42vXro3vfe97O7zGU089tbMwFDUQhgKgVFIJrkQYhEmFz6m8Uvo+KZr9HgAAAACAsmlpaYkZM2bEjBkzamrf09MTl19+eTz//PM7bXvRRRfFggUL4i1vectkyySEoQAAJqXMgZiyEwgCAACA5uC0ZsUzZgbAdPSrX/0qrrjiili1atWUvF5fX1/Nbe+44454+OGH61hNuQhDAQBMQpkHtgwUAgAAtfJHcWA6q8d4hO+9NKTyOaVSJ8B0t3jx4njppZcaXcaY8jyPLMsaXUZTEIYCAAAAAKCu/PABKJuyf++lEt5JJQhX9v2JNKRy3FNef/RHfxRLlixpdBljetvb3tboEpqKMBQAAExAmTv3BuAAAACA8aQSMgKgPI444ohpG4bKsiyefPLJ+JM/+ZM4+OCD4+CDD46FCxfGm9/85kaXlqwsz/NG19BwnZ2dNgIAAAAAAABMU6nMuJRKnVC0rq4u5/YqnhxDIqrValSr1ahUKju9bGvX09MTa9asiTVr1sSqVauiq6srXn311e3We+utt8bhhx8+8uUcazUwMxQAAAAAAECJ1WvGnVQCHMIrAMBktLS0REtLS7S17XoE54EHHoibb745IiJ23333OO6442LvvfeORYsWxRve8IaiSy0NYSgASiWlqZQNmKQhlX3K/gQAAACMpezjBmV//wDA1Orp6YlXXnklXnnllbjuuuuGHv8//+f/xKxZsxpYWfMQhgIAmIQyD5b51SQAAAAAo0nlB4QAMBXyPI+BgYHYtGlTvOMd7xi1zcKFC2PmzJlTXFnzEoYCAGBCBJcAAAAAAAB2dO+998ZNN91Uc/tly5bFbbfdFu9///ujvb29jpWVgzAUAAAAAAAAUJh6/IjObFMATEcrVqyICy+8sJB13X333XHYYYfFf/gP/6GQ9ZWZMBQApWImG4pmEKZYjlEAAABgqtVjfMcYR/FsUwCmo9bW1kLX99nPfjZefvnleO9731voestGGAqAUkkpuKJznwafEwAAAEDajO+kIZXQmv0JoFzmz58fDz/88KjP9fT0xKWXXhorVqzYpXWuXr26iNJKTRgKAAAAAIAkpfKH8VTqTIltWl6pfPap1Fl2Kf14th5S2accT0CKnnvuubj00kt32u6///f/Hm94wxtizpw5MWPGjCmorByyPM8bXUPDdXZ22ggAJZFS5zaVzlhK2xSKlMoxCgAAANAMUgnEpFInFK2rqytrdA1NSI4hYbfffnv8zd/8TU1tX/e618XChQtj4cKFcc4558TcuXPHa+5Yq4GZoQCASdERLy8DOwAAAABMFeNGAM0tz/OhS0REtVodup3neVSr1VFvF3EZ+Xpj3R6vjpE1HX/88XH00UdHb29v9PT0RG9v79Bl2/2enp7o6emJF198MV5++eX4wQ9+EC0tLfH7v//7dd/ezU4YCgCACTEABQAAAMBU8cM8gF332muvxfnnn9/oMtgFu+22W6NLaArCUAAAAAAAAAAlI2AGza+tTSQkNcccc0yjS2gK9nwASkVHjKLVY8CgHuqx7xssAQAAgOZQr/EN/XyY3hyj0Pz23nvvePjhhxtdRl0Vdaq8Rl0+9rGPxcDAwND7ef755+Pwww9v4BZtDsJQAJRKKsGVCB3RVPicAAAAgNQZ3yAF9lMARpNlWWRZ1ugyJmRwcDA+8YlPxDXXXDP02D777NPAipqHMBQAAAAAAAAwrZmlHICUdXd3x9VXXx1Lly6NTZs2RbVa3e75mTNnxle/+tXYe++9G1RhcxGGAgCYhJRmG0tBStvTYBkAAAA0ByGbNNimAKTsiSeeiCeeeGLM5/v6+mL27NlTWFFzy/I8b3QNDdfZ2WkjAJSEoAUUx0AhAAAAAFMllbGoVOqk3Or0t5I0z1M2vckxNJnVq1fHhg0bYt26dfHqq6/GK6+8En/913+9Q7vzzz8/Lr300rFW41irgZmhAACYEIMwAAAA0Bzq9QNCYwcA01MqQUBI3Zo1a+J3fud3dnk5M0RNnjAUAKViAKZ4Ze/g2KcAAACA1BnfAADK5p/+6Z/iYx/7WKPL2M53vvOdmDVrVqPLaApOk7eFjQAlo3MPMHmm/AYAABotlX6JOouXUq0pKPuP3VJR5n00wn5aD6n8W1IPKR1PqWzTcOquepBjqKNvfOMbcfPNNze6jB3cc889MW/evPGaONZqIAwVEZ2dnTYCQEkk1GlIqjMGAAAAAFBPqYQgU6kTitbV1SWgUTw5hgarVqtMfdjqAAAQSElEQVRRqVR26TLaMn/6p39a82v++Z//efzmb/7meE0cazVwmjwAACbEwA4AAAAAo0npR6kAMJaWlpZoaWmJ9vb2Sa3nU5/6VFx33XXjtpk3b17cfffd0dYmxlMEWxEAAAAAAAAoTCozLgGQnsWLF8dPfvKTGO0saCMf25UzpY21bJ7nUa1WJ3WpVCpx7LHHDt2uVquR53n09fXFiy++GBER3d3dUalUhKEK4jR5W9gIUDJmHgGKksogjO89AACgkVLpOwHlJLgDUAin7iqeHMMoTjvttEaXUFe33357HHbYYeM1cazVQKQs/HEQoExSGoTw71Mayvw5OU0eAABQq3r9Xz+VfkkqdabENi2vlMb3ilb2fbTMn329pLJP+c5Pg2OUqfJXf/VX8cQTT0RERJZlQzM4Zdn2GaGR9yMifv7zn8f3vve9+hc5CS+//HLsvvvu0d7eHnvvvXejy0mWmaEiorOz00YAACakzB08AwYAAECtytx3Aqa/VEKQANOc2WqKJ8dQsEcffTQ+8YlPNLqMmt15551xyCGHjHzYsVYDYagQhgIok5QGIQRNmO78IgsAAACAqZLKWFQqdUakVSvTX1dXl4BG8eQY6qBarcatt94a3/72tyMiYnhmZmR+plqtRqVSGbqeinxNS0tLzJ07N9761rfG5ZdfHq2trSObONZq4DR5AABMiIENAACgVin9OAkon1QCMRQvlc8plToj0qoVKKeBgYH427/920aXsYOZM2dGa2trVKvVWLt2bcyYMaPRJSXNzFBhZigAAAAAAACYzlKZxSiVOqFoZoaqCzmGOtm8eXP09fVFlmWR53lUKpWhy8jZoLZd1/r8eG1GW1d/f3+sWbMmVq1aFT/72c+2q/PWW2+Nww8/fGT5jrUamBkKgFJJ6VcpOrgAAAAAAABQrI6Ojujo6Kjra/T19cWDDz4YAwMD0d/fH319fdHd3R3r1q2LtWvXxrp162LdunXR3d293XKve93r4qKLLoojjjgiDjrooLrW2MyEoQAAAAAASFIqs2+kUmdKbNPySuWzT6XOskvlx7Op1BnheALY5qabbopvf/vbNbWdN29eXHDBBbFw4cI4+uijo7W1tc7VNT+nyQunyQMok7J3GgEAAAAA6i2VcdiyB3dSqpXpz2ny6kKOIWHr1q2Lv/7rv46WlpaYMWNGtLW1xebNm6O3tzd6e3tj48aNsXHjxli7dm28/PLLMWvWrLjvvvtixowZO1u1Y60GZoYCAAAAAAAACpNKyAgA6mXPPfeMyy+/fKftPv3pT8fLL78cmzZtinXr1sV+++03BdU1P2EoAIBJSGUQxi+yAAAAAEiZ8a3i2abQ3F555ZW49tprI4WzhWVZNmadu/Lc8PsTfS4iIs/zcS8REdVqdbvbtSw32nrWrl079Lrnn39+fO5zn4sTTjihxi3HWIShIp0/YgLF8R98oGz8f6d4Zf63xP4EAAAAMHWMxQAT8fWvfz2eeeaZRpfBLuru7m50CU1BGCrK/YcsAICJ8n+o8vLZAwAAAFOtHoGgVE7nZyyGognYlcOHPvSh+K3f+q3IsmyH54bPkDSR54bfHjlD0rbbeZ5vN2PSRGdP2tmMTJN9vfHWWa/384//+I9jfWxx3333xRvf+Eany5ukLIUp0eqts7PTRgAA2EUGdgAAAACYKqmMRaVSJxStq6trx+QMkyXH0KT6+/vjwQcfjIGBgdi4cWM88sgj8fTTTw89v2jRovjSl7401uKOtRqYGQoAYBLK/AsagzAAAAAAAACj6+npicsuuyz+9V//tab2nZ2dcdBBB8WZZ55Z58qan5mhwsxQAGWSUnBF0AQAAADGl8rsG6nUmRLbtLxS+exTqTMlKY3tpiKVfcrxlAYzQ9WFHEPiVqxYERdeeOGElj3ppJPiqquuio6OjpFPOdZqIAwVwlAAAAAAAAAwnaUSiEmlTiiaMFRdyDE0iUqlEt3d3dHd3R3r16+PO++8MxYvXrzT5f73//7fsWDBgpEPO9Zq4DR5AJRKSr8e0sEFAAAAAACAtLW2tsZee+0Ve+21VyxZsiQOPPDAMcNQF198cZxzzjkxe/bsaGsT6ZkoWw4AYBJSCdgJ1xUvlc++HuxPAAAAAACwa/I8jw9/+MPR19e3w3MLFy6Miy++OE488cTIMpM/TZYwFADAJAiFlJfPHgAAAGB0Zf4RGQBERPzwhz+Mq666qub2y5YtE4QqkDAUAMAkpDKwI7gDAAA0o3r0yerRf0qlzpTYpuWVymefSp31kkqtqYzt1avOMn9Oqbx3IF1r166tue3MmTPjL//yLwWhCiQMBUCp6OBQtFT2KQMGAAAAAEyVVEJGAFAv5513Xpxwwgnxnve8Z6dtZ8+eHXmex8qVK2PvvfeOGTNmTEGFzS3L87zRNTRcZ2enjQBQEil1wgVN0pDKPmV/AgAAAGCqlHnMzI8SKauuri5T2hRPjqFBqtVqVKvVqFQqUalUtrs9/DJam7Habty4MdavXz90ee6552LJkiWjvv4pp5wSn/nMZ8Yqz7FWAzNDAQBMQioDEQZhAAAAAJgqqYSMACiXn/zkJ/HJT36y0WXs1CmnnNLoEpInDAUAUAKpDEClFLAq8wBcSp8TAAAA7EzZxzhSYZsCMFnz5s1rdAnjmjlzZhx11FGxaNGiRpeSPKfJC6fJAwCan0E9AAAAYCz1+sGPsQOKZHwLpjenyasLOYbE5Hke1Wo1BgcHdzhN3tKlS+NTn/pUTes56qij4stf/vJYTzvWamBmKABKJaWZXHTEKZKZoYqX0vdJ0VL6nAAAANg5/TwoTtnHzADKLMuyaG1tjdbW1h2e22OPPUZd5l3velfsu+++sfvuu8duu+0WeZ7H8ccfX+9Sm54wFADAJAjElFfZ3z8AAAAAAFCbN77xjfHwww9HT09PLFu2LO6+++746U9/Gt/85jfjpJNOikWLFsWJJ54Y8+fPb3SpTUEYCgCgBAR3AAAAAEiZ8S0AdtW209Ztu65UKjXd3rZM0beHX/7dv/t38eqrr8aLL74YjzzySDzyyCNx++23x3XXXRdvectbGr3pkicMBQAwCWUehDHlNwAAAABTxVhU8WxTIEWnnXZao0uoi3333Tfmz58fhx9+eKNLaQrCUAAAJWBgAwAAAADSVI+xPYBUnXTSSfHII480uozCrVq1KlatWhWrV6+OefPmNbqc5AlDAVAqwhsULZWBCPs+RUplvwcAYPrQJwEoF2MHxfLvKMC/ufbaa3faZu3atfGud71rCqopXkdHR6NLaApZnuc7b5Rl/ykiTo2I4yPi1yJij4j4ap7nF46zzEkR8emI+M2ImBkRyyPijoj4Yp7nlTGWeV9E/ElEHB0RlYh4IiL+R57n/zBG+1kR8YmIuCAiXh8R3RHRFRF/luf5v+z0jW3V2dm5840AAIzKwEYaDJgAAAAAAFAvXV1dWaNraEJyDJPw2GOPxZIlSyIiopZczFiGL1utVoculUplu+udPTbe888888x2r/mRj3wkzjnnnLFKcqzVoNaZoT4dW0JQPRHxUkQcNV7jLMv+Y0TcGxF9EfH1iFgTEedGxA0RcXJE/O4oy/yPiPjI1vXfGhEzYkvI6e+zLPtQnuc3jWjfEREPbF3fTyPixog4aOu6z86y7PQ8zx+t8f0BABMkZAMAAACQtnr92M24EUWqx35aj300lToBmt2JJ54YJ554YqPLGNVzzz0XV1xxRWzcuDH22GOPHZ5fsmTJeGEoalBrGOrDsSWktDy2zBD18FgNsyybE1vCTJWI6Mzz/KdbH78yIr4fEf8py7IL8jz/22HLnBRbglA/j4g353m+duvjn4uIxyPif2RZ9g95nr8w7KWuiC1BqG9ExPl5nle3LvP1iLgvIu7IsuzYbY8DAFCssg/slHlWtJQ+JwAAAGDqlXncBABGs379+vj0pz8dy5cvj76+vqHHN2zYEBER73//++PYY4+No48+OmbOnNmoMptGTWGoPM+Hwk9ZttMZt/5TRMyLiLu2BaG2rqMvy7JPR8RDEfFHEfG3w5a5dOv1tduCUFuXeSHLspsj4sqI+IOI+LOtNWTDlvnY8MBTnuf/X5ZlP4yIU2InwS0AyielTriwQRpS2qdSkNL2dIwCAADQLPRxKVoqMy4BwFRZvHhxPP3002M+/5WvfGWHx772ta/F/Pnz61hV86p1ZqhdcfrW6++O8tz/HxEbI+KkLMs68jzfXMMy98eWMNTpsTUMFRFviIiDI2Jpnuf/OsYyp2xdRhgKAKgbg4UAAAAAsD3BJQCIyPM8HnzwwXjhhReitbU13vnOd0Z/f3/09/dHb29vrFu3LtatWxcvv/zyqMv//u//fnz0ox+Ns88+e4orT189wlBHbr1eOvKJPM8Hsyz714g4JiIOi4h/ybJs94g4MCJ68jx/ZZT1Ldt6fUQtrzHOMgAAAAAANJFUTt+dSp0psU3LK5XPPpU66yWVbZpKaKtedaayT5X9eALStXz58rjuuusmtY65c+cWVE251CMMte2TWD/G89se33OC7Se6DAAAAAAATSSVP2SmUmdKbNPySuWzT6XOsksltFX2/ans7x9I18KFC+Mzn/lMvPDCC1GtVqNSqUSlUolqtRrVajX6+/ujr68vNm7cGBs2bIgnnngiLr744rjwwgsbXXry6hGG2pls63W+i8vtSvtdeo2urq5s560AYGql8qskAAAAAIAUpTIGm0qdQOHkGJrAKaecEqecckqjyyidljqsc9usTGPN1TVnRLudtR9tFqhdfQ0AAAAAAAAAAKDJ1SMM9dzW6yNGPpFlWVtEHBoRgxHxfEREnue9EbEiImZnWXbAKOtbuPV6aS2vMc4yAAAAAAAAAABAE6tHGOr7W6/fPspz/z4idouIR/I831zjMmeNaBMR8fOI+GVEHJFl2aE1LgMAAAAAAAAAADSxeoShvhERqyLigizLTtj2YJZlMyPis1vvfnnEMn+19fq/ZVm217BlDomIP4mIzRFx57bH8zzPhy1zfZZlLcOW+Y8RcUpEPBsRP5j82wEAAAAAAAAAAFKQbckV7aRRlr0jIt6x9e78iDgztpzm7odbH1uV5/lHR7T/RkT0RcTfRsSaiDgvIo7c+vjv5SNeOMuyz0fEFRHx0tY2MyLi/IjYJyI+lOf5TSPad8SWmZ9OioifRsRDEXFwRPxuRPRHxOl5nj9ay0YAAAAAAAAAAADSV2sY6uqI+LNxmvwiz/NDRixzckT8t4h4S0TMjIjlEXFHRHwhz/PKGK/zvoj4LxFxdERUI+JnEfG5PM//YYz2syLiExHx7tgShOqOiK6I+LM8z5/d6RsDAAAAAADg/7VrByUAwDAAA2H+RdfCHoOVcKcgAgIAABlXMxQAAAAAAAAAAMB253cAAAAAAAAAAADAC2YoAAAAAAAAAAAgwQwFAAAAAAAAAAAkmKEAAAAAAAAAAIAEMxQAAAAAAAAAAJBghgIAAAAAAAAAABLMUAAAAAAAAAAAQIIZCgAAAAAAAAAASDBDAQAAAAAAAAAACWYoAAAAAAAAAAAgYQCQP8c5T+F6BQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import missingno as msno\n", - "%matplotlib inline\n", - "fig = matrix(data[covariates].sample(1000), sparkline=True, figsize=(40, 10))\n", - "\n", - "missing = data.columns[data.isnull().any()]\n", - "fig = matrix(data[missing].sample(1000), sparkline=True, labels=True, figsize=(40, 10))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Preprocessing" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "cat_features = data.select_dtypes(['O', \"category\"]).columns.to_list()\n", - "cat_idx = data.columns.get_indexer(cat_features)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Female, Male]\n", - "Categories (2, object): [Female < Male]\n", - "['White' 'Black' None 'Asien' 'Mixed' 'Chinese']\n", - "['Fair' 'Good' 'Poor' 'Excellent' None]\n", - "['Current' 'Previous' 'Never' None]\n", - "['Once or twice a week' 'Three or four times a week'\n", - " 'One to three times a month' 'Daily or almost daily'\n", - " 'Special occasions only' 'Never' None]\n" - ] - } - ], - "source": [ - "# Show Categories\n", - "df = data\n", - "for col in cat_features:\n", - " print(df[col].unique())" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1. 2.]\n", - "[ 1. 2. nan 4. 5. 6.]\n", - "[ 1. 2. 3. 4. nan]\n", - "[ 1. 2. 3. nan]\n", - "[ 1. 2. 3. 4. 5. 6. nan]\n" - ] - } - ], - "source": [ - "# Encode Categories\n", - "from category_encoders import *\n", - "enc = OrdinalEncoder(cols=cat_features, handle_missing=\"return_nan\", handle_unknown=\"return_nan\")\n", - "enc.fit(data)\n", - "data_tf = enc.transform(data)\n", - "\n", - "df = data_tf\n", - "for col in cat_features: print(df[col].unique())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imputation with Missforest" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.experimental import enable_iterative_imputer\n", - "from sklearn.impute import IterativeImputer\n", - "from sklearn.ensemble import RandomForestRegressor\n", - "from sklearn.ensemble import ExtraTreesRegressor" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Imputation FAST and ALRIGHT" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.ensemble import RandomForestRegressor\n", - "estimator = RandomForestRegressor(n_estimators=20, max_features='sqrt', bootstrap=True, max_samples=0.1, n_jobs=20)\n", - "imputer = IterativeImputer(estimator=estimator, max_iter=10, verbose=2, skip_complete=True, n_nearest_features=20)" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[IterativeImputer] Completing matrix with shape (502504, 312)\n", - "[IterativeImputer] Ending imputation round 1/10, elapsed time 96.26\n", - "[IterativeImputer] Change: 5025.888209169452, scaled tolerance: 6025.198 \n", - "[IterativeImputer] Early stopping criterion reached.\n", - "CPU times: user 13min 49s, sys: 28 s, total: 14min 17s\n", - "Wall time: 2min 2s\n" - ] - }, - { - "data": { - "text/plain": [ - "IterativeImputer(estimator=RandomForestRegressor(max_features='sqrt',\n", - " max_samples=0.1,\n", - " n_estimators=20, n_jobs=20),\n", - " n_nearest_features=20, skip_complete=True, verbose=2)" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "# fit to training data\n", - "imputer.fit(data_tf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Imputation PERFECT but SLOW" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.ensemble import RandomForestRegressor\n", - "estimator = RandomForestRegressor(n_estimators=50, max_features='sqrt', bootstrap=True, max_samples=0.1, n_jobs=20, oob_score=True)\n", - "imputer = IterativeImputer(estimator=estimator, max_iter=10, verbose=2, skip_complete=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[IterativeImputer] Completing matrix with shape (502504, 312)\n", - "[IterativeImputer] Ending imputation round 1/10, elapsed time 794.15\n", - "[IterativeImputer] Change: 3884.692167206953, scaled tolerance: 6025.198 \n", - "[IterativeImputer] Early stopping criterion reached.\n", - "CPU times: user 1h 8min 22s, sys: 6min 54s, total: 1h 15min 17s\n", - "Wall time: 14min\n" - ] - }, - { - "data": { - "text/plain": [ - "IterativeImputer(estimator=RandomForestRegressor(max_features='sqrt',\n", - " max_samples=0.1,\n", - " n_estimators=50, n_jobs=20),\n", - " skip_complete=True, verbose=2)" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "# fit to training data\n", - "imputer.fit(data_tf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Apply Imputation" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[IterativeImputer] Completing matrix with shape (502504, 312)\n", - "[IterativeImputer] Ending imputation round 1/1, elapsed time 16.25\n" - ] - } - ], - "source": [ - "# transform training data\n", - "data_imp_tf_array = imputer.transform(data_tf)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "# transform back to df\n", - "data_imp_tf = pd.DataFrame(data=data_imp_tf_array, columns=data.columns)\n", - "for col in cat_features: data_imp_tf[col] = data_imp_tf[col].astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "# Inverse Transform labels\n", - "data_imp = enc.inverse_transform(data_imp_tf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize Post Imputation" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACRsAAAJACAYAAAAHTyPNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdoY4dZRyH4f9HqqsrCYLgil23l1CBxy6SpLKiam+gN4DofXSTXsXKJkgUwX+YxSDoG7rZ6Zw8TzKZOaN+5rg336y99wAAAAAAAAAAAHzON0cPAAAAAAAAAAAAzkFsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAktPHRmutn9Za79ZaH9daf6619lrr/dG7AAAAAAAAAADg0jw7esAjeDMzL2fmr5n5fWZ+OHYOAAAAAAAAAABcptOfbDQzv87M9zPzfGZ+OXgLAAAAAAAAAABcrNOfbLT3/vDP81rryCkAAAAAAAAAAHDRLuFkIwAAAAAAAAAA4AmIjQAAAAAAAAAAgOT0n1F7DNfX1/voDQAAAAAAAABwRnd3d+voDRdIx/A/3d/fz83Nzdze3s7V1dXRcx7bV/Ffc7IRAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAybOjB3yptdarmXn18PPFw/1qrfXbw/Mfe+/XTz4MAAAAAAAAAAAuzOljo5n5cWZ+/te77x6umZlPMyM2AgAAAAAAAACAL3T6z6jtvd/uvdd/XN8evREAAAAAAAAAAC7B6WMjAAAAAAAAAADgaYiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAAAAAASsREAAAAAAAAAAJCIjQAAAAAAAAAAgERsBAAAAAAAAAAAJGIjAAAAAAAAAAAgERsBAAAAAAAAAACJ2AgAAAAAAAAAAEjERgAAAAAAAAAAQCI2AgAAAAAAAAAAErERAAAAAAAAAACQiI0AAAAAAAAAAIBEbAQAAAAAAAAAACRiIwAAAAAAAAAAIBEbAQAAAAAAAAAAidgIAAAAAAAAAABIxEYAAAAAAAAAAEAiNgIAAAAAAAAAABKxEQAAAAAAAAAAkIiNAAAAAAAAAACARGwEAAAAAAAAAAAkYiMAAAAAAAAAACARGwEAAAAAAAAAAInYCAAAAAAAAAAASMRGAAAAAAAAAABAIjYCAAAAAAD+bu/+Y+2u6zuOv969aMsEXFyaYBYFJuDaSSQb1rQQrOjCfoksgYHL0JH9MWYKW5WQUYfgnJNgB6mCITPRBWTDhUQNxLGt0iqyzgs6A1uR34XBdEIgNB29HT397I9zLjte+uPTyu218HgkJ997Pt/P9/v9nPv3M58vAABAF7ERAAAAAAAAAADQRWwEAAAAAAAAAAB0ERsBAAAAAAAAAABdxEYAAAAAAAAAAEAXsREAAAAAAAAAANBFbAQAAAAAAAAAAHQRGwEAAAAAAAAAAF3ERgAAAAAAAAAAQBexEQAAAAAAAAAA0EVsBAAAAAAAAAAAdBEbAQAAAAAAAAAAXcRGAAAAAAAAAABAF7ERAAAAAAAAAADQRWwEAAAAAAAAAAB0ERsBAAAAAAAAAABdxEYAAAAAAAAAAEAXsREAAAAAAAAAANBFbAQAAAAAAAAAAHQRGwEAAAAAAAAAAF3ERgAAAAAAAAAAQBexEQAAAAAAAAAA0EVsBAAAAAAAAAAAdBEbAQAAAAAAAAAAXcRGAAAAAAAAAABAF7ERAAAAAAAAAADQRWwEAAAAAAAAAAB0ERsBAAAAAAAAAABdxEYAAAAAAAAAAEAXsREAAAAAAAAAANBFbAQAAAAAAAAAAHQRGwEAAAAAAAAAAF3ERgAAAAAAAAAAQBexEQAAAAAAAAAA0EVsBAAAAAAAAAAAdBEbAQAAAAAAAAAAXcRGAAAAAAAAAABAF7ERAAAAAAAAAADQRWwEAAAAAAAAAAB0ERsBAAAAAAAAAABdxEYAAAAAAAAAAEAXsREAAAAAAAAAANBFbAQAAAAAAAAAAHQRGwEAAAAAAAAAAF3ERgAAAAAAAAAAQBexEQAAAAAAAAAA0EVsBAAAAAAAAAAAdBEbAQAAAAAAAAB0qKqLq+rOqtpcVU9W1c1V9ZYZcw6pqs9U1eNVtbWq7quqlbu4X1XVrVXVquqM/fMr4CcjNgIAAAAAAAAA6LM8yWeTLEtySpLtSdZW1evG5lyZ5DeTnJNkUZJPJLm8qs7Zyf0+nGQwmwuGl9pBc70AAAAAAAAAAIADQWvt1PHvo4Do2SQnJrl5NLwsyfWttXWj75uq6g+SvD3J9WPXnpDkj5P8SpL/nuWlw0vGzkYAAAAAAAAAAPvm0Azbi2fGxr6V5D1V9YYkqaplSY5Pcuv0hKo6NMnfJfnD1tqP9t9y58ZgMMiGDRty3XXXZcOGDRkMbOZ0ILOzEQAAAAAAAADAvlmT5HtJNoyNXZDk2iSPVdX20dj5rbVbxuZcm+TW1trX9s8y585gMMhFF12UjRs3ZmpqKvPnz88RRxyRFStWZN68edmxY0cGg0G2b9++08/0ueeff/7H5g0Ggzz//PM/Nmf79u15+umn5/onv+yJjQAAAAAAAAAA9lJVXZnkpCQntdbGt+o5P8PXqp2W5NEkJydZXVWbWmu3jl699tYkJ+zvNc+FycnJ3HvvvZmamkqSbNu2Lffff38uuOCCWX3uwoULZ/X+r2RiIwAAAAAAAACAvVBVVyU5O8k7W2sPj40fnOSTSc5srd08Gr67qo5PcmGGr1J7V5LFSbZU1fhtv1RVG1prJ+2P37C/PPDAAy+ERuMWLlz4QhDUWnthfPp/Mj42PT4+tmPHjp3ugjQ1NZUtW7bkySefzNFHHz0bP+kVT2wEAAAAAAAAANCpqtZkGBotb619f8bpV40+gxnjgyTzRn9/JMnqGefvyTBG+upLu9q5d8wxx2TBggXZunXrC2MLFizIypUrs3Tp0pf8effdd1/OO++8l/y+/D+xEQAAAAAAAABAh6q6Jsk5SU5P8kxVHT46taW1tqW1trmqvpHk8qrakuFr1N6R5P1JLkqS1toTSZ6Ycd8k+c/xXZJeLpYsWZJFixZl48aN2bZtW+bPn5/FixdnyZIlc7009pHYCAAAAAAAAACgzwdHx6/PGP9YkstGf5+d4avUbkjyugyDo0uSXL0f1vdTZ2JiIldccUUmJyfz4IMP5uijj86SJUsyMTEx10tjH4mNAAAAAAAAAAA6tNaqY84Pk5z7Ut/3QDYxMZGlS5fOymvT2P/m7XkKAAAAAAAAAACA2AgAAAAAAAAAAOgkNgIAAAAAAAAAALqIjQAAAAAAAAAAgC5iIwAAAAAAAAAAoIvYCAAAAAAAAAAA6CI2AgAAAAAAAAAAuoiNAAAAAAAAAACALmIjAAAAAAAAAACgi9gIAAAAAAAAAADoIjYCAAAAAAAAAAC6iI0AAAAAAAAAAIAuYiMAAAAAAAAAAKCL2AgAAAAAAAAAAOgiNgIAAAAAAAAAALqIjQAAAAAAAAAAgC5iIwAAAAAAAAAAoIvYCAAAAAAAAAAA6CI2AgAAAAAAAAAAuoiNAAAAAAAAAACALmIjAAAAAAAAAACgi9gIAAAAAAAAAADoIjYCAAAAAAAAAAC6iI0AAAAAAAAAAIAuYiMAAAAAAAAAAKCL2AgAAAAAAAAAAOgiNgIAAAAAAAAAALqIjQAAAAAAAAAAgC5iIwAAAAAAAAAAoIvYCAAAAAAAAAAA6CI2AgAAAAAAAAAAuoiNAAAAAAAAAACALmIjAAAAAAAAAACgi9gIAAAAAAAAAADoIjYCAAAAAAAAAAC6iI0AAAAAAAAAAIAuYiMAAAAAAAAAAKCL2AgAAAAAAAAAAOgiNgIAAAAAAAAAALqIjQAAAAAAAAAAgC5iIwAAAAAAAAAAoIvYCAAAAAAAAAAA6CI2AgAAAAAAAAAAuoiNAAAAAAAAAACALmIjAAAAAAAAAACgi9gIAAAAAAAAAADoIjYCAAAAAAAAAAC6iI0AAAAAAAAAAIAuYiMAAAAAAAAAAKCL2AgAAAAAAAAAAOgiNgIAAAAAAAAAALqIjQAAAAAAAAAAgC5iIwAAAAAAAAAAoIvYCAAAAAAAAAAA6CI2AgAAAAAAAAAAunTFRlV1RlV9pqpur6rNVdWq6ot7uGZZVX2tqp6uqueq6u6q+pOqmtjNNR+oqsmq2lJVz1bV+qr6rd3MP7iqPlZV91XVVFX9qKr+vqoW9fwuAAAAAAAAAACgX+/ORn+WZEWS45M8safJVfXeJN9McnKSLye5Jsmrk1yV5MZdXLM6yd8keX2SzyX5YpLjktxcVSt2Mn9+kn9O8tEkm5OsSbI2yW8nuauq3t752wAAAAAAAAAA4KdeVV1cVXeONgt6sqpurqq3zJhzyGhTocerautoE5+VM+asH202NP7ZadMz00Gda12Z5PEkDyZ5R5J1u/lRh2UYCw2SLG+t3TUavyTJbUnOqKqzW2s3jl2zLMmHkzyU5G2ttWdG459K8p0kq6vqltbaprFHfSjJiUluSnJWa23H6JovJflKks9X1XHT4wAAAAAAAAAAcIBbnuSzSe5MUkn+PMnaqlrcWnt6NOfKJO9Ock6SRzLcLOhzVfVUa+36sXt9Icmqse9bexbQtbNRa21da+2B1lrrmH5GkoVJbpwOjUb3mMpwh6Qk+aMZ15w3On5iOjQaXbMpw12R5ic5d3q8qmrsmovGg6LW2leT3J5kcYZhFAAAAAAAAAAAHPBaa6e21r7QWvv31to9GQZFCzPcsGfasiTXj3qfTa2165L8a5KZbwl7rrX2w7HPsz1r6H2N2t44ZXS8dSfnvpnkuSTLRq9B67nmH2bMSZI3JXljkvtba490XgMAAAAAAAAAwMvYjh3D/Wpuu+22bNiwIYPBYI5XNOsOzbD/eWZs7FtJ3lNVb0heeOPY8Xlxl3N2VT1VVf9RVaur6tCeB/a+Rm1vvHl0vH/midba9qp6JMkvJfmFJPdW1WuS/HySLa21H+zkfg+Mjsf2PGM31wAAAAAAAAAA8DI1GAyyZs2aJMnatWtzxx13ZNGiRbniiisyMTExx6ubNWuSfC/JhrGxC5Jcm+Sxqto+Gju/tXbL2Jy/TfJokv/KsOP5ZJK3JvT46QEAAAPDSURBVPnVPT1wNmKj146Ou9paaXr8Z/dx/r5eAwAAAAAAAADAy9Tk5GQ2bdr0wvetW7dm48aNmZyczNKlS+duYbOkqq5MclKSk1pr41s4nZ/ha9VOyzAoOjnJ6qra1Fq7NUlaa389Nv+eqno4yber6pdba9/d3XNnIzbakxod215etzfz9+oZ69evrz3PAgAAAAAAAADYL3QM+2DVqlWXJLksw9eKJUmmpqZ2rFq16tJ169b9xZwtbBZU1VVJzk7yztbaw2PjB2e4S9GZrbWbR8N3V9XxSS7Mi1+lNu2uJIMkxyTZ77HR9K5Cr93F+cNmzNvT/J3tYrS3zwAAAAAAAAAA4GVs3bp1H0/y8blex2yrqjUZhkbLW2vfn3H6VaPPYMb4IGMR1k4cl2QiyQ/29Pzd3WRf3Tc6HjvzRFUdlOSoJNuTPJwkrbX/SfJEkkOq6vU7ud8xo+P9Pc/YzTUAAAAAAAAAAHDAqqprkpyb5H1Jnqmqw0efQ5KktbY5yTeSXF5Vy6vqqKr6/STvT/Ll0T3eVFUfraoTqurIqvqNJDcm+bckd+xpDbMRG902Ov7aTs6dnORnkvxLa21b5zW/PmNOkjyU5LEkx1bVUZ3XAAAAAAAAAADAgeyDSQ5N8vUMdyGa/lw4NufsJHcmuSHJxiR/muSSJFePzv9vkncl+ccMN/z5dJJ/SvLu1trMHZFepFpre7XiqlqeZF2SG1prv7eT84dlGAMdluTE1tpdo/EFGcY/S5O8r7V249g1yzIsox5K8rbW2jOj8SOTfCfJa5L8Ymtt09g1Fyf5yyQ3JTmrtbZjNP7eJF/J8J913PQ4AAAAAAAAAADwk+mKjarq9CSnj74enuTUDF+Ddvto7KnW2oUz5t+UZCrDbZaeTnJakjePxn+nzXhwVf1Vkg8leXw059VJzkryc0nOb61dPWP+/AzjpWVJ7sqw2HpjkjMzLLBOaa19u+efAAAAAAAAAAAA7FlvbHRZkkt3M+XR1tqRM645MclHMtzJaEGSB5N8Psmnd7XlUlV9IMmKJIuT7Ejy3SSfaq3dsov5B2e41dPvZhgabU6yPsmlrbWNe/xhAAAAAAAAAABAt71+jRoAAAAAAAAAAPDKNG+uFwAAAAAAAAAAABwYxEYAAAAAAAAAAEAXsREAAAAAAAAAANBFbAQAAAAAAAAAAHQRGwEAAAAAAAAAAF3ERgAAAAAAAAAAQBexEQAAAAAAAAAA0EVsBAAAAAAAAAAAdBEbAQAAAAAAAAAAXcRGAAAAAAAAAABAl/8DKnlm4jwshf4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACUMAAAOZCAYAAAA+yqMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdebhuc93H8fdnn3Mcx1QokUoTRUrRPM+pZIrIkFRSoQlPmZ5CMstQhEQqUooGpFI0aSJUKiVNGkTmYzrnfJ8/1u/W3f0c07HPvvfwfl3Xuc59r/Vb6/z2dV9nrb3377O+31QVkiRJkiRJkiRJkiRJkjTRjQx7ApIkSZIkSZIkSZIkSZI0GgxDSZIkSZIkSZIkSZIkSZoUDENJkiRJkiRJkiRJkiRJmhQMQ0mSJEmSJEmSJEmSJEmaFAxDSZIkSZIkSZIkSZIkSZoUDENJkiRJkiRJkiRJkiRJmhQMQ0mSJEmSJEmSJEmSJEmaFAxDSZIkSZIkSZIkSZIkSZoUDENJkiRJkiRJkiRJkiRJmhQMQ0mSJEmSJEmSJEmSJEmaFAxDSZIkSZImpSQZ9hwkSZIkSZIkSWNr+rAnIEmSJEnSaEuSqqr2+pnAY4BHA2cCf6qqq/vHSJIkSZIkSZImh/h7X0mSJEnSZJVka+BA4EZgGWAe8DVgv6r61TDnJkmSJEmSJEkafbbJkyRJkiRNSkleARwOfAh4ZVU9ADgE2Bx4R5JFhjk/SZIkSZIkSdLos02eJEmSJGlSSZL28qXA94CTq+qfbdtawO+Ao6vq9iQzq+q2YcxTkiRJkiRJkjT6rAwlSZIkSZrw+gJQVAM8FZjRC0IlOYsuDPW6qrokyXOBDZLMGMqkJUmSJEmSJEmjzjCUJEmSJGnCa+Enkmyf5INJpgFXAYsmWTTJmcDqwGuq6uIkSwNbA08BDENJkiRJkiRJ0iRhGEqSJEmSNGH1V4RK8hxgX2DRqpoLfAp4DvBb4PHAq6vqoiSLAOvStdH7aVXNHvuZS5IkSZIkSZIWBsNQkiRJkqQJq68i1Ap0wacvAPu13d8BPgw8BPgucGOSNYB3AUcCR1XVqWM+aUmSJEmSJEnSQjN92BOQJEmSJOn+SPIC4Czg98BXquo6gKq6JckxwGxgL+AlwGLAX4Ddq+oj7fiRqpo3lMlLkiRJkiRJkkZV2kO0kiRJkiRNCElSVdX391LAycAr6apBbVJVVw8cswrwGLpg1JVV9fu23SCUJEmSJEmSJE0ihqEkSZIkSRNSkgdU1fW918CxwIbAdsBnq+qmtm++gademGos5yxJkiRJkiRJWrhGhj0BSZIkSZLuqySvAC5OsiZAC0W9BTgbOADYJMkSbd98Kz8ZhJIkSZIkSZKkyccwlCRJkiRpIloBmAd8KskaAFV1A7Ap8APgEGDjJEsOb4qSJEmSJEmSpLFmGEqSJEmSNGEkCUBVnQDsAQQ4pS8QdSOwCXAecBSwZZLpw5mtJEmSJEmSJGmsGYaSJEmSJE0YVVVJZrbXnwX2B+6gC0Q9qW2/EdgC+Ckwr6rmDGu+kiRJkiRJkqSxlaoa9hwkSZIkSbpbSTYGNquqDdr7mVV1W3v9BuDDwPXAxlV1ads+o6ruGNacJUmSJEmSJEljz8pQkiRJkqRxK51FgCcA6yX5LEBV3dZXIepE4GRgVeCrSZ7att/RO8dQJi9JkiRJkiRJGnOGoSRJkiRJ48pAeGmkqm4HjgJ2BTZJ8jm4MxC1SBt3CfBbup9zV+0/X1kSWZIkSZIkSZKmDMNQkiRJkqRxI0l64aUkLwf2TvKgqvoncCzwAWCjJKcAVNXtLTz1aOAE4BVV9enhzF6SJEmSJEmSNGyGoSRJkiRJ40ZfEGor4ERgZWCttu8a4Gjgf4H1k5yRZGu6ilE7AldU1WXteFvjSZIkSZIkSdIUFLsFSJIkSZLGkySvpavy9EHgpKr6+8D+BwIbArsBjwCuAg6tqgPHdqaSJEmSJEmSpPHGMJQkSZIkadxIsjjwJeBPwHZVdUfb/npgReBXwDmtPd4iwOOBm6vq8jZupKrmDWf2kiRJkiRJkqRhmz7sCUiSJEmS1GcmsArwDWBekicBhwFPBuYBSwNvAk6oqtuBS3oHJolBKEmSJEmSJEma2qwMJUmSJEkauhZkqvb6M8C6dEGnh9G1wdseuAI4GZgFvLBXNUqSJEmSJEmSpB4rQ0mSJEmSxlx/+Amg/vtJnR2Af9BViTqlqo5oxywOXA/8ziCUJEmSJEmSJGl+DENJkiRJksbUQBWoFwIvoGuN903gC1V1LbDTwLilgHWA5wLvGcrEJUmSJEmSJEnj3siwJyBJkiRJmlr6Ak5vpGt79zJgEeCTwL5JnjAw7mXAzsDHgMOq6qQhTFuSJEmSJEmSNAHkvzsRSJIkSZK08CVZFzgB+HBVHdQCUL9ou08B9qyq3yR5ELAX8DTgE1V1dDt+pKrmDWHqkiRJkiRJkqRxzDCUJEmSJGlMtYDTkcBfqmrHJKsBPwY+DVwCfBT4DLBfC0QtDyxVVZe14w1CSZIkSZIkSZLma/qwJyBJkiRJmnJmA2cDlyR5CHAGcCrwfmAe8CpgC2Akyb5V9WvgHwBJYhBKkiRJkiRJknRXRoY9AUmSJEnS1FJVs4EvV9VPgfWB6+na5d1QVTcBlwF/pwtEPWrgWMsbS5IkSZIkSZLukpWhJEmSJEkLRaviVO31LLqfQedU1S1VdXUb9jBgBeCWNm4J4IHArsA5VfW3sZ+5JEmSJEmSJGmisjKUJEmSJGnUDQShNgY+B1wCnJbk/X1DrwBmAdsmeTmwCfAa4KZeECqJP7tKkiRJkiRJku6V2GFAkiRJkrSwJNkS+ARwEnAdsCJda7zTgU2ral6STwCvp3tgZzZwUFXtO6QpS5IkSZIkSZImMMNQkiRJkqSFIsnKwNeATwFHVtV1SRYDfgXMAV5WVX9sY9dth11fVee1bSNVNW/sZy5JkiRJkiRJmqimD3sCkiRJkqRJaxlgWeD7VXVd23YKUMBGVfXHJKtV1aVV9ZX+Aw1CSZIkSZIkSZIWxMiwJyBJkiRJmrRWoAtE/RogyZnAGsAGVXVxkicAH06y1uCBBqEkSZIkSZIkSQvCylCSJEmSpFGVJNX1ZL8M+Duwc5I1gFWB9VoQaibwKuCBwC3Dm60kSZIkSZIkaTIxDCVJkiRJWmB9wSeSPAi4tf2ZU1WXJvkusBNwNbBhVf08yVLA+sAuwK5VdemQpi9JkiRJkiRJmmTSfmctSZIkSdICS7IpsD2wLPAN4EtVdV7bdxbwbOAc4EK6ClFrA4dU1T5tzJ2hKkmSJEmSJEmSFpRhKEmSJEnS/ZJkHeAk4CvAIsDLgMuBfarqtDZmH+CJwOrAd4Bzquqktm+kquYNY+6SJEmSJEmSpMnFMJQkSZIk6T7pVXHqhZiSvA9YCvhwVd2cZCPgA0CAPXqBqHbsYlU1u++9QShJkiRJkiRJ0qgZGfYEJEmSJEkTx0A7uwclWQxYA/hTVd0MUFWnAnu0MXsneU3fKW5Jkt4bg1CSJEmSJEmSpNFkGEqSJEmSdK/1glBJNgPOBc4DXgAs3bZPb+NOB3YH5gAHJ9mwd3xZoliSJEmSJEmStJAYhpIkSZIk3aP+ak5JXgp8AvgBcDlwM/DeJE+rqjlJRuDOQNRewKz2R5IkSZIkSZKkhSo+kCtJkiRJureSrAC8ka4S1C5VNbeFo/YDVgDWraoLkoz0WuAleXRV/WFok5YkSZIkSZIkTRlWhpIkSZIk3StJ1qWrBrUecHlVzW27vgO8B/gH8JUka1bVvL4KUX9ox2c+p5UkSZIkSZIkadQYhpIkSZIk3VsXAw8Ang6s2tvYQlHfB94N/BU4O8kzepWh+sZZmliSJEmSJEmStFAZhpIkSZIk3aMk06vqT8DqwJ+ALZNs3Nvfgk7fB/4HuL6NkyRJkiRJkiRpTMUHcyVJkiRJ90aSaVU1N8nDgJ8AtwDvq6pT+8aMAMtX1d+GNU9JkiRJkiRJ0tRlGEqSJEmSdK+1ClFzkjwc+DFdIGrnqvrSfMbG1niSJEmSJEmSpLFkmzxJkiRJ0r3WglDTq+ovwDOAGcBhSTabz1iDUJIkSZIkSZKkMWUYSpIkSZJEkvT+7r2+KwOBqOcCy9KFoiRJkiRJkiRJGirb5EmSJEmS+tvfjVTVvHvT4q7vmCWq6qaxmqskSZIkSZIkSXfFylCSJEmSNEUleUaS7eHOak/vAc5vgah7fHKmHRNgdjufP2NKkiRJkiRJkoZq+rAnIEmSJEkae0mmAQ8DDkmyFnAOsD+w5309V1XN6/9bkiRJkiRJkqRhsU2eJEmSJE1RSZYDtgQOAOYB76iqY+9Ni7x2/J3jkmwMzKmq0xbqpCVJkiRJkiRJuhu2MJAkSZKkKaqqrgL+AASYBry4ba8kd1tJeCAI9S7gZGDOwp2xJEmSJEmSJEl3zzZ5kiRJkjSFDISYAvwR2AJYBdgjybyq2ryq5iSZVlVz+46d3rb3n2MH4CDg7VX11TH/giRJkiRJkiRJ6mMYSpIkSZKmiIEQ08uBZwEfqaqfJ1mWrlXeB9q4zXpBqCQvAX5QVbdCVzmqbd8BOBTYtqo+MYQvSZIkSZIkSZKk/2KbPEmSJEmaIvpCTFsBJwJPAp7Z9l0DfBzYE9g0yaeTPDzJZsA3gS37z9WCUB/BIJQkSZIkSZIkaRxJ+124JEmSJGkKSLIRcDzwQeCkqvr7wP4HAdsCewDXAYsB+1fVPn1jtgOOALapquPGaOqSJEmSJEmSJN0jw1CSJEmSNEUkWQI4Dbgc2L6q5rTtmwArAr8AzqELQD2drmrUpVV1ehs3ve07GTi1qo4f8y9CkiRJkiRJkqS7YRhKkiRJkqaIJMsCF9K1tzsCWA04DHhKG/IAYKuq+vR8jh2pqnnt9ZJVdePYzFqSJEmSJEmSpHvPMJQkSZIkTSFJPg+8HLgYWAn4F7A9cAVwCjAdeHFV3TG0SUqSJrUkKX8pKUmSJEmSFpLpw56AJEmSJGl09S8yJ5kBzARubtveBOwLjABfrKrD27jFgeuAvxmEkiQtLAP3qEcCM4Cbqurvg/slSZIkSZIWhGEoSZIkSZpEBhaZXwtsBqwBXJLkB1V1MLBDkmlVNbeNWwpYB3g28O4hTV2SNAX03aM2B3YFVgR+m+TUqjqwqspAlCRJkiRJuj9Ghj0BSZIkSdLo6Vtk3hL4LHAbcAawJLBHktPauF4Q6qXAjsDHgMOq6uRhzFuSNLklSd/rVwJHAd8A9gZuBXZOcjB097L+8ZIkSZIkSfdFfMhKkiRJkiaXJKsAZwGfAI6qquuSLAn8CijguVX1lyQPBj4ErAUcW1VHt+NHqmrekKYvSZrE2v3o+cALgD2r6uYkKwG7ARsBn6qq97SxVoiSJEmSJEn3mW3yJEmSJGnyWQ5YAvh2VV3Xtn0WmANs0IJQj6mqy5N8EFiyqi4Dg1CSpIUnyYuBbwGXAce1IFSq6k9JPgQE2CrJ3KraySCUJEmSJElaELbJkyRJkqTJZzngwcAVAEnOBJ5MF4S6OMkTgQ8keWJV/b0vCBWDUJKkhWgecC7wKGDxtm1aC+L+ma5l3ueBtyc5ejhTlCRJkiRJE52VoSRJkiRp8rkSuA54U5IXAasBr2lBqJnAOsDDgNv7D7IChyRpYaqqc5OMALsCuyX5QVV9M8mdgagk+wJLARcOd7aSJEmSJGmiir/rliRJkqSJJUngP+GlJIvTtRaa3avslORLwPrA1cCGVfX9JEu2bYcBu1SVVTckSaOuVRrs3aMWoXsgc15V3dq2vRDYC3gWsHZVnZNkGt2tbV6SJarqpiFNX5IW2MD1Lz5sIEmSJA2HYShJkiRJmkB6C8RJplfVnCQbA28CHg1cBHyvqj6aZDpwKvBq4NPAH4DHAusCB1fVPu18LtJIkkbNQBBgPWATYA26+9B3quqQtu/5wIfoAlGvqKpvJ5lWVXPndy5JGq9aZbveAwkzq+q2+e2TJEmSNHZGhj0BSZIkSdK9k2R34MtJlm9BqC2AzwJzgB8BjwcOT3J0Vc2pqvWBjwEPBbYF5gHv7AtCjbjILEkaTX1BqK2AU+ha3v0cWAk4KMkJbdx3gf8Fvgd8K8na/UGo/nNJ0njU2k/TF4RaD/hikjOT7Ne/T5IkSdLYmj7sCUiSJEmS7rUVgScARyR5L/BU4IPAR6vqhiSPBLYA9kxyQ1XtXFXvbm31lqiqG3sn8il1SdJoGqgItRqwN7AncGRVXZ/kEcBmwN5JbqyqHarq3CQFLENXvVCSJoQk+wMzk3ywqq5r1VpPBL4NLAvsmOSpwMZVde0w5ypJkiRNRVaGkiRJkqRxroWZqKq3A8fTtRQ6ClgHuKyqbmj7/wgcS1cN6q1Jnt22V38Qqm0zCCVJut+SPAH+XxWn5egCTj+oquvb/j8Dx/Gfe9QL2vbzgFdV1UfHdOKStIBaRaiZwDuBnZOsALwW2AvYEHgJ8BbgicDpSZYZ1lwlSZKkqcowlCRJkiSNc1VVSaa117sAJwOrAQ8BrgJIMqPt/yddYGpJ4BFDmbAkaUpIsjdwdJJlesHdZhlgMeC6Nm46QFX9i+4eNYO+e1RV/a2N6z+HJI1LVXUbsAddBbz3A9vTfe99XlXdVlU3AV+gC0utCpxmIEqSJEkaW4ahJEmSJGkCqKq5fYGonYHPAYsDhyZZvqru6C02A9fQLUAvOZzZSpKmiAuBnarq38CD+7b/ArgS+FCSZatqTu8eBtwA/Bu4Y/BkA9WlJGnc6XsA4UZgH+AgYBfgxUDvOkdVzQa+DOwArAx8LcmyYz5hSZIkaYoyDCVJkiRJE8RAIGpXYF/g4cAnkzysLTYvDqwNzAIuH95sJUmTVV/71tOq6kdJXgGcm+RVbfvvgC8Bzwb2TLJcu4fNAl4OFPCnIU1fku6zJI8CqKo72vtX0n2//QFgd7q2eZslWbp3TFXdSheI2hF4GvDCsZ21JEmSNHVNv+chkiRJkqTxoheIqqq5VbVbC0ftAPw4yXlAgJcAe1fVt4c6WUnSpNRr31pVc9umxena4n0wSVXVWVX1riQPAjYFXpLkm3TtXV8N7FNV5w9n9pJ03yRZCdgtybyqemuSLYATgQ2q6stJPgYsSheKujrJQVV1PXSBqCSnA6u1oKgkSZKkMWAYSpIkSZImmIFA1PuT3AFsB7yIrlrUIVX1U4AkI1U1b5jzlSRNDklWB+YCv233oo3oslFfbNWi9gL2afeeM6pq8yTvAl4GbAj8HHhXVR3Xzuc9StJEcDNwC/CmJKsAzwe2Bc4GqKrrkxxI14ljN7oCegf2BaJuAX4HXvckSZKksZKqGvYcJEmSJEkLoL8qR5JDgDcBm1TV2W2biy2SpFHR2rAeBDwF2IouDHA08MaqOrGN2Rj4IHAbsHtVndl3/FLA7Kqa0957j5I0riV5FvCrqrohyUzga3QVWM+vque0MdP7rmtLAu8DdgYOAfavquuGM3tJkiRpajMMJUmSJEnjxIIsDPcfk+Q5VfWDhTM7SdJUl+RpwJnAdcCjgPdW1eED96KN6AJRtwO79AV0U+0Xkf2vJWk8SvI24EjgncCn6a5pZwPzgCcDp1bVW9rYGVV1R3u9JF11qP8BnmNLUEmSJGk4DENJkiRJ0pAleXZV/bC9XpBA1J0Votp7F5klSQtFkv3oFvn/BGxdVee27f3VUTYC9gCmAe+vqq8NabqStMCSfA9YHditqo5MsgSwNN01cEvgi1X15jZ2elXN6X1f3v/9vSRJkqSxNzLsCUiSJEnSVJbkQOCrSd4FUFXzktynn9Xagkv63leSaaM8VUmSAK4FDgdmAQcmeV4L8s7p3Xuq6lRgb7rQwJLDm6ok3XetJR5V9TzgAmD/JNsD06rqL8C+dNWiNkxyXBs7p7UKPSPJzP4HHYbyRUiSJElTnJWhJEmSJGlIWvuNQ4DZdIvLh1XVR9u+e10haqD10Eur6lsLa86SJAEkWQs4A/gr8F7ge31h3OWq6u9JHllVfxzmPCXpvhj4vnol4MHAD+mq4R0OfKqqbkjyUGAXYCvgJ8B5wK7AwVW1+1AmL0mSJOlOPpUgSZIkSUOQZBVgM+A7wIZ0Yaid2lPn97pC1MCCzQ7AN5I8f+HNXJI0FfRXHEyyfJJVkjyut62qLgBeA6wIHAw8O8miwPrAWUlW6wWh+s8lSeNZ3/fVWwE/A94NnA/MBPYE3pBkqar6G/Bh4FDg4cDWwO69IJTXPUmSJGm4rAwlSZIkSUOQ5NHA8cD+VXVmkocDpwPLAgf1VYiaVlVz7+Icg0GoQ4G3VtVxY/JFSJImpYH7y+uBdwGPo6sC9Wtgk779TwW+Akyjayf1QrpKh7sMYeqSdL8leRZwNl07vGPpHlp4OPAZ4El0FaBObBWiFgemAw+qqsvb8fe6wqskSZKkhcPKUJIkSZI0BFX1B2CDFoSaUVV/AdYDrqFViGqL0XPh/z9dPrBQ/U4MQkka5+ZzHZt+d/s1PH33l82BTwDnAC8HvgVsBHy393lV1c+A5wE/B24H3tMLQvmZShrvkiw7n81rALcCX6qqq6tqbqt09yLgMmB3YMskD6iqm6vq+r4gVAxCSZIkScNnGEqSJEmSxlAagKr6d6v8dEf7+6/0BaKA7doxiwAbJVmjd46BilAfAbY1CCVpvBq4bq2T5EjgvCT7JVkXugCO4ZnxI8nTgN2AvatqN+Bq4M3Ad4GnAN/vu59dDqwDbF5VR7fjR3qfuSSNR0mOAI5JMnNg11y6tniz+sbOqKo7gH2AZYD3AW8ZDPZ63ZMkSZLGB8NQkiRJkjSGqkny/CSL9yo/VdXcvkDU+nSBqB2T7AjsAJwCPKF3DoAk7wUOo6sI9YlhfD2SdG/0XbfeCHwBeAxduOZ1wGFJ9u4fp7E3nyDaw4DzgMOTrEzXAu9kus/scOBZwNl9gag5VXVz71xWRpE0nrVr19nA4VV1W5JZfbt/BSwJbNDb0IJQALcBv6SrHHVrVc0ZoylLkiRJug/i75gkSZIkaWwleQLwQ2CPqjp8oGLK9Kqak+QhwBnA44DF29h9+s6xKvAZ4JheFQ5JGs+SPIXuuvYR4JNVdU0L2VwI/BpYp6quGuYcBUnWpgvk/pauVdT3ga/QLfy/vaquTvIAurDAQ4HfVdXjhjVfSbq/kqwHvBPYprWyJsm+/KdS60lVdVOr1ro98Jiq2m5oE5YkSZJ0j6wMJUmSJElj7wrgT8Ar4b9bQ/WeLq+qfwJn0gWh3tMLQiXp/Rx3ObCpQShJE8hjgNnAV6vqmrbtAOBfdAvQVyV56NBmJ5JsDpxKV4nwxqr6Hl11lMcBF1fV1W3oo4GbgQ8B+w1jrpK0oPq+n+6ZATwfODTJo9q2jwKfBo4CTkxyAHAQ3XXv933nsr2rJEmSNA4ZhpIkSZKkMdRa4c0GdgNe1Bae/6s1VJKZSbYDdgd2q6rD2vaRqprXKkndXlW/G8bXIEkLaCVg+ar6DUCSM4G1gA2q6uIkTwfem+Rhw5zkVJVkGrAm3WL/KX33pVnAg4GHtHGLA6vThXKPqarj23YDAZImhF4bzySrJlkK+CKwEfA84Mgkj6iqK+laVe8APBbYou3ftao+0ncuW29IkiRJ45BhKEmSJEkaQ1U1t738Ja0tVJJFBp5QnwGsAOxYVfvCf4JQ7RwuukiaEFpLoZ6/ASNJXt2CUE8E1m1BqEWBdYCVhzHPqS7J+sC5wEuBi6rqlrZ9pFUq3Bt4e5LvAp8HPg58p6r+2juH9yZJE0U6T6Fr9/n0dv06G9gaeCZwTJKVqurmqjoSeAldxbxXVdWh7RyurUiSJEnjWPw9hSRJkiQtXG2ReQbw06r6Y9/27YHD6RZhftYqPlXbt2RV3dhe3xmEkqSJIskmwJOAI1uFDZJcADwF+DtdEOqCJIsBrwUOBt5fVZ8c1pynir7WrL02rR8C3gQsBqxdVecnWaSqbm/jHwRsAGwHXEnX6vDjvXMZhJI0ESX5ATCT7nvxeS3A+yrgeOB8YLuquqJvfHrXTa97kiRJ0vhmGEqSJEmSFqIkywIn01XbuBg4Cfg0cBVdQOonwGXAm3rhJ0maiAYCnYvQhT3fCuwCfLaq/ppkDeAYupZ5+wHX01WIeguwf1XtM3gujZ4kjwRurap/tPcvA/5J1/JuZ+B9wC+AZ7ZgwPSqmtN3/Cy6DNWt7b1hXUnj3sD9aVZV3dKCoK8GPgZ8EtirBZ2m01UqPBa4CNi2qv4wrLlLkiRJWjCWcpUkSZKkhaiqrqmql9NV1LgY2BP4OnAAsAjwLWANYEX4T7UOSZpo+haaNwVOpQs8zQU+ALw5yYOr6mLgdcDPgW2AQ4FH07UF7QWhRgxCjb4kKwL7Ax9IMivJG+nuRytV1c3AQW3/44DTe0GoFgwAoKpu6QtCxSCUpImg7/60EXBCkjXatm8DP6SrTrhKGzsH+CqwLV17vNWHMmlJkiRJ94uVoSRJkiRplAw8db40sDhwS1Vd07YtATwS+F/gucBtwFnA24DjqmqbYcxbkkZLktcCnwP2Bs6juw5uBry+bTuqqv7Zxj6IrkLetVYaGhtJ9gT2oPtsngu8k65SV7VKUEvQVYd6G/AjYINeIKq/QpQkTTRJHgCcS/cQwmy6oO6JbfevgNOqatu+8dPowqJWhZIkSZImIMNQkiRJkjQKBoJQrwe2Ax4P/A24BHhzVd3W9i8KrEDXkujFdE+i71RVhwxj7pJ0f7WqdrOA0+gWmTevqtlt3yLAgcA7gL2AE6rqL/M7hxWhFo6Be9S3gOcBP6Vr0XpZ296rBNULRL2FrqLha6rqjiFNXZIWyOA9JckM4O3AhsBvgZcBv6G7b91M1y7vLVX1xfmcy6CuJEmSNMEYhpIkSZKkUZRkM+B4ukobvwMeDmwJ/Bt4cVX9Y2D8U4EZVXX+WM9VkkZbkp8Bf6yqjQa2Lw+cDqwK7AscXVXXDmGKU1YLAswBLgBuoqsMdQxwQK/ySZJpVTW3BaJ2aX/Wq6qvDmnaknS/JFkOuLGqbmntQs+kC0AdR1cFbzMgwB3ApcD28wvsSpIkSZpYDENJkiRJ0gJK8jrgZ32LyCsCX8qY12YAACAASURBVAPOoFtcvqFtvwh4IPDSqvp92zZjsNKGT51LmuiSnAGsCDy7qmb3wjVt33HApsB04A1VdYrXvYVrftW2+gJPvZZ5x9Ldsy5v+0foPqMAa1TVT8Z63pI0GpK8FPg8cCRdVcLfJ3kecA6wUVV9JcnKwBHAy9tha1bVRcOZsSRJkqTRMjLsCUiSJEnSRNQW9Q/nv3+uWgx4JPCTviDUV+mCUOu2BZi1AObXcshAgKSJoLXEuyv707X+PBigLwi1GDCXrkXRqcC+SZb2urfwDLTGWyXJqklW630mVfUBYB9gG2DnJI9sh24AfBZYuheEagEpSZpofgh8HVgf+GaSDenaV+8PbNOuib+rqrWB7YEtDEJJkiRJk4O/yJAkSZI0ZfQv5t7DYv49nWcT4NXA5i3gtELbtTjwAODaNu5MYA26FkOXtCfP90jyigX9tyVpmAYCNo9J8owkL24t2AAupltk3jbJSUnWTPIkYAu6kM1fgPOBZYGlh/AlTBl9n9OWdFVQfgz8JMnOSZZsY/agC0S9FTguyRHAKcAv+9u6GlqTNNG0+9XsqtoM2Bn4EV0Y9yBgCWBRYM3e+Ko6sqpOase6biJJkiRNcNOHPQFJkiRJWpgGWgQtAtyaZGZV3XY/TjsTmAX8JcnmwGFJ1gT+AVwKbJ/kg8DKdBWhLm5BgXWAFYCr78e/LUlDMRCE2oJucfmhwE3AtUk2qKo/JTkGuArYG3hNO3wesH9VfSfJc4G/AreP+RcxBQx8Ts8BDgMOpftMnkQXVntokg9X1b+qao8kNwFbAcsBO1XVoYPnkqSJpKqq14q1qs4CzkpyFvBeujagTwQem+TrVXX1wLEGQCVJkqQJzjCUJEmSpElrYEF4fWCz1gbouiQHAj+sqpsX4NRXtT9fBB4HvBu4sqrmJjkJ+BBwI7BlVV2UZFm6SlIfBHarqgvu31cmSWOv73q6KXA0XajmM3TXt8OAryd5bVVdChyV5CvAq4DbgMuq6kdJnga8A/hiVf11GF/HZNf3OS1PV/XkC8DBVXVzkqWAK4B9uyHZpwWi9k/yKWBeVV3Vjh8xECBpIhu8hlXViUkuBl4JLEnX3vo5wJfHfnaSJEmSFqb4cJckSZKkyS7JG4Bjgc/RPRSyLPBi4GDg0Kr65wKc8zS6Rf4/A5tU1YV9+/ahC0j9sv1ZAVgLOLyq9mljrLYhacJJ8kTgU3Rhpn1a+88LgHPpwqHTgHWq6jcDxy0NbA7sCFxcVeu37V4LF4IkzwfOBn4NnF5Ve/XtW4wukLYfXYht38GqKH4ukiabgYckZtB9f/7Mqvr8cGcmSZIkaWEwDCVJkiRpUkuyOnA6XRjqqKq6IUmAfwMXAZvelzBUkmnA0nTt8H4KrA78AXh3VV3cN24rugDUM4FvAz+uqtPaPqttSJoQBkMxre3a6+gq4C0J/JjuGrszsAFwHHAh8IaqurR3vUvydLowVFXVu9u5vBYuJEmWBE6mC+1+FXhjVV3bt38x4G3AQcAngB3uZ/tYSZowBu8/3o8kSZKkyccwlCRJkqRJLcmr6RbnN6iq89u2M4HV2rafJ3lgVV13XyphJFmuqq5K8k66SidX0AWiLhoYN72q5vS9d7FF0rjXWqzdXFU3tvfPAP4O/AtYraouSPJpYClgm77War8CVgVuAB5dVf9u2wMs26tA5LVw9PXuYX1/Lwl8ElgP2A74XO/zbOMXA94LXF9VRwxn1pIkSZIkSaNvZNgTkCRJkqTR0hbbe6+f3F4+HFisLwh1Fl01p/VaEOrZwMlJHnIfWwJdDVBVhwMfAR4FHNr7d9P0B6HaeBf/JY1rSR4NHABs096/GfgesFJV3dKCUNOAJwD/7AtCPRq4hS5486ZeEAq6clB9Qah4LRwd/fc94IFJFgeWAWjBp62Ab9G1hd2kBaRo+2fTtcg7Yj7nkqRxaeD7/QVa3/B6J0mSJE1+hqEkSZIkTRq9MFOSNwBfam2ZfghMS7JLki/SLd6vX1UXJ5kFPANYHHjgffy35vUWYKrqUOAQukDUQUme0hb+LcUraSL6MzCX7nr2OeDjdBXwftg3ZiawCPCIJMslWYauLegc4NtV9SWY/0K118bR0V/NMMkmwGm0Fq5Jdk6ycgs8vRb4Lt19auOBQNTcvtd+LpLGvb7r3qvo7lMnJHlZkmXb9rsNOg1cO1dKMmOhT1qSJEnSmLNNniRJkqQJb2BRY1ngB3St8Y6hewjkY3Rtgm4H1qyqK1p7oI3pqmXsVlVHD5zzv9rb3c2/fWerpyQ7ALsCfwNe0auCIkkTUZKfAU8CvgZsW1X/atunVdXcJGsDX6K75l1DV3Vv76rab1hznoqSbE7XDu8o4HpgUWBn4GzgfVV1SasYdRKwNl1rvGOq6o4hTVmS7pf24MMxwK/pqsDOAo4GDq6qK++q9fXAzww701VAfHFV/XXsZi9JkiRpLEwf9gQkSZIk6f7qW9RYny78dBFwalVd37YfDKxAVxVqxyS/olvgfz1wYC8I1Z4k3wI4qarm9Bb87+HfntcLRFXVES1kdZVBKEkTWZIHAg8AfgO8GtgyyfFVdW3vulhVX2+VOXYE/g18vKqOb8fPdyFaoyvJo+iCT/sBB7XWeCTZgK7i4fUAVXVzks2AM4F5BqEkTVStsutGwP8AJ1fVv5IcS9cWdFaSD80vEDUQhNoB2Ad4j0EoSZIkaXKyMpQkSZKkSSHJ8sA5wKrAb4FnV9W1vaBSktXpFk42oWvvdAHw1ao6sR0/ArwMOAv4MrBRq3xyj4Go3vG9ClF92wwDSJoQ5ne9SvIg4Ga6ikOvp6t8d0JVXXMP5/p/10MtHEmeQnfv27qqvty2nQk8EXhNVV2U5JHAlVV1x72teihJ41GSV9N9v/40YDvg4r6A00eBzYBTgP8KRM0nCHUo8NaqOm4oX4gkSZKkhc4wlCRJkqQJ6S4W7tcH3g68kC7M9NUk04G5fQsgI3QthO7oVcboC0w9kO4p862BH3EfA1H3ND9JGo8GFokfQddSdFpVXdm2Tadrw7YJsAtwXFVdn+S1wNOB/avq38OZ/dSW5DXA54AnV9XvkpxFVwXxNVV1cZInAfsDu1TVRX3HeY+SNGG06q1LAGcAqwHXVNXj2r5Fq+rW9vqjdG2wvwLsVVV/uYsg1LZV9YkhfCmSJEmSxsjIsCcgSZIkSQuib1HjaUlWa9tOBw4DfgF8NsmTWwWMaW1sr53dbGBu25YWhJpeVdcBewLHAGsBp7Rj5iaZdk9zags1Pfc4XpLGg77r6WbAN4CLgXNb2Il2HX0TXejmw8DBSfYEvgDcZBBq4eu/vyR5WJIV2tvvA9cCeyc5jS4ksH4LQi0CPBdYloHfARqEkjSRVOdGuocefgKsnGTftu/WJDPb6+2B04A3A4/tHQuQ5N3AQRiEkiRJkqYEw1CSJEmSJqR0Hgf8GNitvaaqzgT2AC4HzusFolp1pzvbNvVe97XO6LUNWhm4mm5xeUPgxF5lqLsLRA08db418L+tmookjUsDAZuXAx+nq6ZxLHAF8IUk28OdgaitgePoqm5sCfxPVe091vOeagbuL5sAnwHenuShwE3Ax4BXAGsDL6mqC5MsCWxBF147saouHM7sJem+G3jA4E5V9StgR+BbwFZJ/qdtv60vEPU24EVV9Z2+8z0LOATYwSCUJEmSNDXYJk+SJEnShJZkV+BDwAnAAVX1m7b9lXSLwI8AXnZvFoKTbAUcDpwJ3Aw8E3g8cDqwyV21zBtYqH4nXfuNzarqc6PzVUrSwpNkCeAdwEOA3avqliQrAzsB2wDvqqoj+sY/Hritqq5o70f6w6ZaOJJsSRdYOwL4UlX9pG1fka594VbABcDPgIcDLwUOrqoPt3G2xpM07g18X70W8Ei6a9r5wG+r6rokT6QLNz0e+GhV7d/Gz6yq2/rO1WuFPQKsWVU/G+MvR5IkSdKQGIaSJEmSNCEMLuImWaSqbm+vdwIO4P8Hol5Bt1CyKrAccM1dLQS3VnvfowtDHVxVNyVZmq7K1FbAOcCmbUHlzkDUwILNDsBHgLf51LmkiaBdJ48D/gp8uqo+1rfvkXQhm23oqml8bD7HG7AZA0lWB86gu8/t39q90le58MHAc+g+q6WBC4Fzq+rUNs7Amqa0u7tWeR0bn1ql1f3oWk8vQ/egwjnAdlV1ZQtEHUxX1fXYXvBTkiRJkgBs2SBJkiRpQugLHK0KXFFVtyaZUVV3VNVBrZvGAUAlOaiqfl1VZyfZBVi8qq6+h3/iIcAs4FstCDWtqq5NshfwYGBz4IQkW7eF5wzMawe6ilDbGoSSNBpaJQsWcojln8DfgKcD5/YHTavqj0n2BeYCRySZVVUH9R9sgGDMPBaYCZzeC0I1vZav/6KrYnj6YPDJIJSmuoHg+irAEsBSwM+r6vrWMtn/J+NIq/D6MWB3ugDUFcDewGuBzyd5bVX9Ism7gSOBXZKcXVUXDG3SkiRJksaVkWFPQJIkSZLurSTPB34A7Jpk0aq6I8kMgLZAvzewNbB9e1qcqvpKVZ3cjr+7n4FuBhale/KcFniaXlXXAe8DrgZeB5zdO2CgNd5HMAglaRQkeWaS51TVvFaN7p0tmDla50/f21/QVRM6n64K3rP7r5VV9UfgQOAk4PbRmoPusxXpwhvX9m/suw+tmeTJbdu8/s/YgIemur7/J1vRfR/3TeDbwDfa93D+PxlH2vXrVXQV7k4ELqmqG4D30LUJXRnYsT0UcSmwPbClQShJkiRJ/QxDSZIkSZpILgR+Sbdgv1NfIGqRtv+jwB+BtwG7tTZ3d7qHha5/AJcC70jy+DZ+Ttu3PHATcArwmbavt7C2DV1FqAnRGm8gBCFpnEmyGPA84HtJ1k6yId01Zvb9+f87cOysdBZvLT8vAd5OVyXqeOC5A4GoK4C3V9XhC/rv6367ki6w++LBHUmWBbagC7L1AsJW7JL6tGvpx9ufjYDVgdnAQUm2HebcprIk+yVZb2DzCN3nQ1Vd3Sp3zWjfxx8AXACsDcxpY35ZVae387neIUmSJAkwDCVJkiRpnOpfuE+yQpLlquom4JXAr+kW7ndKslivpRNdVadL6Npl/KSqrr2bcy6f5OFJFgWoqj8DxwAvAXZOsmYbtwTwxHbeXavqhLa99/PUisAbRjsIleSxSZ7WqmGNmragNG00zylp9LQWaOcApwFnAJ8H3gActKABl4EWURvShTp/DpzV3i9WVZcAW/J/7J11mF3V+YXfFZIQvFCcH1K0OBSKuzvBPQlSKMW1uEOw4IGgaXEvUKwUaCkUd2txirS4ewLr98e3T3JymYTI3JlM5nufJ09mjux7zp1z9j73fmuvFc5DfwSWbhBEfV61NbrnloyYhjGqSyVsAiiF/tuAvpJWkDR+2W4SYlzcGnjX9qA2PuwkGespItOtgCuA82z/rTgKCfg3cF97Hl9npAhyJwN6Au83rib+LrNLWhSgcoMtY9ldwExEjPUwpMNXkiRJkiRJkiQVKYZKkiRJkiRJkmSso6FwvwlwEbClpJ/b/hLYiIh2+i1wQNmuK7A0MDGwh+1TqraqdmttbkmIDB4HrpO0XVl/BnAcsD5wg6SrgCsJF4EHbL9da+uH8v8Rti9t5fM/jijY3QvcLeliSdOOYZsDJF0GQyIAUxCVJGMpth8n7n8R3924cqobHdeLWt/Xi+hbPib6vw8IsVVfSdPafgboQxSmrwRWHF5bSetT+zv1JP5Of5W0s6QpyyaHAq8ANwHnSDoG6E8IeU+1fV07HHaSdAS6A4sD71RCeUm3AbMT8WrPSVpM0uLteZCdDNn+FFjA9v2S1pS0afkMMBi4FZga2FHS7DBEEDU+MBvxOeCrdjv6JEmSJEmSJEnGerq29wEkSZIkSZIkSZI0UisI9wFOJ2KbHrL9oaTxbH8paSOiWPxbSZsBLwKrAIfXZ4UXJ6S6uGo94HzgcqLQshkRqTed7WNtHyHpX8DyRBzRy8BetgeU/dVMMYCkU4EtgCMIQcIswNHA58Auo9nm/sCO5edvbW9XCaJKRFaSJGMJRdj5PfAlcCARmXeJpB9sXwG4sR8amX5J0jzAIUTf0t/2Z2X5e8CvKBPmbD8taUfgOmDG1j6/ZMRI2gK4EHgEmICIf11K0hG2H5e0FbAfsDowCfAoIQA+v+zfpdnOKJXIuIyvTX+9JBkVhtMfdgc+A6pnwVuBeYG1bT8l6f+AvQkB4iN5TbcJLn3J4OLSeikwqPx+g+0/S/o9cAIwtaSBwGvEs3kvYL/iGJskSZIkSZIkSdIiygl9SZIkSZIkSZKMjUhanoiJOga4sMweR1J3YJIijJoI2IkQCxj4s+2BZbsfFcMkTQqsC8wF9LX9taQ5CcHVPMD5to+pbT8h8L3tb8vvTS36FseqQwm3qz/b/kHSBIR4YQdgKdsvjGKbywMXEDF/bwG7AZfY7l3WpyAqSdqZEYmZSkTQYcA6wNa2L6+tm9f2cyP5GisRbk8b2b63LLuV6Ps2sP2EpCltf1Dcpya3/eGYnVkyKhQHqJOAZ4FziHFtM8L56SbgQNsvlW1nAL4DvqlFGDZtjGoQFQ8RQ7W0PknGBiTNB7xRE34OBNYmRO7TA+vafqYIUHsTIsPdbd/RXsfcGZA0se0vqj5D0hy2Xyp92r1Ev3cAcF15Dv4tMSng58DXhLPhmbZPKO1l35MkSZIkSZIkSYukM1SSJEmSJEmSJGMrSwP/JqJ/qgJsP2B+YBpJx9i+RtJptk+RNKHtr8p2PyoIS1oNuIwoopxWhFDj2X5R0u7AGcAOkgbbPh6gaq/sryYLoSYC1iKKdP+sxfB9Leleokg34Si22YWIGOlGzKx/hnCYOkgStnunQ1SStC8NIpNlgMWAT4HHbD9p+9EShwZwqaTvgeuBnsBVReR0z0gUg+cAJgIeKK91G+GMsm5xRlkcOFbSdrbfAD5sPL6keUjaEFiK+DudXxt//iDpG+BiwknlcNvPuxbbWvZv2hjVgrviFsBskl4jYmz/WRc3NOMYkuSnaLhOf0GIwI+UdFYRdh4D/AJYDvgN8Kyk6Yi+9GTCWTSFUE2kOBTuIekS2/dJ+h1wlqQFbD8raWngYeKZ1ZKutz1A0j2EgK0r8F9HpGubOOElSZIkSZIkSdJxSTFUkiRJkiRJkiRjM7MCyxe3jMOIWeF/ByYGzpb0jO1/l22/hhEWhKcgnJHmAAaXZSpCoJeKIOpUokgzge3D6zs3u8DriP57CPjC9gfVwZXXfQ74AZhmFNv8QdKDRAzMc6XNs4hZ9wePSBCVRe0kaRtqxfvewNnAR8AMRKH+bNsDbD9cBFE/EPGgjxCOTkfZ/nu9vQZBwJTAt8U56B4ifu+IUpCeF+hZhFATAEsCPQjB1I+OL2k6WwAbEfGo78HQQr/tK4sZ00VAV0mHNDqCNfPvVLueehEuVTcD/wIWJKKtrpB0cOVQlSRtTUO/tyQRMfweETU6SNLpwKvA4YTLUH9gV2A8YFKiLz25sa2k1RlMjD03SzqHiCbcD3heUlfb/5O0GEMFUZJ0ne1/EX3OEJo9SSFJkiRJkiRJko5PxuQlSZIkSZIkY4ykHra/ae/jSMYNarEZKwGHACsQBZAXgW1tfyKpDxEltITtV0ah7Y2BI4ki2Wq2/1nck1QEQXMSxeYLXeL22oKfKrxJmhj4gDj/K2rLfz4qMVZVYV3SNEQR8GCGjcz7GTAb8GQ6RSVJc2ko3k8N3AecC1wDTEfEd05JxAGdXrabB1gTWBj4i+1LyvLq3q63uTGwDXAbEY8n4BRgU2AQsIjtV4or3SZAP+Bg2wPa5A1IgGGjSiX1B3YGzidcat5p2HZLQny0tu3b2vg45ydEUOcR12QVPfYd8FdgB9v/a8tjSpJGJG0LHAf8g4iRXBiYGzgWOM72N+W5b3uin30TeMH2/WX/dBpqIgpV5+xEnzEDcJbtvWrru9oeXBy7Hga+Ij4LXJsCtSRJkiRJkiRJRpV0hkqSJEmSJEnGCElbE8KSY35i0yT5EQ2F+8mIzyhdgXdt3y3pI2Aq4Mtaoaor8DPgDcIlZbhtlt+72/4OwPa1pRBzCHCZpK0qQZSGRuatbfvT5p75sPyEEKoLMD7h5jSotnwrYCNJe9h+cyRfp4ree7c4RImIzPvB9rZAb0IktQ3w4OieT5IkP02t71sDmAR4FLi8CErekLQzIV7ao7i4nW77ecJBoy6g6VK7t+suU2cBA4FnbX9Slp9MRA0tDBwi6QkienRj4ORKCJXOKM2j8b2tC09t7yJpEiLC6x1J/W2/V1t/uaRHbL/UtkcNhKsiwJ9rQqjrCfedg4ujy9TAhymmTdoDSYsQcXcnAefZ/qiI3HcgxN8/KKKVPyEEh437pxCqSZRnb8pkh26UZ31ga0nXVM/4RQhVd4h6ihAJPw6M9OSHJEmSJEmSJEkSSDFUkiRJkiRJMgaUL7O3pkSONcZsJcmIaBBCbQJsSxToX5T0V9vH2H6yYZ8ZgVUI8d3Btl8bQZvrAOsBC0t6Erjf9kDb10gaD/g9Ee2zue37yzIqIdRYJAYQEW01COgGIGkz4GKg78gKoRopgqgzStsHSVqIiDw60nYKoZKkDZA0MyFamgF4pBSAK7e6JyTtCZwG7FIK9afCjwQ0PzS0+WsiXugE4FTbX5blXWw/J2lXIo5tc2AZQoS1m+1La9ulIKAJNIxRSwGLEC4pdwHP2H7Ndq8i+j207HKm7ferfSshVDv8naYjIhRfL69/CzAfsJbtpyUtTYjqTgDeGV4jSdJEpiXE4/fb/gigiNxPJGKWDwW+knRuS6L37PeaR63fm8L285LWAiYj+osbJW1g+76ybV0Q9SvCyTWFUEmSJEmSJEmSjDJd2vsAkiRJkiRJko5HbXbvICJeYsbyewqhkpGmVhjZBvgD8AKwL+EycZSkk+rbF/eUo6t/tdgotdBmHyJqak5i5vlawABJp5ftrgSOL691vaQVGq/fsUQIVd1XnxGipWmKEOoS4Ajbh8Cw78Eotv1eaeteQgi1r+0jS5v5eTFJWpnGe9X2f4ATgeeBxST9uirIF7HLU8AeRF91qKQFR9D2eOXHRYEvgKsqIVTDa75k+3jbCwELAFulEKptqI1R2wJ/BvYGNgNuAM6RtHbZbkvgCuAAYE9J0zSOSe3wd3oRmAJYRdKfiDFjvSKEGh9YjrieJmzj40qSiskIMVTlXNYdwPYHDI0K7QvsWNaP1rNTMnpIWhO4W9Kytp8momH3BV4C/lQElRXrS+pt+y3bF5X987k0SZIkSZIkSZJRIj9EJEmSJEmSJKNMQ0HuCWBKSZPll9TJqCJpGeBIQtizFyHKWQ14BthHUr/a5jMQBa49bZ9Q9u/SWCAuYoETgMOBDW2vA6wKnAfsJukYANtXESKEr4BZm3eWrUI34GPiPP4IHGf7aGj5PRhZJE0K9ASWBfa3fUqtzRREJEkrUxPDzF+c7rB9HnAq8DZwjaSFighS5V58mhBE7VDEUUNoKOZPXP6fA5iAEILWX7sSWc0taZay7OuWtkmah6SVgTOJcWplQrTbG1gCOFjScgC2twKuBw4EftFGx6baz92LA2jFXcCfCKHxssBytp+SNCHhMrYPcKXtV9viWJOkul5r1+3twFvEvYXt72rX8HvEM+YFwAmSlh5bRO+diOmBKYG+kpYr7/+DDBVEXSdpJ0m7E/3MLPWdc3xKkiRJkiRJkmRUyWJVkiRJkiRJMkpI2lzS5ZJ2LTN8vySiU+bML6mTUaEUqOYHbgFOkfRLQgR1BeGUcT2wV028dCFwmO1ry/7DE+zMRIiH7qjFpDwP9AOuBbaTtEBZfjWwajXrvNmMjgtBERlOQDgerAkcYvuI2roxKeZNSsQFnmj75KrNvJeTpHlImhd4inD8mQGgODMdQYyp10hasAiiupR78jHb15f9h3yXUxNX/RZ4XNJEwCvEuDxfWde19trTA78l4kMrl8e839uAWv+/GuEENtD2q7Y/s30JETu8BLBp9Te2vTmwRltFl9aup02Am4G7JB0mqXu5Tk4DbiPGo40k7QUcS4i7TrF9fsO5Jkmr0nBtVT9XfeJXxLPeUpIug3CxLX3gMkSs9wWE8LRnC+0lTaA21lxIiDunAk4sgqgfgAcIl7yngP7AwcCBlVNpkiRJkiRJkiTJ6KKcBJMkSZIkSZKMLJJ6AFcDPydcCqYGPieKYo8BjwMfEF9qfwh8bPvf7XO0SUeguDhNQVwz1Yz+3Wx/LGlJ4B6gK3CJ7d4j2WYf4CJgVtuvlyLY97ZdIjjuBda1fUvDfmorl4DRERxJOhDAdt+W2hhdEZOkmUtUVwqhkqSNkNSXcNI5BTjL9ltleS8iGq0LsIXtJ1rqm+rLJC1EREBdRThMjQfcDfQAVrT937LdhMDGlJioxj4waRuKSGMRYF7b35d4Q9v+QdJxwM6EkO1/rdHHj8bx9QQuI66hSYClCdHyrrbfkjQf4WTVk4gkexC4zfbAtjzOpPPR0O+tBawOzAM8R/SjL0ualnDS2xV4HbifiG7cDNjd9gBJrxIxoge2w2l0SiSNb/vb8nMv4CDgUyKe+d6yfCIi5vVr2w+XZdmfJEmSJEmSJEky2nT96U2SJEmSJEmSJLD9jaQNSvFuWqA7sAqwP+HEsyAwM1GEqIquKYZKhis0qiKfJM1ECOwusf1xWd2DcDj5B+EYNdw2y/X4ge3BRFHsc2B/SQfZ/qQUm78nCi9fAT8qrDRTCFVc1GYgBA532H59FPbtYvuHSgRVLQNWL64yo9xmnRRCJUnzaOz7avfzgZK+Aw4ty8+y/ZbtiyX9QLhE3SFpbkJcPAy1vm9BYDZirO1f+jsRbj0nAg9JOpPo92YHdiJiSVMI1WQaxqgJbX9VVv0X2IAo+j9UnqkqZ5t3iecpNfbHze6fa8e7DHAcIZqbGFiXcGs5WKhyagAAIABJREFUX9JOtp8F9lPE2H4FDKriFnMcSZpJ7X7qTbiR3UKI6NcgnMpWt/28pJOA+4DfEZ9T3iPEfOdJWoNw23yhPc6hMyFpPWAHoKftb4vD3HdlnOsCnEQ4w+5h+37bXxKTIKr9sz9JkiRJkiRJkmSMSDFUkiRJkiRJ0iINRbxJiCiu7rXYsXfKuquIOIMra9FdswCTVUKXpHPTcC3NTUSzTQE8bLsq8k8PzEiJfCtuTr8EHgUOr11vKg5P9TY3AXYHrpJ0ru1HJN1COFe8Iel82x9KmgBYFvgCeKdtzh4knQOsQ7i1jAecXgp1l1fOaSNypaoKQbVzHw84a0zarB1b/f3MglOStDK1fuoXhNPPNzVB1OElPehQwJLOtv2m7UuLE+M3tj8YXttlrH2CiH662/Z71WtKuh74iBAnH0T0E08TLhz9y/5ZaG4SLTnYSLrV9l+Akwmx+ImStrT9dnGF6kaMjS8BP7SFW2HDa0woaRAwEfB4uTY+k3Q18C0RLzZA0q6OeL8h43KtrbyekqZSxOUnAEfZPlnSXMAjxASN+yUtbfs5Qih1i6SJisgGSasC5wL32/5D+5xB56A8xy8LrARcLmkL29/VBFF/kDQrEZt3pqT9bd9VbyP7kyRJkiRJkiRJxpQUQyVJkiRJkiQ/ogWhSR9gbuA9SdcBp5cvtGX7S0kvAfNW+9cdarLYmjTM5D+acA2bAnha0uXASbYflHQpIepZgnA72hw4sCq41tuqtdkLOKf8e9n2oLJ+S0l3AIcA60q6k3At2wQ42vYTbXDqSNq5vOZWwLPEue9Ujmt+ScfbfmhkRUvl172b0OZUhHNCkiStTCnA3wjsJekPxSGjLoiaDNgX+EbSH22/bvuC2v7DG0f/C2xHuPgsIGkx4BEHg4E7gTsVsWafA9/WBCw5NjeR2hjVBzgduIKIlAN4n3DUPAu4WdLZhEB33rL8AJdowzY8zs0IB5epCVfGf9S2GSTphvLrAEIQ9TvbL9fbaLZwK+mcNHwmmZSIxru4CKHmJ2LwrgT+StxTfyuCqJeK+9BXpY/tRTwr3W97i9Je9oNNwvZgSccSQsrfANdI2rR8fqwi814n+r5piQj2JEmSJEmSJEmSVkX5XUWSJEmSJEkyPCRtDVwIDAS+BCYDtgGuA/auFVX7ES41v6pmXydJHUk9iWLw4cADwBtEUXVVYB/bp0uaE9iTcMx4kyh2nV72/5FDhqRFgD8B5wH9PDSmp1sliiqFmBUIl6kngGtsn1vWNb0IVorc0wIb1Y+/iKSOJd6LQ0YkzmooBO5f9vsLsG4rtnkYMMuIXGiSJBk9iuPP08DkhJPipUUQNZ4jIm0+4G6iGHwWcFDjWDo8lyBJEwM9if70NmAv22+VdS32cW3hOJSApFWAawgR8EW2P6mt60HE0Z1IjE9dCGHABbZPLts07e/UMAZsBFwC/J1wZ1yTENrubPuftX26AhsSwpOetm9qxrElCbQYMTp+6Te3A/4FvAj8DXiMuFa/UUSC7kLENy5l++na/ksA09n+U/k9hVCtQOUMV+tPqnGtch6dnBB5bgfcC2xSlo8HHAB8QDgbvtROpzDalD7x+xxPkyRJkiRJkmTsJZ2hkiRJkiRJkhaRNDsRrXMk0N/2p+WL6xWBBYHxqi+8CZeDqYEJCNFUkgyhFH03B64mCr0fleXdiYLW3QC2XwR+J+kowsHk47Ld8ApW8xHRTzdVQqjC4OratH1wKdRMCXxp+6ufaLO1mQKYqVYk6mp7sO1zJH0PnAG8I+kA2+837txQsN4dOAp4Cpi2ldvcJ4VQSdJ61ArB4xVnnfmBh4l4JyRd3tBvPQq8Bbw6IiGUIlZoYmBi2/fb/qI47HUDzga+l7Sv7beG18dl4bbNWJWIvLuqEkKV8Ui2vyFcuxYhBLtfAp95aMxpU8eo2vUkYCagL3BquZ62J0Rah0s6wvb9ZZ/BivjFOStXqCRpBsXlbipJ95RrcidgTuJZ5aKyzRpE7PKF5X4CeI54RpoYWIpwIJWDB2vtpxCqlSjjXFfi2XsdYC1J0wKPKqJBn5R0IvAD4T73N0kDgDmA/YCdKiFURxHqSvo18JHtV8rvOxP992Xte2RJkiRJkiRJkjTSpb0PIEmSJEmSJGl/JM3YwuLJgGmIyJ1Py7KbiGfIrWy/DfyiLH8EODjFFMlw6AYsAXxYE0LdRhS2trb9jKQlJC0HYPudmhBKjQWrahY6sABxPb5Qlncp+7vMSp9H0s/K7+/XhFA/arOJPAvMJGnZcmyDa8d5HuHI1Af4VcO5NQogdgNOBXYFbmjtNm33b9L5J0mnoX6vAZMWR4wekro7YusWJ1zvjgf6SBqv7LMU4cizh4sbXp3aPbsNcDMRYXaLpMclrQiMb3sg8FtgPeCE4YzrSRtRxAHLAJ+U56Uh/W81/kiaufz+N9sP14RQbTJGSVqPiFrcmIiZ/QLA9oWEk8uvgCMlLVntU4S3L5f98zvFpNUpEy/mJ1xoNy9Ck3OAN8u6irmA6QgRaXXPzQ7cDqxkewC0LP7sbEKoZtyrkg5SuK9Wz6HbAdcDv6YI14B/SNqwPNOfRLiXTgNcSkTnHW37iqrNDiKEmhTYAHhM0owKZ73+xHklSZIkSZIkSTKWkV9cJEmSJEmSdHIUEVl3SFq8/F4Vc2ckIn0eL8tvI4oTPcss3/mACyUtYPsu22eX7fIZM2mkG1AJ6pB0KzAvsI7tpyTNAOwBzNNQ6BqmMFIXO5VF9xPFhw2rzavrV9LUwBFEfOMwtHGxZQAwCDioCCOw/UN1nrZPJIQN+xXBxBC3jgbR0mnE7PkLmtRmkiRjQMP9tSlwC+EK9BIhTlrSEd+5GPAKcAxwH3AZcS/e2eAU1dj+xsD5hMNeH8Jt7xvgWmD5stnlhCBqc2CApIla+TSTkaSI314CZlc4bTaOZ7MCx0pauIV9mz5GlbHyZ8DnhHihEmj1KMdwIfB74rmvr6TlG9vobIKSpG1wOM7eSESG9gfOBPa1fVpZV3Ej8AlwiqQtiZjlHYAnbL8JPxKodjokLSRpxpoAs7ekNVuh3amIeNY+kg6QND6wKRF7t4bt+YDNiOjNqySt6HDHOxtYGFgUWNH2SaW9DvPZ0fZnRDzjy4S77dVAL+JaTZIkSZIkSZJkLKPDfNhIkiRJkiRJmsa3QHfgREmL14pwTxIOFn2LEGoeQgj1VPnSexUiomwYsjjWeRle0am4Qd0LbCfpIWBuYO1yLXUFVgcWAV5vKHQN02YL19ZTwEPAUZJWLw4bLsXcVQm3lXaLbVTEY30A/A5YFjhL0gQQxb7aub0ATEUpRpf1lahib6AfRbTUjDabc/ZJ0rmo3V9bAZcQrnCnE05OOwCnSlqlCKKWAS4AviLu0z1sn1r2H6YfldRF0mTATsC5wCm2b7D9l7L/J8Dr5RgGEYXZnYFb3BC3l7Q5/wRmAbZSxEYBIKkbsDIROdytrQ9KUo9yvV5BRCH/h3gGnMb2N4oI20oQdSgx1kze1seZdF7Kc84TDL0/VD3rlF+6EI5QexHOo5cQ4r2+tq+utTPWOw01i+JgtBVwl6QpJPUCBhKxmGOEI4J5G+I5fGfC9Wk64D7bH5Zt7iScSh8inlWnLc5y39h+0kMj5trSrbVVsP1X4FZgQuA74EXb33YkUVeSJEmSJEmSdBbUiT8XJkmSJEmSJAVJ2xORKO8D+9h+qAieziJmu34JrFmWT0o48ZxCROOd017HnYw9NLiiLEQUTr+0/XBZ9n/AhYRIaTfgPGBqYmb5icDhtk8eQZtrE9fdjMAbwKm2nysz3PsB0wNnAB8DMwM7EvEbfZt64iNBcWfpA5wM/JmYOf9aEW6JOP65iFn1X9XOeVngbiLG7txmt5kkyZihiKa7HfgLMT5+XZZvCxxOiBR3s/1iWS5gIpd4MkldWioKl3H3ReDkqp8sDnvzEQ57TytiRh+wPajeTr0fTdoeSecQ49EFwB8IV7+VCJHAkZUzShsez6aEO9nptt8swqxNiOjG74Albb9fXAW/K/vMY/v5tjzOpPNSBCUmRE7zEM5l1eeU8xpFnpKmAOYAvrD9XNVGRxPYtDbFLXQF4tl4cmBaQrh0YXGuG502DyKi8F4sjqRzlfbnIoRr89n+uKH/+B3xrLqY7WfH8LTanTKJQ8C+hLveqsT1t4Ltx8qkhe9H1EaSJEmSJEmSJG1H1/Y+gCRJkiRJkqR9KEXYLuUL20uBWYEtiLiJPW0/UhxkpiYKZ0dJupcovq4K9KuEUFlsTWpim95EpImAiST1J5xMXpN0WNn8dCLKaTxgAqIgXBX4h1xLDW0OAP5KFGuXB3pKOsH2SZIGETPUdyttPk2I+qrrs12LYra/lHQpEWl1MlE0ukLS40Shb6dyvI0uLu8Ay9h+qC3aTJJkjJmCcN243/bXkroWJ4yBxd3pZMIZ70WIPk7Sl/CT7hgTAj0oTnc1IdS6RQg1PXA0MZafX28nx+b2oRp3bO8s6XNChPAbwo3zHUIA3K9s25bPUKsB2wHfSBpg+y1JlZPOCcADkpaw/YGk8W1/S0RBtftYmoy7NDz7VdfYA8T1eBPhcnli2XSA7a/KfgsDb9SfafI6Dcrnu7sk3UgI5j8gxqbRFULNBfQG7ihCqC62X5C0BxH1uhpwFCH4/U5St+JW+DjhQDwt4ZjY4Wi4PgeXZSfZHizpLqAv8HdFHOCj1faSZrL9Rnsee5IkSZIkSZJ0dtIZKkmSJEmSpJNTXKG2IwqtkxORLg8A+9m+X9LERCTXcsDswH3AnbavLPtn0SEBQNKcRGxEf8IBZV7gOOBG4KCaG8o2RFHkf8BLVRGrpWtJ0iLADaXNc2x/Wpb/UNrd3vZHxUlg6rLbIJeYjrHp+izHOA9xLrMCUwKvAn+0fWLZZpSK4s1oM0mSn6al+0rSr4hI0CFOd5Ugqvz8JvAX2zuMbJvVcuBiYEUivnZaYAPbTxZnn+2AXYm4vbtb7SSTVqM4Jk5DiKHetd2mAqMGp8UzgV0I8VP/IojqSjgJHkuIihe1/V6zjytJGq7NlQlRzZfAw7ZvL8unIdz1fkM48twKLABcA6zuiC1LapTnw27A7sSYsSYwPiGiHWWntzIOTWb7E0krAe8Bzxdh1OyEm/CiwFm2jyj7dAf2JMRYK9p+aszPrG1puD5/TXy2eQd4wfZrZfkaRN85J7Cc7SckbQJcRcShPpvP4UmSJEmSJEnSPqQYKkmSJEmSpBOjiBi7Efg9cCchYPk94WDwGuEs82BthmvlElDtP9YITZK2p7FwL2l+Ij5xM9sflWVbEdFANwGHVREmP9VWbXkvIk5ovap4I+kG4FfA+qXgMDERyed6W80WAY1u+4rokumJeI1Pq1njpXDl1m4z79EkaV0aiqPzElGUr0maBHgU+JRwq3uxtt2MwN+BAW4hGq2hzbkIgXKPmlh0daLYPAMhejpfET+6BuHKcajtU5t53smoM6I+uJlj1HDEekOe4RTxfTvxY0HU5sA5RJTqH5txbEnSEkUofw5DBZ9dgGOq/rIIog4lJmi8TPSF/Wwf1nKLnY/h3PeVKGpZwpm1B/FM/Vxtm2lsvzuCduvRq1MRbnFvE/3FCx4amXc6sArxzP98ea2dgGNtH996Z9r2KFxqzwAGE5OH7iGcb/9c1q9BOGMtSsTlLkvEkR7SPkecJEmSJEmSJAmkGCpJkiRJkqTTUr4cP4n40noV2+/X1u1a1j0B7G770do+oyXWSMYtGgr3ixLRUJMDy9vuVZZ3KQWSLYE/AtcRBZFnRrZ9SUcBfWzPVJZX8VDrOOKhVgTWJYRWXzThVId3fFPZfn9UxUbD277MuJ+ytdvMezVJWpeGvm8rwvHiP8COtv8raQWiEHwPcJztB4pgcwNCtNTL9i0jaL83EXk3JfA9Ia46xPY/JW0G7A/8Evhn2ebnhMCqb+PxJUkRvc9qu3/5vbvt78rPlSDqeMJ58c3iNPYLFyfHJGkWDX3pNMAtwJXAQMKldg9ga0LoeWzZrhuwJeHO84jta8ryTi/8buG5/JcMdTB6s7g0LU+MQz2AtYmxax1ChLaE7Zd/4jUWJYRoiwLnl/a3B/5dnvfnJARRKwOfAEcA/7V9Q9m/w/ydGt7PWQnXxzOI8X1hYqLGt8BRtq8r2y0JbEY4RF1v+4KyvMOcd5IkSZIkSZKMa6QYKkmSJEmSpBMj6Q/ACrZnKb/Xi2QDiC+4Hyccou5rr+NMxl4k9SHcSr4HJgEGAUvafrwIfCiips2By4E7gC1sf9zQTr3oUI+V2oAQUa0K/BZYgoj4eFLSBMBewArADpUbUrMp98ZGxL3zXGsUOZrRZpIkzaOIPAcSBdG7bT9SlgvYGDgX+IGIrfwcWBzoWxX1a+3U+77ViNins4DngAkIt8bJgN1sXy1pQaIfXIoYn59xicbLfiNowbVwjAVirdFmG7gV7gPcb/uB8vtEwCPE9XOE7fPL8vqz3l+Iwv5A4Gzb/6m1l9dT0nQkrU04F21GRCpX0WNzEOLP7akJosq6+nNiXqc1iqC2HxF3OT7RB+xv+6GaIOoUQnD2N2AlItrugJ9otxfh9LoaIQxaCriEcPKqC6LmIMa/hYjJNo+X/Tvk30nSckB3QoS3r4c6364DHEO8z0dUgqiybkLbX5WfO+R5J0mSJEmSJMm4QoqhkiRJkiRJOiE1x549CAeKXsCNRbTSzfYgSQcQQpPvCXeoa9vzmJOxg4bC/VzETP6BRCTEWsDewDNExM7TDYKoPsDEts8aQZtrEoXZPwH/BqYCriDiJj4BFrD9jqQeRDzHCUTx7MLmnvmQY50eeAqYiJhRv1k5z1F1c6qfc6u3WX7PAkySNAFJsxB93w1EjNPXZXn9vp4d2A+YEXgd+IftK8u6H92bkn5OOHQsC+xl+/Oy/GfAXcCkwIq23xrOMeX93kApVq8BTEe4mDzmmgtmW7bZcG3M1NriXUVk4hPAh8BWwONl3J2dECJPDpxs+9yyfVfbgyX1A3Yhiv3L2L6/NY8r6dhIGs/297XfW7WfkTQF0b8tSAhAl6/EJmX97IQgdHvgcNtHt9Zrjys09C3zEO/nmcCfCYemHQhRVG/b9xdB1LzAnsDUwJ9sn1f2H57T6LSE49PTwBm2Py/P9yvQsiBqPmD2yhGqo1I+59xHPJ/faXu96nNyWb8WcBxgwvn22ob906kxSZIkSZIkSdqZFEMlSZIkSZKM4zR8ST7Ml9ySZgYeAl4EDqiKYCWG4nCiqPYX28+3/ZEnYzOSlgG6An2ImdIflOV7EgWW/xCCqGfqgqja/j8qEJTZ7CcS8VL9bD9Ulm8I7EsUy3Yj3FZ+CexKxFAdN7w2WxtJkxKxVW8Sri1TAhuV8xymaDiCNur35K+IyJFWbbOaiZ8kSesjaWGiQLqR7dtryxsFiZW4eMjYOxwh1NKE08YbwHW292nYfw6ij7igti6LrCOguJgMIES1PyfES2cQDiivt2WbDf3zfsDBwLy23x6d4xjB6/wauIhwKukFPFkET7MC1xLujf1sDyjbT0A4m1xLDNEPtubxJB0XSdPYfrf2+5KV41grv46A5YB9CAfQzW3f2HDPzAYcAvQGFiMEiNn3NSBpceBL4tn4QBcHVkmbAgcSgtpt6oJHSZPZ/rT8PDwhVE/ifV8D2KV+HTQIol4jHFz/1fBZs8MIdVsaw4n3bmtgQmBhR5x1XRC1JuHENTHh7vpqOxx6kiRJkiRJkiTDoUt7H0CSJEmSJEnSXBocd06QdL6klSRN5YhD2ZiIMhgg6SBJKxGzsPcE/lcJoSpBS5IUB4qbgbuB6YEhs/htnwacBswMnCZpQRfqbbQghNoQOAfoC+xdCaHKttcTjlNXl/V9gfkI95RKCNWlDYRQsv0ZEdv3IHAqIOA6SQtUoiVJ4/1EG9U9uTsxc3/m1m5T0vxjfMJJkgyPaQjh4rsQ/Q8MM96uXPq+QWX7IX3TcIrCnxLxeDMCs0iapNzX1f4vE64/89TaSTFAjfozSnHTWpt4llmViIM6mRhH9pf0i7Zqs6F/3o1w4zyotYVQAI6oxm2JMeRiYKHiAPUq8az3GbCvpKMkLUCImXsTjo0PlmPM7wk7OZLmBI6VtGv5fTvgn4q4sDFp90efI8q9cS8hhH8COL8Ir1wT0r9CPPetYvvR7Pt+TPmbPUA4N01h++PauHQ14V70GTCwiG8p6yohlGqC3ca/0+7AAcT49FbZpj7m/Z0QC81FPKf/rL5zRxFCwTBj+GySfl7G4L5E7N9ExPP1z4tIuXvZ5zbgIGJSUQqhkiRJkiRJkmQsI52hkiRJkiRJOgHFcedc4AVgJsLRZwBwmu23FXEGFwJzEs4BHwCn2j6hnQ45GYtRRNRtAOxPuBit1ehiVEQ5BxBigVVsfzictkTMpr4aeNX2LrV12xOig/eBS21/LWlGYub74CJMavNZ55IOJNwLFpS0DVEEGQ9YibiHFiCcQgY37NdYFD8d2NH2Bc1os1nnnySdHUV0zj+AvxDizQ+qe7G47ZxIFE53tf3VSLY5P9FnbgrsYPuPtXU9CAHqJ8AmkGKo4VGE36sQbjO/tf1Ybd2RwKGE8PakkXWIGt02W+ifTwN2anb/XByiLiZEeHWHqFmI+KxlgG7A18Aptvs283iSjkVxEjuVEP1dD2xJuHKeb/u70Wyzfi8sCMxGfBZ51fajZfkSxDPMLMAGjki3llxEO4zTULNowcHo58BORCTeF0Tk5WeSuld/M0kbA0cC0xIxee82tDG17fdqvy9RE0leBmxBfJY8xPaHDX9TEX3kjLYvaurJN5lyHd5PCF0vtv1RcYjaE9iDcMBavyzv3nhPtHTNJkmSJEmSJEnSfnRt7wNIkiRJkiRJmoukCYni6n7AlcXe/w/AdsAEkk6w/aykNQhhyzTARzVHqE5fdEiGxfY3km4ABhHF3fMkbWD7nUoQZfuMcu29OzwhVGnLkr4BJge+lzQRMbv8NCIKD0IU9H+Sjrb9JgyduV6fzd5sagWO64EtJE1u+xJJXYmIl0eI+2f7csyDW9i3XhT/DRFpRGu2afvCpr0JSZJg+wVJNxKuOq9KOs/2fyVNDqwHbA7sMzJCqOo+LoLS44DxCXeUKQkB1HfAysCyhBAni6wFSUcTAo03yu/dgCMI8eibhEsKksa3/a3tw8vQcSjQrTz/vNKMNttCCDWCovvjhAjqEkIU1UvSk7ZfL+L4+YmIv7dt31vayme9BADbryoij/9ECKGutd0fRv86qd0LfYDjiefHSYEekvoSEzAeLK97KnCNpE1t/7OFtjr9dVp3MALeK+Kkc4nx4kjgSmKiwneVYMf2tUVY+73td+rtKZztjpH0T9tnS9qRcAxe2fbfbG9Vns93AF4rY94ntfHLwF9r7XVkQdDjwA3E+/idpCuL8Ok0wnVvD+B6SRuW5cPcEx34vJMkSZIkSZJknCTtr5MkSZIkScZhJK1FRLJMCtxDOD5huw9wLTHL9/eSZrD9se2XbN9XE0K1mdAk6VjY/poo1O9JzOK/XtK0tr9XiXSzfbztgRDXkqT5SyGmEREzrVciouKuIFwrVgbmAJ4jZrkPEQJVxYZmFh0UcZLzNr4m8AYhHFy/LB9IxJNMBXwMPGf7W5UYkYai+BkMLYpf2Ept1gvtKYRKkiaiofFAOwK3EELjOyRdQBSgzyBcFy8emfbqfZjt54DDiELsSUR81DnA74BD6/1pq51QB0XhaLkeEdUKgCPSaC0itml2oG8RAnyroZFGhxORUTsQsU9NabPWP+9NxOk1TQglaW5Jq0jqKWnmIkh+hIiu6sLQyLzxbH9k+x7bV6YQKhkBJp7D/gWsrhKZZ/sHjSC2d0RIWptwJjsdWB1YlIggOwzYqrT/ALAX8A7wN0nTjuF5jLNIWhH4N7CdpIkdEw8uAg4HVpJ0C0AliCo/X2r7irJ/vSbwFeEUd5akS4CziL/DP4o4H9s9CTfEY4CdJP3MHhpnWKejCIIaj730hd8BmwG3Av2AzSVNUcaCU8u/eYnrc/zsO5MkSZIkSZJk7CZj8pIkSZIkScYRJO0PXFc5EhACqFsJl533bc9dtuth+5vy87lAT2L291G2/9s+R590VIq4aR2iwPUysKnt/7Ww3ZnALoTLwHWlqDCkCFscVQ4kCnD/sX12bd+LCFfbHYBBbVFkKTPAVyBEg2d4aCTfeEXwdS0RPXSMpF7AH4CbCPHWRESExlMNbd5DxCzdAPRupTb3JIo1O6YQKknaBkldK3GmpP2ApQm3nfuB221fVtaNlsikiHL2IZyn9gMucYkvqvUXdTHMkIjSzkIp0E9anDlWA16y/VpZNzlwHeEueAZwsiMmrh4Ztbjth5rZpqRFgYeB39ke0KT3oRfhYDI5MAHhDHMwcLkjvnFRwiFqELB9EUklyU8iaQ5gCuJ6Wp6IRzuzrGuMaRuuE1C1TuFKOwnxvPJhWXcbcU9tYPvJsqwL4YQ3je2rm3aC4wCSHgV+QTjTXWL7c0lTEO6/xwB32F6vbDvC8UjSZMDtwOLANbY3q63rVntuvxlYETgWOMf2x805u7ZD0nTVZ5fa55LuxHN4T2Bf4CqHA1c34vPK2/ncnSRJkiRJkiRjPymGSpIkSZIkGQco7jV/Bja2/Xht+cJEHMWqwDG2DyvLx7f9bfn5QmBbYEXb97T5wScdniKIWgu4APgf8GvX4qEk/YZwOfmKKNbuQhRaqsJK11JUbiyuTV7aPRPYw/YlbXQ+pxAuBXsA/6hEgvVCkqRDCWHT9UB/Yib+CYTY6zjggLozjKQrgU2AC4EjWqnNZYCrS3vnNefdSJKkJRoFSJImbOj3xshtR9L8RB+wDrCt7StaalPSOsCawNSE6OVhN0QgjctImoaINfoOWMH2f8ryKYi+dA5iDBlGvFQTaLT0nrZKm2X7GRtFrK147j2HGUTzAAAgAElEQVQJJ8UTgLsIockW5d/xxLjxNbAIcBXQA1i4EtYlCfzIZWwKYCKXSOKybDFCbLMsIYg6qyzfkHDt3HskXqMr8BRwt+3dyrJbCBHpOraflrQu8Lntvzfs2+mdy1p4Pq5/jrsXWBA4gGEFUX0IV7r7bC83vHZhSGT1dMTkmG7AwsCuDRMT6iLgO4BViOf9x1r9hNsQSesTbk97276hLKv68PGBa4hr/wDgekfcfP2e6ciRgEmSJEmSJEkyzpNiqCRJkiRJknGAMov6Z8XNYHngXeDF8kXuPETR7pdAP9unlH3qX6SvZPvu9jr+ZOyhhQL/SH3JXwRRGwITuhYFVJwFrgU+JNwrdiEETjsyrCCqsdCzJvBrIobvZNvHtcb5jcR5LAJcSogQbnREIY1HOFb9zPZHteO7DuhOzL7vZ/vzsm5u2/9qaPMKYCBwSmu0WZb9HJjN9sNNejuSJBkBzS6ClvH7SGBdYGeXmLza+l7AucCzwLSEIOoi4CTbrzbruMYmikvH6oTg9gdgbduvl3WVeGkW4HzgBNfiVtuyzdakCBi6E0X6r4HtbH9ZO/bjCDHv+rZvK8+IiwFztJWoOOl4SNoC2JtwGrqPENZcV9YtTjhErUT0Oa8RrpTHO2Ii6+202C9K+jvwte01Jd1ECG7Wsf2UpCmJ++0D4DBHFHPSQIOD0cgIon4HfGy7fwtt1QU909v+bxFETQL8npgos1t93wZB1Hq2b2rqCbcB5XPKU4S77UG2by7LKxfGFYhI3G8IN6z+1fueJEmSJEmSJMnYT4qhkiRJkiRJxiGKm8FLwL+ArYGXy2zfBYhZr3MAp9vuV7Yfv/6Fbs6+7rxImh74wEPjfpYm4ureGoU2hgipag4ZEwKXAQNt3yRpZuA0wq1sGEFUtR9R5L2BiGe5sHI9aovrU9J6hHhwyVIYmhQ4m4ib/BlDY/P+J+k84FXgbNuftSDoqt6DZrSZM9GTpJUYQfF+tO+z1mqzCKLOBl61vV1teQ/gj8A/gUuLGLofUcC+CTja9iujc+xjKyN4T8cnRBpnAt/yY/HSzYRQYLlGF5NmtNkMGvv+cnzPAg/Y7qVhXQanIeKuPinH/VVLbTX7mJOxmwYxzPqEaPsqYkLFVoT447RKDCPp14TIbh1ChHea7RPqbTW0uQzxjPOE7bclHQDsDnxGRP+uZPslhWtUH0KAs8+4ILBpBgoXwKMJN9Aby7K6IOohQsh2BDEmfNawvkU3I0kbAwcRz+lVDOKshPhtW2oOUZI2AxazvU/tuDrcZ8fa9VoJnmYDHgTeB/YHbqm9P0sRIqjviUkSZ7bbgSdJkiRJkiRJMsqkGCpJkiRJkmQcosz+X5OYtf0yITZ5qUEQ9QtggO0T2+9Ik7EJSb8kClRv2z5WUm9ixv8mtv82Cu0Mt6jcILqbiRBErUZco9fWRFhVZN6kwHS2XyjL26TYUopCpwKzEVEhTwIfA08TEUObEY4JvW2/oYZorLZqM0mS1qGhKDwLMCUhfnnHDXE4I9nGkNihMWyzLi6d0cPGVq1DuEUtSDh3PFJbdxzwW0IQdZTHEYcolSi68vN8wP8BnwNv2H5TUndCvNSfEHHUxUtTAsu7uNw0s81mo+LgUn5+EPjW9vLl924e6rZ4FTA3sEhdcJwkjShcJjcCpiOcnr6VNCPhgDYFIXqqRDLTARMCk9p+oixrKWqyF9AXuBfo63B/mpoQWy1LCN13Ks+fKxLPnIfZPrkNTrlDonAPvQx4jvg73VKW97D9jWISw1+Aj4hn7DN/6t6X1IcQfPYnhJU31tbNBhxCTK4ZQLh2HUq4tR7QyqfXdBrG6fGBLra/rgmi5gTuJ8SAh9q+voznvyOc9bZ3G7sAJkmSJEmSJEky5nRp7wNIkiRJkiRJWo9SjLgN2I6IxTsfmLMUKp4mZnS/BRwiaeH2O9JkLONNQqizp6TriZilQwnHkZGiocgwSX1dfVZ6+f0NIv7uL8B5wCZl/cRAH0nL2v6sJoRSG846/wSYClgB2JyI99vU9g7ANsD6RHzf4eVcRka01Iw2kyRpBWr9Vi/gLuAOQpx4r6TVRlEI1RtYo7ZuTNqshFDbAPNVyxVue7sR4oWpCFFl5RSF7YOAc4g40qNLgbfDUhxrqImWegN/Ixz1/go8ImmTsv6vRBRrd+Cm4m6C7Q88NO6rSzPabP47AZJWBu4rwi0I4fuyko4vx1QJoXoAg4BXgK7V2JskjUhaA/gHsB8hiP+2iOreBDYgnlf2lLQrgO3/2X7lJ4RQGxLPdv0IUclTZd/3gC0JV7V1Jb1P9I17AIdXQqi8XlvG9m2EeH4W4NAiisX2N2WT8Qmx/deESPKnhFArAicQgqdjPNRtavLyd32FcIw6Hehd/v2+EkJ1pL9Twzi9IeE++4Kkx4B9Jc1m+0VgSWBS4FRJNwBnEfGNj3poPGCHOe8kSZIkSZIkSVIMlSRJkiRJMs5RihJ3Ar2IGK7zgDnKF8HPEg5AvatCRtK5KdfFl7ZXB94D1iMEdX+0/d3IFHkbigz7AmcUYdMw1AUARRC1NyGIOlfS9sDOxPW60PD2axY1odadhAhsAOEI8nTlBELMIr8VOB7YWBFf1aZtJknS+kjaiBCWXAZsSEQDvQLcLmmlEexX7/t2BQYCk9h2K7b5R2ASiL6wiCV/C/ydcHrsV9Z9U9wusH1wOZYtgJlH5z0ZGyhF6z9JqmK6FiaK0+cAqxPC74eAKyTtXgRkfwN2BSYjxGeTNDTbs7XbbEOx7jSEEOIX5fe7gYuBvSQNkDRDEUptRVxzf7b9dVuMoUmHpXJ6mh6orpPBRRD1FnEdvQscUJ7vhqF+7Rex5uTAb4DLgQtsv1Rb19X2/whRzXpE5NuOwJa2Tyrbdens12tdbCOpm6SJys9dbP+VeM9mAA6WtEG1HTAP4e40l0u0Ya2dDRTxmXV+BbxBROp9IamrpJOAa4C7JG1cxG/7AgsTznhVzHqH+jvVxtRtiGvzY+BPhIvWocTnlnnK9boMIRCclXiP9q05o2XEaJIkYz0N40jWf5MkSZJOT8bkJUmSJEmSjKOULz5WIQplzxHOBi82FC7aJHosGbspRZSJiWjFj8rP/YETiyBqSFxTC/s2Fu7PAHaxfc5Ivvb05bXWL4sOtX3sGJ3QSKKIZ5mMcEv70vYn5cvDnoTAYBYiJqZX3a1J0g5l/UK2X2t2m0mSNA+F09L1RFF4P9ufluX3ADMB6xdnxR/F4dV+3o2IwtzR9kXNaLOF456Z6G8XB863fWhZPiSWVNKSth9o5beszVBEDB4EbEyIwm4lnFH2tP1F2WYGwtlkB2Bl2/8oY9oawBS2/9jsNtsSSbcRcX5L2P5S4fz1O0KA8gMR5zeYiMg6ruyTBfxkGDRspOJmwMmAiGeTu+vbKCLz/kpEs/2hoZ1hri1F5N6/gbNtHz6c1+5RczMabludkYYxoCchHFsQeI2Y6HJmES6tSfT/XYlot48Jwe1Btk+vt6VwKDwbWMC12FRJZwDrEI6lsxPuYNMBtwDLE+K4JWx/OLxj7EhImp1wIrsCOLZ6Bpd0OCEwvpMQPr1bhMUCJrb9QdkuPzMnSTLW0zCOLEW4f99u+/32PbIkSZIkaT9SGZwkSZIkSTKO4qEOUdsQM1uvIKz/G7dJOiH1GYPAlLY/Jor0iwHPEsXV35ei1ffV9pImqLfRULg/HdhhZIVQhS/K60EUo48t7TX1s4qk04DbCXeVF4CrJa1ezudWwsXpLWBFYI3qvCV1B6YEXiUKz01tM0mS1qXWl1V94ISEG91zNdHSzYQrxPq2n5a0siJGZ3iipdOIYurA1m6ziKsWk7SlpEMkLS9pGtv/AfYCHga2k3Q0RCyphjpEPVDa63Df/ZT343XgKMKppBflOaaIAcYDsP02cCbRf+5cxqxBwM2VaKn+N2/tNpt17i0s61p+vIKIR9ygHOuLhLPJYoTD4N7A5jUhVIdycEmaj6RNgBOLcAnbVwG/B74ETlLEp1GEUFVk3iKNQqiyTdVnbVqKrl3Kv0po1a3htRcBNlNxO2qprc5M7f3sBVxZFt8GTA7sC1wjaVJHZN62xPPm4sCiRITd6Y1t2b4YWNT2q5LmVUxCgIh/6wHcS/SJ/wHmtr09Ia6crvxr8Rg7INMTz9p32v6q6lNtH0mMBxsQExYAviuCvQ9hyNiRz+dJkoz11MaR3kT880qEc2CSJEmSdFo63BdiSZIkSZIkychTvri9C9ga6G/7k3Y+pGQsoKHovgkwUNLuwPhFFLUh4Sa2M7CvwhnKktYDTpY0abWstFEV7ndqycFkBMfRA9geOBg4xPYZZXlTZ19LOoyIjzoEWKL8Pwlwq6SdiqvK6cCJRCHkAuBQSTsRBcPDgYuLGKFpbSZJ0nqU/gaGfg/yf+X/LwgnnanLdjcDCwDrFNHS/xHRaavVxDJV37cnQ0VLF7RSm7sytD+9QNK2hFPHqUQ/cTtwiaS5isvHnsBjQC9JfUtb39bPvSMWccuYI0dU1zHAdYRTx/Rl/fdFSIrt5wkB6uzE+94Yy+pmtdmscweQtGAZb2V7cFl9LfABMd5UfGH7OdvH2r7E9j1l/3QySYah9DfzAHsQz3dTANi+nIitmxjoJ2mFsnxQEedVLjotCfU2BC4hnn0+JNx3DpD0y7J/l7Jdd8KJaBvCQTNpAYXb2zGEuHFr27sASxNRngsD5xSB5n1EfOfCQE/bZ5X9q/d7tlqzL0r6FfAMEas5QxG5zUe45G1uu6ftj8tYuQTR/3XIz43DEat2JYTK0wDYHlwT6x1Y/l+rrHNL/ydJknQEFBGq5xCfHQ6rnguTJEmSpLOSYqgkSZIkSZIOwHCKDyP1LGf7B9u3lEJtU90Mko5BrdDahxDl/Bt4xPZHReT0ObAR8C9CEHWRpL2BG4D/2P7MJTavFO5PpRTuR/E4vgFmAA5vcLFoSvFWQQ8iPvJC25fafsr2aURB6XKiyLRHEROcR8y8v7n8fyIRd3eQ7VOb2WYzzj9JOiuSFgL2kzRfEbz8BrhN0qxEFNADwHqSHiQiidaw/VQRDqxLuDy96FpcqKRTgFOAI2yf30pt7ktEH/2mCKFWJ2JEjyNmdk9YXnMO4AqFs9SrwG6EgHV3SUs05U1sB2qF6DeBYwkh0FKSzi/Lv4MhjoWDCJHQBC231rw2m4Gk+YAngPuAvpImkdTVEe10JLCqpE3LMbdYqE8hVNLI/7N31mF2VVcb/62JYAkEJ0Bw9+LuDsWtSCDIhwR3Le5OWopLocXdS6F4KFK0uBUPFgiaQGZ9f7zrZPac3JEkc+fOTfb7POuZObbukX323mevd78r6puzUKrIQxFpqSBEXYsIURMBfzKztWO9t0QKCXWdtZHK0KVR5q4GPkP14dLabRQB9ADgVnf/tOoXW7+YCegDPOBKhdnd3X9G9dVdwHqoTQH4yd2/d/fPoUnByMz2AN42s9Vh1Lfgf1Dq9P2Bvcysn7t/4+53uftzcfz0wLaIpH91EEfrCqUJH3OZWUG8ew8Rlbe2UMfySBWJiMw/InWsjIyMjLqFKVX3Lqi9uDT6u3l8ISMjIyNjgkb3tnfJyMjIyMjIyMioJUqDuisAM7j7LWMb5MqzWzMAYtb/ucBxwBUeqZyABjObIohRmwOXo7RuawOHu/sZiY8/oMD9rj4GilBxrEV87eBkXWeoWEyM0mDcH785kbsPd/fnzexYYDhwrpkNcffrgSeBJ81sLhQYH1kEh4KQ6B3tMwewMzI6HDMh8uFqZvYIqvf2Bz4MdYjTgIeRmttB7v6amc0ErIOIA0e7+0MVfH4TPm1cfUZ9MiWwd1KfroWUPK4Fvo664Sgz+wypzx1oZge5+//MbCCwoLs/3VE3rbNR6u9MjshfPwC/xTWeGrvuZGa9karg1Eh1awOUavX7avvsJHyE1GAOQuqeOwCXmtntSHnnHWB1M7sNtSG53choEWnfIgg2g9AE2RNj++nu/rW7XxuEzdPRe9Caz82BgWhs+bziPXH3+83sBOAQ4GlEuG8If2e4+4Vx/Kh3c0JFC/egG1Lo6gNNCkbu/rOZHY6C3MsA/y4fmyy/hYiU95rZBkVb4+47mdlwQgnJzAYlRKoNEIl/QeA0b1JrrZvnVKrv/4BSC75hZnu4+wdmdgBwKfCJmf3Z3V8P4sCySCXwg1qde0ZGRkYHoRewFHCBJ6rwaT1uUhf8pRYnl5GRkZGRUQtYnXzPZGRkZGRkZGRMkCgN6u4AnICCCke4+4tj4WMad/+qaiecUTcws6OBdYGVkvJxFkqZMT1wgrvfFuoYfYEe7v5m7NcQM8/nBhZy99vG8hzSstlpwRYzexDo7e7LxnJ3jxREZjYfUjhYFNjA3V9p69yr5TMjI6PjYFJuOgWYCjjd3Y8MElODSy1qWeDG2P0bRHScCviLu58WPsrvfYf4ROSoZ9z9hsS3ofR4M7j74rGuR6FkYWY3AksC8ybqFsWxdUeqLLUHWwH7onRe3yGVrcPd/UMzmx04HNgNqTZ9BrwPDHb301Nf1fDZGfciRQTq54xzXxcRSo4BVkaKhMu21KZkZACY2SbA5MDNLmWxYv1kiMB5IqrHznf3L2PbvEWfrwWf3RApp6j/dnL3v5b6PvMgIv3S6NvleXd/ILbVXR3V0SjVT7MDHwXxaUFEZHoAONTdPyz2B+YBngL2caU2bM3/cii16prAGp6kSTKzi1F9dyowyN0/N7OVEOnyn+5+Y+xXl8/JzLZHkzlOAJ7wptShEyElxdOAd1EqwJGonJ7i7ifX5owzMjIyxhwmRe+RpXXTAs+iSVoD43skbW8WBTYGzq0R2T8jIyMjI6PTkdPkZWRkZGRkZGR0YZRmt14EXIgGwMeGCLU/cLZFOoyMCR6GAqwrmNnmZvYySo0xFBgBXGRm87n7z+7+XkKEKlJwmLu/HYSpKU2pNZqctzONY4HOCDKb0rmAUrjMbWYnxW//Vmxz9zfQrPHJENGgIpL3qsN9ZmRkdAxM6BaLb6B38DtU7y2YvscuRaW1kOLS0yg93U4JaamhINh0pE+gJ7Aq8GlxzuG7AXgNmM3MVgSl9DGzHrH9UWA6YNrydddj8Dq5b9shJay3EEljMEoRONjM5nD39xEB42JELvsY2DohLTUUvqrhszMR7exP7v6Ku+8GbAGchFJYLY/S9y3Q2eeVUT+IfsiBKEXvxkGuA6QQhQgjDyAy4H5mNk1sG0V+L/mz2D4SuAkp73wB7GZmU0ffpyH2ecvd/+Tu/d39lEyEakLp+2xr4Fb0jdbd3f+LyDpbAXsHoR7U1iwHNKI6qqLf5Jl9jtIkfQM8aFIXBsDdd0f90iOAgWY2vbs/Duw3HhCh5kMksJOBcxIilLlUW89CxNI3gBmBnxBh4OTYL8dKMjImYCT9cMyswTQxLN1e8zrCzA6Ib46R5fMJUvMbwPrAEkGYKtqbnui7ZFmkRpuRkZGRkTFBICtDZWRkZGRkZGR0cZjZzMB9wO1IradQhVgRzfT+D/BFecC6NNC+N0pntoe7X2Jms7n7B514GRk1QktqFma2OkrrtCLwOvA2MMDdh5rZLmi2+DIRJG7N/zZIWWB2FJy/xt3vim0tBlJK5XNt4B13f28sL7O185sBkQU+An5y9xExY/ISpNR0jrv/Kfbt6e4j4v8X4py27AyfGRkZ1YNJoekbFPhcBtgTKf/s6+6vJMH7luqr0eqyjvBZbLcmtb0NkfLP34P4tApKtXcDcJK7vxbH9gTOQISYtT1Jg1FvSO+tmc0I/BMpYh3roWIT7czJwM9I4WSImc2GiEFPuPtFsV+hCNXhPqt/J1pGufyZVBk3AT7xNtRhMiZcJO9DH+B6lDZnX+A2b64QdSpSCZoKWCVIMaP5Kfks6qwpgU2B81AfcDt3H1Zp30645LqDSfX3EtTn/ndBGIttpyLi45voW29iROI52d1PacPvrogE9x0iTy1HKCC5+7+S/S4E9gDOB45Ky0W9wpQG/E6kxPp4sr6s7NgLpbG2pJ+ey2pGxgSMUnu3KfAHYGHgJeBf7n5xeb8anONJwJFo/GYLV7rPok0u/s4DPAh8icYP7zSl6l4POBul6h5Ui/PPyMjIyMioBWrOZM7IyMjIyMjIyGgTvRDx4l/Ab2bWz8zuBG4G7kYDHfOnB5QGcvZBg9y7BhFqE+B2M+vRFWa2ZVQPpXIwr5ktYWbrmVItPQzsDGwI/J+7bxJEqO6IZPchUsgYzWfy/ybAFUht428obc8ZEYQZFeRv47z2QzLus3Toxcv3McC9aADzZTTDvlfMmDwApUM6wMwOjvMtgiG9gG8RQazqPjMyMqoHM+uH0gr93t0fcan9XADMAQyKmdWNUV+tFYSkZqhAhOoonx51qpvUpv4EDAK2MrOJQtFiT2Ab4Hwz297MCkLDbsBf65UIZWYrm1RQ0nZiCmBW4Gl3/8malPduRGSLudCMdoLQvUdKWgJW6miftSZCQfPyF+f0Nkpv8vdYl/tyGc36Z9CkjBZ1xJbAi6ie2tSUIq9Iw9gLOBSYvw0i1HpIveim+NvP3YciotUBwCrA38ysd+n3M7mkAsxsITQp4VTgTE+UswDc/QhgAAp4L4HITPsURKiW3vsgAw1CJKtt3H0F1IY8D/wjSLbEb+wF/B34YHwgQgVmR2X6DRiV0jFVClzFzKZz9x9cE4xGpZnNZTUjY8JGUk/0R22boUkJswNHm9n16X6dDVPK5wGIfNwDuMnMFkiJUHF+byHF717AbWb2BfA4cDpwWkGEKvcbMjIyMjIyxlfkAZOMjIyMjIyMjC6EEtGkZ/z7GRqIOQwRT/6FAq57ocDDLMCOqY8SEeo8YHd3vyJ2mRWlR+uRB33HbyTlYEdEOHoQEeieM7OdkarEve7+ZOw3M7ADSiP0Vy+ph5XK1pRIEeU0YDd3PxCpTA0HDjWz/4tzaEaIqlA+z0Tl85GOvPaY7b4ncBuwPfAKSgfSJ87rAxQc+gQ40MyuM7O+ZjY/ISuPyE5V9ZmRkVF1/IjazVXMbAoAdz8HkYRnAy40s7UjwHAn7SNmjpPP4pg4zoEFXGmnFgY+QPXiViZluUtQQGN+lI7zMWAf4DhvUqCrq2CGme2BUnPtb0rfUfRFRqDUb7PCqHSjPYJYNgilM1q68OPuP4Q/A3bvaJ9dgQhVRkIw+S1Zl/tyEzhKfavlzWwvMzvXzDY0s5nd/XtgY0SIuhARuddAdcvmwOdeITVe4nMn4BZgPqAfItI/b2ZbBYnmBqQSujwKzo6q4zJaRD+kxvWQu/+crC9Isrj71egZLQFsX3zLWesKRouilNd3IQVTXKnvjkLty4NmttyoH3Pf3t3P78gLqzFeQ/X6wWY2sSdppGJiwoDYVqSy7nL1fEbbaK3fkwnCGeMCU6rN44ET0GTCgSi18kTAfDEhoti30/rf0a6uhhRN94lz7AncmBCiijTexPjOEsBBwDVoTHBrdz81/NUkBXRGRkZGRkYt0L3tXTIyMjIyMjIyMjoDpUDGGsCiZna/u78WAdULENHkZnc/PPabGqVP+Lzwk/gYSBChgMsjODgy2bcPGizOGI9hZpsBF6PZ5/9BaZyuRgok3dHMccxsXWBrYG3gRHe/INYb0NPdh5fUAU5DAeZT3H14qHG8Y2abI9Wyg82s0d0v86Z0RS0R9S7r4Gs+Cvg9Ur76ZwS/70fEwnmBjwHc/T0z2x7YG8ngvwsMQ4pYZ7j79dX0mZGRUX24+zdmdjVwFbAAMDjWn2NmI5HK0p2ofT3V3S+sps8IshxqZje6+/1mtifwZzNb0t3/Y2YrAM+gNHjEfteb2b+BvijwMcTdX4/t9ZjW51ZEKN0LBf7Pi/7JD8CzwPZmNtjdB7vSBXZDCplfIdXCZnB3N7MO91mNC28JXZV8lVEfSPpWAxCZ8kfUR9sPuM/MznX3f5rZOoi4dDxSGvoRqYzdm/gqK+EtjVJKHg1cFfXf3Oj7Ywcze8DdvzOzm4FuqM+5MiLjZLSM+YHJkNIo0Y/+LXmWywCveEmxKeqK1ur8GYAp3P3d2L+nu49w94fM7HLgFOBJM1vPm6flG1/qoBeAJ1F//QMzu8rdfzYplm2GUg3unxJKM+oLpe/J5VA/rA9KRX5HHfaJMroWZkZ97Xvd/btY9zc0braju39kZnO4+3udXGf+iMZybnH3V4FXzWwS4BBEiNoqxg27xzhFg7v/iMZbmqFOvx0yMjIyMjLGGpkMlZGRkZGRkZHRRZAM6vUHzkLqM8/FtkfNbEnAvCnt1mTAOsBMRCqAAjGDexCazXZFzIz9JTa/gAZTVgBuiv3zgMh4hiAxTYqCw9cAF7vSmWBm3yFSVJoOZTpULvZ391HlApGlPjCzU5IyMhsadJ4aqW4ANMbg27tmtgUKth1tZpO4+6BOJELNDvwOuBJ4NAl2TIZmiy9kZr9H79Zj7v6hmR0HnIPUm74CvnH3J5J7MGtH+8zvW0ZG9YKvBfnXpAD0K1LEex7Y18xeBEa4+0h3Pz+WpweGufv9cfxo72gH+hyOVPXuMKnNDQQOBl6KOvT7IB+khKgb3P19VG+X719d1SVxH78ws41RP2ffWH++uw8xs9NR3+SPse5+lLp1DXRPX+8Mn9VAqR3shcgq3wK/BaGrIK23y0dGRgozWxP1/U9AhMOvgE2RYt0UZvajuw8GNg8CfAPwg7s/Fse31DdZEAWB73P3b2Ld+cB7wLFBhOrp7sNMKfSedPfXqnip4wsGI0LaYcAxSfC60cwmR6kLXwBOSg9qx/t/L2qXjnX34919RNJuvQG8itqheZCaXnv9dnnE/RthmpjxBCLxbWZmg5Gq2XqIoJwnJtQxSuTP89CElH7AyHjW2xXfvBkZY4FpUN/wEwAzuwcpt/7e3V8ys8WBXczsAg9Fxc5AtBGXRxvRLb45LjMzR+3IjWa2tbv/Nw7pGWC9VXkAACAASURBVOMwo70L9fbtkJGRkZGRMa6w8eBbJyMjIyMjIyNjvIFJAepK4BikADWaWkHstyywDBogP9ndTyttnxFY2aUmsSXwZzT4/TbwHQq+HgJckZCkMsYzRLD1VeAGdz8s1t0HLARsGAN6yyKizltmNrm7D4v9GoAeqJwMjhnl3QsiUJD2zgB+QYPOTwYBq1sM1s0F/AOlcvprck6HoTR8e7r75R18vf0ROWke4Dl3fyvZdj5SDHkd6IXIXw8C+7j7xy34a0Bksg71mQcgMyZklAghk7n7j0kAeJzfjyDELI7at/8l689Dam0LufuXSXC4fHwlIlSH+jSzWVBdMSdwibvvlWzr4VIu6o0IUZOhPsHfK/muJxTPPpm1Pg0ibcyK1ArPjfU7IFKHofq1SCF4hrufVG2f1bz2+H9rYA+kDPMR8DRwsEtlsUVCVMnH2sBTHmn9MiZcJO/AmcBKqH/3VbJ9U5TibhAivI82ENxa3WtmFwAbuftssXwv6kcWgeHVgP6oX/dLe3xmgJlNB1wLzIXqoYti/aQodeHpwAHufsMY+p0eTWSYD9V/hd8eiGA1K3BSS9+Y9Y6kLZgUqWAtD8yO6tlb3f3K2C+XzzqGma2FSM4nxt8h6JvtUkSQOqQtcnHGhI1Sn6q3K50s0aY9gFSeN6X5uElPNIFhdWAPd3+nNmffvA4zs10QIWoEsFmM6+wDzAGckMmBGRkZGRkTOjIZKiMjIyMjIyOji8DM+gA3orQThxQBhSBITQN84O73mtk8aJBvDuBCb0pnVgSTRxFWYv2eaBB4emBJRF75XWx+PZZfRmkafnT3S6t/tRnVRhCTpkczo69x9+ODCLUgTQGsmYALkQz8xS34KcrVFsASKGBTKEwNAI4CvkYBm6fid7tHMH8UuSr2nxwRAK5190EdfL0Xo5QY8wCfufsv1qTkchRwBLATUnb60sxOReohu7r7dZ3lMyMjQwiC0Q5Iwe5J4HJ3/3xMA5SlYIYB96C6qjdwOfAvd7/VzKZF6dJuc/cDauETRqV0mxspS/VE7fsW3jxdURHM7YXa5hmBxTpzBno1ETPVf47/U/LSn1Hw/lczWxVYDZE7XkXEn+vjmEqEtQ73WQ2Y2baI9H4V6u8thFQ+fwQWdvfhLRyXlsl9UT9wNXd/tIPPr6LyVEvrM7oOzOx6YBFgwahnugGNCVFqACJuft6Gn2bP2jSp4ipgG9QnWhKRo16IOmp/YGlgr5aI4BnNkRDYFkKEqL7AY8CLqM+5OUpDfcpY+l0ApcSeHvgX8DDq/+8D7O0xGWF8fa+TvnpxP/ogFbRiQkcmQtU5TIqPywJ/cPdPY939aMxjW3d/Ptl3vCznGWOPUp9qQ2At4EF3vzvW3QBsiRQWN3L3p02TFDZB/a8j3P2SGp1v+n+ZEHUoIkTdh0hbh7r7WZ11nhkZGRkZGV0VmQyVkZGRkZGRkdFFEMG7F4Fz3P0cM1sMOBtYDCkZ9AH6u/u1JjUfd/d/x7EFYaXVwT4zmwSlSr4IWA6pJiyDAq2LAMe7+znVu8qMaqC1525mf0Yz9l9FykWbu/uLMUO8P1J+2tfd/9GK/25Iheww4HjgfHf/NrbtAhwODAX2c/fBRdAfRgX+m6UG8g5WsjCz9VHQZzt3/4eZze/uryfb1wN+cqWbTM/lS+AmT1RZqukzIyNDCELIFShAOxNqg14HtnelmWxXoLL07s0NfO3u35hZP2A7YCsUWH4MBYRXQamhBrj7kBr5nBm1wxMjIthpqD3eyt3vS44pCFGTAxu7+zVt3Y96gCmV18XAGu7+QayrqOYU25opJbVAhOpwn9VAlKH74rzO8iYlxtcQ0W51d3871rUU+NoH9Q338o5PM5v+zpJIWaYX8ELR38yoPUrPKSUBngvsikhyz8W64vvgQNR/m8/dP2nDZ1nJblHUH5oDpctbzt3fN7OJEEHqNBQYvqp6Vz3+IXk28yDF3nUROfZ5pOh6ebrfWPidC5GfNgNmQCp0f3b3szv6WroiMrFz/ER8YzYAjwDfufuGsf5epPa4gbu/bFKOms87ePJNxvgFM9sROBf4G3CLuz8S62dB6e43RKqKQ1F/cmvgTHc/OfarWn1SapfLkx3TbaP6tGY2EKUHnRw40kvq8RkZGRkZGRMqGmp9AhkZGRkZGRkZEzJS0ggwDPgncKyZPYqCZX2QYsCqKPC6iyl1178TIpSViVBmNruZzWtmS5tZ9+Q3RnhIgAPvuvs57r61u68EzJGJUPWHKA/F/wuY2TJmtpKZTRarLwBeINIqBhFqJmA34Hzg0taIUAAxwHYqCqT9ETjQNMuaCNachgK5F5rZKp4g9vHEVzVS+nRD3zZmSoX0X9Ns++I37/NQzyiRHIYBz3Wiz4yMDGE94DikiLQoql/6Area2azRprU6XlFq8/4A3Awcamb93P2jCABsggLBvYFtgfVRwHmlGvncGrgNzTYf4u7/QSTTwcCNZrZucuimZraPuw8riFBt3ZOuiLSfY2azAbMh5YarItiEK6XXZsD/UFqSfU0k3KL9GYWiv9PRPjvmaisjOd8pEfHvsYQIdSdKhbiBu79tZotGYKslItR5VIEIBc3asp2QGtpJwAnAYDM7w8zm6+jfzBgzlMrDesApZrZGbD4T+BY4zcz6wqj3pQcqe28DI0vfHmWfGwCXmtl18cyndfeXUKrOn4FvgDVNShrHIqLhoIIIVfad0TK8KTXsW8BBiHw4J1IhGSsiVOLXXOmbDkL14/zAigURqp7akpbKVFvX0BJBIROh6gvl5x+flyORauYcZjZ9tKNF6s6XzWwq1C+bx0Qoz8gYDSaF2j+h8Y2TCiIUgCuN6LYo7eIKqB85CZr4VRChGjqJCLUeapcfMbObzKxvaWylIEJNDPRARKgDCyJUPdX3GRkZGRkZ1UJuDDMyMjIyMjIyOhmlQb1uppnVuPsIFBD+C/AOcJ67L+Ga3f0G8D3wmrs3lgZAmhFOgrhxPwquDgbuMaU4SwOAjwMLmFk/C6AZb3nApE5gZiua2TRFeTClrHsEeDTsn2bW35VW6Y+ITHe5mT0NPIAUoU5MAiOtBrAicHsOmm14FKMTos4FZkazzzsbnwDfoSDx5cA+7v5qKWCe/t8DEQyHozRFneUzI2OChpltY2bXICLRE+7+U2w6N6wPcIuZzdIWISpp87ZHKlN3oFndHyX7fBhkz7WQEt5JwMfAHkX91Yk+dwifDyFC89DY/gJNhKjrzexgMzsIuAGYtuSr7tL6JNe/I3AdSo34LrAycEcF8tJ7KM3H4S21S9XwWQ0U5CsUQCv+9kH9OczsHqT+uVEEcOdHaU1WiO2ViFC7V4MIlZzzukgF4RxExl8IESoOBjYo+qwZtUGJsHYdUpcryO9DUDlfDLjTzHY2qVweiJ7hVe7+eTl4m/jsj8ia8wMLINL8c2a2qbvfhdLsvYkI8Fcikv3BHqncqhkYHl+R1OmNQfL4FvUjR012GUu/xXNodPeR7v6ON6USG2u/nY1SHTiDaaJPPzObuK0+Quqj+meaUQ2Unv/yZrZRsvk5RC4eDPwOKeK9aJoEtjGwBfC4J+naMzIKRF9mE+BO4EIPZVczO8DMzjGzM919hLvvg/pC8wM7ufvVsV9VFUUrtPUToZTiy6KxvZUrjEmsg/pux7r7eZ1xnhkZGRkZGXUDd8+WLVu2bNmyZcvWSQZKUxz/b4rUn14H7kXBvEljW49kv8lRap4hwNZt+N8SDaIfDWyOAoPvAF+gFDzFfusDI4F5a31Pso1VOdoaaEQBrkmBpdFs/WOQnPvawCsoJcahccxEwI5I5WFXYPnEX8MY/Hbv8DEy/vZJti1Qw3tyEfAbCnpv2NK1IfWZPVAw+sDO9pkt24RqKC3cOcCvUV8tFOsnSvbZC5F/XwZmb4fPuaMNPa1oPyvsU35f90YKJ3N2os+Fox45PvWZ+kEEhpuBEcCnRd09PhhSaBgOHIBSDE6C0jf9L571LMm+06KUwQNq4NPG9hoTH79DAbaJYrk/Irn3Qqovn8Tyg6iNXjT264EIK4OBxUo+D422aJcqnndD/L0EuB2YOtl2B/BBca7ZamuIiPkt6gP2KW2bJN6Nl6NO+gURmA5urbyg+vkZ4AhE2DNgCZTK9Cuiz4i+SaZF/Z60/9fufuT4ai29h+N6b6rlt54M2D7K9LeIfPwoMNeY3Dv0Xbxkra8lW7ufefrsdkB9qPvSdgi4EH0P3xDt68LRJ/gJOKzW15Ct6xpSgH4MuDOWV43+11dR1zQCf6/xOa4DfFa031G+vwd+iD7ZyjT/jpgX2DxZnmDaiGzZsmXLlq0tS1OmZGRkZGRkZGRkVBnunipEXIpmYN+PyCynAr83s509UomZ2QqIuLQXcJa739CS71Ck2CX8/sk1uxgz+xilx3g52f1tFOjoS1axqUfcCvwdKZL8hAhR/wQucPfvAMxsHTRzf3cze8HdHwSuLjsa0xni7v69mZ0Zi4cB3WP25FB3fy18duosRDObFqkYXIPSbx1lZiNdqexGpZA0pX/ZCc2qPNEjLWQ687iaPjMyJmS4+y9mdj6qsw4J29Hdh5tZT9cM7AtDTedYpDryfhtu+wHTA/d7k8pU+XcbAcysu7v/BtyIFO5WQ2pCneFzbqTeck/qM60nXYoGW6H+wAhXCr3xZVb36iiQeb27fwZgZpehoPalKEXg1u7+P3f/0syWdfdfqu2zXE9XaAfGqB4PlZINgN2BM81sOCI+7Rn9uh/M7GKUIvIHYEt3f8nMpgR+jwjNR7n7i4nP6ZHKxX7elDprCkRe+cXdv4u2aJzanKSM/Q543d2/jt+6BwXgNnSpV20MDHX3x8b2tzLGGesg0uj1SV/fEHngZ+B+M3sQ1Uc/At+6++ux32j1iZltg1KpfYrqqG9j0/Nmth1wF0qDvKQnKiuFKkU9KQ1VC2UFI0INzt3fb++9aaEvWhW/9YRoFy9Hqb2fQWpAOwOvmNlS7v5qC8eVlfXOBzaqtG9G10Py7P6AJqccB9zh7m8Vz9bd9zKzn9EEs1dQu/oZcKRnZZyMEpJv9wZ3H2lm16O0sp+jsvMpsGT8/0dgPTOb3GugLmZmkyGC1m3ufpaZLYSUoa4Drgr7C1KlfcqlAPgmMa6Xy31GRkZGRkZzZDJURkZGRkZGRkYnw8zmQ+oQp6BUeMNi/VCUYmxKFDCbBQXU5gKOcPeLYr8GYBl3H1xy3R0pSzySBEfui+M3cPc3zGxxlA7vU6QU9UhVLzajKnD3X0M23YCzEbnt8YQI1cPdPzWz3YFnUSD1wdjWavC3nb9fEKK6A4cjifmnk+2dPfj2NQoqDzGz9RAJ7I9xrfcm1/gJIlf8zd1vh1YHC6vhMyNjgkBLwVd3/18QVnoAh5jZD+4+0N1HJISoQWb2iLu/0o6f6ouCwz/G7zZ798xsEaC3uz8ZpCWA+RCRZGi1fSb3YR6kzvdJrO/mTWlriSDHCHd/i6QuHY/qktlQc1OQlrq7+89m9gBwN1JPusHM1o3+y8jYr7Ug/jj5LAXK1wLWQP2lp4D73P31MSUZuYiyfwZWQYG0Pkgt8OKCOOfuJ5jSsxyB0s1uDkwDrASc6e5/Ll37l8Am7v5lrN8GKREuAHxkZs8De3RgOfkKmDV+6w5gEZqIUH2Qusr3ZvZsEG8yOhGmlLwrAt9487RnDhTleRZ3/xCR5NNjRyMtBbFuO0Ti+wYp942qe9z9MzO7EKUxXRZ4oji2eC/qiWhTLWJQUpdsB+yP6pLvzexlYCDwYWu/W6qPNkSEwyer5Xfcr7hzYGZTAfsCfwZOSr6Zt0WKyWk7Oqq9rECEOgfYzd3v7uRLyBgHxFjI0cBZaMzk19i0TJSNx9z9IBPJeFakHDbU3d+J48eXPlTGWKJU5xvRTgZuR/3yhYG33P3G5LgGpBI7orPOtYTh6Hvgk2in/47O98DYdgdSE70c2BOl4B6FXO4zMjIyMjKao83c2hkZGRkZGRkZGR2OWVDQ9J5kUPc2NAttH3f/yMz6RSDjFJTWJSVCbQo8aWYDS36nQJLeQ2Pf+4AFERHqJTObDZGwlnX3H9395sRnRp0hgvA7AX9DwcpVY9C4IEt1d/cPUIqT1cxsoo4MArn79yiN1PLu/nRb+1cTMeD3Rfx/H5oxPjtwjJmtn+z3InBMe0hL1fCZkTEhoBSEXMHMBprZaWa2i5n1inppEHAmsGeQRygIUfH/K3F8Q9l36edeRSSjjSucxxRILXG1IJ8UM623RKThW6rls0BS3z6N0kv9vtiU+JwapXVZ06SKlR5fl3VJhXt6NzCvmW0SyyODEPYTSnf0IlL7uA3UhsXf9D51qM+kjO4U+6yMCOknAteYyMTtJnqY0M3dhwK3AFOhfl2vgggVRBbc/ShEaPoUKYG9B+zl7ieHr4bkPBsTItS2SOHxv+j9eQKRk541s2nac57Fubay+UZgYTP7AKlErR59yO7AFsAKwEOZCFUbRDl+B5jbzGaPdel7Midwsom0WT62EkH1O5Ty+K+ozG5WbEp2+wQpkI4PE2oLNaulzGyjpP4Yd8ciKl6O+t0HIwLHfIiUtlArx6Vt5n5ogsGk1fbbFVHUTUkdNQkwP/BC8s18N6rbN3L3181sRZN6S0tEqPOQOt/lnXw5GeOOXsDUiOjxm5nNFCTd21Af4Akzm8vd33L3B9392YQINcEr1k3oKNUF6wKDYnzsMjObyt0/dfc73P2kgghlZlOZFNy3BW73tlVKO+Q8y+tinOcf7v4c6idODlzk7j9EP+BVpJTnaHwiIyMjIyMjoxXkwFdGRkZGRkZGRudjSkRcGgKjUpAsgWbev2RmSwGHm9kc7v6GS/I6HdR7GbgCOC8lRLn7u8C/UTqvh9FA+cbhswewFjAH8Hl6MnmgsH4Rg2H7ABcj4tt2ZjZdbPvNzCYBegMfAL+2FNRtIzDa2u8PK4hQ1SbVFSSJVs7Fi+tw93tpIi8daZoNX+w3PDms1cBeNXxmZIzvSAIPA4B7EdFnIKqnnjOz+d39Y6T0cCZK5XlxHDui5KuxVD91S0hI5u4vAReid3L3JBjaGxGP/gB8ULyj7v4jcAGwbuzXUCWfZbyBAtFnm9nmic9JURrODYCvPFGLqjekz6lCW/MMIu6cYmZruDAy6vUFkBrT2cCiZrZSNX2Wznk5VAaPR+pLKyIC0OLAyibliXYh+f0Z0fM+CBGy9gQONSmf/ZoQoi5x9wHAcu5+sLvfFOdUkVBrZv1QatrTUAqgM919P0SomgoFyka7bxX8pMHBlc1sLzPbNs4bpCL5EOqrPunub5vZonEdF6Bg3K3tvS8ZVcFTwJzAtkWfD0apRq0OLIoIna0i6d88i1KI3QqcGPVeUUYmQoSbb4DvO/g6OgVmtpWZLQij2pQBqJxfC9xqZneb2eJj2xc2YTpgP6SgdbK7X+7uFyCltW7Az8n+DemxJeLOmcDu7v5gtfyOzTVWG9ZEBC7+Thl/nYSIF9/MiwC/d6nVzYYUszaI7el1742IULu7+2WdcBkZHY8hQE/Unl4CPILU0fYD1kaqmztWOrClb96MCQdJXbAjcAMi1n0ArAk8ZmYLpPub2WqIHHwOcLa7XxHrx6ptaA9MZPniPKczs9nMbBIzmyghnc8ETEtTPdgDjfsMBpbM9VtGRkZGRkY74O7ZsmXLli1btmzZOtFQeotG4P/QrMaPgEVjW0+UduwRYJ5WfPRDgYtGYNdk/crAC7F+w1g3HUq39z1K11Lze5Ctw8tUDzSrfwQa+F8QkeF2RVLq/1fhGEv+nxgFICYZw9+1cTnvMfidU9HAd8OYnBMiJwwFXgNm7Uo+s2Ubn6xcF6CA/HconUO/WLdzvDf/A2aMdf0QYaURWLU1v8AmKEXEO9FGDkTE4hmBm8LH/YgsfCNKc3dkcnxD6hMphFTD5wqIpHoisF2y71pIsagRBfVOAy4Dfkp91qOVntNaqH9yJyLPzBvr1wdeQYTsfZDK5WFIPWltFOBuBNarls/y+aL0S/9J63IUMPuQpn7Z5GNwH5ZDaZsWieUpkJrLp8BRQI+i3KC0xjONge/5ESFl/WTdXSiwV/zeYmPgrz96R79C/cM3gIVi25xRRr8I+yzu80Hlsp+tZu/Z5cBviFS6FCLwHRxl/5Cx9LkoUjVrRApkJwFnAMNQuu6a34MxvV8oZWVxPXMiQvt7iECzClL1+wKp9y3PGPZrk7pkpng/t0+23Y3au+L9XKaVe79P1B27VtNvVzREQN0XmCaWdwUeA6ZHJM9Hwh5D38wLx37d4/peBFYo+TwsrnuX9pT9bDUvAy0+C2Ad4E3gHuCMZP00qP3et9bnn63rGppw8DlwcCwvHG3acNR/Kvo9UyHS6B1Ilb04vip9HWDB0vJ2qB/2Q9TvVwOzx7YFYv190XYdglJCpu1Crs+yZcuWLVu2VqzmJ5AtW7Zs2bJlyzY+WmkguicwcWn7FWhw/hvgd7GuFwpOfYNmsY7mk6bA66IxWPxR+Nkl1veIwZSXUdD2n0gt6iPg8Ernl238sHj2V0Z5+AEFdh4qBv/S514qn5sC18WA8j3AZu38vdTH74Dpq3RdZ6KZ78uOwTHpuW1MKQjUVXxmyza+GvBHRHyaOal3eqCg1ifAP4DusX5mSoHMCv76x/t1C3BptGs/ANdHAKMPUq55PoIJNwI7JsePFsyoks8dgS+Rcsuz8f8lyfZlUfrbD5DiwQPAbq35rCdDqVt/AB4HnkPE0c8IQi6wUtzfkYjIMYQgbqD0gx8AS1fbZ+L7POCtZPkeRIQqSAarIULfZO28/pXi/PZI1k2JCFGfAEeiAO5mcQ0bjMG9XRq170vG8r00J23Ng4J4q7fD16xxL/dHKhu7oJQr39LUJ50SmBfYDZEbFx5fymk9W3rvo/z+GOXi5yjro/X52uEz7d8shgiBI4CvEVlou0q/Xy+GJpk0Ahehb6dbgWmT7UvF+/gM7SRE0URsnDj+zh+/sX4sl9/P2aIe2LzCPR9FWKqW31o/gzbu5Q7oO/UaNKGgMc69+ObdKtaNINpgRJTaERE59y3564G+a/ZO1q2DCMq3ILXKxcv3K1vNnn9aZhdHJPX9gOmS9ZMAEyXLk6I0Zp8A69T6GrJ1TQMmi3byvFheCBGhLkNKrx+jb5UFYvu0xGSNWK4WEepI1F5vGsvrIHLWRajPdQUi7X5IkKZinyGoP/w5Y0B6zpYtW7Zs2bJlMlS2bNmyZcuWLVtVDdgczeL6TwzCFgoZ88ag729o1vVxwF9QIOqo5PjRBmlR0OojFES9IwaCG4F9Ynu3GCQ+FBiEgl2rJcfXXSAjW7vLW88Y9GsETidmFLb03BEZ4BekKnUtmm3+G1Is6dPK76QD1wehgP9CVbie+WIwsJgpv04xYNmOYyu9O9bVfGbLVs+GSIBHJ8sWdhPNSSYF8al7tEufFe1hyV8zpaX4f74ICJxAQkpBilJfRtvZK9b1QumhJuoMn6Vz3xQRYQ6N5VWifm0EbirtOyVSvOjdms96MkT0+hI4Iq6vGwrUP4qCN1vGfhPF+sVp6hMtg4JSf622z5L/QxCZpB/qT31ME8lgUtQ/u5kkKNuO+3ATIs91T9ZNgfpsw4C3UL/thBaOrxicj3N8HfUd/xnld7HY1hMF+J8myEyt+USErBuBOZN16yKFle8q+Wjr/LKN8/szRsqcyXGLI4W01Un6HUh9rN0+GZ2QcE3UXdsk67uPzTnW8J72SP4/LK7nzbROALrF3yVQuzQYKfhW6u8tAQxMlvdEJM3Jwh6J5UeRskfxfvYA9kbE2uVLPo9AJJ9rq+B3OK0oI3UVQ/X6yWgy0G/E5J3i2cT/26P29c2oS58gCKYtlOG0/h2AFBgfRd/j7yM1sE1qfe3ZmpWDHYC30ffUB/F8t6H0PYra9n1RH+DwWpxrtq5ppTpgrvi7HSK8ToUmC15NU+rNi6Jd+JAgSFbyVYXzXBf1N59D5PjD0ffUxMk+WyKS+nPAzLFuJqQSNX+yX11/O2TLli1btmydZTU/gWzZsmXLli3b+GsxgFXM3B/vgydEEDhZ3grN1L47Bm5/QmoYRaBtOkSCejYGZq8C+ifHVwq2LoOCaQcTwTmUluWvMZgzsI1zzAMm47mhoOitNFemqBTUWRClhjoUmCLW9UaB5+doIfjL6LPORwB7Vulapot34/oYzGwENh5LX1YPPrNlqxdD5JTrqKDqhNLN/UYSbKSJELUtIgnNW+G42Rk99dxaiCi8XOon/r8aBUgXKfmxavqscN59keLESbG8CCK8XI3SZzYCVyb7FwH40Yha9WoogP8hEYBKnzsK1r8M9CxtmwGReN4Fbinf647wmfiq1A5Oi4KvP8fvzB3rJ0aKVJ+R9MtaKwsEWQ4Fub4gUeyMv71RqryzaJ7apKGSXxT06ktCaEGqYo1RPgulmKkQsflb2u4Drhb39BLUT2gobV8HEaK+pkkhKvcbq2zxXI8BphyDY1p8Luh7ZGx8lhWibo3yNqC9PrqSJe9+obJ0QFzPEBLCX1IPLx5l/02gb8lXN0TW+AqpdgxAqksHluqrYWFbxbrpYt9hJApG8YwaEPnqmir57dLpw+Jci7ZwI/Q9MQwRSqeK9T2T/VdD3yx3IiLresm2iu8DItQOIVEaoild/fME6TlbzcvCloiYfChS5VwlntEnaBJY79hvXjTJ7E1gv7aef7YJ01Cf6L9ICar49lgffasvl+y3G1KFfZtOUtBL6vXVUL/zqTjXIo1fSuLdE5H+tm3NV7Zs2bJly5atbav5CWTLli1btmzZxk9Ds/RvRTPgp671+XTC9U4Tf4sBjqmBP6GZXj3RIPo6KID1GMnsMxRQ7kXzGbAtDepujWbtL1laPy9KndBI8zQ+eZCkDm1cn1t7jkcqAkNIZpOjFEHv0RQEnb4lv3RC+o14L45A7lNnIAAAIABJREFUQd5fiZQX7R30Lp1v767qM1u2erOkresZfzcATku2r4CCVU/QXJmwJ1KeexGYoeTzyAgMrFx6z9aPumbDZF1BMJkGBVAPbuE8O9xnev3xfx/U5zkZzdieMerRK1BQemakFNQI3FDrZ1fFsnAiUvaYrVhPUxBqs6gb1y8dOzUKah+WrGuoks/fIxWAq4A1k/U7Aq+gINmqSNHzOBSAOqLSM0/WrQisWlo3Zfi7LVlXUVGHlvt62wEvoVQoNwNbJ9suQEHjJ5GC2V2IfNWWquhOSCnmC5pSq+3I6GSytVHamMZ4F3I/sooWZfBmRB7dnzEgL1XDZ6luWyT8NAIr1/petfP8l0Zk3ElieR+kqpQuN6JJJPMmxzUkx1fs1yLy5Mnx/vwK7BXrUzLt4Ui96X1EFn4E+JSSghFNdVxDtfzW+lmMwTNbCFgSTSI6P67rBpq+rXuU9i+TOFsjBu6MFPXmTtbdjdrkIlVei0q42Trl+c+F+orHxPKCiBR3BSI+DUWEqF5I0WdFmhNa6qasZ6taGUrbrX6o339Q2vYhNbGfaEqD3AM4FynCTl+L8wXWiHNtBM5Mtqck0M9J0m1ny5YtW7Zs2cbOGsjIyMjIyMjIqALcfTgawJoaBQcxs241PakqwcwuBa4xs4nd3c1sK5Si7HfAs+4+wt1HuvsDwCbAwsA5ZrYUgLsPdfcf3H1k4dPdG1v4uamQusCn8ds9Y/830cA+wJVmdnCs946+3ozqwsyseG5mtqSZLW1mk4+Jj+T41vr786BBwqdi3/tQ2dzU3V8wsyVRuZ69wnntg9Lx7e7ul43hJY7JdfyAgjuTIyWZ4p1pNLPurR1bOt//A44xs15dzWdGRp3C4n0YEe3QXsD/mdnxAO7+JCI9zQX82cwGmtn6SO1iX+Aqd/+85PMBRBw+G1jRzCzWf4DISVuZ2bTh/9fY1hcpMH3SwnlWw2dax+6A6sKewNnu/hoiLX8PnOruje7+cZzHK8CWZrZBS37rEUk/49+IGLZ2LDe4+2/x/y+ImDG0dOzXwAXufjqozYp71qE+0TO5Hqlrrgb8w8wOQ2XjekRm/Sz+vxwFWw9191OT82rWnzKzvui53mxmD5vZemY2q7sPRcSGdaLMk5xz+d6N1tczs7VRKsmnUL9uGeBEM9s3jtkXqYO+EtveROqMJ6fnmpR1zGwKpIBwEFJF2wBNVjgKWCNtp9z9Hyil2Pbu/lXuR1YXUQa2QYH/M4ABZjblmPhIn/W4+kzLjru/jOrx/d39sTE5p1rAzHqg784zULuzBwp2343Ir7j7IKJ8A0ea2byxvjHenWeKfm1xH0xocPcvEZG3R/hbIY79zcwmjv9PQ2SsvyIy4b+QSvIp4avBA8l97nC/rXxHdimY2XxI4W8Wd78RkfeuB1ZCz3Bqd/81nsEqZrZ4+drauNaF0bfO2/F79yKS39bu/h8zWwb4o5lNXYXLy6iAcn2FSIBPADeZ2awoDexNqLwfFNsPR6qiDe7+hLsPLnzVS1nPqB6SPvk6wJxo4uF10R8rcC/q9x9jZjujb5EBwDPuPiSOL5fNaqH4hnoIkd8/Re30NnE9I8yswcymQRMChrbiKyMjIyMjI6M9GFsWVbZs2bJly5YtW2GUZo3TfCbri8DdtT7HKl77MWj24srJuhPQDK8faK66U8wCWwWlInsSWLY99zb5OxuaIfb3ZJ9CzWJ54Bk0m7ZLp0bI1q6ytT2aBX4lMM8YHJfOjuxRXp/8XQSlAzkOKUt8SNMs6UlQsPVhSqmsEJnhFzpPTv4YpA7ypzjfq5Jt3Vo4pqxg1Qjs0NV8ZstWb4ZS8/RKlpdCs/VnRgoiHwInJ9u3Ah6K9+VXlIrioGR7uf+wCPAR8B+k5lSk0DkIBYlPAeaMdZMitZshtKJa0pE+S/XAkii92v4kyhKIgPAaTapZvZFS5qHAwrV+huP4/NPrn5jms9cnRQHM4SRqTYgodgBKy7pQZ/hMfYfP61DgqzcwByJI/AYcT6S3i/0Xi+3TJutGS2VIKJ6iPtkOKJA7BBGMdkfBrZeBY1Mfrd3T5O/OKJXeZMk79hgi8O1XOrZVxZRYt25c5z+Lch7r50ZEqreA9RhD9aps4/wuHQlslCx3R0S8Eaif1S41p1K5PL2jfCblcfpkfZctC8l7Oi2qw0egNueASueP1OMaUX09Xzt/Y35gU6Sodh4KUF+bbJ+otH+b72c1/daDIRWXl1DqzkK9qwE4BxEEbkSTqrZApJiKKRtL70E6DrEz+uZeHZEhPqJJ/bYXav//TkmpMlunPPu9CAVHRIYDODPaqpmS/Yo+ZCOwQK3PO1vXtKhLPo9y8iyRHjW2Fe3DZigl6fD4e1gnnVuq/t6D0rgAUiX9EHgVkVxB31XbxrluU+v7my1btmzZstW71fwEsmXLli1btmzjj5Gkw4uBTEMz+T6miWQx3qTbQKlQHgYuiuWtCRJSXHcjcAvNg09FcGG12L55Bb/pgO5UKOhXDBBPjoIdnwHnJvv1APYDbgNmrPW9yTbOZWsrRDg6hDEInpfKTv8oEwVZbsp4J9NUULfH73xFBJSByVBA5qtiQC7WNwDzRbndo0rX3WL9gEgYg9AMyauS9eUBxUqp/Hbpaj6zZas3QypPVwEDY3lXRAZaMZb7RRtUJkRNi5ToFgVmT9Y3I5kkyyl5aZWoe3ogtZ1G4AVEbrkepbw4ssK5dqhPpLIyRbK8CEpvcQmRLjPZtnPUEf0RYao/CuquXL72ejVgS9T/eSru4cSxfulY/1vUg0ciZZmfkdJS1X2W6usGRAi5G1gjWd8H9aVGIkJwxTRJlIhK8f/m4W8nmge4NovzGxbX0IgITH1buebU7yyoXb4aOLy035Io1df7RAqttsoRau+nRUSDL4Hnk21FqsG5ECHqNaQWVZEQla3D35/5EAntU2Dt9LkwBuSlUvk5I8rz5x3o8zDUl+nS3xVI4eyqpFz/Pt6/kcDfaE6wTN/Zg2j6Vms1VRqq8xuBFWJ5WkTYKROXDAW225V2qVp+68kQWfN7mhNgGqJMf4FSUA8jyKVtlNk1kNLfTLE8G/qeGYH6JgvH+olR2/w5SXr5bFV9zulzWj2e6ak0J63cDTyaLE+DyORrk7Th2bKVDSl97gQ8HfXnksX60n7Toz7Vgsm6qvTJGf37YFPgTtSnPa7UNq2OvlMaUR/yOTSp9Oha39ts2bJly5ZtfLCan0C2bNmyZcuWbfwwFBx6FbgAmImmGe1zopmcx9f6HDv4evvE31tjIPXgGLzYJdmnUIi6kOYB4CK4NlMbv7EF8GgMhPy9GLRBAedrY3D38fidSxGpZe/y72SrLwNmQKphg2iuwNLq82R0wk4jsGUsbwk8EoNrZwJzxfq5URqij9Hs+D2iLH0LHNWC77mqdN3pbywVdcpBaEb4lLF+RlohGlW4ByMJBauu5LOTylF+/7OVy+84DfYjYu4N8Q5ci1Q39kHB9oJ0NDMVCFGtnVcL51qQl14AVkrWbwU8CPwXKVHt0tr1dYRP4OKoT+eJdYujmdrfEyqNsV/Rtk8NXBbHDKMFwla9GrAx6tfdjhQchiPFjVlj+wKIrPQFCkg9A+zTxrOvls/LUT/tUWCOdF9gCkSIGo76UVO049p3jGd6IbBapXIX5WNP1I43InK8tfb+IXWp/yHltM9RX7pbWHG+S6LUWJ8CB47Be7UGMDjOZWCyvmjj5kQkqy+K+52tU96jDZGi2EfAOsn6dpGXGL1v8gvwlyr4HDi219hJ93FiFFz+FDg/rnVORE48IK7hGiqohMT/x5KoR7XyO9Oj79wrafrGbUZcQmT4reNdq6hg1Fl+u5q1UDcV6omzAO8hxb5uSd1k8Rz3QSm8R3t+JX/9kULf1TQnv66Cvmv+C+yC1PJORW34ka2dY7aqlIU+aLLPX4DJ0/KASI1vxDOaCbWN7wNLt/X8s0041tK7iiY5bBdl5j1gulhfEGUrfSdUiwh1OurL9Y3lrRCJ/37UTv8K3IHUSIt+3ko09cdOJ/qt1TzPbNmyZcuWbUKxmp9AtmzZsmXLlq0+rTwIASyLVBU+QgPSt6AATDfgJDTzfLyQNqdJPWIiNOD+eQxonBTb01nHherEhcBsLfirNDCzORrAvzoGSt5DM/uLWW4zoGDbU4hw8QJJarw8oFu/BswOfEcr6kskMwnLzzuCBr8RAX1gIxRkvg4FhD9H6ijF7Og50Ozr5xCB4Uagf+JvtBRBVb7+ATEI+FEMGn6BCFpFGqvpYnBxCMms+ZKP4h7s2pV9VvEepuWhH7AQUgCZptblO1unP/9JKaXY6QD/LyECyY00V4QsApgFIeo94JR2+twIBQjSWdIFeelFmqe3641SeU6S7FupHR1nn4hQ8zWwZqybHQXfr4i69PHy9cf/kwDro+Ds6q2dZ70YTcGa01Fa0AaUZmjLuEcP0Zz4PSsK9M+QrCsThzrcZ6zbFvXLnkPqTI2I6Na3tN8UwNmxfek2rn+ZeOZHEaSFNvbvEeXv3y3dy/h/BUSwOgulyHockVa2KPZN7tNS6P3bqY3fXo5IO5T8xrPondyxXGaRclv/tq4pW4e8RykRZwNEVBsj8hKtk7Q73GdXteS9mBJ9L30U71BRrqdG6TF/QaSiNCXmGpRSo9FGPxelQf6U5mlRp0GTDH6I+mEYcMwYXkdV/HZFQySXPWneLvdE9fMrNKnX9mjh+JaIUFvGvToImLnC9mVRe/C/uJcPkXxnteQ3W4c//9XRN+4rNJ90U3xrzhPvwtDkWR1R6/PO1nWs1FbNgwhEy9P0/d0D+EO0B+/SRIjqVIVmNPbXiFJxzgX8FZHjJ0LfHFujfu79NCdErRnlfrNK15wtW7Zs2bJlGzur+Qlky5YtW7Zs2erPSoMQK6GZToUiSi8k+/wQGki/A82Of7f4qO/swYgOvvajESlpjVgu1Ay+BN6hSTmiR3JMQYi6hCRlXqX7GcsNaHbsccTAPZpB/lwM9DaT/UaD/Wn6njygW8eGgpa/ANvEcpn4tESUh2KWY8UAVlI+To2BuKIs7YFm3b5BEyGqmJ3di+aBuk4tS8B6UcYPoClt35nx/pyTXMO0aEZxI7BWycceJCptXdVnJ93PHZDSyDdIneYpYP1al/FsVX3maX2wBfCPaJteAHYjIUiMpf+pEWny9ShTexXtDyJtpISou+M9WbYNn92ijvoeqfik7Weq5rRypTqJyooTHeIz3qEhqN7tj4iPM4UVgY7LkuMqBnBjW921zaXy1BsFcf4EbJ+s704TaexBpDhoZR/lvx3ps8J5X4GUJ6ZKlr+J35m+tG8fIkVVa/cAta9v0Q51RJra540QcXDxFvabBdg/zqtoN35HUwrbzZN3qziP6dr47VmiXN5NQgpA6ijPoPpgx/RdqfdyWm9G837WhrROXvqxVJZb6vN1uM9a36d23EdL3rW+iFDzPvqGKtZPSxMh6mqUrnU7WlBZqlSnlH7ja0qqh1GHbIqIkpsn6xuq7bea97a1cx9Ln5MiFaxhqB9xOLBMbFso1u8/Fn6nQOMOF9Kc8LYFMJAgJKNU89Oj1HmpIlGu8zrJgHlRm96IFNt6J9uK/uMcKHXiiQQpOD+nbGVDSp0fojG4n6K9GxDbuqH01h+iCZkFIapTSUXoO2QkGgt8kKSvSVM/9xtGJ0T1q/X9zZYtW7Zs2cY3q/kJZMuWLVu2bNnq11Bg8PMYXF6qtK0Hkra/OgYiGlEQpmctzrWDrndi4C7g+ljeBqUY2wqRI15HQab5Ynv35NjT4x6sWr5PpeXNgYdjwGSj0rY1aSJE/S7WjUrNE8t55lgdGhHsKMoNUnD4LyVZ9yiDZyKVp/Ks/rJy0eQoyDyISJeX7DsgBgffIBTbirJEG0HmKl2/hZ2PCJTTJdvupDlxqwgYzwCsUsHX9lE3dWmfnXBPt0DEjRORAsK2KP1UI7Byrct8tqo//+0RCeMSRIj8e5SHO0iUdsbAX9rOTIeIkzeiAMTeNFe0KOqrvsAG7fEb/o5FfYo7GJ289D4Koq7e3nPtCJ/A0khh6AUU0Ng78T8jIjsOBf6SHNPphO/W6uuOqMvRDPaHUbv0DiVlIhR42hgRx/4FzFtDn7dHfbxyadtlKOj0Z0qEqHLZbaE8XYyUlSZu4dg5KRGV4j38Bli0wv5rov7cc5SULxAx4A5E4NgsPY+2nivqf/ePcnkTSVANWBX1xd8Adu7scjohWxvv6Ma0TF66GrXbvysdcyCq4yuSlqrhs6talPeL0MSbYTQR04s+9DRRd/+MUox/Dxzdhs+1gN3SZ4fISbchYnkfEgJwheNbUjCqit9ql9Fx9YdUSrshQtQiUR+/SVPa0T2A+5Dy8uRjcp2I4PQJofQELIz6u0ORClEjsHVnXHO2NsuBAfMB98Sz34TmqpqdXu6zdX0rP/8oNz8Bf0T99NUQua6RGPOI+mZr9A3wNVJs7fT3HalvN0b7s3xpW9rPfQiYO9YXbUMu99myZcuWLVsHWc1PIFu2bNmyZctWn4bIG78gOfoW89nHwENflLZgCEEGqrfBxxi8mwSRlN6lSQWmUIppANZGAaZ3iKAdzQlRy5V8ngMcQRPBojua3f0lCroWigDpIOGaiIA1glCIyla/Fs99MpS+7t/xf7coB9+gQHGf2HdqYJcY0Pu/kp99o8wU5XEbRKh6OvY/qChnyTEDUBD6XULdqMb3ogEF7u5M1t2HAnmLxvIKiDBYVstqKehUFz6rcC97o0DQxTRXjXsqnvditX7e2ar6/OdE5NzjgF7J+oJUMms7/aT1RY8o+xMn6yahiRA1kJjhj4jQJ9NcoaHFsk9TWpxewAnAZ4xOXloMBbD/0M5zH2efNAUjLor69XVKCkJIIeovKOD6pxo97/Q5LYVUT3ZnHNToSj43Q0oydyGiUSPwGqOTu7uhvmEjsEln+Ex9I/LvySjg9G1Rz9E89eFlKKXpxZRS5rXgMz3nop0tyOhpWZoZpUldP1k3HWrD7ylff7LPs3FttwOTlrYthFTNGtsqoxXWd0cE2B+QWk5KiFoZkfu+JMj72aprpXK0MLAOCuYulqzfhMrkpR6EGm2ybukoF3tUy2e9GCJ+DwcOQ0HlpYAnonyfTxMhajJgSeBgEpIulQmQU6P6fgTwPFJmmjm2LYcmHmw1FudaFb9VKKProXbtLvT9Pg+tqB62w9/WSCX6aGDa0ruwe9yT16L8jVJAHsPfuAG1KQ+h1KjPodR486JvrMdIvsmzdWp56o1SIU6ZrJsrnssXKLVnfjbZKhoaK9so/rcoS7ejtHPpRIyHKX3jRlu3IzUmf6M00I2oDzpTaVvaz9241vc7W7Zs2bJlG1+t5ieQLVu2bNmyZasvi0GIydGs+2tLgxCVUpgUkuc9YsBrUK2vYRyvv1cMto5AwbQ0BUJ3RIgqFKKKlHnN0pmhgHJ3FKBaqXSfpkIznD+LQcIi/WD6O2uj1Fd71vp+ZOuwcrUxSbA3ytlRaAb711EWBqMA71HJcYUCy+k0KUJtgAJDN6KZ5h8j9ZNKyhS7IoLEDjW+/iKQfReSiu8G3IsCeEVAe2rgKkRsqKjMUQ8+qQIRtOwz6pGv0joCpUz6CFgkllcE5q912c/W8RbP9ksSYglqsz9OyukslMgXJR9pe74RGsB/BriShNhLEyHqR6S4Uwz4H9XGOW4D7Jcsp+SlExFJ6UaaE06mroHPWRGp9Mq4rn8QaX2SfWZCac5+Af5aw+c+AClhvIUIakOBv5GQgcbCZwNSVPkjQaxDakdfoqBzWX2pG20oj3WUTyr3OWeOMvgTcHOyPSXmXUUFpc6yzwrb5oh7+xZJusl4B3aI9yslQ/UmCWzR1F5PVPJbpJXeu/xOIrLAw8DACteaXv+85bKM+t1/QOSCG0rnvCYtKKVkq54BO6E+18dRBj8Azk+2F+nt3gfWq3B8UYampomU1+E+68WQytBdqB+WEr+nRN9YPwJn0QLRIrn29F2aKfGxGCLRvh3v0TmIbHoXUraZso06oyp+O6GM/oT6uP+IcvUhSuc5xm0Jqht/Qt8py5XvSyz3RSTNa5Ba0HWMYf8ZEbbORqTU/ZP1k6H+b12PP9STlcr9FlGm30AEtV1pmuQzJ/AIGh9av6X3NNuEa4iM2WwCIBqH/JhE3Y/Rv3HXIlTrS+WxZkpLKGVeIyLt9y1ta7PvnC1btmzZsmUbN6v5CWTLli1btmzZ6s9ikPYz4ORW9kkHpYvB5juQ/P1E1Ty/Dr7WM4BDk+VlYyDjJ+AVSoGFGMxYG5FPPiRSkJX2sdLfDYGTgMliuU8MRn9LMsBPc0JUv464vmydWpZGK/c0qYJNipR8HgZmiG0TA8sDFyBFsvOATZNjK81mnxGlOTmOJjWzdaIsPlMMEpaO6VRCDK0HM/rH+/U2SkdUDGr2iHfi/fQe1LNPYIGoK9auVE+M5b1dF6kiTBXP/JhYf3csF8pVsyJCwI6VylG2+jEqE0I2RQHFOWP53tLzXxLNqG5P2rH+iER0JQo0Po+Ct6sn+/SM7d8D/wMOacPn5Ch9VzMVEprIS5MjgkhjlN02Fdaq4TPWT0SoX6K2uhHVx8uW9ps57mlNVFVQPT8MOASYHfXT9o3zPWFs3vO43q8QGWyH0raCvPQwQequcHyl51QNnxsBO9OUmrQvagMbSchpNCdErVHBT/ourY4CV7cgxZkFY/12KOD2JUrrtCfqJ/4MHF7JV3reiKw8hGjnk+2DkbrYQEYnRE1VWk5VDwxYIq716Ar79kQpdBtRyszZ2nNPs3W8Rdn/Id7RBVE7fG48myOS/TagqZ6dpVyWqu2zq1qU71VK6yZFCqfXJeuKOn8a1D/7DqVha4kQVVYwehg4nuYKRnPH7z8f729j1ANzln1U22+V7/FSKN3cYTRNxpkkzus62iAPV/C3EOoPn1Cu1yrdp1g+E/gUmLyV+7kSUov5E7Bjab9UTbk3Usj7nEz+7KwylI5V7ICILBehb9krEfH3KmIcI96Bf6Ixj03rsW7KVh2L+uhTmtLerUSQJKPevzj+v4vm3zh9o4wdRKmvX2tDpNBG1L+coYV9cp8sW7Zs2bJlq4LV/ASyZcuWLVu2bPVnwGwxOHFGLHcvbV8Y2IvmcuizA78Cp9X6/MfgOqdFM4tXSNYtAawBLILSmL1CogQQ+3RDpITPyoO0FX6jIQYBhyE1g4IQNQVtEKJiOQ8a1oHF4NeWJEpp5WcYg3bfAcu3w1+lgPDvUcqdl4GdkvXdgFVpIkQt3F6fVbgPaTBj2QhS7A7MT8w4R8GNkcAgRO6aHxG8fgQOq1efJf87Rv3wGVKTGQIcNI73dgs0wLodUnh4CHgJeBzNoF0gKQ97oIHkVWv9bkxIVs36mmTAH6Uf+RUFIG+juXJZT6TwMJg20mMiot6nwMGxPEfUUd9E2S+nWVqQCOLGciXVjWLdAog81Ehz1ZsikH04UhL4nkiP0dK97Cif7Xl2iHjTEiFqss541i2c3/lxTtMn6x4A3gSWGEuff6AppdP2sS5Nk7h91GGPl8tCZ/hERKAGpMT5PQq8FoSoGahMiJq45KNSWzoA9cn+g/p4w5Ea1HaxfQOUGvXHsH8De7fmM9m2DVLBeAf4f/bOM96q4mrjf3oVLICVYu+Agt3YewErdgG7xt5LjC1GY4sxamIvMSZq9LXHaIwaY4sxdo0aO2JHBEFFPXk/PGvY68zdp1w45V6dD+t375699zqzp89azzxrQHTvMfvd/ckBDtj3BiDuri69E3AlAukfTUuGqIH2ewXLd+9S+UtSH7G6uwqNx/1c+v0oPNjI6PltqRAurR4626LYdw6xfrNSdK8zYr97EVjMp9vfq9EcNokISJXzO7tZfz4LG9tpCdRZBAEl77H+dm38TKP01qms90Zz5JIu7Ra0fwhMZCUZJXP0bYOASCtW8Wyos6XQ+iU3XBTaG7+PALV32bh2Fi2ZVtZGa6DPqMBUmaQmbWdrive2S9g4dAIO2GZt6QksPKSlLYkAgXs3+zuStB1Ba/qP0VpuV+vrG9m4fzkKifcvtMddyt7phPbr/8GFhm1LgmxCM+zvgs3OT5IkSZIkSfJDkaZnIEmSJEmSJEnSdqWcIRZR2X8KLB6ld0WnXO8Lhi7krBoF/LYa3W1ByByf4QTaFjg6bktbltKAqM64kCQVfqs7Ys16HziJloCoT6w855zV70nS1LZ0NvAtsKZdb4wck/vGbcTa0r3uOoCnOlTqMyjU3mQzFh4R3euAAFFvAM/Q5FAoiMXjC5ffj9DJ/TkQo8k5ZOFePkRMa4e79/Mc2O1F5yjkGDsBGAasiIBVBRyIrZXl2R+dMvXjx/JojC5gDgZgXuTo/wI4rNl944cg5fptpT7dit/YBHiaYiDM6YitZho2T6NwceOQc/CACjq7AWcC59j1cghwcqn93mtoXCvF4JMXymtja6ND7HoZFG43Bi91tT5xGDlAnnrobE1dIuBpAJasVi5/jWhfaL3xJHCDS7+L4pAhGwHjW6m7E2I0eRmxhYQ1nQfejbV2sE2jdbr66IXmtQ/s3RgQNQPHHFNB5xrWP44FBqD161AEKnsH2NI9OxQB/RdwaWVBxaZvW8SW8jYtAVEPI4Ds4TiGE3d/JbReLGDgLFeuv0EggmMoBscMRmEyjwL2aVTbbA/SqL6KGIxeAS52aSHEbuijawPb5rWZRulsi+L6+Rz2dz1gQ3d/T+sPp0V9sSfaqx5MZWDlUCu3kygBRIyue6H55CXcwZ9G6a1DGQdA8VnAGy79Lhv3QntaHziDKsPlIeD152TsivH3LkfEWAtsitaoG+ToG43G56PtehWr+wIChA6w9IEoXN4/KWaKbDftvj0JAqa8EurZ0tZAe5ANXNrdaL8UwPkLhHZBsnEkiQStwa5Ha7tvKF7TD0FrqAIZC/IgFIZxGm4OBEAGAAAgAElEQVQv3hYFMe0WyNlDJEmSJEmSJEnqI03PQJIkSZIkSZKkbQrFzsYlkYNxaZe2Ojop/w6wFgIHLIROtE/GnZK35314kjZvjEQOq5mAKARGmoQLO2H3PCBqk0plmXOvk/uNu2gJiOpDZuhvFZNFkuYLOhn7NrC/XW9ncj86rT4ROAQ7NY2cNhOAjSq1nRK/twEC5byOc9oGXciJNJUGh4uIxpNlzBh+OHIU9QOuQI7x21zbH4FOlW+Infi09Dy2mTarMyr/TihU6A24cEaIHe6/zAJIDTmH7kSOiB0sLZywXxOBKd9ELCdPWPsqGc4pSd3a/ToorMu5wME11DsIMX0VEOChv6Uvg8ARBeQQPgs5Cz8Djo91RTqXtfY6GoWlmNPaz9Wu3R9P5oTcvIo8j0MnvG8D1nXpy1j+CsBP0Ri2n7Xb9d1zecDCmuustuzJQuY9jgOhNbJNRenXIGaFPtYOfMiQfijM6rnksAJFdd8Jgau6uOsdyMA7wXnpwUstwi3WW6dLC8CnngiMmgeI+pnV1UZV1OuRaG0bQviEuWFhBIa9D8d+kdeHytRR0NURMUW+ieaYGBD1ImXCLSIQ7f9RHhB1ImIs7IIAsA/iwiuXyuMPSaI2OhA5V5et1OZao9enIdaf262e4tC181ndHU8O0KQeOtuLuH7VCYUALqA9lx/LQ2jASxBAZgjZmL+6e64UsGx7tB5vEUo659mwb1vZfnPDMs/WRW8dy3oX++2VUdhZzyrZw8aVP+NYfcq1UwRsKgB7+G+0//shZtX9ydasfVA4vvtydM9neTrbrpdF+5nLEbPudwhIFgBRi1NmTZ6kZm1mPLKDbBzqyf7uiFgV+9j1n6PxaQTwd6K5Pm+sS/LDEzfun2pjyKcY6Mk9syha972H7B4voXXVMbGetig45vkkSZIkSZIkSf2l6RlIkiRJkiRJkrRtQfT+E1DojmnotHwXZIQfheipC4hx5jXkmDzOvR+MGf2akf9Z+N7+uNO7ZqzrjhxhtyHHXR5D1EcIjJBL61/hNysBoubEAdGStB9B4areNgP9AdZXtrF7myFH1XQEhDkdgVc+Dcb+KvRvhwAO3sGwiRkGHycCKVi/bRolOzAcAb7uR46NMD50NYPnezbGlHJY5TkE26xOip2tYdx8ExculHwGl3VaUaYnIRaVrzDApP1OcLwPsW+5FDkHZwsMkmSW2v045LR7DBnsJyMmn1Vmpw5QyKy/Aw8hJ1PBrvvZ/UH2zCOIOepSYKdy9Y8cWy/gTivbuPQOxWwcu6IwjI8DB1XI56b2/UeQsxZATstzkDPzayufYxutsxXlHvr3tswmsG028rBO1JcPQUC3V208WdTSOyGGuzfJZ4jxY9RoxKbxmLWVUU5HAO948FI3r4N8UGlNdEZ5XhtYz113tb8BEDUR9bnA7LkAsEqV5XomWsfOG/JBBuLaFY21FXWRrevCHB2XUUdgDAJrvJrXhivU1XDyAVEdUcjEgpXF/Yhl5chmtNP2IFavL6K11wwUHnuzWdTl62hN3J7A2tYXiMXsHQwEYH1hT3JA7PXS2R6FLETx6oht6AmK56STyVg8P0Nr6+Or1H2YleMCJe6vgAPWWNooGytKsk7VS28Ny3R7itejg4BHrR98QAZs6Y7G1A+IGAZpCYDqFF3fZnXhx+xe1u8+ALb375KF4/Pr2J729xB0OGE+BCS9Co3781u+C2ie6V8uj0lq2oZOxdjEEBD5LgRaHETGpnsrmufDwZ/uaF/yGCVCtyf5YUo033W29nM2cC9a254QPT8fsBViR94JBzCiAXvcWowtjchnkiRJkiRJkiSBoZIkSZIkSZIkkURGiDXQab+fAvsgQMd36CRnMEzODRwIXIBO1Hs69GDEPAOBpro3+/sqfPsSyGm1l13vZUbs1ex6ETPy5QGiliNySrXyt2NA1Dso5EPv6LlkMGlnYn3jM2sfx+TcX90MfVMQYCGwrQwuV98IXBPYWS6iGBC1GQLsPEEJp14j2xJy0C5meX0PuN3dC47srihE0GPfJ532zjbISdAZAVNutPQ7aMnkcBkKodetFfoPtjw/hZ3it/TO5b610X3hhyiIOfFjBNoJAIu1yZx2s8TYYX18BmIuWwaYBwH0PkIOJh8mq7uNFx1dWh5wZW7gP8DR2Gl+S9/d8hsAe52AU4DzyHHyks1nHZFD82rMQeae6RDlpwOwFGJYG5GTz5rrnM16jR3AdXW2RvU0H3L6P0gxI9YfrZ6uRiExl7axYToWVqiM/rEINHaLjUuPma5jXblvh0DvH1CCGaTWOhG7hA99NQjNlY8Ca7n0MD4PRAD+Z4G9idadleoerXULOAe9u7cDAp3msrygcduHg+5B8RydB4g63+6/gwEPqm1TCKzfAhBl9/ZGDIQ3AmMb1U7bmyBA2tcISLMzCoE5kSgk4izo3d10PIwBACz9bquvnyMQxxAElJ8GHNVone1FEPj1MiyUFmIumo7CoPl958oIpLoHDlReRb/fycpw55x7/dBctw8Zg1EvxHTzQDP0zkY5+nlkAFqDFIXWRiClJ9Ecsz1ii/oZ2g8XsUpG+jZH4KSnEFPh9jbGDSMDWF2GAHxXWv35w1Mt2FTt756IPbUnGdD7QMRWuah7/nwE/itgLEVJ6ieufkYjkPDfrewPRPukEPJxKpqzl7bnQ7jmSRhrcpIk//tfi/FpGcQ4H0CwiwB/IQcQVUlXnfMZDi529H+bmb8kSZIkSZIkSb40PQNJkiRJkiRJkrYpyNl2oBlKe1vaHMih+60ZuOYs87539myAhSnAsS61NUGOq9uQY+RqFGrkYARgCN9TDhA192z+vgdE3Qt8SZVsBknanrg2s4cZiKeiMEVzWXrn6Pl5zZj/JFWyOCAAxBHWVn9LS0DU2+Yw2LrZ5WF5CuxYBWBtlx6YN44zo3nVYafaok5aOogKwL6I5e085Kx/2oy6S9hznZAD+1UqhB1DTqY4FOmRiC3hZtxJa5LBtamCAEpPAYNd2l2IDW7F6Nmq6wrNwc/iGBCQk2kX5LS8jyxcTAvgU46+LRBz2O3AkOjeXIj58FEU0uan1v5383m3ftGCkQGxrlxXKg8oNE6nnPSO9dBZrizaYn+JxpPNrP+/b/39IYoBUVchxoxp9swLwOHx90f6hyGQxRHYOgaBjqbaODWzHSHn/mdE7CD10AmMRGPn73FjLRlj6f0UAx4CoOBme28aEetKXAY45ieX9hAam1dxOrvZt7yCjdnRO71QyLKJwC9c+rxkc/QltARE7YzGh4+wUFJl6r4HmkN6R2V0KyXA+NH7CQBbXDbzWBs6H+jr0h9F66YW9Vyl3m3Q+v0wYBFfD2hcuguxUH1Exqp7pHs/r4/WXGd7EgQmnIQLJQyshAA1RQxROe/mjvm0XIM/aP1+VbK13hw23nyIW0ej9dryQW80ptREbz3rDYEAr0T7je9s/DjJ3d8Shav7xPJ4D7BvqXwh4Os0BFq6zb73E8TO2Antnc9Gc9NEBODbO08fxWPWqmgeOw5nc0B7qTfJmKv6ANejtfvgZrfXH5pYnX8LPBmlD0Zg6A/tmWOAa60vn+Cea3PrriSNlajf74j2wmdSzM68GDmAqHjMbWCeR1v7vgcLTWzpLfYeZb51ZRoYajtJkiRJkiT5IUvTM5AkSZIkSZIkaXuCmCy+Qg6rk6J7PRATxbfIgVB1+DsUvutNzJDfVgV4CQGi/oABVyw9gJUCIOr1uHzs/uyEPQq/0QMLJ5Ok/QoCth0F/BixNEwyh8A8UX3PdNZQ7PTNc4rFDp25EZNLHiBqS+Qs2qHJ5eAdHWOR4+U2itkNuiLw5bOUAVq2J51mxN3HDLqBTW8u4DnTfYalDbHnplMBCIdOx//O3t8nuncsAhXcAizX7Pb/QxbXp2/BsYghJ+A7ZCxLmwAnt0JvB5M7gX+59DCW9EVhngoIVNvN5yfOn/0/LwIXfYXAM52jb+hg+XzOxpn3iBhHEPvSSxQzMIU8/QPHdIFzXKAwQWeQH+qu5jrD97j/l0OAxVG0IhxtpGOW2L1moU3thgAR56Kwqr+0en6Q4pB5K6CwIWv4b4rbgEvfAjmXPNDgTgTYCyGLZjp5gMWqyOts60Rj7R4I3HcdxQxROyEH698oBoP1RaCj9YjmPTKGgdCut0IO9H8CvwC2sPQRaHz/xNrRAYgZ5UvKjM+IaeV6BNQ6J0o/igwQFVisOpreU4GFK7SxbdBc9Ja1fQ+4WpEMELVTifcbwpLQngSFT/wYF+oSsfJMIGNrHAYMqrYcrP3djxhwPGitI8Vj7sYI/Lx51EdasOPUWmdbl7z2ZOXwEnBPlB4AUY9SHhDl+8KmCFz1KAopub2lr4DCDX6KQlifSA6DUU6+OtZabz3rDYFpv0FMdptYu7nXxo/TomcXQePXXKXyZX3kQ+AnGKMkAhreaP3rJ66M5keAzj6l9Ln0JSxv1xGttdGeqgAcCqyLmIYm4phw21u7b49i7X9pq4vAUPf76JkF0eG6h9E682oqhGtO8sMVtPeejg5drJFzfwkEiHqTHBtcA/O5E9oz3YXspR+jtdnCdj8XEBXNRYcTrZOTJEmSJEmSJPWTpmcgSZIkSZIkSdL2BJ1wv92MWrcTMR4hoM6hdv8KqgznhBgNJiKHagvHT1sQoD8K1/JfxGCwFzCH3fNG70XMeDwVWKmMvlY7o2h5qrhdOpqSzKy/Hu7/P5ABogJbRqlT6y3aDnKI7k5LJosAiCogkGIXd29Is8sg53v2s7w+ikIPrQscYobFQ74POpET5xXkWD3S0gIrwDym8z0bE1+zMefovHzk6F4UOdULwH7RvWORUfZ2XMi8JI1r31H6cQhUsRQKafVuqBfEZnC6jQtVA4vt3QNR2Jl17XqmYxw5Cp+xdnBr9F7f6Dowk22LDPkFMlBIHAanCzCU4tA0ngVyoP2/LllIwA5ovfAVLdkUu1gfexkDH0T3a64zenas9cH3EdPVdMS8Ugnk6Mtkb3unrmGAgYVtjDgPx7CJQhpNRSFq1i3zfrnx5Ajga3cdAHsBEDISheBbOHqvXBjXmuhEgKjxCIiUB4j6wL59SxR2arz9ThEIDAFSzyADIu+G+s8j6FT/Z1a+x9v9xVC//BSBsZ7Cjflxebp+MMC+KwZEzYvY+75GYMX90Jz9OS4kX149WV7De79CTuVvLd/dXXkGEGRZ1q4at0vfFxZB49wqFIN0mr6GLVGuS6Mxcme7/nPURhdF4R2rPpiA5vbPcGHHZieP9dLZHgQdzBngrre2cjg8em4kYjf6DxXCdyLQzDTr9/ei9fhHGAgIAdOvQayqnyKne0lGpHrrrUOZdidjb+rl0pdA+/mZYUx9vsj2IHn7kjH2rcvZdQAs9wEeQAeHBkX5aKEvur8sGbvfH/PKCQHKAuvu57gQfknq2oZ8GwjgtyUR0O1kq5PrS7wb710TECrJTEHA0TfRWsnbThZHLGOBWXsJBIQva4Orc16vRvvtcNDpEMRm9W9KAKKivnMQWsft14j8JkmSJEmSJO1REDv39ph9crb1NfuDkiRJkiRJkiRtQ2LDJKLwvwE5i/bBAEHu+R7oVOlBrfiNLggg8Bo64dt0QFRkmJgXOVn7mRH3duQg3YecU6xmmNmygs7YEFKWOrtMPpPBsB0LxWxNf6QEICp65yfAju66J3JgFJATODYqL4hCYxWAX5Oxu3Qo9RtNKAfvyNiHLBTds8hRdIC7Xy14sE3qRA6i1xBg4ziXHlhB5gA2Qg7xrYCV498vl1/keA7OqxgQdYKllw23l6QubXxT4MfuOjAifoiAb4MtvQtyoL5LTnirKup/JPA4OpHs2043BJj4JRkwbmX3zpnAJna9F2KCCoCoUXb9KRZ+jIyJKpetI3xL1C4/QQ6BEAptcXR6+kPLW38UGuIQBDQ5LEd3zXVG+rew545HzBbLo5A+BauXUk5vP78faM/v2oB2NRQ5hgNwo6Mr/33JmMBKAqLK6F4HzUn7kYGWAntTTxtP7qIVa7Za6qQ8IGo7a7Nf229MIYdtBTnOCva7iyNg4pEY8M3K9ybk1N/fvbeMtb+BLq1U2wgggAFo/RwDouZBYSzfQ8C7iUQMazk6F0Nhz35KBsyfB81LU4Cb3bMrIqDDofVujzn53B2BfychYMp9wJhG56OKfA7OaRcvWd9507XRLlbGzwNrtUL/vNZPfQgfv55YB9izlXmuuc62Lgj8WrC+shMCE3VDTIv/AJa058I6dzXcuqyEzhXRPHI02dp7OQR6/JxiMPpCiNnTh08s1e/rordO5ToHYpe7yJef/T/MvqNAGcYq93wAJoy3Pu/ZyALwf6jpaxU7rZXRKZaffyIWtzDf+f3UtmgO8MyITd/rfF+F4vXP1ijk3Q6uvvtbvRUxRJExlHZI9ZOklCBWwwlufJ8LgY5eRYcWfke2B1gC2KoBeYqB7zsiBtDbiNYGaL37GtqrDLG0TrEeBIT6ju/ZvJ0kSZIkSZLUUoDeyI70NDoEURUJQ1mdzf6oJEmSJEmSJEnzJNqYz4UYoeZxaT2Qs2oKYj+IAVGdSujy//e2v8G53w05i5sOiIryuR0KQ7GLy3MvdCo8fH8vS98aOIliZ20emGVL5BC7gVac6I7yNbLZ7SRJzdpbDIj6CAEW5sl5djHk4P0QGO3SByEHyxfWVmNA1E+RQ68AbNDsby5RDnmh6G4EVnXpndurTgzsZP9vYWPd51E9dinzu3mgk02B1XPSFyYDRO0R3RtR6jeS1E6i8Xoe4F+I/WGcSz+RjDVidWBNxBg1jWIWhlLz6AqIFW4csIpL3wsxIL2D2GM2QyxFU5CDfHVrG+u49jIZgfpCiLWDcYYFYLR9wwT3XinAX4/oen77eyRi2XkEmM/SlkeOjC9MJiOnbBEbWj10xvWFgETXo3HYh/+5B42fw/LeJ9+ZsUde2dShnS2GnEEnkzmFAxCgq7WDj5CDZqly7TTnXj/gSWsPE8mYcXoikMvHwF7N1InWo3sgcGkMiBoO7ImATpu79I4U19mN9v5pyKi2hv9N5Fx7CDmyFqyiv5f7/vns94oAUXavD2I+WdzntYSeEAZskyivfdG48i2OuYhWMszVqG1uZ+X6E7Q+XgMBoz7GAbqbIVF9DbP2uLNL29j6TgFYz9IC2GwqFUCV8W8h5p3bEYBtneh+FwS+fIQKDEb11NkeBAHAXkEAyCcQCGoTNA7OAI6x5zpSgk037p/Iif0hNj665xZDoLj/UCKMe7l+Xyu9DSzbW9H+O4CZ/F72t4jJ6SscKDRHx67Adfb/+tZ/TqelnWB1tM7ZqFwbL5E+0Ma4b4Dzo3ulxssEtGlMGxqHWNp+QxTKzPruydYmrm12XpO0fXFj5rZo//QTdJjjRZv3DgQuRwc1WjBD1KvfowMS27nr7pY2w9p/CHfu91CBmfYFLPwz+XuHFuvfJEmSJEmSJIkEAaFetr3U9mRMjLM15zf9w5IkSZIkSZIkzZFoY74DcgC9bUaHYzAnDXJA3YGcAnvGhs4Kv7ENcszdi9gahlh6DIga0uSyGI/AChcSsSogQFQAhP0SOR0KVKDjR8bx6cCDZswpIOdrWTR7VC8HI+dn2VA/bUmi/CejdMvy8YCoENJmzRLPbohCTLwPbOPSByIn6zQEiAonbnsiw/ThGNNLW2gHJe57oNEBVg43YGE22qtO5BS+AgvnZWmjbAx4HmfErbZ/AHOiU7Hv4RiA3P1hdn8G+eCC1A8bIDbfHY3AOF8gYMpe7v6RwGOIweYTxOp0kLtfyrm3m9X9f2wseBkLu2j3tyULa/uN6Q6O4v2QY3MFMmdDf5ubZgAXOz2eIWJrFBbsLUowDQGrIuBVALnsjQDF/ZCD+jB7/1EyQNO8CLhyhP1GERtaPXRGf0MZ9LA+41l77kKgsuDc2AIHRqbl3FxXZwYtHe4d0HriNcRE4semgchQdCYCxxxYShcC4u2Nwu2tBvS39IWtbN8FfoGc3ReitdEJsa4G6ByIQq75OuiI1qEtAFE55efLx7ftW1FfmULGiNaJ7PT+enZ/7Wrrx755D+DnCFwz2NLnpwQgKk8XOYALl58NXF5De17I6rtFyNa4/dSxnfZF4eUuwoWXRGuXZ8kB5jVKovJcHjnwJ1vdb2/pPRGo9L8IvHUXCrs4kWJGx6rLE41D75ueUZY22NruZCowGDVKZ1sU1+67o7XsdWhPehYCRp2J5rtpVBkeCYXw6mH1XCALvepDy65DKw8R1EtvLcsxSgt52t/GpPMpZqjqgxjzTkansB9E68+esV4U5u+XLv0itK7Yh4y5pYddT6DEwZ6oj86HWPgWc2nzkjENnduafliv8sQAis3IR1sQZL+Ziuw6/aJ7gSFqAXQ4pwDc1uw8J2lbUqofA53RHvttFOr7cjIbxyA0R49uRP7Q2uBZzEbjxr4hwKloHerZz/xBqAMsrztFeg9Ga7bECJUkSZIkSZKUEHTQ707bbwypqe5mf1ySJEmSJEnyfZFmGehqkO9dkHP2fDM4nmnGq3vIHJK9kAPpa3Q6qySridO7jRlG7zKDxhQEqlra7gdA1MvICbFok75/PeQ8PpziUHjdMYYK5Hy6CRnf36VyWJO5EAjsGDMG9ycL3fOnUkbUyNh6kNVDmz85FuW7txmQZikcYHuTuN9XMw5QDIjapEJ5boCcX6UAUdMRAGMz5BR7H9jYPVdNuLWagWVoBSsFxc7qEObpPiJ2g3aks6ONIwXk8B/g7m2NTom+QIXQdXltChiB2EpexTFTuWcuRQCDAgbmSNI4QWF8vkZz6H4IGDERgYv3c8/Nh4BJS+CYZ0r1QXQK6nOMPcra0Tc2l5zsnuuNwvKshs2lKGTcBOAq91xXBFApWH6fjcYLzxAx2trrFygEZ9wuA0jjBsSUWMQyRUvw0nxlyi8GftREJzank42DS7v7/wT+ZP/fjub2sObpjxinTsc5OOzej6kTEIqWc2kPiueLhS2fjwMbWlovBPJ4Hq1b/ozGii45dba7tcunEbjuEwTyXtjuDwZ+b+3iY7Tu28O9n8eAWQ+dO5u+Kcjp+hiwNlmI0T0QMOIaDBRXRdn6tn2Nta2rMeCqayMrob6xaZV6xyO2gvfQGnEGmrNH2P35rT2/iQMPVNA5GjnTOiDA08umc+Eorwva7zbNsYZYlN7HHRCwNjjB9acVcQCHJuRxD7TPuMfy9pXV0652v6u109MRBf+xOCabvDZa4nd8/x2H5uuvUd98zdr/8XnPN1JnWxW0J/wp2cnfoQiUG+a/tey7A5PXHVQ4oINAmu8Aq6AQTN8iR3Y8N6xiY8o6Vea1LnprVI6+zQxCa4OlyEL4dUYgs4lobF4QhQ4dZ2mLAEeh/cV5wHO4NTPaE/8bOMWl9Tdd31ofOwe4zHQcW0Wed0GMlJ+hOe4esvGuH1pbfYdAcQ1t41F5bo3YeV+0MvzBgBrQfNQJ7W9uie6diA6C3IytbdHcdxZwcLPznqTtSNSfVkXgzO2wQ0bWxpbA7bEpBi1XBYKdzTyG8TuA5DdHB1MC2G8gAr8XgEvcex4QtZz7vwM6tPE17cCulyRJkiRJkjRTbN/yIjCG4oNgHRC79jbI/lo1UcNM3c3+uCRJkiRJkuT7Jug03GzHsm1QXhdGDqdT/EICGdsfw063W1ovdEq0JG2+PRcMBxcgmutg1P4JcmDeDyxjad3MwPAx5pRoQhmcbN/qHWVnIjarPwO7u/RhOMYd8p142yJHyh3Aii69LwJSBEBUt+i9PNaJNm9kjfK9PWKneBM5Kw6mSSC3SnmN0mcbDIScNn1a8Xwc1qNjqWvEEJUHiBoAXGzGuGnIIXtczm/5OloDOQZPRACqmYC/GpTBlghUUJKtI6/syYAQRwPXt0ed7rkeCCzxDWLpigFRz6DxdZsS7/u6WgUX6g6BaJ6z91cl2xT2QU6oA3Ah1NqjRN/fodw42VYEOer+hQAWvVz66siROwEYX+pby4xLi6L58kS7HorAITdZ+/0KY4CK3pvPxt43gJtLlO0yCGA31drkpu6eZ9EZhQsplfNbW9n48y1wRqyDYvDSQ0TAk3rqRIaSi8lAQ/tYmQ2365Otbl5Cztclw+8gR/erROE4ELtXi5CUdWj7WyFmjlcRIG0zspBGqyOH0BQEDHgYATuOtvv3ATfk6N8aAeuOsOtB9i0fodBIgy29u5XBPFQOBVwPnWOQw+gcFJ70CGQM+wCtMTqgteM4+61biUIrlutX7v4N9v5p2FyAxu/9rWwrjqVobp5m7TG0n+NQeK+XgOUtbV7kJP6CEkyQIc+ofb8EPOLSf4Lm9+vc7/RGc/kkGgS0yCtTBJx4D2MmQuvmd8iAUIPRergp4fLQmucLBFQO4TXXRQw431BmfMtro1W0K792WwWtB25ErLKblniu5jrbk1i774wOz0xEwMkQwnI02g+tZdcDrC5fJGLAi8vSnn0Ahc8MQMpb0Ji1Jxk4qDtaP02gBJi8XnrrUZbu/51sLPkIgYxuBH5k97qgQ1AT0Dj4GQJtnWD3z0LrmoPR2HM/xYCoJzBGOrK1THdrk89YPd6HsxmUap+InforxB443tr3q2gNE5gaB5AxDf2mSe10d8vnzcAlaH33LvC7ZvehBpfDdch2NADYyNrJh8A/0Dz9T8ymhDv8RRtcvydpnqD13WRrO99Ym/Lh5MO4soiNCVNwIbAblMcONlZOQGutHcn2IgtRARDlv8P+L8lUnSRJkiRJkiSRIB9hARchBe0VL0TskQWTh4nCNVfU3eyPS5IkSZIkSdq7RJvctRGwZzvaAYU6OqU0CdjKpd1txr3gMFyY7CRU5xJ6fBn0QujtG4morNFJ07dpCYga1MQyOMMMMBsgB+TTCHRyPXJoPYmFDCz1zS6tCzpVXkDsCMOj+3Mgh+xk5MzuEetCjFB1Db9Tp9xeWnQAACAASURBVHLcFTkwL0JO5kuR0fgezHk3CzprZjiNyngJ66trU4ZZpBW6V0Wnn4PRfpYcUuW+F9gEOf7fB7aN7q0DrA+s7tLynMwhHOQLCATxATJez1WjMt7Z2v421ZYD5vwtVRbtQWc8LiKH0EHIuPtbigFR2yJHcQvwZ9RGd7Xn/oQbHxEg6lkEONwGMW7sikKhremea3dO0ej7R6Ox9N8IVLZL3nNtQRCrwicYOwfFIXLWtbb2LrB3BT2x031RK4NFEMjkXeAKuzcCgTC+wbEz2L0FENjxJ67Nd0Rzc6/o2WHIwfAsxU71TYGxpfLn9I4kM0b8H87hSzF4KYR8fR4BTvLmz5rqtDJ6DK3JzkXz6iFk65lBdv8b4AJLWwIxe03HhSJ0OsdSARBeg/a0OxqfL0LO7L8hsMnBWBgyBIQ5Fa1TrgbGWPoa9uxxkc6FEM34Sa7ep6LxKaxZfku0FnN1kldfNdWJxtJ5EOPXhRSHZloQAYLfIgMudUcA8x9XKM8NUX84loidiCxU7XPAzxCgcWZfrqKufobGqHkp7h97WD1cifU5e6YFE2QJvaMRgGecSzsHOQ3fR+DXu6y8T6hGZ43b6BLR9U32vQ8iAMMKlt4FsTm8CKzX6HxaHsYhMMfyUfryaE31NbamsjbYIadt7oULF5rXH/LaeJn7HeuhsxnlW+O66o6An38lWz+tgg7s/IUMXNmZYmBO3vi0Phojn0Lg33BQpycC6cxA+90TELBlOjng4kbprUNZ7mzjw2kIIH0K2pM9QRZysyNijdrTxqwQDmolBGb6FZpbd0Dz6EMIANMJAZ5yDzEhgPg8FIfgC2uifdz40AExSj2KDiF5dubHbCzxB5AWRICpg2pRRq0sz6XR/HM82Tzcx8rlaSKm2O+D5IyDYXwch/aRX6KDT/dZG+uE5sQ3MUBgkiRBKN7jLYzsgcegPc6OiPH0PWBr99wmCGz3Kga6j3XVOc9h3JoLAUsn2Nga9hELIkDUt8CVlfQkSZIkSZIkSSoLYrifiMLlro7s3s8iu81DiFH2eHvm3lbpbvbHJUmSJEmSJO1Zoo39EmSOzycQsKbNMEThHFDu/82QoXYJu45PdA9FYJYVSn13lD4GobPvMiPHjpbumSaOQo77h4lOyjbDWIBAUK8iUNhrKLxdf7s3DoFHFmmFvvnJQg2eTkTdiQBR+9n9zaJ7h9JOGKGifC9shtFTgd4ufQJyYA5pbTu1//ubASoORzbLRjDkzH4TOTw/Ryemd8A5XmdBZw9kEL9oFr9z0eh6WWuX2/q+hwAKARCVyyxkz+WBdjZAJ78PwZzTyClRQA71VpVpmTHgKuSwrdhnom/eHzmi+8a627JOtDE7gIgVDDn1DkYG0l/hQjlV+k2y0KVH4pih3P0lgUes7iZZvVblvG8PYn30K8T4cgMyhE8Fzm523krktxc6CX9rGP+QUyjMs39BTrSnicZ8V5+eUWprDIALDLS/ZyJHwWD33P8hwO63RKETKQaSdEQA7YcQcOMqYG4yI/9wBIh6GoH4xlnbOqDK7/+RG0tuwYGAyRzFHRDDT1WMSrXSaXreND0XuvQAqloUrXE+RE6YN9F64Cj3bMPAdwjY+iYZ09KyaJ562/rEoThwpXuvDxqL3gRujfOOwAOnIWPSgvbcFe7+I1YGV/g2ViGv9dA5NwKunByXPQKCTsWAazn38wARuyJQ0Tv27hdEgCTgWmsf/0FA7tzwaCX0/wn4j7v2rFeXo7m6V857ReFrY93AEDTu3YhjvUJzw5WW1z/gAIvUcf0clfPSVl4Hu7Q1Lb8F7BAEAn/tZ2V+eKP6UE7ej0bzaV+79mFs9iQLGRrynQeqDKFxPeC86nGhETrbu8TtFzGsPYtA+w8jwMxOVZRtB7RveBcdPHnO3fP983w0501CLE8HlNJZT711KssVLA+BLXBpy/ODaCx8CmPait6bDx2aiOeRngis8BE6zLSkPXM6CmOxhP3mymg9sX5eHaFDMh9hh6EsbX4rK8/CfCea88IBk9V8XprUPjdCe1q/FrkVre2CzWThZuStTt/rx/zBVk9hPdod2BgxaG4ZvXeqtft5vm9jVJLaCLKVrojCaPZ36RuS2Ti2trQuNhds4p5ryFon595cyE6YB4j6BZrTmwL6TpIkSZIkSdqzoJD1a+EOLyGG90lonx4Orx1MxpbeAYGqC7QiOkLTPzZJkiRJkiT5Pghy3r6BHBdPIuf0m+h0d9dm5y/Kq3eSBsPujcix+jYW2s0WJAfY96xYhd5R6ETsbQgAMxk5iEMIm07u2WOR87UkoKPBZbISApqs7dK6IeDW4+QwV1UwmAxAbCbfIOdlz+h+H2DZKG11M7Ds0+zymIXyWwU5MDd0aXfgDMfIude7FTp3QieDJ5ph7BfMJr04AihORywRqyNH+XW2gN6qXJ2W0dkROYUvQuwHFcMCUmxkPhQ5KIbY9Vj73slkDGOXuucDQ9S7wHatyOdpiAVqQZd2DzrpODJ8yyx8/8YUM8utbuXwy7jdlymDg+xbd29nOjsip00BOVVj4GM/MuaRXxGxkOW1N+RUehkZf7tG+R2Jc7bYb46lQUbiRghi63gHAcFCqJmBaHx5HZtPmpxH3yYCqOFCBLbYlWJg09zWz05E4+Elka5+CCxyu12Ps/ays/8903Fv9N79CAxU0vhOBtj7CgHLbkNGhX8hp2UABQ2z/H2Gxp4W4Lq4vRKFJkOOsQBe8pTW6xI5XikNAqmJTlcvw5Cz8l00roaQeR3JHBn9EKPSsWgds1Jcv3VsSx5s0xHNB9fadXBgX4qAwXdY/fyYYra5zih83EvAVTltM/ztZn8PRc7wxV3a79GabEal9lRrnfZsd/sbWNbOs+tOURn9C7itmj5K1kcOQmxp6yFg4nSitSfZOO1ZyEqFdFoWreE6IsfvVIrXPqFd7YGYMyoyn5KzT0CsV7nGPVr2k0YBoVZA8877CLi/r2uDOyEAxpeIzeyfqN8dm6er3uLaauhHF+fU0VpojX8HAh3mspiicfkDaz9rxr8xi/mruc7vmwCrIaaZqWRG8BYhMUu8OxId0ihQzCjigUt9EcjDMxKV7Uv10jub5TQTIGx/N0Vr074I8PsxcJndO8Ty/jgtQUurI5a3811aCAPYGwGiPkFzzUSTb02+RmN9gfzwhaPs+U3selF0kGRRe2eUpd9N8aGsIWgc36HJbXEXtKefx67vivI5Aq0Dl2hWHuv03Tsj8O1HKDxvbrhTBH7dHc35+zU730naplh/DuP5PZbm13gbkNk4WrS1es+Pbgxdxca7/S3PIezjXNYPYkDUQBxoM0mSJEmSJElSndge42Zk5zmd4hDLYxHg6VCbg+M9z4noQGPV0T6a/sFJkiRJkiRJexcUamsaAs7Mb8a9NZFT4B0EiGoTDFEISDEFA2yg033HIufoV2RsFH2QI2dynlEzR+8ARBN9EnJezWELlw/NqBGYljwgqiLAqgHlUYrdZj7k8JmCO/2e954ZTPZHIYnGuPS+yImZC4hyz3V0z48s90xbkLwyQzGdpwJL23VszF4RsQ9VBWZCTrWvgbOsXx1p148AK89KnhG47TbEqjCnu3cfcpb7UwhVlXfUDlZGjoCyYLbonQORQXAfux6FHInHIYfL8ojF5RvgT+69DdEp+a+IWKVyfiMw1fwFeMilh3CYoY5+BBzu+2gV378sWTirs8lCX56BDOcj7LpTmfwdhBwpe7YnnS69GwKTfoGYbGJA1E+RA6hA5HgqUaZDrV4CaGMh5Kh/137/r5QYO6ttt21ZkBNvZru0tNuR8TkAKwc2IV++LQxAjp9+0TOPojnvMDQHzo3mwbeAOYHzkCNxLvdOD8TEMB2xNn2H5pM49OJZaJ0xFAFGdkYA7GXdM3mMcHMhYO6JCLDQBbEPvYZYN1YgA0QNQiGAVo11Rt8/CvgdAr9cjYA4wTARwEs3A1sitsjvcKwPJcq0Jjoj/RuitdhyiGXvCQTi2Cj8frk+Qx2dLrQESA+xv0PRXNLD2tP1ZKDAEN7zc7Ru82DJbihcqw+L2DOqw/D3MuBt924vtFbZnJYMY0Uhw2qhM6cstkTzcGDu+ZV956bRc70Q48TFefWTc90LjR1+LBmKgC9f4kKx2L0tqqi34Za31ex6RdN1O8WMIV1Rn30ac55X+P7XEUPloi59HhSK6mZaASSvY5vdA63r7kSAiUlWFoe6NjcAATR/hUAXPgxcs9gc5gF+jfr+KS69M1pb/gnYAu139o7e9ay2uyDw0p3AGtX8dnwfrfNrrrPZbaMO9RmzRA1H4/cROc+Wq/uhiD3xVVxINxxwqUy51kVvjctpQHTtWcZCKLobEOvz/CEv6CDABARyWSj6bn9gYjQKzxlOYPdG+7OX0f54NQTgHw4shkADw0rkdTTax62I5vBPUJjBXgg8+Qg6SPU22VqvCwL/PuX7R53bni+LOdz/G6A93p5Wnn7/1BWFRbyPKg7EtGWJvn8jq+ezEPD3L0SsgO65i20sOy5PV5Ik//vf/0B2x/0RsPVdstCnfj27PpmNY7F4PqhDnsZE494eaJ39OdqbTUJ7qMCiHxii3gJ2i8f9euc3SZIkSZIk+b4Ispm+hA6H70/mu6hmrzYfYmm9kyhKQ9nfbPZHJ0mSJEmSJO1dEFL5HaIwICh02MvI2NgmQuah8DvvIPT0IpY2GDkKppgh8lzk3P8Uxw5RyqhlRoRgyNzGpfcio9V/CHMc0xJwUG8jR2vDf+2AHJATgGPK6UEnuz9BLGCfmZHwVjJ2rbmA3yJn2RHkhEuJy8CMiqeg0C1HE4WIaytCMWJ/IeSo/6V9/7tkxuyuiM70CaKwiCX0DkSMAqdTfKr6WXRaoKowBEROfGTEfwf4qXsmnOwNoRg2pYqQfii85Ea0dGj/ATk/F6jUFhG4ZmZIRORIvA64F+fcQs7FU6wN+f64KbBthXyOR6fq50IOjRcR4OFO++5QR3NZ3Z1PazYScuzdjE7JT0CG8hPIHPn3xN9eogz2ak86EQB2a8wRhYy7N5MBooJTv6eV67557Zb8MWU1NBZfbPKyyQ5kIX3aHXtcK9rU/sB37joGVq6AgBcNczhFbWF7MlDNFwgEu6zd64X675cIHPo6cp4dZ/evQWCOzjm/cRUZ88XcOe1xBbLQiO8ip+IJFfK9vf3m/UShvxBwJgCihpMDgiQfXLW7fd9tlueXESjrUjLw0jgE4PzUyuGkCvmsh86+yJFxuUvbEs0tEylm8tmKKkMC1qg9jUBz+0p2vRdiQRzk6nt5tE7zbHYbobXUneSAtO2ZzsjZPQoBVu5AwKmZgHQELvvY0pdAY9YnlACukIHlaqYzyvNZVlcBjL+GlcdktL7sjIxd46zux1Qo341RuLur0PgRz9PL2zdMIYddsVQ+7V4/NI/cRMYUsJ21zUfR+LWmlcO0UvUU6dwTzUnTECDyKDL2keOtHJeolLc6t9lVrLyOdPW+MgKXt3COt6ZMa5A3Pz5vYGX2OzTvBmbaJdEcPcn6z9Fo3/M1cmZ2RWv4Q0vo3cTa4kSrp79SDBottT+Kwe9nu3ZTc53fRyFby3vGxTx2xpFoXTwqen8EAi29COxWbZusl94alsuiCOh0gF3vRRSmCR1segk4zaUtiUCWvwB2KaO/A5qTv0D7iDmdzp1sXPorEdiTbA7rGOkaidZOE9F4uQ/Z3LIPGl+mYmwwCHA+nhKHkupUpr5dbYHW75u5tJutjD/EGPvQ3nI3tDb53qzN7buOQiD+Hpa2GALXF4BDLK0TYh6+nmJgYAKEJOF//2s5l6G9957Wj55x7csDoiraOGqUt1WsPV+DGFhHoD3n0TZmLY7WOV8Bl2A2OXTA5W0bH79XbHBJkiRJkiRJIwQd5nsA2UFmHvCO1w2W1pFiYoVByFY4CRd+u6rfbfaHJ0mSJEmSJO1V3GR9CnKMLhjS3b0QVunfwAb+vSbmewsyyvPAEDU/OrV5O3K4XohzEpUzaiFHYmBd2Se61wMBoiYiR9GAWn9PiTztjzNct6bMkcPvBhwlf973I9aJqcjptTACle1hBtEHycBmA4DLrXyGV/jtwBDyAHIIv2XGorWqzX+DyndDdCp6oEs7wYxCX2KhRpAxdTxyav64St1L2aJ2J5cWTuEG8M7ilAg/SRZuJxjZB9vfTgiccIFdB0BQAFnMixgCjosW2h2iv0tZWy6ghfux7je3Rkb+VeN2Q2XATm/kVPlDeJ4MCLAQMhjeQxnQQvQbIxEQ4yj79m3JgBRvuzrqgpzM71BlGAqKgXD7IQfBdsh4+G/kfLnE2nJuvSOA3LdkAKP2onM3NJ79kWJWnh6m/0t0gnpL5Iz9ANiyQl2tgwNjWPt4HYFMfbiSLpbn71UICopDt26EgBH+9H1gOOiOmLbupkpQZI3zuRtyWp+J2A1+i+aAS3GbcOTgPsnaQQgJswoCt/w8R29vFGbzeuT4m3m6KWoni1nbOIHi+a0UyORgsrm5RUhaBIgKYLtcVsLo+eWtPo4nc4z2sDL5Gw64a216ZyIQViN0WnonxE7zAs5RgdY//0Trn32snX0D/KSB7WhjBBy6DTkRC1avnjFmTesHB7jvOdbaSMwadjZwZdROv0LzxQvIaf0A2Rp1URQWeQqam6fg2BzqpbNMecyB1tBXubRNkaO9gEB7L6F1QSUA4Firzzes/AoIGNU7em45+5YCrQRWogMD71Pc5zdC7HUzEMDmDeBId7/iGhStpa8xHS8iAMIQNG5c1qj2WSJv21t5jozSF0fAsgLF65mGO8IRqPJTjAXT6uB+MuflEHQo4QVrny8BB7myf58I8OLa/pdoPDkXrRkKiAXGM/GUY+gMLKB71EvnD0XQ2ng0tseytPFoTArhl+6w+g7rrQBcehYYW0Z3XfTWqRwGkoX5/h0a9w6iJWPgE8Cjdt0DhfJ9hGKGytx2ZmX9BzRfnkE2R4eQeWFvX1X4YnTI5ys0/60e3TsK7XnfQgeyHjL9FQ9l1aFsx6L55kJgHZc+BB34+RKtA49B68DJuLmpUfms4/dvbGX/BBE7OLJ1BEDUwZbWheLQvQkI9QOXaK7qRcs1WABEfYwOkbUARLln6wmmDkxV09ABpDE2zsese2chu80uLm0uKjDUJkmSJEmSJEnyBVgPeN7+dorWDvMi+2lse5gT2Q3Dofay/rXc3232hydJkiRJkiTtXdDp3gKwr117IMU2tsl/CRlLc+ke65y/vFOao5AD9COc4bfE+3kOzA4Ug742sDJ4hojK3gweuyBDbSNOeS1NdkrfO01bA4iao9R77pt/hdgL4lOxGyJQ0K9dWn8cQ0KJ31wdAZ8OJTt5v4aV692UYJVqZBuy/4eQhS36K5mjaXHELPQtcIv9/ztkUM41Zvu26f5fG4FTQuiyP1MMWloaOYxahExAoSvOxULeITDKJMRU0QG4ALF4PWM6Q7i0zvbsS8DGTt+KiKknhAbaGRnNBiJ2qFsQm8Ar1h4WsX51a6n2RktGqCFkwK0bkANviCuX4HT5JTJOz5mnN/qNpYADEDOGDwn4E6u3m+zbhiJg0DTg2CrbwvbIEL62S3sAuNO19auRgbOAwlvMF+nYnWKAUXvRuSNy5BwOLFWifK5C7Xc66s9ly9V+YwICwKzl0ufFjMN23Rs5aN6jwljSngQxDFxKxnzSAXjc6mQiGXtOLyurT4hCGTUon6shEPERdr0scoA9ZXm9EhdqM6rHsQjcdqv7xnhe6YkM6+MR6OBOovBH5MwBtAwnFIc1293ydyc5p5fRvPMxsHPOvaK1AwJ7voULd4oAgH58HkTO2EcEAqylzjJ1tqZ9++5R+mZoLPja2lNVoJ0at6fdrJ6/A87Kud8XeBIBgS5BLB5TKQZNdkAsHZfad55v6dcjJ22Yt45CQJ1/AoNcmW6FQKKeJatjPXT6uo++M8x9p6O52YcKG4zGh+sQuLAFqDTS1QWtFw5BAPWBZAxT++PGU3t+uNeZ1/ZL5LUvGpsui+7PixjcVsdYrqpppznfsAzwezQvfIYc7zMPLzRD0PqogLFeUgy4CEDrAlEY2QbmbxQCQoXxeSkrty+QQz+sUwPAfH6MrRdYCwHEb8jRuwhak51HMWh3LzTH308OmxPFY/DBqJ/vUS+dbVny+pKlz5KDG4FiCwhAvCCai99CQLcNrBw/QICfZcjGnxXtuffIWb/VS2+dy3Z+NAYXfPv1bQaNfZMsf39Da9hjIz154103p+Mm+/YYEFXV3h45OHqiNfFNyPHxX4xdyT23GQK8/8X+bj677WUWynQ0mmsPIdoT2P3uaG/xuJXJdcC4RuezzmUwDI2bBQQC6RrdH4yAYgVaAqnbNRAsyexLNFdtjRhz30Y2lh3JWJU9IOpfZICohvYhBBrdDwHRPwX+7O75tc79wBP2f0NZ7pMkSZIkSZLvm6BQ2F/iDlXYvuMMxJYf7AsXYcz5CAj1BjpAtvgs/W6zPzxJkiRJkiRpDxJt7LtQDHjqghyh31DM1tAVscxcAvwIOd4a6ihAToqbMBAWxYCo0cg4OgFj+CFz9syK43FLMoDMatG9njSQRtry8g7wD4rBLVUZ6Sg2JF9JDksWMtY+ac/4cu2CTpe9T47zqlQ5miHmRYqdaHcjoE0Iu9e9Nd9Rh3Idi0BmDyHnfsEMWMHRtIC1ufuRIfUiKjBsWboPC9UDGczuR0xlb5EBo7paOT0FrJyjZ20rw9eQIf074DDXrldAgIYZwCmWtjACd00DDne6OiNml/cQwG0/+949yRxqvZED+DcIYPUdcjp4NpsYhDjTYYjYJN4kW9wfgjYEvwDmj/rPHxCgIZcRyz27FnKcvkLGguUZR45BBvzPkNHvaSzcQbk6cvdPsjxPwBwqiLnqdVzoKsTAdCvRqWK7tyOwfXvSiZxjTyImQD/+b4EAAOu7tHVNPMNDnvN+B+SsPRIDFJQo82FoszgVF7qzPQotQUDBoXIuGSBqPuTgm2x9YV80pjbs9D0tDd07Iua4HijMzKcYGMLy+J3lcbnovbURC9mlIc9kc8iywPqIpSaM7XMihsEAiOqNHIk7WPubOyevZcsBOUMLCKi3WM79PIefX/MEAMR+iFElOEPDiawAWloVMQrltuV66Iz0d7W/fsy9Ec1R80bPLopAK2u6tLo7M1zdr2Z18gWa50e4Z8J8tQACbU1A81apEF4LIYdlAa03b6UYVNQRgXDfQP1qYLm81UtnXPdR2ghrBxUZukro3AYBkv+MAyVa33nC+lMLQFSlukfj+JgorRvwc2unK1V4v7Vhmju431jE2v5EjMGo0eLyMxitaf/o7oV9xcoIdHY9Wr+s1OA89kfgsZ/Z9TA0V16BDKbTgIexNZX7pnnQeuhl4MYS/WAFBFDaIbQnd+9QMqDp2nl1TgZa2queOtuqRPle1vrT8mRAmxZMpxV0hDH+WARU/wUC/P4RF4odnTCegPYrHri0CmWYPOqlt47lOwiBcp6xduPBsmEe6YVApTehfcS4vLK1601xdgpX3h3R4Y/pCLga5us5KLG3j+ptYKRvRwSIep0IEFVCV6OAUN2Qc+U63OE1tDc7GzjDpfVB67WOjc5nA8qhAzos8zDaL64bfxs6yHMtDQphmKT9iY2hIez7ZsDfkU3nBIoBUSEc5hvVzAl1ymt3ZN+ZbG1+JbK1QhhLz6XKQ2lJkiRJkiRJkpYSrZvH2ry7F7J7rI3snSGyzom2f/kOOMe9tyyzESK+6YWQJEmSJEmS1FLqbYhCJ5zuRGHQfkbmDBiOHFrfAb9Gp+Z/ZobDXRDgYioNMpaaIasrmWH9GvIBUafb/U/IcZLaM3FIllHI6XE/Otk8gsywPdr0FZ1sblQdUWx83cKMFq0CREU6lkdsPRvkPHemGW8G27U3nB5rC7sWTr8yv3s58Lq7vhuBaoJT+EfWtnpWq7PGZbspAvQdhsAAvax9TUCGeB/OqAgwmNPufBkH9o6Rdt0Vhf/4EIGWAsvTnMhQ9TllHIPWR9+3vvjz8NtkRq3VkPPgYwS6+g8yyB8T5w8xPTxs/aMAHFamrcyBDHp3oJPXpcJhebaypU2v/+1rLe9Xo4X+kiic0zSqYMRBwKn7Te9jZEwe3uG2lJXDyNB+4zoq11fs3XOsfv6GwGRHI+DBau65vrGu9qIzR9d8yIi7j10vgRzvoZ2+Rokwg3G5Wlo/5KQ/l2Kw2iYojMnSyDGzNDpBH4Mh2rXTxb7xbgR4nILAxBeShW7tjRyRT6D+dxMwvt7fTwQ2Iht/+yIndkcUXutmMmP+cAQuLFjbmjPS0YIlBjkJ3kH9eiLq93PZvbkQIOoz5DC83J47Oye/fgzaCDHI3YiAnIPIgJs/JgNE5TLMlGin+yHAzhA0pxbI1kF+fuqGDBb3UiGEYZ10bm118iMcg5b91lQM9EQJds5G9yfkAFoXOVknIRDYSu5+WK91R3PfwHJ5ReClc9C6YzIZ62E398xBKKTT05QALzVAZ5jvfwfs6NswGgs/I2JXqVQ3yCl9m9XzG2RzXmAZ6EA2jhxIFWsoe2cBxGbwLRqrdsRCvSA2mK8wVgxaCXqq9NvR9eBS92rcJkvqRuubM9Da6le+nVobvg2x53yCrZPqlde4PSCQygkIODkvAoJfSTb23UnG/jgoencrHLtSju4l0Rx/okvzIJPXrM0+ggOw2/0fkwNaqofOti60nO+uIQPUlHR+Uzy/7Y72HGFsPMHq9U1ciM3wHhlw6WG0lo73JC1Yamuttw7lGI8NndE8OgwBAgs4YH9O3vzcGLf1edBe7l1gN5ceAEwdkGNiIpoX4rVSqT3e9ggEcRAGLLP0nYkYorC9Wj3LsEL5drZ+d4tdr42Ab5+g8JoF4Npm5K0R7Sm61wkBov6F9j7r5LSZWXZEJfl+i7WXmeGCEXv45zYPfIOYque1ez0QkM92LAAAIABJREFUm/U+DcpbqX1+H2Rn+hLZOQe7e51RSMyn0R4tMaAlSZIkSZIkrRCbZ+8ns/X1QPvzacjG8LXtC44nOyzeDx1I/YAKEW2qzkezCyJJkiRJkiSphaCTsovY//Vyko6xDfLdZtibYf+HECFDEBvJROQ4+i+ZU2BbZDzdvB55y8lrcC71MwPDl7iTjmQO2e3N0PVOnhECnX4/gsyptLMZMf6OGAs+Rc6iw8gcUKOsbP4O/KjJ7aJVgCiKDbiHmOFjQVdWu7r7qyKj8VOYE9vSu6FTxY9RmXHD02/viQyu6yBAzTtk7EJ9gNPMODNvNd9eh7I8F4GHPI1pD8SsMwkZkANDVLmwOP77F0EG8q/s24db+gAENvsYGaB/g0ATH1E65F74zVXtvY+Rk3ZZS+/inlnE2sa5CJTh2UEuoBi8cDAygH+GTld3878dfyPqc+cih9bCLr2Fwwc5GG+2trKIS/81GQBrMnKcHZf33VFegvOvB/B/qK/+nKxvlgzTWUqn/b8gMmSOiJ5ZFY0fz6O+8Bpm+CyRv/aoM6QtjBxB91hb/A8Kfbo2AjVMBH7Ziv40EG36tkfOn8VM96fI2fkxFjbP2uo6cVtvr4Ic0DPQRjeA8n5LRoPs+1935KTzYL56zfHLWd8dY9d7oo33iu6ZBdDY/GOXtiJiCjwfxy4Xty3XltZAY+apCGR6ibXLv5Ft/Oe0en8cATm8gzNvXB2HAEYPICftJGuj+5DN+/tbuV8HLFkqn+7/xe33T8IAg9b2C2gsDoYMH8KwhZO+3jrt+mzUvwtWF0ciZ14HxGR4VxPbe9E8RQTGQXNMAESNdOnrA1t5HXl1754fjNicZgBXuHS/zjjUfisXuFlvnWgcPRI53achQOnOCMS7AmJiPNyerZohAAESr7f6P92lz2TTRON3gZxwlmX0LoXWtM+hMf45NH71RaxCH5bpS6cBW8xGu6kKnFyHNrqx5f02FBJ2MUtfEIE2P0brvVMRUHMGGdvlB7g1Wo3zuBK2JrbrfbBxkWztsyta9w2nOATjK5a3HeLvde2jVOjFx9HadyjFgI+F0Vh7HhFQnQx8Or4ROtuaRO2p1Hx3PxkAOG997HUcZN++U1TfR1j6a9haP6rTdcj2EXOVyW+XeuitY5nOj2wOfhweSjYG+vXJLmQssZUOA62D9suvAGNdetj3XIjA69NxzKdl9I2z58/DmAWj9r4rmrdfIWKUbnRbJdsfHoSAte8hO87D1i/7o/Xpq3wPQEBRe1oX2XGuQCyLgUUvBkStTf44mYAhP3Ch5Tr3MIxJEq2jJiNbTke07vsc7QFntrU8XXXOZ7AZ+HVFZ7RX+hrZeHdDhywOt7TEhJYkSZIkSZK0UpA/6020/+tHtufqafuEa5Dfomh/Y89chfbN3WqSl2YXRpIkSZIkSTK7ghzdk5GjY7Cl1dRZipyx16Cwd10Ra8V2yBh6PzDEPTsQnagP1PprICDUHxpUHpsjB0VXl/cDyQBRARjRATgZOQoG5+jpRQaoOMC+6wErgznsmf7IKfIBcmgF50MIB7Z1k9qEN7ZWBYiKDCQHWv73tuuewH2WFpwpnZGx5310+m1zFJ4vhDprYTCJfmNz5DwPzt+Rls8pyFGwuKV3RRSiE2lCGAaX35uB5921P8n+OyubfwB94joooW+89dlHERgohAwKJ4TnQs7g36HQi+dgjuFy+pFx60eIWeVlZGRf3ue5TJ6WRyF/1nZp2yGn52PWzsdQItSOe2cMAniF8IZxW/NGv1EI/LJd9MwIBL7aBhdGghygGQJV9UFAvFAvPZHB8QMU2q2Hf78V9b4zAvxNQcbLh9CYFsaR+VB/+TtZXO/5429uLzqjct0UAQHCeLcJYpm4CRdqz+49gDnhy+UzeudptLG7BY0hz6CQjEshJ8wfc95pt04HNOd0R2PJ3RjLirt/htXLBVQReqUO+RuGnD6vIqN9wdqMZ/0bYnX1W7vuhJzU91WTTwTEXAEBHudwOo5G4/6DFIcN7UxxyMw8R9SqqJ8fA8xjaf0t/9dG+oJTuQXbYaRzDQQGewABYsK4szICL32BGDAPQ/PY51QIYVgrnVEfHYoLTUgWGngKCpl6MZpDniNjH2wW68RWiLXrIWszA9w9D4gajUCSX9HK0MponXaO1fH5Lr3Iad4GdC5sdfUMAsE9h5jN/o36YO5cXa7urC3chBz1HjwcAFEdqR4EFs8L3RE4727kEHsGzQUfIidZzKAawqpOAzZsRnubxTa6u7XD2+37/ovWRMvZ/QGIbe0fZGF2D7B7W6BxaPs65KsH2ntMtvFid2uPh1K83j8TmOSuuyGg7eFEoJa8ukZg1yXROB1YK5ayen4YWM/SeiGgx9MUH4YIY9SqGGipHjrbi1B5vnuAHEBUVCfnoDVyANwdZn0rGNEDA/KFRHtZtObYiJxxFIW28yDjmuhtQJnujMbJT9Aa3zObeUDU+Yil+GtcaIm4fHP0r4PAeq9QHFKvh9XjKKoY09A+7GMELJvDpffG1il2vYv91ieI2a3u83PUvor2VMh+sw0Ktb5D9N7FCCRaE2dMWxA0ln6E9kZPInvVjWQHDAMg6glkhyi7dkzywxbsMBLaK62G5uBHEdNvf7u3uY1Lk5ANsqxNpU75LGUz6Gzj+74IFBlYtm+lGGTabvfiSZIkSZIkSSMF+SneQD4db9es5rDfIORvvRqz6cx2fppdIEmSJEmSJEktBIF1XrWN7RBLqwkgCoEhzrXJ2zPIdEbG/0/s3iKRgW1uZFx9C7jRpdcaqBWDIm5DRvbzyE67zoOcb+Ek/iEoFMAULFRJrMuuB6CTgl8iZ8JfyRyKHs39EnKY9HTvDmlQ3fvv74ecwEOiZ7akDCAq0nE8MrzvYdcrISPwUARaKAC72L2uCNTzuKV/iUKuHVWqTC1tHDIC3YQzKiPnYAEZJHdC4RhORU7iXEakRgkCF32LMR0gx2JoA3shB857RKCAErrWR47eQ8gMrruTsUWsVOH9XOapnOtxiB3lFYod5ltSAqhHBiYYBSzt0vsjg94HwA64xThi9envrjdCfXDjSPdqtAzT0hH12eeowPqV993Iaf4gMma/hZyBAYTVC7ENfYCYWFoVYtG+82s0luyFHCuvIifW1mSAy85ovLvQt/12rnOcldvdwCYuPQbw9EGn2z8CRuXoidukB9Ysjsbj3wM/iXT+DTitHn252YIcoPe56wDg62DlMRXNuQs1IW8rWT8qUMyEE+aKzghsPNH63TUIfHFEFbpHmN5JZEwNYQztQuYg/itRCJq8tuTSD0LsCp5d7maK2QX9eFWWGcf6yBeW1yfjPKDx7reIFeNDFEq2ZKipWuqkeOzbFTF3XOK/Ca1JFrH0h8nAj3VhrKmyXe1k7eRB5FT8FoHTl3XPHIjA1VNMTprF3wrh7QoUhzSLT9lVvRatlc64DVt/2hGBwD5BTqkCjgkv710EHh+DAAvrk43xw5EjdwrFa6burcln9GwcamoH4DLXnncp8d4IsvFso2p/L/7euMzq2Ea3wMALdr0IWtN+joCFARAV+mI/9/86iCX2pjrmbwVrJ1+gNfq+OXWzFloLnIvWWweg8XbTUm3Qpe+C9jJfWP98ApvTEXPKOwiM9QwCDnxNzphCMTir5jrbi1D9fHcfGSCqKEQaAol+Z2V3NRrzZ6D9qy/nYygBXIryNJNFFe23ZtRSb53K0ZfHKLRHuhQdcngF7Tn9WLe85XeSta8jva5I32po73UMAvuHcXQ9BAB4He3TFkNMbB9RHGK6ZLtEwOannc5OCKD1D2SrOdw9O44S42idy3NjBPC6E43pfUu8M7e1kUm0M0BihbIYbd8UxvzB1tc+sTJZ2NXdMLTe+t58f5LaCmJRKqA1WVgbLIcAdv4w28Zobf4gcEgT8lnKZjAzn2gfMdaeu53iQyXtbj5OkiRJkiRJmiFkQKi/kbFBhjVCJ1wkDUvr7P6fz/Y8H1GCiXuW8tTsQkmSJEmSJElmRyh2LO+LHGlPEoXraoW+82l5EjA4gKbhwFB2rxPZaegHKQ7vM6cZmvxJorptoJHR/RJkvJxkef6VM0TOiYAB/7VveZecUFE5egcgY3EBAVg8S03Qvb4Z0DZ394qo5+v0zd6oOQYZ1SciRqATo2cDIOpBSjhGEDVnAbjerscjx+xqdr0CAq4UsJB5CMzSGwFgVqHYuZnnFN4AOT+OAubMKa/RyFj8CQrN9ndg/wa1oXKo/GGWlxcoDtnVFTmefo0Ac5OwcAhldB2DHGeDKT4Nviky3n9OxpjV0aQcg886pvP3yFmwgLs3HgGi/otOI+6OnCvHRPq8A2Q+1I++xjHUoFPLARC1vV1vg0Bgq9ozvVDfujen/D6yuj8WF2ICAc2mYP2HCgxW7r1dLY+XobA21yGn28PYWIUMendYWzqLMqGHyBxVHRD463HE0lMEckTAx1cxZpMS7bxje9IZpW1j5Xg4ZQBqyJF0JGqvx+Xcj51YlyBn6K+Abd09v+nrjYAT79MkZr16Cpozf0/LMJJh/LuAzHF8UKk6qkO+wu8vhcbeCcjRuL17JoCLewC/tLp8hOLxudwYuhja0H8G3JKjt4u1pw+Rs7BrlXn/NfCyu74LjaND7XpD4MRYX7lyRSwkr6C5bkfywxj1R07Cbo3Wae9/iZzXLcIYhb/IADMeAfBeBxZtQpvvB1xpdduTjGXoa+BPFAN110MAfA/abnX7JwMvfQdcWKPvqKnOuP4ROOEyYL8K7423PvqhtaXp6MRgYAFcAQGiPiVaB85mfv143g1Ylpb7hfG48NAohOa9tBIQFf1W/1nJbyu/bR5EQf9zux5qeb4MgS0nI8D2kiF/aF02F1rPvAjcMDtttsp8hvBlX5ITgtDGjlOtb81A66oWc3POe2PsnXOsHR5BFlZxe1dGZ1jbugbH1ErOuF8Pne1JmIX5juJ1+EFoHXAoWosVEFNxYOyNw0gG4NKvqOIwDppraq63juXZB60NTyNjel0cAfbfphhQPydi3xvq0uLvGm/9+mU0hr6P5snedn81tN/9Dq1xJ1fZl8L8exiac7dH4IPn0V7pUsTC8iYuLGypfNaxPMfad92I1uYTUOjrJaPn1kFrrI+pwH7ZngTtX28HTrHr4WRj/i+sT9xOdsCwE47RK0kSL4gB8U7E4OiZDUdYPzvSrjvbuH95A/PWGpvBa2QMVr0RGPQg91y77vdJkiRJkiRJowTZTF9FQKietpYM9vxuNh8fR0ubUG8EVv4T8rsMr2m+ml0wSZIkSZIkyawKxc6C1ZFR8zkySuNBdq8qwxoyKt4OrBX/Dpkx9EoitgrkEAihrraK7nmgRz1BLNsho/sxlpcRZmz8GJ0Q9eFMumMhG6rNGwondb6VwdlEpyeRs/UrmhQOBIFCppsBb2vE3FFAIB1fB5sjJ9pztGTo+bHV4RsIzPJ703EAxawaHhC1czXt018jo+pDFIfI6RDlc24UZmVhGnQaLepPI5Hxen+KHXu7WNlNtHujEahrKgJ5rWDlUtbph5wKn7pr3z5PNR2fk7GalAMYjEUG9seBvyDnyQUYmMqe2R0ZuWcgsNYJpb7dpY1Gp/U/xRnHETjwH5bHfyJg4c+jd1fIqzPrJ2dbHj5CIRcC28K9wN9aUV+DkRPjbBzFvNXLuwgAFVi3eiKA1F4ldG0d5xcZDD+Ly8rurYz621ll8tcudOa8E8ILXhbV3Vi0WdsWgeXmQw7gZykOtZIH3BiLnLd3oNCjz6A+c1r03FqILaGI1aQ9SoU+O8y+8Soc0xaam85HY3hwTuWe1K9z3ocDmyHH9X9wgAccANuuWzU+o7n3Ihs/To31IgfxT3GsSHllSrER/wA0ti2OjAYTyMCkPdGYejuOlrrKclgJOUifxAFcKQGoLFfntdSJ1iP/QmubXiXKJ3b8boLWSK1m6JnNtrQtWof8gwgkjMASM6zOSoXwmuU5H60hwrptrVnV0wCdpdp13li6CZpzjwCWRgCBn6F13bNkIIHl0VhbIMfhXoM8x+2rIwLDFxA4wR8aaBUgKiqPQ5FzrqZO6BJleygKbTUAsRld6cala+3bXsOtrezehjhWl9lps2Xy28lkd8Teep+V56Y5z/ZCQLXR5IQYznm+LwK1XhG1v9XQmnJyaOtk6/jO5fTWQ2d7FGZxviNjhAqh8bYkY/j7Q6zHXR9Ftlefo0SeZh6uqKXeOpfjRmiMew07YEXm4F+MDBCVC1ai5X50Q2uDh5KBXUJ4+Gtd+SyA1qVjceM9xWvjUkxrP0KHj6ai8eRPZAxg29nvL9OkdrkZcq4EgMZQtCadgQBcS1v6PGj+voMK7JdtXSieV+a0vz+1+p0fHRi6gmxvdQ/at9xLFLa6VJ0n+WGKjaNHoHVuvD7oj9huX0WA33PQgZeD3TN1aU8Us1G1xmZwdvxePfOZpH1JagdJkiRJUp0gf9IXuDDklt4VHZJ4CneI3d2/yvYJ/wcsVfN8NbtgkiRJkiRJktkVRMs8HTlPz0BAlenIWTbYnqkWENXX/m4JjHPpHdBpzAIKQ7VA9F4nmnRiFDk7b0cO/L4uvS868TgdFzIv5/2qNnXI+X+5GQsPDWVgvx9CUazahO9fw4x4R9n1orZ4egoZ0y+g2MmwDWZgd2l7W93ugU6tvYFANTeRGZy9jgCI+o4qqf3JjMuPAXeWKnvEItE5571GhUrZDTmrX0Ago1dx4XoQE9qNVl7fIlBPKPu90Gnf3DB37ls2QuC5I9y94BzZFoEQHkfOzfnK5HU0MmoFiv+Blq8ZwO8oDp003PK+gUsrYpxCjirPyLGZlUMMiOpi7epSYKxLj081dPR/XfqqyKH3oZXx/yED4TRgTJX1NAI5GULIFd9mjkOnejcplTeXvomV2cX+WSvLyWRMEZ3d93RCgJ7ckDjtRWeJ3+mDHDcnobCjw5FD5zMyJpLgjFoR19bjenbt7l1kKA4hGBdBYD9/AnUQ6lfP0yA2wXpJ1KeWBtZG/dozOf4YjQG3Ika4EcgZ9zkaH3ZE/Xhog/LZiwhwYPl6GgGixrj0UcDRvn4iXXG43IWAfi5tCeA31pZOceldSumK0rZALG/b2vUQNFZ+hYCqYW7uhsLPvI8bp1pZRqugMf4JisMEz/J8NLs6EdDlc2C7Kp71J8LfwAEQZ+cbWvGtN1g9f4g5FCl2roxB4/5tlAhfGNV91zitwu8PImI0bYs6W1GeF6C1QX/X93ogZtjPUKjFkD6MHLBMnet7P6vrO3HrYaoEREVlGJhx9qlh/gZSDHDfnygcI1ojv46AiyGE6QlovnqLjBU1b/1as/mqXNux8vyLledm0b0W7G/l8oWAAJ8Bh9m1X0ttYmPNST5Pldp1PXS2VYnabB+0V/Qg4dbMd6Hv/pwMCDWMjF3oZLTv+r17p3OUn9NxjvYy+a6ZXnL2iTUu4zFoX/QFxpyH1roeEHUHmutzwytH5fxzdCjHs+jegwD+I31d5OjJBQegeXldisPoDUN79JVdWjc0tv2bCGTToDY6BzqQc75dL4eAUJcDW6E11PNkLHjzAgvmfX97FGTvuDbqo3ta3S+HsXKig1sTEQivRQjwJD9cceNOmLsesvH9IzK7awd3fxm013sb2VTqHhoP7d/qbjNI8sOSaC4Z2Oz8JEmSJElbFltz74P2xI+79BdRtI2FSrzXE7Glz1WXfDW7YJIkSZIkSZLZEeQEnIAcg54d5XAUJuafVBEyj2InbV90umk6EfMPMoYGQFQuy0KjDWW2WHgeuNGlBUfU3MiBMQ3HEDWreUQnxq9CRuO/IfDZpWYsa3HKqg7fugvF9Nud0UnxCxGryFK22LoEAQ4usfo6nRwwmDPULI7YpTrbN05HAIa3KKbH9u1kOAKgFZCxv1pH4k2I0adDjs5l0SnqIY1sQ+73t0NOmmPsejMESIhPyvVExveRZIavVawvXuPLtsTvDEGG9xcoBhOFU+K/RU7FqbiQfJGOeZED+Uy7Xg45Cs5DYVsK1laHlXg/BijtbvX9d4pBVLmAKN/Pqu1TcZmgU8enIoBcOJ2+WaX3LG1ldGrXsxL5tvQBcFGcN4oNOduhU8G/ICf0kdVDIdSBa7O9EdPUBe1VZ4V6+iPqB08gcN9jqK13QCdcH6NlyLFSp+NHo7nIt6nb0bg83K7ns79LUcxo1u6cLlG97Wp9530E+vOOtl7IEfkB6ufT0dh9nN0/GgExhzQgz2PIwrZcTDGbSABEvYLYIXZHY2JuiNno+3dGG/1P7dtvwJiMEGg3OIh/WqkdufvjkCH/EorDle6JWPs+RKwP2yEH7zQcW0S1fSD6zQBeegQHpJjNMp9lnYgJ9EtKMDMisPIOUV2sjJihTqA4PO2GRON6jb7Pn377tdXzZeSsGxHwL3fsj57bE815PWYxT3lgzTan0+nx9ReApA8Aj7j0ANbpiQBIL+T9LlWc7p+VvlFC/75oTdwqQFT0vQfhmHFq1CY7o5AvX5KFDC4goK5vryfYM2G/0BWxgR1Jc8ALa6ADGLtSPD+OJANEbYxCg21n35QLyC/xW72Rk9YDYfxa6knERFX1fFwPnW1RonoaY/3zI7TH+T3ZfLcYszbfLW/vhLDPA9Ae4TssnLl7dgMci285/bXQi4A+67m0XdB6vl6AqG3R+DYdmzPRgY4ATFgcrXfHu3cOxs0rlu9OCOB/n0u/G+15Q2jdtezdatfMY9E6dzpag9xc4rmF0KGZqRhQsM7ts0XYDZffkchG8jxirOmB9qBXWNt4gwigXG15tCWJ+ugyaD16HI7hDLFffeKuu1t/HYdjOk7ywxbsUAfZHntl+9uLjD3yZ2TMYzNZzxFQdk6c45P6sp0vhGwGBepsM0jywxNko5xgY2q7XsclSZIkSS3F1tP/z955x11RHX38S0eaCFhAmgoqYMGCvSK2iAULioqAvXdjLLHEGjUxiUmMJkaNRo2JMYmxJPrGxJIYW2I3NhAbiBTBhuD1/eM3h509d+/d+8BzH3hg/5jP89yzu7NnT5kzZ+Z3ZtZx639Hk5mzkW39JeRv6Z/xbEdgw7rXcXE3UkEFFVRQQQUtCiFAyhfASPvtjc0X22b3MQywkfF8d9IndtczY9iWCOjyIXYK2t1zCXKGXkUFNHMTfn8LZAy9BUUzGeiuBSfRjchI+RYC2oTTuJmRYmp458rIYVxCDu7TyUhfVYdvHYGcwDEgZT3kHG2LnAu3kTjONkMRckrAryrw9U6g/tamHRGY6knkIPfhvP14WZuME5PVDCgo8tIc4GdReVvkRHyDChG2SBs1OyDjUvta3ltD+66GHHXfdu06Gznwf2tj/sKM51ZBjqq3MAM46ROBW9l3XYYQ/p1d3zxv7ftj5Ei5GDnhRqEIWSVgTMa3B+X6WOv7nsbnRhJj9x+t/jeTE10GOdC+AE4hw9lHAoiaGo+/RWjv8A2t0Enpk8lPjTWIBNzZDYG3HkXACn9ff+SIO7nK+39u39wbnZQsMxqiU95PI8fu7kjWrIgM5HOIIrM0F55V5pJP2XY1chD4KE3tgNutTmUOr4hnP+R8Pg740pXfh+RxSGO2kfGL03Y2ayMsAqN8hiKg9UHAoBJykm7r7lsJRSIZTZIWcxg6kX5tE9RzHyRzfouct7NQxIKR7p6dbZ59ihxJucBfYAwC3/wIyanL0Hr5BhZlAMncH1u75KZyBHZAIL3TcKf63fW9EQBjps2Fh4Bj3PVFSbm2ibXNKzQw3V5j80Q6yEfAXTZ347l8CdJ1QqTPNkhPeRjpStda+eHW9rs1wrfkOfVvsnddBKyccX1gNZ5oHZ2KnJg1n5KL69VceEbXxiPQfS908GEmaZBR0HVPRvK+LNx6hbqujtbULRrYl7lgKvIBUTNIR27MAkJlprVdxHG6ts2BuSjq1FGUAwY2QLrTr5DMOdnm6V5Z9a0nIcDWx0h2zkd62AHu+kYkhxIeQ4D4ixvYb8uhdX0KAiYG3bUVsAICtF7dVDybIyEg0Fykb5+NUqJ9bP0VdNY1acB6Z8+0RvuE35GkwFyRBLh0C2n94oim4IvAIlegtWs/FFW4RIYO38B2TO1zKAdh7Ysil7xNNiAqrHktkLwsIX1mh4jPNSiaZC8koyaTgPO7ochJ36NyqkFfzy2QzP82ilp5FZLRj0fP7Il0rMlYZM1qc6gRxuQmCPQZ7AGHorTirUmiH+2O9o4eAH8Uyd5/kfpzSSIE3jsO6U1xFNTdkB58Jdr7H4N03Z3cPYXDfxkmBLa8AwNbkkRUD4DSzij60xxk8wm2ngX2oIhfU0Rm7YkOry6yzaCgZZsot7H909a8Jk+bW1BBBRW0pJKt+XchO8cmbn/SAQGiXkM+pf5W7v1wnZAvZw6yy9dNT1jsDVVQQQUVVFBBi0LIQT4XS9NlZR4Q9Roy6r9hG3W/mRmKDLMH2u/DzEgXHLJbI3BNFiAqOOS3qMd3VfjWas6iYIi9hHQ49w7IoXE8Ou04GRlB2y5iXXqSnKxazZXX85RXeywkMXLW9Mio09ukI+VsagaP7wLHVmtT5Lx+AoXKD6mr+qAT3BNJA6L2QGkG/FjLSpe0hSl+B4Z2QiCfW4BpwO+BtZBh5nQEHjitwvd7vvuh6DKTkGPt3IVozzgyUl8Eyhho3z0ZuMGurYOM2yVchCi7thKKxHRWRluMRc6gp1DalUk2brrZ9aEkkcW+QqesQlqRgxEgYqvofSciQEk7EuDTMVjKBffunyBFvIRLfRe3KTL8P4IAfh2jaz7aw65InpTQ6cb6KejZY+lA5Lz5I7CSq9OnKL3aMCvraO3+Ec7ZGvHf08bfjvZ7Zfsb5JoPK7+3tU8JAS5fsHY9pznyrGEunVehzbpYH0wjWg8y7j0KpelcFzmHPkZO3fvR6fuwxiyH0vH9mQqA3eZI6KTkU6HtkQN+to3T/yB5ui3mkHI9IrZxAAAgAElEQVTPrYAiQr0J3J3VX41cz+7I+Xk2CUh4HZs7L+OArkhODyOdAqZSGpmeSB5dAnRx5f+xcbamK1sTrdHVgIvBkX4pikpWlqY3+r0u5an5ymTKQrTXlmQ4m+vNE+luPRBguL2VHY3AET/EgIRIlh9i8/7wiN/yaM04yWTE3xBQ+oRFHV9RXbezMXwdki2ru2u3kJycX6kCr6xIS/2RHLkZlwq5gfWKI1wssTyj3+uhNe5U67+RCPDya2Cwu68dWsMf83OuyjvHIiDDTOP/MAI9t29AXcdQJf0kAkFmAaI2sPeViNJsIED2l/H4bUxC+lLJxv8hGdc7I310ps2xGcC36lWfKu3bB4Hsv4n00z3QGj/F1xuBSs9HByHGufJKETEHINDetiSyoy/SP9/AosEioP9ByCh7QE5dG4Vnc6GobfvYXLoU6GBl7ZFO9jYCloQ1bAA5613cxgiUMxmnIyHHdYhgNgXpFzVHJ24MvkjPeYkEqBfSJy/UehKNp1FovXgBOQaOdNdCyrx3SIAIccrv0N4bIv3zadIpwkNUuEnWRyElXGsECHibGlJ2I9D/jmhfF4BYweExC/inu3dPZHPZO2sc1WGMHov21IejfWMJgYG84+UUtJ6sY7/bIJ3iSjJAy82JovGwoX3n68CtGeNkZeubz4w+xu3pCyoIHbr6rc2jXyI95UTSEbI7Afea3Dwcd8CoCesZg/X7kACiFspmUFBBgVDUxFPQXnzA4q5PQQUVVNCSRsi29zzwKvLFBUBUJ9PNp5sM9QfDOyHb2Wxgo7rXcXE3UkEFFVRQQQXVQvHm1pV3A/4POZ63duUtkZPxVQT+GZPxbBcEbpiKABlfIcdYO3dPNUDU5ov6XQvz/QhgcyQCoOzryq8kScWyOXIQHIOcMRsikMRNyGh7SLV2rbFOPakAMqlzWwyw77wBd7oROZi+xMBEyKh7DDqp1tPdl3VCbSwyfp8f+pXEeRwAUW+hKB/BkZSZJsnxHGfK3jRkhHwDA89Z212NwD7zkTPudc+zypgfiwCAv0TG/Dvs92+pIS0NioTgHfT7YU7N0E4o1cOTWKQsK7sTOTzmUQ5Q8tGpQrvtjYzhp9vvwTbHpiFnyApW3gGBQga5si2Qk+LXlBt0JyGniw/xf7mN83ASsSMK8T+cHGMFMgLPxkUAqnLvKOCgavMzr/8WcsyHU/ffIu1UbUUSaWwKil7zFxtPFQ166HT5R0i+BafIqqRPUV7r7l8LmICihF0M7JnR382CZ41z6S7MqWf3fQOlHJsBnF2trxEI5b8YwAbJoWdJIumFNHEd7JumUUfHd1NQ3LboBPr3rC1Wt2/8OXKy74Zk3tMIBOqdqmsioNv3qvVbI9V5TwSqfA5zzpFEmBlg4+4lXISoat8cXVsDAQl8JJV7kOwKaWg2cddqAo6g1KKPV3tv1rgkWz6Ntnm1sClz68Yzmk/7IYfFR9Z+P8WiKKH1ei4Czz2MUv/Mwcm+jLEZTqyVkLysqhs0sP4T0Jr3PHKuzEcAyP3cPTejNfQyLD1mDs+hVteZwI0L0z8ISFQCBjUznhsgwNHNpFMbnmn3/QXN441Q9KJPqW0dD5Egz7PxtZ311xTcnM2pawDV7WW/ByC5tyXpVM7HkQ2I2iR+F4pANxc4alHGYZX6t0J7o32QMydE/MzSadohoMNOuDRJ8XyqFyGAxabocMLKrnwbkj3ZIdEzZXpoBt+xSJf/2ObhTGz9RXumF21sTEepUWeRc9igHjyXVCI7veMgtH8aHcZZ6A+0X5pPOnVbLljR7gvrwYpI97o8ur480vHPJr3WVh2jjcGXREc9x+TAVNKApYWKvGzPHmLj5Xdoz/4vtEe53t2zN9qjTcWl6ov4hH4IQJinsYMFVn6Z1f3XCAS+DgJBfoqlSs+pZ5D507CU3O5aB3QoYBbwqCv3+7a6yhKkf1+HwD1f4aJRRWN3DgakRHJxJg4IRiPu5ZqC4rFHEvksHGB7DwNpk47i3A1FbB6D2+PXu58KWrKJdGra/iT72TJQnf3fCek705GtsiZ5X4d69yXZ0/WmEWwGBS27hHTnFWwMzQeecNcWer0vqKCCClpayOmTLZCd4yXKAVEhZd4s0oCon5u+3iSpmRd7YxVUUEEFFVRQHkWb7P7opHg3t3juYsa7vwK7W9nyCEDwD1z6IbdIe6PmNJLw/iF0uj85GABR75NxCrwpN8y2aZ+NTjDNQobch0nCwJ9NEsFnlikVPmLPCjiDrSuvmFakxno1lYNkdZJT65+h6D8eEHW9ld+GADef4iI6VeA5CDkyvo0DE5kiF8ZYHxsDU2y8lJ2Sj8bp2gj89E3k4D8YGa4/J0lt0Bk5Sg5Ghvf13POVHDkDkDPlbMw5iIBEb9n7+uR8a3dro4fs93gbK2Oj++4B/uF+d0OOx1NxKa6qvKcvcgKHlHtDbdzehE45f4kAKF2j51ZCDu7/Ab/z7YEiVh0N3E15VLBDkYH3cgSkOgI5IHMNW0imzMciihGFdEeAjSwwZRa4Zs+4LRthzK+BQGgXxePT/b+Ote1D1r8H5tRzSxSx4Hkk+44nce70IsNoWKFuLZsbz4bOJbRpux4Bbo/M4bkVctQ/auMq1LUvAkh9ZP04AYF0Z5EGbjQ3p0sfXLo2FBVjXeRIH2xl1yPDuHdo/9f6bTYukqFdC4DGloHqVPdzkOP6E2DX0P4kEaIGAB8gkOreVfhkgYLWte8bbr/j1IgDEEh3tzxevl7IYP+6tXt8+nk1BIgeVsO372r1O56cSDg5fFrUmWcAgd6AgKC3I+fviySAme0QqONvCKzsgUdZc7QzAj3+2fr/WiwS5CKOp22R7nUaiezYxdrk+mie3GblmelwI759ELBwNtL1VsyTE1EbnoAc60c3J54oCtuHNgd/bWU+EufxSE6X7Ll3yEm9ZPNoBbRX+CEOhGhlr5CRJrdCXedhEc0QeOEt5PwrAY9jkYDs+tFI9v+RjEMUJOvEJsB2izoWK9U749pgBHKfR/lhj8EZ94d6xs72Rl230HoZ2vL/KNfJqu7JqvDdG8mTSzC9DumT8zGdHgGtx6K9xZk4GU22PGl0nksqIdn2EuUpfYfgUsSR3ju1QzLhslrGJgIEHoeiAIbx1gGtAc/Z2MhMu1StPevI92R0eOQldLjq8ErP1NLX1paT0N4xHA5ZGa17E7GUg1a+PwICV0zlRjYgamd3/SIkZ2ehve1zuKhd1epMWubfi6W0CG1o7XsE2ve+XKnP6zxmx9jYnIvsBh5UG9pmNFq75yI5nQsEW1IJOZwOIrEJHYP0pvCtVyJ5fxNJ+sqWlfqlljFb0NJLJofeJYmg3wvt3160eRVS5sWRtDuhNbpEhi5Rp7p6HWFnZK8bTw4gqgKvYtwXlCK3rm1oa2aJdCTSZmW/KaigggpqbIrW4YYAon6OfHZNAoT6+uuvCzBUQQUVVFBBzYcQaOQ1M+i9gAOvoJPeb5tB60nkjPiCjCgejl87BL4Ip9nfQ2mQwkLd2t27FQJWzUcniZp80wOMMKXhVNvUtyKJlvJjEgPvRiiCzQQccIUoNZ67fzfkqO3ewPo0tVHzSOun9czQcrL1x09I0tp1AX5g3/Nv0g6pSsa+EcZ305z3d0fOo3VdWZZzZDMbLzfjUuEgR8k/bVxuVeU91ZxXw5Cx1vfrPcgRFxzta+WM+QNtHL2ITsse48e63XcBAixtjpwEB9n88icEveErfr4DAntsYmN1IknKvbYoXdQcZKRdIXr2GCxVXngPAvuEE62/ctfCXG1jvD5Chvfp1BDiHynqnRGI6BUsao+73sba4mFcBJEKfFYwHndWGhu19HfG72FI5u2Yc187nBMqrw7IGD4PydQR0TUPNPpRpX5uTjwz2msT8ufSmva3ExaNJqtdrd17o3n1AemT8AFc0w2lxXwWgVh/j3Ni1TpelhRC4JvbgUvt93gk2+Jx+jhwh/u9KgKuHIBLQ2fXBiPQYwujUcBejdk2pOXW8TZ2/kU6+knos4FojclMi0h60786AmG3QHrFcyiyw99IA6HaoLXrSSJ5kzVOo2s7W30uJg0MaYeMCq+SA4ZCjtXLbN7UnMIi+tY4TV+j8Ix+90by9CrSINAjECDsERLQUZu43Uj0myyHe0frqxORbLmOKG1drd9BYiA/1+rUy127Azm2Q9978M2OtfC3e/ujiGlfARc0oE1PtGfKIs8t6TyRzL0VRdt5gST9lk/JsjrStbYHhsR9n9X/SA5/gAO0k6QvDf20MekUkxXrisAwnwNnIV1yKALDfkEaPHsk0nn+QROlX4rqvQ0CgB6LS++NdKs7kb43BoHY9kNycZuIXwxeX6dO9W6D0pY/jUAgIYWX7/utUCS4eVTYk5Hohy1QlKIHEBDRR33sifYQ86gyJ4mAYI3Js7kQOuQRUvx6fWhFlJ7yBdyaZm20ItLdTq1hjG5Okr70SSRLQmrkTW1M7h0/11R8c64NQnuq14jSviK9pmO1+rp7d0Qgvw1d2Z8Q8DPIpzXctTVq4JkXIWo9BObdlHRa11rAW/2BK6wNz3PlHhB1Eg4428Rjdig6LHMLAjudigMmu/t6or1W7qGkJZVsvu2NZPl3SFIDnkY64vk1yOZxPQkgqnDkF1RG6EDSW+gw0H5W1gfpSL/DgWAznm1HlUibjVxPL+/7IsB0CXgC2byyAFE12yEKWvYoZ71fH+nzz5MGFxdytKCCClqmCNnUrkNRpwdF11oje/ur6AByDIgKtpG5NCEQ6uuvvy7AUAUVVFBBBS25FG1udzQj3vfNsPU3dFrpZyROks3QqduHkAN9fBavDN59kPPyTeN5kNs4e2DBplSJENEE7XEZcrKs6soeMOWiam7dakY9M5R9SAOiOUTttzZ1CIOdYdx4GAHgOllZe2RknYdS5/jIC92pMRy/jacSiXE8BjpsRUaqtSyeVs9Pjd/9Gde3Q4CoT4Ats8ZmTpvsYbxXsd9xxJEhKOJI3ni4zvi8SjpiSzBgr4NO5JeQ4/ALMtKuIeP6Ku73Edipd8xxhdIO/Bc5rELZzQjYNBNLu5HVDqSdmudZfd4mDUgLc7U1MBKdlt7e84jGUisixwQCDk5D0a+2s7LeNjZmUqMhHzgDKfSZ0SVyxvje/rtc+Z6kUwfFURmGA2tn8az0TgReeIoEQPZ332Z2Xy+UjrBETtqj5sLT7h8K9EDAkry59EfKAXLVDGSjkfO2RDpCTRv3Te2Rg9CDWZqV08XV+3r71nuRHD6WNIi4E3KSPo6chd0RqPl5nCPd5mhndDLo7whodbjxPmAR65gHNjzD5vjdpMGeoc8yU9hFc/cABH66PNxvfEP0q5BKqwcCMH+MRaKrwnNrJJeOs3ZsiUACAWzycxvDWyLZ+An5qVv3s754BneiuyFtiBxsd7l50xg8r7L2X4VkDVrfvmkP++3H1ZloTdrT86rW10hP2Yg0aKYzAqbNQ7pkD/dNd9IAgDgC7jztfgd5EtIiDkfrSbz2ZIK2cPLBfvdD+m8Ji7iY06YnUA4wai48Q3+GdLdzUaTP5bLemcU7bleSiHOro7XkMPt9P2m53wftIbJSx52IwIiHu/r9AUWX8anxHkHyYEj0/MlkRGatNyGZMweB0uchYMWx7voQtMaWEFj3E+A7EY91UVSRMOcOQzrc0EWsW6VDCm2t3u+gPU6IkuMBUdsDozKePQ7bJ5EYXTug/d2P7LeXJ4MQwPJutD5n6aKNzrM5EeXRkj8kHXX4cKRD34+B6ICuJOvdLjn8xyPn+q4kEcvesHH7Cyt/AK01DZHLjcKX7LX5eLQ2hz3IEBJA1GE2hvdGtoXta6zvBJuH7e13rJcORfJmcKX6Ves/KkSIyvnehVqbSGRvq1rruYhjtJpu3gatIQEQ5eX1UMqjnTVXnbwTCch7HorsE/rBy6cfI733Z1SJKN3c5VZBC08kOtTGJjNfIL2v3YAk5bRPg3og5alHmyp6/Di0Jt9iMm4WAnMdQBoQVbPNoKBljyjfO26BDl13J/E5bGxr6X8oAFEFFVTQMkimW4cokCW0X38Q2YMHuHV3Y2T7fRP5U0N5Z7R/XL3J6764G6+gggoqqKCC8gg5u3dCpw+DMySEt38XOWT9qdxUah0ynE1ZmxXb5CwARLnykQgwVFPElUb6Zl/XkMLpYeAvrvw+5CgIzrYRVDh9m/PdW9qGrmpkpAp1Ox0ZfsvAQo3YFjvYe560Tal/vwdEXUMU3aHSN/tyBLSbh07Nd4yudUFGw/OJImtV4NkBGWNeRI6nAGDx43EbZKQp4Zy/Vdq4p1Ma17I+vwoBdyaTnNRuhxzw/yBywnm+yIH3fQQYnI6Ahd0z3tsfKahnACMz5lNX4/Oe9cO+9k0nRnxuBF53vzsiMNR4DBDWgLFwpr3jB6TTRWSe6qMcCLUXcvq9afXy6eROQ1E8PkNRxV5ETtOz3T1VUwkgxf9NJKtaVbo/o61PQkb6ACTzqRzWsXr8gsQh6E9dX4sM2g0BM7bCIl0hx38loNGqKPXUSUsDT+SgehvJynWQrG/wXMrp1z2tnk/gIllVGaPNznAWjd0nETDlr9GcDHNicyRf30WgyE/ISDNq926LnJQvI9DBCY1Yz12R3HgQgYeGu2tnIsfQH0hHBvApXyqlyTkYRYY5P2Ncno/AsU8jmfcASt1QNTUiko2zkXO5ZO22g9WnG3JwfWH0GXK6n5Y3pmzcB4NFTekZozYMkbQOb0SevwW+RutRe1c+BMlEHyXQAwg/Aq6pcRyMRXL5UyTj/YnwLiTy92EErJ5L5MypUHcfbeGHSIa0RxHmfKShTkiPuJEouk4Gz92QTvssWke2cdf6kTidq0U9Pd2+4fBmxnNlogiM1na/QNFSfk4CEmhVhe/GxruL/T4BgWrD79ts/PzDxsWGYXwhQPeLlM/lYykf+92sXt9xZfcjWRf6fhgZ6RCpo9yPxtNKCPR+BtIlt0FyaBrpubUq0t1uIL3/8RFn/4tk849IUmJWBKY1sJ4D0F5kU6C/lbVF8vV9ZGDtFsozeIV6hv3Mv0kAm+Haf4C/ume8PPkzWsuyoko2Os/mQkTrH0nK6sfQuuNTU56GZOAcBCh8FK1j5+b0fX8bj6eR7HdbI/DwuUjn+wLpBO+R7HmzDqTUha/jOZ7ytXlHEtvEECubYX3/KRGwMKOePtX7tsiBfxyap+9ggEO0tpyL9NXciFAZ74wBUU9gh1FqnKOLLPPrPU7t/8FI39uD9EGRdiSAqJNRCvu9rY9GNHWd69gWu5PoZN8jvZ/08umHSH+8jYzIZVGbrmt81ycjslZBSxdBOmUoAoO8gUDe3m6yIQkg6nKkZ8wDrloMdd7WxvOZyLbWAelfE9G+fwyJLa0PNdohClp2iSQF9hwb42+i/Xc4PBsAUU8Buy7u+hZUUEEFNSUhMNM1aI/+PopK+ldbi79Ae8FvIRvCFujg5H9RtKgFB4UXS90Xd+MVVFBBBRVUUDVChvvPkXPhPCsLi2dwkryLHFjLVeHjN/U7AVejE7vXkHbABUDUZOBClLKrhHMaNPH3j0WRIDqbUes15LT4k9UxGEm7Iaf+T6gQySLi25XEqdTbjBdxlIUyZ1PUjifYc8cu7Pfl1LGFGTNmWx887675E47trS4l5FBtl1PvtvaMNwo+jE46H0gSQaCzbYSn4k7DZfGMypdH0cU+NL4BaOQBUSOyeGbUdT/kUDieJKrSr+xbPyQ5gd3F6joDOCavnvb9yyPj0EcIENUjuqdzxnOp9DMI+PEaAlV9ZeO1XfTMOORsOA5FZTjc2nTLLL41jIvzSYy8vat9Z/TcIQjwcAuKVvUKmuunu3t2REr7vUih371aHSu07W/QpqBtlXvieTQfS61hbfp70gC0W5DB/mySlJBdrW0/pEIar7z55f7fn8pAow5ZzzQHntGzXdCm7KwwRhFApea5lMFzHeQoHU46Et3+NsYfJQ2IanbApyr90haBByYjh3AJRS8MzuIFKRvRpvcWFJFubLX2QIClEpIrW1S7twF1HW/z52ESIMALOCctAk9MQw7sDWvkO9jqeSHpVG5+bTkIOQn/BVyCSxtBNlB7dXR66gTkeNrSfr+NgNmt3H27oegoa8c8fbsZeXDaXOQg2CGnL7Ii+BxWB55v23w5jEQvWQWBOP6Niz6DnPF97F2Zeln0ju3RXL7IxsFNyEDzG3dPZ5JUsM/gHCQRL///jghAHSI8rmXvmWl1W9vK29l738U5kSrUexxaS/+AUiHORDJkjLunH4rQU8JSVEY81kYy8tglnOcuEc8Drb+nIXmyE2ld7AYUpfI6quv6LZE8noWcdMcjPfVMkrmzM5pT80nSY61CEq7dg4RaAMuhlIfjo3f1RGv9BfY7juLSNzxHFfBWvQjJh+HAL0lHlN3I+m46cHL0TMWIhShK6mTr0+uqzfMG1nMcmnsfITn9NgbIQmvMQQis8hIJIKoSOLUFAjq8gWRuAFO3sjHwGXB+9EwHtB+8Fa1rZRHmGptncyAbJ9uQROMdhwFdUOSrB5GsO9M98w20zj2BQPpeJmTp0MORzns7dpglo/1XQnL8bhRl6rYa6t4ofKltbZ6EgDcBELUmAprcTEYq5Ijn3taOh7gyH5V3UyvrhPZXH5ERXa7W8UUiAzcgST9dMTJQNEcXSeY30ZgNwOfJNl8n4gBfNhdvJDnB/ilw8eKea4307a2QrBqCotSeh/SrK0lHzvb2kxvIiXxMss+cg3Sn23FRVAtaegntOfrZ/5siAGwMiBqKgOofIz23aoTaOtQx7PfPsvneO7q+KgKVvko68n+nmEdBBQUCRqF97bcRuHYLZEOYYzI12HY3tLX0LaIIgwUVVFBBSyMh21bYC3dB9t+JwO+tbHVkV30QAUY/Mp37XtO/nyfKvNDk37C4G7GgggoqqKCCqhE66fOQbT6+58o9IOp65EC5hRyHgxl1gpPklyhKwxPAau6e7ujk43RbvDOjWNTpe+O0fPNR1IIOyFk0Cxle38FOhqKTrhOQA2H/Gt6xL3IsPGNtcIF952XVNnJUcIzWsS2CgaOfGWBK9t4FJ5TdvcshEEtZJBHKDc+3IUf4b0gAKCugkz2fmqJ2gV2fQ8Yp14jnGtZXm5GcPg79FUdeynIGVHLqHGL1uYooxQRK3zUbGabPQ8bJ6USROaJ6rosckBuQODe6IONQAEStYONpf2ujskhbGfUMxu9ZwMCMcbwGcgiWkAH9E1x6jYUcGxcYvyuozZA/wubM6fa7h7XtZCvPi6iW5cTYHTnGJpA+2b2e9c1pFXhVnEfIaToLRRHZM3ruL1bnZxHo8V57T1n6wobOMft/tI2D/8MBGpYGnsiQdRU6qb9+dK2muZTBM6RW/NzG4pMIPBvGSgBEPUzO6fvmQhXaITgAf05yOriXu15JvmWCCxFo5WcmKx7BRSzMen8NdR5m/XAGCZBwTbS23k86zedZ9g0ja+S9q83X7fK+jyg6SIXv3xQ4CoEqPHiht837yTina6X+yWsn5ACeh6J7bJvVvmTLqcPrwROtOU/bvDuMJA3BrtZPdweeJGvWDOAbOd+5IooGeA0JsKYHApXOB+6M7u9W49gdb++/jiTN63IoAsnbaF0YhNads5HcLtMjSeswOyPn92n2uztyPM5EkYpGu3v7ozlyYgbPjlikziWVJwIaf0ASEWq4tdGPEJDiceN3KIlOFXT96UhGV4sM1RnpuV8AX5LhnDPezyJnx/1I/3uHdOqvBfOJBKQ3lPT4vhWdhnwM6ebrhvmOxvKrwI4Z74/T3TaqMw5F1J2E5Nk/iQA5SA/8A5KNNUWUReDfGfa9L2MpLKvNlRrqOYokst5mCGQY9MVRri0PROv+FDIOPPg6WH+dhAyzHrw0AIFdpyDQbQcEYhyHAE3jmoJncyAEKjwH6Ti7k0RGO5oEUDOYBBD1zej5OJVa1no30MbSF8Aj8TwgWs+Q7L8U7QdXq1L3RudL/tr8NmlAVOvonVnfPw7tMX+IgTKtfAWkN35i105Esm8mab3026SjuDUUELUJGYD/jPt3oRHWkSYYs6OtPc+1eXgYSYSkPaJ7T7Q+39+VNVnE74b2WUN4umvLkQCiriKdGnBLTB+OeUXjdn0kd7+NQO8XID3078BGTd3HBTUdITD3h8jOEtbBYWQDolYwuZs6uNDE9T0b6TP9XFmwFYe060+ZnC7ATwVlEtL1OiH9+DdEB0NRqt3PSB9sGlbLWlpQQQUV1NwJ7ZmeQgfIArh4eWS/mYUivofyjmifdAzyv01yenm/xfodi7shCyqooIIKKiiLcNGN0GmMv9rCeYQrD5FXOiLnSFVgDjqxOpUEELG+Gc6+Qg6LAe7ejshQuL4rq9vGnihKEDIyH4CcbT7iyPesHe6ye9ZHDrjPcKdzq7ynJXJmXYaiaj1GctL7fQQKeA5FnroCOf1ak3banUiOY3Qh26CaUa83AnBNBPbJ6hPSAJwso+MhyPF1Gzqx+xf77h/a9dbIiPsMcgDcQ8ap3gyeryOj8ExkEP+GXWtHEnnpQaLISzltsaH1y7lUjjhyPtqsv4mACBVPYFs930PG9WloM+8R/Qfa3HjD2uZT4IqcOra2b7wIGez/hxxCa2TUdVU0/44lHTlkoeeUtU3J+qwsxL+7rz0CbF1vvwehef8TdPL9DRv3PhpIHqjyG8A+KGrJO9Z2Z5JECfk7cuC3qTSuiQAGxnMGcrh5o7Xv/7NQZJu3kczzUXYW1hnpDd/7Wts8S3S6sjnyREatFayfPkJzNRh1fbueb/1VcS5F79/c+J2DHEXbWV3eQafmg1NhHyQXnqcG0N6STNH3r2bUN7rHA6JCGPm90VrTsxrPjGtb23x4jCjNFIrIkukQz+AzHkUU8ev779CGPERw6emuZUaFir4/pFM8CjkFe9nvGPC0YWijnG9tiWRkAHLKFV0AACAASURBVIz+yV0LjsteaG16CwF8KgECfD33QGCNJ+yvj7YzHAFF/olLd5PBLwZsNipPEj2uFTKuTEepykLK2jFo3Q6pJ4OTuCoIFAErStbPl0bXuiFZOh+4I68do/Jdkew5lXJnYncbbxPRWjgbAXtOdPe09GPMfndEut7PrGywveNHJNFRXyUtlzpF724WPK1sqLXN89ae30L6ZjCedUXyeA5yYoX0sJ3Qupepe1KejriEAHr3kADAvZ44EK23v0DRIodn8XJlY1EklbtJUuuthSKklLDIUSjK1DFIjzot4tEx+l1TFLqFIQTIfcTaOkSY8XrZUATkKVFDpA+0nm6I5M/zSK6OypszVXi1Q2Dkm0incnoYyTnvWG2LAGx5+zwPXjoRzcUnMD0BRU0JkTbnIN3tQ6qnc2x0ns2BbB7ej4zbJRxozrXJILQ/n0QNqVozxsA3bRzNINk7VIxKjOwBJWDnpuBrvBqyNo+iBt0ErU8fINnno5qGdm2D5NKjNp5uwwHrkOx6zsbZPvH31PD+imBM1yYhOvMiy/wmGKtrWluFCOKDkNy7C+3HSkRpjEivBWV6fiPXz69NvdAascoi8vR9tgMCPP0W6d+rI52qFQIyfYXW2A0QaKyUN26QrN8SpWL3dqhj0L75URbzyf6C6kc2/x8AnorKNyYBRB1Q6dnFUN+9iezE7tr+aD14D63dZZHPC1p2iXKbaTtb137lytq6/18B/mj/1/VgQ0EFFVTQkkLIZ/SW6X8h6m5Ld+0SZK/7UyxX7Z6ByGY+cLF/y+KuQEEFFVRQQQXFZBva/yPtiNkMgVdm4BwhJI40H/Y7y6jTGYEfrrbf65ih7BfIsf4hMmauXqFO9QRCXW8b+BBVJzjaPyAxQPpN2KXIIfMZArb8F5fqgrTRrRaDdEcEqpmMnD3XoChBr1PuyDkJOSbrBoRCxrqRyNHcF+hi5f2tTd4gbcTLTT+CDLhvIQN5cKz1QEbml0mnW1sOOTV9m2cpdHuTnGgfjkARf8IZXY3XATbWnsGlZMyp71hktImj2CxIPeXKOkS/W0btuamNpwtQ9I6rkePin9gJZ5sfI5AT6nHguAp9kzW32to790LGgykkUSSCs6AswlRjzClk9M09gYyMursjZ+ozKNVgGAf7Ief6JMyQnsNrf9JRC7ZybToDGaR/Y/dsXYHH8Xb9MFd2DYr21NGVfQtFb/sJDnhCuUO1altm9VuV+XcQGWk4mitPu3cTJNNKWEojK49TOi4X/c6a931RypzfkXbgrogcy2+RTnE4hkaWl4uTgIORM3gGWjfHkQaWBUDU721+lnDp6Cr05cZI5u8W3bOtvedR68O2CGD2L1xquJz6ng9Mdb9DKqv17PeW6PR8z+i5ahH7JiHn6fpoHb4yfg4ZBW5FoM2aZB1K6zMfOa52yuDZE0Xsm02VyBh27zi0PoVUTS8h2Xw1Bja39v0MgZBGZPA4ECen6sTTgzMCIGoGAsGECFGbolSDD6GoeVVTL1n5YATs/dL+tsOtjQgQdabV5f4a+6cFAt/+DQP7uXKvd7W3dliPtG7REsn+6bi0SHZtOwQM6oqibdxEskaditaop3AAbfdss+Bp9wTA02CUVuVpNL8DKDj0z3IkgKhD3Tuq6vpWvjmaSzuhk4uzkW4WdMm89TJL7u+Pxv6ZOCMeGrM7IL3pM6Rf/AcBln36sBbAymiujLOyQ5EOv2m1+tQyLqtc2wfpuFPJBqpvTCR3Y57WF92i63uSAKL8CfndcMDynHp3QWl1znZlf0ag4iCfdyQBnmVG2qkyDkJ6u4kIEB3AS6sgmXIRAmSWAfTrwbM5EooEVbJ5OIEk8lFL0oCo+9GBmrK1vob2PAHJmhdI9iSZ+zq0z5qKpbCuB18SGeTHW6OtzXb/iUhXXCuj3n5st0GA/rKxj/ZsD6E1eN+8tq5SFw9+8u8JbbYtiyDzm2icDkW6QU8SW8Ev0KGdkTaGvyKKuFtpjCIw/lEI9LUVLvpvA+vVO+rPg9E+eSbSn6/EgT4X8h3jbX4+gQAqn9rYmoB05tYoak449PYJ5Wk9NyBt81jf+HwM3GRl/vrRyBbzMDBscfV7QfUhEj1tcxsHQT8LsmdjBAh5hSaMfhjLNsr38LfZmN2NxD7cDultl6F95FdEem1ByyahfWA793sI0tM7o73Jw7j1182LW9EB0GaZArmgggoqqKFEAoR6iORAfZCN3vZ5MbJt/JHED9S2qeub+z2LuwIFFVRQQQUVFBOKPFBCzgt/MnhLdEppFhUi9pBtxOxvfyfYBr47iUFvOeS4usXe+TKwZhN+677I8bej/e5jisR9yLHykLvXb9gGIgPlhjgAV1Zb2P+r2b3rkg7xH1J/nAe8GLWhj07TEhn6M09dNWJ7jEdGzCnIAPMhci4EoFhfu/4qUTQtx2PFjLLtjadPufRnFAlmaGijCvxi40tLBKq5DzlGfRSz/0OO8nVcWWf7rprBIAhQsyAdCJSdWhqMOafi+kX3rYUcsj/GHIFWHtJ9PBGNhxY44FKV8bQBAnltFT0/igQQtZqVjUbGp4HUPzVMHphmI+Sk3IlEcT/E6vs0FtmhyvPdEWDpLCKAl82tcUiGvGJz5SbK09P0tXHiZVgbtLl4ABledkKOtunIUTwXuGsh2qNsLjSk7SqULbE8c+bChtaW75MG+7VuwLs3sX59FbjW95/97Ynk088XZnwuiRSN3e2QoflilHYupDM6hzQw7Ptow/w66WgSWX03jkTez0XGR89rG5sH76CN9WfAZTn19KfYQ/SmTUgc7SEi1HIIXHw3GZGrMviuYPP7DBQSegVkfJ9KOipGBwRo/QCXSqKWcYAixJVMHmzmyoO86k2F09ju3vUQ4Ots0uvTfGuDXo7fcHtf2XqKZPaoOvIcieZjD3fdA6J8hKhUhErfJlGZBykNQWDSVEpfEnnRHaVsK0uvm9VPyKnyX+A3Vdp+1Wq8kAP7KQQiGZtx3wikl2zu2vMUG0vTcWmRomeaA88YqL2u9XMJuDhjrC+HQKdfAsfh1tK4b0IZ0nk8WHl5BE4JgCgvG3aiwgGIiO9KKA3qj0hHcfGRRdqgiBkX2vu2yvieQQjI+RZy1Jfsu9rk1aFK3Xx7htSMOwBDXPleVIncmTOfRiN95Q0E5NrYXQuAqFcQuGMskuFlKYIr9FdLtJb+1H7fg2RMkM+9EJDxlEptRBrYtQba461BcmK1hT1fpu9W+v568GwuFPcTWo9OsTEwA+nLIcraAvAMsLaN7Qk5Y9TvRXs7PiehvdNTJJEW4/1COxTl5x/15OvK48Mou7AQa3NUz1C3G4E3Ko0TKtgh0CGA9dzvcIilQYCorDpF14+2dls7eleDZH5TjldM5gE/tfHqI34+iOwJJTSXq+lghyC95Fm0/k1H0Y/7NrBupyPdcBP7vSsC1P4AHXT5rtXnUTJSqdb4ji2sft/CDnGhuRgiXHugakjbu7sfd0h/fw23D0OAgJ9aO/zbzxX3/5FIXj9HxoGngpofRfOpBdrTPgvcbmWtSKfZnEbGHqcJ6jYS6QbPA7/G7JJIBj9o8+wnNgcvRfvLCShi2mwKMNQyT2h/+FNsn4r2m1NIbMJHmHw+NnquHTrw+EebD83OrlNQQQUV1BBCvqyJKDBF2Mf4SLbDSQ4wdiYbEJUbvKBJv2lxV6CgggoqqKCCPJEYVne1zet9pAFRWyDH22c4h3YVfuOQ82pNEmDJKGTQ80b945Cz4z1yABGN/L0n2uarPwLMTEIRRnqicOfzgavc/RWR1ZU2ZMiwNxEZzOYhI9mB0T2HIidGt2p8qW9Kj5HW56ch50NbFJ6/hKJrBCWrLzLKf4Q5dhyPi9AJ5UFR+QTjE071hOggwemyPgqnnxltJG5b2wx/AJzhyu4lHXFkJ5JUUXmRy2L+o6y+B4Xrbm6shNLclTkoIx5DjcdskghjrRy/kO7jMTKcOVXG0zhr/5A648/AdlHdX0bGqLvQidVLq/FH83pnFtKg6tvHfq+BnKKxM2Nnq/N2YT6hk80XZo396Nl9UZSZhzDjtpXHToxOKJrBr62dVs6oazhxPQrYw/0/38b1JGTM702S8mMaDUirgCKX3WPf2GCHXIVxusTyjPp/UxTJ43AbB+1d+SPWvsdX6sMq72pJEsnvVdJA1PjE4HIL8z1LKqF16XQErAzRIXqg6E9fIRntQUz9iKLiZPRTACd+E22kT0Jy9RnSIMt1kbPyPuCYnL7fHUWnCgbONkgHmI+ikAT53AGtjVOpYc23+TkaGUF9vw9FMuFzFGHxSgSu/oSMNEmUy6l17ds7uDEU0j08SIbTNW/comh3k4B1Xdld9v3B0LsyycnpLPkfv6sePA9E8u5/uMgLpFPmHUYUsa1KH+2O9LjdXNnaaE7OJw1ADWOnXVyWwXc8iuiwvPXJE2RHOxyInKZVAfUo6sS/kQyJIy8dYH0fUjG2Q2D143DzqznxRHPERzYcj0XoQPJ5GtK9fUQ9D4h6EDfvaxgHjyF5EeR+ZxJA1N1oHTiEGsH9wAA0n0fXWocqY34wAhaVgFvyxl4D3jMOOa6nIPDnFOAUd31P68d3SSJ35gEm9kVy7fdI5wzRR3aJ5ty/7L4ZZKSvJC3zhiH9vh2a5zci0OxTVre17b5WCMj6Ci4Sj+OzLWm9OoDavyABGOwT3k8SzekxElBM3DeNzrO5ElqDhrnfQfbNsLHmI5gOQmDVLjk8s/aiY117noj0gYoAM9yhFRIZ0eh80Z6wBPwoui8c1mrw2mzt9ie0vz/K6urnUliTeqF97O7R86FOvwMGu/IGAaJIz8fj7Vt6+bZAcv/bpMGjC7WONPK4zAV5IR3/N66sN5Ivp5IhS6LnRyHA/2n2u4998zSk+9ec6hsdFnoNHb7bAIGffkwaULszihJ1DxUA+TnvOBmBa/tH5Z2R7PynH4tR34f5syI2123sdXDlVxGlEyatM51EE0YGKqh+hPbMlxJFdEUg73kkoL4Wbuw0OQiOJELtg0gvmYxk//V2vaON20lI53sN04Vsfr9HlDKzoGWPUKTDf5psv9bG+Ekkh9u6ocM085Dtbx1bG49C+4Ey4HdBBRVU0NJGKGjE0yYrw0H8YOtra2vwrXZf0A0CIOoDtD9ZooBQX3/9dQGGKqigggoqaMkgXPowEoPgbggccy9pQNRWKCXFURl84pOi7yFwTTdX/k3bIAeje1tkoPouDQAbNNJ3h0gjj9nf450i0Qs5Id7DRcJoiEJBOpXb1ghwFFK5fcPdt5ndN6gCn7opMWZYaYNOyt9B2in6OzNkrOPHifXt4RGf9tbXs00pG+SuDUOnQs9CRubJJAbd9uhU5YPk5DBGhvC9bcy8D3zHyv9MGlzVE6HhT6Gyw9qP1dbRtcE2Jt7AGW2srgfZmBiVU9d+KJLBNFwaIBIFtoWNt/cQeKlDDfVcG4EHzkKG+eMRsPBJ0qkjtgduQICeI115loPgEKvD7ThHey3jxv3fMeL3FjJWzEIO+02Qs2YFJDumotOw30UOvqOz+LqyNiTpvz4HtqhQJ290Xhk5Jy6oUOeDjd+XJOFmt7A29c78tsD3gL/iHBM1tM8xxn+9BjyT2abNiScCds5BDo0S2oj9FHPWkACi3qCGFIsZ726NImSUkFxdxV1rj+TrX1gCN34LSwjc9yFykJ0aXVueBBCVihqU1V+ubCAyTP8Kk/k21vdAjstnSTvo2pF2zGXJkvFI/l9D+vT7zlb3d1HawoNRyoQ5pFM0VXIeroROv5fQetTd1wEBOr6NTim/j9aDCTl1HYvACZ8Y36fQSdTgiAqA2AeoIG/iepOAXU9Ccj9EVbrX2jQAwbZCMmWV6PmsKJuNxjOj3q0QyGoyWkdiQNQT1j7H1TKfSByZD5N2MntA1Pga+MTR0ErAN+33t9BYn0B63Wlj9XwKFxmyCt9tSYBGY135hsh5+gQyup+DxrSPbFXJubnE8UQGsSuQvO1BAkI6hsTpMBit1S+QXvvC/KpJlroxdxqah1u6a52sz2baGJlNBnCnAt9BVucJ8bvc2K8KTnf3DkD6xyQ05sdVkxM18twDHRA5FwHPhiHnTsmPd7tvIjr40IUqwALkCPqOjfegM25k/fRf0vuHwShazJbVvgXJvEloXxMAWQOQ/lfCZDECIByG9n+nZvA5xr7hTPu9MZITl6LoPccgJ9fnGAASFqRNW6DvRn3Y6DybK6H17kXrE5+ufgUSQNRYYFUkc6fhUkJntQHV96J7uPuORzrba9Xak0Q21ItvXxRZpIQ7kOTmUe7aHI2vQWjunIJk4mZo/v+NNKiqHdJP3sbNMXd9jH3vnSwEICqq0wn2HR4kvBUC2DxOFDUP7flqXkcaeUy2jP7uBFxCFK3Orv3B+rmXjdHRSDcbVK2edu8DWAo5+945KAJ02P9dTwMiRCFZ/Bpa2/6JHcKAJOU9Ap2WyIn4mdWPCHz/IWldOYDqD0L7y+E18hyO5vZo0gcevofAJr/247TaeC+oeRHSX6+yfv4IrdH7I1nZA6X+/THRoSVq0PMbuZ7rmow7myTt8ao2R2eSTlneH8nxFe33Zmitvm1xt3dBSw6h/edcBHyK7Umrk9h7PkY6xFTgLHdPIfcKKqigpZJMV10B6f2TSdtMO5hu+zjpA28eEHU1sv/0WdzfUvZti7sCBRVUUEEFFWQb7u8RpeuyvyOR4e9u0kbZqifoUJqILVGEhjgyy/rIcXCjGYtONANQpgGxXhsdpyzcaButZ3CpLexabzNKvI9LI1Ij/+VQJI1fkk5r8yg6ib2BK1vV6rB9E/V5mYEWOb+9se1+lNIoOFu3Ro65ttGzLVGqosft97nI6Hw7ZvxEIIW/koAjwinITsg59xEZaeyicbCfbZiPQgCAG6wdn0aG6wDYao1SDLxIdMKuQlt8AwECbsSl67F58YJ9y8XoVOsPbeyelcfXeKxuc6sEXO3KPSDqm9TmIN4cpaz6OekIMGOQI+hpolD/pFPzZRmf90Gn7k8D1lqY8YOi/1yElPJdkfH6uwhYcLLNnTdIIlHsYfNiDopIUpbSpcI7V7F+KKE0B2Wgj+j+5ZEB/vsZdT4COdTvsfHYowKP7jY+Z2SNz5z397YxeC1Rqr6GtGlz4onCnr9tc2V9BEi7CYFgFqRIQk7dJ9DcqhmE5d7bCjlF5iOH2QbIIXwEJiMaynNhKa+9Gukdq1h7lVBqgrgPl0dO4xJyUFVNPYjAKSUb1zdF19qiaCNvI5BlTVHrEGhlhvV9lwyew5Aj9y3kwLuXNAiyqjEf6SL3IefS3lbWOq4LWlPaVeOLnF9fooh0+yOZ9ApyKp9NAvoNTtd/EwG10SnV/iS60mhgZ/t/V3tuJNKd3iUB6razdzxElBq2HjyrtOcCoIu1wdvIOeyB662QI7HqfCItE3ZHMvVRygFRN9s31BRlCDlTz0NOoACmbEMS8fAc4zvIxt0cMsAbEU8fFWJbMiIvISf1M2htnIwBsZojT6SfDUcy/gNr/6NIHLbBITyEBBCVeWqfGmUdkkfvAddF5W2QnD4ujOsa534vBOL5KxFgHumW30Y6aOY6nsFvHQQY/zfSTcZX+sZq34w51FG0ujuiuRNS220QPTOa/Kiie6L18jkSvamVq3sARO1S4flK6fbmIl1vPf9tCEz6CpIpr6PUVBMxYFLcDmhdf8zG3OloD3dDNGY3QQcS3sX2NVTRd+vBszkTAhAHMOpGrrwrAnuXkIP8U+CSHF4N2YuG9syNutBYfCvNMaSbfp9sQNTuVFibM/hsgcA7N0dz9BgEZHnR/h+D9KjPgG9V4XcA0h8aBIiK5tAJuPSxSE73sG+ai+2n7ZpPB3osDVhHGmksfgvpTGHfOh6tta8hnelLlLItALU3tv7/HK1Zn1MD8BXpcxci29GqSAbdQKKrPIIc4TdSo55jz22CQNIltF8I39HKxmVrJP9urTYeK/De3/gemNFXe1s/bVQjr1XQnnWSPesjRH0fgU1+5e5fKqLgLYtUaYyhKPpj0Nr/LqafIPvcC26OLRYACJK7M0j2HmFuroz2Je9QbkddHh3gexu405UX43cZpGgd7GXrwxS0P9mXbKDn1miPdxSwjSsvxlBBBRW0VBICM92CDvivgfZb72J2LtMX/0V2qu1gM1gel4J5SaLFXoGCCiqooIIKIkk7dAnp020tzVB0OUlo+PgEYJZTtD9JCq/HsdPngaf9HYuMaXNtY31mhbr5TdM2uJOmjfTtayGnwm0oFO9viFK1IYPsbxFg5wcV+OxAOeiru23wTnVl91IOMNoInQIvO4Vah77uTNpYNwCFtF7O+uoOK7/P6hkMHj2sbb7t+9OunWV9OMKVnUQCiFrXvTuE+fwFcojdgAx857hns8ZUe+AMG6PBUb01Mhp+QXKavC8CaHyKS1FSpT0OQhvxR5DhdQ7wW3d9V2R4nYEc+I+RThPVMhqjPWz8r+LG+mokBv3vu3vLUi5mfbuVB0flJ5gxifS8OgABop4gO6VJi/ivjbm/InBVl7w6VJiT4WTzQUjhPhqdEPQRZHojw/h/gBWsbAUbez7dVVkar4x3r4iizsxHTr2ySEfR3J4GXBiVH46cEEeiKEVziNL52X27ICDPFKpEr8loWz+/rrcx2rnat1Vp02bB036vjxyYDyHDaHhPezRv30XOsNDPm+IcRg0lNPd+RhLd6wkEtjktq76NTVZ/L/OOxUUQbAT+qflgbfowOh05GhfN0a4vjyLRnZDBKx6zyyN5OgcZ2eN0p20R6GYKAshUnGfumQuQAd+fTlqQzsGVrYEij2QCNav1GZLH/0byPQBqW2XwyJQlVp+uSO7dTFpOdSBxtg135fsCJ0V8OiM59ASK4nGYjcNxJACJPyI5Mw2Tc/aOcVZ2RL15ZrTfflgqi6idWqE1ZAZaR2pOuUOS/tivR3sgMMxjOIAuAi39IWuMZvANgLxngdOj+q5CAmL/Cs2J93CO4axxRJIStJ8r25YEaOQjD62Jovys58qyQCbNhecl1l4fUp6+NgCjhpCkTdyrxv4fhZzlPaPy861PhuY8X2uK1JBq+XpsH4Jk4iFINzo84xm/XnUmSimDAJxZgKiRwHk11qsj0h0vcWWxnr8TLpVx3rcjgPF8pHMOD/eSRPJax/rpZaJUXhX49URRUX5AOppaS9f3qyJw/BVIT9gqq54k8rYHAr28gQyyV1u5lwMjUKSL8yvUK45+12g8mwvF9Y3aegTaM6UAUXbtMgQSHZv1bHRvLXvRbXBp+Wppz8bmG+Yn6Xnbh+RAyXej+8vW5gyeQ9Ae83PgvozxdBCKDvUVskf8h/ShmEptmgeIehfYP+t7SYBQh7s5ENI8bkFiPznQPePTR65BDTK/kcZnV+vjSWhNXg2lQD0ZrcND0D7+Sytrg/SVNZG8uRwXcanSeHLtEIBKJ6G1fyCJjnErkonzqDHaUmgbpK8/jdakbaL27IFk6dXV6uZ4+Tnaxcb8J6Sd9G0RqPN/VIj47fvNff9KaE16j3JA1JVI9/1jPfq6oKahaDwNRDbAVaJx1QaB2G9COt9kkwkVQZpNVPcA/gupuVuQ6BCD7dro6Jku6NDhSa6sALEsg0T52t7DqBfa+36Ai4yXw6sYQwUVVNBSSbZuvoPslSG64kAUqOBdZPN73ORnvI/siA541HzIfbF84+KuQEEFFVRQQcsuRRvvH9km9nIcIMquHY+M/SVqcJCgKAVHIaPiVMxQSHkqsn7I8Ld+hTr5TdNYMwY8gjM8NkIbtMdOMZGENL+TbEDUg7hw9O7aASQpm3q48o7o5OQV9jtO5dYHnag9MuJXL6PmEORsDc6Vo5HzM0RvOsK+42XkjAj1bINSX71JBEZDUTj+ANzu2vBi+/9c4387iWG8MzqZ+SiKGHQ76UgHWU683RCY5rW4/dHp6f+aUvg0Ojk3EWcwipXEqH/+ggAaIRT5+QhcdU80RlZCjrdulepq3/4kMry/jpyZPexaXxJA1JXVvrdCXTuhaEuTkGEsAMLauntGW7+9TnRKgAzDsX3vR1Q5sUt5BJrYoD8fOe23s///B1zk7glGsg2Ro+H8Cu/JOjm9GQLMnQeMceVdUBSjqoAoFDXkzqhsrPXBCfZ7beMTR9QKG4m788anu1aWYhA5LWbgUvVV+va4TZsLTxLHRwlt0P7g7guOjfbIGftYBd4NSsfkxxeJo+xiXHqshvJq4Hvb2fj4Esn/cVaH01kEZ2zUxp2Q7PWRMVZCMuYDBGyJAVFtcvgPcP93RSlj5qP1v3t0b1vkHK8ayQHoZH/vB/6ddY/9zkyBGvHy/6+HQAl74ZypKGVgcBBv0tC+JjEwZEXq64bAItdV+AYPJt3O+LyOHJvHR/cOR06yuchJeBJaA2aTAa6sB8+M/jzPxukPM+Zea+RcL6HoXT2yvj0qG4nW/5CazzsY97B6pgC6GCC2hn5aFemPJaLoZVF7jEWAnA3jb4rrT5Ia9Te4kOGkgUbj8sZpc+KJgWiQbLoSRf15i/LT+wGQsi4O5JozX7uiKF0l4/srtBa0RWDkeSQpzRY2BZ1/32n2rilIh3wKAQfyxv7+aP15F4Egt3bjfjtr0zcRoHMCkutZUbYq6ZJPkujA95DW81dB4P+zyDjxXuW7w7c+QhL1tAUJICr004F59UQA/U9YiIiJFdozjJUVgX9YPf7myj3Y5BFksM2LVtjoPJsT2ZgMa6nfB++A1rs5RFE0yThoVIF3B2rbix5Bjg5RL75Its0jiYTo530/JFtKVAApVpmbYe800eZ4APz76JHLoyi+a+BAnUSHXTJ4j7E6x4Co4TY+56JDH/5bTkI61/0YCB3ZWKZh4FcUWelzFAHKA7Mzx3u1OjbS2OyP9tmvIvl4P06fQ3vJn9h3nUIFOVdtjGbcex3wjvvdEQFhdwM2XYhvaIEi3Q7MuAAAIABJREFURL1i37Ef0uNXQvr7FzjwWgUee6JDgfdjAG0r3wbpOV8gG9qpaD/yBXBGtf6iup4fA6JWQgdAmizybUH1I5K0tZ8i29U5WXMcRQUfj/SXv9MAGV2HOm9p4/oaomgTJGktd8t4rgWwpv1fgFiWQYrk3gFIj7uYBAi8Egkgaj8SXXcPZHPqtLi/oaCCCiqo3oR8ZRMREGrV6FoARM3B9l5WHvbKnZDNYTpRqu0ljRZ7BQoqqKCCClp2iByDGQIYBEBUHytrB3wHGTNzU1CQOPbaIaPZ+6RDOwdwRJazqtIJzDHIMHgqjYhyzmoP5IQKxs0YEFUtCs2vkQPlPBIEd1vkGHkdOWLeIQEetUKAsVeoIZVbI31vX9tovg9cZfU91fVJH2Rw/hKdOm6HHFonIWNNZjh+BGiaaeOkhItOQTYgKihscSqlSv1/krXhJ8B+YXy560OQs+tn6KTtdjXw3A9FRrmLNBivGwJHfQn8KebjxnfsbDoAGb6vtnF/HnI4foCF87f2vdLa6GcNGZdW3gk56z5DIK5wWtYDog4BDo6eOxwZr3q772iJnJazSKJuxBG/NgIOxE5okTZkLDjZbL83RtHESjaGlovub4McjndV+0Z3/3ikyL9l46eE5lKICNEVGd8/t/6qaiRx330ZkmVhDK6KwA97Rff3QOCAHjGPrH5CwK2QuuZUEvnZ3ur9GBFwpYY2bRY8o3laMvJRJYJB61wUwWWluP8RkC+kwWqQodT66Rc2Fr5FBOqpFyEn18/QejEfgUsXGoAVtfG+aI7/D0VbmoABHEkbDPfN6q8K/LdDst9Hzupi8+crlAI0BkRVjdiEQLKXoggRVyOQQlaUtb5ojdyqxrqOR/PyXSRXpwOXuusjSIAQFR1jFeocItXdSdoBFdbBe5HzuVXWWIza5Aob7xOJ0mHZ9Q1QdIQ3kWPrdzhAL04e14GnH09BhncFzrTx+uOMZw5G0RimU1uapKuRfL4Ni4yJS12IZMxnCNwQA6kzgUBRX6xkffUp6ah2FUEQWXzdtTZIV/jE2i0GGj1u7V4WZWgp4NnW+mZ7lBbqLSJgLImMyZSh0ZhagwRY0A+B8l5ABrr7UDSkBxC4fuVa61nDd+yKZNXfkD61T9bcdGWj0NpwG1onplqd9nHjfhsU0XAOAoifnfPtm1k/dEBOvh8h/f5ZJLPWsvtaoQiUr5ET+RXppEdHZWchGReDLcKa2i2H5y4I8D0Yyfh9/fPuvi3IiCiawzvoUN3RQZF5SO8Nc7cFWl/+YW2fu67Xg2dzIJs/X9qYDntlvybsg9aEaWSsCTXwb4PSLubtRXdYXHzRfuMxtPaMCP3trq+PQL8l4NoKPPL2TnNR+srU3il6jwcn+/IBCKC9fVR+ENmAqF2xdL6ubF+rw3dI0lGeZX1/BpLPQSZtjvZt//btt7jGvI3Rl6z9n6dchnQj2ZNVjdpb4/sOtfEeUuEeiWSzB4c1uC0QIOpFJA+fJ1mjymR+9NwB9m1/I0m5dztJNLOhCEw+08bpM6Qj4WQd+MnT80OEqL1IAFHtY54FNT9Ca+4HyCYxFq1p79kYCut72+iZbW3c1TWKfDRGu1F+MOI6k1mnY45apAsdbt+UFQnwVASUzUztW9CyQzbeP0W+hk2iayuT2KnPQ4d+SjjwaUEFFVTQ0koI+P88CijhD2cs2JOg/UiIEOUzq3S19flT3AHBJZUWewUKKqigggpaNija3O6ATmP80YxWW7tr15qR6DZkjDoVObt8uPaqBii3WLdFTs2ptrCHU681n+ZFjsvnkPHQp3UajsIur9nYBiESQNTtZIQ3j9rSA1F+SWK872llqyEDcQmL8oBOih9mysqpjVn3Gr5tJavPl+hkV2xs2cgUqRIy0L2LDIX+FGQMDGqH0tnMQ06h2EjqAVHeWJwyNufU+1hkZPmABMCRd9K4WkSo2+wbPyBxXIXv6ooAAp8C99bYpk+ijb1P/fQ0OvW3titbDQEoTs6rMwobvTYCUXW3ss42F6Yih2Mw5pedxHX9M5gk+lmcDutu65t+URu0tfc8gEX9cM+EqEAxGGYYkimfUw4u6ogcuLdU6xu7tiNySn4LnUjui07ufoSiQQyw+1Z0Y3WDrG/Peld0rS0CFZxov1shQNkM0iefq9V3X+vTXZBj6E17/jsIuLCx1XFkFR6pNm0uPP2Ysf8PNx6/Jw0ybIsc0f8Blo947onk0a+w+UPDAVEtSQy0F9FEJwjd936FS5+5iDwPRg6zaxHA4EYSx8tAu2dlm0/TkTMuF4RlffwEkusnunIPiLqaKqDnaO5sZPX8prX/KKvnD0in92qL1rtXgC1rqOdIBAI5C8mutZDDYEFEN7tvBNINSri0jBXqmkrJCFxoYyWWUx2QXL01g0dKf0Gpqg5Ba95ktAasF9fD9dcKpMFXLevBM6PeuwM/JYkI2cPadj5px0tLlErtQgzAW+N4vRzpFHeSAKICz8PQGvsZFVJiRnVtR7n+0Mv4T0SgyRb+W2uoX8yvNQLYB6CRT+u4vY3TsUsDzwrvaYX2AAEQNQiBl/dFjty1yAbp+X460MbmzSRRwVpanY9HesVXVvc52JpCWoffE+jfgHrH87tV9DsLCBXG+rluTAad/E0EQArfujoCXGySw/MQNDfvIQF+rIj05BKWLg/pLkfa2D8t59u8TnpodO1cBIj6LUmU3RakDaNZ9TwQgY8nIJ32X1bH0F8BeNQOHY64mxqjtsV9gMBLIcXoD43nELSWfUFGRN2m5LmkEwLrHI7AH/eSrAt+vtyPZHaJDEB53ryx8RhSLS3yXrQx+MbfgCLIPoTAJCOia+sj/eVGclIBU3nvdCHle6dcewSa8/9D8vEzJPtGuX4KKfNux0Undc8HGbMB0m/aIEDlR/bchRXmwBY21v8Zt0cTj89Q/35Wl5L1bxyZtBvJnqxqetQa3tkHHVaajeTfbOCsRviWFkgffMR9x1B3vdI6cjvSddsjvWsCWtvuxoF9kU2qN+40fwWeDdHzp9kYaxXPmYKaB2XIuhFILw+A8uXRHvgDKw/6io+2ujrSXY5tojqPsfk+2erk08LfYeP1cRSd+VdI3mfOURvvLyMg4c6Luz8KWjyE9vSTkN3J7139+t0DRUD7HK3XZy7uehdUUEEF1ZuQPfY1W1v/jkuPTrLnCn99yrxzkP3lJ2iP0uBDM4vlexd3BQoqqKCCClq2CIGTPkZOxOeQIe5l0k7Gi1C6rc9t05IZESjnPVmAqGdJjIe1GnLXsM3/nmYI6oecEFNIUnM0OGR6De890PjfRwUHQbR5Wxc5hz8xY4YHRG1g3xCARc+acSE3lVsjfYt3mgxEhrX3rE7bUx7xpiUy1B6JTiRmpjF0Zbsio967CBS1tX+n3XMuivTxWzKMxVltQLmz61iS0/d9rax1pedz2mQwcrCUyE5Z1BU50aqCQ+ze/shIvp8r+7O1RYiGtTmJcSsXqIEMR68gsMos4GFge7sWjPofIlBLMOrH/Tgg+r2Jfc8prmwUmuP/szHcAuiJTnTPIjK6WR+UqOCIQoCavyIj8REIyNQbGZznUsV569r+anQiNo5SM9z4/tSV9cBFAluIedEOndA+38r2Rwa9y/Lqaf+PRHLyBFf/DRHY9DXj9S8kc+9ETq94nKfatLnwjGWG+/8Eu+9RFNFgO+BE5NQ5KePZdmgDNxk515fPGs819GdL5Dy5aWHGQwPf1crGz+4oleOvkPN/kdJXIPn8Elo/Orvyd9HJ4d6ubGUkI8qiw1C+aQ7OrPWQLHmLckDU6dZvvyAn2hRyNB4L3IRF9LLyC0nSe41EKRXORetiVT3C1fVm5GDq7q49iObphtEz3wAOyOEbwAu/x4DfKCLcfcjBdhRyvK2CZNZsyqPrDbF6bWm/j7Hv3MDGwjb2jqdIr5ctrJ/aRN/Yoh48M759PFpDbiEdMbEHApt+iZwaR6LIFB+TEWkn5k35WnMVGqN3koAt2qAoVOOIwnzHfW7/74OAAK8iB8vBJMDnVdHaPwkBWGrVH/ez8RefbG+NdLzPUcSyfu5aZl2bG8+c97VC6+lzaG7eY38vr+HZg60+51FB90ayeGMEtpsM3Bdd38bG+o9xUa8ak9Ce4SF0EGP/0J72tycJIGpBhKhqY9zK9kXr2KkkQKgw/3wkj/fQuvoGTu5VG7dI9t9AdtTFc5He/geiVGlV+N2B0j6HSEPHo73JX0jA7ysi3Ww6LqJrQ8eS/Q0OrBDV7jV7V4MBDPXguaRQpTGA1uBxSAYvAETZtZWRXv1Nogh7DWzP9W0+NspedGH4kpb5Xe27e7my9VH0nY+xCChIXh2O9Kw8Wbowe6dq83IfNOfPRTJlU7Qmz0Tg3LBG7k9iM6gasc3u35gE6PMiDoCM1vjQtpsb31eJ0p839Ri1a/2QTJ2IAbui6wu9J8sYK6ugFElH4VKZ08C9QQb/ltauH5AGyWfpUHsjx/2DuPUO2bYCWPn3cd9kjXd3bWH0/KUG/LkkU9xfizrWYp5I7x+CQHDXRPd1RXuCD9BhxXhurYN09iOboB12M/l0C9oTfmpyb7S75zwbr++b3DvKXcvSn/YxWfcsBSBqmSST51OpIWoJAgOv434vFZFACyqooIJiQnuhN9Eed3+0B3oIy4hh91QCRE1Ce69mA4T6+uuvCzBUQQUVVFBBTUe2sZiFnF7hBP82tsGdCIxz9w5BTrmqQJic93lA1CH27rep7SSmT5My3Rb7XyNj+AvIKDkMASwuqVN7HYqddM25bxwyjN6EnErPW73Oc+28MnK0fh+dKNx2Ydt1Eb7nWORs2RaFdH8SGax3IH0CuZKxvlL59gg0tRFJNKRt4vtRmoISGWGySRuLRiKg0sMIrPENd+14G6v/IQFEVYyKUqnOdm1tdBozBWJw47Yb5c73LMPmmvZdu9vve61d17ffqyNj6V6V6hLx2w8Z3y9FQLMjUPqIEmaMRZEEzkPK8qPxGLJ2e5P0Sb51UYSJOMLKkcjQHtIGvESUKoYkEsHRyME+AjkHfo8Mwj6K0kYootRXyOF4L5qzZae7ssY+mutP2/s8yKYNMhBOIQJ6Lcw8InFiPI6i2eyGopudXwtPBBgabWO1Q8Z4H4jAGo8i4+YMkpSJfrwfDYxvTjyrtaf9fxxJyrznkRPruIw5tgDQYfV7CxmDa44QFb23bikkqvFDMuAmG/NxqqN1ax2bwFZo7vl5e5/No6H2e1U3dpfL4ReAZT79SnA2voVb39BG/Hwyoi5EPLdGjvn/YcZ80qDU0+wbSshw/zouOkROO7Y3vj9yZffa9wdg6c6YrK00DlzZPsg4cAYuso7rl3C6eSqSl9PJTpE1BMmJEopSNc++06dv2o4EvLQOmmv7IHm6RlPwjPhvj/SSM3CANXe9K9LLplgbfQCcUW3cW9t/F8n3C3FrOUpZ9jaK3nEoWu9n42RGVh9Z+VikM92IdKR7kPPlDix6EAKwTESOl4Orfbvj+0tr3zMoB9d2QU6eEnCre09FJ2Zz4llD27RE4MgbkYzx6Y0r9dOaCOBzAU72xHXBySe0bkwlAk7Zt85DgKi+C/MNOd93ko2pz0kD1QMAIoynd4AxObxaIODQPxBwt1N0Laxjy6PIi2cjJ7p3nmcCC6P3rEGyjsSAqAtsDOyaU9cD0F7pAQwE4q59BwG1ZiIj6xP2vw+z7+d7TWlfSYAb3ZAh9xPgejKio9SDZ3MhnHMbrT87ov1XiF7UgeTA0l9sPPRGhvGncZGKSes9uTLAzc0VEbAody/a2HyjsRVShL2D9vUXkRwgWhftAz5HwOg70HqQGVHX8VzkvZP/LjSf70MyyoO+70d7prWjZ8aRYzNwbdEX2WR2R7rYi5RH7g33bovTn+s8Rn0fDUN7h7Gkgbj9kA7yltU/M0rzoszPSmOvsea89e/KUdn3iOQrspmUkJwcGl0L0RtnoqjINa1jNLKeX1Djk43rn5j82RVYsRF4jrd+n4H2UH9BergHP3ZFOtl0tBcO8nU5FJ3prjp9b6zDnYL0hZBiexukLz2H05cQwLQbGRFqY972/74UgKhlltB+4PN4rXPXN8Q5/115s9L1CiqooIJqJbT3m4325b2sbAQ6AP5/VAdEDUARHKdQ42GpJYUWewUKKqigggpaeolyx8SJyOEXOwU3RACWB8lwmnlei1CHduh0X+7pY9ssn4WdkjfD0YvoVPRl7r72yJhf5sCrV1tmlG9sho1zQ9uhEOp3IIfGebhTrxnP122DFxkg1kCOynNIwnIPIQFEDXf37olO17bN4Vl2gg6BrJ6hMiBqWA7P8bZRfsCUwlcQiM5HMzoWOdhfoko6n4jvFvbcN7EoAVa+GjI4ZQKiom/z/AYiA1BL+/sUigb1MDJoBiBUG+SUe5oaIpgh4/vfkRHOp9x7AhmePTixM3BF1pxCp16/QNF+dnDlQ5BDtYSL0oOcD6ejEP3n4wzC8RhFBv+pKM3AvchJcTtpx98wFCWkhIwf3oHVytrdO4Z2AVay/y9Bjq/VQxu6+0L0koWOipHRVrfY98zFpauIvzt6ZoR92xtE4ImMsdMRgRpeQykkKsmSJZYntTswvYPuMJK0Dz71UOv4/ShS28E2xj8Dfk4NgKiIxzgUsaNNpfZYhDHi37MdAoKcinM2I3DlTUiWHIFOte9nbbBDje85EG1+Q3Sd+0kDKzdG6+DASvVzZTsj43VwrrQi0QWGIoDidBx4K5prlcZUexSlooTWj6yUPgORDNoMZ/Ss1pfungeB++3/P0XfvxJK9Xgh+UCwLgj0dSNp8EIccXA/BB49nSrRB6zNJlr/Xp0xLlogp+VEJE/+gGTjd6vUsdF4kjhTQh9/FxlIVon4xfN+BST/16rWT8jB/Slay55GhptPSANrT7MxMRfJnFzdDAFsXqM8SsIMZATq475tVTQ/JuTMUQ/U+TEC3ZxJOdDoFCRzFoCZmynPmuRzlT5Y3v1fTd5ui9bfLXL4LQAyo/3FXCziGOk1IoBmr6BhqRlrjQw2wd79DLCZKw+AqF42nsblvQPJ89nkADJqrS/Secp0QqSrB530kOhamf4cXW+PImvOs7m5uZW3c/fsjJz+f7d7R8V9D+xUy3jIGoMIFPM8LgqojYdG59kQXouTiJy+JDr0Zzb+3kEHStoa7Y9Aa3PQXucTHGDNeBxv87FmUGQ1OeH6vi58o7KQIuxGG4N3IOD0AyQpvXsjgNSrNlaPdc9nzadG2TtFPLugaD3nubL7Se/xNiNKJR7XMfq/vc2HADJog8AWE5GdY3V37564vXmt/dFIY3YCWoPDOj8L7WVDtMZ+Vt/XrJ5l9oJq9V3U72hMvmgfPwTpnltF19ogcF0JpS+OAVStbTyXcAe3csb/GBpJzy+o8QmB/z5DgJ2JJpu+TwN0lLi/0CGU94FvI73nRhsz33X3eEDUXZQDovtXG1eL8L2+nj2RLeB3WHpfkrVgK2uP/+IiRFXiFZV7vW8/CkDUMknosGuJjOhmyJb6PRRdPHM9Kaigggpamsh0zI3QniSOMLqj6eB5gKjVqFOU7bp+++KuQEEFFVRQQUsnxZtb+3shcmQsSEPkNt9jbYPS6OEVyTBaVzPqkDhaT8XCzSPUtH++E3Icf1DBAFWNf6MZlNAp7I/JCPmLohvMQUCpMmNpE46FYciIeX9cDxJA1CTbgJ5obZ8VxcePqW+g1Dj3IPBKcLi3REafECFq66z2tvvWJO1A3wg5AE4hAcKtg8BRL+NO5tn3zCTnRL/dOx4Zcl9AyPm5yNA4wK6H0/hzidLCVfj2MciQ830shSJJiqNPsSgEyIEzDimyVaOtON69EEDhUFf2Z9KRUbbEjKRkpAkkmdMbWX2eJH0CdR0yAFEV6hMDAna3+p1qv3sYn1lWT6+sb4pOPs7CIohYv6+CAEg/t7JDjcfe9ntjBNz7Dy5tEAJUXo6cGz0bYV6E9vqBvf/kSt+d8ewIBAabB1wa90UWH+TweYLKp6iXOJ5onoWxtjCAqJOsbW8DBle4P8yRW+zdz1l9b6QKIIr0nAyp+TINtI1FKJLOJ8hB+SWScWe462uRnCR/we69MKfuq5Csc33RenI1MkZPxtYWG/8nIIDjujXUdQJyAr5AIjtakciHnax+k3DpbHLmSktXl99ZP11OkoopcxxmfHNFRxZyPE1Fzu93/PhDkSfeIAMQksGrF5I9x1R7Zw1jOHz7EAQmfxetSVu4erVw9R+E1tr7SAPN6sITRctbK+Mb/go8VuUbV8WBj6r1DUqxOh3pZAG0ui1JpMHD3L3dELhqYNa3Z/Aebv29pSv7o7VJ0Ct6k4C4O1SrM9JNLiJJsdQCnagPQKNQ//YIMHYyGetJc+CJdCifTnJPcoBKeX2dc/8Y6+/+Wf2K9L1BGWVTgINwYDwEKt0LOQjnIidIbmSNqA1PjubDaODc6P6jkFP/PtKg3ACIKhtP0fMjkQ7d1+p5hJW3ju7bAgcsyuHZFc37t8k+Bb+BXf+CjGiMcbtH1/ojnfwL4Nfx91Z5Lsj2vayPL6rlfRGPsLa0j8rrwbOr/yYkI7vXwrMpyX170L+2RPrOhUj2jbax+TkWVQjpXv1sTlxAOrJZCyQPS+gQxuZuTi0qwKQufKN3rIEATt8hAVK3R7JrDnBndH8n0hE/K0Vy6ski7J2yvtHm/BRsn0Q5aGVVtM4eWuV7vbzaAx0OeBYBt/YN30YCiHrO7jvS+qLuh70y6rkJWpPPRrJvMxK99koSfbUfAkMtiCZbhWdPu98DgGsBx2f1S734hu8aiYvkjABP1wDz0YGyFaPn2gBrRmXDgI3c76MwOwCNqOcX1Ohjvyvah55AErHvYhv71+LAig3gvzayEd1KYn9d1fHNAkT5ta3BEfsWsh0OQgcQX0B73DOsvA2JfrCVXXuZKhFa4zoS6R/IdloAopZCyhufyP76EbJPhfWvCwKVfohLXVpQQQUVtLSSyb370D6xkh2/JkBUc6TFXoGCCiqooIKWbvp/9s473sri6ONfOoiAYgNRsStiwa6xYUew94IUu689EWs0MbYYNZbYorHEaIpGY6yJRmOJMZbYYtcoWBERUamWm/eP3yw7z57nOedcOOdeLp4/9nPveco8W2Z3Z2d+M2MH8DeQAvIwO3iPJBoCwgF3J6ToX6OAzhyDi6o4IHmFxJ+sPmMwBZW7tyEC7XxJjhE3obMSMrpsSk5qrSrrUs7rdQ+rx2B3LUQ+GYy8yyahNDhdq/1+jca+nSlhpiKD9115bUJRWR5BnugTyAFCJXRHEaM3PWnKk1kgIHtmDbv3EYlnq90PaTx8RII9kAFoFXftLuPfNe334u5exXCgKAVFSBW0BPJ429PmwXlurJYnAoRWLUNvODIynYZLA2H3foDABS+gqEh/s/Zn0s2Vmw8IXDQBi4SFlPle+R4iWe1TgS/DvF6HyoAo73HdIa9erm63Az8N/W+8fxmKqtKEIkV5g+NaCBD1ObCTXevhnn8YKZiPcGPRHnmnf4j4dkcrxxrfHV3t3G3GXJmdqAXbWP1nYvO/3LvGg/+lTFSruYzm9mjuvEBMmzc7gKgjbazvI4mSZ3w4CRn8gmGsC0ob9QkywPRIv012Hh1lPHRgNXVrJl/47/RGytvjUYSidRBoYyLOAI/ATQchYMPeOXPS09zT+uVUNL8C8GEKmrchFej8RE/9XMBmQf1HWJ1fJRoEwzwbgsBSz1MhMgqKHrQQStUQUkJ1RfP9YwTq6O7bWWWfroWiYGzv6teVmNrmIrSPBfllGlUaB1Fq2knAWQV8uQFwQjP6sjfa17ZChqrpWBSBvHmBAWXL9cmc0kTz519kUxKF8b0BrZ/ht4/6tSIC81ZlbENg+Y+QPOX7cA0UDfFVnNd60XgX3A+A8hBx4l4EEgl73npoHVjO08vrUySbfIbSaQ1O7l2OZJzLkNHnSLTG7FZunOZWmkieCWlc2iGZ4GvqCAhFALiZyIjXM7nXA6U6PRuLRITkiUdJQHmu/Tci0OujxMgbhd6NZNeOEFXqEPsd0siUAAhQVNCQbntdd31WxM+CcdoHKSEPtfbdj+SxFf07KJrP2UjWqSqdjvH1C2ju5EVMvda+nSuTUv5MtgzaR5qAy9x1D7Jsn0cDycKhH2cHvOSjgrWvB00EtvwFBlhAkRjfZy4ED6C1NrT9NATIuZZs9KKeNg++IMexJq+/ENjiA3TO+h41UozXi66jvzqSbbxsFL4RAEC5xtAKPL8wkkWafXYiu66shmSDIOdcY+PyOJKLA2ilE5LzXqaKyJ9I7zIDnaFuR4CzJrRmLmp8PQTJa18h2eXkVuDXVZHx5Q+URij8KdpjdnDXlgX2q0BzX+Tc8ilaIz14utrIr9vjANP1oovkxmeQTDLMXe+A5nEARC1cQLs92otOMr7ZEMnhTegM2wGdcWom5zdKzXh/KJKLnyYBKaPIpQEQVVWEKLRvrWnvvYHbi+1+HyIg6pxKvFqH9vp5sKXx4pVILnsbyXqb2H2fan1TJL/tWwXdYWi/exad60e5ex4QtU0t29YorVOSsd8IOdBcgDk72vU1kcw/xXjtXOQMN41W2PMapVEapVFauqBz31iUrjtXnnTP5gKi2npp9Qo0SqM0SqM0yrxVkoPIsqbU+RFRsRcUepsTw7R3RkCOtygADLlD8EbIkHEAMpBWpShN6tWp6B2y6RzussP48cQUdMuY4PAaDhRBviFjJFKQT0BGxg+oLk2fr+shyBCYCwJAiu6pyKjVKbm3CUpT8zAVIvDUmSdOsfbPwNJm5PU/8lJey/3O69P1EEjFR29aHSlzHiV6vQUl0JskKW1sPCdQGv7/NGCK+30vpaHjr6A0zWNh1BgUdvRhXEQFoztLqe2ur4xLk5RDcyXjuzPJeqF6D+NdkFHsYQTw2DGvnpQq34MytAeao/+y/nz8jwcXAAAgAElEQVSfmDaiAzLq/QfYtBz/ko36ti7FgKhf29gdXyUvHY6UZovZ2F6LRVZASo0QIcorl9dECuurkzreZt9+nLgWtXdtHY7mTxPi3UzaJSqsPUXXk2fS6A7p78y6hZTcfo3aysZqemhzAT8ui4wI17YVmvb7MOB1G78ARpgdQNSpwO9ynhmKFGLr+f5He9IdNvZXkwVNpkCob0nSCdS6ILDwUAQwWcpdXxV5EU+iNCKJXxfy+jpEmbqA7Lq8EppLMxCo8gz77me4VDl5/O/G3kdSGIUMdq8SI+10RGvJ6eQY7xOaexvvfIwAMedjxnsEXLrb7p2BAaKq7NORaL2YjPb5qURP5K4oZckHCGz2DjIm+PlfCXTVAxl0X8IBNB1/jbG6lwAJKd0b03VhS5L55PoqTW2Ru07Vgqb9H6IZ7ITtFfZ7a+Oh3ybvdkEpLN8mMS6W6ctT0VwMIBcPrNrP7lWloMnph9Xs/TEI2POe49POSJn+D5KIQzl0g7Lo+2QjCvq++ok9MxXJMZWA33M1TSSLjEdp4L61ca06vUTyzaWtv/PWEz/ed6M5O9rxXi8kJ0/ApSG2ewu4/9sjefFjdC4J8uLCKIJqAAf0r1DXsO4fkDyzFIqmUxLdFMkuHyOQelXRs9DeM2tdQ2v2u0hmCTzaF4EiJuGiVBXxe9IXa6N1+VUkp4W1oheKpng4Lr1fQV9sjubORQi0Feq6JJJ/SwBRlfgBRa24wN49zdd5NuZ3PWgubDz/ITG95DHkRL1srRL4w82ty63tnwK/yXm+P9rjbkX7c975eHgy9uui+d8s4BKlc7xedPPasLX1QwCy+QgoS6E15Myi75WZTz3ReWFOzk7D0TnjCuK5c3OkR/kai4RivHwokt++XwUvrIYAvqcQwf1+zfuxXeuIgFG7+XpWM0dqxLMrWX1mAne76x1c/R5D+3HJPkM8v3k+2AHtY79E8uarSPY4NX2vDC+FCLNb15uuXR+GzvAfkgV+BUDUDLR/LVqmL9dAaZ6nor3qULJngmbJ+Y1Sc14/i2zauU62dsxAuo3gMOrP0QEQdQ3Nc668iAiIWj651wfJe03Apa3UFwsjGf9Cooy/DdFBI+gMPCCqYnRudPachtKV34HOj58AV7ln9kKg8JeA7VubLxqlZjw1Ep3fn0Eyd5OtmUGXvzSKyv4mkjXuxunn89buRmmURmmUeaGg88rbSM8ZsvdUOl8F3dFfydELtMXS6hVolEZplEZplHmzIG+0Y5DiammiMms1O3h+jIwOhyAPtWkkgAik4B/sfh+AlH8T7WDzFIrYUqIAS+h45dOJSMnvlULb4NKdUQqImoaU/eEQtbYXBPIOTcgwOA0BbNZGoZ2vs3rvlVfPnLqGiCb7u2u9cMYduxYMMz8hAoQ62/t/aIWxD4pr38dHI6XG3biIShSnByiKZDESKYsHuGv3ICVP8Jj1aRhL0O5I4few/X8IcJ39vytSBO6GPPjfI0aEms/6908kOZULxi7U4WGyEbHuQcasEIVke/INWCVe88hY/QUOUFTUX5R6HhcBofZDYJM7iWlxNkQK1CYsYgtSkI9C8+/YnO9XEqLXt/mQAqJWsz49togeAj71SO7vj5RXqxKVhhfZ+GU8h+1e/+T3AmgduAt5Qf+KCITxEYC6IiDPemQN/XlK9zVRdLGjgEFUaRhLaPQsuL4T8lx7AXl1H+HubUEEMXzP1y/5zjk4o9JcTrOTo3kwMiI9G8aRKgBRuGgOZfp7Y8TnO7lrgZ+WIgJwbqPUUB8iQtUbCNUHgSBD+piuvh0ost7vkRHv9CppDkKKwtNwaZocX/dH8/1xFLnpWrJ7ZB7/lxv7EXZ9ItrvL0driX8mbx/YFxnGfo4M8+egdfkVLAUIAtf8GQEkLqRg3iV1Xd2ePw0ZjbZERq1vgQsDH6Doiv+HUsiUBermfQsZcmcg5cF2dq2f9e0X5HjfJ/XcBnmtPmD18HvnlshYMBXtYyFSzbktRNMDVBZGipWvsb3Zrl1gtP6K9pWhyOhRIu/l1LO3+3+I8cHpxLUhrNcb2L1CYFVCtxsOTGzXfoH2gS+I6Wu72zhNwlIdFtG2ciEygqep5NJ9fD1KU9iUpCGZm2km/fln45EXietzswAmCKD+OC4qE6XrSUjh1Q1FEp2JvBTPs/tf4qJgpvVwdd8C7UHb+rq4vvkGrTPLFtS1LAAWRcwKqW9TQFSQ6Xeq0Dd7ojnzILZuuHvBcWQ6mqvPI4BLSQTQpN5ePlnTPbMWWk/ftD5fA8mFb5EFRebtpaPR/P4XAn+MR3vVKna/HwJEfYszQJabR/b/AKvny2k/luOtpL0HoPWt5jRdfT8wPryGCukOW7IgWfjfZFN7L298+TmKphfkCC/v3gk8UUBziPXbbUmfZIBLef1Wpj9PtLrUg+6sc761fSX7vxOSo14jOkGE5/ogR5UfVPGN/jZX+hHTKW9KM89Ojt7eaE6fSpLSGclBT9g8ehA5B4zDRaYu6he7t42N++B0vhlPfEtxVO4WMwqjs96JNq9eIwfwgeS0N0n28IIx6mX9OsuBCDlchKhdPqJqucivX5E1lNeFbtKO7RDoKwVEtUcg2SZyIvolNI4jOvPslNaDKuX8Rqk5nw+0/t4gub4g0hE1oTNPAAZ5wGYALm1ehn4YXy+jhwhQl1Dq0NfHvlc26nWd+mJbYiTAI5J7mxMBUUFnENbqwoiadn0NdH4/mawz63VIpv+pe3ZPJL/sU6t2NUqL8tCqye+d0fn+BPu9ofF+EwKveweJvijq9PzuWpta9yiz9zdKozRKo/iCHDXfQSDRfnYt6Ec6kpw/kne3snX0DpyttK2WVq9AozRKozRKo8xbBSnXFrPNchoGOgn37O+SyHjxEVIcPoOLXGQ01jUaDyAgRW/keXeUHXLXRcrAd+wgmwuIIqt8OhIp/Y5y13rZQfwNXGh8ohKiC1Iqj7NDdZoyr+R7SNl6G0oD5tPKPIQUrYOK+s79fzSJ5znyYHrG6nIHMmi3Rwjvc5AR5zGk0LoWKcCOL6prrcfd/T8/ApEsmDxzAgKr3E51KeY8zRC56KfABHc9jd60obU9Da8/SzmEwnB/iNJCzIpKZLzwpl17nwiE6oaM+RNIIgEU1Hs/dODuhIysbyHwzR3IkB/qugBSQF1LKcDNt30d+zsSGZv7h7Yk76yDGfCqGWsi0GAMppRz/bQtMi6+gbyd/4HmyclpHZO6DkPRnp5ExohhgQ/IAqK2dO8UzilkvPs7AkL4ufQjoxXmaVfry12xFDJVrAe9kaHieCIgqnPyfAmwIq9viV5oE9Ca9rXVp1I0EV+fQ5Gibv4c2jMQQO8WtA42kfVu3IqY2muz5P0SYNzcTNPxVXtimPMX7Z0nMW/atA5l+vVw69eeOfywEprrt5GkHkBryVgEmBuV3AsG8bqmxnPXdkUH12mYEpws2HQAMdJZSYQcEsUxmvvv4QB+/n65OVDwTNHY/9I9MwztiZPRnlpoGLTnF7fnzsOBIdEa/RSwgmtXVwSQqCby4vrIw+nXZCN+LYTAUU1YBIZqx6fgudDXw9BaOhXt/69TAF7I6dMJNu432dj/mezauTlK9zoDKf7Lpt2rBU1K96oAfhpi4/UZppy2MTwZ7dEzkVHjVZyxmfx9ZFdkFNrLfs9P3INGEw0iXRA45F3M2F2h/XsggPLbKOXYCKO9FIqS0IQiL5yJDI6TK41TGGvjvwfKfHu55vDT3E4TgQW7GS/dZ2PzZ6Jyrdr1Oaylh7tr1ewllyLZ5CMkU45O517Bt4cZHw61334d3QDN1SYkD6R7cThDHGS/d0B7Wto3SyCjYxOWNsvdK5tKzfr1x1aPGRh4nGy0vU1QVJd7UCTQHcq1nVL55BsEmAkAkVXQ3votWpsyfF9Qz80QuPU4oI9dG2pt/j0RbLMEkoWaSFIyFtA9wMb0L0YnjMcZFdqYd37ap440l7J+/BitPzsRgdStapxCIIeQXsin9l4RzZsm4Gc5fHcrWhe75/D0Auj89aE9VxG4VKE/w1waUye6ATwZUpldiEBR7Y0fJqLzcoguNx9ywPqUMhF67dn90Tl8Ooo08igxCtR2CPhU8ezkfvdFAK3LyRpl/dq0LAIoX2FtHOzuVQJnH2h9Es60HlwRzmUHV0Orhjzqx2xp9/+iSOafjmQ0L/t1Quvyk7jI4HYvPfNvbWP5FqbzIZ4xAnBpHKUA2rw5f1A96Rqf74ZkL++cMJR8QFQHyqyldr8jijR2Mlr3pmKRb1L+C7yW1LFNAQLaUrG+DuvOtjiZC+mh/mZjfjIR/O/n7Ho5NP3YdTYe6Jo8E/bhiykFROWCC1ugL5ZEwLCQArBLcn9zCnQGRe233zvbPF3NfofzWD8kN72DOzPQjEhbjTL3FOBmpBMI82lx5GB5nv0eiOS9XxEjq/0Mk1kr8dHcXpJ5vySyv1QV6aVRGqVRvlsF6WyeQ+eTcEYPMkYX2xfPpYwzt+3JK7d2W2rSH61dgUZplEZplEZp+6VAsbIlUrA1kQUZecF9OaSc9Mpa78l9MFI034MM2vcmzy5qG/c4cgBR5BtcDnXXAihlfeSF+Bywp7sfDG7XEL1K1qrUfmRcexcLPW/X7kHG5xARaBtg/YJ+KfE8R0aX6Siq0TXW7jeRsix4eO6ElLuvIyXskeXGqB7jj9K03Wb9+U9cmja7fyIylt5KgSdqDv0DkTJvRaQw/My+E7wwg4J3fgSSuY2c1EMJzXEIAHMLpaCC/yKAxIkIgPZz5FWbGzo++X9jo3sMUmrthRTh79nfpQNvIYX8WM9zOfUcYe9uZnX7Arjc3Q9K2B7ImHsmVUQkQtHaXkQgukxkGOL8GYgAbDch5e02efPUXRuJ5vxf0Fx9GxkFziNGnVrP+vJ5SiMepPMopPG6iETxiwyaAdC2KZoznwG7pnVMxqcrpUrzRZFBJgCiOqD5tBeat2VTbxGNq6cggOLq1q9NKLJF/yrmzVEkUeDcGAReDN6NyyKlzrfA+e7ZLVGEhyMq1Let0Nzf+Okq68/b7fezRNBficG9XL+iOdmXbNSZw+2ZXxAVp93R/LyFLAgv8NSZ1AEIlbRjHdyBE0WRew4ZqkM9/dq1GjCkQn8EYOKpaB4uVPDtQWRBheXABZXG/oLk+b5kI1YUefauZm31Hu132bfC3r0KFqmvXB0Tmp8bH/0l5SFk4P4XispSYhCeg7EcYP3zG+AkDIhRVG+0pnyCgYYQcPMbq/vDZA2hfVEEqg3rTRNFlDk7jAnam98IfIoMwS/auAVA1HzAImjv3ohsVMeifeRLZPT1/bQwkm0+QfPyUGTYn5XesMIY7G7tvQ0ZXZ5BHuK/QuvCwsjI/AyKHnMdDhRHzn7i7s1nvPkCUkane9lyaB8sir7RlmmGtGjnIBnnTuKcDLLEQnk0yAGVUnk9udA92wmBNEpSgubV1fXBG8Dfc+4NRJFXLiFJLW381oQB4pHM9SySOwbn9OXK1s9N5IP/yq2pfZAh9AvgPne9bArCPJqUl09uwqJxwawojAfgZLOieiKZ6VmyQIb70BwNUfuCfNqfKlJioj3vC6MdotwOIkbVPT2vXjk8NStiY61pJteXt7Y9h84iu1BqzO1Uqd21LMlc2N7qtVtS58us7VehNX0NlJJ4Ju6MnDOnehnvfEyVwCXH74Vn3DrQPdB+74f2+jOwc6Jd74rWlwlW7kJnlpLocjnf2AqBFC9Ce9qZaL/4AkstZ/3ZnLPTqmgf3qPo2xSvZ2VBfPZ7idC3KZ+gdepTYN8W5NHU4eUJ4Bx3bSGik8qfkG5jI3SunoHTbdjz1yKAh4/qvScCZ8+KQIrO3R649GfjrXMKeCk45NWaruf9Ecajk+17t5Dl8wCIepeciIJU2O8cPwZAVBo1eaWUVqO02DxYDOl3xuGccRDQ7+9InjqFBBBFIkMk/LUj2tueRTqhzZJvBkDUz0kAUS3Y7lRX28/WgIloD02d0qrSGdizA5EucF9rZ3DWaO/m6FoUROgsN48aZe4q6Lz2SeBxZMxvhxxkVkXn2HeRnnA+dL5/zsb+QnIyB7TVYvz+qu07r+fxdqM0SqN8twuyl3yMzizbu+vdkO7uSVyE7nm9tHoFGqVRGqVRGmXeKSQRKRAw5Gs75G7qrucqh93B2Id2PtAOO68Dd7vrISLMIggY9BYKW56JLmL/B+XTI5hxCyn9P8PCjCNA1FsIpLGXe7c7MrhtiFNoFtR/faJh6Hngevv/LrLRi/oiZcUJaV+gtDQpEGphpHA9w7VvefvGOGTsCP3Rw4Qab+xvKU/PEUjZ9gukAL4fZzxyz41Byr8HyDHGJ2PXHxnGxqCD7nIIrDTTrgcjbBf7/nhchICCeq5BjP40ltLQ3EtZ3V9GCsqqcsmjKDNbIyOu9+69Eil170GeO2sjz9dpJGlUEno9kXB6gv3fAx3qJ5ANw98dAUfGA/uVm1vu9yD7/s7lniuglad8H4Q873+IefIiUNFtyEhwIga6QoCoSuki10JKwjSNV1gj5jM++wgpxyfiPK8LeGk3G4MPkdHuaHcvRIiagZSQl1r/nF+uH6yNNyJDSs/k/jHWzsNy6pJnaCsB1yAl4JfAxsn1PsiLfDrZVDZlQYBthSZx3p+P81i1Ph2HjBEhWly5NBSz+hUZMR4m7ie/J6Y3OcXG6nXgDwh4NQMXFYcWUpIiZd7KRDCdByUNRQb2z8gBRFWYo0egfWgRFF2nCdgl57lFkKFvFNWlI6xm7HOjOpTrU6IRe2v7HVKMhn10IJp7GxXNrRyaIRrfWBvrkOLEe11fi4DGZUGQzRjPcqCHvHFaEPgdMV3fqsjw9gs3bo8AW7Q0TQQmG4sAQ7+w944kaywcQgREDSzT9jxgzYZoHzuZ7LofjEG9ESD8LbQ+P0kVoG8kQ92EIu749eQXaD89x/HC/EieKAuwQfv4Fu69Paw/xpAFVXRG6bpewhnk8+rchmguh+TddcmCYX5KjBAVANC7YinwyK7VqVE47O3N2kvy6pjUdRF7dyHHR7uj9f12IkC0MwKE/INsxLh2yNg9AhiRfG8gigrzvvVxKmddgvab3JRG6fNJG/oieeobXLrrPL4smrM0Qz6pdi1x924DnnW/7yUb+XRzNK8qRhZ093aysU/PkisiOTwDLMsZ6zxHkprSND7KpNpEYJPn0f60MxFosj0C0bVI1I2k3t2tXl+iNMMeVLwcAkR9jWSJh1A0kkJ5hywg6lzKA5cex+3LFfqzXnSXRU45PyO7l4SxCWlwr0Hy5E3kgF+TPlgGyUWXJOO/EVoHPsal16x2PqGIdNNJnCHc/bWQsTM3rXxOXyyEAF/B87sH0h/MBK5wz3VGzgAf4YDPLVUQ8HkKSv21TXJvYXQm+wLN0ceRLuVY90zgg8Ox6JbJWO+CZJHpGNibLChiWST3jE6+fbL11W/qRDecSZZGeoZjjQeGo/X+EVwaNCRTPYlknmVSHkjGfj205pxMFgQ5EIH8p6JzxIJoH2wiJ9JQo7QI/3dE+rtXEJAhDxA1DulBKoJqkYzyJTrDnIci6E4ncZJB5+omtPbNX8s2lamb59H5kGzizw1LoLNt2ENTQFQ1eoiDkDy/EQKtfoVSdff2dUDr6VRcquRGaXvFxvYZ+38E0u90JEZG+j6KuLi0e+dKm1NlU03O7SWZT9uiffJ8JHM/SAXZvlEapVG+mwUBpl802XNzu/YSstUW7rNUoQ9ua6XVK9AojdIojdIobbckwvgKJnxfnTyzBTF926Z577prXRKawYt3NFKYfYWljLDrwUtqYWSA+RxYIaF5FFL4HoGUvV+YAuBrBNjp5A7I6yMj6Iv2/DLE6FSVoi5siaIM9EVKsauQ0fDfyFAS0lF0QKHuX6dUQXEsCXgIGfDvR4rA3X3fERXwY3GAqOSZljLgb24HzJBybgVkDH3H2nRI8vyPyfFATp7ZxPr/z7iQxghkN9UEuaOs7eeRePWmbXd90t/Gur+Nz1hc6kR7phNSIPclm56kSJm9PjKuTQauCTTc/fORwmsGUtY8R1ap2z6htztSFN/ieRpFGLkHKbjuR0r536P5UTatib2/ITIMbo6LdEapwWowZfJG59DdB82TANDwRs+HrI/9GC5agd4opBRbNedeMJ50QQrknckCbfLm5/5ofbgazal/IQPAz9wzi9h330BKuTR15wXkpHdEEdAe8N93vHYnUnL6VA/l0iWk4xC8GwPoz/NUSCVaAipLvtEmaCbX10BzZcccemcYvX/iDE8V+nU/ZIS4AQHzbkFGwFeIoKo9keH4FeRFfXiletazEEO6X0PWezsAoj4hRhosNKrb/wPQXvETZCRtb/33pvV1MBDOTwRW7lhlPfeZnbGvggcWsjbehMCLPrJiRwTC+Tc5aQEL6Hmj69nGH/clz3Q1HpiVPqc1ivHrNmhNeh2BpwPI9FIkxzxIM5T5taJp/PKJ9d/V7roHaQRA1CfE9EHVRO46Fq2/yyfX2xENjR2QMaU/OVHbcmjuYW19nJgazfPo79DelcqO5QyO+6E9zUeT64nAOt8ir+ONEaDvFLQ//yCnbm2CZkJ/BJL1AsjnRbJr5dlorv7H6M/ERd+xZwJQ9RMSgwRyapjt9SShtS+KkPAJ4u+riSmBj0URUf4L/NHKzKI+pSAKIQKu/osIiPLROm9A61QlcNnWaL2/Dnm1L27XFyEfEFW1UpJmyidl6KTzYQwClq9hdN7DUoATgS3X0wzvezf2y+WM/RbECL0X5rybiQhVD5pIRngKyQj3kzWyhfNYSKkeIst8v9r216ogOfYGdI7pj9a318gColZAwOCZaI/1Mnul6GoLUAxcWgfJVq+SpKIhnscPqjdd5AH9GTnpxHJ4OXVKyjtDbEGM8Ht+Di/tgM5/J5Xru4J2L4zOhXeQRKREe91ZyMlmgSpoBR592Xh0Gbu+lNFoQkaPq4xHppLjSNICPLqptfloss5DCxKBu71QGs6JyEnBn6Py1uPdERBkeXdtJ7QHvEcWuBRk3p7u2QAgfZKss0y96C6NAEqLumtbEXVmg5Pv7Z62OWn/KLTXjSVGmvojce9fFekPwvlpCnBWS4/9d7EUrQcIkDgEncXyAFH/QCC4succJEN8QNTBLYN0HkFOG5o8fxUVUpXXo+3IKe1etIc+jc6PQd7xoOIdyYmEmdBKQe9/QXJscA69HunKjiKm8u2GdLAfYhEsG6VtFqTPaAJ+i6XGJevgcRk6TwZbQi+k+zmYNpoWMV1HkM7mRKSfDPvmiijicRPubNYojdIo392S7Jc7IR3Ny0iGfYQcIBQ6j+yatxfPC6XVK9AojdIojdIobbMkm+rayMv4JRO+07Q4WyLlzsPkKCYdjZPCAQV5qD9D9C4fjpQ7D5AFJgVA1KLAqIRm8HrzKTjeQsrfG4lRQdoRlb/rICXUVARumkSiKERKz6VzvvU2URHWDxlZmrB0eUgpfTBSbOQZXJ7ARb+ya3sSlfUeJBXqu4T104cmsLSG0b4LUlj+wvpyFSLwZBBS9pWkAMvjJXdtJWvTeMyQQ1bRuCFSfLyLFN4P4ABX5CjzyfHOtnEKgKgj0/cr1dPdG4CUjp8Cf/Z94/7vj5Rea5NVqqZAqIWR0rTJeGoxux6MbMsgQ9TT1v47gJHl6m7XRyFl2Y7Ic/VdBDTrlfRZVxu7X+f1WQHtQ5HSaR13LczNNdH8D6nKZnk357Q9XD/Pxn4Bf909twqJQaTMuA1GoLwx9rsPUgK/iYwu5yXP98CFjze+WwGtCxvn1PUOoxUiTHij0sXISFrifYmMAN+gqG8+XO2hwC/t/xURaOuPbpzCHFgOrU95qTXWaQs0y/BTP+Onk1J+sv9fQ2vM28i47xVgoV+DAXMJpHg9lxidrAsC0Y1FBo0UaOGNM3WNrJfD276dJ5EPiNoOKc6bEGioUoSlAxAYuB9xnm+ODsIfItDC8WjeT6NylLV+bpxXMBrNHvuE5kJEj84QweVABGL4Bpt7SKE52q4fVdTugu+FtvdEoI0vEUhmXSSnHGZ8d2S5ujbnXrVjb326QHJ/d+P1Qa5Pzkb7zAxcWtB60vT9R4xaNgntnd7A7o3D2yLQVRMy6lTsPySXvVZmbiyHi9BQ5dgcT5ShfOSPsD8thoD2VRmGkCw6DaWaXDW51xetM03Wl1PQ3nN8ubq2IZq7GM3TkAy2BQItNAF7u+fGoHn1CllQcXskAzUhQ9XrSO4d7J5ZmRrsJQgEMxNFqxqJvMTHYqmVkRFyLav/MwgIeGjafrLzaV0kR52M5Iowf1YkAqyHW9/sb9/bzLc/p56jrU8fQYabd9F6upHdX9jGcAZwe5VriZ+HsyWfVDGvtkNrxgSkTJ0FNrL+fp+CSKVFfYzk0nE2JkH28zL/f7DUYwmdg42nDqwHTfu9o43Tr5Dx7b8IpOGB+H2ND2YgI/RJ5dpfq5KM/WpoPn+fGBFjGfIBUSsjAN73U1oJzT5on+/r+rA3mlt5wKUNKAWl5Z3H60LXru+C1vWNC/psbWLUycKIS8m3n0HywfXuupfXXgH+2MyxCzLJAVbfy7DU2tYXI9GalwsgS2gV8egmrr+HoyhW49AZ+qC0Li3Es0HHEwzVnZBzz9/RnNzDri+G9vBvrF2FEXIQkLTJ+tA7Suxq3/qAmFJpFig05YG0H2pBl6yeaSMb7yMxnQ9Z/YbXmZVE68wbJwR0/xKdGZa1cgjSmz1IdProjwC2N+MiHbbk2H/XSrJGrIr2zo3dmHRG8nIeIKo3leX8AJj0kV+/AH6JwHXhrLhlQf1aymlyfySTXY30hb+zev06zCuiTnM80n9W40SxNYqI8zxKAxzmWYhO3oTWlXPRfjeVFtqbG6UufOR5/0W0b94JLOLvo6j6X9s6+D3kyPE+zuGnLa17JA5a6Cz1LpI5D0/uLUMERJV1PG6URmmU7yCocxMAACAASURBVEZJ1s6dkN12Cln7Ylg/50e653EYYHleK61egUZplEZplEZp2wUp8iegdBNXI6V4E3Bl8lyIRPNCuqkiJdB6SHl8LzI0fIMUYF6JcCBS7N2PS7tDaThlD2zyxvs+yIA+Dinx9yMax9u795ZEgKfDvPLAntnS2nExsIS7dwzwkv3fwdF5HinKxiJF9Nu41GhO6OiNwvlvldPH29k3n8W82pN2LokMWaPTd1uQDza3w2Z3ZAT7DdGQNZJojDyuGTR/iA6uUzHPeqTc8J73vYDFyXqM5ikKd0EekX8CTk3uLUEERP3fHPTBAKRgbALOKeLP5J0ib8FtkBHrG2Jqxw5p25ASrGLaFKRsewB5zQXvoUvQfLoES1eIPLNHoTk9qhlt38ja/ZOcexsjYXtIM+jthfNmTNrYB3np7lMw1l7Yb298dJP9XgmtAVcgpfC/0vHKo4UU2YGfh2ERtez3psgAcX1On1+GImP1Suo10sb2cAQknITARXshD7fj3HcvQ2vjRUTjVje0Pk0gSXFg9+Z6mhX4v7fx63MkxmRkPHsVRbPZO3kv9Ks38Kxs47NXmEf2t4u1xafSK4wGU+9i9Qwerd6Y7QFRK7vrOwP7VqC5uL07E3goudcBKY5vRcb3ycarPspLHqh0T+RV/n20XrSfnbFP6rIvOpR/gfayC4jK8RORAfIRZOC7zb5VGAWwwrc8IOos65svETDjevL35xQQsQtaB7pVWwcKDG85fbqQu34cmmfBYNgVAUX3wQE2C75RE5oFbVkDKWLfQ4aLnd09v1ZvjQMgVUH3GKS8Xt/PVft/SRQFsWy64gK6B9g8eAAYkNxbBQGqS9KU5tBZHhm8TycbMXI9BKwIBv1ByAN+CA6IRP5+1VZodkHg6V/jAHbIsP4Gbk+0690xIHcOb25hf/dBa/lTZKNrXMGcrSeLIpDVhWRlw5eNX1dOnu9Idi7ntX8UMtCFKLQB0BWiIS2FItg12f3PqBCtE8lNE1CUquD4sanRuBsDKSFA1I/s+nYV5v2W6Oy0tqM3lWbIJwU0z0TGRA8YO9Lq9JA9swECbhVGm0no9kZyfIja0A4BYcajM1YY+y5IVrqFUqB6SJk8vI40uxkvnkkEUW6MeP9TSlM6boKLIprHT/UoCNy3DwKVBnnVO1EEQNSO7p2eFWgOR3vzJOL5e0PX1yGS0+9THvJtp/Q8Xhe67v6axpvnUrrf9kTn7R/TjBSG1r+Po/3z2OReD7TmXMNspJNAYPCTkazzDgLCPIJkk1Nznk/nazkenYSLzG335iPrrNOiRmEU1WMyAqWNRrqhDxCA45829sG43RsBkmYikKx3fkjHNkRku5JS4NKTaF/Zuky92tWZ7kgb48+IepHA916/4XVmFVOXoLX8cUoN5tuh88/Pk+sVI143yhzz+M7J75HGJ1NsTD4G9nRjvy2Spf5DTrpNXCpGdy3ICDujfacX0mfd4O55h4DdatnGZvTFSkjWO42sTDYeAZX6uWtLIl1pWZ2mzdH5EYjsS+BVd8+foc+0NWUC2mcOc/faHO9Tuva3uTbUqB9WtXn0MgJEnYiLFmzP/JEok39BFRH058aCsgv8HpdBA+2d/7b2nUNphMtl0H5aqHtPealRGqVR5q2SIzN4uXZHkzdeAnZw13ui6JHTSHQ781Jp9Qo0SqM0SqM0StstyCA2GRlrg9fx8ij0fhNwWfL8tpSmIwsKzW7E9GdfoVRIs6J1uOcPQsrne3EeuRXq6Tf+JVA45YeQAnZ/oHtenYquIQPTN0jxGDy7TgReDPUlevgtioBVZyAAQWG6PaIhfA9KFVc7W5/+BWcIcv3Xvaj9LcwTAxGAaQ93bVtk7PoDifd1AQ3f18fYOD2OGTGtf1NFZWFaQKSsnIaMS/9BSpM0PdISSKH5IS46QgVe6om8Vru58V4FAaI+xwGDKFCO59XX3dsSKcO/IhoKw5xon9IoooUM9xchhdPa7nondLieSAQC3G91PzWHvp+H3XCR1ezvpVbXQ4jpl7oiA+a7wLrN4KMlbMw/Tvi9GzKifEiiaMyhsSZS+C+OUot1RcaKm4ngr43QGvYeCYDT95P7fwHrq8nAGu7aj5GB5HajuQFKtTkdp3hzdIYTlaBroLkxFQEBRtv1wFMd7f5E5AV3AQKFTKHY4DjX0yQ7l/qhuTOQaMjZwt59EItmYH29LzLwZAyYab+6ewPQ2nlw+C5xHnVC/H5eXptbqgCboX3tR+QDos6yNvwCSzuWvF+oDEX7zyc2ZrmARJSuYwkqpB1DnpVTkSFxM3e92fzk3t0erRvXIODOb5FR7GliqqzN0Fr1N6T026Watpf5pgdEnYsiRj7k+r59Hl0EiPiCCIa4hwrpf3N4fQwuemZRn9q9kH72Twh8dRxae/aZnXFqLs2k3l2IQIJw3wOifMSR7bD51pxxQmCd15G8MDD59nD7VgkYpMoxP4Lohb6eXeuFDFRTqCLlIALCTcIiIKJ164/GrzNQJI5cD7oyvDHX0bRx7ZdcXxDtuye7a/eQTV+5Kc5RIa0nca/w8stwIiBqq/AcAmk2ey+x3wOMp/dN6vo+cd9ejWyas3Iy5BAM4GO0lydGC7mLbCrjvRAQ0af0LgKpH4GUkD5S6H1oDgQwU1f7uxgVZCi0Pk1Ea2mIetOLZsonOTRnIhDNBLRWP0Vcm/8POX18aTz3JAVRVsmuJ3uhNfdda++PEaCkPTLkvo+AAOci54oZuChjCb92qyVNoxVo7opkkAdxETrsu+sRAVG559Gisa9FSfpzbRv7j4Df+m+TBUR9gAzNexTRctf2tD76KVKaH0WMWutTIp6F5ttfqqx3XejmfOcC4plkAUd3uPVV1UBdR3MtlLrqI+A0u7Y80iV8hYu2Mxu0uyGnoiDrXIJLjUbOvtwMHp2U8igVzo615tHk+kI2F5vQ2nI78dy4BZKxvNNJb6RHub5SfZFMkwdc2h0BJ3KBz/WgS3aOLo+c2k5E4JAjkCw2jrhXe0BUic4sh2YAPT4I/Mvzif3fGTkqfoDk/IbxuwWKzckm4Ar7vSbaI39ic3wvosPbMfZMFxvzsUjW6pnQXN/WmaC/OBxFV/JA7g3R/jfEXdvH5tpjVKGDq1N/DEbyw2B3LciPYc3vQzN0mm79WgnJJE3Aj9x9f4aeH4HKWyzqc5360c/9IUiWeQBFxF6jtevXwn3Rn+goezvaf0+iFBA6HEsT31bHHjkZhGixQTbtaOvKE7a+b5qu7yhC4O/y5n3CS4vhItKl95tZ18Ye0yiN0ooFOaP5zArlAFEhZd4sQBQCUU4L6+u8Wlq9Ao3SKI3SKI3Sdosd2qfiohXZ9SWJEXLOL3i3HfIQephoINmEmLbjr2SVTT7awAFIqfAEOamyAn33/yzDt7u2IAKHTLSDUjA47IS8qHpUaPtpxAhRCyJl7t+a0XdFCsJuyCu+CTg7uReUK3+lwCjS2ocQYhSrXe13exSq+EbM871KOl6ZdzxSFj5IBERVY1htjxSLv0RGkY7I+H0CBrLI4du3KPBGS3hqb6RYmoCUTL8iKiUHGv9/gaVIrILeIARa2ots2o3BSPH+FbB5tW137/dCILApyBAUPG3DYboDMmbdhhTSN5I1ILYP77hreyKQ1nvGi0cjoNGCyGD5LYog8XPj5WnMRkhyFLHiRWSI+xFSIF+KDHiVABYHWP97g+TKSEnogRQ7IyXCQ+m4U+phNtD+bowMNx8QFTF9EHDvY2KkmXfJHkbKAd+OIa59J7jrYV3qgIAi9yMjzL04sEEeT7QhmvuhORRAJi8SlT7DkGJ4MvKA+6f1b0VPeXd9YTRXXyILrGtn916nDACyJQpal/5hbT2FCMrxqbzeQYrz35KkPquCv4aivfqvOIUpbl+tRAtFkRqL5uJ87npIFRXG/oFmjH0f5PF4PtkoBYfauNyNRWA0+oUesXn0K/R5ULovgBTKn6J1cFaqFLJr9HLW/mORMWNHNM+fIatkLRdhJURSOaJCn/o6nG1j/xVaX8qupbWimdR7DwTSGIdkth8SDZfbor3gaeub4WgPaFYKQ/eto63+41DEiFFW3+m4qF1zQLvJxvq3aJ96Fzi9yvcHIC/ku5Gh/Q20b+6JQL8TiQbyqvhxbqOJ5JAQUaWPu94VKcx+Yb/vtr4L4KIlUMTGwylYV5Lv+PnuAVEBxNMRyX7N2Uu2RuvEAGT8D3LoPUldV0YyWm7amJw14mokI6QpJ/e1vir0Ni83Zgig84b7fS+aS6GemyJAxHyVaKK9MqRHWyy5txjau8dTQT4hO+97G9+MQWt1dyT7vm7XAzhyKQRmXhlLdVqu7WjP/wqdn36CQDEz0BrTF61RR9jvT1EEzyPTurYAzXZIDg1RXA7OeWZddJacQkEa+FoXkvll49LF+OlzNPdDVJAUELWs9VNu2nJHcwEkN12KM8qjOfoO2chXCxqflvRPS9Et+NayCPz6rY3RjWjNn8ocRIhA0ageJwJ5nkey6Q/dMzvOAf2OKT+6cbwAB96fW3k01M39vxwCZm1EjPrZDukMfFTCTgho+gIOrOr43Edu2sb643dIJ7OE66ci4NJyVdS1ZnTd/cE2TreQjYKzD9pX3yYCojpSxnjlrh2IzuIdkAw9OdAmG1X9VLQf5urLGqUuvN8fyQ2T0J60NdITeTBOP6Qj+ZqYZrETchAZkdBrh/QVXyF5OMiyPyCrHw0yyVr2uwNy4LyYVkx1gxw0viBGpL2PrEy2Ljp/LZu8V+L0WEB/BVsz3gEOcddz02qWo9UWivXnRCQz/gGB5x4lcX6Z1wtZJ80/UQCISt6pJ0C9MCrk7PBc+g7S5fwFAy4RAVHPI/31xmn7qBz9cz/bgz5HstkIou6pWXUmypkdKUi/3SiN0ij1LSbzNQGXumvVAKJeRDq+WRlZ5uXS6hVolEZplEZplLZR8gRiIvAlHLpnKfBQFJGZdv/inHc7o2g1IcVeR6TM3QIpjCaZwO89pr3h8zAK8mAnG/xQFE3jIaR8Xcnd602MEHUOMZR0VQY3ZBAMgKjbkTLyeJRy5jKUouMCpPxqDhBoaXu3Cfhpcm9XZBB/iBwP/LmhoAP5O8gYcSFSwHrlRFWHq2S8xyDj6P3AKtXwqfFYRxsP7yXXCxmGplIKiKrGG21f4+0rkHHlCqvb+8RoSSsixftMCgCBjt4oFLllnD0/CbjE3d8UHVCnUsF4V0B/HaQsKZu+D2ecDP1v43cXEYS2O1Lc3W58/yxSwvwBAfm6IGXxqwgs9DeyIckrjn0yhlsiT+BPkaL3USqn8VrI6ncKWTDAWtYHI0N7bfwuJgE/oqgR5xONqQciQ+JApJTcGIFzPiQCotojo+NoFI2nJIJbUVuBg43H/4QUEse7Z9JxWpgssDNVfLQJmnZtL6S8uggZBU5FSp1JWOQvZEAJRvHrcOkbXb38+C+ODC+rJXN2IgIDBVDhgsjL9nNmM9pMLYrj4R5ovrxvvOvTWKyMjHhXAt+vMGdWQnN+26T/d0aAknsxT9xq56Q9tycCJZSETM7hlwWqGPvdEaD5GWLULv/OyWjNG1Kunmg99++tRA5YrELfhygUnwCP5Dy3jvH+bWRTzg1CCv5ncSlSCvjyaGSUPaA5fYrWm9WRMWX9cn1aD5oIqDITGdp/RATBPI7tl0hue8Xm0mScUbi588D+3x/N96+MZ/+NA1cVtb3K7xyC9oGQnmyTCu3fkxjFL+xv/0JGyAtcny6GQEe5cmlbookA5N8iubivXQvRmsYZ3feI0YE6WL++RhVpDBG47mKyc6kkQlSZOV40Tk1oT5kfRb+6F6357xKjV3VEgK3nSRw5ytT3b8Dj/vuuP39t9CvK+CTrgvXZJ0ieuNPoBHkipPG8mQTclEO3A5KT/ooDr+MAnUT55ACqkE/smSOtD5dx1zshx5UPgbsqtTHn/jLW96eTBcO8atdTY+hCOLm8oK41p+nuzYeM0x8iwMsKOc+sb985pIhOrYp9a0/ivDwYgRDbIxn8MrRe30Rcn2cZqAJvVfGdJZActr+7djfZSHDfwwArZMEX5YzWdaFb5nsLI3D1E2iPuhkHNCg39hXorokA7O+SnCHQuSVjiJjNb6SG0PkQoCJNyzhX8WjOt0cggPMU65exZCMMhrW0Hzo/fUGZCDZIfhll9B5Bsshk5PBwoOPzY4hRR1dIaRTQrjldpGt639r+BKXpjPaxb7yBOboV0PHy5Po23qcgeTv8fjLhxS7oLPtPKuwjjVIzfg974BIo1cyn6Px5i133AI4BCFz8e6JTUS4ACMk1/4d0MF8jB7F0jehpvPQ0ctI8w+bTyHI8Wq8+cL+XQ+e5c1CU0neJuuMu6Hz0T3IiH+f0w7pIF3osAmEHUPYAZMx9k6zOsU1FAaqib4eh88sP7Pcith5NsHHfpDXr1wr9kQeIOoEygKgWqMdwm3snMQfA6JxvnEN03OofvovkkRfQuWejPJ4nXy8xFDmsXmnryUtorzqJ6JRXrY4o7I/zI5n0Ygz82CiN0igtV9CZ+Aokv17urqeAKL9mDUMy5CS+I1EGW70CjdIojdIojdK2CvIa397+74eUzX8heqMFpesgpHi7CikBSg4DJjD/GIEM/kSMMNEFoZQnIeW+B0RtizPe2bUipdZIpAS4GSkQX7GN3hvJeyJF7DRkQDyhij7wB4kAiPoYefb90w6j/0YGo38wG9EMkKf1xUb7vOTebna9bJqwVuCNoNBc1nhiMlJKlBjvm0vT/v++8crTJFF7ct4LkSyesoPdqOR+D6R8mQw8VjTGCEDgPd0XRwfOs8kaXV5Cyp2V3bVVUBj0w8vUcyjy0j8RAaj6I4NOE9nIO5sYPzUhBVtZRWnOvUFEJcEYd90DGNulNIjeBTehNBxXW/1CZKluCPT2IXA58fC8CDJg+rRb/SvVM2/cw7vIkLdw0TN2bQiKSPUSSfQ0q89tSCF3hdX3S5zS3fXFmgjg8BoyLjUhw+As5QAyYD5jbS/MqZ3Tp+XGaQ2r4xfJ+LfDvIYL+LRN0EyeWxAZBi4nG+Z/AAJCTACWTN7xa2/e+O9rYxJAGQ8RjQuHoDk6BXnJP271bzZwY3ZLUv/eKGLFAsQoDj2R4f094Aw3Rw9AEZfKeskio9NbaO+chjx99iamsd2BmDK0qjzwjh9Ow3mXp/2PgILLl2tzcn0zm1dNwFnuujd+TsDSTBTQWB3tk8PcGI+lQKFeQMOnzLsMuCOnXdPQXva7tJ5Why/QvuRBt3lAqIOa2aerYetmXp1nc5yaQ3NZZKg5g+x+9y4yOnjZbABaE79XjmY1Y2H/d7O+X45sJIU5NmwQAVEX49Jt5jy3AJp3TVi6ImKESb+3dUcArnEkQJ62RJOsYuxKYoSoIN8HIFUTcJxdWxylr56KGWcq1LUDMbLqeWQBUfuhM8XTwBYFcylv3VsERfE4hZhCZickLzYFWtZPIbJsbso197+PXPVrdD5YPPStuxdAlLkyabm623wZT0zVu4Jd74zOLx9SIYKPG9fXgGvLPJNrCC/oz77AcwiI+CZxf+rg6nc+kq2XrVC3tM1rIMcRn1bzXrRuh3Q5JfuIp1UPmsm1HYz/g3GnKwVnUvfOouXqShLda3aLzZGvjde/b/x9NHE/6obO3R8igFwKiGrn6pSbdi3wCzK6hSiGaXS1EHVpTwqiIdSL7mz2Ww/rGy9fzNFegozyjyEDpHf6WAzpBmYCl9Wo/mHMwjgOm1MebYmCQAszkK5nMDrz3m18e657bkukN6gYURelAhuPDN5hve9rNG8gu+eFSE6bV1HXetFthwzUj6Pzx9CUtxGI93Ubv0Xz2u2eHYCiV91MlO1DZNaP0R69rfHI0Wgdn61InY3SbH5P96alELh8IvBPd92vQ3egc2vFSL1obwrnpksSnmxvvLaV0fsKyRVj5rRds9P25F4P5PQ0zeZAiPjbHQEQJ1FGV+bojEbnwvdsXZmA9FLL2/0VkY7uNeD/Wpsf6tDHC6IUv+fZ79WtP69A55ppSHabJwBRVB8N159dbrH5cQaJk2cd6+nn6B/ReeEl5BQ6Be3VuVHKZoP+6WifvJMIGu+A9LzPILk8d19K6PRB58GziPLj/Ogs+QHZKOVl9bZEWbKHtfthBNTv1ty2NkqjNMrsF6IttT86C35BGUCUXQty5EZUiHI6L5VWr0CjNEqjNEqjzP2FqIRbwg5aPiXMqSb0X0sEO3RDxpE7kbJwEi6Puz0TBOf5UUqD8SjyRdjEvWLvPqTUGWEHnIqejShq1Xii58yKJhBMs79rJM+vg0W/SernDw4drV5pioIQUeps7ICf9l36f5X9Xg4QVdYAMTcUlHbOp1mZXQ9cbyA9jYI0du6Z3ZGS5G92qJuJQBEDk+fmJyo0d82hcx0yUi3r+GGg8aQ3et+FjIvBq3ltIlgoN0KJm1PX2Pvem/9+pMxcK3lnK8zQWUTP/t8AeSUdjyJ/dHT1CgAWD4gqOy7EcOy/RgftELHHK+Gvtfk2KGlf+HuMfXfD2ZkLOf3WDinX+7nfXRAIcTqKTNbV19P+38jGdTxSGB1b5lsb2Lg2Ade4696oFABR44hejuUUgn6cBiBv3h3JGl7XdOP0A/vOHghMsX1bpZnzjYWRAfOUpF/bI/Df50jZm0lXVobe3miuX4QiAZyKjFTvA0Ptma2RguxxpDzcu9p5MKcl6dO9EVDzc+uD3wKb2r2eaE2YgBS6dxpPlwXqIqPTdKTA2g4pSR9BIIX9yBrRvkVA3aq99pBxxUdW88rHRdAacHA1/UhcT9dBe/KHuOhcNuZ9bfzOKLMOLIYAX2ONV75Ba03FNF2eluubA21M+ibjdabx1kTcGkdcA1dDe87bJOAaBKL8hgiE8kaQavs0T3mRiYJYa5r2ewME9PCpW0NqubDfrUKOwrkaPqg0T3LGu2Ye7cYn36A9eKUyz61nbW7CIi8ldVoNrX9fUiF9a1ugSVbeCimbz8WAqShK3RtI7n8LgeLG4kD/lcYJGcBOQOvQBZQCov6DDFrVRJna3Wj8A1tD7fqCaB+YZLT+jIAXH5ONSpLnLb0NkjU3s9+D0Ny/O/l2ZxQ983G0nxUCn9G8vND6dAwGjiFGtHoS7Z+D0R41Ja+eBX0wn9XhQXJAWSha3s9J0k5V6NddEWi4Cdgr8AZx7Q4R41avkt5mCAC8mY370nY9TZezKgL+56YCbwGanZAx7TPrs7DGp046hem20L42mJhKdCTalytGnq2yL09Dhu5vcOneXF27IQP8R8gRqPC7CY+uSgT89UIyymNIjnifmCq6A4qq+iJJlKJ6061B39U0KgrScTyC9v4xxPWkJzpffgX8jGbsh5XqWAserUff5nynC5JlbyObHmx5ZKSZgYE9gc2RY81u7rmiCLXHoDXdp6m7Dc35IJ/5yKplvdzrRTf5RkckT72KjMXrpOOA1on9KtAZQExV/sfkXmcEFnnanpmOZOgT0rY2St15vw8RSLAUEVx+bfJcN+Oxv5BEqC6guzSSGU5Be95F5JzjiOmCfVTHeqYH8+v9lgiwcb2tiUGvuyY6685EgJ7T0HlkMnBqHq3kG9shueg4LLUmkv2a0DoYdD4r2Dz7BJeCc14pCNC/LZI5X0U6rSBPXmz9+xywbWvXdQ7aWDEKcs47/qx7Py4NcgvW+6dI/zgY7X+dUXaKWY4qVdIp60SJdBJ5gKi17PujkufT6PfboPPbfzGHUCIgqof13we4CFFV1LkLOofdj5yYglzSiTkAgjVKozRK+YJ0AGNsP72JKK8ujmTtz3GOpWQjbS+PMpmcW7T3zqul1SvQKI1S60lHDb3IWqLO1Qp4zaDXlTrni65V++vQ9rqMfb36dG7nfQQ0OCC5trRtqGsm1y9FYIC3UZSPP9ph7Fi7/1+SdG++zpQHRO2AvEin2rdPLaivP4j3QAfj8+33asgAdA2KqvQRUhbmplsj3ziyMwKDvIa8kHZJ3gnRfC7FFJBkDQezC/7wgKgLc+o414V/zqvTnPJ7tTSR5/8JKNJSZyQgjkCe1LemY44U1iUKTeSl+QkxpVaIsrEmzhuUUq/mlZCSJ03zklfXzkgperW7dg/ZdBHbAntU0x92fTRSLL2GlKUfIUBYUBKFiD6f4rxvK/U50QM9NbSGubqQ3cv1PrUxeAEZUTeYU55AQI+XKY0StxgxQsZFJOlB7P+u9lxutBE3t1axfvoAKZx2dc+EQ37w+P0PAnUsUqbOfj3Zz8YopE74OzJihPViTaJ32wtIAXh6W6VZ0B8LIAOzz2nux+l54PYy73tQ2qLImHwx2dSIyyKA3BtkPWhTQGuLraMoetVXKApRSNP4HgIUhJRw3dGcuwNFdBvt3s+LstUDKcWuwgEwkQf+Gzigr13flWZ6zVof34vAb0Pd9fmQYfwjmqfsCzy0IZIXngX2sWt9rJ9m5NGkNA3IeKNxFc3wREx4/RSkVF7F+nTp5NkT0By/lZg21AOi1sRFh7Brw21uHGi/hyFZZzUkH8xWnyb1rgnNhP5Ao7UlMrgHY3W6362B5KGyUcZSnq3hXJpTueKoMD4588rvCWtb25vIGmu/Z3PsZVykIQrkvrmdpvvrjQpXURohqifa0882nto4rz5F9bTf3ZGiPQ8QNcL4dO88WgmdIB9/AwxO7nU2Xv4lSp17OrBDuboSoxT8EgNj2dw5Ds3/R1AEyi2IUTeOqFDHUWjNfwGdlUKkuQAO3wNFSfwUARwew63PRX2afOM8tAbuTtZg3wnx+RMk+0ClOYWMj8+htcSDVTsjY8xYYMUqaO6P5OndECDzLbSv3U0WSB5SFz8FrN0KNAP/90aRYN5HINsUbDIBOViUtB2tmyfbWO6M0ho1odTutdKf7Gg0QyrLxdw9D4i6wnj5FnIAwslY74tkvdsx4zoCqIR098Pt2iLGz7nR1epFN6/vfVeNPAAAIABJREFUoPSs3sx+rAlNBGx5DZ05wvvronn3MkmK8mbMvyMpAK7OCY+2VEHAt/eAi+x3B9c/qyNZ4gY3b/y61d7/TeheAbzifge5JJybt0byXJqOrn3e/7Wim4zdAsgQNT/xnBwAUW9g0YuL+CyvfnZ9URR1bDySmZdM64D21u2QbL1aJZqNUnO+H2LzcnsiwCCkzJuJ1uPlEYD9IHTOOawCzV1welQkgwX56WJcSjBcmlF3raUAkCORDBNSFH+AosSEflgZRTB6CulNbgD2de/n6vpsfbgU6YgXdffuRGvvavY76LoGeLrzQknHEMkBb9o6Evr3dFsb3sNA7G2tIFDqZLLRFpsNiGqFencGHkVRU0NEzqWQLHgjVUQHdet40G8NRXLFHTZvPEjMA6L6h/dIwJHoLHMFWQDETjZvppONxOgjRN2HZOwzq+l/W8/eQM4JYZ8fYt//GzGN+3cKcNEojVLPgvS/zyMnkjds7Zwa9j9ihKgUENUe6chvQ/qTeQ44XLHvWrsCjdK2Si0FDJuAnXDGyBrQnB+hIQ+iRmEZTbBZBSG8fYSTmhj2Sbz15oSutf9F4L4a9mnN21/Httd07OvVp452retZs/bb5vg8OtD6yBkDTfAOBhFvuB6BPH4+QMaCQ+z61sjgPaLcGNtmfiYJIMru9UMH7ME5fJQeDsNBeCRSCPRGBojridF6fk70mitJ6ZRTtxEmRNyAjI7PIEXj6OS5k43u1Sl/z+F4LElM1bXRnK4/VX6zlqDPdqHUql7kRItBRuGn0AFvj+TevggQ9UcKDEJkFaWjUQSBgTb+3yJl1lLI0HIDMZ1VUJR2QgazJ6k+BdWdCGDSwf73huZFELjw7Gr4CXn6TAaOJXoKHWN8c517bg37VhPyIio3L71RNKQWegIHILOxXR4d+AujtiEj3XMIHNksQFTOWHcipjHYGheNBXnLPYKizRxPXCsqhqDPubcmAmQ+jwBR3sDs+2YDqlS8oahA09B6sQgymDWhdWU3x+Mr2/hdg0uVQ76ycK6lWdS/xvNXoEPb3sm9HjaGl6Q0yDFmIwPBZ+QYjpBBYAYuJUdrFQTCex55CvrUgGFuPEdU6ob+9eCuIgNJd7Qune2updExvkcSubA5c9Ce3Qalgg3A3zORomtaXt9XQS+M30Y2Rk1Icf44MhblgfXOQwbGTsZDy9p7E9HaMhQHVizz7dToOAvMiZTLJVEokaL5M+APZAFRJcYxuz4rmh8y9E6wdzd0zw5Ba2qz+7RONA9EipEN0f4wHfgR8lxP97vjkSdoCbA86d8e9nyvZvJHobG6VnQpBdBsg+0nUAg02iHMTQScLpsacG6mmfRFHytpdLOrSSJEVTtedn1n49X03DcfUW4+h2yEzMJoXf5baJ6dQkznu2S5Nlbo0yEI+HMcCbAZGbdHIWXj12guvUOFiFhEReUYLHoUUVb9AItCYv2+JFrPyqYDzmsHMb3FRLQfL4kiJBwd2jSb82Mo2vObULTFY+zvFKpIv4MAAH+3MeqB1safoHX0SwyghIATAcxf1qO/HjQd7QBcWND46T0ENgnGqS4ITFyYqty+exc6NzZRRfrIasfDfi+NZLALjf5ZZNN5h7p2Q048B1egvy8y0p+ARQEkzq8d0B7wKjL0PYpk64pRy2pFN+HH/ijS80BywDPN6MNa0PTgHg9IOwAZEf+EInP918bpkmbMuwDUPaDM872NR/MAUWV5tCUKWuseQ2finnbN643+ALxCjpEYnSn9WGxPBP4caXy1DDrTv0+Uc+ez+fBnnN6yBej6sdsTyUUTkQ7xXCIQ0AOinkcG5KL5U3S9HwLCBAeAik535e41Ss35flkEFH4VyRQBYLAkMULUBOONP1FZhuiO0gB/RTaleC8iIOpCJPuFSJO71bONBe3ewXj+ePu9FpITmozXMylKkeyeC1AkWXvRWvsv4M/u2n1ofw5zdCO07nVJ3p0nQYBI19dE1Ht3trXmMNpwqiMktz6PdLmzA4hq19x3alTvfkiPEewfKyMw+h+I4KgTcTqs5P3TEXg+rBejjd5LVmYi575R7p2fIEf0+0gyRmDOWkgeCanCfXT3bW2NmohzkCIbIeoJzJmrivZvZfy4NooGer79/ofV+yucnqJRGqVR5qzYHH0bRWNbHcn+g5Ee9TNgBXsugLE/x1J3I7D+HejMPKi129Iq/dfaFWiUub8gAXw/93uOhQqksLuKmCLkApqpyM6h2QMdqB9Hiro5DsdoNP9qi0wTMlKNqFH7r0CKvCdQBJ5V3f1mH1iRh8gbSLH0TZGg1drtr1Pbaz72dezT7kh5eysyLB1Uo3GqR/sHI8X6p0R08SZIqd6PqHxJjYAh72w75P05DimV/OFkEDIGHI4Uzj7XdC4gKvlGeD6kbgqpCA7F0iq5Z7dBSgmfPuMQ4+dXqRAdAwEtPiCm2+uLDvfvokNOGj3rLCzkbC0LUn5vWmu6Bd/yY7Uh8sD+ETIQL5I+UwWNTvWgmXP/RBurL7Dw0GSV1fsiA9YdOG/Jgm8NQ8rsp9AB9EjHdz9Aa+JUYJhd600EzR1ZVO+c75yODqIvI6XO8q7eByIlelXKbBSe+e9YOgq79lejvY6vCzqsDivXxwXfCKCBWzHDKjISjkBr5ZCcd/x83INmAqKScR+Ki0yHDIjjkXfcEu76ougA/h4yQhZ6GefVIX3O+OEFSiNE7ZAz3oVyElIQ/BtLW4AOL5ORovMjDMhXpp55Bty5lmYydisiI8AOxDV7TfvOWKICqR9aH6bgopC5ccgYldBc6Y/m3pl2raOrQyekdP5DNfOongVFjvsSk6vJGoYOQmvNSN936d8Cuosar4eUg6mSuC+SOXK9j8vRzhnH9ZHi/X20Rv4NBxrKG/sKtMPz66H1+Uu0lg/Mo4k8pINhNaShGICMXC+jtWWWR7aj0bGgPUchY8IB7tqKyHt7BqV7/Ok2F35LQXTJ9DsIDDIVKa/75jy3GpJdPijXp8k7NaGZ9EU/BKQ5FUtrQ1Rofg5sYtd6oTX/M+DwCvyyu9F8DYEqRuO82KvkuY1R2P1a092EbCTPvmg/eQPbT8juX4OJxp09cujlGbLaCs390N78ib17DbClux+MeGfhZIwq+rsDAjrMRDLYfMn9xWwcQ5SbFIRUVaQWJP/kAUOqNqAQz6eLJdfTqBt7oshQg8p9B3lfn4rOUisnfbIW8Do6u+UCNSq1Oed7/VEEniYE2PoU7ddVpzAsmCfboX16JjLiHokD2BTRRIDqM9F5bi13fQEEEvkAASXOsXp/QoV0OXWiuSNZXVcARPVG6/xnSFcVQEZdKTU8XYmLPEV0HpiCZPn5yvVVleOwNTrneln3Z8Q07d5pbT3cWb1M25dFhrazSYDXjg/XRLqLWxBQ0KcJL5IBa04XyYWvo7N3E1o39mlmHx5MFlBfC5qHADva/2ugeXcKUR+ygvFsSOdUCeR7FNI7HeiubYOAo2cjw0aQfYoAUSU8Wq9SjqfRujwFnZuD3B+imd4N3Jy+j+TZG4Df2u/RuKjEjremo/keUjB2QYDVDzE5uiXoJt8YjnQQFyNZ+U/Es9Oi9kxHuzcWyemL5tDx/LAkkkm9089iaG/5BjlNtVpElEbJjFuQFZZGutk3yQKilrDxGo/OaZ3TdwvoroBS4HyGc+xBsvgJxscf2Vz7USu0e2HkdHqu/V4dneWuIzrlPY6LkpbXZrSeecDGqkjP09HWi/uQ/HSvzZ2QDmghBPw9Awd2nJcLkiHHo7P9EOScMhkXEYpmyhutXRx/LI3OdRk9fbk50tptRvva0ygK1FpIDriFuO+thuTWQ3L4vhNywJ2I9pplUGTHY7HzCJJTH0H2h13cu2ehPacIZBXkrV2RrODPR9sh3eYrZHWbYb0qciLNk8+6IZ1zE9LDvIPO6R3R+X0idbCPNEqjfBeLzbd30Xl38eTePjYPj3TXPCDqRgTSnMJ3FAj1v//9rwGGapTyBXnBPG+T6Xh3fbYBUejw+yryFLqCGH6/qrQqBTQ7mVD8N6QIbHb0h5xnu2MRgdDBdgsUgv0x5uDAicBAryEg0G+QEuAbu3bEbNa1pwkcDyBD8QTg9zZ+sxs6vObtr1Pbaz72dezTHtanTwMPIpBFE/DDuYz3U4PKQ0ig3x4ZGz9BQm3Ggwcpi4J3SnfkrfAC8Lvkuf2RAWcsUja9jQT0Xq6fzkSKvXsoBkR1QAeGmQhUFVIRHEc2YssRyCgQDF4dUWSJ88jxcCergOqOFHkhxPtAdLi/EnlAvGLfH16p31O6szvm6RjVsyBF4UQbo8/QIftmLDJEmfd8W481Hu1YR5rpeE+2sQkRLGZFpSKmLRpaRftvQ54s/wHWS+6dSkwb9msUaWkCidElqfc6yIC8O7Cuux4Oj5cjBfYKxs/TqMLz3vH1o7godkRlUeiHTZGSPRf4k9R1DeR5vn9O24Niazo6WN+LQI+FaxlZIMKeVAmIyhn3KWQNtJ2QwfFNtN74qBABEPUO8p6sCIRCaaHOQ4C5H5CN0LA90VvtOBvLmTj5qBxt+70qUsb3R+voeOBau7exte8xdJCpylt4bqWZ0Avr/pdoPX4HgX/aGb2HiQqUN9CeU5ISFUVmC9EQLkru/QrJFBv7NqE95XHg4nK8VuuS9x2k4JqMS5lCNgri28DNzaHp7l2K5uST1o9rujlyEFoTt0neWaka2gU8sigCM/dy19o3h6Z/z/6GlHkPUSE9MZqPH5MFLixNBEQNc3SHIoN0V7Kyy9EIhFECTEfGpxtJgFJ274dofb4Xl34xr8+QHHEnLh2q3TsMyTrHEuWfPnl9Wm+adm07ZMD9NzJkhL5bCBlZm6w/fm5/J1EZZLA/2kOvQtHQbrD+vA4L61+J11C6yE/JpgeoF93OZPeTADTyMsbNaA43GY9Uih4y19NEAJOZyNB+EPIk/gztddu650KE0kw60jJ97FMu3Gs8Mzx9FwFXPjHaJaD/hObmwGk29geTTa93ATnAkGoKOsM8B9xa5pncaNYFvL8Ikj+mIfmot12fJbeideQTiqOVzu55cwe0FuyNk9/IiahagY7v9+3RPv0RWRms6NzZA4Hmm6yNKyU80QMB8G5D5+LLyXqn561R9aC5CJIPMuBrsimgX8ZSDKTttT5d2fpmc3d9WyQr34/m4SgMYDqbYzoCyWG3kkSeJQJWz0RGuN2QLLRjJV5CgKSpJIa0avgkrz/rRReB72egub8DMv4+b+NSmPY14eEQbWl4HWlugeSwLZN3FidG2DsjoeH/L5FJ0H43HcnNM5EBZC/iHh8AUWON51ssDTRZMMda6EywKXFPaofWwc8RcG9BdK4YhebcqBya3dFZ/hukM/wGnYn9OfJgBFz6CO0JuyIHq6kURC2rF1137XsIWBecSJZCRuoXkd7jt2QjRG1MBSdTtF++hs5OY5HcFxzIFiICoi6lBQFRSB96EjXM8NCWCznyNTrvBUDUdkQA49JID+6j3uQCoI1Pwr3lkL5pEknaTePVk6mQBriO7e+GQFlrIaDeawgc1dHmXdBzPU8SucnRWAXpV/ey3wcjvVo4ywb93ZvorOyj1I5C6+Mu9W7r3FLQefYkJF9+jc7DJ7Z2veagPX6tXgDtz58i+cuD78vJHZ7GTjiZrIb1LFxn0Vn5Cyu3hTqhfe864/808m6Y393Ree59m0vPIV2sb9NgpJO+h2xqzPUr1Lkd2vuakKOLB84PI0a/9yCrXCA98QzTCQHuBxEzb8yHzo/DsKg0dn09tDfu1Np81iiNMi8UFAlxOtLFhwhQQfZYBZfdx60xAYzdhHQT31kg1P/+978GGKpRiottcL8yIfRJJHj7nLLNFrCRoPwYApgs665fDzwxB3VdzgSDndxkXx15jx9A1uhcFaIcKVL/jcAfYdPfxYSb3snzzfE6vTjQddeHEEO7n+afr4JmT3QoeDAINkgpNs0tjM32Qqx1++vR9nqMfR37tCsCLP0VWNGuLY4Uq9OpMqVWS/B+zrUtEeDjU6SEnYrS5LyJDI5vIeP1RGAr994gsorl9ggEMRUJ+b2NdhNS8AwnhlHvgYwjM4Hty9S3tz33FVIGlaQiQBv/hyhlwf727c/Jpv8rUUoSlRZDkEdmT+PfG1w9D7b6fwkcU02/IqPseVjI2ubMy9nhkdkt1uYvkFE1GBxCKpIrKVZm5Hm3HlJHmnugKCI93DNHI+XAw7iUU25sV6zU12h+voU80T4n8UK354YToxyeSzaFWmrAHmlt/9T4egbwE3f/z+gAPBkpul+jmSBktJ48h4zfdxsd7zV3CVrLelSgM8LefRPN7Y9w6c/smUOJnoinYqAmN9crASv2ogIgKmfcvyYnDR9aX7dH60geIOopNEfLrrNImfYxWvuvNT67HpdKE83fx9F+kAEDVKA9GlPKEFMYXoM8+hYnekq/YP06ngpe3W2I5q7G82cgBckOaD/8hhjJaDnjiZuQgbhQoYuUL8H4d5G7vqXx1ASkeG6HvFVHobnXYmkDEt4dRIz41gPJ1K9h0Y3cnOmDFOe5zgEJzVWQcmlzooy2ttGeNU+QR/lhmGd+Qu//7Nlhed9oRvtmKfHnkGY4xG+C5tcTwHaeTvLdHdAcfBPnWY8MEC+j9ft4IlD62OR7YS85yH4vbMUrGFdERos8QNS5FETaStuFgKrXIAXvusg4OAGt+ZOMn7vk9EWRAbtmNK1fOxCjwL5FBBfMSjGKAKD3IYXmFbi0oOQbr1c0fj4Vk5ns+nvkeLIV8FZY9w+rN113r9x+0hvt1T8gMXZXGK+5imZCZzHjnQuS/nwWAUpWSJ6/kQJ5N+njrY1nNrTfPdEZKACiQuSx+ZAh90Aqy2ajkDz2DDIwf43kPO/R/DN0JvhpES8U0O6CgCtP4QCW7v7yVs+Vm0FzawQCayLr9BMiDO1obSgxZCAD/C40Q99S7lm0ZswOzXTNfRI5smxTxbuDiAAQL++WpBVtRjvqQXMrG/uPyZ4NAyDq50T5fLMCGgvY313IpiztieSnyUi+6u7urZTHo5Su0XsgXcGxFMhbRJnoXXTO/klRe5P3drT3VrXfKZBmM5I1oKXpEteOK8iCDp5EMl9FMCFJtKV60LRr21u717XfHiy0gT3fhDkXJLRTmSTI239FTl/9URTMB5HubDRZQFTw9K57FGlctDP7PRKt7QGAey+wtWvH3cRoheOx6FkVvvFbe/5pYnSNNNLwX6wvJlq/VIwiUke6hyIgZnskp3yGdATdkENlE5Ing24xV45213ZAuoLLjPZFaO19g3i274sAEU3A9fUed1e3H9o3L6GZwON5raCz61/IRioMsvOySKb+DzqXBqfR+d2zeXywGyYXUAqIuhGt8acn9WiXfr/O7U73qRD9cAQ6J6zu7p2GZMppuCiMyfu9kJ3oU5s3X+MyHqC18BJ0HrvUeH8AcmyYShsGAs1u3yPHiOUQCNdHTW+zqQGJUfhuR3r3KWjPqBQtOQUVN5ETrX4O69YhqecZyLYRdNrt0H4RnEb6oyjOv0F7Y25WAqIepzs63zYhPXZYL7zT3OF2f5kcOiXOU+7/bshuMRMBs1JA1L+RTnbvSu23ufgQMQXwc8CP03qgc+qq6Iz5dxoRDBulUWpSbG6FgB0P4iLV29rzaTLHw57RH51py+pbvgul1SvQKHNvQQf2t5GSYB0EgviMbKj1ZinT0CH/UeQJ4zfnc5EH687oQNG/mXXdDB1W+9nvPa2uHxO9B6/2damC5l3APb6dSLHzFEqRcTFVotQTug8Av3e/g1BxIFKAjCNJuVOGVhdk4P07OhCERW5t64/fkKQJaUaf1rz9tWx7vca+Xn2KgElPW329wmUrJJRWlQarnu1P5uTGwOjkO/ejjfV1BCo6HqU5PAF5GxR6tyHF0AoIRPVDuzYQGahvQMaMCchAEhR7PXEAizK097a2foMUQmk4/g7WL+/aMxMwrz333HrogBAO3EchxYY3JK5rNIa4OTHC+PZRPx/K1DUoCy+nGd4qydgMrPa92eSpwPPnIcOnj7pxB07BQQJeIl9JfFA9aNrvTsTogseSBUQdh4yEjxCV8YXGEUqVOl0w7x377ufII3Nt/1yoRw6/p8CFSUh5uAryHr0IKXp+6Z7bCCm3tyKrRCqb5sLdO8j64m3jy3A474gO7eOwlDllaOyB5uUp1o4wv5pIDMdEZcMmZdq+sY3N5cgw2M3d84Co9X1bc8b9W6IRYyAC1m1INo3BMPINw32qaPf2aC0dY78HEI0W95FVcq6MZKTv5Y1RDu1tjM5pxDWmPTLo3uSeWxylFB1Gjrd0W6Np7/aw/ruRJCoCCh8+BYvkVESj4PoSROOfT5m3O9pnmpB39wtoT6wKtFaLkvDucATWuY+4Tw9CcsYjGOgLAVr2s7qW9ZxDc3k8MYXvvzBvPrQ/PWrtf8z64B2yzgxhPd4VAY7exUXKowoZuUzd5ogmcf5vZG34cc4zRwJXuu+NteIBUUuhtWUGmtcnJzQCkPlg+72P1ftDJOee5Z5djgiIyuX3cu2zeXAt2udeQ4asf6C9oAuSNUpSZVXqpzrQ7O7mzulEJazn5064NbzCHN2QUpD8vTZWswx5ZeZOZt2vF10k3++FjE9+zxxqNF9CMuJKaD98FUs/mfCs/0aboOn4O5PyGa1X7xPTbA4kJ5JqGV4aic4Lv8KBR4jAkM9RFIOt0Vz8kOx6kWfo2NTGfQzRmLwWMaqmB3L93K5vWG2d7b0x9t6BZEErnRCo8hkqpFjOGbdN0Jo8AwcqR0as05Bxe2Dy/kLIcPgpMqDOsWFrTmgm7RmK9pxZQJcKz6+KQM5pyP72nidTvqwHzXLfQHL3g5QCoroh0OmB5IMVvXGsJ5p3s8Awdr0XERA1Eskvu6Az+iYJPQ/MCYDuRxDIz/fB3kjm905H+6J5levdX9DuZYwHbw087/qwG9pnfkUzUw/NCd20zggAPxH4vrt2L9k1ai3Pj+Sv+QfVk6ZdXxCtxf8k6jOCPL0qAltdhAPX2L2Qsi3d7+ZD645PwdgLAaRCxLHwnYVxkfzqVdBcaUJ6oS7Wl+ON91ZHAPy3kN7LA+O3QcCF0cDgcjxqbbwOgYumozRzIfpEh+TZ1ZDMt2g5mvWka/c6I6eM9mgtuZWYGq8/ch76wPisG+XXo0XQ+eECIsikI9If/AdF8gjzaVEUFe6oeo99UscrbA5dRk6q5nm1UCoT72Lz4Y9kU+cGPfcBRMDAjmRThbZDabO2du/1ITocrePGPryzCtLnfItLmddCbff73fy49dvV7zy0jwaAcFebc6fhHKLLfGMs0o1fT6neYHmjHxxpx6P11q/jbRYINLt8mFxvs+1HOsNpSJ+/mM2V1YgZJfweXhS56CjkEFES8bmG9fwDWXvLQ9jea3P690j3EyKZPUzO2SFvDNGeH7KHnEncnwJgaiub+7nRoIr4wu51RfvzV5QConZA+qL9K7R9PrQHPYTk2S2QjuQb4Dr3XC+bq08huSfIQQ1AVKM0ymwUm7/DiLJFJ/v9CZI5F0D6uxmYw9L/s3fe8XvN5/9/Zk8RCWJLbEGIETu22HsLsWfsXZtSqkZLUVqqtVqqWqtq71pfFKVG7QxBkEQSifv3++N1vXOu877POfe5P5/7zmg/f7wfn899xnXe+32N13Vd0ZkdzujMiM7/a2WWV6CtzL7FGI9LSPLdr4IExxgQVXoxoZDhJ5H2kpqLJPLE53Y4v4ATCkrQXRExzZshYfNr2whWst+/Q8q/q0rS64SE4zcx1LVtLm8ghe2jxth8Bfy6JM12SPB9BAnBPaL7WyHl8McImb1ISboHEYUoRgLT3UjgDtEI6ole1dD2I0a24W1vxtg3o0/t2ROQgrS7fxcdap8A59rvuhjEJrV/hI3Fw6SNGBsj5ds4nBd21njnXO+PmOJl7P8xSBnaDYWBHWtzbgROGRzTpFq5vQYCJV2FGPGTyYh8g5jyNXDeniRgqe0Q43AlUkr8gKINeQYiKDuCkrQjEtYuoIT3ub0/EXk5ZSqN4rbF12weVXBpiBpRcr77MPCI+/0A6ZRr6yHFe6eMeuYpiZtBsw9SLE9HStYYEPUeUkoPLtN+WzfzY2Ho3fWjyQBE5c13d39dBFC4GVMM2fXebjwPL1m3dhHdw5CBzivRQpqY3yFAz0D7Tk2vOWQUfQQDIJAAFv+A9r8KERiAgmhLaC1/ggxwj9r4nUU6MuTuSGH+CRmgmHjcjebn1p5JaE/ezq3JbZAw/zLZaTCzlO59rL9+br8HIrDK1QhIORl5qK2e086i/amvjcklpI21PYA/IwXBSki5sD86WxfxtOcgmgdSvXd3RuA8D8oNCp250fr8c415mafwW4wEEPULd305ZGC/E0UO3MHXs+hbjSwIYDMVAYdDlIAgiG6EeKgJCMzyD/u/KtUk6XW/ATrTz0Jnytb2/jjMKIwU6cPRvngI1WBFn/pxSwSa+Yw6wUtRvRpFsz2JkN8/4zvrId7hImSEa48AnB8SAaLs+Q1Je8t2QAa7r7B918ZpClLmXYwi6nyPnAJCOpLlkGK+cL/O6yPE652DvEgPiZ65FvHcXevp9wbTDGuyOzLCfIGMrJ39/YL3O1BtwB6O5n+IvPAA4i0DD7UaAolURVwl2fcPbhJdf56MR+fcRCsjEaihHTJshnTxo9AaLQRWzq40M/ox9N9go721/b4/6s9l0ZrYNHo/b1/eyup3HNleiZ0RTzEFneGfE4EVc+b7mQiw6M+dO0hHwPTe0+vm0Sz4RicSkO6ZiAcaiHjLCWREn61F0/4fSpIK9lIENj/XvlPFl9mYLo3ABuOsT+s6u1yb2rnSYppRe3ajZOQhe34gcnqLwUutAd7WRTOq/+pI1jiKdCq5jREP/BXiZ5ZHOoGxROkGM+hvbfNnXSRzfBe9MzdJlLBXbe4juo8lAAAgAElEQVRfENG4BMkKsZ7sXzYf2yG5/2FbNxPRes9sf5nxRXv3NTYnZvB/Vt/97DsjWjA+ddOl2hlmAWvzwmidH23X4z1qCWR83DUef+SM4ff8RtAcGWgi3rk36bRwI5Fe806S9JhdED/2d5zTJ+JhQrojD8IbhnjyC4C/uetBPg6RrcahuTpPVMdmpsbrgaLMjULpeoYiYJuXcXdHOp2XcRE+M2jlRsFE/Mh8yOFuso1HnGI1C4yRKTc3km5eO+z/RRA/6gHGQ+3aH3HOhjm0NkH6hlHYPuv6qSOKBj8Fc97Jq28Tx9+nFfwVpmfkfwgQZW3fB9OD23yvIHl5lei5nWwdjI3HHuk/K8gJd6i7PowkCnWQHzu5uXglkp+nUwev04q2zhv93hU5YLyKzuH53L2NkAz1YwTcOBTJFIWAd7u+EIluZyziNbIAsyEd7DAive6snhct6Nv/OlBTyXbPl3HtOARI7u/7AJ3HY21exPJuTV1xA+rq7QFbIp5sY3SW7Iv0MC+TBv8uhnQQC+POxhz6w0g7c3eztfUV0vUG56TOyJb6BRnO0VFfbI4cQ25Gug2fUvwwkghR3kG5f4m+GInO9kEk/Mhhthcd455bG+lRLyfRMbSBMNpKW2lBQXz3vxFuYm+qAVFfIp5xMuYkk3e2tBXr01ldgbYyexd3wIUDbCWyAVHtiYTIApqBVjsk0I1FRrb1jVlYCwE6/lKSXjtkyHwSCZinIoXjvCQCwwJI0P2EGulcHN0Rxmi8Z+9+hgy2IcXZ3AjI8TU1IrxEjMl5xizsTjpCxjCk1NgERQupK0KSHwv7OwgpyS5uIZ2Gtb9ZbW/02JMvmLW4T0kzzwvE37E18B5wUQvGuH2j5z4yrn6HwBMLZ9zfEAnsn1MQCSqHdhcS4eZypBBcyN0P0SxywT7RWtrU5mlItTEPCp8cAFHeq3s1qsEtfhz6IkZ+GklY5lj52Qd5Z76PhK0LkXHkwKz6Re92Q2HZf0tayX0EUhb8KKdesYA3hRJpeVpaSAy/XW3ePGN1v9/mUDA49Ubr/6dUKxCPsT48qIk0s8bmF2QDok5E+1TNFFnIyBrAuc/gUnXZ/QCI+jM5wJjo+RARajLwqF3ze8JCaM0+jgweZaOn7G80R6P1MsnqFM7Xn6I1+rX9/ScuRVTBHFva+nFRJMR/ZmPSHp3RVRGiSPaa2NC6g33/RLRXB4Xf9yiyYH/37J4IMDMionEUzlMaecRORGtmKFJE3o9Ld2Rza2ur+4dEXoUZbQ4G4eEoqsZ8aE/+LTI2dCUxuJUa96gPXkJAlwMzvr2X1XMUOl/LANZmS5okETr+7vq0HVrXbwH3hHkS0f4LUiDl7Z1e6d4PKcR6kwiBA0gAgL+o0c6ZCYRaFHkBX0xaweXTdQ5ABqU70ZrdpaiuKFrlYTYfvdEppKAeVTQ/re8vQsDGZd31kPqxNHgpGsM77fuNpLkjZhgg4XkWROCYm6L2x4CoKgVrROd4BJh8BQGzT0P8aeAleqM96WvSEdGWQaDIurzvyQG5o3NrOJKpRswGNH2Y/jfR2bE/GeBk986apNOIHoXtDegM+RxF7bkbebKvave6ovP0WSJvWXTeTyedAquRdH1EqPEoYuOqSLF9HeZtj9ZqeyTvnGB0PXAiy/A6W9K0cdqTxMHpcATu62b3X0WGrRBha7A91wkZsl7DRULMW7/2/K9RFJz5o3sx37allRRYM29fQDz08+76fQi8EMD0W6D9Mf5OvSCifigSUOB3vkHGmZPjOpWgFUeIegLx8V8iIMUI/6z19RD3eykEfKkLvBR99+hG0STZQ70cU/Z9D17KTSte51jVTRMBcYLSuGLr6G8kYJ2hCGRXQTLeBArAevbOLvb8/vZ7Y6TbSgGi7N6PEZ89PO5DBJBbz/4PqdrnRQCtf6A1+jbi19ZAPPtbwG0t7D/vmHWX9csbaH+5H4Ev646q2RK6aI8aSRL17lAESO5nvx9GBsjH0J4fUqB3QHzBm7hoQ3bvIhuXHzWQ5mEk0eN2Q2t6LJLHLrMxaW/j/CnaT69H+tOpuAgmEV0fiXpvm5dvkUSovczdD2d1SFVTISetX6OLG9tuCJQ/CukL77DrHpC6m/XhCxSkKyK9Xy2BZLGhJBHFetjcCMClAITf3cau18ykW6KPFkX7xk/dOjgQ7VXds+oXvb8NAv5OwCL/kHYU6Ihk5mtnxpjn1NHrMv4nAFHRfFrL1vNxJHzV3iS6ggBg6oh0kueRk1kA8Waj0D6/sbu+KRnnCIrIdBvi9zaYCe2+CKW5DHtzAOPdhvb3cYhHXM3maRfEr/5gffQtOWdo1Kd97e9CSH/9DBapkeqItIXOo3NKidq/HNJzLevWek0n6YjGHAE2QWfidURANyTrTSBxxm9HIoPujvRPbwDHZbS9KUCoqH5HI4D1JaT1U+GsS4F/y8xJ5IT7je3p/nzoYW2djmTdo5Cd41tq6/X2s756GPGOo5Fuc08kpwXZbhJyBl3I19f6vT8ZtiMk473ofod971T73QuzDeJA2mXmcltpK20luyDbRtBLvEY1IGor5Kj8Dm0p8Mr16ayuQFuZ/UqtQ5s0IOpku7Y4CuO4dT007aC9mAiFjATTacYM1vTws98n2zvvAA+668GreQXbPLYqaFtKWWtM18+QoPM2STqTsPEsQUZI67iOpPOCd0eKoG+A05HydhtkdLnWnrkZ+GUOzbmQ8mH+vHbYc31QBJMPcTlE66HZmvZn0SQBQLSo7c0c+5Jzv3SfuneK0nKFqET/Iq3k6omY6rzoQTHNUxs093sgUNrvSINJ2kX13gAZPivIOBiPR00BFRnMH3K/50PKg2GUCPGOQFCjqU5fNS8JKOZEtIcEJXUhXRQeNjAZ11MdLr2dPfMkEu4/AE4sOQ+6oug4v7Pf6yGl9pc2blWGfGa+gLchEkCXsN9b2Tc/RgJaMDh1tv7/CGe8t3s7k0491AyaW6NIXnFqunmQp9w0JKz6VBOrlGz/lwiU8DMkPP6AM1jYcyOREugxcozu7tnuyFj5vrUteAh7Q9JVdm/uAjp+Lixm/XcSAlMsiDzGxwOPuecGI4PMWsCS7np7FAHKewhtRWIECJHvfobWuY/C8GerawWBQ/PO54WQ4iwocUOkpWuQQrCCFAm+XktHa21xxOz71HibIeWJBzouigBbU0lS7XVBYIr9aozP4Uhw6EUC4NkXKR+8p+G5SIlQwaUfiWhdAdwUXVvb5lQFB6IlrUTewebAjcDeUR/METTtb0/ru3HIsOjPkJFGO47q1hXxk3cQRZYBloue3Rspmr5F/MhtJAYNHyHq0qz6562njHsNAUyhiBLfEaVnjL+d9b2ca0Osfe/jIj2SnPPzIIDINUXtdGNxI05Ypg7wEun96FgEcGw0zcm4MxsZSkNaBJ8WMRgFAyDqPWRU6Bd/I/reIegMehOdwYdG97sh8EwFFwmTgn26zvmxDdpXvsSBoWc1TdKAqBAN9iAyjDj2zI/QmbsO8n6vkMiGPdGeMcHW7XLu+n646FxhDiBD8tfIwNIMuoGPWBVFh7mJtLK2k/XhdBygqOQanS1pWtkFrdMzSUDGx5MYGXZGa6uCpadGe8pB1sdVQBO7F8uNXVH6hFsK6pQZ/Ter/dH9C9D50s3mh09n1QNFXLodx9u0cj1tiM6d7UlHl2tRhCZH8wFrx67ueogo9C0CVwQwWt3gpeh7V5OkTG0UzdOs76uA5iX6YnnkvFPFQ1LSqa4emhnPboEA9SehPWEBtId9ATzjnpvPxmNPXMTSrH5CIMQ/Ib2G56uLAFEeMNKeyICJ5Jx7SKINDUIA/etw0WDs3l0YTxC3vcxcJdHpdEFn3r2IL76VNK/Xvpl0SaKJ3GhjUkG8QACFrY4cO2acyUjmP8TG1KdJaof2r7vQHtlImlcieXVvq+/VCPh0lf1+HoEC2iG++Va0tz5GdC7l9FtPtDZPQI5aA+z3Z8CZ7jkfYXWHWuPRyOLGrDs6hz61sQ08uZdxd7F771Ej1SoCcr+FzvbJiEfb2eZQV8S/TrQ+vhqtrUtK1LcpdAu+1xUZrb9H8tAtyOh8onumls5xC6tPhSh1NtKxvmx1nZlOHkUpAq/nvxgQRfqsWgE58F5LdRq3vRDv+gwCEZ1r8+7gmFZEc08E/MkCRP3D5uQ2KFPHPsiZsHSU8la2PciNt1jbr0KOPB2R7L4e0mX/K6rTIHSWrZlVz6j9O6Ezb0eStGDzWT+OQTaJIO9uh86UunmQ2bXYmH5g+8SHSF8WzqlcEEnUh8ORXqvhoJOydaiD3r5Y2mHSOr3tbK6dQDUAbi8kk35CtfPkaWi/zbTJNagPtrNvTMKieJOOyBcAUc+TYxPNodsZpdL8BMndHhDVHTkhVpBsdRFpnUQWT7oWspGcRKJ3Xtyt4ZBWtytyyq5QHfm3LzoT/4TT1dq9K4HX7f8QES8AoToi+8sVRCmfmzUuTRrrFskjbaWtNKvYer0ZyTVjkC1oTxJ+vCuS50PKvDZAVK0+ndUVaCuzR0GKxbXd71oC2iASQNRPULj770kbNgtpZh3e7t75SGiNmaAqmqSZwF/agTwNFzIWKZo2QcL6qiVoxmCTJZGhdQN3rQNSan6KMXPROz2QcuRe5BG1u7s3PwKcTERG9cnIqyYoNh4B/phBsxdiAu8iIw1YxvOBoQzRVLIYpiqarW1/UT2RYNOStjd87Fs498v0aQ/kEXOTtW1b0ox+3L8vAdfb/yHiVgUXmSmHpk9ldG1L2h/Voy9SZJxYqy8QaKkqVV40JsPQGrgVKSGDl0d3u/Y6Uhb3Q0Lg+5QQ7EnSVh1HtsdCTwSIqiDl2yQK0jmQKGyHIKVdAJddR3a6tk5IGTAgq67Rs/OQCPWnWF3+Y219BinjF0Jhat8kUSTOVCCUfWdLZEQ8yuZNTwRcmYzW7BJICXOStePUuM1ImbF1s2ii9fouUhhtSTUgagBSGn2LFCW9ovtF6cxGoLUXUlmuQZIabp/o2ZOpEaGLtLL4DLTfPUlacO5q33yOGsAqe34DJLj+jXT6mblQBI9JwJUF77dDiv6bsIgnyKCZMvjb9QeB+93vfgjAdzwulHu8juz/zsjgsKrN749tjs9l338GnQGXUi1k+7kfDEFr2Jz5FvOAj763ElpTvydRHlWlSYiurYLCzZ6DKQvc2I4n8YDsgRTOh5JjZLV5eS4uwoW7typSbH2Ai6JIgfceSWrZ2Z5m9Ls72svHk460MIAk0sKpSCkzAHneTyKKMmhzbDSwjf3eFvEg16G0FjehPeBdYDF7pj8C11dwKfmy1oD7P/OMakRBhr0KSZSH2Ni5ETXO5Oh5H63kWdL8QeCf7kb8RCeKz+/90ZlyE3WCl6g+m6Yhw2HDaUZ1nh95I1YQn7igu+ejZe6BQC+ZaUhInwGHo+hQUzHgJGkj3mI2l0/KoNOu6G+NseyAomk9hzvXXTsaTrPOuesBUe/YeGRGnUBK1wfsmelIGe9TefRHINqxNj9PQWf/V7jIINEcWKLRdNHZF0DZy5NEhLk3o03hjHrc+qCmU87sTNOenQvtqyH66UnRt3qjM3s0OkvvQDzAGJxHv+vP9chI02B0/mHvVkW7RA4K55MTqbZGG1ZB+8i3iKcIe38XBIL7FAeyaGmpUYcWKfSjvt4IRXMZB+wZPXcUWnOP0wLwEtV76RQby0bSnI7O93nr6QNHYyUi5xRk4LmgkTRznvuFzU+f1rUn4lu+o5h3yJL3d0VGn0cwHQnpMyYAor7BGYQjGucjQ5g/ey5Fe9kfSPjgOILC3AiQ8wWWEsHd24wcnU5OHWLnn/hb7ZtJ1/3enmSPOi9+F4GL3kLA76dIeIsq2dH1UTNo9kc6jItJ63c2tHn0INURHmpGU7P5dCrSsa7ori+FIuF9Cpzlrsd8ZTMBEXlnVg/k/BiiUASdh2/vcCLHogw6uyBe7EIbs/3QnjWRJKVxb6QD+icCAx1don5NoVuiv5ZB8tYbCOB6ZBma0VzbDO0fExAQoDPKorAf0rvv2ZK6tbA9scy9IeJRfHq0WQ6IivpvPloY3cvRWD5qu9dH3BS+SXrf3w7pS8YhgNBxefWM6psHiBqKgEIVJN9MpEFOFHX0Q5DxfmvrfAt3r731y1tWViP7vMzb9/ZHstaviLJN2Bg+h3jRc5Dut0KGXDYnlWjcN7D2X4B0nr9HdpR7SNKjVYGR3BwKzswVSkTBb0FdvUx4GpLzL8bZtlpBe2fkxOAjS99s/bEbFgUa8fnHIn7J2z8Cb/Iobt9u0pj1sDk4Fu3rQd8Yg39HozOmClBDtUwU6t8JAcTGUA2I6oZsBJNI61fy1tMRaN9Zyl27B+n3BkfPdsfxGhl0pth4e1pHovPnGsRXeV5pINr7Smc8md0KrZRH2kpbaVZBOutHkR3yLSSreEBUSJk3DgWemCkRY+fUMssr0FZmfbGD/RVjujxjW6ioBVZEgnkFKWwGt5am/b8QUgLcRNponEsz2gB+bnV6mUQxtTgyorxNOi9uqXoixfwXyIgfQuH2Q0z760QCH1IAv44E2L8hxVsFM+y559ZEYfM3cNeWRsqYo6NneyEQxcOYESyvP9077RFz/G5cx1o0XZ+2Q2CoUu0vW09k6Cjb9oaPfUvmack+nQsdTq/auL9mdfoDaQOzn/PPo/neCSkSviUNCiqiual77qp62p8zH8YBl/v2uv/Xx3klZj3jroU0Xo/YHPkPUpBsbvdXtm99gQwvNdMQ2HvzI0PwxVEf7oR5mbg5MRyBNatSD0XvxoCa+UmijV1HOgzu+kTMcUTL/78jMrLvYnN1UavTBaTTI7SzMbqDasXmiUiJ11QglPveQ8Ar7nd/EnDYJzaGr+IUO1nj3yiaUX8GYXwxFGXrA8TwxeN3NRIYK+SADSK6i1o5DZdKzu4NJgFEZRrZqLFf2N9uJNGbXrF5tAUSNL+jhACPlOGfov3Ke7AHMF9vFLnuJQq85dA+cwBSaj2DDFtHxe1A+/tYJNgOQN4//8YiMdgzK5JOkbQbluYUixiBvLueJw0e/A1a+xUyQrxn1GUZ5M00lnT0K6+AuB8pzMoYaAahdXk31ZEtdkF78M/RvnIo2qt2c89k7XlhHLYF7o7urWF1f4EaUQbmRJoRjR4kgKgHSVKPrYz204qN/WfI+ORThAb+Yw+kyHkNrfGRSDkRjCwdrf7vovUUFFKLovV/bIl65p1Rm5Ztaw36C1r9HiRJFRr2gy4IwH07dXi2Gs2r0No9jrRCsAviye9DwBi/x12JU1bZtQOpDV7aMnrH03yCKNpXA2hWAX/Rfh+Uof2s335A0f98umUPiFrKfyOjHz1fcwTaV8eRALbDGpkPAQTPyqDRJXq2Kq1wjTp0ojpiX8NptmL+hvO2JxlGzKgPTyCJqrmDa0+gsbCN7VNIoftbnBGPtLzRFLru2pL293wU5fB1jKcjzevdiM67Ljn9M0fQjOhv7/rzYqIoZ0gpPhCtsTuQ0t+D2/3YdMJkIHRueHD2jxBfEUf5DCDpF8gH14UzYBMkc55NkuKtC+IdP0Dnw3II0Hoa4qMywQuzS4nGdyg6eypU7+VHIbnoceoAL0X0r8btpQ2iGfbnZ0mAza0yFpCs0ZsaTTPjeke0VzzhroW9dm7ED76OS8Fa4zsdEMAirKmtsuqAwG+v2DPzR33ay/r/O8T3eJ72AiQj/YkkhYmPonQqMoz/KKrXCPvW+SQONnWlVyRyOGsyXd8fa5AAQG/FRYwN30NORmcgXuhonEMe2Xt+Q2hG7yyHAAn7+fllf3e17w3PaWOeLrQ7MoJXkDE1OGSEObok4u8+BM5tzRppwZqKZeYVEH8UIkz0RHv1GKT3DAb8rIiSVcZgtP4exTkk2b3e6Cwaj0t7i2RqH7U4E3jRDLp19lsHo9m3HppRfw9Dcn0FGckfQjrButNXtqIdfj+7AYGRK+ic/wvptLwBEPVzCnjYnDFr1bkd9duuaE8/iZanO/wJisrio3IuhfQRn5OOcB/LXf2QTWMJdy2rzStHv/MAUb0QyGqf6PrMjAwWZLwKGUAYFGnvdeSIulZJmpshO9LxpNOfdyCRiXqjyHqT0R5TmCJsdi9U76dDbL0EfUk3tJ+ORnt+FSAqonEd8P+QnF2o629BXcOZOheyJbyJdG3/svG4ikgPWyf9Q20+3UBy5s2LdHpTbK2dikDnk4iAqq3dM2q1O+N6AP9+i/Q7WeDfHYgcPTPoDMro4062vscgYK7XcfQkcsy167HdoB1ykP+Xu3Y/1SnFL82g5ff5wHcEEOT1uKwoiC+tIJ4q8INr2Nx4joQfmu1ksRJj3zB5pK20lUYUt566IJ3lqbYX/YfqCFEhZV4F8Wct3p//28ssr0BbmcUTQIrJW425+AApa0rluUVM/iNIkBzYUppUM4S/Qcbe5VpB81wkpHyPGLfg8bVKK2heb8zAHUhRfL/RXCl6rjtS9D5EwtQtYtd+VWM8lrDvjCJt0Ohpm91fkWHIewJ0xAlpGTRD+Mu9o+t10bRxKWx/CZp9WtD2ho99A+Z+Xp92QKl7no7G/izru+dxKZZIog49j5j9y5BCdHCdNH241PPKtD9j7XWwcboHCbGbR892Qgr7p6gRPQOlXBpjzwcjcEhx83cS5dkKSNFwMWmgQVHf90WGn5FWp+WM5ucINDQqouUFxywlxBYI9HENLuQuSp0QAFHXWF33yhr3nHruR+LltF7Bc/MggNSXVIf8Xd5oHFHre/WUrP4lCT29HlLwxqCgpa2vhpJhbG02TeSBeBDmvYLOitdIAFHhWz2tz4cTeb/k9MU+iKkcbWP7V6J9CgGigtBXd/hl155uSNk+ycp7SGA9yT1bC+B6vLV5OhbdB5deDIHnJmIRE2rQutna9IJ/nkQAXs7uVZAxdjLpiBtzIyXI8yidyL72bDyPr7Q6h3XfCyn8d8R5guXUcVMSUFV/kqh5v4ye64aUnvdRA1yCgF0VtF/cH7fb/r8YATSnIOBOTaCmvdcRefRPAm6N7g0hARqtW2us5wSaefdsjAMg6u8kipJuaL2fjzzLcg1OyHD/BlrnH5KE4A7zM4QV/w44wL3Xo0T7a51RDQm9jwBcX6I9KRgz+6DzYRw50Ytq0OyHlIbfo/NzVQQWPMSuHRw9v4A9v0EGrSLw0pNWx6r0KyTpZn7aQJpZQKjdbR6ehhmTXPunIl6sChAV/47nKdXRKg5DRud3sUg3aH87EO0B20bPr2J9ENKzHWzztOa+m1fPZtCM1yoJT156n4hpZDwzAEVhPBMZ9Su4lNoZfR1H/M1TODecLlLqVhBvNa/RngrcET3X2ebYs2i91oqyNlvTdOO+EgIsn4fW2k8okB/z+pM0bxbO0ztIwFH9kCwxEa3rZRA/cTw6V4+LaJ+MwB1hve6LIum8j86QH7C9EsnYhyCZ7WtkRHsaOKrEui/8XaPvMtdOvTSjvtsSyXffIMeVGHhUBF4ajVLmdMigewMyjJ3cQJqp/RnxdRW0Z9VlfCuYpw2jGdXdgwcvQUasVcNccfPlZJtTC5UYOw8WPcH65neko6T4NTOMnCgKCNR5B+LH9iIdaegn6Gy6k2R9zYfOxZdJp13zYOt7kGxzHomBtbXAjqbQdfSHIj5/bbTGf0Byio8YURRVPmvPbzhNu74u2pMPzZhjfbA0R0XzPYfussDlVs8zMsZ2CcSjTiJKvTgzCuLrP0by4AQU/T7Ioj1JomZ4A35N0As6y8ZgznjRWlsKAelvg8zo/blAs0bRrXccG0EjquvmiH/+Eu2P3ll4ZoJhbkL6gH2RXuYYpHd7k7TjYUjP+lOyI9p4ebsfAvo1LLWX1W8i0quu0wo6S4f3EZA16G2XINFH/CKrXXnjGY1r4J8uIn1eeEDURgU0Z9rYu2/uhfanvxGls7f7Q2xO1IoEF/rjEgRY9O0/D+l0/kgaaLcmLhrprGh/K/tuYPR7iI3/WCwtJ8le350EEPUXkv00zowReLMb0L78exoPiOpodXgUc2RAcliIVlbXGstoQwDc/I7EEaQd8DPbW75G+qDj8+g1uL1+fxqM9BeDSaLRhrNuDAJEhbHJdUqJ2ruC9dsV8VxG0SqPJYkCnhVdqn289pBst4D9fwDSBw1BvOMnmB2IBMx1H/m8buBvu1u7/2r1uYbEFrU40o1/j/ap5xCA61mSfbLh6RpnVqEV8khbaSutLbZOR1KdfakdioT+ou0V/RBPHgOiOiO+sS1VXlE/z+oKtJVZPAGk9PoYMZ17IpT3q9QAhSAjwR/skBjUIJoXI6H6U6q9JErRJM1Ir4vQ5tcYUxGn4mkJzUuREPgmUqYsH9FsjwSaJ5CByjM+dyGgzmArsSJ/Y+vTMaRBWx0QUKZCOnrRpkhIeNPKcaTTpngg0mOkjVL10Fzc3b8sr/0trWdR25s19i2dp0V9atd7IuPV+VHd5iFJY/cYsGH03r0koY/jNI5laD5O2qic237Sc7Ir1WnE1kPG5eeAvezaAGQU/BYX5rtgXzkYgbD8nLsfpWkICui54vqENVSD9tzI6+hFpBB8BymEhyLGfDRwQ606Gq3hSHD8BzLQjsNCXtv9fghcMg0JqhNwyskCusOQceNYqoE1Xdz/GyFPly/ITuvSnciDtZEF7UNxipMFkWfRAzb32pEjzMRj10SaI2xsfoNL70UCiPrE5tzqSKD+iByQRTT/17E5fSlSODyAReGiOr3nqkjYO6aFfe0BUWcjQN8zbh20p6RC3to6FhkDfVSmLgic9DouSkMOvR4k0ciC59VC0TPtEPDyR8gY60GXYY5uTpJWZzpmGIjonGJz/BjkNTQCKcq2zGpfNJd+wO2JCGT7GyR834SMHKuRgBYOKWq366cDrN6fWZ1Ce7xBY0MUnWKdonpm0J8HRQv4HPhDdG+IffMVonNgTqOJ8zRBCuO1UFIWUPAAACAASURBVKSwYCCbizQgKje1L/lrdCe0xqeRkxoE7Q1XFLU143tlzqhucX3qoB97UY9DxrFbEQ/wNTkpwkrSn58kZd4kxAM8DZyQ048h9ef2OF7CruWBl7ZFe8mB0fMj7buHN4Hmge7aPta2i4jSclr7AyDqMCIgTPRs7GF/ic3HH5OO5HEE4kEn2BjdYWugKhUF8s7+wOicbnU/mjoUf1G9OjSJZmlgRgvn9haIrw/pMNdGjiAVnAHD7q1Q9ruNohv1R0ihexoJAHI+dLZNR4rhjVHUxpHoPBlZo4/nCJoZ9+ZGivwf0Pry3vhrAv2L+pNE0R0ith2G1s3vScDLy5MAriciHmAUzqMf8RgL2fX3kfzR39p/PAJyron2zR8wxwAsipr1wXJkRPKget2fj9IqHolLV1ajnzyNeRtF09Wxp43F0tamZSkfIepJmw+LR/SPRfzRj+x3I2ke7OZAFxSNYDyKvFEzzXNGn/a3djeapv+9BdpPw7m+vc23u0g73YVojU+SERkqg+YZJMaludH6DADDVHSLDFrt43uIt70D8WO7ko5i4wFRC7l2ZkUWCI4hHayNn6B5Whq4FLW1QzPput8rIHnMg6FDBNtbSPMR65OkHy5aa62mWYP+M8jpLNajzG/XqyJpl6S7DElK4CPc9TDGSxOdg80qUV9sjHQml6EIuuch4+c3mN4P7WlnIh732az5H9EfgfE5aF+6JWuOICP843XUuyF0i8apEX1aZ/9vjRwSx2ARG2v1b4PrvTqSY/YnzQduZX38WLSmLifD4Snq/2sQrzcRyV9HU9IBoKCeq1kfnU4J55gcGmG/C2fTFsjZdxgJ/9Mf6SO+xkVZKRqTaDyHoFTd79taPzt6NgCiHqQAEDUrCgl45WYyjK1EEbeL+gLprZ5DOoStUOT3MUg3/jHiVRbPeH9OA0JdbevXRxlbCQGAvgVudtfDHOuOeI0vEW/SgfTaC2mLDyJxEJtCgwFRSAb5N5KTw9rYFfGFJ9nvwui01Nj3EH8ZAFFLu+sLIl3kojNj7KP+/R3SA4Ton69j6ZhJg3/vpUAPEdFfGumvf4J0GBe7e35vDNFEP6XaMakfioT8oP0Oztr7uXn1MpLLxpJkaumMnPFG46JaZrUfOTW+YuvvfnTWB72Oj3Z3FAKt/QKBUAPP2LFMf8xOhQbII22lrbS22NwbY2v6M9uH1iFxLF4J8R1H2+8FkO3rY+REOseCEGd6X8/qCrSVWTwBpBT6I4lBdleSdFy5hkrEnB1KBIRqJc1zkMIzi6kuTTOm24S2L44MyV1z6B6JjN3eWNcbGTk+QsadqUgAXNw9MwgptqvSeyAG8VUUSWRBBPyYhowDtyEjfgUxRvO792Yc6K2geRPp9AeL5rW/FfUsanvDx76V4z/D8zKD5kJIQXhh/C5SJk8nYfS9l35Anw9sJc1CxpO0EL6jjccnSDjb3/XF5oj5nowO1g+RMbcqnVHOd64BPnK/77fvrGy/17Nn6oq+4fprCSR43EgUJty+dXEJWh2R4uZEZLSfC4UoHgP80T03FwKX/QgXHSJrroUxtfG8L7p3Ntrf7iDxMrvSxuDAIrrNKEjZWkGRMC5FnsnBs2UXm1PbzwY0t0N75vE4g5e7Px9SSE9FCtkvyDBeZ7y3HMpTfzmJ4NbH5tW3ZAOi4vSIdY0Vyd4RvL3G2vjnes/mfQ8pJIInwB6I+T0GARmrPKey1qutgR4kypNbqQaqVikS7Ts+klTwYv6IdOQ7fwY+SOJJPL7kGM2PFC27+DagMzh4ZI5De/Z9lNyf7H43JLRPQkDchbPqXTTeRd+wuXQx2UCjtaxdWSHmZ3uaOECi/d4X7e/foSgd/8RAetbPARB1Hwm4odZc92fVdoinmEgUUQgBut4kI0KReybLGHkttc+oq8k5o2rVP/6urbHfW9/8BtgjplWGZkR/AQSmrSBl6ZJZ33bXepJ48cXnZh54qb+vp33zH1gkrmbQtOsrIgPBuaSNwn4PnJ/EYHhcVpuj+uyP1vuLKKrGN0QRCxGo43W0Vx1E2lger/8j0f7zAxEYrMTY+fm9F+I/OzSDpv0ehhSVdyEF7ABKhLCPaGZ5gA+y/j/SXVuLBLi0tbUrpA1ap+h7zaKLnDL2QOftgOheiLz0LeIjnkPpK0/O6oc5gWY0boMRv78facDOPCSAqAtQGtPQn1V8GgKEn04iJxyODP69SVLvBmD1vO69YfbsHsAaOWt5VWQAe9Pq+ifSaXWXRODHGSDMWvM1Y90/i9b+WOT8MqKO9XSy9XufBtI8xWiGiHdhzp9JOfDSsjh+y65vYjQOaRZNu7YnihIQ1uMEBN4rTCcRtf8ktP8u2kSa+6H99I+k0/6eg4yLTyN5dx2kg/iODGBh9D1Pc113PRjGqgCGtQqa879HMmnga/ckHfXwIqRH+ivOKFiw7gegyGNfIt7mbEqktqPgHGky3U4o8sM90XsBvPR7G6vdrY/2zPtWo2hGdV4Q6b+WJJHZQj+8iOmvkEx1IOKFty7RF0sgw8bqOJkTGUyDnFMFiMr73axi434cAi74qESbIiP9uyT8c3fEZxycQce3fSu0B55pY3UGUeple64bikByEzkg72bQjWhuhNb3lUj3VpX+r8RYtwjkE9HYAu1bY4jS0DZhzGMD/DDrxyHxfbQvppxhS9C/FekNjgX2RobnaUgmb7HhGZ3P/6FG5OmC90+3Nd3TXVseAQheszkfR4j6FovsU0cdxyBe5zdob68AF0XP7YGMni9QZ9rsZhdygKUFczeTR0fnwQdoL30X6QpCFMTj7XpmBJsmtWvGeZpX5xbSXRlzLiNtA1mJhL890V33gKiLMvavY6z/vQ45OPu1ChAV728kEawCYHhv+32aq+NVRI5LOfNgE6R3uh0Bage4tgZAVEpvkEeryfPgBtuf9kG88UjbF37AHKkQ33cGssXcWYLmQUi/sAqy75xn/Xhx9Nzi6Fw9h+zUeN1t/KchvVIF8R1do2+9h3j97ZAz2jmIRz7NPZd1nnZCcug/SKJlL4T26jA+ufsrczgYgxbKI22lrTSiIAebJ2zu3YbOxZeRvWsjpDs9DulMQqS2fvbcRGDnWd2GOaXM8gq0lVk08Gkl5Iywm/Z3ZzJAIXavYxaNVtL00QW6N5pmI9qOGOJaiHev1PF5gzshYMlLKIfw2iikeoXIayxmHiKaeyGlzpfIsHg6iddwN6RsrgCH1VHP2YZm3PboXkPGvpV0SyHckWLlI6qjRo1AhrtDESM51NcDE/waRbNGHUMKiusRKOz/ELN8PomxeiXESP8GHbibu/fzwsa3c/S/RHng70GAjaBwnwsx/7dTI3pN0VyLxxl5MOyNlMiFTABSLpyEGIwV3fU+SOD8HAeIyni/liH/WiQwrYgUrcHL6THr52eQILMQM8nTJaeemyMPz/EI8PZ7JPD1Qwr3hyjh3dUsmrYubkee930z5pkXrvdEe8+mJebpesh49TERyJAkVeS3SKFQFc0GGRH9Hj+QkgISaUDUmTYvXornc5m5hwz3XyEgwmgU5cenisnqp+URuG9b0iCDg0kMmQsiRntXJAx7pc2qyEthZXftEgRu/NTmvQ9p7vtpLySsD8vojyxhfAFr14nhGdemxdHe9AkuzRukowTW6MugNJpMBATLqk+NOX8uSoW2J4lRpC/5QKNCBdXsSpMkFeIJ9nsjZED8qc2p420OfBPmARLq9kbG42fqmOt+3m6LjM3vY2lKbZ7ug+b/bhnvL0M6Zc0O2BlJC88oFFFy/rh+BW2Iebr43GpfL83o/QVJQuMfSQ5I3z0/EO3JX+Eibdm9AxHI4laqo576sZh/JtDcwebjmjXa0xcBjGsZsIfYeB/v+np9ZNCODf1Ho/OhCrDm/7e5PxmddY9g/Bn1Af2Osu/v1ASaO9rv/dDaexjxIJ8jBekMD98SNI9GfMzS0TN9kcLmr6SVsGuhFBoVBLafAJxXx7xuGF0E1nnX3vk3GYBMkshLo0mnTs08T+Ygmvug8/pte+ctHFjavnkmiffxROCcnH7c0Wg9hPaaH5As60OyByPMzRTw9zl1HYyAiBXkjdwjur8ELj1myXm0ts3340jSR2xodX8cS91bYu5PwYB5zaBp1+ZBxqQpCCiVBV56GFgtrz8R+Gn9JtPcBRlgzkVG4Z3QHjyNAmNBTvuPaCLNLdD+MGPPj9493s23KYiXrAVWrEUzAKKmIr64ZgpKBMSZhsAjOyFj09P2nb1IA6Iusetb1aA5Ap0ht9j4/gfxSedQAFyi4BxpMt0AzN0b8Y6x/mWEvfMl2qPOLtGvDaNp4/CaPTcdpW8KxtB9bO58jYyXD9sYnZ5DK5Zb3ybxAL+TdGT1AIiaipPtZnZBIJh3ra7n2zWvu90Vycwj3TWvF8xaS93Q+XEFSXSxgUjmnIzWWE8UfWc/xMMUpt1qFl0EXJmAAMhvkABht6R8FKBjEMgjdjgqxfNHtLZAUZSuauKY++9dhBzINkHr/Wi3vsLfXjYHcqOhRfS3QnzoliRAiHlJUusV6txr0P4xcozLjAqFzrRMYBFyEvsJxmORBkQtY3V+k2pA1HXoHLm2RP0Go330FOyMQLqZi639F0b9P4IMYOHsUBDPNxUB2JYveC4G6q4ErO2ubYj2Ea8f6oxsCE9SoCNvQpvCuNZ0GKmDpt8Pd7A55CMTr4AAJhXSPHpVujES3uwXRAApu96NJFp6aUAUkgcGut9zY+eO/f8+4kH2s3p6B8TNkMy6TY1v7Gf7xAtoL52M9rIRYc0j20PQG8ySFE+2Hj9C9hVv+xyK+LOPSUBCPZDDRFYwBz/vF0GOoWeSnE3zk6Qtv8zGoDfiOR4m7RSSdY6GjCz/8uvG/b8HAvVMQvaRR3H2N6SDquJTSVJvnRN/H52hFeQwmLvm59RCC+WRttJWGlmQHizIWcNtj7wJyTN/QXqWl3BOwshu8hpNzCrz31ZmeQXayiyeAM4jPTqwPSgkhINcAhlMq7yDW0nzkFqHaQvrWegR0gyaMV37u7wxK/2j525CjOU8lDfe7mMb37WkjXydkHD/FDI29qC8gD2raZZSJMS/Wzn2Dafrxns1dHD9EwkHyyLl+QQk6HZA6N5CgFlEu2E0kcD5AUlY24WNzidIOD+XEumMoj6LDb6rkRhWPiEx6HVGRujR1PCgrqeg0O0nIgbhtOjeKaTTXM1Nkvv6QxLvoxlpP5DiZxRwV531CILCgTZWE5Dy8G/uO+cgg1LfrHebUYpoI8DR/EioecPqfDkSaj8kSts4M2mivfED4BcF38oU8kkbEGO6SyCD3nfAn931oPjogZTdU5HRzyt9V0TGpWC8PtjmSlWUxBJrqDsKLXx1neMZA6L+jZS0a8Rtid4bgfaRr5Bg/J6tx6CMO8Cuv4BAlpOp9lbqQAJuXZ80UCpElHsRF1kCKRerFI9kG00GoXQhXey9W3EAnajtS5J4ZPoQ9fUAmYIBdzJSGtXleYmU5FORoWCM9d9rmJKPBGiUuZ/k9MFsSxOlFPyLzaGjEJDnKtLAumWR0n8cFv0SnfsHkZFGsUb/+nNmB5vrFZvvTyGAVJXRCZ1rV1ldOyCj0zQsyhXy0KzrjAJ2s29fjilD6plrWc83iGaIkDQFgXw7FdFAhqFbyQYvHWz12axW3RtBM+8b6Nz+BosGSDWPsSIJmK9bdG/eDHrDbd4vR3oPGYTOpX+TDvu+Uom69kdGwh8hpeHDmHyU11fRfD7K5uSBzaKJUoyNtv4MUW1623jcTJTGt4BmKqoCacV88BCOI8atgDxm/4hbSxSfzQ2hm9GeNawvK0jJXAXIRMrfAAy6Na+OcwpNZFiawRMjhe40tOed6d9DxtUzSZ/bscNTV2TQ/RoBAgJIOeUIRAKI+i11GrCQ7PAEOqt2ojoyxQAUBbeCc2QooHcQOuf82r4bnYMhxVmcyjqe+z9Ec7/hNN29Piiq6g9Ug5eORGfWywgUV1YebwhNmyc9EO/8J9JnfjcEsp5q34jBrZntbxLN9lauR8bsvlEbvGFrIQRAHUraMabK2a8GTV+X7ijSWgUne+b0Z2/geaQP8qDPpRDv8g0CS/Vw93Jp2v3V7b0zSNJYzoX2lfHkRHLK6M/4bGoK3ajuyyMg8gUZdIYgXqKmY1YjaSJj4lTEHx+CwGpjkP5uDzdeV1pfZEb+zKjXnogPPwutvZFoX30SZ1A22mHPq8mXNKOgM/c9q8Nt7ro3ur4B/LUkvWEkUWSPj+6thYAVFcS7fIhkiUxwWbPpIjl3HOKtA5B+VRJjcKa+LJr3IQ30wfZ7AcTrLUB6zyvc00nvXUsWPdvK8fZr5AqkK1kVne+vWVkFBxax35+SEZ045xtHI11YSN+0PAIw3UGSonwVWgCKIuFZN8+41w/JW3vEa9N9tysyen+GwAseELUs2YCoJZEDTRk97DC09uP034ugiPcV4Ixa86rBY97iqFMkMt6wEs/uY333NTo3Xkbnb5foufmR3uIbaji7NKj9Q4Dj3O9jkR2gtIN1Hd9azfrrH6TPnoEkgCgfsTgLBOP57uDguD1OR4/4oVKAKKRvG4EA/cGR5gMUTbgH4n9+Z/S+x8DDSL+yNLLp/CVeU9E31kXg41MR8LErkuX/ic5U70hZWm/QoDGJZY217ftr2O/YsXMasGsNmn6MNrd2v2RtTjmDIZl/Ktpbnkd681OLaCMA6k1oz/wO+Lu738X939nGaGHS+pH2JKmEV4zo97cxOcv3j82rRdAanoYA3LNVxLpWzIEWyyNtpa00orj9O/zta3vrpySOwFsivmy87VGX2fUq4GxbKdHns7oCbWUmDrYUNEcgQ/8JZOfx9oezTxu2vx14k0hHT/ifpVmWrj2XlbLkFuC5esfJ6raB++2F1keAR+dgml3IyAvegHFqON08mojp3MjenYoOq2nAje6Zd7GINNG7XRGw50hkCFjIrnez63XTjOchYrj/YL+XRQLpLxFT/RJiqM8hSYWRZ7QJEZo2R4r2y5CnV4i2tQM6pP8PCVibIm+tCdSRzqpWQYr+4K2XCiVv7RtP5PWMDIRB4XCCux6Y/bkRSGUakTdpznzphBhoL3xsi4x5W7trHZAi+QmkkGl6qN+onmsjo/CZSMHn69seCThnI+VEYLJ2mhk0I/ojUNqK3mgd3ozWW2zsG2j9WcrgZuMa5u1iyIA1CVOSR3OgJ1IKHB7R6IvAQmPQupmGDISlc6MjgSs27tcVjpv0fnoUAjk9iUW3yXh+BwT4Oc3W4rLIqPM9SY75TjZv30ZKmqooU+73wtb2x5DQHEAHWyBwyYuYQh8BTF+ndpSX9Wx+TEIK7aeRgetFBAJdhWRPDB5kA5CB6hvg1y1cI51JPN3+Qo43acbcXwDtPce4eh1g9f0SA/0hUF/ufjKn0HT0VkbR2r5C6+Aaux7WVju0fschgS1c75hVvzLrxf2/NdrrQyS03Mh6CNg7BkUZmY5Aqn5/2oY6zyikDByDzrsWgZcy2tdqmkiZdjfGE5AI0uvZWB+ElI9hLFYgH7xUla63WTTz5gOwAS5NGun9ri8yOI6MrrdDvMs9VEfRPMXoBWOHB7jugUv9kdNmPwfaE0XgQvtqAC8t665viim7IxopQESjabp6H4mUlku55+4iHQktBpNl0QzgqnWJjHAIUPAyUrh3oyAaGvmG4YbQjeeRu98RGfNeQUbsdbOeRfM5pDz425xEM+qHJZGcdab9HoQU3ncgZ4ApuHQcGWssLz34luh8nog8jAP4wY+FP0/viudXyfaHdOtV7UdK/U2zaGY8exkwyv2+H839kM5pbXRO9I3rRQ5oqZE00RzvhwNPof0tD7x0Esav5bW7ETTzCtqnXiEjci7iCV9BwJPTyIh2mNWnzaBp118B/lTQlr5kOw0UAcJq0ZzXxqMnNfhde74n4pd/br89D7UmikD2MQLO5EZOj67vg87gFSKaHZHsMhnJZD4lW5n+bChdJBfsH+i5535i31kmi05R+xtNE4GUnkVRX7xhbF2bC6/jnFDK1NGur2LvB6e0QUgX83ckJ79COmrIcmTseTOjkOz9S1m9viMtG7ZHsvqLwK9K0twIySQVG5sOpA3H/RCfcyWKwFcVTXhm0UX7zkukU8P/FQEFBkfPtvN/o3kfeKjhiCf7Cp2jfwI2KdFnnuYBJM4AzXSkG4R4hl1IdHtDkNPM83a9B+L9f432qsJUgK6PzgA+tv+Xsf64nSRiyghk6K87zRfST7+OZLul3BzugZxdRhFF10P6nBEY6AHpY8+gNiBqYxIjZK+S9dsZB+gmDbRY3+5VKBEBr0HjfLK1ZfVW0CiU8eyZXRDveQ7ScW9p82gcAoiFubE7kvFG4QAhzZrraJ/Ywep2u82R75G+vCER+zE+jeTcHGzr/yWqAVEhZd6Pcmh5Xv13aC/6gSRl2pZuHocIUTdSQ1dqcy/w3qNt3vcj0Yt2Rk5o3yNA4WpIDn/O3usY18+PG7IVvUdkO0G6p/eAJ+qdU40aG/f/hdZ/S6Oz7sfunpdzJuB0xxG9M0mfO51sLleQfjX0h9eJdUPn158Rv7FvRv9l8Sw9ES97rNX3IXcvjEe3PFooQtvhOeP2IIra1TOi1x5FWrzP5sNMzWrR5LlQtzzSVtpKa4vNuw7IptGVtLzRx9bZV7hU3vbssVQDGZtuW/xvKrO8Am1lJg20vLcCuOM/SGCZghj9/tGzcZSct+0AH4+L6PG/TLMeulmbEjIe/w2FAp6Rp74GzaUy6HjF2ZJIqLhkDqXZE6FfqwxZGfTqGaeG082jGb3fFQlUB+LAH0gJ9irOA9v16VNIIJiOFIsvkzZi1UUzp40LIWVQFwR4uJUk0stGyGDyH2QUjz0lzgWOdr/3s3F/FRlIxgI/JzGQbIuAP2OtDx8nCs+at07i3zXatChOKYWL9kbiwbohsJF7ZlWk5KkAB7jrgdmfhxwP3Gicd0TAxveRJ3xmuHUkUI6w/i2V4qORBSmyRyNG/jObZ5cRpYq0/5dHSotM790m09yCdB76X1qfxdEhOqNoYI/jPPQL6G6F1vOqJPvR4kip+Sku1Y6bA7kAJ3tnKlIAdq/1/Zy5czpS9s0AeiEFSd+StPz6OQKt27dxigZbCz2QUfL6sB7s3l8QiHJgRHcunAKSagE5rO/dkRLrXsSUhzYMQ163QYk4GTi3RHuWsPZviTyoLrF+riBlT8VovowMFMEw1t/aV0oRn/PtziiF65Eln98EhbZ+BSmv/FhsjRSLf8VS5lCwn8xpNN08vRMphG53172y6Hng3paOScG62QWFL98j577//26bN69j4caR8c4b9wvPKFyYcrt2E/Jgrgu8FNUrTjfWUppe4XYcsHF4FxlMJqI1WrF1syPJ/hbAS5+TsT6t7QcHmnat1TRrjZn9ngvtT9/hvC+RkSNEecpKjXgZAkbeRJo324JECR+UxKHOa9q99TLoBdBlODN2QMrnx9D51989G8BLjyBeale098WA2mOR4vrgBtIcSdrQHCJRXgG84567z+gNst+bWp+EdhYZr1dE62QyAlb4KELnI2BliD5VmCoput4QulHdB6JzaGfSEXxWQWDKdykGGv3U5tCcQPMNorVGklJuAAJ+fwL8xu6tgdbVDO/usgUZP7ZH0UxG27wMjhOxvHAUGR79UfsHI6PYdqTTQQyu1X63R/Ul7aiyOWZcRgDgL5EB9wHrhxC9qYf13y1URx063frnoCbQPMR+74kMYaPQuhzunvXgpZPIMLKiPT6si46Nollj/NsjwMZLJHy+P4NuQQa5GR717t7xiGeOQTbNoNkOOQc87q55w9OKCLizaFF7W0DzHCyaoW9fjf58FRdRhzQP9QCJYbxmZHJ7Z2d0nq3rroUzb210Pn6Ayfik12PqHGkWXXS+B97sfQROWdPeC1E7j4nnQo29pFU00VkYp0VeHBkgjnXjFXjHzW1eeoeqUk4tKErRPUgvsCQ6/35t93a1NjxOtjPSTDc8ujYvg3jpj0iAtkuiSBlTcQbcGvQ6IH7macRLrhmPZ1E9mkWX6jOsHQJHPOeuxTzUtuSk16Sah9rN+ulCxDcfgXjoqbh1VWOeH2nzY+8mj/lvEcjxXxhPGuY3iuTzjs3/CUj38xl2DpYZM+QwE1LifY4ifQbdQj/EE99JTtrZWn2FdD4fWN3Otb7+JeJ9To3e6QTcBmxovwM/3I1iQNTbiEfZErf2S8y3viga7aNEDhoInPAsijpW6JjUwLE+HumPHqcVgKh4vEnr/nsjx44rSIOxH0H7tXf4OBjJf3vVmkcN7IO+tl6nW78f2trvRuu2Q0wL8dNZgKgVEEjy2Br0AwBxD3Sm7GW0xpJEd+pK4pxwLQXnqT2/NTrnJ5FOexp4s87IQeUNo/mSrdUqvalbD2EeXIZk9wXcM+G9EYg/3qBoTjVh3P18vdL6bghyMHsC7XM+YlVHxOt9BOyTQW99G5Mh0fU+CJxZQfrNwDvFTj55jih+Lg1APNdamK4WObRnAaL2QPtUYXYXpId+DtjFXVsH7c2PkV6zKyN71Up59Z5TC+LxHqQF8khbaSstKbY2r0A6829tb3kI8Vlhn5gHyZ9fokALQe/SFgWqtf0/qyvQVmbCIGtjv8UOrqUQQ7YcMjRWjKlZIefdeZGg9pV/5n+ZZkvoRgfpAsgo/SHOIFaSpg/j7hnOhZHieyxp8MycQrMLSeqycUajVL7TGuPUcLq1aFKgDENApF8jwc9HtOhu37ofHX49UAjpT5BCojP5CoU8mrWE8ZUQw76tu7YDEuxfIMpPjwwq4aAOip0nkQG2LxK4brE6X0+i1JgPKTYWw+WlLmpP2TZkPZPxu72NZRDa1nf3gkG/QjodQKwQK/LA/QZ5MJ2GwGVfERmAkLLsKmQ8arqXU0Y9d7Z6hrQmg5GCbixwDU7IzXk/kwe8EQAAIABJREFUS3HcapoZY9UHeRtdTJK6bUnr11EIfDM/Ar+MtLl4TMk+WM/6/0UkyAXhvD9az5+RkRs9Z04tioT2MUjBviMJw1okbGYZB57HwHgoBUNmhJICml6QPw24POOZrkjRdYm79gBphe76RODgnLbvgpR0HdFeuBPyaI4BURugiF734lKjUVJZ6J7fAe2zWyCj8cHIoHxk9Ny89dKu0Zd5e3gHm6efIqHkDXfPe3deZP1SBWyjWtkxR9DMuD+YxPh0SnSvO1J83k52VLe6xyhaP4UpIpByuysyst6H1vc92BmJSyWHhMyQtiJ1RgGHWvs2iOjXBV6K6n6j0dy4gTTPMpqPIiVZHwR0G4nO+lXRHvARMpgHBeRAElBwrLxb3a4/0iiaOXXfGilTX0QGka1tfAYjHqOCeJyL7e93RB6zEb2zEbDt9yTpD0N65tEITB726y7IEPAxUQpwo3M1CVBwH/v2M8iAXUH82crunZMRbz8ZnY9xhKyHSEe8agTN09BZEs6R/W2c5rH/pyPl7Z2IPwsRbLoh4/29OL7L7h1DOppBULwMQorct5AS/yEE0F8arbGf1rmOG0bX0dzX+ms8MjJ+hzySA3h2MDLovoXOvSyAlTd6tZuNaS5GwsPGkZ7CXncxUnL7yBZ3I2PcdHIi2ETjFEfYCEbCMWh/8G3bnGqAdRaYawQ6mybYmH+N1ubcdbR/LrRn/BZF/tzP+mJbuz8v4h2noDUeQEvBsWQ0kQEf8RkVZJBsFM2rgf+HpWRCfNNEZJy61No5mnRqlL7IUFxB67RTRPMku7dko2gWjZe7txkWGSC63gPJ9ztRDVpa1eZaZgqhRtIkMR4daO2MDd+dEaDgX7h9tsae0kyaB+EcQNz9uVGUgBFkGAgL6K5hc/MXOOcHtzbfR7JwDCBLnSPNootkuiAfroVAgqMRH/EwAj/+C3iqRjtT/GBraJJECT0bcw6z6wPQWr+ajBQUSH77OyVBUNE3A29yM3KODADmbsh4+TUOxD+ri5uvy6HoIxXr0zcR+OjMjHf8GPVA50gYp45ITvw/JKesWvR+M+kSOVTZfAg6gtNtLBZBAAXPQ/VEEajuwqUfsntxRKhgzLqStGE5RBjL00Vngasy12iDx/toEiDmthn3uyGdxRnojFw84xm/VhYkraPsjM6qKdYHYX0NQHv+aCKevM76d0JgyIeQXDURyQBHumeqZH6kcziMRAdVFCFqOaOd6QRZULcO6Pz+DDmPhMgrne3bD6I9axTOUa/J430IAn48SZ1G/oz1VJV2FJ1nY3DpK0miano9VHi+T0xjJvTBdoinqAB3ueulI79n9YnNqTvQnvQXpBMOkUM9IGoz905VCvNovq6I5O8Do28thHjXd0jkq67IiSh3Pbn5fzQCv7xmNDwgLeyx7RHvPRjtgTMiHSEg12Lu2i4kjgQh9fmuYR042ruivaAKUNnE8Y4ddq+0eoQ5uCKSz95AMnE7pBe5ztZm/wya3UgisG9C2gbWG53to60vwhlTen4jncG7SP89FecYZmNxLJKp3rD2TMTpfiNaYc9tZ/PmBaMbovp3RzqwsfbNC6y8anOsQ9yPc3Jxc3YTm4ul5ZG20lZaUmwf/RfSAV5h+/RvkG5oCopOuIA92wcBNMfZ/lHaEb+tFIzBrK5AW5kJg6yF9iJOge42/COMMbmZamEwpN2YTpSn/n+ZZivpnogUt58TKcxaQfN0pDAbS8REzkE090MC0UlIsfAtJYBLJcap4XRbQXNr5Hn0BWlDV3uUmucJqiN33IwUjJlpm2Kabhw8870cUg6uSdoIvjpCtx9hv7sgJvoK8sE/ayPD8nh0QN8LLB/NjV8jBdR1JB5PcVjWvCgeWyMGYPes+wV9W+aZTZCny5Ok0zd6QNTBtehE9D7FvEKRomci8kT7mrRHzZlo3e/trs0s4X5xpKw9w7X3W2R8/gNitq7EKRJnEc0dkXD1HDAiWh9r2fcqyHj2KdpDSwPLkLC3lq2nV6gGRP0ZMZg/KzPPUOSFRZEC41MEDovTHHXKeTcoNI9CAMIfkID1PRK46xGMq1LuZXyvD1Ka/Nh+h2gGQaHbD63ro0v0469snoeIBJ3JB0R1Ib3nZHk4rYuUOT9BgLUF/TNIKf0dpizLqE/76Pl2SBG+J5HBphVryNc3KA+GICNABUt1Ed3fyu7lpS2cI2iW6JtB6Kz8Hp1jfdGZsz9S1Oxfo55LUgPYlPVu/LeAfi/7ex5ap/dioACS9T9/Af110ZkxjhYCoqhe+8GI1GiaVyP+6gHEiz1AGlzcF3lJh7Q7Abw0CJcuJPrO/o2mGdEfgUA+D9jYvIvOj4uQAncZ5EX/AVL6PUiUYsn97xWr55EAoga6ur5t/fsnFAnuSsQXnJxRt0fQeXMRUhT+Bu3PYU4FD/0/4HhaFGFiL9JpbsJc+8S+10iav8Qidlq/f4hSYfVFBrwQeWA0yf7aBfGyo6lOu7UF2uN95KrfR/0+AAEYnkJny9doPs+IFFRij2oYXff+9iTpmtZBwJYb0Bl7EeYdi3iWt412buoIe3a2pokAY9fbvPERKjoYjQdJp9KbF4EmTyQCZOaM07YI4P4EWi8hRWM3JNeNMXrLoz2gQu2IUENsbM+y/4ch/nG69Ul7K2Xaf4J982kk0xxu74a9aBgCRbyOAPXbIIV+ZjpUFPHh5w2meQxa+6OQU9AB6LwMTiOrI4P6V8Bx0Vhdg0tL5e7thvbLhtHMGKeYPwtK2Z9Y/9yIopitiIDqY3GRLEj4s94kBs+G08xpR3+0j05Fzlr90Vw7Ae1vx+W9O5NpLoL2wclo7fdBfNEItJdvkNF2P0ZdrS/8+Xc2WksnY1HT7LnD0V7h0wWHOTrjHGkWXRSl4A17tqt7tjcyxj9i4x0iwmZGv4na3yialyM+9izSgKj70Bpbj7RupS/ShV1a75g7Gj2t7pe7a/2tzieRwT/PyuLm31LIIPo5AlcuHD8TvbczAgG8gBwkgrG1HQJABOBSXXJII+ii9XcrSWSufUkb7NdBoIDxNg+8Q8X+Rn94RDNE9/JOdv3RXuzTH92LzoWwN66Ok4eo5vMzo7Y1YFz9d/wc34vEIcLzo5kg2gKa1yJ+bhzSt4U9fyXEA1eQDuYB+9ZnlASVlmzfMoi3nNddy5qn7RFAp4LO0xBZvggQVZeegWRf7Ib2nE8RMP1Km8PfkzhLvA9c1Ojx9nUhkSO6oDP4P4j/Lgvq9eO8AXKQrZBOL9YByTvfkkTGjNMLL4xk7dgRt2lAC6rP0bWQPut0xPfd6dsQvVsqIgfaT6YgvuHXCED7FdKlhawMg9H+8k9g6+j9XllzgCSy2s7xfEbR8b4ncpCo1QfR9Y3R+fYuad11Bz//o7nUC533T6PzMYDH93Ft+Rty6lnLvdsZnXdv0woAZCvmwUU2F7/EQC4kOrJBNi7fk0Sn/4hqO9ZGpCPqD0A83b9I76l9SCLpDacOQBE676ZafYdZ/z5o14Itp7fNueBglUppG/9v9fkjAuuuiM6k70icP7rburjf6vwfpPOrAof/txSbpxdQhzzSVtpKvQWduY8jh43YZr460gdPRzbEYE/ta++MQjxKt5ld7/+2Mssr0FZmwiBLqfoKcJX9jhH8h9uGf679DgfkYiiaSZUQ+b9Ms6V0EaN/I1KsLN8gmnPbZvnoHE7zVOSJELz1L6AEyKjEODWcblmaGf2yDQofH0cf6IUi09xKomgPTGaIvpMHBEjRxAkX9nsEErQnI8PDq0gR3QUxwPchRcx1SCifSFoZmgVeWhspLD5HCqJQ5xBWugcS+D5ESo7cgzqiuyAy+FWQ0WXHvL4soLF13L/Rut4ACbgxIGoVpFCrIEBaLUBIN5S+5ef2e6DNgatJcq5XSEfEmT+uTzNKxrzrZeO7KgLvfEiSLqUXUsJ8jQxxmSjzRtNEhqbromsbIUNShRxPOCQ4no4EkvXc9TzwXve4HUiB8B7aw1YhEUQHoHV9YF7b3XrwxoGFkLH5U6RECethG7QXdiMtgMZh8zsghe00BIzKBD6WmPsnWP2rovDY/Z/YN16y9odoBp2QZ/pbwBYlvrkUUgRc5a51JAFE/YUMT+acOu2PlA/vov3kW6QoHeKeWQAZW4MypRBYh/a8UWiPqvIILtmXVelj7PquuEhkCFD3jvWnT7XZCUVdGE3tCEZzBM0a31uZZP/8EAEanyGKdJDRz3shxeA1uKgl9YyV/W4f0e2N9qGe0XM/Ruv0HhJQyE4IhLlYRGNx9/9qSPgcT53gpej/s5Bge2ADaYaw/sH7fH+0lv4N3O+eC+dzUMT9B+2ncbSR9v5vI2lmjOMqNvfOJPFgbY8Uc5OQwTXUZx4b07lq0XX3PSBqBUfnBrQeJqGogx647FNdtEcK7DHIUPEyUSoTdBYF8FKm8YB02t6G03TXVkcK7NtJG3NHoPPuC8Qj7W59M4nsNTofllIYAaYmIP5wk4xnu6K5/FMb/1xjc/ReQ+nauHVGSto7cOcoOp8uROtkO9d/a/w30LTnliYxKp4c3fsZ4u1XRHLoXtanqSjKBeM0Be3vIZXZdBJwQ1cEvBuDzu9vMJB8QV0HWZt+Szptbxcb7+9JAFe57Se9R91n7z1PdYTgjkhueR2dT5OQwfWImFYzaLrf26F953OjGUfQWQUZhL8ifX53jdveTJrumZg/m4D4s5WQnHcM2l/DuH+DRb6amTRrfG9FZIifajS/RsDazLRWs5DmQLQXTkX79GibU1VrifT5v7PN008R33UpaZBsBfEZv0Tn3nc4Aynp864pdN214WgvOR3YtGCdbI/40onA72r0W0NpIp7rB8SrBR6xP+J93kT8YicSg+PXuLQyLZif3dC++gJyJgspjV4jHRlltom8QLJXLouAXG+SBv1kjfv3Np/+SpJe6SybJ+2RbuYFtCeUiozcKLo2lueR6J5+QNEwPLDuNFsL/0R8ySZ2bRJRlDh7fmESY7LXK48jAYOEdHsBDLIU4v23z+jD3PSVDRjPGOTRK/od+NE7iRw5C8bc7yVXoTPybORs+TnSeaxk9/simfUPiCc6kVbIo1lzNeN6roMJMv6HFPAHUQ2I+gjpWuYq860aa6gL4sfvsvn1tJsfw6yvSqWebGU/HWjf/j90llUQIGq1Gu/5cT4endd7IEfecThdHtJ1hewBz9p3vB7qMMRPZQL0m9BmX/ftkd56Hfvdx9b3NOBP0XubxWNf8I0VrJ2nk44GFxyAFnZzIURi3iOicYKNRbcM2pMxvgPtd+GMngfxERfUqF94voPN78Wj+5sinv+dUC+kq7+XKFW7q8MmSB74N9qz4kwJG6M9+Tukkzka7b9TKAHeatJcONHaOB23b5Pocxe0cT8JOe4uGr0fIl6dTuIo2h3pgMdYH2YBoj5CfEQtvWZ7BJx+GMlN3dy9Re3aZJK0sB2sZIKU3ZzrhMBpb2HZWhAvfh8OEOXeW5h0FP66I6bNKQXp9hsqj7SVtuILiqj7OmnZxTvRL2hrewpR1EBkZ3yPHHtFW6ljHGZ1BdrKTBpoMfbvknhyxcajC5BQGUcr6tJGs3F0jZnJzX/eQppdKfBMmZ1p4pRwZBsuM4FL0beqlLrNoNsKmu1r1LUTyjffL6MOGyDmPFc5RBJ9J3hwBe+AzZAwfyHywD8ECSBfkgg1Q5Hh7DN0IOfmJ4/qtS5iliukFewBINYDHeCTKCHYknjA3oyUTRORN8UOWd/PqVMI6b1pzjc8IOp7qgFRq+OiLpSo84ZIWREipd1Ekt5jbyQEVimzs9rRjIKMICFUb3f7ewpSdiztxuo2pIQZX2usGkGTJKz80Az6ayEgyzuUADsV3UNe878lQtu7+RuU/KuQCLyxcsvPry2QUfFeLKqHuxcAUZ8gYTjMxRMiekch5YqPhLEgUuK+gYTZ/alx9mTULQAighJtNZuffn6viRS932NrFin5D7d5Gtd1hvE++t0VATffIG1w74D2mcn2nUJlEVKyfIui0QUh/FiSlFg+5cFonJdhAc3w/ePICNlfsi9HIoNsPBc6oDMvgP6CEmk1u/4VUvoehoCSmdFm5kSaJftwEAKxjEce+t5zNssDd28bq3Oowxs8GqvhSHHjr+2EFEb/QWfKnpgXst0/H63TN0mMj3HasV+gPcwrL4dQG7z0s2hN+Ho9ThQxpQE0ZwAro+sj0Nk/nXS6Ap97/mN7ZpmSfd0Qmp4uUpp/TuIV70GmD9k4LRC9WxUZw93blWowaxYgqhPiURYlDcaoijKFeNu7kNHzM5IUZj7iXUhz9CcKQvw3g6Z7fgA6WyrAwxn3tyMBRYxDBtjD4rZHfbCezcETSa+FdvGz9nslo3uP9W+ex3Gz6HZCCvhbMtoyH+LTniIDcBx/c06hGb27DBmAKLTPPGvXP0Z7Xk2FLvJW/wQZuYKCf0m0b79E4tXeGRk4DiWddjtr31/R6vE98OeM+/2s/Q+RDaTP69P7kLNNBe2dy2bMq04oCsgy5Kz7ZtAkvY/ugPjOCgm/5tf9Kki+nkgGULGZNCP6tfizsF/0Rzzk/hSAUZpFs2Rb5kJ7yLHIkLX6bEqzF3IwuRAZQGutpX3QWv4jSoX5FDp/nyM5aw5BPMaHaA/IjAbWbLooaty7CBDhDXmZIG/7vR/OwDczaNozl5IAosLZvDoCKP2A9tBXbC632jCGIm6GqHFPIMNHFcCmNXOr0cWt1eVJ0ilV6Y+QPHIjiiQeol8ujWToH0j0VR2QzPo+JVLANZouOsPuwdKj+uvu/5EIMDIF8S/PkObnQ594PnZ3EuBwD6RnexydK58AK7p6Hob0XzE4/hirV8NT40V1vRDJTh8gPmJTknPuEBJAVFUUft8H0fpbGgGctnPXhiIj3ms4R0/KRRD3tFu1FijQxSGQ4t1kA6LORnLzDq38fszLeV54E7S33tmab5Ssx5aIHzsOyfFdkVw+Cu39ZSJRB93WoW7cf49kLw+I2onEESU48CxsfdyiyIoNaP9+SBa7BecQiEB6ARD1R8SXBD17ZrrfDNrb2Tof7K4F4FsAgi1IEvVjvgwa85I4Hu3nrndHOvNpOJnc7i2DAC5hH8ySl8NZ3tPGKjjMXIdzKra5+ILNh98i0P1bResVnaEVtM6rHHqQg8O1CFwyEemQvS1hZkUD83z6gUg2fhezueAip5WgdQdJWqsgG3Wzuf0l1YCooDOZhJMt8voAnRGfYynvIlqDjNat6CyL95Ysp95OyHn770g/7EEYHhC1Ta2++28uKBPGYTRIHmkrbSUU2yvGYilTc55ZGUXMe4E0jzAPddg52krBOMzqCrSVmTTQ8uAZB9zhrrW3g74dYvLeQYqPwsO/jWaL6FZ5cTeIZs3DeE6gSaJEmOHZYL8DyOhmzFMIpafalHIpMxpOt0k0u3na7voqSCk51F3rQWQgdM/+AQkg+yMw1K9IR1Loh7xRRpGkCuqDhK3F4jZmfMMzwkMQEz2JNLgjRLXqSYbHfwbNjTDvFiQU90LKq+BZkgmIiv4/CgnzhV5zbuw2sOcfwyIgZD0XfyeH5ipI2N3G0d8TeXw8Qh2p9xpVkGA0AfOmJwH73Ab80z3X067tT2SMbyZN9+52wO3RvfWRwfYp0mGU6xI8SEJ1X0OU1x0Ji2fa/Wcx7zcSIbEdacFwBBLa77C2vWdz06+Zfkg5OoUohZ/d34MobL6ryyLIMH+rrYUDqT/l3kGurl+hdTkFuMk9uw0KqVxBCo23kZL4lLz5jgN9uWvL2zfjCBQdrJ25iiLXxz9G+4cHqtyFzo0Ajuhpf/+JGflyaAavqfuQ0XKuvPbk1cf+H0mG0plEaXQf5iWIO9eQAevf9u67wLnAbkV1mFNo1rnmVkdG7MNq1HMp+/4F5BixSoxVSA23i7u2L1KsXY4MxHejtfAj0uDF4Gn5JhkKOGSIHWr/z+PuF4GXbkDn/7VImZw1ry5uMM1cT3EEFBuPziAPLA3gpb64dKRlxqC1NN3fwO8cjPaoIRm0VkbAq/1Kzoc+aG9OzQm75wFRVUrHEu1uj/bmEDI9GEb8nnyo3d8yj04jacb1RYqRQ9H++QEJ8CvmKZdFyve+vi45dTwOKb2rIv1Fz/k6n43WXBWP2ki60dh7Pvwp0sZMT+NWtOY753xvjqOZcW8gCSDKn+vLIZD2GcD2tcbe7u2C+Fjv1HIf2rsH2+9+Oe/mzalFkFz4KTKAhHnvFfs3I7B1mVQ8uwDXuN8hZd7vSBt0OuBS5BT1ZTNoZtB/DcnQS2eM/6roHD20iE4zaFKOPwuRTPLSt2caYhpBk8gAF/+up7h6ze40s4BQS6B9/jyStIg9EF/0NfL2D33Wy0phiqgm090YyVAblG0riuI7nig6QaNoFq1TxEP+gM6dvnatE4oMfq31z3ZZ36h3rtj/+yI+4HbSadTyzo/1UGS63Ajn9Xy/NfMSnS2fE6WYRyDBB9A+v1V0bz50Tk0iAQS1J0PezPhuQ+kieb8vin4Y5OPfuPs+9WNPZDheitqpATshgMXnJPq2DdAe7dNb9UX6kglEgDLE1/6KJuuRkG7jI5vblyAgzkcIDBL2tADQ/zvVkRKreBUkvzyOQJR+zw8Rut9H0Q0GRfO8KMpUL3IimNcz15GTVWjX+ghwdjICaoV53dnmRAyI6oal0mpQ33udci/kYPgacFvR/GrUt1E0vFeJgDjWJ1MQADAAd7KiCGambyQNiPIp8w5BwJCJ6Dx5Ocy1vPFq4rzfEMkVp5ChN7L1dwraT8ZRIzIM0flvbf0Kk/kR//wRiY5rHRQheJHo/R4oiq8HY+5o6+96d20zpMubiHR/iyNe7wbkRNi/xpzriWSxx1CK9hDh6E84wLCtizsRmLMwRRra985AUSNHIR3rClljikBbi+EiLTVrrsf1RXtAn+j+4ciR7hnSgKg8B5zFot9/QHoLD4jqTj4gKlNnEtHcE0Wkaod0tnf5vnb/P4KcvMvY8Dqi8/MN4Hl/3f2/EnL+/ZZWRL+ck0vBuLcBodpKqwsCoH9K4vydN98ut/2jCizbVhowDrO6Am2lwQMqJn0rZEzdmESZ0ZnEeHKje94ztC+TET76f5nmnFTXOZ1m9IxnWH0auk1QOOyxVDOxDac7E2hukkXTPTsACTnD7HcvZCj5jIx0WEjguJ0kr/UvM2iugIBG18VjlvU7430/xmshpdR40oCoztE7WYqiIPSdi4wrC0b3l0FeKq9iSqOcOmQK4gX1D0LgUOunV8lRlEXfWc7qtEz0zNZGZy373QlFPLiYAoNgswsSjF6P2nAEEtT2QQLoAUhg9sboIuNYQ2jCjFQxVyHwz43R/aFIgfA0BR68OePUiwQUcoSNzXVEhlfk4fUqYjCHu+v7Rs9thZSZJ9rvgSQRUkZTLQyvS9rbMYQr3ok0sK+99YGv+8IkgKgDSBQOu6CIU92K5r7V7R0UyWFbpLD/Dnm8hkheC1ldLkIK2HUKxmkTBBr8JQ40iATpW6z/lioYiyJjw33A0+73A8izKSiJ1gtjEX8jh15PtK9dWPBMZrS/qC8PyKs3WtPvI+BBAP+GubYy2sf+L5pPneJvzWk0i8Yx49l5o99ZwN0N0Jmxbh10s8bKp+YYam0+wX6viIx3IfT5maSNFz2IUpfG7URgzQdI72VF4KU7iUB7SJE6A2DXJJrLISDaWjhDAVLAfYG8vT14qUtEryraUgNproqMdgEANZwkMt2a1o4LMvp+XbTP1ozWiPazG5AiMESdGR49cx7ax28nI1VzBs3tcQYPmx9/tLZfRBKNwCsPV5gFNJd3fdsH8ZVfISVmSD2Yu6az7rlnfgu8n7UGQ90cnTDe+yJDWmZ6v0bQjebpBsgIMNA9V6HaMNsFgVnuRsrpIoPbnEJzfQRwOh7YOlq7ARCVGWHE920G3SURz3IyMMldv590Wp81EL9Shn9elEThtzCK0DeNSEZEPNFNCCzWu8b87IjA7p+RBrueSBLNKQCDdkbAm1oAvIbQjNreBckF/tpOCJg8hsR5xhs2CkFWjaIZz4NorGvyZ+REMW00Tarlrl1woOIyJZ5LcwrNnGfWQAbaTe134O96INDZJAxEm1HHojXVLLqH2foJwKIYLLYWUdR0xH9MJkob1GiaCKC5ANVOM1cY/bOJ9BO15nodYx3LXJ1q0UX6pU+tbq8Bx7fgu37fWByBewYX1S2r7m5+pFL6oX38SsRzfUOSvscDizZB8un2RfWLrjeFrt3rR3I2VYAb3L2O8fuU46F2Rfzd8FBPdG58RQJCeATt2ZlgEOrcP1owFw5CvNWGJBFo1rU+OJN0usCjEF++iLvWzebhnhHdk0j48Y2iewEQ9bZ9e8US9dwNpbV+E0U5Xbhk+3xfXo2LFo6iAk20/v/C6nslyZnUBfFi45Gzwf9n77zjraqOt/+lNxFQkGJX7Fhi76LYIvYSFUFQrFixYIlJjC3FEltijLHEEo29xRh7irGR2GP82RUsIAgiiu2+7x/PLPbsddY+5XIOcOX+sT/3nl1mr73KrCnPzPSKaNfdKY70pT1dP1UdnNnM910HvOl+ewDOFUhOexLYKNGfZe2vKPgiAKLOcefXR8CT61B2xSHuWsOBBm7t/gxlIvWyXpvoGxdC9oVxJAIJEJhvoPu9L2brI7Mz72dz9j0y+bkT0uUfpdSOdof16zAy3rMk4k3fkgdrDkX6XpPN5fdsTZXNKIx46e0I3Njbzt2EbKKfWbt8QGoPZF9NAr4j2u3JMsZORIDIQe56G2AxIr7aiPnt3ul9NefZ901BOswod20MsiU9gcv4maD3I+TfWShaM5UAUU+m+o60HWYnJHOdYH1/OpJf4kz+3ZBN9Soc0LNCfxxv7fyWvH3X85vVrb0PN3pNzo2DxP5d63OtR+tRrwPZhL4BhhVcD3b5ISgxxrqtc7EB4zCvG9B61HEwlbahButIAAAgAElEQVQ7pCv+yjbd/7NF1MZtpE0m8PjSG71R2t4zcYLggkyzJbX1O0BzK0rrYcdZlz5BBoRPiOqYN4LuvKZp9y9v9w1FzonLkQGoMCoJOYGvRhE9t4f+j9r4GPDXOeA1KUDUZKpMHRzROgNFj/R354IAELJ//BMDhEXP3kMeDFKVkECmdAwhqmdecP/+CPgy3b7Tp0Zf2No3ESnL5yJF8hB3z9yKcvJGq7WtzRe7c6siw04TMvzMpELZjHrRjOZMyP7RF5UkmwxcF92/GVI0n8Y53SvQ3RVFNs6uwU4GiLqCzInVHimyZ+KM5cgJ9i3mLEfr9TfAL+13yI71e+TUn4aivJYoaFtJjXb7f2e0lp9FiH9fC3pxBDSaiSL2Qgarn0a0jyHKhmbtu5+s5GZ35Bz/FCnKC1XTj+7cxsgRMBEZWO5DzpJONj5fA3vZvVVlVAz3Ih71H2vjfUY/RB/2QAC2i8iXW0u1MYC8FkUGzfPDvVGfb4iMbyWgH4ojG/dAkRsjrW/PRUCiZJsQuOM1FG01vODb51ua0T1rYMbPWg6yvb6NjeF1RJG8ZBGORen3NyQP0qtmrIJhtR0CA4RyfT1QppGZyPBYslZT88rOH4cU0FvJl8FZDxnSplGc/S70w0/I7xd1pYmM+R+h/b4JAYIOcM+MRnz5ryRKkxa8py40EZ89AznutiZzXh5Mtgefi/jIGDIwUGfkeHiPMiWC7d69kTHhDGQ4PMTa+w1RxCWSzZpIyxJ+ji2CIjgn4wzKyPl3q53/JVlZ3BxPIW3UrAvNqM2boXl+JhkgqicCdH6K5KOF4+eqWcN2nIP2u41dO8Lf/mi/HBp948fAXXODLuJ3kxDwZzP3/O/RGrsKAbTXQHP2c6LMjIk2thSaB6D1OQGtn8+RUyNkU1zV6DdRQyknZLB/HIHOtrX5dSCSH94lywjVFUV/30MiVTv5ub8XAk/+lLzsd4a173bkNNoYRafPAo6osr2D0H5wZHQ+gJf+iWStr4HT5zZNBFC6CTlWLiHvTNsVOYM/IgFeivux3jRtDLyMsC7KDNSG6uSzX1FaMr4RNPshgOBd9jtkL0jKQ2XGok1Lo2m/U7x/Q6O9uzs3u9w3UWa4Gt5dF7qU8vW1Ec//VfxdyJn4J7Qv+HP34nh+nWg+gLK9BBrDgf8ie837Nv989rcLyEAhVQU3xeM3J2Nv57ztJgQ67I8c5Q+hveWMZr5vBALlTEUy073AbjXO+1EYuIy8zrUYmXz3iDsfZJsVkE1lVI1tniO6Uds7UgqYG0AaELUvsp1VDBiJxuxh4Pno+kAExLgB7Svfd9dKyjXb/+tjmT2bO78K+uNSJDOHYNdV0P7xJzK5cml3f8/o+ZWtv0pkTSSnNKGsrSVBTWjf/w8OoFTQxl0QCOAPRmsCsp3OliGrGOtzgP+HwFR9UXDjO0gvHIjsrcehvf/28M0I7BVKKJYEJ0Tv6G7zsxMZ36kmU4u3k4e/7XBBOtRgY6ly3EP7xtp68XJEWEun2Fx4n9KMu8cgnuGDkrqh7GydyfaNVdC+mANElWtTow/Xpw8Af4/H0d1XBPQPfdcNlYR7EVXECNnTDnT3XG/9NDXMcyQ/j0J6TUnWc6THvYRsb8PJ5OYi3tQfZYkah+TtJavog1WQ7rmt/f4TkslWQbr0l8i2W2IHIq3j9rE11N+1tyOys09A8uqqaD3tiTK+lw1OaNDY34x0mQuQDvIE8sX8zN1zKAoseAVYu4DOYMwXQylPvMnG/IdkpXa7kGUAfD013yIa3dCecyEZb14BZXj9AAWRtbc+3x/ZuEaUm+/xGrN5WsKfo3uWZy6tywaNd/LbU7+roVHLc61H6xEOtCfuiuStkLV0SbQv/oUyJe9QRto3Yz7TetRpbOZ1A1qPOg2kIgTvR4rxWsh4vCdSwmYiobUTMjgdi4SylxCY5XAkrE3FlZBYkGm2pLZ+R2h+hiKc46iboLD0QZEOU4giiBpBdz6iuRwy+AxDCtfnFDiQo+fWRMpnE1ENdrQh34eUnDgzTS2Ahti5/pC9L5kOtwydYDAuQUYjAf9V68tHyJdUOg8ZNqbhnJvVvpsyNbWj8+sihfQ0lA0tlLY5092zHXIMf4FABsdX04Z6HkhpeoQs6qgjMuy+Qr7M4jLImXIMrs583B/1pBnNle2QErqi/V7U5nYKELWF9fVeVXz/SGTQ+Q2l2VUONzr3IaHyZLvXA0F2R0JpiHoOjqSDbX73RjzuarLoyZB94eNwf0HbfKaP/W3O3oCU3OeRAWIPd88A5BD+EvGSEyJ6u9p7D7bfa6MMVicAl0T3LkTmHL+TzNletTKHAFonIoPPdGRA2sLm/Ms0I3KVDEz1PvAWWSRmRxvLd3El3Apo7GL9GL7pchLZZBDvPQmlE18munYEaXBNPwTE+4gsPfqH1u932RzeHxlzB5BF1q2NjLSTcYCe+Z0m+TUaHCS3Y5lMqhzT2GCwB7BVmIfu/KbWvjMpdXwujBw+Z1CaCa2kNBy21pHBZl2bP39HxqhF7NrO9tyXKANP52q/w+bHFLR2YvDSQ2hP3rpcP9STZkRnU8SzfmzfOBQ59t7GASDQevrU5kmJI6URNN19fRF4IERdx/LIsggM8i1yxF2EeN/nlM9q0wY5Hp5Ee7IH7Q5CBs9vKI1WL8k0GH3/Dmg/+qe19w3ygPYAXvrA7ksaJxpBM/GObsg59w5y1gbHVQ/yPL8QEJWaq+7aGkje/yOObyIZ8kBknBkcPbO7G58imarZdB3tXWyOHEdk+Lc5dZ59/0y01j6gQhmO+ZlmNJ8Wtz46AWX16IX25w+Bp919KyHnYROwTkH7PN3+aE8Yh/S7Pij7YxOSgVe3+7qgPWUS1QHBZiBHZDym/cmyV36BQFi34crvpr7fXWuP1s6NaG8fQN6If5i1/9/A0XODZkRrBAKsP4JkpncQnzvZ3bMbkiunUVDCsxE0kfP3GjJQ7UE2Bhvb75rls0bQtOvdyIBo/7HvPYiCrFQF3+vn+YothWaZ+5ZDuuaD5ME7bZCBfSIV1ma96UZt72TP+KyFdyKn6HHuvm5kwUbxXj2IbK22nVOaiAd/TsbHdrXfFyOn/7k2X/+F0yERSLmJMrJj9O0dor/Ncrgl6PZD2Rz2J9OtVyYDGpxZzXscvb2QTPxj+38IWpcfEGXjLtOmo5GcldTR0R5ynvXrbW48OyMA/AwqgP/rSTdq+25I5nwHyd0j3NwagPamb+3az9EefX6Cpgcs+ZKRAQyyK9KzDonvT9AqygZ2LVp7M5HNcMdaxjpFnyyr1y3Ao/b/Ssh2exOZAz6U1w2BR4XzFIFzz4yuBfvLVaQBUYUZm+13T2Qr+SmW9QTpSv9GctAm5dpk/4cgmssQv3jE5vvtlGal39fae4I71wUH0C94x55GdzLSS05zfVgu47qnMRLZ1EMWzYVQUM8jaE8/hTJZV6t5R2LMlkP2g7/hgC/IbnK2tWc1d74tkl0n48o3Ih7yCJILX0Zg/KCDr0rGp85wzzS7fGxzj6i/L7Vvn10K1V1bEdn7Vi9HC4EU/4fkl2+Bo6J7NkY8KpRdPQntOdOBUxPjEXhQd2RzexMBp4Ld0QOirp6DfuiBgpTaoTX6FhZ4iuwwT5HJMiunvt39v4/N+WnIpnklmV0uZIh6F8l+tyM+9ot5MPYjkL11C9fPO9p3XkrejnAcClhdpgLNIfb8+tH5FCCqK9qfSgBw0bPbGM3/I7KDIP/OLWjvnoL2hckUBL2Q7UPtkAwV87sjSfBnon2KFg4AsnG+HgVNVhVsk5jnFf1vrUfrER/Gyx9FMsuLyM4VAKMHIp3+9yRArMhHdhsCq9ZcIrj1qGJ85nUDWo86DaSiSl8l79xthxTGq5EBaiyZQWEtZEh73QSgR3GlfRZ0mi2prd8hml8hMEW36LklkcFrFolUyo2gO7/QRMa+D5FxaiYFEQoFPGEQGXDndKzEGwJ3fImV2HH3n4OMHh1reEfsRC1JS564ry2lkcp3IAV6MJng3gmlmf2xnW/CDHRIoXgYZQH6BzJubJ96Xy3fQcKBh8A7t5NlrVgCGcaayKd9bm/9u5T/1lra0dzD+ioorjOsz1ZDyu57FJQALdfOBtEchZziN+GiTykPiEpGZkX3bI4MeCcQRXm6e/ZARs+piEfFaYaPtTnYBwmnzyFHYzA674yMEj5t9FHIUPAu6eiusbhoYptLH5CV8hqA1vX79u64HOQg8oDSYLwcSgbaGokM+tNsrGZRCgZbCEUkfYmc5x1SfVTQb7FCfDxae03uKMxUV7TeyNb3DKTYh7JcJ1mfFAIhHJ3LkXEtpKLeBika/4c5QZCD7lBkeIozPRxh7fdZb7yxOBh/+1mfH2zzZxICgcxEBq6maD5vBJzb0mjauX2Qg+FkEgawcmMaraUd3O/dUclYb1C9EoGAR7nx64miICcTgWPJsgSOjtoaZzFYERmHhrlzmyOZ5DqsRFtEu1I5kGNIg5c2QMrtoXODZvT8Eojf3YQDuyA542FknPXA1EOobICrO033rU1ore5DaUm9PsgY+zLaWx7EZZmkYD9HBtv3yTL3eUP2JognfgXsHdNKjQ8CZn+JAL+j7e87iGfH4KU7kaGzbKnHetGM+4DMkNIVRZW9Tx4Q1ZMKPJ/8mt0cyX+XIIOxBwN/iRyChwHfR2DFz3CglZgu2b5ZN7qun7qgPeM28uV52rr3dkd7yskomGCzcmuzBdHcEq2nBykt+7kvmvO/d+dXwpUgKdOvW9o43Y8zyCF++j4CQ56B1u9FaD/14MiUs20LxOOOJs9PupHtWSFD1CTgztQcimguRmmmwVFoz9oiwQd6Y46uMn3aCJrdkPNvHAZuRE6MXyNeeKi7dzfEDw6O6TSKJnJQBf3wBqTTH0XmbK5ZPmsEzYj+n4z2C+5cxQAe8nzuaFQWZ/kWRnNRBIL05amOtfdcjdkG0J44Esl/W1XxnrrQjWjubOM/HskNu9n5JRDQaAras85EoMPPyPOSXBAN4pdzTBPYHskYbyC+eBriZd7msiHibfeQB/BfhgM/Vvj2K9GeewNR8EKVY78WUYkjsizsH2LBX66fViADGvy0yvf1Qja7S8hnR/470n2LQJQpIFTIzB3v9SELSl+k3zcZ7euR7jaVgszUlJdNmk3X0QxBSVchEMuLCAToZaj+aC28gmTfY3377F6/V+6BACvnI/nLZ0F8Hvhz6vuqGKufWNsOsDn7POLte1f5fDu0F/u2/owMjHoa2ut2RLrXLWQZJgcg+eU3JLLXR+9ZHK3NqcCJ0bWQofsqygSOJWjuheTiR4Gdov5fA9lf3qQ0oCeep98i+buz0fzQ5u4zbpy8XHa10e2baFNqvx+B+MalCBzxALJ1XeH6MvVcDNiaHfyH7DavIpDJlTa/30dzfcsa+tC/4/sI3HkHkrtCoONmaF9+HsmigxGI4zPyJUU9LT+fhiN5/jp77m7Ek18j0+9XsX5NggobdVBmrSF7yRSb457fB4D2WxSANSM6IcvpRNKZlFZDYL5XjOaN5EuzhXnngZUbktmoXkQ8y2eICu/8XaVvTc09Ox/s7X9EwFA/vnegdX8v5QGc+9nc+SWS50KQ6ANkcmpHZM98AOkYFfX7Bs2Fs5EMEXj8imid3kCmk/jMzRUDk1AG3ZfRfhJXLQmAqFPIAFF+jIvGazsUPPU1Bi7FlcVGtr4t0F5zBAWBzWQ24+7WlhB8+0cE4guA7TDPrqQG/txSDqQbf259+qr71rJyOaX7yESqKOnaerQe4UD7+P+QbFSybyM/7xm21u9GunvICvk9JENMpYbA5NajxjGa1w1oPeo0kELpTyLLFOEzUbRHAujnlGZMWIworXkrzZbV1u8YzZlkTv4gxG2EBOiikjp1pzuf0GyLnIQfIyWzZgEMKWA3kBnR7kcAl5PcPSHDwp1oMx5NMwFR7lyR4rUrMhQ/howjIUvJIGSE+xQpVEcg4WAmUkhXxinl1jdBmdkBGUNrAkSRF3L7J86thKLpxxCloEdGsgCIOqscfWoAnsxhn/8AKa03IYDYPxEIZBeqyK7UCJoRre2QsegEnIJJZgQIgKgPgBurmVOuj09FETxLlfsmlMFqWfIAo/D+NRFPe9y+7WjIpS4fZ9cXD+OKohXPJl0m5jIkwIYyIJ3t/vPcnJ9h9wWg1TRg5wrzKWeMQkCscQgIFAyOdxHxILTGx9CMUpaJ9y6EjEh/B8bMwTweYP38OVq/0xAQxBudy0VU9kfGwcvdud0RP2iyPn0H8b5Uto2NkIE5LptQZKDoh5ThALRaGvGmwmxoiFe1FJr9kHH5VzjncNF7CubGn1HGPh8xGrL/3YgBopBD+Xa05zxq6+AuxOdz0ZLWrpvIA6H6oP3sJPJAg3WRcXOc+67jsUyIUbs7Rn0wFDlTbiBdEiCAlzyIZbFG00z098bIuP8i+RIxwbA1EPGeXxU8n+L1dafpru1q4/Qk4u8/IF0WeBHkdC3ZH8rQfhp4OO5/+/8W5CD8lijTll33Rsm+yEgWR4duhdbEBBxPtXm1w9ygGdFfPP5WBIi6D/G5H5IHRFXk+YgHTkdO4qkIQPYm2d61BzKgzrJrL+JAhUVj1EC6PdG+V+hQoSBbYUumiWSXAKR7yp0PDo1QGupFEkb8Mu0MdD8CHk/Mr4Eo09p/kT5yD3leXER3LFrzs7MjoL3lAeQ82N7OL0nm2PGlP2L5bSukC92IZFAPUHoCGRs7pp4tc64RNHdEvOdV3J7r+vpmG8NV/fkKa7TuNO2e5+z7b8EBvOxas+SzetO0edMT7aF3GO174vlf8H0pZ/NBLYWm/d4b6V+T0Tq9jUxn/RECMoSMC/cjvaIoS4B/T93oOpoj7bk7kDz3H/uWC5HO1B8BMZ5F/ObPFAQj1JsmcjBsiXjP28gp6udd4KM7EwVJVHNYO2ehtXgv0kNmIT7YrcxzfkzGIefpr6LzO9sYfIUFsmEgQ/t/BWRDaqo0Rnb/YtZXPvvNX9CaDACJ7+F4SGKOzs7SSvFev55733nIBvYpAiD5wKJaZYhm07U58DYG2EE8aQbSmaaQl6E6o311OU/TaLyACwRCzum7EB9+C9kzQjmUoTauhRm3HJ04AOksFCwQxnprpDNNoQpAFNL/HkOOtkXI9KxV7friZGvqbvfc4shh/A6wQpVrYHUkg0wlArUjWTTsCyV7E8qWE9vagu6YXI8IEPW0zdstEvM0lU24M9JBXrQ+LAEsIgDaZAzIU+GbN0Wgn6BzLm5z8b9G43dkMlASCIHW0+ySczbHrkT22mXJbMxXWB9WBYSL2jkK8dG/It73Kpr3IZvrIOvLadaWj0iURKVULlsSBaD9jAxQ0s7eN9FohmDSFdF+UjbYp15H1MebowyqF6C9r6P18y9tnB5HQTQ7IZvi50SgvhR9tAcdZXRetXFfnzTvWQTxE68PpjLo32xz6gq0Xj5EutII8oCo09HauLhc++z/Tiij2gbR+zujvfVJMsDOGmj/8ry0BDhi3/lKmCeI13xqtCahoI0eUXuq1u/rOPaBd/4a+J/9vyxZFrwAWNwfZYjsXeO7tkbAypmUAqKCD+YsKgBKo+e2R/LZF2QZu9pT3tbigVDhm7vZGP0D2atPRXvoBLS/hvl3OLLH3YGzM7T0A/kW7kWyVVckL46zfr2OArmcMjJ569F6VHOgvSH4PJdx52MZr7etv0+RjPs/pKc8j/aUmrNBth41jNO8bkDrUaeBzJCHd7lzXuheBCnSb1OQOaOVZsts64JAs9w7GkF3fqGJNtIRJFJL1zCPV0fpF5uQEuhLzXnBuT+K2pqFDLtVA6Ls+cKMC3Y+IPMfQ8rxtyjSaaBd74cc4iEV+BtY6nsUyTUB59CM2j6UGgBR5IXcI5DxdDF3biRSkqZbv71GFC1h/XV26NfoWk/yTsseVCj51cyxXZJMiVva5s8vEfBhLFn5yonIqFJNGY660nTz4rc29r6f24TDfvdGkbrfEDl8yo0pEjZfKroHRaSVlDdw7w1/r7LxfJYI4ITAcZ/YnN3T+uIT8uXtPABiMrCr/V4ZKbE7I6W5J3IYXe36+kSy7CnJuu9Re7Y2etfgHKpImQ+AqLWjZ9rHbW3OGne/fbaHZhs1bM5thcBJy3iaWGmM+P02bzojoMl/yTsBV0YZLH6HACdD4naSNkDtispVjUcO220oLV36AoqWSxm6WgxN0tkwA+h012rnQtSukxAQ6nNc1jy7thdS8m7FeIatiR8j3v0WWsejUnOKPN/YHa2XBxNzvCNyYE9ERqiL7JvirGBnIEN5d/s9Au0741GGyyaULdFnADmGzNm2QdwfjaBZ0PedkPM+RMQv4doQHHq32RzoRHVZKepCs6jNdq0PAhh8iJwRnd07ViAzxMZ8uRzNI5DxPp5vPRFo40RUuuExMrkqlcVvADJEHBvmpv1tZ20NKetT66ZtI2gmzm2L5CKf6SoYxjsjA/RM5Mzr6q8X9SNy6n2KMiAsbedGIyPMdLKSQosiA/la5LOIFMl7DaFr1/pZv12Ni5Z111dDBt+SqP7vAM3DkDzaRAYmakvmLBuDjLw1Rfca3cCjtnXr0mdq7YjWcCf3XLlxOgM52waizAHPI3DFH8icJaE8SV8UOd8E3BHPV2tLHyRzh8yUD6L9owvKCPNfMudz0bysO82IfnvkXJls3xfKQft1uIO9K5VhJ7Xu607Tzi+C9M3/2pw5koT+iuSzLZGjcJkKba0LTdK8qjsCP5xIKdAoPBccf7ksv2TgjdEtiSYCA3yFnKLj7O9kZCgP83IYknVfRBmC9q9i7OeYbjxGiI+/i3hacH4vRuaw/XH07QuTBx82hGa8FpCu8Xd7/lwiZxjS1/+HBVkU9WH0zFpYSXOybBiLIVn470SgwAJ+dBRyRl5OJqsMcNe3Q7Ly55isSB4QtTKyoVSj5w9EclgAVv3F+jkAoZZF8tOeiWcDcCMAocrt9Z+SgZ/7IBvUR8AfHL1kGcl60XX90xbtw6djAVdIr5+OnOSLIvl2Bk6GKjNeITBqCFkGt+6o7NjVaJ/+ytp2CLKlXEv5ssXeJrgeAtrcjbNrub55FIGTKwW6dUTA889sjCdSmpX0B8guNxWVh7rAxn8yCUccZXQKsjJOKUDU8XY+LtXUG83dLRL0dkZ7yd9IlCyz972B0x3tfMhwV1LWEznFf4Bshk/i7D02R36JAARLUF7/aGPv+ZP9XhHpI5eh7Gt/tjZchumFBes+Bmx1Q/a1n7lze9t949w39CtqW9TODRBIbyxZEOr3rG2PkZWz62nfsBl5m0o5OW8NxJN2tN9BZuyA9pZZOD5CDX6Yeh0I9DENre+QGeY+FATUHu0vr5BlV3+FfOnVZNax6B3tUTBWAERtED23OBFPKqBzPALpben6cqDRnUgeELWEtX3ViMZKOL0S7YtPIx4Zsjbt6q4fhvaeUKp+PAKHlVvnbZBcfw3iMSugtf1bm0chY+m9pIMzGpIRyvp9bff7XKxqBdqfP0X8eAqyOQW5oj+yT11OaabYWE7rYofn19tRDIi6l6h8YmJeFdEM2d3Dnl/RnhO1+zxkd/FBwKF0aVzqehwKem7RJfHc9+yO9rO7yWf86oX47iwSgCiqkPNbj9aj0oH20peqnTtI7j4B6WOXG39dopFtbD3+XysY6rt0ILDBt7hU42QG0rbIWFZVJEkrzZbV1u8qTaoU+hpBd36gGc7XMmcL3rsWAkeMdefaIEesV4j6I0dFTYAoElmWouu9kXHoeKTAd0aAo6+Qg9UL6Ssixa+f/d6AzLFdToHcmSoAUZQKuXGZrDVsDM5Agshlds95REIJcnZehEufjwwAo5DyEdKQv4MU76qjQqro862QIexKzJmAonS+dXNyAIrC+ti+oWzK/kbQtGc6IoP69akxsXPBgNwXVyqmDM2jkRLTAYE+JiFjcDzeSyHD3uAK9FZGBozrkNHwNqIsHKh83hRkCJ5KImrO7h2BjHdL2jx/lbxhaVObE0PI1v/BCBDyNBWiT4DlbZ5/AfzFzrUnc7SMsLG5nUgpt+u/AC6t41xs01yaFDtr2thYnO76qMTwh3jbl0RlD2t5l13bn0wxvgY5R79E69uXOrwHuL/Kb5svadq9z1CatWEtooxv5PnlZiTAf/Z/MBicjMC3U4FfRPT3JgNEreLOd6fAiUXpevagnU/JZ9YJ82QhtN+9hviO589t0Fp+Ajk9RpM5fo6zdiyBMiOECP3e7vnj7N07Ru2qO814PUR/u5Cloz8xotcVOV7ujvuvkTSj+bAs2rs3Ip+5q6/10wcIVLoYMlhNIAKDJWiuhZw6Y8jANL1sPnyI9uquSH4YgZyTqyBj6EQkh+yJ+OwgR7ctcj5MBi505/18fJKsDEK/qN/qTjOxDtqi0hWvIrCaX4cBVLYK2p/eRFHa1cikJyPH7xLkjbBDkYPprxQD/MvNrYbQdff8HgGHYwBhR2TQfRgHsqjmmJ9pQg4YOhytl5eBzSOaF1q/VxXZm6D7HnI2b5K6J5r3lTIGDkTA8iZr051kQNHdkXPKl07ta+2/lvy63wY58fra755IVg3ltV9CkfRNlCkT1QiaBf3SkywA5c9kQI3wd2XkPKwYINFImvZ/H8SnbkTy5NHkwfUlZc1TY19PmhGtgUju2JjMiduTNNBoH+Ts7Eye58RZbFoKzcWR/PJzMnBrJ7QPvAY8E/Vfl6jvSsql1IsuWRCHD7DYHgFLPE9qY/dfimSf1SLabdx9dadZMP/boWCSAMxeL7reC63/i6pZ9/bMLogneyfsfWiv+579XriofSQcbki+/zN5HrkNCeeoo9khale5PfpeJCs8jOSX0M4OSB99iUhvRpmh43LV5fb613F7PZLBzsdKE1Xo0zmiS6YPBB4ZwPbLWD92tr68gayU13ZIhn+dAhmKvAy3jBwoSicAACAASURBVM2hVygNoFoVARXeRqDoJjSXlyz33fbsDUi/mYyVSiKyHyGwxINE5c/L0HzR7n2U0iza7VAm9KvQnj0elSUsKZUejcXRyDZ2KrJLhHlYDhBVlA0zyLG7EGWgJQumuZ1ovdv1WJddHoGnCst4k5XM+wDx4yNRoNHJaC89rujZiE4PFKjQ3t75J/Kl4SYjGf9mIlA8EbDQne+D1mQokRVKwp9svwNYe2+qA2uORLzd69332bwMpVCL5PFK2XlXI8qaQp6Hf44DdbnzDQHDJN6zpc3DE8mCfIbgMiqRVWLYAYEQS7LHx21G+uiemD7q5v56ZICodZF9Yw/Ea0vWU6K916BMbYFvBT42AIEZ/4fsQJ38dff8YogfPU9mg34I8Yq9bS5NtDk/0j13krX5VWT/bJ+iH72rO5Ib2iBA7a1k8k8vtCdOR9k/awqwbuZY90Z69T/J/B6TyDKSt0c8PwDCwp68BJKv38OCDRzNwJdCf+yJ7CAvIn/JKHfvNmSAqLVraHe1NNevNCYJ2g/j9lqk532DZctH9jIvn5cNbJ9fD5TNzwfMe1vhR5QCBnsg/jsDBZvMDlBw95QAVVuP1qPaw3jtLFxwaZl7615FpvWocpzmdQNaj2YMmhj8IBNAfCTtUkiI+gIXBe828PZIIDytlWbLbOuCTLMltbVBNFMAkqqVSZxD0n4PQkac58mDh2oCRJEXHE9EBgvvlN8DGUv+SQScIe8cjwXVnmSGpFtwAjoyMAxGpSNWd8/sQhlAVNTWoyk1Pq6HUin/mnwGrUuQQH0+pYCoVPTgjkipec/a8uf4uTk9kPL5G6RkTkUO+B4oSu3fwLpuLv6ARITn3KDpaN+DlO9eYRzdtZBafcnomSIjxHrIgPVz+70GUmiuwpXoRMaug5ARYtMq2jgIGZn2IwNE+fUbSnZtFs272Fm4DDIqvElWcs8bh4bb+eXsd8iQc3rcB2XaOhYZq6eSRaV6I21IL/8ILtU7UnwvpEyJx2bMxUbQPBMZUba23xsa/cuJSgmiKIp3KDViVMUfbdxfR/zGR2/OQACQfmSghNOQkXLRcvTnZ5rIULy5/e959XIoc8ddRGUMbF2cjvaGXuTXY64UgdG5ivKAqFtoZg105My7gCzTku+LYNBoj3hXX3fN85OFkPHpY2v/X8mv6W5oP/uWUvBSMmVxvWlGfdzTnvcZstojvvkl2mNXQmDi0Xbu4LlBM0F3OOJNk5EB/mny5Vb6kpUjfQoZ+c5J0XXPjER76WRkXP8K7cehNPPFiF98hgxfXwA/smd/hRyfi6LMJSEb5QaOflv73mnA8OjdfRAfPd6+5xpKs3rWjSZySm1JZoQdDvzE/t8WOateIiq5gsq0vGTXqzLeofU8IV4/9v95CMhTVfT5XKIb+NtKSCZ5B9jNxmBplCnsUxwA8rtG0/4/AMkXH6K1OQKBKj+nCmBwBbphzVYEuleg2wbtFdsTgVZR9ONzSCfyvGPh6PlRaD3fS1QGB/GufggUcS/iJ28TyQGJdtWFJuX36p4oAGSq/fUZ3I5CfGqjuUEzposcsm0pLZVyE+KbR5EHrZ1JwoHdCJoR/f3JymNNQw68kG11YbSXfo7W14X2/edFNI4hn2lpfqV5aaBJxjuWQ3vjaN/faI8OmQWPrdCHW7n/60IXOU1nkZXUCzLXIcjJFhywPnPZxtYHyQjpRtCs0C/tEPjxBcSbhyJ5sQ/igbOoLdDvVGC6+x1nWtoYgUEDSCJli4gBEafYWPyBYkBUoXM0esdySO5fxp0bbN/fBHzfzvVBgKcZlAbP9bC27B+9p6a9Hslh59l7Dy/Tp3NC92yUaTD09+FIH+rv7l/TxmgHd25PpGOVyFCUZgsJDq4jEUBhPBEgyq6vgewQr2GZzFLz0f0/1towyv7/GwK570RpBottkW2lJBtYRLMH4rk/srG9gwIQNtqz28XvStwXwE6v2/x9FoGJAp8JgKiPgNPLrUX3f0cEBPua0myvQXdMAqIScz75fdH9ARD1BllW8N8BY2KaVLAnkJUb3i9aq+8ivfCA6P7cusftn2RAvftt7jQhfhDasj7SaUrkfBw40p27EPjQ/b6PUv70exIZfFJ9G50fgOzIT5AHg7a1a2+RyIrT6INMnzrL1pBf+zfbWIXvr5hJNDo/klJ99DysnCSyUf4Xyfh/Qbz65xXaG8b2dyjQwdsHwn74Y5sLH1Jmf0KBFq+hrISbI17qs8F9D/Gsl8gDbwbg7DtkvolKc39RW0N+z9jA+vg3RHtGg8d9sPXRB9ZPQXYI8+F7NlcnocDASxEwahIue5DdexousxWS9b60Mb2FLJvY+e6ZbY3+N1SR7RvZamuhuUmZb4/XfU8b4wD6C7bnAKrsaONzbKV2zs8Hspk8jclD7vySyP7ThPa+btH14N+YnRHZXTuW1oxQrcccHMjm8zXO/pG4J/Cl71MQ2NF6NHic5nUDWo8aB0wo7CfJBPe3kWIQomNWJ6sHHkdjLImMj7FAvsDSbEltXZBptqS2NoimV/DXJhL4KvCMchG8eyIl9lnMGGbnqwJERbRChFPs/A7R1R+RKYre+bI3UibvJJ9ZoRcSJE5w59oiJXQiUjID3YvcPSFD1NvkjVyV0lIHQM0M4Bo75w2vF9v7fkl1kX37WX98QT771hwLN+SNR+siMMhXyMB1LoqGOIF0abgipb/uNKN7fmhz/iTyDq8OyAHwEqWphVMgtmWQ8fFPZKm9OyCj4SxkdNoXCZZnIyPEuApti8FMHZFzMQCiCse7TH8GAN0EDPTkrvVDhohnkcHzdJt3IyvNE/Jr51Ck8L9ElsnLG4xHk3Bq2PvPsjVQ1kBT0IY4o0zbetG0/3shHnqh/d4HZZ4aixzAH9k4b4VAOhsjfjA8nstVvntHBALyQIZ7EJgxREuHcj6HAid+F2giXvkGlkLczoUsRReSZd9ZzNbDJ1hZDXd/SLcdn68EiAo8P2nUrqIv+qEsRl+iFO/eCVvWMeTOLYQMUE3WhwOi612RI3MWWs85RxbpMkF1oUnpPv0Q4iVvIaPOKuFbgT/a+z5DBrNH/diT5qN1oZn4/n3smdNRtOXJZMbbFdx9Hez7r6CgNKI7NxTto6ci+WcttCc1oQxpPZDctaa991gyEOV69u5ryANlV7d23uHOrQ/8A/GYMW6eDUfG6ZWRLPc0clas0QCaIcveRwhIfph95yGO5vZo73iRLGNjJ5TN4XwqOLGieXYY2uf39WNjf3ezaxWjmRtNN/UelGHxb9Y/k5FzZzIW8VpunrZUmuT3//1tbn9jf3+Kcy7X2k73/4HIkfIvqgCR1zhuiyMZ/lPKOMhsHQy19XQcFUoJIif+vtYX+5W5ry40yfPSTWy+/wrtqQEY2QvpUV+jSP/LkKPrEz/2jaSZoLszcnqORzzRZwAL4KXPkYMkON7KBufUi2ZEfzd75icI5Lk1CpppAnaye3ogGfdpogyQdn0HJP8fPJ/T/AUqL3xnNP9XMTqH2bl2ZPy1G5IFLyzTh8Pivq4T3f2Qfv0WeTDK0ggIfqM7F5ypqyJZcJ+5RbMKXhQAUc/aGL6I9N3XKFhL8fx3fzdDPG0Msu+8S5ZxpSvSe/9KqS54LJJhvS3C6+JHksk5MSDqX3atJPtv9I7hyCn9CQLVHGrnOyC5PjjtHyALJjs5/lb7f2FKZdWq93r3bB9/f3RtjukiPv8OAt0Hp+Zx5Pe5DciDGjshHfNcSrOtbIgABuvZ74ORXBcyeo5BoKDZgChKs3QVlm9054cgnu+DJVdGwPnJpAFRqYA8P4d2RbJ4WzTn90b2hjvJg+O6InByUn6MaG5s37qe9fmqSN95A4GLwhiugeb9m5Rmb+pPPpBlYxTYsDTSC4p0x5lI7y0KSqnJxoZsCHvZ+L1KXpdM6WPrIhk8zla3AtqXQ8aVzgjMeaUfI0fzZ2T7SDcU4DOGLIPZdijAowkL7LDzq6B1+lA0JiuTL6u5O7Cd/b+X9edO1nfvktkMFkJ6062U6qs5UIz9v4R9qx+7UdbO28gA5j0R75kW2tHoIxqnACy7C/i7O/9n+/4AktkeGFHDO8rpo38gK5+5DLJT3oELIiqYU/7//Y3WyMS1U62PnyQN0Pf87Si07p5HcztkXgw8dE1kh3yRBFipoJ2bIB0/Lq/Wz+ZqsNl1te+4nTyoq2HOfSxjpP3/KuLt40mAhxB460qULesJG784mLItkmc/QvtvXyRvn0zmz1kB2ZnjNbqttWFMhTYvhOTiOaZJvjzl0u78JWjtH4N0GS8ProUAc2Vt5C3hILOlbY3Lso50zquQnHUokQ8D6VRrRuc2Rbb1wsyCrUfrUelA8tzXKOixrF8CAZ/vnBvtaj2ivp/XDWg9ahgsKWpPIIV1G6Rk/BwZLv4Piwg0Aed620hvRNlStkXKxSTyEdoLLM2W1NYFmWZLamujvt/RH4GE4Ycx43iVvCMGRHmFaQ+ybAJVA6LIK0gBXPQKsGXi/Zfat/6OdBm9fe36DmXa2db6aRYC1myADDE32LPXunuHIiVoJjKseDpBIYij/hZBUSITgX/7MXX/h+w3lxFFGLh7gkJyMvCY9e27mEIG+drjc7AfxACefZHR6QNr4xtUWSqlkTQjeg8jI9xFyKCyNoqOm0kimwGlCso6rh2XRdd6kTkHv7B58hL5SKWq0/4iQNRw5Di7meozNrVFytcrKIvR28jYsJS7pz0y6j2LBOX3qEEZjebzYdYfz5EZYTvGc8zmnTecrUimcJ9aw7vjNOGNoNkbGegfQiCNJjKj4QrIwPg/ZNj/FzJUP2392anW9yKHwxQsGxzpqMnriDKZxH08P9O0cXkyOr+SrZPncNm2UARxk9H+q/XxNOCHEc2FkBNwVEH/rkiWySI2aid5fi0HMk5dQwIQVe0aQs6dkEr7VKJSAcioFyL0y5bvbBDN4fZ9VyBj+bVkKd6DPNEJ8ZoQ/eZBxSlgWN1p2vnVUfaLH7q1OgMZn19Hsk3sDOwY95//jXjl9UZj4ej68URAIXdtUeRgfcvmdxPKetHZXb8QyWZ/cs9tg4znXyOn6P8wmcOu/xGB3Y5uAM2wrrsiA/ZUJFeNjfsHOUqeQPzgZmTsm0mUzSHmKZQ60tZEMs/jwBA/Lgjc+jIJma2RdGvkAW0ReOd0xAO8g6pZaf7nd5rRPNgfyRrP4HhJPB7NoDuKrCRHf+ojs26JHEOFznbXV+0RD70Dl60gcW8MSrgPZaHNyUCNoGnXDkDr9F20R36NHFWb2fVeZKDdCTb2G/l2Jfqp7jTdXAkZVM8j05F8aYkOCNg0A8mulQDVdaFJFh3bBjmn70X6Yg93z0P2vN+LOhr9JePvRzrGkBZAcysENp5MXsbqhube+xjghWxOLoL0ih/FfemeDxl36023DXK0v4nmaACE9EC8/UssE4H79jH2vg3nFs0qeVI7G8+H0H4+nHxJ86LsxJ39OeT4fhSBqiZhjlWbIyPt3EHR965r7zw0WitxObQga8SAqKFIp145ut+3c3PkpD4DAX2uM1pnkmVz648yYFyGZKoh8feT2Ovdt6+F9vp/UcVeH/epe0c96bZHgRrTyJcE8vcMQPrNO8hhfD7S94+K+xLpVk0oCCfoR0eTtw+lAFElmVUo2EuRLvUZ0ucHR+8fSAaIGkqZ/Z28Tn61fd+PQ1tt3PdB/Pg2JKf3Qjz8QaL5l6B/hPXXTeQzqPdHa/dN8oCoQUR2I6QbXkeWoeQABMjb0n6XC6YJuuPQct9erq8Tz3VFa//QCveNRODMz+3v7e5aD7J9Ocjkn+HK7UXzIOx53ZGO8gSSETs6ekejOfwgAvWdg3SsXBk16/tL0HzuTgbiHmb3rIx0oS+QzBBAhJ3I7GajEt+7ajQP90N2telItj/G3RtKTk2xufqY/f5huT5txIHAx3fa/xcB79j/dyJ7W7CZLGT9di0FZQL9eCHeU0kfPTg670FjYU3E8zS2r99gc2dPzNaM7B03YyDmMu2M7d1vIeBo0O3burm3BuKjk6gAWENzf7odQSb1wOWf2Pc/Zv38OVUE+dVpvOP+/CkK3v3W2rOpu5YKfi3SATognX4iGVB6l+jexcnAm+u682WrQaDgxmAbmSOaZPvMQsjW8HtgGzu3CVm2qVBNoQ2SD5+w/qkpgHR+Osjz1MXR/vkqpRVPrqGCrdCtz95EWb1aj9ajOQeS0d+mtPqNn7erI1BiaxayeTFG87oBrUcNgyXH/5vkjahdUTTav5GAt7GdXxYJg++haKAJyLgep4BcYGm2pLYuyDRbUlsb9f12/95IkDuRGrJpkN9wD8cMCNH5SoCozxCivlPi2dmpnslSye5OFI2BjDJNyCi3WKKdK1T4jvbI+HIf+cxCA1CE1SzyRoddgL0SffgVpcpqEIB7Gq2vyBs5fKTYlaSz7cQKVnekSO2JDBfvYQoZmaJVEtFX6xGNxYrImPK29fUe8wNN8sa5W5BxJ2QdeRcHBHJ9czJSPHu7c+3IMi69TORYt3t6oSjd9ckDFWt2YiIleRhS/P9KAQCu4NmlUGTgjsgYEQOi2iLF9Xs4YGO17SRv8Dgc8Z3xZBmiCukgQ+idyMHXZMeZNc6Lo23NrdYImohnNiGD3rkFzx6BjIRfIsNLE80o7YNAdt8avVvIZ1rqjCKK/06F8jvzK01k8DzN+une6NpAZNR9mXw01T7IyfcEMibu5a7NdpBgPAwB0kYho/tOZHvBShQDosry/Cr7JACiPrN+SRryKWMUR7z6XmTkOxCX7ceud8Ol/28kzeie5ZER62wc70GR3t8gR+fCdq6L/f7U1lHSsNsImo7Glsih1gs5MyYjg143sgxH71ADkNvoPgnc7377/eQ+JLvE/TvU2v5rFLn+ODJo7kVmXF4EZXqcRB68tKL1xx9RxGgoebSh3Xt6I2ja72DUDBkhpqMsBB38dft/IwRmew1lHjqioP+C4Xt7lOHyMpRZobs7H8DDP7TfP0Y8dWyKZiPp1uOgmaCllkKT/P4fSvA8yZyXtovlipH1+k4kC/+SxF6SmlvISXCF/U5m9kucu9rWQodG00Qgis+QkzJkbjoW7aWvkZWwCuWl3kaBIUGeLcm42wiadn5bBBw5wX4vh3jLFCRTxCUiVsXKLxeNUz1oGr/o7N+B9osJ5DOnxdkctiMRmIFkkt3IgKXzLc2I1ioIqDeVPHBpGHLujCfTH3uRZVfbMaYdvaeudH270b4XwEuhvN1AMhD1P9H+G4C6ZTOX1ZNmLQfiC9uitbRf3K7E/TtZn96KHOCh9PvGCDz6FpKvhiHZeToFgACcvQdlBHocgari7OAeEOXBWkH+LgmyQhldx1p/hbm7CLLBfIsARSX8rsKaHwr8FskxZ5FlQdka6RfN2uvrRRcX9IPk0ffJspuGrLk+Q9OWCBD0EeKx5eSdrazfvgZ+6c57mSwAop4kUTKvXP8i2fwpG+dLE/cPRAELTThHbxn6N9lc/D5RMBdaa8PQWp+AgommY5mv7J6FibKQWB80IbnXl3EKAJ5+aO2+isBF5ewQdxitW5HucUQ0NuUAUStEvwdEz25C7cGAXq9IyQaroaDWE9A+/XPrs3+5ObcOAtW9YXOubHk4pLePR2DMlUnLLTsgsPv/kGP1AjI9wc+9k21cXrT+nA2ssuuDkTz+IpLtvm/fMAMXvEbGj8fY+ARdZSjiuZciW0Mo/+zXwlCk3zyBePawcvykXgd5O9KmaD2fhvTw9ZFM8gni8cuGOYtAeO8SZamrMA+epgp9NH7W9au//zjE8x5Ccl64ZyWUVakJ2RGus7GfSuRUT/Vv9I4xSBd/BttvyAOi1rU2FAJikL/iWbQPrYcCEt+1ubS83bO0XX8OZTlpVpbaZoy9/9YfoECc8G3bkgGifLBIN/vucvwp0Ohgc/4ttN7XDfPH3RvAsrsk6CQDHJF9bRIO8NQcmm7OLISCSB9DcpQHqh5q8/ITtH9eZ/Ph3zhQZaPGaG4eyM/zHGl/1jXMga2w9Wg9qj3IdLttyPy7K8c8B+ldv7e1u9Tcbmfr8f9awVAt6UBK22dkGUZmR5yQRWS/Rj4lZQ/b8Nfw51tptqy2Lsg0W1Jb60mTvLDbDynMF5BPt1xWaItoHIFLvWvnqskQ1Y8s+1Jcz/Y4InARyo4QMjHE9bJDBoozyVJBF2atis53Q4aIa8J9ZMLGskiQuCvVJ+6+TUgoFr4dCBD1CwQQuNldL4wkcOPcERlMVqFUQXsWKY8b2LkBSAFuFmCpaJztd19gt/mJJnmjzQbI6L4DDhAQzcchZFHLPvqzA3KoNWFOaXetKGNJs5UbG9PROMW+xn7rgMqIvEUEiJrTdkb9dShZyavuRbRsnX+DDEWDkbPmJuvPc6ppG1lJzIMaSHMwGajqHlzNbUqdknugiN2yEXNl2rEQcix+iYB6wQnTFQF8PqZCxOj8ThMZto9FkaF/ia6tQAaI2smPT6KvizJZBEDvN9a+Z7CU+2QZoibhDOjlaNbYL4uR7VGDEtfjNO9j0N61IRnf74oMeNPRek86icj2krrTTJxfC8kTP3DngoHuYFwpHjvXERk1P0eG8RJjTyNoejpkZURuQOt2MXf9OSQvNKF9ttqo7XuQI6CHb6/9fwkCBZYAVck73nujsiYfof24LHgpsXb2QLzVlzJatAE0w9zZFZVleQEZskeTgdHjKNge5GXHtsjh6Z3fo5AjZDxaqx8jZ0UoNbuVfcss5Ox7lUREe6Poth61H+T3/wOQbvEWcwgyJc3j65LNlDwAs5wjog0yHvq14WXIdZBR3wdGLIOcXVfODZoo+vx5pCP5sdgPyfrXkwEDe6K9eyIqi5HMYNkgmt0QwOB8+z0IOcEvR7JaKCmyRVG/NYImAsd9hUAQgbe1ReDt98ii2O8lnwGzH3KknxDPoZZCs6BPPHDJl0c5Eum3sxDY/QmiTJ1zky7ZPhcAjm/iSgIDSyL97nE7/wCJMkGNplnLgWSXspkc3DqchYIw/g/tdw+Q2TPWQ2vgdZRR+R5cCWky+TGeY1fY3LkJAWmaEKDKyzoBEHUnpdmg+kS/h9h4P0OUdRjphwEQdToVQO7uuZG2Dp5EusJUJOPsaNcH04y9vhF0kT78LHKGn2Bz5l9kpXQ8cKYrcpQmg6ew7FXIRhd00r/gyhNG9A6z971GAhSRaKvPHLOE9cMHJIA0CCRxFxWCaKxP30QOdR/st4XN0QAM2wjxqCuxMtmOxo+t3+OsNQcjfWAy+cBPD4iaaf3fPdE237cv27je7cbGZwsLgKhC3RE5GH9Nlv1rJFqXg2vkAUnwivu9KgLOeb37MMQzn3Rt7opk8sVS3xzR3A3x4NXIZOzBKAPUFaF/UWBKL/LySru4nSgApAkFvPiy5+HezRDvmoDk9YfJZ6bzY7MTWjMfIODUbtauAKzsSxaUdW70XRXtBvU6ojYvgwIQryHTF7sgfhdAf0sgW/04m8cnV/GOI4Dr7P+7aYY+mmjrzYhH/JGs6sCvyNZBF8S7/oH0wHtI2Dfs3tngOJsn8X5wLNIN/k4eEBVn9C2ZU/Z7SZs3y4TxRfbbN2z+Lufu7UK+fHwjx973/TVoTz4eZ19AANpvUbayLdH+dzkCDfWshj5ZhqgmJIOEYL8AJFoW2XlG1tD2Dgg4Occ00Rq/Funh3u7h+cWmCNQ1HskQPyIBqmwpRzxHo2t7UhzgX2grbD1aj3ofCPA8GgHzX0ey6crItroT0umnU1D2t/WYC2M0rxvQetQwWIoK+Yw8gt8LVpsiZfovrTS/W21dkGm2pLbWgyYuMiuiO5OoTnfB86nSKKGM3YH2ezGU2SAuR1gkQC6OpVx15zZGRozD3LlQk3wIUuC+wJVvsGvXIoPWOUTlnKr4truQEhoMpO3c915mfbtwLTQj+sGY0QsBoqYAN7rrXvEaiIs8QwrW40jgaUICt0/tvpf16zQUjfWUfUtJJNicHJQ6SudYES2iiZTpqp1k5dpSRAcZhj4BdvftQUpdAOD0qaENVZdRS7W7lu91z3RAQu9bNgeWLrjvGCpki6nQtrEUlCxz7bgPGXK9U3IpFM3XRKI8RgEvGd1Amu0RL/o+Kg0ayhN44FwJIKCaeVambzZGxqavbe2PtTk2nUTUZEuiScYjF7b7KwGiSsoPlGnPNmjPG2s02gInIV78NtDX7luerETHJtXSr6Ed/Yj2qMQ9o1AUbIjGa0KlfUJ2s1A+Zgoy+JcY8ucGTUd7axvn/dy6aOO+930yZ3TgyR2Rc64IEDDHNCvNV7v/OeCSaH69bHNjz8Qz5QxbW9qc/V3iPb9BBv2FXXuLInKrAS/d4J5rjxwzIxGo7Up3rW29aLr2pZzEnZAh/GNkUAkOp7bIyT0g/lYEtP6bzctj7PwDaI2GLBa/R0b768iAS32QM2FNoiyG9rdRdIv2/ubw8RL597tMk/z+fwzZ2p3jtsbzss7fX5amXTsNOcmPis53QECOF8mXjRpia66wb+tBEwMeIl3mLU/D/X8x4vleLumBHDZNaP37PbouNMv05Z7IEdoTBeVcQ8arTiZz8u9cRKPeNJHOdDXKLnEZWYaojgh49AbKqvsu2X7aHjmgXyax37cUmmX6dBAZcOkn7vwWKDPO35C858HM1QCt6kIXRd1fgstASwK85O7vRj6zckNoMge8KX623DMoi81Jbp6fhuTcf5IBoroiftKr6NvJr/2+KPPwVvZ7CZShugnxHm93OAntvwPcuXMQaKEzGZ/qgxzfTcjZHmfO7I6AUE1ITytrhzDa/0AAgrCvb0EG9l/fvXcZCvb6RtGN+nNTVPbrp2SlAI9DYIh/kfHaNshRvmHUppQNLQAfBiFAXBPKAuczKXnH8xGU0cXdfb9CDjIPnFkKOazfIg2IqmgzQoCAF5Ac2gbtY68gYMsstNaDzNaOdJbCPmS8bofoTS3fagAAIABJREFU2oHILnM/LuiRTD7tSxlQNpJru9oYv4Z0kpNdm2avaQQKKNQdEeDsISRr34ZsCYenvqkaHkAUTIbAYzsgffu30XMeEPVP0mXJy8k4+5Jlw14SASC/trGbYP2TqpaQCrrriGwDd5ABRlcIc5NsrSyMeNNS5IHfKd68DbJrfmTzNGSBDCCKfmSAqJ9V29/1OIhs5SjQp8nm5VXRtZ4IEPQa2gOnIgCbL/NXxJ83RevmF9aPNemjBW0P6z6UrjuFTF76A2Y3sWs9bHyTlQTcuHZH6/Etm1M3kd/Px9q1v5EBtpNZi9z/myAbx5nAHxJz7vtI/nmBRMbncnO/znPhJiQvDCXhV7Dzs9C+8AIC7q9TJe0AiGpv4zYFZe0KgNKuiN98TgH4v9E00Xp+lkTwKaWAt+6ptrSkI5qjayM+tWl0z15U6c9qPVqPRhxkMkxn40H/MB4fymm/Yfy4FZg3L8dpXjeg9ahyoLIFdSFyPHnGHgShzsio8X41C2tBptmS2rog02xJba0HTWQA+xdRGTlkAGrCACGQT4mODB07xG2x/wPQIGRc2QulYX/P2nEiLjqCDBD1DAmnuPuW5cgbgvZHBgsf3fQEUkBiQNSN9j0bJuiXMxyMQ0roGeQzAnVDCvmdzGGEg/u+XsjI+BmlwIEBSIh5lAyY9S8UeXIQiuaZjgQfn2VjJ2SseMv+lpS+qaYf5uDb6kITARu8MXYHHPCrzm3ekSwd987ufFsUDfgNcGq8Zgpo7Y8Mv3M9CgYZDnZEUfzvUmqcXhoZuZ8DVm/OnK001sgA+QpwfTzvkGP9DVuXZ6ToxLykUTQDHbcWh5EGRKVKQ8xJFrA1EH9+FRmqbqIgk15LpYkMa8dRDIj6EBkMd62yLecgY8PsTBY2dsON1h/JsikMBLauQK8uGUgS82wQ2vNOQtHVK1ofNqH9aAm7rzuKgGwikY6+0TSj8wFUNJ7SSNvFkfHvhMRzHuAUr49m04zbiwxQ41CEoTfedkAGxwfs/0VQ2cXHyUeQFhnfczSRYflM67+bUTT7+igb1xfUkGGN8uCln6F9+57omc7kM9PFWR2aTdP1ZVu0PjayPujk7u1CliHqQJTlanfkhN2i4DvXRsbV6dZ39+H2FcS3L0EOl2spiJBNzJ+60iW/nrZATsQTKcgSW6mNSBZcoGiSGdbbunNt5se2lqG5GgJqDiOTqZdD0dsfIMd9d+TwOhIHyCuYV23rRdPRbovKg9xmdE5DRs2h7p4g049Aus+y0dj0Ag6J6NaNJhX2T+TcehdXwg45959HOszR5catjjTDnF0IAUInkAcabYZkxy+xTEVIRj4IBQalSmS1KJr2fw+yfS6M5xpkwKUfx3Ow6Hej6EbnLyYD6Szt1oUHL/WL+q4S8HOOaJLnI33QOupHxBcrzOFKc3xfpG/eRh780QEBT95BMkBv/87Ut0fj1BmBfG7EHKF2vh+ZzBMDonpFbTuQzKnuA1J6I+f4Z4gHdome64704ZL1Gd23GwL4P0a+rF/IyvMUyg5SlPm0aNzrThfZZg7CZA/X/+1tnN5DIIi1yfTKY8vRRrLWn9AeEUAgP7Bn78NKHNn5IZQGDhZ9f3trw0QkG3tA1NJkgKhk+eNyfYKARVNQNvnrbA7cAGyOgFAziTJBeRrR94d+Ojm67zB7RwyIqgSs87RDSe67EAjoVDJQnL9vAAndMbrnFWQPupuopGkN7TkeAfqDDD8K7cfTrA+mEMncCLhwCNJFXq7yPYE3rW9j/wmS8Seifb4TAprMwNkQq6Ab2n0K2pMfxLKIkfGk/vGz8Rwlv6/sgAA+X5Jl3/IZ8fsh/jUJuLjauTonBwlbOQLNXYCALo8g/uezjLVD+/i2yKa+TOp7o/cEfvIHssw9PahRH43GaHVk/w0BSeNs7u9Hlv3vUqrLVBjGLwTNPIEydv4I7Z1vASe5+49BNqNXqFCu3ub+V0jvDECtfaJ7OiBA6XtINmp2MPIczIW97Zs2c+tqUcSLdyTjJ4MReP03RJkVq3iHzxB1kY3zGygA4FoUrFRTyd4yNP9QiSalwaDLILnu1IL7u2OlVakg67SkAwWVzLCjCZUeXMVdD4Cosv6s1qP1aM5RzfyJ1xuSJw9BfsINcXJ/6zGPxnFeN6D1KBgYbY69kdPZK8FboDSfL+BSwJIJpUvYhpCKvF5gabakti7INFtSWxtEc11g43CfO78kcnw/QKTAICXobOSg6kVe6TqSPBBqBBK4f4aUhMvJIgM9uGgPlG72DWSUiTfzpaN+aIOMQmdF9w1GylkqQ9S2ie/39bI3QErozv6b7Tu/QkLv8siBGAzPB8U07ZmahH/yToZLiJwXdu185Iy8CxnWricfUb4DWSSiB0QtjFK1zjbSpdrp5kt736Yq2l4IDqkHTZu/v7fv7Y5AD19RJXii3JhE7+nn/t8OGZrfpxQQFQzpZ5OPwvVlg9qjdTIel16/Hu2skVZHW1ujUjRRBNprKMp8jWbQ947ANqn2IuDM62RGM7/mfoOMcU2URtkchww2oxtFs8J88ICo76Xub+6RWDPdEADBf0dNSvO8pllu3iKQxnHIsRoDolZEe8bwxPNxhFl7FB39gjsXHLftkPH9LRIGMvLG1rrzvejaRsgwdhsOtGPXDrR5daQ7150KGTLqRZNS3tof5+xChr4ZKPI5OPS7oCxBHwPblRnnNvWimaA9Au25E9D+PhHx6QB82wUBZt5GzqfPqWAsLKAZDHh9bM5+bPP2U2SAPTnVlxXeUwReWhQZoQ8uoln0jubQjMZpOBng6U0EJFjWPdMFgQ5n2d/PiOStRJu+hwDiHxnN4MAPfzsg+eZtBFosWzKgkXSR4X0aAlB+aXNgCBXWP/n1c6zNta4LIM3jjKZ3hs+vbY1p7o/2ielIlpyCHERdUGmaIPNPRev/PfIOntReVxeaUbtXRDLoqe73p0gv84EhHRFI+AXyzroYyNG2XjQdH5nt8ER64+Lks0uNQntTyAzQDoHCLiDKwJP4/rrQdM+Ftnqg0W/JHNnbokCIyQjA+7KNaSHPn59pEmWERQCbZ9D8ewqBXsK+sSYZcMln/ExlHmkI3TLzIJQpP59S8NL/oX2hcNwbRRM5k/+NgAVvomy1FbNPR+3YBdkWfHBZNzJbySQycMHssrUIRPEG4muFmYqjd12CsslMtPauFt3bFzndv0RArJh/xBketkfZpldw53qjDFGTbF7EgKgYEH8ipl/ZnO1l/TgDAUgXj59DwNhplMlq3Ci60TvWszF6h3xW0qBLtENggHeRnDkNOK0CzZFI1jof2DK6tre9716bp+H3AZXG3p3rhEBh79vciQFRT6A9rMQGVWndIv3rJWSjOsCd37JgvqXa18OOXyGg0SnR9QCIuocyGX+jed8J8iVz7fzdyB5wChlIajcEFCgpu0W2Dtoj4NtUZId4H4GqZuuiVbbrSBu/w+334kZvLFpbhyK95G4i+wwCRB2Ly5QfXfdzsAv57GaboiCaw3DBMnb+VRIBD1G7F0HraZHonlPJAFEBQL07soMtV0V/+IDH7W1+fgvskviufmg9H1jNWp3Tg7ytfEl3fjmyveQnVdIq0umS/MSu9Ucy92Qq6KPkZbRFbf6PRrbgHdH6GRm+BdkAQ0a/cntJ2A/aoawjDyJ7eBvX/nvQWt/LPXcKynAYA2r82PdCcsxY6+vtEK/+N5HtHul7u1BDibg6z4Ujre8XRnvLNmjdfoT4/F/JgGzt4u+u4T0+m9P5iC9/iPapjd19tWTfjWnOtG8ZQwQQTjzbjazkYW8b5/splQvaoL3pcsoA7IrWwfx62Fx/Fe3p26LA2i/RfueD18r6s1qP1qPWAwUxzA7oqmZOtc67+feY5w1oPRKDkkWRv2IC0WPkjRb72rXnMEeBu7amMfzBrTRbXlsXZJotqa0NoukVkWDU2s+dO5UM+R6MzoshY81UIkABEgybyErjbYyUrJDmeGVkNByPjBwXkc/uMIy0Q/wn9swm0fkngdPtf+/oHowMOjNwCoO73tba6kvOjUTKZYhI+Sd5Ze5qa3uTffsknJGGYuW2U9y+ooPM4OKBBm3If9tZyNgwHkUwdo6e3R4Zzh+nQlRCNP47IcXlQRR5Uq0x0NNYmXwK7LrRRJm5Ztq4foNQ7lVnW4poDsCVO7Rze1g7vWFhW4oBUVfj0skjpfIOYKXovf+jGVGWbj0Nj65XPZ8KaJY42lGU/ZvUCIhK0U2tA2Rc/AAZWjx4bCEU/XoyUWYqFPU2gWJDX91pFnzXMGSM+wuJcqJFz9VyRGuyMLq7pdAEtkLZJq6xcRho53tSXDKvR/R7IHlesiPGP1AE4kxcNDSZgXQ0AsEsXeX4NoLvLWXta0LA1NnZAly/3YiMJSUROqSNUI2gOYzM6fcmtl8ghftItMd9gAx7f0YOmh9W6Je607TnF0GRwoejiMRNUJbEjxEvaIMMvlsix8FVOAAoab5URHMq+RKpIVJ3F/LR6LUCCz14aU8yZ3Gncu1sBE2UNWsmWkvLIONqEzL0+axLnZFT6jeUyQRHfj2si/bCJpzjj6ycSQeU6SS3hqtYZ3NEN6I1EO13x6AMa4ORTD0Z8YSk8ZrS/fkbsgw5CyzNltRWtI5nobm/hR1/JCs32h7pOZsg3WMYFRwPDaK5jrX9Hns27LU72Lv+jZxjWyLH5kzKZJlqFE17fj9U7m8Kcg5cTwYqXRjJwU8ih8tPkK61fwUeVReaMW13vjvaJyYgGSAAjQYhfeAS4ABg83icWgJNIr0Z7ZNfWT+ehmSe91EgVXe7Z3W7PpMC4GsD6abmgNeFzycNXtob7dklTvFG0HTP7oPm5fkIVH0Kkn0mUyYDBqW8qQnJRHHw1kpG+xvyQBsP/h+HHKRFgX5eZr/WxuUGpM8E287S0TN9EahwCnmgzM/t8OeOQMCqZ4Dl3XkPiNqHCBAVfeMEIrkbRa/fYm08y50Pcv5gm3PJ7NCNopt4z2IIpBhsch7M4WX0TZCNyQPeUjx/Y5s/J+IczDh7Bco88YXNzxlEGdfcO/086xxd74RAKu8jm4q3wy2LstykSlB5kMVhKDDsYvJyQDfy+tBiKPPIEzjwjLVxd1xWWAQYvtz+XwLJnk2UAqIOsfO3xN+WWGM7obn/FAKRxaCiu9Dedw3av0vel6A50PowBKg+jNbBD8nk0TBenQtohAzVwV462L7rVvKBdbtb++5JtL1dAe0w97qjwLH/ov3xHqRLzwZEuPmwGrIbPkh5+X4PpCe9g/jWQeRtqaeioITXkN7wJYk5WkA3tsFtjfTdD8kDogIPTPKVeh6UgjeDrXyEO7eMm6tlwY4V3lXIT0J/IVDUaKrQR9F6uhPJnyEQ4LcokNiD/e6wMZ3ox7KgjZ0Rf7gXeNi1K8gx69n43xC3PZ6z7tqOwMHIdud56LpIZvgPpYCoQrtmA+dCWC8jkL/lNiTXfIZswpsiUP5UnDyWolHDOz146TK032/trredQ5ohiOjaMCdIlzBtg/j4G2TA0QORfHIG+f1qRVu3fyoaG/K8K5TcrDqz5lwa71gmXwXx+hR/vps8mGw/Ev6s1qP1qPVAwOepyKZ6BqVybYsrO7mgH/O8Aa1HNCCKGHgeCaEHIiPAA7a5300mdIYIqGnIobUiMsb8FjnnF2+l2bLauiDTbEltbdT3R32xEVJsxwPD3PlzkXP5A2RAexKBgn7o7gmOyJPIl7Majoy3XZHDeBoyvvUjUxzPJF1vO46e+gRFIHgHwvNYZDVSCLxwvaX1RZO9z9PbBBmTxtu1ntY/46zPdkcRKi/hhFmyWuZ74wyXFKc73olEaaAqeHIKYOCNmucgpXUqlnaZfJmi7ZGh4jUiA2vB+0Zaf9xm82o8UkDHUMbYELXvBORIHdhAmn9Gitd4CtKtV0FzHFZiK/r+mSh72S7Rsz5D1I5l3nGGzbWrsCheO/865pSngsIetTM4p/16mqP5VO46NQKioraeAjxg/2+KohV/AeyKjLjtER/50ObCCiiz2YGIr2znaAWDSj+yqN6606zx+0bYWBSOf/TsDyiI1G3u0YJoHoD2pecRT/0C8e7t7Hov5GydATwU9zfi40uhqPQb7dww5KDYw34PRnvJ3cA6jkYntK88QxSxWtDWuvMoO9cN7RMvIpBKCYgOgVo/rKad9aIZtXtrG6dz0R78ADJaj3F9uSYyfj2ODH4eKJ0qC1gXmjFd+93dnvHGpuURqGoqcsiWAMSK2loFzU+MZqeCvmyWsQ6Blx41+sOpQ/nUWmkimfDfZCWWVkCOkruQ0yQVwe9lq8JMcO6eddD6/BxXEoY8cGmLSvO0nnTdvRsinn4v+Qjv5W3OTiEBtInmelwKeoGl2VLaivhCF+T4uZnSssEXI/myMEMfidJe9aIZtXsQmuNvALfF6xDJRP9F+9eXSNY/Pu6DRtBMtH9vu/8sBHw40J79AAMlIjn6eZSFYyJwYoU1Whea0ff3Rg72HmROn4WREysHNKphnOZnmkeivfGvCJx3FtJTApiqE5J13kdrLATWrIac5slSsI2i6+gPxWXTJQ9euoAMYBgyj7SlcvmdutJEWSNDBiwP/HgaORZXcueKApCOsrl7kOuj7TA5134PRM7KJuBsd94DopI6TfSubkg33dw9G777IlzWGLu2GFGGEJShrAkBPjwg6mAEAnuWUkDUo8h5O4pi4GrIoLEFeef+2jZfvsGtbeQ0HYeAVmulaDaSbuI9/RGf/xbZ3bq4a0XfXGQzOtL6cvkK79wIgaKGeJqkndhXIn1q4eh8J6QDzkQZWz0gqkSGjObTrWSl9p5HvPo2ouw/aE/5A9qr4+Ckjii79hSkM9yN+Nv67p5ygKgDiILPEm3eH+mav0c6ybP2vris4HX27nfJg7NS++gwJD9fR5ZdrCcCiExEYKDw3E5o/XYnL0PHss7yKDvLB8B98Twhc7jfgQWmVjEvuyHQzuPWvz+x9k2yeR6AHYsinfwppDt38O+OaIZMuuchAPUfrX/PIC+jHWFz6nnyQYNFMsRIim1w26Lg1EnkM943HAxjc+YR8mva28r3ceeXLpqrNb5zgM2ZFD8p4huzy/K5c4ciwM5W5PeLvyCgativl7Wx2h4DTFXRxhfsO18nAzy3c+0408ZzUcro9XZucaP3BfCUOx90unWQXeFpokDvBK26gmko0C1Q0OXPbW3dRB4YNxjZ30sC61Lzqcp2hH7tQGlQe3Np+pJ5ocz89ZSxSaHgxo8wGzHa+36J9tIHERDsXOQ/eZaMx8S2Fz9Pz0K2h2fQXrVqLd/RqIM8f1kf6SSjgesT4+L5c2rcWzP0tB7NPpBfMpQN/QjJ1OcSlfFtnWct55jnDWg9ogGRc/EN8qlSByDn43SEgg3ZKIYgMMPXyPD+th1rtdJseW1dkGm2pLY26vsdLZ/i9nWUXco7KfdDwvJTyHC2p7vmFZ2gvHwfZV1YGkV2dECG05vIamlvhhzcTcjIWxLdFbXxAJQF4gFMGUBgpZFlntkc2Dv1vdZ3b6JotW2Rwcaj/bchy760X5l3FCqnqBb7NGBD388VvjNWGnzteR9h9hOkbD6ApaElD4jaFUUEVSpFsDYyAB1PZjwcgIxbj+BKHRW1k8yoO6YRNK0v2yFQ0sPWpzeQlQ5IKdgpI1ageYQ7tz4y2p+EMwSQV9a2RVFaU4gicCP6J9p8vgYZ/tsjBbMiiCbRztkRg/WcT+XmMVUCohJt/cradgBykryM+FUTUg7XQ4bPUxB/aULGjRlULhlQd5rVHtF3rljpXjsWsXmyV3Pf1dJoumub2liNxcCGyBj8COJVYd72cmtllwSddigifhJZmvyDyGe7GU2WwW+Uzd0TkbP3qCq+o+58L7qvB9o3PwL+Rh7c3MG+7yV7ZzIjRL1oJugvghxaF5Dt2Ysjh8FXiOd2KPN820bQLPjmbZCB7Xzgzvh5VKLgrzZX9qAAvDSHNGsCn1bx/t7ISZAssdtomrZWLkQOz+VQJoIrbH7tb+vqOSLnVZl1sJE9dwgqNRz6cX0kg0wnD1zqFNEqchbXja4718fm47dYVHN0fTkkU32IIq/bJdoVO7IWWJotsK1tkCxxkzvnnQLjEW+tKfPmnNDEye32OziXzkH7yzSyzLxtHO1FEcBpfZwTGosUrzfNgrYvihxrF5IHhTyHHMar+D4B1qhEt0E097PnpyA98jqykjcLk2Ve+jVRtt0y4z7f00Ty82TkAP0f2foKTqrOwE9tPvgAgqT800i6Nm87o33sI/J6mgcv3W39cwGl4IsUWLFuNMn2oKWRrLu3u3YvcoIGR+FGFGRopJTftUFBY6H0kc9EvDwqe9sEnJNqf4U1egkC2Pw38W0hM9ZFODBDmTG6wNp9GvmAokMpBkQ9hyvZa+d/4P5vb/d9ieT9dd21tZGjtAnZaM5BgIkZuAwyc4FuLK/G5bv7IRnqKwRoqgpUkHjPb4H3yrx3LRIybjTPvd2gC3JWf4uARylAVMiU9TwGgIvfGz1zOrITbE4m64cs8sPJbFZHIR3rGQpkSQQquA7pbdOwIA/y9hcPiBpXQ19ug3jl8fZ7FXvHFGQriDPor0DlfWQ4Am38yLU1fG8ARE1ANs2xqTbb/PiGSFZH2S/fQk71wPPbkPGcXY3eoySy/8bzFTlLXwRWdud7kmVa2tnOjUBr4beQLxkf0dwU2VpCfw6y/nzJ2nUOLsuczb1F3e8i/lStDe5vSOavyWbR3APZl462uXkLeVDS+mS28hgQdR4ReDU1Pu7/vkh/7u/O9UbAkGbxE2R3GQv8PHEtrNWfItvJVci2lixnhpOtyevwdxudH5OX09ra3HuViN/E3+7O7YNsOU3A9x2dMB/XRnLrG0TA3Zgu2kfvAvadw/H38+9wlOXsFgTM97b4Hu7/vtafT1MKJo7nU1mfR7n2uPGoC02kp1xs/V+SOZ+Mx3VC/qRrorm6P9r/JyF+fxVleIl79la09i+z9v8H8b+yoLe5eSCgZtifAiClEn/uPa/a23p89w4Epr4e7TkXoL36aySL3IwAmL2iZ1qBUfPxMc8b0HpEA6KonsmYIOY2x4Vsg5sG3Ovub49SXg9DoIeSbDMLMs2W1NYFmWZLams9aZJXwjpRatTZgAQgyq7F6YJTxoK90SY9yp3rj4yEPkJoHWTwPhs4sgx/8obI0chA/CDKQvE8MmBtiMAR66I041tTGvnVNvrbhsz4MAWLxvL9YXTGo6iVYUVtLNP2Pkg5uLDK+/3YnIwpskhReQoBAnxq4zOR4eUuEoAod18hIAqV1nmXfHaM+5DSGcpSLeTbR9qoO7pRNBEq3iucZ6A5/0dKy9L1cf+XbaebU+8RRaPglBz7vaPNt9zziTk6jgzgtxEyGh6M0vYvi4wlK6EMKeskni9x4NV7PtnvHmhddsMprVQARBX1KYo++wQBUpZyfdYEXODoL06WXW3LVB+6c3NMk0TWuRrXcJvorx+r83DOeDdGU4kiNmoYp7uA37UAmnsQleFERrt3kPPG99P6aD95gQwM24M0QNm/434b639jUcvkjXH7ImNvEzIavk0iqrfgW+rNo5ZCjoq1yVKId0POzSnIQHSIzd9xyLgytsL3zzFNSstjDEX7++NERi+bEwG8dCh5w3SbRtIsGKMRyGkQQJAhk2Ts8AxlPZqInH1zg2ZzDqoAbTWKJjIWhzl+LTJq+6wAwbkxg8pOlwNs3n1sz3yM9uUgZwXg0hRclpkq2tgQuvbsYMSnZqHo9tTYP2rvXTa6dqzN5diRtcDSbEltRTrPk8jxUpIBARkcX6EGAOSc0LR5fAgZeHgMyoAaSpqcipz5t+LA/3FfOHptGkHT/q5Gqb64LJLRvAP+z0gvCWCrtYAVCtpad5qJc6Gc2blIZjgVyQ3TyWTwhRCYYTLiiZVAS/M1zWj+HUTGRw9358Nc7YTWyo8q9We96ZKXKwKwYikkS7xJ3mYQ9JRfoL2hCdisXJvnlKZrZ7gvyGHLIflvTzc/33Xzc1lUomj3RJuSIE1HdwICmO3qrntA1C/KzaOoL7og4NzrRndRO++ducF5fyUFDvGI5oXUBoiK5cWd7H1/iM4PQfP6UVzmU+B7ZNkgQ/bLvdz1tg2m68duBwTMeRwF4vhM5X3JAFFH0AxAFAIWfIH2vrgUeT/kkN+t4NnlEEgnBjz1tLH6FtnL4uvnI1Djf3D7KMW85QHkvO7m3vsx2uc8YKQN4mlF9tdgx/wdkjU/xtk2yOt6S7h5WqI3JcYpgDEvtt+DEB+9AgViPof0360q0XLnVkDZCX+a+M7AH3qgdf8eAhzFQKhh9g3J8puIp07AgffIO9z3xgE6K8ylv2AZu+13CJjtiQAIt7pry7p3pMqYtUW25usQAGNltGauQI7a35GVCV6mmv5016q1wQ1FNoSDy313PQ8EQD4Y2RvvCHPernlbuQdELYOyNx5dBf2QZexDBFY9gyw4axEyQFRZfkJ+X96NTLc9u+Cey5AePM3mdDLbmJvX3VAmpKE4pzsKTp2FAJIBcL8y2gPuqjDu65DPqL0zsrFOwtYleUDUBiQCz6J2tgWWJAOl7Fr0/grjEmfBe8++Kdib7gM2jZ4ZgnjgFAqCSW2tjEZgzNupHbxUYtuvA80gr3VE/DpZds+ut7N58DowKLreE9lie8bjUvDeMchmtzHZXvAD699fkAhwmRtHNPYrIJnmVGSzPxHtU08wh/y59Wg9yh1I1/PBfkE/PMJ+b4xAh+8iGfYfyGcyYF60t/WocXzndQNaj2hAlJb5W8wphov6tsV4FIrqP7OV5nerrQsyzZbU1gbR3B1lP3gcGUO6Opobkil5PvKxkvOyC4qO/CF58MqaSOk6DYEX2iHH+f3kszEVZcTwAKVggP07Epr/a30z086HbFMl0Q2OhgdEHWffOokMUOSNMFtmEGn3AAAgAElEQVQhBXwixQb9lOEkKBinI8ND2bTr/5+984y3qjra+J/epCmKYkFFQAV7x97FEhXFLmCLxoYVO3ajMdEkauzGErvRRGwx9mjsMRpjYsUOKNgQsJ73/fDMYs9eZ+1zDnIOeHPvh/279+wye+1VZ555ZhZ5Bfxg+4ZDkAEyCCk8HyCFyDuUz7TzfyZL2V11/2DX1qcCU9z5e8mDuusgY7Bnopxl0a0NkLkLAgvOIB91djoZIaqf69P3ImCnMCV5VA8XARPjvuF+e7JE3/j5gj56jLXfOPv7X0QQDIDf13Z+z0jGwRXKWZf+ZL+Ho/EzGRn4p7u28ISoZ3AgSZV2OhuRBzw4fgtyZq4QP58aj4m+OVsyEXD8abW6qnWsROd6o/mzhAPnUFaed6iQVaVCO51IBmL9mGUeZv05JkP9jvy49/PosQisKdveMtH+bdBa8ri1/wSUVTA4cnxE/8LIqbE2+e0pqzl26zlH7YHWoS/QOvQmsJld64jIS+9aGzyHiJIHxWWKyjnbMpHzYBz5uXAAAj9LyKkVO6LnR0Buydo5bpu6yyxop3YoEvhwa+NF0TrwDhEB0e5fiirAZ71kptqrUp+rUqaKW841QmY0zp4HLnfnlrD+9DMSTrdoHCyFwMwjEcF3AeQo/BhlUgzlWAU5i0uIxJDq7w2RW+Hb10Wg9WO4bVkqtT0C60vAT1tkNt2yIp2yRJRBEuna16L5rQMFekm9ZKI5enPk/L6ILJPEkeQzypyG9JgbqC1DZV1l2v17mZxh5Of+gch22sN+30N+HR0A3AhsOSdkJt7RCzkuzsecdXb+X3b4bMvdgJtJBDw0UZm+r+2BnJZv4rZZsf6yEHL21ZR1pV5yyc/5GyPcYBn73QcRAsaTJy91RGSxtXFbJDdCJiKhH0BGit8XEUHmteMphGE8Yt8ZMkK1RdkanseyoTqZxyAndGHbIWf6JMoJUUuiiPASCrRJraO+bTz54Qyks99PpgN7QtQlSNfsXVSu6D2VCFGvoEx5A6Jnwnt72/MTcRkm7NoGaF56mDxxaVW0DdsUirN7NUSuOzfC7vszIvi/j4LUto7KEHTdo0gTSyqtI/2snH8iTxToiObLtykg8ER1fAF5YlF3RFT5HtnVwZaaD9lWo6L+0All397CnWtr908BjrFzyyBS0c1k5KjTmIXgQRR0uDaa0z+0NsyREO3/XshJHpNm4iDNEHDzE4RldkM67TVkYznYxTNIZCcuKOe6iFC1TpX7OiO9xGdkCjrrQDKC5CAr39LR8wei+fQJEg73VD+iXFeZBwWNPkF+PQlzwpnWboumZKb6qJV9FWRHPUzeJt+cLJPnb5gFIiB1wuDqeZDH2JdCdmsJOZ+LCFEeK+9aINe32Y7W/y5HJMVrETZ4d+gTyPZJzifWJ+JsQb3R2D0OzSMP4LY9I78+rIGw+WTAIBkZpSsiSj6HsMS25Mflw1a+t5Ce/hDCDittt7gUWdCoz8a2HQry+oA8ISoe460KyvkAIg1Psrp8iQpbVNfQD061smyIxnUXsoDv+7E5GgVWP4N0gsFVZHZFBLtZIi9F37x+A2T+hCxgojWaQ06O68/6zcwdFij2gVTDHy6yvtLdfi+B5qRrXTkKt+xr9IG2190QrRs+yPpA6+s1z88tR8sxKwfSWd62seyz7t1n81FIjNEW6fdTyIKCH0W6XiERseWY+8dcL0BzP2yR88zdXsiY/yf5KEEfjXK7KShlKS+bu8ymVNbmLLMplbVR3+/kDUcA5p3IeJiBIjwGkhntayIw7hUi0kaBzJ0RkPsXEmAB2jrsGwQ8XYMcvMnIGaoolQhwm4KUhQMRgDQIWNb+DqwmM6rr0cjR9g8yJcM78rfARf4kZARjbCmiKDgE9HxO5jhPGYbeIDkU2yKNzLj7i5XtG0QA2oN8ZNoZyKH7BFFq3oJ3eIN6Y2RA7Y0AuHeBlexaF0RiuI/yyPvRyNjct4EyR5qcn5MZHf49P7d+8DQC/74likI2mclsBnZ9lF3fKa4r5MQfR7QVIwXGX3RPIES9gaK61kKA7PqIaLFGdP+Bdv/ejepP9nsPBHr/BgGQdyLQ5DoyYKstijp4H4Fy80XyD7W69pHN44CH3O8QKR0cBFuQ2LKySh3+YJlW5zPQPPN26H+zekR1uRz5tO/LIQC3BOxv51aw+o0BzraxzEQ7fYvIbj9mmWebzP3s954YmIycmt/hMv2RAWKborFd5sBKvKMfGbDeDqUF/hAB7r18OXHrZIGsRs97w+33LxGQNxptQ/AlllkRGba7owizJ6I+lHKWzLZMO47E1uKoXfshXeJDFOmeIi/dSJSxsREyC/rCLigS70byWyItjMDGdyiIDrf7UnNiXWRGfagfmgMWc+dmhYgctqysm8z4fzf2xiBgdyH3LV2Qo/1+sq0adkPraZkjJ5K5BiKSP4j0z/BNXe38RPJb+qxGbdvF1kVuVB9d7fu6R/dsgNa+x4jW44K23xTb8qk5y2xKZUV6zG5ong9rhndYn4fshmWQXTGddPZP35/qItOe64Tm8W/Qunqc+w4/vwby/3Uk7Js5IHNJRBiejDIPBB21DXI4/Q05X9/FCNZ2bX+7vvYckhnPfQOs7/iML+PIk1dWxrJZkNjKtanIrDQm7P+RyNn0GEYkQ9jCHkjfqIkUUG+5yAabjJxgW7nzfRBB7C1EglgF2UlTyJM0UuvTbMtEzsX3EVHoILIApdCGYavmGRg+gJzXI5FufUhUpo4oWCzOkL0ltjWQO78EaUJUfyJHaEGd/hbNT4H80R0RIKYgrGjmtjfumQUqjaX4GsWEqAMRmbGMEOPeOz/CiyaTJi59RjlxaTVERPoEGD0n5Lp7hlp7hC3CwvZ7k9BctKW7d0EKdF3y68gKyIbdD+nzYf7bFdmtjyMy67bIFvgSIyFVGY8LIQLpJ8Ap7nwPRA4s2feeiwgtk4iy+dj3TkG68YbRtfuRfraq1fMtZFlhBprsY0hnF6mUpbyX1dsE8kSuLlZHZVsPIX1xBFnm6J+i7CyeADQEzaObuXPDkZ77GLVnWhpuddc/NT4QWapitmN3LmT0/xKNoVN9G6D5JpBLVqtSrqCDdMDpR4g8UyId1HA+ysKTIv35ProG5cSLJdC8OMqdWwsRGy6lYAxVKP8ofgAGNyvv+KEHwjceRDb2VKvPm8kHpK5BhpWPrFFua4Qx/IJsju6ICCmfA9e5e3sTzSdo/h0GnOzO/QmR21uhOehEhMfMJBf+X5UxmChnJ4Q9P4gyPiWzD5MFpfyBiEBZQfaR1u6XkM8kuD0iXr0DbFxjOTsi/OEhNM8vj7KXf2xtM8uEKISDPhC1RVhnQsDFGPvdFc3TC9Uoe5bIS1H7HWLvXquOMscC/4fm9kBE2hX5iaYgPXwkpiOgTHD/pkZyIuVb+rZC6/DD9ntJykm1+yOcuiqxC+GEncnmwtmaH5Ce+JHV80NxP0bBYjXNzy1HyzErB9IF37J+1ye6tr/1yWPduZCNbkekL76OdIuWDFE/4mOuF6A5H7ZYnIEYuWu688Ho/0NY3JCyFoyzjW0AljkUm7PMplTW5iyzKZW1Ud/v5ITUu8cjBbITSi/+IQKflyZT+NdCYEfFKC9kiJxv7/8KZzyTd/RdhAyTZ4gMu4L/N0eg3iPIaPSA075IWb0X2/IlUa5UmvNFMMIUGfGpNVIi3rGyhe0lUttaBCP9OOA0d36Iff8LyHm9hLt2A1JueqbkOZkzM44gYONpZDAMQYbOUAQMTENAszfIf4uM4WrkmC2RgRGi5/oi0G0aAsVCpEtHZPxMIr8FXitElJuZaaZBMldFfXIM+a0BFyAfSXQcAuxephwg3cDLLOgjyyPw7VHy/bYDAqzepkIEOuqjv0bZ1baMrh1h77+MAsXU+l47lIL7z/XoT+7/OIPN2og8EQz4RRFo/y8yx0HIhNMOEbdGRfLDvuj7knfIXA68bv//CYGPIZK/K8oa9HsSZM2ozLMtE5EJ/o3mhl0RsPIBs0iIisp1FJp/l4nOL4cM+BIak70RmLUyZsQjB15HBOp2S8iO2+nHKvNYe/4DBKwHcDiM2aXQ/Pkv8lGS7VGkymtUSaGPSCtPIaC+jxsj56P54CZXtmFY5jDSgHPD5j373Q2BIZeRJ6f2Q2DUZ2QRnl2RgzpEa5ZtP1YvmZB3uKLU9n8jn61xKeBVO7agHOyJtzapu8yCMdcNzYUlNPeGtThENIfsDm/itkRstEwyh3TQKfZA/XkqWnvOcPdWcvjEc8rudZa5E257YwTmz0C6zbcoK8YOZM6rzdEYCJkAp+GAloI+OsDuG09+Gw6/VchDwJMFMpI6Sr3kJurjrwgsehins9n1DdD4eYgoi0eVOm42MptaWd0zoxDA/imZLhXG8RKI2PsN0oEmIz3w+FT56i0z+vbNTdb3yDZbwF3z5KVT0Fi+k+ok4LrIjOT3RU6vT5HDKsyfm6L5pYQ5woCeZFt3lGXdq7dMMtJ1qN9Amu6H1sxd7Xe8ndlAFJyzBeVZu5qEzBrGgb9/b6T3lewdj6CAjROryWmEXKRHTEWOUZ8lOuAaC5Fl7pmO9LLjGikT07sQFvMbNN6/IyPC+PFzMNl6fTuauz6kYB4hTz4aici90xBu8iB5fSoQol7GsskU1X90vjMi6HyM9GlPiDoLzUt3uD7YIVFO//8AZAtuQN72rkSIKsyO4d5bC3HpAfIEjxWRLVjCkXMbLLc7sjN/ab+XQ3PQ7xAp9guEaw11z3Qq+n67vifSk99Ba8RryJke+t7myKk1Da0nL+CCB8mPPY+xBV1pWWTPfwqc6q63RzbxeKTzPU1BdmDrO6+gIMsN3fkx1rdmALe78/OhzDkvk7bzfDl3R4Spc1BAQuiDC5BliLoY2dsXW5stkZAZAnB+jrYwKiG8pG30ru+A9UI5UPaqSykIHiyoj3XQOD2bcsL2PNbnzqY6CWGQtfsYZEP/nAwn8tmNf4Ywh5eJiIpxnSJb8EE7Rti5HggD+czqKej8gxEmcjWVCY97Wj95lHxwxIoIez0p9EWUOenuat9e8J7ZwuAadSDCy7fWTqugNfhctGb8kTz+uiY1YOVO7kRrg/0T1wPJ1hOjY3u8NSI2TrF+c5f1ldXdPQugzD7fW9+cZYIIykb3CvksdWvZu0/Adquw8w9bHYzGrSnxe8mvLYfat8aEqG3RGjYNYfbVgk+HWZ3GxM2BaK56iYLtReOx5MrdGc3L14c6j8bc7QjrKsxeVGV89SBPXkquGVF9HUKFzJKzKfMpG2uXkxGS+ll/fQLpox8inecKpN9tGNdd9J7VcNnnrB8Osf/HovllH+vHN5HPEnULCiypNp+eifwi/0V+kEG+vX7IgeaeHREmMhHzMUV9ZH+qzM8tR8sxKwfC3v+DMGCfECPotq1tznnUft+A5txN3D19mQW9puWYS209twvQXA+kLD+DWN4XEKXxREr8FAS49I+uDbWFsF+LzKZX1uYssymVtVHf7+4ZjlLIPkBEWELg8wTk4PQZompNm744MrxCpIdXGltH39g1dS2SNwop9E8iI/lzBCCc4u75KQILH8al6K9Qxj0QADUNGWD/IAOfWyPyyrsoC0cgSqUcIr2snd7FOU9RSv1LEEj0Eoq47mfnX8GMsdQ3kxkkgbywBgJhvUHc2up5HAI4diGfsrlVkXxXp5PseQ/crYccwW8h0sJOyAj5AgfqRrJWqZdM6zftyW9RsCcytgKA0wkZaS8hIOYid29P8mlsZ0a9YoZXlX6xDeq3LyFQd1dEbppGBeDd+lMAwifiIoXcPYFA8gfMSJsb/cnOHQjcSuZ4/tTkd0FbgoW01cFB4w3m1vbcRmiu2QQBGWva9bXRGJ2MDNwl7Xx7BKi8SyKLU/SOesnsh+aMsK3YBghMrpkQRTlY8A3ws4J7l0OGewkBuZ8iMtZH1i8m2TGD8pTTZe30I5f5ewTSv4dAtpHkHTzro3H/Lopm3hWRe6djzqQKdT4SjaczyTLBzQSgkGPqAzRWzrI2OamSzEbNe/Z/D+ubp4Uyhr4DrI5AuMvJHBSdkfNkMorK7ZKQXzeZZJmHTra2vo98yuVAXnoNOV9SkdxlQGa9ZabqGDlVcvMpmSO5D1q7P6fGLTBnRybZdk472+/N7L5zESn0butfV7lnKm6PgrYg+T/g3DrKDMDytmTEur8ip8oSyAnymPWVPckAz/UQGeJK8tHelYDco8j0qA3c+dAvxyD9beEiGY2WSz4L4rb2jd/gtgV03z8dRRZX1Hebs8wfe1mjsbAMAscPQ8T67ZDO9AYWUY3GyHLIiToCc5batRSxri4yE+Ve0GQdat99BXligbelfkGFLcAbKdPu7YuyjgTyUnAajUD24+toTfgr0ik8yaQoO+9syUSOyN3JtgnfGzl6eyEiw1to7X8A6S2DQx0gnfgFyrcz+9HLJOForNBu3gbfDa0176GMJH4LvtaNkpt61r7/L+RJS7mMiWgdWxuReNdusMzfWbu0t987Ib33C5MbyCpe590akQofQHrk1gX14+eSVRCecQwKZDsc9e1ncYEzyN7/1K4tGX9v0RyI9MgHkL64KxkhqgfSnScg4kQ1XWx3pCN/YGV4inxQWiBEfWV1EEeyV3RIkm1tlyIurY/m++dx8z3CRgoJlo2QizKfb4kIP/9GdlCo09Pt+18Gdky1R3RuJ6TjHIPG/qZk20ztSpaZoytacwbjMo5QTIQ63r45lGsAwh1yhCi71sv6QvdE+eIx/R/rlxuHdyIn3JcINxiE9MkbEC61fBWZ1yP74Hmy4InhZEEu86OxNhVhYBMoCHi0+w9GpJXvSNiDaKy/gXC9o5Ht8gUuiw/ZuPFjtCMiOfmx/kcr18xMVWju3hMjHxaNSfd7dURe8Tho0N2vIE+IOpIoIC0hvwvSQx5C+IwPolkZra0lRGh40NrzBSpkUSHbPeAIoq3t0Rx7F8INbkVktS+JMuHNysEPwOBS5a7ngciET5J3Ss9LFmh2LflAzVqx8j2t/5ew+YZ8EOAiaL49NfFsjrCK8Pzp1p9DxmY/1jwh6pezWmcIa3wHzUN9TNZXaMxOtT412N3/MNIBjiPCN1BWw6LAvZL1I0+62jk1ngrKuaP1H08Ga+PkfIswwa0Szy5LPrP2kWSZ5m6xtggZkTzJ8nrgHxXKFK/32yA9bkky3CEmLyWD0Fw9fY8RoeotE2Hsl9r3XuH7tt27HvJLvW5HCRfAm/j+/mieuA+Nmz+GvmTX1yDb3usvUZ+9EukdSxXJt3tvMpmnI1LpBEQWCeSl2SFEdUQ21HiEDS3q+5X9fzhV5ueWo+Wo5UB6yks2Hk4m833FJMwDyHYd+QTpjz+4n7ccc6m953YBmuOBlOUXkCK8Cpmh34a84vQrxPx9GqV87YAUoJASsVeLzKZV1uYssymVtVHfH9XFaWgR/RoX0WHXWqNF9T0EeAV2fY5gQwVjCgF359g7YvCloiMvOr8aUpKPJcvkMRCBex/gACuk9H+PSyVfIDNsPXQOinQ40OqwhNtyDIESE5HTo3OFMg5EUVfjyUeBtkbZtc5GBu97KEq2BFyZkLMWAsFK5DORbGrftYn9bu/kb23XJmLgW6p9ov+3R8brESSiGJBz5/eIxDAJASi+PKltgmZbJgKk38YZsXZtO+sDR6IIjP8go+c0ZCh9BWxTa5+q0C9C/94UGcshEvM5XPp0ImUTjblHrXw9ESB4gbXj2Oje4+38phXKUZf+ZM/sGfcnO98ZEY7aIODsVoxEhozpSWh83UmFaBxEWpmCDOb17VxXZIx+iDLuLIDmp6MRWJNM798ImfZ980e/10cGbRkhiggIJT9uwjaD+1TqW2jLg+utX/4HEcb2RkDtvoi4ODx6Jmy9URTl9aOUiQh0JQQ8hHWiLfktVm9CAN03CJwY7eSlwNfVrf8dRR5g7IEDIZDD5Tk0Fg5PyaTB85671glFhv3enfNg2VPAvYkxuC9yuqXqoW4yydaMjsjx8j5aQz15qT8C0t9G62K1DFt1kVnUD9y1la0PlYCfuvMB8FsEt61Cg2Wuaf3iewQ+boT0sEAm8pkIfLu1SZULzSnfIeCjnjLjrUu7oLGyojs3L5r7PyFPiIqzeCX1veidB6B5+K/kQej2CFR9iYKo2UbJdfeug8DUkAVxYTQPvIjA+iui+zchEaXdIrPplRWtcXsiR4AnAK2IiFRvIr27KJo5RbJohMztgN9F4/UgMvKSd9SvT/mWram5um4yo//7kDnpF0Nkzc+wjDVIT10CzVl/QLbb0Pj7GyQzZFI4FenjJfvmMK9vQ7bFzTZ2bl5Ekv6CxHbtTUEmmW1c07Y35HGEfdB6sWWiPusuF+mYcQBXF+RUu6SC7LLstw2U2c762QbuXNiG63Kk715FRjaJt35JrqGJ9/RHmSyuJcvm2R4RQd9Fa7Ynv/SjILtxqo1cO/ZEa/1kRC4IzpXuiHj6BrBIhXraxfrdWEQKCU7ribhMVWRO+RKJLWPIj/meSM/q6epxIYqJS4Xzvb23dT3lktmArf1fd30LNNevSaYLH4Nsh/FUz6I+ABEsTrDfg6yOr0HEgonWVmUkpURd+nF3K8KsfkM+e1cgRH1CPkNUxbEdyfaEqE1DX0fkin+i8f46wi8KM4LZc5chuyAQN061fvNe1Ed7oAxve5HICBXJDFkQSygzyCLuWiD8rIHw0RnIZinLABvV7Y5orX8DOfSPcXPE/fbNj6HgmT+hebssgCaSuaKVdV8Mu8ERT8nG16Uktq2lwDZD6+M/yRNJvJ3QDdm/91hZT3f1Es9ZrRBR7gmEZ8XBNcEh2xbZUoFYVTXTf4X2qxmDQzjZDu6ZuhOiwncizOlB9+7wzgVR0HDJ6qBL9B3VCKDtEMn0v9YXF4uu97J+d2al8tn/vyHLQnoVGVnXYwYLIIJZCbfFeI39axia1160PvYRwtw7oCCGb4kCTskCD3u6c+vZ+48iG+O+n4wlI2yl+n61Ot0Y4ftlW14if8pH1q+eIK+/L4kwlfOtXcYhuyNshbkmmtsfjcZCb0Tyud7qolqGtXfRHPmltfuRZBnZA3npU3t/p0T9xJne6yqTbL3rjObo95G9kArYWxn5U56xel0rlh216/sIw/0ABcv5tWUowiJfQH30RCvvFCwraoV6PRuR8taw3wejeeN9hA+uWK3vRPXRFenbrV19dCLTy5KEqErjp+VoOWo5rO+9jXSLhxD+dQRZpjTfTwfaeJpq46fmbU9bjh/PMdcL0NwOpDj9CkVFDCi4x0coHISUg++Rkz5kDlixRWbTKmtzltmUytqo7y+QEyKQbiDa7xkpgZsjwGDHxLN+QV4fRemfDRzozi+IshuUEaJqPRDI+T7Z1kVBMe2LjLI4om/ZKvK6ImPmGvKpjVcF/oyUigDytELg1l4FsvzWhIOQI/h14Oj4Pvt7OBl5YAZuD3R7195I+Y8jCnshI+xydy6Ab/Miw/QFK3ucYWzRqLyd7B2/J2+I7I3IBTO33LN754vqqXUjZIZvIsvCtYn7xoEm+wv71mvJDLp1kfG/7g/pX4k5wkfT9kYGcq+4rO73lvZ9d5CP4luYrO/HhKhVCt5ft/5k19sioCWQ5Jazcvk2WhQp3qPcuQ0R2ew2Cvq+3bcVMr4PxwH2rs8ebbInIwD2GfLkxZRTsC4ySRvjPrPO+kSEKOQY2AEDYCgGC/z5JRFBbdXoXataPy1hqeoL6rAtAu3/CuzdxGS2sf53NQIcXiHbtq0d2VjqjMb8APLgU5GDaCRaxwKY0wGBws+hOe5Y147dyEfPh/Zv1Bzl2z43nsjS5u8XfU8Xq7eLcUCqXWvv6qlVg2RuhMbT0u76caTJSwPQWlPWF6J31EVmQu6ayOlxGLCtO78CWSYzT16KnZCpdqqLTPd7ZeSsL6H5eWz0bk9eutJ/J8VzSt1l2u/NEen7NBxxjnzk6EPWPqOIMpAWtNGyVndxlPhhiMDwIgJIt0Y65gyKsyw0RG40bx2CHNitkC7xGRo3S5Bth3NhtfK1yGxaZUU2Qgnpjbcnrq+A9Mn/IiJ+Lc66RsjsiJxXXwO/cee7kpGXLkMEq13s/bVsV14XmeTH6HDk+D2EDJztiyMvkdhS3D2fmp/rItP9PhcRTL/HiAbhnUgvGUmWDeYe5LifRIVtEX/MMpFTsUSWLfWHEJfKMtXWW66VdVPk8Fo2eqad9YFHSWeMGIR0wNgmqLvMuL0Qif4gMn20Exo7E5A+2cWVZV0SDtwC+ctY/U7BkZztWiBEhYC0sq3VKdafj8cF25CNuR4oeCaQbEKddKPCVhpoXX4q9Dv7/Tkan88ivGkrd38rXBa8VP9Hc84zJmcSwl5C9jNPXCoK8ikiatZFbiRzQYSzLBjd+zNrv0AYbI/0rIOJSA0F71oSzQH90Ro3EQV3dUT6YNjSaaZtUoPMc5Htvg7Z9lR+PAZC1EdYJtICOZW2Yt6TjBAVMi63QvbzKlZX3aqUc3PyhKoxaE3aF5FLPvB9tIKcODvOQghDGGtt8+tUW6C5oT95slgKj9gTraHXIJLf7WjOvs7dcw6aY95HRLRRVWSOsv75Jdn475doqxB4dCNVtq113/8wcEO19oz7U1F7I5LyVKqTzoMtXoaVkbfFq2WfqwmDs372DSJAbE9i3NbzQBmtv8DWGPIEo7FWjpnE5Ur91H1DIKG1RzjduwjDXwVhHmEr4K9IbOuWaNNl0bxxKeVrky9vV2SrJ7FyV67WaC7ymZJ2R3boMbgtNREB6d9kWbx9dqu+iXf8zcbAaMqznvSzuighbCo5BxT1Wbt2K5rj1iE/R2xm9bM2GteeuNeFbHvN16wMK7vrnVHg9CcI6xqNMJBb7Fuq+R6GozF/NJp/ViPLAng82Xzdgyzjy1aRjCPIZ4Sqp0wfCN7OfXMgRF1OhpG1i+du5poAACAASURBVGT0RvPYzyv1fRQM+T0iF/YNslzbb4jmuzeR3nslblvOgnpdEmHVYWePMYiYtwMaP2GeWCEuT0EZd0B60gTUpw8lywbmCVHPUMM633K0HLUeaA39AGG7gcj/F4R1HUmms3tC7mgbU2EL+RYiXhM75noBmtuBAMeHgIvtt1e8h6FIinHIORQWw8VQKt/TUVaOOHqw2cpsSmVtzjKbUlnrLZPqxudxZKDBotG11vG5xPOjkJH4DCIpTEXRbiE1aR+09cI3FES3VJF/ODIG+4bvITPWNrGy50hFcb1F8oLSHqK7vJG4EYqeSEbMFNUlAm3ORFEzM5BxcoS7HjtX10NA1ynR+TbW/p2RQRAMmY5oT/bvKN9Wbn2UQWwjq/9LTE4rBNI8R347hW7IIDkTgVcrIyDnU6SElYi2sHJ12hCZcd0iR8g0ZJAGQtTCyEE20N3XEYFn/6HGLZJm54jbH0XIhoxirxJlm7G+f671/dNmoY/Wqz/5sbIbMjAvwWXSsLqeDpwR1el15Mkg8be3R2DLPeQzL/lItXbWH7axPlENeGyEzEEI/Cnrb2jLvH8gQ38dZPR+ReQUJJuDYiLULqjfh20R/0B+K5wVycgWB8Zli76vexOTuQKOeInIJq+isRhSX4c2K4s4j/tTdC04Z3dFEW2vIID/XCt7iQrOFubMHFU2nqweH0cOrKPs3GIIUJ+GgTVF9VAvmZH8EQgUvDRq8/YILEuRl5KR6I2U6frQZ9beU61t7iYDS5cDbra2Sm5T2UiZUVutgcbMd8D5ob+T9fn5UWTrVOBWO+d1udTWpXWViYDr78mA+hJwjrs/rA09yKKbqwGPI5AzcSpaN472bUtGsC+h9etCCiLF54Rcu7YEAsHbozF/A9n4Ws76x3Tgj7X0qeYusymVFa0hU5F+VLZNMlrHXrG+t+BclLkocBFytFzozs9D5nQP42Ps3JCJxuiXKAPGBtG1vmTkpe2oQF5qlEyyeXIrsrnilyTILsjheAGypU/AOTFJbD31Y5aJMpe8iiKE+/l31FD/OXIa+TWuUXJDRP1qOOIrymzxtfUJn3mhnfXXmVmqU3293jLDd1jdl5D+H+ajLuQJUYsjJ9pUYM8a66gLcip/ifTVOJCpPbJzJiGCdFVCDCJ4lJDOmNrqc3lrz5eQbjRPQkZs662B9O75yUg7V9i1nckyRKWC5lI22a7IJr4E4VUXI/3+U7LAlAVRUOBMXaeGb6+7XKSTv0iW7Wkshq8hPOI9lGFkGMpW9zmwe1FdRrI7Olm/QU4vH9jxhNXttxQHRvpx1R3Zs2dTjhH47EBLI5LYeBLZ46N7hyIbbE9cpi80ngIhapPUs1XqdXnr+x1M1tRQb4hYEbbA3Qu31VuFb98cOQUXd+dOIIFtAkNwRI6idrL2fQ1hpD3sXFfkCH8NR/JAY7V7VHdFATRvo61v1rWyfYmIrovHYwbpwWWZBQvGaSdEwv5DQR11IxHcVvDtwTYYaHUYAqDiwJuNcJnhYpmkbfEf7KxFGMQiiKzwH2SHvkGDCFFO5rpIp3uUPObUCZFETqdg69KovoYiMtH9CMv32dV2RWPyEzT2r0e2dNnWgFE/OwGRMANpuSN5QlQg8XZBNuLiFb436CbzICLKs/bdt+AyL5LH4wZZee+N+m6bRB/15X4AjfPR5G29/igj/Tlx3/fvdd90tNXlwWRZ5hZHPomPke24NpojnkaExu4Ia7ko0b/eQX3+eqKsw/a+rRDJ+ku0lj5KNJ8k6rU/srGPs98rorXiOhT4Pg3NM6Gt5iXSS9AWqf/CtrFukMwOiFC5jXuuiBAV2iLMc7ciX0TZTgKof/dGesQlJutusjnPB0+2QeNqJmGwhnG6N1rbN0a6yCh37TakA04m2gkgIWdP5M+6kMy38gGap3u7Mf8Te88bJHSolqPl+CGHzVVPIt+RnyvvJ0GIsr+r2Hi6nxpI0y3Hj++Y6wVobocthi8C17pzfWxR+hoB6Z8gReAOalAqm7PMplTW5iyzKZW1njLJG2EbI+NiLMYgdteSoEF0TwrUWh8pmEdioL+9p4QU3kDmWRiB3SUsjWmtBwJkS4iQ0Cm6tgkiKZQ5JOLvd+c6ImDxdnfOE6IeR4ZOrUr4LgiAOwkRw4YhBfkDXEYfMnAhKPwXIiCtTHlBinYJgQiBDLQMMs6+Q0bqVgioezr0A5Qd6gYnZ5jJudfXO4oYn4aAs/HIcApg4ThkAHco+N66y0y8owPwU2RovkgE7Nk9/RDgOY1EmvMq8n8QWBI/h4y1QcjYKiHgLgYh+7i+v3oN72hEfxph4+Q4ogxayLD7HQJcxyFDehqOGIKL1nPnuiCQ5JoK35J0BFIAWtVDZnRuBav3Ian32netY312ut17UtS+QcZPI9m72TNjkdPuYLvvL8CG7r7lEfhSQsBDpfn6RyuT/FqyO4qY+gN5QtQ+ZISoAMztgEC5AZXKmRjbgfT0T+QUD5ngNsal4y54vqFzFJXH0zr23u/RmB2P1sgT5oLMnex7jyAdndkRkZfeRoBe9+h6as2vu0w7vylyeh+JyF6dkBOmhObPMGaXq9RP54BMH6G8FlnGml3cnOLJS5dSPncchtbxfRoosysi1R+JMur1Rw6EHLhOto7MS8KpEb1jBeQIOgatdRe5ulzA3fczq/dxON2MAp2qXnIrtZtdXwwB3Xu5c2E76OtJbCfanGU2pbJWkonmrG+QnlYWvY3AxLKsSI2QmbjPkx0XQXbTFKIMWIjkcTiJreHmkMyV0BgdSwFJHukXdyJ9Y+cavr3uMu2ZhZDdGLKm/gJYuNo3Vvn+H7VMZA++gJx/i4d+UGN9VdL16inXZ5wIpJ2byJOXnkL63TEoO+dAlCElFxDSSJmJd3QymV8iu7Snne+MbKdPrH6+AE6upW6c7O5ojf4O4S+x87W99ZG9a5AVnCPr2Hh5gihowMr8pL3vLSpk3kGkkZBZJGRXugI5CGPSzjvIWbNU3O6RzN7Ipv81Ds9BmMdLVqZAEFqAhK7TSLlR398O6eQXo8wwlyId/D40v7dCzqv/Ivv5QxLbtVeqD3fPg8B97vcCSA/cHLfNpGvDk8kIikGPDcSVkAk6uZ23u7ditjHr8xPJMhi9C5ztrgdC1JNYhqha5gE3pnogJ/n9iKAWnO89Te7X1fqo3T8SkdVuozzzcdgS7HykWwc8MZVpJ56v1kbjeh137i4rU8gyUpWk5s6thgLXriS/bdgpSLfx5ICKWy+Rre9tyXDWDsAf0Vgss48RXno/LttNQdm3t37dytrib2gMLR/d1w6Ni79SkFmOYlt8dghRByI7YDeELX+AMN2GZohC8/R4hH1shoLpDkS61XapMRQ9P4psXg5rUgkj/Fh97oHwiRIipCwayyU/RkMWnTHkt4QMBJYPEX6yOprHvsBtoZjqX4gI9V+EP1+KsjN9bN++LRkRaQG0jv7d7m0XldP3194IC10AR5ZB8940K/88aB3fx877YKpWKIv5iWS+hm5WzolobvrO+kHYdrQvCnT6yq59jOaqtlaWNxCO4UkHfRBOdAma68/DZcaK6muw3V8W6EX5lpMLmtzlrFzvkW2P2Qv14TfQVqGxnyPUZ1dcsFKdZHbGCFKo/y2DiKn/QjZXB3dfIERdRkaI8rs6PI1s8/b+WsF7TzFZ95Cty23QHOa/cZbGsfWP58nr0behPvogBX3f7lvX6isEHS6OyGVvoD56PvkMUcOpQS9rOVqOWg80/83jfvsMe2WEKHftNhv/VYNOW44f3zHXC9AcD+Ts/AIpOb9CSsRUpKD3QZE/Y5AydkCLzP+dsjZnmU2prLMrE4HLG7jfeyJA4xUUJfc5MCZ65ngE6FxEhciR6JkTkAN5MXfubqQ8rhzduxiwdoEcbzR1ItqbGpF9JiPHeshM0gE59t/BgLoKMtdExK2OSOG+ChlGI8lAhTYInHmMKFqkwvd3t/tvIa/ALG3nJ5PfwssbXWcgg6PM0LJyjkLG8j/JDJKlkbN8AjLUPkVRHB3Itss7CxmOwegYav3kr77+USTT2bj01/be61A0UVkUdiNkptrLte9e1k4z68CubYaiUMbjiFBRm8cRcT3Jk96qAvpxmdz59XF7kCNg8UFrr61i2cghlez7je5PKFroLbTlhQchlkUGdAc0p5yJAMjHgIMqtMt+CCTujMb+PQjEiO8biKLVlqjhu+su0+7vZXVyG4n97u2eHsihUQJGx3091FX0zEoIeD/afi+PwLlAWH2MfLa6lXEOx4JyNBWZeyBg4EQMHCU/1vZBUbOfoXE/HZcVrWB8hjVtsDs3r5XXZ4Jrj5xRr5CY83270YA5qsp4GozGUxs012yNQKOjcM4M0gBRI2SGLQ1/S37uHI5IJVvZ7w6IePklCQdBo2U6Gb9AZJ2F3Ln7ELlulejelar103rJjPrpTojg5UmEq5NljvDkpeCk9e0Z+uaN2LaHDZI5HEXL5ogaaP68D4GQflumGLhNbjWKHDk+q1Y35GD+HjkhPXHpCOQkuJNyXbDucqN2GoQcwjtgDjc7v5zV6UGun/4U6YPzxbKas8ymVNZI5uJIX8rpW2jd+pYC8lKlvl8vmdG54WRp7f32yAsju28a8Mu5LTP61veJHKKJ+xZFekVVW7ceMqniLCEjVv6SvINkdYq3q24yMl0bL4Ec2NMRKN7Xzle0c6J+vh1aIxom134Hgk3YkuYaMrJNd5Qx4ju79ikRyQQXnNEImQXf0wnZnNNQEE7IENURBQccg8uMRN5+8HXRmnLHZLzexTZckaxK2wSth3T8J8hjQWGbtKV8P0s8vyHS4X1fbIeybVzhzvVFzvsTKdgiKpLbD+mFewSZ7tpeyNmT081rGUP1lotsjbOQM9xnFNsCOddvst9tMWyL/LZRqXVkM2S/XoeySC1m5zsjp/2LCFuYH2F2b+AyWTiZh1s/vox8JqTuaD79PQ7Xctf3RGS2WgI+LkLjfXOEX6yIskl9hmUttft2RUSkh0hkLove39aONlGZ3yafuXBVpN/1q9RH7d4drW0PIxGcYfeEYM8JaPyeWkXm8sjW2caeC+THexAWG4hQgxFhrWpWcqRDfG3y/py4frK13Thqxzc6oXXxMDJywjpIJ7kTR4hCJIcnEJmrcJ23e58B/uF+74+wp7vIAsv6oGwsn1J9Cz1vi89Shijy42d5ZKetgO2cYOeXJE2IqvidtR7k59+RZFl0v7HvP74GGasifPAIbH5Ha/tVJmsvOxcIUW8hHCWQL8rGLMrS85a1ebCd/NrdBWWVnIL8CR9QnQjXGhGBnsURR6z/PI/mpP52bhQihl1NpruXBbyQZdebjPSIq3AB2dbnP0eEuz/bPUcm5FxtdXUyIlediggCy1q5B6OgpinktxLeAJG4NrP6aUWWdcsH822I5qN2aE4Oa/L55AOWOqP5IbVuLEuexLUzRgIkm0fORGNxcTLi0F/R+vU5LgNfo2Qm+kpXZIOPQwSzEvKtbObkdUZ2xDtIF+ro5Gxr58Pc6Of4/og8HG8zeypaY+5CemYbFNT7d9R3K633A0xmnEHn98BE97unlXUbogxOOHKhfcNo4A47NxCN7Yvt2t1kpNo+iW+sO/my5WgeB8I34oxtfs3xfqskIQqtgcnMhC3Hj/+Y6wX4Xz+Q4bEMUpZ6u/PjkFFTsoVoa/LO16VsET2jRWbTLGtzltmUylpvmQiYeQ0ZHusgp/JzCCScDymQ15jcE6Jnx9r5wi2I3O/WyHD5mzsXwILgJB+Ky7Tiny1os51QxpKXEVgUwMxFENgyDRkxxyGH7HQiUldC5ggr051k2zctgKJp3iGLAlgIGaFTqSGi256ZDxlUvwp1RGYUrmCyJiTquQ8y3G+mANBEQMfeiAz0Evnor54INBts7+xobfoReQM2KPtbkoERRVm0uiNQ92NgRIVvrptM8kBHF8ygd+c6kiBEIeDxOKoQAuz8zsgh/i6KTjsu9f4qZVuHLBqpv7Xp3zHwE42FAfaeJCGqWjnr1Z8SMjchb6T2QpFeryFjb2aUorWBN/rjlOhhW8pT7PdJCHjbLnpnewTQPU1i26VGyKxQp+eiyLFl7bc3YLuQbT/pHSNlEXiRzCGIfLCA9YePyCKydjV5dwKb19r+TUEmAmXewaXetvP9Qv+y38PQ3PZ33NZjpB0Eu6BsfJPRnHw1ibFj79gXy0pUpc3rPu/VOJ4+Q+OpKHtZUTs1Qub8aC45zH6vgByCU8gyS460ax0ocLg2WmYYk9YH7nTn7kFAWdAlNgUOmYXvn22ZlK9PIavULeSjxVcjIy/tFJ6lXGdq1QiZ0e8uaMyXEPgdgOsAeg5AhKjxVNgaKyrnYORc3Qs4L7rPg8bnkddhDyHb8qFvI+W6a6PQWj8ZrSOvoXUjOCCuMJnXoLlmGnB4UX02d5lNqaxoHv8X0pMCEWA7Mkfh7vaumykg084hmfOhtbGEbTFEPpvT4oiYXqL2wIy6y4zmjTOR/hDaJ85MtAzZVmVd54RM8nPJish+3Aeni9i1QDQ6FxG+hyHbebumKjN6bh/kvHwe2c4lpPNW3NouKtdoRPIYWme5v8Lp82jufpKMvDTa5F5Lnri7FSJY74jLqItsktUQQatLHWXOtHWQfXkomqN8loKYENWz4PuLyEvbIiLMq8jhvIO75glR55HYvqxCHe+HHMSnIHwnbKOxHsJInrXyDkGO6FzQDJrP4i36tkUklbbknTF3YdvXI2xpF2Sb9019f6LcC1uZTnfnPHHpfeDqSt/eaLkIa3sD2ZqeQBXmrT2tfw2v1jbu3F5WvodRMMd4NPdtZNdXIcsw9jpab8q2x3LyzkZ695Vk2YRC/5xgZfTt1sva/m6qb4O9ICIvnBLJWAzhbxPIZ8LZIe4/8fyASGC3ozXqErI5ZF6EmzxtfW55RPJ4nihLWlzH9uyDlOuOe6I5YSQZfrI1IqIkty515/ZBduiGaK7+EJHi7kP6Ssgk3AEFpD6My0JXobzzIPv1VTvK5lBEKPwIkW0qrqHumdeRDrU/GSFmJzTnvm/94Ta09v+DKHtPgcyfWF/cxZ07xr7/Syvfi9b/fFBFmD/PBa6KZHpbvCZCFPk57mfYlmrRPYGQsZh97xto3fRBrkXrVCC0ViVNkZ/TuyL8dSPyW0dWqtOd0dheIfqu/mhOnYSz1dC8Ot6+J7V97gBrgz3cuUXROnA5hmEjDHUjtOb1rbFPPU5iC1GE/0wmvw2jJzmncJtdkN58FsLXD0Tj633y22seh4iF48hnhI3t26utHx2P/A9HR23TFwVPv046O9pQNAd+RD6Y5gor1yHkyWTHojX5V2he7Izm3Ksp3wVgQUTmecy1+UxMxN13D3m/SQ+UhW97YOtGy0zUSUc0NzxkfWUhRGB7Cul7m5Nh752QrfOnqN77hH5Kfk67EBHmPkF4837kM5idguaVD8h8PNW2srvK2moGIvmdh+lzKLvTF2i+PgplyptMXj8J2RHD2hAyU3VH47otIpneTEZGXNnK/771lc60EKBajtk83Nj70uaaVQvu83rYX5Ctdjgt2+L9TxxzvQD/y4ct5L9HivebCPj3ZIr+lKc9DUrNOvbMHtH5ZiuzKZW1OctsSmVt4PevhQzWCciwvREXbWRyLyNNiEouxu76IDIDdCwy4pZCBsh7ZBlzuiMD6AaqAHt2/3ZIIfgzIq18Z3/XtOvzoAwubyCl9G/AwXG9RDKHI6XhCDIiVHB0LoRIYl8h5flNk1tx66FIfgfkDH4USxNNPiL7z0jJn+zr1erwcDJlvDMCXs9AgEmoQ08GepF0dNDmiNAwkQoRalQgBiCg6AyiiJoavv8Hy4z66/Ym4x0E2uxGtj+3r4PnXd/zqfArEaHCVia/RUDctzhDn7QB78sWojA9eH40AoQfxGXHQQDFw9bm25CIkmpkf6pQt19YmU9GhumbCJT4DTL0U2SYGISYD43nX2MKOBpD95j8AxFhZYDV2VRfpoLvrYvMuKx2LoytrlZnVxaU4Q7gnGp9KXqmM5axCM2td5GR5RZCIFYJjdmKka0/Zplka034uwkCAxax3z3Q/P6Gybkher67+z8FPO+OAM4zEAhxNhkxxK+DG6Ix/C75rSJriSyt67zHLIynWvpSPWWSz5jQATkDP0fOhrfQ/LkaAmQfReBTx0hG7JCuu8yCsl9k370AWs/eJVsH50Vg5G+ZhTTQ9ZKJCNUvWr98z/rTfeS3aluNbHu7Wkh1dZfpnlvWvqsEHBu3A9L/HkT6VjV9byQi5IWtUiYSbQ2C5pmQkeNy8pkUTsBFcTdSLtIhZyAn1foISL4HrflhK4rlrN3fRw70Q6t8f7OV2ZTKSrZt3VnIGbo30iWnIAA+gPm7kG0TW+hsbZRMJ3s9FOX5PbCpnZuZNQM5FF+z9284t2Q62dvjthci7/DojRxEI6JnqmVDqotMNJeOR2vmy0inGBbdc4G96z0055Rlq2yiMjdDNuxobP5EGZPfQA6/sF1xnK3W2wiHIHt7vzrLPdT64lcoG9GB9p5jyBNVAnlpZjangm8NpKXNkC1QD5kHk3fOjUKOuwlW/++Qz54aCCef2btrckZY23+K9OVj0Th8jXwW3m7k17sOkYwuyGnsA57usLJ8gHTIiWicBz1/CCI/TSfb6sgHLqxv77uYvMPwQOA/ie/YAulR05H+8jUJzISCsY/0rodQ9glfr20Q2f5lEgF0jZYbZJNluQjE0VMot4N6WT2eH/plFblDEE52GJldP4RM5wvktRVQNtNfYgT4xJjyc+S51levJCPXLIRIbO8BP0dO6u0RCe9TogwEBeUdYGULmUZbk+mOA9HYSwahFsi7DZGKLkcYxktobG1s11e3+plhffRDIqJoqu0RIe9F+852Vn8Po/npM5M5Jm4/32bRue7IhjmWbG2/2epiEpYZEmEKI6zuZ2Vngu5k88u9ZFnufZueTW1bYvq57u/2vfuTEULXQnPNv6yP/YIoe4+rl9jm64vm+Uui85sj+/R+q/NtE/XZjWzb15ikVjMhKmqXscD/AXe7dvdBe0G/8YSobZHusybCjXtE8o9DemW/VB0UzQ8VrlWbA8JODqF9fPvtZNfW9d9Ehl+WZfNEgSQl+85OCCP9DK0pb9q1Hat9U/wNCGd/nXzmO98WoU/F27mm8J1eiFh1PvksJv9C2PvAxDNlWY99n7X/Q7DPFOAnrr5CHwx1c0AkuxvyCdxEniR9C8IytifaFQPhz8chHeM5hHtMJ51pqS3K2DIBrUPfW7vE6/gZaJ3eGq1Ne6H1O5VZsO4yE/9vguakodG3DEYk1ZAhKmDvHVz5KuFRN6K1aHcUjPEsWoNOJp9xcn+0Pt1BhQy7du+1SP/Y08p0kNXJo/aOeUzeW1Yf/8T50BDZ9jwy3H5/K1N/d09/e8cuUR39G9l4FTPhtRwtR60HIu9NR9hHycb5tSgTddAPwjrd3j0XMpUdTA04eMvx4z7megH+Vw+krIctb0bb5J7abzic84pZTxuM/44WrGYrsymVtTnLbEplbZDMEPXTCjnSnkUL5suUGy/9yAhRJyfmkJRxsz4yQFa231sjZXciAjD6hnIgZfw9qmRZct93Gi7jCHKYlJDx4bc5WhQBPL0SMlq77+9ldXsRecd6K1dPPZBx9CtEthia+n4qG8GnIUUmB4wi4CNErpRFZriydrN2fBUZLx8io3aEXe+AAJRJODJQkIGioH5JlC0HGdK/i86VgRHI2LsApcbeL/X9DZY5AoG4v0NRO48g4+tE8oSoUcgJ/zZRxqJUO1n9n4kyDc1j53qTbflwRfx8QsYhCOzdP7SFu3YYAkRThKgnEIixeLV31LE/FaYGR1FMH1n/uYKs//dEyvcOReWx+7ZBc9XTwIHRteUQQFJCIGkAM4+p9L0NkrkhzoC1c+2tH7xHntCWer6MCFKlXroggOJX7tyS1k574xwdTU1m9HyI+Frd2uQMBFC+ioDHw8icOBUzwLlzq1v7H2O/+6F571EElP+JLNJ1UwRQV4zqtfN1maMq1Sk/cDw1WiYuk5z9XgaB4FeR3wKyPSLGXTinZFboB2He2tfa/000VmdGTiNd4h0SkfiNkBnJGorWgDFobl8MAWgl5BTwuskaaP0aPSdkVulPSyOi/ffATxP9e2mcM6Og7Qcj3e4U5AQNBKtriFJyoznmFCzTFom51LVL3eQ62Z0Q+Ho1TtdFJLj/EDnEkX44X1wvLTKbVllN5nxo3biEPGGuC9Iv3iXv/BiJC6Qo+Pa6yKTyGF0XOW+/BzZz5zujsXAEie2VGyEzISe3jqI56hFk/3mnXScU8f8hEbFnDsncEdkPxyFbKRCsviNyKqM5/ygvs6DvNwmZdv4UtL4tQt7+3dHq9X2y7bhyTnD7/xDrK/s0SO7ByBn2NbKJjkh9Exl56SqqZFohy+Y5WzLROvQdGs8Loa1aXkW67JL2rX9D9pgfS52Q465Ele2a7f9Nrb5CFupeZNsOvkM+e2o33HoXyRxp77wQ4SB7IOxgXSt/d2Q3TUDkppDxd1Erw3akgx7GWD1cRJZl6AjglfAtZGt3B0QwuBDpz7s5OSnSyVJI11+WLJvehogg9zim16L5dnc0Rsr0kkbJjWT67BdbI9LOeMq3SZ8fEQbOrtRP3f0/Q9mgvMP1HutrAUvrEpenwlzi+5YnRIXMMn0QMWyq9ZeQWbvidqRO5oLIrrsDF5Tlrr9AIgt1gaxDEGazFhlpZTcr18/JtmBaFmVl2o8C3MTJ3AjpxZ2RzfEPhHW+isbySihT2D9IbElXIHMLK89T5Ldrb4V08s8QaeJY5LgvyoqU60+UZzsPhKjPrA+UEaIK+maoO98O3jn6pMk8gMxubk85aaJsayei7aPc+J+R6jPV+ihaM861Nr4gulaVEEX5OvI1wv5C4O/zCLdN1c/iFONDugAAIABJREFUaK59HRFk/430iJi0ezaaf8cxC4SoWo+4PyDy43TyGEyw8Veyaxv7ciBCyhpRmwd5PVDWm++Q3jwROMf610D7/vOrlLFIpzjd2miDUA537UqEb7avJNvuDZjOCHfubmufkAV7eZzNF9dbJM+XI/guHiQLzgt9oD3C0n+RkNGOfCDtQUjPWdM93w1lhetP5o/Y3b77jyQIpVFfvN7K9gZZZiE/7oageWYGmhunk8gCWG+ZKID+zsR7drB+FLCx0C/bIny+ZH0s9IdaiFCHI9JbkDkGrc33Ir3wZCzrq3umYp9CGTv/i3TnUMZ5rHy/wW3TivxrS1FOgtwA+cPetDJ8b2X1dTkQzTenuP50ELJZk/NUy9Fy/JAD6Rf3IOx3F6RzfYEw8HFIp/U+P++D+iOzsEtGy/HjPeZ6Af4XD2QgPIeUhKXIlAuvSPgtB/zkvgZSdj4jz6ZttjKbUlmbs8ymVNZ6y6Sc6BS2hFoTGR9fkaWp97KWJNuzfDWqKHcIWPoC+LU7dwpSvB8zGUMQYDCdfFaCImO3J1K6x5FFooX6CIbzwziwPCpTK1w6XPfsgkihPazSNxXILEpzPxil2t+JvMPyzyi96ykIeOyNSAYfRO0egwbtrQ88QJaxYklkwH9Dls0qEKJKWKp3952tKAc8OqJsO9Wis1Z39/crKmcDZW6AIjiOtN/9rc3eRQD0SWQRrh0R0LNfQk7b6PdWCBB9m/LI8p6IzDENS1Ff0NYBzN8Xt90TeWV0tL3jQbIx1xoRBmohL9SlP0UylzC5K5GPxhqIGdH2O2zRNJ5ElFNU5sEItC8h0loKuBuKDMbdiLagaLRMNAZCROx3KBJyVzJQcEUEEpwQj51UuySurYUA7aNx5AkESD1u71sAjed9ULRq91hWU5EZ1cN6yDBb2n4fZ7//Dlzq+uAyVv9lzkvKo+9bI0DjQgRaDECA/mUIyD+NjBwRHB3JiMFGzFE0YDzNAZnbkEVt3oHGTEgH7kHzbgjYm4SLPm+kzCrf74nKAeC8Ca2DyyGgajqOCNkomeT1rzC+LkaEuZ7RvcGZfTd5R37vRstMfPv6aFyOIL8+DERjKEmIqjSekJ65AnKQdnXnz0WRlCniUu5bScyvDZTbAUVFX+Cu3YscHgF4H4K2oymc66PzzVZmUyorWt8mAWe5cwEsXwLZShcUPNswmRSvzTu782six/X3aA5dHen6HwJrxGO0ETIT5U+uoyjw4h9IxzoLZWe7EOlWhVs61Usm5Q7NJZBteKr9XgYRAG5A2Xu+B3avUKbWTUVmhWtXAe+7335dDtvuTSHKumfXZ9o4jZSLMooE4tct5HW5NtFzJQTyV8y4VA+ZiPSyI5p7HkWkomtxWxIjB1wYSzG5cGiiXB6LaGPvOB/LsoJIH1OtDtdGNtAn5Ldj84Fv8Rx4JBmR5ByEBbWL7rkCOVeSpCK7J86SGoIZLkZkrQOARwqeTc1vRYFOIYvUFETICduMbYbm12kI73gOYUsnVmr3esqNyj8UzTuBUNQO2eZvmpwNrC3nRWTFGSRs/EhmH/t7CTDenQ/bNYf1bl3rD10qfHOhzkaaENUN6cM7Ivt3/oTM5PZhbox/Y/0gbCfWCuERL1OwxXKiv16ObK5A+lncynotmW1XazbF1sjOLwFj7NwSCD+4gAjrQ6Try9E49O0y0x61b+qF1qDJwH/9/OD+P8va7W0UZLC7L1ei7bdHevy7aO4f4b7XE6LGkWXFjusuHtedkUPeb1Ho8ahnEPHtABIEJ7tnJI5shkh/HyPyrScnDUZ400n2u8yOKWifMDcsi4I0S0RZxMjb4mtE11IY3GFWT9ORLfwoaVJn0M8WR4TQEiLJtXPl83Pr8Wj+vZtZJESl6iAqe1frW8Fenhfheu9heKedb4/s0fdwJBtXj21c2bthBGQ719eeHY3DMhER8HkqE/5DnbRD5M6F3LXV0bw5Ccsgat+yNMICflckN3rHMmhM7Wy/w3gI895ApANtVkFGpTnqSmvjs8m2U26N7MvJVAlKsvt/jkhOgfS0DpoLPrDvP9Fd64KbE1J1avfchPS6DxDuFuZP3/dWRoG5Z5Ifz/E8XxeZaA48HOe7cdf7o/VyrH+v/V0MkUzfsj7areDbY513DBmZaDRaL3dBdsDtZNuCLZqSV/COPZDuFLD2pdFacivZ3LoeiUzf2Fps/2+LbKHvgZ8nxm7IeD8RZTW8xOrHk+5biFAtx2wdZHP72jaPhYC/gUiH/wD5wW5mFjJQthxN75jrBfhfPBAb/incvqvkFdkDUTSeV3znR4rp0yjqY7kWmU2vrM1ZZlMqaz1lIqP1V1hGFOTk/gjbmxw5Fh63c0PsHq/4DSAihRTMK21M3i+QAelB9aORIf41MkKewUU2Ugy674Iimp5AUXg72vn2ZADDlgiUeRxYPyFjJJYu0r8PGWJfkxGsYsLMEGx7hloOe89E+74SIphd6q5fj4z1b5ASk0wfH8kchIyM4WRRiTvbsyFjSoic62R1UWgcRrIXIdt26tfRtVCnjwLrRNcqOcdmS2bU79ogosvN9ntp5Ay92PrZ3YgYdQIZqJiKarsUEYW87NMQGPIFWRrltq5PLYEMof1T302eCLWifdfV7roHoMaSZfQo26aQ4r5fl/4UlXtXsiixElKit0jU2VIIMPsCt+1YqtzumaURKDwBAcdlkYrVvr1BMv33D0Lg3ovI2H0ZOdt6oDlqElWizhPvG2X98mV7/mvkWAmg81Fobn0Nzc/TMaC2qcu054ZaP9nVnVsQB64jgGMkAipjJ8tq1h9j4vISWLQwAjpvxrL9kQHmJRSZX/N2k9R3jqrLeGqEzMRcMh2B9TdZG3+KHAGebDUEEUGrbgdbT5mz+P2/RQ6o6daPXyK/BWjK8TDbMkmsI3bt92iO6uDuDfPUr9E6cSuOMBvK1wiZibrdw74rEEv/QT4SNxCivsZloKjS9mGblBJuuwR3/RfIkXMVjkw4p+QW1ENvq9Owdc295IH3BRGh71DSxNtmK7MplbVA5uJIh7jUfsfA/GPAAxWer7vM6N5RlK/Nd5BtNbYq2dYfU+2ouG1rI2RG8v066olrG6N57SO0Rj+CA2qprLv9YJnIGX04ed17IHJmLY6cNh8iB1lH5NSagfTqUQXlaRIyI/mxDj0MZ+faueDIGoHWureJtvYgIwnt0yi5ZGvaCsBP7Np0tD53jr/J/j+OCttr10smeSfzjihbxXcosCW2MYYgQtRXOL0i0SYjibAIO78WIpZ3RdjNNWRZm0YgR9tbpAnfnXFERzt3jL1nOm4LJdc+bVBmkOsL6jCU85DofCBE/Q7pH8FheT4an7+1409UJ2hvgvr1uSgj1Rikm3yGZXhFc9RRiCRwDm5bp6j9GiI3qo+P0baLW7vz7REh6nWERTyLnKPjqT4/7233Lobm6skoo9E4tN4F8lY3hFfciCPhpfqq/b8gIjv0iu7xhKilKpXN7u8Qff9YhEP54JB7rY/9FjnaN0FknI9T74jKOcj+Pgb8xf5f0sp4M1kmrJ8h/LJqphkn+xqUIWTR+L32uwciAU/B2a12rcgeXR9hjDOJVnE92e8u0e8iEuBn1hbDEB7xBspEEr67u903A9m47SMZKyGSZ193bl00Rz1G3r4JdsQAtIa+jEiTcdmXt++709Xd9lbOj6xfXofZxogc+PqstI09t5v1538gW6ZEtNUbmS3+iHtfEoOz39uQbSe0VXx/NGaXsfp+HLc1INna7DN9nsgsEqKicq5FeYabHdF2Wi+gALQwLy2Mgsg+tjY4zOq4KNjHj6cLTN4MhK8fTJbx3s+Vi6AAoPHAEpG8+ckT/LrZd4+3+vq5u7Y9IkSVrB/ejkin/3R1WoaZJNrivyjY937rXyGAuy3CN14kwozc82E964jm4U1x48Gu/YFsB4kdrT0f8+UskB3W7AsQNnA8IoBOQ/P2MIR9vEuCeJfqC36OQEEfRyO94gkybGtmRqMKZaq7zFCPTtZv3fl5UGalb4GR0fObo3VgMzSflm2PGr1jtP1dCgVeLoXmkEPJfBkhC3bJ6r3aeDvc/oZ5tRvZWnIT2TgYhsZV/+j5qxGmEIJj10Dr8UdWtuBLm0maRVjypQj3eo68P6uFCNVy1O1AmMhjyAZY2p1fnsyPFea4U4l0v5aj6R9zvQD/iwdydN1KOnX1qWSO1ztx0ebI+XoCCaZuc5bZlMranGU2pbLWUyZaMJ9FSl3Yq/1g8mDHWoh0lCREufuSyjh5ZXcIMsjiKKwFENCwdFS+IlBra/vGG5DB+B1StgfbdU9e2dq+K5V1ZE0EMH2E2+4JkYfuR4bugOj72iPD+D4SEXOJd2yNDNbjrb5XQsbDN8AN7r6hVvdHAlsm6rWNrwdk4JcwYws5NktYRDQyUn5JBDxR2cjzdbwwWbrqmBgQ6rQqIazeMhEo2A8BhesgI+8JZNiEtOxbIjD+U2ursogcBC7/DiPzkQcPjrZ++rpr/1D/CyFALLX10Bh77z6oL7dBRtFE8mQlH4n8gl1/FkUZVnOO1aU/RTJ3Q4b8yWgsHoaM20eAzd196yPiwGvkI9TijBtlfQxF+72NwLZNqI281GiZXezIGf3IcL7L6vSfCPT5CIHkNZFrrDyfWl9aFI3HnVEfP8fddxACeP8E7JUqZ1OTGcl/BHiq4NpgBG5MIyJXkWV1C3+HUA5mdUdA3Inu3PIosvFYou1bauwT9ZijZns8zSGZg5FzdSwZ2NMJEW4mIWdQBxRFeg0CYys6rxshs4bv3zp6/2YoQrV/lbLOtkzK1xHfl05GTsEywBatFRMQaH+xf7YRMqP7WiPH2FNofVgIzQMvoDXPO7EHkKXZT27rk6iP4xFI/JLrA16nPButYX+kIFq0EXKjeuyN1tuwZoQtZp+3d4Rsm+3Qev4a6WwezVZmUyprFZm/MJkbR890Qc6YK1NjqREyo3srrs3uXZ1QSvzh5LPCpea8usssqA+/jsbb3SyCnGvzVpM7uzKtvsOWMPsREY3s77lozvfbxo9DjscS0dYmTUVmov5ix/9ABKS/gMtUg8bSWYjIEDtFF7dn9mmkXMoDkLojHXQG0kO9Y3YTXPZQ/91UsCF+qEz3e22kbw5DOtcHZMRMb1OsRUaWWCyWY/cksQh3fQ1k62xMNkb3QbbjPyl3RLYiy6YWbyV+MNm2OT4bZJD7F+DhgvHoyxkTt8aY3I/Q3Pw3hB09bd//CNUDMxZH2MYF5Alqy1i5PiKfKbYQb2q0XOT0/xyRJBZIXA8Zop61etkBF9xIAjNDmTYmI1uzIwqo+hA5td4jwyPaIyLShyS2F4/HJXCetcWHKEPLetG9gRB1GQkyOSLWnU8+u8wt9v0fkQV1eVvkOrtesve+io2PCu1/B3JAL4C23HrTvnMKGqMhS9SS9v5zcXhKtQPp/JPJst377CibIIz0UyLCGml7dPFofD6NyAZ+boznnErr/YaIXHK0/e6DiMjvW9ucRD5D1P4ksj6g+aiEiBkeT92SjAwxNHpmYaRXf4Uw5rj/t0VZyD9BREG/+8BKaB59HdkfzyD75WuiuadK2+yAdKbjEHllHYQ31GyLk8fgwvj6C8KIXkT2wWrx+LDf/azsr5KRRNpSvjb/IEIU+XF+BJq7V4365teIPHSbleV7bEtNZKedZ+WbimznA1Py3bkb0bpxIsK17kT9/0byOOS+1q4TiQIz0dz5uZW5nR1Po/n95wh7LZHHH1dG2en/g0jCv8aRy+KxYd+2CPnxuBVaU0vApnaup7XtVMr9CMsiorPfsu4Z+96v0Ty1afRMyBA1ydr4BFe+Nv5vom67oLE0HhGefYDscLS+9q2hLyyJdIQ1XR9qR0ZeepyMtLOjtf8icbkaITPRTmGb0jvdudUR+es75INaD5HNn7J+1gnN47+rUN4rkR7mg/y3RP1uiDv3U4QlHUe0BW2i3EHmYLK59E/WH24iI5fObzLvoXynlH1d3+uEyLJrI8LyK8jeDDqfJ0S1sf7hs0rVbSvNlqP5HRT7Q3eyMbmvO3czmjv3RGvzv63fLzanyttyzKF+MbcL8L90IIVvfgSqHBzOues7IaVsKMo887EtHH57nljpb7Yym1JZm7PMplTWBn7/KkiZLwFXufMeSAmEqA+JsmJUmFM2RQz52Ki+GBlcSxQ8Vy1ipAsCVE8ni1YYhaJIXiUfPRKMmb4VyrkyMgKnkCdE7YMiOx4nH3m+L1Fq+gqyW6GU3jNTfdv5XmQp60+q8HwcZdoZgVXzIMP9SwQUBWXoeHfvNgicWruGcg7DCDMUOx/Ojp4prNMGyuyOwIwr3bnlkHG3vTu3GQLWH6LCVodkgMcwpDB6kOMYBOz8jYxk1836xddEUb7IGfYOAppH2vcth0C9C61/eUJUK2vDp9CYSAKajexPdm4l5LQIANzyKILmAWSIPkd+i4dDyEcWzkxvbr+3Rs7zp9H8sxlZFNIgBMz8GwfqF3xno2UOt298C4HDB1JOHByOyGxTrW4LtyPx77G/5yDw36cQvweBAisX9cWCcf+jlkkahAsRp8OREbZjdH11BCC+STmx7lhrkxABvRha2/5CHtxd0vroLxHQ0wGBFPF9RWtJI+ao2R5Pc0Kmnd/W2ibUcwAB2yMy4HvYOo0ApaXnksxavj9J1qjQP+smk/J1JGxv0BWB8M/h9B3rp2cgYH1/RLqMAei6yozrAK1lN+G2lUPOhyfRmPSEqGWJQOREfeyErbVk69E04N54TrD/L6SG9N2NkIsi/19HesMz1heWRXpgiSxCtS9az6cBR7XIbPplTchcETlQHkbA+a5oW5LeZE6XXeakTH7g2hzJqMt6X0mmO1/LOnpOLIcKtl49ZSId/Aqkt+9PFBxh3/9Xsjm3t9XRARRnHvjRy6Rch74S6UZ/IMu+sg5y6LyBbOptEZF5GvntnLysRestF+l9i0Yy749kdkRr4XQUCLUyWRBQGfG94PtnS6aT1x0RB8IWdsMQPvIUGWHCOy/WIxGQFclMYhF2bSsrU9imuT1ybJ5IQbQ3coTejvSxmLh0qMm7nLwO1guRd66jeLz7csZyQ3avX1DB8UJ6zIdMZ1OAi+zczCAwuz4ZZQNqXVS+OSEX6Vu3I3vcbwO5DyLsjkA6VluExbyBCLxB903p+Wsi7OBW36ZkWyA/h9aajdCY+pI85tOq4P+bEDZxgMkab88Oi94/M/Me5fjjwcjZfTsiLqyHbLT1kYN4O0QoeALLvmPPrYrG3hDSGcE8zrg5WkfXtt9DkE5eAu5z982PxvKb1JDJKvHOZ4AHfV0hvfpR1PfjzIKV7FFPDlubTH/2hKiq2YKsn4wly3o60L79IqvfF6zNTiIjMfh+lyN9ImLRF8j53zeaRz5ItNOaCOvoQMFaiuacnZD+ciflwUltEbH6OjLM5I4a26QdwgPuI79V+RLWH0vAmdEz8fsDBhe2DAq2Zx9EotnU2nc62Tzq+99iyIZKkXUWQBlivkFrs9+mO0WIqkScPwSRvg6I7rkGEYjmcd9zqvW1I1wbtEFj0GdZTs0n2yJsbAsyrHyQ1eV5ZNl2VrY2uw23FkTj7Wa0dv8M9fO7yLYc627fFEjFft2Ls6G1pZwIvjuaHz9B5KmfIOJJBzSfTkb43l3WPybhtkFG46eLPfsm0r/bIbLkXxHJcU9k238FDI/efykRvuf6QJuonCejoJzN3ff0wpFhrb5uQCSwisE+Vq63yDK4TMC2pTfZY9B4fRuNgxnAaXNKJtk62YtsB5HD7Jl73H2rIbLsl6i/foZ8Jx1QP34FW6usvXwfGYT02E3Jz2nbWZ/YD/X7eREOfHEN84mXGbCTMYgQ9zZZds2BiHz7ERG5ivyY3RnNpV5XGkkWeOhJ5T8h2gaXhL7TcrQcs3KgTGldibL6obXt78j/2cvGyBSiLURxNn/L8b9zzPUC/C8eyBC5lfIUqRuQjw48gESq5BaZTbeszVlmUyprvWSSGbgD0cL5HlLqdnb3eGNwTZS6+FuqLKooum28vf8y8ntQb4QUz+DIqGnrNrv3JwiUeJyImIDAp/+QT10ap+QtAvdWIQP3DnXnj0HG1QykbPzT7kkCUHH9IkPgX8At4f2uLCHt8SO4SMUq3x8M2ZPs9xNk21wc697R3+ooZ5gWyOyBnDYlTHkibwT0QxFVJeC8RP9JGeF1kZmqW7SH+MeYQYscZJ9jEafI2DsKR+yr8v0dyNIlx1Ffx6Mowc+RIXQHMiKLtnTqhQCVJxCAtoCdXwg5aSeHciGldldkrPeYG/3JnhuCQIaQlngScIVdC1FAD+HGsHu2qy8zMg5noLF0l5X1a+SAW8T14dcpzuAwJ2TuYTIuQeDXNfaOuyhPk9wBRQ/vVGN9hr77CPnoqbvJp/remjzoWskx2FRkro7LRmjnFkNrwWXR+aURuLRxokxj7JkHyTJ/7IGAkT+Rd8adiProX62PTMORqyq0U93nvTqMp6KxX3eZdm0Xe9YTptu57y/hSDFzUWat3/+TWsZoI2RSvo4EAG4zBJT/FxEut7X+PRXLuoIA9rLthhskczM0Zs5D5NKFon49BDl0XiUddZ5a71sh8Hcitpah8XUk5aBpWRR/hX5fd7ko+v5TFKl8PoqGn4CcRFug6OAS0vVeRyD9mBaZFdupSZS1QOaHJnMTsiwEYWx9QvUtQRshc1bW5p/WOD/VXaYbj7O8js4FmcGZGYhGnkB5LdLrV0drwS5o/vOZlVPzXlORORI5Af+ICFUvYpke7PqaCECfRpbFpeKWvY2SWyDzM5R9pyOymw5ATrdPkMOvlm17Z0tm/O12bjSy6cJ26jugOepJsnU11R6Vsqt5LMIHZy2G1uv3UIaOs6ycP61SRi8vJi4dZe3yN5RxYX9kC02lypbgVeSGrfguIdtqeybJKFVOOx8yTHyK26aPfADGs8CfaxnzjZRrfeY/iEDUDjmDH7N3vGvfHzCZDmRb5r1EZGPaPYOsL03E5mdEegh1to2108f2jsdwWxcX9Smk670CrGm/j0RkkH+iOSbOrHMalokuIet0RPj9o/1/YVSHW5IRbbaZxTY6EK2fl1PuEP/W2udolBEk9LtqWaa2Q3PmIPIEm33t+Y193SH8Zll3X632aF/3TCBEvUrta3NwzPdF+nlHNNZvIMt2vgka728iomEyQzUumw1y4E9NlHErRAj4l/WP3RCJ8wFcZhN3/8yMtfZ3Fyd3sdSYRjbIKWje3byGOuiM8JtrXPnDe5e2flfVFnf11Q6RDw8nnwluM0QqzBGiEuVPkWEWQRlkvkABuEWEqCV9ucivb2ELP0+W2wltJ/YA+SzugSR3kdVjWebHVN2788ciUkywnZZB88fMbWHJ+vMiVCDuIILPVcjuug34Y3TdZ1m8kSwYrk30PWPRuNnezq2P1t3zENHoAft9IJm9O9Dq4BaUucmT+Fo72RtaH3oeEbxuADZx9w5Gc9fXlBOiTqPcX+Db7VbUB/+L5oLvECl//kjOqohcM3Onigp1Osza9Qzkv9nV+k+JDM9uh2z/B5Deckj87XNAZkeyzGrdrK2PtPf4oKTOKEBxGxRAH/rvtWhdWzIh+1I0ph7G+p+r//ZoLfmIDNv+hOoZocpk2vlFyeakF9Ga8gSaC8vWEleOzmTZc68ln91xJBkJbxvkh/qexNaVLUfLMasHIoUehXSP6TaOnkRkdG8bHm/98y27ZwuyubGm3SxajqZ5zPUCNPXDFridkGF9gJ272Bablao8uz5S1tdqkdn0ytqcZTalsjZIZgowW8buD46FXd01b8ysSiKiuUDmYiia7DVkfPyZLDX1DcC/KpU/JdfK+BZa9I+mPPp5BDLw366hflpF3+bBvdHu/IYoGuseBEBu464l01ZG77kFt3c4eYLZ+Qg86lnwbJwGtz0C38YjgGeg9YWPEJg7PzJ+nkSRZG1rKSfKYHQfMkK3SDxzFnI2lZCBVRj1VC+ZkawF3f+DESh4m33vfIgI8RoyVH5l7zw0Vb6CsvYi74DwhKijEUj5DoqI6eeuxf1vSxSVcx8ZCBwMqgWR8TwVAeZPIODg+IJvbkR/KpIZoqRvQKBMAPK7IFDvM2Q8Lu6euR4R7gLRYSUEFpxIBpp1RiBGCQHkoT8OQoDuHlE55oTMpVCU2ankAdIJyNjuW2UMJjMuJOr0MtS/uyPQ8D2yDHM9EPhzJS7DV1OWicC0EjLEbkGgcMjedQhyiMVrUeG8hMCw161NQnk8CNvXzrVD6+PLaB74WUH55si890PH01ySubx9229xhEy7tioCfZNOjUbIrCI3RKFeX+X7+84tmeTXkQMwByCaxx41ed+iuSYAk3ujtWWVRsiMZI1Aa84EO77DttchP1bWQoDyFAoA+EQ5d0Z6yE/cuQCazgDGpcZ9o+XGdYpA4IvJgKJlENA0EYGZ3ezvsWgtXz2W35xlNqWyzqLMrdFY2wk58U+iwOnSaJnu+qVoDaznev+DZVaY91ag/vZDI2T2RGSPoOcHh2AfNM9/g+bN6SQINk1FZiRrFWQvHE22xVRXNPffTeY87owi75engo3TSLlVZN5Fpk92QNkfDscFP8wJmaRt0dvtGzugLWc+RDZHn1TdpfoAxVjEwe78LmROkTeoIWNfJXl27TA0hkoI4/gtBc7GWstp144wmVfj7KwCma0jmePs2SOjezsjgvqNCAuphBnUXa7J9HrSL6wfvYgwp78jm2IepKf/myyKvx3CB6ahucvLmdf+noawhkmYHo+cyQFDmBfNAYtTsMVo9H93hIcc5NrkG7QerYJ03Gm4LaELvtuTk05H42kCGdmrvStjIEQ9CmxbQaYv53ZWro+B0xMyt0B4zzsI17qadAYbX6dLor78NhqPD6AsIT2Q7vAxcFaFcf6D7FE7P4RMf67muN8CEZE8oXVFq2O/Vfe7MPbXAAAgAElEQVQwsuxi+xbICvXVkWw7xaIybozW12kIY3mQDCNJrUlDrZwrJeT64CQ/P/RFuNxZUfmKxtcNCNvsE/q+u3YBIhwU4oXksxAPtnd/DOxFHtPbFBGiplGwZV5C9g4I13jIyvAF6S3z3kTZBwfE30qWNe8KbC5Ba8apSM/5JrR59O1rIZLxyEr1l+gHY4F37P+lEFZ8E9mcNAJtZ5jMLJgof2+yLErP8v/s3XmYbFdZL/5v5WQegDBkAESGBEhERAKBIEMISAS5CoLIoBDm6SqDiCCD4A9BIoI4oII3RAQZFBWVUcAAylVQuCgSQkCGBBMgRAhkgJBTvz/eVenddaq6q09XnT61+/N5nnrO6eqqt9ee91r7XWuNdYpOnW+e1PaLd2XCQ/jUtOsXtW1zv1Si4W919r3RufOK1PODw6ctc3Y9ZvdJjfJ3fur89Onuvtk+c1wqIeqKjI1WPr7eO+/9Ruq5w91T9w4HZqUN8r6d9f281DH6iXRGCpoQb0fqmvOudKZr62yn0Tr+ydGyt2U7Yo1ln2vMdOomqXPPe1JJiaNjrJsQ9Y4py3nP1AhyX8lK0l33/LBfqoPxzrbNju38bvR3DkodL+9KXQPWO59Ojdl+f0iqbvGy1PXhUVl75pAfS/Kf7f+PbXHfkNUJUT+benb23czQ2cXLa5ZXO9d8KHVf+eZUEvdrUtfIy1JtH6NRaPdLnZOvSHK3rS671x7cT7a6AMv8agfZaDjX77QT/HtTN+Fnp274u5Wt7o3ZdVOVkXcluY6Yy1XW7Rxzmcq6oJjdis2pqUaZN6UaxG6YmoLiE6mKyoM7n/2JtN6enfcm9Xr5kVSF7+Wpis7BqYbdh6QqJhemLu6/3pbnaWuco7px75KVeZt/JNXT7dOZPI3TaanGj12mHcv6lcjbZ0JC1JTPdkfl6a77W6R6Ip6Yash6aOph3muyuuJxUCp55+2ZMJJPVjds3K3z/p3aPvHq9vNtU40UX049FP1kqnF2Us+mwVg575h6qLojNZrUO1INBN3G4EPavvSMKet77jHH4v9U29a/1tnnfibVCPmz7edbpSpAX0glwz1lyrrsbqebt+19k7HtMSkh6rmpyvA7stLra7+xf49IHZ87Uzero1Ghrm6UTR0LP5Y65l6dzj6aTkPrPPenWWJ2tsmnkvxW53M3STX+PCvJozrvPyd1jJzcee+eqWSkVSMDtd+9IVVJ7DaaHT72mT0V89btvVM67/1tquI8qrB/f8aG956yb47v+ycmuUPbTj+ZetB4XurYvPFoO6Qq4F/IhNGmljTmXVLnpZunGrA+1WJ9LDUtw8+lzkujEQOm9Wq9+mFLqpHwpalj6aysJK6MGmHfljYyWHv/0KzuKTNtfvVNnaOymONp7jGnLPupqfPoW1PX/O9r2+uqtpyjBMuDUhXv/05yh0XHnLL8N089sOk+QD28Lf/LdnOdLirmpOvId1PJS92e8yeljpNj2s+3b+vjtQuK2b32H526Nozu9X4slTz4rbQEjbHtetd0jvtJy95+7v6Nf89Yw2iq0fRpqeviP07bl+Ydd8Ly3KAt99My1mszNdLM+1KN9BMf4HXKuW1jLlNZdyPm19aIOamus4iYo/PT6Fi+b+pBwpey+9fmucScEvf2WUlKHi3z1clL7f2N1B8WEfMWqXudE9oyHpJ6uDI6l45GMLhO6kH/c9KZ4mLK/rQUMdvP905n5K/23t+l7qtGD7YPGF+Hax3384o755jTkhU3HbPz81p10Yd19s2fStUxPpUpo/SOl3PC77ttEd2OPddNPZQ8ZlI5x7ZZ957idpmeuDQaRfyF2XVqxo2Uczzu87pl30DM26bqZN9NjRZyeOrc8MhU/fy03VynG467VsxU28zTUw/Lu/eJB6WmnXpdVo9ws3/qQWx3Gz0wdV82Gin9BVlJJljV4SkTjsex97r3TKP60l1SHbFOSJ3bH9f57mhavJ2ZMKrshJija8VzUonon8nK1JbdpK17px7KvSsT6tFjMY/pxPx2K+P3dZe7/X+/1LE1SOf+d8p+/8C2/p+flekk35mVEaae3H7/1awxeks2Vh8dTzY6Oetfm6+R6iD3ldR1bjSi/R3aNnlc528/NW0axyllHZ2PdrSyfHK0bGuU8ahUm+8dO9+ftK+Nl3PSsn/feFna/9+ZSohYqz422gful0pieXVWt20dlkqEeF6mtBd2yn9YakSY96Q6A1+Wqts/LqvbxX60/X5nOqPgdcrZXYYHtX3nRalRtR6TmiLxOy1ut63wV1OJSz8xVr6npK4Tn0ty17EyXz81ssc3k7x7Qllunur0ssuIyuPH09j7927L9yupe9G3jMqaaq98Yyrx6LBZ46aSCV/V4j4tu14vrpFKcHp/dr1+jqblu15b1n9MdQp9wtjy7pdq37s8NS3fxM6dnbjjdcc7p5Imd6auz+O/P66ti51J7r7GvjSafu/DqWclo5Gqbpqqg7yhu/ypZLEnZ8r0sFlpKx5NWXhhktMnHBc/nDoP/klbF1MT/ecdM6vPeQem2sZen+R14/tFVndK+puxeAelRk36o0wYZTIrMzscmkpK2plqZz9kwrJdff1cZz9YN+ZGX6nkvp1ZOWZHCY3jCVE/lEoE3mWkey+vjb5S59FzU210dxw75k9ox+SVqZEyD23H9Ivae4/c6vJ77cF9ZasLsKyvdpD9V+pm8W6pB3/PTlVEPpq6wbmk/f4Hsrrh/Saph7AXp9NjeDvHXKaybueYy1TWRS1/5zOPTFUQP5hKfjovVdG9U+qm+WOpho5fTt3QfjcThrefEPPiVO+ti1M3jB9Jcqf2+2u1z7wrKw0wu4wy1T7bvfD/XKox84OpHg47UpWdL7Ry3mbC99frNXbPVM+Av01VFK/X+V23ce9JnfcnVQxv342d6mnzpVTlYFTZu0OqwnlBi3tcKqHtMamK+uPXWKf7pRKdvp1qIBhVxkY9FO7Zfj4q9eDgXm1fmfiAsRN3vJz/nLrhumOq4eKytq3u2rb/l7N6CsZJPXAXEfPAJK9sy/rVVBLgPVIVrZe3bTRqSLlWqnJ2g/GYE7bTz6V68Hw7dcP5svb+/qlGskkJUc9J7dvvTvUS645A84RUT8gTszItymOzukfleOVz3xnKuen9aZ2Y30j1kLtj6iHLO9t2O6it+9NSjQrdafwOSz1MeF37+cGpRvSnpBpAR39vn6xUmk9sv3vshGNxnz0U82dazJ9ONeCNeu69o62PUW/PUUVjzR5I6+z7/9S205+kzrNvTz04PSF17r4s6wyjvDfHzOTz8z9mdXLSo1K9Wb7Vfrez7UuzJJk9OnU8fTx1zO1sP48ai0eNsH+ZjY2EtOlzVOZ/PA0WEXPCsnev+f8vdc2/sC3ni9o6PivV0HlmWxfPXmc7zSXmhOXvnp8/k9VTI3wglSS+0XW66JhrXUcOHlvew1PXk88neX8n/mBOMc8aK/d9Uvc5H8jqaUB+OCujr+ySEDW2399ubNm7I2SM3ntc6j7ylNH32r/XbGV78oTYC4k79jd+rq3Li9v6e9OEz9yssy5+Ouv3FN+2MZeprBuMeWmLueaw8guM2T3uR6MpvDR1Ht2d6/3cY06I+9msPHy5capDwKXZ+L3+ImKOX+8/mrqO3ij1kGaUaLTLFJs9iPmI1GgaL0tyfuf98fvdU1IPdmadqn3ucZchZmari446yhyc6gD26Cmxdqct4n/PEGt8FNvDxn5eK3HpKRl7aLmb5XzSWuXcQMzbpepvO1N1gA+n7tGmTVE/97jrxLzOlHJcMzX999cy1tlp/Jht++ilqaSk7vRYL0p1znlbVkbJWfPBalYnGL0qdd/dnWbxtNT9+Q+O/Z2/ap+f9MB6POaHspKg88K2jG/L5FGqfzSTpwNcL+b/tHW8biLYGsf9Zalr3H3Gfvfjqan9Lk61HXwvK+0HU+8jMnt99K2ZXB+ddH4+LZW089GsjHD4gdRD9f1S7UzntXX08qw92vloHR2YupZ/OHWOOisrIwrvMrXdJss5adlvNPbd26baqX8969edRvcmv5E6j/x1KkH4+Lb+L0wncWVKWQ9IHctnpdo1DkyN5vPmTE5cum9qFMxVSaPd9Zp60PyhVOLQgZ3f3SjVTnR5K193yrzuKF+DVBv9Zak2uu60l4/LSpvukanEjStTiV+jEZEOTtX3vpVOosWU4+mpqbb/96TO57dMJdDtbOtlNF3eTdpyX5DpU2Lu2/n7T049f3hcql3t2qn7kivb78YTog7pbOdJ2+keqf37G61s3c5do/WzXyqZdGcq4WaXBMixch6SOlYe0H6+S2rku09k8jOCW6f2y6n35ak25UNT54qHt/eOS50/3pyVxLIXpiXLTIhxQla3FT8xdTwdkBrl7R86v+s+x3l7qt1nlwSgBcU8ZOzng1PX9X9q2+A9mdzJttsp6TfHfrf/+L7RKe9VSV7a+Vtnpu5zn5TVCWYzJRRtMOZM15LOZ/45dU4dLdcoQeoNmZJMO2u5vbzGX6lz7GfbMddtU+8ey9dPtQdenpWp5G+Raid781Yvg9ce3F+2ugDL+ErdMHy+HWRHZ+XG46BUw8F3Ur2anp6q6Jyfegj/wNQUPO9MZwSF7R5zmcq6nWMuU1kXtfyd+CelLphPSXJke++uqZu7f20/3zP1gPOyVMV04lRenZinpCq1V08jlsqg/2SqJ8wdxz7/0CQ/NcP56iGpi/3TM5ackEqIGg1JO21ZJz3YOy3VUPCerDQ0vz6rp9m4fepB+7czNqR65zM/29bZqDHlXu3zL0lLlmll+1z7+eWpBvydWZkq7dnrlPXIVGPVeS3Of6cae26eGvnh0+ncLI19d1pv0Unl/HiL/cBU48PrO+X85qTtv+iYnffumnp4/ezUdCSfacv+rFQvtd/PhJ5NWam4jG+ne6Qq4b+RarR8a+p4eGP7/eih86WpSk+38eRX2v7yplTPoNe0/Wlnat/f0Zb1g23ZfzQzPFhc1P40Y8x/Sx0PD0zyC63c56cq11ekDYU/Vta/SjVO/WqL/9Op0bmuSPLKCZ8fTY91/zWWf0/EfHDqIeUVbfuPpokZjQi1f+q8+M/pNBrvxr7/iVQy6wNSjVHntL/51dRx8dTx43RZYq5xfv6B8b/Z+bvPTD082pnWiDP+uc7n75M6xp6WSvI7KNVof2GqkXPU2/VB7XPvy5RpOGZY/g2do7KA42kRMSesh0nX/LtlZbj7w1PX639JNfa/Pe0BxRrbfi4xJyz/pPPzhWkJB6kHx1/Z4DrdUzHXuo50G9Kvn2pE/stRzNTDsXnEfHvqmDw61aC8T+phw87USBX7jS3XaDqqb2T6lIijZX9U+/l+qfPG76ca3EcN+qMpEF7SuQbt0qszu16b5x13/CHmN1PTlD0rK1PDPHXCch6TOvc/bsLvtm3MZSrrksY8Jbse9xcl+eP2++eljuGNXO/nEnPGuF9N8vr2+6NTDw43Un9YRMxp1/uvpO4tj0w9LBmdS3d5aLPEMe/RPv/oVCeAK1P3vn+Rut8djYh0cOre7H1poxDuibjLEDMT7k+zfl3097IyBdHEEZnH4p2WObRFTPh7z0vdB3wmNaLLjcfirZm4NIdyrjt934wxT0jV0b6S5LfHvj9thJy5x50lZvvcqW19fz3rT195Yuoe9JcyefSkX0/V79+aTgevGdbrW1Lthw8Z2+7PTrXn3SZ1T3jNVDvGs7P+iBvdmDcbK+N40tbEpIVNxpz1gfjEdTr+/VTnweek6iafzNqJULtTH5040s5YzO+0mKPkp/8v1YZzVirR5lZZqad8MlNG0c/KPe9hqfv7v0vVYUadTj+QNipe6hx4SaZ0ItqNcq5ZF8/K6LOz1J0uSvKa9vtnpBJWd6bOJ5cmee5Y2e6aNm1c570fTh17D+uun9Qonm/OSkL1Lu0FqcSnVfWR9v4hWT0Sf/c8O5rO8GupRKdDx2KO13MePdofU+fmy1PnllE954hUQtR3Up2L3pw630xsg8/qa95bU+eLf07dP1yeGlH3F7KSEPW6tu3fm2pDmNhu3ok52qfOT91zXdrKfZ9UkvqrMyHZZMLyj98/fyd13N8mdT3+ajrPA7I6IeptmdLZJSsdIw9r6+vDqSTIfdr2HHWa/njaNX9KnH1TbbUv7Lz3ztQ5at/U8XdGahTxr7f3D2uf+4HUsfbE7Hqe2TfVttBtK74qdX7aN3Ue+XrqHNwdmenQ1PX7zOya4LyImAen2nFe0dk/z0vy26lpX9+ZunbcLxPua1JtPQ/OOh0+xs6/b0odO6Pkpe7o17sk2C06Zibf740S7Z6UOud199Enpo6pt2SNtmIvr428Us+Q3tD2rRPW+eytU88A/z0tOT/VLvGNTJnm3qt/ry0vwDK+Oifw3+y8Nxq68kGpG+Xj20XkhHbx/HLqxuo/28VxfA7WbRtzmcq6nWMuU1kXtfydWI9OVXC6w6z/Xeqi2u0Vc71UA9dJnfemNUA9P3VBPjqrG9Efkro5/bPUDfek+binxfz+VCXkV7O6587Jqd4+x6Z6f5zdlvt205a58937piquv9R+Pi7VUHpVqoLY7dFzh9RQv9MeDh2dqoDuTFV2T03diBw29pl/aOv7+qkphB6W6hV04vg6mLJ+7peqLN4rVVH+l1SvmjNTlb9nZfYGqKNbnD/M6kaLo9vy/1dWeuTdu/3tu46Xcw/EvHU689hnpfHpkFTvvtemjoNvt/12l6mcpmynh6YqyK/ISqP1NVMPIr6WlYfj+2fl4cutsnqf/l+pRouXtL9/ZcYaldt+9eHUcTlTQtSC9qdZY76vrcfrpx7AvCFVyXtE53PdB9CHtWX7biopazSFx4vb3+omZe2fOqedl7GkyFHcLYj5wlTl/rKsjBB1aKqh7H/Gt+duHk/d7XTd1H57Qjrn5mz8eNqbYk47P9+t/a1jxj5/7dRIge8Yj9X9O6nr18fTOf7b756eakT7QFYSrx6eTg+5RZ/3MufjaVExJyz/tGv+ORmbAjB1PjxsfNkXFTOzn58vSvIn7b37p87Ps6zTPR1z6nVkbP3tt6CYR6QaMPfJyjR7B6R6N+9MJfSOjyp167Z/7czknu3dcj44NU3AH6Suyeen7pN+NNUT+xdbeXcZnXNPxe3EPyp1PvrNrDxwuEHqPPSFTJgKOck1xFz+si5ZzB/J5OP+4iRntPcOT01XPsu1ee4xZ4h7UVrSZnv/vpntXn8RMde73n+hbbeDs9LwPHW6pCWMeUpqlIRDUg/W3516kHlRWueZrIyA+NUkj5nhuJ973GWImTnWRcfizrMtovuw+c9TSY6/m3rAuTPV/jIpcenqBIU9Uc5NxHxb6mH8z09a5kXGnSHmCZ1z1ktTo+A+pvP9aefSR6U6Cdxy7P1uXer5qfro+zLbiLqPT9033S0rdZbRv4enEhnOTj0gfleLPbWtcI2Y3REKXpyVpK3vW6+Mi4q51jqd8tkdqXv+i9JGRZ3wmbnXR1vMV6ZGaLluVh+73Zg3bu8dmU6i5qT9qS3L36RGyr9JVqaX+uW2ns/KytR2D0od97+xyXJeMWHZp40KN2s95+Ikr23vXTdVH35IkpPHyrVfKlHoD8b+zimp43I0yu2o3XyQlSSc/8nKKD/jySvdcp7Wef+fM320nb9MtS/tzISkiFbebtxRQtQBbXt9LbXfjo8QdUHqPHOPJHdeZ/s/J3VNOqmzTh+X2m/PSbWXPyp1bXhnqg54zHic9r3u+edPU+1DJ6Tu0+7RtvnXUolu18rKiM/PzJTpZsfW7ympOt5olKobp67B56QzVWdWzgtrjtyTeg7ykdS5+NiMJXa2fe0zbV1M6zS9fyoB77LUiFl/nTqP3Cl1bI2miLw0yVs637tOKknq45lynsoabcXtdx9MtWP+Vmq/vllq1LRLM5bst6iYbR2+IHVMvyErs5KM7pWOT40Q9eXUcTQ10Tu7Tkk4nng1OjddL3UMfzmrR3P6k7Zcv5gpI6FOKP/cYqY6YR049t4RqXvxPx17/3+njulTZymnl9d6r9R14SGpBNyPZp1E+HaMfyMr7dd3Shuh1mt7vLa8AMv4SlWIRkOkPz+rH0q8tt0AXGfCd26STJ2re9vGXKaybueYy1TWRS1/57OvTPLfnZ/Hh42/U+oCe/jY96b2zkpVmr7Q+blbWXxFqgJ6rbXKNSHmzVMV+fu05bpRqvHqwqyMPnH7VA+hbyR5yDrxrtXW3++0n49PNWK+KtUocmmqQeEOne8csU7MI1O9TXe2sv7OhM/8YKqSv8vvJq3XVCPrL6XToJPkj1OVxYNSFd6XpYb43pm6aZo47PVY3Du1z38lye9OKedFSV41SzkXGPOYrPRoe2zn/Xe37bdfahrJB3X2hZ/cwHb6fJIXdf9+Vj90fkN774C04Ufbz+OVuoekKqJXZPV86qOYx6WGpv5iKsFhloSoRexPG4nZHa56/zVi3rct+4WphvcT2/s3bfvqzra9fj/1oGeWKbf2RMw7tPePbXGuSvUm+q1Uo87F6fTAy9rD8c+y71886XfTYi9LzPb+tPPzBe3vfSwrDwpGjRWnpZJ2pzZWpx7cnDtlPzwzdd77cMZ6zaxRzrmeo7KY42nuMce+O+s1f/y+Yq39f24xM/v5+etpjeXt/e7ISGut0z0dc+p1ZBPLPnPM9pk7tphPHu0rqUbbr6dGojpg7PMnZI3r6Fg5H9jeOyTVCP6u1Pn4Q6mHoZ/LymhP601jtqi4o+P+y2k9frPSk/iGqaTyL6TzIHSG/XTbxlymsi5hzPOz9vnp9VO+v0dibiDu11L3UxOn2tzDMde73v9u+/motOnGp72WNOYrOu//eOrcf0HqQfZDUw/4LskM97uLiLsMMbOAumj7/tzbItpnXppqJ7hj+3k0fc0V2TUZ6KTUvfbEaZIWVc7djHm71APqb2RKnW8RcTcQ84TO52/c+f569+Rfm/bZtCSl1Dlw3WTF9tnfT12HxpPdRyNc3CqVDPHpVJLDmomV68Ts1j2ek6pnvyGztXPMPeaM63R8toAbpOpUuyQxdz4z1/po+90bk5wzJeYZqWP2fVkZ0WmXEXbG4h2R6pgymmqu22b8rKycw0ZT290jM3Sg3EA5x0ft32wdb9q9SXe5RiPzHJLkJ9r/r5G6P3vjeJlTHeP+te13V2TKaC6tnH+e1SNZPTQTEsja3/vzVCe6XTrlrRF3NC3kAalOxOMJUUelRve7Iq2zzujzE+LuaOv1be3/3XX08NS18JXt51mTSw5NdbA8PWPt6m1f+0DqOnNoW69/lUq4m7W9bDQC0ej++aaphKjPZMr1c1rs1MiP56YdK+29H2nr77nt/3dpsc/PlOTPtv/9Zuqcc8lYvKPa8n0rlWR87VRS/p+mrh1rjgyU6uizS1tx+90N2rb7dipZ74LUfd96IwvONWYqOfxVWbkfH0/+7HbwXZUQNeM+1e0gN2oPPCJ1b39hVs5dB7X96SsZewa16JipkeV2ptobnp1KZBzto49v6/LUse8YFcprrq/UdeF+qYTGf82E2V86+/u923ng9nuyjF57z2vLC7Csr9QN3MvaSf/57b3npx5S3bn9vE8mDJOe6Tck2zbmMpV1O8dcprIuavnb7x+TqnydnHqA2R02/tBUr6w/S5v6ZpZX6sbx8nSmWcnKxfphqZvIDWUrp0bAGA3pfGaqMvPJ1FQCd23r5lfaZ4+eId6+qYrTHVK9js5tca+Ruvk4s8X823RGw5phnzoq1dPuO2m9RlLJAd1t86GsMSLKWLwHtnL8S2fbH5HqqXH1HOdt+306lXCz7jDirZxvSVWQNl3ORcVs37lrqnfL51Mjn904VRl5VzoPBFK9OH50xphHpiqv303yR51jaLQ+r9nW7yVJ3j723UkPXW6Wamz4nVSyX7fRYtAp34fb35y11+Rc96cNxnznhO9OapS6WWqqzjsk+Y/UsTRqgD86NZXjv6eSI96b5PFrrcstinlUqpHrg6kKxx8mefB6MZfteFpEzPadtc7Pd0klmj1v7DuPTzVS3HyNuM9INTD9eOe90bXkuakGjQuTPGCL1+ncjqdFxez8fhHX/LnGzMbOz+8c/X6ddbrVMde9jiww5lGpkbrGG98/kSkJUTOWc9TDefSgYHSte0Aq8f2i9vt/mxZnT8Rty//nqQeWf9BZp6NzyQ1T1+YLkvzyBo77bRlzmcq6pDHXOu6/kQnn/T0Vc5nKmtmv95Ouo2udS5ct5ngv9runRmT4SmqKnLenjVKxVsxFxV2imIuoi869LSI1Uutbs3L9/MXU/cT9Uw+2r0gl/nSTgdYbJWER5dytmElumxp16Y/2VNwNxHx7dp0yb7178iem7vXvP/6d1AgXf5bOSCnrxUydO96d5F+mfT7tQW4qMf7gtcq3gZj3av/+ctao1y0y5gbW6euS/GynHCel6pJPWCPmXOuj7Xu/lGozus+EmM9KnZ8+m+oENnEK+LF4h7Z98/90993O/9+Xun9+d1aPALnmtFYzlvNzrZxrTg3YvjNrPWem633bhqdn9YhLv5hqe3jJ2GfvnEoAPCXVVnFm6vielrg1Slwa7S+jKeH+MNUedctU567zktyj8921rqOzJEQd2PnsaMq8N64Rc/9UW/H7p2z7P0tdu2adPWCQSgramXrIfr/2fnc0oHulOqmc1n6+dtavN+9ybW7bfpSsdtO2P30hyYM2cCw9JZW8c6NUe9+vtnV2dlba0a+fSgD8i6yRxNOW+39SSU9njv3u+m3f/WKL/7l0EgzXKePUtuLOfn9y6jnKE2fZnxYU881tX/lmJrdnjxKivpTqaDpr/X6UkNkd+Wt0HjkyNerUzqwkSB6YNkXqHo55cCpx/t2p8+WnU+eTm7X997Op53I7OvvtaN3MtC68vGZ5pc7rayZEtc+9IpUIveZUx179fbm/1vYAACAASURBVG15AZb5ldXJFv+YurF5UPvdmpU4MZe7rNs55jKVdYHLf7NUb6grUje1o95CB6Ruri/IlOFZ14h5bKoC+76sHo59/1Tl9j+ygQetne/fI1Vx/bskp3fePzB1g/D0sc+vl8AwmibrYakbiOM7v3te+1tXj1CwgXIenap0Xj0Sw1hZ351KGthvlm2XGnXlzW1b/FMqueD0VK++4zqfu35WKqGz9Mg7ap7lXFTMTtzHpxp5Ppvk11IV0ddP+fwsD0iPzsoUQ92evqPGmGuleheuOcz/WMzrpYZSn1QhPTnV+HLfrdyfFhWzffd2qSSYz2Z1Q/uhqcrlulNubXHMAzLWKLaBmEtxPC3wGF3v/Py0zntHphI3/3admDdLNUSMX0v2S/UcfUo22BtrQet0mY7RRVzzFxFz1vPzmlO77EUxN3IdWUTMIzK58f0TqYc4T8iMvYU7MbsN+o+ashy/lurpe/+tjJs67iet01Gj6felGjwfuYFybtuYy1TWHsTczPlp7jGXqayZ/Xq/f+Z/D7U3xBytzyeM/W6QGkX68Kyelm/W5NK5xl2ymPOui861LSIrD0+um7ovHz1c35EaPeU9Ld4H05LWZ4w79zaT3Y2Z1aMuTUpimHvcRSx/++7NUm0G789YgloqyeKLSe69wZijKVN2ScpLjQr17qwzouhuxHxPOtN4bVXMDazTUzvv/0mS/ztDzHnXR0cx3zsh5q+3mC9JdX6Y+BB0LN7+qXvn/8rYlGpt2T+U5O9TySYvmHb8LLqc7btzrY+1eG9q8R7S3huNWvXmVDLoaamp1P6m/f5fkrx1nbjdkawe0FnmS1PJIhelEnueu8Ftv1ZC1AWpTiqjEaKuk0qI2pnpUxDuSPKaVAeXUyasz1ekEoPWnMJuLOYN2jq8MqtHoh61Nd+wLfsvjn1vt67NWUksuVn7mw/fQFlvneqI/Zkk/5m67j0ydc27Q/tbdx9fZ1NifX9qROVp7bkHp9rc75waNXLNkYsmxF+rrfhHklx7I+tz3jHb9rnFtHjtMz+Qatv7uw0s981TiWPnZ3Xy0ujaeudUvf6bSX5tq2J2Yhze9p2/bMfkxal7qfe0mOvOxOHltdlX1kmIasfqu1LPBjfUJuzVn9eWF2DZX6nhLX8jlWSx5o2hmP0q63aOuUxlXeDyn5KqwP5HqqJ4amokh29lxmmiJsQ8tZXz46keRfdIVeQuyxrDUM8Q95Cs7pVySKph6oIkP7abMZ+eaow5vhPz95M8KRuczq8Ts1vJfU6qYndsagSN72TjD50OT/VS+Giqt8yZLfbvTfjszL0S5l3ORcUc7X/tGHhdqjHjvPY3NrM/dcv6mM77o8aD7lDgsz6AOCKdCmSqQfrBqR5qp/V5O7VtdPtUotG5qUpk93hds8fYXhRzd5NWl2U7LeoYnen83I6Jh3R+XquX891TjY7/luqZe5ckv5JqgHtQ53N9PJ4WtZ0Wcc1fRMxFnJ/F3LXxfdRz9gc2uY8+svP+qFH74NRw+hOn3tyTcddYp6MElkM2ufzbKuYylbUHMfeqc8kylTVLcm3eAzF3WZ/t/7tzDz33uEsUc+510RZ3bm0RnePlpakOdNfs/O61qc5Un0/y/VtZzo3GHN9G622zRcRd0PKPRlj599SIJg9KtSN8O8mzdiPe8e27701yp7Hj4Y9TyQI36GPMza7TrJ0ksIj66Cjmv7Z9686pUVwuTU09/4Op88spM8Y7PlXv+vskd+m8f2x775apKQc/lw2MIjHvcna289yu9xlLXGrvPS11jr4qlczwvlS95/AkH0uNArTPWvGzesTaUUfk41KzNDwpnWTFDW77aXWyT6emXewmXB6RdaZeTSUQXtq2c3fUu2unRm3+q2wgGap996isJJk9cex3d0xL3Jp1G82w7Ud1vGtspJztO3dIjfr45Kx0ytqRmkLq7Gwg+bd9d2KCUSqx8OeTXG+jZRzbnuNtxT/T1sdpe0PMNZb/yNQ177Yb2d/bd2+aSl66ILuOePiYdnyekSnTGO6pmBP+xt1TybsXpxIOd47/LS+vRb2y65R5N2jvXyOVBHtuNjjrjle/XltegD68Uln4L20n+OeLuXfGFdN2WsDy3zFVKfxi6oHm+9Op9Gz0Zrd956RUssFlqYbcz6TTeySbzFxOVXp+PlXp33BjUSfOLdsyvyrVWPKEVE+fn9nk8h+Z6o20M9UL653tBuaXO5/Z8DpIjRD2922d7swGewyuU84LWzk/muTZu1vORcQci/+A1FDVqyrRm1j+XUah2GT5jkhVmi5NVc4u2ezxuoj9aUExR4lG/y+VuLfhXp3LGnPCOt1rj6c9cIxOPD+Px8xsPd5+OHV9uiTVQPjVbGBKpy1ap3vtMdq+s4hr/iJiLuL8LGbn2plq2H3onGI+ovP+jvbvm1JT0qw7Hcui4661TkfrdTeP0W0Zc5nK2oeYG902i4y5TGXNktxDLTDm1JH25r2dtkPMTux51kXn3hbRynZOkqPazzdITeV276wzNdYeLuei2mGWqax3TCXZfDPVvvPRJP97E+W8d6r97fOph2UvT92TX5zkh3Zz2y9FzI2s0+56zWwJN4uoj/5wqvPoJamkna8l+aX2uyekHoAev4F490rVvb+QmtLr5alkkI+137+knRc2lLA973K27831ep/ViUujEaIOTSWu3Tx1b3ZQqlPp1zJjgkRWJ1qdNuUzm63jdutkD1vjO2sl7N2nHU/npkaDekaSv2nHwIY7vEwo42+nznsPT43w/bHMMBvBBrf91clpu7NOO3H2S41g9IHUvdTubJ9RgtE3UnXOH0ryR23/3+3kmk7s8bbi5+1NMceW/6+S/Fjb7udmpS6+OwlRH0xnWtG2L7w6NSXqhvenRcSctGxJTkjywmxwtHMvr82+smtC1C1S96HfyibvlbyW/7XlBejLK6un49rUBVnM5Srrdo65TGVd8PIfleQmWd2LcDMVkWunKiK3TydjeTMx2/dvmpqv+tNJfmGzcVMZ/99MTfPztWwiuWos7lGpXpg7U0lsh+xuWbN66q47t33gw7t7gz+hnK9LNRb92tjvdnedLiJmdx3sn92s2E+Ie2RWej49eU4xD081lD8/nWHzN3k8zW1/WnDMQZITUzfsMw9z3YeYnXW6DMfT3GO27871/Ny+e3iq4ne3JLeaU8xFrdO9/hht313ENX8RMRdxfhazYv7C2O92dx/txuxOe3BMqtH49L0l7pJup7025jKVVcxtve2X4h5qQTG3+7afa8wsri4617aIJLdpsf40yTOTvD41ncxN9qZyLirmEpb1GqmEtWOSXLfz/u4e97dNTV3+X6mp/d6Y5LhNlnEpYi5qnbbvLqI+eu1Uot0padMvpdpOz0tyxm7EOz419eqnUx1T35hKDtknyT8k+etscGrsRZSzfX/e5+du4tKjx353aio56IIkt9lEOZ+42XJOibvpOlkqYeP9qcSQz6c60N5qTmX8Xqru9eLU6G2j6cg2kxC1iHuT0dSCH0olRI5GG9vdhKiXphKLLk6NSryhUabWiL2ItuK5xkyNEPXi1LXu4tRok6MRcHd3u980NV3rzrZ9Pt5i7/Z+uoiYU/5Od8S6TT3P8vLayCsrU+Z9ru3n357XuchruV9bXoA+vVIVh9HoM88Uc++MK6btNO/ln/B35j7v7Dxipoa9PTGrh9XebILVjZKcnNVDC2/6Jjc1r/g7kjxts+tg/HtZ6TmzWz08x2IdnZUeyaPeSZtdp3OPOeXvzGM7HZXqOfTUeZdvb92fFhxzkOSIOa+/pYjZ4i7F8bSgmHM/P0/5O/M4nhax/EtxjE75O3tlzEWcn8XMuxYZs51b75Lk1ZvZFxYRd8m2014fc5nKKua23vbLcg+1iJjbfdsvSx1vrm0RqYSN/06NXvSJzKkH+bzLuaiYy1bWCX9ns3WH/VNT+R2U9gB7DmVaipiLWqdTYs5t26eSD16WGlH/L3e33Knkp4OTHNZ+vnaqY83/ZIMjOC2ynO07cz0/Z/Uoi/fpvP+/UiNj3WI348697rSIuG27H9leuzUN9pQyntnW6cM778883eKe2PYt5r1SnfLOzEoi1G63lSe5ZpI7JXlYdmN62Q3+rb2uvSw1NfAtk9wzKyNCberZQyrJ7OdTo1W+KnNIgF1ETC+vvenV7pUenEpqvvVWl8dr73iNHggzJ4PB4JqpoTXfOBwOPyXm3hlXTNtpnjGX1WAwGAznfBEYDAb7DIfDnXOKdfBwOLxsHrEmxJ7bsg8GgyOT/E6Sn05VSn9nb4y5KIvcTvO0iHIuyz66TDGX5Xha9DG6iG01Twtap0t1jC6DZVmnYq7E7N5HbeaeahFxl3Wd7q0xFxVXzL0/5qLiLijmUtxDLct9yaLiLkvMRZtHW8RgMLhOqhPdt4bD4UXzKdkuf2NubSaLjLmouIsqK9vTYDB4QWrUnWe3nze1fw0Gg1OTvCg1Ys79h8PhJ/a2cs77/DwYDI5O8uQkLxgOh9/rvL//cDj87ibiLs11dN4Gg8FRSX4vyU8leexwOPw/c4o7720/SHLDJOcPh8PhYDDYMRwOr5pX/O1unutzMBjsm2Q4z+2ziJiwtxgMBgemksa/tdVlYe8gGWoBlqWyuCwxFxVXTNtpnjFZnL09KSC5ugH+z5JcOBwOH7a3xlykZdhOyXIkBG13y3I8LdsxOm+LWn7H6PwtyzoVc/776LKUdTvHXFRcMff+mIuKO++Yy3IPtUz3JYuKuywxARZhXm29g8HgsUnePxwOPzeHYk2KP69yLuKcv283IWpOMZfmOjpP7b7kt5P8TJJHDIfDP51j7L26czMA7G0kQwHAHAwGg2sMh8NL9vaYsAyW5Xja7sfodl9+ANgOluUeyn0JwPY0j+SQPZFcs7cn8DBfbdStlyQ5fbjNZ6cAgK0kGQoA5kiPXJifZTmetvsxut2XHwC2g2W5h3JfAgDsDQamngOALbfPVhdgswaDwQMHg8HvDgaDDw0Gg0sGg8FwMBi8fqvLBcD2tIiGd435bFfLcjxt92N0uy8/AGwHy3IP5b4EANgbSIQCgK2371YXYA6em+SHknw7yflJbrm1xQEAAAAAAAAAALbC0o8MleRpSW6e5BpJnrjFZQEAAAAAAAAAALbI0o8MNRwO/2H0/8FgsJVFAQAAAAAAAAAAtlAfRoYCAAAAAAAAAACQDAUAAAAAAAAAAPTD0k+TNw8nn3zycKvLAAAAAAAAAADL6KyzzhpsdRl6SB7DbjrnnHPyhCc8IS9+8Ytz0kknbXVx5s2xNgMjQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC/tudQE2azAY3C/J/dqPR7V/TxoMBme2/180HA6fsccLBgAAAAAAAAAA7FFLnwyV5DZJHjH23k3bK0m+mEQyFAAAAAAAAAAA9NzST5M3HA5fMBwOB2u8brzVZQQAAAAAAAAAABZv6ZOhAAAAAAAAAAAAEslQAAAAAAAAAABAT0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAADoBclQAAAAAAAAAABAL0iGAgAAAAAAAAAAekEyFAAAAAAAAAAA0AuSoQAAAAAAAAAAgF6QDAUAAAAAAAAAAPSCZCgAAAAAAAAAAKAXJEMBAAAAAAAAAAC9IBkKAAAAAAAAAGCOBoPBYYPB4LcHg8EXB4PB5YPB4MODweD2Uz776sFgMBwMBs/Y0+WEPpIMBQAAAAAAAAAwX3+c5NQkj0jyg0nek+S9g8HgBt0PDQaDBya5fZL/3uMlhJ6SDAUAAAAAAAAAMCeDweCgJA9I8qzhcHjWcDj87HA4fEGSzyZ5Yudz35/klUkemuTKrSgr9NG+W10AAAAAAAAAAIAe2TfJjiRXjL1/eZI7J8lgMNg3yRuTvGg4HJ49GAz2bAn3sKuuuiof+chHcu655+bYY4/NiSeemB07dmx1segpyVAAAAAAAAAAAHMyHA6/NRgM/m+S5w4Gg08muTDJQ5KclBodKklemOTrw+HwD7aomHvMVVddlWc+85k5++yzc8UVV+TAAw/Mcccdl9NPP33DCVFXXXVVvve97139Gv185ZVXXv3/L33pSwtaEpaFZCgAAAAAAAAAgPn6uSRnJDk/yVVJPpYaCeq2g8HgbklOS3KbLSvdHvSRj3wkZ599di6//PIkyeWXX56Pfexjuec977nQv3vggQcuND57L8lQwLZ01llnzT3mySefPPeYAAAAAAAAwPIZDoefS3K3wWBwSJJrDIfDCwaDwZuTfD7J3ZMcneSCzvR4O5K8dDAYPHU4HN5wSwq9IOeee26uuGJ8xsDF23///ff432TvIBkK2JYkLgEAAAAAAACLNhwOL01y6WAwODzJqUmemeSvk/zF2EffnRo56jV7toSLd+yxx+bAAw+8emSopEZtev7zn5+TTjpp1WevuuqqmabCm/Qa/e68887LGWeckUsuuWRPLyp7CclQAAAAAAAAAABzNBgMTk2yT5JPJzkmyW8mOSfJa4fD4ZVJvjr2+SuTXDgcDs/Z02VdtBNPPDHHHXdcPvWpT+U73/lODjjggBx//PE58cQTd/nsjh07smPHjk2N6nTOOefkjDPO2EyRWXKSoQAAAAAAAAAA5uuaSV6S5IZJLk7y1iTPaYlQ28qOHTty+umn5yMf+Ug++9nP5phjjsmJJ56YHTt2bHXR6CnJUAAAAAAAAAAAczQcDt+S5C0b+PyNF1earbdjx46cdNJJu0yLB4uwz1YXAAAAAAAAAAAAYB4kQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAAAAAEAvSIYCAAAAAAAAAAB6QTIUAAAAAAAAAADQC5KhAAAAAAAAAACAXpAMBQAAAAAAAAAA9IJkKAAAAAAAAAAAoBckQwEAAAAAAAAAAL0gGQoAAAAAAAAAAOgFyVAAAAAAAADw/7d3fyGeXncdxz9fE5rG1o3iHwyBkiimGoh4EyVJaUtFa1BsxdSopAbvFKJoK6GurYlEvWlEo/WqUqtU3EqgrSlacN1dGm10Sb1QCDZN2q2kRoKkNP2TTe3u8WJ+W4dhNzsbsjvmw+sFw8PvPOfMc34zt2/OAwBABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAdg6LPgAAEl9JREFUAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFQQQwEAAAAAAAAAABXEUAAAAAAAAAAAQAUxFAAAAAAAAAAAUEEMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBhVzHUzNw8M380Mw/MzNMzs2bmfWdZc8PM/M3MPDUzX56Zf52ZX5mZi55jzW0zc3Rmvjgzn5+ZIzPzY88x/9KZ+a2Z+cTMHJ+ZJ2fmr2bme3bzvQAAAAAAAAAAgB67PRnq7UluT/J9ST57tskz84YkH03y6iQfSPLHSV6S5PeTHDjDmnuSvDfJ5UneneR9Sa5Ncv/M3H6a+Zck+bskv5nk6ST3JjmY5CeSPDQzP7DL7wYAAAAAAAAAAC8KM/MNM/MHM/OZmXlmZj42M9dtu//ezUFH23/+aS/3fCFdvMt5v5rk8SSPJnlNksNnmjgz+7IVM51I8tq11kOb8XckOZTk5pn56bXWgW1rbkjy1iSPJblurfW5zfg7k3w8yT0z8+G11rFtj3pLkhuT3JfklrXWyc2a9yf5YJL3zMy1p8YBAAAAAAAAAKDAnyT53iS3ZavnuTXJwZm5Zq116pCjg0nevG3NVy7sFvfOrk6GWmsdXmt9cq21djH95iTfmuTAqRBq8zuOZ+uEqST5xR1rfmFz/Z1TIdRmzbFsnSp1SZKfPzU+M7NtzR3bg6e11oeSPJDkmmyFWwAAAAAAAAAA8KI3M5cm+ckkb1trHVlrPbrWuitbBxxt73GeXWv917afp/Ziv3tht6/JOxev21w/cpp7H03y5SQ3bF5zt5s1f7tjTpJ8Z5JXJHlkrfXpXa4BAAAAAAAAAKDYyZNb5+kcOnQoDz74YE6cOLHHO3rBXZzkoiTHd4w/k+RV2z6/amaenJlHZubdM/NtF2yHe+x8xFCv3Fwf2XljrfXVJJ/O1j/mO5JkZl6W5IokX1xrPXGa3/fJzfXq3TzjOdYAAAAAAAAAAFDqxIkTuffee5MkBw8ezN1335077rijKohaa30hyYNJ3j4zV8zMRTNza5Lrk1y+mfaRJD+X5AeTvDXJ9yc5tOPgolrnI4a6bHP9/Bnunxr/xuc5//muAQAAAAAAAACg1NGjR3Ps2LGvfX7mmWfy8MMP5+jRo3u3qfPjzUlOJnk8ybNJfjnJXyY5kSRrrQNrrb9ea/3bWuv+JDdl6+ChH92j/V5QF+/BM2dzXee47lzmn9Mzjhw5MmefBQAAAAAAAABwQegYnof9+/e/I8ld2XY40PHjx0/u37//zsOHD//2nm3sBbbWeizJazZvY9u31npiZt6frbe1nW7+f87M40m+60Luc6+cjxjq1KlMl53h/r4d8842/3SnQJ3rMwAAAAAAAAAAKHb48OG7k9y91/u4UNZaX0rypZn5piSvT3LH6ebNzLckuSLJExdwe3vmfLwm7xOb69U7b8zMxUmuSvLVJJ9KvvaP+WySl8/M5TvX5P+qtEd284znWAMAAAAAAAAAAC9qM/P6mblpZq6amR9KcjhbLc2fzszLZ+aembl+Zq6cmdcmuT/Jk0k+sIfbvmDORwx1aHP9kdPce3WSr0/ysbXWs7tcc9OOOUnyWJL/SHL1zFy1yzUAAAAAAAAAAPBid1mSdyX59yR/nuQfkvzwWut/kpxIcm2SD2XrEKE/y1Yodf1a6wt7s90La9Za57Zgqxg7nOQv1lq3nub+vmzFSvuS3LjWemgz/tJsxUnXJ/mZtdaBbWtuSPKPm3XXrbU+txm/MsnHk7wsyXevtY5tW/PrSX43yX1JbllrndyMvyHJB5M8nOTaU+MAAAAAAAAAAEC3XcVQM/PGJG/cfPz2bL1n8FNJHtiM/fda69d2zL8vyfEkB5I8leTHk7xyM/5Ta8eDZ+b3krwlyeObOS9JckuSb07yS2utd+2Yf0m24qobkjyU5O+TvCLJm5J8Jcnr1lr/vJs/AgAAAAAAAAAA8OK32xjqriR3PseUz6y1rtyx5sYkv5Gtk6BemuTRJO9J8odrrRNneM5tSW5Pck2Sk0n+Jck711ofPsP8S5O8LcnPZiuEejrJkSR3rrUePusXAwAAAAAAAAAAapzza/IAAAAAAAAAAAD+P/q6vd4AAAAAAAAAAADAC0EMBQAAAAAAAAAAVBBDAQAAAAAAAAAAFcRQAAAAAAAAAABABTEUAAAAAAAAAABQQQwFAAAAAAAAAABUEEMBAAAAAAAAAAAVxFAAAAAAAAAAAEAFMRQAAAAAAAAAAFBBDAUAAAAAAAAAAFT4Xxwp5q5l8WqNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import missingno as msno\n", - "%matplotlib inline\n", - "fig = matrix(data_imp[covariates].sample(1000), sparkline=True, figsize=(40, 10))\n", - "\n", - "missing = data.columns[data.isnull().any()]\n", - "fig = matrix(data_imp[missing].sample(1000), sparkline=True, labels=True, figsize=(40, 10))" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1., 2., nan, 4., 5., 6.])" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_tf.ethnic_background.unique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Write to disk" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/all/cvd_big/baseline_imputed\n" - ] - } - ], - "source": [ - "shared_project_path = os.path.join(shared_path, project_name)\n", - "pathlib.Path(shared_project_path).mkdir(parents=True, exist_ok=True)\n", - "write_path = os.path.join(shared_project_path, \"baseline_imputed\")\n", - "data_imp.to_feather(write_path+\".feather\")\n", - "data_imp.to_csv(write_path+\".csv\", index=False, na_rep='NA')\n", - "print(write_path)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plus 1 year " - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
myocardial_infarction_event_timestroke_event_timecancer_breast_event_timediabetes_event_timeatrial_fibrillation_event_timecopd_event_timedementia_event_timedeath_allcause_event_timedeath_cvd_event_timeSCORE_event_timeASCVD_event_timeQRISK3_event_timeMACE_event_time
010.33538710.33538710.33538710.33538710.33538710.33538710.33538710.62559910.62559910.62559910.33538710.33538710.335387
112.06570812.06570812.06570812.06570812.06570812.06570812.06570812.35592112.35592112.35592112.06570812.06570812.065708
211.33744011.33744011.33744011.33744011.33744011.33744011.33744011.62765211.62765211.6276527.9698847.96988411.337440
35.12251910.77891910.77891910.77891910.7789190.29295010.77891911.06913111.06913111.0691315.1225195.1225195.122519
413.76043813.76043813.7604384.72279313.7604384.84052013.76043814.05065014.05065014.05065013.76043813.76043813.760438
\n", - "
" - ], - "text/plain": [ - " myocardial_infarction_event_time stroke_event_time \\\n", - "0 10.335387 10.335387 \n", - "1 12.065708 12.065708 \n", - "2 11.337440 11.337440 \n", - "3 5.122519 10.778919 \n", - "4 13.760438 13.760438 \n", - "\n", - " cancer_breast_event_time diabetes_event_time \\\n", - "0 10.335387 10.335387 \n", - "1 12.065708 12.065708 \n", - "2 11.337440 11.337440 \n", - "3 10.778919 10.778919 \n", - "4 13.760438 4.722793 \n", - "\n", - " atrial_fibrillation_event_time copd_event_time dementia_event_time \\\n", - "0 10.335387 10.335387 10.335387 \n", - "1 12.065708 12.065708 12.065708 \n", - "2 11.337440 11.337440 11.337440 \n", - "3 10.778919 0.292950 10.778919 \n", - "4 13.760438 4.840520 13.760438 \n", - "\n", - " death_allcause_event_time death_cvd_event_time SCORE_event_time \\\n", - "0 10.625599 10.625599 10.625599 \n", - "1 12.355921 12.355921 12.355921 \n", - "2 11.627652 11.627652 11.627652 \n", - "3 11.069131 11.069131 11.069131 \n", - "4 14.050650 14.050650 14.050650 \n", - "\n", - " ASCVD_event_time QRISK3_event_time MACE_event_time \n", - "0 10.335387 10.335387 10.335387 \n", - "1 12.065708 12.065708 12.065708 \n", - "2 7.969884 7.969884 11.337440 \n", - "3 5.122519 5.122519 5.122519 \n", - "4 13.760438 13.760438 13.760438 " - ] - }, - "execution_count": 63, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data_imp_yearplus1 = data_imp.copy()\n", - "event_time_cols = [s for s in data.columns.to_list() if \"_event_time\" in s] \n", - "data_imp[event_time_cols].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
myocardial_infarction_event_timestroke_event_timecancer_breast_event_timediabetes_event_timeatrial_fibrillation_event_timecopd_event_timedementia_event_timedeath_allcause_event_timedeath_cvd_event_timeSCORE_event_timeASCVD_event_timeQRISK3_event_timeMACE_event_time
011.33538711.33538711.33538711.33538711.33538711.33538711.33538711.62559911.62559911.62559911.33538711.33538711.335387
113.06570813.06570813.06570813.06570813.06570813.06570813.06570813.35592113.35592113.35592113.06570813.06570813.065708
212.33744012.33744012.33744012.33744012.33744012.33744012.33744012.62765212.62765212.6276528.9698848.96988412.337440
36.12251911.77891911.77891911.77891911.7789191.29295011.77891912.06913112.06913112.0691316.1225196.1225196.122519
414.76043814.76043814.7604385.72279314.7604385.84052014.76043815.05065015.05065015.05065014.76043814.76043814.760438
\n", - "
" - ], - "text/plain": [ - " myocardial_infarction_event_time stroke_event_time \\\n", - "0 11.335387 11.335387 \n", - "1 13.065708 13.065708 \n", - "2 12.337440 12.337440 \n", - "3 6.122519 11.778919 \n", - "4 14.760438 14.760438 \n", - "\n", - " cancer_breast_event_time diabetes_event_time \\\n", - "0 11.335387 11.335387 \n", - "1 13.065708 13.065708 \n", - "2 12.337440 12.337440 \n", - "3 11.778919 11.778919 \n", - "4 14.760438 5.722793 \n", - "\n", - " atrial_fibrillation_event_time copd_event_time dementia_event_time \\\n", - "0 11.335387 11.335387 11.335387 \n", - "1 13.065708 13.065708 13.065708 \n", - "2 12.337440 12.337440 12.337440 \n", - "3 11.778919 1.292950 11.778919 \n", - "4 14.760438 5.840520 14.760438 \n", - "\n", - " death_allcause_event_time death_cvd_event_time SCORE_event_time \\\n", - "0 11.625599 11.625599 11.625599 \n", - "1 13.355921 13.355921 13.355921 \n", - "2 12.627652 12.627652 12.627652 \n", - "3 12.069131 12.069131 12.069131 \n", - "4 15.050650 15.050650 15.050650 \n", - "\n", - " ASCVD_event_time QRISK3_event_time MACE_event_time \n", - "0 11.335387 11.335387 11.335387 \n", - "1 13.065708 13.065708 13.065708 \n", - "2 8.969884 8.969884 12.337440 \n", - "3 6.122519 6.122519 6.122519 \n", - "4 14.760438 14.760438 14.760438 " - ] - }, - "execution_count": 64, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "for col in event_time_cols: data_imp_yearplus1[col] = data_imp_yearplus1[col]+1\n", - "data_imp_yearplus1[event_time_cols].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/all/cvd_big/baseline_imputed_years+1\n" - ] - } - ], - "source": [ - "shared_project_path = os.path.join(shared_path, project_name)\n", - "pathlib.Path(shared_project_path).mkdir(parents=True, exist_ok=True)\n", - "write_path = os.path.join(shared_project_path, \"baseline_imputed_years+1\")\n", - "data_imp_yearplus1.to_feather(write_path+\".feather\")\n", - "data_imp_yearplus1.to_csv(write_path+\".csv\", index=False, na_rep='NA')\n", - "print(write_path)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:python]", - "language": "python", - "name": "conda-env-python-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/ConvertFeather.ipynb b/neuralcvd/preprocessing/ukbb_tabular/ConvertFeather.ipynb deleted file mode 100644 index 1cbe990..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/ConvertFeather.ipynb +++ /dev/null @@ -1,177 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pathlib\n", - "import pandas as pd" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import pyarrow" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'0.17.1'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pyarrow.__version__" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "project_name = \"cvd_massive_excl_emb_ind\"\n", - "data_path = \"/data/analysis/ag-reils/steinfej\"\n", - "data_pre = f\"{data_path}/data/2_datasets_pre/{project_name}\"\n", - "data_post = f\"{data_path}/data/3_datasets_post/{project_name}\"\n", - "\n", - "project_label = \"paper1\"\n", - "project_path = f\"/data/analysis/ag-reils/ag-reils-shared/cardioRS/results/projects/results/projects/{project_label}\"\n", - "figures_path = f\"{project_path}/figures\"\n", - "data_results_path = f\"{project_path}/data\"\n", - "pathlib.Path(figures_path).mkdir(parents=True, exist_ok=True)\n", - "pathlib.Path(data_results_path).mkdir(parents=True, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1_dataset_characterization.pdf\t endpoint_list.yaml\n", - "2_observation_time.pdf\t\t feature_list.yaml\n", - "3_endpoints.pdf\t\t\t fh_list.yaml\n", - "4_endpoint_densities.pdf\t medication_list.yaml\n", - "5_endpoint_km_MACE.pdf\t\t phenotype_list.yaml\n", - "Figure1.pdf\t\t\t predictions_coxph.csv\n", - "Table1.html\t\t\t predictions_coxph_tall.csv\n", - "baseline.feather\t\t predictions_scores.csv\n", - "baseline_clinical.feather\t scores_list.yaml\n", - "baseline_clinical_description.feather table1_union.html\n", - "baseline_clinical_full.feather\t temp_basics.feather\n", - "baseline_description.feather\t temp_diagnoses.feather\n", - "baseline_description_v2.feather temp_diagnoses_codes.feather\n", - "baseline_imputed.feather\t temp_diagnoses_emb.feather\n", - "baseline_imputed_v2.feather\t temp_family_history.feather\n", - "baseline_imputed_years+1.feather temp_labs.feather\n", - "baseline_pgs.feather\t\t temp_measurements.feather\n", - "baseline_pgs_description.feather temp_medications.feather\n", - "death_list.yaml\t\t\t temp_questionnaire.feather\n" - ] - } - ], - "source": [ - "!ls {\"/data/analysis/ag-reils/steinfej/data/2_datasets_pre/cvd_massive_excl_emb_ind\"}" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "data_description = pd.read_feather(f\"{data_pre}/baseline_pgs_description.feather\")\n", - "data = pd.read_feather(f\"{data_pre}/baseline_pgs.feather\")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import pyarrow" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "pyarrow.feather.write_feather(df=data_description, dest=f\"{data_pre}/baseline_pgs_description_v2.feather\", version=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "pyarrow.feather.write_feather(df=data, dest=f\"{data_pre}/baseline_pgs_v2.feather\", version=1) # v1 necessary!" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "to_feather() got an unexpected keyword argument 'version'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdata_description\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_feather\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"{data_pre}/baseline_description_v2.feather\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mversion\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/miniconda3/envs/python/lib/python3.7/site-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 212\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 213\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnew_arg_name\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_arg_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 214\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 215\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 216\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: to_feather() got an unexpected keyword argument 'version'" - ] - } - ], - "source": [ - "data_description.to_feather(f\"{data_pre}/baseline_description_v2.feather\", version=2)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:python]", - "language": "python", - "name": "conda-env-python-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/neuralcvd/preprocessing/ukbb_tabular/pipeline_centres.py b/neuralcvd/preprocessing/ukbb_tabular/pipeline_centres.py deleted file mode 100644 index 8769e7f..0000000 --- a/neuralcvd/preprocessing/ukbb_tabular/pipeline_centres.py +++ /dev/null @@ -1,392 +0,0 @@ -import os -import yaml -import pickle -import pathlib -import pandas as pd -import numpy as np -import prefect as pf -import miceforest as mf -from prefect.engine.results import LocalResult -from prefect.engine.flow_runner import FlowRunner -from prefect.engine.serializers import PandasSerializer, JSONSerializer -from prefect.executors import DaskExecutor, LocalDaskExecutor -from sklearn.model_selection import KFold, train_test_split -from sklearn.preprocessing import StandardScaler -from collections import OrderedDict -import pickle -import joblib -from sklearn.preprocessing import OrdinalEncoder - -from copy import deepcopy - - -output_directory = '/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/3_datasets_post' -output_name = '210616_centres_dask' - -# pd_serializer = PandasSerializer(file_type='csv') -json_serializer = JSONSerializer() - - -class ApplyImputer(pf.Task): - """ - Takes a list of tuples, where the first pos is the eids_dict, the second is the kernel, the third is the split. - Then applies imputer and saves to file. - """ - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def _update_target(self, cv_partition, split): - """ - Update Target string at runtime. - :return: - """ - self.target = f"partition_{cv_partition}/{split}_baseline_imputed.csv" - - def run(self, partition_split_dict): - """ - split tuple is a tuple in the form of - ( (partition_idx, eids_dict, (data_merged, data_merged_description) ), imputer, split) - :param partition_split_dict: - :return: - """ - split = partition_split_dict['split'] - partition = partition_split_dict["cv_partition"] - eids = partition_split_dict['eids_dict'][split] - - assert split in ['test', 'train', 'valid'] - self._update_target(partition_split_dict['cv_partition'], split) - data = partition_split_dict['data'].loc[eids] - - # Save partitions - data_output_path = f"{output_directory}/{output_name}/partition_{partition}/{split}" - pathlib.Path(data_output_path).mkdir(parents=True, exist_ok=True) - data.reset_index().to_feather(f"{data_output_path}/data.feather") - #data.reset_index().to_csv(f"{data_output_path}/datam.csv") - - # Impute data - with open(partition_split_dict['imputer_path'], "rb") as input_file: imputer = pickle.load(input_file) - data_imputed = imputer.impute_new_data(new_data=data).complete_data() - partition_split_dict['data'] = data_imputed - - data_output_path = f"{output_directory}/{output_name}/partition_{partition}/{split}" - pathlib.Path(data_output_path).mkdir(parents=True, exist_ok=True) - data_imputed.reset_index().to_feather(f"{data_output_path}/data_imputed.feather") - #data_imputed.reset_index().to_csv(f"{data_output_path}/data_imputed.csv") - - return partition_split_dict - - -class ApplyNorm(pf.Task): - """ - Takes a list of tuples, where the first pos is the eid_dict, the second is the kernel, the third is the split. - Then applies imputer and saves to file. - """ - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def _update_target(self, cv_partition, split): - """ - Update Target string at runtime. - :return: - """ - self.target = f"partition_{cv_partition}/{split}_baseline_imputed_normalized.csv" - - def run(self, partition_split_dict): - """ - DICT - :param partition_split_dict: - :return: - """ - split = partition_split_dict['split'] - partition = partition_split_dict['cv_partition'] - self._update_target(partition, split) - - description = partition_split_dict['description'] - - noncategorical_covariates = description.reset_index() \ - .set_index('dtype').loc[['int', "float"]] \ - .query("(isTarget == False) & (based_on != 'diagnoses_emb') & (based_on != 'eid')")['covariate'].values - - - noncat_data = partition_split_dict['data'][noncategorical_covariates].copy() - - # log 1p transform!: - for c in noncat_data.columns: - if c.startswith('NMR'): - noncat_data[c] = np.log1p(noncat_data[c].values) - - noncat_data = noncat_data.values - - noncat_data = pd.DataFrame(partition_split_dict['normalizer'].transform(noncat_data), - columns=noncategorical_covariates) - - #print(noncat_data.head()) - - for v in noncategorical_covariates: - partition_split_dict['data'][v] = noncat_data[v].values - - # save preprocessed data - data_output_path = f"{output_directory}/{output_name}/partition_{partition}/{split}" - pathlib.Path(data_output_path).mkdir(parents=True, exist_ok=True) - partition_split_dict['data'].reset_index().to_feather(f"{data_output_path}/data_imputed_normalized.feather") - #partition_split_dict['data'].reset_index().to_csv(f"{data_output_path}/data_imputed_normalized.csv") - - # return partition_split_dict - return partition_split_dict['data'] - -@pf.task(target="data_merged_dict.p", - checkpoint=True, - log_stdout=True, - result=LocalResult(dir=f"{output_directory}/{output_name}") - ) -def read_and_merge_data(covariate_paths, input_data_dir): - logger = pf.context.get("logger") - logger.info("Data") - data_dfs = [pd.read_feather(f"{input_data_dir}/{covariate_paths[covariate][0]}").set_index("eid") for covariate in covariate_paths] - data_merged = pd.concat(data_dfs, axis=1) - output_path = f"{output_directory}/{output_name}" - - data_merged.reset_index().to_feather(f"{output_path}/data_merged.feather") - #data_merged.reset_index().to_csv(f"{output_path}/data.csv") - - logger.info("Descriptions") - description_dfs = [pd.read_feather(f"{input_data_dir}/{covariate_paths[covariate][1]}") for covariate in covariate_paths] - description_merged = pd.concat([df if i == 0 else df.tail(-1) for i, df in enumerate(description_dfs)], axis=0).reset_index() - description_merged.reset_index(drop=True).to_feather(f"{output_path}/description_merged.feather") - #description_merged.reset_index().to_csv(f"{output_path}/description.csv") - - return {"data": data_merged, "description": description_merged} - -@pf.task(name="encode_categoricals", - target="data_encoded.p", - checkpoint=True, - result=LocalResult(dir=f"{output_directory}/{output_name}")#, serializer=pd_serializer) - ) -def encode_categoricals(data_dict): - logger = pf.context.get("logger") - data = data_dict["data"] - description = data_dict["description"] - - from category_encoders.ordinal import OrdinalEncoder - cat_cols = [c for c in description.set_index("dtype").loc[["category"]].covariate.to_list() if "date" not in c] - - mapping = [{"col": c, "mapping": {e: i for i, e in enumerate([v for v in data[c].unique().tolist() if v==v])}} for c in cat_cols] - for i, c in enumerate(cat_cols): mapping[i]["mapping"].update({np.nan: -2}) - - enc = OrdinalEncoder(cols=cat_cols, mapping=mapping, handle_missing="return_nan") - data = enc.fit_transform(data) - - description["mapping"] = np.nan - for i, c in enumerate(cat_cols): - description.loc[description.covariate == c, 'mapping'] = str(enc.mapping[i]["mapping"]) - if data[c].nunique() > 2: - ohe_encoded = pd.get_dummies(data[c], prefix=c) - data[ohe_encoded.columns] = ohe_encoded - for col in ohe_encoded.columns: - description = description.append( - {"covariate": col, "dtype": "bool", "isTarget": False, - "based_on": description.loc[description.covariate == c, "based_on"].iloc[0], - "aggr_fn": np.nan, "mapping": str(enc.mapping[i]["mapping"])}, ignore_index=True) - description["based_on"] = description["based_on"].astype(str) - - #data.reset_index().to_feather(f"{output_directory}/{output_name}/data_encoded.feather") - description.reset_index(drop=True).to_feather(f"{output_directory}/{output_name}/description.feather") - - logger.info(f"{len(cat_cols)} columns one-hot-encoded") - return {"data": data, "description": description} - -@pf.task(name="apply_exclusion_criteria", - target="data_merged_excluded_dict.p", - checkpoint=True, - result=LocalResult(dir=f"{output_directory}/{output_name}")#, serializer=pd_serializer) - ) -def apply_exclusion_criteria(data_dict, exclusion_criteria): - logger = pf.context.get("logger") - data = data_dict["data"] - data_excl = data.copy().query(exclusion_criteria).reset_index(drop=False).set_index("eid") - output_path = f"{output_directory}/{output_name}" - data_excl.reset_index().to_feather(f"{output_path}/data_excl.feather") - #data_excl.reset_index().to_csv(f"{output_path}/data_excl.csv") - logger.info(f"{len(data)-len(data_excl)} eids excluded") - return {"data": data, "description": data_dict["description"]} - -@pf.task(name="get_eids_for_partitions", - target=f"eids.json", - checkpoint=True, - result=LocalResult(dir=f"{output_directory}/{output_name}", serializer=json_serializer) - ) - -def get_eids_for_partitions(data_dict, partition_column, valid_size=0.1): - logger = pf.context.get("logger") - - data_all = data_dict["data"] - eids_all = data_all.index.values - groups = data_all.reset_index().set_index(partition_column).index.value_counts().index.to_list() - splits = {i: data_all.query(f"{partition_column}==@group").index.tolist() for i, group in enumerate(groups)} - - eids_dict = OrderedDict() - for partition in range(len(groups)): - eids_dict[partition] = {} - eids_test = splits[partition] - eids_notest = sorted(list(set(eids_all) - set(eids_test))) - eids_train, eids_valid = train_test_split(eids_notest, test_size=valid_size, shuffle=False) - - if bool(set(eids_train) & set(eids_valid) & set(eids_test)) == True: - logger.warning(f"Overlap of eids in partition {partition}") - else: - logger.info(f"No overlap of eids in partition {partition}") - - eids_dict[partition]["train"] = eids_train - eids_dict[partition]["valid"] = eids_valid - eids_dict[partition]["test"] = eids_test - - return eids_dict - -@pf.task -def get_partitions(data_dict, eids_dict): - partition_dicts = [{**data_dict, 'cv_partition': partition_idx, 'eids_dict': eids_dict[partition_idx]} for partition_idx in eids_dict.keys()] - return partition_dicts - - -@pf.task(name="fit_imputer", - target="{task_name}/{task_full_name}_kernel.p", - checkpoint=True, - result=LocalResult(dir=os.path.join(output_directory, output_name, "pipeline/")) - ) -def fit_imputer(partition_dict): - """ - Fit an imputer to train set and pickle it - (partition_idx, eids_dict, (data, data_descr) ) - """ - eids_train = partition_dict['eids_dict']['train'] - data = partition_dict['data'].loc[eids_train]#.query('NMR_FLAG==True') - partition = partition_dict["cv_partition"] - - missing = data.columns[data.isna().any()].to_list() - missing = [col for col in missing if not "NMR_" in col] - - variable_schema = {} - for m in missing: - variable_schema[m] = [x for x in missing if x != m]+["MACE_event", "MACE_event_time"] - kernel = mf.KernelDataSet(data, - variable_schema=variable_schema, - save_all_iterations=True, - random_state=42) - - # Run the MICE algorithm for 3 iterations - kernel.mice(3, n_jobs=20, n_estimators=8, - max_features="sqrt", bootstrap=True, max_depth=8, verbose=True) - - data_output_path = f"{output_directory}/{output_name}/partition_{partition}" - pathlib.Path(data_output_path).mkdir(parents=True, exist_ok=True) - - imputer_path = f"{data_output_path}/imputer.p" - with open(imputer_path, "wb") as output_file: pickle.dump(kernel, output_file) - del kernel - return imputer_path - -@pf.task -def get_splits_per_partition(partition_dict, imputer_path, splits): - partition_split_dicts = [{**partition_dict, 'imputer_path': imputer_path, 'split': s} for s in splits] - return partition_split_dicts - -@pf.task(name="fit_normalization", - target="{task_name}/{task_full_name}_norm.p", - checkpoint=True, - result=LocalResult(dir=os.path.join(output_directory, output_name, "pipeline/")) - ) -def fit_normalization(partition_split_dicts): - """ - Fit an imputer to train set and pickle it. - - imputed_tuples should be a list of dicts of the form: - data_imputed is the imputed data for a split in the partition for partition idx - - """ - # first get vars: - description = partition_split_dicts[0]['description'] - noncategorical_covariates = description.reset_index() \ - .set_index('dtype').loc[['int', "float"]] \ - .query("(isTarget == False) & (based_on != 'diagnoses_emb') & (based_on != 'eid')")['covariate'].values - - # fit normalizer for each train split: - fitted_normalizers = {} - for d in partition_split_dicts: - if d['split'] == 'train': - if 'eid' in d['data'].columns: - data = d['data'].set_index('eid') - else: - data = d['data'] - noncategorical_data = data[noncategorical_covariates] - - # log 1p transform!: - for c in noncategorical_data.columns: - if c.startswith('NMR'): - noncategorical_data[c] = np.log1p(noncategorical_data[c].values) - - noncategorical_data = noncategorical_data.values - - norm = StandardScaler(with_mean=True, with_std=True, copy=True).fit(noncategorical_data) - fitted_normalizers[d['cv_partition']] = norm - - partition_split_dicts = [{**d, 'normalizer': fitted_normalizers[d['cv_partition']]} for d in partition_split_dicts] - return partition_split_dicts - - -Impute = ApplyImputer(name="apply_imputer", - target=f"partition_23/baseline_imputed.csv", - checkpoint=True, - result=LocalResult(dir=f"{output_directory}/{output_name}/cv_partitions/"), - # serializer=pd_serializer) - ) - -Normalize = ApplyNorm(name="apply_norm", - target=f"partition_23/baseline_imputed_normalized.csv", - checkpoint=True, - result=LocalResult(dir=f"{output_directory}/{output_name}/cv_partitions/"), - # serializer=pd_serializer) - ) - -with pf.Flow("ukb_pipeline") as flow: - input_data_dir = pf.Parameter('input_data', - default='/data/analysis/ag-reils/ag-reils-shared/cardioRS/data/2_datasets_pre/210514_metabolomics/') - #exclusion_criteria = pf.Parameter('exclusion_criteria', - # default="myocardial_infarction == False & stroke == False & statins == False") - partition_column = pf.Parameter('partition_column', default="uk_biobank_assessment_centre") - valid_size = pf.Parameter('valid_size', default=0.1) - - data_filenames = { - "covariates": ("baseline_covariates.feather", "baseline_covariates_description.feather"), - "pgs": ("baseline_pgs.feather", "baseline_pgs_description.feather"), - "endpoints": ("baseline_endpoints.feather", "baseline_endpoints_description.feather"), - } - data_dict = read_and_merge_data(data_filenames, input_data_dir) - data_dict = encode_categoricals(data_dict) - #data_dict = apply_exclusion_criteria(data_dict, exclusion_criteria) - eids_dict = get_eids_for_partitions(data_dict, partition_column=partition_column, valid_size=valid_size) - partition_dicts = get_partitions(data_dict, eids_dict) - - # fit imputer per partition - imputer_paths = fit_imputer.map(partition_dict=partition_dicts) - - partition_split_dicts = get_splits_per_partition.map(partition_dicts, - imputer_paths, - splits=pf.unmapped(['train', 'test', 'valid']) - ) - - partition_split_dicts = Impute.map(partition_split_dict=pf.flatten(partition_split_dicts)) - partition_split_dicts = fit_normalization(partition_split_dicts=partition_split_dicts) - - normalized = Normalize.map(partition_split_dict=partition_split_dicts) - -if __name__ == "__main__": - flow.executor = LocalDaskExecutor(scheduler="threads", num_workers=80) - #flow.executor = DaskExecutor(cluster_kwargs={"n_workers": 10, "threads_per_worker": 20}, debug=True) - - # run locally - runner = FlowRunner(flow=flow) - flow_state = runner.run(return_tasks=flow.tasks) - - # run in the cloud - # flow.register(project_name="ukbb_pipeline") - # flow.run()