-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessor.py
63 lines (58 loc) · 2.42 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
import numpy as np
from PIL import Image
from pathlib import Path
def get_means(image):
cutSize = 75
cutPositions = [
(27, 16), (128, 16), (227, 15), (334, 16), (439, 18),
(544, 22), (646, 20), (753, 23), (854, 20), (959, 22),
(23, 116), (125, 115), (229, 114), (333, 117), (439, 113),
(540, 119), (647, 120), (753, 121), (855, 121), (961, 121),
(22, 209), (124, 212), (227, 214), (334, 214), (441, 217),
(544, 217), (652, 219), (756, 220), (861, 223), (967, 224),
(20, 314), (125, 317), (227, 314), (334, 317), (441, 316),
(546, 321), (652, 322), (759, 322), (863, 322), (968, 323)]
means = []
for x, y in cutPositions:
crop = image.crop([x, y, x + cutSize, y + cutSize])
arr = np.array(crop)
arr = arr[:, :, 0].flatten()
arr.sort()
size = arr.size
perc = size // 100
means.append(arr[-5 * perc:].mean())
means.append(arr[-10 * perc:].mean())
means.append(arr[-15 * perc:].mean())
means.append(arr[-20 * perc:].mean())
means.append(arr[-25 * perc:].mean())
return means
if __name__ == '__main__':
dataFolder = Path('data/')
processed = pd.read_csv(dataFolder / 'Inputs.csv',
converters={'File': Path}, index_col='File')
labels = pd.read_csv(dataFolder / 'Labels.csv',
converters={'File': Path}, index_col='File')
oldSamples = processed.join(labels, how='inner')['Sample'].unique()
allFiles = []
allValues = []
for temperature in dataFolder.iterdir():
if temperature.is_file():
continue
print('Temperature:', temperature)
for sample in temperature.iterdir():
if sample.name in oldSamples:
continue
print('Sample:', sample)
for file in sample.iterdir():
img = Image.open(file)
means = get_means(img)
allValues.append(means)
allFiles.append(file)
print('- - - - - - - - - -')
names = ['top 5', 'top 10', 'top 15', 'top 20', 'top 25']
columns = [f'Spot {i}, {n}' for i in range(1, 41) for n in names]
df = pd.DataFrame(allValues, index=allFiles, columns=columns)
df.index.name = 'File'
df = pd.concat([processed, df])
df.to_csv(dataFolder / 'Inputs.csv')